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PREFACE

The present volume is intended to serve a dual purpose. The first ten
chapters are meant to be the basis for a course in Group Theory, and
exercises have been included at the end of each of these chapters. The last
ten chapters are meant to be useful as optional material in a course or as
reference material. When used as a text, the book is intended for students
who have had an introductory course in Modern Algebra comparable to a
course taught from Birkhoff and MacLane’s A Survey of Modern Algebra. I
have tried to make this book as self-contained as possible, but where
background material is needed references have been given, chiefly to
Birkhoff and MacLane.

Current research in Group Theory, as witnessed by the publications
covered in Mathematical Reviews is vigorous and extensive. It is no longer
possible to cover the whole subject matter or even to give a complete
bibliography. I have therefore been guided to a considerable extent by my
own interests in selecting the subjects treated, and the bibliography covers
only references made in the book itself. I have made a deliberate effort to
curtail the treatment of some subjects of great interest whose detailed study is
readily available in recent publications. For detailed investigations of
infinite Abelian groups, the reader is referred to the appropriate sections of
the second edition of Kurosch’s Theory of Groups and Kaplansky’s
monograph Infinite Abelian Groups. The monographs Structure of a Group
and the Structure of its Lattice of Subgroups by Suzuki and Generators and
Relations for Discrete Groups by Coxeter and Moser, both in the Ergebnisse
series, are recommended to the reader who wishes to go further with these
subjects.

This book developed from lecture notes on the course in Group Theory
which I have given at The Ohio State University over a period of years. The
major part of this volume in its present form was written at Trinity College,



Cambridge, during 1956 while I held a Fellowship from the John Simon
Guggenheim Foundation. I give my thanks to the Foundation for the grant
enabling me to carry out this work and to the Fellows of Trinity College for
giving me the privileges of the College.

I must chiefly give my thanks to Professor Philip Hall of King’s College,
Cambridge, who gave me many valuable suggestions on the preparation of
my manuscript and some unpublished material of his own. In recognition of
his many kindnesses, this book is dedicated to him.

I wish also to acknowledge the helpfulness of Professors Herbert J.
Ryser and Jan Korringa and also Dr. Ernest T. Parker in giving me their
assistance on a number of matters relating to the manuscript.

Marshall Hall, Jr.

Columbus, Ohio
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1. INTRODUCTION

1.1. Algebraic Laws.

A large part of algebra is concerned with systems of elements which, like
numbers, may be combined by addition or multiplication or both. We are
given a system whose elements are designated by letters a, b, c, · · ·. We
write S = S(a, b, c, · · ·) for this system. The properties of these systems
depend upon which of the following basic laws hold:

Clo
sur
e
La
ws.

A0. Addition
is well
defined.

M0. Multiplication
is well defined.

These mean that, for every ordered pair of elements, a, b of S,
a + b = c exists and is a unique element of S, and that also ab =
d exists and is a unique element of S.

Assoc
iative
Laws.

A1. (a + b) + c
= a + (b + c)

M1. (ab)c =
a(bc)

Com
mutati
ve
Laws.

A2. b + a = a +
b

M2. ba = ab

Zero
and
Unit.

A3. 0 exists
such that 0 + a
= a + 0 = a for
all a.

M3. 1 exists
such that 1a =
a1 = a for all a.

Negat A4. For every M4.* For every



ives
and
Invers
es.

a, −a exists
such that (−a)
+ a = a + (−a)
= 0.

a ≠ 0, a−1 exists
such that (a−1)
a = a(a−1) = 1.

Distri
butive
Laws.

D1. a(b + c) =
ab + ac.

D2. (b + c) a =
ba + ca.

DEFINITION: A system satisfying all these laws is called a field. A system
satisfying A0, −1, −2, −3, −4, M0, −1, and D1, −2 is called a ring.

It should be noted that A0–A4 are exactly parallel to M0–M4: except for
the nonexistence of the inverse of 0 in M4. In the distributive laws, however,
addition and multiplication behave quite differently. This parallelism
between addition and multiplication is exploited in the use of logarithms,
where the basic correspondence between them is given by the law:

In general an n-ary operation in a set S is a function f = f(a1 · · ·, an) of n
arguments (a1 · · ·, an) which are elements of S and whose value f(a1 · · ·,
an) = b is a unique element of S when f is defined for these arguments. If, for
every choice of a1 · · ·, an in S, f(a1 · · ·, an) is defined, we say that the
operation f is well defined or that the set S is closed with respect to the
operation f.

In a field F, addition and multiplication are well-defined binary
operations, while the inverse operation f(a) = a−1 is a unary operation
defined for every element except zero.

1.2. Mappings,

A very fundamental concept of modern mathematics is that of a mapping
of a set S into a set T.

DEFINITION: A mapping α of a set S into a set T is a rule which as signs
to each x of the set S a unique y of the set T. Symbolically we write this in
either of the notations:



The element y is called the image of x under α. If every y of the set T is the
image of at least one x in S, we say that α is a mapping of S onto T.

The mappings of a set into (or onto) itself are of particular importance.
For example a rotation in a plane may be regarded as a mapping of the set of
points in the plane onto itself. Two mappings α and β of a set S into itself
may be combined to yield a third mapping of S into itself, according to the
following definition.

DEFINITION: Given two mappings α, β, of a set S into itself, we define a
third mapping γ of S into itself by the rule: If y = (x)α and z = (y)β, then z =
(x)γ. The mapping γ is called the product of α and β, and we write γ = αβ.

Here, since y = (x)α is unique and z = (y)β is unique, z = [(x)α]β = (x)γ is
defined for every x of S and is a unique element of S.

THEOREM 1.2.1. The mappings of a set S into itself satisfy M0, M1, and
M3 if multiplication is interpreted to be the product of mappings.

Proof: It has already been noted that M0 is satisfied. Let us consider M1.
Let α, β, γ be three given mappings. Take any element x of S and let y = (x)α,
z = (y)β, and w = (z)γ. Then (x)[(αβ)γ] = z(γ) = w, and (x)[α(βγ)] = y(βγ) =
w. Since both mappings, (αβ)γ and α(βγ), give the same image for every x in
S, it follows that (αβ)γ = α(βγ).

As for M3, let 1 be the mapping such that (x)1 = x for every x in S. Then
1 is a unit in the sense that for every mapping α, α1 = 1α = α.

In general, neither M2 nor M4 holds for mappings. But M4 holds for an
important class of mappings, namely, the one-to-one mappings of S onto
itself.

DEFINITION: A mapping a of a set S onto T is said to be one-to-one
(which we will frequently write 1–1) if every element of T is the image of
exactly one element of S. We indicate such a mapping by the notation: 

, where x is an element of S, and y is an element of T. We say
that S and T have the same cardinal number* of elements.



THEOREM 1.2.2. The one-to-one mappings of a set S onto itself satisfy
M0, M1, M3, and M4.

Proof: Since Theorem 1.2.1 covers M0, M1, and M3, we need only
verify M4. If  is a one-to-one mapping of S onto itself, then by
definition, for every y of S there is exactly one x of S such that y = (x)a. This
assignment of a unique x to each y determines a one-to-one mapping 

 of S onto itself. From the definition of τ we see that (x)(ατ) = x
for every x in S and y(τα) = y for every y in S. Hence, ατ = τα = 1, and τ is a
mapping satisfying the requirements for α−1 in M4.

We call a one-to-one mapping of a set onto itself a permutation. When
the given set is finite, a permutation may be written by putting the elements of

the set in a row and their images below them. Thus  and 

 are two permutations of the set S(1, 2, 3). Their product

is defined to be the permutation . Note that the product

rule for permutations given here is obtained by multiplying from left to right.
Some authors define the product so that multiplication is from right to left.

1.3. Definitions for Groups and Some Related
Systems.

We see that, as single operations, the laws governing addition and
multiplication are the same. Of these, all but the commutative law are
satisfied by the product rule for the one-to-one mappings of a set onto itself.
The laws obeyed by these one-to-one mappings are those which we shall use
to define a group.

DEFINITION (FIRST DEFINITION OF A GROUP): A group G is a set of
elements G(a, b, c, · · ·) and a binary operation called “product” such
that:



G0. Closure Law. For every ordered pair a, b of elements of G, the
product ab = c exists and is a unique element of G.

G1. Associative Law. (ab)c = a(bc).
G2. Existence of Unit. An element 1 exists such that 1a = a1 = a for

every a of G.
G3. Existence of Inverse. For every a of G there exists an element a−1 of

G such that a−1a = aa−1 = 1.
These laws are redundant. We may omit one-half of G2 and G3, and

replace them by:
G2.* An element 1 exists such that 1a = a for every a of G.
G3.* For every a of G there exists an element x of G such that xa = 1.
We can show that these in turn imply G2 and G3. For a given a let

by G3.*
Then we have

so that G3 is satisfied. Also,

so that G2 is satisfied.
The uniqueness of the unit 1 and of an inverse a−1 are readily established

(see Ex. 13). We could, of course, also replace G2 and G3 by the assumption
of the existence of 1 and x such that: a1 = a and ax = 1. But if we assume that
they satisfy a1 = a and xa = 1, the situation is slightly different.*

There are a number of ways of bracketing an ordered sequence a1a2 · · ·
an to give it a value by calculating a succession of binary products. For n = 3
there are just two ways of bracketing, namely, (a1a2)a3 and a1(a2a3), and the
associative law asserts the equality of these two products. An important
consequence of the associative law is the generalized associative law.

All ways of bracketing an ordered sequence a1a2, · · · an to give it a
value by calculating a succession of binary products yield the same value.



It is a simple matter, using induction on n, to prove that the generalized
associative law is a consequence of the associative law (see Ex. 1).

Another definition may be given which does not explicitly postulate the
existence of the unit.

DEFINITION (SECOND DEFINITION OF A GROUP): A group G is a set of
elements G(a, b, · · ·) such that

1) For every ordered pair a, b of elements of G, a binary product ab is
defined such that ab = c is a unique element of G.

2) For every element a of G a unary operation “inverse,” a−1, is
defined such that a−1 is a unique element of G.

3) Associative Law. (ab)c = a(bc).
4) Inverse Laws. a−1(ab) = b = (ba)a−1.
It is an easy task to show that any set which satisfies the axioms of the

first definition also satisfies those of the second. To show the converse,
assume the axioms of the second definition and consider the relation:

When a = b, we see that a−1a = aa−1, and consequently the element a−1a =
aa−1 is the same for every a in G. Let us call this element “1,” so that G3 is
satisfied. Also,

and

and G2 is satisfied. Therefore the two definitions of a group are equivalent.
There is a third definition of a group as follows:

DEFINITION (THIRD DEFINITION OF A GROUP): A group G is a set of
elements G(a, b, · · ·) and a binary operation a/b such that:

L0. For every ordered pair a, b of elements of G, a/b is defined such
that a/b = c is a unique element of G.

L1. a/a = b/b.



L2. a/(b/b) = a.
L3. (a/a)/(b/c) = c/b.
L4. (a/c)/(b/c) = a/b.
In terms of this operation, let us define a unary operation of inverse b−1

by the rule

Here

using in turn L3 and L2. We now define a binary operation of product by the
rule

Then a/b = a/(b−1)−1 = ab−1. Let us write 1 for the common value of a/a = b/b
as given by L1. Then L1 becomes aa−1 = 1, whence also for any a, 1 =
a−1(a−1)−1 = a−1a. Thus G3 of the first definition holds. In b−1 = (b/b)/b, put b
= 1, whence 1−1 = 11−1, and so 1 = 1/1 = 11−1 = 1−1. L2 now becomes a1−1 =
a1 = a. By definition b−1 = 1/b = 1b−1, and with b = a−1, this gives (a−1)−1 =
1(a−1)−1, or a = 1a. Thus G2 of the first definition holds. L3 now becomes
1(bc−1)−1 = cb−1, whence (bc−1)−1 = cb−1. In L4, put a = x, b = 1, c = y−1;
whence (xy)(1y)−1 = x1−1 = x or (xy)y−1 = x. Now, for any x, y, z, put a = xy,
b = z−1, c = y. Then ac−1 = (xy)y−1 = x, and L4 becomes (ac−1)(bc−1)−1 =
ab−1, whence (ac−1)(cb−1) = ab−1. But in terms of x, y, z this becomes x(yz) =
(xz)z, the associative law G1. Thus this definition of group implies the first
definition. But in terms of the first definition if we put ab−1 = a/b, we easily
find that the laws L0, -1, -2, -3, -4 are satisfied, and therefore the definitions
are equivalent.

There are systems which satisfy some but not all the axioms for a group.
The following are the main types:

DEFINITION: A quasi-group Q is a system of elements Q(a, b, c, · · ·) in
which a binary operation of product ab is defined such that, in ab = c, any



two of a, b, c determine the third uniquely as an element of Q.

DEFINITION: A loop is a quasi-group with a unit 1 such that 1a = a1 = a
for every element a.

DEFINITION: A semi-group is a system S(a, b, c, · · ·) of elements with a
binary operation of product ab such that (ab)c = a (be).

A group clearly satisfies all these definitions. We may, with Kurosch,
further define a group as a set which is both a semi-group and a quasi-group.
As a semi-group G0 and G1 are satisfied. Let t be the unique element such
that tb = b for some particular b, and let y be determined by b and a so that
by = a. Then (tb)y = by and t(by) = by, or ta = a for any a, and G2* is
satisfied. In a quasigroup G3* is also satisfied. But we have already shown
that these properties define a group.

We call a system with a binary product and unary inverse satisfying

a quasi-group with the inverse property, this law being the inverse property.
We must show that the product defines a quasi-group. If ab = c, we find b =
a−1(ab) = a−1c, and a = (ab)b−1 = cb−1. Thus a and b determine c uniquely;
and also given c and a, there is at most one b, and given c and b, there is at
most one a. Write a(a−1c) = w. Then a−1[a(a−1c)] = a−1w, whence a−1c =
a−1w. Then (a−1)−1(a−1c) = (a−1)−1(a−1c) whence c = w. Hence a(a−1c) = c,
and similarly, (cb−1)b = c, and the system is a quasi-group. We note that an
inverse quasi-group need not be a loop. With three elements a, b, c and
relations a2 = a, ab = ba = c, b2 = b, bc = cb = a, c2 = c, ca = ac = b, we find
that each element is its own inverse, and we have a quasi-group with inverse
property but no unit.

1.4. Subgroups, Isomorphisms, Homomorphisms.

A subset of the elements of a group G may itself form a group with
respect to the product as defined in G. Such a set of elements H is called a
subgroup.



In any group G the unit 1 satisfies 12 = 1. Conversely, if x is an element of
G such that x2 = x, then x = x−1(x2) = x−1x = 1. Thus the unit of a subgroup H,
since it satisfies x2 = x, must be the same as the unit of the whole group G.

THEOREM 1.4.1. A non-empty subset H of a group G is a subgroup if the
two following conditions hold:

S1. If , , then .

S2. If , then .

Proof: The two properties given guarantee the validity of G0, G2, G3 in
H. And since products in H agree with those in G, G1 is also satisfied in H.

There are various relationships between pairs of groups which are worth
considering. The first such relationship is that of isomorphism.

DEFINITION: A one-to-one mapping  of the elements of a
group G onto those of a group H is called an isomorphism if whenever

 and , then .

EXAMPLE 1. Since all the permutations of a set form a group (Theorem
1.2.2), any set of permutations satisfying S1 and S2 will form a group which
is a subgroup of the full group of permutations. For example, let us consider
the following two such subgroups:



If we map xi of G1 onto yi of G2, we find that products correspond in every
instance. Hence G1 and G2 are isomorphic.

More generally we may have a mapping (usually many to one) of the
elements of one group G onto those of another group H, which we call a
homomorphism if the mapping preserves products.

DEFINITION: A mapping G → H of the elements of a group G onto those
of a group H is called a homomorphism if whenever g1 → h1 and g2 → h2
then g1g2 → h1h2.

In the homomorphism G → H let 1 be the identity of G and let 1 → e,
where e is in H. Then 12 → e2. Since 12 = 1, then e2 = e. We see that e is
therefore the identity of H. Also if g → h and g−1 → k, then gg−1 → hk, and
so 1 → hk = e. Therefore k = h−1 and the mapping takes inverses into
inverses. We may observe that a one-to-one homomorphism is an
isomorphism.

EXAMPLE 2. If G1 is the permutation group above and H is the
multiplicative group of the two real numbers 1, −1, then we have a



homomorphism:

Not only are permutation groups of interest in themselves, but also every
such group is isomorphic to a permutation group.

THEOREM 1.4.2 (CAYLEY). Every group G is isomorphic to a
permutation group of its own elements.

Proof: For each , define the mapping R(g): x → xg for all .
For a fixed g this is a mapping of the elements of G onto themselves, since
for a given y, yg−1 → (yg−1)g = y. It is also one-to-one, since from x1g = x2g
it follows that x1 = x2. Thus R(g) is a permutation for each g. The mapping
R(g1)R(g2) is the mapping , and so, R(g1)R(g2)
= R(g1g2). Moreover, in R(g1), , and in . Hence if g1 ≠ g2,
then R(g1) ≠ R(g2). Thus the mapping  is an isomorphism. We
observe in addition that R(1) = I, the identical mapping, and that R(g−1)R(g)
= I, so that R(g−1) = [R(g)]−1.

The permutations  are called the right regular
representation of G. We may also consider the permutations 

, the left regular representation of G. We find that L(g) is
anti-isomorphic to G. This means that the mapping L(g) is one-to-one and
that it reverses multiplication, i.e., L(g1g2) = L(g2)L(g1).

If we have a set of subgroups Hi of G where j ranges over a system of
indices J, then the set of elements of G, each of which belongs to every Hi,
will satisfy S1 and S2 and so be a subgroup H called the intersection of the
Hi. We write this: . Moreover, the set of all finite products,
g1g2 · · · gs, where each gi belongs to some Hi also satisfies S1 and S2. This
set forms a subgroup T called the union of the Hi, written .
For the intersection and union of two subgroups H and K we write H ∩ K and



H ∪ K, respectively. This notation is in agreement with that of lattice theory
and will be considered more fully in Chap. 8.

An arbitrary set of elements in a group is called a complex. If A and B are
two complexes in a group G, we write AB for the complex consisting of all
elements ab, , , and call AB the product of A and B. We easily
verify the associative law (AB)C = A(BC) for the multiplication of
complexes.

If K is any complex in a group G, we designate by {K} the subgroup
consisting of all finite products x1 · · · xn, where each xi is an element of K
or the inverse of an element of K. We say that {K} is generated by K. It is
easy to see that {K} is contained in any subgroup of G which contains K.

1.5. Cosets. Theorem of Lagrange. Cyclic groups.
Indices.

Given a group G and a subgroup H. The set of elements hx, all , 
, x fixed, is called a left coset of H and we write Hx to designate this

set. Similarly, the set of elements xh, all , is called a right coset xH
of H.

THEOREM 1.5.1. Two left (right) cosets of H in G are either disjoint or
identical sets of elements. A left (right) coset of H contains the same
cardinal number of elements as H.

Proof: If cosets Hx and Hy have no element in common, there is nothing
to prove. Hence, suppose , . Then z = h1x = h2y. Here x =
h1

−1h2y and hx = hh1
−1h2y = h′y, whence Hx ⊆ Hy. Similarly, hy = hh2

−1h1x
= h″x, whence Hy ⊆ Hx. Here Hx = Hy; that is, the sets are identical. A
similar proof holds for right cosets. The correspondences , 

, , show that H, Hx, and xH contain the same cardinal
number of elements.

The element x = x1 = 1x belongs to the cosets xH and Hx and is called
the representative of the coset. From Theorem 1.5.1, any element 
may be taken as the representative, since Hu = Hx. Thus H = H1 = 1H is one
of its own cosets, and it is usually convenient (and under certain conventions



compulsory) to take the identity as the representative of a subgroup regarded
as one of its own cosets. We write

to indicate that the cosets H, Hx2, · · ·, Hxr are disjoint and exhaust G. Here
the indicated addition is only a convenient notation and not to be regarded as
an operation.

Since (Hx)−1 (the set of inverses of the elements of the form hx) is equal
to x−1H and (yH)−1 = Hy−1, there is a one-to-one correspondence between
left and right cosets of H. Thus, from (1.5.1),

The cardinal number r of right or left cosets of a subgroup H in a group G is
called the index of H in G and is written [G:H]. The order of a group G is
the cardinal number of elements in G. The identity alone is a subgroup, and
its cosets consist of single elements. Thus the order of a group is the index of
the identity subgroup.

THEOREM 1.5.2 (THEOREM of LAGRANGE). The order of a group G is the
product of the order of a subgroup H and the index of H in G.

Proof: Each of the r = [G:H] disjoint cosets of H in G contains the same
number of elements as H, which is the order of H.

If H is a subgroup of G, and K is a subgroup of H, let

Then, for , g = hxi,  in a unique way, and h = kyi, 
uniquely. Thus the cosets of K in G are given by Kyixj i = 1, · · · r, j = 1, · · ·,
s. For two such cosets to be equal, they would have to belong to the same
coset of H and so have the same xj. Multiplying by xj

−1 on the right, we see
that they would also have to have the same yi. Thus the cosets of K in H are
given by Kyixj, and these are all different. We have thus proved the theorem:



THEOREM 1.5.3. If G ⊇ H ⊇ K, then [G:K] = [G:H][H:K].

A group G is cyclic if every element in it is a power bi of some fixed
element b. If we write (b−1)r = b−r, then by the associative law and induction
we can show bmbt = bm+t for any integral exponents m, t. If all powers of b
are distinct, then the cyclic group is of infinite order and is isomorphic with
the additive group of all integers, these being the exponents of the generator
b. If not all powers are distinct, let bm = bt with m > t. Then bm−t = 1, with m
− t positive. Let n > 0 be the least positive integer, with bn = 1. Then we
readily see that the elements of the group are 1, b, · · ·, bn−1 and that with 0 ≤
r, s < n, brbs = br+s if r + s < n, while brbs = br+s−n if r + s ≥ n. From this we
may verify directly that for each positive n there is, to within isomorphism, a
unique cyclic group of order n. This is also the additive group of integers
modulo n. Thus, for a cyclic group generated by an element b, its order will
either be infinite or some positive integer n, in which case n is the smallest
positive integer such that bn = 1. We define the order of an element b as the
order of the cyclic group {b} which it generates.

The nature and number of subgroups of a group G are surely of great
value in describing G itself. But if G contains no subgroup except itself and
the identity, then there are no proper subgroups which describe its structure.
In this case we can give a very simple direct description of G.

THEOREM 1.5.4. Let G be a group, not the identity alone. Then G has no
subgroup except itself and the identity if, and only if, G is a finite cyclic
group of prime order.

Proof: Under the hypothesis if b ≠ 1 is an element of G, then the cyclic
group generated by b is not the identity and must be the entire group G. If b is
of infinite order, then b2 generates a proper subgroup, the elements b2j. Hence
b is of finite order, n, and bn = 1. If n is not a prime, then n = uv with u > 1, v
> 1. Here the powers of bu generate a proper subgroup of order v. Hence n is
a prime and G is a cyclic group of prime order. But from the Theorem of
Lagrange a group of prime order cannot contain a subgroup different from the
identity and the whole group.

There is a basic relation on indices of subgroups.



Theorem 1.5.5. Inequality on indices. [A ∪ B:B] ≥ [A:A ∩ B].

Proof: Call A ∩ B = D and let A = D1 + Dx2 + · · · + Dxr. Then we assert
that the cosets B1, Bx2, · · ·, Bxr are all distinct in A ∪ B. For if Bxi = Bxj ≠ i,
then xi = bxi with . But here xi and xj both belong to A, and so for this
b also , whence ; so the cosets Dxj and Dxi
have in common the element xj = bxi contrary to assumption. Hence there are
at least as many distinct cosets of B in A ∪ B as there are of A ∩ B in A,
proving the inequality.

THEOREM 1.5.6. EQUALITY OF INDICES. If[A ∪ B:B] and [A ∪ B:A] are
finite and relatively prime, then [A ∪ B:B] = [A:A ∩ B] and [A ∪ B:A] =
[B:A ∩ B].

Proof: By Theorem 1.5.3,

By Theorem 1.5.5, [A ∪ B:B] ≥ [A:A ∩ B], but also from the above relation
[A ∪ B:B] divides [A:A ∩ B], since it is relatively prime to [A ∪ B:A]. Hence
[A ∪ B:B] = [A:A ∩ B] and similarly [A ∪ B:A] = [B:A ∩ B].

1.6. Conjugates and Classes.

Let G be a group and S any set of elements in G. Then the set S′ of
elements of the form x−1sx, , x fixed, is called the transform of S by x
and is written in either of the forms S′ = x−1Sx or S′ = Sx.

LEMMA 1.6.1. S and Sx contain the same number of elements.

Proof:  is a 1–1 correspondence, since s → x−1sx = s′ is a
mapping and so is s′ → xs′x−1 = x(x−1sx)x−1 = s.

If S and S′ are two sets in G, H is some subgroup of G, and some 
exists such that S′ = Sx, we say that S and S′ are conjugate under H. If S′ =



x−1Sx, then S = (x−1)−1S′x−1 Moreover, if S″ = y−1S′y, then S” = y−1x−1Sxy =
(xy)−1(xy)−1S(xy). Since trivially S = 1−1S1, we see that the relation of being
conjugate under H is an equivalence relation, being reflexive, symmetric, and
transitive. We call the set of all S′ conjugate to a given S a class of
conjugates. From (x−1sx)−1 = x−1s−1x and x−1s1x·x−1s2x = x−1(s1s2)x, we
deduce:

LEMMA 1.6.2. Any set conjugate to a subgroup is also a subgroup.
If x−1Sx = S, then S = xSx−1. If also y−1Sy = S, then S = (xy)−1S(xy). Hence

the set of , such that Sx = S, is a subgroup of H which we shall call
the normalizer of S in H, and we designate this as NH(S). Again the set of 

 such that x−1sx = s for all , may similarly be shown to be a
subgroup of H which we call the centralizer of S in H and designate CH(S)
[or ZH(S) if we follow the German spelling]. Note that if S consists of a
single element, the centralizer and normalizer are identical; moreover,
always CH(S) ⊆ NH(S). When H = G it is customary to speak merely of the
normalizer or centralizer of S. The centralizer Z of G in G is called the
center of G.

THEOREM 1.6.1. The number of conjugates of S under H is the index in
H of the normalizer of S in H, [H:NH(S)].

Proof: Write NH(S) = D for brevity and let

Then x−1Sx = y−1Sy, x,  if, and only if, S = (yx−1)−1S(yx−1); that is, 
 or . Hence two conjugates of S under H are the same if,

and only if, the transforming elements belong to the same left coset of D.
Hence the number of distinct conjugates is the index of D in H, as was to be
shown.

If S consists of a single element s, the conjugates under G form a class.
Thus the classes of elements in G are a partitioning of the elements of G, and
we write



the Ci being disjoint classes and every element being in exactly one class.
The identity 1 is always a class. From Theorem 1.6.1 the number of elements
in a class Ci is the index of a subgroup and hence a divisor of the order of the
group.

1.7. Double Cosets.

Given a group G and two subgroups H and K, not necessarily distinct, the
set of elements HxK, where x is some fixed element of G, is called a double
coset. As with ordinary cosets, we may prove:

LEMMA 1.7.1. Two double cosets HxK and HyK are either disjoint or
identical.

Proof: Here, if z = h1xk1 = h2yk2, hxk = hh1
−1h2yk2k1

−1k, whence HxK ⊆
HyK, and similarly, HyK ⊆ HxK.

A double coset HxK contains all left cosets of H of the form Hxk and all
right cosets of K of the form hxK. Moreover, it is clear that HxK consists of
complete left cosets of H and of complete right cosets of K.

THEOREM 1.7.1. The number of left cosets of H in HxK is [K:K ∩
x−1Hx], and the number of right cosets of K in HxK is [x−1Hx:K ∩ x−1Hx].

Proof: We put the elements of HxK into a 1–1 correspondence with the
elements x−1HxK by the rule . This correspondence gives
a 1–1 correspondence between the left cosets Hxk of H in HxK and the left
cosets x−1Hx·k of x−1Hx in x−1HxK, and also between the right cosets hxK of
K in HxK and the right cosets x−1hxK of K in x−1HxK. Let us write x−1Hx = A,
and A ∩ K = D. Now if A = 1·D + u2D + · · · + urD, r = [A:D], then 
, whence K, u2K, · · ·, urK are right cosets of K in AK. They are distinct since
if uiK = ujK, then , but since ui, , this would mean that 

, and thus uiD = ujD contrary to assumption.2 Every right coset



of K in AK is of the form aK, where  is of the form uid with .
But uidK = uiK. Thus the number of right cosets of K in AK is [A:D] =
[x−1Hx:x−1Hx ∩ K], and by the 1–1 correspondence, this is the number of
right cosets of K in HxK. In the same way it may be shown that the number of
left cosets of A in AK is [K:D] = [K:x−1Hx ∩ K] and this, by the 1–1
correspondence, is the number of left cosets of H in HxK.

1.8. Remarks on Infinite Groups.

Many of the theorems on groups do not involve the issue as to whether or
not the groups are finite. But in some instances the facts are essentially
different for finite and infinite groups, and occasionally when the facts are
similar, the methods of proof differ.

An infinite group G may have certain finite properties. Some important
properties of this kind are:

1) G is finitely generated.
2) G is periodic, that is, the elements of G are of finite order.
3) G satisfies the maximal condition: Every ascending chain of distinct

subgroups A1 ⊂ A2 ⊂ A3 ⊂ · · · is necessarily finite.
4) G satisfies the minimal condition: Every descending chain of distinct

subgroups A1 ⊃ A2 ⊃ A3 ⊃ · · · is necessarily finite.
An infinite group G is said to have a property locally if this property

holds for every finitely generated subgroup. A family Hi of homomorphic
images of a group G is said to be a residual family for G, if for every g ≠ 1
of G there is at least one Hi in which the image of this g is not the identity.
We say that G has a property residually if there is a residual family for G of
homomorphic images all having the property.

THEOREM 1.8.1. A group G satisfies the maximal condition if, and only
if, G and every subgroup of G are finitely generated.

Proof: Let H be a subgroup of G which is not finitely generated. We may
construct recursively an infinite ascending chain of distinct subgroups of H,
{h1} ⊂ {h1, h2} ⊂ · · · ⊂ {h1, · · ·, hi} ⊂ · · ·, by choosing hi arbitrarily,
and recursively hi, an element of H not in {h1, · · ·, hi−1}. Such an hi always



exists, since H cannot be the finitely generated group {h1, · · ·, hi−1}.
Conversely, suppose that G and all its subgroups are finitely generated. Then
let B1 ⊆ B2 ⊆ B3 ⊆ · · · be an ascending chain of subgroups in G. We shall
show that after a certain point in this chain all subgroups are equal, and so
there is not an infinite ascending chain of distinct subgroups. The set of all
elements b, such that  for some Bi in the chain, forms a subgroup B
of G, since if  and , then both b and b′ belong to any Bk
with k ≥ i, k ≥ j, and so also their product and their inverses are in Bk.

By hypothesis B is finitely generated, say, by elements x1 · · ·, xn. Let Bi1
be the first Bi containing x1 and generally Bik be the first Bi containing xk, for
k = 1, · · ·, n. Then if m is the largest of j1, · · · jn, Bm will contain all of x1, ·
· ·, xn, and so B = Bm − Bm+1 = · · ·, and all further groups in the chain are
equal to B. We shall see later that there are groups which are finitely
generated but which have subgroups that are not finitely generated.

THEOREM 1.8.2. A group G which satisfies the minimal condition is
periodic.

Proof: If G contains an element b of infinite order, then {b2} ⊃ {b4} ⊃ ·
· · ⊃ (b2i} ⊃ · · · is an infinite descending chain of distinct subgroups.

In an infinite group we cannot use finite induction on its order, and so
some substitute is needed to replace this method of proof which is so
valuable for finite groups. One way to make this replacement is to appeal to
certain very general axioms on sets and ordering. Suppose that we have an
ordering relation a ≤ b on the elements of a set S of objects (a, b, c, · · ·}.
The ordering may satisfy some of the following axioms:

O1) If a ≤ b, and b ≤ a, then a = b.
O2) If a ≤ b, and b ≤ c, then a ≤ c.
O3) Either a ≤ b or b ≤ a for any two a, b.
O4) Any nonempty subset T of S has a first element x1, i.e., an element

x1 such that x1 ≤ t for every .
If the first two axioms hold, we say that the ordering is a partial

ordering. If the first three axioms hold, we say that the ordering is a simple
ordering. If all four axioms hold, we say that the ordering is a well-ordering.



We may appeal to the axiom of well-ordering: Every set S may be well-
ordered. Let us write a < b to mean a ≤ b but a ≠ b.

In a well-ordered set we may prove propositions by the method of
transfinite induction. This proceeds as follows: Designate the first element
of S as 1. Then, if P(a) is a proposition about the elements of S and if P(1) is
true, and if the truth of P(x) for all x < a implies the truth of P(a), we
conclude that P(b) is true for all . Let T be the subset of S, such that
P(t) is false for . If T is nonempty, it contains a first element c. But
then either c = 1 or P(x) is true for all x < c. In either event this would lead to
the truth of P(c) contrary to the choice of c in T. Hence T must be empty and
P(b) true for all . We note in passing that in a well-ordered set any
descending sequence a1 > a2 > a3 > · · · is necessarily finite since it must
contain a first element.

Another axiom, logically equivalent to the axiom of well-ordering is
Zorn’s lemma. This again deals with ordering in sets.

LEMMA 1.8.1. (ZORN’S LEMMA). Given a partially ordered set S.
Suppose that every simply ordered subset of S has an upper bound (lower
bound) in S. Then S has a maximal (minimal) element. Here if U is a subset
of S, then an upper bound b of U is an element such that b ≥ u for all 
. A maximal element w has no upper bound different from itself. Reversing
the inclusion, we similarly define lower bound and minimal element.

Suppose we consider subgroups of a group G partially ordered by
inclusion A ⊆ B if A is a subgroup of B. Then the set of all elements in a
simply ordered subset of subgroups will itself form a subgroup, since if g1 is
in one of the groups and g2 is in another, then both g1 and g2 are in the greater
of the two subgroups and so also are their product and their inverses. For this
reason Zorn’s lemma is well suited to proofs in group theory or to abstract
algebra in general.

Both the Axiom of Well-Ordering and Zorn’s lemma are logically
equivalent to:

AXIOM OF CHOICE. For any family F of subsets {Si} of a set S, there is a
choice function f(Si) defined for the subsets of F whose values are elements
of S, such that , the subsets Si not being void.



In certain arguments the Axiom of Choice appears to lead to paradoxes,
and for this reason it is suspect. All three principles are surely valid if the set
S is countable, i.e., its objects may be put into a one-to-one correspondence
with the natural numbers 1,2,3, · · ·. Presumably, they are valid for other sets
S and possibly for all well-defined sets, though it might be remarked that as
yet no one has actually constructed a well-ordering of the set of all real
numbers. When using any one of these principles in this book, it is to be
understood that by “Every set S” we mean “Every set S for which the axiom
is valid.”

A useful application of these methods is the following:

THEOREM 1.8.3. Let g be an element of a group G and H a subgroup of
G which does not contain g. Then there is a subgroup M containing H
which is maximal with respect to the property of not containing g.

Proof: We use Zorn’s lemma. Subgroups containing H but not containing
g form a partially ordered set under inclusion. The elements of a simply
ordered set of these groups themselves form a group which contains H but
not g. Hence a maximal group M exists containing H but not g.

Using this theorem, we easily derive the following:

THEOREM 1.8.4. Let G be a finitely generated group and H a proper
subgroup of G. Then there exists a maximal subgroup M of G containing H.

Proof: Let G be generated by x1, · · ·, xm and let y1 be the first of x1, · · ·,
xm not contained in H. Let M1 ⊇ H where M1 is maximal with respect to the
property of not containing y1. Then any subgroup of G containing M1 properly
contains y1 and so also {M1, y1} = H1. If H1 = G, then M1 is the maximal
subgroup sought. If not, choose M2 ⊇ H1 where M2 is maximal with respect
to the property of not containing y2, the first of x1 · · ·, xm not contained in H1.
Since G = {x1, · · ·, xm}, by continuing this process we must reach an Mi ⊇
Hi−1 ⊇ · · · ⊇ H, where {Mi, yi} = G and Mi = M is the maximal subgroup
sought.

1.9. Examples of Groups.



The one-to-one mappings of a set onto itself which preserve some
property usually form a group. Many of the most interesting groups arise
naturally in this way. The symmetries of a geometric figure are of this kind.
These are the congruent (i.e., distance-preserving) mappings of the figure
onto itself. The first two examples below are groups of symmetries.

EXAMPLE 1. DIHEDRAL GROUPS. The symmetries of a regular polygon of 
 sides form a group of order 2n. These are determined entirely by

the way in which the vertices are mapped onto themselves. Let the vertices
be numbered 1, 2, · · ·, n in a clockwise manner. The vertex 1 may be
mapped onto any vertex 1, 2, · · ·, n, and the remaining vertices placed in
either a clockwise or a counter-clockwise direction. All symmetries are
generated by the rotation

and the reflection

Here an = 1, b2 = 1, ba = a−1b. Moreover, these relations determine the group
completely, since every element generated by a and b is of the form ai

1bj
1 · ·

· ai
rbj

r and since bai = a−ib, as we may show from the last relation, every
element can be put into the form ai or aib with i = 0, 1, · · ·, n − 1; these are
the 2n different elements of the group. These relations also define a group for
n = 2 which is of order 4. This is called the four group.

EXAMPLE 2. SYMMETRIES OF THE CUBE. The symmetries of the cube are
determined by the mappings of the eight vertices onto themselves. Let these
be numbered as in the figure. The symmetries include the rotation



and the reflection

Fig. 1. Symmetries of and the reflection the cube.

The elements a and b generate a group G1 which takes every vertex into
every other vertex. We may see this from the diagram

In this diagram  means that the element x takes i into j. From this we
may read that ba2 takes 4 into 7. The elements that fix 1 form a subgroup H1
and we may write

where xi is an element taking 1 into i. We may take the x’s as follows: x2 = a,
x3 = a2, x4 = a3, x5 = a3b, x6 = a3ba, x7 = a3ba2, x8 = a3ba3. Since there are



only eight letters in all, and all elements in a coset H1xi take 1 into the same i,
this includes all conceivable cosets of H1 and the index of H1 in G1 is 8.

A rotation of the cube fixing the vertex 1 must permute the three adjacent
vertices cyclically. Thus H1 is of order 3 containing only 1, b, b2, and so G1

is of order 24. The reflection c is not in G1 but as c2 = 1, ca = ac and cb =
a2ba2c, we see that G, the group generated by a, b, c satisfies G = G1 + G1c
and is of order 48. G is the full group of symmetries of the cube.

EXAMPLE 3. What is the order of a group G generated by elements a and b
subject only to the relations

Every element of G may be expressed by a finite sequence of a’s and b’s.
From the relation ba = arb we may ultimately express an element in a form in
which no b is followed by an a. Thus every element may be put in the form

From this we see that the order of G is, at most, 21. But the actual order
depends on the value of r in the relation ba = arb. We see that ba2 = arba =
ar(arb) = a2rb, and similarly, bai = airb. Thus b2a = barb = ar2b2. From this
we get b2ai = air2b2. Hence b3a = bar2b2 = ar3b3. But as b3 = 1, this gives a =
ar3; but also a7 = 1. Of the values r = 1, 2, 3, 4, 5, 6, we find that r = 3, 5, 6
lead to a = 1, and the group is merely the cyclic group of order 3 given by b3

= 1. But r = 1, 2, 4 do not lead to this result. If r = 1, then ba = ab = c is an
element of order 21. Conversely, in a cyclic group of order 21, with c21 = 1,
if we put b = c7, a = c−6, we have a7 = 1, b3 = 1, ba = ab = c. With r = 2 the
following permutations work:



For r = 4 the same permutation for a and the inverse of the second
permutation will do for b. This example is meant to show that an apparently
slight change in defining relations can make a major difference in the group
defined.

EXAMPLE 4. Let us find the group of permutations on the seven letters A,
B, C, D, E, F, G which permute among themselves the columns of the
following diagram, the order of the letters in a column being immaterial:

We see at once that the permutation

permutes the columns cyclically. Thus, if G is the entire group of
permutations and H is the subgroup taking the first column into itself, the
coset Hai = 1, · · · 6 consists of all elements mapping the first column onto
the i + 1st. Hence

Within H there may be elements permuting A, B, D cyclically. If we try this,
we find that this does not appear to determine the mapping of the remaining
letters, but if we also assume that C is mapped into itself, a permutation is
completely determined which works

Thus, if K is the subgroup which fixes the first column and also the letter A,



Within K let us seek an element which interchanges B and D. Take

Hence, if T is the subgroup fixing A, B, and D,

Within T, the three letters A, B, D are fixed and the letter C can go into any
one of the four possibilities C, E, F, G. Each one of these choices leads to
exactly one permutation:

Thus T is a group of order 4, K is of order 8, H is of order 24, and G is of
order 168. If the seven letters A, · · ·, G are regarded as points and the
columns as lines, the diagram represents the finite projective plane with
seven points, and the group G is its collineation group.

EXAMPLE 5. THE QUATERNION GROUP. The following group of order 8 is
in many ways an exceptional group. Its unusual properties will be discussed
later in § 12.5. Here we are interested in presenting it in terms of its
multiplication table, or Cayley table, as it is called after the English
mathematician Cayley. In the row with xi on the left and in the column with xj
at the top we enter the product xk = xixj.



