

Frank Solomon

Prashanth Jayaram

Awni Al Saqqa

Learn to create, manipulate and secure data
and manage relational databases with SQL

The SQL Workshop

The SQL Workshop

Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, nor Packt Publishing,
and its dealers and distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Authors: Frank Solomon, Prashanth Jayaram, and Awni Al Saqqa

Reviewers: Tor Harrington, Pradeep Kumar Gupta, Aaditya Pokkunuri,
Shubham Jain, Fiodar Sazanavets, Shashikant Shakya, and Trevoir Williams

Managing Editor: Manasa Kumar

Acquisitions Editors: Alicia Wooding and Karan Wadekar

Production Editor: Salma Patel

Editorial Board: Shubhopriya Banerjee, Bharat Botle, Ewan Buckingham, Megan Carlisle,
Mahesh Dhyani, Manasa Kumar, Alex Mazonowicz, Bridget Neale, Dominic Pereira,
Shiny Poojary, Abhishek Rane, Brendan Rodrigues, Mugdha Sawarkar, Erol Staveley,
Ankita Thakur, Nitesh Thakur, and Jonathan Wray

First published: December 2019

Production reference: 2291220

ISBN 978-1-83864-235-8

Published by Packt Publishing Ltd.

Livery Place, 35 Livery Street

Birmingham B3 2PB, UK

Table of Contents

Preface 	  i

Chapter 1: SQL Basics 	  1

Introduction ...  2

Understanding Data ...  2

An Overview of Basic SQL Commands ...  3

Creating Databases .. 5

The Use of Semicolons ... 7

Data Types in SQL ...  7

Creating Simple Tables ...  10

Exercise 1.01: Building the PACKT_ONLINE_SHOP Database ......................... 12

Populating Your Tables ..  15

Exercise 1.02: Inserting Values into the Customers Table of
the PACKT_ONLINE_SHOP Database .. 17

Activity 1.01: Inserting Values into the Products Table in the
PACKT_ONLINE_SHOP Database ... 18

Summary ..  19

Chapter 2: Manipulating Data 	  21

Introduction ...  22

The INSERT Operation ..  22

Performing a Simple INSERT .. 22

Exercise 2.01: Inserting One Row of Data into a Table ................................... 23

Multiple Inserts ... 24

Exercise 2.02: Specifying Default Values .. 25

Using an INSERT Statement to Add Data from Another Dataset .................. 27

The DELETE Operation ..  28

Exercise 2.03: Deleting a record from a table ... 29

The ALTER Operation ..  30

Exercise 2.04: Manipulating the Auto-Increment Values in a Table ............. 30

The UPDATE Operation ..  31

The Basic UPDATE Statement .. 32

ALIASING  ... 33

Conditional Update of Records ... 34

Limiting the Records Using an UPDATE Statement .. 34

Exercise 2.05: UPDATE Using Computed Values ... 35

The DROP Operation .. 35

Activity 2.01: Inserting Additional values to the Products table ................... 36

Summary ..  36

Chapter 3: Normalization 	  39

Introduction ...  40

Primary Key Constraints ..  40

Foreign Key Constraints ...  41

Preserving Data Integrity ...  44

Types of Data Integrity ...  45

The Concept of Normalization ..  45

First Normal Form (1NF) ..  49

Second Normal Form (2NF) ...  49

Third Normal Form (3NF) ...  54

Denormalization ...  56

Exercise 3.01: Building a Relationship between Two Tables ......................... 56

Activity 3.01: Building a Relationship between the Orders
and the OrderItems table .. 59

Summary ..  60

Chapter 4: The SELECT Statement 	  63

Introduction ...  64

What Does the SELECT Statement Do? ... 65

Retrieving All Columns of a Table ...  66

Selecting Limited Columns .. 67

Exercise 4.01: Selecting Columns from a Table ... 67

Using Naming Aliases ... 68

Exercise 4.02: Aliasing the Column Headers ... 68

Activity 4.01: Displaying Particular Columns from the Table ........................ 70

Ordering Results ... 70

Ordering Rows According to a Particular Column .. 71

Ordering Rows According to Multiple Columns .. 72

Using LIMIT .. 75

Exercise 4.03: Using the LIMIT Keyword ... 76

Using DISTINCT .. 77

Using Mathematical Expressions .. 79

Exercise 4.04: Calculating the Line Item Total ... 79

Exercise 4.05: Calculating Discount .. 80

Activity 4.02: Extracting the Top Five Highest Priced Items .......................... 81

Summary ..  81

Chapter 5: Shaping Data with the WHERE Clause 	  83

Introduction ...  84

The WHERE Clause Syntax ...  85

Exercise 5.01: Implementing Logical Operators in the WHERE Clause ........ 86

Exercise 5.02: Using the BETWEEN Operator ... 88

The Not Equal Operator ...  88

Exercise 5.03: Using the != and <> Operators .. 89

The LIKE Operator ... 90

Exercise 5.04: Using the LIKE Operator to Check a Pattern
at the Beginning of a String ... 92

Exercise 5.05: Using the LIKE Operator to Check for a Specified Length ..... 92

Checking for NULLS ..  93

Exercise 5.06: Searching for NULL Values .. 93

Combining Conditions with the AND, OR, and NOT Operators ..............  94

Exercise 5.07: Querying Multiple Conditions ... 94

Activity 5.01: Combining Conditions to Extract Store Data ........................... 96

Summary ..  97

Chapter 6: JOINS 	  99

Introduction ...  100

INNER JOIN ...  100

Exercise 6.01: Extracting Orders and Purchaser Information ....................  101

RIGHT JOIN ...  103

Exercise 6.02: Implementing RIGHT JOIN ..  104

LEFT JOIN ..  106

Exercise 6.03: Implementing LEFT JOIN ...  107

CROSS JOIN ..  108

Exercise 6.04: Implementing CROSS JOINS ...  109

UNION JOIN ...  110

Exercise 6.05: Implementing a UNION JOIN ...  111

Activity 6.01: Implementing JOINS ...  112

Summary ..  113

Chapter 7: Subqueries, Cases, and Views 	  115

Introduction ...  116

Subqueries ...  116

Exercise 7.01: Working with Subqueries ...  118

Activity 7.01: Finding the Product Category Name Using a Subquery ......  119

Case Statements ...  120

Exercise 7.02: Using Case Statements ...  122

Activity 7.02: Categorizing the Shipments Using CASE Statements ...........  124

Views ..  125

Exercise 7.03: Building a View ..  127

Activity 7.03: Building a View ..  128

Summary ..  129

Chapter 8: SQL Programming 	  131

Introduction ...  132

Programming for SQL Products – The Basics ..  132

Stored Procedures ...  138

Exercise 8.01: Building a MySQL Stored Procedure That Returns
a List of Packt Online Shop Order Details ...  149

Exercise 8.02: Altering a MySQL Stored Procedure .....................................  154

Activity 8.01: Building a Stored Procedure ...  155

Functions ...  156

Exercise 8.03: Build a MySQL Function ..  166

Activity 8.02: Working with MySQL Functions ..  168

Triggers ...  168

Exercise 8.04: Build a MySQL Trigger ...  182

Activity 8.03: Building a Trigger ..  184

Summary ..  185

Chapter 9: Security 	  187

Introduction ...  188

Access Control (Authorization) ..  189

Exercise 9.01: Creating New MySQL users ..  189

Exercise 9.02: Granting EXECUTE permission in MySQL ..............................  191

Activity 9.01: Grant UPDATE permission on a table in MySQL ...................  193

Summary ..  193

Chapter 10: Aggregate Functions 	  195

Introduction ...  196

Aggregate Functions (SUM, COUNT, AVG, MIN, and MAX)
and the GROUP BY Clause ...  196

Exercise 10.01: Implementing Aggregate Functions ....................................  203

The HAVING Clause ...  204

Exercise 10.02: Implementing the HAVING Clause ......................................  206

The Differences between the SQL HAVING and WHERE Clauses ...............  208

SQL OVER and PARTITION BY ...  211

The RANK and DENSE_RANK Functions ...  214

Exercise 10.03: Implementing RANK ..  218

Activity 10.01: Working with Aggregates ...  220

Summary ..  220

Chapter 11: Advanced SQL 	  223

Introduction ...  224

String Functions ..  224

Exercise 11.01: Building a MySQL Query that Returns
the OrderID, Quantity, and Notes Columns ...  227

Exercise 11.02: Using LIKE in a Stored Procedure ..  228

Activity 11.01: Implementing the LIKE Operator ..  229

Dealing with NULL and COALESCE ...  229

The COALESCE Function ..  231

Exercise 11.03: Using the COALESCE Function to Handle
a NULL Value in a Combined Set of Values ...  233

Finding Duplicate Table Rows ..  234

Transactions ..  237

Activity 11.02: Using Transactions ...  241

Summary ..  241

Appendix 	  243

Index 	  265

Preface

About

This section briefly introduces the coverage of this book, the technical skills you'll need to get
started, and the software requirements required to complete all of the included activities and
exercises.

>

ii | Preface

About the Book
Many software applications are backed by powerful relational database systems,
meaning that the skills to be able to maintain a SQL database and reliably retrieve data
are in high demand. With its simple syntax and effective data manipulation capabilities,
SQL enables you to manage relational databases with ease. The SQL Workshop will help
you progress from basic to advanced-level SQL queries in order to create and manage
databases successfully.

This Workshop begins with an introduction to basic CRUD commands and gives you
an overview of the different data types in SQL. You’ll use commands for narrowing
down the search results within a database and learn about data retrieval from single
and multiple tables in a single query. As you advance, you’ll use aggregate functions to
perform calculations on a set of values, and implement process automation using stored
procedures, functions, and triggers. Finally, you’ll secure your database against potential
threats and use access control to keep your data safe.

Throughout this Workshop, you’ll use your skills on a realistic database for an online
shop, preparing you for solving data problems in the real world.

By the end of this book, you’ll have built the knowledge, skills and confidence to
creatively solve real-world data problems with SQL.

About the Chapters
Chapter 1, SQL Basics, explains how to create a simple database and how to create
tables within databases. We will also learn how to populate data within a table.

Chapter 2, Manipulating Data, guides us through how to alter tables and delete and
update entries within a table.

Chapter 3, Normalization, explains how to normalize tables within a database such that
data integrity is maintained.

Chapter 4, The SELECT Statement, covers how to write basic queries to retrieve data
from the database.

Chapter 5, Shaping Data with the WHERE Clause, covers implementing conditional
clauses within our queries such that we get fine-grained control over our data.

Chapter 6, JOINS, talks about retrieving data from multiple tables by performing various
join operations.

About the Chapters | iii

Chapter 7, Subqueries, Cases, and Views, talks about ways to retrieve data from
intermediary tables using views and then sub-queries to further filter down results.

Chapter 8, SQL Programming, talks about advanced SQL concepts such as the functions
and triggers.

Chapter 9, Security, looks at providing and revoking access to users on tables and
databases.

Chapter 10, Aggregate Functions, teaches how use SQL aggregate functions and how to
solve problems with them. We will also look at advanced clauses, such as the GROUP BY
and the HAVING clauses, and see how they can help us to fine-tune our results

Chapter 11, Advanced SQL, looks at functions in SQL and how they can be used as
powerful filtering tools.

Conventions

Code words in text, database table names, screen text, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as
follows: "We'll start with the Orders table since the Orders table ties the orders together
with the OrderItems table."

A block of code is set as follows:

USE PACKT_ONLINE_SHOP;

Before You Begin

Each great journey begins with a humble step. Our upcoming adventure in the land
of SQL is no exception. Before you can begin, you need to be prepared with the most
productive environment. In this section, you will see how to do that.

To Install MySQL

To install MySQL, follow the steps present in the following documentation:
https://packt.live/2rxXXv1

To Install the Code Bundle

Download the code files from GitHub at https://packt.live/2QCKNqB and place them
in a new folder called C:\Code on your local system. Refer to these code files for the
complete code bundle.

https://packt.live/2rxXXv1
https://packt.live/2QCKNqB

SQL Basics

Overview

This chapter covers the very basic concepts of SQL that will get you started with
writing simple commands. By the end of this chapter, you will be able to identify
the difference between structured and unstructured data, explain the basic SQL
concepts, create tables using the CREATE statement, and insert values into tables
using SQL commands.

1

2 | SQL Basics

Introduction
The vast majority of companies today work with large amounts of data. This could be
product information, customer data, client details, employee data, and so on. Most
people who are new to working with data will do so using spreadsheets. Software
such as Microsoft Excel has many tools for manipulating and analyzing data, but as
the volume and complexity of the data you're working with increases, these tools may
become inefficient.

A more powerful and controlled way of working with data is to store it in a database
and use SQL to access and manipulate it. SQL works extremely well for organized data
and can be used very effectively to insert, retrieve, and manipulate data with just a few
lines of code. In this chapter, we'll get an introduction to SQL and see how to create
databases and tables, as well as how to insert values into them.

Understanding Data
For most companies, storing and retrieving data is a day-to-day activity. Based on how
data is stored, we can broadly classify data as structured or unstructured. Unstructured
data, simply put, is data that is not well-organized. Documents, PDFs, and videos fall
into this category—they contain a mixture of different data types (text, images, audio,
video, and so on) that have no consistent relationship between them. Media and
publishing are examples of industries that deal with unstructured data such as this.

In this book, our focus will be on structured data. Structured data is organized
according to a consistent structure. As such, structured data can be easily organized
into tables. Thanks to its consistent organization, working with structured data is
easier, and it can be processed more effectively. Tables are collections of entities or
tuples (rows) and attributes (columns).

For example, consider the following table:

Figure 1.1: An example student's database table

For each row, there is a clear relationship; a given student takes a particular subject and
achieves a specific score in that subject. The columns are also known as fields, while the
rows are known as records.

An Overview of Basic SQL Commands | 3

Data that is presented in tabular form can be stored in a relational database. Relational
databases, as the name suggests, store data that has a certain relationship with another
piece of data. A Relational Database Management System (RDBMS) is a system that's
used to manage relational data. SQL works very well with relational data. Popular
RDBMSs include Microsoft SQL Server, MySQL, and Oracle. Throughout this book, we
will be working with MySQL. We can use various SQL commands to work with data in
relational databases. We'll have a brief look at them in the next section.

An Overview of Basic SQL Commands
SQL (often pronounced "sequel") stands for Structured Query Language. A query in
SQL is constructed using different commands. These commands are classified into what
are called sublanguages of SQL. Even if you think you know them already, give this a
read to see if these seem more relatable to you. There are five sublanguages in SQL, as
follows:

•	 Data Definition Language (DDL): As the name suggests, the commands that fall
under this category work with defining either a table, a database, or anything
within. Any command that talks about creating something in SQL is part of DDL.
Some examples of such commands are CREATE, ALTER, and DROP.

The following table shows the DDL commands:

Figure 1.2: DDL commands

•	 Data Manipulation Language (DML): In DML, you do not deal with the containers
of data but the data itself. When you must update the data itself, or perform
calculations or operations on it, you use the DML. The commands that form part of
this language (or sublanguage) include INSERT, UPDATE, MERGE, and DELETE.

4 | SQL Basics

DML allows you to work on the data without modifying the container or stored
procedures. A copy of the data is created and the operations are performed on this
copy of the data. These operations are performed using the DML. The following
table shows the DML commands:

	

Figure 1.3: DML commands

•	 Data Control Language (DCL): When we sit back and think about what the
word control means in the context of data, we think of allowing and disallowing
actions on the data. In SQL terms, or in terms of data, this is about authorization.
Therefore, the commands that fall in this category are GRANT and REVOKE. They
control access to the data. The following table explains them:

Figure 1.4: DCL commands

•	 Transaction Control Language (TCL): Anything that makes a change to the
data is called a transaction. When you perform a data manipulation operation,
the manipulation happens to data in a temporary location and not the table/
database itself. The result is shown after the operation. In order to write or remove
something from the database, you need to use a command to ask the database
to update itself with the new content. Applying these changes to the database is
called a transaction and is done using the TCL. The commands associated with this
language are COMMIT and ROLLBACK. The following table explains these commands in
detail:

An Overview of Basic SQL Commands | 5

Figure 1.5: TCL commands

•	 Data Query Language (DQL): The final part of this section regarding the
classification of commands is the DQL. This is used to fetch data from the database
with the SELECT command. It's explained in detail in the following table:

Figure 1.6: DQL command

We'll look at these queries in detail in later chapters.

Creating Databases

An interesting point to note is that the create database command is not part of the
regular SQL standard. However, it is supported by almost all database products today.
The create database statement is straightforward. You just need to issue a database
name along with the command, followed by a semicolon.

Let's start by creating a simple example database. We'll call it studentdemo. To create the
studentdemo database with the default configuration, use the following command:

create database studentdemo;

6 | SQL Basics

To run this statement, click the Execute button (shaped like a lightning bolt):

Figure 1.7: Creating the studentdemo database

In the Action Output pane, the successful completion of a command will appear. You
will also be able to see the newly created database in the Schemas tab of the Navigator
pane.

Note

SQL is not case sensitive. This implies CREATE TABLE studentdemo; is the same as
create table studentdemo;.

We cannot have multiple databases with the same name. If you try to run the query
again, you'll get the following error:

Figure 1.8: Error message displayed in the case of a database with the same name as another database

Data Types in SQL | 7

The Use of Semicolons

As you may have noticed, there's a semicolon, ;, at the end of the statement as an
indication that that's the end of that statement. It depends on the database system you
are using; some of them require a semicolon at the end of each statement and some
don't, but you can still add it without worrying about the results.

Note

In general, it's good practice to use a semicolon at the end of a statement as
it could play a significant role when we have multiple SQL statements or while
writing a function or a trigger. This will be explained in more detail in the upcoming
chapters. Throughout this book, we will use semicolons at the end of each
statement.

Data Types in SQL
Like every other programming language, SQL also has data types. Every piece of data
that is entered into a database must comply with the data types and their formats. This
implies that any data that you store is either a number, a character, or some other data
type. Those are the basic data types. There are some special data types as well.

For instance, "00:43 on Monday, 1 April 2019" is a combination of letters, numbers,
and punctuation. However, when we see something like this, we immediately start
thinking of the day. A data type is the type of value that can be stored in a system. Some
examples of data types are INTEGER, FLOATING POINT, CHARACTER, STRING, and combinations
of these such as DATETIME.

Since there's a large amount of data types, most languages classify data types. Here, we
will go through some of the most common ones. The idea here is to get you acquainted
with the data types, not to give you a complete rundown of them as this would
overwhelm you with hardly any significant returns. Moreover, once the concept is clear,
you will be able to adapt to the rest of the data types with little effort.

In the interest of better data integrity and modeling, it is critical to select the right data
type for the situation. It may seem trivial when the database is small, but with a larger
database, it becomes difficult to manage. As a programmer, it is your responsibility to
model your data in the right way.

8 | SQL Basics

In order to keep this simple, let's broadly classify the data types into five categories:

•	 Numeric data types: Numeric data types include everything that involves numbers,
such as integers (small/big), floating- and fixed-point decimal numbers, and real
numbers. Here are some of the most common ones:

Figure 1.9: Numeric data types

•	 Fixed and varying length characters and text: Performance is key when selecting
either fixed- or variable-length characters. When you know that a certain piece
of data will be of a fixed number of characters, use the fixed width. For example, if
you know that the employee code will always be of 4 characters, you can use CHAR.
When you are unsure of the number of characters, use variable width. If a certain
column holds only six characters, you are better off specifying it so that space
used will be limited. By doing this, you will get better performance by not using up
more resources than required. If you are unsure of the width, you don't want to
be limited by the total width. Therefore, you should ideally use character types of
varying lengths. An example of this can be a person's first name, where the length
of the name is not fixed.

Note

You can use CHAR with varying lengths of characters (VARCHAR) as well. For instance,
in a field that accepts up to six characters, you can enter data that is three
characters long. However, you would be leaving the other three-character spaces
unused, which will be right-padded, meaning that the remaining spaces will be
reserved as actual spaces. When the data is retrieved, these trailing spaces will be
trimmed. If you don't want them to be trimmed, you can set a flag in SQL that tells
SQL to reserve the spaces and not trim them during retrieval. There are situations
where you would need to do this using the TRIM string function, for example, to
enhance data security.

Data Types in SQL | 9

Unicode characters and string data types are different. They are prefixed with N,
such as NCHAR, NVARCHAR, and NTEXT. Also, note that not all SQL implementations
support Unicode data types.

Note

Unicode character data types consume twice the storage space compared to non-
Unicode character data types.

The other character-based data type is TEXT. This can store textual data up to a
certain limit, which may vary with the system. For instance, MS SQL supports text
up to 2 GB in size.

•	 Binary data types: Binary forms of data are also allowed in SQL. For instance, an
IMAGE would be an object of binary form. Similarly, you have BINARY and VARBINARY
data types.

•	 Miscellaneous data types: Miscellaneous data types include most of the
now-popular data types, such as Binary Large Object (BLOB), Character Large
Object (CLOB), XML, and JSON. We have included DATE, TIME, and DATETIME as well in
this class.

Character and binary large objects include types such as files. For instance, a film
stored on Netflix is a binary large object. So would be an application package such
as an EXE or an MSI, or other types of files such as PDFs.

Note

SQL Server 2016 supports JSON. JSON Unicode character representation uses
NVARCHAR/NCHAR or ANSI VARCHAR/CHAR for non-Unicode strings.

MySQL version 5.7.8 supports a native JSON data type.

•	 Proprietary types: In the real world, there is hardly a pure SQL implementation
that is favored by enterprises. Different businesses have different requirements,
and to cater to these requirements, SQL implementations have created their own
data types. For instance, Microsoft SQL has MONEY as a data type.

Not all data types are supported by all vendors. For instance, Oracle's
implementation of SQL does not support DATETIME, while MySQL does not support
CLOB. Therefore, the flavor of SQL is an important consideration when designing
your database schema.

10 | SQL Basics

As we mentioned previously, this is not an exhaustive list of all data types. Your flavor
of SQL will have its own supporting set of data types. Read the documentation that
comes with the product kit to find out what it supports—as a programmer or a SQL
administrator, it is you who decides what is necessary. This book will empower you to
do that.

The size limits illustrated in Figure 1.9 are only indicative. Just as different flavors of
databases may have different data types, they may have different limits as well. The
documentation that accompanies the product you plan to use will have this information.

Creating Simple Tables
After creating the database, we want to create a table The create table statement is
part of the SQL standard. The create table statement allows you to configure your
table, your columns, and all your relations and constraints. Along with the create table
command, you're going to pass the table name and a list of column definitions. At the
minimum for every column, you must provide the column name and the data type the
column will hold.

Let's say you want to add a table called Student to the previously created database,
studentdemo, and you want this table to contain the following details:

•	 Student name: The student's full name.

•	 Student ID: A value to identify each student uniquely.

•	 Grade: Each student is graded as A, B, or C based on their performance.

•	 Age: The age of the student.

•	 Course: The course they are enrolled on.

To achieve this, we need to complete a two-step process:

1.	 To set the current database as studentdemo, enter the following code in the new
query tab:

Figure 1.10: Switching from the default database to our database

You can open a new query tab, by clicking File | New Query Tab.

Creating Simple Tables | 11

2.	 Create a table Student within studentdemo with the following columns:

create table Student
(
 StudentID CHAR (4),
 StudentName VARCHAR (30),
 grade CHAR(1),
 age INT,
 course VARCHAR(50),
 PRIMARY KEY (StudentID)
);

The preceding code creates a Student table with the following columns:

•	 StudentID will contain four character values. 'S001', 'ssss', and 'SSSS' are all valid
inputs and can be stored in the StudentID field.

•	 grade will just contain a single character. 'A', 'F', 'h', '1', and 'z' are all valid
inputs.

•	 StudentName will contain variable-length values, which can be 30 characters in size
at most. 'John', 'Parker', 'Anna', 'Cleopatra', and 'Smith' are all valid inputs.

•	 course will also contain variable-length values, which can be 50 characters in size
at most.

•	 age will be an integer value. 1, 34, 98, 345 are all valid values.

StudentID is defined as the primary key. This implies that all the values in the StudentID
field will be unique, and no value can be null. You can uniquely identify any record in the
Student table using StudentID. We will learn about primary keys in detail in Chapter 3,
Normalization.

Note

NULL is used to represent missing values.

Notice that we have provided the PRIMARY KEY constraint for StudentID because we
require this to be unique.

12 | SQL Basics

Once your table has been created successfully, you will see it in the Schemas tab of the
Navigator pane:

Figure 1.11: The Schemas tab in the Navigator pane

Exercise 1.01: Building the PACKT_ONLINE_SHOP Database

In this exercise, we're going to start building the database for a Packt Online Shop—a
store that sells a variety of items to customers. We will be using the MySQL Community
Server in this book. The Packt Online Shop has been working on spreadsheets so far, but
as they plan to scale up, they realize that this is not a feasible option, and so they wish
to move toward data management through SQL. The first step in this process will be
to create a database named PACKT_ONLINE_SHOP with a table for storing their customer
details. Perform the following steps to complete this exercise:

1.	 Create a database using the create statement:

create database PACKT_ONLINE_SHOP;

2.	 Switch to this database:

use PACKT_ONLINE_SHOP;

Creating Simple Tables | 13

3.	 Create the Customers table:

create table Customers
(
 FirstName varchar(50) ,
 MiddleName varchar(50) ,
 LastName varchar(50) ,
 HomeAddress varchar(250) ,
 Email varchar(200) ,
 Phone varchar(50) ,
 Notes varchar(250)
);

Note

Similar to varchar, nvarchar is a variable-length data type; however, in nvarchar,
the data is stored in Unicode, not in ASCII. Therefore, columns defined with
nvarchar can contain values in other languages as well. nvarchar requires 2 bytes
per character, whereas varchar uses 1 byte.

4.	 Execute the statement by clicking the Execute button:

Figure 1.12: Creating the Customers table

14 | SQL Basics

5.	 Review the table by right-clicking the table in the Schemas tab and clicking Select
Rows - Limit 1000 in the contextual menu:

Figure 1.13: Column headers displayed through the SELECT query

This runs a simple Select query. You will learn about the Select statement in
Chapter 4, The SELECT Statement. The top 1,000 rows are displayed. Since we have
not inserted values into the table yet, we are only able to view the column headers
in Result Grid.

Note

If you are working on Microsoft SQL Server, you can do this by right-clicking the
table in the Object Explorer window and then selecting Select Top 1000 Rows.

In the next section, we will look at inserting values into tables.

Populating Your Tables | 15

Populating Your Tables
Once the table has been created, the next logical step is to insert values into the table.
To do this, SQL provides the INSERT statement. Let's try adding a row of data to the
Student table of the studentdemo database that we created previously.

Here is the SQL statement to achieve this. First, switch to the studentdemo database and
enter the following query:

USE studentdemo;
INSERT INTO Student (StudentID, StudentName, grade, age, course) VALUES ('S001',
'Prashanth Jayaram', 'A', 36, 'Computer Science');

If you check the contents of the database after running this query, you should see
something like this:

Figure 1.14: Values inserted into the database

Note

To see the contents of this database, follow the process you used in the earlier
exercises. Right-click the table and choose Select Rows - Limit 1000.

16 | SQL Basics

Adding single rows like this in multiple queries will be time-consuming. We can add
multiple rows by writing a query like the following one:

INSERT INTO Student (StudentID, StudentName, grade, age, course) VALUES ('S002', 'Frank
Solomon', 'B', 35, 'Physics'), ('S003', 'Rachana Karia', 'B', 36, 'Electronics'),
('S004', 'Ambika Prashanth', 'C', 35, 'Mathematics');

The preceding query looks like this on the Query tab.

Figure 1.15: Adding multiple rows in an INSERT query

When you run the query, all three rows will be added with a single query:

Figure 1.16: Output of multiple row insertion

Populating Your Tables | 17

Exercise 1.02: Inserting Values into the Customers Table of the PACKT_

ONLINE_SHOP Database

Now that we have the Customers table ready, let's insert values into the table using a
single query. We have the data from an already existing Excel spreadsheet. We will be
using that data to write our query. Here is what the Excel file looks like:

Figure 1.17: Source data in an Excel spreadsheet

Note

You can find the csv format of the file here: https://packt.live/369ytTu.

To move this data into the database, we will need to perform the following steps:

1.	 Switch to the PACKT_ONLINE_SHOP database:

use PACKT_ONLINE_SHOP;

2.	 Insert the values based on the Excel spreadsheet provided wherever we have blank
data. We will use NULL to do this:

INSERT INTO Customers (FirstName, MiddleName, LastName, HomeAddress, Email, Phone,
Notes)
VALUES('Joe', 'Greg', 'Smith', '2356 Elm St.', 'joesmith@sfghwert.com', '(310)
555-1212', 'Always gets products home delivered'),
('Grace', 'Murray', 'Hopper', '123 Compilation Street', 'gmhopper@ftyuw46.com',
'(818) 555-3678', 'Compiler pioneer'),
('Ada', NULL, 'Lovelace', '22 Algorithm Way', 'adalovelace@fgjw54af.gov', '(717)
555-3457', 'First software engineer'),
('Joseph', 'Force', 'Crater', '1313 Mockingbird Lane', 'judgecrater@ev56gfwrty.com',
'(212) 555-5678', 'Works everyday'),
('Jacqueline', 'Jackie', 'Cochran', '1701 Flightspeed Avenue', 'jackiecochrane@
jryuwp8qe4w.gov', '(717) 555-3457', 'Researcher'),
(NULL, 'Paul', 'Jones', '126 Bonhomme Richard Ave.', 'jpjones@bonhommerichard.edu',
'(216) 555-6232', 'Admiral');

https://packt.live/369ytTu

18 | SQL Basics

3.	 When you execute the query and check the contents of the Customers table, you
should see the following output.

Figure 1.18: The Customers table after inserting the values from the excel sheet

With this, you have successfully populated the Customers table.

Activity 1.01: Inserting Values into the Products Table in the PACKT_ONLINE_

SHOP Database

Now that we've migrated the customer's data into the database, the next step is to
migrate the product data from the Excel spreadsheet to the database. The data to be
entered into the database can be found at https://packt.live/2ZnJiyZ.

Here is a screenshot of the Excel spreadsheet:

Figure 1.19: Source data in an Excel spreadsheet

1.	 Create a table called Products in the Packt_Online_Shop database.

2.	 Create the columns as present in the Excel sheet.

3.	 Use the INSERT statement to input the required data into the table.

Note

The solution for this activity can be found via this link.

https://packt.live/2ZnJiyZ

Summary | 19

Summary
In this chapter, we had a look at the different types of data and how data is stored in
relational databases. We also had a brief look at the different commands available in
SQL. We specifically focused on creating databases and tables within the databases, as
well as how we can easily insert values into tables.

In the next chapter, we will look at how we can modify the data, the properties of
tables, and databases, and build complex tables.

Manipulating Data

Overview

This chapter teaches you to implement the INSERT, UPDATE, and DELETE statements
which help you keep the content present in a table up-to-date. We will also cover
how we can use default values while updating the tables.

2

22 | Manipulating Data

Introduction
In Chapter 1, SQL Basics, we learned the concepts that help set up a database. Although
we did insert some data into the tables, we didn't quite get into the specifics of
managing the data within the database. However, there might be circumstances where
we might need to change the data inserted or present in the database. For example, an
employee working for a company might want to change their official number from what
was updated earlier. A product that is no longer manufactured needs to be removed
from the list of products available. MySQL provides some commands we can implement
to make changes to the database, which will be covered in this chapter. In this chapter,
we will fill the tables we created in the previous chapter with data. We will also look
at the UPDATE and DELETE operations that are part of CRUD (Create, Read, Update, and
Delete).

The INSERT Operation
The INSERT operation inserts a record within a table. We have already used the insert
operation in the previous chapter, however, in this chapter, we are looking at it in more
detail. The following are some important points about the INSERT operation:

•	 It is not always essential to provide data for every single column when performing
an INSERT operation. The columns can be left blank unless there is a constraint that
forbids it. Some columns may even have default or system-generated values.

•	 You should not alter the system-generated values.

•	 The column values must match the order, data type, and size requirements.

•	 The values to be inserted into the table must be enclosed in quotes in the case of
strings, date-time, and characters. Numbers should not be enclosed in quotes.

•	 If you do not specify the column names in the INSERT statement, your record should
have a value for all the columns. Also, you should maintain the sequence of columns
in the values.

•	 You can only insert values into one table at a time because INSERT INTO accepts only
one table name as the table name argument.

Performing a Simple INSERT

As we have seen previously, the INSERT statement begins with INSERT INTO, followed
by the table name. Next, you specify the names of the columns. It is mandatory to
insert data into all the columns that require information (for example, columns that are
specified as NOT NULL, or a column that is selected as the primary key).

The INSERT Operation | 23

Blank columns need not be provided with data using the INSERT statement. Also, there
may be columns with default values; these don't need to be provided with data either,
unless it's necessary.

After you've specified the names of the columns, you can use the VALUES clause to enter
the values for those columns. In other words, you cannot specify the name of a column
and then not provide it with data. If you do not wish to insert data into a column, then
do not specify the column name in the INSERT INTO statement.

This process is as straightforward as it seems. This way, you insert one row or record
into the table. However, in many cases, it is recommended to use the UPDATE operation
along with the SET keyword to insert rows because the process is more efficient.

Note

We will discuss the UPDATE operation and its use with the SET keyword in detail in
The UPDATE Operation section in this chapter.

