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PREFACE

The present volume is intended to serve a dual purpose. The first ten
chapters are meant to be the basis for a course in Group Theory, and
exercises have been included at the end of each of these chapters. The last
ten chapters are meant to be useful as optional material in a course or as
reference material. When used as a text, the book is intended for students
who have had an introductory course in Modern Algebra comparable to a
course taught from Birkhoff and MacLane’s A Survey of Modern Algebra. 1
have tried to make this book as self-contained as possible, but where
background material is needed references have been given, chiefly to
Birkhoff and MacLane.

Current research in Group Theory, as witnessed by the publications
covered in Mathematical Reviews 1s vigorous and extensive. It is no longer
possible to cover the whole subject matter or even to give a complete
bibliography. I have therefore been guided to a considerable extent by my
own interests in selecting the subjects treated, and the bibliography covers
only references made in the book itself. I have made a deliberate effort to
curtail the treatment of some subjects of great interest whose detailed study is
readily available in recent publications. For detailed investigations of
infinite Abelian groups, the reader is referred to the appropriate sections of
the second edition of Kurosch’s Theory of Groups and Kaplansky’s
monograph Infinite Abelian Groups. The monographs Structure of a Group
and the Structure of its Lattice of Subgroups by Suzuki and Generators and
Relations for Discrete Groups by Coxeter and Moser, both in the Ergebnisse
series, are recommended to the reader who wishes to go further with these
subjects.

This book developed from lecture notes on the course in Group Theory
which I have given at The Ohio State University over a period of years. The
major part of this volume in its present form was written at Trinity College,



Cambridge, during 1956 while I held a Fellowship from the John Simon
Guggenheim Foundation. I give my thanks to the Foundation for the grant
enabling me to carry out this work and to the Fellows of Trinity College for
giving me the privileges of the College.

I must chiefly give my thanks to Professor Philip Hall of King’s College,
Cambridge, who gave me many valuable suggestions on the preparation of
my manuscript and some unpublished material of his own. In recognition of
his many kindnesses, this book is dedicated to him.

I wish also to acknowledge the helpfulness of Professors Herbert J.
Ryser and Jan Korringa and also Dr. Ernest T. Parker in giving me their
assistance on a number of matters relating to the manuscript.

Marshall Hall, Jr.

Columbus, Ohio
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1. INTRODUCTION

1.1. Algebraic Laws.

A large part of algebra is concerned with systems of elements which, like
numbers, may be combined by addition or multiplication or both. We are
given a system whose elements are designated by letters a, b, ¢, - - -. We
write S = S(a, b, ¢, -+ - *) for this system. The properties of these systems
depend upon which of the following basic laws hold:

Clo A0. Addition MO. Multiplication
sur is well is well defined.

e defined.

La

WS.

These mean that, for every ordered pair of elements, a, b of S,
a + b = c exists and is a unique element of S, and that also ab =
d exists and is a unique element of S.

Assoc Al.(a+b)+c M1. (ab)c =

iative =a+(b+c) a(bc)

Laws.

Com A2.b+a=a+ M?2. ba=ab

mutati b

ve

Laws.

Zero A3. 0 exists M3. 1 exists

and such that 0+ a such that la =

Unit. =a+0=a for al =a for all a.
all a.

Negat A4. For every MA4.* For every



1ves a, —a exists a+#0,a ! exists

and such that (—a) such that (a™)
Invers +a=a+(—a) —ala N =1
es. =0. a=a@’)=1.
Distri Dl.a(b+c)= D2.(b+c)a=
butive ab + ac. ba + ca.

Laws.

DEFINITION: A system satisfying all these laws is called a field. A system
satisfying A0, —1, =2, -3, -4, MO, —1, and D1, =2 is called a ring.

It should be noted that 4/0—44 are exactly parallel to M0-M4: except for
the nonexistence of the inverse of 0 in M4. In the distributive laws, however,
addition and multiplication behave quite differently. This parallelism
between addition and multiplication is exploited in the use of logarithms,
where the basic correspondence between them is given by the law:

log (xy) = log z + log v.

In general an n-ary operation in a set S is a functionf=f(a; - - -, a,) of n
arguments (a; - - -, a,) which are elements of S and whose value f(a; - - -,
a,) = b 1s a unique element of S when f'is defined for these arguments. If, for
every choice of a; - - -, a, In S, fla; - - -, a,) 1s defined, we say that the

operation f 1s well defined or that the set S is closed with respect to the
operation f.

In a field F, addition and multiplication are well-defined binary
operations, while the inverse operation fla) = a!
defined for every element except zero.

1S a unary operation

1.2. Mappings,

A very fundamental concept of modern mathematics is that of a mapping
ofa setSinto a set 7.

DEFINITION: A mapping o. of a set S into a set T is a rule which as signs
to each x of the set S a unique y of the set T. Symbolically we write this in
either of the notations:



a:x—y or y = (2)a.

The element y is called the image of x under a. If every y of the set T is the
image of at least one x in S, we say that a 1s a mapping of S onto T.

The mappings of a set into (or onto) itself are of particular importance.
For example a rotation in a plane may be regarded as a mapping of the set of
points in the plane onto itself. Two mappings o and f of a set S into itself
may be combined to yield a third mapping of S into itself, according to the
following definition.

DEFINITION: Given two mappings o, B, of a set S into itself, we define a
third mapping y of S into itself by the rule: If y = (x)o and z = (y)p, then z =
(x)y. The mapping v is called the product of o and p, and we write y = af.

Here, since y = (x)a is unique and z = (y)p 1s unique, z = [(x)a]f = (x)y 1s
defined for every x of S and 1s a unique element of S.

THEOREM 1.2.1. The mappings of a set S into itself satisfy M0, M1, and
M3 if multiplication is interpreted to be the product of mappings.

Proof: 1t has already been noted that MO is satisfied. Let us consider M1.
Let a, f, y be three given mappings. Take any element x of S and let y = (x)a,
z = (y)p, and w = (2)y. Then (x)[(af)y] = z(y) = w, and ()[a(y)] = y(By) =
w. Since both mappings, (af)y and a(fy), give the same image for every x in
S, it follows that (af)y = a(fy).

As for M3, let 1 be the mapping such that (x)1 = x for every x in S. Then
1 is a unit in the sense that for every mapping a, al = la = a.

In general, neither M2 nor M4 holds for mappings. But M4 holds for an
important class of mappings, namely, the one-to-one mappings of S onto
itself.

DEFINITION: A mapping a of a set S onto T is said to be one-to-one
(Which we will frequently write 1-1) if every element of T is the image of
exactly one element of S. We indicate such a mapping by the notation:
a:& 55 Y, where x is an element of S, and y is an element of 7. We say
that S and 7 have the same cardinal number* of elements.



THEOREM 1.2.2. The one-to-one mappings of a set S onto itself satisfy
MO, M1, M3, and MA4.

Proof: Since Theorem 1.2.1 covers M0, M1, and M3, we need only
verify M4. f e &t & I/ is a one-to-one mapping of S onto itself, then by
definition, for every y of S there is exactly one x of S such that y = (x)a. This
assignment of a unique x to each y determines a one-to-one mapping
TY £5 I of S onto itself. From the definition of 7 we see that (x)(az) = x
for every x in S and y(ra) = y for every y in S. Hence, at=ta =1, and r 1s a
mapping satisfying the requirements for a ! in M4.

We call a one-to-one mapping of a set onto itself a permutation. When
the given set 1s finite, a permutation may be written by putting the elements of

the set in a row and their images below them. Thus ¢y = (;’ 3*‘ ?) and
y Y

g = (i’ g’ g) are two permutations of the set S(1, 2, 3). Their product

] ?
is defined to be the permutation g} = 1,2,3
3,21
rule for permutations given here is obtained by multiplying from left to right.
Some authors define the product so that multiplication is from right to left.

). Note that the product

1.3. Definitions for Groups and Some Related
Systems.

We see that, as single operations, the laws governing addition and
multiplication are the same. Of these, all but the commutative law are
satisfied by the product rule for the one-to-one mappings of a set onto itself.
The laws obeyed by these one-to-one mappings are those which we shall use
to define a group.

DEFINITION (FIRST DEFINITION OF A GROUP): 4 group G is a set of
elements G(a, b, c, - - ) and a binary operation called “product” such
that:



GO. Closure Law. For every ordered pair a, b of elements of G, the
product ab = c exists and is a unique element of G.

G1. Associative Law. (ab)c = a(bc).

G2. Existence of Unit. An element 1 exists such that la = al = a for
every a of G.

G3. Existence of Inverse. For every a of G there exists an element a™' of
G such that a‘a=aa ' = 1.

These laws are redundant. We may omit one-half of G2 and G3, and
replace them by:

G2.* An element 1 exists such that 1a = a for every a of G.

G3.* For every a of G there exists an element x of G such that xa = 1.

We can show that these in turn imply G2 and G3. For a given a let

za =1 and yzr =1,

by G3.*
Then we have

ax = 1(azx) = (yr)(ax) = ylz(az)] = y[lz] = yx = 1,

so that G3 is satisfied. Also,

a = la = (ax)a = a(za) = al,

so that G2 1s satisfied.

The uniqueness of the unit 1 and of an inverse a " are readily established
(see Ex. 13). We could, of course, also replace G2 and G3 by the assumption
of the existence of 1 and x such that: al =a and ax = 1. But if we assume that
they satisfy al = a and xa = 1, the situation is slightly different.*

There are a number of ways of bracketing an ordered sequence aa, - - -

1

a, to give it a value by calculating a succession of binary products. For n =3
there are just two ways of bracketing, namely, (a,a,)a; and a(a,a3), and the

associative law asserts the equality of these two products. An important
consequence of the associative law 1s the generalized associative law.
All ways of bracketing an ordered sequence aya,, * - - a, to give it a

value by calculating a succession of binary products yield the same value.



It is a simple matter, using induction on n, to prove that the generalized
associative law is a consequence of the associative law (see Ex. 1).

Another definition may be given which does not explicitly postulate the
existence of the unit.

DEFINITION (SECOND DEFINITION OF A GROUP): 4 group G is a set of
elements G(a, b, - - *) such that

1) For every ordered pair a, b of elements of G, a binary product ab is
defined such that ab = c is a unique element of G.

2) For every element a of G a unary operation “inverse,” a ', is
defined such that a ' is a unique element of G.

3) Associative Law. (ab)c = a(bc).

4) Inverse Laws. a”(ab) = b = (ba)a .

It is an easy task to show that any set which satisfies the axioms of the
first definition also satisfies those of the second. To show the converse,
assume the axioms of the second definition and consider the relation:

ala = [(a'a)blb~! = (a7'a)(bb™") = a~a(bb™?)] = bb~L

When a = b, we see that ¢ 'a = aa ™!, and consequently the element ¢ 'a =

aa ! is the same for every a in G. Let us call this element “1,” so that G3 is
satisfied. Also,

1b = (a7'a)b = a=(ab) = b,

and

bl = b(aa™!) = (ba)a~! = b,

and G2 is satisfied. Therefore the two definitions of a group are equivalent.
There is a third definition of a group as follows:

DEFINITION (THIRD DEFINITION OF A GROUP): A group G is a set of
elements G(a, b, - - +) and a binary operation a/b such that:

LO. For every ordered pair a, b of elements of G, a/b is defined such
that a/b = c is a unique element of G.

Ll.a/a=b/b.



L2. a/(b/b) = a.

L3. (a/a)/(b/c) = c/b.

L4. (a/c)/(b/c) = a/b.

In terms of this operation, let us define a unary operation of inverse b !
by the rule

b1 = (b/b)/b.
Here

=)t = (b71/67)/b7 = (/b™)/[(b/b)/b] = b/(b/b) = b,

using in turn L3 and L2. We now define a binary operation of product by the
rule

ab = a/b 1.

Then a/b =a/(b"") 1 = ab~!. Let us write 1 for the common value of a/a = b/b
as given by L1. Then L1 becomes aa™' = 1, whence also for any a, 1 =
a Y(a ) '=ala. Thus G3 of the first definition holds. In 5! = (b/b)/b, put b
=1,whence 1 '=11"1, andso 1 =1/1 = 1171 = 1"L. L2 now becomes al ! =
al = a. By definition 5 ' = 1/b=1b"!, and with b = ¢!, this gives (a ) =
1(a™)7!, or @ = 1a. Thus G2 of the first definition holds. L3 now becomes
1(bc ) 1 =cb!, whence (be ) ' =cbh L. nL4,puta=x b=1,c=yL
whence (xy)(1y) ' =x171 =x or (xy)y ! = x. Now, for any x, y, z, put a = xy,
b=z"1c=y Then ac™! = (xy)y™' =x, and L4 becomes (ac ) (bc )1 =
ab™!, whence (ac ') (cbh™') =ab™!. But in terms of x, y, z this becomes x(yz) =
(xz)z, the associative law G1. Thus this definition of group implies the first

definition. But in terms of the first definition if we put ab™! = a/b, we easily
find that the laws L0, -1, -2, -3, -4 are satisfied, and therefore the definitions
are equivalent.

There are systems which satisfy some but not all the axioms for a group.
The following are the main types:

DEFINITION: A quasi-group Q is a system of elements ((a, b, c, - - *) in
which a binary operation of product ab is defined such that, in ab = c, any



two of a, b, c determine the third uniquely as an element of Q.

DEFINITION: 4 loop is a quasi-group with a unit 1 such that la=al = a
for every element a.

DEFINITION: 4 semi-group is a system S(a, b, c, - - ) of elements with a
binary operation of product ab such that (ab)c = a (be).

A group clearly satisfies all these definitions. We may, with Kurosch,
further define a group as a set which is both a semi-group and a quasi-group.
As a semi-group GO and G1 are satisfied. Let ¢ be the unique element such
that tb = b for some particular b, and let y be determined by b and a so that
by = a. Then (tb)y = by and #(by) = by, or ta = a for any a, and G2* is
satisfied. In a quasigroup G3* is also satisfied. But we have already shown
that these properties define a group.

We call a system with a binary product and unary inverse satisfying

a~l(ab) = b = (ba)a™

a quasi-group with the inverse property, this law being the inverse property.
We must show that the product defines a quasi-group. If ab = ¢, we find b =
a Y(ab) = a’'c, and a = (ab)b™' = cb™!. Thus a and b determine ¢ uniquely;
and also given ¢ and a, there is at most one b, and given ¢ and b, there is at

Ly, whence alc =

most one a. Write a(a”'c) = w. Then a [a(a"'¢c)] = a~
a 'w. Then (a D) alc) = (a V)N alc) whence ¢ = w. Hence a(a l¢) = c,
and similarly, (ch )b = ¢, and the system is a quasi-group. We note that an
inverse quasi-group need not be a loop. With three elements a, b, ¢ and
relations > =a, ab=ba=c, b>*=b, bc =cb=a, ¢*=c, ca=ac = b, we find
that each element is its own inverse, and we have a quasi-group with inverse
property but no unit.

1.4. Subgroups, Isomorphisms, Homomorphisms.

A subset of the elements of a group G may itself form a group with
respect to the product as defined in G. Such a set of elements H is called a
subgroup.



In any group G the unit 1 satisfies 12 = 1. Conversely, if x is an element of
G such that x? = x, then x = x !(x?) = x 'x = 1. Thus the unit of a subgroup H,
since it satisfies x> = x, must be the same as the unit of the whole group G.

THEOREM 1.4.1. A non-empty subset H of a group G is a subgroup if the
two following conditions hold:

SL.Ifhy € H.he € H.then hyhs ¢ H.
S2If},;1 € H, l‘hei’lhl_l € H

Proof: The two properties given guarantee the validity of GO, G2, G3 in
H. And since products in H agree with those in G, G1 is also satisfied in H.

There are various relationships between pairs of groups which are worth
considering. The first such relationship is that of isomorphism.

DEFINITION: 4 one-to-one mapping (7 = H of the elements of a
group G onto those of a group H is called an isomorphism if whenever

= ha and g9 = hg, then g1g2 = hhe.

ExAaMPLE 1. Since all the permutations of a set form a group (Theorem
1.2.2), any set of permutations satisfying S1 and §2 will form a group which
is a subgroup of the full group of permutations. For example, let us consider
the following two such subgroups:



R
=

~(1,2,3 ~(1,2,3,4,5,6
T1=\1,23 Y1 =1\1,2,3,4,5,6
1,23 _(1,2,3,4,5,6
= N\23.1 ¥Y2=12,3,1,6,4,5
_(1,2,3 ~(1,2,3,4,5,6
Ts=\3,1,2) ¥ 7\3,1,25,6,4
(1,23 B 1,2,3,4,5,6)
T =1\1,82 Y4 = \4,5,6,1,2,3
1,23 _(1,2,3,4,5,6

T =\3,2,1 ¥ =\5,6,4,3,1,2
3 (1,2, 3) B (1,2, 3,4, 5, 5)
e =\9 1 2 ¥$ = \6.4.5.2.3.1

If we map x; of G, onto y; of G,, we find that products correspond in every
instance. Hence G, and G, are isomorphic.

More generally we may have a mapping (usually many to one) of the
elements of one group G onto those of another group H, which we call a
homomorphism if the mapping preserves products.

DEFINITION: A mapping G — H of the elements of a group G onto those
of a group H is called a homomorphism if whenever g, — hy and g, — h,

then g1g, — hih,.

In the homomorphism G — H let 1 be the identity of G and let 1 — e,
where e is in H. Then 12 — €% Since 12 = 1, then e? = e. We see that e is
therefore the identity of H. Also if g — h and g ! — k, then gg™! — hk, and

so 1 — hk = e. Therefore k = h~! and the mapping takes inverses into
inverses. We may observe that a one-to-one homomorphism is an
isomorphism.

ExampLE 2. If G; i1s the permutation group above and H 1is the
multiplicative group of the two real numbers 1, —1, then we have a



homomorphism:

T — 1 Ty — —1
Ts— 1 s — —1
‘Ia‘—>1 Iﬁ‘—’—‘l

Not only are permutation groups of interest in themselves, but also every
such group is isomorphic to a permutation group.

THEOREM 1.4.2 (CAYLEY). Every group G is isomorphic to a
permutation group of its own elements.

Proof: For each g € (7, define the mapping R(g): x — xg for all re(F
For a fixed g this is a mapping of the elements of G onto themselves, since
for a given y, yg ! — (yg ')g =y. It is also one-to-one, since from x,g = x,g
it follows that x; = x,. Thus R(g) is a permutation for each g. The mapping
R(gDR(gy) is the mapping T 5 2(g1)gs = T(gige). and so, R(g)R(g)
= R(g,g,). Moreover, inR(g)),1 5 gy, andinl £5 g,. Hence if g; # g»,
then R(g;) # R(g,). Thus the mapping ¢ £ R(g) is an isomorphism. We
observe in addition that R(1) = I, the identical mapping, and that R(g ")R(g)
=1, sothat R(g ) =[R(g)] .

The permutations [(g):x £ xg are called the right regular
representation of G. We may also consider the permutations
L(g:l X 55 g, the left regular representation of G. We find that L(g) is

anti-isomorphic to G. This means that the mapping L(g) is one-to-one and
that it reverses multiplication, i.e., L(g2,) = L(g,)L(g).

If we have a set of subgroups H; of G where j ranges over a system of
indices J, then the set of elements of G, each of which belongs to every H,,
will satisfy S| and S, and so be a subgroup H called the intersection of the
H;. We write this: H = f?l H i. Moreover, the set of all finite products,
212, " * * g, where each g; belongs to some H; also satisfies S1 and S2. This

set forms a subgroup 7 called the union of the H,, written T = 1'\5". H i.

For the intersection and union of two subgroups H and K we write H N K and



H U K, respectively. This notation is in agreement with that of lattice theory
and will be considered more fully in Chap. 8.

An arbitrary set of elements in a group is called a complex. If A and B are
two complexes in a group G, we write AB for the complex consisting of all
elements ab, g ¢ A. b € B, and call AB the product of 4 and B. We easily
verify the associative law (AB)C = A(BC) for the multiplication of

complexes.
If K is any complex in a group G, we designate by {K} the subgroup
consisting of all finite products x; - - - x,,, where each x; 1s an element of K

or the inverse of an element of K. We say that {K} is generated by K. It is
easy to see that {K} is contained in any subgroup of G which contains K.

1.5. Cosets. Theorem of Lagrange. Cyclic groups.
Indices.

Given a group G and a subgroup H. The set of elements /x, all j ¢ Ff,
T € (7 x fixed, is called a left coset of H and we write Hx to designate this
set. Similarly, the set of elements x4, all | ¢ J, is called a right coset xH
of H.

THEOREM 1.5.1. Two left (right) cosets of H in G are either disjoint or
identical sets of elements. A left (right) coset of H contains the same
cardinal number of elements as H.

Proof: 1f cosets Hx and Hy have no element in common, there is nothing
to prove. Hence, suppose z ¢ Hx. 2 € H ( Then z = h\x = h,y. Here x =
hy 'hyy and hx = hh,'hyy = h'y, whence Hx € Hy. Similarly, iy = hhy 'hix
= h'"x, whence Hy © Hx. Here Hx = Hy; that is, the sets are identical. A
similar proof holds for right cosets. The correspondences } = hi.
h < xh- h € H, show that H, Hx, and xH contain the same cardinal
number of elements.

The element x = x1 = 1x belongs to the cosets xH and Hx and is called
the representative of the coset. From Theorem 1.5.1, any element g ¢ A
may be taken as the representative, since Hu = Hx. Thus H = H1 = 1H is one
of its own cosets, and it is usually convenient (and under certain conventions




compulsory) to take the identity as the representative of a subgroup regarded
as one of its own cosets. We write

(1.5.1) G=H+ Hzy + -+ + Haz,

to indicate that the cosets H, Hx,, - - -, Hx, are disjoint and exhaust G. Here

the indicated addition is only a convenient notation and not to be regarded as
an operation.

Since (Hx)~! (the set of inverses of the elements of the form /x) is equal

to x 'H and (yH) ! = Hy!, there is a one-to-one correspondence between
left and right cosets of H. Thus, from (1.5.1),

(1.5.2) G=H+zmH+ oo + 270,

The cardinal number r of right or left cosets of a subgroup H in a group G is
called the index of H in G and is written [G:H]. The order of a group G is
the cardinal number of elements in G. The identity alone is a subgroup, and
its cosets consist of single elements. Thus the order of a group is the index of
the 1dentity subgroup.

THEOREM 1.5.2 (THEOREM of LAGRANGE). The order of a group G is the
product of the order of a subgroup H and the index of H in G.

Proof: Each of the r = [ G:H] disjoint cosets of H in G contains the same
number of elements as H, which is the order of H.
If H is a subgroup of G, and K is a subgroup of H, let

G=H+H$2+“‘+HI,,
H=K-++Ky; + -+ + Ky,

Then, for g € G, g=hx, b ¢ H inaunique way, and 2 = ky,, Jo ¢ K
uniquely. Thus the cosets of K'in G are givenby Kyx; i =1, -~ rj=1," ",
s. For two such cosets to be equal, they would have to belong to the same
coset of A and so have the same x;. Multiplying by xj_1 on the right, we see
that they would also have to have the same y;. Thus the cosets of K in H are
given by Ky;x;, and these are all different. We have thus proved the theorem:



THEOREM 1.5.3. If G 2 H 2 K, then [G:K] = [G:H|[H:K].

A group G is cyclic if every element in it is a power b’ of some fixed
element b. If we write (b~ 1) = b7, then by the associative law and induction

we can show b"b' = b™" for any integral exponents m, ¢. If all powers of b
are distinct, then the cyclic group is of infinite order and is isomorphic with
the additive group of all integers, these being the exponents of the generator
b. If not all powers are distinct, let »” = b’ with m > ¢. Then b = 1, with m
— ¢ positive. Let n > 0 be the least positive integer, with 4" = 1. Then we
readily see that the elements of the group are 1, b, - - -, »* ! and that with 0 <
rs<n b'bS=b"5ifr+s<n, while b* = b if r + s > n. From this we
may verify directly that for each positive n there is, to within isomorphism, a
unique cyclic group of order n. This is also the additive group of integers
modulo n. Thus, for a cyclic group generated by an element b, its order will
either be infinite or some positive integer n, in which case » is the smallest

positive integer such that 5" = 1. We define the order of an element b as the
order of the cyclic group {b} which it generates.

The nature and number of subgroups of a group G are surely of great
value in describing G itself. But if G contains no subgroup except itself and
the identity, then there are no proper subgroups which describe its structure.
In this case we can give a very simple direct description of G.

THEOREM 1.5.4. Let G be a group, not the identity alone. Then G has no
subgroup except itself and the identity if, and only if, G is a finite cyclic
group of prime order.

Proof: Under the hypothesis if b # 1 is an element of G, then the cyclic
group generated by b is not the identity and must be the entire group G. If b is

of infinite order, then b? generates a proper subgroup, the elements 5%. Hence
b is of finite order, n, and " = 1. If n is not a prime, thenn =uv withu > 1, v

> 1. Here the powers of b* generate a proper subgroup of order v. Hence 7 is
a prime and G is a cyclic group of prime order. But from the Theorem of
Lagrange a group of prime order cannot contain a subgroup different from the
identity and the whole group.

There is a basic relation on indices of subgroups.



Theorem 1.5.5. Inequality on indices. [AU B:B] > [A4:4 N B].

Proof: Call AN B=D and let A=D1 + Dx,+ - - - + Dx,. Then we assert
that the cosets B1, Bx,, - - -, Bx, are all distinctin 4 U B. For if Bx; = ij *1,
thenx; = bx; with ¢ B. But here x; and x; both belong to 4, and so for this
balsoph ¢ A whence h ¢ A (Y B = IJ; so the cosets Dx; and Dx;
have in common the element x; = bx; contrary to assumption. Hence there are

at least as many distinct cosets of B in A U B as there are of 4 N B in 4,
proving the inequality.

THEOREM 1.5.6. EQUALITY OF INDICES. If[A U B:B] and [A U B:A] are
finite and relatively prime, then [A U B:B] = [A:A N Bl and [A U B:A] =
[B:A N B].

Proof: By Theorem 1.5.3,

[AUB:ANB]=[AUB:B][B:ANB] =[A\U B:A][A:4 N BJ.

By Theorem 1.5.5, [4 U B:B] > [4:4 N B], but also from the above relation
[4 U B:B] divides [4:4 N B], since it is relatively prime to [4 U B:A]. Hence
[AU B:B] =[A4:A N B] and similarly [A U B:4] =[B:4A N B].

1.6. Conjugates and Classes.

Let G be a group and S any set of elements in G. Then the set S’ of
elements of the form x Lsx, 8 € S, x fixed, is called the transform of S by x
and is written in either of the forms S’=x"1Sx or §'= S*.

LEMMA 1.6.1. S and S contain the same number of elements.

Proof: g # p—lgx is a 1-1 correspondence, since s — x lsx =s'is a
mapping and so is s’ — xsx | =x(x lsx)x I =s.
If S 'and §" are two sets in G, H is some subgroup of G, and some g ¢ F

exists such that S’ = §*, we say that S and S’ are conjugate under H. If S’ =



x1Sx, then S = (x 1)71Sx~! Moreover, if S" =718, then S =y 'x 1Sxy =
() (xp)"1S(xy). Since trivially S = 17151, we see that the relation of being
conjugate under H is an equivalence relation, being reflexive, symmetric, and
transitive. We call the set of all S’ conjugate to a given S a class of

conjugates. From (x lsx)™! = x7ls7x and x lspx-x7lsx = x7I(sysp)x, we

deduce:

LEMMA 1.6.2. Any set conjugate to a subgroup is also a subgroup.

Ifx 1Sx =S, then S =xSx!. Ifalso y 1Sy = S, then S = (x») 'S(xy). Hence
the set of 42 ¢ [, such that §* = §, is a subgroup of // which we shall call
the normalizer of S in H, and we designate this as Ny(S). Again the set of

1 € H such that x Lsx = s for all 8 € S, may similarly be shown to be a
subgroup of H which we call the centralizer of S in H and designate Cy(S)
[or Z;(S) if we follow the German spelling]. Note that if S consists of a
single element, the centralizer and normalizer are identical, moreover,
always Ci(S) € Ng(S). When H = G it 1s customary to speak merely of the

normalizer or centralizer of S. The centralizer Z of G in G 1s called the
center of G.

THEOREM 1.6.1. The number of conjugates of S under H is the index in
H of the normalizer of S in H, [H:Ny(S)].

Proof: Write Ni/(S) = D for brevity and let
H=D+Dx;+ +++ + Dz,. r = [H:Ng(S)].

Then x 1Sx = y71Sy, x, Y € H if, and only if, S = (;x )7'SGx™); that is,
yr— 1e Dor Y € Dx. Hence two conjugates of S under H are the same if,
and only if, the transforming elements belong to the same left coset of D.
Hence the number of distinct conjugates is the index of D in H, as was to be
shown.

If S consists of a single element s, the conjugates under G form a class.
Thus the classes of elements in G are a partitioning of the elements of G, and
we write



(1.6.1) G=Ci+Cot -+ C,

the C; being disjoint classes and every element being in exactly one class.
The identity 1 1s always a class. From Theorem 1.6.1 the number of elements
in a class C; is the index of a subgroup and hence a divisor of the order of the

group.

1.7. Double Cosets.

Given a group G and two subgroups H and K, not necessarily distinct, the
set of elements HxK, where x 1s some fixed element of G, is called a double
coset. As with ordinary cosets, we may prove:

LEMMA 1.7.1. Two double cosets HxK and HyK are either disjoint or
identical.

Proof: Here, if z = hyxk, = hyyk,, hxk = hh, 'hyykyk, 'k, whence HxK C
HyK, and similarly, HyK € HxK.

A double coset HxK contains all left cosets of H of the form Hxk and all
right cosets of K of the form /#xK. Moreover, it 1s clear that HxK consists of
complete left cosets of H and of complete right cosets of K.

THEOREM 1.7.1. The number of left cosets of H in HxK is [K:K N
x 'Hx], and the number of right cosets of K in HxK is [x "Hx:K N x'Hx].

Proof: We put the elements of HxK into a 1-1 correspondence with the

elements x ' HxK by the rule ke <= a—Lhzlk. This correspondence gives
a 1-1 correspondence between the left cosets Hxk of H in HxK and the left

cosets x ' Hx -k of x 'Hx in x 'HxK, and also between the right cosets #xK of
K in HxK and the right cosets x 'hxK of K in x 'HxK. Let us write x 'Hx = 4,
and AN K=D.Now ifA=1-D+u,D+- - - +uD, r=[4:D], thenqy; ¢ A
, whence K, u,K, - - -, u K are right cosets of K in AK. They are distinct since
if u,K = qu, then ut—‘“lui e K, but since u, Uj € A, this would mean that

ui”luj- e [, and thus u,D = u;D contrary to assumption.” Every right coset



of K in AK is of the form aK, where g ¢ A is of the form u,d with (f ¢ ]).
But u,dK = u;K. Thus the number of right cosets of K in 4K is [4:D] =

[x 'Hx:x 'Hx N K], and by the 1-1 correspondence, this is the number of
right cosets of K in HxK. In the same way it may be shown that the number of
left cosets of 4 in AK is [K:D] = [K:x 'Hx N K] and this, by the 1-1
correspondence, is the number of left cosets of H in HxK.

1.8. Remarks on Infinite Groups.

Many of the theorems on groups do not involve the issue as to whether or
not the groups are finite. But in some instances the facts are essentially
different for finite and infinite groups, and occasionally when the facts are
similar, the methods of proof differ.

An infinite group G may have certain finite properties. Some important
properties of this kind are:

1) G 1s finitely generated.

2) G is periodic, that s, the elements of G are of finite order.

3) G satisfies the maximal condition: Every ascending chain of distinct
subgroups A; € A, € A3 C - - - is necessarily finite.

4) G satisfies the minimal condition: Every descending chain of distinct
subgroups 4; D 4, D A3 D - - - is necessarily finite.

An infinite group G is said to have a property locally if this property
holds for every finitely generated subgroup. A family H; of homomorphic
images of a group G is said to be a residual family for G, if for every g # 1
of G there 1s at least one /; in which the 1mage of this g is not the identity.
We say that G has a property residually if there 1s a residual family for G of
homomorphic images all having the property.

THEOREM 1.8.1. 4 group G satisfies the maximal condition if, and only
if, G and every subgroup of G are finitely generated.

Proof: Let H be a subgroup of G which is not finitely generated. We may
construct recursively an infinite ascending chain of distinct subgroups of H,
{h)y € {h,hyy c---ci{h, -, h} c- - -, bychoosing h; arbitrarily,
and recursively /4, an element of A not in {hy, - - -, h;_}. Such an A; always



exists, since /{ cannot be the finitely generated group {/;, - - -, h,}.

Conversely, suppose that G and all its subgroups are finitely generated. Then
let By € B, © By € - - - be an ascending chain of subgroups in G. We shall

show that after a certain point in this chain all subgroups are equal, and so
there 1s not an infinite ascending chain of distinct subgroups. The set of all
elements b, such that ) ¢ B for some B, in the chain, forms a subgroup B

of G, since if b € B; and b’ € B;, then both b and b’ belong to any B;
with k> 17, k>, and so also their product and their inverses are in B,.

By hypothesis B is finitely generated, say, by elements x; - - -, x,,. Let B,
be the first B; containing x; and generally B;; be the first B; containing x;, for
k=1, -, n. Thenifm is the largest of j, - - - j,, B,, will contain all of x;, -
-+, Xx,,and so B=B, — B,.; =" - -, and all further groups in the chain are

s Vi

equal to B. We shall see later that there are groups which are finitely
generated but which have subgroups that are not finitely generated.

THEOREM 1.8.2. 4 group G which satisfies the minimal condition is
periodic.

Proof: If G contains an element b of infinite order, then {b?} > {b*} > -

-+ D (b*} D - - - is an infinite descending chain of distinct subgroups.

In an infinite group we cannot use finite induction on its order, and so
some substitute is needed to replace this method of proof which is so
valuable for finite groups. One way to make this replacement is to appeal to
certain very general axioms on sets and ordering. Suppose that we have an
ordering relation @ < b on the elements of a set S of objects (a, b, ¢, - - *}.
The ordering may satisfy some of the following axioms:

Ol)Ifa<b, and b<a, thena=b.

O2)Ifa<b, and b<c, then a <c.

O3) Either a<b or b <a for any two a, b.

04) Any nonempty subset T of S has a first element x,, i.e., an element

xy such that x; <t for every t ¢ T

If the first two axioms hold, we say that the ordering is a partial
ordering. If the first three axioms hold, we say that the ordering is a simple
ordering. If all four axioms hold, we say that the ordering is a well-ordering.



We may appeal to the axiom of well-ordering: Every set S may be well-
ordered. Let us write a < b to mean a < b but a # b.

In a well-ordered set we may prove propositions by the method of
transfinite induction. This proceeds as follows: Designate the first element
of § as 1. Then, if P(a) is a proposition about the elements of S and if P(1) is
true, and if the truth of P(x) for all x < a implies the truth of P(a), we
conclude that P(b) is true for all f ¢ §. Let T be the subset of S, such that
P(?) 1s false for ¢ ¢ T'. If T is nonempty, it contains a first element c. But
then either ¢ = 1 or P(x) 1s true for all x <c. In either event this would lead to
the truth of P(c) contrary to the choice of ¢ in 7. Hence 7 must be empty and
P(b) true for all ¢ §. We note in passing that in a well-ordered set any
descending sequence a; > a, > a3 > - - - 1s necessarily finite since it must

contain a first element.
Another axiom, logically equivalent to the axiom of well-ordering is
Zorn’s lemma. This again deals with ordering in sets.

LEMMA 1.8.1. (ZORN’S LEMMA). Given a partially ordered set S.
Suppose that every simply ordered subset of S has an upper bound (lower
bound) in S. Then S has a maximal (minimal) element. Here if U is a subset
of §, then an upper bound b of U is an element such that b > u for all 9y ¢ [
. A maximal element w has no upper bound different from itself. Reversing
the inclusion, we similarly define lower bound and minimal element.

Suppose we consider subgroups of a group G partially ordered by
inclusion 4 € B if 4 is a subgroup of B. Then the set of all elements in a
simply ordered subset of subgroups will itself form a subgroup, since if g; 1s

in one of the groups and g, 1s in another, then both g; and g, are in the greater

of the two subgroups and so also are their product and their inverses. For this
reason Zorn’s lemma i1s well suited to proofs in group theory or to abstract
algebra in general.

Both the Axiom of Well-Ordering and Zorn’s lemma are logically
equivalent to:

AxioM OF CHOICE. For any family F of subsets {S,} of a set S, there is a
choice function f(S;) defined for the subsets of F whose values are elements

of S, such that f(S:) = @; € S; the subsets Si not being void.



In certain arguments the Axiom of Choice appears to lead to paradoxes,
and for this reason it is suspect. All three principles are surely valid if the set
S is countable, i.e., its objects may be put into a one-to-one correspondence
with the natural numbers 1,2,3, - - -. Presumably, they are valid for other sets
S and possibly for all well-defined sets, though it might be remarked that as
yet no one has actually constructed a well-ordering of the set of all real
numbers. When using any one of these principles in this book, it is to be
understood that by “Every set S we mean “Every set S for which the axiom
is valid.”

A useful application of these methods is the following:

THEOREM 1.8.3. Let g be an element of a group G and H a subgroup of
G which does not contain g. Then there is a subgroup M containing H
which is maximal with respect to the property of not containing g.

Proof: We use Zorn’s lemma. Subgroups containing H but not containing
g form a partially ordered set under inclusion. The elements of a simply
ordered set of these groups themselves form a group which contains H but
not g. Hence a maximal group M exists containing H but not g.

Using this theorem, we easily derive the following:

THEOREM 1.8.4. Let G be a finitely generated group and H a proper
subgroup of G. Then there exists a maximal subgroup M of G containing H.

Proof: Let G be generated by x4, - - -, x,, and let y; be the first of xq, - - -,
x,, not contained in . Let M| 2 H where M 1s maximal with respect to the
property of not containing y;. Then any subgroup of G containing M, properly
contains y; and so also {My, y,} = H;. If H; = G, then M, is the maximal
subgroup sought. If not, choose M, 2 H; where M, 1s maximal with respect
to the property of not containing y,, the first of x; - - -, x,, not contained in /.
Since G = {x, - * *, x,,}, by continuing this process we must reach an M, 2
H_ {2 -2 H, where {M,; y;} =G and M; = M 1s the maximal subgroup
sought.

1.9. Examples of Groups.



The one-to-one mappings of a set onto itself which preserve some
property usually form a group. Many of the most interesting groups arise
naturally in this way. The symmetries of a geometric figure are of this kind.
These are the congruent (i.e., distance-preserving) mappings of the figure
onto itself. The first two examples below are groups of symmetries.

ExAMPLE 1. DIHEDRAL GROUPS. The symmetries of a regular polygon of
7 = 3 sides form a group of order 2n. These are determined entirely by
the way in which the vertices are mapped onto themselves. Let the vertices
be numbered 1, 2, - - -, n in a clockwise manner. The vertex 1 may be
mapped onto any vertex 1, 2, - - -, n, and the remaining vertices placed in
either a clockwise or a counter-clockwise direction. All symmetries are

generated by the rotation
- 1,2,3 ---n-1n
2,3,4---n 1)

and the reflection

Here a" = 1, b* =1, ba = a 'b. Moreover, these relations determine the group
completely, since every element generated by @ and b is of the form a' ¥/ - -

- a' b/, and since ba' = a”'h, as we may show from the last relation, every

element can be put into the form @’ or a’b withi =0, 1, - - -, n — 1; these are
the 2n different elements of the group. These relations also define a group for
n =2 which is of order 4. This is called the four group.

EXAMPLE 2. SYMMETRIES OF THE CUBE. The symmetries of the cube are
determined by the mappings of the eight vertices onto themselves. Let these
be numbered as in the figure. The symmetries include the rotation



and the reflection

S 6

Fig. 1. Symmetries of and the reflection the cube.

The elements a and b generate a group G; which takes every vertex into
every other vertex. We may see this from the diagram

In this diagram ¢ .1 J means that the element x takes 7 into j. From this we
may read that ba? takes 4 into 7. The elements that fix 1 form a subgroup H,
and we may write

G, = H, + Hix + Hixs + Hixy + Hivs + Hixe + Hizr + His,

where x; 1s an element taking 1 into ;. We may take the x’s as follows: x, = a,

X3 =a%, x4, = @, x3 = a’h, xg = a’ba, x, = a’ba’®, xg = a’ba’. Since there are



only eight letters in all, and all elements in a coset Hx; take 1 into the same i,
this includes all conceivable cosets of /| and the index of H; in G is 8.

A rotation of the cube fixing the vertex 1 must permute the three adjacent
vertices cyclically. Thus H; is of order 3 containing only 1, b, %, and so G,

is of order 24. The reflection c is not in G, but as ¢> = 1, ca = ac and cb =

a’ba’c, we see that G, the group generated by a, b, c satisfies G = G, + Gc
and 1s of order 48. G is the full group of symmetries of the cube.

ExAMPLE 3. What is the order of a group G generated by elements a and b
subject only to the relations

=1 bB=1 ba=abd?

Every element of G may be expressed by a finite sequence of a’s and b’s.

From the relation ba = a’b we may ultimately express an element in a form in
which no b is followed by an a. Thus every element may be put in the form

Q':aibfr ?:=0: 1::6; j=0:192

From this we see that the order of G is, at most, 21. But the actual order
depends on the value of 7 in the relation ba = a’b. We see that ba* = a’ba =
a’(a"b) = a*'b, and similarly, ba’ = a”b. Thus b%a = ba’b = a’*b*. From this
we get b%a’ = a’?b%. Hence b’a = ba™b*> = a’*b>. But as b = 1, this gives a =
a’?; but also a’ = 1. Of the values r =1, 2, 3, 4, 5, 6, we find that » =3, 5, 6

lead to @ = 1, and the group is merely the cyclic group of order 3 given by b
=1.Butr=1, 2, 4 do not lead to this result. If » = 1, then ba = ab = ¢ is an

element of order 21. Conversely, in a cyclic group of order 21, with 2! =1,
ifweputb=c’,a=cS wehavea’ =1, b3=1, ba=ab = c. With r = 2 the
following permutations work:



For r = 4 the same permutation for a and the inverse of the second
permutation will do for b. This example 1s meant to show that an apparently

slight change in defining relations can make a major difference in the group
defined.

ExAMPLE 4. Let us find the group of permutations on the seven letters 4,
B, C, D, E, E G which permute among themselves the columns of the
following diagram, the order of the letters in a column being immaterial:

A,B,C,D,E,F, G
B,C,D,E, F,G A
D,E,F G, A,B,C.

We see at once that the permutation
_(A,B,C,D,E,F, Q@
"~ \B,C,D,E,F,G, A

permutes the columns cyclically. Thus, if G is the entire group of
permutations and H is the subgroup taking the first column into itself, the

coset Ha' =1, - - - 6 consists of all elements mapping the first column onto
the i + 1st. Hence

G=H+ -+ Hd, [G:H]=

Within / there may be elements permuting 4, B, D cyclically. If we try this,
we find that this does not appear to determine the mapping of the remaining
letters, but if we also assume that C is mapped into itself, a permutation is
completely determined which works

» — (4 B,C,D,EF,G
=\B,D,C, AFGE)

Thus, if K is the subgroup which fixes the first column and also the letter 4,

H=K-+ Kb+ Kb?, b*=1, [H:K]=3.



Within K let us seek an element which interchanges B and D. Take

_ (A,B,C,D,E,F,G
©=\4,D,C,B,F,E,G)

Hence, if T is the subgroup fixing 4, B, and D,
K=T+Te =1, [K:T]=2.
Within 7, the three letters A, B, D are fixed and the letter C can go into any

one of the four possibilities C, E, F G. Each one of these choices leads to
exactly one permutation:
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Thus T is a group of order 4, K is of order 8, H is of order 24, and G is of
order 168. If the seven letters 4, - - -, G are regarded as points and the
columns as lines, the diagram represents the finite projective plane with
seven points, and the group G is its collineation group.
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EXAMPLE 5. THE QUATERNION GROUP. The following group of order 8 is
in many ways an exceptional group. Its unusual properties will be discussed
later in §_12.5. Here we are interested in presenting it in terms of its
multiplication table, or Cayley table, as it is called after the English
mathematician Cayley. In the row with x; on the left and in the column with x;

at the top we enter the product x; = x;.



L1, T2, X3, T4, Ts5y T, L7, T

Iy | Ty, T2, T3, T4y Tsy Le, L7, T8
To | X2, T5, L4, L7, Tgy L1, T8, T3
T3 | X3, T3, Ts, T2, T7, T4, L1, To
Ty | Ty, T3, Tgy Ty, T, L7, T2, T1
Ts | L5, Tpy T7, T, L1, Lg, T3, T4
Xg | Xs, L1, Tg, T3, To, L5, Ty, L7
£y | Ly, T4, L1, Tgy L3, Lg, T5y T2
rs | Xs, ¥y, Lo, L1, T4, T3, T, Ls.

In this table, from the fact that every x; occurs exactly once in every row and
in every column, we see that in a product ab = ¢ any two of a, b, ¢ determine
the third uniquely. Thus the preceding table is the multiplication table of a
quasi-group. By inspection we see also that x;x; = xx; = x; in every instance
whence x; = 1 1s a two-sided unit and the table determines a loop. But both
these properties are preserved if we replace the last two rows by

Xy | Ty Lyy Loy X1, T3y Tsy Tgy L5
Is | Isy, X7, L1, Tg, L4, T3, T5, Ta.

But the table as given is alleged to be the multiplication table of a group, and
for this i1t is necessary to verify the associative law (ab)c = a(bc) for
products.

A full verification of the associative law in this case would involve

potentially 8 = 512 verifications. Even though it is easy to see that (ab)c =
a(bc) whenever any one of a, b, or ¢ is the identity, this still leaves 343
verifications. Here we appeal to the converse of the Cayley Theorem 1.4.1.

THEOREM 1.9.1 (CONVERSE OF CAYLEY’S THEOREM). 4 loop is a group if
the right regular mappings x — xg form a group.

Proof: Here in R(g)R(h) we have 1 — g — gh. But also in R(gh) we
have 1 — gh, and this is the only mapping taking 1 into gh. Hence R(g)R(/)
= R(gh), whence, for every x, (xg)h = x(gh) and the associative law holds.

In this case we write a = x,, b =Xx_ and calculate



Ty, Ts, T3, T4, T, Tg, L7, Ta
A = R(ﬂ) s 3 w2y 3y dy 3 6y ] )’
Is, Ts, Ty, T3, LTg, T1, T4, L7

B = R(b)

Ly, Tz, X3, X4, Tp, Tg, L7, Tg
T3, L4, X5y, Lg, L7, Tg, T1, T2

Here 4* = B* =1, 4% = B%, BA = A’B, and we easily see that these generate a
group of order 8 that is indeed the right regular representation of the given
loop and which is therefore a group. The second rows of the permutations
are the columns of the multiplication table. In terms of the generators a and b

2:b2

we havex;=1,x,=a,x3=b, x4,=ab, xs=a xg=a’,x;=b>=a’b, xq

= a’b; also, a®* =1, b* =1, b* = a2, ba = a°b.

EXERCISES

1. Show that from the associative law (ab)c = a(bc) it follows that all methods of bracketing aap
* ay, without altering the order of the factors, yield the same product.

2. Show that (ab)_1 =p 1ol in any group and that more generally (ajap - - - an_lan)_l =
-1 -1 -1 -1

dp dp—1 -~ 142 aj

3. Show that @ and @™ ! are of the same order.

4. Show that ab and ba are of the same order. (Hint: ab and ba are conjugate elements.)

S. If =1, and b" = 1, where m and n are positive integers, and if ba = ab, show that (ab)k =1,
where £ is the least common multiple of m and n. Find an example with ba # ab where this is
untrue.

6. If a group G has only one element a of order 2, show that for every x in G, xa = ax.

Show that the only finite group with exactly two classes of elements is the group of order 2.
8. If p < g are primes, show that a group of order pg cannot have two distinct subgroups of order

q.
9. If H is a proper subgroup of the finite group G, show that the conjugates of H do not include all
elements of G.

10.  Show that the loops of orders 1, 2, 3, 4 are groups, but find a loop of order 5 which is not a
group.

11.  Show that the double coset HxK contains precisely those right cosets of K which have at least
one element in common with Hx.

12.  (William Scott.) Show that a system with a binary product and a unit 1 such that 1a = al =a for
all a will be associative if we take as a law the equality of two distinct bracketings of ajap - - -

ay.

13.  From the axioms of the first definition of a group prove the uniqueness of the unit 1 and the



uniqueness of the inverse a L.

14. If 4 and B are two finite subgroups of a group G, show that the complex AB contains exactly

[4:1][B:1]/[A N B:1] distinct elements.

% The statement of M4 given here applies to a system in which both addition and multiplication are
defined. If addition is not defined, there is no 0 in S, and the law can be rephrased: “For every a, a!
exists such that (¢ D)a = a(a 1) =1.”

% For a discussion of cardinal numbers, see Birkhoff and MacLane [1], p. 356. This number and
others like it throughout the book refer to the Bibliography.

ZH. B. Mann [1].



2. NORMAL SUBGROUPS AND
HOMOMORPHISMS

2.1. Normal Subgroups.

A subgroup H of a group G is said to be a normal subgroup ifx 'Hx = H
for all 4 ¢ (. In the terminology of §1.6 a subgroup H of G is a normal
subgroup if No(H) = G.

LEMMA 2.1.1. A subgroup H of G is a normal subgroup of G if and only
if every left coset Hx is also a right coset xH.

Proof: If x 'Hx = H for all x, then Hx = xH and conversely, if Hx = yH

then 1 € ] H so that yH = xH. Hence Hx = xH for all 1 € (7 and so x 1 Hx
=H.

COROLLARY 2.2.1. A subgroup of index 2 is necessarily a normal
subgroup.

For, if G= H + Hx, then G=H + xH.

For finite groups, x 'Hx € H implies x 'Hx = H, since x 'Hx and H have
the same number of elements, but the inclusion need not imply equality for
infinite groups. However, if x Hx € H and xHx~' € H, then H = x(x ' Hx)x ™!
C xHx ' € H, whence H = xHx ! and similarly H = x 'Hx. Thus x 'Hx € H
for all x 1s sufficient for H to be normal.

A group G that contains no proper normal subgroup is said to be a simple
group. The term “simple” must be understood in a purely technical sense.
The groups without any proper subgroups are, by Theorem 1.5.4, the finite
cyclic groups of prime order, and these are simple groups both in the
technical sense and in the more ordinary sense of being uncomplicated. But
there are many other simple groups, one of these being the group of order 168
given in the fourth example in §1.8. The determination of the finite simple




groups is an unsolved problem. It has been conjectured that a simple finite
group, except for those of prime order, is necessarily of even order, but even
this seems to be an unusually difficult problem.

2.2. The Kernel of a Homomorphism.

Suppose the group H is a homomorphic image of the group G. Consider
the set 7' of elements { ¢ (7 consisting of all elements of G mapped onto the
identity of H.

(2.2.1) G—H T-l.

Asnoted in§1.4,1 — 1, whence] ¢ T.Ift—> 1, >u thenl =" —
u.But1 — 1, whenceu=1,andsot ' — 1 and §=1 ¢ T'. Alsoift; — 1,1,
— 1, then #1z, — 1, whence {,f, ¢ 7T". Hence T is a subgroup of G.
Moreover if 0 ¢ (oL € T, thenx -y, t —> 1, x1 -y and x 'tx —

y 1y =1, whence 2~{x € 7', and so T is a normal subgroup of G. The set
T is called the kernel of the homomorphism G — H.

THEOREM 2.2.1 (FIRST THEOREM ON HOMOMORPHISMS). [n the
homomorphism G — H the set T of elements of G mapped onto the identity
of H is a normal subgroup of G. Two elements of G have the same image in
H if, and only if, they belong to the same coset of T.

Proof: We have already shown that 7' is a normal subgroup of G. Suppose
X—uy—uxie (7, w e H. Thenxy_1 — 1 and ;J_:y‘l e T, whence
T € 'Ty and x and y are in the same coset of 7. Conversely, if 1 ¢ 'Ty, then

x =ty, and if y — u, then (since t — 1) we have x — u and x and y have the
same image in H.

2.3. Factor Groups.

In the preceding section it was shown that the kernel of a homomorphism
of a group G is a normal subgroup 7. Conversely, it is true that every normal



subgroup 7" is the kernel of a homomorphism and, in fact, of a unique
homomorphism. Suppose

(2.3.1) G=T+ Tz + --- + Tz,

where 7' is a normal subgroup of G. We shall take the cosets Tx; as the
elements of a system H. We define a product in H as

(2.3.2) (Tz:)(Tz;) = Tx,

ifﬁiﬂ,’.‘j £ T:'--'.k in G.

It 1s necessary to show that the product is uniquely defined. Let #,x; and
1,x; be arbitrary elements of Tx; and Tx;, respectively. Here
31I{52Ij = hxid.x;s 1 iy = ggxix?‘, since 7 is a normal subgroup.
But if TiT; € T;z:k, then also ,",3:1:,_-:1:‘; € T;x:k. Thus all products of an
element in 7Tx; and an element in 7x; yield elements of the same coset Tx;.

Thus the product in (2.3.2) depends solely on the cosets and not on the choice
of the representatives; hence the product in H is well defined.

Since T is a normal subgroup 72 =T, Ix;=x,T. Hence, in H, T 1s a unit as
T Tx; = Ix;, Tx; - T = Ix;T = TTx; = Ix;. Moreover, the product is
associative, since (Tx;Tx;) Txy = Txpexy = TxTx;Txy). If 22571 € Tz;, then
IxIx; contains Z;£;~! = 1, and so IxIx; = T, whence in H, Tx; is the
inverse of T;, as we may also readily verify that Tx;Tx; = T. This completes

the verification that H is a group which we call the factor group of G with
respect to T. We write H= G/T.

THEOREM 2.3.1 (SECOND THEOREM ON HOMOMORPHISMS). Given a group
G and a normal subgroup T. Then if H= G/T, there is a homomorphism G
— H whose kernel is T. This homomorphism is given by g — Tx; if

g € Tx;inG.

Proof: Consider the mapping g — Tx; of G onto H when € Tz inG.
If g, € Tx;, gz € Tﬂ:j, then (as we showed) @102 € T, where
Til; € Tz . Hence gg, — Tx;, = Tx;Tx;. Thus the mapping of G onto H
preserves products and so is a homomorphism. Since 7 is the identity of G/T,



theng — 1 (= T'in H) if, and only if, g € T in G, whence T is the kernel of
the homomorphism. This completes the proof.

THEOREM 2.3.2 (THIRD THEOREM ON HOMOMORPHISMS). If G — K is a
homomorphism of G onto K, and T is the kernel of the homomorphism, then
K is isomorphic to G/T = H. If x — x* in the homomorphism G — K, then
¥ &5 Ty is an isomorphism between K and H.

Proof: Since elements of G in the same coset of 7 have the same image in
K, the correspondence ¥ = T’ is one to one. But if x — x*, y — y*
then xy — x*y*. But Ty e 1Y, whence j;*y* o T;I:y — TITU
Thus the correspondence z* &5 7T'x preserves products and is an
isomorphism of K and H = G/T.

Let us summarize the content of these three main theorems on
homomorphisms. We have shown that the kernel of any homomorphism is a
normal subgroup, that any normal subgroup is the kernel of a homomorphism
whose image is unique (to within isomorphism), and that this image is the
factor group of the given group with respect to the normal subgroup.

THEOREM 2.3.3. If A and B are subgroups of a group G and either one of
them is a normal subgroup, then AU B = AB.

Proof: We must show that every finite product xx, - - - x, with ; ¢ A

or B can be put in the form ab. Now if B is normal a product ba = aa 'ba =

ab', while if 4 is normal ba = bab™'b = a'b then we can rewrite the product
so that no b precedes an a. The product now takes the formaa, - - - a;b;; -

-~ b,=ab,wherea;,q ¢ Aandb, b ¢ B.

THEOREM 2.3.4. Let T be a normal subgroup of G. There is a 1—1
correspondence between subgroups K* of H = G/T and subgroups K of G
such that G 2 K 2 T, where K consists of all elements of G mapped onto
elements of K*. If K* is normal in H, then K is normal in G and conversely.
Also [G:K] = [H:K*].

Proof: Trivially, the image in H of a subgroup of G is a subgroup. Now if
K* is a subgroup of H, the inverse image K of K* in G will contain 7, the



inverse image of 1. Also the inverse image satisfies the requirements for a
subgroup.

Hence the inverse image of a subgroup K* of H is a unique subgroup K
such that G 2 K 2 T, and the same K* is the unique 1mage of K in the
homomorphism G — H. Hence K = K * is a 1-1 correspondence

between G2 K2 Tand H 2 K* 2 1. If K* is normal in H then x 'Kx —

x* 1 K*c* = K* whence x 'Kx € K for any x, and so K is normal in G.
Again, 1f K is normal, the normality of its image K™ is trivial. Finally, the
inverse image of a coset K*g* is seen to be a coset Kg, whence [G:K] =
[H:K*].

If an arbitrary subgroup A has the image A*, then the inverse image of 4*
is readily seen to be 4 U T = AT.

2.4. Operators.

A mapping a:g — g% of a group G into itself is called an endomorphism

of G or an operator on G, if (xy)* = x**. Thus an endomorphism is a
homomorphism of G into itself. An automorphism is a 1—1 endomorphism
mapping G onto itself. If g* = h* implies g = h, the endomorphism is an
isomorphism, which in a finite group is necessarily an automorphism. But an
infinite group may be isomorphic to a proper subgroup. Thus x — 2x is an
endomorphism which is an isomorphism of the additive group of integers but
not an automorphism.

A subgroup H of G is said to be admissible with respect to
endomorphisms ¢; if [f®: C Jf for all o, It follows immediately from

the definitions that unions and intersections of admissible subgroups are
admissible subgroups. Again it is clear that an operator o may also be
regarded as an operator in an admissible subgroup. But it can happen that
two operators which are different for an entire group may agree in their
effect on an admissible subgroup. Moreover if G — K is a homomorphism of
G onto K whose kernel T is admissible with respect to an endomorphism a,
then we may define a corresponding operator in K. We put

(2.4.1) (Tz)=* = Tx=.



This is a natural definition since applying the endomorphism to the coset 7x
gives only elements belonging to 7x%* We readily verify that this defines an
operator in K and also that x — x* in the homomorphism G — K, then x* —
x*,

Two groups A and B are operator isomorphic if there is a 1-1
correspondence 4 <5 [ and also q¢; £ 3; between the groups and the
operators on them such that g <= b is an isomorphism and g« = [P% in
this isomorphism. Thus an operator isomorphism is stronger than an
isomorphism.

THEOREM 2.4.1. Given a group G and a set Q of operators on G.
Suppose A is an admissible subgroup of G and T an admissible normal
subgroup. Then A N T is an admissible normal subgroup of A and the
factor groups AU T/T and A/A N T are operator isomorphic.

Proof: AN T as an intersection of Q subgroups (i.e., admissible under Q)

will be an Q subgroupof 4. If iy ¢ A M\ Toa € A theng—ua ¢ A
Also, since TisnormalinGand 4 € T, g lua e A M\ T, andso 4N

T 1s normal 1n A.
Letus write D=A4ANT.

(2.4.2) A =D+ Day, + -+ + Da..

Then we assert

(2.4.3) AUT =T+ Taz + --- + Ta,,

using the same coset representatives in (2.4.3) as we did in (2.4.2). Here, if
Ta; = Ta;, then ama;'eT. But aa;"eA, whence
aa; e A M T = D, contrary to (2.4.2). Hence the cosets Tz, in
(2.4.3) are all distinct. Moreover, since 7 is a normal subgroup, 4 U T = TA4,
and so any coset of 7in 4 U T is of the form 7a = Tda;, with a = da; from
(24.2). Butas ¢] ¢ T, Tda; = Ta;, and so the cosets in (2.4.3) will exhaust 4

U T. The correspondence

(2.4.4) Da; s Ta;



is a 1—1 correspondence between the cosets in (2.4.2) and (2.4.3), and thus a
1—-1 correspondence between the elements of A/D and those of 4 U T/T.
Also, if a;a; = da with ¢ [), since D S T, we shall have both Da;Da; =

Day, and Ta;Ta; = Tay. Thus the rule (2.4.4) is an isomorphism between the
factor groups A/D and A U T/T. An operator ¢ ¢ () determines an operator
in A/D and also one in 4 U T/T by the rules (Da,)* = Da;* and (1a;)* = Ta;*.

For the operators given in this way, it is immediate that (2.4.4) determines an
operator isomorphism. This completes the proof.

We may easily verify that a subgroup K of a group G is a normal
subgroup if, and only if, it is admissible under the family of inner
automorphisms of G. In terms of operators we define two successively
stronger forms of normality for subgroups. A subgroup admissible under all
automorphisms of a group is called a characteristic subgroup, and a
subgroup admissible under all endomorphisms is called a fully invariant
subgroup. Thus the center Z of a group G 1s a characteristic subgroup, since

ifzg=gzforall g e (7, then for an automorphism a, we have z%g* = g%z*

and as g runs over all elements of G, g* will also run over all elements of G,
and we conclude that za ¢ /. But the center is not necessarily a fully
invariant subgroup. As an example, consider the group G of order 16 defined
by the relations a* =1, b> = c?> =1, ba = a”'b, ca = ac, cb = bc. Here the
center Z is of order 4 and generated by a? and c. But the mapping a — b, b
— b, ¢ — b defines an endomorphism of G mapping the element of the center
c onto the element b, which is not in the center. But an endomorphism
preserves the form of an element, whence the subgroups generated by all x>,
1 € (G orbyall x Lyl x, Y € (7 will be fully invariant.

A particularly useful property of these stronger forms of normality is the
fact that, although a normal subgroup H of a normal subgroup K of a group G
is not in general a normal subgroup, it follows from the definitions that a
characteristic subgroup of a characteristic subgroup is characteristic, and a
fully invariant subgroup of a fully invariant subgroup is fully invariant. Also
a characteristic subgroup of a normal subgroup 1s a normal subgroup.

2.5. Direct Products and Cartesian Products.



Given two groups 4 and B, we may form from these the set of ordered
pairs(a, b),qa ¢ A-b € B These ordered pairs will be the elements of a
new group, the direct product A x B, if we define our product by the rule

(251) (ﬂ;, b1)(ﬂ2, bz} = ({Ilﬂg, blbg).

The verification that the product rule (2.5.1) satisfies the group axioms with
(1, 1) as the identity element is straightforward, depending only on the
validity of these axioms for 4 and B. Moreover, the correspondence
[:.:1, b) = (f}, {I} shows that 4 x B and B x A are isomorphic, so that we
may speak of the direct product of two groups without specifying their order.
The correspondence g = (u " 1) 1s an isomorphism between A and the set
of elements in 4 x B, with the second component the identity. Similarly,
b = (1, b) is an isomorphism between B and the subgroup of elements
(1, b). Let us identify A and B with these subgroups. With this identification
we say that G = 4 x B is the direct product of its subgroups 4 and B. Since
(a, 1)(1, b) =(a, b) = (1, b)(a, 1), it follows that in 4 x B every element of 4
permutes (or commutes) with every element of B; that is, ab = ba for

ad e Aab € B

In the direct product, (a, b)"' = (a1, b 1). Hence (a,, b)) a,, 1)-(a, by)
= (a; 'ayay, 1), and so A4 is a normal subgroup of 4 x B. Similarly, B is a
normal subgroup of 4 X B. The only element simultaneously of the forms (a,
1) and (1, b) 1s (1, 1), whence 4 N B = 1. Moreover, 4 U B includes all

products (a, 1)(1, b) = (a, b), whence 4 U B = A x B. These relations
between 4 and B characterize 4 x B.

THEOREM 2.5.1. 4 group G is isomorphic to the direct product of two
subgroups A and B if A and B are normal subgroups such that AN B =1, A
UB=aG.

Proof: We have already noted that in the direct product 4 x B, the
subgroups 4 and B have these properties. Suppose conversely that 4 and B
are normal subgroups of G, with4 N B=1, 4 U B = G. Consider an element
a'blab=a'(b"lab) = (a b la)b, where g ¢ A.b € B. Since 4 and B
are normal subgroups, from the first bracketing it is an element of 4, and from
the second, an element of B. This is an element of A N B = 1, whence



a b lab =1, and so ab = ba. From Theorem 2.3.3, G= A U B = AB, whence
every element g can be put in the form g = ab. Moreover, this form is unique

since a;by = a,b, implies @o~la; = beby ' e A M B = 1, whence
ay; — a, bl = bz. Ifg = ab, let us put g {—_:p (ﬂ;’ b} Ifgl = albl, &g = azbz,
then g9, = a,b,a,0, = (a;b,)(b1b,). Thus the correspondence between G and

A x B is not only one-to-one but also preserves products, and we have
established an isomorphism between G and 4 X B.

We may generalize the preceding ideas to define a product of any number
of groups, finite or infinite. Suppose we are given an indexed system of
groups A4; where i runs over some index system / (we shall assume that I is
well ordered for some of our theorems). We construct formal products
H @;. A formal product is simply a choice of one element a; from each of
1el
the groups A4,. All formal products form a group called the Cartesian product
of the 4;, where the product rule is

(2.5.2) [1a-Ilo: =,

tel tel 1l
c; = ﬂ{b{,

for every g ¢ [
The subgroup of the Cartesian product in which a; = 1 for all but a finite

number of indices is called the direct product of the A,. Clearly, the direct
and Cartesian product coincide when the number of factors is finite. In both

cases the elements ]] &4, where a; = 1 for i # j, form a normal subgroup
!
isomorphic to 4;, and identifying 4; with this subgroup in every case, we

observe that A i 2 (_;l‘;‘:j Al) = ]. Here }E).;' A is the direct

product.
THEOREM 2.5.2. A group G is isomorphic to the direct product of

subgroups 4, ¢ ¢ I, if
1) Every A; is a normal subgroup.



24;N (5 4:) = Lorevrjel
3)G — -a% 111'.

Proof: The proof follows very closely that of Theorem 2.5.1. From 1)
and 2) every a; permutes with every finite product of g;’s with i # j. Also

from 1), 2), and 3) every § e (7 is expressible as a finite product of
elements from the 4;, and apart from order, has a unique form as a product

using at most one factor from each 4;. This gives us an isomorphism between
G and the direct product of the 4;. An element of G can be put in the form g =
lorg=b; b, b #1, k=1, -, m where the b’s are from different

A;’s. Here g corresponds to the element H s, where a; = b, if there 1s a
1el
bﬁ.: € A; in the product form for g, and a; = 1 otherwise. This

correspondence yields the isomorphism between G and the direct product of
the A4,.

EXERCISES

Show that every dihedral group is homomorphic to the group of order 2.

2. Show that if p < g are primes, then in a group of order pg a subgroup of order ¢ is normal. (See
Ex. 8 in Chap. 1.)

3. Show that the subgroups of the quaternion group are all normal.

In a cube let x, y, z be the three lines joining mid-points of opposite faces. Show that the
symmetries G of the cube permute these lines in a permutation group H of order 6. Show that H
is a homomorphic image of G.

5. Consider the 1-1 mappings g £ aqxr —+ b, a,b, real, a # 0 of the real numbers onto
themselves. Show that these form a group G in which the translations "+ 7 =z -|- { form
a normal subgroup. What is the factor group G/T?

For each element » of a group G define an operator of conjugation by b: g — gb = b_lgb.
Which subgroups are admissible with respect to all such operators? If 7 is a normal subgroup of
G, show that the operator induced in H = G/T is also a conjugation.



3. ELEMENTARY THEORY OF
ABELIAN GROUPS

3.1. Definition of Abelian Group. Cyclic Groups.

A group G which satisfies the commutative law

G4, ba = ab, foralla, beG,

is called an Abelian group after the mathematician Abel. We also say that
elements a and b permute 1f ba = ab.
In §1.5 we defined a cyclic group as a group generated by a single

element (say, b), with all its elements being powers of b. Since b't/ = b/b' =

b'Y for any integers i, j, we see that every cyclic group is Abelian. We also
noted in §1.5 that, within isomorphism, there 1s a unique cyclic group of
infinite order and a unique cyclic group of each finite order »n. It is also true
that every subgroup of a cyclic group is cyclic. We prove this in a precise
form.

THEOREM 3.1.1. Every subgroup of an infinite cyclic group different
from the identity is an infinite cyclic group of finite index, and there is a
unique subgroup for each finite index. Every subgroup of a finite cyclic
group of order n is a cyclic group of order dividing n, and there is a unique
subgroup of each order dividing n.

Proof: Given a cyclic group G generated by an element b and a subgroup
H of G. If H is not the identity and if i ¢ FJ, then h—i ¢ FJ, and one or the
other of these exponents is positive. Suppose m is the least positive exponent

of any element occurring in H, and let 5’ be any element of H. Then, choosing
r appropriately, we have ¢ = mr + s with 0 < s < m. Here b’ = (b™)"b°. Since
both b’ and 5™ belong to H, it follows that »* also belongs to H. But if s is



anything except 0 in the range 0 < s < m, this would conflict with our
definition of m as the least positive exponent of b occurring for an element of

H. Hence s = 0, and ' = (b™)", and all elements of H are powers of b™,
whence H 1s cyclic. Since for any x which is an integer we have x = km + i,
where i 1s one of 0, 1, - - -, m — 1, we readily verify that

(3:1:1) G=H+ Hb+ --- + Hbm L.

The equation (3.1.1) contains all possible cosets of H and these are different,
since b’ = hb/ with i # j in the range from 0 to m — 1 would give a smaller
positive power of b in H, this being either *7 or b/ ~'. Hence [G:H] = m.
Here m is the smallest positive power of b contained in H and also 1s the
index of H in G. Thus, if G is infinite, since for any positive m the elements
(b™)" form a subgroup, there is a unique subgroup of index m. If G is finite, of
order n, then " = 1, and so n = mr, and m is a divisor of n. Here, for any m
dividing n, if n = mr we have the elements 1, 5™, p¥m - - - (" bm forming a
subgroup of order » and index m. Since n = mr can be any factorization of »

into two factors, we see that there is one, and only one, subgroup of each
order r dividing n.

3.2. Some Structure Theorems for Abelian Groups.

An infinite Abelian group may have a very complicated structure. As a
relatively simple example, the multiplicative group of all complex numbers
except zero contains elements of infinite order and also of every finite order.

If " = 1, " = 1 in an Abelian group, then (¢ )" = 1 and (ab)™ = 1,
whence the elements of finite order in any Abelian group 4 form a subgroup
F. Every endomorphism a of 4 maps an element of finite order onto an
element of finite order. Thus, in the sense of §2.4, F' is a fully invariant
subgroup of 4. In §1.8 we introduced the term periodic group (the term
torsion group 1s used in certain applications) for a group all of whose
elements are of finite order. In contrast a group in which no element except
the identity i1s of finite order is called an aperiodic group (or torsion-free

group).



THEOREM 3.2.1. Given an Abelian group A. Let F be the subgroup of
elements of finite order. Then A/F is aperiodic.

Proof: Suppose to the contrary that x # 1 in A/F is of finite order m. Then
in the homomorphism A — A/F let u — x. Then u™ — x™ = 1, whence

u™ e F' and u™ is of some finite order, say, n. Here (#")" = 1 and u itself is
of finite order. Thus 9y ¢ F' and u — 1 although we assumed x # 1.