In this table, from the fact that every xi occurs exactly once in every row and
in every column, we see that in a product ab = c any two of a, b, c determine
the third uniquely. Thus the preceding table is the multiplication table of a
quasi-group. By inspection we see also that x1xi = xix1 = xi in every instance
whence x1 = 1 is a two-sided unit and the table determines a loop. But both
these properties are preserved if we replace the last two rows by

But the table as given is alleged to be the multiplication table of a group, and
for this it is necessary to verify the associative law (ab)c = a(bc) for
products.

A full verification of the associative law in this case would involve
potentially 83 = 512 verifications. Even though it is easy to see that (ab)c =
a(bc) whenever any one of a, b, or c is the identity, this still leaves 343
verifications. Here we appeal to the converse of the Cayley Theorem 1.4.1.

THEOREM 1.9.1 (CONVERSE OF CAYLEY’S THEOREM). A loop is a group if
the right regular mappings x → xg form a group.

Proof: Here in R(g)R(h) we have 1 → g → gh. But also in R(gh) we
have 1 → gh, and this is the only mapping taking 1 into gh. Hence R(g)R(h)
= R(gh), whence, for every x, (xg)h = x(gh) and the associative law holds.

In this case we write a = x2, b = xz and calculate



Here A4 = B4 = 1, A2 = B2, BA = A3B, and we easily see that these generate a
group of order 8 that is indeed the right regular representation of the given
loop and which is therefore a group. The second rows of the permutations
are the columns of the multiplication table. In terms of the generators a and b
we have x1 = 1, x2 = a, x3 = b, x4 = ab, x5 = a2 = b2, x6 = a3, x7 = b3 = a2b, x8

= a3b; also, a4 = 1, b4 = 1, b2 = a2, ba = a3b.

EXERCISES
1. Show that from the associative law (ab)c = a(bc) it follows that all methods of bracketing a1a2

· · · an, without altering the order of the factors, yield the same product.

2. Show that (ab)−1 = b−1a−1 in any group and that more generally (a1a2 · · · an−1an)−1 =

an
−1an−1

−1 · · · a2
−1a1

−1.

3. Show that a and a−1 are of the same order.
4. Show that ab and ba are of the same order. (Hint: ab and ba are conjugate elements.)
5. If am = 1, and bn = 1, where m and n are positive integers, and if ba = ab, show that (ab)k  = 1,

where k  is the least common multiple of m and n. Find an example with ba ≠ ab where this is
untrue.

6. If a group G has only one element a of order 2, show that for every x in G, xa = ax.
7. Show that the only finite group with exactly two classes of elements is the group of order 2.
8. If p < q are primes, show that a group of order pq cannot have two distinct subgroups of order

q.
9. If H is a proper subgroup of the finite group G, show that the conjugates of H do not include all

elements of G.
10. Show that the loops of orders 1, 2, 3, 4 are groups, but find a loop of order 5 which is not a

group.
11. Show that the double coset HxK contains precisely those right cosets of K which have at least

one element in common with Hx.
12. (William Scott.) Show that a system with a binary product and a unit 1 such that 1a = a1 = a for

all a will be associative if we take as a law the equality of two distinct bracketings of a1a2 · · ·
an.

13. From the axioms of the first definition of a group prove the uniqueness of the unit 1 and the



uniqueness of the inverse a−1.
14. If A and B are two finite subgroups of a group G, show that the complex AB contains exactly

[A:1][B:1]/[A ∩ B:1] distinct elements.

* The statement of M4 given here applies to a system in which both addition and multiplication are
defined. If addition is not defined, there is no 0 in S, and the law can be rephrased: “For every a, a−1

exists such that (a−1)a = a(a−1) = 1.”
* For a discussion of cardinal numbers, see Birkhoff and MacLane [1], p. 356. This number and

others like it throughout the book refer to the Bibliography.
* H. B. Mann [1].



2. NORMAL SUBGROUPS AND
HOMOMORPHISMS

2.1. Normal Subgroups.

A subgroup H of a group G is said to be a normal subgroup if x−1Hx = H
for all . In the terminology of §1.6 a subgroup H of G is a normal
subgroup if NG(H) = G.

LEMMA 2.1.1. A subgroup H of G is a normal subgroup of G if and only
if every left coset Hx is also a right coset xH.

Proof: If x−1Hx = H for all x, then Hx = xH and conversely, if Hx = yH
then  so that yH = xH. Hence Hx = xH for all  and so x−1Hx
= H.

COROLLARY 2.2.1. A subgroup of index 2 is necessarily a normal
subgroup.

For, if G = H + Hx, then G = H + xH.
For finite groups, x−1Hx ⊆ H implies x−1Hx = H, since x−1Hx and H have

the same number of elements, but the inclusion need not imply equality for
infinite groups. However, if x−1Hx ⊆ H and xHx−1 ⊆ H, then H = x(x−1Hx)x−1

⊆ xHx−1 ⊆ H, whence H = xHx−1 and similarly H = x−1Hx. Thus x−1Hx ⊆ H
for all x is sufficient for H to be normal.

A group G that contains no proper normal subgroup is said to be a simple
group. The term “simple” must be understood in a purely technical sense.
The groups without any proper subgroups are, by Theorem 1.5.4, the finite
cyclic groups of prime order, and these are simple groups both in the
technical sense and in the more ordinary sense of being uncomplicated. But
there are many other simple groups, one of these being the group of order 168
given in the fourth example in §1.8. The determination of the finite simple



groups is an unsolved problem. It has been conjectured that a simple finite
group, except for those of prime order, is necessarily of even order, but even
this seems to be an unusually difficult problem.

2.2. The Kernel of a Homomorphism.

Suppose the group H is a homomorphic image of the group G. Consider
the set T of elements  consisting of all elements of G mapped onto the
identity of H.

As noted in §1.4, 1 → 1, whence . If t → 1, t−1 → u, then 1 = tt−1 →
u. But 1 → 1, whence u = 1, and so t−1 → 1 and . Also if t1 → 1, t2
→ 1, then t1t2 → 1, whence . Hence T is a subgroup of G.
Moreover if , , then x → y, t → 1, x−1 → y−1, and x−1tx →
y−11y = 1, whence , and so T is a normal subgroup of G. The set
T is called the kernel of the homomorphism G → H.

THEOREM 2.2.1 (FIRST THEOREM ON HOMOMORPHISMS). In the
homomorphism G → H the set T of elements of G mapped onto the identity
of H is a normal subgroup of G. Two elements of G have the same image in
H if, and only if, they belong to the same coset of T.

Proof: We have already shown that T is a normal subgroup of G. Suppose
x → u, y → u, x, , . Then xy−1 → 1 and , whence 

 and x and y are in the same coset of T. Conversely, if , then
x = ty, and if y → u, then (since t → 1) we have x → u and x and y have the
same image in H.

2.3. Factor Groups.

In the preceding section it was shown that the kernel of a homomorphism
of a group G is a normal subgroup T. Conversely, it is true that every normal



subgroup T is the kernel of a homomorphism and, in fact, of a unique
homomorphism. Suppose

where T is a normal subgroup of G. We shall take the cosets Txi as the
elements of a system H. We define a product in H as

if  in G.
It is necessary to show that the product is uniquely defined. Let t1xi and

t2xj be arbitrary elements of Txi and Txj, respectively. Here 
, since T is a normal subgroup.

But if , then also . Thus all products of an
element in Txi and an element in Txj yield elements of the same coset Txk.
Thus the product in (2.3.2) depends solely on the cosets and not on the choice
of the representatives; hence the product in H is well defined.

Since T is a normal subgroup T2 = T, Txi = xiT. Hence, in H, T is a unit as
T · Txi = Txi, Txi · T = TxiT = TTxi = Txi. Moreover, the product is
associative, since (TxiTxj)Txk = Txixjxk = Txi(TxjTxk). If , then
TxiTxj contains , and so TxiTxj = T, whence in H, Txj is the
inverse of Txi, as we may also readily verify that TxjTxi = T. This completes
the verification that H is a group which we call the factor group of G with
respect to T. We write H = G/T.

THEOREM 2.3.1 (SECOND THEOREM ON HOMOMORPHISMS). Given a group
G and a normal subgroup T. Then if H = G/T, there is a homomorphism G
→ H whose kernel is T. This homomorphism is given by g → Txi if 

 in G.

Proof: Consider the mapping g → Txi of G onto H when  in G.
If , , then (as we showed) , where 

. Hence g1g2 → Txk = TxiTxj. Thus the mapping of G onto H
preserves products and so is a homomorphism. Since T is the identity of G/T,



then g → 1 (= T in H) if, and only if,  in G, whence T is the kernel of
the homomorphism. This completes the proof.

THEOREM 2.3.2 (THIRD THEOREM ON HOMOMORPHISMS). If G → K is a
homomorphism of G onto K, and T is the kernel of the homomorphism, then
K is isomorphic to G/T = H. If x → x* in the homomorphism G → K, then 

 is an isomorphism between K and H.

Proof: Since elements of G in the same coset of T have the same image in
K, the correspondence  is one to one. But if x → x*, y → y*,
then xy → x*y*. But , whence .
Thus the correspondence  preserves products and is an
isomorphism of K and H = G/T.

Let us summarize the content of these three main theorems on
homomorphisms. We have shown that the kernel of any homomorphism is a
normal subgroup, that any normal subgroup is the kernel of a homomorphism
whose image is unique (to within isomorphism), and that this image is the
factor group of the given group with respect to the normal subgroup.

THEOREM 2.3.3. If A and B are subgroups of a group G and either one of
them is a normal subgroup, then A ∪ B = AB.

Proof: We must show that every finite product x1x2 · · · xs with 
or B can be put in the form ab. Now if B is normal a product ba = aa−1ba =
ab′, while if A is normal ba = bab−1b = a′b then we can rewrite the product
so that no b precedes an a. The product now takes the form a1a2 · · · ajbj+1 ·
· · bs = ab, where ai,  and bi, .

THEOREM 2.3.4. Let T be a normal subgroup of G. There is a 1−1
correspondence between subgroups K* of H = G/T and subgroups K of G
such that G ⊇ K ⊇ T, where K consists of all elements of G mapped onto
elements of K*. If K* is normal in H, then K is normal in G and conversely.
Also [G:K] = [H:K*].

Proof: Trivially, the image in H of a subgroup of G is a subgroup. Now if
K* is a subgroup of H, the inverse image K of K* in G will contain T, the



inverse image of 1. Also the inverse image satisfies the requirements for a
subgroup.

Hence the inverse image of a subgroup K* of H is a unique subgroup K
such that G ⊇ K ⊇ T, and the same K* is the unique image of K in the
homomorphism G → H. Hence  is a 1−1 correspondence
between G ⊇ K ⊇ T and H ⊇ K* ⊇ 1. If K* is normal in H then x−1Kx →
x*−1 K*x* = K*, whence x−1Kx ⊆ K for any x, and so K is normal in G.
Again, if K is normal, the normality of its image K* is trivial. Finally, the
inverse image of a coset K*g* is seen to be a coset Kg, whence [G:K] =
[H:K*].

If an arbitrary subgroup A has the image A*, then the inverse image of A*
is readily seen to be A ∪ T = AT.

2.4. Operators.

A mapping α:g → gα of a group G into itself is called an endomorphism
of G or an operator on G, if (xy)α = xαyα. Thus an endomorphism is a
homomorphism of G into itself. An automorphism is a 1−1 endomorphism
mapping G onto itself. If gα = hα implies g = h, the endomorphism is an
isomorphism, which in a finite group is necessarily an automorphism. But an
infinite group may be isomorphic to a proper subgroup. Thus x → 2x is an
endomorphism which is an isomorphism of the additive group of integers but
not an automorphism.

A subgroup H of G is said to be admissible with respect to
endomorphisms αi if  for all αi. It follows immediately from
the definitions that unions and intersections of admissible subgroups are
admissible subgroups. Again it is clear that an operator α may also be
regarded as an operator in an admissible subgroup. But it can happen that
two operators which are different for an entire group may agree in their
effect on an admissible subgroup. Moreover if G → K is a homomorphism of
G onto K whose kernel T is admissible with respect to an endomorphism α,
then we may define a corresponding operator in K. We put



This is a natural definition since applying the endomorphism to the coset Tx
gives only elements belonging to Txα. We readily verify that this defines an
operator in K and also that x → x* in the homomorphism G → K, then xα →
x*α.

Two groups A and B are operator isomorphic if there is a 1−1
correspondence  and also  between the groups and the
operators on them such that  is an isomorphism and  in
this isomorphism. Thus an operator isomorphism is stronger than an
isomorphism.

THEOREM 2.4.1. Given a group G and a set Ω of operators on G.
Suppose A is an admissible subgroup of G and T an admissible normal
subgroup. Then A ∩ T is an admissible normal subgroup of A and the
factor groups A ∪ T/T and A/A ∩ T are operator isomorphic.

Proof: A ∩ T as an intersection of Ω subgroups (i.e., admissible under Ω)
will be an Ω subgroup of A. If , , then .
Also, since T is normal in G and , , and so A ∩
T is normal in A.

Let us write D = A ∩ T.

Then we assert

using the same coset representatives in (2.4.3) as we did in (2.4.2). Here, if
Tai = Taj, then . But , whence 

, contrary to (2.4.2). Hence the cosets Tai in
(2.4.3) are all distinct. Moreover, since T is a normal subgroup, A ∪ T = TA,
and so any coset of T in A ∪ T is of the form Ta = Tdai, with a = dai from
(2.4.2). But as , Tdai = Tai, and so the cosets in (2.4.3) will exhaust A
∪ T. The correspondence



is a 1−1 correspondence between the cosets in (2.4.2) and (2.4.3), and thus a
1−1 correspondence between the elements of A/D and those of A ∪ T/T.
Also, if aiaj = dak with , since D ⊆ T, we shall have both DaiDaj =
Dak and TaiTaj = Tak. Thus the rule (2.4.4) is an isomorphism between the
factor groups A/D and A ∪ T/T. An operator  determines an operator
in A/D and also one in A ∪ T/T by the rules (Dai)α = Dai

α and (Tai)α = Tai
α.

For the operators given in this way, it is immediate that (2.4.4) determines an
operator isomorphism. This completes the proof.

We may easily verify that a subgroup K of a group G is a normal
subgroup if, and only if, it is admissible under the family of inner
automorphisms of G. In terms of operators we define two successively
stronger forms of normality for subgroups. A subgroup admissible under all
automorphisms of a group is called a characteristic subgroup, and a
subgroup admissible under all endomorphisms is called a fully invariant
subgroup. Thus the center Z of a group G is a characteristic subgroup, since
if zg = gz for all , then for an automorphism α, we have zαgα = gαzα,
and as g runs over all elements of G, gα will also run over all elements of G,
and we conclude that . But the center is not necessarily a fully
invariant subgroup. As an example, consider the group G of order 16 defined
by the relations a4 = 1, b2 = c2 = 1, ba = a−1b, ca = ac, cb = bc. Here the
center Z is of order 4 and generated by a2 and c. But the mapping a → b, b
→ b, c → b defines an endomorphism of G mapping the element of the center
c onto the element b, which is not in the center. But an endomorphism
preserves the form of an element, whence the subgroups generated by all x3, 

 or by all x−1y−1xy, x,  will be fully invariant.
A particularly useful property of these stronger forms of normality is the

fact that, although a normal subgroup H of a normal subgroup K of a group G
is not in general a normal subgroup, it follows from the definitions that a
characteristic subgroup of a characteristic subgroup is characteristic, and a
fully invariant subgroup of a fully invariant subgroup is fully invariant. Also
a characteristic subgroup of a normal subgroup is a normal subgroup.

2.5. Direct Products and Cartesian Products.



Given two groups A and B, we may form from these the set of ordered
pairs (a, b), , . These ordered pairs will be the elements of a
new group, the direct product A × B, if we define our product by the rule

The verification that the product rule (2.5.1) satisfies the group axioms with
(1, 1) as the identity element is straightforward, depending only on the
validity of these axioms for A and B. Moreover, the correspondence 

 shows that A × B and B × A are isomorphic, so that we
may speak of the direct product of two groups without specifying their order.
The correspondence  is an isomorphism between A and the set
of elements in A × B, with the second component the identity. Similarly, 

 is an isomorphism between B and the subgroup of elements
(1, b). Let us identify A and B with these subgroups. With this identification
we say that G = A × B is the direct product of its subgroups A and B. Since
(a, 1)(1, b) = (a, b) = (1, b)(a, 1), it follows that in A × B every element of A
permutes (or commutes) with every element of B; that is, ab = ba for 

, .
In the direct product, (a, b)−1 = (a−1, b−1). Hence (a1, b1)−1(a2, 1)-(a1 b1)

= (a1
−1a2a1, 1), and so A is a normal subgroup of A × B. Similarly, B is a

normal subgroup of A × B. The only element simultaneously of the forms (a,
1) and (1, b) is (1, 1), whence A ∩ B = 1. Moreover, A ∪ B includes all
products (a, 1)(1, b) = (a, b), whence A ∪ B = A × B. These relations
between A and B characterize A × B.

THEOREM 2.5.1. A group G is isomorphic to the direct product of two
subgroups A and B if A and B are normal subgroups such that A ∩ B = 1, A
∪ B = G.

Proof: We have already noted that in the direct product A × B, the
subgroups A and B have these properties. Suppose conversely that A and B
are normal subgroups of G, with A ∩ B = 1, A ∪ B = G. Consider an element
a−1b−1ab = a−1(b−1ab) = (a−1b−1a)b, where , . Since A and B
are normal subgroups, from the first bracketing it is an element of A, and from
the second, an element of B. This is an element of A ∩ B = 1, whence



a−1b−1ab = 1, and so ab = ba. From Theorem 2.3.3, G = A ∪ B = AB, whence
every element g can be put in the form g = ab. Moreover, this form is unique
since a1b1 = a2b2 implies , whence
a1 = a2, b1 = b2. If g = ab, let us put . If g1 = a1b1, g2 = a2b2,
then g1g2 = a1b1a2b2 = (a1b2)(b1b2). Thus the correspondence between G and
A × B is not only one-to-one but also preserves products, and we have
established an isomorphism between G and A × B.

We may generalize the preceding ideas to define a product of any number
of groups, finite or infinite. Suppose we are given an indexed system of
groups Ai where i runs over some index system I (we shall assume that I is
well ordered for some of our theorems). We construct formal products

. A formal product is simply a choice of one element ai from each of

the groups Ai. All formal products form a group called the Cartesian product
of the Ai, where the product rule is

for every .
The subgroup of the Cartesian product in which ai = 1 for all but a finite

number of indices is called the direct product of the Ai. Clearly, the direct
and Cartesian product coincide when the number of factors is finite. In both

cases the elements , where ai = 1 for i ≠ j, form a normal subgroup

isomorphic to Aj, and identifying Aj with this subgroup in every case, we

observe that . Here  is the direct

product.

THEOREM 2.5.2. A group G is isomorphic to the direct product of
subgroups Ai, , if

1) Every Ai is a normal subgroup.



2)  for every .

3) .

Proof: The proof follows very closely that of Theorem 2.5.1. From 1)
and 2) every aj permutes with every finite product of ai’s with i ≠ j. Also
from 1), 2), and 3) every  is expressible as a finite product of
elements from the Ai, and apart from order, has a unique form as a product
using at most one factor from each Ai. This gives us an isomorphism between
G and the direct product of the Ai. An element of G can be put in the form g =
1 or g = b1 · · · bm, bk ≠ 1, k = 1, · · ·, m, where the b’s are from different

Ai’s. Here g corresponds to the element , where ai = bk if there is a 

 in the product form for g, and ai = 1 otherwise. This
correspondence yields the isomorphism between G and the direct product of
the Ai.

EXERCISES
1. Show that every dihedral group is homomorphic to the group of order 2.
2. Show that if p < q are primes, then in a group of order pq a subgroup of order q is normal. (See

Ex. 8 in Chap. 1.)
3. Show that the subgroups of the quaternion group are all normal.
4. In a cube let x, y, z be the three lines joining mid-points of opposite faces. Show that the

symmetries G of the cube permute these lines in a permutation group H of order 6. Show that H
is a homomorphic image of G.

5. Consider the 1−1 mappings , a,b, real, a ≠ 0 of the real numbers onto
themselves. Show that these form a group G in which the translations  form
a normal subgroup. What is the factor group G/T?

6. For each element b of a group G define an operator of conjugation by b: g → gb = b−1gb.
Which subgroups are admissible with respect to all such operators? If T is a normal subgroup of
G, show that the operator induced in H = G/T is also a conjugation.



3. ELEMENTARY THEORY OF
ABELIAN GROUPS

3.1. Definition of Abelian Group. Cyclic Groups.

A group G which satisfies the commutative law

is called an Abelian group after the mathematician Abel. We also say that
elements a and b permute if ba = ab.

In §1.5 we defined a cyclic group as a group generated by a single
element (say, b), with all its elements being powers of b. Since bibj = bjbi =
bi+j for any integers i, j, we see that every cyclic group is Abelian. We also
noted in §1.5 that, within isomorphism, there is a unique cyclic group of
infinite order and a unique cyclic group of each finite order n. It is also true
that every subgroup of a cyclic group is cyclic. We prove this in a precise
form.

THEOREM 3.1.1. Every subgroup of an infinite cyclic group different
from the identity is an infinite cyclic group of finite index, and there is a
unique subgroup for each finite index. Every subgroup of a finite cyclic
group of order n is a cyclic group of order dividing n, and there is a unique
subgroup of each order dividing n.

Proof: Given a cyclic group G generated by an element b and a subgroup
H of G. If H is not the identity and if , then , and one or the
other of these exponents is positive. Suppose m is the least positive exponent
of any element occurring in H, and let bt be any element of H. Then, choosing
r appropriately, we have t = mr + s with 0 ≤ s < m. Here bt = (bm)rbs. Since
both bt and bm belong to H, it follows that bs also belongs to H. But if s is



anything except 0 in the range 0 ≤ s < m, this would conflict with our
definition of m as the least positive exponent of b occurring for an element of
H. Hence s = 0, and bt = (bm)r, and all elements of H are powers of bm,
whence H is cyclic. Since for any x which is an integer we have x = km + i,
where i is one of 0, 1, · · ·, m − 1, we readily verify that

The equation (3.1.1) contains all possible cosets of H and these are different,
since bi = hbj with i ≠ j in the range from 0 to m − 1 would give a smaller
positive power of b in H, this being either bi–j or bj–i. Hence [G:H] = m.
Here m is the smallest positive power of b contained in H and also is the
index of H in G. Thus, if G is infinite, since for any positive m the elements
(bm)r form a subgroup, there is a unique subgroup of index m. If G is finite, of
order n, then bn = 1, and so n = mr, and m is a divisor of n. Here, for any m
dividing n, if n = mr we have the elements 1, bm, b2m, · · ·, b(r−1)m forming a
subgroup of order r and index m. Since n = mr can be any factorization of n
into two factors, we see that there is one, and only one, subgroup of each
order r dividing n.

3.2. Some Structure Theorems for Abelian Groups.

An infinite Abelian group may have a very complicated structure. As a
relatively simple example, the multiplicative group of all complex numbers
except zero contains elements of infinite order and also of every finite order.

If an = 1, bm = 1 in an Abelian group, then (a−1)n = 1 and (ab)mn = 1,
whence the elements of finite order in any Abelian group A form a subgroup
F. Every endomorphism α of A maps an element of finite order onto an
element of finite order. Thus, in the sense of §2.4, F is a fully invariant
subgroup of A. In §1.8 we introduced the term periodic group (the term
torsion group is used in certain applications) for a group all of whose
elements are of finite order. In contrast a group in which no element except
the identity is of finite order is called an aperiodic group (or torsion-free
group).



THEOREM 3.2.1. Given an Abelian group A. Let F be the subgroup of
elements of finite order. Then A/F is aperiodic.

Proof: Suppose to the contrary that x ≠ 1 in A/F is of finite order m. Then
in the homomorphism A → A/F let u → x. Then um → xm = 1, whence 

 and um is of some finite order, say, n. Here (um)n = 1 and u itself is
of finite order. Thus  and u → 1 although we assumed x ≠ 1.

This theorem reduces the problem of constructing all Abelian groups to
three more explicit problems:

1) The determination of all periodic Abelian groups.
2) The determination of all aperiodic Abelian groups.
3) The construction of an Abelian group A with a given periodic group F

as a subgroup, such that the factor group A/F shall be isomorphic to a given
aperiodic group H. No one of these is completely settled, but it appears that
we know most about the first and least about the last.

We shall say that a set of elements ai in an Abelian group A is

independent if a finite product  only when  for

every i. If the ai are independent and also generate A, we say that the ai form
a basis for A. Thus elements ai form a basis for A if, and only if, A is the
direct product of the cyclic groups generated by the ai.

Suppose an Abelian group A is generated by elements a1 · · ·, ar. Then
every element of A is of the form , where the ui are integers. If

is a relation on these generators, we say that

is its inverse relation. From a set S of relations holding in A we may derive
others by taking the product of relations of S and inverses of relations of S.
Two sets of relations S1 and S2 are said to be equivalent if the relations of
each set may be derived in this way from the relations of the other set. This is
easily seen to be a true equivalence. We say that a set S is a set of defining
relations for A if every relation holding in A may be derived from those of S.



It may be shown that an arbitrary set S of relations on generators a1, · · ·, ar
is a set of defining relations for that Abelian group A generated by a1 · · ·, ar
in which the relations derived from S hold, but no others hold. The group A
may, of course, reduce to the identity element alone.

THEOREM 3.2.2. An Abelian group generated by a finite number r of
elements has a basis of, at most, r elements.

Proof: The theorem is trivially true for r = 1, since then the group is
cyclic. Suppose that A is generated by a1, ···, ar. Our proof will be based on
induction on r, and for fixed r on the smallest positive integer m such that xi =
m in a relation

If there is only the relation with all xi = 0, then A is the direct product of the
infinite cyclic groups {ai} and our theorem is true. Otherwise, some relation
or its inverse will contain some positive exponents. Let us renumber the a’s,
if necessary, so that the smallest positive exponent in a relation is x1 = m. If
m = 1, then we have

and A is generated by the r − 1 elements a2, · · ·, ar, and by induction our
theorem is true. Now suppose x1 = m > 1 in the relation

Let y1, · · ·, yr be the exponents in a further relation. Then, for any integer k,
from this relation and (3.2.5) we may derive a relation with exponents y1 −
km, y2 − kx2, · · ·, yr − kxr. We may choose k so that 0 ≤ y1 − km < m. But
since m was the smallest positive exponent in any relation, we must have y1
− km = 0, and so the relation with exponents y1, · · ·, yr can be derived from
(3.2.5) and the relation with exponents 0, y2 − kx2, · · ·, yr − kxr. Thus the set



of all relations for A is equivalent to the set S consisting of (3.2.5) and
relations involving only a2, · · ·, ar.

In (3.2.5) let x2 = k2m + s2, · · ·, xr = krm + sr, where we choose ki, i = 2,
· · ·, r so that 0 ≤ si < m. If we take a new element

then a1*, a2, · · ·, ar also generate A, and in terms of these generators, (3.2.5)
becomes

Here if any s is different from zero, it is a positive number less than m and
we may apply our induction. But if s2 = · · · = sr = 0, then (3.2.7) becomes

and since (3.2.5) and relations involving only a2, · · ·, ar were a defining set
of relations for A in terms of generators a1, a2, · · ·, ar, it follows that (3.2.8)
and relations involving only a2, · · ·, ar are a defining set of relations in
terms of generators a1*, a2, · · ·, ar. Hence A is the direct product of the
cyclic group of order m generated by a1* and the group generated by the r − 1
elements a2, · · ·, ar, which by our induction is the direct product of, at most,
r − 1 cyclic groups. Thus we have proved our theorem in all cases.

To study periodic Abelian groups we need a lemma which holds in any
group.

LEMMA 3.2.1. Let x be an element of order mn in any group where m
and n are relatively prime integers. Then x has a unique representation x =
yz = zy, where y is of order m and z of order n. Both y and z are powers of
x.

Proof: We write (a, b) for the greatest common divisor of two integers.
The statement that m and n are relatively prime is that (m,n) = 1. From the
Euclidean algorithm, integers u and v exist such that um + vn = 1, and hence x



= xvnxum = xumxvn. Put y = xvn, z = xum. Then x = yz = zy and ym = xvnm = 1,
and zn = xumn = 1. Thus the exact order of y is some divisor m1 of m, and of z
some divisor n1 of n. But from x = yz = zy it will follow that the order of x is
a divisor of m1n1. Since this order was mn, it follows that m1 = m is the
order of y and n1 = n is the order of z. If x had a second representation x =
y1z1 = z1y1 with y1 of order m and z1 of order n, let us note first that y1 and z1
permute with x, since xy1 = y1z1y1 = y1x and xz1 = z1y1z1 = z1x. But then y1
and z1 permute with y and z, which are powers of x. Now yz = x = y1z1 leads
to . But y and y1 are permuting elements of order m,
and z and z1 are permuting elements of order n. Hence the element w satisfies
wm = 1 and also wn = 1, and since (m, n) = 1, this yields w = 1; so, y1 = y, z1
= z, proves the uniqueness of the representation.

By repeated application of this lemma we find:

LEMMA 3.2.2. Let x be an element of order n = n1n2 · · · nr where (ni,nj)
= 1 for i ≠ j. Then x has a unique representation x = x1x2 · · · xr where xjxi
= xixj and xi is of order ni. Every xi is a power of x.

In particular, if , where p1, ···, pr are distinct
primes, we may apply this lemma with .

In a periodic Abelian group A consider the set of elements P whose
orders are powers of a fixed prime p, where we include the identity as being
of order p° = 1. If xpa = 1, ypb = 1, then (xy)pC = 1 with c = max(a, b) and
(x−1)pa = 1. Hence P is a subgroup which we call the Sylow p-subgroup,
S(p). We call P an Abelian p-group.

THEOREM 3.2.3. A periodic Abelian group is the direct product of its
Sylow subgroups, S(p).

Proof: Clearly, , the direct product of the Sylow subgroups of

A, is a subgroup of A. But, from Lemma 3.2.2, if  is of order 
, then, x = x1x2 · · · xr with ; so, every

element of x of A belongs to the direct product of the Sylow subgroups,
whence this direct product must be the entire group A.



3.3. Finite Abelian Groups. Invariants.

A finite Abelian group is, of course, periodic and finitely generated.
Applying the results of the preceding section, we may say the following:

THEOREM 3.3.1. A finite Abelian group of order 
is the direct product of Sylow subgroups S(p1), · · ·, S(pr). Here S(pi) is of
order  and is the direct product of cyclic groups of orders 

 where ei1 + · · · + eis = ei.

Proof: In the Abelian group of order n, we know that the orders of the
elements are divisors of n, whence a Sylow subgroup belonging to a prime
not dividing n can consist only of the identity. Thus, if p1, · · ·, pr are the
distinct primes dividing n, the group is the direct product S(p1) × · · · ×
S(pr). But this much does not tell us the orders of the S(pi), some of which
might trivially be the identity. Since S(pi) is the identity or the direct product
of cyclic groups of orders , the order of S(pi) will be the
product of these orders (say,  with ti = ei1 + · · · + eis), and the order of
the entire group will be the product of the orders of the S(pi). But because of
the unique factorization of the integer n, it must follow that  in
each case. As a consequence of this and Theorem 3.1.1 we have the
following corollary.

COROLLARY 3.3.1. An Abelian group of order n contains an element of
order p if p is a prime dividing n.

A finite Abelian p-group, A(p), can usually be written as a direct product
of cyclic groups in several ways. For example, if a8 = 1, b4 = 1, the group
A(2) = {a} × {b} is of order 32. If we put c = ab and d = a4b, then c8 = 1, d4

= 1, a = c5d−1, b = c4d. We readily verify that A(2) = {c} × {d}. In this case
A(2) is a direct product of cyclic groups in two different ways, but the
number of factors and their orders are the same. This is true in general for
finite Abelian p-groups, but since the cyclic group of order 6 is the direct
product of the cyclic groups of orders 2 and 3, it is not true for finite Abelian
groups which are not p-groups. If A is an Abelian p-group which is the direct



product of cyclic groups of orders pe
1, ···, pe

r, then these numbers are called
the invariants of the group. In the special, but important, case in which all
the invariants are p, · · ·, p, we say that A is an elementary Abelian group.
Clearly, the invariants of an Abelian group A determine A to within
isomorphism; but they are invariants in a stronger sense, as given precisely
by the following theorem:

THEOREM 3.3.2. If a finite Abelian p-group A is the direct product of
cyclic groups in two ways, A = A1 × · · · × Ar = B1 × · · · × Bs, then the
number of factors is the same in both cases, r = s, and the orders of A1, · ·
·, Ar are the same as those of B1, · · ·, Bs in some arrangement.

Proof: We use induction on the order of A, the theorem being trivial when
A is of order p.

If A is any Abelian p-group, let us write Ap for the subgroup of elements x
of A satisfying xp = 1 and Ap for the subgroup of elements of the form yp, 

. Let A have a basis a1, · · ·, ar, where ai is of order pe
i, i = 1, · · ·, r,

and let us number the a’s so that . Then we may
easily verify that Ap has a basis  and is of order pr. If
A is elementary Abelian, then Ap = 1. Otherwise, let em be the last exponent
greater than 1, i.e., 

. Then Ap has a
basis a1

p, · · ·, am
p, as may easily be shown.

Let A have a second basis, b1, · · ·, bs, where bi is of order pf
i, i = 1, · · ·,

s and . Then Ap is of order pr from the basis a1, · ·
·, ar and of order ps from the basis b1, · · ·, bs, whence r = s. If A is
elementary Abelian, this completes the proof. If not, let 

. Then Ap has
invariants  and also invariants .
By induction m = n and e1 − 1 = f1 − 1, · · ·, em − 1 = fm − 1. From this and
the fact that s = r, it follows that e1 = f1, · · ·, er = fr, proving our theorem.



COROLLARY 3.3.2. If two finite Abelian p-groups do not have the same
invariants, they are not isomorphic.

THEOREM 3.3.3. An Abelian group A with invariants 
 has a subgroup K with invariants 

 if, and only if, t ≤ r and k1 ≤ e1, · · ·,
kt ≤ et.

Proof: We prove first that the exponents of the invariants of a subgroup K
of A satisfy the inequalities of the theorem, proceeding by induction on the
order of A, the theorem being trivial if A is of order p.

Since Kp is a subgroup of Ap, it follows that t ≤ r, proving the theorem if
A is elementary Abelian. Otherwise, let 

 and 
. Then Kp is a

subgroup of Ap and the invariants of Kp are  and those
of Ap are . By induction u ≤ m and ki − 1 ≤ ei − 1, i = 1,
· · ·, u. Hence ki ≤ ei, i = 1, ···, u and as ku+1 = · · · = kt = 1, also ki ≤ ei, i =
u + 1, · · ·, t, whence ki ≤ ei, i = 1, · · ·, t.

If the inequalities of the theorem hold, then there is one subgroup of A
with the given invariants which we can take as a basis for appropriate
powers of the first t basis elements of A. But it is not in general true that,
given A and a subgroup K, we can choose a basis for A and a basis for K so
that the basis for K consists of powers of elements in the basis for A. (See
Ex. 5.)

EXERCISES
1. An Abelian group A is generated by elements a, b, c with defining relations a3b9c9 = 1 and

a9b–3c9 = 1. Find a basis for A and the orders of the basis elements.
2. Show that a finite Abelian p-group is generated by its elements of highest order.
3. An Abelian group has invariants p3, p2. How many subgroups of order p2 does it contain?
4. Give two examples of Abelian p-groups which contain exactly p2 + p + 1 subgroups of order p.
5. Let A be the Abelian group generated by a and b with defining relations ap3 = 1, bp = 1. Let K

be the subgroup generated by the element x = apb. Show that it is not possible to choose a basis



for A and a basis for K so that the basis element for K is a power of a basis element for A.



4. SYLOW THEOREMS

4.1. Falsity of the Converse of the Theorem of
Lagrange.

According to the Theorem of Lagrange, the order of a subgroup of a finite group
is a divisor of the order of the group. But, conversely, a group of order n need not
have a subgroup of order m if m is a divisor of n. In particular the following
permutation group of order 12 will be found to have no subgroup of order 6:

It does, however, have subgroups of orders 2, 3, and 4.
Thus, in general, if m divides n, we cannot be sure that a group of order n

contains a subgroup of order m. But it is true that if m is a prime or prime power,
then such subgroups exist. The existence and number of such subgroups is the
subject of the Sylow theorems which follow. We begin with a theorem which will
serve as a starting point for the Sylow theorems.



THEOREM 4.1.1. If the order of a group G is divisible by a prime p, then G
contains an element of order p.

Proof: Let n = mp be the order of G. Here, if m = 1, G is the cyclic group of
order p and the theorem is true. We proceed by induction on m. If G contains a
proper subgroup H whose index [G:H] is not divisible by p, then the order of H is
divisible by p, and so by induction H contains an element of order p. Now suppose
that every proper subgroup of G has an index divisible by p. Then, from §1.6, n =
n1 + n2 + · · · + ns, where each ni is the number of conjugates in a class of elements
of G. Each ni ≠ 1 is the index of a proper subgroup in G, and hence by hypothesis,
divisible by p. Here n1 = 1, the identity being a class. Hence the number of ni = 1 is
a multiple of p. An element ai is a class in G if, and only if, it belongs to the center
Z of G. Thus the center Z is of order divisible by p. Then for  and any 

, we have zg = gz. Hence, a fortiori, the elements of Z permute with each
other and Z is an Abelian group. But now from the corollary to Theorem 3.3.1, Z
contains an element of order p.

4.2. The Three Sylow Theorems.

From Theorem 4.1.1 we are guaranteed the existence of at least one subgroup
of order p whenever p divides the order of G. We shall show that if G is of order n
= pms, then there will also be subgroups of orders p2, p3, · · ·, pm.

THEOREM 4.2.1 (FIRST SYLOW THEOREM). If G is of order n = pms where
, p a prime, then G contains subgroups of orders pi, i = 1, · · ·, m, and

each subgroup of order pi, i = 1, · · ·, m − 1, is a normal subgroup of at least one
subgroup of order pi+1.

Proof: The proof is by induction on i. As previously stated, G contains a
subgroup of order p. Let P be a subgroup of order pi, i ≥ 1. Write G in terms of
double cosets of P, G = P + Px2P + · · · + PxrP, and let there be aj right cosets of P
in PxjP. Then [G:P] = a1 + a2 + · · · + ar, where 

, and a1 = 1 for the double coset P · 1 · P
= P. Now aj = 1 or a power of p. Since p|[G:P], the number of aj’s equal to 1 must
be a multiple of p. If aj = 1, then  and xj, and the coset Pxj = xjP
must belong to the normalizer K of P. Conversely, if , then 

 and aj = 1. Thus [K:P] is the number of  and so p|



[K:P]. Hence the factor group K/P has order [K:P] divisible by p. Thus K/P
contains a subgroup J* of order p. By Theorem 2.3.4 J* = J/P, where J ⊆ K, and
[J:P] = [J*:1] = p, and so J is a subgroup of order pi+1, containing P as a normal
subgroup.

DEFINITION: A group P is a p-group if every element of P except the identity
has order a power of a prime p.

DEFINITION: A subgroup S of a group G is a Sylow subgroup of G if it is a p-
group and is not contained in any larger p-group which is a subgroup of G.

In terms of these definitions we may express some of the consequences of the
first Sylow theorem.

COROLLARY 4.2.1. Every finite group G of order n = pms, , p a prime,
contains a Sylow subgroup of order pm, and every p-group which is a subgroup of
G is contained in a Sylow subgroup of G.

Every group of order pm is a p-group. From Theorem 4.1.1, if the order of a
group is divisible by two different primes, it cannot be a p-group. Hence every
finite p-group is of order a power of p, say, pm.

COROLLARY 4.2.2. Every subgroup of a p-group P of order pm is contained in
a maximal subgroup of order pm−1, and all the maximal subgroups of P are
normal subgroups.

THEOREM 4.2.2 (SECOND SYLOW THEOREM). In a finite group G, the Sylow p-
subgroups are conjugate.

Proof: Let P1 and P2 be two Sylow p-subgroups. Then G = P1P2 + P1x2P2 + · ·
· + P1xsP2. Let there be bi right cosets of P2 in P1xiP2. Here 

 and is 1 or a power of p. But b1 + · · · +
bs = [G:P2] is not a multiple of p. Hence, for some i, bi = 1 and 

.

THEOREM 4.2.3 (THIRD SYLOW THEOREM). The number of Sylow p-subgroups
of a finite group G is of the form 1 + kp and is a divisor of the order of G.

Proof: This is trivial if there is only one Sylow p-subgroup. Let S0 be one
Sylow p-subgroup and S1 · · ·, Sr the remaining ones. These fall into a number of
disjoint conjugate sets with respect to transformation by elements of S0. By the



second Sylow theorem, Si is the only Sylow p-subgroup in its normalizer Ki. Hence
the normalizer of Si in S0 (i ≠ 0) is a proper subgroup of S0, and so the number of
conjugates of Si under S0 is a power of p, pe, e ≥ 1. Hence r = pe

1 + · · · + pes = kp,
and there are 1 + r = 1 + kp Sylow p-subgroups of G. The number of Sylow p-
subgroups is, by the second Sylow theorem, the index of the normalizer of S0, and
so a divisor of the order of G.

THEOREM 4.2.4. Let K be the normalizer of the Sylow p-subgroup P in the
finite group G. Then if H is any subgroup G ⊇ H ⊇ K ⊇ P, it follows that H is its
own normalizer in G.

Proof: Suppose x−1Hx = H. Then H ⊇ x−1Px = P′, which must be a Sylow p-
subgroup of H. Hence, for some , u−1P′u = P, whence u−1x−1Pxu = P and 

. Hence , and H is its own normalizer.
The following theorem, apart from its own interest, has some important

applications which will be made in later chapters.



