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Preface 

There have been many books written on the financial market. While 
some of them do make sense, some of them are pure fantasies. 

In addition, errors, misconceptions, and over-exaggerations 
abound in some of these books. To cite an obvious example, in a 
chart where price is plotted against time, an angle of 45 degrees has 
been employed as part of a trading plan to signify when the market is 
going to turn. However, by simply changing the scale of the time 
axis or the price axis, the same angle can be changed to an angle of 
different degrees. In that perspective, it would not make sense to use 
angles to do any forecasting. 

Some books are advertised by making use of price patterns 
to interpret market movements. But an interpretation of patterns is 
rather subjective. Five analysts can come up with six interpretations, 
and they will come up with different interpretations a few months 
later, when it becomes obvious that the previous interpretations are 
inconsistent with the present market behavior. 

Some books are more objective, and exploit indicators to 
forecast the market. However, they seldom explain why a certain 
market movement will follow, given certain signals from the 
indicators. An example that is not well explained is the bullish or 
bearish prediction that would arise depending on how some 
indicators diverge from prices. 

In this book, we would first take a look at how some of the 
financial markets may not be random from a mathematical point of 
view. Then we will take a look at how the markets can be modeled 

vn 
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from different scientific perspectives. A number of scientific journal 
papers will be cited. Interested readers should refer to those papers 
for details. It should be noted that scientific research is an on-going 
process. Understanding of the market, or any discipline for that 
matter, grows with new mathematical and scientific advancement. 
As the market deals with crowd human behavior, which is still not 
very well understood, it is believed that understanding of the market 
is still at an infancy stage. 

Later chapters of the book will emphasize discussing 
indicators, which are quite objective, rather than patterns, which are 
rather subjective. Several new indicators will be designed. They are 
tested on theoretical waveforms before being applied on real market 
data. The indicators do not have arbitrary parameters as are quite 
often used in some conventional indicators, which need to be 
adjusted to suit individual markets. They are also designed to have 
very little time lag. Time lag is particularly important in trading, as 
excessive delay will produce late buy-sell signals that may translate 
into lost profits. Why certain market movements will follow certain 
indicator response will be explained. More specifically, divergences 
between price and certain indicator responses will be interpreted. 

Some mathematics will be used. Digital signal processing 
and Calculus will be employed. However, the readers do not have to 
understand the mathematics in order to understand the description of 
the new indicators and how they can be applied. A number of 
figures are included to explain how those indicators will behave 
under different conditions. Computer programs of the new 
indicators, written in Easy Language of Omega Research's 
TradeStation 2000i are also included. The mathematics of the 
derivation of the new indicators are placed at the Appendices for the 
interested readers. Other mathematics included in the Appendices 
help to explain the basics of some of the new ideas involved. They 
would also guide the readers if they would like to continue doing 
some research themselves. 

Market forecasting would have to contain certain errors. 
Weather forecasting has improved a lot for the last twenty years. 



Preface IX 

Can market forecasting be improved? It is not impossible. Further 
research needs to be performed. But it should be remembered that 
the human mind is competitive and adaptive. And that would be the 
constraint to the accuracy of forecasting. 

I would like to extend special thanks to my eldest sister, 
Diana Mak, who is the Professor and Head of the Department of 
Applied Social Sciences of the Hong Kong Polytechnic University. 
She has provided me with continual encouragement and support in 
this endeavor. I would like to thank my son, Anthony, for typing 
part of the manuscript. And I would like to acknowledge my wife, 
Margaret, for her patience and tolerance throughout the long period 
of my working on this project. 

D. K. Mak 

December, 2002 
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Chapter 1 

Introduction 

We live in an interesting world. While some of the events can be 
controlled by us, most of the events cannot. Among all the events, 
while some of the outcomes are deterministic, quite a lot of them are 
completely random. A simple example of a completely random 
outcome is the throwing of an unbiased coin. It is not possible to tell 
a priori with certainty whether it is going to land head or tail. For 
the completely random outcome, there is not much we can do to 
increase its predictability. But for some of the apparently random 
events, are they really completely random? If we can train ourselves 
to be as observant as Sherlock Holmeses, can some of the apparent 
random acts be less random than they appear to be? Let me cite a 
real life example. 

About ten years ago, my whole family was visiting Hong 
Kong. I went with my five-year-old son Anthony to an amusement 
park. One of the games in the park was a water squirting 
competition that had ten seats. Each participant had a water pistol. 
Water going into all the pistols would be started by an operator. 
Each person would aim the water at a wooden clown's mouth, which 
was about one meter right in front of each pistol. As water was shot 
into its mouth, a ball would rise up a tube, which was connected, to 
the mouth. The first person that managed to raise the ball to the top 
could win a prize. We stood there watching several games. The 
people who sat on the leftmost side always won. I hypothesized that 
water must be piping in from the left side and distributed to all the 
water pistols, thus the water pressure from the leftmost side was the 
highest, contributing to the people sitting there always won. I 
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2 The Science of Financial Market Trading 

mentioned this conjecture to Anthony. However, we did not stay to 
play any game. 

Back in Ottawa and a year later, we went to an annual 
amusement exhibition and saw a similar game. The choice of prizes 
included stuffed lobsters. This was the first year that the exhibition 
had stuffed lobsters and they were cute. My children Angela and 
Anthony would like to have them. Anthony immediately went to the 
leftmost seat and started playing. He lost. At that point, I told 
Anthony, "Stop playing and let me watch for a while". For the next 
few games, people sitting at the center seats always won. What 
happened was, this game had nineteen sets, much more seats than the 
one in Hong Kong. I figured that the water must be piping in from 
the center and distributed to the water pistols on both sides. I then 
asked Anthony to sit in the center seat. He won three out of four 
games. He got three small lobsters, and he could exchange two of 
them for a large one. The kids were happy. So was I. I have found 
that an apparently random game was not so random after all. 

Now, can other chaotic events have some deterministic 
nature? And, what about the financial markets? Are they as random 
as they appear to be? Or, maybe, some of the markets are less 
random than others. Let us first take a look at who the players are in 
the financial market. 

The financial market intrigues many people, mostly because 
there is money to be made, and sometimes because the trader or 
investor enjoys the game of trading the market. He can go long 
when the market climbs, or he can short when the market crashes. 
As long as the market moves, there is the potential of making money 
and having fun. 

Professional traders believe that with a trading plan and a 
good money management, the market can be beaten. After all, there 
are traders who consistently make money from the market year after 
year. How do traders analyze the market? They usually take the 
fundamental approach or the technical approach or a hybrid of both. 
We will take a look at these approaches. 
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1.1 Fundamental Analysis 

For individual stocks, fundamentalists look at several variables: 
growth in company earnings and sales, price-to-earning ratio, insider 
trading, etc. (Zweig 1990). For futures and options, fundamentalists 
look at the prime rate, loan demand, seasonal cycles, etc. (Zweig 
1990). Thus, they look at the fundamental reasons why the price will 
change. Decisions will be made based on these reasons on a 
qualitative basis, or more quantitatively, using artificial intelligence 
programs like neural network and genetic algorithm. Most portfolio 
mangers purchasing individual stocks will use some kind of 
fundamental analysis. 

1.2 Technical Analysis 

Technical analysts base their buy and sell decisions on market 
behavior such as price and volume. They have a slogan — "the Tape 
Tells All" (Weinstein 1988). It simply means that all relevant 
information, whether it is interest rate, inflation, or company's sales 
revenues and earnings, etc. — the fundamentals — that are currently 
known are already incorporated in the price. This view, 
paradoxically, is quite similar to the idea of the efficient market 
theory, which claims that the market is random. However, while the 
efficient market theory claims that news about the fundamentals 
instantaneously affect the price, technical analysts believe that price 
movement can precede news as quite often, it is the anticipation of 
the news that move the market (Pring 1991). There is a familiar 
maxim, which says, "sell on good news". 

Furthermore, quite often, by the time the trader hears about 
the news, it may be already too late to take any action. Since it is 
difficult to find out about the important piece of news ahead of time, 
all one needs to do is to follow the tape and consider market 
movement as a leading indication of changes in fundamentals. 

In that sense, past financial data can be employed to forecast 
the market. Among financial data, price is considered to be the most 
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significant, and is quite often plotted in charts where patterns are 
claimed to be observed. 

Not only can patterns be recognized, indicators can also be 
calculated from the past price to hopefully give some hint as to 
which direction the market is heading. Pattern recognition and 
calculations of indicators are the two significant aspects of technical 
analysis (Elder 1993, Pring 1991, DeMark 1994, Weinstein 1988). 

1.2.1 Pattern Recognition 

Price patterns represent the price trends that are determined by 
interaction of buyers and sellers. Patterns can be simple or complex. 
Simple patterns consist of trendlines, rectangles, and triangles (Pring 
1991, Elder 1993). Complex patterns can be exemplified by Elliot 
Wave Theory (Prechter and Frost 1990, Nelly 1990), which states 
that market cycles consist of three waves up and two waves down. 
However, recognition of patterns can be quite subjective. 

1.2.2 Indicators 

Indicators operate on series of past financial data. The data would 
consist of price, volume, etc., among which price is the most 
important. Quite a number of indicators have been developed, all 
aiming at illustrating what the market situation is, and attempting to 
forecast what it will be. 

Indicators in financial market are equivalent to filters in 
electrical engineering. They are also equivalent to operators in 
mathematics. The operator will convolute with the financial time 
series to produce another function indicative of the state of the 
market condition. Calculation of indicators is more objective than 
pattern recognition. Analysts can debate about whether a triangle 
pattern is present or how the Elliot waves should be labeled, but they 
will not argue about the results of the calculation of certain 
indicators. 
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1.3 Hybrids 

This is a mix of fundamental and technical analysis. The most 
common form is to use fundamentals to decide whether to buy or 
sell, and to use technical analysis to time the trades. 

In this book, we will concentrate only on technical analysis, 
as the parameters (e.g. price) are fewer and much well defined than 
those of fundamental analysis. Furthermore, we will emphasize on 
calculating indicators on price data and will attempt to identify trend 
changes at an early stage. 

But trading techniques aside, the most basic question that 
one should ask is — is the market random? We will try to answer 
this question in the next chapter. 



Chapter 2 

Is the Market Random? 

One significant question that should be asked is whether financial 
data are random from a mathematical point of view. Just like any 
other data or signals, which can be electrical, acoustical, or 
otherwise, financial data series should be subjected to the same 
signal analysis procedures. 

For years, traders have been claiming that the market is not 
random. If it were, then there would be no point in trading. Traders 
quite often plot market price data versus time on charts. These 
chartists claim they can see patterns, e.g. rectangles, triangles, etc. in 
these charts (Pring 1991). Each pattern is interpreted differently as 
the balance of power between bulls and bears. From these patterns, 
they would decide which direction the market is heading. However, 
it has been pointed out that patterns can arise out of complete 
randomness (Peterson 1997). On a clear night, we can see thousands 
of stars scattered across the sky. It is not difficult to pick out patterns 
like a lion or a bear from a certain group. Similarly, one can write a 
computer program to simulate market behavior by treating price as a 
random walk. A random walk is a summation of independent and 
identically distributed (iid) variables (Brockwell and Davis 1996). 
Every time the program is run, a different curve will be drawn. 
Quite often, we can see patterns such as triangles and rectangles in 
the curves. A trader can easily suggest profitable entry and exit 
points. This apparent regularity among randomness represents 
special cases from a branch of mathematics known as Ramsey theory 
(Peterson 1997). Ramsey theory describes the appearance of regular 
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patterns in a large set of randomly chosen objects. The theory 
implies that complete disorder is impossible. 

For years, academics have been saying that the market is 
random, and the efficient market theory holds. The efficient market 
theory states that market prices reflect the knowledge and 
expectations of all investors. Thus it is futile to forecast market 
movements. Any news is reflected in the company's stock price, thus 
making it impossible to beat the market. The efficient market theory 
originated from Louis Bachelier (1870-1946), who is considered to 
be the pioneer of all statistical approaches to finance. In 1900, 
Bachelier, in his Ph. D. Thesis, claimed that charting was useless and 
that the market was random (Mandelbrot 1983, 1997). More 
specifically, he wrote that the price change followed, in the first 
approximation, a one-dimensional Brownian motion. Brownian 
motion is the non-stopping irregular motion of small particles, e.g., 
pollen grains, held in suspension in a liquid. The motion has a 
normal (Gaussian) distribution. Nevertheless, Bachelier did note 
certain discrepancies between the financial data and his Gaussian 
random walk model. Firstly, the sample variance changes in time. 
The sample variance is the mean of the square of the variation of 
each sample from the mean (Meyer 1965; Freund 1992). Secondly, 
there are very large changes in price that cannot be accounted for. In 
1963, Mandelbrot pointed out that the random price variation was 
actually ruled by a Levy stable distribution, which has wings larger 
than expected for a normal process and has an infinite variance 
(Mandelbrot 1983, 1997; Casti 1997a). In 1995, Mantegna and 
Stanley (1995) studied the S & P 500 index variations and concluded 
that a Levy distribution described well this random process over time 
intervals spanning from 1 minute to 1000 minutes. To resolve the 
paradox of the infinite variance, they introduced the truncated Levy 
flight distribution, which has a finite variance, so as to explain the 
unavoidable cutoff in any physical systems (Mantegna and Stanley 
1994, 1995). 

Whatever distribution the price variation is, the market is 
still a random process, which is what the efficient market theory 
claims. However, I believe, there is a flaw in the build-in 
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assumption of the efficient market theory. Its basic premise implies 
that all investors learn of the news at the same instant, which cannot 
be true. There are insiders who learn of the news before they appear 
in public. There are professional traders who monitor the news by 
the minute, and there are mutual fund investors who learn of the 
news most likely from next day's newspaper. Even with the fast 
speed of the spread of information these days, there is bound to be 
different time lags of the news being received by the traders and 
investors, who will act accordingly, thus affecting the market price. 
Palmer et al (1994) also questioned the assumptions of the efficient 
market theory, and its related rational expectation theory (Jaditz and 
Sayers 1992). They argued that the agents do not necessarily have 
full knowledge of the information. Furthermore, they are not 
perfectly rational, and may not be able to deduce their optimum 
behavior. In addition, they cannot rely on others to duplicate their 
own logic. Different agent may receive different information about a 
situation, and may employ different approaches. This, then, can 
imply that there are certain market trends, and that the market may 
not be completely random. 

Testing whether a data sequence is random is hampered by 
the fact that randomness is not a very well defined mathematical 
concept. Different kinds of tests have been proposed (Brockwell and 
Davis 1996). Each test checks the hypothesis that the data are values 
of independent and identically distributed (iid) random variables. 
The general strategy is to apply all the tests and observe whether any 
of them is able to detect any deviation from the iid hypothesis. If 
some tests are not able to detect any deviation from the iid behavior, 
but other tests do so quite strongly, one should consider rejecting the 
iid hypothesis. Tests have been performed on the Dow-Jones 
Utilities Index, showing that the index was not random (Brockwell 
and Davis 1996). 

In 1991, Steven Pincus, a mathematician, introduced a new 
concept called approximate entropy (Pincus 1991, 1995, 1996, 1997; 
Stewart 1997) to evaluate randomness. The new concept yields the 
average unpredictability of a number, and can apply to a sequence of 
any length. Using this method, he has shown that changes in the 
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values of stocks, measured by the S&P 500 index, are far from 
random. 

In 1994, Kaplan (1994) employed a new kind of statistics to 
analyze the exchange rate between the Swiss Franc and the U.S. 
dollar. He pointed out that there existed a low frequency variability 
(slower than 15 minutes), and conjectured that the exchange rate was 
not entirely a random walk. 

If the price variation of a certain market is not a random 
sequence, is there a reason for this? The explanation may lie in the 
fact that more and more traders are becoming technical analysts, i.e., 
they forecast the future price movement by analyzing the past price 
data. If so, even though each trader would have his own rules, the 
future would be a function of the past. This reasoning may apply to 
Bond and Futures market. It may not apply to markets of individual 
stocks, where investors and mutual fund managers are most likely 
fundamental analysts, i.e., their decision making would include 
factors like company earnings, and interest rates. In those markets, 
there will not be a correlation between future price and past price, as 
past price is not employed to make decisions. 

There can be another reason why a price sequence is not 
random. If certain news causes a market or a stock to go downhill 
(or uphill) during a certain period, the price sequence during that 
period would be quite directional and not random. 

Only if the market is not random would we be able to create 
mathematical models, which most likely will be probabilistic rather 
than deterministic. We will discuss models of the financial markets 
in the next chapter. 



Chapter 3 

Models of the Financial Market 

A model, by definition, is a simplification of reality. A model must 
have assumptions and approximations. This simply because nature 
or reality is very complicated. To put a large number of factors in 
the model will cloud the whole issue. The essential point is to 
determine which factors are significant and which ones cause only 
perturbations. An example will be given. When a marble is dropped 
on the floor, we can assume that the earth's gravitational force is the 
only force acting on the marble, and other force, e.g. air resistance, 
play a very insignificant role. We can forecast, quite well when and 
where the marble is going to drop on the floor. Thus, the 
gravitational force model is a good model in this case. However, 
when a feather is dropped onto the floor, other forces play a more 
important role and need to be included in the model. Thus, model 
building will depend upon whether the model can explain and 
forecast real phenomena. 

Not all models can perform both functions. They can be 
either explanatory or predictive (Casti 1997b). It would, of course, 
be best to find a model that can both explain the past and forecast the 
future. Good models have certain characteristics: 

(1) Simplicity 

A model should be as simple as possible and contains just enough 
terms to explain the facts. This principle can be represented by the 
doctrine called Ockham's Razor, which states that "entities are not to 
be multiplied beyond necessity". 

10 
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(2) Objectivity 

A model should be objective. This means that anybody anywhere in 
the world should arrive at the same result. Objectivity implies 
reproducibility. 

(3) Conformity 

A model should conform to well-established theories. This does not 
mean that well-established theories are sacred, as they may need to 
be corrected if new experimental evidences appear. However, well-
established theories are usually very well thought of and need quite 
some justification to be proved incorrect. 

(4) Applicability 

A model will be a better model if it can explain a wider variety of 
phenomena that may look seemingly unrelated. An example would 
be the Universal Law of Gravitation, which can explain planetary 
motions as well as an apple falling from a tree. 

(5) Agreement with experimental data 

Comparison should be made between predictions of a model and the 
results of experiments. If the agreement is good and if it does not 
contain too many empirical constants adjusted to fit the data, then the 
model is usually endorsed. If the parameters are determined 
independently and then used as inputs to the model as fixed 
constants, one can claim a good degree of confidence in the model 
(Aris 1994). 

(6) Non-arbitrariness 

A model is a better model if it contains fewer or preferably no 
arbitrary parameter in its mathematical equations. Arbitrary 
parameters are constructed from curve fitting to existing 
experimental data and thus may not agree with new experimental 
data. A model is considered a better model if it is derived 
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independently of experimental data. Usually, a model with no 
arbitrary parameter has a larger range of applicability. 

Models can be mathematical or non-mathematical (Casti 
1997b). We will primarily concern ourselves with only 
mathematical models as we are dealing with financial price data that 
are number series. The ABC of formulating a mathematical model 
has been described by Mesterton-Gibbons (1995). A is for Assume. 
We should boldly make assumptions where no one has assumed 
before. What we are given is usually not enough; we need to make 
up what we are lacking. B is for Borrow. We borrow ideas and 
theories from well-established models to interpret the new 
phenomena. We borrow from the familiar to explain the unfamiliar. 
C is for Criticize. We should rigorously criticize our model. Are the 
assumptions correct? Can we put old wine into new bottles? Do the 
calculations of our model agree with experimental data? If these 
questions are not satisfactorily answered, the model need to be 
revised, or we may need to go back to the drawing board and re-start 
again from scratch. 

Mathematical models can be divided into deterministic and 
probabilistic. The behavior of a physical phenomenon can quite 
often be described by a model based on physical laws, which can 
yield accurate values of some time-dependent quantity. Such model 
can be classified as deterministic. An example would be models for 
planetary movements. In many other problems, time dependent 
phenomenon such as monthly sales of a company, depends on many 
unknown factors. It is simply not possible to derive a deterministic 
model to accurately calculate the future behavior of the phenomenon. 
However, it may be possible to come up with a model to estimate the 
probability of a future value lying between two specified limits. This 
kind of model is classified as a probability model or a stochastic 
model. Models for forecasting financial time series are stochastic 
models. Furthermore, they are kinematic rather than dynamic 
models, i.e., they describe how the price moves but do not explain 
why. 
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It should be noted than no phenomenon is totally 
deterministic. A ball dropping onto the floor can be described by 
gravitational force. However, unknown factors, such as wind can 
throw the ball off the predicted target. If we cannot forecast 
precisely phenomena governed by physical laws, there is no reason 
to believe that we can forecast precisely stochastic process. 

We will now look at how the financial market is being 
modeled by different endeavors. 

3.1 Chaos 

Chaos is a system that never finds a steady state — a system that will 
almost repeat itself but never quite succeeds. The weather is such a 
system. The weather can be modeled by only a few equations, thus 
making it deterministic. However, because the result is very 
sensitive to initial conditions, its path can change dramatically, 
making it unpredictable (Gleick 1987; Peitgen and Richter 1988). 
This is described as the Butterfly Effect — the notion that a butterfly 
flapping its wing in Beijing can cause a hurricane next month in New 
York. Weather forecasts are speculative beyond a week, and are 
worthless beyond two. Chaotic problems have solution spaces called 
strange attractors, which has the important property of stability. In 
the long term, motion tends to return to the attractors. 

In the late nineteen eighties, some scientists claimed that 
certain financial and economic time series exhibit chaotic behavior 
(Brock and Sayers 1988; Brock, Hsieh and Lebaron 1992; Chorafas 
1994; Casti 1995). However, these claims of findings of chaos in 
economic data have been disputed. Jaditz and Sayers (1992) 
suggested several methodologies to analyze the data and concluded 
that there was no evidence of deterministic chaos in economic data. 
Gilmore (1992) applied a new topological approach, the close returns 
test, to analyze various economic time series. The test is capable of 
distinguishing between chaotic and other types of behavior. The test 
showed lack of evidence for chaos, and concluded that claims to find 
chaotic behavior in economic data need to be viewed skeptically. 



14 The Science of Financial Market Trading 

3.2 Complexity 

Complexity theory examines systems that lie in the middle ground 
between order and randomness (Waldrop 1992; Casti 1995). A 
complex system contains a number of agents. Examples of agents 
are drivers on highways and traders in a financial market. The 
agents are intelligent and adaptive. They make decisions and act on 
the basis of certain rules. They can modify the rules as new 
information arises, and they can create new rules. Each agent knows 
at best what a few other agents are doing. Based upon this limited 
information, they decide what to do next. 

Hirabayashi et al (1993) modeled the complex system of 
stock market using threshold dynamics. Under different conditions, 
the model shows balanced time evolution of market price as well as 
crash-like behaviors. 

Palmer et al (1994) also created a complex model of a stock 
market. The agents were allowed to learn and the system 
bootstrapped itself to a high order of mutual behavior. The price 
quite often stays close to the fundamental value, but it also shows 
major upward and downward deviations, corresponding to bubbles 
and crashes. 

Thus, complexity theory can simulate market behavior quite 
well. However, knowing that the market is a complex system does 
not really help in forecasting it, or whether the trader should buy or 
sell at a certain point in time. Various approaches in helping traders 
to make decision as well as forecasting have been attempted. These 
include the wave model, time series analysis, neural network, fractal 
geometry, fuzzy logic, and wavelet analysis. 

3.3 Wave Model 

In nature, many objects vibrate or oscillate and generate waves. 
Examples of waves are ocean waves, earthquake waves, and sound 
waves in air. Not only mechanical systems can oscillate; non-
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mechanical systems can also do so. Radio waves, microwaves, and 
visible light are examples of oscillating electric and magnetic fields. 

The market represents the emotions of traders who oscillate 
between optimism and pessimism. Thus, it will not be surprising 
that the wave model in nature was borrowed to explain the 
fluctuations of the price data. 

Charles Dow observed that a rising market moves in a series 
of waves, each rally and correction being higher than its predecessor. 
When the series of rising peaks and valleys was interrupted, a trend 
reversal was signaled. Dow likened this phenomenon to the ripples 
of a wave on seashore. The Dow theory was first published in 1900 
(Pring 1991). 

In the 1930's, Ralph Elliott claimed that the financial market 
unfolded according to a basic pattern of five waves up and three 
waves down. Each pattern, he pointed out, is part of a larger pattern 
and each pattern, in turn, is made up of many smaller patterns 
(Prechter and Frost 1990, Neely 1990, Beckman 1992). 

Plummer (1990) commented that the pattern of five waves 
up and three waves down is incompatible when applying to foreign 
exchange markets. A five-three pattern for one currency in a certain 
cross-rate becomes a three-five pattern for the other currency in that 
cross-rate. He proposed that the pattern should be three waves up 
and three waves down. 

It should be noted that the labeling of these waves is highly 
subjective. Different technical analysts would label the waves quite 
differently. Furthermore, a technical analyst would re-label the 
waves after a few months, when it became obvious that the original 
labeling was incompatible with the present market patterns. These 
wave models are quite simple. However, because of its subjectivity, 
these models are not good scientific models. 

Market waves can also be viewed in the most basic pattern 
— one wave up and one wave down, which constitutes a cycle. To 
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find a cycle is to measure the time between the same phase on 
successive cycles. The resultant measurement is the period of a 
simple cycle. A cycle finder can be as simple as a ruler, or as 
complicated as the Maximum Entropy Spectral Analysis (MESA) as 
proposed by Ehlers (1992). The MESA approach is a variation of 
deconvolution filtering techniques. When convoluted with the 
original signal, the filter outputs a white noise with a constant 
spectrum at all frequencies. MESA is a rather objective method of 
finding a cycle. It requires about one cycle's worth of input data. 

However, market data shows that the length of a cycle 
changes quite often. The wave does not usually last even one cycle. 
Thus, more importantly, instead of attempting to find the cycle, we 
would like to know when the market is going to turn. In this book, 
we will describe a new indicator, the velocity indicator, which will 
require only about a quarter of a cycle of data to forecast which 
direction the market is heading. Since the velocity indicator has a 
very small phase lag, it can time market turn quite well. 
Furthermore, the same indicator will signal whether the market is in 
a trending mode. 

3.4 Time Series Analysis 

Financial market prices are quite often plotted versus time on charts. 
Market price is thus an example of a time series. Prediction of time 
series is a problem we encounter in the study of natural phenomena, 
social and economic events, or human behavior. When we are given 
the knowledge about the past behavior of a system, can we make 
meaningful prediction about its future? 

In some fairly stable situations, e.g., orbits of planets and 
satellite, their calculations are so accurate that people forget they are 
forecasts. However, many complex systems manifest the aspect of 
sensitive dependence to initial conditions, and this renders long-term 
predictability a hopeless task. In spite of that, some sort of 
predictability may be possible in the short run and this may be 
sufficient for adaptive systems interacting with an external 
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environment. Short-term predictability will embody the new 
information as it arrives at each new time step. Given a certain 
number of elements of a time series the next element will be 
forecasted. 

Several approaches that have been employed to deal with the 
problem of prediction of time series have been summarized by 
Santana and Mendes (1992). The approaches include autoregressive 
model, neural network and prediction of band limited functions. The 
first two methods will be discussed in more detail later. The last 
method makes use of the Shannon's sampling theorem, which states 
that a function for which the circular frequency vanishes outside the 
band [-co, co] can be exactly reconstructed from its values at discrete 
times separated by the sampling period T = 7i/co. T"1 is called the 
Nyguist rate. As long as the sampling rate is larger than the Nyguist 
rate, then the signal can be reconstructed from the past samples. A 
high pass filter with stop band edge co is selected from a large 
collection of filters, such that the output of the signal after filtering 
becomes negligible. From the characteristics (finite impulse 
response) of the filter, the one step ahead forecast can be estimated. 

The drawback of the method is the requirement to have a 
good estimate of the frequency band in the time series. Santana and 
Mendes (1992) have devised a method that, at each time step, will 
search for the optimal bandwidth for the prediction filter. The 
method was applied to the inflation in Portugal in the period between 
January 1984 and November 1990, as well as to the sunspot number 
time series from 1850 to 1890. The forecasts agreed reasonably well 
with future data. 

The most common approach to time series analysis is the 
autoregressive integrated moving average (ARIMA) process. The 
detail will be discussed in Appendix 1. One hundred successive 
observations of the daily IBM stock prices for a period beginning in 
May 1961 was fitted to the ARIMA model (Box, Jenkin and Reinsel 
1994, p98). The result showed that the price series was random, and 
the best forecast of the future values of the stock was very nearly 
today's price. The ARIMA model was also used to fit the daily 
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closing price of the Dow-Jones Utilities Index between Aug 28 and 
Dec 18, 1972 (Brockwell and Davis 1996, pl41). The result implied 
that the Index was not random and was thus forecastable. 

The daily closing price of the S & P index over the course of 
the year 1992 has been modeled with an ARIMA (8 0 0) process 
(Hatamian 1995). The next day index was forecasted. The forecast 
error averages around 2.5 S&P points. Hatamian concluded that the 
results were not spectacular and were not useful for trading. 
However, it should be noted that '8', the number of past values used 
was chosen rather intuitively. A more systematic estimation may 
produce a better result (Brockwell and Davis, 1996, p381). 
Hatamian later applied a nonlinear system to model the S & P Index, 
producing a better result of forecasting with an average error of 2.0 
S&P points (Hatamian 1996). He concluded that the index might not 
be that random. 