This theorem reduces the problem of constructing all Abelian groups to
three more explicit problems:

1) The determination of all periodic Abelian groups.

2) The determination of all aperiodic Abelian groups.

3) The construction of an Abelian group A with a given periodic group F
as a subgroup, such that the factor group 4/F shall be isomorphic to a given
aperiodic group H. No one of these is completely settled, but it appears that
we know most about the first and least about the last.

We shall say that a set of elements @; in an Abelian group 4 is

independent if a finite product H a;i* = 1 only when ai = 1 for

every i. If the a; are independent a;1d also generate 4, we say that the a; form
a basis for A. Thus elements a; form a basis for 4 if, and only if, 4 is the
direct product of the cyclic groups generated by the a..

Suppose an Abelian group A4 is generated by elements a; - - -, a,. Then

every element of 4 is of the form .-1’1‘"1 . e ﬂ.:f", where the u; are integers. If

(3.2.1) aj! «--ay =1

is a relation on these generators, we say that

(3.2.2) al .- aqr =1

is its inverse relation. From a set S of relations holding in 4 we may derive
others by taking the product of relations of § and inverses of relations of S.
Two sets of relations S} and S, are said to be equivalent if the relations of

each set may be derived in this way from the relations of the other set. This is
easily seen to be a true equivalence. We say that a set S is a set of defining
relations for A if every relation holding in 4 may be derived from those of S.



It may be shown that an arbitrary set .S of relations on generators ay, - - -, a,
is a set of defining relations for that Abelian group 4 generated by a; - - -, a,

in which the relations derived from S hold, but no others hold. The group 4
may, of course, reduce to the identity element alone.

THEOREM 3.2.2. An Abelian group generated by a finite number r of
elements has a basis of, at most, r elements.

Proof: The theorem is trivially true for » = 1, since then the group is
cyclic. Suppose that 4 is generated by ay, --, a,. Our proof will be based on

induction on , and for fixed » on the smallest positive integer m such that x; =
m in a relation

(3.2.3) ai! --- a;r = 1.

If there 1s only the relation with all x; = 0, then 4 is the direct product of the
infinite cyclic groups {a;} and our theorem is true. Otherwise, some relation

or its inverse will contain some positive exponents. Let us renumber the a’s,
if necessary, so that the smallest positive exponent in a relation is x; = m. If

m =1, then we have

(3.2.4) a = ax"™* -+ a,

and A is generated by the » — 1 elements a,, - - -, a,, and by induction our
theorem is true. Now suppose x; = m > 1 in the relation

(3.2.5) atas? -+ a7y = 1.

Lety, - - -, », be the exponents in a further relation. Then, for any integer &,
from this relation and (3.2.5) we may derive a relation with exponents y; —
km,y, — kx,, - - -, v, — kx,. We may choose & so that 0 < y; — km < m. But
since m was the smallest positive exponent in any relation, we must have y,
— km = 0, and so the relation with exponents yy, - - -, y, can be derived from
(3.2.5) and the relation with exponents 0, y, — kx5, - - -, ¥, — kx,. Thus the set



of all relations for A4 is equivalent to the set S consisting of (3.2.5) and
relations involving only a,, - - -, a,.
In (3.2.5) letx, =k,m +s5, - - -, X, = k,m +s,, where we choose k;, i = 2,

-+ -, rsothat 0 <s;, <m. If we take a new element

.
(3.2.6) a* = wmas® - a7,
thena;*, a,, - - -, a, also generate 4, and in terms of these generators, (3.2.5)
becomes
(3.2.7) a*ras? oo a¥r = 1.

Here if any s 1s different from zero, it is a positive number less than m and

we may apply our induction. But ifs, = - - =5, =0, then (3.2.7) becomes

*J‘J‘l
(3+2.8) a,"” = 1_,
and since (3.2.5) and relations involving only a,, - - -, a, were a defining set
of relations for 4 in terms of generators ay, a,, * * *, a,, it follows that (3.2.8),
and relations involving only a,, - - -, a, are a defining set of relations in
terms of generators a;*, a,, - - -, a,. Hence A4 1s the direct product of the

cyclic group of order m generated by a,* and the group generated by the » — 1
elements a,, - - *, a,, which by our induction is the direct product of, at most,

r — 1 cyclic groups. Thus we have proved our theorem in all cases.
To study periodic Abelian groups we need a lemma which holds in any

group.

LEMMA 3.2.1. Let x be an element of order mn in any group where m
and n are relatively prime integers. Then x has a unique representation x =
vz = zy, where y is of order m and z of order n. Both y and z are powers of
X.

Proof: We write (a, b) for the greatest common divisor of two integers.
The statement that m and n are relatively prime is that (m,n) = 1. From the
Euclidean algorithm, integers u and v exist such that um + vn = 1, and hence x



um — -Um,.vn
=XX

= xVix vnm — l,

LPuty=x", z=x"" Thenx =yz=zy and y" = x
and " = x*"" = 1. Thus the exact order of y is some divisor m; of m, and of z
some divisor n; of n. But fromx = yz = zy it will follow that the order of x 1s
a divisor of myn;. Since this order was mn, it follows that m; = m 1s the
order of y and n; = n is the order of z. If x had a second representation x =
¥1z1 = z;y; with y; of order m and z; of order n, let us note first that y; and z,
permute with x, since xy; = y;z;¥; = ¥1x and xz; = z;y;z; = z;x. But then y,
and z; permute with y and z, which are powers of x. Now yz = x = y,z; leads
tow = Y~y = 2z 1. Butyandy, are permuting elements of order m,
and z and z; are permuting elements of order n. Hence the element w satisfies
w" =1 and also w" = 1, and since (m, n) = 1, this yields w=1; so, y; =, z;
= z, proves the uniqueness of the representation.
By repeated application of this lemma we find:

LEMMA 3.2.2. Let x be an element of order n=nn, - - - n, where (n;,n;)
=1fori#j. Then x has a unique representation x =x;x, * - * X, where x;x;
=x; and x; is of order n;. Every x; is a power of x.

In particular, if = py* +++ pir, where py, -, p, are distinct

€4

primes, we may apply this lemma with1; = p;*.

In a periodic Abelian group A consider the set of elements P whose
orders are powers of a fixed prime p, where we include the identity as being
of order p° = 1. If x** = 1, yP* = 1, then (xy)?“ = 1 with ¢ = max(a, b) and
(x 1y’ = 1. Hence P is a subgroup which we call the Sylow p-subgroup,
S(p). We call P an Abelian p-group.

THEOREM 3.2.3. A4 periodic Abelian group is the direct product of its
Sylow subgroups, S(p).

Proof: Clearly, H S (F), the direct product of the Sylow subgroups of

A, is a subgroup ofI‘JA. But, from Lemma 3.2.2, if 1 ¢ A is of order
n = pit -+ Py, then, x = xx, - - - x, with z; € S(p;): so, every
element of x of 4 belongs to the direct product of the Sylow subgroups,
whence this direct product must be the entire group A.



3.3. Finite Abelian Groups. Invariants.

A finite Abelian group is, of course, periodic and finitely generated.
Applying the results of the preceding section, we may say the following:

THEOREM 3.3.1. 4 finite Abelian group of order 1 = pl s pef

is the direct product of Sylow subgroups S(p,), - - -, S(p,). Here S(p;) is of
order pfi and is the direct product of cyclic groups of orders
’I}Eﬂ, coo PiBwheree, t+- - teg=e;

Proof: In the Abelian group of order n, we know that the orders of the
elements are divisors of n, whence a Sylow subgroup belonging to a prime
not dividing n can consist only of the identity. Thus, if p;, - - -, p, are the

distinct primes dividing n, the group is the direct product S(p;) x - - - X
S(p,). But this much does not tell us the orders of the S(p,), some of which
might trivially be the identity. Since S(p;) 1s the identity or the direct product
of cyclic groups of orders PfiL, ««+ P;™, the order of S(p,) will be the
product of these orders (say, pi‘ witht,=e;; + - - - + ¢e;), and the order of
the entire group will be the product of the orders of the S(p;). But because of
the unique factorization of the integer n, it must follow that pﬁ == pe‘ in

each case. As a consequence of this and Theorem 3.1.1 we have the
following corollary.

COROLLARY 3.3.1. 4An Abelian group of order n contains an element of
order p if p is a prime dividing n.

A finite Abelian p-group, A(p), can usually be written as a direct product
of cyclic groups in several ways. For example, if a® = 1, b* = 1, the group
A(2) = {a} x {b} is of order 32. If we put ¢ = ab and d = a’h, then c® = 1, d*
=1,a=cd"!, b=c*. We readily verify that 4(2) = {c¢} x {d}. In this case
A(2) 1s a direct product of cyclic groups in two different ways, but the
number of factors and their orders are the same. This is true in general for
finite Abelian p-groups, but since the cyclic group of order 6 is the direct
product of the cyclic groups of orders 2 and 3, it is not true for finite Abelian
groups which are not p-groups. If 4 1s an Abelian p-group which is the direct



product of cyclic groups of orders p®, -, p¢,, then these numbers are called

the invariants of the group. In the special, but important, case in which all
the invariants are p, - - -, p, we say that 4 1s an elementary Abelian group.
Clearly, the invariants of an Abelian group 4 determine A4 to within
isomorphism; but they are invariants in a stronger sense, as given precisely
by the following theorem:

THEOREM 3.3.2. If a finite Abelian p-group A is the direct product of
cyclic groups in two ways, A =A4A; X - - - X A. =By x - - x B, then the
number of factors is the same in both cases, r = s, and the orders of Ay, - -
-, A, are the same as those of By, - - -, B, in some arrangement.

Proof: We use induction on the order of 4, the theorem being trivial when
A is of order p.

If 4 is any Abelian p-group, let us write 4, for the subgroup of elements x
of A satisfying x* = 1 and A4” for the subgroup of elements of the form j”,
Y € A. Let A have a basis a, * - -, a,, where q; is of order p¢,i =1, - -, r,
and let us number the a’s so thatg; = g3 = --+ = g, Then we may
casily verify that 4, has a basis ﬂlﬁ"'i_1? R ari‘-‘-‘“"_'l
4 1s elementary Abelian, then 4# = 1. Otherwise, let e,, be the last exponent
greater than 1, 1.€.,
€ = 00 = By > €my1 = +++ = ¢, = 1. Then 4 has a
basisa/?, - - -, a,r,

Let 4 have a second basis, by, - - -, b,, where b; 1s oforderpfi, i=1, -,

s Yoo

sand f| = fﬁ = e > fa. Then 4, is of order p” from the basis a, - -

-, a, and of order p* from the basis by, - - -, b, whence r = s. If 4 is

and is of order p”. If

as may easily be shown.

elementary  Abelian, this completes the proof. If not, let
hzfez - 2fa>fin=---=f,=1 Then # has
invariants "p‘ﬁ’i‘lJI « ++ . p*m—! and also invariants pf 171 e p/al
By inductionm=nande;, —1=f, -1, - -, e, — 1=/, — L. From this and
the fact that s = 7, it follows thate; =f}, - - -, e, =f,, proving our theorem.



COROLLARY 3.3.2. If two finite Abelian p-groups do not have the same
invariants, they are not isomorphic.

THEOREM  3.3.3. An  Abelian group A with invariants

Py vy Prr = oo = @, has a subgroup K with invariants
pk= :pk‘!klg . Ekgl'f,andonlyif,tﬁrandklgeh...,
k.<e,.

Proof: We prove first that the exponents of the invariants of a subgroup K
of A satisfy the inequalities of the theorem, proceeding by induction on the
order of 4, the theorem being trivial if 4 is of order p.

Since K, is a subgroup of 4, it follows that 7 < r, proving the theorem if

A is elementary Abelian. Otherwise, let
€1 "'Eem}ﬁerl:“' e =1 and
ky "'gku}ka:“':k!:l' Then KP is a
subgroup of 47 and the invariants of K? are p*1~1, ... : pku—i , and those
of 4 are pe1~t +++ p°m~L Byinductionu <mandk,—1<e;—1,i=1,

,u.Hence k;<e,i=1,--,uandask, = - =k =1,alsok;<e, i =
utl, -, t,whence k;<e,i=1,

If the inequalities of the theorem hold, then there is one subgroup of 4
with the given invariants which we can take as a basis for appropriate
powers of the first ¢ basis elements of 4. But it is not in general true that,

given 4 and a subgroup K, we can choose a basis for 4 and a basis for K so

that the basis for K consists of powers of elements in the basis for 4. (See
Ex.5.)

IV IV

EXERCISES

An Abelian group A4 is generated by elements a, b, ¢ with defining relations a3p%¢% = 1 and

a9b_3c9 = 1. Find a basis for A and the orders of the basis elements.

Show that a finite Abelian p-group is generated by its elements of highest order.

3

An Abelian group has invariants p~, p How many subgroups of order p 2 does it contain?

2

Give two examples of Abelian p-groups which contain exactly p“~ + p + 1 subgroups of order p.

AR

Let 4 be the Abelian group generated by a and b with defining relations a” 3 1,bP =1. LetK

be the subgroup generated by the element x = a”b. Show that it is not possible to choose a basis



for 4 and a basis for K so that the basis element for K is a power of a basis element for A.



4. SYLOW THEOREMS

4.1. Falsity of the Converse of the Theorem of
Lagrange.

According to the Theorem of Lagrange, the order of a subgroup of a finite group
1s a divisor of the order of the group. But, conversely, a group of order n need not
have a subgroup of order m if m is a divisor of n. In particular the following
permutation group of order 12 will be found to have no subgroup of order 6:

1,2,3,4 1,2,3,4
1,2,3,4 1,3,4,2
L2-aa 1,23, 4
2,1,4,3 1,4,2,3
1,2, 3,4 (1, 2,3,4
3,4,1,2 3,2,4,1
1,234 1,8.3.4
4.3.9.1 4913
1,2,3,4 1,2, 3,4
2,3,1,4 2,4,3,1
1,2,3,4 1,2,3,4
3,1, 2,4 4,1,3, 2

It does, however, have subgroups of orders 2, 3, and 4.

Thus, in general, if m divides n, we cannot be sure that a group of order »
contains a subgroup of order m. But it is true that if m is a prime or prime power,
then such subgroups exist. The existence and number of such subgroups is the
subject of the Sylow theorems which follow. We begin with a theorem which will
serve as a starting point for the Sylow theorems.



THEOREM 4.1.1. If the order of a group G is divisible by a prime p, then G
contains an element of order p.

Proof: Let n = mp be the order of G. Here, if m = 1, G is the cyclic group of
order p and the theorem is true. We proceed by induction on m. If G contains a
proper subgroup H whose index [G:H] is not divisible by p, then the order of H is
divisible by p, and so by induction H contains an element of order p. Now suppose
that every proper subgroup of G has an index divisible by p. Then, from §1.6, n =
ny+n,+- - -+ ng, where each n; is the number of conjugates in a class of elements
of G. Each n; # 1 1s the index of a proper subgroup in G, and hence by hypothesis,
divisible by p. Here n; = 1, the 1dentity being a class. Hence the number of n; =1 is
a multiple of p. An element g, is a class in G if, and only if, it belongs to the center
Z of G. Thus the center Z is of order divisible by p. Then for z ¢ 7 and any
g € (7, we have zg = gz. Hence, a fortiori, the elements of Z permute with each
other and Z is an Abelian group. But now from the corollary to Theorem 3.3.1, Z
contains an element of order p.

4.2. The Three Sylow Theorems.

From Theorem 4.1.1 we are guaranteed the existence of at least one subgroup
of order p whenever p divides the order of G. We shall show that if G is of order »

= p”s, then there will also be subgroups of orders p?, p°, - - -, p™

THEOREM 4.2.1 (FIRST SYLOW THEOREM). If G is of order n = p™s where

P Y 8, p a prime, then G contains subgroups of orders p', i =1, - - -, m, and
each subgroup of order p', i =1, - - -, m — 1, is a normal subgroup of at least one
subgroup of order p**l.

Proof: The proof is by induction on i. As previously stated, G contains a

subgroup of order p. Let P be a subgroup of order p’, i > 1. Write G in terms of
double cosets of B, G =P + Px,P + - - - + Px,P, and let there be a; right cosets of P
in Px;P. Then [G:P] = a + a + - - - + a, where
a; = [;l:f—lP;rj:zf‘lPJ:j M P}, and a; = 1 for the double coset P - 1 - P
=P. Now a; =1 or a power of p. Since p|[G:P], the number of g;’s equal to 1 must
be a multiple of p. If ; = 1, then 2;7\Px; = P and x;, and the coset Px; = x;P
must belong to the normalizer K of P. Conversely, if T; € K, then
;7 Px; = P and g; = 1. Thus [K:P] is the number of @;’s = 1 and so p|



[K:P]. Hence the factor group K/P has order [K:P] divisible by p. Thus K/P
contains a subgroup J* of order p. By Theorem 2.3.4 J* = J/P, where J € K, and
[J:P] = [J*:1] = p, and so J is a subgroup of order p''!, containing P as a normal
subgroup.

DEFINITION: A group P is a p-group if every element of P except the identity
has order a power of a prime p.

DEFINITION: A subgroup S of a group G is a Sylow subgroup of G if it is a p-
group and is not contained in any larger p-group which is a subgroup of G.

In terms of these definitions we may express some of the consequences of the
first Sylow theorem.

COROLLARY 4.2.1. Every finite group G of order n = p"s, p Y s, p aprime,
contains a Sylow subgroup of order p™, and every p-group which is a subgroup of
G is contained in a Sylow subgroup of G.

Every group of order p™ is a p-group. From Theorem 4.1.1, if the order of a
group is divisible by two different primes, it cannot be a p-group. Hence every
finite p-group is of order a power of p, say, p™.

COROLLARY 4.2.2. Every subgroup of a p-group P of order p™ is contained in

a maximal subgroup of order p™ ', and all the maximal subgroups of P are
normal subgroups.

THEOREM 4.2.2 (SECOND SYLOW THEOREM). In a finite group G, the Sylow p-
subgroups are conjugate.

Proof: Let P and P, be two Sylow p-subgroups. Then G = PP, + Pix,P, + - -
+ PP, Let there be b; right cosets of P, in Ppx;P,. Here
b; = [;ri‘"IPI;ri:xi“lPlzi M\ P2] and is 1 or a power of p. Butb; + - - - +
b, = [G:P,] 1s not a multiple of p. Hence, for some i, b, = 1 and

2Py = Po

THEOREM 4.2.3 (THIRD SYLOW THEOREM). The number of Sylow p-subgroups
of a finite group G is of the form 1 + kp and is a divisor of the order of G.

Proof: This 1s trivial if there is only one Sylow p-subgroup. Let S, be one
Sylow p-subgroup and §; - - -, S, the remaining ones. These fall into a number of
disjoint conjugate sets with respect to transformation by elements of §,. By the



second Sylow theorem, S, is the only Sylow p-subgroup in its normalizer K;. Hence
the normalizer of S; in S, (i # 0) is a proper subgroup of S;, and so the number of
conjugates of S; under S is a power of p, p¢, e > 1. Hence r =p°¢, + - - - + p® = kp,
and there are 1 + » = 1 + kp Sylow p-subgroups of G. The number of Sylow p-
subgroups 1s, by the second Sylow theorem, the index of the normalizer of S, and
so a divisor of the order of G.

THEOREM 4.2.4. Let K be the normalizer of the Sylow p-subgroup P in the
finite group G. Then if H is any subgroup G 2 H 2 K 2 P, it follows that H is its
own normalizer in G.

Proof: Suppose x 'Hx = H. Then H 2 x 'Px = P', which must be a Sylow p-
subgroup of H. Hence, for some 4 € H, v 'Pu= P, whence v 'x 'Pxu = P and
xu e K- Hence r ¢ ff,and His its own normalizer.

The following theorem, apart from its own interest, has some important
applications which will be made in later chapters.



Fig. 2. A theorem of Burnside.

THEOREM 4.2.5 (BURNSIDE). If in the finite group G a p-group h is normal in
one Sylow p-subgroup but not in another which contains it, then there exist r > 1,
r ﬁ () (mod p) conjugate groups h =hy, - - -, h,. which are all normal in H=

hiyU hy,U - - - U h, but not all normal in any Sylow p-subgroup of G. Then hy, - -
", h, are a complete set of conjugates of each other in Ny, the normalizer of H.

Proof: Let N), be the normalizer of 4. Let Q be a Sylow p-subgroup of G such
that / is a non-normal subgroup of O and so that D = N, N Q 1s maximal. Let g be
the normalizer of D in Q, and N, the normalizer of D in G. We assert Q 2 ¢ D D D



h, for h is normal and of index p is some subgroup of Q, but / is non-normal in Q.
Hence Q © D D h. Also, D, a proper subgroup of Q, is properly contained in its
normalizer g in Q. Hence O 2 ¢ © D D h. Now, since D =N, N Q, & is not normal
in g and a fortiori not normal in Np. Let h = hy, - - -, hy, s > 1 be the conjugates of
h in Np. Since 4 1s normal in D, and N, induces automorphisms in D, every 4; is
also normal in D, and so a fortiori in H=h U h, U - - - U hy © D. The normalizer
Ny of H contains N, since the elements of Ny, transform H into itself.

Let p; be a Sylow subgroup of N, N Np and P; 2 p; be a Sylow subgroup of
N,,. By hypothesis P; is a Sylow subgroup of G. Then D C p; since D 1s not its own
normalizer in P,. Now N, N N € N € Ny, and let p, 2 p; be a Sylow subgroup
of Ny, and finally let P 2 p, be a Sylow subgroup of G. If J? g N, then PN
N, 2 p; D D, contrary to the maximal property of D. Hence P € N, and so N, N
Ny 2 P N Ny = p,, since p, was a Sylow subgroup of N,.

Leth=hy, - - -, hy, - - -, h,.be the conjugates of 4 in Ny (and hence all normal
subgroups of H). The normalizer of 4 in Ny is Ny N N, and so the number of
conjugates of 4 in Ny 1s ¥ = [Ny:Ny N N, ]. But Ny N N, 2 p,, a Sylow subgroup
of Ny. Hence 7 # () (mod p).

Ifall Ay, - - -, h, were normal subgroups of some Sylow subgroup S, then S, ©
Ny, and every Sylow subgroup of Ny contains and normalizes all the /’s. But ¢
Np € Ny is a p-group of Ny, which does not normalize 4.

4.3. Finite p-Groups.

From the Sylow theorems a group G of order n =p,°, - - - p,°, contains for each

i a subgroup of order p,, and all subgroups of this order are isomorphic, as they

are conjugate. Thus the problem of constructing finite groups may be regarded as
having two parts: 1) constructing groups of prime power order, and 2) combining
groups of prime power orders dividing a number n to form a group of order n.
When all the Sylow subgroups are cyclic (and this will certainly be the case when
all e; = 1), we can solve the second problem; the solution is given in Chap. 9

(Theorem 9.4.3). Thus, although neither of these problems is in any sense solved in
general, we must solve the first problem to have the subgroups to use in the second
problem. It seems to be true that the difficulties of combining Sylow subgroups to
form a group rest very heavily on the complexities of the prime power groups, the
p-groups, as we shall call them.



A first fact about p-groups of great value is the following:

THEOREM 4.3.1. The center of a finite p-group is greater than the identity
alone.

Proof: If P is a finite p-group, let us write P as a sum of classes:
(4.3.1) P=C+Co+ -+ 4+ C.

Here C, consists of the 1dentity alone. Let /; be the number of elements in C;, which
by Theorem 1.6.1 is the index of a subgroup of P and so is either 1 for an element
of the center or is otherwise a power of p. But if P is of order p”* we must have

(4.3.2) p" =hy+ ho+ -+ + b,

Here /4, = 1, and consequently in (4.3.2) the remaining /’s cannot all be proper

powers of p and so there must be further #’s equal to 1, so that the center of P is
greater than the identity alone.
We restate Corollary 4.2.2 as a theorem.

THEOREM 4.3.2. Every proper subgroup of a p-group P of order p™ is
contained in a maximal subgroup of order p™ ', and all the maximal subgroups
of P are normal subgroups.

A further consequence of the (first) Sylow theorem 4.2.1 is that no proper
subgroup of a p-group is its own normalizer. This fact even has a converse, which
Wwe now prove.

THEOREM 4.3.3. In a finite group G the property that no proper subgroup is
its own normalizer holds if, and only if, G is the direct product of its Sylow
subgroups.

Proof: Suppose that no proper subgroup of G is its own normalizer. By
Theorem 4.2.4, K, the normalizer of a Sylow subgroup P, is its own normalizer,
whence by the assumption, K must be the entire group G. Thus P is a normal
subgroup of G. From this and Theorem 2.5.2, the union of the Sylow subgroups is
the direct product of the Sylow subgroups, and so G is the direct product of its
Sylow subgroups. Now suppose G = P; x - - - x P, where P, is a group of order

piandp;#p;fori#j. Now ifg=gg, - - - g, with g; € P, the conditions of
Lemma 3.2.2 hold, and each g; 1s a power of g. Thus, when an element g occurs in



a subgroup H of G, each of its components g; is also an element of /. Thus A must
itself be a direct product /= H; x - - - x H, where H;= H N P; is a subgroup of P,.
If H is a proper subgroup of G, then some H; is a proper subgroup of P;, and by
replacing this H; by a larger subgroup of P; in which it is normal, we get a
subgroup larger than H in which H is normal.

THEOREM 4.3.4. If A is a normal subgroup of order p contained in the p-group
P, then A is in the center of P.

Proof: A, being of order p, is cyclic and is generated by an element a, the
elements of A being 1, a, - - -, a?" L. Since 4 is normal, the conjugates of the element
a are contained in the set a, a%, - - -, @”~'. But the number of conjugates of a is the
index of its centralizer and so is 1 or a power of p. But as the number of conjugates
1s at most p — 1, the only possibility is 1, whence a and so 4 is in the center of P.

4.4. Groups of Orders p, p?, pq, p°.

A group of prime order p cannot have a proper subgroup and so must be a
cyclic group, generated by any element different from the identity. We have already
shown in Theorem 1.5.4 that a group G without any proper subgroups is cyclic of
prime order.

A group G of order p?, if it is not cyclic, will contain two distinct subgroups of
order p, say {a} and {b}, where @’ =1, b’ =1, and {a} N {b} = 1. Since these are
both maximal subgroups, by Corollary 4.2.2, they will both be normal, whence, by
Theorem 3.2.1, G= {a} x {b}; and so, G is an Abelian group with a, b as a basis.

Suppose G is of order pg, where p < g are primes. By the third Sylow theorem,
the number of subgroups of order ¢ is of the form 1 + kg and divides p, whence it
must be 1, and the unique subgroup of order ¢ will be normal, say {b}, with b7 = 1.
The number of subgroups of order p is of the form 1 + kp and divides g, whence it
is 1 or g. If the number is 1, we have for some a a normal subgroup {a} with ¢’ =
1, and G as the direct product of {a} and {b}. But here ¢ = ab is of order pg and G
is cyclic. There remains the case with 1 + kp = g subgroups of order p, where a
subgroup {a} of order p is not normal. Then we have

a* =1, b1 =1

!

and since {b} is normal, a 'ba = b for some r. Here if = 1, G is Abelian and is
the cyclic group above. Hence  # 1. Then a 'bia = b* for any i, and in particular



a 'b'a = b"?, whence a *ba* = a 'b’a = b™. More generally we find a7ba/ = b,
proceeding by induction. Thus for j = p we have b = a Pba” = b'?, whence 1’ = 1
(mod g). That this necessary condition on r is also sufficient may be verified by
establishing the general rule

(aubﬂ}(a.tby) o a"’+-‘b”fr+y}

for multiplying any two elements and proving that this rule defines a group of order
pq. This is a special case of a more general rule which will be established in
Theorem 6.5.1.

For groups of order p3, there are three Abelian types, with invariants

respectively (p°), (p2, p), and (p, p, p). In finding non-Abelian groups, we handle
the cases p = 2 and p-odd separately. First let p = 2 and consider non-Abelian
groups of order 8. There can be no element of order 8, since then the group would

be cyclic. If all elements are of order 2, then (ab)? = 1, or abab = 1, ba = a*bab? =
ab, and the group is Abelian. Hence there must be an element of order 4, say, a* =
1.IfD ¢ {{II = A,thenG=A+4band h2 ¢ A.Ifb*=a or * thenb is of
order 8 and G is cyclic. Hence b2 = 1 or a®. Also h=1gh e A. since 4 is normal,
and b'ab = a or &3, since it is an element of order 4. But with ™ lab = a, G will be

Abelian. Hence b 'ab = a’. Thus we have found two non-Abelian groups, the
dihedral group with defining relations

et =1, b?=1 bab=d’,

and the quaternion group with defining relations

at =1, b2 =a? blab = d.

It is easily verified that these relations do define two groups of order 8 and that
they are not isomorphic to each other.

Finally, consider non-Abelian groups of order p°, p an odd prime. Since G is
not cyclic, it contains no element of order p>. Let us first suppose that G contains an
element of order p?, a?> = 1. Then {a} = A, as a maximal subgroup is normal. Let
b ¢ A ThenG=A4A+4b+- - - +ApP7, and b7 ¢ A, b lab = a’. Here r # 1,
since G is non-Abelian. Since we find by induction on j that b7ab/ = a’/ and since
bP as an element of 4 permutes with a, we have a = b Pab’ = a’?, whence ¥ = 1

(mod p?). From the Fermat theorem, 7 = r (mod p), and so 7 = 1 (mod p). Write r =
1 + sp. Then, with j chosen so that js = 1 (mod p), we have



b—ighi = q\tsP)j = gltsir = gltp,

Since (j, p) = 1, b7 ¢ A, we may replace b by &/ to get
G=A+ Ab+ --- + Ab*Y,
where b~ lab = al'?.

Now h» ¢ A, whence b” = a’. Here ¢ must be a multiple of p since b is not of
order p>. Write b” = a"P. Then, using the rule a’b = ba’1"P), we calculate and find

(b{l_'“)p = bﬂa—“[1+{l+ri+(l+p)2+- v o+ (14p) P
—_ bpa_—up—vp{l-i—2+. . v tp—1)

= hrg~v? = ],
Here we use the factthat 1 +2 + - + p — 1 = p(p — 1)/2 is a multiple of p since p
is odd. Now with b, = ba™, we have the relations & = 1, b = 1,
by 'ab, = a@'*tP. This last follows since {);~'ab; = .{L”(b‘lab:}a'“.

As a last case suppose that G contains no element of order p%. The center Z
must be of order p, since if it were of order as much as p?, G would be Abelian.
G/Z will be of the type x¥ =1, )P = 1, yx = xy. If in the homomorphism G — G/Z, a
—x,b—ythena? =1, =1,9~ 1~ lgh = ¢ e 7. Ifa 'blab =1, since q,
b, and Z generate G, G would be Abelian. Hence ¢ # 1 is a generator for Z and our
relations become

b» =1, ¢ =1, ab = bae, ac = ca, bec = cb.

TABLE OF DEFINING RELATIONS.
I. G orderp.
D Cyclic. a” = 1.

L ¢ orderpz.

D Cyclic. aP?=1.
2) Elementary Abelian. a” = 1, bP =1, ba = ab.
III. G order pq,p <gq.

D Cyclic. a?9 = 1.
2) Non-Abelian.



=
=
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1, =1, alha = br,
P = 1 (mod ¢), r # 1 (mod ¢q), p divides
g — 1.

The solutions of 2 =1 (mod ¢), z 3 1 (mod g) are r, 72, - - -, 7!, and all yield

the same group, since replacing a by @ as a generator of {a} replaces r by #/.

V. @ 0rderp3.
Abelian.

1) P3=1

2) ap2=l,bp=1,ba=ab.

3) al =bP =P =1, ba =ab, ca =ac, cb = bc.
Non-Abelian order 23 = 8.

4) Dihedral, at= 1, h? = 1, ba = a b

5) Quaternion, ot = 1, p? = a2, ba=a lb.
Non-Abelian order p3, p odd.

4) ap2=1,bp=1,b_1ab=a1+p.

5) aP =1, =1,cP =1, ab =bac, ca = ac, cb = bc.

EXERCISES

1. Show that if H is a normal subgroup of the finite group G, and if [G:H] is prime to p, then A contains
every Sylow p-subgroup of G.

2. Show that in a group G, a normal subgroup K of order p¢ is contained in every Sylow p-subgroup of G.
3. Show that a group of order pzq, where p and ¢ are distinct primes, must contain a normal Sylow
subgroup.
Show that a group of order 200 must contain a normal Sylow subgroup.
5. How many elements of order 7 are there in a group of order 168 which contains no normal subgroup?

The following table lists the number of distinct groups of each order from 1 through 20. Verify this for all
orders except 16.

Order |1]2]|3]4]5 ﬁ|7fs|g|1o[11|12 13|14 15|16 17] 18] 19| 20

Number |1|1]1|2|1|2|1]5]2[ 2| 1| 5| 1] 2| 1|14 1] 5] 1] 5




5. PERMUTATION GROUPS

5.1. Cycles.

In Chap. 1 it was noted in the Theorem of Cayley that every group may be
written as a permutation group. As noted there, the same group may be
written in terms of permutations in various ways. For a permutation 7 we
write (x;), = X; to mean that 7z carries x; into x;.

A finite cycle 1s a permutation 7 on a finite set of letters x, x5, =+, x,,
such that (x)r =x,, -+, (x,_ DT =X, (x,)T =X].

An infinite cycle 1s a permutation 7 on an infinite set of letters x,, i = — oo,

-, + oo such that (x;)m =x;,{, i =—00, - = -, + o0,

We write (x, x5, - - °, x,,) for a finite cycle and (- - - x_y, x, x1, - - -) for
an infinite cycle. It 1s clear that the cycle (x,, - - -, x,, x;) is the same
permutation as (xy, x,, * * *, X,).

THEOREM 5.1.1. Given any permutation &t on a set of letters S. The set S
may be divided into disjoint subsets such that w is a cycle on each subset.

Proof: Let x| be any letter of the set S. If (x;)x = x;, then (x;) is a cycle
by itself. If (x)m # x; write (x;)x = x,. Now write (x,)r =x3, - * -, (X)7 =
x;11, continuing indefinitely unless a letter is repeated. If (x|)r = x,, - - -,
(x,_ = x, are all different, but (x,)x is a letter already used; then (x,)7 =
x; forsomei=1, -, nIfi=2,-- -, n,thenalso (x, ;)7 = x,, contrary to
the assumption x,, # x; ;. Hence (x,)= = x; and we have a finite cycle (x;, - -
-, x,) as the effect of = on the letters x,, * - *, x,,. If (x))@' = x;,, are all
differenti =1, - - -, let x; be the letter such that (xy)z = x;. Continuing, define
1n succession x_y, X 5, - * *, by (x; )r=x,,i =0, -1, =2, - - -. These will all
be different since 7 cannot take two different letters into the same letter. Thus



each x of S is part of a set of letters permuted by 7 in a cycle. But clearly any
letter determines the entire cycle since in (x)r = y either letter x or y
determines the other uniquely. Hence the different cycles are disjoint.

We may thus write a permutation « as a succession of cycles, and since
the cycles are on disjoint sets of letters, clearly the order of writing the
cycles 1s immaterial. It is often customary to omit the cycles of length one, it
being understood that all letters omitted are fixed.

Thus 7 = (1)(2)(3, 4, 5) = (3, 4, 5). With this convention a permutation
may be regarded as the group product of its cycles, whenever the number of
cycles is finite.

THEOREM 5.1.2. The order of a permutation m is the least common
multiple of the lengths of its cycles.

Proof: In the cycle (x; - - -, x,), (x)@ = x;,;, where i + j is reduced
modulo n. Hence (x;)7’ = x; if, and only if, ¢ is a multiple of n. Hence (x,)z™ =
x; for all 2; e S if, and only if, m is a multiple of the lengths of all the

cycles of 7. Here 7 = 1. If # contains a cycle of infinite length, or arbitrarily
long cycles, then 7 is of infinite order.
A useful computational form is the following:

LEmMmA 5.1.1. If

T = (flu ﬂlr)(ﬂﬂ, L ﬂz.s) (ﬂml, '“,ﬂms)

and

S = (all'”ﬂlrﬂ21"'{12,---am1--+am
bup =« bisbay + - D2y - by -+ e

then

SITS = (b =+« bi)(bar =+ - bag) =+ (bm1 =+ bme).

For a typical element b;;, we have



St T S

biyk = Qjyk — Ajykg1 — bjyrpa

and so b — b; ;. under SITS.

The group of all permutations on a set of letters is called the symmetric
group. The symmetric group on n letters is often designated as S,,.

THEOREM 5.1.3. Two permutations are conjugate in a symmetric group
if, and only if, they have the same number of cycles of each length.

Necessity of the condition follows from the rule above. For sufficiency
suppose

T = (ﬂll koS alr)(aﬁl r aﬂs) s (a-ml B amtj:

and

R = (b“ - blr)(bzl sos bh} P (bﬁ;{- - bm!)’

including even cycles of length one. Since by hypothesis 7" and R have the
same number of cycles of each length, we may assume the cycles to be
lettered as given here. Then

Q= ap * Qi Amy v Qe
bll"' blr e E'}ml”" bmﬂ

is such that O7'TQO = R. Note that this theorem does not impose any
conditions of finiteness, and “same number” refers to the cardinal number
involved. We must include cycles of length one since if the number of letters
involved is infinite, 7and R could have the same number of cycles of lengths
greater than one and yet fix a different number of letters. Thus 7= (0, 1)(2, 3)
(4, 5) - - - and R = (0)(1, 2)(3, 4)(5, 6) - - - are not conjugate in the
symmetric group on the letters 0, 1, 2, 3, - - -.

5.2. Transitivity.



THEOREM 5.2.1. Let G be a permutation group on letters x| - - - x,. Let

S be any subset of these letters. Then the permutations of G, fixing all the
letters of S, form a subgroup K. The permutations permuting the letters of
S among themselves form a subgroup H which contains K as a normal
subgroup.

Proof: If two elements a and b permute the letters of S among themselves,

or fix the letters of S, so does the product ab and the inverse «~'. Hence there
is a subgroup H permuting the letters of S and a subgroup K fixing the letters

of S. If b ¢ H. k € K then i 'kh fixes the letters of S whence K is a
normal subgroup of H.

DEFINITION: A permutation group G on letters x; - - -, x,, 1S fransitive on
a subset S of xy, - - -, x, if for every g ¢ (F and ; € .S, (::,:ijlgr € &N, and if
for x;, x; € S there is a ¢ ¢ (3 With (x;)o = x;. The letters of S constitute a
set of transitivity.

THEOREM 5.2.2. If for a fixed letter x| the set S consists of all x;= (x;)o,
g € (7> then S'is a set of transitivity.

Proof: If (x))o = x;, (x))7 = x;, then (x,)o 7= x;. Moreover, if (x|)o = x;,
(x)p =X, then (x)op = x;.

THEOREM 5.2.3. If S is a set of transitivity for a permutation group G
and xy is a letter of S, for each g; € N choose g; € (7 with (x|)o; = x;.
Let H be the subgroup of G fixing x|. Then G=Ho;+ - - -+ Ho;+ - - -.

Proof: If g = ho, with |, ¢ Ff, then (x|)g = x;, whence the cosets Ho; are
distinct. Moreover, let g be any element of G. Then (x;)g = x; for some
Z; € S. Then (x))go; ' = x;, whence go; ' € H, g = ho; € Ho
and so the cosets Ho; exhaust G.

COROLLARY 5.2.1. If S is a set of tranmsitivity for G which contains

exactly r letters, then H, the subgroup fixing one letter of S, is of index r in
G.



DEFINITION: 4 group G is k-ply transitive on letters of a set S if it is
transitive on S and if any ordered set of k different letters of S is taken into
an arbitrary ordered set of k different letters of S by some element of G.

The analogue of Theorem 5.2.2 holds for k-ply transitive groups. If G
takes a fixed set of k letters xy, x,, - - -, x; 1nto an arbitrary ordered set y, y,,

-+ -,y of letters of S, then G is k-ply transitive on the letters of S. Also the

subgroup of G, which fixes r < k letters of S, will be (kK — r)-ply transitive on
the remaining letters of S. Also, if G is r-ply transitive and if a subgroup H
fixing r letters is itself s-ply transitive, then G 1s (r + s)-ply transitive.

5.3. Representations of a Group by Permutations.

It has been noted that an abstract group may be represented in more than
one way as a permutation group. We shall call a group of permutations P a
representation of G if there is a mapping of G onto P, g — 7(g), § € G,
7 (g) € P such that n(g))n(g,) = n(g,g,). Note that P is necessarily a

homomorphic image of G. If P is in fact isomorphic to G, we shall say that P
is a faithful representation of G. Just as all homomorphic images of G are
given by factor groups modulo a normal subgroup of G, all transitive
permutation representations of G may be found in terms of left cosets of
subgroups.

Since the non-Abelian group of order 6 may be faithfully represented as a
transitive permutation group on three letters and also on six letters, we must
distinguish as permutation groups certain groups which are isomorphic as
abstract groups.

DEFINITION: A permutation group P; on a set Sy is isomorphic as a
permutation group to a permutation group P, on a set S, if there is an
isomorphism T py = TPy between Py and P, and a one-to-one

correspondence Xy = i between S; and S, such that (x)rp, = x; if, and
only if, V)mp, = ;.

THEOREM 5.3.1. Given a group G and a subgroup H.
a) For each ] € (7 there is a permutation of the set of left cosets of H:



w(g) = (gﬁg) zeG.

b) g — n(g) is a representation of G as a transitive permutation group
on the set of distinct left cosets of H, and n(g) fixes H if, and only if,

g e H.

Conversely suppose g — w(g) is a representation of G as a transitive
permutation group P on a set of elements S.

c) If sy is a particular element of S, the g’s such that n(g) fixes s| are a
subgroup H of G.

d) The elements of S may be put into a one-to-one correspondence with
the left cosets of H so that P is isomorphic as a permutation group to the
group of permutations n(g) given in a) and b).

Proof: a) Hx — (Hx)g = Hxg maps each left coset Hx onto a unique left

coset Hxg. Since (Hxg g = Hx, -ﬂ'(g) — (gi ) is a permutation of the
g

set of distinct left cosets of H.
b) Since (Hxg))g, = Hx(g,g,), it follows that #(g)n(g,) = 7(g,g»), and

so g — m(g) is a representation of G. H — Hg = H if, and only if, g € H.
Otherwise expressed, 7(g) fixes H if, and only if, g € H . Since H— Hx by
7(x), the representation is transitive.

c) We verify directly that those g’s such that (s;)z(g) = s, are a subgroup
H, since if g, and g, have this property, so do g,g, and g, .

d) The set of g’s such that (s{)7(g) = s; 1S not vacuous, since P is
transitive. If one of these g’s 1s designated as x;, it follows immediately that
the entire set is the left coset Hx,, H being the subgroup found in c¢) which
fixes s;. Conversely, all the elements of a left coset Hx have the property that
their corresponding permutations all map s; onto the same image. This

establishes a one-to-one correspondence, §; £ H X ;> between elements of
S and left cosets of H. Let P be the permutation group of left cosets of / as

given by a) and b), with r;(g) = (er

, g € (& the permutations of
H:rg) g



Py. In P if (sp)n(g) = s;, then (s)[x(x;)n(g)] = s;, whence T;q € H:.'::;, and
hence (Hx;)g = Hx;; conversely, this relation implies (s;)z(g) = s;. Thus
s;m(g) = s; if, and only if, Hx;x\(g) = Hx;. In particular 7(g) is the identity if,
and only if, m{(g) 1s the identity. Thus P and P; are homomorphic images of
G, both with the same kernel, and fr(:_';-') = m l:g) 1s an isomorphism
between P and P;. And with §; €5 Ffx, a one-to-one correspondence
between S and the set of left cosets of H, we have established that P is
isomorphic as a permutation group to Py, since (sp)n(g) = s; if, and only if,
Hx;my(g) = Hx;.

In the light of this theorem we may speak of any transitive permutation
representation of a group G as the representation on a subgroup H. If H is the

identity, then the representation is the right regular representation given in
§L.4.

THEOREM 5.3.2. In the representation g — n(g) of Theorem 5.3.1, the
elements mapped onto the identity form the largest normal subgroup of G
contained in H, and so the representation is faithful if, and only if, H
contains no normal subgroup of G greater than the identity.

Proof: For what g is n(g) the identity? Here Hxg = Hx for all g ¢ (3.

Hence x 'Hxg = x'Hx or g € x *Hz. Then g € Nz 'Hx = N,
£

Here N is clearly a normal subgroup of G contained in H. Moreover, any

normal subgroup of G contained in H is contained in every x 'Hx and so in
N. Thus N is the largest normal subgroup of G contained in H. Conversely, if
g € N, then Hxg = Hx for every x, and so n(g) = 1. N =1 is the necessary
and sufficient condition that g — 7(g) be a faithful representation of G.

COROLLARY 5.3.1. The only faithful tranmsitive representation of an
Abelian group is the regular representation.

THEOREM 5.3.3. Two faithful representations of G on subgroups H, and
H, are isomorphic as permutation groups if, and only if, there is an
automorphism a of G such that Hlﬂ = ffz

Proof: If a is an automorphism of G such that [f;* = H 4, then



Hlx = HI“.';':“‘ = HzIa

1s a one-to-one correspondence between the cosets of H; and H, such that, if
g — n(g) 1s the representation on /7 and g — 7,(g) on H,, then

mi(g) = ma(g®).
On the other hand suppose there is a permutation isomorphism
m1(g) = ma(g*).

Since the representations are faithful, this defines a one-to-one
correspondence j & g* which will be an automorphism f of G. In the

permutation  1somorphism ﬁll:g] ram— grg[:g*:}l, we shall have
H, & H su. Hence, if Hy, = H,

Houg? = Hou

or

wHug? = wHyu,

and conversely. Hence if g € H, then g'ﬂ e W LH su, and conversely. Or
H =u'Hyu or Hy = uHPu" = H,%, where o is an automorphism of G.

5.4. The Alternating Group A4,,.

Consider the polynomial n n variables
A= H(:‘E,;—I;);fa,jf_in; n>2 Ifx, x, - - - x, are
1<J

replaced by a permutation of themselves, then A is replaced either by A or
—A. Writing A out,



A= (:131 — x9)(Xy — 23) -+~ (331 — Ta) °
(xz - xa) RN {xﬁ = Iu)

- * ® ® ® & . - - - - -

(:En—-l - xn);

we see that the interchange (x;, x,) replaces x; — x, by x, — x; = —(x; — xy),
interchanges the remaining terms of the first row with the terms of the second
row, and leaves the remaining terms unchanged. Thus the permutation (x;, x,)

replaces A by —A. We shall call a permutation even if it leaves A unchanged,
and odd if it replaces A by —A.

THEOREM 5.4.1. The even permutations on xy, xX,, = * *, X,, form a normal
subgroup of index two in the symmetric group S, . This group is called the
alternating group A,,.

Proof: We may verify directly that the product of two even permutations
is even, the product of two odd permutations is even, and that the product of
an even and odd permutation in either order is odd. We note that the identity
1s an even permutation.

Hence the even permutations of S, form a subgroup 4,. Since (x;, x,) is

an odd permutation, the coset A4, (x;, x,) consists entirely of odd
permutations. But if 7 1s any permutation, then one of 7, = - (x, x,) 1s even
and the other 1s odd. Since = = [7 - (x1, x,)] - (x1, X,), we see that 4, and
A4,(xq, x,) exhaust the elements of S, and S, = 4, + 4,(x;, x,) = 4, + (xy,
x,)A,. Thus 4, 1s of index 2 in S, and so is a normal subgroup.

A cycle of length two (x;, x;) is called a tranposition. Hence all
transpositions in S, are conjugate (Theorem 5.1.3) to (x;, x,). But whatever =
is,r and 7! have the same parity, and so 7~ '(x;, xp)w = (x;, x,) is odd. We
may also compute directly that every transposition (x; x;) is an odd

permutation.
Any cycle of length n is the product of » — 1 transpositions, since (x{, x»,
- x,) = (X1, X5)(x1, x3) * - (xq, x,,). Thus (Theorem 5.1.1) any finite

permutation may be written as a product of transpositions. The product of an
even number of transpositions 1s an even permutation, of an odd number, odd.



Hence, though a permutation may be written in many ways as a product of
transpositions, the number of transpositions involved will always have the
same parity.

THEOREM 5.4.2. 4,, n > 3, is (n — 2)-ply transitive.

Proof: Letyy, - * *, y,9,V,-1, V, b€ an arbitrary ordering of x{, - - -, x, _»,
X,1> X,. Thenif
i Ty ***y Tn-2y Tn-1, IH)
Y, * 5 Yn—2y Yn—1y Yn ’
and

p = Ty ***y Tn-2y Tn-1, In)
E !
ylp Y, yﬁ—ﬂr y’h y“‘—l
we have v=u(y,_,y,) and one of u, v 1s even, the other odd. Hence 4, is (n

— 2)-ply but not n-ply transitive. Clearly, it could not be (n — 1)-ply
transitive without also being n-ply transitive.

In the group of permutations on an infinite set of w letters we may define
the alternating group 4, as consisting of those permutations which may be

written as the product of an even number of transpositions. 4, will be a
subgroup of index two in the group H,, of those permutations each of which
displaces only a finite number of letters. From Theorem 5.1.3, A, will be a
normal subgroup of S, and 4, will be a normal subgroup of S, index 2 in
H

w*

THEOREM 5.4.3. The alternating group A, is a simple group for any

value of n, finite or infinite, except n = 4.
4, 1s the 1dentity. 45 1s the cyclic group of order 3 and, so, simple. The

group A, must be treated separately. We may suppose that there are at least 5
letters.



LEMMA 5.4.1. 4,, n = 3 is generated by all cycles (a, b, c) of length
three.

Proof: A, is surely generated by all elements which are the product of

two transpositions. If the two transpositions are identical, their product is 1.
If they have one letter in common, say (a, b) and (a, c¢), we have (a, b)(a, c)
= (a, b, c). If they have no letter in common, (a, b)(c, d) = (a, b)(a, c)(c, a)(c,
d) = (a, b, ¢)(c, a, d), proving the lemma.

We shall prove that a normal subgroup G, greater than the identity and
contained in 4,, n > 5 must contain all cycles of length three and hence be

equal to 4,,. This will be established by treating a number of cases. Note that
since G € 4,, every element of G can be written as a product of a finite
number of finite cycles.

CASE 1. G contains a cycle of length three (a, b, c).

Here any other cycle of length three (x, y, z) belongs with (a, b, ¢) in an
alternating group 4,. on a finite number 7 of letters, where we may take » > 5.
Since 4, 1s r — 2 > 3-ply transitive, (a, b, c¢) and (x, y, z) are conjugate in 4,
and a fortiori in 4,.. But G, being normal, must contain all conjugates of (a,
b, ¢) iIn 4,, and so all cycles of length three, whence by the Lemma 5.4.1. G=
A

ne

CASE 2. G contains an element g with a cycle of length s > 4.
Write

g = (ﬂi], agz, -, {Ir) e (ﬂi, Czy ** "y Cs—3, Cs5-2, Cs1, G,).
Here{ = ((:3_2? AR ¢;) € A, and

r]gt = (a'l;p {EE} = ‘, a'} SR (clg cE; T, E.!—E; ca—-l; l.::I—S:r ﬂl&—i)'

But gt 'g 7't =(c, 3, c,, c,») will belong to G since G is normal.
We have thus reduced Case 2 to Case 1. We now consider cases in which
the lengths of the cycles are not greater than 3.



CASE 3. Some (] € (7 has two or more cycles of length 3.
g = (@, as, az)(by, bg, bg) -+ (1, -+ ¢,)
Take | = ({13? E}lJ bg) e A,. Here
h = t'gt = (01, az, by)(bs, as, bz) -+« (1, *++, ¢) e G
and
gh™ = (as, be, as, by, b3) € G
which reduces to Case 2.

CASE 4. Some ( € (7 has one or more cycles of length three and its
remaining cycles of length two.

g = (21, )y, y2) -+ (2, 22)(a, b, ¢) -+ (4, ¢, ).
Here
g* = (a,c,b) -+ (d, ], ¢) eG.
This reduces either to Case 1 or Case 3.

CASE 5. Some @ € (7 contains only cycles of length two and has at
least four of these.

g= (z,y)(zu) -+ (a, b)(c, d) eG.
Taket = (y, a)(b, ¢) € An.

h=tgt = (z,a)(zu) --- (y, )b, d) e G
gh = (z, ¢, ), a, d) ¢ G.

This reduces to Case 3.

CASE 6. ( € (7 contains only two cycles of length two.



g = (a,b)(c, d) eG.

Here, since we assume n > 5, there will be some letter e of the permutation
set,e#a, b, c, d.

Here

i=(a, b e ed,
h =19t = (b, e)(c, d) ¢ G,
gh = (a,e, b) e G

and this reduces to Case 1.
The alternating group 4, on 1, 2, 3, 4 contains a normal subgroup of order

4 whose elements are (1), (12)(34), (13)(24), and (14)(23).

5.5. Intransitive Groups. Subdirect Products.

If a permutation group G is intransitive, let S(x;, - - *), 7 € [, an index

system, be the various sets of letters on which it is transitive. If we suppress
all letters except those of the set §;, then these permutations of the set S;

themselves form a group G; For each ¢ ¢ [ an element g of G will
determine a g; € (7;, namely, the permutation of the letters of S; which g
induces. We can moreover write

(5.5.1) g= H G

regarding g as an element of the Cartesian product of the G,, since within G
the group operations agree with those in the Cartesian product l-l (. Thus

i
an intransitive group may be regarded as a subgroup of the Cartesian product
of transitive groups. Here we say that G is the subdirect product of groups
G,. More precisely, a group is said to be a subdirect product of groups G; if

(1) G 1s a subgroup of the Cartesian product of the G;; and (2) for each
1
g; € G;.' there is at least one (7 € (7 which has g; as its jth component. Here



the second condition requires that all elements of the groups G; actually
occur in this representation of G.

If in the subdirect product b E H (; all components g; may occur

]
independently, then G is the entire Cartesian product. This will not be true in
general, and the following theorem describes the kind of dependence which
arises between the components of a subdirect product. Let G, and G; be two

components or possibly the groups determined by disjoint sets of components
G,1 € [ v G, ‘;_. € [ I, N 1,=0. Suppressing all components except G;
and G, the elements of G determine a group G* which is the subdirect
product of G; and G;. We may describe the interdependence of the
components G; and G; in G by describing exactly the induced subdirect
product G* of G, and G;.

THEOREM 5.5.1. Let G* be the subdirect product of the groups G; and G;
and let Hy; and H;; be the subgroups of G; and Gj, respectively, of elements
of one factor occurring in G* with the identity of the other factor. Then H;
is normal in G; and Hj; is normal in G;, and there is an isomorphism
between the factor groups G/H; = K = G;/H;; such that (g, &), g1 € (&
gz € {}’?- is an element of G* if, and only if, g, and g, have the same image
k in the homomorphisms G; — K, G; — K.

Proof: If (h, 1) are the elements H;; of G; occurring with the identity of G;
in G¥, then we easily verify that /; is a normal subgroup of G; and similarly
that elements H;; of the type (1, #) in G* are a normal subgroup of G;.

Moreover, for g1 € G ;> the set of elements g2 € GJ- occurring with a fixed
g 18 seen to be a coset of H};. In the same way the set of g;’s occurring with

a fixed g, is seen to be a coset of /j;. Still further, if (g;, g,) belongs to G*,
then all elements of the form (H;g,, H;;g,) belong to G* and no other pair
(g'1, &'») of G* involves any one of these elements as a component. Hence for
each (g, g,) of G* there is determined a one-to-one correspondence
H iig1 &= H ;igs between a coset of Hj; in G; and a coset of H;; in G;,.



If (g1, g») and (g3, g4) belong to G*, then (g,23, £,24) also belongs to G*,

and so this correspondence preserves products and must therefore be an

isomorphism between the factor groups G,/H;; and G;/H;;. Here if we write
G/H; = K= G;/H;;, then if (g,g,) belongs to G*, we see that g and g, belong

to corresponding cosets and so have the same image k£ in the homomorphic

image K of both G; and G;.

Conversely, if two groups G; and G; have normal subgroups #;; and H};,
respectively, such that G/H; = K = G;/H;;, then all pairs (g;, &) with
g1 € (i, g2 € Gjsuchthat gy — k, g, — k in the homomorphisms G; —

K, G; — K will form a subdirect product G* as above.

5.6. Primitive Groups.

Suppose G is a permutation group G # 1 on letters which can be divided
into disjoint sets Sy, - - -, §,, such that every permutation of G either maps all

letters of a set S; onto themselves or onto the letters of another set S;. Except

for the trivial cases in which there is only one set or in which every set
consists of a single letter, we say that G is imprimitive, and we call S, - - -,

S, the sets of imprimitivity. Thus an intransitive group 1s a fortiori
imprimitive. If G is not imprimitive, we say that G is primitive. Thus a
primitive group is a transitive group whose letters cannot be divided into
proper sets permuted among themselves.

THEOREM 5.6.1. Let G be a transitive but imprimitive group. Let S, be
one of the sets of imprimitivity and y, one of the letters of Sy, and H the
subgroup of elements fixing y,. Then the elements of G taking Sy into itself

form a subgroup K properly contained between G and H. The number of
sets of imprimitivity is the index [G:K], and each set of imprimitivity has
the same number of letters [K:H|. Conversely, if G is a transitive group
and H is the subgroup fixing a letter y,, and if there is a subgroup K such

that G D K D H, then G is imprimitive and one of its sets of imprimitivity
consists of the [K: H| letters into which elements of K take y,. There are

[G:K] sets of imprimitivity corresponding to left cosets of K. Thus a



permutation group G is primitive if, and only if, the subgroup H fixing a
letter is a maximal subgroup.

Proof: Suppose that G is transitive and imprimitive. Let S}, - - -, S,, be
the sets of imprimitivity for G, and let H be the subgroup fixing a letter y; of
S;. Then, if

(5.6.1) G=H-+ Hzy + -+ + Hz,,

we may, by Theorem 5.3.1, regard the letters permuted by G y{, v5, - - -, », as
being the left cosets Hx; of (3.6.1) permuted by the rule n(g): Hx; — Hx,g for
each g e (7. If Y1, Vo, © © -,y are the letters of S;, then the elements of G
taking these letters into themselves form a subgroup K. An element fixing y,

must take all of S into itself, whence H c K, the inclusion being proper
since an element taking y; into y, will belong to K but not to H. Now K is
transitive on the letters of S;. Thus

(56-2) K=H ‘{“ HIE + R "l‘ HI:,

and we see that the number ¢ of letters in Sy is [K:H]. Since S; does not

contain all letters permuted by G, K will be a proper subgroup of G. Now if
S; 1s any one of the sets of imprimitivity, there 1s a permutation of G taking y,

into a letter of §;, whence all of S| 1s mapped onto all of S;, and so S; has the
same number of letters as S;. Moreover, in the permutation Hx; — Hx,g, we
also have Kx; — Kx,;g, whence the sets of imprimitivity are seen to be the left

cosets of K in (5.6.1), and so their number is [ G:K].
Conversely, suppose that G is a transitive group given by the
permutations Hx; — Hx;g of the cosets of the subgroup H fixing a letter y,

and suppose there is a subgroup K such that G D K D H. Then the cosets of K
consist of sets of cosets of H, and these will form a system of imprimitivity
for G. Hence G is primitive if, and only if, the subgroup H is maximal.

We may make a few elementary remarks which follow from the definition
of primitivity and this theorem. A doubly transitive group is surely primitive,
since 1f S 1s any set of letters which are part of the letters permuted by a




doubly transitive group G, then there is a permutation which takes one letter
of S; into itself and a second letter of S} into a letter outside of S;. Thus §;

cannot be a set of imprimitivity. Secondly, a group of degree n (the degree of
a permutation group is the number of letters it permutes) can have a set of
imprimitivity of ¢ letters only if 7 is a divisor of n, since in Theorem 5.6.1 n =
[G:H] and ¢ = [K:H]. Thus a group of prime degree is certainly primitive.
Now in a p-group every subgroup is contained in a maximal subgroup of
index p, which is normal (Corollary 4.2.2). Thus a permutation group which
i1s a p-group 1s imprimitive unless it is on p letters, in which case it is the
cyclic group of order p.

THEOREM 5.6.2. Let G be a permutation group on n letters which is
primitive, and let H be a transitive subgroup of G on m letters, fixing the
remaining n — m letters. Then (1) if H is primitive, G is n — m + 1 fold
transitive; (2) in any event G is doubly transitive.

Proof: H is transitive on a set of m of the n letters of G. Each of the
conjugates of H is transitive on some set of m letters, and since G is
transitive, every letter occurs in at least one of these sets. If these sets are
either disjoint or identical, then they would be sets of imprimitivity for G.
Hence H has conjugates which displace some of but not all the same letters
as H. Let H' be one of those which has the largest number of letters in
common with H. Let us write

(5;6-3) H:(ﬂh '.'ja'l';l Ch "'jﬂs);
H:(by b, €, -",C), r+8=m.

By this we understand that the ¢’s are the letters which both H and H’
displace, the group H also displacing r letters a;, and H' also displacing r

letters b, We assert that when H is primitive, then » = 1, and if H 1is
imprimitive and » > 1, then a;, - - -, a, are a set of imprimitivity for H.
Consider an element 4’ of H'.

(H 6 4) B Dt b“} butyy * brp Cy ** 5 Cr—uy Cr—ut1, ** " 53)
w Ll — ’
Q b,*--}b:ﬂ j"';c’lgb,"',b ,c ,__"c



where this indicates primarily the number u of 5’s mapped onto b’s, b’s
mapped onto ¢’s, ¢’s onto b’s, and ¢’s mapped onto ¢’s. We note that the
number » — u of b’s mapped onto ¢’s must be the same as the number of ¢’s
mapped onto b’s, since there must be () b’s in the second row of 4’ in
(5.6.4). Hence A" 'Hh' displaces (r) a’s, (r — u)b’s, and (s — » + u)c’s, and so
will have s + u letters in common with H. Thus, if » > 1 and H' is primitive,
we can choose an element /', taking some of but not all the 5’s into

themselves, whence 1 < u < r; thus A" 'HA' has s + u letters in common with
H, which is more than s but not all » + s = m. In any event we must have » = 1
when H is primitive, and if » = 1 whether H i1s primitive or not, then H U H’
is doubly transitive on m + 1 letters and, so, primitive. We can continue with
this group in the role of A until we reach G itself, obtaining in succession a
doubly transitive group on m + 1 letters, a triply transitive group on m + 2
letters, and ultimately G as an n —m + 1-ply transitive group.

In case H is imprimitive, this argument does not apply, but we note that
we can increase the number s of letters in common between H and H' unless
by, - - -, b, are a set of imprimitivity for /' and a, - - -, a, are a set of

imprimitivity for H. Moreover, H U H' is a transitive group ons +2r=m +r
letters. Thus, if m 1s at most n/2, m + r will be less than n. We may continue
to form transitive subgroups on more and more letters until we have a
transitive subgroup H on a number m of letters greater than »/2 but less than
n. In this case any conjugate H' of H displaces some letters in common with
H. Here, suppose H is transitive on the largest possible number of letters less
thann. If s + 2r =n and r = 1, then H is transitive on n — 1 letters and so G is
doubly transitive. If this does not happen, we reach a group H where s + 2r =
n with r # 1. In this case the a’s, b’s, and ¢’s are all the letters of G. But since
G 1s primitive, there 1s an element g taking b, into some b; but not all 5’s into

themselves, and so at least one a or ¢ into a b. Here H and g 'Hg both fix b,,

and their union is transitive on more letters than H. Thus we must ultimately
reach a subgroup transitive on n — 1 letters and so G is doubly transitive.

The second alternative in the theorem can actually arise. Example 4 in
Chap. 1 illustrates this, where the group is transitive on seven letters and thus
primitive. It has a transitive subgroup on the four letters C, E, F, G, and it is
doubly but not triply transitive.



5.7. Multiply Transitive Groups.

The symmetric group on n letters is, of course, n-ply transitive, and the
alternating group 4, (as we remarked in §3.4) is (n — 2)-ply transitive. We

shall exclude these in further discussion of multiple transitivity. There are
infinitely many groups which are triply transitive. But apart from the
alternating and symmetric groups, there are only four groups known which
are quadruply transitive. These are the Mathieu groups on 11, 12, 23, and 24
letters, respectively, of which the groups on 12 and 24 letters are quintuply
transitive and contain as subgroups fixing a letter the groups on 11 and 23
letters, respectively. These somewhat mysterious groups have been the
subject of considerable investigation, but it is not known whether these
groups are truly exceptional or whether they are part of an infinite family of
groups which are quadruply transitive.

Theorem 5.7.1, due to G. A. Miller [1], gives a limit on the transitivity of
groups of degree n. This theorem combined with “Bertrand’s postulate,”
proves that for n > 12 a group of degree n cannot be ¢-fold transitive for

i > 3—\/’;; — 9. Bertrand’s postulate (proved correct by Chebyshev in

1850) states that for any real number gz = 7, there exists a prime number p
in the interval x/2 < p < x — 2. Miller’s theorem gives a considerably better
limit for most specific values of n. Still better restrictions are known,* but
their proofs are too complicated to include here.

THEOREM 5.7.1. Let G be a t-ply transitive group on n letters. Let H be
a subgroup fixing t letters, and let P be a Sylow p-subgroup of H, where P
fixes w>t letters. Then the normalizer in G of P is t-ply transitive on the w
letters fixed by P.

Proof: Letay, - - -,a,and by, - - -, b, be two ordered sets of ¢ letters, both
sets being from the w letters fixed by P. Then, since G is t-ply transitive,
there is an element x of G taking @, into b; fori = 1, - - -, £. Then x™'Px fixes
by, - - -, b, and thus both P and x 'Px are Sylow subgroups of the group
fixing by, - - -, b, By the second Sylow theorem these groups must be
conjugate in the group fixing b, - - -, b,. Thus, for some y fixing by, - - -, b,
we have y~!(x"'Px)y = P. But here, withz = xy, z takes a, - - -, @, into by, - -



-, b, and z 1Pz = P. Hence there is an element in the normalizer of P taking

any ordered set of ¢ of the w letters fixed by P into any other ordered set of ¢
of these letters. Thus the normalizer in G of P is t-fold transitive on the w
letters fixed by P, proving the theorem.

THEOREM 5.7.2. Let the integer n = kp + r, where p is a prime and p > k,
r>k. Except for k=1, r =2, a group of degree n cannot be as much as (r +
1)-fold transitive unless it is S, or A4,,.

Proof: Suppose that G of degree n is (r + 1)-fold transitive. The
subgroup H fixing the first » letters, 1, 2, - - -, r, 1s transitive on the remaining
kp letters. Thus the order of H is divisible by the prime p, and contains a
Sylow p-subgroup P. A subgroup of H fixing a letter is of index kp in H, and
so its order 1s not divisible by the highest power of p dividing the order of H.
Thus P must displace every one of the kp letters on which H is transitive.

Furthermore since kp < p?, by the hypothesis P cannot contain a transitive

constituent on p? letters. As the number of letters in a transitive constituent of
P is a divisor of the order of P, the group P must have on the ip letters of H
exactly k transitive constituents of p letters each. (We have already excluded
the possibility that any constituent is a single letter.) On each of these
constituents P must be the cyclic group of order p. Thus P is a subdirect
product of k£ cyclic groups of order p on p letters each. Thus every element of
P 1s of order p, and P is an Abelian group. But for the most part we shall not
have to concern ourselves with the manner in which P is a subdirect product.
Let N be the normalizer in G of P. By Theorem 5.7.1, N is the symmetric
group S, on the first  letters of G. Let us first consider cases with » > 5, and

let Ny be the subgroup of N which is the alternating group 4, on the first
letters. By Theorem 5.4.3, 4, 1s a simple group of order »!/2, and being of
composite order, is not Abelian. Let 7}, - - -, T, be the k transitive

constituents of p letters of P. Then a homomorphic image of N, 1s given if we

combine the permutations on the first » letters with the permutations on the
transitive constituents 7; themselves, which are permuted among themselves

in V. This image is the subdirect product of 4, on the first  letters and a

group permuting the £ 7°s among themselves in some manner. But a group on
k symbols is of order at most k! and so, since k! < r!/2, it can have no factor



group isomorphic to 4,, which is a simple group; thus the only factor group of
this group isomorphic to a factor group of 4, is the identity. Hence this group
involving 4, and the constituents 7; is, by the results of §5.5, the direct
product of 4, and the other group. Here 4,. and the identity in the other group
has as its inverse image in N; a group N,, which is A4, on the first r letters,
and takes the letters of each transitive constituent 7; into themselves. To

analyze N, we must pause to consider the nature of the normalizer on p letters
: _ . i P =
of the cyclic group generated by a = (x;, , X,) on these letters. Since @

1, if b lab = a' and ¢ lac = &, we see that both bc and ¢b transform a into

a’. Thus the automorphisms induced on a cyclic group by transformation
themselves form an Abelian group. (We shall see in the next chapter that the
automorphisms of a cyclic group of order p are themselves a cyclic group of
order p — 1.)

Now an element u onxy, - - -, x,, permuting with @, when multiplied by an

appropriate power a' of a, will be an element v = ua’ which permutes with a
and fixes the letter x;. But with ¢ 'va = v and v fixing x;, we can readily

show that v fixes x,, - - -, Xps and so v = 1, whence u = a”* Thus N, on any
one of the transitive constituents 7; of the k transitive constituents of p letters

of P will have a normal subgroup of order p, consisting of the powers of a
cycle of p letters and a factor group of elements inducing different
automorphisms on the group of order p; this factor group is Abelian. Thus
any factor group of this group is either Abelian or has an Abelian factor
group. Therefore the only factor group isomorphic with a factor group of 4,

1s the identity. Thus, neglecting 7,, - - -, T, momentarily, N,, applying the
results of §35.5 to the first » letters and 77, has a subgroup which is 4, on the
first » letters and the identity on the letters of 7;. This subgroup N5 of N, in
turn has a subgroup N, which is 4, on the first » letters and 1s the identity on
both 7' and 7.

Continuing, we have a subgroup which is 4,. on the first » letters and the
identity on the remaining letters. But 4, contains a cycle (a, b, ¢) on three

letters, and since G is at least 5-ply transitive on all » letters, this may be
transformed into any cycle of three letters of the n letters. By Lemma 5.4.1
these three-cycles generate 4,,, and since G contains 4,, G is either 4, or S,,.



The preceding argument required » > 5 and leaves to be considered the
casesr=3,k=1or2,andr=4,k=1, 2, or 3. Let us first consider cases in
which P is cyclic, generated by an element a, and £ = 1 or 2. As we have
remarked above, if u = (12) (3) - - - and v = (1)(23) - - - are elements of the
normalizer N of P (which will be the symmetric group on the first three or
four letters fixed by P), then since P is cyclic, uv and vu will both transform

a into the same power of itself. Thus u v luv = (1, 2, 3) - - - will permute
with a. This element w = u~'v"'uv either interchanges the two constituents 7},

T, or takes both into themselves. In either event w? = (1, 3, 2) - - - fixes both
constituents if there are two of them. This element will have order divisible

by 3, and so some power of it will be of order 3° and will still be a three-
cycle on the first three letters, taking the constituents into themselves, and
permuting with a. But for each cycle of a, the only permuting elements are the
power of the cycle and are of order p if they are not the identity. Thus, unless

p = 3, an element of order 3° which permutes with a in this manner will be
the three-cycle (1, 2, 3) or (1, 3, 2) on the first three letters and the identity
on the remaining. Here G contains a three-cycle and is triply transitive, and
so must be either 4, or S, We have excluded only p = 3, and this corresponds
withk=1lor2andr=3ord4ton=26,7,9, 10. Actually, withp=3, k=1, P
itself is a three-cycle and the conclusion follows. This settles n = 6, 7,
leaving n =9, 10 to be treated as special cases. Here all cases with k=1 are
covered, since P is surely cyclic in these cases. Now if £ = 2 and P is not
cyclic, then P is the direct product of two p-cycles, and Theorem 5.6.2
applies with G primitive and H a cycle of order p, and thus a primitive
group. Here G must be (p + 4)- or (p + 5)-fold transitive, and we may use the
argument with» =p + 3 or p + 4 and k£ = 1 to conclude that G=4, or §,,.