Fig. 2. A theorem of Burnside.

THEOREM 4.2.5 (BURNSIDE). If in the finite group G a p-group h is normal in
one Sylow p-subgroup but not in another which contains it, then there exist r > 1,

 (mod p) conjugate groups h = h1, · · ·, hr which are all normal in H =
h1 ∪ h2 ∪ · · · ∪ hr but not all normal in any Sylow p-subgroup of G. Then h1, · ·
·, hr are a complete set of conjugates of each other in NH, the normalizer of H.

Proof: Let Nh be the normalizer of h. Let Q be a Sylow p-subgroup of G such
that h is a non-normal subgroup of Q and so that D = Nh ∩ Q is maximal. Let q be
the normalizer of D in Q, and ND the normalizer of D in G. We assert Q ⊇ q ⊃ D ⊃



h, for h is normal and of index p is some subgroup of Q, but h is non-normal in Q.
Hence Q ⊃ D ⊃ h. Also, D, a proper subgroup of Q, is properly contained in its
normalizer q in Q. Hence Q ⊇ q ⊃ D ⊃ h. Now, since D = Nh ∩ Q, h is not normal
in q and a fortiori not normal in ND. Let h = h1, · · ·, hs, s > 1 be the conjugates of
h in ND. Since h is normal in D, and ND induces automorphisms in D, every hi is
also normal in D, and so a fortiori in H = h1 ∪ h2 ∪ · · · ∪ hs ⊆ D. The normalizer
NH of H contains ND, since the elements of ND transform H into itself.

Let p1 be a Sylow subgroup of Nh ∩ ND and P1 ⊇ p1 be a Sylow subgroup of
Nh. By hypothesis P1 is a Sylow subgroup of G. Then D ⊂ p1 since D is not its own
normalizer in P1. Now Nh ∩ ND ⊆ ND ⊆ NH, and let p2 ⊇ p1 be a Sylow subgroup
of NH, and finally let P ⊇ p2 be a Sylow subgroup of G. If , then P ∩
Nh ⊇ p1 ⊃ D, contrary to the maximal property of D. Hence P ⊆ Nh and so Nh ∩
NH ⊇ P ∩ NH = p2, since p2 was a Sylow subgroup of NH.

Let h = h1, · · ·, hs, · · ·, hr be the conjugates of h in NH (and hence all normal
subgroups of H). The normalizer of h in NH is NH ∩ Nh and so the number of
conjugates of h in NH is r = [NH:NH ∩ Nh]. But NH ∩ Nh ⊇ p2, a Sylow subgroup
of NH. Hence  (mod p).

If all h1, · · ·, hr were normal subgroups of some Sylow subgroup Sp, then Sp ⊆
NH, and every Sylow subgroup of NH contains and normalizes all the h’s. But q ⊆
ND ⊆ NH is a p-group of NH, which does not normalize h1.

4.3. Finite p-Groups.

From the Sylow theorems a group G of order n = p1
e

1 · · · pr
e

r contains for each
i a subgroup of order pi

e
i, and all subgroups of this order are isomorphic, as they

are conjugate. Thus the problem of constructing finite groups may be regarded as
having two parts: 1) constructing groups of prime power order, and 2) combining
groups of prime power orders dividing a number n to form a group of order n.
When all the Sylow subgroups are cyclic (and this will certainly be the case when
all ei = 1), we can solve the second problem; the solution is given in Chap. 9
(Theorem 9.4.3). Thus, although neither of these problems is in any sense solved in
general, we must solve the first problem to have the subgroups to use in the second
problem. It seems to be true that the difficulties of combining Sylow subgroups to
form a group rest very heavily on the complexities of the prime power groups, the
p-groups, as we shall call them.



A first fact about p-groups of great value is the following:

THEOREM 4.3.1. The center of a finite p-group is greater than the identity
alone.

Proof: If P is a finite p-group, let us write P as a sum of classes:

Here C1 consists of the identity alone. Let hi be the number of elements in Ci, which
by Theorem 1.6.1 is the index of a subgroup of P and so is either 1 for an element
of the center or is otherwise a power of p. But if P is of order pm we must have

Here h1 = 1, and consequently in (4.3.2) the remaining h’s cannot all be proper
powers of p and so there must be further h’s equal to 1, so that the center of P is
greater than the identity alone.

We restate Corollary 4.2.2 as a theorem.

THEOREM 4.3.2. Every proper subgroup of a p-group P of order pm is
contained in a maximal subgroup of order pm−1, and all the maximal subgroups
of P are normal subgroups.

A further consequence of the (first) Sylow theorem 4.2.1 is that no proper
subgroup of a p-group is its own normalizer. This fact even has a converse, which
we now prove.

THEOREM 4.3.3. In a finite group G the property that no proper subgroup is
its own normalizer holds if, and only if, G is the direct product of its Sylow
subgroups.

Proof: Suppose that no proper subgroup of G is its own normalizer. By
Theorem 4.2.4, K, the normalizer of a Sylow subgroup P, is its own normalizer,
whence by the assumption, K must be the entire group G. Thus P is a normal
subgroup of G. From this and Theorem 2.5.2, the union of the Sylow subgroups is
the direct product of the Sylow subgroups, and so G is the direct product of its
Sylow subgroups. Now suppose G = P1 × · · · × Pr, where Pi is a group of order
pi

e
i and pi ≠ pj for i ≠ j. Now if g = g1g2 · · · gr, with , the conditions of

Lemma 3.2.2 hold, and each gi is a power of g. Thus, when an element g occurs in



a subgroup H of G, each of its components gi is also an element of H. Thus H must
itself be a direct product H = H1 × · · · × Hr where Hi = H ∩ Pi is a subgroup of Pi.
If H is a proper subgroup of G, then some Hj is a proper subgroup of Pj, and by
replacing this Hj by a larger subgroup of Pj in which it is normal, we get a
subgroup larger than H in which H is normal.

THEOREM 4.3.4. If A is a normal subgroup of order p contained in the p-group
P, then A is in the center of P.

Proof: A, being of order p, is cyclic and is generated by an element a, the
elements of A being 1, a, · · ·, ap−1. Since A is normal, the conjugates of the element
a are contained in the set a, a2, · · ·, ap−1. But the number of conjugates of a is the
index of its centralizer and so is 1 or a power of p. But as the number of conjugates
is at most p − 1, the only possibility is 1, whence a and so A is in the center of P.

4.4. Groups of Orders p, p2, pq, p3.

A group of prime order p cannot have a proper subgroup and so must be a
cyclic group, generated by any element different from the identity. We have already
shown in Theorem 1.5.4 that a group G without any proper subgroups is cyclic of
prime order.

A group G of order p2, if it is not cyclic, will contain two distinct subgroups of
order p, say {a} and {b}, where ap = 1, bp = 1, and {a} ∩ {b} = 1. Since these are
both maximal subgroups, by Corollary 4.2.2, they will both be normal, whence, by
Theorem 3.2.1, G = {a} × {b}; and so, G is an Abelian group with a, b as a basis.

Suppose G is of order pq, where p < q are primes. By the third Sylow theorem,
the number of subgroups of order q is of the form 1 + kq and divides p, whence it
must be 1, and the unique subgroup of order q will be normal, say {b}, with bq = 1.
The number of subgroups of order p is of the form 1 + kp and divides q, whence it
is 1 or q. If the number is 1, we have for some a a normal subgroup {a} with ap =
1, and G as the direct product of {a} and {b}. But here c = ab is of order pq and G
is cyclic. There remains the case with 1 + kp = q subgroups of order p, where a
subgroup {a} of order p is not normal. Then we have

and since {b} is normal, a−1ba = br for some r. Here if r = 1, G is Abelian and is
the cyclic group above. Hence r ≠ 1. Then a−1bia = bir for any i, and in particular



a−1bra = br2, whence a−2ba2 = a−1bra = br2. More generally we find a−jbaj = brj,
proceeding by induction. Thus for j = p we have b = a−pbap = brp, whence rp ≡ 1
(mod q). That this necessary condition on r is also sufficient may be verified by
establishing the general rule

for multiplying any two elements and proving that this rule defines a group of order
pq. This is a special case of a more general rule which will be established in
Theorem 6.5.1.

For groups of order p3, there are three Abelian types, with invariants
respectively (p3), (p2, p), and (p, p, p). In finding non-Abelian groups, we handle
the cases p = 2 and p-odd separately. First let p = 2 and consider non-Abelian
groups of order 8. There can be no element of order 8, since then the group would
be cyclic. If all elements are of order 2, then (ab)2 = 1, or abab = 1, ba = a2bab2 =
ab, and the group is Abelian. Hence there must be an element of order 4, say, a4 =
1. If , then G = A + Ab and . If b2 = a or a3, then b is of
order 8 and G is cyclic. Hence b2 = 1 or a2. Also , since A is normal,
and b−1ab = a or a3, since it is an element of order 4. But with b−1ab = a, G will be
Abelian. Hence b−1ab = a3. Thus we have found two non-Abelian groups, the
dihedral group with defining relations

and the quaternion group with defining relations

It is easily verified that these relations do define two groups of order 8 and that
they are not isomorphic to each other.

Finally, consider non-Abelian groups of order p3, p an odd prime. Since G is
not cyclic, it contains no element of order p3. Let us first suppose that G contains an
element of order p2, ap2 = 1. Then {a} = A, as a maximal subgroup is normal. Let 

. Then G = A + Ab + · · · + Abp−1, and , b−1ab = ar. Here r ≠ 1,
since G is non-Abelian. Since we find by induction on j that b−jabj = arj and since
bp as an element of A permutes with a, we have a = b−pabp = arp, whence rp ≡ 1
(mod p2). From the Fermat theorem, rp ≡ r (mod p), and so r ≡ 1 (mod p). Write r =
1 + sp. Then, with j chosen so that js ≡ 1 (mod p), we have



Since (j, p) = 1, , we may replace b by bj to get

where b−1ab = a1+p.
Now , whence bp = at. Here t must be a multiple of p since b is not of

order p3. Write bp = aup. Then, using the rule aib = bai(1+p), we calculate and find

Here we use the fact that 1 + 2 + ··· + p − 1 = p(p − 1)/2 is a multiple of p since p
is odd. Now with b1 = ba−u, we have the relations ap2 = 1, b1

p = 1, 
. This last follows since .

As a last case suppose that G contains no element of order p2. The center Z
must be of order p, since if it were of order as much as p2, G would be Abelian.
G/Z will be of the type xp = 1, yp = 1, yx = xy. If in the homomorphism G → G/Z, a
→ x, b → y, then ap = 1, bp = 1, . If a−1b−1ab = 1, since a,
b, and Z generate G, G would be Abelian. Hence c ≠ 1 is a generator for Z and our
relations become

TABLE OF DEFINING RELATIONS.
I. G order p.

1) Cyclic. ap = 1.
II. G order p2.

1) Cyclic. ap2 = 1.
2) Elementary Abelian. ap = 1, bp = 1, ba = ab.

III. G order pq, p < q.
1) Cyclic. apq = 1.
2) Non-Abelian.



.

The solutions of zp ≡ 1 (mod q),  (mod q) are r, r2, · · ·, rp−1, and all yield
the same group, since replacing a by aj as a generator of {a} replaces r by rj.

IV. G order p3.
Abelian.
1) ap3 = 1
2) ap2 = 1, bp = 1, ba = ab.
3) ap = bp = cp = 1, ba = ab, ca = ac, cb = bc.

Non-Abelian order 23 = 8.
4) Dihedral, a4 = 1, b2 = 1, ba = a−1b.
5) Quaternion, a4 = 1, b2 = a2, ba = a−1b.

Non-Abelian order p3, p odd.
4) ap2 = 1, bp = 1, b−1ab = a1+p.
5) ap = 1, bp = 1, cp = 1, ab = bac, ca = ac, cb = bc.

EXERCISES
1. Show that if H is a normal subgroup of the finite group G, and if [G:H] is prime to p, then H contains

every Sylow p-subgroup of G.
2. Show that in a group G, a normal subgroup K of order pa is contained in every Sylow p-subgroup of G.
3. Show that a group of order p2q, where p and q are distinct primes, must contain a normal Sylow

subgroup.
4. Show that a group of order 200 must contain a normal Sylow subgroup.
5. How many elements of order 7 are there in a group of order 168 which contains no normal subgroup?
6. The following table lists the number of distinct groups of each order from 1 through 20. Verify this for all

orders except 16.



5. PERMUTATION GROUPS

5.1. Cycles.

In Chap. 1 it was noted in the Theorem of Cayley that every group may be
written as a permutation group. As noted there, the same group may be
written in terms of permutations in various ways. For a permutation π we
write (xi)π = xj to mean that π carries xi into xj.

A finite cycle is a permutation π on a finite set of letters x1, x2, ···, xn
such that (x1)π = x2, ···, (xn−1)π = xn, (xn)π = x1.

An infinite cycle is a permutation π on an infinite set of letters xi, i = − ∞,
· · ·, + ∞ such that (xi)π = xi+1, i = − ∞, · · ·, + ∞.

We write (x1, x2, · · ·, xn) for a finite cycle and (· · · x−1, x0, x1, · · ·) for
an infinite cycle. It is clear that the cycle (x2, · · ·, xn, x1) is the same
permutation as (x1, x2, · · ·, xn).

THEOREM 5.1.1. Given any permutation π on a set of letters S. The set S
may be divided into disjoint subsets such that π is a cycle on each subset.

Proof: Let x1 be any letter of the set S. If (x1)π = x1, then (x1) is a cycle
by itself. If (x1)π ≠ x1 write (x1)π = x2. Now write (x2)π = x3, · · ·, (xi)π =
xi+1, continuing indefinitely unless a letter is repeated. If (x1)π = x2, · · ·,
(xn−1)π = xn are all different, but (xn)π is a letter already used; then (xn)π =
xi, for some i = 1, · · ·, n. If i = 2, · · ·, n, then also (xi−1)π = xi, contrary to
the assumption xn ≠ xi−1. Hence (xn)π = x1 and we have a finite cycle (x1, · ·
·, xn) as the effect of π on the letters x1, · · ·, xn. If (x1)πi = xi+1 are all
different i = 1, · · ·, let x0 be the letter such that (x0)π = x1. Continuing, define
in succession x−1, x−2, · · ·, by (xi−1)π = xi, i = 0, −1, −2, · · ·. These will all
be different since π cannot take two different letters into the same letter. Thus



each x of S is part of a set of letters permuted by π in a cycle. But clearly any
letter determines the entire cycle since in (x)π = y either letter x or y
determines the other uniquely. Hence the different cycles are disjoint.

We may thus write a permutation π as a succession of cycles, and since
the cycles are on disjoint sets of letters, clearly the order of writing the
cycles is immaterial. It is often customary to omit the cycles of length one, it
being understood that all letters omitted are fixed.

Thus π = (1)(2)(3, 4, 5) = (3, 4, 5). With this convention a permutation
may be regarded as the group product of its cycles, whenever the number of
cycles is finite.

THEOREM 5.1.2. The order of a permutation π is the least common
multiple of the lengths of its cycles.

Proof: In the cycle (x1 · · ·, xn), (xi)πj = xi+j, where i + j is reduced
modulo n. Hence (xi)πt = xi if, and only if, t is a multiple of n. Hence (xi)πm =
xi for all  if, and only if, m is a multiple of the lengths of all the
cycles of π. Here πm = 1. If π contains a cycle of infinite length, or arbitrarily
long cycles, then π is of infinite order.

A useful computational form is the following:

LEMMA 5.1.1. If

and

then

For a typical element bjk we have



and so bjk → bj,k+1 under S−1TS.
The group of all permutations on a set of letters is called the symmetric

group. The symmetric group on n letters is often designated as Sn.

THEOREM 5.1.3. Two permutations are conjugate in a symmetric group
if, and only if, they have the same number of cycles of each length.

Necessity of the condition follows from the rule above. For sufficiency
suppose

and

including even cycles of length one. Since by hypothesis T and R have the
same number of cycles of each length, we may assume the cycles to be
lettered as given here. Then

is such that Q−1TQ = R. Note that this theorem does not impose any
conditions of finiteness, and “same number” refers to the cardinal number
involved. We must include cycles of length one since if the number of letters
involved is infinite, T and R could have the same number of cycles of lengths
greater than one and yet fix a different number of letters. Thus T = (0, 1)(2, 3)
(4, 5) · · · and R = (0)(1, 2)(3, 4)(5, 6) · · · are not conjugate in the
symmetric group on the letters 0, 1, 2, 3, · · ·.

5.2. Transitivity.



THEOREM 5.2.1. Let G be a permutation group on letters x1 · · · xn. Let
S be any subset of these letters. Then the permutations of G, fixing all the
letters of S, form a subgroup K. The permutations permuting the letters of
S among themselves form a subgroup H which contains K as a normal
subgroup.

Proof: If two elements a and b permute the letters of S among themselves,
or fix the letters of S, so does the product ab and the inverse a−1. Hence there
is a subgroup H permuting the letters of S and a subgroup K fixing the letters
of S. If , ; then h−1kh fixes the letters of S whence K is a
normal subgroup of H.

DEFINITION: A permutation group G on letters x1 · · ·, xn is transitive on
a subset S of x1, · · ·, xn if for every  and , , and if
for xi,  there is a  with (xi)σ = xj. The letters of S constitute a
set of transitivity.

THEOREM 5.2.2. If for a fixed letter x1 the set S consists of all xi = (x1)σ,
, then S is a set of transitivity.

Proof: If (x1)σ = xi, (x1)τ = xj, then (xi)σ−1τ = xj. Moreover, if (x1)σ = xi,
(xi)ρ = xk, then (x1)σρ = xk.

THEOREM 5.2.3. If S is a set of transitivity for a permutation group G
and x1 is a letter of S, for each  choose  with (x1)σi = xi.
Let H be the subgroup of G fixing x1. Then G = Hσ1 + · · · + Hσi + · · ·.

Proof: If g = hσi with , then (x1)g = xi, whence the cosets Hσi are
distinct. Moreover, let g be any element of G. Then (x1)g = xi for some 

. Then (x1)gσi
−1 = x1, whence , ,

and so the cosets Hσi exhaust G.

COROLLARY 5.2.1. If S is a set of transitivity for G which contains
exactly r letters, then H, the subgroup fixing one letter of S, is of index r in
G.



DEFINITION: A group G is k-ply transitive on letters of a set S if it is
transitive on S and if any ordered set of k different letters of S is taken into
an arbitrary ordered set of k different letters of S by some element of G.

The analogue of Theorem 5.2.2 holds for k-ply transitive groups. If G
takes a fixed set of k letters x1, x2, · · ·, xk into an arbitrary ordered set y1, y2,
· · ·, yk of letters of S, then G is k-ply transitive on the letters of S. Also the
subgroup of G, which fixes r < k letters of S, will be (k − r)-ply transitive on
the remaining letters of S. Also, if G is r-ply transitive and if a subgroup H
fixing r letters is itself s-ply transitive, then G is (r + s)-ply transitive.

5.3. Representations of a Group by Permutations.

It has been noted that an abstract group may be represented in more than
one way as a permutation group. We shall call a group of permutations P a
representation of G if there is a mapping of G onto P, g → π(g), , 

 such that π(g1)π(g2) = π(g1g2). Note that P is necessarily a
homomorphic image of G. If P is in fact isomorphic to G, we shall say that P
is a faithful representation of G. Just as all homomorphic images of G are
given by factor groups modulo a normal subgroup of G, all transitive
permutation representations of G may be found in terms of left cosets of
subgroups.

Since the non-Abelian group of order 6 may be faithfully represented as a
transitive permutation group on three letters and also on six letters, we must
distinguish as permutation groups certain groups which are isomorphic as
abstract groups.

DEFINITION: A permutation group P1 on a set S1 is isomorphic as a
permutation group to a permutation group P2 on a set S2 if there is an
isomorphism  between P1 and P2 and a one-to-one
correspondence  between S1 and S2 such that (xi)πP1 = xj if, and
only if, (yi)πP2 = yi.

THEOREM 5.3.1. Given a group G and a subgroup H.
a) For each  there is a permutation of the set of left cosets of H:



b) g → π(g) is a representation of G as a transitive permutation group
on the set of distinct left cosets of H, and π(g) fixes H if, and only if, 

.
Conversely suppose g → π(g) is a representation of G as a transitive

permutation group P on a set of elements S.
c) If s1 is a particular element of S, the g’s such that π(g) fixes s1 are a

subgroup H of G.
d) The elements of S may be put into a one-to-one correspondence with

the left cosets of H so that P is isomorphic as a permutation group to the
group of permutations π(g) given in a) and b).

Proof: a) Hx → (Hx)g = Hxg maps each left coset Hx onto a unique left

coset Hxg. Since (Hxg−1)g = Hx,  is a permutation of the

set of distinct left cosets of H.
b) Since (Hxg1)g2 = Hx(g1g2), it follows that π(g1)π(g2) = π(g1g2), and

so g → π(g) is a representation of G. H → Hg = H if, and only if, .
Otherwise expressed, π(g) fixes H if, and only if, . Since H → Hx by
π(x), the representation is transitive.

c) We verify directly that those g’s such that (s1)π(g) = s1 are a subgroup
H, since if g1 and g2 have this property, so do g1g2 and g1

−1.
d) The set of g’s such that (s1)π(g) = si is not vacuous, since P is

transitive. If one of these g’s is designated as xi, it follows immediately that
the entire set is the left coset Hxi, H being the subgroup found in c) which
fixes s1. Conversely, all the elements of a left coset Hx have the property that
their corresponding permutations all map s1 onto the same image. This
establishes a one-to-one correspondence, , between elements of
S and left cosets of H. Let P1 be the permutation group of left cosets of H as

given by a) and b), with ,  the permutations of



P1. In P if (si)π(g) = sj, then (s1)[π(xi)π(g)] = sj, whence , and
hence (Hxi)g = Hxj; conversely, this relation implies (si)π(g) = sj. Thus
siπ(g) = sj if, and only if, Hxiπ1(g) = Hxj. In particular π(g) is the identity if,
and only if, π1(g) is the identity. Thus P and P1 are homomorphic images of
G, both with the same kernel, and  is an isomorphism
between P and P1. And with , a one-to-one correspondence
between S and the set of left cosets of H, we have established that P is
isomorphic as a permutation group to P1, since (si)π(g) = sj if, and only if,
Hxiπ1(g) = Hxj.

In the light of this theorem we may speak of any transitive permutation
representation of a group G as the representation on a subgroup H. If H is the
identity, then the representation is the right regular representation given in
§1.4.

THEOREM 5.3.2. In the representation g → π(g) of Theorem 5.3.1, the
elements mapped onto the identity form the largest normal subgroup of G
contained in H, and so the representation is faithful if, and only if, H
contains no normal subgroup of G greater than the identity.

Proof: For what g is π(g) the identity? Here Hxg = Hx for all .
Hence x−1Hxg = x−1Hx or . Then .
Here N is clearly a normal subgroup of G contained in H. Moreover, any
normal subgroup of G contained in H is contained in every x−1Hx and so in
N. Thus N is the largest normal subgroup of G contained in H. Conversely, if 

, then Hxg = Hx for every x, and so π(g) = 1. N = 1 is the necessary
and sufficient condition that g → π(g) be a faithful representation of G.

COROLLARY 5.3.1. The only faithful transitive representation of an
Abelian group is the regular representation.

THEOREM 5.3.3. Two faithful representations of G on subgroups H1 and
H2 are isomorphic as permutation groups if, and only if, there is an
automorphism α of G such that .

Proof: If α is an automorphism of G such that , then



is a one-to-one correspondence between the cosets of H1 and H2 such that, if
g → π(g) is the representation on H1 and g → π2(g) on H2, then

On the other hand suppose there is a permutation isomorphism

Since the representations are faithful, this defines a one-to-one
correspondence  which will be an automorphism β of G. In the
permutation isomorphism , we shall have 

. Hence, if H1g = H1,

or

and conversely. Hence if  then , and conversely. Or
H1

β = u−1H2u or H2 = uH1
βu−1 = H1

α, where α is an automorphism of G.

5.4. The Alternating Group An.

Consider the polynomial in n variables 

; . If x1, x2, · · ·, xn are

replaced by a permutation of themselves, then Δ is replaced either by Δ or
−Δ. Writing Δ out,



we see that the interchange (x1, x2) replaces x1 − x2 by x2 − x1 = −(x1 − x2),
interchanges the remaining terms of the first row with the terms of the second
row, and leaves the remaining terms unchanged. Thus the permutation (x1, x2)
replaces Δ by −Δ. We shall call a permutation even if it leaves Δ unchanged,
and odd if it replaces Δ by −Δ.

THEOREM 5.4.1. The even permutations on x1, x2, · · ·, xn form a normal
subgroup of index two in the symmetric group Sn. This group is called the
alternating group An.

Proof: We may verify directly that the product of two even permutations
is even, the product of two odd permutations is even, and that the product of
an even and odd permutation in either order is odd. We note that the identity
is an even permutation.

Hence the even permutations of Sn form a subgroup An. Since (x1, x2) is
an odd permutation, the coset An (x1, x2) consists entirely of odd
permutations. But if π is any permutation, then one of π, π · (x1, x2) is even
and the other is odd. Since π = [π · (x1, x2)] · (x1, x2), we see that An and
An(x1, x2) exhaust the elements of Sn, and Sn = An + An(x1, x2) = An + (x1,
x2)An. Thus An is of index 2 in Sn and so is a normal subgroup.

A cycle of length two (xi, xj) is called a tranposition. Hence all
transpositions in Sn are conjugate (Theorem 5.1.3) to (x1, x2). But whatever π
is,π and π−1 have the same parity, and so π−1(x1, x2)π = (xi, xj) is odd. We
may also compute directly that every transposition (xi, xj) is an odd
permutation.

Any cycle of length n is the product of n − 1 transpositions, since (x1, x2,
· · · xn) = (x1, x2)(x1, x3) · · · (x1, xn). Thus (Theorem 5.1.1) any finite
permutation may be written as a product of transpositions. The product of an
even number of transpositions is an even permutation, of an odd number, odd.



Hence, though a permutation may be written in many ways as a product of
transpositions, the number of transpositions involved will always have the
same parity.

THEOREM 5.4.2. An, n ≥ 3, is (n − 2)-ply transitive.

Proof: Let y1, · · ·, yn−2, yn−1, yn be an arbitrary ordering of x1, · · ·, xn−2,
xn−1, xn. Then if

and

we have v = u(yn−1, yn) and one of u, v is even, the other odd. Hence An is (n
− 2)-ply but not n-ply transitive. Clearly, it could not be (n − 1)-ply
transitive without also being n-ply transitive.

In the group of permutations on an infinite set of ω letters we may define
the alternating group Aω as consisting of those permutations which may be
written as the product of an even number of transpositions. Aω will be a
subgroup of index two in the group Hω of those permutations each of which
displaces only a finite number of letters. From Theorem 5.1.3, Hω will be a
normal subgroup of Sω, and Aω will be a normal subgroup of Sω index 2 in
Hω.

THEOREM 5.4.3. The alternating group An is a simple group for any
value of n, finite or infinite, except n = 4.

A2 is the identity. A3 is the cyclic group of order 3 and, so, simple. The
group A4 must be treated separately. We may suppose that there are at least 5
letters.



LEMMA 5.4.1. An, n ≥ 3 is generated by all cycles (a, b, c) of length
three.

Proof: An is surely generated by all elements which are the product of
two transpositions. If the two transpositions are identical, their product is 1.
If they have one letter in common, say (a, b) and (a, c), we have (a, b)(a, c)
= (a, b, c). If they have no letter in common, (a, b)(c, d) = (a, b)(a, c)(c, a)(c,
d) = (a, b, c)(c, a, d), proving the lemma.

We shall prove that a normal subgroup G, greater than the identity and
contained in An, n ≥ 5 must contain all cycles of length three and hence be
equal to An. This will be established by treating a number of cases. Note that
since G ⊆ An, every element of G can be written as a product of a finite
number of finite cycles.

CASE 1. G contains a cycle of length three (a, b, c).
Here any other cycle of length three (x, y, z) belongs with (a, b, c) in an

alternating group Ar on a finite number r of letters, where we may take r ≥ 5.
Since Ar is r − 2 ≥ 3-ply transitive, (a, b, c) and (x, y, z) are conjugate in Ar
and a fortiori in An. But G, being normal, must contain all conjugates of (a,
b, c) in An, and so all cycles of length three, whence by the Lemma 5.4.1. G =
An.

CASE 2. G contains an element g with a cycle of length s ≥ 4.
Write

Here , and

But gt−1g−1t = (cs−3, cs, cs−2) will belong to G since G is normal.
We have thus reduced Case 2 to Case 1. We now consider cases in which

the lengths of the cycles are not greater than 3.



CASE 3. Some  has two or more cycles of length 3.

Take . Here

and

which reduces to Case 2.

CASE 4. Some  has one or more cycles of length three and its
remaining cycles of length two.

Here

This reduces either to Case 1 or Case 3.

CASE 5. Some  contains only cycles of length two and has at
least four of these.

Take .

This reduces to Case 3.

CASE 6.  contains only two cycles of length two.



Here, since we assume n ≥ 5, there will be some letter e of the permutation
set, e ≠ a, b, c, d.

Here

and this reduces to Case 1.
The alternating group A4 on 1, 2, 3, 4 contains a normal subgroup of order

4 whose elements are (1), (12)(34), (13)(24), and (14)(23).

5.5. Intransitive Groups. Subdirect Products.

If a permutation group G is intransitive, let Si(xi1, · · ·), , an index
system, be the various sets of letters on which it is transitive. If we suppress
all letters except those of the set Si, then these permutations of the set Si
themselves form a group Gi. For each  an element g of G will
determine a , namely, the permutation of the letters of Si which g
induces. We can moreover write

regarding g as an element of the Cartesian product of the Gi, since within G

the group operations agree with those in the Cartesian product . Thus

an intransitive group may be regarded as a subgroup of the Cartesian product
of transitive groups. Here we say that G is the subdirect product of groups
Gi. More precisely, a group is said to be a subdirect product of groups Gi if
(1) G is a subgroup of the Cartesian product of the Gi; and (2) for each 

 there is at least one  which has gj as its jth component. Here



the second condition requires that all elements of the groups Gi actually
occur in this representation of G.

If in the subdirect product  all components gi may occur

independently, then G is the entire Cartesian product. This will not be true in
general, and the following theorem describes the kind of dependence which
arises between the components of a subdirect product. Let Gi and Gj be two
components or possibly the groups determined by disjoint sets of components
Gi, , Gj, , I1 ∩ I2 = 0. Suppressing all components except Gi
and Gj, the elements of G determine a group G* which is the subdirect
product of Gi and Gj. We may describe the interdependence of the
components Gi and Gj in G by describing exactly the induced subdirect
product G* of Gi and Gj.

THEOREM 5.5.1. Let G* be the subdirect product of the groups Gi and Gj
and let Hij and Hji be the subgroups of Gi and Gj, respectively, of elements
of one factor occurring in G* with the identity of the other factor. Then Hij
is normal in Gi and Hji is normal in Gj, and there is an isomorphism
between the factor groups Gi/Hij ≅ K ≅ Gj/Hji such that (g1, g2), , 

 is an element of G* if, and only if, g1 and g2 have the same image
k in the homomorphisms Gi → K, Gj → K.

Proof: If (h, 1) are the elements Hij of Gi occurring with the identity of Gj
in G*, then we easily verify that Hij is a normal subgroup of Gi and similarly
that elements Hji of the type (1, h) in G* are a normal subgroup of Gj.
Moreover, for , the set of elements  occurring with a fixed
g1 is seen to be a coset of Hji. In the same way the set of g1’s occurring with
a fixed g2 is seen to be a coset of Hij. Still further, if (g1, g2) belongs to G*,
then all elements of the form (Hijg1, Hjig2) belong to G* and no other pair
(g′1, g′2) of G* involves any one of these elements as a component. Hence for
each (g1, g2) of G* there is determined a one-to-one correspondence 

 between a coset of Hij in Gi and a coset of Hji in Gj.



If (g1, g2) and (g3, g4) belong to G*, then (g1g3, g2g4) also belongs to G*,
and so this correspondence preserves products and must therefore be an
isomorphism between the factor groups Gi/Hij and Gj/Hji. Here if we write
Gi/Hij = K = Gj/Hji, then if (g1g2) belongs to G*, we see that g1 and g2 belong
to corresponding cosets and so have the same image k in the homomorphic
image K of both Gi and Gj.

Conversely, if two groups Gi and Gj have normal subgroups Hij and Hji,
respectively, such that Gi/Hij = K = Gj/Hji, then all pairs (g1, g2) with 

,  such that g1 → k, g2 → k in the homomorphisms Gi →
K, Gj → K will form a subdirect product G* as above.

5.6. Primitive Groups.

Suppose G is a permutation group G ≠ 1 on letters which can be divided
into disjoint sets S1, · · ·, Sm such that every permutation of G either maps all
letters of a set Si onto themselves or onto the letters of another set Sj. Except
for the trivial cases in which there is only one set or in which every set
consists of a single letter, we say that G is imprimitive, and we call S1, · · ·,
Sm the sets of imprimitivity. Thus an intransitive group is a fortiori
imprimitive. If G is not imprimitive, we say that G is primitive. Thus a
primitive group is a transitive group whose letters cannot be divided into
proper sets permuted among themselves.

THEOREM 5.6.1. Let G be a transitive but imprimitive group. Let S1 be
one of the sets of imprimitivity and y1 one of the letters of S1, and H the
subgroup of elements fixing y1. Then the elements of G taking S1 into itself
form a subgroup K properly contained between G and H. The number of
sets of imprimitivity is the index [G:K], and each set of imprimitivity has
the same number of letters [K:H]. Conversely, if G is a transitive group
and H is the subgroup fixing a letter y1, and if there is a subgroup K such
that G ⊃ K ⊃ H, then G is imprimitive and one of its sets of imprimitivity
consists of the [K: H] letters into which elements of K take y1. There are
[G:K] sets of imprimitivity corresponding to left cosets of K. Thus a



permutation group G is primitive if, and only if, the subgroup H fixing a
letter is a maximal subgroup.

Proof: Suppose that G is transitive and imprimitive. Let S1, · · ·, Sm be
the sets of imprimitivity for G, and let H be the subgroup fixing a letter y1 of
S1. Then, if

we may, by Theorem 5.3.1, regard the letters permuted by G y1, y2, · · ·, yn as
being the left cosets Hxi of (5.6.1) permuted by the rule π(g): Hxi → Hxig for
each . If y1, y2, · · ·, yt are the letters of S1, then the elements of G
taking these letters into themselves form a subgroup K. An element fixing y1
must take all of S1 into itself, whence H ⊂ K, the inclusion being proper
since an element taking y1 into y2 will belong to K but not to H. Now K is
transitive on the letters of S1. Thus

and we see that the number t of letters in S1 is [K:H]. Since S1 does not
contain all letters permuted by G, K will be a proper subgroup of G. Now if
Si is any one of the sets of imprimitivity, there is a permutation of G taking y1
into a letter of Si, whence all of S1 is mapped onto all of Si, and so Si has the
same number of letters as S1. Moreover, in the permutation Hxi → Hxig, we
also have Kxi → Kxig, whence the sets of imprimitivity are seen to be the left
cosets of K in (5.6.1), and so their number is [G:K].

Conversely, suppose that G is a transitive group given by the
permutations Hxi → Hxig of the cosets of the subgroup H fixing a letter y1,
and suppose there is a subgroup K such that G ⊃ K ⊃ H. Then the cosets of K
consist of sets of cosets of H, and these will form a system of imprimitivity
for G. Hence G is primitive if, and only if, the subgroup H is maximal.

We may make a few elementary remarks which follow from the definition
of primitivity and this theorem. A doubly transitive group is surely primitive,
since if S1 is any set of letters which are part of the letters permuted by a



doubly transitive group G, then there is a permutation which takes one letter
of S1 into itself and a second letter of S1 into a letter outside of S1. Thus S1
cannot be a set of imprimitivity. Secondly, a group of degree n (the degree of
a permutation group is the number of letters it permutes) can have a set of
imprimitivity of t letters only if t is a divisor of n, since in Theorem 5.6.1 n =
[G:H] and t = [K:H]. Thus a group of prime degree is certainly primitive.
Now in a p-group every subgroup is contained in a maximal subgroup of
index p, which is normal (Corollary 4.2.2). Thus a permutation group which
is a p-group is imprimitive unless it is on p letters, in which case it is the
cyclic group of order p.

THEOREM 5.6.2. Let G be a permutation group on n letters which is
primitive, and let H be a transitive subgroup of G on m letters, fixing the
remaining n – m letters. Then (1) if H is primitive, G is n – m + 1 fold
transitive; (2) in any event G is doubly transitive.

Proof: H is transitive on a set of m of the n letters of G. Each of the
conjugates of H is transitive on some set of m letters, and since G is
transitive, every letter occurs in at least one of these sets. If these sets are
either disjoint or identical, then they would be sets of imprimitivity for G.
Hence H has conjugates which displace some of but not all the same letters
as H. Let H′ be one of those which has the largest number of letters in
common with H. Let us write

By this we understand that the c’s are the letters which both H and H′
displace, the group H also displacing r letters ai, and H′ also displacing r
letters bi. We assert that when H is primitive, then r = 1, and if H is
imprimitive and r > 1, then a1, · · ·, ar are a set of imprimitivity for H.
Consider an element h′ of H′.



where this indicates primarily the number u of b’s mapped onto b’s, b’s
mapped onto c’s, c’s onto b’s, and c’s mapped onto c’s. We note that the
number r − u of b’s mapped onto c’s must be the same as the number of c’s
mapped onto b’s, since there must be (r) b’s in the second row of h’ in
(5.6.4). Hence h′−1Hh′ displaces (r) a’s, (r − u)b’s, and (s − r + u)c’s, and so
will have s + u letters in common with H. Thus, if r > 1 and H′ is primitive,
we can choose an element h′, taking some of but not all the b’s into
themselves, whence 1 ≤ u < r; thus h′−1Hh′ has s + u letters in common with
H, which is more than s but not all r + s = m. In any event we must have r = 1
when H is primitive, and if r = 1 whether H is primitive or not, then H ∪ H′
is doubly transitive on m + 1 letters and, so, primitive. We can continue with
this group in the role of H until we reach G itself, obtaining in succession a
doubly transitive group on m + 1 letters, a triply transitive group on m + 2
letters, and ultimately G as an n − m + 1-ply transitive group.

In case H is imprimitive, this argument does not apply, but we note that
we can increase the number s of letters in common between H and H′ unless
b1, · · ·, br are a set of imprimitivity for H′ and a1, · · ·, ar are a set of
imprimitivity for H. Moreover, H ∪ H′ is a transitive group on s + 2r = m + r
letters. Thus, if m is at most n/2, m + r will be less than n. We may continue
to form transitive subgroups on more and more letters until we have a
transitive subgroup H on a number m of letters greater than n/2 but less than
n. In this case any conjugate H′ of H displaces some letters in common with
H. Here, suppose H is transitive on the largest possible number of letters less
than n. If s + 2r = n and r = 1, then H is transitive on n − 1 letters and so G is
doubly transitive. If this does not happen, we reach a group H where s + 2r =
n with r ≠ 1. In this case the a’s, b’s, and c’s are all the letters of G. But since
G is primitive, there is an element g taking b1 into some bi but not all b’s into
themselves, and so at least one a or c into a b. Here H and g−1Hg both fix bi,
and their union is transitive on more letters than H. Thus we must ultimately
reach a subgroup transitive on n − 1 letters and so G is doubly transitive.

The second alternative in the theorem can actually arise. Example 4 in
Chap. 1 illustrates this, where the group is transitive on seven letters and thus
primitive. It has a transitive subgroup on the four letters C, E, F, G, and it is
doubly but not triply transitive.



5.7. Multiply Transitive Groups.

The symmetric group on n letters is, of course, n-ply transitive, and the
alternating group An (as we remarked in §5.4) is (n − 2)-ply transitive. We
shall exclude these in further discussion of multiple transitivity. There are
infinitely many groups which are triply transitive. But apart from the
alternating and symmetric groups, there are only four groups known which
are quadruply transitive. These are the Mathieu groups on 11, 12, 23, and 24
letters, respectively, of which the groups on 12 and 24 letters are quintuply
transitive and contain as subgroups fixing a letter the groups on 11 and 23
letters, respectively. These somewhat mysterious groups have been the
subject of considerable investigation, but it is not known whether these
groups are truly exceptional or whether they are part of an infinite family of
groups which are quadruply transitive.

Theorem 5.7.1, due to G. A. Miller [1], gives a limit on the transitivity of
groups of degree n. This theorem combined with “Bertrand’s postulate,”
proves that for n > 12 a group of degree n cannot be t-fold transitive for 

. Bertrand’s postulate (proved correct by Chebyshev in
1850) states that for any real number , there exists a prime number p
in the interval x/2 < p ≤ x − 2. Miller’s theorem gives a considerably better
limit for most specific values of n. Still better restrictions are known,* but
their proofs are too complicated to include here.

THEOREM 5.7.1. Let G be a t-ply transitive group on n letters. Let H be
a subgroup fixing t letters, and let P be a Sylow p-subgroup of H, where P
fixes w ≥ t letters. Then the normalizer in G of P is t-ply transitive on the w
letters fixed by P.

