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Foreword

Steven J. Luck

When Hans Berger conducted his pioneering human EEG recordings in the 1920s, his 
first major discovery was the alpha rhythm, a 10- Hz oscillation that grew larger when the 
subject’s eyes were closed. A few years later, Lord Adrian (my intellectual great- great- 
grandfather) showed that the alpha rhythm also varied according to whether the subject 
was focusing intensely or daydreaming. Thus the study of EEG oscillations was born.

But this area of research underwent a protracted childhood, because the scientists 
of the mid- twentieth century could not easily see smaller oscillations amidst the cha-
otic twists and turns of the scalp EEG. To pull out specific neural processes from the 
complex and noisy EEG, they began to use signal averaging techniques that can isolate 
the brain potentials that are triggered by specific events such as the onset of a light (the 
event- related potentials or ERPs). However, these techniques assume that the phase of 
the signal is constant across trials, and the application of signal averaging to EEG data 
eliminates or hopelessly distorts oscillating activity. Indeed, for the first 30 years of my 
own research career, I viewed the alpha rhythm as a nuisance that should be suppressed 
lest it contaminate my precious ERP waveforms.

All of this began to change in the 1980s and 1990s, partly driven by high- profile studies 
of local field potential oscillations in animals and partly driven by the application of 
time- frequency analysis methods to human EEG recordings. The brain oscillations that 
were obscured by signal averaging could now be visualized and quantified. A new gen-
eration of researchers began studying human EEG oscillations and linking them with 
microelectrode data from animals and computational models of brain dynamics.

In science, the introduction of a new approach often leads to a burst of progress 
followed by the realization that things are not as simple as they seem. The new wave of 
oscillation research followed this common path, with the discovery of important new 
phenomena being accompanied by conceptual and methodological challenges. One 
such challenge— related to the famous Heisenberg Uncertainty Principle— is that pre-
cision in the time- domain is inversely related to precision in the frequency domain. The 
more precisely you determine the frequency of an oscillation, the less you can say about 
when the oscillation was present.

A second important challenge is the difficulty of distinguishing between bona fide 
oscillations and other kinds of neural events. Part of the genius of the Fourier transform 
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is that any waveform— whether or not it contains oscillations— can be reconstructed by 
summing together a set of sinusoids. As a result, when you apply a method such as the 
Fourier transform to a time- domain signal such as the EEG, you will always see activity 
at some frequencies, whether or not the signal is actually oscillating. And what if the 
brain is oscillating, but not in a sinusoidal manner? This can lead to completely artifac-
tual results, such as the apparent coupling of the amplitude of one frequency with the 
phase of another frequency.

A third key challenge is the interpretation of brain oscillations. Virtually any system 
containing multiple interconnected parts will oscillate when energy is introduced. 
Those oscillations can be essential to the function of the system, as when the sound of a 
single violin fills a concert hall or when a clock keeps perfect time. But oscillations can 
also be a sign of trouble, as when a bridge shakes violently following an earthquake or 
when a seizure spreads throughout the brain. The fact that the brain oscillates, and that 
the oscillations vary across states or tasks, does not mean that the oscillations them-
selves are playing a functional role in the brain’s computations. They may be epiphe-
nomenal. Or they may be fundamental. Distinguishing between these possibilities may 
require invasive recordings in animals or experimental manipulations of oscillations via 
brain stimulation.

The study of EEG oscillations has reached a key point in its development. The appli-
cation of time- frequency methods to EEG data is now commonplace, aided by open 
source data analysis packages such as FieldTrip and EEGLAB. Labs that eschewed 
these methods for many years— including my own— are now examining oscillations 
alongside traditional event- related potentials. However, this success means that more 
researchers are using time- frequency analyses without understanding the challenges 
involved in properly quantifying and interpreting oscillatory activity. As a result, this 
edited volume has appeared at the perfect time.

The chapters in this volume will give scientists of all career stages the knowledge 
they need to understand how oscillations arise in the brain, how they can be accurately 
quantified, and how they can be appropriately interpreted. I encourage readers to think 
deeply about the many important issues that are raised in these chapters, especially with 
regard to the three challenges I have outlined. But if you think deeply and follow the 
“best practices” described in this volume, you will be able to see brain activity that would 
otherwise be invisible. And you may make important new discoveries about the human 
mind and brain.

 

 



 

Preface

Motivation

The time is ripe for a comprehensive book on the array of historical and cutting- edge 
frequency and time- frequency approaches to studying EEG/ ERP because of the wide- 
spread interest in frequency research. There is a great need for a book organizing the di-
verse and important methods of EEG frequency analyses and interpreting the resultant 
measures.

One stream of research comes from traditional (band- based) frequency analyses. 
Likewise, understanding the cutting- edge frequency analyses which may not be familiar 
to many EEG researchers is increasingly important for investigators applying frequency 
analyses. However, there is a major need for a comprehensive handbook on analyses 
within this domain. Although research has been rapidly accumulating over the last 
decade, there has not been sufficient organization of research on the topic. We believe 
this comprehensive handbook is increasingly necessary to help delineate the boundaries 
of the area, the major scientific questions that need to be addressed, and the core theor-
etical frameworks that can guide future research and development.

Thus, a specific goal of this book is to bring together these various scientific 
perspectives and research approaches within a single reference volume that provides an 
integrated, cutting- edge overview of the current state of the field. This volume comprises 
contributions from leading researchers within various allied disciplines.

The use of electroencephalography (EEG) to study the human mind has seen tre-
mendous growth across a vast array of disciplines due to increased ease of use and 
affordability of the technology. EEG is a non- invasive measure of electrical brain ac-
tivity. Typically, researchers investigate the EEG signal using either time- domain (e.g., 
ERP) analyses or frequency analyses. Several books have examined practicalities of 
conducting ERP analyses and interpreting various ERP measures. However, a compre-
hensive book has yet to be developed organizing the numerous ways to process EEG 
frequency and interpreting frequency measures linked to cognitive, affective, and motor 
processes.

We (editors Philip, Matt, and Ed) felt a great need for a book organizing the diverse 
and fascinating methods of EEG frequency analyses and interpreting the resultant 
measures. Frequency analyses provide unique assessments of neural functioning, 
neural connectivity, and “resting” neural activity studied by EEG researchers. Further, 
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frequency- domain measures are reliably associated with cognitive, affective, and motor 
processes of great interest to neuroscientists and psychological scientists. For example, 
asymmetrical activation of the frontal cortex as measured by the inverse of alpha- band 
activity is closely linked with motivation and emotion. In addition, analyses examining 
the synchrony of EEG frequencies recorded from different scalp locations allow 
researchers to examine brain connectivity without having to incur the costs of magnetic 
resonance imaging.

ORIGIN

As EEG frequency researchers, we wanted a resource that introduced the myriad ways 
in which EEG frequency analyses are being investigated. This volume began while the 
lead editor, Philip, was on sabbatical and seeking to begin a new chapter in his career. 
During that time, he visited with Matt Miller and the project quickly developed into a 
collaborative project. After developing the project more, Matt and Philip brought Ed 
Bernat on board.

As individual editors, we each had areas of expertise in EEG frequency research, but 
in developing this volume, we quickly discovered that each of our individual areas of 
expertise were far different from each other. Three editors were necessary to even try 
to cover the breadth of EEG frequency research being conducted. In addition, we did 
not want to create a handbook that focused on EEG frequency research specifically in 
emotion, cognition, or clinical applications. Instead, we wanted to provide a survey of 
the breadth of work being conducted with EEG frequency research. Try as we might, we 
also acknowledge this handbook will inevitably fail to cover everyone’s interest across all 
topics. To that end, we hope to receive feedback from readers so that future editions of 
this handbook can be expanded to encompass the ever- growing field of EEG frequency 
research.

Together, the project has been a long labor, but well worth the time and effort to de-
velop the resource. We have been especially excited to work with leading experts in the 
field as they develop chapters for the volume. We are excited for you as the reader to see 
what we have gotten to see throughout the editing process: the excitement and develop-
ment of EEG frequency research across a wide range of fields and programs of research.

ORGANIZATION

To aid in reading the handbook, much thought and structuring has been given to the 
organization of the chapters. As a whole, the book provides a systematic summary of 
EEG frequency analyses and applications. Individual chapters give depth to each type 
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of frequency analysis and interpretation of resultant measures. Chapters are organized 
into three sections.

The first section of the book is focused on basics of EEG frequency research and 
linking frequency analyses to other components of EEG research, such as event- related 
potential (ERP) components and the fundamentals of inference from EEG recording. 
For the second section, contributors focus on specific EEG frequency components that 
are commonly studied using traditional frequency bands of activity to study specific 
psychological processes related to cognition, motivation, and perception. The third 
section focuses on EEG frequency analyses in special populations and altered states. The 
fourth section of the handbook concludes with chapters focused on advancing method-
ology used in EEG frequency research.

The initial chapters in the first section describe methods for collecting EEG data for 
frequency analyses in humans as well as the basics of electrical activity and assumptions 
regarding the EEG signal. Following these chapters, contributors consider how the 
oscillations in the EEG signal may give rise to psychological phenomena, and how 
ERPs can be decomposed into time- frequency components. The chapters go on to con-
sider the relationships between evoked (ERP- related) and induced EEG activity before 
shedding light upon frequency analyses of LFPs in non- human primates, which may 
inform frequency analyses of human EEG. The second section begins with the role of 
gamma oscillations in cognitive and sensory processing. Then, frontal midline theta, 
which is often linked to cognitive control, is addressed, followed by the role of alpha and 
beta oscillations in perception and memory. Next, research on asymmetries in frontal 
alpha oscillations are linked with motivation, followed by a description of the role of 
oscillatory activity in sensorimotor function. Moving into the third section of the book, 
the first chapter in this section focuses on changes in EEG frequency throughout in-
fancy, childhood, adolescence, and early adulthood. Next, follows an examination of 
the ratio of theta to beta power in motivation and attentional control as they relate to 
normal and abnormal behavior. Then, the characteristics of the oscillations in persons 
with schizophrenia are described, followed by an examination of how frequency 
analyses clarify control processes in people with anxiety. The concluding section of the 
handbook begins with specialized frequency analyses for source localization and brain 
connectivity before concluding with chapters describing how to manipulate oscillatory 
activity with brain stimulation and how to parameterize neural field potential data to, 
for example, tease apart true oscillations from aperiodic signals.

LIMITATIONS OF THE 
CURRENT VOLUME

As with any book, the current volume is not a complete work on the topic of EEG fre-
quency analyses. In addition, this is not the first book on EEG frequency research. Many 
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excellent books have been published this topic. Here we mention what the current book 
does not include and refer the reader to additional resources available in other books.

One of the most inspiring resources for us as editors is Steven J. Luck and Emily 
S. Kappenman’s Oxford Handbook on Event- Related Potential Components. This book 
has been used in our courses and labs, as well as by countless other EEG researchers. It 
focuses on the excellent work that has investigated the spectrum of ERP components 
derived from EEG research. We were inspired to build a similar handbook that would 
cover EEG frequency analyses. The current book does not address ERP research in 
much detail. The closest chapters addressing ERP research are Chapters 4 and 5. For 
those desiring a more comprehensive volume on ERP analyses, please see Luck and 
Kappenman.

Another extraordinary resource is Mike X. Cohen’s Analyzing Neural Time Series 
Data: Theory and Practice. This book has served as the primary resource for many EEG 
researchers, including us, to learn how to conduct time- frequency analyses, and to teach 
our students how to perform the analyses. The book is particularly helpful in guiding 
the reader from the mathematical bases of frequency analyses to the implementation 
of these analyses in MATLAB. These analyses are referenced throughout our book and 
include fast Fourier transforms, complex Morlet wavelet convolution, intertrial phase 
clustering, surface Laplacian filtering, phase-  and power- based connectivity measures, 
and cross- frequency coupling. Chapters in our book that address these “how- to” topics 
include Chapters 4, 5, 19, 20, 21, and 23.

Finally, Chapter 1 of this volume describes how to collect EEG data. For readers 
who which to have greater detail about implementing and collect EEG from human 
participants, we recommend Dickter and Kieffaber’s EEG Methods for the Psychological 
Sciences. This book is an excellent resource for researchers beginning to implement EEG.
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Chapter 1

INTRODUCTION
Methods for Collecting EEG Data for Frequency  

Analyses in Humans

PHILIP A. GABLE AND MATTHEW W. MILLER

1.1 Chapter Aims

This chapter aims to provide a structure for readers to understand the methodology 
behind collecting EEG (electroencephalography) presented in the subsequent chapters. 
It is important to first understand the research methods involved in recording EEG fre-
quency before delving into more advanced frequency analyses and the interpretations. 
As researchers, we focus this first chapter on a brief introduction to the topic of EEG 
methodology and scientific practices. To begin, however, we feel it is important to lay 
down definitions for terms used throughout the book.

1.2 Definitions of EEG 
Frequency Research

EEG refers to the recording of electrical brain activity from the human scalp. It is one 
of the most common methods for measuring brain functioning in areas of mind, brain, 
and behavior science. EEG data contain rhythmic activity or waves that may reflect 
neural oscillations, or fluctuations in the excitability of populations of neurons (more 
on this later). These rhythmic fluctuations are typically described using two main 
descriptors. The first is frequency, which is the speed of the wave, and it is measured 
in hertz (Hz), which is the number of wave cycles per second. The second is power, 
which is the squared amplitude of the wave. The greater the power of an oscillation, the 
greater the energy of that oscillation. All of the chapters in this work discuss frequency 
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with most referencing power. Sometimes researchers investigate the phase of the wave, 
which is the position of the wave measured in radians or degrees. Many of the chapters 
included here discuss phase.

The brain produces rhythms in multiple frequencies, which can be isolated from 
the raw EEG signal using multiple techniques described by Curhamn & Allen in 
Chapter 2, and Voytek in Chapter 23). Different psychological processes are linked to 
different frequencies, which are often grouped into bands. The most commonly studied 
bands include delta (1– 4 Hz), theta (4– 8 Hz), alpha (8– 12 Hz), beta (13– 30 Hz), and 
gamma (lower gamma 30– 80 Hz; upper gamma 80– 150 Hz). While these are not the 
only frequency bands, these are the bands most typically associated with processes 
of mind and behavior measured by EEG. Importantly, these bands are not defined 
without reason, but instead reflect biological changes at the cellular level (see Cohen, 
2014 and Buzsaki, 2006 for reviews). However, these bands are not rigid and may vary 
depending on individual differences, such as brain development, structure, and chem-
istry. Chapters in the second section of this work note how different frequency bands are 
associated with cognitive, motivational, and sensorimotor processes.

These definitions are by no means complete. Individual chapters provide more pre-
cise definitions of terms used. With this initial framework, readers should be able to 
venture into subsequent chapters focusing in more detail on these definitions. Because 
EEG is a rather complex measure, we focus in more detail on the physiological basis and 
scientific methods used to record and process EEG.

1.3 Physiological Basis of EEG

EEG is measured because all nerve cells communicate using electrical signals, sending 
information throughout the brain and to the rest of the body. Within a neuron, an action 
potential is an electrical wave that runs from the axon hillock at the cell body to the axon 
terminals. At the axon terminals, the action potential causes neurotransmitter to be 
released. This neurotransmitter crosses the synaptic gap and binds to receptors on the 
membrane of the postsynaptic cell. Binding to the receptor causes voltage changes by 
activating ion channels or second messengers that either excite or inhibit the postsynaptic 
neuron. The summation of this voltage change in the membrane of the dendrites and cell 
body of the postsynaptic neuron is called a postsynaptic potential. Postsynaptic potentials 
tend to occur locally, rather than moving down the axon. This allows postsynaptic 
potentials to summate rather than to cancel, resulting in voltage changes that have larger 
amplitudes and can be recorded on the cortical surface or at the scalp.

When tens of thousands to millions of neurons are excited or inhibited at the same 
time, the voltage change outside the cell (extracellular potential) can be recorded at the 
scalp using EEG, which measures the sum of electrical activity from excitatory and in-
hibitory postsynaptic potentials over this collection of neurons. The activity can only be 
recorded on the scalp surface because tissue (cerebrospinal fluid, meninges, skull, and 
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skin) between the neurons and scalp conducts the electrical signal. In addition, for elec-
trical activity to be projected to the scalp, cellular alignment must be precisely arranged 
in parallel so that their effects cumulate to project the electrical activity to the scalp (see 
Curhamn & Allen, Chapter 2; Keil & Thigpen, Chapter 3). Neurons must be arranged 
so that the cluster of neurons all have dendrites at one pole and axons departing at the 
opposite pole. This arrangement is called an open field and occurs when neurons are 
organized in layers. The cortex, cerebellum, and parts of the thalamus tend to have this 
open field arrangement of neurons resulting from pyramidal cells.

1.4 A Dual Nature

Due to the electrical basis of the EEG signal, EEG has excellent ability to tell us when 
something is happening in the brain. This is called temporal resolution and is one of 
the greatest strengths of the EEG signal. The EEG signal measures neural activity at the 
accuracy of milliseconds, which allows for the ongoing measurement of psychological 
processes as they unfold (Luck, 2014).

However, the EEG signal is limited in its ability to measure where something is 
occurring. This is called spatial resolution and is one of the greatest weaknesses of the 
EEG signal. Depending on where the source of the EEG signal is generated, the orien-
tation of the open field neurons might not be parallel to the scalp, thus generating EEG 
signals in multiple directions. In addition, resistors (e.g., the skull) in the tissue between 
the neurons and scalp can cause the EEG signal to spread out. Because of the volume 
conduction through the head, as well as the orientation of the pyramidal cells emitting 
the signal, the spatial location of the signal is difficult to ascertain. As Keil and Thigpen 
(Chapter 3) note, a difference in frequency power between two experimental conditions 
could be the result of a different number of neurons activated, the temporal order in 
which they were activated, or neurons with different orientations being activated. To 
address EEG’s limited spatial resolution, cortical source localization techniques have 
been developed and are reviewed by Xie and Richards (Chapter 19). In sum, using an 
analogy from Steve Luck’s ERP Boot Camp, the EEG signal is like being able to see every 
frame of a movie as it unfolds. However, because of the low spatial resolution, the movie 
appears a bit blurry.

1.5 EEG Equipment and Recording

The earliest method of EEG measurement was implemented by Hans Berger in the 
late 1920s. In his early experiments, he used two sponges soaked in saline connected 
to an amplifier (Berger, 1929). While the equipment and processing of EEG signal has 
advanced considerably since that time, the basic components remain similar. EEG 
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electrodes are placed on or near the head, the signal from the electrode is transmitted to 
an amplifier, and the signal is digitized and recorded.

In psychological research labs, EEG is usually recorded from 32, 64, 128, or more 
electrodes. In other research (e.g., sleep, nonhuman) fewer electrodes (2– 8 electrodes) 
is more typical. When larger numbers of electrodes are used, electrodes are mounted in 
an electrode cap or net. When fewer electrodes are used, electrodes may be positioned 
individually on the head using a bonding agent. Electrodes can either be wet electrodes 
or dry electrodes. Wet electrodes are made of silver, silver- chloride, or tin, and a con-
ductive gel or liquid is placed inside or around the electrode. Dry electrode systems 
use electrodes coated in gold, silver, or nickel, and place electrodes directly on the scalp 
without a conductive medium. Wet electrodes generally have higher signal quality, but 
dry electrodes may be preferred when high impedance levels are tolerable, or when re-
cording for long periods.

Electrode systems will have active or passive electrodes. Active electrodes con-
tain a small pre- amplification unit directly attached to the conductive metal in 
the electrode. This allows the EEG signal picked up at the sensor to be immedi-
ately amplified before additional environmental noise can be introduced. Passive 
electrodes do not have amplification at the electrode, and instead carry the signal to 
an amplifier about a meter away. Compared to passive electrodes, active electrodes 
minimize noise introduced during signal transmission, tolerate high impedance re-
cording, and reduce participant preparation time. Passive electrodes have a lower 
profile to benefit transcranial magnetic stimulation over the cap and can be used 
inside an MRI bore.

Electrode placement is predominantly based on the 10– 20 system (Jasper, 1958). 
Electrodes are named using the first letter to refer to the brain region under the electrode 
from anterior to posterior (e.g., Fp— frontal pole, F— frontal, C— central, P— parietal, 
T— temporal, O— occipital). Numbers following the letter are used to indicate the lateral 
position of the electrodes. Ascending odd numbers indicate sites more lateral over the 
left hemisphere of the brain, whereas ascending even numbers indicate sites more lateral 
over the right hemisphere of the brain. The letter Z is used to designate medial sites. In 
addition to the recording electrodes, EEG also requires a ground electrode, which assists 
in reducing electrical noise, as well as a reference electrode placed on the head or face.

The raw EEG signal is usually filtered during recording. Signals below 0.1 Hz or above 
200 Hz are removed because the frequency bands of interest fall within this range. 
A filter at 60 Hz (in North and South America) or 50 Hz (in Europe, Asia, and Africa) 
may also be used to further reduce electrical noise from alternating current.

1.6  Artifacts

The quality of the EEG is crucial to EEG frequency analysis. To best record EEG signal 
reflecting brain activity, researchers must remove signal that occurs because of anything 
other than neural activity. Signal that is not naturally present is called artifact. These 
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can be biological (e.g., muscle movement) or nonbiological (e.g., electrical noise). Much 
artifact can by eliminated by taking preventative measures. Artifact that cannot be 
prevented should be removed.

Muscle artifact, or electromyography (EMG), is one of the most common types of 
artifacts and is usually high in frequency (100– 500 Hz). Usually, this falls outside of the 
frequency range typically investigated by researchers. However, some muscle artifact 
may seep into lower frequencies. Researchers can reduce muscle artifact by instructing 
participants to limit their muscle movements. Muscle artifact that does occur can be 
removed through visual inspection, filtering, and automatic artifact detection algo-
rithm. It should be noted that some muscle artifact may be related to the experiment 
(e.g., sensorimotor studies). In such cases, it may be beneficial to measure EMG at the 
site movement is expected (e.g., the hand), then control for it in analyses.

Eye movements are another common type of artifact. The eyeball is polarized which 
causes large artifact in the form of voltage changes resulting from moving the eyes. Like 
dealing with muscle artifact, eye movement artifact can be removed from signal using 
recordings near the eyes called electro- oculograms (EOG). One pair of EOG electrodes 
are placed above and below the eye, while another pair is placed just lateral to either eye 
on the temple. Eye blinks also create eye movement artifact. It is preferable to correct 
blink artifact using an artifact reduction algorithm based on regression, principal com-
ponent analyses, or independent component analyses.

Artifacts occurring in the environment are the result of nonbiological factors. The 
most common sources of these artifacts are the result of external electrical noise coming 
from compact fluorescent lightbulbs, data hubs, or electrical junctions. Grounding will 
aid in reducing these sources of noise, as will electromagnetically shielded rooms.

1.7 Frequency Processing

Once an EEG signal is recorded, the raw data must go through several processing 
steps before it is in a format useable in analyses. The raw signal is collected in the 
time- domain but must be converted into a frequency- domain representation. One 
way this can be accomplished is in the form of a power spectrum, which collapses fre-
quency data across time to map the frequencies present. A frequency analysis can be 
conducted over windows that are minutes, seconds, or milliseconds in length; these are 
called epochs. Epochs that are seconds or minutes can be analyzed for power spectra 
using a Fourier transform, which decomposes a signal into a series of sine and cosine 
functions of various frequencies. The function of each frequency begins with its own 
phase. A Fourier transformation assumes that the epoch repeats infinitely forward 
and infinitely backward in time. A process called windowing is used to prevent artifact 
created from the Fourier transform. However, windowing can also introduce artifact 
and data loss into the frequency analysis. Overlapping epochs is a way to prevent dis-
continuity, data loss near the ends of the epoch, and to help meet the assumptions of the 
Fourier transform in windowing.
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One of the most common forms of signal frequency processing is to use a fast 
Fourier transform (FFT). An FFT provides the spectrum of frequency power for a 
period, which is often averaged across a range of frequencies comprising a band (e.g., 
theta). It also provides a spectrum of phase. The power spectrum reflects the energy 
of each frequency determined by the squared amplitude of the wave. The phase spec-
trum reflects the phase in radians or degrees of the sine or cosine wave at each interval 
(e.g., 1/ T). Most frequency analyses focus exclusively on frequency power. However, 
there is increasing interest in examining the phase of frequencies (e.g., see Michelmann, 
Griffiths, & Hanslmayr, Chapter 10; Palva & Palva, Chapter 20). Crucially, the FFT has 
two limitations: it poorly depicts changes in the frequency spectrum over time, and it 
assumes the EEG data are stationary during the period to which the FFT is applied. To 
overcome these limitations, time- resolved frequency decomposition techniques are 
growing in popularity, particularly wavelet analyses (e.g., complex Morlet wavelets), 
which reveal changes in power at various frequencies with excellent temporal precision 
(see Aviyente, Chapter 4; Weinberg, Ethridge, Oumeziane, & Foti, Chapter 5).

1.8 Experimental Design

Regardless of the EEG recording and processing, researchers need to be considerate of 
experimental design. In any experiment, researchers should manipulate a single vari-
able at a time to ensure internal reliability, but this procedure is challenging in EEG 
research. This follows because manipulating one variable between conditions may inad-
vertently change a second variable between conditions that affects EEG. For example, if 
an experimental condition attempts to manipulate participants’ motivation while they 
are physically responding to stimuli, then EEG linked to motivation may change (see 
Harmon- Jones, Popp, & Gable, Chapter 11) but so may the vigor of their responses and 
EEG linked to sensorimotor function (see van Wijk, Chapter 12). Thus, it is crucial that 
researchers attempt to experimentally control for such factors in their experimental de-
sign or statistically account for them by collecting covariates, such as EMG to index the 
vigor of motor responses.

1.8.1  Reproducibility in Electrophysiology: Challenges 
and Recommendations

A scientific discipline benefits from reproducible results because they strengthen 
confidence that they reflect the way a system operates under certain conditions.1 

1 There have been special issues in the International Journal of Psychophysiology and Psychophysiology 
devoted to reproducibility and, relatedly, open science in cognitive electrophysiology, and readers are 
encouraged to read these special issues (Kappenman & Keil, 2017; Larson & Moser, 2017).
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We use Goodman, Fanelli, and Ioannidis’s (2016) definition of reproducible results 
as “obtaining the same results from the conduct of an independent study whose 
procedures are as closely matched to the original experiment as possible” (pp. 2– 3). 
Although there are different definitions of what it means to obtain “the same results” 
(Open Science Collaboration, 2015), we hope that closely matched studies yield 
effects with confidence intervals that overlap substantially (for details on using confi-
dence intervals in EEG studies, see Groppe [2017]), thus allowing us to make precise 
inferences about the true size of the effect being studied. Since reproducible results are 
crucial for a discipline, it is important to consider what can be done to obtain them. 
We discuss several research practices that increase the likelihood that an original re-
sult will be reproducible and that subsequent studies reproduce the original result, 
as well as challenges faced by cognitive electrophysiology researchers attempting 
to do so.

1.9 Pre- Register Specific Hypotheses

Each study should test specific hypotheses because results that confirm hypotheses 
are more likely to be true than results based on exploratory analyses (Ioannidis, 2005). 
Thus, it is crucial that researchers do not rewrite their hypotheses to fit with their results, 
a practice known as HARKing (hypothesizing after results are known), as it exaggerates 
the confidence the reader has that the results are true. One method to avoid HARKing 
is pre- registering hypotheses using the Open Science Framework (osf.io), aspredicted.
org, or other repositories. However, formulating specific hypotheses for cognitive elec-
trophysiology studies can be difficult, especially if researchers want to frame them stat-
istically. For example, a researcher may be confident in predicting that an experimental 
condition will affect EEG activity, but they may struggle to define “EEG activity” as 
a dependent variable. In ERP studies, this is less of a concern because the dependent 
variables (ERP components) are well- characterized (Kappenman & Luck, 2012); how-
ever, there are fewer well- characterized time- frequency variables. Although researchers 
can be vague about defining their time- frequency variables, they should then use stat-
istical analyses with strict corrections for multiple comparisons (see Cohen, 2014). This 
reduces the likelihood of making Type I errors, but consequently increases the likeli-
hood of making Type II errors. (Researchers may also consider data- driven region- of- 
interest approaches; see Brooks et al., 2017). Therefore, time- frequency analyses will 
benefit from having well- defined dependent variables (Indeed, this was an initial im-
petus for this book!).

For example, if a researcher believes an experimental manipulation is likely to influence 
EEG activity related to cognitive control, they can have a clearly defined dependent vari-
able of oscillatory activity in the theta frequency bandwidth measured from frontal mid-
line electrodes over a certain time (Cavanagh & Cohen, Chapter 9). In a pre- registration, 
researchers should use a more precise definition of their dependent variable than “frontal 
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midline theta”. For example, they could specify that they will determine the wavelet of 4– 
8 Hz that exhibits the greatest peak power between 200 and 600 ms after stimulus onset 
at electrode Fz for each participant, and then compute the average power of this wavelet 
during the 200– 600 ms time epoch at Fz. They could also introduce some flexibility into 
the specification of the dependent variable by noting that they will choose a different band-
width, epoch, and/ or electrode if the grand average time- frequency plot (averaged across 
all conditions) reveals an unexpected time- frequency and/ or scalp distribution. In this 
example, the average across all conditions avoids biasing the analysis in favor of choosing 
a time- frequency window exhibiting differences between conditions. Besides reducing 
HARKing and facilitating the specification of dependent variables, pre- registration is cru-
cial for holding researchers accountable to their research design, statistical analyses, and 
sample size; however, none of these positive features of pre- registration work if researchers 
deviate from their pre- registration without properly noting the deviation (Claesen 
et al., 2019).

1.10 Increase Power and Conduct 
A Priori Power Calculations

Another way that researchers can increase the likelihood that study results are reprodu-
cible is by increasing the power of their studies (Ioannidis, 2005). Alarmingly, Button 
and colleagues’ (2013) analysis of neuroscience studies found their average power was 
very low (8– 31%). There are two general ways that researchers can increase the power of 
their studies. First, researchers should attempt to maximize the effect they are studying 
and minimize its variance (i.e., increase the standardized effect size). This can be done 
by using strong experimental manipulations and reliable dependent variables, such 
as those discussed in this work. Additionally, researchers should increase the signal 
to noise ratio in their studies by optimizing the number of trials and collecting good 
EEG data (Cohen, 2017; Luck, 2014).2 Further, when possible, researchers should use 
within- subjects designs, which is already the case in many cognitive electrophysi-
ology studies. Second, researchers should collect larger samples, which is particu-
larly important when testing between- subjects effects or within- between subject 
interaction effects. Cognitive electrophysiology studies can require a lot of time to 
collect and process data, so collecting more participants may seem burdensome, es-
pecially for researchers investigating small– medium effects. For example, a two- tailed 

2 A good way for researchers to benefit the field (and their citation count) may be for them to establish 
the number of trials required for different time- frequency variables in different paradigms, which has 
been done for ERP variables (e.g., Rietdijk et al., 2014). It is worth noting that simply adding more trials 
may not increase the signal to noise ratio, since participants may fidget more toward the end of long data 
collections, consequently increasing noise.
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dependent t- test for an effect size of dz =  0.35, an alpha =  .05, and power =  .90 requires 
88 participants, according to G*Power 3.1.9.4 (Faul et al., 2009). Indeed, it is likely that 
researchers will often find themselves studying small- medium effects. Specifically, 
when researchers conduct a priori power calculations to determine their sample sizes, 
they should assume that the effect sizes in the extant literature are inflated, due to pub-
lication bias by researchers and journals (i.e., only publishing significant results) (for 
a more detailed discussion on sample size calculations in EEG studies, see Larson & 
Carbine, 2017). Although it is difficult to collect and process large samples, it is crucial 
to the reproducibility of cognitive electrophysiology studies. To reduce the demands 
large sample sizes impose, researchers who mentor doctoral students, review for and 
sit on the editorial boards of journals, are involved in hiring decisions about faculty and 
post- doctoral researchers, and are involved in promotion and tenure decisions should 
reconsider expectations about the speed of science and the number of publications (for 
further discussion on these issues, see Bradley (2017) and Yeung [2019]). Also, if a re-
searcher is concerned about allocating a lot of time to a study that may not yield signifi-
cant results, they can conduct a sequential analysis where they pause data collection 
after a pre- specified sample has been collected and then determine whether to continue 
data collection based on if the incremental results are significant (given an adjusted 
alpha level) and if the incremental results suggest an effect size that is too small to be of 
interest (Lakens, 2014).

1.11 Make Methods, Materials,  
and Data Open

In addition to pre- registered hypotheses and adequately powered studies, researchers 
should also make their methods, materials, and data accessible3. In so doing, they 
will allow other researchers to “methodologically reproduce” the original study 
(Goodman et al., 2016), which should increase the likelihood of observing the same 
results. Researchers should make their stimuli and stimulus presentation scripts 
available and include specific details about instructions given to participants and the 
equipment used for the study. Further, researchers should also make signal and stat-
istical processing scripts available and provide their data when possible so that other 
researchers can attempt to reproduce analyses or explore new ones. There are various 
ways to provide this information, including on the Open Science Framework and 
GitHub (github.com).

3 There is a special issue in the International Journal of Psychophysiology devoted to open science in 
human electrophysiology, and readers are encouraged to read it (Clayson, Keil, & Larson, 2022).
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1.12 Replicate and Expand

The recommendations were made to increase the likelihood that researchers’ ori-
ginal results will be reproducible, but the recommendations also apply to researchers 
attempting to reproduce original results. Crucially, researchers attempting to repro-
duce original results should also attempt to replicate and expand an original finding 
(Cohen, 2017), preferably increasing the sample size by two and half times the ori-
ginal (Simonsohn, 2015). Specifically, cognitive electrophysiology will benefit if most 
studies include an attempt to reproduce an original result and then add a new result 
(e.g., by adding a new experimental condition). With results from replication attempts, 
more precise estimates about the direction and size of effects can be made. Of course, 
it is nearly impossible to reproduce a study methodologically. For example, different 
researchers may have different criteria for manually rejecting trials, and different in-
dependent component analyses may yield different components. However, researchers 
can still come quite close to a methodological reproduction, especially if methods and 
materials are available for them to use. A challenge for cognitive electrophysiologists 
is that they often employ different signal processing methods, such as subtracting or 
not subtracting the ERP from an epoch of EEG data prior to convolving the data with 
a wavelet. To this end, researchers should use the same methods as the original study, 
unless a different method is clearly superior. Of course, whether a different method is 
clearly superior is debatable; thus it is incumbent upon the researcher conducting the 
methodological reproduction to state their case in a compelling way.

1.13  Explore

Some of the most exciting and reproducible effects in cognitive electrophysiology have 
been discovered by accident (e.g., Kutas & Federmeier, 2011), meaning that they would 
not have occurred if researchers had only conducted confirmatory research testing a 
priori hypotheses. Thus, it is imperative that researchers conduct exploratory analyses 
in addition to confirmatory analyses. However, results from exploratory analyses should 
be clearly labeled as such to avoid misleading readers to having excessive confidence in 
the result. Ideally, then, a study will test pre- registered confirmatory hypotheses that 
replicate and expand an original result and conduct exploratory analyses. Compelling 
results from the exploratory analyses can then serve as a priori hypotheses in future 
confirmatory research. Finally, some of the most exciting exploratory research may 
come from analyzing old data in new ways. For example, Voytek (Chapter 23) proposes 
exciting new analytical methods that researchers can apply; his signal processing scripts 
are freely available (https:// voytek lab.com/ code), and researchers can use these scripts 
to analyze their old data or other openly available data.
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CHAPTER 2

LO GIC BEHIND EEG 
FREQUENCY ANALYSIS

Basic Electricity and Assumptions

KYLE J. CURHAM AND JOHN J. B. ALLEN

2.1  Introduction

The brain is an electrochemical machine. Although nerve cells differ greatly in their 
size and morphology, all pass messages using electrical signals, sending information 
throughout the brain and to the rest of the body via the spinal cord. Within any neuron, 
an action potential is a wave of electrical activity that travels along the nerve membrane. 
Action potentials are triggered by the summation of input from other neurons using 
chemical neurotransmitters, which create voltage potential changes in the post- synaptic 
neuron. Surface- recorded EEG is blind to the activity of single neurons but can non- 
invasively measure the electrical activity resulting from summated excitatory and in-
hibitory post- synaptic potentials over millions of these signals in humans. EEG has 
excellent temporal resolution, but poor spatial resolution; it can tell us when something 
is happening in the brain, but not precisely where it is happening.

EEG gives an incomplete picture of the electrical activity occurring in the brain. The 
cortex is the outermost layer of the brain, and the primary generator of the electrical 
activity we measure with EEG. Our ability to detect cortical activity largely depends 
on the parallel arrangement of cortical pyramidal neurons. When millions of parallel 
neurons fire simultaneously, their electrical activity adds together to generate a signal 
large enough to detect at the scalp. However, when neural populations fire incoherently, 
or when they are not arranged in a parallel formation, the electrical activity does not 
add constructively, so there is no observed signal at the scalp. This chapter introduces 
basic concepts in electricity in signal processing, with some practical considerations 
for data collection and analysis, to help readers understand EEG measurement and 
interpretation.
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2.2 Electricity— Voltage, Current, 
and Resistance

Every physical thing is made up of atoms, which in turn are made up of fundamental 
particles including protons, neutrons, and electrons. Protons have a positive charge, 
neutrons have a neutral charge, and electrons have a negative charge. Charges of the 
same sign repel, and opposite charges attract. A few simple experiments demonstrate the 
existence of electrical charge. For example, rubbing a balloon on a wool sweater makes 
the balloon negatively charged as electrons move from the wool to the balloon (Figure 
2.1). The degree of attraction or repulsion between two point charges is proportional 
to the product of the charges divided by the inverse squared distance between them. 
Therefore, when the electron- rich balloon is brought into proximity of the electron- 
poor wool, or any neutral surface such as a piece of paper or the wall, the balloon will 
be attracted. If you subsequently rub a second balloon in the same way, the two balloons 
will repel each other since they are both negatively charged.

Most of the time, atoms have equal numbers of protons and electrons. However, 
atoms can become ionized when electrons are removed or added, resulting in a net 
charge. Electricity is the phenomenon that describes the behavior and movement of 
charge. In general, it doesn’t matter whether it is the electrons or ions that are moving. 
The flow of charge can be accomplished either by the transfer of electrons from atom to 
atom, or, in the case of electrophysiology, by the diffusion of charged ions across cellular 
membranes.

The degree to which electrons are free to move from atom to atom varies by material 
type. For example, in metals, the outermost electrons are so loosely bound that they 
freely move in the space between atoms at room temperature. Because these unbound 
electrons are free to travel from atom to atom, they are called free electrons. The relative 
mobility of electrons within a material is known as electrical conductivity. Conductivity 
is determined by the types of atoms in a material, and how the atoms are linked to-
gether with one another. Materials with few or no free electrons are called insulators, 
and materials with many free electrons are called conductors. The directed motion of 
electrons is called electrical current. Just like water flowing through a pipe, electrons 
move within the empty space between atoms. Under normal conditions, the motion of 
free electrons in a conductor is random, with no particular direction or speed. However, 
electrons can be influenced to move in a coordinated fashion through a conductive ma-
terial by supplying a voltage. Voltage is the “pressure” that pushes on free electrons to 
cause them to flow. The ability of a current to flow from one location to another depends 
on the resistance. In insulating materials, such as glass or rubber, electrons have little 
freedom to move from atom to atom. The less freedom electrons have to move from 
atom to atom, the greater the resistance to the flow of charge. A conductor’s resistance 
generally increases as its length increases or its diameter decreases. It is again useful to 
refer to the water analogy: water can flow more easily through a short, wide pipe than a 
long, narrow pipe. The international system of units (SI) of current is called the ampere. 
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Positive Charges and Electrons are
Present in Equal quantities in the 
Sweater and the Ballon

(a)

Electrons are Transferred
from the Sweater to the Balloon

(b)

Figure 2.1 Before rubbing the balloon against the sweater (A), no net accumulation of electrons 
exists on the balloon. After rubbing the balloon on the sweater (B), the balloon has accumulated an 
excess of electrons, and the resultant negative charge of the balloon and positive charge of the sweater 
creates a force of attraction sufficient to keep the balloon from being pulled to the ground by gravity.

Figure credit: K. Ehrmann.
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One ampere is defined as one coulomb of charge (or 6 × 1018 electrons) flowing past a 
given point in a conductor in one second. The volt is the unit of pressure, that is, the 
amount of electromotive force (EMF) required to push a current of one ampere through a 
conductor with a resistance of one ohm, or 1 volt/ ampere.

When resistance is high, electrons tend to gather on one side of the insulating material 
and the positive ions tend to gather on the other, effectively storing potential energy in 
an electric field. At some point, the voltage across the material will exceed a threshold 
known as the dielectric constant, at which point current begins to flow. This tendency 
for high resistance to result in charge separation is known as capacitance. The amount of 
charge stored in the capacitor is directly proportional to the surface area of the dielectric 
(the electrical insulator polarized by the electric field) (Table 2.1).

2.3  Circuits

An electrical circuit consists of closed conductive paths between circuit elements. 
Elements may consist of resistors, capacitors, voltage sources, or current sources. 
Electrical components may be wired in series or parallel with each other (Figure 2.2). 
In many cases, circuits consist of some complex combination of series and parallel 
components. However, these circuits may often be represented by simpler equivalent 
circuits with identical electrical properties.

To gather some intuition for the flow of current in simple circuits, we refer back to 
the water analogy. The resistance increases as the pipe gets longer. This is equivalent to 
stringing together multiple resistors in series. The rule to combine resistors in series is 
additive:

 R R R Rseries n= + +…+1 2  

Table 2.1  Guide to electrical symbols and terminology

Symbol Term Definition Unit

E Voltage Electromotive force Volts (V)

I Current Rate of flow Amperes (A)

R Resistance Opposition to current Ohm (Ω)

C Capacitance Ratio of the change in charge  
to the change in voltage

Farad (F)

P Power Rate of work Watt (w)

W Energy Ability to do work Watt- second (Joule)
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Conversely, adding multiple resistors in parallel will decrease the overall resistance:

 1 1 1 1

1 2R R R Rparallel n

= + +…+  

As more “pipes” are added, the water has more paths to escape, decreasing the overall 
resistance to flow. Capacitors wired in series or parallel follow the same rules, but 
reversed:

 1 1 1 1

1 2C C C Cseries n

= + +…+  

 C C C Cparallel n= + +…+1 2  

Most circuits are some complex combination of series and parallel. We can approach 
these circuits one piece at a time, deriving a new equivalent circuit at each step 
(Figure 2.3).

The next few sections explore examples of equivalent circuit representations, and 
we use equivalent circuit representations to learn the voltages and currents at every 
point in the original complex circuit. We later show how models of neurons can 
be represented as a simple equivalent circuit of capacitors, resistors, and voltage 
sources.

R1

R2

R3

V1
+

(a)

R1V1

+

R2 R3

(b)

Figure 2.2 Simple series (left) and parallel (right) circuits. Circuit components labeled with R 
indicate resistors. Circuit components labeled with V indicate voltage sources.
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2.4 Direct current

Circuits come in two basic flavors: direct current (DC) and alternating current (AC). 
The difference depends on whether the voltage and current change directions over 
time. DC circuits maintain currents flowing in a constant direction within a closed 
loop, whereas AC circuits have current that repeatedly reverses direction. A DC electric 
source feeds from one terminal to a set of circuit elements and then back to the other 
terminal, in a complete circuit. Figures 2.2 and 2.3 are both DC circuits due to their con-
stant voltage power source. Note some resistors are connected in parallel, while others 
are connected in series. At each step, we can combine resistors according to the rules in 
Section 2.3 to derive a simpler equivalent circuit.

Some circuits may contain both resistors and capacitors. These are known as RC 
circuits. In a simple circuit with one resistor and one capacitor in series, the capacitor 
must discharge through the resistor. This discharge occurs at an exponential rate 
determined by the RC time constant. The time constant indicates the number of seconds 
for the capacitor to become 63.2% charged, or, equivalently, the time for current flow 

R2

R1

R3V1

+

R1

(a)

Req

R1

V1

+

(b)

Req

R1

V1

+

(c)

Figure 2.3 Reducing a complex circuit (left) to a simple equivalent circuit (right). In an inter-
mediate step, we combine parallel resistors 2 and 3 (middle). Next, we combine resistor 1 with the 
equivalent resistor from the intermediate step.
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to have slowed by 63.2% from its starting value. This choice of time constant has an in-
tuitive explanation: at any moment in time, the rate of change in voltage is equal to the 
voltage divided the time constant. For example, a 1 mF cap and a 1 kΩ resistor yields a 
time constant of one second. If the capacitor is charged to 5 volts, the voltage will fall at 
a rate of 5 V/ s. If the capacitor is charged to 2 volts, the voltage will fall at a rate of 2 V/ s.

2.5 Alternating Current

In contrast to DC signals, some sources of electricity produce AC, where voltages and 
currents periodically reverse direction and switch back and forth between positive and 
negative polarity. The electricity that comes from an American wall outlet is an example 
of AC. The current in North America is 120 VAC and changes direction 60 times per 
second. AC circuits can exhibit more interesting behaviors than DC circuits. For ex-
ample, at low frequencies, a capacitor acts like an open circuit, so no current flows in the 
dielectric. However, when driven by an AC source, a capacitor will only accumulate a 
limited amount of charge before the potential difference changes polarity and the charge 
is returned to the source. The higher the frequency, the less charge will accumulate and 
the smaller the opposition to the current.

Both resistors and capacitors resist the flow of current when a voltage is applied. 
However, unlike in DC circuits, resistance may be frequency dependent. Frequency- 
dependent resistance is known as impedance, a complex- valued quantity that can be 
broken into two parts: magnitude (the ratio of the voltage amplitude to the current 
amplitude) and phase (quantifies how much the current lags the voltage). Alternatively, 
we can break impedance down into its real and imaginary parts. Like in DC circuits, 
the real part of the impedance acts like resistance, resisting the flow of electric current. 
The imaginary part is called reactance, and it quantifies the opposition to a change in 
the current of a capacitive circuit element. Ideal capacitors are purely reactive, that is, 
they have zero resistance, and the impedance of a resistor is purely real, or resistive. 
Note this implies the current in a capacitor always lags the voltage by 90°. Impedance 
devices add like resistors in a DC circuit. For a set of components in series, the total im-
pedance is the sum of the component impedances. To obtain the impedance of parallel 
circuit components, the inverse total impedance is given by the sum of the inverses of 
the component impedances.

Using different combinations of resistors and capacitors, RC circuits can be used to 
attenuate some frequencies, while allowing others to propagate through the circuit un-
affected. For example, wiring a resistor in series with a load, and a capacitor in parallel 
with the same load, significantly attenuates high- frequency signals. Conversely, wiring 
a resistor in parallel with the load, and the capacitor in series, attenuates low- frequency 
signals. In Figure 2.4, at low frequencies, the reactance of the capacitor will be very large 
compared to the resistance of the resistor. This means that the voltage across the cap-
acitor will be much larger than the voltage across the resistor. At high frequencies the 
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reverse is true: the voltage across the resistor is larger than across the capacitor. In other 
words, low frequencies pass to the output, and high frequencies are attenuated. This is 
known as a low- pass RC filter. Similarly, we can construct a high- pass filter by swapping 
the resistor and capacitor. The frequency cutoff for these filters is determined by the 
time- constant of the circuit, which is derived from the resistance and capacitance. The 
cutoff frequency for an RC circuit is:

 f
RCc = 1

2π
 

In the low- pass configuration, frequencies just above the cutoff are attenuated to half 
their original amplitude. Conversely, in the high- pass configuration, frequencies just 
below the cutoff are attenuated to half amplitude. The amount of attenuation increases 
as you move farther beyond the cutoff frequency. Figure 2.4 shows the amplitude roll- off 
as a function of frequency for a low- pass filter.
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Figure 2.4 Low- pass RC filter (left). The parallel arm with the capacitor provides a low im-
pedance path for high frequency signals. However, the capacitor saturates for low- frequency 
signals, providing a high- impedance path. Low- frequencies signals are thus preferentially 
observed at Vout. Frequency response of the low- pass RC filter (right). The signal is not appre-
ciably attenuated below the cutoff frequency of 50 Hz (shown in red). At frequencies just above 
50 Hz, the signal magnitude is cut in half. As frequency increases, the amount of attenuation 
increases.
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2.6 Hodgkin– Huxley Model

We can use a simple circuit model to describe the electrical properties of neurons, 
including the initiation and propagation of action potentials. Action potentials are the 
result of the diffusion of sodium and potassium ions across neural membranes. The 
Hodgkin– Huxley model treats each component of a neuron as an electrical element in 
the circuit (Figure 2.5), where current is propagated by the movement of ions across cell 
membranes.

The cell membrane is represented by a capacitance (Cm). Cellular membranes are 
highly resistive, and act as a dielectric material due to their relatively impermeability. 
In the absence of special proteins called ion channels, ions like sodium and potassium 
are unable to diffuse across the membrane, effectively turning the membrane into the 
dielectric of a capacitor. As ionic currents add or subtract from the charge accumulating 
inside the neuron, ions line up along the cell membrane. The differing concentration 
of ions on either side of the membrane results in a net voltage potential, represented by 
voltage sources (En). To maintain these concentration gradients, neurons have active 
sodium- potassium pumps that exchange two sodium ions into the extracellular space 
for three potassium ions in the intracellular space.

Sodium and potassium ion channels are represented by electrical conductances (GNA, 
GK) that depend on both voltage and time. As the voltage potential increases, the per-
meability of the membrane is selectively modulated, that is, conductance is increased, 
for specific ion species. The flux of sodium or potassium ions across the membrane is 
represented by ionic currents (Ip). Since the membrane is not perfectly impermeable, 
leak channels are also included, represented by another conductance (GL).

The Hodgkin– Huxley circuit model exhibits similar dynamics to real neurons. The 
amount of injected current controls the emergence of a stable limit cycle. For a suffi-
ciently large input current, the circuit will exhibit repeating “action potentials” at a min-
imum firing rate. This means that either the neuron is not firing at all (corresponding 
to zero frequency) or is firing at the minimum firing rate. Increasing the injected 
current beyond the minimum threshold increases the firing rate of the neuron. When 

inside
INa

Vm

IK IL

GLGKGNa

CM

ENa EK EL

outside

Figure 2.5 Equivalent circuit diagram for the Hodgkin– Huxley model.
©2003 James M. Bower and David Beeman.
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the neuron fires, a series of channel activations occur to produce the action potential. 
As the membrane potential approaches threshold, sodium ion channels begin to rap-
idly open, depolarizing the membrane (i.e., discharging the capacitor). The influx of 
sodium changes the voltage gradient between the intracellular and extracellular space, 
increasing the membrane potential. Once the polarity of the potential changes direction 
(when enough sodium ions have crossed the membrane), sodium ion channels begin 
to deactivate (decreasing sodium conductance). As the sodium channels close, potas-
sium channels begin to open (increasing potassium conductance), resulting in an efflux 
of potassium ions to the extracellular space, restoring the membrane potential to the 
resting state following a brief hyperpolarization.

2.7  Filtering

As discussed, simple RC circuits can selectively attenuate certain components or 
features of a signal, and not others. This is known as filtering. Filters come in a variety of 
forms (RC circuits, mechanical and optical filters, digital signal processing, etc.). Here 
we examine two of the most common digital filters used in electrophysiology. The re-
sponse of a system to a brief input signal, or impulse, is called the impulse response. The 
impulse response of a finite impulse response (FIR) filter settles to zero in finite time. 
Given a finite sample of nonzero input values, an FIR filter will always yield a finite 
sample of nonzero output values. This contrasts with an infinite impulse response (IIR) 
filter, which does not settle in finite time. The RC filters seen in Section 2.6 are examples 
of IIR filters since the capacitors (or inductors) in the RC filter never completely relax 
following an impulse.

2.8 Analog- to- Digital 
Signal Conversion

Most FIR filters are implemented using digital signal processing. Our discussion of elec-
tricity thus far has dealt with analog signals, which are continuous in both time and in 
voltage. An economy of representation can be achieved by sampling discrete points in 
both the time and voltage domains, a process of creating a digital signal, which has a tem-
poral resolution determined by the sampling rate and a voltage resolution determined 
by the resolution of the analog- to- digital converter (Figure 2.6). For example, a 16- bit 
converter will allow 1016 of 65,536 discrete voltage values, and a sampling rate of 1,000 
Hz will allow one value every millisecond.

With sufficiently large sampling rates, a digital signal can closely approximate the 
analog signal it is attempting to represent (Figure 2.7). However, several considerations 
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are essential to ensure signal fidelity when digitizing an analog waveform. In order to 
recover all components of a periodic waveform, it is necessary to use a sampling rate at 
least twice the highest waveform frequency. This is known as the Nyquist sampling rate, 
and it determines whether or not aliasing will occur. Similarly, for a given sampling rate, 
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Figure 2.6 A signal sampled at 20 Hz. Discrete- time sampling (left panel) allows for con-
tinuous y- axis (μV) values, whereas digitally- sampled signals (right panel) must use a limited 
number of y- axis values. The three bit converter illustrated here (right panel) allows for 23 =  8 dis-
tinct values, providing only a coarse approximation of the signal voltage. The right panel depicts 
the discrete sample value (red circle) and the 3- bit digital equivalent (red line), and the discrep-
ancy (dashed vertical black lines).
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Figure 2.7 A comparison of a signal (black line) sampled (red line) at three sampling rates (20, 
40, 100 Hz) and using three different converter resolutions (4- bit, 5- bit, and 8- bit) that allow for 
16, 32, and 128 distinct μV values. Low bit- resolution was used here for illustrative purposes; com-
mercial converters are typically 12- bit (4,096 values) or 16- bit (65,536 values).
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the highest frequency signal that can be represented is one- half the sampling rate, and 
this is known as the Nyquist frequency. Aliasing occurs when the set of samples obtained 
from the analog signal are indistinguishable from samples from a lower- frequency 
signal. For example, in Figure 2.8, an 18- Hz signal is sampled at 20 Hz, well below the 
Nyquist sampling rate. For this 20- Hz sampling rate, the Nyquist frequency is 10 Hz. 
Although the signal is in fact an 18- Hz signal, the sampled signal appears as a 2- Hz sine 
wave, so the signal is not well characterized. In general, signals that are x Hz above the 
Nyquist frequency will appear as a signal x Hz below the Nyquist frequency. Sampling 
above the Nyquist frequency will prevent aliasing but may still not characterize the 
signal well in the time domain. As a general guideline, it is recommended to sample at 
least 5× the highest frequency of interest to get a good signal.

2.9 Digital Filtering

FIR and IIR digital filters can be used to process digital signals. A simple moving average 
is an example of an FIR filter. If we take the average across the last five data samples 
and shift the five- sample window forward by one sample at each timestep, the result is 
a moving average window. We can denote the value of the filtered signal (x) at the nth 
timepoint using summation notation:

 y n x n k
k

( ) = −( )
=−
∑

2

2 1
5

 

Signal Aliasing

Time (s)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

18Hz @ 20 samples/s

Figure 2.8 Signal aliasing due to insufficient sampling rate. Samples from an 18- Hz signal were 
sampled at a rate of 20 Hz. Identical samples are obtained for a 2- Hz sine wave sampled at 20 Hz. 
These digitized signals are indistinguishable from each other.
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We can take this one step further, using a different weight for each sample in the 
moving average window (h) of width M +  1:

 y n h k x n k
k M

M

( ) = ( ) −( )
=−
∑

/

/

2

2

 

This result is exactly the impulse response when the input signal x is an impulse, that 
is, one at the middle timestep and zero at all other timesteps. Note the filter output will 
clearly be zero outside the range of the window, demonstrating that this is in fact an FIR 
filter. Figure 2.9 shows the output of a moving average filter, given a noisy input signal.

The summation operation described is known as convolution. In general, convolu-
tion indicates the amount of overlap of one function or kernel (h) as it is shifted over 
another function (x). In these examples, the convolution is simple to compute. However, 
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Figure 2.9 Moving average FIR filter (top). A window size of 15 ms was convolved with noisy 
data to obtain the filtered signal. Low- pass IIR filter with 50 Hz cutoff (bottom).
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in practice, it can be computationally expensive. In the next section, we show how to 
efficiently evaluate convolutions using an advanced signal- processing technique called 
the Fourier transform.

2.10 Frequency Domain

In general, signals may have both AC and DC components. For example, you may see 
an AC signal that oscillates around a nonzero mean (a DC offset). Arbitrary complex 
signals may be approximated by the sum of two or more simpler signals. For example, 
we can synthesize a complex signal my summing together multiple sine waves of various 
frequencies. Fourier analysis is the reverse process— decomposing a signal into its con-
stituent parts. The Fourier series approximates any complex periodic signal as a finite 
weighted sum of sine waves of various frequencies. The more sine waves included in 
the summation, the better the Fourier series can approximate the signal. In the limit 
that the number of frequencies included in the summation goes to infinity, the Fourier 
series converges to the Fourier transform. In this case, we can describe the signal as a 
continuous distribution, or spectrum, of frequencies, along with the phases at which 
each sine wave begins. The Fourier series can be applied to a wide array of mathem-
atical, physical, and signal processing problems. Fourier analysis is now widely used 
across several domains, including audio, images, radar, sonar, X- ray crystallography, 
and more.

Rather than analyzing signals as a function of time, Fourier analysis allows us to 
study their properties as a function of frequency. Signals that are localized in the time 
domain have Fourier transforms that are spread out across the frequency domain, and 
vice versa. For example, the Fourier transform of a pure sine wave is a single point in 
the frequency domain (Figure 2.10, bottom). Points in the frequency domain may be 
characterized by properties such as power and phase, which are of interest for EEG 
analyses. The absolute value of a given frequency component of the Fourier series 
indicates the “amount” of that frequency present in the original signal. The squared 
absolute value is the signal power. The power spectrum describes how signal power 
varies as a function of frequency. EEG signals typically follow a 1/ f trend, such that 
low frequencies have more power compared to high frequencies. However, the power 
spectrum may vary as a function of individual differences and task demands. Changes 
in power at a frequency may be due to alterations in the slope of the EEG frequency 
spectrum, or modulations in frequency- specific oscillatory activity (see Chapters 9, 10, 
and 23). Similarly, the phase spectrum of the signal can be extracted from the Fourier 
series. The signal phase indicates the amount of “shift” in each of the basis sine waves 
(for more info, see Chapter 7).

The Fourier transform is invertible. Given the power and phase spectrum, it is pos-
sible to reconstruct the original time- domain signal. Moreover, it is possible to compute 
the Fourier transform of a signal, perform mathematical operations in the frequency 
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domain to alter the power and phase spectrum, and then compute the inverse Fourier 
transform to convert back to the time domain. For every mathematical operation 
in the time- domain, there is a corresponding equivalent operation in the frequency- 
domain. In some cases, operations may be easier to perform in one domain or another. 
This makes the Fourier transform very powerful. For example, convolution in the time- 
domain is equivalent to multiplication in the frequency domain.
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Figure 2.10 Constructing a complex signal from the superposition of sinusoids (top). The 
power spectrum of the signal show distinct peaks at the frequencies of the component sinusoids. 
A single sinusoid corresponds to a single peak in the power spectrum (bottom).
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To sum up: compute the Fourier transform of the time- domain signal and filter 
weights, multiply them in the frequency domain, and compute the inverse Fourier 
transform to obtain a filtered signal.

2.11  Windowing

The Fourier transform assumes the signal is periodic and includes sine waves of infinite 
period. However, EEG recording epochs are finite, spanning just seconds or minutes. 
Clearly low frequencies cannot be captured by data segments smaller than the period of 
the signal. For example, a segment of 250 ms will contain only a half- cycle of a 2- Hz sine 
wave. In contrast, a 50- Hz waveform would complete 10 full cycles within the allotted 
window. A general rule guideline to determine an adequate window size is to take 3– 5 
times the period of the lowest frequency of interest.

Window functions are often used to examine small segments of data from a longer 
signal to study transient events that have may have different spectral properties than 
other surrounding data segments. Windows are usually constructed such that they are 
zero- valued outside of the interval, symmetric around the middle of the interval, and 
tapering away to zero at the edge of the window. Several types of window functions are 
commonly used in EEG frequency analysis, including Hann, Hamming, and Gaussian 
windows. The duration of the window is application specific and is governed by 
requirements such time and frequency resolution.

However, we cannot perfectly resolve both time and frequency simultaneously. 
Time and frequency are conjugate variables, which are coupled such that knowledge 
of one makes knowledge of the other uncertain. Therefore, there is a tradeoff between 
time and frequency resolution, such that good time resolution comes at the expense 
of frequency resolution, and vice versa. As the window shrinks to zero width, short 
tones become clicks, with no discernable frequency. Clicks can be perfectly localized 
in time, but the frequency is undefined. As the window gets large compared to the 
signal length, it becomes impossible to localize a signal in time, but the frequency 
can be easily determined. Time- frequency analyses balance the time- frequency reso-
lution tradeoff.

2.12 Time- Frequency Analysis

Frequency analyses are restricted to stationary signals. That is, the spectral 
characteristics do not change over time. However, EEG signals change as a function of 
state and task demands, which can vary over time. Time- frequency analyses are used 
to study the non- stationary characteristics of psychophysiological signals. Rather than 
analyzing signals in one domain— time or frequency— signal properties are localized to 
points or pixels in a two- dimensional time- frequency plane.
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The simplest method to obtain a time- frequency representation of data is to compute 
the Fourier transform over a small sliding window that is chosen to be just wide enough 
to resolve the lowest frequency of interest. This approach yields local information about 
the signal, including frequency and phase content. This method is known as the short 
time Fourier transform (STFT) and can be used to obtain the power and phase of the 
signal at each point in the time- frequency plane.

The wavelet transform is slightly more advanced, considering the time- frequency 
trade- off that comes with windowing. This method convolves the signal with a set 
of complex gaussian- windowed sinusoids. When the similarity between the signal 
and wavelet is high, the convolution term is large. A family of wavelets of varying 
frequency and duration are constructed and convolved with the EEG signal to find 
points of peak similarity. The amplitude and phase of the signal can be obtained 
from the transform by computing the magnitude and angle of the complex wavelet 
coefficients. Unlike the STFT, the resolution of the wavelet transform has different 
properties at different frequencies. As frequency increases, the wavelets get shorter, 
effectively decreasing the window width. This leads to better time- resolution at the 
cost of worse frequency resolution ( figure 11). In general, the wavelet transform has 
better time- resolution at high frequencies and better frequency resolution at low- 
frequencies. For a more in- depth look at the wavelet transform, see  chapters 12 and 
13in Cohen (2014).

Time- frequency decompositions provide a new way to identify 
psychophysiologically relevant components. While traditional time- domain 
methods could reveal components that occur at different timepoints, they cannot 
distinguish between components that occur at different frequencies at the same 
time- point. However, once the time- frequency decomposition is obtained, new 
analyses may be performed that were not possible with pure time- domain or 

Frequency (Hz)Time (s)

Wavelets Power Spectrum

4 Hz
8 Hz
16 Hz

0 5 10 15 20 25–1 –.8 –.6 –.4 –.2 0 .2 .4 .6 .8 1

Figure 2.11 Wavelet time- frequency resolution trade- off. Higher- frequency wavelets (yellow) 
are more precise in time (left), but less precise in frequency (right). Conversely, low frequency 
wavelets (blue) have poor time resolution (left) but good frequency resolution (right).



32   KYLE J. CURHAM and JOHN J. B. ALLEN

 

frequency- domain approaches. For example, the phase consistency between two 
or more channels over time is often used to infer frequency- specific connectivity 
between regions. Inter- channel phase synchrony is evaluated by computing the 
covariance between the phases of two or more channels at a given frequency (see 
Chapter 20). Time- frequency analysis allows for the identification of event- related 
time- locked changes that are not phase- locked; such changes would not appear in 
traditional time- domain analyses using signal averaging to create event- related 
potentials (cf. Trujillo & Allen, 2007).

2.13 Practical Considerations for EEG

2.13.1  EEG Signal Artifacts

EEG is used to record electrical activity originating in the cerebral cortex, although it 
also detects electrical activity arising from sources other than the brain. EEG signals 
are highly sensitive and are easily influenced by electrical activity in the surrounding 
environment. Artifacts in EEG signals come in at least two distinct varieties: physio-
logical and non- physiological noise. EEG signals generated by the body, but that are 
not cerebral in origin, are deemed physiological noise. Sources of physiological arti-
fact include muscle movements, eye blinks, tongue movements, respiration sway, elec-
trocardiographic activity, jaw clenching, etc. Conversely, non- physiological artifacts 
arise from sources outside the body, such as electronic noise, amplifier saturation, or 
loose electrodes. For example, thermal noise due to the random motion of electrons 
in resistive components, flicker due to irregularities in contact pins, and burst due to 
semiconductor impurities are common sources of noise. The most obvious electronic 
noise is flicker due to power- line interference, appearing at 60 Hz in North America 
and 50 Hz in much of the rest of the world. When the electrical impedance at the scalp- 
electrode interface is high (>5 kΩ), resulting in a poor connection, the electrode is 
more sensitive to these noise sources. To judge the acceptability of the scalp imped-
ance for obtaining good quality signals, it is important to consider the input impedance 
of the amplifier. Contemporary high impedance amplifiers mitigate the susceptibility 
to electronic noise, as the fidelity of the observed EEG signal is directly related to the 
average impedance of the target and the reference electrode, and inversely related to 
the amplifier input impedance (Ferree et al., 2001). Thus some equipment can produce 
high quality signals with scalp impedances that may be higher than the often- used 5 kΩ 
standard.

There are multiple strategies to handle EEG recording artifacts: use of a ground 
electrode to remove noise that presents similarly across all electrodes, artifact rejec-
tion to remove electrodes or segments of data that are corrupted by noise, and artifact 
correction to separate signal from noise without sacrificing data.
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2.13.2   Grounding

Ground electrodes are used for common mode rejection: parts of the signal shared 
across all electrodes are removed from the recording. A good ground connection is crit-
ical to reducing the impact of external noise sources. Impedances for all electrodes are 
compared to the ground electrode. Therefore, if the ground impedance is high, good 
impedances will not be possible on any other electrodes. However, electrical interfer-
ence may persist even after ensuring good electrode impedances and secure grounding. 
Therefore, data rejection and correction are often used to handle residual artifacts 
during offline processing.

2.13.3  Artifact Rejection

Artifact removal may consist of rejecting entire segments of data, or individual 
electrodes from the recording. While the basic strategy is to identify data corrupted by 
artifact and exclude it from future analysis, it is not a trivial task. The determination of 
whether a signal is sufficiently corrupted by noise to justify removal is time consuming, 
subjective, and may vary by researcher. Moreover, significant training is required to 
learn to correctly identify different sources of noise. Judgements must also be made as to 
whether each artifact should be removed, even if it is correctly identified. In some cases, 
a filter may be used to attenuate electronic noise. For example, a 60- Hz artifact from 
power- lines may be removed from EEG recordings using a notch filter, which allows 
frequencies lower and higher than the specified frequency- band to pass unaffected, 
while significantly attenuating the artifact (e.g., between 55– 65 Hz). However, filtering 
may not be an optimal solution for all artifacts. For example, blink timing is related to 
information processing (Stern et al., 1984), and blink rate is correlated to dopamine 
release (Taylor et al., 1999), although recent work has called this into question (Dang 
et al., 2017). However, many researchers remove data segments with eyeblinks due to 
the large artifact they produce in frontal EEG channels. If the phenomenon of interest is 
correlated to these physiological artifacts, it is possible to inadvertently remove valuable 
data and miss the psychophysiological phenomenon.

Sometimes artifacts may be localized to a single bad channel. In this case, remove 
only that channel from the recording and keep the remaining data. Many researchers 
examine the standard deviation of the signal to automatically detect bad electrodes. If 
it exceeds a threshold much larger than would be expected for a quality EEG signal, the 
channel is marked bad. If a channel is marked bad and it is required for a planned EEG 
analysis, the missing data can be interpolated. Interpolation uses information from the 
surrounding electrodes to guess what the signal would have been if there were a good 
electrode at that location. A popular choice is spherical spline interpolation (Perrin 
et al., 1989).
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2.13.4  Artifact Correction

If possible, EEG researchers want to retain as much signal as possible and thus avoid 
removing noisy signals from data analyses. Several algorithms exist to attempt to 
separate signal from noise, thereby sparing valuable data. The three most common 
approaches are linear regression, independent component analysis (ICA), and principal 
component analysis (PCA).

Linear regression is by far the simplest method to remove ocular artifacts. Ocular 
artifacts typically have much higher amplitude than the EEG signals generated by neural 
sources. For the purpose of regression, the tiny EEG signals are assumed to be noise rela-
tive to the ocular artifacts. Blinks are assumed to affect electrodes in a linear combination, 
such that electrodes closer to ocular channels have a larger weight than electrodes farther 
from ocular channels. Once the optimal weights are calculated, a weighted composite of 
the ocular artifact is subtracted from each of the EEG electrodes (cf. Gratton et al., 1983), 
yielding EEG that should be (mostly) free of the artifact. However, it requires the ocular 
artifacts to be linearly dependent and normally distributed, which generally is not the case. 
This approach is fast and simple, but sometimes inaccurate, which introduces another 
source of residual artifact. Errors in the regression get “subtracted into” the recording.

ICA is a blind source separation technique, unmixing a multivariate signal into a set 
of additive components (Delorme et al., 2010). Unlike linear regression, independent 
components (ICs) are assumed to be non- Gaussian and statistically independent from 
each other. However, ICA can only separate linearly mixed sources, and even when the 
sources are not independent, ICA will return maximally independent components. 
In many cases, a subset of the ICs will capture artifacts such as ocular and motor 
components. Components are determined to be artifact or signal based on their simi-
larity with the topography and time course of known artifacts. This can be determined 
based on experimenter ratings or algorithmically using spatial and temporal features 
of eye blinks, vertical and horizontal eye movements, and discontinuities in the EEG 
time series (Mognon et al., 2011). Artifactual components may also be identified auto-
matically based on a supervised machine learning approach trained from expert ratings 
on a large corpus of EEG data (Winkler et al., 2014). ICA is more useful than linear re-
gression because it can extract more than just ocular components, also capturing loose 
electrodes and muscle artifacts equally well. Once the bad components are identified, 
the signal can be reconstructed without the artifacts.

Other blind source separation techniques similar to ICA can be used in a similar 
manner. PCA is like ICA in that it separates the data into a set of linearly independent 
components. However, these components are additionally assumed to be mutually or-
thogonal (i.e., uncorrelated with each other).

2.13.5   Referencing

Voltage is always measured between two points. It does not make sense to talk about the 
potential at a particular EEG electrode without first defining a reference potential (i.e., 

 

 



LOGIC BEHIND EEG FREQUENCY ANALYSIS   35

 

an arbitrarily chosen “zero”). A common reference is usually chosen for all electrodes, to 
which all potentials recorded at each electrode are measured. The reference needs to be 
chosen carefully because the electrical activity under the reference site will be reflected 
in the activity at every other electrode. If the reference is not neutral, artifacts will be 
introduced due to the activity at the reference site. The reference electrodes should be 
placed on a presumed electrically neutral area. In many cases, researchers choose an 
electrode over the mastoid part of the temporal bone, or the left or right earlobe.

In reality, there are no electrically neutral points to choose as a reference. However, 
it is possible to construct a virtual reference that is more likely to be electrically neutral 
than any single EEG electrode. For example, choosing the left or right mastoid alone 
results in a systematic decrease of EEG amplitude in the electrodes which are closer to 
the reference site. The “linked” mastoids reference is obtained by using the average of 
both left and right mastoid electrodes as the reference level. This resolves the left/ right 
asymmetry that would normally occur. Another popular choice is the average reference 
when the number of electrodes is large (typically >32). The average reference is obtained 
by subtracting the mean potential across all EEG electrodes from each electrode at each 
time- point. Theoretically, if we could obtain measurements sampling equally around 
a sphere containing the brain, then electric dipoles picked up by the electrodes would 
average out to zero, and the average reference would be a truly neutral point (Bertrand 
et al., 1985). However, this is a practical impossibility because the ventral surface is in-
accessible for electrode placement. Still, by averaging the electrical activity across the 
entire scalp, the “responsibility” is distributed over all electrodes, rather than only one 
or two of them.

However, prominent deflections at any given scalp location can differ dramatically 
depending on the chosen reference scheme, affecting both the amplitude and latency 
of the recorded signal. Not all researchers use the same reference, leading to problems 
in the comparability between datasets. Fortunately, it is possible to convert from one 
reference to another with a simple mathematical transformation. Note the potential 
difference between two electrodes does not depend on the chosen reference. If your ana-
lysis is only concerned with comparisons between two electrodes, then the reference is 
irrelevant. A simple analogy is measuring height above sea level. A change in sea level 
does not change the shape of the landscape or the relative elevation between any two 
points. Thus, if there is a change in sea level, we can readjust to the new reference level by 
simply subtracting the change in elevation from every point. Similarly, we can transform 
between different references by subtracting the potential at the chosen reference site.

Other transformations can be used to obtain a reference- free representation of EEG 
signals. This is usually achieved using the scalp Laplacian, sometimes called the Current 
Source Density (CSD). Technically, the scalp Laplacian relates current generators within 
an electrical conductor to the second spatial derivative of the potential at each elec-
trode. Approximately, the scalp- Laplacian at a given electrode is obtained subtracting 
the potentials of all neighboring sites weighted by their inverse distance. In other words, 
the scalp Laplacian measures how extreme the potential at one electrode is compared 
to the average of its neighboring electrodes. This intuitive description is complicated by 
the fact that scalp electrode montages do not form a flat grid of evenly spaced electrodes. 
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Instead, they conform to the nearly spherical geometry of the scalp. However, the 
Laplacian can still be efficiently computed using spherical spline interpolation 
(Delorme & Makeig, 2004). The scalp Laplacian has the added advantage of addressing 
volume conduction. Electrical fields originating from any particular neuronal structure 
will influence the electrical potential throughout the brain and surrounding physio-
logical tissue. As a result, EEG electrodes detect a mixture of activity from across the 
whole brain, rather than directly under the recording site. Critically, the scalp Laplacian 
minimizes the influence of this effect since the Laplacian is close to zero when a signal 
is shared similarly across several electrodes (cf. Smith et al., 2017). Figure 2.12 shows a 
comparison across referencing schemes .

2.14  Conclusion

A basic understanding of electricity and signal processing is vital to EEG data collection 
and interpretation. Investigators need to report clearly how they acquired and analyzed 
the data, and consumers need to be able to evaluate the methods and claims critically. 
There are many steps to be taken in acquiring and processing EEG signals, from net ap-
plication and impedance checking, to grounding and referencing, to artifact detection 
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Figure 2.12 Topography of alpha power under eyes open (top) and eyes closed (bottom) 
conditions as a function of transformation (Cz, average (AR), or linked mastoid (LM) reference 
or current source density (CSD) transformation) from a sample of over 2400 resting recordings. 
Power values at each site represent natural- log transformed values; thus, negative numbers rep-
resent mean power values less than one. Each transformation is scaled independently, but within 
each transformation, eyes open and closed data are plotted on the same scale. Only the CSD 
transformation confines occipital alpha to occipital leads, whereas the other three montages show 
reflected alpha at frontal regions, visible most clearly by a comparison of frontal leads under eyes 
closed compared to eyes open recordings.

Figure modeled after Smith et al., 2017.
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and correction, to data processing and analysis methods in the time and frequency 
domains. This chapter provided a basic introduction to these concepts, but more in-
formation can be obtained from several guidelines papers (Picton et al., 2000; Keil 
et al., 2014).

Glossary

Aliasing: When an analog signal is insufficiently sampled, the digitized signal may be indis-
tinguishable from samples from a lower- frequency signal.

Ampere: The SI unit of electric current. It is defined as one coulomb of charge per second.
Analog signal: A continuous time- varying signal that may vary in frequency, amplitude, 

and phase.
Analog- to- digital converter: System that converts an analog signal into a digital signal.
Capacitance: Ratio of the change in an electric charge to the change in electric potential. 

A property that quantified a materials ability to store electric charge.
Conductivity: Property that quantifies how strongly a material conducts electric current.
Conductor: A material that allows the flow of electric current.
Conjugate variables: Pairs of variables that cannot be precisely estimated simultaneously. 

Knowledge of one variable necessitates uncertainty in the other variable. Time and fre-
quency are examples of conjugate variables.

Convolution: A mathematical operation that indicates the amount of overlap of one function 
or kernel as it is shifted over another function.

Cutoff frequency: Frequency at which the signal power is reduced by half. The amount of at-
tenuation increases as you move farther from the cutoff.

Current: The directed motion of electrons or electric charge.
Digital signal: A discrete sequence of finite values that represent a signal.
Electric field: The force per unit charge at each point in space.
Electricity: Phenomenon that describes the behavior and movement of electric charge.
Electromotive force (EMF): The rate at which energy is drawn from a 1 A current source, 

measured in volts.
Finite impulse response (FIR) filter: A filter whose impulse response settles to zero in fi-

nite time.
Free electrons: Any electron that is free to move under the influence of an electric or mag-

netic field.
Impedance: Measures the opposition to an electric current when a voltage is applied. 

Impedance is equal to resistance in a DC circuit.
Impulse response: The output of a circuit when presented with a brief input signal.
Insulator: A material that does not allow the flow of electric current.
Ionization: The acquisition or loss of electrons in an atom or a molecule, resulting in a net 

positive or negative charge.
Nyquist frequency: Half of the sampling rate of a digital signal. It is the highest frequency that 

can be accurately sampled for a given sampling rate.
Nyquist sampling rate: In order to adequately digitize an analog signal, it should be sampled 

at least twice the highest frequency of interest.
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Phase spectrum: A measure of signal phase versus frequency.
Potential energy: The energy stored by an object due to electric charge.
Power spectrum: A measure of signal power versus frequency.
RC time constant: The time required to charge a capacitor to 63.2% of the applied DC voltage.
Reactance: Material property that measures the resistance to a change in current or voltage.
Resistance: Property that quantifies how strongly a material resists electric current.
Sampling rate: Rate at which discrete samples are acquired for a digital signal.
Volt: The amount of EMF required to push a current of one ampere through a conductor with 

a resistance of one ohm, or 1 volt/ ampere.
Voltage: Difference in electric potential between two points.
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CHAPTER 3

FROM NEURAL OSCILL ATIONS 
TO CO GNITIVE PRO CESSES

ANDREAS KEIL AND NINA THIGPEN

3.1 Oscillations in Complex 
Systems: An Overview

Cyclical rhythms are a hallmark property of natural systems, from the movement of 
the planets to the sleep and wake cycles of mammals, to neuronal membranes. Such 
rhythmic variation, if it occurs repeatedly across time, is called an oscillation. The back- 
and forth of tree branches on a windy day, ocean waves, and the rhythmic song of choir 
frogs are further examples for natural oscillations. As such, the notion of oscillations 
seems fairly straightforward: they occur in complex systems, in which many connected 
units interact, and they reflect activity perceived as recurrent, or rhythmic. However, a 
woman strolling on an ocean beach will soon realize that although waves break repeat-
edly and somewhat predictably, they also vary in terms of their exact timing, duration, 
size, and shape. This seems to be different from the orbit of our planet earth around the 
sun, or the vibrations of crystalline matter— rhythms that are regular and fixed enough 
for us to measure time on their basis. These latter are typically referred to as “periodic 
oscillations”, which are a sequence of recurring events (often taking the shape of a wave 
when measured), each of which has identical, constant, duration. Although periodic 
oscillations are well defined in the language of mathematics (e.g., the sine function), 
the examples at the start of the chapter show that the concept of periodicity may not be 
as clear- cut in natural systems. For example, the duration of solar years is not constant 
when measured with precision, and even clock- setting crystal oscillators change their 
rhythm with temperature. Thus, periodicity may be a continuous dimension ranging 
from more periodic (the solar year) to less periodic (the tides) rhythms, rather than 
representing a qualitative (yes/ no) feature. In fact, various natural systems are likely to 
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oscillate in different fashion, and the same system may display oscillatory behavior at 
different levels of complexity when challenged in different ways.

Identifying how a complex system oscillates may go a long way towards its char-
acterization. As a consequence, the natural sciences have developed an impres-
sive toolbox for detecting, quantifying, and understanding oscillatory activity, and 
to separate it from non- oscillatory phenomena. This chapter discusses how these 
concepts are applied to fundamental problems in cognitive neuroscience, and ask 
what the significance is of oscillatory activity for human behavior and cognition? It 
also asks how we should define and conceptualize brain oscillations, and how they 
can be measured and interpreted. We address these questions in the light of current 
research, with a focus on electrophysiological recordings in human beings and ex-
perimental animals.

3.2 Brain Oscillations and  
Behavior— an Example

After over a decade of testing, in 1927 Hans Berger conducted the earliest in vivo 
recordings of electric fields from the human brain using his new invention, the electro-
encephalograph (Berger, 1929). Upon visual inspection of these first brain wave (elec-
troencephalography, or EEG) recordings, Berger decided that the most salient feature 
of the EEG was its change in frequency content when the participant performed a task 
or was stimulated (often by being touched with a glass probe). Most prominently, Berger 
identified “first- order waves” oscillating at a rate of 10 cycles/ second (i.e., 10 Hertz 
(Hz), today referred to as alpha waves) and faster “second- order waves” oscillating at 
about 20– 30 Hz (today referred to as beta waves). Even without the ability to average 
across trials, and in the absence of digitally supported spectral analysis, Berger and his 
colleagues (i.e., his family; his wife Ursula von Bülow was his technical assistant and 
frequent test participant, along with himself, and his son, Klaus) made a striking ob-
servation: whenever a person was at rest, for example, with their eyes closed, first- order 
waves characterized by large- amplitude regular activity at 10 Hz dominated the EEG. 
However, touching the person with a glass probe, asking them to open their eyes, or 
just addressing them and asking a question led to a dramatic blocking of these alpha 
waves, which were replaced by faster and lower- amplitude EEG readings. This effect, 
referred to as “alpha blocking” has since been replicated thousands of times, and is still 
used today in clinical usage of EEG in neurology and psychiatry to assess the status 
of global brain electric states (Başar & Güntekin, 2012). Furthermore, this observa-
tion opened an avenue for experimental studies of EEG- behavior relations, in which 
participants are asked to respond to experimenter- defined task demands, and changes 
in the EEG are measured as a dependent variable (Klimesch et al., 2005). In addition 
to testing hypotheses about brain function, these variables possess practical value for 
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testing hypotheses about behavioral and cognitive processes, their time course, and 
about specific characteristics of the participant or the environment, of interest in clinical 
and translational studies.

3.3 Quantifying and Categorizing 
Brain Oscillations

Oscillatory activity is typically described by quantifying its frequency, amplitude 
(power), and phase (Figure 3.1). Frequency refers to the rate of repetition of the oscil-
latory event (e.g., action potentials emitted by a neuron, or epileptic spikes in the EEG 
signal) and is measured in Hz, the number of events per second. Amplitude reflects the 
magnitude of the oscillatory signal at a given frequency, analogous to measuring the 
height of ocean waves. Power (e.g., microvolts squared) is often used instead of amp-
litude to describe the magnitude of an oscillation. This reflects the fact that the com-
putation of spectral magnitude usually involves an integral across time, which may 
be thought of as an area under the curve at a given frequency, resulting in a squared 
unit of measurement. Thus, in many cases, depending on scaling and other normaliza-
tion steps, power values given in published research may be roughly equivalent to the 
squared amplitude of the oscillatory signal.

The phase of an oscillation is a measure of its position in time, relative to a pre- defined 
cycle, or relative to a reference oscillation at the same frequency. Because oscillations 
are by definition cyclic and recurrent, phase is measured using circular metrics, typic-
ally in degrees or radians of arc. For example, a phase of 90 degrees (1/ 2 Pi) may indi-
cate that the oscillation at this point in time is at its peak, going down, 180 degrees (Pi) 
may indicate that it is transitioning through zero, and 270 degrees may indicate that it 
is at its minimum, going up. In neuroscience studies, phase is often used to quantify 
the amount of temporal correspondence or similarity between two signals, measured 

Different power

Same phase

Same frequency Same frequency

Different phase Different phase

Different frequency

Same power Same power

Figure 3.1 Illustration of oscillatory power, phase, and frequency. Oscillations are 
characterized these three properties and can independently vary along these three dimensions.
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during different trials or at different locations (i.e., phase- locking, phase synchrony) 
[cross ref Chapter 20 Makeig and Palva]. We discuss phase- locking later in this chapter.

There are different ways for computing the oscillatory content of a signal, many of 
which are discussed in this volume [cross ref Chapter 23 Allen and Voytek]. Broadly, 
there are two main groups of methods for estimating spectral events in neural time 
series data. First, methods that result in a spectral representation, or frequency- domain 
representation. In these representations, frequency (in Hz) is plotted along the x- axis, 
and spectral power (or phase) along the y- axis. Power (and phase) values for each fre-
quency in the spectrum are obtained by integrating the information across all time 
points entering the spectral analysis, which often is a variant of the well- known Fourier 
transform that uses sine and cosine functions as templates for quantifying the os-
cillatory content of a time- varying neural signal such as EEG or local field potentials. 
A second approach is used when researchers wish to retain information on the changes 
in oscillatory activity in their signal over time. Many methods exist for obtaining such 
a time- frequency representation, in which time is typically plotted on the x- axis, fre-
quency along the y- axis, and a colormap or 3rd dimension in the figure is used to rep-
resent spectral power or amplitude for each time point and frequency. Often, this type 
of data analysis is used when the data set contains a substantial number of trials, locked 
to events (e.g., the onsets of a stimulus, the time of a motor action). Then, the time- 
frequency representations of each trial are compared and/ or averaged. Figure 3.2 shows 
an example of the change in oscillatory power during a complex sequence of visual cues 
and behaviors as participants perform a working memory task. Wavelet analysis is a 
popular approach for obtaining time- frequency representations in studies of oscillatory 
brain activity, but many other methods exist (see Chapter 4). For a practical introduc-
tion, we recommend Cohen’s Analyzing Neural Time Series Data (2014).
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Figure 3.2 Oscillatory changes during a working memory task. Time- frequency decompos-
ition of the EEG activity recorded at sensor Pz over a 9- s trial in which participants memorized 
the orientation of two gratings. They then viewed a mask, a task array, and finally were asked to 
indicate if the orientation of an item in the task array matched an item in the memory set. Each 
task element prompts specific time- frequency dynamics. For example, alpha- band activity (8– 
12Hz) is highest during the fixation period before the start of the trial, and during the retention 
interval when viewing the mask.
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A useful approach for a classification of the brain’s oscillatory activity is the widely- 
adopted nomenclature first introduced by Robert Galambos (1992). Considering brain 
oscillation across several species, Galambos distinguished:

 1. spontaneous oscillations, which are not related to external stimuli;
 2. evoked oscillations, which are elicited and precisely time- locked to the onset of an 

external stimulus;
 3. emitted oscillations, which are time- locked to a stimulus that was expected but 

then did not occur; and
 4. induced oscillations, which are prompted by a stimulus but are not time-  and 

phase- locked to its onset.

Investigators new to the field are often curious about how different types of oscillations 
should be analyzed and interpreted in terms of hypotheses regarding a specific behav-
ioral, cognitive, or neural process. To address these questions, it may be helpful to con-
sider the different types of dependent variables that may be used in studies of oscillatory 
brain activity during cognitive processing.

3.4 Characterizing Brain Oscillations 
in the Context of Cognitive Tasks

The mathematical foundations of extracting power and phase from time domain neural 
signals as described earlier are straightforward and yield estimates of power at a given 
frequency, in a given time period, at a specific sensor. What is less clear is the functional 
and neurophysiological interpretation of differences in power, especially in population- 
level signals, such as local field potentials (LFPs), intra-  and extracranial EEG, and MEG. 
These signals reflect the synchronous synaptic (dominantly post- synaptic) currents of a 
large number (at least several tens of thousands in the case of EEG/ MEG) of neurons 
which need to be aligned favorably (in parallel) to create measurable extracranial elec-
tric fields (Olejniczak, 2006). Thus, a difference between two experimental conditions, 
say in EEG alpha- band power, may reflect differences in the number of neurons 
engaged in the respective cognitive process, but it may also represent a combination of 
differences in active population size, amount of dendritic engagement at each neuron, 
orientation of neurons involved, and temporal synchronization of the post- synaptic 
events. Neural mass power in a given frequency band is therefore difficult to map dir-
ectly onto a physiological or cognitive concept, emphasizing the need for research that 
links measures of oscillatory brain activity to robust cognitive or behavioral processes, 
across different levels of observation (i.e., from single neurons to large populations).

In addition to measuring spectral power, researchers may use approaches that capit-
alize on additional spectral information, often the phase of the signal. Many algorithms 
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exist for quantifying the similarity of the phase across different observations, such as 
experimental trials, time points, or channels. The resulting metrics are referred to as 
indices of phase- locking or phase coherency. These variables are often used to estimate 
the strength of oscillatory interactions across recordings sites (e.g., inter- site phase 
locking, often considered a proxy of connectivity), the stability of the temporal pro-
file of oscillations across repeated trials (e.g., phase- locking value), or the interactions 
between different frequencies within or across recordings sites (e.g., phase- amplitude 
coupling (Chapter 20). Thus, a wide range of hypotheses and, increasingly, formal com-
putational models of neurophysiological processes can be tested using these different 
variables, each of which may reflect entirely different facets of oscillatory brain activity. 
Later in this chapter we present examples for using these markers across a wide range of 
research questions in cognitive neuroscience.

3.5 What’s in a Band? the Traditional 
Demarcation Of Oscillatory Events 

By Frequency

In the many decades since Berger’s and many others’ discoveries, brain oscillations have 
been traditionally divided into frequency bands in the 1– 4 Hz range (delta), 4– 8 Hz 
(theta), 8– 12 Hz (alpha), 12– 30 Hz (beta), and >30 Hz (gamma), with some variability in 
the demarcation of these bands. These frequency bands have been consistently observed 
at the level of spike trains, local field potentials, and EEG/ MEG, making them apparent 
in multivariate analyses and meta- analyses across studies and even species (Lopes da 
Silva, 1991). The peak frequency in each of these bands is similar across bats, mice, rats, 
cats, dogs, horses, dolphins, macaques, and humans, despite the range of brain size and 
axon length across these species (Buzsáki et al., 2013). Given this phylogenetic stability, it 
has been suggested that the traditional frequency bands (and perhaps their logarithmic 
distance from one another) represent fundamental mechanisms underlying specific 
neurocomputations and behaviors (Steriade et al., 1990). Klimesch (1999) highlights 
the variability and task- dependency of these frequencies, however, with examples for 
gamma- like oscillations in the traditional beta band, and overlap between alpha and 
beta band oscillations, along with pronounced inter- individual differences. Similarly, 
limitations of assigning specific functional roles to oscillations in one of the traditional 
bands have been made apparent by phenomena in which oscillations continuously 
transition from one traditional band into another during the same task (Donner & 
Siegel, 2011).

Some of the stated confusion about these observations may be reflective of 
researchers’ desire to equate oscillatory activity in one frequency range with a cat-
egory of cognition of behavior, defined in the language of cognitive psychology, such 
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as “alpha- blocking reflects attention”, “gamma reflects feature binding”, and similar 
notions. Such interpretations, which may be seen as examples for the problematic 
approach of reverse inference (Poldrack, 2011), have been considered less fruitful than, 
and have increasingly been replaced by, research aiming to characterize specific oscilla-
tory correlates of a specific, quantifiable, behavior. With the advent of neurostimulation 
and neuromodulation techniques such as transcranial magnetic stimulation (TMS), 
direct current stimulation, neurofeedback, etc., recent research has also attempted to 
establish the causal role of oscillatory brain activity for specific cognitive and behavioral 
processes (Herrmann et al., 2016; Chapter 22 this volume). To understand how oscilla-
tory activity relates to cognition, it is helpful to consider the rich neurophysiological lit-
erature based on work in experimental animals. This body of work has begun to outline 
neuromechanistic accounts for the emergence of brain oscillations and their relation to 
behavior. Importantly, these studies help to overcome the focus on one spatial scale (e.g. 
oscillations at membranes, in action potential, in circuits, or areas), and instead describe 
the rhythmic interplay between these levels of observation.

3.6 Oscillations at Different Levels of 
Observation: From Single Neurons to 

Neural Populations

Since the inception of brain electrophysiology, researchers measuring electrical 
potentials from individual neurons, or from groups of neurons, have noted the oscil-
latory character apparent in neural time series (Bernstein, 1868; Marrazzi & Lorente 
de No, 1944). Spatial scales of these observations are typically categorized into the 
microscale, mesoscale, and macroscale, where microscale refers to processes at single 
neurons, mesoscale to small functional units such as cortical columns, and macroscale 
to population responses of several tens of thousands of neurons (Nunez & Srinivasan, 
2006). Recent work increasingly focused on interactions between oscillations across 
these levels of observation, for example, by linking the rate of action potentials (spikes) 
to oscillatory events at different spatial scales, and at different temporal rates (Lisman 
& Jensen, 2013; Schroeder & Lakatos, 2009). Although a comprehensive review of this 
literature is outside the scope of this chapter, a number of neurophysiological and com-
putational principles of oscillatory processes within and across different scales are now 
widely accepted. These principles are discussed next.

At the core of many theories of brain oscillations is the observation that time 
series of action potentials (i.e., spike trains) tend to contain bursts of spikes. A burst 
represents a rapid sequence of action potentials, a group in time, which may vary in 
temporal rate, providing one potential source of oscillatory pace making. The frequency 
at which bursts occur (i.e., the inter- burst interval) has also been shown to relate to 
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neurophysiological and behavioral processes, thus providing a second way for action 
potentials to temporally organize downstream neural— and ultimately behavioral— 
processes (Gütig, 2014). Such a temporal organization may be propagated in space if 
neurons act as coupled oscillators, facilitating specific phase relationships among 
the units of a functional network of connected neurons. Many such “coupled oscil-
lator” models of neural oscillations exist, aiming to explain how temporal signatures 
are shared among populations of neurons (Moon et al., 2015; Naze et al., 2015). Recent 
empirical work as well as work in computational modeling has converged to suggest 
that such coupling involves not only action potentials but a range of mechanisms that 
also involve subthreshold and synaptic events, along with potential changes at glia cells 
(Buzsáki et al., 2012).

It is now well established that spike timing, that is, the timing of action potentials, 
is related to synaptic oscillations measured by local field potentials, likely both driving 
and being driven by these synaptic fields. This research has also demonstrated that 
subthreshold oscillations at membranes and post- synaptic potentials constrain 
the spiking rate of individual neurons and may also play a role in coordinating the 
firing among different neurons (Mazzoni et al., 2010). This is important because it 
demonstrates the interplay of all- or- nothing neuronal communication and post- 
synaptic events, opening avenues for research that identifies the convergent versus 
complementary roles of oscillations at different levels, within and across neurons, in be-
havioral and cognitive processes.

Research in human participants has increasingly made use of intracranial data 
obtained from patients under pre- surgical evaluation for neurological disorders, with 
implanted sensor arrays (Parvizi & Kastner, 2018). In these studies, one striking dis-
crepancy arises between levels of observation regarding the frequency content of 
intracranial recordings vis- à- vis extracranial recordings. Intracranial recordings, for 
example, electrocorticogram (ECoG) data, tend to contain robust high- frequency 
oscillations (Osipova et al., 2008), which are small and less reliably observed in extra-
cranial recordings such as EEG or MEG (Yuval- Greenberg et al., 2008). This salient 
difference between intracranial and scalp recordings may reflect the orders of magni-
tude difference in the summation of electrical potentials that comprise each signal. For 
example, the local field potential recorded from an intra- cranially sensor embedded 
in cortical tissue is thought to measure the extracellular electrical fluctuations of a few 
hundreds to thousands of neurons, while EEG data is thought to require synchrony 
across a few millimeters of cortex before any fluctuations are observed on the scalp 
(Nunez & Srinivasan, 2006). Based on simulations and in vitro studies, some authors 
suggest that postsynaptic changes at dendritic trees of 40,000 to 100,000 pyramidal cells 
are required to cause EEG changes in the 1– 2 microvolt range— if the dendrites of these 
neurons are oriented in parallel, generating an open electric field, required for extra-
cranial measurement. By contrast, ECoG and LFP data are thought to reflect activity 
in differentially oriented cells, including contributions from interneurons, pyramidal 
cells, and glial cells (Buzsáki et al., 2012). Thus, EEG oscillations reflect activity in a more 
specific subset of neurons than ECoG and LFP but integrated over a wider distribution 
of space.



48   ANDREAS KEIL and NINA THIGPEN

 

Inter- scale oscillatory interactions also depend on the strength of the sensory 
input. Studies in macaque monkeys have shown that increasing the luminance con-
trast of a visual stimulus similarly affected spike trains, local field potential in intra-
cranial electrodes over V1, and MEG signals, up to a contrast level of 60%. However, 
at levels above 60% luminance contrast, nonlinearities were observed: The MEG 
gamma continued to increase but the LFP gamma saturated, and in fact decreased with 
increasing contrast. Only the gamma frequency recorded at the macroscale (i.e., MEG, 
which continued to increase at luminance contrast levels above 60%) was correlated 
with perceptual performance (Hadjipapas et al., 2015). This is an example of how tem-
poral summation across a wide spatial distribution (reflected in MEG recordings) 
reflects different activity from spikes or the LFP. Finally, it is worth noting that the rela-
tionship between spatial integration across neurons, measured through correlation of 
spike counts between neurons, and EEG power has also been shown to be nonlinear, 
such that higher spike- count correlations predict high and low EEG amplitude, while 
low spike- count correlations are observed during time windows where intermediate 
EEG amplitudes are observed (Snyder et al., 2015).

In summary, although systematic relations exist between neural oscillations at 
different levels of observation, it is not advisable to test hypotheses regarding one 
level of observation by measuring at another level. Inter- scale interactions however 
provide a promising area of research for understanding the neuromechanistic role of 
neural oscillations. They also represent an important source of constraints for compu-
tational models of brain function, in turn to be tested by multi- scale empirical studies. 
Researchers studying macroscopic oscillations in humans may generate more precise, 
and more mechanistic hypotheses regarding these measurements when considering re-
search at the micro-  and mesoscale. Thus, by manipulating the nature of the stimulus, 
for example, its intensity or temporal frequency, specific mesoscopic circuits can be 
challenged and experimentally isolated, dramatically increasing the neurophysiological 
specificity of extracranial signals such as EEG or MEG. This technique is increasingly 
used and further emphasizes the benefits of developing hypotheses for human re-
search based on the animal model. However, as is the case with the majority of imaging 
modalities (Boynton, 2011), not all robust and neurophysiologically meaningful metrics 
of oscillatory brain activity are linearly related to the behavioral indices measured in the 
same task. This long- standing conundrum in cognitive neuroscience research may also 
be explained by the non- overlap of processes observed at different spatial scales, further 
highlighting the importance of multi- scale studies.

3.7 Brain Oscillations and their Role 
in Behavior: A Conceptual Overview

From its inception, the study of brain oscillations and their role in cognition has been 
multi- disciplinary, with a strong emphasis not only on physiological measurements, 
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but also on mathematical analysis and modeling, as well as behavioral observations. 
The resulting literature can be daunting for its extent, scope, and methodological com-
plexity. Therefore, readers may benefit from a brief overview of key concepts, providing 
scaffolding for integrating current findings, and context for making sense of the wide 
range of theoretical notions related to oscillatory brain dynamics.

3.7.1  Hebbian Cell Assemblies and Brain Oscillations

Adapting behavior based on experience is arguably one of the most essential functions 
of the human brain. Donald Hebb’s (1949) classical theory in conjunction with theories 
of oscillatory brain activity are often used to account for this function. In these views, 
the brain’s ability to form oscillatory networks comprising groups of neurons depends 
on a principle of association known as Hebb’s second rule. This rule postulates that the 
synchronous activation of two cells or cell systems produces a facilitation of excitatory 
connections between them such that in the future activity of the one element produces 
a residual excitation of the other. A cell assembly refers to a distributed network of 
neurons that are bound together by the temporal synchronization of their sub- threshold 
membrane potentials and/ or firing rates (Singer et al., 1990). Importantly, neuronal 
cell assemblies may be synchronized at local scales, separated in the millimeter range, 
but also at distances that span distinct cortical lobes (Pulvermuller & Fadiga, 2010). 
Theoretical and methodological advances in the neurosciences, including the discovery 
of long- term potentiation (Bliss & Lømo, 1973), whereby the responses of a post- synaptic 
cell are facilitated by oscillatory stimulation, have largely validated Hebb’s notion, while 
also offering more detailed analyses of the physiological substrates that underlie the for-
mation of oscillatory networks through experience (Nadel & Maurer, 2018).

Today, the ability of neurons to form networks based on coincidence of firing patterns 
can be explained at the molecular level (Andersen et al., 2017; Harris & Littleton, 
2015), for example by reference to the unique properties of NMDA (N- Methyl- D- 
Aspartate) and AMPA (α- amino- 3- hydroxy- 5- methyl- 4- isoxazolepropionic acid) glu-
tamate receptors (Henley & Wilkinson, 2016). Additional physiological mechanisms for 
coincidence- based network formation have been elucidated, such as the dual sensitivity 
of L- type calcium channels to back- propagating action potentials and pre- synaptic exci-
tatory currents (Nanou & Catterall, 2018). Importantly, neuronal cell assemblies may be 
synchronized at local scales, separated in the millimeter range, but also at distances that 
span distinct cortical lobes. Hebb’s original suggestion (1949) held that reverberating 
activity within cell assemblies constituted a transient percept or memory trace that can 
become more consolidated with the passage of time. The concept of reverberation, by 
providing a metaphorical notion of how oscillatory phenomena arise, has stimulated 
a large body of work, which in turn has identified a plethora of mechanisms for net-
work organization and oscillatory brain activity, beyond temporal synchrony (Morone 
et al., 2017).

 



50   ANDREAS KEIL and NINA THIGPEN

 

3.7.2  Complex System Theory and Nonlinear Dynamics

With the advent of powerful digital computers, conceptual frameworks that had been 
elusive because of their computational complexity, became increasingly popular. 
One group of concepts with strong implications for the study of oscillatory brain 
activity drew from theories of complex systems (“chaos theory”) and nonlinear dy-
namics (Elbert et al., 1994). Applied to brain oscillations, these approaches de-
scribe fluctuations among different elements, often in so- called non- equilibrium 
conditions, where some form of energy or environmental constraint affects a com-
plex, macroscopic system (Fuchs et al., 2000). Research conducted using this frame-
work demonstrates that dynamics in complex systems may be characterized by the 
interaction of some quantifiable and continuous variable, and the effect that it exerts 
on the collective system state. In one flavor of nonlinear system research, the col-
lective system state is measured by one dominant parameter, the order parameter, 
taken to index the high- level formulation of the system (Haken et al., 1985), whereas 
variables that can change the nature of the system dynamics are referred to as the 
“control parameter”. When the control parameter reaches a particular value, the 
macroscopic system undergoes a phase transition and acquires a qualitatively novel 
set of properties. Once it is established, the new high- level order parameter may “en-
slave” the lower components— a phenomenon demonstrated in everyday life when 
the clapping of a large audience determines the clapping frequency of individual 
members in the audience.

Metrics of nonlinear dynamics such as largest Lyapunov coefficients or the 
Grassberger– Procaccia dimension (Elbert et al., 1994) have been used to characterize 
neural time series, aiming to capture dynamics above and beyond the periodic, sine- 
wave- like, and stationary cycles that are assumed by linear methods such as the Fourier 
transform. In addition, approaches inspired by nonlinear systems research have made 
important contributions by emphasizing the role of oscillatory phase, and by providing 
tools for visualizing and analyzing nonlinear interactions among and between 
populations of neurons (Breakspear, 2017). Currently, some of these methods, such as 
phase space portraits, experience a renewed popularity and are applied in studies of 
motor preparation, perception, and awareness (Baria et al., 2017).

3.7.3  Spatio- Temporal Patterns and Travelling Waves

Although oscillatory patterns are most easily visualized as changes in magnitude over 
time, researchers have recognized for a long time that the spatial dimension of oscil-
latory activity also plays a crucial role in characterizing oscillatory processes. Walter 
Freeman, one of the first researchers to explore this topic in depth, established a math-
ematical model in which spatio- temporal patterns consisting of mesoscopic “phase 
cones”— moving two- dimensional Gaussian fields with systematically changing 

 

 



FROM NEURAL OSCILLATIONS TO COGNITIVE PROCESSES   51

 

oscillatory phase— represent the nature of an odorant presented to the rabbit olfactory 
system (Freeman, 1991).

Current research has addressed this topic using refined mathematical tools and high- 
resolution electrophysiological recordings. As a result, traveling oscillatory waves of 
neural activity have been found at many different frequencies, across wide spectrum of 
brain areas. Spreading over cortical or subcortical tissue as time passes, these waves have 
been related to many different behaviors, ranging from sensory to motor processing 
(Muller et al,, 2018).

3.7.4  Oscillatory Hierarchies

Many prominent models of the functional role of oscillatory brain activity have 
considered interactions between oscillations at different temporal rates. A classical 
model of working memory proposed that hippocampal neurons encode memory con-
tent using timed gamma- frequency bursts, which in turn receive their temporal struc-
ture from the phase of low- frequency oscillations in the theta band (Lisman & Jensen, 
2013). This account has received substantial support as well as extension and refinement 
based on computational and empirical studies.

In another widely recognized account, systematic relations across different 
frequencies are used by the brain to organize the interplay between behavioral and cog-
nitive processes— the concept of “active sensing” emphasizes the active aspect of per-
ceptual sampling (Schroeder et al., 2010). Examples for such active sensing include 
whisking and sniffing in rodents and saccadic sampling of visual scenes in primates. In 
all these cases, perception is tightly linked to the motor activity that causes the stimu-
lation of sensory receptors as it initiates inflow of information through the sensory 
pathways. Each afferent volley of information meets ongoing brain states hypothesized 
to be partly determined by past experience and current goals, as well as the physiological 
properties of the tissue. In these hypothetical hierarchies, neural oscillations at lower 
frequencies (such as alpha or theta, 4– 8 Hz as defined in adults) may provide temporal 
structure for higher- frequency phenomena, for example, beta-  (13– 30 Hz) or gamma- 
band (>30 Hz) oscillations. In a similar vein, studies in macaque monkey visual cortex 
have suggested that high- amplitude gamma oscillations more likely occur during spe-
cific phases of the alpha cycle (Bonnefond & Jensen, 2015). These findings have been 
taken to indicate that alpha phase represents the excitability of the neural tissue, pos-
sibly aligning excitability of sensory cortices with other events such as expectancy or 
memory- driven signals (Kizuk & Mathewson, 2016; Mathewson et al., 2011).

3.7.5  Synchrony and Oscillatory Communication

Most contemporary models of oscillatory brain activity emphasize the potential 
of rhythmic processes for organizing neural activity in time and space and thus for 
providing a mechanism for integrative coding across spatially separated units (neurons, 
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columns, areas; Buzsáki & Draguhn, 2004). In earlier theories of oscillatory activity, 
temporal synchrony was seen as the crucial feature for coding information that belongs 
together but is distributed between different neurons or populations of neurons (von 
der Malsburg & Buhmann, 1992). This notion is readily aligned with the Hebbian per-
spective discussed earlier, adding to the appeal it has held for many decades. At the 
microscopic and mesoscopic level, synchronous firing in local circuits, especially in the 
gamma frequency range, has been proposed as a mechanism for cognitive processes 
as diverse as gestalt perception, predictive coding, motor preparation, and selective 
attention (Bauer et al., 2014; Keil et al., 2001).

Extending the concept of synchrony to long- range communication and integration, re-
cent work focuses on the interaction between local and inter- area (long- range) synchrony, 
increasingly on oscillatory interactions across different frequencies (Chapter 20). For in-
stance, oscillatory activity in the theta range (4– 8 Hz) has been traditionally hypothesized 
as a potential mechanism for transmitting information between distant brain areas 
(Klimesch et al., 2005; Sarnthein et al., 1998). Empirical evidence in rodents, cats, and non- 
human primates supports this notion, with theta oscillations characterizing long- range 
signaling in large- scale networks, including the hippocampus, the amygdaloid, complex, 
and extensive cortical areas, during tasks that involve learning and memory (Popescu 
et al., 2009). Similar findings exist for alpha- band oscillations, discussed now as carriers 
of prediction signals from higher- order to sensory cortices. Importantly, the concept of 
synchrony in the context of these inter- area communications has been extended beyond 
zero- lag co- activation at different sites, and has instead identified inter- area interactions 
by the extent to which the phase lag between two recording sites is consistent over time, 
that is, so- called inter- site phase locking (Brovelli et al., 2004).

Together, local-  and inter- area oscillations hold great promise for informing and 
constraining network- based models of human cognition. Because of their compati-
bility with findings obtained in the animal model, and the ability to relate neural activity 
across different levels of observation, indices of oscillatory brain activity also represent 
powerful dependent variables in cognitive neuroscience studies. The following example 
illustrate these benefits by selectively reviewing examples for such studies and address 
processes of perception, attention, learning, and memory.

3.8 Example 1: Alpha- Band 
Changes During Perception and 

Selective Attention

As discussed, oscillatory activity in the alpha frequency band is typically observed 
during stimulus- absent conditions such as resting or sitting with the eyes closed (Berger, 
1929; Pfurtscheller, 1989). Many early studies established the robust relationship be-
tween alpha power changes and perceptual tasks, demonstrating that high- alpha states 
tend to be blocked following events such as the opening of the eyes, the presentation 
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of a visual cue, or the direction of attention toward a salient visual stimulus (Adrian & 
Matthews, 1934; Klimesch, 1999; Pfurtscheller et al., 1996). Low levels of alpha power to-
gether with alpha phase also predict heightened performance in near- threshold detec-
tion tasks, where participants report weak sensory events (Mathewson et al., 2011; Weisz 
et al., 2014). This evidence supports a long- held notion that scalp- recorded alpha activity 
reflects a cortical state in which little sensory information is received (Pfurtscheller, 
1992), mediated perhaps via a thalamic gating mechanism (Steriade et al., 1990).

Other findings are consistent with this notion.: Presenting a cue that directs attention 
to one hemifield prompts reduction of alpha power in the contralateral hemisphere 
(Foxe & Snyder, 2011). By contrast, alpha power over ipsilateral sensors (representing 
the ignored hemifield) remains stable (Thut et al., 2006), or increases (Kelly et al., 2006), 
taken to suggest suppression of irrelevant information. This interpretation is consistent 
with research examining attention to target items embedded in a rapid serial visual pres-
entation stream of distractors. Accurate identification of rapidly presented targets amid 
non- targets is associated with higher pre- target alpha power (Petro & Keil, 2015). Thus, 
high alpha power may index behavioral states that benefit performance by reducing the 
processing of irrelevant sensory information (Klimesch et al., 2006). Importantly, these 
attention- related changes in alpha power are associated with faster and more accurate 
responses for the task, suggesting that they possess a functional role in the active selec-
tion of target stimulus features (Foxe & Snyder, 2011).

A further role of alpha oscillations during attention tasks is under consideration in 
the context of predictive coding. This has become a current topic in cognitive neuro-
science. Increased alpha power and heightened inter- site phase- locking during target 
anticipation are proposed as a mechanism that optimizes the temporal organization of 
sensory processing and thus facilitates the sensory analysis of expected, task- relevant, 
visual stimuli (Samaha et al., 2015). Several of the different proposed functions of alpha- 
band oscillations during perception and attention are not mutually exclusive and have 
given rise to the idea that the alpha frequency is used by a wide range of neural processes, 
in the service of different cognitive and behavioral goals (Chapter 10).

3.9 Example 2: Learning and Memory

Work in the animal model abundantly demonstrates that associative learning induces 
Hebbian plasticity in widely distributed brain networks, both sub- cortical and cor-
tical (Pape & Paré , 2010). These memory formation processes can be conceptualized as 
changes in the neural communication between nearby and distant brain loci, which dy-
namically sculpt neural signaling pathways at multiple levels of analysis. Recent findings 
suggest that neuronal oscillations are ideally suited to support the flexible formation 
of such network- level changes in neural architecture (Popescu et al., 2009), including 
those that support the acquisition and extinction of fear memories (Paré et al., 2002). 
In addition, computational models using simulated agents in artificial evolutionary 
environments show that network oscillations provide a fitness advantage, insofar as 
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they help to promote rapid switches in perception and attention (Heerebout & Phaf, 
2010). Oscillatory signals may therefore play an important role in the critical changes 
that occur when a previously innocuous stimulus acquires relevance for controlling 
behavior (Headley & Weinberger, 2011). At the level of neuronal populations, the as-
sociative principles that guide the formation of a newly acquired memory (e.g., the 
association between light and electric shock during classical fear conditioning) must ef-
fectively coordinate activity between neural representations of the conditioned stimuli 
(the light) and the systems that code biological value of the unconditioned event (the 
shock). Although conditioning- induced changes in neuroarchitecture and function 
occur on multiple spatio- temporal scales (Maren & Quirk, 2004), ranging from in-
dividual neurons to cortical sheets, and from minutes to days, the notion of a cell as-
sembly (Hebb, 1949) provides the necessary conceptual framework for bridging across 
these multi- scale phenomena. Oscillatory synchronization between distributed neur-
onal assemblies in specific frequency bandwidths appears to represent a highly plaus-
ible substrate for synaptic plasticity transfer, that is, storing newly acquired memories 
as changes in synaptic weights (Paré et al., 2002). In particular, increased large- scale 
synchrony between subcortical and cortical networks may be crucial in producing the 
experience- dependent changes in the representation of fear- conditioned cues.

Another example is provided by a series of studies conducted by Walter Freeman and 
his colleagues (reviewed in Skarda & Freeman, 1987) in the olfactory system of the rabbit. 
The basic paradigm involves the placement of an 8 × 8 electrode grid onto the olfactory 
bulb in order to record electrocorticography (ECoG) signals associated with different 
odorant stimuli. To begin with, each odorant elicits a pattern of wave activity that appears 
as aperiodic noise with variability across trials. However, after the animal learns to asso-
ciate an odor with a motivationally relevant outcome, for example, the delivery of food or 
aversive tactile stimulation, neural activity at the olfactory bulb undergoes a state tran-
sition whereby the odor comes to elicit a discriminant spatiotemporal pattern of ampli-
tude across the electrode grid array. The learning- related establishment of a new global 
response pattern then acts to enslave the output of individual neurons (Freeman, 1994). 
Freeman interprets such selective changes in spatiotemporal amplitude as embodying 
the affective meaning of a stimulus for the animal, with meaning changing in accordance 
with the momentary relevance of a stimulus (e.g., an animal responds differently to an 
odorant associated with food once it is fed to satiety). A mechanism for stimulus selective 
changes in the output of olfactory neurons is provided by alterations of synaptic effi-
ciency and neuropil structure, guided by Hebbian principles of association.

3.10 Example 3: Generating Brain 
Oscillations by Periodic Stimulation

Rhythmic modulation of stimulus contrast or luminance at a constant rate over a period 
of time evokes oscillatory field responses in the visual cortex at the same frequency 
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as the modulation rate of the stimulus, often including higher harmonics— integer 
multiples of the stimulation frequency. The harmonic responses depend on the duty 
cycle, the stimulation method, and the complexity of the stimulus array (Norcia et al., 
2015). In the visual domain, large- scale frequency- following responses evoked by peri-
odic stimulation are referred to as steady- state visual evoked potentials (ssVEPs). These 
driven oscillations are best quantified in the frequency or the time- frequency- domain, 
where they can be reliably separated from noise and quantified as the spectral power in 
a narrow frequency range. Several studies have demonstrated that the flicker- evoked 
ssVEP is predominantly generated in the primary visual and to some extent in adjacent, 
higher order, cortices (Müller et al., 1997; Wieser & Keil, 2011). Interestingly, a number of 
studies have suggested different neural sources for the fundamental frequency and the 
higher harmonics, although these findings await replication and further interpretation 
(Kim et al., 2010). Generally, the ssVEP can easily be driven in lower- tier (retinotopic) 
visual cortices using high- contrast luminance modulation governed by a rapid square- 
wave (on- off) stimulation. For studies of higher- order cognitive processes, however, 
researchers may periodically modulate specific stimulus dimensions other than lumi-
nance or contrast, while holding these lower- level properties constant (or varying them 
randomly). Such an approach evokes ssVEPs in brain areas sensitive to the particular 
feature or stimulus dimension of interest (Giabbiconi et al., 2016; McTeague et al., 2015). 
For example, stimulation techniques have been used that isolate the ssVEP response to 
face identity generated in higher order visual areas such as the fusiform cortex (Rossion 
& Boremanse, 2011).

A related issue often discussed in the context of driven oscillations is the question to 
what extent ssVEPs can be regarded as a linear superposition of transient ERPs, or al-
ternatively represent a nonlinear response that possesses properties beyond the linear 
combination of individual brain responses (Capilla et al., 2011; Regan, 1989). A similar 
current debate exists between the view that driven oscillations represent a temporal 
alignment or “entrainment” of oscillations that are already present spontaneously, and 
the alternative view that driven oscillations represent newly shaped waveforms, on 
top of ongoing oscillations (Keitel et al., 2019). Initial studies in the field have argued 
that observing higher harmonics when using harmonically simple (e.g., sinusoidal) 
modulation of luminance or contrast is considered evidence of nonlinearity, thus 
providing evidence for perspectives emphasizing resonance and entrainment (Regan, 
1989). Subsequent work has examined the extent to which ssVEPs can be explained by 
properties of transient ERPs, and has observed that especially with square wave (on- 
off) modulation, ssVEPs may be modeled by transient ERP features with satisfactory 
accuracy (Capilla et al., 2011), providing evidence for a superposition perspective. The 
interpretation of these findings is not straightforward, however, because transient brain 
responses themselves represent a combination of individual trials that vary greatly in 
latency (phase) and amplitude, limiting their use for unambiguously explaining the 
generating mechanism underlying ssVEPs. In line with this notion, other studies have 
reported that the ssVEP amplitude is poorly predicted by single- trial power changes 
at the driving frequency, but is best predicted by locking of the single- trial phase with 
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the driving stimulus across trials (Moratti et al., 2007). Figure 3.3 shows an example 
of this phenomenon as it interacts with stimulus intensity, demonstrating increasing 
phase alignment of single trial EEG traces with increasing stimulus contrast. The de-
bate of entrainment versus superposition perspectives is ongoing, and ssVEPs (be-
cause of their known frequency and pronounced signal) are well suited for examining 
competing hypotheses regarding the interaction of ongoing oscillations and sensory 
events.

3.11 Conclusions and 
Outlook: Elements of a Conceptual 

Framework of Oscillatory 
Brain Activity

This chapter aimed to illustrate how studies of oscillatory brain activity provide rich 
opportunity for testing hypotheses relating brain function to cognitive processes. 
Measuring oscillatory activity during cognitive task performance opens avenues into 
developing and testing neuromechanistic accounts of some of the most central building 
blocks of human behavior and experience. In conclusion, we discuss challenges for this 
field moving forward, and provide key concepts towards an integrative framework of 
oscillatory brain activity in the study of cognition.
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Figure 3.3 Effects of stimulus intensity on inter- trial phase locking of driven oscillations. 
Participants viewed sinusoidal gratings flickering at 15 Hz. Gratings varied in luminance, with 
40 low- luminance trials (.4 cd/ m2), 40 medium- luminance trials (4.9 cd/ m2), and 40 high- 
luminance trials (70.7 cd/ m2). Each colored line represents one single trial from sensor Oz. Inter- 
trial phase locking increases with increasing luminance, whereas the overall magnitude of the 
signal within the single trials does not change. The increased phase- locking is associated with 
increases in 15- Hz power of the trial- averaged signal, as depicted in the topographies shown on 
the right.

Data from Thigpen et al., 2018.
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3.11.1  Oscillations as Epiphenomena, and Other Challenges

A long- standing debate in the field centers around the question to what extent brain 
oscillations possess a primary functional role, as opposed to arising from other non- 
oscillatory processes as a by- product, or epiphenomenon (Buzsáki & Draguhn, 2004). 
For example, does a spike burst represent an oscillation, or a mere sequence of individual 
events? The question of functional relevance has been difficult to address because the 
required ground truth, for example, “there is an oscillation at 11.5 Hz”, is often something 
the researcher wishes to establish, rather than something that can be used as a premise. 
Current research leverages causal manipulations such as electric micro- stimulation in 
experimental animals, synchronized to the phase of ongoing oscillations to determine if 
altering a robustly measured ongoing oscillation affects the animal’s behavior in a system-
atic fashion (Tehovnik et al., 2006). Such data, challenging to obtain because it requires 
predicting the phase of the oscillatory signal over time, would present direct evidence 
supporting a causal role of oscillatory activity. Other approaches underway in several 
laboratories use similar causal manipulation, as well as driven oscillations, to address this 
question.

Additional challenges for researchers using metrics of oscillatory activity are rooted 
in the fact that highly complex data arrays that may contain sensors, conditions, time 
points, trials, etc., tend to get further inflated when adding a frequency dimension. This 
triggered attempts towards using multivariate methods, machine learning methods, or 
other approaches, all aiming at reducing the dimensionality of the data without losing 
information that is relevant to addressing the empirical question of interest]. The 
resulting methodological diversity has not only been enriching for the field, but also 
often prevented direct comparisons of results from different laboratories, and thus has 
been regarded as one obstacle towards reproducing and replicating findings. Ongoing 
efforts to improve the training of next- generation researchers are expected to address 
this issue, by adding computer science, digital signal processing, and advanced statistics 
to undergraduate and graduate curricula. Current trends of expressing hypotheses in 
terms of mathematical models that can be explicitly tested and gradually improved are 
crucial in this respect and are readily applied to indices of oscillatory brain activity. As 
with many other fields in the biomedical sciences, (re- )establishing a culture of knowing 
the history of the field, of systematic and programmatic research, and of applying 
rigorous methods is an obvious goal in research on brain oscillations. The following key 
concepts summarize areas of conceptual progress in the field and provide avenues for 
future research.

3.11.2  Oscillations as Drivers of Plasticity

Brain oscillations are widely considered reflections of network activity, but growing 
support is also evident for their role in mediating neuroplastic changes that result in 
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the formation of networks, local and distributed. The high signal- to- noise ratio of many 
frequency- domain measures and the resulting potential for trial- by- trial analyses may 
be leveraged to quantify neural changes that occur over the course of an experimental 
session (McTeague et al., 2015). Such an approach complements trial averaging, which 
is still the dominant approach in cognitive neuroscience, and sheds light on adaptation 
dynamics and plasticity in response to the experimental situation, processes of high 
ecological validity and with substantial clinical relevance.

3.11.3  Oscillations as Pacemakers for Cognition 
and Behavior

A substantial body of research addresses the role of low- frequency oscillatory brain 
activity for embedding and organizing neural, cognitive, and motor processes. 
Cornerstone results from this line of research include that perceptual and motor per-
formance varies in a rhythmic fashion: recurrent time windows exist, in which cogni-
tion and motor action can be optimally initiated and executed, interspersed with time 
windows of reduced performance (VanRullen, 2016). Relating these behavioral rhythms 
to brain oscillations holds promise for advancing models of the temporal organization 
of cognitive processing.