3.5 Neural Network 

Neural network can perform intelligent mathematical operations. It 
consists of several layers of neurons, which are named after human 
brain cells. The first layer is the input neurons, which are the input 
data. In financial market, the input data can be interest rate, selected 
indicator values, etc. The hidden neurons learn how to combine the 
inputs to produce the desired results. The output neurons present the 
results. Results can be the closing values of the next day's S & P 
index or IBM stock price. 

A neural network is trained by repeatedly presenting 
examples that include both inputs and outputs. The network learns 
from each example and calculates an output. If the output does not 
agree with the target output, the network will be corrected by 
changing its internal connections. Some connections will be 
strengthened and others weakened. This training will be continued 
until the network reaches a desired level of accuracy. New input 
data can then be fed into the network, which will predict whatever it 
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is trained to do. Neural network has been proposed to forecast the 
market (Fishman et al. 1991, Sherald and Ward 1994). 

One problem with financial neural networks is that there are 
many numeric parameters that can be chosen as input data. Quite a 
number of these parameters, especially indicators, are slight 
variations of each other, and therefore redundant. However, genetic 
algorithm, which is used to solve optimization problem, can help to 
sort out which parameters are significant. They employ the methods 
of evolution, and especially the principle of the survival of the fittest. 
The less fit parameter will die, and the most fit parameter will be 
selectively bred. After many generations of selection, the most fit 
parameters will remain to be the optimal solution (Chorafas 1994). 

An interesting competition in forecasting time series was 
organized by the Complex Systems Summer School at the Santa Fe 
Institute in the summer of 1990 (Weigend and Gershenfeld 1994). 
One of the six data sets provided was the current exchange data rate 
between the Swish franc and the U.S. dollar. Weigend and 
Gershenfeld noted that a review in 1990 regarding attempts to 
forecast foreign rates concluded that no method had succeeded in 
beating the random walk hypothesis out-of-sample. However, the 
data employed was daily or weekly data. It was hoped that the high 
frequency "tick-by-tick" data available for the competition might 
reveal some hidden deterministic feature. Unfortunately, after 
employing neural network to train the data, the competitors showed 
that all out-of-sample predictions were on average worse than 
chance. 

3.6 Fractal Geometry 

In financial price time series, it is virtually impossible to distinguish 
a daily price record from, e.g., a weekly record, when the axes are 
not labeled (Ehlers 1992). This kind of time series is called self-
similar. Self-similarity entails that the distributions of variations 
across lags of size k have a scaling behavior characterized by the 
fractal dimension D. 
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In 1963, Mandelbrot (1983) showed that cotton prices have 
self-similarity, and introduced Levy distributions in the modeling of 
price records. The fractal dimension, D, was found to be 1.7. 
Evertsz (1995) also found self-similarity in the 30 German stock 
(DAX) index which has a fractal dimension of 1.46 (Valdez-Cepeda 
and Solano-Herrera 1999). 

Fractal Geometry was also employed by Valdez-Cepeda and 
Solano-Herrera (1999) to analyze the distribution of the daily close 
of five financial indexes, for a period of about 500 days each. 
However, they assumed that the average variances were related to 
the time increments by a power law. This assumption implies that 
the process is self-affine, i.e., different coordinate scale at different 
rates, which is different from the self-similar process, where different 
coordinate scale at the same rate. An example of a self-affine 
process is the Brownian motion. If the time scale is rescaled by a 
factor "b" and the length scale is rescaled by a factor "b /2", the 
original distribution is reproduced. The fractal dimension D of the 
financials indexes were estimated. The industrial Dow-Jones index 
is described by a D = 1.332 ± 0.11, reflecting the significance of 
long-range (trend) variation. D of the German DAX Composite 
index is estimated to be 1.688 ± 0.026, implying that it is dominated 
by short-range variations. British Footsie (D = 1.495 ± 0.009) and 
the Australian Share Price (all ordinaries) (D = 1.506 ± 0.008) 
indexes behave like the Brownian motion (D = 1.5), The Nikkei 
Cash index is described by a D = 1.474 ± 0.008, implying that the 
short-range variation is almost as significant as the long-term 
variation. The D of the DAX index is different from the D value of 
1.46 found by Evertsz (1995). The quantitative difference can be 
explained since Evertsz employed the model of self-similarity 
instead of self-affinity to estimate D, as well as a larger and different 
total number of business days. 

3.7 Fuzzy Logic 

Fuzzy logic rests on the idea that things usually are not crisply 
defined. There is usually a certain vagueness in the description of 
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qualities (McNeill and Freiberger 1993). Thus, a person is not either 
tall or short. There is a range of grades between the two extremes. 
Fuzzy logic is the way that human brain functions. It is quite 
different from classical logic, which declares that a statement can 
only be either true or false. 

Fuzzy logic can be used to analyze certain situations. Its 
analysis method works as such: (1) input data are described as a 
large number of fuzzy perceptions, (2) the inputs are processed 
according to a string of fuzzy if-then rules, (3) the outputs from the 
individual rules are weighted and averaged as a "center of mass" and 
condensed into one single output decision. 

Fuzzy logic was first proposed by Prof. Lotfi Zadeh of the 
University of California at Berkeley in 1965 (McNeill and Freiberger 
1993), and has since been applied to controls of automatic 
transmission, air conditioning and subway's running and braking 
system (Sowell 1998). It has also been applied to financial analysis 
(Chorafas 1994, Sowell 1998). For financial analysis, inputs can 
include price earnings ratio, cash flow etc. A number of if-then rules 
are created to give an assessment value to each input. Each input 
factor is given a weight that varies from 0 to 1.0. An input factor 
that is highly important will be weighted as 1 and less important 
factor will be weighted less. The product of assessment value and 
weight from all inputs are averaged and compared with a pre­
determined rule to decide whether to buy or sell. This fuzzy logic 
decision-making method removes the personal emotion and 
irrationality. 

3.8 Wavelet analysis 

Wavelet analysis is essentially a refinement of Fourier analysis. 
Fourier, a French mathematician and physicist, discovered that every 
signal, no matter how complicated it is, could be reproduced as a 
sum of sine waves. However, Fourier analysis does not deal well 
with signals of short duration. Its representation of a localized signal 
requires a large number of Fourier components. 
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Wavelet analysis, a mathematical technique that was 
introduced in the 1980's, employs generalized local base functions 
called wavelets that can be stretched and translated with a flexible 
resolution in both time and frequency. The flexible windows narrow 
while focusing on high-frequency signals but widens while looking 
for low-frequency signals. As such, abrupt changes can be located in 
time quite precisely (Baeyer 1995; Lau and Weng 1995; Hubbard, 
1998). 

Studies using wavelet transform techniques applied to 
financial markets have been summarized by Ramsey (1999) and Shin 
and Han (1999). Some studies used wavelets to decompose any 
signal into its time-scale components. Different behavior can occur 
in different time scales (Ramsey and Lampart 1998 a & b). For 
example, in the financial market, some traders buy and hold 
securities for years, and thus concentrate on the market fundamentals 
while other traders trade on a much shorter time-scale and are 
interested in deviations of the market from its long-term growth. 
The S&P 500 index from January 1928 to June 1990 was examined 
by Ramsey et al (1995) using wavelet analysis. The actual data used 
was the growth rate of the S&P 500 index, which is defined as 

x ( n ) - x ( n - l ) 

x ( n - l ) 

where x(n) represents the daily price of the S&P 500 index. 

They plotted the amplitudes of wavelet coefficients for 
different frequencies versus time. The wavelet coefficient is the 
projection of the data onto the analyzing wavelet of various scaling. 
By varying the time with the zoom level changing from 25 to 2° , a 
series of six graphs were plotted. They found self-similarity in the 
plots. Self-similarity (or scale invariance) means that the system has 
no characteristic scale; the description of the system is the same at all 
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time scales. This result led to the conclusion that there might be 
some predictability in the data. 

A different wavelet approach, the technique of thresholding, 
has been employed by other researchers. Wavelet coefficients, 
whose absolute values are smaller than a fixed threshold, are 
eliminated. The remaining coefficients are then used to reconstruct 
the signal, thus minimizing the error of approximation. This 
technique is also called denoising or wavelet shrinkage. Neural 
network (Shin and Han 1999) or time series analysis (Capobianco 
1999) has been applied to the reconstructed signal to forecast the 
next value. It was shown that the root mean square error of the 
forecasted value from the actual value was smaller for the 
reconstructed signal when compared to that of the original signal. 
This shows substantial potential to the wavelet approach. 

The wavelet approach has the flexibility in handling very 
irregular data series. It has the capability to represent highly 
complex structures even though the underlying functional form is not 
known. The potential provided by wavelets to analyze financial 
price data is readily apparent. We will come back to wavelet 
analysis in Chapter 9. 



Chapter 4 

Signals and Indicators 

This book is about the financial market, but it interprets the market in 
scientific and mathematical terms. The reason is simple. Quite a 
number of scientific and mathematical concepts are well established, 
while some of the financial market concepts are rather evasive. 
When one reads some books on trading rules on the market, one 
wonders what is the rationale behind some of these ideas, if there is 
any at all. Science, generally, can be employed to explain different 
phenomena. Financial market data, just like any data, can be 
subjected to scientific and mathematical findings. There is, 
therefore, no reason why some of the scientific ideas cannot be used 
to clarify some of the market concepts. 

What exactly is a signal in scientific terms? A signal is any 
physical quantity that changes with time, distance, or any 
independent variable. A signal depends very much on the tool that 
we use to extract information from the object under investigation. 
Given a piece of metal, we can use X-ray or ultrasound or others as a 
measurement tool. The signal obtained would yield different 
information about the quality of the metal. The signal originally 
detected is called raw signal, and it can further be processed to yield 
information that is hidden and unclear. In the financial market, a raw 
signal can be the price of commodity futures contracts, or its volume 
traded in a particular period, or others. A raw signal or a processed 
signal is a dependent variable; its changes depending on the changes 
of an independent variable, which is usually taken to be time in the 
financial market. What technical analysts would like to see is what 
predicament they can draw from processing the raw signal or data 

24 



Signals and Indicators 25 

from the market. In general, as money is the bottom line of any 
trade, price is the most important raw signal that they would process 
and analyze. 

Taking time to be the independent variable, a signal can be 
considered as a time-varying process. A signal continuous with 
respect to time is called a continuous-time signal or an analog signal. 
If it is a function of an integer-valued time variable, n, it is called a 
discrete-time signal or a digitized signal (Lyons 1997, Hayes 1999). 
Discrete-time signals are often derived by sampling a continuous-
time signal, with an analog-to-digital converter. However, a signal 
can be a discrete-time signal to start with. An example is the tick 
data in the financial market. A tick is the upward or downward price 
movement in a security's trade. There can be, e.g., 10 tick data 
within one minute of trading. To condense all these information, tick 
data are quite often sampled within a predetermined time interval. 
For example, in a 10-minute chart, the price of the opening tick and 
the closing tick, as well as the highest and lowest tick during every 
10-minute interval are plotted in the chart. This particular way of 
plotting data in the financial market differs from that of other 
disciplines where the closing value in a certain time period is usually 
taken. This is because traders believe that the high, low, open and 
close prices do contribute some information with regard to the 
market activity. In an hourly chart, again, all these four prices are 
plotted within every hourly interval. In general, the closing prices 
are more often used to be the raw data. Occasionally, the average of 
the high and low prices is taken. However, taking the closing prices 
are more convenient. Furthermore, it is consistent with the 
mathematical concept of sampling, as, e.g., the closing price of the 
hourly chart can be obtained by sampling every sixth point of the 
closing prices of the 10-minute chart. 

In 1807, a French mathematician Joseph Fourier showed that 
any practical signal can be expressed as the sum of a number of sine 
waves. This summation has been called the Fourier series (Broesch 
1997, Hubbard 1998). This theorem would allow us to rewrite any 
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financial data as a sum of sine waves. An example of a single sine 
wave with two cycles and an amplitude of 1.0 is shown in Fig. 4.1. A 
single sine wave is a sine wave with a single frequency. The sine 
wave is sampled at thirty-two points per cycle. Thus, the (sampling) 
period of the sine wave is 32 points. The (sampling) frequency, 
which is defined as 1/period, equals to 1/32. Since each cycle is 
equivalent to 2K radians (which is equal to 360 degrees, the angle 
subtended by a circle), the (sampling) circular frequency is 2n/32 or 
7t/16 radian. Figure 4.2 shows the summation of two sine waves, one 
with a circular frequency of 7t/4 with an amplitude of lA and the other 
with a circular frequency of 7t/16 with an amplitude of 1.0 . 

To accurately reproduce a signal, the Nyquist theorem 
(Brigham 1974, Broesch 1997) states the signal has to be sampled at 
a rate greater than twice the frequency of the highest frequency 
component existing in the signal, i.e., the number of sampling points 
per cycle has to be more than two for the highest frequency. This is 
equivalent to saying that the sampling circular frequency for the 
highest frequency has to be smaller than n radians. 

The sampling signal, x, can be written as 

x = (— x(N-l), x(N), x(N+l), — x(-l), x(0), x(l), x(2), — ) (4.1) 

For real time applications (as in the financial market), where 
no future data is available, the signal x will be written as 

x = ( _ x(N-l), x(N), x(N+l), — x(-l), x(0) ) (4.2) 

In the financial market, the most common signal is price, 
which is usually plotted as bars on a chart in a certain timeframe. As 
technical analysts believe that price is the most important data in 
market forecasting, this raw price data is processed and may be even 
further processed to yield any hidden information. Many 
manipulations or indicators have been created to predict the market's 
direction. Most indicators can be considered as systems in digital 
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+ sampled sine wave 

Fig. 4.1. A single sine wave of amplitude 1.0 with a circular 
frequency of TI/16, i.e., it is sampled at thirty-two points per cycle. 
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Fig. 4.2. A summation of two sine waves, one with a circular 
frequency of 7i/4 with an amplitude of XA and the other with a circular 
frequency of TI/16 with an amplitude of 1.0 . 
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signal processing, or operators in mathematics, or filters in electrical 
engineering. Once we understand this relationship, it means that we 
can transfer the knowledge from other fields to understand the 
properties of old indicators, as well as to create new indicators. 
Further explanation of systems is given in Appendix 2. An indicator 
is basically an operator or mapping that transforms an input signal to 
an output signal by means of a fixed set of rules. The output signal 
would hopefully expose certain hidden features in the original input 
signal. The indicator should be tested on theoretical waveforms like 
sine waves before applying on real market data. This procedure is 
usually not performed on financial market indicators. 

Some of the most popular financial market indicators are 
actually convolution sum whose output, y(n), is related to the input, 
x(n) by 

y(n) = h(0)x(n) + h(l)x(n-l) + h(2)x(n-3) + — (4.3) 

where h(k), k = 0, 1, 2, — is the indicator coefficient. 

What makes a good indicator? An indicator, like any idea or 
concept in our daily life, is created such that it should serve certain 
pragmatic purpose. It should be clear what assumptions have been 
made and under what condition does the concept not apply. To give 
an example, the concept 'weight' is used to measure the heaviness of 
an object. Weight is affected by gravitational pull. Thus, the weight 
of an object measured on the horizon would be larger than that of the 
same object when it is measured on Mount Everest. Objects are 
weightless in outer space as the earth is too far away to exert any 
gravitational pull. If someone makes up a rule saying that the cost of 
an object of a certain material should be proportional to the weight of 
the object, then he should understand that the weight varies 
somewhat with respect to altitude, and that the rule would not apply 
in outer space. If he would like his rule to apply to all conditions, he 
would have to look for a different concept, if it exists. In this 
particular case, he can change his rule to say that the cost should be 
proportional to mass, as mass of an object is independent of any 
gravitational pull. (In Physics, mass is defined as weight divide by 
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acceleration due to gravitational pull). Thus, a good indicator should 
be an indicator that should apply to all or at least most of the 
situations of interest, and the conditions that it does not apply should 
be clearly defined and known before hand. This, unfortunately, is 
rarely the case with indicators of market data. Let us take a look at 
two examples. 

4.1 Stochastic Indicator 

The first example is stochastic, an indicator which is quite popular 
with traders. The word stochastic here has a completely different 
meaning from the probabilistic meaning as described in Chapter 3. 
The indicator is somehow called stochastic by chance (Ehlers 1992). 
Stochastic compares the current closing price with the latest high and 
the latest low in a time window or interval chosen by the trader 
(Pring 1991, Ehlers 1992, Elder 1993). Examples of time window 
are 10 minutes, a day, etc. Stochastic, K, is defined as 

K = (C - L)/(H - L) (4.4) 

where C = closing price of the current bar 
H = the highest price in the chosen time window 
L = the lowest price in the chosen time window. 

Stochastic is therefore not a convolution sum as described in 
Eq (4.3). It is a normalized function that varies between zero and 
one. It can be considered as a high pass filter that filters off very low 
frequency. We will take a look and see how the chosen time window 
will affect the behavior of the stochastic. 

Imagine a market in a cycle mode and the data being 
simulated is a single sine wave with a period of 64 points (Fig. 
4.3(a)), and choose the time window to be the same as the period of 
the sine wave. The stochastic would have the same shape as the 
input data,, but swings between zero and one (Fig. 4.3(a)). As such, 
it does not have any time lag from the input data, which will make it 
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Fig. 4.3(a). The top figure shows a single sine wave, and the bottom 
figure shows its stochastics whose time window equals the period of 
the sine wave. 
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perfect for timing turning points. If the time window is chosen to be 
more than one period, the stochastic would still have the same output 
response. However, if the high and low of the preceding cycle are 
different from those of the current cycle, which usually happens in 
real market situation, the output response would differ in shape from 
the input response, causing timing errors. 

If the time window is chosen to be three-quarter of the 
period of the input sine wave, the stochastic corresponding to the top 
of the sine wave would saturate at one, and the stochastic 
corresponding to the bottom of the sine wave would saturate at zero 
(Fig. 4.3(b)). If the time window is decreased even more, the 
saturation gets worse. Figures 4.3(c) and (d) show the stochastic 
when the time window is chosen to be one-half and one-quarter of 
the period respectively. As the period of a market cycle varies all the 
time, it will be difficult to choose a priori what time window to use 
to analyze the data. 

The situation is more complicated when market data consists 
of several waves. Figure 4.4(a) depicts a market simulated by a 
summation of two sine waves, the lower frequency has a period of 64 
points, and the higher frequency has a period of 16 points. Thus, the 
period of the low frequency is four times that of the higher 
frequency. Figure 4.4(b) shows the stochastic when the time window 
is chosen to be the period of the lower frequency. The stochastic has 
the same shape as the market data. When the time window is chosen 
to be half the period of the lower frequency, as in Fig. 4.4(c), the 
stochastic corresponding to the top and bottom of the waves saturate. 
A bearish divergence thus occurs at the top, as prices rally to a new 
high but stochastic does not trace a higher high. Divergence between 
indicator and price is considered a powerful trading rule by traders. 
But it should be noted that in this case, divergence occurs only when 
the time window is chosen to be less than the period of the lower 
frequency. As the existence of divergence depends very much on the 
time window one chooses, its implication remains doubtful. In 
general, as we do not know how many waves are in the market, and 
what frequencies they are at, the choice of the time window would be 
difficult. Thus, the usefulness of stochastic as an indicator is limited. 
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Fig. 4.3(b). The top figure shows a single sine wave, and the bottom 
figure shows its stochastics whose time window equals three-quarter 
of the period of the sine wave. 
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260 

Fig. 4.3(c). The top figure shows a single sine wave, and the bottom 
figure shows its stochastics whose time window equals half the 
period of the sine wave. 



Signals and Indicators 35 

Fig. 4.3(d). The top figure shows a single sine wave, and the bottom 
figure shows its stochastics whose time window equals one quarter 
of the period of the sine wave. 
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Fig. 4.4(a) The sum of two sine waves, the lower frequency has 
a period which is four times the period of the high frequency; 
(b) stochastics of the sum of the two sine waves, with time window 
equal to the period of the lower frequency; (c) stochastics of the sum 
of the two sine waves, with time window equal to half the period of 
the lower frequency. 
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4.2 Momentum Indicator 

Another example is the momentum indicator, which is quite popular 
with traders. Momentum indicator is usually defined as the 
difference in successive price values (Pring 1991, Ehlers 1992, Elder 
1993). It is, therefore, an example of a convolution sum as described 
in Eq (4.3), with h(0) equals 1 and h(l) equals - 1 . Momentum is 
defined as: 

y(n) = x(n)-x(n- l ) (4.5) 

where y(n) is the momentum of the nth bar 
x(n) is the closing price of the nth bar 
x(n-l) is the closing price of the bar before the nth bar. 

Momentum represents a simplification of the rate of change. 
(Rate of change is called derivative in Calculus). According to 
technical analysts, a strong momentum would mean that the market 
is trending, and a weak momentum would imply that a turning point 
may not be too far ahead. However, for an indicator to be useful, it 
should truly represent the property that it attempts to depict, and with 
no time delay. This is not the case with momentum, which lags 
behind the real rate of change for about half the time interval 
between adjacent bars. In Fig. 4.5, market price data is modeled as a 
sine wave. Its rate of change is a cosine wave (as can be shown in 
Calculus) plotted also in the figure. Cosine wave leads a sine wave 
by rc/2 radians (or 90 degrees). As noted in the figure, the zero 
points of the cosine waves correspond to the turning points of the 
sine wave. This simply implies that zero points of the rate of change 
of a curve could identify when the curve is going to turn. However, 
this property has not been exploited by technical analysts. Part of the 
reason may be that there is no good indicator which actually 
represents the real rate of change. The best candidate so far, 
momentum, actually lags behind the real rate of change. This can be 
seen in Fig. 4.5, where momentum, as calculated from Eq (4.5) is 
plotted. This time lag originates from the definition of momentum. 
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Sine wave with pi/4 radians/sample (+), its rate of change (x) and its momentum (o) 

0 2 4 6 8 10 12 14 16 18 20 
Number of points 

Fig. 4.5. A single sine wave (marked as +) of amplitude 1.0 with a 
circular frequency of rc/4 radian (or 45 degrees). Its rate of change 
(or derivative) (marked as x) and its momentum (marked as o) are 
also drawn. Note that the momentum lags behind the rate of change. 
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The definition implies that the market is piecewise linear. However, 
the market should be treated as piecewise non-linear. Linearity is 
only a particular case of non-linearity. We will attempt to model the 
market as piecewise non-linear and amend the function of 
momentum in Chapter 6. 

Most indicators can be divided into trending indicators and 
oscillator indicators. Examples of these indicators will be described 
in detail in the next two chapters. 



Chapter 5 

Trending Indicators 

Trending indicators can help to identify trends. They are actually 
equivalent to low pass filters in electrical engineering. The low pass 
filter removes high frequency components and allows low frequency 
components to pass. In that sense, a trending indicator smoothes the 
input data. As the smoothing action employs only past data, the 
filtered output is delayed in phase (or time) relative to the input. 
Thus the trending indicators are lagging indicators; they turn after 
the trends reverse. If we want to decrease the lag, the output becomes 
less smooth. Smoothness and time or phase lag are contradictory 
properties. Several indicators, with different degrees of smoothness 
and phase lag have been developed by traders. 

5.1 Simple Moving Average (SMA) 

Simple moving average is by far the most common. A 7-day moving 
average shows the average price for the last 7 days, i.e., the prices of 
the last 7 days are added together and divided by 7. For the general 
case, an N-bar moving average is calculated by adding the prices 
over the last N bars and dividing by N. A bar represents a unit time 
interval being chosen by the trader, e. g., 1 day, 1 hour, 15 minutes, 
etc. SMA is called moving as the next bar's weighted price will be 
added to the average and the first bar's weighted price will be 
discarded. N is called the length of the simple moving average. A 
larger N will show a smoother average but a larger phase (or time) 
lag. Figure 5.1 shows a 15-minute chart of the US 30-year Treasury 
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Fig. 5.1. A 15-minute chart of the US 30-year Treasury Bond Future. 
A simple moving average of the closing price of length 3 (thin line) 
and length 6 (thick line) are plotted with the price data. Chart 
produced with Omega Research TradeStation2000i. 
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Bond Future. The software used for the charting is TradeStation 
2000i manufactured by Omega Research. The prices within a 15 
minutes interval is plotted as a Japanese candlestick, which looks 
like a candle with wicks at both ends. The body of each candle 
represents the absolute difference between the opening and closing 
prices. If the closing price is lower than the opening, the body is 
black. If the closing price is higher, the body is white. The tip of the 
upper wick represents the high within the 15 minutes interval, and 
the bottom of the lower wick represents the low within the 15 
minutes interval. A simple moving average of the closing price of 
length 3 (sma3, thin line) and length 6 (sma6, thick line) are plotted 
with the price data. The latter is slightly smoother and has a larger 
phase lag than the former. Characteristics of the SMA are described 
in Appendix 3. 

5.2 Exponential Moving Average (EMA) 

An exponential moving average is a better trend indicator than a 
simple moving average as it puts greater weight to most recent data 
more than older data. The equation for the EMA is given by 

NEW EMA = a x (NEW PRICE) + (1 - a) x (OLD EMA) (5.1) 

where a = 2/(M + 1) 

M is quite often called the length of the EMA. It is 
sometimes described by some traders as the number of data points 
(e.g. days) in the EMA. This is incorrect as the number of data 
points used in the calculation is usually much larger than M. A 
larger M will provide a smoother average but a larger phase lag. 
Figure 5.2 shows a 15-minute chart, which contains the same price 
data as those in Fig. 5.1. The closing prices were smoothed by an 
exponential moving average of length 3 (ema3, thin line) and 6 
(ema6, thick line). The latter is smoother and has a larger phase lag 
than the former. Characteristics of the EMA are described in 
Appendix 3. 
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Fig. 5.2. A 15-minute chart of the US 30-year Treasury Bond Future. 
An exponential moving average of the closing price of length 3 (thin 
line) and length 6 (thick line) are plotted with the price data. Chart 
produced with Omega Research TradeStation2000i. 
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5.3 Adaptive Moving Average (AMA) 

Filtered signal, while smoothing the original data, lags behind it. 
Researchers have been attempting to create adaptive moving 
averages to increase the smoothness and decrease the lag as much as 
possible. An adaptive moving average (AMA) has been constructed 
by Jurik Research. It was based on years of military research that 
employed computers to track moving targets. It can smooth data 
resulting in very small lag. 

AMA was programmed to use thirty data points. It has a 
variable smoothness factor which can has any value between 1 and 
500. The moving average responds rapidly to price change when 
small values are used. Smoother curves are attained for large values. 

In this book, AMA with smoothness factor of 1 (amal) and 3 
(ama3) will be used. Comparing data filtered by AMA with those 
filtered by EMA, amal is approximately equivalent to EMA with 
M=3 (ema3) while ama3 is approximately equivalent to EMA with 
M=6 (ema6). Figure 5.3 shows a 15-minute chart, which contains 
the same price data as in Fig. 5.1. The closing prices were smoothed 
by amal (thin line) and ama3 (thick line). The latter is smoother and 
has a larger phase lag than the former. 

5.4 Trading Rules using Moving Averages 

Most traders like to follow certain predetermined rules to enter and 
exit the market. As moving averages (MA) show the direction of the 
trend, the rule is to go with the trend. Some traders also consider a 
moving average as an area of support and resistance. A dip in a 
rising market often finds support in an MA and turns up. A rally in a 
falling market often reverses when it meets resistance in an MA and 
turns down. Traders using MA to trade the market have constructed 
several trading rules: 
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Fig. 5.3. A 15-minute chart of the US 30-year Treasury Bond Future. 
An adaptive moving average of the closing price of smoothness 1 
(thin line) and smoothness 3 (thick line) are plotted with the price 
data. Chart produced with Omega Research TradeStation2000i. 
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(1) Price crossover of an MA (Pring 1991). The trader will buy 
when price penetrates and closes above an MA, and sell when price 
closes below an MA. Figure 5.1 will be used as an example, where 
the simple moving average of length 6 (thick line) will be chosen as 
the specified MA. He or she will buy when the Bond price closes 
above the MA (marked by an arrow denoted with a B), and sell when 
the price closes below the MA (marked with an arrow denoted with 
anS). 

(2) Fast MA crossover of a slow MA (Pring 1991). The trader will 
buy when an MA with a smaller phase lag crosses over and is higher 
than an MA with a larger phase lag. He will sell when the former 
crosses over and is lower than the latter. In Fig. 5.2, he will buy 
when ema3 (thin line) crosses over and is above ema6 (thick line) 
(marked by an arrow denoted with a B). He will sell when ema3 
(thin line) crosses over and is below ema6 (thick line) (marked by an 
arrow denoted with an S). 

(3) Enter at retracement (Elder 1993). When an MA rises, the trader 
will wait for the price to dip close to the MA before buying. A 
protective stop loss is then placed below the last minor low. The 
stop loss is moved up when the price rises. When an MA falls, the 
trader will wait for the price to rally close to the MA before selling 
short. A protective stop loss is then placed above the last minor 
high. The stop loss is moved down when the price drops. Figure 5.3 
will be used as an example, where the adaptive moving average of 
length 3 (thick line) will be chosen as the specified MA. The market 
has been rising in the early part of the chart, but the trader will wait 
for the price to dip close to the MA before buying (marked by an 
arrow denoted with a B). 