Vo

There remain to be considered cases with &k = 3, » = 4. First, if P 1s
cyclic, we may argue as before that there are elements which are (1, 2, 3)(4)
- ()2, 3,4) - - -, and, indeed, all eight possible three-cycles on the first
four letters which permute with a generator a of P. But they may permute the
three transitive constituents of a cyclically in either of the ways (77, 75, T3)
or (T}, T3, T,), and at least two of the eight must permute the 7”s in the same
way. Combining these, we get an element either of the type (1, 2, 3)(4) - - -
or (1,2)(3,4) - - - which takes T}, 75, T3 into themselves. Here p is at least

5, and an element permuting with a and taking the cycles of a into themselves



of one of these forms leads to an element of the same form fixing the 3p
letters of a. Thus there is in G either a three-cycle (1, 2, 3) or an element (1,
2)(3, 4), and by quadruple transitivity, also (1, 2)(3, 5) and also the three-
cycle (3,4, 5). Hence G contains A4, and is either 4, or §,. On the other hand,
if P contains a single cycle of p letters, then Theorem 5.6.2 applies, and G is
(2p +4)- or (2p + 5)-fold transitive, whence again Gis 4, or S,,.

As a final case we must consider the possibility that P is not cyclic nor
does it contain a p-cycle. In this case P must be of order p?. We may take a
basis for P of two elements, a = (x{, x5, = * -, xp) VsV yp) and b = (y4,

Vo yp)(zl, Zyy "t zp), where we have chosen a and b with the same

cycle on the y’s. Thus ab ™! and its powers are the only elements of P fixing
the constituent 75 of the ’s. Now an element normalizing P of the form (1, 2,

3,4) - - - can be found so that it either fixes the three constituents or permutes
two of them and fixes the third. Thus its square, u = (1, 3)(2,4) - - -, fixes all

three constituents. Hence u transforms each of a, b, and ab™! into some
power of itself and thus transforms both a and b into the same power of
themselves (say, the ith power, and so every element of P into its ith power).
Such an automorphism must permute with any other automorphism of P, and
in particular with an automorphism induced by an element w = (1) (2, 3)(4) -

- -. Therefore v =w 'uw = (1, 2)(3, 4) - - - also transforms every element of

P into its ith power and so naturally fixes the constituents of P. But now uv ™!
= (1, 4)(2, 3) - - - permutes with every element of P, fixing the constituents.
This leads to an element (1, 4)(2, 3) in G, and since G is quadruply transitive
on more than four letters, G will again be 4, or S,,.

5.8. On a Theorem of Jordan.

In 1872 Jordan [2] showed that a finite quadruply transitive group in
which only the identity fixes four letters must be one of the following groups:
the symmetric group on four or five letters; the alternating group on six
letters, or the Mathieu group on eleven letters.

Jordan’s theorem on quadruply transitive groups is generalized here in
two ways. The number of letters is not assumed to be finite; instead of
assuming that the subgroup fixing four letters consists of the identity alone,



we assume only that it is a finite group of odd order. The conclusion is
essentially the same as that of Jordan’s theorem, the only other group
satisfying the hypotheses being the alternating group on seven letters.

The theorem is the following:

THEOREM 5.8.1. 4 group G quadruply transitive on a set of letters,
finite or infinite, in which a subgroup H fixing four letters is of finite odd
order, must be one of the following groups: S, Ss, A, A7, or the Mathieu

group on 11 letters.

CASE 1. G on not more than seven letters. A quadruply transitive group
on four or five letters must be the symmetric group. On six letters its order
must be at least 6-5-4-3, and hence it is 4 or S¢ On seven letters, its index s,

at most, 6 in S;. Since S, does not have a subgroup of index 3 or 6, the only
possibilities are 47 and S,. In both Sg and S5 there are elements of order 2

fixing at least four letters, and so these groups do not satisfy our hypothesis.
To treat the case in which G is on more than seven letters, we begin with
a lemma.

LEMMA 5.8.1. Elements a and b in a group, satisfying the relations

=1 b2=1, (ab)y =1,

generate the dihedral group of order 2s. If s =2t — 1 is odd, then a power

of y = ab transforms a into b. If s = 2r is even, then a and b permute with
A

y.

Proof: Withy =ab, we have

If s =2¢t—1, then

If s = 2r, then



ay?‘ — y—'fa_ - yfﬂ:‘

From here on, G will denote (as in Theorem 5.8.1) a group quadruply
transitive on more than seven letters, and H will denote a subgroup of odd
order m fixing four letters.

LEMMA 5.8.2. The group G contains elements of order 2, and all
elements of order 2 are conjugate. Either (1) every element of order 2 fixes
two letters, or (2) every element of order 2 fixes three letters.

Proof: By quadruple transitivity G contains an element

g = (12) (34) ---.

Here g° fixes 1, 2, 3, 4, and so belongs to / and will be of finite odd order
my. Thus

z=gm=(12) (34) -,

with x2 = 1. Since H is of odd order, any element u of order 2 will fix, at
most, three letters and hence will displace at least four letters. With

u = (ab) (cd) ++-,

there is a conjugate of u,

v = wluw = (12) (34) - --.

Either v = x, or vx fixes four letters and is of odd order, whence, by Lemma
5.8.1, v and x are conjugate. Thus all elements of order 2 are conjugate. On
the other hand, there 1s in G an element z = (1)(2)-(34) - - -, and either z or
an odd power of z is an element of order 2 fixing at least two letters. Hence
every element or order 2 fixes either two or three letters, since they fix at
least two and not as many as four.

CASE 2. G on more than seven letters.
Let



a = (1)(2)(34) -

be an element of order 2 and
b= (12)(34) ---,

another element of order 2. Then f = a;b = (12)(3)(4) - - - will be of even

order, and /> will be of odd order m,. Hence /", = a; is of order 2, and by
Lemma 5.8.1, will permute with a;. Hence in G we have permuting elements
of order 2, with a, = a,a;.

a = (1)(2)(34) ---,
(5.8.1) az = (12)(34) - --,
az = (12)(3)(4) - - -.

Now a, as an element of order 2 fixes either two letters 5 and 6, or three
letters 5, 6, and 7. As a; permutes with the element a,, it takes these letters
into themselves. But a; fixes 1 and 2 and, at most, one other letter. Hence we

have
ar = (1)(2)(34)(56) - -, ar = (1)(2)(34)(56)(7) ---,
(5.8.2) @ = (12)(34)(5)(6) ---, or a: = (12)(34)(5)(6)(7) - - -,
az = (12)(3)(4)(56) - - -; a; = (12)(3)(4)(56)(7) - - -.

The first case arises if elements of order 2 all fix two letters; the second, if
all fix three letters. The elements a; a, a; of (5.8.2) and the identity form a

four-group, V. Further letters will occur in sets of four which will be sets of
transitivity for V:

ar = (1)(2)(34)(56)(7) (h3) (5k) - - -,
(5.8.3) ax = (12)(34)(5)(6)(7)(hg) (k) - - -,
as = (12)(3)(4)(56)(7) (hk)(zg) - - -.

Here it is understood that the 7 may not be present.
The order of the subgroup K taking 4, i, j, k into themselves will be 24m,
and H = H(h, i, j, k), fixing these letters, of order m will be normal in K.



There will be a subgroup U, K © U D H, in which 4, i, j, k are permuted in
the following way:

(h)
(h2) (gk)
(k) (2k)
(hke) (49)
(5.8.4) (hjik)
(hkig)
(h2) (7) (k)
(h) (2) (k).

Now U is of order 8m, and so a Sylow subgroup of U will be of order 8. The
elements taking 4, i, j, k into themselves in a particular way will be a coset
of H in U. Since H is normal in U, a group of order 8 in U will have one
element from each coset and will be isomorphic to U/H, and hence will be
faithfully represented by the permutations on these letters. V' will be
contained in a Sylow subgroup of order 8 in U. This yields

a1 = (1)(2)(34)(56)(7) () (5k) - - -,
az = (12)(34)(5)(6)(7)(hy) (k) - - -,
ag = (12)(3)(4)(56)(7) (hk)(2j) - - -.

(5.8.5) u = (1)(2)(3546)(7) (hsk) - -,
aw = (1)(2)(3645)(7)(hkiz) - - -,
axu = (12)(36)(45)(7) (h2)(5) (k) - - -,
asu = (12)(35)(46)(7)(h) (@) (k) - - -,

or the same permutations with 5 and 6 interchanged. The way in which the
last four elements permute the letters 1, - - -, 7 is determined by the relations

u' =@, ulaw = as (au)? = 1.

Here u normalizes V' and so fixes the only letter, 7, fixed by V (if the 7
occurs). Also, u must take the fixed letters of a5 into those of a,, whence



u= (%" i gEl )
= \eh, 6,30 =\,5 .../

but also u? = a,, whence
u = (3546) --- or u = (3645) ---.

Finally, u must fix 1 and 2 or interchange them. But if # interchanges 1 and 2,
then a,u is of order 2 and fixes the letters 1, 2, j, k. Thus

= (1)(2)(3546) -+ or u = (1)(2)(3645) ---,

and the rest follows.
Each further transitive constituent of V, such as 4, i, j, k, yields a group §
such as that in (5.8.5). The elements

(12)(36)(45) -+- and (12)(35)(46) - -+

in each of these groups fix two letters of the constituent. Since an element of
order 2 cannot fix four letters, each constituent yields a different element,
permuting the first six letters in the way (12)(36)-(45). But there are, at most,
m elements with this effect on the first six letters. Thus if there are ¢ such
constituents, ¢ < m is finite and G is a group on n =4t + 6, or 4¢ + 7 letters. If
Gison 10 or 11 letters we have £ = 1.

There 1s no quadruply transitive group on ten letters (except, of course,
A4,y and ), for the normalizer of a cycle of length 7 by Theorem 5.7.2 is S5

on the remaining three letters; and so this normalizer, which is the subdirect
product of S5 and the normalizer on the letters of the seven-cycle, will pair a

three-cycle with the identity. Hence G contains a three-cycle and, being
quadruply transitive, all three-cycles; thus G contains 4.

On 11 letters G 1s of order 11 - 10 - 9 - 8m, and even without assuming m
odd, consideration of normalizers of Sylow subgroups fixing four letters
shows that we must have m = 1. The group of order 8 fixing three letters
contains a single element of order 2, and so it is the cyclic or quaternion
group. The cyclic group, having only four automorphisms, could not have a
normalizer triply transitive on the remaining three letters, for then G would



contain a three-cycle. Hence the subgroup fixing three letters must be the
quaternion group (J. Then G will be a transitive extension of O, and the
methods of T.C. Holyoke [1] will readily enable us to construct from Q not
only the quadruply transitive Mathieu group on 11 letters, but also the
quintuply transitive group on 12 letters.

We shall now show that # > 1 conflicts with the hypothesis that H is of
odd order, and thus complete the proof of our theorem. If w, x, y, z is another
transitive constituent of V, we have

asu = (12)(36)(45)(7) (hs) () (K) -+ +

from (5.8.5), and we will have another element

au’ = (12)(36)(45)(7) (wz)(y)(2) -+ -.

Each of these elements permutes with a; and transforms a, into a5 and a5 into
a,. Their product is an element g fixing the first six (or seven) letters and, so,
is of odd order. Also, g centralizes V. By Lemma 5.8.1, a power of g
transforms a,u into a,u’, and so takes the fixed letters j, &, of a,u into the
fixed letters y, z, of a,u’. Centralizing V, this element must take the entire
constituent /2 i j k into w x y z. Hence there is a group C in G which fixes the
first six (or seven) letters, centralizes V, and is transitive on the ¢ remaining
constituents of V. An element of C taking a constituent of V' into itself, being

of odd order, must fix all four letters. Thus the transitive constituents of C are
(LH@R)B)A)5)O)T) Ty, T}, T;, T, the last four sets of £ each, the letters 4, 7,

J, k being in different constituents of C.

Let p be a prime dividing ¢. (Here we use the assumption # > 1.) Let P be
the corresponding Sylow subgroup of C. Then P displaces all 4¢ letters
which C displaces, since a subgroup of C fixing a letter is of index ¢t = 0
(mod p) and cannot contain such a Sylow subgroup. Now let P; be a Sylow

subgroup of H, the subgroup fixing 1, 2, 3, 4, which contains P. Then P,
displaces the 4¢ letters of C and no others, unless possibly we have the case

p=3 t=23% n=4t+7,



where P; might be on 47 + 3 letters. This possibility will be considered later.
With P, on 4¢ letters, by Theorem 5.7.2, the group N (P;) is quadruply
transitive on the first six or seven letters and so contains 44 or 45 on these

letters. But the subgroup taking the first six (or seven) letters into themselves
also contains the element u of (5.8.5), which is not in the alternating group on
these letters. Thus in G we have the full symmetric group on the first six or
seven letters, and hence some element fixing the first four letters and
interchanging the fifth and sixth. This conflicts with the hypothesis that H is
of odd order. Finally, consider the possibility that

t=3% n=4t+7,

and that P; displaces 5, 6, 7, as well as the 4¢ letters of P. If w > 1, then
surely (5, 6, 7) 1s a transitive constituent of P and there 1s an element

z = (1)(2)(3)(4)(567) ---

in G. If w=1, then P is of order 3, and (even though in P, 5, 6, 7 are in a

constituent with 8, 9, 10, and 11, 12, 13 of P) since there is an element (5)(6)
(7)(8, 9, 10)(11, 12, 13), there will also be one such as z fixing 8, 9, 10. But
withz = (1)(2)(3)(4)(567) - - -, and u of (5.8.5), we have

(zu)* = (1)(2)(35)(4)(6)(7) -,

contradicting the assumption that a subgroup H fixing four letters is of odd
order.
Let G be a quadruply transitive group on 11 letters, excluding S;; and A4y;.

If G contains an element of one of the forms (a, b), (a, b) (c, d), or (a, b, ¢),
then by quadruple transitivity, G contains all such elements and must be A4;;

or S;;. If G contains a five-cycle or seven-cycle, such an element generates a
group transitive and primitive on the letters it displaces. In this case, by
Theorems 5.6.2 and 5.7.1, G must be §;; or A4;;. With these exclusions a
subgroup V' = V|3, fixing four letters is of order dividing 2432 If V' is not

the identity, then J must have a Sylow 2-group or a Sylow 3-group. In either
case because of our exclusion such a Sylow subgroup P must displace



exactly six letters. By Theorem 5.7.2 the normalizer of P is quadruply
transitive on the remaining five letters, and because P has transitive
constituents of three and three letters, or four and two letters, or two, two,
and two letters, it will follow that G contains a five-cycle, a possibility
already excluded. Thus the only possibility remaining is that a subgroup V'
fixing four letters is the identity and G is of order 11:10-9-8.

The subgroup W fixing three letters, say, 9, 10, 11, is regular and
transitive on the remaining eight letters, and so it is the regular representation
of one of the five distinct groups of order 8. W will contain an element of
order 2, say, x = (1, 2)(3, 4)(5, 6)(7, 8)(9)(10)(11). In the subgroup H fixing
the two letters 10 and 11, there are nine conjugates of W, each fixing one
letter. If two different elements of order 2 contained the same transposition,
say (i, j), their product would be an element different from the identity
displacing, at most, seven letters. This cannot be. But each element of order 2
contains four transpositions and there are only 9-8/2 = 36 possible
transpositions of 1, - - -, 9. Hence W contains only one element of order 2
and must be the cyclic group of order 8 or the quaternion group. But if W is
the cyclic group, its normalizer contains an element of order 3, and this can
only be the cycle (9, 10, 11), which is not possible. Hence W must be the
quaternion group Q.

The subgroup H fixing 10 and 11 is of order 72 and contains nine
quaternion subgroups, any two of which intersect in the identity. The identity
and the remaining eight elements form a subgroup U of order 9 which is
normal on H. The eight elements of U different from the identity are
conjugate under Q, and so U must be the elementary Abelian group.

From this information we can easily construct H, which 1s unique to
within permutation isomorphism. U may be generated by

u = (123) (456) (789) (10) (11),
v = (147) (258) (369) (10) (11).

H=QU, where Q is the quaternion group generated by

a = (1) (2437) (5698) (10) (11),
b = (1) (2539) (4876) (10) (11),

and



a? = b2
= (1) (23) (47) (59) (68) (10) (11).

The subgroup K fixing 11 will be generated by A and a conjugate x of a?
fixing 2 and 11 and interchanging 1 and 10. Such an element must exist, since
G is quadruply transitive. Clearly, x normalizes Q. Adjoining x to H must not
yield an element different from the identity fixing four letters. The only
possibilities are

21 = (1, 10) (2) (3) (11) (4, 5) (6, 8) (7, 9),
z: = (1, 10) (2) (3) (11) (4, 6) (5, 9) (7, 8),
zs = (1,10) (2) 3) (11) (4, 7) (5, 6) (8, 9).

The element (4, 5, 6) (7, 9, 8) transforms H into itself and permutes these
three elements among themselves, therefore, to within permutation
isomorphism, we may adjoin any one of these three. Let K be obtained by

adjoining x, to H. Then G is obtained by adjoining to H a conjugate y of a?
which interchanges 1 and 11 and fixes 2 and 10. Here y normalizes QO and
also the subgroup fixing 1 and 11. The only possibilities for y are

vy = (1, 11) (2) (3) (10) (4, 6) (5, 9) (7, 8),
y2 = (1, 11) (2) (3) (10) (4, 7) (5, 6) (8, 9).

Here the element (4, 9) (5, 7) (6, 8) normalizes K and interchanges y, and y,.

Hence, to within permutation isomorphism, we may suppose G obtained by
adjoining y; to K. G = {H, x1, y;}. Strictly speaking, what we have shown so

far 1s that if there 1s a quadruply transitive group on 11 letters, not 4;; or Sy,

then it is permutation isomorphic to G. Verification that G has these
properties is given in Ex. 4. G is known as the Mathieu group on 11 letters,
M. As a remarkable fact, if we regard M/, as a permutation group on 12

letters, fixing 12, and we take the group M, = {M, z}, where

we find that M, is quintuply transitive of order 12 - 11 - 10 - 9 - §, and My,
is the subgroup fixing 12.



By arguments similar to those used in constructing M;;, we may show that

the only quadruply transitive (not alternating or symmetic) groups on less
than 35 letters are M,;, M},, and the Mathieu groups on 23 and 24 letters,

M55 and M,,, where if

A=(0,1,2,8, ---,22)

B=(216,9,6,8) (4,3, 12, 13, 18) -
(10, 11, 22, 7, 17) (20, 15, 14, 19, 21)

C = (0, 23) (1, 22) (2, 11) (3, 15) (4, 17) -
(5, 9) (6, 19) (7, 13) (8, 20) (10, 16) -
(12, 21) (18, 14).

Thus, M,; = {4, B} and M,, = {4, B, C) - M,; is quadruply transitive of
degree 23 and order 23 - 22 - 21 - 19 - 16 - 3, and M,, is quintuply
transitive, M,; being the subgroup of M,, fixing 24.

5.9. The Wreath Product. Sylow Subgroups of
Symmetric Groups.

Let G and H be permutation groups on sets 4 and B, respectively. We
define the wreath product of G by H, written (7 ¢ H in the following way:
(G ¢ H is the group of all permutations & on 4 x B of the following kind:

(5.9.1) (a, b)0 = (ayybn), aeA,beB,

where for each ) ¢ B, 7, is a permutation of G on 4, but for different 5’s the
choices of the permutations y, are independent. The permutation # 1s a

permutation of H on B. The permutations 6 with # = 1 form a normal
subgroup G* isomorphic to the direct product of n copies of G, where n is
the number of letters in the set B. The factor group G @ H /G¥* is
1somorphic to /, and the permutations 6 with all y, = 1 form a subgroup

isomorphic to H, whose elements may be taken as coset representatives of
G*in G.



The wreath product is associative in the sense that if K is a third
permutation group ona set C, then (G' ¢ H) ¢ Kand G } (H ? K)are
isomorphic, and if we identify the sets (4 x B) x C and 4 % (B x C) with 4 X
B x C, then they are identical.

The Sylow subgroups of symmetric group S, are easily constructed by

means of the wreath product. What is the highest power of p dividing n!? The
factors of n! divisible by p are p, 2p, 3p, - - -, kp, where k = [n/p] 1s the

largest integer not exceeding n/p. Hence n! is divisible by p* and the further
powers of p dividing k!. We note that [k/p] = [n/p?] and continue, finding that
the power of p dividing n! is p*, where

e[+ Bl -

If we express n in the scale of p,
(5.9.2) n = ap* + ap* 4 -+ + @uap + ay,
where each a; 1s in the range 0 < a,; <p — 1, we find that

(693) M=qa@'+p24+ ---4+p+1) F+ap-2+ -
+2+1)4+ - + @

In particular, a Sylow subgroup of the symmetric group on p” elements will
be of order p"V, where N, = p" 1 + p"2+ - - - + 1. Thus we see that, having
constructed Sylow subgroups for symmetric groups on p, p?, - - -, p* letters,
we can easily construct a Sylow subgroup for the symmetric group on n
letters, where n is given by (5.9.2). We divide the » letters into a, blocks of
p" letters, a; or p*letters, - - -, a, 1 of p letters, and a,, single letters. Then,
if in each block we construct the appropriate Sylow subgroup and take the

direct product of these, we shall have a group P of order p™, where M is
given by (5.9.3). Hence P will be a Sylow subgroup of S,,.

A Sylow subgroup of S, on 1, 2, - - -, p will be of order p, and so a
Sylow subgroup will be the cyclic group of order p generated by a; = (1, 2, -



“ L, p). sz onl, 2, - -, p* will have a subgroup which is the direct product
of the cyclic groups generated by a; = (1,2, - - -,p),a,=(p+1,p+2,- - -,
2p), -, a,= [p>—p+1,- -, p?. If we take a further element of order p, b
=[1,p+1,2p+1, - - .’p2_p+1] 2, p+2, ), (p,2p, - .’p2),
then b 'ab = a,,;, where the subscripts are taken modulo p. Thus b and the

a’s generate a group P, of order pP*1, which is the wreath product of the first
cycle of b and the cyclic group {a,}. Here P, is a Sylow subgroup of S,. In

general let P, be a Sylow subgroup of §,"on 1, - - -, p". Take letters I, - - -,
pLop + 1, 2, - -, ptlas the letters of S,""!. Then, choosing an
element

c = |

Lpyp+L,2p+1,---,p—Dp +1] -~
[j:pr+jr "ty (P“ l}pr+j] "t

where j runs 1 to —p”, we have P.) = ¢'P ¢! as a group of order p™" on the
letters ip" + 1, - - - (i+ 1)p". Aseachof P.), i =0, 1, - - -, p— 1 displaces a
distinct set of letters, the group which they generate is their direct product.
Here c and P, generate a group which is of order p?*1. But pN, + 1 = p[p"!
+-- -+ P+ 1]+l =N

.+1 and so ¢ and P, generate P, |, a Sylow subgroup

of the symmetric group on p” 1 Jetters. With P, acting on letters 1, - - -, p/,
and taking ¢ as the cycle ¢ = (ug, uy, = - -, u, ), then the wreath product
P, ! fﬂ}permutes symbols (i, u;),i=1,-- -, p",j=0,-- -, p—1. Ifwe

identify (7, u;) with i + jp” we see that P,.,; as defined before is precisely the
wreath product F?,. ¢ {.-;] Incidentally we note that P, is generated by r
elements of order p.

As an illustration, a Sylow 2-subgroup of Sy is of order 27 and is
generated by

a, = {1; 2);
by = (1, 3)(2, 4),
a = (1, 5)(2, 6)(3, 7)(4, 8).



EXERCISES

1. If an infinite group G has a subgroup H of finite index, show that there is a subgroup K c H,
where K is normal and of finite index in G. (Hint: Represent G as a permutation group on the
cosets of H.)

2. Show that there is only one simple group of order 60, namely, the alternating group on five

letters.
3. Show that S4 has two transitive representations on six letters which are both faithful but are not
permutation isomorphic.
4. Given the permutations
u=(1,23) 45,6) (7,8,9),
a= (2437 (51 6, 9, 8),
b= (2 :5 819} (418:7:6):
r = { 10) {4: 5) {ﬁ:r S) {7: 9)?
y = (1,11) (4, 6) (5,9) (7, 8),
2 = (1,12) (4, 7) (5, 6) (8, 9).

Show that {u, a, b, x, y} is the Mathieu group M| quadruply transitive of degree 11 and of order
11-10-9-8 and M1, and that {M], z} is the quintuply transitive Mathieu group M, in which My
is the subgroup fixing 12.

5. Given the permutations

a=(0,1,23,4,56,789,10,11,12 13,14, 15,16, 17, 18, 19, 20, 21, 22),
b =(2,16,9,6,8) (3,12, 13, 18,4) (7, 17, 10, 11, 22) (14, 19, 21, 20, 15),

¢ = (0,23) (1,22) (2, 11) (3,15) (4,17) (5, 9) (6, 19) (7, 13) (8, 20)

(10, 16) (12, 21) (14, 18).

Show that {a, b} is the quadruply transitive Mathieu group of degree 23, M3, of order
23-22-21-20-16-3, and that M4 = {a, b, c} is the quintuply transitive Mathieu group in which M»53
is the subgroup fixing 23.

* E. Parker has obtained a limit with ¢ of the order of magnitude 1:/-._..: for reasonable values of n.
The best asymptotic value is due to Wielandt [1] which gives ¢ < 3 log n.



6. AUTOMORPHISMS

6.1. Automorphisms of Algebraic Systems.

In §1.2 we saw that all the 1-1 mappings of any set onto itself form a group.
In general those 1-1 mappings of a set S onto itself, which preserve certain
properties P, will also form a group.

Let 4 be a general algebraic system with elements X = {x} and operations
Jy such that f,(xy, - - -, x,) =y is an element of 4 whenever x;, - - -, x,, are

elements of 4. There may be arbitrarily many operations, but each operation is
a single valued function of a finite number n of elements. The “laws” or
“axioms” of 4 will be relations involving the operations. Then a 1-1 mapping
o of Xonto itself, X &= X @, is an automorphism of A if

(6.1.1)  fu(zs, -+-, ) = y implies fu(m1%, «--, 2. = y*

for every operation f, and for each f, for all x|, - - -, x,,. The mapping that is a

product of two automorphisms will itself be an automorphism, and with respect
to this product, the automorphisms will form a group. In particular the
automorphisms of a group form a group. In a group there is a single binary
operation, the product operation, and we require that ab = ¢ imply a®b* = ¢?, or
more briefly, (ab)* = a*b* for a 1-1 mapping o to be an automorphism.

The automorphisms of algebraic systems are a natural source of groups.

Historically the development of group theory arose from the study of the
automorphisms of algebraic fields.

6.2. Automorphisms of Groups. Inner
Automorphisms.

If :x & 2% is a 1-1 mapping of a group G onto itself, o will be an
automorphism if, and only if, ab = c implies a*h* = ¢?, or more briefly,



(6.2.1) (ab)* = abe,

The relation (6.2.1) alone defines an endomorphism, and in §2.4 we have
already defined an automorphism as a 1-1 endomorphism. Thus the two
definitions of a group automorphism agree.

For a fixed g € (7, the mapping A4, inwhich

(6.2.2) Agx2alza, all z e,
is in fact one to one, since axa ! — a '(axa )a = x. It is an automorphism,
since a 'xya = a 'xa - a 'ya. The automorphism 4, of G in (6.2.2) is called an
inner automorphism. Automorphisms of G not of this type are called outer
automorphisms. Since b '(a 'xa)b = (ab) 'x(ab), and a(a 'xa)a™! = x, we
have

(623) Aﬂ;’iﬁ. = A abs Aa—l = Aa_l.

THEOREM 6.2.1. The inner automorphisms of a group G are a normal
subgroup I(G) of the group A(G) of all automorphisms of G. The mapping a
— A, is a homomorphism of G onto 1(G) whose kernel is the center of G.

Proof: From (6.2.3) the inner automorphisms form a subgroup /(G) of A(G).
Let a be any automorphism of G. Then (a 'xa)* = (a*) 'x“a* Hence a 'A o
maps x into (a*) 'xa® whence a!(4,)a = A,“ and so I(G) is a normal subgroup
of A(G). From (6.2.3) the mapping a — A4, is a homomorphism of G onto /(G).
Now A4, = 1 if, and only if, xa = ax for every g ¢ (3. Thus 4, = 1 if, and only

if, a belongs to the center of G. Thus the kernel of the homomorphism G — 1(G)
is the center of G.

A finite Abelian group X is the direct product of its Sylow subgroups
(Theorem 3.2.3).

(6.2.4) X = 8(p) X 8(p2) X +++ X S(py).

A(X), the group of automorphisms of X, must include the direct product of the
automorphism groups A[S(p,)]. But since an automorphism of X must map each

of S(p;), i=1, - - -, r onto itself, there can be no further automorphisms, and so



(6.2.5) AX) = AIS@)] X -+ X AlS(p,).

More generally, the group of automorphisms of a periodic Abelian group is the
Cartesian product of groups of automorphisms of the Sylow subgroups.

The problem of finding the automorphisms of a periodic Abelian group has
thus been reduced to finding the automorphisms of ap Abelian p-group. Any
automorphism of a finite Abelian p-group, 4,,, maps a basis onto another basis.

Conversely, letay, - - -, a;and by, = - - -, b, be two bases for Ap, arranged as
they may be by Theorem 3.3.2 so that g, 1s of the same order as b;,i =1, - - -, s.
Since
(6.2.6) A, = {ai} X {az} X --- X {a.}

= {b} X {ba} X +++ X {bs},

it follows that the mapping

(6.2.7) a;— (@)a=1b;, i=1 -8

determines an automorphism a of 4,,.

In the cyclic group C of order p, C= {a}, a’ = 1, every elementa’,i =1, - -
-, p — 1 1s a generator. Hence there are p — 1 automorphisms determined by a
— (a)a; =d'. If r is a primitive rooti modulo p, then a — (a)f = a” determines
an automorphism B. Here a — (a)f/ = a”. With r a primitive root, the first

power of 7 such that # = 1 (mod p) is j = p — 1. Hence the automorphism f is of
order p — 1, and the automorphism group A(C) is cyclic of order p — 1 and
generated by p.

6.3. The Holomorph of a Group.

Both the right and left regular representations of G are subgroups of the
group S;; of all permutations of the elements of G (§1.4). In addition, if & is an

automorphism of G, then gy : 1+ &= 1% 1s an element of S fixing the identity 1
of G.

Since (g1x)g, = g1(xg,), we have L(g1)R(g,) = R(g,)L(g;). Thus the right
and left representations of G permute with each other elementwise.



THEOREM 6.3.1. Each of the right and left regular representations of G is
the centralizer of the other in Sg.

Proof: Let m be a permutation in S; belonging to the centralizer of L(G). Let
(1)z = g. Then 7R(g)™' = * belongs to the centralizer of L(G) and fixes the
identity (1)z* = 1. Here (1)7*L(g’) = g'. Hence also (1)L(g")7* = g, and so
(g")n* = g'. But g’ may be any arbitrary element of G, whence 7* = 1, and so
T € R(G} Hence the centralizer of L(G) is R(G). Similarly, L(G) is the
centralizer of R(G).

This disposes of the centralizer of R(G) in S; We shall call the normalizer

of R(G) in S the holomorph of G.

THEOREM 6.3.2. Let H be the holomorph of G, the normalizer of R(G) in
Sc. The subgroup of H fixing the identity of G is the group A(G) of
automorphisms of G.

Proof: Let H be the normalizer of R(G) and let o be an element of H fixing
1. Here R(g} = a R (g)af 1s surely an automorphism of R(G), since
R(G) is a normal subgroup of H. Hence o 'R(g)a = R(g*) defines a 1-1
mapping § 5 g% of G onto itself. But since (g,g,)* = g,%g,* under this
mapping, § 5 §% is an automorphism of G. But a is in fact the permutation
g = g<. Since (1)a =1 and o 'R(2)a = R(g%), we have (1)aR(g”*) = g* and
also (1)R(g)a = g%, whence (g)a = g Thus, if a belongs to H and fixes 1, then
o is an automorphism of G. Conversely, let ct: ¢ £5 ¢ be an automorphism
of G. Then a 1s an element of S fixing the identity 1 of G. We may now verify
that o 'R(g)a = R(g%*), whence a belongs to the normalizer of R(G). For
(X)R(g)a = x*g* and also (x)aR(g?) = x*g* Thus the subgroup of H fixing 1
consists entirely of automorphisms and contains every automorphism. In the
proof of Theorem 6.3.1 we showed that only the identity of S, fixes 1 and
permutes with every element of R(G). Hence every automorphism of G occurs
exactly once in the subgroup of H fixing 1 whence this subgroup is A(G). Since
the normalizer of a group includes its centralizer it follows that H D L(G).

6.4. Complete Groups.



DEFINITION: A complete group is a group whose center is the identity and
all of whose automorphisms are inner automorphisms.

THEOREM 6.4.1. Let G be a complete group which is a normal subgroup of
a group T. Then T is the direct product G < K of G and the centralizer K of G
inT.

Proof: Let
(6.4.1) T =G+ Goat o + Gz; + -
Here x; 'Gx; = G since G is normal in 7. Thus § <5 ;I:E;"lg_?:;- = @%is an

automorphism of G. Since every automorphism of G is an inner automorphism,
g*=a 'ga for some g ¢ (7 and all g. Hence x; 'gx; = a 'ga for all g. Here yi =
x;a"! belongs to the centralizer K of G in T. But Gx; = x,G =x,a 'G = y,G = Gy,
and we may take y; as the coset representative of G. Thus every coset of G in T’

contains an element of K. Hence 7= G U K = GK = KG as G is normal. But K
N G = 1, since the center of G is the identity. Hence 7= G x K, since every
element of K permutes with every element of G.

COROLLARY 6.4.1. The holomorph H of a complete group G is the direct

product R(G) x L(G).
This follows since L(G) is the centralizer of R(G) in H.

6.5. Normal or Semi-direct Products.

THEOREM 6.5.1. Given two groups H and K and for every element i € H
an automorphism of K,

(6.5.1) kskh all kekK,
such that
(6.5.2) (K"yr2 = gMh2 py R,y e H.

Then the symbols [h, k), h € H., J: ¢ K form a group under the product
rule



(6.5.3) [h1, k1) [Ra, ko] = [Raha, ki"2k),
called the normal product of K by H or the semi-direct product of K by H.

Proof: Since for every k and £, ,!;h e I, the product rule (6.5.3) is well
defined.

1) The product rule (6.5.3) is associative, since

([h1y K1)+ [, ka]) - [Ra, k3]

(6.5.4) = [hiha, ki"%ks] - [hs, k3]
= [(hiho)hs, (ky"*h2)" %3]
= Ehlszha, fﬁhzhsffghafﬁg],

using (6.5.1) and (6.5.2).
[ha, Kl ([he, ko] [hs, ks])
(6.5.5) = [hy, ka)-[hahs, ko"3ks)
= [hihohs, ki"?"3ks"ks).

2) The element [1, 1] is the identity, since

(1, 1][h, k] = [k, 1*k] = [A, K],
[k, k][1, 1] = [h1, kY] = [k, k].

Here k! = k because of (6.5.2).
3) An arbitrary [/, k] has a left inverse [A~!, (k"1)"']
(6.5.6) (-, (][, K] = (R, k%] = (1, 1].
Hence the symbols [/, k] with the product rule (6.5.3) form a group G.
THEOREM 6.5.2. If G is the normal product of K by H, then the elements
[h, 1] of G form a subgroup isomorphic to H and the elements [1, k| form a
normal subgroup isomorphic to K. Moreover, the automorphism (6.5.1) of K

as a subgroup of G is induced by transformation by the element h = [h, 1] of
H as a subgroup of G, since



(6.5.7) (h, 1]7Y(1, K)(R, 1] = [1, &"].
Moreover, G=HU K, since

(6.5.8) (h, 101, k] = [A, k].

Proof: We have only to observe that i 5 [h, 1]and | = [1 : f,:] are
isomorphisms between H and K and subgroups of G, using the rule (6.5.3) and
noting that k' = k. Also, (6.5.7) and (6.5.8) follow directly from the rule
(6.5.3). Here (6.5.7) shows that K is a normal subgroup and that the
automorphism (6.5.1) is induced by transformation by the element 4 = [A, 1].
Here HN K=[1, 1] =1, and (6.5.8), shows that the elements of H may be taken
as coset representatives of K.

THEOREM 6.5.3. G is the normal product of K by H if, and only if, K is a
normal subgroup of G and H is a subgroup of G whose elements may be taken
as the coset representatives of K. Otherwise expressed

1) K is a normal subgroup of G.

2) H is a subgroup of G.

3) KNH=1

4 HUK=G.

Proof: We have already observed that these properties hold if G is the
normal product of K by H. Conversely, suppose these properties hold. Then
fromKNH=1, HU K = G, with K normal in G, it follows (Theorem 2.3.3)
that every element of G has a unique representation of the form

(6.5.9) g = hk.
Since K is normal,

(6.5.10) h-%h = k* ¢ K,

and clearly [ = k-" 1s an automorphism of K. Moreover, from (6.5.10) we
have

(6.5.11) (KP)h2 = fhibe,



For the product of two elements of G,

g = hk, g: = hz-rcz,
(6.5.12) G192 = hikihoks
= h;hg(hz'lklhz)kg
haha- b2k,

and so the rule for the product in G is precisely the same as (6.5.3), and G 1s
the normal product of K by H.

We observe that the association of an automorphism of K with an element of
H is a homomorphism of H into the group of automorphisms of K. If H is
mapped into the identical automorphism of X, i.e., k" = k for every A, k, then the
rule (6.5.3) 1s that for the direct product of H and K.

EXERCISES

Show that the dihedral group of order 8 is isomorphic to its group of automorphisms.

2. Show that the group of automorphisms of the elementary Abelian group of order p’ is of order (p”
“D@"=p) " P,

3. Find an outer automorphism of the symmetric group on six letters, S¢. This will interchange the two
classes of elements of order 3.

4. Show that if the order of a group is divisible by p2, the square of a prime, then the order of its

group of automorphisms is divisible by p. (Hint: If there is no inner automorphism of order p, show
that a Sylow p-subgroup is Abelian and a direct factor of G.)

5. An automorphism a of a group G is called a central automorphism if for every x of G,
x"i fj:)a eZ , where Z is the center of G. Show that the group of central automorphisms, which
are inner automorphisms of G, is isomorphic to the center of G/Z.

6. Let G be the group generated by elements a, b, ¢, with defining relations a8 =p8=c4= 1, b Lap
=&, ¢ Lac = a3, ¢ be = a®b. Show that {a, b} is the normal product of {a} by {b}, and that G
is the normal product of {a, b} by {c}. Hence conclude that these relations define a group of order

256 whose elements are of the form aibick .

I For a treatment of primitive roots see Birkhoff and MacLane [1] p. 446, or Hardy and Wright [1] p.
236.



7. FREE GROUPS

7.1. Definition of Free Group.

Suppose we are given a set of elements S = sy, - - - s,, where it is not
assumed that the elements s; - - - s, are finite in number or even countable. But
whenever it 1s desirable, we shall assume that the indices i of the s; are well
ordered. We now define symbols s;!, s;”1 where s;! = s; and s, ! is a new
symbol.

A word or string 1s either void (written 1) or a finite succession aja, - - -

a, where each g; is one of the 8;¢, ¢ = = 1.
A word 1s a reduced word if it 1s void or if ina; - - - a,no pair a,a;,,i = 1
-~ t—1lisofthe forms;‘8; % ¢ = = 1.

Two words f; and f, are adjacent 1f they are of the form fl = (8;°S; ef
/>, =gh. Each of f| and f, 1s adjacent to the other.

Two words fand g are equivalent written f ~ gif fi =1, f, - - - f,, = g exist
such that f; and f;,, are adjacent fori =1 - - - m — 1. Clearly f ~ g 1s a true

equivalence relation. All words equivalent to f form a class which we may
designate as [f].

LEMMA 7.1.1. Any class contains one, and only one, reduced word.

Proof: If f=a, - - - a, contains any @i;41 = 8&;°§; ¢, then there is a
word adjacent to f, a; - * - a,1a;4, © * * a, involving fewer symbols. After

successive reductions we shall find in, at most, #/2 steps a reduced word
equivalent to /. This shows that [f] contains at least one reduced word.
Now, for f=aya, - - - a, we define the W-process



Wo =1 the void word
1"V1 =
Wi = Wiain if W; is not of the reduced form Xa
=X if W;is of the reduced form Xa;4;,1
Now, by induction, it is seen that Wy, W, - - -, W, are all of reduced form and
that W, =fif f'1s in reduced form. Now, if
h=a -+ aamy -+ a
Je=a -+ a8 rpa - - - Qy
let Wy, wyl, - - -, W/ be the words of the W-process for f; and W2, - - -, W,.»?

be the words for f,. We want to show that W,! = W,,2. Now W' = w2 - - - w1
= W2, since the processes are identical. Consider two cases:

1) W' = w2 is of the reduced form X 8;7¢. Since X '§;7¢ is in reduced
form, X 1s not of reduced form Ysjf. Here, for f,, W.3> = X,
W = Xsj¢= Wt =W

2) W1 = W2 is not of the reduced form X 8;7¢ Here W,. n = -.[V,.ESJ'*
> WV+22 - Wr2 - er'

Hence in both cases W,.,> = W1, and so inductively, W,,.> = W1, since

the processes are identical. Thus the W-process yields the same reduced word
for any two adjacent words, and hence for any two equivalent words. But also
the W-process leaves a reduced word unchanged. Hence there cannot be two
distinct reduced words in the same class.

We may define a multiplication for these classes of words, and under this
definition these classes form a group which we shall call the free group F
generated by S.

THEOREM 7.1.1. For any two classes, [f1], [f2] of words on S define their
product [f{1[f>] = [fif>]- This product is well defined, and with respect to this

product, all the classes of words on S form a group, the free group F
generated by S.

Proof: Suppose 1 ~ f1', /> ~ f5'. Then fif5 ~ fi'f>' since we may first show
Jfif> ~ fi'f> by replacing f; in turn by the words adjacent to it which lead to f".



Similarly, f'f> ~ fi'f5', whence ff> ~ fi'f5', whence [f,'f'] = [ff>], and so the
product [fi/5] = [f11[f>] depends only on the class of f; and f5 and not on the

particular representatives. The void word is the identity for this product, as [1]
[71 = [/1[1] = [f]. Moreover, iff=a, - - - a,and h=a, ' - - - a,”", then [f][1] =
[fh] = [1] and [ 111 = [f] = [1]. Hence [a, ' - - - a;”'] is the inverse of the
class [a; - - - a,]. We find moreover that ([f{][/5DIf3] = [f1f2f3] = U1lA145D,

whence the associative law holds. Thus the classes of words form a group,
called the free group F generated by S. We may write F¢ to indicate the
generators.

It is convenient to write f; = £, if the two words are equivalent and hence
represent the same element of F. We shall write f| = f5 to indicate that f; and f,
are the same word. Naturally it is usually convenient to represent an element of
F 1n 1ts reduced form. Thus if f = a; - - - a, 1s in reduced form, we say f is
reduced as written.

In any group G a set of elements X: x;, - - -, x,, generate a subgroup H
consisting of all finite products bb, - - - b, each b, being some ;%
e = == |. There is no difficulty in verifying that these finite products do
form a subgroup. In general an element of A may be written in many ways as
such a finite product. Moreover, it is trivial that all elements of G generate G.
Hence every group G may be regarded as generated by a set of elements X, and
we write G = {X}. The following theorem shows why free groups are
interesting not merely in their own right, but also as a tool in the study of all

groups.

THEOREM 7.1.2. Let the group G be generated by a set of elements X:xy, - -

X,. Then if F is the free group generated by S:s;, - - -, s,, there is a
homomorphism I — G determined by s;, — x; all i.
Proof: let f = a; - - - a, be any word of S. Consider the element

g = by -+« b, e G, where b; = x;¢if a; = §;° Then f — g maps
every word of § onto an element of G. Clearly adjacent, and therefore
equivalent, words of § are mapped onto the same element of G. Hence the
mapping / — g i1s in fact a mapping of elements of /' onto elements of G.
Moreover, if f{ — g1, /, — £, then fif; — g,2,. Hence the mapping s; — x;



determines a homomorphism of F onto G. From the theorems on
homomorphisms we have the corollary:

COROLLARY 7.1.1. Every group G given as generated by a set X is the
factor group of a free group I with the same number of generators.
As an alternate definition of a free group we may take the following:

DEFINITION: The free group F generated by a set S of elements is the group
with the following properties:

1) F is generated by S.

2) If G is any group generated by a set of elements X and if there is a one-
to-one correspondence between S and X, § ¢ X, then there is a
homomorphism of F onto G, F — G taking S onto X.

In light of Theorem 7.1.2, this is a valid definition. From the previous
definition the free group F' satisfies these requirements. Moreover, if F” 1s a

group generated by S and " — Fg this homomorphism must be an isomorphism,

since the only element of /" which can be mapped onto the identity is the
identity.

However, there seem to be several disadvantages in this definition. It is not
a constructive definition and it does not make clear, without the constructive
process given above, that any group with properties 1 and 2 exists, nor does it
make clear that if such a group exists, no nontrivial relations hold. Moreover, on
broader grounds, the concept of a “free” system, a system in which no relations
hold save those implied by the axioms, is tenable even though no theorem
analogous to Theorem 7.1.2 may hold.

7.2. Subgroups of Free Groups. The Schreier
Method.

The nature of subgroups is always fundamental in the study of groups, and
for free groups, from Theorem 7.1.2, the normal subgroups are of particular
interest. It was proved by Nielsen [1] and Schreier [3] that subgroups of free
groups are themselves free groups. Nielsen’s proof held only for finitely
generated subgroups, but Nielsen’s proof has been extended by Levi [1] and
others so as to avoid this restriction. Nielsen’s method works directly with the
elements of the subgroup, Schreier’s with the cosets of the subgroup. The first
proof given here* is a simplification of the Schreier proof.




A set G of elements of a free group F' is said to be a Schreier system if for
eachg e (3:

1)g=aa, - - - a,1s reduced as written.

2)ajay - - a,isalsoag e .
We say that G is a two-sided Schreier system if in addition to 1 and 2 the
following also holds:

3)ay - - a;isalsoag e (7.
Note that a Schreier system always contains the identity.

Let I be the free group generated by § and let U be a subgroup of F.
Consider the decomposition of F into left cosets of U:

(7.2.1) F=U1+Ugs+ ---+Ugi+ ---.

We shall always choose the identity as the representative of U itself. We find
that 1t is advantageous to choose the representatives of the remaining cosets so
that they will satisfy certain relations.

LEmMMA 7.2.1 (EXTENDED LEMMA OF SCHREIER). If U is a subgroup of the
free group F it is possible to choose the representatives of the left cosets of U
as a Schreier system. If U is a normal subgroup of F it is possible to choose
the representatives as a two-sided Schreier system.

Proof: Let the generators of F S: s; - - - s, and their inverses be well
ordered in any way; for example, s; <s; ' <s, <s, | - - - <s, <s, ! if the
number 7 1s finite. But it is not to be assumed that the set S is finite or even
countable, merely that the set S U S may be well ordered.

This ordering of S U S~ may be extended to yield an alphabetical ordering
for all the elements of F. If we have two elements of F, fand g, then we define f
< g in the alphabetical ordering if the reduced forms of f'and g are

f...—_al "‘ﬂ;g,
g =1b - by,

where the a; and b; belong to S U S™!, and one of the following holds:

1) t<u.
2) t=u,a1<by.



3) t=u;a1=b1'-'ai=bl~;ai+1<b,~+1.

The alphabetical ordering so defined is clearly a simple order, indeed a well
ordering, and the following useful properties hold:

If f < g and gh is reduced as written, then fh < gh. If f < g and Ag 1s reduced
as written, then Af < hg. This may be verified from the definition of the
ordering.

To prove the lemma, let us choose the representative g; of the coset Ug; as

that element of the coset earliest in the alphabetical ordering of F. Then we
assert that the g; form a Schreier system, and in fact a two-sided Schreier
system, if U is a normal subgroup. Since the identity is the first element of F', the
identity is chosen as the representative of the subgroup U. Letg=a; - - - a, 14,
be the representative of the coset Ug, being the earliest element in this coset.
Let /1 be the earliest element in the coset containing h* =ay - - - a,;. lfh=b; -
‘b, thenh<ay-- - a, . But ha; € Ug, andso g < ha, Butalso ha,<ay -

~a,qa, = g. Thus g = ha, and, so, h = h* = a; - - - a, 1s also a coset
representative. Thus the g’s form a Schreier system. If U is a normal subgroup,
leta, - - - a,be in the coset Uf = fU whose earliest element is f. Thenf<a, - - -
a,, and af belongs to the same coset as a; - - - q,U = gU = Ug. Then g < a .
But also a;f <aja, - - - a,=g. Thus g =a,fand f = a, - - - a, Hence the g’s
form a two-sided Schreier system. Note that the lemma merely guarantees the
existence of a Schreier system of left coset representatives. But the same

subgroup may possess more than one set of coset representatives which is a
Schreier system.

THE MAIN THEOREM: THEOREM 7.2.1. Every subgroup of a free group is a
free group.

Let F be the free group generated by the set S, and let U be a given subgroup
of F. Then by the Schreier lemma we may suppose the left coset representatives
G to be a Schreier system.

(7.2.2) F=U14+Ug+ -+ Ugi+ +--.

We begin with a lemma which is true for any group /" whether a free group
or not. Let /" be generated by a set of elements S, let U be a subgroup of F, and
let (7.2.2) be the decomposition of F into left cosets of U.

If an element f of F belongs to the coset Ug; in (7.2.2), let us define a

function ®(f) by putting ®(f) = g;. Note that D(uf) = O(f) if gy ¢ [J. O(f) = 1 if,



and only if, f e U.

Suppose f=a,a, - - at witheach g, ¢ S \U S—L Writef)=1, f| =
fhr=ajay, - f,=a1ay - - - a,=f. Then write hy = O(f)) = 1, h; = O(f)), -
h, = O(f). Then, identically,

(7.2.3) fhi™t = hoarhy™'-haashe™ he « ++ hyq™t im0k
=f, iffel,

since then /1, = 1.
Now, since
— ‘I’(hi) = ‘I’(f;) = “i’(ff_l{lf) = ‘1’(}3{,._1!111:1 = ‘I‘(}lg_],-‘ifq),
a; = S5 = = 1, hi e (7, it is clear that in (7.2.3) we need only the
function @ for arguments of the form gs* ¢ € 7.5t ¢ S \U S—L Let us
then write ¢(gs¢) = B(gs®) so that §(f) is defined only for arguments

f=gs

LEMMA 7.2.2. In any group F the elements gs¢(gs) | are generators of the
subgroup U, where g runs over the left coset representatives of U in (1.2.2); s
over the generators of F and :ﬁ(gs‘) is the representative of the coset

containing (8°.

Proof: If f € U, then h, = 1 and (7.2.3) expresses f as a product of
elements /; ja;h; ', and since h; = ®(h,_ja;), then h,_jah; ' is of the form
gsee(gs®)~L, with h,; = g and @; = 8°, since then fi; = ¢p(gs*). But
gsc € [/ qfa{gs } whence for any §$* the element gs‘qﬁ{gs ) I ¢ [J. Note

that if  p(g;8¢) = gk, then  p(ges™¢) = g;  Hence, if
q;8 ¢.(g,3*}—1 = g;8°gx L, its inverse is
g;;s_‘g_-,-_ = (rs Et;b[igﬂ_!)'_l, which is of the same form with the

opposite sign for the exponent of s. Hence the elements gs¢(gs) ' generate U.

COROLLARY 7.2.1. If F is a finitely generated group and U is of finite
index in F then U is finitely generated.

This follows since there are only a finite number of choices for g and s in
gsh(gs) .

From here on we shall assume that F' is a free group and that the coset
representatives G form a Schreier system.



We shall use the following properties of the function ¢.[:g3*):

D ¢(gse) e G

2) Ifgs* € (7, then ¢{:g3‘) = gs‘.

D ¢lolgs)s™] = ¢
As a generic notation let us write 9 = gs¢p(gs) " and u = gs¢(gs)". Thus
au i1s a v with exponent +1 and a v is either a u or the inverse of a u, for if v =
g5 '9(gs™)!, put ¢(gis™") = g;. Then, by the third property, v'' = gisg; ! =
gjsqﬁ(gjs)_1 is a u, and also, similarly, the inverse of a u 1s a v.

LEMMA 7.23. A p = gs*qﬁ(gs":}_l is either reduced as written or
equal to 1.

Proof: Let v = ¢;8 “ﬂtﬁ(g 8 ﬂ!)-“l = ;8 ﬂﬂgk—l, where
gr = q&fg iS4°)- Both g; and g, ! are reduced as written. Hence, if there is

any cancellation in v, either (1) g; ends in 84 ¢, or (2) g, ! begins with 8,7,
If (1) holds, §; = @1 * -+ @418, ° is the reduced form of g whence
(JiSa* = @1 *+* @41 is a g, and by property 2 of the ¢ function,
0y = .;J}(grﬁg ) = §i8.% 50, U = gl-.gﬂfgk"i = ]. If (2) holds, then
similarly g; = ﬂﬁ(nga"') = (1Sq % andagainv=1.

Forayp = gsftﬁ(gs"-:}“l == ], let us call the factor 8¢ the significant
factor of v. Suppose ¥ = §;8,°0(g;8.)" = qsp"d(grsy”)™? # 1.
If g and g, are of the same length, then since v is reduced as written, g = &
8a° = 8" Ifg; and g; are of different lengths, say, g, longer, then JiSa*asa
beginning section of g; is itself a g; so, qb{:gj;sﬂ‘} = (J;8,% and so v = 1
contrary to assumption. Thus a v # 1 has a unique expression of the form
g8 (gs*) ! and in particular has a unique significant factor.

LEMMA 7.2.4. In a product viv,, vi # 1, v, # 1, v, # v, "\, the cancellation
does not reach the significant factor of either v.

Proof: Let ¥ = Q‘;‘Sa‘g;_l, gi = tﬁ(g,ﬁg’)’ v, = gspler s g =
¢(g;s,). v and v, are both reduced as written, and since v, # v,”!, we cannot
have both g, =g;and 8~ " = §,°holding. Let us deny the lemma and assume

that the cancellation reaches a significant factor. If the cancellation reaches s,"



first, then gs;" is a beginning section of g;, whence ¢(gs,") = gs," and v, = 1,
contrary to assumption. Similarly, if the cancellation reaches §,* first, then
(iSa ¢ is a beginning section of g; and v; = 1, contrary to assumption. If the

cancellation includes &,* and s, simultaneously, then g, = g 5" = 85 °©

I, contrary to assumption.

We are now close to the proof of the main theorem.

and V2 = Vl_

LEMMA 7.2.5. Aproduct of vis, vivy - = = v, vi# Li=1" - m vy #v; i
=1, -, m— 1 cannot be the identity.

Proof: By the repeated application of Lemma 7.2.4, the cancellation
between v; and v;,; does not reach either significant factor. Hence, when put in

its reduced form in terms of the s’s, the product v; - - - v, contains all the
original significant factors and cannot be the identity.

Now consider the elements u, u = gs¢(gs) ' # 1. From Lemma 7.2.2, all the
w’s and so the u’s # 1 generate U. The u’s will be free generators of U if no
product of u’s which is a reduced word in the u’s is equal to the identity, i.e.,
reduces to 1 when expressed in terms of the s’s. But every v # 1 is either a u or
u ! and in just one way. Hence a reduced word in the u’s # 1 will be of the form
Vivy © v, vi#E 1 v # v ! treated in Lemma 7.2.5, and therefore will not be

the identity. Hence Lemma 7.2.6 will hold.

LEMMA 7.2.6. The elements u = gs¢(gs)"' # 1 are free generators of U.

Thus we have found free generators for U, and so U is a free group.

The role of the significant factor in Lemma 7.2.4 is the key to this proof of
Theorem 7.2.1. We may generalize this idea by an independent definition of
significant factor.

A set Y of elements such that Y N Y1 = 0 is said to possess significant
factors if for each 9y € ¥ we may select a factor from the reduced form of y

and y:

I
8
L
S

yl=gail---ait- - a7}

selecting a; from y and ;! fromy ! in such a way that in any product



zw,z#Zwhz,wel U YT,

the cancellation does not reach the significant factor in z or w. In other words Y
possesses significant factors if Lemma 7.2.4 is valid in Y U Y for these
factors. The significant factors for a set Y are said to be central significant
factors if for a y of odd length the significant factor is its central term and for a
y of even length the significant factor is one of the two central terms.

THEOREM 7.2.2. If a set Y possesses significant factors, then Y consists of
free generators for the subgroup generated by its elements. If G is a Schreier
system with each g a shortest element in its coset Ug, then for the u’s with u =

gsd(gs) L £ 1, the s's form a set of central significant factors.

Proof: By definition of the significant factor, Lemma 7.2.4 holds for vy,
ve € ¥ \U Y1 Butthen Lemma 7.2.5 holds also. Hence no word in the y’s
and their inverses is the identity unless its reduced form in the y’s is the identity;
thus the y’s are free generators of the group which they generate.

If G 1s a Schreier system of coset representatives g for a subgroup U such
that a coset Ug contains no element shorter than g, then since

gs € Ug(gs),
¢(gs)s~t e Uy,

we see that g and ¢(gs) can differ in length by, at most, one. Thus s, which in
Lemma 7.2.4 has already been shown to be a significant factor, is a central
significant factor, since in u = gs¢(gs) ™' it is between two words of length
differing, at most, by one.

We may prove a converse to Lemma 7.2.6 and the main theorem.

THEOREM 7.2.3. Let G be a Schreier system in a free group F generated by
a set S of free generators. Let ¢(h) be a function defined for arguments

h = g8%.e = x=1.0 ¢ (7. s € S such that

D ¢(gs) eG

2 Ifgst € (. then p(gse) = gs©

D Plolgs)s = ¢
Then the elements u = gsp(gs) "' # 1 are free generators of a subgroup U of E
and the Schreier system is a set of representatives of left cosets of Uin F.



Proof: Letus write 9 = 8%¢(gs¢) ! as a generic notation. The proofs
of Lemmas 7.2.3, 7.2.4, and 7.2.5 are valid under the hypotheses given here,
since only the preceding properties of the ¢ function were used in the proof of
these lemmas. From Lemma 7.2.5 it follows that the elements u = gs@(gs) ! # 1
are free generators of some subgroup U of F.

In order to show that the Schreier system of G 1s a set of representatives of
the left cosets of U, we define a function ®(f) for every word fin S U S
Suppose

f=mas---a, a;eSIS8Y ¢=1---14

Put
ho = 1,
h{ = qb{h;_la,-), 1 =1 ««» t,
he = ®(f).
The essential properties of O(f) are easily proved:
1))
Play -+ @@ipr - @) = Plar -+ AiSSWig1 **+ Q)

By definitionevery 4, i =1 - -tisa g € (7. Hence in evaluating the right

hand side we have successively 4;, q&.[:h,:s*), and ¢[¢[:f“3f)3"f} = h; by
property (3). Otherwise the process is identical in evaluating both sides. Thus
®(f) is the same for any two words representing the same element of F.

2) D(g) =¢g.
Here if g = a; - - - a, is the reduced form of a g € (7, every beginning

section is also a g and, by property (2), h,=a; - - - a;,;i=1" -t

3) D(fyf) = DO,

Write /= fif5, f1=a, " " " a;,f>,=a; " - a. Thenh; = ®(f}) 1s a g, and so
®(h;) = h;. Thus, in evaluating ®(4,f;), we have a term equal to 4; and then
further terms equal to 4, , - - -, h, = O(f1/>)

4 ®(gse) = ¢(gse)

Here LII[fg.'?.‘:l = f;b[ffil(g}sf) by the definition of the ® function. Here
®(g) =g, and so B(gse) = (gs*)

5) Pgsep(gs)~! = 1



Here
Bgseplgs) ] = B(D(gs)b(gs)] = Bo(gs)-o(gs)7Y = ¥(1) =1
6) Iff e [J, then ®d(f) = 1.
This comes from a repeated application of (3) and (5).
T IfO(f) =g, then f € Ug.
— alfl-ﬁ . os o a‘i
= (1 e h1_l) Uhflﬂhz-l} . {hf—lﬂchrl)hh
and eachof fj;_yahi™! = gsp(gse)™' € U,i=1- -1t whereas h, =
@(f) = g. In particular, if ®(f) = 1 then f ¢ [J.
8) If g; # g;, then g; and g; are in different cosets of U.
Otherwise, g; = wg; withqp ¢ [ and g;= ®(g) = O[D(w)g;] = D(g) = g;»
a contradiction.
Thus we have shown that the cosets Ug are all different and include all the

free group F. In proving Theorem 7.2.3 we have shown even more than was
required. We state this as a theorem.

Here

THEOREM 7.2.4. Given the Schreier system G and the function qb(gs*) of
Theorem 7.2.3. From these alone we may decide whether or not an arbitrary
element f belongs to the subgroup U determined by G and ¢.

Proof: We may compute ®(f) from ¢ and G, and ®O(f) = 1 if, and only if,
f € U. Since ¢ and G determine U in this unambiguous fashion, we shall
regard ¢ and G as representing U, and speak of ' = U|[@F, ¢(gs¢)] as a
standard representation of U.

Two questions raise themselves naturally:

1) How are different standard representations of the same subgroup related
to each other?

2) How many subgroups, if any, can be represented in terms of a given
Schreier system?

We shall answer both these questions in turn.

THEOREM 7.2.5. U, = UyGy, ¢i(gs?)] and
U = Urz[Gg, qf:gl{:gsl)]are the same subgroup if, and only if, there is a
one-to-one correspondence. gl = gg, including |1 <= 1 between the
Schreier system G, and G, such that whenever gl = gg then

d1(g's) S Palg?se)for any s,



Proof: If Uy = U, = U, then each coset of U has a representative from G,

and also from G,. Thus, if Ug' = Ug?, the correspondence G €5 g2 is clearly
one-to-one and includes | = ]. Since Q‘IS* and gis' are in the same coset,
then ¢y (g's®) S ¢2(g*s*)

Conversely, suppose a one-to-one correspondence gl = gﬂ given,
including] %= 1 such that ¢ (gis*) = qﬁg(Q‘ES’} in all cases. We find that
®,(f) & By(f) for every f, and in particular, ®(f) = 1 if, and only if,
®,(f) = 1. But this says that U; and U, contain the same elements f, and
therefore are of the same subgroup U. Moreover, by induction on the length of
g! we may show that Ug! = Ug?.

Before answering the second question we shall note some properties of the
function ¢. The mappings 7(s):g — ¢(gs), (s 1):g — ¢(gs 1) for all g e G
and a fixed generator s map all of G into itself. From property (3) of the ¢
function the products 7(s)z(s ') and 7(s ")z(s) are both the identity. Hence x(s)

and 7n(s”!) are permutations (one-to-one mappings) and are inverses of each
other. In addition, from property (2), certain values of ¢ are compulsory in that
they depend entirely on the nature of G and not on the subgroup U. Again
consider a fixed sand all g € (7. The g’s may be divided into classes C(s) and
C*(s) such that

g e C(s) if, and only if, gs € G,
g € C*(s) 1if, and only if, gs ¢ G.

Let N(s) be the cardinal number of the class C(s) and M(s) the cardinal number
of C*(s). Here

N(s) + M(s) = N,
where N is the cardinal number of G. Similarly,

g e C(s7t) if, and only if, gs7! € G,
g ¢ C*(s7Y) 1if, and only if, gs ¢ G,

and again with N(s™!) the cardinal of C(s™") and M(s™!) the cardinal of C*(s™!)
we have



N(sY) + M(s7Y) = N.

Now if g; and g; are g’s such that g;s = g;, whence gjs_l =g, then g; ¢ C(8)
and (; € C(S"lj. This relation establishes a one-to-one correspondence
between C(s) and C(s™!), whence

N(s) = N(s71).
Now if N is finite, it will also follow that

M(s) = M(s™).

But if N is infinite, it need not follow that M(s) = M(s ') for an arbitrary
Schreier system. In particular, take 1, s, 5% - - - s’ - - -. Here M(s) =0, M(s ™) =
1. On the other hand if a ¢ exists for a given G, z(s) maps C(s) onto C(s '), and
being a permutation, also maps C*(s) onto C*(s™!). Hence M(s) = M(s™") is a
necessary condition for the existence of ¢.

THEOREM 7.2.6. Given a Schreier system G such that M(s) = M(s™ ') for
every generator s. Then it is possible to find a function cﬁ(gsf} satisfying the
three properties:

D g(gs)sag e
2 Ifgst € (Fthen p(gs®) = gs©
) Ple(gs)s™] = ¢

The most general choice for ¢ is given by taking for each s:

) ¢(gs)=gsifgsisag.
i) For gs not a g choose the set of ¢(gs) in any way such that n(s):g — ¢(gs) is a permutation
G.

i) Having defined ¢(gs) for all g, define ¢(gs_1) so that n(s_l): g— ¢(gs_1) is the inverse o
(5)-

Proof- Given the condition M(s) = M(s™!) on G for all generators s, the
theorem not only asserts that ¢.[:g3f) exists but also describes what is clearly
the most general construction if the construction is valid. Hence we must prove
the validity of this construction. For a given s, clearly:

1) d(gs)isag.



2) If gs is a g, then @(gs) = gs.
If for some g; we have giS = gj € (7, we have put ¢(g;s) = g;. Here gjs_l
= g. Thus in g — ¢(gs) we have mapped the class C(s) onto the class C(s ™).

There are M(s) g’s remaining to be mapped into the remaining M(s~!) g’s. Since
M(s) = M(s™!), a one-to-one correspondence is possible, mapping C*(s) onto
C¥sH by g € C*(s). g < g’ € C*(s™1). We put g’ = ¢(gs). Here
TT(S) g = qb[:gs) is a one-to-one correspondence taking C(s) onto C(s™ ')
and C*(s) onto C*(s™'). Now x(s) is a permutation, and so, if we take
TF(S- I) g - qf,-,(gs—l) as the inverse of 7z(s), we have defined values for
é(gs™1). Here, clearly, ¢(gs™") is a g. Moreover, since 7(s) mapped C(s) onto
C(s7), it will follow that:

3) Ifgs is a g, then ¢(gs ') = gs~!' Thus properties (1) and (2) hold for all
g € (7 and both s and s~ Finally property (3), t;b[qb (93 '-‘) gl = @, holds
since 7(s) and 7(s~!) are inverse permutations.

In both Theorems 7.2.5 and 7.2.6 the permutations n(s) played a central
role. If g = aja, - - - a, we observe that the permutation 7(a)n(a,) - - - n(a,)

takes 1 into g and hence that the permutations 7(s) generate a group transitive on
the g’s. These permutations alone determine the subgroup U uniquely, as we
shall now show.

THEOREM 7.2.7. Let F be the free group on a set S of free generators. Let a
set of permutations n(s) be given, one for each g g N, the permutations n(s)
being on symbols 1,y,, - - - y;, - - -, and let the group generated by the n(s) be

transitive on the symbols. With each element f of I where f = aja, - - * a,
associate the permutation n(f) = n(a,)n(a,) - - - n(a,). Then those elements f
such that n(f) fixes 1 will form a subgroup U. If gy =1,g5, - - -, g; - " " is any

Schreier system of left coset representatives for U, we may associate the gs
with the symbols yi, putting ; == 1Y ; if n(g;) takes 1 into y;. In this way the

n(s) on the y; are permutation isomorphic to the n(s) of Theorems 7.2.5 and
1.2.6 on the g;.

Proof: Clearly, those f’s with z(f) fixing 1 form a subgroup U of F. By
Theorem 5.3.1 we may regard the permutations 7(f) as a representation of 7' on
cosets of U, replacing 1 by U and the y’s by other left cosets of U. Hence each
y; corresponds uniquely to some left coset Ug;, where n(g;) takes 1 into y,. In




this representation z(s) takes the coset Ug into Ugs, which is the same as
Ug(gs). Thus, if we replace a coset Ug; by its representative g; the permutation

7(s) now becomes the permutation 7(s) of Theorems 7.2.5 and 7.2.6, and so we
have fully established the permutation isomorphism of the original permutations
on the y’s with those on the Schreier system G.

For a subgroup U of finite index in a finitely generated free group, we may
give some explicit values for the number of generators of U and for their total
length.

TueoreM 7.2.8. Let U = U|[@G, ¢(gs*)] be a subgroup of finite index
nin a free group F, with r free generators sy, s,, * * -, §,. Then

1) Uis a free group on 1 + n(r — 1) free generators.
2) If L is the total length of the Schreier system G, then the total length of

the free generators of U, u=gsp(gs ") # 1, is K= (2L + n)r — 2L.

Proof: We have shown that a set of free generators of U is given by the
elements

Uia = §i8a0(0i8a)”Y, t=1,:--,m; a=1,+--,7

which are not equal to the identity. Moreover, by Lemma 7.2.3, u,, is either
reduced as written or equal to the identity. Now

Y L) + L(s2) + Lislgs)] = 2L + n,

i=1

since for s, fixed, ¢(g;s,) 1s a permutation of the g’s. Hence before cancellation

we have (nr)u’s of total length »(2L + n). Thus we must subtract from these
totals, respectively, the number u;, equal to the identity and the lengths L(g;) +

L(s,) + L(g;s,) counted for these u’s. When is u;, equal to the identity? Now g;,
s, and ¢(g;s,)"! are reduced as written. Hence there will be cancellation, and
by Lemma 7.2.3 then u;, = 1, if, and only if, s, cancels with g; or ¢(g;s,)"". In
the first case g; ends ins,” !, g; = gjsaf1 with g; € (7 reduced as written. In the
second case ¢(g;s,) = g, ends in s,, and in fact, g, = g;5,. Thus for s, the
number of u’s equal to the i1dentity is equal to the number of g’s ending in s, or

s, . But every g except g = 1 ends in some s, or s, ! and so is counted exactly



once in this process. Hence there are (n — 1) u’s equal to the identity in all, and
consequently there remain nr — (n — 1) = n(r — 1) + 1 free generators for U.

What about the lengths? First, if g; = gjsa_l, then ¢(g;s,) = gj, and so L(g,) +
L(s,) + LI($(gis.)] = 2L(g;) = 2L(g;s, ). Secondly, if g5, = g, then L(g;) +
L(s,) + L[¢(g;s,)] = 2L(g;s,). Thus for s, we have included for u;, = 1 twice the
length of every g ending in s, or s, !. Hence for all s, we have included for u’s

equal to the identity twice the length of every g except g = 1. But L(1) = 0, and
so we must subtract exactly 2L, leaving (2L + n)r — 2L as the total length of the
free generators of U.