3.11.4  Oscillations as Carriers of Communication Signals

Several chapters in this volume address the potential of oscillatory activity in lower- 
frequency bands such as alpha or theta for integrating information in space, and for 
mediating the neural communication between units, local and distal (Chapters 9, 10, 
and 20). Establishing the functional role of oscillatory phenomena in neural commu-
nication, across levels of observation, will greatly benefit from emerging multimodal 
and multi- species methods, including new recording and stimulation techniques, 
well suited to cross- validate observations and combine measurement and stimulation 
approaches (Adesnik, 2018).

3.11.5  Oscillations as Organizing Principles 
for Regulating Complex System States

From a perspective of complex systems, a major function of brain oscillations lies in 
representing macroscopic states that emerge from systematic nonlinear interactions 
between units at the microscopic and mesoscopic level. Increasingly, computational 
models exist, which make quantitative predictions for how these different levels interact. 
For example, in- silico studies have leveraged the steady increase in computing capacity 
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to offer alternative models of inter- scale nonlinear interactions, which may provide crit-
ical predictions to be tested in empirical work (Neymotin et al., 2013).

3.11.6  Oscillations as Substrate of Representations 
in Perception and Memory

Finally, oscillations have been long regarded as a candidate mechanism for coding 
percepts and memories. As discussed, oscillatory dynamics provide a unifying way for 
describing diverse mechanisms involved in these cognitive processes, including the 
spatio- temporal dynamics and plastic changes within and between neuronal ensembles. 
They offer a parsimonious account for integrating activity across distributed functional 
units without invoking the widely criticized top- down versus bottom- up dichotomy (Awh 
et al., 2012). Current developments in cognitive science and experimental psychology to 
increasingly rely on computational modeling will facilitate the integration of experimental 
observations from the level of brain oscillations to the level of task performance.

In summary, brain oscillations have opened exciting new avenues in the study of cog-
nitive and behavioral processes. Beyond mere measurements of power in a specific fre-
quency band, recent developments have provided the research community with tools 
that allow us to visualize the dynamic interplay among different frequencies, quantify 
the role of phase in coding information, and assess the rhythmic interactions between 
distal brain areas. Together with rapid theoretical and computational advances, these 
tools will continue to provide unique insights into brain systems dynamics and their re-
lation to behavior and experience.
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CHAPTER 4

TIME-  FREQUENCY 
DECOMP OSITION METHODS 

FOR EVENT-  REL ATED 
P OTENTIAL ANALYSIS

SELIN AVIYENTE

4.1  Introduction

EEG reflects the electrical activity of a collection of neural populations in the brain. 
As such, it reflects the superposition of different simultaneously acting dynamical 
systems. When a large number of parallel- oriented cortical neurons receive the same 
repetitive synaptic input, their synchronous activity produces extracellular rhythmic 
field potentials. These electrical fields are volume conducted throughout the brain and 
recorded as EEG from the scalp (Nunez & Srinivasan, 2006). In recent years, it has been 
suggested that this synchronization optimizes relations between spike- mediated “top- 
down” and “bottom- up” communication, both within and between brain areas. This 
optimization might have particular importance during motivated anticipation of, and 
attention to, meaningful events and associations and in response to their anticipated 
consequences (Von Stein et al., 2000; Fries et al., 2001; Salinas & Sejnowski, 2001; Makeig 
et al., 2004). This new theory of cortical and scalp- recorded field dynamics requires new 
data analysis approaches for spatially distributed event- related EEG dynamics.

The standard analysis method to study EEG in an event- related fashion is to focus 
on event- related potentials (ERPs) by averaging. ERPs are positive or negative voltage 
deflections seen in the averages of EEG epochs time- locked to a class of repeated stimulus 
or response events. However, this approach assumes that ERPs are superimposed on 
ongoing background EEG “noise” with amplitude and phase distributions that are 
completely unrelated to the task. This view of ERPs has been challenged in the last two 
decades. First, time- frequency analysis of single- trial EEG signals shows that EEG is 
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not solely random noise; rather, there are event- related changes in the magnitude and 
phase of EEG oscillations at specific frequencies (Makeig et al., 2004). The early work in 
this area focused on spectral analysis of EEG signals, which breaks down the oscillatory 
EEG waveforms into sinusoids at different frequencies, reflecting the role of different 
frequency bands in cognitive function. Second, ERPs themselves may represent tran-
sient phase resetting of ongoing EEG by experimental events, leading to transient time-  
and phase locking of frequency specific oscillations (Makeig et al., 2004; Makeig et al., 
2002). Makeig and colleagues (2002) have introduced the event- related brain dynamics 
framework, which emphasizes the spectral decomposition of single- trial event- related 
EEG epochs in order to separately examine event- related changes in the magnitude 
and phase of oscillations at different frequencies. However, spectral analysis assumes 
stationarity of the signal, in spite of the fact that information processing in the brain is 
mostly reflected by fast dynamic changes in EEG. Even though the Fourier transform 
provides a complete representation of the time series, the resulting power spectrum is 
only interpretable for stationary signals; non- stationarities are encoded in the phase 
spectrum, which is typically impossible to interpret visually. Spectral analysis is only 
capable of reflecting the average or global frequency content, rather than illustrating the 
local activity. The non- stationarities in the EEG signal are the primary motivation for 
methods that can capture simultaneously the variation of signal energy across time and 
frequency.

Time- frequency analyses of EEG provide additional information about neural 
synchrony not apparent in ongoing EEG activity or in ERPs. They can tell us which 
frequencies have the most power at different time points and how their phase 
synchronizes across time and space. Thus, using time- frequency analyses, we can assess 
changes in power and synchronization of EEG within or between spatial locations 
across trials with respect to the onset of tasks. However, it is important to note that time- 
frequency analysis cannot by itself determine the cause of the changes in EEG power, 
that is, whether the change is due to changes in the magnitude of the oscillations or to 
changes in their degree of synchronization (Yeung, 2004; Roach & Mathalon, 2008).

The goal of this chapter is to give an overview of different time- frequency analysis 
tools for both quantifying the changes in EEG power across time and frequency and the 
changes in phase synchrony across time, frequency, and space. The different methods 
discussed in this chapter can be divided into three categories: linear, nonlinear, and 
data- driven or adaptive methods. The first category of methods focus on simple exten-
sion of Fourier transform to the non- stationary signal that is, short- time Fourier trans-
form or sliding window approach, and the continuous wavelet transform. The second 
category of methods focus on Cohen’s class of time- frequency distributions (TFDs) that 
compute the spectrum of the time- varying auto- correlation function of the signal, ra-
ther than the signal itself. In this manner, these distributions are highly nonlinear but 
offer high- resolution visualizations of EEG dynamics. The last category of methods 
stem from recent advances in signal processing that focus on sparse signal represen-
tation. The two methods reviewed under this category are matching pursuit (MP) and 
empirical mode decomposition (EMD).
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4.2 Linear Time- Frequency 
Decomposition Methods

4.2.1  Short- Time Fourier Transform

The earliest method that allowed for the time- frequency representation of a signal’s 
energy distribution was the short- time Fourier transform (STFT), also known as the 
windowed Fourier transform. It relies on an estimation of power spectra, through 
Fourier transform, for short time windows shifted along the time axis. The basic idea 
of STFT is to break up the signal into small time segments and Fourier analyze each 
time segment to determine the frequencies that existed in that segment. The totality 
of such spectra indicates how the spectrum is varying with time. STFT is a linear 
time- frequency transform that correlates the signal with a family of waveforms that 
are well- concentrated in time and frequency, compared to standard spectral analysis, 
which correlates the signal with eternal sinusoids resulting in good frequency local-
ization at the expense of poor time localization. For a signal x t( ) , its STFT can be 
expressed as:1

 S t x g t e dj, ,ω τ τ τωτ( ) = ∫ ( ) −( ) −  (4.1)

where g τ( ) is the window function. The localization of information provided by STFT 
depends on the time- frequency spread of the window g .

The choice of the length and shape of the window function are the two critical issues in 
applying STFT to EEG signals. The first problem is usually addressed by considering the 
existing trade- off between time and frequency resolution determined by the length of 
the window function. This trade- off, known formally as the uncertainty principle, states 
that as the length of the window increases in time, localization in time or time reso-
lution goes down while the localization in frequency (frequency resolution) increases 
(Cohen, 1995). Similarly, if the window length decreases, time resolution increases at 
the expense of frequency resolution. In practice, the length of the window is usually 
selected by trying different window lengths in order to obtain an optimal trade- off. This 
optimal length is highly dependent on the underlying signal’s properties, such as the 
rate with which it changes. The second issue of selecting the shape of the window has 
been addressed in a more rigorous way with the resolution of some common windows 
mathematically formulated (Mallat, 1999). For numerical applications, the window 
function is usually selected as a symmetric and real function. By choosing an appro-
priate window function, one can obtain localization around the time point of interest, t.   
For good time- frequency resolution, the ratio of the first sidelobes to the peak of the 

1 All integrals are from −∞  to ∞  unless otherwise noted.
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window function should be large, that is, the rate of decay the window function in the 
frequency domain, G ω( ), should be fast. Some common window functions include 
the rectangular, Hamming, Hanning, and Gaussian window functions. Rectangular 
windows have the worst frequency resolution due to the sharp transition of the window 
function. Gaussian window achieves the best joint time and frequency localization as it 
meets the lower bound of the uncertainty principle. In STFT, the duration of the time 
window is fixed in contrast to the wavelet transform, which in turn provides uniform 
frequency resolution. STFT is a complex valued time- frequency representation, and an 
energy distribution can be obtained as | , |S t ω( ) 2 , known as the spectrogram.

4.2.2 Continuous Wavelet Transform

Continuous wavelet transforms (CWT) describe a class of spectral decomposition 
methods that are conceptually related to the STFT. Unlike STFT, where the signals 
are decomposed into localized sinusoids, in the wavelet transform the signals are 
decomposed in terms of “small waves” of limited duration with an average value of zero. 
The wavelet transform of a signal x t( )  is given by:

 W t s x
s

t
s

d, ,( ) = ∫ ( ) −





τ ψ τ τ1 *  (4.2)

where ψ  is the wavelet function and s  is the scale parameter. Similar to STFT defined 
in Eq. 4.1, the wavelet transform finds the decomposition of a given signal in terms of 
time- frequency atoms. However, in this case, the time- frequency atoms are the time- 
shifted and scaled versions of the mother wavelet, ψ . For this reason, wavelet transform 
should be thought of as a time- scale decomposition rather than a TFD, as the signal is 
not decomposed in terms of sinusoids across different frequencies. One of the major 
differences between STFT and CWT is the time- frequency localization. In STFT, the 
frequency localization is uniform due to the fixed window size. On the other hand, for 
CWT the time resolution is variable, with shorter time windows for higher frequencies 
and longer time windows for lower frequencies. This variable time resolution closely 
matches the structural properties of ERP signals and has made CWT an attractive 
choice for time- frequency analysis of ERPs (Roach & Mathalon, 2008; Demiralp et al., 
2001; Polikar et al., 2007). Using CWT, the ERP can be decomposed across several or-
thogonal functions, wavelets, with overlapping time courses at different scales.

While any number of wavelet functions can be used for ERP analysis, the wavelet 
must provide a biologically plausible fit to the signal being modeled. Some commonly 
used wavelets for EEG and ERP analysis are real wavelets, such as splines, and analytic 
wavelets, such as the Morlet wavelet and the Generalized Morse Wavelet (GMW). In 
particular, the analytic wavelets are useful to obtain both energy and phase information 
of the underlying oscillations. The Morlet wavelet is one that has been commonly used 
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for EEG/ ERP analysis. The Morlet wavelet is defined as a complex sinusoid tapered by a 
Gaussian given as:

 ψ π σt e ej ft
t

( ) =
−

2 2

2

2 ,  (4.3)

where σ  is the width of the Gaussian and is reciprocally related to the frequency in order 
to retain the wavelet’s scaling properties. By this scaling, one obtains the same number 
of significant wavelet cycles at all frequencies. Thus, the Morlet wavelet transform has 
a different time and frequency resolution at each scale. Therefore, at high frequencies 
the temporal resolution of a wavelet is better than at low frequencies. However, the in-
verse is true for the frequency resolution of the wavelet transform. Convolution with 
the complex Morlet wavelet results in a complex- valued signal from which instantan-
eous power and phase can be extracted at each time point. Wavelet convolution can be 
conceptualized as a template matching or bandpass filtering. Convolutions with Morlet 
wavelets can be computed for multiple frequencies in order to yield a time- frequency 
representation. Since Morlet wavelet is a complex function, the corresponding wavelet 
transform is also complex, where the real part corresponds to the bandpass filtered 
signal and the imaginary part corresponds to Hilbert transform of the signal. There are 
several advantages of Morlet wavelets for EEG/ ERP analysis (Cohen, 2018). One is that 
the Morlet wavelet is Gaussian shaped in the frequency domain and the absence of sharp 
edges minimizes ripple effects. Second, the results of Morlet convolution retain the tem-
poral resolution of the original signal. Third, wavelet convolution is computationally 
efficient and can be implemented using the fast Fourier transform. The wavelet power 
spectrum, also known as the scalogram, can be obtained as | , |W t s( ) 2  .

4.3 Nonlinear Time- Frequency 
Analysis: Cohen’s Class of  

Time- Frequency Distributions

For a signal, x t( ), a bilinear TFD, C t,ω( ), from Cohen’s class can be expressed as 
(Cohen, 1995):

 C t x u x u e du d dj u t, , ,ω φ θ τ τ τ θ τθ θ τω( ) = ∫∫∫ ( ) +





−





− −( )
2 2

*  (4.4)

where φ θ τ,( )  is the kernel function in the ambiguity domain (θ τ, ). Unlike linear 
transforms, which first multiply the signal with a time- limited window function before 
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computing its Fourier transform, Cohen’s class of distributions compute the Fourier 
transform of the local autocorrelation function. In this manner, the signal acts like a 
window on itself. The kernel φ θ τ,( )  acts like a filter on this local autocorrelation 
function and determines which parts to preserve. TFDs represent the energy distri-
bution of a signal over time and frequency, simultaneously. Some of the most desired 
properties of TFDs are the energy preservation, the marginals, and the reduced interfer-
ence. Some common TFDs used for EEG and ERP analysis include the Wigner distribu-
tion and its filtered versions (Tağluk et al., 2005; Abdulla & Wong, 2011).

4.3.1 Wigner Distribution

The Wigner distribution is defined as:

 W t x t x t e dj, ,ω τ τ τωτ( ) = ∫ +





−





−

2 2
*  (4.5)

where x t( )  is the signal and τ  is the time lag variable. The Wigner distribution 
computes the Fourier transform of the local autocorrelation of the signal as the kernel
φ θ τ,( ) = 1. As the kernel acts as an all pass filter, Wigner distribution keeps the whole 
autocorrelation function before transforming it. This provides a high time- frequency 
resolution. In fact, it has been shown that the Wigner distribution provides the highest 
time- frequency resolution among all Cohen’s class of TFDs (Cohen, 1995). It overcomes 
some of the shortcomings of the spectrogram as there is no dependency on the choice 
of the window. Moreover, the Wigner distribution provides accurate instantaneous fre-
quency estimates and is an accurate energy distribution as it satisfies the marginals.

However, Wigner distribution is a bilinear function of signals. Therefore, Wigner dis-
tribution of multi- component signals or mono- component signals with curved time- 
frequency supports will be cluttered by spurious terms called cross- terms. The existence 
of cross- terms may decrease the interpretability of the TFD. ERPs, like other non- 
stationary signals, require an analysis technique that is free from cross- terms.

4.3.2 Reduced Interference Distributions (RIDs)

In order to reduce cross- terms that appear in the Wigner distribution, the past twenty 
years demonstrates a move towards using reduced interference distributions (RIDs), 

designed using kernel functions φ θ τ,( ) 1  for θτ  0 , which concentrate the energy 
across the auto- terms, and satisfy the energy preservation and the marginals (Jeong & 
Williams, 1992). The kernel function φ θ τ,( )  is usually designed in the ambiguity plane 
as the auto- terms tend to be close to the origin and the cross- terms away from the origin 
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of the ambiguity plane. This allows for interpretation of the kernel function as a low- 
pass filter that attempts to reject the cross- terms and leave the auto- terms unchanged. 
The shape of the filter can be adapted to the analysis of the desirable signal components 
depending on the nature of the signal. For RIDs, φ θ τ θτ,( ) = ( )h , where h is a monot-
onously decreasing function to ensure that the parameterization function is a low- pass 
filter in the ambiguity plane. Depending on the canonical form of h, the resultant RIDs 
have different cross- term rejection capabilities. Some commonly used RIDs include 
Choi– Williams (CW) (Jeong & Williams, 1992), B- distribution (Zhao et al., 1990), 
Born– Jordan, and Zhao– Atlas– Marks (Zhao et al., 1990).

Since these distributions will be implemented in discrete- time, discrete- time TFD of 
size 2 1 2 1N N+ × +  can be defined as:

 TFD n x n n x n n
n n

n n
n N

N

n N

N

, ; ,ω ψ ψ( ) = +( ) +( ) −
+

−



=− =−
∑ ∑
1 2

1 2
1 2

1 22
*


− −( )e j n nω 1 2 , (4.6)

where ψ  is the discrete- time kernel in the time and time- lag domain. The most commonly 
used discrete- time kernel for EEG/ ERP analysis is the binomial kernel, which is given by

ψ n m
m

n
m

m,( ) =
+















−2

2  

for n
m

≤
2

 

.

4.4 Data- Driven or Adaptive  
Time- Frequency Representations

Unlike the first two types of time- frequency transforms, the methods reviewed in this 
section do not directly result in time- frequency energy distributions, but rather result 
in a description of the ERP dynamics as a sum of a few numbers of distinct components. 
These components may be either data- driven, that is, derived directly from the signals, 
or selected from a large dictionary of atoms. Usually, these components are localized 
in time and frequency and thus can be thought of as a decomposition of the event- 
related EEG signals into a few distinct time- frequency elements. Thus, the resulting 
components can be visualized using any transform discussed in the previous sections 
to obtain a time- frequency spectrum. For this reason, these are sometimes considered 
as time- frequency analysis tools in the literature. By the nature of the algorithms used to 
derive these components, these methods are nonlinear. The first one of these methods, 
EMD, is data- driven and the resulting components usually represent the different fre-
quency bands of EEG. The second method, MP, can be thought of as an extension of 
wavelet transform. However, unlike the wavelet functions, which usually form an 
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orthonormal basis for the signal space, the time- frequency atoms used in MP form an 
overcomplete dictionary. This means that the set of functions used to express the signal 
is more than necessary. This overcompleteness results in sparse representation of the 
EEG/ ERP signals. These atoms are pre- determined similar to the wavelet transform and 
can be selected by the user based on the characteristics of the signals. Some example 
atoms could be a combination of sinusoids and wavelets, Gabor functions, etc. This ef-
ficiency in representation of the signals with a few time- frequency atoms comes at the 
expense of computational complexity. Unlike wavelet transform, which is computation-
ally efficient, MP usually relies on greedy algorithms (Mallat & Zhang, 1993; Tropp & 
Gilbert, 2007).

4.4.1 Empirical Mode Decomposition

EMD is a fully adaptive, data- driven approach that decomposes a signal into oscillations 
inherent to the data, referred to as intrinsic mode functions (IMFs) (Huang et al., 1998). 
Finding the IMFs is equivalent to finding the band- limited oscillations underlying the 
observed signal. Extracting the IMFs is similar to finding the harmonic components in 
Fourier analysis. However, the IMF is much more general than the harmonic component 
since it can be modulated both in amplitude and frequency, while a harmonic compo-
nent has constant amplitude and frequency. The amplitude and frequency modulations 
are possible because the decomposition depends on the local characteristic time scale 
of the data. Because the decomposition depends on the local characteristic time scale, 
EMD is suitable for application to non- stationary signals such as ERPs. The EMD algo-
rithm decomposes the signal x t( )  as x t C t r tii

M( ) = ( ) + ( )=∑ 1
 where C ti ( ) , i M= …1, ,  

are the IMFs and r t( )  is the residue. The algorithm can be described as follows:

  1. Let x t x t( ) = ( )  .
  2. Identify all local maxima and minima of x t( ) .
  3.  Find two envelopes e tmin ( )  and e tmax ( )  that interpolate through the local 

minima and maxima, respectively.

  4. Let d t x t e t e tmin max( ) = ( ) − ( ) + ( )( )

1
2

 as the detail part of the signal.

  5.  Let x t d t( ) = ( )  and go to step 2 and repeat until d t( )  becomes an IMF. The two 
IMF criteria are: a) the number of extrema and the number of zero- crossings must 
either be equal or differ at most by one; b) At any point, the mean value of the en-
velope defined by the local maxima and the envelope defined by the local minima 
is zero.

  6.  Compute the residue r t x t d t( ) = ( ) − ( )  and go back to step 1 until the energy of 
the residue is below a threshold.
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Although EMD has the ability to extract ERP components, it suffers from the mode 
mixing problem (Huang et al., 2003). That is, the different time- frequency components 
may not directly correspond to the different IMFs, which makes it difficult to deter-
mine the distinct ERP components. To overcome the problem of mode mixing, Wu 
and Huang (2009) recommend ensemble EMD (EEMD), a noise- assisted data- analysis 
method. The output of EEMD is a set of IMFs generated from ensemble means of trials 
by repeating EMD on the same signal with different sets of Gaussian noise. A further 
potential drawback of EMD has been put forth by Flandrin and colleagues (2004), who 
showed that EMD behaves as a dyadic filter bank. This poses the concern that EMD 
may naturally lead to such a decomposition in all data, which implies that important 
oscillations may not be identified if they do not adhere to a dyadic frequency relation-
ship with one another.

Once the IMFs are obtained, Hilbert spectral analysis, also known as Hilbert– Huang 
Transform (HHT), can be used to evaluate the frequency content of each IMF. Hilbert 
spectral analysis provides the instantaneous frequency of each IMF. According to Huang 
and colleagues (2011), the instantaneous frequency could represent the nonlinear and 
non- stationary signals without resorting to the mathematical artifact of harmonics. Like 
measuring ERPs, averaging IMFs across trials provides event- related modes (ERMs). 
Based on the instantaneous frequency of ERMs, ERP components can be extracted by 
summing ERMs (Cong et al., 2009; Williams et al., 2011; Wu et al., 2012) or using an 
ERM within a frequency range.

4.4.2 Matching Pursuit

The MP algorithm, originally proposed by Mallat and Zhang (1993), relies on an adaptive 
approximation of a signal by means of waveforms chosen from a very large and redun-
dant dictionary of functions. MP provides high- resolution signal analysis with good 
resolution in time- frequency space and allows for parametric description of both peri-
odic and transient signal features. It is suitable for analysis of non- stationary signals and 
for the investigation of dynamic changes of brain activity. MP aims at obtaining a sparse 
linear representation of a signal, x t( ) , in terms of functions, gi  (sometimes referred 
to as atoms), from an overcomplete dictionary, D , using an iterative search algorithm 
(Mallat & Zhang, 1993):

 x t a g t
i

M

i i( ) = ( )
=
∑

1

. (4.7)

The problem of choosing M  functions, which explain the largest proportion of en-
ergy of a given signal, is a computationally complex problem and is known to belong to 
the class of non- deterministic polynomial- time hard (NP- hard) problems. MP offers a 
tractable suboptimal solution, obtained by an iterative algorithm.
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In the first step of the iterative procedure, we choose the element of the dictionary 
that gives the largest inner product with the signal, that is, g x gg D ii1 = ∈argmax , . This 
first element of the dictionary is subtracted from the signal to obtain the residue. The 
iterative procedure is repeated on the subsequent residual, R xk . This procedure can be 
summarized as:

  1. Define the 0th order residual as R x x0 = .
  2.  For the k  th order residual, R xk , select the best atom such that the inner product 

between the residual and the atom is maximized

 g R x gk g D
k

ii
= ∈argmax , .  (4.8)

  3. Compute the residue R xk+1  as

 R x R x R x g gk k k
k k

+ = −1 , .  (4.9)

  4. After M  iterations, the following linear representation is obtained:

 x R x g g R x
k

M
k

k k
M= +

=

+∑
1

1, . (4.10)

The procedure converges to x  in the limit, that is, x R x g gk
k kk

=
=

∞∑ ,
1  and 

preserves signal energy. From this representation, one can derive a TFD of a signal’s en-
ergy by adding Wigner distributions of selected atoms.

The overcomplete dictionary, D , can be designed to fit the class of signals at hand. 
Two important requirements for a dictionary are its descriptive power, that is, its 
ability to represent the signals of interest with relatively few atoms (sparsity), and its 
interpretability, that is, that the parameters indexing the atoms convey information. 
Although overcomplete dictionaries do not provide uniqueness of decomposition, 
they have more descriptive power than more classical, orthogonal dictionaries, such 
as wavelets. Regarding interpretability, the choice of atoms and their parameters is 
motivated by the types of activities that will be encountered. The dictionary is fur-
thermore supposed to depend continuously on the parameter space (even though 
for numerical reasons, this space will obviously be discretized). This constraint is 
imposed only for ease of presentation, but the approach could be generalized, at the 
cost of some added complexity. For analyzing EEG and ERP signals, previous work 
has shown that Gabor logons represent the signals with few coefficients (Durka & 
Blinowska, 2001; Brown et al., 1994; Aviyente, 2007) . Gabor logons also have the 
advantage of being the most concentrated signals on the time- frequency plane, 
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achieving the lower bound of the time- bandwidth product. A dyadic Gabor dic-
tionary also allows for computationally effective implementation and has been used 
widely in EEG analysis.

4.4.3  Multichannel Matching Pursuit

The principle of MP can easily be generalized to the simultaneous decomposition of 

multiple signals, X = …( )x x xr1 2, , ,  of r signals into atoms from the same overcomplete 

dictionary, D . This approach is sometimes referred to as the multichannel MP (MMP) 
or simultaneous MP in the literature, since it is usually applied to multiple signals 
collected over multiple channels/ sensors or trials (Gribonval et al., 2008; Lelic et al., 
2011; Sieluzycki et al., 2008). Unlike the original MP, MMP represents every component
xl  of X  as a weighted sum of the same elements from the overcomplete dictionary and 
thus tries to achieve joint sparsity of a collection of signals for a given dictionary. The al-
gorithm can be described as follows:

  1. Define for each signal l  the 0th order residual as R x xl l0 = .
  2.  For the kth order residual, R xk l, select the best atom such that the total inner 

product between the atom and the residuals in each signal is maximized

 argmax g D
l

r
k l

ii
R x g∈

=
∑

1

, . (4.11)

  3. Compute the residue R xk l+1  for all signals:

 R x R x R x g gk l k l k l
k k

+ = −1 , .  (4.12)

  4. After M iterations, the following linear representation is obtained for each 
signal:

 x R x g g R xl

k

M
k l

k k
M l= +

=

+∑
1

1, . (4.13)

Different implementations of MMP have been employed for ERP analysis, that is, 
evoked activity MP (EMP) and induced activity MP (IMP) (Bénar et al., 2009). In EMP, 
the atoms are determined to maximize the correlation with the average signal, and the 
amplitude is adapted to the individual trials. In this manner, the method accounts for 
amplitude variability across trials, but not for variability in the parameter space. IMP, 
on the other hand, maximizes the average energy across trials. Durka and colleagues 
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(2005) have also proposed an alternative approach for simultaneous time- frequency 
parametrization of multiple EEG recordings by applying the standard MP algorithm 
to the average of multichannel EEGs. This approach reduces the computational com-
plexity by a factor of r  at the expense of favoring data with equal phases in all of the 
channels.

4.5 Illustration of Different  
Time- Frequency Methods for 

ERP Analysis

This section illustrates the performance of some of the time- frequency analysis methods 
discussed earlier for an example ERP signal. In particular, we focus on the error- related 
negativity (ERN), a neurophysiological marker of performance monitoring. ERN is a 
negative deflection in the ERP that peaks within 100 ms of an erroneous response at 
frontocentral recording sites (Moser, 2017; Moran et al., 2015). The ERN is generally 
considered to be an index of cognitive control- related performance monitoring that is 
involved in coordinating optimal responding following mistakes. For the purpose of 
this illustration, we consider ERP obtained by averaging across trials recorded at the 
FCz electrode for one subject.

First, we compare the performance of linear and nonlinear time- frequency energy 
distributions, namely the continuous wavelet transform with the Morlet wavelet, and 
RID with the binomial kernel. From Figure 4.1, a typical ERN waveform with a negative 
potential occurring in the first 100 ms can be seen, along with different TFDs. From both 
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Figure 4.1 Time- frequency Analysis of ERN waveform. From top to bottom: ERN signal in the 
time domain, reduced interference distribution (binomial kernel), continuous wavelet transform 
with Morlet wavelet.
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distributions, it is clear that there is high energy corresponding to ERN and P3e, P300 
following the error response. The biggest difference between the different distributions 
is the time and frequency resolution of this component in the time- frequency plane. For 
RID, there are two distinct time- frequency components; one during ERN localized in 
the theta band (4– 8Hz) and another distributed in time up till 400 ms in the delta (0– 2 
Hz) band. Morlet wavelet produces a distribution that captures the theta band activity 
without highlighting the delta band energy. It can be seen from these results that RID 
has the better time and frequency resolution, whereas the wavelet transform has poorer 
time and frequency localization. From this comparison, it can be concluded that RID 
provides better delineation of different ERP components. The results of the CWT may 
be improved by changing the wavelet type and wavelet scales. Unlike RID, which does 
not depend on the selection of any parameters, CWT is highly dependent on the user 
provided parameter values.

Next, we compare the performance of data- driven component extraction methods, 
EMD and MP. Figure 4.2 illustrates the first four IMFs, along with their Hilbert spectra. 
This figure shows that the first two IMFs correspond to the ERN time interval, whereas 
the third and fourth IMFs correspond to the P3e potential. The corresponding time- 
frequency energy distribution has a high energy concentration in the 100– 200 ms and 
300– 400 ms time intervals within the delta frequency band. These components corres-
pond to the P3e. However, the ERN component is not easily detected from this distribu-
tion as it has less energy than P3e.

In a similar manner, Figure 4.3 illustrates an MP spectrum obtained using a Gabor 
dictionary. The dictionary is constructed using Gabor functions, that is, Gaussian 
window functions shifted in time and modulated in frequency. The figure illustrates the 
time- frequency localization of the selected atoms. The figure also shows a high energy 
atom in the 100– 200 ms time interval in the delta band. There are also Gabor functions 
with negative weights in the 0– 100 ms time window around 10– 12 Hz frequency band. 
This corresponds to ERN time window and alpha frequency band.

From these comparisons, it can be seen that RID is the best in terms of separating 
different ERP oscillations from each other with high resolution. The component- 
based methods work better in separating different oscillatory components, such as 
the IMFs extracted from EMD. However, EMD is not a true time- frequency energy 
distribution method, as it does not produce an actual spectrum like RID. The current 
method of visualizing IMFs in the time- frequency plane relies on the Hilbert trans-
form of extracting the individual envelope and instantaneous frequency for each IMF. 
As the Hilbert transform is not a true time- frequency localization method, the IMFs 
can also be transformed to the time- frequency plane using different distributions to 
obtain higher- resolution visualizations. MP, on the other hand, is highly dependent on 
the selected dictionary atoms. The more suitable the dictionary is for the underlying 
signal, the sparser the resulting representation. In this particular example, MP wrongly 
detects alpha components for the ERN time window while missing the theta activity for 
the same time window. As EMD is data- driven and independent of priors, it performs 
better than MP for ERP analysis.
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Empirical Mode Decomposition
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Figure 4.2 Empirical mode decomposition for ERP signal: (A) The first four intrinsic 
mode functions (IMFs) extracted from the ERP signal. (B) The time- frequency spectrum 
corresponding to the extracted IMFs.
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4.6 Time- Frequency- Based Phase 
Synchrony Analysis

Although time- frequency energy distribution is effective for studying the spectral con-
tent of EEG and ERP oscillations, most of the current approaches focus only on the 
magnitude spectrum of the oscillations and ignore the phase information. Recent re-
search shows that ERPs result from event- related partial phase resetting of ongoing os-
cillatory activity along with transient increases in the magnitude of oscillations that are 
time- locked to the experimental events (Roach & Mathalon, 2008; Makeig et al., 2004). 
Therefore, it is important to characterize the change in phase information across time 
and frequency.

Phase synchrony quantifies the relation between the temporal structures of the 
signals, regardless of signal amplitude (Rosenblum et al., 2000; 2001). Two signals 
are said to be synchronous if their rhythms coincide. The amount of synchrony be-
tween two signals is usually quantified by first estimating the instantaneous phase 
of the individual signals around the frequency of interest. Traditionally, the instant-
aneous phase of a given signal is estimated first, and then the phase synchrony is 
quantified using statistical measures. Conventionally, the instantaneous phase is 
estimated using the Hilbert transform. However, the Hilbert transform does not 
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Figure 4.3 Time- frequency analysis using matching pursuit with a Gabor dictionary.
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provide any selectivity in frequency, the whole range of frequencies is considered 
to define the instantaneous phase. Therefore, if the signal is broadband, such as 
in the case of EEG signals, it is necessary to pre- filter it in the frequency band of 
interest before applying the Hilbert transform, in order to get a proper phase esti-
mate. However, this method relies heavily on the proper selection of the bandpass 
filter and may suffer from estimation bias. In order to address the shortcomings of 
the Hilbert transform, different time- frequency transforms have been used to esti-
mate instantaneous phase.

4.6.1  Wavelet- Based Phase Estimation

One common time- frequency based phase estimation approach employs CWT 
(Lachaux et al., 1999), in which the phase of the signals is extracted from the coefficients 
of their continuous wavelet transform using a complex wavelet function, such as the 
Morlet wavelet at the target frequency. These coefficients are the result of a convolu-
tion of the original signal with a time- shifted and frequency- modulated Gaussian 
function as:

 W t f x u u dux t f, ,( ) = ( ) ( )
−∞

∞

∫ ψ *  (4.14)

where ψ t f u,
* ( ) represents the complex conjugate of the wavelet function. Using the 

Morlet wavelet ψ t f
j f u t

u t

u f e e,

( )

( ) = −( ) − −
2 2

2

2π σ , the phase spectrum of x t( )  can be 
evaluated as follows:

 Φx
x

x

t f
W t f
W t f

,
,
,

.( ) =
( )
( )













arg  (4.15)

This method of computing time- frequency phase estimation has been shown to 
yield similar results with respect to the Hilbert transform with the main difference 
being the increased frequency resolution offered by CWT (Le Van Quyen et al., 
2001). The main shortcoming of the CWT- based method is the non- uniform reso-
lution across time and frequency, which results in biased phase estimates (Aviyente 
et al., 2011).

4.6.2  EMD- Based Phase Estimation

More recently, EMD-  and RID- based phase synchrony estimates have been proposed. 
While HHT provides a time- frequency energy distribution, EMDs have also been used 
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for quantifying phase synchrony between signal pairs. A problem with current syn-
chrony detection methods such as the Hilbert transform is that they depend on a priori 
selection of bandpass filters. In response to this problem, EMD- based phase synchrony 
measures have been defined (Rutkowski et al., 2008; Looney et al., 2009; Sweeney- Reed 
& Nasuto, 2007; Mutlu & Aviyente, 2011). In most of these approaches, the IMFs for 
each time series were extracted individually and were compared individually against 
the IMFs from the other time series for computing phase synchrony. This approach 
has multiple shortcomings. First, the IMFs from the different time series do not neces-
sarily correspond to the same frequency, thus making it hard to compute exact within- 
frequency phase synchronization across different EEG channels. Second, the different 
time series may end up having different numbers of IMFs, which makes it difficult to 
match the different IMFs for synchrony computation. Finally, Looney and colleages 
(2009) showed that univariate EMD is not robust under noise and may suffer from 
mode mixing, which refers to the phenomenon of different modes (or frequencies) 
existing in a single IMF due to noise or intermittent signal activity.

Recently, extensions of EMD to the multivariate case have been developed including 
Complex EMD (Tanaka & Mandic, 2007), Rotation Invariant EMD (RIEMD) 
(Altaf et al., 2007), and Bivariate EMD (BEMD) (Rilling et al., 2007). These complex 
extensions of EMD decompose data from different sources simultaneously. Looney and 
colleages (2009) showed that the IMFs obtained in this fashion are matched, not only in 
number, but also in frequency overcoming problems of uniqueness and mode mixing, 
and first suggested the idea of using bivariate EMD to compute phase synchrony be-
tween two signals and the BEMD was shown to perform better than univariate EMD for 
quantifying bivariate synchrony. However, this approach still has some shortcomings, as 
the frequency bands corresponding to IMFs from different bivariate pairs are not neces-
sarily the same. As such, this method is mostly limited to bivariate synchrony analysis 
and is not as easily generalizable to the whole brain synchrony analysis. Moreover, the 
multivariate extensions of EMD have been shown to be computationally expensive for 
computing functional connectivity across the whole brain (Mutlu & Aviyente, 2011).

4.6.3  RID- Based Phase Estimation

In recent work, we have shown the effectiveness of RID- based phase synchrony 
estimates compared to Hilbert-  and CWT- based estimates (Aviyente & Mutlu, 2011; 
Aviyente et al., 2011; Sponheim et al., 2011; Aviyente et al., 2017). As most members of 
Cohen’s class of TFDs are real- valued, they do not preserve the phase information. For 
this reason, we introduce a complex TFD, the Rihaczek distribution, to extract time-  and 
frequency- dependent phase estimates. Rihaczek introduced the complex energy distri-
bution and gave a plausibility argument based on physical grounds (Rihaczek, 1968). 

For a signal, x t( ) , Rihaczek distribution is expressed as C t x t X e j t,ω
π

ω ω( ) = ( ) ( ) −1
2

* ,   
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where X * ω( ) is the complex conjugate of the Fourier transform of the signal and
C t,ω( ) measures the complex energy of a signal around time, t and frequency, ω . The 
complex energy density function provides a fuller appreciation of the properties of 
phase- modulated signals that is not available with other TFDs. Rihaczek distribution 
is a bilinear, time-  and frequency- shift covariant, complex- valued TFD belonging to 
Cohen’s class. This distribution satisfies the marginals and preserves the energy of the 
signal. Rihaczek distribution provides both a time- varying energy spectrum as well as a 
phase spectrum, and thus is useful for estimating the phase synchrony between any two 
signals. One of the disadvantages of Rihaczek distribution, similar to other quadratic 
TFDs, is the existence of cross- terms for multicomponent signals. In order to get rid of 
these cross- terms, in previous work (Aviyente et al., 2011), we proposed to apply a kernel 
function such as the CW kernel to filter the cross- terms. The resulting distribution can 
be written as:

C t j, exp ( ) expω θτ
σ

θτ( ) = ∫ ∫ −












2

2
CWkernel Rihacze
� �� ��

kkkernel
���

A e d dj tθ τ τ θθ τω, ,( ) − +( )  (4.16)

where e
j θτ

2 is the kernel function for the Rihaczek distribution. This new distribution, 
which will be referred to as RID– Rihaczek, will have an equivalent time- frequency kernel

φ θ τ
θτ
σ

θτ

,
( )

( ) =
−

e e
j

2

2 . Since this kernel satisfies the constraints, φ θ φ θ φ, , ,0 0 0 0 1( ) = ( ) = ( ) = ,    
the corresponding distribution will both satisfy the marginals and preserve the en-
ergy, as well as be a complex energy distribution at the same time. The value of σ can 
be adjusted to achieve a desired trade- off between resolution and the number of cross- 
terms retained. The phase estimates from RID- Rihaczek distribution can be obtained as

φ ω
ω
ω

t arg
C t
C t

,
,
,

( ) =
( )
( )













. This phase estimate has been shown to be more robust to noise 

and has uniformly high resolution in time and frequency compared to wavelet- based 
phase estimates (Aviyente & Mutlu, 2011).

4.6.4  Different Measures of Phase Synchrony

Once the phase difference between two signals is estimated through a time- frequency- 
based method, it is important to quantify the amount of synchrony. The most common 
scenario for the assessment of phase synchrony entails the analysis of the synchron-
ization between pairs of signals. In the case of noisy oscillations, the length of stable 
segments of the relative phase gets very short; further, the phase jumps occur in both 
directions, so the time series of the relative phase φx y t, ( ) looks like a biased random 
walk (unbiased only at the center of the synchronization region). Therefore, the direct 
analysis of the unwrapped phase differences φx y t, ( ) has been used seldomly. As a re-
sult, phase synchrony can only be detected in a statistical sense. Two different indices 
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have been proposed to quantify the synchrony based on the relative phase difference, 
that is, φx y t, ( )  is wrapped into the interval 0 2, π[ ) . The first index uses an information- 
theoretic criterion to quantify synchronization. This measure studies the distribu-
tion of φx y t, ( )  by partitioning the interval 0 2, π[ )  into L  bins and comparing it with 
the distribution of the cyclic relative phase obtained from two series of independent 
phases. This comparison is carried out by estimating the Shannon entropy of both 
distributions, that is, that of the original phases, and that of the independent phases, and 
computing the normalized difference (Quiroga et al., 2002). The second metric, phase 
synchronization index, is also known as the mean phase coherence and computed as

< ( )( ) > + < ( )( ) > =
=

−
( )∑cos t sin t

N
exy xy

k

N
j txy kΦ Φ Φ2 2

0

11 . It is a measure of how the rela-

tive phase is distributed over the unit circle. If the two signals are phase synchronized, 
the relative phase will occupy a small portion of the circle and mean phase coherence 
is high. This measure is equal to 1 for the case of complete phase synchronization and 
tends to zero for independent oscillators.

These different measures of synchrony can be used to quantify three different types 
of synchronization from EEG/ ERP signals, depending on the application. The major 
difference between the different implementations of phase synchrony is whether the 
consistency of phase differences is measured across time, trials, or channels. Phase 
Locking Value (PLV) quantifies the consistency of the phase differences across trials 

between two channels as follows: PLV t
N

j t
k

N

x y
k, ,,ω φ ω( ) = ( )( )

=
∑1

1

exp , where k  is the 

trial number and N  is the number of trials. This measure is also known as the inter- 
channel phase synchrony (ICPS). It is commonly used to estimate phase- locking in ex-
perimental situations, common in neurocognitive studies, where a subject is presented 
with a sequence of similar stimuli. Single trial phase- locking value (S- PLV), on the 
other hand, allows us to measure the significance of synchronies in single trials, and 
does not depend on block repetition of events. The variability of phase- difference is 
not measured across trials, but across successive time- steps, around a target latency. 
Specifically, a smoothed or S- PLV is defined for each individual trial. Finally, inter- trial 
phase synchrony (ITPS) quantifies the consistency of phase values for a given frequency 
band at each point in time over trials, in one particular electrode. ITPC is defined as

ITPC t
N

j t
k

N

k, ,ω φ ω( ) = ( )( )
=

∑1

1

exp , where N  is the number of trials and φ ωk t,( )  is the 

phase of the kth trial for each time and each frequency point. ITPC thus reflects the 
extent to which oscillation phase values are consistent over trials at that point in time- 
frequency plane. Note that this measure of phase coherence does not differentiate be-
tween possible biophysical mechanisms underlying phase consistency, such as phase 
reset or phase “smearing”. Rather, this measure simply indicates the statistical prob-
ability of increased phase consistency between trial and baseline epochs.
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4.7  Summary

This chapter reviewed some of the basic time- frequency methods for analyzing ERP   
dynamics. We first introduced the different transforms that have been used to analyze 
the transient ERP activity. These transforms can be divided into three categories: linear 
methods such as STFT and CWT, data- adaptive methods such as EMD, and nonlinear 
methods such as Cohen’s class of distributions. Although the overall goal of all of   
these methods is to determine the dynamics of transient activity, the mathematical 
principles upon which they rely are quite different. These differences in mathematical for-
mulation lead to different computational complexities. Therefore, it is important to under-
stand how the different methods can be used for different applications and purposes. For 
example, if the goal is to visualize the energy distribution of the transient ERP activity in 
time and frequency simultaneously, then Cohen’s class of distributions (such as the RID) 
performs the best. Even though this method is the most complex in terms of computa-
tional complexity, it offers very high time- frequency resolution, which in turn provides 
a way to delineate different ERP components from each other. However, if the goal is 
to obtain a compact representation of the ERP signals in terms of a few physiologically 
meaningful components, then data- adaptive methods like EMD and MP are more suit-
able and computationally efficient. This chapter also shows how the same mathematical 
transforms can be used to study ERP dynamics through both energy distributions and 
phase synchrony in the time- frequency domain. While the energy distributions focus 
on the univariate activity, that is, dynamics within a certain brain region or electrode, 
the phase synchrony quantifies the dynamics across brain regions. In this manner, it is 
possible to obtain a better understanding of ERP timing, synchronization across time,   
frequency, and space.
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CHAPTER 5

TIME FREQUENCY ANALYSES 
IN EVENT-  REL ATED 

P OTENTIAL METHOD OLO GIES

ANNA WEINBERG, PAIGE ETHRIDGE,  
BELEL AIT OUMEZIANE, AND DAN FOTI

5.1  Introduction

Event- related potentials (ERPs) are powerful tools for measuring the dynamics of 
human brain activity, and they have been used for decades to measure sensory, cog-
nitive, motor, and emotion- related processes— as well as individual differences in 
these processes— across the lifespan (Cohen, 2014; De Haan, 2013; Hajcak et al., 2012; 
Kappenman & Luck, 2016; Luck, 2014). ERPs are defined by voltage fluctuations in the 
ongoing electroencephalogram (EEG) that are time- locked to specific events. As we 
discuss further in the studies we describe, these events can be the onset of an external 
stimulus (e.g., a picture, tone, or feedback about performance), or the generation of 
motor response (e.g., a button press).

Typically, tasks are designed so that these events are repeated across multiple trials, 
which are then averaged within conditions, presumably canceling out substantial 
amounts of trial- level noise and yielding the “prototypical” waveform that is common 
across trials (Figure 5.1A shows an example waveform). Specific ERP components are 
then identified within these averaged waveforms, and they are quantified numeric-
ally as deviations from a pre- event baseline period. A component is defined “a set of 
voltage changes that are consistent with a single neural generator site and that sys-
tematically vary in amplitude across conditions, time, [and] individuals,” (Luck, 2014, 
p. 68). Thus, an ERP component is a portion of the overall waveform— often, a peak 
deflection in the waveform— that captures the brain response (or set of processes) that 
are of interest. ERPs are typically described in terms of their amplitude (measured in 
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microvolts; µV), polarity (positive or negative), latency (measured in milliseconds; ms), 
and scalp topography (where on the scalp the component is maximal). Amplitude refers 
to the difference between activity occurring at some point following an event of interest 
and an average pre- event baseline period (e.g., 200 ms prior to stimulus onset), and 
latency refers to the time from stimulus onset to some specific peak activity. Naming 

Figure 5.1 (A) Example data depicting how multiple underlying ERP components (left) con-
tribute to the observed grand averaged ERP waveforms (middle), which are then compared 
across conditions (right). (B) ERPs elicited by feedback delivery on the social incentive delay task.
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conventions then frequently reflect both the polarity and latency of the component. 
Thus, the P3 is the third major positive- going peak in the ERP waveform after a stimulus 
is presented (and often peaks in the neighborhood of 300 ms, hence the common alter-
native name “P300”). At times, ERP components receive functionally descriptive names 
(e.g., the error- related negativity or ERN).

Because they measure the electrical activity of the brain, the speed of which 
approaches the speed of light, ERPs capture neural responses in the time- frame in which 
cognition occurs. This millisecond temporal resolution makes it theoretically possible 
to isolate dozens of individual neural processes that occur in even very close temporal 
proximity. ERPs have thus been particularly useful in studies requiring high temporal 
resolution to identify, for example, the transition from sensory- driven stimulus pro-
cessing to higher- order cognitive functions (De Cesarei & Codispoti, 2006; Wiens 
et al., 2011), or specific cognitive or affective impairments in a given diagnostic group 
(Duncan et al., 2009; Kuperberg et al., 2018).

In comparison with other neuroimaging modalities, EEG techniques are well- 
suited as assessment tools. EEG/ ERP data collection is relatively efficient, economical, 
noninvasive, (Kappenman & Luck, 2016), and is well- tolerated by most participants 
across the developmental spectrum (De Haan, 2013). While ERP studies have tradition-
ally been conducted in tightly controlled environments to minimize noise and electrical 
interference, advances in technology have allowed for progress in ERP data collection 
outside the laboratory and in remote field settings (Tarullo et al., 2017). Additionally, 
few contraindications exist for EEG research: for example, people with braces, pregnant 
women, and awake infants— all of whom are frequently excluded from MRI studies— 
typically can participate in EEG studies, making it feasible to collect neuroimaging data 
from large and relatively diverse groups of participants. Finally, multiple studies over the 
years have explored the psychometric properties of ERPs and found them to be highly 
reliable measures of neural activity, comparable to other common assessment methods 
both in terms of internal consistency and test- retest reliability (Baldwin, Larson, & 
Clayson, 2015; Ethridge & Weinberg, 2018; Foti et al., 2016; Kujawa et al., 2018; Weinberg 
& Hajcak, 2011).

Naturally, these strengths are accompanied by a number of limitations. The 
assumption underlying measurement of ERP components in the time domain is that 
(a) each component represents distinct sensory and/ or cognitive processes (or a small 
set of related processes), and (b) components reflect the activity of a single brain region 
(or a small network of closely related brain regions). In line with these assumptions, 
ERP components are typically scored based on where on the scalp and when in time 
specific peaks in the waveform occur, taking the average amplitude within a specified 
time window or the peak deflection (Figure 5.1A). This technique reduces the multi- 
dimensional EEG signal down to two dimensions, and has many advantages (Cohen, 
2014; Luck, 2014). Yet the reality of neural activity is that multiple sensory, cogni-
tive, affective, and motor processes can and do occur simultaneously. Because the 
observed trial- averaged waveform represents the sum of all activity measured at a 
particular site on the head within a particular time- window, ERPs representing these 
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unique processes are summed together in the waveform. Figure 5.1B shows how mul-
tiple observed components that overlap both spatially and temporally contribute to 
the grand averaged waveform. Traditional component- scored methods make it dif-
ficult to isolate the contribution each underlying component makes to the observed 
average ERP.

Additionally, the electrical signals captured by ERPs are conducted through the brain, 
meninges, skull, and scalp, and this signal is subject to spread as it seeks paths of low 
resistance; precise identification of primary neural contributors to any one component 
is therefore often difficult, particularly for brain regions that are relatively far from the 
scalp. Furthermore, neural activity recorded from an electrode exterior to the skull 
can reflect the simultaneous and summed activation of many, many thousands— even 
millions— of neurons (Luck, 2014). Combined with the difficulty of effectively isolating 
different components, this can often make source localization of time- domain ERP 
components a dicey proposition (Cohen, 2014).

Processing techniques that isolate unique sources of systematic variance within the 
trial- averaged waveform may allow for both more accurate identification of distinct 
neuroelectric signals and better description of their anatomical origins. These signals 
can be differentiated based on their temporal and spatial variance, as is done with typical 
time- window averages as well as more advanced techniques like principal component 
analysis (PCA) and independent components analysis (ICA; Dien, Spencer, & Donchin, 
2003; Foti, Weinberg, Dien, & Hajcak, 2011; Spencer, Dien, & Donchin, 2001). Critically, 
distinct neural signals can also be differentiated based on their spectral properties. This 
is because the electrical activity measured by the EEG contains rhythmic oscillations. 
These oscillations reflect fluctuations in the activity of populations of neurons, and 
the different properties of these oscillations can be helpful in differentiating cognitive 
operations.

Oscillations are described by their frequency, power, and phase. Frequency describes 
the speed of the oscillation, or how many times a sine wave repeats, or cycles, in a given 
period of time, and is measured in hertz (Hz). A wave that repeats four times per second 
has a frequency of 4 Hz, a wave that repeats 50 times per second has a frequency of 50 
Hz, and a wave that repeats once every two seconds has a frequency of 0.5 Hz. Power is 
a measure of how much energy is present in a frequency band and is represented as the 
amplitude (or height) of the peaks, squared. Finally, phase is measured in degrees, or 
radians, and is a measure of when in time any given part of the sine wave exists. EEG 
data, as well as the ERPs derived from these EEG data, are composed of oscillations at 
multiple frequencies, each present with different relative power at different time- points. 
Time- frequency techniques then attempt to deconvolve, or separate, these signals, to 
identify, for example, how much power is present at a given frequency at specific points 
in time.

There are many different signal processing techniques available for decomposing 
neuroelectric signals to describe the spectral characteristics of ERPs, including moving 
window Fourier transforms, wavelet transforms, and Cohen’s class of time- frequency 
distributions. These all involve representing a given ERP waveform in terms of a set 
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of sine waves, each of which is characterized by different frequencies, phases, and 
amplitudes. Each technique uses different mathematical formulae to do so and makes 
different assumptions about the nature of the oscillatory signal presumed to underlie 
the ERP waveform (e.g., Bruns, 2004; Cohen, 2014; Luck, 2014). For a full discussion of 
these— and their relative strengths and weaknesses— see e.g., Aviyente, this volume, Keil 
& Thigpen, this volume? Voytek, this volume. However, a general caveat is that many of 
these techniques also involve a loss of temporal precision— one of the chief advantages 
of the ERP technique (Cohen, 2014; Luck, 2014)— though this matters more for some 
experiments than others, and there are techniques available to improve temporal preci-
sion (Aviyente et al., 2006).

In terms of their application to ERPs, time- frequency techniques are particularly 
useful when the signals overlap both temporally and spatially, therefore making these 
signals indistinguishable in the time domain (Bernat, Malone, Williams, Patrick, & 
Iacono, 2007; Bernat, Nelson, Steele, Gehring, & Patrick, 2011; Bernat, Williams, & 
Gehring, 2005; Cohen, Elger, & Ranganath, 2007; Herrmann, Rach, Vosskuhl, & Strüber, 
2014; Kolev, Demiralp, Yordanova, Ademoglu, & Isoglu- Alkaç, 1997). In such instances, 
assessment of the differing spectral characteristics of overlapping ERP components is 
useful for distinguishing multiple underlying processes that give rise to the observed 
waveform. Additionally, insofar as populations of neurons in different regions of the 
brain may fire at different frequencies, the time- frequency components identified in this 
way may correspond more closely to distinct sources underlying event- related brain ac-
tivity (Foti, Weinberg, Bernat, & Proudfit, 2015).

In what follows, we review literature demonstrating the ways in which time- 
frequency signal processing techniques have been useful in shedding new light on 
several common ERP components, helping to answer research questions that would 
be difficult to address solely within the time domain. We focus here on the mismatch 
negativity (MMN), the P3, the error- related negativity (ERN), and the feedback- related 
negativity (FN)/ reward positivity (RewP). We conclude with a practical example of how 
to apply time- frequency techniques to ERP data and present new analyses of some of 
our prior time- domain work with the FN/ RewP.

5.2 The Mismatch Negativity (MMN)

The temporal resolution of ERPs makes them well suited for studying the earliest 
stages of sensory processing. One widely studied sensory ERP component is the 
MMN, a neural index of change detection that is automatically elicited by a de-
viant stimulus presented within a repetitive sequence (Näätänen, 1995; Näätänen, 
Paavilainen, Rinne, & Alho, 2007). While the MMN can be elicited within any 
sensory modality, it is commonly studied as part of auditory processing. For ex-
ample, within a sequence of repeating standard tones, the presentation of a tone 
that differs with regard to pitch, duration, or some other stimulus characteristics 
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will automatically elicit the MMN. The auditory MMN typically occurs between 
150 and 250 ms following the deviant stimulus and is maximal at frontocentral 
electrodes, with a smaller positive- going potential often apparent at temporal/ 
mastoid electrodes. While MMN morphology is dependent upon the stimulus 
characteristics, studies generally indicate that the MMN emanates from a combin-
ation of activity in supratemporal and frontal cortical regions (i.e., “temporal” and 
“frontal” MMN subcomponents), likely related to pre- perceptual stimulus pro-
cessing and involuntary attentional switch, respectively (Alho, 1995). In addition 
to the large basic neuroscience literature applying the MMN to the study of sen-
sory functioning, individual differences in MMN amplitude have been examined 
with regard to cognitive decline in aging, and cognitive impairment in psychiatric 
disorders (Näätänen et al., 2011). For example, the MMN is reduced by approxi-
mately one standard deviation among individuals with schizophrenia (Umbricht 
& Krljes, 2005). This impact of schizophrenia on MMN amplitude is equivalent 
to approximately 30 years of cognitive aging (i.e., the MMN of an individual with 
schizophrenia at age 20 is comparable to that of a non- psychotic individual at age 
50; (Kiang, Braff, Sprock, & Light, 2009). Overall, traditional time- domain analyses 
of MMN amplitude have been useful for examining the time course of early sensory 
processing and deficits therein.

Complementing these time- domain studies, time- frequency studies have been 
useful for isolating the temporal and frontal subcomponents of the MMN, as well as 
contextualizing individual differences in MMN amplitude. The frontal portion of the 
MMN has been linked primarily to an increase in theta power (i.e., the amplitude of 
theta waves across trials), whereas the temporal portion has been linked to theta phase 
coherence (i.e., the alignment of theta waves across trials; also see Chapter 9) but not 
to theta power (Fuentemilla, Marco- Pallarés, Münte, & Grau, 2008; Ko et al., 2012). 
Time- frequency approaches have also helped clarify the nature of impaired sen-
sory processing in schizophrenia. While a reduced frontal MMN in schizophrenia is 
well- documented, there is some evidence from time- domain analyses that the tem-
poral (mastoid) subcomponent may be less affected (Baldeweg, Klugman, Gruzelier, 
& Hirsch, 2002). Subsequent studies in schizophrenia have used time- frequency 
approaches to clarify how abnormal MMN amplitude is explained by alterations in 
theta power and phase coherence. For example, one study found that time- domain 
MMN amplitude was strongly correlated with frontal theta power among healthy 
controls but not among individuals with schizophrenia, suggesting a decoupling be-
tween these signals (Hong, Moran, Du, O’Donnell, & Summerfelt, 2012). Other work 
shows that reduced MMN in schizophrenia is characterized by reductions in both 
theta power and phase coherence, with differential deficits based on the type of deviant 
stimulus (Lee et al., 2017). Thus, time- frequency decomposition of the MMN has been 
useful for teasing apart distinct neurological signals involved in sensory processing 
that would be difficult to capture within the time domain, with relevance to both basic 
science and clinical applications.
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5.3 The P3

The P3 was first reported by Sutton and colleagues (1965) and has since been   
among the most well- researched components in the ERP literature (Polich, 2012). It is 
among the canonical ERP components in that it is commonly observed across a wide 
range of stimuli and laboratory tasks, generally manifesting as the third major positive- 
going deflection in the waveform and maximal at parietal electrodes. A P3 is typically 
elicited by stimuli that are relatively salient in the local context due to being infrequent, 
unexpected, or because they are designated “targets” that are task- relevant. Thus, the P3 
is often present within the waveform for most ERP studies, even if it is not the compo-
nent of primary interest. When the P3 is among the primary outcomes measures, one of 
the most common laboratory paradigms used is the “oddball” task (Donchin, Ritter, & 
McCallum, 1978). During an oddball task, participants are asked to respond to or other-
wise keep track of a designated target stimulus and otherwise disregard other non- target 
stimuli (i.e., standard stimuli). In the case of a two- stimulus, auditory oddball task, for 
example, two different tones may be presented within an ongoing sequence, with dif-
ferential likelihood (e.g., 80% for standards, 20% for targets). Participants are required 
to distinguish between these tones by responding to the occurrence of the target (e.g., 
button press or mentally counting) and not responding to the standard (Polich & Kok, 
1995). Discriminating this infrequent target stimulus from the frequently occurring 
standard elicits a robust P3, which is increased (i.e., more positive) for the target vs. 
standard stimuli (Polich, 2012). Many studies also distinguish between the P3a and P3b 
subcomponents, which are clearly differentiated on three- stimuli oddball tasks which 
include frequent standard, infrequent target, and infrequent novel stimuli (i.e., a third 
stimulus type that is novel and task- irrelevant). In this case, the classic parietal P3 in 
response to target stimuli is referred to as the P3b, in order to distinguish it from an 
overlapping, frontocentral positivity to novel stimuli that is referred to as the P3a, (or 
Novelty P3; Simons, Graham, Miles, & Chen, 2001; N. Squires, Squires, & Hillyard, 
1975). Broadly, the P3a is thought to reflect frontal lobe functioning in response to nov-
elty, whereas the P3/ P3b is thought to reflect temporal- parietal brain activity associated 
with attention and memory processing (Polich, 2007). For the remainder of this chapter, 
we generally use the term “P3” rather than “P3b.”

Some theoretical accounts of the P3 within the oddball task posit that it captures 
the updating of an individual’s mental representation prompted by incoming stimuli 
(i.e., Context Updating Theory; Donchin, 1981). Following an initial sensory input, it 
is thought that an attention- driven comparison between the current stimulus and pre-
vious mental representation in working memory is made. If no change in stimulus 
attributes have been distinguished, the prior mental representation or “schema” of 
the stimulus is maintained, thereby evoking sensory potentials. However, when a 
new stimulus attribute is perceived (e.g., a target) the mental representation of the 
stimulus context in working memory is updated to elicit the P3 (Donchin et al., 1986). 
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P3 amplitude has been shown to be influenced by a number of factors, including cog-
nitive load demands (i.e., reduced P3 amplitude when under high cognitive load) and 
target stimulus probability (i.e., increased P3 amplitude to relatively rare stimuli). For 
example, people who performed a primary task with varying cognitive demands while 
also engaging in a secondary oddball task showed that increasing the primary tasks’ dif-
ficulty attenuated P3 amplitude to targets on the oddball task (Isreal, Chesney, Wickens, 
& Donchin, 1980; Wickens, Kramer, Vanasse, & Donchin, 1983). Furthermore, detecting 
a target from a standard stimulus within the oddball paradigm elicits a robust P3 ampli-
tude that potentiates as the global and local sequence probability for the target decreases 
(Duncan‐Johnson & Donchin, 1977; K. Squires, Wickens, Squires, & Donchin, 1976).

While there is a long history of examining P3 amplitude using traditional time- 
domain techniques, studies have also applied time- frequency techniques to decompose 
spectral properties of the P3. This is relevant in part because, in comparison to standard 
stimuli, target stimuli on an oddball task often elicit broad modulation of the ERP wave-
form that spans the P2- N2- P3- Slow Wave complex. Thus, the P3 occurs in the context 
of these other, overlapping neural signals that are also sensitive to stimulus properties, 
and for some questions it may be helpful to isolate the unique portions of the waveform 
that reflect context updating vs. other aspects of stimulus processing. Initial work in this 
domain showed that the oddball response is comprised of a progression from theta-  to 
delta- band activity (Başar- Eroglu, Başar, Demiralp, & Schürmann, 1992; Kolev et al., 
1997). Subsequent analyses applied principal components analyses to time- frequency 
plots in order to isolate a specific spectral subcomponent. The oddball response is 
characterized by an early, low- frequency component (1 Hz at 150 ms), followed by mul-
tiple delta- theta responses corresponding to the rise and peak of the time- domain P3 
(1– 3 Hz, from 400 to 600 ms), and ultimately resolving with a second low- frequency 
component (1 Hz from 600 to 800 ms) (Bernat et al., 2007).

Decomposing the oddball response in this manner has also been fruitful for clarifying 
the nature of individual differences in P3 amplitude in clinical populations. For example, 
it is well- established that time- domain P3 amplitude is reduced among individuals with 
externalizing psychopathology, such as alcohol use disorder (Polich, Pollock, & Bloom, 
1994). In one study examining a clinically heterogeneous community sample, reduced 
time- domain P3 was common across conduct disorder, attention- deficit/ hyper-
activity disorder, oppositional defiant disorder, and substance use disorder (Gilmore, 
Malone, Bernat, & Iacono, 2010). As expected, the diagnostic groups were also gener-
ally associated with reduced power in multiple spectral subcomponents spanning 0.5– 3 
Hz and 200– 900 ms. Critically, reduced power in a specific delta subcomponent (1 Hz, 
400– 600) differentiated the externalizing groups from controls, even after considering 
time- domain P3 amplitude. That is, this precise spectral subcomponent exhibited a 
stronger relationship with the clinical phenotype than the time- domain P3, which by 
definition is a composite of these multiple spectral subcomponents. Other work has 
examined reduced P3 amplitude in schizophrenia, which is well- documented (Jeon &   
Polich, 2003). Incorporating time- frequency analyses, however, showed that total delta- 
band activity to oddball stimuli (including phase- locked and non- phase- locked) is 
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intact among individuals with schizophrenia (Ergen, Marbach, Brand, Başar- Eroğlu, 
& Demiralp, 2008). This has potentially important implications for the interpret-
ation of reduced time- domain P3: rather than a reduced neural response per se, the 
time- frequency analyses suggest that schizophrenia may be characterized by greater 
temporal jitter in the neural response, which manifests as a reduced peak in the trial- 
averaged waveform. Together, these studies show how a reduced P3 amplitude in clin-
ical populations can be explained by multiple abnormalities in the neural signal, which 
are not readily apparent in the time domain.

5.4 The Error- Related 
Negativity (ERN)

Rapidly identifying the mistakes that we make and altering our behavior in response 
to these errors is critical for adaptive functioning. The error- related negativity (ERN; 
also referred to as the error negativity or Ne) is an ERP component that has commonly 
been used to study neural processes associated with identifying and adapting to errors 
(Falkenstein, Hohnsbein, Hoormann, & Blanke, 1991; Gehring, Goss, Coles, Meyer, 
& Donchin, 1993). The ERN is a response- locked ERP often elicited in speeded reac-
tion tasks that peaks approximately 100 ms following erroneous responses, is max-
imal at frontocentral electrode sites, and is thought to be generated in medial frontal 
cortex regions including the anterior cingulate cortex (ACC; for reviews see Gehring 
et al., 2011; Holroyd & Coles, 2002; Olvet & Hajcak, 2008). Time- frequency analyses 
have contributed to our knowledge of the unique structure of the ERN (Bernat et al., 
2005; Munneke, Nap, Schippers, & Cohen, 2015; Riesel, Weinberg, Moran, & Hajcak, 
2012; Yordanova, Falkenstein, Hohnsbein, & Kolev, 2004), have elucidated possible 
mechanisms by which it is generated (Luu, Tucker, & Makeig, 2004; Trujillo & Allen, 
2007), and have provided empirical support for some existing theories of its functional 
significance (Cavanagh, Cohen, & Allen, 2009; Cavanagh, Zambrano‐Vazquez, & 
Allen, 2012; Luu & Tucker, 2001; Luu, Tucker, Derryberry, Reed, & Poulsen, 2003).

With regard to the structure of the component, time- frequency analyses have 
identified how the ERN is both linked to, and separable from, other related ERP 
components (Cavanagh et al., 2012; Di Gregorio, Maier, & Steinhauser, 2018; Gehring 
& Willoughby, 2004; Steele et al., 2016; Yordanova et al., 2004). For instance, it has been 
debated whether neural responses to errors (ERN) and to correct responses (correct- 
related negativity; CRN or Nc), which overlap in time and scalp topography, reflect 
the same or distinct processes (Vidal, Hasbroucq, Grapperon, & Bonnet, 2000). While 
evidence indicates that the ERN and CRN demonstrate similar characteristics in the 
time- domain, frequency analyses have identified error- specific signals with unique 
scalp topographies (Yordanova et al., 2004), suggesting that the ERN and CRN are not 
identical processes and may have distinct neural generators. Specifically, Yordanova and 
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colleagues (2004) identified a delta- frequency component (1.5– 3.5 Hz) that was specific 
to erroneous responses, as well as a theta- frequency component (4– 8 Hz) that emerged 
for both erroneous and correct responses but demonstrated different scalp topographies 
depending on accuracy and response side (left or right hand). Similarly, time- frequency 
analyses have been used to demonstrate distinctions between the ERN and the error- 
related positivity (Pe) by demonstrating that the Pe can emerge in the absence of an ERN 
(Di Gregorio et al., 2018; Steele et al., 2016), as well as between the ERN and the feedback 
negativity (FN, see Section 5.5) by identifying distinct scalp topographies of the ERN 
and FN (Gehring & Willoughby, 2004). Nevertheless, theta frequency activity that is 
common to several ERP components (ERN, CRN, FN, and N2) has been interpreted 
to mean that each of these ERPs reflects similar (though not identical) neural processes 
related to performance monitoring and behavioral control (Cavanagh & Shackman, 
2015; Cavanagh et al., 2012).

Time- frequency analyses are also uniquely placed to enhance our understanding of 
the mechanisms by which the ERN is generated. The classic view of ERPs suggests that 
they reflect phasic bursts of neural activation, while more recently it has been suggested 
that ERPs might reflect phase- resetting of ongoing oscillatory activity (see Keil & 
Thigpen, this volume). Although some argue that time- frequency techniques cannot 
distinguish between these two hypotheses (Yeung, Bogacz, Holroyd, & Cohen, 2004; 
Yeung, Bogacz, Holroyd, Nieuwenhuis, & Cohen, 2007), evidence suggests that the 
ERN is best explained by the combination of an amplitude increase and phase- resetting 
(Trujillo & Allen, 2007). This is an important contribution, partly because under-
standing how the ERN is generated provides insight into its functional significance. For 
example, Cavanagh and colleagues (2009) suggested that theta oscillatory dynamics 
reflected in the ERN may represent a mechanism by which neural regions responsible 
for performance monitoring and for cognitive control communicate with each other 
(see Chapter 3 for a discussion of neural oscillations; Keil & Thigpen).

As with all of the ERPs discussed in this chapter, understanding how the ERN is 
associated with individual difference variables is an active area of research. Time- 
window analyses of ERN responses have identified links between the ERN and multiple 
forms of psychopathology, including generalized anxiety disorder (GAD) (Weinberg, 
Olvet, & Hajcak, 2010), obsessive compulsive disorder (Endrass et al., 2010; Riesel, 
Kathmann, & Endrass, 2014), substance use disorder (Euser, Evans, Greaves- Lord, 
Huizink, & Franken, 2013), and depression (Weinberg, Liu, & Shankman, 2016). Time- 
frequency analyses have begun to meaningfully advance our understanding of such 
individual differences. For instance, Cavanagh and colleagues (2017) determined that 
error- related theta power was a unique predictor of GAD status over and above the 
time- window scored ERN, and when they included theta network dynamics in their 
model, they were able to classify clinical participants with an impressive 66% accuracy. 
These data suggest that time- frequency analyses may have a powerful role to play in 
using neural data to classify clinical populations. While time- frequency analyses have 
led to several critical advances in our understanding of the ERN, as noted here, this is 
likely to remain a fruitful avenue of continued study.
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5.5 The Feedback Negativity (FN)/ 
Reward Positivity (RewP)

In addition to endogenous performance monitoring, optimization of behavior depends 
on the ability to discriminate positive (e.g., monetary gain, correct performance feed-
back, positive interpersonal feedback) from negative (e.g., monetary losses, incorrect 
performance feedback, negative interpersonal feedback) external environmental feed-
back. A substantial body of research on neural discrimination of favorable vs. unfavor-
able feedback has used an ERP component called, variously, the feedback negativity 
(FN), the feedback- related negativity (FRN), or the reward positivity (RewP) (Foti & 
Weinberg, 2018; Foti et al., 2011; Hajcak, Moser, Holroyd, & Simons, 2006; Holroyd, 
Nieuwenhuis, Yeung, & Cohen, 2003; Miltner, Braun, & Coles, 1997). This component 
peaks approximately 250– 300 ms at frontocentral recording sites following the pres-
entation of feedback (Miltner et al., 1997), and has often been studied in the context 
of laboratory gambling tasks, in which individuals make responses in order to win or 
lose money on each trial. Feedback indicating monetary gains, losses, or non- gains is 
presented following response selection.

Traditionally, the FN/ RewP was viewed as a negative- going component (thus the em-
phasis on “negativity” in the name) and a member of a broader class of medial- frontal 
negativities (MFNs) that includes the ERN (Gehring & Willoughby, 2004; Miltner et al., 
1997). This negative peak, which like other MFNs has been thought to be generated by 
the ACC (Gehring & Willoughby, 2002; Potts, Martin, Burton, & Montague, 2006) via 
phasic input from the midbrain dopamine system (Holroyd & Coles, 2002), was thought 
to be observed following unfavorable outcomes (e.g., feedback indicating monetary 
losses) and absent following favorable outcomes (e.g., feedback indicating monetary 
gain). This perspective suggests a binary differentiation of losses from non- losses, 
reflecting the activity of a single cognitive process (Hajcak et al., 2006; Kreussel et al., 
2011). More recent data suggests, however, that the difference between neural responses 
to losses and gains may also be driven in part by a substantial positive- going deflec-
tion in the waveform elicited by favorable outcomes that is absent following unfavorable 
outcomes (i.e., the reward positivity; Baker & Holroyd, 2011; Bernat et al., 2011; Bogdan, 
Santesso, Fagerness, Perlis, & Pizzagalli, 2011; Carlson, Foti, Harmon- Jones, Mujica- 
Parodi, & Hajcak, 2011; Foti et al., 2011; Harper, Olson, Nelson, & Bernat, 2011; Hewig 
et al., 2010; Holroyd, Krigolson, & Lee, 2011; Holroyd, Pakzad- Vaezi, & Krigolson, 2008).

A possible explanation for these conflicting views is that the trial- averaged component 
following feedback reflects the activity of two independent but overlapping processes: a) 
a negative deflection in the waveform, which is enhanced following loss feedback but 
not reward feedback, and b) a positive deflection that is enhanced following reward 
feedback and decreased following losses (e.g., Bernat, Nelson, & Baskin- Sommers, 
2015; Bernat et al., 2011; Carlson et al., 2011; Foti et al., 2011). An increased (underlying) 
negative- going component and a decreased (underlying) positive- going component 
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might then summate to create the observed negative- going component following feed-
back indicating losses that had typically been observed in the time domain (i.e., the 
classic FN/ FRN/ MFN).

Studies using time- frequency methods to explore neural activity in this time- window 
have tended to bear this out, as there is evidence that activity in both the theta-  and 
delta- bands make unique contributions to the amplitude of the FN/ RewP (Bernat 
et al., 2015; Bernat et al., 2011). In particular, theta activity in this time range appears 
to be primarily sensitive to loss/ negative outcomes, with losses eliciting enhanced ac-
tivity compared to gains in this frequency range (Bernat, Nelson, Holroyd, Gehring, & 
Patrick, 2008; Bernat et al., 2011; Gheza, De Raedt, Baeken, & Pourtois, 2018; Harper 
et al., 2011; L. Nelson, Patrick, Collins, Lang, & Bernat, 2011; Olson, Harper, Golosheykin, 
Bernat, & Anokhin, 2011; Webb et al., 2017). Delta has more often been linked to activity 
in the time- range of the P3 that follows the FN/ RewP at more parietal sites (Gehring 
& Willoughby, 2002; Holroyd & Coles, 2002; Miltner et al., 1997). However, there is 
increasing evidence that delta activity also underlies the observed reward positivity 
occurring in the time- range and spatial location of the FN/ RewP (Bernat et al., 2015; 
Bernat et al., 2008; Foti, Weinberg, Bernat, & Proudfit, 2014; Harper et al., 2011). Indeed, 
delta activity in this time- range is enhanced for gains compared to losses (Bernat et al., 
2015; Bernat et al., 2008; Bernat et al., 2011; Cavanagh, 2015; Cavanagh, Masters, Bath, 
& Frank, 2014; Foti, Weinberg, et al., 2014; Gheza et al., 2018; Harper et al., 2011; Leicht 
et al., 2013; L. Nelson et al., 2011; Olson et al., 2011; Pornpattananangkul & Nusslock, 
2016; Webb et al., 2017), and appears to drive the reward positivity observed in the trial- 
averaged waveforms (Bernat et al., 2015; Foti et al., 2011; Harper et al., 2011).

The activity of these two frequency bands also appears to be dissociable, insofar as the 
differences between loss and gain activity in the theta and delta band tend to be at best 
weakly correlated (e.g., Bernat et al., 2015; Bernat et al., 2011; Foti, Weinberg, et al., 2014). 
Moreover, source analysis suggests unique generators, with loss- related theta localizing 
to the ACC and gain- related delta to a possible source in the basal ganglia (Foti, 
Weinberg, et al., 2014). Combined, these data suggest that changes in theta and delta are 
not yoked expressions of the same underlying process, but instead may represent dis-
tinct cognitive processes and contributions to the FN/ RewP (Bernat et al., 2015; Bernat 
et al., 2008; Bernat et al., 2011; Gheza et al., 2018; Harper et al., 2011; Olson et al., 2011). 
Consistent with this, theta response to losses appears to reflect a relatively low- level re-
sponse to negative outcomes that is frequently insensitive to stimulus parameters and 
experimental context (Bernat et al., 2015; Bernat et al., 2011; Harper et al., 2011; Watts, 
Bachman, & Bernat, 2017; Watts & Bernat, 2018). This increased theta (Section 5.4) 
appears to then act as a signal to recruit attentional and executive resources to respond 
to mistakes, novelty, and negative feedback (Aviyente, Tootell, & Bernat, 2017; Cavanagh 
& Frank, 2014; Cavanagh et al., 2012; Van Noordt, Campopiano, & Segalowitz, 2016; van 
Noordt, Desjardins, Gogo, Tekok- Kilic, & Segalowitz, 2017). In contrast, in monetary 
reward paradigms, delta appears sensitive not only to loss vs. gain distinctions, but also 
higher- level secondary stimulus attributes, such as magnitude (Bernat et al., 2015), con-
text (Bernat et al., 2015; Watts & Bernat, 2018), expectancy violations (Cavanagh, 2015; 
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Gheza et al., 2018; Watts et al., 2017), and reward uncertainty (Gheza et al., 2018) and 
thus may reflect more elaborative processing of the feedback beyond the most salient 
dimension of the stimuli (see, however: Leicht et al., 2013).

Identification of dissociable and functionally distinct processes in the time- window 
of the FN/ RewP has also proven to be useful in studies seeking to understand indi-
vidual differences in neural responses to feedback, including describing develop-
mental influences on more specific neural processes, as well as identifying specific 
cognitive- affective deficits in clinical samples. For instance, there is evidence from 
MRI research that brain regions supporting the neural response to rewards undergo 
considerable developmental changes from childhood through adolescence and into 
adulthood. In particular, fMRI studies tend to find an adolescent- specific peak in 
striatal activation to reward feedback (Braams, van Duijvenvoorde, Peper, & Crone, 
2015; J. R. Cohen et al., 2010; Ernst et al., 2005; Galvan et al., 2006; Somerville, Hare, 
& Casey, 2011; Van Leijenhorst et al., 2009). Most studies examining developmental 
changes in the FN/ RewP, however, have failed to find evidence for an adolescent- 
specific peak, or indeed even significant developmental changes (Kujawa et al., 
2018; Larson, South, Krauskopf, Clawson, & Crowley, 2011; Lukie, Montazer- Hojat, 
& Holroyd, 2014; Santesso, Dzyundzyak, & Segalowitz, 2011); but see also (Arbel, 
McCarty, Goldman, Donchin, & Brumback, 2018). In a recent study of 8– 17- year- old 
participants, however, Bowers and colleagues (2018) examined both time- domain 
ERPs and time- frequency- derived theta and delta band activity. They found that, 
consistent with previous work, the time- domain- scored RewP was not associated 
with participants’ age. Yet, theta power— which was enhanced for losses relative to 
gains— decreased with age, whereas delta power— which was greater for gains than 
losses— increased. In a study investigating whether family history of psychopath-
ology might influence these normative developmental effects, we also collected 
a sample of never- depressed daughters of mothers with or without a history of de-
pression (Ethridge et al., 2021). In this sample, we found that the association between 
delta power and daughters’ developmental stage differed depending on maternal risk 
status. For daughters of mothers who had never been depressed, increased develop-
ment was associated with increases in delta power following rewards. For daughters 
of mothers with a history of depression, increased development was associated with 
decreased delta power following rewards, suggesting high- risk daughters may become 
increasingly vulnerable across the course of adolescence. This effect was not observed 
for power in the theta frequency.

Work identifying functional differences between delta and theta activation in re-
sponse to external feedback has laid the foundation for identifying specific cognitive and 
affective deficits in various psychopathological groups. For instance, there is extensive 
data suggesting that individuals high on externalizing- proneness (including alcohol and 
substance use/ abuse, rule- breaking, and personality measures) show broad and non- 
specific amplitude reductions in multiple ERPs (Hall, Bernat, & Patrick, 2007; Polich 
et al., 1994). This work has been further clarified by time- frequency decompositions 
suggesting these individuals do not in fact show deficits related to theta power elicited 
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by loss feedback; instead, these group differences seem to be driven by reductions in 
delta activity elicited by rewarding feedback (Bernat et al., 2011).

A great deal of work has also examined the FN/ RewP in individuals with depres-
sion or at risk for depression (including work from our own groups). Multiple pre-
vious studies employing monetary guessing tasks have reported that depressed 
participants as well as those at risk for depression are characterized by abnormal FN/ 
RewPs (Bress, Smith, Foti, Klein, & Hajcak, 2011; Foti, Carlson, Sauder, & Proudfit, 
2014; Foti & Hajcak, 2009; Kujawa, Proudfit, & Klein, 2014; Weinberg, Liu, Hajcak, 
& Shankman, 2015; Weinberg & Shankman, 2016). However, because many of these 
studies measured the FN/ RewP as a difference score, it is unclear whether these results 
reflect aberrant neural response to rewards, to losses, or to both. Time- frequency 
investigations have been helpful in clarifying the locus of dysfunction. For instance, 
in one study we worked on, greater symptoms of depression were associated specif-
ically with more blunted reward- related delta— no such association was found with 
loss- related theta (Foti et al., 2015). Similarly, another study indicated that blunted 
delta activity following reward feedback prospectively predicted the onset of depres-
sion in an adolescent sample— independently of other risk factors (B. Nelson et al., 
2018). We also found that stress exposure— an important predictor of depression— 
specifically blunted reward- related delta, and not theta, power; and that decreased 
delta power prior to an acute stressor predicted heightened physiological responses to 
that stressor (Ethridge et al., 2020).

Additionally, reduced reward- related delta may be helpful in identifying distinct 
symptom profiles. A recent study found that, within a depressed group, symptoms of 
anxiety and depression showed dissociable correlations with punishment- elicited theta 
power and reward- elicited delta power (Cavanagh, Bismark, Frank, & Allen, 2018), such 
that symptoms of depression were uniquely associated with decreased reward- elicited 
delta power. In contrast, one study found depression to be associated with blunted mid-
line theta modulation (Mueller, Panitz, Pizzagalli, Hermann, & Wacker, 2015), while 
Webb and colleagues (2017) found that depressed adolescents showed increased loss- 
related theta, but no differences in gain- related delta. A theme across these studies is 
that the time- domain FN/ RewP generally represents a composite of frontocentral 
theta-  and delta- band activity. The relative contribution of these frequency bands to the 
observed ERP score, however, will be different across tasks, sample characteristics, and 
study contexts, such that a change in FN/ RewP amplitude can be explained by modula-
tion of theta activity, delta activity, or a combination of both— a question which time- 
frequency decompositions can answer directly.

5.6 Example: Social Reward Processing

As a practical example of how to apply time- frequency analyses to averaged ERP data, 
we revisit recently published findings on social reward processing (Ait Oumeziane, 
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Schryer- Praga, & Foti, 2017). ERP data were collected from 27 adults during a social 
incentive delay task, a modified version of the commonly used monetary incentive 
delay task (Knutson, Westdorp, Kaiser, & Hommer, 2000; B. K. Novak, Novak, Lynam, 
& Foti, 2016; K. D. Novak & Foti, 2015). The task is designed to tease apart anticipa-
tory and consummatory stages of reward processing. On each trial, participants are first 
presented with a cue indicating whether it is an incentive or neutral trial. On incen-
tive trials, participants have the opportunity to earn a reward by rapidly responding to 
a target stimulus (and are punished for slow reaction times), whereas on neutral trials 
participants break even regardless of their reaction time. Following their behavioral re-
sponse to the target stimulus, participants are then shown feedback indicating the result 
of that trial (i.e., win or loss on incentive trials, break- even on neutral trials). On the 
traditional monetary version of the task the rewards are nominal amounts of money, 
yet more recently a social reward version has been developed in which the “wins” are 
instead positive social feedback putatively administered by the experimenter. In a re-
cent study, it was shown that social reward feedback elicits a RewP and feedback- P3 
(described as such in order to differentiate it from the oddball P3, described earlier) that 
is of similar morphology and amplitude to monetary reward feedback (Ait Oumeziane 
et al., 2017). These original analyses focused exclusively on traditional time- domain 
approaches to scoring the RewP and feedback- P3. Here, we revisit these data using time- 
frequency analysis.

The time- domain ERP waveforms and scalp topographies are presented in Figure 
5.1A. Consistent with previous research, social reward (“wins”) elicited a more 
positive- going waveform than social punishment (“losses”). The RewP difference 
score (contrasting the valence of uncertain feedback: win vs. loss) peaked at 325 ms, 
whereas the feedback- P3 difference score (contrasting the salience of uncertain vs. 
certain feedback: win vs. break- even, loss vs. break- even) peaked at approximately 400 
ms. A challenge in isolating the RewP and feedback- P3 in this case, however, is that 
the waveform to social rewards is modulated within a relatively broad time window 
of approximately 200– 800 ms at centroparietal electrodes, thereby encompassing 
the P2- RewP- P3- Slow Wave complex. It is unclear whether the difference between 
conditions represents multiple, overlapping effects or is instead better interpreted as 
a single, sustained increase in the ERP waveform. These possibilities are difficult to 
disentangle using traditional time- window averages but can be addressed using time- 
frequency analysis. Building upon previous time- frequency decompositions of the 
RewP (Bernat et al., 2011; Foti et al., 2015), we sought to isolate three distinct neural 
responses:

 1. RewP- delta: an increase in delta power to wins vs. losses at approximately 300 ms 
and at central electrodes;

 2. FN- theta: an increase in theta power to losses vs. wins at approximately 300 ms 
and at frontocentral electrodes; and

 3. Feedback- P3- delta: an increase in delta power to wins vs. break- even outcomes at 
approximately 400 ms and at parietal electrodes.
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For illustrative purposes, we focus here on the P3 to wins; a similar pattern of results was 
also observed for the P3 to losses.

Standard signal processing procedures were applied to the data, including re- 
referencing to the mastoid electrodes, filtering from 0.1– 30 Hz, ocular correction, 
and artifact rejection (for details, see Ait Oumeziane et al., 2017). The continuous 
EEG was segmented relative to the onset of feedback stimuli using a relatively broad 
time window of −1500 to 1500 ms, allowing for edge artifacts (i.e., distortion of the 
signal near the edges of the window following time- frequency transform; note this 
is a broader time- window than is typical for most ERP research). ERP averages were 
created for each of the three conditions (win, loss, break- even), and then the time- 
frequency transform was applied. Complex Morlet wavelets were calculated within 
BrainVision Analyzer (Brain Products), using a frequency range of 0.5– 20 Hz and 
linear steps of 0.25 Hz. A relatively narrow frequency range was chosen here due to the 
a priori focus on activity in the delta and theta bands, whereas a broader range could be 
chosen for more exploratory analyses. The Morlet parameter was set at c =  3.5 (i.e., 3.5 
cycles in the wavelet), and wavelet functions were normalized using Gabor normaliza-
tion. Baseline correction was performed for each wavelet layer using a baseline window 
of −500 to −300 ms; the average amplitude in the baseline window was subtracted 
from each time point in the layer. These time- frequency transforms were applied to 
the averaged ERP data for each subject and then averaged across subjects to create the 
grand averaged spectrogram.

Of interest were two contrasts: wins vs. losses, which ought to elicit reward- related 
delta (RewP) and loss- related theta (FN) from approximately 200– 400 ms; and win vs. 
break even, which ought to elicit delta- band activity in the time range of the feedback- 
P3 (300– 500 ms). The spectrogram for the win vs. loss contrast is presented in Figure 
5.2. As expected, activity in the delta frequency band was increased for wins vs. losses 
(the red portion of the spectrogram within the delta band), which peaked at approxi-
mately 2.5 Hz and 295 ms. Overlapping with this response was an increase in activity 
within the theta frequency band for losses vs. wins (the blue portion of the spectrogram 
within the theta band), which peaked at approximately 5.25 Hz and at 235 ms. Both of 
these responses occurred within the time range of the FN/ RewP but at distinct fre-
quency bands, presenting the opportunity to extract separate scores for each. We scored 
the delta and theta responses by extracting wavelet layers centered at 2.5 Hz and 5.25 Hz, 
respectively. Wavelet layers yield a waveform representing power at that frequency band 
over time, which can then be scored by taking a time- window average of peak score 
akin to time- domain ERPs (Figure 5.2, right). We scored each response as the average 
power within a 50- ms window surrounding the peak of the win minus loss difference, 
which was somewhat different for each frequency band: 270– 320 ms for delta and 210– 
260 ms for theta. Notably, these wavelets each exhibited more focal scalp topographies 
than the time- domain FN/ RewP, with maxima at frontocentral electrodes. To maintain 
consistency with the time- domain FN/ RewP, we scored the delta and theta responses 
at electrode Cz. The effects of condition (win vs. loss) were significant for both delta 
(t(26) =  3.04, p < .01) and theta (t(26) =  3.11, p < .01). Critically, the difference scores 
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for delta and theta were also both significantly correlated with the time- domain RewP 
difference score (Table 5.1). As is common in the literature, the delta and theta effects 
were not significantly correlated with one another, further suggesting that they each 
capture a distinct portion of the FN/ RewP.

The analogous spectrogram for the win vs. break- even contrast is presented in Figure 
5.2. In comparison with the FN/ RewP analyses, here we expected to find prominent 
delta- band activity corresponding to the feedback- P3. As seen in the spectrogram, 
activity in the delta band was indeed increased for wins vs. break- even outcomes, an 
effect which peaked at 1.75 Hz and at 365 ms. We extracted the wavelet layer at 1.75 Hz 
and scored this delta response as the average power from 340– 390 ms. This wavelet 
exhibited a scalp topography highly similar to the time- domain feedback- P3, with a 
peak at centroparietal electrodes. To be consistent with our time- domain analyses, we 
scored this delta effect at electrode Pz. The increase in delta- band activity for win vs. 
break- even outcomes was statistically significant (t(26) =  7.90, p < .001), and the delta- 
band difference score was significantly correlated with the time- domain feedback- P3 
difference score (Table 5.1).

Delta

Theta

Delta

Theta

Cz: Win - Loss

Pz: Win - Break Even

Theta layer at 5.25 Hz

Delta layer at 2.5 Hz

Delta layer at 1.75 Hz

Figure 5.2 Time- frequency analysis of the reward positivity elicited by the social incen-
tive delay task. Top: The contrast of wins versus losses, isolating delta-  and theta- band activity 
corresponding to the time- domain FN/ RewP. Bottom: The contrast of wins versus break- even 
outcomes, isolating delta- band activity corresponding to the feedback- P3.
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It is notable that superior separation of the FN/ RewP and feedback- P3 was achieved 
in this case by using time- frequency analyses as compared to traditional time- domain 
analyses. Specifically, the time- domain FN/ RewP and feedback- P3 were significantly 
correlated with one another despite being scored at non- overlapping time windows 
(300– 350 ms and 370– 420 ms) and electrodes (Cz and Pz). This was not the case for the 
time- frequency measures: the FN- theta and RewP- delta scores were not significantly 
correlated with the time- domain feedback- P3 score, and P3- delta scores were not sig-
nificantly correlated with the time- domain FN/ RewP scores. We further tested this 
pattern of specificity using multiple regression, predicting each time- domain ERP from 
the three time- frequency variables. When entered as simultaneous predictors, time- 
domain FN/ RewP amplitude was significantly predicted by a combination of RewP- 
delta (β =  .46, p < .05) and FN- theta (β =  −.38, p < .05), but not P3- delta (β =  .11, p =  .53). 
Conversely, time- domain feedback- P3 amplitude was significantly predicted only by 
P3- delta (β =  .66, p < .001) and not by RewP- delta (β =  .15, p=  .33) or FN- theta (β=  −.15, 
p =  .28). Thus, time- frequency analysis facilitated the isolation of three distinct neural 
signals involved in social reward processing that would have been difficult to achieve 
solely within the time domain, where signal overlap is more problematic in this experi-
mental context.

The example described shows how time- frequency analyses can aid in the interpret-
ation of traditional ERP effects. In these data, positive social feedback modulated the 
ERP waveform in a time- range spanning the FN/ RewP and P3, which overlapped with 
each other. The traditional time- domain approach of scoring these ERPs as the average 
amplitude within separate time windows could not adequately address the problem of 
component overlap. Time- frequency decomposition, on the other hand, was able to iso-
late three distinct signals: RewP- delta, FN- theta, and P3- delta. Similar to the time do-
main, these three signals were all sensitive to outcome type: RewP- delta and FN- theta 

Table 5.1  Correlations between time- domain and time- frequency scores of social 
reward processing

Reward Positivity Feedback- P3

Time Domain
Delta  
(2.5 Hz)

Theta  
(5.25 Hz)

Time 
Domain

Delta 
(1.75 Hz)

FN/ RewP Time Domain — 

Delta (2.5 Hz) .39 — 

Theta (5.25 Hz) −.40 −.04 — 

Feedback- P3 Time Domain .47 .14 −.12 — 

Delta (1.75 Hz) .16 .00 −.14 .71 — 

Note: FN/ RewP variables are the contrast of win vs. loss; feedback- P3 variables are the contrast of win 
vs. break- even. Coefficients are Spearman’s rho. Values in bold are significant at p < .05.
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were modulated by outcome valence, and P3- delta was modulated by outcome certainty. 
In contrast with the time domain, however, these three signals achieved superior sep-
aration: RewP- delta and FN- theta each captured unique portions of the time- domain 
FN/ RewP component, and they were unrelated to the time- domain P3 component. 
Likewise, P3- delta was strongly related to the time- domain P3 component but was unre-
lated to the time- domain FN/ RewP component. Overall, time- frequency analyses help 
us rule out the interpretation that social reward broadly increases the ERP waveform in 
a nonspecific fashion; instead, this broad modulation clearly represents a composite of 
multiple neural signals. This also lays the groundwork for more precise characterization 
of individual differences, whereby we would expect specific associations with the time- 
frequency variables (which are relatively uncorrelated) as compared to the time- domain 
variables (which have substantial overlap).

Comprehensive descriptions of different methodological approaches are covered 
in other chapters (e.g., Chapter 4, this volume). However, one important step to con-
sider is whether to conduct these analyses on single- trial or averaged data, as was done 
in our practical description earlier. As noted, ERPs are typically derived from averages 
composed of data from multiple trials. This practice reflects the typically low signal- 
to- noise ratio of ERPs: the amplitude of many ERPs is no more than a few µV, while 
the amplitude of “background” neuroelectric signals (see chapter 6, this volume), 
other electrophysiological signals, and electrical interference from non- biological 
sources can be closer to tens of µV. When averaged together, this presumably randomly 
distributed noise cancels itself out, whereas the systematic signal, or ERPs, in the data 
will not, resulting in a legible ERP component. Single- trial analysis of ERP data typically 
requires relatively large- amplitude components (e.g., the P3). However, time- frequency 
techniques can in some cases make data more amenable to single- trial analysis, as 
electrical “noise” often has distinct spectral properties from the signal of interest. For 
instance, in studies interested in how error or feedback processing might influence trial- 
level adjustments of behavior, time- frequency techniques could allow the researcher to 
focus narrowly on theta and delta power on each trial, with higher frequency activity 
(e.g., alpha, 60- Hz line noise) isolated from these signals. Nonetheless, it is common 
practice to conduct time- frequency decompositions on averages of many trials. And be-
cause averages improve signal- to- noise ratio, they are also a helpful basis for identifying 
spectral power at different frequency ranges, particularly in exploratory research where 
the spectral characteristics of ERPs are less well- understood. As is often the case, the op-
timal method will depend on the research question.

5.7  Conclusions

ERPs are powerful and flexible tools for understanding sensory, cognitive, and af-
fective processes in the brain, but they are not without limitations. As discussed, time- 
frequency techniques can be helpful in addressing some of these limitations. They can 
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better leverage the multi- dimensional nature of EEG data— and, in principle, better rep-
resent the underlying neural signals— by accounting for not only voltage changes over 
time and site on the scalp, but also frequency, power, and phase, and may reveal mul-
tiple dissociable processes folded within the time- window- scored ERP. However, time- 
frequency techniques are not a magic bullet. As is discussed at length in other chapters, 
time- frequency decompositions can reduce temporal precision, a chief advantage of the 
ERP technique (though, as described in Chapter 4, there are techniques to minimize 
this loss). When applied to trial- averaged ERP data, time- frequency decompositions 
are best thought of conceptually as isolating potentially relevant ERP subcomponents. 
That is, it should be possible to “recreate” the pattern of observed ERP findings within 
the time- frequency domain, perhaps based on a combination of activity across multiple 
frequency bands. The time- frequency measures may be more precise than their time- 
domain counterparts to the extent that they isolate the relevant neural signal of interest, 
but in cases where there is no apparent modulation of the ERP waveform across ex-
perimental conditions, it is unlikely that time- frequency approaches will uncover “new” 
findings. Therefore, we encourage the reader to think of time- frequency decompositions 
applied to ERP data as the conceptual equivalent of deriving subscales within a self- 
report questionnaire, which can often enhance the precision of measurement and help 
clarify the nature of associations with other measures. This is particularly useful where 
there are already well- established associations between a time- domain ERP and an ex-
ternal measure (e.g., clinical diagnosis, behavior, or personality trait), whereby time- 
frequency decompositions can help explain the nature of those associations. Thus, 
time- frequency analyses can be an effective approach for revisiting published data or 
extending the results of prior studies.
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CHAPTER 6

THE REL ATIONSHIP 
BET WEEN EVOKED AND 

INDUCED EEG/  MEG  
CHANGES

Going Beyond Labels

ALI MAZAHERI

6.1  INTRODUCTION

For more than a century now researchers have been examining the electrical potentials 
and magnetic fields measured at the scalp to understand what is happening inside our 
brains when we perform various cognitive tasks. Researchers’ primary approach is to 
characterize how the electro/ magnetoencephalogram (E/ MEG) signal changes in re-
sponse to a particular “event”, whether it be a button press or the onset of an auditory 
tone. These changes are historically labelled as either evoked or induced, with each label 
making assumptions about the origins of the change. The rationale behind evoked ac-
tivity is that the brain produces a new response as a consequence of processing the event. 
This response is both time- locked and phase- locked to the experimental event. Induced 
activity, on the other hand, assumes that the brain has ongoing brain activity (i.e., ac-
tivity that is always there) independent of any additive activity, and the event modulates 
this ongoing activity, in a time- locked, but not necessarily phase- locked manner. My 
hope is that the reader, through what I discuss in this chapter, will understand that these 
“labels” (while at times useful) can paint an incomplete picture of what is going on in the 
brain during cognitive processing. According to Andy Warhol, “The moment you label 
something, you take a step— I mean, you can never go back again to seeing it unlabeled”. 
I further argue that for the field to move forward in gaining a richer understanding of 
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the link between brain and cognition, we need to rethink how we label the different 
types of EEG responses.

6.2 EVOKED AND INDUCED: THE 
ASSUMPTION AND LABELS

The evoked potential approach assumes a large component of the electrophysiological 
signals detected at the scalp is not related to the processing of the phenomena under in-
vestigation. Here, we need to average multiple trials (Figure 6.1) of EEG epochs centered 
around the experimental event to extract the “event”- related EEG signal, called the 
event- related potential (ERP) for EEG measurements, and event- related fields (ERF) 
for magnetoencephalography (MEG) measurements. The ERP/ F reflects neural ac-
tivity precisely time and phase- locked in response to an event. The peaks and troughs in 
the ERP waveform, which often follow a stereotypical temporal pattern of positive and 
negative voltage deflections, are classified as “components”. Researchers theorize that 
these components map onto various task- relevant cognitive processes (Kappenman & 
Luck, 2011).

The evoked potential approach explicitly ignores the ongoing activity present in the 
EEG, as well as changes that although are time- locked to an experimental event, are not 
necessarily phase- locked to it. This is because of the rather critical assumption (and 
one this chapter spends considerable effort arguing against) that non- phase locked ac-
tivity disappears in the averaging of event locked data epochs due to the deconstructive 
interference of random phases (Figure 6.1B). Capturing changes to the ongoing ac-
tivity in EEG, as well as responses that are time- locked but not necessarily phase- 
locked requires averaging the time- frequency spectra of multiple EEG trials centered 
on the experimental event (Figure 6.1C). The time- frequency characterization of the 
ongoing EEG activity works particularly well since the signals contain rhythms, that 
is, oscillatory activity in characteristic frequency ranges (i.e., bands) including theta 
(3– 7 Hz), alpha (8– 13), beta (14– 20 Hz), and gamma (30– 100 Hz), with each band often 
exhibiting specific spatial distributions over the scalp (Siegel et al., 2012). The ampli-
tude of an oscillation refers to the size of its (positive or negative) peak relative to some 
baseline.

The experimentally driven increase in the amplitude of a frequency band is often 
referred to as an event- related synchronization (ERS). The ERS terminology is based on 
the fact that when the activity of neurons becomes synchronized, the spatial summation 
of the post- synaptic potentials results in an amplitude increase (Pfurtscheller & Lopes 
da Silva, 1999). Conversely, desynchronization of the neuronal population firing 
results in the cancellation of post- synaptic potentials, and as such, a drop in oscilla-
tory amplitude within a frequency band, sometimes referred to as event- related de-
synchronization (ERD). Much like the ERP components, the task- related changes 
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Figure 6.1 (A) The onset of an event (e.g., auditory stimulus) can evoke activity that is both 
phase and time- locked to the onset of the event as well as induce activity that is time- locked but 
not phase- locked. (B) Time- domain averaging of multiple data epochs would result in the at-
tenuation of the non- phase locked activity due to destructive interference. The activity remaining 
after the averaging reflects the brain’s transient phase- locked response to an event.
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in oscillatory amplitudes map on to different facets of cognition (Siegel et al., 2012; 
Hanslmayr et al., 2016).

6.3 Going beyond Evoked and 
induced: the origin of the changes

Besides the methodologically different approaches needed to extract each type of 
change, evoked and induced activity are also thought to reflect different processes 
occurring in the brain in response to an outside event. One rather now- classic frame-
work (Pfurtscheller & Lopes da Silva, 1999) proposes that evoked changes (i.e., ERPs) 
are assumed to occur because of event locked changes of afferent activity into cor-
tical neurons. On the other hand changes in oscillatory power of the ongoing EEG are 
hypothesized to emerge due to the interaction of neurons and interneurons that control 
the frequency components of the ongoing activity.

6.4 UNLabeling the labels: the 
relationship between evoked and 

ongoing activity

The rather traditional view of evoked and ongoing activity (Figure 6.2) is that they re-
flect rather separate distinct neural phenomena. According to this view, the evoked ac-
tivity that always has a consistent phase- locked to the onset of an experimental event 
rides on top of the ongoing activity. This is also sometimes referred to as the “additive 
view” of how ERPs are generated. Taken to the extreme, it is possible to view the evoked 
activity as completely independent of the ongoing activity (figure 6.3A). An alternate 
theory, referred to as a phase- resetting theory (figure 6.3B), postulates that there is no 
additive evoked activity elicited by the onset of an event, but that rather, the ongoing ac-
tivity adjusts its phase to the onset of the experimental event (Makeig et al., 2002). Here, 
by averaging trials locked to the event, the ongoing activity before the onset of the event 
which has random phases is averaged out, while the event- related phase perturbed ac-
tivity emerges as the evoked response.

Given that the predominant ongoing activity in the EEG signal is the alpha rhythm, 
it is believed that its phase- reset (or adjustment) to the onset of the experimental 
event plays a particular role in the formation of evoked responses (Makeig et al., 2002; 
Klimesch et al., 2007; Gruber et al., 2005; Hanslmayr et al., 2006). However, the phase- 
reset of the ongoing rhythms is not exclusive to the alpha activity, with the theta rhythm 
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also proposed to be involved in the formation of specific evoked responses such as the 
error- related negativity (Luu et al., 2004).

There has been a fair amount of controversy over whether phase- resetting can 
account for the formation of ERPs (Mazaheri & Jensen, 2006). The primary evidence 
for the occurrence of a phase- reset is that the phase of the ongoing activity at the time 
of the evoked response would be consistent across trials. However, the addition of 
a signal with a consistent phase across trials (i.e., a traditional additive evoked re-
sponse) would also make the phase of the ongoing activity appear consistent across 
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Figure 6.2 Schema for the generation of induced (ERD/ ERS) and evoked (ERP) activity 
whereby the former is highly frequency- specific.

Adapted from Pfurtscheller & Lopes da Silva, 1999.

Additive Model

The two models of evoked response
generation

Phase Resetting(a) (b)

Figure 6.3 The additive versus phase- resetting theory of evoked response generation. (A) The 
additive theory assumes that evoked and ongoing activities are distinct neuronal phenomena. 
The experimental event “evokes” an additive, phase- locked response in each trial. (B) According 
to the phase- resetting view, the ongoing and evoked activity are the same neuronal phenomena, 
with no “new” additive response. Here the phases of the ongoing background oscillations be-
come aligned (phase- reset or partial phase- reset) to an experimental event. The phase- locked 
(i.e., adjusted) oscillatory activity emerges as an evoked component when averaging the event- 
locked trials.
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trials (Figure 6.4) (Mazaheri & Picton, 2005; van Diepen & Mazaheri, 2018; Yeung 
et al., 2004).

Moreover, a rather convincing argument has been raised that the additive and phase- 
resetting model cannot be mathematically distinguished at the scalp level without inva-
sive electrophysiological recordings (Telenczuk et al., 2010).

While the additive and phase- resetting theories offer a contradictory account of 
evoked and ongoing activity, they do share two common elements. Both theories 
assume across- trials averaging results in the attenuation of ongoing activity. 
However, this assumption has been challenged. There is now compelling evidence 
that the alpha rhythm, the dominant ongoing signal detected at the scalp, is non- 
sinusoidal, and across- trials averaging never really makes it go away. This obser-
vation greatly blurs the line between evoked and ongoing activity. Furthermore, 
it is important to note that the additive and phase- resetting debate has exclusively 
focused on the early- stimulus evoked responses (P1, N1, or the ERN) and fails to 
provide a complete account for the brain responses occurring 200 ms after an ex-
perimental event. These sustained responses (Figure 6.5), often lasting 100– 200 ms, 
are believed to reflect neural processing related to high- level cognitive constructs 
ranging from working memory representation (Ikkai et al., 2010) to language com-
prehension (Kutas & Federmeier, 2011).
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Figure 6.4 Model of generation. The upper left of the figure shows 20 superimposed trials of 
a model evoked potential consisting of a single cycle of activity added to ongoing activity of the 
same frequency with variable phase and amplitude. Below is given the average evoked potential 
over 100 trials. At the upper right are the polar plots showing the phase distributions of the fre-
quency of the evoked potential (and background activity) during the baseline and at the middle 
of the evoked potential. There is significant phase synchronization at the time of the evoked po-
tential. At the bottom is a histogram of the power measurements in the middle of the evoked po-
tential across the 100 trials (because of the Mortlet filtering effect this gives the maximum power). 
There is no significant change in power.

Reprinted by permission from Mazaheri & Picton, 2005.
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6.4.1  Amplitude Asymmetry/ Baseline Shifts— A Unifying 
Perspective?

Ongoing activity has been assumed to average out because it has traditionally been 
viewed to be amplitude symmetric in nature, that is, its peaks and troughs modulate at 
the same rate (Figure 6.6A).

While we are still seeking a complete understanding of the neural origin of the 
scalp electrophysiological signals (Cohen, 2017), the general consensus is that they 
are generated through synchronized post- synaptic current in the dendrites of pyr-
amidal cells (Hämäläinen et al., 1993). Here the EEG reflects the potentials by these 
currents, while MEG captures the magnetic fields. For an oscillation to have sym-
metric amplitude fluctuations the intracellular currents propagating forward to-
wards the soma (here let us arbitrarily designate this as the peak of the oscillation) 
must have the same magnitude as the current coming back from the soma (here 
assume the trough of the oscillation). However, given the asymmetric placement of 
channels responsible for the depolarization and repolarization current it is unlikely 
that the two currents would have the same magnitude when summed up across 
many synchronized neurons with the same orientation (Mazaheri & Jensen, 2008; 
Nikulin et al., 2007).

An alternative way to view ongoing activity is that is it amplitude asymmetric, with 
greater variability in amplitude fluctuations at the peak versus the trough (Figure 
6.6B). One critical consequence of amplitude asymmetric ongoing activity is that it will 
not simply average out to zero when summed across trials. Moreover, any systematic 
suppression or enhancement of the amplitude of the ongoing activity time- locked to an 
event would result in the amplitude envelope of the ongoing activity emerging as a slow 
evoked response when averaging across trials.

Low capacity

Two items

Two items
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Figure 6.5 Grand averaged ERP difference waves (contralateral activity minus ipsilateral ac-
tivity) timelocked to the memory array averaged across the lateral occipital and posterior parietal 
electrode sites and divided across the high and low memory capacity groups.

From Vogel et al., 2005.
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6.4.2  Empirical Evidence Supporting Amplitude Asymmetry

A seminal study by Nikulin and colleagues (2007) provided evidence that the ongoing 
alpha rhythm is “amplitude asymmetric”, specifically referred by them as having a “zero- 
mean”. They went further to propose that a critical consequence of an amplitude asym-
metric ongoing rhythm is that any systematic fluctuations in its amplitude would show 
up as slow responses (they referred to these as baseline shifts) when averaged across 
trials (Figure 6.7).

Following up Nikulin and colleagues, Mazaheri and Jensen (2008) developed a simple 
measure to quantify the amplitude of an oscillation by comparing the variance of its 
peaks with the variance of the troughs (see Figure 6.8).

Moreover, we were able to demonstrate that the degree of amplitude asymmetry of 
an oscillation is directly related to the amplitude of the evoked response generated by 
its modulation. Specifically, we presented a simple check- board stimulus across many 
trials, and then separated the trials into high amplitude of post- stimulus activity, and 

100 ms

(a)

(c)

ER ER

(d)

(b)

Figure 6.6 The amplitude modulation of neuronal oscillatory activity is conventionally viewed 
as being symmetric at approximately zero. (B) We propose that the amplitude modulations of the 
oscillatory activity are asymmetric such that the peaks are more strongly modulated than the 
troughs. For the 10 Hz alpha activity, this could be explained by bouts of activity every ~100 ms. 
(C) The conventional view ignoring asymmetric modulations of oscillatory activity would mean 
that averaging across trials (the arrow representing the start of the evoked response) would not 
result in the generation of slow fields. (D) As a direct consequence of amplitude asymmetry, a 
depression (or increase) in alpha activity in response to a stimulus will result in the generation of 
slow fields when multiple trials are averaged. Adapted from Mazaheri and Jensen (2008).
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low amplitude. We found that despite the stimulus being the same, the sorting of the 
trials based on alpha amplitude resulted in the formation of slow- evoked responses 
(Figure 6.9). Across participants the amplitude, and polarity of these slow responses was 
highly correlated with the direction of the amplitude asymmetry of the ongoing alpha 
activity. Thus we were able to demonstrate (albeit with simple grating stimuli) that it was 
(in principle) possible to form slow- evoked responses in the trial averaged EEG epochs 
if there were systematic changes in the amplitude of the ongoing alpha activity.

Mazaheri and Jensen (2010) proposed four prerequisites for linking modulations of 
oscillatory activity to evoked component generation.

 1. The ongoing MEG/ EEG oscillations must be modulated in amplitude by the 
stimuli or event.

 2. This amplitude modulation of the ongoing activity must correlate with the time 
course of the evoked response (over trials or subjects).

 3. The ongoing oscillations must have an amplitude asymmetry.
 4. The magnitude and/ or polarity of the amplitude asymmetry must relate to the 

amplitude and/ or polarity of the evoked responses (over trials or subjects).

6.4.3  Making the Past as Important as the Future

One rather intriguing consequence of having ongoing activity that never averages out is 
that the amplitude of the pre- event oscillatory activity could modulate the amplitude of 
the post- event- related potentials, when baseline subtracting the event- related potentials 
(Figure 6.10).
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Figure 6.7 Baseline shifts in ongoing oscillations. Upper trace: spatially filtered (with inde-
pendent component analysis) broadband signal from a channel above the right sensorimotor 
area during rest. Lower trace: the mean values in three time intervals. Clearly, there are baseline 
shifts in the ongoing activity associated with oscillations changing from large to small and back 
to large amplitude. If many epochs with similar amplitude dynamics are averaged, oscillatory 
patterns would disappear whereas the baseline shifts would remain leading to the appearance of 
an evoked response.

Nikulin et al., 2007.
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Iemi and colleagues’ (2019) comprehensive study systematically examined the re-
lationship of pre- stimulus power of oscillatory, amplitude asymmetry, and the for-
mation of evoked responses. In particular, Iemi and colleagues’ (2019) focused on 
differentiating the impact of pre- stimulus functional inhibition (a sensory state being 
in a less- responsive state) from amplitude asymmetry on both the early and late sensory 
evoked responses.

Here, with functional inhibition, the authors were referring to the currently widely 
held view that an increase in alpha activity in a sensory system reflects its functional 
inhibition and consequently results in attenuated evoked responses (evidence recently 
reviewed in Van Diepen et al., 2019). They found that the early evoked (<0.200 s: e.g., 
the C1/ N1 components) were indeed modulated by the amplitude of the pre- stimulus 

S1(t) = A(t)(1+sin(2πft) + noise(a)

(b)

(c)

S2(t) = A(t)sin(2πft) + noise

S3(t) = A(t)+sin(2πft) + noise

8–12 Hz

8–12 Hz

8–12 Hz

AFAindex = 0.96

AFAindex = –0.96

AFAindex = –0.07

Am
pl

itu
de

Am
pl

itu
de

Am
pl

itu
de

Throughs
Peaks

Figure 6.8 Various simulations in which surrogate signals were used to test the AFAindex. 
(A) The signal, s1(t), was designed to have an amplitude asymmetry. The amplitude modulation 
was determined by a slower signal A(t). Clearly the peaks (red dots) are more modulated than the 
troughs (blue dots) yielding a strong AFAindex. (B) The signal, s2(t), was designed such that the 
slow modulations, A(t), affected the alpha rhythm in a multiplicative manner. Thus peaks and 
troughs are modulated symmetrically over time yielding an AFAindex close to 0. (C) In signal 
s3(t) slow modulations were added to the alpha oscillations (DC- like offset of the signal). This 
affected peaks and troughs in the same direction producing an AFAindex close to 0.

Adapted from Mazaheri & Jensen, 2008.
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Figure 6.9 Time- frequency representations of the trials with the 30% lowest and 30% highest 
modulations of alpha power (TFRs baseline corrected; −0.6 < t < −0.1 s) in a representative sub-
ject. The respective ERFs (right) reveal a clear difference in the sustained modulation with respect 
to low-  (thin line) and high- alpha- power changes (thick line).
Adapted from Mazaheri & Jensen, 2008.
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Figure 6.10 Ongoing activity (amplitude), event- related oscillations (ERS/ ERD) and 
potentials (ERP) (see text for details). 

The vertical line indicates stimulus onset, while the horizontal line indicates zero signal strength. Yellow and blue 
represent states of strong and weak prestimulus power, respectively.  Reprinted from Iemi et al, 2019.
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alpha activity, independent of the direction of amplitude asymmetry. However, they 
found a strong relationship between amplitude asymmetry of the pre- stimulus ac-
tivity and the late evoked components. These results taken together suggest high 
pre- stimulus alpha likely causes a suppression of early evoked responses since the 
neurons producing these responses are in an inhibited stated, while the amplitude of 
asymmetry property of alpha activity impacts the formation of the later slow evoked 
responses.

The results discussed so far strongly question the old dogma that ongoing and 
evoked activity are distinct independent neural phenomena. However, while the 
studies demonstrate that it is possible to generate slow evoked potentials through 
modulations of the amplitude of the ongoing activity (without any “new” additive ac-
tivity), it is still unclear if this mechanism applies to cognitively relevant event- related 
responses.

6.4.4  Can Amplitude Asymmetry Explain the Emergence 
of the Most Cognitive of ERPs?

As mentioned earlier, the CDA is a slow sustained response proposed to reflect the 
neural representation of an item in working memory. It is often elicited through a para-
digm where participants are presented with a bilateral array of colored squares and 
instructed to memorize the location of the items in the hemifield indicated by the arrow 
(i.e., test array). The success of memorizing the items in the test array is then subse-
quently assessed a second later through the presentation of another array that is either 
identical to the test array or missing one of the items. The CDA is derived by averaging 
epochs locked to the onset of the test array and subtracting the contralateral ERPs from 
the left.

The amplitude of the CDA is modulated by the number of items held in working 
memory (Vogel et al., 2005) However, the neural origins of the CDA are still rather a 
mystery. Moreover, the same paradigm has also been found to elicit robust modulations 
of alpha activity that are also modulated by the number of items held in working 
memory (Sauseng et al., 2009). In addition, just like the CDA, the degree of lateralized 
alpha modulation also seems to correlate with the individual differences in working 
memory. This suggests some overlap between the neural processes underlying the CDA 
and the alpha modulation.

A study published by Van Dijk and colleagues (2010) explored the link between 
changes in alpha activity and the CDA, and found them to be quite linked together. 
Specifically, they observed that both the degree of alpha suppression across individuals, 
as well as their degree of alpha amplitude asymmetry correlated very strongly with the 
amplitude of the CDA. Moreover, the alpha modulation and the CDA had a remarkably 
similar topography over the scalp. These observations taken together could suggest that 
the CDA and the alpha modulation during the period that the items are held in working 
memory are one and the same thing.
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What are the consequences of re- labelling the CDA as a change in ongoing ac-
tivity rather than a purely additive response? For one thing, this could have profound 
implications on how we believe the brain carries out working memory processes. As 
mentioned, one popular view of the role of alpha modulation in cognition is the 
suppression of task- irrelevant regions (Van Diepen et al., 2019). Thus, the CDA, rather 
than being an additive neural process involved in memory maintenance, could instead 
be reflecting the inhibition of task- irrelevant brain areas. Additionally, unifying on-
going and event- related activity has the potential to mechanistically account for some 
rather intriguing ERP findings, for which the origins of the responses remain a mystery. 
For example, a now- classic study (Otten et al., 2006) found that the amplitude of slow 
event- related potentials locked to the onset of a cue, but peaking before the onset of a 
word to be remembered, could predict if the word was later remembered. By linking 
the slow ERPs to the modulation of ongoing alpha activity, one simple interpretation of 
the observed difference between the remembered versus forgotten words could be that 
alpha activity is higher (i.e., the brain is in a more inhibited state) prior to the onset of 
forgotten words. This is indeed in line with several experiments observing pre- stimulus 
alpha oscillations to modulate perception (van Dijk et al., 2008) as well as reflect slips of 
sustained attention (Bengson et al., 2012).

6.4.5  Does Amplitude Asymmetry Explain the Emergence 
of Most Cognitive of ERPs?

While I hope that thus far this chapter demonstrates that modulations of ongoing ac-
tivity that is amplitude asymmetric can produce sustained ERPs, the jury is still out on 
whether the ongoing and evoked activity, particularly the slow late components, are 
one and the same. Fukuda and colleagues (2015) challenged this view by observing that, 
while alpha modulation and CDA are tightly linked, they do appear to uniquely con-
tribute to individual differences between working memory capacity. Specifically, the 
authors reasoned if the alpha suppression and CDA are two sides of the same neural 
phenomena they should also show the same relationship to individual differences 
in working memory performance. However, they found that each signal appeared to 
uniquely contribute to individual differences in working memory capacity.

More recently, Bae & Luck (2018) went further and used a decoding approach to in-
vestigate the specific roles alpha modulation and the slow sustained response could play 
in attention and working memory. They found modulations in the ongoing alpha ac-
tivity to be associated with the spatial location of attended stimuli, whereas the ampli-
tude and spatial distribution of the slow- sustained ERPs were sensitive to orientation. 
Interestingly, they proposed that the ERP and alpha modulation, while serving distinct 
roles, reflect attentional mechanisms that prevent interference, rather than the actual 
WM representation.

While these studies certainly do not rule out that the modulation of ongoing activity 
could be a significant contributor to the formation evoked responses, they do suggest 

 



128   ALI MAZAHERI

 

the presence of additive activity involved in WM maintenance. In addition, the mech-
anism underlying amplitude asymmetry of alpha activity is also applicable to other fre-
quency bands. This means that while the alpha rhythm is the predominant oscillation 
making up the ongoing activity, there could also be other rhythms present, such as the 
delta and theta rhythms (Stefanics et al., 2010), whose event- related modulation likely 
impacts the formation of evoked responses.

6.5 FINAL THOUGHTS

I would certainly not advocate any researchers to dismiss the event- related averaging 
approach in exchange for looking at changes in the brain’s ongoing activity. However, 
strictly viewing ongoing activity and evoked responses as separate unique entities is 
implicitly believing the brain was doing nothing before the onset of the experimental 
event. Such a view is particularly limited when it comes to trying to understand how the 
brain tries to make sense of the outside world.

As an example of how the brain endeavors to make sense of the world, one rather in-
fluential theory proposes that the brain is constantly making predictions about what 
is going to happen next (reviewed in detail in Friston, 2010). Specifically, this theory, 
referred to as “predictive coding”, postulates that brain sets expectations and predictions 
about upcoming sensory input and then subsequently updates these expectations after 
the onset of the sensory input. Here, the discrepancy between the expectation and actual 
sensory input is referred to as prediction error. While evoked responses can reveal in-
formation about the degree of prediction error and the perceived mismatch between ex-
pectation and reality, they are not directly informative about the neurophysiology of the 
predictive processes themselves, since, by definition, the evoked response emerges after 
the sensory input. By removing the separate labels (going back to the Warhol quote) of 
evoked responses and ongoing activity, it is possible to get a richer, but at the same time 
more parsimonious, picture of the neural processes underlying cognition.

Finally, I paraphrase Warhol for one last time: I hope some of the mystery behind 
event- related responses and ongoing activity is gone, but the amazement is just starting.
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CHAPTER 7

FREQUENCY ANALYSIS  OF 
THE MONKEY NEO CORTICAL 

LO CAL FIELD P OTENTIAL

STEVEN L. BRESSLER

7.1  Introduction

The neocortex of the macaque monkey is very similar to that of the human in its archi-
tectonics. The six neocortical laminae show similar variation with region in the monkey 
and human. In fact, it appears that all mammalian species share a common microstruc-
ture, which makes distinguishing neuroanatomical slices from different mammalian 
species under the microscope nearly impossible. What appears to be more different be-
tween the macaque monkey and human neocortices is at the macroscopic level. Overall, 
the number of neocortical areas is larger in the human brain, and the between- area 
connectivity is more complex. However, the macroscopic structure of the two species is 
highly similar in certain systems, for example, the visual system.