Exercise 2.01: Inserting One Row of Data into a Table

In this exercise, we'll implement the INSERT INTO...VALUES SQL statement to add
records to a table. First, we'll create an EMPLOYEE database and then we'll add a table
to it. Next, we'll insert values into the table with the INSERT SQL statement and finally
display the contents of the table. To do so, let's go through the following steps:

1.	 Create an EMPLOYEE database:

CREATE DATABASE EMPLOYEE;
USE EMPLOYEE;

2.	 Create a department table, with departmentNo as the PRIMARY key:

CREATE TABLE department (
 departmentNo INT PRIMARY KEY,
 departmentName VARCHAR(20) NOT NULL,
 departmentLoc VARCHAR(50) NOT NULL
);

Note

The syntax PRIMARY KEY (departmentNo); would also work.

24 | Manipulating Data

3.	 Insert the values into the department table:

INSERT INTO department (
 departmentNo,
 departmentName,
 departmentLoc
)
VALUES (
 1,
 'Engg',
 'Texas'
);

4.	 From the Navigator pane, select the Schemas tab. Select EMPLOYEE | Tables |
department | Select Rows - Limit 1000.

The expected output is as follows:

Figure 2.1: Adding values to a database table

Multiple Inserts

In Exercise 2.01, Inserting Data into a Table, we saw how simple it is to perform a single
row insert within a table. You specify the names of the columns and the rows, and that
does the job. However, you may want to insert more than one row in a single statement
in the interest of efficiency. This can be done by either explicitly specifying the values
for multiple rows in the VALUES clause or by using a SELECT statement. With the SELECT
statement, you are essentially inserting values into one table by collecting data from
one or more other tables. Again, we saw this previously when we wanted to populate
table in Chapter 1, SQL Basics.

Let's go through another exercise to specify default values. Specifying a default value
is simple; all you must do is use the DEFAULT keyword and specify the default value or a
function that gets you the default value.

The INSERT Operation | 25

Exercise 2.02: Specifying Default Values

In this exercise, we will assume that all the departments of your company are centered
at the headquarters in New Jersey, unless specified otherwise. We will also assume that
every department has a record of the date that it was established. You are required to
define your table accordingly. In this case, we will need a default value for the other
columns in the database. Let's go through the following steps:

1.	 We already have a table called department, but it does not have a column to
capture the established date. We will therefore drop the department table first and
then create a new table. This allows us to overwrite it. The syntax for this is DROP
TABLE IF EXISTS:

DROP TABLE IF EXISTS department;
CREATE TABLE department (
 departmentNo INT PRIMARY KEY AUTO_INCREMENT,
 departmentName VARCHAR(20) NOT NULL,
 departmentLoc VARCHAR(50) DEFAULT 'NJ',
 departmentEstDate DATETIME DEFAULT NOW()
);

Here we have provided default values for deptartmentLoc and departmentEstDate.
The departmentNo column is an auto-increment column. This means that you do
not explicitly control the values that go into the column. Your attempt to insert
data into the column will raise an error in response. If you would like to control
the values, you need to alter the table to reset the auto-increment value before
inserting the values in the identity columns.

Note

The NOW() function will provide the system date and system time of execution. We
will learn more about functions in Chapter 8, SQL Programming.

2.	 Let's set up a new department called MyDepartment, located in New Jersey. We will
set the date the department was established as today. We do this by inserting a new
value, MyDepartment, into the table:

INSERT INTO department (
 departmentName
)
VALUES (
 'MyDepartment'
);

26 | Manipulating Data

3.	 From the Navigator pane, select the Schemas tab. Select EMPLOYEE | Tables |
department | Select Rows - Limit 1000.

The expected output is as follows:

Figure 2.2: Adding a new department to the table

Similarly, you can add multiple rows to the table, and the default columns will pick
their values accordingly. Say that you would like to add two more departments,
Administration and IT.

4.	 Add multiple values to the department table:

INSERT INTO department (
 departmentName,
 departmentLoc)
VALUES
(
 'Administration',
 DEFAULT
),
(
 'IT',
 DEFAULT
);

5.	 Once you execute the command (by clicking the Execute button), inspect the
contents of the table. The expected output is as follows:

Figure 2.3: Default values added for the new inserts, Administration and IT, in the table

We can see from the output that the default values were automatically added. Also, if
you would like to explicitly ask SQL to insert the default values, you could do that as
well by using the DEFAULT keyword.

The INSERT Operation | 27

6.	 We can however, override the default value as well. To insert a department,
Administration, that is in NYC, run the following command:

INSERT INTO department (
 departmentName,
 departmentLoc)
VALUES
(
 'Administration',
 'NYC'
);

7.	 View the contents of the department table, from the Navigator pane. The table will
look as follows:

Figure 2.4: Overriding the default value

Using an INSERT Statement to Add Data from Another Dataset

Previously, we used the SELECT statement to fetch data from a table. That was only a
basic way of doing this. This section will describe the other ways we can insert data
from another dataset. The SELECT statements that will be used here can be either simple
or multi-table complex SELECT statements.

Apart from INSERT...SELECT, you could use CREATE TABLE AS SELECT * FROM:

CREATE TABLE departmentdemo AS
 SELECT *
 FROM department;

28 | Manipulating Data

If we run the following query, we can see that the table departmentdemo has the following
contents:

Figure 2.5: Inserting data from another dataset

Now, that we have an idea of how values are inserted in the table, in the next section
we'll be learning about how we can delete values from the table.

The DELETE Operation
The DELETE statement deletes one or more rows within a table. Like the INSERT
operations, DELETE also works only on a single table at a time. A deletion operation
should be performed very carefully because deletion is permanent. Many database tools
require you to add a WHERE clause to the DELETE FROM statement. When performing these
deletion operations, which require a WHERE clause, and you would like to delete all the
rows in a table, you could work around this by using a condition that is true for all the
rows in the table.

For example, say you have an employee with empno 1234 who is no longer associated
with the company. In such cases your query would look like the following:

DELETE FROM employees
 WHERE empno = 1234;

If you would like to remove the top 5 rows from the employees table, we would use the
following query:

DELETE FROM employees
 LIMIT 5;

The DELETE Operation | 29

Exercise 2.03: Deleting a record from a table

Consider that the product tomato sauce is no longer available in the PACKT_ONLINE_SHOP
database. Therefore, our Products table should also reflect this data. To do this we will
have to delete the entire row containing the details of the product tomato sauce. To do
this, perform the following steps:

1.	 Inspect the contents of the products table, you should see the product tomato
sauce present in there. Its product id is 8.

2.	 In the new query tab, enter the following query:

USE PACKT_ONLINE_SHOP
DELETE FROM products
 WHERE ProductName = 'tomato sauce';

Note

You might get an error here, because you are operating in Safe Mode. To disable
Safe Mode, go to Edit | Preferences | SQL Editor and uncheck the Safe mode
option. Once you do this, reconnect to the database, and the query should execute
successfully.

3.	 Now, in the Navigator pane, go to Schemas, and then click packt_online_shop | tables
| products | Select Rows -Limit 1000. You should get the following output:

Figure 2.6: Deleting data from the products table

Notice that tomato sauce is no longer in the list.

30 | Manipulating Data

The ALTER Operation
The ALTER keyword is used to make changes to the schemas present in the database. For
example, if we want to add or delete columns in a table, we should be using ALTER. It can
also be used rename to tables. For example:

ALTER TABLE departmentdemo RENAME TO departmentcopy;

This will rename the table departmentdemo to departmentcopy.

Now, let us look at solving one of the main issues we might encounter with
auto-increment values using ALTER.

Exercise 2.04: Manipulating the Auto-Increment Values in a Table

In this exercise, we'll alter a table and manipulate the auto-increment values. We'll be
continuing from where we left off in Exercise 2.03, Specifying Default Values. Let's go
through the following steps:

1.	 Delete the rows where departmentNo is greater than 2; this will delete the two rows
where departmentNo is 3 and 4:

delete from department where departmentNo>2;

2.	 Select the department table to get a preview of the existing rows in the table:

Figure 2.7: Existing rows in the table

3.	 Now, insert the sales department into the department table:

insert into department(departmentname,departmentLoc)
 values('Sales','LV');

4.	 On selecting the rows, we can see that the auto_increment column starts at 5:

Figure 2.8: The auto-increment column starting at 5

The UPDATE Operation | 31

5.	 Delete the newly inserted Sales department:

delete from department where departmentNo=5;

6.	 Run the ALTER TABLE statement to reset the auto_increment column to 3.

ALTER TABLE department AUTO_INCREMENT = 3;

7.	 Insert the Sales department:

insert into department(departmentname,departmentLoc)
 values('Sales','LV');
select * from department;

The output will be as follows:

Figure 2.9: Sales department added

The UPDATE Operation
As we saw in the overview, UPDATE modifies data in one or more columns in a table. Just
like the INSERT operation, the UPDATE operation can also only be performed against a
single table using a single statement. In most situations, you will filter out the records
you would like to update and update only them. This filtration is done using a WHERE
clause in the SELECT statement. The UPDATE statement also contains a SET clause, which
defines what needs to be modified within the table, along with the values.

In our demo, we'll update a table called email. You can set one column or more during
an UPDATE operation. If you want to update multiple columns, separate the column
names with a comma.

The database engine looks for the column that is specified in the statement and updates
all the rows in it. If you would like to update only a certain row or a certain set of rows,
you would use the WHERE clause. This way, you can identify only those intersections of
rows and columns that you would like to update.

32 | Manipulating Data

Suppose Ava-May changed her name to Ava-May Rodgers, and you had to update the
table. You would use the following SQL statement:

UPDATE employees
SET
 Email = 'Ava-May.Rodgers@awesomenes.com'
WHERE empno = 3

From this simple example, we know that the UPDATE statement has the UPDATE keyword,
followed by the table name, followed by the SET keyword, followed by the column names
and values. If you would like to modify specific values, you would use a WHERE clause
with the condition.

The Basic UPDATE Statement

Let's continue with a simple example. Suppose we have a table called department
within a database. Imagine that you would like to set the modified date for each of the
departments to the current date—in other words, we are going to change the modified
date on all the rows. We do this using the following query:

update department set departmentEstDate=now();

If you query all the records within the table and see what departmentEstDate looks like
for each record:

select * from department;

The departmentEstDate should be updated:

Figure 2.10: Updating date in the department table

That was simple. Now, imagine you would like to set more columns. Imagine that you
would like to update departmentLoc for all the departments in the table.

The UPDATE Operation | 33

You would also like to set their departmentEstDate to the next day:

UPDATE Department
SET departmentLoc='GA',departmentEstDate = Now()+INTERVAL 1 DAY;

Note

+INTERVAL n DAY is used to add days to the value returned by Now().

When you run the query to see the contents of the table, you should see the following:

select * from department;

Figure 2.11: Updated department table

ALIASING

In most situations in an enterprise environment, you are in a situation where you would
use multiple tables, and multiple calls will be made to those tables. At that time, it would
be much easier to use shorter aliases, especially when you would be referring to table
names that contain other operators in them, such as Company.department. Would you like
to write SELECT * FROM Company.department? Aliases help in these cases. For example:

UPDATE department D
 SET D.departmentLoc='NYC',
 D.departmentEstDate = Now()+ INTERVAL 1 DAY

The output would be as follows:

Figure 2.12: Example of using shorter aliases

34 | Manipulating Data

Conditional Update of Records

There are many instances where you need to accomplish something by simply
modifying the existing data using conditional logic via the WHERE clause. For example,
imagine that everyone in the sales team got a raise of 20%. Assume that you performed
the calculation manually, that is, 1.2 times 8,000 is 9,600. You would like to set the salary
of all the members of Sales to 9,600:

UPDATE E
SET Salary = 9600
WHERE Department = 'Sales'
FROM Employee E

Limiting the Records Using an UPDATE Statement

In this section, we will see how we can use the LIMIT clause in the SELECT statement to
limit the number of rows to be updated using the UPDATE statement. As shown in the
following code, the LIMIT clause accepts the offset and count arguments to limit the
result set.

In the following example, we are limiting three records where we update the salary.
These records are sorted in descending order and are getting the least commission:

UPDATE employees SET comm=1000
WHERE empno IN (
 SELECT empno FROM (
 SELECT empno FROM employees where comm<=500
 ORDER BY salary desc, comm ASC
 LIMIT 0, 3
) stg
);

Note

For now, don't worry too much about the syntax in the above code. A query nested
inside another query as shown (where there's a SELECT statement inside another
SELECT statement) is known as a subquery, and will be covered in detail in later
chapters.

The UPDATE Operation | 35

Exercise 2.05: UPDATE Using Computed Values

Consider the scenario where we are providing 10% off the net retail price of all the
products in packt_online_shop:

1.	 Type the following query and execute the command:

UPDATE products
 SET
 NetRetailPrice = NetRetailPrice * 0.90;

2.	 Inspect the contents of the table products:

Figure 2.13: Updated products table using the computed values

The new price should now be reflected in the table.

The DROP Operation

We will now look at the DROP operation, to see how we can delete the schema altogether.
The syntax is as follows:

DROP TABLE <table_name>;

To drop the Customers table in the packt_online_database, the query would be as
follows:

DROP TABLE Customers;

If you now try to query the Customers table, it will no longer exist.

36 | Manipulating Data

Activity 2.01: Inserting Additional values to the Products table

You notice that the following new products need to be added to the catalog:

•	 Pancake batter

•	 Breakfast cereal

•	 Siracha sauce

Write a query to add these items into the products table with Retail price as 5.99
and Wholesale price as 3.99. The product Category should be set by default as 1, and
Product ID must be auto incremented.

Note

The solution for this activity can be found via this link.

Summary
In this chapter, we looked at some advanced implementations of INSERT and how we
can manipulate data using the UPDATE, ALTER, and DROP commands. It is very important
to remember that the ALTER command is used to update the schemas, while the update
command is used to make changes in the data contained in the schemas. However,
changes in the data need to managed correctly, or they will result in inconsistent data.
In the next chapter, we will look at normalizing data to ensure that data integrity is
maintained.

Normalization

Overview

This chapter teaches you to maintain data integrity using the concepts of
normalization and how you can connect tables together using keys and
relationships. We will also look at some solid theory that back most database
designs.

3

40 | Normalization

Introduction
In the previous two chapters, we looked at different aspects of a database. We provided
an overview of the points to be considered while setting up a database. One of the
key aspects we focused on was data integrity. We now know why data consistency is
important. A step toward achieving better data integrity is database normalization.
In this chapter, we will take a detailed look at achieving data consistency through
normalization.

In the previous two chapters, we learned about the relational model of data. We saw
that a database can contain any number of tables. These tables are connected to each
other using a relation. This relation is usually established between the selected columns
across tables using something called a foreign key.

Understanding that the relational model and data integrity are critical when working
with data in business, we will take a look at the concept of normalization. Setting up the
data model with constraints in mind and optimizing data management is more of an art
than science. You can summarize the relational model as follows:

•	 A database server can contain many databases.

•	 Databases are collections of user-defined tables and system objects.

•	 Tables are collections of entities (rows) and attributes (columns).

•	 Tables can be used in conjunction with logical, mathematical, and summary
operations.

•	 Tables can refer to other tables using a key.

In order to enforce data integrity, we use primary keys and foreign keys. These are
called referential constraints. Referential constraints are important internal database
objects that help maintain data integrity.

Primary Key Constraints
A primary key constraint on a column instructs the database engine to keep the entries
in a column unique. For example, if we were to create a table with information about all
the human beings on Earth, we could use the tongue print of human beings as unique
identification. If tongue prints were in a column, it would be the primary key.

Foreign Key Constraints | 41

It is possible to have a duplicate tongue print; however, it is rare. In such a case, you
could create a primary key across multiple columns. Therefore, you could combine
the tongue print, fingerprint, and the retinal signature to make a primary key. In such
a case, the combination of these values in these columns should be unique across the
table. In other words, there may be a duplicate tongue print, a duplicate fingerprint, and
a duplicate retinal signature in the table—the database engine will allow that. However,
there cannot be a duplicate combination of all three. Alternatively, there can be no two
human beings whose tongue prints, fingerprints, and retinal signatures exactly match.
This is called a composite primary key.

Foreign Key Constraints
Let's look at this in the context of a primary key. When this primary key is referenced by
a column in another table, this primary key becomes the foreign key of the other table.
For example, consider the previously created database PACKT_ONLINE_SHOP:

DROP DATABASE IF EXISTS PACKT_ONLINE_SHOP;
CREATE DATABASE IF NOT EXISTS PACKT_ONLINE_SHOP;
USE PACKT_ONLINE_SHOP;
CREATE TABLE Customers
(
 CustomerID INT NOT NULL AUTO_INCREMENT,
 FirstName CHAR(50) NOT NULL,
 LastName CHAR(50) NOT NULL,
 Address CHAR(250) NULL,
 Email CHAR(200) NULL,
 Phone CHAR(50) NULL,
 Notes VARCHAR(750) NULL,
 BalanceNotes VARCHAR(750) NULL,
 PRIMARY KEY (CustomerID)
);
CREATE TABLE Orders
(
 OrderID INT NOT NULL AUTO_INCREMENT,
 CustomerID INT NOT NULL,
 OrderNumber CHAR(50) NOT NULL,
 OrderDate DATETIME NOT NULL,
 ShipmentDate DATETIME NULL,
 OrderStatus CHAR(10) NULL,
 Notes VARCHAR(750) NULL,
PRIMARY KEY (OrderID),
FOREIGN KEY FK_Customer_CustomerID(CustomerID) REFERENCES Customers(CustomerID)
);

42 | Normalization

Each customer can place one or more orders. Each order can be for one or more
products. Each order belongs to only one customer. When the database is designed,
the relationship is established between the customers and the orders with a one-to-
many relationship. There is also a relationship between orders and products, with a
cardinality ratio of many-to-many (because one order can contain many products,
and many copies of one product can be sold through many orders). The Orders table
contains the CustomerID column, which refers to the CustomerID of the Customers table.
The CustomerID field (or column) in the Customers table is the primary key, but it is the
foreign key for the Orders table. The FOREIGN KEY clause specifies the foreign key using
the REFERENCES clause. In this context, Customers could be considered the parent table
and Orders could be considered the child.

Note

MySQL automatically creates an index corresponding to the foreign key called
foreign_key_name. SQL Server does not create a corresponding index when a
foreign key constraint is created. SQL Server automatically creates an index when a
primary key constraint is created.

Here are a few points that you need to remember:

•	 A foreign key always refers to a primary key.

•	 A table can have multiple foreign keys.

•	 The INSERT command only operates on those rows of the child table for which
corresponding rows exist in the parent table.

•	 The DELETE command only operates on the rows from the parent table for which
there are no corresponding records in the child table.

Consider a scenario where someone is purchasing a book or a course from the Packt
store.

Foreign Key Constraints | 43

Let's look at the OrderItems table:

CREATE TABLE OrderItems
(
 OrderItemID INT NOT NULL AUTO_INCREMENT,
 OrderID INT NOT NULL,
 ProductID INT NOT NULL,
 Quantity INT NOT NULL,
 UnitPrice DECIMAL(10, 2) NOT NULL,
 Discount DECIMAL(10, 2) NULL,
 Notes VARCHAR(750) NULL,
 PRIMARY KEY (OrderItemID)
);

Note

The preceding code makes use of the DECIMAL data type. The syntax for this
is DECIMAL(p, s), where p is the precision (the total number of digits that can
be stored in the number, before and after the decimal point) and s is the scale
(the number of digits that can come after the decimal point). In the example,
DECIMAL(10, 2) can store a total of 10 digits, including 2 after the decimal point.

There is OrderItemID, which represents the ID of the item within an order, which is
automatically incremented. Then, we have OrderID, ProductID, Quantity, UnitPrice,
Discount, and Notes.

OrderItemID is independent of this table in this case and could very much be the
primary key since every item in an order is unique. However, there is a ProductID, which
should ideally refer to the store inventory. This inventory could be called Products and
would be a different table. Quantity is independent as well, but this is so arbitrary that
no constraint could be placed on it other than NOT NULL. The UnitPrice field should
also refer to the inventory because it changes with the product, and not with orders.
Discount should also refer to another table altogether (you will see why when we
discuss normalization).

44 | Normalization

Considering this, ProductID should be the primary key of the Products table as it is
unique across the store. Given that, the ProductID within the OrderItems table should be
the foreign key, referring to the ProductID within Products. Let's see how we can set this
up in the table:

ALTER TABLE OrderItems
ADD FOREIGN KEY (ProductID) REFERENCES Products(ProductID);

To drop a foreign key, you can use the ALTER TABLE statement:

ALTER TABLE <table_name>
DROP FOREIGN KEY <constraint_name>;

In the context of our example, the syntax will be as follows:

ALTER TABLE OrderItems
DROP FOREIGN KEY ProductID

Note

You can have zero or more foreign keys in a table. Each foreign key in a table can
refer to one or more columns in any arbitrary table in the database, depending on
the requirements.

Preserving Data Integrity
Preserving data integrity is simpler than it sounds. If you set the data model correctly,
it's not much of a challenge to preserve data integrity. Nothing in the real world is
foolproof; however, a tight data integrity model will ensure minimal exceptions. Here is
a little checklist:

•	 Validate input: Set up input validation in the fields that are critical to decisions
and prone to errors. You can do this at the application level, of course, but it is
good practice to set this up at the database level as well. Validate the input when it
arrives.

•	 Validate data: Ensure that you check the data when performing any form of
operations. Your data processes should not be corrupted themselves. Check that
your processes are working as intended.

•	 Remove duplicate data: Sensitive data from a secure database can easily find
a home in a document, an email, a spreadsheet, or in shared folders that more
individuals than necessary have access to. It is important to check for these stray
or duplicate entities and clean them up.

Types of Data Integrity | 45

Types of Data Integrity
Let's look at the different types of data integrity:

•	 Entity integrity: This defines each row as unique within the table. No two rows
can have the same name. To achieve this, a primary key can be defined. This field
contains a unique identifier—no two rows can contain the same unique identifier.

•	 Referential integrity: Referential integrity is about relationships. When two or
more tables have a relationship, we must ensure that the value of the foreign key
always matches the value of the primary key, otherwise the record is orphaned.

Referential integrity prevents adding records to a related table if there is no
associated record in the primary or parent table, changing values in a primary table
that can result in orphaned records in a related table, and deleting records from a
primary table if there are matching related records.

•	 Domain integrity: This is primarily concerned with the validity of entries for a
given column. It is important to select the appropriate data type for a column and
set the appropriate constraints to define the data format or restrict the range of
possible values.

•	 User-defined integrity: There are cases when you can apply business rules to the
database. These rules may not have been covered by the three integrity types.
User-defined integrity helps you to enforce your own rules to ensure data integrity.

Take a break now and let all the information you've looked at sink in a little. Next, we
will dive into the concept of normalization and look at its different forms. We will
see how normalization helps us achieve data integrity. We will work on a real-world
example that we urge you to actively think about. You are here to learn about database
management, and you came here on your own. It is time to show that passion in full.

The Concept of Normalization
Suppose we have a piece of software in our enterprise called Enterprise Server Manager
that manages all the computers. The Enterprise Server Manager (ESM) has information
about what computers we have, the operating system they run on, the version of the
operating system, and so on.

46 | Normalization

Now, each server works for one or more teams. The respective teams have all the
authority on these servers, along with being responsible for them. Imagine that you
want the heads of the teams tagged as the owners of the servers. The server entries
should contain the employee IDs, the names, the designations, and the department
names of these owners. Here is an example:

Figure 3.1: ESM Agent details

The preceding table has all the information we need and the data looks consistent for
now, right? Jon Doe's information is being repeated, though. Is that an issue?

Imagine that Jon Doe leaves the organization and Jim Doe replaces him. Now, imagine
that this table has 4,000 entries and Jon Doe owns 300 servers. To change the owner of
the servers, you may think of replacing the names in the table using the following query:

UPDATE ServerInfo SET Name='Jim Doe' WHERE employeeName='Jon Doe';

Now, Jim Doe joins the organization, and four servers get assigned to him. He is part
of the Network team. After you make the changes to the table, you realize that you did
not update the employee ID, designation, or the department for the entries that had Jon
Doe, and without looking at the data, someone unknowingly runs the following query:

UPDATE ServerInfo SET EmployeeId='79247' WHERE employeeName='Jim Doe';

Do you think there is a problem?

No: The designation for Jim Doe will be the same as Jon Doe, and so will the
department. However, this is not true. There exists a problem.

Yes: There are two individuals with the name Jim Doe, and now, they both have the same
employee ID, which is wrong. This second individual tries to fix this issue as follows:

UPDATE ServerInfo SET EmployeeId='79254', Designation='Network Specialist' WHERE
employeeName='Jim Doe' and Department='Network';

Did you observe how error-prone even this simple table is? What happens when you
have 80 columns in a table and you try to update data this way? In the real world, the
ESM Agent table has tens of columns, and so does the user information table in the
Active Directory (an identity and access management system in an enterprise).

The Concept of Normalization | 47

How about if we have one entry per person and have all the servers they own listed in
one single column?

Figure 3.2: ESM Agent details

Do you think we still have a problem?

Yes: What happens when the number of servers Jon Doe owns is 300? It is not a
problem yet. Consider that all the MBSVR servers (and there are 28 of them) are
replaced by new MBSVR servers with new names. What would your update operation be
like?

Let's summarize the disadvantages of above-mentioned scenario:

•	 Maintenance of the data becomes tedious, like all the activities we did when Jim
Doe replaced Jon Doe.

•	 When we changed the name and nothing else in the table, and another Jim Doe
joined the Network team, we observed an inconsistency in the data.

•	 When we had to go through three steps to fix data in a table with a mere six
columns and four rows, imagine the work required when dealing with thousands
of records of data. We had to update four columns when one individual replaced
another.

•	 Most of all, four of the columns in two rows had the same data. What happens
when the number of rounds is in the thousands and the size of the table grows
more than necessary?

•	 One important aspect of this is that if you make the server information and owner
information dependent on a single table, you will find empty values in the cases of
users who do not own any servers.

•	 If you delete all the servers owned by an individual, you will also end up deleting
that individual's information unintentionally.

48 | Normalization

Can you handle this situation better? Let's create two tables. The first one is the server
information table:

Figure 3.3: Server information table

The second is the employee information table:

Figure 3.4: Employee information table

Let's assume that our IAM application manages the second table. If Hans Doe replaces
Jim Doe, the Team Lead, at a later point, the second table will get all the necessary
information about Hans Doe when the Human Resources team processes Hans'
hiring. All you would have to do then is replace the OwnerId information in the server
information table with a single query:

UPDATE ServerInfo SET OwnerId='79482' WHERE OwnerId='79247';

What if you need to get a table that's identical to the first table, as we saw at the
beginning of this chapter? We can use the following query:

SELECT s.Servername, s.OperatingSystem, u.EmployeeId, u.Name, u.Designation, u.Department
FROM ServerInfo s
 JOIN EmployeeInfo u ON s.OwnerId = u.EmployeeId;

Note

You should recall the alias syntax from the previous chapter. ServerInfo s means
that we can use the letter s to refer to ServerInfo (to save us having to type
out the full name each time). s.Servername means that we're referring to the
Servername column of the ServerInfo table.

First Normal Form (1NF) | 49

We have circled back to the point where we spoke about relational databases and
its importance in the world of data. If you look at the preceding two tables, you will
see that they are two tables of a relational database, where there is a relationship
established between the two tables based on the foreign key, which is OwnerId in the
ServerInfo table. This refers to the EmployeeId in the EmployeeInfo table.

First Normal Form (1NF)
What we saw in the solution for this situation is called the first normal form. Why?
Because it adheres to the following four rules:

•	 Every column must be single-valued

•	 The data type of all the data in any column should be uniform

•	 Every column should have a unique name

•	 The order in which the records are ordered does not matter

As you can see, the column names in our tables are unique. Every column has only one
data type (in our case, all the values are strings—even the employee IDs are strings).
There are no multi-valued cells in the tables. The fourth one gives us the freedom to
put the data in any order.

Remember the situation where Jon Doe owned 300 servers, and the server names were
all jammed in a single cell? This is not allowed in the first normal form because it makes
update operations difficult. The normal form helps prevent such situations.

Note

The first normal form is considered the least requirement for any data in a
relational database. If your data does not even adhere to the first normal form,
you have a bad data model.

Second Normal Form (2NF)
Before you understand the second normal form, let's explore what dependency is with
the help of the following scenario.

50 | Normalization

In an enterprise, it is important that the security updates are installed on every server.
This process is known as patching the servers. Typically, updates get installed every
month, and at the end of the month, many organizations check the percentage of
servers that had been patched during the month. This number is calculated based on
how many servers have how many patches in the installed and not required state. This
calculation is done per server. Apart from the operating system updates, we would also
like to install application updates. Therefore, based on what team we are talking about
and what applications they own, the percentage of compliance can change.

For example, imagine that Microsoft released four updates to the Windows operating
system. Citrix Systems, Inc, a multinational software company, released one update to
their XenApp. We have the AwesomeFirewall application, provided by Awesomeness,
Inc. They released two updates for AwesomeFirewall. Three Windows updates were
installed on a server, CXSVR001, and one failed. The XenApp update was installed on the
server, but only one of the two updates to AwesomeFirewall was installed on the server
and the other failed.

Let's say that instead of individuals owning the servers, the teams own the servers. Let's
assume that our organization enforces a compliance percentage on the team leads,
saying that every team should have a patch compliance of at least, say, 92%, and that
the score directly reflects on the person who leads the team. So, let's look at the two
tables that we already have, which contain the server and the owner data.

Here is the list of servers:

Figure 3.5: Server list

And here are the details about the owners:

Figure 3.6: Owner details

We need to change the way we manage ownership. We need three tables:

•	 A table containing the server information

•	 A table containing the department information

•	 A table containing the employee information

Second Normal Form (2NF) | 51

Therefore, the revised setup would be as follows:

•	 The server information table:

Figure 3.7: Server information

•	 The employee information table:

Figure 3.8: Employee information

•	 And finally, the department information table:

Figure 3.9: Department information

It is now time to establish relationships (given that we have made some drastic changes
to the process that are used in tagging servers). Here are the four kinds of relationships
we will have:

•	 A server may belong to one or more teams (because there can be different aspects
of an application, and multiple teams may have ownership over the different
aspects).

•	 A team can own multiple servers. Obviously, not all the teams can function with just
one server.

•	 A team can have only one lead.

•	 A person can lead only one department (this has been enforced by the
management).

52 | Normalization

As a corollary to this, it also means that a team lead can own multiple servers, and each
server can be owned by multiple team leads.

To summarize, the cardinality ratios would be as follows:

Figure 3.10: Cardinality ratios

Imagine that we created a table for the compliance percentage like so while keeping
the patch numbers from the introduction to the second normal form in mind (operating
system patches along with the application patches):

Figure 3.11: Compliance percentage

How do you calculate the compliance percentage of each server per team? Remember
that you need to be able to identify each record (or row) uniquely.

One way of doing this would be to have a ComplianceId as the primary key, like so:

Figure 3.12: Compliance percentage of each server

Typically, this is the first normal form and complies with all five rules that we listed.
However, if you take a look at it, the server name and the department name together
form a simpler primary key.

The simpler way to handle this would be to use the server name and the department as
the primary key for compliance percentage—a composite primary key.

Second Normal Form (2NF) | 53

CXSVR001, in the context of the network team, has a compliance percentage of 66.67%.

Imagine, now, that you also add the team lead information to the table:

Figure 3.13: Team lead information added

As you may have noticed, LeadId is dependent only on the department, and not the
server name—it is not dependent on the entire primary key. This is partial dependency in
database terms.

You must remove this partial dependency if you want your data to be in the second
normal form, as per the requirements for the second normal form:

•	 The data should be in the first normal form.

•	 There should be no partial dependencies in the data.

To convert this data into the second normal form, you must get rid of the partial
dependency brought in by LeadId. However, what if the patch compliance score is a key
performance indicator for each of the leads? What if their yearly bonus depends on this
aspect?

In other words, you need each of the servers to be tagged to the lead. The situation is
that the servers belong to departments, not individuals. How do you achieve the second
normal form while keeping this in mind?

One of the solutions is to alter the Department table to include the lead information:

Figure 3.14: Altered Department table to include lead information

Now, you can remove the LeadId column from the compliance table, and despite not
having the LeadId in the table, you can calculate the compliance percentage of each of
the leads.

54 | Normalization

Third Normal Form (3NF)
Consider a situation where a conflict arises between you and your colleague during
the calculation of the compliance percentage. Your colleague states, "Your way of
calculating the compliance percentage is flawed! Look, one of Jon's servers gets four
updates out of five and the other gets four out of six. You calculate individual servers, say
80% on one and 66.67% on the other. Then, you take an average and say the compliance
percentage is 73.33%. Jon had to ensure the installation of 11 patches in all, out of which he
installed only eight. His compliance percentage should actually be 72.73%, and not 73.33."

This situation has introduced a different level of complexity in our setup. Now, you
need to look for a way to combine several aspects and introduce something that will
allow for the calculation of the compliance percentage based on the total patches
that are needed for a server per application combination, and the actual score for that
combination.

Imagine you get lucky and find out that ESM has a way to combine applications into
groups. Therefore, this can provide you with information regarding the total patches
per group and the installed patches per group.

Here is the new table (we have included ComplianceId so that this table can
independently have a primary key):

Figure 3.15: ComplianceId added to the table

For data to be in the third normal form:

•	 The data should already be in the second normal form.

•	 There should be no transitive dependency.

Note

Transitive dependency is a form of indirect linking between different attributes.
For example, if A depends on B and B depends on C, then there is transitive
dependency between A and C.