Finally, using Theorem 7.2.7, we may enumerate recursively the number of
subgroups of index n in F,..

THEOREM 7.2.9. The number N, . of subgroups of index n in F, is given
recursively by Nj,. =1

n—1

Npr = n(n))—t — Y, (n — 9)!™N;,,

t=1

Proof: N,,.= 1 asserts merely that £, 1s its own unique subgroup of index 1.

Choose r permutations Py, - - -, P, on symbols 1, x,, - - -, x,,.. In general P,
-+ -, P. need not generate a group transitive on all of 1, x,, - - x,. Let the
transitive constituent including 1 be 1, b,, - - b,. Disregarding the remaining
letters, we may take as z(s;) - - -, 7(s,) the permutations on 1, b,, - -, b,, and by
Theorem 7.2.7, these will determine a unique subgroup of index ¢. The
remaining n — ¢ letters could occur in Py, - - -, P.in [(n — ¢)!]” ways. In addition

the same subgroup will be determined if we replace 1, b,, - - -, b, by any other
combination 1, ¢,, © - -, ¢, and let the remaining n — ¢ letters occur in an
arbitrary way. Thus a total of

(r—1D0—2) --- (n—t + D=9 = (n—1)[(n—2) ]~

different permutations Py, - - -, P, may be associated with the same subgroup of
index z. Hence



n

Y (=D (=) Ny, = (n))r,

t=1

counting the (n/)” possible choices of P, - - -, P, according to the index of the

subgroup with which they are associated. Dividing by (» — 1)! and transposing
the sum from 1 to » — 1, we have the formula of the theorem.

7.3. Free Generators of Subgroups of Free Groups.
The Nielsen Method.

In the Sec. 7.2 the properties of a subgroup U of a free group F were studied
in terms of the cosets of U in F. In this section we shall be concerned more
directly with the elements of U.

Let A = {a;} be a set of elements in a free group F indexed by a set [ of

indices 7, and let us suppose that the set 4 consists of free generators of the
group which they generate, which we shall designate as [4]. For an element
f € [A]we write L(f) for the length of f written as a reduced word in the a’s
and their inverses.

Let the set X be a free set of generators for the free group F. Then a set 4 of
elements of F' will be said to have the Nielsen property with respect to the
generators X if, and only if,

1) AN A1=0(47!is the set of inverses of elements of 4).

) Ifa,h e A \J A—L, Lab)<La)implies thath=a".

NIfa, b,ee A \J AL Labe) < Lya) — Ly(b) + Ly(c) implies that

eitherb=a lorb=c!.

THEOREM 7.3.1. If the set A has the Nielsen property with respect to a set
of free generators X of F then A consists of free generators of the subgroup
[A] which it generates. The Nielsen property is equivalent to the existence of
central significant factors in the A5.

Proof: 1t 1s sufficient to show that the Nielsen property is equivalent to the
existence of a central significant factor, since by Theorem 7.2.2 this will imply
that 4 consists of free generators of [A].




Assume that 4 has the Nielsen property. Then from property (2), if b # a .,
L(ab) > Ly(a) and L (b 'a™') > L(b7"), whence L(ab) > Ly(b). If more than
one-half of one factor, say b, canceled with a in the reduced form of ab, we
would have @ = uv!, b = vw, L(v) > L(w), and Ly(ab) = Ly(uw) < L(u) +
Ly(v) = Ly(a). Hence this cannot happen, and at most one-half of a or b is
canceled in the reduced form of ab. Thus for an element of odd length its central
term may be taken as a significant factor. If b is of even length, conceivably the
first half v of b may be canceled in a product ab with b # a!. If also the second
half w of b may be canceled in the reduced form of a product bc, b # ¢!, then
we have a = uv!, b =vw, ¢ = w 'z, and L(abc) = L(uz) < Ly(u) + Ly(z) =
Ly{(a) — Ly(b) + L(c), contrary to the third requirement for the Nielsen property.
Since this cannot happen, one-half of b, either v or w, cannot be canceled in any
product, and so, that one of the two central terms of b belonging to this half may

be taken as its central factor. Thus the Nielsen property implies the existence of
central significant factors. Conversely, if central significant factors exist for a

set A with A N A1 =0, then if b # a”! half of b, at most, is canceled in ab
against an equal number of terms in a; so, Ly(ab) > Ly{(a) + L{(b) — 2-1/2L(D)
= Ly(a), yielding the second requirement. Moreover in a product abc, with b #
al, b # ¢!, the cancellation between a and b and between b and ¢ stops short
of the significant factor of b; so, Ly(abc) > Ly(a) + Ly(b) + Ly(c) — 2L(b),
which is the third requirement. It is not difficult to show that the third
requirement alone is equivalent to the existence of significant factors. For given
b, take as @ # b~ ! an element which cancels the greatest number of terms on the

left of b, and take as ¢ # b ! an element which cancels the greatest number of
terms on the right of . The requirement asserts that not all of » is canceled out,
and any remaining term may be taken as the significant factor for b.

THEOREM 7.3.2. Given a finite set B of elements f, - - -, B, in a free group
F on a given set X of free generators. In a finite number of changes of the
following types:

Type 1: Delete a p; =1,
Type 2: Replace a f; by ﬁi_l,

Type 3: Replace a B; by Bif;, i #J,
we may replace the set B by another set A: ay, - - -, a,, n < m such that A
generates the same subgroup as B and A has the Nielsen property with respect



to X. Hence A is a set of free generators for [A] = [B].

Proof: Clearly, each change replaces a set by another set generating the
same group. The first type reduces the number of elements, the second and third
leave the number of elements unchanged. We note that a combination of changes
of types 2 and 3 will replace §; by 3;%3;7or §;73:%, ¢ = =1.7==I,and
leave the remaining ’s unchanged.

If two f’s are equal or inverses, we may make changes to replace a S by 1
and then delete this 1. This reduces the number of f’s and so could happen, at

most, m times. If fora, h ¢ B \J B~1,b#a !, we have L(ab) < L \(a), we

cannot have b = a since always Ly(a?) > Ly(a). Hence we may replace the

ﬁ == (1* by ab and so reduce the total length of all the f’s. Thus there can be
only a finite number of changes of this kind, and so requirements (1) and (2) for
the Nielsen property can be satisfied in a finite number of steps. Satisfying the
third requirement is more difficult.

Whether or not the set X is infinite, the set Y of generators in X which occur
in the f’s is certainly finite. Let us list the elements of F' generated by Y
according to length, the order for a given length being arbitrary but fixed. There
are only a finite number of each length, and so every element has only a finite
number of predecessors in this list.

Ifa B is of even length 2k write /3 in the form = y5 !, where each of y and &
is of length k. If # # 1, then § # y. Since ' = Jy~!. we may replace B by ! if
necessary so that its first half 1s earlier than its second half in the list. If §; =

yo ! and a f; begins with the terms of J, §; = dz, we replace f8; by ff; = yz.
Similarly, if 8, ends in 6!, we replace B, = wd ' by B8, = wy~!. Hence we
may change the s so that if 8; = y6 ! no other f begins with J or ends with 5.

Since we are replacing a series of terms 0 by another y of the same length but
earlier in the list, this process will terminate in a finite number of steps. It is
important to note that if we begin with the shortest f of even length and then
continue with longer f’s of even length, the process will terminate in a finite
number of steps. For working with f’s of the same length, we continually
replace a half word by an earlier half word, and so we come to an end in a

finite number of steps. In working with ’s of greater length than 8, = yo~ I there

will be no beginning section § or end J ! in any of them. Naturally, if at any
point either condition 4 N A1 = 0 or Ly(ab) > L(a) is violated, we make an
appropriate change, either by reducing the number of f’s or by reducing their



total length and then starting over in replacement of half words, which leaves
both the number and length of the A’s unchanged. Hence after a finite number of
changes this process will terminate, yielding a set 4 of elements o, - -, a,,, n <
m. We assert that the set 4 has the Nielsen property with respect to X. Both 4 N
A1=0 and L(ab) = Ly(a), b # al, a, bhe A\ A1 will surely hold,
since otherwise we could reduce either the number or total length of the f’s.
Now consider a product abc, b # a™', b # ¢ '. If b is of odd length, 2k + 1 at

most, the first k£ terms of b cancel with a and, at most, the last £ terms cancel
with ¢; so, Ly(abc) > Ly(a) — Ly{(b) + Ly(c) holds. If b is of even length, then b
is of the form yd ! or dy !, with y earlier than J. Since the second property
holds, half of b, at most, is canceled by a and at most half by ¢. But a cannot end
with 61 or ¢ begin with 6, and so the half of b which is either § or § ! is not
entirely canceled; thus b itself is not entirely canceled and Ly(abc) > Ly(a) —
Ly(b) + Ly(c), proving the third requirement for the Nielsen property for A.

THEOREM 7.3.3. Two free groups are isomorphic if, and only if, they have
the same cardinal number of free generators. A free group F, with a finite

number v of generators is freely generated by any set of r elements which
generate it.

Proof: Let Fy and Fy be free groups on sets of free generators X and Y,

respectively.

If X and Y have the same cardinality, there is a one-to-one correspondence
between X and Y which can be extended to a one-to-one correspondence
between Fy and F'y, which is clearly an isomorphism.

Conversely, suppose that /. and Fy are isomorphic. Then F, and Fy have
the same number of subgroups of index 2. A subgroup of index 2 is the kernel of
a homomorphism onto the group of order 2. Such a homomorphism is uniquely
determined by the set of generators mapped onto the identity. Thus the number of
subgroups of index 2 of a free group F, on a set of generators Z is the number of

nonvacuous subsets of Z. This number is uncountable 1f Z is infinite and is 2" —
1 if Z is finite with » elements. Thus, if Fy and Fy are isomorphic, it follows

that X and Y are either both infinite or both finite, and that in the latter case X
and Y have the same number of elements. If X and Y are infinite, Fy and F'y have

the same cardinal number as X and Y, respectively. Since Fy and Fy have the
same cardinal number, so do X and Y.



Now suppose that F,, the free group on X: x;, x,, - - -, x,, 1s also generated
by By, Bo, * - -, B, Then, by Theorem 7.3.2, after a certain number of changes of
types 1, 2, 3 (from Sy, - - -, B,), we shall have F, freely generated by o, - - -,
a,, with s < r. But then we must have s = r, and so no changes of type 1 have

been used. We may verify directly that if a change of type 2 or 3 is made from a
set B to a set B, then if either B or B’ consists of free generators so does the
other. Hence, since ay, - - -, a,. are free generators of F,, so will 5, - - -, B, be

free generators of F,.

This proves the theorem, but we may obtain even more explicit information
on ay, - * *, a,. The a; have the Nielsen property and thus possess central

significant factors (Theorem 7.3.1). Moreover for eachx;, i=1, - - -, r,x; =y -

-+ 7,» With each y an a or its inverse and y;y;.; # 1. Now the product of the y’s
in its reduced form includes every central factor. Hence there can be only one
and this must be equal to x;. Thus every x; is an a; or aj_l. Hence, 1f we further
apply changes of the second type, the a’s are precisely x;, - - -, x,. in some
order. Thus, apart from order, we know how any set of free generators f;, - - -,
p,. of F. may be obtained from x; - - -, x,. But this is to say that we have a

knowledge of the automorphisms of .

THEOREM 7.3.4. All automorphisms of a free group F, on a finite number r

of generators X are generated by the automorphisms:

1) Pyt x; = X, x5 = X3, X = X, K#1,

) Vix;—x L x; —x,j#i,

P27 J
3) Wyt x; = xpx;, L # ], X = X, kK #
where i #j are any of 1, - - -, r.

Proof: Each of these 1s surely an automorphism of £, since it replaces X by
a set of r elements which generate F,. We must show that an arbitrary
automorphism of F, is expressible as a product of these. We have just shown
above that the most general automorphism of F,. is obtained by replacing X: x, -
-+, x, by a set of generators B: S, - - -, B, and that the set B is related to X by a
finite succession of replacements,

B=By,By +,Byy, By =X



where B; is B;,; changed by a type 2 or 3 change of Theorem7.2.3 fori=1, - -
-, N — 2, and the change from B)_; to By 1s a permutation of the set X and hence
a product of transpositions P; (§5.4). Thus each of the replacements of B;, by
B, i=1,- -, N—2is an automorphism V; or I¥;; in terms of the elements B;,,.
We must show that these may be expressed in terms of automorphisms V; and
W, in terms of the elements of X.

Now let
¥4 Yy "=y Yny
AR R R B
W:w, -, w,

be three sets of free generators for F,. where
1) Zj :yi_la Zj :yjaj ;é i9 or
2)z;=zgzj,zx =y, k#J, and

3w, =z, |

s W, =Z,, 1 #m, or

Nw,=2z,2,, W=z, t #n.
Here the replacement of Y by Z is a V' or W automorphism in Y; the replacement
of Z by W, an automorphism of type V or W in Z. We must show that (3) or (4)
can be expressed by V' and W automorphisms on the ¥’s. This involves several

cases, all relatively simple. Only the two most difficult will be given here.
Suppose we have (2) z; = y; and (3) w, = z,, | with m = j. We must express the
automorphism (3) which here replaces y;y; by yj_lyl-_1 and leaves y, fixed for k
#j. This is equivalent to the replacement of y; by y; 'y, "'y, ! leaving all other
y’s fixed. But this is the product y; — y, "'y, — y,y;'— y,7 'y, 7,7}, which is
Wij_l(y) Vi(»)W;i(y). Next, suppose we have (2) z; = yy; and (4) w, = z,z, with
m = j, n = i. Here the automorphism (4) replaces z; = y;y; by yy; and z; = y; by
yy,y; and leaves all other z; =y fixed. This is the same as the replacement

Yi = Yilfilf,
Yi— ¥

But this is the product Wl-j_l(y) W;(»)W;(y); thus



Yi = Yi = Yl = Yyl
Yi—= YTy =yt — gL

Hence every V' or W automorphism on the z’s may be expressed in terms of V'
and W automorphisms on the y’s. We may now proceed to the proof of the
theorem, using induction on N. The replacement of B, by B; may by induction

be assumed to be a product of V’s and W’s on the generators of By_,. But with
By as the set ¥, and By, as the set Z, we may express the replacement of By_,
by By in terms of }’s and W’s on the set By._;. The replacement of By_; by By,
is a V or Won By_;. Hence the replacement of By by By is a product of Vs
and W’s on By, and these are also }J’s and W’s on X since Bj._; is merely a

permutation of X. This proves the theorem.
If 4 1s a set with the Nielsen property, with respect to the free generators X
of Fy, then 4 in various ways may be regarded as the ‘“shortest” set of

generators for [A4].
THEOREM 7.3.5. If A has the Nielsen property with respect to X and if

f=mas -+ a, a;eA\J A7, aay # 1,
then

Lx(f) = 3Lx(@m) + t — 2 + 2Lx(ay),
and

Lx(f) > Lx(a; ---a;), 1<:<j< 4

Moreover, if X is finite and the elements of A are listed in order of increasing
length,

and if

a-lya_z...ar ,.,’

ﬁl;ﬁE"‘ﬁi”';

is any other set of free generators for A, also listed in order of increasing
length, then



Lx(Ba) 2 Lx(an),n = 1,2, -+ .

Proof: Inf=aya, - - - a, each a; has a central factor which is not canceled

in the reduced form for f. Hence, in the reduced form for f, at least the first half
of a; the central factors of @, - - - a, |, and the last half of a, remain, yielding

Lx(f) > %LX({LI} 4+t -2 4+ %Lx({lg)- In the reduced form of a,

- a,1a, the cancellation between the reduced form of a; - - - a,; and q,
involves k terms in @, ; and k terms in a, where J; < 1L I(ﬂ t_l), k <
Ly(a,), since neither central factor is canceled. Thus Ly(f) = Ly(a; - - - a,.y) +
Ly(a,) — 2k. But 2k < Ly(a,), whence Ly(a; - - - a,1) + L{a, - - - a,).
Similarly, Ly(a; - - - a,) = Ly(a; - - * a;). By repeating this argument, dropping
an g at one end or the other, we have Ly(a; - - - a) = Ly(a; * - - a;).

If X 1s finite, there are only a finite number of elements of any given length,
and therefore a listing of 4 in order of increasing length will exhaust all the set.

This 1s given as ay, a,, - - -, @;, - . For a second set of generators this list is
BB By Let Bi(a), - - -, B,(a) be the expressions for the first (n) f’s
in terms of the free generators 4, and let o, be the last a occurring in these

expressions. We assert that » > n. Let us deny the assertion and assume 7 < n.
Then modulo the commutator group K of [A4], we have

Br = ayil - -+ tr  (mod K),

-
b

ﬁﬂ. = C]:'],Enl e arem‘ (m(}d K)

With » <n there surely exist* integers u,, - - -, u,, not all zero, such that

eny + <+ + enttn = 0,
- - - L] - - i’

Elrul + e + Enrun = U-

But then §;%1 «++ 3,%n ¢ X with u; - - - u, not all zero, contrary to the
assertion that the f’s are free generators of [4]. Hence r > n. Let a,. actually
occur in for some j < n. Then, by the first part of the theorem, Ly(f) = Ly(a,).

But Ly(f,) = Ly(p;) and Ly(a,) = Ly(a,,), since r = n, and so, Ly(f,) = L(a,,).
* Birkhoff and MacLane [1], p. 48. See §9.2 for properties of the commutator subgroup.



EXERCISES

Let F be the free group generated by x and y. Show that a fully invariant subgroup of /' containing

xzyxy_l

Let F be the free group with two generators. Find all its subgroups of index 3.

is either F itself or is of index 9 in F.

Let F be the free group generated by three elements a, b, c. Find a set of free generators of the
subgroup of index 8 generated by the squares of all elements of F.

Let Ay, Ay, - - -, Ay, be elements of a free group given in reduced form, no one of them the identity,
such that 414, - - -, 4, = 1. Show that for some i, 4; is completely canceled in the product
Ai-14i4i+1-

Given a reduced word g = ajap - - - a;# 1 in a free group F. Show that F" has a subgroup H of
index 7 + 1, such that g ¢ H . (Hint: Take coset representatives of Htobe 1,ay,ajan, - - -, ajay

cq t')

Show that if g = g(xq, - - -, x;)) is a word in generators x|, - - -, X;- which is not the identity in the
free group generated by x1, - - -, x; as free generators, then there is a finite group G generated by
elements x1, - - -, x;- in which g is not the identity. (Use Ex. 5 of this chapter and Ex. 1 of Chap. 5.)

* See Hall and Rado [1]. For further results see M. Hall [4, 5].



8. LATTICES AND COMPOSITION
SERIES

8.1. Partially Ordered Sets.

DEFINITION: 4 partially ordered set is a system S of elements in which a
relation a 2 b (read “a contains b”) is defined for some pairs of elements
of S such that

Pl.a 2 a.
P2.Ifa2band b 2 ¢, thena 2 c.
P3.Ifa2 band b 2 a, thena = b.

DEFINITION: An upper bound of a subset T of a partially ordered S is an
element x of S such that x 2 t for every t of T. Similarly, a lower bound of a
subset T'is a y such that t 2 y for every t of T.

DEFINITION: A4 least upper bound (l.u.b.) of a subset T of S is an element
x such that

1) x is an upper bound of 7.

2) If z is any upper bound of 7, thenz 2 x.

Similarly, a greatest lower bound (g.1.b.) of a subset T is a y such that

a) y is a lower bound of 7.

b) If z is any lower bound of 7, then y 2 z.
In general a subset 7' need not possess either a least upper bound or a greatest
lower bound. But if 7" does have a least upper bound x, then this is unique, for
by the definition, two least upper bounds must contain each other and by P4

they must be equal. The same applies to greatest lower bounds.
If a partially ordered set S also satisfies:
P4. For any pair a, b, eithera 2 bor b 2 a.

We say that S is a simply ordered set or a chain.



We write b € a as meaning a 2 b. We also write a € bifa 2 b and a # b.
Similarly, b € @ means a D b. A further useful notation is a > b (read “a
covers b”’), whichmeans a D band a 2 x 2 b implies x =a or x = b. Also b
<a means a > b.

ExAMPLE: Let S be the set of elements a, b, ¢, d, e, f, where the inclusion
relation is given by the diagram, x 2 y if x 1s above y and connected to it, or if
x = y. Here the subset consisting of ¢ and d has no upper bound and has two
lower bounds but no greatest lower bound.

8.2. Lattices.

DEFINITION: A lattice is a partially ordered set any two of whose
elements a, b have a l.u.b. or union a U b and a g.1.b. or intersection a N b.

.7 ;

a b
Fig. 3. A partially ordered set.

Since each of @ U b and a N b is unique, union and intersection are well-
defined binary operations in a lattice.

THEOREM 8.2.1. In a lattice the following laws hold:

L1. Idempotent laws. x N x =x and x U x = x.

L2. Commutative laws. x Ny=yNxandx U y=y U x.

L3. Associative laws. x N (y Nz)=(xNy)Nzandx U (yUz)=(x U y)
Uz

L4. Absorptionlaws. x N (x Uy)=xand x U (x N y) =x.



Proof: L1, L2, and L4 are immediate consequences of the definition of
l.ub. and g.1.b. For L3 puty N z=wu and x N u =w. Here w is a lower bound
of x and u, and hence of x, y, and z. But any lower bound of x, y, and z is
contained in u, and so in x N u = w. Thus w is the gl.b. of x, y, and z. But,
similarly, (x N y) N z is the g.1.b. of x, y, and z, whence x N (y N z) = (x N y)
N z. In like manner each of x U (y U z) and (x U y) U z is the L.u.b. of x, y, and
z.

THEOREM 8.2.2. The laws L1,-2,-3,-4 completely characterize lattices.

Proof: In any system satisfying L1,-2,-3,-4, x Ny =y if, and only if, x U y
= x. [f we define x 2 y to mean x N y =y in such a system, then the systemis a
partially ordered set with respect to this relation. Thus a N a = a implies P1.
IfanNnb=bandbNc=c,thenaNc=aN((bNc)y=@Nb)Nc=bNc=c,
which proves P2. IfaNb=band b Na=a, sincea N b=>b N a, we have
P3. Thus, under this definition of inclusion the system is a partially ordered
set. InadditionaN(aNb)=@Na)Nb=aNband b N (aNb)=aNb,
whence a N b is a lower bound of ¢ and b. Butifa 2 x and b 2 x, thena N x
=x,bNx=x,whence (aNb)Nx=aN(bNx)y=aNx=x,andsoa N b is
the gl.b. of @ and b. Similarly, ify 2 aandy 2 b, thenaUy=yand b U y =
vy, whence y = (a U b) U y; it follows that not only 1s a U b an upper bound of
a and b but it is also the l.u.b.

Certain lattices possess further properties. The following are of some
interest for our purposes.

DEFINITION: A4 lattice L is said to be isomorphic to a lattice L, if there is
a one-to-one correspondence X £ 1f; between the elements x; of Ly and y,
of L, such that 1; M ri S Yi M\ Y; and I ; \_/ 2; = Yy \_J /5

DEFINITION: A lattice L is said to be complete if every subset of L
possesses a g.l.b. and a l.u.b.

If the set of all elements of L possesses a l.ub., this is called the all
element; if a gl.b., this is called the zero element.

DEFINITION: 4 lattice L is said to be distributive if it satisfies the law:

Dirary (b\Uc) = (aMb) U (a N e).



DEFINITION: 4 lattice L is said to be modular if it satisfies the law:

(M) Ifa Db, thenaN (b\J¢) = b (@ ¢).

A lattice, or more generally a partially ordered set, is said to satisfy the

minimal condition 1f any chain a; D a, D a; D - - - 1s necessarily finite, and

the maximal condition if any chaina; € a, C a5 C - - - is necessarily finite.
DEFINITION: In a lattice L, a finite chain x =xy S xS - - - S x; =y is

maximal if x; covers x; . fori=0,1,- - -, d—1;thatis, x=xy>x;>" ">

Xy =Y. The chain is said to have length d.

DEFINITION: An element x of a lattice L has finite dimension d [written
d(x)] if L has a zero element 0, providing that every chain from x to 0 is
finite and that d is the length of the longest maximal chain from x to 0.

8.3. Modular and Semi-modular Lattices.

In any lattice the set of x’s such that a 2 x 2 b form a sublattice, which we
call the quotient a/b. Two quotients that may be put in the forms a U b/b and
a/a N b are said to be perspective to each other, and if a,/b; 1s perspective to

aj /b fori=1, - -, n—1, we say that a,/b, 1s projective to a,/b,,.

THEOREM 8.3.1. In a modular lattice perspective quotients are
isomorphic.

aUb

alb



Fig. 4. Perspective quotients.

Proof: Given the quotients a U b/b and a/a N b in a modular lattice. For
any x in a/a N b define

y(z) = 2 \U b.

For any y ina U b/b define

a(y) =yNea

The first mapping takes elements of a/a N b into elements of a U b/b, and the
second takes elements of @ U b/b into elements of a/a N b. For x in a/a N b,
x[y(x)] =(x U b) N a. Since a 2 x, we may apply the modular law and a N (x
Ub)=xU (aNb)=ux,since x 2 a N b. Hence x[y(x)] = x. Similarly for y in
a U b/b, by application of the modular law, y[x())] = y. Thus x — y(x) and y
— x(y) yield a one-to-one correspondence between the two quotients. In
addition this correspondence preserves the lattice operations. Thus for x;, x,

ina/a N b, y(x; Uxy) =(x;Uxy) Ub=(x;UDb)U (x,UD)=y(x;) U y(x,).
Also x1 = x(y1), Xy = x(yp), and x; N xy =x(yy) N x(yy) =y Na) N (y, Na)=
y1 Ny Na=x(y; Nyy). Here y(xy N x) = y[x(vy N y)] =y Ny, =p(xp) N
¥(x,); therefore both operations are preserved by the mapping x — y(x). From

the fact that the correspondence is one to one, it therefore follows that the
operations are also preserved by y — x(»). A similar proof would show that y
— x(y) preserves both operations.

CorOLLARY 8.3.1. In a modular lattice projective quotients are
isomorphic.

THEOREM 8.3.2. In a modular lattice if x is an element with finite
dimension d(x) then every maximal chain from x to zero has the same
length.

Proof: The proof will be by induction on the dimension of x. If d(x) = 1,
then x > 0 1s the only chain fromx to 0. Letx =xy>x;> - - - >x,; =0 be one

maximal chain fromx to 0, and letx =y, >y; - - - >y, = 0 be another. If x; =
¥ then by induction the maximal chains from x; and y; have the same length d



— 1, whence s — 1 =d — 1 and s = d. If x; # y, then write z, = x; N y;. Here
the quotients x/x; and y,/z, are perspective and also x/y; and x/z,. Both x/x;
and x/y; contain no intermediate elements, and so y; > z, and x; > z,. Since all
maximal chains from x; to 0 are of length d — 1, all maximal chains from z, to
0 are of length d — 2. Hence, from y; to z, to 0 is of length d — 1, and so by
induction, the chainy; >y, - - - > 0. Hence x =y, >y, > - - >y, =01s also
oflengthd =s.

As a consequence of this theorem we have the Jordan-Dedekind chain
condition holding in modular lattices.
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Fig. 5. Jordan-Dedekind condition.

JORDAN-DEDEKIND CHAIN CONDITION: All finite maximal chains between
two elements have the same length.

If @ © b we may take b as the zero element in the quotient lattice a/b and
apply the theorem.

In a modular lattice the dimension satisfies an important relation.

THEOREM 8.3.3. In a lattice whose elements are of finite dimension, the
law

d(z) + d(y) = d(x\J y) + dx M y)

holds if, and only if, the lattice is modular.



Proof: In a modular lattice the quotients x U y/x and y/x N y are
isomorphic. The length of a maximal finite chain in each of these is
respectively d(x U y) — d(x) and d(y) — d(x N y). From the isomorphism these
two maximal lengths are equal and we have

(M) d(@) + d(y) = dz\Jy) + dx N y).

Conversely, suppose the law (M) holds in a lattice. Suppose 4 2 B;
consider the two expressions 4 N (B U C) and BU (4 N C). Here

BC 4,

BC BUC,

BC AN (BUC),
ANCC A4,
ANCCCCBUC,
ANCCAN(BUOD,

BUMUNC)C AN (B DO).

Hence these two expressions will be equal if their dimensions are equal.
Using (M)

dBU (ANC)] =dB)+dANC)—dBNANC)
= d(B) +d(ANC) —dBNC)
=dB\UC) — d(C) + d(4 N C)
= d(B\U C) + d(4) — d(4 U ©)
= d(4) +dB\UC) — d(4 U BU 0)
= d[AN (BU Q).

Hence AN (BU C)=B U (4 N C) and the modular law holds.
In terms of the covering relation 4 > B, we define two properties of semi-
modularity which may hold in a lattice.

DEFINITIONS. Lower semi-modularity: 4 lattice is lower semi-modular if
whenever A>Band A>C, B#C, then B>B N Cand C>B N C.

Upper semi-modularity: 4 lattice is upper semi-modular if whenever A <
Band A<C,B#C, then B<BU Cand C<BU C.



Clearly, the two kinds of semi-modularity are dual to each other, and by
Theorem 8.3.1, are both consequences of modularity. We shall show that in a
finite dimensional lattice, both kinds of semimodularity taken together imply
modularity.

THEOREM 8.3.4. In a semi-modular lattice L, if A 2 B, and if there is a
finite maximal chain between A and B, then all finite maximal chains
between A and B are of the same length.

Proof: The proof is essentially the same as that of Theorem 8.3.2.
Suppose that L is lower semi-modular. If there i1s a maximal chain of length
one from A to B, then A > B, and there is no other chain from 4 to B. We
proceed by induction on the length of a maximal chain from A to B. Suppose
that

A=A4A> A1 > As> - > A, =B

i1s a maximal chain of length » from 4 to B, the theorem being true for chain
lengths less than . Now let

A=U>U>Us>:-->U,=B

be a second maximal chain from 4 to B. Then, if U; = 4;, maximal chains from
A4; = U; to B must by induction be of length » — 1, and the theorem follows. If,
however, U; # 4; then by lower semi-modularity,

A > UiN A, Ui>UiN As

Writing [J; ¥ 4; = Vg, we shall have chains

I

I
SRR

A=Au}r’11}ﬂz}'”}
A=40>4,>Ve> -0+ >
A=U>U;>Vyg > -0 >
A=U>U>U2> -+ >

<<=
3
I

By induction on the chains from 4; to B we have m = r, and the first two
chains have the same length. The second and third have the same length m, and



by induction on the chains from U, to B, we have m = s. Hence all four chains

have the same length, and the theorem is proved for lower semi-modular
lattices. A dual argument proves the same result for upper semi-modular
lattices.

From this theorem, we see that in a semi-modular lattice, the dimension of
an element d(A) is the length of all maximal chains between 4 and the null
element 0. In finite dimensional semi-modular lattices, we have inequalities
relating the dimension functions of elements.

THEOREM 8.3.5. Let L be a finite dimensional lattice. If L is upper semi-
modular, then, (1) d(X U Y)+ d(X N Y) < d(X) + d(Y). If L is lower semi-
modular, then (2)
AXUY)+dXNY) = dX) + d(Y). Comversely, (1
implies upper semi-modularity, but (2) does not imply lower semi-
modularity.

Proof: By Theorem 8.3.4, if L is semi-modular and if R O S, then d(R) —
d(S) 1s the length of a maximal chain between R and S, since all maximal
chains from the zero element to R have the same length; therefore the
dimension of R is the length of a maximal chain from R to zero including S.
We shall use this fact in our proof.

Suppose L is upper semi-modular. Let us write 4 = J3 to mean4 =B
or A> B; read this “A4 at most covers B.” Then, if

BT o Oy L T el B X
XNY =Ve<Vi<Va< - <Va =Y

’

we assert that U, JV i = U4 \J ].'ff and
U, \J V}‘ = U; \J Vj_,lforalli=l, ~-+,mandj=1, - -, n This

we prove by induction on i + j, the smallest significant value for i +; being 2,
and for this value the upper semi-modularity asserts that

U1 U V1 E L‘rl = 'Ul L Vn &Hd L"TI \J Vl E_"_ Vl = Uu U VI.
Then U;: W) Vj = (U;‘ U Vj—l) U (U:'—-l U I’r:'):-

and by induction [J; \UJ V:’—l = Uiy U V?-ul and
Uig U V;.' = .3 V;‘—l’ whence by upper semi-modularity,



DT.;' U V:‘ = Uf'u' F,'_l and U;‘ U Vj _:—", L‘rf_l \.J Vj, as we

wished to prove. From this for j = n, since V, = ¥,
VP P\ ¥ eee Sl =X WU,

Thus the length of a maximal chain from Y to X U Y is at most m. But as we
have stated before, this means

dXVUVY)-dY)<m=dX)-dXNY),

whence the inequality (1) holds in an upper semi-modular lattice. By a dual
argument, the inequality (2) holds in a lower semi-modular lattice. This
proves the direct part of the theorem.

LEmMA 8.3.1. If inequality (1) holds in L, then U >V implies d(U) =
d(V)+1.

Proof: Let 0 =Uy < U, < U, <: - -<U_; <U =U be a longest chain
from O to U. There cannot be a chain longer than i from 0 to U, because if
there were we could construct a longer chain from 0 to U. Hence d(U) = ¢ and

daU) =i, for i =0, - - -, t — 1. Also, since U > V, we have
d([}] = d(V) 4+ Landsof — 1 = Qf( V). Let us select U so that
U, < V,LH_I $ V. There must be such a j in the range 0, 1, - - -, ¢ — 1.

Then Uy = U, Uy U V= U,. By inequality (1), d(U;;; U V) +d(Uyy N 1) <
d(V) +d(Uyy), whence t +j < d(V) +j<d(V) +j+1ort—1<dV), and so,
dV)y=t—-1,dlU)=t=d(V)+ 1.

Now using the lemma and inequality (1), suppose 4 <B, A< C and B # C.
ThenA=B N C,d(B)=d(A4) + 1,d(C) =d(A) + 1. By inequality (1) d(B U C)
+d(B N C) <d(B) +d(C), which gives d(BU C) <d(A) +2. But BU C # B,
C,andsod(BU C)=d(B)+1=d(C)+ 1, givingBU C>B,B U C>C, the
conclusion that L is upper semi-modular. Because dimension (dX) is defined
as the length of the longest chain from 0 to X and is not of a dual nature, the
inequality (2) does not imply that L is lower semi-modular. The five-element
lattice with elements 0, T, 4;, B; € B,, such that 4, N1 By =4; N B, =0, 4; N

B, = A4, U B, = T satisfies inequality (2) but is not lower semi-modular.



THEOREM 8.3.6. A4 finite dimensional lattice is modular if, and only if, it
is both upper and lower semi-modular.

Proof: We have already observed that modularity implies both kinds of
semi-modularity. But if both kinds hold, then by Theorem 8.3.5 we have d(X
UY)+dXNY)=dX)+d(Y),and by Theorem 8.3.3 this implies modularity.

THEOREM 8.3.7. The subgroups of a finite p-group form a lower semi-
modular lattice.

Proof: Union and intersection of subgroups as defined in §1.4 do indeed
satisfy the axioms for a lattice, the subgroups of a group being partially
ordered by inclusion. If 4 > B, A > C, where 4, B, C are subgroups of a finite
p-group, then B and C are maximal subgroups of 4 and by Theorem 4.3.2 are
of index p. By Theorem 1.5.5 on the inequality of indices [B: B N C] and
[C:B N (] are, at most, p, and so either 1 or p. Thus, if B # C, we have B> B
NCand C>BN C.

8.4. Principal Series and Composition Series.

We shall now combine the results of the preceding sections and apply
them to a study of the structure of the subgroups of groups. We shall consider a
chain of subgroups of a group G, each a normal subgroup of the preceding

group.
(8.4.1) G=A424,24:2 -+ D 4,

where each 4; is a normal subgroup of 4; ;, for which we write
(8+4+2) A;‘ <1 :’1{,_1, 1=1:+.n,

The groups 4; are called subinvariant groups of G.
There will be associated with this chain the sequence of factor groups

{843} Ai_le"‘li, t=1-+n.



If every 4; is a normal subgroup of G, we shall call (8.4.1) a normal chain or
normal series. We may also use the term invariant series. If 4. <1 A imp !
=1 - - - n, it does not in general follow that 4 ; <1 (7, and so the
requirements for a normal series are stronger than (8.4.2). If we assume only
(8.4.2), we shall call the series a subinvariant series* A normal series in
which every 4, 1s a maximal normal subgroup contained in 4, ; will be called

a principal series or chief series. A subinvariant series in which each 4; is a

maximal normal subgroup of 1 will be called a composition series. In lattice
terminology, if the inclusions in (8.4.1) are coverings, a normal series is
called a principal series; a subinvariant series, a composition series. We may
in addition require that the groups 4; be admissible subgroups with respect to

a set of operators Q.

We shall be able to interpret general theorems on modular lattices as
theorems on subgroups, or as theorems on congruence relations on loops, or
more generally, as theorems on congruence relations on any algebraic system
whose congruence relations permute. The main theorem which will enable us
to get the strongest result on groups is Theorem 2.4.1. The lattice theorems
depend on the modular law, and this arises in different ways in the algebras.
Thus by altering the hypotheses on the algebras, different theorems come from
the same theorem on lattices. An auxiliary theorem on modularity in groups is
needed. We shall say that subgroups 4 and B of a group G are permutable if
the complexes AB and BA are equal. In this case it is readily verified that 4 U
B = AB = BA, and the complex 4B = BA is in fact a subgroup. From theorem
2.3.3, subgroups 4 and B are permutable if either of them is a normal
subgroup, and clearly, normality in 4 U B is all that is required.

THEOREM 8.4.1. Let A, B, C be subgroups of a group G such that A 2 B.
Then a sufficient condition for

ANBUYC)=BUYANC)
to hold is that B and C be permutable.

Proof: As in the proof of Theorem 8.3.3 we note that always, if 4 2 B,

BUUANC) S AN (BUO).



It 1s necessary only to prove the opposite inclusion. An element of A N (B U
C)is of the forma =bc, g e A b € B> ¢ € (O, being simultaneously an
element of 4 and also of B U C, and since B and C permute, the elements of B
U C are of the form bc. Here ¢ = B~ e A since B € A. Hence this

ce A M (), and therefore he ¢ B \J (A M C) ThusAN(BUC) S B
U (4 N C), and the theorem is proved. This also holds for subloops of inverse
loops where the permutability of B and C means B U C = BC. The conclusion

b~'a = b~Y(bc) = c requires only the inverse law.

THEOREM 8.4.2. REFINEMENT THEOREM.* Let U=A4y 24,2 - - 24,=V
and U=By2 By 2 - - - 2 B, =V be two finite chains from U to V in a
modular lattice. Then it is possible to refine both chains by inserting
additional elements A; | =A4;g24;, 24, ,=A4,i=1," -, n,and B;_,
=B, ¢2B; 2 2B, ,=B;j=1," ", minsuch that the quotients 4; ;_
1/4; j and B; ; ,/B; ; are projective.

1, -, m Here 4; ;_/4;; is perspective to
(8.4.4) A: 3y N By /f(Aea M By \J (A; M Byy),

since from B; € B;_; we have

(8.4.5)
(:.‘15,_1 fﬁi B,'_l) U Ai U (A,:_l r\] BJ) = A,‘ U (A,,_I n Bf_.,j,).

Also

(8.4.6) (Ais N\ Bia) N [A: U (420 N B))]
= (Ai N B) U (A; N BjyMN Ay)
= (.‘1;'_1 M BJ) \J (A; M B;‘—l);

using modularity in (8.4.6). Similarly, B;; ;/B; ; is perspective to the quotient
in (8.4.4) and our theorem is proved.

This theorem and its proof also holds for subinvariant series in a group G
where, if we take G to be a group with operators €, the subgroups are all



admissible subgroups. This naturally includes groups without operators if we
take Q to be trivially the identical operator.

THEOREM 8.4.3 (REFINEMENT THEOREM FOR GROUPS). Let G be a group
with operators Q, and let G=4y24,2 - 24,=Hand G=By2B, 2 -

- 2 B, = H be two subinvariant series from G to H of admissible

subgroups. Then it is possible to refine both series by inserting additional
admissible subinvariant groups

A=A 2402 - =2 Aim = Ag, ¢ = 1, ¢eeym

and

B;1=Bjp2B:2 --- 2Bj.=Bj j=1 -, m

in such a way that the quotient groups
Aija/Ai; and B;,i-1/Bj,i

are operator isomorphic.

Proof: By Theorem 2.4.1 perspective (and hence projective) quotient
groups of admissible subgroups are operator isomorphic. Hence, to show that
the proof of Theorem 8.4.2 gives this theorem, we must show that in the
quotients X/Y occurring in the proof that ¥ <1 X and that the use of the
modular law in (8.4.6) is valid. As the union and intersection of admissible
subgroups are again admissible, all subgroups used in the proof are
admissible. Now 4, ; = 4; U (4,_; N B;) is a normal subgroup of 4, | = 4; U
(4, N Bj_l), since both 4; and 4; | N B; are transformed into themselves by
4;_y N B; . Similarly, B; ; <1 Bj iy Both 4, N B;and 4; N B; |,

and so also their union, are normal subgroups of 4, ; N B;_;, whence (8.4.4)

is a quotient group. In (8.4.6), since 4, is normal in 4, |, 4; permutes with any
subgroup of 4; ; and in particular with 4, ; N B;. Hence by Theorem 8.4.1 the

modular law may be applied as was done in (8.4.6). Thus our theorem is
proved.

In a principal series or composition series (with or without operators), no
further refinement is possible, and so as a direct consequence of the



refinement theorem we have the following:

THEOREM 8.4.4. THEOREM OF JORDAN-HOLDER. [f G =4y D A; D - - - D
A, =Hand G=By,> - - D B, = H are two principal series (or two
composition series), with operators €, then m = n and the factor groups A;_
\/4; are operator isomorphic to the factor groups Bj_l/Bj in some order.

The fact m = n is of course a consequence of the one-to-one
correspondence between the factor groups of the refinement theorem which
are not the identity.

In the case of normal series all the subgroups, being normal subgroups,
are admissible under all inner automorphisms x — @~ 'xa, and we may include
all inner automorphisms in the set of operators 2. An isomorphism preserved
under all inner automorphisms is called a central isomorphism. Thus a
consequence of the refinement theorem is the following:

THEOREM 8.4.5. In the refinement of normal series, corresponding factor
groups are centrally isomorphic.
Now if x — (x)a is a central automorphism of a group, then

a! (2)aa = (@ 'za)a = (a)a™! (z)a (a)e,

whence (a)aa™' permutes with every (x)a and must be an element of the
center of the group, say, z. Hence, for a central automorphism, (a)a = az for
every element a of the group and an appropriate z of the center, where z
depends on a. Conversely, an automorphism with this form is readily seen to
be a central automorphism.

8.5. Direct Decompositions.

Suppose that in a modular lattice we have m elements 4, - - -, 4,, such
that if we write 4;=4, U - - - U4, (U4, UA4,i=1" - mthend, N

A4; =0, the zero element fori =1 - - - m. We thensay that4=4, U - - - U 4,
is the direct union of 4y, - - -, 4,, and write

(8.5.1) A=l 5 A W e M A



This will arise in groups when 4 is the direct product of 4; - - -, 4

me

THEOREM 8.5.1 (THEOREM OF ORE). Let L be any modular lattice of finite
dimension. If the all element T of L has two decompositions T= Ay X + - = X

A,, T=B;x - x B, where the 4; and B; are not further decomposable as
direct unions, then m = n and the A; and B; are projective in pairs.

Proof: We shall show that any given 4 (say, 4;) may be replaced by some
Bj projective to it, where =4 X 4y x + + - x 4, =B; x Ay x - - - x 4, This
is the main part of our proof. Having replaced 4; by B;, we proceed to
replace 4, in the second decomposition by some Bk" and so on. In the
process of replacement we cannot possibly use the same B; twice, since this

would be in conflict with the requirement that any factor intersect the union of
the remaining ones in zero. We must have enough B’s to replace all the A’s,
and clearly, since every B € T, we cannot have any remaining when all A’s
have been replaced. Thus m = n We write

T = sy Kb el Hposthillens ol s Al My i = 1,
---,m,andBj.= B, \J "'UBj_1UB_f+1 e \JB.,J=

1, - - -, n, and base our proof on induction on the dimension of 7, the theorem
being trivial for dimension one.

CASE 1.
A, UB; = 4, U B; = T for some j. Here
d(4y) = d(T) — d(B)) + d(41 M B;)
= d(B;) + d(41 M B)) 2 d(B)),
and similarly, d(B;) = d(4;)), giving d(4;) = d(B;). Thus
d(z’ll M B,')_= {E{.fi_l M Bij] = (), and SO

T = A; X _H:- = A; X B;_- and 4; and B; are mutually replaceable.

CasE 2. Suppose 4, \_J i—iz (T for somej (say,j = 1).

Dy =AU By 2 By.tenD; D B; U By = T contrary
to hypothesis. Hence OQ; = D; N By € B, and d(Q;) < d(By). T is the direct



union of the B’s, and therefore the union of the O’s will be their direct union,
since O, € B, h=1,- - n.
Define

Thus both 7 and C, being direct unions and Q) € B, d(T) =d(By) + - - - +
d(B,),

(8.5.2) d(C) = d(Q) + -+ + d(Qx) < d(T).

Since C 1s properly contained in 7, we may by induction on dimension assume
the theorem true for C.
Letus write U, = Q; U - - - U Q,. We wish to prove U.= M, N N,, where

M.,=ByU:---UB,N.=D;N---ND, Forr=1 this reduces to U;=B; N
D;, the definition of U; = Q. The proof is by induction. We assume U; = M (1
N;. Then Uy = U U Q4 = M N N) U (Bjﬂ N D;y). Here
Diy1 2 Bjn 2 M; DM; M N By modularity Upyy = Djyy 0
[(M;AN) U B i) Here Byy © By © Dy, ho = 1, -+, 3.0 =
1, -, j,whence B; , | € N,. Finally, U;;; = D;y N[N, N (Bj1; U M))] =N,y

J
N M, proving the induction. For » = n, M, = T, whence

(8.5.3) C=QV--JQ.=D,ND:N ---ND, DA,

the last relation holding since D, 2 4, =1, - - -, n. Since C 2 4; we may
apply modularity to find (CN 4)) N 4;=CN (4, U A))=CNT=C. Since,
trivially, C N 4; N 4; =0, we have

(8.5.4) C=AX(CNA)=0QX- - XQu

Hence, by induction on dimension, the theorem is valid for C, and so A4, is
replaceable by some indecomposable factor of some QO (say, £ € Q,). By
replaceability in C, d(E) = d(A4,). Also, since C=E x (C N 4;), we have 0 =



ENCN A =EN A, Hence, d(E U A}) = d(E) + d(4,) = d(4) + d(4;) = d(T),
and so T = A4 UV E = E x A. Moreover,

ECQ: = (A4,\UBy) N B, C ByadEN(, NB)=EN 4=
0. EU (4, N B,) =B, N (EVU A4)) =B, N T= B, whence

(8.5.5) B = E X (4; N By).

But by assumption B;, was indecomposable and d(E) = d(4,) > 0. Hence B), =
E and 4; N B;, = 0. This yields

(8.5.6) T = A, X A; = By X A,.

Also B,=ECS 0, S Bj.andso, B, = Q, = (A1 \U By) N By
Thus B, ©C A, U Eh’ and S0,
A4, UV f_j’h > B, \J Ea = T Since d(4,) = d(B),), we must also

have

d(d, N By) = d(Ay) + d(By) - d(4; U By) = d(By) + d(By) - d(T) = 0

. Hence
(8.5.7) T = A, X By

and A4; and B, are mutually replaceable. Here /4 # 1, since
A1UB,I; = ToWhﬂefh \J B, # T

Case 3. A;\UJ B; = T forall jbut 4, U B; o T for all j, the only
possibility not covered by Cases 1 or 2.

Reversing the roles of the A’s and B’s, we may apply Case 2 and then any
specified B (say, B,) is mutually replaceable with some 4 not 4;, which by

renumbering we may take as A4,,. Then

(858 T =AiX - X Apa X An
=Bl>< XBn_l XAm=Bn><Am



Here z — (z U 4,,) N 4,, is a projectivity of the quotient En /0 onto 4,/0 and
by the corollary to Theorem 8.3.1, is a lattice isomorphism. Hence, if we put

BJ-* — (B}U Am) ﬂfim,jz I, - - -, n—1, we find from the

isomorphism

(3_5,9) Apm=A1X +o+ X Apy=B*X -+ X B._,*.

By induction on dimension the theorem is true for A,, and so, A4; is
replaceable by some B;* (say, B,*) in 4, Here By U 4, = (B, U 4,) N (4, U
A)=[(B;UA4,)NA]UA,=B"UA, Hence ByU 4, =(B;*U AU - - -
UA, DUA,=(A U4y -~ UA, ) UA,=T,since B* replaces 4, in 4,,.
But here Al W, El = T = Bl \J A_ v and therefore Case 1
applies, and 4; and B, are mutually replaceable. Note that Case 3 does not
actually arise and that in every case for a given 4, there is a B; such that 4,

and B; are mutually replaceable.
For groups the theorem is:

THEOREM 8.5.2 (THEOREM OF WEDDERBURN-REMAK-SCHMIDTY). Let G be
a group whose normal subgroups form a finite dimensional lattice. Then if
G has two representations as direct products of indecomposable subgroups

G=A4, X -+ X An,
G = By X --+ X B,,

then m = n, any A; is mutually replaceable by some B;, and the A’s and B'S

are pairwise centrally isomorphic. The theorem is valid for G as a group
with operators or for the congruence relations on inverse loops.

Proof: Since we have already established that normal subgroups form a
modular lattice, we need only observe that the definitions of direct product
agree. In G = 4; x 4;= B; x 4; we have both 4; and B; perspective to G/4; and
hence projective. Thus there is a central isomorphism established between 4;
and B; which becomes a central automorphism of G if we map A, into itself.
Hence corresponding elements of 4; and B; differ by a factor in the center of
G.



8.6. Composition Series in Groups.

Suppose G=A4, D2 4; D - - - D A, = H is a composition series from G to a
subgroup /. By definition 4, is a maximal normal subgroup of 4;. Hence
A/A;; 1s a simple group, since a normal subgroup of A/A4;; would

correspond to a normal subgroup of 4, containing 4;,; (Theorem 2.3.4). Hence
if A/A;,; 1s Abelian it can contain no proper subgroup and must be finite of

prime order. There is a relation between chief series and composition series
given in the following theorem:

THEOREM 8.6.1. Let H be a normal subgroup of G such that there is a
composition series from G to H. Then there is a chief series from G to H,

G=BiDBiD:-DBn=H,

and each factor group B/B,., is the direct product of a finite number of
isomorphic simple groups. Conversely, if such a series exists with By/B;.| a

direct product of a finite number of isomorphic simple groups, then there is
a series of composition from G to H.

Proof: Any normal series from G to H can be refined to a composition
series by inserting further terms. Hence any normal series from G to H is
necessarily shorter than a composition series and therefore i1s of finite length.
Hence there must be a chief series from G to H,

0230331:)"':)3,“:!1.

If m =1, G/H is a simple group and the theorem is true. Let us use induction
on m, whence each of ByB,, * - -, B,, »/B,, ; 1s the direct product of a finite

number of isomorphic simple groups. It remains to be proved that B, /B, 1s

the direct product of a finite number of isomorphic simple groups.
Any normal subgroup of B,, {/B,, corresponds to a group normal in B,

containing B,,. Hence there exists a minimal normal subgroup K/B,, where K
D B,and Kisnormal inB, . IfK=258,, ,
nothing further to prove. Now consider the conjugates K; of K under G. K; S
B

then B,, /B, 1s simple and there is

w1, since B, | 1s normal in G. Moreover, since transformation by an



element of G induces an automorphism in B,, | every K; is a normal subgroup

of B,, ;. Also, LJ_,,I' I{j 1s a normal subgroup of G, since transformation by an

element of G merely permutes the K; among themselves. Hence

l“;.) K; = Bm_1 since there is no normal subgroup of G between B,, | and

B, Take K = K, Ky L K;, K3 &£ KyU K, and
Kj$If1U +++ \U K;_j Bachof U; =K, U - - - UK; is a normal
subgroup of B, ; and contains the preceding U, ;. Since there 1s a

J

composition series from G to B,, including B there can be only a finite

m—1»
number of U;’s, whence for some finite j, B, ; =K; U - - - U K;. Now a K; not

contained in the union of the remaining K's must intersect the union of the
remaining ones in B,, since every K 1s a minimal normal subgroup of B,, ;

containing B,,. Hence, deleting the K’s contained in the union of the remainder,
B, /B, =K/B,VU - -UK/B,, where each K;/B,, 1s a normal subgroup of
B, /B, intersecting the union of the remainder in the identity. But by
Theorem 3.2.2, B,, |/B,, is the direct product of K,/B,,, - - -, K/B,,. Now if
K,/B,, had a proper normal subgroup, this would be a normal subgroup of 5,
/B,,, since it would be normal in K;/B,, and surely normalized by the
remaining direct factors. But K;/B,, was assumed to be a minimal normal
subgroup; therefore K,/B,, is a simple group and B,, |/B,, is the direct product
of the s isomorphic simple groups.

For the converse part of the theorem we observe that B, c K c U, c U; -
-+ C B,, ;1s part of a composition series since each factor group is simple.

THEOREM 8.6.2.* The intersection of two subinvariant subgroups of G is
a subinvariant group of G. Both the union and intersection of two
subgroups occurring in composition series will occur in a composition
series.

Proof: Suppose A and B are two subinvariant groups of G. Then by
definition we have two chains:



A=4,<94,,49--- 494 4,49G,
B=B 4a4B_<---4B 4G

Here, inthe chain4=4,2 A4, N By 2 - - 4. N B;=A N B, each subgroup is
either equal to or normal in its predecessor (Theorem 2.4.1). Hence

ANBaC,aC,_---<aCi<a4d,4a---494,4aQd,

where the C; are the distinct subgroups of the set above and 4 N B is

subinvariant.
Now suppose the preceding two chains are composition series. Then if B,

#A;, G= A4, U By, since both B; and 4; were maximal normal subgroups of G.
Here 4; N By 1s a normal subgroup of G, and A4,/4; N B; = G/B; and 1is
therefore simple; therefore 4; N B; is a maximal normal subgroup of 4;. Here
either 4; N By = A, or A; N By and 4, are both maximal normal subgroups of
A;, whence 4; =4, U (4; N By) and 4, N B; =4, N (4; N B;) and so 4,/4, N
By = 4,/4, N B; = G/B, 1s simple. Also 4; N B/4, N B; = A,/A4,. Continuing
in this way, either A=4, =4, NBjor 4.\ By 4 A,and 4/4, N B, =
G/B is simple. Here we have series of composition,

Arﬁﬁlﬂ!}lr_1ﬁ31ﬂ s ﬂAlﬂBl‘qu'ﬂG,
B, B.,<4---<aB;<qa B, «aQq,

similar to those above but involving fewer terms below B. Now repeat with
B, 1n the role of By, etc., and we shall ultimately find a composition series

fromGto AN B.

To show that the union of two composition groups (as we shall refer to
subgroups occurring in composition series) 1s again a composition group is
more difficult. We use induction on the lengths 7 and s of the two composition
series from A4 = 4, and B = B to G. Specifically, we shall use induction on r +
s, the theorem being true for » + s = 2, since 4; U By is a normal subgroup of

G. For this we need a lemma.

LEMMA 8.6.1. If C is a composition group of G which properly contains
the composition group A, then there is a composition series from G to A



which includes C, and in particular, the length of a composition series from
G to Cis less than the length of a composition series from G to A.
This follows since if

C=C¢-¢JC¢_1{I ”"“CICI“:IG
and
A=A4,9 4,.,494 --- 4 4,4 @G

are composition series for 4 and C, then as before,

A,=A,:"‘|C;<.1A,_1ﬁ0;*“ ‘dAlr\'ng‘qc,g"'{ICIﬂG,

and the distinct groups from C; to 4, will complete a composition series from
G to A, which is therefore of length », and hence » > t.

By induction both 4, ; U B, and 4,. U B,_; are composition groups of G. If
A, 1 U B, 1is a proper subgroup of G then 4, and B, are composition groups in
A4, 1 VU B, with lengths 7' <7 and s’ < s (by the lemma) as composition groups
in 4,y U B,. Then by induction 4, U B, is a composition group of 4, ; U B,
and hence of G. Hence assume 4, ; U B, = G. Similarly, we may apply
induction unless we also assume 4, U B, ; = G. Now suppose by symmetry
that » <s. Here, ifh e B,

b-14,b a b4, b < -++ <4 b14b 4 4, < G,

where b~14,b = A, since A4, is normal. Now if b~'4,b # A, then in 4,, A,, and
b~'4,b are composition groups and the length of the series is  — 1 in both
cases. Hence by induction 4* = 4. U b~'4,b is a composition group in 4,
where the length of a chain from 4, to 4* is less than » — 1 Hence by induction
B, U A*1s a composition group. But B, U A*=B,U 4.= B U A. Thus we may
suppose that 4, is transformed into itself by every element of B;. But 4,. is also
transformed into itself by every element of 4, ;. Hence 4, is normal in 4, ; U
B, = G. As a normal subgroup of G we may take A4, as A;. But then

BUA=B,UA1{JB,5_1UA1*:] "'BIU Al'ﬂG



. This holds since B; and A4, are transformed into themselves by B, ;, and
clearly, A; as a subgroup of B; U A; transforms it into itself. Hence

B;\UA,a B; 1\J A, Thus B U 4, as a subinvariant group of G
containing a group A in a composition series, is also a composition group.

EXERCISES

Let the group G be of order p’¢°. If G has two composition series | € 4] C Ay C - - - C 4, C
Apy1C€- - CApyg=GandlcBjcByc: - -CByCBgy| €+ CBpyy=G, where 4,

is of order p” and By is of order ¢°, show that G is the direct product of 4, and By.

2. Generalize the result of Ex. 1 to show that if G is a finite group and if for every prime p dividing
the order of G there is a composition series of G, one of whose terms is a Sylow subgroup S(p),
then G is the direct product of its Sylow subgroups.

3. Show that an automorphism of the direct product of a finite number of non-Abelian simple groups
permutes the factors.

4, If a finitely generated group G has exactly one maximal subgroup 4, show that G is generated by
any element not in 4. Prove that G is cyclic of prime power order.

5. If a finitely generated group G has exactly two maximal subgroups 4 and B and [G:4] = p, [G:B]

=g, where p and ¢ are different primes, show that G is cyclic of order piqi. (Hint: Show that A
N B is normal and that G/4 N B is cyclic.)

6. Suppose that G is a finite group such that L(G) is of dimension 2. Show that if the order of G is
not divisible by a square, then at least one Sylow subgroup is normal. Hence conclude that G is of

order p2 or pq, p and g being primes.

l These results are due to H. Wielandt [2].

% The more colorful term subnormal series has been urged on the writer by Irving Kaplansky, but
this seems unnecessarily distracting.

% The original Jordan-Holder theorem has been extended and generalized by a long series of authors.
The original theorem is due to C. Jordan [1] and to 0. Holder [1]. Generalization to groups with operators
is due to E. Noether [1] and W. Krull [1, 2]. The refinement theorem is due to O. Schreier [4] and H.
Zassen-haus [1]. The lattice theoretical formulation given here is a modification of that given by O. Ore
[2]. Generalization to partially ordered sets has been made by O. Ore [1] and S. MacLane [3].

I The original proof of this theorem is due to J. H. M. Wedderburn [1]. R. Remak corrected an
omission [1, 2]. P. Schmidt extended this to groups with operators. The lattice theorem (8.5.1) was
proved by Ore [1], but the form given here is taken from G. Birkhoff [1] with a few changes.



9. A THEOREM OF FROBENIUS;
SOLVABLE GROUPS

9.1. A Theorem of Frobenius.

Theorem 9.1.1. in its original form due to Frobenius [2], is of an entirely
different nature from most of the other results in group theory. It does not deal
with subgroups, homomorphisms, or permutation representation but with the
number of solutions of an equation in a finite group. It has been greatly
generalized by Philip Hall [3], who has generalized both the equation studied
and the information on the solutions. But here we shall give only a mild
generalization of the original theorem.

THEOREM 9.1.1. Let G be a group of order g and let C be a class of h

conjugate elements. The number of solutions of x" = ¢, where c ranges over
C is a multiple of (hn, g).

Proof: Let A(K, n) designate the complex of those elements of G whose
nth powers lie in the complex K, and let a(K, n) designate the number of
elements in A(K, n). For g =1, (hn, 1) = 1, and the result is trivial, while for
n =1 the number of solutions is # = (A, g). We shall use induction on g and n,
assuming the theorem for any g’ < gor g'=gand n’' <n.

If ¢ = u'lcu and x* = ¢, then (v 'xu)" = ¢, giving a one-to-one
correspondence between the solutions for an element ¢ and any of its
conjugates. Thus a(C, n) =h - a(c, n). If x" = ¢, then x 'ex = x 1(x")x = x" =
¢, and the solutions of x" = ¢ lies in the normalizer N, of ¢, which by
Theorem 1.6.1 1s of order g/h. Hence if 4 > 1, the theorem being true in N,
a(c, n) 1s a multiple of (n, g/h), and so, a(C, n) = h - a(c, n) is a multiple of
h(n, g/h) = (hn, g), proving the theorem.



Hence, suppose 7 = 1. If n =nn,, (n, ny)) =1,ny>1,n,>1,and if D =
A(C, ny), then A(C, n) = A(D, ny). D consists of complete classes. By
induction (n, g) 1s a divisor of a(C, n) and, similarly, (n,, g) 1s a divisor of
a(C, n). But then, since (ny, g) and (n,, g) are relatively prime, their product
(ny, @)(ny, 2) = (nny, g) = (n, g) divides a(C, n), proving the theorem. We

may now suppose n = p° is the eth power of a prime. If p divides the order u
of ¢, then an element x in A(c, n) has order nu. Then exactly n elements in the
cyclic subgroup generated by x belong to A(c, n), and all these generate the
same subgroup. Hence 4 (c, n) is divisible by n.

Finally, we suppose that n = p° is relatively prime to the order u of c.
Since 4 = 1, ¢ 1s in the center of G. The elements in the center of G whose
orders are not divisible by p form an Abelian group B whose order b is not
divisible by p.

Now let c¢; and ¢, be two elements of B. Since p % b, the equation ¢, =

c1)" has a unique solution y in B. But then if x”* = ¢, we have (xy)" = ¢, and
s0, a(c, n) has the same value for every ¢ ¢ [B. Finally, the equation

g = X a(C, n) + ba(e, n)

CsB

counts the g elements of G according to the class in which their nth powers
lie, counting first for those classes not in B, and last for B, b times the number
for one of them. Now (n, g) divides every term a(C, n) in the first sum, each
term of this being covered by induction or a previous part of the proof. Also,
since (n, g) divides g and 1s prime to b, it must follow that (n, g) divides a(c,
n), completing the proof of the theorem in all cases.

If ¢ is the identity then # = 1 and we have the original form of the

Theorem of Frobenius. Here x® = 1 for all elements, and so, if (n, g) = m,
fromx” =1 follows x" = 1.

THEOREM 9.1.2. If n is a divisor of the order of a group G, then the
number of solutions of x" =1 in G is a multiple of n.

Note that since the identity satisfies the equations, the number of solutions
is not zero and hence must be at least n.



In connection with this theorem there is an interesting conjecture: If n

divides the order of G and there are exactly n solutions of x"* = 1, then
these solutions form a normal subgroup of G.
Note that if G contains a subgroup H of order n, then the elements of H

will be the solutions. Moreover, if x” = 1, then for an arbitrary z, (z 'xz)" =
1, whence H will be a normal subgroup. The problem then consists in
showing that the »n solutions form a subgroup H. The assumption that n divide
the order of G is essential, since by the Theorem of Lagrange the order of a

subgroup divides the order of the group. Also, x* = 1 has exactly four
solutions in the symmetric group on three letters, which is of order 6, but
these do not form a subgroup.

9.2. Solvable Groups.

The element x 'y xy of a group G is called the commutator of x and y,

and we write x 'y xy = (x, ). We also define commutators of higher order
by the recursive rule (x; - - -, x,,_1, x,,) = ((x, - - -, X,,_1), x,,)- These are the

simple commutators. More generally, the set of all elements which can be
obtained by successive commutation are called complex commutators; for
example, ((a, b), (¢, d, e)). We define the weight w of a commutator
recursively by saying that elements g of G are of weight one, w(g) = 1, and
putting w(x, y) = w(x) + w(y). Thus the weight of an element which i1s a
commutator depends on the form of the commutator by which it is expressed
and not on the element itself.

From its definition (x, y) = 1 if, and only if, yx = xy. Thus all
commutators in G are 1 if, and only if, G is an Abelian group, and the
commutators may be regarded as measuring the extent to which a group
departs from being Abelian. The subgroup G’ of G generated by all

commutators x~ 'y 'xy is called the commutator subgroup or derived group.
Clearly, G' is a fully invariant subgroup of G.

THEOREM 9.2.1. The factor group G/G' is Abelian. If K is a normal
subgroup of G such that G/K is Abelian, then K 2 G'.



Proof: In the mapping G — G/G' = H, let u, v be arbitrary elements of H,

Llyy, But

and suppose x — u, y — v. Then x 'y lxy — u~
x—ly—lfgy e (7', whence x 'y Ixy — 1 = v luy, and hence vu = uv and
G/G" 1s Abelian. Now suppose that G/K is Abelian. For T, U e (7, and x —

u, y — vin G —» G/K, we have x 'y Ixy — w v luy = 1. Thus every

commutator x 'y xy belongs to K, and therefore K 2 G

DEFINITION: A group G is said to be solvable if the sequence G 2 G' 2
G' -2 -2GD - - - where each group"V is the derived group of the
preceding, terminates in the identity in a finite number of steps, say, G =

1.

By Theorem 9.2.1 each factor group G/GU*D is Abelian. Note that if
GO = G, then G = GY) all j > i. Hence the inclusions of Theorem 9.2.1
are proper until G¥) = 1.

THEOREM 9.2.2. Every subgroup and factor group of a solvable group is
solvable.

Proof: Let G be solvable and H a subgroup of G. Then by definition H' <
G', since H' 1s generated by all commutators of elements in H and G’ by all

commutators in G. Hence H” € G", etc., and so if G(© = 1, then H® = 1 and

H is solvable. Here H”) may be the identity for some i <e. If 0 = G/K is a
factor group of G, consider the homomorphism G — (. Here every
commutator in O 1s the image of a commutator in G, whence G' — ('

Continuing, G — 0©), whence 0® = 1 if G'© = 1. Again 0¥ may be the
identity for some 7 <e.

THEOREM 9.2.3.* 4 group of finite order is solvable if, and only if, the
factor groups in a series of composition from G to 1 are cyclic of prime
order.

Proof: Suppose G=4yD> 4, D - - - D A,.=1, where each 4, |/4,i=1 -
- - r1s cyclic of some prime order. By Theorem 9.2.1, since G/A, 1s Abelian,
A, 2 G Similarly, 4, 2 A4’ 2 G", and finally 4, 2 G, whence G = 1 and




G 1is solvable. Conversely, suppose G is solvable and finite. Since G/G’ is
Abelian, in

GOE@DGE'D -+ DG =1,

a maximal normal subgroup 4; 2 G’ will exist. Since G/4; is simple and
Abelian, it is cyclic of prime order. Similarly, since 4; is solvable, 4,
contains a maximal normal subgroup A4, such that 4,/4, is cyclic of finite
order. Continuing, we have G =4, D 4; D - - - D 4, = 1 with each 4, /4,

cyclic of prime order. By the Jordan-Holder theorem the same is true of
every composition series.

THEOREM 9.2.4. In a chief series for a solvable finite group G

G=CUDCID"'DC¢=

the factor groups C; {/C,, i =1, - - -, s are elementary Abelian groups.

Proof: By Theorem 8.6.1, C; {/C; 1s the direct product of 1somorphic

simple groups. By Theorem 9.2.2 these simple groups are solvable and hence
cyclic of prime order. Thus C,_;/C; is the direct product of cyclic groups of

the same prime order p and is an elementary Abelian group. Conversely, if G
has such a chief series, since the factor groups are Abelian, G will be
solvable. The numbers ¢, - - -, ¢,, which are the orders of Cy/Cy, - - -,

C,_/C,, respectively, are called the chief factors of G and are prime powers

as shown. Clearly, for a factor group G/K, the chief factors are a subset of
those for G, since there will be a chief series of G including the normal
subgroup K. For a subgroup H of G, the distinct members of

HoOEBNGDODHEMNCD - 2HNO, =

will be a normal series in A and either this or its refinement will be a chief
series for H, whence the chief factors of H will be divisors of those for G,
since H N C,_;/H N C; is isomorphic to a subgroup of C;_,/C..



THEOREM 9.2.5. The following two properties of a group G are
equivalent to solvability:
1) G has a finite normal series

G=4D2A41 D4, DDA, =1

in which every A; /4;,i=1, - - -, s is Abelian.
2) G has a finite subinvariant series

G=B 2B 282 ---2B,=1
in which every B, /B;,i=1, - - -, t is Abelian.

Proof: If G 1s solvable, then its derived series
GOGFOGE"D +-- OGN =1

is a finite normal series in which G¥1/G® is Abelian for i = 1, - - -, r,
whence property (1) holds and a fortiori property (2) holds. It remains to
show that property (2) implies solvability. Here if G=By2B,258,2 - - -
=2 B, =1 is a subinvariant series with B, ;/B; Abelian fori =1, - - -, #; then,
as G/B| = By/B, is Abelian, B, 2 G'. Similarly, if B, ; 2 G/, then B, 2
B, 2 GY. Hence, ultimately, 1 = B, 2 GY and G® = 1, whence G is
solvable.

COROLLARY 9.2.1. 4 group G is solvable if it has a normal subgroup H
such that both H and, G/H are solvable.

fGH24/H2 - 24, /H2H/H,and H2B,2 - - 2B, ;21
are series satisfying the second property for G/H and H, respectively, then G
24,224, 2H2B,2" 2B, 21 is a series satisfying the

second property for G.

9.3. Extended Sylow Theorems in Solvable Groups.



A Sylow subgroup of a finite group has the property that its order m = p*
is prime to the order of its index . Philip Hall [1] has shown that the Sylow
theorems generalize for solvable groups in terms of subgroups whose order
m 1s prime to their index n without the requirement that m be a prime power.

THEOREM 9.3.1. Let G be a solvable group of order mn where (m, n) = 1.
Then

1) G possesses at least one subgroup of order m.

2) Any two subgroups of order m are conjugate.

3) Any subgroup whose order m' divides m is contained in a subgroup
of order m.

4) The number h,, of subgroups of order m may be expressed as a

product of factors, each of which (a) is congruent to 1 modulo some prime
factor of m, and (b) is a power of a prime and divides one of the chief
factors of G.

Proof: Note that for m = p“, a prime power, properties (1) and (3) are
given in the first Sylow theorem (Theorem 4.2.1), property (2) is the second
Sylow theorem, and property (4) in a stronger statement than the third Sylow
theorem.