Proof: Let a1, · · ·, at and b1, · · ·, bt be two ordered sets of t letters, both
sets being from the w letters fixed by P. Then, since G is t-ply transitive,
there is an element x of G taking ai into bi for i = 1, · · ·, t. Then x−1Px fixes
b1, · · ·, bt, and thus both P and x−1Px are Sylow subgroups of the group
fixing b1, · · ·, bt. By the second Sylow theorem these groups must be
conjugate in the group fixing b1, · · ·, bt. Thus, for some y fixing b1, · · ·, bt,
we have y−1(x−1Px)y = P. But here, with z = xy, z takes a1 · · ·, at into b1, · ·



·, bt and z−1Pz = P. Hence there is an element in the normalizer of P taking
any ordered set of t of the w letters fixed by P into any other ordered set of t
of these letters. Thus the normalizer in G of P is t-fold transitive on the w
letters fixed by P, proving the theorem.

THEOREM 5.7.2. Let the integer n = kp + r, where p is a prime and p > k,
r > k. Except for k = 1, r = 2, a group of degree n cannot be as much as (r +
1)-fold transitive unless it is Sn or An.

Proof: Suppose that G of degree n is (r + 1)-fold transitive. The
subgroup H fixing the first r letters, 1, 2, · · ·, r, is transitive on the remaining
kp letters. Thus the order of H is divisible by the prime p, and contains a
Sylow p-subgroup P. A subgroup of H fixing a letter is of index kp in H, and
so its order is not divisible by the highest power of p dividing the order of H.
Thus P must displace every one of the kp letters on which H is transitive.
Furthermore since kp < p2, by the hypothesis P cannot contain a transitive
constituent on p2 letters. As the number of letters in a transitive constituent of
P is a divisor of the order of P, the group P must have on the kp letters of H
exactly k transitive constituents of p letters each. (We have already excluded
the possibility that any constituent is a single letter.) On each of these
constituents P must be the cyclic group of order p. Thus P is a subdirect
product of k cyclic groups of order p on p letters each. Thus every element of
P is of order p, and P is an Abelian group. But for the most part we shall not
have to concern ourselves with the manner in which P is a subdirect product.

Let N be the normalizer in G of P. By Theorem 5.7.1, N is the symmetric
group Sr on the first r letters of G. Let us first consider cases with r ≥ 5, and
let N1 be the subgroup of N which is the alternating group Ar on the first r
letters. By Theorem 5.4.3, Ar is a simple group of order r!/2, and being of
composite order, is not Abelian. Let T1, · · ·, Tk be the k transitive
constituents of p letters of P. Then a homomorphic image of N1 is given if we
combine the permutations on the first r letters with the permutations on the
transitive constituents Ti themselves, which are permuted among themselves
in N1. This image is the subdirect product of Ar on the first r letters and a
group permuting the k T’s among themselves in some manner. But a group on
k symbols is of order at most k! and so, since k! < r!/2, it can have no factor



group isomorphic to Ar, which is a simple group; thus the only factor group of
this group isomorphic to a factor group of Ar is the identity. Hence this group
involving Ar and the constituents Ti is, by the results of §5.5, the direct
product of Ar and the other group. Here Ar and the identity in the other group
has as its inverse image in N1 a group N2, which is Ar on the first r letters,
and takes the letters of each transitive constituent Ti into themselves. To
analyze N2 we must pause to consider the nature of the normalizer on p letters
of the cyclic group generated by a = (x1, · · ·, xp) on these letters. Since ap =
1, if b−1ab = ai and c−1ac = aj, we see that both bc and cb transform a into
aij. Thus the automorphisms induced on a cyclic group by transformation
themselves form an Abelian group. (We shall see in the next chapter that the
automorphisms of a cyclic group of order p are themselves a cyclic group of
order p − 1.)

Now an element u on x1, · · ·, xp permuting with a, when multiplied by an
appropriate power ai of a, will be an element v = uai which permutes with a
and fixes the letter x1. But with a−1va = v and v fixing x1, we can readily
show that v fixes x2, · · ·, xp, and so v = 1, whence u = a−i Thus N2 on any
one of the transitive constituents Ti of the k transitive constituents of p letters
of P will have a normal subgroup of order p, consisting of the powers of a
cycle of p letters and a factor group of elements inducing different
automorphisms on the group of order p; this factor group is Abelian. Thus
any factor group of this group is either Abelian or has an Abelian factor
group. Therefore the only factor group isomorphic with a factor group of Ar
is the identity. Thus, neglecting T2, · · ·, Tk momentarily, N2, applying the
results of §5.5 to the first r letters and T1, has a subgroup which is Ar on the
first r letters and the identity on the letters of T1. This subgroup N3 of N2 in
turn has a subgroup N4 which is Ar on the first r letters and is the identity on
both T1 and T2.

Continuing, we have a subgroup which is Ar on the first r letters and the
identity on the remaining letters. But Ar contains a cycle (a, b, c) on three
letters, and since G is at least 5-ply transitive on all n letters, this may be
transformed into any cycle of three letters of the n letters. By Lemma 5.4.1
these three-cycles generate An, and since G contains An, G is either An or Sn.



The preceding argument required r ≥ 5 and leaves to be considered the
cases r = 3, k = 1 or 2, and r = 4, k = 1, 2, or 3. Let us first consider cases in
which P is cyclic, generated by an element a, and k = 1 or 2. As we have
remarked above, if u = (12) (3) · · · and v = (1)(23) · · · are elements of the
normalizer N of P (which will be the symmetric group on the first three or
four letters fixed by P), then since P is cyclic, uv and vu will both transform
a into the same power of itself. Thus u−1v−1uv = (1, 2, 3) · · · will permute
with a. This element w = u−1v−1uv either interchanges the two constituents T1,
T2 or takes both into themselves. In either event w2 = (1, 3, 2) · · · fixes both
constituents if there are two of them. This element will have order divisible
by 3, and so some power of it will be of order 3s and will still be a three-
cycle on the first three letters, taking the constituents into themselves, and
permuting with a. But for each cycle of a, the only permuting elements are the
power of the cycle and are of order p if they are not the identity. Thus, unless
p = 3, an element of order 3s which permutes with a in this manner will be
the three-cycle (1, 2, 3) or (1, 3, 2) on the first three letters and the identity
on the remaining. Here G contains a three-cycle and is triply transitive, and
so must be either An or Sn We have excluded only p = 3, and this corresponds
with k = 1 or 2 and r = 3 or 4 to n = 6, 7, 9, 10. Actually, with p = 3, k = 1, P
itself is a three-cycle and the conclusion follows. This settles n = 6, 7,
leaving n = 9, 10 to be treated as special cases. Here all cases with k = 1 are
covered, since P is surely cyclic in these cases. Now if k = 2 and P is not
cyclic, then P is the direct product of two p-cycles, and Theorem 5.6.2
applies with G primitive and H a cycle of order p, and thus a primitive
group. Here G must be (p + 4)- or (p + 5)-fold transitive, and we may use the
argument with r = p + 3 or p + 4 and k = 1 to conclude that G = An or Sn.

There remain to be considered cases with k = 3, r = 4. First, if P is
cyclic, we may argue as before that there are elements which are (1, 2, 3)(4)
· · · (1)(2, 3, 4) · · ·, and, indeed, all eight possible three-cycles on the first
four letters which permute with a generator a of P. But they may permute the
three transitive constituents of a cyclically in either of the ways (T1, T2, T3)
or (T1, T3, T2), and at least two of the eight must permute the T’s in the same
way. Combining these, we get an element either of the type (1, 2, 3)(4) · · ·
or (1, 2)(3, 4) · · · which takes T1, T2, T3 into themselves. Here p is at least
5, and an element permuting with a and taking the cycles of a into themselves



of one of these forms leads to an element of the same form fixing the 3p
letters of a. Thus there is in G either a three-cycle (1, 2, 3) or an element (1,
2)(3, 4), and by quadruple transitivity, also (1, 2)(3, 5) and also the three-
cycle (3, 4, 5). Hence G contains An and is either An or Sn. On the other hand,
if P contains a single cycle of p letters, then Theorem 5.6.2 applies, and G is
(2p + 4)- or (2p + 5)-fold transitive, whence again G is An or Sn.

As a final case we must consider the possibility that P is not cyclic nor
does it contain a p-cycle. In this case P must be of order p2. We may take a
basis for P of two elements, a = (x1, x2, · · ·, xp) (y1, y2, · · ·, yp) and b = (y1,
y2, · · ·, yp)(z1, z2, · · ·, zp), where we have chosen a and b with the same
cycle on the y’s. Thus ab−1 and its powers are the only elements of P fixing
the constituent T2 of the y’s. Now an element normalizing P of the form (1, 2,
3, 4) · · · can be found so that it either fixes the three constituents or permutes
two of them and fixes the third. Thus its square, u = (1, 3)(2, 4) · · ·, fixes all
three constituents. Hence u transforms each of a, b, and ab−1 into some
power of itself and thus transforms both a and b into the same power of
themselves (say, the ith power, and so every element of P into its ith power).
Such an automorphism must permute with any other automorphism of P, and
in particular with an automorphism induced by an element w = (1) (2, 3)(4) ·
· ·. Therefore v = w−1uw = (1, 2)(3, 4) · · · also transforms every element of
P into its ith power and so naturally fixes the constituents of P. But now uv−1

= (1, 4)(2, 3) · · · permutes with every element of P, fixing the constituents.
This leads to an element (1, 4)(2, 3) in G, and since G is quadruply transitive
on more than four letters, G will again be An or Sn.

5.8. On a Theorem of Jordan.

In 1872 Jordan [2] showed that a finite quadruply transitive group in
which only the identity fixes four letters must be one of the following groups:
the symmetric group on four or five letters; the alternating group on six
letters, or the Mathieu group on eleven letters.

Jordan’s theorem on quadruply transitive groups is generalized here in
two ways. The number of letters is not assumed to be finite; instead of
assuming that the subgroup fixing four letters consists of the identity alone,



we assume only that it is a finite group of odd order. The conclusion is
essentially the same as that of Jordan’s theorem, the only other group
satisfying the hypotheses being the alternating group on seven letters.

The theorem is the following:

THEOREM 5.8.1. A group G quadruply transitive on a set of letters,
finite or infinite, in which a subgroup H fixing four letters is of finite odd
order, must be one of the following groups: S4, S5, A6, A7, or the Mathieu
group on 11 letters.

CASE 1. G on not more than seven letters. A quadruply transitive group
on four or five letters must be the symmetric group. On six letters its order
must be at least 6·5·4·3, and hence it is A6 or S6 On seven letters, its index is,
at most, 6 in S7. Since S7 does not have a subgroup of index 3 or 6, the only
possibilities are A7 and S7. In both S6 and S7 there are elements of order 2
fixing at least four letters, and so these groups do not satisfy our hypothesis.

To treat the case in which G is on more than seven letters, we begin with
a lemma.

LEMMA 5.8.1. Elements a and b in a group, satisfying the relations

generate the dihedral group of order 2s. If s = 2t − 1 is odd, then a power
of y = ab transforms a into b. If s = 2r is even, then a and b permute with
yr.

Proof: With y = ab, we have

If s = 2t − 1, then

If s = 2r, then



From here on, G will denote (as in Theorem 5.8.1) a group quadruply
transitive on more than seven letters, and H will denote a subgroup of odd
order m fixing four letters.

LEMMA 5.8.2. The group G contains elements of order 2, and all
elements of order 2 are conjugate. Either (1) every element of order 2 fixes
two letters, or (2) every element of order 2 fixes three letters.

Proof: By quadruple transitivity G contains an element

Here g2 fixes 1, 2, 3, 4, and so belongs to H and will be of finite odd order
m1. Thus

with x2 = 1. Since H is of odd order, any element u of order 2 will fix, at
most, three letters and hence will displace at least four letters. With

there is a conjugate of u,

Either v = x, or vx fixes four letters and is of odd order, whence, by Lemma
5.8.1, v and x are conjugate. Thus all elements of order 2 are conjugate. On
the other hand, there is in G an element z = (1)(2)-(34) · · ·, and either z or
an odd power of z is an element of order 2 fixing at least two letters. Hence
every element or order 2 fixes either two or three letters, since they fix at
least two and not as many as four.

CASE 2. G on more than seven letters.
Let



be an element of order 2 and

another element of order 2. Then f = a1b = (12)(3)(4) · · · will be of even
order, and f2 will be of odd order m1. Hence fm

1 = a3 is of order 2, and by
Lemma 5.8.1, will permute with a1. Hence in G we have permuting elements
of order 2, with a2 = a1a3.

Now a2 as an element of order 2 fixes either two letters 5 and 6, or three
letters 5, 6, and 7. As a1 permutes with the element a2, it takes these letters
into themselves. But a1 fixes 1 and 2 and, at most, one other letter. Hence we
have

The first case arises if elements of order 2 all fix two letters; the second, if
all fix three letters. The elements a1 a2 a3 of (5.8.2) and the identity form a
four-group, V. Further letters will occur in sets of four which will be sets of
transitivity for V:

Here it is understood that the 7 may not be present.
The order of the subgroup K taking h, i, j, k into themselves will be 24m,

and H = H(h, i, j, k), fixing these letters, of order m will be normal in K.



There will be a subgroup U, K ⊃ U ⊃ H, in which h, i, j, k are permuted in
the following way:

Now U is of order 8m, and so a Sylow subgroup of U will be of order 8. The
elements taking h, i, j, k into themselves in a particular way will be a coset
of H in U. Since H is normal in U, a group of order 8 in U will have one
element from each coset and will be isomorphic to U/H, and hence will be
faithfully represented by the permutations on these letters. V will be
contained in a Sylow subgroup of order 8 in U. This yields

or the same permutations with 5 and 6 interchanged. The way in which the
last four elements permute the letters 1, · · ·, 7 is determined by the relations

Here u normalizes V and so fixes the only letter, 7, fixed by V (if the 7
occurs). Also, u must take the fixed letters of a3 into those of a2, whence



but also u2 = a1, whence

Finally, u must fix 1 and 2 or interchange them. But if u interchanges 1 and 2,
then a2u is of order 2 and fixes the letters 1, 2, j, k. Thus

and the rest follows.
Each further transitive constituent of V, such as h, i, j, k, yields a group S

such as that in (5.8.5). The elements

in each of these groups fix two letters of the constituent. Since an element of
order 2 cannot fix four letters, each constituent yields a different element,
permuting the first six letters in the way (12)(36)-(45). But there are, at most,
m elements with this effect on the first six letters. Thus if there are t such
constituents, t ≤ m is finite and G is a group on n = 4t + 6, or 4t + 7 letters. If
G is on 10 or 11 letters we have t = 1.

There is no quadruply transitive group on ten letters (except, of course,
A10 and S10), for the normalizer of a cycle of length 7 by Theorem 5.7.2 is S3
on the remaining three letters; and so this normalizer, which is the subdirect
product of S3 and the normalizer on the letters of the seven-cycle, will pair a
three-cycle with the identity. Hence G contains a three-cycle and, being
quadruply transitive, all three-cycles; thus G contains A10.

On 11 letters G is of order 11 · 10 · 9 · 8m, and even without assuming m
odd, consideration of normalizers of Sylow subgroups fixing four letters
shows that we must have m = 1. The group of order 8 fixing three letters
contains a single element of order 2, and so it is the cyclic or quaternion
group. The cyclic group, having only four automorphisms, could not have a
normalizer triply transitive on the remaining three letters, for then G would



contain a three-cycle. Hence the subgroup fixing three letters must be the
quaternion group Q. Then G will be a transitive extension of Q, and the
methods of T.C. Holyoke [1] will readily enable us to construct from Q not
only the quadruply transitive Mathieu group on 11 letters, but also the
quintuply transitive group on 12 letters.

We shall now show that t > 1 conflicts with the hypothesis that H is of
odd order, and thus complete the proof of our theorem. If w, x, y, z is another
transitive constituent of V, we have

from (5.8.5), and we will have another element

Each of these elements permutes with a1 and transforms a2 into a3 and a3 into
a2. Their product is an element q fixing the first six (or seven) letters and, so,
is of odd order. Also, q centralizes V. By Lemma 5.8.1, a power of q
transforms a2u into a2u′, and so takes the fixed letters j, k, of a2u into the
fixed letters y, z, of a2u′. Centralizing V, this element must take the entire
constituent h i j k into w x y z. Hence there is a group C in G which fixes the
first six (or seven) letters, centralizes V, and is transitive on the t remaining
constituents of V. An element of C taking a constituent of V into itself, being
of odd order, must fix all four letters. Thus the transitive constituents of C are
(1)(2)(3)(4)(5)(6)(7) Th, Ti, Tj, Tk, the last four sets of t each, the letters h, i,
j, k being in different constituents of C.

Let p be a prime dividing t. (Here we use the assumption t > 1.) Let P be
the corresponding Sylow subgroup of C. Then P displaces all 4t letters
which C displaces, since a subgroup of C fixing a letter is of index t ≡ 0
(mod p) and cannot contain such a Sylow subgroup. Now let P1 be a Sylow
subgroup of H, the subgroup fixing 1, 2, 3, 4, which contains P. Then P1
displaces the 4t letters of C and no others, unless possibly we have the case



where P1 might be on 4t + 3 letters. This possibility will be considered later.
With P1 on 4t letters, by Theorem 5.7.2, the group NG(P1) is quadruply
transitive on the first six or seven letters and so contains A6 or A7 on these
letters. But the subgroup taking the first six (or seven) letters into themselves
also contains the element u of (5.8.5), which is not in the alternating group on
these letters. Thus in G we have the full symmetric group on the first six or
seven letters, and hence some element fixing the first four letters and
interchanging the fifth and sixth. This conflicts with the hypothesis that H is
of odd order. Finally, consider the possibility that

and that P1 displaces 5, 6, 7, as well as the 4t letters of P. If w > 1, then
surely (5, 6, 7) is a transitive constituent of P1 and there is an element

in G. If w = 1, then P is of order 3, and (even though in P1, 5, 6, 7 are in a
constituent with 8, 9, 10, and 11, 12, 13 of P) since there is an element (5)(6)
(7)(8, 9, 10)(11, 12, 13), there will also be one such as z fixing 8, 9, 10. But
with z = (1)(2)(3)(4)(567) · · ·, and u of (5.8.5), we have

contradicting the assumption that a subgroup H fixing four letters is of odd
order.

Let G be a quadruply transitive group on 11 letters, excluding S11 and A11.
If G contains an element of one of the forms (a, b), (a, b) (c, d), or (a, b, c),
then by quadruple transitivity, G contains all such elements and must be A11
or S11. If G contains a five-cycle or seven-cycle, such an element generates a
group transitive and primitive on the letters it displaces. In this case, by
Theorems 5.6.2 and 5.7.1, G must be S11 or A11. With these exclusions a
subgroup V = V1234 fixing four letters is of order dividing 24·32. If V is not
the identity, then V must have a Sylow 2-group or a Sylow 3-group. In either
case because of our exclusion such a Sylow subgroup P must displace



exactly six letters. By Theorem 5.7.2 the normalizer of P is quadruply
transitive on the remaining five letters, and because P has transitive
constituents of three and three letters, or four and two letters, or two, two,
and two letters, it will follow that G contains a five-cycle, a possibility
already excluded. Thus the only possibility remaining is that a subgroup V
fixing four letters is the identity and G is of order 11·10·9·8.

The subgroup W fixing three letters, say, 9, 10, 11, is regular and
transitive on the remaining eight letters, and so it is the regular representation
of one of the five distinct groups of order 8. W will contain an element of
order 2, say, x = (1, 2)(3, 4)(5, 6)(7, 8)(9)(10)(11). In the subgroup H fixing
the two letters 10 and 11, there are nine conjugates of W, each fixing one
letter. If two different elements of order 2 contained the same transposition,
say (i, j), their product would be an element different from the identity
displacing, at most, seven letters. This cannot be. But each element of order 2
contains four transpositions and there are only 9·8/2 = 36 possible
transpositions of 1, · · ·, 9. Hence W contains only one element of order 2
and must be the cyclic group of order 8 or the quaternion group. But if W is
the cyclic group, its normalizer contains an element of order 3, and this can
only be the cycle (9, 10, 11), which is not possible. Hence W must be the
quaternion group Q.

The subgroup H fixing 10 and 11 is of order 72 and contains nine
quaternion subgroups, any two of which intersect in the identity. The identity
and the remaining eight elements form a subgroup U of order 9 which is
normal on H. The eight elements of U different from the identity are
conjugate under Q, and so U must be the elementary Abelian group.

From this information we can easily construct H, which is unique to
within permutation isomorphism. U may be generated by

H = QU, where Q is the quaternion group generated by

and



The subgroup K fixing 11 will be generated by H and a conjugate x of a2

fixing 2 and 11 and interchanging 1 and 10. Such an element must exist, since
G is quadruply transitive. Clearly, x normalizes Q. Adjoining x to H must not
yield an element different from the identity fixing four letters. The only
possibilities are

The element (4, 5, 6) (7, 9, 8) transforms H into itself and permutes these
three elements among themselves, therefore, to within permutation
isomorphism, we may adjoin any one of these three. Let K be obtained by
adjoining x1 to H. Then G is obtained by adjoining to H a conjugate y of a2

which interchanges 1 and 11 and fixes 2 and 10. Here y normalizes Q and
also the subgroup fixing 1 and 11. The only possibilities for y are

Here the element (4, 9) (5, 7) (6, 8) normalizes K and interchanges y1 and y2.
Hence, to within permutation isomorphism, we may suppose G obtained by
adjoining yi to K. G = {H, x1, y1}. Strictly speaking, what we have shown so
far is that if there is a quadruply transitive group on 11 letters, not A11 or S11,
then it is permutation isomorphic to G. Verification that G has these
properties is given in Ex. 4. G is known as the Mathieu group on 11 letters,
M11. As a remarkable fact, if we regard M11 as a permutation group on 12
letters, fixing 12, and we take the group M12 = {M11, z}, where

we find that M12 is quintuply transitive of order 12 · 11 · 10 · 9 · 8, and M11
is the subgroup fixing 12.



By arguments similar to those used in constructing M11, we may show that
the only quadruply transitive (not alternating or symmetic) groups on less
than 35 letters are M11, M12, and the Mathieu groups on 23 and 24 letters,
M23 and M24, where if

Thus, M23 = {A, B} and M24 = {A, B, C) · M23 is quadruply transitive of
degree 23 and order 23 · 22 · 21 · 19 · 16 · 3, and M24 is quintuply
transitive, M23 being the subgroup of M24 fixing 24.

5.9. The Wreath Product. Sylow Subgroups of
Symmetric Groups.

Let G and H be permutation groups on sets A and B, respectively. We
define the wreath product of G by H, written  in the following way: 

 is the group of all permutations θ on A × B of the following kind:

where for each , γb is a permutation of G on A, but for different b’s the
choices of the permutations γb are independent. The permutation η is a
permutation of H on B. The permutations θ with η = 1 form a normal
subgroup G* isomorphic to the direct product of n copies of G, where n is
the number of letters in the set B. The factor group  is
isomorphic to H, and the permutations θ with all γb = 1 form a subgroup
isomorphic to H, whose elements may be taken as coset representatives of
G* in G.



The wreath product is associative in the sense that if K is a third
permutation group on a set C, then  and  are
isomorphic, and if we identify the sets (A × B) × C and A × (B × C) with A ×
B × C, then they are identical.

The Sylow subgroups of symmetric group Sn are easily constructed by
means of the wreath product. What is the highest power of p dividing n!? The
factors of n! divisible by p are p, 2p, 3p, · · ·, kp, where k = [n/p] is the
largest integer not exceeding n/p. Hence n! is divisible by pk and the further
powers of p dividing k!. We note that [k/p] = [n/p2] and continue, finding that
the power of p dividing n! is pM, where

If we express n in the scale of p,

where each ai is in the range 0 ≤ ai ≤ p − 1, we find that

In particular, a Sylow subgroup of the symmetric group on pr elements will
be of order pN

r, where Nr = pr−1 + pr−2 + · · · + 1. Thus we see that, having
constructed Sylow subgroups for symmetric groups on p, p2, · · ·, pu letters,
we can easily construct a Sylow subgroup for the symmetric group on n
letters, where n is given by (5.9.2). We divide the n letters into a0 blocks of
pu letters, a1 or pu−1 letters, · · ·, au−1 of p letters, and au single letters. Then,
if in each block we construct the appropriate Sylow subgroup and take the
direct product of these, we shall have a group P of order pM, where M is
given by (5.9.3). Hence P will be a Sylow subgroup of Sn.

A Sylow subgroup of Sp on 1, 2, · · ·, p will be of order p, and so a
Sylow subgroup will be the cyclic group of order p generated by a1 = (1, 2, ·



· ·, p). Sp
2 on 1, 2, · · ·, p2 will have a subgroup which is the direct product

of the cyclic groups generated by a1 = (1, 2, · · ·, p), a2 = (p + 1, p + 2, · · ·,
2p), · · ·, ap = [p2 − p + 1, · · ·, p2]. If we take a further element of order p, b
= [1, p + 1, 2p + 1, · · ·, p2 − p + 1] (2, p + 2, · · ·), · · ·, (p, 2p, · · ·, p2),
then b−1aib = ai+1, where the subscripts are taken modulo p. Thus b and the
a’s generate a group P2 of order pp+1, which is the wreath product of the first
cycle of b and the cyclic group {a1}. Here P2 is a Sylow subgroup of Sp2. In
general let Pr be a Sylow subgroup of Sp

r on 1, · · ·, pr. Take letters 1, · · ·,
pr, pr + 1, · · ·, 2pr, · · ·, pr+1 as the letters of Sp

r+1. Then, choosing an
element

where j runs 1 to −pr, we have Pr
(i) = c−iPrci as a group of order pNr on the

letters ipr + 1, · · · (i + 1)pr. As each of Pr
(i), i = 0, 1, · · ·, p − 1 displaces a

distinct set of letters, the group which they generate is their direct product.
Here c and Pr generate a group which is of order ppNr+1. But pNr + 1 = p[pr−1

+ · · · + (p + 1)] +1 = Nr+1 and so c and Pr generate Pr+1, a Sylow subgroup
of the symmetric group on pr+1 letters. With Pr acting on letters 1, · · ·, pr,
and taking c as the cycle c = (u0, u1, · · ·, up−1), then the wreath product 

 permutes symbols (i, uj), i = 1, · · ·, pr, j = 0, · · ·, p − 1. If we
identify (i, uj) with i + jpr we see that Pr+1 as defined before is precisely the
wreath product . Incidentally we note that Pr is generated by r
elements of order p.

As an illustration, a Sylow 2-subgroup of S8 is of order 27 and is
generated by



EXERCISES
1. If an infinite group G has a subgroup H of finite index, show that there is a subgroup K ⊂ H,

where K is normal and of finite index in G. (Hint: Represent G as a permutation group on the
cosets of H.)

2. Show that there is only one simple group of order 60, namely, the alternating group on five
letters.

3. Show that S4 has two transitive representations on six letters which are both faithful but are not
permutation isomorphic.

4. Given the permutations

Show that {u, a, b, x, y} is the Mathieu group M11 quadruply transitive of degree 11 and of order
11·10·9·8 and M11, and that {M11, z} is the quintuply transitive Mathieu group M12 in which M11
is the subgroup fixing 12.

5. Given the permutations

Show that {a, b} is the quadruply transitive Mathieu group of degree 23, M23, of order
23·22·21·20·16·3, and that M24 = {a, b, c} is the quintuply transitive Mathieu group in which M23
is the subgroup fixing 23.

* E. Parker has obtained a limit with t of the order of magnitude  for reasonable values of n.
The best asymptotic value is due to Wielandt [1] which gives t < 3 log n.



6. AUTOMORPHISMS

6.1. Automorphisms of Algebraic Systems.

In §1.2 we saw that all the 1–1 mappings of any set onto itself form a group.
In general those 1–1 mappings of a set S onto itself, which preserve certain
properties P, will also form a group.

Let A be a general algebraic system with elements X = {x} and operations
fμ such that fμ(x1, · · ·, xn) = y is an element of A whenever x1, · · ·, xn are
elements of A. There may be arbitrarily many operations, but each operation is
a single valued function of a finite number n of elements. The “laws” or
“axioms” of A will be relations involving the operations. Then a 1–1 mapping
α of X onto itself, , is an automorphism of A if

for every operation fμ and for each fμ for all x1, · · ·, xn. The mapping that is a
product of two automorphisms will itself be an automorphism, and with respect
to this product, the automorphisms will form a group. In particular the
automorphisms of a group form a group. In a group there is a single binary
operation, the product operation, and we require that ab = c imply aαbα = cα, or
more briefly, (ab)α = aαbα for a 1–1 mapping α to be an automorphism.

The automorphisms of algebraic systems are a natural source of groups.
Historically the development of group theory arose from the study of the
automorphisms of algebraic fields.

6.2. Automorphisms of Groups. Inner
Automorphisms.

If  is a 1–1 mapping of a group G onto itself, α will be an
automorphism if, and only if, ab = c implies aαbα = cα, or more briefly,



The relation (6.2.1) alone defines an endomorphism, and in §2.4 we have
already defined an automorphism as a 1–1 endomorphism. Thus the two
definitions of a group automorphism agree.

For a fixed , the mapping Aa in which

is in fact one to one, since axa−1 → a−1(axa−1)a = x. It is an automorphism,
since a−1xya = a−1xa · a−1ya. The automorphism Aa of G in (6.2.2) is called an
inner automorphism. Automorphisms of G not of this type are called outer
automorphisms. Since b−1(a−1xa)b = (ab)−1x(ab), and a(a−1xa)a−1 = x, we
have

THEOREM 6.2.1. The inner automorphisms of a group G are a normal
subgroup I(G) of the group A(G) of all automorphisms of G. The mapping a
→ Aα is a homomorphism of G onto I(G) whose kernel is the center of G.

Proof: From (6.2.3) the inner automorphisms form a subgroup I(G) of A(G).
Let α be any automorphism of G. Then (a−1xa)α = (aα)−1xαaα. Hence α−1Aaα
maps x into (aα)−1xaα, whence α−1(Aa)α = Aa

α and so I(G) is a normal subgroup
of A(G). From (6.2.3) the mapping a → Aa is a homomorphism of G onto I(G).
Now Aa = 1 if, and only if, xa = ax for every . Thus Aa = 1 if, and only
if, a belongs to the center of G. Thus the kernel of the homomorphism G → I(G)
is the center of G.

A finite Abelian group X is the direct product of its Sylow subgroups
(Theorem 3.2.3).

A(X), the group of automorphisms of X, must include the direct product of the
automorphism groups A[S(pi)]. But since an automorphism of X must map each
of S(pi), i = 1, · · ·, r onto itself, there can be no further automorphisms, and so



More generally, the group of automorphisms of a periodic Abelian group is the
Cartesian product of groups of automorphisms of the Sylow subgroups.

The problem of finding the automorphisms of a periodic Abelian group has
thus been reduced to finding the automorphisms of ap Abelian p-group. Any
automorphism of a finite Abelian p-group, Ap, maps a basis onto another basis.
Conversely, let a1, · · ·, as and b1, = · · ·, bs be two bases for Ap, arranged as
they may be by Theorem 3.3.2 so that ai is of the same order as bi, i = 1, · · ·, s.
Since

it follows that the mapping

determines an automorphism α of Ap.
In the cyclic group C of order p, C = {a}, ap = 1, every element ai, i = 1, · ·

·, p − 1 is a generator. Hence there are p − 1 automorphisms determined by a
→ (a)αi = ai. If r is a primitive root† modulo p, then a → (a)β = ar determines
an automorphism β. Here a → (a)βj = arj. With r a primitive root, the first
power of r such that rj ≡ 1 (mod p) is j = p − 1. Hence the automorphism β is of
order p − 1, and the automorphism group A(C) is cyclic of order p − 1 and
generated by β.

6.3. The Holomorph of a Group.

Both the right and left regular representations of G are subgroups of the
group SG of all permutations of the elements of G (§1.4). In addition, if α is an
automorphism of G, then  is an element of SG fixing the identity 1
of G.

Since (g1x)g2 = g1(xg2), we have L(g1)R(g2) = R(g2)L(g1). Thus the right
and left representations of G permute with each other elementwise.



THEOREM 6.3.1. Each of the right and left regular representations of G is
the centralizer of the other in SG.

Proof: Let π be a permutation in SG belonging to the centralizer of L(G). Let
(1)π = g. Then πR(g)−1 = π* belongs to the centralizer of L(G) and fixes the
identity (1)π* = 1. Here (1)π*L(g′) = g′. Hence also (l)L(g′)π* = g′, and so
(g′)π* = g′. But g′ may be any arbitrary element of G, whence π* = 1, and so 

. Hence the centralizer of L(G) is R(G). Similarly, L(G) is the
centralizer of R(G).

This disposes of the centralizer of R(G) in SG We shall call the normalizer
of R(G) in SG the holomorph of G.

THEOREM 6.3.2. Let H be the holomorph of G, the normalizer of R(G) in
SG. The subgroup of H fixing the identity of G is the group A(G) of
automorphisms of G.

Proof: Let H be the normalizer of R(G) and let α be an element of H fixing
1. Here  is surely an automorphism of R(G), since
R(G) is a normal subgroup of H. Hence α−1R(g)α = R(gα) defines a 1–1
mapping  of G onto itself. But since (g1g2)α = g1

αg2
α under this

mapping,  is an automorphism of G. But α is in fact the permutation 
. Since (1)α = 1 and α−1R(g)α = R(gα), we have (1)αR(gα) = gα and

also (1)R(g)α = gα, whence (g)α = gα. Thus, if α belongs to H and fixes 1, then
α is an automorphism of G. Conversely, let  be an automorphism
of G. Then α is an element of SG fixing the identity 1 of G. We may now verify
that α−1R(g)α = R(gα), whence α belongs to the normalizer of R(G). For
(x)R(g)α = xαgα and also (x)αR(gα) = xαgα. Thus the subgroup of H fixing 1
consists entirely of automorphisms and contains every automorphism. In the
proof of Theorem 6.3.1 we showed that only the identity of SG fixes 1 and
permutes with every element of R(G). Hence every automorphism of G occurs
exactly once in the subgroup of H fixing 1 whence this subgroup is A(G). Since
the normalizer of a group includes its centralizer it follows that H ⊃ L(G).

6.4. Complete Groups.



DEFINITION: A complete group is a group whose center is the identity and
all of whose automorphisms are inner automorphisms.

THEOREM 6.4.1. Let G be a complete group which is a normal subgroup of
a group T. Then T is the direct product G × K of G and the centralizer K of G
in T.

Proof: Let

Here xi
−1Gxi = G since G is normal in T. Thus  is an

automorphism of G. Since every automorphism of G is an inner automorphism,
gα = a−1ga for some  and all g. Hence xi

−1gxi = a−1ga for all g. Here yi =
xia−1 belongs to the centralizer K of G in T. But Gxi = xiG = xia−1G = yiG = Gyi,
and we may take yi as the coset representative of G. Thus every coset of G in T
contains an element of K. Hence T = G ∪ K = GK = KG as G is normal. But K
∩ G = 1, since the center of G is the identity. Hence T = G × K, since every
element of K permutes with every element of G.

COROLLARY 6.4.1. The holomorph H of a complete group G is the direct
product R(G) × L(G).

This follows since L(G) is the centralizer of R(G) in H.

6.5. Normal or Semi-direct Products.

THEOREM 6.5.1. Given two groups H and K and for every element 
an automorphism of K,

such that

Then the symbols [h, k], ,  form a group under the product
rule



called the normal product of K by H or the semi-direct product of K by H.

Proof: Since for every k and h, , the product rule (6.5.3) is well
defined.

1) The product rule (6.5.3) is associative, since

using (6.5.1) and (6.5.2).

2) The element [1, 1] is the identity, since

Here k1 = k because of (6.5.2).

3) An arbitrary [h, k] has a left inverse [h−1, (k−1)h−1]

Hence the symbols [h, k] with the product rule (6.5.3) form a group G.

THEOREM 6.5.2. If G is the normal product of K by H, then the elements
[h, 1] of G form a subgroup isomorphic to H and the elements [1, k] form a
normal subgroup isomorphic to K. Moreover, the automorphism (6.5.1) of K
as a subgroup of G is induced by transformation by the element h = [h, 1] of
H as a subgroup of G, since



Moreover, G = H ∪ K, since

Proof: We have only to observe that  and  are
isomorphisms between H and K and subgroups of G, using the rule (6.5.3) and
noting that k1 = k. Also, (6.5.7) and (6.5.8) follow directly from the rule
(6.5.3). Here (6.5.7) shows that K is a normal subgroup and that the
automorphism (6.5.1) is induced by transformation by the element h = [h, 1].
Here H ∩ K = [1, 1] = 1, and (6.5.8) shows that the elements of H may be taken
as coset representatives of K.

THEOREM 6.5.3. G is the normal product of K by H if, and only if, K is a
normal subgroup of G and H is a subgroup of G whose elements may be taken
as the coset representatives of K. Otherwise expressed

1) K is a normal subgroup of G.
2) H is a subgroup of G.
3) K ∩ H = 1.
4) H ∪ K = G.

Proof: We have already observed that these properties hold if G is the
normal product of K by H. Conversely, suppose these properties hold. Then
from K ∩ H = 1, H ∪ K = G, with K normal in G, it follows (Theorem 2.3.3)
that every element of G has a unique representation of the form

Since K is normal,

and clearly  is an automorphism of K. Moreover, from (6.5.10) we
have



For the product of two elements of G,

and so the rule for the product in G is precisely the same as (6.5.3), and G is
the normal product of K by H.

We observe that the association of an automorphism of K with an element of
H is a homomorphism of H into the group of automorphisms of K. If H is
mapped into the identical automorphism of K, i.e., kh = k for every h, k, then the
rule (6.5.3) is that for the direct product of H and K.

EXERCISES
1. Show that the dihedral group of order 8 is isomorphic to its group of automorphisms.
2. Show that the group of automorphisms of the elementary Abelian group of order pr is of order (pr

− 1)(pr − p) · · · (pr − pr−1).
3. Find an outer automorphism of the symmetric group on six letters, S6. This will interchange the two

classes of elements of order 3.
4. Show that if the order of a group is divisible by p2, the square of a prime, then the order of its

group of automorphisms is divisible by p. (Hint: If there is no inner automorphism of order p, show
that a Sylow p-subgroup is Abelian and a direct factor of G.)

5. An automorphism α of a group G is called a central automorphism if for every x of G, 
, where Z is the center of G. Show that the group of central automorphisms, which

are inner automorphisms of G, is isomorphic to the center of G/Z.
6. Let G be the group generated by elements a, b, c, with defining relations a8 = b8 = c4 = 1, b−1ab

= a5, c−1ac = a5, c−1bc = a6b. Show that {a, b} is the normal product of {a} by {b}, and that G
is the normal product of {a, b} by {c}. Hence conclude that these relations define a group of order
256 whose elements are of the form aibick .

† For a treatment of primitive roots see Birkhoff and MacLane [1] p. 446, or Hardy and Wright [1] p.
236.



7. FREE GROUPS

7.1. Definition of Free Group.

Suppose we are given a set of elements S = s1, · · · sn, where it is not
assumed that the elements s1 · · · sn are finite in number or even countable. But
whenever it is desirable, we shall assume that the indices i of the si are well
ordered. We now define symbols si

1, si
−1 where si

1 = si and si
−1 is a new

symbol.
A word or string is either void (written 1) or a finite succession a1a2 · · ·

at, where each ai is one of the , .
A word is a reduced word if it is void or if in a1 · · · at no pair aiai+1, i = 1

· · · t − 1 is of the form , .
Two words f1 and f2 are adjacent if they are of the form ,

f2, = gh. Each of f1 and f2 is adjacent to the other.
Two words f and g are equivalent written f ∼ g if f1 = f, f2 · · · fm = g exist

such that fi and fi+1 are adjacent for i = 1 · · · m − 1. Clearly f ∼ g is a true
equivalence relation. All words equivalent to f form a class which we may
designate as [f].

LEMMA 7.1.1. Any class contains one, and only one, reduced word.

Proof: If f = a1 · · · at contains any , then there is a
word adjacent to f, a1 · · · ai−1ai+2 · · · at involving fewer symbols. After
successive reductions we shall find in, at most, t/2 steps a reduced word
equivalent to f. This shows that [f] contains at least one reduced word.

Now, for f = a1a2 · · · at we define the W-process



Now, by induction, it is seen that W0, W1, · · ·, Wt are all of reduced form and
that Wt = f if f is in reduced form. Now, if

let W0
1, W1

1, · · ·, Wt
1 be the words of the W-process for f1 and W0

2, · · ·, Wt+2
2

be the words for f2. We want to show that Wt
1 = Wt+2

2. Now W0
1 = W0

2 · · · Wr
1

= Wr
2, since the processes are identical. Consider two cases:

1) Wr
1 = Wr

2 is of the reduced form . Since  is in reduced
form, X is not of reduced form . Here, for f2, Wr+1

2 = X, 
.

2) Wr
1 = Wr

2 is not of the reduced form . Here 
, Wr+2

2 = Wr
2 = Wr

1.
Hence in both cases Wr+2

2 = Wr
1, and so inductively, Wr+2+i

2 = Wr+i
1, since

the processes are identical. Thus the W-process yields the same reduced word
for any two adjacent words, and hence for any two equivalent words. But also
the W-process leaves a reduced word unchanged. Hence there cannot be two
distinct reduced words in the same class.

We may define a multiplication for these classes of words, and under this
definition these classes form a group which we shall call the free group F
generated by S.

THEOREM 7.1.1. For any two classes, [f1], [f2] of words on S define their
product [f1][f2] = [f1f2]. This product is well defined, and with respect to this
product, all the classes of words on S form a group, the free group F
generated by S.

Proof: Suppose f1 ∼ f1′, f2 ∼ f2′. Then f1f2 ∼ f1′f2′ since we may first show
f1f2 ∼ f1′f2 by replacing f1 in turn by the words adjacent to it which lead to f1′.