Third Normal Form (3NF) | 55

Now, to convert the data you already have into the third normal form, split all the data
into the following four tables:

•	 A table that contains server information, called Agent:

Figure 3.16: Server information

•	 A table that contains employee information, called Employee:

Figure 3.17: Employee information

•	 A table that contains the department information, called Department:

Figure 3.18: Department information

•	 A table that contains the patch information, called PatchInfo:

Figure 3.19: Patch information

You can further normalize data using the Boyce-Codd normal form, the fourth normal
form, the fifth normal form, and the sixth normal form as well, but that would make
your learning more complex. For now, take on board these three normalizations. Then,
as you get more and more comfortable with these three forms, you can proceed to learn
about the more advanced normal forms.

56 | Normalization

Denormalization
Denormalization of data is another important concept, especially when it comes to
querying efficiency.

In an enterprise, everything is about balance. Most organizations that deal with data
do not completely adhere to the complex form of normalization. The reason for this
is simple: normalization may kill efficiency when you need to query a large amount of
data. Therefore, while we gain in terms of data integrity when normalizing data, we pay
a lot in terms of processing power if we ever have to query data.

For instance, consider the table in Figure 3.17. If a user has two email addresses, would
you have a single column and add both email addresses to it? You could, but that
would be non-compliant with the first normal form of data. How do you work around
this issue? Create a new table with an employee ID and email address? But then, the
employee would have two email addresses and cannot be uniquely identified. Therefore,
you would need to add a primary key to that table and with this, the situation becomes
much more complex than required.

In such a case, you could go for some minor denormalization and add a couple of
columns to the existing Employee table, for instance, PrimaryEmail and SecondaryEmail.
This way, your queries would be simplified.

Denormalization finds most of its use in data warehousing scenarios—situations where
you query for a lot of data in a single shot. For instance, if you had to query 200,000
entries, referring to eight tables would consume much more processing power than
your systems would support.

Therefore, data management is more of an art than a science.

Exercise 3.01: Building a Relationship between Two Tables

In your organization, you have been asked to present the employee and department
data in two tables and build the relationship between the department and employee
table.

The department table should contain the following data:

Figure 3.20: Department table data

Denormalization | 57

The employee table should contain the following data:

Figure 3.21: Employee table data

Perform the following steps to achieve this:

1.	 Create a demo database called employeedemo.

DROP DATABASE IF EXISTS employeedemo;
CREATE DATABASE employeedemo;

2.	 Create a department table with the required data. Ensure there is referential
integrity between the department and employee tables on the dno field:

USE employeedemo;

CREATE TABLE department
 (
 dno INT PRIMARY KEY,
 dname VARCHAR(30) UNIQUE NOT NULL,
 dlocation VARCHAR(30) UNIQUE NOT NULL
)

58 | Normalization

3.	 Create an EMPLOYEE table with the required data, enforcing a check constraint on
the gender field and default values on the salary and commission fields:

CREATE TABLE employee
(
	 eno		 CHAR(4) PRIMARY KEY,
	 ename		 VARCHAR(30) NOT NULL,
	 job		 VARCHAR(30) NOT NULL,
	 manager	CHAR(4),
	 jdate		 TIMESTAMP NOT NULL,
	 gender	CHAR(1) CONSTRAINT gender_chk
	 CHECK (gender IN('M', 'F')),
	 salary	DECIMAL(8, 2) DEFAULT 0,
	 comission	 DECIMAL(8, 2) DEFAULT 0,
	 deptno	INT NOT NULL,
 FOREIGN KEY (deptno) REFERENCES department(dno)
)

As we can see, the foreign key constraints have been created between the department
and employee tables. By using the IN keyword, we have added a check constraint on the
gender field:

Figure 3.22: Foreign key constraints created

Denormalization | 59

Activity 3.01: Building a Relationship between the Orders and the OrderItems

table

To build the packt_online_shop, we need table to capture the data of all the order placed
by customers. To do this, we need to create two tables: Orders and OrderItems. The
Orders table must contain the details on who places the order, when the order is to
be dispatched, and the current status of the order, while the OrderItems table should
contain product specifics of the placed order, such as price, quantity, and so on. Build a
normalized schema for the following scenario.

OrderItem must contain the following details:

•	 OrderItemID

•	 OrderID

•	 ProductID

•	 Quantity

•	 UnitPrice

•	 Discount

•	 Notes

Order must contain the following details:

•	 OrderID

•	 CustomerID

•	 OrderNumber

•	 OrderDate

•	 ShipmentDate

•	 OrderStatus

•	 Notes

Note

The solution for this activity can be found via this link.

60 | Normalization

Summary
In this chapter, we referred to the different forms of constraints that we recapitulated
from the previous chapter, but in a little more depth. We learned how these constraints
help in maintaining data integrity. Later, we learned about the different forms of data
integrity.

We then moved on and looked at the concept of data normalization and looked at the
first three normal forms, namely the first, second, and third, using data from a fictitious
enterprise setup we created. As an exercise, create your own database using the steps
from the previous chapters and create the tables that were mentioned in the first
section of this chapter.

Run the queries that you saw here and find out about the different ways in which you
can normalize this data. If you are inclined to, go ahead and learn about the more
advanced forms of normalization to build on the knowledge you've gained from this
chapter. In the next chapter, we will look at querying normalized data.

The SELECT Statement

Overview

This chapter illustrates how to query data from a database, and how we can order
them. By the end of this chapter, you will be able to select a specific number of
columns, order and sort results, use naming aliases with the AS clause, filter your
search results using the LIMIT and DISTINCT keywords, and combine and use
SELECT with mathematical operations.

4

64 | The SELECT Statement

Introduction
So far, whenever we have wanted to see the results, we have used the Select * syntax
either by entering that query directly, or by generating it using the appropriate option
in the application's menu. This displayed the entire table. However, when we want to
retrieve data from the database, we are often not interested in the entire dataset; we
are only looking for specific details. For example, the Packt database contains details of
all the books published by Packt. It might include columns such as Book Name, ISBN,
Author Name, Author ID, Author Email, Page Count, and Price. But if we wanted to
send out a survey to all the authors who have written for Packt, all we would require is
the author's name and their email address:

Figure 4.1: A sample table containing all the details of a book

This is all we require:

Figure 4.2: The required details

Queries help us do just this. Using the SELECT statement, we can pick out specific
columns from a table.

The syntax of a typical SQL query is as follows:

SELECT [COLUMNS LIST]
FROM [TABLE NAME]
WHERE [CONDITION]
ORDER BY [COLUMN NAME] [ASC|DESC]

Introduction | 65

Where:

•	 [COLUMNS_LIST] is replaced by the column names that you want to retrieve,
separated by commas.

•	 [TABLE_NAME] is replaced by the table name in your database.

•	 [CONDITION] is the condition to narrow down your result.

•	 [COLUMN NAME] is the column that the result set will be ordered or sorted on.

•	 [ASC | DESC] is the order option, ascending or descending.

In this chapter, we will look in more detail at the different parts of a SELECT statement.
We will cover the basics of writing a SELECT statement, customizing the query to achieve
the desired results, and sorting the data based on various requirements. The WHERE
statement, shown in the preceding snippet, will be covered in detail in the next chapter.

What Does the SELECT Statement Do?

The SELECT statement is used to select one or more columns from a table, thus defining
what the columns of the output should look like. Therefore, whenever you are querying
tables for data, it is mandatory to include the SELECT statement and the FROM statement
in your syntax.

If the output requires all of the columns from the original table, instead of mentioning
the entire list of columns, we can use the asterisk sign (*). This acts as a wildcard and
selects all the columns in the [TABLE NAME] table specified. We will see some examples
of what this means in practice.

Important

Before you work on any of exercises, please run the scripts present here: https://
packt.live/2ZzYCss. This will set up the database for the chapters to come.

https://packt.live/2ZzYCss
https://packt.live/2ZzYCss

66 | The SELECT Statement

Retrieving All Columns of a Table
Consider the following scenario: A store manager wants to retrieve information about
all the categories of items available in PACKT_ONLINE_SHOP in order to see where a new
product fits in best. To retrieve a list of all the product categories, along with their
details, run the following query:

use PACKT_ONLINE_SHOP;
SELECT * FROM ProductCategories;

After executing the preceding query, you'll see the following output:

Figure 4.3: The ProductCategories table

As shown in the preceding screenshot, the query has selected and retrieved all the
records from all the columns of the ProductCategories table, which was taken from
PACKT_ONLINE_SHOP.

Note

There are some cases where you can use the SELECT statement without needing to
use the FROM part. For instance, to call a function, you only need to use the SELECT
statement:

SELECT GETDATE();

We will discuss functions in further detail in the upcoming chapters of this book.

In the rest of this chapter, we will go through all the sections of the SELECT statement
and demonstrate each of them, and we will combine all of them at the end of the
chapter.

Retrieving All Columns of a Table | 67

Selecting Limited Columns

When you only want to retrieve a couple of columns from the table, all you have to
mention is the list of column names separated by commas in the SELECT clause.

Exercise 4.01: Selecting Columns from a Table

The store manager wants to check the ProductCategoryId field of all the categories in
PACKT_ONLINE_SHOP. They need you to retrieve the relevant columns, ProductCategoryId
and ProductCategoryName. To retrieve this data from the table, we need to perform the
following steps:

1.	 Open a new query window.

2.	 Switch to the PACKT_ONLINE_SHOP database:

use PACKT_ONLINE_SHOP;

3.	 Enter the following query:

SELECT ProductCategoryID, ProductCategoryName
FROM ProductCategories;

4.	 Execute the query. This query will result in the following output:

Figure 4.4: Selected columns from the ProductCategories table

Note that the columns are displayed in the exact order they were mentioned in the
SELECT statement. So, if we want to show the name of the category first followed by ID,
we use the following statement:

SELECT ProductCategoryName, ProductCategoryID
FROM ProductCategories;

68 | The SELECT Statement

This query will result in the following output:

Figure 4.5: Columns in a different order from the ProductCategories table

Thus, we can filter the columns that are displayed in the output just by including them
in the SELECT statement.

Using Naming Aliases

As you can see from the result sets we have so far, column names (column headers)
match the column name/field name in the database. This is how it works by default.
However, this is not always practical or user-friendly. When you extract data for the
purposes of a report, you'll have various people looking at it, and so you might want to
make the column heading clearer and more relatable. To provide the result set with a
column header of your choice, use the AS keyword after the column name. The syntax
for aliasing the column is as follows:

SELECT [Original name] AS [New name]

Exercise 4.02: Aliasing the Column Headers

While publishing a report, we want to rename the column headings of the previous
query as CATEGORY and ID, respectively. To do this, perform the following steps:

1.	 Enter the following query:

SELECT ProductCategoryName AS CATEGORY, ProductCategoryID AS ID
FROM ProductCategories;

2.	 Execute the query. It will result in the following output:

Retrieving All Columns of a Table | 69

Figure 4.6: Renamed CATEGORY and ID columns

3.	 In cases where you want to use multiple words with spaces between them, use the
full name between single quotes ' ', as follows:

SELECT ProductCategoryName AS 'PRODUCT CATEGORY', ProductCategoryID AS ID
FROM ProductCategories;

The output of the query would be as follows:

Figure 4.7: Data appended in the PRODUCT CATEGORY column

70 | The SELECT Statement

Activity 4.01: Displaying Particular Columns from the Table

To conduct a telephone survey for the customers of PACKT_ONLINE_SHOP, we require
a report containing each customer's first name, last name, and contact number. The
report should use the following column headers: First Name, Last Name, and Phone
Number. Derive the required details from the Customers table of the PACKT_ONLINE_SHOP
database.

1.	 Switch to the required database.

2.	 Use the Select statement to retrieve the required columns from the Customers
table.

Note

The solution for this activity can be found via this link.

Ordering Results

Often, we will want to sort our results in a way that makes them more user-friendly and
readable. The ORDER BY part of the SELECT statement is designed to sort result set rows
in either ascending or descending numerical order if the data is numeric, and ascending
or descending alphabetical order if the data contains characters. By default, whenever
the ORDER BY clause is used, rows will be sorted in ascending order unless specified
otherwise.

The ORDER BY clause is placed at the end of the SELECT statement, and its general form is
as follows:

ORDER BY [COLUMN1 NAME] [ASC|DESC], [COLUMN2 NAME] [ASC|DESC]

We can specify the column name or its alias along with the ordering type, which will
either be ascending, with the ASC keyword, or descending, with the DESC keyword.

There are two main ways to order any result set. Let's have a look at them in detail.

Retrieving All Columns of a Table | 71

Ordering Rows According to a Particular Column

Here, the rows will be sorted based on the selected column in ascending order.
Columns that contain character values will be arranged alphabetically. Let's try to apply
this to the ProductCategories table and sort the results by CATEGORY NAME, as follows:

SELECT ProductCategoryName AS 'CATEGORY NAME', ProductCategoryID AS ID
FROM ProductCategories
ORDER BY ProductCategoryName ASC;

The result is as follows:

Figure 4.8: Product category names in alphabetical order

As you can see in Figure 4.8, the rows are now sorted alphabetically by CATEGORY NAME
in ascending order. We can do the same exercise and sort them in descending order by
using the DESC keyword as follows:

SELECT ProductCategoryName AS 'CATEGORY_NAME', ProductCategoryID AS ID
FROM ProductCategories
ORDER BY CATEGORY_NAME DESC;

The result is as follows:

Figure 4.9: Product category names in descending alphabetical order

72 | The SELECT Statement

Ordering Rows According to Multiple Columns

Here, the rows will be sorted based on the first column. However, if there are multiple
records with the same value, the value in the second column is used for ordering. Let's
take a look at this with an example from the Customers table and select the FirstName
and CustomerID:

SELECT FirstName, CustomerID
FROM Customers;

The result is as follows:

Figure 4.10: Table showing the FirstName and CustomerID columns from the database

You can observe that in the FirstName column, there are multiple entries with NULL as
their first name. So, when we order our results by FirstName in ascending order and the
CustomerID in descending order, we will notice the difference. Let's implement this as
follows:

SELECT FirstName, CustomerID
FROM Customers
ORDER BY FirstName, CustomerID DESC;

Retrieving All Columns of a Table | 73

The result is as follows:

Figure 4.11: FirstName in ascending order and CustomerID in descending order

As you can see in Figure 4.11, it's now sorted alphabetically by FirstName in ascending
order, even though we didn't mention the ordering type explicitly in the statement (ASC
being the default order). Where there are multiple entries in the name column that are
the same (NULL), these are then sorted in descending order by ID.

Note

NULL is used to represent an empty or missing value. For this reason, NULL appears
at the top of the sorted list in the output, rather than being sorted alphabetically
according to the letter N.

74 | The SELECT Statement

A useful tip when using the ORDER BY clause is to use an integer abbreviation instead of
the complete column name. Column abbreviations start with 1, which is given to the
first column in your statement. 2 is given to the second column, and so on. Let's try
to perform the same query as before, but we will now order the columns using their
abbreviations and, this time, the second ordering column will be sorted in ascending
order instead:

SELECT FirstName, CustomerID
FROM Customers
ORDER BY 1, 2;

The result is as follows:

Figure 4.12: Sorting using integer abbreviations for the columns

As you might have concluded, the default ordering or ASC is applied here. If you need
data in descending order, then the DESC keyword needs to be applied. The resultant SQL
query will be as follows:

SELECT FirstName, CustomerID
FROM Customers
ORDER BY 1 DESC, 2 DESC;

Retrieving All Columns of a Table | 75

The output for the query would be as follows:

Figure 4.13: Output in descending order

Using LIMIT

We can limit the number of records displayed in the results by providing a specific
number of records to be retrieved using the LIMIT keyword. It is an optional keyword
and is used after the SELECT keyword in the following form:

SELECT [COLUMNS LIST]
FROM [TABLE NAME]
LIMIT [n];

[n] is the number of records you want to retrieve.

It is important to know that the LIMIT statement limits the number of records from the
top row, working its way downward. It will execute based on the condition mentioned
in the query. This implies that when the query is executed, the clauses with conditions
(the WHERE and ORDER BY clauses) will be applied first, and then the top n rows will be
retrieved.

Note

The equivalent SQL Server syntax for this would be:

SELECT TOP [n] [COLUMN LIST]

76 | The SELECT Statement

Exercise 4.03: Using the LIMIT Keyword

The store manager wants to identify the five most expensive items from the product
catalog. To obtain this report, we will need to do the following:

1.	 Type the following query:

SELECT ProductName, NetRetailPrice
FROM Products
ORDER BY NetRetailPrice DESC
LIMIT 5;

2.	 Execute the query. The result is as follows:

Figure 4.14: Top five most expensive items in the catalog

As you can see in Figure 4.14, the result table displays five records as per the ORDER
clause used.

While if we used the same query and changed the number to 4 instead of 5, your query
would look like this:

SELECT ProductName, NetRetailPrice
FROM Products
ORDER BY NetRetailPrice
LIMIT 4;

The result should show four records instead of five, as shown in the following
screenshot:

Figure 4.15: Top four most expensive items in the catalog

Retrieving All Columns of a Table | 77

Using DISTINCT

Whenever we want to make sure we always retrieve distinct records (records with no
duplication), we can use the DISTINCT keyword. The DISTINCT is an optional keyword that
is used after the SELECT keyword in the following form:

SELECT DISTINCT [COLUMNS LIST]
FROM [TABLE NAME]

The DISTINCT keyword is commonly used with individual columns to make sure the
retrieved column has unique values. When DISTINCT is used with more than one column,
this means the complete set of selected columns should be distinct or unique, not only
the first one. Let's see some examples to make this clearer.

For this example, we'll use the Customers1.sql script. It will create a new table called
Customers1 that contains duplicate values. The Customers1 table will allow us to
understand the functionality of the DISTINCT keyword. You can find the script set up for
Customers1 at https://packt.live/2Sv87rp. Run the query present in the Customers1.sql.
You can see its contents by running the following query:

SELECT *
FROM Customers1;

The result is as follows:

Figure 4.16: Table with duplicate values

This is a standard SELECT query just to see results before we demonstrate our example.
Take a careful look at the last row and the penultimate row; you will notice that they
share the same first name, and so do rows 2 and 7. Let's see what will happen once we
add the DISTINCT keyword to the statement:

SELECT DISTINCT FirstName, LastName
FROM Customers1;

https://packt.live/2Sv87rp

78 | The SELECT Statement

The result is as follows:

Figure 4.17: Table after duplicate values are removed

We see that we get back the same number of records because there are no two rows
that are identical across all the selected columns.

Let's use the same query but with the LastName column removed and see what happens:

SELECT DISTINCT FirstName
FROM Customers1;

Figure 4.18: After removing the LastName query from the previous table

In this case, we can see that there are only seven records. The duplicate Grace and
Stephen entries have not been included in the results.

Retrieving All Columns of a Table | 79

Using Mathematical Expressions

Sometimes, not all the information you need in a report is available in database fields.
You often need to apply some mathematical expressions to your data to get the result
you need. In this section, we are going to show you how you can use and build complex
expressions and create your own calculated fields with the SELECT statement.

Mathematical expressions can be a combination of addition, subtraction, multiplication,
and division, so your options in creating an expression are almost endless.

Please note that we are talking about mathematical expressions here, so all the fields
involved in this expression should have a numeric data type. Otherwise, we will get an
error.

Exercise 4.04: Calculating the Line Item Total

In the OrderItems table, we have the quantity and the unit price we need to get the line
item total. The line item total will be the product of the unit price and the quantity. To
do so, perform the following steps:

1.	 Type the following query with the additional column:

SELECT ProductID, Quantity, UnitPrice, (Quantity*UnitPrice) AS
 'Line Item Total'
FROM OrderItems;

2.	 Execute the query. Your result will be as follows:

Figure 4.19: UnitPrice and Line Item Total for products

80 | The SELECT Statement

As you can see, we used a multiplication expression to get the line item total. It's simple
but can get complicated very easily, so we always recommend using parentheses
whenever possible to make sure the expression is correct and clear.

Exercise 4.05: Calculating Discount

In the OrderItems table, there is a Discount field. We will use this field along with our last
expression to get the line item price after the discount. Perform the following steps:

1.	 Write the following query:

SELECT ProductID, Quantity, UnitPrice, (Quantity*UnitPrice)
 AS 'Line Item Total', Discount,
 ((Quantity*UnitPrice)-(Quantity*Discount))
 AS 'Price After Discount'
FROM OrderItems;

2.	 Execute the query. You should get the following result:

Figure 4.20: Line item price after applying the discount

As you can see, we can use all math calculations effectively, and quickly retrieve data.

Summary | 81

Activity 4.02: Extracting the Top Five Highest Priced Items

You are asked to generate a report showing the five highest value items in terms of
the net retail price from Packt_Online_Shop. The report should contain the following
columns:

•	 Product Name: This is the name of the product.

•	 Product Retail Price: This is the net retail price of the product.

•	 Available Quantity: This is the currently available quantity of the product.

•	 Total Price of Available QTY: This is the total net retail price of the available
quantity.

Write a query that generates the requested report.

1.	 Use the Select statement to retrieve the required columns and use the AS keyword
to provide aliases.

2.	 Order by the price.

3.	 Use the LIMIT keyword to obtain the top 5 products.

Note

The solution for this activity can be found via this link.

Summary
In this chapter, we covered the SELECT query in detail, starting with its syntax and
creating our own queries, customizing and limiting column names, and then creating
our own calculated columns. We also saw how to control the ordering of the results we
get, as well as how to limit the results using the LIMIT and DISTINCT keywords. In the
next chapter, we will learn how to shape our statements and narrow down the results
further using the WHERE clause.

Shaping Data with the
WHERE Clause

Overview

In this chapter, we will see how to narrow down the records returned by a query
according to specific requirements. We will also see how to search for NULL values.
We'll also see how to use the LIKE operator to implement pattern matching.
Handling NULL values and empty cells in the results is also covered in this chapter.

5

84 | Shaping Data with the WHERE Clause

Introduction
In the previous chapter, we learned how to extract data from a specific table and sort
it. However, in practice, we come across a lot of scenarios where we need to filter
our results based on certain criteria and conditions. Consider the example of a table
containing the details of all the books available from Packt, from which we want to
find the names and ISBNs of all the books that cost more than $10. This scenario is
illustrated in the following figures:

Figure 5.1: Applying a filter to retrieve books that cost more than $10

The relevant columns are shown in the following table. The filtered result will look
something like the second table in the following figure:

Figure 5.2: Result after filtering and retrieving books that cost more than $10

In SQL, the WHERE clause allows us to apply the filter functionality. In this chapter,
we will dig deep into using the WHERE clause in our queries by combining and adding
different conditions to derive our results.

We will also look at handling NULL or empty values to ensure that our report is well
controlled, precise, and based on our requirements.

The WHERE Clause Syntax | 85

The WHERE Clause Syntax
The WHERE clause is optional and can be added to any SELECT statement, usually after the
FROM clause, as follows:

SELECT [COLUMNS LIST]
FROM [TABLE NAME]
WHERE [CONDITION]
ORDER BY [COLUMN NAME] [ASC|DESC]

As you can see in the highlighted line, this statement starts with the WHERE keyword
followed by a condition.

Conditions in SQL are logical operators that can be used for comparison. Condition
operators are listed in the following table:

Figure 5.3: Conditional operators in SQL

These operators can be used to compare two fields/values to achieve the desired
results.

Note

The compared fields or values must be of the same data type for the statement to
be successful.

A simple implementation of a WHERE clause is as follows:

USE studentdemo;
SELECT *
FROM Student;

86 | Shaping Data with the WHERE Clause

The sample Student table looks like this:

Figure 5.4: Sample student table

Using the Student table of the StudentDemo database, say we want to retrieve the names
and the IDs of those students who've enrolled in the Electronics course.

The SQL query to achieve this would be as follows:

SELECT *
FROM Student
WHERE course = 'Electronics';

The result would be as shown in the following screenshot:

Figure 5.5: Names of the students enrolled in the Electronics course

Exercise 5.01: Implementing Logical Operators in the WHERE Clause

The store manager wants a list of all the items that are priced over $14.99 and wants to
label them as high-value products. To retrieve the list of all the products that are priced
over $14.99, perform the following steps:

1.	 Open a new query window.

2.	 Switch to PACKT_ONLINE_SHOP:

use PACKT_ONLINE_SHOP;

3.	 Write a query to filter the products that are priced over $14.99:

SELECT ProductName AS 'High-value Products', NetRetailPrice
FROM Products
WHERE NetRetailPrice > 14.99

The WHERE Clause Syntax | 87

4.	 Execute the query; the result will be as follows:

Figure 5.6: Products with NetRetailPrice greater than $14.99

As you can see in Figure 5.6, the result set is now showing 6 records out of 11, and
all these products have a net retail price that's greater than $14.99.

5.	 To include products that have a NetRetailPrice of $14.99 in the previous results,
use the >= operator as follows:

USE PACKT_ONLINE_SHOP;
SELECT ProductName AS 'High-value Products', NetRetailPrice
FROM Products
WHERE NetRetailPrice >= 14.99

6.	 Execute the query, and you'll get the following results:

Figure 5.7: Products with NetRetailPrice greater than or equal to $14.99

88 | Shaping Data with the WHERE Clause

We can control our results further by limiting our search to a specific range. We do
this by using the BETWEEN operator. For example, if we were to filter students who have
scored between 75 and 90, our syntax for the WHERE clause would be:

WHERE SCORE BETWEEN 75 AND 90

Exercise 5.02: Using the BETWEEN Operator

The store manager now wants to list all the items in the range of $14.99 to $50 as
mid-priced items. To derive a list of all items that are priced between $14.99 and $50, we
will need to perform the following steps:

1.	 In a new query window, write the following query:

SELECT ProductName,NetRetailPrice
FROM Products
WHERE NetRetailPrice BETWEEN 14.99 AND 50
ORDER BY NetRetailPrice;

2.	 Execute the query. The result will be as follows:

Figure 5.8: Products with NetRetailPrice ranging from $14.99 to $50

Note that products with the price range ($14.99 and $50) will also be included in the
results if they are available. In our case, you can see that the first record (which has a
price value of 14.99) is included in the results.

The Not Equal Operator
SQL supports the following symbols to denote the not equal operator: != and <>. The
not equal operator will exclude the conditions where values are equal in the results.

The Not Equal Operator | 89

Exercise 5.03: Using the != and <> Operators

The store manager realizes that the tomato sauce received has gone bad, so he does
not want to present it in the list of available items. To write a query to display all the
products except the tomato sauce, perform the following steps:

1.	 Enter the SELECT statement, using the WHERE clause and the != operator:

SELECT ProductName,NetRetailPrice
FROM Products
WHERE ProductName != 'tomato sauce'
ORDER BY NetRetailPrice;

2.	 Execute the query; you should see the following results:

Figure 5.9: List of all products except tomato sauce after using the != operator

3.	 As an alternative, now replace the != symbol with the <> operator:

SELECT ProductName,NetRetailPrice
FROM Products
WHERE ProductName <> 'tomato sauce'
ORDER BY NetRetailPrice;

90 | Shaping Data with the WHERE Clause

4.	 Execute the query; your result should be the same as before:

Figure 5.10: List of all products except tomato sauce after using the <> operator

As you can see, irrespective of the operator used, the results are identical and do not
contain the product tomato sauce.

The LIKE Operator

Often, we come across situations where we need to retrieve data with a certain pattern.
For example, you may want to get all customer names that start with an "A", or any
customers with "Joe" in their name. This is where the LIKE operator comes in handy.
Similar to the other operators we've seen in this chapter, the LIKE operator is used with
the WHERE clause.

Let's implement it in our syntax:

SELECT [COLUMNS LIST]
FROM [TABLE NAME]
WHERE [COLUMN NAME] LIKE '[PATTERN]'

In the LIKE pattern condition, there are two wildcards that can be used together to
create a pattern:

•	 % represents zero or multiple characters

•	 _ represents a single character

The Not Equal Operator | 91

Figure 5.11 will give you a better understanding of how these wildcards can be used
together to form a pattern:

Figure 5.11: Wildcard patterns for the LIKE operator

Let's see an example. To search for first names that have o in the second position, the
following query can be run:

SELECT FirstName, LastName, Phone
FROM Customers
WHERE FirstName LIKE '_o%';

The output will be as follows:

Figure 5.12: First names with an "o" in the second position

92 | Shaping Data with the WHERE Clause

Exercise 5.04: Using the LIKE Operator to Check a Pattern at the Beginning of

a String

To increase area-wide sales in LA, we want a list of customers from LA. We don’t
currently have any field specifically mentioning the state/country, but since we record
the customers’ phone details, we can filter the phone numbers that start with the code
for LA (310), as follows:

1.	 Write a query implementing the LIKE operator in the WHERE clause to match the
phone numbers that begin with (310):

SELECT FirstName AS 'Customers from LA', Phone
FROM Customers
WHERE Phone LIKE '(310)%';

2.	 Execute the query. The result should be as follows:

Figure 5.13: List of customers with (310) in their phone number

Exercise 5.05: Using the LIKE Operator to Check for a Specified Length

We want to provide usernames to our customers so they can log into our system. We
want to create each username from the customer's first name. However, our system
does not allow three-letter usernames. The store manager will have to pull up a report
on all the customers with three-letter usernames. To do so, perform the following
steps:

1.	 Write the following query in a new query window:

SELECT FirstName, LastName, Phone
FROM Customers
WHERE FirstName LIKE '___';

Checking for NULLS | 93

2.	 The following records will be returned:

Figure 5.14: List of customers with three-letter usernames

Checking for NULLS
Before we learn to handle NULL values, let's define a NULL value. NULL equals nothing in
SQL, so a field that has no value is considered NULL. Usually, NULL fields are the result of
having optional fields in your tables.

Checking NULL values can be done using the following two special keywords, as it cannot
be done using the logical operators:

•	 IS NULL

•	 IS NOT NULL

Note

An important point to highlight is the fact that fields with a value of 0, or invisible
characters such as spaces, are not considered NULL. NULL fields are fields that are
left blank.

Exercise 5.06: Searching for NULL Values

Ideally, we want all customers' first names to be in our system. For any customer whose
first name is missing from our data, we want to contact the customer and ask them
about the missing information. To do this, we require a report of all the customers with
missing first names:

1.	 Retrieve the middle name, last name, and phone number columns to check for all
the customers with NULL values in the MiddleName field, as follows:

SELECT MiddleName, LastName, Phone
FROM Customers
WHERE FirstName IS NULL;

94 | Shaping Data with the WHERE Clause

The result is as follows:

Figure 5.15: Customers whose first name is missing

We can now ring up people and ask them to enter their first names using this report.

Combining Conditions with the AND, OR, and NOT Operators
On many occasions, we may need to combine multiple conditions at the same time. The
best way to do this in SQL is by using the following three operators, which can be used
between conditions in the WHERE clause:

•	 AND: This operator makes sure both sides of the operator (both conditions) are true.

•	 OR: This operator makes sure one side at least of the operator is true.

•	 NOT: This operator makes sure that the condition following this operator is false.

Exercise 5.07: Querying Multiple Conditions

Joe, a customer from LA, has requested to speak to the store manager regarding a
complaint. We are going to write a query to retrieve all of this customer's details. This
will allow the manager to have all the required information to best help resolve the
customer's complaint.

The state code for LA is (310). To pull the required information, perform the following
steps:

1.	 Enter the query as follows:

SELECT *
FROM Customers
WHERE FirstName = 'Joe' AND Phone LIKE '(310)%';

Combining Conditions with the AND, OR, and NOT Operators | 95

2.	 Execute the query. This gives the following result:

Figure 5.16: Customers with the name Joe with an LA code phone number

For clarity, we're also going to do a search for all customers who are either named Joe
or who live in LA. This will help us to verify that we've got the right customer, rather
than the wrong Joe, or the wrong person from LA. We will do this by using the OR
operator on the same example:

SELECT FirstName, LastName, Phone
FROM Customers
WHERE FirstName = 'Joe' OR Phone LIKE '(310)%';

The result is shown in the following screenshot. As required, it displays all customers
with either the first name Joe or a phone number that starts with (310):

Figure 5.17: Customers with the name Joe or an LA phone number

There are no other Joes in our system, and there is nobody else in LA who has a similar
name to Joe. So, we can be fairly confident we have got the correct person.

Tip

Whenever we combine conditions, it is always a good practice to use parentheses
to group conditions together and make sure we are writing the correct query.

96 | Shaping Data with the WHERE Clause

Now, say we have a scenario where we need to list all customers that have a first name
starting with Jo and a phone number that starts with (310) or (210), but who don't have a
last name of Carter. This is a perfect scenario to use all operators in one query:

SELECT FirstName, LastName, Phone,Notes
FROM Customers
WHERE FirstName LIKE 'Jo%' AND (Phone LIKE '(310)%' OR Phone LIKE '(210)%') AND NOT
LastName = 'Carter';

This returns the records shown here:

Figure 5.18: Customers named Joe with a 310/210 phone code and without the surname Carter

As you can see, we used parentheses to separate the OR comparison and compare the
full block with the first condition of the first name.

Activity 5.01: Combining Conditions to Extract Store Data

As store manager, you need to generate a report that shows the following columns:
product name, product retail price, available quantity, and total price of available
quantity.

However, you are asked to only include products that meet the following conditions:

•	 A net retail price that is lower than or equal to 24.99

•	 An available quantity that is at least 38 items

•	 A product name that doesn't start with 10

Generate the report as described.

Note

The solution for this activity can be found via this link.

Summary | 97

Summary
In this chapter, we have covered the WHERE clause in detail. We started with its syntax
and then created conditions and compared data using wildcard symbols to form
powerful patterns. We identified NULL values, and, at the end of the chapter, used
certain operators to combine conditions. The next chapter will discuss how we can
obtain data that is spread across multiple tables using Joins.