The proof will be by induction on the order of G being trivially true if the
order of G 1s a power of a prime. The proof will rest heavily on the structure
of a chief series of G as given in Theorem 8.3.3 and the structure of factor
groups (Theorem 2.3.4).

CASE 1. G has a proper normal subgroup H of order mn; and index m,n,,
where m = mym,, n = nn,, and n; <n.

For property (1) G/H by induction contains a subgroup of order m, which
corresponds to a subgroup D of G or order mn;. D by induction contains a

subgroup of order m.
For property (2), if M and M’ are two subgroups of order m, M U H =
MH and M' U H= M'H are subgroups whose orders divide mm,-mn,, since

M U H/H = M/M N H (Theorem 2.4.1). Since the order also divides mn, it
must divide mn;. But it 1s also a multiple of m and a multiple of n;. Hence

both M U H and M’ U H are of order mn; = mn,m,, and therefore M U H/H
and M' U H/H are subgroups of G/H of order m, and are by induction




conjugate. If a* in G/H transforms M' U H/H into M U H/H, and a in G is
mapped into a* by the homomorphism G — G/H, then a \(M' U H)a is
mapped into M U H/H; in other words, a '(M' U Hya = M U H. Here a 'M'a
and M are of order m in M U H and are by induction conjugate. Hence M and
M’ are conjugate in G.

For property (3), if M, is a subgroup of order m’, a divisor of m, then the

order of M| U H/H is a divisor of m, and hence it belongs to a subgroup of
G/H of order m,. Thus M/ belongs to the corresponding subgroup of G order
mn; and by induction on this group M, belongs to a subgroup of order m.

For property (4), following the proof of (2), the number #4,, of conjugates
of M of order m 1s the product of 4,,,, the number of subgroups of order m, in

G/H and the number of conjugates of M in M U H = D. Here the chief factors
of D divide those of G and the chief factors of G/H are a subset of those of
G. Thus by induction 4, is a product of two factors, both of which satisfy

property (4) and thus the property is proved.

Now the least normal subgroup K in a chief series is of order p“, withp a
prime. K will satisfy the requirements for the /7 of Case 1 unless n = p“. Thus
we may assume that every minimal normal subgroup is of order p“. But as
Sylow subgroups of order p“ there can be only one.

CASE 2. G contains a unique minimal normal subgroup K of order n = p“.

For property (1) let L be a minimal normal subgroup properly containing
K. Then L/K is of order ¢ with ¢ # p. Let Q be a Sylow subgroup of L of
order ¢?, and let M be the normalizer of Q in G. Consider M N K=T. Tis a
normal subgroup of M and, as a subgroup of K, is elementary Abelian. Every
element of 7" permutes with every element of O, since a commutator of an
element in Q and an element in 7" lies in 7N Q = 1. Hence T belongs to the
center C of L, which, as a characteristic subgroup of L, is a normal subgroup
of G. Since K is minimal and unique, C=Kor C=1. If C=K, then L = K X
0, and Q is a normal subgroup of G contrary to the uniqueness of K. Hence T’
= (C = 1. Thus Q is its own normalizer in L and has as many conjugates in L
as its index in L; that is, O has n = p% conjugates in L. Any conjugate of O in
G lies in L, since L is normal. Hence Q has n = p? conjugates in G, whence
M is of index n = p“ in G and hence of order m.



For properties (2) and (4), the normalizers of the p* conjugates of Q are
conjugate and distinct. Thus we have p? conjugate subgroups of order m.

Also p? = 1 (mod ¢) as the number of Sylow subgroups of order ¢” in L.
Now, if M’ is any subgroup of order m, the order of M’ U L is divisible by
both m and n, whence M’ U L = G. As G/L =M'/M"' N L, we see that M' N L

is of order ¢” and hence a conjugate of Q. Also, M’ N L is normal in M’,

whence M’ is the normalizer of a conjugate of Q. Thus the p® conjugate
subgroups of order m already found constitute all subgroups of order m. This
proves both (2) and (4).

For property (3), let M’ be a subgroup of order m'jm. Then, if M is of
order m, M N (M' U K) = M* is of order m', and by property (2) for M' U K,
M* is conjugate to M' Hence M’ is contained in a conjugate of M, proving
(3).

The above properties of solvable groups are usually violated in simple
groups. The simple group of order 60 (the alternating group on five letters)
has no subgroup of order 15 and therefore violates (1); it contains a subgroup
of order 6, generated by (123) and (12) (45) which is not contained in a
subgroup of order 12 and therefore violates (3). Finally the number of Sylow
subgroups of order 5 is six, and since 6 = 2-3, the property (4) is also
violated. The group of automorphisms of the elementary Abelian group A of
order 8 is a simple group G of order 168. G permutes the seven subgroups of
A of order 2 transitively and also the seven subgroups of order 4 transitively.
Hence G possesses two distinct conjugate sets of subgroups of index 7 and
order 24 and therefore violates property (2).

The first property of Theorem 9.3.1 in fact characterizes solvable groups.
For the proof of this we need a theorem, which will be proved in Chap. 16 as
Theorem 16.8.7.

THEOREM 9.3.2 (BURNSIDE). 4 group of order p®q®, where p and q are
primes, is solvable.

Assuming this theorem we may characterize solvable groups in terms of
the first property. In a group G of order g, a p-complement is a subgroup S’

whose index p° is the highest power of p dividing its order g. Thus the first
property asserts the existence of p-complements in solvable groups, and with
the aid of the Burnside theorem we shall prove the converse.



THEOREM 9.3.3. If a group G contains a p-complement for every prime
p dividing its order, then G is solvable.

Proof: Let the order of Gbe g and letg=p,°, - - - p,°,, where the p, are
primes. If H; and H, are subgroups of indices, p;; and p;¢;, respectively, then
because the indices are relatively prime (Theorem 1.5.6), H;, = H; N H, is

of index pp;¢,. The intersection of H,, with a p* complement will again by
Theorem 1.5.6 be of index p;°p;°p,©,. Continuing in this way, if g = mn with
(m, n) =1, we may find a subgroup of order m and index n, which will be the
intersection of p-complements for primes p dividing n. Thus, the existence of
p-complements is sufficient to prove the existence of a subgroup of order m
prime to its index » and thus to prove the full first property.

We shall assume the theorem true for groups of order less than g and

proceed by induction. In a group of order p* every maximal subgroup is of
index p and a normal subgroup (Corollary 4.1.2), and therefore a group of

order p“ is solvable. We assume the Burnside theorem that a group of order
p?qP is solvable, and hence we may now consider only cases in which the
order of G is divisible by at least three distinct primes. G contains a
subgroup H of order p%q” = m prime to its index n, mn = g, where p and ¢
are two different primes dividing g. Now H, as a solvable group, contains a
least normal subgroup K which (Theorem 9.2.4) is elementary Abelian of

prime power order, say, p’' Now K will be contained in a Sylow subgroup P

C H <€ G of order p?. Here a g-complement L* in G will contain a Sylow
subgroup P* conjugate to P in G. Hence transforming by some element in G
will take L* into a g-complement L containing P. Here L 2 P and H 2 P, and
so by their orders, L N H=P, L U H = G, and in fact, LH = G, since LH
contains g distinct elements. Thus every coset of L contains an element of H,
and therefore all conjugates of L are obtained by transforming by elements
h € H.But h"'Lh 2 K, since h"'Kh = K, K being normal in H. Thus the
intersection M of the conjugates of L is a proper subgroup of G, since K € M
C L and being an intersection of a complete set of conjugates is a normal
subgroup of G.

Hence G contains a proper normal subgroup M. If §’, is a p-complement

in G, then §", N M is a p-complement in M and §', U M/M is a p-complement




in G/M. Hence both M and G/M possess p-complements and by induction are
solvable. Thus G is solvable.

9.4. Further Results on Solvable Groups.

THEOREM 9.4.1. If G is a solvable group of order g and if n is a divisor

of g such that x"* =1 has exactly n solutions, then these solutions form a
normal subgroup in G.

Proof: We shall assume the theorem true for solvable groups of order
lower than G, the theorem being true if g is a prime. Now, as a solvable
group, G contains a least normal subgroup K which is elementary Abelian of

order p’. We consider two cases, one in which p divides n and one in which
it does not.

CAsE 1. p divides n.
Here every element of K is of order p and hence is among the solutions of

x" = 1. Let n = p/n|, g = p’g,. Here G/K is of order p*'g, and has order
divisible by u = p/7'ny if j > i, u = ny if j < i. Hence in G/K there are ku
elements z such that z¥ = 1. Now if x is an element of G such that x — z in the
homomorphism G — G/K with z¥ = 1, then % ¢ K, whence x*” = 1, and
since up divides n, x" = 1 for any such x. But these x’s are the elements of ku
cosets of K in G/K. Hence there are at least these kup’ x’s in G satisfying x”* =
1. Now if j <i, up’ is a proper multiple of n, yielding more than n solutions
of x" = 1 contrary to assumption. Hence j > i and up’ = n and there are at

least kn solutions. Thus k£ = 1 and there are exactly u solutions of z¥ =1 in
G/K. By induction these u solutions form a normal subgroup H/K of G/K, and

then H, the corresponding group in G, is a normal subgroup of G of order up’
= n whose elements are the n solution of x* = 1.

CASE 2. p does not divide n.

Here n divides the order of G/K and there are kn solutions of z” =1 in
G/K. Here, if i € (7 with y — z in the homomorphism, y" e K and yr" =
1. Hence in G there are kn cosets of K of elements y satisfying )" = 1. We



assert that each coset K|, yields a distinct solution of x" = 1. For, let Ky; and
Ky, be distinct cosets of K with y; — zy, v, — 25, z; # z,. Here y#" =1, y,/"
=1, and therefore y = x;, y = x, are solutions of x" =1 in G. If y¥ =y,
thenz{ =z,’. Butz," = 1, z,” = 1, and since (p, n) = 1, from this we would
have z; = z,, contrary to assumption. Hence if z”* = 1 has kn solutions in G/K,
then x” = 1 has at least kn solutions in G. Thus k£ = 1, and by induction, G/K
contains a normal subgroup U/K of order n. Here the corresponding group U
in G is of order p'n. But as a solvable group, U contains a p-complement H

of order n. Thus the n elements of H are the »n solutions of x” = 1, and since

transformation by an arbitrary element of G permutes the solutions of x”* = 1
among themselves, H 1s a normal subgroup of G.

THEOREM 9.4.2. If two consecutive factor groups of derived groups G’
DG"DG" - ofagroup G are cyclic, then the latter is the identity.

Proof: We may take G"" = 1, taking G'/G" and G"/G"" as cyclic, and must
show G" = 1. Let b be a generator of G". Now G is the normalizer of G"”, and
if Z, 1s the centralizer of G", G/Z, is isomorphic to a group of
automorphisms of a cyclic group, and so, Abelian. Hence Z, 2 G'. But then
G" is in the center of G’ and G’ is given by adjoining a single element to G”.
But then G’ 1s Abelian, and so, G" = 1, as was to be shown.

We say that G 1s metacyclic if G/G' and G’ are both cyclic. Here G" =1
and we have a two-step metacyclic group. By Theorem 9.4.2 there could not
be a three-step metacyclic group.

THEOREM 9.4.3. If the Sylow subgroups of a finite group G of order g
are all cyclic, then G is metacyclic and is generated by two elements a and
b with defining relations:

a® =1, b =1, blab = «a,
mn = g,

[(r — 1)n,m] =1,

r* = 1 (mod m).



Conversely, a group given by such defining relations has all its Sylow
subgroups cyclic.

Proof: We must first show that G is solvable. Let g =p,¢, - - - p°,, p| <
Py < - - <p, be the decomposition of g as a product of primes. We show

first that for m = p]f Divi’m " PsS Ji S €, the equation x™ = 1 has exactly m

solutions. This is surely true for m = g. Hence it suffices to show that if x"? =

1 has exactly mp solutions and p is the smallest prime dividing mp, then x"* =
1 has exactly m solutions. Since the Sylow subgroup belonging to p is cyclic,

then if p/*! is the highest power of p dividing pm, there are elements of order
7P!in G; therefore not all solutions of X" = 1 are also solutions of x = 1.
Hence the km solutions of x” = 1 (Theorem 9.1.2) are a proper part of the
solutions of X" = 1, and hence 1 < k < p. An element satisfying x"” = 1 but
not x = 1 has order ¢ exactly divisible by p/*!. Here there will be ¢(¢)
elements, all generating the same cyclic group, all of which have order
exactly divisible by p/*!. Here, since p/*! divides ¢, ¢(¢) is divisible by p —
1. Hence pm — km = (p — k)m, the number of elements satisfying x””* = 1 but
not x” =1, is divisible by p — 1. Since p was the smallest prime dividing m,
p — 1 has no factor in common with m. Thus p — 1 divides p — k, and since 1
< k < p, this is possible only if £ = 1; that is, if X = 1 has exactly m
solutions. In particular for m = p© , x™ = 1 has exactly m solutions. But there
is a Sylow subgroup of this order which must therefore be a normal subgroup
of G. This is cyclic and so, of course, solvable.

We have shown that a group G with cyclic Sylow subgroups must have a
normal subgroup H. Then both H and G/H also have cyclic Sylow subgroups.
We may assume inductively that H and G/H are solvable and so, G is also
solvable, since a group of prime order is solvable.

An Abelian group whose Sylow subgroups are cyclic is itself cyclic.
Hence in G © G' © G" - - - the factor groups are cyclic, and hence by
Theorem9.4.2, G" = 1. If G' =1, then G is cyclic, and this case is covered if
we take b=1,r=1,n =1, m = g. Hence, suppose G' # 1, and let a be a
generator of G’ with a” = 1. Let b be an element from a coset G'b which is a
generator of the cyclic factor group G/G'. Here a and b generate G and b~ 'ab
=a" with r # 1, since G’ is a normal subgroup; if » = 1, G would be Abelian



and hence cyclic, contrary to assumption. If G/G’ is of order n, then b™"ab" =
a” =a and ¥" = 1 (mod m). Now every element of G is of the form ¥ d/,
whence the most general commutator (b*a’, b/a’) may be expressed in terms
of commutators of the form (a*, b’); these in turn are powers of ¢ 'b lab =
a1 Hence ' ! generates G’ and therefore (» — 1, m) = 1. Now hre(G'1sa
power & of a which permutes with b, whence a7 = &, but since (r — 1, m) =
1,j=0and so »" = 1. If m and n had a prime factor p in common, a”” and

b"P would generate a noncyclic subgroup of order p?, contrary to the fact that
Sylow subgroups are cyclic. Hence (m, n) = 1. This completes the direct part
of the proof.

Conversely, suppose m, n, r, and g satisfy the relations above. Then a —
a’, since " = 1 (mod m), is an automorphism of the cyclic group generated
by a, whose nth power (and possibly a lower power) is the identity. Thus
with mn elements b a’, j modulo 7, i modulo m, and the product law #a’-bra'
= Bt*gh = ik + ¢, we may verify the associative law and the existence of
inverses whence we have a group of order g = mn with relations a” =1, b" =
1, b"lab = a" and observe that the product law is a consequence of these
defining relations. In this group every commutator is a power of @ 'b lab =
a1, whence since ( — 1, m) = 1, G' is generated by a. Since (m, n) = 1,
every Sylow subgroup is a conjugate of the subgroup {a} or the subgroup
{b} and hence cyclic.

COROLLARY 9.4.1. Every group G of square free order is metacyclic of
the type in Theorem 9.4.3.

This follows, since the Sylow subgroups are all of prime order and
necessarily cyclic.

EXERCISES

Show that if a group G is of finite order divisible by 12 and if x12

G, then these solutions form a normal subgroup.

= 1 has exactly 12 solutions in

Show that if G is of order pzq, where p and ¢ are different primes, then one of the Sylow
subgroups is normal and G is solvable.

Show that if G is of order pzqr, where p, g, r are different primes, then either G is solvable or
G is the alternating group 45 of order 60. Use Theorem 14.3.1 and its corollary.



Show that if x”* = 1 has exactly m solutions, x| = 1,x9, - - -, x;;, In a group G, then K = {xq, - -
", X} is a normal subgroup of G and its elements are of the form xp%x3%3 - - - x,,%,, and K is

of order at most (nm_l).



10. SUPERSOLVABLE AND
NILPOTENT GROUPS

10.1. Definitions.

There are two properties of groups, qualitatively stronger than solvability,
which are of considerable importance. These are supersolvability and
nilpotence.

DEFINITION: A group G is super solvable if it possesses a finite normal
series G=Ay 24, 24,2 - - - 2 A, =1, in which each factor group A; /4;
is cyclic.

DEFINITION: A group G is nilpotent if it possesses a finite normal series
G=A4y24,24,2 - - 2A4,.=1, in which A, |/4; is in the center of G/4;
fori=1,---,r.

Since in both these cases 4, ;/4; 1s Abelian, these properties do imply
solvability of G. Note that in a supersolvable group G, 4, | = {b;_y, 4},
where b; | 1s any element of 4; | mapped onto a generator of the cyclic group
A;1/A;, and thus G 1s finitely generated. Since nilpotent groups include all

Abelian groups, it is clear that a nilpotent group need not be finitely
generated.

Baer [12] defines supersolvability in a more general way, saying that G 1s
supersolvable if every homomorphic image of G contains a cyclic normal
subgroup. He shows this definition to be equivalent to ours for finitely
generated groups, but with the broader definition, the properties proved in this
chapter do not hold.

10.2. The Lower and Upper Central Series.



We write the commutator x 'y lxy as (x, y). For subgroups A4, B, the
notation (4, B) will mean the group generated by all (a, b) with g ¢ A,
b e B- We have defined simple commutators by the rule

(5':1: *t 0y Tay, 1‘-,1} = ((Iia Tty Iﬂ—i}; xn);

and similarly for subgroups 4y, - - -, 4,1, 4, we define

n—1>
(Ag, ooy An, 4a) = ((4y, + -+, A1), An).
Let us represent conjugation by an exponent; thus
a* = rlaz.
There are a number of important identities on the higher commutators:

(10.2.1.1)  (3,2) = (zy)

(102.1.2) (ay2) = (x2)"(y,2) = (2,2)(2,2,9)(¥,2).
10.2.1.3)  (z,52) = (2,2)(z,y)* = (2,2) =) (2,9,2).
(10.2.1.4)  (z,5742)"(y,24,2) (2,24 y)* = 1.

(10.2.1.5) (z,y,2)(y,2,2) (2,2,y)
= (4,%)(2,7) (2,4) *(x,y) (7,2)¥(y,2) *(x,2) (2,)".

These may be verified by direct calculation from the definitions of the
commutators.

We define a series of subgroups of a group G by the rules:

G = G,
Pk(GJ = {(Ils Y xk)}r

for arbitrary 22; € (7.

Since (i, Yo, = Vk+1) = [, 12)5 V3, © 5 W], we see that I (G) €
I'4(G) for all k. Clearly, the I',(G) are fully invariant subgroups of G. The
series



G=TiG)2T:(G) 2T:(@) 2 -+ -
1s called the lower central series of G.

THEOREM 10.2.1. ', 1(G) = (I'1(G), G).

Proof: Since (vy, * = =, Vi Vir1) = (1> * * 5 Vi)» Vir1)» We have trivially
I'h1(G) € (I'4(G), G). To prove the inclusion in the other direction, we need

the identities (10.2.1). In (10.2.1.2) putx = (ay, - - -, a;),y=(a; - - - a;) \, z

= aip- Then 1= (1, 1) = (ay -~ -, a, @) ((@y, * ~ - @), @gyy). Thus we
have {:{.{11’ sy {Ik}_lj ﬂi:+1) € ]_-'k+1{:G:}, since the other term
belongs to I';,{(G). Now (I'i.(G), G) 1s generated by elements (uju, * - - u,,
g), where u; = (a, - - -, a;) or (a;, - - -, a;)"'. We have shown that
(u{? g} e I'; +1(G). We show by induction on n  that
(Urtte *+* Un, g) € I'ka(G). This we do by putting x = uju - - -
Uy 1,y =u, z=gin(10.2.1.2) so that we have (u; - - - u,_u,, g = (u; - - -
u, 1, 2)" (u,, g); by induction the two expressions on the right are in I';(G).
Hence we have shown (I',(G), G) € I';,;(G) and have proved the theorem.
This theorem leads to an important corollary.

CoROLLARY 10.2.1. I't(G)/T'141(G) is in the center of G/T';,1(G).
We may also define an upper central series for an arbitrary group G.

Zo=1C Z(6) S Z:(G) S -+ S Z6) S Zin(®) C -+,

where we define Z,,,(G) by the rule: Z; {(G)/Z(G) is the center of G/Z(G).

Since the center of a group is a characteristic subgroup (but not in general
fully invariant), each Z; is a characteristic subgroup of G. The following

theorem justifies the use of the terms upper and lower as applied to the central
series we have defined.
Asertes G=A4,24, 2432 - - 2 4,1 = 1, in which each 4,/4;,; is in

the center of G/4;,,, 1s called a central series.



Theorem 10.2.2. Let G=A4, 24, 2432 - - - 2 A, = 1 be a central
series for G. Then 4; 2 1'(G),i=1, -, r+land 4., ;< Z(G),j=0,1, -

LT

Proof: We have 4; = G =T"{(G). Suppose that 4, 2 I'(G). Since 4,/A4;,; is
in the center of G/4,,;, we have (4,, G) € 4;,;. But then I';,{(G) = (I'(G), G)
C (4;, G) € 4;,, and this proves by induction that 4, 2 T'(G) for all i.
Suppose for some i 4,,1—; € Z(G). Then T'= G/Z(G) 1s a homomorphic 1image
of U= G/A,.,_; with kernel Z(G)/A,_;. Now A,_/A,.,_; 1s 1n the center of U,
whence 1ts homomorphic image in 7 must lie in the center of 7. But this image
1sA4,; U Z/Z, while the center of T'1s Z,,,/Z;. Hence 4A,_; € A, ;U Z; € Z,,,,
proving our theorem by induction.

As a consequence of this theorem we have the following corollary:

COROLLARY 10.2.2. In a nilpotent group G, the upper and lower central
series have finite length and both have the same length c. For, if there is a
finite central series of length r, the theorem shows that the upper and lower
central series have at most length ». And if the two series are compared with
each other, we conclude that neither one can be longer than the other. Hence
they both have the same length ¢, and this number c is called the class of the
nilpotent group. A nilpotent group of class 1 is simply an Abelian group.

THEOREM 10.2.3. If a group G is generated by elements x,, - - *, x,, then
't (G)/T141(G) is generated by the simple commutators (yq, y,, * * *, V) mod
I'411(G), where the y s are chosen from xy, - - -, x,. and are not necessarily
distinct.

CoRrOLLARY 10.2.3. If G is generated by r elements, then I'j(G)/1';11(G)

is generated by at most r* elements.

Proof: We proceed by induction on £, the theorem being immediate for k =
1. Assume the theorem true for k£ — 1. I',(G) is generated by all commutators C

=(a; - -, @y, q) with q; € (G. Here C = ((a - - -, @), @) and
(alr R 1) EF&-1{G), whence by induction
[:I'II, N ﬂ-ﬁ.:-l] = UpU2*2 -+ WU, €; = =1, with uy, - -



-, u,, being commutators of the form (y, - - -, y;—;) and the y’s being x’s and
w e Ti(G). Then € = (ug®1ug*2 « -« uy*nw, a;). Applying

(10.2.1.2) we have
C = (uuy o s @) o uhy g, W)W, ) = (W9 o U, o)
(mod I'yyy). Now aj =x", - - - x;,,, n;, = +1, and since the u’s € I_p we

find by repeated application of (10.2.1.2) and (10.2.1.3) that modulo I';;, C
is a product of commutators (-u?-ff, E?fﬂ*}- Since also from these rules
(u e I”:}l = [H, :E) €1 (mod I';1(G))], it follows that I',(G)/T';,{(G) is
generated by commutators (u, x) mod I';,{(G) or (y; * - -, V41, X;x) mod
I'4+1(G), as we wished to prove. Note that we do not need finiteness of » for

this theorem.
An almost immediate consequence of this is the following, which gives
the relationship between nilpotent and supersolvable groups:

THEOREM 10.2.4. A finitely generated nilpotent group is supersolvable.

Proof: Let G be finitely generated and nilpotent. Let its lower central
series be

G = Fl(G) :) Pz'[:G) :) s :} FC(G) :) F.;q.]_(G) = 1

Since I' .(G) is Abelian and finitely generated, it 1s the direct product of, say,
m cyclic groups. Also since I'.(G) is in the center of G, any subgroup of it is
normal in G. Thus there is a chainI',,; =1 c {a;} € {a}, a,} € - - - C {ay,
a, - -, a,} = 1.(G), all being normal subgroups of G and having the
property that the factor group of consecutive groups is cyclic. Similarly, we
may insert normal subgroups between I';,{(G) and I'(G), with the property

that the factor group of consecutive groups is cyclic. In this way we find a
series for G which is the defining property for G to be supersolvable.

CorOLLARY 10.2.4. A finitely generated nilpotent group satisfies the
maximal condition.

A group G satisfies the maximal condition if there are no infinite
ascending chains of subgroups. This is equivalent to the requirement that G
and every subgroup of G be finitely generated. But we shall show in Theorem
10.5.1 that every subgroup of a supersolvable group is supersolvable and so



finitely generated. The corresponding statement is false for solvable groups.
Thus if F' is the free group with two generators, a, b, then F/F" is a solvable

group, but F'/F" has infinitely many generators a ‘b7 a't/.

10.3. Theory of Nilpotent Groups.

We note that if a group G 1s nilpotent of class ¢, then every commutator (a;

-, a.41) 1s the identity, and conversely, that if every (ay, - - -, a.41) = 1, then

G 1s nilpotent of class ¢ at most. We describe the property that (a;, - - -, a,.41)
=1forall @; € (7 by saying that G has nil-c.

THEOREM 10.3.1. If G has nil-c, then every subgroup and factor group of
G has nil-c.

Proof: If G has nil-c, then a fortiori for a subgroup H all commutators (a,
, a.41) with g; ¢ F{ must be 1, and so H has nil-c. Also if T is a
homomorphic image of G, then every commutator (b, - - -, b.y) with
b; e T is the homomorphic image of some commutator (ay, * - -, d..) in G

and hence 1s the identity, whence T has nil-c.
The following theorem applies to nilpotent normal subgroups of a group G
which may not itself be nilpotent.

THEOREM 10.3.2. If H, K are normal subgroups of G, and if H has nil-c
and K has nil-d, then HU K = HK has nil-(c + d).

Proof: T', (HK) 1s generated by all commutators (u, u,, * - -, u,,) with
u; € HK, whenceu;=hk, h; ¢ H.k; e K. We assert that (u, uy, - -
", U,,) 1s a product of commutators of the form w = (v{, v,, - - - v,), where

eachv;isanj, ¢ [fora} ¢ K. Thisis trivial for m = 1. Suppose this to be
true for m — 1. Then

(1.':1, *0ty Um—y um} == (wlwz s Wy, hmﬁvm)
= (W1 + - Wy, km)(W1 -+ Wiy Bp)¥m
= (wl st Wy, km)(Wlkm L w;km? kmkm)

l

(wy - Wy, k) (i -+ W, Awm')



by applying (10.2.1.3) and the normality of H and K.
Similarly, applying (10.2.1.2),

(“wi oo wy, k) = (wy, Fm)?2 - W.:(wz “ e Wy, }gm)
= (", kn'") (w2 - -+ Wy, km).

Continuing, we finally express (uy, = - -, u u,,) as a product of terms (w,

m—1>
h, D and (w, k,?), which will be of the form (v, - - -, v,,), with each v an &
or a k. This proves our assertion by induction. We have now shown that
I' .. 4+1(HK) 1s generated by commutators (v, - - -, v.14+1), With each v, an 4 or
a k. We have in general (vi, * = -, v, v) = (v, = = =, v) v, vy, - - -,
v,_1)v,. By the normality of ' (H) in HK, if(b'h TR ?,.‘rt_l) € Fl-{ﬂr), then
if v, is a k, then (uh e U‘t) € I'{(H), whereas if v, is an A, then
(v, =+ -, vs) € I'yp1(H). Hence if there are as many as (¢ + 1) 2’s in (v,

", Veigep)s 1t will belong to I'., () = 1, and hence be the identity. If not,
there must be at least (d + 1) K’s in (v; - - -, v.4441), and 1t will follow in the
same way that it is in I';,{(K) = 1. In all cases (v{ - - -, v.1z+1) = 1, and
therefore H U K = HK has nil-(c + d).

THEOREM 10.3.3. If a group G has nil-c, H = Hy is any subgroup and
H,,, is the normalizer of H; in G, then H, = G.

1

Proof: Hy 2 Z, =1 trivially. We prove by induction that /,, 2 Z,, for all
m. Assume that H; 2 Z,. Then by definition of Z;;, we have for any
ziy1€ Zigpand any g € G, 244070241 § = 2; € Z;, whence with
g = hieH;, we have z; 1 thizi = z:hi € Hy and so Z
normalizes H; whence H,,; 2 Z;,,, proving our assertion by induction. Since

1

Z.= G, wemusthave H, = G.

CorOLLARY 10.3.1. Every proper subgroup of a nilpotent group is a
proper subgroup of its normalizer.

CorOLLARY 10.3.2. Every maximal subgroup of a nilpotent group is
normal, is of prime index, and contains the derived group.



Let M be a maximal subgroup of the nilpotent group G. Since Ns(M)
properly contains M, we must have Ny(M) = G, or JJ =<1 (5. Then, by the

maximality of M, G/M contains no proper subgroup, whence it must be a
cyclic group of prime order. Thus M is of prime index, and as G/M is
Abelian, M contains the derived group G'.

CoroLLARY 10.3.3. If G is nilpotent and H is a subgroup such that G =
G'H then H= G.

Here if H # G, then by the theorem, with H = H and H,,| = HZ;,,, we
shall have each H; normal in H;,,. If H; # G, but H;,; = G, then H; is a proper
normal subgroup of G and G/H;, 1s Abelian, whence H; 2 G'. But then HG' ©
H,G' = H; # G, contrary to our hypothesis. Hence we must have H = G,

proving our theorem. Note that we have not assumed here that G possesses
maximal subgroups.

THEOREM 10.3.4. Finite p-groups are nilpotent. A finite group is
nilpotent if, and only if, it is the direct product of its Sylow subgroups.

Proof: By Theorem 4.3.1, every finite p-group P has a center different
from the identity. Hence the upper central series for P terminates with the
entire group, whence P is nilpotent. The same argument holds for a direct
product of finite p-groups. Now suppose that G 1s any finite nilpotent group,
and let P be a Sylow p-subgroup of G. Then Nj(P) 1s its own normalizer by

Theorem 4.2.4, and by Corollary 10.3.1, N5(P) cannot therefore be a proper

subgroup of G. Hence PP < (3. As every Sylow subgroup of G is normal, G
must be the direct product of its Sylow subgroups.

CoRrOLLARY 10.3.4 (WIELANDT): A finite group is nilpotent if, and only
if, its maximal subgroups are normal.

For, by Corollary 10.3.2 of Theorem 10.3.3, the maximal subgroups of a
nilpotent group are normal. On the other hand, by Theorem 4.2.4, N (P)

cannot be contained in a proper normal subgroup of G if P is a Sylow p-
subgroup. Hence if maximal subgroups are normal, then PP <« (3, and G is
the direct product of its Sylow subgroups.

THEOREM 10.3.5. If X, Y Z are subgroups of a group G, and if K is a
normal subgroup of G containing (Y, Z, X) and (Z, X, Y), then K also



contains (X, Y, 7).
Proof: From (10.2.1.4) we have
(z,9,2) = (@, 27, y )) Ny, 27, ©)w)7,
and the conclusion follows.

THEOREM 10.3.6. If H=Hy2 H, 2 - - - are normal subgroups of a group
G such that (H;-,, L) S H, for all i and a subgroup L, then (H;, T',(L)) € H,,;.

COROLLARY 10.3.5. (T(G), T(G)) € T, ().

Proof: We proceed by induction on j, the hypothesis including the case j =
1. Suppose that (H;, I'; (L)) S H;;; for all i. Then by induction (L, H
Iiq(L) € (Hyyy, Tj-1(L)) € Hyyy and (H, T (L), L) S (Hpjy, L) S Hyy,.
Since (I';_4(L), L) =T (L), we may apply Theorem 10.3.5 to conclude that

(H;, T4(L)) = (Hi, (Tj(L), L)) = (Tia(L), L, Hy) & Hay

the conclusion of our theorem.

10.4. The Frattini Subgroup of a Group.

Let G be an arbitrary group. We define a subgroup @ of G, called the
Frattini subgroup, in the following way: ® = (@G J';;‘r iH, where M ranges

over the maximal subgroups of G if G has any maximal subgroups. Thus ® =
G if, and only if, G has no maximal subgroups. Since any automorphism of G
permutes the maximal subgroups among themselves, the Frattini subgroup is
clearly a characteristic subgroup.

The Frattini subgroup has an interesting relation to the generation of G. It
consists of the elements of G which are nongenerators of G in the following
precise sense:

DEFINITION: An element x of a group G is said to be a nongenerator of G
if whenever G = {T, x} for a subset T of G, then also G= {T}.



Note that we require {7, x} = {7} for every set T for which {7, x) = G
Here if G # 1, surely 1 is a nongenerator.

THEOREM 10.4.1. If a group G is not the identity alone, then its Frattini
subgroup @ consists of the set of nongenerators of G.

Proof: Let x be an element of G. If there is a maximal subgroup M which
does not contain x, then the group {M, x} properly contains M, and as M is
maximal, we must have {M, x) = G. But here {M} = M # G. Thus x is an
essential generator in {M, x} = G. Thus the nongenerators of G belong to
every maximal subgroup, and so every nongenerator is an element of
d=0>G (‘} M. We must show conversely that if 74 € &, then u is a
nongenerator of G. By hypothesis G # 1, whence 1 is surely a nongenerator.

Now suppose that G = {T, u} for a subset 7' of G. We show that if {7} = H
# G, we reach a contradiction. Now if / # G, we cannot have 9y ¢ Jf, since
in this case H = {H, u) 2 {T, u} = G. Hence 94 ¢ [{. Then, by Zorn’s
lemma, there exists a subgroup, K 2 H maximal with respect to the property
that 9y ¢ K. Now {K, u} 2 {T, u} = G, whence {K, u) = G. But by our
choice of K, any group containing K properly must contain . Hence K = M is
a maximal subgroup not containing u, which conflicts with

ued =G ﬁ M . Hence we must have {T} = G, and so every {4 € P

is a nongenerator of G.
THEOREM 10.4.2. The Frattini subgroup of a finite group is nilpotent

Proof: Let G be a finite group and @ its Frattini subgroup. Let P be a
Sylow p-subgroup of ®. Now @ as a characteristic subgroup of G is a normal
subgroup. Thus every conjugate of P in G lies in ®@ and so is conjugate to P in
®, being a Sylow p-subgroup of ®. Thus P has as many conjugates in ® as it
does in G, and so [G: Ng(P)] = [D: Ng(P)]. But [G:Ng(P)] = [G:D][D
Ng(P)] = [G: Ng(P)] [Ng(P):Ng(P)], whence [G:D] = [N5(P):Ng(P)]. We
note that Ng(P) = Ng(P) N ® and apply the inequality on indices of Theorem
155 find
(Ne(P) U @:®] = [Ne(P) N o(P) N @] = [G:®) From
this we conclude that NG(P) U ® = G. Now, since G = {N5(P), ®}, we also
have, removing the elements of ® one at a time, since @ is finite, G =



{Ng(P)} = Ng(P). Thus P =« (7, and a fortiori [ <1 d. Since every
Sylow subgroup of @ is normal, ® must be the direct product of its Sylow
subgroups and is therefore a nilpotent group.

Theorem 10.4.3. The Frattini subgroup of a nilpotent group contains the
derived group.

Proof: From Corollary 10.3.3 if G is nilpotent and G = HG', then G = H.
This says that G’ can be omitted from any set of generators for G, whence it
follows that ® 2 G'. The converse holds for finite groups.

THEOREM 10.4.4 (WIELANDT). If the Frattini subgroup of a finite group
G contains the derived group G', then G is nilpotent.

Proof: Let P be a Sylow subgroup of G. If No(P) = H # G, then H is

contained in some maximal subgroup M of G. Now M 2 @, and by
hypothesis, ® 2 G'. As G/G' is Abelian, M is a normal subgroup of G. On the
other hand, by Theorem 4.2.4, since M 2 Ny (P), M is its own normalizer.

This 1s a contradiction and we conclude that we must have Ng(P) = G. The

Sylow subgroups of G all being normal, we conclude that G is their direct
product and is nilpotent.

10.5. Supersolvable Groups.

THEOREM 10.5.1. Subgroups and factor groups of supersolvable groups
are supersolvable.

Proof: Let G be supersolvable and G=4,24, 24,2 - - 24,=1bea
normal series with every 4; |/4; a cyclic group. Then, for a factor group G/K
= T, the homomorphic images B; of the 4; will form a normal series 7= B, 2
B2 B,2 -2 B,=1, where, if we delete repetitions of the same group,
consecutive terms B, |, B; will have a cyclic factor group B, ;/B; since every

homomorphic image of a cyclic group is cyclic or the identity. For a subgroup
H take

H=0202062---2C, =1,



where C; = H N A;. For every i, H N 4; 1s normal in H, and by Theorem2.4.1,
we have C/C.,; =H N A/HN A,y = A,y U (H N A4;)/4;,,. But the right-hand
side of this is a subgroup of 4,/4;,;, and hence cyclic or the identity. Thus
C;/C;.q 1s cyclic or the 1dentity, and so H is supersolvable.

CoROLLARY 10.5.1. Supersolvable groups satisfy the maximal condition.

A supersolvable group is finitely generated, and by Theorem 10.5.1, its
subgroups are also finitely generated, whence the maximal condition will be
satisfied.

THEOREM 10.5.2. 4 supersolvable group G has a normal series G = By D
By D> By, D> - D> B, =1 in which every factor group B, |/B; is either
infinite cyclic or cyclic of prime order.

Proof: Let G=A4y> Ay D2 Ay D - - - D A.= 1 be a normal series, with
each 4; \/4; cyclic. If 4;_1/A4; 1s of finite order p\p, * - - p,, where py, py, =+ -,
py are primes (not necessarily distinct), then 4; ;/4; has a unique cyclic
subgroup of each of the orders py, p1py, - * -, p; * - * Py, and these are

characteristic subgroups. Hence the s — 1 corresponding subgroups between
A;_; and 4; are normal in G, and the factor groups of consecutive groups are

cyclic of prime order. Refining in this way every factor group 4; ;/4; of finite

order, we obtain the normal series of the theorem in which every factor group
is either infinite cyclic or cyclic of prime order.

This theorem can be further improved since we can rearrange the prime
factor groups according to the magnitude of the primes.

THEOREM 10.5.3. 4 supersolvable group G has a normal series

G=CDC,DC:D---DC=1,

in which every C;_/C; is either infinite cyclic or cyclic of prime order, and
if C,_)/C;and C/C; are of prime orders p; and p,,,, we have p; < p;,,.

Proof: Take a series G=By> B; D2 B, > - - - D B, =1 given by Theorem
10.5.2. If B; |/B; and B;/B;,, are of prime orders ¢ and p, respectively, with g
> p, then B, |/B;;; 1s of order pgq, with p < g, and this has a characteristic



subgroup of order ¢ whose inverse image B;* will be normal in G. If we
replace B; by B;*, then B, /B;* will be of order p and B;*/B;,; will be of
order g. Continuing this process, which does not alter the length of the normal
series, we shall ultimately get a series in which the orders of consecutive

factor groups of prime order do not increase in magnitude, as stated in the
theorem.

COROLLARY 10.5.2. If G is a finite supersolvable group of order pip, - -
" p,» Where py <p, < - - - <p, are primes, then G has a chief series G = 4, D
A DD A.=1, where A, |/A; is of order p;.

THEOREM 10.5.4. The derived group of a supersolvable group is
nilpotent.

Proof: Suppose G=A4y, > 4, D - - - D 4. =1 is a normal series for G,
with 4; |/4; cyclic. Write H;=G' N 4;. ThenG'=Hy2 H 2 - -2H.=11s
a normal series, and the distinct terms of this series K; are such that G' = K, D
K, o - >2K,=1, withK, |/K; cyclic. We assert that the K’s form a central
series for G'. Every K is the intersection of normal subgroups of G, and hence
normal in G. Thus, in G/K;, K, /K; is a cyclic normal subgroup, and

transformation by an element of G induces an automorphism in the cyclic
group K; /K;. Now the automorphisms of a cyclic group form an Abelian

group, and so two elements of G/K; induce permuting automorphisms in
K, /K. But then the commutator of any two elements x 'y 'xy induces the
identical automorphism in K, ;/K,. But this is to say that in G'/K,, K; |/K; lies
in the center, and therefore the K’s form a central series for G', and so G’ is
nilpotent.

There is a very interesting property of chains of arbitrary subgroups in a
supersolvable group. We shall say that H, is of index oo! in H, if

H, = E H 5q* for some element @ and x running over all integers from

x
—o0 to +oo. Thus if A4 i < A j—1 and 4;_,/4; is an infinite cyclic group, then

4; 1s of index ool in 4;_y, since for a we may take any element of the coset of



A; which is a generator of the cyclic group 4;_;/4;. But H, may be of index ool
in 1, without being normal in H,.

THEOREM 10.5.5. In a supersolvable group G any chain of subgroups G
=My>D> M D> M,> - >DM,=1 may be refined by the insertion of further

groups:

ﬂf{_1 = .ﬂjf,',ﬂ ::l i1fi.1 :) * . :) ﬂf{lt = ﬂ_’f{, i = t(t), 1 = 1, tee, 8
so that M ; is of prime index or index ool in M;;

Proof: Since M is supersolvable, it is sufficient to show that the series
may be refined by inserting terms between G = M, and M, with the required
properties. For repeating the argument with My, - - -, M,

.
refine the entire series.
LetG=4yD> A4, 2 A4, D D A4,=1 be anormal series for G, where

each A4, |/A; is cyclic of prime or infinite order. Surely M| 2 4. = 1 and
M, $ Ag = (. Hence for some i in the range 1, - - -, r we have M| 2
4;, and M, Q A ;_;. We consider two cases: (1) 4;_1/4; of prime order,
and (2) 4;_1/A; infinite cyclic.

| 1In turn, we may

CASE 1. 4;_4/A; oF PRIME ORDER. Here 4, | D M| N 4;_; 2 4;. Since 4; is
of prime index in 4; ;, there can be no subgroup between 4; and 4, ;. Hence

MiNA =4 A4, ; = E Aa®x=0,-- - p—1,thenM U 4 | =

M4y = My*, and Jf* E Ma= x=0,1, -, p—1since M,
contains 4; and g7 ¢ A , but not the element a. Here M| is of prime index in

M *and M{* 2 4, ;.

CASE 2. 4; |/A4; INFINITE CyCLIC. Here 4, | D M N 4,1 2 A;. Now every
subgroup of A, |/A4; is characteristic, whence M| N A4, | is a normal subgroup

of G. If M N 4., = 4 and 4., = ZA@I, then put
x



M = My U Ay = Mydoy = 2 Miyas and My s of
T

index co! in M,*, since M, contains 4; but no power of the element a. But if

M, N A, ; D A, then since every subgroup of an infinite cyclic group is of

finite index, M| N A, is of finite index in 4, ;. Thus in our normal series we

may insert terms between 4, ; and M, N 4, each of prime index in the one

above, and as in Case 1, find an M;* in which M| is of prime index.
Repeating the construction, we find a chain M, € M* ¢ M** - - - ¢ M,®

with each of prime index in the next and M,*) 2 4, ,.
Continuing the construction, we shall in a finite number of steps reach an
M,") 2 4, = G and thus have found the refinement between G and M, as

required for the theorem. As already remarked, the same procedure will give
the needed refinement for the entire chain.
For finite groups this theorem takes an interesting form.

THEOREM 10.5.6. In a finite supersolvable group G, all maximal chains
of subgroups have the same length, this being the number r if G is of order
PiPa " " D, the p'’s being primes, but not necessarily distinct.

Proof: By the previous theorem, in a maximal chain every index of one
subgroup in the next is a prime, and so the length of a maximal chain is r.

CORrROLLARY 10.5.1. Every maximal subgroup of a finite supersolvable
group is of prime index.

It is a remarkable fact, first proved by Huppert [1], that the converse of
this corollary is true. For this we must use some of the theorems on group
representation which will be proved in Chap. 16. First we give an
unpublished theorem of P. Hall.

THEOREM 10.5.7 (P. HALL). Suppose G is a finite group with the property
(M) that all its maximal subgroups are of index a prime, or the square of a
prime. Then G is solvable.

Proof: We proceed by induction on the order of G. Let p be the largest
prime dividing this order, S a Sylow p-subgroup of G, N its normalizer in G.
If N= G, S 1s normal in G and G/S has property (M), whence G/S is solvable



by induction. S'is a p-group and so G is solvable. If on the other hand, N C G,
choose a maximal subgroup H of G containing N. N is the normalizer of S in H
as well as in G, and so [G:N] =1 + kyp, [H:N] = 1 + kyp by the third Sylow
theorem, these being the number of Sylow p-subgroups in G and H,
respectively. Hence [G:H] = 1 + kp. But by hypothesis [G:H] = g or ¢? for
some prime ¢; and clearly, g <p, k> 0. Hence kp = ¢*> — 1 = (¢ — )(g + 1).
Since p > ¢ + 1, we must have p = ¢g + 1. This is possible only if p =3, g = 2,
and the order of G is of the form 2¢3%. By Theorem 16.8.7, G is solvable.

THEOREM 10.5.8 (HUPPERT). Suppose G is a finite group with the

property (M) that all its maximal subgroups are of index a prime. Then G
is supersolvable.

Proof- If the theorem is not true, choose G to have property (M), but to be
not supersolvable, and to have the smallest possible order subject to these
two conditions. Then G is solvable by Theorem 10.5.7. Let N be a minimal

normal subgroup of G, and let its order be p* p prime. By the minimal
property of G, G/N is supersolvable so that, of the chief factors of G, only N
is noncyclic. We conclude that N is the only minimal normal subgroup of G.
Let H/N be a minimal normal subgroup of G/N. There are two cases
according to whether (1) [H:N] = p, (2) [H:N] = g, a prime different from p.
In case (1) H must be Abelian, since otherwise we would have 1 ¢ H' € N
and H' normal in G. Since a > 1, H cannot have elements of order p?, for this
would make N contain a characteristic subgroup of H of order p—the same
argument again. Thus H is elementary Abelian.

We now have G represented in a natural way by automorphisms of H, i.e.,
effectively by linear transformations modulo p of degree a + 1 (since H is of

order p**1). Let K be the set of all elements a € (F suchthat for g ¢ H, we

have a 'xa = x™, where m = m(a) is independent of x, and let L be the
centralizer of H in G. Then K/L 1s contained in the center of G/L. Also, K C
G, since N is the only minimal normal subgroup of G, and every subgroup of
H is normal in K. Let M/K be a minimal normal subgroup of G/K. If [M:K] =
p> we shall have M/L as a direct product of K/L, which is of order prime to p
and in the center of G/L, with a group {L, a}/L, say, of order p, and M| = {L,
a} will be normal in G. Since the group of commutators (N, L) = 1 and [M;:L]

= p, N must contain elements # 1 in the center of M. The center of M, is a




normal subgroup of G, and so by the minimality of NV, N is in the center of M,
and (M, N) = 1. If H = {N, b}, the group (H, M;) will be of order p and
generated by (a,} b) = ¢ € IV, c # 1. This group is, however, normal in
G, and hence N could not be a minimal normal subgroup of G.

Therefore [M:K] = q, some prime different from p, and so M/L is of order
prime to p. By the Theorem of Complete Reducibility, Theorem 16.3.1, it
follows that H = N x P, where P is normal in M and of order p. The
conjugates of P in G are normal subgroups of order p in M and their union Q
is a normal subgroup of G. Since N is the only minimal normal subgroup of G
and Q # N, it follows that O = H. Since P does not lie in N, no conjugate of P
lies in N. Let P = {b}, where b” = 1, and if P, 1s any conjugate of P except
itself, then PP, N N = R, where, since [[{:N] = p, R is of order p. We may take
a generator c of P; such that P, = {c}, R = {bc}. Since P, P;, and R are normal

subgroups of M, it follows that for any a of M, a 'ba = b", a 'ca = ",
a !(bc)a = (bc)'. But then (bc)! = b"c" and t = n = m. But P; was any conjugate

of P, and it follows that for any x of H we have ¢ 'xa = x™, where m = m(a) is

independent of x. Hence M € K is a contradiction. Thus case (1) cannot arise.

Case (2) can be dismissed at once. If [H:N] = ¢g different from p, let O be
a Sylow g-subgroup of H; T the normalizer of QO in G. Any conjugate of Q in
G lies in H, and hence is a conjugate of O by an element of N. Hence G = NT.

Then N N T 'is normal in G. But " $ N, since this would make 7= G and

QOnormal in G. Hence NN T'=1, [G: T] = p*. But T is a maximal subgroup of
G, since if ' T} € G we should have ] € 77 N N c Nand 7} N N normal in
G. Thus G has a maximal subgroup of index not a prime, contrary to
hypothesis.

EXERCISES

Let (D = /(1) (G) be the group of inner automorphisms of a group G and 1) the group of inner

automorphisms of (=D ¢ any group of the sequence G, 1(1), 1(2), - - - is the identity, show that
G is nilpotent.

2. Let G be a group satisfying the maximal condition. If A(G), the group of automorphisms of G, is
supersolvable, show that G is supersolvable.

Let a and b be elements of a nilpotent group G, where @™ = p™ =1 and (m, n) = 1. Put w =

a 157 lab. Show that if e I';(G). then gpm ¢ Ty (G) w™ € Ty (G), whence
w e iy ((7). Hence conclude w =1, ba = ab.



4, Prove the converse of Ex. 2 of Chap. 8, i.e.: If G is a finite nilpotent group and if p1, p2, - - -, py

is any arrangement of the primes whose product is the order of G, then G has a composition
series G=A) DA D - - - D Ag=1,where A;1/A4; is of order p;.

Let G be a p-group with ['3(G) = 1. Show that if p"” is the highest order of an element of G/
I'»(G), then no element of I'»(G) has an order higher than p".

z Historically, this property of a composition series was the original defmition of solvability, but such a
defmition is inapplicable to infinite groups. The Galois theory shows that a polynomial equation f{x) = 0 is
solvable by radicals if, and only if, its Galois group is solvable.



11. BASIC COMMUTATORS

11.1. The Collecting Process.

We consider formal words or strings by b, - - - b, where each b 1s one of
the letters x;, x,, - + -, x,. We also introduce formal commutators c; and
weights w(c;) by the rules:

1)c;=x;,i=1, - - -, rare the commutators of weight 1; i.e., w(x;) = 1.

2) If ¢; and ¢; are commutators, then ¢, = (¢;, ¢;) 18 a commutator and
o) = o(c) + o(c).

Note that these definitions yield only a finite number of commutators of any
given weight. We shall order the commutators by their subscripts, numbering
¢;=x,1=1,- -, r, and listing in order of weight, but giving an arbitrary
ordering to commutators of the same weight.

A string ¢;, - - - ¢;,, of commutators 1s said to be in collected formif i; <

iy<---<i,1e., if the commutators are in order read from left to right. An
arbitrary string of commutators,

(11.1.1) Ciy **° Ci,C

tl L O cin_’

i1

will in general have a collected part ¢;, * * - ¢;,, ifi; < - - <i, and if i, <7,

<ip,j=m+ 1, - - -, n, and will have an uncollected partc;, ., - - - ¢;,, where

i, 1 not the leastofi;,,j=m+ 1, - - -, n. The collected part of a string ¢;, -
-+ ¢;, will be void unless i, is the least of the subscripts.

We define a collecting process for strings of commutators. If ¢, is the
earliest commutator in the uncollected part and if ¢; = ¢, is the leftmost
uncollected c,,, we replace

cilnqn ct-m--- cif_]_ﬂf . ow o ﬂ'in



by

Ciy *** Cipy = CifCij_y(Cij_y, Cij) *** Cie

m n

This has the effect of moving ¢; to the left and introducing the new

commutator (¢;_,, ¢;) which by its weight is surely later than ¢;. Thus ¢; is

i1
still the earliest commutator in the uncollected part. After enough steps c¢;
will be moved to the (m + 1)st position and will become part of the collected
part. Since at each step a new commutator is introduced, the process will not
in general terminate.

If x;, - - -, x, are generators of a group /' (and we shall be concerned

chiefly with the case in which F is the free group with these generators), and
if a commutator (u, v) = u~ v 'uv, then we note that
(11.1.2) Cij_1Ci; = CijCij_ 1( i E*J)
and that the collecting process does not alter the group element represented
by a word. As it stands, the collecting process has not been defined for all
elements of F but only for the positive words, those elements which can be
expressed as a product of the generators without using any inverses of
generators. This defect will be remedied below.

In applying the collecting process to a positive word, not all commutators
will arise. Thus (x,, x;) may arise but not (x;, x,), since x; is collected
before x,. The commutators that may actually arise are called basic

commutators. We give a formal definition of the basic commutators for a
group F generated by x{, - - -, x

7

DEFINITION OF BASIC COMMUTATORS:
1)c,=x;,i=1, - -, rare the basic commutators of weight one, w(x;) =

2) Having defined the basic commutators of weight less than n, the basic
commutators of weight n are ¢, = (¢;, ¢;), where

(a) ¢; and ¢; are basic and w(c;) + w(c;) = n, and
(b) ¢;> ¢, and ifc;=(cy, ¢)), thenc; > ¢,



3) The commutators of weight n follow those of weight less than » and
are ordered arbitrarily with respect to each other. Basic commutators will
always be numbered so that they are ordered by their subscripts.

We note that if commutators are ordered according to weight, but
arbitrarily otherwise, the collection process when applied to a positive word
will yield only basic commutators. For, in replacing

(11.1.3) CuCr = Cbﬂ'u(cu, ﬂt‘)}

we collect ¢, before c,, whence ¢, > c,, and if ¢, = (c,, ¢,), we have
collected ¢, before collecting this c,, whence ¢, > c,.

We shall now show that modulo I'y,;(F), the (k + I)st term of the lower
central series of F (k being arbitrary), which we shall write F},;, an
arbitrary element, can be written in the form

(11.1.4) f = eaf1ee2 -+ ¢t mod Fiyy,

where cq, - - -, ¢, are the basic commutators of weights 1, 2, - - -, k. In the
collection process we have

(11.1.5) vu = w (v, u),

where u, v, and (v, u) are basic commutators. We must also consider
collecting u or u~! in expressions vu !, v
u 1), and from (10.2.1.3) we have

,v il and vilu, Now v ! = (v,

(11.1.6) 1 = (v, uu?) = (v, w)(v, u)(v, u, u™),

whence (v, u D) = (v, u, u )(v, u)"!. Similarly, (v, u, u)) = (v, u, u,
u (v, u, u)™'. Writing vg=v, v,,; = (v,, ), we have

ALLTY) (o w) = (o, w) oy
= 3}2(1}2, u—l)vlml
- va\q o trﬁhlﬂa_lﬂl_l (mﬂd Fﬁ:-l—l)?



and we note that if v; = (v, u) 1s basic, then also v,, v3 - - - are basic. Modulo
F.; we may ignore (v, u ') if s is so large that this is of weight k + 1 or
higher. Hence as a step in collection we have

(11.1.8) vut = w vy - vy ! (mod Fryy).
Similarly,
(11.1.9) v~ = uv,u) WL

Also, v iu ' =4 (uvu )1, and from (11.1.8),

(11.1.10) uwut = v-vgvy U5y o (mod Firya),
whence
(11.1.11) v = w s -+« o ! (mod Fiyy).

Repeated applications of (11.1.5, -8, -9, -11) will lead to the expression
(11.1.4) for an arbitrary element f in terms of a sequence of basic
commutators.

If Fis the free group generated by x;, x5, - - - x,, then for a given

sequence of basic commutators we shall show in §11.2 that the expression
(11.1.4) is unique. In particular the basic commutators of weight k are a free
basis for F,/F;.;, which is consequently a free Abelian group. This is, of

course, the justification for the term basic as applied to these commutators.

11.2. The Witt Formulae. The Basis Theorem.

Suppose we are given a sequence of basic commutators ¢y, ¢y, © * -
formed from the generators x;, x,, - - -, x,. We call a product of basic
commutators,

(11-2-1) CiCiy *** Ciy,



a basic product if it 1s 1n collected order, 1.e., iy <i, < - - - <i,. For an
arbitrary product of commutators p = aa, - - - a,, we define the weight w(p)
as w(p) =w(a;) + - - - + w(a,). The collecting process alters the weight of a

product. We define here a bracketing process similar to the collecting
process which leaves weights unchanged. In this if u, v, and (u, v) are basic
commutators, we replace

!#-uvttt by “*(H,’L’)*",
rather than the - - - vu(u, v) - - - of the collecting process.

THEOREM 11.2.1. The number of basic products of weight n formed from
generators xy, * * *, X, is r'".

Proof: For each k =1, 2, - - - we define the family P, = P, of all
products of weight n, a;a, - - - a,, the a’s being basic commutators which are
of the form
(11.2.2) ﬂlﬁlﬂﬂez i ara {kakﬂ!-l B cfsj
where ¢;> 0, 1) > k, i, - - *, i; > k, and for each ¢;, which is a commutator, c;,

=(c,, c,), ¢, precedes c;. Thus P, may be regarded as the family in which ¢,

-+, ¢;—1 have been collected but not ¢,. We denote the number of products
in P, by |P,|. Clearly, P, is the family of all products of n generators, and so
|P;| = 7". But we may set up a one-to-one correspondence between the
members of P, and P, . For, if ¢, - - - ¢,%.c;, - - * ¢;, 1s a member of Py, ¢;,
is later than ¢; and so, though there may be a succession of ¢;’s in the
uncollected part, each such string 1s immediately preceded by a ¢, withy > k.
For each string

Clr * " CkCw Y >k, w>k

we bracket (((c,, ¢x), ¢x) * * *» ¢)cy,, and since if ¢, = (¢, ¢,), k> v, the new
commutator introduced is basic and later than c,. This gives a unique



member of P;. Conversely, if in a member of P;,; we remove all brackets
involving c¢;, we have a unique member of P,. Hence |P;| = |P,4|, and so for
every k, |P,| = |Py| = r". But for k sufficiently large, P, consists of all basic

products of weight n. This proves the theorem.

We may use Theorem 11.2.1 to find the number of basic commutators of
weight n, and even more, we may find the number of basic commutators
whose weights in each generator are specified. We define weights w,(c), i =

1, -+, rby the rules w{x;) = 1, wx;) =0, i #j, and recursively by w[(c,,
¢,)] = wfc,) + wlc,). Let M, (n) be the number of commutators of weight n
in 7 generators x;, X5, * * °, X,, and let M(ny, n,, - - - n,) be the number of
commutators ¢ such that w(c) =n;, i=1, - -, r,withn=n;+n,+- - - +n,.

THEOREM 11.2.2 (THEOREM OF WITT).

(11.2.3) Mon) = + B u(ayes

1 n m n,
(11.24) M(ny o, ++-, n,) = ?-3; u(d) ({—f)!/(ﬁ)z --.(E)z

Here u(m) is the Mobius function which is defined for positive integers by
the rules x(1) = +1, and for n = p¢, - - - p°; p1, - = - p, being distinct

primes, u(n) =0 ifany e; > 1, and u(pp, - - - p,) = (-1)°.

Proof: From Theorem 11.2.1 the number of basic products is #”. This
leads to the formal identity in a power series for a variable z,

1 . (1 — 27) My,
1

11.2. =
(11.2.5) s I
The bracketing process leaves all the weights w,, i =1, - - -, r unchanged.
The number of words W in the x’s with w (W) = n; 1s, of course, the

multinomial coefficient



n!
! -, n!

This leads to the formal identity in variables zy, - - -, z,.

1 o
11.2.6 = — 2™ L.y ) =M(ny...,n)
( ] 1 — 2 — c — 2 nr__l‘-! 5 (1 21 1 Zr } 1 .

Witt [2] used these identities, taking logarithms, and applied Mobius
inversion to find the formulae of the theorem. Here we shall modify a result
of Meier-Wunderli [1], proving it along lines similar to those of the proof of
Theorem 11.2.1 to obtain the Witt formulae.

We call a word a; - - - a, circular if a; 1s regarded as following a,,

where aja, - - - a,,a, - - a,a; - - -, a,a; - - - a,; are all regarded as the

same word. A circular word C of length » may conceivably be given by
repeating a segment of d letters n/d times, where d is some divisor of n. We
say that C is of period d if this is the case. Each circular word belongs to a
unique smallest period, and this smallest period d corresponds to a unique
circular word of length d.

LEMMA 11.2.1. There is a one-to-one correspondence between basic
commutators of weight n and circular words of length and period n. This is
given by an appropriate bracketing of the circular word.

Proof : Let aja, - - - a, be a circular word of length n. The circular
words of weight n form a family C,” = C, if they are of the form ¢;c;, - - -
¢;,» Where the ¢’s are basic commutators and for any ¢; = ¢,, which is a
commutator ¢, = (c¢,, c¢,), we have v < k and either (1) i; =i, - - - =i
(including the case s = 1) or (2) iy, - * -, ig = k and some i; > k. If (1) holds,

the word is as it stands a word of C, ;. If (2) holds, we take every circular
subsequence (if any) of the form

Cus; Cy 2 %y Cay Gty W 2> Kk, 8 2> K,

and bracket thus:



(( v ((cw; ﬂk), Tty Ek)cf-:

obtaining a unique circular word of C, ;. By removing the brackets involving
¢, from a word of C,,;, we obtain a unique word of C,. Thus there is a
unique correspondence between words of C; and words of C,. for arbitrary £.
If k£ 1s large enough, the commutator ¢, 1s of weight greater than n and (2)

cannot hold. Hence, ultimately, our bracketing ceases and (1) holds. Here our
word is either a basic commutator of weight » or a succession of s = n/d
identical basic commutators of weight d. A bracketing by which we pass
from C;, to Cj; involves one c¢,, and a number of ¢,’s. Hence each such

bracketing lies in a single period and will be exactly duplicated in every
other period. Thus at every stage the number of periods in a word is the
same. Hence bracketing all circular words of length n yields all basic
commutators of weight n and for djn all basic commutators of weight d
repeated 1dentically n/d times, for these are the members of C, if k is

sufficiently large. This proves the lemma and somewhat more.

How many circular words of length and period »n are there? A circular
word of length n and period d, dln yields exactly d ordinary words of length
n:

al“‘adal"'ad"'ﬂl"'ad
Qg * Qg *** Q1 *** (el
a‘dal LRI ad .o a_l ... ad_l‘

Thus

o= 3, dM,(d),

din

since the number of circular words of length and period d is M (d) and every

one of the 7" ordinary words corresponds to a unique period d. From

(11.2.7) o= Y, dM.(d)
d|n



we may find M (n), since the Mobius inversion formula* says that if

(11.2.8) fn) = dE g(d),
then

T
(11.2.9) o = X #(R) 7@.
Hence

nM,(n) = ¥ #(g),a

din
or
(11.2.10) Myn) = 2 ¥ o)
ni4\dJ’
the Witt formula.
The number of ordinary words W such that w(W) =n,ny+- - -+ n.=n
is the multinomial coefficient
n!
ﬂ1! . ﬂrl
This leads to the formula
n! Y dM(m 2
21 S d.-nl,...n,(d d ’d)'
Here d ranges over the divisors of (ny, - - -, n,) = ny. Applying the Mdbius

iversion we have



the second of the Witt formulae.

Consider the free associative ring R with integer coefficients having r
generators, xj, X,, * * *, X,. The elements R,, of degree m form an additively
free Abelian group with a basis of the »” products x;, - - - x;,. In a ring we
define a commutator [u«, v] by the rule

(11.2.13) [u, v] = uv — vu.

The formal properties of bracketing will apply to the ring commutators quite
as well as to the group commutators. Indeed we shall show that there is a
very close relation between group and ring commutators, originally
established by Magnus [1].

THEOREM 11.2.3. The basic products of degree m form an additive basis
forR,.

COROLLARY 11.2.1. The basic commutators of degree m are linearly
independent.

Proof: Since by Theorem 11.2.1 the number of basic products of degree
m 1s 7", which 1s the right number for a basis of R, it 1s sufficient to show

that every element of R, can be expressed as a linear combination with

integral coefficients of basic products. Since P, = P, the basis of the "

products x; - - - x;, and since P, consists of the basic products for k

im?>
sufficiently large, it will be enough to express the elements of P, as linear
combinations with integral coefficients of elements of P, ;. For this we need

an identity. For this we need an identity. For simplicity of notation write
&

[+« [, 0], 0 -], 0] = [up, -+, 0 ] = [, v*] if there
are s v’s. The identity is



(11.2.14) w = vu+ Y (3) v=i [iu, vil.

For s = 1 this reduces to

wr = vu + [u, v].
We note the 1dentity

(11.2.15) [fu, vilp = [, v + iy, 7).

Hence (11.2.14) 1s proved by induction on s by multiplying (11.2.14) by v on
the right, making replacements throughout by means of (11.2.15) and
combining similar terms.

If a term in P, has a sub-sequence * - - ucy - - - ¢;w * * - u, w# ¢, where

u is later than ¢, and there are s ¢;’s, we apply (11.2.14) withu = n, v = ¢;.
This gives terms either belonging to P, or terms of P, with fewer ¢;’s, or
having the ¢;’s nearer the beginning. Repeated application of (11.2.14) will
ultimately express an element of P, as a linear combination with integer
coefficients of the terms of P, +1. This proves the theorem.

Let us adjoin a unit 1 to R, making the rational integers the elements R, of

degree zero, and take this ring modulo the two-sided ideal generated by all
terms of degree n + 1 or higher. Call the resulting ring J2. Then

(11.2.16) BE=R+ R+ - + R..

In f_ﬂ the elements with constant term 1 of the form
142 ze¢ B+ .- + R, forma group G, for, since 2! =0,

(112.17) (142 t=1—z4224 --- + (=D,

Ifl+z=1+u,+u,+- - '+un,with*u.j € ijorj=m, -+ -, nand u,
# 0, we say that u,, 1s the leading term of 1 + z. The leading term of 1 1s 0.



LEMMA 11.2.2. Let u, v # 1 be elements of G with leading terms u,, v, of

degree s and t, respectively. The leading terms of u™' and v'' are —u, and
—v,. If s <t, the leading term of uv is u,. If t <s, the leading term of uv is u,.
It t =s and ug, + v, # 0, the leading term of uv is u, + v,. If the ring
commutator [u,, V| is not zero, it is the leading term of the group
commutator (u, v).

Proof:betu=1+a,v=1+b,u_1=1+a’,v_1=1+b'.Then

a+a +ad’ =0 aad = da
b+ b + b =0 b =10bb

C6=1U~+ -+ U, b=vi+ -+ + v,
w =1+ a+ b+ ab.

From these relations we get immediately the statements of the lemma about
the leading terms of &', v ™!, and uv. Using these relations we find

(u, v) = v luw
=(14+a)(1+0)1 4+ a)(l +0b)
=14 ab — ba
+ aa’b — bb'a + b'ab + a'b'a + a’'b’ab,
whence
(11.2.18) (u, v) = 1 4+ [u,, v.] + higher terms,
giving the final statement of the lemma.
Let ¢y, ¢y, © - - be a sequence of basic commutators in the free group F

generated by elements y; - - -, y,.and d;, d, - - - be the ring commutators in R
obtained by replacing y;, - - -, y,. by x1, - * -, x,. Also let ¢, be the last

commutator of weight n. Then there is a correspondence between the ¢’s and
the d’s in J§ given by the following lemma:

LEMMA 11.2.3. If we make y;, —» 1 +x,,i=1, - - -, r, mapping F onto G
wemap C; —> (i € (7,andfori=1, - - -, t, the leading term of g, is d..



Proof: Since y;, —» 1 +x;,i=1, - - -, r, the leading termof g, = 1 + x; 1s x;
fori =1, - - -, r. We proceed by induction. If ¢, = (¢, c,), w < ¢, then by
induction the leading term of g, is d,, and of g, is d,. Hence, by Lemma
11.2.2, the leading term of (g,, g,) 1s [d,, d,] if this is not zero; as a basic
commutator, it is not zero from the corollary to Theorem 11.2.3. Hence the
leading termof g, = (g,,, g,) 1s [d,, d,] = d,, as the lemma asserts.

u v

THEOREM 11.2.4 (BAsIS THEOREM).* If F is the free group with free
generators yy, - - -, v, and if in a sequence of basic commutators cy, " - -, ¢,

are those of weights 1, 2, - - -, n, then an arbitrary element f of F has a
unique representation,

(11.2.19) f = %2 -+« ¢t mod Fpya.

The basic commutators of weight n form a basis for the free Abelian group
FJ/F, ..

Proof: We prove the second statement first. Suppose ¢, - - -, ¢, are the

basic commutators of weight n. By Lemma 11.2.3, if we take the mapping of
F into G determined by

(11.2.20) yi—mltzi=g;, 1=1 -7,

then the leading terms of ¢, - - -, ¢, are the corresponding ring commutators
d, - - -, d, which are the basic ring commutators of degree n. By the
corollary to Theorem 11.2.3, d, - - -, d, are linearly independent, and by

Lemma 11.2.2, the leading termofc® - - - ¢f,1sed, + - - - e,d, and so is not
zero unless e, = - - - =¢,=0. Hence ¢, - * , ¢, are independent elements of
F,/F, ., and hence a basis, since we already know from (11.1.4) that every
element of F,/F, . can be expressed in terms of ¢, - - -, ¢;. The existence of

at least one expression for f'in the form (11.2.19) was given by (11.1.4). We
must show its uniqueness. But if

(11.2.21) C1ft ces et =M - es oM (mod Fayy),



and h;=e;,i=1---j—1buth;#e;,ifc; is of weight k this would lead to a
dependence between the basic commutators of weight £ modulo £ Since

this cannot be the case, the expression (11.2.18) is unique. This completes
our proof.

% Hardy and Wright [1] p. 235.
% See Marshall Hall, Jr. [6].



12. THE THEORY OF p-GROUPS;
REGULAR p-GROUPS

12.1. Elementary Results.

In Chaps. 4 and 10, some elementary properties of finite p-groups P were
established. We list them here:

1) P has a center Z greater than the identity. (Theorem4.3.1.)

2) A proper subgroup H of P is not its own normalizer. (Theorem4.2.1.)

3) If P is of order p”, then every maximal subgroup M is of order p" ! and
is normal. (Theorem4.3.2.)

4) A normal subgroup of order p in P is contained in the center of P.
(Theorem4.3.4.)

5) P 1s supersolvable. (Theorem 10.3.4 and Theorem 10.2.4.)

6) P is nilpotent. (Theorem 10.3.4.)

12.2. The Burnside Basis Theorem. Automorphisms
of p-Groups.

Let P be of order p”. The intersection of all its maximal subgroups will be
a characteristic subgroup D, the Frattini subgroup of P.Then, in the
homomorphism P — P/D, elements generating P will be mapped onto elements
generating P/D. The converse of this is true in a strong sense, which is the
subject of the Burnside basis theorem.