The above trading rules do work some of the time. But as a 
market is quite unpredictable and contains whipsaws, these trading 
rules can also fail some of the time. 



Chapter 6 

Oscillator Indicators 

A different kind of indicators from the trending indicators that are 
discussed in the last chapter is oscillator indicators. Oscillator 
indicators are actually equivalent to high pass filters in electrical 
engineering. The high pass filter removes low frequency 
components and allows high frequency components to pass. Thus, 
they measure rate of change of price over a given period of time. A 
common oscillator indicator is the momentum, which is defined as 
the subtraction of past price from present price (Pring 1991). Rising 
momentum is interpreted as a bullish factor and declining 
momentum as a bearish one. 

Oscillator indicators have been used mainly in two different 
manners. Firstly, they can be used to estimate whether the market is 
overbought or oversold. An oscillator becomes overbought, when it 
reaches a high level associated with market tops occurred in the past. 
Overbought implies that the price is too high and the market is ready 
to turn down. An oscillator becomes oversold when it reaches a low 
level associated with market bottoms occurred in the past. Oversold 
implies the market is too low and the price is ready to turn up. 
Overbought and oversold levels are indicated by horizontal reference 
lines on the charts. However, these levels are somewhat arbitrary 
and need to be changed from time to time and from market to 
market. 

Secondly, oscillator indicators can be used in the 
interpretation of divergences, i.e., when they diverge from prices. 
Bullish divergences occur when prices fall to a new low while an 
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oscillator does not decline to a new low. Bullish divergences quite 
often spell the end of downtrends. Bearish divergences occur when 
prices rally to a new high while an oscillator does not rise to a new 
peak. Bearish divergences quite often spell the ends of up-trends. 

An ideal oscillator indicator should lead price by a phase of 
7t/2 radians, i.e., 90 degrees (see Appendix 4). However, the 
conventional oscillator indicators always lag behind this ideal phase. 
This is probably why it has become necessary to use overbought and 
oversold levels to signify market turns. The momentum indicator, 
quite often used by traders, is actually the same as the two point 
moving difference described in Appendix 4. The moving difference 
has quite some phase lag from the ideal phase. We will propose two 
oscillator indicators, the parabolic velocity indicator and the cubic 
velocity indicator that have very little phase lag from the ideal phase. 
Velocity measures the rate of change of a quantity with respect to 
time. At the turning points of the market, the output response of the 
indicators become zero, thus providing a clear signal for a change in 
trends. No reference level or any arbitrary parameter is required for 
their interpretations. Furthermore, a positive velocity implies that 
the market is trending up, and a negative velocity implies that the 
market is trending down. Thus, the velocity indicators can be used 
as trending indicators as well. 

6.1 Parabolic Velocity Indicator 

Traders quite often approximate price-time data as piecewise linear 
and draw straight lines called trendlines through the data. An 
ascending trendline shows that the market is trending up. A 
descending trendline shows that the market is trending down. 

However, can price-time data be represented by other curves 
rather than straight lines? A parabola is the trajectory that a piece of 
stone will follow when we throw it off the ground. In this case, the 
parabola curves down. However, the equation of a parabola can be 
arranged such that it curves up, or curves sideways. Thus, a parabola 
would seem to be a good candidate to represent market data. It 
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should particularly be noted that at turning points, it is better to 
approximate the data as piecewise parabolas than piecewise straight 
lines. In any case, it can be easily shown in analytical geometry that 
the equation of a straight line is a particular case of the equation of a 
parabola. Thus, a parabola would be more versatile than a straight 
line in representing data. Figure 6.1(a) shows a simulation of market 
bottom by a parabola concaving up. Figure 6.1(b) shows a straight 
line which represents the slope or gradient of the parabola (slope is 
called derivative in Calculus, and can easily be calculated from the 
equation representing the parabola). The slope is initially negative as 
the market is going downhill. At the turning point, the slope equals 
zero. The slope is positive when the market is going uphill. 

Figure 6.2(a) shows a simulation of a market top by a 
parabola concaving down. Figure 6.2(b) shows a straight line which 
represents the slope or gradient of the parabola. The slope is initially 
positive as the market is going uphill. At the turning point, the slope 
equals zero. The slope is negative when the market is going 
downhill. 

All these mean that at market bottom, slope of the price go 
from negative to positive and is zero at the turning point. At the 
market top, slope of the price will go from positive to negative and is 
zero at the turning point. Thus, the slope is an important indicator of 
market turns. However, given some arbitrary data, how are we going 
to find the slope? We will introduce here the parabolic velocity 
indicator, whose derivation will be given in Appendix 4. Basically, 
three adjacent market price data points are fitted to a parabola. The 
slope of the parabola at the most recent data point is then calculated 
using Calculus. The slope would represent the velocity. 

The parabolic velocity indicator is defined as (3/2 , -2 , 
1/2). Thus, the output response, y, after the input price data, x, is 
filtered by the indicator is 
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Fig. 6.1. Market price data simulated as a parabola concaving up: 
(a) the parabola; (b) the slope of the parabola; (c) the slope of the 
slope of the parabola. 
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8 10 

Fig. 6.2. Market price data simulated as a parabola concaving down: 
(a) the parabola; (b) the slope of the parabola; (c) the slope of the 
slope of the parabola. 
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y(n) = | x ( n ) - 2 x ( n - l ) + ± x ( n - 2 ) (6.1) 

where n is an integer. 

Therefore, the current velocity is given by 

y(0) = | x ( 0 ) - 2 x ( - l ) + | x ( - 2 ) (6.2) 

where x(0) is the closing price or the smoothed closing price of the 
current bar, 

x(-l) is the closing price or the smoothed closing price of 
one bar ago, 

x(-2) is the closing price or the smoothed closing price of 
two bars ago. 

Figure 6.3(a) shows a market price data simulated as a sine 
wave. The slope (or derivative) of the sine wave is plotted in 
Fig. 6.3(b) and compared with the sine wave filtered by the parabolic 
velocity indicator. The plot shows that the velocity as calculated 
yields the slope quite well, thus providing us an easy way to 
calculate the slope. 

In the EasyLanguage code of Omega Research's 
TradeStation2000i, the program for calculating the parabolic velocity 
indicator can be written as follows: -
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Fig. 6.3. Market price data simulated as a sine wave of circular 
frequency of 7t/4 radian: (a) the sine wave; (b) the sine wave filtered 
by the parabolic velocity indicator (marked as .), and compared with 
the slope of the sine wave (marked as +); (c) the sine wave filtered 
by the parabolic acceleration indicator (marked as .), and compared 
with the slope of the slope of the sine wave (marked as +). 
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Plot 1 (3* AMAFUNC2(c, 1 )/2-
2*AMAFUNC2(c[l],l)+AMAFUNC2(c[2],l)/2,"Plotl"); 
Plot2(3*AMAFUNC2(c,3)/2-
2*AMAFUNC2(c[l],3)+AMAFUNC2(c[2],3)/2,"Plot2"); 
Plot3(0,"Plot3"); 

c represents the closing price of the current bar. c[l] 
represents the closing price of one bar ago, and c[2] represents the 
closing price of two bars ago. AMAFUNC2 is the adaptive moving 
average function written by Jurik Research. The first input 
parameter of AMAFUNC2 signifies the closing price series to be 
smoothed, while the second input parameter indicates the 
smoothness factor. The larger the smoothness factor, the more 
smoothed the smoothed data will be. Three plots are drawn. The 
first one calculates the velocity of closing prices smoothed by a 
factor of 1. The second one calculates the velocity of the closing 
prices smoothed by a factor of 3. The third one plots a horizontal 
straight line where the velocity is zero. This straight line helps to 
identify when the calculated velocity is approaching zero. 
AMAFUNC2 can be substituted by other smoothing function. For 
example, it can be substituted by XAVERAGE, which is a build-in 
exponential moving average function written by TradeStation2000i. 
The first input parameter of XAVERAGE signifies the closing price 
series to be smoothed, while the second input parameter indicates the 
length of the window (see Chapter 5). The program plotting the 
parabolic velocity indicators calculated on closing price data 
smoothed by exponential moving average is listed as follows: -

Plot 1 (3*XAVERAGE(c,3)/2-
2*XAVERAGE(c[l],3)+XAVERAGE(c[2],3)/2,"Plotl"); 
Plot2(3*XAVERAGE(c,6)/2-
2*XAVERAGE(c[l],6)+XAVERAGE(c[2],6)/2,"Plot2"); 
Plot3(0,"Plot3"); 

Next we will take a look at the parabolic acceleration 
indicator to see how the slope of a slope can be simulated. 
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6.2 Parabolic Acceleration Indicator 

Acceleration is the rate of change of velocity. So, if the slope of a 
curve represents velocity, the slope of the slope of a curve would 
represent acceleration. The reason that we need to calculate 
acceleration would be obvious later. Figure 6.1(c) shows the slope 
of the slope of a concave up parabola (slope of the slope is called 
second derivative in Calculus, and can easily be calculated from the 
equation representing the parabola). It is a positive constant. Figure 
6.2(c) shows the slope of the slope of a concave down parabola. It is 
a negative constant. Thus, at market bottom, the slope of the slope is 
positive. And at market top, the slope of the slope is negative. (It is 
commonly known in Calculus that when a curve is concaving up, the 
second derivative is positive; and when the curve is concaving down, 
the second derivative is negative). 

We will define a parabolic acceleration indicator as (1, -2 , 
1), whose derivation in given in Appendix 4. Basically, three 
adjacent market price data points are fitted to a parabola. The slope 
of the slope of the parabola at the most recent data point is then 
calculated using Calculus. The slope of the slope would represent 
the acceleration. The output response, y, after the input price data, x, 
is filtered by the indicator is 

y(n) = x ( n ) - 2 x ( n - l ) + x (n -2 ) (6.3) 

Therefore, the current acceleration is given by 

y(0) = x(0)-2x(- l ) + x(-2) (6.4) 

The slope of the slope of the sine wave as calculated from 
Calculus is plotted in Fig. 6.3(c) and compare with the sine wave 
filtered by the parabolic acceleration indicator. The plot shows that 
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the acceleration as calculated has a phrase lag from the slope of the 
slope. This simply means that a sine wave is not very well fitted 
with piecewise parabolas. 

In EasyLanguage code provided by Omega Research's 
TradeStation2000i, the parabolic acceleration indicator can be 
written as follows: -

Plotl(AMAFUNC2(c,l)-
2*AMAFUNC2(c[l],l)+AMAFUNC2(c[2],l),"Plotl"); 
Plot2(AMAFUNC2(c,3)-
2*AMAFUNC2(c[l],3)+AMAFUNC2(c[2],3),"Plot2"); 

Plot3(0,"Plot3"); 

Three plots are drawn. The first one calculates the acceleration of 
closing prices smoothed by AMAFUNC2 using a smoothness factor 
of 1. The second one calculates the acceleration of the closing prices 
smoothed by a factor of 3. The third one plots a horizontal straight 
line where the acceleration is zero. This straight line helps to 
identify when the calculated acceleration is approaching zero. 
AMAFUNC2 can be substituted by XAVERAGE. The program 
plotting the parabolic acceleration indicators calculated on closing 
price data smoothed by exponential moving average is listed as 
follows: -

Plot 1 (XAVERAGE(c,3)-
2*XAVERAGE(c[l],3)+XAVERAGE(c[2],3),"Plotl"); 
Plot2(XAVERAGE(c,6)-
2*XAVERAGE(c[l],6)+XAVERAGE(c[2],6),"Plot2"); 
Plot3(0,"Plot3"); 

While the parabolic velocity indicator provides a reasonably 
good representation of the velocity, the parabolic acceleration 
indicator has a phase lag compared to the acceleration. We will see 
in the next section how we can reduce the phase lag using the cubic 
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acceleration indicator. While the parabolic indicators employ only 
three data points, the cubic indicators will employ four data points. 

6.3 Cubic Velocity and Acceleration Indicators 

Quite often, market moves in waves and is better approximated by a 
piecewise cubic function rather than by a piecewise parabola. While 
a parabola can be considered as a mathematical expression of degree 
two, a cubic function can be considered as a mathematical expression 
of degree three. Thus, a cubic function is more versatile than a 
parabola. In any case, it can be shown in analytical geometry that a 
parabola is a particular case of a cubic function. Figure 6.4(a) shows 
a simulation of the market continuation by a single cubic function (x 
= n3). Figure 6.4(b) shows its slope (3n2 , calculated using derivatives 
in Calculus) which is zero at the turning point (or rather an inflection 
point). When the market continues in the same direction after the 
turning point, the slope remains positive. The slope of the slope (6n , 
calculated using derivatives in Calculus) approaches zero near the 
turning point and points up (Fig. 6.4 (c)). This is quite different from 
the constant slope of the slope when the market data looks like a 
parabola (Fig. 6.2(c)). Figure 6.5(a) shows a more complicated cubic 
function. The data rises to a local maximum, retraces to a local 
minimum and then continues upwards. (This kind of curve appears 
in market price data quite often.) Figure 6.5(b) shows its slopes, 
which are zero at the two turning points, the local maximum and the 
local minimum. Again, when the market continues in the same 
original direction after the two turning points, the slope of its slope at 
the two turning points are close to zero and point up (Fig. 6.5(c)). 

Figure 6.6(a) shows a cubic function which falls to a local 
minimum, retraces to a local maximum and then continues 
downward. (Again, this kind of curve appears in market price data 
quite often.) Figure 6.6(b) shows its slopes, which are zero at the 
two turning points, the local minimum and the local maximum. 
When the market continues in the same original direction after the 
two turning points, the slope of its slope at the two turning points are 
close to zero and point down. 
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W 

Fig. 6.4. Market price data simulated as a cubic function: (a) the 
cubic function; (b) the slope of the cubic function; (c) the slope of 
the slope of the cubic function. 
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Fig. 6.5. Market price data simulated as a more complicated cubic 
function continuing in an uptrend: (a) the cubic function; (b) the 
slope of the cubic function; (c) the slope of the slope of the cubic 
function. 
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Fig. 6.6. Market price data simulated as a more complicated cubic 
function continuing in a downtrend: (a) the cubic function; (b) the 
slope of the cubic function; (c) the slope of the slope of the cubic 
function. 
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The slope of the slope is thus significant in differentiating 
whether the market is experiencing a major turning point or only 
minor turning points and will continue in the same original direction 
after. When the market is experiencing a major turning point, the 
slope of the slope is approximately a constant. When the market is 
experiencing only a hiccup and will continue in the original direction 
after, the slope of the slope will point to the direction that it will 
continue after. 

The problem now then is to find a velocity and acceleration 
indicators to simulate the slope and the slope of the slope 
respectively with little phase lag (While the parabolic velocity 
indicator can simulate the slope quite well, the parabolic acceleration 
indicator has quite a phrase lag from the slope of the slope). The 
cubic velocity and acceleration indicators will be introduced here and 
will be used for the rest of the book. Their derivations are given 
Appendix 4. Basically, four adjacent market price data points are 
fitted to a cubic function. The slope and the slope of the slope of the 
cubic function at the most recent data point are then calculated using 
Calculus. They would represent the velocity and acceleration. 

The cubic velocity indicator is defined as (11/6, - 3 , 3/2, 
-1/3). The output response, y, after the input price data, x, is filtered 
by the cubic velocity indicator is 

y(n) = — x(n) - 3x(n -1) + - x ( n - 2) - - x ( n -3 ) (6-5) 
6 2 3 

Therefore, the current velocity is given by 

11 ^ 1 

y(0) = — x(0) - 3x(-l) + - x ( - 2 ) — x(-3) <6-6) 
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where x(0) is the closing price or the smoothed closing price of the 
current bar 

x(-l) is the closing price or the smoothed closing price of 
one bar ago 

x(-2) is the closing price or the smoothed closing price of 
two bars ago 

x(-3) is the closing price or the smoothed closing price of 
three bars ago 

Figure 6.7(a) shows a market price data simulated as a sine 
wave. The slope of the sine wave, as calculated from Calculus, is 
plotted in Fig. 6.7(b). The sine wave filtered by the cubic velocity 
indicator is also plotted, and it agrees quite well with the slope. 

In the EasyLanguage code of Omega Research's 
TradeStation2000i, the program for calculating the cubic velocity 
indicator can be written as follows: -

Plot 1(11 * AMAFUNC2(c, 1 )/6-
3*AMAFUNC2(c[l],l)+3*AMAFUNC2(c[2],l)/2-
AMAFUNC2(c[3],l)/3,"Plotl"); 
Plot2(l l*AMAFUNC2(c,3)/6-
3*AMAFUNC2(c[l],3)+3*AMAFUNC2(c[2],3)/2-
AMAFUNC2(c[3],3)/3,"Plot2"); 
Plot3(0,"Plot3"); 

c represents the closing price of the current bar. c[l] 
represents the closing price of one bar ago, c[2] represents the 
closing price of two bars ago and c[3] represents the closing price of 
three bars ago. AMAFUNC2 is the adaptive moving average 
function written by Jurik Research. Three plots are drawn. The first 
one calculates the velocity of closing prices smoothed by a factor of 
1. The second one calculates the velocity of the closing prices 
smoothed by a factor of 3. The third one plots a horizontal straight 
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Fig. 6.7. Market price data simulated as a sine wave of circular 
frequency of 7t/4 radian: (a) the sine wave; (b) the sine wave filtered 
by the cubic velocity indicator (marked as .), and compared with the 
slope of the sine wave (marked as +); (c) the sine wave filtered by 
the cubic acceleration indicator (marked as .), and compared with the 
slope of the slope of the sine wave (marked as +). 
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line where the velocity is zero. This straight line helps to identify 
when the calculated velocity is approaching zero. AMAFUNC2 can 
be substituted by other smoothing function. For example, it can be 
substituted by XAVERAGE, which is a build-in exponential moving 
average function written by TradeStation2000i. The program 
plotting the cubic velocity indicators calculated on closing price data 
smoothed by exponential moving average is listed as follows: -

Plot 1(11 *XAVERAGE(c,3)/6-
3*XAVERAGE(c [ 1 ] ,3)+3 *XAVERAGE(c[2] ,3)12-
XAVERAGE(c[3],3)/3,"Plotl"); 
Plot2( 11 *XAVERAGE(c,6)/6-
3*XAVERAGE(c[l],6)+3*XAVERAGE(c[2],6)/2-
XAVERAGE(c[3],6)/3,"Plot2"); 
Plot3(0,"Plot3"); 

The cubic accelerator indicator is defined as (2, - 5 , 4, -1). 
The output response, y, after the input price data, x, is filtered by the 
cubic accelerator indicator is 

y(n) = 2x(n) - 5x(n -1) + 4x(n - 2) - x(n - 3) (6.7) 

Therefore, the current acceleration is given by 

y(0) = 2x(0) - 5x(-l) + 4x(-2) - x(-3) (6.8) 

It should be noted that parabolic as well as cubic velocity 
and acceleration indicators are examples of convolution sums as 
depicted in Eq (4.3). 

Figure 6.7(c) plots the slope of the slope of the sine wave as 
calculated from Calculus. The sine wave filtered by the cubic 
acceleration indicator is also plotted and it agrees reasonably well 
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with the slope of the slope. It has a much less phase lag compared 
with the sine wave filtered by the parabolic acceleration indicator 
(Fig. 6.3(c)). The agreement would be even much better if the sine 
wave is sampled more frequently (Fig. 6.8). 

Figure 6.9(a) shows a market price data simulated as a 
summation of two sine waves. Its slope (calculated by using 
Calculus) is plotted in Fig. 6.9(b) and it agrees quite well with the 
sine waves filtered by the cubic velocity indicator. Figure 6.9(c) 
plots the slope of the slope (calculated by using Calculus). It agrees 
reasonably well with the sine waves filtered by the cubic acceleration 
indicator. At sample number 34, the market price is experiencing a 
minor turning point. While the velocity is approximately zero, the 
acceleration is slightly less than zero and pointing toward the 
direction where the market will continue. The acceleration implies 
that the curve may change from concave down to concave up, and 
the market will go up after a slow down. In a slightly different 
perspective, since acceleration represents the slope of the velocity, 
the acceleration here implies that the velocity may change its slope 
from negative to positive, generating the expectation that the velocity 
will remain positive and the market will go up. This scenario can be 
contrasted with sample number 8, which is a major turning point. 
While the velocity is zero, the acceleration is negative, implying that 
the market is concaving down. The acceleration is also pointing in 
the direction where the market is heading. This can be compared 
with Fig. 6.2 when a major turning point is simulated as a parabola. 
While the velocity is zero at the turning point, the acceleration is a 
constant and far from zero. 

In the EasyLanguage code of Omega Research's TradeStation2000i, 
the program for calculating the cubic acceleration indicator can be 
written as follows: -

Plot 1 (2* AMAFUNC2(c, 1 )-
5*AMAFUNC2(c[l],l)+4*AMAFUNC2(c[2],l)-
AMAFUNC2(c[3],l),"Plotl"); 
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Fig. 6.8. Market price data simulated as a sine wave of circular 
frequency of 7t/16 radian: (a) the sine wave; (b) the sine wave filtered 
by the cubic velocity indicator (marked as .), and compared with the 
slope of the sine wave (marked as +); (c) the sine wave filtered by 
the cubic acceleration indicator (marked as .), and compared with the 
slope of the slope of the sine wave (marked as +). 
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Fig. 6.9. Market price data simulated as a summation of sine waves 
of circular frequency of n/16 radian with amplitude 1.0 and 7t/4 
radian with amplitude 0.25, showing double bottoms: (a) the 
summation of sine waves; (b) the summation of sine waves filtered 
by the cubic velocity indicator (marked as .), and compared with the 
slope of the summation of sine waves (marked as +); (c) the 
summation of sine waves filtered by the cubic acceleration indicator 
(marked as .), and compared with the slope of the slope of the 
summation of sine waves (marked as +). Class A bearish and Class 
B bullish divergences are illustrated here. 
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Plot2(2*AMAFUNC2(c,3)-
5 * AMAFUNC2(c [ 1 ] ,3)+4* AMAFUNC2(c [2] ,3)-
AMAFUNC2(c[3],3),"Plot2"); 
Plot3(0,"Plot3"); 

AMAFUNC2 is the adaptive moving average function. Other 
smoothing functions can replace this function. The program plotting 
the cubic acceleration indicators calculated on closing price data 
smoothed by exponential moving average is listed as follows: -

Plot 1 (2*XAVERAGE(c,3)-
5*XAVERAGE(c[l],3)+4*XAVERAGE(c[2],3)-
XAVERAGE(c[3],3),"Plotl"); 
Plot2(2*XAVERAGE(c,6)-
5*XAVERAGE(c[l],6)+4*XAVERAGE(c[2],6)-
XAVERAGE(c[3],6),"Plot2"); 
Plot3(0,"Plot3"); 

Figure 6.10 shows a 15-minute chart of the US 30 year 
Treasury Bond Future. The price data was smoothed using the 
adaptive moving average with smoothness 1 (thin line) and 
smoothness 3 (thick line). Cubic velocity indicators were applied to 
the moving averages and plotted in the middle of the figure. Cubic 
acceleration indicators were also applied to the moving averages and 
plotted in the bottom of the figure. At 11:50 am, the market as 
shown by the adaptive moving average with a smoothness factor of 3 
(ama3) continued to trend down. However, the velocity, as 
represented by the cubic velocity indicator of ama3 (thick line), 
approached zero from a negative value in a somewhat linear fashion. 
The acceleration, as represented by the cubic acceleration indicator 
of ama3 (thick line) is away from zero and approximately a positive 
constant, thus implying that the curvature of ama3 of the price data is 
concaving up. This can be compared with the parabola, its slope and 
the slope of its slope in Fig. 6.1. The velocity and acceleration in 
Fig. 6.10 indicated that a major turning point is imminent. After the 
turning point, the velocity of ama3 remains positive for the whole 
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Fig. 6.10. A 15-minute chart of an US 30 year Treasury Bond 
Future, showing a turning point at the market bottom. Cubic velocity 
and cubic acceleration indicators are plotted in the middle and 
bottom figures respectively. Chart produced with Omega Research 
TradeStation2000i. 
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afternoon, implying that the slope of the curve is positive and the 
market is trending up. A day-trader who has bought at the turning 
point can hold the contract until the end of the day. 

Figure 6.11 shows another 15-minute chart of the US 30 
years Treasury Bond Future. The price data was again smoothed 
using the adaptive moving average with smoothness 1 (thin line) and 
smoothness 3 (thick line). The Bond trended up in the morning. At 
12:05 p.m., it appeared as if it was running out of steam and will turn 
down. However, the velocity of ama3 approached zero in a 
parabolic fashion. Furthermore, the acceleration of ama3 
approached zero from a negative value in an approximately linear 
fashion. These indications implied that the market might continue 
upwards. This phenomenon is very similar to the cubic function, its 
slope, and the slope of its slope in Fig. 6.5. As it happened, the 
market did continue upwards in the afternoon. 

A word of caution needs to be emphasized. As described in 
Chapter 3, a model can never be perfect in describing real 
phenomenon. When market price data points are fitted to a cubic 
function, we are modeling market behavior as piecewise cubic and 
expect it to behave as such in the very near future. This, of course, 
does not have to be the case, as the market can do whatever it wants 
to do. 

Nevertheless, the cubic velocity and acceleration indicators 
are better oscillator tools to increase the probability of forecasting 
when turning points in the market would occur. In addition, they can 
be used to explain some of the common market phenomena like 
divergences and head and shoulders: 

6.4 Divergences 

Books on technical analysis quite often discuss about divergences, 
i.e. when oscillators diverge from prices. Divergences can give 
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Fig. 6.11. A 15-minute chart of an US 30 year Treasury Bond 
Future, showing a continuation pattern. Cubic velocity and cubic 
acceleration indicators are plotted in the middle and bottom 
figures respectively. Chart produced with Omega Research 
TradeStation2000i. 
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out some good trading signals (Elder 1993). Divergences have been 
divided into three classes, depending upon how the patterns of price 
and oscillator look like. Trading books only tell you what would 
then happen, but do not explain why. Here we provide a simple 
model of why divergences lead to turnings of market trends. 

Market price is simulated as the sum of two sine waves. 
Cubic velocity indicator is used as an example of an oscillator 
indicator. The three classes of divergences are: 

6.4.1 Class A Divergence 

Some traders believe that class A divergences identify important 
turning points. Class A bearish divergences occur when prices reach 
a new high but an oscillator reaches a lower high than the high of 
its previous rally. They usually lead to sharp breaks. This can be 
exemplified in Figs. 6.9(a) and (b). Class A bullish divergences 
occur when prices reach a new low but an oscillator traces a higher 
bottom than the bottom of its previous decline. They usually precede 
sharp rallies. This can be exemplified in Figs. 6.12(a) and (b). As in 
Fig. 6.9(a), Fig. 6.12(a) is a sum of two sine waves. It differs from 
Fig. 6.9(a) only by a shift in phase between the two components of 
sine waves. 

6.4.2 Class B Divergence 

Some traders believe that class B divergences are less strong than 
Class A. Class B bearish divergences occur when prices appear as a 
double top but an oscillator traces a lower second top. This can be 
exemplified in Figs. 6.12(a) and (b). Class B bullish divergences 
occur when prices appear as a double bottom but an oscillator traces 
a higher second bottom. This can be exemplified in Figs. 6.9(a) 
and (b). 

6.4.3 Class C Divergence 

Some traders believe that class C divergences are the least 
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Fig. 6.12. Market price data simulated as a summation of sine waves 
of circular frequency of n/16 radian with amplitude 1.0 and 7t/4 
radian with amplitude 0.25, showing double tops: (a) the summation 
of sine waves; (b) the summation of sine waves filtered by the cubic 
velocity indicator (marked as .), and compared with the slope of the 
summation of sine waves (marked as +); (c) the summation of sine 
waves filtered by the cubic acceleration indicator (marked as .), and 
compared with the slope of the slope of the summation of sine waves 
(marked as +). Class A bullish and Class B bearish divergences are 
illustrated here. 
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Fig. 6.13. Market price data simulated as a summation of sine waves 
of circular frequency of 7C/16 radian with amplitude 1.0 and n/4 
radian with amplitude 0.25: (a) the summation of sine waves; (b) the 
summation of sine waves filtered by the cubic velocity indicator 
(marked as .), and compared with the slope of the summation of sine 
waves (marked as +); (c) the summation of sine waves filtered by the 
cubic acceleration indicator (marked as .), and compared with the 
slope of the slope of the summation of sine waves (marked as +). 
Class C bearish divergence is illustrated here. 
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(c) 

Fig. 6.14. Market price data simulated as a summation of sine waves 
of circular frequency of it/16 radian with amplitude 1.0 and n/4 
radian with amplitude 0.25: (a) the summation of sine waves; (b) the 
summation of sine waves filtered by the cubic velocity indicator 
(marked as .), and compared with the slope of the summation of sine 
waves (marked as +); (c) the summation of sine waves filtered by the 
cubic acceleration indicator (marked as .), and compared with the 
slope of the slope of the summation of sine waves (marked as +). 
Class C bullish divergence is illustrated here. 
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important. Class C bearish divergences occur when prices rise to 
a new high but the oscillator forms a double top. This can be 
exemplified in Figs. 6.13(a) and (b). As in Fig. 6.9(a), Fig. 6.13(a) is 
a sum of two sine waves. It differs from Fig. 6.9(a) only by a shift in 
phase between the two components of sine waves. Class C bullish 
divergences occur when prices fall to a new low but the oscillator 
traces a double bottom. This can be exemplified in Figs. 6.14(a) and 
(b). As in Fig. 6.9(a), Fig. 6.14(a) is a sum of two sine waves. 
Again, it differs from Fig. 6.9(a) only by a shift in phase between the 
two components of sine waves. 