The similarity between the human and macaque monkey neocortex was first 
recognized for the visual system, where neocortical oscillations are a prominent product 
of the visual architecture of both humans and monkeys. Visual neocortical local field 
potentials (LFPs) show oscillations in both low- frequency (delta, theta, and alpha) and 
high- frequency (beta and gamma) bands. Many studies report the importance of the 
neocortical LFP oscillations in the boundary frequency region between the low beta 
(13– 20 Hz) and alpha (8– 12 Hz) frequency bands for top- down neocortical processing 
in vision (Liang et al., 2002; Bressler et al., 1993; Bressler et al., 2007; Engel & Fries, 2010; 
Bressler & Richter, 2015; Bastos et al., 2015; Richter et al.,2018), and in the theta (4– 7 Hz) 
and gamma (above >30 Hz) bands for bottom- up visual processing (Markov et al., 2013; 
Bastos et al., 2015; Michalareas et al., 2016).

A great deal of research has also involved oscillatory activity in the prefrontal cortex 
of the macaque monkey, which has important analogies to the human prefrontal cortex, 
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which is the most developed of all the mammalian species and is therefore unique. 
The macaque monkey prefrontal cortex is clearly different from that of the human, 
but it shares many of the same features. As working memory is an essential compo-
nent of different cognitive functions requiring the prefrontal cortex in both macaque 
monkeys and humans (Miller et al., 2018), studies of working memory in the macaque 
monkey prefrontal cortex are essential for understanding human working memory. 
Monkey studies first demonstrated a role for prefrontal neocortical oscillatory activity 
in working memory (Siegel et al.,2009), and these provided the theory that neocortical 
oscillations are important for working memory processes in the beta- alpha and gamma 
bands (Pesaran et al., 2002; Salazar et al., 2012; Antzoulatos & Miller, 2016). This specu-
lation has now been verified (discussed later; see also Lundqvist et al.,2016, 2018; Miller 
et al., 2018).

The study of working memory oscillations in the monkey prefrontal cortex gives 
impetus to the investigation of prefrontal neocortical oscillations in human working 
memory (D’Esposito et al., 1995), and recent human studies demonstrate the import-
ance of prefrontal oscillatory activity in human working memory (Jensen et al., 2007; 
Alekseichuk et al., 2016). Research by Miller and colleagues (2018) involving macaque 
monkeys verifies that working memory oscillations exist in the theta, alpha- beta, and 
gamma frequency bands. These oscillations are best studied in monkeys, which dem-
onstrate excellent working memory capability, have associated oscillations that can be 
studied invasively, and which have a prefrontal neuroanatomy that is similar to humans. 
Questions about working memory and high- frequency (beta and gamma) oscillations 
tend to be addressed using monkeys due to the relatively low signal- to- noise ratio at 
higher frequencies in the human electroencephalogram (EEG) (Crone et al., 2006). The 
purpose of this report is to present evidence on neocortical oscillations from the ma-
caque monkey engaged in cognitive functions that rely on working memory. 

7.2 Dendrites, Oscillations, 
and Cognition

Transmembrane ionic currents contribute to the extracellular field. Synaptic activity 
is often the most important physiological source of extracellular current flow. The 
dendrites and soma of a neuron are treelike and have an electrically conducting in-
terior surrounded by a permeable but insulating membrane. Transmembrane current 
flows into the dendrites of neocortical neurons at excitatory synapses due to electro-
motive forces created by neurotransmitter molecules acting on postsynaptic receptor 
molecules, or out of the synaptic regions at inhibitory synapses. In either case, current 
flows down the length of the dendritic shaft, across the dendritic membrane, and 
completes a current loop through the extracellular space. The extracellular current loops 
give rise to extracellular potential differences that are detected as the LFP (Freeman, 
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1975; Buzsaki et al., 2012). The MEG is thought to arise from those same currents 
passing through the dendritic shafts of the same neurons (Murakami & Okada, 2006). 
Oscillatory activity is a prominent feature of both electric and magnetic signals, higher 
frequency oscillations likely reflecting interactions of excitatory and inhibitory neurons 
(Kopell, 2000).

There is growing recognition that the dendrites of neocortical neurons are thus es-
sential for the genesis of neocortical oscillations, and there is speculation that the dy-
namics of cognitive processing, including working memory (Voytek & Knight, 2015), 
depends on oscillations. However, the recording and characterization of dendritic ac-
tivity is problematic. It is usually not possible to record from single dendrites of neurons 
in the brain due to their thinness, or from the dendritic trees of single neurons due to the 
lack of extracellular potentials from single- neuron dendrites. Also, neither the single- 
neuron dendritic branch response nor the single- neuron dendritic tree response can be 
extracted from the compound dendritic response. For these reasons, much of neuro-
physiology has focused on the action potential (spike) as the essential neuronal signal. 
This focus is not because of the neuron doctrine, which, holding only that the neuron is 
the central signaling cell in the nervous system, is neutral with respect to the parts of the 
neuron that carry out particular aspects of that signaling.

Dendritic activity, and hence oscillatory activity, is typically recorded at the popula-
tion level— from groups of neurons rather than from single neurons. In most neurons, 
the resultant sum of synaptic actions from an entire dendritic tree, contributed to by 
thousands of synaptic potentials, is delivered to the initial segment of the axon, where 
it causes the resultant axonal membrane potential to be graded in intensity. The mem-
brane potential of the initial segment has a low threshold for generating a spike because 
voltage- sensitive Na +  membrane channels are concentrated there. The recorded axonal 
membrane potential may be supra- threshold if the membrane potential is above the 
threshold, in which case spike trains are generated and travel down the axon, or sub- 
threshold, in which case the axon may be affected but no spike trains are generated. 
The spike trains may contribute to the neuronal synchronization underlying the LFP 
(Murthy & Fetz, 1996).

The EEG, electrocorticogram (ECoG), intracranial EEG (iEEG), 
magnetoencephalogram (MEG), and LFP signals all are generated by the dendritic ac-
tivity of neuronal populations, and all display oscillations. Except for the MEG, which 
is magnetic, all these signals are electric and are recorded with respect to a reference 
potential. The EEG and MEG are usually recorded from outside the cranium, whereas 
the ECoG, iEEG, and LFP are recorded from inside the cranium. The ECoG is recorded 
from outside the cortical tissue, whereas the iEEG and LFP are recorded from inside 
the cortex. The iEEG is recorded from macroscopic electrodes and the LFP is usually 
recorded with indwelling microelectrodes. The LFP recording may be monopolar, in 
which case a single microelectrode records the LFP, or it may be bipolar, in which case 
the LFP is the difference in potential between two nearby microelectrodes. In fact, the 
LFP is often recorded from the same microelectrodes used to record neuronal spikes, 
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and at the same time (Perelman & Ginosar, 2007; Salazar et al., 2012). However, the LFP 
typically shows oscillations whereas they are usually not obvious in spike activity.

Since these signal types all reveal oscillatory activity, which is considered by many to 
be essential for cognition in the brain (Voytek & Knight, 2015), and are typically present 
when humans perform cognitive tasks, the dendritic activity of neurons in the brain 
should not be overlooked in the search for neural correlates of cognition, even though it 
cannot currently be studied in the single neuron. Oscillations in the summed dendritic 
activity of neuronal populations are strongly related to cognitive function in the neo-
cortex (Donner & Siegel, 2011).

7.3 Phase Coupling and Causality 
in Sensorimotor Systems

The somatosensory- motor system provides a useful example of neocortical coord-
ination during a cognitive task performed by the macaque monkey. LFP oscillations 
recorded from somatosensory and motor sites in the macaque monkey neocortex 
are phase coupled in the beta frequency band during the time in the task that a self- 
generated hand press cues the monkey by somatosensation that a visual stimulus (0 
msec) is soon to appear on a visual display screen. The stimulus is subsequently per-
ceptually discriminated as part of a visual pattern discrimination task requiring hand 
musculature control (Brovelli et al., 2004). LFPs from specific site pairs in primary and 
secondary somatosensory cortices, and primary and secondary motor cortex, become 
beta- phase- coupled (phase synchronized) when the hand press cue is active (Figure 7.1). 
The presence of beta oscillations in sensorimotor cortex is consistent with the theory 
that beta oscillations signal maintenance of the current sensorimotor state (Engel & 
Fries, 2010) since sensorimotor coordination (LFP phase coupling) is likely present 
throughout this time. The pattern of somatosensory- motor site- pair coupling is con-
sistent with execution of the hand press cue: somatosensory input is fed to the primary 
somatosensory cortex and motor output is transmitted from the primary motor cortex 
to the motor spinal cord to execute the hand press. In addition to phase coupling, con-
ditional spectral Wiener– Granger (WG) causality (Ding et al., 2006) was also measured 
on the same set of sensorimotor LFP recordings. The resulting pattern of sensorimotor 
neocortical site- pair neural causality also supports a sensorimotor feedback loop for 
execution of the hand press cue, with influences that are directed to the primary som-
atosensory cortex from somatosensory inputs, and from there to the primary motor 
cortex, with feedback loops between primary and secondary somatosensory cortices, 
and between primary and secondary motor cortices, signaling modulatory influences 
(Figure 7.1).

The fact that the observed oscillations are in the beta frequency band suggests 
that sensorimotor neocortical neurons are coordinated in anticipation of making a 
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sensorimotor decision in similar manner to the coordination of motor neocortical 
neurons during steady muscle contractions and steady holding periods following 
phasic movements as reported by numerous literature studies (e.g., Engel & Fries, 
2010). Thus, when the monkey makes a hand press on the lever, sensorimotor neo-
cortical neurons are coordinated in anticipation of the monkey making the subse-
quent sensorimotor decision. The observation of conditional spectral WG causality 
from neurons at one sensorimotor neocortical site to those at another site appears to 
indicate more than the observation of phase coupling alone by suggesting that sen-
sorimotor neocortical neurons causally influence each other as part of that deci-
sion. Finally, the reported results are consistent with accumulating evidence that 
oscillations in the beta frequency band have a distinct physiological role and that they 
provide an effective means of controlling spike timing, thereby coordinating informa-
tion transfer across brain regions and supporting spike- timing dependent plasticity 
(Engel & Fries, 2010).
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Figure 7.1 Prestimulus beta- frequency coherence and (conditional spectral Wiener- )
Granger causality graphs derived from the sensorimotor cortices of two monkeys (M1, left 
hemisphere; M2, right hemisphere). A self- generated hand press cues the monkey that a visual 
stimulus is soon to appear on a visual display screen. The stimulus is subsequently perceptually 
discriminated as part of a visual pattern discrimination task (Brovelli et al., 2004). In each case, 
the pattern of synchronization (coherence) and Granger causality of beta- band oscillations from 
primary and secondary somatosensory and motor cortices is consistent with execution of the 
hand press cue: somatosensory input is fed to the primary somatosensory cortex and motor 
output is transmitted from the primary motor cortex to the motor spinal cord to execute the 
hand press.
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7.4 Phase Coupling and Causality 
in Visual Neocortex

LFPs, simultaneously recorded from the striate and extrastriate (V4— visual area 4 and 
TEO— temporal- occipital area) visual cortices prior to appearance of the visual stimulus 
in the same visual pattern discrimination task (Bressler & Richter, 2015), also show os-
cillatory activity in the beta frequency range. The same phase- coupling and neural caus-
ality metrics have been computed from the visual LFPs as from somatosensory- motor 
LFPs. The main finding is that extrastriate– striate site pairs are beta- frequency phase 
coupled and carried by strong top- down (extrastriate- to- striate) beta influences, in an-
ticipation of visual processing (Figures 7.2 and 7.3). Furthermore, behavioral context is 
conveyed to primary visual cortex prior to appearance of the visual stimulus (Richter 
et al., 2018). Thus, information about the visual stimulus appears in the visual cortex 
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Figure 7.2 Prestimulus beta- frequency power, coherence, and (conditional spectral Wiener- 
Granger causality spectra of V1/ V2 and V4/ TEO LFPs. (A) Average striate power spectrum over 
sites (black line ± s.e.m.), and the residual power spectrum after 1/ f removal (red line ± s.e.m.) for 
V1 sites. (B) Average extrastriate power spectrum over sites and monkeys (black line ± s.e.m.), 
and the residual power spectrum after 1/ f removal (red line ± s.e.m.) for the V4/ TEO sites. 
(C) Average coherence spectrum over V1/ V2- extrastriate site pairs ± s.e.m. for V1/ V2- extrastriate 
pairs. (D) Average top- down (red line ± s.e.m.), and bottom- up (blue line ± s.e.m.) GC spectra for 
V1- extrastriate pairs. Shaded grey rectangular region denotes the frequencies (8– 23 Hz) where 
top- down and bottom- up sGC were significantly different (p<0.001).
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before the actual onset of the visual stimulus. This result validates previous proposals 
that top- down visual processing depends on interareal synchronization in visual neo-
cortex (von Stein et al., 2000), and suggests that it acts to “prime” visual cortex to pre-
pare it for receiving the visual stimulus.

The same basic methodology, namely conditional spectral WG causality analysis, has 
subsequently been applied to visual neocortical LFPs in macaque monkeys performing 
a visuospatial attention task (Bastos et al., 2015). In the visual system, neocortical areas 
are seen to interact in both bottom- up and top- down directions, with bottom- up 
gamma- band influences conveying sensory signals, and top- down beta- band influences 
modulating those bottom- up influences according to behavioral context. In the ma-
caque monkey visual neocortex, bottom- up influences are carried by theta- band (~4 
Hz) and gamma- band (~60– 80 Hz) synchronization, and top- down influences by 
beta- band (~14– 18 Hz) synchronization (Bastos et al. 2015). Furthermore, neocor-
tical hierarchies (Felleman & Van Essen, 1991; Hilgetag et al., 1996) created based on 
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Figure 7.3 Prestimulus beta- frequency coherence and top- down (conditional spectral Wiener- 
)Granger causality maps. Top: Maps of the recording sites for M1 and M2. V1/ V2 electrode 
locations are marked by yellow circles, and extrastriate (V4 and TEO) locations by gray circles. 
Middle: enlarged maps of visual cortex showing top- down sGC at 16 Hz as arrows for V1/ V2- 
extrastriate pairs. Bottom: corresponding maps of coherence for the same site pairs. Thickness of 
the top- down sGC arrows and coherence bars is proportional to the magnitude of sGC or coher-
ence at 16 Hz.
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asymmetries in these directional influences are similar to those based on asymmetries 
in neuroanatomical connections (Markov et al., 2014).

Effective interareal interaction in the visual system depends on local (within- area) 
synchronization of oscillations that are layer specific. Supragranular layers show 
local gamma- band synchronization, whereas infragranular layers show local alpha- / 
beta- band synchronization (Buffalo et al., 2011; Xing et al., 2012; Roberts et al., 2013). 
Since supragranular layers primarily send bottom- up projections, and infragranular 
layers primarily send top- down projections, it is proposed that interareal syn-
chronization in the gamma band mediates bottom- up influences and that the beta 
band mediates top- down influences (Wang, 2010; Bastos et al., 2012; van Kerkoerle 
et al., 2014).

Metrics of the bottom- up or top- down character of interareal connections have 
been used to create neocortical hierarchies. A functional metric of directed influence is 
computed as the directed influence asymmetry index (DAI), based on the conditional 
spectral WG causality in bottom- up and top- down directions. A neuroanatomical 
metric of directional influence is computed as the proportion of supragranular labeled 
neurons to the sum of supragranular and infragranular labeled neurons (SLN). The DAI 
and SLN metrics quantify the degree to which an interareal projection is top- down or 
bottom- up. These hierarchies are generally similar whether created from conditional 
spectral WG causality or from neuroanatomical metrics. The functional hierarchies fur-
ther demonstrate that bottom- up influences utilize theta and gamma bands, whereas 
top- down influences utilize the beta band. If directional influences represent interareal 
communication, and, as has been speculated (Bastos et al., 2015), increasing oscillation 
frequency entails increasing communication throughput, then gamma- band commu-
nication might be expected for bottom- up influences, since they are expected to require 
higher- throughput communication.

The finding of top- down beta influences in the visual system (Bastos 
et al., 2015) is consistent with Richter and colleagues’ (2018) results that top- down 
beta signaling conveys behavioral context to the visual cortex, and with the general 
conclusion that beta- band synchrony signals the “status- quo” in neocortex (Engel & 
Fries, 2010).  In fact, a distributed network of phase- coupled beta- band oscillations 
might easily signal predicted sensory and motor events (Bastos et al., 2012; Bressler & 
Richter, 2015).

7.5 Oscillations 
in Prefrontal Neocortex

Monkey LFP oscillations have been reported during working memory in the theta, 
alpha, beta, and gamma bands. The gamma band is associated with sensory information, 
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and gamma- band power correlates with the number of objects held in working 
memory, whereas the beta band is associated with top- down information, and beta- 
band synchrony correlates with task rules (Liang et al., 2002; Miller et al., 2018; Richter 
et al., 2018). Gamma bursting is anti- correlated with alpha- beta bursting (Lundqvist 
et al., 2016).

Information in prefrontal neuronal spiking has been linked to brief bursts in the 
gamma band in monkeys performing a working memory task (Lundqvist et al., 2016). 
Prefrontal laminar LFP data has been obtained from monkeys using prefrontal laminar 
probes (Bastos et al., 2018). Gamma- band activity is strongest in the superficial layers, 
and beta and alpha LFP power is strongest in the deep layers. In keeping with pre-
vious studies (Lundqvist et al., 2016), gamma- band bursting is most informative about 
working memory in the superficial layers.

Gamma- band bursts, varying in time and frequency, were reported to accompany 
both the encoding and re- activation of sensory information (Bastos et al., 2015). The 
conclusion is that gamma bursts could gate access to, and prevent sensory interfer-
ence with, working memory, since only the neuronal activity that was associated with 
working memory encoding and decoding was correlated with gamma- band burst rate 
changes. Bursts in the beta band were also brief and variable, but they reflected a “default 
state” that was interrupted by encoding and decoding.

7.6 Phase Coupling and Causality 
in the Fronto- Parietal Network

The prefrontal cortex is not the only region of neocortex involved in working 
memory. To test the involvement of posterior parietal cortex in working memory, 
LFPs were recorded from distributed sites in the prefrontal cortex and in the pos-
terior parietal cortex of macaque monkeys performing a working memory delayed- 
match- to- sample visual identity task (Salazar et al., 2012). Phase coupling between 
prefrontal and posterior parietal cortices, examined by computing spectral coher-
ence between prefrontal- posterior parietal LFP pairs, was found in the beta frequency 
band. Analysis of prefrontal- posterior parietal interactions in working memory by 
conditional spectral WG causality applied to the delay period of the delayed match- 
to- sample visual identity task showed that the beta frequency band was dominant. 
Causal influences in the beta band were roughly balanced between the two directions, 
that is, beta causal influences in the prefrontal- to- posterior parietal and posterior 
parietal- to- prefrontal directions were roughly the same (slightly greater from pos-
terior parietal cortex to prefrontal cortex). This finding indicates that prefrontal 
and posterior parietal cortices are roughly in balance during working memory task 
performance.
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7.7  Conclusions

This chapter focused on neocortical oscillations in the macaque monkey related to 
cognitive processes in visual pattern discrimination, visuospatial attention, and visual 
working memory tasks. In visual processing, beta- frequency oscillatory influences pre-
dominate in the top- down direction prior to arrival of the visual stimulus, suggesting 
that beta- frequency oscillations convey task rule- related information from higher to 
lower areas of visual neocortex for visual processing during vision.

In visual working memory, the prefrontal cortex and posterior parietal cortex in both 
monkeys and humans are expected to be linked together as parts of the fronto- parietal 
network (Salazar et al., 2012; Alekseichuk et al., 2016). Beta- frequency oscillations are 
found to link posterior parietal and prefrontal cortex, with slightly greater causal in-
fluence from the posterior parietal cortex to the prefrontal cortex. Oscillations in the 
gamma and theta frequency bands are also prominent in neocortex in working memory. 
The gamma band is associated with sensory information in monkey working memory. 
The theta band is associated with human working memory (Raghavachari et al., 2001). 
Potential topics for future investigation are the presence of gamma oscillations in the 
human prefrontal cortex during working memory (Howard et al., 2003), and their rela-
tion to theta oscillations (Jokisch & Jensen, 2007).

Oscillations in different frequency bands are exhibited in the monkey neocortex in 
relation to cognitive function. These oscillations are similar to those in humans, and 
therefore should be considered when trying to understand the role of oscillations in 
human cognition. Prominent among the frequency bands at play in cognition involving 
visual and prefrontal systems are theta, alpha- beta, and gamma. These bands are fore-
most among those found in visual cortex, prefrontal cortex, and posterior parietal 
cortex in relation to visual pattern discrimination and visual working memory.
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CHAPTER 8

GAMMA ACTIVIT Y IN 
SENSORY AND CO GNITIVE 

PRO CESSING

DANIEL STRÜBER AND CHRISTOPH S. HERRMANN

8.1 Introduction and history of 
research on gamma oscillations

When the German psychiatrist Hans Berger reported his discovery of the human EEG 
in 1929, he described two types of waves with the larger ones oscillating at 10– 11 Hz and 
the smaller ones at 20– 30 Hz (Berger, 1929)— the well- known alpha-  and beta- waves, 
respectively. However, in view of the results from the first Fourier analysis carried out 
on the human EEG by his physicist co- worker Dietsch (1932), Berger had to acknow-
ledge that his beta- waves contained a lot more components than originally thought with 
frequencies up to 125 Hz (Berger, 1934;1936). By comparing spontaneous EEG recordings 
with recordings during mental calculation, Berger (1937) observed effects predomin-
antly in the 40– 90 Hz range which led him to conclude that beta- waves of this specific 
(high- )frequency band “are the physical effects that accompany mental processes”. One 
year later, the term “gamma waves” was proposed for higher frequencies at 35– 45 Hz, 
that is, beyond the traditional beta- band (Jasper & Andrews, 1938). However, this first- 
time labeling went mostly unnoticed at that time and “gamma” was later reintroduced 
by other authors (e.g., Başar & Özesmi, 1972; Bressler & Freeman, 1980). Instead of 
“gamma”, the term “40- Hz oscillation” is also widely used.

The first experimental evidence for a possible role of gamma oscillations in early 
sensory processing in the mammalian brain was provided by Adrian (1942; 1950), who 
recorded oscillatory responses of the olfactory bulb of hedgehogs, cats, and rabbits 
to odorous substances. He obtained oscillatory responses in the 30– 60 Hz frequency 
range which he termed “induced waves” to differentiate these events from “intrinsic 
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waves”, signaling spontaneous activity (Adrian, 1950). Inspired by Adrian’s suggestion 
that neurons responding preferentially to certain odors might be spatially organized, 
Freeman collected multi- channel EEG recordings from the surface of the olfactory bulb 
of rabbits trained to respond to different odorants (Freeman & Skarda, 1985; Freeman, 
1975). These analyses revealed odor- specific spatial amplitude patterns of transient 
gamma bursts at 40– 80 Hz occurring between inhalation and response, reflecting a spa-
tial code of Adrian’s induced waves that seemed to underlie the discrimination of odors.

In addition to the pioneering studies of Freeman on the olfactory bulb of the rabbit, 
Başar and colleagues observed “gamma resonance” phenomena in the hippocampus and 
other structures of the cat brain in response to auditory stimulation (Başar et al., 1975; 
Başar et al., 1976; Başar & Özesmi, 1972), that is, an amplification of the gamma frequency 
component of the evoked potential in relation to the spontaneous gamma activity just 
before stimulation. Resonance phenomena have also been studied by recording the 
evoked potential in response to repetitive stimulation at different frequencies (so- called 
steady- state evoked potentials, Regan & Spekreijse, 1986). If the amplitude of the steady- 
state response peaks at a certain frequency, this component is interpreted as the reson-
ance frequency of the underlying oscillator. For gamma oscillations in the human visual 
cortex, Regan (1968) first demonstrated a peak frequency of 45– 55 Hz by using photic 
stimulation flickering between 5 and 60 Hz. Later on, Herrmann (2001) applied flick-
ering light at frequencies from 1 to 100 Hz and found clear resonance phenomena in 
the gamma range. For the auditory modality, Galambos and colleagues (1981) reported 
a comparable phenomenon at 40 Hz in response to tone bursts at different rates, which 
the authors termed the auditory “40- Hz event- related potential”.

Whereas most of the early studies on gamma activity were concerned with its role 
in sensory processing, the first attempts to relate gamma to more cognitive processes 
lacking a strict relation to stimulation were in the late 1970’s and early 1980’s. One prom-
inent example is the work of Sheer (1984), who used 40 Hz EEG as a measure for chan-
ging states of focused arousal during cognitive tasks in humans (e.g., Spydell et al., 1979). 
Similarly in the cat neocortex, fronto- parietal gamma band coherence was shown to 
increase during states of expectancy and focused attention (Bouyer et al., 1981). These 
studies pioneered the current notion of a role for gamma oscillations in top- down atten-
tional networks (Engel et al., 2001).

In the late 1980’s, Gray & Singer (1989) revolutionized the research on gamma ac-
tivity by observing synchronous gamma oscillations in spiking activity of the cat visual 
cortex in response to light stimuli. Gray and collaborators (1989) extended their ini-
tial finding of short- range gamma synchronization to spatially more segregated cells. 
They demonstrated that neurons from distant parts of the visual cortex oscillate syn-
chronously if presented with a coherent stimulus like a single long bar (or two shorter 
bars moving in the same direction), but not in case of two independent stimuli like 
two bars moving in opposite directions. This finding was highly influential because 
it suggested that gamma synchrony could serve as a mechanism for binding together 
different features to form a coherent object (see, for reviews, Engel et al., 1997; Singer & 
Gray, 1995).
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Such binding- related synchronization of oscillatory gamma responses between 
neural assemblies has not only been observed in the visual cortex of the anaesthetized 
cats (Eckhorn et al., 1988; Engel et al., 1991; Gray et al., 1989), but also in awake monkeys 
(Frien et al., 1994; Kreiter & Singer, 1996). This work stimulated a wealth of human 
EEG studies on gamma oscillations and their possible role in visual feature- binding 
and object representation (see, for review, Tallon- Baudry & Bertrand, 1999). However, 
it soon turned out that gamma oscillations are not related to a single function like 
visual grouping but that they subserve a multiplicity of cognitive functions, including 
attention, learning, memory, and language processing, to name just a few (for reviews, 
see Herrmann et al., 2010; Jensen et al., 2007; Pulvermüller et al., 1997; Tallon- 
Baudry, 2009).

Given this large variety of cognitive gamma correlates, the question arose whether 
there might be a common fundamental process to which the many functions can be 
reduced to. In this context, it has been proposed that basic memory mechanisms could 
underlie functions like attention, object representation, and language (Herrmann et al., 
2004). Going further by including “non- cognitive” functions of gamma oscillations 
recorded from subcortical areas of the mammalian brain and even from invertebrate 
ganglia, it has been argued that gamma oscillations represent a universal operator acting 
in concert with other oscillatory systems to control the integrative brain functions at all 
sensory and cognitive levels (Başar, 2013; Başar- Eroǧlu, Strüber, Schürmann et al. 1996).

However, Whitham and colleagues (2007) challenged research on EEG gamma ac-
tivity by demonstrating that most of the EEG gamma activity disappeared from the 
spectrum as a result of total neuromuscular blockade. In the following year, Yuval- 
Greenberg and colleagues’ (2008) work questioned the widely held assumption that 
scalp- recorded induced gamma activity is of cortical origin. They demonstrated that 
this type of gamma activity coincides with the occurrence of miniature eye movement. 
The possibility that large parts of the EEG gamma activity were artefactual rather than 
neural activity had presented a major challenge to the EEG gamma community, and 
it is likely that many earlier reports on the role of induced gamma activity are heavily 
contaminated by muscular activity. Nevertheless, this does not mean that all previous 
research is invalidated because there are several methodological issues that need to be 
considered when evaluating how severe specific data sets are affected. There is clear evi-
dence in the literature that neural gamma activity can, and has been, detected by means 
of EEG (Schwartzman & Kranczioch, 2011). Since then, research aims to develop arte-
fact removal techniques in order to regain confidence into the functional role of EEG 
gamma activity (see Sections 8.8, 8.9).

8.2 Types of gamma activity

Gamma oscillations are part of the total EEG energy to a varying degree at any moment 
in time. Such spontaneous or ongoing activity occurs independently of any external 
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stimulation and may signal alterations of internal states like arousal or alertness (Strüber 
et al., 2001). If gamma oscillations are related to the processing of external stimuli, a 
distinction is made between “evoked” and “induced” activity (Başar- Eroǧlu, Strüber, 
Schürmann, et al., 1996). Evoked gamma responses are strictly time-  and phase- locked 
to stimulus onset, that is, each single trial occurs at the same latency with zero phase 
lag across trials, therefore summing up after averaging. Thus, evoked activity can be 
analyzed by transforming the averaged single- trials (i.e., the averaged evoked potential, 
ERP) into the frequency domain (see Figure 8.1, left panel). This type of gamma activity 
is typically observed within an early time window of ~50– 150 ms following stimula-
tion onset. In contrast, induced activity occurs later, following stimulation by at least 
200– 300 ms, and it cancels out almost completely if averaged due to its inter- trial vari-
ation of phase and latency. Therefore, to detect induced gamma oscillations, each single 
trial needs to be subjected to a wavelet transform, and then the resulting absolute power 
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Figure 8.1 Analysis of evoked and induced gamma activity. Left: Averaging all single trials 
containing evoked and induced gamma oscillations yields the ERP. Transforming the ERP into 
the time- frequency domain (wavelet transform) leaves only the evoked gamma activity, because 
the induced gamma activity cancels out in the ERP due to phase jitter. Right: Averaging the ab-
solute values of each single trial’s wavelet transform yields both evoked and induced activity (i.e., 
the total activity). Thus, evoked activity is obtained with both types of analyses, whereas induced 
gamma activity appears only in the average of the single trial wavelet transforms.

Adapted from Herrmann et al., 2014.
NB: The latency jitter of the induced activity induces temporal smearing in the total activity. a.u., arbitrary units.
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values are averaged across trials without cancellation (see Figure 8.1, right panel). Note, 
however, that this average contains not only the induced but also the evoked activity and 
has, therefore, been termed “total activity” (Herrmann et al., 2014). Within this plot of 
total activity, all activity that is not also present in the evoked plot, can be referred to as 
induced activity. While Figure 8.1 depicts the differences between the different types of 
gamma activity in principle, Figure 8.2 represents real data from human experiments.

In traditional EEG research, the range of gamma frequencies is given as 30– 80 Hz 
with evoked activity often oscillating nearby 40 Hz, whereas induced responses can 
also reach higher frequencies (Herrmann, Munk, et al., 2004). However, in the con-
text of subdural electrocorticography (ECoG) in epilepsy patients, a broad range of 
very high gamma frequencies (around 80– 200 Hz) was discovered unexpectedly and 
called “high gamma” to distinguish this broadband response from the traditional “low 
gamma” oscillations in narrower bands (for a review, see Crone et al., 2011). Although 
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Figure 8.2 Time- frequency plots and topographies of evoked and induced gamma activity. 
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(A, B) Adapted from Naue et al., 2011; (C) Adapted from Busch, Herrmann, et al., 2006.
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this broadband activity often overlaps with the band- limited (low) gamma oscillations, 
it is possible that such broadband responses reflect mere increases of (non- oscillatory) 
gamma power and/ or spiking activity rather than a true oscillation (Buzsáki & Wang, 
2012; Ray & Maunsell, 2011), since the latter would be indicated as a clear peak in the 
power spectrum. There is a recent debate about how to assess and interpret high gamma 
activity in the absence of a spectral peak (Brunet et al., 2014; Hermes et al., 2015). Further 
research is needed to elucidate the distinction between “low and high” or “narrow-  and 
broadband” gamma activity in terms of their neurophysiological underpinnings and 
functional roles. In this context, note that the observation of high gamma responses is 
not bound by its superior signal- to- noise ratio to invasive depth recordings and ECoG 
in patients, as gamma responses in the 90- 250 Hz range have also been recorded from 
conventional scalp EEGs of healthy volunteers (Darvas et al., 2010; Lenz, Jeschke, 
et al., 2008).

8.3 Evoked gamma activity

In light of the latency difference between evoked (~50– 150 ms) and induced gamma ac-
tivity (~200– 300 ms), it has been suggested that evoked activity reflects an early pro-
cessing stage at the level of primary visual cortices (Zaehle et al., 2009), whereas induced 
activities occur at later stages (Herrmann et al., 2010). Findings of evoked gamma ac-
tivity modulated by low- level physical features of visual stimuli support this view (for 
the sake of brevity, we focus on the visual domain in the remainder of this chapter). 
However, there is a remarkable overlap between evoked and induced gamma activity in 
reflecting sensory vs. cognitive effects, as demonstrated in the sequel.

Regarding stimulus- driven effects, early evoked gamma activity has been observed 
to increase with stimulus size and with central as compared to peripheral stimulation 
(Busch et al., 2004). Also high visual contrast (Schadow et al., 2007) and low spatial 
frequencies (Fründ et al., 2007) of simple grating stimuli increased the power of evoked 
gamma activity. With regard to motion, evoked gamma power did not differ between 
stationary and moving gratings (Naue et al., 2011; Swettenham et al., 2009). However, 
inverting the black and white stripes of a stationary grating (pattern reversal) led to a 
threefold increase of the evoked gamma amplitude compared to stationary and moving 
gratings, probably due to related contrast effects (Naue et al., 2011, see Figure 8.2).

These exemplary findings not only indicate an early processing stage of evoked 
gamma responses but also implicate that finding evoked gamma activity requires a 
corresponding design of physical stimulus parameters. Relatedly, before a cognitive 
effect on evoked gamma activity can be inferred from two experimental conditions, care 
must be taken that physically identical stimuli were used. Otherwise, differences of the 
evoked gamma response cannot unequivocally be attributed to the cognitive process 
under study.
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Cognitive effects on the evoked gamma activity have been observed in visual discrim-
ination tasks where participants had to attend to a target and to ignore distractor stimuli 
that were physically more or less similar to the target (Herrmann & Mecklinger, 2001; 
Herrmann et al., 1999). The results not only demonstrated a target- effect (i.e., higher 
evoked gamma activity to attended stimuli), but also a graded effect of similarity be-
tween target and distractor stimuli (i.e., the more features a distractor shared with the 
target the stronger was the evoked gamma activity). This led to the suggestion that each 
stimulus is compared to a short- term memory template of the target and that the de-
gree of matching between stimulus and template determines the strength of the evoked 
gamma activity. Similarly for long- term memory (LTM), a match between line drawings 
of real- world objects and their well- consolidated memory representation evoked 
stronger gamma responses than the perception of unfamiliar (non- )objects without an 
LTM representation (Herrmann et al., 2004).

Modulations of evoked gamma activity have also been reported in the context of 
visual semantic memory (Oppermann et al., 2012). Simultaneously presented pairs 
of conceptually coherent scenes (e.g., mouse– cheese) evoked stronger gamma- band 
responses than semantically unrelated object pairs (e.g., camel– magnet). This effect 
occurred within a widespread network of bilateral occipital as well as right temporal and 
frontal regions in a time window between 70– 130 ms after stimulus onset, indicating a 
role of early gamma activity for a rapid memory- based extraction of the gist of a scene.

Together, studies on early evoked gamma oscillations demonstrate not only their sen-
sitivity to low- level stimulus features but also an influence of cognitive effects occurring 
as early as 50– 150 ms after stimulus onset, thereby revealing an early interaction between 
bottom- up and top- down processes in the gamma band (Busch et al., 2006).

8.4 Induced (total) gamma activity

Especially the induced type of gamma activity has been consistently related to higher 
cognitive processes (Kaiser & Lutzenberger, 2005), motivated by the initial findings 
in animals suggesting a possible role of induced synchronous neural discharges in 
bottom- up feature binding (see Section 8.1; Eckhorn et al., 1988; Gray et al., 1989). By 
using protocols very similar to these animal studies, their main finding of an increase in 
the strength of induced gamma synchrony during passive viewing of coherent moving 
bars could be replicated in the human scalp EEG (Lutzenberger et al., 1995; Müller et al., 
1996). Increases of induced gamma activity have also been reported in response to co-
herent versus incoherent static stimuli during a visual discrimination task. In a classical 
study, presenting an illusory Kanizsa triangle, a real triangle, and a no- triangle stimulus 
with the black inducer disks rotated outwards, resulted in specific enhancements of the 
induced gamma activity for the coherent triangles (illusory and real) as compared to the 
no- triangle stimuli (Tallon- Baudry et al., 1996).
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In addition to these relatively low- level feature binding processes originating from 
visual cortices, induced gamma activity has been observed also in higher stages of 
perceptual processing. For instance, at occipito- temporal and frontal areas during 
rehearsal of an object representation in short- term memory (Tallon- Baudry et al., 
1998), and at occipito- parietal areas during the top- down activation of internal object 
representations (Tallon- Baudry et al., 1997), as well as during selective spatial attention 
to moving stimuli (Gruber et al., 1999). Together, those findings are in line with the 
interpretation of induced gamma activity as a signature of both bottom- up and top- 
down related binding processes involved in object representation (Tallon- Baudry & 
Bertrand, 1999).

Consistent with this “representational hypothesis” of induced gamma activity are 
studies demonstrating augmented gamma power and phase coupling during retrieval 
from LTM for familiar objects compared to unfamiliar ones (e.g., Busch et al., 2006; 
Gruber et al., 2006). Furthermore, in a recognition memory task, Gruber and colleagues 
(2004) showed that induced gamma activity during the encoding phase was higher for 
subsequently recognized words as compared to forgotten words.

Summerfield and Mangels (2006) describe similar enhancements of induced gamma 
activity during successful encoding, although they compared later memory perform-
ance between predictable items that were encoded under top- down attentional con-
trol and unpredictable items to which attention could not be oriented in a top- down 
manner during encoding. Enhanced gamma activity over frontal regions predicted 
successful memory formation for the predictable items only, indicating a role of frontal 
gamma activity in attentional top- down mechanisms facilitating memory formation 
(Summerfield & Mangels, 2006).

Interestingly, a frontal gamma- band enhancement was also reported during multi- 
stable visual perception (Başar- Eroǧlu, Strüber, Kruse, et al., 1996), that is, spontan-
eously switching between different interpretations of an invariant stimulus pattern 
like the famous Necker cube. This frontal gamma activity was stronger for observers 
experiencing more figure reversals compared to those with a lower reversal rate (Strüber 
et al., 2000; Strüber et al., 2001), and when observers were required to control their re-
versal rate intentionally (Mathes et al., 2006). Together, these findings might indicate 
that frontal gamma band activity represents top- down influences of attentional selec-
tion on feature binding of relevant object representations during perceptual reversals 
(Engel et al., 2001).

Overall, these example studies on induced gamma activity demonstrate a variety 
of gamma- related functions ranging from basic perceptual to high- level cognitive 
processes like learning, memory, and attention. On the one hand, such a diversity of 
functional correlates speaks against a role of induced gamma activity for a single specific 
cognitive function. On the other hand, the processes of perception, recognition, and 
attention are closely intertwined and, therefore, might rely on the same neurophysio-
logical mechanisms inherent in gamma oscillations that subserve these functions in a 
dynamic task- dependent manner (Fries, 2009; Tallon- Baudry, 2009; Varela et al., 2001).
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8.5 Neurophysiological mechanisms

How do gamma oscillations exert their functions in basic sensory and higher cogni-
tive functions and what are the neurophysiological mechanisms underlying oscillatory 
gamma activity?

The central concept which is thought to underlie the functional relevance of gamma 
activity is referred to as “oscillatory synchrony”, that is, the periodic co- occurrence 
of electrical impulses from a group of neurons on a fine temporal scale. In the con-
text of EEG scalp recordings, the obtained electrophysiological data inevitably reflect 
synchronized activity from large neuronal populations, because otherwise the weak 
synaptic currents would not be measurable at the scalp level. Local oscillatory syn-
chrony resulting from within- area interactions would then appear as increased power 
at individual electrodes, whereas oscillatory synchrony related to large- scale integration 
is best characterized by phase coherence between two distant sources (Siegel et al., 2012; 
Varela et al., 2001).

Oscillatory synchrony is thought to temporally structure the occurrence of spike 
trains without changing the mean firing rates of neurons and, thereby, to have a func-
tional role in the processing of incoming inputs and the emergence of functional 
networks by gating the information flow (Salinas & Sejnowski, 2001). Converging 
evidence from experimental work in animals (in vivo and in vitro) and modeling 
approaches suggests that cortical gamma oscillations and their local synchronization 
result from interactions of reciprocally connected excitatory pyramidal cells and in-
hibitory gamma- aminobutyric acid (GABA)- ergic interneurons (Bartos et al., 2007; 
Buzsáki & Wang, 2012; Wang, 2010; Whittington et al., 2011; Whittington et al., 2000).

In such a network, the pyramidal cells activate the interneurons, which self- 
generate synchronized gamma oscillations. This gamma- synchronized activity of the 
interneurons is then imposed onto the pyramidal cells, resulting in rhythmic inhib-
ition of the pyramidal cells, which in turn leads to a rhythmic synchronization of their 
discharges. Thus, during each cycle of these excitatory- inhibitory feedback loops, the 
time window during which the pyramidal cells are able to discharge is restricted by the 
decay time of their inhibitory input from the fast- spiking interneurons, introducing a 
phase delay of a few milliseconds between pyramidal and interneuron discharges (Fries 
et al, 2007). From this basic mechanism of gamma synchronization several mechanistic 
consequences arise that are thought to be instrumental for the formation of neuronal 
cell assemblies, cortical signal transmission, and, thereby, the implementation of cogni-
tive functions (Bosman et al., 2014; Cannon et al., 2014; Vinck & Bosman, 2016).

One consequence of gamma synchronization that relates to assembly formation is 
its involvement in the regulation of synaptic plasticity. The precise timing of pre-  and 
post- synaptic processes emerging from gamma synchronization acts on a time scale 
of a few tens of milliseconds, which is relevant for spike- timing- dependent plasticity 
and, thus, for the induction of long- term potentiation or depression (Fell & Axmacher, 
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2011; Paulsen & Sejnowski, 2000; Sejnowski & Paulsen, 2006) and associative learning 
(Miltner et al., 1999). It has been proposed that the period of gamma oscillations (~25 
msec) is “designed” to match the time course of calcium fluctuations in dendrites and, 
therefore, to facilitate learning (Bibbig et al., 2001).

With regard to local within- area interactions, synchronization in the gamma- band 
with its high temporal precision in the millisecond range is hypothesized to increase the 
impact of presynaptic neurons on their target cells because the gamma- synchronized 
spike packages arrive close together, thus summing up more effectively to initiate 
postsynaptic discharges. This effect of precise spike timing is referred to as feedforward 
coincidence detection (Fries, 2009; Salinas & Sejnowski, 2001), which has been linked 
to the integration (binding) of different stimulus features during object recognition 
(Bosman et al., 2014).

This concept has also been transferred to inter- areal communication between mul-
tiple groups of neurons, each oscillating in the gamma frequency range. In this context, 
the “communication through coherence” (CTC) hypothesis (Fries, 2005; 2015) claims 
that the communication between two groups of neurons can be facilitated by gamma 
synchronization in the two groups, if the spikes from the presynaptic group (sender) 
arrive at the postsynaptic group (receiver) at the appropriate phase, that is, during a min-
imal amount of GABAergic inhibition. This phase- coupling of oscillations constitutes a 
window of “opportunity” in which neural networks jointly involved in signal processing 
can communicate. This mechanism allows for gain modulation of pre- synaptic inputs 
that compete for activating higher- level post- synaptic targets as is the case with se-
lective attention. In this scenario, visual attention might selectively increase the effective 
strength of those synaptic inputs from lower level neurons that process attended stimuli 
at the expense of inputs from the non- attended stimuli (Bosman et al., 2014; Fries, 2015). 
In this way, gamma synchronization might dynamically route the information flow be-
tween higher and lower level areas within the visual hierarchy as has been observed lo-
cally between multiple visual areas (see, for review, Bosman et al., 2014).

However, it is less clear whether gamma synchronization also serves as a mech-
anism for large- scale integration across distant brain regions that also include, for ex-
ample, frontal or parietal areas. It has been suggested that the spatial distance between 
interacting brain areas and, hence, the conduction delay may define the communication 
frequency, with gamma oscillations acting more locally and lower frequencies more glo-
bally (Kopell et al., 2000; von Stein & Sarnthein, 2000). A reason for this may be that, in 
contrast to the millisecond precision of gamma oscillations, lower- frequency bands are 
more robust to spike timing delays (Buschman & Miller, 2007). Indeed, several findings 
in monkeys have shown that long- distance top- down processes are carried by inter- 
areal synchrony in the alpha and low- beta frequency range, whereas gamma oscillations 
index a local encoding of information and the bottom- up transfer of low- level sensory 
information to higher- level areas (for reviews, see, Bressler & Richter, 2015; Gregoriou 
et al., 2015; Siegel et al., 2012; Wang, 2010).

On the other hand, there is also increasing evidence for a role of gamma synchrony 
in large- scale interaction during various perceptual and attentional processes (see 
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for a review, Gregoriou et al., 2015), indicating that physical distance might not be the 
only factor that determines the frequency band used for inter- areal synchronization. 
Moreover, gamma- synchronized long- range signal transmission seems to work both 
upstream (i.e., bottom- up) and downstream (i.e., top- down) within the cortical hier-
archy. For example, long- range gamma coupling between prefrontal and visual areas 
during directed attention was found to be initiated frontally, thereby signaling top- 
down attentional influences on the visual cortex (Gregoriou et al., 2009). Another study 
reported long- range bottom- up directed gamma synchrony between posterior parietal 
and prefrontal regions during automatic attention driven by salient stimuli (Buschman 
& Miller, 2007). Intriguingly, the same areas synchronized in top- down direction if 
attention was focused volitionally, but in this case in the beta- range (Buschman & 
Miller, 2007), indicating that different frequencies are used for feedforward and feed-
back signaling.

Such frequency- specific differences in the direction of inter- areal interaction (i.e., 
bottom- up vs. top- down) have been related to the different directions of information 
flow in the cortical layers with feedforward and feedback connections originating pri-
marily in superficial and deep layers, respectively (Felleman & Van Essen, 1991; Markov 
et al., 2014). Accumulating evidence suggests that alpha/ beta oscillations originate 
in deeper layers of the visual cortex and support feedback signaling, whereas gamma 
synchrony emerges from superficial layers and signals feedforward information flow 
(Buffalo et al., 2011; Michalareas et al., 2016; van Kerkoerle et al., 2014; von Stein et al., 
2000). Together, these findings clearly suggest a role for gamma synchrony in local 
bottom- up interaction between visual cortices (Siegel et al., 2012). However, it remains 
an open question how this function can be reconciled with the documented long- range 
gamma synchrony during top- down attention (Gregoriou et al., 2015).

Overall, the recurrent excitatory- inhibitory network interactions underlying local 
gamma synchronization are thought to establish low- level circuit functions (e.g., 
synaptic plasticity, coincidence detection, gain modulation, phase coding, dynamic 
routing) that may act as elementary building blocks of cognitive functions (e.g., visual 
feature integration, selective attention, learning, and memory) in a task- specific com-
bination (Bosman et al., 2014; Siegel et al., 2012). Nevertheless, there are multiple meth-
odological concerns that need to be considered to reliably assess EEG gamma activity as 
outlined in the next section.

8.6 Methodological aspects

Scalp recorded gamma activity is subject to a variety of high- frequency artefacts which 
might seriously affect recording, analysis, and interpretation of the data. Therefore, 
these artefacts need to be either prevented by appropriate recording conditions or to be 
removed by post hoc analysis techniques. There are two main sources of artefacts. First, 
technical artefacts like power line noise, the screen refresh rate, or the rate at which 
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single images are presented in order to show a movie (cf. Figure 8.2 right panel, SSVEP). 
Second, physiological artefacts like eye movements and electromyogenic (EMG) ac-
tivity generated by muscles from the scalp, face, and neck (see, for review, Nottage & 
Horder, 2016).

8.7 Technical artefacts

Power line noise occurs at a frequency of 50 Hz in Europe and 60 Hz in the US; both 
frequencies are in the gamma range. Therefore, any power supply like electric cables, 
wall sockets, or electrically operated equipment inside the recording cabin (lamps) 
results in a 50- or 60- Hz peak in the EEG power spectrum. To effectively avoid frequency 
interference, experiments should be conducted in an electrically shielded room with all 
devices inside the cabin operated on batteries. The stimulation monitor can be placed 
outside the cabin behind an electrically shielded window and a fiberoptic cable can be 
used to transfer the EEG data to a computer outside the recording cabin. If it is not pos-
sible to prevent power line noise from being recorded, a low- pass or “notch” filter at 
50 or 60 Hz might be applied to the data. However, the use of such filters is problem-
atic because they might induce “ringing” (i.e., the induction of spurious oscillations by 
transients in the EEG) and distort the phase of neural oscillations. Alternative strategies 
have been developed on the basis of noise cancellation (see Nottage, 2010 for details).

In addition to power line noise, every screen refresh generates an electromagnetic 
signal which might be seen as a narrow band in the EEG gamma range, typically at 
anterior electrodes. The exact frequency depends on the primary refresh rate and its 
harmonics. Nottage & Horder (2016) explore possible ways to remove this type of 
artefact.

8.8 Physiological artefacts

The difficulty of properly removing EMG artifacts is particularly important for studies 
on gamma activity, given the fact that the broad frequency spectrum of EMG activity 
substantially overlaps with the gamma frequency range. An amplitude maximum 
of EMG contamination in the gamma range (40– 80 Hz) was found at temporal sites 
during phasic contraction of facial muscles (Goncharova et al., 2003). Because of their 
high amplitude, occasionally occurring phasic muscle contractions (e.g., chewing 
or jaw clenching) can be detected relatively easily by visual inspection or mathemat-
ical algorithms and then be omitted from further analysis (e.g., Fitzgibbon et al., 2015). 
However, in addition to large phasic contractions, the head and neck muscles are con-
stantly active to maintain posture, which might result in tonic EMG activity throughout 
an EEG session.
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Critically, low- amplitude tonic muscle activity occurs even in “relaxed” states and 
is, thus, difficult to detect in scalp recordings but still contributes significantly to EMG 
contamination in the gamma range, as has been shown in pharmacologically paralyzed 
human volunteers (Whitham et al., 2007). Paralysis compared to pre- paralyzed states 
of the same participants was found to result in a marked reduction of spectral power in 
the gamma range, with 84% of the power derived from EMG, mostly over peripheral 
scalp regions. Moreover, the execution of different cognitive tasks induced a broadband 
increase in the gamma frequency range in unparalyzed but not paralyzed participants, 
indicating that EMG activity was responsible for the task- related spectral power 
increases (Whitham et al., 2008). However, when employing a standard oddball task 
that allows for stimulus- locked data analysis, significant gamma activity was identified 
in both the pre- paralyzed and the paralyzed condition, with stronger activity for rare 
target than for more frequent standard stimuli (Pope et al., 2009).

While these studies clearly demonstrate a large contribution of EMG activity to the 
overall EEG spectral power, they also show that (at least under experimental conditions 
where time-  and stimulus- locked analysis is possible, and in contrast to, for example, 
analyzing states of varying cognitive load during mental arithmetic) neuronal gamma 
activity can still be measured at the scalp EEG. Thus, it seems possible to extract neural 
gamma activity from EMG noise if it is analyzed in response to discrete stimuli (e.g., co-
herent stimuli vs. incoherent visual objects). For this, however, methods for the effective 
removal of EMG artefacts are required.

There is a multitude of methods for dealing with scalp EMG (see, for review, Nottage 
& Horder, 2016). One novel approach that specifically addresses the tonic nature of scalp 
and neck muscle artefacts uses mathematical modeling to fit individual muscle spikes 
and subtract these from the signal, resulting in an effective correction of the gamma ac-
tivity associated with a self- paced motor task (Nottage et al., 2013). Recently, Janani and 
colleagues (2018) used datasets that are free of muscle activity due to paralysis (taken 
from Whitham et al., 2007, 2008) to identify limitations of traditional approaches and, 
then, to evaluate the improvements of a newly developed algorithm for tonic muscle 
artefact removal. With this method, high- frequency EMG artefacts were reduced con-
siderably, although a residual artefact still remains (compared to paralysis). Given the 
variety of techniques that are based on different mathematical concepts, the authors 
suggested using a combination of complementary algorithms for a further improve-
ment of EMG artefact removal (Janani et al., 2018).

Ocular activity also generates muscle- related artefacts. The main sources of eye 
movement artefacts are blinks and saccades. It is standard practice to measure the 
electro- oculogram (EOG) from two channels of the left and right eye. For rejecting eye 
blinks and large saccades, an amplitude threshold is usually set (e.g., 50 µV), which is 
then used by an algorithm to exclude contaminated EEG trials in any channel from fur-
ther analysis. This automatic amplitude threshold procedure is then complemented by 
visual inspection of all epochs. For algorithms based on eye tracking data that detect 
and correct eye blinks and other ocular artifacts in a fully automated fashion, see Plöchl 
et al., 2012.
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Blink artefacts elicit a large potential with a predominantly frontal topography and are 
easy to identify in the vertical electro- oculogram (VEOG). Saccades are generated by a 
pair of extra- ocular muscles which contract to move the eyeball, thereby inducing a sac-
cadic spike potential in the EEG at the onset of each saccade (Thickbroom & Mastaglia, 
1985). Saccadic spike potentials are too small to be detected by standard amplitude 
thresholds for automatic EOG- artefact removal, especially in case of microsaccades 
which are produced during attempted fixation (Martinez- Conde et al., 2013). In their 
seminal paper, Yuval- Greenberg and colleagues (2008) suspected that high- frequency 
EEG activity that had been regarded as induced gamma activity in fact reflects 
microsaccade- induced muscle artefacts. Naturally, this report triggered an intense de-
bate within the field of induced gamma activity research (Schwartzman & Kranczioch, 
2011). Section 8.9 summarizes the main points.

8.9 Microsaccades and induced 
gamma activity

Microsaccades are small (up to 1 degree), jerk- like saccades with a duration of about 
25 ms and an average rate of 1– 2 per second (Martinez- Conde et al., 2013). There are at 
least three important similarities between microsaccades and induced gamma activity 
that need to be considered. First, in response to a sudden change in stimulus input, the 
microsaccade rate shows a characteristic biphasic time course, with an early inhibition 
phase peaking at 100– 150 ms after stimulus onset, followed by a rebound phase peaking 
between 200 and 400 ms after stimulus onset (Engbert, 2006). Thus, the rebound phase 
of microsaccades corresponds to the time window where induced gamma activity typ-
ically appears.

Second, the rate of microsaccades is modulated by perceptual and cognitive factors 
that have also been linked to induced gamma activity, including attention and memory- 
related processes (Engbert & Kliegl, 2003; Valsecchi et al., 2007; Valsecchi et al., 2009), 
physical stimulus features like color and luminance contrast (Rolfs et al., 2008), and the 
coherence of objects (Yuval- Greenberg et al., 2008). Thus, microsaccade rate represents 
a true confound in experiments on gamma activity since modulations of microsaccade 
rate and gamma activity might generate an identical pattern of results across experi-
mental conditions. For example, both microsaccade rate and induced gamma power 
show increased responses to a coherent object in comparison to an incoherent object.

Third, depending on the location of the reference electrode, the frontally occurring 
microsaccade- induced saccadic spike potential translates into a broadband (~20– 90 
Hz) gamma power increase with a maximum at centro- parietal and occipital electrodes, 
that is, regions where it strongly coincides with induced gamma activity (Reva & 
Aftanas, 2004; Yuval- Greenberg et al., 2008). Thus, saccadic spike potentials mimic not 
only the frequency content of induced gamma activity but also its typical topography. 
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Notably, this can be avoided by using MEG, since it does not require a reference (Gruber 
et al., 2008).

These similarities between microsaccades and induced gamma activity regarding 
their sensitivity to cognitive effects as well as their temporal, topographical and spec-
tral properties have been convincingly demonstrated and have led to the suggestion 
that— at least in some cases— induced gamma activity reflect saccadic spike potentials 
rather than a neural response (Yuval- Greenberg et al., 2008). This also concerns earlier 
EEG findings that might have been erroneously interpreted as neuronal gamma activity, 
when in fact they reflected microsaccade- induced spike potential artefacts (Keren et al., 
2010). How strong previous EEG findings might be affected by microsaccades depends 
on several aspects, for example, the exact time window of the effects (in relation to the 
saccadic rebound), the broadness of the gamma response (in relation to the 20– 90 Hz 
spike potential), and the choice of the reference electrode, given its influence on the top-
ography, to name but a few ( for further details, see Schwartzman & Kranczioch, 2011).

Notably, evoked gamma activity is not affected by microsaccade- induced spike po-
tential artefacts. One reason is that evoked gamma activity occurs much earlier than 
the microsaccade rebound after sensory stimulation. Another reason is that spike 
potentials, in contrast to the evoked gamma activity, are not tightly time- locked to 
the stimulus and, thus, cancel out during averaging of the evoked potential (Yuval- 
Greenberg & Deouell, 2009).

Although Yuval- Greenberg and colleagues (2008) did not deny the existence of 
induced gamma activity and its role in perception and cognition in general, their findings 
posed a challenge to develop methods for separating the effects of microsaccades and 
induced gamma responses in EEG scalp recordings. One immediate consequence of 
this study was the necessity to use eye tracking with sufficient spatial and temporal reso-
lution for detecting microsaccades as small as 0.15° visual angle, given that even precise 
fixation of a continuously present fixation point does not preclude microsaccade- related 
brain activity (Dimigen et al., 2009). The rationale behind a combined recording of EEG 
and eye tracking data is to demonstrate that differences of induced gamma activity and 
microsaccade rate do not covary across conditions and, thus, effects of induced gamma 
activity cannot easily be explained by microsaccadic muscle potentials. Indeed, such 
differential modulations of gamma activity and microsaccades time courses have been 
reported, for example, during object motion (Naue et al., 2011) and memory- based ob-
ject recognition (Hassler et al., 2013).

However, high- resolution eye trackers are expensive and not always available. 
Alternatively, there are methods available allowing for offline artefact correction 
that identify saccadic spike potentials via EOG sensors, that is, without the need of 
an eye tracker (Hassler et al., 2011; Keren et al., 2010; Nottage, 2010). However, Keren 
and colleagues (2010) used eye tracking in addition to EOG- based detection of 
microsaccades to evaluate the hit and false alarm rates of several spatiotemporal filters 
that were applied to the EOG data to identify the sharp amplitude increase at the onset 
of saccadic spike potentials. With this method, detection rates of 80% on average could 
be achieved for microsaccades of at least 0.2°, which were then efficiently attenuated by 
means of mathematical algorithms. For artifact correction methods based on combined 
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EEG and eye tracking recordings, see also Plöchl et al. (2012). Nottage (2010) and 
Hassler and colleagues (2011) used different mathematical approaches but both have 
been demonstrated to effectively remove microsaccadic muscle artefacts, resulting in a 
more sustained and narrow- band gamma signal of the residual activity compared to the 
frequency plot of the saccadic spike potential (see, for review, Nottage & Horder, 2016).

Although the available methods are relatively easy to apply and effective in reducing 
saccadic spike potentials, they do not remove the artefact completely and they do not 
attenuate saccade- related visual brain activity (Dimigen et al., 2009; Plöchl et al., 2012). 
Also, the fundamental problem of the confounding co- modulation of induced gamma 
activity and microsaccade rate cannot be solved by artefact correction techniques. 
Therefore, it has been suggested recently to reduce the occurrence of microsaccades and 
related confounds in the EEG at the level of experimental design instead of applying off-
line correction methods (Tal & Yuval- Greenberg, 2018). Considerably reducing the in-
cidence of microsaccades during experimentation would allow rejecting microsaccades 
rather than just correcting artefactual trials and still leaving enough (then artefact- free) 
trials for analysis. As a first step, Tal and Yuval- Greenberg (2018) were able to reduce the 
average number of saccades (including microsaccades) by 10– 25% through manipula-
tion of different task characteristics (e.g., by adding a foveal task, whereas the stimulus 
of interest was parafoveal). However, it remains to be seen how this approach can be 
applied to the diverse experimental setups covering the full range of induced gamma ac-
tivity related cognitive processes.

In summary, together with other muscle artefacts, microsaccades impose a serious 
difficulty on the analysis and interpretation of induced gamma activity in human EEG. 
To separate activity related to saccadic spike potentials from induced gamma activity, 
using high- resolution eye tracking is recommended as the most reliable way to iden-
tify microsaccades. However, there are also techniques available to use EOG data for 
saccadic spike potential detection. In a second step, off- line artefact removal methods 
should be used to correct artefactual trials. Rejecting all artefactual trials is currently 
not possible due to the high prevalence of microsaccades in typical visual experiments, 
but there are suggestions how to reduce the number of microsaccades through experi-
mental design. Current evidence from artefact- corrected data confirms the influence of 
microsaccades on induced gamma activity, but also indicates the existence of induced 
gamma activity that survived artifact suppression, thereby replicating earlier findings 
on the functional roles of induced gamma activity in, for instance, object representation 
(Hassler et al., 2013; 2011). Finally, depending on the research question at hand, a further 
option to prevent microsaccadic contamination of gamma activity might be to restrict 
the analyses to the evoked gamma activity, which is not affected (e.g., Lally et al., 2014).

8.10 Clinical relevance

Given its role in multiple cognitive processes and neural information integration, 
disturbed gamma activity might reflect an important pathophysiological mechanism 
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underlying the mental deficits of patients suffering from diverse neuropsychiatric 
disorders (Başar, 2013; Herrmann & Demiralp, 2005; Uhlhaas & Singer, 2006). One of 
the most extensively studied disorders in relation to gamma activity is schizophrenia 
(Uhlhaas & Singer, 2010) (see also Chapter 18), which is characterized by positive 
symptoms like hallucinations, delusions, and thought disorders, as well as negative 
symptoms like reduced affect, motivation, and behavior. Positive symptoms have been 
generally linked to increased gamma activity, whereas negative symptoms correlate with 
a decrease of gamma activity compared to healthy controls (Herrmann & Demiralp, 
2005). Moreover, as a group, schizophrenic patients have deficits in both basic sen-
sory and cognitive functions, which have been related to evoked and induced gamma 
activity.

For instance, early evoked gamma activity in response to auditory stimulation was 
found to be reduced in schizophrenic patients receiving medication (Leicht et al., 2010; 
Lenz et al., 2011), but not in unmedicated patients (Gallinat et al., 2004). Başar- Eroǧlu 
and colleagues (2011) reported that auditorily evoked gamma responses did not differ 
between schizophrenic patients and healthy controls, but on the single- trial level, 
gamma responses were higher in patients compared to controls. Modality- specific 
effects were found for chronic medicated patients, demonstrating reduced early evoked 
gamma activity for visual but not auditory stimulation (Spencer et al., 2008). Seemingly, 
more research is needed to get a clearer picture regarding the role of early evoked gamma 
activity in sensory processing of schizophrenic patients.

With regard to induced gamma activity in schizophrenic patients, most of the evi-
dence points to impaired gamma activity related to higher perceptual and cognitive 
functions (see, for review, Uhlhaas & Singer, 2010; 2012). This includes, for example, 
cognitive control in first- episode schizophrenia patients with and without medication 
(Minzenberg et al., 2010), and working memory (Haenschel et al., 2009), although one 
study found working memory- related gamma amplitudes to be preserved in patients 
but lacking any relation to task difficulty, as present in normal controls (Basar- Eroǧlu 
et al., 2007). Reduced amplitudes or reduced phase locking of gamma oscillations 
during working memory and other cognitive tasks have been found predominantly in 
frontal areas which corresponds to the frequently reported hypo- frontality in schizo-
phrenia (see, for review, Senkowski & Gallinat, 2015).

Interestingly, a recent review on gamma activity in first episode psychosis patients 
and people at high risk for psychosis found a similar decrease of evoked and induced 
gamma activity as has been reported for chronic schizophrenia (Reilly et al., 2018), 
indicating that reduced gamma activity in the early phase of psychosis might serve as a 
biomarker or endophenotype allowing for an early intervention before the disorder has 
fully developed. This, however, would require a more standardized procedure regarding 
the employed experimental paradigms and measures of gamma activity.

Alternatively, spontaneous or resting- state gamma activity might be used as a bio-
marker of schizophrenia, which would bear the advantage that it can be recorded 
without engagement in a task (i.e., spontaneous activity) or as pre- stimulus baseline 
activity (i.e., resting- state). Indeed, there is evidence for altered spontaneous/ resting 
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gamma activity in schizophrenia. But in contrast to the reported reduction of evoked 
and induced gamma activity, this type of gamma activity has been found to be pre-
dominantly increased in chronic schizophrenic patients (Spencer, 2012; see, for review, 
White & Siegel, 2016) as well as in first episode patients and high- risk populations (Reilly 
et al., 2018). While it has been proposed that increased spontaneous/ resting gamma ac-
tivity contributes to positive symptoms like hallucinations (White & Siegel, 2016), its 
relation to negative symptoms and reduced gamma activity during stimulus processing 
is less clear. Thus, different computational models have been discussed regarding the 
neurophysiological mechanisms underlying gamma activity increases during resting 
state and gamma decreases during stimulus processing in schizophrenia (Jadi et al., 
2016). In general, abnormal gamma activity in schizophrenia has been related to dys-
functional circuit mechanisms responsible for generating gamma oscillations, that is, a 
reduced input from inhibitory GABAergic interneurons to pyramidal cells and/ or ab-
normal glutamatergic input from the pyramidal cells to the interneurons (see, for re-
view, McNally & McCarley, 2016), resulting in a disturbed balance between excitatory 
and inhibitory mechanisms (E/ I balance).

Also in autism spectrum disorders (ASD), abnormal gamma oscillations have been 
suggested as a potential biomarker for a dysfunctional E/ I balance in children with 
ASD (Stroganova et al., 2015; Uhlhaas & Singer, 2012). Similar to patients with schizo-
phrenia, children with ASD have been consistently characterized by reduced gamma 
activity during sensory stimulation with overlapping perceptual deficits (see, for re-
view, Uhlhaas & Singer, 2012). Interestingly, children with ASD also show an increase 
in resting- state gamma activity (van Diessen et al., 2015; Wang et al., 2013) but, unlike 
schizophrenic patients, do not experience hallucinations. However, despite the substan-
tial overlap between schizophrenia and ASD regarding the dysfunctional E/ I balance 
and the resulting impairments in cognitive integration, there are important differences 
with regard to the developmental timing of the changing E/ I balance, which might ex-
plain some of the unique features of each disorder (Uhlhaas & Singer, 2012; White & 
Siegel, 2016).

Another neurodevelopmental disorder that is predominantly diagnosed in childhood 
and adolescence is attention- deficit/ hyperactivity disorder (ADHD). According to its 
core symptoms (inattention, hyperactivity, impulsivity), one might expect a reduction 
of gamma activity due to the attention deficit and/ or a gamma increase due to the hyper-
activity component. In one of the first studies on evoked gamma activity in ADHD 
children, Yordanova and colleagues (2001) reported larger and more strongly phase- 
locked early evoked gamma activity in ADHD children during an auditory detection 
task involving a motor response. Gamma augmentations did not differentiate between 
attended and ignored stimuli. This finding was interpreted as reflecting impaired early 
auditory processing due to deficient motor inhibition in ADHD children (Yordanova 
et al., 2001).

Enhanced evoked gamma activity in children with ADHD was also found during 
stimulus encoding of a visual memory task (Lenz, Krauel, et al., 2008). However, in 
contrast to healthy children, the encoding- related gamma activity was enhanced 
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unspecifically, that is, it was unrelated to subsequent recognition performance. Similarly, 
early evoked gamma activity did not reflect the difference in long- term memory repre-
sentation between familiar and unfamiliar objects in a simple forced- choice reaction 
task (Lenz et al., 2010).

In a study by Prehn- Kristensen and colleagues (2015), the distractibility of ADHD 
patients was assessed in a delayed- match- to- sample paradigm by presenting a distractor 
stimulus during the delay period, which should be ignored. Children with ADHD but 
not healthy controls exhibited an increase of occipital early evoked gamma activity 
in response to the distractor, indicating a higher distractibility resulting in disturbed 
working memory maintenance already on a very early level of interference processing 
(Prehn- Kristensen et al., 2015).

Together, these findings might indicate that attentional problems in ADHD are 
related to early sensory processing deficits as reflected by unspecific evoked gamma 
increases that might be interpreted as an increase of noise. This may be partially caused 
by the fact that the same genetic variations within the dopaminergic pathway that have 
been associated with ADHD, also contribute to enhancements of gamma activity in 
healthy volunteers (Demiralp et al., 2007; Herrmann & Demiralp, 2005). However, 
this hyperactivity- based interpretation might be restricted to gamma activity during 
stimulus or cognitive processing since spontaneous gamma activity was shown to be 
diminished in children (Barry et al., 2010) and adults (Tombor et al., 2019) with ADHD.

Gamma oscillations have also been associated with neurodegenerative diseases 
like Parkinson’s disease (PD) and Alzheimer’s dementia (AD) (Nimmrich et al., 2015). 
For PD, however, oscillations in the beta range are more directly related to the clinical 
symptoms than gamma activity and might serve as a biomarker, whereas studies on 
gamma oscillations in AD yielded divergent findings of reduced as well as enhanced 
amplitudes, indicating the need for further research before clear statements about the 
usefulness of gamma oscillations as a biomarker for AD can be made (see, for review, 
Nimmrich et al., 2015). In two recent studies on AD, Başar and colleagues employed a 
target detection task and simple visual stimulation to analyze gamma activity within 
three sub- bands over four time windows and found a decreased response to visual 
stimuli and a delayed gamma response to target stimuli compared to healthy controls 
(Başar et al., 2016), as well as an abnormal increase of gamma coherence for AD patients 
in both conditions (Başar et al., 2017).

Overall, AD and many other neuropsychiatric disorders are characterized by aber-
rant gamma activity pointing to dysfunctional oscillatory network activities that are 
regulated by inhibitory interneurons (see, for reviews, Palop & Mucke, 2016; Ruden et al., 
2021). While such an interneuron impairment might indeed represent a common mech-
anism of cognitive dysfunction in diverse neuropsychiatric disorders, the use of gamma 
oscillations as a single oscillatory biomarker is limited due to its lack of specificity (see, 
however, Lenz et al., 2011 for a study on the specificity of gamma activity in neuropsychi-
atric disorders). Therefore, it might be important to look for interactions with other fre-
quency bands to create oscillatory biomarkers that are more specific for each disorder 
(Başar et al., 2013; Başar, Schmiedt- Fehr, et al., 2016; Uhlhaas & Singer, 2012).



164   DANIEL STRÜBER and CHRISTOPH S. HERRMANN

 

Notably, however, there is recent evidence from a mouse model of AD that impaired 
gamma oscillations are specifically related to a hallmark of AD, that is, the abnormal 
aggregation of plaque- forming proteins (amyloid- beta protein) in the brain (Iaccarino 
et al., 2016). The authors found that inducing gamma oscillations by a 40- Hz flickering 
light led to a major reduction of plaques in the visual cortex of the exposed mice and 
to an activation of microglia (i.e., immune cells in the brain) that degrade the plaques 
(Iaccarino et al., 2016). Crucially, later studies using different forms of sensory gamma 
stimulation in multiple AD mouse models could not only demonstrate a clear link be-
tween gamma activity and cellular metabolism but also improvements of cognitive 
functions like learning and memory, suggesting a therapeutic role of gamma entrain-
ment in AD (see, for review, Adaikkan & Tsai, 2020). There is emerging evidence that 
similar cognitive effects can be achieved in humans by employing non- invasive brain 
stimulation techniques that could, in contrast to rhythmic sensory stimulation, target 
higher- order cognitive brain areas linked more directly to core symptoms of the dis-
order than sensory cortices (Benussi et al., 2021; see, for reviews, Bréchet et al., 2021, and 
Strüber & Herrmann, 2020).

8.11 Challenges and future directions

There are a number of challenges in relation to the ubiquitous role of gamma oscillations 
for cognitive functions. For instance, it has been criticized that the power of gamma 
oscillations is low and inconsistent and that its frequency and power depend on low- 
level stimulus features like size or contrast, which seems to be incompatible with the 
proposed role of gamma synchronization in cortical processing (Ray & Maunsell, 2015). 
However, there is also recent reconciling evidence in support of a functional role for 
gamma synchronization (Singer, 2018).

One related issue regarding the functions of gamma activity in sensory and cogni-
tive processing as well as in clinical contexts is that most of the evidence is correlative 
in nature. Therefore, it remains unclear whether gamma oscillations and their syn-
chronization are truly relevant for information processing in the brain or whether they 
merely reflect a by- product of brain organization. It has been argued that even gamma 
oscillations as such may be a functional epiphenomenon arising from network activities 
supporting the excitatory- inhibitory balance necessary for normal brain functioning 
(Merker, 2013). Although this argumentation might reflect a “category mistake” since 
gamma oscillations cannot be functionally separated from the circuit mechanisms that 
generate them (Bosman et al., 2014), the necessity remains to go beyond correlations 
and to demonstrate that gamma activity is causally involved in cortical information pro-
cessing and cognitive functions.

Causal evidence for a role of gamma oscillation in cognitive processes can be 
provided by demonstrating that modulating gamma power or coherence improves cog-
nitive outcomes. There are several established methods to modulate brain oscillations, 
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including rhythmic sensory (steady- state) stimulation, EEG neurofeedback, and non- 
invasive brain stimulation like repetitive transcranial magnetic stimulation (rTMS; 
see, for a methods overview, Herrmann et al., 2016). Whereas rTMS is not considered 
safe for stimulation in the gamma frequency range due to its risk of inducing epi-
leptic seizure (Rossi et al., 2009), steady- state visual stimulation has been successful in 
entraining gamma oscillations (Herrmann, 2001; Regan, 1968) and improving binding- 
related perceptual performance (Elliott et al., 2000). However, whereas most human 
EEG studies using rhythmic visual stimulation obtained effects restricted to early visual 
cortex, EEG- based neurofeedback allows for direct neurocognitive modulation of those 
brain regions that are crucially involved in specific tasks (see, for review, Enriquez- 
Geppert et al., 2013).

Neurofeedback training to increase EEG gamma oscillations has been shown to im-
prove perceptual processing (Salari et al., 2014), cognitive control and intelligence 
measures (Keizer et al., 2010; Keizer, Verschoor, et al., 2010), indicating a functional role 
of gamma activity for these cognitive processes. However, gamma neurofeedback is tech-
nically challenging due to its susceptibility to muscle and ocular artefacts (see Section 
8.8). Indeed, there are reports that participants of a neurofeedback training were able 
to control the feedback signal by activating their head and neck muscles, which might 
serve as a caveat when designing neurofeedback studies, especially if EEG recordings are 
used (Merkel et al., 2018). Furthermore, neurofeedback is an endogenous technique that 
needs to be learned and not all participants might be able to do this, especially patients.

A recent method of non- invasive brain stimulation, called transcranial alternating 
current stimulation (tACS) avoids these problems by applying sinusoidal currents to 
stimulate the brain exogenously (see Chapter 22). Its effectiveness in modulating gamma 
oscillations during motor, sensory and a wide range of high- level cognitive processes 
has been demonstrated recently (see, for a review, Strüber & Herrmann, 2020). Thus, we 
propose that tACS might be the appropriate method not only to provide causal evidence 
for a role of gamma oscillations in brain processing but also to improve gamma activity- 
related sensory and cognitive functioning in healthy volunteers and clinical populations 
(Herrmann & Strüber, 2017; Strüber & Herrmann, 2020).
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CHAPTER 9

FRONTAL MIDLINE THETA 
AS A MODEL SPECIMEN OF 

CORTICAL THETA

JAMES F. CAVANAGH AND MICHAEL X COHEN

9.1  History

Multiple distinct rhythmic processes in the approximate 4– 8 Hz theta- band range 
have been historically observed in the continuous EEG. Widely distributed theta- 
band rhythmicity is commonly observed during stage 1 sleep. Abnormal background 
presence or hemispheric asymmetries in this rhythm are used to infer neural dysfunc-
tion in clinical practice. Yet nearly 70 years of observation have also detailed a task- 
related increase in frontal midline theta (FMT), usually observed over electrode Fz or its 
nearest 10/ 20 system neighbors during effortful mental processes (Arellano & Schwab, 
1950; Brazier & Casby, 1952; Inouye, Shinosaki, Iyama, Matsumoto, Toi, et al., 1994; Sato, 
1952). Since this FMT feature is cognitively induced, it has been considered distinct from 
arousal-  or clinically related theta rhythms. These spatially specified and elicitation- 
dependent distinctions are critical to make when describing any frequency- based EEG 
activity: manifest characteristics like a common frequency range can be shared between 
different latent processes.

Towards the end of the twentieth century, a growing quantitative approach to EEG 
was facilitated by advancements in signal processing methods, including event- related 
potentials (ERPs) and Fourier- based analyses, improvements in computational power 
to implement those analyses, and increased data quality through better scalp EEG 
equipment and direct intracranial human recordings during cognitive performance. 
Following these technical revolutions, an emerging consensus deduced that cortically 
generated theta- band activities are reliably associated with general cognitive perform-
ance (Başar, 1998b), including specific processes like working memory (Asada et al., 
1999; Gevins et al., 1997; Ishii et al., 1999), spatial navigation (Kahana et al., 1999), or 
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episodic memory encoding and retrieval (Jacobs et al., 2006; Kahana et al., 1999; 
Klimesch, 1999; Klimesch et al., 2000; Nyhus & Curran, 2010; Rizzuto et al., 2006; 
Sauseng et al., 2004). These findings indicated that theta is generated across human neo-
cortical areas (Caplan et al., 2003; Jacobs et al., 2006; Raghavachari et al., 2006) and 
that it reflects a multitude of active cortical processes. Here we reiterate our caveat for 
determining the relationship between a brain rhythm and a specific cognitive pro-
cess: rhythmic processes reflect common neural operations that have distinct repre-
sentational content depending on the generative neural system. Theta- band dynamics 
reflect a non- specific marker of active cortical operation. The frontal midline variant of 
theta is particularly prevalent in the human EEG, making it a good example for under-
standing broader cortical theta activities.

Experimental findings have accumulated an increasingly well- defined set of 
processes associated with FMT. Talairach and colleagues (1973) described how electrical 
stimulation of the human anterior cingulate cortex (ACC) elicited motor actions that 
were integrated with environmental context, sometimes accompanied by FMT oscilla-
tory activities. Throughout the 1990s, the qualitative appearance of scalp- recorded FMT 
during cognitive effort could be reliably evoked (Asada et al., 1999; Inouye et al., 1994; 
Inouye, Shinosaki, Iyama, Matsumoto, Toi, et al., 1994) and a corresponding relation-
ship with anxiety was often observed (Mizuki et al., 1997; Mizuki et al., 1992; Mizuki 
et al., 1996). These two effective and affective facets of vigilance have been increas-
ingly associated with FMT throughout the past few decades. Paralleling the evolving 
capabilities of experimental neurophysiology, a growing area of research has moved be-
yond qualitative assessment towards a detailed quantification of the generators, elicitors, 
and moderators involved in the genesis of the FMT rhythm.

9.2  Characteristics

Mental effort is a reliable elicitor of FMT (Smit et al., 2004; Smit et al., 2005). FMT 
increases during perseverance and decreases during fatigue (Wascher et al., 2014). 
Working memory load scales with FMT power (Gevins & Smith, 2000; Ishii et al., 1999; 
Itthipuripat et al., 2013; Onton et al., 2005; Sauseng et al., 2010), although it should be 
examined if this relationship is simply due to increased effort or if it represents specific 
information content (see Hsieh et al., 2011; Roberts et al., 2013). Memory encoding and 
retrieval are associated with broad cortical theta, including FMT (Hsieh & Ranganath, 
2014; Jacobs et al., 2006; Kahana et al., 1999; Klimesch, 1999; Klimesch et al., 2000; Nyhus 
& Curran, 2010; Rizzuto et al., 2003, 2006; Sauseng et al., 2004). It remains unknown if 
the role of FMT is specific to control processes in memory rather than encoding per se 
(see Hanslmayr et al., 2010; Staudigl et al., 2010), particularly since other cortical theta is 
specifically associated with encoding (see Rizzuto et al., 2006; Wang et al., 2018).

FMT has been localized to broad medial frontal cortical areas, including the ACC and 
the midcingulate cortex (MCC) using MEG (Beaton et al., 2018; Ishii et al., 1999; Jensen 
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& Tesche, 2002) and EEG (Cohen & Ridderinkhof, 2013; Gevins & Smith, 2000; Gevins 
et al., 1999; Gevins et al., 1997; Onton et al., 2005). The MCC generates oscillations in the 
theta band in human intracranial recording (Cohen et al., 2008; Wang et al., 2005) as well 
as in non- human primates (Tsujimoto et al., 2010; Tsujimoto et al., 2006; Womelsdorf, 
Johnston, et al., 2010; Womelsdorf, Vinck, et al., 2010). Recent reviews have summarized 
distinct functional aspects of FMT, including its modulators (Mitchell, McNaughton, 
Flanagan, & Kirk, 2008), its role in memory (Hsieh & Ranganath, 2014), and its broader 
role in cognitive control (Cavanagh & Frank, 2014). We turn now to this defining area 
of cognitive control and the history of linking FMT processes to frontal midline ERP 
components intricately related to the need for control.

9.2.1  ERP Findings Linked to the FMT Response

Figure 9.1 shows frontal midline ERPs associated with a common theta- band substrate. 
The discovery of the response- locked frontal midline ERP feature known as the error- 
related negativity (ERN) indirectly motivated a renewed interest in FMT dynamics 
(Falkenstein et al., 1991; Gehring et al., 1993). Not long after its discovery, the ERN was 
characterized as being particularly sensitive to anxiety (Gehring et al., 2000) with a 
presumed generative source in ACC (Dehaene et al., 1994; Ishii et al., 1999; Van Veen & 
Carter, 2002). Importantly, the ERN was shown to have a spectral response in the theta 
band (Luu & Tucker, 2001; Luu et al., 2004), although concurrent delta- band activities 
have also been noted (Yordanova et al., 2004) and recently highlighted as functionally 
distinct processes (Cohen & Donner, 2013).

A smaller voltage negativity was also observed on non- error trials (Coles et al., 2001; 
Vidal et al., 2003; Vidal et al., 2000), which is sometimes called the correct- related nega-
tivity (CRN). While this EEG feature was sometimes interpreted as an artifact (Coles 
et al., 2001), it is now known to be reliably observed during action commission, even in 
the absence of task demands (Cavanagh et al., 2012). CRN amplitudes mirror variations 
in performance monitoring during manual responses, as they are larger under 
conditions of increased task difficulty (Hajcak et al., 2005) and uncertainty (Pailing 
& Segalowitz, 2004) and they are diminished on correct trials immediately preceding 
errors (Allain et al., 2004; Cavanagh et al., 2009).

A stimulus- locked error signal following punishing or error feedback was 
characterized soon after the discovery of the ERN (Miltner et al., 1997), with varied 
theoretical accounts arguing for a common process with the response- locked ERN 
(Holroyd & Coles, 2002; Holroyd et al., 2002) or a similar but distinct comparator pro-
cess (Gehring & Willoughby, 2002). This component developed many different names, 
including the feedback- related negativity (FRN), the feedback error- related negativity 
(fERN), or the mediofrontal negativity (MFN). However, the process reflected by these 
terms all share common features with the well- known frontal midline N2 component 
(Folstein & Van Petten, 2008; Holroyd, 2002), arguing against any specificity of infor-
mation content in these processes. Indeed, the N2 component was already known to 
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have a spectral representation in the theta band (Başar- Eroğlu et al., 1992; Başar, 1998a; 
Yordanova et al., 2002). The ERN and the FRN/ N2 are estimated to have MCC sources 
via EEG source estimation (Gehring et al., 2012; Gruendler et al., 2011; van Noordt & 
Segalowitz, 2012; Walsh & Anderson, 2012) and EEG- informed fMRI (Becker et al., 
2014; Debener et al., 2005; Edwards et al., 2012; Hauser et al., 2014; Huster et al., 2011), 
suggesting at least some common processes linking the two.

A parsimonious summary could propose that both the stimulus-  and response- 
related fronto- central negativities reflect common features of the processing demands 
of the MCC. These features are varied across systems related to cognitive and motor 
control, attention, and reinforcement learning, but are especially sensitive to mismatch 
signals of conflict, punishment, and error in the service of behavioral adaptation. The 
commonality of these theta- band processes led to an integrative theory of a common 
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Figure 9.1 The need for cognitive control is associated with a similar frontal midline theta 
signature across a variety of eliciting events. (A) Phase- locked EEG activities (ERPs). While 
these ERP components (i.e., peaks and troughs in the signal locked to particular external events 
and averaged across trials) are related to learning and adaptive control, they represent a small 
fraction of ongoing neural dynamics. (B) Time- frequency plots show richer spectral dynamics of 
event- related neuro- electrical activity by averaging activities regardless of phase- locking. Here, 
significant increases in power to novelty, conflict, punishment, and error are outlined in black, 
revealing a common frontal midline theta band feature during events that signal a need for con-
trol. (C) Scalp topography of event- related frontal midline theta activity. The distribution of theta 
power bursts is consistently maximal over the frontal midline.
N2, a component elicited by novelty or stimulus/ response conflict; Feedback related negativity 
(FRN), A similar N2- like component elicited by external feedback signaling that one’s actions were 
incorrect or yielded a loss; Correct- related negativity (CRN), a small, obligatory component evoked 
by motor responses even when these are correct according to the task and enhanced by response 
conflict; Error related negativity (ERN), A component evoked by motor commission errors.
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language, a theta lingua franca, for the realization of the need for control (Cavanagh 
et al., 2009; 2012). Stimulus-  and response- locked obligatory theta- band phase dy-
namics were proposed to represent a biophysical mechanism for the common tem-
poral organization of neural processes during stimulus or response processes. Variation 
on this theme, such as power enhancement, reflects the realization of these reactive 
responses (Figure 9.1). These computations appear to be used to merge attentive, af-
fective, and cognitive functions with motor selection in order to utilize environmental 
context during action monitoring. FMT therefore appears to reflect general operations 
of the MCC during action monitoring, particularly as an initial orienting response to a 
novel or surprising event (Wessel, 2018).

9.2.2  Do ERP Theta and FMT Reflect the Same Process?

Recent findings have begun to parse some of the overlapping constructs in the broad 
theta lingua franca perspective. FMT dynamics occur in the “background” during cog-
nitive performance, emerging in a scale- free manner over varied time scales and thus 
not only to punctate evoked orienting responses (Cohen, 2016). Conflict appears to be 
specifically represented in the theta band, whereas error- specific features are associated 
with an additional delta- band response (Cohen & Donner, 2013; Cohen & van Gaal, 
2014; Yordanova et al., 2004). Conflict can have many different definitions, with formal 
mathematical models equating to a type of surprise (Berlyne, 1957; Botvinick et al., 2001; 
Wiecki & Frank, 2013) and informal definitions comprising a homology of difficulty or 
effort.

In line with Shackman and colleagues’ (2011) adaptive control hypothesis, FMT 
closely aligns with the proposed domain- general (effective and affective) role of the 
MCC for selecting actions under uncertainty (Cavanagh & Shackman, 2014). Meta- 
analytic evidence supports the hypothesis that cognitive effort and anxiety are both 
related to FMT and associated ERP features (Cavanagh & Shackman, 2014; Moser et al., 
2013). Highly anxious individuals appear to utilize punishment and error information 
more effectively than a control sample. Enhanced FMT mediates the relationship be-
tween anxiety and risky decision making (Schmidt et al., 2018), and it correlates with an 
enhanced ability to learn from punishment (Cavanagh et al., 2018) and adjust behavior 
following errors (Cavanagh, Meyer, Hajcak, et al., 2017).

In sum, definitions of conflict, difficulty, and effort can all be equivalently applied to 
situations that elicit FMT as well as ERP components with theta- dominant substrates. 
In line with the adaptive control hypothesis, FMT appears to mediate the increased af-
fective and effective vigilance leading to more avoidant behaviors, particularly in highly 
anxious individuals. However, our overarching caveat should be noted again: there are a 
multitude of theta band responses, even over the frontal midline, and each can reflect a 
variety of processes (Töllner et al., 2017). For example, Cohen and Donner (2013) found 
that the response- conflict- related N2 ERP component was uncorrelated with conflict- 
related FMT, and that removing the phase- locked (ERP) component of the signal 
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did not affect the conflict- related FMT. This is consistent with other reports that have 
reported a qualitative absence of phase- locking associated with response- conflict FMT 
(Nigbur et al., 2012; Pastötter et al., 2010). These findings can be contrasted with similar 
analyses of the FMT response to erroneous button presses, which contains theta- band 
phase- locking (Trujillo & Allen, 2007) that is significantly affected by removing the ERP 
(Munneke et al., 2015).

9.3 Translational Underpinnings

In some fields of neuroscience research, the term “theta” implicitly implies rodent 
hippocampal activity (~4– 12 Hz) that has been associated with learning, memory, and 
spatial navigation (Buzsáki, 2006). Rodent hippocampal theta is not a unitary construct 
(Colgin, 2013; Pignatelli et al., 2012), with separate theta rhythms occurring due to septal 
drive as well as an intrinsic generative process that seems to be common to many types 
of cortical and sub- cortical excitatory- inhibitory networks (Womelsdorf et al., 2014).

Mediofrontal spikes are phase- locked to both mediofrontal theta as well as 
hippocampal theta (Benchenane et al., 2010; Hyman et al., 2011; Jones & Wilson, 2005b; 
2005a; Paz et al., 2008; Pignatelli et al., 2012; Siapas et al., 2005). However, this evidence 
of hippocampal interaction with frontal theta processes could reflect a generic phenom-
enon whereby cortical theta synchronizes disparate neural areas in a global workspace, 
possibly via travelling waves (Lubenov & Siapas, 2009; Zhang et al., 2018). Many cortical 
areas have shown phase- synchronous relationships with frontal theta, including visual 
cortex (Lee et al., 2005; Liebe et al., 2012; Phillips et al., 2013), amygdala (Taub et al., 
2018), and ventral tegmental areas (Fujisawa & Buzsáki, 2011). The ubiquity of theta- 
band findings across species has led to the suggestion that FMT reflects a non- specific 
mechanism for organizing neural processes around “decision points”, such as action se-
lection (Womelsdorf, Vinck, et al., 2010).

The translational potential for using theta to infer similar cognitive processes between 
species is promising but needs additional clarification. Some studies show that non- 
human primates have similar error, conflict, and feedback ERPs at the skull (Phillips & 
Everling, 2014), the scalp (Godlove et al., 2011), the dura (Vezoli & Procyk, 2009), and 
within the cingulate cortex (Emeric et al., 2010), although the spectral representation 
of these signals has not been defined. Rats have a FMT- dominant control network that 
is transiently instantiated following an imperative tone, affording a chance to causally 
manipulate this network and draw parallel conclusions to humans (Narayanan et al., 
2013) although this is non- specifically spectrally localized to the theta band compared 
to typical human EEG findings. This common FMT electrophysiological response is 
diminished in Parkinson’s patients as well as in a dopamine depletion rodent model 
(Parker et al., 2015), suggesting a novel model of cognitive dysfunction in Parkinsonism. 
Ample evidence suggests that FMT is sensitive to dopamine in humans, but it appears 
to also be sensitive to other monoamines like norepinephrine and acetylcholine (see 
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review by Jocham & Ullsperger, 2009) so the specificity of neuromodulator influence is 
likely to be low.

Given this pervasive dominance of theta- band activities across mammalian cognitive 
processes, one may wonder if there is something special about this frequency. Indeed, 
many mammalian motor activities occur within a broadly- defined theta frequency 
(Cohen, 2014; Colgin, 2013). Reflexive movements like sniffing (Macrides et al., 1982), 
whisking (Berg & Kleinfeld, 2002), licking (Amarante et al., 2017), giggling (Luschei, 
2006), and shivering (Petajan & Williams, 1972), as well as controlled processes like 
saccade initiation (Jutras et al., 2013), typing (Yamaguchi et al., 2013), and speaking 
(Pellegrino et al., 2011), all occur with theta rhythmicity. This theta dominance of 
the speech rate may have emerged as a consequence of motor properties of mouth 
movements, which themselves emerged from reflexive sucking, chewing, and licking 
patterns (MacNeilage & Davis, 2001). Yet there are theta rhythms in attentive processes 
as well. Saccades reset hippocampal theta rhythms in monkeys (Jutras et al., 2013), 
which appear to facilitate the creation of grid- based representations of space (Killian 
et al., 2012). Sustained attention has rhythmic fluctuations at an approximate theta fre-
quency (Helfrich et al., 2018; Huang et al., 2015), although this may be a general low- 
frequency phenomenon and may not be specific to theta (VanRullen, 2016).

In sum, cognitive processes and controlled motor activities appear to emerge from 
existing phylogenetic scaffolds that use a basic pattern generator for action initiation. 
For whatever reason, theta rhythmicity may have first been leveraged to optimize 
skeleto- motor action integration. The common occurrence of theta across arousal, 
motor, cognitive, and attentive processes suggests a degeneracy of function: many 
different processes evoke a theta band correlate. Still, there might be a common compu-
tational advantage of particular temporal pattern.

9.3.1  Theta Phase Dynamics and Decision Integration

Theta oscillatory dynamics are a possible computational mechanism by which 
expectations and outcomes can be compared. Oscillations alter the membrane poten-
tial of neurons “tuned” to the oscillation frequency, forcing windows of time where 
any given neuron is either more (trough) or less (peak) likely to be excited. Neurons 
participating in this given frequency perturbation are more likely to interact, exchange 
information, and modulate synaptic plasticity together (Fries, 2015). Since oscillations 
reflect the action of a fundamental, energy- efficient physical principle, functional dy-
namics of information processing may be inferred from the qualities inherent to 
oscillations: timing, prediction, storage, and communication.

The 1/ f characteristic of brain oscillations suggests that small- amplitude fast- 
oscillating networks are a characteristic of more local operations, whereas slow, large 
rhythms link areas over a greater spatial distance. Sinusoidal (harmonic) oscillators, 
such as the theta rhythm, are good time keepers due to the ability to predict future 
states based on knowledge of the oscillation period and the phase at any given moment 
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(Buzsáki, 2006). Pulsatile (non- harmonic, or relaxation) oscillators, such as the neur-
onal membrane potential, may be synchronized easily by harmonic oscillators which 
can act to separate information transfer and information intake (Buzsáki & Draguhn, 
2004). These characteristics of timing and selective entrainment make oscillations a 
substrate for ongoing processing (storage) and phase reset (input enhancement), two 
necessary components of expectation and prediction (Buzsáki, 2006).

Across networks, oscillations within one network may entrain other neurons by 
locking them into the same oscillatory phase (Fries, 2005; Womelsdorf et al., 2007), to 
a harmonic oscillatory phase (Gruber et al., 2005), or by coupling a higher frequency 
power increase to lower frequency phase (Canolty et al., 2006; Jensen & Lisman, 2005). 
Coherent oscillations between distal areas are thought to reflect entrained inter- regional 
activity, which serves to increase the coordination of spike timing across spatially sep-
arate neural networks (Fries, 2005). Thus, slower oscillations like theta can act as a 
reader of fast activities (Buzsáki, 2010; Jensen & Colgin, 2007; Womelsdorf, Vinck, et al., 
2010), for example integrating phonemes into words during speech processing (Giraud 
et al., 2007; Giraud & Poeppel, 2012). Theta phase thus appears to be a general neural 
mechanism for coupling disparate local gamma band sequences (Canolty & Knight, 
2010; Fukai, 1999; Jensen & Lisman, 2005; Solomon et al., 2017; Tang et al., 2016; White 
et al., 2000). This pattern of theta- gamma coupling even forms the basis of some current 
network- level models of cognitive control (Gratton, 2018; Verguts, 2017).

9.3.2  Theta phase dynamics and cognitive control

If FMT power bursts signal a generic need for control (Figure 9.1), theta- band phase 
synchrony between frontal midline and distal sites may communicate how to imple-
ment that control (Figure 9.2a). In the more than ten years since the initial publication of 
this simultaneous discovery by two separate groups (Cavanagh et al., 2009; Hanslmayr 
et al., 2008), there have been over 20 replications of this effect of transient similarity in 
theta- specific phase angle following a variety of events indicating a need for control. 
This finding further validates a theta- based similarity between conflict, punishment, 
error, and working- memory evoked FMT as a common lingua franca for implementing 
control.

Other types of statistical interaction have also been shown in theta- band networks, 
primarily using Granger prediction where midline areas lead distal areas (Cohen & 
van Gaal, 2013; Popov et al., 2018; Rajan et al., 2018; Zavala et al., 2016; Zavala et al., 
2014). Intracranial recordings in humans have validated the hypothesis that cingulate 
theta couples with gamma, and that this process leads dlPFC, MFC, and OFC during 
the need for cognitive control (Bartoli et al., 2017; Oehrn et al., 2014; Rothé et al., 2011; 
Smith et al., 2015; Tang et al., 2016). Similar medio- occipital phase synchrony has been 
observed in monkeys (Phillips et al., 2013) and medio- motor synchrony has been 
observed in rats (Narayanan et al., 2013). These theta- phase networks can be boosted by 
transcranial stimulation (Reinhart & Woodman, 2014; Reinhart, 2017), and diminished 
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Figure 9.2 Theta band phase consistency between mid- frontal and distal sites is transiently 
increased following events that indicate a need for control. (A) Twenty five separate studies (A 
through Y) have replicated the finding of theta- band phase synchrony between the frontal mid-
line (presumably MCC) and varied cortical areas, including lateral prefrontal cortex (lPFC), 
motor cortex, sensory cortices, and basal ganglia (BG). WM =  working memory. (B) A var-
iety of moderators affect medio- lateral phase synchrony, with increases due to age, anxiety and 
transcranial direct or alternating current stimulation (tD/ ACS), and decreases due to schizo-
phrenia, age, anti- phase tACS, and mild traumatic brain injury (TBI). (C) Studies often-
times report a nominal pattern of hemisphericity in medio- lateral phase synchrony. Errors 
and punishments consistently evoked a right>left pattern, whereas conflict tended towards a 
left>right pattern. However, the studies contributing to the left>right pattern were more com-
plex and involved proactive and reactive processes compared to error realization, which is ra-
ther straightforward and reactive. Future studies should formally investigate the moderators of 
hemisphericity in medio- lateral phase synchrony.

Citations for  figure 9.2:
A: Hanslmayr et al., 2008; B: Cavanagh et al., 2009; C: Cohen et al., 2009; D: Cavanagh et al., 2010; E: Cohen & Cavanagh, 
2011; F: Cohen & van Gaal, 2013; G: Nigbur et al., 2012; H: van de Vijver et al., 2011; I: van Driel et al., 2012; J: Narayanan et 
al., 2013; K: Anguera et al., 2013; L: Cohen & van Gaal, 2014; M: Tóth et al., 2014; N: Van de Vijver et al., 2014; O: Moran et 
al., 2014; P: Reinhart et al., 2015; Q: Zavala et al., 2013; R: Cavanagh et al., 2017; S: Reinhart, 2017; T: Vissers et al., 2018: U: 

Ryman et al., 2018; V: Swart et al., 2018; W: Buzzell et al., 2018; X: Oehrn et al., 2014; Y: Cavanagh et al., 2020.
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by out- of- phase alternating current (Reinhart, 2017). These networks are also altered in 
psychiatric distress, being increased in anxiety (Cavanagh et al., 2017) and diminished 
in schizophrenia (Ryman et al., 2018), see Figure 9.2b. Many questions remain to be 
addressed about the function of this theta- band phase synchrony, but there is correlative 
(Anguera et al., 2013; Cavanagh et al., 2009; Cavanagh et al., 2017; Swart et al., 2018) and 
causal evidence (Narayanan et al., 2013; Reinhart, 2017; Reinhart et al., 2015) that this 
network directly affects behaviors related to the ability to learn from and adapt to the 
need for control.

Many studies have observed a right- sided dominance of medio- lateral phase syn-
chrony, but this issue of hemisphericity requires further rigorous testing. Figure 9.2c 
sorts studies that reported even a nominal pattern of hemisphericity, and it can be 
seen that errors and punishments consistently evoked a right>left bias, whereas con-
flict tended towards a left>right bias. Although this distinction appears straightfor-
ward, it is likely overly simplistic to suggest a simple conflict vs. error dissociation on 
hemisphericity. The studies contributing to the left>right pattern were more complex 
and involved both proactive and reactive processes whereas error realization is rather 
straightforward and reactive. Future studies should be formally test for hemispheric 
bias in medio- lateral phase synchrony to better address questions about the functional 
role of this signal.

9.4 Clinical applications

FMT and related ERP features have compelling characteristics for clinical advance-
ment. The majority of the units of analysis in the National Institute of Mental Health 
(NIMH) Research Domain Criteria (Insel et al., 2010) are EEG- based, and many of 
these are FMT- family responses. Lower FMT appears to be a reliable endophenotype 
for substance abuse and externalizing disorders (Gilmore et al., 2010; Kamarajan et al., 
2015; Kang et al., 2012; Rangaswamy et al., 2007; Zlojutro et al., 2011). Higher FMT is 
reliably associated with anxious temperament (Cavanagh & Shackman, 2014; Moser 
et al., 2013; Riesel et al., 2017), and ERN amplitude can even predict treatment response 
in anxiety disorder patients (Gorka et al., 2018) . Future studies should derive the sen-
sitivity and specificity of FMT to determine the biomarker potential in select clinical 
applications.

FMT can be elicited in simple tasks that are viable within a clinical environment. 
Aberrant auditory orienting responses have already been advanced as candidate 
biomarkers, like diminished mismatch negativity (MMN) in schizophrenia (Javitt 
et al., 2018; Light et al., 2015) or diminished novelty habituation in Parkinson’s disease 
(Cavanagh, Kumar, et al., 2018). The MMN is a theta- dominant response with sep-
arable frontal and temporal processes (Fuentemilla et al., 2008; Ko et al., 2012) that 
may interact via theta- band phase synchrony (Choi et al., 2013). The neural systems 
underlying auditory novelty detection are well detailed in rodent models (Escera & 
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Malmierca, 2014; Featherstone et al., 2018; Lee et al., 2018), facilitating cross- species 
translation. Auditory- evoked responses are already routinely used in brainstem audi-
tory testing for hearing acuity in newborns, demonstrating that clinical infrastructure 
and expertise exists for applying relevant tasks to patient groups when using EEG as a 
diagnostic tool.

9.5 Broader impact and 
future directions

FMT is a well- characterized candidate mechanism underlying the ability to realize and 
communicate the need for cognitive control. Further tests of this theory will need to 
integrate findings from preclinical animal models, computational accounts of informa-
tion representation, broader human imaging literature, and the sensitivity and specifi-
city diagnostics for human patient groups. Fortunately, electrophysiology is routinely 
utilized in vitro, in vivo, and in outpatient neurological clinics, making it uniquely 
positioned at the crossroads of many sub- fields of neuroscience.
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CHAPTER 10

THE ROLE OF ALPHA AND 
BETA OSCILL ATIONS IN 

THE HUMAN EEG DURING 
PERCEPTION AND MEMORY 

PRO CESSES

SEBASTIAN MICHELMANN, BENJAMIN GRIFFITHS, 
AND SIMON HANSLMAYR

10.1 Alpha oscillations and their 
relation to cognition

In 1929 a German physician named Hans Berger recorded the first human EEG. The 
first thing he noticed was a regular oscillation with a frequency of 10 Hz (Berger, 1929), 
which he termed alpha oscillations. Many decades after Berger discovered these alpha 
oscillations researchers use them as a first quality check of their EEG signal. After 
attaching electrodes to the subject’s head, the researcher typically asks the subject to 
close their eyes and relax; the researcher then sees beautiful alpha waves with a fre-
quency of around 10 Hz being maximal over posterior channels. When the subject then 
opened their eyes, alpha oscillations largely reduce. This phenomenon is extremely re-
liable, such that not seeing the reduction in alpha amplitude when subjects open their 
eyes would typically indicate that something went wrong. Reductions in alpha amp-
litude occur in all ranges of cognitive tasks such as visual processing (Adrian, 1944), 
auditory processing (Krause et al., 1994; Obleser & Weisz, 2012), somatosensory pro-
cessing (Crone et al., 1998), memory encoding (Hanslmayr et al., 2009; Klimesch et al., 
1996), memory retrieval (Burgess & Gruzelier, 2000; Waldhauser et al., 2016), working 
memory maintenance (Sauseng et al., 2009), decision making (Pornpattananangkul 
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et al., 2019), and motor preparation and execution (Pfurtscheller et al., 1997). The exact 
frequency at which power reductions are maximal varies between tasks and often 
involves the faster beta oscillation around 15 Hz, which can be considered the “fast” sib-
ling of alpha. In this chapter we therefore do not distinguish between alpha and beta 
oscillations and refer to these oscillations as alpha/ beta. Suppression of alpha/ beta 
oscillations is not only observed in humans, but also in a wide range of animals, for ex-
ample, non- human primates (Haegens et al., 2011), dogs (Lopes da Silva et al., 1980), cats 
(von Stein et al., 2000), rodents (Wiest & Nicolelis, 2003), and even insects (Popov & 
Szyszka, 2019). This ubiquity of alpha/ beta power suppression across cognitive domains 
and across the animal kingdom indicates that alpha/ beta power reductions are a signa-
ture of an extremely general mechanism, which is called upon in almost any cognitive 
task and has been retained over millions of years of evolution. What could this mech-
anism be? This chapter attempts to answer this question.

Before delving into the different physiological interpretations of alpha oscillations 
it is worth pointing out a theoretical caveat that has become evident in cognitive 
neuroscience and the way we can avoid these problems. Historically the job descrip-
tion for a cognitive neuroscientist was to pick a cognitive phenomenon (i.e., attention, 
memory) and then find the “neural correlate” of that phenomenon. To demonstrate 
this approach let us consider a short thought experiment involving two hypothetical 
cognitive neuroscientists: AC and BD. Researcher AC is interested in attention. She 
runs several meticulously controlled experiments that all manipulate certain aspects 
of attention while she records EEG. Across this series of experiments, she finds that 
alpha oscillations are very consistently modulated by attention. She goes to a confer-
ence, presents her results, and concludes that alpha oscillations are the neural correlate 
of attention. At that same conference, researcher BD, who is interested in memory, also 
presents his results. In a series of carefully controlled experiments he shows that alpha 
oscillations are reliably modulated by various memory processes. He concludes his talk 
with saying that alpha oscillations are the neural correlate of memory.

So, who is right? What cognitive function do alpha oscillations represent: memory 
or attention? The answer is both are wrong. The error that both scientists make is to 
assume that there is a one- to- one mapping between neural phenomena and cognitive 
functions. This error has become known under the term “reverse inference error”, that 
is, observing neural signature X has no predictive value for cognitive process Y to occur 
(Poldrack, 2011). With respect to alpha oscillations, given their ubiquity in terms of cog-
nitive tasks (from attention to decision making) and species (from human to honeybees) 
it is evident that the task of trying to attach one particular label from cognitive psych-
ology (attention vs. memory) to them is bound to fail. An alternative approach is 
needed if we want to truly understand the function of alpha oscillations. This alternative 
approach needs to avoid limiting itself by definitions of cognitive processes. Instead, this 
approach needs to embrace the fact that a given neural phenomenon can be of service 
to many different cognitive processes in many different species. One such alternative is 
to assume that different oscillations implement canonical computations (Siegel et al., 
2012; Womelsdorf et al., 2014), which are basic neural operations that are called upon by 
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different cognitive processes. Regulating the balance between excitation and inhibition, 
for instance, would be one such basic operation. Another basic operation is to enable 
the neural representation of information rich content. These operations arguably are 
required by almost any cognitive task and species. The difference from this approach to 
the traditional cognitive neuroscience approach is not in using different labels, but to try 
to understand the computational utility of a neural operation for a given cognitive pro-
cess (see Buzsaki, 2019 for a similar line of argument). Instead of asking what the neural 
correlate of attention is, we ask how a decrease in alpha oscillations can be of service for 
attention, memory, decision making, etc. Section 10.2 provides a brief overview of the 
behaviour of alpha oscillations in terms of frequency, power, and phase. It is critical to 
understand these terms first before we can consider the physiological interpretations of 
alpha oscillations.

10.2 Signal properties of alpha: 
Frequency, Power, and Phase

10.2.1   Frequency

Analyzing alpha oscillations typically involves transforming an EEG signal into time- 
frequency space (see Cohen, 2014 for an excellent overview of the different methods 
and hands- on tutorials). Figure 10.1A shows a typical example of a raw EEG trace in a 
healthy human subject. It is easy to spot the decrease in alpha amplitudes at time 0 (when 
a stimulus was presented). Brain oscillations are defined by three physical properties: (i) 
frequency (Figure 10.1B), (ii) amplitude (Figure 10.1C), and (iii) phase (Figure 10.1D). 
Different brain networks are hypothesized to oscillate at different frequencies (Keitel 
& Gross, 2016), with small networks oscillating at fast frequencies (>40 Hz) and large 
networks oscillating at slower frequencies (<20 Hz) (von Stein & Sarnthein, 2000). Small 
and large here refers to the number of neurons involved in generating the signal. This ana-
tomical property is reflected in the 1/ F power ratio of EEG signals, which refers to the drop 
in signal power with increasing frequency. Alpha oscillations are remarkable because 
they stand out from the 1/ F pattern (Figure 10.1B), which shows that they are a particu-
larly strong oscillation recruiting large pools of neurons. Frequencies are typically used 
to distinguish between different types of oscillations, that is, theta ~ 4 Hz, beta ~15 Hz, 
gamma ~ 40 Hz, etc. The frequency within an oscillation has been shown to be linked to 
interindividual variability in memory processes (Cohen, 2011) or intelligence (Anokhin 
& Vogel, 1996). Recent work demonstrates that the frequency of alpha can also change 
within a subject, from trial- to- trial (Haegens et al., 2014) and may reflect cortical excit-
ability ( Cohen, 2014). Therefore, it is important to consider that the frequency of alpha 
may vary from individual to individual and even from trial to trial within a participant. 
Sometimes it can even be challenging to distinguish a “fast theta” from a “slow alpha”.
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10.2.2   Power

The power of an oscillation refers to its signal strength. It is usually calculated by taking 
the square of the signal. In human EEG, a signal is generated by the summation of several 
millions of postsynaptic potentials (inhibitory and excitatory) over an area of some cm2 
(Pfurtscheller et al., 1996). Importantly, the current changes induced by postsynaptic 
potentials are tiny and we record these potentials with an electrode that is attached to 
the scalp, separated by various layers of bone, cerebrospinal fluid, skin, etc., from the 
brain. Therefore, in order to detect a signal that is large enough to be visible in the EEG, 
tens of thousands of post- synaptic potentials must come together in time. To give an 
analogy, recording EEG is a bit like recording the noise in a football stadium with one 
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Figure 10.1 Alpha oscillations and their parameters. (A) An example of a raw signal as 
recorded with a parietal EEG electrode is shown on the left. A stimulus was presented at time 
0. The plot on the right shows the results of a time- frequency analysis in which power is depicted 
for each time- point (x- axis) and frequency band (y- axis; a.u. =  arbitrary units). (B) A sche-
matic of a typical EEG power spectrum is shown, with frequency on the x- axis and power on 
the y- axis. The inverse relationship between the size of neural assemblies and power is depicted. 
Note the peak at the alpha frequency which violates the 1/ F relation between power and fre-
quency. (C) A typical time- frequency plot showing event related power increases (hot colors) 
and decreases (cold colors) during processing of verbal information. Note the power increases 
in theta (3– 7 Hz) and gamma (35– 100 Hz) and the power decreases in alpha (8– 12 Hz) and beta 
(13– 35 Hz). (D) The relationship between EEG phase (top) and firing rates (bottom) is shown. 
The differently colored lines show phase modulations in trials with high (red), medium (purple) 
or low (blue) power.

(A) Reprinted with permission from Hanslmayr et al., 2011. (C) is modified and reprinted with permission from 
Hanslmayr et al., 2012. (D) modified and reprinted with permission from Jacobs et al., 2007.
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big microphone hanging from the ceiling. Using this coarse signal we cannot stand the 
chance to tune in onto an individual conversation between two fans, but we can use the 
signal to tell whether a goal was scored (because thousands of fans start shouting at the 
same time). Accordingly, the strength of an oscillation is assumed to reflect the degree 
of synchrony between inhibitory or excitatory postsynaptic potentials to an underlying 
neural assembly. Power increases indicate increased local synchrony whereas power 
decreases indicate de- synchronized local activity. This idea is reflected in the classic work 
of Pfurtscheller & Aranibar (1977), who coined the terms event- related synchroniza-
tion and de- synchronization (ERS/ ERD), which denotes power increases and decreases 
in response to an event or stimulus, respectively. In EEG experiments absolute power 
is usually transformed into power changes in response to a baseline (e.g., prestimulus 
interval). Figure 10.1C shows a typical example of such data with stimulus driven power 
increases in the lower (1– 8 Hz: delta/ theta) and higher (40– 100 Hz; gamma) frequency 
ranges, and power decreases in the middle frequency ranges (8– 35 Hz; alpha/ beta).

10.2.3   Phase

The phase of an oscillation specifies the current position in a given cycle (Figure 10.1D), 
that is whether the oscillation exhibits a peak, trough, or zero crossing. Because the EEG 
reflects the sum of postsynaptic input to a given neuron, we can assume that it impinges 
on the neuron’s probability to fire an action potential. Figure 10.1D shows a single neuron 
recorded in the human brain, and that the neuron is more likely to fire in the trough of 
the oscillation, which indeed resembles the time point of maximally coinciding excita-
tory input (note that the LFP in this case is measured in the extracellular space; there-
fore, negativity indexes excitation). This same figure also shows that the modulation of 
firing rate is stronger for trials of high power (red) and lower for trials of low power 
(blue). We can therefore assume that the phase of alpha oscillations (or any other oscil-
lation for that matter) represent discrete time windows for neural firing, and that this 
synchronizing effect scales with power. This is a very useful computational property as it 
gives alpha oscillations the power to control the timing of neural firing in large groups of 
neurons. Like the conductor of an orchestra, who tells individual instruments when to 
play a particular note (and when to not play a note), alpha oscillations can synchronize 
large groups of neurons to temporally structure neural processing. This aspect becomes 
particularly important in Section 10.5, which covers the role of alpha phase for sampling 
information and replaying this information from memory.

10.3 Alpha Oscillations: Passive idling 
versus active inhibition

Alpha oscillations decrease in amplitude when a subject is engaged in a task as opposed 
to when a subject is resting (especially with eyes closed). This goes against intuition 
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as one would usually expect to see an increase in brain signal strength when a subject 
performs a challenging task, not a decrease. How can we functionally interpret this 
negative relationship between alpha power and cognitive processing? Up until the early 
2000s the prevailing view was that alpha oscillations reflect a state of “idling” or rest. In 
their article, Pfurtscheller and colleagues (1996) give the example of the motor cortex, 
in particular the visual cortex and the hand area during a reading task or a motor task 
requiring finger movements, respectively. During reading, the visual cortex displays 
profound alpha- power decreases, whereas the hand motor area shows an increase in 
alpha power. This picture switches when the subject engages in a motor task requiring 
finger movement. Within the idling hypothesis, one would interpret the increased alpha 
power over areas that are not required by the task as “nil work”, that is, a passive res-
onance phenomenon of a part of cortex that has “nothing to do” (Adrian & Matthews, 
1934). Since almost any cognitive task always involves specific activation of some regions 
and de- activation of other regions (Fox et al., 2005) the EEG would always reflect some 
areas that show alpha power decreases (or desynchronization) and some areas that show 
alpha- power increases (or synchronization). The important emphasis of the idling hy-
pothesis is on the passive aspect of alpha synchronization which has no functional role 
per se.

Klimesch and colleagues (2007) and Jensen and Mazaheri (2010) presented a 
contrasting view to the idling hypothesis and suggested that alpha oscillations play 
a critical role in cognitive processing. The seminal findings that led to this interpret-
ation were studies showing that alpha power increased with increasing cognitive load 
in a working memory task (Jensen et al., 2002; Klimesch et al., 1999). This alpha-  power 
increase with cognitive load is difficult to reconcile with the idling hypothesis, which 
led to the active inhibition hypothesis (Jensen & Mazaheri, 2010; Klimesch et al., 2007). 
Within the active inhibition hypothesis an increase in alpha power reflects an active 
inhibition process that serves to silence a particular region that is task irrelevant. This 
silencing of task- irrelevant areas ensures that information is processed selectively in 
task- relevant areas and protects the processing of this information from interference 
or noise. A critical prediction that the inhibition account made was that an increase in 
alpha oscillations narrows the time windows for neurons to fire (see red vs. blue lines 
in Figure 10.1D) and therefore reduces neural firing. Thus, periods of high alpha power 
should coincide with low neural firing, whereas periods of low alpha power should co-
incide with high neural firing. This prediction was confirmed in a non- human primate 
study (Haegens et al., 2011), which suggests that an increase in alpha power in a given 
area acts as a “silencing mechanism” which muffles neural assemblies that otherwise 
might interfere.

Coming back to our example, alpha synchronization of the hand area while reading 
this chapter ensures that you can focus on the text instead of moving around (or 
thinking about movements). The more challenging a task, the more we need to tune out 
task- irrelevant activity. The inhibition account has gained considerable support over the 
last decades because it can accommodate the findings in the literature better than the 
idling hypothesis. To give two examples, if subjects maintain visual content in working 
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memory that was presented in the left hemifield, therefore being processed in the right 
occipital cortex, alpha power increases over the left occipital cortex (Sauseng et al., 
2009). Externally enhancing alpha power with repetitive transcranial magnetic stimu-
lation over the irrelevant hemisphere then increases working memory performance. 
Similar evidence comes from Bonnefond and Jensen (2012), who demonstrated that 
subjects actively increase their alpha power in anticipation of a task- irrelevant distractor 
presented during working memory maintenance. The more the subjects upregulated 
alpha power the better the performance on the working memory task. These results rule 
out a passive perspective of alpha oscillations and instead suggest that alpha oscillations 
are very much an active process that regulates neural activity to ensure selective infor-
mation processing. Within this perspective, alpha oscillations serve the function of a 
filter that tunes out task- irrelevant information to render the task- relevant signal more 
salient.

10.4 Alpha Power Decreases and 
the Representation of Information

The active inhibition account has been extremely useful in interpreting the role of alpha 
power increases, or alpha synchronization during cognitive processing. This is because 
any cognitive process requires selective information processing; alpha oscillations, by 
inhibiting task irrelevant neural assemblies, ensure such selective information pro-
cessing. This functional interpretation of alpha oscillations is broad enough to ac-
commodate the fact that modulations of alpha oscillations are observed in a variety 
of cognitive tasks and species. Returning to the thought experiment from earlier, the 
attention scientist AC and memory scientist BD would interpret their findings to show 
that both memory and attention crucially rely on an active filtering mechanism. Indeed, 
alpha power increases over areas that hold the representation of task- irrelevant infor-
mation, regardless of whether this information is currently perceived (Thut et al., 2006; 
Worden et al., 2000), held in working memory (Sauseng et al., 2009), or stored in long- 
term memory (Waldhauser et al., 2012). The emphasis of the active inhibition hypoth-
esis is on alpha synchronization and its computational utility in terms of providing a 
filter mechanism for selective information processing. What is less clear from this per-
spective, however, is what the computational utility of alpha power decreases are for 
information processing (other than allowing for increased neural spike rates through 
less inhibition). We therefore proposed an additional theory, which is complemen-
tary to the inhibition account. Within this framework we emphasized the role of alpha 
power decreases in allowing for high- fidelity information to be represented in neural 
assemblies. A key assumption of this account rests on the fact the alpha/ beta power 
decreases represent periods of de- correlated neural firing (see Murthy & Fetz, 1996 for 
such a demonstration for beta oscillations in the motor cortex).
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One way of interpreting the functional utility of de- correlated firing in alpha for cogni-
tive processing applies tenets of information theory (Shannon & Weaver, 1949) to neural 
oscillations. This framework is known as the “information- via- desynchronization hy-
pothesis” (Hanslmayr et al., 2012), which proposes that synchronized alpha/ beta states 
are inherently bad for information representation as neuronal activity is highly redun-
dant. Take the simplified instance of two presynaptic neurons that act upon the same 
postsynaptic neuron: if one presynaptic neuron fires in perfect synchrony with another, 
what can this neuron add to the neuronal code that its synchronous partner does not 
already (Schneidman et al., 2011)? If we expand this principle to networks of neurons, 
we can postulate that highly synchronous networks are detrimental to information pro-
cessing, because they only represent redundancies. To overcome this limitation there-
fore, the networks must desynchronize. Through desynchronization, the underlying 
neural code can be more complex and hence convey a more detailed representation of 
information. The event- related desynchronization so commonly seen in alpha oscilla-
tion may be a prime example of this phenomenon.

Numerous studies support the idea that alpha/ beta power decreases reflect the rep-
resentation of information within the cortex. One of the most direct lines of support 
comes from a recent simultaneous EEG- fMRI experiment by Griffiths and colleagues 
(2019), who asked participants to associate video clips with words, and to later recall 
the clips using the words as a cue (Figure 10.2). For each trial, the researchers quantified 
the amount of visual information present in the cortex by conducting representa-
tional similarity analysis (RSA) on the fMRI data (Kriegeskorte et al., 2008). RSA is 
based on correlations of neural patterns and reasons that representations of the same 
content should elicit neural patterns that are more alike than the patterns elicited by 
representations of different content (Kriegeskorte et al., 2008). The researchers then 
asked whether the power of the alpha and beta frequencies (8– 30Hz) correlated with 
the quantity of information (calculated via RSA) represented on a given trial. Indeed, 
they found evidence to suggest a parametric link between alpha/ beta power and infor-
mation: as power decreased, information increased (Figure 10.2b). Similarly, Hanslmayr 
and colleagues (2009) presented participants with words and asked them to engage in 
semantic processing (i.e., does this word represent a living entity or a non- living en-
tity?) or shallow processing (i.e., does the first letter of the word precede the last in the 
alphabet?). As semantic processing involves much greater levels of information pro-
cessing (you must not only process the letters, but also what those letters mean), the 
researchers hypothesized that alpha/ beta power decreases would be greater during 
this type of processing. Their results revealed just that— suggesting that alpha/ beta 
power decreases scale with the depth of information processing (see Fellner et al., 2018 
for similar results contrasting familiar and unfamiliar stimuli). In conjunction with a 
number of other studies, these results strongly implicate alpha/ beta power reductions in 
information processing (Hanslmayr et al., 2012).

While the alpha idling theory assumes that synchronous alpha oscillations mark a 
default state in which the cortex does nothing (Pfurtscheller et al., 1996), the alpha in-
hibition theory highlights the active role of alpha synchronization in the suppression of 
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task irrelevant information (Jensen & Mazaheri, 2010; Klimesch et al., 2007). It therefore 
attributes an operative function to alpha synchrony. The information via desynchron-
ization hypothesis goes beyond the inhibition theory, in that it highlights the active role 
of power decreases for the processing of information. Therein, power decreases are not 
a mere absence of inhibition, but rather functionally involved in neural computations. 
The crucial insight is that in order to process complex information or represent informa-
tion rich content, synchronous neural activity does not provide enough coding space. 
Desynchronous neural activity on the other hand, which is marked by power decreases 
in the alpha/ beta band, provides the required coding space through locally decoupled 
neural assemblies. The information via desynchronization theory therefore stresses 
that, in order to perform cognitive operations that work on complex and information- 
rich content, alpha/ beta power must decrease.