JOINS

Overview

This chapter will help you understand the functionality of the various joins and
their implementation through examples. By the end of this chapter, you will be
able to implement an INNER JOIN to retrieve overlapping data within multiple
tables and write LEFT and RIGHT JOIN queries to filter the results that have been
obtained from multiple tables. We will also be able to implement a CROSS JOIN to
obtain a cartesian product of the table elements; and combine two queries using
UNION.

6

100 | JOINS

Introduction
In the previous chapter, we saw how the WHERE clause can be used to filter elements and
provide us with more control over the data we can retrieve from a table. However, in
many cases, not all the data we require can be found in a single table. Having a single
table to store all the data is also not feasible because its maintenance will be extremely
difficult. One way of connecting tables and retrieving data from them is by using joins.

We can use the JOIN operation to extract data from multiple tables that have common
columns using a single query. Based on the data that's required, there are various types
of joins that are supported by SQL.

In this chapter, we will look at the following types of joins that are available in SQL:

•	 INNER JOIN

•	 RIGHT JOIN

•	 LEFT JOIN

•	 CROSS JOIN

•	 UNION

Each topic in this chapter will illustrate a type of JOIN. We will be working with the
PACKT_ONLINE_SHOP throughout this chapter. First, we'll begin with the INNER JOIN.

INNER JOIN
The INNER JOIN is the default type of join that is used to select data with matching
values in both tables. It can be represented with the following Venn diagram:

Figure 6.1: INNER JOIN

INNER JOIN | 101

The INNER JOIN represents the highlighted section, which is the intersection between
these two tables. Let's have a look at the INNER JOIN syntax:

SELECT [Column List]
 FROM [Table 1] INNER JOIN [Table 2]
 ON [Table 1 Column Name] = [Table 2 Column Name]
WHERE [Condition]

The syntax can also be written as follows:

SELECT [Column List]
 FROM [Table 1] JOIN [Table 2]
 ON [Table 1 Column Name] = [Table 2 Column Name]
WHERE [Condition]

Note

The use of INNER in the query is optional.

The INNER JOIN is one of the most commonly used type of joins. Let's implement this in
an exercise.

Exercise 6.01: Extracting Orders and Purchaser Information

You are a store manager that needs to extract the details of all the orders, along with
the customer details from the PACKT_ONLINE_DATABASE. To do so, follow these steps:

1.	 Look at the tables involved in obtaining the required elements and identify the
common columns:

Figure 6.2: Orders table and Customers table relationship

102 | JOINS

As you can see, the Orders table and the Customers table both contain the
CustomerID column. In order to join the two tables, we need to map the CustomerID
columns of the Orders table to those of the Customers table.

2.	 Open a new query window, switch to the PACKT_ONLINE_SHOP database, and type the
following query:

SELECT Orders.OrderNumber, Orders.OrderStatus, Orders.OrderDate,
 Customers.FirstName, Customers.LastName, Customers.Email
FROM Orders JOIN Customers ON Orders.CustomerID = Customers.CustomerID;

3.	 Execute the query. Your output should be as follows:

Figure 6.3: Order and purchaser information

If you observe the naming convention that's used in naming columns, we started with
the name of the table and a dot, ., followed by the name of the column. This is a great
way to prevent ambiguity because sometimes, you may find the same column name
being used in different tables. With this practice, your database management system
will always know of the exact columns you want to refer to.

In the syntax, we have specified the join criteria by using Orders.CustomerID =
Customers.CustomerID. This resulted in six records as output (which are the complete
records of the Orders table), along with the fields from both tables.

The key element is to make sure that your join criteria are correct based on the shared
columns between your joined tables. Next, we'll look at the next type of join, known as
the RIGHT JOIN.

RIGHT JOIN | 103

RIGHT JOIN
This type of join is used when you want to select records that are available in the
second table and matching records in the first one. This can be visualized with the
following Venn diagram:

Figure 6.4: RIGHT JOIN

As we can see, the RIGHT JOIN represents the highlighted section, that is, TABLE B, and
the intersected section of TABLE A. Let's look at the syntax for the RIGHT JOIN:

SELECT [Column List]
 FROM [Table 1] RIGHT OUTER JOIN [Table 2]
 ON [Table 1 Column Name] = [Table 2 Column Name]
WHERE [Condition]

The syntax can also be written as follows:

SELECT [Column List]
 FROM [Table 1] RIGHT JOIN [Table 2]
 ON [Table 1 Column Name] = [Table 2 Column Name]
WHERE [Condition]

Note

Writing OUTER in the query is optional.

104 | JOINS

Exercise 6.02: Implementing RIGHT JOIN

The store wants the list of customers, along with their orders, and also wants to include
customers who haven't purchased anything from the store yet.

The challenge here is to show customers who haven't ordered yet—that's why, in this
case, it would be perfect to use the RIGHT JOIN. As per the preceding diagram, this
should result in an intersection area between table 1 (Orders) and table 2 (Customers),
which indicates customers who have ordered something before, as well as the
remaining area of table 2 (Customers), which indicates customers who have not ordered
anything from us yet. Let's get started:

1.	 Open a new query window and enter the following query:

SELECT Customers.FirstName,
Customers.LastName,
Customers.Email ,
Orders.OrderNumber,
Orders.OrderStatus

FROM Orders RIGHT JOIN Customers ON
 Orders.CustomerID = Customers.CustomerID

2.	 Execute the query. You should get the following output:

Figure 6.5: List of customers with their orders and customers who haven't ordered anything

RIGHT JOIN | 105

You may have noticed a similar result in Figure 6.3; however, you have some extra
records with NULL values in the OrderNumber and OrderStatus fields.

3.	 To extract a list of customers who haven't placed any orders from the store, enter
the following query:

SELECT Customers.FirstName,
Customers.LastName,
Customers.Email ,
Orders.OrderNumber,
Orders.OrderStatus

FROM Orders RIGHT JOIN Customers ON
 Orders.CustomerID = Customers.CustomerID
WHERE Orders.OrderNumber IS NULL

This results in the following output:

Figure 6.6: Result table with only NULL values

In the syntax, we have specified the JOIN criteria by using Orders.CustomerID =
Customers.CustomerID. This resulted in six records as output (which are the complete
records of the Orders table), along with the fields from both tables.

Thus, we have seen how we can implement a RIGHT JOIN in the database.

106 | JOINS

LEFT JOIN
This type of JOIN is used when you want to select records that are available in the first
table and match records in the second one. It can be represented with the following
Venn diagram:

Figure 6.7: LEFT JOIN

The LEFT JOIN represents the highlighted section from TABLE A and the intersected
section from TABLE B. Let's look at the syntax:

SELECT [Column List]
 FROM [Table 1] LEFT OUTER JOIN [Table 2]
 ON [Table 1 Column Name] = [Table 2 Column Name]
WHERE [Condition]

The syntax can also be as follows:

SELECT [Column List]
 FROM [Table 1] LEFT JOIN [Table 2]
 ON [Table 1 Column Name] = [Table 2 Column Name]
WHERE [Condition]

Note

The OUTER word in the query is optional.

This type of join is very similar to the RIGHT JOIN, with the only difference being that
it executes the table on the opposite (left) side. Now that we have seen how we can
implement LEFT JOIN, let's do an exercise to implement them and retrieve payment
information from our PACKT_ONLINE_SHOP database.

LEFT JOIN | 107

Exercise 6.03: Implementing LEFT JOIN

The store manager now wants to analyze the payment data for the customers.
Specifically, the manager wishes to retrieve only those orders that have payments with
payment information. Here is how this information can be retrieved:

1.	 In the new query window, type in the following query:

SELECT Orders.OrderNumber,
 Orders.OrderStatus,
 Payments.PaymentRef,
 Payments.PaymentType

FROM Payments LEFT JOIN Orders ON Payments.OrderID = Orders.OrderID

2.	 Run the query by clicking on the Execute button:

Figure 6.8: Result of the LEFT JOIN

Notice how we started the join with the payments table instead of the orders
table to adapt the query with the LEFT JOIN. If we had put the orders table at the
beginning, we would have got a list of all the orders instead of only the ones that
have payments for them.

3.	 Execute the following query:

SELECT Orders.OrderNumber,
 Orders.OrderStatus,
 Payments.PaymentRef,
 Payments.PaymentType

FROM Orders LEFT JOIN Payments ON Payments.OrderID = Orders.OrderID

108 | JOINS

This results in the following output:

Figure 6.9: Result of the LEFT JOIN as per the order of join

As you can see, the order of how you join your tables together is important because it
determines your result set.

CROSS JOIN
This type of join is used when you want to combine the elements of a particular column
with the elements of another column. This implies that each record from the first table
and each record from the second table are laid out in all possible combinations in one
single table, just like in the case of a cartesian product. Here is how we can perform this
task using the CROSS JOIN syntax:

SELECT [Column List]
 FROM [Table 1] CROSS JOIN [Table 2]
WHERE [Condition]

To understand this concept well, we will perform CROSS JOIN on simple tables and see
how they work in the following exercise.

CROSS JOIN | 109

Exercise 6.04: Implementing CROSS JOINS

Consider that we have a table called Facecards, with a column called suits, and a table
called CardSuite with a column called cardvalue. Now, we want to cross-reference all
the suits with all the card values. To do this, perform the following steps:

1.	 Create a table called Facecards with the following values:

Create table Facecards (cardvalue varchar (50));
insert into Facecards (cardvalue) values ('King');
insert into Facecards (cardvalue) values ('Queen');
insert into Facecards (cardvalue) values ('Jack');
insert into Facecards (cardvalue) values ('Ace');

2.	 Create a table called CardSuit with the following values:

Create table CardSuit (suit varchar(50));
insert into CardSuit (suit) values ('Heart');
insert into CardSuit (suit) values ('Spade');
insert into CardSuit (suit) values ('Clubs');
insert into CardSuit (suit) values ('Diamond');

3.	 Implement the CROSS JOIN query to cross-reference the two columns:

SELECT Facecards.cardvalue,
 CardSuit.suit

FROM Facecards CROSS JOIN CardSuit

110 | JOINS

4.	 Execute the query:

Figure 6.10: List of all combinations between products and their categories

As shown in the preceding screenshot, you will find a list of all possible combinations
between the suit and Facecards values.

UNION JOIN
The UNION operation is used to combine two queries. Let's look at the syntax:

SELECT [COLUMNS LIST] FROM [TABLE NAME]
UNION
SELECT [COLUMNS LIST] FROM [TABLE NAME]

However, the most important point to remember when we use the UNION operation is to
ensure the following:

•	 Both query columns have similar data types

•	 Both query columns are in the same order

Let's take a look at the following exercise to see how the UNION query functions.

UNION JOIN | 111

Exercise 6.05: Implementing a UNION JOIN

The store manager wants a telephonic feedback survey from everyone who the store
employees work with. This implies that there's a list of suppliers and customers and
their full names, along with their contact numbers. To do this, perform the following
steps:

1.	 In a new query window, write the following query:

SELECT CONCAT(Customers.FirstName,' ',Customers.LastName) as 'FULL NAME',
 Customers.Phone AS 'Phone Number'
 FROM Customers
 UNION
 SELECT Suppliers.ContactPerson AS 'Full Name',
 Suppliers.PhoneNumber AS 'Phone Number'
 FROM Suppliers

Clearly, you can see that there are two queries separated by the UNION keyword.
The first query provides the full names of all the customers, while the second query
provides the full names of all the suppliers. The UNION join will ensure that these
values are retrieved as a single table. Notice that in this query we have used the
CONCAT function. This concatenates the first and last names, joining them together
to give the full name of each customer.

Note

In cases where either the first name or the last name is NULL, the resultant name
would also be NULL.

To avoid such instances you can add a statement to the query:

IFNULL (Customers.FirstName, '_')

112 | JOINS

2.	 Execute the query, you will get the following output:

Figure 6.11: Supplier and customer information

As you can see from the preceding output, the FULL NAME column will contain the names
of both the customers and the suppliers, while the Phone Number column will contain the
contact numbers of both the customers and the suppliers.

This concludes all the different ways of combining tables using joins.

Activity 6.01: Implementing JOINS

The store manager notices that there are some complaints about incorrectly priced
orders by customers. He wants a report that contains the order's details, along with the
product prices, in order to investigate this issue. Write a query to obtain such a result.

Note

The solution for this activity can be found via this link.

Summary | 113

Summary
In this chapter, we learned all about joins and how we can get data from multiple tables,
and we explored the different types of joins, along with the UNION operation. These
essential skills will be your base moving forward so that you can get creative with mix
and match joins to pinpoint the result set you are looking for. In the next chapter, we
will look at some other ways we can retrieve data from multiple tables.

Subqueries, Cases,
and Views

Overview

In this chapter, we will look at some techniques that will help us add logic to our
existing queries using CASE statements. We will also query data present in multiple
tables using subqueries. We will also create views using queries that allows us the
flexibility to create a temporary table to run queries on.

7

116 | Subqueries, Cases, and Views

Introduction
In the previous chapter, we saw how the various types of SQL joins can connect
multiple tables in a single SELECT query. This powerful technique gives us fine-grained
control over the data that our SQL queries return. However, SQL offers much more.
In this chapter, we'll use the PACKT_ONLINE_SHOP database to see how subqueries, CASE
statements, and views boost the flexibility and power of SQL in an efficient, intuitive
way. Like joins, subqueries can relate different tables together in the same SQL query,
but compared to queries involving multiple outer joins and unions, subqueries can offer
a simpler, cleaner query structure. This can make the development and maintenance
of the code easier. CASE statements offer a clean, efficient way for a query to handle
decisions, depending on the defined conditions that occur in the query. Views provide
an efficient, effective way to group multiple tables together in a symbolic table that's
available for use by other queries. In this chapter, we will look at each concept in detail.

Subqueries
In a SQL statement, a subquery operates like a joined table. It gathers data in a
structured way and makes that data available for its outer SQL query. Placed in
parentheses, a subquery, or an inner query, nests inside a parent, or an outer query. A
subquery can nest in the following clauses of the parent query or another subquery:

•	 SELECT

•	 FROM

•	 WHERE

A lot of the power of SQL products comes from their ability to link different tables in a
single query. As we have seen already, we can link tables with inner and outer joins. In
a query, we can also use a subquery to relate data from different tables. We can easily
use the result of a subquery in the parent query without dealing with a join. Although
queries with joins often have better performance, a subquery structure can seem a
little more intuitive at first glance. Additionally, it's always good to have another option
available when we build our queries. Both MySQL and SQL Server handle subqueries.
Although a SQL subquery is a complete, standalone SQL statement, here, we'll focus on
subqueries that return only one column to avoid unneeded complexity as we explore
the concept of subqueries. A subquery can certainly return two or more columns, but if
the outer query expects only one column, the subquery must return only one column.

Subqueries | 117

Suppose a Packt manager wants a list of products that have zero sales. The Products
and OrderItems tables probably have the information we need because OrderItems ties
specific products to specific orders. Using what we've learned about SQL joins, we can
build a query to answer this question:

USE packt_online_shop;

SELECT Products.ProductID, Products.ProductName,
 Products.ProductCategoryID
FROM Products LEFT OUTER JOIN
 OrderItems
ON Products.ProductID = OrderItems.ProductID
WHERE OrderItems.ProductID IS NULL
ORDER BY Products.ProductID;

The result will be as follows:

Figure 7.1: A MySQL OUTER JOIN query

In this query, we placed the Products table columns we wanted in the SELECT clause.
The LEFT OUTER JOIN matches the rows between the Products and OrderItems tables.
The LEFT OUTER JOIN also combines those rows with the Products table rows that don't
match the OrderItems table rows. Although an inner join would match those rows, an
inner join will miss Products table rows that have no OrderItems table matches. In the
WHERE clause, IS NULL filtered out the rows from the Products table that have a matching
row in the OrderItems table. This makes sense because we want the Products table rows
that don't appear in the OrderItems table. The ORDER BY clause sorts the result set by
ProductID. We can also solve this problem with a subquery.

Try the following subquery:

USE packt_online_shop;
SELECT Products.ProductID, Products.ProductName, Products.ProductCategoryID
FROM Products
WHERE Products.ProductID NOT IN

(SELECT ProductID FROM OrderItems)
ORDER BY Products.ProductID;

118 | Subqueries, Cases, and Views

You should get the following result:

Figure 7.2: A MySQL subquery

We'll focus on the inner query—the subquery—first, and then work it out from there.
In this query, we started with the following SQL query, which shows all the ProductID
values in the OrderItems table:

SELECT ProductID FROM OrderItems

We placed this query inside parentheses to make it a subquery. In the outer query, the
SELECT and FROM clauses have the columns from the Products table that we require. The
outer query WHERE clause uses NOT IN to filter out the Products table rows that don't
exist in the subquery. The ORDER BY clause sorted the result set by ProductID.

Exercise 7.01: Working with Subqueries

In this exercise, we will use a subquery to find the orders (as OrderID values) for the
orders with no related rows in the OrderItems table. Let's get started:

Note

This exercise will work for both MySQL 8.0.15 and SQL Server 2014.

1.	 We'll start with the Orders table since the Orders table ties the orders together
with the OrderItems table. Build a list of OrderID values for all the orders in the
OrderItems table. Test it and put it aside for now:

USE packt_online_shop;

SELECT OrderID FROM ORDERITEMS;

Subqueries | 119

2.	 Build a list of all the OrderID values in the Orders table, as follows:

USE packt_online_shop;

SELECT O.OrderID
FROM Orders O;

3.	 Add a WHERE clause to the query. Use NOT IN to filter the Orders table with the
subquery that we built first. Sort the result set by OrderID:

USE packt_online_shop;

SELECT O.OrderID
FROM Orders O
WHERE O.OrderID NOT IN (SELECT OrderID FROM ORDERITEMS)
ORDER BY O.OrderID;

The output is as follows:

Figure 7.3: Printing the ID that's not common for the order in the OrderItems table

In this exercise, we filtered out the order ID for the order that does not have a
corresponding entry in the OrderItems table.

Activity 7.01: Finding the Product Category Name Using a Subquery

The Packt Online Shop management team needs to know the product category name
for the habanero peppers product. You are asked to find the required information. Use
a subquery to retrieve the requested data. The Products and ProductCategories tables
have the data needed for the solution.

Note

The solution for this activity can be found via this link.

120 | Subqueries, Cases, and Views

Case Statements
As we build SQL queries and statements, often, we'll need a way to examine a set of
conditions and then return a value based on one of those conditions. The MySQL and
SQL Server CASE statement does exactly this. For example, we may need a SELECT query
column that shows different values based on different, specific values or conditions
that have been found in a specific database table column. We'll see an illustration of this
in the next paragraph. A SQL CASE statement will step through a list of conditions and
then return a result based on the first matching condition it finds. The CASE statements
work in the SELECT, UPDATE, DELETE, WHERE, and HAVING clauses, and they operate a lot like
simple IF…ELSE statements. Note that the CASE statement can't control execution flow
in a SQL function or stored procedure. We'll look at functions and stored procedures in
more detail later.

We can get basic product information from the Products table, but for now, we need a
list of products that labels those products by NetRetailPrice. Specifically, we need to
use these rules:

•	 If NetRetailPrice is less than or equal to 24.99, then label it Cheap.

•	 If NetRetailPrice is more than 24.99 and less than or equal to 79.99, then label it
Mid-price.

•	 If NetRetailPrice is more than 79.99 and less than or equal to 2499.99, then label it
Expensive.

•	 If NetRetailPrice has any other price, then label it Very Expensive.

The query will look as follows:

USE packt_online_shop;

SELECT ProductName, WholesalePrice, NetRetailPrice,
 'Price Point' AS 'Price
 Point', UnitKGWeight
FROM products
ORDER BY ProductName;

Case Statements | 121

The query will work as follows in MySQL:

Figure 7.4: Output for the MySQL query

The query returns the ProductName, WholesalePrice, NetRetailPrice, and UnitKGWeight
columns from the Products table, plus a new column called Price Point to show the
pricing label we want. This query will certainly work as is, but the Price Point column
will literally show Price Point for every row. The SQL CASE statement will help with this.
We can add the CASE statement to the query as follows:

USE packt_online_shop;

SELECT ProductName, WholesalePrice, NetRetailPrice,
 CASE
 WHEN NetRetailPrice <= 24.99 THEN 'Cheap'
 WHEN NetRetailPrice > 24.99 AND NetRetailPrice <=
 79.99 THEN 'Mid-price'
 WHEN NetRetailPrice > 79.99 AND NetRetailPrice <=
 2499.99 THEN 'Expensive'

 ELSE 'Very Expensive'
 END AS 'Price Point',
 UnitKGWeight
FROM products
ORDER BY ProductName;

122 | Subqueries, Cases, and Views

The code will look as follows in MySQL:

Figure 7.5: The output of the preceding MySQL case statement

The CASE statement starts with the CASE keyword and ends with END. It has one or more
conditions—one for each rule that we want to test. Each condition starts with the WHEN
keyword, then the condition to test, followed by the THEN keyword, and finally the result
for that specific condition. As soon as the CASE statement finds a true condition, it will
execute that condition and then leave the CASE statement. The ELSE keyword serves as
a default if no conditions are true. In MySQL, a CASE statement column does not require
a column name alias, but we should always include it. MySQL requires a CASE statement
column name alias.

Exercise 7.02: Using Case Statements

The Packt Online Shop calculates its product shipping prices based on NetRetailPrice *
UnitKGWeight. In a SELECT statement, we can place this in a CASE statement column to
label each product by its shipping cost with the following rules:

•	 If NetRetailPrice * UnitKGWeight is less than or equal to 1.0, then label it Cheap.

•	 If NetRetailPrice * UnitKGWeight is more than 1.0 and less than or equal to 35.00,
then label it Mid-price.

•	 If NetRetailPrice * UnitKGWeight is more than 35.00 and less than or equal to
100.00, then label it Expensive.

Case Statements | 123

•	 If NetRetailPrice * UnitKGWeight has any other price, then label it Very Expensive.

Note

This exercise will work for both MySQL 8.0.15 and SQL Server 2014.

Perform the following steps to complete this exercise:

1.	 We'll start with the Products table. First, let's build a basic list of products, their net
retail price, and their unit kilogram values:

USE packt_online_shop;

SELECT ProductName, NetRetailPrice, UnitKGWeight
FROM products;

2.	 Add a Shipping Cost column to the SELECT statement. Add only one condition to
test the overall idea. Remember that we'll need a calculation. Ignore the NULL values
in the Shipping Cost column:

USE packt_online_shop;

SELECT ProductName, NetRetailPrice, UnitKGWeight,
 CASE
 WHEN (NetRetailPrice * UnitKGWeight) <= 1.0 THEN 'Cheap'
 END AS 'Shipping Cost'
FROM products;

3.	 Everything looks good, so add all the conditions. Remember the ELSE condition to
cover the default:

USE packt_online_shop;

SELECT ProductName, NetRetailPrice, UnitKGWeight,
 CASE
 WHEN (NetRetailPrice * UnitKGWeight) <= 1.0 THEN 'Cheap'
 WHEN (NetRetailPrice * UnitKGWeight) > 1.0 AND(NetRetailPrice *
 UnitKGWeight) <= 35.00 THEN 'Mid-price'
 WHEN (NetRetailPrice * UnitKGWeight) > 35.00 AND
 (NetRetailPrice * UnitKGWeight) <= 100.00 THEN 'Expensive'
 ELSE 'Very Expensive'
 END AS 'Shipping Cost'
FROM products;

124 | Subqueries, Cases, and Views

The output is as follows:

Figure 7.6: Output from using the CASE statement

In this exercise, we saw how we can use CASE to print different values depending on
different conditions.

Activity 7.02: Categorizing the Shipments Using CASE Statements

You have been asked to build a list of order shipment date categories for a report dated
December 15, 2019.

The business rules define shipment dates before December 15, 2010 as Past Shipment
Dates. A shipment date on or after December 15, 2010, but before December 15, 2019, is
defined as a Recent Shipment Date. Anything else is defined as a Future Shipment Date

Use a CASE statement to build the required list, implementing a YYYY-MM-DD format
for the date values. The result set should contain the order number, shipment date, and
shipment date category columns.

The orders table has the raw data that you will need.

Note

The solution for this activity can be found via this link.

Views | 125

Views
As a business grows, its financial management and reporting needs will probably grow
as well. Management will turn to the database for answers. Every database query will
be different, but eventually, it will become clear that the same, or very similar, SELECT
statements seem to come up again and again. The same SELECT statement could show
up in a subquery, or maybe in a stored procedure, which is something we'll learn about
soon. That statement could become really complicated, with a lot of tables, outer joins,
CASE statements of its own. If we could somehow save that SELECT statement and then
use it like a table as a basis for other SQL statements and queries, we could save a lot of
time and effort. SQL views will help solve this problem.

SQL views can encapsulate complex queries, exposing the columns in a much cleaner
way for use by other queries. In other words, a view can join multiple tables together
in a defined, structured way, and substitute all of that complexity with a view name
that operates just like a table name. Views can also limit access to their component
tables, which increases security. We can assign access to a view to different users in a
secure, granular way. Additionally, a SQL view can make database maintenance easier if
different queries and resources throughout the database use that view.

One change in one view could save us having to make the same changes in potentially
hundreds of other database queries. Note, however, that we should avoid UPDATE
operations with views because the security aspects of even simple views can make this
really difficult, and views of even moderate complexity won't support updates.

Think of a SQL view as a predefined SELECT statement with one or more tables, and
at least one column from one table. A view returns only table columns. Once defined,
other SQL queries and statements can use that view as another table. A SQL view can
isolate tables and columns securely, thus exposing only those data resources that other
stakeholders may need. Additionally, if multiple database resources use the same view
and the tables behind the view change, we would only need to change the view itself,
that is, in a one-to-many way. Nothing that relies on the view would have to change.
Without a view, we would have to change each of those resources, which would become
a major pain point. The following code will convert the query into a view named
CUSTOMER_PRODUCT_VIEW:

USE packt_online_shop;
GO -- Include for SQL Server; remove for MySQL

CREATE VIEW CUSTOMER_PRODUCT_VIEW
AS

SELECT CONCAT(customers.FirstName, ' ', customers.LastName) AS
 'CustomerName', orders.OrderDate, products.ProductName
FROM customers INNER JOIN orders ON

126 | Subqueries, Cases, and Views

 customers.CustomerID = orders.CustomerID
 INNER JOIN orderitems ON
 orders.OrderID = orderitems.OrderID
 INNER JOIN products ON
 orderitems.ProductID = products.ProductID;

The query will return the following output on its successful execution:

Figure 7.7: A MySQL view

Enter the following query:

SELECT CustomerName, OrderDate, ProductName
FROM customer_product_view;

The output will look as follows:

Figure 7.8: Displaying the values in a view

Views | 127

Exercise 7.03: Building a View

Build a SQL view that shows Packt Online Shop customers and their per-product
spending by returning the CustomerID, OrderDate, ProductID, ProductName, and
PerProductSpending columns. Let's get started:

1.	 First, build and test a basic SQL query for the list we need:

USE PACKT_ONLINE_SHOP;

SELECT customers.CustomerID, orders.OrderDate, products.ProductID,
 products.ProductName, orderitems.Quantity *
 orderitems.UnitPrice AS 'PerProductSpending'
FROM customers INNER JOIN orders ON
 customers.CustomerID = orders.CustomerID
 INNER JOIN orderitems ON
 orders.OrderID = orderitems.OrderID
 INNER JOIN products ON
 orderitems.ProductID = products.ProductID;

2.	 Add some statements to build a view around this tested SQL statement. Name it
PACKT_VIEW_1 and use the CREATE VIEW {view name} AS syntax and execute it:

USE PACKT_ONLINE_SHOP;
CREATE VIEW PACKT_VIEW_1
AS
SELECT customers.CustomerID, orders.OrderDate,
 products.ProductID, products.ProductName,
 orderitems.Quantity * orderitems.UnitPrice AS
 'PerProductSpending'
FROM customers INNER JOIN orders ON
 customers.CustomerID = orders.CustomerID
 INNER JOIN orderitems ON
 orders.OrderID = orderitems.OrderID
 INNER JOIN products ON
 orderitems.ProductID = products.ProductID;

3.	 	 Test the PACKT_VIEW_1 view, as follows:

USE PACKT_ONLINE_SHOP;

SELECT CustomerID, OrderDate, ProductID, ProductName,
 PerProductSpending
FROM PACKT_VIEW_1
WHERE PerProductSpending > 14.99;

128 | Subqueries, Cases, and Views

The output is as follows:

Figure 7.9: PACKT_VIEW_1 view

Activity 7.03: Building a View

Consider you have been asked to generate an invoice for the Packt Online Shop.

To do this, you need to build a view that returns an order ID, product ID, item quantity,
unit price, subtotal (as item quantity * unit price) for each item, and the subtotal
category columns for the customers who have a last name of Atreides. Consider the
following rules for the subtotal category:

•	 If Subtotal is less than $25.00, Subtotal Category is Small.

•	 If Subtotal is less than or equal to $79.99, Subtotal Category is Medium.

•	 If Subtotal exceeds $79.99, Subtotal Category is Large.

Note

The solution for this activity can be found via this link.

Summary | 129

Summary
In this chapter, we saw that subqueries, CASE statements, and views offer ways for us to
build powerful queries that expand and extend the techniques we looked at in earlier
chapters. Subqueries offer a way for us to relate multiple tables in one query, in addition
to the join technique. Queries can use CASE statements to behave differently, based on
defined data conditions, in a clean, structured way. Views offer a way to summarize,
encapsulate, and gather data from different tables in a flexible, efficient, and secure
way. These concepts will become important as we proceed with the next chapter and
the remainder of this book.

In the next chapter, we will look at some advanced SQL concepts and see how we can
effectively program and automate queries.

SQL Programming

Overview

In this chapter, we'll see how we can build programs and software that reliably
automate database operations, thus returning huge savings of time, effort, and
money.

By the end of this chapter, you'll be able to build and execute stored procedures
that automate database operations. You will be able to build and execute functions
that encapsulate repeated statements in defined, structured units. Moreover, you
will be equipped to build and execute triggers that automatically execute database
operations when predefined events occur.

8

132 | SQL Programming

Introduction
In the previous chapter, we explored SQL subqueries, CASE statements, and views. These
features offer great flexibility when we work with database resources. To use these
features, and all the other SQL product query features we have seen so far, we type
a SQL command into the development environment, run it, and look for the results
somewhere within that environment. This approach certainly works well enough, and
we relied on it as we learned about MySQL. However, it won't work for applications
that rely on SQL database products as data resources. We need a product feature that
can somehow automate the queries we want to run and reliably handle all the required
management and overhead. Fortunately, modern SQL products, including MySQL, offer
the following features to solve this problem:

•	 Stored procedures

•	 Functions

•	 Triggers

These features involve actual programming, and in this chapter, we'll explore the
basic programming concepts. We'll be working on the PACKT_ONLINE_SHOP database to
understand these SQL programming features.

Programming for SQL Products – The Basics
MySQL programming, like all programming and software development, relies on a small
set of core ideas. Variables are an important part of that idea set, and we'll see how they
work as we begin to work with MySQL.

When we build programs in MySQL or in any other software development language,
we use variables as buckets to hold information, or values, that the programs need.
A variable has a name, and in most software products—including MySQL—it has an
information type. In a structured, predictable way, the program can change the value
of a variable based on the behavior of the program, information that comes into the
program from outside of the program, or both. A variable will reliably hold the last value
assigned to it. Before we look at SQL stored procedures and functions, we'll see how
variables operate in MySQL.

Programming for SQL Products – The Basics | 133

Launch MySQL and place the following statements in the editor or the query window:

SET @var1 = NULL; -- 1. Declare variable @var1
SELECT @var1; -- 2. Output the value of @var1
SET @var1 = 3; -- 3. Set @var1 to 3
SELECT @var1; -- 4. Output the value of @var1
SET @var1 = @var1 - 7; -- 5. Subtract 7 from @var1
SELECT @var1; -- 6. Output the value of @var1
SET @var1 = @var1 + 5; -- 7. Add 5 to @var1
SELECT @var1; -- 8. Output the value of @var1

In each line, the text after the two consecutive hyphen characters, --, will not execute
as they are comments. We can place the two consecutive hyphen characters anywhere,
as shown here. These characters work the same way in a stored procedure. Therefore,
we have to be careful with them because, in the middle of a stored procedure
statement, they could lead to an error because SQL will ignore these characters and
everything after them.

We can use this feature to write comments in the programs we build. Comments
help explain how programs work. Although this example has short, simple comments,
all the software we build should include detailed, descriptive comments to explain
its development history, important engineering ideas, and so on to help later
programmers—including you—understand how it works. Let's look at what each line
states:

•	 Line 1 shows the first use of the @var1 variable in this set of MySQL statements.
MySQL does not require special statements, data types, or code to initially declare
a variable; the first use of a variable is enough. To assign a value to a variable,
MySQL expects the SET keyword, then the variable name, an equals sign, and then
the actual value itself. Always prefix the variable name with the @ symbol, every
time you use that variable. When we place a variable name with SET on the left of an
equal sign, as seen in lines 1, 3, 5, and 7, MySQL expects that statement to assign a
value, even NULL, to that variable. For example, line 1 assigns NULL to @var1.

•	 Line 2 uses the SELECT keyword, which we saw earlier in this course, to output the
latest value of @var1.

•	 Line 3 assigns a non-null value to @var1.

•	 Line 4 outputs that value.

134 | SQL Programming

•	 Line 5 subtracts 7 from @var1, changing its value in a predictable way.

•	 Line 6 once again outputs the latest value of @var1.

•	 Line 7 adds 5 to @var1.

•	 Line 8 outputs the latest @var1 value.