Our model of simulating price as the summation of two 
sine waves with varying relative phrases between them thus 
easily explain all classes of divergences. Our model does not really 
display the varying degrees of significance for different classes of 
divergences as suggested by some traders, as we can see from 
Figs. 6.9, 6.12, 6.13 and 6.14. 

6.5 Head and Shoulders 

This pattern consists of a final rally, which is called the head, 
separating two smaller rallies, which are called the shoulders. This 
is a reversal pattern, signifying that the bulls are losing their grip. 
An uptrend fails to reach a higher high, and a decline falls below 
the previous low. Our model of the summation of two sine waves 
can simulate the head and shoulders tops quite well (Fig. 6.15(a)). 
Figure 6.15(a) differs from Fig. 6.9(a) by a change in amplitude 
between the two components of sine waves. Figure 6.15(b) shows 
that the oscillator tops declines, illustrating that the uptrend is over. 

An inverse head and shoulders is the opposite of head 
and shoulders. It signifies that the downtrend is over. Figure 6.16(a) 
shows a summation of two sine waves simulating an inverse head 
and shoulders pattern. Figure 6.16(a) differs from Fig. 6.15(a) only 
by a shift in phase between the two components of sine waves. The 
corresponding oscillator bottoms in Fig. 6.16(b) increases, showing 
that the bulls are gaining ground. 
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Fig. 6.15. Market price data simulated as a summation of sine waves 
of circular frequency of it/16 radians with amplitude 1.0 and n/4 
radian with amplitude 0.5: (a) the summation of sine waves. The 
pattern looks like head (denoted as H) and shoulders; (b) the 
summation of sine waves filtered by the cubic velocity indicator 
(marked as .), and compared with the slope of the summation of sine 
waves (marked as +); (c) the summation of sine waves filtered by the 
cubic acceleration indicator (marked as .), and compared with the 
slope of the slope of the summation of sine waves (marked as +). 
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Fig. 6.16. Market price data simulated as a summation of sine waves 
of circular frequency of rc/16 radians with amplitude 1.0 and n/4 
radian with amplitude 0.5: (a) the summation of sine waves. The 
pattern looks like inverse head (denoted as I) and shoulders; (b) the 
summation of sine waves filtered by the cubic velocity indicator 
(marked as .), and compared with the slope of the summation of sine 
waves (marked as +); (c) the summation of sine waves filtered by the 
cubic acceleration indicator (marked as .), and compared with the 
slope of the slope of the summation of sine waves (marked as +). 



Chapter 7 

Vertex Indicators 

The velocity indicators introduced in the last chapter help to 
determine the turning points of the market trends. However, in a 
slow market, the trend sometimes turns slowly, and it takes a long 
time for the velocity (or slope) of the price data to approach zero, 
which corresponds to the turning point. To help determine more 
accurately when exactly the market is going to turn, two new 
indicators, the parabolic vertex and the cubic vertex indicators are 
introduced. Vertex in a curve is the point where the slope of the 
curve changes direction, i.e., from positive to negative, or vice-versa. 
In other words, the vertex is the turning point. The vertex indicators 
will show what time the market has turned, or, more importantly, 
what time in the future the market will turn. 

7.1 Parabolic Vertex Indicator 

Market price is simulated as a parabola. More specially, three 
adjacent market price data points are fitted to a parabola. The 
parabolic vertex indicator calculates tv(n), the number of bars the 
turning point is from the n* bar (the symbol t represents time). A bar 
is a time unit, which can be chosen to be a week, a day, 60 minutes, 
etc. For example, if the vertex indicator yields a number of +3, it 
means that it is forecasted that the market will turn 3 bars ahead of 
the n* bar. If n is chosen to be zero, and a bar is taken to be a day, it 
would simply mean that the market will turn 3 days from now. 
Similarly, -2 means that the market has turned 2 bars ago from the 
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n* bar. Again, if n is chosen to be zero, and a bar is taken to be a day, 
it would mean that the market has already turned two days ago. tv(n) 
is given by 

tv(n) = 

3 1 
- x(n) - 2x(n -1) + - x(n - 2) 

x ( n ) - 2 x ( n - l ) + x ( n - 2 ) 
(7.1) 

where x is the closing price or the smoothed closing prices. The 
derivation of Eq (7.1) is shown in Appendix 5. If the denominator of 
Eq (7.1) is zero, it means that the data lie on a straight line and no 
turning point exists. A very large arbitrary number is assigned to 
tv(n) in the computer program to indicate that no vertex is found. 
When tv(n) is plotted in a narrow range in a chart, the large number 
will not be plotted. To calculate the number of bars the vertex or 
turning point is from the present time, where n = 0, 

tv(0)=-

|x (0)-2x(- l ) + |x(-2) 

x(0)-2x(-l) + x(-2) 
(7.2) 

where x(0) is the closing price or the smoothed closing price of the 
current bar 

x(-l) is the closing price or the smoothed closing price of 
one bar ago 

x(-2) is the closing price or the smoothed closing price of 
two bars ago 
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Figure 7.1(a) shows market price being simulated as a 
parabola and Fig. 7.1(b) shows its slope. Figure 7.1(c) shows the 
number of bars from the vertex of the parabola, which is located for 
convenience at sample number = 0. At the vertex, the number of bars 
from the vertex is zero, which obviously should be the case. The 
slope at the vertex is also zero at that point. Thus, the parabolic 
vertex indicator confirms with the slope to locate where the vertex is. 
In addition, it will forecast when it is going to happen. For example, 
when the number of bars from vertex is +2, this indicates that the 
vertex will occur 2 bars from that time. The identification of timing 
of the vertex is particularly useful when the market is slow and the 
slope of the market price approaches zero slowly. This can be 
exemplified in Figs. 7.2(a) and (b). The curvature of the parabola 
in Fig. 7.2(a) is much smaller than the curvature of the parabola in 
Fig. 7.1(a), and its slope, as shown in Fig. 7.2(b) is not as steep as 
that shown in Fig. 7.1(b), thus making it difficult to identify when 
the market is going to turn. However, since the parabolic vertex 
indicator is not affected by the slowness of the market, it can provide 
a much clearer picture of when the turning point will happen, as 
shown in Fig. 7.2(c). 

7.2 Cubic Vertex Indicator 

As discussed in the last chapter, market price data are quite often 
better approximated by a cubic function. In any case, a parabola is a 
special case of a cubic function. A cubic vertex indicator can yield 
two vertices or turning points, as a cubic function usually have two 
turning points. t+(n), the number of bars the turning points are from 
the n* bar, are given by 

t±(n)= 
3c 

where c = [x(n)-3x(n-l)+3x(n-2)-x(n-3]/6 * 0 (7.4) 
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Fig. 7.1. Market price data simulated as a parabola concaving up: 
(a) the parabola; (b) the slope of the parabola; (c) number of bars 
from vertex (or turning point) of the parabola, as calculated from 
the parabolic vertex indicator. Numbers on the horizontal axis are 
sample numbers. 
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Fig. 7.2. Market price data simulated as a parabola concaving up, 
the parabola has a smaller concavity than that of Fig. 7.1: (a) the 
parabola; (b) the slope of the parabola; (c) number of bars from 
vertex (or turning point) of the parabola, as calculated from the 
parabolic vertex indicator. 
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d = [2x(n)-5x(n-l)+4x(n-2)-x(n-3)]/2 (7.5) 

e = [1 lx(n)-18x(n-l)+9x(n-2)-2x(n-3)]/6 (7.6) 

and x is the closing or the smoothed closing price. 

The derivation of Eq (7.3) - (7.6) is given in Appendix 5. 
To calculate the number of bars the vertices or turning points are 
from the present time, put n = 0. 

t+(n) can be plotted in the chart for an arbitrary range, e.g., -4 
to 4. The computer program that calculates t+(n) first checks whether 
c = 0. If c = 0, then the function fitted to the data points reduces to 
that of a parabola. The parabola has only one vertex, whose timing 
is given by -e/(2d). If c = 0 and d = 0, the function reduces to that of 
a straight line and no turning point exits. An arbitrary large number 
is assigned to the two vertices so that they are plotted completely out 
of scale in the chart. If c * 0, then the program will check whether 
(a) (d2-3ce) < 0 (b) (d2-3ce) = 0 (c) (d2-3ce) > 0 . 

For case (a), no vertex exists, an arbitrary large number is 
assigned to each of the two vertices so that they are plotted 
completely out of scale in the chart. For case (b), the two vertices 
are actually the same vertex, t+ = t. = -d/(3c). For case (c), the values 
of the two vertices are compared, the larger one is assigned to t2 and 
the smaller one to ti . t2 is the timing of the turning point which is 
closer to the present time. t2 will usually show what will happen in 
the future and ti usually shows what has happened in the past. The 
computer program can choose to plot t2 only as the future is generally 
what traders are interested in. 
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Figure 7.3(a) shows some market price data simulated by a 
cubic function, and Fig. 7.3(b) shows its slope. The two vertices of 
the cubic function have slopes equal to zero. Figure 7.3(c) shows the 
number of bars from a vertex at a certain time (or a certain sample 
number). This is calculated from the cubic vertex indicator. The 
position of the first vertex (which takes on the negative sign of 
Eq (7.3) in this example), is, by definition, smaller than that of the 
second vertex (which takes on the positive sign of Eq (7.3) in this 
example). The cubic vertex indicator identifies the past as well as 
forecast the future vertex very well. 

Figure 7.4(a) shows a sine wave with 12 samples/cycle. 
Fig. 7.4(b) shows the sine wave being filtered by the cubic velocity 
indicator, which agree almost exactly with the slope of the sine 
wave. Figure 7.4(c) shows the number of bars from the vertices of 
the sine wave as calculated by the cubic vertex operator. The 
position of the first vertex describes what happened in the past. The 
position of the second vertex mostly describes what will happen 
in the future. Table 7.1 compares the estimated number of bars 
(calculated from the vertex indicator) with the theoretical one. 
Sample number 5 to 10 are chosen arbitrarily from Fig. 7.4 and are 
representative of the whole sine wave, which is periodic. Except for 
sample number 10, the estimated number of bars from the first vertex 
agrees with the theoretical ones quite well. It should be noted that the 
cubic vertex operator used only four data points (samples) to explain 
the past, as well as forecast the future at the same time. The 
inaccuracy at sample number 10 is simply because the data points are 
too far away from the vertex. The estimated number of bars from the 
second vertex attempts to forecast how many bars ahead will there be 
a turning point. At sample number 5, the estimated number of bars 
ahead is 13 while the actual number is 4. While this is far from 
accurate, it does tell you to anticipate a turning point ahead. As the 
data points get closer and closer to the turning point, the forecast gets 
more and more accurate until the estimated value agrees exactly with 
the theoretical value of zero at the turning point. 
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Fig. 7.3. Market price data simulated as a cubic function: (a) the 
cubic function; (b) the slope of the cubic function; (c) the number of 
bars from the first (marked as x) and second vertex (marked as .) of 
the cubic function, as calculated from the cubic vertex indicator. 
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Fig. 7.4. Market price data simulated as a sine wave of circular 
frequency of Jt/6 radian: (a) the sine wave; (b) the sine wave filtered 
by the cubic velocity indicator (marked as .), and compared with the 
slope of the sine wave (marked as +); (c) the number of bars from the 
first (marked as x) and second vertex (marked as .) of the sine wave, 
as calculated from the cubic vertex indicator. Numbers on the 
horizontal axis are sample numbers. 
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Table 7.1 

Sample 
Number 

5 
6 
7 
8 
9 
10 

Theoretical 
number of 
bars from 
first vertex 

-2 
-3 
-4 
-5 
-6 
-7 

Estimated 
number of 
bars from 
first vertex 

-2 
-3 
-3.8 
-4.8 
-6.7 
-16 

Theoretical 
number of 
bars from 
second 
vertex 
4 
3 
2 
1 
0 
-1 

Estimated 
number of 
bars from 
second 
vertex 
13 
3.7 
1.8 
0.8 
0 
-1 

Figure 7.5(a) shows the summation of two sine waves and 
Fig. 7.5(b) shows the summation after operated on by the cubic 
velocity indicator, which agreed with the slope quite well. Figure 
7.5(c) shows the number of the bars from the vertex, which is zero at 
all vertices or turning point, showing that the cubic vertex indicator 
can locate the turning points quite well. 

In the EasyLanguage code of Omega Research's 
TradeStation2000i, the program for calculating the closest turning 
point (i.e, the second vertex t2) can be written as follows: -

{Program to calculate the time when the closest turning point has 
occurred or will occur. Closing prices are smoothed by amal or 
ama3} 

Variables: 
cl(0),dl(0),el(0),xamal_l(0),xamal_2(0),xamal_p(0),xamal_n(0), 
dsql(0),c3(0),d3(0),e3(0),xama3_l(0),xama3_2(0),xama3_p(0),xam 
a3_n(0),dsq3(0); 
{Closing prices are smoothed with adaptive moving average with a 
smoothness factor of 1, amal} 
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Fig. 7.5. Market price data simulated as a summation of sine waves 
of circular frequency of 7t/16 radian with amplitude 1.0 and rc/4 
radian with amplitude 0.25: (a) the summation of sine waves; (b) the 
summation of sine waves filtered by the cubic velocity indicator 
(marked as .), and compared with the slope of the summation of sine 
waves (marked as +); (c) the number of bars from the first (marked 
as x) and second vertex (marked as .) of the summation of sine 
waves, as calculated from the cubic vertex indicator. 
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cl=(AMAFUNC2(c,l)-
3*AMAFUNC2(c[l],l)+3*AMAFUNC2(c[2],l)-
AMAFUNC2(c[3],l))/6; 
dl=(2*AMAFUNC2(c, 1)-
5*AMAFUNC2(c[l])l)+4*AMAFUNC2(c[2],l)-
AMAFUNC2(c[3],l))/2; 
e 1=11 * AMAFUNC2(c, 1 )/6-
3*AMAFUNC2(c[l],l)+3*AMAFUNC2(c[2],l)/2-
AMAFUNC2(c[3],l)/3; 
If cl=0 Then Begin {cubic function is reduced to a parabola} 

I fd l=0Then 
xamal_l = 99 {cubic function is reduced to a 

straight line, which has no turning point} 
Else 

Begin 
xamal_l= -el/(2*dl); {vertex of a 

parabola} 
end; 

xamal_2=xamal_l; {for parabola, there is only one turning 
point; for a straight line, both vertices are assigned to a very large 
number} 
end; 
dsq 1 =Square(d 1 )-3 *c 1 *e 1; 
If c l o O Then Begin 

If dsql < 0 Then Begin {value inside the square root sign is 
negative, there is no solution} 

If xamal_l>0 Then xamal_l = 99 {If previous 
turning point is positive, the current turning point would be assigned 
to a very large positive number} 

Else 
xamal_l = -99 ; {If previous turning point 

is negative, the current turning point would be assigned to a very 
large negative number} 

If xamal_2>0 Then xamal_2= 99 {If previous 
turning point is positive, the current turning point would be assigned 
to a very large positive number} 

Else 
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xamal_2 = -99 ; {If previous turning point 
is negative, the current turning point would be assigned to a very 
large negative number} 

end; 
If dsql = 0 Then Begin {value inside the square root sign is 

zero, there is only one solution} 
xamal_l = -dl/(3*cl); 

xamal_2 = xamal_l; 
end; 
If dsql > 0 Then Begin {value inside the square root sign is 

positive, there are two solutions} 
xamal_p = (-dl+Squareroot(dsql))/(3*cl); 

xamal_n=(-dl-Squareroot(dsql))/(3*cl); 
If xamal_p > xamal_n Then Begin 
xamal_l = xamal_n; 
xamal_2= xamal_p; {second vertex is the vertex 

which is closer to the current time} 
end; 
If xamal_n > xamal_p Then Begin 
xamal_l = xamal_p; 
xamal_2 = xamal_n; {second vertex is the vertex 

which is closer to the current time} 
end; 

end; 
end; 
{Closing prices are smoothed with adaptive moving average with a 
smoothness factor of 3, ama3} 
c3=(AMAFUNC2(c,3)-
3*AMAFUNC2(c[l],3)+3*AMAFUNC2(c[2],3)-
AMAFUNC2(c[3],3))/6; 
d3=(2*AMAFUNC2(c,3)-
5*AMAFUNC2(c[l],3)+4*AMAFUNC2(c[2],3)-
AMAFUNC2(c[3],3))/2; 
e3=l l*AMAFUNC2(c,3)/6-
3*AMAFUNC2(c[l],3)+3*AMAFUNC2(c[2],3)/2-
AMAFUNC2(c[3],3)/3; 
If c3=0 Then Begin {cubic function is reduced to a parabola} 

Ifd3 = 0Then 
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xama3_l = 99 {cubic function is reduced to a 
straight line, which has no turning point} 

Else 
Begin 

xama3_l= -e3/(2*d3); {vertex of a 
parabola} 

end; 
xama3_2=xama3_l; {for parabola, there is only one turning 

point; for a straight line, both vertices are assigned to a very large 
number} 
end; 
dsq3=Square(d3)-3 *c3*e3; 
If c3<>0 Then Begin 

If dsq3 < 0 Then Begin {value inside the square root sign is 
negative, there is no solution} 

If xama3_l>0 Then xama3_l = 99 {If previous 
turning point is positive, the current turning point would be assigned 
to a very large positive number} 

Else 
xama3_l = -99 ; {If previous turning point 

is negative, the current turning point would be assigned to a very 
large negative number} 

If xama3_2>0 Then xama3_2= 99 {If previous 
turning point is positive, the current turning point would be assigned 
to a very large positive number} 

Else 
xama3_2 = -99 ; {If previous turning point 

is negative, the current turning point would be assigned to a very 
large negative number} 

end; 
If dsq3 = 0 Then Begin {value inside the square root sign is 

zero, there is only one solution} 
xama3_l = -d3/(3*c3); 

xama3_2 = xama3_l; 
end; 
If dsq3 > 0 Then Begin {value inside the square root sign is 

positive, there are two solutions} 
xama3_p = (-d3+Squareroot(dsq3))/(3*c3); 
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xama3_n = (-d3-Squareroot(dsq3))/(3*c3); 
If xama3_p > xama3_n Then Begin 
xama3_l = xama3_n; 
xama3_2 = xama3_p; {second vertex is the vertex 

which is closer to the current time} 
end; 
If xama3_n > xama3_p Then Begin 
xama3_l = xama3_p; 
xama3_2 = xama3_n; {second vertex is the vertex 

which is closer to the current time} 
end; 

end; 
end; 
Plotl(xamal_2,"Plotl"); 
Plot2(xama3_2,"Plot2"); 
Plot3(0,"Plot3"); 

In the above program, AMAFUNC2 is an adaptive moving 
average function written by Jurik Research. The closing price data 
is first smoothed with AMAFUNC2 of smoothness factor 1 and 3. 
These functions can be replaced by other smoothing functions, 
e.g., XAVERAGE of window length of 3 and 6. XAVERAGE 
is an exponential moving average function provided by 
TradeStation2000i. 

Figure 7.6 shows a 15-minute chart of the U.S. 30 year 
Treasury Bond Future. The price is filtered by the adaptive moving 
average with smoothness of 1 (thin line) and 3 (thick line). After 
dropping for the whole morning, the market turns up at 11:50 a.m. 
The velocity of ama3 (shown as the thick line in the second plot), as 
calculated from the cubic velocity indicator, approaches zero from a 
negative value. (The thin line corresponds to the velocity of amal). 
The acceleration of ama3 (shown as the thick line in the third plot), 
as calculated from the cubic acceleration indicator, is approximately 
constant indicating that it is a major turning point. (The thin line 
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Fig. 7.6. A 15-minute chart of an US 30 year Treasury Bond Future, 
showing a turning point at the market bottom. Cubic velocity and 
cubic acceleration indicators are plotted in the second and third 
figures respectively. The number of bars from the second vertex (or 
turning point), as calculated from the cubic vertex indicator, is 
plotted in the bottom figure. Chart produced with Omega Research 
TradeStation2000i. 
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corresponds to the acceleration of amal). Only the number of bars 
from the larger vertex (or second vertex) is plotted in the bottom plot 
as it usually represents future turning points. The thick line and the 
thin line represent the cubic vertex indicator operated on the price 
after it has been smoothed by ama3 and amal respectively. Only the 
number of bars that lie within —4 and +4 are plotted as only values 
which are close to zero show higher accuracy. At 11:35 a.m., the 
number of bars from the larger vertex, as calculated from the Bond 
price smoothed by ama3 is approximately equal to one, implying that 
the market will turn 1 bar (15 minutes) later. At 11:50 a.m., the 
number of bars approaches zero (marked by an arrow) and crosses 
zero after. For the whole afternoon, it remains above zero, which is 
consistent with the market slowly trending up after the turning point. 
Some of the vertex points have been assigned an arbitrary very large 
number, which are shown as almost vertical straight lines in the plot. 
These would mean that the market price data either fit into a straight 
line (which has no turning point) or a cubic function that has no 
turning point. These can imply that the market is not going to turn 
any sooner (A particular case is that market price data is almost 
horizontal). 

Figure 7.7 shows another 15-minute chart of US 30 year 
Treasury Bond. The price is filtered by the adaptive moving average 
(ama) with smoothness of 1 (thin line) and 3 (thick line). The market 
rises in the morning and then hesitates before noon. It then turns 
back up at 12:35 p.m (marked by the first arrow in the bottom plot). 
The number of bars from the larger vertex (shown as the thick line in 
the bottom plot), as calculated from the Bond price smoothed by 
ama3 is zero, indicating a turning point exists at that time. This is 
confirmed by the velocity of ama3, as calculated from the cubic 
velocity indicator (shown as the thick line in the second plot), being 
zero. (The thin line corresponds to the velocity of amal). As the 
market is turning very slowly, the cubic vertex indicator provides a 
more accurate timing of the turning point than the cubic velocity 
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Fig. 7.7. A 15-minute chart of an US 30 year Treasury Bond 
Future, showing a continuation pattern. Cubic velocity and cubic 
acceleration indicators are plotted in the second and third plots 
respectively. The number of bars from the second vertex (or turning 
point), as calculated from the cubic vertex indicator, is plotted 
in the bottom plot. Chart produced with Omega Research 
TradeStation2000i. 



Vertex Indicators 97 

indicator in this case. As well, it is able to forecast the turning point 
2 bars (30 minutes) ahead. At 12:35 pm, the slightly positive 
acceleration of ama3, as calculated from the cubic acceleration 
indicator (shown as the thick line in the third plot), shows that the 
curve is concaving up, illustrating that the market will continue 
trending up. (The thin line corresponds to the acceleration of amal). 
At 2:05 p.m.(marked by the second arrow in the bottom plot), the 
number of bars from the larger vertex, as calculated from the Bond 
price smoothed by ama3 is again zero, indicating another turning 
point. This, again, is consistent with the velocity being zero at that 
point. The acceleration is negative, implying that the market is going 
to fall. The market did fall after. In the vertex plot (bottom plot), 
some of the vertex points have been assigned arbitrary large 
numbers, implying that the market is not going to turn soon. 

The cubic vertex indicator thus can locate turning points 
quite well. It can be used to confirm the results of the cubic velocity 
indicator. Furthermore, when the market is turning slowly, the cubic 
vertex indicator will more clearly identify when the market is going 
to turn. It can also pinpoint the turning point 1 or 2 bars ahead of 
time. When the market price data can be fitted to a straight line or a 
cubic function that has no turning point, this can imply that a turning 
point is not to be foreseen in the near future. 

A word of caution is in order. We are modeling market price 
data as a piecewise cubic function. The market, of course, does not 
have to behave as such. However, a piecewise cubic function 
provides a more versatile tool than a piecewise straight line, which is 
used by some of the traders. And, as discussed earlier, a straight line 
can be considered as a particular case of a cubic function. The cubic 
function would automatically reduce to a straight line when the price 
data is best fitted to a straight line. As such, the cubic function 
provides an advantage in trading. 



Chapter 8 

Various Timeframes 

Traders quite often look at charts of different time frames at the same 
time. They may use a long-term time chart to decide on the set of 
conditions that are necessary for taking a position in the market. 
Then they would wait for an indication in a short-term time chart 
before entering a market (Elder 1993). But why would traders 
bother to look at different charts? Before we delve into this question, 
let us take a look at how time charts are made of. 

In each time chart, the data are taken from a raw signal by 
sampling at equal time intervals. The raw price signal in the 
financial market is the tick data. A tick is an upward or downward 
price movement. In a 15-minute chart, the data is sampled at a 15 
minute interval, i.e., the closing price at every 15 minute interval is 
captured. Similarly, in a daily chart, the daily closing price is 
recorded. Figures 8.1(a) and (b) show a market price signal 
simulated as a pure sine wave. The sine wave in Fig. 8.1(a) was 
sampled at eight points per cycle, yielding a sampled signal of 
circular frequency of 7t/4 radian (i.e., 45 degrees). If the horizontal 
axis is taken to be time in minutes, the figure can be considered as a 
15-minute chart. Taking every other sample of Fig. 8.1(a) will yield 
Fig. 8.1(b), which shows a sine wave sampled at four points per 
cycle, yielding a sampled signal of circular frequency of %I2 radians 
(i.e., 90 degrees). Figure 8.1(b) can then be considered as a 30-
minute chart. The procedure of taking every M* sample point is 
called downsampling, which will be discussed in more detail in 
Appendix 6. 
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Fig. 8.1(a) A sine wave sampled at eight points per cycle; (b) taking 
every other sample of (a) yields a sine wave sampled at four points 
per cycle. 
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Market price data are seldom made up of a pure sine wave. 
They are usually composed of waves of different frequencies and 
magnitudes. In general, data of higher frequencies (i.e., smaller 
periods) have smaller amplitude than those of lower frequencies (i.e., 
larger periods). For example, the variation of daily closing price is 
much smaller than the variation of monthly closing price 
(Mandelbrot 1983, Mantegna and Stanley 1995). Thus, market price 
data can be simulated as a superposition of sine waves, with higher 
frequencies having smaller amplitudes. Let us take a look at an 
example. Figure 8.2(a) shows the sum of two sine waves, the first 
one has a lower frequency with an amplitude of 1, and the second 
one has a higher frequency with an amplitude of 1/4: 

x(n) = sin(7tn/16) + (1/4) sin(7tn/4) 

where n = 0 ,1 ,2 , . . . (8.1) 

Downsampling 4 (i.e., taking every 4th point) of the above signal will 
produce the signal shown in Fig. 8.2(b), which can be represented 
by: 

v(n) = sin(7tn/4) + (1/4) sin(7tn) 

= sin(7tn/4) 

where n = 0 ,1 ,2 , . . . (8.2) 

as sin(7tn) equals 0 for all n. 

Thus, downsampling 4 as represented in Fig. 8.2(b) provides the 
perfect low pass filter, filtering off completely the signal of higher 
frequency. Furthermore, it does not alter the amplitude of the signal 
of the lower frequency, nor does it change its phase. 

However, it should be noted that the filtered signal is 
affected by the initial point of downsampling. For example, if that 
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Fig. 8.2(a) Market data simulated as the sum of two sine waves; 
(b) Signal in (a) is downsampled by taking every 4* point; (c) Signal 
in (a) is downsampled by taking every 4th point, but the points are 
shifted by two positions as compared to (b). 
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point is shifted, as shown in Fig. 8.2(c), the filter will not be a perfect 
filter. Part of the signal of the higher frequency is not filtered off. 
But, in spite of that, we can still see mainly the wave of the lower 
frequency, which represents the major action. Thus, irrespective of 
where we start downsampling, downsampling would provide some 
kind of filtering action, filtering off smaller events and leaving 
behind significant movements. If Fig. 8.2(a) is considered as a 15-
minute chart, Figs. 8.2(b) and (c) can be considered as 60-minute 
charts. The trader can take a look at the 60-minute chart to see 
whether the conditions are ripe to take a position in the market. He 
or she can then wait for an indication in the 15-minute chart before 
entering an order. Thus, a long-term chart produces some kind of 
lag-free filtering operation, filtering signals of higher frequencies 
that are described in more details in a short-term chart. Traders look 
at the long-term chart for set-ups, then zero in on the short-term chart 
for entry. Long-term charts provide the trader with an idea where the 
market will be heading in the long run. Short-term charts will 
provide a trader entry points where he has less risk of losing a large 
amount of capital before the market is heading in the direction that 
he expects. A trader should limit his risk by limiting his capital loss. 
Professional traders usually have stop loss orders to protect their 
capital. A stop loss order is an order to a broker, setting the sell price 
below the current market price if the trader has bought, or the buying 
price above the current market price if the trader has sold short. A 
stop loss order is useful, as there is no certainty in market behavior. 
A trade may not follow the direction as forecasted from a long-term 
chart. 