Another way to interpret the inverse relation between alpha power and information 
representation is offered by studies investigating “noise- correlations”, which refers to 
correlated firing of task- irrelevant neurons— a process that can be detrimental to in-
formation representation (Mitchell et al., 2009). If two task- irrelevant neurons fire 
together, their noise is amplified. Expand this principle to hundreds or thousands of 
neurons and their noise becomes deafening. In such quantities, these noise correlations 

Perception

Perception

Noise correlations

Info-via-desync

Low Sync/High Info. Low Sync/High Info.High Sync/Low Info.

(a) (b)Interval Retrieval 0.4

0.2

–0.2

–0.4

0

Po
w

er
 S

im
ila

rit
y 

Co
rr

el
at

io
n 

(z
)

Retrieval

Figure 10.2 Alpha power and information processing. (A) Infographic depicting theories be-
hind alpha and information processing. Perception and memory retrieval involve the processing 
of large quantities of information. The noise correlation account proposes that when task irrele-
vant neurons (in blue) synchronize (e.g., during the interval), they mask the signal generated 
by task- relevant neurons (in red). When the task- irrelevant neurons desynchronize however 
(i.e., during perception/ retrieval), the signal can be detected above the background noise. The 
information- via- desynchronization account proposes that oscillatory desynchronization allows 
a more complex neural code to be generated. Such a complex code is necessary to process the 
highly complex information encountered in daily life. In both instances, oscillatory desyn-
chronization benefits information processing (B) Reproduction of the results by Griffiths and 
colleagues. Power decreases during both perception and retrieval negatively correlate with the 
amount of stimulus specific information present on that trial.
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mask the signal generated by neurons critical to the task at hand (Averbeck et al., 2006; 
see also Figure 10.2a), leading to an impaired ability in processing and representing 
information. To rectify this situation, the magnitude of noise correlations needs to be 
attenuated. How, though, do noise correlations relate to alpha oscillations? Given that 
the summed electric potential of the correlated neurons creates a spike in the amplitude 
of local field potential (Averbeck et al., 2006), repeated and rhythmic patterns of noise 
correlations would create repeated and rhythmic increases in the amplitude of local field 
potential (LFP). As alpha oscillations dominate the neocortex, one may speculate that 
the rhythmic noise correlations may resonate within this frequency band. Under this 
assumption, periods of high- amplitude alpha oscillations would reflect periods of nu-
merous noise correlations where information processing is inhibited. This interpret-
ation conforms with the active inhibition account because it would allow alpha power 
increases to suppress task- irrelevant information. Periods of alpha desynchrony, in con-
trast, would reflect periods of limited noise correlations, where there is a greatest poten-
tial for information representation.

In summary, there are two theoretical arguments that implicate alpha power 
decreases in the representation of stimulus- specific information. The information- 
via- desynchronization account suggests that alpha power reductions facilitate the 
evolution of more complex neural codes, which then allows for the representation of 
high- fidelity information in the cortex. The noise correlation account suggests that 
alpha power decreases reduce the background noise in the cortex, allowing for key 
signals to be more clearly communicated. Currently, empirical evidence supports both 
ideas by demonstrating that alpha power decreases scale with the quantity of informa-
tion present in the cortex.

10.5 Alpha Phase: Information Sampling 
and Replay

Recent evidence suggests that the continuous input that our brain receives from the 
outside world is not sampled continuously, but in discrete rhythmic steps around the 
alpha frequency (VanRullen, 2016). These studies show that the probability of detecting 
a briefly presented visual stimulus fluctuates rhythmically (VanRullen et al., 2007). 
This attentional sampling process has been suggested to operate at a frequency of 
roughly 8 Hz (Landau & Fries, 2012), even when sustained attention to the same ob-
ject is maintained (Fiebelkorn & Kastner, 2019; Fiebelkorn et al., 2013). Overall, there 
appears to be a close correlation between the phase of an oscillation in the lower alpha 
band (around 8 Hz) and the perception of an incoming stimulus. In the perception of 
continuous and dynamic stimuli, the stimulus identity can be reliably decoded from 
the ongoing phase of neural oscillations. Therein, an individual continuous stimulus 
is associated with a unique time course of neural activity. Specifically, the stimulus 
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entrains the cortical rhythm in a content-specific way that organizes neural firing (Ng 
et al., 2013). Interestingly, the phase of the ongoing oscillation contains more informa-
tion about stimulus identity than its power (Schyns et al., 2011).

Considering this information sampling role of alpha phase in perception, an immi-
nent question is whether or not the reinstatement of information from memory relies 
on the replay of that information sampled in the alpha frequency. To this end, alpha 
phase could index similar mechanisms during attention and memory, just like alpha 
power decreases. But how can we measure the information sampling and the replay 
thereof in the phase of a recorded EEG?

Similar to assessing the similarity of neural patterns in space, as is usually done in 
fMRI, one can assess the similarity of neural patterns in phase (over time) via the use 
of RSA methods (discussed earlier). Established measures of connectivity can help 
quantify the similarity of neural patterns in the phase of the alpha- frequency band 
(Greenblatt et al., 2012). Connectivity measures usually assess the similarity between 
different channels in their time course of activity. This typically measures shared infor-
mation between regions. Yet, measures of connectivity will lend themselves perfectly to 
quantify representational similarity between encoding and retrieval (Figure 10.3a).

In a first study, we applied such similarity measures of phase in a human EEG experi-
ment where subjects were instructed to encode and replay dynamic visual (short movie 
clips) or auditory stimuli (short melodies played by different instruments). Indeed, 
content- specific patterns of oscillatory phase in the lower alpha band during percep-
tion represent the identity of the visual or auditory stimuli in the visual and auditory 
cortex, respectively. Strikingly, these phase patterns reappear when representations of 
short video clips and short sound clips are replayed from memory (Michelmann et al., 
2016). Importantly, this replay takes place in the absence of the dynamic stimulus itself 
and can be localized in sensory specific areas (Figure 10.3c). A recent study replicated 
this effect in the visual domain and demonstrated that the reinstatement of temporal 
patterns is only observed when content is successfully recalled, that is, temporal pattern 
reinstatement is implicated in successful memory (Michelmann et al., 2019). Another 
study replicated this effect during sleep, indicating that replay of stimulus- specific phase 
patterns supports memory consolidation (Schreiner et al., 2018). Further evidence 
documents that such content- specific phase patterns are also replayed when an asso-
ciation with a previously shown dynamic stimulus is formed (Michelmann et al., 2018).

Interestingly, the reinstatement of temporal patterns is not always beneficial for 
memory but can in some cases interfere with memory as demonstrated by studies 
which manipulated the contextual overlap between encoding and retrieval. For in-
stance, (Staudigl et al., 2015) manipulated the context in which a word is learned and 
remembered by playing the same video clip in the background behind the word at 
encoding and at retrieval (context match); or playing a different video clip in the back-
ground behind the word at encoding and at retrieval (context mismatch). The import-
ance of reinstatement of contextual information was observed via temporal and spatial 
pattern similarity in the beta frequency band. Specifically, higher pattern similarity was 
associated with better memory performance when contexts where matching. On the 
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other hand, non- overlapping contexts were characterized by more dissimilar patterns 
for remembered vs. forgotten words. These findings were recently replicated in a study 
using sensory modality (i.e., presenting a word visually or aurally) as a context match/ 
mismatch manipulation (Staudigl & Hanslmayr, 2019). The results of these studies 
are in line with the notion that context reinstatement is only helpful when the con-
text has not changed and substantiate the importance of temporal patterns for content 
representation.

Most of the studies referenced earlier found that stimulus- specific information was 
coded in the phase of the lower alpha band, around 8 Hz (Michelmann et al., 2016, 2018; 
Michelmann et al., 2019; Staudigl & Hanslmayr, 2019). Corroborating evidence for a 
special role of 8 Hz in the sampling of memories comes from Kerren and colleagues 
(2018), who showed decoded content- specific representations in memory from spatial 
patterns of activity, and that these patterns fluctuate at a frequency of 8 Hz. The sampling 
of information at an 8 Hz rhythm therefore seems to underlie both, rhythmic sampling 
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Figure 10.3 Alpha power decreases during memory retrieval code stimulus- specific infor-
mation. (A) Subjects first encoded a video (left). They later retrieved a vivid representation of 
that video from memory (right). The phase time course was extracted from the EEG during 
encoding and retrieval in order to calculate a similarity measure between encoding and retrieval. 
(B) During retrieval, strong and sustained alpha power decreases were observed. (C) Reactivation 
of stimulus- specific information, as measured with phase similarity, could be detected in the 
alpha frequency band with a maximum in parietal regions. This reactivation was localized in par-
ietal cortex (C, left).

Reproduced from Michelmann et al., 2016.
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of information during perception (VanRullen et al., 2007) and the replay of that infor-
mation during memory reinstatement.

10.6 Linking alpha phase and power

Michelmann and colleagues (2016) showed that the frequency band that contains 
content-specific temporal patterns is also the one that displays the most prominent 
power decreases during retrieval (Figure 10.3b), and furthermore, they observed an 
interaction such that sensory areas that were involved in the reinstatement of auditory 
and visual temporal patterns also expressed stronger power decreases in the respective 
condition. This suggests that power decreases and the representation of information in 
oscillatory phase are not two separate processes but rather are intertwined. This raises 
the question as to how the two signal properties of alpha— power and phase— interact in 
the service of information representation.

We suggest that a decrease of power in an ongoing oscillation renders a signal less 
stationary (and therefore also less predictable) and thereby allows for a flexible adjust-
ment of phase (Hanslmayr et al., 2016). These phase adjustments, or deviations from 
stationarity, make it possible that time courses in phase can represent stimulus spe-
cific patterns, and to replay these patterns from memory (Figure 10.4C). From an in-
formation theoretic view, a stationary oscillation without phase adjustments wouldn’t 
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Figure 10.4 Information coding properties for stationary and non- stationary signals is 
illustrated. (A) A stationary (high power) signal (orange) is shown together with its phase (blue) 
in the upper row. The lower row shows a less stationary signal. (B) Phases for each signal are 
shown every 100 ms (indicated by ticks in A). (C) Non- stationary signals allow for stimulus spe-
cific coding by assigning a different time course to each stimulus.
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be able to represent much information in its phase because the time course of a sta-
tionary signal is perfectly predictable once the phase at one time point is known. For 
example, the signal in the top row of Figure 10.4A visits the same phase every 100 ms 
(top row in Figure 10.4B). Since information theory quantifies information as the in-
verse of the predictability (i.e., negative logarithm in the case of Shannon’s Entropy, see 
Shannon & Weaver, 1949) we can infer that this signal has little potential to carry infor-
mation. Indeed, if we were to code the identity of a stimulus in such a perfectly predict-
able signal, we would not be able to distinguish between different stimuli. In contrast, 
a non- stationary signal (lower row of Figure 10.4A), which has phase modulations, can 
carry much more information. In this case, the phase cannot be predicted from pre-
vious time points (lower panel in Figure 10.4B). This allows us to code different stimuli 
by assigning a phase time course to each stimulus (Figure 10.4C). This simple relation-
ship between the power of a signal and predictability of phase time courses elegantly 
unifies the findings described in this chapter. To this end, a signal with high alpha power 
leads to a more stationary time course and thus inhibits information coding. In con-
trast, a signal with lower alpha power allows for a less stationary time course and there-
fore the coding of information. Importantly, this idea is in line with the general notion 
of an inhibitory role of alpha power increases but goes beyond the previous work in 
ascribing specific computational roles to power and phase in the service of representing 
information.

10.7 Concluding Remarks

This chapter showed that alpha oscillations are ubiquitous as they are modulated by al-
most any task and can be observed in almost any animal. It therefore follows that alpha 
oscillations must perform a basic neural operation, which is of service for many cognitive 
operations. After an overview of the idling vs. inhibition hypothesis we then discussed 
the computational utility of alpha power reductions for information representation. We 
reviewed studies that demonstrated that alpha power reductions are intimately linked to 
information coding— specifically, these studies showed that stimulus- specific informa-
tion is coded in the phase of alpha. Importantly, several studies demonstrated that this 
phase information is replayed when a reminder to that stimulus is presented. Finally, 
we illustrated how power decreases allow for less stationary phase time courses and 
consequently for information representation. Together, we conclude that alpha power 
decreases do play an important role for information representation— a neural operation 
needed in almost any task and in almost any animal.

An important crucial future question refers to the nature of the relationship between 
alpha power decreases and its role for coding information. If indeed, as we here suggest, 
alpha power decreases are mechanisms for representing information we should be 
able to manipulate perception, maintenance, and retrieval of information by directly 
manipulating alpha oscillations via brain stimulation techniques (Hanslmayr et al., 
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2019). Such a demonstration of a causal relationship between alpha power decreases and 
the representation of information is crucial in order to show that alpha oscillations are 
indeed a mechanism for information representation, instead of a mere epiphenomenon.
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CHAPTER 11

Theory and Research 
on Asymmetric Frontal 

Cortical Activit y 
as  Assessed by EEG 

Frequency Analyses

EDDIE HARMON- JONES, TAYLOR POPP,  
AND PHILIP A. GABLE

Frequency analyses of electroencephalographic (EEG) activity have played a major 
role in research and theory concerning the role of left versus right frontal cortical ac-
tivity in emotion-  and motivation- related phenomena. In this work, researchers have 
focused primarily on alpha power (8– 13 Hz) activity in the left versus right frontal 
regions. This focus on alpha power was based on other research suggesting that alpha 
power is inversely related to cortical activity (Cook et al., 1998; Davidson et al., 1990).

Much of this research has used the difference between the left and right frontal re-
gion as the variable of interest. The use of difference scores is based on past research 
using a variety of methods that suggest with regard to emotion-  and motivation- related 
variables, one frontal hemispheric region may be inhibiting the opposite frontal hemi-
spheric region (Schutter, 2009; Schutter et al., 2001). The corpus callosum, the largest 
white matter bundle connecting the left and right hemispheres, likely plays a critical role 
in this asymmetric functioning of the frontal cortices (Schutter & Harmon- Jones, 2013). 
Given this, researchers typically subtract left frontal alpha power from right frontal 
alpha power (after the values are log transformed to normalize the distributions, e.g., log 
F4 minus log F3). The resulting metric is then referred to as relative left or relative right 
frontal activity, depending on whether the difference score is a more positive (relative 
left) or a more negative (relative right) numeric value.
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11.1 Definitions of Psychological 
Concepts: Affective Valence and 

Motivational Direction

We begin by providing our definitions of the psychological concepts of affective valence 
and motivational direction. Affective valence denotes whether an affective trait or state 
is positive or negative. Although affective valence can be defined in a number of ways 
(Harmon- Jones & Gable, 2018; Lazarus, 1991), we define it as the subjective feel of the 
affect (emotion or mood; affect encompasses both of these latter concepts). Affective 
experiences that organisms like feeling are positive, and affective experiences that 
organisms dislike feeling are negative (Harmon- Jones et al., 2011).

Motivational direction refers to the urge to move toward (approach) or away (with-
drawal) from something (Harmon- Jones et al., 2013; Gable & Dreisbach, 2021). Many 
theories suggest that approach motivation is triggered by rewards, desired outcomes, or 
positive goals, and that withdrawal (avoidance) motivation is triggered by punishments, 
undesired outcomes, or negative goals. The anticipations of these end- products may 
inspire much approach and withdrawal motivation, but these anticipations are not the 
only causes of approach and withdrawal motivation and they should therefore not be 
part of the definition. That is, approach and withdrawal motivation can occur without 
being prompted by these anticipations (for an extended discussion, see Harmon- Jones 
et al., 2013).

11.2 Affective Valence and Asymmetric 
Frontal Cortical Activity

Beginning in the 1930s, research using a variety of methods suggested that the left and 
right frontal cortices are involved in different emotional (affective) responses. For ex-
ample, lesion studies as well as experiments that injected a barbiturate derivative 
(amytal) into one of the internal carotid arteries (to suppress the activity of one hemi-
sphere) showed that the loss of activity in the left frontal cortex was associated with 
depressed affect, whereas loss of activity in the right frontal cortex was associated with 
manic affect and euphoria (Alema et al., 1961; Black, 1975; Gainotti, 1972; Gasparrini 
et al., 1978; Goldstein, 1939; Perria et al., 1961; Robinson & Price, 1982; Rossi & Rosadini, 
1967; Sackeim et al., 1982; Terzian & Cecotto, 1959). These outcomes are likely due to 
the release of one hemisphere from contralateral inhibitory forces (Schutter & Harmon- 
Jones, 2013). For example, when the right hemisphere was deactivated by damage or 
amytal, the left hemisphere became more uninhibited and more active, which caused 
manic affect.
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These results can be interpreted in one of two ways. According to the affective va-
lence model of frontal asymmetry, the left frontal cortical region is involved in the ex-
perience and expression of positive affect, whereas the right frontal cortical region is 
involved in the experience and expression of negative affect. According to the motiv-
ational direction model of frontal asymmetry, the left frontal cortical region is involved 
in the experience and expression of approach motivation, whereas the right frontal cor-
tical region is involved in the experience and expression of withdrawal motivation. Until 
the 1990s, the two conceptual models were considered to yield the same predictions be-
cause approach motivation was conceived of as being associated with positive affect and 
withdrawal motivation was conceived of as being associated with negative affect. In the 
late 1990s, researchers began using anger to tease predictions from these two conceptual 
models apart, because anger is an approach- motivated but negative affect (Harmon- 
Jones, 2003a). The following sections briefly review the research on the two models 
along with research on anger and frontal asymmetry.

11.3 Resting Asymmetric Frontal 
Activity and Trait Affective Valence

These early results inspired EEG researchers to examine EEG alpha power over the 
frontal cortex and test whether it was associated with affective variables. Most of the first 
EEG studies on asymmetric frontal asymmetry tested individuals in a resting, baseline 
state (i.e., sitting quietly in the lab for four to eight minutes). Researchers assumed that 
this resting, baseline EEG would tap into a personality trait, and they then related EEG 
frontal asymmetry with other personality or individual difference measures.

Several studies found that depression was correlated with less relative left frontal 
cortical activity (e.g., Allen et al., 1993; Henriques & Davidson, 1990; Jacobs & Snyder, 
1996; Schaffer et al., 1983; see meta- analysis by Thibodeau et al., 2006). Other studies 
suggested that trait negative affect was correlated with greater relative right frontal ac-
tivity, whereas trait positive affect was correlated with greater relative left frontal activity 
(Tomarken et al., 1992).

11.4 Manipulations of Asymmetric 
Frontal Cortical Activity and 

Affective Reactions

The studies assessing resting baseline asymmetric frontal cortical activity were correl-
ational; therefore, it is impossible to infer that the differences in asymmetric frontal 
cortical activity were causally involved in the observed affective processes. In an effort 
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to provide evidence that would allow causal inferences, some researchers manipulated 
asymmetric frontal cortical activity and tested whether manipulation influenced other 
affective variables.

11.4.1   Neurofeedback

Studies have used neurofeedback training to manipulate asymmetric frontal cortical ac-
tivity (e.g., Allen et al., 2001; Harmon- Jones et al., 2008). In this research, operant con-
ditioning is used to produce certain patterns of brainwaves. Reward feedback (e.g., a 
simple tone) corresponding to “desired” patterns of brainwave activity is presented to 
participants. Over numerous presentations of this reward feedback, the brain learns 
to produce the desired brainwave activity, such as greater relative left frontal cortical 
activity. These neurofeedback- induced changes in brainwaves occur via nonconscious 
learning processes (Kamiya, 1979; Siniatchkin et al., 2000).

In one example experiment, relative right versus relative left frontal activity was 
manipulated using neurofeedback (Allen et al., 2001). In the experiment, participants 
were instructed to attempt to make a particular tone play as much as possible. 
Asymmetric frontal cortical activity (i.e., alpha power at F4 minus alpha power at F3) 
was calculated during the first second of each two- second time period. This calculated 
value was then compared against a criterion value that had been set for that session 
(based on the individual’s previous asymmetry index). If the calculated value was larger 
than the criterion value in the desired direction, a “reward” tone was played; if it was 
not, a “non- reward” tone was played. After several days of neurofeedback training, 
participants then viewed emotionally evocative film clips as zygomatic and corrugator 
muscle region activity was recorded. Results revealed that the neurofeedback training 
influenced asymmetric frontal cortical activity in the predicted direction (for a repli-
cation, see Quaedflieg et al., 2016). Moreover, the manipulated increase in relative right 
frontal cortical activity, as compared to relative left frontal cortical activity, caused less 
zygomatic and more corrugator muscle region activity in response to all film clips. These 
results suggest that asymmetric frontal cortical activity is causally involved in emotional 
responses.

11.4.2  Unilateral hand contractions

Asymmetric frontal cortical activity has also been manipulated using unilateral hand 
contractions. Because unilateral hand contractions cause increased activation of the 
contralateral motor region (Hellige, 1993), whose activation may spread to frontal 
regions, unilateral hand contractions may influence emotional responses (Schiff & 
Lamon, 1989; 1994). Indeed, research revealed that contractions of the left hand cause 
increased feelings of sadness and more negative perceptions and judgments, whereas 
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contractions of the right hand cause increased feelings of positive affect and more posi-
tive perceptions and judgments (Schiff & Lamon, 1989, 1994).

Based on this research, experiments have tested whether unilateral hand contractions 
would influence EEG and other emotional responses. In one experiment, participants 
were instructed to squeeze a ball in their left or right hand for several minutes (Harmon- 
Jones, 2006). Then, their self- reported affective responses were measured in response 
to a radio editorial designed to evoke a moderate amount of positive affect. Results 
revealed that the contraction of one hand increased cortical activity over the central and 
frontal regions of the contralateral hemisphere (as measured by EEG alpha suppression; 
see Gable et al., 2013 for replication). Moreover, this manipulation influenced positive 
affect, such that right- hand contractions caused more positive affect than the left- hand 
contractions.

11.4.3  Situational Manipulations of Positive and Negative 
Affect and Asymmetric Frontal Cortical Responses

Additional research has measured asymmetric frontal cortical activity in response to 
manipulations of positive and negative affect. For example, Davidson and Fox (1982) 
found that 10- month- old infants evidenced greater relative left frontal cortical activity 
to film clips of an actress displaying happy facial expressions as compared to sad facial 
expressions. Ekman and Davidson (1993) found that adults evidenced greater relative 
left frontal activity when they were induced to make facial expressions of genuine smiles 
of joy as compared to facial expressions of non- genuine smiles of joy. Coan, Allen, and 
Harmon- Jones (2001) found that adults evidenced less relative left frontal activity when 
they were induced to make facial expressions of fear as compared to several other types 
of emotional facial expressions.

11.5 Asymmetric Frontal Cortical 
Activity and Motivational Direction

Several studies suggest that the left frontal cortical region is involved in the experience 
and expression of positive affect, whereas the right frontal cortical region is involved 
in the experience and expression of negative affect. This research suggested that asym-
metric frontal cortical activity reflected positive or negative affect, or affective valence. 
Research testing this affective valence model happened concurrently with other re-
search testing a motivational direction model, which posits that relative left frontal 
cortical activity is associated with approach motivation and that relative right frontal 
cortical activity is associated with withdrawal motivation. For several years, the affective 
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valence and motivational direction models were viewed as compatible models that 
made identical predictions. This compatibility resulted from viewing positive affect as 
being always associated with approach motivation and negative affect as being always 
associated with withdrawal motivation.

11.5.1  Resting Asymmetric Frontal Activity and Trait 
Motivational Direction

Many studies measured trait approach and withdrawal motivation with Carver 
and White’s (1994) behavioral inhibition/ behavioral activation system (BIS/ BAS) 
questionnaires. The approach motivation (BAS) questionnaire has items such as “I go 
out of my way to get things I want” and “I crave excitement and new sensations”. The 
withdrawal motivation (BIS) questionnaire has items such as “I worry about making 
mistakes” and “I have very few fears compared to my friends (reverse scored).”

The first two studies found that individual differences in self- reported trait approach 
motivation were correlated with greater relative left frontal cortical activity during 
resting baseline sessions (Harmon- Jones & Allen, 1997; Sutton & Davidson, 1997). One 
of these studies also found that trait “withdrawal” motivation correlated with greater 
relative right frontal activity during resting baseline (Sutton & Davidson, 1997), whereas 
the other study found no significant correlation between trait withdrawal motivation 
and relative right frontal activity (Harmon- Jones & Allen, 1997).

Additional studies replicated this latter pattern of results (Amodio et al., 2008; 
Amodio et al., 2004; Coan & Allen, 2003), and an EEG source localization study 
suggested that this trait approach/ relative left frontal cortical activity correlation was 
due to activation in the middle frontal gyrus (BA11; De Pascalis et al., 2013).

11.5.2  Situational Manipulations of Motivation and 
Asymmetric Frontal Cortical Responses

11.5.2.1  Pictures of Motivationally Significant Stimuli
To test whether approach motivational intensity would predict relative left frontal cor-
tical activity to appetitive stimuli, studies have been conducted that first measured 
individuals’ self- reported liking for dessert and the time since they had last eaten. These 
measures were included to assess individual differences in approach motivation rele-
vant to the stimuli to be presented. Next, participants viewed pictures of desserts and 
neutral objects while EEG was recorded. Results revealed that individuals with more 
intense approach motivation (i.e., longer time since eating, more liking for dessert) to-
ward pictures of desserts evidenced more relative left frontal activity to dessert stimuli 
but not to neutral stimuli (Gable & Harmon- Jones, 2008; Harmon- Jones & Gable, 
2009). In these studies, the appetitive pictures alone did not cause a significant increase 
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in relative left frontal cortical activity. This lack of a main effect of picture type on asym-
metric frontal activity is consistent with some other research (Elgavish et al., 2003; 
Hagemann et al., 1998; see also reviews by Murphy et al., 2003 and Pizzagalli et al., 
2003). The lack of a main effect may have occurred because pictures evoke different 
amounts of approach (withdrawal) motivation across participants. Some individuals 
may respond with no motivation, and others may respond with much motivation 
(Harmon- Jones, 2007).

Other research has suggested that some pictorial stimuli may evoke intense approach 
(or withdrawal) motivation in all participants. For example, Schöne and colleagues 
(2016) found that erotic stimuli caused greater relative left frontal activity than com-
parison stimuli of extreme sports, dressed women, and daily activities. The observed 
difference in relative left frontal activity between erotic and extreme sports stimuli is 
particularly interesting because both sets of stimuli evoked high and equal levels of self- 
reported positive affect and arousal.

11.5.2.2  Positive Affects Varying in Approach and Asymmetric 
Frontal Cortical Activity

This research suggests that relative left frontal cortical activity reflects the intensity of 
approach motivation. However, most of this research could be interpreted by the va-
lence model as well, which would simply posit that the results are due to positive affect 
instead of approach motivation. One way to tease these two conceptual models apart 
is to manipulate the intensity of approach motivation while holding positive affect 
constant. The motivational direction model would predict that positive affects high in 
approach motivation should evoke greater relative left frontal cortical activity than posi-
tive affects low in approach motivation. The affective valence model would instead pre-
dict that both types of positive affect should evoke equal levels of relative left frontal 
cortical activity.

One experiment tested these competing predictions by having individuals write 
about: 1) the steps needed to obtain a desired goal (positive action- oriented); 2) a normal 
day (neutral); or 3) a past event that made them feel good without personal action (posi-
tive inaction- oriented; Harmon- Jones et al., 2008, Experiment 2). The two positive 
conditions evoked greater levels of self- reported general positive affect than the neutral 
condition. However, the positive action- oriented condition caused greater relative left 
frontal cortical activity than the other two conditions did. Thus, these results suggest 
that high approach- motivated positive affect caused greater relative left frontal cortical 
activity than low approach- motivated positive affect.

11.5.2.3  Facial Expressions of Approach- Motivated Positive Affect
Based on research that had revealed that facial expressions of determination were 
identified as being high in positive approach motivation (Harmon- Jones et al., 2011), 
subsequent research instructed individuals to make a facial expression that expressed 
“determination” or a low approach- motivated positive expression of “satisfaction” 
or a neutral expression (Price et al., 2013). Then, individuals performed a task that 
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assessed behavioral persistence. As predicted by the motivational model (but not the 
affective valence model), individuals who made the determination facial expression 
(high approach- motivated positive affect) had greater relative left frontal activity than 
individuals in the other two conditions. In addition, within the determination condi-
tion, greater relative left frontal cortical activity was associated with greater behavioral 
persistence.

11.5.2.4  Using Whole Body Posture to Manipulate Approach Motivation
Based on previous research that had shown that whole body posture can manipu-
late levels of approach motivation (e.g., Harmon- Jones & Peterson, 2009; Price & 
Harmon- Jones, 2011), research was conducted to test whether this manipulation 
would influence relative left frontal cortical activity. In this study, seated individuals 
were instructed to either lean forward as one might do while reaching for a desired 
object (high approach) or to recline fully in a reclining chair (low approach; Harmon- 
Jones et al., 2011). Then, while in one of these two positions, the individuals viewed 
approach- oriented (dessert) and neutral (rock) pictures using virtual reality glasses, 
so that the viewing distance was held constant. As predicted, individuals in the high 
approach leaning forward posture evidenced greater relative left frontal activity to the 
approach- oriented stimuli as compared to the neutral stimuli. Individuals in the low 
approach reclining posture did not evidence a difference in relative left frontal activity 
to the two picture types.

11.5.2.5  Final Thoughts
The reviewed evidence suggests that relative left frontal cortical activity is associated 
with approach motivation. This association occurs even when approach motivation 
is not confounded with positive affect. That is, in approach motivation, some positive 
affects are low and some are high, but the research has revealed that it is primarily the 
high approach- motivated positive affects that are associated with greater relative left 
frontal activity.

11.6 Anger and Asymmetric Frontal 
Cortical Activity

To better understand the emotive functions of asymmetric frontal cortical activity, 
anger has been examined, as anger provides a way of removing the “natural” confound 
between affective valence and motivational direction. That is, anger is often posited to 
be a negative affect (Harmon- Jones, 2004; Harmon- Jones et al., 2011) associated with 
approach motivation, as recognized in classic work (e.g., Darwin, 1872; Blanchard 
& Blanchard, 1984; Ekman & Friesen, 1975; Lagerspetz, 1969; Plutchik, 1980; Young, 
1943) as well as more contemporary work (e.g., Berkowitz & Harmon- Jones, 2004; 
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Carver & Harmon- Jones, 2009; Harmon- Jones et al., 2009; Harmon- Jones et al., 2013). 
To give just a few examples, research has revealed that individual differences in BAS 
(Carver & White, 1994) are positively correlated with individual differences in anger 
(Harmon- Jones, 2003b; Smits & Kuppens, 2005), greater anger responses to situational 
anger manipulations (Carver, 2004), greater aggressive inclinations especially when 
approach motivation is activated (Harmon- Jones & Peterson, 2008), and more atten-
tional engagement to angry faces, as in approach- based dominance confrontations 
(Putman et al., 2004).

If asymmetric frontal cortical activity reflects affective valence, then anger should 
be associated with relative right frontal activity because anger is a negative affect. In 
contrast, if asymmetric frontal cortical activity reflects motivational direction, then 
anger should be associated with relative left frontal activity because anger is approach 
motivated. Research has tested these competing predictions.

11.6.1  Resting Asymmetric Frontal Cortical Activity and 
Trait Anger

Studies with adolescents (Harmon- Jones & Allen, 1998) and young adults (Harmon- 
Jones, 2004) have found that individual differences in anger relate positively with rela-
tive left frontal cortical activity, assessed during resting baseline. This latter study also 
measured attitudes toward anger and revealed that anger was regarded as a negative 
affect and that these negative attitudes toward anger did not correlate with asymmetric 
frontal activity. Other studies have revealed that trait anger correlates positively with 
relative left frontal activity in incarcerated violent offenders (Keune et al., 2012), and 
that trait aggression correlates positively with relative left frontal activity in adults with 
ADHD (Keune et al., 2011). Following from research showing that anger and jealousy 
are positively correlated in some circumstances, research has revealed that one- year- old 
infants with greater relative left frontal activity during a resting baseline display more 
jealous responses when their mothers attend to a social rival (Mize & Jones, 2012).

11.6.2  Manipulation of Asymmetric Frontal Cortical 
Activity and Anger Reactions

Other research has tested whether the manipulation of asymmetric frontal cortical 
activity via unilateral hand contractions will influence anger- related responses. In 
one experiment, participants contracted their right or left hand using the methods 
described earlier (Harmon- Jones, 2006). Then, they received insulting interpersonal 
feedback and then played a reaction time game against the person who had osten-
sibly insulted them. The reaction time game provided an assessment of behavioral 
aggression, as participants could select the volume and duration of noise blast to give 
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to the other participants on trials they won. Replicating previous research, the con-
traction of the right hand led to greater relative left central and frontal cortical activity 
than the contraction of left hand. More importantly, as compared to the left hand 
contractions, the right hand contractions led to more aggression behavior (Peterson 
et al., 2008).

Additional research revealed that compared to left- hand contractions, right- 
hand contractions led to greater self- reported anger to being socially ostracized in 
a Cyberball game (Peterson et al., 2011). These results suggest that manipulated 
increases in relative left frontal cortical activity lead to increased anger- related 
responses.

11.6.3  State Anger and Relative Left Frontal Cortical Activity

Other research has tested whether situationally manipulated anger influences relative 
left frontal cortical activity. In one experiment, participants who were insulted (i.e., 
received insulting feedback on an essay they had written) responded with greater rela-
tive left frontal activity than individuals who were not insulted (i.e., received mildly 
positive feedback; Harmon- Jones & Sigelman, 2001). Moreover, within the insult con-
dition, self- reported anger to the feedback and behavioral aggression toward the person 
who provided the feedback were both positively correlated with relative left frontal ac-
tivity. Other experiments have conceptually replicated these results (e.g., Harmon- Jones 
et al., 2004; Jensen- Campbell et al., 2007; Verona et al., 2009). Research has extended 
these early results by showing that lab- induced social rejections can induce feelings of 
jealousy and anger as well as increased relative left frontal cortical activity (Harmon- 
Jones et al., 2009).

Individual differences have also been found to moderate these anger- related relative 
left frontal cortical activity responses. For instance, one study found that, as compared to 
individuals with no affective disorders, individuals with borderline personality disorder 
had greater relative left frontal activity to social rejection, whereas individuals with 
major depression had greater relative right frontal activity to social rejection (Beeney 
et al., 2014). In addition, individual differences in BAS positively correlated with greater 
relative left frontal cortical activity to anger induced via pictures offensive to the sample 
of individuals (Americans viewing anti- American images such as flag burning; Gable & 
Poole, 2014).

11.6.4  Manipulating Approach Motivation Independently 
of Anger

Anger is presumably related to relative left frontal cortical activity because anger 
is associated with approach motivation. Even more compelling evidence for the 
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association between approach motivation and relative left frontal cortical activity 
could be provided by manipulating approach motivation independent of anger. That is, 
even though anger is often approach motivated, anger is not perfectly associated with 
approach motivation and thus it should be possible to manipulate the two constructs 
separately.

For example, one variable that should influence (approach) motivational intensity is 
coping potential or the difficulty of engaging in behavior. That is, motivational intensity 
increases with perceived task difficulty up to the point where the task is perceived as im-
possible, and then motivational intensity drops. So, when a task is perceived as impos-
sible, or coping potential is very low, motivational intensity should be low (Brehm, 1999; 
Brehm & Self, 1989).

In one experiment testing these hypotheses, individuals were induced to believe 
that they would or would not be able to engage in action that might resolve the anger- 
evoking event (i.e., sign petitions to halt a university tuition increase; Harmon- Jones 
et al., 2003). Results revealed that individuals who were angered and believed they could 
engage in action had greater relative left frontal activity than individuals who were 
angered and believed they could not engage in action (the tuition increase had already 
been approved). Moreover, in the action- possible condition, greater relative left frontal 
activity in response to the angering event correlated with more approach- related be-
havior (i.e., signing the petition and taking more petitions to have others sign). Other 
studies have conceptually replicated this effect of anger and approach action possibility 
on relative left frontal activity using pictorial stimuli to evoke anger (Harmon- Jones 
et al., 2006).

These results could be interpreted to indicate that greater relative left frontal cor-
tical activity only occurs to anger evocations when individuals are given explicit 
approach motivational opportunities. Other research suggests, however, that these 
explicit approach motivational opportunities increase relative left frontal activity but 
are not necessary for it to occur. That is, individuals who were exposed to pictures 
that evoked anger and were given no explicit approach opportunities had increased 
relative left frontal cortical activity if they were high in trait anger (Harmon- Jones, 
2007). Thus, explicit opportunities for approach- motivated behavior are not neces-
sary to cause relative left frontal activity during anger. Anger can evoke approach 
motivation without explicit approach motivational opportunities being immediately 
present.

Other experiments have manipulated approach motivation independently of anger 
and found that the approach motivation drives the increase in relative left frontal ac-
tivity. For example, one experiment used a manipulation of whole- body posture to ma-
nipulate approach motivation. When individuals are in a supine body position (lying flat 
on their backs), they are likely to be less approach motivated. In this anger experiment, 
individuals were interpersonally insulted while sitting upright or while in a supine pos-
ture. Results revealed that individuals who were insulted while in the supine posture 
had lower relative left frontal cortical activity than individuals who were insulted while 
sitting upright (and the latter condition had greater relative left frontal activity than an 
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upright- neutral- no- insult comparison condition; Harmon- Jones & Peterson, 2009). 
Interestingly, the results also revealed that both the supine and upright insult conditions 
reported feeling angrier than the neutral comparison condition, and these two insult 
conditions did not differ from each other. Thus, this research suggests that anger relates 
to relative left frontal cortical activity because of approach motivation; when approach 
motivation was decreased with a supine body posture, individuals who were angered 
did not have the typical increase in relative left frontal activity. However, they did have 
the same level of angry feelings as those who were in the standard upright insult condi-
tion, suggesting that angry feelings are not inevitably associated with relative left frontal 
activity or approach motivation.

11.6.5  Anger and Avoidance Motivation

A correlational study (Hewig et al., 2004) measured trait anger- out, trait anger- in, and 
trait anger- control using the State- Trait Anger Expression Questionnaire (Spielberger, 
1988). Resting baseline asymmetric frontal cortical activity was also assessed. Trait 
anger- out likely measures approach- motivated anger (e.g., “When angry or furious, 
I lose my temper”; Spielberger et al., 1995, p. 57). Trait anger- in measures the extent 
to which individuals hold anger in (e.g., “When angry or furious, I keep things in”). 
Trait anger- control measures the extent to which individuals control their anger (e.g., 
“When angry or furious, I control my angry feelings.”). Trait anger- out correlated with 
greater relative left frontal activity. Trait anger- control correlated with greater relative 
right frontal activity. Trait anger- in was not significantly correlated with asymmetric 
frontal cortical activity. The researchers suggested that anger- control was associated 
with relative right frontal activity because anger- control was associated with anger 
withdrawal.

Anger may evoke withdrawal when anger is mixed with concerns about being 
punished. For example, some individuals may become angry over social policies 
that pressure one to behave less racially prejudiced. At the same time, however, 
they may experience anxiety about expressing anger in these situations because 
they fear social censure. A study designed such a situation in the lab and found that 
anger in this situation was associated with greater relative right frontal cortical ac-
tivity (Zinner et al., 2008). In this study, anger in response to the situation correlated 
with more spontaneous eye blinking, suggesting that anger was also associated with 
suppressing emotions (Gross & Levenson, 1993). Moreover, self- reported anger was 
associated with self- reported anxiety. These latter results support the idea that the 
social situation had also evoked concerns about being socially censured for feeling 
angry. Although these results are correlational, the authors suggest that anger may 
be associated with relative right frontal cortical activity when the motivation to with-
draw is also high.
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11.7 Effortful Control and Relative 
Right Frontal Activity

As noted, models of frontal asymmetry link approach motivation with greater relative 
left frontal activity. Both the affective valence model and the motivational direction 
model of frontal asymmetry associate withdrawal motivation with greater relative right 
frontal activity. Despite evidence supporting this model, many studies have failed to 
replicate the relationship between right frontal activity and withdrawal motivated traits 
and states (Amodio et al., 2008; Berkman & Lieberman, 2010; Coan & Allen, 2003; Coan 
et al., 2001; De Pascalis et al., 2013; Henriques & Davidson, 2000; Hewig et al., 2004, 
2006; Jackson et al., 2003; Keune et al., 2012; Kline et al., 2000; Pizzagalli et al., 2005; 
Quirin et al., 2013; Wacker et al., 2008; Wacker et al., 2010). This has led researchers to 
question what could be causing the inconsistencies in the literature. Some suggest that 
withdrawal motivation is a complex system that is difficult to accurately measure inde-
pendently of confounding variables (Amodio et al., 2008; Coan & Allen, 2004). Others 
suggest that another system entirely accounts for greater right frontal asymmetry.

A model presented by Gable and colleagues (2018) suggested that right frontal activity 
is more related to regulatory control than to withdrawal motivation. Regulatory con-
trol is thought to be carried out by the revised BIS (r- BIS; Gray & McNaughton, 2000), 
which may act as a governing body over conflicts between the approach and withdrawal 
systems. Activation of r- BIS leads to enhanced attention to, memory for, and detec-
tion of negatively valenced information, allowing it to manage conflicts by enhancing 
aversion to one motivated behavior over the other (Heym et al., 2008). This can occur as 
either the suppression of a behavioral response or an override of motivational impulses 
(Aron et al., 2004, 2014; Carver & Connor- Smith, 2010; Hester & Garavan, 2004, 2009). 
As such, r- BIS is related to effortful control, constraint, self- control, inhibition, conflict 
monitoring, and error detection (Carver & Connor- Smith, 2010; Carver et al., 2008; 
Derryberry & Rothbart, 1997; Gray & McNaughton, 2000; Kochanska & Knaack, 2003; 
Nigg, 2006; Rothbart & Rueda, 2005). Low functioning r- BIS is thought to be related to 
impulsive behavior, deficits in inhibitory control, and externalizing disorders such as 
substance abuse (Enticott et al., 2006; Logan et al., 1997). Unusually high functioning 
of r- BIS, on the other hand, may be related to passive avoidance, anxious inaction, 
and internalizing disorders such as generalized anxiety disorder (Carver et al., 2008; 
DeYoung, 2015; Eisenberg et al., 2004; Rothbart et al., 2004; Strack & Deutsch, 2004; 
Valiente et al., 2003).

While much research has examined the relationship between asymmetric frontal cor-
tical activity and motivational systems, few studies have investigated the connections 
between regulatory control (r- BIS) and asymmetric frontal activity (Gable et al., 2015; 
Grimshaw & Carmel, 2014; Neal & Gable, 2016; Wacker et al., 2003). R- BIS acts as a 
controlling agent over approach and withdrawal behaviors. The present model suggests 
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that greater relative right frontal activity is indicative of greater r- BIS functioning 
whereas reduced relative right frontal activity suggests reduced r- BIS functioning.

11.7.1  Trait r- BIS and Frontal EEG Activity

R- BIS functioning is a stable individual difference measured via personality 
questionnaires targeting traits such as impulsivity, sensation seeking, and inhib-
ition. When r- BIS is hyperactive, traits such as neuroticism and anxiety caused by 
passive avoidance become prevalent, often resulting from approach- avoidant conflicts 
(DeYoung, 2015). When r- BIS is hypoactive, on the other hand, approach and with-
drawal may be unregulated and individuals may be less able to inhibit motivational 
tendencies. Impulsivity is thought to index inverse functioning of r- BIS because r- BIS is 
strongly related to inhibition, effortful control, and overall executive functioning (Bari 
& Robbins, 2013; Bickel et al., 2012; Eisenberg et al., 2004).

Impulsivity can be measured with a number of personality traits. For instance, posi-
tive urgency measures impulsivity through the failure of r- BIS to inhibit approach 
tendencies, which ultimately leads to rash action during intense positive states (Cyders 
et al., 2010; Zapolski et al., 2009). To examine relationships between impulsive per-
sonality traits and asymmetrical frontal cortical activity, Gable and colleagues (2015) 
conducted a resting frontal EEG study investigating the association between positive 
urgency and frontal activity. Results showed a relationship between positive urgency 
and greater relative left frontal activity. This suggests that reduced relative right frontal 
activity is associated with reduced r- BIS function. Using standardized low- resolution 
brain electromagnetic tomography (SLORETA; Pascual- Marqui, 2002), source localiza-
tion results indicated that lower relative right frontal activity was due to reduced activity 
in the right inferior frontal gyrus (rIFG). This further suggests that it is reduced right 
frontal activity, rather than increased left frontal activity, that was driving the observed 
asymmetric activity.

Neal and Gable (2016) investigated the relationship between frontal activity and tenets 
of impulsivity that are not related to positive affect or approach motivation. Participants 
completed the UPPS- P scale, which assesses negative urgency, lack of premeditation, 
and lack of perseverance, along with positive urgency (Cyders & Smith, 2007; Whiteside 
et al., 2005). Participants’ resting EEG activity was then assessed. Negative urgency (i.e., 
rash behavior in negative emotional contexts) was related to heightened left frontal 
activity at rest, suggesting that the relationship between impulsivity and relative left 
frontal activity was not driven by positive emotionality. Non- emotional impulsive traits 
(i.e., lack of premeditation and lack of perseverance) were also associated with reduced 
right frontal activity. This relationship between impulsivity and right frontal activity 
remained unchanged when controlling for trait approach motivation. Source localiza-
tion for the relationship between these tenets of impulsivity showed reduced activity 
in the right cingulate gyrus and the right medial frontal gyrus. Taken together, these 
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results suggest that impulsivity is associated with reduced right frontal activity, inde-
pendent of affective valence.

This study did not find a relationship between trait sensation seeking and frontal 
activity. However, the type of sensation seeking scale used (UPPS- P measure of trait 
sensation seeking) does not correlate well with other subscales of the UPPS- P, and 
some researchers have suggested that it may reflect a construct other than impulsivity 
(Simons et al., 2010). Santesso et al. (2008), however, used the Zuckerman Sensation 
Seeking Scale to measure trait sensation seeking and found that it was related to greater 
left frontal (reduced right frontal) activity.

Overall, these findings suggest that deficits in persistence and inhibiting behavior are 
associated with reduced right frontal activity. Source localization of the relationship be-
tween r- BIS and frontal asymmetry suggests that the asymmetry is driven by reduced 
activity in the right medial and lateral frontal areas, including areas of the right pre-
frontal cortex.

11.7.2  Evidence of r- BIS Functioning in Frontal 
EEG Activity

Source localization studies have also investigated the source of activity relating to be-
havioral measures of control. Gianotti and colleagues (2009) collected resting EEG data 
before having participants engage in a behavioral risk task. When participants engaged 
in greater risk- taking behavior, activity was localized to diminished baseline activity in 
the right lateral prefrontal cortex. Those whose resting activation of the right prefrontal 
cortex was less stable demonstrated less supervisory control of risky behavior. In a later 
study, resting EEG activity was compared to participants’ subsequent acceptance of un-
fair offers in the ultimatum game (Knoch et al., 2010). When presented with an unfair 
offer, participants could either accept the offer or punish the opponent for giving them 
the offer. Acceptance of unfair offers was assumed to reflect an ability to exercise con-
trol over the initial emotional response in order to maximize economic benefits. Results 
showed a positive correlation between baseline right frontal activity and increased 
acceptance of most unfair offers. This activity was also localized to the right lateral pre-
frontal cortex.

Studies investigating regulation of anger have demonstrated that effortful control 
of anger relates to greater right frontal activity. Hewig and colleagues (2004) found 
that the extent to which individuals control their anger (State- Trait Anger Expression 
Questionnaire; Spielberger, 1988) related to greater relative right frontal asymmetry 
during resting baseline. The researchers suggested that anger- control was associated 
with relative right frontal activity because anger- control was associated with anger with-
drawal, but based on the evidence, it seems likely that greater right frontal activity is 
linked with greater anger- control because it is associated with greater effortful control. 
Other work has demonstrated that suppressing anger, when it is socially inappropriate 
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to express it, causes greater right frontal activity (Zinner et al., 2008). Although greater 
right frontal activity may be associated with the motivation to withdraw in some anger 
states, these results also support that greater right frontal activity is associated with ef-
fortful control stemming from emotional suppression of anger.

Functioning of r- BIS can also be connected to drug and alcohol reactivity. Greater 
relative left frontal (reduced right frontal) activity has been connected to drug- cue 
reactivity such as alcohol exposure (Myrick et al., 2004) and cocaine cravings (van 
de Laar et al., 2004). These increases in left frontal activity in response to substance 
cues are thought to be indicative of appetitive responses evoked from substance- 
related stimuli (Carter & Tiffany, 1999). Hypoactivation of rBIS, however, can also 
cause increased responsiveness toward alcohol. Mechin and colleagues (2016) 
investigated whether it is trait impulsivity or trait approach motivation that drives 
the increase in relative left frontal activity in response to alcohol- related cues. To 
determine this, they had participants complete the UPPS- P Behavioral Impulsivity 
Scale (Cyders & Smith, 2007; Whiteside et al., 2005), the BIS/ BAS scales (Carver & 
White, 1994), and questions about their drinking habits. They then collected EEG 
data while participants viewed alcohol- related and neutral picture cues. Results 
suggested that the reduction in right frontal activity toward alcohol cues was due 
to trait impulsivity rather than trait approach motivation. The relationship between 
impulsivity and alcohol picture presentation remained constant when controlling for 
drinking behaviors and asymmetric frontal activity in response to neutral pictures. 
These results suggest that r- BIS moderates asymmetric frontal activity to alcohol 
cues while BAS does not.

Impulsivity is presumably related to relative right frontal cortical activity because im-
pulsivity is associated with reduced effortful control. Evidence demonstrating increases 
in relative right frontal activity when individuals demonstrate greater effortful control 
and increases in relative left frontal activity when individuals demonstrate greater im-
pulsivity could provide more compelling evidence for this model. Neal and Gable (2019) 
used a Balloon Analogue Risk Task (BART) to test whether impulsive or controlled 
behaviors influence asymmetric frontal activity. In this study, EEG recordings were 
collected as participants performed the BART while simultaneously viewing alcohol 
stimuli designed to enhance impulsive tendencies. Participants could win money by 
successfully blowing up a virtual balloon. With each pump of the balloon, more money 
could be won, but the likelihood of the balloon popping increased. Each trial ended with 
either the participant cashing out on the balloon or the balloon popping.

EEG data collected during this task showed that asymmetry scores shifted throughout 
alcohol trials. Frontal activity would shift to greater relative left frontal activity in the last 
half of trials where the balloon popped (impulsive behavior) while activity would shift 
to the right on the last half of trials where the participant cashed out (successful inhib-
ition). These shifts were localized to reduced activity in the rIFG and lIFG, respectively. 
This suggests that increased right frontal activity is indicative of impulse control and 
diminished right frontal activity leads to more impulsive behavior.
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The right frontal cortex has also been found to play an important role in the r- BIS 
functions of error detection, emotion regulation, and self- control. When an incor-
rect or inappropriate behavior is enacted, the error- related negativity (ERN) is evoked 
in response. Individuals with greater levels of behavioral inhibition, anxiety, and 
emotion regulation tend to have increased ERN amplitudes, suggesting that those 
with higher functioning r- BIS show greater neural responses in response to conflict 
monitoring (Amodio et al., 2008; Proudfit et al., 2013; Teper & Inzlicht, 2013). Greater 
relative right frontal activity at baseline has been linked to increased ERN amplitudes, 
while greater relative left frontal activity has been linked to reduced ERNs (Nash et al., 
2012). Taken together, these results suggest that greater relative right frontal activity 
is related to greater r- BIS functioning in terms of conflict detection in response to 
errors.

Recently, Lacey and colleagues (2020) further connected emotion regulation to 
right frontal activity. In one experiment, participants listened to anxiety- inducing 
and neutral sound clips and were told to either listen naturally or suppress their emo-
tional reactions to the clips. Participants recorded their level of effort when suppressing 
their reactions and noted their affective experience on each trial. Results showed that, 
when participants recorded higher levels of effortful control, right frontal activity was 
increased. However, experience of negative emotion was not associated with this in-
crease in right frontal activity. In a second experiment, participants were shown nega-
tive and neutral pictures and told that looking at the images for a long time would earn 
them money, while choosing to escape from looking at the pictures would earn them 
no reward. In this study, right frontal activity was associated with looking at negative 
pictures for a longer time during reward trials, but not during non- reward trials. Both 
studies indicate that it was not the negative affect associated with the aversive stimuli, 
but rather the effort to engage the negative stimuli that was related to an increase in right 
frontal activity.

Schmeichel and colleagues (2016) evaluated the relationship between self- control 
and asymmetrical frontal activity. In this study, participants either had their self- 
control depleted or not, and then underwent EEG recording while viewing posi-
tive pictures. Among individuals who were relatively higher in trait BAS than BIS, 
those with depleted (vs. non- depleted) self- control showed increased left frontal ac-
tivity in response to positive pictures. Among those with no relative difference in 
BIS and BAS scores, those with depleted self- control showed decreased left frontal 
activity in response to positive pictures. This suggests that when r- BIS is depleted, 
those who generally exhibit more approach motivation show greater left frontal ac-
tivity in response to rewarding stimuli. An enhanced r- BIS, on the other hand, may 
be able to lower approach motivation in those with generally hyperactive BAS and 
hypoactive BIS.

Overall, these studies suggest that greater right frontal activity may be associated 
with processes involving emotion regulation while lower right frontal activity may be 
associated with reduced self- control and hindered error monitoring. Additionally, both 
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situational contexts where control must be utilized and control- related personality traits 
have been related to right frontal activity as measured with EEG.

11.8 Additional Models of 
Frontal Asymmetry

Researchers have presented additional models to explain frontal asymmetry and its re-
lationship to emotional and motivational variables. The Bilateral BAS Model (Hewig 
et al, 2004) and the Activation vs. Inhibition Model (Wacker et al., 2003) each propose 
variants of how approach, withdrawal, and inhibition influences frontal asymmetry.

11.8.1  Bilateral BAS Model

Hewig’s bilateral BAS model suggests that both the approach and withdrawal systems 
encompass the basic mechanisms of active behavior and are therefore both subsystems 
of the BAS. When active behavior is initiated, then, bilateral activation of the frontal 
cortices is expected. Hewig and colleagues (2004) first addressed the model in their 
study analyzing resting frontal alpha band asymmetry and its relationships with af-
fective valence, motivational direction, and behavioral activation. Resting state data 
obtained from each participant was related to measures of trait anger and different anger 
styles (STAXI, Spielberger, 1988), affective valence (PANAS), aggression (Aggression 
Questionnaire), and behavioral activation (BIS/ BAS). Data analyses indicated that 
while valence was not significantly related to frontal asymmetry, relative left frontal 
cortical activity was positively correlated with outwardly expressed anger (“anger- 
out,” Spielberger, 1988), trait anger, and aggression, while relative right frontal cortical 
activity was positively correlated with lowering arousal in anger- inducing situations 
(“anger- control,” Spielberger, 1988). Additionally, greater bilateral frontal cortical ac-
tivity was associated specifically with higher BAS scores. These results together suggest 
that greater levels of frontal asymmetry are driven by motivational tendencies and that 
bilateral frontal activation is driven by the combination of the approach and withdrawal 
subsystems of the BAS. A later study (Hewig et al., 2006) using similar methods found 
comparable results. Those participants who showed greater bilateral activation while in 
a resting state had higher BAS scores. The authors suggest that this result indicates that 
BAS scores may encompass both approach-  and withdrawal- motivated behaviors.

In 2006, Hewig and colleagues conducted a go/ no- go experiment to discern the re-
lationship between positive and negative reinforcement and BAS scores. In this study, 
participants were first shown a cue indicating whether success on the given trial could 
add to the participant’s money (positive reinforcement) or stop money from being 
subtracted (negative reinforcement). According to Gray’s model of BIS/ BAS (e.g., 1982), 
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both types of reinforcement should activate the BAS, as both are a form of reward or 
non- punishment. Participants then completed a go/ no- go task in which no- go trials 
were considered to be a form of passive avoidance, therefore activating the BIS. After the 
task, participants were shown monetary feedback based on their performance. Results 
showed that all participants showed greater bilateral frontal activation in response to 
reinforcement trials— regardless of whether it was positive or negative reinforcement— 
and that this effect was strongest in those with higher trait BAS scores. When these 
results are considered with prior research suggesting that approach motivation aligns 
with greater relative left frontal activity and withdrawal motivation aligns with greater 
relative right frontal activity, the suggestion is that the two are subsystems of the 
overarching BAS, once again supporting Hewig and colleagues’ bilateral BAS model.

Rodrigues and colleagues (2018) found further support for the bilateral BAS model 
using a virtual reality paradigm. In this study, participants navigated a virtual T maze 
in which they were to respond to various events. These events could be positive, nega-
tive, or neutral in valence. Positive trials encouraged participants to move toward the 
event while negative trials encouraged withdrawal from the event. Approach- avoidance 
conflict trials involved having a positive stimulus guarded by a negative stimulus and 
approach- approach conflict trials involved choosing between two positive stimuli. 
There were also two control trial types. In each trial, participants chose in which dir-
ection they would like to move while EEG was recorded. Left frontal activity increased 
when participants chose an approach direction while right frontal activity increased 
when participants chose a withdrawal direction. Further, bilateral frontal activity 
increased during any choice in behavior relative to the choice to not move in any dir-
ection. The authors argue that these results support the role of frontal asymmetry in 
behavioral approach or avoidance motivation, as well as the role of bilateral frontal acti-
vation in active behavior.

11.8.2  Activation vs. Inhibition Model

Wacker and colleagues (Wacker et al., 2003; Wacker et al., 2008, 2010) suggest that the 
driving force behind frontal asymmetry is whether any motivational system is being 
activated or inhibited. Consistent with Gray’s revised behavioral inhibition system/ 
behavioral activation system (BIS/ BAS) model (Gray & McNaughton, 2000), BAS 
is activated in response to approach motivation and rewarding stimuli, whereas the 
fight- flight- freeze system (FFFS) responds to withdrawal motivation and aversive 
stimuli. BIS responds to conflict between these two systems, acting as conflict monitor, 
shifting attention to allow for more efficient goal direction in conflicting situations (i.e., 
situations with more than one appetitive goal or a goal that requires combating aver-
sive obstacles). Wacker and colleagues argue that all forms of behavioral activation are 
controlled by BAS and FFFS and are associated with greater relative left frontal activa-
tion, whereas behavioral inhibition and conflict monitoring are controlled by BIS and 
are associated with greater relative right frontal activation.
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In an early study, Wacker and colleagues (2003) compared the viability of the BIS/ 
BAS, motivational direction, and valence models of frontal asymmetry. Participants 
completed a mental image script task in which emotion (fear vs. anger) and motivation 
(approach vs. withdrawal) were manipulated and the participants reported the degree 
to which they agreed that the outcome of each task was the best option (degree of con-
flict). Results did not fall in line with the predictions of either the motivational direc-
tion or valence models of anterior asymmetry, but the degree of conflict experienced by 
participants was positively correlated with relative right frontal activation. Assuming 
that agreement ratings were a valid measure of BIS activation, these results support the 
model of frontal asymmetry suggested by Wacker and colleagues.

Similar results were found in a later study by Wacker and colleagues (2008), which 
directly compared the BIS/ BAS model of anterior activation (BBMAA) to the mo-
tivational direction model. During a mental image script task similar to that used by 
Wacker and colleagues (2003), participants showed greater relative right frontal acti-
vation in response to scripts designed to target BIS than to those targeting FFFS. Self- 
reported measures of FFFS activation, conversely, were associated with greater relative 
left frontal activation.

The relationship between trait BIS and frontal asymmetry was investigated by Wacker 
and colleagues (2010) via a go/ no- go task. Such a paradigm was used because no- go 
tasks have been suggested to be a viable measure of the conflict and behavioral inhibition 
functions of Wacker’s revised BIS. Consistent with this assumption, those participants 
who had greater trait BIS showed greater relative right frontal activation in response to 
no- go trials than to go trials.

11.9 Psychopathology and 
Frontal Asymmetry

Because frontal alpha asymmetry plays a role in the experience of motivation and 
emotion, it follows that it would also factor into the experience of mental illness, par-
ticularly mood disorders. The psychological conditions most frequently investigated in 
relation to frontal asymmetry are depression, anxiety, and bipolar disorder.

11.9.1   Depression

Depression is one of the most commonly studied conditions in relation to frontal asym-
metry. Depressive symptomology includes experiences such as decreased response to 
reward, lack of positive affect, and greater tendencies toward withdrawal from triggering 
activities. Davidson and colleagues (2002) pointed out that these symptoms can often 
be described as deficiencies in approach motivation and hyperactive withdrawal motiv-
ation, and these trends are associated with decreased relative left frontal cortical activity 
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(greater relative right frontal activity). A number of studies have found a relationship 
between depressive symptoms and reduced left- frontal activity during a resting state. 
For instance, Schaffer and colleagues (1983) found a negative correlation between scores 
on the Beck Depression Inventory (BDI) and relative left frontal activity. Subsequent 
studies have found similar relationships between relative left frontal activity at rest 
and self- reported (Diego et al., 2001) or clinically diagnosed depression (Henriques & 
Davidson, 1990; Smith et al., 2018; Stewart et al., 2010). Henriques and Davidson (1990) 
even found that participants who had previously been depressed showed lower relative 
left frontal activity at rest compared to those who had never been depressed, and that 
these patterns of asymmetry were comparable to those in participants experiencing 
acute depressive symptoms. These results suggest that frontal asymmetry may be a state- 
independent marker of depression.

It is of note that diminished relative left frontal activity in depressed individuals is 
particularly robust in women compared to men (Stewart et al., 2010). Stewart and Allen 
(2018) found evidence supporting this notion in a sample with no history of major de-
pressive disorder. Participants engaged in resting state EEG recordings before returning 
one year later to report depressive symptomology during the worst two- week period 
experienced throughout the one- year interim. It was found that women— but not 
men— with lower relative left frontal activity at baseline reported greater degrees of de-
pressive symptomology during the interim period.

While resting data provides a means of studying the relationship between frontal 
asymmetry and depression, some studies have found a null relationship between de-
pression and frontal asymmetry (Harmon- Jones et al., 2002; Metzger et al., 2004; 
Tomarken & Davidson, 1994; McFarland et al., 2006). These null results have led 
some researchers to argue that state- measures of frontal asymmetry may be more re-
liably associated with depression. For example, the capability model of frontal asym-
metry suggests that cortical activity measured during emotional challenges is more 
indicative of predispositions toward psychopathology than cortical activity measured 
at rest (Stewart et al., 2014). Lower relative left frontal activity during a facial emotion 
task was found to be indicative of a history of major depressive disorder (Stewart et al., 
2011). Participants prone to depressive symptomology have also exhibited lower rela-
tive left frontal activity during tasks that evoke anger (Harmon- Jones et al., 2002) and 
sadness (Nitschke et al., 2004). Those with early- onset depression also exhibited lower 
relative left frontal activity during an approach- related reward paradigm (Shankman 
et al., 2007).

Frontal asymmetry may act as more of a risk factor than an indicator of current de-
pression. In one study, Possel and colleagues (2008) measured resting frontal asym-
metry in adolescent boys and related it to depressive symptoms experienced throughout 
the year following the EEG recording. Results suggested that lower baseline left frontal 
activity was predictive of melancholic depressive symptoms and increased right frontal 
activity was predictive of non- melancholic depressive symptoms one year later, but 
depressive state was not predictive of baseline asymmetry. This suggests that frontal 
asymmetry may be indicative of a predisposition to depression. Mitchell and Possel 
(2012) conducted a similar study comparing depression and resting asymmetry in a 
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nonclinical population and found that individuals with lower baseline left frontal ac-
tivity were more likely to develop depressive symptoms over the next year. Nusslock and 
colleagues’ (2011) results echoed these findings, suggesting that cognitive vulnerability 
to depression was both associated with lower relative left frontal activity at baseline and 
predicted onset of depressive symptoms one year later.

In addition, frontal asymmetry has been found to be a predictor of treatment re-
sponse in depressed individuals. Greater relative left frontal activity prior to treatment 
predicted more successful response to fluoxetine (Bruder et al., 2001), as well as to 
escitalopram and sertraline in women (Arns et al., 2015).

11.9.2   Anxiety

Anxiety symptoms also appear to be related to greater right frontal activity. In a sample 
of participants consisting of healthy controls, those with major depression in remis-
sion, those with acute depression without comorbid anxiety disorder, and those with 
acute depression with a comorbid anxiety disorder, the only group difference observed 
was greater relative right frontal activity in the group with both major depression and a 
comorbid anxiety disorder compared to healthy controls (Feldmann et al., 2018). Other 
findings suggested that those with both anxiety and depression show frontal asym-
metry patterns similar to those with depression alone (Mathersul et al., 2008). Nusslock 
and colleagues (2018) found asymmetry patterns to be most similar between healthy 
controls and those with comorbid depression and anxiety. In this study, women with a 
history of childhood onset depression without anxiety diagnoses showed reduced left 
frontal activity, which is consistent with past research on depression. However, women 
with a history of childhood onset depression and with pathological levels of anxious ap-
prehension (in the form of generalized anxiety disorder, obsessive compulsive disorder, 
or separation anxiety disorder) showed resting asymmetry patterns statistically indis-
tinguishable from healthy controls. These results highlight the role of comorbid depres-
sion and anxiety in its complex relationship with frontal asymmetry.

Similar results have been found in individuals with clinical diagnoses of anxiety 
disorders. Adults with panic disorder, for example, showed increased right frontal ac-
tivity in both resting and anxiety- provoking contexts relative to controls (Wiedemann 
et al., 1999). Individuals with social phobia also showed increased right frontal activity 
compared to controls in response to anticipation of giving a speech (Davidson et al., 
2000). Additionally, participants with post- traumatic stress disorder showed greater 
state- dependent right frontal activity when they were presented with trauma- relevant 
stimuli (Meyer et al., 2015). When participants engaged in an emotional Stroop task 
consisting of human faces depicting various emotions, those participants with greater 
levels of trait anxiety showed increased right frontal activity in response to fearful 
faces than did those with lower levels of trait anxiety (Avram et al., 2010). Similarly, 
participants who scored higher in trait anxiety showed greater right frontal activity 
during anxiety- provoking situations (Balconi & Pagani, 2014; Cole et al., 2012; Crost 
et al., 2008).
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Inconsistent patterns of frontal asymmetry have been found in children with anxiety 
disorders. In a study comparing resting data of boys and girls aged 8 years and 11 years, 
anxious girls aged 8 and 11 showed decreased relative left frontal activity at rest, while 
their healthy control counterparts showed no significant frontal asymmetry at 8 years 
and greater relative left frontal activity at 11 years. While these results are consistent with 
research on adults with anxiety disorders, the young boys in the study showed incon-
sistent patterns. Anxious 8- year- old boys showed no significant frontal asymmetry and 
anxious 11- year- old boys showed greater relative left frontal activity while healthy boys 
showed greater relative right frontal activity (Baving et al.,, 2002). These results suggest 
that patterns of frontal asymmetry in the context of anxiety are not consistent across 
gender and age; further research is needed to better understand this relationship.

Inconsistent patterns have also been found when comparing various subtypes of 
anxiety. For instance, at baseline, participants with generalized anxiety disorder and 
increased worry show greater relative left frontal activity while those with high trait anx-
iety and low worry show lower relative left frontal activity (Smith et al., 2016). Crost and 
colleagues (2008) also found that those with more anxiety show greater relative right 
frontal activity in response to social threat while those higher in defensiveness show 
greater relative left frontal activity in response to social threat. It has further been argued 
that symptoms of anxious arousal (e.g., panic) are correlated with lower relative left 
frontal activity and symptoms of anxious apprehension (e.g., worry) are correlated with 
greater relative left frontal activity. As these results suggest, symptoms of anxiety have 
complex relationships with patterns of frontal asymmetry.

11.9.3  Bipolar Disorder

Individuals with bipolar disorder experience heightened approach motivation and 
hypersensitivity to goal-  and reward- relevant cues during episodes of mania/ hypomania 
(Alloy & Abramson, 2010; Johnson, 2005; Urosevic et al., 2010). This trend is indicative 
of increased BAS sensitivity in individuals with bipolar disorder. Indeed, self- reported 
BAS sensitivity scores are higher in those with bipolar I disorder (Meyer et al., 2001; 
Salavert et al., 2007), bipolar II disorder, and cyclothymia (Alloy et al., 2008), as well 
as those prone to hypomanic symptomology (Meyer et al., 1999). Since increased BAS 
sensitivity and approach motivation are positively correlated with relative left frontal 
cortical activity, it is expected that this trend should be found in individuals with bipolar 
disorder. Kano and colleagues (1992) collected resting EEG data from participants with 
bipolar disorder and found greater left frontal cortical activation, suggesting that those 
experiencing manic symptoms (as opposed to depressive symptoms) have greater rela-
tive left frontal activity at baseline.

Nusslock and colleagues (2012) also measured resting EEG frontal asymmetry in 
individuals with cyclothymia and followed up approximately 5 years later to observe 
changes in bipolar course. Those with greater levels of left frontal activity at base-
line had a greater likelihood of converting to more severe diagnoses over the interim 
period (i.e., conversion from cyclothymia or bipolar II to bipolar I). Greater relative left 
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frontal activity at baseline was also predictive of earlier age- of- onset of a first bipolar 
spectrum episode, an indicator of severity of bipolar disorder. This relationship was 
observed even when controlling for mood state and medication status at the time of 
EEG recording.

An early study by Harmon- Jones and colleagues (2002) also found associations be-
tween bipolar disorder and frontal asymmetry in a task- based paradigm. In this study, 
participants completed the General Behavior Inventory (GBI; Depue et al., 1989) to 
assess potential risk for developing bipolar or depressive disorders. Then, EEG data was 
collected while participants engaged in an anger- evoking task. The authors hypothesized 
that individuals with hypomania/ mania symptoms would have greater relative left 
frontal activity when angered, based on prior research (Depue & Iacono, 1989). They 
also hypothesized that the opposite pattern (a decrease in left frontal activity) would be 
seen in participants with depressive symptoms. As predicted, those with hypomanic/ 
manic symptoms showed increased left frontal activity during the anger- inducing situ-
ation while those with depressive symptoms showed decreased left frontal activity. These 
results suggest that the greater approach tendencies experienced by those with hypo-
manic/ manic symptoms and the diminished approach tendencies experienced by those 
with depressive symptoms manifest through variations in frontal asymmetry.

Harmon- Jones and colleagues (2008) tested the BAS dysregulation theory of bipolar 
disorder by measuring frontal asymmetry in response to tasks of varying difficulty. 
Participants had either a bipolar spectrum diagnosis or no major psychopathology. 
During EEG data collection, participants engaged in an anagram task during which 
they were given cues indicating the difficulty (i.e., easy, medium, or hard) of the up-
coming trial. They were also told whether they could receive money (win) or avoid 
losing money (loss) by successfully completing the upcoming trial. Results indicated 
that those with bipolar disorder had greater relative left frontal activity in preparation 
for hard/ win trials, while control participants showed a decrease in relative left frontal 
activity in anticipation of the same trial type. Greater relative left frontal activity was 
also correlated with self- reported hypomanic/ manic experience during the task in 
individuals with bipolar disorder. These results therefore provide evidence supporting 
BAS dysregulation theory. They also suggest that increased relative left frontal ac-
tivity, which may be related to manic symptoms, can be triggered by more difficult and 
rewarding stimuli.

11.10 Discussion of Reviewed Research

11.10.1  Non- Significant Associations of Frontal 
Asymmetry and Affect/ Motivation

Some studies have reported non- significant correlations of resting baseline frontal 
asymmetry with trait affective valence/ motivational direction measures (Reid et al., 
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1998). A meta- analysis of the association between affect- related personality traits and 
frontal asymmetry found that some associations were non- existent, and some were stat-
istically significant in the predicted direction, but with small effect sizes (Kuper et al., 
2019). We believe it is important to consider the complexity of human traits and neuro-
physiology before drawing conclusions about the interpretation of null- effects and small 
effect sizes of psychological phenomena. Next, we discuss the concerns of interpreting 
effect sizes and reasons some frontal asymmetry effects may be “small”.

As it stands, effect sizes are generally misrepresented and misunderstood by 
researchers and readers alike. Funder and Ozer (2019) note that, even when effect sizes 
are reported and, even more rarely, are interpreted, those interpretations are based on 
fundamentally flawed standards. The two most common means of interpreting effect 
sizes are via Cohen’s standards and squaring the correlation coefficient r. Funder and 
Ozer (2019) argue that the former of these techniques is nonsensical and is used out 
of context of any sort of comparison (Cohen agrees that these standards are not ideal; 
Cohen, 1977, 1988), while the latter is misleading. Squaring the correlation coefficient 
changes the scale upon which the effect size is measured, making the effect appear less 
impactful than it may be in reality.

More foundational to the issue of effect sizes is the field’s tendency to dismiss small 
effect sizes without proper consideration. As Funder and Ozer (2019) point out, the 
reality is that small effect sizes are the most believable. The human experience is com-
plex, and it is ultimately unrealistic to expect that any one phenomenon being studied 
(neural or behavioral) will explain the bulk of any human behavior. In addition, small 
effect sizes are not necessarily associated with small consequences. Immediate but 
frequent phenomena with seemingly small effect sizes can cumulate to have greater 
implications in the long run of the individual or the population (Funder & Ozer, 2019). 
“Small” effect sizes should not be dismissed; rather, they should be reported explicitly 
in the context of their overall consequence. The results of Kuper and colleagues’ (2019) 
meta- analysis also revealed much heterogeneity in results from individual studies, 
suggesting that situational variables may influence the relationship between resting, 
baseline frontal asymmetry and self- reported personality traits.

The inconsistency observed in the literature concerning frontal asymmetry could be 
a result of several things that do not necessarily indicate a lack of relationship with mo-
tivation. Motivational tendencies can be sensitive to individual situations, and their re-
lationship to frontal asymmetry could be masked by situational variables. For instance, 
some research suggests that in baseline EEG recording sessions, half of the variation in 
the data is due to trait influences and half is due to state influences (Hagemann et al., 
2002; Hagemann et al., 2005).

The relationship between trait BAS and resting relative left frontal activity may be 
influenced by the specific circumstances of an experiment’s procedure. Wacker and 
colleagues (2013) demonstrated this by analyzing the effect of attractiveness of opposite- 
sex experimenter on the correlation between trait BAS and frontal asymmetry. Results 
suggested that the correlation between BAS and greater relative left frontal activity was 
present primarily in cases when male participants interacted with attractive female 
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experimenters. The attractiveness of the experimenter seems to have encouraged 
approach motivation in the participants, thereby strengthening the relationship be-
tween trait BAS and resting relative left frontal activity.

A similar pattern can be seen when reward and effort are manipulated. Hughes 
and colleagues (2015) conducted an experiment in which low- effort trials elicited low 
rewards while high- effort trials elicited high rewards. Participants showed greater 
left frontal activity during high- effort high- reward trials than during low- effort low- 
rewards trials. These results suggest that the motivation and incentive anticipation 
involved in a situation can impact measures of frontal asymmetry.

Situational variables outside of the lab space can also impact frontal asymmetry 
measures. Peterson and Harmon- Jones (2009) found that participants had greater right 
frontal activity when they participated in the study during fall mornings. Because de-
pression may be experienced more during the fall months (King et al., 2000) and cortisol 
levels are high in the mornings (King et al., 2000), the variation in frontal asymmetry 
may have been due to reductions in approach motivation associated with depression 
and increases in inhibition or withdrawal motivation associated with higher cortisol.

Despite some inconsistencies in the literature, there is sufficient evidence to suggest a 
relationship between trait motivational tendencies and frontal asymmetry. There are at 
least three possible explanations for this trend in resting frontal asymmetry data. First, 
resting frontal asymmetry may reflect neural tendencies of the individual; when they 
are not engaged in a specific task, their frontal asymmetry scores reflect their trait- based 
tendencies toward approach and effortful control. Second, resting frontal asymmetry 
could reflect the individual’s response to being in a novel environment. If participants 
feel curiosity (approach) when introduced to the lab space, they exhibit greater relative 
left frontal activity; if participants feel discomfort while continuing to engage in the new 
setting (and engage effortful control), they exhibit greater relative right frontal activity. 
Third, participants’ thought processes during resting data collection could be driving 
frontal asymmetry variability. When not given any instruction, if participants tend to 
think about their goals and aspirations, they may exhibit greater relative left frontal ac-
tivity; if participants tend to think about anxiety evoking situations, they may exhibit 
greater relative right frontal activity. The underlying mechanisms driving baseline 
frontal asymmetry are not yet understood and require further research.

11.11  CONCLUSION

The motivational model of frontal asymmetry suggests that relative left frontal activity 
is associated with approach motivation while right frontal activity is associated with 
withdrawal motivation. The former assumption of this model is supported by the litera-
ture, both through possible motivation confounds associated with the affective valence 
model and through more direct manipulations of motivation. Anger— an emotion that 
is both negative and approach motivated— is associated with greater left frontal activity 
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at the state and trait level. Further support stems from research connecting higher BAS 
scores with greater baseline left frontal activity. The connection between BIS scores and 
baseline right frontal activity, however, has been widely contested.

This inconsistency in the literature concerning withdrawal motivation and right 
frontal has led to the development of the effortful control model of right frontal asym-
metry. The effortful control model suggests that right frontal activity is associated with 
control and regulatory processing. Research supporting the effortful control model has 
linked right frontal activity with increased anxious inaction, error detection, and emo-
tional control- related behaviors; right frontal activity is also negatively correlated with 
state and trait impulsivity. Past work linking right frontal activity and withdrawal mo-
tivation may have activated effortful control, because withdrawal manipulations may 
have co- activated effortful control to stay engaged with the aversive stimuli, but also be-
cause activation of r- BIS increases the cognitive load devoted to negative stimuli.

Psychopathologies influence patterns of frontal asymmetry. For instance, individuals 
with depression show reduced levels of left frontal activity at rest and during emo-
tionally salient tasks. Reduced left frontal activity may be a risk factor for depression 
in nonclinical populations. Those with anxiety generally show increased levels of right 
frontal activity at rest and during tasks that elicit fear and/ or anxiety; however, this re-
lationship is more complicated in children and when comparing subtypes of anxiety. 
Those with bipolar disorder who experience manic symptoms exhibit greater left frontal 
activity at rest and during anger- evoking or difficult rewarding tasks. These patterns 
are consistent with the motivational direction and effortful control models of frontal 
asymmetry.

While there have been failures to replicate some past frontal asymmetry findings, 
these failures to replicate may be due to the complex nature of the systems underlying 
frontal asymmetry. Phenomena such as affect and motivation change by the moment 
and can be swayed by situational effects. Despite this, frontal asymmetry research has 
a long and well- established history in EEG frequency research and continues to spark 
new predictions, models, and discoveries.
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CHAPTER 12

OSCILL ATORY ACTIVIT Y IN 
SENSORIMOTOR FUNCTION

Bernadette C. M. van WIJK

12.1 Understanding 
the sensorimotor system

Movement is quintessential for most living organisms including humans. It is through 
movement that we feed ourselves, reproduce, communicate, perceive, and affect the ex-
ternal world. Most of our daily movements are performed without giving them much 
thought. We lift our arm to reach for a cup of coffee, grasp our fingers around it with 
enough force to hold the cup, and bring it to our mouth in order to drink without 
spilling— all seemingly without any effort. Even this arguably simple action requires 
transformation of an action goal into a movement trajectory, activation and deactiva-
tion of several muscle groups at appropriate moments in both space and time, and relies 
on accurate integration of visual information on the shape and position of the cup, pro-
prioceptive input from muscles and joints on position and velocity of the limbs, and 
haptic feedback from which we can infer the cup’s weight, to plan and adjust muscle 
activations. Fortunately, we can acquire complex motor skills through practice. We can 
learn how to coordinate our finger movements to efficiently type a text on a computer 
keyboard, or even to play the most virtuoso piano pieces.

The sensorimotor system is the network of motor and sensory regions in the brain 
and spinal cord thought to be involved in the planning, initiation, and execution of 
movements. In humans, it comprises primary somatosensory cortex (S1), primary 
motor cortex (M1), dorsal and ventral premotor cortex (PMd, PMv), (pre- )supplemen-
tary motor area (SMA), cingulate motor areas (CMA), cerebellum, the basal ganglia, 
several nuclei in brainstem and thalamus, motoneurons and interneurons in the spinal 
cord, and muscle afferents (Figure 12.1). Roughly speaking, one can distinguish a medial 
pathway of fiber tracts descending from cortex and brainstem nuclei down the spinal 
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cord that innervate axial muscles for the regulation of posture and balance, and a lateral 
tract innervating distal muscles. The sensorimotor system has a bilateral organization, 
with most corticospinal tracts crossing at the level of the medulla. This suggests that 
movements of the right arm and leg are primarily controlled by the left hemisphere, and 
vice versa. Movements and actions are intricately linked with perception and cognition; 
therefore, the sensorimotor system must uphold strong ties with other circuits. As such, 
the distinction between systems is not always clear and some sensorimotor regions have 
been ascribed more cognitive roles.

As much as one would like to understand how a gymnast performs a twisting 
somersault, the study of (supraspinal) neural control of movement in laboratory 
settings is typically restricted to what is often referred to as “simple” uni-  or bimanual 
movements like finger tapping or isometric force generation. Electroencephalography 
(EEG), magnetoencephalography (MEG), and electrocorticography (ECoG) are pre-
dominantly sensitive to synchronous synaptic transmission in cortical regions, while 
electromyography (EMG) may provide insight into the activation of motoneurons 
in the spinal cord via the spread of action potential currents that can be picked up 
non- invasively with electrodes placed on the skin over the muscle belly. Increasing 
use of deep brain stimulation (DBS) for the treatment of movement disorders allows 
for invasively recording local field potentials (LFPs) from basal ganglia and thalamic 
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Figure 12.1 Schematic overview of major cortical and subcortical pathways that comprise the 
sensorimotor system. Left: primary and secondary motor cortex project directly to the spinal 
cord and via brainstem nuclei. Afferent proprioceptive information travels to primary somato-
sensory cortex via thalamus and enters the cerebellum directly. Right: The basal ganglia con-
sist of the striatum, internal and external pallidum (GPi, GPe), and subthalamic nucleus (STN). 
Together with the thalamus they form circuits with various cortical regions, of which the ventral 
lateral and ventral anterior thalamus (VL, VA) project to primary and secondary motor cortex.
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structures in humans. It is even possible to combine recording techniques in a single 
experiment to investigate distant interactions between different parts of the sensori-
motor system. For example, simultaneous use of EEG/ MEG and EMG allows for the 
detection of functional interactions between cortex and spinal cord, and invasive LFP 
recordings from DBS electrodes can be combined with non- invasive EEG or MEG 
to detect functional interactions between cortex and basal ganglia structures like the 
subthalamic nucleus (STN) and internal pallidum (GPi). Performed movements can 
be co- registered via button- presses, force sensors, trackpads, joy sticks, or motion- 
capturing systems. By investigating how recorded neural signals change during the 
experimental task or due to pathology one could relate oscillatory activity to motor 
function.

Movement- related neural population activity appears in several frequency bands 
(Figure 12.2). Many studies contributed to understanding the functional role of these 
frequency bands in individual sensorimotor regions. Via measures of coupled oscil-
latory activity (e.g., coherence) one could get a sense of functional connectivity within 
the system. This chapter highlights several research findings and (ongoing) debates 
on which we build our current knowledge. While it covers many topics, it is meant as 
introductory text rather than an exhaustive literature review. Although we have studied 
oscillations in sensorimotor function for many decades, it is exciting to see that the field 
is still evolving with new technologies, signal processing techniques, and novel experi-
mental paradigms.
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Figure 12.2 Movement- related time- frequency spectra for primary motor cortex (M1) and 
subthalamic nucleus (STN). Panels show the relative change in spectral power with respect to 
a pre- movement baseline window. Participants performed a simple self- paced button press 
movement with three fingers simultaneously at time point 0. Beta power starts to decrease be-
fore movement onset (ERD) and shows a clear post- movement rebound (ERS). Gamma power 
increases around movement onset. In STN, another movement- related increase with smaller 
amplitude can be observed in the range for high- frequency oscillations (HFOs). Note how time- 
frequency modulations look very similar for M1 and STN, suggesting generic principles of infor-
mation processing.

Spectra are based on MEG and DBS- LFP recordings from   
eleven Parkinson’s disease patients on dopaminergic medication taken from Litvak et al., 2012.
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12.2 A traditional view 
on frequency bands

Ever since the first recordings, researchers have divided EEG/ MEG time series into fre-
quency bands that are presumed to have their own functional roles. This section focuses 
on the properties of frequency bands that are thought to be central to sensorimotor 
function.

12.2.1  The Difference Between Alpha, Mu, and Beta

The alpha rhythm was the first rhythm observed by Berger (1929). Soon after, it was 
discovered that the alpha rhythm is suppressed when closing the eyes, has its origin 
in the occipital lobes (Adrian & Matthews, 1934), and that another alpha rhythm can 
be observed close to the central sulcus that, together with a beta rhythm, is suppressed 
upon tactile stimulation (Jasper & Andrews, 1938). Later studies showed that the central 
rhythms are also modulated by passive, voluntary, and imagined movements (Chatrian 
et al., 1959; Gastaut, 1952; Jasper & Penfield, 1949). The alpha rhythm close to the cen-
tral sulcus (or “Rolandic fissure”) was named mu— after the arch- like shape of the oscil-
lation. However, in the current literature mu and alpha are used interchangeably. Mu/ 
alpha oscillations are usually defined to have a peak frequency between 8– 13 Hz. Beta 
oscillations are considered to occur within the approximate range of 13– 30 Hz. Both 
alpha/ mu and beta oscillations show a distinctive decrease in amplitude prior to and 
during movement execution (event- related desynchronization, ERD), followed by a 
rebound that exceeds baseline after the movement has been terminated (event- related 
synchronization, ERS) (Pfurtscheller & Lopes Da Silva, 1999). Still, dissimilarities in 
time course, spatial origin, and coupling to other regions indicate that the two bands are 
functionally distinct.

Beta ERD might start as early as 2 s before movement initiation and is often thought to 
reflect a general state of motor preparation (Neuper & Pfurtscheller, 2001). It starts over 
sensorimotor cortex contralateral to the moving hand and becomes bilateral during 
movement. Alpha/ mu ERD starts a bit later in time and is spatially more diffuse and 
somatotopically less specific (Crone et al., 1998b). Beta ERS is often more pronounced 
and occurs at a shorter latency compared alpha ERS (Alegre et al., 2003; Erbil & Ungan, 
2007; Pfurtscheller et al., 1996; Salmelin & Hari, 1994). The two rhythms are likely to 
originate from distinct sources as different source localization methods ascribed beta 
modulations to precentral (motor) cortex and mu/ alpha modulations to postcentral 
(somatosensory) cortex (Cheyne et al., 2003; Ritter et al., 2009; Salmelin et al., 1995; 
Salmelin & Hari, 1994). As explained in the subsequent sections, the beta band often 
shows the most specific modulations with experimental conditions and pathology 
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and dominates the functional connectivity profile for sensorimotor cortex. For these 
reasons, beta oscillations are considered most associated with motor control.

12.2.2  A Prominent Role for Beta Oscillations

The primary functional role of beta oscillations seems to be the facilitation and inhib-
ition of movements. Beta ERD already starts during the movement preparation phase 
and appears stronger when the action that needs to be prepared is known in advance. 
The ERD is lateralized with stronger suppression over contralateral M1 when the re-
sponse hand is known, also resulting in faster reaction times (Doyle et al., 2005b; van 
Wijk et al., 2009). On the other hand, ERS only appears after the movement has been 
terminated, and therefore has been proposed to reflect a period of inactivation to re-
cover from previous activation (Pfurtscheller et al., 1996), or processing of afferent som-
atosensory information (Cassim et al., 2001). Chen and colleagues (1998) tracked the 
time course of corticospinal excitability around self- paced and instructed movements 
using transcranial magnetic stimulation. Pulses were delivered at different time points 
around movement onset to see how the amplitude of motor evoked potentials varied 
during the time windows of ERD and ERS. An increase in corticospinal excitability was 
found in the final 100 ms of the pre- movement preparation phase and around 100 ms 
after movement onset, which are time periods during which ERD is often strongest. By 
contrast, a decrease in corticospinal excitability was found between 500 and 1000 ms 
after movement, which is around the time of ERS.

Beta oscillations are not simply an idling state, but also have a functional impact 
on the initiation and stabilization of motor output. Movements are performed more 
slowly when initiated during periods of high- amplitude beta oscillations in the ongoing 
EEG (Gilbertson et al., 2005). Entrainment of cortical beta oscillations by transcranial 
alternating- current stimulation at 20 Hz has a similar effect (Pogosyan et al., 2009). 
Cortico- spinal beta phase synchronization increases when the current motor output 
needs to be maintained (van Wijk et al., 2009), for example, in anticipation of upcoming 
perturbations to finger position (Androulidakis et al., 2007a). This implies that both a 
down-  and up- regulation of beta oscillations is employed by the nervous system to tune 
motor output.

What happens at a neurobiological level that determines the amplitude of beta 
oscillations? Motor cortical architecture consists of intricately and reciprocally 
connected excitatory pyramidal cells and inhibitory interneurons within and across 
layers (Keller, 1993). In order to determine the contribution of individual receptor types 
to network activity they can be activated or blocked with pharmacological agents in in 
vitro slice preparations of animal cortex. This revealed GABAA receptors to be critical 
for the generation of beta oscillations together with an influence of gap junctions, but 
not AMPA receptors (Yamawaki et al., 2008). There are strong indications that beta 
oscillations originate in layer V while also clearly present in layer II. IPSPs on layer 5 
pyramidal cells are phase locked with the LFP beta oscillation, as is the spiking of 
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pyramidal cells but at much sparser rates (Lacey et al., 2014). The dependence of beta 
oscillation amplitude on GABAA receptors has also been established through in vivo 
pharmacological studies in humans. After administration of benzodiazepines, a class 
of GABAergic drugs often prescribed as anticonvulsants, sedatives, or muscle relaxants, 
spectral beta power in EEG/ MEG appears enhanced (Baker & Baker, 2003; Hall et al., 
2010; Jensen et al., 2005). Along these lines, computational modelling work suggests 
that stronger synaptic inputs between pyramidal cells in different layers might underlie 
the beta suppression that is observed during movement (Bhatt et al., 2016).

Despite the prominence of beta band oscillations in sensorimotor function, 
movement- related modulations only seem to encode general motor aspects. More 
forceful movements induce stronger alpha/ mu and beta ERD (Mima et al., 1999; Stančák 
et al., 1997; Stančák & Pfurtscheller, 1996) as do movements that are performed with a 
higher frequency (Toma et al., 2002) or involving more complex sequences (Hummel 
et al., 2003; Manganotti et al., 1998). Movements with more muscle mass involved do not 
influence ERD but rather lead to stronger beta ERS (Pfurtscheller et al., 1998; Stančák 
et al., 2000). Movement duration has little effect on either ERD or ERS (Cassim et al., 
2000; Stančák & Pfurtscheller, 1996). It is however difficult to pinpoint ERD and ERS 
patterns to specific motor parameters.

12.2.3  Prokinetic Gamma

To find a mechanistic link between beta oscillations and the control of movement tra-
jectory and muscle force, it can be useful to consider the behavior of individual neurons. 
Pyramidal tract neurons (PTNs) in infragranular layers project to motoneurons of in-
dividual muscles and groups of muscles in the spinal cord, and appear to be function-
ally organized in small clusters (Asanuma et al., 1979). They only form a minority of 
cells in motor cortex and form intricate connections with other neurons within and 
between cortical modules that together encode movement patterns (Keller, 1993). 
Microelectrode recordings in sensorimotor cortices of the macaque monkey revealed 
spikes of individual neurons to be phase- locked to the LFP beta oscillation during time 
periods when the oscillation is well pronounced (Baker et al., 1997; Denker et al., 2007; 
Murthy & Fetz, 1996a). Although the phase locking of individual PTNs to the beta os-
cillation may only be weak, summation over a population of neurons can give a clearer 
picture (Baker et al., 2003). We also know that the encoding of parameters such as hand 
position, direction of motion, velocity, and force emerges from the joint firing rates of 
a group of neurons that are individually tuned (Ashe & Georgopoulos, 1994; Fu et al., 
1995; Georgopoulos et al., 1986; Moran & Schwartz, 2017; Paninski et al., 2004). This is 
termed population coding.

When movements are executed, phase locking of spikes with the beta oscillation 
drops and spike rates strongly increase (Baker et al., 2001; Spinks et al., 2008). There 
is a crude inverse correlation between spike rates and LFP beta power. Spike rates 
reach frequencies above 30 Hz (Baker et al., 2001; Grammont and Riehle, 2003) and 

 

 

 

 



OSCILLATORY ACTIVITY IN SENSORIMOTOR FUNCTION   265

 

may well correspond to the brief increases in gamma power (~30– 100 Hz) that can 
be observed in EEG and MEG recordings in a time window around movement onset 
(Cheyne et al., 2008; Muthukumaraswamy, 2010; Ohara et al., 2001; Pfurtscheller et al., 
1993; Pfurtscheller & Neuper, 1992). Unlike the alpha/ mu and beta ERD, the increase 
in gamma only occurs in the hemisphere contralateral to the moving body part and 
is somatotopically more focused (Crone et al., 1998a; Miller et al., 2007; Szurhaj et al., 
2005). Some studies report the gamma amplitude increase to vary with movement dir-
ection in invasive recordings (Leuthardt et al., 2004; Rickert et al., 2005). However, it 
remains to be seen whether gamma power in EEG and MEG recordings has the same 
specificity. Taken together, one may hypothesize that the beta oscillation inhibits, or 
constrains, neuronal spiking. That is, a suppression of the beta rhythm can lead to an in-
crease in excitability of individual neurons that together encode movement parameters.

12.2.4  High- Frequency Oscillations

The latest addition to the repertoire of movement- related oscillations is a spectral 
component with a clear peak in the 150– 400 Hz frequency range, aptly coined high- 
frequency oscillations (HFO). HFO have been observed in LFP recordings from DBS 
electrodes in the STN and internal pallidum. They are of interest to sensorimotor 
function as they show a characteristic increase in amplitude during movement (Foffani 
et al., 2003; Litvak et al., 2012; López- Azcárate et al., 2010; Tan et al., 2013; Tsiokos et al., 
2013), like the gamma band. Their peak frequency is modulated by dopaminergic medi-
cation (López- Azcárate et al., 2010; Özkurt et al., 2011; van Wijk et al., 2016) and indica-
tive of tremor symptoms in patients with Parkinson’s disease (Hirschmann et al., 2016). 
Yet, a similar movement- related HFO component in the cortex has not been reported 
although this may simply be due to the poor signal- to- noise ratio of commonly used 
EEG/ MEG compared to more focal, invasive techniques.

12.3 Coherence as a measure of 
functional connectivity within 

the sensorimotor system

Any understanding of sensorimotor function will not be complete if the information ex-
change between regions that comprise the sensorimotor system is ignored. Rhythmic 
synchronization in the form of oscillations has been recognized as a means by which 
neural populations selectively gate their sensitivity to input from other populations (Fries, 
2005). The degree of synchronization between neural populations can be estimated by 
computing coherence between time series as a measure of functional connectivity. This 
measure can be understood as spectral counterpart of conventional correlation.
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12.3.1  Cortico- Spinal Coherence

Cortico spinal coherence, also called cortico muscular coherence, refers to the syn-
chronization between oscillations in cortex and motoneuron activity in the spinal cord. 
Firing of motoneurons yields motor unit action potentials that induce contraction of 
muscle fibers. Repetitive firing is necessary in order to build up force. The rate at which 
this occurs ranges from 6 Hz in rest to 35 Hz during forceful isometric contractions 
and bursts of 80– 120 Hz in case of rapid, ballistic movements (Freund, 1983). As such, 
corticospinal coherence may reflect whether synchronized activity in cortex also 
reaches the muscles.

Several studies report weak but significant beta- band coherence between the EMG of 
hand or foot muscles and EEG over contralateral sensorimotor regions during sustained 
isometric muscle contractions (Conway et al., 1995; Gross et al., 2000; Halliday et al., 
1998; Salenius et al., 1997; van Wijk et al., 2012). Coherence levels increase for muscle 
contractions with higher force levels (Chakarov et al., 2009; Witte et al., 2007) and peak 
frequencies shift into the gamma range during maximal force production (Brown et al., 
1998; Mima et al., 1999). Task- dependent coherence has also been found for the EEG 
with different muscle groups, thereby forming functional synergies (Zandvoort et al., 
2019), or between EMG recordings of different muscles themselves (Boonstra et al., 
2016). While beta- band corticospinal coherence diminishes during movement (Baker 
et al., 1997; Kilner et al., 2000), alpha- band coherence between active muscle groups 
increases (Boonstra et al., 2009). Typically, no significant coherence can be observed in 
rest unless a strong tremor is present (Hellwig et al., 2001).

Corticospinal beta coherence can be modulated by cognitive factors. The division of 
attention during dual task performance decreases coherence levels (Johnson et al., 2011; 
Kristeva- Feige et al., 2002; Safri et al., 2007), whereas task instructions to maintain 
force output at a target level with high precision lead to increased coherence (Kristeva 
et al., 2007). Using a pre- cued choice reaction time task, Van Wijk and colleagues 
(2009) demonstrated that corticospinal coherence can be up- regulated in anticipation 
of an upcoming movement decision. Key to their experimental paradigm was the pre- 
activation of muscles in each trial via a precision grip before stimuli were displayed. 
This led to a build- up of corticospinal coherence that allows for modulations to be ob-
servable. After presentation of a warning cue of the likely upcoming response hand, 
corticospinal synchronization increased for the non- selected hand, while cortical beta 
power decreased for the selected hand. These and other findings jointly suggest that 
the role of beta oscillations to facilitate or inhibit movements extends to the level of the 
spinal cord.

Does corticospinal coherence reflect mere entrainment of motoneurons by cortical 
output? Feedback signals from muscle afferents ascend the spinal cord to somatosen-
sory cortex, which through strong connections with primary motor cortex, closes the 
corticospinal loop. Riddle and Baker (2005) sought to tackle this question experimen-
tally by cooling subjects’ arms. Cooling caused an additional time delay (inferred from 
phase- frequency regression) that was about twice the conduction time in one direction. 
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The authors therefore concluded that both ascending and descending pathways con-
tribute to the occurrence of corticospinal coherence. One may determine the direction-
ality of coupling by using measures such as Granger causality. This similarly revealed 
significant contributions of both ascending and descending pathways (Witham 
et al., 2011). It is worth noting that corticospinal coherence does not strictly follow 
modulations of cortical power. Baker and Baker (2003) demonstrated this by recording 
subjects before and after intake of diazepam, a benzodiazepine that enhances inhibitory 
post- synaptic potentials via GABAA receptors. EEG beta power doubled in amplitude, 
but corticospinal coherence was little altered. Interactions between cortex and spinal 
cord might therefore be more complex than a simple one- way drive.

12.3.2  Cortico- Subcortical Coherence

With EEG and MEG being most sensitive to cortical sources, it is easy to forget the 
contribution of more deeply located brain structures. Many of these are highly rele-
vant for sensorimotor and cognitive functions. DBS treatment allows for invasively 
recording electrophysiological activity from subcortical structures in humans. The 
subthalamic nucleus (STN) and internal pallidum (GPi) are primary targets for the 
treatment of Parkinson’s disease and dystonia, the pedunculopontine nucleus (PPN) 
for postural instability and gait freezing, and the ventrolateral thalamus (including 
ventral intermediate nucleus) for tremor. It is possible, albeit challenging, to combine 
LFP recordings from DBS electrodes with simultaneous EEG or MEG to study cortico- 
subcortical interactions.

Early simultaneous LFP- MEG studies sought to map functional connectivity with 
cortical regions across different frequency ranges during rest. Litvak and colleagues 
(2011) and Hirschmann and colleagues (2011) showed converging evidence for the 
presence of two spatially distinct and frequency- specific networks for the STN and 
ipsilateral cortical areas: alpha- band coherence with temporoparietal cortex and 
beta- band coherence with pre- motor cortex. Coherence values for these sources 
were little altered with dopaminergic medication. Using directionality analysis, cor-
tical activity was found to drive STN activity for both frequency bands (Litvak et al., 
2011). Both research labs followed up on these studies by investigating movement- 
related coherence but found more conflicting results. Litvak and colleagues (2012) 
reported an increase in gamma band coherence during movement execution that was 
further increased by dopaminergic mediation. Beta coherence increased during the 
post- movement beta rebound period but was unaltered by medication. In a separate 
study, they describe a reduction of alpha- band coherence during movement that was 
more pronounced with medication (Oswal et al., 2013). By contrast, Hirschmann 
and colleagues (2013) found that medication reduced beta- band coherence during 
movement but not alpha.

Simultaneous LFP- MEG recordings identified functional networks also for other 
subcortical structures. Activity in PPN appeared coherent with that of the brainstem 
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and cingulate cortex in the alpha band, and with medial cortical motor areas in the 
beta band (Jha et al., 2017). For GPi, coherence was found with temporal cortex in the 
theta band, cerebellum in the alpha band, and sensorimotor cortex in the beta band 
(Neumann et al., 2015). This study was conducted in dystonia patients, for whom dis-
ease severity significantly correlated only with theta band coherence. Beta- band co-
herence was unrelated to symptoms but showed a movement- related reduction (van 
Wijk et al., 2017; see Figure 12.3). The lack of clear alterations of cortico- subcortical co-
herence by medication or correlation with clinical symptoms suggests that this form of 
functional coupling might be physiological rather than disease- related. Experimental 
paradigms with more refined task designs will be needed to unravel their func-
tional roles.

12.3.3  Cortico- Cortical Coherence

Many motor tasks call upon the coordinated activation of multiple cortical regions. 
Researchers have used coherence analysis with the aim to find traces of functional 
coupling between EEG/ MEG time series recorded at different locations. Some of 
these findings confirmed inter- regional coupling patterns as one would expect from 
postulated sensorimotor functions of individual brain regions. For example, the ob-
servation of higher coherence values between sensorimotor cortex and mesial pre-
motor areas for internally compared to externally paced movement is in line with the 
presumed involvement of SMA in self- initiated movements (Gerloff et al., 1998; Serrien, 
2008). Other findings are arguably more open for interpretation, like the increased level 
of interhemispheric coherence between sensorimotor regions during more complex 
unimanual and bimanual tasks (Gerloff et al., 1998; Gross et al., 2005; Manganotti et al., 
1998; Mima et al., 2000), or the observed gamma band coherence between cerebellar 
hemispheres during bimanual finger tapping (Pollok et al., 2007). Notably, cortico- 
cortical coherence can be used to reveal the integration of information from sensory 
modalities during motor tasks. Classen and colleagues (1998) demonstrated that beta- 
band coherence between motor and visual cortex is higher when participants make 
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Figure 12.3 Beta band coherence between the right internal pallidum (GPi) and ipsilateral 
sensorimotor cortex. Left: Topography with darker colors indicating stronger coherence values. 
Right: Coherence is reduced during movement compared to rest.

Both panels are based on MEG and DBS- LFP recordings from eight dystonia patients taken from Van Wijk et al., 2017.
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use of visual information to perform a visuomotor tracking task compared to when the 
visual stimulus is a mere distractor. Similarly, significant alpha- band coherence between 
auditory cortices and the motor network can be found when finger tapping is paced by a 
metronome (Pollok et al., 2005).

Coherence analysis between EEG/ MEG time series is easily prone to volume con-
duction: multiple electrodes or sensors pick up the same neural activity leading to 
an overestimation of functional connectivity. This prompted the development of 
alternative connectivity measures like the imaginary part of coherency (Nolte et al., 
2004), where the real part of the cross- spectrum is ignored as it may contain volume 
conduction artifacts. The authors applied this measure to EEG data of a unimanual 
finger tapping task and demonstrated a weak but significant 20 Hz coupling from 
contralateral to ipsilateral sensorimotor cortex in the time period before movement 
onset and in the reverse direction after movement. Another measure is the phase 
lag index (Stam et al., 2007), which eliminates instantaneous coupling by looking at 
the asymmetry of the relative phase distribution. Hillebrand and colleagues (2012) 
showed that this measure removes volume conduction effects that are still present 
after projecting MEG data to source space and identified a strongly connected sen-
sorimotor network in the beta band. The disadvantage of these measures is that any 
true coupling with zero time- lag is also ignored, therefore their estimates are on the 
conservative side.

Invasive recordings reduce the problem of volume conduction if electrodes can 
be placed sufficiently far apart. Murthy and Fetz (1996b) studied the occurrence of 
synchronized oscillations in LFP signals from bilateral sensorimotor areas in the ma-
caque monkey. Oscillations occurred spontaneously at rest but only infrequently. They 
appeared more often during exploratory arm movements with fine use of the fingers, 
during which they were frequently synchronized between M1 and S1, and between bi-
lateral M1s. Both occurred at near zero time- lags. Oscillations, however, did not seem to 
occur at consistent points in time related to the movements. Other studies did observe 
a systematic increase in synchronous oscillations between M1, S1, and premotor areas 
of the same hemisphere or between bilateral M1s around or before movement onset 
in more standardized tasks (Cardoso de Oliveira et al., 2001; Ohara et al., 2001; Sanes 
& Donoghue, 1993), therefore providing support for the involvement of oscillations in 
functional coupling between cortical areas.

12.4 Long- term changes 
in oscillatory activity

Measures of sensorimotor beta oscillations appear to be highly consistent within 
individuals across repeated recording sessions (Espenhahn et al., 2017). However, their 
characteristics might change over time due to several factors.
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12.4.1  Altered Oscillations Due to Development 
and Aging

Physiological changes occur throughout our body as we grow older. Alterations in grey 
matter volume, myelination, structural connectivity, neurotransmitters, receptors, 
and skull conductivity (when recording EEG) potentially affect amplitudes and peak 
frequencies of neural oscillations. In a cross- sectional study, Heinrichs- Graham and 
colleagues (2018) investigated the age- dependency of movement- related oscillations by 
measuring MEG of 57 healthy participants between the ages of 9 and 75 years. Absolute 
(baseline) beta power showed a quadratic relation with age, with smallest values for 
young adults, somewhat larger values for children, and clearly largest values for older 
adults. The magnitude of beta ERD linearly increased across all ages, whereas post- 
movement ERS was most pronounced for young adults. Similar patterns were found 
by other studies (Gaetz et al., 2010; Schmiedt- Fehr et al., 2016) that also reported a re-
duction of peak frequency for ERD (Rossiter et al., 2014) or ERS (Espenhahn et al., 
2019) in older adults. Gamma ERS around movement onset has been reported to de-
crease in amplitude from childhood to adolescence (Trevarrow et al., 2019). While 
gamma ERS typically only occurs in contralateral sensorimotor cortex in adults, it may 
also be observed over ipsilateral cortex in younger children. Huo and colleagues (2011) 
reported ipsilateral gamma ERS for 12 out of 20 children in the 6– 9- year- old age group 
and significantly fewer instances for older age groups. These findings are likely related to 
maturation of the corpus collosum and development of transcallosal inhibition that still 
continues at that age (Müller et al., 1997). Changes in oscillatory activity are hence evi-
dent throughout the lifespan; this should be considered when the experimental design 
includes between- group comparisons.

12.4.2  Altered Oscillations Due to Learning

On short time scales, oscillatory activity may depend on experience in the context of 
sensorimotor learning. Synaptic plasticity can lead to a strengthening or weakening of 
synaptic transmissions that may affect the amplitude of oscillations at a neural popu-
lation level. Such reorganization has been observed during the course of learning new 
visuomotor tracking tasks or bimanual coordination patterns.

Tan and colleagues (2014) showed that the magnitude of post- movement beta ERS 
depends on kinematic error in a reaching task with rotational perturbations. In these 
experiments, single- trial beta ERS was negatively correlated with the angular discrep-
ancy between the target movement trajectory and the actual performed trajectory. This 
effect was strongest when the perturbation angle was constant over trials compared to 
random. Hence, post- movement beta ERS does not merely reflect afferent feedback 
of the performed movement; rather, it represents a combination of prediction error 
and uncertainty of expected sensory consequences (Tan et al., 2016). Alayrangues and 
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colleagues (2019) suggested that reorganization of the internal representation itself is 
not reflected by the post- movement ERS but by lower beta amplitudes during the pre-
paratory period of movements in the next trial.

Motor skill learning is also associated with stronger beta ERD (Andres et al., 1999; 
Boonstra et al., 2007) and ERS (Moisello et al., 2015) in sensorimotor cortex, and more 
pronounced alpha band modulations in the cerebellum (Houweling et al., 2008) during 
task performance. More widespread changes in spectral power may also occur in 
these frequency bands that are stronger in young compared to older adults (Rueda- 
Delgado et al., 2019). Learning bimanual patterns impacts on functional connectivity 
within the sensorimotor network. In a study by Andres et al. (1999), healthy adult 
participants performed a 30- minute training session during which they learned to fuse 
two overlearned unimanual finger- tapping sequences into a new bimanual sequence. 
Interhemispheric coherence between sensorimotor regions in the alpha and beta band 
was increased during early stages of the training phase and decreased again after the bi-
manual sequence was learned. Interhemispheric interactions might be initially recruited 
to learn a new bimanual coordination pattern but are seemingly less needed after the 
pattern has been acquired. By contrast, Houweling and colleagues (2010) showed that 
the time course of bimanual learning is reflected in the build- up of corticospinal phase 
synchronization. There, it appears as if the synchronization is needed to perform the 
task adequately.

Changes in oscillatory activity can also be observed directly after a training session in 
the amplitude of ongoing beta oscillations. Espenhahn and colleagues (2019) recorded 
EEG before and after a 30- minute training session of a unimanual visuomotor tracking 
task. Absolute beta power during rest was significantly higher after training and 
returned to pre- training levels the following day. A similar effect was found by Moisello 
and colleagues (2015) and was suggested to reflect a reduction in cortical excitability 
after extended use. It would be of interest to conduct more longitudinal studies to see 
whether learning induces long- lasting changes to oscillatory activity or whether the 
system returns to baseline levels when the newly learned skills are fully consolidated.

12.4.3  Altered Oscillations in Movement Disorders

Given the contributions of beta oscillations in facilitating and inhibiting movements, it 
comes as no surprise that this rhythm may deviate in patients with movement disorders. 
This is most evident in Parkinson’s disease, a neurodegenerative disorder where a loss 
of dopaminergic cells in substantia nigra may be accompanied by symptoms of ri-
gidity (muscle stiffness), bradykinesia (slowness of movement), tremor, posture and 
balance problems, slurred speech, and several non- motor symptoms. The disease is 
initially treated with dopaminergic medication, but in a more advanced stage patients 
might be referred to DBS. Electrodes with multiple contacts are typically implanted in 
either STN or GPi in both left and right hemispheres. Both targets are known for the 
effect of 130- Hz stimulation on improvement of motor function (Deuschl et al., 2006; 
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Weaver et al., 2009). Besides stimulation, the electrodes can be used to record LFPs, 
though recordings are typically limited to a time window of about a week after elec-
trode implantation when wires are still externalized. Such recordings have revealed 
elevated levels of beta oscillations in patients off medication during rest (Figure 12.4; 
e.g., Brown et al., 2001; Levy et al., 2002; Priori et al., 2004), and some studies report less- 
pronounced beta ERD during self- paced movement (Doyle et al., 2005a).

One of the challenges with invasive recordings in patients is to determine the degree 
to which observed activities are physiological or disease- related. Acquiring the same 
recordings from healthy subjects for comparison is not an option as they would need to 
undergo the same surgical procedures. Still there are strong reasons to believe that ex-
cessive beta oscillations in the STN are a marker of Parkinsonism:

 1. The amplitude of beta oscillations correlates with severity of bradykinesia and ri-
gidity as measured with the Unified Parkinson’s Disease Rating Scale (Neumann 
et al., 2016; van Wijk et al., 2016).

 2. The amplitude of beta oscillations decreases after dopaminergic medication or 
DBS in parallel with clinical improvement (Kühn et al., 2009, 2008, 2006b; Ray 
et al., 2008).

 3. The amplitude of beta oscillations in STN and GPi is higher in patients with 
Parkinson’s disease than in patients with dystonia (Piña- Fuentes et al., 2019).

 4. Stimulation at 20 Hz instead of the clinically effective 130 Hz impedes motor per-
formance (Chen et al., 2007), therefore underscoring a causal role of excessive 
beta oscillations in motor impairment.

While bradykinesia and rigidity are associated with beta oscillations, tremor typ-
ically manifests at frequencies below 12 Hz. Several forms of physiological and patho-
logical tremors with central or peripheral origins can be distinguished, all characterized 
by involuntary rhythmic movements in one or more body parts (Deuschl et al., 2001; 
McAuley & Marsden, 2000). Essential tremor is the most common movement disorder, 
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Figure 12.4 Abnormal subthalamic nucleus oscillatory activity in Parkinson’s disease. 
Left: Spectral power in the beta frequency range is elevated when the patient is withdrawn from 
dopaminergic medication. Right: Phase- amplitude coupling (PAC) between beta and high- 
frequency oscillations is another marker of motor impairment.

Example of single subject DBS- LFP recordings taken from Van Wijk et al., 2016.
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an action tremor that occurs with voluntary muscle contraction. Neural entrainment 
between inferior olive, cerebellum, thalamus, and motor cortex is believed to underlie 
its emergence (Raethjen and Deuschl, 2012). Activity at the tremor frequency within 
this network has been found to be coherent with EMG (Hellwig et al., 2001; Schnitzler 
et al., 2009). By contrast, Parkinsonian tremor presents during rest and may have its 
origin in the basal ganglia (Deuschl et al., 2001). Both Parkinsonian and essential 
tremor can be suppressed by 130- Hz DBS in the ventrolateral thalamus (Benabid et al., 
1996). Stimulation at the tremor frequency could either enhance or reduce tremor 
amplitude, depending on the phase at which stimulation pulses are delivered (Cagnan 
et al., 2013).

Dystonia is another hyperkinetic movement disorder that can be associated with 
increased power for frequencies below the beta band in GPi (Chen et al., 2006; Liu et al., 
2008; Sharott et al., 2008; Silberstein et al., 2003). This arguably reflects diminished and 
more irregular neuronal firing that is considered distinctive of the disorder (Hendrix 
& Vitek, 2012). Clinical symptoms include twisting movements and abnormal posture 
resulting from involuntary sustained and sometimes repetitive muscle contractions 
(Fahn, 1988). Also in dystonia symptoms might be suppressed via DBS but improve-
ment may not become evident before several weeks or months of continuous stimula-
tion (Vidailhet et al., 2005). Barow et al. (2014) showed that 4– 12 Hz pallidal activity is 
reduced upon DBS with more immediate effects for phasic compared to tonic dystonia 
subtypes.

Elevated levels of oscillatory activity seem to be a common feature of a number of 
movement disorders. Effective treatments are frequently associated with a reduction of 
this activity although causal relations are often difficult to establish.

12.5 A dynamic view on frequency bands

Until now, averaging of spectral power within frequency bands or across long time 
windows has been common practice in the field. Recently, dynamical properties of 
oscillations have received more attention. For example, beta oscillations are not present 
with constant amplitude but appear in short bursts of varying amplitude and duration 
(Feingold et al., 2015; Murthy and Fetz, 1996b). In Parkinson’s disease, bursts with long 
duration occur more frequently in the STN of patients with larger clinical impair-
ment and also have a higher amplitude than short bursts (Tinkhauser et al., 2017a). 
Dopaminergic medication significantly reduces the number of long bursts (Tinkhauser 
et al., 2017b). These new insights help to further constrain computational models, like 
that proposed by Sherman and colleagues (2016) for S1, which explore the synaptic 
mechanisms by which beta bursts emerge.

Another example is the notion that functions may arise from the interaction be-
tween frequency bands as opposed to individual frequency bands forming parallel 
communication channels. Using recordings from rat motor cortex, Igarashi et al. (2013) 
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demonstrated gamma oscillations comprised of a slow and fast component that were 
both coupled with an ongoing theta rhythm. Slow gamma oscillations were pronounced 
when rats were holding on to a lever and were phase- locked to peaks of the theta oscilla-
tion, whereas fast gamma oscillations emerged around the time of pulling the lever and 
were phase- locked to a trough of the theta oscillation. These findings are reminiscent of 
phase precession in hippocampal cortex where firing of place cells in the gamma range is 
nested in the ongoing theta rhythm. With individual gamma cycles representing a par-
ticular location in space, these progressively shift forward to earlier phases of the theta 
cycle as the rat navigates towards that location (O’Keefe & Recce, 1993). The nesting of 
oscillations allows for the encoding of near and far locations, i.e. information that is not 
contained in the individual frequencies. On the other hand, cross- frequency coupling 
might also arise due to pathology. We have found the strength of phase- amplitude coup-
ling between beta and HFOs in the STN to correlate with the severity of bradykinesia 
and rigidity symptoms in Parkinson’s disease (Figure 12.4; van Wijk et al., 2016).

Cross- frequency coupling could also be indicative of non- sinusoidal waveforms as 
these would appear at higher frequencies in the spectrum (van Wijk, 2017). Cole et al. 
(2017) demonstrated that the waveform shape of beta oscillations could indeed explain 
beta- gamma phase- amplitude coupling patterns observed in M1 of Parkinson’s patients 
(de Hemptinne et al., 2013). It is interesting that DBS reduces the asymmetry of the beta 
oscillation waveform (de Hemptinne et al., 2015) as it hints at less- synchronous synaptic 
input from the basal ganglia. A focus on the detailed time dynamics, cross- frequency 
coupling, and waveform shape of oscillations holds great promise to further unravel 
their role in sensorimotor function.

12.6 Cognitive aspects of 
sensorimotor function

 We move to interact with the external world in a meaningful way. Our actions depend 
on goals and intentions, which in turn depend on the context we are in. Cognition and 
motor control are highly intertwined. Several lines of research indeed suggest that sen-
sorimotor regions contribute beyond the classical view on motor control.

First of all, (pre- )motor cortex is already activated during the process of action selec-
tion instead of merely being informed on the final outcome that needs to be executed 
(Cisek and Kalaska, 2005). Donner and colleagues (2009) demonstrated that lateralized 
beta suppression and gamma increase in motor cortex could predict on a single trial 
level which left/ right choice participants were going to make during a perceptual de-
tection task. Instructions to emphasize decision speed versus accuracy decrease pre- 
stimulus M1 beta levels, which might explain the upsurge of errors under speed stress 
(Pastötter et al., 2012; Steinemann et al., 2018). Pre- decision activation of the motor 
system is therefore likely to speed- up or even influence behavioral performance.
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The ability to inhibit actions is seen as an important marker of cognitive control. 
Pro- active inhibition and reactive stopping of actions are often studied with go/ no- go 
and stop- signal paradigms, respectively. Both are thought to rely on the “stopping net-
work” of inferior frontal gyrus (IFG), pre- SMA, and STN (Aron, 2011). In IFG, trials 
with a stop signal induce an increase in beta power that is larger for successful vs. un-
successful stop trials (Swann et al., 2009). In STN, task- related beta suppression is 
weaker for successful compared to unsuccessful stops (Kühn et al., 2004; Wessel et al., 
2016). In turn, successful stops are also characterized by a weaker beta suppression in 
M1 compared to unsuccessful stops (Swann et al., 2009). More generally, fronto- basal 
ganglia circuits are considered to act as a brake to stop actions, resolve conflict, or pro-
cess surprising events (Aron et al., 2016).

Execution of movements is not strictly necessary for the sensorimotor system 
to become active. Beta ERD can be observed in contralateral M1 and the STN when 
participants are merely imagining that they are making a movement albeit with lower 
magnitude compared to real movements (Kühn et al., 2006a; Pfurtscheller and Neuper, 
1997; Schnitzler et al., 1997). Researchers have gratefully taken advantage of this phe-
nomenon for the development of brain computer interfaces (Wolpaw et al., 2002). Even 
patients in an advanced stage of ALS have been able to learn how to control vertical 
cursor movement on a computer screen by up-  or down- regulating the amplitude of 
sensorimotor EEG rhythms via motor imagery (Kübler et al., 2005). With the use of 
machine learning it is possible to reduce the training time needed to successfully op-
erate such a device to just 20 minutes in healthy individuals (Blankertz et al., 2007). 
Controlling a robot arm or computer cursor by imagining movement of your own limb 
is appealing as it relies to a large extent on how the brain controls real movements.

Observing movements performed by others can also induce alpha/ mu and beta 
suppression in human sensorimotor cortex (Babiloni et al., 2002; Cochin et al., 1998; 
Hari et al., 1998; Kilner et al., 2009). The suppression is slightly larger when the action 
is target- directed (Avanzini et al., 2012; Muthukumaraswamy et al., 2004) and when the 
observer is more experienced with the action him/ herself (Cannon et al., 2014). A cred-
ible hypothesis for the activation of motor regions during perception is that the observed 
action needs to be internally simulated in order to understand the other person’s actions 
and intentions (Jeannerod, 2001). As such, the discovery of mirror neurons in (pre- )
motor regions (Cattaneo & Rizzolatti, 2009) means that considerable ground is shared 
with the field of social neuroscience.

12.7  Conclusions

Oscillations are omnipresent in the sensorimotor system and show distinct modulations 
with experimental tasks and pathology. In particular beta oscillations seem to have a 
prominent role by means of their association with movement facilitation and inhib-
ition. Movement- related beta ERD and ERS are among the most robust time- frequency 

 



276   Bernadette C. M. van Wijk

 

patterns in EEG/ MEG studies. Intriguingly, the cortex is not alone in displaying these 
characteristic modulations. Very similar movement- related beta ERD/ ERS and gamma 
ERS can be observed in LFP recordings from the STN (Alegre et al., 2005; Androulidakis 
et al., 2007b; Cassidy et al., 2002; Kühn et al., 2004; Litvak et al., 2012), GPi (Brücke et al., 
2008; Talakoub et al., 2016; Tsang et al., 2012), and the ventral lateral thalamus (Brücke 
et al., 2013; Klostermann et al., 2007; Paradiso et al., 2004). This implies that these 
modulations are generic principles of information processing that might have different 
functional meaning in different regions of the sensorimotor network.

Over the years, the main focus of the field at large has been on oscillations in contra-
lateral M1. While simple flexion/ extension movements of the fingers indeed seem to 
be fairly restricted to activation in the primary sensorimotor cortices, more complex 
rhythmic or bimanual movement patterns recruit additional regions like ipsilateral M1, 
SMA, premotor cortex, cerebellum, and also primary and secondary sensory and asso-
ciation cortices if the task involves strong visual or auditory components (Heinrichs- 
Graham & Wilson, 2015; Houweling et al., 2008; Hummel et al., 2003; Pollok et al., 2005; 
Rueda- Delgado et al., 2014). The contribution of subcortical structures is more difficult 
to study in humans but should not be overlooked. Intriguingly, lesions to motor cortex 
do not affect execution of a task- specific motor sequence in rats once the sequence 
has been learned, suggesting reliance on subcortical controllers with projections to 
the spinal cord (Kawai et al., 2015). Simultaneous MEG and DBS- LFP recordings have 
revealed a number of spatially and spectrally distinct cortico- subcortical networks that 
appear to be disease- unrelated. The functional relevance of these networks deserves fur-
ther exploration in future studies.