MySQL requires a semicolon at the end of every statement of a stored procedure, a
function, and a trigger. To see how these statement looks like In MYSQL, refer Figure
8.1:

Figure 8.1: MySQL statements

Programming for SQL Products – The Basics | 135

To run all the statements at once, click the yellow lightning bolt at the top of the code
pane, located near the top. MySQL now looks like this:

Figure 8.2: Result of running the MySQL statements

136 | SQL Programming

To run all the statements at once, click the yellow lightning bolt at the top of the code
pane, located near the top. MySQL now looks like this:

Figure 8.3: Example execution of SQL variable statements

MySQL shows diagnostics about each executed statement in the Output window. The
Result Grid tabs show the actual output of each MySQL statement. As we can see
from the preceding screenshot, there are several tabs that show the result. Here, we
highlighted the Result 4 tab. Clicking the Result 1 tab will show the following output in
Result Grid:

Programming for SQL Products – The Basics | 137

Figure 8.4: @var1: a variable with a NULL value

Everything makes sense, except for the output of the first SELECT statement. The SELECT
@var1 variable returns NULL.

When we declared the @var1 variable, we assigned a NULL value to it. MySQL does not
necessarily see this as wrong, at least in this example. However, keep in mind that it can
cause problems as you build SQL programs. This happens because MySQL, a program
that depends on the data MySQL returns, or both, may expect a non-null value at
certain points.

138 | SQL Programming

MySQL allows us to highlight, or paint, specific lines in the programs we build for fine-
grained control of the lines we execute. Depending on the specific situation, sometimes
the highlighted code will work, and sometimes it won't. To execute this correctly, all the
highlighted code must be correct because it must all work in one batch.

We should use this painting technique with caution, especially on a live, or production,
database. We can easily run statements by mistake, which could damage live data. In
Chapter 11, Advanced SQL, we'll learn about transactions, a technique that offers greater
control and reversibility when we execute SQL statements.

Stored Procedures

MySQL defines a group of one or more SQL statements as a stored procedure, and
this definition extends to other database products. A stored procedure has features
that are similar to those of other programming languages and technologies. A stored
procedure can easily accept input values from other stored procedures and even other
programs. A university database system, for example, may rely on a stored procedure—
probably many inter-related stored procedures—to efficiently and reliably calculate
the current tuition balances at any time for one, some, or all of its students. The overall
calculation will probably become complex, in part because it will pull data from many
different tables. If the developers use stored procedures to build the solution, both the
development process and the solution they build will become much more efficient,
reliable, maintainable, and secure.

Stored procedures offer huge benefits. A stored procedure can gather complex SQL
statements and queries into one package that returns consistent results and behaves
in consistent ways each time we execute or call it. With proper configuration, external
programs and applications can execute stored procedures in a clean, reliable way,
and stored procedures can return result sets to the programs that call them in a
structured, dependable way. Stored procedures have great flexibility because they
use key concepts of programming and software development, as we'll see. A stored
procedure can return, update, and delete table data. A stored procedure can call other
stored procedures. In addition, SQL products compile stored procedure code, which
optimizes its performance and scalability, even for solutions with heavy traffic volumes.
This aspect of stored procedures enhances security because compilation converts
the stored procedure code into machine code, which is difficult to read. A university
administration department, for example, may use stored procedures in its database
system because stored procedures offer an ideal way to translate complex business
rules into clean, efficient, maintainable programs.

Programming for SQL Products – The Basics | 139

When we use MySQL to work with a specific database, the MySQL installation will
see other databases. The MySQL installation process creates some of those databases
for MySQL to use, and although we can see them ourselves, we need to leave them
alone for now. In our case, we'll have at least the PACKT_ONLINE_SHOP database. Other
MySQL resources, in other organizations, may have additional databases in their data
resources. A specific database owns every SQL stored procedure within it, just like a
specific database owns every SQL table within it. To build a stored procedure, we must
first choose its database. In MySQL, choose the PACKT_ONLINE_SHOP database from the
dropdown, as shown here:

Figure 8.5: Choosing the specific database for the stored procedure

140 | SQL Programming

Next, drill down to Stored Procedures in the upper-left SCHEMAS directory, right-click,
and then click Create Stored Procedure..., as shown here:

Figure 8.6: Creating a stored procedure

Programming for SQL Products – The Basics | 141

The stored procedure creation tool will open, as shown here:

Figure 8.7: The CREATE PROCEDURE tool

Now, we can build a stored procedure for the PACKT_ONLINE_SHOP database. This code
categorizes the products, depending on the product's price:

USE packt_online_shop;

SELECT ProductName, WholesalePrice, NetRetailPrice,
 CASE
 WHEN NetRetailPrice <= 24.99 THEN 'Cheap'
 WHEN NetRetailPrice > 24.99 AND
 NetRetailPrice <= 79.99 THEN 'Mid-price'
 WHEN NetRetailPrice > 79.99 AND
 NetRetailPrice <= 2499.99 THEN 'Expensive'
 ELSE 'Very Expensive'
 END AS 'Price Point',
 UnitKGWeight
FROM products
ORDER BY ProductName;

142 | SQL Programming

The output for this will be as follows:

Figure 8.8: A MySQL query

Programming for SQL Products – The Basics | 143

This works well enough, but suppose the company's management now wants a new web
page, but only for the products with a net retail price below a specific dollar price level.
The following is a mockup of the web page:

Figure 8.9: A mockup of the web page

144 | SQL Programming

This shows the information that management wants. We need a flexible way to
somehow filter the rows by net retail price and then pass those filtered rows to the
company web server. A stored procedure will solve this problem. When a web page user
clicks Submit on that page, the web server can send the request to the database server,
and the database server will return the requested data as expected. Starting with the
SELECT statement, just above it, place the following code:

CREATE PROCEDURE 'spFilterProductsByNRP' (IN priceLevel FLOAT)
BEGIN

to test: USE packt_online_shop;
CALL spFilterProductsByNRP(10.50);

SELECT ProductName, WholesalePrice, NetRetailPrice,
 CASE
 WHEN NetRetailPrice <= 24.99 THEN 'Cheap'

 WHEN NetRetailPrice > 24.99 AND
 NetRetailPrice <= 79.99 THEN 'Mid-price'

 WHEN NetRetailPrice > 79.99 AND
 NetRetailPrice <= 2499.99 THEN 'Expensive'

 ELSE 'Very Expensive'
 END AS 'Price Point',
 UnitKGWeight
FROM products
WHERE NetRetailPrice <= priceLevel
ORDER BY ProductName;

END

Programming for SQL Products – The Basics | 145

It will look like the following in MySQL Workbench:

Figure 8.10: Building a stored procedure in a MySQL query window

146 | SQL Programming

This code looks a lot like the original SELECT statement we used earlier, with extra lines.
Line 1 has the CREATE PROCEDURE keywords, with the name of the stored procedure.
Different software development shops have different naming requirements, of course;
this stored procedure name starts with sp to show that it names a stored procedure.
The CREATE command on line 1 expects the stored procedure name to be in backtick '
characters.

At line 1, an input parameter follows the back-ticked stored procedure name. An input
parameter works a lot like a variable, and we declare it like a variable. When another
program calls a stored procedure, the input parameters will take information in a
specific format from that other program and pass that information into the stored
procedure to use. We call a value that moves from the calling program to the receiving
program an argument. When that value arrives at the receiving program, we call it
a parameter. A parameter declaration starts with a name, and we use @ as the first
character of the name. The input parameter type follows. In this case, @priceLevel has a
float data type. A float data type works like a decimal value.

For the input parameter, the command expects the keyword IN, the parameter
name, and the data type of that parameter. The parameter name does not start with
a @ character. If necessary, separate multiple parameters, each with this format, by
commas. The comments at lines 4 and 5 are not required, but we'll see shortly that they
will help us when we test the stored procedure. These comments start with a #, another
valid MySQL commenting character. Notice the following WHERE clause on line 21:

WHERE NetRetailPrice <= @priceLevel

When this stored procedure runs, this WHERE clause uses the @priceLevel parameter
value to filter the rows that the stored procedure will return. The input parameter on
line 21 does not start with a @ character. Remember that in a real-world situation, a
stored procedure will probably have heavy validation and error checking, to increase its
reliability.

Programming for SQL Products – The Basics | 147

Although we can see the stored procedure code in the stored procedure window, we
must compile, or build it, to make it an actual PACKT_ONLINE_SHOP database component.
To do so, click the Apply button located in the bottom-right corner of the window.

Figure 8.11: Building a new MySQL stored procedure

148 | SQL Programming

Click Finish in the window to return to the MySQL Workbench, as seen here:

Figure 8.12: Building a new MySQL stored procedure – last step

To test the new stored procedure in the Workbench, drill down to File | New Query tab
to open a new window.

The following MySQL command will run the stored procedure:

USE packt_online_shop;
CALL spFilterProductsByNRP(10.50);

Programming for SQL Products – The Basics | 149

It starts with the keyword CALL, then the stored procedure name, then open/close
parentheses, and the argument of value 10.50 inside the parentheses. The line ends with
a semicolon. Place multiple argument values in the parentheses, separating those values
with commas. Run the program by clicking the execute button:

Figure 8.13: Testing a MySQL stored procedure

The result set should appear below the editor window.

Exercise 8.01: Building a MySQL Stored Procedure That Returns a List of Packt

Online Shop Order Details

The Packt Online Shop managers need a report that shows the customer names, order
numbers, and order dates. They may run this report at any time, and whenever they run
it, they will need the latest, most up-to-date information possible. A stored procedure
will generate the required information and solve the problem in an efficient way. Build
a MySQL stored procedure to return the customer names, order numbers, and order
dates from the PACKT_ONLINE_SHOP database. Only return the orders with order dates
on or before a given order date parameter. Display the name in one column, in the
following format, and name that column Customer Name. Remember the space between
FirstName and LastName. Sort the result set by Customer Name.

150 | SQL Programming

1.	 Type the following query to build a stored procedure:

use packt_online_shop;
CREATE PROCEDURE 'spCustomerOrders' (IN orderDate datetime)

SELECT CONCAT(C.FirstName, ' ', C.LastName) as 'Customer Name',
 O.OrderNumber, O.OrderDate
FROM orders O INNER JOIN customers C ON
 C.CustomerID = O.CustomerID
WHERE O.OrderDate <= orderDate

ORDER BY 'Customer Name';

2.	 Run the query. This results in the following output:

Figure 8.14: A MySQL stored procedure

Eventually, we might need to change the spFilterProductsByNRP stored procedure.
Suppose that the Packt company management likes how the web page supported
by this stored procedure works, but now wants it to show the available quantity
column from the products table. The web page will need some changes, of course,
but as the data source, the spFilterProductsByNRP stored procedure will also need
some changes. We can easily do this in MySQL.

Right-click the stored procedure name in the Navigator window and click Alter
Stored Procedure, add an additional column as shown in the following screenshot,
and add the Apply and Finish buttons:

Programming for SQL Products – The Basics | 151

Figure 8.15: Edit an existing MySQL stored procedure

Drill down to New Query Editor window. The stored procedure will open in a new
window, as shown here:

USE [PACKT_ONLINE_SHOP]
GO

SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

ALTER PROCEDURE [dbo].[spFilterProductsByNRP]

 @priceLevel float

AS

 -- to test: spFilterProductsByNRP 206.00

152 | SQL Programming

SELECT ProductName, WholesalePrice, NetRetailPrice,
 CASE
 WHEN NetRetailPrice <= 24.99 THEN 'Cheap'
 WHEN NetRetailPrice > 24.99 AND
 NetRetailPrice <= 79.99 THEN 'Mid-price'
 WHEN NetRetailPrice > 79.99 AND
 NetRetailPrice <= 2499.99 THEN 'Expensive'
 ELSE 'Very Expensive'
 END AS 'Price Point',
 UnitKGWeight,
 AvailableQuantity -- New column requested by
 PACKT management for Product Price Report
 UnitKGWeight
FROM products
WHERE NetRetailPrice <= @priceLevel
ORDER BY ProductName;
GO

This results in the following output:

Figure 8.16: Editing an existing MySQL stored procedure

Programming for SQL Products – The Basics | 153

MySQL added lines 1 to 9, and line 38. We can ignore these added lines. The ALTER
command on line 12 will save the changes that we make to this stored procedure,
specifically the new column we added at line 33. When we ALTER a stored
procedure, MySQL will ignore all the comments in the code, including those on
lines 18 and 33. Click the blue cross to verify the SQL syntax, and then click Execute.
Paint and run the test statement on line 18, as shown here:

Figure 8.17: Testing an existing MySQL stored procedure

Now, let's ALTER a MySQL stored procedure to understand how to edit a stored
procedure.

154 | SQL Programming

Exercise 8.02: Altering a MySQL Stored Procedure

The Packt managers now need an extra filter for the spFilterProductsByNRP MySQL
stored procedure reports in order to filter by product weight. Add an additional
parameter to the MySQL spFilterProductsByNRP stored procedure to filter by
UnitKGWeight. The stored procedures should return rows with product weight values
less than or equal to an additional specified weight parameter value.

1.	 Enter the following query to alter the stored procedure:

CREATE DEFINER='root'@'localhost' PROCEDURE
 `spFilterProductsByNRP`(IN priceLevel FLOAT, IN unitWeight FLOAT)

BEGIN

SELECT ProductName, WholesalePrice, NetRetailPrice,
 CASE
 WHEN NetRetailPrice <= 24.99 THEN 'Cheap'

 WHEN NetRetailPrice > 24.99 AND
 NetRetailPrice <= 79.99 THEN 'Mid-price'

 WHEN NetRetailPrice > 79.99 AND
 NetRetailPrice <= 2499.99 THEN 'Expensive'

 ELSE 'Very Expensive'
 END AS 'Price Point',
 UnitKGWeight,
 AvailableQuantity # New column requested by PACKT
 # management for Products webpage
FROM products
WHERE NetRetailPrice <= priceLevel AND
 UnitKGWeight <= unitWeight # Filter with unitWeight parameter value
ORDER BY ProductName;

END

2.	 Run the query to test the stored procedure:

USE packt_online_shop;
filterProductsByNRP(10.50, 0.2);

Programming for SQL Products – The Basics | 155

You should get the following output:

Figure 8.18: Altered stored procedures

Activity 8.01: Building a Stored Procedure

The Packt Online Shop management needs to know which orders have order item
quantities that fall below the given value limits. These value limits could change,
depending on specific management reporting needs. Build a stored procedure that
returns all the orders with total order item quantity values that fall at or below an
integer filter value. The stored procedure will have an integer input parameter that will
become the filter value. These steps will help you to complete this activity:

1.	 First, build a basic SQL query. The query will add specific values in a specific
column, so use the SUM function in the SELECT clause. The SUM function will need a
GROUP BY clause in the SELECT query. Sort the result set by OrderID.

2.	 Build a stored procedure around the query and include the filter value in the SELECT
query's HAVING clause.

Note

The solution for this activity can be found via this link.

156 | SQL Programming

Functions
The complexity of the software we build expands as we build it. In part, this becomes
unavoidable because the mass of the software itself also expands. However, we
can definitely avoid the complexity of repeating blocks of code. Modern software
development products give us a way to place one copy of a repeating block of code
in one defined location. Then, in the software, we can replace all repeated instances
of that code block with a call to that one defined copy of the code. We call this one
defined block of software a function. Think of a function as a box that takes in zero or
more values and returns one or more values in a structured way. A function simplifies
software, and it makes the software we build much easier to maintain, repair, and
enhance. If a program has the same identical code block repeated one hundred times,
the same required change to all of those blocks would require the same work and
testing—one hundred times. If we replace those blocks with one hundred calls to a
single function, and in some way call the function when and where we need it, we
can change and test the function code in one location. This would instantly give us a
incredibly huge saving in time, effort, and expense. MySQL offers built-in functions that
we can directly call in the Workbench query windows and in the stored procedures we
build. MySQL and SQL products generally, include built-in functions that include the
following categories:

•	 Date and time

•	 Datatype conversion

•	 Mathematical

•	 Statistical

•	 String

Even better, MySQL offers us a way to build our own custom functions. We'll see both
types of MySQL functions. For example, we could easily build MySQL functions that
calculate the number of hours between the time of function execution and the first
second of January 1 of that year. These functions could have major value for finance,
insurance, and inventory management applications. SQL functions offer many of the
advantages of SQL stored procedures as described earlier, but a function does not offer
the exact same advantages and flexibility. Functions can't update or delete table data.
Functions can't call stored procedures. Additionally, external programs and applications
can't call a SQL function as easily.

Functions | 157

Launch MySQL and type these statements in the query window:

SET @var1 = NULL, @var2 = 'A test string'; # 1. Declare variables and
 # assign a value to a variable

SET @var1 = 3; # 2. Set @var1 to 3

SELECT LOG(@var1); # 3. Select the natural log of @var1

SELECT @var1; # 4. @var1 did not change

SELECT EXP(LOG(@var1)); # 5. Nested function calls: natural log, then exponential

SELECT LOG(EXP(@var1)); # 6. Nested function calls: exponential, then natural log

SELECT @var1; # 7. @var1 did not change

SET @var1 = @var1 * 5; # 8. @var1 has a new value

SELECT @var1; # 9. Select @var1

SELECT @var2; # 10. Set @var2 = natural log of @var1

SELECT UPPER(@var2); # 11. Select UPPER CASE @var2

158 | SQL Programming

This screenshot shows the code in MySQL Workbench:

Figure 8.19: Example MySQL function code

The statement 1 variable declarations use the MySQL format, and each statement ends
with a semicolon. Instead of an integer, statement 5 might produce a long decimal
number. This happens because of rounding issues within MySQL functions and shows
that we need to test the software that we build as we build it. Issues like this could
cause problems when we ship software to customers. However, we can rely on the
built-in functions with high confidence.

Although SQL products offer many built-in functions, we might need a new function to
handle a new, unique requirement. Suppose a Packt Online Shop manager just emailed
us a list of new reports that she needs, based on data from the PACKT_ONLINE_SHOP
database. For a given customer, these reports will need total sales revenue, minus a
discount. In other words, given a specific customer (for example, CustomerID = 3) we
need to total all sales revenue across all orders that the customer has made. We'll use
this calculation:

(Quantity of Product Ordered) X (Product Unit Price - Discount)

Functions | 159

In MySQL, these statements calculate the value we need:

USE packt_online_shop;
SET @custID = 3;

SELECT SUM((OI.Quantity * (OI.UnitPrice - OI.Discount)))
FROM OrderItems OI INNER JOIN Orders O ON
 OI.OrderID = O.OrderID
WHERE O.CustomerID = @custID;

However, many reports will use this exact same calculation, and therefore, these
changes, combined with their enhancement, maintenance, and testing, will become
complicated, difficult, and expensive. We need to build a function around these SQL
statements and then call that function whenever we want. Starting with the preceding
SQL statement, this function will solve the problem for us:

CREATE FUNCTION 'fnTotalSalesRvnByCust' (CustomerID Integer)
RETURNS FLOAT
DETERMINISTIC
BEGIN

 /*
 To test:

 SELECT packt_online_shop.fnTotalSalesRvnByCust (12);
 SELECT packt_online_shop.fnTotalSalesRvnByCust (3);

 */

 DECLARE retVal FLOAT;

 SET retVal = (
 SELECT SUM(OI.Quantity * (OI.UnitPrice -
OI.Discount))
 FROM OrderItems OI INNER JOIN Orders O ON
 OI.OrderID = O.OrderID
 WHERE O.CustomerID = CustomerID
);

 IF (retVal IS NULL) THEN -- If a customer has not placed an order, (s)he
 -- has a total revenue value of null. We'll

160 | SQL Programming

 -- have an easier time dealing with a 0.00
 -- return value in that case.
 SET retVal = 0.00;
 END IF;

 RETURN (retVal);
END

To open a new function window, first drill down to Create Function... in the MySQL
navigator, as shown here:

Figure 8.20: The MySQL function editor

Functions | 161

We'll use this code for the function:

CREATE FUNCTION 'fnTotalSalesRvnByCust' (CustomerID Integer)
RETURNS FLOAT
DETERMINISTIC
BEGIN

 /*
 To test:

 USE packt_online_shop;

 SELECT packt_online_shop.fnTotalSalesRvnByCust (12);
 SELECT packt_online_shop.fnTotalSalesRvnByCust (3);

 */

 DECLARE retVal FLOAT;

 SET retVal = (
 SELECT SUM(OI.Quantity * (OI.UnitPrice -
OI.Discount))
 FROM OrderItems OI INNER JOIN Orders O ON
 OI.OrderID = O.OrderID
 WHERE O.CustomerID = CustomerID
);

IF (retVal IS NULL) THEN -- If a customer has not placed an order, (s)he
-- has a total revenue value of null. We'll
-- have an easier time dealing with a 0.00
-- return value in that case.
 SET retVal = 0.00;
 END IF;

 RETURN (retVal);
END

162 | SQL Programming

We'll place it in the Workbench function editor:

Figure 8.21: Building a new MySQL function

On line 1, start with CREATE FUNCTION. Then, type fnTotalSalesRvnByCust as the name
of the function, using fn as the first two characters. This way, we will clearly state that
this is a function. Place the function name in backtick characters. Place zero or more
parameters inside the required parentheses, separated by commas. MySQL parameter
names do not have a leading @ character. Line 2 shows the data type of the return value.
This function returns a decimal data type value, so we'll use float here. Line 3 has the
word DETERMINISTIC, which MySQL requires for functions that consistently return the
same results for the same input parameters. In a MySQL function, statements between
BEGIN and END all end with a semicolon. Line 4 has the BEGIN statement, and line 33 (not
seen in Figure 8.21) has END as the last statement. Lines 7 through 12 have commented
lines as a block. We can use these commented statements to test the function. In
addition to the -- and # comment techniques we saw earlier, MySQL sees anything
between and including /* and */ as a comment.

Functions | 163

This commenting technique can become easier and more effective for large, multi-line
comments. A SQL function returns a value, and line 16 declares @retVal, the variable
that will hold this value. Its data type matches the return value of the function defined
on line 1. For all the software that we build, formal variable declarations at the top of
that software will make everyone's life easier because they give other people at other
times a clearer picture of the situation. MySQL function and stored procedure variables
declared with the DECLARE keyword do not require a leading @ character. Line 18 assigns
the value of the core SELECT statement to variable retVal, placing that SELECT statement
in parentheses. Line 22 uses the function input parameter CustomerID as a filter in the
WHERE clause.

For some customers, the SELECT query will return a NULL value because they have not
bought anything. A MySQL function can legally return a NULL value, but that could cause
problems for other software that calls this function. If the function could return 0 for
these cases, it would become easier to use elsewhere. The IF block of lines 25 through
30 will handle these situations. Line 25 checks the calculated value of retVal for NULL.
If retVal has a NULL value, the MySQL IF block of lines 25 through 30 sets retVal to 0. If
retVal does not have a NULL value, SQL will not execute that IF block.

Line 32 returns the calculated retVal value, and line 33 ends the function. To test the
function, first open a new query window, as shown here:

Figure 8.22: Open a new MySQL window

164 | SQL Programming

Place the test code from lines 9 to 12 in the window, and click the lightning icon to run
the code:

Figure 8.23: Testing a MySQL function

The function calls have the database name packt_online_shop before the function name,
as shown here:

SELECT packt_online_shop.fnTotalSalesRvnByCust (12);
SELECT packt_online_shop.fnTotalSalesRvnByCust (3);

Although MySQL does not require this, it is good practice to do this with code that calls
the functions that we build.

In Figure 8.23, the second result shows a value with four decimal places. We may need
this exact numeric precision, or we might need a different level of numeric precision.
This proves once again that we need to test the software that we build, as we build it,
before we use it in production. If the software does not behave as we expect, we must
investigate and find a solution.

Functions | 165

A few weeks later, another Packt manager wants us to remove the discount from the
fnTotalSalesRvnByCust calculations. We need to edit, or ALTER, the function. In the
MySQL Navigator, highlight the function and drill down to Alter Function..., as shown
here:

Figure 8.24: Alter a MySQL function

166 | SQL Programming

Edit line 18, as shown here:

Figure 8.25: The edited MySQL function

As described earlier, click Apply | Apply | Finish in the windows that appear. Be sure to
test the function changes as explained earlier.

Exercise 8.03: Build a MySQL Function

Build a MySQL function called fnCountCustomerOrders that will return the number of
orders a specific customer has placed. The COUNT function might help; however, note
that the COUNT function will not return a NULL value.

1.	 Write the following query:

CREATE DEFINER=`root`@`localhost` FUNCTION `fnCountCustomerOrders`(CustomerID
Integer) RETURNS int
 DETERMINISTIC
BEGIN
 DECLARE retVal INTEGER;
 SET retVal = (
 SELECT COUNT(O.OrderID)
 FROM Orders O
 WHERE O.CustomerID = CustomerID
);
 RETURN (retVal);
END

Functions | 167

2.	 Run the MySQL code. Once it is completed successfully, write the following query:

 USE packt_online_shop;

 SELECT packt_online_shop.fnCountCustomerOrders (12);
 SELECT packt_online_shop.fnCountCustomerOrders (3);

3.	 Execute this query. You should get the following output:

Figure 8.26: Testing the function

168 | SQL Programming

In this exercise, we built a complete MySQL function that returns the number of orders
a specific customer has placed, proceeding from start to finish.

Activity 8.02: Working with MySQL Functions

In this activity, we'll build MySQL functions with more sophisticated business rules and
logic. The Packt Online Shop management needs to know which orders have order item
quantities that fall below given value limits. These value limits could change depending
on specific management reporting needs. The Packt Online Shop management needs to
know the total order quantity of specific, individual products. Build a function that will
return this information. The function will have an integer input value that will become
the filter value. If a specific product has no order items, its total order quantity will have
a NULL value. In this case, return 0 (zero).

1.	 First, build a basic SQL query. Use a CASE statement in the SELECT clause to check
for and handle a NULL value.

2.	 Set a variable to the calculated value.

3.	 Build the function around the query.

Note

The solution for this activity can be found via this link.

Triggers

As users insert, update, and delete rows and columns in the database, we might want
some type of action in the database to happen automatically. For a row insertion in a
specific table, we might want to automatically update a row in another table based on
a business rule. As an example, an e-commerce database system might automatically
update its specific product inventory counts when customers place specific products
into their carts and complete their purchase transactions.

For a row update event in a specific table, we might want to automatically update
another table and insert a row in a third table. SQL triggers can handle this. A SQL
trigger is a special type of stored procedure that automatically executes in response
to a defined triggering event that the database detects. Triggers fire automatically—we
can't call a trigger in a query window, a stored procedure, or a function. MySQL has one
trigger type. To learn how triggers work, we'll first focus on a simple trigger. Next, we'll
see a more substantial example.

Functions | 169

Specific MySQL tables own their triggers, placed in designated subdirectories in the
Navigator. MySQL does not have a dedicated create trigger tool, as shown here:

Figure 8.27: MySQL does not offer a dedicated trigger creation tool

Instead, all CREATE and DROP trigger operations happen in a query window. Additionally,
MySQL does not support ALTER triggers. To edit a trigger, delete it and then create it
with updated code.

To create a trigger, remember to include the delimiter code. We saw this earlier, when
we created the MySQL spFilterProductsByNRP stored procedure in a query window. To
learn how MySQL triggers work, we'll first focus on a simple trigger. Then we'll see a
more substantial example.

170 | SQL Programming

To create a new trigger called tr_Basic for the MySQL Payments table, place this code in
a new query window:

USE packt_online_shop;

drop trigger tr_Basic;

/*
 To test: USE packt_online_shop;

 INSERT INTO Payments(OrderID, PaymentDate, PaymentType, PaymentRef, Amount,
 Notes, BalanceNotes)
 VALUES (1, '20140303', 'credit card', 'W26UA4',
 7.10, 'payment received', NULL);

 SELECT * FROM CUSTOMERS;
 */

DELIMITER $$
CREATE TRIGGER tr_Basic AFTER INSERT ON Payments
 FOR EACH ROW
 BEGIN

DECLARE customerID INT;

 SET customerID = (
 SELECT O.CustomerID
 FROM Orders O
 WHERE O.OrderID = NEW.OrderID
);

 UPDATE Customers
 SET Customers.BalanceNotes = CONCAT('Customer ',
 CAST(customerID AS CHAR), ' just got updated again')
 WHERE Customers.CustomerID = customerID;

 END$$
DELIMITER ;

Functions | 171

Then, click the lightning bolt icon at the top:

Figure 8.28: Create a MySQL trigger

172 | SQL Programming

This screenshot shows the trigger code in MySQL Workbench:

Figure 8.29: Create a MySQL trigger

In the Navigator, refresh the Payments table and the Payments table Triggers directory
if necessary. The Payments table owns the tr_Basic trigger, and a Payments table insert
event fires it. This trigger updates the Customers.BalanceNotes column with a string
showing the customerID that made the payment.

Functions | 173

The tr_Basic trigger shows all the important features of a MySQL trigger. On line 1, the
USE statement tells the stored procedure to connect to the packt_online_shop database.
The Navigator has no way to drop a trigger, so the commented line 3 code will DROP
the tr_Basic trigger when specifically painted and executed. To test the trigger, lines
6 through 12 insert a line into the Payments table and then return all Customers table
rows. Line 15 changes the trigger delimiter to $$, and line 32 restores the delimiter to its
original value of ;. On line 16, the required keywords create the trigger named tr_Basic,
as shown in this code:

CREATE TRIGGER tr_Basic AFTER INSERT ON Payments

Although it's not required, prefix trigger names with tr_ as a naming standard. The
keywords specify that the trigger fires after a Payments table insert event:

AFTER INSERT ON Payments

A trigger can map to only one table—in this case, the Payments table. A MySQL trigger
can fire BEFORE or AFTER an insert/update/delete table event. The required keywords on
line 17 specify that the trigger will cover all inserted Payments table rows:

FOR EACH ROW

The begin/end block from lines 18 to 31 has the actual executed trigger code.

For MySQL insert, update, and delete triggers, the OLD and NEW tables clone the rows
whose event(s) fired the triggers. The OLD table receives all the data and data types of
the triggering row before the triggering event fired, and the NEW table receives all the
data and data types of the triggering row after the triggering event fired. Trigger code
queries can use the OLD and NEW tables in SELECT statements, WHERE clauses, and so on,
but they can't UPDATE or DELETE rows in the OLD or NEW tables.

A MySQL trigger can't return a result set. Therefore, we can't place a simple SELECT
statement in a MySQL trigger because a SELECT statement returns a result set. As a
workaround, we can assign a SELECT statement result set to a variable in a MySQL
trigger. Lines 20 and 21 show the technique. Line 20 declares the customerID variable.
The SELECT query from lines 22 to 24 queries the Orders table for CustomerID, filtering on
the OrderID in the NEW table. Then, line 21 assigns this value to the customerID variable
with a SET statement. Lines 27 through 29 UPDATE the Customers.BalanceNotes column.
Line 31 tells MySQL Workbench that the trigger has ended, and line 32 resets the
delimiter.

174 | SQL Programming

We can build a similar trigger to update the Customers.BalanceNotes column for every
OrderItems table row insertion. We can also build a similar trigger to update the
Customers.BalanceNotes column for every Payments table insertion. A new order in the
MySQL PACKT_ONLINE_SHOP database will insert a new row in the Orders table, and at
least one row in the OrderItems table. This makes sense because every order has at least
one ordered item. Also, an order will map to one customer. In a similar way, a payment
in that database will insert a new row in the Payments table. The payment will map to a
specific order because every payment has an OrderID value. Since every OrderID value
maps to a specific customer, a payment will indirectly map to a customer. This diagram
shows the table relationships:

Figure 8.30: PACKT_ONLINE_SHOP database table relationships

Functions | 175

Because of these relationships, when a customer orders at least one item, or makes at
least one payment on an order, we can calculate a running balance for that customer.
The running balance covers all payments and all order item charges. Insert triggers on
both the Payments and OrderItems tables can calculate the customer running balances.
Because a trigger resembles a stored procedure, a trigger on one PACKT_ONLINE_SHOP
database table can see all the tables in the database, including the Payments and
OrderItems tables. This way, a PACKT_ONLINE_SHOP trigger can see all the information
it would need to calculate the customer running balances. We need a trigger on
the OrderItems table that will calculate a customer's running balance every time the
customer adds an order item in the OrderItems table. That trigger should automatically
update the Customers.BalanceNotes column with the running balance calculation result
for that customer. The Payments table needs a similar trigger that fires every time the
customer makes a payment with a new row in the Payments table.

This code builds the tr_OrderItems_OnInsert trigger:

tr_OrderItems_OnInsert

1 USE packt_online_shop;
2
3 # drop trigger tr_OrderItems_OnInsert
4
5 DELIMITER $$
6
7 CREATE TRIGGER tr_OrderItems_OnInsert AFTER INSERT ON OrderItems
8 FOR EACH ROW
9 BEGIN
10
11 DECLARE balanceNotesText VARCHAR(1000);
12 DECLARE customerID INT;
13 DECLARE orderBalance DECIMAL(10, 2);
14 DECLARE orderIDVal INT;
15 DECLARE paymentBalance DECIMAL(10, 2);
16 DECLARE runningTotal VARCHAR(50);
17
18 # The "NEW" table has the CustomerID and OrderID values
19 # from the new inserted row that we'll need.
20
21 SET orderIDVal = (
22 SELECT NEW.orderID
23);

The full code can be found at: https://packt.live/2EYAkig

https://packt.live/2EYAkig

176 | SQL Programming

In MySQL Workbench, these figures show the tr_OrderItems_OnInsert trigger:

Figure 8.31: #1 – The tr_OrderItems_OnInsert trigger

Functions | 177

MySQL query window showing line numbers 29 to 57:

Figure 8.32: #2 – The tr_OrderItems_OnInsert trigger

178 | SQL Programming

MySQL query window showing line numbers 58 to 85:

Figure 8.33: #3 – The tr_OrderItems_OnInsert trigger

Functions | 179

MySQL query window showing line numbers 86 to 104:

Figure 8.34: #4 – The tr_OrderItems_OnInsert trigger

Test it a few times with the code of lines 15 to 21:

INSERT INTO OrderItems(OrderID, ProductID, Quantity, UnitPrice, Discount, Notes)
VALUES(1, 6, 12, 4.49, 0.00, NULL);

SELECT C.BalanceNotes
FROM Customers C
WHERE C.CustomerID = 2;

180 | SQL Programming

Notice that the Customers.BalanceNotes value increases by $53.88 for each payment.
This makes sense because each test code order item row has a quantity of twelve.
In this example test code, each item costs $4.49 with no discount, so each inserted
OrderItems table row here has a total of $53.88. Therefore, the running balance amount
for CustomerID = 2 will increase by $53.88 each time we run the INSERT statement. Now,
we'll take a closer look at the code itself.