8.1 Under-sampling 

Before we apply an indicator on a sampled signal in a certain 
timeframe, we have to ensure that the signal is not under-sampled, 
i.e., there should be enough points to represent a cycle. In Chapter 4, 
we discussed the Nyquist Theorem, which states that in order to 
accurately reproduce a signal of a certain frequency, the signal has to 
be sampled at a rate greater than twice the frequency. That is, each 
cycle has to be sampled for more than two points, which is 
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equivalent to saying that the sampling circular frequency has to be 
smaller than n radians. Figure 8.3(a) shows a sine wave with three 
cycles, sampled at four points per cycle, i.e., the sampled signal has a 
circular frequency of n/2 radians. If a trader decides then to sample 
every third point, as shown in Fig. 8.3(b) (e.g., convert a 10-minute 
chart to a 30-minute chart), one-and-a-half cycle is sampled for only 
two points. In other words, the sampling circular frequency will be 
3TC/2 radians. According to the Nyquist Theorem, the signal cannot 
be represented accurately. The sampled signal can actually be 
misled to be believed that it is a signal of a lower frequency, which is 
shown in Fig. 8.3(c) as the sine wave with one cycle. As the cycle is 
sampled every quarter of a cycle, the misrepresented sampled signal 
has a circular frequency of n/2 radians. This is an example of 
aliasing, which results from sampling a signal less than twice per 
cycle (Proakis and Manolakis 1996). Aliasing introduces a signal 
that can be quite different from the original signal. If an indicator is 
applied to the sampled points, it will only lead to a misleading output 
response. 

How can a trader recognize that the signal that he is 
analyzing is an aliased signal? First, in a certain time chart, he 
should identify a signal of his own interest. Then, he should 
compare that time chart with shorter-term time charts to see whether 
the signal maintains roughly the same shape in all time charts. In 
order to facilitate the comparison, computer trading programs should 
have an option to have different time frames lining up in a horizontal 
fashion, similar to the display in Fig. 8.3. This would allow the 
trader to quickly recognize whether a signal is under-sampled. If a 
signal in a certain time chart is under-sampled, then he should 
choose a shorter-term time chart where it is not. This would ensure 
that he is not analyzing an alias signal. 

In order for a signal not to be under-sampled, all we need is 
two points per cycle. However, very often, we need more points 
than that to yield a good indicator response. As a general guideline, 
a cycle needs to have more than 4 points. An indicator response 
depends on how many points per cycle the signal is being sampled. 
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Fig. 8.3(a) A sine wave of three cycles sampled at four points per 
cycle; (b) taking every third sample of (a) yields a sine wave 
sampled at two points per one-and-a-half cycle; (c) the signal in (b) 
is under-sampled and would appear to look like a signal of a 
different frequency. 
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This is called its frequency characteristics. We will discuss this in 
the next section. 

8.2 Frequency Characteristics of an Indicator 

As discussed in Chapter 4, most indicators can be considered as 
filters in electrical engineering. The output response of a filter, 
which can be analyzed in terms of amplitude and phase, depends on 
the frequency of the signal. In trading, phase is more important than 
amplitude, as it represents the time lag of an indicator. In general, 
the lower the frequency (i.e., the more number of sampled points per 
cycle), the smaller the time lag, and the faster the indicator will 
respond. An example is shown in Figs. 6.7 and 6.8. In Fig. 6.7(a), 
the signal is sampled at 8 points per cycle, while in Fig. 6.8(a), the 
signal is sampled at 32 points per cycle. Thus, the signal in 
Fig. 6.8(a) has a lower frequency than the signal in Fig. 6.7(a). The 
cubic velocity indicator response of the signal shown in Fig. 6.8(b) 
has a slightly faster time response than that shown in Fig. 6.7(b). 
Similarly, but more obviously, the cubic accelerator indicator 
response of the signal shown in Fig. 6.8(c) has a much faster time 
response than that shown in Fig. 6.7(c). A much faster time response 
would mean that the trader could react faster to the behavior of the 
market. A signal with 32 points per cycle in a 15-minute time chart 
would become a signal with 8 points per cycle in a 60-minute time 
chart. The same indicator applying to the signals would yield a 
slightly faster response in the 15-minute time chart than that in the 
60-minute time chart. The time response would vary from indicator 
to indicator. Frequency characteristics of some of the indicators are 
shown in Appendices 3 and 4. 
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Wavelet Analysis 

Wavelet analysis is a mathematical technique introduced in the 
nineteen eighties. Before then, signals are quite often analyzed by 
using Fourier Analysis. The Fourier Theorem states that every 
signal, no matter how complicated it may look, can be reproduced by 
adding a sufficient number of periodic curves called sine waves. 
Each sine wave has its own frequency and amplitude. In addition to 
how a signal can be synthesized, any arbitrary signal can also be 
analyzed. This is performed by using a certain filtering procedure to 
find out how much a particular sine wave contributes to a signal. 
The resulting list of sine waves is called the Fourier representation of 
a signal. Sine waves are periodic, and they go on and on forever. 
They are thus ideal for long, regular signals. However, sine waves 
do not cope well with signals of short duration. For a narrow spike, 
Fourier Analysis yields a very large number of sine waves of high 
frequencies, each of very long duration. When these sine waves are 
added together, they cancel each other out except at one point where 
they interfere constructively, creating the spike. Each sine wave 
component, taking individually, cannot pinpoint the timing of the 
spike. 

This weakness of Fourier Analysis can be improved by 
using a procedure called windowed Fourier Analysis, where the 
signal is divided into a sequence of finite time slots called windows, 
and Fourier representation is found for each slot. However, as each 
window has a fixed, finite length, it is still not possible to locate a 
sharp spike very precisely. We would know which window the spike 
belongs to, but not exactly where it happens within the window. 
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Wavelet Analysis uses a flexible time window, and special 
mathematically designed waves called wavelets that can be stretched 
and translated in both frequency and time. The wavelets narrow 
while focusing on high frequency signals, and widen while searching 
for low frequency background. As a result, the frequency of the low 
frequency components are accurately defined at the expense of poor 
time localization. On the contrary, high frequency bands are 
precisely determined in time, but their frequencies are not well 
resolved (Lau and Weng 1995). This, however, is exactly what 
traders would like to see. They would like to know the long term 
trend from the low frequency background. At the same time, they 
would like to know the exact timing which can be extracted from 
high frequency signals when they would like to enter the market. As 
well, the wavelet approach is particularly appropriate in handling 
very irregular non-stationary data series. It deals well with signals of 
short duration, like bubbles and crashes. 

In Chapter 5, we pointed out that trending indicators are 
actually low pass filters. They block out high frequency components 
of signals such as whipsaws but allow low frequency components of 
signals to go through. In other words, they smooth out the signals 
such that the traders would realize where the market is trending. In 
Chapter 6, we pointed out that oscillator indicators are high pass 
filters. They block out low frequency components such as trends and 
transmit high frequency components. They are used to find out the 
change of trend. Wavelets can be considered as band pass filters. 
They eliminate the very low frequencies and the very high 
frequencies and transmit the middle range frequencies. This is like 
keeping the middle layers of an onion. The middle layers can be 
further separated into different layers by adjusting the width of the 
wavelets. Unlike Fourier Analysis, which uses only sine waves as 
analyzing waves, wavelets come in different forms. Here, we will 
employ the sine wavelet, which is one of the commonly used 
wavelets, to analyze market price data. The width of the wavelet is 
changed such that it can filter out different range of frequencies. 
Three ranges of frequencies will be chosen. We will call these filters 
as high, middle and low wavelet indicators. 
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9.1 High Wavelet Indicator 

The high wavelet indicator is a band pass filter which will transmit 
high circular frequency of the range between 7i/8 and %IA radian, 
which corresponds to periods of 16 bars and 8 bars respectively. Its 
coefficients are given by 

h-3(k) = — 
Ttk 

( . 7tk . nk^ 
sin sin — 

v 4 8 J 

k = 0,1,2,3,... (9.1) 

Its derivation is given in Appendix 7. The values of its 
coefficients are plotted in Fig. 9.1 and listed in Appendix 7. The 
number of coefficients are arbitrarily chosen to be 121 (i.e., k = 120). 
For k larger than 120, the coefficients are much smaller than those 
where k are less than 120, and therefore ignored. The subscript '-3' 
of h is a certain way to identify the wavelet indicator and will be 
explained in Appendix 7. 

9.2 Middle Wavelet Indicator 

The middle wavelet indicator is a band pass filter which will transmit 
middle circular frequency of the range between 71/16 and ft/8 radian, 
which corresponds to periods of 32 bars and 16 bars respectively. Its 
coefficients are given by 

h_4(k) = 4 - | s i n ^ - s i n ^ | k = 0,1,2,3,... (9.2) 
Ttk ^ 8 16 
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Fig. 9.1. Coefficients of the high wavelet indicator. 



110 The Science of Financial Market Trading 

Its derivation is given in Appendix 7. The values of its 
coefficients are plotted in Fig. 9.2 and listed in Appendix 7. The 
number of coefficients are arbitrarily chosen to be 121 (i.e., k = 120). 
For k larger than 120, the coefficients are much smaller than those 
where k are less than 120, and therefore ignored. 

9.3 Low Wavelet Indicator 

The low wavelet indicator is a band pass filter which will transmit 
low circular frequency of the range between rc/32 and 7t/16 radian, 
which corresponds to periods of 64 bars and 32 bars respectively. Its 
coefficients are given by 

-5 00 = 
_1_ 
7ik 

f . 7tk . itk^ 
sin sin 

16 32 
k = 0,1,2,3,. (9.3) 

Its derivation is given in Appendix 7. The values of its 
coefficients are plotted in Fig. 9.3 and listed in Appendix 7. The 
number of coefficients are arbitrarily chosen to be 201 (i.e. k = 200). 
For k larger than 200, the coefficients are much smaller than those 
where k are less than 200, and therefore ignored. 

These wavelet indicators can be used to resolve market price 
data within one time frame into different frequency components. 
These can be compared to using trending indicators on various time 
frames (Note that trending indicators are low pass filters and always 
leave the low frequency background of the signal in the filtered 
signal). Thus, wavelet indicators offer traders the advantage of 
looking at market movements within one time frame but seeing the 
slow and fast activities simultaneously. 
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Fig. 9.2. Coefficients of the middle wavelet indicator. 
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Fig. 9.3. Coefficients of the low wavelet indicator. 
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We will first take a look at how a high wavelet indicator can 
filter out the low frequency component of a signal, and how a cubic 
velocity indicator will act on the filtered signal as to indicate the 
peaks and valleys of the high frequency signal. Figure 9.4(a) shows 
a sine wave pi of high frequency (circular frequency = %/6) and a 
sine wave p2 of low frequency (circular frequency = n/16) and their 
sum. The sum signal is then filtered by the high wavelet indicator 
(which will filter off the low frequency signal), and the filtered 
signal is then operated on by the cubic velocity indicator. The final 
result agrees reasonably well with the theoretical result shown in 
Fig. 9.4(b), where the derivative (or slope) of pi is plotted. This 
shows that the high wavelet indicator can filter away the low 
frequency component of the signal quite well. The cubic velocity 
indicator can then help to identify the top and bottom of this high 
frequency component. However, it should be mentioned that the 
agreement depends on the frequency of the signal being analyzed, as 
wavelet indicators, just like any other indicators, can shift the filtered 
signal from the original signal in time or phase. 

Figure 9.5 shows a 5-minute chart of an US 30 year Treasury 
Bond Future. The top plot displays market price as well as its 
smoothing by amal (thin line) and ama3 (thick line). These ama 
lines are plotted for references only. The middle plot shows the 
cubic velocity indicator applied to the market closing price data after 
they have been filtered by the high (thick line), middle (middle thick 
line), and low (thin line) wavelet indicators. The bottom plot shows 
the summation of the amplitudes of all these three lines. This bottom 
plot can be considered as filtering the data with a band pass filter 
between 7t/32 and 7t/4 and then applying a cubic velocity indicator on 
the filtered data. 

At 9:50 a.m., the middle plot shows that all three lines are 
pointing up, providing a good entry point to go long in the market. 
At 12:50 p.m., the thin line is approximately zero and pointing down, 
implying that the long term trend is over. However, at that moment, 
the thick and middle thick line are positive and pointing up 
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Fig. 9.4(a) shows the sum (marked as +) of a high frequency 
sine wave pi (marked as *) and a low frequency sine wave p2 
(marked as x); (b) the sum signal is filtered by the high wavelet 
indicator and then operated on by the cubic velocity indicator. This 
signal (marked as .) is then compared to the derivative (or slope) of 
pi (marked as *). 
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Fig. 9.5. A 5-minute chart of an US 30 year Treasury Bond Future. 
The middle plot shows the cubic velocity indictor applied to the 
market closing price data after they have been filtered by the high 
(thick line), middle (middle thick line), and low (thin line) wavelet 
indicators. The bottom plot shows the summation of the amplitudes 
of all these three lines. Chart produced with Omega Research 
TradeStation2000i. 
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at the same time, showing that the bulls are coming back to support 
the market. At 2:50 p.m., the three lines are either negative or 
approximately zero and pointing down, indicating a good point to 
exit the market. 

In this wavelet analysis, the very high (higher than rc/4 
radians) and very low (lower than n/32 radians) frequencies have 
been eliminated. Wavelet indicators, can, however, be constructed to 
include some of the very high, or some of the very low frequencies, 
if needed. Thus, wavelet indicators would form an efficient way to 
monitor a market in one time frame by dividing the signal into 
different frequency components. Nevertheless, they do have certain 
disadvantages. A large number of coefficients are required to 
perform good filtering in order to transmit certain frequency bands. 
Since frequency in market price data changes quite fast, a large 
number of coefficients will contribute some inaccuracy in the 
filtering. In addition, except at certain frequencies where there are 
no phase lags, wavelet indicators do introduce a certain amount of 
phase lag. The phase lags would be described in more detail in 
Appendix 7. 



Chapter 10 

Other New Techniques 

Two new ideas will be presented in this chapter to facilitate traders 
to make their decisions earlier so that they would have an advantage 
over other traders. 

10.1 Skipped Convolution 

Traders usually take specific market action from a chosen time frame 
and make certain judgement. For example, if a trader has a habit to 
trade in a 15-minute time frame, he will wait until the end of every 
15 minutes (or near the end of every 15 minutes if his trading 
program can update the indicators every tick, a tick being the upward 
or downward price movement in a security's trades) before he makes 
a decision whether to enter a market. However, the market action 
can arrive 5 or 10 minutes earlier. It would, therefore, definitely be 
an advantage to recognize the action a few minutes earlier than other 
traders who are trading at the 15-minute time frame. What we can 
do is to use a 5-minute time frame, but analyze the signal in every 
15-minute time interval. In that case, we would know the market 
action of the 15-minute time frame, but in every 5 minutes. We will 
introduce here a concept that will allow the trader to analyze the 
signal from a smaller time frame but using a larger time frame 
interval. The concept is called skipped convolution whose 
mathematical details will be described in Appendix 8. 

For an indicator with coefficients h(0), h(l), h(2) and h(3), 
its output response after convoluting with the market data is given by 

117 
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y(0) = h(0)x(0) + h(l)x(-l) + h(2)x(-2) + h(3)x(-3) (10.1) 

where x(0) is the closing price or the smoothed closing price of the 
current bar 

x(-l) is the closing price or the smoothed closing price of 
one bar ago 

x(-2) is the closing price or the smoothed closing price of 
two bars ago 

x(-3) is the closing price or the smoothed closing price of 
three bars ago 

If this indicator is applied in the 5-minute chart, but we 
would like to see its output response as if it were in a 15 minute-
chart, we can define the response in a skipped convolution with a 
skip 3: 

y 3 (0) = h(0)x(0) + h(l)x(-3) + h(2)x(-6) + h(3)x(-9) (10.2) 

where x(-3) is the closing price or the smoothed closing price of 
three bars ago 

x(-6) is the closing price or the smoothed closing price of 
six bars ago 

x(-9) is the closing price or the smoothed closing price of 
nine bars ago 

Equation (10.2) will give us the output response of the 
indicator as if it were in a 15-minute chart but at every 5-minute 
interval. This means that if a specific market action comes 5 minutes 



Other New Techniques 119 

or 10 minutes after a 15-minute interval in a 15-minute chart, the 
trader using Eq (10.2) in a 5-minute chart will detect the action 5 
minutes or 10 minutes earlier than the trader using the same indicator 
in a 15- minute chart. 

If the indicator is applied in the 5-minute chart, but we 
would like to see its output response as if it were in a 60 minute 
chart, we can define the response in a skipped convolution with a 
skip 12: 

y12 (0) = h(0)x(0) + h(l)x(-12) + h(2)x(-24) + h(3)x(-36) (10.3) 

where x(-12) is the closing price or the smoothed closing price of 
twelve bars ago 

x(-24) is the closing price or the smoothed closing price of 
twenty-four bars ago 

x(-36) is the closing price or the smoothed closing price of 
thirty-six bars ago 

Equation (10.3) will give us the output response of the 
indicator as if it were in a 60-minute chart but at every 5-minute 
interval. This means that if a specific market action comes 5, 10, 15, 
... 50, 55 minute after a 60-minute interval in a 60-minute chart, the 
trader using Eq (10.3) in a 5-minute chart will detect the action 5, 10, 
15, ... 50, 55 minutes earlier than the trader using the same indicator 
in a 60-minute chart. 

In the EasyLanguage code of Omega Research's 
TradeStation2000i, the program for calculating the skipped 
exponential moving average with a length of 3 can be written as a 
function as follows: -

Inputs: P(Numeric), D(Numeric); 
emaL3D= 
0.5*c[P+0]+0.25*c[P+D]+0.125*c[P+2*D]+0.0625*c[P+3*D]+0.03 
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12*c[P+4*D]+0.0156*c[P+5*D]+0.0078*c[P+6*D]+0.0039*c[P+7* 
D]+0.0020*c[P+8*D]+0.0010*c[P+9*D]+0.0005*c[P+10*D]+0.000 
2*c[P+ll*D]+0.0001*c[P+12*D]+0.0001*c[P+13*D] 

emaL3D is an exponential moving average function with length 
equals to 3 and a skip parameter equals to D. When D = 1, it is the 
same as an ordinary exponential moving average of length 3. The 
input numeric parameter D allows the traders to skip analyzing price 
data at a predetermined regular interval. P is another input numeric 
parameter. It allows the trader to choose the bar P where he will start 
smoothing the data. This last feature would be useful when an 
indicator, e.g., cubic velocity indicator is applied to the smoothed 
skipped data. The coefficients in the program is calculated from Eq 
(A3.22) with M = 3 in Appendix 3. 

For an exponential moving average of length equal to 6 and 
a skip parameter equals to D, it can be written as a function in the 
EasyLanguage code as follows:-

Inputs: P(Numeric), D(Numeric); 
emaL6D= 
0.2857*c[P+0]+0.2041*c[P+D]+0.1458*c[P+2*D]+0.1041*c[P+3* 
D]+0.0744*c[P+4*D]+0.0531*c[P+5*D]+0.0379*c[P+6*D]+0.0271 
*c[P+7*D]+0.0194*c[P+8*D]+0.0138*c[P+9*D]+0.0099*c[P+10* 
D]+0.0071*c[P+ll*D]+0.0050*c[P+12*D]+0.0036*c[P+13*D]+0.0 
026*c[P+14*D]+0.0018*c[P+15*D]+0.0013*c[P+16*D]+0.0009*c[ 
P+17*D]+0.0007*c[P+18*D]+0.0005*c[P+19*D]+0.0003*c[P+20* 
D] 

The coefficients in the program is calculated from Eq (A3.22) with 
M = 6 in Appendix 3. 

After smoothing the data with an exponential moving 
average in a skip fashion, we can apply an indicator to the smoothed 
data if we choose. The indicator can be a skipped indicator. The 
following program, written as an indicator in EasyLanguage code, 
shows how to apply the skipped cubic velocity indicator on the 
smoothed skipped data. 
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{Skipped cubic velocity indicator} 
Inputs: D(Numeric); 
Plotl(ll*emaL3D(0,D)/6-3*emaL3D(D,D)+3*emaL3D(2*D,D)/2-
emaL3D(3*D,D)/3,"Plotl"); 
Plot2(l 1 *emaL6D(0,D)/6-3*emaL6D(D,D)+3*emaL6D(2*D,D)/2-
emaL6D(3*D,D)/3,"Plot2"); 
Plot3(0,"Plot3"); 

In this program, D is an input parameter, which provides the 
skipping for the cubic velocity indicator. It should be noted that the 
skip parameter D of the skipped indicator has the same value as the 
skip parameter D of the exponential moving average functions. The 
first plot plots the response of the skipped cubic velocity indicator 
after the data has been skipped smoothed by an exponential moving 
average of length 3. The second plot plots the response of the 
skipped cubic velocity indicator after the data has been skipped 
smoothed by an exponential moving average of length 6. The third 
plot plots a horizontal straight line as a reference where the velocity 
isO. 

An example is given in Fig. 10.1, which shows a 5-minute 
chart of an US 30 year Treasury Bond Future. Exponential moving 
averages, ema3 and ema6 (see Chapter 5) with a skip 3 (D = 3 in 
emaL3D and emaL6D function programs) were first employed to 
smooth the market price. A cubic velocity indicator with a skip 3 
convolution (D = 3 in the skipped cubic velocity indicator program) 
was employed to convolute with the smoothed skipped data. This is 
equivalent to getting a 15-minute chart response but in a 5-minute 
interval. The velocity responses (ema3, thin line; ema6, thick line) 
are shown in the middle plot. Exponential moving averages, ema3 
and ema6, with a skip 12 ((D = 12 in emaL3D and emaL6D function 
programs), were also used to smooth the market price. A cubic 
velocity indicator with a skip 12 convolution (D = 12 in the skipped 
cubic velocity indicator program) was employed to convolute with 
the smoothed skipped data. This is equivalent to getting a 60-minute 
chart response but in a 5-minute interval. The velocity responses 
(ema3, thin line; ema6, thick line) are shown in the bottom plot. 
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Fig. 10.1. A 5-minute chart of an US 30 year Treasury Bond Future. 
The middle plot shows a skip 3 cubic velocity indictor applied to the 
market closing price data after they have been filtered by skip 3 
exponential moving averages. The bottom plot shows a skip 12 
cubic velocity indictor applied to the market closing price data after 
they have been filtered by skip 12 exponential moving averages. 
Chart produced with Omega Research TradeStation2000i. 
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At 11:10 a.m. (marked by an up arrow), the skip 3 velocities and the 
skip 12 velocities approached zero and pointed up. These implied 
that both the 15-minute traders and the 60-minute traders are bullish 
in the market. That signified a good buy entry point. 

At 2:15 p.m. (marked by a down arrow), the skip 3 velocities 
and the skip 12 velocities approached zero and pointed down. These 
implied that both the 15-minute traders and the 60-minute traders are 
bearish on the market. That signified a good exit point. In both 
cases, we do not need to wait till the end of every 15 minutes or 
every 60 minutes to find out the indicator response in a 15-minute or 
60-minute chart. We would know their response every 5 minutes, 
thus providing an advantage. 

10.2 Forecasts 

Traders would like to see forecasts of market values. You may run 
into a trading newsletter that claims that they can forecast what point 
the Dow Jones Industrial Average will be at a few years from now. 
However, market forecasting is a highly inaccurate exercise. It is 
even far less accurate than weather forecasting. The weather is a 
consequence of multiple forces in nature, which is complicated. The 
market is a consequence of thousands of human minds, which are 
even more complicated. In general, assuming if any event is 
forecastable at all, the farther the future is from the present moment, 
the larger the error would the forecast be. This is simply because 
events happening between the present and the forecasted future will 
affect the future being forecasted. 

As the financial market has a highly unpredictable behavior, 
all traders can really hope for is that the actual market value lies 
within a certain % limit of the forecasted value ((Box, Jenkins and 
Reinsel 1994). We will suggest here a forecasting method that 
makes use of the cubic velocity indicator and the cubic acceleration 
indicator. Even though the method can be used to forecast market 
value a few bars ahead, it is expected that the error will be large. 
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Therefore, we will concentrate on forecasting market value only one 
bar ahead. This is called one-step-ahead forecast. 

Using the cubic velocity indicator, the one-step-ahead 
forecast is given by 

x(l) = H. x (0) - 3x(-l) + 1 x(-2) + 1 x(-3) (10.4) 
o 2 5 

where x(l)is the forecasted closing price one bar ahead 

x(0) is the closing price or the smoothed closing price of the 
current bar 

x(-l) is the closing price or the smoothed closing price one 
bar ago 

x(-2) is the closing price or the smoothed closing price of 
two bars ago 

x(-3) is the closing price or the smoothed closing price of 
three bars ago 

The derivation of Eq (10.4) is given in Appendix 8. 

Figure 10.2 shows a summation of two sine waves and the 
one-step-ahead forecast given by Eq (10.4). The forecasted values 
agree with the given values quite well. 

A slightly modified forecasting method employs both the 
cubic velocity indicator and the cubic acceleration indicator. The 
one-step-ahead forecast is given by 

x(l) = ̂ x ( 0 ) - ^ x ( - l ) + ̂ x ( - 2 ) - f x ( - 3 ) (10.5) 
o 2 2 o 

The derivation of Eq (10.5) is given in Appendix 8. 
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Fig. 10.2. A summation of sine waves (marked as +) of circular 
frequency of ft/16 radian with amplitude 1.0 and 7i/4 radian with 
amplitude 0.25 . The one-step-ahead forecast (marked as .) using the 
cubic velocity indicator is also plotted. 
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Figure 10.3 shows a summation of two sine waves and the 
one-step-ahead forecast given by Eq (10.5). Again, the forecasting 
values agree with the given values quite well. While the agreements 
are better than those in Fig. 10.2 in some locations, the agreements 
are slightly worse than those in Fig. 10.2 in other locations. We 
therefore simply choose Eq (10.4) to be our one-step-ahead forecast 
in market trading. 

In the EasyLanguage code of Omega Research's 
TradeStation2000i, the program for calculating the forecasting 
indicator can be written as follows: -

Input: smooth(l); 
Plot 1 (17/6* AMAFUNC2(c[ 1 ] .smooth)-
3*AMAFUNC2(c[2],smooth)+3/2*AMAFUNC2(c[3], smooth)-
l/3*AMAFUNC2(c[4], smooth),"Plotl"); 

AMAFUNC2 is the adaptive moving average function 
written by Jurik Research. The first input parameter of AMAFUNC2 
signifies the closing price series to be smoothed, while the second 
input parameter indicates the smoothness factor. The smoothness 
factor, called "smooth" in the program is an input parameter. It is 
taken to be 1 by default (shown inside the brackets after "smooth" in 
the first line of the program). 

Figure 10.4 shows a 5-minute chart of the US 30 year 
Treasury Bond Future. An adaptive moving average with smoothness 
1 (amal) was used to average the closing price and is shown in a thin 
line. The one-step-ahead forecasted values are plotted in dashes and 
agreed reasonably with the closing prices they predicted. 

The forecasting model described here is a simple model of 
what may happen. More sophisticated forecasting model, which 
analyses the frequency content of the data, has been described by 
Santana and Mendes (1992). Forecasting is performed using on-line 
adaptive filter predictors. However, market behavior can change 
drastically at a moment's notice. Any forecasting model should, at 
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best, be looked upon as only some kind of guidance. Also, the 
forecasted value should include errors of estimation. 
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Fig. 10.3. A summation of sine waves (marked as +) of circular 
frequency of ft/16 radian with amplitude 1.0 and 7t/4 radian with 
amplitude 0.25 . The one-step-ahead forecast (marked as .) using 
the cubic velocity and acceleration indicators is also plotted. 
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Fig. 10.4. A 5-minute chart of an US 30 year Treasury Bond Future. 
The one-step-ahead forecast using the cubic velocity indicator 
are plotted in dashes. Chart produced with Omega Research 
TradeStation2000i. 
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Trading Systems 

Among traders, there are many who are system traders. A system 
trader follows a set of rules which make up the system. He is 
consistent and does not deviate from the system's rules at any time. 
The rules will dictate when he will enter and when he will exit the 
market. (The meaning of systems here is different from that of 
systems in digital signal processing as described in Appendix 2.) 

There are quite a number of commercial trading systems 
guaranteed to make profits. They come in manuals or CD-ROM, and 
some cost more than a few thousand dollars each. Quite often, it is 
not clear why the system sellers arrive at their rules and what 
justifications do they have, if any. Many system buyers got burned. 
A trader can develop his own system. But he should attempt to 
understand the basic assumptions and hypotheses behind each 
system and try to find out what restrictions it has. 

Indicators provide the tools for building a system. As in 
cooking, we need tools to do the work. However, we still need a 
good recipe to make a good dish. A good trading system is a good 
recipe. Without it, no money can be made. 

A trading system should be first tested on theoretical data 
and then on the real data. How should we make up the theoretical 
data as to simulate the market price data? As the market is changing 
all the time, we can only expect to model the market piecemeal. 
Traders quite often describe the market to be in cycle mode or 
trending mode. A cycle mode is when the price moves up and down. 

130 
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A trending mode is when the price has a sustained large increase or 
decrease. The classification into these two modes is, of course, an 
approximation. But, then again, all models are. We will look for 
theoretical data to represent those modes. In Chapter 4, we 
mentioned that any practical signal could be expressed as a Fourier 
series, which is a sum of a number of sine waves. Thus, the simplest 
appropriate theoretical data would be a single sine wave, which 
simulate the market in a cycle mode. A slightly more complicated 
theoretical data would be the sum of two sine waves, with smaller 
waves superimposed on a larger wave. From the perspective of the 
smaller waves, the large wave is trending up and down. Thus, it can 
be said that part of the data is in trending mode. Modeling the 
market with more than two sine waves is, of course, possible. 
However, as described in Chapter 8, down-sampling can filter off 
some higher frequencies. So, to keep things simple, within a certain 
timeframe, we can take theoretical data to be at most two sine waves. 