Similarly, f1′f2 ∼ f1′f2′, whence f1f2 ∼ f1′f2′, whence [f1′f2′] = [f1f2], and so the
product [f1f2] = [f1][f2] depends only on the class of f1 and f2 and not on the
particular representatives. The void word is the identity for this product, as [1]
[f] = [f][1] = [f]. Moreover, if f = a1 · · · at and h = at

−1 · · · a1
−1, then [f][h] =

[fh] = [1] and [h][f] = [hf] = [1]. Hence [at
−1 · · · a1

−1] is the inverse of the
class [a1 · · · at]. We find moreover that ([f1][f2])[f3] = [f1f2f3] = [f1][f2][f3]),
whence the associative law holds. Thus the classes of words form a group,
called the free group F generated by S. We may write FS to indicate the
generators.

It is convenient to write f1 = f2 if the two words are equivalent and hence
represent the same element of F. We shall write f1 ≡ f2 to indicate that f1 and f2
are the same word. Naturally it is usually convenient to represent an element of
F in its reduced form. Thus if f = a1 · · · at is in reduced form, we say f is
reduced as written.

In any group G a set of elements X: x1, · · ·, xn generate a subgroup H
consisting of all finite products b1b2 · · · bt, each bj being some , 

. There is no difficulty in verifying that these finite products do
form a subgroup. In general an element of H may be written in many ways as
such a finite product. Moreover, it is trivial that all elements of G generate G.
Hence every group G may be regarded as generated by a set of elements X, and
we write G = {X}. The following theorem shows why free groups are
interesting not merely in their own right, but also as a tool in the study of all
groups.

THEOREM 7.1.2. Let the group G be generated by a set of elements X:x1, · ·
·, xn. Then if F is the free group generated by S:s1, · · ·, sn, there is a
homomorphism F → G determined by si → xi all i.

Proof: Let f = a1 · · · at be any word of S. Consider the element 
, where  if . Then f → g maps

every word of S onto an element of G. Clearly adjacent, and therefore
equivalent, words of S are mapped onto the same element of G. Hence the
mapping f → g is in fact a mapping of elements of F onto elements of G.
Moreover, if f1 → g1, f2 → g2, then f1f2 → g1g2. Hence the mapping si → xi



determines a homomorphism of F onto G. From the theorems on
homomorphisms we have the corollary:

COROLLARY 7.1.1. Every group G given as generated by a set X is the
factor group of a free group F with the same number of generators.

As an alternate definition of a free group we may take the following:

DEFINITION: The free group F generated by a set S of elements is the group
with the following properties:

1) F is generated by S.
2) If G is any group generated by a set of elements X and if there is a one-

to-one correspondence between S and X, , then there is a
homomorphism of F onto G, F → G taking S onto X.

In light of Theorem 7.1.2, this is a valid definition. From the previous
definition the free group FS satisfies these requirements. Moreover, if F′ is a
group generated by S and F′ → FS this homomorphism must be an isomorphism,
since the only element of F′ which can be mapped onto the identity is the
identity.

However, there seem to be several disadvantages in this definition. It is not
a constructive definition and it does not make clear, without the constructive
process given above, that any group with properties 1 and 2 exists, nor does it
make clear that if such a group exists, no nontrivial relations hold. Moreover, on
broader grounds, the concept of a “free” system, a system in which no relations
hold save those implied by the axioms, is tenable even though no theorem
analogous to Theorem 7.1.2 may hold.

7.2. Subgroups of Free Groups. The Schreier
Method.

The nature of subgroups is always fundamental in the study of groups, and
for free groups, from Theorem 7.1.2, the normal subgroups are of particular
interest. It was proved by Nielsen [1] and Schreier [3] that subgroups of free
groups are themselves free groups. Nielsen’s proof held only for finitely
generated subgroups, but Nielsen’s proof has been extended by Levi [1] and
others so as to avoid this restriction. Nielsen’s method works directly with the
elements of the subgroup, Schreier’s with the cosets of the subgroup. The first
proof given here* is a simplification of the Schreier proof.



A set G of elements of a free group F is said to be a Schreier system if for
each :

1) g = a1a2 · · · at is reduced as written.
2) a1a2 · · · at−1 is also a .

We say that G is a two-sided Schreier system if in addition to 1 and 2 the
following also holds:

3) a2 · · · at is also a .
Note that a Schreier system always contains the identity.

Let F be the free group generated by S and let U be a subgroup of F.
Consider the decomposition of F into left cosets of U:

We shall always choose the identity as the representative of U itself. We find
that it is advantageous to choose the representatives of the remaining cosets so
that they will satisfy certain relations.

LEMMA 7.2.1 (EXTENDED LEMMA OF SCHREIER). If U is a subgroup of the
free group F, it is possible to choose the representatives of the left cosets of U
as a Schreier system. If U is a normal subgroup of F, it is possible to choose
the representatives as a two-sided Schreier system.

Proof: Let the generators of F, S: s1 · · · sn and their inverses be well
ordered in any way; for example, s1 < s1

−1 < s2 < s2
−1 · · · < sn < sn

−1 if the
number n is finite. But it is not to be assumed that the set S is finite or even
countable, merely that the set S ∪ S−1 may be well ordered.

This ordering of S ∪ S−1 may be extended to yield an alphabetical ordering
for all the elements of F. If we have two elements of F, f and g, then we define f
< g in the alphabetical ordering if the reduced forms of f and g are

where the ai and bi belong to S ∪ S−1, and one of the following holds:

1) t < u.
2) t = u, a1 < b1.



3) t = u; a1 = b1 · · · ai = bi; ai+1 < bi+1.

The alphabetical ordering so defined is clearly a simple order, indeed a well
ordering, and the following useful properties hold:

If f < g and gh is reduced as written, then fh < gh. If f < g and hg is reduced
as written, then hf < hg. This may be verified from the definition of the
ordering.

To prove the lemma, let us choose the representative gi of the coset Ugi as
that element of the coset earliest in the alphabetical ordering of F. Then we
assert that the gi form a Schreier system, and in fact a two-sided Schreier
system, if U is a normal subgroup. Since the identity is the first element of F, the
identity is chosen as the representative of the subgroup U. Let g = a1 · · · at−1at
be the representative of the coset Ug, being the earliest element in this coset.
Let h be the earliest element in the coset containing h* = a1 · · · at−1. If h = b1 ·
· · bu, then h ≤ a1 · · · at−1. But , and so g ≤ hat. But also hat ≤ a1 ·
· · at−1at = g. Thus g = hat and, so, h = h* = a1 · · · at−1 is also a coset
representative. Thus the g’s form a Schreier system. If U is a normal subgroup,
let a2 · · · at be in the coset Uf = fU whose earliest element is f. Then f ≤ a2 · · ·
at, and a1f belongs to the same coset as a1 · · · atU = gU = Ug. Then g ≤ a1f.
But also a1f ≤ a1a2 · · · at = g. Thus g = a1f and f = a2 · · · at. Hence the g’s
form a two-sided Schreier system. Note that the lemma merely guarantees the
existence of a Schreier system of left coset representatives. But the same
subgroup may possess more than one set of coset representatives which is a
Schreier system.

THE MAIN THEOREM: THEOREM 7.2.1. Every subgroup of a free group is a
free group.

Let F be the free group generated by the set S, and let U be a given subgroup
of F. Then by the Schreier lemma we may suppose the left coset representatives
G to be a Schreier system.

We begin with a lemma which is true for any group F whether a free group
or not. Let F be generated by a set of elements S, let U be a subgroup of F, and
let (7.2.2) be the decomposition of F into left cosets of U.

If an element f of F belongs to the coset Ugi in (7.2.2), let us define a
function Φ(f) by putting Φ(f) = gi. Note that Φ(uf) = Φ(f) if . Φ(f) = 1 if,



and only if, .
Suppose f = a1a2 · · · at with each . Write f0 = 1, f1 = a1,

f2 = a1a2, · · · ft, = a1a2 · · · at = f. Then write h0 = Φ(f0) = 1, h1 = Φ(f1), · · ·,
ht = Φ(f). Then, identically,

since then ht = 1.
Now, since 

, 
, , , it is clear that in (7.2.3) we need only the

function Φ for arguments of the form , , . Let us
then write  so that ϕ(f) is defined only for arguments 

.

LEMMA 7.2.2. In any group F the elements gsϕ(gs)−1 are generators of the
subgroup U, where g runs over the left coset representatives of U in (7.2.2); s
over the generators of F and  is the representative of the coset
containing .

Proof: If , then ht = 1 and (7.2.3) expresses f as a product of
elements hi−1aihi

−1, and since hi = Φ(hi−1ai), then hi−1aihi
−1 is of the form 

, with hi−1 = g and , since then . But 
, whence for any  the element . Note

that if , then . Hence, if 
, its inverse is 

, which is of the same form with the
opposite sign for the exponent of s. Hence the elements gsϕ(gs)−1 generate U.

COROLLARY 7.2.1. If F is a finitely generated group and U is of finite
index in F, then U is finitely generated.

This follows since there are only a finite number of choices for g and s in
gsϕ(gs)−1.

From here on we shall assume that F is a free group and that the coset
representatives G form a Schreier system.



We shall use the following properties of the function :
1) .
2) If , then .
3) .

As a generic notation let us write  and u = gsϕ(gs)−1. Thus
a u is a v with exponent +1 and a v is either a u or the inverse of a u, for if v =
gis−1ϕ(gis−1)−1, put ϕ(gis−1) = gj. Then, by the third property, v−1 = gjsgi

−1 =
gjsϕ(gjs)−1 is a u, and also, similarly, the inverse of a u is a v.

LEMMA 7.2.3. A  is either reduced as written or
equal to 1.

Proof: Let , where 
. Both gi and gk

−1 are reduced as written. Hence, if there is
any cancellation in v, either (1) gi ends in , or (2) gk

−1 begins with .
If (1) holds,  is the reduced form of gj, whence 

 is a g, and by property 2 of the ϕ function, 
; so, . If (2) holds, then

similarly , and again v = 1.
For a , let us call the factor  the significant

factor of v. Suppose .
If gj and gk are of the same length, then since v is reduced as written, gj = gk, 

. If gj and gk are of different lengths, say, gk longer, then  as a
beginning section of gk is itself a g; so, , and so v = 1
contrary to assumption. Thus a v ≠ 1 has a unique expression of the form 

 and in particular has a unique significant factor.

LEMMA 7.2.4. In a product v1v2, v1 ≠ 1, v2 ≠ 1, v2 ≠ v1
−1, the cancellation

does not reach the significant factor of either v.

Proof: Let , , v2 = gksb
ηgl

−1, gl =
ϕ(gksb

η). v1 and v2 are both reduced as written, and since v2 ≠ v1
−1, we cannot

have both gk = gi and  holding. Let us deny the lemma and assume
that the cancellation reaches a significant factor. If the cancellation reaches sb

n



first, then gsb
n is a beginning section of gj, whence ϕ(gsb

n) = gsb
n and v2 = 1,

contrary to assumption. Similarly, if the cancellation reaches  first, then 
 is a beginning section of gk and v1 = 1, contrary to assumption. If the

cancellation includes  and sb simultaneously, then gk = gj, 
and v2 = v1

−1, contrary to assumption.
We are now close to the proof of the main theorem.

LEMMA 7.2.5. A product of v’s, v1v2 · · · vm, vi ≠ 1, i = 1 · · · m, vi+1 ≠ vi
−1, i

= 1, · · ·, m − 1 cannot be the identity.

Proof: By the repeated application of Lemma 7.2.4, the cancellation
between vi and vi+1 does not reach either significant factor. Hence, when put in
its reduced form in terms of the s’s, the product v1 · · · vm contains all the
original significant factors and cannot be the identity.

Now consider the elements u, u = gsϕ(gs)−1 ≠ 1. From Lemma 7.2.2, all the
u’s and so the u’s ≠ 1 generate U. The u’s will be free generators of U if no
product of u’s which is a reduced word in the u’s is equal to the identity, i.e.,
reduces to 1 when expressed in terms of the s’s. But every v ≠ 1 is either a u or
u−1 and in just one way. Hence a reduced word in the u’s ≠ 1 will be of the form
v1v2 · · · vm, vi ≠ 1 vi+1 ≠ vi

−1 treated in Lemma 7.2.5, and therefore will not be
the identity. Hence Lemma 7.2.6 will hold.

LEMMA 7.2.6. The elements u = gsϕ(gs)−1 ≠ 1 are free generators of U.
Thus we have found free generators for U, and so U is a free group.
The role of the significant factor in Lemma 7.2.4 is the key to this proof of

Theorem 7.2.1. We may generalize this idea by an independent definition of
significant factor.

A set Y of elements such that Y ∩ Y−1 = 0 is said to possess significant
factors if for each  we may select a factor from the reduced form of y
and y−1:

selecting ai from y and ai
−1 from y−1 in such a way that in any product



the cancellation does not reach the significant factor in z or w. In other words Y
possesses significant factors if Lemma 7.2.4 is valid in Y ∪ Y−1 for these
factors. The significant factors for a set Y are said to be central significant
factors if for a y of odd length the significant factor is its central term and for a
y of even length the significant factor is one of the two central terms.

THEOREM 7.2.2. If a set Y possesses significant factors, then Y consists of
free generators for the subgroup generated by its elements. If G is a Schreier
system with each g a shortest element in its coset Ug, then for the u’s with u =
gsϕ(gs)−1 ≠ 1, the s’s form a set of central significant factors.

Proof: By definition of the significant factor, Lemma 7.2.4 holds for v1, 
. But then Lemma 7.2.5 holds also. Hence no word in the y’s

and their inverses is the identity unless its reduced form in the y’s is the identity;
thus the y’s are free generators of the group which they generate.

If G is a Schreier system of coset representatives g for a subgroup U such
that a coset Ug contains no element shorter than g, then since

we see that g and ϕ(gs) can differ in length by, at most, one. Thus s, which in
Lemma 7.2.4 has already been shown to be a significant factor, is a central
significant factor, since in u = gsϕ(gs)−1 it is between two words of length
differing, at most, by one.

We may prove a converse to Lemma 7.2.6 and the main theorem.

THEOREM 7.2.3. Let G be a Schreier system in a free group F generated by
a set S of free generators. Let ϕ(h) be a function defined for arguments

, , ,  such that
1) .
2) If , then .

3) .

Then the elements u = gsϕ(gs)−1 ≠ 1 are free generators of a subgroup U of F,
and the Schreier system is a set of representatives of left cosets of U in F.



Proof: Let us write  as a generic notation. The proofs
of Lemmas 7.2.3, 7.2.4, and 7.2.5 are valid under the hypotheses given here,
since only the preceding properties of the ϕ function were used in the proof of
these lemmas. From Lemma 7.2.5 it follows that the elements u = gsϕ(gs)−1 ≠ 1
are free generators of some subgroup U of F.

In order to show that the Schreier system of G is a set of representatives of
the left cosets of U, we define a function Φ(f) for every word f in S ∪ S−1.
Suppose

Put

The essential properties of Φ(f) are easily proved:
1) 

.
By definition every hi, i = 1 · · · t is a . Hence in evaluating the right

hand side we have successively hi, , and  by
property (3). Otherwise the process is identical in evaluating both sides. Thus
Φ(f) is the same for any two words representing the same element of F.

2) Φ(g) = g.
Here if g = a1 · · · at is the reduced form of a , every beginning

section is also a g and, by property (2), hi = a1 · · · ai, i = 1 · · · t.
3) Φ(f1f2) = Φ[Φ(f1)f2].
Write f = f1f2, f1 = a1 · · · ai, f2 = ai+1 · · · at. Then hi = Φ(f1) is a g, and so

Φ(hi) = hi. Thus, in evaluating Φ(hif2), we have a term equal to hi and then
further terms equal to hi+1, · · ·, ht = Φ(f1f2)

4) .
Here  by the definition of the Φ function. Here

Φ(g) = g, and so .
5) .



Here 
.

6) If , then Φ(f) = 1.
This comes from a repeated application of (3) and (5).
7) If Φ(f) = g, then .

Here 

and each of , i = 1 · · · t, whereas ht =
Φ(f) = g. In particular, if Φ(f) = 1 then .

8) If gi ≠ gj, then gi and gj are in different cosets of U.
Otherwise, gi = wgj with  and gi = Φ(gi) = Φ[Φ(w)gj] = Φ(gj) = gj,

a contradiction.
Thus we have shown that the cosets Ug are all different and include all the

free group F. In proving Theorem 7.2.3 we have shown even more than was
required. We state this as a theorem.

THEOREM 7.2.4. Given the Schreier system G and the function  of
Theorem 7.2.3. From these alone we may decide whether or not an arbitrary
element f belongs to the subgroup U determined by G and ϕ.

Proof: We may compute Φ(f) from ϕ and G, and Φ(f) = 1 if, and only if, 
. Since ϕ and G determine U in this unambiguous fashion, we shall

regard ϕ and G as representing U, and speak of  as a
standard representation of U.

Two questions raise themselves naturally:
1) How are different standard representations of the same subgroup related

to each other?
2) How many subgroups, if any, can be represented in terms of a given

Schreier system?
We shall answer both these questions in turn.

THEOREM 7.2.5.  and
 are the same subgroup if, and only if, there is a

one-to-one correspondence. , including  between the
Schreier system G1 and G2 such that whenever  then

 for any .



Proof: If U1 = U2 = U, then each coset of U has a representative from G1

and also from G2. Thus, if Ug1 = Ug2, the correspondence  is clearly
one-to-one and includes . Since  and  are in the same coset,
then .

Conversely, suppose a one-to-one correspondence  given,
including  such that  in all cases. We find that

 for every f, and in particular, Φ1(f) = 1 if, and only if,
Φ2(f) = 1. But this says that U1 and U2 contain the same elements f, and
therefore are of the same subgroup U. Moreover, by induction on the length of
g1 we may show that Ug1 = Ug2.

Before answering the second question we shall note some properties of the
function ϕ. The mappings π(s):g → ϕ(gs), π(s−1):g → ϕ(gs−1) for all 
and a fixed generator s map all of G into itself. From property (3) of the ϕ
function the products π(s)π(s−1) and π(s−1)π(s) are both the identity. Hence π(s)
and π(s−1) are permutations (one-to-one mappings) and are inverses of each
other. In addition, from property (2), certain values of ϕ are compulsory in that
they depend entirely on the nature of G and not on the subgroup U. Again
consider a fixed s and all . The g’s may be divided into classes C(s) and
C*(s) such that

Let N(s) be the cardinal number of the class C(s) and M(s) the cardinal number
of C*(s). Here

where N is the cardinal number of G. Similarly,

and again with N(s−1) the cardinal of C(s−1) and M(s−1) the cardinal of C*(s−1)
we have



Now if gi and gj are g’s such that gis = gj, whence gjs−1 = gi, then 
and . This relation establishes a one-to-one correspondence
between C(s) and C(s−1), whence

Now if N is finite, it will also follow that

But if N is infinite, it need not follow that M(s) = M(s−1) for an arbitrary
Schreier system. In particular, take 1, s, s2 · · · si · · ·. Here M(s) = 0, M(s−1) =
1. On the other hand if a ϕ exists for a given G, π(s) maps C(s) onto C(s−1), and
being a permutation, also maps C*(s) onto C*(s−1). Hence M(s) = M(s−1) is a
necessary condition for the existence of ϕ.

THEOREM 7.2.6. Given a Schreier system G such that M(s) = M(s−1) for
every generator s. Then it is possible to find a function  satisfying the
three properties:

1)  is a .

2) If  then .

3) .

The most general choice for ϕ is given by taking for each s:

i) ϕ(gs) = gs if gs is a g.
ii) For gs not a g choose the set of ϕ(gs) in any way such that π(s):g → ϕ(gs) is a permutation

G.
iii) Having defined ϕ(gs) for all g, define ϕ(gs−1) so that π(s−1): g → ϕ(gs−1) is the inverse of

(s).

Proof: Given the condition M(s) = M(s−1) on G for all generators s, the
theorem not only asserts that  exists but also describes what is clearly
the most general construction if the construction is valid. Hence we must prove
the validity of this construction. For a given s, clearly:

1) ϕ(gs) is a g.



2) If gs is a g, then ϕ(gs) = gs.

If for some gi we have , we have put ϕ(gis) = gj. Here gjs−1

= gi Thus in g → ϕ(gs) we have mapped the class C(s) onto the class C(s−1).
There are M(s) g’s remaining to be mapped into the remaining M(s−1) g’s. Since
M(s) = M(s−1), a one-to-one correspondence is possible, mapping C*(s) onto
C*(s−1) by , . We put g′ = ϕ(gs). Here 

 is a one-to-one correspondence taking C(s) onto C(s−1)
and C*(s) onto C*(s−1). Now π(s) is a permutation, and so, if we take 

 as the inverse of π(s), we have defined values for
ϕ(gs−1). Here, clearly, ϕ(gs−1) is a g. Moreover, since π(s) mapped C(s) onto
C(s−1), it will follow that:

3) If gs−1 is a g, then ϕ(gs−1) = gs−1 Thus properties (1) and (2) hold for all 
 and both s and s−1 Finally property (3), , holds

since π(s) and π(s−1) are inverse permutations.
In both Theorems 7.2.5 and 7.2.6 the permutations π(s) played a central

role. If g = a1a2 · · · at, we observe that the permutation π(a1)π(a2) · · · π(at)
takes 1 into g and hence that the permutations π(s) generate a group transitive on
the g’s. These permutations alone determine the subgroup U uniquely, as we
shall now show.

THEOREM 7.2.7. Let F be the free group on a set S of free generators. Let a
set of permutations π(s) be given, one for each , the permutations π(s)
being on symbols 1, y2, · · · yi, · · ·, and let the group generated by the π(s) be
transitive on the symbols. With each element f of F where f = a1a2 · · · at,
associate the permutation π(f) = π(a1)π(a2) · · · π(at). Then those elements f
such that π(f) fixes 1 will form a subgroup U. If g1 = 1, g2, · · ·, gi · · · is any
Schreier system of left coset representatives for U, we may associate the g’s
with the symbols yi, putting  if π(gi) takes 1 into yi. In this way the
π(s) on the yi are permutation isomorphic to the π(s) of Theorems 7.2.5 and
7.2.6 on the gi.

Proof: Clearly, those f’s with π(f) fixing 1 form a subgroup U of F. By
Theorem 5.3.1 we may regard the permutations π(f) as a representation of F on
cosets of U, replacing 1 by U and the y’s by other left cosets of U. Hence each
yi corresponds uniquely to some left coset Ugi, where π(gi) takes 1 into yi. In



this representation π(s) takes the coset Ug into Ugs, which is the same as
Uϕ(gs). Thus, if we replace a coset Ugi by its representative gi the permutation
π(s) now becomes the permutation π(s) of Theorems 7.2.5 and 7.2.6, and so we
have fully established the permutation isomorphism of the original permutations
on the y’s with those on the Schreier system G.

For a subgroup U of finite index in a finitely generated free group, we may
give some explicit values for the number of generators of U and for their total
length.

THEOREM 7.2.8. Let  be a subgroup of finite index
n in a free group Fr with r free generators s1, s2, · · ·, sr. Then

1) U is a free group on 1 + n(r − 1) free generators.
2) If L is the total length of the Schreier system G, then the total length of

the free generators of U, u = gsϕ(gs−1) ≠ 1, is K = (2L + n)r − 2L.

Proof: We have shown that a set of free generators of U is given by the
elements

which are not equal to the identity. Moreover, by Lemma 7.2.3, uia is either
reduced as written or equal to the identity. Now

since for sa fixed, ϕ(gisa) is a permutation of the g’s. Hence before cancellation
we have (nr)u’s of total length r(2L + n). Thus we must subtract from these
totals, respectively, the number uia equal to the identity and the lengths L(gi) +
L(sa) + L(gisa) counted for these u’s. When is uia equal to the identity? Now gi,
sa, and ϕ(gisa)−1 are reduced as written. Hence there will be cancellation, and
by Lemma 7.2.3 then uia = 1, if, and only if, sa cancels with gi or ϕ(gisa)−1. In
the first case gi ends in sa

−1, gi = gjsa
−1 with  reduced as written. In the

second case ϕ(gisa) = gk ends in sa, and in fact, gk = gisa. Thus for sa the
number of u’s equal to the identity is equal to the number of g’s ending in sa or
sa

−1. But every g except g = 1 ends in some sa or sa
−1 and so is counted exactly



once in this process. Hence there are (n − 1) u’s equal to the identity in all, and
consequently there remain nr − (n − 1) = n(r − 1) + 1 free generators for U.
What about the lengths? First, if gi = gjsa

−1, then ϕ(gisa) = gj, and so L(gi) +
L(sa) + L[(ϕ(gisa)] = 2L(gi) = 2L(gjsa

−1). Secondly, if gisa = gk, then L(gi) +
L(sa) + L[ϕ(gisa)] = 2L(gisa). Thus for sa we have included for uia = 1 twice the
length of every g ending in sa or sa

−1. Hence for all sa we have included for u’s
equal to the identity twice the length of every g except g = 1. But L(1) = 0, and
so we must subtract exactly 2L, leaving (2L + n)r − 2L as the total length of the
free generators of U.

Finally, using Theorem 7.2.7, we may enumerate recursively the number of
subgroups of index n in Fr.

THEOREM 7.2.9. The number Nn, r of subgroups of index n in Fr is given
recursively by N1r = 1

Proof: N1r = 1 asserts merely that Fr is its own unique subgroup of index 1.
Choose r permutations P1, · · ·, Pr on symbols 1, x2, · · ·, xn. In general P1,

· · ·, Pr need not generate a group transitive on all of 1, x2, · · xn. Let the
transitive constituent including 1 be 1, b2, · · bt. Disregarding the remaining
letters, we may take as π(s1) · · ·, π(sr) the permutations on 1, b2, ·· ·, bt, and by
Theorem 7.2.7, these will determine a unique subgroup of index t. The
remaining n − t letters could occur in P1, · · ·, Pr in [(n − t)!]r ways. In addition
the same subgroup will be determined if we replace 1, b2, · · ·, bt by any other
combination 1, c2, · · ·, ct, and let the remaining n − t letters occur in an
arbitrary way. Thus a total of

different permutations P1, · · ·, Pr may be associated with the same subgroup of
index t. Hence



counting the (n!)r possible choices of P1, · · ·, Pr according to the index of the
subgroup with which they are associated. Dividing by (n — 1)! and transposing
the sum from 1 to n − 1, we have the formula of the theorem.

7.3. Free Generators of Subgroups of Free Groups.
The Nielsen Method.

In the Sec. 7.2 the properties of a subgroup U of a free group F were studied
in terms of the cosets of U in F. In this section we shall be concerned more
directly with the elements of U.

Let A = {ai} be a set of elements in a free group F indexed by a set I of
indices i, and let us suppose that the set A consists of free generators of the
group which they generate, which we shall designate as [A]. For an element 

 we write LA(f) for the length of f written as a reduced word in the a’s
and their inverses.

Let the set X be a free set of generators for the free group F. Then a set A of
elements of F will be said to have the Nielsen property with respect to the
generators X if, and only if,

1) A ∩ A−1 = 0 (A−1 is the set of inverses of elements of A).
2) If a, , LX(ab) < LX(a) implies that b = a−1.
3) If a, b, , LX(abc) ≤ LX(a) − LX(b) + LX(c) implies that

either b = a−1 or b = c−1.

THEOREM 7.3.1. If the set A has the Nielsen property with respect to a set
of free generators X of F, then A consists of free generators of the subgroup
[A] which it generates. The Nielsen property is equivalent to the existence of
central significant factors in the A’s.

Proof: It is sufficient to show that the Nielsen property is equivalent to the
existence of a central significant factor, since by Theorem 7.2.2 this will imply
that A consists of free generators of [A].



Assume that A has the Nielsen property. Then from property (2), if b ≠ a−1,
LX(ab) ≥ LX(a) and LX(b−1a−1) ≥ LX(b−1), whence LX(ab) ≥ LX(b). If more than
one-half of one factor, say b, canceled with a in the reduced form of ab, we
would have a = uv−1, b = vw, LX(v) > LX(w), and LX(ab) = LX(uw) < LX(u) +
LX(v) = LX(a). Hence this cannot happen, and at most one-half of a or b is
canceled in the reduced form of ab. Thus for an element of odd length its central
term may be taken as a significant factor. If b is of even length, conceivably the
first half v of b may be canceled in a product ab with b ≠ a−1. If also the second
half w of b may be canceled in the reduced form of a product bc, b ≠ c−1, then
we have a = uv−1, b = vw, c = w−1z, and LX(abc) = LX(uz) ≤ LX(u) + LX(z) =
LX(a) − LX(b) + L(c), contrary to the third requirement for the Nielsen property.
Since this cannot happen, one-half of b, either v or w, cannot be canceled in any
product, and so, that one of the two central terms of b belonging to this half may
be taken as its central factor. Thus the Nielsen property implies the existence of
central significant factors. Conversely, if central significant factors exist for a
set A with A ∩ A−1 = 0, then if b ≠ a−1 half of b, at most, is canceled in ab
against an equal number of terms in a; so, LX(ab) ≥ LX(a) + LX(b) − 2·1/2LX(b)
= LX(a), yielding the second requirement. Moreover in a product abc, with b ≠
a−1, b ≠ c−1, the cancellation between a and b and between b and c stops short
of the significant factor of b; so, LX(abc) > LX(a) + LX(b) + LX(c) − 2LX(b),
which is the third requirement. It is not difficult to show that the third
requirement alone is equivalent to the existence of significant factors. For given
b, take as a ≠ b−1 an element which cancels the greatest number of terms on the
left of b, and take as c ≠ b−1 an element which cancels the greatest number of
terms on the right of b. The requirement asserts that not all of b is canceled out,
and any remaining term may be taken as the significant factor for b.

THEOREM 7.3.2. Given a finite set B of elements β1, · · ·, βm in a free group
F on a given set X of free generators. In a finite number of changes of the
following types:

Type 1: Delete a βi = 1,
Type 2: Replace a βi by βi

−1,
Type 3: Replace a βi by βiβj, i ≠ j,

we may replace the set B by another set A: α1, · · ·, αn, n ≤ m such that A
generates the same subgroup as B and A has the Nielsen property with respect



to X. Hence A is a set of free generators for [A] = [B].

Proof: Clearly, each change replaces a set by another set generating the
same group. The first type reduces the number of elements, the second and third
leave the number of elements unchanged. We note that a combination of changes
of types 2 and 3 will replace βj by  or , , η = ±1, and
leave the remaining β’s unchanged.

If two β’s are equal or inverses, we may make changes to replace a β by 1
and then delete this 1. This reduces the number of β’s and so could happen, at
most, m times. If for a, , b ≠ a−1, we have LX(ab) < LX(a), we
cannot have b = a since always LX(a2) > LX(a). Hence we may replace the 

 by ab and so reduce the total length of all the β’s. Thus there can be
only a finite number of changes of this kind, and so requirements (1) and (2) for
the Nielsen property can be satisfied in a finite number of steps. Satisfying the
third requirement is more difficult.

Whether or not the set X is infinite, the set Y of generators in X which occur
in the β’s is certainly finite. Let us list the elements of F generated by Y
according to length, the order for a given length being arbitrary but fixed. There
are only a finite number of each length, and so every element has only a finite
number of predecessors in this list.

If a β is of even length 2k write β in the form β = γδ−1, where each of γ and δ
is of length k. If β ≠ 1, then δ ≠ γ. Since β−1 = δγ−1. we may replace β by β−1 if
necessary so that its first half is earlier than its second half in the list. If βi =
γδ−1 and a βj begins with the terms of δ, βj = δz, we replace βj by βiβj = γz.
Similarly, if βk ends in δ−1, we replace βk = wδ−1 by βkβi

−1 = wγ−1. Hence we
may change the β’s so that if βi = γδ−1 no other β begins with δ or ends with δ−1.
Since we are replacing a series of terms δ by another γ of the same length but
earlier in the list, this process will terminate in a finite number of steps. It is
important to note that if we begin with the shortest β of even length and then
continue with longer β’s of even length, the process will terminate in a finite
number of steps. For working with β’s of the same length, we continually
replace a half word by an earlier half word, and so we come to an end in a
finite number of steps. In working with β’s of greater length than βi = γδ−1, there
will be no beginning section δ or end δ−1 in any of them. Naturally, if at any
point either condition A ∩ A−1 = 0 or LX(ab) ≥ LX(a) is violated, we make an
appropriate change, either by reducing the number of β’s or by reducing their



total length and then starting over in replacement of half words, which leaves
both the number and length of the β’s unchanged. Hence after a finite number of
changes this process will terminate, yielding a set A of elements α1, · · ·, αn, n ≤
m. We assert that the set A has the Nielsen property with respect to X. Both A ∩
A−1 = 0 and LX(ab) ≥ LX(a), b ≠ a−1, a,  will surely hold,
since otherwise we could reduce either the number or total length of the β’s.
Now consider a product abc, b ≠ a−1, b ≠ c−1. If b is of odd length, 2k + 1 at
most, the first k terms of b cancel with a and, at most, the last k terms cancel
with c; so, LX(abc) > LX(a) − LX(b) + LX(c) holds. If b is of even length, then b
is of the form γδ−1 or δγ−1, with γ earlier than δ. Since the second property
holds, half of b, at most, is canceled by a and at most half by c. But a cannot end
with δ−1 or c begin with δ, and so the half of b which is either δ or δ−1 is not
entirely canceled; thus b itself is not entirely canceled and LX(abc) > LX(a) −
LX(b) + LX(c), proving the third requirement for the Nielsen property for A.

THEOREM 7.3.3. Two free groups are isomorphic if, and only if, they have
the same cardinal number of free generators. A free group Fr with a finite
number r of generators is freely generated by any set of r elements which
generate it.

Proof: Let FX and FY be free groups on sets of free generators X and Y,
respectively.

If X and Y have the same cardinality, there is a one-to-one correspondence
between X and Y which can be extended to a one-to-one correspondence
between FX and FY, which is clearly an isomorphism.

Conversely, suppose that Fx and FY are isomorphic. Then Fx and FY have
the same number of subgroups of index 2. A subgroup of index 2 is the kernel of
a homomorphism onto the group of order 2. Such a homomorphism is uniquely
determined by the set of generators mapped onto the identity. Thus the number of
subgroups of index 2 of a free group FZ on a set of generators Z is the number of
nonvacuous subsets of Z. This number is uncountable if Z is infinite and is 2r −
1 if Z is finite with r elements. Thus, if FX and FY are isomorphic, it follows
that X and Y are either both infinite or both finite, and that in the latter case X
and Y have the same number of elements. If X and Y are infinite, FX and FY have
the same cardinal number as X and Y, respectively. Since FX and FY have the
same cardinal number, so do X and Y.



Now suppose that Fr, the free group on X: x1, x2, · · ·, xr, is also generated
by β1, β2, · · ·, βr. Then, by Theorem 7.3.2, after a certain number of changes of
types 1, 2, 3 (from β1, · · ·, βr), we shall have Fr freely generated by α1, · · ·,
αs, with s ≤ r. But then we must have s = r, and so no changes of type 1 have
been used. We may verify directly that if a change of type 2 or 3 is made from a
set B to a set B′, then if either B or B′ consists of free generators so does the
other. Hence, since α1, · · ·, αr are free generators of Fr, so will β1, · · ·, βr be
free generators of Fr.

This proves the theorem, but we may obtain even more explicit information
on α1, · · ·, ar. The αi have the Nielsen property and thus possess central
significant factors (Theorem 7.3.1). Moreover for each xi, i = 1, · · ·, r, xi = γ1 ·
· · γm, with each γ an α or its inverse and γiγi+1 ≠ 1. Now the product of the γ’s
in its reduced form includes every central factor. Hence there can be only one
and this must be equal to xi. Thus every xi is an αj or αj

−1. Hence, if we further
apply changes of the second type, the α’s are precisely x1, · · ·, xr in some
order. Thus, apart from order, we know how any set of free generators β1, · · ·,
βr of Fr may be obtained from x1 · · ·, xr. But this is to say that we have a
knowledge of the automorphisms of Fr.

THEOREM 7.3.4. All automorphisms of a free group Fr on a finite number r
of generators X are generated by the automorphisms:

1) Pij: xi → xj, xj → xi, xk → xk, k ≠ i, j,
2) Vi: xi → xi

−1, xj → xj, j ≠ i,
3) Wij: xj → xixj, i ≠ j, xk → xk, k ≠ j,

where i ≠ j are any of 1, · · ·, r.

Proof: Each of these is surely an automorphism of Fr, since it replaces X by
a set of r elements which generate Fr. We must show that an arbitrary
automorphism of Fr is expressible as a product of these. We have just shown
above that the most general automorphism of Fr is obtained by replacing X: x1, ·
· ·, xr by a set of generators B: β1, · · ·, βr and that the set B is related to X by a
finite succession of replacements,



where Bi is Bi+1 changed by a type 2 or 3 change of Theorem 7.2.3 for i = 1, · ·
·, N − 2, and the change from BN−1 to BN is a permutation of the set X and hence
a product of transpositions Pij (§5.4). Thus each of the replacements of Bi+1 by
Bi, i = 1, · · ·, N − 2 is an automorphism Vi or Wij in terms of the elements Bi+1.
We must show that these may be expressed in terms of automorphisms Vi and
Wij in terms of the elements of X.

Now let

be three sets of free generators for Fr where
1) zi = yi

−1, zj = yj, j ≠ i, or
2) zj = zizj, zk = yk, k ≠ j, and
3) wm = zm

−1, wn = zn, n ≠ m, or
4) wn = zmzn, wt = zt, t ≠ n.

Here the replacement of Y by Z is a V or W automorphism in Y; the replacement
of Z by W, an automorphism of type V or W in Z. We must show that (3) or (4)
can be expressed by V and W automorphisms on the Y’s. This involves several
cases, all relatively simple. Only the two most difficult will be given here.
Suppose we have (2) zj = yiyj and (3) wm = zm

−1 with m = j. We must express the
automorphism (3) which here replaces yiyj by yj

−1yi
−1 and leaves yk fixed for k

≠ j. This is equivalent to the replacement of yi by yi
−1yj

−1yi
−1 leaving all other

y’s fixed. But this is the product yj → yi
−1yj → yi

−iyj
−1→ yi

−1yj
−1yi

−1, which is
Wij

−1(y)Vj(y)Wij(y). Next, suppose we have (2) zi = yiyj and (4) wn = zmzn with
m = j, n = i. Here the automorphism (4) replaces zj = yiyj by yiyj and zi = yi by
yiyjyi and leaves all other zk = yk fixed. This is the same as the replacement

But this is the product Wij
−1(y)Wji(y)Wij(y); thus



Hence every V or W automorphism on the z’s may be expressed in terms of V
and W automorphisms on the y’s. We may now proceed to the proof of the
theorem, using induction on N. The replacement of BN−2 by B1 may by induction
be assumed to be a product of V’s and W’s on the generators of BN−2. But with
BN−1 as the set Y, and BN−2 as the set Z, we may express the replacement of BN−2
by B1 in terms of V’s and W’s on the set BN−1. The replacement of BN−1 by BN−2
is a V or W on BN−1. Hence the replacement of BN−1 by B1 is a product of V’s
and W’s on BN−1, and these are also V’s and W’s on X since BN−1 is merely a
permutation of X. This proves the theorem.

If A is a set with the Nielsen property, with respect to the free generators X
of FX, then A in various ways may be regarded as the “shortest” set of
generators for [A].

THEOREM 7.3.5. If A has the Nielsen property with respect to X and if

then

and

Moreover, if X is finite and the elements of A are listed in order of increasing
length,

and if

is any other set of free generators for A, also listed in order of increasing
length, then



Proof: In f = a1a2 · · · at each ai has a central factor which is not canceled
in the reduced form for f. Hence, in the reduced form for f, at least the first half
of a1 the central factors of a2 · · · at−1, and the last half of at remain, yielding 

. In the reduced form of a1
· · · at−1at the cancellation between the reduced form of a1 · · · at−1 and at
involves k terms in at−1 and k terms in at, where , k ≤
LX(at), since neither central factor is canceled. Thus LX(f) = LX(a1 · · · at−1) +
LX(at) − 2k. But 2k ≤ LX(at), whence LX(a1 · · · at−1) + LX(at · · · at−1).
Similarly, LX(a1 · · · at) ≥ LX(ai · · · aj). By repeating this argument, dropping
an a at one end or the other, we have LX(a1 · · · at) ≥ LX(ai · · · aj).

If X is finite, there are only a finite number of elements of any given length,
and therefore a listing of A in order of increasing length will exhaust all the set.
This is given as α1, α2, · · ·, αi, · · ·. For a second set of generators this list is
β1, β2, · · ·, βi, · · ·. Let β1(α), · · ·, βn(α) be the expressions for the first (n) β’s
in terms of the free generators A, and let αr be the last α occurring in these
expressions. We assert that r ≥ n. Let us deny the assertion and assume r < n.
Then modulo the commutator group K of [A], we have

With r < n there surely exist* integers u1, · · ·, un, not all zero, such that

But then  with u1 · · · un not all zero, contrary to the
assertion that the β’s are free generators of [A]. Hence r ≥ n. Let αr actually
occur in for some j ≤ n. Then, by the first part of the theorem, LX(βj) ≥ LX(αr).
But LX(βn) ≥ LX(βj) and LX(αr) ≥ LX(αn), since r ≥ n, and so, LX(βn) ≥ Lx(αn).

* Birkhoff and MacLane [1], p. 48. See §9.2 for properties of the commutator subgroup.