As explained earlier, a trigger is a special type of stored procedure, and the tr_
OrderItems_OnInsert trigger clearly shows this. In this code, the comment block
between lines 7 and 15 explains how to test the trigger shown in these screenshots:

Lines 29 through 34 declare the variables that the trigger code needs. The line 39
SELECT statement retrieves the OrderID value from the INSERTED table and then assigns
that value to the orderIDVal variable. This technique uses a feature of MySQL triggers.
When MySQL inserts a row into a table, another table called NEW receives an exact copy
of that inserted row. This copy clones all the data of the original inserted row, and that
cloned data has data types that match the original data. The NEW table supports only
SELECT queries, and only INSERT and UPDATE triggers can access the NEW table. A DELETE
trigger has a similar OLD table, which holds an exact copy of the DELETED row, with
similar matching data types and visibility restrictions—only DELETE triggers can access
the OLD table. A MySQL UPDATE trigger does not have a dedicated UPDATED table. Instead,
an UPDATE trigger can look for data changes in the NEW and OLD tables to see which row
columns changed, and how they changed.

The line 39 SET statement finds the orderID value mapped to the new order and sets the
orderIDVal variable to that orderID value. In a similar way, line 43 finds the customerID
value mapped to the order and sets the customerID variable to that customerID value.
Line 51 calculates the current order balance value for the customer, assigning the value
to the orderBalance variable. Line 60 calculates the current payment balance value for
the customer, assigning the value to the paymentBalance variable. Line 69 adds these
values for the runningTotal variable. Later string operations in this trigger will need this
balance total value in a string format, so line 34 declared the runningTotal variable with
a VARCHAR data type.

Lines 75 through 94 build a string that shows the latest running total for the customer.
The CONCAT string function assembles the data into a finished string. We'll see more
about string functions later. On line 93, the DATE_FORMAT function converts the NOW()
datestamp function value to a "Jan 1, 2006" format. Finally, the UPDATE statement on
line 98 updates the Customers.BalanceNotes column with the finished balanceNotesText
value for the specific customerID value.

Functions | 181

Although this trigger might look somewhat complicated, it only has logical queries
and operations that solve the problem in a step-by-step way. Understanding how SQL
works, knowledge of the PACKT_ONLINE_SHOP database structure, all combined with well-
defined business rules, led to this solution.

We can also build a similar tr_Payments_OnInsert trigger. This second MySQL trigger
operates exactly like tr_OrderItems_OnInsert, except it updates Customers.BalanceNotes
for every OrderItems table row insertion. This code almost clones the earlier MySQL
tr_OrderItems_OnInsert trigger code as well:

tr_OrderItems_OnInsert.sql

1 CREATE TRIGGER tr_Payments_OnInsert AFTER INSERT ON payments
2 FOR EACH ROW
3 BEGIN
4
5 DECLARE balanceNotesText VARCHAR(1000);
6 DECLARE customerID INT;
7 DECLARE orderBalance DECIMAL(10, 2);
8 DECLARE orderIDVal INT;
9 DECLARE paymentBalance DECIMAL(10, 2);
10 DECLARE runningTotal DECIMAL(10, 2);
11
12 # The "NEW" table has the CustomerID and OrderID values
13 # from the new inserted row that we'll need.
14
15 SET orderIDVal = (
16 SELECT NEW.orderID
17);
18
19 SET customerID = (
20 SELECT O.CustomerID
21 FROM Orders O
22 WHERE OrderID = orderIDVal
23);

The full code can be found at: https://packt.live/2EYAkig

It differs only in the CREATE TRIGGER signature and the commented test block code, both
at the top. With both triggers in place, we can see the latest, most current customer
balance information in the Customers.BalanceNotes column, updated with each inserted
OrderItems table and Payments table row.

https://packt.live/2EYAkig

182 | SQL Programming

Exercise 8.04: Build a MySQL Trigger

Build a MySQL trigger called tr_Products_OnInsert. The Products table has a SupplierID
column. For a Products table insert event, this trigger will calculate the total number
of products that Packt offers that map to the SupplierID value in the inserted row. The
trigger will update the Suppliers. Notes column with a string showing this product
count. Include the SupplierID and a formatted date stamp in the string. This supplier
(supplier 4) has three products available here at Packt as of Jun 08, 2019:

1.	 Build the tr_Products_OnInsert trigger:

tr_Products_OnInsert

USE packt_online_shop;

drop trigger tr_Products_OnInsert

DELIMITER $$

Basic syntax to create the tr_Products_OnInsert trigger
to fire after every OrderItems table row insertion.

CREATE TRIGGER tr_Products_OnInsert AFTER INSERT ON Products
FOR EACH ROW
BEGIN

 /*
 To test: INSERT INTO Products(ProductCategoryID, SupplierID,
 ProductName, ProductImage, NetRetailPrice,
 AvailableQuantity, WholesalePrice,
 UnitKGWeight, Notes)

 VALUES(3, 3, 'peanut butter', NULL, 3.79, 1000, 2.69,
 0.75, 'caution: high calorie');

 SELECT P.*
 FROM Products P
 WHERE P.SupplierID = 3;
 */

 DECLARE supplierID INT;
 DECLARE supplierProductCount INT;
 DECLARE supplierCountText VARCHAR(1000);

 # The "NEW" table has the SupplierID
 # value we'll need

 SET supplierID = (
 SELECT NEW.supplierID
);

 # Calculate the supplier product count,
 # and convert the value to TEXT

 SET supplierProductCount = (
 SELECT COUNT(P.ProductID)
 FROM Products P INNER JOIN Suppliers S ON
 P.SupplierID = S.SupplierID
 WHERE S.SupplierID = supplierID
);

Functions | 183

 SET supplierCountText = (
 SELECT CONCAT("This supplier (Supplier ", CAST(supplierID AS CHAR), ")")
);

 SET supplierCountText = (
 SELECT CONCAT(supplierCountText, " has ", CAST(supplierProductCount AS CHAR))
);

 SET supplierCountText = (
 SELECT CONCAT(supplierCountText, " products available here at Packt as of ")
);

 SET supplierCountText = (
 SELECT CONCAT(supplierCountText, DATE_FORMAT(NOW(), "%b %d, %Y"))
);

 # Update the Customers.BalanceNotes column
 # for that specific customerID

 UPDATE Suppliers
 SET Suppliers.Notes = supplierCountText
 WHERE Suppliers.SupplierID = supplierID;

 END$$

DELIMITER ;

The full code can be found at: https://packt.live/2Mzocsh

2.	 Test the trigger using the following code:

INSERT INTO Products(ProductCategoryID, SupplierID,
ProductName, ProductImage, NetRetailPrice,
AvailableQuantity, WholesalePrice,
UnitKGWeight, Notes)
VALUES(3, 3, 'peanut butter', NULL, 3.79, 1000, 2.69,
0.75, 'caution: high calorie');

SELECT S.*
FROM Suppliers S
WHERE S.SupplierID = 3;

https://packt.live/2Mzocsh

184 | SQL Programming

3.	 Execute the query. You should get the following output:

Figure 8.35: Testing the tr_Products_OnInsert trigger

In this exercise, we built a MySQL trigger, and we saw how triggers can further
automate the management of large database resources.

Activity 8.03: Building a Trigger

If an insert into the OrderItems table would bring the Products table's AvailableQuantity
column below five for that product, update the Products table's Notes column with a
warning message. As a result of the OrderItems table insert, the warning message should
explain that the available quantity for that product will drop below five.

Note

The solution for this activity can be found via this link.

Summary | 185

Summary
In this chapter, we saw that we can build powerful, structured software with SQL stored
procedures, SQL functions, and SQL triggers. These tools integrate core programming
concepts with SQL machinery to build reliable, flexible solutions to complex
programming problems. With these tools, we can leverage the power and potential
of SQL database products. In the next chapter, we will cover the best practices for
securing database resources from common potential threats.

Security

Overview

By the end of this chapter, you will be able to understand the need for access
control. We will learn how to create users and user roles in MySQL. We will also
learn how to grant and revoke permissions to user roles.

9

188 | Security

Introduction
In the previous chapter, we learned about SQL programming. We saw that SQL stored
procedures, functions, and triggers help us automate database queries and integrate
web and desktop applications with SQL database resources. We can now approach
database tasks, problems, and questions with confidence. However, we have only
worked in sandboxes, or safe, isolated environments. We haven't had to worry about
security threats and hazards. Unfortunately, real-world scenarios potentially involve
major security threats and hazards, which can lead to the theft of and damage to
valuable data.

Database resources are valuable, and bad actors have plenty of motivation to steal,
damage, and/or destroy data. Databases that house data involving national security
information, financial information, medical histories, and personal employment
histories are subject to malicious attacks from hostile actors. Hackers have successfully
attacked government and corporate databases from the outside for many years.
Sometimes, trusted employees can simply walk out the front door with the data. For
example, the 2017 Equifax data breach impacted 148 million people, and the settlement
and penalties for it cost Equifax at least $700 million.

Note

You can read more about the Equifax data breach at https://packt.live/3527R6j.

The 2015 Anthem Inc. medical data breach impacted almost 79 million people, who must
now deal with potential identity theft.

Note

You can read more about the Anthem Inc. medical data breach at https://packt.
live/2Kd5Zj0.

These attacks will continue for a long time. Although data security has become a
profession, we must proactively think through and try to prevent problems before
they occur. This chapter will address potential threats that can endanger database
resources, and how we can neutralize those threats. In this chapter, we'll look at various
best practices to secure the PACKT_ONLINE_SHOP database, along with techniques that
extend to cover MySQL databases generally.

https://packt.live/3527R6j
https://packt.live/2Kd5Zj0
https://packt.live/2Kd5Zj0

Access Control (Authorization) | 189

Access Control (Authorization)
So far, we've had full rights and control over our database resources because we created
them as operating system (OS) account administrators. We could make any changes
we wanted. Therefore, for modern databases, security focuses on who can do what to
specific database resources in a granular way.

First, the database needs to identify or authenticate every user who wishes to access
the database resources. A user will typically see a prompt to supply a login string
(username) and a password string, to enter the system. MySQL has tools that define
users with those login and password strings. Next, the database needs to authorize, or
allow, each user one or more specific actions on one or more database components.

For a modern database, a user must supply a login string and a password string to gain
entry to the system. Then, we can use those tools to give users permission to view,
create, delete, and/or update all the database resources within the server. We'll see
how this works in the next exercise.

Exercise 9.01: Creating New MySQL users

In this exercise, we'll first create a new MySQL user account. MySQL uses host-based
authentication for local environment logins. However, we can also create a new MySQL
user through MySQL itself. Launch MySQL with host authentication to get "root
authentication."

1.	 In the Navigator, click the Administration tab, and then click Users and Privileges
as shown in the following screenshot:

Figure 9.1: The MySQL Administration Tab

190 | Security

2.	 To create a new user account for TEMP_ACCOUNT_1 with the password string abcdabcd,
click Add Account at the bottom to build a new user account.

Figure 9.2: Add the New TEMP_ACCOUNT_1 account in the MySQL Administration Tab

3.	 Click Apply at the bottom-right corner and the new user will appear in the User
Accounts list, as seen here:

Figure 9.3: The TEMP_ACCOUNT_1 account in the MySQL Administration tab

Access Control (Authorization) | 191

In this exercise, we created a new Windows user called TEMP_ACCOUNT_1, and then we
created a new MySQL user account based on that new Windows user.

Exercise 9.02: Granting EXECUTE permission in MySQL

In MySQL, we will grant EXECUTE permission on the Orders table for TEMP_ACCOUNT_1.
While MySQL has roles, they do not offer the granular configuration and control of
MySQL roles. However, we can easily grant specific permissions on specific database
objects to specific users or sets of users.

1.	 The GRANT EXECUTE statement has the flexibility we need. The statements shown
here grant the execution privilege on the stored procedure to the TEMP_ACCOUNT_1
user. We GRANT a specific privilege—in this case, EXECUTE—on the stored procedure,
to the TEMP_ACCOUNT_1 user:

USE packt_online_shop;

GRANT EXECUTE ON PROCEDURE
 packt_online_shop.spFilterProductsByNRP TO 'TEMP_ACCOUNT_1';

In the MySQL Workbench, it will look like this:

Figure 9.4: Assign a permission in the MySQL Workbench

192 | Security

2.	 If needed, we can extend this to multiple users in a comma-delimited list. Although
the stored procedure name does not require the database name, it's good practice
to add it in front:

packt_online_shop.spFilterProductsByNRP

3.	 Use the SHOW GRANTS command to see the permission granted to TEMP_ACCOUNT_1. It
has this syntax:

SHOW GRANTS FOR user name;

The output should be as follows:

Figure 9.5: Grant and Show Permissions in MySQL

In this exercise, we granted a defined permission to a specific account for a specific
MySQL resource. We also saw the permission granted to that account.

Similar to the EXECUTE permission, there are other permissions that can be provided to a
user:

•	 CREATE: Provides the user with the permission to create schemas

•	 DROP: Provides the user with the permission to drop databases and tables

•	 INSERT: Provides the user with the permission to insert rows into specific MySQL
table

Summary | 193

•	 DELETE: Provides the user with the permission to delete rows from specific MySQL
table

•	 SELECT: Provides the user with the permission to read the database

•	 UPDATE: Provides the user with the permission to update table rows

•	 ALL PRIVILEGES: Provides the user with all privileges

The syntax for these permissions remain the same. Replacing EXECUTE, with other
permissions would provide the required permissions.

Activity 9.01: Grant UPDATE permission on a table in MySQL

For this activity, first, create a new Windows user named TEMP_ACCOUNT_2. In MySQL,
grant UPDATE permission on the PACKT_ONLINE_SHOP.PRODUCTS table to the user named
TEMP_ACCOUNT_2.

Note

The solution for this activity can be found via this link.

Summary
In this chapter, we saw that MySQL offers flexible tools that allow the fine-grained
security configuration of virtually all database resources. We have a responsibility to
research the security needs of organization stakeholders, age lever these security tools
to protect the database resources entrusted to us and defend the organizations that
rely on those resources.

In the next chapter, we'll return back to programming and see some of the methods
that will be used to provide statistical data from the database.

Aggregate Functions

Overview

In this chapter, we'll use SQL aggregate functions and solve problems with them.
By the end of this chapter, you'll be able to use SQL aggregate functions and
the GROUP BY clause, implement the SQL HAVING clause, explain the differences
between the HAVING and WHERE clauses, use the SQL OVER and PARTITION BY
clauses, and implement the RANK and DENSE_RANK functions.

10

196 | Aggregate Functions

Introduction
In the previous chapters, we saw that the WHERE clause can be used to filter SQL query
result sets in an efficient, almost intuitive way. For example, say we want to identify the
total number of executives in a department, or we want the total number of dependents
who are covered by a medical claim. In such cases, more than the details, we are looking
for a single calculated value. For such cases, where we need calculated results based
on database rows, we use SQL aggregate functions. They can also be used to calculate
values across subsets of query result rows. We will also look at advanced clauses, such
as the GROUP BY and the HAVING clauses, and see how they can help us to fine-tune our
results.

Aggregate Functions (SUM, COUNT, AVG, MIN, and MAX) and the
GROUP BY Clause
MySQL provides functions that return single calculated values based on defined sets
of values. We'll first look at the general way to use these functions in a SQL query, and
then we'll examine each function individually:

•	 SUM: Adds, or sums, relevant values

•	 COUNT: Returns a count of the relevant values

•	 AVG (average): Calculates the average of a set of relevant values

•	 MIN (minimum value): Returns the lowest value of a set of values

•	 MAX (maximum value): Returns the highest value of a set of values

Say that a store manager wants the average weight of the products in each
PACKT_ONLINE_SHOP product category. In the PACKT_ONLINE_SHOP database, each
ProductCategory table row maps to one or more products in the Products table. We can
start with this query:

USE packt_online_shop;

SELECT PC.ProductCategoryID, PC.ProductCategoryName, P.UnitKGWeight
 AS 'PRODUCT KG WEIGHT'
FROM ProductCategories PC INNER JOIN
 Products P ON PC.ProductCategoryID = P.ProductCategoryID;

Aggregate Functions (SUM, COUNT, AVG, MIN, and MAX) and the GROUP BY Clause | 197

This is what we get:

Figure 10.1: MySQL query

This query returned a row for every product in each product category, and every row
shows the UnitKGWeight value for each individual product. This clearly won't solve
the problem. We need a way to gather, or aggregate, the average weights of all the
products in each category. The SQL AVG, or average, function will solve the problem.
Like all aggregate functions, AVG needs GROUP BY in the queries that use containing the
AVG function. GROUP BY will organize the rows of results for an aggregate function, and
the next query has a GROUP BY clause at the end. The SQL GROUP BY clause separates the
results of a SELECT query into one or more row groups based on a specific separation
criterion. With the defined row groups, the query can execute one or more aggregate
functions. If we add the AVG function and the GROUP BY clause to the query, as seen here,
your result will be modified:

USE packt_online_shop;

SELECT PC.ProductCategoryID, PC.ProductCategoryName,
 AVG(P.UnitKGWeight) AS 'AVERAGE PRODUCT KG WEIGHT'
FROM ProductCategories PC INNER JOIN
 Products P ON PC.ProductCategoryID = P.ProductCategoryID
GROUP BY PC.ProductCategoryName, PC.ProductCategoryID;

198 | Aggregate Functions

Here's the output:

Figure 10.2: A MySQL query with the AVG aggregate function

In MySQL, we'll solve the problem. In the query, the AVG function on line 5 calculates the
average of the UnitKGWeight column in the Products table. This makes sense. However,
we need to somehow collect the Products table rows into individual product category
groups for the aggregate function to work. The query has the required data to do this
because every child Product table row has a parent in the ProductCategories table. The
GROUP BY clause on line 8 will solve this problem.

As seen here, that GROUP BY clause literally groups the Products table rows by category.
Then, the AVG function in the SELECT clause can calculate the average UnitKGWeight for
all the products in each separate group of products. For aggregate functions, this idea is
important. This example shows a general rule that will help us. Place every SELECT clause
column that is not an aggregate function in the GROUP BY clause.

The GROUP BY clause will group by every unique value of the combination of
ProductCategoryName and ProductCategoryID. That is, if two products have the same
category name and the same category ID, they will be placed in the same group.

Aggregate Functions (SUM, COUNT, AVG, MIN, and MAX) and the GROUP BY Clause | 199

Look at this query:

USE packt_online_shop;

SELECT PC.ProductCategoryID, PC.ProductCategoryName,
 AVG(P.UnitKGWeight) AS 'AVERAGE PRODUCT KG WEIGHT',
 MIN(P.NetRetailPrice) AS 'MINIMUM NET RETAIL PRICE'
FROM ProductCategories PC INNER JOIN
 Products P ON PC.ProductCategoryID = P.ProductCategoryID
GROUP BY PC.ProductCategoryName, PC.ProductCategoryID;

Here's the output:

Figure 10.3: Multiple aggregate functions in a MySQL query

We included the MIN aggregate function on line 6. As an aggregate function, MIN returns
the smallest value of a column for all the rows in each separate group. In this query, the
MIN function finds the minimum NetRetailPrice value in each product category group.

200 | Aggregate Functions

We can use the ORDER BY clause in a MySQL query with an aggregate function, and we
can order an aggregate function column. We have some flexibility for this. Say that
we need to sort the preceding query by the AVERAGE PRODUCT KG WEIGHT column. This
MySQL query has an ORDER BY clause that uses the column alias name of the third
column:

USE packt_online_shop;

SELECT PC.ProductCategoryID, PC.ProductCategoryName,
 AVG(P.UnitKGWeight) AS 'AVERAGE PRODUCT KG WEIGHT',
 MIN(P.NetRetailPrice) AS 'MINIMUM NET RETAIL PRICE'
FROM ProductCategories PC INNER JOIN
 Products P ON PC.ProductCategoryID = P.ProductCategoryID
GROUP BY PC.ProductCategoryName, PC.ProductCategoryID
ORDER BY 'AVERAGE PRODUCT KG WEIGHT';

Here's the output:

Figure 10.4: A MySQL aggregate function query with an ORDER BY clause

Aggregate Functions (SUM, COUNT, AVG, MIN, and MAX) and the GROUP BY Clause | 201

An ORDER BY clause will accept a column alias name, or the actual aggregate function
itself (in this case, AVG(P.UnitKGWeight)), as seen in this query:

USE packt_online_shop;

SELECT PC.ProductCategoryID, PC.ProductCategoryName,
 AVG(P.UnitKGWeight) AS 'AVERAGE PRODUCT KG WEIGHT',
 MIN(P.NetRetailPrice) AS 'MINIMUM NET RETAIL PRICE'
FROM ProductCategories PC INNER JOIN
 Products P ON PC.ProductCategoryID = P.ProductCategoryID
GROUP BY PC.ProductCategoryName, PC.ProductCategoryID
ORDER BY AVG(P.UnitKGWeight);

On execution, your output should be as follows:

Figure 10.5: A MySQL aggregate function query with an ORDER BY clause

202 | Aggregate Functions

We took a close look at the AVG and MIN aggregate functions to build a basic
understanding of SQL aggregate functions. This SQL query in MySQL shows the five
SQL aggregate functions:

USE packt_online_shop;

SELECT PC.ProductCategoryID, PC.ProductCategoryName,
 AVG(P.UnitKGWeight) AS 'AVERAGE PRODUCT KG WEIGHT',
 MIN(P.NetRetailPrice) AS 'MINIMUM NET RETAIL PRICE',
 MAX(P.WholesalePrice) AS 'MAX WHOLESALE PRICE',
 COUNT(P.AvailableQuantity) AS 'COUNT AVAILABLE QUANTITY',
 SUM(P.AvailableQuantity) AS 'SUM AVAILABLE QUANTITY'
FROM ProductCategories PC INNER JOIN
 Products P ON PC.ProductCategoryID = P.ProductCategoryID
GROUP BY PC.ProductCategoryName, PC.ProductCategoryID;

The result of executing the preceding query is as follows:

Figure 10.6: The five SQL aggregate functions in MySQL

The remaining three functions, as described here, operate just like the AVG and MIN
functions we saw earlier:

•	 The MAX function returns the largest value in a column for all the rows in each
separate row group

Aggregate Functions (SUM, COUNT, AVG, MIN, and MAX) and the GROUP BY Clause | 203

•	 The COUNT function counts all the rows in each separate row group

•	 The SUM function returns the SUM of all values of a column for all the rows in each
separate row group

Exercise 10.01: Implementing Aggregate Functions

For every customer order in the Packt Online Shop, use SQL aggregate functions to
find the price of the highest and lowest-priced products. We'll build a query with these
columns to make the result set clear: OrderID, LastName, PRICE OF LOWEST PRICED, and
PRICE OF HIGHEST PRICED:

1.	 Build a basic query that joins the tables we need:

SELECT O.OrderID, C.LastName
FROM Customers C INNER JOIN Orders O ON
 C.CustomerID = O.CustomerID
 INNER JOIN OrderItems OI ON
 O.OrderID = OI.OrderID;

2.	 	 Add columns for the aggregate functions:

SELECT O.OrderID, C.LastName,
 MIN(OI.UnitPrice) AS 'PRICE OF LOWEST PRICED PRODUCT
 OF THE ORDER',
 MAX(OI.UnitPrice) AS 'PRICE OF HIGHEST PRICED PRODUCT
 OF THE ORDER'
FROM Customers C INNER JOIN Orders O ON
 C.CustomerID = O.CustomerID
 INNER JOIN OrderItems OI ON
 O.OrderID = OI.OrderID;

3.	 	 Remember the GROUP BY clause:

SELECT O.OrderID, C.LastName,
 MIN(OI.UnitPrice) AS 'PRICE OF LOWEST PRICED PRODUCT OF
 THE ORDER',
 MAX(OI.UnitPrice) AS 'PRICE OF HIGHEST PRICED PRODUCT
 OF THE ORDER'
FROM Customers C INNER JOIN Orders O ON
 C.CustomerID = O.CustomerID
 INNER JOIN OrderItems OI ON
 O.OrderID = OI.OrderID
GROUP BY C.LastName, O.OrderID;

204 | Aggregate Functions

The result will be as follows:

Figure 10.7: The GROUP BY clause

The HAVING Clause
As we saw, the aggregate functions will solve many problems for us. Eventually,
however, we'll want to filter the aggregate function value of a query result set. We have
learned how to build SQL queries that calculate aggregate function values. If we want
to filter the query results on those aggregate function values, the WHERE clause won't
work. For example, we might want to see the query results of a SQL MAX function that
land below a specific value. We might need the query results of a SQL AVG function that
match a specific value. The HAVING clause will help. Starting with this query, suppose
we want only those rows with MINIMUM NET RETAIL PRICE values greater than 5.00 in the
result set:

USE packt_online_shop;

SELECT PC.ProductCategoryID, PC.ProductCategoryName,
 AVG(P.UnitKGWeight) AS 'AVERAGE PRODUCT KG WEIGHT',
 MIN(P.NetRetailPrice) AS 'MINIMUM NET RETAIL PRICE'
FROM ProductCategories PC INNER JOIN

The HAVING Clause | 205

 Products P ON PC.ProductCategoryID = P.ProductCategoryID
GROUP BY PC.ProductCategoryName, PC.ProductCategoryID;

In this query, we tried a WHERE clause for the filter:

USE packt_online_shop;

SELECT PC.ProductCategoryID, PC.ProductCategoryName,
 AVG(P.UnitKGWeight) AS 'AVERAGE PRODUCT KG WEIGHT',
 MIN(P.NetRetailPrice) AS 'MINIMUM NET RETAIL PRICE'
FROM ProductCategories PC INNER JOIN
 Products P ON PC.ProductCategoryID = P.ProductCategoryID
WHERE MIN(P.NetRetailPrice) > 5.00
GROUP BY PC.ProductCategoryName, PC.ProductCategoryID;

When you run the query, this won't work:

Figure 10.8: Error – filtering an aggregate function column with a WHERE clause

The WHERE clause only filters on the rows that its SELECT query sees. By design, the WHERE
clause can't operate on row groups or row aggregates. The HAVING clause will solve the
problem. Place it below the GROUP BY clause in this query:

USE packt_online_shop;

SELECT PC.ProductCategoryID, PC.ProductCategoryName,
 AVG(P.UnitKGWeight) AS 'AVERAGE PRODUCT KG WEIGHT',
 MIN(P.NetRetailPrice) AS 'MINIMUM NET RETAIL PRICE'

206 | Aggregate Functions

FROM ProductCategories PC INNER JOIN
 Products P ON PC.ProductCategoryID = P.ProductCategoryID
GROUP BY PC.ProductCategoryName, PC.ProductCategoryID
HAVING MIN(P.NetRetailPrice) > 5.00;

You can see the HAVING clause on line 10:

Figure 10.9: Filtering an aggregate function result set with a HAVING clause

The HAVING clause filters the results as we expect. Note that the line 6 column alias,
'MINIMUM NET RETAIL PRICE', won't work in the HAVING clause on line 10 because SQL
runs the HAVING clause before it sees the SELECT clause. This means that it does not
know about the column alias, seen here on line 6.

Exercise 10.02: Implementing the HAVING Clause

In the PACKT_ONLINE_SHOP database, every row in the ProductCategories table has at least
one child row in the Products table. In the Products table, the AvailableQuantity column
shows the available quantity for each product. Use the SQL HAVING clause to build a list
of product categories with more than 250 total available product items, covering all
products in each category:

1.	 We'll build a query with these:

SELECT PC.ProductCategoryName,
 SUM(P.AvailableQuantity) AS 'TOTAL COUNT OF ALL
 PRODUCTS IN PRODUCT CATEGORY'

The HAVING Clause | 207

FROM Products P INNER JOIN ProductCategories PC ON
 P.ProductCategoryID = PC.ProductCategoryID;

2.	 Add the GROUP BY clause and sort the results by ProductCategoryName:

SELECT PC.ProductCategoryName,
 SUM(P.AvailableQuantity) AS 'TOTAL COUNT OF ALL
 PRODUCTS IN PRODUCT CATEGORY'
FROM Products P INNER JOIN ProductCategories PC ON
 P.ProductCategoryID = PC.ProductCategoryID
GROUP BY PC.ProductCategoryName
ORDER BY ProductCategoryName;

3.	 Add the HAVING clause:

SELECT PC.ProductCategoryName,
 SUM(P.AvailableQuantity) AS 'TOTAL COUNT OF ALL
 PRODUCTS IN PRODUCT CATEGORY'
FROM Products P INNER JOIN ProductCategories PC ON
 P.ProductCategoryID = PC.ProductCategoryID
GROUP BY PC.ProductCategoryName
HAVING SUM(P.AvailableQuantity) > 250
ORDER BY ProductCategoryName;

The result will be as follows:

Figure 10.10: The HAVING clause

208 | Aggregate Functions

The Differences between the SQL HAVING and WHERE Clauses

We saw earlier that a WHERE clause filter won't work with an aggregate function column.
However, the HAVING clause will filter a regular, or non-aggregate column. To do this, we
must include the GROUP BY clause. Have a look at this query:

USE packt_online_shop;

SELECT PC.ProductCategoryID, PC.ProductCategoryName,
 AVG(P.UnitKGWeight) AS 'AVERAGE PRODUCT KG WEIGHT',
 MIN(P.NetRetailPrice) AS 'MINIMUM NET RETAIL PRICE'
FROM ProductCategories PC INNER JOIN
 Products P ON PC.ProductCategoryID = P.ProductCategoryID
HAVING PC.ProductCategoryID = 2;

Here's the output:

Figure 10.11: Trying to filter a table column with a HAVING clause

It did not work because we forgot the GROUP BY clause. If we add the GROUP BY clause, it
will work:

USE packt_online_shop;

SELECT PC.ProductCategoryID, PC.ProductCategoryName,
 AVG(P.UnitKGWeight) AS 'AVERAGE PRODUCT KG WEIGHT',
 MIN(P.NetRetailPrice) AS 'MINIMUM NET RETAIL PRICE'
FROM ProductCategories PC INNER JOIN

The HAVING Clause | 209

 Products P ON PC.ProductCategoryID = P.ProductCategoryID
GROUP BY PC.ProductCategoryID, PC.ProductCategoryName
HAVING PC.ProductCategoryID = 2;

Here's the output:

Figure 10.12: Correctly filtering a table column with a HAVING clause

As we can see, the query worked.

If we set up the GROUP BY clause correctly, as explained previously, we can use both
WHERE and HAVING clauses in the same query. This query combines WHERE and HAVING
clauses in one query:

USE packt_online_shop;

SELECT OI.OrderID, P.ProductName,
 SUM((OI.UnitPrice - OI.Discount) * OI.Quantity) AS
 'TOTAL REVENUE PER PRODUCT PER ORDER'
FROM OrderItems OI INNER JOIN
 Products P ON OI.ProductID = P.ProductID
WHERE OI.OrderID = 5
GROUP BY OI.OrderID, P.ProductName
HAVING SUM((OI.UnitPrice - OI.Discount) * OI.Quantity) > 4.50
ORDER BY 'TOTAL REVENUE PER PRODUCT PER ORDER' ASC;

210 | Aggregate Functions

This is what it looks like in MySQL:

Figure 10.13: Combining WHERE and HAVING clauses in one query

The line 5 SUM aggregate function requires the line 8 GROUP BY clause, and the line
9 HAVING clause filters on the SUM function values. The line 7 WHERE clause filters the
OrderItems.OrderID values. As explained earlier, we could have placed all the filters in
the HAVING clause, combining them with the AND keyword:

USE packt_online_shop;

SELECT OI.OrderID, P.ProductName,
 SUM((OI.UnitPrice - OI.Discount) * OI.Quantity) AS
 'TOTAL REVENUE PER PRODUCT PER ORDER'
FROM OrderItems OI INNER JOIN
 Products P ON OI.ProductID = P.ProductID
WHERE OI.OrderID = 5
GROUP BY OI.OrderID, P.ProductName
HAVING (SUM((OI.UnitPrice - OI.Discount) * OI.Quantity) > 4.50)
 AND (OI.OrderID = 5)
ORDER BY 'TOTAL REVENUE PER PRODUCT PER ORDER' DESC

The HAVING Clause | 211

Look at the HAVING clause on line 9:

Figure 10.14: HAVING clause filters instead of WHERE clause filters

However, we want as much filtering as possible to happen in the WHERE clause and as
little as possible in the HAVING clause. As MySQL runs a query, it evaluates the WHERE
clause early on. This eliminates as many rows as possible as early as possible. MySQL
then runs the GROUP BY clause if it sees one, and then runs the HAVING clause if it sees
one. If a query eliminates as many rows as possible with the WHERE clause, MySQL can
avoid operations on fewer rows. That way, it will use fewer resources and the query will
have better performance.