After testing the system on theoretical data and make sure 
that it is profitable, the trader should test the system on some past 
financial data and ensure that it is also profitable. In spite of that, 
there is no guarantee that the system will be profitable for future 
financial data. This is simply because real financial data is difficult 
to model and forecast. All a trader can hope for is to work out a 
system that will give him a better edge of winning. 

Some traders attempt to create different trading systems to 
trade on the cycle and trending modes. This, of course, would mean 
that the trader would have to know a priori which mode the market 
will be in. This can be difficult. However, as described in Chapter 
6, the cubic velocity and the cubic acceleration indicators have the 
potential to differentiate which mode the market is in. Other 
methods of indications have also been suggested by Ehlers (1992). 

When the market is in a cycle mode within a certain 
timeframe, the strategy would be simple. All a trader needs to do is 
to identify the market tops and bottoms. This can be done using the 
cubic velocity indicator as described in Chapter 6. A trading system 
can be built around this indicator. 
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When the market is in a trending mode, probably two 
timeframes should be used. The long term timeframe is employed to 
ensure that the market is trending. The short term timeframe is used 
to look for entry points when the market retraces. Thus, during 
uptrends in the long term charts, the trader can look for declines in 
the short term charts to find buying opportunities. During 
downtrends in the long term charts, the trader can look for rallies in 
the short term charts to find shorting opportunities. This can be done 
by using both the cubic velocity and cubic acceleration indicators 
described in Chapter 6. What factor should be used to link the long 
term and short term timeframes? A factor of five is most common. 
Traders use, for example, daily and weekly charts as there are five 
trading days in a week (Elder 1993). However, this all depends on 
what are the periods of the smaller wave and the larger wave. A 
factor of four may provide better details. 

Trading systems can be designed to use multiple timeframes. 
The Triple Screen trading system proposed by Elder (1993) uses 
three. The first screen identifies the market tide. The second screen 
identifies a wave that goes against the tide, and the third screen 
identifies the ripples in the direction of the tide. For example, the 
first screen can be a weekly chart, the second screen would be a daily 
chart and the third screen a 60-minute chart. In the first screen, the 
weekly trend would be identified using a trending indicator, and the 
trader would only trade in this direction. In the second screen, an 
oscillator indicator would be applied to a daily chart. The trader 
would use daily declines during weekly uptrends to look for buying 
opportunities, and daily rallies during weekly downtrends to look for 
shorting possibilities. In the third screen, a trailing buy-stop would 
be applied in the uptrends and a trailing sell-stop would be applied in 
downtrends. Trailing buy-stop would catch upside breakouts, and 
trailing sell-stop would catch downside breakouts. This system 
works best when small waves are superimposed on a large wave. 

Just as no scientific model can always accurately forecast a 
physical phenomenon, no system can precisely predict which 
direction the market is heading. While most models describing the 
behaviors of physical phenomena are deterministic models, models 
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explaining market movements are probabilistic or stochastic models. 
As there are so many unknown factors involved, it is impossible to 
forecast the future value of any market price with a predetermined 
accuracy. A news item can completely throw the market off any 
course of expectation. Thus, all a trader can hope for is to design a 
system to give him or her better odds of winning. He or she may 
find certain indicators that will tell ahead of time what most other 
people will be doing. Indicators are mathematical constructs and 
have limitations. As such, it is very important that traders should 
include money management with their systems. Traders should put 
stop loss orders together with their buy or sell orders, in case the 
market is heading in a direction that they do not expect. The stop 
loss would protect their capital. Professional traders usually limit 
their loss to two percent of their equity in a single trade. If the 
market is heading in their favor, trailing stop loss orders should be 
put to protect any profit. 

A good trading system, together with money management, 
can increase the probability of a trader's profitability. 



Chapter 12 

Financial Markets are Complex 

After describing the market and indicators in all these pages, we are 
left with the impressions that financial market problems are not easy 
to solve. Why is it so, and what exactly is the market? 

The financial market is a complex adaptive system, which is 
studied under the discipline of complexity theory. Concentrated 
effort in research in complexity theory started in the mid-1980s 
(Waldrop 1992). The theory has been employed to model and 
forecast the traffic density of various freeways at rush-hour traffic 
(Casti, 1996), how many people will be going to a certain bar next 
week (Casti 1996), and who is going to win the Super Bowl (Casti 
1997b). Some believe that the theory is the science for the twenty-
first century. The financial market is a typical example of a complex 
system. There, a number of traders and investors act independently 
in deciding whether to trade or stay away. These people are 
intelligent and adaptive. They make decisions and take actions on 
the basis of certain rules and systems. Furthermore, they are ready to 
modify their rules and systems on the basis of new knowledge. 
Market price moves in response to the decision making of all these 
traders. 

As the crowd's decision making is the reason behind market 
movement, we can claim that we understand the market better than 
the appearance of sunspots in the sun. The formation of sunspots is 
still not very clear. If only we can monitor the brain waves of all 
traders, the market will be deterministic, at least for the next instant. 
However, as we cannot tap into the brains of the traders, the market 
has an unpredictable element. We can, however, hope that we can 
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average out the majority of the trader's thinking and do some 
forecasting, knowing that the forecast would contain certain errors. 

Traders can be classified in general as fundamentalists and 
technical analysts. Fundamentalists rely on variables like company 
earnings, assets, new products, etc., to make their decision. This 
approach is more suitable for people trading stocks. Technical 
analysts rely on analyzing past price movements to decide whether to 
buy or sell or to stay out. This approach appeals to traders who trade 
commodities and index futures. As the only variable in this case is 
the past price, it would imply that future price depends only on past 
price, rendering the price series not so random. On the other hand if 
most traders trading a certain market are fundamentalists, future 
price movements would not depend on past price and the price series 
should be random. This, of course, should be the case, as non-
randomness, mathematically speaking, relates to the correlation 
among prices. 

Assuming most traders trading a certain market are technical 
analysts and employ price data only, the problem of forecasting the 
market would be much simplified, as the only input to the problem 
situation would be past prices. 

Many indicators, which employ prices, have been developed 
to indicate which direction the market is heading. Not all indicators 
are relevant. The trader should test them on theoretical waveforms 
to see whether they do describe market actions. Using indicators, a 
trader can design his own set of rules for forecasting purposes. The 
rules would form his trading system, which should be of the nature 
of kinematics as it attempts to portrait how the market moves. He 
will try to satisfy his material needs by organizing himself through 
individual acts of buying and selling. No one is in charge or 
consciously planning the market movements. This is an example of 
a complex system undergoing spontaneous self-organization. 

In a complex system, every person would have his own 
rules. As a matter of fact, if every person uses the same rule, the rule 
will not work. A simple example will be given. Drivers on 
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highways form a complex system. They know the rule that the 
leftmost lane is the fast lane. However, if every driver moves to the 
fast lane, the fast lane would not be the fast lane any more. Thus, the 
rule will be self-defeating. In the financial market, if all traders use 
the same set of rules, and since there must be a time lag among 
traders entering the market, the first of the traders would find the 
rules self-fulfilling, and the last of the traders would find the rules 
self-defeating. 

The market, being complex, is also adaptive. Each trader 
will actively modify his rules to his advantage. He will also drop 
some of the rules and add new ones as the market changes in speed 
and in style. Furthermore, he can create new rules that have never 
before been used. Thus, a trader who uses the same set of rules year 
after year would eventually find them unprofitable. Trading, just 
like any business, needs to be updated as circumstance changes. We 
do not expect a business strategy to work forever, so why would we 
expect a trading system to work for eternity? 

It should also be noted that no rules or indicators are perfect. 
Rules and indicators can only increase one's odd of winning. There 
is always certain intrinsic randomness in people's decision making 
and therefore market behavior. Crowd behavior, because of its 
adaptive and time-dependent nature, cannot be 100% predictable. In 
this sense, the financial market is, forever, a complex problem. 



Appendix 1 

Time Series Analysis 

Time series analysis concerns with the building of stochastic 
(statistical) models for time series and their applications. This 
includes model estimation and forecasting. 

Many empirical time series (e.g. stock prices) do not look as 
if they have fixed average (or mean). However, they exhibit 
homogeneity in the sense that one part of the series looks much like 
any other part. This homogeneous non-stationary behavior can be 
reduced to a stationary model by taking suitable difference of the 
series. The general model is called an autoregressive integrated 
moving average (ARIMA) process. But first, we will describe the 
autoregressive moving average model. 

A l . l Autoregressive Moving Average Model 

The equation of the model for the autoregressive moving average 
(ARMA) process is (Box, Jenkins and Reinsel 1994, p92) 

(p(B)zt0=6(B)at (Al.l) 

where 

zt0 = z t -n (A1.2) 

z, are observations made at equidistant time intervals 
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\i is the mean of the stochastic process and can be estimated by the 
sample mean of N data points 

i N 

z = — Y z . (A1.3) 

B is a (backward) shift operator defined by 

Bz, = zt.i (A 1.4) 

9 (B) is an autoregressive operator 

at is a series of independent "shocks" that are random drawings from 
a fixed probability distribution, usually Normal and has mean zero 
and variance o2 

9(B) is a moving average operator and can be written as an operator 
of order q 

6(B) = l- e,B - e 2 B 2 — eqB
q
 ( A I . 5 ) 

0i is a weight parameter of the moving average operator. 

If the roots of <p(B) = 0 lie outside the unit circle, the ARMA 
process is stationary. If the roots of cp(B) = 0 lie inside or on the unit 
circle, the process is non-stationary. If some of the roots lie on the 
unit circle, the process represents a homogeneous non-stationary 
time series. 

A1.2 Autoregressive Integrated Moving Average Model 

When d of the roots of cp(B) = 0 are unity and the rest of the roots 
lie outside the unit circle, Eq (Al.l) can be expressed as 
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(p(B)zt0 = (|>(BX1-B)dzt0 = <t>(B)Vdz,0 = e(B)at (A1.6) 

Here 9(B) is a non-stationary autoregressive operator while <|)(B) is a 
stationary autoregressive operator and can be written as an operator 
of order p 

<|>(B) = 1- (|),B - ())2B
2— - ())pBp (A1.7) 

where fy is the weight parameter of the autoregressive operator 

V is the background difference operator and can be written in terms 
of B, since 

Vzt = zt-zt.1 = (l-B)zt (A1.8) 

As Vdzt0 = Vdz, for d > 1, the model can be written as 

4>(B)Vdz, = 9(B)at (A 1.9) 

This process is called an autoregressive integrated moving average 
(ARIMA) process, or ARIMA (p d q) when the orders of each 
operator need to be specified. 

Al.2.1 IBM Stock Price 

One hundred successive observations of the daily IBM stock prices 
for a period beginning in May 1961 was fitted to the ARIMA model, 
resulting in a model of order ( 0 1 1). The model is written as (Box, 
Jenkin and Reinsel 1994, p98) 

Vzt = (l+0.1B)at (ALIO) 

which can be approximated as (Box, Jenkin and Reinsel pl57, 328) 

Vz, = a, (Al. l l) 
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which is an example of the random walk model given by 

t-i 
zt = z , _ i + X a t - j (A1.12) 

j=0 

Thus the best forecast of future values of the stock is very nearly 
today's price. 

Al.2.2 Dow-Jones Utilities Index, Aug 28 - Dec 18, 1972 

The fitted model for the Dow-Jones Utilities Index (Brockwell and 
Davis 1996, p 141) is written as 

(1 - 0.4219B)(Vz,- 0.1336) = a, (A1.13) 

Taking the altered time series to be (Vzt - 0.1336) where 0.1336 is 
the mean of the slope Vzt, this model is an ARIMA ( 1 0 0) process. 

The data can also be fitted to an ARIMA ( 1 1 0 ) process 
(Brockwell and Davis 1996, pl61) 

(l-0.4471B)Vzt=at (A1.14) 

All these models imply that the Dow-Jones utilities Index is not 
random. 

A1.3 Model in Terms of Previous Data 

The ARIMA model, Eq (A 1.9), can be re-written as a model using 
previous z's and the current shock at (Box, Jenkins and Reinsel 1994, 
pl08) 

oo 

zt = 2 * j Z t - j + a t (A1.15) 
j=i 
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where the first term on the right hand side of the equation is a 
weighted average of previous values (7ij is the weight parameter). 
Even though theoretically, z, depends on the remote past; in practice, 
it is dependent only to a few recent past values z,.j of the time series. 
If n values are used, the model will be an AR1MA (n 0 0) process. 
The daily closing price of the S & P index over the course of the year 
1992 has been modeled with an ARIMA (8 0 0) process (Hatamian 
1995). This example has been described in more detail in Chapter 3. 



Appendix 2 

Signals and Systems 

Digital signal processing is the study of the representation of signals 
in digital form, and of the processing of these signals. We will 
describe the concepts of a discrete-time signal and a discrete-time 
system. 

A2.1 Discrete-time Signals 

A discrete-time signal is an indexed sequence of numbers. Thus, a 
discrete-time signal, x(n) is a function of an integer-valued variable, 
n. In this book, the independent variable, n, represents time and x(n) 
is a function of time. The sequence could be finite or infinite. It can 
also be doubly infinite, i. e., the index n goes from -°° to +°°. The 
sequence values x(n) can be considered as the elements of a vector. 

x = (— x(N-l), x(N), x(N+l), — x(-l), x(0), x(l), x(2), —) (A2.1) 

Stock market prices is an example of a discrete-time signal. 
For real time applications, where future data is not available, the 
vector can be written as 

x = ( — x(N-l), x(N), x(N+l), — x(-l), x(0)) (A2.2) 
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A2.2 Discrete-time Systems 

A discrete-time system, T, is an operator or a mapping that 
transforms the input signal, x(n), into the output signal, y(n), by 
means of a fixed set of operations 

y(n) = T[x(n)] (A2.3) 

A system is linear if 

T[a1x,(n)+a2x2(n)] = a,T[x,(n)]+a2T[x2(n)] (A2.4) 

for any two inputs Xi(n) and x2(n) and for any constants ai and a2 

(Hayes 1999). 

A system is shift-invariant if, for any delay n0, 

y(n-n0) = T[x(n-n0)] (A2.5) 

A system that is both linear and shift-invariant is described 
as a linear shift-invariant (LSI) system. 

The output, y(n), is related to the input, x(n), of a linear 
shift-invariant system by the convolution sum (Hayes 1999, Strang 
and Nguyen 1997). 

y(n) 

= h(n)*x(n) 

= — h(-l)x(n +1) + h(0)x(n) + h(l)x(n-l) + — 
oo 

= £ h ( k ) x ( n - k ) , A 1 , , 
ic t l (A2.6) 

which provides a complete characterization of an LSI system where 
h(k) is the unit sample (or impulse) response (Hayes 1999). 
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The convolution operator satisfies the associative property, 
which is 

[h2(n)*hi(n)].x(n) = h2(n).[hi(n).x(n)] (A2.7) 

This property is useful when a second indicator is applied on 
the data which has been operated on by an indicator. 

For real-time applications, causality is an important system 
property. A system is described as causal if the response of the 
system at time n0 depends only on the input up to the time n = n0. An 
LSI system is causal if h(n) is equal to zero for n < 0. For a causal 
system, the convolution sum can be written as 

y(n) 

= h(n)*x(n) 

= h(0)x(n) + h(l)x(n-l) + h(2)x(n - 2) + — 

= S h < k W n - k ) (A2.8) 

Most trading indicators are causal systems. Every causal linear 
operator acting on the signal vector x can be represented by a matrix 
H (Strang and Nguyen 1997). 

y = Hx (A2.9) 

or 
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y(-D 
y(0) 
yd) 

h(0) . 

h(l) h(0) . 

h(2) h(l) h(0) 

x(-l) 

x(0) 

x(l) 

(A2.10) 

A2.3 Frequency Response of Linear Shift-invariant 
Systems 

Eigenfunction of a system, T, is a mathematical function, or 
sequence which, when inputed to the system, outputs with only a 
change in complex amplitude. If the input is x(n), the output y(n) is 
written as 

y(n) = T[x(n)] = ^x(n) (A2.ll) 

where X is the eigenvalue and x(n) is the eigenfunction. Signals of 
the form x(n) = exp(inco) are eigenfunctions of LSI systems, (GO is 
the circular frequency and is equal to 2n times frequency. It has a 
unit of radians, i is equal to V-l .) This can be shown from the 
convolution sum in Eq (A2.6): 

y(n) 

= ]Th(k)x(n-k) 

= V h(k) exp[ico(n - k)] 

= H[exp(ico)] exp(inoo) (A2.12) 

http://A2.ll
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Thus, an LSI system has a pure frequency response to a pure 
frequency input (Strang and Nguyen 1997, Hayes 1999). 

H[exp(ico)], which can be written as H(co), is the eigenvalue 
and is given by 

H(co)= ^h(k)exp(-ikco) (A2.13) 
k=-~ 

H(co) is the frequency response of an LSI system. It can also 
be considered as the Discrete Time Fourier Transform (DTFT) of the 
unit sample response h(k) (Haynes 1999, Oppenheim et al 1999). 
H(co) is always periodic (Strang and Nguyen 1997). 

H(e>f27t) = H(to) (A2.14) 

as exp(-ik27t) = 1. 

The sequence h(k) can be represented by a Fourier integral 
called the Inverse Discrete Time Fourier Transform (Oppenheim et 
al 1999). 

h(k) = — f H( ro) exp(icok) do) (A2.15) 
271 J - t 

H(ce>) is usually complex and has a real and imaginary part: 

H(co) = HR(CO) +iHt(co) (A2.16) 

Writing it in terms of its magnitude and phase 
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H(co) = |H(co)|exp[i<|)(a))] (A2.17) 

where 

|H(co)|= V[HR
2(co) +H,2((0)] (A2.18) 

and 

(Kco) = tarT' H l ( C D ) (A2.19) 
HR(co) 

Plots of magnitude and phase of H(co) will be presented later. 
If H(co) is real, $(00) = 0, and there is no phase shift. An example of 
real H(co) is when the unit sample response is symmetric, i.e., h(-k) = 
h(k). H((o) will then be given by 

H(co) = h(0) + 2]Th(k)cos(kco) (A2.20) 
k=l 

The frequency response of a causal LSI system is given by 

H(co) = ̂ h(k)exp(-ikco) (A2.21) 
k=0 
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which is usually complex.. An example of a complex H(co), the 
frequency response of the sine wavelet filter for a causal system, will 
be described in Appendix 7. 

The frequency response H(co) can show how a complex 
exponential is transformed when it is filtered by the system. It is 
especially useful if an input signal, x(n), can be decomposed into a 
sum of complex exponentials, 

N 

x ( n ) = Y a k exp(incok) (A2.22) 
k=l 

which is also known as a discrete time Fourier series expressed in 
exponential form (Brigham 1974). The response of an LSI system to 
this input will be given by 

N 

y(n) = ̂ a k H[exp(icok )]exp(incok) (A2.23) 
k=l 

As we will be dealing with sine waves as input in our 
financial model, we will take a look and see what is the response to 
this input will be. Let x0(n) = sin(nco) be the input to an LSI system 
with a real-valued unit sample response h(n). x0(n) can be written as 

x0(n)=—exp(inco) exp(-inco) (A2.24) 
2i 2i 

The response of the system can be written as 
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y o (n)=—H[exp(ico)] exp(into) — r H[exp(-ico)] exp(-inco) (A2.25) 

As h(n) is real-valued, H[exp(ico)] is conjugate symmetric: 

H[exp(-ico)] = H*[exp(ico)] (A2.26) 

Therefore, 

y0(n) 
1 l * 

=—H[exp(ico)] exp(inco) H [exp(ico)] exp(-inco) 
2i 2i 

= Im{H[exp(ico)]exp(inco)} 
= |H[exp(ito)]| sin[noo+<j)(co)] (A2.27) 

Thus a sine wave of frequency co and of unit amplitude is 
transformed after filtering into a sine wave with the same frequency 
but with a phase shift and of amplitude equal to |H[exp(ico)]|. 

Technical analysts employ indicators to monitor the market. 
Indicators can provide insight into the balance of power between 
buying and selling. Traders should know what they measure and 
how they work. The amplitudes and phases of these indicators need 
to be understood. 



Appendix 3 

Low Pass Filters 

A filter can be considered as a function of frequency. Signals of 
certain frequencies are allowed to pass through while others are 
blocked off. The output from a filter can be generated by convolving 
the input signal x(n) with a filter function or unit sample response 
h(k). The filter function is thus a linear shift-invariant (LSI) system, 
which is characterized by h(k). It can be divided into two types, 
those that have a finite-duration impulse response (FIR) and those 
that have an infinite-duration impulse response (IIR). An FIR 
system has an impulse response that is zero outside a certain finite 
time interval. 

The convolution formula for a causal FIR system can be 
written as 

y(n) = £ h ( k ) x ( n - k ) (A3.1) 
k=0 

while the formula for a causal IIR system can be written as 

y(n) = J T h ( k ) x ( n - k ) (A3.2) 
k=0 
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The most common types of filters are low-pass filters and 
high-pass filters. We will discuss low-pass filters in this Appendix 
and high-pass filters in the next. 

Low-pass filters eliminate high frequency signals or noise. 
An example is the Simple Moving Average (SMA), which is quite 
often used by traders (Elders 1993). 

A3.1 Simple Moving Average (SMA) 

A simple N-day average is created by adding the prices over N days 
and dividing by N. It becomes a simple moving average when the 
next day's weighted price is added to the sum and the weighted first 
day's price is dropped off. It is thus given by Eq (A3.1) with 

h(k) = 1/N (A3.3) 

Day, of course, can be replaced by any time unit. For example, a 
time unit can be a 15-minute time interval. 

A3.1.1 Two point Moving Average 

For a two point moving average, N = 2. From Eq (A3.1) and (A3.3) 
(Strang and Nguyen 1997, Hamming 1989) 

y(n) = (l/2)x(n) + (l/2)x(n-l) (A3.4) 

The frequency response function H(co) is, in the general case 
of N points, given by 

(seeEq(A2.13)) 

N-l 

H(co) = 2 r h(k)exp(-ikco) (A3.5) 
k=0 
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For the two point moving average, 

H(co)=—+—exp(-ico) = (cos—) exp(-ico/ 2) (A3.6) 

The magnitude and phase of H(co) are 

| H(co) | = cos(co/2) (A3.7) 

())((0) = -ca/2 (A3.8) 

The two point moving average has a phase delay which is linear with 
respect to CO. Graphs of amplitude and phase of the two point 
moving average are plotted in Fig. A3.1(a) and Fig. A3.1(b). A sine 
wave with 7t/4 radians/sample as well as its two point moving 
average are plotted in Fig. A3.2. The reduced amplitude and phase 
lag of the moving average are obvious. It should be noted that in 
trading, the phase of a filter (or indicator) is more important than its 
amplitude. A phase delay implies a time delay. A delay in time of 
executing an order can be costly. 

A3.1.2 Npoint Moving Average 

The output response of an N point moving average is given by 

^ k=0 
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Two point moving average 

1 1.5 2 2.5 
Circular Frequency (radians) 

Fig. A3.1(a). Amplitude response of a two point moving average. 
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0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

Fig. A3.1(b). Phase response of a two point moving average. 
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Sine wave with pi/4 radians/sample (+), and smoothed by two point moving average (x) 
1 

10 15 
Number of points 

Fig. A3.2. A sine wave of circular frequency of n/4 radian (marked 
as +), and its output response after smoothed by a two point moving 
average (marked as x). 
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Using Eq (A3.5), the frequency response function H(co) is given by 

For N odd, 

H(co)=—exp . N - l 
- 1 CO 

, ^ „ N - l l + 2cosco+ + 2cos to 

=—exp 
N 

. N - l 
1 CO 

(N-l)/2 

^2cos^co 
e=o 

(A3.10) 

For N even 

H(co)=—exp 

N 
exp 

. N - l 
1 CO 

. N - l 
• 1 CO 

2 
"IN/2 

co „ N - l 
2cos—h + 2cos co 

2 2 

> 2cos co (A3.11) 

Thus, for all N, the phase of H(co) is given by 

<|)(co)= co (A3.12) 

which is linear with respect to co. 

The larger the number of points, N, the smoother the output 
response is. However, it will also yield a larger phase lag, according 
to Eq (A3.12). The amplitude and phase of the six point moving 
average filter are plotted in Figs. A3.3(a) and (b). In Fig. A3.3(b), 
the phase should have been linear. The jump in phase is caused by 
the build-in function arctan used to calculated <j>(co) being defined 
only from -n to n in the computer program. 
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Six point moving average 

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig. A3.3(a). Amplitude response of a six point moving average. 
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0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig. A3.3(b). Phase response of a six point moving average. 
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A3.2 Exponential Moving Average (EMA) 

An exponential moving average(EMA) is a better tool than a simple 
moving average. It gives greater weight to the latest data and thus 
responds to changes faster. It does not drop old data suddenly the 
way an SMA does. Old data fades away. 

The equation for the output response of an EMA is given by 

y(n) = ax(n) + (l-oc)y(n-l) (A3.13) 

where a = 2/(M+l) (A3.14) 

M is a positive integer chosen by the trader and is often 
called the length of the EMA. 

Equation (A3.13) makes use of an output response that has 
already been processed. Filters that employ previously processed 
values are sometimes called recursive filter. To calculate the 
frequency response of EMA, the z-transform of Eq (A3.13) is taken 
(Broesch 1997, Proakis and Manolakis 1996). 

Y(z) = aX(z) + (l-a)z"'Y(z) (A3.15) 

where z = r exp(ico) is a complex number in the complex plane, r 
being the magnitude of z. Y(z) is the transform of the output and 
X(z) is the transform of the input. 

Defining the transfer function as the output of the filter over 
the input of the filter 

H(z) = Y(z)/X(z) (A3.16) 

we get, for EMA 
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H(z)= r (A3.17) 
- i l - ( l - a ) z 

Restricting z in the complex plane to exp(ico) on the unit circle(i.e. r 
= 1), the frequency response function H(co) is given by 

H(co)= (A3.18) 
1 - (1 - a) exp(-ico) 

The magnitude of H(co) is given by (Lyons 1997) 

|H(co)|= ^ (A3.19) 
1 ' [ l -2( l -cx)cosco+( l -a) 2 ] 1 / 2 

The phase is given by 

- (1 - a) sin co 
(|>(co) = tan" 

l-(l-cc)cosco 
(A3.20) 

The amplitude and phase of H(co) of EMA are plotted in Figs. 
A3.4(a) and (b) for M = 3 and M = 6. It should be noted that the 
phase lag is, in general, much smaller than that of the N point 
moving average, which makes it more popular among traders. 

Rather than using Eq(A3.13) to calculate EMA, there is a 
different method which makes its calculation more convenient 
sometimes. Iterating the previously processed y value in Eq(A3.13), 
we can write y(n) as 

y ( n ) = J a ( l - a ) l x ( n - k ) (A3.21) 
k=0 
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Exponential moving average, with M=3 (+) and M=6 (x) 

1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig. A3.4(a). Amplitude response of an exponential moving average 
with M = 3 (marked as +) and M = 6 (marked as x). 
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Exponential moving average, with M=3 (+) and M=6 (x) 

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig. A3.4(b). Phase response of an exponential moving average 
with M = 3 (marked as +) and M = 6 (marked as x). 



Low Pass Filters 163 

This is a causal IIR with 

h(k) = oc(l-a)k (A3.22) 

With a = 2/(M+l), h(k) converges to zero rather quickly as k 
increases. If M is taken to be 3, a will be equal to 0.5. Summing k 
from 0 to 13 will yield a rather accurate estimate of the EM A. 



Appendix 4 

High Pass Filters 

High pass filter removes low frequency components of a signal and 
allows high frequency components to pass. It is thus very useful for 
tracking market turns, which are actually high frequency 
components. 

Before we talk about high pass filter, we would first discuss 
derivative, which is a significant concept in Calculus, and can also be 
considered as a high pass filter. 

A4.1 Derivative 

Derivative can be considered as the slope of a function or signal.. 
Let the discrete input signal be 

x(n) = sin(con) (A4.1) 

where n is an integer. 

The derivative of the signal is 

— x(n) = cocos(ton) (A4.2) 
dn 

In taking derivative, n should have been a continuous variable. Here, 
we try to get around the problem by considering it first to be a 

164 
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continuous variable and then returning it back to be an integer after 
taking the derivative. 

Figure A4.1 plots x(n) and (d/dn)x(n) with a> = n/4. The 
derivative leads the input signal by nJ2 radians or 90 degrees. It 
should be noted that the derivative is zero where the input data has 
its peaks and valleys. Furthermore, peak occurs when the derivative 
goes from positive to negative, and valley occurs when the derivative 
goes from negative to positive. In this book, as n represents time, we 
will call the derivative or first derivative the velocity operator or 
indicator. 