Although we have learned a great deal about the neural control of movement by 
studying oscillations, several aspects remain unexplained. Important questions that are 
still open are mostly of mechanistic nature. For example, how does beta ERD lead to 
muscle activations? What causes beta ERD to start and initiate movement in the first 
place? Why is desynchronization so widespread even for simple finger movement? 
Why are movement- related modulations so similar across various parts of the motor 
system? How are movement plans translated into motor commands? How are they 
encoded? Oscillations reflect the summed activity of numerous neurons, from which 
it might be difficult to infer details of individual muscle control especially with non- 
invasive techniques such as EEG and MEG. Instead, they are more likely to reflect gen-
eral states of activation or deactivation. I believe there is still much more to gain from 
studying oscillations through the combination of recordings techniques, the use of 
advanced signal processing algorithms and the development of computational models. 
Fortunately, grasping a cup of coffee is much easier than understanding how we do it.
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CHAPTER 13

EEG FREQUENCY 
DEVELOPMENT ACROSS 

INFANCY AND CHILDHO OD

KIMBERLY CUEVAS AND MARTHA ANN BELL

13.1  Introduction

Hans Berger (1929) published the first report of the electroencephalogram (EEG) 
recorded on an adult scalp. After success with adult recordings, Berger began to record 
electrical activity from the scalps of a wide age range of individuals and it was Berger’s 
fifth report three years later (1932) that created the field of developmental neurophysi-
ology. Berger said in the earlier part of his fifth report that he had recorded EEG from 
the scalps of a few children but had not yet recorded EEG from anyone under 5 years of 
age. His rationale for avoiding younger children was that he was using needle electrodes 
and did not want to use local anesthesia with such young individuals. Thus, for his initial 
recordings with infants, Berger used silver foil electrodes on the forehead and occiput, 
with each the size of the palm of his hand. On each section of silver foil was a piece of 
flannel cloth soaked in saline. Another piece of silver foil was placed on top so that the 
flannel would not dry out. He held this on the scalp with a rubber bandage (Berger, 1932).

Berger reported that he attempted to record EEG from six infants between 8 and 
13 days old, but there were no characteristic alpha waves that he had come to expect 
after doing so many adult and older child EEG recordings. He concluded that there was 
no EEG in the first weeks after birth because the cerebral cortex had not yet assumed 
its function. A 35- day- old infant (a “healthy and very strong boy”) was the youngest in 
whom Berger could record EEG. The infant lay completely still and began to fall asleep 
and there was some evidence of the posterior alpha activity that Berger had seen for the 
past three years in older children and adults. Berger (1932) concluded in his fifth report 
that one could see EEG in all healthy and strong children who are older than 2 months 
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of age and that by the age of 5 years, children show an EEG tracing comparable to that of 
an adult.

The EEG recordings Berger accomplished from infants were highly intriguing. Infant 
EEG had greater amplitude and cycled at a lower frequency than adult EEG. From 
Berger’s time, researchers have assumed that EEG differences among infants, chil-
dren, and adults reflect differences in brain maturation. Longitudinal research studies, 
including our own contributions (Bell & Fox, 1992; Cuevas & Bell, 2011), have verified 
that position. Researchers continue to examine infant and young child EEG as a rela-
tively inexpensive, non- invasive way to study brain development.

This chapter provides an overview of the ontogeny of EEG frequency bands during 
infancy and early childhood. We include infant correlates of adult frequency bands 
labeled as delta, theta, alpha family, beta, and gamma. We focus most intensely on 
the 6– 9 Hz “infant alpha” frequency band, as it is the band that has received the most 
attention in the developmental neurophysiology research literature and the frequency 
band that we have examined so intensely in our own programs of research and our col-
laborative efforts. We organize the discussion of infant and child alpha around studies 
focused on action- perception processes, executive processes, and affective processes. 
The chapter ends with a brief section on broader impacts of infant and child EEG and 
future directions.

13.2 Ontogenesis of EEG Bands

This section focuses on the oscillatory rhythms that compose the waking EEG during 
infancy and childhood. The primary frequency bands of normative EEG oscillatory ac-
tivity based on the adult literature are delta (1– 4 Hz), theta (4– 8 Hz), alpha (8– 13 Hz), 
beta (13– 30 Hz), and gamma (36– 44 Hz). These oscillations often occur at slower rates 
during early development. However, throughout ontogeny, EEG amplitude is typically 
inversely related to frequency, with greater amplitude exhibited for slower oscillations. 
The functional properties of oscillatory rhythms are defined here in terms of event- 
related changes in EEG power values (EEG reactivity) in response to external stimuli 
and/ or psychological (e.g., cognitive, affective) processing. Specifically, the term syn-
chronization refers to an increase in EEG power values relative to resting baseline, 
whereas desynchronization refers to a decrease in EEG power values.

We provide an overview of what is known about each of these EEG frequency bands 
during early development, including functional properties as well as age- related 
changes in frequency and amplitude. In general, there is a decrease in the amount of low 
frequency activity (1– 5 Hz; i.e., delta, lower- theta) and an increase in intermediate fre-
quency oscillations (6– 12 Hz; i.e., upper- theta; alpha) from infancy through childhood 
(Gibbs & Knott, 1949; Hagne, 1968; Marshall et al., 2002). As there is no standardization 
of EEG rhythms in the developmental neurophysiology literature as found in adolescent 
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and adult EEG work, EEG researchers have used multiple techniques to determine ap-
propriate frequency band definitions for infants and young children.

13.2.1  Delta Band

Large, slow wave oscillations in the delta band are typically investigated in the con-
text of sleep. Although oscillatory activity within the delta frequency band is present 
in the waking EEG during early development, descriptions of this band have primarily 
focused on decreases in delta activity and corresponding increases in higher frequency 
oscillations as a function of age (Hagne, 1968; Ogawa et al., 1984). Although Lindsley 
(1938) recorded from only occipital sites, he noted the presence of “type V waves” in 
subjects from 3 months of age through adulthood, with the average frequency increasing 
gradually from 0.68 to 1.08 Hz over this developmental period. The delta rhythm was 
unaffected by stimulation and reached the 1 Hz oscillation rate by 3 years of age.

13.2.2  Theta Band

Oscillatory activity within the theta range is faster than the adjacent delta band. Theta 
rhythms are prominent in the waking EEG during early development, but the theta fre-
quency range is slightly lower than that of the adult 4– 8 Hz theta band. The adult litera-
ture has noted that emotional and cognitive processing is associated with increases in 
theta power (e.g., Walter & Walter, 1949; see also Chapter 15). Theta oscillations have 
been hypothesized to be linked to reward processing and active learning during early 
development (Begus & Bonawitz, 2020). Visual perceptual- stimulation techniques 
have also been used to “entrain” (elicit) neural oscillatory activity at a particular fre-
quency, with specific focus on the functional properties of the theta rhythm (Köster 
et al., 2019). To our knowledge, however, there have been no systematic examinations of 
theta’s functional properties throughout development. Here, we highlight some of the 
characteristics of theta reactivity during infancy and childhood.

In the context of examining 7-  to 12- month- olds’ alpha rhythms, Stroganova and 
colleagues (Stroganova et al., 1999) identified 3.6– 6 Hz activity with unique functional 
properties. This band exhibited increases in theta power during “internally controlled 
(anticipatory) attention” as infants were engaged in a peek- a- boo game (Orekhova 
et al., 1999; Stroganova et al., 1998). Recent analysis of 6-  to 12- month- olds’ sustained 
attention, using heart- rate- defined phases of attention, has confirmed and extended 
these findings. By 10– 12 months of age, sustained attention during a video clip was 
associated with theta (2– 6 Hz) synchronization at multiple scalp sites, including frontal 
pole, central, and parietal (Xie et al., 2018). Event- related theta synchronization during 
attentional processes may also be related to infants’ subsequent memory and cognitive 
abilities. For instance, increases in 11- month- olds’ frontal theta (3– 5 Hz) power during 
object exploration was associated with variability in infants’ future object recognition 
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(Begus et al., 2015). Likewise, measures of frontal theta (3– 6 Hz) enhancement during 
a dynamic non- social video at 6 months of age is associated with non- verbal cognitive 
abilities at 9 months (Braithwaite et al., 2020). Together, these findings indicate that 
theta synchronization is intricately linked to aspects of infant attention and memory; 
however, the precise developmental onset and trajectory of event- related theta reactivity 
are important open areas of inquiry.

Increases in theta power are also exhibited in response to positive and negative af-
fective processing during infancy (Futagi et al., 1998; Nikitina et al., 1985) as well as nu-
tritive sucking (Lehtonen et al., 2016; Paul et al., 1996). However, little is known about 
age- related changes in theta reactivity beyond infancy. To this end, Orekhova and 
colleagues (Orekhova et al., 2006) directly compared infants’ and young children’s theta 
reactivity to “theta- provoking” stimuli— toy exploration and attention to social stimula-
tion (i.e., adult speech). Theta scalp topography differed as a function of age and stimulus 
type; though, both 8-  to 12- month- olds and 3-  to 6- year- olds exhibited increases in 
theta (3.6– 5.6 Hz and 4– 8 Hz, respectively) power in response to these stimuli. Thus, in 
some affective contexts, the adult theta range is developmentally appropriate by early 
childhood. Recent evidence also indicates changes in the topography of infants’ theta 
(3– 6 Hz) synchronization in response to social stimuli between 6 and 12 months of age 
(Jones et al., 2015). In sum, theta synchronization is displayed in a variety of cognitive 
and emotional settings early in development, but the precise nature of the scalp topog-
raphy of theta responsivity varies as a function of multiple factors, including age and 
reactive context.

13.2.3  Alpha Band (“Alpha Family”)

The majority of developmental research on waking EEG has examined oscillatory ac-
tivity that falls within the alpha frequency range. The alpha band (or “alpha family”) 
includes two rhythms that overlap in frequency, but differ in their functional properties, 
scalp topographies, and developmental trajectories. Berger (1929) initially identified the 
posterior alpha rhythm (or occipital alpha rhythm) in the adult waking EEG. This oscilla-
tory activity is prominent over posterior scalp locations (parietal, occipital) when there 
is a homogenous visual field (e.g., dark room; eye closure) and it is suppressed by visual 
stimulation (e.g., flashes of light; eye opening). The central alpha rhythm, also known 
as the Rolandic mu rhythm or pre- central alpha rhythm, is prominent over the sen-
sorimotor cortex during periods of stillness (i.e., no motor movement). Foundational 
work with adults has revealed that mu oscillatory activity is suppressed in response to 
motor movement (Gastaut et al., 1954) with more recent investigations extending these 
findings to motor imagery and the perception of others’ actions (Muthukumaraswamy 
& Johnson, 2004; Pfurtscheller et al., 2006). Thus, although the mu and posterior alpha 
rhythms are both within the alpha frequency range, their unique topographic and func-
tional properties indicate that they are independent oscillations. The second half of this 
chapter reviews developmental work focusing on frontal EEG activity within the alpha 
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band (6– 9 Hz) and its associations with affective and cognitive processes. Frontal alpha 
activity is proposed to have unique neural generators by some, and to be associated with 
central and/ or posterior alpha rhythms by others (see Stroganova & Orekhova, 2007 for 
discussion).

13.2.3.1  Posterior Alpha
Early developmental EEG investigations using visual quantification noted posterior os-
cillatory activity that had similar rhythmic qualities to the adult posterior alpha rhythm, 
though the rate of oscillation was slower. Around 3– 4 months of age, an occipital rhythm 
with a frequency of 3– 5 Hz has been identified in the waking EEG (Lindsley, 1938, 
1939; Smith, 1938, 1941). It increases in both amplitude and frequency during the first 
postnatal year (6– 7 Hz), with the posterior alpha oscillation rate continuing to gradually 
increase throughout childhood. The occipital alpha amplitude remains fairly stable until 
3– 4 years when there is a sharp drop followed by a gradual decline to adult levels by 
15– 16 years (Lindsley, 1939). The adult alpha frequency range is reached during middle 
childhood, with mean occipital frequencies of 9 and 10 Hz at 8 and 11– 16 years, respect-
ively (Lindsley, 1938, 1939; Smith, 1938, 1941). Subsequent investigations using frequency 
analyzers and spectral analysis have confirmed these early findings (Hagne, 1968; Hagne 
et al., 1973; Miskovic et al., 2015).

The functional properties of the posterior alpha rhythm were first noted during 
early development by Lindsley (1938). Visual stimuli (i.e., bright lights in a dark room) 
blocked occipital oscillatory activity in young participants, including infants who were 
a “few months” of age. However, scalp recordings were limited to occipital sites and 
detailed developmental analyses were not reported. Using spectral analysis, Stroganova 
and colleagues (1999) confirmed and extended these early findings by comparing 7-  to 
12- month- olds’ posterior oscillatory activity during conditions of darkness (i.e., lights 
off in the testing room) and quite visual attention (i.e., watching soap bubbles). These 
conditions were designed to be developmentally appropriate analogues of the “eyes 
closed versus eyes open” procedures used to identify posterior alpha reactivity with 
older children and adults. Their work indicated that the 5.2– 9.6 Hz band exhibited 
prominent posterior oscillatory activity in the response to the “lights off ” condition, 
and this activity was attenuated during visual attention. Importantly, these properties 
were not displayed at anterior/ central scalp locations, indicating similar functional 
properties and scalp topography to the adult posterior alpha rhythm.

13.2.3.2  Central Alpha (Mu)
Initial visual examinations of EEG in the neonate indicated rhythmic activity at areas 
over the sensorimotor cortex during sleep. However, this activity was not seen at oc-
cipital sites or when neonates were awake (Smith, 1941). By 3– 4 months, 7- Hz rhythmic 
activity has been found at central sites in awake infants (Smith, 1939, 1941). Using spec-
tral analysis, Hagne and colleagues (1973) noted the “hint of a frequency peak” at central 
sites at 3 weeks of age around 4– 5 Hz, which reached 7– 8 Hz by 12 months. Similarly, 
more recent longitudinal work extending from infancy through early childhood, has 
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indicated that the central peak frequency rises from 6– 7 Hz at 5 months to 9 Hz by 
4 years of age (Marshall et al., 2002). These findings are consistent with Smith’s (1941) 
original report of central alpha activity increasing to 8 Hz at 1.5 years, to 9 Hz at 3.5 years, 
to 10 Hz at 10– 14 years. Prior to reaching adult frequency ranges, the oscillatory rate of 
the mu rhythm is faster than the posterior alpha rhythm.

Although the mu rhythm is attenuated during various conditions related to action 
perception and production, the functional properties of this rhythm are most robust 
and reliably identified via conditions of discrete motor movement. Currently, the most 
systematic developmental examination of the functional properties of the central alpha 
rhythm comes from a cross- sectional magnetoencephalography (MEG) study. Age- 
related changes in the peak frequency of mu rhythm attenuation during a discrete hand 
movement (i.e., squeezing a pipette) were found from infancy through childhood. 
There was a linear increase in peak mu frequency from 2.75 to 8.25 Hz between 11 and 
47 weeks of age (Berchicci et al., 2011). This was followed by a more gradual increase 
in peak mu frequency during early childhood (2– 5 years; average 8.5 Hz), which was 
below the adult 10.2- Hz peak. These findings have been confirmed and extended by a 
recent cross- sectional EEG study of mu rhythm attenuation during reaching- grasping 
actions. Mu peaks were found at 7.39, 8.81, and 10.51 Hz at 12 months, 4 years, and 18– 
21 years, respectively (Thorpe et al., 2016). A bourgeoning recent literature examining 
the infant mu rhythm has found 6– 9 Hz attenuation during action perception and/ or 
execution (Cuevas et al., 2014; Marshall & Meltzoff, 2011); a detailed description of the 
EEG correlates of action- perception processes is provided later in the chapter.

13.2.4  Beta Band

Berger (1929) identified beta waves in conjunction with alpha waves in the adult 
waking EEG, but as higher frequency oscillations. Similar to the central alpha rhythm, 
the “precentral” beta rhythm is associated with motor processes (Jasper & Andrews, 
1938; Jasper & Penfield, 1949). The adult literature has revealed that the beta rhythm is 
attenuated during action execution, motor planning, and action perception (Jarvelainen 
et al., 2004; Pfurtscheller et al., 1997). The beta frequency is often a harmonic of the mu 
rhythm frequency. Although these rhythms have overlapping functional properties, 
there are a variety of unique characteristics of each band (see Crone et al., 1998; Hari & 
Salmelin, 1997).

Initial description of developmental changes in beta rhythm comes from Lindsley 
(1938), who identified “type IV waves” from the waking EEG activity at occipital sites 
(the only recording sites); these waves had mean frequencies approximately double the 
alpha wave frequency throughout development. This oscillatory activity exhibited sub-
stantial increases in frequency throughout infancy and childhood: 7 Hz at 3 months, 11.6 
Hz at 12 months, and 16 Hz at 4 years. The adult 20- Hz frequency was attained around 11– 
12 years. The literature is mixed, however, on whether there are age- related increases or 
decreases in beta band power (Gasser et al., 1988; Matsuura et al., 1985; Ogawa et al., 1984).
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Contemporary developmental investigations of the beta rhythm have primarily 
focused on its involvement in motor processes. Similar to the mu rhythm, discrete motor 
movement has been used to characterize the beta rhythm’s functional properties. This 
literature is rather limited in comparison to corresponding work on the central alpha 
rhythm. Further, there is mixed evidence regarding beta rhythm attenuation during in-
fancy and early childhood. Meyer and colleagues (2016) identified age- appropriate beta 
rhythm frequencies for 8- month- olds (12– 15 Hz), 14- month- olds (14– 18 Hz), and adults 
(16– 25 Hz) during reaching/ grasping movements. Attenuation of beta activity in re-
sponse to action production was evident only in 14- month- olds and adults, despite the 
presence of mu rhythm attenuation in all age groups. Likewise, a recent cross- sectional 
analysis revealed that although 12- month- olds, 4- year- olds, and adults exhibited mu 
rhythm attenuation during action execution, beta rhythm attenuation was present only 
for adults (Thorpe et al., 2016).

Other MEG and EEG work with 3-  to 6- year- olds has found evidence of decreases 
in beta oscillatory activity in response to discrete motor movements (EEG: Bryant & 
Cuevas, 2019; Liao et al., 2015; MEG: Cheyne et al., 2014; Gaetz et al., 2010). However, 
the magnitude of young children’s beta attenuation was smaller than beta changes 
exhibited by older children (11– 13 years) and adults (Gaetz et al., 2010). Taken together, 
these findings suggest that although there is evidence of beta oscillatory activity early 
in ontogeny, its functional properties may not be as readily detected during early de-
velopment as compared to lower frequency oscillations, such as the mu rhythm. Given 
their overlapping functional properties, concurrent developmental analysis of beta and 
central alpha rhythms is essential to a more integrative understanding of the network 
dynamics underlying motor and action- perception processes (see also Section 13.3.1).

13.2.5  Gamma Band

Because of its low amplitude, high- frequency oscillations, systematic analysis of gamma 
band activity via visual examination was not feasible (Lindsley, 1938). A variety of 
broadband and sub- band definitions have been used to define the gamma oscillatory 
activity, but the vast majority of the developmental and adult literature has focused on 
oscillations near 40 Hz. Work with adults has revealed that increases in gamma band 
power are associated with both motor and cognitive processes, including perceptual 
binding and memory (see Başar, 2013, for review).

Early examination of the gamma (35– 45 Hz) band with a large sample of 3-  to 12- 
year- olds (N =  707), noted increased power between 3 and 4 years at all recorded sites 
(frontal, central, occipital) with a distinct peak at frontal sites between 4 and 5 years of 
age (Takano & Ogawa, 1998). Although occipital gamma power was stable after 4 years 
of age, there were some age- related decreases in frontal and central gamma power be-
tween 4 and 11 years. A recent analysis of gamma (31– 50 Hz) oscillations with a compara-
tively smaller sample of 3-  to 38- year- olds (N =  156) also identified age- related decreases 
in resting gamma power; however, these changes were seen throughout the scalp 
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(Tierney et al., 2013). Tierney and colleagues proposed that decreases in gray matter— 
specifically, synaptic density via synaptic pruning (Whitford et al., 2007)— may underlie 
the widespread reductions in resting gamma power as a function of age. Additional 
work is needed to characterize the development of gamma power during the first three 
postnatal years. A recent large- scale longitudinal investigation between 2 to 6 postnatal 
months (N =  518) found gradual increases in gamma (30– 50 Hz) power across all scalp 
sites (Pivik et al., 2019). Pivik and colleagues hypothesize that ontogenetic changes in 
GABAergic (γ-aminobutyric acid) interneurons contribute to emerging gamma activity 
(Paredes et al., 2016; Xu et al., 2011).

During infancy, resting gamma power varies as a function of internal and ex-
ternal factors, such as socioeconomic status, sex, and diet (Pivik et al., 2019; Tomalski 
et al., 2013, but see Brito et al., 2016). Further, higher levels of resting gamma oscilla-
tory activity are positively associated with both concurrent and future measures of 
early cognitive development, including language, memory, and executive function 
(Benasich et al., 2008; Brito et al., 2013; Tarullo et al., 2017). Developmental studies 
have also revealed changes in gamma band activity associated with ongoing cognitive 
processing. An initial investigation of gamma’s involvement in perceptual binding 
revealed bursts of gamma oscillatory activity at frontal areas during the perception 
of illusory objects in 8- month- olds, but not 6- month- olds (Csibra et al., 2000). These 
findings confirmed behavioral evidence that younger infants were unsuccessful at 
perceiving illusory objects (Ghim, 1990). Subsequent work also shows increases in 
6- month- olds’ gamma oscillatory activity over temporal areas in the context of ob-
ject occlusion events; presumably contributing infants’ ability to maintain object 
representations (Kaufman et al., 2003, 2006). Gamma oscillations are also associated 
with aspects of language learning during infancy, including recognition of familiar 
objects with verbal labels (Gliga et al., 2010) and phonemic perceptual narrowing 
(Ortiz- Mantilla et al., 2016).

13.3 6– 9 Hz Alpha Band:   
Action- Perception, Executive, and 

Affective Processes

Our primary focus in this section is on the infant and child frontal alpha and central mu 
rhythms, as the 6– 9 Hz alpha band has received the most attention in the developmental 
literature. We noted at the beginning of this chapter that the developmental neurophysi-
ology literature has no standardization of EEG rhythms as found in adult EEG work. The 
research we have reviewed thus far shows how individual research teams since Berger’s 
time have worked toward defining specific frequency bands of interest, with clear indi-
cation that the traditional frequency band definitions used with adults (e.g., 8– 13 Hz for 
alpha) do not apply to studies of infant and young child EEG.
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After six decades of developmental EEG research, the Society for Psychophysiological 
Research published a set of recommendations for recording and analyzing EEG in re-
search contexts (Pivik et al., 1993). Those guidelines included two suggestions for EEG 
researchers who focus on infants and young children. The first was wide band analysis, 
potentially including all frequencies with evidence of power after doing spectral plots. 
Although some researchers working with infant samples have used this approach in 
studies of infant emotion (e.g., 3– 13 Hz: Diego et al., 2006), the wide band approach was 
never commonly adopted for use in infant and early childhood research. This may be 
because of the assumption that there was the potential for the developmental EEG field 
to eventually standardize frequency bands based on temporal, spatial, amplitude, and 
functional characteristics much as the adult EEG field has done.

The second suggestion was that spectral plots be examined and frequency bands 
determined that center around the peaks in the spectrum. This is the approach we used 
with our first infant EEG data set (Bell & Fox, 1992). We recorded resting baseline EEG 
from 13 infants from 7 to 12 months of age because we had hypotheses about relations 
between the development of frontal EEG and performance on a classic infant task (i.e., 
Piaget’s A- not- B task). Spectral plots of the frontal EEG leads (F3, F4) were created for 
each infant’s monthly EEG recording for a total of 91 frontal spectral plots. At each age 
the plots revealed a dominant frequency around 6– 9 Hz. More importantly, the plots 
revealed month- to- month changes in the peak frequency for some infants. The spectral 
plots from one infant in our Bell and Fox (1992) data set are shown in Figure 13.1. The 
four spectral plots represent this infant’s EEG data at F3 and F4 from 8 until 11 months of 
age. One can observe a peak frequency at 7 Hz in the EEG recording made at 8 months 
of age and the sharing of peak frequency between 7 and 8 Hz at 9 months of age. In 
the 10- month recording, peak frequency appears to be shifting toward 8 Hz, whereas at 
11 months of age there is only one peak at 8 Hz. These spectral plots demonstrate a def-
inite shift in peak frequency on a month- to- month basis during infancy. They also show 
a shift in this overall dominant frequency band from 5– 9 Hz at 8 months to 6– 10 Hz at 
11 months for this one infant. After examining all 91 spectral plots, we determined that 
6– 9 Hz frequency band captured the dominant frequency in this sample of infants.

Our selection of the 6– 9 Hz frequency band as dominant in our infant longitudinal 
study was replicated and extended to early childhood by Marshall and colleagues (2002) 
with a longitudinal data set that included recordings of baseline EEG from a group of 
29 children at 5, 10, 14, 24, and 51 months of age. They reported a peak frequency in 
the 6– 9 Hz band that emerged across multiple scalp locations. Although not evident 
during the earliest recordings at 5 months of age, the 6– 9 Hz band was reliable across all 
scalp locations by 10 months of age and continued to be the dominant frequency band 
through the 51- month EEG recordings. Thus, with each of these two small longitudinal 
datasets, the 6– 9 Hz band contained infant and child peak frequency, much as adult 
alpha band of 8– 13 Hz contains the typical mature peak frequency at 10 Hz, although 
there are individual differences in specific peak during adulthood (Klimesch, 1999).

This section highlights our 6– 9 Hz alpha band research and selectively reviews other 
work examining the alpha band’s relation to critical action- perception, cognitive, 
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and affective processes during early development. Although 6– 9 Hz oscillatory ac-
tivity has been linked to multiple aspects of early cognition, including future thinking 
(Blankenship et al., 2018) and memory (Cuevas et al., 2012c), the most extensive area 
of research has investigated emerging executive functions. Here, we provide a develop-
mental analysis of the characteristics and individual variations in alpha band activity in 
association with action- perception, executive, and affective processes.

13.3.1  Action- Perception Processes

The functional properties of the mu and beta rhythms during motor movement were 
established by early investigations with adults. A relatively recent area of inquiry in the 
developmental literature has focused on these sensorimotor rhythms and their involve-
ment in action- perception processes. Specifically, there is evidence that the mu and beta 
rhythms exhibit “neural mirroring” properties: oscillatory activity is attenuated during 
both action execution and observation (Lepage & Théoret, 2006; Liao et al., 2015). 
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Figure 13.1 Month- to- month spectral plots from one infant. Note the change in peak fre-
quency from 8 to 11 months. The x- axis is frequency in single hertz (Hz) bins and the y- axis is 
EEG power (mean square microvolts).

From the Bell & Fox, 1992 dataset.
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Characterizing the conditions under which the sensorimotor mu and beta rhythms are 
reactive has been an area of substantial interest for developmental research as neural 
mirroring systems have been proposed to be involved in action understanding as well as 
broader socio- cognitive development (e.g., imitation; Marshall & Meltzoff, 2011).

Research with non- human primates has found evidence of neural mirroring 
during the observation and execution of facial gestures in 1-  to 7- day- old rhesus ma-
caque monkeys (Ferrari et al., 2012). Subsequent work has revealed that early experi-
ence with the mother, as compared to nursery- rearing, is associated with (1) greater mu 
rhythm attenuation when observing facial gestures and (2) more frequent imitation of 
these gestures (Vanderwert et al., 2015). These findings have been recently extended to 
human infants, with 9- month- olds exhibiting attenuation of the mu rhythm during fa-
cial expression perception and production (Rayson et al., 2017). Further, variability in 
9- month mu rhythm reactivity was related to their mothers’ tendency to mirror their 
facial gestures at 2 months of age, with more frequent maternal mirroring at 2 months 
of age being associated with greater action perception mu attenuation at age 9 months. 
Together, these findings highlight the biopsychosocial underpinnings of emerging 
action- perception processes.

Another line of research has examined the impact of children’s action experience on 
the neural correlates of action perception. Recent evidence indicates that the effects of 
early motor experience are evident shortly after birth. Newborn monkeys with more 
frequent reaching attempts display greater beta rhythm reactivity when observing 
goal- directed reaching movements (Festante et al., 2018). Likewise, 9-  and 12- month- 
old human infants with more advanced manual motor skills (e.g., reaching, grasping) 
show enhanced mu rhythm attenuation during manual action perception (Cannon 
et al., 2016; Upshaw et al., 2016; Yoo et al., 2016). Training paradigms have extended 
these findings by controlling children’s short- term motor or perceptual experience with 
novel tools/ actions. In an action- sound perception paradigm, 10- month- olds exhibited 
greater mu rhythm attenuation when hearing sounds associated with actions that they 
had received motor (active training), as compared to observational (passive training), 
experience (Gerson et al., 2015). A recent extension of this work to 3-  to 6- year- olds has 
revealed greater EEG indices of visual processing (occipital alpha attenuation) as chil-
dren observed tool- use actions that they had received active training (Bryant & Cuevas, 
2019). However, there were no experience- related effects on sensorimotor rhythms, 
indicating that their role in action understanding might vary depending on age and 
context.

Other work has taken a broader perspective to consider whether individual 
differences in motor system activation are related to aspects of socio- cognitive de-
velopment. For instance, in the context of a goal- directed reaching task, 7- month- 
olds with greater mu rhythm attenuation were more likely to express the same goal 
as an adult; thus, selecting the goal toy more often than the non- goal toy (Filippi 
et al., 2016). These early socially- contingent behavioral and neural responses may 
provide the foundation for more advanced socio- cognitive skills that emerge during 
early childhood. Recent evidence indicates that 3-  to 5- year- olds’ motor skills, 



304   KIMBERLY CUEVAS and MARTHA ANN BELL

 

action- representation abilities, and theory of mind (i.e., understanding others’ mental 
states and their effects on behavior) are intricately linked for children with greater 
mu rhythm reactivity when performing goal- directed actions (Bowman et al., 2017). 
Likewise, 4- year- olds with enhanced beta rhythm reactivity during action percep-
tion display more successful cooperation with peers (Endedijk et al., 2017). These 
findings highlight the complexity of interrelations among action- perception and 
socio- cognitive processes. Although sensorimotor rhythms were linked with socio- 
cognitive development, the precise nature of these associations (e.g., beta vs. mu 
rhythm; action perception EEG vs. action execution EEG) varied. Additional work, 
including systematic longitudinal and cross- sectional investigations, are essential 
next steps toward a comprehensive analysis of action- perception processes and their 
involvement in socio- cognitive development.

13.3.2  Executive Processes

Executive function (EF) is an umbrella term that captures a wide array of higher- order 
cognitive processes— working memory, inhibitory control, cognitive flexibility— that 
organize and coordinate behavior to support complex goal- directed actions. This con-
struct has been a major focus of developmental research as proficiency in executive pro-
cessing is associated with optimal behavioral and academic outcomes (see Diamond, 
2013 for review). EF emerges during the first postnatal year, with substantial advances 
throughout childhood and beyond (see Bell & Cuevas, 2016; Cuevas et al., 2018, for 
reviews). Individual differences in the developmental progression of EF are linked to 
biopsychosocial factors, including frontal lobe development, temperament, and co- 
occurring socialization experiences. Here, we discuss our cross- sectional and longitu-
dinal work examining associations between EF and both resting- state and task- related 
EEG measures throughout early development.

13.3.2.1  EF and Resting- State EEG
One approach to examining associations between EF and neural activity has been to 
use measures of resting- state (or baseline) EEG when participants are awake, calm, still, 
and not engaged in cognitive tasks. Work with adults and older children accomplish 
this by measuring EEG during conditions of eyes open and closed; developmentally ap-
propriate modifications to extend these procedures to infancy and early childhood typ-
ically include periods of “quiet visual attention” in which participants observe a visual 
stimulus (e.g., bubbles or images on a screen; see Anderson & Perone, 2018 for review 
and discussion). Resting- stating measures are often associated with brain maturation 
and provide information about neural oscillations when individuals are not involved in 
active cognitive processing. Our EF work with infants and young children has focused 
primarily on the 6– 9 Hz “alpha” band, unless otherwise stated (Table 13.1). Below, we re-
view findings using resting- stating measures of EEG power (oscillatory amplitude) and 
frontal intra- hemisphere EEG coherence (functional connectivity between two cortical 
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regions; squared cross- correlation of EEG power at two scalp electrodes; Thatcher 
et al., 1986).

To examine executive processing during infancy, we have used the A- not- B task, a 
variant of the delayed response task. Infants observe as a desirable object is hidden; their 
gaze to the hiding location is broken during a brief delay interval; and then they search 
for the toy (Bell & Adams, 1999; Cuevas & Bell, 2010). This task requires both working 
memory (to maintain the item location in active memory) and inhibitory control (to 
withhold responding to a previously rewarded location). Longitudinal and cross- 
sectional work has revealed that resting- state frontal- posterior power and coherence 
are associated with infants’ task performance, including how long they can maintain 
the object location in working memory (Bell & Fox, 1992, 1997; MacNeill et al., 2018). 
Convergent evidence from diffusion tensor imaging (DTI) indicates that white matter 
tract microstructure connecting frontal, parietal, and temporal regions is associated 
with infants’ delayed response task performance (Short et al., 2013). Differences in 
resting- state oscillatory activity and neural networks that are evident during infancy 
may have cascading effects on the developmental trajectory of EF. For instance, EEG 
measures of infant resting- state frontal power and frontal- temporal coherence account 
for variability in toddler and early childhood EF (Broomell et al., 2019; Kraybill & 
Bell, 2013).

Table 13.1  Overview of executive function and 6– 9 Hz EEG findings

EEG Power & Coherence Findings Infants Toddlers & Preschoolers

Resting- state (baseline) EEG 
is associated with EF (task 
performance)

Bell & Fox, 1992, 1997;
MacNeill et al. 2018

Perone et al. 2018;*
Wolfe & Bell, 2004

Changes in EEG during executive 
processing (baseline- to- task 
related changes)

Bell, 2001, 2002;
Bell & Wolfe, 2007;
Cuevas & Bell, 2011;
Cuevas et al., 2012a, 2012d

Bell & Wolfe, 2007;
Swingler et al., 2011

Changes in EEG during increased 
inhibitory demands

Cuevas et al., 2012e Broomell & Bell, 2017;
Cuevas et al., 2016

Executive processing- related EEG 
is associated with EF

Bell, 2001, 2002; 2012;
Cuevas et al., 2012a, 2012d

Cuevas et al., 2016;
Morasch & Bell, 2011;
Swingler et al., 2011;
Watson & Bell, 2013;
Wolfe & Bell, 2004, 2007a, 

2007b

Resting- state EEG is associated 
with future EF

Broomell et al. 2019;
Kraybill & Bell, 2013

Cuevas et al., 2012b

Note. * =  theta/ beta ratio.
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During early childhood, EF tasks require children to withhold prepotent responses 
and/ or keep up with changing task rules (requiring cognitive flexibility and working 
memory). In Stroop- like tasks, children must do something that conflicts with their 
natural tendencies, such as saying “day” when shown a picture of a moon (Day- 
Night task) or making a fist when shown a flat hand (Luria’s Hand game). In sorting 
tasks (Dimensional Change Card Sort), children first place items in groups based on 
one dimension (e.g., color), and then sort items based on another feature (e.g., shape). 
Consistent with the infant findings, concurrent and predictive links between EF and 
resting- state frontal power are also evident during early childhood (Cuevas et al., 
2012b; Wolfe & Bell, 2004). A recent cross- sectional investigation with 3-  to 9- year- olds 
examined resting- state oscillatory activity across multiple frequency bands, revealing 
that variations in resting- state frontal theta/ beta ratio are inversely related to EF per-
formance (Perone et al., 2018). Thus, in line with anticipated maturational changes in 
“slow- ” versus “fast- wave” rhythms (see Section 13.2), children with more beta oscilla-
tory resting- state activity in comparison to theta activity, displayed enhanced execu-
tive processing. Taken together, these findings suggest that measures of resting- state 
activity and brain maturation in regions that support EF in older children and adults 
(e.g., Klingberg, 2006) are associated with individual differences in infant and early 
childhood EF.

13.3.2.2  Executive Processing- Related EEG
Developmental investigations have also examined task- related changes in EEG 
measures during executive processing in comparison to a baseline/ resting- state, thus 
providing information about changes in brain activation and organization as a function 
of mental activity. Early childhood EF tasks are similar to the ones described earlier, 
and looking versions of the infant A- not- B task are used to minimize motor artifacts (as 
compared to reaching versions) (see Bell & Adams, 1999; Cuevas & Bell, 2010; Morasch 
& Bell, 2011).

Longitudinal and cross- sectional work indicates that infants and children exhibit 
task- related changes in EEG power and frontal intra- hemisphere EEG coherence (e.g., 
Bell & Wolfe, 2007; Cuevas & Bell, 2011; Cuevas et al., 2012a). These findings have been 
extended to characterize the impact of task difficulty on executive processing- related 
EEG. For example, 10- month- olds exhibit more frontal EEG coherence on reversal 
trials of the A- not- B task that require both working memory and inhibitory control as 
compared to nonreversal, working memory- only trials (Cuevas et al., 2012e). Similarly, 
4- year- olds display increases in frontal, temporal, and parietal EEG power in response to 
added EF demands (i.e., Stroop vs. non- Stroop Day- Night task; Broomell & Bell, 2017); 
although the scalp distribution of these changes was more widespread for boys than 
girls despite equivalent task performance (Cuevas et al., 2016). These findings highlight 
the importance of considering both neural and behavioral measures when examining a 
particular construct, including the value of testing the role of potential moderators (e.g., 
sex, socio- economic status, race/ ethnicity; see Gatzke- Kopp, 2016 for discussion).
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As with resting- state measures, executive processing- related EEG is associated 
with variations in behavioral indicators of EF. Within- subjects analyses have revealed 
enhanced EEG power (6– 9 Hz) and frontal intra- hemisphere EEG coherence (10– 13 
Hz) during trials in which infants make correct, as opposed to incorrect, responses 
(Bell, 2002; Cuevas et al., 2012d). Likewise, between- subjects comparisons indi-
cate: (a) different patterns of EEG power and coherence as a function of EF task per-
formance (Bell, 2001, 2012; Wolfe & Bell, 2004); and (b) that EEG power and coherence 
measures are unique predictors of EF task performance (Bell, 2012; Cuevas et al., 2012a, 
2016; Swingler et al., 2011; Watson & Bell, 2013). In sum, executive- processing related 
measures of EEG are informative of emerging executive processes, likely reflecting the 
contributions from frontal- parietal networks.

13.3.3  Affective Processes

Developmental evidence suggests that resting state 6- 9 Hz frontal EEG activation 
patterns are associated with individual differences in general affective style from at least 
4 or 5 months of age (e.g., Fox et al., 1992). Resting state frontal EEG patterns also dif-
ferentiate between infants born to women who experienced prenatal depression versus 
nondepressed women as early one week after birth at the broader 3– 9 Hz band (e.g., 
Diego et al., 2010). These types of EEG findings are based on the measurement of frontal 
alpha- band EEG asymmetry, which highlights relative activation patterns between 
homologous left and right frontal scalp electrodes. Specifically, right frontal asymmetry 
reflects greater relative right frontal activation (i.e., lower EEG power values at right 
hemisphere) and left frontal asymmetry reflects the opposite pattern.

Frontal EEG asymmetry is typically conceptualized as reflecting approach and 
avoidance motivational tendencies across the lifespan (Coan & Allen, 2004; Harmon- 
Jones & Allen, 1998). During infancy and early childhood, frontal EEG asymmetry 
is also associated with temperament- based differences in emotion reactivity and 
emotion regulation (Fox, 1994). Thus, when examining resting state (or baseline) EEG, 
left frontal asymmetry is linked to approach motivation, positive emotions (plus the 
approach emotion of anger; Harmon- Jones & Allen, 1998), and better emotion regula-
tion abilities. Right frontal asymmetry is associated with withdrawal motivation, nega-
tive emotions, and less skill at emotion regulation. Baseline frontal EEG asymmetry 
patterns are conceptualized as trait or biomarker indicators of motivational and emotion 
tendencies, whereas task- related frontal EEG asymmetry patterns are considered to be 
state indicators of reactivity and regulation (Allen & Reznik, 2015; Coan & Allen, 2004; 
Diaz & Bell, 2012).

Developmental research has examined links between frontal alpha (6– 9 Hz) EEG 
asymmetry and temperament, which is defined as biologically based individual 
differences in emotion reactivity and emotion regulation (Rothbart & Bates, 2006). 
Other work has used resting frontal EEG asymmetry in early development to pre-
dict later socioemotional outcomes. A third line of frontal EEG asymmetry research 
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includes parenting behaviors in examining both simple and complex links between 
child trait asymmetry and later outcomes. We briefly discuss each of these three areas by 
highlighting our research and selectively reviewing the work of others.

13.3.3.1  Temperament and Frontal EEG Asymmetry
Early research on frontal asymmetry and infant temperament focused on resting state 
6- 9 Hz EEG recordings, with reports that 10- month- old infants with right frontal asym-
metry were more likely to later cry during maternal separation than infants with left 
frontal asymmetry (Davidson & Fox, 1989). In a longitudinal study from 7 to 12 months 
of age, infants with a longer latency to cry at maternal separation (i.e., did not cry until 
25 seconds after mother left the room) had a pattern of left frontal asymmetry at each 
age. In contrast, infants with a much shorter latency to cry from 7 to 12 months had a 
pattern of symmetry or right frontal asymmetry across age (Fox et al, 1992).

State- related frontal EEG asymmetry research captures frontal EEG asymmetry 
during an emotion- eliciting situation that captures infant emotion reactivity. These 
studies report right frontal asymmetry during (a) the approach of a stranger at age 
6 months (Buss et al., 2003), (b) presentation of scary masks at age 10 months (Diaz 
& Bell, 2012), and (c) maternal restraint of infants’ arms at age 10 months (Gartstein 
et al., 2014). Ten- month- old infants displaying felt smiles during the approach of their 
mothers exhibited left frontal asymmetry; when those same infants displayed unfelt 
smiles (i.e., smiles did not involve the action of orbicularis oculi) during the approach of 
a stranger, they exhibited right frontal EEG asymmetry (Fox & Davidson, 1988).

As noted, resting frontal alpha EEG asymmetry is conceptualized as a trait— a stable 
marker of approach- avoidance motivation. Stability can be seen across four measures 
of frontal EEG asymmetry during a two- year time period in a small group of first and 
second graders (Poole et al., 2018). Work with a large community sample across a period 
of four years, however, did not show a high level of stability for frontal asymmetry at 
the group level, but did show a pattern of associations between frontal EEG asymmetry 
and parent- report of child temperament (Howarth et al., 2016). Specifically, in a sample 
of children who came to the research lab at 10, 24, 36, and 48 months of age, parent re-
port of temperament- based fear and activity level were highly correlated across infancy, 
toddlerhood, and early childhood. Frontal EEG asymmetry scores were uncorrelated 
across age; however, frontal EEG asymmetry at 10 months positively predicted child 
activity level at age 24 months, suggesting a link between early left frontal asymmetry 
and later approach temperament. Conversely, child fear at age 36 months negatively 
predicted frontal EEG asymmetry at age 48 months, suggesting a link between early 
avoidance temperament and later right frontal asymmetry. With this same sample and 
considering developmental change at individual frontal EEG leads separately (i.e., not 
asymmetry scores) from 5 to 72 months, different temperament- frontal EEG patterns 
emerged for girls and boys (Gartstein et al, 2019). Parent- report of temperament re-
activity at 5 months of age and changes in frontal EEG power across age occurred in 
later development for boys (after 24 months of age) and in earlier development for girls. 
Furthermore, early left frontal EEG power at 6– 9 Hz predicted later change in right 
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hemisphere frontal EEG power for girls, whereas early right hemisphere EEG power 
predicted subsequent later change in left hemisphere frontal EEG power for boys. These 
findings might account for reports of sex differences in temperament and related be-
havior problems (e.g., Else- Quest et al., 2006).

13.3.3.2  Frontal EEG Asymmetry and Socioemotional Outcomes
Although frontal EEG asymmetry might not be highly stable at the group level across 
the early years, it is the case that some children do exhibit stable asymmetry patterns. 
Infants with stable left or right frontal 6– 9 Hz EEG asymmetry at age 10 and 24 months 
were high in parent- rated externalizing or internalizing behaviors at age 30 months, re-
spectively (Smith & Bell 2010). Infants who changed from left to right, or vice versa, were 
rated between the two stable groups on both internalizing and externalizing behaviors. 
Likewise, work with older children, 6- year- olds who had four EEG recordings across 
two years, identified stable left and stable right frontal alpha EEG asymmetry groups 
(10– 13 Hz; Poole et al., 2018). Parent- report, child- report, and child self- presentation 
behaviors were assessed for approach- avoidance tendencies. As predicted, the stable 
left group had higher approach- related behavioral tendencies, whereas the stable right 
group had higher avoidance- related tendencies. Both studies highlight that stability in 
frontal EEG asymmetry may be implicated in later behavior problems.

Importantly, one- time frontal EEG asymmetry measures are informative of future 
outcomes. Temperamental negative affectivity during infancy is related to regulatory 
problems during toddlerhood only for children with right frontal EEG asymmetry 
during infancy (Smith et al., 2016). Infant negativity is not associated with later regu-
latory problems for children with left frontal asymmetry. A similar pattern is seen 
with older children. Children with right frontal EEG asymmetry at 4 years of age show 
greater physiological arousal during a self- presentation task at 9 years of age and have 
greater problems with emotion regulation according to parent report (Hannesdottir 
et al., 2010). In sum, although not stable for all children, early frontal EEG asymmetry 
can predict later child outcomes in the socio- emotional domain.

13.3.3.3  Parenting and Child Frontal EEG Asymmetry
Previously we noted EEG research that examines frontal asymmetry in context. There is 
no more important context than the parenting environment. Women with depression 
exhibit right frontal alpha EEG asymmetry during baseline recordings (e.g., Henriques 
& Davidson, 1990) and so do their infants (e.g., Dawson et al., 1997). If the women are 
depressed while pregnant, then their infants exhibit right frontal asymmetry by 1 week 
of age (Diego et al., 2010). For older infants, prenatal depression and infant frontal EEG 
asymmetry are linked only for women with postpartum depression as well, with asym-
metry stable from 3 to 6 months of age (Lusby et al., 2014).

It is not only maternal depression that is correlated with child frontal EEG asymmetry 
scores; it is also maternal behavior. We hyperscanned mothers and their 3- year- old chil-
dren while they played together with puzzles. Mothers who were high in behaviorally 
coded negativity while playing with their children had children with right frontal asym-
metry after controlling for child’s own negativity. Conversely, children who exhibited 
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challenging and negative behaviors while playing with mothers had mothers with right 
frontal EEG asymmetry after controlling for mother’s own negativity (Atzaba- Poria 
et al., 2017). Thus, mother and child frontal EEG asymmetry patterns during dyadic 
recordings are influenced by partner’s level of negativity.

Although there exist associations between frontal 6- 9 Hz EEG asymmetry and some 
aspect of emotion during infancy and early childhood (and beyond), the link between 
frontal asymmetry and emotion is likely more than a simple association, as we have 
described them here. It may be that frontal EEG asymmetry is either a mediator or a 
moderator of emotion (Coan & Allen, 2004; Reznick & Allen, 2018). Two examples from 
our own work highlight frontal asymmetry as a moderator. Resting frontal EEG asym-
metry was recorded in a large group of 5- month- old infants. Behavioral coding included 
mothers’ responsive behaviors during free play with her infant, as well as infants’ regula-
tory behaviors and level of negativity during the arm restraint procedure where mother 
faces her infant and prevents the infant from moving his/ her arms. Maternal responsive 
behaviors during free play with infants prior to the arm restraint procedure predicted 
infant regulatory behaviors for infants with left frontal asymmetry but predicted infant 
negativity for infants with right frontal asymmetry (Swingler et al., 2014). Thus, the same 
maternal behavior is associated with different infant regulatory behaviors depending on 
infant frontal EEG asymmetry pattern, suggesting an advantage for infants with both 
left frontal EEG asymmetry and an environment with responsive parenting.

In this same large group of infants, we examined age 5- month frontal EEG asymmetry 
as a moderator of the link between maternal behavior and child negative affect at age 
24 months. Maternal sensitive and responsive behaviors at age 5 months were associated 
with less toddler negative affect only for children who also had left frontal EEG asymmetry 
at age 5 months. The same pattern held when examining maternal behaviors at 24 months 
of age (Diaz et al., 2019). We interpreted this to mean that the level of toddler negative 
affect is influenced by the child’s own neurophysiology as well as the parenting context.

In sum, frontal alpha EEG asymmetry, conceptualized as approach- avoidance mo-
tivation, has been examined in studies of temperament, socio- emotional outcomes, and 
parenting. The underlying neurological basis for frontal EEG asymmetry is typically 
focused on reciprocal metabolic connections between prefrontal cortex and the amyg-
dala. Activation of the right amygdala is associated with increased dispositional (i.e., 
temperament- based) negative affect (Abercrombie et al., 1998); conversely, individuals 
with greater left frontal metabolic rate exhibit decreased amygdala activation and thus 
decreased negative affect (Davidson, 2001). Although frontal EEG asymmetry does not 
measure amygdala activity, it may be measuring the frontal cortical activation linked 
with amygdala connectivity.

13.3.4  Differential Functions of 6– 9 Hz Activity 
during Cognitive and Affective Processing

There appear to be two patterns for 6– 9 Hz activity during infancy and early childhood. 
In studies of affective processes, decreases in EEG power values in one hemisphere 
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relative to the other are associated with emotion reactivity or emotion regulation. In 
studies of cognition, increases in EEG power values are associated with higher levels 
of performance on cognitive tasks. In the adult EEG literature, researchers have long 
focused on the 8– 13 Hz peak in the adult spectrum. It is commonly reported that alpha 
activity (8– 13 Hz) exhibits desynchronization (decreased power values) during increased 
cortical processing (cognitive, affective), although there are some reports of alpha syn-
chronization (increased power values) during long- term memory tasks (Klimesch et al., 
1999). There are also suggestions that alpha power is related to an inhibitory filter that is 
reflected in alpha synchronization (Klimesch, 2012).

Researchers have noted that adult theta activity (4– 7 Hz) exhibits synchronization 
during memory and attention tasks (e.g., Burgess & Gruzelier, 2000; Klimesch, 1999). 
Thus, for the mature EEG signal, unique patterns of fluctuations in power levels at the 
defined frequency bands are associated with different types of cognitive processing 
(Cavanaugh, 2019). This type of information is lacking with respect to the EEG signal 
recorded from infants and young children. Currently, it appears that infant and child 
6– 9 Hz alpha behaves like adult theta or adult alpha depending on the type of cogni-
tive processing, and definitely behaves like adult alpha during affective processing 
(Anderson & Perone, 2018; Bell & Cuevas, 2012; Saby & Marshall, 2012). Systematic de-
velopmental research is needed to understand the neurophysiological and functional 
significance of infant and child alpha at 6– 9 Hz.

13.4 Broader impact and 
future directions

The brain’s electrical activity consists of multiple, co- occurring oscillatory rhythms that 
underlie neural computation, communication, and transmission of information be-
tween brain networks— functions critical to simple and complex brain processes (Lopes 
da Silva, 2013). Transient interactions among neural rhythms are critical for the coord-
ination of neural, cognitive, affective, and behavioral processes (Jensen & Colgin, 2007); 
yet, holistic ontogenetic analysis is largely missing from the field. As shown throughout 
this chapter, developmental analyses of EEG rhythms typically focus on a single oscil-
latory rhythm either cross- sectionally or at a particular age. These approaches preclude 
integrative analysis of co- occurring oscillatory rhythms, including associated ontogen-
etic changes in neural activity.

The current review focused on individual frequency bands during early develop-
ment, with emphasis on the infant and child alpha 6– 9 Hz band. We were among the 
first to emphasize this particular frequency band, based on spectral plots of our ini-
tial infant longitudinal study (Figure 13.1; Bell & Fox, 1992). Stroganova and colleagues 
(1999) were among the first to label 6– 9 Hz as “alpha” based on their spectral plots of the 
spatial and amplitude properties of this frequency band when infants were in a room 
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with lights turned off compared with quiet alert baseline. More recently, developmental 
investigations of the central 6– 9 Hz band have identified functional properties of the 
mu rhythm during action perception and execution (see Cuevas et al., 2014, for review). 
Furthermore, resting- state 6– 9 Hz alpha rhythm measures are associated with con-
current and future affective, cognitive, and motor processes during infancy and early 
childhood (see Anderson & Perone, 2018, for review). Despite the potential functional 
significance of alpha (and gamma) resting- state activity, relatively little is known about 
other co- occurring resting- state oscillatory rhythms, such as theta and beta frequency 
bands. In sum, what is missing is systematic examination of the alpha family frequency 
in conjunction with other co- occurring oscillatory rhythms to aid our understanding of 
their frequency signatures, spatial topography, and functional significance, all within a 
developmental time course.

Klimesch (2012) proposed that the alpha rhythm plays a central role in inhibition 
and timing of brain activity, and thus may be importantly involved in activity at other 
frequency bands. Accordingly, he proposed that for adult EEG, other frequency bands 
are best defined by a frequency architecture focused on the alpha band and its activity. 
Because alpha is a central process in modulating resting state and task behaviors in the 
awake brain, the best way to understand frequency bands is by examining bands that 
have a harmonic mean with alpha. The neurophysiology literature is missing this type of 
functional thinking about alpha from a developmental point of view.

At the same time, there is increasing interest in how multiple oscillatory rhythms 
interact to produce complex brain functions. Cross- frequency coupling and band 
power ratios are example measures that permit more integrative analysis of resting- state 
EEG as well as during cognitive, perceptual, affective, and motor processes. Their ap-
plication in the developmental literature has been limited to date (e.g., Brooker et al., 
2016; Perone et al., 2018; Stamoulis et al., 2015), but they provide a promising avenue 
for understanding ontogenetic changes in neural oscillations and corresponding brain- 
behavior associations (e.g., Brooker et al., 2021).

Finally, there have been recent initiatives aimed at enhancing the interpretability 
and scientific rigor of pediatric EEG. One line of work has focused on factors related 
to attrition and EEG data loss for developmental samples with recommendation for 
the field (e.g., van der Velde & Junge, 2020). Concurrently, efforts to establish standard 
automated, freely- available, data preprocessing pipelines designed specifically for pedi-
atric EEG (e.g., MADE and HAPPE) are promising in terms of increasing the amount of 
useable data as well as improving reliability and cross- lab comparisons (Debnath et al., 
2020; Gabard- Durnam et al., 2018). Furthermore, recent evidence suggests that analysis 
of infant and child oscillatory rhythms will be enhanced via techniques that extract the 
periodic and aperiodic (1/ f) components from the neural power spectra (Cellier et al., 
2021; Schaworonkow & Voytek, 2021). Even with the aforementioned strategies, analysis 
of the psychometric properties of developmental EEG measures (e.g., longitudinal sta-
bility, reliability, validity) highlights important considerations for pediatric data (Anaya 
et al., 2021; Vincent et al., 2021). At a time of pre- registration and open- access initiatives, 
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we are particularly excited about the widespread effects these methodological, theoret-
ical, and analytical approaches will have on the field.
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CHAPTER 14

DEVELOPMENTAL RESEARCH 
ON TIME-  FREQUENCY 

ACTIVIT Y IN AD OLESCENCE 
AND EARLY ADULTHO OD

STEPHEN M. MALONE, JEREMY HARPER, AND 
WILLIAM G. IACONO

The notion that any complex system depends critically on its history (D’Souza & 
Karmiloff- Smith, 2016) is central to a developmental perspective, which holds that the 
state of an organism at any moment in its lifetime reflects its history, or trajectory in 
developmental time. A full understanding of a human characteristic is only possible 
through a systematic examination of how it came to be. The time- frequency features 
of an adult study participant’s response to target stimuli in a visual oddball task, for 
instance, also reflect the current state of the dynamic interplay among genetic, bio-
logical, psychological, and external forces over time that have given rise to the psy-
chological and neural processes, motivational state, and personality characteristics 
influencing activity recorded in the laboratory. Understanding the nature of this 
interplay is critical to understanding the response, whether frontal theta or parietal 
delta activity.

An approach informed by this type of perspective examines phenotypic variation 
over time to ask questions about mechanisms underlying a psychological, behavioral, 
or psychopathological process (Rutter, 1988). A developmental perspective on cogni-
tive control, for example, can help elucidate the mechanisms underlying it by examining 
how time- frequency features related to cognitive control develop over the course of the 
lifespan. Discontinuities or inflection points in this process might reflect important 
transitions, which can be exploited to test hypotheses about causal mechanisms. A de-
velopmental approach thus has the potential to inform us about how time- frequency 
features come about, as well as what those features are.
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14.1 Advantages inherent in the 
developmental study of   
time- frequency activity

A developmental approach confers several advantages.

14.1.1  Fine- Grained Analysis

Although a developmental perspective offers a unique view of time- frequency features, 
developmental research on time- frequency features can also offer purely pragmatic 
advantages. Time- frequency decompositions of electroencephalographic (EEG) 
signals into moment- by- moment activity at different frequencies lend themselves to a 
fine- grained analysis of brain activity, with accumbent advantages for developmental 
research.

14.1.2  Tracking Developmental Change

Time- frequency components correlate more strongly with age than time- domain 
components (Bowers et al., 2018). At the same time, change in time- frequency 
features correlates more strongly with change in time- domain characteristics 
than participants’ chronological age (Yordanova & Kolev, 1996). In both instances, 
then, time- frequency activity appears to represent something particularly salient 
developmentally.

14.1.3  Stability of Time- Frequency Measures

Time- frequency features may be more stable over time than ERP amplitudes (DuPuis 
et al., 2015), which makes them particularly attractive for detecting change in an out-
come between two time points. This follows from the fact that statistical power in a 
paired t- test is a function in part of the standard error of the difference in means, which 
is in turn a function of the correlation between measurements of the variable at the two 
time points, σ σ σ ρY Y Y Y1 2 1

2
2

2
12

2 1 22− = + −( ) / , where σY Y1 2−  is the standard error of the 
difference in means, σY1

2 is the variance at Time 1, σY1
2 is the variance at Time 2, and 

ρ12  is the Time 1– Time 2 correlation. Hence, holding sample and effect sizes constant, 
the greater the Time 1– Time 2 correlation (stability), the greater the power to detect 
change.
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14.1.4  Insight into ERP Dynamics

Characterizing stability and change in time- frequency features can help us to under-
stand the developmental course of event- related potential (ERP) responses to experi-
mental events (Malone et al., 2021; Mathes et al., 2016; Yordanova & Kolev, 2008). In 
Malone and colleagues (2021) we reported results of a longitudinal investigation into 
time- frequency activity in participants first assessed at the age of 11, with follow- up 
assessments at 3-  to 4- year- intervals to a target age of 24. Participants were administered 
the oddball task at each assessment wave. Figure 14.1 depicts the grand- average ERP 
at Pz, the midline parietal electrode location, for the different assessment waves. 
Amplitude of the ERP decreases monotonically across waves. The morphology of the 
grand mean ERPs is broadly similar across waves, with an immediately recognizable 
P3 component. Nevertheless, subtle change in ERP morphology across the different 
assessments is evident as well. We examined the time- frequency representation of trial- 
level EEG activity at each assessment wave, described in greater detail later. Figure 14.2 
consists of false color maps (heatmaps) of the magnitude of time- frequency activity at 
each discrete time- frequency bin for the features that best accounted for the EEG data at 
each wave. The overall similarity in components is striking. Yet differences in structure 
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Figure 14.1 Grand mean ERP waveforms across five assessment waves spanning 
preadolescence to early adulthood. ERPs represent the average response to target stimuli at Pz 
among subjects assessed longitudinally at target ages of 11, 14, 17, 20, and 24. ERPs for successive 
assessment waves are progressively smaller in amplitude, with the ERP at age 11 being the largest 
and the ERP at age 24 the smallest. The inset depicts the same ERPs for the age- 11 and age- 24 
assessments only.
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across assessments are evident as well, including shifts in the latency of the maximum 
amount of energy in Component 5 and a trend toward increasing compactness in time- 
frequency space of Component 1.

Thus, a common set of time- frequency features characterizes the EEG data across de-
velopment from early adolescence to early adulthood. Yet at the same time the subtle 
developmental change in ERP morphology across waves evident in Figure 14.1 occurred 
through small changes in this common set of features. Investigating differences between 
those components that shifted in time and/ or frequency with development and those 
that did not will contribute to a full understanding of the decision- making processes 
elicited by a visual oddball task.

14.2 Overview of the Chapter

In the remainder of this chapter we summarize the main findings of research on devel-
opmental aspects of time- frequency activity, which highlights the importance of meth-
odological choices for interpreting developmental trends. We then discuss advantages 
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Figure 14.2 Component weights (loadings) across assessment waves. The figure consists 
of false color maps (heatmaps) of weights at each time- frequency bin from PCA of time- 
frequency energy for all target trials. PCA was conducted separately for each assessment wave. 
Components were matched by congruence coefficients computed between loadings at successive 
assessment waves.
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and disadvantages of cross- sectional and longitudinal designs, with a treatment of 
missing data and planned missingness. We briefly summarize statistical approaches 
to characterizing developmental time- frequency activity and how the different 
approaches implicitly or explicitly treat (developmental) time. We discuss methodo-
logical issues related to developmental time- frequency research, namely, age differences 
in task difficulty or degree of contamination by artifacts and variation in pubertal status 
among study participants. We then present empirical findings from two longitudinal 
investigations to illustrate what can be gleaned from a longitudinal design. Finally, we 
conclude with thoughts about how a developmental perspective might profitably influ-
ence future work.

14.3 Time- frequency activity 
and development

This section reviews findings from selected studies that highlight the range of develop-
mental insights contributed by time- frequency research.

14.3.1  Time- Frequency Activity in the Auditory 
Oddball Paradigm

The vast majority of the early work on age differences and developmental trends in time-  
and frequency- specific activity consisted of the pioneering work of Yordanova, Kolev, 
and colleagues (much of which is summarized in Yordanova & Kolev, 2008). Using an 
auditory oddball paradigm, Yordanova and Kolev conducted a number of studies of 
age- related change in key time- frequency features: power, or magnitude, modulation 
of power by stimulus onset, and phase- locking of the EEG response over trials. Several 
key broad findings emerged from this work. Amplitude in different frequency bands was 
commonly observed to decrease across age groups of increasing age. This was true of pre- 
stimulus as well as post- stimulus amplitude. The latency of the maximal theta response 
also decreased across groups of increasing age. In contrast, the single- sweep wave index 
(SSWI), a measure of the consistency of responses across trials (Kolev & Yordanova, 1997; 
Yordanova & Kolev, 1998), increased with age (except in the gamma band). In a finding 
that anticipates our subsequent treatment of the topic, Yordanova and Kolev found that 
the enhancement factor (Basar, 1980) of event- related oscillatory activity, which reflects 
change in the amplitude of the signal following stimulus onset relative to pre- stimulus 
amplitude, increased with age as well. Thus, there was substantial developmental change 
in time- frequency features, which varied somewhat by frequency band and the particular 
measure examined. The authors conclude that developmental changes in theta activity in 
particular may be related to cognitive development.
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14.3.2  Time- Frequency Activity Related to Specific 
Psychological and Cognitive Processes

Building on this earlier work, several recent studies have examined time- frequency 
activity in a visual oddball task or variant thereof (Chorlian et al., 2015; Chorlian 
et al., 2017; Malone et al., 2021; Mathes et al., 2016; Wienke et al., 2018). Other work has 
examined age differences in focused on time- frequency activity related to the develop-
ment of error or feedback processing (Bowers et al., 2018; Crowley et al., 2014; DuPuis 
et al., 2015), response preparation (Bender et al., 2005) and inhibition (Hwang et al., 
2016; Liu et al., 2014; Papenberg et al., 2013), perception (Ehlers et al., 2016; Uhlhaas 
et al., 2009), and working memory (Sander et al., 2012). Although several studies have 
examined synchrony in activity recorded at different pairs of electrodes or between 
different frequency bands, the measures of interest in this research are largely the same 
as in the work of Yordanova and Kolev: the magnitude of time- frequency power and 
intertrial phase consistency (ITPC) (Tallon- Baudry et al., 1996),1 a measure of the de-
gree to which the timing of time- frequency activity is consistent across trials which is 
similar to the SSWI.

14.3.3  General Developmental Trends

A review of this work reveals consistent trends. ITPC is positively associated with age or 
age groups of increasing age. Time- frequency power is also associated with age in a con-
sistent direction, where the direction of association depends on the nature of baseline 
correction. Studies using raw baseline correction, most often consisting of subtracting 
the mean level of power in a pre- stimulus period from all post- stimulus power values, 
typically report a negative association between total power and age. By contrast, studies 
using baseline normalization, such as a dB transformation of post- stimulus power rela-
tive to pre- stimulus power, defined as 10 10log A Aposttf pref/ , where Aposttf

 is power at a 

particular time- frequency bin in the post- stimulus period and Apref  is the mean pre- 
stimulus power at the same frequency, typically report a positive association between 
age and time- frequency power. Simple baseline subtraction is comparable to removing 
a DC offset in the time series recorded from a single electrode and thus simply centers 
power values at all frequencies around the same baseline level, whereas baseline normal-
ization expresses post- stimulus activity in terms of proportional change from baseline. 
If y represents post- stimulus activity and x , mean pre- stimulus activity, then it is clear 

1 ITPC is also known as intertrial phase coherence or clustering and phase- locking factor. Because 
time- frequency activity is often expressed as a complex number, it has both magnitude and phase. ITPC 
is a measure of the degree to which the phase of the complex- valued signal at a given time- frequency bin 
is consistent across trials.
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why this would be true because log logy x
y
x

( ) − ( ) = 





log . (See  chapter 18 in Cohen, 

2014, for a treatment of the issue of baseline correction in time- frequency analysis).
Several of the studies using baseline normalization also examined time- frequency 

power in the pre- stimulus period (without baseline correction), which serves to help 
reconcile the divergent findings. All report an inverse association between partici-
pant age and raw theta and delta power, which contrasts with the positive association 
with post- stimulus power modulation but mirrors the inverse association between age 
and power commonly reported in studies using raw baseline correction (e.g., Mathes 
et al., 2016).

In summary, the phasic brain response to an experimental event (stimulus onset or 
incorrect or inappropriate response) becomes increasingly aligned temporally with the 
event, which is reflected in the positive association between age and ITPC commonly 
observed. Although there are exceptions (Bowers et al., 2018; Crowley et al., 2014), 
baseline subtraction most often results in finding overall reductions in power with age, 
which is sometimes interpreted to reflect increased processing efficiency. However, 
baseline normalization most often results in overall increases with age, which is not as 
easily explained in terms of efficiency. In addition, time- frequency power in the pre- 
stimulus baseline period also decreases. This suggests that pre-  and post- stimulus power 
both decrease with development, but at different rates. It may be that with development, 
fewer neurons are recruited in response to an experimental event, leading to reduced 
power overall, but children and adolescents become better able to maintain an appro-
priate task set, resulting in greater phase consistency in the EEG response and increased 
post- stimulus power. Both interpretations are speculative but point to the fact that the 
different methods of accounting for baseline activity can be complementary.

14.3.4  Specific Age- Related Associations

Age differences in specific aspects of time- frequency activity have been reported in sev-
eral studies, in addition to the general overall developmental trend. Investigators using a 
gambling task with participants ranging in age from 8 to 17 found a negative association 
between theta power and age only on trials in which participants won points, not when 
they lost them (Bowers et al., 2018). Studies of cognitive control report age differences 
in specific time- frequency features. Papenberg and colleagues (2013) found that theta 
ITPC was relatively equal among four age groups (children, adolescents, young adults, 
and older adults) during the go condition of a go/ no- go task, whereas it varied signifi-
cantly by groups during the no- go condition. Thus, the degree to which ITPC was differ-
entially related to cognitive control and the behavioral demands of making a response 
versus withholding one depended on age. Liu and colleagues, also using a go/ no- go 
task with children and adolescents, found that ITPC was greatest on go and no- go trials 
requiring extra effort to withhold a response in order to regain points previously lost 

 

 

 



DEVELOPMENTAL RESEARCH ON TIME-FREQUENCY    331

 

only among the oldest adolescents. In a study using MEG (magnetoencephalography), 
Hwang and colleagues (2016) observed differences between adolescents and young 
adults in the magnitude of preparatory activity in the frontal eye fields (FEF) bilaterally 
before antisaccades versus prosaccades. Power between 10 and 18 Hz was lesser in mag-
nitude throughout the preparatory period among adolescents. Preparatory activity in 
the ventrolateral and dorsolateral prefrontal cortex of the right hemisphere (VLPFC and 
DLPFC) did not differ between groups, suggesting equivalent levels of motor inhibition 
and task- rule representations, but coupling between beta activity in DLPFC and alpha 
activity in the frontal eye fields did. Thus, these three studies taken together indicate that 
time- frequency activity implicated in different aspects of cognitive control differs across 
developmental stages.

Finally, researchers have looked for age differences in the scalp distribution of 
frequency- specific responses, rather than the magnitude of responses. Children show 
more broadly distributed theta- band activity and smaller magnitude beta-  and theta- 
frequency responses to grammatical errors than adults (Schneider et al., 2018; Schneider 
et al., 2016), which the authors interpret to indicate that children use semantic information 
to process grammatical errors, whereas adults use syntactic information. Age differences 
in the topography or frequency- specific pattern of responses to Mooney faces have been 
reported as well, taken to reflect a reorganization of the brain response and increasing spe-
cialization for face processing with development (Mišić et al., 2014; Uhlhaas et al., 2009).

Thus, there is evidence for both general and specific age- related differences. From 
a developmental perspective, observing age differences is only the first step along the 
way to understanding a phenomenon (Rutter, 1988). Age differences in time- frequency 
features might reflect hormonal differences, differences in cognitive development, or 
differences in the salience of a monetary reward or other task demands, not simply 
differences in chronological age. Unpacking findings of mean differences between age 
groups is likely to be informative about the mechanisms underlying them, which in turn 
may have implications for better understanding normative cognitive development as 
well as psychopathological processes.

14.4 Research Design Issues

Several considerations emerge from reviewing the literature on age- related differences 
in time- frequency features. The first involves use of a cross- sectional or longitudinal de-
sign, although these clearly can complement one another. The vast majority of studies 
we reviewed used a cross- sectional design, which obviously requires less time to con-
duct than longitudinal studies, a significant practical advantage. However, they can 
present interpretive difficulties. The primary threat to validity derives from the possi-
bility of cohort or group differences in characteristics that might affect time- frequency 
responses. Cohort differences are more likely to be problematic in studies of aging than 
in studies of participants spanning a narrow range of ages. However, cross- sectional 
designs can nevertheless be susceptible to age- group or age- related differences due 
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to sampling variation, especially if sample sizes are small. As a result, cross- sectional 
studies can lead researchers to under-  or overestimate the true magnitude of change, 
and we cannot know to what extent, if any, this is true.

Longitudinal designs are clearly superior for studying change rather than age- 
related differences in mean levels, permitting a characterization of normative develop-
mental trajectories and individual differences therein. Change can be characterized by 
a small number of parameters that represent the nature of developmental trajectories 
in a meaningful way. There are many possible parametric models that might be ap-
propriate for the phenomenon under study. Furthermore, longitudinal designs allow 
the researcher to determine whether developmental trajectories are modulated by 
characteristics of the individual, such as sex, genotype, or risk status for psychopath-
ology (e.g., Carlson & Iacono, 2008; Chorlian et al., 2015; Chorlian et al., 2017; Hill & 
Shen, 2002). Developmental trajectories may also constitute useful endophenotypes 
(Iacono & Malone, 2011; Iacono et al., 2017). An important paper by Curran and Bauer 
(2011) advocates disaggregating between-  and within- individual change in longitudinal 
models when assessing correlates of change.

Yet longitudinal designs suffer from challenges of their own. The most obvious is prac-
tical: longitudinal studies take longer to conduct than cross- sectional ones. We return to 
this issue later. Longitudinal designs are also vulnerable to participant attrition and missed 
assessments. However, recent developments in statistical methods allow researchers to use 
all available data, rather than having to resort to crude methods, such as listwise deletion 
of cases missing any data. Provided the mechanism that generates missing data is such that 
there is not a relationship between the likelihood of a value being missing and the value it-
self, missingness can be considered “ignorable” (Little & Rubin, 2002).

Longitudinal studies are vulnerable to possible changes in the orientation or 
motivation of participants to engage fully as well as the possibility of familiarity 
or exposure effects. Although perhaps more obvious in regard to neuropsycho-
logical tasks than the tasks used to elicit and study time- frequency features, we 
must not overlook the possibility of familiarity effects in regard to a gambling or 
go/ no- go task. In fact, we have observed likely familiarity effects in an oddball task 
despite time intervals between assessments of three to four years (Malone et al., 
2021). Fortunately, when more than two measurements are available per participant, 
separating practice or familiarity effects from true developmental change becomes 
possible (Ferrer et al., 2004). Comparing results from a longitudinal design with 
those from a cross- sectional study of participants spanning the same age range also 
permits assessing the degree to which familiarity effects may have influenced the 
longitudinal results.

14.4.1  Missingness by Design and Cohort- Sequential Designs

One way to increase the efficiency of longitudinal designs that may not be widely 
recognized is through incorporating planned missingness in the study design. In such 
designs, each individual participant is observed at a subset of the possible time points or 
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ages rather than at all of them. This design is illustrated in Figure 14.3, which depicts two 
possible data collection plans for a hypothetical study of adolescents between the ages of 
14 and 20 or older. (What we present here is purely hypothetical; see Brandmaier et al., 
2020 for guidelines for planned missingness in latent growth curve designs.) There are 
three age cohorts in this example, with all participants assessed annually for a period 
of two years. Subjects in the three respective cohorts were 14, 16, or 18 years old at the 
initial assessment for the first design plan (Plan A) and 14, 17, and 20 years old at the 
initial assessment for the second design plan. Plan A depicts a cohort- sequential de-
sign, in which participants’ mean age at the last assessment for each of the two youngest 
age groups is the same as the mean age of participants in the next older age group at 
their initial visit. Overlap in ages allows the researcher to compare cohorts. In Plan B, 
participants in the three age cohorts are assessed at nonoverlapping ages, effectively 
increasing the age range spanned by the sample. In both cases, the missing data are 
missing by virtue of the experimental design, which makes missingness ignorable and 
yields unbiased parameter estimation. Thus, they allow the researcher to characterize 
developmental change across the entire age range of the sample despite the fact that each 
subject is only observed three times.

14.5 Methodological issues

14.5.1  Task Difficulty Versus Task Demands

An experimental task may be more difficult for younger participants than older ones, 
confounding task demands with task difficulty and necessitating modifications to the 

(a)

(b)

T1 T2 T3 T4 T5 T6 T7 T8 T9

T1 T2 T3 T4 T5 T6 T7 T8 T9

Figure 14.3 Schematic of two variants of planned missingness designs. The hypothetical 
sample in this scenario consists of three age groups of adolescents assessed three times over a 
two- year period. Panel A depicts a cohort- sequential design, in which each age group shares 
an assessment age with at least one other, which allows an assessment of cohort differences in a 
dependent measure. In panel B, the age range spanned by the sample is maximized at the expense 
of the ability to assess cohort differences. Both are examples of missingness by design.
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experimental procedure to equate task difficulty across participants of different ages. 
Several of the studies we reviewed adjusted stimulus delivery or response windows 
to accomplish this. Two used tasks requiring cognitive control, which develops grad-
ually throughout adolescence (Casey et al., 2008; Luciana & Collins, 2012; Somerville 
& Casey, 2010). One was a “simple” oddball task (Wienke et al., 2018). In all three, some 
of the participants were as young as eight or nine years old. An additional consideration 
is the need to equate the number of trials that go into estimating power or ITPC, which 
affects the reliability of the estimate, if there is age- related variation in the number of 
trials lost due to artifacts.

14.5.2  Pubertal Stage

The ages of participants spanned middle childhood to late adolescence or 
adulthood in several studies, which creates a potential confound between age and 
pubertal status, and thus neuroendocrinological development. A chronological age 
of 13, say, may not be equivalent for boys and girls with respect to the phenomenon 
under study. Sample sizes may not be large enough for a careful analysis of effects 
of puberty, but it should not be overlooked. Indeed, we found that incorporating 
a measure of pubertal status in growth curve models eliminated apparent sex 
differences in rates of change in time- frequency power in adolescence. In addition, 
accounting for individual differences in pubertal status in this manner resulted 
in superior correspondence between the observed data and predicted trajectories 
of change in the amplitude of one particular time- frequency component (Malone 
et al., 2021).

14.6 Statistical analysis

14.6.1 Age as discrete or continuous 

Cross- sectional studies with groups of participants at distinctly different ages typic-
ally make use of t- tests or analysis of variance (ANOVA) for the purpose of statis-
tical analysis. The focus of analysis is necessarily on differences in mean levels among 
groups. Repeated measures ANOVAs with longitudinal data in distinct age groups 
also model mean levels within and between subjects. By contrast, the explicit goal of 
regression models is to describe the form of change, such as whether it is linear with 
age (such that change is additive) or nonlinear, as well as the rate of change. Modern 
linear mixed effects (LME) regression models allow for participants to be measured at 
different ages or times or even to have been assessed a different number of times, and 
LMEs also allow a great deal of flexibility with respect to characterizing the covariance 
structure of repeated measures (within subjects) in addition to characterizing trends 
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in mean levels of the outcome measure. Thus, these models are well suited for lon-
gitudinal analysis.2 An additional advantage of an LME framework over traditional 
ANOVA models is that it uses all available data as long as missingness is ignorable.

Of course, one is not limited to linear models: a nonlinear or nonparametric model 
may be appropriate for capturing growth that follows a well- specified form, such as ex-
ponential and logistic growth models. Models with a latent age or time basis can be an 
attractive way to model nonlinearity in mean levels of an outcome; we illustrate the use 
of such a model in the next section. Kernel regression is a form of locally weighted re-
gression that has been used to model change in time- frequency features (Chorlian et al., 
2015). Nonparametric regression can be useful when a simple parametric model is not ap-
propriate or as a preliminary step in choosing an appropriate model (Helwig, 2019). Thus, 
a wide variety of models are available in regression analysis, whether the data are from a 
longitudinal design or a cross- sectional one, which should prompt the researcher to think 
about the most appropriate model of change for the data at hand and the question asked.

14.6.2  The Form of Developmental Change in  
Time- Frequency Characteristics

Although the form of developmental change is rarely explicitly addressed, there is 
agreement among the studies examining it that the association between age and time- 
frequency features in an oddball task is non- additive (nonlinear) in adolescence and 
early adulthood. Wienke and colleagues (2018) found that a quadratic polynomial 
function of age best explained the association between age and theta power amplitude 
modulation and ITPC. Chorlian and colleagues (2015), in a longitudinal study of 2,170 
subjects assessed every two years and spanning the ages of 12 to 25, observed striking 
sex differences in the pattern of change in theta power elicited by a novelty oddball task. 
A steeper decline in power was observed among males than females, with a subsequent 
leveling off between approximately 21 and 25. Power declined more gradually among 
females but continued to do so even when power had leveled off among males. We also 
observed nonlinear change in a large sample studied longitudinally and spanning essen-
tially the same age rage, described in the next section (Malone et al., 2021).

14.7 An Empirical Exploration

The preceding sections discussed several issues involved in developmental research 
of time- frequency activity: the utility of longitudinal designs; planned and accidental 

2 ANOVA models can now incorporate a variety of residual covariance structures, which overcomes 
some of their limitations (Liu et al., 2012).
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missingness; influences of puberty; and the appeal of regression approaches. This 
section illustrates the relevance of these issues to time- frequency research. Our pres-
entation is largely descriptive and intended to be illustrative, with a focus on longitu-
dinal methods, to serve as something of a counterpoint to the existing literature, which 
is predominantly cross- sectional. First, we briefly summarize results of our recent 
paper (Malone et al., 2021), some of which we discussed earlier. We then present pre-
liminary results of an investigation extending these results in a second independent 
sample with high- density EEG recordings. Each is based on a population- based co-
hort from the Minnesota Center for Twin and Family Research (MCTFR) (Wilson 
et al., 2019) consisting of twin pairs (and their parents). Approximately 60% are mono-
zygotic, or identical, twins. Twins are same- sex pairs who were raised together who 
have been followed since a target age of 11 at approximately three-  to five- year intervals. 
Participants in both cohorts were administered the same task— Begleiter’s rotated heads 
oddball task (Begleiter, Porjesz, Bihari, & Kissin, 1984).

In Malone and colleagues (2021) we report findings from a longitudinal investigation 
into time- frequency activity in 1,692 twin subjects (917 of them female). The majority 
(N =  1,512; 760 females) comprised the younger cohort of the MCTFR (Iacono et al., 
1999). Subjects were first assessed at the age of 11, with four follow- up assessments at 
three-  to four- year- intervals to a target age of 24. An additional 205 participants (172 
females) from the separate ES cohort (Keyes et al., 2009) who completed an iden-
tical intake assessment were included. EEG activity was collected by means of a Grass 
Neurodata 12 system at three or four scalp electrodes, with linked ears serving as refer-
ence. A pair of electrodes arranged in a transverse montage above and to the side of one 
eye allowed for identification of eye blinks and other EOG activity.

Time- frequency energy was derived from individual EEG signals by means of 
the reduced interference distribution (RID; Williams, 2001; Chapter 4.) Meaningful 
features in time- frequency energy on target trials were identified by means of principal 
component analysis (PCA) (Bernat et al., 2007; Bernat et al., 2005) via singular value 
decomposition on centered columns of the “matricized” or unfolded matrix of baseline- 
corrected time- frequency energy values (see Figure 14.2). PCA accounted well for the 
data and yielded components that were highly similar from one time point to the next. 
That is, after ordering components based on their timing, we computed Tucker congru-
ence coefficients (Tucker, 1951) between all pairs of components for a given assessment 
and the successive assessment. These were uniformly large and approached 1 for 
matched pairs of components, indicating nearly perfect congruence, whereas the off- 
diagonal elements in each matrix of congruence coefficients were small and approached 
0, indicating lack of congruence between the unmatched pairs.

This degree of component congruence allowed the use of scores on matched 
components to characterize longitudinal change. Examining plots of mean scores across 
waves as well as individual trajectories of randomly selected individuals suggested 
that piecewise linear regression models might be appropriate. LME models, treating 
assessment wave as nested within individuals who were in turn nested within twin 
pair, with component scores as the dependent measure accounted well for the observed 
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trends in the data. The change point, or knot, in each regression was identified empir-
ically and ranged from 16 to 19.5. Developmental trajectories in time- frequency power 
were characterized by an initial decrease in (baseline- corrected) raw power, followed by 
a flatter trajectory in later adolescence and early adulthood. Although the rate of change 
was smaller in magnitude for the second phase of these models, it was still significant 
(and negative). Data for one representative component are plotted in Figure 14.4. Panel 
(a) depicts the component structure across waves. This recapitulates the first row of 
Figure 14.2 and indicates that the component structure became less dispersed in time- 
frequency space with development. Panel (b) consists of violin plots representing the 
distribution of scores across waves, separately for male and female participants. This 
illustrates the overall trend for this component, its similarity for participants of both 
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Figure 14.4 Component scores from a PCA analysis of time- frequency energy plotted against 
assessment age. Subjects are the same as in Figure 14.1. Data are for Component 1 in Figure 14.2, 
chosen to illustrate key results. Panel A depicts the component weights. This is identical to the first 
row of time- frequency weights in Figure 14.2. Panel B consists of violin plots of the distribution 
of Component 1 scores across assessment waves, separately for the two sexes. A nonparametric 
smoother (loess) represents the average developmental trend. Panel C depicts trajectories 
implied by a piecewise linear model fit to these scores together with the observed mean scores at 
each wave and 95% confidence intervals around them.
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sexes and a striking decrease in variance with development. Finally, Panel (c) depicts the 
mean trajectory implied by our piecewise linear regression model along with observed 
means and confidence intervals. The (nonlinear) model- implied trajectory accounts for 
the observed data well.

That the magnitude of time- frequency activity could be modeled by piecewise linear 
trajectories suggests that there were distinct developmental phases in this sample with 
respect to the brain response to target stimuli in the oddball paradigm used. These 
results also illustrate one of the advantages of LME models: only 485 participants had 
data from all five assessments, yet all data were used in fitting models, including age- 11 
data from the approximately 200 ES twins, who were assessed at subsequent visits using 
a different EEG recording system (described next) and as a result contributed only a 
single observation in this investigation.

14.7.1  Extending These Findings

We extended these findings using high- density EEG data from the ES cohort of the 
MCTFR (Keyes et al., 2009), which comprises 998 twins, first assessed at the target age 
of 11 and subsequently followed up at target ages of 14 and 17. Participants completed the 
same rotated heads task as participants in the MTFS (programmed in E- Prime software) 
and EEG were recorded from 61 scalp electrodes using a Biosemi ActiveTwo system. An 
additional four electrodes were placed just above and beside each eye for the purpose 
of identifying vertical and horizontal EOG activity. Data were screened for eye blinks, 
horizontal eye movement and other artifacts using an in- house pipeline (see Burwell 
et al., 2014; Harper et al., 2019).3 A total of 942 subjects had usable data: 601 at age 11 (270 
females; ages 10.9 to 12.9, with a mean of 11.8); 717 at the first follow- up (347 females; 
ages 13.6 to 16.7, with a mean of 14.9); 763 at the second follow- up (375 females; ages 
16.8 to 19.2, with a mean of 17.8). As described above, the initial assessment of 204 twins 
followed the MTFS protocol, whereas they completed this version of the task at the two 
follow- ups. Approximately 80% had data from at least two of the three assessments.

A time- frequency representation of EEG responses to target stimuli was obtained by 
means of a complex Morlet wavelet convolution. Frequencies ranged from 1 to 40 Hz, 
with the number of cycles ranging from 3 to 8 (with 25 logarithmic steps for both). The 
resulting signal was downsampled in time to 64 Hz and an estimate of power at each 
time point obtained as the modulus of the complex signal at that time point. Total power 
was averaged over 25 subsets of trials sampled randomly without replacement from each 
experimental condition (target or nontarget) so as to equate the number of trials across 
conditions. Power for each discrete frequency bin was represented by means of a dB 
transformation relative to the average activity in that frequency between 450 and 250 
ms prior to stimulus onset, which complements the approach in Malone and colleagues 
(2021). In addition, we computed ITPC, as in Tallon- Baudry and colleagues (1996).

3 https:// www.git hub.com/ sjburw ell/ eeg_ co mman der
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We again identified meaningful time- frequency feature by means of PCA on centered 
columns of the matrix of time- frequency power values for all subject- electrodes. Scree 
plots suggested that eight components were appropriate for characterizing the data at 
each assessment wave, which accounted for 75– 80% of the total variance at each wave. As 
in Malone and colleagues (2021), components were varimax- rotated in order to obtain a 
more meaningful solution, and we computed Tucker’s congruence coefficient for pairs of 
components that were visually matched between successive assessment waves. Coefficients 
were uniformly large in magnitude, ranging from 0.96 to 0.99 for all pairs of matched 
components, whether for age- 11 and age- 14 solutions or age- 14 and age- 17 solutions. 
Components were highly similar across assessment waves, as in our previous investigation.

14.7.2  Characterizing the Results

We selected delta and theta components for presentation. False color maps of the 
components are plotted in the left- hand column of Figure 14.5, which illustrate how 
similar the components are across assessment waves. Nevertheless, the delta compo-
nent shifts in time, appearing earlier in the response window at the later follow- up 
assessments, while both components become more compact in time. Both trends echo 
findings from the previous investigation. The topographic distribution of theta power 
(see the head plots inset in each heatmap) is also more diffuse at age 11.

Figure 14.5 also presents mean levels of component scores at the different assessment 
waves, averaged over electrodes. ITPC scores were obtained by multiplying ITPC values 
for each subject- electrode by the weights (loadings) for delta and theta components, 
respectively, and summing weighted values. Trajectories are plotted in the right- hand 
portion of panel (a) and (b) in Figure 14.5. These are somewhat nonlinear, distinctly so 
in the case of theta ITPC. To keep the numbers of parameters to a minimum, we used a 
latent age basis model. This is a form of structural equation model (SEM) similar to la-
tent growth curve (LGC) models (themselves similar to regression- based approaches). 
In both, change in a dependent measure is modeled in terms of a latent intercept and 
slope (or slopes, if a higher- order polynomial is used to model time). Time (or age) 
enters the model via the slope loadings, rather than being an observed variable as in 
regression models. However, whereas in the LGC model the slope parameters are fixed, 
in the latent basis model one or more are freely estimated, which allows one to capture 
nonlinearity in developmental trajectory.4 Rate of change is proportional over time, as 
determined by the age basis coefficients (Grimm et al., 2011).

Models were estimated using Mplus version 7.2 (Muthén & Muthén, 1998– 2012) 
via MplusAutomation (Hallquist & Wiley, 2018), an R package that serves as a flex-
ible wrapper to Mplus. Mplus permits using a subject’s actual age at each assessment 

4 If there are T time points, T –  2 parameters can be estimated; two parameters must be fixed to 
identify these models. With only three time points, there is a single free parameter, but the number of 
parameters estimated can increase substantially with more time points.
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Figure 14.5 Developmental course and topographic distribution of time- frequency 
components. Loadings of two components from a PCA of dB- transformed time- frequency 
power at each of three assessment waves in a large sample of adolescents in a longitudinal investi-
gation. Component loadings at each wave are depicted in the form of a heat map representing the 
magnitude (and sign) of the component weights on each time- frequency bin. Insets in the upper 
right- hand corner of each heat map depict the mean score on the two components respectively at 
each electrode on a schematic representation of a head. The color map indicates the magnitude of 
mean score. Red indicates the largest mean values, whereas blue indicates the smallest. The right- 
hand plot in each panel depicts the mean component score, averaged over all electrodes, at each 
assessment wave, separately for males and females.
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wave, rather than assuming they are exactly the same, as SEM software often requires. 
Because our interest is in individual trajectories we used a cluster- robust sandwich es-
timator via the COMPLEX samples option to derive appropriate standard errors given 
that this sample comprises twins. In light of evidence of sex differences in level or shape 
of trajectories of time- frequency activity (Chorlian et al., 2015; Malone et al., 2021), we 
allowed for (estimated) sex differences in intercept and slope. Only the sex effect on the 
intercept of theta ITPC was significant, p =  .005, which is evident in the difference in 
overall level between males and females in panel (b) of Figure 14.5. The rate of change 
in all four measures could be considered roughly equivalent for males and females (p- 
values ≥ .110). Loadings for the age- 11 and age- 17 data on the slope latent variable were 
fixed to the average age at the age- 11 and age- 17 assessments, respectively, in order to 
identify the model, whereas the slope loading on age- 14 scores (or, strictly speaking, 
the offset in years from the average age at this assessment) was estimated from the data. 
This coefficient was positive for all four time- frequency measures, indicating greater 
change by the age- 14 assessment than assumed by a strictly linear age basis. Wald z 
tests of the slope coefficient were significant, with the exception of theta total power, 
indicating a meaningful departure from linearity. Intercept and slope were significantly 
inversely correlated for both ITPC measures, indicating that those with higher levels 
of ITPC at age 11 tended to show a slower rate of change with development. (See Table 
14.1 for a close approximation to these correlations from the bivariate models examined 

Table 14.1  Cross- process correlations from bivariate parallel process models.

Delta 
ITPC- Power

Theta 
ITPC- Power

Theta- Delta 
Power

Theta- Delta ITPC

r p- value r p- value r p- value r p- value

Intercept1- Slope1 - .614 .001 - 0.902 <.001 - 0.173 .649 - 0.932 <.001

Intercept2- Slope2 - .319 .422 - 0.087 .846 - 0.433 .355 - 0.840 <.001

Intercept1- 
Intercept2

.551 <.001 0.240 .094 0.308 .145 - 0.035 .736

Slope1- Slope2 .557 .016 0.118 .214 - 0.148 .679 0.000 .957

Age- 11 Residuals NA NA NA NA 0.201 .220 NA NA

Age- 14 Residuals .438 <.001 0.246 <.001 0.274 .001 0.092 .067

Age- 17 Residuals - .193 .018 - 0.034 .589 0.338 .009 0.166 .003

Tabled values are correlations between pairs of latent variables and their associated p- values for each 
model: ITPC and power for delta and theta, respectively, and theta and delta power or ITPC, respectively. 
Intercept1 and Slope1 refer to the first measure in each heading, whereas Intercept2 and Slope2 refer to the 
second. For instance, in the Delta ITPC- Power model, Intercept1 is the delta ITPC intercept and Intercept2 is 
for delta power. Age- specific residuals are the correlations between residual variance in the two measures, 
independent of growth trajectories. Age- 11 residuals for three of the four measures were constrained to 0 to 
avoid negative estimates. Correlations involving these measures were therefore indeterminate.
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next.) These analyses thus indicate similarities and differences in trajectories of delta 
and theta power and ITPC, as well as illustrate the potential of a latent time basis model 
in representing a nonlinear trend, which in the present situation captured nonlinear 
change in a particularly parsimonious model.

14.7.3  Covariation in Patterns of Change

In addition to analyses of univariate trajectories, longitudinal designs also permit one to 
assess how different trajectories of change are related to one another. As an illustration, 
we extend the univariate analyses described to the bivariate case, fitting the model to 
all four pairs of measures. We first examined Pearson correlation coefficients between 
all pairs of measures using the heatmap function in the R computing environment (R 
Development Team, 2019) (Figure 14.6), combined with dendrograms displaying the 

Figure 14.6 Matrix of correlations among time- frequency measures. The matrix of 
correlations among all pairs of delta and theta power and ITPC at the three waves of assessment is 
displayed graphically in false color (heatmap). Correlations are grouped on the basis of the results 
of a hierarchical clustering algorithm. Dendrograms of the clustering results are displayed on the 
margins. Theta and delta are indicated by their respective Greek letters and power is abbreviated 
as “powr.” The number suffix indicates the assessment wave by its target age.
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results of hierarchical clustering of the correlations. Correlations among theta and delta 
measures segregated into separate respective clusters, with the former in the upper 
right- hand corner of the correlation matrix and the latter in the lower left.5 Within the 
theta cluster, measures of total power were particularly closely related, with correlations 
ranging from .47 to .58, whereas ITPC at 11 and 14 formed a subcluster. By contrast, 
delta total power and ITPC at 14 and total power at 17 tended to cluster together, and the 
measures that formed a subcluster were the two age- 11 measures. The largest correlation 
coefficient was .58, between age- 14 and age- 17 theta power (between waves) as well as 
between age- 14 delta power and ITPC (within a wave). Age- 17 ITPC for both theta and 
delta were relatively independent of the other measures, with a median correlation of 
.06 and .10, respectively. This pattern suggests a greater degree of shared variance among 
delta power and ITPC than among theta power and ITPC, and relative independence 
of ITPC measures at age 17. In addition, a shift in the pattern of associations around the 
age- 14 assessment is suggested.

To determine the degree to which change in one measure was associated with change 
in another, we fit a bivariate parallel process model. The parallel process model allows 
for the latent influences on each measure to be related to the latent influences on the 
other measure. Specifically, the model includes correlations (covariances) between the 
two intercepts and the two slopes as well as a regression of the slope of change in one 
measure on the intercept of the other measure. The latter permits an assessment of the 
degree to which the level of time- frequency ITPC, say, affects the rate of change in time- 
frequency power. This model is illustrated in Figure 14.7.

We fit four such models, one for each pairing of measures. Modeling the trajectory 
in each measure recapitulates the univariate analyses just described. This is evident in 
Table 14.1, which presents the most relevant parameter estimates from these models, 
in that the first two rows present correlations between the latent intercept and slope 
characterizing growth in a given measure. These were significant only for delta and theta 
ITPC. The parameters of greatest interest here are those that characterize relationships 
between the two measures: the correlations between latent intercepts (ρITPIITPC in 
Figure 14.7) and slopes (ρSTPSITPC) and the effect of one latent intercept on slope of the 
other measure (γITPSITPC and γIITPCSTP). The former, cross- domain correlations appear 
in the shaded rows in Table 14.1. Only the correlations between intercepts and slopes 
for delta were significant, with results indicating that the greater the initial level of 
delta ITPC power, the greater the initial level of delta ITPC and the greater the rate of 
change in ITPC, the greater the rate of change in power. In addition, mean initial level 
in delta power was inversely associated with the rate of change in ITPC (p =  .008). This 
would lead delta power and ITPC become somewhat more distinct with development, 
consistent with the pattern of correlations in Figure 14.6. It is also consistent with the 

5 Although PCA yields orthogonal components and varimax is an orthogonal rotation method, 
any type of rotation of the PCA solution results in lack of orthogonality of scores, loadings or both, 
depending on the form of normalization used (Jolliffe, 2002). Normalizing eigenvectors to unit length, 
as we did, sacrifices independence of component scores while maintaining orthogonality of the loadings.
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principle of development toward progressive commitment and differentiation (Stiles 
& Jernigan, 2010), which implies that power and ITPC become increasingly function-
ally specialized. The effect was small, however; expressing the regression coefficient as 
a proportion of the residual variance in ITPC slope, this effect accounted for 1.6% of 
the variance. For the other three models— theta ITPC- power, theta- delta ITPC, and 
theta- delta power— neither regression of slope in one on intercept of the other nor the 

Figure 14.7 Partial path diagram for a parallel process bivariate growth model. Latent variables 
are represented by circles, whereas manifest variables are represented by squares. TP is time- 
frequency total power, ITPC is intertrial phase coherence. Each is measured at three different 
assessment waves in a longitudinal design. The left- hand panel focuses on the growth model for 
total power (top) and ITPC (bottom). The mean level of each is modeled as a linear function of 
a latent intercept (ITP and IITPC) and latent slope (STP and SITPC). The loadings of each observed 
variable on its latent intercept are fixed at 1. The Greek letter a is used to represent the loadings on 
the latent slope. In the latent age basis model used in the example described in the text, a0 is fixed 
at 0 and a2 at 1, but a1 is estimated from the data. The coefficient corresponding to a1 thus gives the 
proportion of total growth between 11 and 17 observed at age 14. At each assessment wave, the two 
regression residuals covary (are correlated), which allows for age- specific influences common 
to power and ITPC. These are drawn for ages 11 and 17 but not for age 14 so as to avoid an un-
necessarily crowded diagram. The right- hand panel “explodes” the center of the left- hand figure 
to emphasize the relationships between the two latent growth processes. These consist of two 
correlations, between the two latent intercepts and the two latent slopes, and two regression paths 
predicting mean change in TP from initial level of ITPC and vice versa. The triangle containing 
the number 1 is used to represent the mean level of intercept and slope for TP and ITPC, respect-
ively. In reality, these are intercepts, rather than means, because the model includes regressions of 
the latent variables on sex (not shown). In both panels, unlabeled circular double- headed arrows 
indicate residual variances.
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correlations between the two intercepts or the two slopes were significant. All p- values 
were greater than .360, although the ersatz effect size for the regression of delta ITPC on 
rate of change in theta ITPC was somewhat larger than that of the significant effect in 
the delta model. In addition, the correlations between paired intercepts and slopes were 
not significant. Thus, the two processes in each model developed independently.

In broad terms, aspects of these results were anticipated by the pattern of correlations 
in Figure 14.6 in that correlations between theta and delta measures were relatively 
small in magnitude and total power and ITPC correlations tended to segregate for theta 
compared to delta. However, most of the covariances between wave- specific residuals 
were significant and positive for both the age- 14 and age- 17 assessment waves. That is, 
in the absence of significant cross- measure regression effects for the most part, most of 
the covariance between measures was due to age- specific influences. This was especially 
true of the age- 14 wave (and to a lesser extent the age- 17 wave). Individual differences 
in pubertal status may induce correlations between time- frequency measures that are 
independent of developmental trajectories in these measures through hormonal effects 
on brain organization, an inference not readily gleaned from the correlation matrix.

14.7.4   Conclusion

We do not by any means consider these results definitive. For one thing, the parallel pro-
cess model is only one possible approach, and it does not provide a direct assessment of 
influences of one measure on change in the other. This requires a more complex model 
with more time points (McArdle, 2009). Our results here are intended solely to illus-
trate some of the types of insights that longitudinal- developmental designs provide. 
In both investigations, we found that a common set of dimensions of time- frequency 
power, whether raw or dB- transformed, accounted well for time- frequency activity in 
adolescence and, in the first investigation, into early adulthood. The consistency of these 
dimensions across age in both instances was striking. Nevertheless, the particular con-
figuration of these dimensions shifted in subtle ways with age. For instance, congruence 
coefficients between successive assessment waves for the component depicted in Figure 
14.4 were all 0.95 or greater, indicating very close congruence between one wave and the 
next. Nevertheless, the coefficient for the same component between age- 11 and age- 24 
waves was 0.77, indicating much less congruence over the course of adolescence. Thus, 
developmental change occurred through a gradual shift in time- frequency space of the 
locus of activity.

In our original investigation, we found that piecewise linear regression models 
accounted well for mean levels of the data, which suggests distinct phases charac-
terize the development of time- frequency activity in the rotated heads oddball task. 
The timing of the transition between phases varied among components, which helps 
to illuminate age- related differences in the nature of the brain response. In our second, 
more preliminary investigation, our ability to replicate this finding was hamstrung by 
the fact that only three data points were available. Nevertheless, we found evidence of 
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nonlinearity with development. For the purposes of this investigation, we averaged 
component scores over electrodes, but future work can benefit from the availability of 
a denser electrode array to further illuminate developmental aspects of time- frequency 
activity.

14.8 Final Thoughts

Research conducted to date has yielded several consistent general findings. The ma-
jority of studies have reported consistent associations between age and time- frequency 
power and phase- locking (ITPC). The association with ITPC is positive, such that 
phase- locking increases with age. As discussed, the nature of the association with power 
tends to be negative in studies using raw power or baseline subtraction but positive 
in studies examining modulation of power, such as by means of a dB transform, what 
Makeig and colleagues have called event- related spectral perturbations (ERSP; Makeig, 
1993). These general trends are interpreted to mean that time- frequency responses 
to stimuli and events in an experimental setting become more mature in some sense. 
However, the consistency of these trends across paradigms presents something of an 
interpretive challenge for researchers. If more “efficient” responses are observed in a go/ 
no- go task among older participants, does this reflect a change in the processes involved 
in withholding a response specifically or a developmental change in information pro-
cessing more generally? Comparing age- related trends across a variety of tasks differing 
in processing and response demands will be necessary to begin answering this question.

A developmental perspective prompts a shift in the types of questions one asks. For 
instance, finding age- related differences in mean levels of a time- frequency phenom-
enon is really the first step of inquiry into the phenomenon (Rutter, 1988). This is in 
part because age differences involve other differences among individuals as well that are 
correlated with age. Observing age differences also suggests lines of follow- up research. 
If younger adolescents differ from older ones on a measure such as time- frequency 
power, how is this related to other time- frequency or performance measures (e.g., Liu 
et al., 2014; Papenberg et al., 2013)? At what point in development do these differences 
disappear? Do age- related differences in time- frequency features related to cognitive 
control in one task, such as increased theta power, predict similar age- related differences 
in those same features in another task? Failure to find such differences might call into 
question whether these features truly reflect cognitive- control processes. It might also 
indicate that the developmental course of these time- frequency features varies because 
of differences in the cognitive control processes required by tasks that appear similar 
on the surface. Control of interference in the attentional field by flanking stimuli in an 
Eriksen flanker tasks is likely somewhat different from control of response selection 
or inhibition in a go/ no- go task. Yet at the same time, the similarities between these 
two forms of control suggest that the time- frequency activity elicited by each should be 
related and the relationship between them can be traced longitudinally within subjects.
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Comprehensive examination of developmental aspects of time- frequency features 
thought to reflect specific psychological or neural processes can also shed light on those 
processes. For example, developmental neuroscience models differ somewhat with re-
spect to how sensitivity to reward develops during adolescence. Some propose a rapid 
increase early in adolescence followed by a plateau (e.g., Casey et al., 2008; Somerville 
& Casey, 2010) whereas others propose that the early increase is followed by a subse-
quent decrease (Luciana & Collins, 2012). Time- frequency features associated with the 
reward positivity, for example, are thought to reflect activity of the ventral striatum and 
areas involved in reward processing (Bowers et al., 2018). These models make different 
predictions about the developmental course of reward- related time- frequency features. 
If, the developmental course of time- frequency features thought to reflect reward pro-
cessing differs from that predicted by neuroscience models, it might suggest the models 
are wrong. But it might also suggest that our interpretation of the meaning of those 
time- frequency features is wrong.

Finally, in addition to characterizing age- related trends in a given time- frequency 
feature, a developmental perspective is concerned with understanding how aspects 
that develop early might affect those that develop later. For instance, a developmental 
approach to time- frequency connectivity analysis might ask how network patterns 
characteristic of children constrain the subsequent development of these patterns in 
adolescence? Are any such constraints more or less continuous with development or 
are they characterized by significant discontinuities? Answering questions such as 
these will require a longitudinal approach, perhaps in combination with cross- sectional 
studies. The number of studies addressing age- related differences in time- frequency ac-
tivity has increased in recent years, an encouraging development that is expanding our 
knowledge in important ways. We suggest that expanding the types of questions being 
asked is likely to be fruitful as well if we are to move from description to explanation.
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CHAPTER 15

THETA- BETA P OWER RATIO
An Electrophysiological Signature of Motivation, 

Attention and Cognitive Control

DENNIS J.  L. G. SCHUTTER AND  
J.  LEON KENEMANS

15.1  Introduction

The preservation of frequencies across mammalian species is testament to the import-
ance of rhythmic neural activity. Indeed, oscillatory activity at its multiple temporal 
scales is proposed to have guided the large volumetric expansion of the mammalian 
brain and its functions throughout the course of evolution (Buzsaki & Watson, 2012). 
The unique amplitude and frequency modulatory properties of electric signals suggest 
a neural syntax by which the brain can function on the different functional neuro- 
anatomical levels (Buzsaki & Watson, 2012). Even though the localization of EEG ac-
tivity in the brain is challenging, the different frequencies that make up the human EEG 
signal, which typically range between 1 to 50 Hz, correspond to more or less identifiable 
structures in the brain.

In agreement with this view, electric stimulation of the ascending reticular activating 
system in the brain- stem elicits 1– 4 Hz (delta) cortical responses (Guyton, 1976). Delta 
activity is also a dominant rhythm during deep sleep and unconscious states and reflects 
large deactivation of the cerebral cortex and dominant activity associated with activity 
in the brain stem. Electric stimulation of limbic areas, on the other hand, can elicit 7- 
Hz (theta) activity in mammals (Gray, 1982). Activity in the theta frequency range (4– 
7Hz) has been observed in limbic areas, including the septo- hippocampal complex, 
amygdala, and anterior cingulate cortex (ACC) (Asada et al., 1999: Gray, 1982: Rahman 
et al., 2018).

EEG activity between 8 and 12 Hz (alpha) is the strongest frequency band produced 
in adult humans, and results in a wide area of cortical structures under the influence 
of functional decoupling with the thalamus. For example, alpha waves are generated 
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when the visual cortex is deprived of sensory input (i.e., eyes closed), yet instantly dis-
appear when the thalamocortical coupling is restored and the thalamus starts to transfer 
signals from our eyes to the visual cortex again (i.e., eyes open). This observation had 
led researchers to propose that alpha waves represent a so- called cortical idling rhythm 
that is inversely related to processing activity (Adrian & Matthews, 1934). In addition to 
the posterior areas, activity in the alpha band is also present in the more anterior regions 
and involved in motor, cognitive, and emotion- related functions (e.g., Hoptman & 
Davidson, 1998: Harmon- Jones & Gable, 2018).

Furthermore, EEG frequencies of 13 Hz and higher (beta) have been proposed to re-
flect synchronized field potentials in more local cortico- cortical circuits (Lubar, 1997). 
Beta activity can be registered across the cerebral cortex including the more anterior 
regions of the cerebral cortex (Engel & Fries, 2010). The association between beta ac-
tivity and an anterior distribution concurs with the proposed posterior- anterior gra-
dient model in which the natural peak EEG frequency increases from the posterior 
perceptual to the anterior action dedicated areas of the cerebral cortex (Rosanova et al., 
2009). In sum, neural rhythms are preserved across the mammalian species, and they 
provide a signature of functionally dedicated brain regions and circuits.

The ratio of frequency bands is the relative contribution of neural rhythms to charac-
terize the interdependency between these neural signals that can be recorded from the 
scalp. For example, scalp- recorded resting state frontocentral theta activity can at least 
in part be explained by input from signals coming from the subcortical system, whereas 
beta activity represents endogenous inhibitory activity that is more cortical of origin 
(Schutter & van Honk, 2005). Hence, the ratio between theta and beta power arguably 
reflects the balance between bottom- up excitatory subcortical signals and the cortical 
signals associated with top- down regulation and attentional control (Schutte et al., 
2017). In this conceptual framework, a high theta- beta power ratio indicates a dominant 
bottom- up subcortical input over top- down cortical regulation, whereas a low theta- 
beta power ratio implies a dominant top- down cortical regulation over the bottom- up 
subcortical system. The general idea behind the theta- beta power ratio is that the ratio 
captures the interaction of more motivation- driven processes (theta) on the one hand, 
and attention-  and cognitive- related processes (beta) on the other.

15.2 Theta- beta power ratio 
in attention deficit/ hyperactivity 

disorder (ADHD): A meta- 
analytic perspective

Given the importance of rhythms as an organizing principle underlying brain function, 
EEG activity is increasingly being examined in studies on the biological underpinnings 
of normal and abnormal human behavior.
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In the 1970s clinical- oriented scientists started to investigate possible associations be-
tween EEG rhythms and psychological functioning.

Among the first ideas that came under scientific investigation was the hypothesis 
that inattention and hyperactivity seen in children with ADHD result from a chron-
ically under- aroused central nervous system (CNS) causing higher- than- normal 
resting state theta activity (Satterfield & Cantwell, 1974). The so- called hypo- arousal 
model of ADHD was postulated after observations of children with ADHD showing 
lower- than- normal electrodermal activity (Satterfield & Dawson, 1971). Paralleled by 
observations of dominant theta (4– 7 Hz) and alpha activity (8– 12 Hz) during rest 
and increased activity in the beta band (>13 Hz) during mental activity in healthy 
individuals (Jasper et al., 1938), Joel Lubar proposed that ADHD children may par-
ticularly have an underactive cortical system as indicated by the increased theta and 
reduced beta wave activity (Lubar, 1991). Further support for the EEG hypothesis was 
provided by a study that deployed a quantitative analysis of EEG in boys with ADHD 
(Mann et al., 1992). Results led to the idea that an elevated resting state theta- beta 
power ratio may in fact be an electrophysiological EEG marker of ADHD (Karakas & 
Barry, 2017). While the link between theta- beta power ratio and ADHD has proven 
reliable, the original idea of linking higher ratios with low CNS activity as indexed by 
electrodermal activity has not received much additional support ever since (Barry 
et al., 2004).

ADHD is a disorder marked by an ongoing pattern of inattention and/ or 
hyperactivity- impulsivity that interferes with daily- life functioning and normal 
development. (https:// www.nimh.nih.gov/ hea lth/ top ics/ attent ion- defi cit- hypera 
ctiv ity- disor der- adhd/ index.shtml). Features of inattention are lack of persist-
ence, difficulties in sustaining focus, and disorganized thoughts. Importantly, 
these problems are not related to intelligence. Hyperactivity is the constant moving 
about both in appropriate and inappropriate situations. Furthermore, hyperactivity 
is associated with extreme restlessness and behaviors such as excessive fiddling, 
tapping, and talking. Persons with ADHD tend to be impulsive and engage in hasty 
actions without considering the possible negative consequences of their actions. As 
a result, they prefer immediate rewards and show an inability to delay gratification. 
Impulsive individuals can be socially demanding and may appear indifferent to the 
needs of others.

Research over the last 40 years has identified a number of EEG patterns associated 
with ADHD. In addition to elevated theta activity over the anterior scalp regions, lower 
alpha and beta activity over the posterior scalp regions have been reported. In addition, 
higher than normal posterior delta activity, as well as increases in the theta- alpha and 
theta- beta power ratio have been found in children with ADHD (Clarke et al., 2001a). 
As previously mentioned, increased slow wave activity (<8 Hz) and decreased fast wave 
activity (>10 Hz), elevations of theta activity and theta- beta power ratio are among the 
most consistent findings (Saad et al., 2018). Figure 15.1 shows an example of resting 
state theta and beta oscillations obtained with a non- invasive EEG scalp recording in a 
healthy young adult.

 

https://www.nimh.nih.gov/health/topics/attention-deficit-hyperactivity-disorder-adhd/index.shtml
https://www.nimh.nih.gov/health/topics/attention-deficit-hyperactivity-disorder-adhd/index.shtml
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15.3 Theta- beta power ratio 
in ADHD diagnostics

The replicability of these findings together with results showing that the pharma-
cological agent methylphenidate (Ritalin) improves ADHD symptoms paralleled 
by a lowering of theta activity and decrease in the theta- beta power ratio (Arns et al., 
2018) has led to the suggestion that the resting state theta- beta power ratio may be a 
biomarker for ADHD and can be used in diagnostics. In one of the first studies, three 
experiments were reported that aimed to replicate previous findings, examine criterion- 
related validity of EEG on inattention, and determine test- retest reliability of the EEG 
(Monastra et al., 2001).

In the first experiment, earlier findings of significantly higher theta- beta power 
ratios in patients aged between 6– 20 years with inattentive and hyperactive- combined 
ADHD as compared to controls, were replicated. The second experiment showed that 
the theta- beta power ratio derived attentional index could reliably differentiate between 
ADHD and non- ADHD participants (sensitivity: 90%, specificity: 94%). In the third 
experiment a high test- retest correlation coefficient (0.96) of the theta- beta power ratio 
was found in a sample of fifty- five volunteers that underwent an EEG session on two 
occasions thirty days apart. Comparable sensitivity (87%) and specificity (94%) scores 
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Figure 15.1 Example of band- pass filtered scalp recorded theta and beta oscillations and spec-
tral power distributions.
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in identifying ADHD within a clinical sample (n =  159) were reported by another multi- 
center validation study (Snyder et al., 2008). However, the theta- beta power ratio could 
not reliably differentiate between ADHD and comorbidities or alternative diagnoses. 
Based on these findings the authors advised the use of EEG as a complementary measure 
in the clinical evaluation of ADHD (Snyder et al., 2008).

This conclusion follows up results from the first meta- analysis by Snyder & Hall 
(2006), who investigated the presence of specific EEG traits in ADHD and evaluated 
nine high quality studies (n =  1498) in which the primary analysis of interest concerned 
a group comparison between ADHD patient’s diagnosis according to the criteria 
of the Diagnostic and Statistical Manual of Mental Disorders and controls on resting 
state theta and beta activity. Standardized mean effect size (Glass’ delta) and 95% confi-
dence intervals (CI) were calculated. Results showed significantly higher theta (pooled 
effect size: 1.31; 95% CI: 1.14–1.48) and lower beta activity (pooled effect size: −0.51; 95% 
CI: −0.65 to −0.35) in patients compared to controls.

Consistent with these observations a strong significant effect was observed for an 
increase of theta- beta power ratio in ADHD patients versus controls (pooled effect 
size: 3.08; 95% CI: 2.90 ̶ 3.26). A second fixed effects model meta- analysis published 
in 2013 reported a notably lower overall effect size, Hedges’ d: 0.75; 95% CI: 0.57 ̶ 0.93, 
favoring increased theta- beta power ratio in children and adolescents with ADHD as 
compared to controls (Arns et al., 2013).1 Furthermore, considerable heterogeneity in 
effect sizes across studies was observed, indicating that the variance of the effect size 
across the included studies was greater than to be expected from sampling error. Even 
though the effect size was still large, subsequent analyses showed no strong support for 
the applicability of the theta- beta power ratio in diagnostics (Arns et al., 2013).

Despite the inconclusive scientific evidence, in July 2013, the U.S. Food and 
Drug Administration (FDA) approved the use of the Neuropsychiatric EEG- Based 
Assessment Aid Health for the assessment of ADHD based on the theta- beta power 
ratio (FDA, 2013). To further examine this, we updated the meta- analysis by Arns 
et al. (2013) and included additional studies that reported group differences between 
theta- beta power ratios of children and adolescent with and without an ADHD diag-
nosis. In total, eighteen studies that were published in peer- reviewed English scientific 
journals including 2425 participants (1600 patients and 825 controls) were analysed. 
The standardized effect size (Hedges’ delta) and variance were calculated for each study 
(Hedges & Olkin, 1985).

Based on the assumption that, in addition to sampling error, effect sizes contain a 
true random component, a random effects model was performed. Results showed an 
estimated mean effect size of 0.92 (95% CI: 0.40–1.44) (Figure 15.2).

1 This meta- analysis included nine studies and used different selection criteria compared to the earlier 
meta- analysis. As a result, only two of the nine studies used in the original meta- analysis by Snyder and 
colleagues (2008) were considered eligible. In addition, this study- based effect size calculation used the 
pooled standard deviation of the ADHD and control groups instead of exclusively using the SD of the 
control group in computing the Glass’ delta.
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The test for study heterogeneity was not significant, Qtotal =  12.95, p =  0.74. Rosenberg’s 
fail- safe number analysis indicates that 2415 studies with null findings (p< 0.05) are 
required to change the significant meta- analytic result into a non- significant finding. 
In addition, Orwin’s method shows that 68 studies are needed to reduce the mean effect 
size of 0.92 to a small effect size of 0.2. As neither method accounts for sample size or 
variance of the studies, these fail- safe number results should be interpreted with caution. 
While the mean effect size observed in the current meta- analysis is larger than the effect 
size reported in 2013, the overlapping 95% CIs show that the difference between the 
effect sizes is not statistically significant at the p= 0.05 level. The wide 95% CI interval 
indicates considerable uncertainty in terms of the true value of the effect size and the use 
of the theta- beta power ratio for diagnosing ADHD in children and adolescents remains 
unclear (Arns et al., 2013). Several authors have proposed that adding cognitive, emotive 
and genetic information to the theta- beta power ratio may have substantial diagnostic 
as well as prognostic value (Williams et al., 2010).

It is suggested that determining theta activity relative to the individual alpha peak- 
frequency may contribute to the diagnostic value of the resting state theta- beta power 
ratio (Saad et al., 2018). This suggestion adds to the idea of multiple theta rhythms and 
that the dependency on conventional fixed frequency bands may be problematic in the 
classification of ADHD as well as for gaining a deeper understanding on the relation be-
tween EEG ratios and their functional meaning.

Determining the so- called transition- frequency reflects the true physiological 
boundary between theta and alpha activity, and may present a physiological plausible 
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alternative as this frequency marks the intersection of resting state with active EEG 
(Saad et al., 2018: Klimesch, 1999). Perhaps the individualized peak alpha frequency may 
also be useful to indicate the transition from alpha to beta.

Personalized approaches like these may be able to control for individual differences in 
EEG make- up unrelated to ADHD symptoms and improve the specificity (true negative 
rate) and sensitivity (true positive rate) of the theta- beta power ratio in diagnostics.

Even although the concept of resting state theta- beta power ratio as a biomarker for 
diagnostic purposes is promising, further research is needed to further develop this 
concept. In addition, higher resting state theta- beta power ratio in ADHD children has 
been suggested to be indicative for treatment outcome (Loo et al., 1999: Clarke et al., 
2002b). Support for this idea comes from results showing that good as compared to poor 
responders to methylphenidate have higher resting state theta- beta power ratio prior to 
treatment (Clarke et al., 2002a). This fits the observation that stimulant medication can 
increase beta activity in children with ADHD, particularly in frontal cortical regions, in 
addition to improving symptoms related to attentional focus and response inhibition 
(Loo et al., 2004).

Together, the normalization of dopaminergic activity in the subcortical circuits as 
indicated by a reduction in theta activity, and the increase in beta activity, may explain 
the lowering of the power ratio in response to methylphenidate. Indeed, oscillatory beta 
activity is in turn linked to dopamine levels at sites of cortical input to subcortical areas 
including the basal ganglia (Jenkinson & Brown, 2011). While the resting state theta- 
beta power ratio may be a positive response predictor, a multi- center, prospective open- 
label trial found that lower frontal alpha (9 Hz) peak frequency, but not the resting state 
theta- beta ratio in male adolescent ADHD patients, is a predictor for non- response to 
methylphenidate (Arns et al., 2018). This negative predictor response was found to be 
independent from age, medication dosage, and baseline symptom severity. The lower 
individual anterior alpha peak is suggestive of a maturational lag in the structural de-
velopment of the frontal cortex (Whitford et al., 2007). Together these findings stress 
the importance of considering both functional (e.g., theta- beta power ratio) and struc-
tural aspects (e.g., alpha peak) of brain organization for understanding the efficacy of 
treatments. More recent work points towards the direction that EEG measures may be 
more useful biomarkers of ADHD outcome or treatment response rather than diagnosis 
(Sari Gokten et al., 2019: Loo et al., 2018). Finally, the different findings leave open the 
possibility that ADHD symptoms can have several neuro- etiological origins and should 
be evaluated within an environmental context.

15.4 Functional correlates of the 
theta- beta power ratio

In addition to research on the clinical features and applicability of the theta- beta power ratio 
in ADHD, basic neuroscientific research has also made considerable progress in identifying 
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cognitive and affective processes associated with the theta- beta power ratio. This line of re-
search provides insights not only into the specific symptomatology of ADHD, but also in 
understanding the neurocognitive processes within the general population.

Experimental human brain research has shown that the prefrontal cortex (PFC) plays 
a prominent role in the regulation of attention and motivational tendencies, and other 
executive control functions (Corbetta et al., 2008).

On the other hand, for theta specifically, based on combined fMRI and 
electrocorticography, significant associations have been reported between theta power 
and BOLD activity in “intrinsic” resting- state networks, including the default- mode 
network (DMN, the “idling network”) and a network involved in episodic and working 
memory (Hacker et al., 2017). Furthermore, the CNS stimulant nicotine reduces both 
theta power (Knott et al., 2007), as well DMN activity (Hahn et al., 2007). Nicotine- 
induced reduction in DMN activity correlates positively with nicotine- induced 
improvements in task performance (Hahn et al., 2007). These data support an interpret-
ation that theta power indexes idling and/ or hypo- arousal.

In addition, patients responding to the CNS stimulant methylphenidate dem-
onstrate reductions in the theta- beta power ratio (Isiten et al., 2017). Notably, the 
methylphenidate- related change was driven by an increase in beta, rather than a reduc-
tion in theta, power. If indeed beta power is more closely related to cerebral cortical 
activity, then the reductions in ADHD symptoms may be due to improved executive 
control functions. Raclopride positron emission tomography (PET) showed that me-
thylphenidate (dose: 0.8 ± 0.11 mg/ kg) potentiates dopaminergic activity by blocking 
dopamine transporters causing an increase of synaptically available DA in the human 
brain (especially the striatum, Volkow et al., 2001). The findings were replicated at lower 
dosages which are more commonly prescribed in daily practice (Gottlieb, 2001).