EXERCISES
1. Let F be the free group generated by x and y. Show that a fully invariant subgroup of F containing

x2yxy−1 is either F itself or is of index 9 in F.
2. Let F be the free group with two generators. Find all its subgroups of index 3.
3. Let F be the free group generated by three elements a, b, c. Find a set of free generators of the

subgroup of index 8 generated by the squares of all elements of F.
4. Let A1, A2, · · ·, Am be elements of a free group given in reduced form, no one of them the identity,

such that A1A2, · · ·, Am = 1. Show that for some i, Ai is completely canceled in the product
Ai−1AiAi+1.

5. Given a reduced word g = a1a2 · · · at ≠ 1 in a free group F. Show that F has a subgroup H of
index t + 1, such that . (Hint: Take coset representatives of H to be 1, a1, a1a2, · · ·, a1a2
· · · at.)

6. Show that if g = g(x1, · · ·, xr) is a word in generators x1, · · ·, xr which is not the identity in the
free group generated by x1, · · ·, xr as free generators, then there is a finite group G generated by
elements x1, · · ·, xr in which g is not the identity. (Use Ex. 5 of this chapter and Ex. 1 of Chap. 5.)

* See Hall and Rado [1]. For further results see M. Hall [4, 5].



8. LATTICES AND COMPOSITION
SERIES

8.1. Partially Ordered Sets.

DEFINITION: A partially ordered set is a system S of elements in which a
relation a ⊇ b (read “a contains b”) is defined for some pairs of elements
of S such that

P1. a ⊇ a.
P2. If a ⊇ b and b ⊇ c, then a ⊇ c.
P3. If a ⊇ b and b ⊇ a, then a = b.

DEFINITION: An upper bound of a subset T of a partially ordered S is an
element x of S such that x ⊇ t for every t of T. Similarly, a lower bound of a
subset T is a y such that t ⊇ y for every t of T.

DEFINITION: A least upper bound (l.u.b.) of a subset T of S is an element
x such that

1) x is an upper bound of T.
2) If z is any upper bound of T, then z ⊇ x.
Similarly, a greatest lower bound (g.l.b.) of a subset T is a y such that
a) y is a lower bound of T.
b) If z is any lower bound of T, then y ⊇ z.

In general a subset T need not possess either a least upper bound or a greatest
lower bound. But if T does have a least upper bound x, then this is unique, for
by the definition, two least upper bounds must contain each other and by P3
they must be equal. The same applies to greatest lower bounds.

If a partially ordered set S also satisfies:
P4. For any pair a, b, either a ⊇ b or b ⊇ a.

We say that S is a simply ordered set or a chain.



We write b ⊆ a as meaning a ⊇ b. We also write a ⊂ b if a ⊇ b and a ≠ b.
Similarly, b ⊂ a means a ⊃ b. A further useful notation is a > b (read “a
covers b”), which means a ⊃ b and a ⊇ x ⊇ b implies x = a or x = b. Also b
< a means a > b.

EXAMPLE: Let S be the set of elements a, b, c, d, e, f, where the inclusion
relation is given by the diagram, x ⊇ y if x is above y and connected to it, or if
x = y. Here the subset consisting of c and d has no upper bound and has two
lower bounds but no greatest lower bound.

8.2. Lattices.

DEFINITION: A lattice is a partially ordered set any two of whose
elements a, b have a l.u.b. or union a ∪ b and a g.I.b. or intersection a ∩ b.

Fig. 3. A partially ordered set.

Since each of a ∪ b and a ∩ b is unique, union and intersection are well-
defined binary operations in a lattice.

THEOREM 8.2.1. In a lattice the following laws hold:
L1. Idempotent laws. x ∩ x = x and x ∪ x = x.
L2. Commutative laws. x ∩ y = y ∩ x and x ∪ y = y ∪ x.
L3. Associative laws. x ∩ (y ∩ z) = (x ∩ y) ∩ z and x ∪ (y ∪ z) = (x ∪ y)

∪ z.
L4. Absorption laws. x ∩ (x ∪ y) = x and x ∪ (x ∩ y) = x.



Proof: L1, L2, and L4 are immediate consequences of the definition of
l.u.b. and g.l.b. For L3 put y ∩ z = u and x ∩ u = w. Here w is a lower bound
of x and u, and hence of x, y, and z. But any lower bound of x, y, and z is
contained in u, and so in x ∩ u = w. Thus w is the g.l.b. of x, y, and z. But,
similarly, (x ∩ y) ∩ z is the g.l.b. of x, y, and z, whence x ∩ (y ∩ z) = (x ∩ y)
∩ z. In like manner each of x ∪ (y ∪ z) and (x ∪ y) ∪ z is the l.u.b. of x, y, and
z.

THEOREM 8.2.2. The laws L1,-2,-3,-4 completely characterize lattices.

Proof: In any system satisfying L1,-2,-3,-4, x ∩ y = y if, and only if, x ∪ y
= x. If we define x ⊇ y to mean x ∩ y = y in such a system, then the system is a
partially ordered set with respect to this relation. Thus a ∩ a = a implies P1.
If a ∩ b = b and b ∩ c = c, then a ∩ c = a ∩ (b ∩ c) = (a ∩ b) ∩ c = b ∩ c = c,
which proves P2. If a ∩ b = b and b ∩ a = a, since a ∩ b = b ∩ a, we have
P3. Thus, under this definition of inclusion the system is a partially ordered
set. In addition a ∩ (a ∩ b) = (a ∩ a) ∩ b = a ∩ b and b ∩ (a ∩ b) = a ∩ b,
whence a ∩ b is a lower bound of a and b. But if a ⊇ x and b ⊇ x, then a ∩ x
= x, b ∩ x = x, whence (a ∩ b) ∩ x = a ∩ (b ∩ x) = a ∩ x = x, and so a ∩ b is
the g.l.b. of a and b. Similarly, if y ⊇ a and y ⊇ b, then a ∪ y = y and b ∪ y =
y, whence y = (a ∪ b) ∪ y; it follows that not only is a ∪ b an upper bound of
a and b but it is also the l.u.b.

Certain lattices possess further properties. The following are of some
interest for our purposes.

DEFINITION: A lattice L1 is said to be isomorphic to a lattice L2 if there is
a one-to-one correspondence  between the elements xi of L1 and yi
of L2 such that  and .

DEFINITION: A lattice L is said to be complete if every subset of L
possesses a g.l.b. and a l.u.b.

If the set of all elements of L possesses a l.u.b., this is called the all
element; if a g.l.b., this is called the zero element.

DEFINITION: A lattice L is said to be distributive if it satisfies the law:



DEFINITION: A lattice L is said to be modular if it satisfies the law:

A lattice, or more generally a partially ordered set, is said to satisfy the
minimal condition if any chain a1 ⊃ a2 ⊃ a3 ⊃ · · · is necessarily finite, and
the maximal condition if any chain a1 ⊂ a2 ⊂ a3 ⊂ · · · is necessarily finite.

DEFINITION: In a lattice L, a finite chain x = x0 ⊆ x1 ⊆ · · · ⊆ xd = y is
maximal if xi covers xi + 1 for i = 0, 1, · · ·, d – 1; that is, x = x0 > x1 > · · · >
xd = y. The chain is said to have length d.

DEFINITION: An element x of a lattice L has finite dimension d [written
d(x)] if L has a zero element 0, providing that every chain from x to 0 is
finite and that d is the length of the longest maximal chain from x to 0.

8.3. Modular and Semi-modular Lattices.

In any lattice the set of x’s such that a ⊇ x ⊇ b form a sublattice, which we
call the quotient a/b. Two quotients that may be put in the forms a ∪ b/b and
a/a ∩ b are said to be perspective to each other, and if ai/bi is perspective to
ai+1/bi+1 for i = 1, · · ·, n – 1, we say that a1/b1 is projective to an/bn.

THEOREM 8.3.1. In a modular lattice perspective quotients are
isomorphic.



Fig. 4. Perspective quotients.

Proof: Given the quotients a ∪ b/b and a/a ∩ b in a modular lattice. For
any x in a/a ∩ b define

For any y in a ∪ b/b define

The first mapping takes elements of a/a ∩ b into elements of a ∪ b/b, and the
second takes elements of a ∪ b/b into elements of a/a ∩ b. For x in a/a ∩ b,
x[y(x)] = (x ∪ b) ∩ a. Since a ⊇ x, we may apply the modular law and a ∩ (x
∪ b) = x ∪ (a ∩ b) = x, since x ⊇ a ∩ b. Hence x[y(x)] = x. Similarly for y in
a ∪ b/b, by application of the modular law, y[x(y)] = y. Thus x → y(x) and y
→ x(y) yield a one-to-one correspondence between the two quotients. In
addition this correspondence preserves the lattice operations. Thus for x1, x2
in a/a ∩ b, y(x1 ∪ x2) = (x1 ∪ x2) ∪ b = (x1 ∪ b) ∪ (x2 ∪ b) = y(x1) ∪ y(x2).
Also x1 = x(y1), x2 = x(y2), and x1 ∩ x2 = x(y1) ∩ x(y2) = (y1 ∩ a) ∩ (y2 ∩ a) =
y1 ∩ y2 ∩ a = x(y1 ∩ y2). Here y(x1 ∩ x2) = y[x(y1 ∩ y2)] = y1 ∩ y2 = y(x1) ∩
y(x2); therefore both operations are preserved by the mapping x → y(x). From
the fact that the correspondence is one to one, it therefore follows that the
operations are also preserved by y → x(y). A similar proof would show that y
→ x(y) preserves both operations.

COROLLARY 8.3.1. In a modular lattice projective quotients are
isomorphic.

THEOREM 8.3.2. In a modular lattice if x is an element with finite
dimension d(x) then every maximal chain from x to zero has the same
length.

Proof: The proof will be by induction on the dimension of x. If d(x) = 1,
then x > 0 is the only chain from x to 0. Let x = x0 > x1 > · · · > xd = 0 be one
maximal chain from x to 0, and let x = y0 > y1 · · · > ys = 0 be another. If x1 =
y1 then by induction the maximal chains from x1 and y1 have the same length d



– 1, whence s – 1 = d – 1 and s = d. If x1 ≠ y1, then write z2 = x1 ∩ y1. Here
the quotients x/x1 and y1/z2 are perspective and also x/y1 and x1/z2. Both x/x1
and x/y1 contain no intermediate elements, and so y1 > z2 and x1 > z2. Since all
maximal chains from x1 to 0 are of length d – 1, all maximal chains from z2 to
0 are of length d – 2. Hence, from y1 to z2 to 0 is of length d – 1, and so by
induction, the chain y1 > y2 · · · > 0. Hence x = y0 > y2 > · · · > ys = 0 is also
of length d = s.

As a consequence of this theorem we have the Jordan-Dedekind chain
condition holding in modular lattices.

Fig. 5. Jordan-Dedekind condition.

JORDAN-DEDEKIND CHAIN CONDITION: All finite maximal chains between
two elements have the same length.

If a ⊃ b we may take b as the zero element in the quotient lattice a/b and
apply the theorem.

In a modular lattice the dimension satisfies an important relation.

THEOREM 8.3.3. In a lattice whose elements are of finite dimension, the
law

holds if, and only if, the lattice is modular.



Proof: In a modular lattice the quotients x ∪ y/x and y/x ∩ y are
isomorphic. The length of a maximal finite chain in each of these is
respectively d(x ∪ y) – d(x) and d(y) – d(x ∩ y). From the isomorphism these
two maximal lengths are equal and we have

Conversely, suppose the law (M) holds in a lattice. Suppose A ⊇ B;
consider the two expressions A ∩ (B ∪ C) and B ∪ (A ∩ C). Here

Hence these two expressions will be equal if their dimensions are equal.
Using (M)

Hence A ∩ (B ∪ C) = B ∪ (A ∩ C) and the modular law holds.
In terms of the covering relation A > B, we define two properties of semi-

modularity which may hold in a lattice.

DEFINITIONS. Lower semi-modularity: A lattice is lower semi-modular if
whenever A > B and A > C, B ≠ C, then B > B ∩ C and C > B ∩ C.

Upper semi-modularity: A lattice is upper semi-modular if whenever A <
B and A < C, B ≠ C, then B < B ∪ C and C < B ∪ C.



Clearly, the two kinds of semi-modularity are dual to each other, and by
Theorem 8.3.1, are both consequences of modularity. We shall show that in a
finite dimensional lattice, both kinds of semimodularity taken together imply
modularity.

THEOREM 8.3.4. In a semi-modular lattice L, if A ⊇ B, and if there is a
finite maximal chain between A and B, then all finite maximal chains
between A and B are of the same length.

Proof: The proof is essentially the same as that of Theorem 8.3.2.
Suppose that L is lower semi-modular. If there is a maximal chain of length
one from A to B, then A > B, and there is no other chain from A to B. We
proceed by induction on the length of a maximal chain from A to B. Suppose
that

is a maximal chain of length r from A to B, the theorem being true for chain
lengths less than r. Now let

be a second maximal chain from A to B. Then, if U1 = A1, maximal chains from
A1 = U1 to B must by induction be of length r – 1, and the theorem follows. If,
however, U1 ≠ A1 then by lower semi-modularity,

Writing , we shall have chains

By induction on the chains from A1 to B we have m = r, and the first two
chains have the same length. The second and third have the same length m, and



by induction on the chains from U1 to B, we have m = s. Hence all four chains
have the same length, and the theorem is proved for lower semi-modular
lattices. A dual argument proves the same result for upper semi-modular
lattices.

From this theorem, we see that in a semi-modular lattice, the dimension of
an element d(A) is the length of all maximal chains between A and the null
element 0. In finite dimensional semi-modular lattices, we have inequalities
relating the dimension functions of elements.

THEOREM 8.3.5. Let L be a finite dimensional lattice. If L is upper semi-
modular, then, (1) d(X ∪ Y)+ d(X ∩ Y) ≤ d(X) + d(Y). If L is lower semi-
modular, then (2) 

. Conversely, (1)
implies upper semi-modularity, but (2) does not imply lower semi-
modularity.

Proof: By Theorem 8.3.4, if L is semi-modular and if R ⊃ S, then d(R) –
d(S) is the length of a maximal chain between R and S, since all maximal
chains from the zero element to R have the same length; therefore the
dimension of R is the length of a maximal chain from R to zero including S.
We shall use this fact in our proof.

Suppose L is upper semi-modular. Let us write  to mean A = B
or A > B; read this “A at most covers B.” Then, if

we assert that  and 
 for all i = 1, · · ·, m and j = 1, · · ·, n. This

we prove by induction on i + j, the smallest significant value for i + j being 2,
and for this value the upper semi-modularity asserts that

and by induction  and 
, whence by upper semi-modularity, 



 and , as we
wished to prove. From this for j = n, since Vn = Y,

Thus the length of a maximal chain from Y to X ∪ Y is at most m. But as we
have stated before, this means

whence the inequality (1) holds in an upper semi-modular lattice. By a dual
argument, the inequality (2) holds in a lower semi-modular lattice. This
proves the direct part of the theorem.

LEMMA 8.3.1. If inequality (1) holds in L, then U > V implies d(U) =
d(V) + 1.

Proof: Let 0 = U0 < U1 < U2 < · · · < Ut–1 < Ut = U be a longest chain
from 0 to U. There cannot be a chain longer than i from 0 to Ui because if
there were we could construct a longer chain from 0 to U. Hence d(U) = t and
d(Ui) = i, for i = 0, · · ·, t – 1. Also, since U > V, we have 

, and so . Let us select Uj so that
Ui ⊆ V, . There must be such a j in the range 0, 1, · · ·, t – 1.
Then Uj+1 = U, Uj+1 ∪ V = Uj. By inequality (1), d(Uj+1 ∪ V) + d(Uj+1 ∩ V) ≤
d(V) + d(Uj+1), whence t + j ≤ d(V) + j ≤ d(V) + j + 1 or t – 1 ≤ d(V), and so,
d(V) = t – 1, d(U) = t = d(V) + 1.

Now using the lemma and inequality (1), suppose A < B, A < C and B ≠ C.
Then A = B ∩ C, d(B) = d(A) + 1, d(C) = d(A) + 1. By inequality (1) d(B ∪ C)
+ d(B ∩ C) ≤ d(B) + d(C), which gives d(B ∪ C) ≤ d(A) + 2. But B ∪ C ≠ B,
C, and so d(B ∪ C) = d(B) + 1 = d(C) + 1, giving B ∪ C > B, B ∪ C > C, the
conclusion that L is upper semi-modular. Because dimension (dX) is defined
as the length of the longest chain from 0 to X and is not of a dual nature, the
inequality (2) does not imply that L is lower semi-modular. The five-element
lattice with elements 0, T, A1, B1 ⊂ B2, such that A1 ∩ B1 = A1 ∩ B2 = 0, A1 ∩
B1 = A1 ∪ B2 = T satisfies inequality (2) but is not lower semi-modular.



THEOREM 8.3.6. A finite dimensional lattice is modular if, and only if, it
is both upper and lower semi-modular.

Proof: We have already observed that modularity implies both kinds of
semi-modularity. But if both kinds hold, then by Theorem 8.3.5 we have d(X
∪ Y) + d(X ∩ Y) = d(X) + d(Y), and by Theorem 8.3.3 this implies modularity.

THEOREM 8.3.7. The subgroups of a finite p-group form a lower semi-
modular lattice.

Proof: Union and intersection of subgroups as defined in §1.4 do indeed
satisfy the axioms for a lattice, the subgroups of a group being partially
ordered by inclusion. If A > B, A > C, where A, B, C are subgroups of a finite
p-group, then B and C are maximal subgroups of A and by Theorem 4.3.2 are
of index p. By Theorem 1.5.5 on the inequality of indices [B: B ∩ C] and
[C:B ∩ C] are, at most, p, and so either 1 or p. Thus, if B ≠ C, we have B > B
∩ C and C > B ∩ C.

8.4. Principal Series and Composition Series.

We shall now combine the results of the preceding sections and apply
them to a study of the structure of the subgroups of groups. We shall consider a
chain of subgroups of a group G, each a normal subgroup of the preceding
group.

where each Ai is a normal subgroup of Ai–1, for which we write

The groups Ai are called subinvariant groups of G.
There will be associated with this chain the sequence of factor groups



If every Ai is a normal subgroup of G, we shall call (8.4.1) a normal chain or
normal series. We may also use the term invariant series. If , i
= 1 · · · n, it does not in general follow that , and so the
requirements for a normal series are stronger than (8.4.2). If we assume only
(8.4.2), we shall call the series a subinvariant series* A normal series in
which every Ai is a maximal normal subgroup contained in Ai–1 will be called
a principal series or chief series. A subinvariant series in which each Ai is a
maximal normal subgroup of i will be called a composition series. In lattice
terminology, if the inclusions in (8.4.1) are coverings, a normal series is
called a principal series; a subinvariant series, a composition series. We may
in addition require that the groups Ai be admissible subgroups with respect to
a set of operators Ω.

We shall be able to interpret general theorems on modular lattices as
theorems on subgroups, or as theorems on congruence relations on loops, or
more generally, as theorems on congruence relations on any algebraic system
whose congruence relations permute. The main theorem which will enable us
to get the strongest result on groups is Theorem 2.4.1. The lattice theorems
depend on the modular law, and this arises in different ways in the algebras.
Thus by altering the hypotheses on the algebras, different theorems come from
the same theorem on lattices. An auxiliary theorem on modularity in groups is
needed. We shall say that subgroups A and B of a group G are permutable if
the complexes AB and BA are equal. In this case it is readily verified that A ∪
B = AB = BA, and the complex AB = BA is in fact a subgroup. From theorem
2.3.3, subgroups A and B are permutable if either of them is a normal
subgroup, and clearly, normality in A ∪ B is all that is required.

THEOREM 8.4.1. Let A, B, C be subgroups of a group G such that A ⊇ B.
Then a sufficient condition for

to hold is that B and C be permutable.

Proof: As in the proof of Theorem 8.3.3 we note that always, if A ⊇ B,



It is necessary only to prove the opposite inclusion. An element of A ∩ (B ∪
C) is of the form a = bc, , , , being simultaneously an
element of A and also of B ∪ C, and since B and C permute, the elements of B
∪ C are of the form bc. Here  since B ⊆ A. Hence this 

, and therefore . Thus A ∩ (B ∪ C) ⊆ B
∪ (A ∩ C), and the theorem is proved. This also holds for subloops of inverse
loops where the permutability of B and C means B ∪ C = BC. The conclusion
b–1a = b–1(bc) = c requires only the inverse law.

THEOREM 8.4.2. REFINEMENT THEOREM.* Let U = A0 ⊇ A1 ⊇ · · · ⊇ An = V
and U = B0 ⊇ B1 ⊇ · · · ⊇ Bm = V be two finite chains from U to V in a
modular lattice. Then it is possible to refine both chains by inserting
additional elements Ai–1 = Ai,0 ⊇ Ai,1 · · · ⊇ Ai, m = Ai, i = 1, · · ·, n, and Bj–1
= Bj, 0 ⊇ Bj, 1 ⊇ · · · ⊇ Bj, n = Bi, j = 1, · · ·, m in such that the quotients Ai, j–

1/Ai, j and Bj, i–1/Bj,i are projective.

Proof: Put Ai,j = Ai ∪ (Ai–1 ∩ Bj), Bj, i = Bj ∪ (Bj–1 ∩ Ai) i = 1, · · ·, n, j =
1, · · ·, m. Here Ai, j–1/Ai,j is perspective to

since from Bj ⊆ Bj–1 we have

Also

using modularity in (8.4.6). Similarly, Bj,i–1/Bj,i is perspective to the quotient
in (8.4.4) and our theorem is proved.

This theorem and its proof also holds for subinvariant series in a group G
where, if we take G to be a group with operators Ω, the subgroups are all



admissible subgroups. This naturally includes groups without operators if we
take Ω to be trivially the identical operator.

THEOREM 8.4.3 (REFINEMENT THEOREM FOR GROUPS). Let G be a group
with operators Ω, and let G = A0 ⊇ A1 ⊇ · · · ⊇ An = H and G = B0 ⊇ B1 ⊇ ·
· · ⊇ Bm = H be two subinvariant series from G to H of admissible
subgroups. Then it is possible to refine both series by inserting additional
admissible subinvariant groups

and

in such a way that the quotient groups

are operator isomorphic.

Proof: By Theorem 2.4.1 perspective (and hence projective) quotient
groups of admissible subgroups are operator isomorphic. Hence, to show that
the proof of Theorem 8.4.2 gives this theorem, we must show that in the
quotients X/Y occurring in the proof that  and that the use of the
modular law in (8.4.6) is valid. As the union and intersection of admissible
subgroups are again admissible, all subgroups used in the proof are
admissible. Now Ai,j = Ai ∪ (Ai–1 ∩ Bj) is a normal subgroup of Ai,j–1 = Ai ∪
(Ai–1 ∩ Bj–1), since both Ai and Ai–1 ∩ Bj are transformed into themselves by
Ai – 1 ∩ Bj – 1. Similarly, . Both Ai–1 ∩ Bj and Ai ∩ Bj–1,
and so also their union, are normal subgroups of Ai–1 ∩ Bj–1, whence (8.4.4)
is a quotient group. In (8.4.6), since Ai is normal in Ai–1, Ai permutes with any
subgroup of Ai–1 and in particular with Ai–1 ∩ Bj. Hence by Theorem 8.4.1 the
modular law may be applied as was done in (8.4.6). Thus our theorem is
proved.

In a principal series or composition series (with or without operators), no
further refinement is possible, and so as a direct consequence of the



refinement theorem we have the following:

THEOREM 8.4.4. THEOREM OF JORDAN-HÖLDER. If G = A0 ⊃ A1 ⊃ · · · ⊃
An = H and G = B0 ⊃ · · · ⊃ Bm = H are two principal series (or two
composition series), with operators Ω, then m = n and the factor groups Ai–

1/Ai are operator isomorphic to the factor groups Bj–1/Bj in some order.
The fact m = n is of course a consequence of the one-to-one

correspondence between the factor groups of the refinement theorem which
are not the identity.

In the case of normal series all the subgroups, being normal subgroups,
are admissible under all inner automorphisms x → a–1xa, and we may include
all inner automorphisms in the set of operators Ω. An isomorphism preserved
under all inner automorphisms is called a central isomorphism. Thus a
consequence of the refinement theorem is the following:

THEOREM 8.4.5. In the refinement of normal series, corresponding factor
groups are centrally isomorphic.

Now if x → (x)a is a central automorphism of a group, then

whence (a)αa–1 permutes with every (x)α and must be an element of the
center of the group, say, z. Hence, for a central automorphism, (a)α = az for
every element a of the group and an appropriate z of the center, where z
depends on a. Conversely, an automorphism with this form is readily seen to
be a central automorphism.

8.5. Direct Decompositions.

Suppose that in a modular lattice we have m elements A1, · · ·, Am such
that if we write Āi = A1 ∪ · · · ∪ Ai–1 ∪ Ai+1 · · · ∪ Am, i = 1 · · · m, then Ai ∩
Āi = 0, the zero element for i = 1 · · · m. We then say that A = A1 ∪ · · · ∪ Am
is the direct union of A1, · · ·, Am and write



This will arise in groups when A is the direct product of A1 · · ·, Am.

THEOREM 8.5.1 (THEOREM OF ORE). Let L be any modular lattice of finite
dimension. If the all element T of L has two decompositions T = A1 × · · · ×
Am, T = B1 × · · · × Bn, where the Ai and Bj are not further decomposable as
direct unions, then m = n and the Ai and Bj are projective in pairs.

Proof: We shall show that any given A (say, A1) may be replaced by some
Bj projective to it, where T = A1 × A2 × · · · × Am = Bj × A2 × · · · × Am. This
is the main part of our proof. Having replaced A1 by Bj, we proceed to
replace A2 in the second decomposition by some  and so on. In the
process of replacement we cannot possibly use the same Bj twice, since this
would be in conflict with the requirement that any factor intersect the union of
the remaining ones in zero. We must have enough B’s to replace all the A’s,
and clearly, since every B ⊆ T, we cannot have any remaining when all A’s
have been replaced. Thus m = n. We write 

, i = 1,
· · ·, m, and , j =
1, · · ·, n, and base our proof on induction on the dimension of T, the theorem
being trivial for dimension one.

CASE 1.

and similarly, d(Bj) ≥ d(A1), giving d(A1) = d(Bj). Thus 
, and so 

 and A1 and Bj are mutually replaceable.

CASE 2. Suppose  for some j (say, j = 1).
Write , Qh = Dh ∩ Bh, h = 1, · · n. If 

, then , contrary
to hypothesis. Hence Q1 = D1 ∩ B1 ⊂ B1 and d(Q1) < d(B1). T is the direct



union of the B’s, and therefore the union of the Q’s will be their direct union,
since Qh ⊆ Bh, h = 1, · · · n.

Define

Thus both T and C, being direct unions and Q1 ⊂ B1, d(T) = d(B1) + · · · +
d(Bn),

Since C is properly contained in T, we may by induction on dimension assume
the theorem true for C.

Let us write Ur = Q1 ∪ · · · ∪ Qr. We wish to prove Ur = Mr ∩ Nr, where
Mr = B1 ∪ · · · ∪ Br, Nr = D1 ∩ · · · ∩ Dr. For r = 1 this reduces to U1 = B1 ∩
D1, the definition of U1 = Q1. The proof is by induction. We assume Uj = Mj ∩
Nj. Then Uj+1 = Uj ∪ Qi+1 = (Mj ∩ Nj) ∪ (Bj+1 ∩ Dj+1). Here 

. By modularity Uj+1 = Dj+1 ∩
[(Mj ∩ Nj) ∪ Bj + 1]. Here , h =
1, · · ·, j, whence Bj + 1 ⊆ Nj. Finally, Uj+1 = Dj+1 ∩ [Nj ∩ (Bj+1 ∪ Mj)] = Nj+1
∩ Mj+1, proving the induction. For r = n, Mr = T, whence

the last relation holding since Dh ⊇ A1 = 1, · · ·, n. Since C ⊇ A1 we may
apply modularity to find (C ∩ Ā1) ∩ A1 = C ∩ (Ā1 ∪ Ā1) = C ∩ T = C. Since,
trivially, C ∩ Ā1 ∩ A1 = 0, we have

Hence, by induction on dimension, the theorem is valid for C, and so A1 is
replaceable by some indecomposable factor of some Q (say, E ⊆ Qh). By
replaceability in C, d(E) = d(A1). Also, since C = E × (C ∩ Ā1), we have 0 =



E ∩ C ∩ Ā1 = E ∩ Ā1. Hence, d(E ∪ Ā1) = d(E) + d(Ā1) = d(A) + d(Ā1) = d(T),
and so T = Ā1 ∪ E = E × Ā1. Moreover, 

 and E ∩ (Ā1 ∩ Bh) = E ∩ Ā1 =
0. E ∪ (Ā1 ∩ Bh) = Bh ∩ (E ∪ Ā1) = Bh ∩ T = Bh, whence

But by assumption Bh was indecomposable and d(E) = d(A1) > 0. Hence Bh =
E and Ā1 ∩ Bh = 0. This yields

Also Bh = E ⊆ Qh ⊆ Bh, and so, .
Thus , and so, 

. Since d(A1) = d(Bh), we must also
have 

. Hence

and A1 and Bh are mutually replaceable. Here h ≠ 1, since 
, while .

CASE 3.  for all j but Ā1 ∪ Bj ⊃ T for all j, the only
possibility not covered by Cases 1 or 2.

Reversing the roles of the A’s and B’s, we may apply Case 2 and then any
specified B (say, Bn) is mutually replaceable with some A not A1, which by
renumbering we may take as Am. Then



Here z → (z ∪ Am) ∩ Ām is a projectivity of the quotient  onto Ām/0 and
by the corollary to Theorem 8.3.1, is a lattice isomorphism. Hence, if we put 

, j = 1, · · ·, n − 1, we find from the
isomorphism

By induction on dimension the theorem is true for Ām, and so, A1 is
replaceable by some Bj* (say, B1*) in Ām. Here B1 ∪ Am = (B1 ∪ Am) ∩ (Ām ∪
Am) = [(B1 ∪ Am) ∩ Ām] ∪ Am = B1

* ∪ Am. Hence B1 ∪ Ā1 = (B1* ∪ A2 ∪ · · ·
∪ Am–1) ∪ Am = (A1 ∪ A2 · · · ∪ Am−1) ∪ Am = T, since B1* replaces A1 in Ām.
But here , and therefore Case 1
applies, and A1 and B1 are mutually replaceable. Note that Case 3 does not
actually arise and that in every case for a given A1, there is a Bj such that A1
and Bj are mutually replaceable.

For groups the theorem is:

THEOREM 8.5.2 (THEOREM OF WEDDERBURN-REMAK-SCHMIDT†). Let G be
a group whose normal subgroups form a finite dimensional lattice. Then if
G has two representations as direct products of indecomposable subgroups

then m = n, any Ai is mutually replaceable by some Bj, and the A’s and B’s
are pairwise centrally isomorphic. The theorem is valid for G as a group
with operators or for the congruence relations on inverse loops.

Proof: Since we have already established that normal subgroups form a
modular lattice, we need only observe that the definitions of direct product
agree. In G = Ai × Āi = Bj × Āi we have both Ai and Bj perspective to G/Āi and
hence projective. Thus there is a central isomorphism established between Ai
and Bj which becomes a central automorphism of G if we map Āi into itself.
Hence corresponding elements of Ai and Bj differ by a factor in the center of
G.



8.6. Composition Series in Groups.

Suppose G = A0 ⊃ A1 ⊃ · · · ⊃ An = H is a composition series from G to a
subgroup H. By definition Ai+1 is a maximal normal subgroup of Ai. Hence
Ai/Ai+1 is a simple group, since a normal subgroup of Ai/Ai+1 would
correspond to a normal subgroup of Ai containing Ai+1 (Theorem 2.3.4). Hence
if Ai/Ai+1 is Abelian it can contain no proper subgroup and must be finite of
prime order. There is a relation between chief series and composition series
given in the following theorem:

THEOREM 8.6.1. Let H be a normal subgroup of G such that there is a
composition series from G to H. Then there is a chief series from G to H,

and each factor group Bi/Bi+1 is the direct product of a finite number of
isomorphic simple groups. Conversely, if such a series exists with Bi/Bi+1 a
direct product of a finite number of isomorphic simple groups, then there is
a series of composition from G to H.

Proof: Any normal series from G to H can be refined to a composition
series by inserting further terms. Hence any normal series from G to H is
necessarily shorter than a composition series and therefore is of finite length.
Hence there must be a chief series from G to H,

If m = 1, G/H is a simple group and the theorem is true. Let us use induction
on m, whence each of B0/B1, · · ·, Bm–2/Bm–1 is the direct product of a finite
number of isomorphic simple groups. It remains to be proved that Bm–1/Bm is
the direct product of a finite number of isomorphic simple groups.

Any normal subgroup of Bm–1/Bm corresponds to a group normal in Bm–1
containing Bm. Hence there exists a minimal normal subgroup K/Bm where K
⊃ Bm and K is normal in Bm–1. If K = Bm–1, then Bm–1/Bm is simple and there is
nothing further to prove. Now consider the conjugates Kj of K under G. Kj ⊆
Bm–1, since Bm–1 is normal in G. Moreover, since transformation by an



element of G induces an automorphism in Bm–1 every Kj is a normal subgroup
of Bm–1. Also,  is a normal subgroup of G, since transformation by an
element of G merely permutes the Kj among themselves. Hence 

 since there is no normal subgroup of G between Bm–1 and
Bm. Take K = K1, , , and 

. Each of Uj = K1 ∪ · · · ∪ Kj is a normal
subgroup of Bm–1 and contains the preceding Uj–1. Since there is a
composition series from G to Bm including Bm–1, there can be only a finite
number of Uj’s, whence for some finite j, Bm–1 = K1 ∪ · · · ∪ Kj. Now a Ki not
contained in the union of the remaining K’s must intersect the union of the
remaining ones in Bm, since every K is a minimal normal subgroup of Bm–1
containing Bm. Hence, deleting the K’s contained in the union of the remainder,
Bm–1/Bm = K1/Bm ∪ · · · ∪ Ks/Bm, where each Ki/Bm is a normal subgroup of
Bm–1/Bm intersecting the union of the remainder in the identity. But by
Theorem 3.2.2, Bm–1/Bm is the direct product of K1/Bm, · · ·, Ks/Bm. Now if
K1/Bm had a proper normal subgroup, this would be a normal subgroup of Bm–

1/Bm, since it would be normal in K1/Bm and surely normalized by the
remaining direct factors. But K1/Bm was assumed to be a minimal normal
subgroup; therefore K1/Bm is a simple group and Bm–1/Bm is the direct product
of the s isomorphic simple groups.

For the converse part of the theorem we observe that Bm ⊂ K ⊂ U2 ⊂ U3 ·
· · ⊂ Bm–1 is part of a composition series since each factor group is simple.

THEOREM 8.6.2.* The intersection of two subinvariant subgroups of G is
a subinvariant group of G. Both the union and intersection of two
subgroups occurring in composition series will occur in a composition
series.

Proof: Suppose A and B are two subinvariant groups of G. Then by
definition we have two chains:



Here, in the chain A = Ar ⊇ Ar ∩ B1 ⊇ · · · Ar ∩ Bs = A ∩ B, each subgroup is
either equal to or normal in its predecessor (Theorem 2.4.1). Hence

where the Ci are the distinct subgroups of the set above and A ∩ B is
subinvariant.

Now suppose the preceding two chains are composition series. Then if B1
≠ A1, G = A1 ∪ B1, since both B1 and A1 were maximal normal subgroups of G.
Here A1 ∩ B1 is a normal subgroup of G, and A1/A1 ∩ B1 ≅ G/B1 and is
therefore simple; therefore A1 ∩ B1 is a maximal normal subgroup of A1. Here
either A1 ∩ B1 = A2 or A1 ∩ B1 and A2 are both maximal normal subgroups of
A1, whence A1 = A2 ∪ (A1 ∩ B1) and A2 ∩ B1 = A2 ∩ (A1 ∩ B1) and so A2/A2 ∩
B1 ≅ A1/A1 ∩ B1 ≅ G/B1 is simple. Also A1 ∩ B1/A2 ∩ B1 ≅ A1/A2. Continuing
in this way, either A = Ar = Ar ∩ B1 or  and Ar/Ar ∩ B1 =
G/B1 is simple. Here we have series of composition,

similar to those above but involving fewer terms below B. Now repeat with
B2 in the role of B1, etc., and we shall ultimately find a composition series
from G to A ∩ B.

To show that the union of two composition groups (as we shall refer to
subgroups occurring in composition series) is again a composition group is
more difficult. We use induction on the lengths r and s of the two composition
series from A = Ar and B = Bs to G. Specifically, we shall use induction on r +
s, the theorem being true for r + s = 2, since A1 ∪ B1 is a normal subgroup of
G. For this we need a lemma.

LEMMA 8.6.1. If C is a composition group of G which properly contains
the composition group A, then there is a composition series from G to A



which includes C, and in particular, the length of a composition series from
G to C is less than the length of a composition series from G to A.

This follows since if

and

are composition series for A and C, then as before,

and the distinct groups from Ct to Ar will complete a composition series from
G to Ar which is therefore of length r, and hence r > t.

By induction both Ar–1 ∪ Bs and Ar ∪ Bs–1 are composition groups of G. If
Ar–1 ∪ Bs is a proper subgroup of G then Ar and Bs are composition groups in
Ar–1 ∪ Bs with lengths r′ < r and s′ < s (by the lemma) as composition groups
in Ar–1 ∪ Bs. Then by induction Ar ∪ Bs is a composition group of Ar–1 ∪ Bs,
and hence of G. Hence assume Ar–1 ∪ Bs = G. Similarly, we may apply
induction unless we also assume Ar ∪ Bs–1 = G. Now suppose by symmetry
that r < s. Here, if ,

where b–1A1b = A1 since A1 is normal. Now if b–1Arb ≠ Ar, then in A1, Ar, and
b–1Arb are composition groups and the length of the series is r – 1 in both
cases. Hence by induction A* = Ar ∪ b–1Arb is a composition group in A1,
where the length of a chain from A1 to A* is less than r – 1 Hence by induction
Bs ∪ A* is a composition group. But Bs ∪ A* = Bs ∪ Ar = B ∪ A. Thus we may
suppose that Ar is transformed into itself by every element of Bs. But Ar is also
transformed into itself by every element of Ar–1. Hence Ar is normal in Ar–1 ∪
Bs = G. As a normal subgroup of G we may take Ar as A1. But then 



. This holds since Bi and A1 are transformed into themselves by Bi–1, and
clearly, A1 as a subgroup of Bi ∪ A1 transforms it into itself. Hence 

. Thus B ∪ A, as a subinvariant group of G
containing a group A in a composition series, is also a composition group.

EXERCISES
1. Let the group G be of order prqs. If G has two composition series 1 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Ar ⊂

Ar+1 ⊂ · · · ⊂ Ar+s = G and 1 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bs ⊂ Bs+1 ⊂ · · · ⊂ Br+s = G, where Ar
is of order pr and Bs is of order qs, show that G is the direct product of Ar and Bs.

2. Generalize the result of Ex. 1 to show that if G is a finite group and if for every prime p dividing
the order of G there is a composition series of G, one of whose terms is a Sylow subgroup S(p),
then G is the direct product of its Sylow subgroups.

3. Show that an automorphism of the direct product of a finite number of non-Abelian simple groups
permutes the factors.

4. If a finitely generated group G has exactly one maximal subgroup A, show that G is generated by
any element not in A. Prove that G is cyclic of prime power order.

5. If a finitely generated group G has exactly two maximal subgroups A and B and [G:A] = p, [G:B]
= q, where p and q are different primes, show that G is cyclic of order piqi. (Hint: Show that A
∩ B is normal and that G/A ∩ B is cyclic.)

6. Suppose that G is a finite group such that L(G) is of dimension 2. Show that if the order of G is
not divisible by a square, then at least one Sylow subgroup is normal. Hence conclude that G is of
order p2 or pq, p and q being primes.

* These results are due to H. Wielandt [2].
* The more colorful term subnormal series has been urged on the writer by Irving Kaplansky, but

this seems unnecessarily distracting.
* The original Jordan-Hölder theorem has been extended and generalized by a long series of authors.

The original theorem is due to C. Jordan [1] and to 0. Holder [1]. Generalization to groups with operators
is due to E. Noether [1] and W. Krull [1, 2]. The refinement theorem is due to O. Schreier [4] and H.
Zassen-haus [1]. The lattice theoretical formulation given here is a modification of that given by O. Ore
[2]. Generalization to partially ordered sets has been made by O. Ore [1] and S. MacLane [3].

†  The original proof of this theorem is due to J. H. M. Wedderburn [1]. R. Remak corrected an
omission [1, 2]. P. Schmidt extended this to groups with operators. The lattice theorem (8.5.1) was
proved by Ore [1], but the form given here is taken from G. Birkhoff [1] with a few changes.



9. A THEOREM OF FROBENIUS;
SOLVABLE GROUPS

9.1. A Theorem of Frobenius.

Theorem 9.1.1. in its original form due to Frobenius [2], is of an entirely
different nature from most of the other results in group theory. It does not deal
with subgroups, homomorphisms, or permutation representation but with the
number of solutions of an equation in a finite group. It has been greatly
generalized by Philip Hall [3], who has generalized both the equation studied
and the information on the solutions. But here we shall give only a mild
generalization of the original theorem.

THEOREM 9.1.1. Let G be a group of order g and let C be a class of h
conjugate elements. The number of solutions of xn = c, where c ranges over
C is a multiple of (hn, g).

Proof: Let A(K, n) designate the complex of those elements of G whose
nth powers lie in the complex K, and let a(K, n) designate the number of
elements in A(K, n). For g = 1, (hn, 1) = 1, and the result is trivial, while for
n = 1 the number of solutions is h = (h, g). We shall use induction on g and n,
assuming the theorem for any g′ < g or g′ = g and n′ < n.