SQL OVER and PARTITION BY

So far, we have seen the SQL aggregate calculations operate on an entire query result
set. This works well and is a powerful tool. We have also seen that the GROUP BY clause
will divide a SQL query result set into separate sets of rows based on specified criteria.
We might want to use a GROUP BY clause in a SQL query, and then we might want to
run an aggregate function to the query results, applying the function to each separate
group of rows. OVER and PARTITION BY will help with this.

212 | Aggregate Functions

The Packt management likes the query results shown in Figure 10.14, but now they want
every row to show both the total sales per order and the number of items per order.
They want this for all orders and all order items. If a web page or report will use these
results, this information could be useful for custom calculations. As a first step, we can
modify the query from Figure 10.14 to this new query:

INSERT INTO Products(ProductCategoryID, SupplierID,
ProductName, ProductImage, NetRetailPrice,
AvailableQuantity, WholesalePrice,
UnitKGWeight, Notes)
VALUES(3, 3, 'peanut butter', NULL, 3.79, 1000, 2.69,
0.75, 'caution: high calorie');

SELECT S.*
FROM Suppliers S
WHERE S.SupplierID = 3;

This is what it looks like in MySQL:

Figure 10.15: Output displaying total sales and the number of items per order

The HAVING Clause | 213

We can add the MySQL OVER and PARTITION BY clauses after the SUM and COUNT aggregate
functions:

USE packt_online_shop;

SELECT OI.OrderID, P.ProductName,
 SUM((OI.UnitPrice - OI.Discount) * OI.Quantity) AS
 'TOTAL REVENUE PER PRODUCT PER ORDER',
 SUM(SUM((OI.UnitPrice - OI.Discount) * OI.Quantity))
 OVER(PARTITION BY OI.OrderID)

AS 'TOTAL_SALES_PER_ORDER',
COUNT(OI.OrderItemID) OVER(PARTITION BY OI.OrderID)
AS 'NUMBER OF ITEMS IN CUSTOMER''S ORDER'
FROM OrderItems OI INNER JOIN
Products P ON OI.ProductID = P.ProductID
GROUP BY OI.OrderID, P.ProductName
ORDER BY OI.OrderID;

This is what it looks like in MySQL:

Figure 10.16: Using the OVER and PARTITION BY clauses

214 | Aggregate Functions

Placed after the aggregate functions on those lines, the OVER(PARTITION BY OI.OrderID)
clause applies the aggregate functions on those lines against subsets of rows, each row
subset grouped by the OI.OrderID column. With the OVER(PARTITION BY OI.OrderID),
the line 6 SUM function calculates the TOTAL_SALES_PER_ORDER value for each different
OrderID. The line 7 COUNT function makes a similar calculation, counting the number
of ordered items in each customer order. Line 7 wrapped, or "nested," the original SUM
aggregate function inside another SUM():

SUM(SUM((OI.UnitPrice - OI.Discount) * OI.Quantity)) OVER(PARTITION
 BY OI.OrderID)

Although these nested functions might look a little strange, it's perfectly legal syntax.
It tells MySQL to apply the function calculation on every row set, as defined by each
individual OrderID value. Note that in the PARTITION BY clause, we can use other
columns to build the row subsets, depending on the solutions we need.

The RANK and DENSE_RANK Functions

The RANK and DENSE_RANK functions can be used to assign a rank to each row in the
ordered partition.

For this section, you'll need to add rows to the PACKT_ONLINE_SHOP.Products table. Run
this SQL script to add those rows:

USE PACKT_ONLINE_SHOP;

INSERT INTO Products (ProductCategoryID, SupplierID,
 ProductName, ProductImage, NetRetailPrice, AvailableQuantity,
 WholesalePrice, UnitKGWeight, Notes)

VALUES
(4, 1, 'Helios 5', NULL, 24999.99, 22, 17999.99, 15,
 'helium airship'),
(4, 1, 'Arctan Pi', NULL, 84999.99, 3, 77999.99, 2,
 'high-lift freight dirigible'),
(4, 1, 'Fermat Radian', NULL, 199999.95, 18, 185999.99,
 17.4, 'passenger airship'),
(2, 4, 'Hammer', NULL, 39.95, 19, 33.49, 0.5,
 'basic hammer'),
(2, 4, 'Dishwasher Airgap', NULL, 14.95, 34, 10.89, 0.45,
 'countertop airgap'),
(2, 4, 'Flathead Screwdriver', NULL, 7.49, 208, 5.19, 0.15,
 'regular screwdriver'),
(2, 4, 'Phillips Screwdriver', NULL, 7.29, 155, 5.49, 0.15,
 'phillips-head screwdriver'),

The HAVING Clause | 215

(2, 4, 'Pliers', NULL, 19.95, 44, 15.23, 0.45, 'pliers'),
(6, 4, 'Wealth of Nations', NULL, 24.95, 144, 19.49, 0.65,
 'Great economics book');

Note

The preceding code can also be found at: https://packt.live/2Ss9KWy

This query counts all of the products in each product category:

USE packt_online_shop;

SELECT PC.ProductCategoryID, PC.ProductCategoryName,
 COUNT(P.ProductID) AS 'PRODUCT COUNT IN CATEGORY'
FROM ProductCategories PC INNER JOIN
 Products P ON PC.ProductCategoryID = P.ProductCategoryID
GROUP BY PC.ProductCategoryID, PC.ProductCategoryName;

This is what it looks like in MySQL, along with the output:

Figure 10.17: A query to count all the products in each product category

https://packt.live/2Ss9KWy

216 | Aggregate Functions

However, the Packt management wants a ranked list of these categories. In other
words, they want to know which category has the highest number of products, which
has the next highest number, and so on, down to the category with the lowest number
of products. In our solution, the category with the highest number of products should
have a ranking value of 1, the category with the next highest number of products should
have a ranking value of 2, and so on. If we include the RANK function in the Figure 10.17
query, we'll see the ranking values we want:

SELECT PC.ProductCategoryID, PC.ProductCategoryName,
 COUNT(P.ProductID) AS 'PRODUCT COUNT IN CATEGORY',
 RANK () OVER (
 ORDER BY COUNT(P.ProductID) DESC
) AS 'PRODUCT COUNT RANK'
FROM ProductCategories PC INNER JOIN
 Products P ON PC.ProductCategoryID = P.ProductCategoryID
GROUP BY PC.ProductCategoryID, PC.ProductCategoryName;

Here's the code and output in MySQL:

Figure 10.18: A SQL query with the RANK function

The HAVING Clause | 217

On line 6, the RANK function places the row ranking values in the PRODUCT COUNT RANK
column. The required ORDER BY clause on line 7 sorts the rows in descending order. In
the query results, note that rows 3 and 4 have the same PRODUCT COUNT RANK value, as we
would expect. However, note the row 5 PRODUCT COUNT RANK value. If the RANK function
sees a tie, it will skip the value for the next rank value it calculates. The DENSE_RANK
function will return ranking values without skips. This query replaces the line 6 RANK
function as seen in Figure 10.18 with the DENSE_RANK function:

SELECT PC.ProductCategoryID, PC.ProductCategoryName,
 COUNT(P.ProductID) AS 'PRODUCT COUNT IN CATEGORY',
 DENSE_RANK () OVER (
 ORDER BY COUNT(P.ProductID) DESC
) AS 'PRODUCT COUNT DENSE_RANK'
FROM ProductCategories PC INNER JOIN
 Products P ON PC.ProductCategoryID = P.ProductCategoryID
GROUP BY PC.ProductCategoryID, PC.ProductCategoryName;

Here's how the query looks like in MySQL, along with the output:

Figure 10.19: A SQL query with the DENSE_RANK function

218 | Aggregate Functions

On line 5 in the results pane, the DENSE_RANK function did not skip a number in the
PRODUCT COUNT DENSE_RANK column.

Exercise 10.03: Implementing RANK

Build a list of PACKT_ONLINE_SHOP suppliers, the product counts of each supplier, and the
RANK and DENSE_RANK function of each supplier based on its product count. Sort the list
by supplier product count in descending order. The list should have these columns:
SupplierID, SupplierName, PRODUCT COUNT OF SUPPLIER, SUPPLIER RANK, SUPPLIER DENSE_
RANK.

1.	 First, build a query for the supplier and product count data:

USE packt_online_shop;

SELECT S.SupplierID, S.SupplierName,
 COUNT(P.ProductID) AS 'PRODUCT COUNT OF SUPPLIER'
FROM Suppliers S INNER JOIN
 Products P ON S.SupplierID = P.SupplierID
GROUP BY S.SupplierID, S.SupplierName;

2.	 Add a column for the RANK values, reflecting the descending order of the supplier
product count values. Remember that the sorting does not happen at the query
level:

USE packt_online_shop;

SELECT S.SupplierID, S.SupplierName,
 COUNT(P.ProductID) AS 'PRODUCT COUNT OF SUPPLIER',
 RANK () OVER (
 ORDER BY COUNT(P.ProductID) DESC
) AS 'SUPPLIER RANK'
FROM Suppliers S INNER JOIN
 Products P ON S.SupplierID = P.SupplierID
GROUP BY S.SupplierID, S.SupplierName;

3.	 Add a column for the DENSE_RANK values:

USE packt_online_shop;

SELECT S.SupplierID, S.SupplierName,
 COUNT(P.ProductID) AS 'PRODUCT COUNT OF SUPPLIER',
 RANK () OVER (
 ORDER BY COUNT(P.ProductID) DESC
) AS 'SUPPLIER RANK',

The HAVING Clause | 219

 DENSE_RANK () OVER (
 ORDER BY COUNT(P.ProductID) DESC
) AS 'SUPPLIER DENSE_RANK'
FROM Suppliers S INNER JOIN
 Products P ON S.SupplierID = P.SupplierID
GROUP BY S.SupplierID, S.SupplierName;

The result will be as follows:

Figure 10.20: A MySQL query with the RANK and DENSE_RANK functions

220 | Aggregate Functions

Activity 10.01: Working with Aggregates

Using data in the PACKT_ONLINE_SHOP database, build a report showing the following:

•	 Order ID

•	 Product name

•	 The count of each separate product in the order

•	 The total count of all products in the order

•	 The count of the product with the highest count in the order

Note

The solution for this activity can be found via this link.

Summary
In this chapter, we learned that SQL aggregate functions provide an efficient, flexible
way to calculate summary values in SQL query result sets. We discovered that the GROUP
BY clause will separate the results of a SELECT query into one or more row groups to
support the design and execution of queries with aggregate functions. We saw that the
HAVING clause provides a pinpoint way to filter aggregate function calculations. Although
they're similar, we learned about the differences between WHERE and HAVING clauses.
Finally, we saw that when we use OVER and PARTITION BY in creative ways, MySQL will
efficiently expand the range of problems it can solve for us. We can also order the items
with a group using the RANK and DENSE RANK functions. In the next chapter, we will look
at some advanced features of SQL programming.

Advanced SQL

Overview

By the end of this chapter, you will be able to implement STRING functions and
manipulate string data. You will be able to use the COALESCE function to return
the first non-zero values from a list and will learn how to identify and deal with
duplicate values in a table.

11

224 | Advanced SQL

Introduction
Now that we have covered the core topics of SQL database design and development, we
can focus on more complex problems that reach past the material we looked at in earlier
chapters. Building on what we've learned, we'll look at more SQL topics and tools and how
to expand our existing skills to cover new situations. SQL database products offer huge
feature spaces to developers—much bigger than what we have seen so far. Developers
can lever these features to efficiently add value and solve problems. In this chapter, we'll
explore a small sample of these feature spaces to get a sense of the potential of SQL
database products and how to approach them as new tools to solve new problems.

String Functions
In the previous chapters, we saw that text or string data is an important part of real-
world database resources. SQL database products offer dedicated functions to handle
and manipulate string data. As we'll see, this makes them useful in a SELECT clause.
In addition, although the LIKE operator is not a string function, it searches for string
patterns in other strings. This makes it incredibly useful in a WHERE clause. We'll see
this as well. Since we can use string functions in SELECT statements and WHERE clauses,
we can also use them in stored procedures, user-defined functions, and triggers. One
example of a string function is the UPPER function. This function converts a string value
into all uppercase characters. Consider the following query:

USE packt_online_shop;
SELECT ProductID, ProductName, UPPER(ProductName) AS 'UPPER CASE PRODUCT NAME'
FROM Products;

Running the preceding code in the SQL query window yields the following output:

Figure 11.1: The MySQL UPPER string function

String Functions | 225

In the SELECT clause, the UPPER function converted all the ProductName column
characters in all the rows into uppercase.

In MySQL, you can convert a numeric value into a textual representation of it by using
CAST function:

CAST(numeric_float_value AS CHAR|VARCHAR)

Depending on the values it receives, it can round and even truncate its return values.

11.2: A table demonstrating expressions and their descriptions

Now, consider another example query:

USE packt_online_shop;
SELECT OrderItemID, Quantity, UnitPrice,
 CAST((Quantity * UnitPrice) AS CHAR) AS 'Quantity * UnitPrice'
FROM OrderItems;

The preceding query will now give the following output:

Figure 11.3: The MySQL STR string function

226 | Advanced SQL

The second STR function parameter sets the return value's total length to 10, while the
third parameter sets the number of decimal places to the right of the decimal point
to two. The query returned the calculated values we need, but most of those values
have a lot of blank spaces because the STR function added extra spaces to fill the string
length to 10. For example, in row five, the last column has six extra spaces in front of the
value. The MySQL LTRIM function removes or trims leading spaces from a string, while
the RTRIM function removes or trims trailing spaces from a string. We can nest these
functions to remove all leading and trailing spaces.

Note

SQL Server 2017 offers a TRIM function that clones these nested functions and puts
them in one function.

Here is the code we can use to remove all leading and trailing spaces:

USE packt_online_shop;
SELECT OrderItemID, Quantity, UnitPrice,
 LTRIM(RTRIM(CAST((Quantity * UnitPrice) AS CHAR)))
 AS 'Quantity * UnitPrice'
FROM OrderItems;

Running this query yields the following output:

Figure 11.4: The output of LTRIM and RTRIM string functions

String Functions | 227

As you can see, the values in the fourth column no longer have leading or trailing
spaces. Now that we have a solid grounding of SQL string functions, we'll use them in an
exercise to see them in action.

Exercise 11.01: Building a MySQL Query that Returns the OrderID, Quantity,

and Notes Columns

Suppose the Packt management team needs a report showing the columns of the
OrderItems table, in the following format:

Figure 11.5: Format of the output

Here are the steps to complete this exercise:

1.	 Open a new query window and type in the following query:

USE packt_online_shop;

SELECT OrderID, LTRIM(RTRIM(CONCAT(CAST(Quantity AS CHAR),
 ' Ordered: ', UPPER(Notes))))
 AS 'ITEM_QUANTITY_ORDERED_AND_NOTES'

FROM OrderItems;

Here, we used the UPPER function to convert the notes into uppercase. Then,
we used the CONCAT string to append concatenate values from all three different
columns into a single column.

2.	 Execute the query by pressing F5. You should get the following output:

Figure 11.6: Using string functions to get output in a particular format

228 | Advanced SQL

Previously, we learned that we can filter a result set with the SQL WHERE clause. For
numeric values, we have seen examples where the queries return more than one row.
We have also seen how the LIKE operator can be used to generate multiple entries.
However, the LIKE operator can also be used in stored procedures. The following
exercise illustrates this.

Exercise 11.02: Using LIKE in a Stored Procedure

The store manager wants to get details of the customers who come from an educational
institution at the end of every month. To identify whether the customer is from an
educational background, check whether their email IDs end with .edu. Since we want
to perform this operation every month, we want to write this in a stored procedure.
Perform the following steps:

1.	 Create a stored procedure called spFilterCustomers to filter out email IDs with
.edu:

CREATE PROCEDURE spFilterCustomers
(emailString VARCHAR(100))
-- to test: CALL spFilterCustomers('.edu')
SELECT C.CustomerID, C.FirstName, C.LastName, C.Address,
 C.Email, C.Phone, C.Notes, C.BalanceNotes
FROM Customers C
WHERE C.email LIKE CONCAT('%', emailString, '%');

2.	 Execute the query. To test run the following command:

CALL spFilterCustomers('.edu')

3.	 Your output should be as follows:

Figure 11.7: A output of stored procedure with the LIKE operator

In this stored procedure, the LIKE filter surrounds the emailString parameter with
single-quoted percent signs. Often, we'll need to build a query with a WHERE clause
that filters in a flexible way. Specifically, we'll want to search for a specific string, as a
substring, anywhere in a text data value. The LIKE operator will help solve this problem,
as we'll see next in the following activity.

String Functions | 229

Activity 11.01: Implementing the LIKE Operator

All feedback from the customers are stored in the Notes column. You are asked to check
whether there is any customer-related feedback on all shipments after 1 May 1995. You
will need to query the data to:

•	 Check whether ShipmentDate is greater than May 1, 1995.

•	 Check whether Notes contains the CUST substring.

To do this you can use the LIKE operator to match the string in the notes section and
use the greater than operator to check the ShipmentDate.

Note

The solution for this activity can be found via this link.

Dealing with NULL and COALESCE

If a SQL operation combines multiple values, that operation will return NULL if at least
one of the combining values has a NULL value of its own.

In MySQL, the queries shown here would yield NULL result sets:

SELECT CONCAT('A', '^', NULL, 'asdf') AS "A + '^' + NULL + 'asdf'";

SELECT 3 * 12.356 * NULL AS "3 * 12.356 * NULL";

SET @val1 = 1; -- TRUE
SET @val2 = 0; -- FALSE

SELECT @val1 & NULL & @val2 AS "TRUE + NULL + FALSE";

This can be seen in the following output:

Figure 11.8: NULL values in MySQL SELECT statements

230 | Advanced SQL

Consider the following MySQL statements:

SET @val1 = 1; -- TRUE
SET @val2 = 0; -- FALSE

SELECT @val1 & NULL & @val2 AS "TRUE + NULL + FALSE";

In the preceding code, the BIT data type variables, @val1 and @val2, operate as Booleans,
the final query essentially adds these Boolean values with the & operator.

Now, have a look at the following query:

USE PACKT_ONLINE_SHOP;

SELECT FirstName, MiddleName, LastName,
 CONCAT(FirstName, ' ', MiddleName, ' ', LastName) as 'CombinedName'
FROM Customers;

It provides the following output:

Figure 11.9: NULL values in a MySQL SELECT statement

The CombinedName column has a NULL value if the value of either FirstName, MiddleName, or
LastName is NULL:

CONCAT(FirstName, ' ', MiddleName, ' ', LastName) LastName as 'CombinedName'

String Functions | 231

In a SELECT statement, columns and expressions of all data types will return NULL
if the column expression, or at least one component of the expression, has a NULL
value. We want to avoid a NULL value in a SELECT statement result set because it could
cause problems for applications that receive that result set. The ISNULL function we
saw earlier can help, but it could involve some fairly complicated code. Instead, SQL
products offer COALESCE as a cleaner, more efficient solution.

The COALESCE Function

The COALESCE function can be used to obtain the first not null parameter it finds,
starting from left to right. The syntax for it is as follows:

COALESCE (param_1, param_2, param_3 . . . param_n)

If it finds only NULL values, it returns NULL. Let's see how this works using the following
query:

USE PACKT_ONLINE_SHOP;

SELECT COALESCE(FirstName, ' ') AS 'FirstName',
 COALESCE(MiddleName, 'SUBSTITUTE MIDDLE NAME') AS 'MiddleName',
 COALESCE(LastName, ' ') AS 'LastName'

FROM Customers;

The output should be as follows:

Figure 11.10: The output of MySQL COALESCE function

232 | Advanced SQL

Notice the modifications that were made to the original result set column values with
the COALESCE function. We substitute a ' ' value for every NULL value in the customers.
FirstName column customers.LastName column. We also substitute 'SUBSTITUTE MIDDLE
NAME' for the NULL values. Note that an empty string value will work in the COALESCE
function parameter list, but we should avoid this because, like NULL, it could cause
problems with other software system components.

COALESCE works with other data types as well, including Boolean, integer, float, and so
on. In this MySQL example, we have the following:

SET @intVal1 = NULL;

SELECT COALESCE(@intVal1, -5) + 4 AS 'COALESCE(@intVal1, -5) + 4';

The @intVal1 variable is declared with a NULL value. The COALESCE function changes the
variable to -5 for the result set calculation:

Figure 11.11: The output of MySQL COALESCE function with a non-string data type value

As a result of the COALESCE function is -5, the addition is performed on -5. The result
of -5 + 4 is -1, which is displayed. Even a simple query can return a result set with NULL
values. In the next exercise, we'll use the COALESCE function to handle the NULL values in
a PACKT_ONLINE_SHOP query.

String Functions | 233

Exercise 11.03: Using the COALESCE Function to Handle a NULL Value in a

Combined Set of Values

In this exercise, we will build a query that returns the FirstName, MiddleName, and
LastName columns values of the Customers table and combines those values in a column
named CombinedName. Replace the NULL values of FirstName and LastName with single
space ' ' values. We'll replace the NULL values of MiddleName with SUBSTITUTE MIDDLE
NAME values and then separate all name values with single spaces. To do this, perform
the following steps:

1.	 Open a new query window and enter the following query:

USE PACKT_ONLINE_SHOP;

SELECT CONCAT(COALESCE(FirstName, ' '), ' ',
 COALESCE(MiddleName, 'SUBSTITUTE MIDDLE NAME'), ' ',
 COALESCE(LastName, ' ')) as 'CombinedName'

FROM customers;

2.	 Execute the query. You should get the following output:

Figure 11.12: Exercise 11.03 solution

Notice how all the NULL values in the first and the last name have been replaced with
space and that the NULL values in the middle name have been replaced with a string
called SUBSTITUTE MIDDLE NAME.

234 | Advanced SQL

Finding Duplicate Table Rows

As database resources evolve and expand, duplicate rows may end up in the tables. This
could happen because of stored procedure or function bugs, problems with a frontend
application, issues with a high-volume data import, and so on. We want to avoid this in
a relational database. To remove duplicate table rows, first, we need to find them. To
illustrate this, run the following queries:

INSERT Products (ProductCategoryID, SupplierID, ProductName,
 ProductImage, NetRetailPrice, AvailableQuantity,
 WholesalePrice, UnitKGWeight, Notes)

VALUES (3, 2, 'portable camera', NULL, 89.95, 6128, 119.99,
 521.38, 'handle with care'),
 (3, 2, 'portable camera', NULL, 89.95, 6128, 119.99,
 521.38, 'handle with care'),
 (3, 2, 'portable camera', NULL, 89.95, 6128, 119.99,
 521.38, 'handle with care'),
 (3, 2, 'portable camera', NULL, 89.95, 6128, 119.99,
 521.38, 'handle with care'),
 (3, 2, 'portable camera', NULL, 89.95, 6128, 119.99,
 521.38, 'handle with care');

SELECT ProductID, ProductCategoryID, SupplierID, ProductName, ProductImage,
 NetRetailPrice, AvailableQuantity, WholesalePrice, UnitKGWeight, Notes
FROM Products;

MySQL statements INSERT VALUES have been used to insert five duplicate rows into
PACKT_ONLINE_SHOP database's Products table. This statement does not include the
ProductID column because we defined that column in this table as an identity column.
The preceding INSERT statement inserts five duplicate rows, as shown here:

Figure 11.13: The products table with duplicate rows

String Functions | 235

If the highest ProductID value in the products table is 11 (eleven), this query will delete,
at any time, the rows that the preceding statements inserted:

DELETE FROM Products WHERE ProductID > 11;

To find and delete the Products table's duplicate rows, we'll start with a Common Table
Expression, group all the rows into duplicate sets, number the rows in each group, and
delete the duplicates. Note that a single, non-duplicate row will become a one-row
group. We will not delete any of the rows in these one-row groups.

A Common Table Expression (CTE) temporarily holds a result set that another SQL
statement can use. Run the following query to see what the CTE looks like:

USE PACKT_ONLINE_SHOP;

WITH demoCTE AS
(
 SELECT ProductID, ProductCategoryID, SupplierID, ProductName,
 NetRetailPrice, AvailableQuantity, WholesalePrice,
 UnitKGWeight, Notes
 FROM Products
)

 SELECT ProductID, ProductCategoryID, SupplierID, ProductName,
 NetRetailPrice, AvailableQuantity, WholesalePrice,
 UnitKGWeight, Notes
 FROM demoCTE;

The output will be as follows:

Figure 11.14: The MySQL common table expression

236 | Advanced SQL

In the preceding code, WITH demoCTE AS names the CTE as demoCTE using the required
keywords; that is, WITH and AS. As shown in the code, we place the query that generates
the CTE result set between the required parentheses. A SQL statement that uses the
CTE must immediately follow that CTE. Don't place a semicolon, ;, at the end of the
CTE. The SQL statements return the expected result set.

Next, we need to group the duplicate rows together and then number the rows in each
group—starting with 1 in each different group. Finally, we'll delete the rows in each
group with row numbers greater than 1. This will ignore all the unique rows because
those rows become one-row groups. To number the rows in each row group, we'll add
the ROW_NUMBER() function to the SELECT statement of demoCTE, as shown here:

USE PACKT_ONLINE_SHOP;
WITH demoCTE AS
(
 SELECT ProductID, ProductCategoryID, SupplierID, ProductName,
 NetRetailPrice, AvailableQuantity, WholesalePrice,
 UnitKGWeight, Notes,
 ROW_NUMBER() OVER (
 PARTITION BY ProductCategoryID, SupplierID,
 ProductName, NetRetailPrice,
 AvailableQuantity, WholesalePrice,
 UnitKGWeight, Notes
 ORDER BY ProductID
) AS RowNumber
 FROM Products
)
SELECT ProductID, ProductCategoryID, SupplierID, ProductName,
 NetRetailPrice, AvailableQuantity, WholesalePrice,
 UnitKGWeight, Notes, RowNumber
FROM demoCTE
ORDER BY ProductID;

Transactions | 237

The preceding query yields the following output:

Figure 11.15: Duplicate table rows identified with a common table expression

In the result set pane of the preceding screenshot, look at the RowNumber column, where
the product name is portable camera. The RowNumber column flagged all the duplicate
rows with integer values exceeding 1.

The ROW_NUMBER() function divides the result set into subsets, or partitions, and then
sequentially numbers the rows in each partition, starting with the numbers at 1 for each
subset it sees. Here, the ROW_NUMBER() function defines the row subsets with all of the
products table's columns, except the ProductID column.

This makes sense because the ProductID column serves as the table key column. If we
include ProductID in the PARTITION BY columns, PARTITION BY would see all the rows as
unique. If we leave out ProductID and include all the other columns in the PARTITION
BY column list, we'll get the set(s) of duplicate rows that we want. The ROW_NUMBER()
function requires the ORDER BY clause to know of the sequence of the rows in each row
subset, before the rows receive their ROW_NUMBER() values. The ORDER BY clause requires
at least one product table column, so we picked ProductID. The SELECT statement
returns all product table rows, plus the RowNumber column.

Transactions
As part of database management, soon enough, we will probably make direct data
changes through database management tools. In other words, we may use a MySQL
query window to make a direct insert, update, and delete changes to live production
data. We know how to make those changes with relevant SQL statements, but so far, we
have not looked at a way to reverse these changes. Even one mistake could potentially
destroy data resources worth billions. Fortunately, SQL products offer the TRANSACTION
function as a way to execute SQL statements in a reversible way.

238 | Advanced SQL

From the PACKT_ONLINE_SHOP database, from the Products table, let's query the product
with the product ID 3:

USE PACKT_ONLINE_SHOP;

SELECT ProductID, Availablequantity
FROM Products
WHERE productid = 3;

This query will yield the following output:

Figure 11.16: The output of the query before update

From the output, we can see that the product with product ID 3 has 1,000 available
quantities. Now, let's say that a customer purchased 850 pieces—you'd have to update
the database. To do this, perform the following query:

UPDATE Products
SET AvailableQuantity = 150
WHERE ProductID = 3

This query changes the AvailableQuantity value for the row to 150. However, we may
want to reverse the change right after it happened if we made a mistake. To do this, we
need to use a TRANSACTION. An SQL transaction involves one or more SQL statements
that change data and that execute as a reversible unit. To make the same changes using
a transaction, the query would be as follows:

USE PACKT_ONLINE_SHOP;

SELECT ProductID, Availablequantity
FROM Products
WHERE Productid = 3;

START TRANSACTION;

UPDATE Products
SET AvailableQuantity = 150 -- Original value = 1000
WHERE ProductID = 3;

-- COMMIT;
ROLLBACK;

Transactions | 239

Before the transaction, the query would lead to the following output:

Figure 11.17: Usage of TRANSACTION

We want to execute, and then reverse, the UPDATE statement. START TRANSACTION is the
statement that begins the transaction block. To close off the TRANSACTION block, we can
use either the COMMIT statement to lock it in, or ROLLBACK the transaction to reverse it. All
transactions will have the START TRANSACTION statement. The structure seen here uses
transactions flexibility in a safe way, and we'll see why we commented out the COMMIT
statement shortly. We can see the changes that were made to the data at any time with
the SELECT statement.

To effectively use this transaction structure, highlight and run the statements one at a
time. First, highlight and run the START TRANSACTION statement to begin the transaction.
Then, highlight and run the UPDATE statement. Highlight and run SELECT query to see the
data change. You will obtain the following output:

Figure 11.18: A transaction

To ROLLBACK that change, highlight and run the ROLLBACK query. The output is shown
here:

Figure 11.19: Rolling back a transaction

240 | Advanced SQL

The structure of the final two lines in the code makes it easy to reverse the change
if the transaction is open. To COMMIT the transaction, highlight and run the COMMIT
statement after the -- comment symbols, as shown here:

Figure 11.20: Committing a MySQL transaction

Those symbols make it difficult to COMMIT the transaction, and the structure makes
it easy to reverse the transaction with ROLLBACK. This structure forces us to think
through and verify what we do as we make the changes. Make sure to balance every
BEGIN TRANSACTION execution with either a COMMIT or a ROLLBACK. An unbalanced BEGIN
TRANSACTION will cause problems with the MySQL instance itself. We can run ROLLBACK
TRANSACTION as many times as we want, although it will return a message for each
unbalanced ROLLBACK TRANSACTION statement, as shown here:

Figure 11.21: An unbalanced transaction rollback

You can run the SELECT query at any time to see the latest data state. As we learned in
this topic, this chapter, and throughout this course, we must use extreme care when we
work with data resources. Used wisely, transactions can help protect against mistakes
and errors that can damage data on which businesses and lives depend.

Summary | 241

Activity 11.02: Using Transactions

You are asked to delete all products with order ID 5, but you are also told that this may
need to be reversed at a later date. Write a transaction to delete all products with the
order ID as 5, then rollback the transaction to test that you can return to the previous
state of the database.

Note

The solution for this activity can be found via this link.

Summary
In this chapter, we explored the features and aspects of SQL database products that
can expand our skill sets. These tools have great value and importance because we can
solve better solutions and solve more complex problems. We now have a path forward
to solve problems that we could not solve before, and we also reinforced our experience
teaching ourselves with the new skills we may need to build the solutions we need.
Let's take a moment to get some perspective. When you started this course, you had
probably heard a lot about databases and database development, but you likely had
little to no hands-on experience with those products. Maybe you did not know about
high-quality SQL products that are available to everyone to download for free. Now, you
definitely know about all of this, and much more. You built an impressive skillset that
you can use to solve database problems and build database solutions. More importantly,
with that skill set, you can teach yourself new material so that you can cover new
situations and solve new problems. You have successfully joined a thriving community.

Appendix

About

This section is included to assist the students to perform the activities present in the book. It
includes detailed steps that are to be performed by the students to complete and achieve the
objectives of the book.

>

244 | Appendix

Chapter 1: SQL Basics

Activity 1.01: Inserting Values into the Products Table in the PACKT_ONLINE_

SHOP Database

Solution:

1.	 Create the Products table with the same column names that were provided in the
Excel spreadsheet:

use packt_online_shop;
CREATE TABLE Products
(
 ProductID INT NOT NULL,
 ProductCategoryID INT NOT NULL,
 SupplierID INT NOT NULL,
 ProductName CHAR(50) NOT NULL,
 NetRetailPrice DECIMAL(10, 2) NULL,
 AvailableQuantity INT NOT NULL,
 WholesalePrice DECIMAL(10, 2) NOT NULL,
 UnitKGWeight DECIMAL(10, 5) NULL,
 Notes VARCHAR(750) NULL,
 PRIMARY KEY (ProductID)
);

2.	 Enter the values into the Products table:

INSERT INTO Products (ProductID, ProductCategoryID, SupplierID, ProductName,
NetRetailPrice, AvailableQuantity, WholesalePrice, UnitKGWeight, Notes)
VALUES
(1, 5, 2, 'Calculatre', 24.99, 100, 17.99, 1, 'calculation application'),
(2, 5, 5, 'Penwrite', 79.99, 27, 49.99, 2, 'word processing product'),
(3, 1, 6, 'Vortex Generator', 2499.99, 1000, 1999.99, 0.01, 'space engine
component'),
(4, 1, 6, 'The Gourmet Crockpot', 24.99, 72, 19.99, 1.63, 'cookbook'),
(5, 1, 6, 'Account Books', 14.99, 26, 9.99, 1.22, 'government accounting book'),
(6, 3, 6, 'habanero peppers', 4.49, 189, 2.99, 0.009, 'hot peppers'),
(7, 2, 1, '10-mm socket wrench', 3.49, 39, 1.89, 0.018, 'important tool'),
(8, 3, 4, 'tomato sauce', 1.19, 1509, 0.89, 0.232, 'bottled in glass'),
(9, 1, 6, 'pure vanilla', 10.39, 1509, 7.89, 0.032, 'high-quality vanilla'),
(10, 3, 2, 'keyboard wrench', 399999.95, 6128, 149999.99, 521.38, 'handle with
care'),
(11, 2, 1, 'power cell', 47.89, 2346, 29.99, 0.298, 'ten amp-hours per cell');

Chapter 1: SQL Basics | 245

When you check the contents of the file, it should look similar to this:

Figure 1.20: Populated Products table

You'll find all 11 entries in the Products table.