As methylphenidate also increases noradrenergic activity (Kuczenski & Segal, 
2001), catecholaminergic dysfunctions is argued to contribute to elevated theta- beta 
power ratios in individuals with ADHD who respond to methylphenidate (Isiten 
et al., 2017).

Based on the proposed neural generators of theta and beta oscillations, in conjunc-
tion with the dopaminergic dysfunctions described earlier, a neuroanatomical model 
has been developed to explain the motivational, cognitive, and motoric symptoms 
of ADHD. The model is a midbrain ventral tegmental area (VTA)- centered frame-
work that includes both the mesolimbic and mesocortical dopaminergic pathway. The 
mesolimbic pathway refers to the connection between the VTA and nucleus accumbens 
(ventral striatum), implicated in reward motivation and subcortical motor planning 
routines. In addition, the VTA extensively projects to the septo- hippocampal complex 
and amygdala indicative of a complex subcortical circuit dedicated to instrumental 
learning and memory processes (Hefco et al., 2003).

The connection between the VTA and PFC constitutes the backbone of the 
mesocortical pathway. In particular, the VTA projections to the medial frontal cortex 
and ACC provide a neural basis for monitoring and top- down regulatory functions (Di 
Michele et al., 2005).
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Next to the septo- hippocampal complex, the ACC is another brain area that operates 
in the theta  frequency range (Asada et al., 1999). It is suggested that together these 
regions make up a circuit dedicated to monitoring and goal- directed motor planning, 
whereas the ventral and dorsolateral parts of the FC take part in executive functions 
including working memory, attentional control, and top- down regulation.

The functionality of the latter anterior cortical regions is suggested to involve beta 
activity. From this viewpoint, the theta- beta power ratio may provide a global index 
for cortico- subcortical interactions wherein slow wave (theta) activity represents the 
subcortical bottom up and fast wave (beta) activity in cortical top- down processes 
(Schutter et al., 2006). In particular, the low tonic dopaminergic activity in the cortico- 
subcortical circuits and subsequently elevated theta- beta power ratio could perhaps 
provide a neural marker for attention, impulsivity, reward sensitivity and motor activity 
in individuals with and without ADHD (Heilman et al., 1991: Robbins, 2000). A more 
specific formulation of this idea holds that a reduction in dopamine level is associated 
with disinhibition of the ACC causing an increase in spontaneous theta oscillations 
and higher responsivity (e.g., the frontal- related negativity (FRN)) to external feedback 
(Holroyd & Coles, 2002).

Thus, high theta relative to low beta activity may reflect a state of heightened subcor-
tical drive in conjunction with cortical hypoarousal. Furthermore, the ACC is among 
the prime neural generators of theta oscillations and may a take central position between 
the subcortical and prefrontal brain areas. This idea is further supported by research 
showing that the ACC and the anterior portions of the medial PFC can exert direct 
top- down control over the VTA via monosynaptic excitatory projections (Holroyd and 
Yeung, 2012: Elston et al., 2019). Increased 4 Hz (theta) oscillatory signaling between the 
ACC and VTA has been demonstrated during anticipatory decision making, feedback 
processing, and behavioral flexibility (Elston et al., 2019).

Studies on the spectral density of local field potentials in the ACC and VTA show that 
while the ACC shows peaks between 3– 5 Hz, the VTA emits signals between 3– 5 Hz and 
7– 9 Hz (Elston et al., 2019). The frequency specificity of theta activity across regions 
suggests the earlier proposed existence of multiple theta rhythms that each have a dis-
tinct functional role in behavior. Rhythmic excitability allows for temporal windows of 
coordinated spike timing to exchange signals between distal regions (Buzsáki & Watson, 
2012: Cavanagh et al., 2012). Further evidence for frequency specificity was provided by 
a study showing that administering exogenous oscillatory field potentials at 4 Hz (low 
theta) increases working memory capacity, while at 7 Hz (high theta) working memory 
performance deteriorates (Wolinski et al., 2008). The latter idea also fits the proposed 
role of theta activity carrying information encoded in gamma oscillations (>30 Hz) from 
the hippocampus to the cerebral cortex in memory formation (Jensen and Lisman, 1996).

Taken together the studies imply the existence of multiple functionally inde-
pendent theta activity related to (1) arousal, (2) motivation, (3) cognitive flexibility, and 
(4) memory- related processes.
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Studying the frequency specific of theta and beta may therefore be particularly inform-
ative about whether a higher theta- beta power ratio, for example, reflects drowsiness as 
indicated by a broad increase in the theta EEG spectrum or heightened motivation as 
reflected by increased information transfer between the ACC and VTA as reflected by 
4 Hz oscillations. As the conventional calculations of theta- beta power ratio are based 
on the averaging of power values in the 4– 7 Hz (theta) and 13– 30 Hz (beta) frequency 
range, the study of specific theta, as well as beta oscillatory, components may be relevant 
for understanding the meaning of the power ratio within a given neural and behavioral 
context.

15.5 Reward and punishment sensitivity

Several psychological studies have examined the proposed interrelations between theta- 
beta power ratio and cognitive- affective processes in healthy volunteers.

On the basis of the proposed relation between the theta- beta power ratio and im-
pulsivity in ADHD, the predictive value of resting state theta- beta power ratio on 
risky decision making was investigated in a sample of healthy volunteers (Schutter 
& van Honk, 2005). Risky decision making was measured with the Iowa gambling 
task. In the Iowa gambling task, players are instructed to try to gain as much money 
as possible by drawing selections from a choice of four decks. Two of the decks are 
disadvantageous, producing immediate large rewards, but on the long term cause 
an overall loss due to even higher punishments. The other two decks are advan-
tageous in the sense that immediate rewards are modest but more consistent and 
punishment rate is low. Decisions to choose from the decks become motivated by 
the reward and punishment schedules associated with the advantageous and disad-
vantageous decks.

Results showed that higher resting state theta- beta power ratio was associated 
with more risky decisions. These findings can be understood in terms of increased 
reward sensitivity and/ or lower punishment sensitivity. Importantly, participants 
did show a cumulative increase in advantageous decision making during the 
course of the task. Even though volunteers acquired knowledge about the reward- 
punishment contingency, subjects with high theta- beta power ratio were none-
theless more inclined to take risky decisions as compared to subjects with a lower 
theta- beta power ratio.

The association between theta- beta power ratio and disadvantageous decision 
making was replicated in a follow- up experiment (Massar et al., 2014) which also 
explored the specific contributions of reward and punishment sensitivity to the 
theta- beta power ratio by testing how well subjects were able to learn associations be-
tween symbols that signal a high probability of winning money and low probability 
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of winning nothing (reward learning), and symbols that signal a high probability of 
losing money and low probability of losing nothing (punishment learning). Results 
showed that the association between theta- beta power ratio and associative learning 
was driven by the positive correlation between theta oscillations and reward learning. 
This finding fits with the proposed role of theta oscillations in the dopaminergic 
mesolimbic pathway.

Results of an earlier study demonstrated that the nature of the relation between 
theta- beta power ratio and risk- taking involved feedback- related processing in the 
ACC (Massar et al., 2012). More specifically, a higher theta- beta power ratio was found 
to correlate with reduced feedback processing as reflected in lower FRN amplitudes. 
Additionally, this association varied as a function of punishment sensitivity as evaluated 
by the behavioral inhibition system questionnaire. The data suggest a bias toward mo-
tivationally driven behavior as a result of suboptimal action monitoring, leading to 
top- down executive control being subsequently less involved due to reduced ACC 
signaling. This effect becomes more prominent when subjects score higher on punish-
ment sensitivity and arguably already experience higher default levels of uncertainty. 
In accordance, a meta- analysis has shown that midfrontal theta activity is linked to 
ACC activity during action- outcome uncertainty and cognitive control (Cavanagh & 
Shackman, 2015).

Notably, much like children with an anxiety disorder, children with ADHD display 
an intolerance of uncertainty (Gramszlo et al., 2018). Indeed, if the ACC is central to 
the integration of bottom- up feedback signals originating from midbrain structures 
and top- down executive functioning and control, disturbances in the ACC may sub-
serve the lack of coordinated and goal- directed behaviors in ADHD. Furthermore, 
increased theta- beta power ratios may signify compromised ACC- related feed-
back processes that contribute to subjective states of uncertainty. Uncertainty is 
experienced when there is a lack of subjectively perceived contingency between action 
and outcome.

Thorndike’s law of effect dictates that reward and punishment- related feedback 
signals are responsible for shaping situation appropriate action- outcome contingencies. 
In other words, the structural occurrence of rewards and punishment following a 
specific action leads to the formation of stronger action- outcome links (Seth, 2013). 
Experimentally, uncertainty can be manipulated by introducing unpredictable changes 
in reward- punishment contingencies. Earlier findings indicate that particularly in un-
predictable environments, a situation- dependent balance between the exploitation 
of acquired knowledge and exploration of new options is the best behavioral strategy 
to maximize profit (Daw et al., 2006). In the event of a change in reward- punishment 
schemes, individuals have to relearn the contingencies to adjust decision making ac-
cordingly (Clark et al., 2004: Bechara et al., 1997). The presence of theta activity is 
associated with the experience of conflict and reward sensitivity, so it is reasonable to 
assume that high theta- beta power ratio is associated with suboptimal reversal learning 
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when reward- associated responses suddenly are punished, and punishment- related 
responses become rewarded.

To test this hypothesis, healthy volunteers performed a reversal learning gambling 
task (Schutte et al., 2017). Unknown to the participant, the task consisted of different 
reward- punishment (R P) schedules for high- risk decision making. During phase 1 
(trials 1– 40) high- risk choices were rewarded in 80% of the trials, while in phase 2 
(trials 41– 80) the RP schedule was reversed, and high- risk choices were now punished 
in 80% of the trials. In phase 3 (trials 81– 120), the RP schedule used in phase 1 (i.e., 
80% reward for high risks) was reintroduced. The spontaneous resting state theta- 
beta power ratio recorded prior to the task was found to be inversely related to re-
versal learning, indicative of lower cognitive flexibility during unexpected changes 
when theta- beta power ratio is high. The results can be interpreted along the lines of 
lowered cortical cognitive involvement in the processing of subcortical reward and 
punishment signals.

In an additional study, transcranial alternating current stimulation (tACS) was 
applied to evaluate the effects of applying 5- Hz (theta) oscillatory electric fields to 
left and right frontal cortex on reversal learning in healthy volunteers (Wischnewski 
et al., 2016). Active, as compared to sham theta tACS, resulted in faster learning of 
newly introduced reward-  and punishment contingencies during the task, but sur-
prisingly subjects also became more hesitant to apply the learned contingencies to 
optimize decision making. Furthermore, a significant decrease of the left frontal 
resting state theta- beta power ratio was observed after tACS. While the lowering 
of the power ratio concurs with increased apprehension, left- sided lowering was 
accompanied by less- optimal decision making. This paradoxical finding can be 
explained by the anterior cortical asymmetry model of motivational direction. More 
specifically, lower left- sided power ratio may reflect reductions in approach- related 
motivation and increased behavioral inhibition (Schutter et al., 2008). In a follow up 
double- blind randomized cross- over study, 20 Hz (beta) tACS applied to the frontal 
cortex of healthy volunteers improved rule implementation during reversal learning 
(Wischnewski et al., 2020). Additionally, a global frontal reduction of the theta- beta 
EEG power ratio was observed (Wischnewski et al., 2020). The latter results fit the 
cognitive flexibility interpretation, whereas the reduction observed after theta tACS 
can be better explained as a change in motivation.

In another study by Lansbergen and colleagues (2007), a stop- signal task was 
administered that involved two types of trials: go- trials (i.e., square wave gratings 
presented on a computer screen) and stop- trials (i.e., 1000 Hz auditory tone). 
Whereas go- trials only contained go- signals, stop- trials contained both the go-  
and stop- signal. In contrast to expectations, results showed that participants with 
high resting state theta- beta power ratio demonstrated shorter stop- signal reac-
tion times and fewer failures to respond to the go- stimulus on time. Perhaps, the 
opposite results indicate a curvilinear relationship between the theta- beta power 
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ratio and executive control in which under certain (less complex?) circumstances 
higher ratios can have a positive effect on performance. This implies that during 
high cognitive load and motivational value the positive relations turn into negative 
correlations. These seemingly paradoxical results highlight the possibility that, de-
pending on the operational and conceptual perspective adopted by researchers and 
theorists, high theta activity, and therefore a high theta- beta power ratio, can reflect 
cortical hypo- arousal and increased cortical drive, as well as enhanced working- 
memory function and cognitive control. This line of argumentation concurs with 
the proposed existence of different functions of theta waves. Finally, a recent study 
highlighted prestimulus high theta during the task as an indicator of drowsiness, 
but also stimulus- elicited theta specifically in high- conflict conditions, supposedly 
reflecting enhanced demands for cognitive control (Canales- Johnson et al., 2020; see 
also Cooper et al., 2019).

15.6 Central executive and 
attentional control function

The theta- beta power ratio is proposed to index a cortico- subcortical balance and 
reflects interactions between the brain’s cognitive and motivational systems. In add-
ition to the involvement of the motivational systems as outlined in the previous 
section, central- executive control functions have been associated with the theta- beta 
power ratio. The central executive serves three major control functions (Miyake et al., 
2000). The first function (inhibition) is the ability to inhibit automatic or prepotent 
responses and requires attentional control to actively withstand intrusions from 
task- irrelevant stimuli or motivational tendencies. The second function (shifting) 
involves adaptive changes in attentional control based on a change in environmental 
demands and is the capacity to switch between mental sets and operations. The 
third function (updating) involves the monitoring and renewal of working memory 
representations. Attentional control processes play a key role in the different central 
executive functions as they involve the conscious regulation of bottom- up, stimulus- 
driven information processing streams. Within this dual- process system concept, the 
top- down strategic network resides in the anterior frontal cortical areas, whereas the 
stimulus- driven systems are localized in the more posterior (sensory) cortical and 
subcortical (motivation) regions.

Researchers have proposed that a high theta- beta power ratio reflects a matur-
ational lag of frontal cortical development that can explain the suboptimal attentional 
control of posterior cortical and subcortical signals in children with ADHD (Clarke 
et al., 2001b). The discovery that the theta- beta power ratio is inversely correlated to 
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self- reported attentional control in healthy young adults (Putman et al., 2010) has 
prompted a series of scientific studies that further investigated the latter association 
in the context of stress and anxiety (Putman et al., 2014). High levels of stress and 
anxiety have a negative impact on central executive functioning and performance. 
For example, cognitive performance anxiety (CPA) is the phenomenon in which anx-
iety/ uncertainty about one’s cognitive competence causes lower and even impaired 
performance.

The interaction between the theta- beta power ratio and CPA- related stress on per-
formance was examined in healthy participants who performed a stress induction 
or control task. In addition to replicating the earlier inverse association between 
the theta- beta power ratio and self- reported attentional control, lower levels of the 
ratio were found to be protective for the negative effects of CPA. These finding can be 
explained by the inverse relation between theta- beta power ratio and attentional con-
trol (Putman et al., 2010).

In a subsequent study, a pictorial dot- probe paradigm was deployed to further 
investigate a role for the theta- beta power ratio in attention resource allocation to 
emotionally arousing stimuli. Healthy volunteers were instructed to fixate on the 
center of a screen and to locate a black dot that appeared either on the left or right 
side immediately following the simultaneous presentation of two stimuli in the left 
and right periphery of the visual field. Statistical analyses revealed that subjects with 
a relatively high theta- beta power ratio directed attention towards mildly arousing 
and avoided highly arousing negative pictures. Consequently, subjects with low 
theta- beta power ratios displayed more attention towards high arousing negative 
material. Even though correlational findings do not allow inferences on the direc-
tionality of statistical associations, the authors interpret these findings as further 
support for the idea that an increased theta- beta power ratio reflects an enhanced 
ability to regulate the impact of negative emotional information (Angelidis 
et al., 2018).

An independent follow- up experiment replicated this finding and also found 
that lower self- reported trait attentional control predicted more attention to mild as 
compared to high arousing negative stimuli (Van Son et al., 2018). These findings concur 
with earlier research that administered a go/ no- go task in healthy volunteers. In this 
particular study subjects were instructed to respond (go) or inhibit responses (no- go) 
to fearful and happy facial expressions (Putman et al., 2010). In line with the ADHD 
literature (Metin et al., 2012), a significant correlation was found between response in-
hibition and the theta- beta power ratio (Putman et al., 2010). More specifically, stronger 
response inhibition to the fearful relative to the happy facial expressions was predicted 
by lower theta- beta power ratios (Putman et al., 2010).

Furthermore, evidence was found for a positive relation between the theta- beta 
power ratio and the drive scale of the behavioral activation system (Gray, 1985). 
The drive scale is related to the brain’s seeking system, which promotes energized 
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appetitive and approach- related behaviors that include exploration, foraging and fu-
ture anticipation of rewards (Panksepp, 1998, 2012). Neuroanatomically, the seeking 
system corresponds to the mesolimbic dopaminergic pathway and provides input 
to the higher cortical areas and promotes reward- driven actions. Within this frame-
work, theta activity may be a correlate of the seeking system that feeds information 
into the PFC. This information is then used in attentional control and regulatory 
processes, arguably reflected by the beta activity component of the ratio, to shape 
context- appropriate behaviors. More recently, temperamental shyness was found to 
correlate with higher levels of social anxiety in children with large baseline- to- task 
decreases in frontal theta- beta power ratio in the anticipation of having to give a 
speech (Poole et al., 2021). These findings were interpreted as increased attentional 
control and emotion regulation during the experience of stress in shy children (Poole 
et al., 2021). Observations that resting state the theta- beta power ratio is positively 
associated with distraction tendency and not re- appraisal strategies (Kobayashi et al., 
2020) concur with the proposed link between theta- beta power ratio and attentional 
control (Putman et al., 2014).

Due to the low spatial resolution of scalp- recorded electric field potentials, localizing 
their neural generators is challenging. However, interleaving resting state func-
tional magnetic resonance imaging with resting state EEG recording provides a way 
to examine the relations between different cortical and subcortical brain regions and 
the theta- beta power ratio. Recently, associations between the theta- beta power ratio 
and the brain’s executive control network (ECN) were explored in a sample of healthy 
volunteers (Van Son et al., 2019b). The ECN consists of the dorsolateral PFC, ACC and 
parietal cortex, and governs top- down regulation and attentional control processes 
(Corbetta et al., 2008).

Reductions in attentional control and brain activity were investigated during mind 
wandering. Mind wandering refers to transient changes of attentional focus from a task 
to non- task related mental states and is accompanied by an increase in the theta- beta 
power ratio (Braboszcz & Delorme, 2011: Van Son et al., 2019a). As compared to an at-
tentional focus condition, the reduction in ECN functional connectivity was correlated 
to an increase in theta- beta power ratio during mind wandering. Even though this 
finding does not imply that the ECN is the generator of theta activity, the result-concurs 
with the positive relation between mind wandering and ADHD symptomatology 
(Seli et al., 2015) as well as with aberrant functional connectivity of the executive con-
trol network in ADHD subjects (McCarthy et al., 2013). The results not only provide 
a functional neuro- anatomical substrate for the theta- beta power ratio, but also fur-
ther strengthens construct validity of the ratio as a functional signature of the balance 
between bottom- up motivational and top- down cognitive aspects of normal and ab-
normal human behavior. Figure 15.3 depicts a functional neuro- anatomic framework 
of the theta- beta power ratio which represents a synthesis of the concepts and empir-
ical work reviewed in this chapter.
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15.7 Some methodological issues

While resting state EEG is robust and has a high test- retest reliability within a time 
frame of one week (Angelidis et al., 2018), longer inter- assessment intervals and meth-
odological factors can nonetheless provide a source of error variance which can nega-
tively affect the reliability of the theta- beta power ratio. Results can among other factors 
be influenced by wrong electrode placement, artifact contamination, drowsiness, 
changes in medication use, and comparison with suboptimal control groups. The lack of 
a standardized EEG protocol could make comparisons between studies and groups less 
reliable. So, in addition to differences already mentioned, differences in, for example, 
applied reference method and varying epoch and Fast Fourier Transform window 
lengths can yield heterogenous results. Also, age has been found to influence the relation 
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Figure 15.3 A functional neuro- anatomic framework of the theta- beta power ratio.
Abbreviations: ACC, Anterior cingulate cortex; DLPFC, Dorsolateral prefrontal cortex; MPFC, Medial prefrontal cortex; 

NA, Nucleus accumbens; SH, Septohippocampal complex; VTA, Ventral tegmental area.
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between the theta- beta power ratio and ADHD (Clarke et al., 2001a). One line of evi-
dence comes from work showing that the ratio is able to differentiate between ADHD in 
children, but not in adults (Markovska- Simoska & Jordanova, 2017).

It should furthermore be noted that whereas scientific studies are well suited to pre-
dict and demonstrate effects on the group level, specifying these effects to the individual 
level is more problematic. Finally, there is a difference between statistical significance 
and clinical relevance, as in that a reliable systematic finding is too small to have a mean-
ingful contribution to the diagnosis, prognosis and/ or treatment of a disorder. In sum, 
the relation between available scientific evidence and clinical usefulness of EEG in 
ADHD and other conditions remains a topic of research.

15.8 Beyond the theta- beta 
power ratio

In addition to the theta- beta power ratio, only a limited number of studies have looked 
at the functional relevance of other ratios. For example, an increase in parietal delta- 
beta power ratio has been positively associated with spontaneous emotion regulation 
as shown by lower ratings of discomfort after the offset of negative pictures (Tortella- 
Feliu et al., 2014). These results suggest that the posterior delta- beta power ratio reflects 
an electrophysiological dispositional feature for faster automatic recovery of unpleasant 
emotional responses (Tortella- Feliu et al., 2014). These findings are in agreement 
with  a study that found a positive associations between parietal delta-beta waves and 
self- reported attentional control in a group of healthy volunteers (Morillas- Romero 
et al., 2015). In another study both the parietal delta- beta and frontal theta- beta power 
ratio were correlated to risky decision making (Schutter & van Honk, 2005). A study 
investigating ADHD subtypes in children by analyzing their EEG found that inatten-
tive type of ADHD was associated with increased delta- beta power ratios as compared 
to matched controls (Aldemir et al., 2018). Although the underlying mechanism 
remains unclear, cognitive impairments in neurological populations go accompanied 
by increases in slow wave oscillations, including delta waves, in conjunction with a de-
crease in alpha and beta wave activity (Klass & Brenner, 1995). Perhaps, relative higher 
delta power as a result of lower alpha activity is linked to reduced perceptual sensitivity 
to external stimuli that results in less attentional resource allocation and in- depth pro-
cessing. Additionally, higher delta relative to alpha oscillations has been shown to suc-
cessfully discriminate between patients with acute ischemic stroke and healthy controls 
(Finnigan et al., 2016). Moreover, in a group of twenty patients with ischemic stroke, a 
significant inverse association was found between the delta- alpha EEG ratio assessed at 
approximately 72 hours poststroke onset and cognitive performance after 3.5 months 
(Schleiger et al., 2014). Similar to what was mentioned earlier, the ratio between slow 
delta and alpha (and beta) oscillations may be a sign of cortical (dys)function and/ 
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or a possible attenuation of functional cortico- subcortical interactions (Schutter & 
Knyazev, 2012).

Future studies will continue to broaden our understanding of the structural and func-
tional nature underlying slow- fast wave EEG ratios and will further shape the use of 
EEG ratios in research and the clinic. Additional questions that may be worth of in-
vestigation are the role of delta- theta and alpha- beta power ratios, and the effects of 
abandoning the conventional bandwidths and focus on frequency- specific oscillations.2

15.9 Summary and conclusion

Following the first observation of elevated theta- beta power ratios in children with 
ADHD, many studies have replicated this finding. In 2013 the FDA formally approved 
the use of the theta- beta power ratio as a criterion for the diagnosis of ADHD. However, 
recent meta- analyses suggest that the theta- beta power ratio does not reliably differen-
tiate between individuals with and without ADHD. Recently, psychological research in 
healthy volunteers has established reliable associations between the theta- beta power 
ratio and indices of motivation and executive functioning. Consistent with observations 
in individuals with ADHD, higher theta- beta power ratios are associated with reduced 
top- down attentional control paralleled by approach- related motivation and seeking 
behavior. These associations are conceptualized as a cortico- limbic balance wherein 
beta activity stands for cortical top- down executive control and theta activity represents 
the bottom up limbic motivational incentives. Together with the high test- retest reli-
ability coefficients (Angelidis et al., 2016), the theta- beta power ratio can be considered 
a trait marker for capturing the reciprocal relationship between cognitive control and 
motivational tendencies, and may have complementary value in diagnosis and treating 
ADHD and/ or related disorders.
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CHAPTER 16

CORTICAL SOURCE 
LO CALIZATION IN EEG 
FREQUENCY ANALYSIS

WANZE XIE AND JOHN E. RICHARDS

16.1 Introduction 
to Source Localization

EEG signals recorded via electrodes placed on the scalp represent the postsynaptic 
potentials generated by mass synchronized pyramidal neurons perpendicular to the 
cortical surface. Source localization or source analysis is the activity that aims to iden-
tify the underlying cortical generators or sources of the EEG potentials measured on the 
scalp. The sources of the EEG signals may be modeled as electrical dipoles with both dir-
ectionality and amplitude. The identification of the location of dipoles is often obscured 
because the current generated by these sources spreads in all directions in the brain and 
is smeared by the skull. However, recent advances made in improving the techniques 
for source localization have substantially increased the spatial resolution of this method 
and led to the tendency towards using it as a brain imaging tool (Michel & Murray, 2012).

Source localization consists of procedures creating a forward (Hallez et al., 2007) and 
an inverse (Grech et al., 2008) model. The forward model is created with a head model 
and electrodes and describes the effect of an electrical source inside the head on the 
EEG. The inverse model is the “inverse” of the forward model and is used with the EEG 
recording to compute the location and amplitude of the sources that generated the given 
EEG. The present chapter provides an overview of some widely adopted source ana-
lysis techniques and their applications to EEG frequency analysis. The importance of 
using realistic head models for source analysis is also discussed. In the last section of the 
chapter, we present examples for using source analysis as a neuroimaging tool in EEG 
frequency analysis.
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16.2 Source Localization Techniques 
and Solutions to the Inverse Problem

There are two major approaches to source localization. Equivalent current dipole (ECD) 
models use a limited number of electrical dipoles that are computed with the forward 
model to explain the distribution of the EEG on the scalp. Distributed source models use 
a large set of dipole locations distributed across the brain and are calculated using the in-
verse model and the observed EEG to generate the amplitude of the current density (He 
et al., 2018; Michel et al., 2004). This section presents both models and describes how 
these models are used for source analysis.

16.2.1 Equivalent Current Dipole Source Localization

ECD modeling assumes that the electrical potential over the entire scalp can be 
explained by a small set of source dipoles (He et al., 1987). These hypothetical dipoles 
can vary in position, magnitude, and orientation in a 3D space. We can estimate the 
dipole parameters by repeated optimization of the parameters of the model so that 
the dipoles multiplied by the forward model fit the scalp distribution. Alternatively, 
a set of a priori fixed locations can be set based on theoretical specifications of 
the known effects, and thus only the parameters of orientation and magnitude 
are estimated. The ECD models are overdetermined because the number of di-
pole parameters is significantly less than the number of surface sensors (i.e., EEG 
electrodes), as the number of the estimated dipole parameters needs to be smaller 
than the number of electrodes on the scalp to guarantee a unique (overdetermined) 
solution (Michel et al., 2004).

A forward model needs to be constructed to estimate the electrical activity over the 
scalp in ECD modeling, as well as distributed source modeling. The forward model 
represents the head geometry and tissue conductivity and delineates how the activation 
generated by the dipoles propagates to the scalp; the so called “lead- field” matrix. The 
estimated electrical activity over the scalp is calculated by applying the forward model 
to the current dipoles with certain orientations and magnitudes (i.e., the forward solu-
tion). For ECD modeling, the output of this so- called forward solution can be compared 
to the actual electrical activity on the scalp, and thus the amount of variance explained 
by the selected current dipoles can be calculated (Richards, 2003; Scherg, 1992). The 
optimal solution is gained through the iteration of the forward solution with different 
parameters (location, orientation, and magnitude) of the dipoles until the minimal re-
sidual variance is obtained (Scherg et al., 1999).

A practical concern associated with equivalent current dipole modeling is the un-
certainty about the number of dipoles and their locations that should be tested by the 
forward solution. One solution to this concern is to make a priori assumptions of the 
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number and location of dipoles based on other neuroimaging data, such as functional 
magnetic resonance imaging (fMRI) and positron emission tomography (PET) (Agam 
et al., 2011; Foxe et al., 2003). For example, a meta- analysis of previous fMRI reports was 
conducted by Foxe and colleagues (2003) to find out the brain regions that were consist-
ently activated in the attention task used by the authors. The location of these regions 
was used as a guide in their source analysis, such that the MRI coordinates of these 
areas were used as the seeds for the dipoles in the forward solution, with the assumption 
that the task- related EEG activity was generated in these areas. A priori assumptions 
can also be made based on theoretical rationale and findigns from previous research, 
such as using the fusiform and occipital face area (FFA; OFA) as the potential sources 
for the N170 component (Gao et al., 2019), the occipital and parietal regions for alpha 
oscillations (Xie et al., 2017), and the pre- central cortex for the mu rhythm (Thorpe 
et al., 2016). Gao and colleagues (2019) conducted a thorough literature review of the 
cortical source locations of the N170 ERP component found by previous EEG studies 
and the 3D coordinates of the FFA identified by previous fMRI research, and then used 
these locations as a priori defined regions of interest (ROIs) in their cortical source lo-
calization. Section 2.3 provides further information about how to define a priori ROIs 
for source localization.

16.2.2 Distributed Source Modeling

In distributed source models, cortical dipoles are distributed over the entire source 
space, and each dipole has a fixed location. The locations of the dipoles are called the 
“source space”. The source space can be GM voxels derived from a structural MRI, the 
surface of the brain or “inner compartment” in boundary element methods, or the en-
tire brain volume. A forward model is also needed for distributed source modeling. For 
distributed source modeling, the forward model is combined with the source space 
to estimate an inverse spatial filter (Grech et al., 2008). The inverse spatial filter, when 
multiplied by the observed scalp electrical current distribution, reconstructs the current 
density across the entire set of potential source locations (e.g., the current- density re-
construction [CDR] method).

The computation of the inverse spatial filter is problematic because the inverse of the 
lead- field matrix is “underdetermined”. The relation between the scalp EEG potentials 
and the source activation can be simplified and illustrated by the following equation with 
the assumption that this relation is linear: Y (scalp potential) =  K∙X (source moments) +  
E (noise). In this equation, K stands for the transfer matrix from brain sources (the elec-
trical “field”) to the scalp potentials (the sensor “leads”) and is referred to as the lead- 
field matrix. Mathematically, the source moments can be calculated by a transform of 
the previous equation: X =  K- 1 ∙ Y. Here, K- 1 is the inverse of the lead- field matrix and 
referred to as the inverse spatial filter, which can be used to project the measured data on 
the scalp to the source space. The matrix inversion of K is “underdetermined” because 
the number of sources is substantially larger than the number of surface electrodes. 
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Thus, additional constraints must be imposed to obtain unique and well- posed linear 
inverse solutions (Grech et al., 2008; He et al., 2018).

The solution to the underdetermined construction of the inverse spatial filter is to 
constrain the solution by mathematical or quantitative procedures (Grech et al., 2008; 
Michel & He, 2012). The following paragraphs introduce a couple of widely adopted 
solutions in distributed source modeling: minimum norm estimation (MNE), low- 
resolution electromagnetic tomography (LORETA), standardized low- resolution 
electromagnetic tomography (sLORETA), and exact low- resolution electromagnetic 
tomography (eLORETA). Pascual- Marqui and colleagues have made great contribution 
to the development of the “LORETA family” in the past two decades (Sherlin, 2009). 
A number of additional solutions have been developed and utilized by the EEG re-
search community, such as weighted MNE, shrinking LORETA FOCUSS (SLF), local 
autoregressive average, and beamforming techniques. Detailed description of these 
methods can be found elsewhere (Grech et al., 2008; Green & McDonald, 2009; Hallez 
et al., 2007; He et al., 2018).

The first introduced algorithm or constraint to the inverse solution in distributed 
source modeling was the minimum norm least- squares inverse (Hämäläinen & 
Ilmoniemi, 1994), often called the MNE. This algorithm minimizes the least- square 
error of the estimated inverse solution X in the equation described earlier, which means 
it results in an inverse solution with the lowest overall intensity (Hauk, 2004). The in-
verse solution obtained from MNE tends to be biased towards weak and superficial 
sources (Michel et al., 2004). To overcome the problem of this surface- restricted MNE 
algorithm, several methods have been developed that keep the basic mathematical 
relations of the MNE but alter its characteristics to resolve its weaknesses. For example, 
an early modification was to use a depth- weighting matrix in the formula to account for 
the MNE’s bias toward superficial surfaces.

The LORETA algorithm was devised to add to the MNE by the additional constraint 
to smooth the sources with a Laplacian filter (Pascual- Marqui et al., 1994). The LORETA 
method was also designed to solve the “surface source” issue of MNE, such that it favors 
solutions with strong activation of a large number of sources and punishes solutions 
with small number of surface sources. The Laplacian of the sources is a measure of spa-
tial roughness. Minimizing the Laplacian of sources leads to lower resolution in the 
source space, and thus the solution of LORETA algorithm is smoother than MNE and 
weighted MNE algorithms.

Pascual- Marqui (2002) developed the more widely used inverse algorithm sLORETA, 
which uses the current density estimate given by the MNE solution and weights the so-
lution by the standardized values of the current density estimate. This partially alleviates 
the emphasis on superficial sources found in the MNE by enhancing the smaller deeper 
sources with their lower standard deviation. It was found that sLORETA results in fewer 
errors in reconstructed sources than MNE (Pascual- Marqui, 2002). The source local-
ization accuracy has been compared using weighted MNE, LORETA, and sLORETA 
by Monte- Carlo analysis of data with different noise levels and sources with different 
depth in the brain (Grech et al., 2008). Grech and colleagues found that the sLORETA 
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algorithm had the lowest level of localization error and fewest ghost sources, which are 
sources estimated from the inverse solution but not actually present in the simulated 
data. Therefore, sLORETA outperforms the other methods regarding the accuracy of 
source localization using simulated data with different levels of artifacts.

The eLORETA algorithm is another member of the “MNE family” that is also built 
upon the linear weighted MNE inverse solution and has been regarded as improvement 
over the previously developed LORETA and sLORETA algorithms (Pascual- Marqui, 
2007). The eLORETA algorithm provides exact localization with zero error (i.e., no 
localization bias) to the inverse solution even in the presence of measurement and 
structured noise in the data. Assuming there is an activated dipole in the brain with an 
arbitrary orientation and known magnitude, the scalp EEG potentials generated by this 
dipole can be simulated. Applying the eLORETA algorithm as the inverse solution to 
the scalp measurement would give reconstructed current density fields. The “zero error 
localization” property of eLORETA means that there is zero distance between the actual 
point- test source and the reconstructed source with the absolute maximum amplitude. 
It should be noted this property has not been achieved by previously published discrete 
linear distributed source modeling algorithms (Pascual- Marqui, 2007).

Jatoi and colleagues (2014) compared the source localization accuracy between 
sLORETA and eLORETA for EEG data collected in an experiment with visual stimuli. 
The eLORETA algorithm was found to have enhanced ability to suppress less- significant 
sources in the brain compared to sLORETA. Jatoi and colleagues also found that 
eLORETA gave less localization error and clearer (less blurry) images as compared to 
sLORETA. As a member of the LORETA family, the moments in neighboring neuronal 
sources are also highly correlated for eLORETA.

16.2.3 The “Inverse Problem” with EEG Source Analysis

A common criticism of EEG source analysis is the “inverse problem”. The complaint is 
that a unique solution to the underlying dipole sources is not possible, which occurs be-
cause an infinite number of dipole distributions can be constructed, combined with the 
forward model, and produce the same distribution of EEG potentials on the scalp.

The extent to which the inverse problem affects source analysis depends on a number 
of factors. The ECD modeling is the most problematic type of inverse modeling, as the 
resulting model can always be improved by adding one more parameter (e.g., another 
dipole), or a completely different set of dipole parameters (Hallez et al., 2007). There 
is no perfect solution to the number of dipoles necessary to find a solution with ECD 
modeling. Some programs using blind optimization techniques result in solutions that 
are physiologically unsound.

Distributed source modeling partially alleviates the major concerns with the inverse 
program. Distributed source models require no a priori assumption (nonparametric) of 
the number of dipoles (sources) in the model. This minimizes the error in source local-
ization due to misspecification of the number and location of the dipoles (Grech et al., 
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2008; Michel et al., 2004). For example, using the CDR approach, all potential source 
locations (e.g., brain volumes) are simultaneously estimated and the relative magni-
tude of the reconstructed source activity, also called the current source density (CSD), 
provides the putative locations of the sources. The source space of the distributed source 
models may be used to constrain the solution to physiologically reasonable positions. 
For example, since the generation of the EEG occurs in the postsynaptic potentials of 
the columnar pyramidal cells, the dipoles may be limited to gray matter (GM) and the 
dipole directions fixed as perpendicular to the cortical surface. These characteristics 
have led to a growing tendency in the past two decades to replace ECD optimization 
methods with distributed source modeling.

16.2.4 Applying a priori Information as Constraints to the 
EEG Inverse Solution

The linear distributed approaches devised to solve the inverse problem estimate all 
possible source locations simultaneously. However, there are still an infinite number 
of configurations of source activation that could generate the EEG scalp potentials, 
unless a specific set of locations are selected in advance. Anatomical and physio-
logical information derived from other imaging modalities like fMRI, PET, and 
magnetoencephalography (MEG) have been be applied as constraints to the EEG in-
verse solution (Michel & He, 2012). In these studies, a priori anatomical and psycho-
physiological information is used as constraints on the inverse modeling in order to 
obtain a unique solution or reduce the number of potential solutions. The following two 
paragraphs introduce a few examples.

These external constraints can be imposed on the construction of the forward and in-
verse models to reduce the inverse solution space a priori (Lei et al., 2011; Phillips et al., 
2002a; Phillips et al., 2002b; Yang et al., 2010) or used as a priori defined ROIs in statis-
tical analyses to reduce the family- wise error rate (Gao et al., 2019; Xie et al., 2017). For 
example, Lei and colleagues (2011) used temporally coherent brain networks derived 
from fMRI data as the covariance priors of the EEG source reconstruction. This fMRI 
networks- based source imaging approach outperformed the traditional distributed 
source localization methods without fMRI priors and efficiently integrated the 
astonishing temporal resolution of EEG with the high spatial resolution of fMRI. In an-
other study, an fMRI activation map was used as a spatial constraint to the MNE inverse 
solution, i.e., a fMRI- weighted MNE (Yang et al., 2010). The authors first conducted in-
dependent component analysis (ICA) of the EEG time- series. The ICs are then used to 
construct a regressor to fit in the fMRI signals. The output fMRI activation map was 
used as a spatial constraint to the estimation of the source distribution underlying its 
corresponding IC. Reliable source reconstructed time- frequency configuration and 
functional connectivity maps were obtained by using this method for both simulated 
and experimental data (Yang et al., 2010).
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A recent study by Gao and colleagues (2019) investigated the cortical sources of the 
N170 face- sensitive ERP component. Individual structural MRI, fMRI, and EEG data 
were collected. The anatomical information of the head and brain was used to create 
individual realistic head models for source localization. The face- sensitive regions 
identified during the fMRI scan were used as the a priori defined ROIs in the analyses 
of the reconstructed source activity of the N170 component. This procedure reduces 
the family- wise error rate that would otherwise be caused by multiple comparisons or 
analyses across all source volumes in the brain.

16.3 Using Realistic Models 
and Structural MRI 

for Source Localization

The forward model that is used in both equivalent current dipole models and 
distributed source models and is created with a head model. The head model in 
EEG source localization describes media inside the head with their relative elec-
trical conductivity. The head model is the link between the source volumes and 
the electrical potentials on the scalp in source analysis. The head models for 
EEG source localization have progressed from spherical models with only two or 
three compartments to realistic models with all different tissues of the head being 
segmented and assigned for their own conductivity values. This section introduces 
the importance of using realistic head models in EEG source analysis and its usage 
in empirical research. Since this chapter mostly focuses on realistic head models, an 
overview of other types of head models can be found elsewhere (Grech et al., 2008; 
Hallez et al., 2007).

16.3.1 The Effect of Distinction between Head Tissues 
in the Realistic Models for Source Analysis

An accurate head model that describes the materials inside the head and their relative 
conductivity is beneficial for source analysis (Reynolds & Richards, 2009; Vorwerk 
et al., 2014). The two most commonly used methods to create a realistic volume conduc-
tion head model are the boundary element method (BEM) and finite element method 
(FEM). The BEM model segments the head into hierarchical compartments with homo-
geneous conductivity profiles within a compartment. The FEM model defines the con-
ductivity of individual voxels inside the head based on its material. For example, GM, 
white matter (WM), and cerebrospinal fluid (CSF) would each have its own conduct-
ivity value in a FEM model.
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The creation of the FEM model used to be much more computational demanding 
than the BEM model (Michel et al., 2004), but the computational efficiency of computers 
has now been substantially improved, which makes the FEM model more applic-
able in source analysis. In a recent paper, Vorwerk and colleagues (2018) introduced 
a MATLAB- based pipeline, the “Fieldtrip- SimBio” pipeline, that aims to reduce the 
workload for the generation of multicompartment FEM models. This pipeline has been 
added to the existing package of functions to create FEM models in the Fieldtrip toolbox 
(Oostenveld et al., 2011), which allows for an easy construction and application of a FEM 
model for source analysis (Vorwerk et al., 2018).

Many studies have found that it is important to model the inhomogeneous distri-
bution of brain and head tissues (Cho et al., 2015; Vorwerk et al., 2014). Vorwerk and 
colleagues (2014) comprehensively investigated the influence of modeling versus not 
modeling certain conductive tissues of the head on the EEG and MEG forward so-
lution. They tested the effect of hierarchically adding new materials to a basic three- 
compartment head model (brain, skull, scalp) on the accuracy of source localization. 
Specifically, they tested the effect of the addition of realistic distribution of CSF, GM, 
and WM, differentiation of the skull spongiosa and compacta, and anisotropic WM 
conductivities on source localization. The largest increase in the accuracy of signal 
topography and amplitude from model to model came with the addition of CSF to the 
three- compartment model, followed by lesser (but still appreciable) increases when 
adding GM and WM and the anisotropic WM conductivities into the head models. The 
lack of the GM/ WM distinction, or CSF, in the BEM compartment models, would re-
sult in considerable errors in the reconstructed source activities, which concurs with 
Cho and colleagues’ (2015) study, which showed that the distinction between these brain 
tissues in source localization is important for analyzing EEG and MEG functional con-
nectivity between cortical regions. Taken together, these findings highlight the import-
ance of modeling the head conductive compartments as realistically as possible in order 
to increase the accuracy of source localization.

By contrast, a few other studies have compared the difference between using BEM 
and FEM models for source localization but found no substantial difference in the 
reconstructed source activation (Michel & He, 2012). For example, Birot and colleagues 
(2014) compared the source localization accuracy with LORETA using BEM and FEM 
models with 38 epileptic patients. These patients underwent scalp EEG and intracranial 
EEG recordings and subsequent resection surgery. The results of this study implicated 
that using the BEM and FEM models did not cause a significant difference in the ac-
curacy of source localization (Birot et al., 2014). This finding suggests that the choice of a 
head model may not be a crucial factor for source localization using distributed localiza-
tion algorithm for some applications.

16.3.2 The Uncertainty of the Skull- to- Brain Conductivity 
Ratio in Realistic Head Models

Another important consideration determining the accuracy of the forward and in-
verse solutions is to correctly model the conductivity of different tissues, especially the 
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brain- to- skull conductivity ratio (Acar & Makeig, 2013). There is a consensus that the 
human skull has a much lower conductivity value than the other tissues inside the head. 
However, there is dispute about the correct skull conductivity value or the skull- to- brain 
conductivity ratio to use for creating head models (Michel & He, 2012). The ratio of 1/ 
80 is commonly specified as the skull- to- brain conductivity ratio in head models (ei-
ther spherical or realistic), with their conductivity values being 0.0042 and 0.33 S/ m 
(Siemens per meter, reciprocal of ohm Ω), respectively. The skull- to- brain conductivity 
ratio of 1/ 80 originated from studies that measured the electrical properties of brain and 
head tissues (Gabriel et al., 1996; Rush & Driscoll, 1969). This ratio has been set up as 
the default in several source localization toolboxes, such as brain electrical source ana-
lysis (BESA; Megis Software GmbH, Gräfelfing, Germany) and Fieldtrip (Oostenveld 
et al., 2011), and widely used in empirical research and simulated studies (Ryynanen 
et al., 2006).

More recent studies have suggested that the traditional skull to brain conductivity 
ratio of 1/ 80 might be misestimated. A few studies have been conducted to estimate 
or measure the conductivity of human skull, and findings have shown that the correct 
skull- to- brain conductivity ratio may be between 1/ 15 to 1/ 30, which is much higher than 
the traditional ratio, and using a lower skull- to- brain conductivity ratio (e.g., 1/ 80) may 
result in shallower source locations (Acar et al., 2016; Acar & Makeig, 2013; Dannhauer 
et al., 2011; Lai et al., 2005; Oostendorp et al., 2000). Therefore, the traditional ratio of 
skull- to- brain conductivity may need to be adjusted when creating head models for cor-
tical source localization.

Bone conductivities are age dependent, with infants and children having much 
higher skull conductivity values compared to adults (Odabaee et al., 2014). This 
means that using the adult skull conductivity values to create head models for infant 
and child participants could lead to inaccurate source localization results (Reynolds 
& Richards, 2009). To this end, some source localization software, for example, 
BESA, provides references for the skull- to- brain conductivity ratio for children and 
adolescents at different ages. Recent studies have also started to adopt age- appropriate 
skull conductivity values for source localization on infant EEG data (Xie, Jensen, 
et al., 2019).

16.3.3 The Importance of Realistic Head Models 
for Source Localization in Pediatric Populations

Using age- specific realistic head models for source analysis may be especially important 
for pediatric populations. This is because there are substantial neuroanatomical changes 
of the tissues inside the head over childhood, and the structure of a child brain differs 
greatly from an adult brain (Phan et al., 2018; Reynolds & Richards, 2009; Richards, W., 
2015). For example, skull conductivity value and thickness are age dependent (Wendel, 
Vaisanen, Seemann, Hyttinen, & Malmivuo, 2010), such that the skull conductivity 
value is much higher for infants than adults (Odabaee et al., 2014). Using the adult skull 
conductivity values for infant EEG data may have the effect of inferring the source of the 
current as being shallower in the cortex than where it actually occurs.
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A significant advance in cortical source analysis with pediatric participants is to use 
realistic head models created with individual MRIs or an age- appropriate MRI template 
(Guy et al., 2016; Hämäläinen et al., 2011; Ortiz- Mantilla et al., 2012; Xie et al., 2017). 
Although systematic estimation of skull conductivity for infants and children at different 
ages has not been conducted, studies have tried to use higher skull conductivity values 
for source localization for infants and young children data (Hämäläinen et al., 2011; 
Ortiz- Mantilla et al., 2012; Xie et al., 2018). There are now age- specific MRI templates 
available to the public for research purposes, which can be used to create realistic head 
models for children (e.g., the Neurodevelopment MRI Database) (Richards et al., 2016). 
Since the fontanels and unmended skull sutures of an infant head could allow current 
flow to the scalp unimpeded by the skull, a future direction is to take the fontanels and 
skull sutures and the conductivity and topographical differences between infants’ and 
adults’ heads into account when creating the realistic head models for infants.

16.4 Application of Source 
Localization in EEG 
Frequency Analysis

Human brain oscillatory activity is generated by neural tissue in the central nervous 
system spontaneously or in response to stimuli in the environment. The significance 
of these oscillatory signals in sensory- cognitive processes has become increasingly 
evident. Using source localization in EEG (time) frequency analysis has made great 
contributions to our understanding of the cortical mechanisms of cognitive processes 
associated with oscillatory activities in various frequency bands. Using source localiza-
tion of EEG signals to obtain reconstructed cortical activities also allows us to investi-
gate functional connectivity withing and between brain networks during cognitive tasks 
and resting- state. The current section reviews the application of source localization 
techniques in EEG frequency analysis and how this method has provided insights into 
brain functions and network organizations.

16.4.1 EEG Source Localization in Frequency Analysis 
for Cognitive Functions

The neural generators of brain oscillatory activity in different frequency bands during 
cognitive tasks are of great interests to the EEG community. The functional signifi-
cance of cortical oscillations in low and high frequency bands has been specified using 
source localization techniques for various cognitive processes, such as spatial attention 
orienting and attentional control (Doesburg et al., 2009; Jones et al., 2010; Sauseng 
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et al., 2007), sustained attention and vigilance (Kim et al., 2017), error monitoring and 
conflict processing (Cohen, 2011; Cohen & Ridderinkhof, 2013; Yeung et al., 2007), 
working memory (Maurer et al., 2015; Michels et al., 2010; Michels et al., 2008; Onton 
et al., 2005), motion observation and execution (Nystrom et al., 2011; Ritter et al., 2009; 
Thorpe et al., 2016). There is a large body of literature on the developmental origin of 
the relation between these cognitive processes and corresponding EEG oscillations (Bell 
& Cuevas, 2012). EEG source localization has also made it possible to investigate the 
cortical sources of EEG oscillatory activities associated with cognitive performance in 
infants and children (see Section 16.4.4).

The source localization techniques discussed in the previous sections open the av-
enue to unravel the crucial role of EEG oscillatory activity in human brain functions. 
For instance, Sauseng and colleagues (2007) investigated the function of the theta- 
band oscillations in sustained attention and executive control. They examined how 
EEG theta- band activity changed as a function of task difficulty and memory load. The 
participants were required to execute complex sequential finger movements requiring 
different levels of memory load, such as execution of a previously trained simple se-
quence, an overlearned complex sequence, or a novel complex sequence. Local frontal- 
midline theta activity on the scalp was found to be associated with the general level of 
cognitive demand, with the highest power found for the most demanding condition. 
This theta activity was reconstructed to the source space using the LORETA method. 
Specifically, the CSD was reconstructed for more than 2000 cortical voxels across the 
brain using distributed source modeling, separately for different cognitive conditions. 
The source activity was then compared voxel by voxel between the conditions, and mul-
tiple comparisons were statistically controlled. The authors found that the CSD in the 
anterior cingulate gyrus was significantly different between the conditions, suggesting 
that theta- band oscillations generated by this region may reflect the activation of an at-
tentional system responsible for allocating cognitive resources (Sauseng et al., 2007).

Theta- band activity generated by the frontal cortex also plays an important role 
in error monitoring (Cohen, 2011). Cohen found that EEG theta- band activity in the 
frontal electrodes was associated with error- monitoring behaviors in adults. The author 
subsequently conducted source localization of the theta- band activity using equiva-
lent current dipole modeling with subject- specific BEM models created with individual 
MRIs. One dipole that explained the most amount of variance of the scalp potentials was 
estimated per subject. The author found that the dipoles in the medial prefrontal and 
anterior cingulate cortexes best explained the variance in the frontal theta activity across 
subjects, suggesting that these areas are the potential sources of the distribution of the 
theta activity on the scalp.

EEG oscillations generated by the frontal area has been found to play an important 
role in maintaining vigilance (sustained attention) during cognitive tasks. Kim and 
colleagues (2017) investigated which brain areas are engaged in controlling the mainten-
ance of vigilance using source analysis of EEG signals. Distributed source modeling with 
the sLORETA algorithm was conducted to obtain smooth source activation in different 
frequency bands across the entire cortex. The authors found that the activity in the left 
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prefrontal cortex was significantly correlated with vigilance variation in the delta, beta, 
and gamma bands, which suggests the involvement of this brain region in maintaining 
vigilance. To sum up, these empirical studies demonstrated how using EEG source ana-
lysis in frequency analysis could advance our understanding of the neural mechanisms 
underlying different cognitive processes.

16.4.2 EEG Source Localization for Clinical Applications

Imaging the neuronal activity that generates the scalp EEG oscillations is also desir-
able for clinical purposes. EEG source imaging offers a useful tool to help presurgical 
evaluation of patients with epilepsy in a noninvasive way, as identifying the cortical epi-
leptic zone for ictal oscillations is crucial for surgical resection. The decent accuracy 
(~80%) of using EEG source localization in determining the subsequently resected zone 
has been consistently achieved across studies on pediatric (Lu et al., 2012) and adult 
patients (Brodbeck et al., 2011; Yang et al., 2011). For example, Brodbeck and colleagues 
investigated the sensitivity and specificity of using EEG source imaging to detect the 
epileptic zone for over 150 patients who underwent surgery later. The authors found 
that using EEG source imaging resulted in high sensitivity (84%) and specificity (88%) 
in detecting the seizure zone. The obtained sensitivity and specificity values were even 
higher than some conventional neuroimaging tools (e.g., fMRI and PET). It should be 
noted that acceptable localization results were only obtained when a large number of 
electrodes (>128 channels) were used for data collection (Brodbeck et al., 2011), which 
suggests the importance of using sufficient electrodes to obtain a better resolution of the 
topographic features, that is, to avoid distortions of the distribution of scalp potentials 
due to large distances between electrodes (see Michel et al., 2004 for a thorough review 
of the effect of the number of electrodes). Spectral analysis of EEG with source localiza-
tion techniques has also been applied to characterize difficulties in brain functioning 
for other clinical populations, such as children with ADHD (Liotti et al., 2005), people 
with tonic pain (Canuet et al., 2012), and Parkinsonian patients (Moazami- Goudarzi 
et al., 2008).

16.4.3 Applying EEG Source Analysis to Studying 
Functional Brain Connectivity in the Frequency Domain

One critical question in the field of cognitive neuroscience is how brain regions in 
large- scale networks communicate and cooperate with each other during tasks and 
resting- state. The application of neuroimaging tools makes it possible for researchers 
to investigate the dynamic interregional communications inside the brain and their de-
velopment throughout the lifespan. Using fMRI allows people to obtain images of the 
blood- oxygen- level dependent (BOLD) signals in brain voxels. However, the temporal 
resolution of the BOLD response in fMRI depends on blood flow occurring several 
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seconds following the demand for glucose via oxygenated hemoglobin. This restricts 
fMRI connectivity analyses to “seconds” resolution and prohibits this technique from 
studying dynamic changes in neural oscillations in sub- second frequency ranges. By 
contrast, EEG and MEG directly measure synchronized neuronal activity with msec 
time resolution and thus can measure dynamic changes in neural oscillations at the 
resolution of the neural system (e.g., sub- seconds resolution).

The examination of EEG functional connectivity between electrodes on the scalp 
has been used to study synchronized fluctuations in various rhythms that may reflect 
the dynamic coordination and network structure inside the brain (Bastos & Schoffelen, 
2016; Stam, 2005). A variety of methods have been developed to evaluate the “correl-
ation or synchronization” between the signals from two electrodes, such as the correl-
ation between power envelope (Hipp et al., 2012), coherence analysis (Bowyer, 2016), 
and phase synchronization (Stam et al., 2007). In addition, previous work studying EEG 
functional connectivity on the scalp level with infants and children provides insights 
into the developmental origin of integrated brain networks (see Chu- Shore et al., 2011 
for a review). For example, Cuevas and colleagues (2012) investigated the association be-
tween infants’ working memory and inhibitory control performance in cognitive tasks 
and the coherence between frontal electrodes in the alpha band. The authors found that 
frontal alpha coherence was associated with inhibitory control processes in 10- month- 
old infants, which suggests that the cooperation between brain regions already plays an 
important role in cognitive performance in infancy (Cuevas et al., 2012).

The volume conduction/ field spread issue of surface EEG and the effect of the ref-
erence electrode on phase synchronization and correlation values impede our under-
standing of the underlying neural mechanisms from the EEG functional connectivity 
results on the scalp (Bastos & Schoffelen, 2016; Guevara et al., 2005; Schiff, 2005). 
Specifically, this problem means that the activity of a cortical source can be “visible” at 
multiple electrodes due to the field smearing on the scalp. This will cause spurious cor-
relation or synchronization values between electrodes. Consequently, the interpretation 
of the scalp- level connectivity requires considerable caution because two “connected 
or synchronized” electrodes may not reflect the brain regions that are functionally 
connected.

Applying cortical source reconstruction methods to EEG data could substantially 
mitigate the consequence of volume conduction. Brain functional connectivity using 
EEG could be done by first estimating the sources of the surface signals, deriving time- 
domain activity of the cortical sources via the time- domain activity of the surface ac-
tivity, and then doing functional connectivity in the source- space by calculating the 
correlation between amplitudes (or power envelope) of times- series in cortical sources 
or phase synchronization in different frequency bands after Fourier transformation of 
the time- series in cortical sources into the frequency domain. For example, Xie and 
colleagues (2018) developed a pipeline to estimate functional connectivity in the cor-
tical source space to investigate the function of different brain networks of awake infants 
(Figure 16.1). This pipeline includes cortical source reconstruction of EEG recordings 
with age- appropriate MRIs, parcellation of the source activity into brain ROIs, 
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estimating brain functional connectivity between ROIs by calculating the weighted 
phase- lag index (wPLI) (Vinck et al., 2011), and applying graph theory measures to 
examine the overall architecture of brain networks (Figure 16.1). Using this pipeline, the 
authors studied how functional connectivity in infant brain networks, such as the dorsal 
and ventral attention, default mode, and somatosensory networks, changes across 
different attentional states. For instance, they showed that infant sustained attention is 

Preprocessed EEG data
in electrodes

EGI electrodes on
infant MRI template

Source model

Infant FEM
model

Source Reconstruction

LPBA40 Atlas

20 seed-based ROIs

Parcellation of the data into ROIs

Parcellated EEG data
inbrain ROIs

Connectivity between
the 20 seed-based ROIs

Connectivity
analysis

Connectivity between
LPBA40 ROIs

wPLI

Reconstructed EEG data
in source voxels

Figure 16.1 The pipeline for EEG functional connectivity analysis in the source space used by 
Xie et al. (2018).
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associated with attenuated connectivity in the alpha band within the dorsal attention 
network and the DMN, as well as distinct network organization and efficiency indicated 
by graph theory measures (Xie et al., 2018). This work highlights the possibility of 
using source- space functional connectivity analysis to study the development of brain 
networks in early childhood. The following paragraphs introduce more recent advances 
that have been made in combining EEG source localization and functional brain con-
nectivity analysis in the frequency domain.

EEG source localization can be used to detect brain functional connectivity during 
tasks. The functional connectivity between frontal and parietal cortices plays an 
important role in executive control. Sauseng and colleagues (2007) found a more 
distributed pattern of functional connectivity in the theta band between frontal 
and parietal regions when participants executed novel compared to memorized 
figure movement sequences. In a more recent study, Cohen and Ridderinkhof (2013) 
investigated the functional coupling between EEG signals in different frequency bands 
during spatial conflict processing. Inter- regional connectivity in the source space 
was found to differ between the congruent and incongruent conditions in a Simon 
task. Congruent trials induced stronger coupling between frontal theta and par-
ietal alpha and gamma power, while incongruent trials induced stronger coupling of 
the theta power between the medial and lateral frontal regions. Studies also show that 
the inter- regional phase synchrony in low-  and high- frequency bands is associated 
with top- down control of visual and auditory spatial attention (Doesburg et al., 2009; 
Doesburg et al., 2012). For example, Doesburg and colleagues (2009) found increased 
phase synchronization in the alpha band between the visual cortex and parietal regions 
contralateral to the attended visual hemifield and decreased phase synchronization be-
tween those brain regions ipsilateral to the attended visual hemifield. The Cohen and 
Doesburg studies used the beamforming technique for cortical source reconstruction. 
The beamforming techniques are not covered here and have been reviewed elsewhere 
(Green & McDonald, 2009).

The functional connectivity analysis in the source space of spontaneous EEG during 
resting- state has provided insights into the structure and functioning of brain networks, 
as well as the development of brain networks over childhood. Liu and colleagues (2017) 
detected large- scale brain networks in human adults using high- density EEG recordings 
along with the eLORETA technique and realistic head models for source analysis. ICA 
analysis of source reconstructed power envelops was conducted to extract functionally 
connected brain regions (networks) in different frequency bands. Their results showed 
that the brain networks identified with resting- state EEG data (e.g., the DMN, attention 
and language networks) were comparable to the brain networks obtained from prior 
resting- state fMRI research (Liu et al., 2017). Mantini and colleagues’ (2007) simultan-
eous EEG- fMRI data were collected during resting- state to unravel the direct relation-
ship between functional connectivity measured by the two metrics. Six major brain 
networks (e.g., the DMN, auditory, visual, and attention networks) were identified from 
the BOLD signals using ICA. The fluctuations in each of these fMRI- defined resting- 
state networks were found to be correlated with EEG power in different frequency bands 
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(e.g., delta, theta, alpha, beta, and gamma). This study was one of the first attempts to ex-
plore the link between EEG brain rhythms and low- frequency coherent fluctuations of 
the BOLD signal during resting- state.

16.4.4 EEG Source Localization in Frequency Analysis 
for Pediatric Populations

High- density EEG offers an easy- to- use tool to measure brain functions for pediatric 
populations. It is often the method of choice when measuring brain activity in awake 
infants and older children due to its superb temporal resolution, easy application, low- 
cost of recordings and relatively higher tolerance to children’s movements compared to 
other neuroimaging tools. Using EEG also makes it possible to monitor infant brain ac-
tivity corresponding to infant behaviors during cognitive tasks, for example, attention 
(Xie et al., 2017), emotion processing (Xie et al., 2018) and recognition memory 
(Reynolds & Richards, 2005) tasks, which could not be done with fMRI. In addition, 
recent advances made in EEG source localization techniques, as reviewed earlier in the 
chapter, have made EEG a comprehensive and powerful brain imaging tool with rea-
sonable spatial and superior temporal resolution (Michel & Murray, 2012). Therefore, 
there is growing interest in using source analysis techniques with high- density EEG 
recordings to examine the development of the cortical sources of neural oscillations 
in different frequency bands during childhood. This section gives an overview of re-
cent progress made in using EEG source localization along with frequency analysis as a 
neuroimaging tool to study brain and cognitive development.

The mu rhythm (“central alpha”) has been proposed to be associated with a puta-
tive human mirror neuron system (Marshall & Meltzoff, 2011). EEG source localiza-
tion has been utilized to study the neurodevelopmental origin of the mirror neuron 
system and the functional significance of the mu rhythm during early childhood. 
Thorpe and colleagues (2016) investigated the structural development of the mu rhythm 
during motor execution. The source analysis of the mu rhythm was conducted using 
the sLORETA algorithm with age- appropriate head models. The results of this study 
showed distributed frontoparietal patterns of cortical activation in the mu rhythm. 
Specifically, the source locations of the mu rhythm were concentrated in the pre-  and 
post- central gyri and the precuneus and inferior parietal regions. The source locations 
of the mu rhythm were found to be consistent across three age groups— the 1-  and 4- 
year- olds and the adults. The finding of the posterior regions as part of the sources 
generating the mu rhythm is reminiscent of two previous studies exploring the cortical 
generators of the infant mu rhythm using ECD models (Nystrom, 2008; Nystrom et al., 
2011). The findings of these studies shed light on the neural generators of the mu rhythm 
in children and its association with motion observation and execution.

Prior studies have suggested that brain rhythms can be manipulated by infant visual 
sustained attention. However, the cortical generators of attention associated brain 
rhythmic activity remained unclear. To fill this knowledge gap, a study by Xie and 
colleagues (2017) explored the complex patterns of EEG oscillations and their cortical 
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sources observed during infant sustained attention. Specifically, the authors examined 
whether infant sustained attention, defined with the infant heart- rate attention model 
(Richards, 2003), was accompanied by distinct EEG rhythmic activities in the theta, 
alpha and beta bands in attention- related cortical areas. Cortical source reconstruc-
tion of EEG power in different frequency bands was conducted using the eLORETA 
method. Realistic head models were created for each participant using individual MRIs. 
Infant sustained attention was found to be accompanied by increased theta power in the 
orbitofrontal and ventral temporal areas and decreased alpha power in brain regions 
within the default mode network (DMN). The relation between infant sustained 
attention and EEG power was not found among infants aged 6 and 8 months, but the re-
lation emerged at age 10 months and became well established by age 12 months (Figure 
16.2). This study established the a connection between infant sustained attention and 
cortical oscillatory activity in the theta and alpha bands.
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Figure 16.2 Development of the effect of sustained attention on infant theta source activation. 
(A) 3D displays for the difference in CDR amplitude between sustained attention and attention 
termination separately for the four ages. Age- appropriate average MRI templates were used for 
the display for each age. Sustained attention effect was primarily shown in the temporal pole, 
orbital frontal, and ventral temporal regions, especially for 10 and 12 months. (B) Bar graphs 
for the average CDR amplitudes in these brain networks for 10 and 12 months. Error bars repre-
sent SEMs.

Adapted from Xie et al., 2017.
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Functional connectivity analysis of source reconstructed resting- state EEG signals 
has recently been adopted to study the development of brain networks with children. 
Bathelt and colleagues (2013) examined the development of brain network communities 
using EEG data collected when children between 2 and 6 years of age were in “resting- 
state” (watching a video clip of calming scenes). Cortical source reconstruction was 
conducted with age- appropriate head models. Graph theory measures were also 
employed to assess the organization and efficiency of brain networks. The authors 
found functional modules that resembled hub networks described for fMRI and de-
velopmental changes in graph theory measures (e.g., path length) with age (Bathelt 
et al., 2013). Similar methods have been used to study how deviations in early experi-
ence, such as poverty and growth faltering, shape brain networks in children living in 
low- income countries (Xie et al., 2019). In a recent study Xie and colleagues explored 
brain functional connectivity as a mediator of the relation between growth faltering and 
future cognitive outcomes in a longitudinal sample of impoverished Bangladeshi chil-
dren. Their results revealed that whole- brain functional connectivity predicted future 
cognitive function and, perhaps more importantly, that brain functional connectivity 
at age 36 months mediated the effect of growth faltering on children’s IQ assessed one 
year later.

16.5  Conclusion

This chapter introduces EEG source localization and its usage in (time) frequency 
analysis. EEG source localization offers superb temporal resolution and increasingly 
improved spatial resolution. Methodological progress helped to improve the accuracy 
of source localization, for example, techniques developed to constrain the inverse 
solutions in distributed source reconstruction. The importance of using realistic head 
models and age- appropriate conductivity values for source localization is also increas-
ingly recognized by the field, especially for research with pediatric populations. These 
advances extended the application of source localization in clinical diagnosis and sci-
entific research. Studies using EEG source localization and frequency analysis provide 
importance insights into the functional significance of oscillatory activities in different 
frequency rhythms in cognitive processes, as well as the maturation of functional brain 
networks over development.
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CHAPTER 17

FREQUENCY 
CHARACTERISTICS  OF SLEEP

ALPÁR S. LÁZÁR, ZSOLT I. LÁZÁR, AND 
RÓBERT BÓDIZS

17.1  Introduction

Our life unfolds around the 24- hour clock, structured by the periodically alternating 
episodes of sleep and wakefulness. This alternation is paralleled by a series of changes 
in the pattern of EEG frequencies and the level of consciousness. Sleep is often regarded 
as a state of inactivity and complete relaxation, securing a general brain recovery from 
prior wakefulness. Nonetheless, the magnitude of variation in the pattern of EEG 
frequencies in sleep are net higher compared to wakefulness, suggesting that sleep is not 
a homogeneous physiological state. Indeed, sleep involves multiple transiently recurrent 
stages characterized by specific oscillatory phenomena, often utterly absent from the 
waking EEG (e.g. sleep spindles, slow oscillations). The rich diversity of neural rhythms 
associated with total or partial lack of consciousness in non- rapid (NREM) or rapid eye 
movement sleep (REM), respectively, conceives sleep as a unique time window allowing 
for a deep insight into the functional neuro- architecture of the brain. As a result of the 
remarkable advances in the acquisition and quantitative analysis techniques of EEG 
data experienced in the last decades, as well as the continuously growing interest in sleep 
research across the globe, our understanding of the nature and functional significance 
of sleep dependent brain oscillatory phenomena has considerably evolved. There is a 
wealth of evidence supporting a tight link between features of sleep- dependent EEG ac-
tivity and waking experience and cognitive performance. What is more, sleep EEG is 
a promising source of reliable biomarkers of the disease process in neurodegenerative 
disorders affecting the brain. Indeed, while sleep EEG is highly sensitive to extrinsic 
factors (e.g., pharmacological agents, physical and electric stimulation), it is remarkably 
modulated by intrinsic factors as well (e.g., age, sex, genetic polymorphisms, mental 
health, neurological disorders). Prominent sleep dependent brain oscillations— sleep 
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slow waves and sleep spindles— are central to the cognitive and physiological function 
of sleep and therefore have become the target of intervention studies aimed at boosting 
sleep quality and cognitive performance by those sleep oscillations. This holds the 
promise of a new line of future treatments aiming to slow down cognitive decline 
associated with aging or various neurological conditions, as well as to help the rehabili-
tation process in acquired brain injury. The current chapter attempts to provide an over-
view of the most characteristic EEG rhythms and their complex coalescence/ interaction 
in making up human sleep. The chapter aims at summarizing the state of the art without 
being oblivious of the historical groundwork.

17.2 Human sleep and its EEG 
features: The multiplicity of rhythms

The cyclic alternation of sleep and wakefulness follows a regular pattern governed by 
several biological timekeeping systems that modulate a series of physiological processes, 
including brain activity and sleep propensity, and thus govern the timing, duration, and 
quality of sleep.

17.2.1  Circadian Rhythms

Circadian rhythms allow organisms to adapt more effectively to environmental changes 
associated with the rotation of the earth (e.g., light, temperature, food availability, pre-
dation risk) and are generated by a molecular clockwork present across most cells of the 
body. These individual clocks are synchronized by the master circadian clock located in 
the suprachiasmatic nucleus (SCN) of the hypothalamus, which is entrained to the 24- h 
light period through the retinohypothalamic tract (Mohawk et al., 2012). The circadian 
clock has a substantial impact on the organism. Its effects range from the modulation 
of gene expressions and protein synthesis (Mohawk et al., 2012) through a variety of 
physiological processes, including hormonal changes, immune functions (Kizaki et al., 
2015), brain arousal and neural rhythms (Cajochen et al., 2013; Dijk & Czeisler, 1995; 
Lazar et al., 2015), to direct effects on cognitive performance, including learning and 
memory (Santhi et al., 2016; Schmidt et al., 2007; Smarr et al., 2014; Wright et al., 2012). 
Given the diurnal nature of wake- sleep periodicity, it is not surprising that circadian 
rhythms are at the heart of sleep regulation.

17.2.2  Sleep Homeostasis

The other major biological time- related system involved in sleep regulation is the so- 
called sleep homeostasis or process H (originally called process S), which governs 
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the balance between the duration and intensity of wakefulness and sleep. The longer 
one stays awake and the more stimulation the brain is exposed to, the greater sleep 
pressure is being accumulated, as reflected by increased slow oscillatory activity in the 
following sleep episode. Process H, however, does not track time awake or asleep in a 
linear manner, but builds up along an asymptotic function (see the thick lines within 
non- shaded regions in Figure 17.1), and following sleep onset it decreases exponen-
tially (see the thick lines within shaded regions in Figure 17.1). Sleep homeostasis is 
closely linked to cellular metabolic- energetic processes as well as synaptic plasticity, 
and the most commonly used EEG marker for sleep homeostasis is delta or slow wave 
activity (SWA) ranging between 0.5 and 4 Hz in sleep (discussed more later). Sleep 
homeostasis is also under a strong age- dependent regulation, presenting a mono-
tonically decreasing upper asymptote with aging, and is altered in depression and 
neurodegenerative disorders.

17.2.3  The Two- Process Model of Sleep Regulation

The effects of the two processes are synthesized in the so- called two- process model of 
sleep regulation (Borbely, 1982; Daan et al., 1984). The model postulates that the timing, 
duration, and the quality of sleep is defined by the interaction of the circadian and the 
homeostatic processes. That is, the switch from wake to sleep happens when the homeo-
static pressure, building up exponentially towards an asymptotic value, reaches an 
upper threshold that consists of a mean value (defined by age for example), modulated 
by a circadian process (see the upper thin line in Figure 17.1.) (Borbely & Achermann, 
1999; Skeldon et al., 2014). The switch from sleep to wake happens when homeostatic 
pressure decaying exponentially reaches a lower threshold (see the lower thin line in 
Figure 17.1.). Sleep duration and quality as well as numerous oscillations during sleep 
show both a homeostatic and a circadian modulation (Dijk & Czeisler, 1995; Lazar 
et al., 2015).

Figure 17.1 Sleep- wake cycles generated by the two- process model (Borbely, 1982).
Thick line represents homeostatic pressure, pressure building up during wake and decaying in sleep following an 

exponential dynamic; thin lines represent the circadian, C(t), modulated thresholds. White areas mark wake episodes, 
shaded areas mark sleep periods. Switches between wakefulness and sleep occur at intersection points between the 

homeostatic pressure and the circadian, C(t), modulated thresholds (thin lines).
Used parameters: T =  24 hours, α= - 0.45, μ =  1, a =  0.1, χw =  18.2 hours, χs =  4.2 hours, H0

– = 0.17, H0
+ = 0.6.

 



404   ALPÁR S. LÁZÁR, ZSOLT I. LÁZÁR, AND RÓBERT BÓDIZS

 

17.2.4  Ultradian Cycles

Besides circadian and homeostatic regulation, sleep is cyclical in itself— periods of 
NREM sleep alternate with REM along an ultradian rhythm in all mammals and pre-
sumably birds as well. In contrast with the largely universal period of the circadian 
rhythm, which is clearly determined by alternating light- dark cycles on Earth, the ul-
tradian sleep cycles seem to be allometrically (i.e., in a body size- dependent manner) 
regulated and are mainly a function of the metabolism ratio of the species. The average 
(modal) duration of a complete NREM- REM cycle is around 90 minutes in adult 
human subjects repeating four to six times over a typical full night sleep, but the dur-
ation of a complete cycle in laboratory rats is around 11 minutes (Kaiser, 2013; Stupfel & 
Pavely, 1990; Savage & West, 2007). The time structure of the consecutive sleep cycles 
is complex and non- random. Cyclic variations of various forms of sleep EEG micro-
structural phenomena, usually associated with autonomic activations, emerge with 
infraslow periodicities (Halász & Bódizs, 2013). At a finer time scale, there are several 
EEG frequencies that are more- or- less specific for either the NREM or the REM phase of 
sleep. According to American Academy of Sleep Medicine (AASM) we can distinguish 
non- rapid eye movement sleep (N or NREM) that consists of three stages: N1 (NREM 
1 or NREM stage 1), N2 (NREM 2 or NREM stage 2), and N3 (slow wave sleep, SWS), as 
well as rapid eye movement sleep (REM). As soon as we initiate sleep, the EEG, elec-
tromyographic (EMG), and electro- oculographic (EOG) activity goes through marked 
changes compared to wakefulness (see Table 17.1). The transition from lighter (N1 or 
NREM 1) to slow wave sleep (SWS) is associated with gradually decreasing muscle ac-
tivity, heart and breathing rate, and body temperature. Moreover, EEG becomes grad-
ually dominated by slower and slower frequency oscillations (in NREM 1 by theta, in 
NREM 2 by mixed frequencies including K- complexes and sleep spindles) until the en-
tire brain will present continuous slow oscillations and delta activity (slow wave activity, 
SWA) in SWS. However, during REM, also called paradoxical sleep, the brain’s electric 
and metabolic activity presents a significant increase as reflected in higher frequency, 
low amplitude mixed EEG frequencies resembling waking brain activity. REM is also 
accompanied by bursts of rapid eye movements, increased heart and breathing rates 
paralleled by muscle atonia. This is the stage of sleep when most dreams are reported. 
The scoring of sleep stages is based on conventions and, beyond characteristic EEG 
features, it requires other polygraphic readouts such as electrooculography (EOG) and 
electromyography (EMG) (Table 17.1 and Figure 17.2).

17.2.5  Infradian Rhythms

The circadian rhythm is far from being the slowest envelope of sleep rhythmicity. There 
are rhythms with periods significantly longer than 24 hours (infradian). Several studies 
suggest that circatrigintan (~30 days) periodicity in coherence with menstrual cycles 
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of females is prevalent and well measurable in human sleep EEG (Baker & Lee, 2018). 
Interestingly, a circatrigintan (circalunar) periodicity (~29.5 days) of sleep- dependent 
EEG activity has also been reported (Cajochen et al., 2013). According to this study, the 
lunar cycle had a significant impact on the frequencies between 0.5 and 16 Hz. More 
specifically, around the full moon, delta activity during NREM sleep decreased by 30%, 
while spindles also exhibited a marked reduction compared to the days around the new 
moon. This is intriguing given the role of delta waves and sleep spindles in the cognitive 
and physiological function of sleep (discussed later). Although there are other studies 
confirming an effect of lunar cycle on sleep duration and quality (Roosli et al., 2006; 

Table 17.1  EEG and polygraphic features of sleep stages according to the 
American Academy of Sleep Medicine (Berry et al., 2017; Iber & 
American Academy of Sleep, 2007).

Sleep stage
EEG (electroencephalography) 
features

EMG 
(electromyography) 
features

EOG 
(electrooculography) 
features

N1 (NREM 1) Low- amplitude, mixed frequency 
activity in the range 4– 7 Hz 
and attenuated alpha activity 
(<50% of the scoring epoch).

Vertex sharp waves.

The chin EMG amplitude 
is variable, often lower 
than during wake.

Slow- rolling eye 
movements (conjugate, 
reasonably regular, 
sinusoidal eye 
movements with an 
initial deflection that 
usually lasts >500 ms).

N2 (NREM 2) The presence of one or more K- 
complexes unassociated with 
arousal.

One or more sleep spindles.

The chin EMG is of 
variable amplitude, but 
usually lower than in 
wake.

Usually, eye movement 
is not noticed during 
N2.

N3 (SWS) SWS =  slow wave sleep.
Dominant slow wave activity: EEG 

waves of 0.5– 2 Hz and >75 
μV peak- to- peak amplitude, 
measured over the frontal 
regions, referenced to the 
contralateral ear or mastoid 
(F4– M1, F3– M2).

≥20% of a staging epoch consists 
of slow wave activity.

The chin EMG is of 
variable amplitude, 
often lower than in 
stage N2, sometimes as 
low as in REM sleep.

Usually, eye movements 
are not noticed during 
N3.

REM Low- amplitude, mixed- frequency 
EEG activity without K- 
complexes or sleep spindles.

Sawtooth waves may be present 
as well.

Low- amplitude chin 
EMG— baseline EMG 
activity, usually is at 
the lowest level of all 
recording.

Conjugated, 
episodic, sharply 
peaked, irregular eye 
movements.

A staging epoch is either 20 or 30 seconds long.
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Figure 17.2 Polysomnographic signal characteristics of sleep stages. Characteristic 
electroencephalographic (EEG) and polygraphic samples (left panel) and corresponding power 
spectra (right panel) measured over the left frontal (F3), central (C3), parietal (P3), and occipital 
(O1) brain regions. EEG channels are referenced to the contralateral (A2 or M2) mastoid der-
ivation. Artifact free segments were concatenated into a single time series. The power spectral 
density was calculated by employing Welch’s periodogram method. (Average of the squared ab-
solute value of the fast Fourier transform of four seconds long detrended and Hanning tapered 
windows with 50% overlap.) Subsequently a Gaussian smoothing was applied.
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Turanyi et al., 2014), these findings are still controversial due to multiple subsequent 
studies failing to reproduce similar results (Cordi et al., 2014).

Details on these periodicities, rhythms, and regulatory mechanisms are discussed 
across the rest of the chapter. Table 17.2 provides an overview of the relevant frequencies.

Table 17.2  An overview of the frequency characteristics of human sleep

Frequency   
domain

Dominant
period/ 
frequency Principal EEG signature Dominant method

Infradian 
(circatrigintan/ 

circalunar)*

29.5 days
0.392 µHz

Sleep architecture, 
oscillatory peak frequency of 
sleep spindles.

Repeated sleep EEG 
recordings analyzed by FFT/ 
spindle detection.

Circadian ~24 hours
11.5 µHz

Various: sleep architecture, 
modulation of slow wave 
and sleep spindle features.

Forced desynchrony 
protocol/ free running 
rhythms with continuous/  
repeated sleep EEG and FFT.

Ultradian— sleep 
cycle dynamics*

90 (80– 120) min
185 µHz

Characteristic sequence of 
NREM and REM sleep EEG 
features.

FFT/ wavelet/ second order 
spectra/  modeling.

Infraslow/ CAP 20– 40 s
33 mHz

DC- EEG recorded 
fluctuations/ cyclic 
simultaneous variation of 
sleep EEG patterns.

Full- band EEG/ visual or 
automatic detection/ 
second order spectra.

Slow 1– 10 s
1 Hz

Surface- negative large slow 
waves, cross- frequency 
coupling with higher 
frequency oscillations 
(NREM sleep).

FFT/ slope and peak 
analysis.

Delta 0.25– 1 s
2 Hz

Medium- sized, background 
slow waves during NREM 
sleep.

FFT/ autoregressive 
spectrum/ PAA

Hippocampal RSA* 0.33– 0.66 s
2.25 Hz

Rhythmic slow activity 
in the hippocampus/ 
parahippocampal gyrus 
during REM sleep.

FFT/ PAA

Alpha 83.3– 125 ms
10 Hz

(Quasi- )sinusoidal waves 
with fluctuating amplitude 
and posterior dominance 
during eyes closed rest, 
microarousals during sleep 
and to some extent during 
tonic REM sleep.

FFT/ wavelet/ PAA

Sleep spindles/  
sigma

62.5– 90.9 ms
13 Hz

Waxing and waning 
oscillatory episodes in NREM 
sleep.

FFT/ wavelet/ PAA/  various 
detection methods.

(continued)
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17.3 An overall picture of sleep EEG

Before providing a detailed analysis of specific sleep EEG oscillations, we present some 
core, defining features of the global picture of sleep EEG, like overall EEG amplitude, 
the amplitude vs. frequency relationship, power law scaling behavior of EEG spectra, 
H- exponent, and fractality.

EEG amplitude reaches its maxima during SWS (N3 or NREM stages 3&4 according 
to the Rechtschaffen and Kales criteria) in physiological circumstances (Agnew et al., 
1967). Sleep EEG total power values and/ or amplitudes are characterized by age- related 
decreases from childhood through the older ages (Astrom & Trojaborg, 1992). Moreover, 
women are characterized by higher overall sleep EEG power values as compared to 
men (Carrier et al., 2001; Bódizs et al., 2021). The age- related decrease in EEG ampli-
tude power in children/ adolescents may reflect a combination of non- neuronal factors, 
like the increase in skull thickness, and neural maturation (decrease in overall synaptic 
density). Women vs. men differences in overall sleep EEG amplitude are thought to 
mainly reflect differences in skull thickness (Dijk et al., 1989).

EEG rhythms with lower frequency predominate in NREM sleep Stage 2 and SWS as 
compared to REM sleep and wakefulness. The logarithm of sleep EEG amplitude has 
been shown to be a linear function (negative correlate) of the logarithm of frequency in 
NREM sleep of human volunteers (Feinberg et al., 1984). The steepness of the negative 
relationship between log amplitude and log frequency is higher in young as compared to 
elder subjects. The power law scaling behavior of the sleep EEG spectra is an expression 

Frequency   
domain

Dominant
period/ 
frequency Principal EEG signature Dominant method

Beta 62.5– 33.3 ms
22 Hz

Transient bouts of 
oscillations in REM sleep EEG 
(“REM beta tufts”).

FFT/ wavelet/ PAA

Gamma
12.5– 33.3 ms
40 Hz

Locally synchronized, low 
amplitude fast activity 
during SO up states and 
phasic REM.

FFT/ wavelet

Ripples/ HFO*
4– 12.5 ms
100 Hz

Short (70 ms) group 
of waxing and waning 
oscillations (0.95 µV) 
primarily in NREM sleep.

Wavelet/ visual and 
automatic detection.

FFT, Fast Fourier Transformation; PPA, Period Amplitude Analysis; *Evident allometry, human data 
provided

Table 17.2 Continued
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of the same phenomenon. EEG spectra can in fact be well approximated by a power law 
decay function:

 P C ff = × α 

where Pf  denotes power at frequency f , C  is a constant expressing the overall amplitude 
of the EEG, and α  is an exponent between −3 and −1 (Pereda et al., 1998). The power 
law character is demonstrated by the linear profile of the log- log representations of the 
spectrum in Figure 17.2. A lower absolute value of the exponent α  is characteristic for 
wakefulness, REM sleep, and NREM Stage 2 sleep. Higher absolute α , that is, steeper 
spectral slope, is seen in deeper sleep (e.g., first sleep cycle, SWS, younger subjects) 
and more anterior recording sites. Figure 17.2 shows examples for steeper spectral 
slopes in deeper sleep and more anterior recording sites (characterized by locally more 
intense sleep). In the time domain, higher absolute α  indicates a higher contribution 
of low- frequency components as compared to the high frequency ones. It is worth 
noting that the α value depends on the derivation scheme and the type of recording 
(surface scalp vs. electrocorticography) used for the electrophysiological recordings 
during sleep. Bipolar intracranial records are characterized by higher absolute values 
of α  exponents (up to four during sleep) (Freeman & Zhai, 2009) as compared to sur-
face scalp referential derivations (Pereda et al., 1998; Bódizs et al., 2021). Although the 
overall frequency composition of human sleep EEG can be approximated by power 
law functions through fitting a straight line to the log- log spectra and calculating 
its parameters, there are characteristic upward deviations from this generally 
descending trend, due to specific oscillatory events forming spectral peaks with spe-
cific frequencies (Bódizs et al., 2021; Chapter 23). In order to deliberately describe the 
power spectrum by taking into account its prominent peaks, we suggest the inclusion 
of a peak power function in the formula as follows (Bódizs et al., 2021):

P(f) =  C × fα × PPeak(f)

Peak power (PPeak) at frequency f equals 1 if there is no peak and is larger than 1 if there 
is a spectral peak at that frequency. It has to be noted, that PPeak(f) is a whitened power 
measure, because it is characterized by roughly equal power along the frequency axis and 
is thus statistically independent from the spectral slope (α), which constitutes the colored 
noise part of the spectrum, characterized by a power- law type decrease along the fre-
quency scale. PPeak(f) is also normalized in terms of amplitude differences as the term C 
is also partialed out from this function. By using these approaches, 191 spectral measures 
were effectively reduced to 4, which were efficient in characterizing known age- effects, sex- 
differences, and cognitive correlates of NREM sleep EEG (Figure 17.3; Bódizs et al., 2021).

Power law dependence is the hallmark of scale- free phenomena, such as fractals. 
Global sleep EEG features can be characterized by concepts related to self- similarity 
and quantified by a number of closely related measures (Ma et al., 2018; Stam, 2005). 
These include the correlation dimension (Grassberger & Procaccia, 1983), the scaling 
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exponent emerging from detrended fluctuation analysis (Gu & Zhou, 2006), and the 
Hurst exponent, H, which quantifies the smoothness of the signal (Hurst et al., 1965).

That is, a higher H, 0.5 < H < 1, indicates that the changes in the EEG voltage tend to 
“go in the same direction”, or maintain the direction of the deflection for longer periods 
(the signal is relatively smooth). In this case, there are positive correlations between the 
successive increments in voltage. If 0 < H <0.5, the overall correlation between successive 
increments is negative. The H- exponent is closely related to the exponent, α, of the 
power spectra as follows: α = +2 1H . Moreover, the H- exponent correlates with band- 
limited relative spectral power in a sleep stage-  and EEG derivation- specific manner. 
The H- exponent of human sleep EEG is regularly larger than 0.5, which means that the 
sleep EEG (both NREM and REM) is characterized by long- term positive autocorrel-
ation. As expected, the H values have been reported higher during the deepest parts of 
SWS compared to NREM2 and REM across all EEG derivations (Weiss et al., 2009).

In summary, sleep EEG spectra follows a power law function that is the state- specific 
features are best described by multiple frequency bands and their ratio, rather than 
single band measures. In addition, the sleep EEG has fractal structure which should be 
considered when characterizing different sleep- waking states in terms of EEG criteria.

17.4 Infraslow oscillations 
in sleep (ISO)

Infraslow oscillations in sleep (ISO) were originally defined as 0.01– 0.1 Hz rhythmic 
or quasiperiodic changes in DC- EEG (also known as full- band EEG) recorded voltage. 
They can be regarded as extremely low- frequency Fourier components contributing 
additively to the signal. Short- circuiting of skin potentials by applying Ag/ AgCl 
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Figure 17.3 Evolution of EEG power spectral density during one night’s sleep of a young adult 
measured over the left frontal (F3) and parietal (P3) brain regions. Warmer colors represent 
higher power (logarithmic scale). Temporal resolution is 10 seconds/ pixel, each representing 
the average of the short- time Fourier transforms of four segments of 4- s long, Hanning tapered 
windows with 50% overlap.
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electrodes without Au coating and specific EEG gels are required in order to appropri-
ately detect these oscillations (Vanhatalo et al., 2005). Another class of periodic phe-
nomena in the ISO frequency range contribute multiplicatively to the signal, manifesting 
as modulations of the higher frequency components (Parrino et al., 2014, Lecci et al., 
2017, Lazar et al.,2019). Evidence suggests that ISO modulates >0.5 Hz EEG activity, as 
well as interictal epileptic activity during sleep (Vanhatalo et al., 2004). Long lasting (1– 5 
s) occipital negative transients of 200– 700 µV are seen in the DC- EEG records of pre-
term infants, which is probably an early form of ISO during sleep. Delta bursts have 
been seen to be embedded in these transients (Vanhatalo et al., 2002). The power of ISO 
correlates positively with the fMRI BOLD signal intensity of several subcortical regions, 
including the cerebellum, thalamus, and the basal ganglia. In contrast, paramedian 
heteromodal cortical BOLD signal intensities correlate negatively with ISO during sleep 
(Picchioni et al., 2011). The ISO is a global modulation of neural excitability. The gener-
ation of ISO is hypothesized to reflect the long lasting hyperpolarizations of thalamo-
cortical cells, which might be due to the opening of some type of inwardly rectifying K 
+  channels. The latter are hypothesized to be opened by the activation of adenosine A1 
receptors, while the endogenous ligand, adenosine, results from the degradation of ad-
enosine triphosphate (ATP) after its release from glial cells (Hughes et al., 2011).

17.4.1  The Cyclic Alternating Pattern (CAP)

According to Parrino, Grassi, and Milioli (2014), “Arousals during sleep would be better 
conceived not as a single event but rather as part of the dynamic process, in which activating 
phenomena of different intensity and morphology are organized in CAP sequences”. As the 
inter- arousal distance in CAP scoring is defined as 2– 60 s, CAP can be considered roughly an 
EEG oscillation in the ISO frequency range, consisting in the alternation of two phases: the 
A phase and the B phase. The A phase is thought to be the reactive part characterized by the 
activation of several EEG, and in some cases autonomic, phenomena, whereas the B phase 
is a background activity characteristic of the actual stage of NREM sleep. CAP A phase has 
three subtypes. Increasing activation is a characteristic feature of these subtypes as follows: A1 
contains only slow EEG components (SO), A2 is a mixture of slow and fast (alpha, beta) EEG 
features, while A3 is characterized by purely fast EEG components (Parrino et al., 2014). It is 
worth noting that A1 was recently considered a sleep defense mechanism, a so- called delta 
injection providing an instant sleep homeostasis in coherence with the actual sleep need and 
the sleeper’s inner and outer environment (Halász & Bódizs, 2013). The relative time spent in 
CAP as compared to non- CAP sleep indicates the level of microstructural instability of sleep, 
with more time spent in CAP indicating more instability.

17.4.2  Infraslow Oscillations (ISO) in Slow Wave Activity 
and Sleep Spindles

Indirect measures (e.g. spectrum of spectra) of both ISO and CAP are reported in several 
studies focusing on the periodicity of sleep EEG phenomena in humans. For example, 
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sleep EEG slow wave activity (0.5– 4.5 Hz) was shown to be characterized by a 20– 30 s 
periodicity in human volunteers (Achermann & Borbely, 1997), which might indicate 
a CAP- like fluctuation of slow wave amplitude (involving A1 and/ or A2 phases). Sleep 
spindle activity (see below) was shown to be organized in rhythmic wave sequences 
according to multiple frequencies. One of these frequencies falls in the ISO range 
and implies a sleep spindle periodicity of 50– 100 s (0.01– 0.02 Hz) in both mice and 
humans (Lazar et al., 2019; Lecci et al., 2017). Using the spectrum of spectra approach 
(calculating the power of the multivariate time series obtained from the short- time 
Fourier transform for the signal), it was shown that the ISO (0.01– 0.02 Hz) of the sigma 
(10– 15 Hz) power (frequency range corresponding to sleep spindles) is coordinated 
with cardiac oscillations and composed of two phases: one with enhanced and one with 
decreased environmental alertness (Lecci et al., 2017). Moreover, the intensity of ISO 
in the sigma power predominate in NREM 2 and over the posterior regions in humans, 
and is positively associated with declarative memory recall performance following sleep 
(Lecci et al., 2017). Recently, ISO in sleep spindle activity were also quantified. The novel 
method computes the infrapower of an on/ off binary square signal corresponding with 
individually detected sleep spindles. This infrapower is contrasted with that from a com-
putation where the same sleep spindles and inter- spindle lapses are randomly reshuffled 
so that large- scale temporal structures are suppressed. The method validated using 
surrogate data strictly addresses the large- scale temporal structures in the sequence of 
spindle events, does not manifest any obvious biases and is extensible to other phasic 
phenomena such as slow waves. The study showed that ISO were strongest in the fast 
sigma band (13– 15 Hz). Further, a robust infra peak of individually detected fast sleep 
spindles was identified. This intensity and frequency of this peak were modulated by 
topography, sleep stage, and sleep history. The power of ISO in fast sleep spindles is most 
prominent in the centro- parieto- occipital brain regions, left hemisphere, and second 
half of the night, independent of the number of sleep spindles. The frequency of ISO 
is higher over the frontal and temporal brain regions and in the first half of the night 
(Lazar et al., 2019).

17.5 The sleep slow oscillation (SO)

Slow EEG waves are among the most well established neurophysiological features 
of sleep (Figure 17.2). Their presence was apparent in the very first all- night sleep 
EEG records (Loomis et al., 1937). The most prominent type of slow wave activity in 
the sleep EEG is the slow oscillation (SO; 0.1– 1 Hz). The first comprehensive descrip-
tion and experimental analysis of the sleep SO was given by Mircea Steriade and his 
colleagues (Steriade, Contreras et al., 1993; Steriade et al., 1993a, 1993b). Cycles of the SO 
are characterized by a more- or- less regular sequence of neuronal silence/ disfacilitation, 
characterized by a surface negative deflection (down state) and a burst- like neuronal 
firing, taking the form of a surface positive component (up state). Down states are 
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characterized by a non- selectively reduced neural oscillations, while the up states are 
accompanied by higher frequency rhythms (delta waves, spindles, gamma oscillations, 
ripples). It is worth noting that down states are more synchronized over the cortex than 
the up states. The preferential time for the emergence of SO events is slow wave sleep 
(SWS) or Stage N3, although they are present in NREM Stage 2 sleep as well (to a lower 
extent). Sleep SO is a travelling wave. That is, the majority of the events are generated 
over the prefrontal cortex. The antero- posterior direction is the most common, but not 
exclusive, route of travelling, with a speed of 1.2– 7 m/ s (Massimini et al., 2004).

SO emergence is non- monotonic during the deepening of sleep. Spontaneous or re-
active (stimulation- triggered) SO down states emerge in any part of NREM sleep, except 
Stage 1. Some of these events are known as K- complexes, composed predominantly by 
a singular down state (Cash et al., 2009). K- complexes can be elicited by any kind of 
stimulation. Spontaneous events are thought to emerge at an average frequency of 1– 1.7 
events per minute. The highest K- complex emergence is seen in the ascending Stage 2 
sleep periods of NREM phases (Halasz, 2005; Halász & Bódizs, 2013).

In addition to the K- complexes, NREM Stage 2 sleep is rich in SO cycles. These cycles 
are frequently grouped in the A phases of the CAP, which means that the gradual in-
crease of SO during the descending slope (deepening part) of sleep cycles is periodic 
and burst- like (Ujma et al., 2018).

The characteristic features of the SO depend on several factors, but most of these 
factors (e.g., age, sleep cycles, sleep deprivation) converge as sleep pressure. High sleep 
pressure (early sleep, prepubertal age, rebound sleep) is characterized by higher amp-
litude, higher frequency (up to 1 Hz and perhaps sometimes even slightly above), and 
steeper SO events, which are less- frequently interrupted by secondary peaks. Aging is 
characterized by decreased sleep pressure, and thus decreased amplitude, frequency, 
and steepness of SO events. The age- related decrease in SO/ delta power is attenuated in 
subjects with high intelligence as compared to subjects with average intelligence (Potari 
et al., 2017).

Sleep SO are generated in the cortex (Steriade & Amzica, 1998). Likewise, cortico- 
cortical connections are needed to synchronize sleep SO over cortex. However, SO 
spread over and are expressed in several subcortical and non- (neo)cortical structures, 
including the thalamus, the basal forebrain, and the hippocampus. Powerful inward 
transmembrane currents, mainly localized to the supragranular layers, characterize SO 
up states in humans. Although neuronal firing is present, it is sparse, and significantly 
lower, when compared to animal studies (Csercsa et al., 2010). Suppressed cell firing and 
hyperpolarizing currents are found in the SO down state (Csercsa et al., 2010).

17.6 Delta waves

Delta waves (activity) are medium- sized EEG waves of 1– 4 Hz, prevailing in the NREM 
phase of sleep (maximal delta is present in SWS). The term delta activity (the spectral 
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component corresponding to the frequency range of delta waves) is interchangeably 
used with slow wave activity (SWA), which normally refers to a slightly broader fre-
quency range (0.5– 4.5 Hz). Thus, delta frequency is higher than SO frequency, whereas 
its amplitude is lower than SO amplitude. In addition, SWA usually refers to a composite 
spectral measure of SO and delta activity.

Delta activity and SWA peak in the middle of consecutive sleep cycles and present 
a strong homeostatic regulation: their amplitude (power) declines across successive 
sleep cycles and increases linearly as a function of the amount of pre- sleep wake-
fulness (Campbell et al., 2006). Delta waves also present a strong fronto- posterior 
gradient with higher values over the frontal region and are associated with local 
sleep regulation. Those brain regions present higher homeostatic sleep pressure as 
reflected by higher sleep dependent delta activity, which undergoes more intense 
stimulation/ plastic changes during the wake period prior to sleep onset (Huber et al., 
2007; Huber et al., 2006; Huber et al., 2004; Kattler et al., 1994). Neural synchroniza-
tion, as mediated by synaptic strength that increases with presleep stimulation and 
decreases with slow wave sleep, is thought to be one of the mechanisms underpin-
ning local sleep and the homeostatic sleep drive. This theory has received significant 
experimental support, framing the synaptic homeostasis theory of sleep (Tononi & 
Cirelli, 2014).

Slow waves in sleep within the broader delta wave frequency range (0.5– 4 Hz) 
show marked circadian regulation in a topographical manner, albeit under signifi-
cant homeostatic regulation. The slope of delta waves that had been considered a sur-
rogate marker of sleep homeostasis and shown to reflect synaptic strength (steeper 
slope =  higher synaptic strength and higher sleep pressure) (Vyazovskiy et al., 
2009) presents greater circadian than homeostatic modulation over the central brain 
regions (Lazar, et al., 2015). This suggests that synaptic strength and plasticity are both 
under a homeostatic use dependent modulation, as well as a direct circadian modula-
tion (Frank & Cantera, 2014).

There is ongoing debate whether sleep EEG delta waves should be considered sep-
arate entities and not only reflections of the relatively sharper surface negative waves 
of the SO, or reflections of the faster up- down alternation caused by increased sleep 
pressure. Historically, delta waves have been considered separate entities (Steriade, 
Contreras, et al., 1993; Steriade et al., 1993a, 1993b). Two separate origins of delta ac-
tivity were hypothesized: clock- like thalamocortical delta oscillations and cortical delta 
oscillations (Amzica & Steriade, 1998). The view of a distinct SO and delta frequency 
range is supported by the clear differences in delta vs. SO generation mechanisms. In 
contrast to SO, delta waves are generated in the thalamocortical system with the in-
volvement of T- type Ca2 +  channels (Crunelli et al., 2018; Lee et al., 2004). This mech-
anism is similar to the sleep spindle rhythmogenesis and is hypothesized to differ in 
the overall level of hyperpolarization of thalamocortical neurons. In the case of delta 
generation, the hyperpolarization of the wave is higher than in the case of sleep spindle 
generation.
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17.7 Theta waves and rhythmic 
hippocampal slow activity

Perhaps one of the most persistent focuses of electrophysiological research is the phe-
nomenon of hippocampal rhythmic slow activity (RSA), or the so- called hippocampal 
theta rhythms during exploratory behavior and REM sleep of different mammalian 
species. However, the term theta is confusing as there is evidence for clear allometry 
in the frequency of hippocampal RSA. Animals with larger brains are characterized 
by lower frequency hippocampal RSA (Blumberg, 1989), which means that human 
hippocampal RSA measured in REM sleep falls in the delta (1.5– 3 Hz), but not in the 
theta, frequency range (Bodizs et al., 2001). The confusion in the literature is further 
increased by the fact that there are indeed clear theta frequency oscillations during 
the REM phases of sleep in humans, but these oscillations are of frontomedial/ an-
terior cingular origin (frontal midline theta), and not hippocampal, as it was implicitly 
assumed.

17.7.1  REM Sleep Hippocampal RSA

Given the peculiarities of human neuroanatomy, direct (para)hippocampal records can 
only be done in clinical situations, primarily during (semi- ) invasive presurgical evalu-
ation procedures of patients suffering from pharmaco- resistant epilepsy. Such records 
clearly indicate that human hippocampal RSA emerges during REM sleep and its 
modal frequency is roughly 2 Hz (Bodizs et al., 2001) or 3 Hz (Moroni et al., 2012). These 
findings confirm the theory of the allometric nature of hippocampal RSA (Blumberg, 
1989). There is no evidence for a phasic vs. tonic difference in REM sleep hippocampal 
RSA. In addition, interhemispheric coherence of REM sleep human hippocampal RSA 
is low (Bodizs et al., 2001; Moroni et al., 2012). Indeed, REM sleep hippocampal RSA is 
phase coupled with high frequency (20– 240 Hz) oscillations, as has been reported in 
several rodent studies (Clemens et al., 2009).

17.7.2  Frontal Midline Theta Activity during NREM Stage 
1 and REM Sleep

Theta rhythms of frontal origin are evidently present in the period of sleep initi-
ation (NREM Stage 1), as well as during the REM phase of sleep. Based on the dom-
inant topography of this activity, some authors call it frontal midline theta activity. 
The term refers to a train of rhythmic waves around the frequency of 6 Hz. There is 
evidence for the relationship between frontal midline theta and dreaming (Inanaga, 
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1998). There is preliminary evidence for the anterior cingulate origin of the frontally 
recorded theta rhythm in REM sleep (Nishida et al., 2004; Uchida et al., 2003). It has 
been shown that REM sleep EEG frontal theta activity is involved in emotional memory 
consolidation (Goldstein & Walker, 2014) and the incorporation of recent waking- life 
experiences in dreams (Eichenlaub et al., 2018). In addition, resilience against PTSD is 
indexed by higher REM sleep EEG theta activity (Cowdin et al., 2014). More recently a 
decrease in REM- dependent theta activity has been identified as a marker of looming 
neurodegeneration in pre- manifest and manifest patients carrying the mutant gene for 
Huntington’s disease (Lazar, Panin, et al., 2015; Piano et al., 2017).

17.8 Sawtooth waves during REM sleep

Sawtooth waves are 1.5– 5 Hz (mean frequency: 2.5 Hz) notched triangular waves that 
occur in bursts with a mean duration of 7 s (range 2– 26 s) in the frontocentral region 
of REM sleep EEG records (Figure 17.4). The bursts have the appearance of teeth on 
a saw (Pearl et al., 2002). Evidence suggests the lower level of sawtooth wave activity 
characterizes the first REM sleep episode (Pearl et al., 2002), as well as the early emer-
gence of sawtooth waves during the NREM- REM transition (Sato et al., 1997).

17.9 Alpha waves during sleep

When compared to presleep quiet wakefulness, the level of EEG alpha activity is 
attenuated during sleep. Various frequency limits for defining sleep EEG alpha ac-
tivity are seen in the literature. The major issue is the differentiation of alpha from 
sleep spindles (Section 17.11). Realistic frequency boundaries in healthy adults are 7– 10, 
7– 11, or 8– 11 Hz. However, sleep spindles (as well as waking alpha) are slower in pre-
pubertal children, thus the above criteria cannot be automatically transferred to all ages. 
Individual alpha peak frequency in the presleep period is lower than the spindle peak 
frequencies; thus presleep alpha peaks should be used as individual anchors for a delib-
erate and individualized frequency determination.

Continuous or intermittent alpha waves are most frequently considered as signs of 
(micro)arousals. Transient increases in alpha power are parts of the A2 and A3 types 
of microarousals embedded in CAP sequences, which are characterized by mixed low 
and high frequency and exclusively high frequency EEG components, respectively, 
indicating neural activation (Parrino et al., 2014). Moreover, ongoing posterior alpha ac-
tivity can be considered an index of covert waking brain activity during sleep, indicating 
shallower/ more perturbated sleep and higher reactivity to external stimuli (McKinney 
et al., 2011). A peculiar mix of alpha activity with sleep EEG delta waves is termed alpha- 
delta sleep. Alpha- delta sleep consists of epochs made up by delta wave- dominated 
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Figure 17.4 EEG samples with characteristic EEG oscillations including Vertex sharp 
transients in NREM 1, positive occipital sharp transients (POST) in NREM 2 and Sawtooth waves 
in REM sleep.

segments (5– 20%) mixed and filled up with large amplitude alpha waves (Hauri & 
Hawkins, 1973). Fibromyalgia syndrome (Branco et al., 1994), major depressive disorder 
(Jaimchariyatam et al., 2011) and psychological features, like insecure attachment (Sloan 
et al., 2007), are associated with more alpha- delta waves during sleep.



418   ALPÁR S. LÁZÁR, ZSOLT I. LÁZÁR, AND RÓBERT BÓDIZS

 

The issue of alpha activity in REM sleep is somewhat more complex, however. 
Although, posterior alpha is a reliable measure of instantaneous sleep depth and re-
sponsiveness in REM sleep (McKinney et al., 2011), alpha activity is higher and more 
synchronized in tonic (no actual rapid eye movements), as compared to phasic (actual 
bursts of rapid eye movements) REM episodes (Simor et al., 2018; Simor et al., 2016). In 
addition, there is evidence of increased high alpha frequencies (10– 14 Hz, which are not 
sleep spindles) in the REM sleep records of subjects with frequent nightmares (Simor 
et al., 2013).

17.10 Vertex sharp transients  
and positive occipital sharp 

transients (POSTs)

Sharp negative waves with a maximum at the vertex are frequently seen during the ini-
tiation of sleep, most frequently in NREM Stage 1 sleep (Figure 17.4). Although these 
transients, called vertex sharp waves, resemble some interictal epileptic discharges, 
these sharp waves are physiological and do not indicate the presence of any epileptic 
processes, even if a complete lateralization of the phenomenon is seen (Brenton & 
Mytinger, 2015). Vertex sharp waves and N300 components of averaged EEG responses 
to stimuli with different modalities have been shown to have common sources (Colrain 
et al., 2000).

Positive occipital sharp transients of sleep are also parts of the EEG picture of 
shallower phases of sleep, however, unlike vertex sharp waves, they are often seen in 
NREM Stage 2 sleep as well (Figure 17.4). The first thirty minutes of NREM sleep is the 
period of preferred emergence of positive occipital sharp transients (Egawa et al., 1983). 
The occipital maximum is hypothesized to be related to some activations in the visual 
areas of the brain.

17.11 Sleep spindles

Putative sleep spindle- like waveforms were first described by Hans Berger, the founder 
of human EEG, as oscillatory episodes with a 72- ms wavelength (equaling 13.89 Hz) 
in a female schizophrenic patient in (rectally induced) tribromoethanol narcosis 
(Berger, 1933). Soon thereafter, Alfred Lee Loomis described and named the sleep 
spindles as being very regular 14- Hz bursts, lasting 1– 1.5 seconds, adding that the amp-
litude increases and decreases steadily before and after reaching its maximum, respect-
ively (Loomis et al., 1935) (Figure 17.2). In the next decades, sleep spindles were mainly 
considered as hallmarks of Stage 2 sleep, but experimental studies clearly indicated 
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their role in sleep protection or thalamic gating, also known as shock- absorbing 
function.

17.11.1  Frequency of Sleep Spindles

The frequency of sleep spindles (sigma rhythm) has been established as 14 Hz (Loomis 
et al., 1935; Brazier, 1961), 12– 14 Hz (Rechtschaffen & Kales, 1968), 11– 15 Hz (A glossary of 
terms most commonly used by clinical electroencephalographers, 1974; Noachtar et al., 
1999), 12– 16 Hz (Hori et al., 2001), and 11– 16 Hz (Berry et al., 2017; Iber & American 
Academy of Sleep, 2007; Kane et al., 2017; Silber et al., 2007). Based on their frequency 
and dominant topography, sleep spindles were categorized as frontal slow (12 Hz) and 
centro- parietal fast (14 Hz), as well as 10 Hz global spindles (Gibbs & Gibbs, 1958). 
However, the 10- Hz global sleep spindles were later considered as alpha waves during 
sleep; thus, the existence of this type of spindle wave remained controversial (Jankel & 
Niedermeyer, 1985). Other studies have provided evidence that the slow spindle fre-
quency decelerates as sleep deepens (Andrillon et al., 2011); thus, the 10- Hz spindle 
type of Gibbs and Gibbs (1958) might constitute a decelerated slow spindle during the 
deepening stages of sleep. Among the factors determining/ modulating sleep spindle 
frequencies, genetics, age, sex, circadian phase/ time of day, core body temperature, 
menstrual cycle phase, and sleep depth are well known (Andrillon et al., 2011; De 
Gennaro et al., 2008; de Zambotti et al., 2015; Dijk, 1999; Ujma et al., 2014). A common 
feature of sleep spindles is a slowing down of spindle frequency in successive oscillatory 
cycles, resulting in a frequency difference of 0.1– 0.4 Hz, between the first and the last os-
cillatory cycle (Schonwald et al., 2011).

17.11.2  Morphology of Sleep Spindles

Besides frequency, sleep spindles are characterized by wave morphology and/ or enve-
lope. The term spindle was used in order to characterize the shape of the envelope of 
this wave group, characterized by an initial crescendo followed by decrescendo in amp-
litude reflecting the engagement of an increasing number of neurons into the rhythmic 
spindle frequency activity pattern followed by a gradual decrease. There is little research 
focusing on this aspect of sleep spindles. Some observations indicate that this spindle 
morphology is more an exception than the rule (Jankel & Niedermeyer, 1985). The band- 
pass filtered signals, as well as the so- called grouping of sleep spindles by the slow (<1 
Hz) oscillation (Molle et al., 2002; Steriade & Amzica, 1998), clearly support that sleep 
spindle frequencies are characterized by progressively increasing amplitude followed 
by a gradual decrease. Regarding the polarity, sleep spindle- like waveforms induced by 
rhythmic thalamic stimulation in the midline areas have been shown to be surface nega-
tive (Dempsey & Morison, 1941). In the case of scalp EEG recordings, there is much 
controversy regarding the reference montage. The morphology of the single wave 

 

 



420   ALPÁR S. LÁZÁR, ZSOLT I. LÁZÁR, AND RÓBERT BÓDIZS

 

constituents of sleep spindles (single cycles) is most often tacitly considered as quasi- 
sinusoidal. However, there are important specifications in this regard: sleep spindles 
have been shown to reflect both subthreshold depolarizations of apical dendrites 
(smooth surface negative waves) and apical dendritic depolarization (sharp negative- 
positive waves) (Urakami et al., 2012). Sleep spindles with unipolar sharp peaks have 
been registered near the parahippocampal region in epilepsy patients undergoing 
presurgical examination with foramen ovale electrodes. Sharp peaks have been 
associated with nested (phase- coupled) 80– 140 Hz ripples in these patients (Clemens 
et al., 2011). Sleep spindles with unusual sharp negative peaks have also been observed in 
infancy, up to 2 years of age (Fois, 1961). However, there is no direct evidence indicating 
that the above findings reflect enhanced neuronal firing during parahippocampal and 
cortical sleep spindles in epilepsy patients and infants, respectively.

17.11.3  Duration of Sleep Spindles

Since the publication of the scoring rules for sleep by Rechtschaffen and Kales (1968), 
the shortest duration of individual sleep spindles is usually defined at half- seconds. 
However, this is just a consensual value. In their original work describing and 
characterizing sleep spindles, Loomis and colleagues (1935) mention sleep spindles as 
short as third-  or even quarter- seconds. There is no theoretical work indicating that a 
half- second length is a critical minimum value for a sleep spindle per se. Different ex-
perimental settings and subjects are characterized by different sleep spindle durations. 
The most important factor determining sleep spindle duration is age: unusually long (up 
to 10 seconds) sleep spindles are seen in infants, while a significant shortening progres-
sively emerges during maturation and development, until typical 1– 2- s- long spindles 
emerge (Spinosa & Garzon, 2007). Initial thalamic inhibition (Bartho et al., 2014) and 
corticothalamic feedback (Bonjean et al., 2011) are hypothesized to play a crucial role in 
the precise regulation of sleep spindle duration.

17.11.4  Amplitude of Sleep Spindles

The amplitude of sleep spindles depends on several specific and non- specific factors. 
Some trivial non- specific factors include electrode impedance, derivation (reference), 
and skull thickness. Specific factors include age, sleep cycle effects, sleep homeo-
stasis, and circadian phase. In addition, several sleep spindle measures, among which 
amplitude is perhaps the most pertinent, depend on the method used for and criteria 
of defining sleep spindles. Sleep spindle amplitude is shown to be the direct function 
of thalamocortical entrainment of neurons to spindle frequency. There is evidence 
supporting the view that the more widespread a spindle is, the higher its amplitude 
(Andrillon et al., 2011; Dempsey & Morison, 1941).
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17.11.5  Topography of Sleep Spindles

The characteristic topography of sleep spindles is twofold. The prefrontal cortices are the 
sites of origin of slow (~12 Hz) sleep spindles, whereas parietal cortex is characterized by 
the fast type (~14 Hz) sleep spindles. The central region expresses a roughly equivalent 
amount of slow and fast sleep spindle power.

17.11.6  The Density and Periodicity of Sleep Spindles

The ability to elicit local sleep spindles is enhanced by increasing local neural plasticity, 
namely, the induction of long- term potentiation (Werk et al., 2005). There are two major 
hypotheses on the specific mechanism of sleep spindle initiation in the thalamocor-
tical network. The classical hypothesis was put forward by (Destexhe et al., 1998). In this 
view, SO up states impinge a high level of excitation in the thalamic reticular neurons 
by thalamoreticular (descending, thalamofugal) connections. Consequently, thalamic 
reticular neurons induce a high level of hyperpolarization in thalamocortical neurons, 
which in turn begin to fire in rebound depolarization sequences. Ascending thalamo-
cortical pathways transfer the effects of rebound depolarizations to the cortex.

Another hypothesis implies the leading role of SO down states in the induction of 
a sufficient thalamic hyperpolarization by descending thalamofugal tracts. Thus, thal-
amic down states lag cortical ones. Thalamic sleep spindles initiate at the times of thal-
amic down states; they are then transferred to the cortex with a lag, which results in 
the coincidence of cortical sleep spindles with the forthcoming up state of the ongoing 
SO (Mak- McCully et al., 2017). Evidence suggests that Stage 2 sleep spindles emerge 
with a modal frequency of 0.25 Hz, that is the modal inter- spindle interval is 4 s (3– 5 
s) long (Achermann & Borbely, 1997; Evans & Richardson, 1995; Kubicki et al., 1986). 
According to some reports, the 4- s periodicity of sleep spindles is a characteristic fea-
ture of fast, but not of slow, sleep spindles (Spieweg et al., 1992). With the deepening of 
sleep, spindles become less dense, but persist during the whole NREM period. SO Up 
states are the preferred periods of emergence of sleep spindles in Stage 3 sleep (Fell et al., 
2002; Molle et al., 2002; Staresina et al., 2015). Given the fact that the 0.5 s minimum dur-
ation criteria for sleep spindles is still in use, the spindle- like waveforms that are nested 
in the depolarized phases of the SO are often not considered as sleep spindles per se, 
but rather sleep spindle- like or spindle frequency activity. Thus, sleep spindles and/ or 
sleep spindle- like oscillations are phase coupled with the SO; however, the frontal slow 
types and the parietal fast type of sleep spindles are characterized by distinct coales-
cence patterns. Fast sleep spindles are shown to prefer the peaks of the SO up states, 
whereas slow sleep spindles most frequently emerge during the transitional phase of the 
up and the down states of the SO (Molle et al., 2011). This is in coherence with the finding 
that in case of the co- occurrence of the two types of sleep spindles, the fast type precedes 
the slow one by several milliseconds (Zygierewicz et al., 1999).
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17.11.7  Sleep Spindle Rhythmogenesis

Sleep spindles are shown to reflect the recurrent hyperpolarization rebound sequences 
of thalamocortical cells, the inhibition of which is caused by the NREM- dependent 
activation of GABAergic neurons in the reticular thalamic nucleus (Huguenard & 
McCormick, 2007; Steriade, 2000). The synchronization of individual thalamo- cortico- 
reticular loops is thought to be performed by descending inputs of the concerted up and 
down states of the cortical SO.

17.11.8  Sleep Spindles and Cognition

Similar to sleep slow waves, there is a wealth of evidence supporting the association be-
tween sleep spindles and cognition. On the one hand, sleep spindles have been identified 
as highly sensitive to individual differences often related to general and specific learning 
abilities. Thus, sleep spindles have been repeatedly (Ujma et al., 2018), albeit not un-
equivocally (Pesonen et al., 2019), shown to correlate with measures of general intelli-
gence and memory performance (Bodizs et al., 2014; Bodizs et al., 2005; Chatburn et al., 
2013; Clemens et al., 2005, 2006; Geiger et al., 2011; Hoedlmoser et al., 2014; Lustenberger 
et al., 2012; Schabus et al., 2006; Tessier et al., 2015; Ujma et al., 2016). On the other hand, 
the targeted modulation of sleep spindle activity using Transcranial Alternating Current 
Stimulation (tACS) and closed loop auditory stimulation has resulted in significant 
sleep dependent enhancement of motor learning (Lustenberger et al., 2016) and spatial 
navigation performance (Shimizu et al., 2018), respectively. Changes in sleep spindles 
(e.g. reduction in the amplitude and/ or incidence of sleep spindles) have been shown 
to predict the development of dementia in Parkinson’s disease (Latreille et al., 2015) and 
are associated with various neurodevelopmental disorders, such as autism spectrum 
disorders (Godbout et al., 2000; Limoges et al., 2005) and Williams syndrome (Bodizs 
et al., 2012), as well as with various mental health disorders including schizophrenia 
(Schilling et al., 2017), bipolar disorder (Ritter et al., 2018), and major depression (Plante 
et al., 2013).

Overall, there is convincing evidence that sleep spindles are generated in the thal-
amus, grouped by cortical slow oscillations (Steriade & Amzica, 1998). Spindles 
are modulated by infraslow oscillations (Lazar et al., 2019; Lecci et al., 2017) and bio-
logical timekeepers (Cajochen et al., 2013; Dijk & Czeisler, 1995; Knoblauch, Martens, 
Wirz- Justice, Krauchi, & Cajochen et al., 2003; Knoblauch, Martens, Wirz- Justice, & 
Cajochen, 2003; Knoblauch et al., 2005). They are dependent on the intrinsic features 
of the functional neuro- architecture of an individual’s brain, and, as such, are inher-
ently linked to cognition and mental health. However, in spite of multiple competing 
theories, the neural underpinnings of the associations of sleep spindles with cognition 
are not clear. One theory suggests memories are reinstated by spindle events and further 
reprocessed during subsequent spindle refractory periods (Antony et al., 2018). Another 

 

 

 



FREQUENCY CHARACTERISTICS OF SLEEP   423

 

theory posits that sleep slow oscillations preferentially consolidate the stronger memory 
traces, which also leads to the extinction of weak memories. Sleep spindles are thought 
to contribute to a slow but reliable consolidation of the multiple competing memories 
(Wei et al., 2018).

17.12 Beta and gamma activity 
during sleep

Historically, beta waves have been defined as EEG frequencies above 13 Hz (Kozelka & 
Pedley, 1990). However, it is now clear that sleep spindles constitute a specific phenom-
enon, thus spindles and beta oscillations have to be defined separately in spite of the 
clear overlap in the frequency of these phenomena. Consequently, frequencies higher 
than sleep spindles, but lower than gamma (16– 30 Hz), can be considered as beta ac-
tivity in NREM sleep, whereas a somewhat broader frequency is acceptable in states 
without sleep spindling, like REM sleep and wakefulness (13– 30 Hz). NREM sleep beta 
EEG activity with frontocentral maxima is an integral part of sleep initiation, especially 
in children (Kellaway & Fox, 1952). Moreover, the up states of the SO are associated with 
an increase in beta/ gamma activity (up to 80 Hz), indicating the entrainment of higher 
frequency oscillations by SO commonly referred to as grouping effect (Neske, 2016). SO/ 
delta and beta activity fluctuate reciprocally across NREM and REM sleep indicating 
that an inverse relationship between the two activities (Uchida et al., 1992). Beta activity 
is evidently higher in REM as compared to NREM sleep. The anterior cingulate and the 
dorsolateral prefrontal cortices are characterized by prominent and coherent beta ac-
tivity during REM sleep in humans (Vijayan et al., 2017).

Several reports suggest that enhanced beta/ gamma EEG power (activity) is an index 
of cortical arousal, or disturbed sleep. Most of the reports indicate that sleep EEG (both 
NREM and REM) records of insomnia patients are characterized by heightened beta/ 
gamma power as compared to records of subjects who sleep well (Perlis, Merica et al., 
2001; Perlis, Smith et al., 2001).