Taking the derivative of Eq (A4.2) or the second derivative 
of Eq(A4.1), we get 

—-x(n ) = -co2sin(con) (A4.3) 
dn 

which is plotted in Fig. A4.2, together with x(n) and (d/dn)x(n). The 
second derivative represents the concavity of a signal. If the signal is 
concave down, then the second derivative is negative. If the signal is 
concave up, then the second derivative is positive. So, at the peak of 
the signal, the derivative is zero and the second derivative is 
negative. At the valley of the signal, the derivative is zero and the 
second derivative is positive. Thus, the second derivative provides a 
second method to differentiate whether the signal is a peak or a 
valley. In this book, we will call the second derivative the 
acceleration operator or indicator. 

But how do we take the derivative of a real signal ? In many 
analog and digital systems, Finite Impulse Response (FIR) 
differentiators can be designed (Proakis and Manolakis 1996). Let 
us take a look at a more general signal 
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0 2 4 6 8 10 12 14 16 18 20 
Number of points 

Fig. A4.1. A sine wave of circular frequency of 7i/4 radian (marked 
as +), and its (first) derivative (marked as x). 
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Sine wave with pi/4 radians/sample (+), its derivative (x) and its second derivative (o) 

0 2 4 6 8 10 12 14 16 18 20 
Number of points 

Fig. A4.2. A sine wave of circular frequency of %IA radian (marked 
as +), its (first) derivative (marked as x) and its second derivative 
(marked as 0). 
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x(n) = exp(icon) = cos(con) + isin(con) (A4.4) 

Taking derivative of Eq (A4.4) yields 

— x(n) = icoexp(icon) (A4.5) 
dn 

which can be considered as the output y(n). Thus ico is the 
eigenvalue of d/dn. i.e. 

H(co) = ico -n < co < 7i (A4.6) 

This is the frequency response of an ideal digital differentiator. Its 
response is linearly proportional to frequency and has a phase lead of 
nil with respect to the input signal when co > 0 and a phase lag of 
7i/2 when co < 0. This can be considered as a high pass filter. Its 
Inverse Discrete Time Fourier Transform, which is the same as the 
unit sample response, is 

. „ s 1 f™ T T , •> imk , COS7lk 

h(k) = — H(co)eKOkdco = - ° ° < k < ° ° , k * 0 
271 J -K k 

(A4.7) 

This example is mentioned to show how an ideal differentiator 
should look like. However, this is a non-causal filter and cannot be 
applied in trading, where future data is not available. Causal filters 
will be considered below. 
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A4.2 Moving Difference 

This high pass (causal) filter is a twin or mirror filter of the two point 
moving average low pass filter discussed in Appendix 3. Its output 
is defined as (Strang and Nguyen 1997) 

y(n) = (l/2)x(n) - (l/2)x(n-l) (A4.8) 

(This definition of moving difference is essentially the same as 
momentum defined by technical analysts (see Eq 4.5), except that it 
has a normalization constant Vi.) 

The frequency response function H(co), which is the Discrete 
Time Fourier Transform (DTFT) of h, is given by 

H(co) = (1/2) - (l/2)exp(-i(D) = sin(co/2) iexp(-ico/2) 

Its magnitude is 

I H(co) | = I sin(co/2) | 

and its phase is 

(A4.9) 

(A4.10) 

<t>(co) = 

K CO 
~2~1 
K CO 

2"~T 

0<C0<7t 

-71<CO<0 
(A4.ll) 

I H(co) | and (|)(co) are plotted in Figs. A4.3(a) and (b). This two point 
moving difference has a phase lag of co/2 from the ideal case of n/2 
phase lead for co > 0 or n/2 phase lag for co < 0 . This would be more 
or less equivalent to a lag of half a time unit. For example, if a trader 
is trading in a 30-minute time chart, he or she would not realize a 

http://A4.ll
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Fig. A4.3(a). Amplitude response of a two point moving difference. 
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Two point moving difference 
-i 1 r-

1.5 2 2.5 
Circular Frequency (radians) 

3 3.5 

Fig. A4.3(b). Phase response of a two point moving difference. 
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turning point until about 15 minutes later, causing excessive delay in 
buy-sell decision, which would translate to lost profits. Figure A4.4 
plots a sine wave with n/4 radian per sample as well as the signal 
after being filtered by a two point moving difference. Note that there 
is a 7t/8 radian phase lag from the ideal case of 7i/2 phase lead. 

In order to reduce the phase lag, we will introduce here a 
new moving difference which has less phase lag. It will be called a 
parabolic velocity operator or indicator. 

A4.3 Parabolic Velocity Indicator 

A parabola can be written as 

x(t) = dt2 + et + f (A4.12) 

where x(t) is the price at time t; d, e and f are constant coefficients. 

For discrete-time signals, it will be written as 

x(n) = dn2 + en + f (A4.13) 

We are interested to find the derivative of the parabola at n = 
0, which is the most recent data point. We write 

x<> = x(0) = f (A4.14a) 

x.i = x(-l) = d - e + f (A4.14b) 

x.2 = x(-2) = 4d - 2e + f (A4.14c) 

Solving Eq (A4.14a - c) for d, e and f, we get 

d = (l/2)x0-x.1 + (l/2)x.2 (A4.15a) 

e = (3/2)x0- 2x., + (l/2)x.2 (A4.15b) 
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Sine wave with pi/4 radians/sample (+), and convoluted with two point moving difference (x) 

0 5 10 15 20 25 
Number of points 

Fig. A4.4. A sine wave of circular frequency of TC/4 radian (marked 
as +), and convoluted (or filtered) with a two point moving 
difference (marked as x). 
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f=Xo (A4.15c) 

Taking the derivative of Eq (A4.13), we arrive at 

dx 
— = 2dn + e (A4.16) 
dn 

At n = 0, 

^ | „ = o = e = - x 0 - 2 x _ 1 + - x _ 2 (A4.17) 
dn 2 2 

We will thus define the unit sample response h of the parabolic 
velocity indicator as 

h = (h(0), h(l), h(2)) = (3/2, -2, 1/2) (A4.18) 

Therefore, the output response is given by the convolution sum 

y(n) = h(0)x(n) + h(l)x(n-l) +h(2)x(n-2) 

= (3/2)x(n) - 2x(n-1) +(l/2)x(n-2) (A4.19) 

The frequency response or DTFT of h is given by 

H(co) = (3/2) - 2exp(-ico) + (l/2)exp(-2ico) 

= (3/2) - 2cos(co) + (l/2)cos(2co) +i[2sin(co) - (l/2)sin(2co)] 

(A4.20) 

The magnitude and phase of H(co) are 

|H«o)| 



High Pass Filters 175 

= {[(3/2) - 2cos(co) + (l/2)cos(2(0)]2 + [2sin(co) - (l/2)sin(2co)]2}1/2 

(A4.21) 

<j)(co) = tan - l 2sinco-(l/2)sin2co 

3/2-2cosco+(l/2)cos2co^ 
(A4.22) 

I H(co) I and (J)(co) are plotted in Figs. A4.5(a) and (b). From the plot 
of (|>(co), we can see that, comparing to the phase of the two point 
moving difference in Fig. A4.3(b), it has a much less phase lag from 
the ideal case of TI/2 phase lead. 

When the output response of the parabolic velocity indicator 
is approximately zero, another indicator, the parabolic acceleration 
indicator can help to determine whether the price is at its peak or at 
its valley. We will introduce this new indicator in the next section. 

A4.4 Parabolic Acceleration Indicator 

Taking the second derivative of Eq(A4.13) or the derivative of Eq 
(A4.16), we get 

d2x „ , 
— - = 2d = x 0 -2x_ , +x_2 

dn 

(A4.23) 

j 2 . . / . _ 2 As d x/dn is independent of n, acceleration is the same for n = 0, - 1 , 
-2 . 
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Fig. A4.5(a). Amplitude response of a parabolic velocity indicator. 
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Parabolic velocity indicator 

1 1.5 2 2.5 
Circular Frequency (radians) 

Fig. A4.5(b). Phase response of a parabolic velocity indicator. 
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We will define the unit sample response h of the parabolic 
acceleration indicator as 

h = (h(0), h(l), h(2)) = (1, -2 , 1) (A4.24) 

The output response is given by the convolution sum 

y(n) = x(n) - 2x(n-1) + x(n-2) (A4.25) 

The frequency response or DTFT of h is given by 

H(co) = 1 - 2exp(-ico) + exp(-2ico) (A4.26) 

The amplitude and phase of H(co) are plotted in Figs. A4.6(a) 
and (b). 

While a parabola can fit piecewise a sine wave of single 
frequency quite well, it does not fit a summation of sine waves very 
well. A cubic function can do a better job. We will therefore 
introduce the cubic velocity and acceleration indicators. 

A4.5 Cubic Velocity Indicator 

A cubic function can be written as 

x(t) = ct3 + dt2 + et + f (A4.27) 

where c, d, e and f are constant coefficients. When c = 0, Eq (A4.27) 
reduces to that of a parabola. For discrete time signals, Eq (A4.27) 
will be written as 

x(n) = en3 + dn2 + en + f (A4.28) 

We are interested to find the derivative of the cubic function at n = 0, 
which is the most recent data point. 
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Parabolic acceleration indicator 

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig. A4.6(a). Amplitude response of a parabolic acceleration 
indicator. 
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Parabolic acceleration indicator 
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Fig. A4.6(b). Phase response of a parabolic acceleration indicator. 
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We write 

x0 = x(0) = f (A4.29a) 

x . ,=x(- l ) = - c + d - e + f (A4.29b) 

x.2 = x(-2) = -8c + 4 d - 2 e + f (A4.29c) 

x.3 = x(-3) = -27c + 9d - 3e + f (A4.29d) 

Solving Eq (A4.29a-d) for c, d, e and f, we get 

c = (x0 - 3x.i + 3x.2 - x.3)/6 (A4.30a) 

d = (2xo- 5x., + 4x.2 - x.3)/2 (A4.30b) 

e = (1 lxo- 18x.i + 9x.2- 2x.3)/6 (A4.30c) 

f = x0 (A4.30d) 

Taking the derivative of Eq (A4.28), we arrive at 

— = 3cn2+2dn + e (A4.31) 
dn 

At n = 0, 

dx 
— | n = 0 = e = ( l lx 0 -18x_ 1 +9x_ 2 -2x 3 ) / 6 (A4.32) 
dn 

We will define the unit sample response h of the cubic velocity 
indicator as 
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h = (h(0), h(l), h(2), h(3)) = (11/6, - 3 , 3/2, -1/3) (A4.33) 

Thus, the output response is given by the convolution sum 

y(n) = (1 l/6)x(n) - 3x(n-l) + (3/2)x(n-2) - (l/3)x(n-3) (A4.34) 

The frequency response or DTFT of h is given by 

H(co) = (11/6) - 3exp(-ico) + (3/2)exp(-2ico) - (l/3)exp(-3ico) 

(A4.35) 

The amplitude and phase of H(co) are plotted in Figs. A4.7(a) and 
(b). Comparing to the phase of the parabolic velocity indicator in 
Fig. A4.5(b), the phase of the cubic velocity indicator in Fig. A4.7(b) 
has even less phase lag from the ideal case of n/2 phase lead. 

A4.6 Cubic Acceleration Indicator 

Taking the second derivative of Eq (A4.28) or the derivative of 
Eq(A4.31), we get 

d2x 
^ - 4 = 6cn + 2d (A4.36) 
dn 

At n = 0, 

d2x 
—j\n=0 = 2d =2x0 -5x_, +4x_2 - x_3 (A4.37) 
dn 

We will define the unit sample response h of the cubic acceleration 
indicator as 

h = (h(0), h(l), h(2), h(3)) = (2, -5 ,4 , -1) (A4.38) 
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Cubic velocity indicator 
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Fig. A4.7(a). Amplitude response of a cubic velocity indicator. 
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Cubic velocity indicator 
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Fig. A4.7(b). Phase response of a cubic velocity indicator. 
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The output response is given by the convolution sum 

y(n) = 2x(n) - 5x(n-l) + 4x(n-2) - x(n-3) (A4.39) 

The frequency response or DTFT of h is given by 

H(co) = 2 - 5exp(-ico) + 4exp(-2ico) - exp(-3ico) (A4.40) 

The amplitude and phase of H(co) are plotted in Figs. A4.8(a) and 
(b). Comparing to the phase of the parabolic acceleration indicator 
in Fig. A4.6(b), the phase of the cubic acceleration indicator in 
Fig. A4.8(b) has much less phase lag from the ideal case of 7t phase 
lead. 

A4.7 Properties of a Cubic Function 

We will investigate the behavior of a continuous cubic function, 
which is given by Eq (A4.27). We will then take a look and see 
whether a cubic function can fit piecewise a signal which consists of 
the summation of two sine waves. Taking first and second 
derivatives of Eq (A4.27), we get 

— = 3ct 2+2dt+e (A4.41) 
dt 

- 4 - = 6ct + 2d (A4.42) 
dt2 

Equating Eq (A4.42) to zero, we get 
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Fig. A4.8(a). Amplitude response of a cubic acceleration indicator. 
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Cubic acceleration indicator 
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Fig. A4.8(b). Phase response of a cubic acceleration indicator. 
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t m = ~ (A4.43) 
3c 

which is the point where the curvature of the cubic function changes 
sign. Substituting tm into Eq (A4.27) yields 

x m = - | j j + e t n + f (A4.44) 

It can be shown that the cubic function is symmetric with respect to 
(tm, xm) as the symmetric point with respect to (tm, xm) of every point 
of the cubic function is also a point of the cubic function (Ayres 
1958). Equating Eq (A4.41) to zero will yield the two points t. and t+ 
where the slopes are zero; t. < tm < t+ • 

-d±(d'-W" (A445) 
3c 

Substituting Eq (A4.45) into Eq (A4.27) yields 

_2 (d 2 -3ce ) 3 / 2 ,KAA^ 
x + = x m + — y1— (A4.46) 

27c2 
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It can be shown that, for Eqs (A4.45) and (A4.46), when c > 0, the 
positive square root of (d2 - 3ce) should be taken, while when c < 0, 
the negative square root of (d2-3ce) should be taken. 

Can a cubic function simulate summation of sine waves 
piecemeal and pinpoint its turning points? A plot of the summation 
of two sine waves, one with amplitude of 1.0 and circular frequency 
of 7i/4 radian and the other with amplitude of 2.0 and circular 
frequency of rc/16 radian is given in Fig. A4.9. Four of the points 
(marked as o) were provided for fitting to a cubic function. The two 
turning points were calculated and plotted (marked as x). It can be 
seen that the calculated points correspond to the actual turning points 
quite well. This provides some evidence that for a summation of two 
sine waves, a fitted cubic function can forecast the turning points 
quite well if the four points used for fitting are not too far from the 
turning points. This property will be employed when we introduce 
the cubic vertex indicator in the next appendix. 
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Fig. A4.9. Summation of two sine waves (marked as +). Four of the 
points (marked as 0) were used to fit a cubic function, which was 
then used to calculate two turning points (marked as x). 
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Appendix 5 

Vertices 

The parabolic and cubic vertex indicators will be derived here. 

A5.1 Parabolic Vertex Indicator 

A parabola can be written as 

x(t) = dt2 + et + f (A5.1) 

It can also be written as 

(t - tv)
2 = 2p(x - xv) (A5.2) 

where (tv, xv) is the vertex (or turning point) of the parabola and p/2 
is the distance from the focus of the parabola to the vertex (Protter 
andMorrey 1963). 

Eq (A5.1) can be rewritten in the form of Eq (A5.2), yielding 

tv = - — (A5.3) 
2d 

An alternative method to find tv is to equate the derivative of 
x(t) in Eq (A5.1), i.e., dx/dt to zero. At that point, t = tv and Eq 

191 
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(A5.3) can be deduced. If d = 0, Eq (A5.1) reduces to the equation 
of a straight line. In that case, no turning point exists. If the present 
time (of the market) is taken to be t = 0, tv shows how far in time the 
market is away from the turning point. When tv = 0, the market is 
exactly at the turning point. 

Substituting Eq (A4.15) into Eq (A5.3) yields the number of 
bars the turning point is from the present time, which is taken to be t 
= 0 or n = 0. 

tv(0)=-

| x ( 0 ) - 2 x ( - l ) + ^x( -2 ) 

x(0) -2x( - l ) + x(-2) 
(A5.4) 

The number of bars the turning point is from the n' bar is 

tv(n) = 

3 1 
- x(n) - 2x(n -1) + - x(n - 2) 

x ( n ) - 2 x ( n - l ) + x ( n - 2 ) 
(A5.5) 

where x is the closing price or the smoothed closing price. 

A5.2 Cubic Vertex Indicator 

A cubic function can be written as 
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x(t) = ct3 + dt2 + et + f (A5.6) 

Equating the derivative of x(t) to zero yields the two turning points 
of the cubic function 

t . . -d±Vd 2 -3ce 
t±(n) = 

3c 

where, from Eq (A4.30), 

c = [x(n)-3x(n-l)+3x(n-2)-x(n-3]/6 * 0 

d = [2x(n)-5x(n-l)+4x(n-2)-x(n-3)]/2 (A5.9) 

e = [llx(n)-18x(n-l)+9x(n-2)-2x(n-3)]/6 (A5.10) 

and x is the closing or the smoothed closing price. 

It should be noted that the d in Eq(A5.9) and e in Eq(A5.10) 
are different from the d and e in Eq(A5.3) as the former are derived 
by fitting market price data to a cubic function using four points, 
while the latter are derived by fitting market price data to a parabola 
using three points. 

When c = 0, the cubic function reduces to that of a parabola, 
which has only one turning point. The timing of the turning point 
will be given by -e/(2d) where d and e are given by Eq(A5.9) and Eq 
(A5.10) respectively. 

(A5.7) 

(A5.8) 



Appendix 6 

Downsampling and Upsampling 

Traders work in different timeframes, e.g. 15-minutes chart, 60-
minutes chart, etc . A 15-minutes chart can be reduced to a 60-
minutes chart. This involves a concept called downsampling. 
Downsampling is significant as it transforms the frequency content 
of a signal. 

Before we discuss the concept of downsampling, we will 
introduce two other concepts, the delay operator and the advance 
operator. 

The shift or delay operator, S, is a linear operator and can be 
represented by a matrix (Strang and Nguyen 1997). It is a causal 
operator and can be written as a lower triangular matrix : 

Sx = 

. 0 0 0 0 . 

. 1 0 0 0 . 

. 0 1 0 0 . 

. 0 0 1 0 . 

x(-l) 

x(0) 

x(l) 

x(2) 

x(-2) 

x(-l) 

x(0) 

x(l) 

y(-i) 

y(0) 

yd) 

y(2) 

(A6.1) 
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where x is the input and y is the output. 

We can also simply write 

y(n) = x(n-l) (A6.2) 

This is similar to the situation where time is continuous. A 
graph of f(t), when shifted one unit time to the right, becomes the 
graph of f(t-l). The delayed function fd(t), can be written as 

fd(t) = f(t-l) (A6.3) 

At t = 1, the delayed function equals the original function at t 
= 0. 

The advance operator or S inverse, S"1, has an effect opposite 
to S. It can be written as an upper triangular matrix: 

S",x = 

. 0 1 0 0 . 

. 0 0 1 0 . 

. 0 0 0 1 . 

. 0 0 0 0 . 

x(-l) 

x(0) 

x(l) 

x(2) 

= 

x(0) 

x(l) 

x(2) 

x(3) 

= 

y(-i) 
y(0) 

y(i) 

y(2) 

= y (A6.4) 

Thus, 

y(n) = x(n + 1) (A6.5) 
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It can be shown that 

S"1Sx = SS"'x = x (A6.6) 

or, more generally 

S-"Snx = SnS-nx = x (A6.7) 

As we discussed in Appendix 2, the Discrete Time Fourier 
Transform of the unit sample response, H, is shift-invariant. This 
property can be written as 

H(Sx) = S(Hx) (A6.8) 

A shift of the input causes a shift of the output. 

As each column of H is a delay of the previous column, and 
all elements of the n* diagonal equals h(n), we can write 

H = 2h(n)Sn (A6.9) 

A6.1 Downsampling 

The sequence v(n) = x(Mn) is formed by taking every Mth sample of 
x(n). This operation is called downsampling or decimation (Hayes 
1999, Strang and Nguyen 1997). 

When every other component is removed, downsampling is 
represented by the symbol (i2) (pronounced "down two"), which can 
be written as a matrix. When odd-numbered components are 
removed, the matrix form of downsampling is 
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(il)x = 
. 1 

. 0 

0 

0 

0 

1 

0 

0 

0 

0 

0 . 

0 . 

1 . 

" 

x(-2) 

x(-D 
x(0) 

x(l) 

x(2) 

= 

r -i 

x(-2) 
x(0) 

x(2) 

-

= 

r -| 

v(-l) 
v(0) 

v(D 

- ' -

= V 

(A6.10) 

i.e., 

v(n) = x(2n) 

The n* component of v = (42)x is the (2n)th component of x, 

(A6.ll) 

This downsampling matrix is, thus, the identity matrix, I, 
with odd-numbered rows removed. The identity matrix is a matrix 
with diagonal elements being 1 and all other elements 0. 

In stock market charts, (il) data in the 15-minutes chart will 
yield the 30-minutes chart; (44) data in the 15-minutes chart will 
yield the 60-minutes chart. 

A6.2 Upsampling 

The transpose of downsampling, (42)T, is upsampling : 

(42)T = (t2) (A6.12) 

Upsampling puts zero into the odd-numbered components : 

http://A6.ll
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u(n) = 
f v(k) if n = 2k 

0 ifn = 2k + l 
(A6.13) 

The matrix form of upsampling is 

(t2)v = 

. 1 

. 0 

. 0 

. 0 

. 0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

1 0 

r -| 

v(-D 
v(0) 

v(l) 

L ' -

= 

v(-D 
0 

v(0) 

0 

v(l) 

= 

u(-2) 

u(-l) 

u(0) 

u(l) 

u(2) 

= u 

(A6.14) 

The upsampling matrix is the matrix with zero rows being 
inserted between the rows of the identity matrix. 

It can be shown that 

(i2)(T2) = I (A6.15) 



Downsampling and Upsampling 199 

However, 

(T2)(i2)*I (A6.16) 

as (4̂ 2) removes the odd-numbered components and (12) replaces 
the lost components by zeros. Thus, 

(42)(T2)x = x (A6.17) 

But, 

(T2)(l2)x*x (A6.18) 

However, we can reconstruct x if we can make use of the 
delay and advance operators : 

S"1(T2)(i2)Sx + (T2)(i2)x = x (A6.19) 

or, more generally, 

N-l 

J S " ' ( t M ) ( l M ) S ' x = x (A6.20) 
1=0 

Traders usually use the same operator or indicator in 
different time frames. Data from a larger time frame (e.g. 60-
minutes chart) can be downsampled from a smaller time frame (e.g. 
15-minutes chart). So, the question is, what are the differences in 
operator responses of a signal and a downsampled signal? Let us 
take a look at an example where the derivative operator, d/dn is used. 
Let the signal be x(n). 
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x(n) = sin — (A6.21) 
16 

d , . it ]tn , . . _ _ 
— x(n) =—cos — (A6.22) 
dn 16 16 

[(14) x](n) = sin — (A6.23) 

-^-(44)x 
dn 

, . 7C 7in 
(n) =—cos— (A6.24) 

4 4 

Comparing Eq (A6.24) with Eq (A6.22), we can see that the 
amplitude of the response of the derivative operator is larger by a 
factor of 4 in the (-14) timeframe than that of the original timeframe. 
In trading, while amplitude plays a role in the traders' decision 
making, phase (or time) shift plays a more significant role. We will 
take a look and see how the phase is shifted in the (J4) timeframe 
from that of the original timeframe. The (44) timeframe should, 
ordinarily, have only a quarter of the number of data points of the 
original timeframe. The initial point where we start downsampling 
would determine what phases of the signal we would be seeing. If 
we would like to see the various phases of the downsampled signal, 
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we would downsample the original signal starting at different 
adjacent initial points, operate on the downsampled signals and then 
reconstruct them back as one signal by using upsampling. This 
process will be represented by the following equation. 

[Dx](n) = Xd<x 

e=o 
(n) = 2s-'(T4)f(i4)S<x 

to dn (n) 

—cos—n = 4—x(n) 
4 16 dn 

(A6.25) 

where 

d ,=S- ' (T4)—(4 ,4 )S ' 
dn 

(A6.26) 

Figure A6.1(a) shows the input signal x(n), with derivative 
of x(n), i.e., (d/dn)x(n), plotted in Fig. A6.1(b) and [Dx](n) plotted in 
a reconstructed (44) timeframe in Fig. A6.1(c). It should be noted 
that in an ordinary (44) timeframe, traders see only every other four 
points in Fig. A6.1(c), i.e. [d /x](n) where /= 0, 1, 2, 3. Only when / 
= 0 will there be no phase shift with respect to the original timeframe 
as shown in Fig. A6.1(b). When /= 1, 2, 3, the output response of the 
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70 75 80 85 90 95 (b) 100 105 110 115 

70 75 80 

Fig. A6.1(a) A sine wave of circular frequency of 7C/16 radian 
(marked as x); (b) the sine wave is filtered with a cubic velocity 
indicator (marked as +), and compared with its derivative (marked 
as); (c) the sine wave is downsampled four (i.e. every fourth point is 
taken), the downsampled signal is filtered with a cubic velocity 
indicator (marked as +) and compared with its derivative (marked 
as .). The initial point where downsampling starts is shifted and the 
calculation repeated. 
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operator in the (44) timeframe has a phase lag with respect to that in 
the original timeframe of Fig. A6.1(b). In this particular case, the 
phase lag is not caused by the derivative operator, but caused by the 
signal being downsampled. The output signal of the derivative 
operator leads the input signal by n/2, which is independent of the 
frequency of the input signal. However, other operators or 
indicators, e.g., the cubic velocity indicator is a function of 
frequency of the input signal. The output signal was compared in 
Fig. A6.1(b) and Fig. A6.1(c) to the output response of the cubic 
velocity indicator, which is slightly dependent on frequency. In Fig. 
A6.1(b), the output response of the cubic velocity indicator almost 
exactly overlap with results calculated from the derivative, 
illustrating that the indicator can simulate the derivative quite well 
for a frequency of 7t/16 radians. In the reconstructed (44) timeframe 
of Fig. A6.1(c), the response of the cubic velocity indicator operated 
on a frequency of the rc/4 radians has a slight phase lead compared to 
the derivative. This is consistent with the phase plot of the cubic 
velocity indicator shown in Fig. A4.7(b). 

In the example above, downsampling transforms a single 
frequency signal to another single frequency signal of the same 
shape. This may not necessarily be the case, as we will show in the 
next section. 

A6.3 Downsampling in the Frequency Domain 

Downsampling a pure exponential signal, x(n) = exp(inco) , is quite 
straightforward. For example, the nth component of v = (l2)x is 

v(n) = exp(i2nco) = x(2n) (A6.27) 

which is a pure exponential with frequency 2(0. 

The Fourier Transform of Eq(A6.27) should be 

V(2co) = X(co) (A6.28) 
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or 

V(co) = X(co/2) (A6.29) 

However, this is not correct. 

If Xo is another pure exponential, with frequency <o + 7C, then 

x0(n) = exp[in(© + 7C)] (A6.30) 

The n* component of v0 = (i2)xo is 

v0(n) = exp[i2n(co + n)] = exp(i2nco) (A6.31) 

which is the same as v(n). Thus (12) yields a frequency 2(0 by 
doubling co, and also by doubling co + n. The Fourier Transform of v 
= (i2)x should be (Strang and Nguyen 1997) 

vH=I X 
L V 

— \+X\ — + n 
2 2 

(A6.32) 

(iM)x i 
This can be extended to (>lM). The n* component of v = 

is 

v(n) = x(Mn) (A6-33) 

whose Fourier Transform is (Strang and Nguyen 1997) 
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V(©) = 
M 

+X 
M +. .+X 

co + (M-l)27i' 

M 

(A6.34) 

Thus, there are M-l aliases in downsampling. Given a 
sequence x(n), ambiguity exists as to what frequency or mixture of 
frequencies the original signal contains. This problem can be solved 
by eliminating the high frequency components from the original 
signal by applying a low pass filter. Downsampling is then 
performed on the filtered signal. 



Appendix 7 

Wavelets 

Wavelet analysis can be considered as an extension of Fourier 
Analysis. We will first take a look at Fourier Analysis. 

A7.1 Fourier Analysis 

A periodic function f(t) with period T0 can be represented as a sum 
of sines and cosines, which is called a Fourier series given by the 
expression (Brigham 1974, p75). 

f ( t ) = - ° - + £ [ a n cos(27tnf0t) + bn sin(2raif0t)] (A7.1) 
^ n=l 

where f0 is the fundamental frequency and is equal to 1/ T0. The 
coefficients are given by the integrals 

an =—fT°/2f(t)cos(27tnf0t)dt n = 0,l,2,3,... (A7.2) 

206 
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bn =—fT°/2f(t)sin(27inf0t)dt n=l,2,3,... (A7.3) 

Eq (A7.1) can be expressed as sine waves only, with phases, 6n . 

f ( t ) = ^ - + X c " sin(27inf0t + en) 
n=l 

(A7.4) 

where 

c„ =Van+b„ n = 1,2,3,... (A7.5) 

6 =tan_1 ' a „ A 

v » ) 

n = 1,2,3,. (A7.6) 

If the function f(t) is not periodic, we can assume that it is 
periodic with period T0 equals to the whole sampling time interval. 
If we know cn and 8n, we can plot out each individual sine wave and 
observe which direction each one is heading. 