If c′ = u−1cu and xn = c, then (u−1xu)n = c′, giving a one-to-one
correspondence between the solutions for an element c and any of its
conjugates. Thus a(C, n) = h · a(c, n). If xn = c, then x−1cx = x−1(xn)x = xn =
c, and the solutions of xn = c lies in the normalizer Nc of c, which by
Theorem 1.6.1 is of order g/h. Hence if h > 1, the theorem being true in Nc,
a(c, n) is a multiple of (n, g/h), and so, a(C, n) = h · a(c, n) is a multiple of
h(n, g/h) = (hn, g), proving the theorem.



Hence, suppose h = 1. If n = n1n2, (n1, n2) = 1, n1 > 1, n2 > 1, and if D =
A(C, n2), then A(C, n) = A(D, n1). D consists of complete classes. By
induction (n1, g) is a divisor of a(C, n) and, similarly, (n2, g) is a divisor of
a(C, n). But then, since (n1, g) and (n2, g) are relatively prime, their product
(n1, g)(n2, g) = (n1n2, g) = (n, g) divides a(C, n), proving the theorem. We
may now suppose n = pe is the eth power of a prime. If p divides the order u
of c, then an element x in A(c, n) has order nu. Then exactly n elements in the
cyclic subgroup generated by x belong to A(c, n), and all these generate the
same subgroup. Hence A (c, n) is divisible by n.

Finally, we suppose that n = pe is relatively prime to the order u of c.
Since h = 1, c is in the center of G. The elements in the center of G whose
orders are not divisible by p form an Abelian group B whose order b is not
divisible by p.

Now let c1 and c2 be two elements of B. Since , the equation c2 =
c1yn has a unique solution y in B. But then if xn = c1, we have (xy)n = c2 and
so, a(c, n) has the same value for every . Finally, the equation

counts the g elements of G according to the class in which their nth powers
lie, counting first for those classes not in B, and last for B, b times the number
for one of them. Now (n, g) divides every term a(C, n) in the first sum, each
term of this being covered by induction or a previous part of the proof. Also,
since (n, g) divides g and is prime to b, it must follow that (n, g) divides a(c,
n), completing the proof of the theorem in all cases.

If c is the identity then h = 1 and we have the original form of the
Theorem of Frobenius. Here xg = 1 for all elements, and so, if (n, g) = m,
from xn = 1 follows xm = 1.

THEOREM 9.1.2. If n is a divisor of the order of a group G, then the
number of solutions of xn = 1 in G is a multiple of n.

Note that since the identity satisfies the equations, the number of solutions
is not zero and hence must be at least n.



In connection with this theorem there is an interesting conjecture: If n
divides the order of G and there are exactly n solutions of xn = 1, then
these solutions form a normal subgroup of G.

Note that if G contains a subgroup H of order n, then the elements of H
will be the solutions. Moreover, if xn = 1, then for an arbitrary z, (z−1xz)n =
1, whence H will be a normal subgroup. The problem then consists in
showing that the n solutions form a subgroup H. The assumption that n divide
the order of G is essential, since by the Theorem of Lagrange the order of a
subgroup divides the order of the group. Also, x4 = 1 has exactly four
solutions in the symmetric group on three letters, which is of order 6, but
these do not form a subgroup.

9.2. Solvable Groups.

The element x−1y−1xy of a group G is called the commutator of x and y,
and we write x−1y−1xy = (x, y). We also define commutators of higher order
by the recursive rule (x1 · · ·, xn−1, xn) = ((x1, · · ·, xn−1), xn). These are the
simple commutators. More generally, the set of all elements which can be
obtained by successive commutation are called complex commutators; for
example, ((a, b), (c, d, e)). We define the weight ω of a commutator
recursively by saying that elements g of G are of weight one, ω(g) = 1, and
putting ω(x, y) = ω(x) + ω(y). Thus the weight of an element which is a
commutator depends on the form of the commutator by which it is expressed
and not on the element itself.

From its definition (x, y) = 1 if, and only if, yx = xy. Thus all
commutators in G are 1 if, and only if, G is an Abelian group, and the
commutators may be regarded as measuring the extent to which a group
departs from being Abelian. The subgroup G′ of G generated by all
commutators x−1y−1xy is called the commutator subgroup or derived group.
Clearly, G′ is a fully invariant subgroup of G.

THEOREM 9.2.1. The factor group G/G′ is Abelian. If K is a normal
subgroup of G such that G/K is Abelian, then K ⊇ G′.



Proof: In the mapping G → G/G′ = H, let u, v be arbitrary elements of H,
and suppose x → u, y → v. Then x−1y−1xy → u−1v−1uv. But 

, whence x−1y−1xy → 1 = u−1v−1uv, and hence vu = uv and
G/G′ is Abelian. Now suppose that G/K is Abelian. For , and x →
u, y → v in G → G/K, we have x−1y−1xy → u−1v−1uv = 1. Thus every
commutator x−1y−1xy belongs to K, and therefore K ⊇ G′.

DEFINITION: A group G is said to be solvable if the sequence G ⊇ G′ ⊇
G″ · · · ⊇ · · · ⊇ G(i) · · ·, where each group(i) is the derived group of the
preceding, terminates in the identity in a finite number of steps, say, G(e) =
1.

By Theorem 9.2.1 each factor group G(i)/G(i+1) is Abelian. Note that if
G(i) = G(i+1), then G(i) = G(j) all j ≥ i. Hence the inclusions of Theorem 9.2.1
are proper until G(i) = 1.

THEOREM 9.2.2. Every subgroup and factor group of a solvable group is
solvable.

Proof: Let G be solvable and H a subgroup of G. Then by definition H′ ⊆
G′, since H′ is generated by all commutators of elements in H and G′ by all
commutators in G. Hence H″ ⊆ G″, etc., and so if G(e) = 1, then H(e) = 1 and
H is solvable. Here H(i) may be the identity for some i < e. If Q = G/K is a
factor group of G, consider the homomorphism G → Q. Here every
commutator in Q is the image of a commutator in G, whence G′ → Q′.
Continuing, G(e) → Q(e), whence Q(e) = 1 if G(e) = 1. Again Q(i) may be the
identity for some i < e.

THEOREM 9.2.3.* A group of finite order is solvable if, and only if, the
factor groups in a series of composition from G to 1 are cyclic of prime
order.

Proof: Suppose G = A0 ⊃ A1 ⊃ · · · ⊃ Ar = 1, where each Ai−1/Ai, i = 1 ·
· · r is cyclic of some prime order. By Theorem 9.2.1, since G/A1 is Abelian,
A1 ⊇ G′. Similarly, A2 ⊇ A1′ ⊇ G″, and finally Ar ⊇ G(r), whence G(r) = 1 and



G is solvable. Conversely, suppose G is solvable and finite. Since G/G′ is
Abelian, in

a maximal normal subgroup A1 ⊇ G′ will exist. Since G/A1 is simple and
Abelian, it is cyclic of prime order. Similarly, since A1 is solvable, A1
contains a maximal normal subgroup A2 such that A1/A2 is cyclic of finite
order. Continuing, we have G = A0 ⊃ A1 ⊃ · · · ⊃ Ar = 1 with each Ai−1/Ai
cyclic of prime order. By the Jordan-Hölder theorem the same is true of
every composition series.

THEOREM 9.2.4. In a chief series for a solvable finite group G

the factor groups Ci−1/Ci, i = 1, · · ·, s are elementary Abelian groups.

Proof: By Theorem 8.6.1, Ci−1/Ci is the direct product of isomorphic
simple groups. By Theorem 9.2.2 these simple groups are solvable and hence
cyclic of prime order. Thus Ci−1/Ci is the direct product of cyclic groups of
the same prime order p and is an elementary Abelian group. Conversely, if G
has such a chief series, since the factor groups are Abelian, G will be
solvable. The numbers c1, · · ·, cs, which are the orders of C0/C1, · · ·,
Cs−1/Cs, respectively, are called the chief factors of G and are prime powers
as shown. Clearly, for a factor group G/K, the chief factors are a subset of
those for G, since there will be a chief series of G including the normal
subgroup K. For a subgroup H of G, the distinct members of

will be a normal series in H and either this or its refinement will be a chief
series for H, whence the chief factors of H will be divisors of those for G,
since H ∩ Ci−1/H ∩ Ci is isomorphic to a subgroup of Ci−1/Ci.



THEOREM 9.2.5. The following two properties of a group G are
equivalent to solvability:

1) G has a finite normal series

in which every Ai−1/Ai, i = 1, · · ·, s is Abelian.
2) G has a finite subinvariant series

in which every Bi−1/Bi, i = 1, · · ·, t is Abelian.

Proof: If G is solvable, then its derived series

is a finite normal series in which G(i−1/G(i) is Abelian for i = 1, · · ·, r,
whence property (1) holds and a fortiori property (2) holds. It remains to
show that property (2) implies solvability. Here if G = B0 ⊇ B1 ⊇ B2 ⊇ · · ·
⊇ Bt = 1 is a subinvariant series with Bi−1/Bi Abelian for i = 1, · · ·, t; then,
as G/B1 = B0/B1 is Abelian, B1 ⊇ G′. Similarly, if Bi−1 ⊇ G(i−1), then Bi ⊇
B′i−1 ⊇ G(i). Hence, ultimately, 1 = Bt ⊇ G(t) and G(t) = 1, whence G is
solvable.

COROLLARY 9.2.1. A group G is solvable if it has a normal subgroup H
such that both H and, G/H are solvable.

If G/H ⊇ A1/H ⊇ · · · ⊇ Ar−1/H ⊇ H/H, and H ⊇ B1 ⊇ · · · ⊇ Bs−1 ⊇ 1
are series satisfying the second property for G/H and H, respectively, then G
⊇ A1 ⊇ · · · ⊇ Ar−1 ⊇ H ⊇ B1 ⊇ · · · ⊇ Bs−1 ⊇ 1 is a series satisfying the
second property for G.

9.3. Extended Sylow Theorems in Solvable Groups.



A Sylow subgroup of a finite group has the property that its order m = pa

is prime to the order of its index n. Philip Hall [1] has shown that the Sylow
theorems generalize for solvable groups in terms of subgroups whose order
m is prime to their index n without the requirement that m be a prime power.

THEOREM 9.3.1. Let G be a solvable group of order mn where (m, n) = 1.
Then

1) G possesses at least one subgroup of order m.
2) Any two subgroups of order m are conjugate.
3) Any subgroup whose order m′ divides m is contained in a subgroup

of order m.
4) The number hm of subgroups of order m may be expressed as a

product of factors, each of which (a) is congruent to 1 modulo some prime
factor of m, and (b) is a power of a prime and divides one of the chief
factors of G.

Proof: Note that for m = pa, a prime power, properties (1) and (3) are
given in the first Sylow theorem (Theorem 4.2.1), property (2) is the second
Sylow theorem, and property (4) in a stronger statement than the third Sylow
theorem.

The proof will be by induction on the order of G being trivially true if the
order of G is a power of a prime. The proof will rest heavily on the structure
of a chief series of G as given in Theorem 8.3.3 and the structure of factor
groups (Theorem 2.3.4).

CASE 1. G has a proper normal subgroup H of order m1n1 and index m2n2,
where m = m1m2, n = n1n2, and n1 < n.

For property (1) G/H by induction contains a subgroup of order m2 which
corresponds to a subgroup D of G or order mn1. D by induction contains a
subgroup of order m.

For property (2), if M and M′ are two subgroups of order m, M ∪ H =
MH and M′ ∪ H = M′H are subgroups whose orders divide m1m2·m1n1, since
M ∪ H/H ≅ M/M ∩ H (Theorem 2.4.1). Since the order also divides mn, it
must divide mn1. But it is also a multiple of m and a multiple of n1. Hence
both M ∪ H and M′ ∪ H are of order mn1 = m1n2m2, and therefore M ∪ H/H
and M′ ∪ H/H are subgroups of G/H of order m2 and are by induction



conjugate. If a* in G/H transforms M′ ∪ H/H into M ∪ H/H, and a in G is
mapped into a* by the homomorphism G → G/H, then a−1(M′ ∪ H)a is
mapped into M ∪ H/H; in other words, a−1(M′ ∪ H)a = M ∪ H. Here a−1M′a
and M are of order m in M ∪ H and are by induction conjugate. Hence M and
M′ are conjugate in G.

For property (3), if M1 is a subgroup of order m′, a divisor of m, then the
order of M1 ∪ H/H is a divisor of m2 and hence it belongs to a subgroup of
G/H of order m2. Thus M1 belongs to the corresponding subgroup of G order
mn1 and by induction on this group M1 belongs to a subgroup of order m.

For property (4), following the proof of (2), the number hm of conjugates
of M of order m is the product of hm2, the number of subgroups of order m2 in
G/H and the number of conjugates of M in M ∪ H = D. Here the chief factors
of D divide those of G and the chief factors of G/H are a subset of those of
G. Thus by induction hm is a product of two factors, both of which satisfy
property (4) and thus the property is proved.

Now the least normal subgroup K in a chief series is of order pa, with p a
prime. K will satisfy the requirements for the H of Case 1 unless n = pa. Thus
we may assume that every minimal normal subgroup is of order pa. But as
Sylow subgroups of order pa there can be only one.

CASE 2. G contains a unique minimal normal subgroup K of order n = pa.
For property (1) let L be a minimal normal subgroup properly containing

K. Then L/K is of order qb with q ≠ p. Let Q be a Sylow subgroup of L of
order qb, and let M be the normalizer of Q in G. Consider M ∩ K = T. T is a
normal subgroup of M and, as a subgroup of K, is elementary Abelian. Every
element of T permutes with every element of Q, since a commutator of an
element in Q and an element in T lies in T ∩ Q = 1. Hence T belongs to the
center C of L, which, as a characteristic subgroup of L, is a normal subgroup
of G. Since K is minimal and unique, C = K or C = 1. If C = K, then L = K ×
Q, and Q is a normal subgroup of G contrary to the uniqueness of K. Hence T
= C = 1. Thus Q is its own normalizer in L and has as many conjugates in L
as its index in L; that is, Q has n = pa conjugates in L. Any conjugate of Q in
G lies in L, since L is normal. Hence Q has n = pa conjugates in G, whence
M is of index n = pa in G and hence of order m.



For properties (2) and (4), the normalizers of the pa conjugates of Q are
conjugate and distinct. Thus we have pa conjugate subgroups of order m.
Also pa ≡ 1 (mod q) as the number of Sylow subgroups of order qb in L.
Now, if M′ is any subgroup of order m, the order of M′ ∪ L is divisible by
both m and n, whence M′ ∪ L = G. As G/L = M′/M′ ∩ L, we see that M′ ∩ L
is of order qb and hence a conjugate of Q. Also, M′ ∩ L is normal in M′,
whence M′ is the normalizer of a conjugate of Q. Thus the pa conjugate
subgroups of order m already found constitute all subgroups of order m. This
proves both (2) and (4).

For property (3), let M′ be a subgroup of order m′|m. Then, if M is of
order m, M ∩ (M′ ∪ K) = M* is of order m′, and by property (2) for M′ ∪ K,
M* is conjugate to M′ Hence M′ is contained in a conjugate of M, proving
(3).

The above properties of solvable groups are usually violated in simple
groups. The simple group of order 60 (the alternating group on five letters)
has no subgroup of order 15 and therefore violates (1); it contains a subgroup
of order 6, generated by (123) and (12) (45) which is not contained in a
subgroup of order 12 and therefore violates (3). Finally the number of Sylow
subgroups of order 5 is six, and since 6 = 2·3, the property (4) is also
violated. The group of automorphisms of the elementary Abelian group A of
order 8 is a simple group G of order 168. G permutes the seven subgroups of
A of order 2 transitively and also the seven subgroups of order 4 transitively.
Hence G possesses two distinct conjugate sets of subgroups of index 7 and
order 24 and therefore violates property (2).

The first property of Theorem 9.3.1 in fact characterizes solvable groups.
For the proof of this we need a theorem, which will be proved in Chap. 16 as
Theorem 16.8.7.

THEOREM 9.3.2 (BURNSIDE). A group of order paqb, where p and q are
primes, is solvable.

Assuming this theorem we may characterize solvable groups in terms of
the first property. In a group G of order g, a p-complement is a subgroup Sp′
whose index pe is the highest power of p dividing its order g. Thus the first
property asserts the existence of p-complements in solvable groups, and with
the aid of the Burnside theorem we shall prove the converse.



THEOREM 9.3.3. If a group G contains a p-complement for every prime
p dividing its order, then G is solvable.

Proof: Let the order of G be g and let g = p1
e

1 · · · pr
e

r, where the pi are
primes. If H1 and H2 are subgroups of indices, pi

e
i and pj

e
j, respectively, then

because the indices are relatively prime (Theorem 1.5.6), H12 = H1 ∩ H2 is
of index pi

e
ipj

e
j. The intersection of H12 with a pk complement will again by

Theorem 1.5.6 be of index pi
e

ipj
e

jpk
e

k. Continuing in this way, if g = mn with
(m, n) = 1, we may find a subgroup of order m and index n, which will be the
intersection of p-complements for primes p dividing n. Thus, the existence of
p-complements is sufficient to prove the existence of a subgroup of order m
prime to its index n and thus to prove the full first property.

We shall assume the theorem true for groups of order less than g and
proceed by induction. In a group of order pa every maximal subgroup is of
index p and a normal subgroup (Corollary 4.1.2), and therefore a group of
order pa is solvable. We assume the Burnside theorem that a group of order
paqb is solvable, and hence we may now consider only cases in which the
order of G is divisible by at least three distinct primes. G contains a
subgroup H of order paqb = m prime to its index n, mn = g, where p and q
are two different primes dividing g. Now H, as a solvable group, contains a
least normal subgroup K which (Theorem 9.2.4) is elementary Abelian of
prime power order, say, pi Now K will be contained in a Sylow subgroup P
⊆ H ⊆ G of order pa. Here a q-complement L* in G will contain a Sylow
subgroup P* conjugate to P in G. Hence transforming by some element in G
will take L* into a q-complement L containing P. Here L ⊇ P and H ⊇ P, and
so by their orders, L ∩ H = P, L ∪ H = G, and in fact, LH = G, since LH
contains g distinct elements. Thus every coset of L contains an element of H,
and therefore all conjugates of L are obtained by transforming by elements 

. But h−1Lh ⊇ K, since h−1Kh = K, K being normal in H. Thus the
intersection M of the conjugates of L is a proper subgroup of G, since K ⊆ M
⊆ L and being an intersection of a complete set of conjugates is a normal
subgroup of G.

Hence G contains a proper normal subgroup M. If S′p is a p-complement
in G, then S′p ∩ M is a p-complement in M and S′p ∪ M/M is a p-complement



in G/M. Hence both M and G/M possess p-complements and by induction are
solvable. Thus G is solvable.

9.4. Further Results on Solvable Groups.

THEOREM 9.4.1. If G is a solvable group of order g and if n is a divisor
of g such that xn = 1 has exactly n solutions, then these solutions form a
normal subgroup in G.

Proof: We shall assume the theorem true for solvable groups of order
lower than G, the theorem being true if g is a prime. Now, as a solvable
group, G contains a least normal subgroup K which is elementary Abelian of
order pi. We consider two cases, one in which p divides n and one in which
it does not.

CASE 1. p divides n.
Here every element of K is of order p and hence is among the solutions of

xn = 1. Let n = pjn1, g = psg1. Here G/K is of order ps−ig1 and has order
divisible by u = pj−in1 if j ≥ i, u = n1 if j < i. Hence in G/K there are ku
elements z such that zu = 1. Now if x is an element of G such that x → z in the
homomorphism G → G/K with zu = 1, then , whence xup = 1, and
since up divides n, xn = 1 for any such x. But these x’s are the elements of ku
cosets of K in G/K. Hence there are at least these kupi x’s in G satisfying xn =
1. Now if j < i, upi is a proper multiple of n, yielding more than n solutions
of xn = 1 contrary to assumption. Hence j ≥ i and upi = n and there are at
least kn solutions. Thus k = 1 and there are exactly u solutions of zu = 1 in
G/K. By induction these u solutions form a normal subgroup H/K of G/K, and
then H, the corresponding group in G, is a normal subgroup of G of order upi

= n whose elements are the n solution of xn = 1.

CASE 2. p does not divide n.
Here n divides the order of G/K and there are kn solutions of zn = 1 in

G/K. Here, if  with y → z in the homomorphism,  and ypn =
1. Hence in G there are kn cosets of K of elements y satisfying ypn = 1. We



assert that each coset Ky yields a distinct solution of xn = 1. For, let Ky1 and
Ky2 be distinct cosets of K with y1 → z1, y2 → z2, z1 ≠ z2. Here y1

pn = 1, y2
pn

= 1, and therefore y1
p = x1, y2

p = x2 are solutions of xn = 1 in G. If y1
p = y2

p,
then z1

p = z2
p. But z1

n = 1, z2
n = 1, and since (p, n) = 1, from this we would

have z1 = z2, contrary to assumption. Hence if zn = 1 has kn solutions in G/K,
then xn = 1 has at least kn solutions in G. Thus k = 1, and by induction, G/K
contains a normal subgroup U/K of order n. Here the corresponding group U
in G is of order pin. But as a solvable group, U contains a p-complement H
of order n. Thus the n elements of H are the n solutions of xn = 1, and since
transformation by an arbitrary element of G permutes the solutions of xn = 1
among themselves, H is a normal subgroup of G.

THEOREM 9.4.2. If two consecutive factor groups of derived groups G′
⊃ G″ ⊃ G′″ · · · of a group G are cyclic, then the latter is the identity.

Proof: We may take G′″ = 1, taking G′/G″ and G″/G′″ as cyclic, and must
show G″ = 1. Let b be a generator of G″. Now G is the normalizer of G″, and
if Zb is the centralizer of G″, G/Zb is isomorphic to a group of
automorphisms of a cyclic group, and so, Abelian. Hence Zb ⊇ G′. But then
G″ is in the center of G′ and G′ is given by adjoining a single element to G″.
But then G′ is Abelian, and so, G″ = 1, as was to be shown.

We say that G is metacyclic if G/G′ and G′ are both cyclic. Here G″ = 1
and we have a two-step metacyclic group. By Theorem 9.4.2 there could not
be a three-step metacyclic group.

THEOREM 9.4.3. If the Sylow subgroups of a finite group G of order g
are all cyclic, then G is metacyclic and is generated by two elements a and
b with defining relations:



Conversely, a group given by such defining relations has all its Sylow
subgroups cyclic.

Proof: We must first show that G is solvable. Let g = p1
e

1 · · · ps
e

s, p1 <
p2 < · · · < ps be the decomposition of g as a product of primes. We show
first that for m = pj

f
jpj+1

e
j+1 · · · ps

e
s, fi ≤ ej, the equation xm = 1 has exactly m

solutions. This is surely true for m = g. Hence it suffices to show that if xmp =
1 has exactly mp solutions and p is the smallest prime dividing mp, then xm =
1 has exactly m solutions. Since the Sylow subgroup belonging to p is cyclic,
then if pf+1 is the highest power of p dividing pm, there are elements of order
pf+1 in G; therefore not all solutions of xmp = 1 are also solutions of xm = 1.
Hence the km solutions of xm = 1 (Theorem 9.1.2) are a proper part of the
solutions of xmp = 1, and hence 1 ≤ k < p. An element satisfying xmp = 1 but
not xm = 1 has order t exactly divisible by pf+1. Here there will be ϕ(t)
elements, all generating the same cyclic group, all of which have order
exactly divisible by pf+1. Here, since pf+1 divides t, ϕ(t) is divisible by p −
1. Hence pm − km = (p − k)m, the number of elements satisfying xpm = 1 but
not xm = 1, is divisible by p − 1. Since p was the smallest prime dividing m,
p − 1 has no factor in common with m. Thus p − 1 divides p − k, and since 1
≤ k ≤ p, this is possible only if k = 1; that is, if xm = 1 has exactly m
solutions. In particular for m = ps

e
s, xm = 1 has exactly m solutions. But there

is a Sylow subgroup of this order which must therefore be a normal subgroup
of G. This is cyclic and so, of course, solvable.

We have shown that a group G with cyclic Sylow subgroups must have a
normal subgroup H. Then both H and G/H also have cyclic Sylow subgroups.
We may assume inductively that H and G/H are solvable and so, G is also
solvable, since a group of prime order is solvable.

An Abelian group whose Sylow subgroups are cyclic is itself cyclic.
Hence in G ⊃ G′ ⊃ G″ · · · the factor groups are cyclic, and hence by
Theorem 9.4.2, G″ = 1. If G′ = 1, then G is cyclic, and this case is covered if
we take b = 1, r = 1, n = 1, m = g. Hence, suppose G′ ≠ 1, and let a be a
generator of G′ with am = 1. Let b be an element from a coset G′b which is a
generator of the cyclic factor group G/G′. Here a and b generate G and b−1ab
= ar with r ≠ 1, since G′ is a normal subgroup; if r = 1, G would be Abelian



and hence cyclic, contrary to assumption. If G/G′ is of order n, then b−nabn =
arn = a and rn ≡ 1 (mod m). Now every element of G is of the form bjai,
whence the most general commutator (buav, bjai) may be expressed in terms
of commutators of the form (ak, bt); these in turn are powers of a−1b−1ab =
ar−1. Hence ar−1 generates G′ and therefore (r − 1, m) = 1. Now  is a
power aj of a which permutes with b, whence arj = aj, but since (r − 1, m) =
1, j = 0 and so bn = 1. If m and n had a prime factor p in common, am/p and
bn/p would generate a noncyclic subgroup of order p2, contrary to the fact that
Sylow subgroups are cyclic. Hence (m, n) = 1. This completes the direct part
of the proof.

Conversely, suppose m, n, r, and g satisfy the relations above. Then a →
ar, since rn = 1 (mod m), is an automorphism of the cyclic group generated
by a, whose nth power (and possibly a lower power) is the identity. Thus
with mn elements bjai, j modulo n, i modulo m, and the product law bjai·bkat

= bj+kah = irk + t, we may verify the associative law and the existence of
inverses whence we have a group of order g = mn with relations am = 1, bn =
1, b−1ab = ar and observe that the product law is a consequence of these
defining relations. In this group every commutator is a power of a−1b−1ab =
ar−1, whence since (r − 1, m) = 1, G′ is generated by a. Since (m, n) = 1,
every Sylow subgroup is a conjugate of the subgroup {a} or the subgroup
{b} and hence cyclic.

COROLLARY 9.4.1. Every group G of square free order is metacyclic of
the type in Theorem 9.4.3.

This follows, since the Sylow subgroups are all of prime order and
necessarily cyclic.

EXERCISES
1. Show that if a group G is of finite order divisible by 12 and if x12 = 1 has exactly 12 solutions in

G, then these solutions form a normal subgroup.
2. Show that if G is of order p2q, where p and q are different primes, then one of the Sylow

subgroups is normal and G is solvable.
3. Show that if G is of order p2qr, where p, q, r are different primes, then either G is solvable or

G is the alternating group A5 of order 60. Use Theorem 14.3.1 and its corollary.

4.



Show that if xn = 1 has exactly m solutions, x1 = 1, x2, · · ·, xm, in a group G, then K = {x1, · ·

·, xm} is a normal subgroup of G and its elements are of the form x2
ax3

a
3 · · · xm

a
m and K is

of order at most (nm−1).



10. SUPERSOLVABLE AND
NILPOTENT GROUPS

10.1. Definitions.

There are two properties of groups, qualitatively stronger than solvability,
which are of considerable importance. These are supersolvability and
nilpotence.

DEFINITION: A group G is super solvable if it possesses a finite normal
series G = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ Ar = 1, in which each factor group Ai−1/Ai
is cyclic.

DEFINITION: A group G is nilpotent if it possesses a finite normal series
G = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ Ar = 1, in which Ai−1/Ai is in the center of G/Ai
for i = 1, · · ·, r.

Since in both these cases Ai−1/Ai is Abelian, these properties do imply
solvability of G. Note that in a supersolvable group G, Ai−1 = {bi−1, Ai},
where bi−1 is any element of Ai−1 mapped onto a generator of the cyclic group
Ai−1/Ai, and thus G is finitely generated. Since nilpotent groups include all
Abelian groups, it is clear that a nilpotent group need not be finitely
generated.

Baer [12] defines supersolvability in a more general way, saying that G is
supersolvable if every homomorphic image of G contains a cyclic normal
subgroup. He shows this definition to be equivalent to ours for finitely
generated groups, but with the broader definition, the properties proved in this
chapter do not hold.

10.2. The Lower and Upper Central Series.



We write the commutator x−1y−1xy as (x, y). For subgroups A, B, the
notation (A, B) will mean the group generated by all (a, b) with , 

. We have defined simple commutators by the rule

and similarly for subgroups A1, · · ·, An−1, An we define

Let us represent conjugation by an exponent; thus

There are a number of important identities on the higher commutators:

These may be verified by direct calculation from the definitions of the
commutators.

We define a series of subgroups of a group G by the rules:

for arbitrary .
Since (y1, y2, · · · yk+1) = [(y1, y2), y3, · · ·, yk+1], we see that Γk+1(G) ⊆

Γk(G) for all k. Clearly, the Γk(G) are fully invariant subgroups of G. The
series



is called the lower central series of G.

THEOREM 10.2.1. Γk+1(G) = (Γk(G), G).

Proof: Since (y1, · · ·, yk, yk+1) = ((y1, · · ·, yk), yk+1), we have trivially
Γk+1(G) ⊆ (Γk(G), G). To prove the inclusion in the other direction, we need
the identities (10.2.1). In (10.2.1.2) put x = (a1, · · ·, ak), y = (a1 · · · ak)−1, z
= ak+1. Then 1 = (1, ak+1) = (a1 · · ·, ak, ak+1)y((a1, · · ·, ak)−1, ak+1). Thus we
have , since the other term
belongs to Γk+1(G). Now (Γk(G), G) is generated by elements (u1u2 · · · un,
g), where ui = (a1, · · ·, ak) or (a1, · · ·, ak)−1. We have shown that 

. We show by induction on n that 
. This we do by putting x = u1u2 · · ·

un−1, y = un, z = g in (10.2.1.2) so that we have (u1 · · · un−1uu, g) = (u1 · · ·
un−1, g)u

n(un, g); by induction the two expressions on the right are in Γk+1(G).
Hence we have shown (Γk(G), G) ⊆ Γk+1(G) and have proved the theorem.

This theorem leads to an important corollary.

COROLLARY 10.2.1. Γk(G)/Γk+1(G) is in the center of G/Γk+1(G).
We may also define an upper central series for an arbitrary group G.

where we define Zi+1(G) by the rule: Zi+1(G)/Zi(G) is the center of G/Zi(G).
Since the center of a group is a characteristic subgroup (but not in general
fully invariant), each Zi is a characteristic subgroup of G. The following
theorem justifies the use of the terms upper and lower as applied to the central
series we have defined.

A series G = A1 ⊇ A2 ⊇ A3 ⊇ · · · ⊇ Ar+1 = 1, in which each Ai/Ai+1 is in
the center of G/Ai+1, is called a central series.



Theorem 10.2.2. Let G = A1 ⊇ A2 ⊇ A3 ⊇ · · · ⊇ Ar+1 = 1 be a central
series for G. Then Ai ⊇ Γi(G), i = 1, · · ·, r + 1 and Ar+1−j ⊆ Zj(G), j = 0, 1, ·
· ·, r.

Proof: We have A1 = G = Γ1(G). Suppose that Ai ⊇ Γi(G). Since Ai/Ai+1 is
in the center of G/Ai+1, we have (Ai, G) ⊆ Ai+1. But then Γi+1(G) = (Γi(G), G)
⊆ (Ai, G) ⊆ Ai+1, and this proves by induction that Ai ⊇ Γi(G) for all i.
Suppose for some i Ar+1−i ⊆ Zi(G). Then T = G/Zi(G) is a homomorphic image
of U = G/Ar+1−i with kernel Zi(G)/Ar+1−i. Now Ar−i/Ar+1−i is in the center of U,
whence its homomorphic image in T must lie in the center of T. But this image
is Ar−i ∪ Zi/Zi, while the center of T is Zi+1/Zi. Hence Ar−i ⊆ Ar−i ∪ Zi ⊆ Zi+1,
proving our theorem by induction.

As a consequence of this theorem we have the following corollary:

COROLLARY 10.2.2. In a nilpotent group G, the upper and lower central
series have finite length and both have the same length c. For, if there is a
finite central series of length r, the theorem shows that the upper and lower
central series have at most length r. And if the two series are compared with
each other, we conclude that neither one can be longer than the other. Hence
they both have the same length c, and this number c is called the class of the
nilpotent group. A nilpotent group of class 1 is simply an Abelian group.

THEOREM 10.2.3. If a group G is generated by elements x1, · · ·, xr, then
Γk(G)/Γk+1(G) is generated by the simple commutators (y1, y2, · · ·, yk) mod
Γk+1(G), where the y’s are chosen from x1, · · ·, xr and are not necessarily
distinct.

COROLLARY 10.2.3. If G is generated by r elements, then Γk(G)/Γk+1(G)
is generated by at most rk elements.

Proof: We proceed by induction on k, the theorem being immediate for k =
1. Assume the theorem true for k − 1. Γk(G) is generated by all commutators C
= (a1 · · ·, ak−1, ak) with . Here C = ((a1 · · ·, ak−1), ak) and 

, whence by induction 
, , with u1, · ·



·, un being commutators of the form (y1, · · ·, yk−1) and the y’s being x’s and 
. Then . Applying

(10.2.1.2) we have 

(mod Γk+1). Now ak = xi1
η

2 · · · xim
η

m, ηj, = ±1, and since the u’s , we
find by repeated application of (10.2.1.2) and (10.2.1.3) that modulo Γk+1, C
is a product of commutators . Since also from these rules 

 (mod Γk+1(G))], it follows that Γk(G)/Γk+1(G) is
generated by commutators (u, x) mod Γk+1(G) or (y1 · · ·, yk−1, xik) mod
Γk+1(G), as we wished to prove. Note that we do not need finiteness of r for
this theorem.

An almost immediate consequence of this is the following, which gives
the relationship between nilpotent and supersolvable groups:

THEOREM 10.2.4. A finitely generated nilpotent group is supersolvable.

Proof: Let G be finitely generated and nilpotent. Let its lower central
series be

Since Γc(G) is Abelian and finitely generated, it is the direct product of, say,
m cyclic groups. Also since Γc(G) is in the center of G, any subgroup of it is
normal in G. Thus there is a chain Γc+1 = 1 ⊂ {a1} ⊂ {a1, a2} ⊂ · · · ⊂ {a1,
a2, · · ·, am} = Γc(G), all being normal subgroups of G and having the
property that the factor group of consecutive groups is cyclic. Similarly, we
may insert normal subgroups between Γi+1(G) and Γi(G), with the property
that the factor group of consecutive groups is cyclic. In this way we find a
series for G which is the defining property for G to be supersolvable.

COROLLARY 10.2.4. A finitely generated nilpotent group satisfies the
maximal condition.

A group G satisfies the maximal condition if there are no infinite
ascending chains of subgroups. This is equivalent to the requirement that G
and every subgroup of G be finitely generated. But we shall show in Theorem
10.5.1 that every subgroup of a supersolvable group is supersolvable and so



finitely generated. The corresponding statement is false for solvable groups.
Thus if F is the free group with two generators, a, b, then F/F″ is a solvable
group, but F′/F″ has infinitely many generators a−ib−jaibj.

10.3. Theory of Nilpotent Groups.

We note that if a group G is nilpotent of class c, then every commutator (a1
· · ·, ac+1) is the identity, and conversely, that if every (a1, · · ·, ac+1) = 1, then
G is nilpotent of class c at most. We describe the property that (a1, · · ·, ac+1)
= 1 for all  by saying that G has nil-c.

THEOREM 10.3.1. If G has nil-c, then every subgroup and factor group of
G has nil-c.

Proof: If G has nil-c, then a fortiori for a subgroup H all commutators (a1,
· · ·, ac+1) with  must be 1, and so H has nil-c. Also if T is a
homomorphic image of G, then every commutator (b1, · · ·, bc+1) with 

 is the homomorphic image of some commutator (a1, · · ·, ac+1) in G
and hence is the identity, whence T has nil-c.

The following theorem applies to nilpotent normal subgroups of a group G
which may not itself be nilpotent.

THEOREM 10.3.2. If H, K are normal subgroups of G, and if H has nil-c
and K has nil-d, then H ∪ K = HK has nil-(c + d).

Proof: Γm(HK) is generated by all commutators (u1, u2, · · ·, um) with 
, whence ui = hiki, , . We assert that (u1, u2, · ·

·, um) is a product of commutators of the form w = (v1, v2, · · · vm), where
each vi is an  or a . This is trivial for m = 1. Suppose this to be
true for m − 1. Then



by applying (10.2.1.3) and the normality of H and K.
Similarly, applying (10.2.1.2),

Continuing, we finally express (u1, · · ·, um−1, um) as a product of terms (w,
hm

(i) and (w, km
(i)), which will be of the form (v1, · · ·, vm), with each v an h

or a k. This proves our assertion by induction. We have now shown that
Γc+d+1(HK) is generated by commutators (v1, · · ·, vc+d+1), with each vi an h or
a k. We have in general (v1, · · ·, vt−1, vt) = (v1, · · ·, vt−1)−1vt

−1(v1, · · ·,
vt−1)vt. By the normality of Γi(H) in HK, if , then
if vt is a k, then , whereas if vt is an h, then 

. Hence if there are as many as (c + 1) h’s in (v1
· · ·, vc+d+1), it will belong to Γc+1(H) = 1, and hence be the identity. If not,
there must be at least (d + 1) k’s in (v1 · · ·, vc+d+1), and it will follow in the
same way that it is in Γd+1(K) = 1. In all cases (v1 · · ·, vc+d+1) = 1, and
therefore H ∪ K = HK has nil-(c + d).

THEOREM 10.3.3. If a group G has nil-c, H = H0 is any subgroup and
Hi+1 is the normalizer of Hi in G, then Hc = G.

Proof: H0 ⊇ Z0 = 1 trivially. We prove by induction that Hm ⊇ Zm for all
m. Assume that Hi ⊇ Zi. Then by definition of Zi+1, we have for any 

 and any , , whence with 
, we have , and so Zi+1

normalizes Hi whence Hi+1 ⊇ Zi+1, proving our assertion by induction. Since
Zc = G, we must have Hc = G.

COROLLARY 10.3.1. Every proper subgroup of a nilpotent group is a
proper subgroup of its normalizer.

COROLLARY 10.3.2. Every maximal subgroup of a nilpotent group is
normal, is of prime index, and contains the derived group.



Let M be a maximal subgroup of the nilpotent group G. Since NG(M)
properly contains M, we must have NG(M) = G, or . Then, by the
maximality of M, G/M contains no proper subgroup, whence it must be a
cyclic group of prime order. Thus M is of prime index, and as G/M is
Abelian, M contains the derived group G′.

COROLLARY 10.3.3. If G is nilpotent and H is a subgroup such that G =
G′H then H = G.

Here if H ≠ G, then by the theorem, with H = H0 and Hi+1 = HiZi+1, we
shall have each Hi normal in Hi+1. If Hj ≠ G, but Hj+1 = G, then Hj is a proper
normal subgroup of G and G/Hj, is Abelian, whence Hj ⊇ G′. But then HG′ ⊆
HjG′ = Hj ≠ G, contrary to our hypothesis. Hence we must have H = G,
proving our theorem. Note that we have not assumed here that G possesses
maximal subgroups.

THEOREM 10.3.4. Finite p-groups are nilpotent. A finite group is
nilpotent if, and only if, it is the direct product of its Sylow subgroups.

Proof: By Theorem 4.3.1, every finite p-group P has a center different
from the identity. Hence the upper central series for P terminates with the
entire group, whence P is nilpotent. The same argument holds for a direct
product of finite p-groups. Now suppose that G is any finite nilpotent group,
and let P be a Sylow p-subgroup of G. Then NG(P) is its own normalizer by
Theorem 4.2.4, and by Corollary 10.3.1, NG(P) cannot therefore be a proper
subgroup of G. Hence . As every Sylow subgroup of G is normal, G
must be the direct product of its Sylow subgroups.

COROLLARY 10.3.4 (WIELANDT): A finite group is nilpotent if, and only
if, its maximal subgroups are normal.

For, by Corollary 10.3.2 of Theorem 10.3.3, the maximal subgroups of a
nilpotent group are normal. On the other hand, by Theorem 4.2.4, NG(P)
cannot be contained in a proper normal subgroup of G if P is a Sylow p-
subgroup. Hence if maximal subgroups are normal, then , and G is
the direct product of its Sylow subgroups.

THEOREM 10.3.5. If X, Y, Z are subgroups of a group G, and if K is a
normal subgroup of G containing (Y, Z, X) and (Z, X, Y), then K also



contains (X, Y, Z).

Proof: From (10.2.1.4) we have

and the conclusion follows.

THEOREM 10.3.6. If H = H0 ⊇ H1 ⊇ · · · are normal subgroups of a group
G such that (Hi−1, L) ⊆ Hi for all i and a subgroup L, then (Hi, Γj(L)) ⊆ Hi+j.

COROLLARY 10.3.5. (Γi(G), Γj(G)) ⊆ Γi+j(G).

Proof: We proceed by induction on j, the hypothesis including the case j =
1. Suppose that (Hi, Γj−1(L)) ⊆ Hi+j−1 for all i. Then by induction (L, Hi,
Γj−1(L)) ⊆ (Hi+1, Γj−1(L)) ⊆ Hi+j and (Hi, Γj−1(L), L) ⊆ (Hi+j−1, L) ⊆ Hi+j.
Since (Γj−1(L), L) = Γj(L), we may apply Theorem 10.3.5 to conclude that

the conclusion of our theorem.