THEOREM 12.2.1 (THE BURNSIDE BASIS THEOREM). Let D be the
intersection of the maximal subgroups of the p-group P. The factor group P/D

= A is an elementary Abelian group. If A is of order p’, then every set of
elements zy, - - -, z; which generates P contains a subset of r elements xy, - -

", X, which generate P. In the mapping P — A, the elements x,, - - -, x, are



mapped onto a basis ay, - - -, a, of A. Conversely, any set of r elements of P
which, in P — A is mapped onto a set of generators of A, will generate P.

Proof: If M is a maximal subgroup of P, then M is of index p and is normal.
Thus P/M 1s the cyclic group of order p. Hence the pth power of every element
of P and every commutator are contained in M. Hence D, the intersection of all
the maximal subgroups, contains every pth power and every commutator. Thus

P/D 1s an elementary Abelian group 4. If 4 1s of order p’, then every basis of 4
consists of » elements, say, a;, - - -, a,. If b;, - - -, b, are elements generating 4,

we may find a basis for 4 by deleting from them the b’s equal to 1 and those
b;’s belonging to the subgroup generated by by, - - -, b,_;. Hence § = # and b,

-+ -, b, contains a subset which is a basis for 4.

Now suppose that z; - - -, z, generate P. In the mapping P — P/D = 4, let z;
— b, i=1, -, s. Thenby, - - -, b, generate 4 and so contain a subset a, - - -,
a,, which is a basis for 4. Let x;, - - - x, be the subset of z|, - - -, z, mapped
onto ay, * * -, a,. The theorem will be proved if we can show that any set x;, - -
- x,. of elements of P mapped onto a basis a; - - -, a, of 4 will generate P. Let H
={xy, -+ -, x,.}. If H# P then H is contained in some maximal subgroup M of P.
But then in P — P/D = A we have H — HD/D € M/D = B, where B is a
subgroup of A of order p"!. This is in conflict with = {x,, - - - x,} — {ay, - -
‘,a,; =A. Hence H= P and xy, - - -, x, generate P.

As an application of this theorem we may obtain some information on the
group A(P) of automorphisms of P. We may choose a basis ay, - - -, a, of P/D

infp" =@ — 1)@ —p) - (@ —p ') ways. This is easily seen since a,
may be taken as any of the p” — 1 elements different from the identity, and
having chosen a; - - -, a;, we may take a;,; as any one of the p” — p' elements

not 1n the subgroup generated by ay, - - -, a;. Thus there are 0(p”) choices for a
basis of 4, and every mapping of a fixed basis ay, - - -, a, onto another by, - - -,
b,. yields an automorphism of 4. But since every automorphism of 4 must map

ap, * - -, a,.onto a basis, there are exactly (p”) automorphisms of 4.

There will be exactly p""™g(p") ordered sets X = (x;, - - -, x,) which
generate P, since in a mapping x; — a;, 1 = 1, - - -, r of X onto a basis of 4, the

basis of 4 may be chosen in 0(p") ways, and for a single a;, any of the p"™



elements in the coset of D mapped onto a; will be a permissible choice for x;.

Every automorphism of P will map a set X onto another. Hence the group A(P)
of automorphisms of 4 may be regarded as a permutation group on the X’s. But
A(P) is a regular group on the X’s, since an automorphism fixing any set X fixes
every product of these x § and hence the entire group P, and so is the identical
automorphism. Hence the sets X are permuted among themselves in transitive
constituents each of which has & sets in it if £ is the order of A(P). Hence

p'"O(p") = kt. Here the number ¢ may be interpreted as the number of
essentially different ways of generating P by » elements. Two sets X = (x, - - -,

x,) and Y= (yy, - - -, »,) are said to generate P in essentially the same way 1f
every relation w(x, - - -, x,) = I 1s such that w(yy, - - -, »,) = 1, and conversely.
In the same way, let 4;(P) be the normal subgroup of A(P) which leaves

A/D fixed elementwise. These automorphisms permute regularly the p"*7)
generating sets X = (x, - - -, x,) which are mapped onto the same basis a, - - -,

a, of 4 in the homomorphism P — P/D = A. Thus the order of 4;(P) divides

""", These results, due to P. Hall [2], we state as a theorem.

THEOREM 12.2.2. If P is a p-group of order p", D the intersection of the
maximal subgroups of P. and [P:D] = p’, then the order of A(P), the group of
automorphisms of P, divides p""™"O(p"). The order of A\(P), the group of

automorphisms fixing P/D elementwise, is a divisor of p"" ™),

12.3. The Collection Formula.

Let G be a group generated by elements ay, a5, - - -, a,. We shall develop a
formula for (a;a, - - - a,)" in terms of the higher commutators of a;, - - -, a,. We
may take G to be the free group generated by ay, - - -, a,, for the formula will

then hold a fortiori in any group generated by » elements.

We repeat the definition of basic commutators, given in §11.1, but make the
ordering more precise.

1)ay, - - -, a, are the commutators of weight one, and are simply ordered by

the rule a; <a, <- - - <a,.

2) If basic commutators of weights less than n have been defined and
simply ordered, then (x, y) is a basic commutator of weight » if, and only if,



and only if,
(a) x and y are basic commutators with w(x) + w(y) = n.
(b) x>y.
(c) Ifx=(u, v), theny>v.
3) Commutators of weight n follow all commutators of weight less than #,
and for weight n, (x;, y1) < (x, y,) 1fy; <y, or if y; =y, and x; <Xx,.

Consider
(12.3.1)  (@mas -+ a)* = a(Das(l) - - - a(1)ar(2) - - - ax(2) - - - ar(n),

where we have labeled the individual generators a; as a/(1), a(2), - - - a/(n)

from left to right so as to be able to distinguish each letter in the formula. Since
SR = RS(S, R) by definition of the commutator, we may replace the right-hand
side of (12.3.1) by another expression equal to it in which a pair of consecutive
elements SR is replaced by RS(S, R). This replacement puts R nearer the
beginning of the expression and introduces a commutator (S, R). By a
succession of such replacements we may move any letter as near to the
beginning as we choose. We shall alter (12.3.1) in a specific way. We begin by
moving a;(2) to the left until it is next to a;(1), then move a,(3) to the left until

it is next to a;(2), and continue until we have collected all a;’s at the beginning.
This completes the first stage of collection. Next we collect in order the a,’s
immediately to the right of the a,’s.

Let us describe the collection process precisely. At the end of the ith stage
we have

(12.3.2) (@ras +++ @)™ = €1°1¢5°2 « -+ ¢S5y -+ Ry,

where ¢, ¢y, * - -, ¢; are the first i basic commutators and Ry, - - -, R, are basic

commutators later than c,. If R, Ry, - - -, R, are in order, the basic

commutators among Ry, -+, R, which are ¢;; |, we first move R;,, to the position
immediately following ¢, then R;,, R;5, - - -, and finally R;, so that with ¢;,; =

s, (12.3.2) takes the form

(12.3.3) (as +++ @)™ = %1622 - - - Cop1"HIR*) - 00 Ri¥,



which is the (i + 1)st stage. In (12.3.2) we call ¢,¢, - - - ¢/, the collected part
and R; - - - R, the uncollected part. But to validate this description we must

show that only basic commutators appear in any formula. The initial formula
(12.3.1) 1s stage zero and contains only generators a; which are basic

commutators of weight one. Let us assume by induction that at stage i the
uncollected part R; - - - R, contains only basic commutators later than c;. In

collecting R’s equal to ¢;;;, we introduce only further commutators (c;, ¢;1q, *
", ¢;+1) Where j > i + 2. Such a commutator is basic, since if ¢; = (¢,, ¢,), then ¢;
arose at stage s when ¢, was collected, whence s <i + 1 and so ¢, < c;,;. Thus
(¢, ¢;+1) 1s basic and so also 18 (¢j, ¢4y, * * ;5 Cjyp)-

We have already in (12.3.1) labeled the generators a; with labels j, ai(i), Jj=
1, - - -, n. If a commutator R of weight w; has a label (4, - - -, 4,,,) and S of
weight w, has a label (4, - - -.,u,,), we assign to (R, S) the label (4, - - -, 4,,,,
uy, * * *, ,,). The calculation of the exponents ej, - - -, e;, ;4 1n (12.3.3) may
be made to depend on these labels. Here e;,; = s is the number of uncollected
commutators at stage i equal to c¢;;; Thus it is the number E;,; of commutators
c;+q existing at this stage. Also if ¢; 1 = (¢,, c,), then c;,; arose when ¢, was
collected and this particular ¢, preceded this particular ¢, in the uncollected
part. Hence we must also consider precedence conditions for a commutator c,.
to precede ¢, when they both exist in an uncollected part.

At stage zero the commutators of weight one (and no others) exist, and ak(’l)

exists for any label A =1, - - -, n. Moreover, ak(’l) precedes as(ﬂ) at stage zero

when k> s if 4 < u and when k£ < s if 4 < . More formally at stage zero we
have existence and precedence conditions on the uncollected part in terms of
labels :

E\%[a;™] is that X exists (a vacuous condition),
P la,» precedes a,(p)] A< uifr>s
A< uifr <s.

Let A, - - -, 4, be a set of integers and consider conditions of the type 4, <4, 4,
</,. Any logical sum and product of such conditions we shall call conditions

(L). We shall show that conditions E,’ for existence of a commutator ¢, with



label (4, - - -, 4,) at stage i are conditions (L) on 4y, - - -, 4,, and the
precedence conditions p,/ for the precedence of a commutator c, before a
commutator ¢ in the uncollected part of the ith stage are conditions (L) on 44, -

g Mt Uy 1E (A, 0 05 Ay, 18 the label of ¢, and (x4, - - -, p1,) 18 the label
of c,. We have observed that at stage zero, existence and precedence conditions

were conditions (L) as above. We prove this true in general by induction on the
stage. Suppose this to be true at the ith stage. To show this to be true at the (i +

Ist) stage, we compare (12.3.2) and (12.3.3). WithR;) =R, = = - = R; =y,
we collected first R;, then R;,, and finally R; . Each step in the collection was a

replacement SR = RS(S, R). Here any commutators existing at stage i different
from c;; also exist at stage i + 1 and are in the same order. Thus

Eit = B¢ and P, = P

for such commutators. Hence we need consider only the existence of
commutators ¢, arising in the (i + 1)st stage and precedence P,, where one or

both of ¢,, c, arose at this stage A commutator arising at this stage will be of
the form ¢y = (¢, Ry, * ), obtained by moving RM1 past ¢;, then R, past
this commutator, and so on untll we move R, past (¢;, R, = * *, R, ). Here

all of R, - - -, R, are equal to c;,;. Here E,"*! is the logical product of the

conditions for existence of ¢;, R, - * -, R,, at stage i together with the

Uum
precedence conditions that Cj» Ry =+ 5 Ry, are in this order at stage i. Thus

EkiJrl is a condition (L) on the label of ¢,. In the collecting for the (i + 1)st

stage, a commutator (S, R) arises in SR =RS(S, R) immediately to the right of S
and to the left of all commutators following S. We must find the precedence

condition P, " where ¢, =¢;, or (¢;;, R, * - R,,) and ¢, = ¢;, or (¢j, R
, R, . Here P,,S’Jrl = lejz if¢;, # ¢j,. If, however, i = ]2, P “Ll 1nvolves the
Rs’. Suppose e is the largest integer such that R, =R, - -, Rue =R, Thenc,

precedes c, if either (1) m = e and there i1s no R in which case ¢, 1s a

Uet1>

commutator of c,, or (2) R,,., precedes R Here P, /*! is a logical sum of

Uet]®
precedence conditions, and so, are conditions (L) on the labels of ¢, and ¢, are

combined.



LEMMA 12.3.1. The number of sets Ay, - * -, A, with 1 < A, < n satisfying
given conditions (L) is an integer valued polynomial in n byn + byn® + - - - +
bmn(’"), where n© = n(n — 1) - - - (n — 1 + i)/i! and the b’s are integers
determined by the conditions (L) but not depending on n.

Proof: Let us divide the indices 1, - - -, m into disjoint sets Sy, S,, = * -, S,
Then an ordering of Ay, * - -, 4, is given by 4; = v,, JeSni=1-""1,
where v; <v, <- - - <v,. Every possible choice of the 4’s belongs to a unique

ordering of this type, and there are n) choices for the v’s, this being merely the
number of combinations of # things ¢ at a time. For this ordering either all A’s
satisfy the conditions (L) or none. Hence the number of sets of A’s satisfying

given conditions (L) is the polynomial byn + byn® + - - - + b, 1™, where b, is
the number of orderings with ¢ distinct values which satisfy the conditions (L),
and clearly, b, depends on the conditions but not on n.

For example, if A;, 4,, A3 satisfy conditions (L) 4; < 4,, 43 < A,, the
orderings satisfying (L) are

) Ai=vi,Aa=A3=va,vi<v2,

2)  A1=A3,v]=A2= V2, v <V,

3) A =V],A3=Vv) A2 =Vv3,v] <vp <V3,

4 A3=V, ATV, AT v3, v <V <3,
and the number of sets satisfying the conditions (L) is 2n(® + 2x3),

We have shown that the exponent e; in (12.3.2) of the commutator c; is the
number of commutators in the uncollected part at stage i — 1 equal to ¢; and that
this number is given as the number of sets 4;, - - -, 4, satisfying certain

conditions (L), where m is the weight of ¢, Thus Lemma 12.3.1 gives us
information on these exponents. We state our results in a theorem.

THEOREM 12.3.1. We may collect the product (aya, - - - a,)" in the form
(alaz N ar)n :all’lazn e . arncr-|—lcr+1 o o . Ciel’ . e e Rl o . Rt? W]’lel”e Cr+17 RN
c; are the basic commutators on ay, - - -, a, in order, and Ry, - - -, R, are basic

commutators later than c; in the ordering. For 1 <j <i, the exponent e; is of
the form e; = byn + bn'® + - - - + b 1", where m is the weight of ¢, the b’s



are non-negative integers and do not depend on n but only on c;. Here nk) =
nn—1) - (m—k+1)/k!

We may prove immediately an important corollary if G is a p-group whose
class 1s less than p. Collecting all commutators of weight less than p, the

uncollected part reduces to the identity. Moreover, with n = p* all exponents

are multiples of p% since an n®, i <p — 1 is a binomial coefficient with  as a
factor of the numerator and denominator with factors not exceeding p — 1.

COROLLARY 12.3.1. If P is a p-group of class less than p, then with n = p*

(mas -+ a)" = a"ag" -+ a,"S"Sy" - St

where S|, S5, © - -, S, belong to the commutator subgroup of the group
generated by ay, a,, - - -, a,.

12.4. Regular p-Groups.

We define a regular p-group as a group P in which for any two elements a,
b, and any n = p* satisfy

(12.4.1) (@b)" = a?b"Sy* « -+ Sy,

with §;, - - -, S, appropriate elements from the commutator subgroup of the

group generated by a and b. Immediate consequences of the definition and the
corollary to Theorem 12.3.1 are

1) Every p-group of class less than p is regular.

2) Every p-group of order at most p” is regular.

3) P is regular if every subgroup generated by two elements is regular.

4) Every subgroup and factor group of a regular group is regular.

For every p there is an irregular group of order p”*!, namely, the Sylow

subgroup S¥) of the symmetric group sz on p? letters. This group is generated

by two elements of order p and yet it contains elements of order p°. This will
be shown impossible for a regular group.



THEOREM 12.4.1 In a regular p group with n = p%, a"b" = (ab)"S," = (ab
S>)", with Sy, S, in the derived group H, (a, b) of the group H(a, D), generated

by a and b.
By repeated application of the theorem we get the corollary

COROLLARY 12.4.1. In a regular p-group with n = p*, a,"ay" - - - a =
(Cllaz e arS2)n = (al tt ar)nSln with Sl, S2 inHz(a] Tt a},).

Proof: The theorem and corollary both hold in an Abelian group with §; =
1, S, = 1. We shall use induction to prove the theorem for a group /, assuming

the theorem and its corollary to be true for any proper subgroup of H. We note
that if H is generated by a; - - - a,, then H5(a; - - - a,.), the derived subgroup of

H, is a proper subgroup of H. From (12.4.1),
(12.4.2) a*d® = (ab)» S;™ - Si™.

By induction S, - - - S = 8" with § ¢ [{,. Butif H = H(a, b) is not
Abelian, then H, and ab generate a proper subgroup of H whence by induction

(ab)'S" = (abS$,)". For it follows from the Burnside basis theorem that if H/H,

is cyclic, then H is cyclic. Thus the theorem holds in H if both the theorem and
corollary hold in any proper subgroup of H. Applying the theorem » — 1 times

toa," a)” - - - a,", we get
" a” - @ = (@mag - - @)" S -+ S

Wlth all OfSl o Sl"_l in H2
Thusa" - - - a,” =(aya, - - - a,)"S", applying the corollary to /,, and by the
theorem, (a; ay - - - a,)" S"=(a, a, - - - a,S")".

THEOREM 12.4.2. A finite p-group P is regular if, and only if, for any a, b
in P we have

(12.4.3) a? b® = (ab)? S?,

with S in the derived group of the group generated by a and b.



The condition (12.4.3), is clearly necessary in a regular p-group since it is a
special case of Theorem 12.4.1. We must show conversely that (12.4.3) implies

(12.4.4) ab* = (ab)*S,", n = p%, 8¢ H, (a,b).
Now the relations

(12.4.5) a?as? -+ @ = (@ az -+ a)? 8 = (@1 a2 =+~ a, S,)?

with S}, Se € Ho (@) + -+ a@,)are surely satisfied with §; = S, = 1 when
H is Abelian. If (12.4.5) is satisfied for every proper subgroup of H, then
applying (12.4.3) r — 1 times a’ a’ - - - af =(ajay - - - a, ) uf - - - u, L,
withuy, - - -, u,yin H,. By inductionu” - - - u?, =S. Butb=a,a, - - a

r— r

and S| generate a proper subgroup of H, whence (aa, - - - a,)’'S{¥ = (a; - - -
a,S,)’, proving (12.4.5) in general.

LEMMA 12.4.1. Assuming (12.4.3), x P y P xP yP = SP, with S in the derived
group of {x, y}.

Proof:
xP YP = (x y)p Slp’
yP ar = (y x)? S,
whence
z?y PP y? = Sy7? (y z)7F (x y)? SiF,
and also
y2)? @y)? = (@ ytzy)? 5P
= (z, y)? S7,
and so

TPYPPY? = SE—P (I, yJF SET-' Sl’ﬂ = Se,



From this 1t follows that any commutator in a/”, a,*, - - -, a,” 1s the pth power

of an element in the derived group of {a, - - -, a,}.
From (12.4.3) we have
(12.4.6) a?” b?* = (ar bP)? SyP

It

[(a b)? Ss?]P Sy
(ab)?* Sg¥* S Sy,

Il

where S, is in the derived group of {a”, b} and S; in the derived group of

(ab)?, S,. By the lemma these are pth powers of elements in the derived group
of {a, b}, whence

(12.4.7) a?’b?* = (ab)? Sp** S#* 857,

and applying induction (12.4.4) holds for n = p%. The same procedure and use
of lemma enables us to prove (12.4.4), going from n = p® to n = p**1.

THEOREM 12.4.3. If P is a regular p-group then with n = p*.

1) Each of (a",b) = 1 and (a,b)" = 1 implies the other.

2) If (a",b) =1, then (a,b") = 1.

3) A commutator S involving an element u has order at most that of u
modulo the center of P.

4) The order of a product ay a, - * - a, cannot exceed the order of all of

Cll, Cl2, ey, ar.

Proof: In an Abelian group the first three properties are vacuously true and
the fourth is true. We shall assume by induction that the theorem holds for all
proper subgroups of P, and we also take P to be non-Abelian.

Let us apply (12.4.4) to

(12.4.8) a~"b'a"b = (a~Y)*(b~'ab)" = (a~'b~lab)"s",

with s in the derived group of K(a, b 'ab) € H(a, b); this becomes

(12.4.9) (@, b) = (a, b)"s;™



Now if (a", b) = 1, then the order of @ modulo the center of H(a, b) is n or less,
whence by property (3) for the proper subgroup K(a, b~ 'ab) with u = a, every
commutator in K involves a and is of order at most n. The element s; in
(12.4.9) 1s a product of commutators in K, and by (4) for K, the order of s, is at

most n. Thus (a”, b) = 1 implies s, = 1 in (12.4.9), and so, (a, )" = 1.

Conversely, if (a, b)" = 1, then in K = K(a, a b 'ab) = K (a, u) with u = (a, b),
the order of u modulo the center is at most # and every commutator involves u.
Thus by (3) for X, all commutators in K, are of order at most n, and so by (4) in

K, the order of s; in (12.4.9) 1s at most x.

Thus (a, b)" =1 implies S,” = 1, and so, (a”, b) = 1, This proves property
(1) for P, and of course (2) follows immediately from (1). Property (3) in P
follows from repeated application of (1). If the order of # modulo the center of
P is n, then a fortiori (u", v) = 1, whence (u, v)" = 1. Here, with x = (u, v) and
since x" = 1, it follows that (x, y)" = 1.

It remains to prove property (4) for P. If a" = 1, " = 1, then by (3), any
commutator involving a or b is of order at most n. Hence in (12.4.4), S; 1s a
product of commutators of order at most n, and by property (4) for the proper
subgroup P,, S; itself is of order at most n. Hence S;" = 1, and so, (ab)" = 1.

Thus the product of two factors has order not exceeding that of both factors, and
by repetition it follows that the product of » factors has an order not exceeding
that of all the factors.

THEOREM 12.4.4. If a" = b" with n = p® then (a b")" = 1, and conversely.

Proof: In H(a,b) all commutators are of order at most n from property (3)
in Theorem 12.4.3. Hence in 1 = a"b ™" = (ab™')"s," we have s," = 1, and so,

(ab™")" = 1. Conversely, with a”b™" = (ab~')"s," and (ab™!)" = 1, we may write
H(a, b) = H(a, ab™"), and so by property (3) with u = ab !, we have s;" = 1 and

hence a”" = b".

THEOREM 12.4.5. In a regular p-group P the (p™)th powers of the elements

form a characteristic subgroup C*(P), the elements of order at most p* a
characteristic subgroup C,(P).



Proof: With n = p“ the relation of Theorem 12.4.1, a"b" = (abs,)", shows
that the (p*)th powers of elements form a subgroup C*(P) which is necessarily
characteristic and in fact fully invariant. Property (4) of Theorem 12.4.3 shows

that elements whose orders are at most p* form a subgroup which will be fully
invariant.

12.5. Some Special p-Groups. Hamiltonian Groups.

THEOREM 12.5.1. The groups of order p"* which contain a cyclic subgroup
of index p are of the following types:

Abelian,
n = 1, cyclic:
1)a’" =1.
n = 2

2)a’"'=1,b° =1, ba = ab.

Non-Abelian,
podd,nn = 3
3)a ' =1,b" =1, ba=a""P"2b.
p=2n = 3
4) Generalized quaternion group.

a'=1,b%=a*72 ba=alb.

r=2n 2 3
5) Dihedral group.
a'=1,p2=1,ba=a'b
r=2n = 4
6) a® ' =1,b*=1, ba=a'*?b.
r=2n = 4

7a> ' =1,b2=1, ba=a "2,

Proof: An Abelian group of order p” which contains an element of order

! must have a basis element of order p" ' or p”. This settles the theorem for
Abelian groups, giving the first two cases.

In considering non-Abelian groups of order p” containing an element of
order p" !, let us first suppose p odd. If a?"~' = 1, then {a} as a subgroup of



index p is a normal subgroup, and so for b ¢ { a }, we have bab™! = a", where r
r 2 1 (mod p" ™), since our group is not Abelian. We find that b'ab™ = a’" by
induction on i, since (bad 'Y = ba/b~! = &"7 for any j, and in particular for j = r
we have b(bab )P~ = b2ab2 = ba’b™' = ¢ The general case blab™ = "
follows readily by induction. As b? € {a}, we have bab™ = a, whence 1 =
1 (mod p™ ). Since p is odd, we may conclude from this congruence that » = 1
+ kp"*(mod p"!), where f; £ () (mod p), since ¢ 3£ 1 (mod p"!). Now
take b; = D', where i is determined by the congruence ik =1 (mod p). Then r* =
(1+kp" 2 =1+ikp"?=1+p" 2 (mod p" ). Hence bab, ' = blab™ = a" =
a"P"2 1etus write & = 1 + p" 2. Then (¢/b)? = @b\d/b; 'b;? = 1™p %, and
we find by induction that (@/b,)' = &b, where T=1+h+- - -+ h" . Fort=p
wehave 1 +h+- - -+ l=p+p"2[14+2+ - -+(p—D]=p+p"(p-
1)/2 = p (mod p" ') since p is odd. Thus (&/b,)’ = @Pb,’. This formula could
also have been found by an appeal to the collection formula. Now
bi? = a* e {ﬂ;}, where u = pv since b is not of order p”, and since the
group is not cyclic. If we put b, = a Vb, then b = (a "b)’ =a " )b\ =a P a””
= 1, and also byab, ' = a*biab,'a" = a¥a'*P"?a" = a""P"2. Thus a and b,

satisfy the relations given in the theorem as type 3 for non-Abelian groups with
p odd.

Let us now take p = 2 and find the non-Abelian groups of order 2"
containing an element of order 2" . Leta® ' =1, b ¢ {{1] Then bab™! = o,
where 2 =1 (mod 2"™), r 5 1 (mod 2"7"). This gives three distinct choices
of » modulo 2!, r = =1, r = 1 + 2"2 p = =1 + 272 Also let
b = a* ¢ {a} Then, since b(b?)b™' = b% we have a"" = a" or wr = w
(mod 2 1) as a condition on w. For » = —1 we find —w = w (mod 2" 1), whence

a” =1 or a¥ = a* 2. Thus with » = —1 we find the generalized quaternion group
or the dihedral group, types 4 and 5 in the theorem, respectively. For n = 3
these are the only groups, as we determined in §4.4.

Suppose now 5. == 4 and ba = a’b, withr =1+ 272 With b? = a¥, the
condition on w that wr = w (mod 2"2) is merely that 2" 2w = 0 (mod 2" 1) or
that w be an even number w = 2w,. Determine j by the congruence j(1 +2"7) +
wy = 0 (mod 2"72). Then with b, = &b, we have b> = d/(ba)b = o/ > 2)p? =



@’V 20 3) 4y U= 21 = 1. Here bja = a'*?b;, and a and b, satisfy the
relations of type 6 in the theorem. Finally, if n > 4, ba = a’b with r = —1 + 22,
the condition on w in b*> = @" that w = rw (mod 2" 1) is that 2 + 2" 2w =0
(mod 2" 1) or w=0 (mod 2" 2). Thus b? = 1 or b? = a* 2. If b* = a®" 2, take b,
= ab and b* = a(ba)b = a(a "2 b?> = ¢> 4% = 1. Thus either a and b or a
and by satisfy the relations of type 7 in the theorem.

All the relations in Theorem 12.5.1 determine groups, as may be verified in
every case, except that of the generalized quaternion groups, by means of

Theorem 6.5.1. For the generalized quaternion groups, we may make a direct
verification or refer ahead to Theorem 15.3.1.

THEOREM 12.5.2. A p-group which contains only one subgroup of order p
is cyclic or a generalized quaternion group.

Proof: Let P be of order p" and contain only one subgroup of order p. We
prove by induction on # that P is cyclic or of generalized quaternion type. This
is trivial for n = 1. First, suppose p odd. Then by induction a subgroup P; of

index p 1s cyclic, and so by Theorem 12.5.1, P is of one of types 1, 2, or 3 for p
odd, and of these types 2 and 3 contain more than one subgroup of order p.
Hence P is cyclic. When p = 2, if P contains a cyclic subgroup P; of index 2,

then by Theorem 12.5.1, P is one of types 1 through 7 for p = 2, and each of
these contains more than one subgroup of order 2, except for the cyclic group
and the generalized quaternion group. Thus P is cyclic or of generalized
quaternion type.

There remains to be considered the case in which, by induction every
subgroup P; of index 2 i1s generalized quaternion. We shall show that this

situation cannot arise. Here 5 = 4. First let n = 4 and a subgroup of index 2
be a quaternion group O, and let ¢ be an element not in O. O is given by a* = b*
=1,a*=0b% ba=a'b, and P= O + Oc. The element ¢, being of order a power
of 2, must transform into itself at least one of the three subgroups of order 4 in
0, {a}, {b}, {ab}. Relabeling if necessary, we may take this to be {a}. Then
clac=aor clac=a'. If ¢ lac = a, then {a, ¢} is an Abelian subgroup of
index 2, contrary to assumption. If ¢ lac = a”!, then (cb) 'a(ch) = a, and {a,
cb} 1s an Abelian subgroup of index 2, contrary to assumption. This takes care
of n=4.




Finally, suppose 1 = 5, and P; a generalized quaternion subgroup of
index 2. Then P, is given by a® 2 =1, b>=a*> ba=a 'b, and P = P| + Pc.

Here {a} is the only subgroup of P, of order 2”2, all elements of P not in {a}

being of order 4. Thus ¢ 'ac = a’, and ¢* = a'b or ¢ = d'. If ¢? = a'b, then ¢ 2

and 7 = —1 (mod 2 2) which is impossible. If ¢* = a’ then {a, c} is a subgroup
of index 2 and by assumption a generalized quaternion group. Then ¢ 'lac =a"!,
(ch) la(ch) = a, and {cb, a} is an Abelian subgroup of index 2, contrary to
assumption. This completes the proof of the theorem in all cases.

THEOREM 12.5.3. A group of order p" which contains only one subgroup of
order p"', where 1 <m <n is cyclic.

Proof: It m =n — 1, then a group P of order p" with only one subgroup of
order p"! is generated by any element x not in the subgroup, since {x} is not
contained in the unique maximal subgroup, and so {x} = P and P is cyclic. This
proves the theorem for n = 3, the first value of n to which the theorem applies,
and for all cases with m = n — 1. We proceed by induction on n. We have
proved the theorem when m = n — and therefore we may assume m <n — 1.

Let P; be the unique subgroup of order p™, and suppose P, contained in a

maximal subgroup 4 of order p”~!. Since 1 < m < n — 1, by induction 4 is
cyclic, and so, P; as a subgroup of 4 is also cyclic. Every subgroup of order p

or p? is contained in a subgroup of order p™ since m > 2, and so, in P,. But Py,
being cyclic, contains a unique subgroup of order p and a unique subgroup of
order p?. Thus P contains a unique subgroup of order p and a unique subgroup
of order p?. By Theorem 12.5.2 P is cyclic or generalized quaternion. But the
generalized quaternion group contains more than one subgroup of order 4.
Hence P must be cyclic.

It is trivial that every subgroup of an Abelian group is normal. But the
quaternion group is an example of a non-Abelian group in which every
subgroup is normal. We call a group H Hamiltonian if H is non-Abelian and
every subgroup of H is normal.

THEOREM 12.5.4. A Hamiltonian group is the direct product of a
quaternion group with an Abelian group in which every element is of finite
odd order and an Abelian group of exponent two.



Proof: Let a and b be two elements of a Hamiltonian group H. Then the
commutator ¢ = (a, b) = (a 'bla)b = b* = a”(b"'db) = a’, since {a} and {b}
are both normal subgroups. Note that this implies that ¢ permutes with a and
also with 5. By (10.2.1).

(@, b) = (a, b)(a, b, a)(a, b) = (a, b)(c, a)(a, b) = (a, b)?
and we may prove similarly by induction that

(@, b) = (g, b)} = .

If @ and b do not permute, then ¢ = a” # 1, and putting i = » or i = — r, whichever
is positive, then (&/, b) is either (c, b) or (¢”!, b) and is the identity in either
event since ¢ permutes with 5. Then (a/, b) = 1 = (a, b)' = ¢’. Hence ¢! = 1 and
a’ =1, b = 1. Hence two elements of H which do not permute are of finite
order. If an element x of H permutes with both a and b, then xa does not
permute with b, and it follows that xa, and so also x, is of finite order. Thus
every element of H is of finite order.

Let @ and b be elements of A which do not permute, and o = 1, b =1,
where we suppose N and M minimal. If p is any prime divisor of &, then by the

minimality of N, a” permutes with b, and so, (a?, b) = (a, b)Y’ = 1. The same
will hold for any prime dividing M. As ¢ = (a, b) # 1, there can be only one
prime dividing M and N, and M = p™, N=p". Thus " =1, b*" =1, ¢ = (a, b),
c? = 1, where by symmetry we may assume n > m. Further, since ¢ € {ﬂ-} and
¢ € {b}c=aP'=b""" wherej, k # () (mod p).

In {a, b} the derived group is {c} and is in its center. Thus in {a, b} all
commutators of weight three or more are the identity. We may establish the
formula

(ab)i — ﬂibi(b, a_)i(i—ljfﬂ

by induction. It is true for i = 1, and we have



(ab)i*! = (ab)iab = a'bi(b, a)*“1/2gh
abiab(b, a)it-D/2

a‘abi(b’, a)b(b, a)it-1/2
a*ﬂb‘[b, a}:‘b(b, a)i:i—lﬂz
ai+lbi+l(b} a)-‘(iﬂ}m_

Il

i

I

This proves the formula by induction for any group {a, b} in which (a, b) is in
the center. This formula is also a consequence of the collection formula.

If b! = g*b*, where u = — jp" ™", then {a, b,} = {a, b}, whence b, does not
permute with a, and therefore by assumption, the order of b, 1s at least as great
as that of . The formula just established yields

b? = (a*b¥)? = avrbkr(bk, q)rr-1/2
— ai‘”!bkﬂc—'ukp{p'—”-fﬂr

whence

bp™ ! = it pke™ ikpm -1/ 2

= cikp" Ho-1/2,

Here b"' # 1, but since ¢ = 1, we must have p =2, n = 2. Thus the relations
ona and b are a®> = b*> =a 'blab =c, ¢*> =1, and {a, b} is the quaternion
group. This shows that any non-Abelian subgroup of H contains a quaternion
group.

We next show that H is the union of the quaternion group Q, given by a* =
b* =1, a*> = b% ba = a”'b, and the group Z of elements centralizing Q. If an
element x of H does not permute with a, then x lax = a”! and xb permutes with

a. Similarly, if x (or xb) does not permute with b, then xa (or xba) permutes
with a. Hence one of the elements x, xb, xa, xba lies in Z. Hence H=Q U Z =

OZ. We now show that Z cannot contain an element of order 4. For, if x* =1,
1T € 7, then (a, bx) # 1. Since (bx)* = 1, we have al(bx)a = (bx)"!, whence
a 'bax = b 'x71, giving x* = 1. Since Z contains no element of order 4, Z cannot
contain a quaternion group, and it follows that Z is Abelian. Z N Q = a%. By use
of Zorn’s lemma we find a subgroup Z; of Z maximal with respect to the

property of not containing a®. Then we easily find that Z = Z, + Z,a?, H= Q x



Z,. Z; is the direct product of an Abelian group U, whose elements are of odd
order, and an Abelian group V' of exponent 2, since Z; contains no element of
order 4. Thus H=Q0x Ux V.

Conversely, a group of the form Q x U % V' is Hamiltonian, for Q is non-
Abelian. It suffices to show that every cyclic subgroup {quv} is normal. U and
J are in the center of O x U x V, and we need only show that @ and b transform
this group into itself. Here ¢~ '(quv)a = g'uv, where i = 1 or 3. The order of u is
an odd number #n, and the order of v is 2. Hence the congruences » =i (mod 4),

r =1 (mod n) are solvable, and a '(quv)a = (quv)". This completes our
theorem.



13. FURTHER THEORY OF ABELIAN
GROUPS

13.1. Additive Groups. Groups Modulo One.

Any group may be written with the group operation designated as
addition. It is a common practice to write Abelian groups additively, and it is
particularly convenient to do so if there are operators. Also, certain groups
arise naturally in the addition of familiar systems. Two (which we shall
consider here) are the additive group of rational numbers which we shall
designate as r, and the additive group of real numbers which we shall

designate as R.,.

When we use the additive notation for groups, we shall change our
terminology appropriately, speaking of the sum of elements, Cartesian sums,
and direct sums.

A cyclic group in additive form consists of all the integral multiples na
of a generator a. The groups », and R, are both aperiodic, since na = 0

implies a = 0. In an infinite cyclic group generated by a, there is no element x
such that 2x = a. Since for any a in -, there is an x with 2x = a, it is clear that

r, 1s not a cyclic group. But r, 1s very nearly a cyclic group. Any finite set of
elements in 7, will generate a cyclic group. We describe this property by
saying that », is of rank one, or locally cyclic. More generally we shall say

that an Abelian group is of rank k if a subgroup generated by any finite
number of elements can be generated by at most k& elements, although some
finitely generated subgroup requires £ generators.

THEOREM 13.1.1. The additive group of rational numbers, r., is locally
cyclic.



Proof: Consider a subgroup of r, generated by the finite set of elements
a,/by, - - -, a/b, Its elements will be the numbers ma,/b; + - - - + ma,/b,,
the m’s being arbitrary integers. These can be expressed in the form (ma,b,

-+ +maby - b,_1)bby - - b, Here we readily verify that the

numerators form an additive subgroup of the additive group of integers,
which is cyclic. Hence these form a cyclic group consisting of all integral
multiples of some integer w. Thus our group consists of the numbers nw/bb,

-+ - b,and 1s a cyclic group.
In the group R, the integers form a subgroup, which like all subgroups of

an Abelian group is a normal subgroup. In the factor group all numbers
differing by integers are identified, and so we speak of the factor groups as
the group R, modulo 1. Similarly, », has a factor group », modulo 1, which

is, of course, a subgroup of R, modulo 1.

The group r, (mod 1) is a periodic group, since if a/b is any rational
number (a, b being integers), we have b(a/b) =0 (mod 1). By Theorem 3.2.3,
r, (mod 1) is the direct sum of its Sylow subgroups S(p). An S(p) of r,. (mod
1) we designate as Z(p®). Z(p™) is generated by the infinite set 1/p, 1/p%, - -
-, 1/p' - - - (mod 1). An element of Z(p®) is of the form m/p", (m, p) = 1, and
such an element generates the same cyclic group as 1/p”. Hence a subgroup
of Z(p™) is either finite or contains infinitely many of the set 1/p, 1/p?, - - -,

1/p, - - - (mod 1), and so it is the entire group Z(p*). Thus Z(p*) is an
infinite group, all of whose proper subgroups are finite cyclic groups.

13.2. Characters of Abelian Groups. Duality of
Abelian Groups.

Given an arbitrary Abelian group A. A character y of 4 is a
homomorphism of 4 into the group R, (mod 1). Thus our definition is

(1321] x(ﬂl) -+ x(ﬂgj = x(ﬂll -+ r]'.g) all ay, s € 7.

Here the addition a; + a, is the addition in 4, the addition of the values of the
characters is, of course, in R, (mod 1). We shall also define an addition of



characters. If y; and y, are two characters of 4, we define
(1322) X3(£1) = xl(ﬂ) + :{2(1.‘1} all a € A.
Then y5 is also a character of 4, since

(13.23) xs(a + a2) = xa(a + a2) + xe(a1 + a2)
= xi(@) + xi(az) + x2(a1) + x2(as)
= xi(a) + x2(a1) + xi(a2) + xa(az)
= Xs(fllj + xs(as).

We readily verify that if we use (13.2.2) to define an addition

(13.2.4) X3 = x1 + Xz

then, with respect to the addition (13.2.4), the characters themselves form an
additive group 4* whose zero element is the character which maps every
element of 4 onto zero.

THEOREM 13.2.1. The character group A* of a finite Abelian group A is
isomorphic to A.

Proof: For any homomorphism we must have y(0) = 0. Hence for an
element g of finite order m, we have m(a) = y(ma) = x(0) = 0. Thus y(a)
must have one of the m values 0, 1/m, - - -, (m — 1)/m (mod 1). In a finite
Abelian group it is clear that a character is completely determined if it is
known for a basis. Leta,, i =1, - - -, r be a basis of 4 where 4, 1s of order #;,
and A4 1s of order n =nn, - - - n,. Since there are at most »; choices for y(a;),
we see that there are at most n = nyn, - - - n, different characters for 4. But
we easily see that there are indeed this many. For if we put y(a;) = 1/n,
xia) = 0.j # i, we can show that for each i =1, - - -, r this defines a
character and that the correspondence @; £5 7; determines an
isomorphism between 4 and A*. We note, however, that the isomorphism
between 4 and 4* is not uniquely determined but depends upon a particular

choice of a basis for 4.
The following theorem is true for any Abelian group, finite or not:



THEOREM 13.2.2. Let H be a subgroup of the Abelian group A. Then the
characters of A for which y(h) = 0 for every h ¢ H are precisely the
characters of the factor group A/H.

Proof: If a character assigns 0 to every element of H, then it assigns the
same value to every element of a coset H + x. We may take this as assigning a
value in R, (mod 1) to the coset as an element of the factor group A/H. This

is readily seen to be a character for 4/H. Conversely, A — A/H is a
homomorphism which when followed by a homomorphism into R, (mod 1)

yields a homomorphism of 4 into R, (mod 1). This will be a character of 4 in

which all elements of H go onto the zero of A/H, which is in turn mapped
onto 0.

COROLLARY 13.2.1. If a # 0 in a finite Abelian group A, then there is a
character of A for which y(a) # 0.

For if this were not so, then every character of 4 would be a character of
the factor group 4/{a}, and by Theorem 13.2.1, A* would be isomorphic both
to 4 and also to 4/{a}, which is, of course, of lower order.

A duality between groups A4 and B is a one-to-one correspondence
H %= K between subgroups H of 4 and subgroups K of B which reverses
inclusions; i.e., if H; &5 K;and H, &5 K, and if H} D H), then K|
K,, and conversely, if K| c K,, then H; D H,. There is a natural duality

between a finite Abelian group A4 and its character group A*, which is given
in the following theorem.

THEOREM 13.2.3. There is a duality between a finite Abelian group A
and its character group A* given by the rule [f = K where, given H a
subgroup of A, K consists of all characters of A such that y(h) = 0 for every
h € H. and given K a subgroup of A* H consists of all elements of A such
that y(h) =0 for every x € K . Ais dual to itself.

Proof: With every subgroup H of 4, let us associate the subgroup H* of
A* consisting of all those characters y such that y(#) =0 forevery j ¢ H. If
H, # H, are distinct subgroups of 4, then one of H;, H, (say, H;) contains an

element b not contained in the other. Then, by Theorem 13.2.2. H,* is the




character group of A4/H,, and by Corollary 13.2.1, there exists a x¥ € FHo*
such that y(b) # 0. Hence H;* # H,*. Since A4 and A* are finite and
isomorphic, it follows that the mapping H — H* is a one-to-one

correspondence between the subgroups of 4 and those of A4* and in
particular, that every subgroup K of 4 is of the form K = H* for a unique

subgroup H of 4. If H, &= K; = H* and i, &5 K, = H,%
then /| > H, implies K| € K, since x(h) = 0 for every j ¢ H, implies a
fortiori y(h) = 0 for every b ¢ H o (C H . Similarly, K| c K, implies H,
D H,. Thus the correspondence of the theoremis a duality between 4 and A*.
The isomorphism between 4 and A* then leads to a duality of 4 with itself.

THEOREM 13.2.4. An Abelian group which is periodic and has all its
Sylow subgroups finite is self dual.

Proof: 1If A is a periodic Abelian group whose Sylow subgroups are
finite, then an S(p) as a finite Abelian group is self-dual. Let us write this
H, S H g where, for H,, any subgroup of S(p), the dual subgroup is ff ;.
Now if H is any subgroup of A4, then H is the direct sum of its Sylow

subgroups /,. Then let us put H¢ = E ff';. This 1s easily seen to be a

duality of A. Note that this argument dges not work if we take without
restriction a direct sum of finite Abelian groups because in general such a
direct sum will have many subgroups which are not the direct sum of
subgroups of the summands. It has been shown by Baer [6] that the Abelian
groups which possess duals are precisely those covered by this theorem.

13.3. Divisible Groups.

An additively written Abelian group 4 is said to be divisible if, for every
a e A and integer n, there is an element 4+ ¢ 4 such that nx = a.

THEOREM 13.3.1. A4 divisible group is a direct summand of every
Abelian group A which contains it.



Proof: Suppose we are given an Abelian group A and a divisible
subgroup D. We wish to show the existence of a subgroup B such that

(133.1) A=D® B or DAYB=0 and DUB = A.

For this proof it is convenient to make use of Zorn’s lemma which we
discussed in §1.8. If U; € U, € U; C - - - is an ascending chain of subgroups

of 4 such that D N U, = 0, then U= ]\;/' U'; also has the property that D N
U = 0. Hence, by Zorn’s lemma, A contains a subgroup K maximal with
respect to the property that K N D = 0. We may take B = K in (13.3.1) if it
can be shown that D U K = A. Suppose that x is an element of A not in K U D.
Then by the maximality of K, {x} U K has a nonzero element in common with
D. Hence for some non-negative integer n and [ ¢ i/, we have
nr + k = del)d#0.Heren#0,since DN K=0.And ifn =1,
then + ¢ K \_J ), contrary to assumption. Since D is divisible, d = nd,
with¢f; e [), and n(x — d;) =—k. Puttingx; =x — d; thenif 2; ¢ K \J D
,also ¢ K \UJ ). contrary to assumption. The elements of K N {x;} are
of the form mx; + k, 0 < m < n. By the maximality of K there must be an
element common to {x;} U K and D, nx; + ky = d = nd,, with

n < n, d:rdﬂ € I). Here, with X, = x; — d,, we have
mrs = —'.-11'1 e K, and if To € K \J D, then also
1y € K \J [). This process leads to a contradiction because we
ultimately find an n; = 1, whence x,, x,_; - - -, x; and x all belong to K U D,

contrary to assumption. Thus K U D = A4 and our theorem is proved.
See Kaplansky [1] for a proof that every divisible group is a direct sum

of groups isomorphic to . or groups Z(p™).

13.4. Pure Subgroups.

We say that H is a pure subgroup of the Abelian group A if it is true that

whenever g = h e H for some g ¢ A, then there is an f; ¢ [
such that nh; = h. Thus the property of being pure is a sort of relative

divisibility, division being possible in H if it is possible at all. A divisible
group is certainly a pure subgroup of any Abelian group containing it. A



direct summand is a pure subgroup. But although a divisible group is
necessarily infinite, there can be pure subgroups in finite groups, and hence
the concept is useful in the study of finite groups.

The periodic subgroup of an Abelian group is pure, since if nx = h where
h 1s of finite order, then x, if it exists, must also be of finite order. The union
of an ascending chain of pure subgroups will be pure, for if / is any element
of such a union, then / is an element of one of the groups in the chain and so
nx = h will have a solution in the chain.

Theorem 13.4.1 shows that in a great many cases, a pure subgroup is
indeed a direct summand.

THEOREM 13.4.1. Let A be an Abelian group, H a pure subgroup, and
suppose that A/H is the direct sum of cyclic groups. Then H is a direct
summand of A.

Proof: We first prove a lemma.

LEMMA 13.4.1. If H is a pure subgroup of A, and the element y is in A/H,
then there is an element x of A mapping onto y in the homomorphism A —
A/H of the same order as y.

If y 1s of infinite order, then any x mapping onto y will do. If ny =0 and u
— y, thennu — 0, nyy = h e H. But then, by the purity of H, & = nh,.
Here putx =u — hy. Thenx — y and nx =n(u — hy) =nu —nhy=h—h=0,
as we wished to show.

The proof of the theorem is now fairly simple. Let A/H be the direct sum
of cyclic groups generated by basis elements y,, ¢ ¢ J. Choose in A4

elements x; — y; where in every case we have chosen x; of the same order as
v;, this choice being possible by the lemma. Let K be the subgroup generated
by the x;. If a relation ;24 -+ +++ -+ ni,x;, = h € H holds in 4,
then in A/H we have n;)y; + - - - + n;y; =0, and so as the y’s are a basis for
A/H, we have n;y; = 0 for each of these terms. But since the x’s are of the
same order as the y’s, then also xx; = 0 for each of the terms and also the 4 1s

zero. Hence K N H=10. Also K U H = A, since K contains one element from
each coset of 4. Thus A= H @ K, as was to be proved.



13.5. General Remarks.

For a more detailed study of Abelian groups the reader is referred to
Kaplansky’s monograph [1] and to Part II of Kurosch’s book [2]. A
particularly useful feature of Kaplansky’s monograph is a section discussing
the literature.

In general, Theorem 3.2.3 reduces the study of periodic groups to that of
primary groups. One of the major results on primary groups is the Theorem
of Ulm, which fully characterizes countable primary Abelian groups in terms
of certain cardinal numbers, the “Ulm invariants” of the group.

The direct sum of infinite cyclic groups is called a free Abelian group.
Every Abelian group with » generators is the homomorphic image of the free
Abelian group with » generators. Every subgroup of a direct sum of cyclic
groups 1s itself a direct sum of cyclic groups, and in particular, a subgroup of
a free Abelian group is free Abelian.

As remarked in §13.3, every divisible group is the direct sum of groups

isomorphic to 7, and of groups isomorphic to various Z(p®)’s. Every Abelian

group can be embedded in a divisible group, and so in a certain sense, the
study of all Abelian groups is the study of subgroups of divisible groups.
Thus a torsion-free (i.e., aperiodic) group of rank one is a subgroup of 7.

An Abelian group which contains both elements of finite and elements of
infinite order is called mixed. Examples show that in general a mixed group
is not the direct sum of its periodic subgroup and a torsion-free group. But
since the periodic subgroup is pure, Theorem 13.4.1 will often give the
decomposition of a mixed group as the direct sum of the periodic part and
another group.



14. MONOMIAL REPRESENTATIONS
AND THE TRANSFER

14.1. Monomial Permutations.

Let us consider a set S of indeterminates u;, - - -, u, which may be
multiplied on the left by elements of a group H. We postulate the rules

(14.1.1) lu; = w;,

1 the identity of H ; and
hi (hzu«;) = (hlhE) Usq

A monomial permutation M is a mapping u; — hyu;, i =1 - - - n, j = j(i),

where u; — u; 1s a permutation of S. For the product of two mappings M, and

My, if My is u; — hyu,
(;7h; )uy. Under this definition the mappings form a group whose identity is

and M, is u; — hjuy, we define MM, as u; —

the mapping u; — u;. If we associate with the mapping M:u; — hju; the

matrix (/;), which has for its ith row /; in the jth column and zeros
elsewhere then the rule for multiplying the mappings is the same as the
ordinary matrix multiplication.

In the group M of all monomial permutations the multiplications u; — hju;

form a normal subgroup D, and the factor group M/D is the symmetric group
of permutations of u; - - - u,. More generally, if G 1s a subgroup of M, then if

g€ (7 is, u; — hjju;, g — g*:u; — u; is a homomorphism of G onto a group

of permutations whose kernel is G N D.
We shall say that a monomial permutation group G is transitive if the

corresponding permutation group is transitive.



THEOREM 14.1. Let G be a group with a subgroup K and G =K + Kx, -
-+ Kx,. Also let K — H be a homomorphism of K onto a group H. Then a
transitive monomial representation of G with H as multipliers is given in
the following way: For g € G letx,g= kjx, i=1,- -, n,j=j(), :{-‘ij e K
. Also let kj; — hy; in the homomorphism K—H. Then n(g): u; — hyu; is a

transitive monomzal representation of G with H as multipliers. Conversely,
every transitive monomial representation is of this type or is conjugate
under the group of multiplications D to a representation of this type.

Proof: Given G, the left coset representation G = K + Kx, + - - - + Kx,,
and the homomorphismK — H. Let g; and g, be any two elements of G. Then,
ifx,g) = k;x; and x;g, = k;ox,, we have x,(g,8,) = k;k;ox,, whence we see that
n(glgz) = 7r(g1)7r(g2) for the corresponding monomial permutations, whence

we have a representation of G (of course not necessarily faithful). The
corresponding permutation group is the permutation group of left cosets
discussed in §5.3 and is, of course, transitive.

Conversely, let us consider any transitive monomial representation R of G,
g € G.g— n(g): u, — hju;. Let us select a particular letter u; and consider

all elements k of G such that z(k) maps u; onto hju; for some fy; € H.

These form a subgroup K. By the transitivity of R, for eachi =2, - - -, n there
is an element x; such that 7(x;) takes u, into /,,u;. Then we see easily that

(14.1.2) G =K+ Kzs+ - + Kzn.

If we transform R by the multiplication d:u; — uy, * - -, u; — hy; 'u;, then in
d 'Rd we see that d '7(x;)d takes u; into u;. Let us consider R* = d 'Rd. Here,
if for | ¢ K, n(k) takes u; into hu, n(xi_lkxj) takes u; into hu;, and
conversely. Thus in R* every & that occurs as a multiplier at all occurs in K.
These may indeed be a proper subgroup H; of the group H originally used.
But 1f 7(k) takes u; into Auy, then k— h 1s a homomorphism of K onto ;.

Moreover, if n(g) takes u; into A;u;, then m(,gx; 1) takes u, into &, ju1, whence
,gI,"I = ,,, e K and k;; — h;; in the homomorphism of K onto H,.

We note in passing that changmg the representatives of the left cosets of K
in G yields another monomial representation conjugate to the first under the



group D of multiplications.

14.2. The Transfer.

Suppose we have a monomial representation R of a group G with
multipliers from H:

(14.2.1) w(g):us— hju;, t=1---n, j=3j@).

Suppose further that the number # of letters is finite. Then the mapping

(14.2.2) g — [ i mod H’

=1

1s easily seen to be a homomorphism of G onto the factor group H/H', where
H' 1s the derived group of H. Let us take in particular the case where we have
H=K:

(14.2.3) G =K+ Kz3 + --- + Kz,

Here we have, if ¢(z) =x; forz=hkx;, |; ¢ K,

(14.2.4) Verx(g) = [] zigé(zig) mod K,

f=1

and V;_ i {(g) 1s a homomorphism of G into K/K'. This homomorphism is

called the tranmsfer (in German: Verlagerung) of G into K. If H is a
homomorphic image of K, then the mapping of (14.2.2) is a homomorphic
image of the transfer, since if K — H, K/K' is mapped onto H/H', K' being a
fully invariant subgroup of K. The chief properties of the transfer are given by
Theorem 14.2.1.

THEOREM 14.2.1.

1) The mapping g—V;_x(g) is a homomorphism of G into K/K'.



2) The transfer V_ x(g) is independent of the choice of representatives

X;.

3)I[fGD KD T, then Vg ,{g) =V Vo x(2)]

Proof: We have already observed the first property as a consequence of
the theory of monomial representations. But we shall prove all three
properties directly from the definition (14.2.4) of the transfer. For the first

property we observe that if x;g) =kx;, i =1 n,x;g¢y =kix, j=1- - n,

then VGﬁH(gl) = n fﬁij mod K'!,
Vook(ge) = n kismod K’ anq Ver(gigs) = H (Kis®),

J i
where = k;* = k;k;,. For the second property if x;* = aux; 1s the relation

j"s
between the first and second choice of representatives and if x;g = k;x;, then
x*¢ = axig = akgx; = akga; 1x]* then in the first case W(g) 1is
n ki; mod K’ and ' second case is
l—l (ﬂ'ki;‘ﬂj_l Haft H k'l-j' Hﬂ;—l = l-l -'!i:f.;r' de Kf

i
For the third property let
(14.2.5) G =K+ Kz: + -+ + Kz,
K=T+Tys + --+ + Tym.
Then
G=T+ Tyz+ st S g
_l_
(14.2.6) 4 ft':t: + Tyoxi « -+ + Tym2:
+

+ T:':n, + Ty -+ + TYymn.

Here, for g € (7, letxg = kijx; and y,k; = t;;,. ..
Thus



YrZig = Lijrslfs;.

Then
Vor(g) = I tiwmod 77 and Vox(g) = II by mod K.
Now
V gor(kis) = l:[ tiirs mod T,
Hence

Ve-r(g) = H Vg-r(ki;) mod G
= Vior([lk:) mod 7" = Veor[Voox(o))

We note here that, as the transfer of K onto 7' maps K’ onto the identity, there is
no ambiguity in the transfer of V;_, x(g) into 7, although this is an element of

K/K’ rather than of K.

14.3.A Theorem of Burnside.

THEOREM 14.3.1. If a Sylow subgroup P of a finite group G is in the
center of its normalizer, then G has a normal subgroup H which has the
elements of P as its coset representatives.

Proof: We begin with a lemma.

LEmmA 14.3.1. If two complexes K| and K, are normal in a Sylow
subgroup P of G and are conjugate in G, then K, and K, are conjugate in
Ng(P).



Proof of the lemma: Suppose x 'K,x = K, with 1 € (7 As K| is normal

in P, then K, = x 'K;x is normal in x 'Px = Q. Thus both P and Q are
contained in the normalizer of K,, and hence as Sylow subgroups are

conjugate in N(K,). Hence y'Qy = P for some y with y 'K,y = K,. Thus for
z=1xy, z \Pz = P, z 'Kz = K,, proving the lemma. For the proof of the
theorem, since P is in the center of Ns(P), P is Abelian and P’ = 1. Let us
consider Vg_,p. Let 9y ¢ P. In calculating Vi p(u), let us use as

representatives of P in G, x;, xu - - - xa' ! if " e Pr;butxui ¢ Px;
forj <r. Here xa/ ' - u - ¢p(x2/) ' =xp/u7x; =1 forj<randxu ' - u-
¢(xu,) "' = xau'x;!. Hence, for each cycle of length r in representing u on the

left cosets of P, there is a term xz/x; " in the product for V_, p(u) and the rest

— : —~1
are the identity. Thus Vep(u) = n Wi Now raur e P
1
is conjugate to #” in G, and as P is Abelian, both elements are normal in P. By

the lemma xa/x; ' = y~'u’y with 3 € N (P). By hypothesis P is in the
center of its normalizer, whence y "y = . Hence
Voo P(u) = H U = Uu", where n =[G:P] is the sum of the lengths
of all the cycles. Since P is a Sylow subgroup of order, say, p’, it follows that
ptn = [G:P] Thus, in the transfer of G onto P, P is mapped
isomorphically onto itself and V;_, p(G) = P, since trivially the transfer can
be no larger than P. The kernel of this homomorphism must be a group H of
index p® in G and of order n = [G:P]. Hence H is a normal subgroup of index
p’, and so the elements of P can be taken as the coset representatives of H.

COROLLARY 14.3.1. The order of a finite simple group is either divisible
by 12 or by the cube of the smallest prime dividing its order.

Proof: Let p be the smallest prime dividing the order of the simple group

G, and suppose that a Sylow p-group P is of order p or p? and hence Abelian.
By the theorem, unless N;(P) induces a nontrivial automorphism in P, then G

has P as a factor group. If P is of order p, its automorphisms are of order
dividing p — 1, and so of orders less than p. If P is cyclic of order p?, the



automorphisms are of order dividing p(p — 1), and if noncyclic of order p?, of
order (p> — 1) (p*> — p) = p(p — 1)> (p + 1). No one of these numbers is
divisible by a prime greater than p if p 1s odd, since p + 1 =2[(p + 1)/2], and
hence no nontrivial automorphism can be induced by Ng(P). If p = 2, then in
the last case p + 1 = 3 and N;(P) can induce an automorphism of order 3 in P

only if the order of Ns(P) is divisible by 12.

14.4. Theorems of P. Hall, Griin, and Wielandt.

The following theorems have as their main content the relationship
between the Sylow p-subgroups of a group G and the factor groups G/K of G
which are p-groups.

To describe these relationships, we introduce the concepts of strong and
weak closure.

DErINITION: If H is a subgroup of G and B is a subgroup of H, we say
that B is strongly closed in H (with respect to G) if H(\ B* € B for B* =

x 'Bx, any 1 e (3, and that B is weakly closed in H if B* € H implies B* =
B.

We say that a group G 1s p-normal if the center Z of a Sylow p-subgroup P
is the center of every Sylow p-subgroup P; which contains it. This is a

special case of weak closure, being equivalent to the assertion that the center
Z of P is weakly closed in P with respect to G. For suppose that G is p-

normal. Then let 1+ ¢ (3 be such that Z* € P. Then Z is contained in P; =
P! By p-normality Z is the center of P;. But then Z* is the center of

i1 = P, whence Z* = Z, and so Z is weakly closed in P. Conversely,
suppose that Z is weakly closed in P, and that Z S P;, another Sylow
subgroup. Then for some 3 ¢ (7, PT = P. Then Z* € P. By weak
closure Z = Z*. But if Z; is the center of P, then Z7 is the center of

1= P Hence /5 = 7/ = Z% and Z = Z| is the center of Py,
whence G 1s p-normal.

It is clear that strong closure implies weak closure. A weakly closed finite
subgroup B of H must be normal in H. A subgroup of H generated by all x’s

satisfying some equation x* = 1 will be weakly closed, and if these x’s form a



subgroup X, then X will be strongly closed in H. This will be the case if H is
a regular p-group, and also under certain other circumstances.
We shall write the transfer V;_,;(g) as V(g) when no ambiguity may

arise. Here if
G=H+ Hzy + -+ + Ha,,
V(g) = [] zig¢(zig)~* mod H'.
i=1

We may also replace congruences modulo /7' by congruences modulo H,,
where H), 1s any subgroup of H containing H', so that H/H, is Abelian. All
congruences we use will be modulo H,,.

For g e (Fandi=1, - - -, n define ig as that one of 1, - - -, n such that
:c:igx,_-ﬂ_l € H. Then for a fixed g, i — ig is the permutation m(g) of the

transitive permutation representation of G on the left cosets of H. Thus we
may write

Vig) = H TigTig 1
]
There will be a number of cycles in the permutation 7(g), including fixed

letters as cycles of length one. Choose one value from each cycle and call this
set C,(g). For 1 € C H (g) let r; be the order of the cycle in which i appears.

Then

Z r=n,
1eCplg)

which merely says that the total length of the cycles is n.

LEmMA 14.4.1.

V() = [l zgriai

1eC o)

Here x,g"x; ! is the first power of x,gx; ! which lies in H.



Proof: In a cycle of n(g) beginning with i we have i, ig, - - -, ig", ! all
different, and we may take x; x;g, - - -, x,g, | as representatives of the
corresponding cosets of H. These cosets make the contribution

zig(zig) 1 (zg)g(zig) ™ (- +) - (xigm™h) gzt = zgrizi!

to V(g), since ¢(x;g") =x;g%, s =1 - r;— 1, §(x,g") = x;. Since x,9* ¢ Hx;
for s <r, x,g"x; ! is the first power of x,gx; ! which lies in .

We shall call the contribution of the cycles of length one to V(g) the
diagonal contribution d(g) and write

d(g) = H z;gr;~ mod H.

=iy

Here, as with ¥(g), d(g) is independent modulo H,, of the order of the factors
and the choice of the coset representatives x;.

LEmMMA 14.4.2. If u and v are conjugate in G, then d(u) = d(v). Also
d(u") = [dw)] ™.

Proof: Let v =  'ut. Then iu = i is equivalent to irv = it, and so by
definition,

dw) = [] zivz:?

1=—iu

= n (ﬂluf_lﬂ:i_l) (x,—uxrl)(mgtx“—l

I=iu

== H (.}J;HI;'_I) = d(u:}

1=iu
This follows since x;# 'x; ! and x;tx; ! are in H and are inverses of each
1

other. Also, since i = iu is equivalent to i = iu ", we have



i =iu -l

dw™) = ] vz = (H :t:,;uxr‘)‘l
= [d@)]™.

For b, ¢ H define d*(h) = h~'d(h). Then h = d(h)[d(h)] ! = d(h)d*(h™")
by Lemma 14.4.2, which also gives d(h") = d(x}'x; "), and so if
r:hrx € H, we get

zhet = dB)d*(zhrri)
= Wrd*(h")d*(xh—"zY)

and so finally by Lemma 14.4.1, we have:
LemmA 14.43.If b € H, then

V() =k [] d*(hri)d*(zih—riz )

ieCH(h)

COROLLARY 14.4.1. If d*(ﬁ) e Hy for all } ¢ H. then for any
he H V(h)=h"



Fig. 6. A theorem of Philip Hall.

Let p be a prime, G, any finite group, and define G = u,(G) to be the
group generated by all elements of G of order prime to p. Thus G;/G 1is the
maximal p-factor group of G. Let P; be a Sylow p-subgroup of G|, N; its
normalizer in G, and H; any subgroup of G, containing N;. Let us put P = P,
NG N=N; NG H=H; NG, so that G; = GP; = GN; = GH, and P,/P =
N/N=H;/H= G{/G. G 1s a fully invariant subgroup of G, and we note that P
is a Sylow p-subgroup of G, and that N normalizes both P; and G, whence N
normalizes P} N G = P. Now u,(G) = G since G 1s generated by elements of
order prime to p, but it may happen that u,(H) < H. Let us suppose that u,(H)
C H. Here u,(H) is a fully invariant subgroup of A, and H is normal in H,.
Indeed, since H)/H is a p-group, it is evident that u,(H) = u,(H;). Let us
define



Hy = H*\J (H, H) \J u(H)
= He(H, H)u,(H).

Here HP 1s the group generated by pth powers of elements of H, and (H, H;) is
the group generated by commutators (4, hy), h ¢ H. hy € H, Since
H,/u,(H) is a p-group, and these three groups are characteristic subgroups,
their union is their product. Since u,(H) = u,(H,), H/u,(H) is a p-group and
so nilpotent. Thus (H, H,)/u,(H) is a proper subgroup of H/u,(H). Moreover,
since P 1s contained in any subgroup 7 such that 4 2 T O (H, H)u,(H) with
[H: T] = p, it follows that if u,(H) is a proper subgroup of A, then also H is a
proper normal subgroup of H and H/H, is a p-group. We consider the
problem: What elements of P must be adjoined to H to give H?

LEMMA 14.4.4. H is generated by Hy together with the set of all elements
d*(u) with ¢ ¢ P.
Proof: Here we have as before
G =H + Hx: + -+ + Hz,,
d(u) = n zuzi ! mod H,,

d*(u) = w'd(u) mod H,,

and we note that with our particular choice of H,, H, 2 (H, H}) 2 (H, H) =
H', surely H/H, is Abelian. Since 4 ¢ P & F, we surely have all
d*(u) e H Thus K = {d*(H)IHEP] U Hy € H. To prove
H € K, we use the fact that since H/H,y is an Abelian p-group, V(w) =1 (mod
Hy) for every element w of G whose order is prime to p. But by our
construction G 1s generated by such elements, whence V(u) = 1 (mod H,) for

every 4 e (3. Hence a fortiori V {:u} e K for every 3y ¢ P. Now for
1 e P,byLemma 1443,

Vw) = u [] d¥ui)d*@aiz).

1eCH(u)



Here d*(u"i) ¢ K by definition, and v = xu 7 x; ! is a p-element of H,

whence for some 3 € H, oy e P, and so d*(v) = vld(v) = v d(y vy

by Lemma 14.4.2, and so
d*(v) = vy vy d*(yvy)

(v, yd*(y~vy).

But (t,l': y] e H C Hy and d*(y“iyy) € X by definition, whence
d*(v) = d*(xaurTizi!) € K. It then follows that for ¢ ¢ P,

ur = V(u) e K.

But (n, p) = 1 and every element of P is an nth power of some other element
of P. Thus P € K, and since H/H, 1s a p-group and P a Sylow p-subgroup of

H, we have H= HyU P € K, proving H = K and thus the lemma.

Since ( @ (7yand H=H,; N G, GU H, = G|, we may use the left coset
representatives 1, x,, - - -, x,, of H in G as left coset representatives of /; in
G,. Thus G, =H;+ H, + Hx, + - - - + Hyx,. Hence, writing G in terms of
double cosets of H; and P, we have

G, = H, + HitPy + --- + Hit, Py,

where 1, ¢, - - -, t, are a subset of 1, x5, - - -, x,. Letw(i=1, - - -, 5) be the
transitive permutation representation of P; on the cosets of /1| in H,¢,P,. Here
m; is of degree greater than one, since otherwise H,t,P, = Hit; and then ¢,Pt;”!
C H,, but then by Sylow’s theorem, #,Pt,' = y 1Py for some y e Hi,
yielding yf; € Ny & H,, whence ¢; ¢ H; which is not the case. Thus
the representation z; of P; 1s not the 1dentity, and thus its kernel K; 1s properly
contained in P; and =x; faithfully represents P;/K;. As P/K; is a p-group, its
center is not the identity. Hence we may choose an element 2; ¢ J?; such that
mi(z;) 1s of order p and in the center of ,(P;). Here n(z;) permutes with every
n{(u) for 4 € ;. Now an element in the center of a transitive permutation
group cannot fix one letter without fixing all letters. Hence 7,(z;) fixes no one
of the cosets of H;t,P; and consists exclusively of cycles of length p. For any



u e P C Py m(u) permutes with 7(z;) and so if (u) leaves fixed any
coset, say, Hyx;,; contained in H,#;P), then it must also fix all the cosets
Hyxjyy, » - -, Hyxjy, in the cycle of my(z;) to which Hyx;,; belongs. Hence we
may write for ¢y ¢ P,

d(w) = u-[]d;i(w) mod H,

where
di(u) = hihg -+ - hy
and
hi = zjpuzix™ k=1---p,
where Xit]s * 7 Xjyp ATC, @S above, representatives of the cosets of a cycle of

m{(z;) for some i. Here the single factor u =1 - u - 17! is the contribution to
d(u) from H;. We note also that with I:_:+;¢’MIJ-+;;_1 = h; € H, since
I;'-.'.,E E G) U EP) w¢e haVC h,ﬂ; € Ga Whence .h-k € H_‘[ m G -— H) and

so these are indeed the factors entering into d(u). Now d*(u) = u 'd(u),
whence

d*(u) = [] di(u) mod H.

With Lemma 14.4.4 this relation immediately establishes:

LEMMA 14.4.5. H is generated by H, together with all the d(u) for

u e P
Consider one of these dj(u) in more detail, writing w;, = X s k=1,---p

for convenience of notation.

Hywyz; = lek+1,

with subscripts mod p. Thus



Wi2i = YrWrs1,

with ¥y € H,. Also

wEUwy ! = h;;, d,(u} = hy ++- hp.
Now

wrw gt w2 Uz wi

B Yy W U1 Wi 2w
= A Yk Pt Y

= i hi-1(Pr—1, Yr-1)-

wk(u, Zi) )

But the y’s e Hy, the B’s € H, and since (H,, H) € H,, we have
w;;(u, z,;)w;,;‘l = h;;_lh;;_1 mod Hﬂ-.

Now P 1s normal in P;, whence (u’ 3:‘) e P, and so for u; = (u, z;) the

diagonal contribution to d(u;) from the cosets Hw,, k =1, - - - p will be
h, 'h,_ mod Hy, k=1, - - - p. Thus, from wuw, ' =k, (mod Hy), k=1, - - -
p, we conclude that wy(u, z)w, ' = h, 'h,_; (mod Hy), k=1, - - -, p. Now

with u = uy, u; = (u, z;), u, = (uy, z;), and recursively, u.,; = (u,, z;). We have
seen that if

wiuWi ™ = hiyy (mod Ho) k=1, ---,p,

then

Wilks4 Wi = hk-l,;hklg_l = hk_a+1 {mod Hn).
Hence, by induction on s,
(2) “n°
Witk Wr ™ = hp—ship—spr ™ Misy2(2) oo BTV

the exponents being the binomial coefficients with alternating signs. From the
properties of binomial coefficients and the fact that ¥ © H,,, we have



Willp Wit = by - -+ hp = dj(u) mod H,.