However, Fourier Analysis has its limitation. Its building 
blocks are sines and cosines, which oscillate for all time. Therefore, 
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it does not work well with signals of short duration. For example, 
the Fourier Analysis of a pulse-like signal will yield a large number 
of waves with high frequency — each of very long duration. When 
they are added together, they cancel one another out except at the 
point when they strengthen one another to produce the pulse. Thus, 
a Fourier Transform cannot give us information about time. 
Furthermore, it is also highly susceptible to errors. If there is a 
mistake in the last few minutes of an one-hour signal, the mistake 
will corrupt the whole Fourier Transform (Hubbard 1998, p23), as 
the information in one part of a signal is spread throughout the whole 
transform. 

Fourier Analysis requires us to choose between time or 
frequency. But quite often, we would like to know both time and 
frequency rather accurately. Windowed Fourier Transform solves 
some of the problems. Each window corresponds to a specific 
interval of time, and the frequencies of the signal within that window 
is analyzed. As each window has a fixed finite length, it imposes 
quite some drawback. The smaller the window, the more accurate a 
sharp pulse can be located, but the lower frequency components in 
the signal will not be observed. If a bigger window is chosen, more 
of the low frequencies can be seen, but at the sacrifice of locating an 
event in time. 

A7.2 Wavelet Analysis 

A new mathematical technique, called wavelet analysis, can resolve 
the above-mentioned difficulty. It uses local basis functions called 
wavelets that can be stretched and translated, thus allowing a flexible 
resolution in both frequency and time. The window narrows when 
high frequency signals need to be focused and widens when low 
frequency signals need to be searched (Lau and Weng 1995). 

One of the best known wavelet system is that formed by the 
sine function which is written as 
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(|)(t) = sinc(7rt) = [sin(7rt)]/(7tt) (A7.7) 

Its Fourier Transform, i.e., its representation in the frequency 
domain, is a rectangular function and is thus confined to a finite 
duration, i.e., supported compactly. 

Fourier Transform is defined as (Brigham 1974) 

0(f) = £° ())(t)exp(-i27rft)dt (A7.8) 

or 

O(co)=J" <|>(t)exp(-icflt)dt (A7.9) 

while inverse Fourier Transform is defined as 

()>(t) = j ~ 0(f)exp(i2rcft)df (A7.10) 

or 

(|>(t)=— P O(co)exp(icot)dco (A7.ll) 
2f t •'-°° 

The Fourier Transform of the sine function is given by (Rao 
and Bopardikar 1998, p72) 

.., N r° sinm , . . . [l |co|<7i ,i„*^ 
0>(co)= exp(-icot)dt = ̂  n (A7.12) 

J-°° 7rt [0 otherwise 

http://A7.ll
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and is thus bandlimited to the frequency range -K < GO < K. 

In order to qualify as a scaling function, which is the father 
of wavelets (Hubbard 1998), ())(t) has to satisfy a two-scale relation 
(sometimes called the dilation equation or the multi-resolution 
analysis (MRA) equation) (Rao and Bopardikar 1998, Strang and 
Nguyen 1997). 

<Kt) = 2^h(k)<|K2t-k) (A7.13) 
k 

where h(k) is the unit impulse response, k being an integer. 

This means that (|)(t) can be expressed in terms of a weighted sum of 
shifted <f)(2t). 

Eq (A7.13) can be written as 

<)>(t/2) = 2£h(k)<|>(t-k) (A7.14) 
k 

Taking Fourier Transform of Eq (A7.14) will yield the frequency 
domain equivalent of the two-scale relation 

O(2(o) = H(co)0>(co) (A7.15) 

which can be rewritten as 

H « o ) = ^ (A7.16) 
O(co) 

Using Eq (A7.12), H(co) can be written as 
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H(<D) = 

K 

(A7.17) 

which is an ideal low pass filter with cutoff frequency JI/2. 

Its inverse Fourier Transform (see Eq (A2.15)), which is the 
coefficients of the ideal low pass filter, is given by (Strang and 
Nguyen 1997, p45) 

7tk 
sin 

h(k)=-
7tk 

1/2 

±l/(7tk) 

0 

k = 0 

kodd 

keven,k^0 

1/2 

l/(7tk) 

-l/(7tk) 

0 

k = 0 

k=±l,±5,. . . 

k=±3+7,.. . 

k even,k ^ 0 

(A7.18) 

The sine function is thus a scaling function, and it is needed to derive 
the corresponding wavelet. 

But first, an ideal highpass filter H|(co) needs to be 
constructed. It is orthogonal to the ideal lowpass filter H(co), as we 
can simply set Hi = 1 in the interval where H = 0 (Strang and 
Nguyen 1997) 
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H,«D) = 
|co|<7i/2 

Jt/2<|(fl|<7t 
(A7.19) 

Its inverse Fourier Transform, which is the coefficient of the ideal 
high pass filter is given by 

h,(k) = 

. 7ik 
, sin — 

sin Ttk 2 

7tk Jtk 

1/2 

+ l/(7tk) 

0 

k = 0 

kodd 

k even, k 5*0 

1/2 

-l/(7tk) 

l/(nk) 

0 

k = 0 

k=±l,±5,... 
k = ±3,±7,... 
k even,k ^ 0 

(A7.20) 

The wavelet \j/(t) is given by one application of the high pass 
filter (with downsampling) to (|)(t) (Strang and Nguyen 1997, p52; 
Rao and Bopardikar 1998, p71). 

V(t) = 2^h, (k)<K2t-k) (A7.21) 

Fourier Transform of Eq (A7.21) is given by 
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¥(co)=H, 
fm\ f<o\ CO 

2" 
O 

lo 
forjr<|co|<27t 

otherwise 
(A7.22) 

Its inverse Fourier Transform, i|/(t), is the sine wavelet 

sin 2lU sin 7tt 
V(t)=-

7Ct Ttt 
(A7.23) 

This is called the mother wavelet from which a class of expansion 
functions x/j.k(t) can be generated (Burrus et al 1998) 

Vj.k(t) = 2 J />(2J t - k) = 2 J />[2J (t - 2"Jk)] - 1 J/2nrnJ / (A7.24) 

where j , k are integers. 2 ' is the scaling of t. 2 ~j k is the translation 
in t. 2 j/2 maintains the norm of the wavelet at different scales, such 
that 

jrV j.k(t)VMn(0dt = 6j<6km (A7.25) 

where 8jf =< 
when }=£ 

when j ̂  I 
(A7.26) 

Thus, \|/j,k(t) forms an orthonormal basis. Any function f(t) can be 
written as (Burrus et al 1998) 
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f(t) = XcJO(k)^Jo,k(t) + 2 £ d j ( k ) ¥ j , k ( t ) (A7.27) 
k k j=Jo 

where(j)Jok(t) = 2Jo/2<t)(2J0t-k) (A7.28) 

The coefficients in this wavelet expansion are called the 
discrete wavelet transform (DWT) of the signal f(t). They are 
similar to the Fourier series expansion in the Fourier Analysis. 
These wavelet coefficients can be calculated by inner products 

c Jo (k) = {f (t), <|)Jo,k (t))=Jf (t)<bJo k (t)dt (A7.29) 

and 

dj(k) = (f(t), Vjik (t)) = Jf (t)Vjik (t)dt (A7.30) 

For any practical signal that is bandlimited, there will be an upper 
scale j = J, above which the wavelet coefficients, dj(k), are very 
small. Thus, a signal f(t) can be written as 

f(t) = 2cJo(k)(|)Jo>k(t) + X£d j(k)v)/ j ik(t) (A7.31) 
k k j=j0 

Ignoring k (which represents translation in t) in Eq (A7.24), we can 
write 
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- o i/2w?J < X|/j(t) = 2 J ' > (2 J t ) (A7.32) 

For j = -3, -4, -5, the sine wavelets are 

¥ _ 3 ( t ) = 2 - 3 / 2 8 

. 7rt . m 
sin — sin — 

4 8 

Ttt 7tt 
(A7.33) 

V- 4 ( t ) = 2- 216 

. nt 7it 
sin — sin — 

8 16 
7Ct 7Ct 

(A7.34) 

\|f_5(t) = 2_ 5 / 232 

7tt 7tt 
sin — sin — 

16 32 
Tit 7rt 

(A7.35) 

Ignoring the numerical factor on the RHS, the Fourier 
Transform of Eq (A7.33) - (A7.35) are 
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^\ 

. 7lt 
sin — 

4 
Tit 

. 7tt 
sin — 

8 
7tt 

/• = • 

ji/8<|co|<7i/4 

otherwise 
(A7.36) 

*¥ 
sm­

ut 
sin 

7Ct 

16 
7tt TCt 

7t/16<|co)<7i/8 

otherwise 
(A7.37) 

¥ 
sin 

Jtt 

16 
sm-

rct. 

32 
7tt 7tt 

7C/32<|C0J<7T/16 

otherwise 
(A7.38) 

Thus, wavelets are essentially bandpass filters. They are 
called "constant-Q" filters as the ratio of the band width to the center 
frequency of the band is constant. It should be noted that in 
Eq(A7.36) - (A7.38), signals that pass through these bandpass filters 
do not experience any phase shifts, as there is no imaginary part on 
the RHS. The Fourier integral in these equations integrate from -°° 
to oo. This, however, cannot be applied to on-line or real-time 
applications, where only past but not future data exist. In these 
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applications, the integral integrates from 0 to °°, and the filter is 
called a causal filter (Strang and Nguyen 1997, Hayes 1999). 

The Fourier Transform of a causal low pass filter 
[sin((Qot)]/(7tt), is given by 

r» sin co0t t . x , 1 co0 + co 1 co0 - co . 1 |co0 + d 
— exp(-icot)dt = — j - 2 •+—r-5 r - 1 —^ n i~^—-r 

Jo 7tt 4 |co0 + co| 4 |co0 - co) 2TC |CO0 - co) 

(A7.39) 

Thus, the Fourier Transform of a causal band pass filter 
[sin(cOot)]/(7rt) - [sin(cO]t)]/(nt), where CO] < coo, is given by 

Jo 
V 

(sincont sinco,t ^ , . . , 1 ° ' |exp(-icot)dt 
lit nt 

r i _ 

i 

1 C00 + C0 1 C00 - CO 1 COj + CO 1 CO, - CO 
r ' 

4 |co0 + co| ' 4 |co0 - co| 4 |co, + co) 4 |co, - co) 

1 con - d|co, + d 
+ i_Lfa ° "1 ' "1 (A7.40) 

2n co0 + co||co, - co| 

As there is an imaginary part in the RHS of Eq(A7.40), any signal of 
circular frequency co, will have a phase shift unless 

_(co1 +co)(co0-co)= o ( A ? 4 1 ) 

(C0[ - C0)(C00 + CO) 

The negative sign on the LHS of Eq (A7.41) is required for the 
frequency band -coo < co < -C0i and C0i < co < COQ. 
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Solving Eq(A7.41) 

CO = V(COiCOo) 

For coi = coo/2 , 

CO=t0b/V2 (A7.43) 

Table A7.1 lists the higher frequency coo and lower frequency COi of 
the sine band pass filters which will ensure zero phase shift of a 
signal at circular frequency co. 

Table A7.1. 

¥-3 

\|/_4 

¥-5 

COi 

71/8 

7C/16 

7C/32 

CO 

TI/(4V2) 

TI/(8V2) 

7t(16V2) 

COo 

71/4 

7t/8 

7C/16 

The wavelets corresponding to the band pass filters 
described in Eq (A7.33) - (A7.35) has a continuous variable t. They 
have to be changed to discrete filters in order to convolute with the 
discrete data. Writing t = kAt where At is one unit of time interval, 
which can be a 5 minutes, 15 minutes, etc., t can be changed to k. 
Furthermore, the constant factors on the RHS of Eq (A7.33) -
(A7.35) should be ignored. The coefficients corresponding to the 
discrete band pass filters can be written as 

- 3 (k )=— rck 
. Jtk . Ttk 

sin sin — 
4 8 

(A7.44) 
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h_ 4(k)=— 
7tk 

. 7tk . 71k 
sin sin — 

8 16 

(A7.45) 

h_5(k) = 
nk 

. 7ik . 7ik 
sin sin — 

16 32 

(A7.46) 

h„3, h.4, h.5 are named high, middle and low wavelet indicator 
in this book. The h's in Eqs (A7.44) - (A7.46) are different from the 
h in Eq (A7-13) and h, in Eq (A7.20). While they are all unit 
impulse responses, they correspond to different filters. h_3 in Eq 
(A7.44) is plotted in Fig. 9.1. The amplitude and phase of its Fourier 
Transform are plotted in Figs. A7.1(a) and (b). h.4 in Eq (A7.45) is 
plotted in Fig. 9.2. The amplitude and phase of its Fourier Transform 
are plotted in Figs. A7.2(a) and (b). h.5 in Eq (A7.46) is plotted in 
Fig. 9.3. The amplitude and phase of its Fourier Transform are 
plotted in Figs. A7.3(a) and (b). It should be noted that the circular 
frequencies where the phases are zero in Fig. A7.1(b), Fig. A7.2(b) 
and Fig. A7.3(b) agree quite well with that shown in Table A7.1. 

Figure 9.5 plots a 5-minute chart of an US 30 year Treasury 
Bond Future, v.h_3, v*h_4 and v*h.5 were employed to convolute with 
the closing price data and were plotted as a thick line, middle thick 
line and a thin line respectively in the middle plot., v being the cubic 
velocity indicator. The bottom plot plots 

(v*h_3 + v*h_4 + v*h_5) * x = v*(h.3 + h.4 + h.5) * x (A7.47) 

where x is the closing price data. h.3 + h.4 + h.5 is equivalent to a 
band pass filter which will transmit circular frequency from 7i/32 to 
7i/4 radian. 
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Band pass filter, pi/8 - pi/4 

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig. A7.1(a). Amplitude response of high wavelet indicator. 
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Band pass filter, pi/8 - pi/4 
- i r-

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig. A7.1(b). Phase response of high wavelet indicator. 
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Fig. A7.2(a). Amplitude response of middle wavelet indicator. 
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Band pass filter, pi/16 - pi/8 

.5 D--

1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig. A7.2(b). Phase response of middle wavelet indicator. 
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Band pass filter, pi/32 - pi/16 
1 1 1 r-

0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig. A7.3(a). Amplitude response of low wavelet indicator. 
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Band pass filter, pi/32 - pi/16 

0.5 1 1.5 2 2.5 
Circular Frequency (radians) 

3.5 

Fig. A7.3(b). Phase response of low wavelet indicator. 
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A7.3 Coefficients of the Sine Wavlet Indicators 

The indicator coefficients h.3, h^ and h.5 are listed below. The first 
row of each h corresponds to k = 0, 1,2,3 .... 

h.3 = 

0.1250 0.1033 0.0466 -0.0230 -0.0796 -0.1038 -0.0906 

-0.0496 0.0000 0.0385 0.0543 0.0472 0.0265 0.0053 

-0.0067 -0.0069 0.0000 0.0061 0.0052 -0.0036 -0.0159 

-0.0247 -0.0247 -0.0151 0.0000 0.0139 0.0209 0.0192 

0.0114 0.0024 -0.0031 -0.0033 0.0000 0.0031 0.0027 

-0.0020 -0.0088 -0.0140 -0.0143 -0.0089 0.0000 0.0085 

0.0129 0.0121 0.0072 0.0015 -0.0020 -0.0022 0.0000 

0.0021 0.0019 -0.0014 -0.0061 -0.0098 -0.0101 -0.0063 

0.0000 0.0061 0.0094 0.0088 0.0053 0.0011 -0.0015 

-0.0016 0.0000 0.0016 0.0014 -0.0010 -0.0047 -0.0075 

-0.0078 -0.0049 0.0000 0.0048 0.0073 0.0069 0.0042 

0.0009 -0.0012 -0.0013 0.0000 0.0013 0.0011 -0.0008 

-0.0038 -0.0061 -0.0063 -0.0040 0.0000 0.0039 0.0060 

0.0057 0.0035 0.0007 -0.0010 -0.0011 0.0000 0.0011 

0.0010 -0.0007 -0.0032 -0.0051 -0.0053 -0.0034 0.0000 

0.0033 0.0051 0.0049 0.0029 0.0006 -0.0008 -0.0009 
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0.0008 -0.0006 0.0000 

-0.0029 

h.4 = 

0.0625 

-0.0272 

-0.0248 

0.0266 

-0.0033 

0.0033 

-0.0124 

0.0038 

0.0057 

-0.0009 

-0.0010 

-0.0061 

0.0065 

-0.0003 

0.0011 

0.0009 

0.0000 

0.0597 

-0.0398 

-0.0123 

0.0236 

-0.0040 

0.0026 

-0.0130 

0.0069 

0.0033 

0.0000 

-0.0027 

-0.0044 

0.0066 

-0.0010 

0.0012 

0.0516 

-0.0482 

0.0000 

0.0189 

-0.0034 

0.0008 

-0.0123 

0.0092 

0.0012 

0.0009 

-0.0044 

-0.0023 

0.0060 

-0.0013 

0.0009 

0.0391 

-0.0519 

0.0108 

0.0133 

-0.0019 

-0.0018 

-0.0105 

0.0104 

-0.0005 

0.0016 

-0.0059 

0.0000 

0.0050 

-0.0011 

0.0003 

-0.0027 

0.0233 

-0.0508 

0.0193 

0.0076 

0.0000 

-0.0049 

-0.0075 

0.0105 

-0.0016 

0.0017 

-0.0070 

0.0023 

0.0036 

-0.0006 

-0.0007 

-0.0044 

0.0059 

-0.0453 

0.0248 

0.0027 

0.0018 

-0.0080 

-0.0039 

0.0096 

-0.0019 

0.0014 

-0.0074 

0.0042 

0.0021 

0.0000 

-0.0018 

-0.0046 

-0.0115 

-0.0362 

0.0272 

-0.0011 

0.0030 

-0.0106 

0.0000 

0.0079 

-0.0017 

0.0004 

-0.0071 

0.0057 

0.0008 

0.0006 

-0.0031 
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-0.0052 -0.0050 -0.0043 -0.0032 

0.0030 0.0041 0.0047 0.0048 
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-0.0041 

0.0000 

0.0036 

h.5 = 

0.0312 

0.0158 

-0.0136 

-0.0260 

-0.0124 

0.0077 

0.0133 

0.0052 

-0.0017 

-0.0005 

0.0017 

-0.0017 

-0.0062 

-0.0046 

The 

-0.0049 

0.0016 

0.0027 

0.0309 

0.0117 

-0.0170 

-0.0254 

-0.0093 

0.0096 

0.0127 

0.0038 

-0.0019 

0.0000 

0.0016 

-0.0024 

-0.0064 

-0.0038 

0.0299 

0.0073 

-0.0199 

-0.0243 

-0.0061 

0.0112 

0.0118 

0.0025 

-0.0020 

0.0005 

0.0013 

-0.0032 

-0.0065 

-0.0029 

0.0281 

0.0029 

-0.0223 

-0.0226 

-0.0030 

0.0124 

0.0107 

0.0013 

-0.0019 

0.0009 

0.0009 

-0.0040 

-0.0064 

-0.0020 

0.0258 

-0.0015 

-0.0241 

-0.0206 

0.0000 

0.0132 

0.0094 

0.0003 

-0.0017 

0.0013 

0.0004 

-0.0047 

-0.0062 

-0.0010 

0.0229 

-0.0058 

-0.0253 

-0.0181 

0.0028 

0.0136 

0.0081 

-0.0005 

-0.0014 

0.0015 

-0.0002 

-0.0053 

-0.0058 

0.0000 

-0.0017 

0.0044 

0.0195 

-0.0098 

-0.0260 

-0.0154 

0.0054 

0.0136 

0.0066 

-0.0012 

-0.0010 

0.0017 

-0.0009 

-0.0058 

-0.0052 

0.0010 
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0.0019 0.0027 0.0035 0.0041 0.0046 0.0050 0.0052 

0.0053 0.0053 0.0051 0.0048 0.0044 0.0039 0.0034 

0.0028 0.0023 0.0017 0.0011 0.0006 0.0001 -0.0002 

-0.0006 -0.0008 -0.0009 -0.0010 -0.0009 -0.0008 -0.0007 

-0.0005 -0.0002 0.0000 0.0002 0.0005 0.0006 0.0008 

0.0009 0.0009 0.0008 0.0007 0.0005 0.0002 -0.0001 

-0.0005 -0.0009 -0.0013 -0.0018 -0.0022 -0.0026 -0.0030 

-0.0033 -0.0035 -0.0037 -0.0037 -0.0037 -0.0036 -0.0034 

-0.0031 -0.0027 -0.0022 -0.0017 -0.0012 -0.0006 0.0000 

0.0006 0.0011 0.0017 0.0021 0.0025 0.0028 0.0031 

0.0032 0.0033 0.0033 0.0032 0.0030 0.0028 0.0025 

0.0022 0.0018 0.0014 0.0011 0.0007 0.0004 0.0001 

-0.0002 -0.0004 -0.0005 -0.0006 -0.0006 -0.0006 -0.0005 

-0.0004 -0.0003 -0.0002 0.0000 0.0002 0.0003 0.0004 

0.0005 0.0006 0.0006 0.0006 0.0005 

A7.4 Other Wavelets 

In this book, only sine wavelets have been introduced to analyze 
market data. Many different kinds of wavelets have been 
constructed (Von Baeyer 1995, Strang 1994). The analysis wavelet 
should be carefully matched to the phenomenon of interest so as to 
bring out the significant information in the signal (Trevino and 
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Andreas 1996). Other wavelets, especially ones with fast decay, 
should be investigated in the future. 

Furthermore, scaling functions are actually low pass filters. 
They can be employed as powerful trending indicators. 



Appendix 8 

Skipped Convolution and Forecasting 

The mathematical details of skipped convolution and forecasting are 
described below. 

A8.1 Skipped Convolution 

Skipped convolution can be defined as 

yM(m) = £ h ( k ) x ( m - M k ) (A8.1) 
k 

The financial data are skipped in a larger time frame interval and 
then analyzed. When M = 1, Eq (A8.1) will reduce back to the 
conventional convolution, i. e., yi = y, with y given by Eq (A2.6). 

When m = Mn, the result would be the same as 
downsampling the data, i.e. (4M)x and then convolute the 
downsampled data with the filter h. Downsampling x will yield 

v = (iM)x (A8.2) 

v(n) = [(iM)x](n) = x(Mn) (A8.3) 

Performing convolution on downsampled x yields 

y = h . v = h * (lM)x (A8.4) 

231 
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which can also be written as 

y(n)=£h(k)v(n-k) (A8.5) 
k 

When m = Mn, the skipped convolution yields 

yM(m) = y M (Mn)=£h(k )x (Mn-Mk) 
k 

= J h ( k ) x [ M ( n - k ) ] = J h ( k ) v ( n - k ) = y(n) (A8.6) 
k k 

Eq (A8.6) can be re-written as 

y = (iM)yM (A8.7) 

For example, if y is an indicator in the 15-minute chart, and yM is the 
same indicator in the 5-minute chart, and M = 3, 

yM(3n) = y(n) (A8.8) 

If a certain market action (as illustrated by the indicator 
response) arrives at y\j(3n) in the 5-minute chart, then it will be 
exactly the same as y(n) in the 15-minute chart. However, if the 
market action arrives at yM(3n-l) or yM(3n-2) in the 5-minute chart, 
then the trader will know 5 or 10 minutes ahead of other traders 
using a 15-minute chart. Thus, the skipped convolution has a 
definite advantage. 
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A8.2 Forecasting 

To forecast in a time series, different techniques can be used. One 
technique is to use the minimum mean square error forecasts in time 
series analysis (Box, Jenkins and Reinsel 1994). Another technique 
is to assume that the time series is generated by a frequency band 
limited process and to forecast future values by using Shannon's 
sampling theorem (Santana and Mendes 1992). 

In this book, we use a different technique by making use of a 
theorem which states that a function x(t) can be written in a Taylor 
series (Kaplan 1959) 

x(t) = JTcm(t-t0)m (A8.9) 
m=0 

where 

c0=x(t<>), c, = x'(to), c2 = (l/2)x"(to), .... (A8.10) 

x' and x" are the first and second derivatives of x with respect to t. 

Taking to to be the present time, t will be the future time. If 
we take t-to to be one time bar, then x(t) will be the one-step-ahead 
forecast of the market value. Approximating x(t) to be the sum of 
the first two terms only, we get 

x(t) = x(to) + x'(to) (A8.ll) 

As the output response of the cubic velocity indicator given 
by Eq (6.5) approximates the first derivative, the one-step-ahead 
forecast x(t) can be written as 

x(l) = x(0) +(1 l/6)x(0) - 3x(-l) + (3/2)x(-2) - (l/3)x(-3) 

http://A8.ll
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= (17/6)x(0) - 3x(-l) + (3/2)x)(-2) + (l/3)x(-3) (A8.12) 

If we approximate x(t) to be the sum of the first three terms 
ofEq(A8.9),weget 

x(t) = x(to) + x'(to) + (l/2)x"(to) (A8.13) 

As the output response of the cubic acceleration indicator 
given by Eq(6.7) approximates the second derivative, the one-step-
ahead forecast can be written as 

x(l) = x(0) + (1 l/6)x(0) - 3x(-l) + (3/2)x(-2) - (l/3)x(-3) 
+ (l/2)[2x(0) - 5x(-l) + 4x(-2) - x(-3)] 

= (23/6)x(0) - (1 l/2)x(-l) + (7/2)x(-2) - (5/6)x(-3) (A8.14) 
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Index 

Acceleration, 55, 57, 175, 182 
Adaptive moving average, 44 
Advance operator, 195 
Alias, 103, 205 
Amplitude, 26 
Analog signal, 25 
Approximate entropy, 8 
ARMA, 137 
ARDvlA, 17, 138 
Autoregressive, 17, 137 
Average, 40 

Backward shift operator, 138 
Band-pass filter, 216 
Bears, 6 
Brownian motion, 7, 20 
Bulls, 6, 76 

Calculus, 49 
Chaos, 13 
Chart, 6 
Circular frequency, 26 
Class A divergence, 72 
Class B divergence, 72 
Class C divergence, 72 
Complexity, 14 
Complexity theory, 14, 134 
Concave down, 49 
Concave up, 49 
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Convolution, 29 
Cubic function, 57, 185 
Cubic acceleration indicator, 57 
Cubic velocity indicator, 57 
Cubic vertex indicator, 81 
Cycle, 26 

Delay operator, 194 
Derivative, 49, 52 
Difference operator, 139 
Digitized signal, 25 
Divergence, 32,47 
Double bottom, 76 
Double top, 72 
Dow-Jones Utilities Index, 8 
Downsampling, 98, 196 

Easy Language, 52 
Efficient market theory, 3, 7 
Elliott wave, 4 
Exponent Moving Average (EMA), 42, 159 

Filter, 29 
Forecast, 123, 233 
Fourier series, 25, 206 
Fourier Transform, 209 
Fractal dimension, 20 
Fractal geometry, 20 
Frequency, 26 
Fundamental analysis, 3 
Futures, 9 
Fuzzy logic, 20 

Gaussian, 7 
Genetic algorithm, 19 

Half period, 32 
Head and Shoulders, 76 



Index 

High pass filter, 47 
High wavelet indicator, 108 
Hybrid, 5 

IBM, 18,139 
Impulse response, 143 
Indicator, 4 
Insider, 3, 8 

Levy distribution, 7, 20 
Low pass filter, 40 
Low wavelet indicator, 110 

Maximum Entropy Spectral Analysis (MESA), 16 
Middle wavelet indicator, 108 
Model, 10 
Momentum, 32,48 
Money management, 2, 133 
Moving Average, 40 

Neural network, 18 
Nyquist sampling theorem, 26, 102 

Ockham's Razor, 10 
Operator, 4 
Oscillator indicator, 47 
Overbought, 47 
Oversold, 47 

Parabolic acceleration indicator, 55 
Parabolic velocity indicator, 48 
Parabolic vertex indicator, 79 
Pattern, 6 
Pattern recognition, 4 
Period, 26 
Phase, 146, 147 
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Quarter period, 32 

Ramsey theory, 6 
Random, 6, 7 
Random walk, 6, 19, 140 
Rectangle, 6 

S & P 500 index, 7, 9, 18 
Sampling, 26 
Scaling function, 209, 230 
Second derivative, 55 
Self-similar, 20, 23 
Self-affine, 20 
Shift operator, 194 
Signal, 24, 142 
Simple moving average, 40 
Sine, 208 
Sine waves, 26 
Skipped convolution, 117, 231 
Slope, 49, 52 
Slope of a slope, 55 
Stochastic, 30 
Stock, 3 
Stop, 132 
Stop-loss, 133 
System, 142 

Technical analysis, 3 
Tick, 25 
Time lag, 37 
Time series analysis, 137 
Timeframe, 98 
Trading rules, 44 
Trend, 40 
Trending indicator, 39, 210, 230 
Trendline, 48 
Triangle, 6 
Triple screen trading system, 132 



Index 

Truncated Levy distribution, 7 
Turning point, 37, 48 

Under-sampling, 102 
Upsampling, 197 

Velocity, 48 
Vertex, 79 

Wavelet, 22 
Wavelet analysis, 21, 106 
Waves, 15 
Windowed Fourier Analysis, 106 