Gamma oscillations are usually defined as 30– 80 Hz waves indicating arousal and 
(local) activation of the cortex. If gamma oscillations are coherent, they are related to 
perceptual binding. As mentioned previously, there are several reports indicating 
similar behavior of beta and gamma oscillations during sleep (see also those indicating 
enhanced gamma in patients suffering from primary and secondary insomnia: Perlis, 
Merica, et al., 2001; Perlis, Smith, et al., 2001). The specificity of gamma waves is seen 
in cases in which consciousness is part of the story. Thus, frontal gamma EEG power 
and coherence is increased in periods of lucid dreaming, as compared to non- lucid 
dreaming (dream lucidity indicates the state in which the dreamer is aware of the 
dream- like nature of the ongoing mental activity; see Voss et al., 2009). In addition, beta 
and gamma activity are differentially expressed in tonic and phasic REM sleep: tonic 
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REM is characterized by increased beta, whereas phasic REM by increased gamma ac-
tivity (Simor et al., 2016).

17.13 Ripples/ HFO oscillations

Ripples are usually recorded in the invasive epilepsy monitoring setting. Slow (80– 140 
Hz) and fast (250– 500 Hz) ripples are considered physiological and pathological (epi-
leptic enhancement) signals, respectively. The hippocampal formation and the medial 
temporal lobe is the most frequent, but not exclusive origin of ripple oscillations in 
all wake- sleep states. It has been shown that hippocampal ripples are nested in spe-
cific phases of sleep spindle oscillations, resulting in a fine- tuned coupling of the two 
oscillations in human subjects (Clemens et al., 2011; Staresina et al., 2015). This hierarch-
ical nesting (SO- sleep spindle- ripple) is thought to play a crucial role in off- line memory 
consolidation processes involving the reactivation of transient memory traces during 
sleep. Recent investigations indicate that ripples can be recorded in the scalp EEG of 
children as well. Mean frequency has been reported to be 102 Hz, mean duration 70 
ms, and mean root mean square amplitude 0.95 µV (Mooij et al., 2017). Scalp- recorded 
ripples have been associated with several sleep EEG transients (Mooij et al., 2018).

17.14  Conclusion

Sleep EEG is characterized by a multitude of salient oscillatory and phasic phe-
nomena that reflect the functional neuroarchitecture of the brain and are tightly linked 
with neural plasticity associated to learning and memory. The network of biological 
mechanisms driving sleep and interacting with sleep dependent brain oscillations 
are intricate, ranging from molecular mechanisms to complex behavioral and cog-
nitive patterns. Given the small number of measurable behaviors occurring during 
sleep, studying the sleeping brain via EEG frequencies is a critical measure to see into 
the sleeping brain. Like opening a window to see and learn about the constellations in 
the night sky, EEG frequencies allow us to open a window to see and learn about the 
working brain during sleep.
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CHAPTER 18

A REVIEW OF OSCILL ATORY 
BRAIN DYNAMICS IN 

SCHIZOPHRENIA

KEVIN M. SPENCER

18.1  Introduction

Schizophrenia is a serious neuropsychiatric disorder that affects about one percent 
of the world’s population (Perälä et al., 2007), and imposes high social and economic 
costs due to its severity (Davidson et al., 2016). Schizophrenia is characterized primarily 
by psychotic symptoms such as auditory hallucinations and delusions, which are com-
monly accompanied by negative symptoms such as social withdrawal and reduced 
motivation, and cognitive deficits in domains such as working memory and sustained 
attention. This disorder has a complex etiology comprised of a number of genetic and 
environmental factors, and its pathophysiology includes abnormalities at the neuronal, 
local circuit, region- wide, and whole- brain levels (Owen et al., 2016). Schizophrenia is 
considered to be a neurodevelopmental disorder (Murray & Lewis, 1987; Weinberger, 
1987), with a typical progression beginning with a prodromal phase in the teenage 
years in which subclinical symptoms become apparent, to the first psychotic episode 
that leads to hospitalization and diagnosis, to the chronic phase that lasts the rest of the 
individual’s life, which may be characterized by periods of psychosis and possibly remit-
tance (Rapoport et al., 2012). Schizophrenia is also conceptualized as part of a spectrum 
(Siever & Davis, 2004) that includes disorders which feature subclinical manifestations 
of symptoms in individuals with schizotypal personality disorder, individuals in the pro-
drome or at high risk for developing schizophrenia, and first- degree relatives of persons 
with schizophrenia. In addition, schizophrenia may occur atypically early in develop-
ment, in what is termed early- onset schizophrenia, and may be mixed with symptoms of 
affective disorder, in schizoaffective disorder. Bipolar I disorder shares similarities with 
schizophrenia, including psychosis, and may be a related disorder.
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Electroencephalography (EEG) has been applied to the study of schizophrenia for 
over 80 years (Lemere, 1936). With the advent of digital computerized spectral ana-
lysis in the 1960s, “quantitative” EEG analysis came to supplant the traditional analyt-
ical approaches based on visual inspection and analog methods (reviewed in Itil, 1977). 
The modern era of research into neural oscillations in schizophrenia dates from the 
seminal studies of the Singer and Eckhorn labs (e.g., Eckhorn et al., 1988; Gray et al., 
1989), which impacted neuroscience in the 1990s. The results of these studies suggested 
that highly precise synchronization of the spike trains of neurons in visual cortex might 
serve as a mechanism whereby individual stimulus features could be bound together 
into coherent representations of complex objects (Singer & Gray, 1995). This neuronal 
synchronization was mediated by oscillations in the gamma band (30– 100 Hz) of the 
EEG, which were generated in the local neuronal population (Gray & Singer, 1989). 
More generally, information might be represented throughout the brain not just by 
the firing rates of neurons, but by precise correlations in the timing of their firing that 
were organized by oscillations (Singer, 1999), defining cell assemblies as predicted by 
Hebb (1949). Subsequent research has led to a new view of brain function in which 
oscillations across the frequency spectrum mediate perceptual, cognitive, motor, and 
emotional functions through neuronal synchronization across a multitude of hier-
archically organized time scales (Buzsáki, 2006). This view of brain function based on 
oscillatory brain dynamics has had a large impact on the study of the neural bases of 
schizophrenia.

This chapter aims to summarize the major findings to date of studies of neural 
oscillations in schizophrenia within the context of the development of the field of os-
cillatory brain dynamics in general and in schizophrenia research more particularly. It 
begins with research into sensory gamma oscillations, which have been the main focus 
of research. This is followed by research into oscillations involved in working memory 
processes, TMS- evoked oscillations, and spontaneous oscillatory activity. It concludes 
with a discussion of emerging future directions in the field.

18.2 Sensory and Perceptual 
Gamma Oscillations

The idea that synchronous neural activity in the gamma band mediated information pro-
cessing in the brain arrived at a time in which schizophrenia was being conceptualized 
as a disorder not just of malfunctioning of particular brain regions, but of connectivity 
in both local microcircuits (McGlashan & Hoffman, 2000), and large- scale, distributed 
networks (e.g., Friston & Frith, 1995). Gamma oscillations had been proposed to be 
the primary means by which brain networks were functionally connected (e.g., Singer, 
1999). When taken together with the idea that schizophrenia was a “splitting of the 
mind”, characterized by a “disintegration of thought and personality” (Bleuler, 1911/ 

 

 



436   KEVIN M. SPENCER

 

1950), it followed that schizophrenia might be closely associated with dysfunctional 
gamma oscillations.

Clementz and colleagues (1997) conducted the earliest study examining gamma ac-
tivity in schizophrenia in the modern era of oscillation research, and suggested that 
the P50 event- related potential (ERP) sensory gating abnormality might be due to an 
underlying sensory gating abnormality in the early auditory- evoked gamma band re-
sponse (EAGBR), one of the first gamma responses identified in humans (Pantev 
et al., 1991). Kwon and colleagues (1999) were the first to hypothesize that schizophrenia 
might be associated with a specific deficit in the generation of oscillations in the gamma 
band, and used the auditory steady- state response (ASSR) to examine the ability of the 
auditory system to be driven at frequencies in the beta (13– 30 Hz) and gamma ranges. 
Kwon and colleagues (1999) presented click trains at frequencies of 20, 30, and 40 Hz to 
chronic schizophrenia patients and healthy controls. The principal finding of the study 
was the patients had reduced ASSR power to 40 Hz stimulation, but not to stimulation 
at 20 or 30 Hz, suggesting that schizophrenia was associated with a specific deficit in 
gamma- frequency synchronization. This finding spurred the development of a new 
area of research in the neuroscience of schizophrenia, the study of oscillatory brain dy-
namics in schizophrenia.

18.2.1  Auditory Gamma Oscillations

Two types of auditory oscillations have been studied in schizophrenia: the ASSR 
(Galambos et al., 1981; Picton et al., 2003), and the EAGBR (Pantev et al., 1991). ASSRs 
are evoked by trains of simple stimuli such as clicks presented at a constant rate, or by 
amplitude- modulated tones, and the scalp- recorded potentials/ magnetic fields are pri-
marily generated in the primary auditory cortex (e.g., Draganova et al., 2008; Herdman 
et al., 2003), with subcortical sources also being detectable (e.g., Herdman et al., 2002; 
Farahani et al., 2017). In humans, ASSRs show maximum amplitude/ power for stimu-
lation in the gamma band at ~40 Hz, which likely reflects the resonant frequency of 
its generating circuits in the auditory system (e.g., Pastor et al., 2002). The EAGBR is 
evoked by sounds in general. It has a peak latency of ~50 ms, coincident with the P50 
ERP component, and a peak frequency of ~40 Hz. The EAGBR and ASSR frequencies 
have been shown to be correlated across individuals, suggesting that they share a 
common neural generator (Zaehle et al., 2010).

18.2.1.1  ASSR Studies
The ASSR is the most commonly studied gamma oscillation in schizophrenia, 
and deficits in the power and/ or phase locking factor (PLF; Tallon- Baudry et al., 
1996) aspects of this oscillation in individuals with schizophrenia have been consistently 
replicated (reviewed in O’Donnell et al., 2013; for meta- analysis see Thuné et al., 2016). 
Following Kwon and colleagues’ (1999) seminal report, others have reported gamma 
(40 Hz, sometimes also 30 Hz) ASSR power and/ or PLF deficits in chronic patients 
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(Brenner et al., 2003; Hong et al., 2004; Light et al., 2006; Teale et al., 2008; Krishnan 
et al., 2009: Spencer et al., 2009; Hamm et al., 2011; Tsuchimoto et al., 2011: Edgar et al., 
2014; Hirano et al., 2015; Zhou et al., 2018).

However, an important factor to consider in schizophrenia research is that the 
results of studies conducted with chronic patients, that is, patients who have had 
schizophrenia for some time, could be confounded to some degree by the duration 
of the patients’ illness and their exposure to medications, especially antipsychotic 
drugs (e.g., Leung et al., 2011). Therefore, it is important to test whether patients who 
have never been medicated, first- episode patients (who were recently diagnosed with 
schizophrenia), and unmedicated individuals within the schizophrenia spectrum 
show the same abnormalities as chronic patients. In general, these studies have found 
the same pattern of gamma- frequency ASSR deficits as in chronic schizophrenia. The 
gamma ASSR deficit has been reported in ultra- high- risk individuals (Tada et al., 
2016), first- degree relatives (Hong et al., 2004; Puvvada et al., 2018; Rass et al., 2012), 
schizotypal personality disorder (Brenner et al., 2003; but not observed in Rass et al., 
2012), first- episode schizophrenia (Spencer et al., 2008a; Tada et al., 2016), early- onset 
psychosis (Wilson et al., 2008), schizoaffective disorder (Zhou et al., 2018), and bipolar 
I disorder (Isomura et al., 2016; Spencer et al., 2008a; Zhou et al., 2018). One study 
also found the gamma ASSR deficit in bipolar I disorder without psychosis (Parker 
et al., 2019), which raises the question of whether this deficit is particular to psychosis. 
Additional studies of the ASSR in non- psychotic bipolar disorder need to be done to 
confirm this result.

Thus, the deficit in gamma ASSR generation appears to affect individuals with psych-
osis in general, soon after the first episode of psychosis. The gamma ASSR deficit is even 
present in first degree relatives of individuals with schizophrenia, who share genetic (and 
possibly environmental) risk factors with persons with schizophrenia, even though they 
are not psychotic and have not received antipsychotic medication. A limited amount of 
evidence suggests that the gamma ASSR deficit is also present in individuals at high risk 
of developing schizophrenia. As more studies take place with this population, it is im-
portant to ask whether the degree of the gamma ASSR deficit is predictive of the prob-
ability of their conversion to psychosis.

While the gamma ASSR is clearly sensitive to neural circuit abnormalities in psych-
osis, it is not so clearly associated with particular psychotic symptoms. Given the na-
ture of the ASSR as an auditory sensory response, and the hypothesized relationships 
between gamma oscillations and perception, hallucination symptoms may be expected 
to be correlated with gamma ASSR measures. Indeed, some studies have found 
correlations between gamma ASSR measures and hallucination symptoms (Mulert 
et al., 2011; Spencer et al., 2008a,2009; Zhou et al., 2018), although the direction of these 
correlations is not consistent across studies.

The ASSR has become the most widely- studied gamma oscillation in schizophrenia 
research because of several factors:

 1. It has a relatively high signal- to- noise ratio and is readily obtained.
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 2. It is easy to analyze, as the frequency is known a priori and the power of the ASSR 
can be measured with basic spectral analysis methods that are commonly found in 
EEG analysis software.

 3. The gamma ASSR deficit in schizophrenia appears to be independent of whether 
or not the stimuli are attended (e.g., Hamm et al., 2015).

 4. The basic set of neural generators of the ASSR are known (e.g., Herdman et al., 
2002, 2003).

 5. The ASSR exhibits good test- retest reliability (Legget et al., 2017; McFadden et al., 
2014; Tan et al., 2015).

For these reasons, the ASSR is being extensively used in translational neuroscience 
studies of animal models relevant to schizophrenia. While rodents do not appear to 
have a clearly defined resonance frequency as humans, they do exhibit gamma ASSR 
deficits when administered drugs that are commonly used to model aspects of psych-
osis, such as N- methyl- D- aspartate receptor (NMDAR) antagonists (e.g., Leishman 
et al., 2015; Sivarao et al., 2016; Sullivan et al., 2015). Therefore, the ASSR is a promising 
tool for translational neuroscience research.

18.2.1.2  EAGBR Studies
The next most- studied gamma oscillation in schizophrenia is the EAGBR, owing 
to the extensive use of the auditory oddball and sensory gating paradigms in schizo-
phrenia ERP research, from which the EAGBR can be readily measured (typically in 
the responses to the standard stimuli). In general, the evoked power and PLF aspects of 
the EAGBR are decreased in the schizophrenia spectrum. EAGBR deficits in chronic 
schizophrenia patients have been reported in auditory oddball (e.g., Hall et al., 2011a; 
Lenz et al., 2011; Oribe et al., 2019; Roach & Mathalon, 2008), sensory gating (e.g., Hall 
et al., 2011b; Popov et al., 2011), and tone discrimination (e.g., Leicht et al., 2010) tasks, 
although some studies have failed to find deficits (Brenner et al., 2009; Spencer et al., 
2008b). In first- episode schizophrenia patients, various studies all reported reduced 
evoked power and PLF (Leicht et al., 2015; Oribe et al., 2019; Taylor et al., 2013), although 
Gallinat and colleagues (2004) did not find EAGBR deficits in a sample of unmedicated 
patients. Studies of clinical high- risk individuals are mixed: Perez and colleagues (2013) 
found that EAGBR evoked power was reduced but PLF did not differ compared with 
healthy individuals, while Oribe and colleagues (2019) did not find any reductions in 
clinical high- risk individuals.

Three studies of the EAGBR have provided some insight into the genetic basis of audi-
tory gamma oscillation deficits in schizophrenia. Leicht and colleagues (2011) found 
EAGBR power and PLF deficits in both schizophrenia patients and their first- degree 
relatives in a tone discrimination task, pointing to the EAGBR deficit being an inher-
itable trait. Hall and colleagues (2011a) examined the EAGBR from an oddball task in 
a sample of schizophrenia patients and their monozygotic twins who were concordant 
or discordant for schizophrenia, and compared them to a sample of healthy twin pairs. 
Hall and colleagues (2011a) found EAGBR power and PLF deficits in the patients, with 
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deficits to lesser degrees in the well co- twins of discordant pairs. These results were 
clearly indicative of a strong genetic factor in the EAGBR deficits. But in contrast to 
those studies, Hall and colleagues (2011b) did not find an EAGBR power deficit in the 
unaffected first- degree relatives of schizophrenia patients in data from a sensory gating 
task, which suggests that there is no heritable component of the EAGBR deficit in 
schizophrenia. One possible explanation for these discrepant findings is that attention 
plays a role in producing the EAGBR deficit, as the standard sensory gating task used by 
Hall and colleagues (2011b) was passive (unlike the active tasks in Hall et al., 2011a and 
Leicht et al., 2011, which found deficits). Thus, the EAGBR deficit in the schizophrenia 
spectrum and its genetic basis could involve a major contribution from reduced top- 
down attentional modulation of the EAGBR, rather than a dysfunctional EAGBR per se. 
Further work is needed to test this hypothesis.

18.2.1.3  Summary
The ASSR and EAGBR studies provide strong evidence for impaired generation of 
stimulus- evoked gamma oscillations in the auditory cortex in schizophrenia, although 
the ASSR results as a whole are stronger than the EAGBR findings. A natural question 
to ask is whether the gamma ASSR and EAGBR deficits are correlated. Roach and 
colleagues (2013) found that 40- Hz ASSR PLF and EAGBR PLF were indeed correlated 
within both patient and controls groups. Thus, auditory- evoked gamma oscillations 
may provide biomarkers of cortical circuit abnormalities that are heritable and present 
across the schizophrenia spectrum.

18.2.2  Visual Gamma Oscillations

18.2.2.1  Gestalt Perception
The first studies that investigated the role of gamma synchronization in perception had 
found evidence that gamma oscillations mediated the “binding” of visual features into 
coherent objects (Singer & Gray, 1995). Therefore, if schizophrenia was the result of dys-
functional binding of information in the brain via gamma oscillations, it made sense 
to study visual feature binding in schizophrenia. Psychophysical studies had reported 
abnormalities in visual perception in schizophrenia that were consistent with dys-
functional Gestalt formation (reviewed in Phillips & Silverstein, 2003). Inspired by 
Rodriguez and colleagues (1999), who demonstrated local and distributed gamma os-
cillatory activity supporting Gestalt perception (Mooney faces; Mooney & Ferguson, 
1951), Spencer and colleagues (2003) had participants with schizophrenia and healthy 
controls perform an illusory contour detection task. In the controls, the illusory con-
tour pattern (a Kanisza square) evoked an early visual gamma oscillation, but the non- 
contour pattern did not evoke this oscillation. In the schizophrenia patients, neither 
pattern evoked the visual gamma oscillation. Furthermore, the patients showed an 
abnormal pattern of inter- electrode phase synchrony (cf. Lachaux et al., 1999) in the 
gamma band.
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In a follow- up study (Spencer et al., 2004), the oscillations phase- locked to the 
manual response in the same task were investigated, as these oscillations were 
hypothesized to be more closely related to the perception of the Gestalt than stimulus- 
evoked oscillations. Spencer and colleagues (2004) found that a response- locked os-
cillation in the gamma band occurred in controls for the illusory contour but not the 
non- contour pattern. In the schizophrenia patients, there was a similar response- locked 
oscillation, but it occurred in the beta band (13– 30 Hz). The PLF aspect of this beta os-
cillation was correlated with some of the patients’ psychotic symptom ratings, including 
visual hallucinations and disorganization. In a replication study with briefly presented 
stimuli, Spencer and Ghorashi (2014) used a dense electrode array with statistical non- 
parametric mapping. The illusory contour effect on the early visual evoked gamma os-
cillation was not found, although an enhancement of PLF for the illusory contour was 
found for a later evoked oscillation in controls that appeared to be an offset response. 
In the response- locked oscillations there was a high gamma (74– 99 Hz) oscillation at 
fronto- central electrodes just prior to the button press that showed greater PLF for the 
illusory contour than the non- contour pattern in controls, and the opposite pattern in 
patients. The illusory contour effect on this oscillation in patients was correlated with 
their formal thought disorder symptoms. Further, in a study using Kanisza squares as 
well as diamonds, Wynn and colleagues (2015) found that in controls the early visual- 
evoked gamma oscillation showed enhanced PLF for illusory contours compared to 
the non- contour pattern, but this effect was absent in the patients. The illusory contour 
effect in patients was negatively correlated with their psychotic symptoms.

In another series of studies, Uhlhaas and colleagues (2006a) provided further im-
portant evidence for links between abnormal oscillatory synchronization in Gestalt per-
ception and schizophrenia using a task in which schizophrenia patients were impaired 
in the perception of a Gestalt, the discrimination of upright from inverted Mooney 
faces (as in Rodriguez et al., 1999). Uhlhaas and colleagues (2006a) found that inter- 
electrode phase synchrony in the beta band elicited by upright face stimuli was delayed 
and reduced in schizophrenia patients compared to controls. Furthermore, this beta 
phase synchrony effect was correlated with the patients’ psychotic symptom scores, 
particularly delusions and hallucinations. Thus, Uhlhaas and colleagues’ (2006a) main 
findings were broadly consistent with those of Spencer and colleagues (2004). However, 
no differences were found between controls and patients in induced gamma oscillation 
power or gamma phase synchrony.

Magnetoencephalography (MEG) has been shown to be more sensitive than 
EEG to oscillations in the “high gamma” band (approximately 60– 100 Hz) 
(Muthukumaraswamy & Singh, 2013), likely owing to its relative insensitivity to scalp 
muscle activity (e.g., Pope et al., 2009). Induced gamma oscillations elicited by visual 
stimuli that are found in local field potential recordings in animals are also readily de-
tectable with MEG (Hall et al., 2005; Hoogenboom et al., 2006). In a follow- up study 
to Uhlhaas and colleagues (2006a) using MEG, Grützner and colleagues (2013) found 
that induced high gamma responses to upright Mooney faces were reduced in schizo-
phrenia patients compared to controls. This deficit was inversely correlated with the 
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patients’ disorganization symptoms, consistent with psychophysical studies showing 
associations between disorganization and impaired Gestalt perception (e.g., Uhlhaas 
et al., 2006b). And in a study examining first- episode schizophrenia patients who had 
never been treated with antipsychotic medication, Sun and colleagues (2013) replicated 
this high gamma finding, which was localized to ventral visual areas, and also found that 
that low gamma oscillations (30– 60 Hz) were intact while beta power was increased in 
the patients.

In the years after the publication of studies by Spencer and colleagues (2003) and 
Uhlhaas and colleagues (2006a), it became apparent that the calculation of EEG inter- 
electrode phase synchrony to measure oscillatory synchronization between brain 
regions was confounded by several factors, such as common reference and source 
mixing (e.g., Guevara et al., 2005; Palva & Palva, 2012). Revisiting the issue of long- 
distance synchronization between brain regions, Hirvonen and colleagues (2017) 
analyzed the MEG data of Grützner and colleagues (2013) using a source- based phase 
synchronization method that avoided the common reference problem and minimized 
the contribution of source mixing, and found reduced gamma phase synchronization 
between visual and prefrontal cortical areas in individuals with schizophrenia compared 
to healthy controls, and the reduction in inter- areal synchronization was correlated with 
the patients’ total clinical symptoms.

These studies investigating Gestalt perception in schizophrenia generally found 
associations between oscillation abnormalities and psychotic symptoms, particularly 
disorganization, and are in line with the results of psychophysical studies of Gestalt per-
ception in schizophrenia. Taken together, the results of these studies are consistent with 
the proposed role of gamma synchronization in visual feature binding, and support the 
hypothesis that schizophrenia is associated with abnormal oscillatory synchronization 
that is functionally related to impaired information processing and clinically relevant 
symptoms.

18.2.2.2  Visual Evoked and Induced Gamma
Taking a step back from the domain of Gestalt perception, it can be asked whether visual 
gamma activity in general is abnormal in schizophrenia. Visual stimulation elicits two 
kinds of high- frequency oscillatory activity in visual cortex (e.g., Muthukumaraswamy 
et al., 2010):

 1. an early (~100 ms) evoked, transient oscillation that is phase- locked to stimulus 
onset, with a frequency that varies across the upper beta and gamma bands; and

 2. an induced oscillation in the high gamma band with a later onset, that lasts for the 
duration of stimulation.

However, for long- duration stimuli, a transient evoked offset oscillation is also found 
with similar characteristics as the early evoked oscillation.

These three visual oscillations have been investigated in schizophrenia. Spencer and 
colleagues (2003, 2004, 2008b) found reduced PLF of the early visual evoked gamma 
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oscillation in chronic schizophrenia patients, but in other studies this oscillation did 
not differ from healthy controls (Ghorashi & Spencer, 2015; Spencer & Ghorashi, 
2014). Grent- ‘t- Jong and colleagues (2020) reported reduced PLF of the early evoked 
gamma oscillation in first- episode patients and clinical high- risk individuals. Grent- 
‘t- Jong and colleagues (2016, 2020) showed that the power of the visual induced oscil-
lation was reduced in schizophrenia patients during visual stimulation with a moving 
grating stimulus, and during stimulation with upright and inverted Mooney face 
stimuli (Grützner et al., 2013; Sun et al., 2013). And, the power of the offset response was 
also reduced overall in schizophrenia patients compared to controls in Grützner and 
colleagues (2013) and Sun and colleagues (2013). Thus, several studies have found some 
impairments in gamma oscillations elicited by visual stimuli in schizophrenia, but the 
causes for the discrepancies among studies are not clear.

As in the auditory system, steady- state stimulation has been used in the visual system 
to probe the integrity of its circuitry in schizophrenia, although with little consistency 
in the stimulation frequencies tested among studies. Using 1- Hz stimulation, Jin and 
colleagues (2000) found that schizophrenia patients had reduced visual steady- state re-
sponse (VSSR) power at harmonics in the alpha band (10– 12 Hz) compared to healthy 
controls. Clementz and colleagues (2004) found that the temporal dynamics of the VSSR 
to stimulation at 6.4 Hz were abnormal in schizophrenia, showing a delayed buildup and 
a longer decay time. Similarly, using 12.5- Hz stimulation, Ethridge and colleagues (2011) 
found a decline in VSSR power during the stimulation period in persons with schizo-
phrenia compared to controls. Krishnan and colleagues (2005) investigated VSSRs 
at stimulation frequencies from 4– 40 Hz and found reduced VSSR power in patients 
for beta and gamma frequency stimulation. But in contrast, Riečanský and colleagues 
(2010) found increased PLF of the initial transient phase of the VSSR for 40 Hz stimula-
tion in patients.

In sum, there is evidence for deficits in visual gamma generation in schizophrenia, 
although these deficits may not be as general as with auditory gamma oscillations. There 
is a substantial degree of inconsistency in the early visual- evoked oscillation and gamma 
VSSR findings, while visual induced gamma power seems to be consistently decreased in 
schizophrenia (although relatively few studies have investigated this oscillation). More 
experiments assessing different types of stimuli, tasks, and multiple VSSR stimulation 
frequencies are needed to better understand visual gamma generation in schizophrenia.

18.3 Oscillations Related to Working 
Memory Processes

Schizophrenia is characterized by impairments in prefrontal cortex (PFC) function 
(e.g., Minzenberg et al., 2009), microcircuitry (e.g., Hoftman et al., 2018), and cognitive 
domains associated with PFC circuits: working memory and executive control (Barch, 
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2005). Since most of the evidence for neural circuit abnormalities in schizophrenia 
comes from studies of PFC microcircuitry, deficits should be found gamma oscillations 
elicited in tasks that engage PFC circuits. Several studies have indeed reported gamma 
oscillations deficits in working memory and executive control tasks in schizophrenia.

One notable series of studies employed the “preparing to overcome prepotency” 
(POP) task, in which a rule governing the spatial correspondence between a response 
cue and the manual response is maintained in working memory. On low cognitive 
control trials, the response cue matches the response hand, while on high cognitive 
control trials, the response cue signals the opposite response hand. In the first study 
reporting strong evidence for PFC gamma deficits in working memory in schizo-
phrenia, Cho and colleagues (2006) examined gamma power in chronic schizophrenia 
patients and controls performing the POP task, finding that increased cognitive control 
requirements elicited higher PFC gamma power during the delay period at electrodes 
over the PFC in controls but not in patients, who made more errors in the high con-
trol condition. Gamma power during the late part of the delay was correlated with ac-
curacy in the controls, and negatively correlated with disorganization symptoms in the 
patients. In a study comparing medicated and unmedicated first- episode patients with 
controls in the POP task, Minzenberg and colleagues (2010) found a similar pattern 
of cognitive control- related gamma deficits at frontal electrodes in both groups of 
patients, indicating that the gamma deficit was not related to antipsychotic medication, 
and was present early in the course of the disorder. In healthy individuals, cognitive- 
control- related gamma in the POP task was correlated with gamma- amino- butyric acid 
(GABA) neurotransmission, but not in schizophrenia patients (Frankle et al., 2015). 
And Minzenberg and colleagues (2015) showed that the administration of modafinil, a 
drug that improves cognition through its actions on the dopamine and norepinephrine 
systems, enhanced performance on the POP task and the associated cognitive control- 
related gamma power in schizophrenia patients.

Using a version of the Sternberg paradigm, Haenschel and colleagues (2009) provided 
further support for the findings of impaired gamma oscillations associated with working 
memory maintenance in schizophrenia. Participants had to encode from one to three 
objects in working memory and then maintain them for 12 seconds, until a probe 
item was presented. Hence, this task enabled the dissociation of processes involved in 
working memory encoding, rehearsal, and retrieval. The study found that their early- 
onset schizophrenia patients had worse performance than controls as memory load 
(number of objects) increased and showed deficits in stimulus- evoked oscillations in 
several bands in the encoding phase. In the late delay period, induced gamma power at 
frontal sites in the controls peaked in the three- item load condition, whereas induced 
gamma power peaked for the patients in the two- item condition. This kind of abnormal 
memory load/ response function has been observed in functional neuroimaging studies 
(e.g., Jansma et al., 2004). The patients also had reduced induced theta and gamma 
power during the retrieval phase compared to controls.

These studies demonstrate that gamma activity likely originating in the PFC involved 
in working memory and executive control processes is impaired in schizophrenia, and 
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point to avenues for restoring cognitive function to normal levels. This area of research 
makes the best link between studies of neural microcircuits and oscillatory activity 
related to particular cognitive functions in schizophrenia.

18.4 Transcranial Magnetic 
Stimulation (TMS)- Evoked   

Oscillations

Single TMS pulses evoke EEG oscillations in the cortex underneath the stimulated 
scalp site. Evidence suggests that the frequency of these TMS- evoked EEG oscillations 
varies for different cortical areas (Ferrarelli et al., 2012; Rosanova et al., 2009): ~10 Hz 
for visual cortex, ~20 Hz for parietal cortex, and ~30 Hz for prefrontal cortex. It has 
been proposed that the frequency of these oscillations reflects the resonant frequency 
of the stimulated cortical area (Rosanova et al., 2009), which is likely to be determined 
by specific characteristics of the circuitry in that area. Therefore, TMS- evoked EEG 
oscillations could be used to directly probe the integrity of cortical circuits in neuro-
psychiatric disorders.

To date, only a handful of studies have been conducted in this area. Ferrarelli and 
colleagues (2008) examined the oscillations evoked by TMS to the frontal cortex in 
healthy persons and schizophrenia patients and found that the oscillations were reduced 
in total power and PLF in the patients. In a follow- up study, Ferrarelli and colleagues 
(2012) obtained TMS- evoked oscillations to stimulation over prefrontal, premotor, 
motor, and parietal cortex. They found that the frequency, total power, and PLF of the 
TMS- evoked oscillation were lower in patients than controls for stimulation at the pre-
frontal and premotor sites. Canali and colleagues (2015) stimulated over premotor cortex 
in patients with schizophrenia, bipolar disorder, and depression, and found a reduction 
in the TMS- evoked oscillation frequency in all the patient groups compared to controls. 
And in a study of first- episode psychosis patients, Ferrarelli and colleagues (2019) found 
reduced beta/ low gamma oscillations evoked by TMS of the motor cortex. The results of 
these studies are consistent with the hypothesized gamma oscillation deficits in frontal 
cortical areas in schizophrenia (see Section 18.3). TMS- evoked oscillations could thus 
provide a powerful approach to investigate cortical circuits directly without needing to 
use particular sensory stimuli or tasks to engage the brain region of interest.

18.5 Spontaneous Oscillations

In modern neuroscience, brain activity is measured with methods at different spa-
tial and temporal scales: single- unit spiking, local field potentials, intracranial and 
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scalp EEG, and functional neuroimaging, among others. The patterns of activity 
observed with all of these methods can be classified into two categories: evoked 
activity, which results directly from sensory or other stimulation; and intrinsic or 
spontaneous activity, which is the ongoing activity does not directly result from 
stimulation. Due to the highly recurrent architecture of connections in the brain, 
spontaneous activity makes up most of neural activity, while evoked activity makes 
up only a small portion (Raichle, 2010). Classical views of brain function have 
considered spontaneous activity to be simply “noise”, with evoked activity simply 
being added to the random ongoing activity. However, more recent evidence has 
demonstrated that spontaneous activity is structured in space and time (Tsodyks 
et al., 1999), and much of the variance in evoked responses can be accounted for 
by spontaneous activity (Arieli et al., 1996). Spontaneous activity appears to reflect 
the spatial and temporal connectivity patterns in local and large- scale networks, 
and in part represents “predictions” of expected sensory input based on past ex-
perience, which interact with and modulate incoming stimulus evoked responses 
(Ringach, 2009).

EEG is a powerful method with which to study spontaneous and evoked activity 
in the brain as it is sensitive to neural activity across most of the neural frequency 
spectrum. However, the neural generators and functional significance of many types 
of spontaneous activity in the EEG are largely unknown. Infraslow (0.01– 0.1 Hz) and 
slow (0.1– 1 Hz) oscillations in the EEG may correspond to fluctuations in the blood 
oxygenation level dependent signal measured with functional magnetic resonance im-
aging, as these kinds of activity occur in the same frequency bands and may share the 
same neural generators in large- scale networks of brain regions (Hiltunen et al., 2014). 
At the opposite ends of the frequency and spatial spectra, broadband (as opposed 
to narrowband) gamma activity (30– 100 Hz) in the EEG may reflect asynchronous 
neuronal spiking in local circuits (e.g., Burke et al., 2015; Yizhar et al., 2011). Recent 
studies suggest that oscillatory activity across the frequency spectrum is hierarchically 
organized (Buzsáki & Draguhn, 2004), with the phase of low- frequency oscillations 
modulating the power of higher- frequency oscillations (reviewed in Canolty & 
Knight, 2010).

EEG studies have repeatedly demonstrated that various types of sensory-  and task- 
evoked responses tend to be decreased in individuals with schizophrenia compared 
to healthy control subjects. ERPs ranging from early sensory evoked components like 
the P50, to purely cognitive components like the P300, generally show decreased, ra-
ther than increased amplitudes in schizophrenia (Javitt et al., 2008). And as reviewed 
earlier, event- related oscillations typically show decreased evoked power and/ or phase 
locking. But while schizophrenia is generally associated with decreases in evoked 
brain activity, spontaneous oscillatory activity during waking appears to be generally 
increased in particular frequency bands. (In fact, findings of increased spontaneous 
oscillation power in schizophrenia go back several decades; see Itil, 1977.) One major 
question is whether evoked activity deficits are caused to some degree by increased 
spontaneous activity.
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18.5.1  Resting State Oscillations

There have been many reports of increased low- frequency power in the resting state 
EEG of individuals with schizophrenia, typically in the delta (1– 4 Hz) and/ or theta (4– 8 
Hz) bands, although alpha (8– 13 Hz) power does not seem to show a consistent pattern 
in the literature (e.g., Boutros et al., 2008; Clementz et al., 1994; Narayanan et al., 2014; 
Schulman et al., 2011; Sponheim et al., 2000). Increased delta/ theta power in individuals 
with psychotic bipolar disorder has been reported as well (e.g., Clementz et al., 1994; 
Narayanan et al., 2014; Sponheim et al., 2000). Increased delta/ theta power has been 
found in first- episode psychosis patients (Clementz et al., 1994; Sponheim et al., 2000), 
although Ranlund and colleagues (2014) found increased delta/ theta power in chronic 
but not first- episode psychosis patients. Increased delta/ theta power has not gener-
ally been found in relatives of psychosis patients (e.g., Clementz et al., 1994; Ranlund 
et al., 2014), although Narayanan and colleagues (2014) reported an increase in delta 
power in SZ relatives. Finally, van Tricht and colleagues (2014) observed increased delta 
and theta power in individuals at clinical high risk for psychosis who later transitioned 
to psychosis, in comparison to controls and to clinical high- risk individuals who did 
not transition to psychosis. Thus, the sum of the evidence suggests that increased delta 
and/ or theta power is associated with psychosis and may even occur before the onset of 
psychosis in at- risk individuals. Furthermore, increased delta/ theta power is found in 
unmedicated schizophrenia patients (Boutros et al., 2008), so it does not appear to be an 
effect of antipsychotic treatment.

Reports of increased spontaneous high frequency (beta [13– 30 Hz] and gamma 
bands) power during the resting state also go back decades (Itil, 1977), but the con-
tribution of artifacts to those reports has been debated, as scalp muscle (e.g., Pope 
et al., 2009) and saccadic spike potential (e.g., Keren et al., 2010) artifacts can confound 
measurements of high frequency power. Recent studies have used independent compo-
nent analysis (Jung et al., 2000) to remove such artifacts. For example, Narayanan and 
colleagues (2014) analyzed the resting EEG in a large sample of individuals with schizo-
phrenia and psychotic bipolar disorder and their relatives. They found increased resting 
power in participants with schizophrenia and psychotic bipolar disorder in the low beta 
range (13– 20 Hz), but not in the upper beta and gamma bands. Using MEG (which is 
less sensitive to scalp muscular artifacts than EEG) in conjunction with ICA artifact 
correction, Grent- ‘t- Jong and colleagues (2018) found widespread reductions of resting 
gamma power in chronic schizophrenia patients. However, different gamma patterns 
were observed in other illness stages: first- episode patients showed increased gamma 
in visual areas with gamma decreases elsewhere, and clinical high- risk individuals 
demonstrated widespread increases in high gamma power. Consistent with the latter 
finding, Ramyead and colleagues (2015) also found increased resting gamma power in 
at- risk individuals who subsequently converted to psychosis. Thus, the evidence so far 
suggests that different stages of schizophrenia may be associated with different patterns 
of spontaneous gamma activity in the resting state. Further studies of clinical high- risk 
and first- episode patients are necessary to confirm this hypothesis, particularly longitu-
dinal studies.
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18.5.2  Spontaneous Oscillations During Tasks

If schizophrenia is associated with increased EEG power in particular frequency bands 
during the resting state, what about during sensory stimulation or task performance? 
Winterer and colleagues (2000, 2004, 2006) found increased induced or “noise” power 
with decreased “signal” (ERP) amplitude in schizophrenia patients in the delta/ theta range 
at frontal electrodes during auditory oddball tasks. This pattern was also found in un-
affected siblings (Winterer et al., 2004, 2006), and was associated with the COMT genotype, 
which affects dopamine signaling in the cortex (Winterer et al., 2006). Dopamine has been 
hypothesized to affect the signal- to- noise ratio of cortical responses (e.g., Rolls et al., 2008).

In ASSR tasks, Spencer (2012) and Hirano and colleagues (2015) examined induced 
gamma power during the baseline and stimulus periods, using dipole source localization 
to construct a spatial filter to focus on auditory cortex activity. They found that broadband 
induced gamma power was increased in the auditory cortex of individuals with schizo-
phrenia compared to healthy individuals during both the baseline and stimulus periods. 
Induced gamma power was inversely correlated with ASSR PLF for 40- Hz stimulation, 
demonstrating an interaction between evoked and spontaneous EEG activity. In addition, 
auditory hallucination symptoms in the patients were correlated with broadband gamma 
power in the left auditory cortex only during 40- Hz stimulation (Hirano et al., 2015).

These studies suggest that spontaneous EEG activity is increased in schizophrenia 
during sensory stimulation and task performance, although the affected frequency bands 
may depend on stimulus and task factors. An important question is whether increased 
spontaneous activity in the baseline period of a task is responsible for the apparent deficit 
in subsequent evoked activity in individuals with schizophrenia. An increase in baseline 
power in schizophrenia patients could cause the power of an evoked response, typic-
ally measured against the baseline, to appear to be reduced in comparison to healthy 
individuals, even if the true magnitude of the evoked response was unaffected. Winterer 
and colleagues (2000) proposed such an effect of decreased signal- to- noise ratio and 
evidence of this effect appears in a schizophrenia- related animal model (Lazarewicz 
et al., 2010) and in a VSSR task (Ethridge et al., 2011). The negative correlation between 
40- Hz ASSR PLF and spontaneous gamma power in Hirano and colleagues (2015) may 
reflect a different effect: the interference of noise on the PLF measure, as PLF is reduced 
as overlapping noise increases (e.g., Ding & Simon, 2013; Muthukumaraswamy & Singh, 
2011). These signal- to- noise ratio effects could be considered artifactual, in that they pro-
duce apparent effects due to the imperfect nature of the measures. Another possibility is 
that increased noise in a neural circuit actually disrupts oscillatory synchronization in 
that circuit. Distinguishing that phenomenon from artifactual effects may require meas-
urement of the affected oscillation at the local circuit level.

18.5.3  Sleep Oscillations

Investigations of spontaneous oscillatory activity during sleep in schizophrenia have 
focused on two oscillations: slow (delta) waves and sleep spindles (7– 15 Hz). Slow waves 
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are generated in the cortex, whereas spindles originate in the thalamic reticular nu-
cleus (TRN) and are transmitted to the cortex (Steriade, 2006). Spindle generation in 
the thalamus involves interactions among inhibitory interneurons and excitatory thal-
amocortical projection neurons in the TRN (e.g., Jacobsen et al., 2001). Corticothalamic 
projections initiate spindles through glutamatergic inputs to TRN cells at NMDARs. 
The oscillations tend to be linked through phase- amplitude coupling, such that sleep 
spindles are more likely to occur during the up- state phase of the slow wave (e.g., 
Staresina et al., 2015). Both oscillations are hypothesized to support the consolidation of 
long- term memories during sleep (Diekelmann & Born, 2010).

Compared to gamma oscillations, there have been relatively few studies of sleep 
oscillations in schizophrenia, despite the detailed knowledge of the circuitry that 
generates these oscillations. While spontaneous EEG activity during the resting state 
or task performance tends to be increased in schizophrenia, spontaneous oscilla-
tory patterns during sleep tend to be reduced. The findings on slow waves are mixed, 
with some reports of deficits (e.g., D’Agostino et al., 2018; Sarkar et al., 2010; Sekimoto 
et al., 2011) but other studies not finding slow wave abnormalities (e.g., Ferrarelli et al., 
2007, 2010). In contrast, there is strong evidence that spindle generation is impaired in 
schizophrenia (e.g., Ferrarelli et al., 2007, 2010; Manoach et al., 2014; Wamsley et al., 
2012). Spindle deficits have been reported in medication- naïve first- episode patients 
(Manoach et al., 2014) and unaffected first- degree relatives of schizophrenia patients 
(D’Agostino et al., 2018; Manoach et al., 2014), indicating that spindle impairment is a 
trait marker of schizophrenia and is not due to antipsychotic medication. While spindle 
impairment is associated with reduced thalamic volume (Buchmann et al., 2014), it has 
also been correlated with abnormally increased thalamocortical functional connect-
ivity (Baran et al., 2019). With regards to symptomatology, spindle deficits have been 
associated with psychotic symptom ratings (Ferrarelli et al., 2010; Wamsley et al., 2012). 
Notably, there is substantial evidence that sleep spindle deficits are associated with 
impairments in memory consolidation in schizophrenia (reviewed in Manoach et al., 
2016), pointing to spindle- generating circuitry as a potential target for treatment of both 
psychotic symptoms and impaired cognition in schizophrenia.

18.6 Circuit Mechanisms Underlying 
Oscillation Abnormalities 

in Schizophrenia

Neural oscillation research has made an important impact on our understanding of 
schizophrenia due to the cross- fertilization of this field with basic research into os-
cillation mechanisms and neuropathological studies of neural circuit abnormalities 
in schizophrenia. Unlike ERPs, for which the generating mechanisms are unknown, 
the basic mechanisms underlying some oscillations are known to a fair degree. For 
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example, cortical gamma oscillations are generated by recurrent interactions between 
excitatory pyramidal cells and fast- spiking, parvalbumin- expressing (PV+ ) inhibi-
tory interneurons (Buzsáki & Wang, 2012). Neuropathological research has identified 
deficits in pyramidal cells and PV+  interneurons (e.g., Lewis et al., 2012) that can be 
used to inform models of gamma generation, enabling researchers to test hypotheses 
about gamma abnormalities in schizophrenia with methods such as neuropharma-
cology (e.g., Sivarao et al., 2016), optogenetics (e.g., Carlén et al., 2012; Yizhar et al., 
2011), and computational modeling (e.g., Jadi et al., 2016; Kömek et al., 2012; Spencer, 
2009). This section reviews some of the integrative research into the neural circuit 
mechanisms of oscillation abnormalities in schizophrenia and focuses on the areas of 
NMDAR hypofunction and reduced synaptic connectivity in which a major proportion 
of research has been done.

18.6.1  NMDAR Hypofunction

The glutamate hypothesis of schizophrenia (Moghaddam & Javitt, 2012) offers clues to 
the neural circuit abnormalities that may be responsible for both evoked gamma oscil-
lation deficits and increased spontaneous gamma activity in this disorder. In healthy 
people, acute administration of NMDAR antagonists produces a constellation of posi-
tive and negative symptoms, cognitive deficits, and neurophysiological abnormalities 
that resemble those found in schizophrenia (Krystal et al., 2003). In animals, the be-
havioral and neurophysiological abnormalities resulting from acute administra-
tion of NMDAR antagonists (reviewed in Amann et al., 2010) and genetic knockouts 
of NMDARs (e.g., Belforte et al., 2010; Korotkova et al., 2010) resemble those found 
in schizophrenia. In particular, acute NMDAR antagonism reduces the amplitude of 
some ERPs (Amann et al., 2010) and gamma oscillations (e.g., Lazarewicz et al., 2010; 
Leishman et al., 2015; Sivarao et al., 2016; Sullivan et al., 2015), in addition to increasing 
broadband spontaneous gamma power (reviewed in Hunt & Kasicki, 2013). Genetic 
ablation of NMDARs also increases spontaneous gamma power in adult animals (e.g., 
Carlén et al., 2012; Korotkova et al., 2010; Tatard- Leitman et al., 2015). Increased spon-
taneous gamma as a result of NMDAR hypofunction results from increased excitability 
of pyramidal cells, either through disinhibition from reduced excitatory drive to fast- 
spiking interneurons (Carlén et al., 2012; Homayoun & Moghaddam, 2007), and/ or 
by alterations in cell membrane properties of the pyramidal cells themselves (Tatard- 
Leitman et al., 2015). With regard to increased spontaneous delta/ theta power, in the 
thalamus, NMDAR antagonism increases delta band activity, which is transmitted to 
the hippocampus (Zhang et al., 2012) and the cortex (Hunt & Kasicki, 2013).

In healthy humans, besides the behavioral effects that resemble psychotic symptoms, 
NMDAR antagonism via acute ketamine administration decreases the amplitude of 
some ERPs (e.g., Gunduz- Bruce et al., 2012) and increases broadband gamma power 
during rest (Muthukumaraswamy et al., 2015; Rivolta et al., 2015). This increase in spon-
taneous gamma power is consistent with increased cortical excitability, which has 
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been shown with TMS to result from NMDAR antagonist administration (Di Lazzaro 
et al., 2003). But in contrast to the animal model studies, ketamine in humans decreases 
resting state cortical delta activity (Muthukumaraswamy et al., 2015).

18.6.2  Reduced Synaptic Connectivity

The scalp- recorded EEG and MEG mainly reflect the spatially and temporally 
summated post- synaptic potentials in the dendritic trees of cortical pyramidal cells 
(Nunez, 1981). Dendritic spines are the main sources of excitatory input to pyram-
idal cells, and reductions in dendritic spine density have been consistently reported 
in the prefrontal cortex in schizophrenia (e.g., Glantz & Lewis, 2000; Sweet et al., 
2009). Decreased dendritic spine density is thought to reflect a general reduction 
in synaptic connectivity (both excitatory and inhibitory) in local cortical circuits, 
and is manifested as reduced cortical volume and thickness at the macroscopic 
level of structural magnetic resonance imaging studies of schizophrenia (Selemon 
& Goldman- Rakic, 1999). Thus, deficits of oscillation power in schizophrenia could 
be caused by reduced synaptic connectivity in the generating cortex. In support 
of this hypothesis, a few studies have found correlations between the structure of 
the superior temporal gyrus (STG) (which contains auditory sensory and associ-
ation cortex) and ASSR measures. Edgar and colleagues (2014) found a correlation 
between left STG cortical thickness and 40- Hz ASSR total power in the left hemi-
sphere, although in controls and not schizophrenia patients. Similarly, Kim and 
colleagues (2019) reported a correlation between right STG gray volume and 40- Hz 
ASSR evoked power in controls but not patients. Hirano and colleagues (2020) found 
that the gray matter volume of left Heschl’s gyrus (located in the anterior portion 
of the STG and containing primary auditory cortex, the main ASSR generator) was 
correlated with 40- Hz ASSR PLF and inversely correlated with spontaneous gamma 
power in patients. While these three sets of findings involve different oscillation 
measures and diagnostic groups, they do provide support for the idea that cortical 
structure can influence gamma oscillations.

Using a computational model, we simulated the reduction of excitatory and inhibi-
tory connections in a cortical region and found that pyramidal cell excitability increased 
as excitatory and inhibitory connections were eliminated (Spencer, 2009). A recent ex-
perimental study showed that reduced density of dendritic spines was associated with 
increased pyramidal cell excitability and schizophrenia- like behaviors in rodents, which 
could be reversed with antipsychotic medication (Kim et al., 2015). Thus, increased 
spontaneous gamma power in schizophrenia might also be associated with decreased 
dendritic spine density and cortical volume/ thickness deficits (Hirano et al., 2020). 
As subchronic administration of phencyclidine, an NMDAR antagonist, can result in 
decreased dendritic spine density (Hajszan et al., 2006), NMDAR hypofunction could 
be involved in synaptic connectivity reductions in schizophrenia as well.
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18.7 Conclusions and 
Future Directions

Within the last two decades, research into neural oscillations has generated a body of 
findings that has made a substantial impact on our conceptualization of schizophrenia, 
understanding of its pathophysiology, and methods of testing new treatments. The 
study of gamma oscillations has had the most success, due to the cross- fertilization of 
clinical studies with neuropathological, basic, and computational research. As details 
of the specific cellular elements that are disturbed in schizophrenia are revealed, it is 
possible to construct hypotheses about the consequences of these circuit abnormalities 
in animal and computational models and try to relate them to the human clinical data.

The field has matured in step with the broader field of oscillatory brain dynamics. In 
most studies the potential sources of EEG artifacts are now understood and corrected 
for, and the importance of having adequate numbers of epochs is appreciated. Studies 
have better statistical power, and mass univariate statistics are being used with the ap-
propriate corrections for multiple tests. The influence of confounds like common refer-
ence and volume conduction is more widely appreciated for connectivity studies. Thus, 
the potential for false positive findings seems to be less than before.

And yet, to this researcher, the promise of oscillation research for ultimately helping 
develop new treatments for schizophrenia (and other neuropsychiatric disorders) 
seems far from being fulfilled. The most complete body of research has been on the 
gamma ASSR, which is being used as a biomarker in translational research, yet this 
oscillation has limited relevance for cognition or symptoms in schizophrenia (except 
possibly for auditory hallucinations). The areas of research into perceptual organ-
ization and working memory, while being the best motivated by psychological and 
mechanistic theories, have not yet yielded reliable measures that can be used in transla-
tional research. So, much more work remains to be done. I still believe that as research 
progresses into the neural mechanisms underlying different oscillations, and the nature 
of neural circuit abnormalities in schizophrenia is understood in greater detail, it will 
become possible to construct and test mechanistic hypotheses with greater precision, 
both in vivo and in silico. Ultimately this research effort may come full circle, leading to 
the use of neurostimulation methods to modulate and “correct” aberrant oscillations in 
individuals with schizophrenia, and in this way, re- integrate the broken mind.
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19.1 Overview and Introduction

This chapter reviews and discusses the application of EEG frequency techniques to 
imaging and understanding motivational/ emotional and cognitive control functions 
in anxiety. The first three sections present a historical account of how EEG frequency 
techniques have been used to understand emotional, motivational, and cognitive 
components of anxiety. The final section considers these different EEG frequency 
metrics vis- à- vis theoretical models of anxiety and how they are being, or could be, used 
to advance both science and treatment. Particularly, this chapter focuses on how anxiety 
relates to motivational/ emotional and cognitive control dynamics involved in balancing 
bottom- up and top- down influences on behavior. As previous chapters in this volume 
primarily review the measurement and nature of EEG frequency signals, here we in-
stead focus on the applications of these methods to the study of anxiety.

Anxiety is a common human experience that often involves a mix of cognitive, 
physiological, and behavioral manifestations (Barlow, 2002). It lies on a continuum from 
mild levels that can motivate individuals to increase vigilance and respond adaptively to 
threat or challenge (Barlow, 2002), but at excessive levels represents the most common 
mental health problem worldwide (U.S. Burden of Disease Collaborators, 2018). It is a 
multi- dimensional construct that many have separated into anxious apprehension and 
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anxious arousal subtypes, with the former dominated by verbal worries and ruminations 
focused on future ambiguous threat and the latter by somatic tension and physiological 
hyperactivity centered on clear immediate threats (Heller et al., 1997, Heller & Nitschke, 
1998). Given its multifaceted nature, anxiety and its associated impairments have been 
tackled from motivational/ emotional, cognitive and neuropsychological perspectives 
(Eysenck et al., 2007; Gray & McNaughton, 2000; Heller et al., 1997, Heller & Nitschke, 
1998). In the review that follows, we examine anxiety across the spectrum of severity 
and, thus, how EEG frequency metrics reflect the dynamic interplay of motivation, 
emotion, and cognition in adaptive and maladaptive forms of anxiety.

19.2 The First Wave: Alpha and Anxiety

19.2.1  Early Foundations and the Right- Sided Bias

Historically, the largest body of research examining anxiety and EEG frequency band 
activity focused on alpha frontal asymmetry, or the difference in alpha power at lat-
eral frontal electrode sites between the right and left hemispheres. This is examined by 
subtracting the natural log of alpha power in the left hemisphere from that of the right 
hemisphere (i.e., F4−F3, F6−F5, and F8−F7), resulting in an asymmetry score (Reznik & 
Allen, 2018). Because alpha power is thought to reflect reduced cortical activity, greater 
relative right alpha asymmetry is interpreted as decreased cortical activity in the right 
hemisphere (Allen et al., 2004).

Such research grew out of an emerging interest in understanding emotion in the 
1970s (e.g., Ekman & Friesen, 1971; Ledoux, 1978) and simultaneous observations of the 
hemispheric specialization of emotions in patients with brain lesions (Gainotti, 1972; 
Sackeim et al., 1982; Silberman & Weingartner, 1986) as well as patients undergoing 
neurological procedures (see Davidson & Fox, 1982). Specifically, it was proposed that 
the left hemisphere is involved the generation of positive affect, whereas the right hemi-
sphere is involved in the generation of negative affect, including anxiety.

Davidson and colleagues (Davidson, 1979, 1984, 1988; Davidson & Fox, 1982) were 
the first to apply EEG methodology to this framework. In a series of novel papers, they 
introduced an approach- withdrawal model of behavior to explain frontal laterality and 
the neural basis of emotion. According to this model, greater relative left- frontal activity 
(i.e., reduced alpha power in the left hemisphere) is related to approach behaviors and 
positive affect, whereas greater relative right- frontal activity is related to withdrawal 
behavior and negative affect. Here, anxiety is positioned as a manifestation of negative 
affect and withdrawal (Fox, 1991).

In support of this model, several studies across a variety of populations— infants, chil-
dren, non- human primates, and adults— have implicated right alpha frontal asymmetry 
in anxiety. In several papers, Davidson and Fox (Davidson & Fox, 1989; Fox et al., 1992; 
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Fox & Davidson, 1987) reported that in 10- month- old infants, distress, gaze aversion, 
and crying in response to maternal separation was associated with greater relative right- 
frontal brain activity. This was found to be both a trait and state marker of behavior, 
as resting- state asymmetry was predictive of later anxious behaviors during the separ-
ation (Davidson & Fox, 1989; Fox et al., 1992), and asymmetry scores increased during 
the separation (Fox & Davidson, 1987). Anxious behaviors, internalizing problems, and 
diagnoses of anxiety disorders (based on direct observation and parent report) in pre-
school (Fox et al., 1995; Fox et al., 1996) and school- age children (Baving et al., 2002; 
Schmidt et al., 1999) also demonstrated a relationship to relative right- frontal activa-
tion both at rest and during a stress induction. Similarly, child anxious temperament 
(e.g., high reactivity and behavioral inhibition), which is predictive of the development 
of clinically significant social anxiety (Hirshfeld- Becker et al., 2007), has been reported 
to be associated with right anterior activity (McManis et al., 2002). The same patterns of 
alpha frontal asymmetry can be observed in non- human primates (Kalin et al., 1998), 
and can be decreased with the administration of anxiolytic benzodiazepines (Davidson 
et al., 1992). In adults, self- reported trait- anxiety on the State- Trait- Anxiety Inventory 
(STAI) (Spielberger, 1983) has been reported to correlate with relative right- frontal 
asymmetry in healthy young adults (Adolph & Margraf, 2017; Blackhart et al., 2006). 
In clinical populations, those with obsessive compulsive disorder (OCD) were found to 
have greater relative right- frontal asymmetry (Ischebeck et al., 2014; Kuskowski et al., 
1993) and cognitive behavioral therapy has been found to shift asymmetry from relative 
right to left activity in patients with social anxiety disorder (Moscovitch et al., 2011). In 
summary, relative right- frontal alpha asymmetry seems to reflect tendencies to with-
draw from stress or novelty and a propensity towards anxious temperament.

19.2.2  Conflicting Findings and Anxiety Subtypes

An equally large body of work, however, has not supported the hypothesis that anx-
iety relates to greater right compared to left- frontal activation. Indeed, several studies 
have reported no frontal asymmetry differences in anxious populations (Kemp et al., 
2010; Metzger et al., 2004; Nitschke et al., 1999; Shankman et al., 2008; Smith et al., 
2018), whereas others have reported greater relative left- frontal activation in anxiety 
(Heller et al., 1997). These mixed findings could be due to the fact that anxiety is not 
a unitary construct and led to the proposal that anxiety subtypes may show different 
patterns of alpha asymmetry (Heller et al., 1997). Anxious apprehension, characterized 
by worry and rumination typically observed in generalized anxiety disorder (GAD) 
(Barlow, 1991), has been posited to be associated with greater left- frontal activity due 
to the lateralization of language to the left hemisphere (Heller et al., 1997). On the other 
hand, anxious arousal, characterized by somatic symptoms of anxiety that are typically 
observed in panic disorder and post- traumatic stress disorder (PTSD), has been posited 
to be associated with greater relative right- frontal activation (Heller et al., 1997).
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The few EEG studies of alpha frontal asymmetry in patient populations (Buchsbaum 
et al., 1985; Smith et al., 2016) have supported the hypothesis that anxious apprehen-
sion is predominately related to greater left- hemisphere activity, though findings in 
non- patient populations have been mixed, possibly due to methodological differences. 
For example, Heller and colleagues (1997) found that anxious apprehension, defined 
as scores above the 90th percentile on the STAI, was associated with left- frontal asym-
metry, though as noted earlier, other studies have reported the opposite findings using 
this measure (Adolph & Margraf, 2017; Blackhart et al., 2006) and one study found 
no asymmetry differences (Smith et al., 2018). Studies that have used the Penn State 
Worry Questionnaire (Meyer et al., 1990) as a measure of anxious apprehension have 
also been mixed, with one study reporting greater left- frontal asymmetry (Smith et al., 
2016), and two reporting no asymmetry differences (Nitschke et al., 1999; Smith et al., 
2018). Hofmann et al. (2005) reported that a worry induction in healthy college students 
resulted in increased left- frontal alpha asymmetry, whereas, Carter, Johnson, and 
Borkovec (1986) reported no association between a worry induction and alpha asym-
metry, though greater left asymmetry was reported in the beta band. Recently, Nusslock 
and colleagues (2018) reported that the typical pattern of relative right- frontal activity in 
patients with depression was no longer present when considering those with comorbid 
anxiety disorders (e.g., separation, GAD, and OCD). Together, these findings highlight 
the importance of considering anxiety measurement and population in the interpret-
ation of alpha asymmetry findings.

With regards to anxious arousal and relative right- frontal asymmetry, all 
investigations, with the exception of those in PTSD, have supported the hypothesis that 
anxious arousal can be distinguished from anxious apprehension by relative right- frontal 
activation. Self- reported anxious arousal (Mathersul et al., 2008; Nitschke et al., 1999; 
Smith et al., 2016), anxiety inductions (Avram et al., 2010; Davidson et al., 2000; Isotani 
et al., 2001) and clinical levels of anxious arousal (e.g., panic disorder) (Wiedemann 
et al., 1999) have all been shown to correlate with relative right- frontal activation.

Reports in participants with PTSD have failed to find frontal asymmetry differences 
in either direction (Kemp et al., 2010; Metzger et al., 2004; Rabe et al., 2006; Shankman 
et al., 2008), though Rabe and colleagues (2006) did find right- frontal activity to be 
associated with greater symptom severity when participants viewed trauma- related 
pictures. Kemp and colleagues (2010) did not find differences between healthy controls 
and participants with PTSD; however, they did find an association between PTSD se-
verity and right- frontal asymmetry within the PTSD group. These mixed findings in 
PTSD could be due to the heterogeneous presentation of the disorder, age differences 
in the populations studied, and the possibility that PTSD may be neurobiologically dis-
tinct from other anxiety disorders (Lobo et al., 2015; Shankman et al., 2008).

In addition to being associated with frontal alpha asymmetry, arousal has also been 
related to alpha power in posterior regions (i.e., parietal and temporal) (Heller, 1993). 
Indeed, PTSD patients demonstrate greater relative right- parietal activity (Kemp et al., 
2010; Metzger et al., 2004; Rabe, Beauducel, et al., 2006). Although some have reported 



468    JASON S. MOSER et al.

 

similar findings in other anxious populations (Bruder et al., 1997; Heller et al., 1997; 
Mathersul et al., 2008; Smith et al., 2016), there have been insufficient studies focusing 
on posterior alpha activity to draw definitive conclusions.

19.2.3  The Devil is in the Details: Methodological 
Heterogeneity and Ambiguity in Neural Sources

Several other methodological issues may limit the interpretation of alpha asymmetry 
findings. First, there are inconsistencies regarding electrode site selection, with some 
studies examining only lateral frontal sites and others examining only midfrontal 
sites— although there is no current theory that predicts why alpha at these sites would be 
different (Reznik & Allen, 2018). Second, past studies have differed in EEG processing 
and referencing procedures. For instance, referencing procedures have included the 
use of an average scalp reference, the vertex (i.e., CZ), the linked mastoids, or current- 
source- density (CSD) transform. The majority of alpha activity in the brain is found over 
the parietal and occipital cortices (Smith et al., 2018), and referencing procedures that do 
not use CSD are susceptible to contaminating activity from more central and posterior 
sites (Reznik & Allen, 2018). Third, frontal alpha asymmetry is not specific to anxiety. 
It has also been linked to other types of psychopathology including major depressive 
disorder (Allen & Reznik, 2015), attention deficit hyperactivity disorder (Keune et al., 
2011), and bipolar disorder (Nusslock et al., 2015). Thus, reported differences in anxiety 
and asymmetry could (a) either be due to comorbidities if these are not accounted for 
and/ or (b) reflect cognitive, behavioral, or emotional processes affected across multiple 
disorders in a dimensional manner. Beyond psychopathology, alpha frontal asymmetry 
has been linked with a multitude of constructs such as guilt (Amodio et al., 2007), anger 
(Harmon- Jones, 2007), racial bias (Amodio, 2010), day and time of year (Peterson & 
Harmon- Jones, 2009; Velo et al., 2012), liking of dessert (Gable & Harmon- Jones, 2008), 
homesickness in college freshman (Steiner & Coan, 2011), feelings towards exercise 
(Hall et al., 2010), listening to rock music (Field et al., 1998), handedness (Brookshire 
& Casasanto, 2012), and attractiveness of the experimenter (Wacker et al., 2013). These 
findings suggest that there could be unaccounted moderators in previous studies on 
anxiety, thus making it difficult to determine the functional significance of frontal 
asymmetry.

Finally, a significant question remaining in EEG frontal asymmetry research is the 
underlying biological mechanism producing hemispheric differences. Occipital and 
thalamic brain regions have been described as alpha generators (Smith et al., 2018), 
and combined EEG- functional magnetic resonance imaging (fMRI) research has 
demonstrated that alpha power correlates positively with functional connectivity be-
tween occipital and thalamic areas (Scheeringa et al., 2012). Additionally, alpha power is 
positively correlated with resting- state functional connectivity of the default- mode net-
work, but negatively correlated with functional connectivity and activity of the dorsal 
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attention network (Laufs et al., 2003; Mantini et al., 2007). Studies that have directly 
examined correlates of alpha asymmetry have implicated the anterior cingulate cortex 
(ACC; Gorka et al., 2015; Nash et al., 2012; Smith et al., 2018), the dorsal lateral prefrontal 
cortex (Smith et al., 2018), the pre and postcentral gyri (Lubar et al., 2003) and the amyg-
dala (Zotev et al., 2016). Collectively, this suggests that alpha asymmetry could reflect 
attention to motivationally relevant information and the execution of intended actions.

In sum, there has been great interest over the past 50 years in understanding how 
alpha asymmetry relates to anxiety. Models of emotional valence, motivation, physio-
logical arousal, and verbal processing have been proposed to explain the reported 
findings. However, because anxiety is a heterogeneous construct that may involve and/ 
or interact in complex ways with cognitive processes such as attention and motivation, 
further research is needed to fully understand the functional significance of alpha asym-
metry in anxiety.

19.3 The Second Wave: Frontal Midline 
Theta and Anxiety

A more detailed treatment of frontal- midline theta (FMT), itself, is provided in 
Chapter 9; therefore, the focus of our review centers on how FMT has been used to 
understand cognitive and related processes in anxiety. As such, research on FMT and 
anxiety is relatively new.

19.3.1  Early Days and a Primer on FMT as an Index of 
Medial Frontal Cortex Function

Prior to landmark observations by Cavanaugh & Schackman (2015), research on 
FMT and anxiety was scarce and methodologically limited. An early series of studies 
conducted by Mizuki and colleagues examined how anxiolytics, state and trait anxiety 
assessed using the STAI and Generalized Anxiety Disorder were related to FMT during 
a continuous addition task (Mizuki et al., 1983; Mizuki et al., 1989; Mizuki et al., 1992; 
Suetsugi et al., 2000). Findings showed that lower levels of trait anxiety were related 
to greater theta activity during the arithmetic test; however, they also revealed that 
reductions in state anxiety in those with high trait anxiety were related to decreases in 
theta activity (Mizuki et al., 1992). However, these results are difficult to interpret in 
light of a number of limitations. First, all but one study utilized only male participants. 
Second, all of the studies were significantly hampered by small samples. Finally, these 
studies involved tasks that are quite different from the typical two- choice reaction 
time tasks commonly used today. Thus, it is difficult to conclude much from these 
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early attempts to understand relations between anxiety and FMT. Nonetheless, they 
demonstrated that FMT was modulated in the context of anxiety.

A large number of studies has examined the role of medial frontal cortical activity 
in cognitive control efforts, particularly when these efforts are aimed at reducing anx-
iety or the circumstances which contribute to anxiety. The cingulate, especially the an-
terior and midcingulate cortices (ACC and MCC, respectively), is a cortical area which 
is highly interconnected with other brain systems, including emotional centers in the 
limbic system, cognitive association areas in the prefrontal cortex, sensory and motor 
processing areas in the parietal and occipital lobes, and deeper structures within the 
brain (Van Den Heuvel et al., 2009). As such, the cingulate is well positioned to inte-
grate information from a variety of inputs and coordinate action- oriented outputs to 
maximize behavioral adaptability (Laurienti et al., 2003). Furthermore, the MCC’s in-
volvement is critical whenever new or conflicting information must be evaluated for its 
relevance to the current behavioral set (Botvinick et al., 2004). Indeed, researchers have 
suggested the MCC has domain- general functionality that is engaged whenever there 
is uncertainty about behavior and its outcomes (Cavanagh et al., 2012). Because uncer-
tainty is a central aspect to feelings of anxiety and to anxiety disorders, the MCC has 
been a target for research efforts aimed at understanding the underpinnings of anxiety- 
related brain dynamics (Cavanagh & Shackman, 2015; Shackman et al., 2011).

A growing body of work suggests a primary function of the MCC is to integrate cog-
nitive, affective, and sensory information to enable behavioral adaptation (Shackman 
et al., 2011). MCC activity has been implicated when incoming information is novel, 
conflicting, punishing, or difficult to assimilate into the current action plan. In par-
ticular, FMT oscillations in the MCC have been observed across a variety of tasks when-
ever cognitive control is needed to alter behavior (Cavanagh & Frank, 2014). Because of 
its ability to facilitate long- range communication between disparate brain regions, theta 
oscillations are a candidate mechanism for how the MCC helps organize and coordinate 
neural processes related to action monitoring and response selection. Indeed, FMT has 
been posited to represent an alarm signal that is integral for the recruitment of areas in 
the prefrontal cortex that mediate cognitive control (Cavanagh & Frank, 2014). A wide 
range of studies demonstrate that individuals high in anxiety generate larger FMT power 
during cognitive tasks, suggesting anxiety and FMT hyperactivity are intimately related. 
Moreover, larger FMT control signals are associated with more cautious or inhibited 
responding, providing strong evidence that FMT is a biomarker that can be used to 
study the intersection of anxiety and cognitive control (Cavanagh & Shackman, 2015).

19.3.2  Relationships Between Anxiety and FMT- Related 
ERP Components

Among individuals high in anxiety, heightened FMT responses to novel, conflicting, 
or punishing stimuli have been observed indirectly for several decades within typical 
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event- related potential (ERP) paradigms. The wide array of tasks that elicit FMT is evi-
dence of the domain- general role that FMT plays in dealing with uncertainty through 
the recruitment of cognitive control resources. Time- domain ERP components that 
have been consistently related to FMT include the error- related negativity (ERN; Luu 
et al., 2004; Trujillo & Allen, 2007), feedback negativity (FN; Foti et al., 2014; Watts 
et al., 2018), and the N2 (Harper et al., 2014), all of which tend to be increased in anxious 
individuals.

The ERN is a response- locked ERP component that is thought to reflect action- 
monitoring that is involved in the recruitment of cognitive control during post- error 
behavioral adjustment (Gehring et al., 2018). Studies investigating the time- frequency 
dynamics have demonstrated that the ERN primarily reflects theta- band activity that 
is generated in the MCC (Luu et al., 2004; Trujillo & Allen, 2007). ERN amplitude has 
been positively associated with anxiety, worry, and behavioral inhibition in flanker 
(Moser et al., 2012; Riesel et al., 2017), go/ no- go (Moadab et al., 2010), and trial and 
error learning (Judah et al., 2016) tasks (for reviews see (Cavanagh & Shackman, 2015; 
Moser et al., 2013). The functional significance of the larger ERN in anxiety is hotly 
debated, with some suggesting it reflects the degree to which errors are seen as aver-
sive (Weinberg et al., 2016), whereas others suggest it reflects compensatory deployment 
of cognitive control to counteract the distracting effects of worry (Moser et al., 2013; 
Schroder et al., 2017).

Another FMT- related ERP component thought to be generated by the MCC and 
associated with anxiety is the feedback- locked FN (Foti et al., 2014; Watts et al., 2018). 
Like other FMT- related ERP components, the FN can be understood as a signal from 
the salience network indicating new information (e.g., feedback) is highly relevant for 
adapting to changing circumstances. As such, the future- oriented emotional state of 
anxiety can prime the salience network to be hypersensitive to performance- related 
feedback, making individuals high in trait anxiety more likely to consistently produce 
an elevated FN (Grupe & Nitschke, 2013). Congruent with this framework, FN ampli-
tude has shown positive associations with negative affect during a monetary incentive 
delay task (Santesso et al., 2011) and behavioral inhibition in go/ no- go (De Pascalis et al., 
2010) and spatial matching (Balconi & Crivelli, 2010) tasks.

Parallel to the ERN and FN, the N2 ERP component has been shown to be highly 
related to FMT (Harper et al., 2014; Van Noordt et al., 2016) and is also sensitive to trait 
and state anxiety differences. Although there is some debate as to which process(es) the 
N2 most likely reflects, it is associated with performance monitoring, conflict resolution, 
and response inhibition. Individuals high in anxiety have been shown to produce larger 
N2s in a variety of contexts, including during go/ no- go (Righi et al., 2009; Sehlmeyer 
et al., 2010) and flanker (Schmid et al., 2015) tasks. Larger N2 amplitude to conflict trials 
in anxious individuals might reflect the recruitment of compensatory effort to over-
come distraction by anxious thoughts or a regulation strategy aimed at reducing current 
and future negative affect (Dreisbach & Fischer, 2012; Kool et al., 2010; Lindström et al., 
2013; Schouppe et al., 2012).
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19.3.3  Anxiety and Time- Frequency Representations of 
MCC Activity

Recent work has utilized time- frequency analyses to directly examine the relationship 
between FMT and anxiety during a variety of tasks. Congruent with studies using time- 
domain metrics, time- frequency representations of MCC activity consistently show a 
positive association between anxiety and FMT (Cavanagh & Shackman, 2015).

A growing body of work demonstrates that time- frequency representations of the 
ERN show a similar relationship to state and trait anxiety as time- domain measures. 
During a flanker task, individuals diagnosed with GAD were found to produce larger 
ERN, error- related FMT, and correlations between single- trial FMT and reaction time 
during a flanker task than did control participants (Cavanagh et al., 2017). Furthermore, 
each of these three variables uniquely predicted group membership, suggesting FMT 
may not exclusively be an evoked signal (Cohen & Donner, 2013). In another study, 

Cross Frequency Coupling (intra-channel)

Frontal Midline Theta & Interchannel Phase synchrony

Delta: 0.5–4 Hz

Theta: 4–8 Hz
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Figure 19.1 Simplistic graphic illustrating frontal midline theta and interchannel phase 
synchrony cross frequency coupling, described in the text. Frontal midline theta metrics are 
calculated at midline sites as theta power and phase synchrony between sites. Cross frequency 
coupling metrics include correlations between amplitudes of slower (i.e., delta) and faster (i.e., 
beta) frequencies as well as correlations between phase and amplitude of these frequencies or 
ratios of frequency power (i.e., slow wave/ fast wave). 
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adolescent participants engaged in a flanker task while in a social anxiety- producing 
situation and displayed greater error- related FMT and medial- to- lateral inter- channel 
phase synchrony (ICPS; Buzzell et al., 2018; see Figure 19.1). This finding provides some 
evidence that state anxiety can also lead to greater performance monitoring and cogni-
tive control. There are mixed findings, however, concerning the relationship between 
chronic anxiety— in this case chronic worry— and medial- to- lateral ICPS, with one 
study showing reduced ICPS (Moran et al., 2015) and another reporting the opposite 
(Cavanagh et al., 2017).

Studies utilizing time- frequency analyses have also revealed associations between 
anxiety and feedback- related FMT. One study found that FMT was positively correlated 
with general worry during a gambling task for both gains and losses in a community 
sample with clinically elevated levels of anxiety (Ellis et al., 2018). Moreover, FMT 
displayed a stronger relationship to loss feedback in this study further supporting the 
hypothesis that individuals high in anxiety over- utilize cognitive control to regulate be-
havior in the face of aversive outcomes (Cavanagh & Shackman, 2015). Cavanagh and 
colleagues (2019) found a similar positive relationship between FMT and loss feedback 
among individuals high in anxiety, suggesting heightened FMT may be used to boost 
avoidance and cautious behavior. Another study using path analyses revealed pre- 
decision FMT fully mediated the relationship between trait anxiety and risk behavior 
during a decision- making task, with individuals high in anxiety making less risky 
decisions, as a function of pre- decision FMT, than those with low trait anxiety (Schmidt 
et al., 2018). Similarly, increased FMT has been found to predict less risky gambling 
decisions in the Balloon Analogue Risk Task (Zhang & Gu, 2018). Although bidirec-
tional theta information flow was detected between medial and lateral frontal areas 
during decision making, trait anxiety was only correlated with theta power generated 
in the lateral PFC. This provides further evidence that anxiety’s effect on theta dynamics 
may not be limited to FMT power and likely includes lateral PFC power and connect-
ivity between MCC and lateral PFC.

More socially- oriented studies have found relationships between anxiety and FMT 
that run parallel to those found with more traditional cognitive tasks. For example, one 
study found that FMT responses during International Affective Picture System image 
viewing depended on an individual’s level of anxiety (Aftanas et al., 2003). Individuals 
high in trait anxiety produced the largest FMT increase after threatening images, while 
those low in trait anxiety displayed greater FMT increases to pleasant images. This inter-
action is congruent with the gambling literature described earlier, which supports an 
association between high anxiety and punishment- sensitive enhanced FMT. Greater 
FMT has also been found to associate with unexpected social rejection feedback among 
participants with social anxiety disorder (Harrewijn et al., 2018a).

In sum, there is ample evidence indicating that anxiety is associated with a range of 
FMT metrics. Anxiety appears to be associated with larger FMT signals, which may re-
flect a greater need for cognitive control of behavior in chronically anxious individuals 
or consequential anxious states. There is some inconsistency regarding the direction 
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of the association between anxiety and network- related FMT metrics (i.e., ICPS) that 
will require further investigation to disentangle potentially confounding or moderating 
effects.

19.4 The Third Wave: Cross Frequency 
Coupling and Anxiety

19.4.1  A Primer on Cross Frequency Coupling

Cross frequency coupling (CFC) metrics are also emerging as tools for understanding 
cognition and emotion in anxiety. CFC is often computed between slow waves (SW), 
such as delta (1– 3 Hz) or theta (4– 7 Hz), and fast waves (FW), such as alpha (8– 12), 
beta (13– 30 Hz), or gamma (>30 Hz; see Figure 19.1 for an illustration). Work in this 
area has generally considered delta and theta to reflect reward seeking and emotional 
arousal, respectively, generated by subcortical brain regions (Knayzev, 2003). Alpha, 
beta, and gamma are considered to reflect heightened attentional vigilance (Knayazev, 
2003), inhibitory control (Engel & Fried, 2010; Jenkinson & Brown, 2011), and sustained 
attention/ working memory (Jenson et al., 2007), respectively, in the neocortex. As such, 
SW- FW coupling is thought to index increased communication between subcortical 
and cortical regions of the brain.

CFC metrics in the anxiety literature mostly include amplitude- amplitude coup-
ling during resting or anticipatory states, although some have also investigated phase- 
amplitude coupling (i.e., the power of a higher frequency along specific phases of 
a lower frequency; Poppelaars et al., 2018). On the other hand, SW/ FW ratios of fre-
quency power are computed to examine the relative strength of frequencies, with 
higher ratios indicating a predominance of slow waves (i.e., less control over emotional 
processes). Therefore, coupling provides an index of the associated strength of SW and 
FW power or phase, whereas ratios provide information on the relative strength of SW 
to FW power.

An early study by Knyazev and Slobodskaya (2003) investigated the relationship be-
tween the behavioral inhibition system (BIS), a motivational system highly implicated 
in anxiety- related symptoms and behaviors (Gray & McNaughton, 2000), and CFC 
anticorrelations (i.e., negative relationships between frequencies). BIS, as conceived 
by Gray and McNaughton, is similar in many ways to behaviorally inhibited tempera-
ment in toddlers and young children described earlier yet developed separately in 
parallel as a way to understand motivational processes involved in personality and psy-
chopathology. They found that BIS was related to a higher alpha- delta anticorrelation, 
concluding that behaviorally inhibited adults experience heightened activation in cor-
tical regions combined with less activation in limbic regions of the brain. Although the 
interpretation of alpha- delta anticorrelations remains obscure, it provided a framework 
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to investigate SW- FW relations as cortical “cross- talk”, which has gone on to focus on 
delta or theta and beta.

19.4.2  Delta- Beta Coupling and Anxiety

Two early studies of particular relevance to the topic of this chapter demonstrated an as-
sociation between higher delta- beta coupling and anxiety- related individual differences. 
Specifically, Schutter and Van Honk (2005) found increased delta- beta coupling in 
individuals with high baseline cortisol levels, relative to those with low cortisol levels. 
Van Peer and colleagues (2008) subsequently reported that males characterized by 
high BIS evinced high delta- beta coupling in frontal sites that was further increased by 
the administration of cortisol (vs. placebo). These findings led to further inquiry as to 
whether delta- beta coupling is related to trait individual differences in anxiety- related 
constructs, anxious states, or both.

Adopting Gray and McNaughton’s (2000) theory of anxiety, Knyazev, Savostyanov, 
and Levin (2005) posited that apprehensive states are distinct from dispositional anx-
iety (i.e., BIS), because they involve coactivation of both BIS and the behavioral activa-
tion system (BAS). Theoretically, this occurs in uncertain contexts when the probability 
of winning and losing are equal. As such, these contexts lead to the activation of both 
BIS (i.e., cortical activation) and BAS (i.e., subcortical activation) with no particular 
predominance of one over the other. In a series of studies with predominantly female 
samples, high-  and low- stress groups were given negative feedback on a behavioral task 
and were told that this could potentially cause them to lose money. Results revealed that 
those in the high- stress groups showed greater delta- beta and delta- gamma1 coupling 
than those in the control group (Knyazev et al., 2005; 2006, 2011). Notably, increases in 
delta- beta coupling were comparable for both high and low trait anxious individuals, 
although high trait anxious individuals showed an even greater increase in coupling. 
Thus, anxious states and traits may be additive with respect to increases in delta- beta 
coupling. Source analysis studies further suggest that increases in delta- beta coupling 
as a function of apprehensive states involves activity in ACC and orbitofrontal cortex 
(OFC; Knyazev et al., 2011). How exactly delta- beta coupling relates to ACC and OFC 
activity remains unknown; however, delta may be the primary driver of this coupling 
and coordination of brain regions involved in preparing an adaptive behavioral re-
sponse (Knyazev et al., 2011).

CFC studies of clinical anxiety have primarily focused on social anxiety. Miskovic and 
colleagues (2010), for instance, observed increases in delta- beta coupling during speech 
anticipation (vs. resting) in socially anxious individuals. Research from the same group 
also found that 12 weeks of cognitive behavioral therapy served to decrease delta- beta 

1 Only one study has examined delta- gamma coupling (Knyazev et al., 2005), and the interpretation of 
this result is consistent with general SW- FW coupling interpretations.
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correlations over treatment during speech anticipation periods (Miskovic et al., 2011), 
and that children of socially anxious parents showed increased delta- beta coupling 
(Miskovic et al., 2011). However, negative associations between delta and beta have 
also been reported in social anxiety (Harrewijn et al., 2016). Moreover, Harrewjin and 
colleagues (2018b) recently found that this negative association between delta and beta 
is heritable and speculated that the differences in the direction of coupling could be due 
to different stress manipulations utilized by research groups (anticipatory stress vs. task- 
induced stressor), or different ways of computing frequency power densities (i.e., abso-
lute vs. relative power). If the delta- beta correlation, however, is generally understood 
as reflecting increased neural communication, then the mere presence of a relationship 
between their frequencies could still indicate important cross- talk (regardless of direc-
tion), although the exact nature of this cross- talk remains vague. Further complicating 
the relationship between anxiety and delta- beta coupling, one study showed that OCD 
is characterized by delta- beta decoupling (Velikova et al., 2010). Clearly more research 
will be needed to clarify how clinical levels of anxiety- related problems associate with 
delta- beta coupling.

19.4.3  Frontal Theta/ Beta Ratio and Anxiety

Beyond delta- beta coupling, anxiety has also been examined in relation to frontal theta/ 
beta ratio insomuch as frontal theta/ beta ratio is an index of attentional control (AC), a 
core component of executive function involved in balancing bottom- up selection and 
top- down control influences on behavior. As previously mentioned, the examination 
of ratios provides a measure of relative dominance of SW over FW or vice versa. For 
instance, Putman and colleagues (2010) found that higher self- reported trait anxiety 
and attentional control were related to lower theta/ beta ratio (i.e., more control) in an 
all- female sample. Subsequent studies replicated these associations (Angelidis et al., 
2018; Putman et al., 2014). Putman and colleagues (2014) further demonstrated that 
individuals with a lower theta/ beta ratio showed lesser effects of a stress manipulation 
on change in self- reported AC. Theta/ beta ratio is also lower during on- task periods 
relative to mind wandering episodes (Van Son et al., 2019). Together, these findings have 
been interpreted as indicating that theta/ beta ratio reflects the degree of top- down con-
trol over bottom- up processes, with higher theta/ beta ratio indicting less control and 
lower theta/ beta ratio indicating greater control (Putman et al., 2014). It is interesting, 
then, that trait anxiety shows a negative association with theta/ beta ratio rather than 
a positive one, as anxiety has been related to poorer attentional control (Eysenck et al., 
2007; Shi et al., 2019). We return to this seeming contradiction in the next section.

In all, SW- FW coupling and ratios appear to reflect a number of anxiety- related 
processes, including AC. Specifically, BIS, apprehensive states and clinical levels of 
anxiety appear to relate to greater SW- FW coupling, although there are quite mixed 
findings regarding clinical anxiety. Higher trait anxiety and self- reported AC associate 
with lower SW/ FW ratios. Both CFC metrics appear to reflect interactions between 
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cognition and emotion— that is, top- down versus bottom- up control of processing 
resources— that may serve compensatory or coping functions in anxious contexts and 
for anxious individuals.

19.5 The New Wave: Theoretical 
Considerations, Future Directions 

and Conclusions

The previous section review indicates the exciting promise of EEG frequency techniques 
to illuminate anxiety- related processes, including motivation and cognitive control. 
In this final section, we first consider relevant cognitive, motivational, and emotional 
theories that might help synthesize the reviewed literature. We then turn to potential 
avenues for future work and finish with some brief concluding remarks.

19.5.1  Theoretical Considerations

Throughout this review, much of the literature seems to point to the presence of a dy-
namic interplay between cognition, motivation, and emotion in the links between EEG 
frequency metrics and anxious states and traits. In particular, the interplay between 
emotional processes involved in the generation and detection of internal or external 
threats, motivational processes dedicated to approaching and/ or avoiding these threats, 
and cognitive processes involved in the monitoring and control of these forces seems to 
be positioned front and center in anxiety- related situations and symptoms. Figure 19.2 
shows a hypothetical model of the interplay between motivational conflicts and cog-
nitive control in anxiety, which is seen as intimately related to the dynamic process of 
co- activation of approach and avoidance motivational systems that produce conflicts 

Alpha Asymmetry
Delta-Beta Coupling

Anxeity
Apprehension/

Arousal

Resolution/
Non-Resolution

Motivational
Conflicts

Inhibition/Control
(BIS)

FMT
Theta/Beta

Selected
Behavior

Figure 19.2 A hypothetical model of the interplay between motivational conflicts and cogni-
tive control in anxiety.
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detected and weighed by the BIS during which ongoing behavior is inhibited and 
controlled until there is a resolution of the conflict and a behavior is selected. Anxiety 
is generally related to enhanced conflicts between motivational systems, inhibition, and 
control. Alpha asymmetry and metrics and theta/ beta ratio may index BIS- related in-
hibitory and related control functions. Apprehension and arousal subcomponents of 
anxiety are proposed to have different relations to these dynamics. The model more 
likely captures the role of apprehension whereas arousal is proposed to have more direct 
links to fear and avoidance motivational systems that may be less related to control 
systems.

There is much overlap between the concepts of emotion, motivation, and cogni-
tion, and, thus, we do not intend to communicate that they are completely separable 
constructs (cf. Miller, 1996, 2010). Rather, we assert that consideration of these processes 
is critical to better understanding what EEG frequency metrics might reflect with re-
spect to anxiety, as well as to evaluate the utility of EEG frequency metrics in detecting 
risk, maintenance factors, and treatment targets for anxiety- related interference and 
disorders. In the next section, we consider merging the theoretical contributions of Gray 
and McNaughton (2000), Eysenck and colleagues (2007), and Heller and colleagues 
(Heller et al., 1997, Heller & Nitschke, 1998) with findings from the cognitive neurosci-
ence of inhibitory control (over emotion) as offering a unique window into advancing 
our knowledge of how EEG frequency metrics might reflect the dynamic interplay of 
emotion, motivation, and cognition in anxiety.

Gray and McNaughton’s (2000) neuropsychological model of anxiety draws on 
earlier work by Gray (1975, 1982) regarding motivation and personality (see also Corr 
et al., 2013 for a more recent review). This work largely delineated the BAS and BIS as 
two motivational systems relevant to personality and anxiety. The updated version of 
this model, the Reinforcement Sensitivity Theory (RST), further decomposed the BIS 
into the BIS and the fight- flight- freeze system (FFFS), which is involved in fear- related 
behaviors aimed at defending an organism from active threat. The BIS, on the other 
hand, is posited to be involved in the detection and resolution of approach- avoidance 
conflicts— that is, conflicts driven by coactivation of the BAS and FFFS. The BIS there-
fore inhibits ongoing behavior to allow for risk assessment and scanning so as to resolve 
the approach- avoid conflict by enacting the appropriate behavior in context.

The attentional control theory (ACT) of anxiety (Eysenck et al., 2007) more specif-
ically aims to describe the nature of the relationship between anxiety and cognition. 
Eysenck and colleagues conclude that anxiety disrupts the balance of the bottom- up 
salience system and the top- down control system such that the bottom- up system is 
generally more active than the top- down control system. To resolve this imbalance in 
the presence of task- related goals, anxious individuals are hypothesized to deploy com-
pensatory top- down control to meet the demands of the task at hand. We suggest that 
the interplay of the bottom- up and top- down control systems in anxiety proposed by 
Eysenck and colleagues bears striking resemblance to the approach- avoid conflicts 
detected and resolved by the BIS in Gray’s RST. That is, anxiety often involves conflicts 
between threat- driven, avoidance, or distraction processes and goal- driven, approach 
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processes involved in producing appropriate behaviors to meet the demands of the 
current context.

To further add nuance to this interplay, however, consider the seminal work 
by Heller and colleagues (Heller et al., 1997; Heller & Nitschke, 1998; Sharp et al., 
2015) disentangling different dimensions of anxiety and depression. This work makes 
important distinctions between anxious apprehension (worry), anxious arousal (fear 
and panic), and anhedonic depression across psychometric and neural measures. 
Neurally, anxious apprehension has been associated with left- frontal activity and anx-
ious arousal with right- parietal activity (reviewed by Sharp et al., 2015). The associ-
ation between anxious apprehension and left- frontal activity has been interpreted as 
reflecting the involvement of language production and verbal working memory centers 
in worry whereas anxious arousal may not only involve right- parietal activity but ra-
ther several parietal and frontal regions involved in threat detection and environmental 
scanning (Sharp et al., 2015). Nonetheless, findings have generally distinguished be-
tween anxious apprehension and anxious arousal, pointing to heterogeneity in the anx-
iety construct that must be considered when attempting to understand the involvement 
of neural measures like EEG frequency metrics.

Together, we suggest that when interpreting the function of the various EEG fre-
quency metrics reviewed above, one must consider the important interplay of 
emotion, motivation, and cognition as well as unique differences between dimensions 
of anxiety— e.g., anxious apprehension and arousal. Moreover, considering the context 
in which associations between EEG frequency metrics and anxiety emerge is critical— 
i.e., at rest, in the presence of threat, and/ or during completion of an affective neu-
tral task.

One common theme that seems to arise from the review is the link between anxiety 
and metrics of control. We see this most strikingly in the frontal midline theta (FMT) 
and cross- frequency coupling (CFC) literatures. We suggest that this link might reflect 
the important role of the BIS in anxiety. That is, FMT and CFC metrics might reflect 
the dynamic detection and attempted resolution of conflicts between approach and 
avoidance motivations that arise when anxious individuals or individuals subjected 
to anxious states attempt to complete a task at hand on which they have been given 
instructions to perform well. Studies linking FMT and other CFC metrics to activity 
of medial prefrontal cortices (most importantly, the ACC or MCC) seem to further 
support this interpretation given the wealth of data indicating the ACC/ MCC’s role in 
inhibition, conflict processing, and integration of negative affect and cognitive control 
(Bartholomew et al., 2019; Popov et al., 2018; Shackman et al., 2011; Spielberg et al., 2015). 
A seeming “hub” for emotion- cognition interactions, the ACC/ MCC might be critically 
involved in the BIS via FMT oscillations and their associations with other frequencies 
(e.g., beta; see also Popov et al., 2018). As such, ACC/ MCC- mediated processes may 
reflect this “dance” between approach and avoidance motivations in contexts in which 
fear- related avoidance and goal- directed behaviors stand in conflict with one another. 
This process, as Gray and McNaughton (2000) propose, captures the very nature of the 
BIS and associated anxiety symptoms. EEG frequency approaches may offer the ideal 
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metrics to index these important dynamics given their millisecond precision and in-
herent ability to reflect activity of systems/ networks.

19.5.2  Future Directions

There is a strong foundation of knowledge produced by the extant studies on 
associations between anxiety and EEG frequency metrics, although a number of areas 
are ripe for further investigation and theory development. One particularly curious 
contradiction is the functional significance of theta activity. In the literature on FMT, 
theta is hypothesized to signal the need for control whereby a larger theta signal leads 
to greater control and adaptive behavioral adjustments. On the other hand, in the CFC 
literature, theta— i.e., a slow wave— is hypothesized to reflect emotional arousal and 
related subcortical processes such that its preponderance or dominance over faster wave 
activity indicates lesser control. It will be important to reconcile these two literatures, as 
currently they appear to be evolving in parallel. This reconciliation may be challenging 
at present given the differences in paradigms and calculations of theta used in these two 
literatures. Both the FMT and CFC literatures focus on frontal theta, and, therefore, it 
follows that there should be some relation between these different metrics.

It also seems important to gain new insights into the exact relationship between anx-
iety constructs and alpha asymmetry. Indeed, it represents the historically largest litera-
ture on the association between anxiety and EEG frequency metrics, yet much is still 
left unknown. The various competing models of alpha asymmetry likely occlude clarity 
with respect to its association with anxiety, however, perhaps Gray and McNaughton’s 
(2000) model of motivation and personality could shed some light. For example, given 
the important role of the BIS in anxiety and other related EEG frequency metrics, it 
could be difficult to isolate associations between alpha asymmetry and anxiety be-
cause of the likely co- activation of approach (left- sided activity) and avoidance (right- 
sided activity) motivational systems. The work of Heller and colleagues (Sharp et al., 
2015) further demonstrates the importance of considering the heterogeneity of anxiety 
constructs when examining associations between anxiety and alpha asymmetry, among 
other neural measures of motivation and cognition. Thus, future work will need to be 
more precise with setting up paradigms that test clearer predictions involving specific 
motivational contexts and anxiety constructs.

In general, the literature on associations between anxiety and EEG frequency metrics 
will have to grapple with different motivational contexts and anxiety constructs. 
Enhanced precision in theory will drive more sophisticated methods for testing related 
predictions concerning approach- avoidance conflicts and separable dimensions of anx-
iety. For example, whereas some have shown associations between “lumped” anxiety 
constructs and FMT (Cavanagh & Schackman, 2015), others have shown that “splitting” 
anxiety constructs reveals important distinctions (e.g., Moser et al., 2013).

Beyond the EEG frequency metrics and anxiety constructs themselves, this litera-
ture must also incorporate the roles of development and gender, both of which show 
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important influences on anxiety and its associations with neural measures of mo-
tivation/ emotion and cognitive control. For instance, there is growing evidence 
demonstrating important changes in the association between anxiety and the ERN— a 
theta- based ERP— across development (Moser et al., 2017). Gender also moderates this 
association, such that females show a larger association (Moser et al., 2016) and a greater 
change in association across development (Ip et al., 2019). Furthermore, racial, ethnic, 
and cultural differences will have to be considered to fully understand the generaliz-
ability of these findings. For example, related research shows higher heart rate variability 
(HRV) in Black individuals, which may reflect compensatory control mechanisms 
deployed to manage the sustained and cumulative adverse effects of discrimination 
(Kemp et al., 2016). Such a compensatory control response may also be reflected in the 
EEG frequency metrics reviewed herein.

Additional methodological innovations will also further advance this area of clinical 
neuroscience. For instance, the application of graph theoretic (Bolanos et al., 2013) and 
directed network (Liu et al., 2014; Popov et al., 2018) methods to such EEG frequency 
techniques is just beginning and will likely provide unique insights into associations 
between anxiety and motivational and cognitive control systems. This work will also 
further benefit from integrating data across the lab and the “real- world” through 
combining EEG imaging techniques with experience- sampling methods and deploying 
wearable technology (cf. Hur et al., 2019).

Finally, we would be remiss if we did not acknowledge the importance of considering 
the psychological and philosophical machinations involved in attempting to make 
meaning of associations between various psychological and biological measures. It is 
important for future work in this area to avoid terminology such as “underlying” in 
describing the involvement of neural oscillations in self- reported experiences of anx-
iety as they incorrectly insinuate a causal mechanism and further the fallacy that more 
micro- level data (e.g., neural activity) are superior to more macro- level data (e.g., self- 
report of anxiety; Sharp & Miller, 2019). Rather, such neural markers are likely involved 
in the instantiation of experiences and resolution of motivational conflicts and anxiety 
symptoms. The ways in which these neural, self- report, and behavioral measures are 
combined and weighed should involve careful consideration of the goals to be achieved 
(e.g., intervention development; See Taschereau- Dumouchel, Michel, Lau, Hofmann & 
LeDoux, 2022 for a recent review of this approach).

19.5.3   Conclusions

The literature considering associations between anxiety and EEG frequency measures 
has a long history and generally follows the historical trends present in other areas of 
psychological science. More recently, early motivational and emotional models have 
been overtaken by or integrated into cognitive models of anxiety and related constructs. 
A long- view perspective on the literature suggests strong associations between anxiety- 
related constructs and EEG frequency markers of motivational and cognitive control 
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processes. A central theme in this literature is the involvement of the BIS that can be 
seen reflected in a variety of EEG frequency metrics and generally reveals the dynamic 
interplay between the co- activation of approach and avoidance motivations in anxious 
individuals and states as the execution of adaptive behavioral responses is attempted. 
This area of clinical neuroscience is ripe for future work and should involve advances in 
theory, generalizability, and methodology.
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CHAPTER 20

BIVARIATE FUNCTIONAL 
CONNECTIVIT Y MEASURES 
FOR WITHIN-   AND CROSS- 
FREQUENCY COUPLING OF 
NEURONAL OSCILL ATIONS

J.  MATIAS PALVA AND SATU PALVA

20.1  Introduction

 Oscillations are ubiquitous in electrophysiological recordings of spontaneous brain 
activity at all measurable scales, from single neurons and micro- electrode recordings 
to large neuronal masses observable with EEG and MEG from scalp. Numerous syn-
aptic mechanisms and neuronal microcircuit patterns serve the production of oscil-
latory behavior in neuronal populations ranging in size from some tens of neurons 
to millions of neurons in macroscopic cortical areas. Functional correlations among 
neuronal populations arise primarily through direct structural connections. However, 
in neuronal systems operating near a critical phase transition, these correlations may 
exceed the spatial and temporal range of the actual underlying structural interactions. 
Several lines of evidence indicate that human brain activity exhibits such critical- like 
dynamics, which implies that correlations of neuronal activities are likely to exceed the 
connections defined by direct axonal, or “structural”, connections and temporally the 
time scales of the associated synaptic time constants.

In studies of brain dynamics, correlations between the activity time series of neurons 
or populations of neurons are termed “functional” connectivity (FC). In this chapter, we 
outline the key methods for measuring bivariate (pairwise) FC among electrophysio-
logical time series. As a preface, we provide an overview of the essential features of the 
underlying (univariate) signals and the corresponding analysis methods. We aim to 
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dissect these methods both by the information they yield about the underlying physio-
logical interactions as well as by limitations posed by the typical confounders in MEG 
and EEG data.

20.2 Dissecting broadband, quasi- 
periodic, and periodic signals 

for functional connectivity analysis

 Before decisions about time- series analysis methods are made, it is important to 
understand the to- be- studied system and grasp whether the system operates with 
broadband or narrowband processes. This is because the analyses of broad-  and nar-
rowband signals involve distinct concepts and implications. In the context of brain 
data and EEG in particular, a distinction has been drawn between supposedly aperi-
odic forms of activity, such as the “1/ f- component” of the EEG power spectrum, 
and activities that are clearly periodic, such as the alpha oscillations that exhibit a 
power spectral peak (Cole & Voytek, 2017). However, in between genuine aperiodic 
and periodic signals, that is, between genuine noise and oscillations, there is likely 
to be a wide range of electrophysiological phenomena that are “quasi- periodic” 
(Palva & Palva, 2012; Palva & Palva 2018). Quasi- periodic neuronal oscillations are 
genuine oscillations that arise via oscillatory mechanisms and embody the func-
tional implications and consequences of oscillations, but that are short- lived and have 
such variance in frequency that they do not show up as a clear peak in power- spectral 
analyses (Palva & Palva, 2012; Palva & Palva, 2018). For example, infra- slow (0.01– 0.1 
Hz) and slow (0.1– 1 Hz) fluctuations, despite their 1/ f- like power spectrum, have been 
suggested to be quasi- periodic oscillations in both EEG (Monto et al., 2008; Palva & 
Palva, 2012; Palva & Palva, 2018) and fMRI (Abbas et al., 2019; Belloy et al., 2019; Zhang 
et al., 2020) data.

Functional connectivity in genuine broadband activity can be meaningfully analyzed 
only with methods such as the classical time- domain cross correlation measures 
(Pearson and Spearman correlation coefficients, canonical correlation, and many 
others) or information theoretical measures such as mutual information and its many 
derivatives. These time- domain measures can be applied also to quasi- periodic or peri-
odic signals such as neuronal oscillations, but they are suboptimal because they ignore 
the frequency- limited nature of the periodicity and include “noise” and signals in other 
frequency bands. Moreover, broadband coupling measures, by definition, ignore the 
most important parameter of neuronal oscillations— their phase. As this chapter focuses 
on neuronal oscillations, we will not delve deeper into the analysis of aperiodic signals.

Measures intended for analyses of oscillations (discussed later) can also be applied to 
broadband signals and will converge to the correct result. However, they are suboptimal 
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by involving narrow- band filtering as well as phase- estimation that is irrelevant in 
broadband signals because in true aperiodic correlations, only time rather than phase 
lags may exist. These measures also exploit only limited frequency ranges for correl-
ation estimation, which distributes the statistical power in the signal to multiple tests 
(Figure 20.1).

The vast majority of brain signals are (i) quasi- periodic or periodic, (ii) arise via 
frequency- limited, time- scale specific neuronal mechanisms, (iii) are phenomeno-
logically confined to a limited frequency band, and finally, (iv) involve the notion of 
phase as the central mechanistic concept that spans from neuronal firing to behavioral 
correlations. Thus, initiation of any analysis with an analysis approach intended for 
frequency- resolved narrow- band oscillations is justifiable and gives an appropriate rep-
resentation of the signal features.

20.3 Phase and amplitude correlations 
of neuronal oscillations

 Phase and amplitude time series of neuronal activity in electrophysiological signals can 
be extracted by filtering. When estimated for two or more such time series, bivariate 
correlation metrics for pairs of such phase and amplitude estimates can be applied to 
uncover the patterns of correlations in these data, that is, to quantify the phase and amp-
litude FC.

Phase is a quantitative description of the state of a given process/ component and its 
temporal evolution within a period (or a cycle) of the oscillation. From micro- electrode 
recordings to macroscopic EEG signals, observations of genuine phase correlations 
imply correlations of neuronal excitability fluctuations at the cellular level and the po-
tential for consistent spike- timing relationships.

The physiological and mechanistic implications of amplitude, on the other hand, are 
always dependent on the experimental setting because the amplitude measurement is 
dependent on biological and physical signal generation and conduction mechanisms. 
The population- level summation of electric fields leading to the measured signal amp-
litude is largely dependent on the coherence of the underlying synaptic inputs. This is 
because cancellation of electric currents effectively suppresses signals from incoherent 
sources. Thus, the amplitude of oscillations is primarily an approximate index of local 
synchronization and only secondarily dependent on the net magnitude of source 
currents.

Phase and amplitude of neuronal oscillations thus reflect partially distinct physio-
logical phenomena and, correspondingly, inter- areal phase and amplitude correlations 
tap into physiologically and functionally distinct forms of large- scale coordination of 
neuronal activities.
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 Figure 20.1 Conceptual illustration of aperiodic, quasiperiodic, and periodic signals. (A) The 
time series of 1/ f noise yield both (B) in a single realization (left) and in averaged data (right) 
1/ f power spectra. (C) Signals composed of mixtures of transient periodicities from multiple 
sources or quasiperiodic oscillators with a large variability in oscillation frequencies give rise 
to power spectra (D) that may exhibit peaks at the corresponding frequencies (green and blue 
bars) in single trials and yet the averaged spectra may not exhibit peaks. Only oscillations with 
a stable period retain peaks in averaged power spectra. (E) Human behavioral performance is 
characterized by power- law scale- free dynamics where the detected (Hits) and undetected 
(Misses) stimuli in a threshold- stimulus detection task are clustered with power-  law and long- 
range temporal correlations. Adapted from Palva and Palva 2018.
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20.4 Phase-  and amplitude- time series 
estimation for periodic and  

quasi- periodic signals

 This chapter discusses the principal approaches for measuring phase and amplitude 
correlations from neuronal data. Further, it aims to illustrate the adaptation of phase- 
locking methods to the assessment of frequency- resolved amplitude correlations, as 
well as to quantification of cross- frequency correlations, such as phase- amplitude and 
cross- frequency phase correlations, among signals in different frequency bands.

All these interaction metrics are based on estimates of phase and amplitude. To ex-
plicitly represent frequency- band- limited phase and amplitude dynamics, most real- 
valued continuous signals can be transformed by filtering to a complex form. A popular 
choice is to convolve the signal with a complex wavelet, such as the Gabor or Morlet 
wavelet (Sinkkonen et al., 1995; Tallon- Baudry et al., 1996). Such Gaussian wavelet 
filtering yields optimal time- frequency- resolution compromise and is superior to other 
filtering approaches in most cases (Sinkkonen et al., 1995). The Morlet wavelet w is 
defined by:

 W t f t i f tt( ), /0
2 2

02 2  A exp   exp= −( ) ( )σ π  (1)

where t denotes time, i the imaginary unit, f0 the center frequency of the wavelet, and σt 
the standard deviation of the wavelet’s Gaussian envelope in time domain. A is a scaling 
parameter and for conventional filtering that aims to yield a filtered signal with the same 
amplitude as the original signal, A should be set to A =  2/ ( )w∑  where ( )w∑  denotes 

the integral of wavelet’s amplitude envelope (simply the sum of wavelet values for a dis-
crete realization). Notably, this yields a wavelet spectrum that is flat for 1/ f noise. The 
wavelet family should be designed with a constant ratio m

 m f f= 0 / σ  (2)

where σf the standard deviation of the wavelet’s gaussian envelope in frequency do-
main and given by σf =  1/ 2 πσt . This ratio, or “the m parameter” thus defines the time- 
frequency compromise so that small values (such as m =  5) favors time resolution 
whereas larger values (such as m =  7.5) yields improved frequency resolution at the ex-
pense of time resolution.

In applications where other forms of filtering are used, and the filter yields real valued 
output, the complex form can be obtained by finding the imaginary part with the Hilbert 
transform. As an important non- linear filtering approach, empirical mode decompos-
ition (Huang & Wu, 2008) is an adaptive and data- driven method that identifies major 
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signal components iteratively from the fastest to slowest frequencies and yields time 
series that may follow frequency fluctuations better than conventional fixed- frequency 
filtering.

For segments of stationary signals, the phase estimation can be achieved with spec-
tral measures as well, such as with the Fourier transform. These three approaches are 
formally equivalent (Bruns, 2004). However, spectral methods yield constant- sized 
frequency bins while wavelets can and should be scaled with frequency so that they 
have constant time- frequency resolution. This is often overlooked but is as a funda-
mental disadvantage for the spectral methods. For any given fixed time- window size, 
different frequencies will have different amounts of cycles in the window where they 
are presumed stationary. Because neuronal oscillations are “stationary” for just a few 
cycles, spectral measures will be optimal for a very limited frequency range, and for 
most other frequencies will include too few or too many cycles of the oscillations in the 
time window.

In the filtering approach, let us denote the filtering operation with a center frequency 
f generically with the operator Tf so that the filtered signal x(t,f) is obtained from the ori-
ginal signal xo(t) by

 x t f t f ix x( , ) ( , ) =  [x (t)] = a  exp[ (t,f)]Tf,complex 0 θ  (2)

where i is the imaginary unit, ax(t,f) denotes the amplitude and θx t f( , ) the phase of 
x(t,f), and Tf,complex a complex filter such as the Morlet wavelet transform. If the filtering 
is performed with a real- valued filter, Tf,real, the imaginary signal is obtained by the 
Hilbert transform, so that

 x t f i( , ) = { }T H Tf,real f,real [x (t)] +  [x (t)]0 0  (3)

where H denotes the Hilbert transform.
From either approach, let us denote an array of such time series by 

X(t,f) =  [xj(t,f)] =  Ax(t,f) exp[iΘ x(t,f)], where j =  1 . . . ns and ns is the number of sensors 
or sources. Comparable phase time series can also be produced from point process time 
series (Rosenblum et al., 2004).

20.5 Definition of phase difference 
as the basis for a range of 

interaction metrics

 The time series of phase and amplitude enable the estimation of bivariate phase 
and amplitude correlations between any pair of signals. In addition to phase 
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synchronization per se, a range of phase and amplitude interactions can be quantified 
with the phase- locking estimation formalism and will be described here first. 
Phase locking is statistically indicated by a non- random phase or phase- difference 
distribution.

The generic n:m- phase difference ωnm  of signals x and y (Tass et al., 1998) is given by

 ω θ θn m x yn m: = −  (4)

where the small integers n and m determine the frequency ratio nfx =  mfy of the center 
frequencies of filters Tfx and Tfy. For assessing the classical within- frequency phase syn-
chrony, n =  m =  1. This phase difference is conveniently obtained in complex form from 
the filtered x and y simply by

 exp[ ] /:
*i x x yn m

n mω = ( )  (y/ )  (5)

where the asterisk* denotes the complex conjugate. Hence, for frequencies fx and fy, the 
ns × ns- sized pair- wise complex phase difference matrix Φ

n m:
 of a single sample with 

each signal against each other signal is given by the complex outer product, ⊗, so that

 Φn m x y
n mt f f X X Y:

*( , ) = ( / )  ( / Y )⊗  (6)

This expression thus provides the phase difference with which one may quantify 
classical within- frequency phase synchronization but also cross- frequency phase syn-
chronization (CFS). CFS is a cross- frequency coupling (CFC) mechanism that indicates 
a non- random phase difference between different low-  (LF) and high- frequency (HF) 
frequency pairs at small- integer ratios n:m (LF:HF). CFS enables temporally precise co-
ordination of neuronal processing by establishing the possibility for systematic spike- 
timing relationships among oscillatory assemblies at different frequencies and can thus 
serve functional integration and coordination across within- frequency synchronized 
large- scale networks (Fell & Axmacher, 2011; Palva et al., 2005; Palva & Palva, 2017; 
Siebenhühner et al., 2016; Siebenhühner et al., 2020).

The phase- difference approach can also be used to represent more complex bivariate 
relationships such as phase- amplitude coupling (PAC), or “nested oscillations”, that are 
characterized by the phase- locking of the amplitude envelope of a faster oscillation with 
the phase of a slower oscillation. PAC has been suggested to reflect the regulation of sen-
sory information processing in faster frequencies by excitability fluctuations imposed 
by slower oscillations (Canolty & Knight, 2010; Fell & Axmacher, 2011; Jensen & Colgin, 
2007; Jensen & Lisman, 2013, Schroeder & Lakatos, 2009). The complex phase difference 
matrix, Φ PAC, is given by filtering the amplitude envelopes Ax of the faster oscillation at 
fx with the filter Tfy that was used to obtain the slower oscillation at fy < fx (Vanhatalo 
et al., 2004):
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 ΦPAC fy x fy xA = / | ( / )T T( ) ( ) *A Y Y  ⊗  (7)

It is important to note that this quantification of the non- uniformity of Φ  PAC with a 
phase- locking value (Section 20.6) assumes a unimodal distribution of the fast oscilla-
tion amplitudes along the slow oscillation’s phase. An interaction in which the ampli-
tude of the fast oscillation peaks twice, or more formally m times during the slow cycle, 
can be explicitly assessed as a 1:m- amplitude- phase interaction. Here the amplitude 
envelopes Ax are filtered with a filter Tmfy at frequency mfy and then the corresponding 
metric, Φ PACm, is given simply by

 ΦPACm x x
mA A Y=   ⊗T T2fy 2fy( )/ | ( ) / * | ( )Y  (8)

 Φ PACm is quantifiable with the phase- locking value. Alternatively, 1:m- amplitude- 
phase coupling can be implicitly assessed with ΦPAC and a histogram- based statistic 
(Section 20.7).

Characterization of amplitude dynamics with phase differences and circular statistics 
can be further extended to amplitude- amplitude interactions by filtering the amplitude 
envelopes Ax and Ay to a slower frequency band fz < fx, fy with Tfz. Now the complex 
phase difference matrix, ΦAA, is

 ΦAA fz x fz x fz y fz yA A A A =   |     |T T T T( )/ | ( ) ( )/ | ( )
*

  ⊗    (9)

The advantage of characterizing amplitude interactions (Figure 20.2) with phase 
estimators is that they yield frequency- resolved estimates of amplitude correlations and 
that phase dynamics of amplitude fluctuations are independent of variability in the ab-
solute amplitudes and hence large amplitude events do not exert a strong bias like they 
do in cross- correlation analyses for example. For broadband amplitude correlations, 
however, conventional correlation- coefficient based analysis, that is, simply obtaining 
the correlation coefficient between two amplitude time series, is likely to be more 
efficient.

20.6 Quantification of phase 
locking: the phase- locking value and 

alternative measures

 With the phase or phase difference data, the presence of statistically significant phase 
locking can be assessed with a number of circular statistics. The most common of them 
is the phase locking value/ factor (PLV, PLF) that is given by an average of complex 
phases (Sinkkonen et al., 1995). Let us first define the complex PLV (cPLV) as simply the 
average across the complex phase differences
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 cPLV n= − ∑t
1 Φ (10)

 where nt is the number of complex phase difference Φ  samples pooled across trials and/ 
or time. PLV is the absolute value of cPLV (PLV =  |cPLV|) and is 1 for perfect coup-
ling (delta- function phase distribution) and approaches 0 for a uniform phase distribu-
tion when nt → ∞. If the phase- difference samples Φ  are independent and the marginal 
phase distributions are uniform, the no- interaction null hypothesis is characterized by 
uniformly distributed Φ  and can be tested with the Rayleigh test.

When Φ  are pooled across time, that is, when the independence condition is not 
met because of redundancy, and/ or when the underlying process is not sinusoidal (see 
Nikulin et al., 2007), surrogate data are needed for statistical testing. For spontaneous 
data, the surrogates may be constructed by random rotation of the time series before 
estimation of the phase differences in order to preserve endogenous and filter- induced 
autocorrelations and avoid the underestimation of surrogate distribution (Palva 
et al, 2005; Siebenhühner et al., 2020). For event- related data, the surrogates may be 
constructed by trial shuffling. If the interaction estimates involve components that are 
time- locked to the events, such as evoked responses, the artificial interactions that they 
cause must be accounted for with forward- and- inversed- modeled surrogate data in trial 
shuffling (Hirvonen et al., 2018).
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 Figure 20.2 Schematic illustration of within- frequency and cross- frequency phase and amp-
litude interactions. (A) Within- frequency synchronization is a case of generic n:m- phase syn-
chrony with n =  m =  1. Re(.) denotes the real part of a complex filtered signal and arg(.) its phase. 
(B) A simulated example of 1:4 phase synchronization. (C) An example of phase- amplitude coup-
ling where the phase of the slow and the amplitude of the fast oscillations are correlated.

Adapted from Palva & Palva, 2012.
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20.7 Considerations for using PLV 
for measuring phase synchrony 

and CFC

 While PLV is a conceptually straightforward and computationally extremely efficient 
“first choice” for interaction estimation in many applications, several characteristics of 
PLV warrant attention. First, PLV is biased, that is, positively dependent on the number 
of samples (Vinck et al., 2010; Aydore et al., 2013). Hence, if two conditions are to be 
compared, the number of samples must be equalized. Alternatively, a similar but un-
biased metric, pairwise- phase consistency (PPC, Vinck et al., 2010) that is equiva-
lent to squared PLV (Aydore et al., 2013) can be used but its computational cost scales 
with ns

2nt
2 whereas the cost of PLV is proportional only to ns

2nt. PPC yields sensitivity 
similar to PLV. Second, PLV is appropriate only for unimodal phase distributions. The 
non- uniformity of arbitrary distributions can be estimated with Shannon- entropy and 
conditional- probability based indices for phase (difference) histograms (Tass et al., 
1998). Third, PLV is a measure of correlation and does not disclose causal relationships 
or the lack thereof between the signals. Directional phase- specific interactions can be 
estimated with histogram- based phase transfer entropy without sample- size or linear 
mixing bias (Lobier et al., 2014). Directional interactions can be estimated with mixed 
phase and amplitude information with a range of metrics such as Granger causality, par-
tial directed coherence, transfer entropy, and many others. Fourth, PLV among all other 
interaction metrics is crucially dependent on the signal- to- noise ratio of the phase es-
timate. Only at signal- to- noise ratios greater than 2– 3, the phase estimates reach rela-
tive independence from amplitude. Hence, albeit phase is mathematically independent 
of amplitude, the accuracy of phase estimates in noisy signals with variable amplitudes 
will be dynamically dependent on the amplitude. When making inferences about 
differences in phase locking, one needs to consider the putative contribution of concur-
rent differences in signal- to- noise ratio (Palva et al., 2010).

20.8 Linear mixing inflates PLV and 
other correlation metrics and causes 

artificial false positives

 One- to- one- phase and amplitude correlations, but not CFS or PAC, estimated with PLV 
are directly influenced by linear mixing such as volume conduction in electrophysio-
logical recordings, which leads to inflated PLV values and false positive phase correl-
ation observations in the presence of no true correlations. For amplitude correlations, 
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the same applies also to correlation coefficients. This problem is pervasive across all 
forms of electrophysiological recordings: from micro- electrodes to intra- cranial stereo- 
EEG and electrocorticography, and to scalp EEG, volume conduction causes linear 
mixing of electric potentials. While volume conduction does little to influence MEG, 
signal mixing between cortical sources and scalp sensors leads to comparable linear 
mixing (Figure 20.3). Finally, demixing the sensor signals by source modeling leaves re-
sidual linear mixing, known as source leakage (Palva et al., 2018).

This problem can be partially solved by noting that linear mixing always has a zero- 
time and zero- phase lag influence, which is fully captured by the real part of PLV or that 
of coherence. On the other hand, as true neuronal interactions supposedly often involve 
conduction- delay- related phase lags, excluding the zero- lag contribution becomes an 
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Figure 20.3. Phase coupling measures PLV and iPLV are influenced not only by the phase 
coupling strength cΘ, but also by the phase difference nϕxy and linear mixing m between the 
studied signals. Here, phase coupling and linear signal mixing (m =  0 (blue), 0.1 (green), 0.2 (red), 
0.3 (violet), 0.4 (cyan), and 0.6 (orange)) were simulated between two signals for a range of coup-
ling and phase lag values. (A) PLV between the signals as a function of cΘ and m for nϕxy =  −0.3. 
Open circles at cΘ =  0.4 indicate the coupling strength used in C and D. (B) iPLV between the 
signals as a function of cΘ and m. (C) PLV as a function of nϕxy, when cΘ was set to 0.4. Notably, 
PLV is greatly influenced by the phase difference when signal mixing is strong even though 
without mixing, the magnitude of PLV is independent of the phase lag. Open circles at nϕxy =  −0.3 
indicate the nϕxy used in A and B. (D) The strength of iPLV depends on the phase difference and is 
biased towards large phase difference so that iPLV is abolished when nϕxy =  0 or nϕxy =  ±π.

Adapted from Palva et al., 2018.
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approach for obtaining a measure that focuses on neuronal phase coupling and is in-
sensitive to linear mixing. Measures such as imaginary coherence (iCoh, Nolte et al., 
2004), the imaginary part of PLV (iPLV) (Palva & Palva, 2012), and weighted phase- lag 
index (wPLI, Vinck et al., 2011) ignore the real part of the complex phase differences. 
These measures are hence insensitive to linear mixing while revealing the true phase- 
lagged interactions. Of these, wPLI is superior to iPLV and iCoh in not being influenced 
by the magnitude of linear mixing. The obvious shortcoming of each these approaches 
is, nonetheless, their insensitivity to true near- zero- phase lag interactions and the 
dependence of the correlation value on the phase difference per se in addition to the 
strength of the interaction.

The equivalent for iPLV and wPLI for amplitude correlations is orthogonalized cross 
correlation (oCC) where the two signals are orthogonalized prior to the estimation of 
the correlation coefficient (Brookes et al., 2012, Hipp et al., 2012). It is important to note 
that the orthogonalized amplitude correlation coefficients are not independent of con-
current phase coupling. In fact, they are non- trivially affected by the presence of true 
phase coupling and linear mixing in a phase- difference dependent manner and may 
yield both false positive and negative findings (Palva et al., 2018b).

20.9 Ghost interactions constitute 
false positives in all bivariate 

interaction estimates

 The exclusion of artificial interactions with coupling measures that are not inflated by 
linear mixing, such as iPLV, wPLI, and oCC, has been often claimed to categorically 
“account” for the problem of linear mixing causing false positive detections. Although 
these measures are de facto immune to artificial false positives and can be overly conser-
vative by missing true near- zero- phase interactions, they still yield abundant “spurious” 
or “ghost” false positive interactions due to signal spread. This is because field spread 
in the vicinity of a true nonzero phase interaction mirrors the true interactions into 
spurious ghost interactions, that appear as false positives with any bivariate interaction 
measure in a manner that can never be accounted for in bivariate fashion (Figure 20.4).

There are two principal approaches to addressing the problem of spurious “ghost” 
interactions. One is to perform symmetric multivariate orthogonalization where the 
cortical- parcel- source signals are orthogonalized in a multivariate fashion (rather than 
bivariate as for oCC) (Colclough et al., 2015). Symmetric orthogonalization overcomes 
the problem of spurious ghost interactions by simultaneously removing zero phase- lag 
components from all source time series using Löwdin orthogonalization for gradient 
descent. All- to- all amplitude correlations are estimated with partial correlation of amp-
litude envelopes to keep direct and remove indirect interactions. Because the partial 
correlation matrix is expected to be sparse, a graphical lasso regularization of the inverse 

 



BIVARIATE FUNCTIONAL CONNECTIVITY MEASURES   507

 

(a) PLV

PLV
PLV

PLV

iPLV

iPLV

iPLV
(b)

0.14 min

0.07 min

True

Spurious

True

Spurious

Artificial

0.12

0.21 max
0.17

0.08 min
0.28
0.49
0.69 max

Artificial

c 
= 

0
c 

= 
0.