Thus

p—1
di(w) = wi(u, z;, - -+, z)we™! (mod Hy)

withqy ¢ P, 2; € Py If we write
RN, s S
eﬁ(us 21;} e {"r‘,&, iy """ E;‘),

then Lemma 14.4.5 tells us that H can be obtained by adjoining for all 3y ¢ P
certain elements of the form x; e, (1, zi)xj+k_1 which belong to H; i.e., certain
diagonal coefficients of the e,(x, z;) fori = 1, - - -, s and 94 ¢ JP. Since these

coefficients are p-elements lying in H, and P is a Sylow p-subgroup of H, we
may transform them by elements of H so that they lie in P. This will not affect
them mod H,, since H/H, 1s Abelian.

This proves our main theorem.

THEOREM 14.4.1 (P. HALL). Let G, be any finite group, P, a Sylow p-
subgroup, Ny its normalizer, and H, a subgroup containing N,. Let G =
u,(G) be the subgroup generated by all elements of G, of orders prime to
p,andput H=G N H, N=G N Ny, P=G N Py. Then u,(H,) = u,(H), and if
u,(H) # H, Hy = H'(H,, H)u,(H) is a proper subgroup of H, and H can be

obtained by adjoining to H, certain conjugates lying in H of elements

T-}_l _— « e .
ex(U, 2:) = (u, 2, -+ -, 25) where gy ¢ Pandz;, i =1, s are

elements in Py. If
G, = H, + H131P1 + .- Hll‘fsPI

is a decomposition of Gy into double cosets of Hy and P, letm,i=1, - s
be the transitive representation of P, on the cosets of H, in Ht;,P,. Then =;
is not of degree one, and we choose z; so that n{z,) is of order p in the
center of w(P,).



COROLLARY 14.4.2. If'e,(u, z) = 1 for all u, z € Py, then u,(N)) =N =
u,(Gy) N N and G/u,(Gy) = Ny/u,(N,). This will happen in particular if the
class of Py is less than p.

Here we have taken H; = N; and so H=N.

Suppose that O, is a weakly closed subgroup of P;. Then, as we have
already remarked, Q; is normal in the normalizer N; of P, and so we may
take the normalizer of Q; as a subgroup H; 2 N;. Then the preceding theorem
will give a result which is an improvement of a theorem of Wielandt’s [3],

THEOREM 14.4.2 (HALL-WIELANDT). Let Py be a Sylow p-subgroup of G
and Qy be a weakly closed subgroup of P,. Let N| be the normalizer of P,
and H| the normalizer of Q. Then any one of the following conditions will
ensure u,(Hy) = H=u,(G,) N H whence G/u,(G) = H\/u,(H,).

De,(u,z)=1forall y e Py all 2 € Q.

2)e, ((u,z)=1forallu,z e Ql.

3) O € Z, ((P)) the (p — 1)st term of the ascending central series for
Py.

Proof: As 1n the proof of Theorem 14.4.1, let K; be the kernel of the
representation z; of P; on the cosets of H,t;P;. Suppose, if possible, that O0; €
K;. Then H,t;,Q, = Hit;, and so t;Qyt; ' € H,. Thus ¢,0,t; ! is a p-subgroup of
H, and there exists a iy € JHy such that y 14,0ty € P, which is a Sylow
p-subgroup of H,. By the weak closure of Q; this means y~',0,t, "'y = 0, and
SO y‘“] l; € H 1> the normalizer of Q) and also §; € H - Which is not the
case. Hence (), ¢ K ;. Now Q is normal in P, and so the image of Q, in
P/K; 1s a normal subgroup and must therefore contain elements of its center.
Hence we may choose our elements z; in Q;. This gives the first condition,
where we note that it would be sufficient to take 4 € P = Py M\ @, but
a priori we do not know which subgroup of P; is P. The third condition
implies the first, for if O € Z,(P)), then z € Zp1(P;) and
(u, z) € ZP_E(P 1}, (u, 2, z} € 4 p—3, and continuing,



ep(u,2) = (u,2, -+, 2) = 1.

As to the second condition, e,(u, z) = e, ;(u, z), where u; = (u, z), and for
uelP ue Ql, whence also the second condition implies the first.

COROLLARY 14.4.3. Let Oy be a characteristic subgroup of Py. If Qy is
not weakly closed in Py, then there is another Sylow p-subgroup P, which
contains Qy but in which Qy is not normal. This must be the case if O,
satisfies the conditions (1), (2), or (3) of the theorem, but G\/u,(G,) and
H,/u,(H,) are not isomorphic.

Proof: As Qy 1s characteristic in Py, then O 1s normal in N;. Hence N; &
H,, the normalizer of Q. If O 1s not weakly closed in P, then for some x,

x_lle c Py, but ;E—lQl:.l: = Ql- If x_lle were normal in Pj, then by
Lemma 14.3.1, O, and x 'Q;x would be conjugate to each other in N;, which
is not the case. Hence x 'Qyx is in P, but not normal in P, and so Q, is in P,

= xPx"! but not normal in P,. If O, satisfies the conditions (1), (2), or (3) of
the theorem, then the conclusion of the theorem can fail only because Q is not
weakly closed in P;.

The following theorems are somewhat more elementary than the preceding
theorems.

THEOREM 14.4.3. Let P be a Sylow p-subgroup of G, and G' the derived
group of G. Then V_,(G) = PIPN G,

Proof: Since V;_,p(G) 1s a homomorphism of G into P/P’, a p-group,

every element of order prime to p is mapped onto the identity. Since G is
generated by P and Sylow subgroups belonging to other primes, V(G) = V(P).

Suppose
G =P+ Pxs+ -+ Pz,

By Lemma 14.4.1, for 4y ¢ P,



V(u) = [] zawizi* mod P/,
1e E‘;,I{u)

V(w) = [] wiws, xi7!) mod P,

€ (,'P{u}

and

Hence, as (n,p) =1, V(u) #£ 1 mod G"ify ¢ P.u ¢ G’ Butas
(G) 1s Abelian, V(G') = 1. Hence the kernel of P — V;_, p(P) 1s exactly P N
G',and so V;_p(G) = PIPN G

THEOREM 14.4.4 (FIRST THEOREM OF GRUN) [1]. Let P be a Sylow p-
subgroup of G. Then V_,p(G) = P/P*, where

P* = [P N\ N'(P)] \J, (P N #P%).

Proof: From Theorem 14.4.3 we know that V;_,p(G) = P/P N G'. From

its construction P* is the union of subgroups contained in P N G', and so P* C
P N G'. We must show that P N G' € P*. We prove that every element u in P
N G' 1s also in P*, using induction on the order of u. Here, trivially, ] ¢ P#*.

Let
G=P+ PyP+ --- 4+ Py,P

be the decomposition of G into double cosets of P. We suppose
we P M @ Then by Lemma 14.4.1,

V(u) = n zautiz;™! mod P

tEE'P(ﬂ}

Here the contribution to ¥(u) from a double coset PyP is of the form



w = [] yosurroiy,
k

— mt
withv; =1and g, ¢ P. Also E Tk = 1 if there are p’ left cosets of P
k

in PyP. In considering the contribution w, we distinguish two cases: Case 1, ¢
>1inp’; Case2,t=0,p' = 1.
CASE 1. We have
w = yur'y~! (mod yP'y™).

b

Also, for v{ = 1, we have a factor Yur y-l e P, and since b < ¢, we have

qu"‘y_l e PP. Butalsoqp e PP, and so
w = qu’y‘l (mod P N yP'y™),
whence a fortiori
w = yur'y~! (mod P*).

Since gy ¢ P M\ G’ V(u) =1 (mod P'), and thus Vouy ™) =1 (mod P').
But then yu”y ™!, since it belongs to P, is in the kernel P N G, and since ¢ > 1,
it 1s of lower order than u, whence by our induction yup‘y—l e P*. Since

also by induction ;p* ¢ P*, we have
w = yur'y! = 1 = y»' (mod P¥).
CASE 2. Here PyP = Py, and therefore Py © Ns(P). Also
w = yuy~ = u[Ng'(P)],

and

w = u[mod P N N¢'(P)],



and a fortiori w = u (mod P*). Hence in all cases
w; = u'i(mod P¥),
if w; is the contribution from Py, which contains p’j left cosets of P. Hence
V(u) = u* (mod P*),

where n = [G:P] is prime to p. But M(u) =1 for 9y ¢ P (M G, and so
V(u) e P" © P* Thus «" = 1 (mod P*), and so 4 ¢ P¥*, as we
wished to show.

THEOREM 14.4.5 (SECOND THEOREM OF GRUN). If G is p-normal, then the
greatest Abelian p-group which is a factor group of G is isomorphic to that
for the normalizer of the center of a Sylow p-subgroup.

Proof: Let P be a Sylow p-subgroup of G, Z its center. Let G'(p) 2 G’ be
the smallest normal subgroup of G such that G/G'(p) is an Abelian p-group.
Then G = G'(p) U P, since the order of G'(p) must contain every factor of the
order of G except for powers of p. If G* = P U G, then G'(p) U G* = G. Also
G* N G'(p) = G, since G*/G' contains only p-elements and G'(p)/G’ contains
only elements of orders prime to p. By Theorem2.4.1, G/G'(p) = G*/G' = P/P
N G'. Let N be the normalizer of P, and H the normalizer of Z. As Z is
characteristic in P, H 2 N. Now if H'(p) 1s the least normal subgroup of H
such that H/H'(p) is an Abelian p-group then, as with G, H/H'(p) = P/P N H'.
Hence to prove our theorem, we must show P N G' =P N H'. Trivially, G 2
H, G2H,and PN G'2 PN H. Thus we need to show P N H' 2 P N G' By
the First Theorem of Griin,

PNG = PNN)y (PN zP'z).
zeld

Since H2 N, PN H' 2 PN N. We must also show for every g ¢ (7 that
RSP



Write M = P N x 'P'x. Then Z € N(M) and x 'Zx S Ng(M), since x ' Zx is

the center of x ' Px. Here Z is in a Sylow subgroup R of No(M) and x "' Zx is in
a Sylow subgroup S of Ng(M). Hence, for some 3/ € -NG'( M ), both Z and

yx1Zxy are in the same Sylow subgroup O of G containing R. By p-
normality both Z and y~'x"'Zxy are the center of Q and so equal to each other.
Thus Z = y ' !Zxy, and so Ty = h e N.-;:(Z) = Jf. But
y e Ng (ﬂa{ ), whence

M = y'My = y'Py N yz7'P'zy
=y '"PyN\ kPR C H.

Thus M =P Nx"'Px € PN H and our theorem is proved.
The Theorem of P. Hall also yields an improvement of the Second
Theorem of Griin, dropping the requirement “Abelian.”

THEOREM 14.4.6 (HALL-GRUN). If G is p-normal, then the greatest factor
group of G which is a p-group is isomorphic to that for the normalizer of
the center of a Sylow p-subgroup.

Proof: In Theorem 14.4.2 take G, as G, P; a Sylow p-subgroup, O, as the
center of P, and /; the normalizer of Q;. Then the p-normality of G| as we
have observed, means that O, is weakly closed in P;. Here, since Q; = Z(P,),
the third condition holds and we conclude G,/u,(G) = H,/u,(H,). These are

the maximal factor p-groups and the theorem is proved.

We can also improve on the Theorem of Burnside. Under what
circumstances is a Sylow p-subgroup P of a group G isomorphic to a factor
group of G? That is to say, when is G/u,(G) = P? Assume that this is the case,

writing B = u,,(G); then B consists of all the elements of G of orders prime to
p.-Here BN P=1,BU P=BP=G.If Qis any subgroup of P, then BU Q =
BQ is a subgroup containing Q and all elements of orders prime to p. Here B
is normal in BQ. Write W= Np,(Q). Then W N B consists of the elements of

W of orders prime to p. Clearly, W VB <9 W and, of course,
(Q <@ W.Butthen W= (W N B) x Q. Hence every element of order prime to

p which normalizes Q also centralizes (). This condition, which is necessary



for G/u,(G) = P, we shall show is also sufficient and to this extent
generalizes Theorem 14.3.1.

THEOREM 14.4.7. 4 group G has a factor group G/u,(G) isomorphic to a

Sylow p-subgroup P if, and only if, for every subgroup Q of P an element of
order prime to p which normalizes Q also centralizes Q.

Proof: We proceed by induction on the order of G, the result being
trivially true if G = P. First we show that G is p-normal. Let Z be the center of
P. By the corollary to Theorem 14.4.2, if G is not p-normal, then Z is
contained in another Sylow p-group P,, but is not normal in P,. Then by

Theorem 4.2.5, there is a subgroup QO of P which is normalized but not
centralized by an element of order prime to p. By our hypothesis, this does not
happen, and so G must be p-normal. By Theorem 14.4.6, G/u,(G) = H/u,(H),

where H is the normalizer of Z. If H is a proper subgroup of G, then by
induction H/u,,(H) = P and our theorem is proved.

Hence we may suppose that G = H, and so, that Z is normal in G. But if
G/Z contains a p-group O/Z, which is normalized but not centralized by an
element of order prime to p, then the same holds for its inverse image Q. Thus
our hypothesis holds for G/Z, and so, G/Z has a normal subgroup K/Z such
that the factor group is isomorphic to P/Z. Since Z is normalized by K and K/Z
is of order prime to p, then Z is centralized by K, and so, K = Z x K| where K|

is of order prime to p. But K| = u,(K) = u,(G) consists exclusively of
elements of orders prime to P. Hence G/u,(G) = P, as was to be shown.




15. GROUP EXTENSIONS AND
COHOMOLOGY OF GROUPS

15.1. Composition of Normal Subgroup and Factor
Group.

Generally speaking, any group G which contains a given group U as a
subgroup is called an extension of U. General group extensions have been
studied in a broad way by Reinhold Baer [11]. Here, however, we shall
consider only cases in which U is normal in G.

Otto Schreier [1, 2] first considered the problem of constructing all groups
G such that G will have a given normal subgroup N and a given factor group H
= (G/N. There is always at least one such group, since the direct product of N
and H has this property.

Let us first assume such a group G given, and examine it closely. Let the
elements of the factor group H = G/N be designated as 1, u, v - - -, w. Each
element x of H corresponds to a coset of N in G. Let us choose a representative
1 1n G of the coset N corresponding to x, with the convention that the identity
1 of G shall be chosen as the representative of N. Then

(15.1.1) G =N+ aN + N + --- + BN,

and in every case the homomorphism G — H is such that

(15.1.2) a—u ueG, uel,
Then the mapping
(15.1.3) a S alau = av,

all g1 ¢ VV, 1s an automorphism of N, since N is a normal subgroup. Also



(15.1.4) w0 = w(u,v),

with (H, 11") e IV, since W — U, P — P in the homomorphism from G
onto H. The set of all elements (u, v) defined by (15.1.4) we call the factor set.
Thus in the structure of G the four following structures enter:

1) The normal subgroup N.
2) The factor group H.

3) The automorphisms of N * g £ ﬂ“, a e N, uwe H.

4) The factor set of(u} ﬂ) € N? U, Ve H.

It is to be emphasized that, in general, the automorphisms and the factor set as
defined by (15.1.3), and (15.1.4) depend on the choice of representative i of
the coset &N corresponding to u.

The automorphisms and factor set must satisfy certain conditions.
Transforming an element ¢ ¢ /\ by both sides of (15.1.4), we have

(15.1.5) (@) = (u, v)~'(a*")(u, v).

Also, since in (¢ (0)W = %(DW)we have
(@n)w = [u(u, v)]w = ww(u, v)* = dw(uw, w)(u, v)°,
and also
a(00) = u[tw(y, w)] = ww(y, vw)(, w),
whence it follows that

(15.1.6) (uw, w)(u, v)* = (u, vw)(v, w).

For the product of two elements ga, §ih of G we have

(@a)(vb) = uva*d = wo(u, v)ab or
(15.1.7) (@a) (9b) = w(u, v)a’d.

The convention of taking 1 as the representative of N in G yields, from (15.1.4),

(15.1.8) (1) =1=(,v),



Conversely, the conditions (15.1.5) and (15.1.6) on the automorphisms and
factor set are sufficient for G to exist with N as a normal subgroup and G/N =
H. Let us take symbols iia, 3y ¢ Ff, @ e [N and define a system G with a
binary operation of product given by the rule

(15.1.9) ta-tb = w(u, v)ab.
This product is associative, since

(%a-ob) -We = wv(u, v)a*h-we = wvw(uv, w)(u, v)*(a*)*b*c
wvw(uv, w)(u, v)*(v, w)ta(v, w)b*c [by (15.1.5)]
ww(u, vw)a™ (v, w)b*c [by (15.1.6)]

aa-7w(v, w)b*c

ua- (ob-wc).

Il

Il

It is convenient (but the reader may verify not necessary) to assume for the
converse, besides (15.1.5) and (15.1.6), also

(15.1.10) a1 =1,

a particular case of (15.1.8). If in (15.1.5) we putu = v =1 and use (15.1.10),
we get (a))! = 4!, and since @' = ¢ may be an arbitrary element of N, we have
cl=cforall g e N In (15.1.6) put u = v =1. Then 1 = (1, 1) = (1, w).
Similarly, from v = w = 1, we find (u 1) = 1. Now
11-wWe = W(1, w)c = We. and Ga-11 = 1(u, 1)a = wa. and so
Il is the identity for the system G. Since g £ @' is an automorphism of N,
there is an element d of N such that @¥ = (w™!, w) ¢! for given ¢ ¢ N,
w e H- Hence, for an arbitrary 7¥¢ of G, we have
w=d - We = T(w“, w)dvc = 11, the identity. Since every element of
G has a left inverse, this is sufficient to prove that G is a group. The product
rule (15.1.9) is such that the mapping

(15.1.11) ua — u

is a homomorphism of G onto H, where the kernel consists of the elements J g.
But we verify



Ia-1b = 1(1, 1)ab = 1ab

Whenge Tﬂ 4= @ 1s an isomorphism identifying this kernel with N. Since
%l-la = 4i(u, 1)a = Wa. we may take the 7 = il as coset
representatives of NV, and we may regard ia as the product of &z and a.

We summarize these results in a theorem.

THEOREM 15.1.1 (SCHREIER). Given a group G with a normal subgroup N
and factor group H = G/N. If we choose coset representatives
uN — u € H, taking i = |, then automorphisms and a factor set are

determined, satisfying

(@) = (u, v)7'(@*)(4,v), @, (u,v) eN;u,veH;
(uv, w)(y, 0)* = (v, W) (v, ); (1,1) = 1.

(Conversely, if for every y € H there is given an automorphism
aS a® of N and if for these automorphisms and the factor set
[(u, ﬂ} e N ], (u, v e H ], the above conditions hold, then elements iua,

w e H.aq e N, with the product rule

aa-vb = uv(w, v)ab,

define a group G with normal subgroup N and G/N = H.

If the requirement (1, 1) = 1 is omitted, then the theorem still holds with
1(1, 1)~ the unit for G.

The unique extension G determined by N, H, g 5 @* and factor set (u, v)
will be designated E[N, H, a“, (u, v)].

If we change the coset representatives of N in G, taking

(15.1.12) % = ua(u), uwueH, alu)eN,

where by convention i =1=1 and so, a(l) = 1. Here the

automorphisms are changed and

(15.1.13) a s e = Tlau = a(u)late(u).

Also the factor set (u, v) is replaced by the factor set (1, v)! by the rule



(15.1.14) u-v

Il

da(u)ialy) = wv(u, v)a(u)’a(v)
wo(u, v)! = a0 a(uv)(u, v)',

Il

DEFINITION: Two extensions E| = E[N, H, a*, (u, v)] and E, = E[N, H, a"',

(u, v)'] are equivalent if the automorphisms and factor sets are related by

a’ = a(u)"ata(w),

(u, v)! = aluw)™'(u, v)a(u)’a(v),

where a(u) is a function of elements 4 ¢ J{ with values in N and a(1) = 1. We
Write

E[N, H, a*, (4, v)] ~ E[N, H, a*, (u, v)"].

The equivalence of E, to £, amounts to a change of coset representatives for N

in the same group G, and so, clearly this is a true equivalence and is symmetric,
reflexive, and transitive.
If coset representatives 7; of N in G may be chosen so that

gl
=

(15.1.15) W =

]

i.e., (u, v)! = 1, then the coset representatives form a group isomorphic to H,
which we may identify with H. If this happens, we shall say that G splits over
N or that G is the semi-direct product of N and H.

THEOREM 15.1.2. The extension G = E[N, H, a“, (u, v)] splits over N if,
and only if, we can find a function a(u} € N,y e H such that

(u, v)a(u)’a(v) = a(uw)
forallu,y ¢ H.

Proof: If u are coset representatives such that G = E[N, H, a, (u, v)] splits
over N, then (1, v)! = 1, and with .ﬁ = 1l ﬂ(u) we find the relation

(15.1.16) (u, v)a(u)’a(v) = a(uv).



Conversely, if a function a(u) exists such that (15.1.16) holds, then define a*!
by a*' = a(u) 'a*a(u), § = U a(u), and the extension E[N, H, a*', (u, v)']
= G will exist and be an equivalent extension with (1, v)! =1 for all u, g ¢ H,
whence the extension G splits over M.

15.2. Central Extensions.

Let us suppose that all factors (u, v) in an extension of a group 4 by a group

H lie in the center B of 4. Then we shall say that E[A, H, a“, (u, v)] is a central
extension of A by H. Thus, if 4 is an Abelian group, B = A4 and all extensions of
A are central extensions.

For a central extension (15.1.5) reduces to

(15.2.1) (a)° = a*,

which says that the automorphisms ¢ £= g* of 4 form a group homomorphic
to H. Let us denote by y a particular way of assigning to each element of H an
automorphism of A, where the automorphisms that are assigned form a group
homomorphic to H. Furthermore, if coset representatives i are changed only by
factors a(u) lying in B, the automorphisms are unchanged. Hence, for such
extensions, which we call with Baer [1] H-y extensions, the automorphisms are
fixed and form a group homomorphic to H. This settles condition (15.1.5) for
central extensions, and only (15.1.6) need be considered

(15.2.2) (w, w)(u, v)* = (u, vw)(v, w).
Here, for an equivalent extension,
(15.2.3) (u, v)! = a(uv)(u, v)a(w)’a(v)

with (1) € B
If factor sets (u, v); and (u, v), both satisfy (15.2.2) and we define

(15.2.4) (u, v)s = (u, vV)1(u, v): allu, v e H,



then the elements (u, v); also satisfy (15.2.2) and are a factor set determining an

H-y extension of A. In this definition of product for factor sets there is an
identity, the factor set with all (u, v) = 1 and an inverse, the set in which (u, v)

is replaced by (u, v)—!. Moreover, for equivalent factor sets if (u, v);* ~ (u,
V)1, and (u, v)*, ~ (u, v),, then (u, v);*(u, v),* ~ (u, v){u, v),. Hence the
totality of all H-y factor sets forms an Abelian group even if we identify
equivalent sets. The group in which equivalent sets are identified will be

called the group of extensions.
If H 1s finite, we define

(15.2.5) @ =1 @ o).

Multiplying (15.2.2) over all 9y ¢ JH, we have

(15.2.6) f)f()® = flow)(v, w)*,

where 7 1s the order of H. On comparison with (15.2.3),

(15.2.7) (v, w)* ~ 1.

Again, if m is a multiple of the order of every element of B, since (u, v) € B,
(15.2.8) (v, w)™ = 1.

Hence the following theorem holds.

THEOREM 15.2.1. The order of any element of the group of extensions
divides the order of H and the least common multiple of orders of elements of

B.

COROLLARY 15.2.1. If m and n are relatively prime, then all H-y
extensions of A are equivalent to the semi-direct product of A by H.

As an application of this theorem we may prove Theorem 15.2.2 on
extensions which need not be assumed to be central extensions.

THEOREM 15.2.2. Let G be a group of finite order mn containing a normal
subgroup K of order m and having a factor group H= G/K of order n where m



and n are relatively prime. Then G splits over K.

Proof: 1t is sufficient to show that G possesses a subgroup of order n. We
shall proceed by induction on m, the theorem being trivial if m = 1. Let m > 1
and p be a prime dividing m. All Sylow subgroups S, belonging to p in G are

subgroups of K, since K contains at least one Sylow subgroup S,,, and K being
normal, the conjugates of S, also belong to K. Thus the number of Sylow
subgroups S, in G is the same as the number in K. Hence by Theorem 1.6.1,
[G:NG(S,)] = [K:Nk(S,)], whence [N(S,):N(S,)] = [G:K] = n, N;(S,,), and
Ni(S,,) being the normalizers of an S, respectively in G and K. Here, of course,
Ng(S,) = Ng(S,) N K, and by Theorem 2.4.1, Ng(S,) is normal in Ng(Sp). If
Ng(S,) 1s a proper subgroup of G, by induction it contains a subgroup of order

n.

Hence we may assume G = Ng(S,), and so, K = Ni(S,). If S, is a proper
subgroup of K, then by induction G contains a subgroup of order [G:S,]
isomorphic to G/S),, and thus a subgroup isomorphic to G/K of order n, proving
the theorem. Hence our proof is reduced to the case in which K= §,,. Here, if
S, is Abelian, G is a central extension of S, and by the corollary to Theorem
15.2.1, G splits over S, proving our theorem. If S, is not Abelian, then the
center Z of §,, is a proper subgroup of S, and as a characteristic subgroup of S,

necessarily a normal subgroup of G. Hence, by our induction, G/Z contains a
subgroup U/Z of order n. But Z is normal and of index » in the corresponding
subgroup U of G, and by induction, U contains a subgroup of order n, proving
the theorem for this final case.

15.3. Cyclic Extensions.

Let us suppose that H is a cyclic group of finite order m, generated by an
element x; the elements of H will be

(16.3.1) 1,2, 2% i 8™ L

With G/N = H, choosing a representative f of the coset of N mapped onto x, we
may also choose 2, - - -, £m—1 as representatives of the cosets mapped

respectively onto x%, - - -, X!, and so,



(15.3.2) G=N+Ni+ -+ + Nz™L,
Here

(15.3.3) ™ = a,

where o 1s an element of V.

Thus for the automorphism ¢ = @* of N, we must have for its mth power

(15.3.4) a*" = a'aa, aceh.

Moreover, from the identity

(15.3.5) Tzmz = ™,
we have
(15.3.6) a® = a.

We shall show that (15.3.4) and (15.3.6) are the only conditions required to
define an extension of N by H.

THEOREM 15.3.1. Let H be a cyclic group of finite order m. Then an
extension G of a group N by H exists if, and only if, we have an
automorphism a @ = @* of N and an element o ¢ N such that (1) the mth
power of the automorphism is the inner automorphism of N given by
transformation by a, and (2) a is fixed by the automorphism.

Proof: We have already shown that if an extension exists, then the
automorphism @ 5 @* and the element a satisfy (15.3.4) and (15.3.6).
Conversely, we must show that (15.3.4) and (15.3.6) suffice to determine an

extension. The elements of H are 1, x, - + -, x™ 1 or x', 0 <i < m-1. Let us
define the automorphisms by

(15.3.7) a® =a, o= (@ i=1,---,m — 2,

and a factor set put



(15.3.8.1) () =1 fe+j7j<m-—1,
(15.3.8.2) (zh, 2) = a ifm< 147

With these definitions we easily verify that (15.1.5) and (15.1.6) are satisfied,
and so from Theorem 15.1.1, an extension 1s defined.

If H is a cyclic group of infinite order, we may put (x, ¥) = 1 for all i, j,
and we find that there is no restriction on the automorphism g £5 @#. This
amounts to taking p¥ = 1 for all .

15.4. Defining Relations and Extensions.

In the preceding section we have seen that when H is a cyclic group, the
conditions for extending a group N are particularly simple, corresponding to the
particularly simple defining relation for H. In this section we shall see how the
extension conditions depend on the defining relations for the most general

group H.
Let the group H be given in terms of generators, x, y, z, - - - and relations
(15.4.1) di(x, Y, 2, ) =1 =12, «++, 1.

We can suppose each element /2 of H to be represented by a definite word 4 =
h(x, y, z, - - -) in the generators and their inverses. Then if G is an extension of
N by H, we can choose representatives of the cosets of N as the corresponding
words in g, 9, E, » » » 50 that in the homomorphism G — H we have

G- H
(15.4.2) E—x
h(:E: !}', " ) — h(.'ﬂ, Y, "')-

Now let F; be the free group with generators x, y, z - - - corresponding to x, ), z
-+ -. Then we have homomorphisms defined by

(15.4.3) xX—I—uz,
y—y—uy,

)



which map

(15.4.4) Fy— H— H,

where JJ is the subgroup of G generated by &, 4, Z, * =+, and so must
contain at least one element from each coset of N. Hence (F = F \U N.-
Hence, if F} 1s a free group which has N as a homomorphic image, we may take

a free group F'=F; U F, and define homomorphisms

F—'}G—}H, F-_—FlUFE
(15.4.5) F,—H—H,

Every element ,E of JJ induces an automorphism in N by transformation

(15.4.6) f-lah = a* heH, aeN.

In the mapping F; — H, we have H = F|/W, where W is the least normal
subgroup containing the ¢(x, y, - - ‘). Hence in FJ — Jf we have
‘i’i(ﬁ; Y, - ) — 1. Thus

(1547} qb,:(.f, E, i ) = ; € N

We shall have an identity in the free group F

Mg - U, = 2122 * " 2y

if the u’s and z’s are words such that the reduced forms of these two
expressions are the same. In the mapping of /" onto G, any identity will remain
valid. In particular W and F, will be mapped onto elements of N. Thus any
identity involving u’s and z’s from the normal subgroup generated by W and F,

will by means of the replacement rules (15.4.6) and (15.4.7), lead to conditions
on the o; and the automorphisms @ *% @" which can be interpreted as

conditions for the existence of an extension G of N by H. Since 35—47j 1S 1n
N M\ H. itis the image in G of an element of /¥, and hence a product of

conjugates of the (L, 3, +++) = a; Hence each factor



(u, v) = @p~'gp is the image in JJ of an element of W, and if
@ =h(Z,7, )0 =h(Z,7, ) @ = hs(&, 7, --+)
then (u, v) 1s the image of

(15.4.8) hi(x, y, - <) thu(x, y, -- ')h'—‘l{x: L T '):

an element of .

The conditions of Theorem 15.1.1 are identities in F paraphrased into
conditions on the factor set and automorphisms by the rules (15.4.6) and
(15.4.7). Thus the rule (15.1.5)

(@) = (u, v)7(a*")(u, v)

1s a paraphrase of the identity

(15.4.9) 51 (7~a)

=i

= (w~'up) (v aww) (av—b),

using (15.4.6), for automorphisms and replacing elements of /¥ by elements in
N. Similarly, the rule (15.1.6), (uv, w) (u, v)" = (u, vw) (v, w), 1s a paraphrase
of the identity

(15.4.10) (wvw—'ww)w (@ 'u)T = (Gw— avw)(Fo-9).

Thus conditions for the existence of an extension of N by H are paraphrases of
identities in F. Note that the defining relations for N do not enter into these
conditions. The conditions may be regarded as finding elements o; in N and

automorphisms in N consistent with the defining relations of H. Both these
conditions become vacuous when H is a free group, for then in every case we
can choose §jj = 7i7 and take our factors as the identity, and moreover,
require merely that the automorphisms form a group.

In practice it may be difficult to determine the identities in F' leading to
conditions for an extension. In the next section we shall make such a
determination for central extensions of N by a group H.

15.5. Group Rings and Central Extensions.}



We shall consider a central extension of a group N with center C by the
finite group H. We suppose, as in §15.2, that the automorphisms satisfy

(15.5.1) (a¥)* = a*~.

We have assumed that the factors (%, v) = w14 lie in C. But applying

Lemma 7.2.2 (for right cosets r_ather than left cosets), these elements generate
the subgroup 7 of FF such that [ /7' = H . Butif

(1552} ‘i’i(x; Y, ---) =1

are the defining relations for H, then
(15.5.3) ¢i(Z, Y, ) = aieC,

since the a; surely belong to 7 and 7 is generated by elements of C.

If » and s are endomorphisms of C, then we may define an endomorphism r
+ s by the rule

(15.5.4) aa® = ats,

Thus, by (15.5.1) and (15.5.4), the group ring H* of H is a ring of operators on
C. Here the group ring H* consists of elements

(15.5.5) ahi + - + cula,

where iy - - -, h, are elements of Hand c; - - -, ¢, are integers. Elements of /*

are added by adding coefficients. Multiplication in H* is given by the
multiplication 2;h, = hy. in H together with the two distributive laws. It is easily
verified that H* is an associative ring and that the identity of H 1s the i1dentity of
H*.

We shall say that an Abelian group 4 which admits H* as an operator ring
1s operator free if 4 has a basis of elements ay, a,, - - -, a, such that every

element of A4 1s of the form

(1556) a = {I-lzlﬂgzﬂ e I'Irzr 2i € H*



and has a unique expression of this form. Thus a = 1 implies z; =z, =" - - =z
=0.

r

THEOREM 15.5.1. The only extension G of an operator-free group A by a
finite group H is the semi-direct product of A by H.
Proof: In A every element b has a unique expression

b=a1---a’r z; € H*,
Now ifz;=c¢;;+- - - +c;,h,,i=1,--r put

(b; ki) = aMag™ -+ @,
Thus, witht = hy, h,, - - -, h,,, b has a unique expression
(15.5.7) b= b0t t=hy--, b

t

Hence, for a factor set,

(15.5.8) (v, v) = [] (u, v; 1),

¢

and the rule (15.1.6) because of the uniqueness of (15.5.7) becomes

(15.5.9) (uv, w; ) (w, v; tw™) = (u, vw; t)(v, w; ).

If we now put @ = U H (w, 715 1)™¢ for all u of H, we may verify from
¢
direct calculation and substitution from (15.5.9) that

U = .

£l

(15.5.10)

=

Hence the new representatives form a group and G is the semi-direct product of
Aand H.

By the results of §15.4 the conditions for a central extension of a group N
by a group H are (15.5.1) and conditions of the form



(15.5.11) [Masi=1  u, em*

with éi(i, ﬁ, .o -} = @, as in (15.5.3). Now suppose that N is an
operator-free group. We know that a; = 1, i =1, - - -, r yields a solution and
that all others are obtainable by changing representatives. If we put

T= 85,7 =n7 o bng(eF 0 +--) = 1 Horo,wing

the rule

(15.5.12) o = Za’, ae€N,

we may write
(15513) 1= QE’:E(EE; ﬂﬁ: " ) = ‘f-’i(ir ﬁ! ' .)E:{nﬂ‘- e,

Hence ﬂ!;_l = E#iq-:,nyi + » » must also satisfy conditions (15.5.11), since

these values are given by merely changing the representatives in the semi-direct
product. Taking &, # - - - as independent basis elements of N, we have the
following equations holding in H*:

(155.14) XYoai =0, Yyui=0-++, =1, 1,1

The elements x; y;, - - - of H* are easily computable by the rule (15.5.12) from
the relations ¢/x, y, - - -) = 1 defining H. Hence the u; of (15.5.11) are

restricted to quantities of H* satisfying (15.5.14). If we can show conversely
that u; satisfying (15.5.14) yield conditions (15.5.11), we shall have reduced

the determination of the conditions (15.5.11) to the solution of (15.5.14). The
proof of this, given here, will depend on methods due to W. Magnus [2].

THEOREM 15.5.2. Given groups H and N. Conditions for the existence of a
central extension of N by H are that there be automorphisms g = ﬂh

associated with elements of H satisfying (15.5.1); that elements a; of C, the
center of N, exist with ‘ﬁ’i(%r L?:j; . } = @ i=1, -, r, where §(x, y,
-+ ) =1 are the defining relations of H; and that (15.5.11) hold for the a,
where the u; are any elements satisfying (15.5.14) in H*.



Proof: The preceding discussion has shown all parts of the theorem except
that every set of u; satisfying (15.5.14) determines a condition (15.5.11).

Consider the free group F generated by x, y, - - -, as discussed in §15.4,
and let H = F|/W, where W is the least normal subgroup containing ¢.(x, y, -

*). Let W' be the derived group of . Then W' as a characteristic subgroup of W
will be a normal subgroup of /. Here 7 = F;/W will be the group with the

properties that (1) 7 is generated by x, y, - - -; (2) T has a normal subgroup V' =
WIW' such that 7/V = H; and (3) V' is Abelian. Finally, it is clear that any group
with these properties is a homomorphic image of 7, since any such group must
be a homomorphic image of | in which the elements of W are mapped onto the

identity. We shall use a lemma for our proof, postponing the proof of the lemma
until the end of the main proof.

LEMMA 15.5.1. Given matrices of the form (;E: ?) withh ¢ Hand L a
y

linear form in indeterminates with coefficients from H* subject to the

product rule,
hy, O\( he, 0\ _ hihe , 0
Ly, 1)\ Ly, 1)~ \Lihs + Ly, 1)

z, 0
Then, corresponding to x,y, = - -, we have matrices f = (t ! 1) .u
z)

and these matrices generate a group isomorphic to 7= F;/W'.

. . 1,0 . .
Note that since matrices ( ! generate an additive, and hence Abelian,

2
group, this group is in any event a homomorphic image of 7.
In a central extension fJ is an image of T. Hence, if a relation

(15.5.15) SiZ, 7, )i =1, u;eH*

holds in 7, then the corresponding relation (15.5.11) must hold in f—f
Assuming the lemma we have in T as elements of V,



_ 1,0 o
(15.5.16)  ¢u(&, 7, +++) = (L,-, 1) i=1, -7

with L; a linear formin ¢, ¢, - - - with coefficients from /7*. Let us adjoin to V'
further elements:

_ (1,0 __ (1,0
(15:5.17) ¢= (tg, 1)J s (tm 1)j ’

with 75 £, being new indeterminates. With i as before (u e H :],
(15.5.18) ultq = (1 ’ 0).

Thus, adjoining the elements of (15.5.17) to V, we have adjoined an
operator-free group. Now

- _ [ , 0
(15.5.19) & = (fe-'-‘? fuof 1).

Hence we obtain :ﬁu{(.ff, nYy, - ) by substituting in the L, of (15.5.16),
replacing ¢, by ¢« + ¢, and so on. Hence, from

(15.5.20) Gi(£2, 07, +++) = ¢i(E, T, ++ ) E%in¥i e

and the linearity of the L,, we have

1 0
Ti yi . = !
(15.5.21) Ezip (L;(tffﬂ}, 1).

Hence if the equations ZI;'H;' = U, etc., of (15.5.14) hold, then
£

(15.5.22) DL(tw)u; = 0.



Here, since the ¢- were indeterminates satisfying no relations, it must follow
that

(15.5.23) ZL.‘R{ =0

for any arguments for the ;. Applying this to (15.5.16), it follows that

(15.5.24) [Mez, 3, - )« =1

Since this relation holds in 7, it must also hold in E, and so we have shown
that ]]ﬂ-’t'ul = 1in JI whenever (15.5.14) holds. Hence (15.5.11) is a
i

consequence of (15.5.14), and the proof of the theorem is complete except for
the establishment of the lemma.

Proof of the Lemma: With H = F|/W, suppose coset representatives of W

chosen so that they are the earliest possible with respect to an alphabetical
ordering of the elements of /. Then the same alphabetical ordering may be
carried over to '}, and if 4 = h(x, y, - - -) 1s the earliest element the coset Wh,

then h = h(x, g, -++) € H is a canonical form for % as its earliest
alphabetical expression. Hence the same form may be used for an element of H
and the corresponding coset representatives of W, and we may speak of the
length of an element of H, this being the length of its canonical form. Now
consider the correspondences with matrices

- (%0 £ T
& t, 1) Y T b

withx, y, - - - generators of H and the rule of composition of the matrices
ha, 0) ko, 0) _ (b, 0)
Ly, 1\ L, 1 Lihs + Ls, 1
with iy, he € H and Ly, L, linear forms ¢, ¢,, - - - with coefficients from /7*.

As remarked before, the group K generated by these matrices is at least a



h, 0
i

of K onto H, and the kernel of this homomorphism consists of elements

homomorphic image of 7, since ( ) —3 h is clearly a homomorphism

(;' g), which form an additive Abelian group.
]

By Theorem 7.2.3, W is a free subgroup of F|, with free generators those

elements Cijs
(15.5.25) Cij = hahi™ % 1, h; = ¢(hix)

in I}, x a generator of F.

1

Moreover, by Lemma 7.2.3, 4; does not end in X nor A;, in X. The group

ii> and W/W' will be the
free Abelian group with the ¢;; as a basis modulo . It will follow that K is a

faithful representation of 7' = F/W' if we can show that the elements c;

corresponding to Eﬁ};rl are independent in K. In the mapping F'; — H we

W' will be the group given by all commutators of the ¢

have Cj— 1, h;— hy hy— h;, and X — x, and so, hx = hj in H. Now let
E' - hi 3 0 7 — T, 0
: L(hy), 1 iz, 1
- h; ,0
o (L(h,-}, 1)‘
Then

(15.5.26) o

Tl

o hl-xh,-*‘ y 0
- L(h;);t:h;‘l + f,;hj_l - L(hf)h-f_l, 1

1 , 0
- (L(hi)hr1+ t:hit — L(hphi™, 1)’

using i = h; in H.
We must examine more closely the linear form L(/4,) occurring in the matrix
for an element IE:" Here



(%0 1 _, zt ,0
tz 1 {21, 1],

Let us write g(a) t, if a = x is a generator and (qa) = —t,a ' ifa ! = x is a
generator. Then if _E = Qs ~ > 4 1s any word where each a; is one of
Z, Yy, =+ or &1, - -, weshall have

h— (E(h)i ?)

with
(15.5.27)
L(k) = q(a))az -+~ a, + g(az)az -+ a; + --- g(a-—1)a, + ¢(a,),

where h=aja, - - - a,.
This formula is easily established by induction on » and the product rule for

the matrices. We now note from (15.5.27) the further rule:

(15.5.28) L(h)h* = gla)ay™! + g(asz)asa™?
+ --- + g(ad)a a7t - a7

If 4 1s in canonical form we note that g(a;) is multiplied by the inverse of a,a,,
", a;, which 1s, by the Schreier property of the representtives of W, again in
canonical form. Thus as a basis for the group ring H*, it is convenient to use the

inverses of canonical forms of elements of H.
With each ¢;; of W there is a unique /; and x. Hence we may associate ¢;;

with the term tth_l. This term may be characterized by noting that /; is in
canonical form, but that hjx_1 although in reduced form is not in canonical form,
being equal to the canonical form /,. But in (15.5.26), the linear form L(h,)h;, ' +
z‘xhj_1 — L(hj)hj_1 contains no other term of this type. For, by (15.5.28), the
other terms arising from L(h;)h; ! or L(hj)hj_1 are of the type g(a;)a; ! -

a,”!, where a; - - - a, is an initial section of A, or h;, and so, by the Schreier
condition on the /4’s, will itself be an 4 in canonical form. Here if a;, = y, a



generator, g(ay)a, ' - - - a,; = l‘yy_1 eea = tyh_l, where / ends in y so that
hy~!is not in reduced form. But if g, = y~!, where y is a generator, g(a;)a;, " - -
cay '=—tap V- a ' ==ty k7, where by ' =a, - - - a is in canonical
form. Thus the term txhj_l is the only term of its type in the linear form
associated with €;5. Also, different, ¢, j,E yield different associated terms.
Hence the linear forms L(c;;) are linearly independent and the ¢;; generate a free
Abelian group, which is of course isomorphic to W/W'. Hence the group K of

matrices generated by the matrices corresponding to i‘, ﬂ’, - -,ete., 1s a
faithful representation of 7= F'{/W and the lemma 1s proved.

15.6. Double Modules.

Let Q be any multiplicative group and let A be a double Q-module, 1.e., an
Abelian group written additively which satisfies the following conditions:

1) A4 admits Q as group of operators both on the right and on the left, so that
&a and a¢ are uniquely determined elements of A for given g ¢ A and £ € ().

2) Distributivity,
whence

Ea + az) = Ea + fas
(a1 + a2)t = ;¢ + asf,

~ta = &(—a), —af = (—a)t
80 = 0£ = 0.

3) la=al =a where 1 is the unit element of Q.

4) Associativity, {(na) = (Sn)a, (Ca)n = {(an), and (ad)n = a(<n).

These rules are to hold for all a; a5, ¢ € A,andall &, n e £2.

Effectively, then, a double Q-module is the same as an additive Abelian
group admitting the elements (¢, ) of Q x Q as distributive operators.

In the applications, it often happens that Q acts trivially on one side, e.g.,
on the left. This means that & = a for all £ € 2 and ¢ ¢ /4. In this case, we
shall simply omit the left-hand operators. Call this the one-sided case.

For example, let A be a normal Abelian subgroup of some group G, and

write Q = G/A. If { = Aug, then ué_lauf depends only on a and £, but not on the

choice of u& in its coset. Hence we may write u¢ laué = a¢ without ambiguity.



We then have an example of the one-sided case, but with A written
multiplicatively. In developing the general theorems of cohomology, however,
it is more convenient to write A in additive notation.

15.7. Cochains, Coboundaries, and Cohomology
Groups.*

Given a double Q-modulo 4, we define (" = C"*(4, Q) to be the additive
group of all functions f of n variables which range independently over €2, and
taking values in A4, subject to the condition

(15.7.1) fl&y -+, &) = 0,

whenever at least one of the {; = 1. The elements of " are called n-
dimensional cochains. C° = A by definition and a zero dimensional cochain is
simply any element of 4.

The coboundary operator 6 maps each C" into the next, C*'l, in
accordance with the rule

(&) (b0, &y =+ 5 En) = Eof(&ry =+, &)
(15.7.2) -+ Z (=D (&, &1, +*+, Et2, Et1Esy Epry =2y En)

t=1

+ ('_ 1),1“1;(‘50: Elr "ty £n—1)£n-

Here f € ('™ and it is immediately verified that § f e ('n+1 The map f — ¢

f1s homomorphic with respect to addition. The only cases genuinely useful in
group theory appear to be the cases n = 0, 1, 2. Here the coboundary formulae
are

OfE) =& —ft f=aed
= fa — af
(15.7.3) (B¢ n) = & (n) — f(&n) + (O,
G)E &) = &, §) — f(&n, §) + f(& n8) — f(& n)s.

TueOREM 15.7.1. If fis any cochain, then 6*f=0.



Proof: Choose n so that f € (72 Then § f € Cn~L Therefore when we
express (6%/)(&y, &y, « - -, &) in terms of the values of ¢ f, using the definition,
we obtain n + 1 terms with alternating signs, say,

U — U + Uz — -+ + (—1)"un.

Each u;, when expressed in terms of the values of f, is an alternating sum of
n terms, which we may write as

W= o = wn oo A (=D
F (=D + o0+ (D)0 + oo,

Hence

Bk, -+, &) = 2 (= 1) uy; + X (— 1)y,

<] i

with 7 and j running from 1 to n. But it is easy to verify that u;; = u;; for all , j.
Thus the above sum vanishes.

If f e O'" and is such that 6 £ = 0, then f is called an n-dimensional
cocycle. These cocyces form the kernel 2" = Z"(A4, Q) of the homomorphism of
C" into C"*! induced by 4.

If f e (™ and if there exists an element q € ('n—1 guch that 0 g=/, thenf
is called an n-dimensional coboundary. These coboundaries form the image B”
= B"(4, Q) of C" ! under the mapping J. We define B = 0.

According to the theorem, every coboundary is a cocycle, so that B" € Z"

for all n. The quotient group Z"/B" is called the n-dimensional cohomology
group of the double QQ-module 4. We write it

H™A, Q) = Z*/B.

In our definition of cochainsf(&;,, - - -, &,) we imposed the restriction

(15.7.1) that the cochain vanish if one or more of the arguments is the identity.
This is a desirable restriction in many cases, in particular in the application to
factor sets as we have defined them. Let us call such cochains normalized. If
the restriction (15.7.1) is omitted, we speak of unnormalized cochains.
Theorem 15.7.1, is of course, valid in either case, since it makes no use of the




restriction (15.7.1). The distinction 1s a matter of convenience, since we shall
show that the cohomology groups of every dimension for unnormalized
cochains are 1somorphic to those for normalized cochains.

THEOREM 15.7.2. The cohomology groups H"(A4, Q) of every dimension n
for unnormalized cochains are isomorphic to those for normalized cochains.

Proof: Let us designate the normalized cochains, boundaries, and cocycles
of dimension n by C", B", and Z", respectively, and for the unnormalized case
use the designations C”, B", and Z".

For n =0 and n = 1 we readily verify that B = B0 =0, 20 = 79, and B! =
B, 7' = 7', whence H(4, Q) and H'(4, Q) are the same in both cases. The
principal verification involved here is that if f(£) e Z'L, then &fin) — fién) +
fid)n = 0, whence putting £ = n = 1, we find that f{1) = 0, whence f({) is
normalized, and so, Z'' = Z!.

Now suppose n > 1. Clearly, B” € B" and Z" € Z"™. Hence a cohomology
class for (", i.e., a coset of B" in ("', corresponds to a unique cohomology
class for C", namely, the coset of B” which contains it. This correspondence
1s, of course, a homomorphism of H"(4, Q) into H"(A, Q). To prove
isomorphism, we must show that this correspondence is one to one and for this
two lemmas will suffice. Let us say that two cochains are cohomologous 1f

their difference is a coboundary. Thus two cocycles are cohomologous if they
belong to the same cohomology class.

LEMMA 15.7.1. Every unnormalized cocycle is cohomologous to a
normalized cocycle.

LEMMA 15.7.2. If the coboundary of some cochain is normalized, then it is
the coboundary of a normalized cochain.

Proof of the lemmas: Let us say that a cochain fix;, - - -, x,) 1S i-
normalized, i =0, - - -, n if it is zero whenever one of the first i arguments is
the identity. The 0-normalized cochains are then the unnormalized cochains ¢”
and the n-normalized are the normalized cochains C". For f(x;, - - -, x,)) let us
define cochains f'= f,, and recursively,



(15-7-‘1) finn = fi — 0gin 2=0, ", — 1
where
(15.7.5) (@, - -+, Zaa) = (=D)¥i(@, =2+, 2y 1, Tigay *+*y Taa)-

We note that /= f,, and f,, differ by a coboundary, and also, since Jf; = df;.{, f =
Jo- /1> * * *».f, all have the same coboundary Jf.

LEMMA 15.7.3. If of is normalized, then f; is i-normalized.

This will prove both lemmas, since for Lemma 15.7.1, if f is an
unnormalized eocycle, then Jf = 0, which 1s trivially normalized whence £,

which is cohomologous to f, = f, will be a normalized cocycle. For Lemma
15.7.2,if g = df is a coboundary and g is normalized, say, g € ('"*1, then g =
Ofg, = * * = of,, where f, 1s normalized.

We prove Lemma 15.7.3 by induction on i, the statement being trivially true
for i = 0. Suppose the lemma to be true for i, and consider it for i + 1, it being
necessary to prove that

(15.?.6) fi-i-l(xl, By mi; ]'J ${+2, iy mn) - G"
From the definition of f;,; in (15.7.4), we have

Jin(@, -y @iy 1, Tigs, -+, Tn)
= fi(mlr Tty X, 1: Lipay * xﬂ)
= Ilgi+1($21 cee, Ty 1, Tiga * ", ﬂ?n)

i-1
i Z (_l)j_lgi-i-l(xh Tty Eilivy 7ty T 1: Tit2y * "%y wﬂ)'
i=1
(15.7.7)  + (=1 gia(my, **, Ticay Tiv 1, Tiga, = -+, Tn)
+ (—1)gepa(zy, =+, Ty 1Ziye, =+, Tn)

n—1
+ Z (1) g, <oy Ziy 1, iy, + v, LiTit1y ** " 'T’?l)
i=i42

-+ (—1)“gs+1($1, see, Ly ]., Tiyo. *°*, :rn_l);rn.



From (15.7.5), since by induction f; is i-normalized, g;,; is i-normalized. This
means that in (15.7.7), the term with the factor x; on the left and the sum withj =

1 toi— 1 are all zero. The next two terms cancel. Now let us take the remaining
terms replacing g;,; according to its definition (15.7.5). This gives for (15.7.7)

fl'+1(xlr Tty Xy 1: Tiye, " 1?“)
= fi('rh Tty Ty 1: Ligo, * ", 27“)

n—I1
(15.7.8) -+ E (= }-)Hf_lfi(xh ey Ziy 1,1, Ty, - "y LiTi1y 0y Z5)

j=it+2

+ (-1)ﬂ+1f1'('r’1: Tty Ty 1: 1: Tive, ***, $n_1)$ﬂ.
But, by hypothesis, df; = Jf 1s normalized, whence
(1579) (“ I)H-laf(xlz veey sy 1, 1, gy o0, %) = 0:

and since by induction f; is i-normalized, the right-hand side of (15.7.8)

consists of all the terms of the expansion of (15.7.9) which remain. Thus

(15.7.10) f£+l(II, Yy :rt-} 11 2:'1:-}-2; YT E"-'l-) = 0!

proving Lemma 15.7.3 by induction and thus Lemmas 15.7.1 and 15.7.2, and in
turn, the theorem.

15.8. Applications of Cohomology to Extension
Theory.

If 4 is a normal Abelian subgroup of some group G, let 2 = G/A be the factor
group. If the coset Au:= ¢ is an element of Q, then for g ¢ A, u{lauf depends
only on @ and ¢ but not on the choice of u; in its coset. Hence we may write

uf_lauf = a¢ without ambiguity, and in this way € is a group of operators on the
right for A and we regard Q as acting trivially on the left. With the operators
fixed, and 4 written additively, if we put f{u, v) = (u, v) for the factors of a
factor set, (15.2.2) becomes




(15.8.1) fluv, w) + f(u, v)w = f(u, vw) + (v, w).
Let us rearrange the terms thus
(15.8.2)  flv, w) — fluw, w) + flu, vw) — f(u, v)w = 0,

whence we see that a factor set is a cocycle of dimension two. From (15.2.3),
the condition for the equivalence of two factor sets f(u, v) and f1(u, v) is

(15.8.3) filu, v) = f(u, v) + a(@) — a(w) + alu)y,

or that f and f differ by the coboundary a(v) — a(uv) + a(u)v. Here we note that
Q operates trivially on the left. Hence the group of extensions is the second
cohomology group H?(4, Q). We state this as a theorem.

THEOREM 15.8.1. The group of extensions of an Abelian group A by a

group Q is the second cohomology group H*(4, Q), where
1) Q operates trivially on the left in A.
2) On the right Q operates to induce automorphisms in A.

3) Factor sets f{u, v) are the cocycles of 72
4) Equivalent factor sets differ by coboundaries of B.

The choice of the identity as the representative of 4 in writing G as a sum of

cosets of A leads to the normalization f(1,1) = 0. Puttingu =v =1 in (15.8.1),
we have

(15.8.4) @, w) + f(1, Dw = f(1, w) + f(1, w),
whence

(15.8.5) f(1, w) = 0.

Similarly, putting v = w = 1, we have

(15.8.6) f1, 1) = f(w, 1) + f(x, 1) — f(u, 1) = 0,

whence also



(15.8.7) f(u, 1) = 0,

showing that we deal with normalized cocycles.

We shall prove a general theorem in cohomology which includes Theorem
15.2.1 as a special case.

Suppose that Q is finite of order m. Then for each n > 0 we can define an

additive homomorphism ¢ which maps C" into C""! by the formula

(15.8.8) (0f) (@2, +**y Tn) = 3, 27 (2, Ty, *++, Zn).

zell

Here f e C™, and it is immediately clear that gf ¢ C™1.
Write g = of and let us calculate (g)(xy, = - -, x,,):

59'(111 "ty In)
= I Zrlf(le L2y * ="y Iﬂ)
= E I_-lf(x: T1lg, ***, xn)

- - - - - - - - . - - - - L] - . - L] .

(158.9)  + (=1 2z Y(z, 21, -+, TjaZjy =+, Tn)

- L] L] . . . - L] - - * - » - -

+ (=)™ X a7 f(z, @1, + -, Tara)
+ (_I)H[E mﬁtf(ﬂ:, Tyy e, xn-l)];r-n-

The summation is over all 7z ¢ .
Now consider (J)(x, x1, * * -, x,,).



Of)(x, 21, - -+, Tn)
= xf(ﬂ:lr Yy :‘Bﬂ)
= f(x-z1, T3y *++, Zn)
(15.8.10) + f(z, 21-2s, « -+, Ta)

+ (=D)f(@, 21, + -+, TosZa)
+ (=)™ f(z, 21, ++ +, Ta1)Zn.

Let us now calculate, using (15.8.10),

o(8f) @y, + o+, @) = Xy &) (=, 2, -+, Tn)

xrell

= mf(z1, - -, Tn)
= X o Y(zw, 20, -, @)
+ ) 2 Y(z, L1+ gy + oy Tp)

(15.8.11)
+ (=1)" ) 2Y(x, 7, +- *y Tn1Tn)
+ (=)™ X (=, @y + ey )

In the sum S = Z :l‘—_']f(IIh Lg, *°**, L), put y = xx;, whence
rell

Il

S = 2 2y (Y, @, o0y Ta) = Ty 0f (@s, -+, Tw),

since as x; 1s a fixed element of €, y ranges over Q when x does. Hence
(15.8.11) becomes

(15.8.12) (0(8f)) = mf — &(af).

This gives:



THEOREM 15.8.2. If f € Z™, then o(5f) + &(af) = mf.

CoroLLARY 15.8.1.If f € Z™, thenmf € B™.

For f € Z™ means that 9/ = 0 so that mf is the coboundary of Jf. We
conclude that if Q has order m then every element of the cohomology group
H"=7"/B" has an order dividing m. Theorem 15.2.1 is the special case n = 2
of this result.

We have a further theorem, due to Gaschiitz [1] for factor sets and in more
general form given by Eckmann [1]. This relates the cohomology of a group Q
and a subgroup B. We suppose that B is of finite index m in Q.

(15.8.13) Q= B-14+ Bss+ -+ + Bsn, & = 1.

Here if a; a,, - - -, a, are elements of Q, we write g = 8 where as
usual the bar designates the coset representative. Then write also

§ide = 8i2, ***, Sin—1An = Sin.

We define the transfer, T(f(a, - - -, a,)) of f{ﬂl.’ cee, ﬂﬂ} e On by the
formula

(15.8.14) T(f(ay, -+ -, @n))

m
= E 8 (8i8i™Y, 8n@aSia™Y ¢ ¢ vy Sin—1GnSin L) Sin.
i=1
Note that 8;;_1@;8:;" € B in every case, whence for an f e On (fl, ﬂ),
Tf1s in the subgroup QC"*(4, B)Q2.

THEOREM 15.8.3 (THEOREM OF GascHUTZ). If f(ay, <+, @n) € 4™
and B is a subgroup of index m in Q, then

Tf(ay, -+ -, an) = mf(ay, - -+, a,) mod B".

COROLLARY 15.8.2. The cohomology class of the transfer is independent
of the choice of the coset representatives s; in (15.8.13).

Proof of the Theorem: Consider



m

Z (ﬁﬂ (871, simsa™Y, - - * 3in—1an8gn'"l)8gn

=1

T
- Z (6f) (a1, 8L, 8a@28i2™, **+, 8in—10nSin 1)8in

i=1

-

(15.8.15) + (—1)™* X (of)(ay, + -+, @y, Sijs™ 8:-18;8i; ™%, ***,)8in

=]

m

+ (-1)f21(5f)(ﬂla ooy Biny By 8iiY, Siilin8ii1 Y *°) Sin
j=

m

+ (=D X @) (ay, + ) Gn, S)Sin = 0.

i=1

This is a sum of terms each of which is zero, since f e Z ™, whence Jf = 0.
Consider the effect of expanding the coboundary in each of the » + 1 lines
above and taking the sum from i = 1 to m for corresponding terms of the Jfs.
The first terms of the first line yield

(15.8.16) X, s Y(s:sa=, « ++, Sin10nSin=Y)8in
= Tf(ay, - -, Gn).

The last terms of the last line yield

(15.8.17)
(=1)"(=1)™1 X fay, ++ ) @u)Sin+Sin = —mf(ay, « -+, @n).

Since sij_l_l : Sl-j_lajs,-j_1 = aj-sl-j_l, the (j + 1)st terms of the jth and (j + 1)st

lines cancel each other, for j =1, - - -, n. Let us now take the first; terms of the
(j + D)stline and terms j + 2, - - -, n + 2 of the jth line together. These are given

by



(—1)iay 3 f(as, « -, @j 857 8553186457+ ++)Sin

(_ I)H_l Z f(ﬂlﬂz, sty G, S{:‘:—l, 1'5"13.1""11.‘|"-i-1'45"13.1"+1_1J' " ')sin

T
(15.8.18) (—1)% E flay, + -+, @iaa; 8iiY 8:i041185417Y, ** < )8in

(_1)2;’-}—1 Zf(al'.l Py iy 3,:3‘..1_1_, a'faf'-l-lst'j‘*i} ik ')Sin

™ [ ] - ] ] L] - - - L] - L] - - - L - - -
T

(=141 ¥ flay, -+, iy, Sij17Y, $ii-1€38i7Y ¢+ *)Sin-10n,
=1

But if for arguments wu;, - - -, wu,; we define a function

F;(Hl, S iy Un—1) € ("1 by the formula

(15819) F;(u;, L Hn_1)

m

= Z Fuyy + ¢y U, oL, o, vy, Tin1Un—10in 1) Tin
=1
where o; = s; and recursively g¢;; = o ;;_11,, then we see that the terms of
i i Y Tt it—1lbg

(15.8.18) are the coboundary (—l)i(5}7j)(a1, ', @,), SINCe, summing over i, s;
or s;; | will serve equally well as o;. Letting j run from 1 to n, the coboundaries
(—l)i(éFj)(al, -+ -, a,) account for all terms of (15.8.15) except those which

cancel and those of (15.8.16) and (15.8.17), giving our theorem.
The group theoretical form of the theorem of Gaschiitz is the following;

THEOREM 15.8.4 (THEOREM OF GASCHUTZ). Let F = [(u, V)], u, p € H,
[:u A v) € A be the factor set of an H-y extension of an Abelian group A by a

finite group H. Let B be a subgroup of index m in H, and



H=B1+4Bss+ -+ + Bsm, & =1

Then
m
(u, v)™ ~ “ (squ SuY,  suvs;up 1) ee
i=1

The arguments g,2¢8;1 ! and §;2{pS ;10! are, of course, elements of B.

COROLLARY 15.8.3. If (x, y) = 1 whenever x, § € B, then (u, v)™ ~ 1.

There are many consequences of this theorem, but a very useful
consequence is the way in which this relates the H — y extensions of 4 to the
S(p) — y extensions of A, where S(p) is a Sylow p-subgroup of H. Let H be of
order n = p°m, where S(p) is of order p°. Let E = E(H) be the group of H — ¢
extensions of 4, as defined in §15.2. Each element of £ is a class of equivalent
factor sets F; = [(u, v);]. By Theorem 15.2.1 every element of £ has order

dividing n. Thus E is a periodic Abelian group and is the direct product of its
Sylow subgroups E(p).

THEOREM 15.8.5. 4 Sylow p-subgroup E(p) of E = E(H), the group of H—y,
extensions of an Abelian group A by a finite group H, is isomorphic to E,,, the

group of S(p) —  extensions given by restricting factor sets F = [(u, v)] of H
— ) extensions of A to arguments (x, y), X, If € S (p}, where S(p) is a Sylow
p-subgroup of H.

Proof: On the factor sets F' = [(u, v)] for H — y extensions of 4, let us define
a p-equivalence

(u, v) 3 (w, )

if, when restricted to arguments x, Y € S (p) to yield an S(p) — x extension
we have

(I":‘ y} i (E, y)l-

This 1s readily seen to be a true equivalence. Furthermore, let £, be the
subgroup of E of those factor sets F' = [(u, v)] for which (x, y) ~ 1, x, »



restricted to S(p). Then elements of £ correspond to p-equivalent factor sets if,
and only if, they are in the same coset of E|. Hence E/E| is isomorphic to the

group E,, of S(p)-y extensions obtained by restricting the factor sets /7= [(u, v)]
to arguments x, 3/ € (). By the corollary to the Theorem of Gaschiitz, with
S(p) as the subgroup B, every element of £ is of order dividing m, the index of
S(p), and by Theorem 15.2.1, every element of E), is of order dividing p*. Since

(p¢, m) = 1, it follows that both E, and E(p), a Sylow p-subgroup of E are
isomorphic to £/E| and hence to each other, thus proving our theorem.

THEOREM 15.8.6. An H — y extension of A splits over A if, and only if, for
each prime p dividing the order of H, the extension splits when restricted to
some Sylow p-subgroup S(p) of H.

Proof: Trivially, the splitting of H over A implies the splitting of every S(p)
over A. We must prove the converse. Let /' = [(u, v)] be the factor set
determining the H —  extension. By hypothesis (u, v) ~ (u, v);, where (x, y); =

1 for x, Y€ S{:p) By the corollary we have (u, v)" ~ (u, v);" ~ 1, where n =

p°m. But this must happen for every p dividing n. The different m’s for which

we have (u, v)" ~ 1 have greatest common divisor 1, and so (u, v) ~ 1 and H
splits over 4, the conclusion of our theorem.

1 See Marshall Hall, Jr. [1].
*See Eilenberg and MacLane [1, 2] and MacLane [2].



16. GROUP REPRESENTATION

16.1. General Remarks.

We shall call a representation of a group G any homomorphism a of G into
some group W. Of particular value are representations of G by groups W which
lend themselves readily to calculation. Thus the permutation representations of
a group G discussed in Chap. 5 are homomorphisms of G into a symmetric
group S,,.

Instead of a symmetric group as a representing group, we may turn to the
endomorphisms of a vector space V over a field F. Those endomorphisms
which are one-to-one form a group, which, if V' is of finite dimension n over F,
1s called the full linear group L,(F) and may be expressed by the nonsingular »

x n matrices over F. Here we consider representations of G by linear
transformations. In such a representation we may regard the elements of G as
operators on V. In this context the subspaces of V, taken into themselves by the
linear transformations corresponding to G, are the invariant subspaces of the
representation, and regarding V as an additive group with both F' and G as
operators, these are the admissible subgroups M.

The full set of endomorphisms of a vector space V forms a ring. Thus a
linear representation of G over V leads through addition and scalar
multiplication to a linear representation of R, the group ring of G over F, and

similarly, any admissible subgroup N of V' yields a representation of R along

with that of G. Hence it is not surprising that there is a close relationship
between the decomposition of the group ring R; and the decomposition of
linear representations. Historically, the theory of group representations and the
structure theory of rings were developed separately, and only in comparatively
recent times has the close relationship between these two theories been
recognized.

16.2. Matrix Representation. Characters.*



DEFINITION: 4 matrix representation of degree n of a group G is a function
p defined on G with values in the full linear group L, (F), for some field F

such that p(xy) = p(x)p(y) for all x, iy € 7.
Note that by this definition p(x) is a nonsingular matrix and that x — p(x) is
a homomorphism of G into L, (F). Here we must have p(1) = /,, the unit n X n

matrix, and thus p(x" 1) = [p(x)]"!, the matrix inverse. The kernel K of the
homomorphism x — p(x) will be a normal subgroup of G and the matrices p(x)
will represent G/K faithfully. The representation will be faithful only if the
kernel K is 1.

DEFINITION: The character y of a representation p is the function defined
on G by y(x) = trace p(x).

Thus the characters are numbers of the field K. If the representation is of
degree 1, then y = p.

We shall say that two representations p and p* are equivalent if there is a
nonsingular matrix S Lin(F') such that p*(x) = S~ Ip(x)S for every 1 ¢ (3.
We note that if S 1s any nonsingular matrix of L, (F) and p(x) 1s a representation
in L,(F), then S'p(x)S is also a representation p*(x). Indeed, if we regard p(x),
1 € (7 as a group of linear transformations of the vector space V over F' into
itself with basis uy, uy, - - -, u,, and 1f

s YUpo

' * i *

U1 "

Ua i
= S

Un Un

\ 4 \ K

then S~ p(x)S = p*(x), ¢ € (F is the group of the same linear transformations of

Vin terms of the basis vy, - - -, v,.

LEMMA 16.2.1. Characters are class functions, i.e., conjugate elements
have the same character.

LEMMA 16.2.2. Equivalent representations have the same characters.



For if A4 is a matrix of degree n, its characteristic polynomial is by
definition fil) = |4 — Al| = (— 1)"[A" — aA"' - - - + (-1)"a,]. Here the
coefficient a; is the trace of 4, a; = Tr(A4), and a, = |4| the determinant of A.
Now if T'is a nonsingular matrix |7 14T — 1| = [T Y4 - DT\ =|T"!| - |4 - 1| -
17| = |4 — Al|. Thus 4 and T 'AT have the same characteristic polynomial and a
fortiori the same trace. Hence p(y 'xy) = p(y) p(x)p(y) and p(x) have the
same trace, and so, y(y 'xy) = y(x) and the character is a class function. In the

same way p*(x) = S p(x)S and p(x) have the same trace and so equivalent
representations have the same characters.

We recall that a vector space V' (or “linear space”) over a field F is given
by the following laws:

V has a binary addition:
Fora,8eV, a4+ BeV.

Vhas a scalar product ca forg ¢ ' v € V.

These satisfy
V1) Vis an Abelian group under addition.
V2) c(a + ) =co + cf, (c + c)a =ca + c'a.
V3) (cc)a =c(c'a); 1a = a.
Herea, B € V,c, ¢’ € F, 1 unitof F.
Vectors uy, - - -, u, of V are said to be linearly independent if

quy + - +au =0, a;efF

implies a; = - - - = a, = 0. Moreover, uy, - - -, u, are a basis for V if they are
linearly independent and if every 4y ¢ }/ can be expressed as

w = by + -+ + bpun, b;elF.

If V has a basis, then every basis has the same number of elements, and this
number is called the dimension of the vector space.

We shall define an F-G module M as a vector space V over ' which admits
the elements of G as operators on V, the rule being

1)



w+vg=ug+vg,u,p e V.g € G.
2 ugig)=wegDeu € V.g1.g2 € G.
3) u-l=u,q ¢ V.1 the unit of G.
4 (awg=awg).q e FrueV.geG
We shall also call M a representation module for G.
By an operator homomorphism of one F-G module M into another M, we

mean a mapping M; — M, such that

1) Ifuy — vy, up = vy, thenuy +uy — vy +vo.

2) Ifu—v,l ¢ F,then bu — bv.

3) Ifu—v,qe (7, then ug — vg.
An operator isomorphism of M| and M, is an operator homomorphism of M,
onto M, which is one to one.

Now if M 1s an F-G module and has a basis uy, - - -, u, over F, then if for

mn
x € (7, we take the mapping v — vx, y ¢ V', where y; — ;& = E @i
y=1

,i=1, -, npkx) = (aij), i,j=1,- -+, nwill be a representation for G in M.
Conversely, if p 1s a representation for G over a vector space V' with basis uy, -
* 5 Uy, and if we have p(x) = (a;) = [a;(x)], let us put

n
uw = Y ay(@uy, i=1,+-,n
i=1

for every ¢ € (3. Then, since p(1) = I, and p(xy) = p(x)p(y), we see that this

rule makes V' into an F-G module M. Thus every F-G module of dimension »
determines a representation of degree n of G, and conversely.

THEOREM 16.2.1. Two F-G modules M, and M, give equivalent

representations of G if, and only if, they are operator isomorphic.
Proof: Suppose we have given two equivalent representations of G,

plz) ze G and S 'p(x)S.