246 | Appendix

Chapter 2: Manipulating Data

Activity 2.01: Inserting Additional values to the Products Table

Solution:

1.	 Create the FoodProducts table with default values:

CREATE TABLE FoodProducts
(
ProductID INT NOT NULL AUTO_INCREMENT,
ProductCategoryID INT NOT NULL DEFAULT 1,
SupplierID INT NOT NULL DEFAULT 1,
ProductName CHAR(50) NOT NULL,
NetRetailPrice DECIMAL(10, 2) NULL DEFAULT 5.99,
AvailableQuantity INT NOT NULL,
WholesalePrice DECIMAL(10, 2) NOT NULL DEFAULT 3.99,
UnitKGWeight DECIMAL(10, 5) NULL,
Notes VARCHAR(750) NULL,
PRIMARY KEY (ProductID)
);

2.	 Insert multiple values:

insert into FoodProducts (ProductName, AvailableQuantity, UnitKGWeight, Notes)
values ('Pancake batter', 50, 0.25, 'Contains eggs'),
('Breakfast cereal', 10, 0.25, 'Add milk'),
('Siracha sauce', 10, 0.25, 'Spicey');

3.	 Observe the result:

select * from foodProducts;

Your output should be as follows:

Figure 2.14: Populated Products table

Thus, we have created a new table and inserted values.

Chapter 3: Normalization | 247

Chapter 3: Normalization

Activity 3.01: Building a Relationship between the Orders and the OrderItems

table

Solution:

1.	 Create the OrderItems table:

Use packt_online_shop;
CREATE TABLE OrderItems
(
 OrderItemID INT NOT NULL AUTO_INCREMENT,
 OrderID INT NOT NULL,
 ProductID INT NOT NULL,
 Quantity INT NOT NULL,
 UnitPrice DECIMAL(10, 2) NOT NULL,
 Discount DECIMAL(10, 2) NULL,
 Notes VARCHAR(750) NULL,
 PRIMARY KEY (OrderItemID)
);

2.	 Create the Orders (child) table:

Create Table Orders(
 OrderID INT NOT NULL AUTO_INCREMENT,
 CustomerID INT NOT NULL,
 OrderNumber CHAR(50) NOT NULL,
 OrderDate DATETIME NOT NULL,
 ShipmentDate DATETIME NULL,
 OrderStatus CHAR(10) NULL,
 Notes VARCHAR(750) NULL,
 PRIMARY KEY (OrderID)
);

248 | Appendix

3.	 Provide foreign key reference:

ALTER TABLE OrderItems
ADD FOREIGN KEY (OrderID) REFERENCES Orders(OrderID);

You should now be able to see the two additional tables in the Schemas section of the
Navigator pane.

Figure 3.23: Populated Products table

Chapter 4: The SELECT Statement | 249

Chapter 4: The SELECT Statement

Activity 4.01: Displaying Particular Columns from the Table

Solution:

1.	 In the New Query window, switch to the PACKT_ONLINE_SHOP database:

USE PACKT_ONLINE_SHOP

2.	 Write the following query, to extract the required data, in the desired format:

SELECT FirstName as 'First Name', LastName as
 'Last Name', Phone as 'Phone Number'
FROM Customers

3.	 Run the query. Your output should be as follows:

Figure 4.21: Columns from the Customers table

The query will list all the rows of the FirstName, LastName, Phone columns renamed as
First Name, Last Name, and Phone Number.

250 | Appendix

Activity 4.02: Extracting the Top Five Highest Paid Items

Solution:

1.	 Execute the following query:

SELECT
 Products.ProductName as 'Product Name',
 Products.NetRetailPrice as 'Product Retail Price',
 Products.AvailableQuantity as 'Available Quantity',
 Products.AvailableQuantity * Products.NetRetailPrice as 'Total Price of
Available QTY'
FROM Products

ORDER BY Products.NetRetailPrice Desc
LIMIT 5;

2.	 Execute the query, your output should be as follows:

Figure 4.22: Columns from the Customers table

Chapter 5: Shaping Data with the WHERE Clause | 251

Chapter 5: Shaping Data with the WHERE Clause

Activity 5.01: Combining Conditions to Extract Store Data

Solution:

1.	 First, enter the SELECT statement. This is used so as to display the results using the
requested column names:

SELECT
 ProductName as 'Product Name',
 NetRetailPrice as 'Product Retail Price',
 AvailableQuantity as 'Available Quantity'
From Products
WHERE NetRetailPrice <= 24.99
 AND AvailableQuantity >=38

2.	 Execute the query, you should get the following output in the result grid:

Figure 5.19: Columns from the Customers table

252 | Appendix

Chapter 6: JOINS

Activity 6.01: Implementing JOINS

Solution:

1.	 Look at the tables involved in obtaining and identifying the common columns.
If you look closely at the following diagram, you will notice that the data that's
required is scattered across not just two tables but three, that is, Orders,
OrderItems, and Products.

In cases like these, we'll have to perform multiple joins, with the first join being
between the Orders and OrderItems table to get price details, and the second join
being between the OrderItems and Products table to get the product information.

2.	 In a new query window, implement this logic into the query:

SELECT Orders.OrderNumber,
OrderItems.UnitPrice,
OrderItems.Quantity,
Products.ProductName
FROM Orders JOIN OrderItems ON Orders.OrderID =
 OrderItems.OrderID
 JOIN Products ON OrderItems.ProductID = Products.ProductID

In this query, we joined the Orders and OrderItems tables using the OrderID and
joined the Products and OrderItems tables using the ProductID column.

3.	 Execute the query, you should get the following output:

Figure 6.12: Columns from the Customers table

By doing this, we've retrieved data from three different tables by mapping the common
columns from the OrderID and ProductID tables.

Chapter 7: Subqueries, Cases, and Views | 253

Chapter 7: Subqueries, Cases, and Views

Activity 7.01: Finding the Product Category Name Using a Subquery

Solution:

1.	 Enter the following query:

USE packt_online_shop;

SELECT PC.ProductCategoryName
FROM ProductCategories PC
WHERE ProductCategoryID IN

(SELECT ProductCategoryID FROM Products WHERE
 ProductName = 'habanero peppers');

2.	 Run the query. Your output will be as follows:

Figure 7.10: Category of the habanero peppers food item

Activity 7.02: Categorizing the Shipments Using CASE Statements

Solution:

1.	 Enter the following query:

USE packt_online_shop;
SELECT OrderNumber, ShipmentDate,
CASE
WHEN ShipmentDate < ' 2010-12-10' THEN 'Past Shipment Date'
WHEN ShipmentDate >= ' 2010-12-10' AND
ShipmentDate < ' 2019-12-18' THEN
'Recent Shipment Date'
ELSE 'Future Shipment Date'
END AS 'Shipment Date Category'
FROM Orders;

254 | Appendix

2.	 Execute the query. You should get the following output:

Figure 7.11: Displaying the shipment details

Activity 7.03: Building a View

Solution:

1.	 Create a view using the following query:

CREATE VIEW Hopper_Sales_View AS
SELECT OI.OrderID, OI.ProductID, OI.Quantity, OI.UnitPrice,
(OI.Quantity * OI.UnitPrice) AS 'subtotal',
CASE
WHEN (OI.Quantity * OI.UnitPrice) < 25.00 THEN 'Small'
WHEN (OI.Quantity * OI.UnitPrice) <= 79.99 THEN 'Medium'
ELSE 'Large'
END AS 'Subtotal Category'

FROM OrderItems OI INNER JOIN
Orders O ON OI.OrderID = O.OrderID

WHERE O.CustomerID IN

(SELECT CustomerID FROM Customers WHERE LastName = 'Hopper');

Chapter 7: Subqueries, Cases, and Views | 255

2.	 Run a select statement to check the output:

select * from Hopper_Sales_View;

The output is as follows:

Figure 7.12: Building Hopper_Sales_View

256 | Appendix

Chapter 8: SQL Programming

Activity 8.01: Building a Stored Procedure

Solution:

1.	 Execute the following query:

CREATE DEFINER=`root`@`localhost` PROCEDURE `spFilterOrdersByItemQuantity`(IN
orderItemQuantityVal int)
BEGIN
 SELECT OI.OrderID, SUM(OI.Quantity)
 AS 'Total Order Item Quantity'
 FROM OrderItems OI
 GROUP BY OI.OrderID
 HAVING SUM(OI.Quantity) <= orderItemQuantityVal
 ORDER BY OI.OrderID;
END

2.	 Test the stored procedure using the following query:

USE packt_online_shop;
CALL spFilterOrdersByItemQuantity(25);

Activity 8.02: Working with MySQL Functions

Solution:

1.	 Write the following query:

CREATE DEFINER =`root`@`localhost` FUNCTION `fnProductTotalOrderQty`(ProductID INT)
RETURNS INT
DETERMINISTIC
BEGIN

DECLARE retVal INT;

SET retVal = (
SELECT

Chapter 8: SQL Programming | 257

CASE
 WHEN SUM(OI.quantity) IS NULL THEN 0
ELSE
 SUM(OI.quantity)
END AS 'quantity'

FROM OrderItems OI
WHERE OI.Productid = ProductID
);

RETURN retVal;
END

2.	 Write the code to test the query:

USE packt_online_shop;

 SELECT packt_online_shop.fnProductTotalOrderQty(12);
 SELECT packt_online_shop.fnProductTotalOrderQty(3);

Activity 8.03: Building a Trigger

Solution:

1.	 Build the trigger using the following code:

USE packt_online_shop;
drop trigger tr_OrderItems_OnInsert
DELIMITER $$
CREATE TRIGGER tr_OrderItems_OnInsert AFTER INSERT ON OrderItems
FOR EACH ROW
BEGIN
 DECLARE availableQuantity INT;
 DECLARE orderQuantity INT;
 DECLARE productID INT;
 DECLARE productNameText VARCHAR(50);
 DECLARE productNotesText VARCHAR(1000);

 # The "INSERTED" table has the ProductID and OrderQuantity
 # values we'll need from the OrderItems table insert . . .

258 | Appendix

 SET productID = (
 SELECT NEW.ProductID
);
 SET orderQuantity = (
 SELECT NEW.Quantity
);

 # Find the available quantity for that productID
 # value from the Products table . . .

 SET availableQuantity = (
 SELECT P.AvailableQuantity
 FROM Products P
 WHERE P.ProductID = productID
);
 IF ((availableQuantity - orderQuantity) < 5) THEN
 SET productNameText = (
 SELECT Products.ProductName
 FROM Products
 WHERE Products.ProductID = productID
);
 SET productNotesText = (
 SELECT CONCAT("The available quantity for product ID ",
 CAST(productID AS CHAR), ")")
);
 SET productNotesText = (
 SELECT CONCAT(productNotesText, " (", productNameText, ") ",
 "will fall below five items")
);

 UPDATE Products
 SET Products.AvailableQuantity = (Products.AvailableQuantity -
 orderQuantity)
 WHERE Products.ProductID = productID;

Chapter 8: SQL Programming | 259

 UPDATE Products
 SET Products.Notes = productNotesText
 WHERE Products.ProductID = productID;
 END IF;
END$$
DELIMITER ;

2.	 Test the code using the following query:

 USE packt_online_shop;
 INSERT INTO OrderItems(OrderID, ProductID, Quantity, UnitPrice,
 Discount, Notes)
 VALUES (1, 2, 23, 59.99, 0, 'Trigger Test Order');
 SELECT P.Notes
 FROM Products P
 WHERE P.ProductID = 2;

3.	 Execute the query, you should get the following output:

Figure 8.20: Testing the Trigger

260 | Appendix

Chapter 9: Security

Activity 9.01: Grant UPDATE permission on a table in MySQL

Solution:

1.	 Update the permission for TEMP_ACCOUNT_2 using the following code:

USE packt_online_shop;

GRANT UPDATE ON TABLE packt_online_shop.products TO 'TEMP_ACCOUNT_2';

2.	 Write the following code to view the

SHOW GRANTS FOR 'TEMP_ACCOUNT_2';

3.	 Execute the query, you should get the result:

Figure 9.6: All permissions provided to TEMP_ACCOUNT_2

Chapter 10: Aggregate Functions | 261

Chapter 10: Aggregate Functions

Activity 10.01: Working with Aggregates

1.	 Write the following code in a new query tab:

SELECT OI.OrderID, P.ProductName,
 SUM(OI.Quantity) AS
 'COUNT OF EACH SEPARATE PRODUCT IN THE ORDER',
 SUM(SUM(OI.Quantity)) OVER(PARTITION BY OI.OrderID)
 AS 'TOTAL COUNT OF PRODUCTS IN THE ORDER',
 MAX(MAX(OI.Quantity)) OVER(PARTITION BY OI.OrderID)
 AS 'COUNT OF THE PRODUCT WITH THE HIGHEST
 ORDER COUNT IN THE ORDER'
FROM OrderItems OI INNER JOIN
 Products P ON OI.ProductID = P.ProductID
GROUP BY OI.OrderID, P.ProductName
ORDER BY OI.OrderID;

2.	 Execute the query, it should provide you the following result:

Figure 10.21: Aggregating Orders

262 | Appendix

Chapter 11: Advanced SQL

Activity 11.01: Implementing the LIKE Operator

Solution:

1.	 Enter the following query:

SELECT O.OrderID, O.CustomerID, O.OrderNumber, O.OrderDate,
 O.ShipmentDate, O.OrderStatus, O.Notes
FROM Orders O
WHERE O.Notes LIKE '%CUST%' AND O.ShipmentDate > '01051995'

We have set two filter conditions. Only when both are satisfied will the product be
displayed.

2.	 On execution of the query, your result will look similar to the following:

Figure 11.22: Customer notes post May 5, 1995

Notice that there are only three orders that have an order date post May 1, 1995 and
have CUST as part of the Notes section.

Activity 11.02: Using Transactions

Solution:

1.	 Execute the following code to verify the existence of the specific OrderItems rows:

USE PACKT_ONLINE_SHOP;

SELECT OrderItemID, OrderID, ProductID, Quantity,
 UnitPrice, Discount, Notes
FROM OrderItems
WHERE OrderID = 5;

Chapter 11: Advanced SQL | 263

The output is as follows:

Figure 11.23: Verifying the existence of the rows

2.	 Delete the items as a transaction:

START TRANSACTION;

DELETE FROM orderitems
WHERE OrderID = 5;

COMMIT;
ROLLBACK;

By doing this, you should be able to rollback your changes.

What Next?

Now that you've mastered the fundamentals of SQL, continue to build your knowledge and
advance your career with one of our other Workshops…

The Python Workshop

•	 Learn how to write clean, concise code with Python 3
•	 Automate essential day-to-day tasks with Python scripts
•	 Tackle entry-level data science problems and create

engaging visualizations
•	 Get started with predictive machine learning models

The Applied SQL Data Analytics Workshop
•	 Experiment with data analytics using basic and

advanced queries
•	 Interpret data through descriptive statistics and

aggregate functions
•	 Study advance analytics, including geospatial and text analytics
•	 Integrate your SQL pipelines with other analytics technologies

The Java Workshop
•	 Write clean and well-commented Java code that's easy

to maintain
•	 Use third-party libraries and software development kits (SDKs)
•	 Learn how to work with information stored in

external databases
•	 Keep data secure with cryptography and encryption

…or search online for "Packt Workshops" and browse the rest of our range for inspiration.

Please leave a review
Let us know what you think by leaving a detailed, impartial review on Amazon. We appreciate
all feedback – it helps us continue to make great products and help aspiring developers build
their skills. Please spare a few minutes to give your thoughts – it makes a big difference to us.

Index

About

All major keywords used in this book are captured alphabetically in this section. Each one is
accompanied by the page number of where they appear.

>

A
address: 41, 56,

64, 188, 228
airgap: 214
airship: 214
algorithm: 17
aliases: 33, 63, 68, 81
append: 227
arbitrary: 43-44
arctan: 214
area-wide: 92
argument: 22, 146, 149
ascending: 65, 70-74
asterisk: 65
atreides: 128
ava-may: 32
avenue: 17

B
backtick: 146, 162
balance: 56, 175,

180-181, 240
binary: 9
blocks: 156
boolean: 230, 232
built-in: 156, 158

C
calorie: 183
cardsuit: 109
cardsuite: 109
cardvalue: 109
carter: 96
cartesian: 99, 108
catalog: 36, 76
categories: 8, 66-67, 110,

124, 156, 206, 216
character: 7-9, 11, 13,

71, 90, 146, 162-163

checklist: 44
citrix: 50
clarity: 95
clause: 23-24, 28, 31-32,

34, 42, 63, 67, 70, 74,
76, 81, 83-86, 88-90,
92, 94, 97, 100, 117-119,
146, 155, 163, 168,
195-198, 200-201,
203-211, 214, 217, 220,
224-225, 228, 237

command: 3-6, 10, 26-27,
35-36, 42, 132, 146,
148, 153, 192, 228

commas: 65, 67,
146, 149, 162

comment: 162, 180, 240
commission: 34, 57
commit: 4, 238-240
community: 241
companies: 2
comparison: 85, 96
compiler: 17
complaint: 94
compliance: 50, 52-54
component: 125, 147, 231
composite: 41, 52
concat: 111, 125, 150, 170,

180, 182, 227-230, 233
concept: 7, 39-40, 45,

56, 60, 108, 116
configure: 10
conflict: 54
constraint: 11, 22, 40,

42-44, 57-58
containers: 3
contextual: 14
convention: 102
conversion: 156
corollary: 52
countertop: 214
counts: 168, 203, 215, 218

crater: 17
creation: 141, 169
criteria: 84, 102, 105, 211
critical: 7, 40, 44
current: 10, 32, 59,

138, 180-181
custid: 159
custom: 156, 212
customer: 2, 12, 18, 41-42,

70, 90, 92-95, 101,
111, 125-126, 149-150,
158-159, 161, 166, 168,
170, 174-175, 180-181,
203, 212-214, 228, 238

customerid: 41-42, 59,
72-74, 102, 104-105,
126-127, 150, 158-159,
161, 163, 166-167,
170, 172-173, 175,
179-181, 203, 228

D
database: 2-7, 9-12, 15,

17-18, 21-25, 28-32, 35,
39-42, 44-45, 49, 53,
57, 60, 63-65, 67-68,
70, 72, 79, 86, 101-102,
105-106, 116, 120,
125, 131-132, 138-139,
141, 144, 147, 149, 158,
164, 168, 173-175, 181,
183-184, 187-189,
191-193, 196, 206, 220,
224, 234, 237-238, 241

dataset: 27-28, 64
datatype: 156
datestamp: 180
datetime: 7, 9, 25, 41, 150
decimal: 8, 43, 58,

146, 158, 162, 164,
175, 181, 226

default: 5, 10, 22-27,
30, 36, 57-58, 68, 70,
73-74, 100, 122-123

delimiter: 169-170, 173, 175
democte: 235-236
department: 23-27,

30-33, 46, 48, 50-53,
55-58, 138, 196

departno: 34
deptno: 58
desktop: 188
directory: 46, 140, 172
division: 79
dlocation: 57
domain: 45
dropdown: 139

E
e-commerce: 168
economics: 215
element: 102
employeeid: 46, 48-49
entities: 40, 44
equifax: 188
exceptions: 44
execution: 25, 120, 126,

136, 156, 191, 220, 240
expression: 79-80,

231, 235, 237

F
facecards: 109-110
firstname: 13, 17, 41,

72-74, 77-78, 91-96,
102, 104-105, 111, 125,
149-150, 228, 230-233

flagged: 237
flathead: 214
frontend: 234
function: 7-8, 24-25,

51, 66, 111, 120, 134,
155-168, 180, 196-206,
208, 210-211, 214,
216-218, 220, 223-227,
231-234, 236-237

G
getdate: 66
github: 65, 77, 215
gmhopper: 17
granular: 125, 189, 191

H
hackers: 188
hammer: 214
handle: 48, 52, 83, 93,

116, 132, 158, 163,
168, 224, 232-234

headers: 14, 68, 70
helios: 214
helium: 214
host-based: 189

I
identifier: 45, 151
inclined: 60
increment: 25,

30-31, 41, 43
indexes: 21
insertion: 16, 168, 174, 181
instance: 7-9, 56, 66, 240
integer: 7, 11, 74, 155,

158-159, 161, 166,
168, 232, 237

inventory: 43, 156, 168
isnull: 231
isolate: 125

K
keyword: 23-24, 26, 30,

32, 58, 68, 70-71, 74-77,
81, 85, 111, 122, 133,
146, 149, 163, 210

L
lastname: 13, 17, 41,

77-78, 91-93, 95-96,
102, 104-105, 111,
125, 149-150, 203,
228, 230-233

leadid: 53
length: 8, 92, 226
leverage: 184
localhost: 154
logins: 189

M
machine: 138
machinery: 184
methods: 193
microsoft: 2-3, 9, 14, 50
mid-price: 120-123,

141, 144, 152, 154
mockup: 143
modeling: 7

N
navigator: 6, 12, 24,

26-27, 29, 150, 160,
165, 169, 172-173, 189

network: 46-47, 53
neutralize: 188
non-null: 133, 137
non-string: 232
non-zero: 223
number: 7-8, 22, 34,

40, 43, 47, 50, 63,
70, 75-76, 78, 92-93,
95-96, 111-112, 124,
156, 158, 166, 168,
182, 196, 212-214, 216,
218, 226, 235-237

numeric: 8, 70, 79,
164, 225, 228

nvarchar: 9, 13

O
object: 9, 14
offset: 34
one-row: 235-236
oninsert: 175-183
online: 12, 17-18, 29, 35, 41,

59, 66-67, 70, 81, 86-87,
100-102, 106, 116-123,
125, 127-128, 132,
139, 141, 144, 147-151,
154-155, 158-159,
161, 164, 167-168,
170, 173-175, 181, 188,
191-193, 196-197,
199-206, 208-210,
212-215, 218, 220,
224-227, 230-236, 238

operate: 120, 132, 202,
205, 211, 230

operation: 4, 22-23, 28,
30-31, 35, 47, 100,
110, 112, 228-229

operator: 83, 87-92,
94-95, 224, 228-230

oracle: 3, 9
orderdate: 41, 59,

102, 125-127, 150
orderid: 41, 43, 59, 107,

118-119, 126-127, 155,
159, 161, 167, 170,
173-175, 179-181, 203,

209-210, 212-214, 227
orderidval: 175, 180-181
orderitem: 59
output: 6, 16, 18, 24, 26,

29, 31, 33, 65-69, 73,
75, 91, 102, 104-105,
108, 112, 119, 124, 126,
128, 133, 136-137, 142,
150, 152, 155, 167, 183,
198-200, 208-209,
212, 215-217, 224-231,
233, 235, 237-239

override: 27
ownerid: 48-49

P
package: 9, 138
parameter: 146, 149,

154-155, 162-163,
226, 228, 231-232

partition: 195, 211,
213-214, 220, 236-237

patchinfo: 55
pattern: 83, 90-92
paymentref: 107, 170
populate: 24
portable: 234, 237
preceding: 11, 16, 43, 46,

49, 65-66, 104, 110, 112,
136, 159, 200, 202, 215,
224-225, 230, 234-237

precision: 43, 164
predefined: 125, 131
prefix: 133, 173
pricelevel: 144, 146,

151-152, 154
productid: 43-44, 59,

79-80, 117-118, 126-127,
179, 182, 209-210,
212-213, 215-219,
224, 234-238

program: 129, 132,
137, 146, 149, 156

R
radian: 214
ranging: 88
ranking: 216-217
rdbmss: 3
records: 2, 23, 31-32, 34,

42, 45, 47, 49, 66, 72,
75-78, 83, 87, 93, 96,
102-103, 105-106

references: 41-42, 44, 58
remainder: 129
resources: 8, 48, 125,

132, 139, 183-184,
188-189, 193, 211,
224, 234, 237, 240

resultant: 74
retail: 35-36, 81, 87, 96,

123, 143-144, 199-202,
204-206, 208

retinal: 41
retrieval: 8
retval: 159-161,

163, 166-167
rollback: 4, 238-241
rownumber: 236-237

S
sandboxes: 188
schema: 9, 35, 59
security: 8, 50, 125,

138, 187-189, 193
semicolon: 5, 7, 134,

149, 158, 162, 236
server: 3, 9, 14, 40, 42,

45-55, 75, 116-118,
120-123, 125-126,
132, 144-145,

149-150, 152-154,
188-189, 191, 193, 214,
224-235, 237-241

serverinfo: 46, 48-49
servername: 48
shipment: 124
signature: 41, 181
snippet: 65
software: 2, 17, 45, 131-133,

138, 146, 156, 158,
163-164, 184, 232

storage: 9
string: 7-9, 92, 156-157,

172, 180, 182, 189-190,
223-229, 232-233

structure: 2, 116,
181, 239-240

studentid: 11, 15-16
subqueries: 115-116,

118, 129, 132
subset: 214, 237
substitute: 125, 231-233
substring: 228-229
subtotal: 128
subtract: 133
supplier: 111, 182, 218-219
supplierid: 182-183, 214,

218-219, 234-236
switch: 12, 15, 17, 67,

70, 86, 102
syntax: 23, 25, 34-35,

43-44, 48, 64-65,
68, 75, 81, 85, 88, 90,
97, 101-103, 105-106,
108, 110, 127, 153,
192-193, 214, 231

system: 3, 7, 9, 25,
40, 45-46, 50, 52,
92-93, 95, 102, 138,
168, 189, 232

T
tables: 1-2, 10, 14-15, 19,

21-22, 24, 26, 29-30,
33, 39-40, 45, 48-50,
55-60, 65, 93, 97,
99-102, 105, 108, 112,
116-117, 119, 125, 129,
138, 169, 173, 175,
180, 192, 203, 234

tabular: 3
technique: 116, 129,

138, 163, 173, 180
timestamp: 57
trigger: 7, 134, 168-184
truncate: 225

U
unbalanced: 240
uncheck: 29
unicode: 9, 13
unitprice: 43, 59,

79-80, 127, 159, 161,
179, 203, 209-210,
212-214, 225-226

unitweight: 154
update: 3-4, 21-23,

31-36, 46-50, 120,
125, 138, 156, 168, 170,
173-175, 180, 182, 184,
189, 193, 237-239

uppercase: 224-225, 227
upper-left: 140
username: 92, 189

V
validation: 44, 146
varbinary: 9
varchar: 8-9, 11, 13, 23,

25, 41, 43, 57, 109, 175,

180-182, 225, 228
variable: 8, 132-133,

136-137, 146, 157-158,
163, 168, 173, 180, 232

variations: 21
vendors: 9
version: 9, 45

W
webpage: 154
weight: 154, 196-197,

199-202, 204-205, 208
wildcard: 65, 91, 97
workaround: 173
workbench: 145, 148, 156,

158, 162, 172-173, 176, 191

Y
yields: 224, 226, 237

	Cover
	FM
	Copyright
	Table of Contents
	Preface
	Chapter 1: SQL Basics
	Introduction
	Understanding Data
	An Overview of Basic SQL Commands
	Creating Databases
	The Use of Semicolons

	Data Types in SQL
	Creating Simple Tables
	Exercise 1.01: Building the PACKT_ONLINE_SHOP Database

	Populating Your Tables
	Exercise 1.02: Inserting Values into the Customers Table of the PACKT_ONLINE_SHOP Database
	Activity 1.01: Inserting Values into the Products Table in the PACKT_ONLINE_SHOP Database

	Summary

	Chapter 2: Manipulating Data
	Introduction
	The INSERT Operation
	Performing a Simple INSERT
	Exercise 2.01: Inserting One Row of Data into a Table
	Multiple Inserts
	Exercise 2.02: Specifying Default Values
	Using an INSERT Statement to Add Data from Another Dataset

	The DELETE Operation
	Exercise 2.03: Deleting a record from a table

	The ALTER Operation
	Exercise 2.04: Manipulating the Auto-Increment Values in a Table

	The UPDATE Operation
	The Basic UPDATE Statement
	ALIASING
	Conditional Update of Records
	Limiting the Records Using an UPDATE Statement
	Exercise 2.05: UPDATE Using Computed Values
	The DROP Operation
	Activity 2.01: Inserting Additional values to the Products table

	Summary

	Chapter 3: Normalization
	Introduction
	Primary Key Constraints
	Foreign Key Constraints
	Preserving Data Integrity
	Types of Data Integrity
	The Concept of Normalization
	First Normal Form (1NF)
	Second Normal Form (2NF)
	Third Normal Form (3NF)
	Denormalization
	Exercise 3.01: Building a Relationship between Two Tables
	Activity 3.01: Building a Relationship between the Orders and the OrderItems table

	Summary

	Chapter 4: The SELECT Statement
	Introduction
	What Does the SELECT Statement Do?

	Retrieving All Columns of a Table
	Selecting Limited Columns
	Exercise 4.01: Selecting Columns from a Table
	Using Naming Aliases
	Exercise 4.02: Aliasing the Column Headers
	Activity 4.01: Displaying Particular Columns from the Table
	Ordering Results
	Ordering Rows According to a Particular Column
	Ordering Rows According to Multiple Columns
	Using LIMIT
	Exercise 4.03: Using the LIMIT Keyword
	Using DISTINCT
	Using Mathematical Expressions
	Exercise 4.04: Calculating the Line Item Total
	Exercise 4.05: Calculating Discount
	Activity 4.02: Extracting the Top Five Highest Priced Items

	Summary

	Chapter 5: Shaping Data with the WHERE Clause
	Introduction
	The WHERE Clause Syntax
	Exercise 5.01: Implementing Logical Operators in the WHERE Clause
	Exercise 5.02: Using the BETWEEN Operator

	The Not Equal Operator
	Exercise 5.03: Using the != and <> Operators
	The LIKE Operator
	Exercise 5.04: Using the LIKE Operator to Check a Pattern at the Beginning of a String
	Exercise 5.05: Using the LIKE Operator to Check for a Specified Length

	Checking for NULLS
	Exercise 5.06: Searching for NULL Values

	Combining Conditions with the AND, OR, and NOT Operators
	Exercise 5.07: Querying Multiple Conditions
	Activity 5.01: Combining Conditions to Extract Store Data

	Summary

	Chapter 6: JOINS
	Introduction
	INNER JOIN
	Exercise 6.01: Extracting Orders and Purchaser Information

	RIGHT JOIN
	Exercise 6.02: Implementing RIGHT JOIN

	LEFT JOIN
	Exercise 6.03: Implementing LEFT JOIN

	CROSS JOIN
	Exercise 6.04: Implementing CROSS JOINS

	UNION JOIN
	Exercise 6.05: Implementing a UNION JOIN
	Activity 6.01: Implementing JOINS

	Summary

	Chapter 7: Subqueries, Cases, and Views
	Introduction
	Subqueries
	Exercise 7.01: Working with Subqueries
	Activity 7.01: Finding the Product Category Name Using a Subquery

	Case Statements
	Exercise 7.02: Using Case Statements
	Activity 7.02: Categorizing the Shipments Using CASE Statements

	Views
	Exercise 7.03: Building a View
	Activity 7.03: Building a View

	Summary

	Chapter 8: SQL Programming
	Introduction
	Programming for SQL Products – The Basics
	Stored Procedures
	Exercise 8.01: Building a MySQL Stored Procedure That Returns a List of Packt Online Shop Order Details
	Exercise 8.02: Altering a MySQL Stored Procedure
	Activity 8.01: Building a Stored Procedure

	Functions
	Exercise 8.03: Build a MySQL Function
	Activity 8.02: Working with MySQL Functions
	Triggers
	Exercise 8.04: Build a MySQL Trigger
	Activity 8.03: Building a Trigger

	Summary

	Chapter 9: Security
	Introduction
	Access Control (Authorization)
	Exercise 9.01: Creating New MySQL users
	Exercise 9.02: Granting EXECUTE permission in MySQL
	Activity 9.01: Grant UPDATE permission on a table in MySQL

	Summary

	Chapter 10: Aggregate Functions
	Introduction
	Aggregate Functions (SUM, COUNT, AVG, MIN, and MAX) and the GROUP BY Clause
	Exercise 10.01: Implementing Aggregate Functions

	The HAVING Clause
	Exercise 10.02: Implementing the HAVING Clause
	The Differences between the SQL HAVING and WHERE Clauses
	SQL OVER and PARTITION BY
	The RANK and DENSE_RANK Functions
	Exercise 10.03: Implementing RANK
	Activity 10.01: Working with Aggregates

	Summary

	Chapter 11: Advanced SQL
	Introduction
	String Functions
	Exercise 11.01: Building a MySQL Query that Returns the OrderID, Quantity, and Notes Columns
	Exercise 11.02: Using LIKE in a Stored Procedure
	Activity 11.01: Implementing the LIKE Operator
	Dealing with NULL and COALESCE
	The COALESCE Function
	Exercise 11.03: Using the COALESCE Function to Handle a NULL Value in a Combined Set of Values
	Finding Duplicate Table Rows

	Transactions
	Activity 11.02: Using Transactions

	Summary

	Appendix
	Index