4

0.32
0.51
0.69 max

(c) (d)

 Figure 20.4 (A) Linear mixing leads to observations of false positive artificial PLV 
interactions, within the mixing region even in the absence of true correlations. Activity of 169 
uncoupled (c =  0) sources (black dots) in a 13 × 13 grid was simulated and the 20 strongest PLV 
edges of the two sources- of- interest (centers of the cyan and red regions) are visualized. The cyan 
and red color gradients indicate the Gaussian mixing strength. (B) iPLV analysis of the same 
data as in A shows that iPLV does not lead to observations of artificial interactions in the ab-
sence of true interactions. (C) True phase correlations are mirrored into false positive spurious 
correlations, between the two mixing regions in the condition where there is a true interaction 
(c =  0.9) between two sources- of- interest (here the centers of the mixing regions). (D) Even 
though iPLV does not yield artificial false positives, it detects the spurious “ghost” interactions 
similarly to PLV. Spurious correlations arise because any two sources in separate mixing regions 
partially retain the nonzero phase difference of their center sources.

covariance matrix is applied to penalize near- zero elements, which reduces noise in the 
partial correlation graph. This leads symmetric orthogonalization to attenuate both 
signal- leakage caused and true indirect couplings. The main limitations of this method 
are that it is principally applicable only to the estimation of amplitude correlations and 
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that it is limited by the rank of the data due to its dependence on singular value decom-
position. For MEG/ EEG data that are preprocessed with signal space separation (SSS) 
and temporal SSS methods, the rank of the data (~degrees of freedom) is often limited 
to 60– 70 (Haumann et al., 2016). Thus, symmetric orthogonalization is applicable only 
to cortical networks with less than ~60 parcels in total, such as the 19 regions per hemi-
sphere used in Colclough et al. (2015).

Another approach to controlling spurious connections is “hyperedge bundling”, 
which uses any bivariate connectivity mapping as the basis and bundles observed 
connections on the basis of their proximity in source geometry. Hyperedge bundling 
reduces the false positive rate by a factor of 10- 100 with moderate to little decrease on 
the true positive rate. The main advantages of this approach are that it does not involve 
complex mathematical transformations prior to interaction estimation and may be used 
with any bivariate metric in a manner that retains the metric’s sensitivity. Moreover, 
hyperedge bundling enables high- resolution analyses with hundreds of cortical parcels, 
that is, redundant oversampling of the source space, which safeguards the analysis out-
come from the possibility that the actual neuronal source constellations or degrees of 
freedom in the data are different from those of the used parcellation scheme. In the 
worst- case scenario, coarse parcellations can misrepresent or miss source areas that fall 
in between the parcels or are much smaller than the parcels.

Finally, the overall effects of signal mixing on estimates of inter- areal phase-  and 
amplitude coupling can be mitigated by optimizing the MEG/ EEG inverse modelling 
procedure. The inverse transformed source dipole time series can be collapsed into 
parcel time series in a manner that maximizes the source reconstruction accuracy and 
minimizes the effects of source leakage (Korhonen et al., 2014). The fidelity- weighted 
inverse modeling has higher reconstruction accuracy than a regular inverse operator for 
the given parcellation, because it gives greater weight to sources with better reconstruc-
tion accuracy for the signals from the parcels they belong into.

20.10 Data- driven approach 
for mapping oscillatory connectomes

Initial MEG and EEG source connectivity studies used region- of- interest- based 
approaches for phase and amplitude correlation analyses but this approach has been all 
but replaced by data- driven all- to- all connectivity mapping, or “connectomics”, studies. 
Data- driven analyses approaches reveal the most robust effects in data regardless of the 
original hypothesis and as such provide more rigorous hypothesis testing compared to 
hypothesis- driven analyses that may be confounded by several forms of biases and ex-
plicit errors such as circularity in analysis targeting (Kriegeskorte, 2009). Data- driven 
analysis of both local and especially large- scale oscillatory interactions provide a com-
prehensive view on brain dynamics that is not biased by selection criteria. In addition, 
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several approaches for network analysis as described below can be applied to compen-
sate for the presence of artefactual and spurious connections.

Graph theory and complex network theory enable the analysis and prediction of the 
behaviors of a wide variety of complex systems. In human brain networks, these have 
included graph theoretical network analysis (Bullmore & Sporns, 2009; Rubinov & 
Sporns, 2010) that can also be used to characterize the properties of oscillatory networks 
or connectomes that have been obtained with data- driven analysis approaches (Palva 
et al., 2010a; Palva et al., 2010b; Siebenhühner et al., 2016; Siebenhühner et al., 2020). 
This approach describes oscillatory networks at three levels: at the entire graph level 
(i.e., the connectome), level of edges (i.e., connections), and vertices (i.e., brain regions 
or parcels). Vertex centrality estimates can be used to identify those vertices (brain 
regions) that are hubs in networks of interareal oscillatory interactions and likely to 
play an important role in neuronal communication. Several metrics can, in addition, be 
used to characterize specific topological attributes such as clustering, path lengths, and 
modularity of oscillatory networks (Palva et al., 2010b; Zhigalov et al., 2017).

20.11 Confounders in local and  
inter- areal CFC

In addition to source mixing described, estimates of CFC may be inflated by false posi-
tive couplings arising from non- sinusoidal and nonzero mean signals. False positives 
are caused by the artificial higher- frequency components produced when non- 
sinusoidal signals are filtered into narrow bands and by artificial lower- frequency 
components arising from filtering of nonzero- mean waveforms. Because these are 
ubiquitous in electrophysiological signals, their filter artefacts constitute a signifi-
cant confounder to CFS and PAC estimation. Approaches based on waveform analysis 
(Kramer et al., 2008; Aru et al., 2015, Van Driel et al., 2015) have been proposed to reduce 
the artefactual connections arising from non- sinusoidal signals. Nevertheless, filter- 
artefact- caused spurious CFC, in particular CFS, is difficult to dissociate from genuine 
CFC by inspection of the waveform shape of any single signal in isolation. Local CFC 
estimates are thus prone to ambiguous results. CFC is necessarily genuine when there 
is evidence for two distinct coupled processes while spurious CFC arises from a single 
process with signal components distributed to distinct frequency bands because of filter 
artefacts (Figure 20.5). These two distinct processes can be identified by connection- by- 
connection testing of whether CFC can unambiguously be attributed to two separable 
processes using graph- theoretical approaches (Figure 20.5, Siebenhühner et al., 2020). 
If CFC is spurious between areas A and B, these regions are necessarily also connected 
by 1:1 phase synchrony and local CFC that together may lead to a spurious observation 
of inter- areal CFC. The absence of either PS or local CFC, in contrast, indicates that the 
observed inter- areal CFC cannot be attributable to a single source and is thus genuine.
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Figure 20.5 Schemata for dissociating the genuine from putatively spurious CFC. (A) Spurious 
observations of local are seen when a non- sinusoidal signal is filtered. (B) Inter- areal CFC can be 
proven to be genuine if it unambiguously originates from separable neuronal signals. Spurious 
inter- areal CFC is always accompanied by spurious local CFC at one or both locations that are 
also inter- areally coupled via 1:1 phase synchrony either at low frequency or high frequency 
so that a “triangle motif ” with the observed (spurious) inter- areal CFC is formed. (C) Graph- 
theory based approach can identify all triangle motifs that might contain spurious inter- areal 
CFC. This approach only identifies those inter- areal CFC observations as genuine, which are not 
part of a full triangle motif, whereas all others are discarded. Since this may include also genuine 
connections, this approach provides a lower bound for the number of genuine connections.

Modified from Siebenhühner et al., 2020.
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CHAPTER 21

MULTIVARIATE METHODS 
FOR FUNCTIONAL 

CONNECTIVIT Y ANALYSIS

SELIN AVIYENTE

21.1  Introduction

Cognition and perception are founded on the coordinated activity of neural 
populations communicating among different specialized brain regions (Uhlhaas & 
Singer, 2006). Neurons that synchronously oscillate across different frequency bands 
provide the fundamental mechanism for information transfer (Bastos & Schoffelen, 
2016), allowing coordinated activity in the normally functioning brain (Uhlhaas & 
Singer, 2016; Buzsáki & Draguhn, 2004; Fries, 2009). This neural coordination is spatio- 
temporally dynamic (Lakatos et al., 2008), and the oscillatory synchronization among 
different regions is dynamically adjusted based on the cognitive task (Uhlhaas & Singer, 
2016). Tononi and colleagues (1998, 1994) argue that brain functionality is based on 
functional segregation and integration; the former establishes that specialized activity 
occurs due to segregated neuronal populations within dedicated brain regions (Rubinov 
& Sporns, 2010), while the latter consists of the combination of multiple distributed 
regions and serves as the basis for coherent cognition and behavior (Rubinov & 
Sporns, 2010).

Methods for quantifying functional connectivity include linear correlation, mu-
tual information, coherence, synchronization likelihood, phase- locking value (PLV) 
(Lachaux et al., 1999; Aviyente et al., 2011), and pairwise phase consistency (Pereda 
et al., 2005; Quiroga et al., 2002). In order to quantify both linear and nonlinear 
relationships in the brain signals, phase synchronization, as defined in the context of 
two chaotic oscillators, has emerged as an alternative method for the assessment of 
functional connectivity and is quantified through PLV (Aviyente et al., 2011; Aviyente 
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& Yener Mutlu, 2011; Dimitriadis et al., 2013). As a measure for functional connect-
ivity, PLV was introduced by Lachaux and colleagues (1999) and it estimates the syn-
chrony between two signals by looking at the circular variance of their phase difference 
across trials. In comparison to other linear and nonlinear methods, PLV is more sen-
sitive to nonlinear effects (Jalili et al., 2013). In addition, this metric contributes to the 
assessment of brain rhythms and their related cognitive processes, for example, alpha, 
beta, delta, and theta in the low- frequency bands and gamma bands in the higher 
frequencies (Pereda et al., 2005; Lachaux et al., 1999; Aydore et al., 2013; Aviyente 
et al., 2011).

Although PLV is a promising measure for quantifying functional connectivity, it 
is still limited due to its bivariate nature. Specifically, it does not provide information 
regarding the integration across multiple regions in the brain. In addition, functional 
connectivity results from bivariate measures are difficult to interpret and computation-
ally expensive for systems with large number of regions. In order to overcome these 
drawbacks, researchers propose multivariate phase synchrony measures (Stam & Van 
Dijk, 2002; Carmeli et al., 2005; Mutlu & Aviyente, 2012; Al- Khassaweneh et al., 2016). 
The two main approaches to quantifying multivariate synchronization are spectral and 
graph theoretic methods.

The application of bivariate measures to multivariate data sets with N time- series 
results in an N N×  matrix of bivariate indices, which leads to a large amount of mostly 
redundant information. Therefore, it is necessary to reduce the complexity of the data 
set in such a way to reveal the relevant underlying structures using multivariate ana-
lysis methods. The basic approach used for multivariate phase synchronization is to 
trace the observed pairwise correspondences back to a smaller set of direct interactions 
using approaches such as partial coherence adapted to phase synchronization (Schelter 
et al., 2006). Another complementary way to achieve such a reduction is cluster 
analysis— a separation of the parts of the system into different groups such that the 
signal interdependencies within each group tend to be stronger than in between groups 
(Newman, 2006a, 2006b). Allefeld and colleagues have proposed two complementary 
approaches to identify synchronization clusters and applied their methods to EEG data 
(Allefeld & Kurths, 2004; Allefeld et al., 2007; Allefeld et al., 2005; Allefeld & Kurths, 
2003). Allefeld and Kurths (2004) present a mean- field approach that assumes the ex-
istence of a single synchronization cluster that all oscillators contribute to a different ex-
tent. The authors define the to- cluster synchronization strength of individual oscillators 
to identify multivariate synchronization. This method has the disadvantage of assuming 
a single cluster and thus cannot identify the underlying clustering structure. Allefeld 
and colleagues (2007) introduce an approach that addresses the limitation of the single 
cluster approach using methods from random matrix theory. This method is based on 
the eigenvalue decomposition of the pairwise bivariate synchronization matrix and 
appears to allow identification of multiple clusters. Each eigenvalue greater than 1 is 
associated with a synchronization cluster and quantifies its strength within the data set. 
The internal structure of each cluster is described by the corresponding eigenvector. 
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Combining the eigenvalues and the eigenvectors, one can define a participation index 
for each oscillator and its contribution to different clusters. This method assumes that 
the synchrony between systems belonging to different clusters (i.e. between- cluster 
synchronization) is equal to zero and requires an adjustment for proper computation 
of the participation indices in the case that there is between- cluster synchronization. 
Despite the usefulness of eigenvalue decomposition for the purposes of cluster iden-
tification, Allefeld and Bialonski (2007) demonstrate that there are important special 
cases— clusters of similar strength that are slightly synchronized to each other— where 
the assumed one- to- one correspondence of eigenvectors and clusters is completely lost. 
Other alternative measures that quantify multivariate relationships include the directed 
transfer function and Granger causality defined for an arbitrary number of channels 
(Granger, 1969; Baccala & Sameshima, 2001). Both of these methods have been applied 
to study interdependencies and causal relationships, however, are limited to stationary 
processes and linear dependencies.

On the other hand, graph theory provides the means for characterizing the 
functional connections in the brain using a complex network model (Bullmore & 
Sporns, 2009). Functional connectivity networks are constructed by considering 
the different brain regions or electrodes/ sensors as nodes and the relationships be-
tween different nodes, quantified by bivariate functional connectivity measures such 
as PLV and correlation, as edges. In this manner, functional connectivity networks 
can take advantage of the widely available set of techniques for characterizing com-
plex networks. In terms of brain networks, these measures have been grouped as 
measures of functional segregation and functional integration (Rubinov & Sporns, 
2010). Measures of functional segregation include the clustering coefficient, tran-
sitivity, and modularity (Rubinov & Sporns, 2010; de Vico Fallani et al., 2014). On 
the other hand, measures of functional integration include the characteristic path 
length and the global efficiency. By computing measures that characterize network 
structure, such as the small- world measure and the degree distribution, it has been 
shown that functional connectivity networks exhibit features of complex networks, 
including the small- world network (Bullmore & Sporns, 2009; Bassett & Bullmore, 
2017; Bassett & Bullmore, 2006), and both small- world and scale- free networks 
(van den Heuvel et al., 2008). Although graph theoretic measures have contributed 
greatly to the advancements in the study of functional connectivity networks, these 
measures present some drawbacks. Measures employed in the characterization of 
network structure such as the mean clustering coefficient, the characteristic path 
length and the global efficiency may be affected by certain characteristics of the net-
work. Examples include how nodes with low degree affect the clustering coefficient, 
and the dependence of the characteristic path length and the global efficiency in the 
shortest path between nodes, when networks may rely on other mechanisms than 
the shortest path for communication.

This chapter reviews spectral, direct multivariate, and graph theoretic measures for 
quantifying multivariate synchrony within a group of oscillators.
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21.2 Spectral Methods 
for Multivariate Synchronization

The most common approach to quantifying multivariate connectivity is to utilize the 
N N×  bivariate connectivity matrix, A. Since this matrix usually contains redun-
dant information, tools from dimensionality reduction and random matrix theory are 
utilized to extract information from this matrix such as the spectrum of the connectivity 
matrix, that is, the distribution of the eigenvalues. There are a variety of methods used to 
quantify multivariate synchrony based on the distribution of these eigenvalues.

21.2.1  S- Estimator

S- estimator is one of the most commonly used multivariate synchronization metrics. It 
quantifies the amount of synchronization within a group of oscillators using the eigen-
value spectrum of the correlation, covariance or functional connectivity matrix:

 S
N

i

N

i i= +
( )

( )
=∑1 1
λ λlog

log
, (21.1)

where λi
s are the N normalized eigenvalues. This measure is complementary to the en-

tropy of the normalized eigenvalues of the correlation matrix. The more dispersed the 
eigenspectrum is the higher the entropy would be. If all of the oscillations in a group are 
completely synchronized, that is, the entries of the pairwise functional connectivity ma-
trix are all equal to 1, then all of the eigenvalues except one will be equal to zero, and the 
value of S will be equal to 1 indicating perfect multivariate synchrony. This measure can 
quantify the amount of synchronization within a group of signals and thus is useful as a 
global complexity measure.

21.2.2  Omega Complexity

A variation of S- estimator is Ω- complexity. Using the eigenvalues of the correlation ma-
trix as λi, the omega complexity can be computed as:

 Ω = −




=

∑exp log
i

N
i i

N N1

λ λ
. (21.2)

Ω- complexity varies between 1 (maximum synchronization) and N (minimum syn-
chrony, i.e., maximum de- synchronization). In order to scale the above measure 
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between a value close to 0 (for minimum synchrony) and 1 (for maximum synchrony), 
one can compute Omega as 1/ Ω.

21.2.3  Global Field Synchronization

A multivariate synchronization can be calculated in frequency domain by means of 
global field synchronization (GFS) measure. First, the time- series are converted to 
frequency- domain using fast Fourier transform. This results in the sine and cosine 
coefficients. At a given frequency f, the multivariate signals can be visualized in two- 
dimensional sine- cosine maps. As the entries are getting more scattered, the phase 
synchrony between them worsens. Let λ1 f( )  and λ2 f( )  be the eigenvalues of the co-
variance matrix along these two vectors (coefficients of sine and cosine). GFS at a given 
frequency is calculated as

 GFS f
f f
f f

( ) =
( ) − ( )
( ) + ( )

λ λ
λ λ

1 2

1 2

.  (21.3)

If the sine- cosine clouds lie on a straight line, one of the eigenvalues equals to 0 and 
the covariance is completely explained by a single principal component; the GFS takes 
a value of 1 for such cases. This corresponds to complete phase synchrony at a given fre-
quency. In a non phase- synchronized case, the two eigenvalues are close to each other, 
leading to GFS values close to 0. In order to obtain GFS values in a certain frequency 
range, similar to cross- coherence, one can get the average of GFS values over that fre-
quency range.

21.3 Direct Measures of 
Multivariate Synchronization

Omega complexity and S- estimator are all based on the computation of the covari-
ance or bivariate connectivity matrix. Therefore, the metrics are not direct measures 
quantifying multivariate synchrony and will be influenced by the bias affecting bivariate 
measures. A solution to this problem is to use multivariate phase synchrony (MPS) 
measure, which is indeed an extension to PLV. Having extracted the instantaneous 
phases from the individual time- series (using the Hilbert transform, for instance), the 
MPS is computed as

 MPS
LN
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N
j ti=
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 (21.4)

 

 

 



MULTIVARIATE METHODS FOR FUNCTIONAL CONNECTIVITY ANALYSIS   519

 

MPS measures the mean phase coherence between the time- series, averaged over the 
observation samples. It ranges from 0 for completely unsynchronized systems to 1 for 
completely synchronized systems. However, this measure does not directly quantify 
the relationship of phases across oscillators as it relies on the absolute phase rather than 
the phase differences. For this reason, in this section we discuss a more recent method 
to quantify multivariate phase synchrony directly from the phase differences of the 
observed oscillators (Al- Khassaweneh et al., 2016; Mutlu & Aviyente, 2012).

21.3.1  Hyper- Spherical Phase Synchrony

 Bivariate phase synchrony is based on the circular variance of the two- dimensional dir-
ection vectors on a unit circle (1- sphere), obtained by mapping the phase differences 
between two oscillators, { }, , , ,Φ Φ Φ1 2 1 2 1 2

k k k
k Kt t t( ) = ( ) − ( ) = …  where K is the total number 

of trials, between the two time- series onto a Cartesian coordinate system. If the cir-
cular variance of these direction vectors is low, the time- series are said to be locked to 
each other. This idea can be extended to the multivariate case by considering the phase 
differences across M oscillators. In order to capture global phase information, the phase 
difference between the phase of each oscillator and the phase of the resultant vector of 

the remaining oscillators is defined, that is, θi
k

i
k

m m i
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m
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Using the M −( )1  angular coordinates, a direction vector Γk k
M
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be formed by mapping the angular coordinates
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 For example, γ 1
k t( )  is the x coordinate of a vector on the unit circle at angular pos-

ition θ1
k t( ) , while γ 2

k t( )  is the x coordinate of a vector on a circle with radius sin θ1
k t( )( )  

at angular position θ2
k t( ) . Similar analysis applies to the remaining θi

k t( )  s. Thus, every 
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for i M= 2 3, ,...,  and with a phase θi
k t( ) . The equation for r ti ( )  shows that as i increases, 

γ i
k t( )  will have less impact on the overall synchrony. This means that the choice of the 

first phase difference, θ1
k t( ) , will have a high impact on the measured synchrony.

Equation (21.5) may also be interpreted as follows. Every γ i
k t( )  is the x projection of 

the y coordinate of the previous γ i
k t− ( )1  on the x- axis with a phase θi

k t( ) , i.e. define x 
and y coordinates of the rotating vector for each trial k as

          γ θx
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         γ θy
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         γ θ θx
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where the superscripts x and y refer to the projection coordinates.
 This recursive structure in the definition of the x-  and y- axis for each oscillator 

causes a dependence of the synchrony metric on the order of the phases. To solve this 
problem, we consider both the x and y coordinates for all oscillators and normalize these 

coordinates by d t r t sin ti
k

i
k
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j
k( ) = ( ) = ( )( )
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θ  for i M= 2 3, ,..., . This will result in unit 

radius for all i. Therefore, the multivariate phase synchrony measure, hyper- torus phase 
synchrony (HTS), is given by
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This HTS metric can also be simplified as
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where PLVi  quantifies the synchronization of each oscillator with respect to a common 
reference angle with θ ωi

k t,( )  as described above and PLVi  is given by

 PLV t
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k

i
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The maximum value of HTS  is 1, when there is complete phase synchronization 
among oscillators. On the other hand, HTS  is theoretically 0 when the oscillators are 
independent.

Some advantages of this formulation with respect to the spectral methods discussed in 
the previous section is its computational efficiency and flexibility. First, for N oscillators 
this metric requires the computation of N PLV values, whereas the spectral methods re-
quire the computation of N N −( )1  pairs of PLV values. Second, this metric is directly 
applicable for quantifying the synchrony within a group of oscillators, whereas the spec-
tral methods are usually applied to the whole connectivity network.

21.4 Graph Theoretic Metrics

In the last decade, connectivity- based methods have had a prominent role in 
characterizing normal brain organization as well as alterations due to various brain 
disorders. Functional connectivity networks (FCNs) are obtained by recording physio-
logical signals from different brain regions and then computing the pairwise similarity 
(Stam & Reijneveld, 2007; Bullmore & Bassett, 2011). In this context, the nodes of the 
network correspond to the brain regions and the edges correspond to their functional 
connectivity. In the context of synchronization, the N N×  bivariate connectivity ma-
trix, A can be treated as the adjacency matrix of the graph.

As with other real- world connected systems and relational data, studying the top-
ology of interactions in the brain has profound implications in the comprehension of 
complex phenomena, such as the emergence of coherent behaviour and cognition or 
the capability to functionally reorganize after brain lesions (i.e. brain plasticity) (Sporns, 
2018). In practice, graph metrics (or indices) such as clustering coefficient, path length 

 

 



522   SELIN AVIYENTE

 

and efficiency measures are often used to characterize the “small- world” properties of 
brain networks. Centrality metrics such as degree, betweenness, closeness, and eigen-
vector centrality are used to identify the crucial areas within the network. Community 
structure analysis, which detects the groups of regions more densely connected between 
themselves than expected by chance, is also essential for understanding brain network 
organization and topology.

The definition of the nodes (or vertices) for brain graphs is modality specific. In 
sensor- based modalities, such as EEG, brain nodes are commonly assigned directly 
to sensors or to electrodes. However, volume conduction in EEG causes the signal at 
each sensor to be a mixture of blurred activity from different inner cortical sources. 
This effect can either be ignored, in which case brain nodes will suffer from a biased 
non- neural dependence, or it can be addressed in several ways, such as using spatial 
filters (Kayser & Tenke, 2006), choosing functional connectivity metrics that attenuate 
volume conduction (Stam et al., 2007), or using cortical source reconstruction. After 
defining brain nodes, assigning links between them is the subsequent crucial modelling 
step. In functional neuroimaging, the links of a brain graph are given by evaluating the 
similarity between two brain signals, through functional connectivity (FC) measures 
such as phase synchrony, Pearson’s correlation or coherence. FC methods fall into 
two broad categories: those measuring symmetric mutual interaction (undirected 
weighted links) and those measuring asymmetric information propagation (directed 
weighted links). FC across N recording sites can be described by an N N×  adjacency 
matrix A containing all the pairwise FC measures aij corresponding to the weighted 
links of the brain graph. Since most of the graph theoretic metrics are defined on 
binary (unweighted) graphs, initial efforts on the analysis of brain network topologies 
were implemented via the binarization of the weights using some arbitrarily chosen 
thresholds with some good success. A simple way of building a graph from a weighted 
FC matrix is to apply a threshold τ  to each element of the matrix, such that if aij ≥ τ , 

then an edge is drawn between the corresponding nodes, but if aij < τ , no edge is drawn 

(Achard et al., 2006). This thresholding operation thus binarizes the weight matrix and 
converts the continuously variable edge weights to either 1 or 0. By varying the threshold 
τ  used to construct a binary graph from a continuous weight matrix, the connection 
density of the network is made denser or less dense. If the threshold is low and many 
weak weights are added to the graph as edges then the connection density will increase; 
if the threshold is high and only the strongest weights are represented as edges, then 
the connection density will decrease. Since the choice of τ  may be arbitrary, a lot of the 
binarization techniques rely on choosing a threshold to achieve a certain graph density. 
Moreover, in recent work, instead of choosing a single τ , a range of τ  values have been 
chosen to generate multiple binary graphs from a single FC network. In this manner, the 
topology of the connectivity network can be analyzed across different scales. However, 
thresholding poses the problem of over- simplifying FCNs and, more importantly, there 
is no generally accepted criterion to select the threshold (Bassett & Bullmore, 2017; Lee 
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et al., 2012). Moreover, the size and density of the thresholded network vary based on 
the chosen threshold value (Rubinov & Sporns, 2010). Recent studies show that the sig-
nificance of the difference between groups is strongly dependent on the threshold par-
ameter, that is, the power of the statistical analysis varies with the threshold (Langer 
et al., 2013). Recently, extensions of graph theoretic measures have been proposed 
for weighted networks to address some of these issues (Bolanos et al., 2013; Bassett 
et al., 2011). It has also been shown that graph theoretic measures, such as the clustering 
measure and the small- world parameter, are very sensitive to the size of the network, 
that is, the number of nodes, and the density of the connections. Thus, comparing two 
networks with different edge density may lead to wrong conclusions, making it diffi-
cult to disentangle experimental effects from those introduced by differences in the 
average degree (Bassett & Bullmore, 2017; Muldoon et al., 2016). For these reasons, in 
this chapter we focus on metrics suitable for undirected and weighted links.

Graphs can be investigated at different levels of scale, and specific measures cap-
ture graph attributes at local (nodal) and global (network- wide) scales (Kruschwitz 
et al., 2015; de Vico Fallani et al., 2014). Nodal measures include simple statistics such 
as node degree or strength, while global measures express networkwide attributes 
such as the path length or the efficiency. Intermediate scales can be accessed via hier-
archical neighborhoods around single graph elements, or by considering subgraphs 
or motifs. Motifs are defined as subsets of network nodes and their mutual edges 
whose patterns of connectivity can be classified into distinct motif categories. In em-
pirical networks, these categories often occur in characteristic frequencies that can be 
compared with distributions from appropriate (random) null models. Even though a 
multitude of graph theoretics have been defined to analyze complex networks, here we 
focus on metrics that are particularly useful for characterizing functional connectivity 
networks.

21.4.1  Small- World

Watts and Strogatz (1998) showed that graphs with many local connections and a 
few random long distance connections are characterized by a high cluster coefficient 
(like ordered networks) and a short path length (like random networks). Such near- 
optimal networks, which are intermediate between ordered and random networks, 
are designated as small- world networks. Many neuroimaging studies have shown that 
both structural and functional brain networks shared similar small- world properties of 
short path length and high clustering (Bassett & Bullmore, 2006; Bassett & Bullmore, 
2017). Small- world networks are simultaneously strongly clustered and integrated. 
This phenomenon of small- worldness is captured by the small- world parameter, which 
is the ratio of the normalized clustering coefficient to the normalized path length. For 
a weighted network, the small- world parameter is given as (Rubinov & Sporns, 2010; 
Humphries & Gurney, 2008):
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where C and Crand  are the clustering coefficients of the network and a random network 
with the same degree distribution, respectively, and L and Lrand  are the characteristic 
path lengths of the network and a random network with the same degree distribution, 
respectively. In this definition, the clustering coefficient is a measure of segregation and 
reflects mainly the fraction of clustered connectivity available around individual nodes.

The clustering coefficient for a weighted network is defined as (Onnela et al., 2005):
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where ti
w  is the weighted geometric mean of the triangles around a node i.

Similarly, the characteristic path length of the network is the average shortest path 
length between all pairs of nodes in the network. For a weighted network it is calculated 
as (Rubinov & Sporns, 2010):
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where dij
w  is the shortest weighted path length between node i and j.

Even though the small- world parameter has been widely used to characterize func-
tional brain networks, it has some shortcomings. First, it is not clear in most cases how 
the small- worldness of the brain network relates to biological properties. Second, a 
single parameter that summarizes the network topology is not sufficient and does not 
tell the whole story about the network structure. Third, the small- world scalar σ  can be 
greater than 1 even in cases when the normalized path length is much greater than one; 
because it is defined as a ratio, if C >> 1  and L > 1 , the scalar σ > 1 . This means that a 
small- world network will always have σ > 1 , but not all networks with σ > 1  will be 
small- world (some of them may have greater path length than random graphs). Finally, 
the measure is strongly driven by the density of the graph, and denser networks will 
naturally have smaller values of σ  even if they are in fact generated from an identical 
small- world model.

21.4.2   Modularity

Among the most widely encountered and biologically meaningful aspects of brain 
networks is their organization into distinct network communities or modules (Meunier, 
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Lambiotte et al., 2009; Laumann et al., 2015; Chavez et al., 2010; Fair et al., 2009; Ferrarini 
et al., 2009; Meunier, Archard et al., 2009; Power et al., 2011). Modules are useful to par-
tition larger networks into basic “building blocks,” that is, internally densely connected 
clusters that are more weakly interconnected among each other. Modular partitions have 
neurobiological significance as their boundaries separate functionally related neural 
elements, define critical bridges and hubs that join communities, channel and restrict the 
flow of neural signals and information, and limit the uncontrolled spread of perturbations.

There are numerous computational techniques for extracting communities and 
modules from complex networks. One of the most widely used approaches in network 
neuroscience is modularity maximization, which aims to divide a given network into a set of 
nonoverlapping communities by maximizing a global objective function, the modularity 
metric (Newman, 2006a). Originally, this metric was formulated to detect communities 
whose internal density of connections is maximal, relative to a degree- preserving null 
model. A good partitioning of a network is expected to have high modularity Q with
Q fraction of edges within communities expected fraction of suc= ( ) − hh edges( ), where 
the expected fraction of edges is evaluated for a random graph.

While modularity characterizes the brain network at a finer scale compared to the small- 
world parameter, it still has some shortcomings. First, modularity maximization has some 
shortcomings such as coming up with degenerate solutions, that is, numerous partitions 
may result in the same value of the modularity metric. Second, modularity optimization 
cannot identify modules below a certain size. One way to address these issues and repre-
sent the full multi- scale structure of brain networks is to perform consensus clustering 
across multiple spatial resolutions— an approach that combines sampling the entire range 
of possible spatial resolutions with a hierarchical consensus clustering procedure.

21.4.3   Centrality

Numerous measures quantify the potential of individual nodes and edges to influ-
ence the global state of the network. Many of them allow the identification of network 
hubs generally defined as highly central parts of the network (Sporns et al., 2007). The 
number of connections maintained by a node (its degree) or the combined weight 
of these connections (its strength) often provides a strong indicator of influence or 
centrality. Other measures of centrality take advantage of the layout of the shortest 
paths within the network and record the number of such paths that pass through a 
given node or edge— a measure called the betweenness. Another way to approach 
centrality is by referencing the relation of nodes and edges to a network’s commu-
nity structure. The participation coefficient quantifies the diversity of a given node’s 
connections across multiple modules— high participation indicates that many of 
these connections are made across modules, thus linking structurally and function-
ally the distinct communities (Guimera & Nunes Amaral, 2005). This measure is par-
ticularly useful in brain networks as it can be applied to both structural and functional 
network data.
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21.5 Illustrative Example

This section illustrates the differences between the various multivariate metrics 
introduced in this chapter. Moran and colleagues (2015) used an EEG dataset from a 
previously published cognitive control- related error processing study. The study was 
designed following the experimental protocol approved by the Institutional Review 
Board (IRB) of the Michigan State University. The data collection was performed in 
accordance with the guidelines and regulation established by this protocol. Written and 
informed consent was collected from each participant before data collection.

The experiment consisted of a speeded- reaction Flanker task (Eriksen & Eriksen, 
1974), in which subjects identified the middle letter on a five- letter string, being con-
gruent (e.g. MMMMM) or incongruent (e.g. MMNMM) with respect to the Flanker 
letters. Flanker letters (e.g. MM MM) were shown during the first 35 ms of each trial, and 
during the following 100 ms the Flanker and target letters were shown on the screen. 
This was followed by an inter- trial interval of variable duration ranging from 1200 ms 
to 1700 ms. A total of six blocks consisting of 80 trials composed the experiment, and 
letters were changed between blocks. EEG responses were recorded by the 64 elec-
trode ActiveTwo system (BioSemi, Amsterdam, The Netherlands). The sampling fre-
quency was 512 Hz. Trials containing artifacts were rejected and volume conduction was 
reduced through the Current Source Density (CSD) Toolbox (Kayser & Tenke, 2006). 
A total of 18 subjects and 58 channels were considered for the analysis, for which the 
total number of error trials ranged from 20 to 61. The same number of correct responses 
was chosen randomly. In this example, we explore the effectiveness of the different 
multivariate measures by applying them to the N N×  bivariate functional connectivity 
matrices corresponding to error- related negativity (ERN) and the correct- related nega-
tivity (CRN). Previous studies have shown that the ERN is associated with increased 
synchronization in the theta band (4– 8 Hz) between electrodes in the central and lat-
eral frontal regions (Aviyente et al., 2011). For this reason, an FCN was constructed for 
each subject by averaging the PLV over the time window 25– 75 ms and the frequency 
bins corresponding to the theta band per subject and response type. This results in two 
FCNs of size 58 58×  per subject, one corresponding to error responses and the other to 
correct responses.

Table 21.1 summarizes the results of applying four of the metrics discussed in this 
chapter. For the S- estimator and Omega complexity, in both cases the results indicate 
that the FCNs for the correct response have higher levels of synchronization compared 
to the error response. However, these measures do not necessarily quantify how this 
increased synchronization is distributed across the network and does not reflect the 
organization of the network. The graph theoretic metrics, on the other hand, address 
this issue. We note that the small- world measure is slightly higher for error networks 
compared to correct ones. In particular, the FCNs constructed from error responses 
are small- world while the ones from correct response are not. This difference between 
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small- world parameters is statistically significant using a two- tailed t- test ( p < 0 001. ). 
This implies that the FCN constructed from the error response is more clustered and has 
smaller average path length indicating a better integreated system. Similarly, the modu-
larity values are higher for error network compared to correct FCNs with the difference 
being significant ( p < 0 001. ). This difference in modularity shows that the network has 
a more modular structure, that is, groups of nodes that are highly integrated, for the 
error response.

Next, we illustrate the use of the direct multivariate phase synchrony measure, HTS, 
on the same data. Unlike the metrics discussed earlier, HTS does not require the N N×  
connectivity matrix and can be directly applied to a group of oscillators or electrodes. 
A preliminary analysis shows that HTS yields increased synchronization for the cen-
tral and lateral frontal regions for the error response, whereas there is no topographical 
differentiation of synchrony for the correct response. For this reason, we focus on ERN 
networks and assess whether the medial and lateral electrodes formed a stronger net-
work than that between medial and occipital electrodes by computing HTS among elec-
trode FCz and the left lateral (F1, F3, F5), right lateral (F2, F4, F6), and occipital (Oz, O1, 
O2) electrodes. Table 21.2 shows the multivariate synchrony among these regions, and 
as expected, the medial and lateral regions exhibit higher synchrony when compared to 
the medial and occipital regions. Moreover, we examined the statistical significance of 
the difference in multivariate synchrony of these regions. The multivariate synchrony 
among the medial and left and right lateral regions is not significantly different. On the 

Table 21.1  Mean ±  Standard deviation of the different multivariate metrics 
on example FCNs

Metric ERN CRN

S- estimator 0.2147 ±  0.0282 0.3216 ±  0.01

Omega Complexity 0.8825 ±  0.0017 0.8891 ±  0.0006

Small- World 1.0078 ±  0.0086 0.9938 ±  0.001

Modularity 0.0329 ±  0.0154 0.0041 ±  0.0019

Table 21.2  Mean ±  Standard deviation of HTS for error- 
related negativity networks over different brain 
regions

Electrodes HTS

FCz,F1, F3, F5 0.2649 ±  0.049

FCz, F2, F4, F6 0.2845 ±  0.042

FCz, Oz, O1, O2 0.2294 ±  0.036
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other hand, lateral- medial synchrony is significantly different than that within the oc-
cipital regions.

21.6  Conclusions

This chapter reviewed different metrics that have been introduced to quantify multi-
variate synchronization in the brain. The first group of methods focus on spectral 
properties of the bivariate phase synchrony matrix and as such quantify the spread of 
the eigenvalues of this N N×  matrix. Even though these measures are successful at 
capturing the global synchronization within the brain, they do not pinpoint to the ac-
tual mechanisms underlying the observed global synchrony values. Graph theoretic 
metrics, on the other hand, can characterize the network topology across multiple scales 
ranging from the micro to the macro- scale. Thus, they can provide explanations to the 
observed synchrony values in terms of different network models such as small- world 
and modular structures. In order to better characterize brain networks, these analyses 
need to be performed at the subnetwork level. The recently proposed hyper- torus phase 
synchrony measure addresses this issue by computing the synchronization within a 
group of electrodes or a subnetwork. This type of analysis offers the best trade- off be-
tween bivariate metrics that focus on pairs of electrodes and multivariate metrics that 
focus on the whole brain.
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CHAPTER 22

BRAIN STIMUL ATION 
APPROACHES TO 

INVESTIGATE EEG 
OSCILL ATIONS

 FLORIAN H. KASTEN AND  
CHRISTOPH S. HERRMANN

22.1  Introduction

Several of the previous chapters in this book laid out the numerous associations be-
tween oscillatory brain activity and various domains of cognitive functioning that have 
been discovered over the course of the last century. At the same time, altered patterns of 
this oscillatory brain activity have been observed in many neurological and psychiatric 
diseases (Herrmann & Demiralp, 2005; Uhlhaas & Singer, 2006, 2012).

The recording of brain signals using electro-  or magnetoencephalography 
(EEG/ MEG) or by means of invasive techniques (e.g., intracortical EEG or 
electrocorticography), has strongly contributed to our knowledge in this area, and 
will continue to do so. However, as these methods can only provide observational 
data, inference about the functional role of brain oscillations for cognitive functions 
remains correlational. That is, oscillatory activity is observed as the dependent vari-
able while participants are engaged in different cognitive tasks or task conditions, 
which are experimentally manipulated (independent variable, Figure 22.1A). Whether 
the observed oscillatory activity has a direct causal influence on the investigated 
function, or whether it reflects byproducts of the underlying neural processing, 
cannot be resolved by this type of experimental design. In order to demonstrate such 
causal relationships, one needs to revert the design and experimentally manipulate 
the oscillatory activity in question (independent variable) and measure the resulting 
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behavioral changes as the dependent variable (Bergmann et al., 2016; Herrmann et al., 
2016b; Figure 22.1B).

In principle, a variety of methods allow researchers to modulate brain oscillations. 
However, many of these approaches, such as pharmacological interventions (e.g., 
Kopp et al., 2004), optogenetics (Sohal, 2012), or intracranial electrical stimulation 
(Alagapan et al., 2016; Fröhlich & McCormick, 2010), are highly invasive and their ap-
plication mostly restricted to animal models and small groups of patients. For example, 
light- driven activation of fast- spiking interneurons at 40 Hz has been shown to cause 
gamma band increase of local field potentials in mice (Cardin et al., 2009) and low- 
frequency direct cortical stimulation in the alpha range has been shown induce state- 
dependent modulation of oscillatory brain activity in the alpha and theta band in 
epilepsy patients (Alagapan et al., 2016). While invasive stimulation offers potential for 
more reliable effects due to stronger and more focal perturbation of brain activity, they 
require opening of the scalp and skull or even penetration of brain tissue making them 
unsuitable for application in healthy human subjects. Other methods like rhythmic 
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Figure 22.1 Experimental designs to investigate brain oscillations. (A) In traditional EEG 
experiments participants are exposed to different experimental conditions (e.g. a task free fix-
ation interval and a stimulus). An EEG is recorded and the frequency content of the signal is 
compared between task conditions and correlated with task performance. (B) In order to estab-
lish causal relationships between the brain oscillation and the cognitive process, one needs to 
revert the design and manipulate a feature of the oscillation of interest (here power around 10 Hz) 
by an intervention. If behavioral changes are observed in response to the intervention, this can be 
taken as evidence for a causal involvement of the oscillations in the investigated process.
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stimulation with sensory stimuli (e.g., rhythmic visual stimulation with flickering 
light causes steady state visual evoked responses) or neurofeedback training have been 
shown to modulate oscillatory activity in the brain and can be applied in healthy human 
subjects. However, steady- state responses exhibit their effects on brain oscillations 
indirectly via the sensory systems and it is debated whether the observed oscillatory 
activity reflects a modulation of brain oscillations or merely a superposition of event- 
related potentials (but see Notbohm et al., 2016). Neurofeedback training can be used 
in many different contexts, including studying higher cognitive processes. However, the 
intervention is rather time consuming as the training usually requires several sessions 
on separate days before its effects can be measured.

During the past decades, a branch of techniques has evolved to noninvasively 
modulate brain activity by either applying magnetic pulses via transcranial magnetic 
stimulation (Barker et al., 1985; Hallett, 2000), or weak electric currents by means of 
transcranial electrical stimulation (tES). The latter is an umbrella term covering sev-
eral electrical stimulation methods including transcranial direct current stimulation 
(tDCS), transcranial alternating current stimulation (tACS), and transcranial random 
noise stimulation (Woods et al., 2016). Among these methods, the rhythmic, repetitive 
application of TMS (rTMS) and tACS are considered particularly promising to study 
the functional role of brain oscillations in cognition. The latter works via the application 
of an alternating current usually of sinusoidal shape. Although, depending on the spe-
cific limitations of the hardware used for stimulation, almost any type of waveform can 
be created (Figure 22.2). For example, recent work applied tACS using the envelope of 

sawtooth tACS AM–tACS

TMS biphasic

tDCS tACS

TMS monophasic

AM–tACS
modulating waveform

speech signal
env–tACS

env–tACSotDCS

Figure 22.2 Stimulation waveforms used in tES and TMS. Top: Waveforms conventionally 
used for tDCS and tACS. Middle: Alternative waveforms used to stimulate oscillatory activity 
in the brain. For otDCS, a sinusoidal tACS waveform is combined with a DC offset. TACS using 
sawtooth waves cause large power in the spectrum at harmonic frequencies, which makes re-
sidual artifacts easier to detect. In amplitude modulated- tACS a high- frequency carrier wave-
form is modulated in amplitude by a low- frequency waveform at the frequency of the target brain 
oscillation. For envelope- tACS the stimulation waveform is extracted from the envelope of a 
speech signal. Bottom: Waveform shapes of mono-  and biphasic TMS pulses.
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human speech signals to improve speech intelligibility (Riecke et al., 2018; Wilsch et al., 
2018). Others administered tACS with sawtooth waves or amplitude modulated sine 
waves that are supposed to allow easier removal of stimulation artifacts from concur-
rent electrophysiological recordings (Dowsett & Herrmann, 2016; Kasten et al., 2018b; 
Witkowski et al., 2016). Some researchers also applied alternating currents together with 
a DC offset, which has been referred to as oscillating transcranial direct current stimu-
lation (otDCS; Marshall et al., 2006; Neuling et al., 2012a). RTMS and tACS are believed 
to synchronize/ entrain endogenous brain oscillations to the externally applied driving 
force, thus specifically targeting the brain oscillation of interest and probing its causal 
role during a particular task (Herrmann et al., 2013; Reato et al., 2013; Thut et al., 2011b, 
2011a). In addition, effects outlasting the duration of stimulation by several minutes or 
even hours have been observed in many rTMS and tACS studies (Veniero et al., 2015). 
These findings give rise to the hope that in the future these methods may offer new 
treatment options for psychiatric and neurological conditions by restoring dysfunc-
tional oscillatory activity.

22.2 Mechanisms Underlying  
rTMS and tES

TMS exploits the principles of electromagnetic induction of electric fields in the brain 
(Barker et al., 1985; Wagner et al., 2009). To this end, strong, transient currents are fed 
through a coil of wire placed above the scalp in the proximity of the targeted brain 
area. The high- intensity current creates a magnetic field with magnetic flux passing 
perpendicularly to the plane of the coil. The rapidly changing magnetic field in turn 
passes through the skull and induces current in the brain tissues underneath the scalp, 
flowing in loops parallel to the coil plane (Figure 22.3A; Hallett, 2000; Wagner et al., 
2009). The resulting electric fields cause changes in membrane polarization sufficiently 
strong to modulate neural excitability by changing membrane polarization and even 
trigger the firing of action potentials (Wagner et al., 2009). Different coil shapes, like 
circular, double cone, or figure of eight, are available that vary with respect to their in-
tensity, focality, and the depth of brain areas that can be reached with the stimulation 
(Hallett, 2000; Klomjai et al., 2015). TMS can be administered using different stimula-
tion protocols. The application of a single TMS pulse can already elicit effects and im-
pair visual perception (Amassian et al., 1989). Traditionally, low- frequency rTMS (<1 
Hz) is considered to suppress cortical excitability while high- frequency rTMS (>5Hz) 
is considered facilitatory (Klomjai et al., 2015). Variants of rTMS include theta burst 
stimulation, where short bursts of high- frequency stimulation (40 Hz) are repeated at 
theta frequency (5 Hz). Besides the overall excitatory and inhibitory effects of rTMS, 
the method can also be used to modulate and investigate brain oscillations (Hanslmayr 
et al., 2014; Thut et al., 2011b).
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Figure 22.3 Modes and mechanisms of stimulation. (A) Figure- eight coil TMS and induced 
magnetic/ electric field. (B) Simple tACS montage with electrodes placed above Cz and Oz of the 
international 10– 20 system to target occipital- parietal regions. (C & D) Electrode montages to 
modulate inter- hemispheric synchronization. Stimulation between electrode pairs is applied ei-
ther in- phase (C) or anti- phase (D). (E) Synchronization of endogenous brain oscillations to ex-
ternal stimulation via rTMS (top) and tACS (bottom). The external driving force causes the brain 
oscillation to adapt in frequency and phase to the stimulation. Due to the increased synchronous 
neuronal activity, an amplitude increase is expected. Please note that real EEG recordings are 
strongly corrupted by artifacts arising from stimulation. (F) The “Arnold tongue” illustrates the 
relationship between the intensity of a driving force coupled to an oscillator and their frequency 
differences on the resulting synchronization. The farther apart the frequency of the driving 
force and the oscillator, the higher the intensity needed to cause the oscillator to synchronize. 
If the frequencies of the oscillator and driving force match, very small intensities are needed. 
(G) Arnold tongues at different n:m (n perturbations within m oscillatory cycles) frequency 
ratios.
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In contrast to TMS, tES methods like tDCS and tACS have much more subtle effects 
on neuronal activity. Here, a direct or alternating current is passed through the scalp 
by two or more stimulation electrodes (Figure 22.3B– D). Commonly, saline soaked 
sponge electrodes, fixed to the scalp via rubber bands, or electrically conductive rubber 
electrodes attached using a conductive, adhesive paste are used for this purpose. 
Some systems also make use of Ag/ AgCl electrodes similar to those used in standard 
EEG systems. Results from simulations of the current flow through the head, as well 
as findings from invasive recordings in animals and human cadavers suggest that a 
large proportion of the current is directly shunted through the skin (Miranda et al., 
2006; Neuling et al., 2012b; Opitz et al., 2016; Vöröslakos et al., 2018). However, at the 
same time, small amounts of the injected current still reach the target regions in the 
brain. In case of tDCS, these currents shift the resting potentials of the stimulated 
neurons, resulting in slight depolarization of the cell membrane under the anode and 
hyperpolarization under the cathode. While these changes in membrane potentials are 
too small to directly elicit neural firing, early work on animal models in vivo and in 
vitro suggests that they can alter neuronal excitability by shifting the membrane poten-
tial such that more or less incoming excitatory postsynaptic potentials are required to 
reach the cells’ firing threshold (Bikson et al., 2004; Bindman et al., 1964; Creutzfeldt 
et al., 1962; Jefferys, 1981).

When an alternating current is applied (e.g., via tACS), the electric field rhythmic-
ally alternates between hyperpolarizing and depolarizing the cell membrane during 
the negative and positive half cycles of the sinusoidal stimulation waveform. Computer 
simulations as well as in vivo and in vitro recordings demonstrated that these phasic 
modulations of membrane polarization temporally align neural firing to the frequency 
of the externally applied stimulation (Deans et al., 2007; Fröhlich & McCormick, 2010; 
Krause et al., 2019; Ozen et al., 2010; Reato et al., 2010). The electric field strengths neces-
sary to achieve this effect are comparable to the electric fields reaching cortical pyram-
idal cells during tES (Antal & Herrmann, 2016; Opitz et al., 2016).

Although the mechanisms of tACS and rTMS differ in terms of their effects on the 
cellular level, both techniques are assumed to cause synchronization/ entrainment of the 
endogenous oscillatory brain activity to the external driving force (Thut et al., 2011a). 
Synchronization phenomena can be observed everywhere in nature, from chirping of 
crickets to the beating of the heart, as well as in human- made technical systems like pen-
dulum clocks or electric circuits. The basic principles of these phenomena are universal 
and can be described using the framework of synchronization theory (Pikovsky et al., 
2003). Synchronization requires the presence of a so- called self- sustained oscillator. 
Such oscillators are characterized by an internal source of energy, allowing the oscillator 
to exhibit some sort of rhythmic activity until the energy source is consumed (Pikovsky 
et al., 2003). If two or more oscillators with similar eigenfrequencies (i.e., the frequency 
at which a system tends to oscillate in the absence of any external driving force) are 
weakly coupled, their rhythmic activity synchronizes; that is, they align their rhythmic 
activity in frequency and phase (Pikovsky et al., 2003). Similarly, if coupled to an ex-
ternal driving force, the oscillator synchronizes in frequency and phase to the external 
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signal. Importantly, the further apart the frequency of the external force is to the eigen-
frequency of the oscillator, the more energy is needed to synchronize it (Pikovsky et al., 
2003). Driving forces at frequencies too far away from the oscillators’ eigenfrequency 
and with too little strength cannot achieve synchronization. In contrast, driving forces 
that exactly match the frequency of the oscillator can achieve synchronization even at 
very small intensities. When the relationship between frequency difference and driving 
force strength on the synchronization strength is visualized in a diagram with synchron-
ization strength coded in color, a triangular shape can be observed, which has been 
referred to as the Arnold Tongue (Figure 3G; Pikovsky et al., 2003). Besides 1:1 frequency 
matching between oscillator and driving force, synchronization can also occur if the 
driving force perturbs the oscillator at harmonic or subharmonic frequencies. Such har-
monic entrainment can occur for any n:m (n perturbations within m oscillatory cycles) 
frequency relationship (where n, m ∈). For example, an oscillator with a frequency of 
10 Hz synchronizes to driving forces with frequencies around 10 Hz, but also to those 
with 2.5 Hz, 3.33 Hz, 6.66 Hz, 15 Hz, 20 Hz, and 30 Hz, corresponding to the 1:3, 1:2, 2:3, 
3:2, 2:1, and 3:1 Arnold tongues (Figure 22.3G). The strength of synchronization decays 
the higher the harmonic frequency of the external driving force is (Pikovsky et al., 2003).

In the human brain, synchronization of oscillatory activity to external driving 
forces has been observed in response to flickering light stimulation (Herrmann, 2001; 
Notbohm et al., 2016) and rTMS (Herrmann et al., 2016a; Thut et al., 2011b). Further, 
the effect of sinusoidal alternating currents on local field potentials and multi- unit ac-
tivity follows the rules of synchronization theory in computer simulations as well as 
in in vivo and in vitro recordings (Fröhlich & McCormick, 2010; Krause et al., 2019; 
Negahbani et al., 2018; Ozen et al., 2010; Reato et al., 2010). However, as recordings of M/ 
EEG activity during stimulation are contaminated by a strong, electromagnetic artifact, 
direct evidence for these mechanisms of actions for tACS effects in humans is largely 
missing so far (an overview of approaches for tACS artifact removal in M/ EEG and their 
associated problems is reviewed in Kasten & Herrmann, 2019).

These mechanisms describe the general framework currently assumed to underlie 
effects of rTMS and tACS during stimulation (also called online effects). A common ob-
servation in brain stimulation experiments is that behavioral and physiological effects 
persist after the stimulation is switched off (reviewed in Veniero et al., 2015). These 
aftereffects (or offline effects) can last for several minutes or even hours after both rTMS 
(Schindler et al., 2008; Schutter et al., 2001) and tACS (Kasten et al., 2016; Neuling et al., 
2013; Wischnewski et al., 2018). After tACS, these outlasting effects tend to be rather fre-
quency specific. The application of rTMS, in contrast, seems to elicit more broadband 
aftereffects in all frequency bands irrespective of the stimulation frequency (Veniero 
et al., 2015). While the pattern of effects observed during this sustained period may 
appear similar to those observed during stimulation, it is important to emphasize that 
the underlying mechanisms responsible for those effects may be different. This phe-
nomenon has been well documented for effects of tDCS on motor evoked potentials 
(MEPs). Here, the selective, pharmacological blockage of NMDA receptors abolished 
the induction of long- lasting aftereffects, while not affecting online effects of the 
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stimulation (Nitsche et al., 2003). In contrast, blockage of calcium and sodium channels 
abolished or reduced the enhancing effect of anodal tDCS on MEP size during and after 
stimulation (Nitsche et al., 2003). These results indicate that the online effect of tDCS 
depends on membrane polarization, modulating the conductance of sodium and cal-
cium channels. Offline effects appear to be caused by NMDA receptor mediated plas-
ticity, although online effects seem to be necessary to induce the offline effect (Nitsche 
et al., 2003).

While the mechanism underlying online effects of rTMS and tACS is assumed to be 
entrainment, offline effects have been suggested to be caused by entrainment echoes, a 
state of sustained synchronization after stimulation is switched off (Hanslmayr et al., 
2014), or processes of spike- timing dependent plasticity (STDP; Vossen et al., 2015; 
Zaehle et al., 2010). STDP relies on the temporal relation of pre-  and postsynaptic 
potentials. If a presynaptic potential repeatedly precedes a postsynaptic potential, the 
synaptic connection is strengthened, which is referred to as long- term potentiation 
(LTP). If the presynaptic potential repeatedly follows the postsynaptic potential, long- 
term depression (LTD) occurs and the synaptic connection is weakened (Markram 
et al., 1997). In a neural circuit that generates an oscillation, pathways exist by which the 
activity of a neuron is fed back to its own synaptic input connections via other neurons. 
Depending on the length and speed of these connections, each spike requires a certain 
time to travel through these circuits, which determines its intrinsic frequency (Zaehle 
et al., 2010). Following the principles of STDP, repetitive stimulation (e.g., with rTMS or 
tACS) with frequencies slightly below the circuits’ intrinsic frequency should lead to a 
strengthening of synaptic connections because stimulation can systematically precede 
the circulating action potentials. The application of other frequencies in turn, cannot 
cause such effects, as the stimulation does not match the circuits’ intrinsic frequency, 
and membrane polarization does not coincide with incoming neural spiking (Vossen 
et al., 2015; Zaehle et al., 2010).

Although entrainment echoes may exist during the first few seconds after stimula-
tion, the STDP model seems more suited to explain the long- lasting changes elicited 
by tACS and rTMS, which have been observed for up to an hour (Kasten et al., 2016; 
Veniero et al., 2015; Vossen et al., 2015). Wischnewski and colleagues (2018) provided 
direct evidence for such involvement of synaptic plasticity in the generation of tACS 
aftereffects. In that study, administration of an NMDA receptor antagonist was observed 
to abolish aftereffects induced by tACS in the beta range over the primary motor cortex. 
This suggests a role of NMDA receptor- mediated plasticity in the generation of tACS 
aftereffects similar to those observed after tDCS (Nitsche et al., 2003).

22.3 Targets for Brain Stimulation

During the design of a brain stimulation experiment a couple of choices have to be made 
that can severely impact both the stimulation success and the interpretability of results. 
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This section provides an overview of these choices and examples of how different 
features of brain oscillations are targeted to investigate their causal role for different 
domains of cognitive functioning.

Usually, the design process starts with identifying a brain oscillation that correlates 
with a cognitive function, or ideally an output measure of a concrete task (e.g., reac-
tion time or performance). Depending on the kind of association, brain stimulation can 
be used to target different features of the oscillation, such as its amplitude, frequency, 
or phase. Some relationships may also depend on cross- frequency interactions (Palva 
et al., 2005) or synchronization between distinct brain areas (Siegel et al., 2012). Another 
important aspect is related to the stimulation montage. One needs to decide about the 
positioning and orientation of the stimulation electrodes or the TMS coil. Usually, the 
observed correlations between a cognitive function and a brain oscillation are limited to 
specific areas of the brain. Oscillations in the same frequency range may serve different 
functions within distinct areas of the brain. Based on neuroimaging results, for ex-
ample, from source localization of oscillatory activity, a target region in the brain is 
derived and a montage is chosen that maximizes the electric field strength in this area. 
A couple of software tools are available that simulate the expected current flow caused 
by transcranial magnetic and electrical stimulation (e.g., ROAST: Huang et al., 2017a; 
Simnibs: Thielscher et al., 2015). Recent validation studies using invasive electrophysi-
ology in animals and humans indicate that these models are able to predict the spa-
tial extent of the electric field in the brain quite accurately but tend to overestimate the 
strength of the induced electric fields (Huang et al., 2017b; Opitz et al., 2016). Even more 
advanced tools are able to automatically optimize electrode montages to target specific 
brain areas with specific directions of current flow (Baltus et al., 2018b; Huang et al., 
2018; Saturnino et al., 2019; Wagner et al., 2016).

As soon as a feature of an oscillation and a brain region are selected for stimulation, 
appropriate control conditions for the experiment must be established. The choice 
of adequate control conditions is not a trivial problem. Stimulation using TMS or 
tACS can induce visual and somatosensory perceptions that may confound results if 
compared to a stimulation- free control condition (Schutter, 2016; Turi et al., 2013, 2014). 
In addition, one would ideally compare the selected stimulation condition with stimu-
lation of all other possible stimulation frequencies at all possible brain regions in order 
to demonstrate frequency and region- specific effects. However, due to a huge param-
eter space this is practically impossible. Let us consider a very simple case of tACS with 
only two electrodes that can be placed on any of the 32 locations of the international 
10– 20 system for EEG electrodes. In addition, stimulation frequencies are limited to 
only one frequency within each of the five major EEG frequency bands. This param-
eter space already amounts to almost 5,000 possible control conditions. The inclusion 
of more fine- grained electrode locations and stimulation frequencies or stimulating at 
different intensities easily increases the number of possible control conditions to sev-
eral million. In practice, stimulation of the target oscillations is thus usually compared 
to one or two control frequencies applied to the same region, or the same stimulation 
frequency is applied to one or two control regions. Other researchers also compare 
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stimulation effects against a sham stimulation. During sham stimulation, stimulation 
is usually applied in a way that mimics visual and somatosensory sensations, but that 
is considered ineffective in modulating brain activity. The aim is to blind participants 
towards their experimental condition and to avoid confounds of behavioral results by 
participants’ expectations. The exact choice of appropriate control conditions heavily 
depends on the research question and should allow to rule out alternative explanations 
how stimulation may have affected the task.

A straightforward target for stimulation, and probably the most popular, is the amp-
litude of a brain oscillation. Several studies demonstrated that tACS and rTMS can 
elevate the power of brain oscillations in the range of the stimulated frequency band 
(Kasten et al., 2016; Vossen et al., 2015; Wischnewski et al., 2018; Zaehle et al., 2010). 
Moreover, both techniques have been shown to also modulate event- related changes 
in oscillatory power (Kasten et al., 2018a; Kasten & Herrmann, 2017; Klimesch et al., 
2003; Wischnewski & Schutter, 2017). While rTMS is frequently used to stimulate os-
cillatory activity during specific periods of a task (Hanslmayr et al., 2014; Klimesch 
et al., 2003; Romei et al., 2010), similar protocols using tACS show less- reliable 
effects (Braun et al., 2017; Stonkus et al., 2016), which might be explained by insuffi-
cient stimulation durations or state- dependent effects (Kasten et al., 2018a; Kasten & 
Herrmann, 2017; Strüber et al., 2015). More commonly, tACS is applied in a continuous 
manner while participants are engaged in a cognitive task. Such continuous stimula-
tion during tasks that involve induced event- related oscillations appears to foster the 
pre- existing patterns of event- related power change (Kasten et al., 2018a; Kasten & 
Herrmann, 2017).

Boosting oscillatory activity with rTMS has been used to study the role of posterior 
pre- stimulus alpha oscillations for basic visual perception (Romei et al., 2010), as well 
as for higher visual- spatial processing (Klimesch et al., 2003) and short- term memory 
(Sauseng et al., 2009). Enhancing beta oscillations with rTMS disrupted the encoding 
of items in a verbal memory task (Hanslmayr et al., 2014). In these experiments, authors 
applied short trains of rTMS in the frequency band of interest to specifically alter the 
amplitude of the oscillation during certain time intervals (e.g., before or after stimulus 
presentation). To demonstrate that the observed behavioral changes are specific to one 
frequency band, the authors also applied stimulation at control frequencies where no 
effects were expected (and indeed not found).

As outlined, tACS (and its derivative otDCS) are mostly applied in a continuous 
manner. One of the first applications was to increase slow- wave oscillations during sleep 
to probe their role for memory consolidation (Marshall et al., 2006). Here, participants’ 
memory performance significantly increased after stimulation during overnight sleep 
as compared to a control condition. In the awake brain, tACS has been used to study the 
role of alpha amplitude in creativity (Lustenberger et al., 2015), visual- spatial cognitive 
performance (Kasten & Herrmann, 2017), attention (Wöstmann et al., 2018, Kasten et al, 
2020), and many more cognitive domains (for a recent overview see Klink et al. 2020). 
In these experiments, tACS was applied continuously over a brain region during task 
execution to increase participants’ alpha amplitude.
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If the frequency of a brain oscillation is of interest, one would try to speed up or slow 
the target oscillation by applying stimulation at frequencies slightly above or below its 
intrinsic frequency. According to synchronization theory, such stimulation should shift 
the intrinsic frequency in the brain towards the frequency of the external driving force 
(Pikovsky et al., 2003). This approach has been used, for example, to investigate the causal 
role of occipital alpha oscillations in the generation of the sound- induced double- flash 
illusion (Cecere et al., 2015). The illusion occurs when two sound beeps are presented 
within a time window of ~100 ms together with a single visual flash. Participants per-
ceive a second illusory flash in this kind of experiment (Shams et al., 2002). The authors 
were able to alter the length of the temporal window during which the illusion occurs by 
stimulating participants ± 2 Hz above or below their individual alpha frequency (Cecere 
et al., 2015). In another experiment, the perceived frequency of an illusory jitter was 
modulated in a similar manner by applying amplitude modulated tACS ± 1 Hz above or 
below participants’ individual alpha frequency (Minami & Amano, 2017). In the audi-
tory domain, tACS has been used to test whether the frequency of gamma oscillations 
determines the temporal resolution of the auditory system. In that study, participants 
were stimulated above or below their individual gamma frequency (Baltus et al., 2018a, 
2018b). By accelerating the individual gamma frequency, participants were able to de-
tect smaller gaps in continuous sound streams of noise. However, when the individual 
gamma frequency was decelerated, no modulation of gap detection performance was 
observed (Baltus et al., 2018a, 2018b). Beyond investigations into basic sensory pro-
cessing, the frequency of brain oscillations had also been modulated in the context of 
working memory performance. It is well known that humans can uphold 7 ± 2 items in 
their working/ short term memory (Miller, 1956). Later, this capacity has been associated 
with individual gamma and theta frequencies. Specifically, it is argued that the number 
of gamma cycles that fit into the positive half wave of a theta oscillation determines the 
capacity (Lisman & Idiart, 1995; Lisman & Jensen, 2013). Vosskuhl and colleagues (2015) 
tested this relationship and demonstrated that slowing down participants’ theta fre-
quency with tACS such that more gamma cycles fit into one theta oscillation increased 
working memory capacity in a digit span task.

Investigations into the role of oscillatory phase or phase relationships for cogni-
tion are comparatively challenging as they require precise stimulus timing or complex 
stimulation protocols. Neuling and colleagues (2012a) presented brief auditory targets 
at specific phases of a 10 Hz otDCS waveform applied to the auditory cortex. In line 
with previous correlational evidence (Mathewson et al., 2009), participants’ detection 
performance systematically varied depending on the phase of the 10- Hz stimulation 
at which the target was presented. Similar modulations of detection performance with 
tACS phase was found for 4- Hz stimulation in an auditory detection task (Riecke et al., 
2015) and for stimulation of somatosensory cortex at mu frequency in a somatosensory 
detection task (Gundlach et al., 2016). In a different type of experiment, authors applied 
tACS to two distinct brain regions with the same stimulation waveform applied either 
in or out of phase (with 0-  or 180- degree phase shift, Figure 22.3C,D). This way, stimula-
tion is thought to either increase (in phase) or decrease (out of phase) the synchrony of 
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the targeted brain regions within a specific frequency band. Such modulation of inter- 
regional synchrony, when applied in the gamma frequency range, modulates percep-
tion of ambiguous movements (Helfrich et al., 2014a; Strüber et al., 2014). Increasing/ 
decreasing fronto- parietal synchronization in the theta frequency range in the left 
hemisphere with in- phase vs. anti- phase tACS has been shown to increase/ decrease 
reaction times in a visual memory- matching task (Polanía et al., 2012). Other authors 
extended this concept to even target interpersonal synchrony (Novembre et al., 2017; 
Szymanski et al., 2017). In one study, tACS in the beta range was simultaneously applied 
to the motor cortex of two participants (Novembre et al., 2017). Here, in- phase stimula-
tion in the beta range increased synchrony in a joint finger tapping task as compared to 
anti- phase stimulation or sham. No such effect was found for stimulation in other fre-
quency bands. In another study, simultaneous tACS with same- phase same- frequency 
vs. different- phase different- frequency in the theta range over fronto- parietal sites did 
not show effects on a synchronous drumming task (Szymanski et al., 2017). An im-
portant concern about in- phase vs. anti- phase stimulation protocols has been raised 
recently. In order to directly infer a phase dependent relationship of a behavioral 
measure and a brain oscillation, it is crucial that the only difference between stimu-
lation conditions is in the phase difference between the stimulated areas. Saturnino 
and colleagues (2017) simulated the electric fields created by different stimulation 
montages targeting inter- regional synchrony with in- phase and anti- phase stimulation. 
Their results demonstrated that the electric field patterns differed during in-  and anti- 
phase stimulation for many of the employed montages, giving rise to the concern that 
effects of the stimulation could also originate from differences in field strength or even 
differences in the brain regions that have been (co- )stimulated during the in-  and anti- 
phase stimulation (Saturnino et al., 2017). However, the authors also suggest stimulation 
montages that can avoid such confounds. Especially, montages using a stimulation elec-
trode in the center, surrounded by several return electrodes or a large ring electrode, are 
recommended to avoid such confounds (Saturnino et al., 2017).

Besides direct targeting of a brain oscillation with stimulation of the same frequency 
band, sometimes cross- frequency interactions are of interest or used to indirectly 
modulate an oscillation via stimulation of a different frequency band. For example, 
oscillations in the alpha and gamma range are well known to show an antagonistic re-
lationship. When alpha oscillations increase, gamma oscillations are suppressed, and 
vice versa (Jensen & Mazaheri, 2010). Some authors therefore applied stimulation in 
the gamma frequency range to suppress alpha oscillations (Boyle & Frohlich, 2013). As 
increased activity in the alpha band is negatively correlated with vigilance. This antag-
onistic stimulation approach has recently been used to counteract increasing reaction 
times in a sustained attention task (Loffler et al., 2018). Along the same lines, rTMS in the 
alpha range has been observed to alter alpha- gamma cross- frequency coupling during 
a visual working memory task (Hamidi et al., 2009). An exceptionally sophisticated 
tACS cross- frequency protocol has been used to study theta- gamma coupling in a 
working memory task. As discussed earlier, short- term or working memory capacity is 
thought to depend on the number of gamma oscillations that fit into the positive half of 
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a theta cycle (Lisman and Idiart, 1995; Lisman and Jensen, 2013), and can be increased 
by slowing the frequency of fronto- parietal theta oscillations (Vosskuhl et al., 2015). 
To further study the relationship of theta and gamma oscillations in working memory, 
Alekseichuk and colleagues (2016) applied tACS using short trains of a high- frequency 
stimulation at different gamma frequencies superimposed on either the positive or the 
negative half wave of a slow stimulation waveform in the theta range. In that study, only 
gamma stimulation applied during the positive but not during the negative half of the 
theta cycle fostered participants’ working memory performance.

The aforementioned studies exemplify how brain stimulation can be used to study 
the role of various features of oscillatory brain activity for cognition. Especially tACS 
can be used very flexibly. As it allows high control over timing and waveform shapes, it 
can be used to study complex phase or cross- frequency relationships. In contrast, rTMS 
protocols allow to stimulate during specific, transient time periods of a cognitive pro-
cess as it induces stronger/ faster effects.

22.4 Combining brain stimulation 
and neuroimaging

A major challenge in the context of brain stimulation is the measurement of stimu-
lation effects. Ideally one would like to monitor the changes in brain activity elicited 
by stimulation that cause the behavioral effects. This would not only allow validation 
of whether a technique induced its effects on brain activity in the expected direction 
but also strengthen our knowledge about the general mechanisms of stimulation. 
Although there are elaborate theories about the mechanisms underlying stimulation 
effects backed up by evidence from animal models and computer simulations, direct 
observations into these mechanisms in humans are sparse and difficult to obtain. The 
application of strong magnetic fields or electric currents introduces massive distortions 
to electrophysiological recordings (e.g., M/ EEG). Naturally, these distortions are several 
orders of magnitude larger than the concurrently recorded brain signals and in most 
cases spectrally overlap with the brain oscillation of interest (Kasten et al., 2018a).

In recent years, different strategies have been employed to measure effects of 
stimulation on human brain activity. A common approach is to discard the artifact- 
contaminated recordings obtained during stimulation and to focus on aftereffects in 
M/ EEG. Such aftereffects are commonly observed after rTMS and tACS at different 
frequencies (Veniero et al., 2015) and have been related to sustained alterations of be-
havioral measures (Kasten and Herrmann, 2017). On the one hand, these after effects 
offer important evidence for the ability of brain stimulation techniques to modulate 
brain oscillations. Such sustained changes are of major interest, especially in the con-
text of potential clinical applications. Only if the stimulation can elicit long- lasting 
changes of dysfunctional oscillatory activity can it offer real potential for the treatment 
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of neurological or psychiatric disorders. On the other hand, the mechanisms of action 
underlying online effects and aftereffects may be different. Online effects of rTMS 
and tACS are usually assumed to result from entrainment of the endogenous brain 
oscillations, whereas offline effects are likely to result from mechanisms of synaptic 
plasticity (Vossen et al., 2015; Wischnewski et al., 2018; Zaehle et al., 2010). While there 
might be some relation between online effects and aftereffects (Helfrich et al., 2014b), 
inference about online effects from aftereffects is inherently difficult and cannot substi-
tute direct measurements.

Some researchers have recorded brain signals during stimulation using measurement 
modalities that are less susceptible to distortions of the stimulation. For example, fMRI 
can be recorded during tACS with little to no distortions introduced to the signal (Antal 
et al., 2014; Vosskuhl et al., 2016). Initial studies were able to show that stimulation 
with tACS at different frequencies can modulate the blood- oxygen- level- dependent 
(BOLD) response (Violante et al., 2017; Vosskuhl et al., 2016) and connectivity profiles 
(Cabral- Calderin et al., 2016; Violante et al., 2017; Weinrich et al., 2017). This way, the 
authors were able to causally test relationships between brain oscillations and specific 
patterns of BOLD- signal activation previously observed in concurrent EEG- fMRI (e.g., 
Goldman et al., 2002; Laufs et al., 2003). A major drawback of this approach is, how-
ever, that the hemodynamic response measured in fMRI is a rather indirect measure 
to draw conclusions about effects of stimulation on oscillatory activity in the brain. In 
order to obtain direct insights to the effects occurring during stimulation, simultan-
eous recordings of electrophysiological signals with EEG and MEG and are ultimately 
required. In recent years different strategies have been developed with the ambitious 
goal to clean these recordings from the massive stimulation artifacts.

The magnetic fields generated by TMS are too strong to be measured in the MEG, as 
the pulses will harm the sensitive electronics of the systems. Concurrent recording of 
EEG signals during TMS application is generally feasible, albeit technically challenging. 
Each TMS pulse is accompanied by a couple different artifacts that need to be considered 
during the conductance of the measurements and data analysis (Ilmoniemi et al., 2015; 
Ilmoniemi & Kičić, 2010; Veniero et al., 2009). Although the TMS pulses themselves 
only last for less than a millisecond, the strong electromagnetic artifact can induce 
eddy currents to EEG leads that can saturate EEG amplifiers for several hundreds of 
milliseconds and polarize electrode contacts. Specialized TMS compatible EEG hard-
ware has been developed to handle this strong distortion without saturation. With 
such specialized hardware, the duration of intervals contaminated with the TMS arti-
fact can be reduced to ~5 ms (Veniero et al., 2009). In addition to the TMS pulse it-
self, recharging of capacitors in the TMS electronics can induce a second artifact in the 
EEG signal. Depending on the stimulation intensity, this artifact can follow the pulse by 
some tens of milliseconds (Veniero et al., 2009). Apart from electromagnetic artifacts, 
the strong stimulation has the potential to trigger different physiological responses like 
eye movements/ blinks and muscle artifacts. Further, the strong magnetic force can 
cause vibration of the coil and click sounds which can elicit unwanted somatosensory 
or auditory evoked potentials (Ilmoniemi & Kičić, 2010; Rogasch et al., 2017). In order 
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to obtain meaningful results from concurrent TMS- EEG, one needs to account for these 
artifacts— ideally by avoiding/ reducing them when performing the experiment, for ex-
ample, by carefully arranging the EEG cables relative to the coil or by slowing down the 
recharging times of the TMS device (Veniero et al., 2009). The remaining distortions in 
the signal have to be removed by advanced data processing procedures.

The data segment containing the massive, sharp artifact of the TMS pulse (lasting 10– 
25 ms after the pulse) is commonly removed from the data and subsequently replaced 
by a linear or cubic interpolation (Bergmann et al., 2012; Thut et al., 2011b). The same 
approach can be used to get rid of the recharger artifact following the pulse (Thut 
et al., 2011b). However, here the latency of the artifact has to be carefully identified as 
the artifact strongly depends on the TMS intensity (Veniero et al., 2009). To remove 
physiological artifacts from eye movements or muscle activity, blind- source separation 
methods such as principle component analysis (PCA), independent component ana-
lysis (ICA), or signal space projection are widely used (Ilmoniemi et al., 2015; Rogasch 
et al., 2017).

Transcranial alternating current stimulation can be measured using both EEG and 
MEG. Again, the stimulation contaminates the recorded signals with a strong elec-
tromagnetic artifact and recording hardware with sufficient dynamic range is needed 
to avoid saturation of the recordings. When combined with EEG, direct connection 
of stimulation and recording electrodes via bridges of gel or saline solution should be 
avoided. When used in the MEG, stimulation parameters should be carefully tested 
on a phantom head to rule out that the electromagnetic artifact imposes harm to the 
sensor array. In contrast to the transient stimulation pulses used in TMS, tACS applies 
a continuous alternating current. Consequently, recordings will not contain artifact- 
free segments as long as the stimulation is switched on, precluding the use of interpol-
ation methods as with TMS. During the last couple of years different strategies have 
been employed aiming to suppress the tACS artifact from M/ EEG recordings (Kasten & 
Herrmann, 2019).

In concurrent tACS- EEG, some authors created a template of the artifact waveform 
and subtracted it from the EEG recording (Dowsett & Herrmann, 2016; Helfrich et al., 
2014b; Kohli & Casson, 2015; Voss et al., 2014). The method assumes that the stimulation 
artifact has a stable size and shape over time, while signals originating from the brain 
fluctuate randomly. To create the template, multiple EEG segments, time- locked to the 
same phase of the artifact waveform (e.g., the zero- crossing of the signal), are averaged. 
This way, brain activity represented in the segments averages out, while the shape and 
size of the artifact is retained. The subtraction of the template should in turn remove the 
artifact from the EEG signal, while leaving the superimposed brain activity intact. As 
the approach achieved non- optimal results, some authors subsequently applied PCA to 
remove residual artifacts from the data (Helfrich et al., 2014b).

In the MEG, spatial filtering approaches, such as synthetic aperture magnetom-
etry (Soekadar et al., 2013) and linearly constrained minimum variance (LCMV) 
beamforming (Neuling et al., 2015), have been suggested to suppress artifacts from 
tACS and tDCS. Beamformers have been designed to separate signals originating from 
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different directions and have widespread applications for example in radar and sonar 
technologies (Van Veen & Buckley, 1988). In neuroscience, beamformers are used to lo-
calize sources of brain activity seen in M/ EEG signals and can work in both the time (Van 
Veen et al., 1997) and the frequency domains (Gross et al., 2001). The filters are designed 
to pass signals from a specific location in the brain, while attenuating signals from all 
other sources. To obtain a spatial map of brain activation, multiple filters with different 
spatial pass- bands are constructed on a predefined grid of possible source locations 
(Van Veen et al., 1997). The crucial feature of the LCMV beamformer in the context of 
concurrent tACS- MEG is its insensitivity to highly correlating sources (Neuling et al., 
2015). The spatial filters of the LCMV beamformer are designed to minimize the vari-
ance of the output signal at each source location (hence the name). If two or more spa-
tially distinct, highly correlating sources are present in the data, the common variance 
of the signals cancels to minimize the filter output (Van Veen et al., 1997). Such high 
correlations between distinct sources are unlikely to naturally occur in the brain and 
the LCMV beamformer is relatively robust to moderate correlations between sources 
(Van Veen et al., 1997). During concurrent tACS- MEG, the massive stimulation arti-
fact propagates to virtually all sensors with high consistency. Thus, the beamformer can 
cancel out large proportions of the artifact waveform (Neuling et al., 2015). As a conse-
quence, however, the artifact suppression capabilities of the beamformer are naturally 
limited by the degree to which the artifact signals are correlated (or uncorrelated) over 
the sensor array (Mäkelä et al., 2017).

Both methods, the template subtraction and the beamformer approach, assume a sta-
tionary, invariant artifact waveform, but this assumption has recently been challenged. 
Physiological processes such as heartbeat and respiration can lead to small changes 
in body impedance and elicit small head movements that can modify the size of the 
recorded artifact waveform compromising the artifact suppression capabilities of these 
methods (Noury et al., 2016; Noury & Siegel, 2017). These systematic changes in artifact 
size manifest in an amplitude modulation of the tACS waveform that causes side- bands 
around the main stimulation frequency, which survive artifact suppression attempts 
(Noury et al., 2016). Additionally, these processes may also affect artifact suppression 
performance directly at the stimulation frequency. Variations in artifact strength cannot 
be incorporated when constructing a template of the artifact to be subtracted from EEG 
data. As a consequence, any deviation of the artifact strength from the averaged tem-
plate remains in the signal as a residual artifact. In a similar manner, artifact suppression 
capabilities of LCMV beamforming might be corrupted if the systematic changes re-
duce the signal correlation of the artifact waveform over sensors (Mäkelä et al., 2017).

While the presence of residual tACS artifacts hinders the proper analysis of stimu-
lation effects on spontaneous brain oscillations, some authors argue that the methods 
attenuate the stimulation artifact sufficiently to analyze tACS effects on event- related 
oscillations (Kasten et al., 2018a; Neuling et al., 2017; Noury & Siegel, 2018), because the 
residual artifact cancels out if two intervals (e.g., a pre-  and a post- stimulus interval) that 
contain a similar residual artifact are contrasted. Importantly, this approach can only 
work if the absolute difference of the conditions is computed. Relative measures that 
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involve a division of one condition by the other, as done for example to compute event- 
related (de- ) synchronization (Pfurtscheller & Lopes Da Silva, 1999), are vulnerable to 
systematic bias by the residual tACS artifact (Kasten et al., 2018a; Kasten & Herrmann, 
2019). Further, the subtraction requires that the artifact size is uncorrelated with the 
task. Such systematic modulations of the artifact size may arise if a task elicits head 
movements or changes in body impedance (e.g., emotional stimuli) and should be ruled 
out by appropriate control analyses (Kasten et al., 2018a; Kasten & Herrmann, 2019).

In order to improve the performance of artifact cleaning approaches or to directly 
avoid artifact contamination within the frequency range of interest, the use of alterna-
tive stimulation waveforms such as sawtooth waves (Dowsett & Herrmann, 2016) or 
stimulation with an amplitude modulated, high frequency waveform (Witkowski et al., 
2016) has been proposed (Figure 22.2 shows examples of both waveforms). Sawtooth 
waves contain strong harmonic peaks in the frequency spectrum that allow for easier 
detection and rejection of data segments contaminated by residual artifacts (Dowsett 
& Herrmann, 2016). Amplitude modulated waveforms consist of a high- frequency car-
rier signal, which is modulated in amplitude by the lower- frequency stimulation wave-
form. In principle, such a signal only contains power at the carrier frequency and two 
sidebands, but not at the frequency of the modulating waveform itself, thus shifting 
the stimulation artifact into higher frequencies and avoiding the spectral overlap be-
tween the brain signal of interest and the artifact (Witkowski et al., 2016). Recently, a 
computer simulation demonstrated that a cortical network, oscillating in the alpha fre-
quency range, can be entrained to the modulation frequency of such a signal, although 
the effect was substantially weaker as compared to stimulation with a pure sine wave 
(Negahbani et al., 2018). Further, there are challenges to the assumption that M/ EEG 
recordings of AM- tACS are completely artifact free in the range of the modulation fre-
quency as nonlinear behavior of the involved hardware has been shown to reintroduce 
such artifacts (Kasten et al., 2018a; Minami & Amano, 2017).

22.5 Safety Aspects

In general, the application of rTMS and tACS is considered safe if applied within 
normal dosage ranges (intensities and durations) and by trained personnel. Expert 
congresses have yielded publications that detail guidelines for TMS and tES safety 
(Antal et al., 2017;Rossi et al. 2020). This section provides a brief introduction to safety 
aspects associated with rTMS and tACS. For details, the reader is referred to the afore-
mentioned publications.

The most severe adverse effect associated with rTMS is the potential to induce 
seizures. Such events are reported extremely rarely and in most cases stimulation 
parameters were chosen outside the recommended dosage ranges. However, in some 
patient groups or under specific medication the threshold for seizures may be lowered 
(Rossi et al., 2020). Dosage limits for rTMS depend on the number of applied pulses, 
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stimulation intensity, frequency, and inter- train intervals. Contraindication for the use 
of TMS is the presence of hardware containing metallic parts in the proximity of the 
TMS coil (e.g., cochlear implants, pulse generators, or medical pumps). The strong mag-
netic force may cause malfunction of the devices. When combined with EEG, rTMS 
can cause heating of the electrodes and an increase in the risk of skin burns. The use of 
smaller electrodes (pallet or annulus shaped electrodes), can greatly reduce the amount 
of heating (Ilmoniemi & Kičić, 2010).

Transcranial electrical stimulation is generally considered safe within the range of 
0– 4 mA stimulation intensity for <60 minutes over a single session (Antal et al., 2017). 
For tACS, stimulation durations of up to 45 minutes at 1.5 mA have been used without 
severe adverse effects (Laczó et al., 2012). The application of electric currents via scalp 
electrodes bears the risk of skin burns, if electrodes are incorrectly applied (e.g., drying 
of sponge electrodes or use of tap water instead of saline solution). So far, there are no 
confirmed incidence of seizures reported in the context of tES (Antal et al., 2017). In 
addition to adverse effects that impose serious safety issues, it should be acknowledged 
that both methods can cause discomfort for participants. The application of electric 
currents can lead to the sensation of tingling and itching or heating under the electrodes. 
Further, parts of the current may polarize cells of the retina and induce a flickering sen-
sation (so- called phosphenes). The amount of visual and somatosensory sensation 
depends on stimulation intensities, frequencies, and electrode montages (Turi et al., 
2013, 2014). Comparatively high intensities may even be painful for some participants. 
TMS can induce phosphenes and contractions of scalp muscles in the proximity of the 
stimulated brain area. In order to increase participant safety and comfort, standardized 
questionnaires are available to screen participants for risk factors (diseases, medica-
tion, etc.) and exclusion criteria (implants) and to evaluate commonly reported adverse 
effects (Antal et al., 2017; Brunoni et al., 2011; Rossi et al., 2009).

22.6 Challenges and Future Directions

Probing causal relationships between brain oscillations and cognitive processes by 
means of non- invasive brain stimulation is a rapidly growing and developing field. 
Methods to non- invasively modulate oscillatory activity in the brain offer promising 
pathways to advance basic scientific research as well as clinical practice. However, many 
of the fundamental mechanisms of the stimulation are still not fully understood and 
require further investigation. The development and improvement of measurement and 
analysis techniques for electrophysiological signals acquired during stimulation can 
strongly contribute to this knowledge.

An important issue concerning all non- invasive brain stimulation techniques is the 
variability of stimulation effects and its potential sources. A recent meta- analysis found 
that effects of tACS on cognitive measures to be in the small to moderate range (Schutter 
& Wischnewski, 2016) and several studies failed to induce effects in behavioral or EEG 
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measures (e.g., Fekete et al., 2018; Stecher & Herrmann, 2018; Veniero et al., 2017). There 
is a wide range of potential factors that may affect stimulation success or even the dir-
ection of effects. For example, there is accumulating evidence that brain stimulation 
effects are state dependent (Feurra et al., 2013; Neuling et al., 2013; Ruhnau et al., 2016; 
Silvanto et al., 2008), with some brain states being more susceptible to stimulation than 
others. For example, when participants close their eyes, alpha oscillations tend to in-
crease strongly. During such a state of strong activity, brain stimulation failed to further 
increase power in the alpha band (Neuling et al., 2013; Ruhnau et al., 2016). Nevertheless, 
some involvement of the stimulated oscillation in the a given task or stimulation setting 
seems necessary to see effects (Feurra et al., 2013). Such results indicate that the overall 
context of the stimulation may play a crucial role. Subtle differences in the context, 
such as the lightning conditions of the room, may modulate or mask stimulation effects 
(Stecher et al., 2017).

Apart from contextual influences, differences between individuals could po-
tentially explain large proportions of effect variability. Of increasing interest are 
differences in individual anatomy. Humans differ with respect to skull thickness and 
folding of the cortex. Applying stimulation at standard locations (e.g., according to 
EEG electrode positions) can result in substantially different electric field patterns in 
the brain (Laakso et al., 2015). Recent work has shown that these e- field differences 
can account for a large amount of variability of brain stimulation effects (Antonenko 
et al., 2019; Kasten et al., 2019). Utilizing improved modelling software to individu-
alize stimulation montages may increase the reliability of stimulation effects (Huang 
et al., 2018; Saturnino et al., 2019; Wagner et al., 2016). In the context of aftereffects, 
a long list of factors is known to have the potential to modulate the induction of cor-
tical plasticity by means of non- invasive brain stimulation. Those factors include 
participants’ sex, age, genetics, and use of medication or psychoactive substances 
(Ridding & Ziemann, 2010). Unfortunately, most of the work has been done in the 
context of tDCS and TMS protocols not targeting brain oscillations. Thus far, direct 
investigations into the role of these factors for modulatory effects of rTMS and tACS 
on brain oscillations is largely missing and requires more investigation. Individual 
factors may not only alter the induction of plasticity dependent aftereffects, but also 
influence the brain oscillation of interest. For example, nicotine has been shown to 
diminish or abolish the induction of aftereffects in the context of tDCS and TMS 
protocols (Grundey et al., 2012; Thirugnanasambandam et al., 2011). At the same 
time, nicotine can alter the frequency and amplitudes of brain oscillations in the 
alpha and theta range (Domino et al., 2009; Herning et al., 1983). Tobacco smoking 
initially reduces power of alpha and theta oscillations, while tobacco withdrawal is 
associated with a power increase (Herning et al., 1983). In the context of stimula-
tion protocols targeting alpha or theta oscillations, such effects could severely con-
found experimental results. Strengthening the understanding of determinants of 
brain stimulation effects has the potential to reduce the variability of stimulation 
outcomes, for example by identifying participant (or patient) groups not responding 
to brain stimulation.
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Dysfunctional patterns of oscillatory activity in the brain have been associated with 
a wide range of psychiatric and neurological disease (Herrmann & Demiralp, 2005; 
Uhlhaas & Singer, 2006, 2012). TACS is seen as an especially promising technique to 
restore such dysfunctional oscillations and reduce related symptoms as devices are 
small, portable, comparably cheap and relatively easy to apply after short training 
(Antal et al., 2017; Bikson et al., 2018). Further, the devices allow high levels of control 
over stimulation waveforms, enabling the design of stimulation protocols for very spe-
cific applications. For example, recently two studies applied tACS using the envelope 
of human speech to improve speech intelligibility, offering potential to combine brain 
stimulation with hearing aids (Riecke et al., 2018; Wilsch et al., 2018). There are also 
recent results from a first clinical trial, applying tACS to restore reduced power in the 
alpha band in order to reduce auditory hallucinations in patients with schizophrenia 
(Ahn et al., 2019; Mellin et al., 2018). While the authors find some indication that tACS 
may be capable of inducing long- term changes to dysfunctional oscillatory activity and 
lead to symptom improvement, a lot more research is needed to demonstrate its clin-
ical value.

A disadvantage of rTMS and tACS is that both methods can only target superfi-
cial regions in the brain, but cannot reach areas in the depth of the brain without co- 
stimulating the overlaying cortex. Recently, stimulation with interfering electric fields 
(so- called temporal interference stimulation, TIS) has been proposed as a possible 
solution for this (Grossmann et al., 2017). TIS is based on the idea that alternating 
currents with slightly different high frequencies are injected to the brain via two pairs 
of electrodes. While superficial areas of the brain are stimulated at high frequencies out-
side of the physiological range, stimulation gives rise to an amplitude modulation or 
beat- frequency in regions where the two electric fields overlap (von Conta et al. 2021). 
Such amplitude- modulated stimulation waveforms can in principle interact with neural 
oscillations, however, substantially higher stimulation intensities may be required in 
comparison to conventional tACS (Negahbani et al. 2018, Esmaipour et al. 2020). While 
there is first evidence from computational modelling and from animal models, the 
effects of TIS in humans have so far only been demonstrated in one study applying TIS 
to superficial areas of the motor cortex (Ma et al. 2022). Overall, TIS has great poten-
tial to offer new applications and stimulation targets for non- invasive brain stimulation. 
However, more research is needed to establish the efficacy of TIS in humans, especially 
in targeting deep brain regions, and its underlying mechanisms.

22.7  Conclusions

Non- invasive stimulation to modulate oscillations in the human brain is increasingly 
popular in human neuroscience. This chapter presents approaches that have the poten-
tial to strengthen our knowledge about brain oscillations and their functional role for 
cognition, as they allow to probe the of causal relationships between different features of 
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oscillatory activity and human cognition. Further, they may offer new pathways to treat 
neurological and psychiatric disease. However, more research is needed to explore the 
underlying mechanisms of the stimulation and understand the processes and factors 
determining stimulation success and the direction of effects. In particular, the improve-
ment of analysis methods for concurrent recordings of brain activity during stimulation 
can strongly contribute to our knowledge in this area.
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CHAPTER 23

PARAMETERIZING NEURAL 
FIELD P OTENTIAL DATA

BRADLEY VOYTEK

23.1  Introduction

The proliferation of large- scale, single- unit electrophysiological recording has been a 
boon for modern neuroscience, permitting us to record greater numbers of neurons 
in more parts of the brain simultaneously (Buzsáki, 2004). These studies provide tre-
mendous insight regarding how neurons translate input into action, perception, and 
cognition, and how disease disrupts the normal function of neuronal circuits. While 
these forms of recording are direct measures of neuronal activity, they are invasive and 
penetrating— irreparably damaging brain tissue— and therefore they are performed al-
most exclusively in animals. As opposed to microscale single- unit recordings, meso-  
and macroscale recordings are aggregated from neuronal populations— hereafter 
collectively referred to as field potentials. Field potential methods include invasive local 
field potentials (LFP) and electrocorticography (ECoG), as well as non- invasive mag-
neto-  and electroencephalography (M/ EEG) (Buzsáki et al., 2012). M/ EEG is especially 
important because it can be performed non- invasively in humans, with EEG being the 
only functional approach that is used clinically.

Field potential recordings are a less direct measure of neural activity than single- unit 
approaches: instead of expressly capturing neuronal spiking of the underlying local 
population, field potentials are largely composed of the integrated postsynaptic currents 
of the millions of inputs to the region (Buzsáki et al., 2012; Pesaran et al., 2018). These 
field potential signals exhibit aperiodic and periodic properties (Miller et al., 2012; 
Gao et al., 2017; Donoghue et al., 2020). The periodic signal consists of both tonic and 
bursting neural oscillations (Feingold et al., 2015; Jones, 2016; Peterson & Voytek, 2017); 
oscillations are widely studied, and are linked to numerous physiological, cognitive, be-
havioral, and disease states (Engel et al., 2001; Buzsáki & Draguhn, 2004; Kopell et al., 
2014; Voytek & Knight, 2015).
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There is a growing literature focusing on the fact that oscillations are nonsinusoidal 
(Sherman et al., 2016; Cole & Voytek, 2017, 2018, 2019; Cole et al., 2017; Jackson et al., 
2019); specific time- domain characteristics of their nonsinusoidality potentially capture 
dynamics of the underlying neural circuit (Sherman et al., 2016; Cole & Voytek, 2018). 
Most analyses of oscillations are conducted on canonically defined frequency bands. 
This is often done without consideration of the aperiodic component, which has a 1/ f- 
like characteristic in the power spectrum that likely arises from the double- exponential 
time domain shape of postsynaptic currents (Freeman & Zhai, 2009; Gao et al., 2017). 
Because power at any given frequency is a mixture of both periodic and aperiodic ac-
tivity, measuring band- limited power with the presumption that the resulting numer-
ical power value captures only oscillatory power is problematic (Haller et al., 2020).

First and foremost, this chapter highlights problems regarding the traditional inter-
pretation of field potential data, and then presents recent approaches for minimizing the 
damage that our presumptions cause (as related to physiological interpretations of field 
potential analyses). For example, because field potentials include a mixture of features— 
aperiodic, periodic, and transients— one cannot be certain that band- limited power 
values extracted from traditional analyses includes an oscillation at all. Therefore, if 
we wish to talk about oscillations and their various functional correlates, we must first 
verify— to the best of our ability— that an oscillation is present above and beyond the 
aperiodic signal.

As an additional caveat, we must also ensure that spectral power above the aperi-
odic signal reflects an oscillation at that frequency, rather than a harmonic of a slower, 
nonsinusoidal rhythm (Cole & Voytek, 2017). Finally, because the aperiodic signal of 
neural power spectra has received less attention than oscillations, we discuss the origins 
of this signal, its possible physiological interpretations, and emerging research regarding 
its cognitive and behavioral relevance. I argue that these three features— oscillations, 
nonsinusoidal waveforms, and the aperiodic signal— simultaneously exist in the same 
field potential data, but likely have different physiological interpretations. Without 
careful parameterization of all of these features simultaneously, it is easy to misinterpret 
their physiological relevance. The goal of this chapter is to help researchers mitigate the 
propagation of potential physiological (mis)interpretations of their oscillation results 
by encouraging explicit parameterization of field potential data.

23.2 What is an oscillation?

Oscillations are one of the most widely used analytic approaches in human neuro-
science. Part of the excitement about neural oscillations is their ubiquity: they are 
conserved across species (Bullock, 1981), correlate with numerous cognitive and be-
havioral processes (Engel et al., 2001; Varela et al., 2001), are disrupted in a variety of 
neurological and psychiatric disorders (Voytek & Knight, 2015), and have been causally 
linked to neural information routing and the shaping of spiking networks (Varela et al., 
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2001, 2001; Fries, 2005). Mechanistically, oscillatory networks are said to coordinate 
distributed neural ensembles via synchronizing spike- timing via phase coordination 
of spiking (Fries, 2005); that is, oscillations have been argued to be the mechanism by 
which brain regions form functional, dynamic communication networks (Fries, 2005; 
Voytek et al., 2015a; Helfrich & Knight, 2016).

The vast majority of studies examining neural oscillations assume classic, canonical 
bands of interest. These are approximately defined as: delta (1– 4 Hz), theta (4– 8 Hz), 
alpha (8– 12 Hz), beta (16– 30 Hz), and low gamma (30– 60 Hz). However, these fre-
quency bands are only loosely related to the underlying physiology; there exists a great 
deal of variability across species (Bullock, 1981), age (Obrist, 1954), and cognitive/ be-
havioral state (Klimesch, 1999; Haegens et al., 2014; Samaha et al., 2015). One concern 
with such a priori, band- limited analyses is that they are often performed without first 
examining the power spectrum to account for this intra-  and interindividual variability 
in, for example, center frequency. This means that predetermined frequency bands may 
include nonoscillatory activity from outside the true physiological oscillatory band— 
whose center frequency and bandwidth may not fall exactly within a canonical band— 
thus masking crucial behaviorally and physiologically relevant information.

While there are several methods for identifying individual differences in oscillations, 
most are restricted to identifying the frequency at which the power spectrum peaks 
within a specific sub- band (Haegens et al., 2014); additionally, these methods are limited 
to finding only one oscillation within a specified band while ignoring other potentially 
physiologically relevant oscillations and their inter- relationships (Donoghue et al., 
2020). Importantly, all of these methods measure total band power, not band power rela-
tive to the aperiodic signal, thus conflating the two processes (Donoghue et al., 2020).

To further complicate matters, oscillations are often not tonic and sustained, but ra-
ther appear in brief, intermittent bursts (Feingold et al., 2015; Jones, 2016; Peterson & 
Voytek, 2017). The functional significance of bursting is supported by a rapidly growing 
literature, primarily based on cortical LFP recordings from rodents and nonhuman 
primates (Feingold et al., 2015; Lundqvist et al., 2016; Sherman et al., 2016). Example 
works have shown that oscillatory burst probability increases during a variety of cog-
nitive and behavioral tasks such as working memory (Lundqvist et al., 2016) or motor 
control and action completion (Feingold et al., 2015; Sherman et al., 2016). Historically, 
the separation between the functional role of bursting and sustained oscillations can 
be highlighted by research into the visual alpha rhythm. The earliest EEG studies of 
alpha treated it as an idling rhythm (Jasper & Penfield, 1949; Klimesch, 2012), one that is 
sustained while at rest and becomes intermittent when awake and attentive. The idling 
perspective was complicated by studies revealing that alpha power in posterior (visual) 
regions increases with working memory load across many paradigms (Jensen, 2002). 
The fact that alpha power increases during active working memory conflicts with higher 
alpha power during eyes closed restful states. Thus, the idling hypothesis was updated 
to an account where alpha acts to rhythmically inhibit neural gain (Jensen & Mazaheri, 
2010). In this updated view, regions not receiving sensory information, or otherwise 
engaging in active behavioral responses, were said to be suppressed to avoid introducing 
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noise into the larger network. When stimulated, task- relevant regions are disinhibited, 
restoring cortical processing. (For an in- depth perspective on the alpha rhythm, see 
Chapter 10.)

Recent computational work from our lab has challenged this classic view of alpha as 
a suppression rhythm (Peterson & Voytek, 2017). When alpha oscillations are modeled 
specifically as balanced gain modulation, alpha can suppress visual detection. When 
suppression acts over long periods (e.g., >1 sec) this strongly reduces the overall gain, 
per the standard view. That is, this low- gain state reflects an “idle” state of activity, 
serving to inhibit firing output for any given input. Surprisingly, however, the model 
shows that when alpha is in a short, bursting mode (<0.5 sec, or 5 cycles), alpha actu-
ally enhances neuronal firing. That is, modeling and physiological work uncovered an 
enticing result: that oscillatory bursts may play a different functional role compared to 
sustained oscillations of the same frequency. This result— that oscillatory bursts may 
have a different physiological effect than sustained rhythms— highlights the import-
ance of parameterizing not just the power of an oscillation, but its short- time temporal 
dynamics.

23.3 Nonsinusoidal oscillations

Neural oscillations are not smoothly varying sinusoids. Rather, they manifest many 
different nonsinusoidal characteristics. Across brain regions, species, and frequencies, 
there do exist a variety of stereotyped nonsinusoidal shapes such as human motor 
cortical beta oscillations (Cole et al., 2017; Jackson et al., 2019), sleep slow oscillations 
(Steriade et al., 1993; Amzica & Steriade, 1998), the sensorimotor mu rhythm (Kuhlman, 
1978; Arroyo et al., 1993), and especially the rodent hippocampal theta rhythm (Belluscio 
et al., 2012; Cole & Voytek, 2018). The nonsinusoidal shape of oscillation waveforms is 
an exciting, re- emerging candidate for potentially indexing circuit- level physiology, 
such as synaptic input synchrony (Sherman et al., 2016). It is becoming increasingly 
apparent that nonsinusoidal oscillatory waveform shape carries physiological informa-
tion (Sherman et al., 2016; Cole & Voytek, 2017, 2018). Because there does not seem to 
be a theoretical reason why brain oscillations should be sinusoidal, it may be that the 
diverse set of neuronal activation and synaptic current dynamics present in different 
oscillations determine the waveform shape in the nearby field potential.

Several nonsinusoidal features of an oscillation can be parameterized, such as a 
waveform’s symmetry (the ratio between the rise period and the decay period), the 
sharpness of each oscillation peak, the rise and decay times for each cycle’s voltage, and so 
on. To quantify these features, an oscillation can explicitly be broken up into individual 
cycles by identifying the locations of peaks and troughs and then computing features 
on the raw voltage time series (Figure 23.1) (Cole & Voytek, 2019). We recently reviewed 
studies that have related the waveform shape of brain oscillations to neurophysiology 
(Cole & Voytek, 2017). One of the most well- supported of these relationships shows that 
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sharper extrema of oscillations relate to higher synchrony of a neuronal population. 
This has been shown, for example, for motor cortical beta oscillations (Sherman et al., 
2016) and for alpha oscillations in the rat gustatory cortex (Tort et al., 2010).

While narrowband power above the aperiodic signal is the definition of an oscilla-
tion, even this definition can be misleading due to a natural consequence of the math-
ematics of how nonsinusoidal waveforms are captured by the Fourier transform. This 
is critically important, because we showed recently how the harmonic effects that re-
sult from nonsinusoidal waveform shape can also lead to the appearance of strong 
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 Figure 23.1 Nonsinusoidal oscillations: (A, Top) Example of a time- domain parameteriza-
tion approach for quantifying nonsinusoidal features of neural oscillations, on a cycle- by- cycle 
basis. Here, the duration of the trough is annotated directly on each cycle’s trough. (A, Bottom) 
For each cycle, features such as amplitude, period, rise-  and decay times, asymmetries, and so on, 
are extracted and stored. (B, Left) Two simulated neural time series where the main difference 
between the two is the “sharpness” of each waveform peak. The top rhythm is sharper and less si-
nusoidal than the bottom. (B, Right) The power spectral representations of these two time series 
are markedly different, such that the sharpness of the waveforms in the top trace are accompanied 
by significant harmonic peaks that are absent in the smoother rhythm (horizontal dashed blue 
lines at 10, 20, and 30 Hz).
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cross- frequency coupling (Cole et al., 2017)— the statistical interaction between mul-
tiple different oscillatory processes (Canolty et al., 2006; Canolty & Knight, 2010)— 
when in fact no such multiple- oscillation interaction need exist. Given the role that 
cross- frequency coupling has been argued to play in organizing neural activity across 
regions (Canolty & Knight, 2010; Voytek et al., 2013, 2015a), it is imperative that the 
physiological nature of any statistical interaction between multiple oscillations is clear.

Such cross- frequency coupling can take many forms, including phase- phase coupling 
and phase- amplitude coupling (PAC) (Bruns et al., 2000; Varela et al., 2001; Canolty 
& Knight, 2010). The results of experiments leveraging such approaches are often 
interpreted as implying mechanism: for example, phase- phase coupling may suggest 
multiplexing of information across different frequencies while PAC may represent the 
biasing of population spiking by an oscillation electric field. It has been recently shown 
that patients with Parkinson’s disease have significantly higher beta- to- high gamma 
(70– 150 Hz) PAC in their motor cortices. With the application of subthalamic deep brain 
stimulation (DBS), this PAC significantly decreases in a manner that relates to improved 
clinical outcomes (de Hemptinne et al., 2015). We recently analyzed those same data 
to show that, rather than abolishing pathological multiple- oscillation cross- frequency 
coupling, DBS effects could more parsimoniously be described by a reduction in the 
waveform sharpness of a single beta oscillator (Cole et al., 2017).

The DSB example highlights the practical, clinical importance of considering whether 
measured outputs from algorithmic approaches to oscillations analysis, such as PAC, de-
rive multiple rhythmic processes vs. a single non- sinusoidal oscillator. This point was 
elegantly demonstrated in a recent paper that leveraged a large population of intracra-
nial human recordings across the neocortex (2,750 contacts from 33 patients) (Vaz et al., 
2017). This paper showed that in some cases— often in anterior frontal and ventral tem-
poral regions— significant PAC arose from coupled oscillations, where two independent 
rhythms are truly coupled. In other cases— mostly in somatosensory regions and lateral 
temporal cortex— significant PAC arose from the nonsinusoidality of a single rhythm. 
That is, the PAC metric only informs about the statistical strength of the relationship, not 
the physiological or signal- processing origin that gives rise to the PAC.

23.4 The aperiodic signal

Until recently, the aperiodic signal has been largely referred to as electrophysiological 
“noise” or the “background.” There is mounting evidence, however, that this signal 
carries physiological information (Gao et al., 2017) and is dynamically altered by cog-
nitive and perceptual states (Waschke et al., 2017; Dave et al., 2018), as well as in aging 
(Voytek et al., 2015b; Waschke et al., 2017; Dave et al., 2018) and disease (Peterson et al., 
2018; Robertson et al., 2019; Veerakumar et al., 2019).

This aperiodic signal has previously been referred to as the 1/ f background and/ or 
neural noise, because power at any given frequency is inversely related to the frequency 
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itself (1/ f) and looks like colored (pink or brown) “noise” seen in digital signal pro-
cessing. However, this is likely not just “noise”, because, as noted, field potentials are 
dominated by postsynaptic currents across relatively large populations (Buzsáki et al., 
2012; Pesaran et al., 2018). These currents are driven by input from neurons that are 
integrated across a large number of neurons and thus can appear noise- like. However, 
we have shown that the 1/ f- like nature of the signal can arise simply as a consequence 
of the nonlinear nature of post- synaptic currents, and that changes in the exponent— 
or degree— of the 1/ f drop- off may reflect the relative balance of excitatory and inhibi-
tory (EI) currents coming in to the region (Gao et al., 2017). For this reason, we refer 
to this feature as the aperiodic signal, rather than referring to it as “noise” (Donoghue 
et al., 2020).

The prospect that the aperiodic signal may index EI balance is exciting, but much 
more work is required to assess the strength and accuracy of this relationship. 
Unfortunately, because field potential spectra are a combination of periodic and aperi-
odic components, and because the large- power periodic oscillatory bumps can easily 
lead to mismeasurements of the aperiodic component, a method for carefully and ac-
curately separating and parametrizing those components is critical. This is especially 
important given the mounting computational and animal single- unit evidence that 
suggests that EI balance may be the physiological basis for top- down gain modulation 
(Chance et al., 2002) and persistent delay period activity required for working memory 
maintenance (Lim & Goldman, 2013).

23.5 Parameterizing neural 
field potentials

In order for researchers to state that oscillatory power in frequency X has altered as a 
function of task, condition, behavior, or group, they must first demonstrate that such 
an oscillation exists in their data, and that the apparent change in oscillatory power is 
due to a true reduction in that oscillation as opposed to a change in its center frequency 
moving it outside the analyzed band, a shift in its bandwidth, or from a shift in the aperi-
odic signal. Additionally, these oscillations need to be demonstrated to be true rhythms, 
and not harmonics caused by nonsinusoidal features of a rhythm at another frequency.

Problematically, standard analytic approaches conflate periodic parameters 
(center frequency, power, bandwidth) with aperiodic ones (offset, exponent). This 
compromises physiological interpretations. Additionally, separating bursting from 
sustained oscillations can be difficult, if not impossible, if just looking at the spectral 
representation of the data (Jones, 2016). To further compound the problem, a single 
nonsinusoidal, rhythmic process that has “sharp” extrema will manifest, in the power 
spectrum, as an oscillatory bump at the frequency of the rhythm as well as exhibiting 
smaller bumps at integer harmonics of the rhythm’s primary frequency. This means that 
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a sharp 10- Hz oscillation will also appear as a bump at 20 Hz, and possibly at 30 Hz and 
beyond. In such a scenario— one that is common due to the ubiquity of nonsinusoidal 
brain rhythms— a narrowband analysis at, say, 20 Hz, would give the researcher the im-
pression that a 20- Hz beta oscillation exists in their data in conjunction with the 10- Hz 
alpha, when in fact all that is present is a nonsinusoidal 10- Hz rhythm. Further, should 
this 10- Hz sharpness change in relation to behavioral state, such as a task- related reduc-
tion in sharpness resulting in a “smoother” 10- Hz shape, power in the 20- Hz harmonic 
would concomitantly be reduced. This could easily lead to the results being interpreted 
as a task- related reduction in 20- Hz beta power, when in fact no such beta oscillation 
truly existed in the first place.

There are currently several algorithms for identifying oscillations in specific ways that 
have attempted to address some of these concerns individually, but never conjointly. In 
particular, an approach called BOSC (Better OSCillation Detector) (Hughes et al., 2012), 
begins by fitting a linear regression to the log- log PSD to estimate the aperiodic signal. 
This is used to determine a power threshold, which is then used in combination with a 
duration threshold to define oscillations in wavelet- based decompositions of the time 
series data. However, a significant limitation of this and other similar methods is that a 
simple linear fit of the background spectrum can be significantly skewed by the presence 
of oscillations— especially large oscillations— and therefore mischaracterizes the aperi-
odic signal.

Another similar approach is the irregular- resampling auto- spectral analysis (IRASA) 
method, which seeks to explicitly separate the periodic and aperiodic components 
through a resampling procedure (Wen & Liu, 2016). Though conceptually similar, this 
resampling method is computationally much more expensive, and may have trouble 
separating large amplitude oscillations from the aperiodic signal. Other methods, such 
as principle component variants fail to separate periodic and aperiodic features, and re-
quire manual component selection (Miller et al., 2012). Consistent with previous work, 
we show that the aperiodic signal is of significant physiological and behavioral interest, 
although all of these methods treat it as a nuisance variable, such as correcting for it via 
spectral whitening rather than a feature to be explicitly modeled.

To overcome the limitations of traditional narrowband analyses, to reduce the errors 
caused by conflating periodic and aperiodic features, and to address the nonsinusoidal 
nature of field potential signals, we recently developed several open- source algorithms 
for parameterizing field potential data. The first is a semi- automated parameterization 
of neural power spectra (Donoghue et al., 2020). Spectra are parameterized as a linear 
combination of the aperiodic component and putative periodic oscillations (Figure 
23.2). This method thus operates upon frequency representations of time- series field 
potential data. The algorithm considers the PSD as the linear sum of an aperiodic signal 
upon which there oscillatory “bumps,” or frequency regions of power over and above 
this aperiodic signal, can exist. These bumps are considered to be putative oscillations 
and modeled individually as Gaussians. Each Gaussian then characterizes the fre-
quency definition of the oscillation, whereby the mean, amplitude, and standard devi-
ation can be interpreted as the center frequency, power, and bandwidth, respectively, 
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of the oscillation. The final outputs of the algorithm are the definition of the fit aperi-
odic signal, and the definitions for N Gaussians, where N is the number of oscillations 
found in the PSD. Notably, this algorithm extracts all these parameters together in a 
manner that accounts for potentially overlapping oscillations; it also minimizes the 
degree to which they are confounded and requires no specification of canonical oscil-
lation bands.

fit aperiodic signal(a) (g)

(d)(c)
fit and remove Gaussians

multi-Gaussian fit using
iteration parameters

combine

remove Gaussians from
original PSD

assess goodness of fit

re-fit aperiodic

iterate

frequency (Hz)

remove aperiodic signal

halt itting at noise floor

10 20 30 40

lo
g(

po
w

er
)

final fit

fit

fit

Gaussian fit

Gaussian fit

peak

peak

peak

2std

2std

2std

(e)

(h)

(f)

(b)

 Figure 23.2 Parametrization algorithm applied to field potential data. (A) The power spectral 
density (PSD) is first fit with an estimated aperiodic signal (blue), defined by two parameters: a 
slope and an offset. (B) The estimated aperiodic portion of the signal is subtracted from the raw 
PSD, the residuals of which are assumed to be a mix of periodic oscillatory peaks and noise. 
(C) The maximum (peak) of the residuals is found. If this peak is above the noise floor (2std; red 
dashed line) then a Gaussian (green) is fit around this peak based on the peak’s frequency, ampli-
tude, and estimated bandwidth. The fitted Gaussian is then subtracted, and the process is iterated 
until the noise floor is reached (bottom). These values are used as seeds for the multi- Gaussian 
fitting in D. (D) Having identified the number of putative oscillations, based on the number of 
peaks above the noise floor, multi- Gaussian fitting is then performed on the aperiodic- adjusted 
signal from B to account for the joint power contributed by all the putative oscillations, together. 
(E) This multi- Gaussian model is then subtracted from the original PSD from A. (F) This is done 
to give a better estimate of the aperiodic signal— one that is less corrupted by the large oscillations 
present in the original PSD. (G) This re- fit aperiodic signal is combined with the multi- Gaussian 
model to give the final fit. (H) The final fit— here parameterized as a line (aperiodic signal) and 
two Gaussians (putative oscillations)— captures >99% of the variance of the original PSD. In 
this example, the extracted parameters for the aperiodic signal are: broadband offset =  - 21.4 au; 
slope =  - 1.12 au/ Hz. Two Gaussians were found, with the parameters: (1) frequency =  10.0 Hz 
amplitude =  0.69 au, bandwidth =  3.18 Hz; (2) frequency =  16.3 Hz, amplitude =  0.14 au, band-
width =  7.03 Hz.

This figure appears in https:// doi.org/ 10.1038/ s41 593- 020- 00744- x
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As for waveform shape methods, multiple approaches have been developed. In par-
ticular, instantaneous phase estimation methods for hippocampal theta have been 
modified to consider the peak and trough locations in a broadband signal to account 
for nonsinusoidal features. Another approach, empirical mode decomposition, has 
the theoretical capability of extracting a nonsinusoidal oscillation in a single compo-
nent (Sweeney- Reed et al., 2018), although in practice on neural signals the rhythms of 
interest spread across multiple components, meaning the decomposition does not reli-
ably separate components of interest.

Though there are still many open questions regarding approaches to analyzing wave-
form shape, we have developed a set of available methods that cover critical basics 
(Figure 23.1). Our current toolbox for parameterizing cycle- by- cycle waveform features 
(bycycle) breaks an oscillation up into individual cycles by identifying the locations of 
peaks and troughs and then computing features on the raw voltage time- series. After the 
signal is segmented into cycles, each cycle is characterized by a set of parameters. The 
amplitude of the cycle is computed as the average voltage difference between the trough 
and the two adjacent peaks. The period is defined as the time between the two peaks. 
Rise- decay symmetry is the fraction of the period that was composed of the rise time. 
Peak- trough symmetry is the fraction of the period, encompassing the previous peak 
and current trough, that was composed of the peak. The distributions of these features 
can be computed across all cycles in a signal in order to compare oscillation properties 
in different neural signals.

However, in order to analyze cycle- by- cycle features, we must first identify, in the time 
domain, whether a signal has an oscillatory cycle or not. After computing features for 
each cycle, following the waveform shape algorithm given, an additional step is done to 
determine whether each cycle is part of an oscillatory burst. Traditional burst- detection 
methods are relatively simple: bursts are detected by comparing instantaneous, band- 
limited power at each time point to the median power (usually three times median) 
in the channel of interest (Feingold et al., 2015). When the amplitude rises above this 
threshold, the signal is said to have entered a bursting state; when it falls below another 
threshold (e.g., 1.5 times median) it is said to exit the burst state. While this is accept-
able in some cases, for very stable oscillations and very intermittent oscillations, this cri-
terion becomes unreliable because it will often fail to separate a stable oscillation from 
brief nonoscillatory segments. Further, this median- threshold procedure has never 
been explicitly tested against ground- truth simulated neural data. Oscillatory bursts 
are identified as time periods in which consecutive cycles in the time- series had similar 
amplitudes, similar periods, and rise and decay flanks that are predominantly mono-
tonic (Cole & Voytek, 2019).

Unlike our approaches, these other methods are not generalizable across the nu-
merous different forms of field potential data, nor are they designed and optimized to 
be parallelizable or to run in a cloud environment. Additionally, none are designed to 
examine all of the features in concert, which we show is critical for teasing apart the 
physiological interpretations of changes to oscillations, the aperiodic signal, and wave-
form shape.
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23.6  Discussion

The fact that both periodic oscillations and the aperiodic signal are seen in field poten-
tial data hints at the promise for those signals to bridge across those spatial scales. In 
studying neural oscillations, the analyses we apply are often very complicated, math-
ematically intensive, and full of assumptions, both explicit and implicit. Therefore, 
careful consideration of the methods applied to our data is paramount, as seemingly 
arbitrary choices in the hyperparameters of our analysis, such as the minimum number 
of spikes required for including a neuron in an analysis or the length and precise cutoff 
frequencies of a filter, can have large impacts on the results and ultimate conclusions. 
Often, in- depth knowledge of the techniques is required in order to appropriately 
choose hyperparameters and assure the validity of our conclusions. Because consid-
erable effort is required to obtain this knowledge, this means that we will often make 
honest mistakes in our analysis and as peer reviewers, because we often miss the statis-
tical confounds that may underlie highly impactful results.

Therefore, we first advocate paying deliberate and careful attention to the raw data to 
help gain a maximal understanding of broad features; complicated methods can often 
transform our data in ways we do not expect. If we do not understand how we see the 
ultimate effect by looking at the raw data, there is reason for concern, or at least further 
investigation. It can similarly be useful to apply multiple methods to our data. When it 
comes to analyzing neural oscillations, there are several analytic options to choose from 
(e.g., in the frequency or time- domains), and so this choice should be made consciously.

The choice for the analytic method applied can strongly impact the ultimate conclu-
sion. As we showed, phase- amplitude coupling analysis and sharpness analysis were 
capturing the same phenomena in the data. However, the former favored a conclusion 
of coupled oscillations, whereas we favored the latter conclusion concerning synchrony 
of transmembrane currents. The choice of developing a time- domain approach to 
analyzing neural oscillations was very deliberate: as physical processes, including neural 
dynamics, happen over time (as opposed to being generated in the frequency domain), 
there are advantages in analyzing signals in this natural domain and directly measuring 
and accounting for non- stationarities in the dynamics.

While it is certainly a biased perspective, we believe that neural oscillations research 
would be better positioned if analysis of these rhythms combined time- domain and 
frequency- domain approaches, using careful parameterization. Time- domain cycle- by- 
cycle parameterization offers several advantages over frequency- domain approaches. 
First, it directly quantifies waveform asymmetry, which is only indirectly and ambigu-
ously captured in spectral analysis (i.e., similar harmonic patterns can be generated by 
different oscillations that produce diverse waveforms). Second, cycle- by- cycle param-
eterization inherently runs an oscillation detection algorithm, so oscillatory features 
are only analyzed on appropriate portions of the signal (i.e., where the oscillation is 
observable). Third, cycle- by- cycle parameterization offers time- resolved estimates of 
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oscillatory features with an appropriate degree of temporal resolution: not only is sym-
metry measured for a single cycle, but the estimates of amplitude and frequency are 
intuitively measured in terms of peak- to- trough voltage and trough- to- trough time, 
respectively. However, “instantaneous” estimates of amplitude and frequency that are 
comparatively used offer amplitude and frequency estimates at every point in time. 
We have previously demonstrated that the cycle- by- cycle approach can provide more 
sensitive measures of amplitude and frequency, compared to more traditional filter- 
and- Hilbert transform approaches, by better differentiating simulated experimental 
conditions (Cole & Voytek, 2019).

One downside of the time- domain approach outlined is that it can miss relatively 
weaker oscillations, and that fine- tuning of oscillation- detection hyperparameters can 
influence results. For this reason, we advocate including a frequency- domain param-
eterization approach to help identify which frequencies have power above the aperiodic 
signal, during which times. In this way, both parameterization approaches can be used 
synergistically.

To date, tens of thousands of studies have been published regarding neural 
oscillations, their function, and their behavioral, cognitive, and disease correlates. 
Most of these studies have been conducted using traditional approaches that assume 
canonical frequency bands— delta, theta, alpha/ mu, beta, and gamma. Often these os-
cillation bands are described as having roles themselves, such as theta being equated 
with memory, and alpha with attention and wakefulness. This approach arises due to 
letting predefined bands guide analyses, rather than allowing the data to guide the 
analyses. That is, canonical band analyses commit us to tacit acceptance of predefined 
oscillatory bands having a functional role, rather than considering the underlying 
physiological mechanisms that may generate different spectral features and addressing 
inter- individual differences. With proper parameterization, it is possible to broaden 
our perspective, allowing us to take full advantage of the rich variance present in oscil-
latory data. This increases analytical power and can potentially provide greater insight 
into physiological mechanisms underlying oscillations and the role that oscillatory 
variability may play in explaining individual differences in cognitive functioning in 
health, aging, and disease.
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