Then if p(x) = [a;(x)], 2 € (F this corresponds to a basis uy, - * -, u, of a
vector space V' with G as operators and the mapping u; — ux =X a;(x)u;. We
have observed already that this mapping



w — Wr weV

corresponds to the representation p*(x) = S~ p(x)S, 1 € (7 interms of a basis

Vi, © t . V,, Where

Un o )

% &

If § = (s;), the equivalent representations p(x) and p*(x) are operator
1somorphic under the mapping determined by

U — Z Sy, 1 = ,+°, 0. Conversely, suppose that two F-G

modules 541 and M, are operator isomorphic. To be isomorphic as vector
spaces, M, and M, must have the same number of basis elements, say, u;, - - -,
u,, for My, and thus in the operator isomorphism u;, - - -, u,, are mapped onto a
basis v, - - -, v, of M,. With u; — v; and ux — v;x then on these bases, M, and
M, yield identical representations, since if

i
Ui = Z aij(x)uj, ¢
i=1

I
[ —
a

.
-
$

we must also have

T
UL = Z aii(x)u;, 1
j=1

1: vy n,

Thus equivalent representations p(x) and p*(x) correspond precisely to
operator isomorphisms of representation modules.

16.3. The Theorem of Complete Reducibility.



Suppose that a representation module M has a submodule M which is also
a representation module. Then let us take a basis u;, - - -, u, for M, and
complete this to a basis for M by taking further elements u,.,, - - -, u,. The
corresponding representation p is said to be reducible, and in terms of the basis

uy, * -, u,, takes the form

c(x)] O

P(I) = 3
6(z) | (z)

and here ¢ and 7 are representations of G of degrees » and n — r, respectively.
The representation o is associated with the /-G module M with basis uy, - - -,

u,. What about 7? It is the representation defined by the basis My + u,..q, - - -,
M, + u, of the quotient module M/M,. More generally, if

0 =ﬂir.|]c.ﬂ;f—1Cﬂfg'” Cﬂf;;=M

is a chain of submodules and we choose a basis of M adapted to this chain, then
the corresponding representation p will take the form

‘ : 0
o(z) = @]

| = s -m-iﬂ?)x

and p,(x) is the representation corresponding to a suitable basis of M;/M, 4,

namely, M; | + u;, where u; runs through the basis elements which belong to M;

but not to M;_;. For the characters we clearly have
x(®) = xi(2) + xa(2) + -+ + x(2).

If we choose our chain to be maximal, 1.e., so that it cannot be further refined,
then the M /M, | have no proper representation submodules and they give rise

to irreducible representations p,. As an immediate consequence we have:



LEMMA 16.3.1. Every character is the sum of irreducible characters.

LEMMA 16.3.2. The irreducible constituents p; are unique apart from

order and operator isomorphism.
Lemma 16.3.2 follows from the Jordan-Holder theorem.
If a representation module M has a submodule M| which is a representation

module, it may happen that there is a complementary representation submodule
M,, so that M 1is their direct sum, M = M| @ M,. In this case M, is clearly

operator 1somorphic to M/M, and the representation p(x) takes the form

Conversely, 1f the representation p(x) can be put in this form of square blocks
down the main diagonal, M 1s the direct sum of representation submodules M,

and M,. We say that the representation is completely reduced in this case. Not

every representation which is reducible can be completely reduced. Thus the
representation of the infinite cyclic group generated by an element b given by

09 = (1)

is reducible, but if it could be completely reduced it would represent every
element by the identity, since here both p (%) and p,(b’) are the identity. But

1,1
1
However, we have an important class of representations for which reducible
representations can be completely reduced.

1,0
( ’ 1s not conjugate to the identity and this is clearly impossible.

THEOREM 16.3.1. THEOREM OF COMPLETE REDUCIBILITY. A reducible
representation of a finite group G over a field F whose characteristic does
not divide the order of G can be completely reduced.

Proof: Let M be a representation module for G over F and M, a
representation submodule. With wy, - - -, w, a basis for M,, complete this to a



basis for M with elements w,.,.;, - - -, w,, which will be a basis for a subspace
N, which, however, will not in general be a representation module. We have for

zel

o) | 0
p(x) = | —
0(z) | r(x)

We also have M = M| + N, and for 9y ¢ M uniquely,
T£=Hl+ﬂ, ﬂlfﬂ_{hﬂEN.

The map n:u — v is idempotent and linear. If g is the order of G, put

1
w = —-Zuxnm“l = Uuf.
Jzed

Here u — u' = u( 1s a linear mapping. This mapping requires that we be able to
divide by g, the order of G, and this is possible because by our hypothesis G is
of finite order g, not divisible by the characteristic of F.

Ify € 7, putz=y 'x for 3 ¢ (7, and then

Wy = ézm:l urnr~ly = ézz (uy)znz
= (w)s,

since z runs over G as x does. This shows that M, = M({ is a representation
module. We wish to show that M = M| @ M,, for which we must show that

every iy ¢ JW canbe written in the formu =uy + uy, 1y € My us € Ms
and that this expression is unique, 1.e., 0 = u; + u, implies u; = 0 = u,. For any

w e M, write
u = (u— u) + uf.

Here U = Us € Mo. Now

U — Ul = E (u;r_: — uxn)xr~l since uxx ' = u. But
o

o |



ur — uxry = (ux), € My, whence 4 — uf = u; e M. Hence u
=uy +u, with 94, € My us € ﬂfg Now if w € ﬂ’fp WL € .ﬁfp wxn = 0,
whence w(' = 0. Thus for any 3y ¢ [, (u —=ul){ =0, and u®? = ul. Hence if
uy+u, =0, u; ¢+ u,(=0, and thus 0 + u,{=u, = 0, and so also u; = 0. Hence

the representation can be completely reduced.
Second Proof by Matrices: With

a'(:E) 0
p(x) = | —|—

6(z)|r(z)

and o(x), 7(x) representations of degrees r and n — r, respectively, we wish to
find a matrix

w independent of x, such that

a(x)'ﬁ (L‘O)_ I.| 0 \/o(x)] O

0(z) | 7(x) I po | Lns/\ O [7(2)

7

for all 2 ¢ (F- Clearly, if it can be found, S is nonsingular and will yield an
equivalent representation

a(z)]| 0

p*(x) = S7p(x)S = | —
0 [(x)

’

all # ¢ (F, which is completely reduced. This requires finding an (n —r) x r
matrix x4 independent of x such that

po(z) — 7(T)p = 0(x),



all T € G
From p(yx) = p(y)p(x) we have

f(yx) = 0(y)o(x) + 7()8(),
whence
8(x) = r(y)o6(yzx) — v(y™)0(y)o(2),

and

6(x) = Z(f(m)f(x'ly“‘)ﬂ(yl) = T(y‘l]ﬁ(y}cf(x))-

o |-

Hence, if we put

_..-P'_=

L o) = é L ryn(em),

=T

we have O(x) = —t(x)u + uo(x). Thus we have, found a suitable (n — r) x r
matrix x4, and so a transforming matrix S exists and the equivalent
representation p*(x) 1s completely reduced.

By repeated application of this theorem we find the following major result:

THEOREM 16.3.2. Every representation of a finite group G over a field F
whose characteristic does not divide the order of G can be completely
reduced to the sum of irreducible representations.

COROLLARY 16.3.1. Representations of a finite group G over a field F
whose characteristic does not divide the order of G are equivalent if, and
only if, they reduce to the sum of the same irreducible representations, each
with the same multiplicity.

When a representation p is completely reduced we may write

P=p D pa @D *++ @ pp.

The order of the p; is immaterial, since we may permute the elements of the
corresponding basis of the representation module M to permute the p;. The p;
are, of course, the composition factors of M, taken as an additive group with F



and G as operators, and as such unique by the Jordan-Holder theorem up to
order and operator isomorphism. By Theorem 16.2.1, operator isomorphism of
irreducible representations means equivalence. Thus by “same irreducible
representations” in the corollary we do not distinguish equivalent
representations.

16.4. Semi-simple Group Rings and Ordinary
Representations.

Given any group G and a field F, we may construct the group ring R in the

following way:
1) R is a vector space over F' with the elements ¢; € (7 as a basis.

2) Products are defined by putting

Z Qi Z big; = Z abigi;
J 1]

1

where g;; = g;g; in G.
It is not difficult to show that this definition makes R; into an associative

ring with a unit 1-1 = 1, the product of the unit of F" and the identity of G.
Clearly, R 1s a representation module for G elements of G operating on R by

multiplication on the right. If G is of finite order n, taking the elements of G, g,
-+ -, g, as a basis for R, the corresponding representation is

.ﬂ(x) = (xt‘f)] i?j == 1! ...I‘ﬂ! xEGJ

where x; = 1 if gx = g; and x;; = 0 otherwise. This we recognize as the right
regular representation of G which as a permutation group is given by

(2) =(9’1 '“9“) z e,

QT - gal
written in matrix form.

LEMMA 16.4.1. In the right regular representation p(x) of a group G of
order n we have y(1)=n, y(g) =0, g # 1.



For here p(x) = (x;;), where x; = 1 if gx = g; and x;; = 0 otherwise, and so,
x(x) = E Tii. Ifx=1,gl=g =gandx; =1,i=1, - -, n, and so,

x(1) =n. But‘for x=g+#1,x;,=0, since gx = g; cannot hold for any g; unless x
=1.

Nearly all the results we shall obtain will be for the representations of a
finite group G over a field F whose characteristic does not divide the order of
G. Such a representation we shall call an ordinary representation.
Representations of a finite group G over a field ' whose characteristic does
divide the order of G are called modular representations. Properties of
modular representations are different from those of ordinary representations.
And, of course, representations of infinite groups can be expected to differ from
representations of finite groups in many ways.

We say that a ring R is regular if for every 9y ¢ [ there is an element
7 € [ such that uxu = u. A regular ring finite dimensional over a field F is

said to be semi-simple. An element e # 0 such that e? = e is called an
idempotent.

THEOREM 16.4.1. The group ring R of a finite group G over a field F is
semi-simple if, and only if, the characteristic of F does not divide the order

of G.

Proof : Let G be of finite order g. If the characteristic of /" divides g and x;,

-+, X, are the elements of G, then in R consider the element u =x; + - - - +

xg. Here xu = ux; = u. Hence, withx = ax; + - - - + apx,, we have ux = (a; + -
- taguand uxu = (a; + -+ - +ag,)gu =0+ u. Hence R is not semi-simple.

Now suppose that the order g of G is not divisible by the characteristic of
F. We shall prove that R; is semi-simple and indeed shall prove further

properties of Rs. Let Iy be any right ideal of R;. Then @l is a representation
submodule of R, and conversely, the representation submodules of R are the
right ideals. By the theorem of complete reducibility

JRG =1 @ a2,

where fIs is another right ideal. Then 1 = a; + a,, a;, Q1 € @1, A2 € 12, and

this representation is unique. But then a; = a,> + a,a, also holds, and



comparing this with the unique representation a; = a;, we have a,> = a;, a,a, =
0. Thus a; = e 1s an idempotent, and a, = 1 — e 1s also an idempotent. Thus for

T € [{gwehavex=ex + (1 —e)x withex € @;. Conversely, ify € @1, we
have y = ey + (1 — e)y = y + 0 by the uniqueness of the representation. Hence
for I/ € (I3 we have ey = y. Thus @I is the principal right ideal eR; of the

idempotent e, and so every right ideal of R is the principal right ideal of an
idempotent. In particular, for every element u there is an idempotent e such that
uR; = eR. Hence for some x, ux = e, and for some y we have ey = u, eu = e’y
= ey = u. Here u = eu = uxu, and so, R is regular.

THEOREM 16.4.2. A regular ring R of finite dimension over afield F has a
unit and every right (left) ideal is the principal ideal of an idempotent. Every
two-sided ideal is the principal ideal of an idempotent in the center.

Proof: Let R be a regular ring of finite dimension over a field F. If u is any
element, then by regularity there is an x such that uxu = u. Here, with e = ux, we
have e = uxux = ux = e, and with ' = xu, we have f2 = xuxu = xu = f.
Moreover, u = uxu = eu = uf, whence eR = uR and Ru = Rf. Thus principal
right or left ideals are principal right or left ideals of idempotents. Consider a
left ideal @. If @ = (), then it contains some idempotent e; # 0, and thus

Rgl C . Suppose g # Rﬁl- Then there issome X € @, T ¢ Rﬁr

z = ze; + (x — zey),

withg; = xe, € Keyp and
T = T — T¢,
where x,e; = 0.

Let f be an idempotent such that Rx, = Rf. Then f' = wx,, fe; = wx,e; = 0.
Now put e, = e + f— e,f. Here e;e, = e, fe, =f. Thus

e = (er+f—eflee = et + f— ef = e,



and so, e, is an idempotent belonging to (I and Re, includes both e; and f,
whence it includes Re; and the element g ¢ RE;{- Hence Re, has a greater
dimension than Re;. Continuing, we may construct further idempotents es, ey, - -
- 1n (1 with each ideal Re; of greater dimension than the last until we reach an
idempotent e such that g = J?e. This proves that every left ideal is the

principal left ideal of an idempotent. A similar argument shows that every right
ideal is the principal right ideal of an idempotent. If 1 ¢ ¢/, then for some w,
x = ew and ex = e*w = ew = x, and e is a left unit for elements of eR. Similarly,
for 1 € Rf , we have xf'= x. Now considering the entire ring R as both a left
ideal and a right ideal, there are idempotents e and f such that R = eR = Rf.
Hence ef =f= e and ex = xe =x, whence e = 1 1s a unit for R.

The multiples of an idempotent e in the center of R will surely form a two-
sided ideal. We wish to show that conversely an arbitrary two-sided ideal q is
the principal ideal of an idempotent in the center. Now for appropriate
idempotents we have @ = el = Rf. Hence ef = f = e, and
n = elf = RKe Now for anarbitrary x of R we have ¢ € @1 whence ex
= exe. Also e € (1, whence xe = exe. Thus ex = xe, and so, e 1s in the center
of R.

Let us call a ring R simple if it is semi-simple and contains no two-sided
ideals except 0 and R. The direct sum of right ideals we indicate with @; of
two-sided ideals, we indicate with .

THEOREM 16.4.3. A semi-simple ring R is the direct sum
R =R [.H Ra |4 +-- 1_4;] I, of simple rings. The simple rings R;
are unique apart from order.

Proof: Let R; be a minimal two-sided ideal contained in R. Then R, is the
principal ideal of an idempotent e; in the center of R. Then for » ¢ B, x = xe,
+x(1 —ey). Hence = R, E] R—P where El consists of all elements of
the formx(1 — e;). Now e, is the unit for R, &, = 1 — e, the unit for ., and for
x, Y € Rz e Rpwehave (x+2)+(y+w)=(x+y) +(z+w) and (x +
zZ)(y + w) =xy + zw, since zy = ze|(1 — e;)y = 0, and similarly, xw = 0. Thus in
this direct sum Rl [ﬂ Rl both sums and product may be computed by

combining the components separately. Hence, in particular, regularity of R
implies regularity for R, and fg, separately. Continuing, take R, as a minimal



two-sided ideal of El and find Rl = R, EE' Proceeding in this way,
we ultimately obtain

R=RHR[MH--- HR,

where ] =e;+e,+- - - +e;ande, i =1, - -, s are idempotents in the center
of Rand eje; =0, i #j.
For

T=o+ T2t o0+ 2y

§omghob e el
withx;, 4f; € s we have

z4+y= @+ )+ @+ ) + ---+($.+y.),
Ty = 11 +$2y2+ e "E"xaya-

Thus, conversely, the direct sum of simple rings R over the same field /' will be
regular and hence semi-simple. Now if (I is any two-sided ideal in R, it is the
principal ideal of an idempotent e in the center. Here

e = €€ + ee + -+ 4 e,

Thus e;e # 0 for some i. But if (1 1s minimal and e;e # e;, then the principal ideal
of e;e would be properly contained in R;, and if e,e # e, it would be properly
contained in @1. Hence ee = e¢; = e, and so, @ = J{; This proves the
uniqueness of the direct sum.

THEOREM 16.4.4. Any ordinary irreducible representation of a finite group
G is equivalent to the representation on some minimal right ideal of R;. Two

minimal right ideals of R; give equivalent representations if, and only if,
they belong to the same simple component of R.

Proof: We note that any representation p of G yields a representation of R,

since if b = E ax, dx € F, 1 € (F is any element of R; we may
zeld



take p(h) = X ap(x) and this is a representation of R;. Equivalent
representations of G give equivalent representations of R, and conversely.

The regular representation of G is the representation of G with R as an F-
G module. In its completely reduced form

RG = ellg @ e2Rg ® +++ @ EtRG;

where 1 =e; +e,+ - - - + ¢, and the e, are idempotents which are orthogonal,
i.e., ee; =01fi # /. Here each e;R; is a minimal right ideal. Now let p(x) be an
ordinary irreducible representation of G and thus of R;. Let M be an
irreducible /-G module giving the representation of p. Then M =M - 1 = M(e,
+ - - - + ¢,). Hence for some e;, Me; # 0. Let m be some vector in M such that
me; # 0. Then me,R; # 0 1s a representation module for G different from zero
and contained in M. As M 1is irreducible, we must have M = me;R;. The

COI‘I'CSpOl’ldCl’lCC

M{{EG a.x) "f-:-;efz a.,
£IE IEG

1s one to one, since the elements ez for which mes = 0 form a right ideal
properly contained in e,R; and hence are zero. We have an operator

isomorphism between the representation module M and the representation
module eR;, and so, by Theorem 16.1.1, p(x) is equivalent to the

representation of G on the minimal right ideal e,R.

When do two minimal right ideals yield equivalent representations? A
minimal right ideal must be contained in a unique minimal two-sided ideal.
Suppose that

Rﬂ'leREE"'Rﬂ

1s the decomposition of R as a sum of simple ideals, i.e., minimal two-sided
ideals. Here 1 = e; + e, + - - - e, where the e; are an orthogonal set of
idempotents in the center. Suppose e;;R; and e,R; are two minimal right
ideals in the same simple ideal R;. Then all finite sums ue;;v;+ - - - +u, e;v,,



up, V1. € R form a twosided ideal, and hence, since efe;)e; = ¢;; # 0 is in
this set, the set is R;. Hence, for appropriate «’s and v’s,

weavy + ¢+ Un€iVm = €z,
Since e = ej, we have for some j,
€U enly = ().

But then ¢;;v;R; # 0, and since it is a right ideal contained in the minimal ideal
e;1Rg, we have e;)v;R; = e;1R. Similarly epu;e; ViR = epR. Thus with w =
eptt; we have we; R = epR. Hence for , ¢ Rg we have wenh <5 eqh,
an operator 1somorphism between the right ideals e;;R; and e,R;, and so their

representations are equivalent. This shows that minimal right ideals in the same
simple ideal give the same representation.

Now suppose that e;;R; and ;R are minimal right ideals from the simple
ideals R; and R;, i # j. Representing on e; R, we have the mappings for e;, e;
respectively,

€;.l Euh — Eﬂhﬂi = Eileih — 1E3;‘11&

whence p(e;) = 1 and p(e;) = 0. Similarly, on ¢;|Rg, e; is represented by 0 and
e; by 1. Hence the representations are inequivalent.

We have related the decomposition of R; into a direct sum of simple ideals
to finding orthogonal idempotents in the center Z of R;. What is the center of
Rg? This is easily answered.

THEOREM 16.4.5. The elements C;=x;; + - - - + x;;,, where X;1, Xpp, * * *, Xj,
are a class of conjugates in a group G are a basis for the center of R.

Proof: If C; = x4 + - - - + x5, where x;;, xpp, * - -, x;; are a class of
conjugates in G, then for Y e (7, y_lCiy = (C,, since transformation by an
element merely permutes the elements of a class among themselves. Since C;
permutes with every iy € (7, it permutes with every element of R and is in the



center of R;. Conversely if u is in the center of R; and U = Z AT,y e G
Teld

,wehave YUY = U = Z azy~'xY, and so in u, conjugate elements
zeld
have equal coefficients and thus « is a linear combination of the C..

16.5. Absolutely Irreducible Representations.
Structure of Simple Rings.

We have seen that all irreducible ordinary representations occur as
components of the regular representation R(G) of a group G. Thus their
determination is a matter of finding the complete reduction of R(G), or what
comes to the same thing, finding the irreducible right ideals of the group ring
R;.

Irreducibility of a representation is a relative matter, depending on the
field. Thus if G is the cyclic group of order 3, with elements 1, x, x2 over the
rational field, R;; has a decomposition g = K EJ R with 1 =e; + e,
where

6_1+x-i—x‘2 e_2—x—x9
1= 3 y € = 3
are idempotents, R; has e; as a basis, and R, has a basis e,, e,x. This gives the
representation
1 | B 90
p(@) =lo| o, 1
0] —1, ~1

and R; and R, give irreducible representations of degrees 1 and 2. But if we
extend the rational field by adjoining the cube root of unity

€ = (__.1 4+ 4/ _3:] !;"2, the irreducible representation on R, now

becomes reducible, and with a basis



14+ x4+ z2

e = 3 ]
_ 1+ ex 4 €a? - 1 4 éx + ex?
€y = 3 1 - 3 H
we have &, + &5 = e,; on this new basis we have
1, 0,0
p(x) =10,€,0 e = 1.
0, 0, €

Clearly, further extension of the field will not reduce p(x).
A representation p of degree n is absolutely irreducible if it cannot be
reduced by extending the field F. Now, clearly, if p can be reduced over K O F,

0 |r(x)

all 4 ¢ (5, with o(x) an s x s matrix and 7(x) an (n — s) X (n — s) matrix, then
p(h), h € R as an algebra over K has dimension at most s2+ (n—s)? <n?

Hence, if p(h), h € fﬂg as an algebra over F has dimension 2, then p is
absolutely irreducible over F. We shall show that by appropriate algebraic
extension of the field, any ordinary representation is the direct sum of
irreducible representations in which an irreducible representation of degree n

has dimension 72 over the field.

THEOREM 16.5.1. A4 division ring D of finite dimension over afield F will
not be a division ring over algebraic extensions of F unless D is of
dimension one over F and then D = F.

Proof: Let D have a basis uy, - - -, u,, over F, where we may take u; = 1 as

the unit of D. If n > 1, consider 1 = uy, u,, u22, © + +, uy". These must be linearly
dependent over F, and we have a relation

U + U - +a, =0, a;eF,



and so, if we adjoin the roots a1, - - -, &, of ix) =x"+ax 1 - - - +a,to F, we
have (uy —aqu;) - - - (u, — a,uy) = 0. Hence, over this algebraic extension of F,
the u, — a;u; are divisors of zero. Hence D remains a division ring over
algebraic extension of F only if n = 1, and here D = F..

THEOREM 16.5.2. A simple ring R is a complete matrix ring over a
division ring D, contained in R.

Proof: Let e R be a minimal right ideal of R, e{; being an idempotent. Then
1 — e; 1s an idempotent and R = e;;R @ (1 — ej))R. If e,R is a minimal right
ideal in (1 — eqy)R, e, being an idempotent, we have (1 — eq;)e, = e,, whence
eper = 0. Also ey, = e, — e5eqy 1s an idempotent, and e,,R = e,R and eqje5, = 0,
exey; =0. Here R=e R @ e,nR @D (1 — e;; — exn)R. Suppose we have found

orthogonal idempotents e, - - -, e; such that e;;R are minimal and R = e;;R +
enR @ - De;RD (1 —ey - —e;)R. Let e, be an idempotent such that
e;+1R 1s a minimal right ideal in (1 —e;; - - - —e;;)R. Thene;,; =(1 —ey; - - - —
e;)eir, whenee eje;y =e (1 —ey - - - —epe; =0,7=1,- - -, i. If we put
e = €11 —eq - - - —e), we have e 1), anidempotent e,y ;R = e, R,
and also e, ;4 orthogonal to ey, - - -, e;;. Continuing, we find

R =enR @ epkR ® -+ ® ek,

where the e;; are orthogonal idempotents, the e;;R are minimal right ideals, and
I=ej ey - tey,.

LEMMA 16.5.1. e;Re; # O0fori,j=1, -, n.

Proof: All finite sums Z UpE; iUk form a two-sided 1deal including e;; #
k
0, whence these sums are the entire ring R. Thus for appropriate elements u,,

Vi, we have X ue;v, =
0.

e;j, and so, X uge;vie; = e;;. Hence for some v, e;ve;; #

LEMMA 16.5.2. e;;Re;; is a division ring D,.



Proof: e;Re;; 1s certainly closed under addition and multiplication, and so
is a subring of R. It has e; as a unit. It suffices to find inverses for elements
different from 0. If e;xe;; # 0, then e;xe;R 1s a right ideal # 0 contained in, and

so equal to, the minimal right ideal e;R. Hence for some y, e;xe;;y = e;;, and so,
e;xe;eve; = e;. Thus e;ye; 1s an inverse for e;xe; in e;Re;, which is
therefore a division ring D..
Choose for eachi =2, - - -, n an element e be;; # 0, and write e, be;; = ey;.
Then
€ufii = €1i€ii = €1
Now e;R € e[ R, whence e,R = e R. Hence for some y, e}y = ey, ej{e;peq)

= eyy. Write e;; = e, ye;;. Then for our elements i =2, - - -, n.
€iifi1 = €pfn = €q, €1€n = €.

— 2 2 :
Hence €1;€11€1€i1 — €11 ~ €11 and SO, €;1€y; # 0. But (el'leli) = €;€1; 1S an

idempotent in e;Re;, whence e;;e;; = e;;, the unit being the only nonzero
idempotent in a division ring. Now put e;1e); = e;; if i #j. Then we have e;e;; =
€;1€1,€,1€1k = €1€1€1; = €peyy = ey Also ifj # k, ejer, = eje;5ep,ep, = 0. Thus

for our #2 units e;., we have shown in all cases

ij’
€ij€re = 0;1Cit 5;‘:‘ o 1:- Ojk = 0: .f-" = kr
and so, the e;; have the multiplication properties of the n x n matrix elements

‘E:?j — 1’ P w +:|‘ n:l E‘:i f— (a'r-?)j a.*'j' = 1, ars —— 0}

if (v, s) # (i, j).
Now from the division ring D; = e;;Rey;, define a ring D by putting

d =d + eadiera + -+ + ﬁnldlﬂln,

for each dl € Dl- We verify without trouble that D is isomorphic to D; and
hence is a division ring. Corresponding to e;; the unit of D; we have e + ey, +



-~ +e,, =1, the unit of D and also of R. Also for ¢ ¢ [), we find e;d =
eildlelj = del]
Finally, for an arbitrary T e I we have

r=1z1= (811 + T +€nn)x (‘Ell'l' Pl +€:¢n) i Zﬁitﬂ:ﬂﬁ
. But here v

Ti; = €4T€5; = €in€1iTene1; = €inlhé;

for some 9, € J); whence for 3y ¢ J) we have x; = ue; = eyu. This
completes our theorem. We have shown that a simple ring R can be exhibited in
the explicit form of an » X n matrix ring over a division ring D whose unit

coincides with the unit of R.

THEOREM 16.5.3. If R; is a semi-simple group ring over a field F there is
an algebraic extension F* of F in which R is the direct sum of complete
matrix rings over F*. We can take F* to be a finite algebraic extension of F.

Proof: R 1s semi-simple over a field F if, and only if, the characteristic of

the field does not divide the order of the group G. This property is unaltered if
F'1s replaced by an algebraic extension F* of F. If in the decomposition of R

over F as the direct sum of simple rings J{, .o I, there is some
simple R, whose corresponding division ring D is not the field F, then by an

algebraic extension of F' to some F*, the ring D loses the property of being a
division ring. This alters the decomposition of R in one of two ways: (1) we

may increase (but surely not decrease) the number of idempotents in the center
of R and thus break up a simple ring as the direct sum of several simple rings;
or (2) in a simple ring R we find a division ring D* of smaller dimension and
express R as a larger matrix ring over D*. Both these situations can arise. We
have already seen the first case in representing the group of order 3. The
second case arises in the ring Ry of the quaternion group Q over the rational

field F. Ry over F'is the direct sum of four simple rings of dimension 1 and one

of dimension 4 which is a division ring (the quaternion algebra). If we adjoin i
to F, the division ring becomes the ring of 2 x 2 matrices over the complex
rational field.



In any event the algebraic closure f of F' is a field over which every
simple ring R, arising in R 1s a matrix ring over f . The matrix units el-jk of
the simple rings R; can be expressed in terms of the elements x of G, and any

field F* containing all the coefficients appearing in these expressions will be
such that the R, are complete matrix rings over F*. F* is clearly finite over F.

THEOREM 16.5.4. The center of a complete matrix ring R, over a field F
consists of the scalar multiples of the unit of R, which is the identity matrix.
The center of the direct sum of matrix rings R=R; + - - - + R, over a field F

has as a basis the r units of Ry, - - *, R,..

Proof: Let R, be the complete n x n matrix ring over F. Then suppose

T = E aijeij, aijelF

tJ

is in the center of R;. From e, x = xe,, we find
z Asjlr; = E Qir€is.
i B

Hence a,; =0 forj # s and a = a,,. Thus x =ay (e +- - - +e,,) =ay; - 1, and
all such elements are in the center of R,. If

R=Ri+ - +R,

then the center of R is the direct sum of the centers of the R, and as such has as
a basis the » units of the R;.

We now have a number of theorems which relate the ordinary
representations of G to the semi-simple group ring R;. We combine these

results in a theorem.

THEOREM 16.5.5. Every irreducible ordinary representation of a finite
group G occurs as a component of the right regular representation R(G). The
number of inequivalent absolutely irreducible representations is the number
of classes in G. If py, - - -, p, are the distinct absolutely irreducible



representations and p; is of degree n, i =1, - - -, r, then p; is of dimension n?

over I and p; occurs n; times in R(G). The only matrices permuting with
pix), all v ¢ (§ are scalar multiples of the identity. If g is the order of G,
theng=np?>+n?+---+n2

Proof: By Theorem 16.4.4, every ordinary irreducible representation is
equivalent to a representation on some minimal right ideal of R; and as such

occurs as a component of R(G). Also, there are as many inequivalent
irreducible representations as there are simple ideals in R. Extending the field

F if necessary to F™*, the center of R; has a basis of » idempotents where by
Theorem 16.5.4, R 1s the direct sum of 7 matrix rings. But by Theorem 16.4.5,

the center of R has the class sums C; as a basis, and so r 1s the number of
classes in G. Over F* a minimal right ideal occurring in R; will be e R, and 1f
R; 1s an n; X n; matrix ring, this will have a basis e;, ep, = - -, €y,. The
corresponding representation p; will be of degree n; and p; extended to a
representation of R; will represent faithfully the simple ring R; and will
represent all other R;’s by 0, since, as shown in the proof of Theorem 16.4.4,

we shall have p,(e;) = 0 if ¢; is the unit of R;, j # i Thus p(R) is the full matrix
2

ring of dimension n;” over F*, and so, is surely absolutely irreducible since a
further reduction would be possible only if it were of lower dimension over
F*. Also, being of dimension 7.2, the only matrices permuting with every p(x),

1 € (7 will be scalar multiples of the identity. Finally, as each R; has a basis of

n/ elements, their direct sum has a basis of 7,2 + - - - + n,? elements. But R;
has a basis of the g elements of G. Hence

g=m>+ - + 0>

R; is the direct sum of the n; right ideals e R, - - -
times in R(G).

e,n% and so, p; occurs n;

16.6. Relations on Ordinary Characters.



The preceding section gave information on representations of G which
depended on the nature of R; and the fact that a representation of G gives a

representation of R;. In this section we find relations on the characters y(x),
1 € (7- These are more intimately related to G itself than to R;. We assume
throughout this section that we are dealing with ordinary representations.

THEOREM 16.6.1. Let A and B be two F-G modules. If A is of dimension m
and yields the representation p(x), x e (3, and B is of dimension n and
vields the representation o(x), then the additive group of operator
homomorphisms of A into B is isomorphic to the additive group of all m X n
matrices o such that p(x)a. = ao(x), all 1 € (3.

COROLLARY 16.6.1. The ring of operator endomorphisms of A into itself is
isomorphic to the ring of m x m matrices o such that p(x)o = ap(x).

Proof: Let A have a basis uy, - - -, u,, and B have a basis v{, - - -, v,. Then
any linear mapping of 4 into B is determined by the images of the basis, say,

U — a1 + -+ + Qaln
Ui — A1 + *** + Qinln
Um — Aty + -+ + Amnlny

and let us write a = (a;), i =1, - -, m;j =1, - -, n. These linear mappings
form an additive group isomorphic to the additive group of the matrices a. If in

addition to being a linear mapping, the mapping is to be an operator
homomorphism, whenever u — v we must have also ux — vx for gz ¢ (3. This

. L i}
means that the mappings g4 — WL —> {:yg;) and gy =5 y — pg are
1dentical, but this is the relation

P(j:)‘x = ag (:E):

forall # ¢ (3-
If we map 4 into itself, the mappings are called endomorphisms and here if

a, f are two operator endomorphisms, we have



p(z)(aB) = [p()ald = lap(@)]8 = (aB)p (2),

and thus the matrices a with p(x)a = ap(x) are isomorphic to the ring of
operator endomorphisms of 4.

Theorem 16.6.2 holds for any Q module, where Q is any ring of operators,
but, of course, we are interested mainly in /-G modules.

THEOREM 16.6.2 (SCHUR’S LEMMA). If A, B are two irreducible Q modules,
then unless they are operator isomorphic, the only operator homomorphism
of A into B maps A onto 0. If A is irreducible, every operator endomorphism
of A not identically zero is an operator isomorphism.

Proof: Let 4y € A, 1 € B> @ € £} Then if for some 9y ¢ A4, an operator
homomorphism maps u — v # 0, then uw — v for all ¢y ¢ (). Here uQ is a
submodule of 4, and hence, as 4 is irreducible, all of 4. Thus 4 = uQQ — vQ +#
0, whence 4 — vQ = B. The mapping must be one to one, since otherwise,
nonzero elements of 4 are mapped onto zero and these form an 2 submodule of
A, contrary to the assumption that 4 was irreducible. Hence the mapping is an
isomorphism, and so, in particular, every operator endomorphism of A4 into
itself is an operator isomorphism.

THEOREM 16.6.3. If p and o are irreducible and inequivalent
representations of the finite group G of degree m and n, respectively, and § is
any m X n matrix, then

Y o)ty = 0.

weld

Proof: Write

= X o)y,

Thenfor 1 ¢ G, xy =2,y ' =z"lx,



p(x)a = Z p(x)p(y) Eo(y~)
- Z o(xy) Eo(y)

= ) 0(2)tc(z Y o(z)
= ao(2),

all » e (7.
Hence, by Theorems 16.6.1 and 16.6.2, if p and ¢ are irreducible and

inequivalent, we must have a = 0. Note that these theorems hold for
representations of G over any field.
If /1(v) and f5(y) are any two functions defined for 9/ € (7 with values in F

(where we now assume that the characteristic of F does not divide the order of
(), then we define the symmetric bilinear scalar product:

(hy f2) = ; Y ().

veld

We verify, noting that y~! runs over G as y does, that

D (f1,./2) = (2. /1)
2) (fl +f2:f3) = (fl»f:’)) + (f29f3)
3) (af,.f)=alf1,. /), @ e F-

Now suppose that p(x) and o(x) are irreducible inequivalent representations. If
in Theorem 16.6.3 we take § = e,, the m X n matrix with 1 in position (r, s) and

rs>

0 elsewhere, we find a = (a;;), where &ij = Z pir(Y)osi (Y1) where
yel

p(.l'} = (Pii(ﬂ:)) t,j = 1, R A
o(x) = (0i(x)) 1,7

Il
=t
=

Since a = 0 by Theorems 16.6.1 and 16.6.2, we have (p;, o) = 0. We may
show even more.

THEOREM 16.6.4. If p and o are inequivalent ordinary irreducible
representations of a finite group G, then the symmetric bilinear scalar



product (p;,, o) =0 for all i, 1, s, j. If p is an absolutely irreducible ordinary
representation of degree n then (p;,, py;) = 0 unless i = j, r =s, and then (p,
pi) = ln for all i, j.

Proof: We have already shown the first part. Now consider an absolutely
irreducible ordinary representation p of G. Let n be the degree of p. If £ 1s an
arbitrary n X n matrix, then we verify as before that

Z p(y) Ep(y™),

yeG

where & is an arbitrary n X n matrix, satisfies p(x)a = ap(x) for all 1 ¢ (7
Hence by Theorem 16.5.5, a 1s a scalar multiple of the identity o = A/,, where

the scalar A depends on &. If € = e, write 4 = A,,. Then we find 4,,0;; = (p;.

rsYij
psi)- But (pips pgi) = (pgjs Pir)» SO irséy = 40 = O unless bothi =; and r = s,
while (p;;, ;i) = 4= (pji» p;j) = 4. Hence Ay =4y = - =4, = 4 has the same

value for all subscripts. Thus
nAn = E }\j,'
i
2 pii@psi(y™)
¥ad

Y, pi(l) =
u

Hence 4 = 1/n. This proves the rest of the theorem. Note that nA = 1 shows that
the degree n is not divisible by the characteristic of F.
These results carry over to the characters.

S
g

L
g

THEOREM 16.6.5. If y, v are distinct irreducible characters, then (y, y) =
0. If y is an absolutely irreducible character, then (y, y) = 1.

Proof: If y and y are irreducible characters of the representations p and o,
then for 3 ¢ (7, x(y) = E pii(y), ¥(y) = E dii(Y). Since the
s $

scalar product is bilinear,



(Xr ’I{/} o E (F'i'ir t:’.J"J") o 0:

¥

since each individual summand is zero. Now let y be an absolutely irreducible
character of the representation p of degree n. Here

1
(x, x) = Z (piiy piz) = Z (pisy pii) = Eﬁ = 1.
i,j i i
This completes the proof.

COROLLARY 16.6.2. Z X(x} = 4 for the identical representation.
Teld

Z }i(:tj =0 for any other irreducible representation.

zeld
For y(x) = 1 for any x in the identical representation, whence here

X(:F) = @. But if y is the character of any other irreducible

rels
representation, take y as the identical character. Then (y, ) = 0 gives 1/gZy(x)

=0.

THEOREM 16.6.6. If y, w are characters and y =X a;y; = Zb,x,, where the
i =1, -, rare the absolutely irreducible characters, then (y, y) = X ab;.

Thus for a character ¢, (¢, §) = 1 is necessary and sufficient for ¢ to be an
absolutely irreducible character if the field F is of characteristic zero.

Proof: This is essentially a corollary to Theorem 16.6.5, using the
bilinearity of the scalar product. If ¢ = X c;y;, then the ¢’s are non-negative

integers, and if (¢, ) = Zc;> = 1, we may conclude in a field of characteristic
zero that one ¢; 1s 1 and the rest are zero.

THEOREM 16.6.7. The absolutely irreducible representations of an Abelian
group G are all of degree one.

Proof: Since G is Abelian, every element is a class and so if g is its order,

we have g absolutely irreducible representations of degrees ny, - - -, ng, where

g=n2+n? -+ ngz. Hence n; = n, - - - = n, = 1. Here for every



representation p of degree one, we have y(x) = p(x). Thus the representations
coincide with the characters and are indeed the same as the characters of an
Abelian group as treated in Chap. 13.

THEOREM 16.6.8. Let x be an element of order m in a group G and let p be
a representation of G of degree n. Then, adjoining the m™ roots of unity to F,
if necessary, p(x) is similar to a diagonal matrix whose elements are m™
roots of unity. If F is the complex field, x(j;—fj = x{::}_‘;) the complex

conjugate of y(x).

Proof: The matrices 1, p(x), - - -, p(x!) are a representation of the cyclic
group C of order m. But the absolutely irreducible representations of C are of

degree 1, with a(x) = (b), where since 1 =x", we must have b” =1, and so b is
an mth root of unity. In R, we easily verify that 1/m(1 + wx + w*?* - - - +
o™ 1x™ 1), since w ranges over all mth roots of unity, are idempotents yielding
the irreducible representations. Hence, adjoining the mth roots of unity to the
field F (whose characteristic is, of course, not a divisor of m), the

representation p(x) of C reduces completely and we have a matrix similar to
p(x) which 1s a diagonal matrix, diag. (b, - - -, b,)), where each b; is an mth

root of unity. Hence y(x) = b, + - - - + b,. Here p(x"') must be similar to diag.
(byh - b, Yand y(x N = b1+ .. + b, 7! But if F is the complex field,
then the inverse of any root of unity 1s its complex conjugate, byl = E:" and
so.x(@) = X@)

Let p be any representation of a group G and for each 2 ¢ (7 let us define

ﬁ(mj = pl::r"l)T, where we designate the transpose of a matrix by the
superscript 7. Then

I

ply e )T = [p(ye(x)]"
= p()Tp(y™) T= p(x)p(y).

p(zy)

Thus p is also a representation of G, called the contragredient representation.

Suppose that L 1s the representation module for p with a basis uq, - - -, u,

over a field F. Take another space f_r over I with a basis vy, - - -, v,, and
define a scalar product u-v for ¢4 = @uy 4+ ++* -I—- Ay € L and

W = blﬂl + - —I— bﬂvﬂ € Lbytherlﬂe



u-v = ﬂlbl +ﬂ2b2+ gty +{InbﬂEF.

This scalar product is the bilinear function on (L! f‘,) defined by u;'v; = d;;.

We make vy, - - -, v, a representation basis for p by the rule
vix = Y pii(v; = Y, piile ;.
j J

Then
WL -0,;T = ; pir(®) psi (") (i -vs)

= ; pir(T)pri(x™) = 0845

since p(x)p(x 1) = I,. Thus ux-vx = uv for all 9y ¢ [, V€ i, and 7 e (7,
and the scalar product is preserved by operation on both factors by the same
element of G. To any subspace M’ of ff let us make correspond the subspace M
of L ofall 3y ¢ [,, suchthatu-v =0 for all y ¢ J}f’. Hence dim. M' + dim. M
= n, and this is a dual correspondence between the subspaces of L and f_r If M’

is a representation submodule of f_‘, and p ¢ M’ then for 2 ¢ (5,
pvr—! ¢ M’ and so, uwvx ' =0 and ux-v = 0 for all Ve M", weM,
whence yx e M and M is a representation submodule of L. Hence, in

particular, f_r is irreducible if, and only if, L is irreducible. If p is an absolutely

2 over F, it

irreducible n x n representation, then since p is of dimension n
would follow that f} is also of dimension 72
absolutely irreducible.

From the deﬁnitionﬁ = p. Also if p and ¢ are equivalent, then for some

over F, and so it is clearly

S,
S @ )S = o(z-Y),

all €T e G
Then taking transposes,

STP(I—I)TST_I = o(z) T,



all 2 ¢ (3, and so p and g are equivalent.
Let  be the number of classes in G. Let p;, - - -, p, be the absolutely

irreducible representations of G over F, where by convention we take p, the
identical representation, p(x) = 1, all 1 ¢ (7. (This corresponds to the

1 n n
idempotent - E &) Then p; = py, +++, pr will be the same
Teld
representations in some order. Similarly, let C;, - - -, C, be the classes of G,

where by convention we take C; = 1, the class consisting of the identity alone.
The inverses of the elements in a class C; will themselves be a class C;'. Hence
C/=Cy, - - -, C,/ will again be the classes of C.

If x(x) is the character of p(x), let us designate the character of p(x) by
X (). Here x(x) = trace p(x):

X(z) = trace p(z™)7 = trace p(z™) = x(z77),

and we have noted in Theorem 16.6.8 that for the complex field,
x(;r‘—l) = x{:m) , the complex conjugate. Thus this notation agrees with

that for complex conjugates over the complex field. We note that over the
complex field, p = ‘Enonly if all characters y(x) for p are real.

Let us designate by y;“ the absolutely irreducible character of an element of
the class C; in the representation p,. We also write h; for the number of
elements in C;. The number #4; is the index of the normalizer of an element
x e (;, and ifits order is g; we have g, = g.

THEOREM 16.6.9. The following orthogonality relations hold for
absolutely irreducible characters of a group G:

LA =
Lt —_—

z ;“}{:'1 = 5=.=9':
a=1

Proof: By Theorem 16.6.5 we have



1

= L x@x) = dan.

g zeG
But y(x) = y(y) if x and y are in the same class C;, and then x ' and y™! are in
the same class C;. Here xb(x~!) = ?{: x). Hence for x in C, the above

sum will contain /; terms equal to XTZEEE' Hence

or
. xi*xi® = Bab
1=1 gi
But this says that if M is the matrix, M = (m,;) a,i =1, - - -, r, where m,; = y,

then the matrix
M =@y 4,7=1,-1

with

1s such that
MM =1,

and so M’ is the inverse of M. But then it is also true that M'M = I,, and then it
follows

r 1 .
2 g: XX = 01

a=}

from which the second relation follows.



The structure of the group ring yields further relations on characters. In the
decomposition of R as a direct sum of simple rings

Be=RH---HREH---HR,

lete;“ i,j=1, - -, nbe the matrix units for R, whose unitis e, = e};“ + ex” +
- + ¢,," The irreducible representation p, = p, associated with R, is
equivalent to that on a minimal right ideal of R,. Let this be associated in a

specific way, using the minimal ideal e;;“R with the basis

en’, €% « -+, e1n%

Then
€1:°C = E Pii"ﬂ(m)glﬂ'ai 1=1,,m
j
Now x =x; +x,+ - +x,+ - +x,with g, € I, Here
Ts = €.0c = €,T = T€,.
Then if

Ta = X Tieis®,
ij

we have e;x = e ’e,x = e;*x,,, and
e1:°re;;* = x;i%;°.
But the definition of the representation gives
e1:°re;;* = pij*(x)er;®.

a — a 1
Hence x;“ = p;“(x) in all cases, and so,



Za = E pii®(x)eis?.
1,7

We write Cr = Z . since no ambiguity will arise in using the same

O
letter for the class and the sum of the elements regarded as an element of Ry;.
Then C, G,, - - -, C, are a basis for the center Z; of R;. Let

(‘I‘Ik=ckl+“'+0ka+"‘+ckr}

with (7@ ¢ I, Then, since C;“ is in the center of R, it is a scalar multiple
of e,. Here

O = 0%,

But

Trace p*(Ci®) = Z trace p°(x),

el
whence n_u;* = h, y,“, where n_, is the degree of p .. Hence
a*k Xk a gr Pa

a [ — hkxka
B = —
Mg

]

and so,
hexi®
Ckﬂ — kxk ﬁﬂ_n
N
The elements Cy, - - -, C,. of R; as a basis of Z(R;) will have a
multiplication table

C;'Ci = C;‘C;‘ = E G:’jkcf-.:;
k



where over a field F' of characteristic zero the ¢;; are non-negative integers,
since C;C; = C;C; contains no negative terms.

As R 1s the direct sum of the simple rings R,,, the components C;* will
satisfy the same relations as the C;. Thus:

THEOREM 16.6.10.

CielCe = CoCe = Z ciinCr®, @ =1, <+, 1,

and

hoxs® hix;® hae®
iXs TIXT E Cijk 2 a = 1, e, I

}
nq na k il

In the proof of Theorem 16.6.4 we found the relation nld = 1, where n = n, was

the degree of an absolutely irreducible representation. Hence the division by n,

in Theorem 16.6.10 is permissible.
Given any two linear spaces L and M over a field F, we define their tensor
product L x M in the following way: If u;, - - -, u,, are a basis for L, and v, - -

", v, are a basis for M, then L x M is the linear space over F' with a basis u;v;, i

=1, - mj=1,- - nlf

U= @i + ** + Qulm € L,
v = bwy + - + bavn e M,

and

the product WV = Z ﬂibjuiﬂ j is defined as an element of L x M. We
t.J
verify that a change of basis for L or M corresponds to a change of basis for L
X M.
If L is an -G module for the representation p of the group G and M for the
representation o of G, we define the Kromecker product p *x o of the
representations as the representation of G on L x M given by

(w)z = (ux)(vx), alluel,veM, z eG.



Thus if p; is equivalent to p and o, is equivalent to o, we have p; X o
equivalent to p X g, since this corresponds to a change of basis for L and M.

THEOREM 16.6.11. If p and o are representations of G with characters y
and y, respectively, and if ¢ is the character of p % o, then for every v ¢ (7

we have ¢(x) = y(x)w(x).

Proof: If Wil = Z pii(X)Uj j=1, . g Vi = Z aii(@)v;,
' j

J
i=1, -, n,
we have
x(@) = X pu(@), ¥(@) = X oula).
But with
(uwj)x = Z lpax(@)ur]loje(2)v],
k,t
then

¢(z) = Z pii(x)aji(x)

(X pus@][YS 04i(2)]
x ()¢ ().

I

From their definitions we see that the tensor product and the Kronecker
product are commutative and associative. Hence if p, and p, are absolutely

irreducible representations of G, then

py X pa = pa X pp = Egaacpm
c=1

where the g ;. are non-negative integers giving the decomposition of p, X p, as
the direct sum of irreducible representations p,. with multiplicity g,,.. The



same relation will hold for the characters. Thus we state as a theorem:

THEOREM 16.6.12. The absolutely irreducible characters of a group G
satisfy

Xi%xi® = E GabeXiSy
[+

where the g,,. are non-negative integers, being the multiplication constants

of a commutative and associative algebra.
We summarize the character relations we have found. Let C; =1, C,, - - -,

C, be the classes of G, p; = the identity representation, and p,, - - -, p,. be the
absolutely irreducible representations, where y,“ 1s the character of an element
of the ith class in the ath representation

CL -+ Ci+- Co
(151 Xil le i Xrl
Pa | Xa° il ¢
Pe | Xa v e X

Here we have, g;h; = g, where there are 4, elements 1n the class C;.

1) On the rows:

o

T
Z Xi"X:i" = 0Ogb.
i=1 @i

2) On the columns:

.
Z Xi%Xi® = 0iifi.
a=1

3) Within each row:



hixi® h:'x;'“ N Z Cijk huxr®.
Ng Mg T N

4) Within each column:
Lo ib = Z gﬂ-‘:cXic-
&

Here c;; and g,,. are non-negative integers which are the multiplication

constants of commutative and associative algebras.
Every representation of a group G as a permutation group z(G) can also be
regarded as a matrix representation, since if

U e Y
1'1'(3:) = ( 1 n
H,;l LR uin

for ¢ e (7, we may regard this as the representation p on a basis uy, = - -, u,,

where

uj'.'I: = U i:f"

Here y(x) is the number of letters fixed by 7z(x).

THEOREM 16.6.13. In a permutation representation n(G) of a group G of

order g, x\xr) = k , Where k is the number of transitive constituents.
g

zels
Here the representation as a matrix representation contains the identical

representation exactly k times.

Proof: Let ny, n,, - - -, n; be the number of letters in the k transitive
constituents. Then a subgroup H; fixing a letter a; of the jth transitive constituent
will be of index n; and of order g/n;. Hence the letter a; is fixed g/n; times in
all the elements of G. Thus the number of times letters of the jth constituent are

fixed is n;-g/n; = g. Hence the number of times letters of any of the &

constituents are fixed is kg or Z x(m) = kg AfX = E MaX® gives
zeld a



x as a sum of absolutely irreducible characters, then Z I(I) = Mg by

zeld
the corollary to Theorem 16.6.5. Hence the representation contains the identical

representation m; = k times.

THEOREM 16.6.14. If y is the character of a transitive permutation group

G, then Z xg(ﬂ:) = 1g, where t is the number of transitive constituents
reld
of a subgroup H fixing a letter. t is also the number of double cosets Hx H in

G.



Proof: Let G be a transitive permutation group on letters 1, 2, - - -, n. Let
H; be the subgroup fixing i,i =1, - - -, n. We may take H = H,, since all the
H; are conjugate. Let 4 be the order of /. Then

Y. x(z) = th

zeHy

by the previous theorem. Hence

Y, X x(@ =tk =1

i zeHy

But on the left we have counted y(x) once for every H; containing x. But x
fixes y(x) letters and so is contained in y(x) different /;’s. (This number is
zero if x displaces all letters.) Hence

tg =2, X x(@) = EG x2(2).

1 zelly

But we easily see that 7 is the number of double cosets H x H in G. For let G
=H+ Hx, - - - + Hx,, where H is the subgroup fixing 1 and x,, = (1,7, - - ) i
=2, - - -, n. Then if Hx;H = Hx;H, we have x; = hyx;h, with hy, hy € H.
Here the element /1, must take j into i, whence i and j are in a transitive

constituent of H. Conversely, suppose that i and j are in a transitive
constituent of H. Then for some ho € H, 5, takes j into i, x4, takes 1 into i,

whence :{:jhg e Hx;and x; = hix;hy and Hx;H = Hx;H. Now every double
coset of  is one of Hx;H. Hence there are exactly as many double cosets
HxH as there are transitive constituents in /.

THEOREM 16.6.15. 4 doubly transitive permutation representation of a
group G over the complex field is the sum of the identical representation
and an absolutely irreducible representation.

Proof: For a doubly transitive representation,



Y @) = 2g,

since a subgroup H fixing a letter 1, has exactly two transitive constituents, 1,
and the remaining letters. Since y(x) is real, we may write this

X x@)x@ = 2.

zeld

But if X = E CaX* expresses y as a sum of absolutely irreducible
(7

characters, we have

L x@x@ = E[X cax'@] (X eax’@]
= gZ €0

by the orthogonality relations. Hence E Co® = 2, whence ¢; = 1, as we

a
already know, and for exactly one further ¢, we have ¢, = 1.

16.7. Imprimitive Representations.

Suppose that we have a representation module M for a group G which is
the direct sum of subspaces M;, M,, - - -, M, , on which the representation is

transitive but imprimitive. By this we mean:
1) For any M; and M, there is an : ¢ (§ such that

41irf$ = ;'1[3‘.
2) For every M; and every g ¢ (7 there is an M; such that
M L = M i

The first of these is the transitive property; the second, the imprimitivity.



Choose a particular subspace M. The set of all x such that Mx = M,

surely includes the identity x = 1 and so is not vacuous and is readily seen to
be a subgroup H of G. Thus for i € [,

J]I]}], = ﬂ‘!l.!

and so M, is a representation module for H. If §; ¢ (7 is an element such
that

Mb; = M;,

then the elements x such that M x = M; are the elements of the coset /b;. Thus
we have

G = H + Hby, + Hb; --- + Hb,,
where
Mi(hby)) = M; t=1 .-, n,

and we have associated the subspaces with the left cosets of H. If x is such
that

Mz = M,
then
Mlb,-:r = .ﬂf]bi,

and

M’lb,-xbr‘ = ﬂ‘fl;

whence b.ob;~1 € H or € b;71H b;, a subgroup conjugate to H. Finally,
if

Mz = Mﬁ



then

xre b,'_le,'.

Let p; be the representation of H associated with a basis v; - - -, v,, of M.
We may then take v{b,, - - -, v,b; as a basis of M;. Then for an arbitrary

T e (7 we have
Mz =M; -+, Mx=M; -, Myx=M,,.

Here M;, - - -, M;, must be a permutation of M, - - -, M,,, since operating on
them with x~! we must get back to M|, - - -, M,. Here if Mx =M;(j=Jj;), we
have 1 ¢ by~ LH bj, or bab; 7! = h;j € H. Hence, withvib, k=1, - - -,
m as a basis of M;, we have

wbiz = (p-hidb; k=1, m.

In other words this part of the representation is completely determined by the
representation of /1;; on M:

ve(bixbi™) = wvihij.
Hence
p(x) = (p1(bixb;™")) 45 =1,--+,m,

with the convention that p,(y) =0 if y ¢ H . Here p(x) is of degree mn, made

up of n®> matrices of degree m. Thus every representation transitive on
subspaces M, - - -, M, and imprimitive on these is determined by a

representation p; of a subgroup H of index n in G. The converse is also true.
Let p, be any representation of // where

G = H + Hby +- -+ Hb,,

Then define



P(x} e (Pi(bixbj_l)) i:f = 11 T,

with the convention that p(y) =0 if §y ¢ H . Then, using block multiplication
of matrices,

(pr(bixb;i™)) (pr(brybi™))
(pr(bixbi™)) (pr(bsyb ™))
= (pu(bizybs™)) = p(ay),

p(z)p(y)

and trivially,
p(1) = (a(bilbi ) = (eu(1)) = I.
Thus p(x) is a representation for G.

THEOREM 16.7.1. Given a representation p, of degree m of a subgroup
Hof agroup G, if G=H+Hb,+ - - -+ Hb,, then

p(x) = (p1(biab; ) 1,7 =1, +,m,

with the convention p\(y) = 0 if 1 ¢ H is a representation of G of degree
mn on a module M with subspaces M, M,, - - -, M, corresponding to H,
Hb,, - - -, Hb
M,. Conversely, any representation transitive and imprimitive on

. respectively. p is transitive and imprimitive on My, - - -,

subspaces of a module is of this type.

Proof: fu; - - -, u,, - - -, u,, are a basis for the representation module

m>'

of p of the theorem, then u; - - -, u,, are a basis for p; on H and u,,(;1),; =
uib;, i =1, -+ -, n. It follows that the module M with basis u;, * - -, u,,, has
subspaces My, - - -, M, on which p is transitive and imprimitive. We say that

the representation p of G 1s induced by the representation p; of /.

COROLLARY 16.7.1. The representation p of G induced by the
representation p; of H does not depend on the choice of coset

representatives of H in G.



This follows since a change of representatives does not alter the
subspaces My, - - -, M, but merely changes the bases for them.

THEOREM 16.7.2. Let y be the character of the representation p of G
induced by the representation p, of H, whose character is y,. Let x be in

the class C; of conjugates in G with h; elements, and let g = g;h;, where g is
the order of G. Let h be the order of H. Then

x@ =% ¥ x@).
::C’;'nH

n
Proof: x(x) = E x1(bixb;™1) with the convention y;(w) = 0 if

=1
1w ;H. Then

1
x@ =1 ¥ xzy™),
ve@

since every element y of Hb; contributes the same amount to the sum on the
right, viz., y;(bxb; ). Here yxy™, as y ranges over G, ranges over C; and
gives each z € (] ; exactly g;, times. Thus

Y a@y ) =g X ),

ye@G zeC;nH

proving the theorem.

THEOREM 16.7.3 (RECIPROCITY THEOREM). Let p, p,; be absolutely

irreducible representations of a group G and a subgroup H, respectively
over a field of characteristic zero. Then the multiplicity of p; occurring in

p restricted to H is the same as the multiplicity of p in the representation
p* of G induced by p.



Proof: Let y = y* be the character of p, and y; = y;° be the character of
p1- Let y* be the character of p*, x* = Z mbx", »" the irreducible
b

characters of G. When restricted to H, letX = X® = Z ﬂdl"ild, de the
d

irreducible characters of H. Here the multiplicity of p in p* 1s m, and the
multiplicity of p; in p restricted to H is n.. By the previous theorem,

1 1 1
X Z mpx;® = A Z x1°(2).
gi gi b zeCin H

Here the convention is that a void sum is zero. Multiply this by Xi® and sum

over j. We have

Xi®Xi® _ ik X;* x1°(2),
A L
whence, using the orthogonality relations in G and also in H,
ma = 1 ¥ nax,;° x1°(2)
h dEh]l SEE§1H
=1 nax1%(2) x1°(2)
fld,;z._-ﬂ

= 1 hn. = n,,

=

the statement of the theorem.

16.8. Some Applications of the Theory of
Characters.

We shall assume throughout this section that we are dealing with the field
F of complex numbers, though it will be clear to the reader that a number of



the results carry over to all fields whose characteristic is not divisible by the
order of the group G being represented.

First some facts will be needed about algebraic numbers.i A number 6 is
said to be an algebraic number if it is the root x = 6 of a monic polynomial:

>4 art+4 - 4+ a, =0,

where a;, - - -, a,, are rational numbers. 0 is said to be an algebraic integer
if 1t 1s the root of such a polynomial where a;, - - -, a,, are rational integers.

THEOREM 16.8.1. A rational number which is an algebraic integer is a
rational integer.

Proof: Suppose that § = r/s is a rational number expressed in its lowest
terms and that it satisfies

 + ez + - + @, = 0,
where a4, - - -, a, are integers. Then

r* = —s(ar™ + aasr™? - 4 ansml),

Hence any prime dividing s must divide »* and hence r. This cannot happen i1f
r/s 1s 1n its lowest terms and s # 1. Hence s = 1, and so & = r 1s a rational
integer.

THEOREM 16.8.2. Algebraic numbers form a field. The sum or product
of two algebraic integers is an algebraic integer.

Proof: Let 0 be an algebraic number satisfying x” + ax" '+ - - +a, =
0, and ¢ be an algebraic number satisfying x” + bx™ 1+ - - - + b =0. Let

vij=0¢ =0 --n—=1753=0--+m-—1
Then

Qi ; = Vig1,j for 1 = [}, ceem — 2,



and

Bvn—1,; = —QWa-1,i *** — Qalo;.
Similarly,
¢vi; = Vi forj=0,---,m— 2,
and
Vim—1 = —bwWim— -+ —bmbin.
LEmmMA 16.8.1. If yy, - - -, yy are numbers not all zero and if z is a

number such that
3?f=z.ﬂff’b':' t=1,---, N,
J

with all a;; rational, then z is an algebraic number. If the a; are integers,

then z is an algebraic integer.
Proof: The hypothesis gives us a system of equations:

(an — 2)h + aeys + -+ + awvyy = 0,
anlr + ((122 i 3)!,-’2 + o+ asvyny = 0,

anlyi + axaye 4+ oo 4+ (avy — 2)yxy = 0,

which, when regarded as linear equations for the »’s, has the solution y,, - -
*, Vn» Where not all y’s are zero. Hence the determinant of the coefficients

must be zero.
Thus



|||||||||||||||||

But this, on expansion, is
(—1)%Y 4 pp=t -oe +pxr = 0,

where the p’s are integral polynomials in the a’s. Hence if the a’s are
rational, z is an algebraic number, and if the a’s are integers, z 1s an algebraic
integer.

We may use this lemma to prove our theorem. We exclude the trivial

cases when 0 or ¢ is 0. Then we take y;, - * -, y) to be the v;;, and since vy) =
1, the v;; are not all zero. Here take z as 6 + ¢ or as 6¢. The a;; of the lemma
in these cases will be integral polynomials inthe a;, - - -, a, and by, - - -, b,,,.
Hence z = 0 + ¢ and z = 6¢ will be algebraic numbers, and ifa;, - - -, a, and
by, - - -, b, are integers, then 0 + ¢ and O¢ will be algebraic integers. Thus

the sum and product of algebraic numbers are algebraic numbers, and the sum
and product of algebraic integers are algebraic integers. Finally, if 6 is an

algebraic number # 0 satisfying 2" + a;z" ! - - - + a, = 0, we may, if
necessary, divide by a power of z to get a constant term a,, # 0. Here

an—.l I
w+ — w4 e+ — =0
+ 5 + + .
is an equation which 1/ satisfies. Trivially, —6 satisfies 2" —a;z" ! - - - +

(—1)"a, = 0. Hence algebraic integers form an integral domain and algebraic
numbers form a field.

THEOREM 16.8.3. Every character x(x) is an algebraic integer. The
numbers hjy/n, of Theorem 16.6.10 are algebraic integers.

Proof: An mth root of unity satisfies x” — 1 = 0 and so is an algebraic
integer. Thus, by Theorem 16.6.8, every character y(x) is a sum of roots of




unity and so is an algebraic integer. Since the ¢ are integers in Theorem
16.6.10, we may apply Lemma 16.8.1 with the

hixi®
Ng

:'niﬂj -?:—_-]_?...,r

as the y’s of the lemma and also any one of them as z, and we conclude that
n/ are algebraic integers.

THEOREM 16.8.4. The degrees n, of the absolutely irreducible
representations of the finite group G are divisors of its order g.

Proof: From our orthogonality relations

r .y
e =0
i=1 i

This becomes, since g, = g,

. Xiuhiﬁ
=1
El g ’

or

r
hl-x i —
Y X e =4
[

i=1 N Ng

But the left side is a sum of products of algebraic integers. Hence g/n,, is an
algebraic integer and, being rational, is a rational integer. Thus n, divides g.

For our use of algebraic numbers we need a little of the theory of
symmetric functions. If we expand

(z—z)(z — x3) +++ (2 — )
= " — Elzn—l _I_ E2zn—2 _— _I- (—l)ﬂEﬂ’

we have



E, = 233:‘

E, = Zfl?:'xj

E, = X ToTip: - T,

Eﬂ = I1Tg *** Tn.
Here Ey, - - -, E, are clearly unchanged by any permutation of x;, - - -, x,, and
are called the elementary symmetric functions of x;, - - -, x,,. A polynomial
P(xy, - - -, x,) over a field F'is called a symmetric function if it 1s unchanged

by the entire symmetric group of permutations of x, - - -, x,,.

THEOREM 16.8.5. Every symmetric function P(x;, - - -, x,) IS a
polynomial Q(Eq, - - -, E,) in the elementary symmetric functions E,, - - -,
E,, and the coefficients in Q are integral polynomials in the coefficients of
P.

Proof: If P is symmetric, then its terms of each degree are separately
symmetric functions. The theorem i1s trivially true for degree 1, the only
symmetric functions being cE|, ¢ ¢ . Moreover, P is a sum of symmetric

polynomials, each determined by a single term in it, say,
C(Z1 + o+ Tr)* (X1 * 0 * Trpa)® o0 (Tuga * o+ Tugn)’,

where the exponents a > b - - - > ¢ are strictly decreasing. It is enough to
prove the theorem for symmetric sums:

K = X 2)°@n1 +++ Zrg)® o+ (@ugs -+ Tugo)’y

witha > b - - - >t. We proceed by induction on (1) the degree of K; (2) the
value of a; and (3) the value of r. If x{, - - -, x,, appear in every term, we

factor out £, and have the remaining factor symmetric of lower degree.
Hence we may assume u +v <n. Ifa = 1, then K = E,.. Otherwise consider



Ts vv T (@ -+ )% M@t oo Tka)? o @it *+* Tus)’
= F..K*

Here E,-K* = K + other terms. Both K* and the other terms appearing

precede K in our induction, and so our theorem is proved.
The rational polynomial of lowest degree which has an algebraic number
@ as a root is called the minimal polynomial for 6. If

fl@) =a" +ax" + -+ + an

is the minimal polynomial, it is a divisor of any rational polynomial %(x)
which has @ as a root. Now if

f@) = (& — 6)(x — 02) -+ (x — 0a),

where 0 = 0,, we say that 0, - - -, 0, are the conjugates of 6. Hence the

conjugates of § also satisfy any rational equation /(x) = 0 which @ satisfies.
Hence if @ 1s an algebraic integer, its conjugates are also algebraic integers,
and so the coefficients of the minimal polynomial for 6, being the symmetric
functions of the conjugates of 6, are algebraic integers and hence rational
integers.

In the study of representations we are mostly concerned with roots of
unity. The primitive mth roots of unity are w = exp (2xi/m) and powers «/
where (j, m) = 1. @ and the other primitive mth roots of unity satisfy x”* — 1 =
0, and no equation x” — 1 = 0 with 0 < 7 <m. The remaining mth roots of unity
satisfy equations x¢ — 1 = 0, where d runs over the divisors of m. Removing
all factors from x™ — 1 which it has in common with x? — 1, we are left with a
rational f{x) which has its roots precisely the primitive mth roots of unity.
Hence

f@) = [ = o)  (G,m) =1,

J

and f(x) is rational and integral of degree ¢(m), this being the Euler ¢
function. f(x) is in fact irreducible, but this is difficult to prove without using
more theory of algebraic numbers than we can prove here. We need only



know that the elementary symmetric functions of the primitive mth roots are
rational integers.

THEOREM 16.8.6. Let p, be an absolutely irreducible representation of
G of degree n, and let there be a class C; where (h;, n) = 1. Then either (1)
xi=0,0r (2) x* =nw, where w is a root of unity and C; is in the center of
Pa-

Proof: For a particular 1 ¢ ([ ; we may transform p, so that p, (x) is in

diagonal form. If all the n characteristic roots of x are equal, say, to some mth
root of unity w, then

Pa(x) - anr X(x) = Nw,

and x is in the center of p,. This 1s the second alternative of the theorem.

Thus we must show that if the characteristic roots of x are not all equal, then,
under the hypotheses of the theorem, y(x) = 0. Now in this case, y being of

order m, y* = y(x) = 0 + - - - + ° and [yi%| <n, since the i do not all
have the same argument. Here

hix:®

e

n

1s an algebraic integer, and since (4,, n) = 1, there are integers  and s so that
rh; +sn = 1. Hence

and also



£ - X¢* _ @1+ o0+ o

n T

Replacing o by its conjugates «/, we have

[Tz - g,

(7, m)=1

a polynomial whose coefficients are symmetric functions of the conjugates of
o and hence rational. Thus the conjugates of £ lie among the numbers.

Wl 4 -+ 4 w’a
n

H

and so, for every conjugate &9 of & we have |9 < 1, and every conjugate is
an algebraic integer. Now |¢] = [1)] < 1, and so the product [V - - - &9 < 1,
this being the product of all conjugates of £. This must be a rational integer

and hence must be 0. Thus &b - -+ &) = 0. Thus at least one of the
conjugates is 0. But 0 is its own only conjugate and so &= &1 =0, and so,

xi®
§="-=0,

whence y,* = 0, as we were to prove.

THEOREM 16.8.7*. (1) If the number h; of elements in a class C; of a

group G is a prime power, then G is not a simple group. More explicitly,
there is a homomorphic image of G in which the elements of C; are in the

center. (2) Groups of order p®qP, p, q primes are solvable.

Proof: (1) Let ny = 1, ny, - - -, n, be the degrees of the absolutely

irreducible representations of G. Let /; = p* be the number of elements in C;.

For the regular representation of G we have y(x) =0 for ¢ ( ; (since x #
1); also



x(z) = 2 nax®

a=1]

by the decomposition of the regular representation.
Here nyy;' = 1. For the remaining terms if P } 714, then by Theorem

16.8.6, either x, = 0 or C, is in the center of the homomorphic image p,(G).

But if y* = 0 in every instance where P % 71,4, we would have

U=1+Ennx;‘=1+pa,

a=2

where a is an algebraic integer. This would make — (1/p) an algebraic
integer, which is a conflict. Hence for some p,,, C; is in the center of p ,(G).

(2) Let G be a group of order p“g;,. We proceed by induction on the order
of such groups, p-groups being solvable. An element in the center of a Sylow
g-group 1s either in the center of G or has a number of conjugates which is a
power of p. In either event G has a proper normal subgroup H and both H
and G/H are solvable by our induction, and so G itself is solvable.

THEOREM 16.8.8 (FROBENIUS). If G is a transitive permutation group of
degree n whose permutations other than the identity leave at most one of
the symbols invariant, then those permutations of G which displace all the
symbols form together with the identity a normal subgroup of order n.

Proof: Let G permute 1, 2, - - -, n and let H, be the subgroup fixing i.
Then by hypothesis #; N H; = 1 for i # j. If H = H, has order #, then all H;
have order / and the elements x # 1 belonging to the /7; will number (4 — 1)n.

[G:H] = n so that G is of order An. This leaves exactly n other elements, the
identity and n» — 1 elements displacing all letters.

Let y be an absolutely irreducible character of H and y' the induced
character of G. G is given as a representation of itself and as such has a
character 6, = y,', where y, is the unit character 