10.4. The Frattini Subgroup of a Group.

Let G be an arbitrary group. We define a subgroup Φ of G, called the
Frattini subgroup, in the following way: , where M ranges
over the maximal subgroups of G if G has any maximal subgroups. Thus Φ =
G if, and only if, G has no maximal subgroups. Since any automorphism of G
permutes the maximal subgroups among themselves, the Frattini subgroup is
clearly a characteristic subgroup.

The Frattini subgroup has an interesting relation to the generation of G. It
consists of the elements of G which are nongenerators of G in the following
precise sense:

DEFINITION: An element x of a group G is said to be a nongenerator of G
if whenever G = {T, x} for a subset T of G, then also G = {T}.



Note that we require {T, x} = {T} for every set T for which {T, x) = G.
Here if G ≠ 1, surely 1 is a nongenerator.

THEOREM 10.4.1. If a group G is not the identity alone, then its Frattini
subgroup Φ consists of the set of nongenerators of G.

Proof: Let x be an element of G. If there is a maximal subgroup M which
does not contain x, then the group {M, x} properly contains M, and as M is
maximal, we must have {M, x) = G. But here {M} = M ≠ G. Thus x is an
essential generator in {M, x} = G. Thus the nongenerators of G belong to
every maximal subgroup, and so every nongenerator is an element of 

. We must show conversely that if , then u is a
nongenerator of G. By hypothesis G ≠ 1, whence 1 is surely a nongenerator.

Now suppose that G = {T, u} for a subset T of G. We show that if {T} = H
≠ G, we reach a contradiction. Now if H ≠ G, we cannot have , since
in this case H = {H, u) ⊇ {T, u} = G. Hence . Then, by Zorn’s
lemma, there exists a subgroup, K ⊇ H maximal with respect to the property
that . Now {K, u} ⊇ {T, u} = G, whence {K, u) = G. But by our
choice of K, any group containing K properly must contain u. Hence K = M is
a maximal subgroup not containing u, which conflicts with 

. Hence we must have {T} = G, and so every 
is a nongenerator of G.

THEOREM 10.4.2. The Frattini subgroup of a finite group is nilpotent

Proof: Let G be a finite group and Φ its Frattini subgroup. Let P be a
Sylow p-subgroup of Φ. Now Φ as a characteristic subgroup of G is a normal
subgroup. Thus every conjugate of P in G lies in Φ and so is conjugate to P in
Φ, being a Sylow p-subgroup of Φ. Thus P has as many conjugates in Φ as it
does in G, and so [G: NG(P)] = [Φ: NΦ(P)]. But [G:NΦ(P)] = [G:Φ][Φ:
NΦ(P)] = [G: NG(P)] [NG(P):NΦ(P)], whence [G:Φ] = [NG(P):NΦ(P)]. We
note that NΦ(P) = NG(P) ∩ Φ and apply the inequality on indices of Theorem
1.5.5 to find 

. From
this we conclude that NG(P) ∪ Φ = G. Now, since G = {NG(P), Φ}, we also
have, removing the elements of Φ one at a time, since Φ is finite, G =



{NG(P)} = NG(P). Thus , and a fortiori . Since every
Sylow subgroup of Φ is normal, Φ must be the direct product of its Sylow
subgroups and is therefore a nilpotent group.

Theorem 10.4.3. The Frattini subgroup of a nilpotent group contains the
derived group.

Proof: From Corollary 10.3.3 if G is nilpotent and G = HG′, then G = H.
This says that G′ can be omitted from any set of generators for G, whence it
follows that Φ ⊇ G′. The converse holds for finite groups.

THEOREM 10.4.4 (WIELANDT). If the Frattini subgroup of a finite group
G contains the derived group G′, then G is nilpotent.

Proof: Let P be a Sylow subgroup of G. If NG(P) = H ≠ G, then H is
contained in some maximal subgroup M of G. Now M ⊇ Φ, and by
hypothesis, Φ ⊇ G′. As G/G′ is Abelian, M is a normal subgroup of G. On the
other hand, by Theorem 4.2.4, since M ⊇ NG(P), M is its own normalizer.
This is a contradiction and we conclude that we must have NG(P) = G. The
Sylow subgroups of G all being normal, we conclude that G is their direct
product and is nilpotent.

10.5. Supersolvable Groups.

THEOREM 10.5.1. Subgroups and factor groups of supersolvable groups
are supersolvable.

Proof: Let G be supersolvable and G = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ Ar = 1 be a
normal series with every Ai−1/Ai a cyclic group. Then, for a factor group G/K
= T, the homomorphic images Bi of the Ai will form a normal series T = B0 ⊇
B1 ⊇ B2 ⊇ · · · ⊇ Br = 1, where, if we delete repetitions of the same group,
consecutive terms Bi−1, Bi will have a cyclic factor group Bi−1/Bi since every
homomorphic image of a cyclic group is cyclic or the identity. For a subgroup
H take



where Ci = H ∩ Ai. For every i, H ∩ Ai is normal in H, and by Theorem 2.4.1,
we have Ci/Ci+1 = H ∩ Ai/H ∩ Ai+1 ≅ Ai+1 ∪ (H ∩ Ai)/Ai+1. But the right-hand
side of this is a subgroup of Ai/Ai+1, and hence cyclic or the identity. Thus
Ci/Ci+1 is cyclic or the identity, and so H is supersolvable.

COROLLARY 10.5.1. Supersolvable groups satisfy the maximal condition.
A supersolvable group is finitely generated, and by Theorem 10.5.1, its

subgroups are also finitely generated, whence the maximal condition will be
satisfied.

THEOREM 10.5.2. A supersolvable group G has a normal series G = B0 ⊃
B1 ⊃ B2 ⊃ · · · ⊃ Bk = 1 in which every factor group Bi−1/Bi is either
infinite cyclic or cyclic of prime order.

Proof: Let G = A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ Ar = 1 be a normal series, with
each Ai−1/Ai cyclic. If Aj−1/Aj is of finite order p1p2 · · · ps, where p1, p2, · · ·,
ps are primes (not necessarily distinct), then Aj−1/Aj has a unique cyclic
subgroup of each of the orders p1, p1p2, · · ·, p1 · · · ps−1, and these are
characteristic subgroups. Hence the s − 1 corresponding subgroups between
Aj−1 and Aj are normal in G, and the factor groups of consecutive groups are
cyclic of prime order. Refining in this way every factor group Aj−1/Aj of finite
order, we obtain the normal series of the theorem in which every factor group
is either infinite cyclic or cyclic of prime order.

This theorem can be further improved since we can rearrange the prime
factor groups according to the magnitude of the primes.

THEOREM 10.5.3. A supersolvable group G has a normal series

in which every Ci−1/Ci is either infinite cyclic or cyclic of prime order, and
if Ci−1/Ci and Ci/Ci+1 are of prime orders pi and pi+1, we have pi ≤ pi+1.

Proof: Take a series G = B0 ⊃ B1 ⊃ B2 ⊃ · · · ⊃ Bk = 1 given by Theorem
10.5.2. If Bi−1/Bi and Bi/Bi+1 are of prime orders q and p, respectively, with q
> p, then Bi−1/Bi+1 is of order pq, with p < q, and this has a characteristic



subgroup of order q whose inverse image Bi* will be normal in G. If we
replace Bi by Bi*, then Bi−1/Bi* will be of order p and Bi*/Bi+1 will be of
order q. Continuing this process, which does not alter the length of the normal
series, we shall ultimately get a series in which the orders of consecutive
factor groups of prime order do not increase in magnitude, as stated in the
theorem.

COROLLARY 10.5.2. If G is a finite supersolvable group of order p1p2 · ·
· pr, where p1 ≤ p2 ≤ · · · ≤ pr are primes, then G has a chief series G = A0 ⊃
A1 ⊃ · · · ⊃ Ar = 1, where Ai−1/Ai is of order pi.

THEOREM 10.5.4. The derived group of a supersolvable group is
nilpotent.

Proof: Suppose G = A0 ⊃ A1 ⊃ · · · ⊃ Ar = 1 is a normal series for G,
with Ai−1/Ai cyclic. Write Hi = G′ ∩ Ai. Then G′ = H0 ⊇ H1 ⊇ · · · ⊇ Hr = 1 is
a normal series, and the distinct terms of this series Ki are such that G′ = K0 ⊃
K1 ⊃ · · · ⊃ Ks = 1, with Ki−1/Ki cyclic. We assert that the K’s form a central
series for G′. Every Ki is the intersection of normal subgroups of G, and hence
normal in G. Thus, in G/Ki, Ki−1/Ki is a cyclic normal subgroup, and
transformation by an element of G induces an automorphism in the cyclic
group Ki−1/Ki. Now the automorphisms of a cyclic group form an Abelian
group, and so two elements of G/Ki induce permuting automorphisms in
Ki−1/Ki. But then the commutator of any two elements x−1y−1xy induces the
identical automorphism in Ki−1/Ki. But this is to say that in G′/Ki, Ki−1/Ki lies
in the center, and therefore the K’s form a central series for G′, and so G′ is
nilpotent.

There is a very interesting property of chains of arbitrary subgroups in a
supersolvable group. We shall say that H2 is of index ∞1 in H1 if 

 for some element a and x running over all integers from

−∞ to +∞. Thus if  and Aj−1/Aj is an infinite cyclic group, then
Aj is of index ∞1 in Aj−1, since for a we may take any element of the coset of



Aj which is a generator of the cyclic group Aj−1/Aj. But H2 may be of index ∞1

in H1 without being normal in H1.

THEOREM 10.5.5. In a supersolvable group G any chain of subgroups G
= M0 ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Ms = 1 may be refined by the insertion of further
groups:

so that Mi,j is of prime index or index ∞1 in Mi,j−1.

Proof: Since M1 is supersolvable, it is sufficient to show that the series
may be refined by inserting terms between G = M0 and M1 with the required
properties. For repeating the argument with M1, · · ·, Ms−1 in turn, we may
refine the entire series.

Let G = A0 ⊃ A1 ⊃ A2 ⊃ · · · ⊃ Ar = 1 be a normal series for G, where
each Ai−1/Ai is cyclic of prime or infinite order. Surely M1 ⊇ Ar = 1 and 

. Hence for some i in the range 1, · · ·, r we have M1 ⊇
Ai, and . We consider two cases: (1) Ai−1/Ai of prime order,
and (2) Ai−1/Ai infinite cyclic.

CASE 1. Ai−1/Ai OF PRIME ORDER. Here Ai−1 ⊃ M1 ∩ Ai−1 ⊇ Ai. Since Ai is
of prime index in Ai−1, there can be no subgroup between Ai and Ai−1. Hence

M1 ∩ Ai−1 = Ai. If , x = 0, · · ·, p − 1, then M1 ∪ Ai−1 =

M1Ai−1 = M1*, and , x = 0,1, · · ·, p − 1 since M1

contains Ai and  but not the element a. Here M1 is of prime index in
M1* and M1* ⊇ Ai−1.

CASE 2. Ai−1/Ai INFINITE CYCLIC. Here Ai−1 ⊃ M ∩ Ai−1 ⊇ Ai. Now every
subgroup of Ai−1/Ai is characteristic, whence M1 ∩ Ai−1 is a normal subgroup

of G. If M1 ∩ Ai−1 = Ai and , then put 



, and M1 is of

index ∞1 in M1*, since M1 contains Ai but no power of the element a. But if
M1 ∩ Ai−1 ⊃ Ai, then since every subgroup of an infinite cyclic group is of
finite index, M1 ∩ Ai−1 is of finite index in Ai−1. Thus in our normal series we
may insert terms between Ai−1 and M1 ∩ Ai−1 each of prime index in the one
above, and as in Case 1, find an M1* in which M1 is of prime index.
Repeating the construction, we find a chain M1 ⊂ M1* ⊂ M1** · · · ⊂ M1

(u)

with each of prime index in the next and M1
(u) ⊇ Ai−1.

Continuing the construction, we shall in a finite number of steps reach an
M1

(v) ⊇ A0 = G and thus have found the refinement between G and M1 as
required for the theorem. As already remarked, the same procedure will give
the needed refinement for the entire chain.

For finite groups this theorem takes an interesting form.

THEOREM 10.5.6. In a finite supersolvable group G, all maximal chains
of subgroups have the same length, this being the number r if G is of order
p1p2 · · · pr, the p’s being primes, but not necessarily distinct.

Proof: By the previous theorem, in a maximal chain every index of one
subgroup in the next is a prime, and so the length of a maximal chain is r.

COROLLARY 10.5.1. Every maximal subgroup of a finite supersolvable
group is of prime index.

It is a remarkable fact, first proved by Huppert [1], that the converse of
this corollary is true. For this we must use some of the theorems on group
representation which will be proved in Chap. 16. First we give an
unpublished theorem of P. Hall.

THEOREM 10.5.7 (P. HALL). Suppose G is a finite group with the property
(M) that all its maximal subgroups are of index a prime, or the square of a
prime. Then G is solvable.

Proof: We proceed by induction on the order of G. Let p be the largest
prime dividing this order, S a Sylow p-subgroup of G, N its normalizer in G.
If N = G, S is normal in G and G/S has property (M), whence G/S is solvable



by induction. S is a p-group and so G is solvable. If on the other hand, N ⊂ G,
choose a maximal subgroup H of G containing N. N is the normalizer of S in H
as well as in G, and so [G:N] = 1 + k1p, [H:N] = 1 + k2p by the third Sylow
theorem, these being the number of Sylow p-subgroups in G and H,
respectively. Hence [G:H] = 1 + kp. But by hypothesis [G:H] = q or q2 for
some prime q; and clearly, q < p, k > 0. Hence kp = q2 − 1 = (q − l)(q + 1).
Since p ≥ q + 1, we must have p = q + 1. This is possible only if p = 3, q = 2,
and the order of G is of the form 2a3b. By Theorem 16.8.7, G is solvable.

THEOREM 10.5.8 (HUPPERT). Suppose G is a finite group with the
property (M1) that all its maximal subgroups are of index a prime. Then G
is supersolvable.

Proof: If the theorem is not true, choose G to have property (M1), but to be
not supersolvable, and to have the smallest possible order subject to these
two conditions. Then G is solvable by Theorem 10.5.7. Let N be a minimal
normal subgroup of G, and let its order be pα, p prime. By the minimal
property of G, G/N is supersolvable so that, of the chief factors of G, only N
is noncyclic. We conclude that N is the only minimal normal subgroup of G.
Let H/N be a minimal normal subgroup of G/N. There are two cases
according to whether (1) [H:N] = p, (2) [H:N] = q, a prime different from p.
In case (1) H must be Abelian, since otherwise we would have 1 ⊂ H′ ⊂ N
and H′ normal in G. Since α > 1, H cannot have elements of order p2, for this
would make N contain a characteristic subgroup of H of order p—the same
argument again. Thus H is elementary Abelian.

We now have G represented in a natural way by automorphisms of H, i.e.,
effectively by linear transformations modulo p of degree α + 1 (since H is of
order pα+1). Let K be the set of all elements  such that for , we
have a−1xa = xm, where m = m(a) is independent of x, and let L be the
centralizer of H in G. Then K/L is contained in the center of G/L. Also, K ⊂
G, since N is the only minimal normal subgroup of G, and every subgroup of
H is normal in K. Let M/K be a minimal normal subgroup of G/K. If [M:K] =
p, we shall have M/L as a direct product of K/L, which is of order prime to p
and in the center of G/L, with a group {L, a}/L, say, of order p, and M1 = {L,
a} will be normal in G. Since the group of commutators (N, L) = 1 and [M1:L]
= p, N must contain elements ≠ 1 in the center of M1. The center of M1 is a



normal subgroup of G, and so by the minimality of N, N is in the center of M1
and (M1, N) = 1. If H = {N, b}, the group (H, M1) will be of order p and
generated by , c ≠ 1. This group is, however, normal in
G, and hence N could not be a minimal normal subgroup of G.

Therefore [M:K] = q, some prime different from p, and so M/L is of order
prime to p. By the Theorem of Complete Reducibility, Theorem 16.3.1, it
follows that H = N × P, where P is normal in M and of order p. The
conjugates of P in G are normal subgroups of order p in M and their union Q
is a normal subgroup of G. Since N is the only minimal normal subgroup of G
and Q ≠ N, it follows that Q = H. Since P does not lie in N, no conjugate of P
lies in N. Let P = {b}, where bp = 1, and if Pi is any conjugate of P except
itself, then PPi ∩ N = R, where, since [H:N] = p, R is of order p. We may take
a generator c of Pi such that Pi = {c}, R = {bc}. Since P, Pi, and R are normal
subgroups of M, it follows that for any a of M, a−1ba = bm, a−1ca = cn,
a−1(bc)a = (bc)t. But then (bc)t = bmcn and t = n = m. But Pi was any conjugate
of P, and it follows that for any x of H we have a−1xa = xm, where m = m(a) is
independent of x. Hence M ⊆ K is a contradiction. Thus case (1) cannot arise.

Case (2) can be dismissed at once. If [H:N] = q different from p, let Q be
a Sylow q-subgroup of H; T the normalizer of Q in G. Any conjugate of Q in
G lies in H, and hence is a conjugate of Q by an element of N. Hence G = NT.
Then N ∩ T is normal in G. But , since this would make T = G and
Q normal in G. Hence N ∩ T = 1, [G: T] = pα. But T is a maximal subgroup of
G, since if T ⊂ T1 ⊂ G we should have 1 ⊂ T1 ∩ N ⊂ N and T1 ∩ N normal in
G. Thus G has a maximal subgroup of index not a prime, contrary to
hypothesis.

EXERCISES
1. Let I(1) = I(1) (G) be the group of inner automorphisms of a group G and I(n) the group of inner

automorphisms of I(n−1). If any group of the sequence G, I(1), I(2), · · · is the identity, show that
G is nilpotent.

2. Let G be a group satisfying the maximal condition. If A(G), the group of automorphisms of G, is
supersolvable, show that G is supersolvable.

3. Let a and b be elements of a nilpotent group G, where am = bn = 1 and (m, n) = 1. Put w =
a−1b−1ab. Show that if , then , , whence 

. Hence conclude w = 1, ba = ab.



4. Prove the converse of Ex. 2 of Chap. 8, i.e.: If G is a finite nilpotent group and if p1, p2, · · ·, ps
is any arrangement of the primes whose product is the order of G, then G has a composition
series G = A0 ⊃ A ⊃ · · · ⊃ As = 1, where Ai−1/Ai is of order pi.

5. Let G be a p-group with Γ3(G) = 1. Show that if pm is the highest order of an element of G/

Γ2(G), then no element of Γ2(G) has an order higher than pm.

* Historically, this property of a composition series was the original definition of solvability, but such a
definition is inapplicable to infinite groups. The Galois theory shows that a polynomial equation f(x) = 0 is
solvable by radicals if, and only if, its Galois group is solvable.



11. BASIC COMMUTATORS

11.1. The Collecting Process.

We consider formal words or strings b1 b2 · · · bn where each b is one of
the letters x1, x2, · · ·, xr. We also introduce formal commutators cj and
weights ω(cj) by the rules:

1) ci = xi, i = 1, · · ·, r are the commutators of weight 1; i.e., ω(xi) = 1.
2) If ci and cj are commutators, then ck = (ci, cj) is a commutator and

ω(ck) = ω(ci) + ω(cj).

Note that these definitions yield only a finite number of commutators of any
given weight. We shall order the commutators by their subscripts, numbering
ci = xi, i = 1, · · ·, r, and listing in order of weight, but giving an arbitrary
ordering to commutators of the same weight.

A string ci1 · · · cim of commutators is said to be in collected form if i1 ≤
i2 ≤ · · · ≤ im, i.e., if the commutators are in order read from left to right. An
arbitrary string of commutators,

will in general have a collected part ci1 · · · cim if i1 ≤ · · · ≤ im and if im ≤ ij
≤ ij, j = m + 1, · · ·, n, and will have an uncollected part cim+1 · · · cin, where
im+1 is not the least of ij, j = m + 1, · · ·, n. The collected part of a string ci1 ·
· · cin will be void unless i1 is the least of the subscripts.

We define a collecting process for strings of commutators. If cu is the
earliest commutator in the uncollected part and if cij = cu is the leftmost
uncollected cu, we replace



by

This has the effect of moving cij to the left and introducing the new
commutator (cij−1, cij) which by its weight is surely later than cij. Thus cij is
still the earliest commutator in the uncollected part. After enough steps cij
will be moved to the (m + 1)st position and will become part of the collected
part. Since at each step a new commutator is introduced, the process will not
in general terminate.

If x1, · · ·, xr are generators of a group F (and we shall be concerned
chiefly with the case in which F is the free group with these generators), and
if a commutator (u, v) = u−1v−1uv, then we note that

and that the collecting process does not alter the group element represented
by a word. As it stands, the collecting process has not been defined for all
elements of F but only for the positive words, those elements which can be
expressed as a product of the generators without using any inverses of
generators. This defect will be remedied below.

In applying the collecting process to a positive word, not all commutators
will arise. Thus (x2, x1) may arise but not (x1, x2), since x1 is collected
before x2. The commutators that may actually arise are called basic
commutators. We give a formal definition of the basic commutators for a
group F generated by x1, · · ·, xr.

DEFINITION OF BASIC COMMUTATORS:
1) ci = xi, i = 1, · · ·, r are the basic commutators of weight one, ω(xi) =

1.
2) Having defined the basic commutators of weight less than n, the basic

commutators of weight n are ck = (ci, cj), where
(a) ci and cj are basic and ω(ci) + ω(cj) = n, and
(b) ci > cj, and if ci = (cs, ct), then cj ≥ ct.



3) The commutators of weight n follow those of weight less than n and
are ordered arbitrarily with respect to each other. Basic commutators will
always be numbered so that they are ordered by their subscripts.

We note that if commutators are ordered according to weight, but
arbitrarily otherwise, the collection process when applied to a positive word
will yield only basic commutators. For, in replacing

we collect cv before cu, whence cu > cv, and if cu = (cs, ct), we have
collected ct before collecting this cv, whence cv ≥ ct.

We shall now show that modulo Γk+1(F), the (k + l)st term of the lower
central series of F (k being arbitrary), which we shall write Fk+1, an
arbitrary element, can be written in the form

where c1, · · ·, ct are the basic commutators of weights 1, 2, · · ·, k. In the
collection process we have

where u, v, and (v, u) are basic commutators. We must also consider
collecting u or u−1 in expressions vu−1, v−1u−1, and v−1u. Now vu−1 = u−1v(v,
u−1), and from (10.2.1.3) we have

whence (v, u−1) = (v, u, u−1)−1(v, u)−1. Similarly, (v, u, u−1) = (v, u, u,
u−1)−1(v, u, u)−1. Writing v0 = v, vt+1 = (vt, u), we have



and we note that if v1 = (v, u) is basic, then also v2, v3 · · · are basic. Modulo
Fk+1 we may ignore (vs, u−1) if s is so large that this is of weight k + 1 or
higher. Hence as a step in collection we have

Similarly,

Also, v−1u−1 = u−1 (uvu−1)−1, and from (11.1.8),

whence

Repeated applications of (11.1.5, -8, -9, -11) will lead to the expression
(11.1.4) for an arbitrary element f in terms of a sequence of basic
commutators.

If F is the free group generated by x1, x2, · · · xr, then for a given
sequence of basic commutators we shall show in §11.2 that the expression
(11.1.4) is unique. In particular the basic commutators of weight k are a free
basis for Fk/Fk+1, which is consequently a free Abelian group. This is, of
course, the justification for the term basic as applied to these commutators.

11.2. The Witt Formulae. The Basis Theorem.

Suppose we are given a sequence of basic commutators c1, c2, · · ·
formed from the generators x1, x2, · · ·, xr. We call a product of basic
commutators,



a basic product if it is in collected order, i.e., i1 ≤ i2 ≤ · · · ≤ in. For an
arbitrary product of commutators p = a1a2 · · · an, we define the weight ω(p)
as ω(p) = ω(a1) + · · · + ω(an). The collecting process alters the weight of a
product. We define here a bracketing process similar to the collecting
process which leaves weights unchanged. In this if u, v, and (u, v) are basic
commutators, we replace

rather than the · · · vu(u, v) · · · of the collecting process.

THEOREM 11.2.1. The number of basic products of weight n formed from
generators x1, · · ·, xr is rn.

Proof: For each k = 1, 2, · · · we define the family Pk = Pk
(n) of all

products of weight n, a1a2 · · · at, the a’s being basic commutators which are
of the form

where ei ≥ 0, i1 > k, i2, · · ·, is ≥ k, and for each cij which is a commutator, cij
= (cu, cv), cv precedes ck. Thus Pk may be regarded as the family in which c1
· · ·, ck−1 have been collected but not ck. We denote the number of products
in Pk by |Pk |. Clearly, P1 is the family of all products of n generators, and so
|P1| = rn. But we may set up a one-to-one correspondence between the
members of Pk and Pk+1. For, if c1

e
1 · · · ck

e
kci1 · · · cis is a member of Pk, ci1

is later than ck and so, though there may be a succession of ck’s in the
uncollected part, each such string is immediately preceded by a cy with y > k.
For each string

we bracket (((cy, ck), ck) · · ·, ck)cw, and since if cy = (cu, cv), k > v, the new
commutator introduced is basic and later than ck. This gives a unique



member of Pk+1. Conversely, if in a member of Pk+1 we remove all brackets
involving ck, we have a unique member of Pk. Hence |Pk | = |Pk+1|, and so for
every k, |Pk | = |P1| = rn. But for k sufficiently large, Pk consists of all basic
products of weight n. This proves the theorem.

We may use Theorem 11.2.1 to find the number of basic commutators of
weight n, and even more, we may find the number of basic commutators
whose weights in each generator are specified. We define weights ωi(c), i =
1, · · ·, r by the rules ωi(xi) = 1, ωi(xj) = 0, i ≠ j, and recursively by ωi[(cu,
cv)] = ωi(cu) + ωi(cv). Let Mr(n) be the number of commutators of weight n
in r generators x1, x2, · · ·, xr, and let M(n1, n2, · · · nr) be the number of
commutators c such that ωi(c) = ni, i = 1, · · ·, r, with n = n1 + n2 + · · · + nr.

THEOREM 11.2.2 (THEOREM OF WITT).

Here μ(m) is the Môbius function which is defined for positive integers by
the rules μ(1) = +1, and for n = p1

e
1 · · · ps

e
s; p1, · · · ps being distinct

primes, μ(n) = 0 if any ei > 1, and μ(p1p2 · · · ps) = (−l)s.

Proof: From Theorem 11.2.1 the number of basic products is rn. This
leads to the formal identity in a power series for a variable z,

The bracketing process leaves all the weights ωi, i = 1, · · ·, r unchanged.
The number of words W in the x’s with ωi(W) = ni is, of course, the
multinomial coefficient



This leads to the formal identity in variables z1, · · ·, zr

Witt [2] used these identities, taking logarithms, and applied Möbius
inversion to find the formulae of the theorem. Here we shall modify a result
of Meier-Wunderli [1], proving it along lines similar to those of the proof of
Theorem 11.2.1 to obtain the Witt formulae.

We call a word a1 · · · an circular if a1 is regarded as following an,
where a1a2 · · · an, a2 · · · ana1 · · ·, ana1 · · · an−1 are all regarded as the
same word. A circular word C of length n may conceivably be given by
repeating a segment of d letters n/d times, where d is some divisor of n. We
say that C is of period d if this is the case. Each circular word belongs to a
unique smallest period, and this smallest period d corresponds to a unique
circular word of length d.

LEMMA 11.2.1. There is a one-to-one correspondence between basic
commutators of weight n and circular words of length and period n. This is
given by an appropriate bracketing of the circular word.

Proof : Let a1a2 · · · an be a circular word of length n. The circular
words of weight n form a family Ck

n = Ck if they are of the form ci1ci2 · · ·
cis, where the c’s are basic commutators and for any cij = cw which is a
commutator cw = (cu, cv), we have v < k and either (1) i1 = i2 · · · = is
(including the case s = 1) or (2) i1, · · ·, is ≥ k and some ij > k. If (1) holds,
the word is as it stands a word of Ck+1. If (2) holds, we take every circular
subsequence (if any) of the form

and bracket thus:



obtaining a unique circular word of Ck+1. By removing the brackets involving
ck from a word of Ck+1, we obtain a unique word of Ck. Thus there is a
unique correspondence between words of C1 and words of Ck for arbitrary k.
If k is large enough, the commutator ck is of weight greater than n and (2)
cannot hold. Hence, ultimately, our bracketing ceases and (1) holds. Here our
word is either a basic commutator of weight n or a succession of s = n/d
identical basic commutators of weight d. A bracketing by which we pass
from Ck to Ck+1 involves one cw and a number of ck’s. Hence each such
bracketing lies in a single period and will be exactly duplicated in every
other period. Thus at every stage the number of periods in a word is the
same. Hence bracketing all circular words of length n yields all basic
commutators of weight n and for d|n all basic commutators of weight d
repeated identically n/d times, for these are the members of Ck if k is
sufficiently large. This proves the lemma and somewhat more.

How many circular words of length and period n are there? A circular
word of length n and period d, d|n yields exactly d ordinary words of length
n:

Thus

since the number of circular words of length and period d is Mr(d) and every
one of the rn ordinary words corresponds to a unique period d. From



we may find Mr(n), since the Möbius inversion formula* says that if

then

Hence

or

the Witt formula.
The number of ordinary words W such that ωi(W) = ni, n1 + · · · + nr = n

is the multinomial coefficient

This leads to the formula

Here d ranges over the divisors of (n1, · · ·, nr) = n0. Applying the Möbius
inversion we have



the second of the Witt formulae.
Consider the free associative ring R with integer coefficients having r

generators, x1, x2, · · ·, xr. The elements Rm of degree m form an additively
free Abelian group with a basis of the rm products xi1 · · · xim. In a ring we
define a commutator [u, v] by the rule

The formal properties of bracketing will apply to the ring commutators quite
as well as to the group commutators. Indeed we shall show that there is a
very close relation between group and ring commutators, originally
established by Magnus [1].

THEOREM 11.2.3. The basic products of degree m form an additive basis
for Rm.

COROLLARY 11.2.1. The basic commutators of degree m are linearly
independent.

Proof: Since by Theorem 11.2.1 the number of basic products of degree
m is rm, which is the right number for a basis of Rm, it is sufficient to show
that every element of Rm can be expressed as a linear combination with
integral coefficients of basic products. Since P1

(m) = P1 the basis of the rm

products xi1 · · · xim, and since Pk consists of the basic products for k
sufficiently large, it will be enough to express the elements of Pk as linear
combinations with integral coefficients of elements of Pk+1. For this we need
an identity. For this we need an identity. For simplicity of notation write 

 if there
are s v’s. The identity is



For s = 1 this reduces to

We note the identity

Hence (11.2.14) is proved by induction on s by multiplying (11.2.14) by v on
the right, making replacements throughout by means of (11.2.15) and
combining similar terms.

If a term in Pk has a sub-sequence · · · uck · · · ckw · · · u, w ≠ ck, where
u is later than ck and there are s ck’s, we apply (11.2.14) with u = n, v = ck.
This gives terms either belonging to Pk+1 or terms of Pk with fewer ck’s, or
having the ck’s nearer the beginning. Repeated application of (11.2.14) will
ultimately express an element of Pk as a linear combination with integer
coefficients of the terms of Pk+1. This proves the theorem.

Let us adjoin a unit 1 to R, making the rational integers the elements R0 of
degree zero, and take this ring modulo the two-sided ideal generated by all
terms of degree n + 1 or higher. Call the resulting ring . Then

In  the elements with constant term 1 of the form 
 form a group G, for, since zn+1 = 0,

If 1 + z = 1 + um + um+1 + · · · + un, with  for j = m, · · ·, n and um
≠ 0, we say that um is the leading term of 1 + z. The leading term of 1 is 0.



LEMMA 11.2.2. Let u, v ≠ 1 be elements of G with leading terms us, vt of
degree s and t, respectively. The leading terms of u−1 and v−1 are −us and
−vt. If s < t, the leading term of uv is us. If t < s, the leading term of uv is ut.
It t = s and us + vt ≠ 0, the leading term of uv is us + vt. If the ring
commutator [ur, vs] is not zero, it is the leading term of the group
commutator (u, v).

Proof: Let u = 1 + a, v = 1 + b, u−1 = 1 + a′, v−1 = 1 + b′. Then

From these relations we get immediately the statements of the lemma about
the leading terms of u−1, v−1, and uv. Using these relations we find

whence

giving the final statement of the lemma.
Let c1, c2, · · · be a sequence of basic commutators in the free group F

generated by elements y1 · · ·, yr and d1, d2 · · · be the ring commutators in R
obtained by replacing y1, · · ·, yr by x1, · · ·, xr. Also let ct be the last
commutator of weight n. Then there is a correspondence between the c’s and
the d’s in  given by the following lemma:

LEMMA 11.2.3. If we make yi → 1 + xi, i = 1, · · ·, r, mapping F onto G
we map , and for i = 1, · · ·, t, the leading term of gi is di.



Proof: Since yi → 1 + xi, i = 1, · · ·, r, the leading term of gi = 1 + xi is xi
for i = 1, · · ·, r. We proceed by induction. If cw = (cu, cv), w ≤ t, then by
induction the leading term of gu is du and of gv is dv. Hence, by Lemma
11.2.2, the leading term of (gu, gv) is [du, dv] if this is not zero; as a basic
commutator, it is not zero from the corollary to Theorem 11.2.3. Hence the
leading term of gw = (gu, gv) is [du, dv] = dw as the lemma asserts.

THEOREM 11.2.4 (BASIS THEOREM).* If F is the free group with free
generators y1, · · ·, yr and if in a sequence of basic commutators c1, · · ·, ct
are those of weights 1, 2, · · ·, n, then an arbitrary element f of F has a
unique representation,

The basic commutators of weight n form a basis for the free Abelian group
Fn/Fn+1.

Proof: We prove the second statement first. Suppose cs, · · ·, ct are the
basic commutators of weight n. By Lemma 11.2.3, if we take the mapping of
F into G determined by

then the leading terms of cs, · · ·, ct are the corresponding ring commutators
ds, · · ·, dt, which are the basic ring commutators of degree n. By the
corollary to Theorem 11.2.3, ds, · · ·, dt are linearly independent, and by
Lemma 11.2.2, the leading term of cs

e
s · · · ct

e
t is esds + · · · etdt and so is not

zero unless es = · · · = et = 0. Hence cs, · · ·, ct are independent elements of
Fn/Fn+1, and hence a basis, since we already know from (11.1.4) that every
element of Fn/Fn+1 can be expressed in terms of cs, · · ·, ct. The existence of
at least one expression for f in the form (11.2.19) was given by (11.1.4). We
must show its uniqueness. But if



and hi = ei, i = 1 · · · j − 1 but hj ≠ ej, if cj is of weight k this would lead to a
dependence between the basic commutators of weight k modulo Fk+1 Since
this cannot be the case, the expression (11.2.18) is unique. This completes
our proof.

* Hardy and Wright [1] p. 235.
* See Marshall Hall, Jr. [6].



12. THE THEORY OF p-GROUPS;
REGULAR p-GROUPS

12.1. Elementary Results.

In Chaps. 4 and 10, some elementary properties of finite p-groups P were
established. We list them here:

1) P has a center Z greater than the identity. (Theorem 4.3.1.)
2) A proper subgroup H of P is not its own normalizer. (Theorem 4.2.1.)
3) If P is of order pn, then every maximal subgroup M is of order pn−1 and

is normal. (Theorem 4.3.2.)
4) A normal subgroup of order p in P is contained in the center of P.

(Theorem 4.3.4.)
5) P is supersolvable. (Theorem 10.3.4 and Theorem 10.2.4.)
6) P is nilpotent. (Theorem 10.3.4.)

12.2. The Burnside Basis Theorem. Automorphisms
of p-Groups.

Let P be of order pn. The intersection of all its maximal subgroups will be
a characteristic subgroup D, the Frattini subgroup of P.Then, in the
homomorphism P → P/D, elements generating P will be mapped onto elements
generating P/D. The converse of this is true in a strong sense, which is the
subject of the Burnside basis theorem.

THEOREM 12.2.1 (THE BURNSIDE BASIS THEOREM). Let D be the
intersection of the maximal subgroups of the p-group P. The factor group P/D
= A is an elementary Abelian group. If A is of order pr, then every set of
elements z1, · · ·, zs which generates P contains a subset of r elements x1, · ·
·, xr which generate P. In the mapping P → A, the elements x1, · · ·, xr are



mapped onto a basis a1, · · ·, ar of A. Conversely, any set of r elements of P
which, in P → A is mapped onto a set of generators of A, will generate P.

Proof: If M is a maximal subgroup of P, then M is of index p and is normal.
Thus P/M is the cyclic group of order p. Hence the pth power of every element
of P and every commutator are contained in M. Hence D, the intersection of all
the maximal subgroups, contains every pth power and every commutator. Thus
P/D is an elementary Abelian group A. If A is of order pr, then every basis of A
consists of r elements, say, a1, · · ·, ar. If b1, · · ·, bs are elements generating A,
we may find a basis for A by deleting from them the b’s equal to 1 and those
bi’s belonging to the subgroup generated by b1, · · ·, bi−1. Hence  and b1
· · ·, bs contains a subset which is a basis for A.

Now suppose that z1 · · ·, zs generate P. In the mapping P → P/D = A, let zi
→ bi, i= 1, · · ·, s. Then b1, · · ·, bs generate A and so contain a subset a1, · · ·,
ar, which is a basis for A. Let x1, · · · xr be the subset of z1, · · ·, zs mapped
onto a1, · · ·, ar. The theorem will be proved if we can show that any set x1, · ·
· xr of elements of P mapped onto a basis a1 · · ·, ar of A will generate P. Let H
= {x1, · · ·, xr}. If H ≠ P then H is contained in some maximal subgroup M of P.
But then in P → P/D = A we have H → HD/D ⊆ M/D = B, where B is a
subgroup of A of order pr−1. This is in conflict with H = {x1, · · · xr} → {a1, · ·
·, ar} = A. Hence H = P and x1, · · ·, xr generate P.

As an application of this theorem we may obtain some information on the
group A(P) of automorphisms of P. We may choose a basis a1, · · ·, ar of P/D
in θ(pr) = (pr − 1) (pr − p) · · · (pr − pr−1) ways. This is easily seen since a1

may be taken as any of the pr − 1 elements different from the identity, and
having chosen a1 · · ·, ai, we may take ai+1 as any one of the pr − pi elements
not in the subgroup generated by a1, · · ·, ai. Thus there are θ(pr) choices for a
basis of A, and every mapping of a fixed basis a1, · · ·, ar onto another b1, · · ·,
br yields an automorphism of A. But since every automorphism of A must map
a1, · · ·, ar onto a basis, there are exactly θ(pr) automorphisms of A.

There will be exactly pr(n−r)θ(pr) ordered sets X = (x1, · · ·, xr) which
generate P, since in a mapping xi → ai, i = 1, · · ·, r of X onto a basis of A, the
basis of A may be chosen in θ(pr) ways, and for a single ai, any of the pn−r



elements in the coset of D mapped onto ai will be a permissible choice for xi.
Every automorphism of P will map a set X onto another. Hence the group A(P)
of automorphisms of A may be regarded as a permutation group on the X’s. But
A(P) is a regular group on the X’s, since an automorphism fixing any set X fixes
every product of these x’s and hence the entire group P, and so is the identical
automorphism. Hence the sets X are permuted among themselves in transitive
constituents each of which has k sets in it if k is the order of A(P). Hence
pr(n−r)θ(pr) = kt. Here the number t may be interpreted as the number of
essentially different ways of generating P by r elements. Two sets X = (x1, · · ·,
xr) and Y = (y1, · · ·, yr) are said to generate P in essentially the same way if
every relation w(x1, · · ·, xr) = 1 is such that w(y1, · · ·, yr) = 1, and conversely.

In the same way, let A1(P) be the normal subgroup of A(P) which leaves
A/D fixed elementwise. These automorphisms permute regularly the pr(n−r)

generating sets X = (x1, · · ·, xr) which are mapped onto the same basis a1, · · ·,
ar of A in the homomorphism P → P/D = A. Thus the order of A1(P) divides
pr(n−r). These results, due to P. Hall [2], we state as a theorem.

THEOREM 12.2.2. If P is a p-group of order pn, D the intersection of the
maximal subgroups of P, and [P:D] = pr, then the order of A(P), the group of
automorphisms of P, divides pr(n−r)θ(pr). The order of A1(P), the group of
automorphisms fixing P/D elementwise, is a divisor of pr(n−r).

12.3. The Collection Formula.

Let G be a group generated by elements a1, a2, · · ·, ar. We shall develop a
formula for (a1a2 · · · ar)n in terms of the higher commutators of a1, · · ·, ar. We
may take G to be the free group generated by a1, · · ·, ar, for the formula will
then hold a fortiori in any group generated by r elements.

We repeat the definition of basic commutators, given in §11.1, but make the
ordering more precise.

1) a1, · · ·, ar are the commutators of weight one, and are simply ordered by
the rule a1 < a2 < · · · < ar.

2) If basic commutators of weights less than n have been defined and
simply ordered, then (x, y) is a basic commutator of weight n if, and only if,



and only if,
(a) x and y are basic commutators with ω(x) + ω(y) = n.
(b) x > y.
(c) If x = (u, v), then y ≥ v.

3) Commutators of weight n follow all commutators of weight less than n,
and for weight n, (x1, y1) < (x2, y2) if y1 < y2 or if y1 = y2 and x1 < x2.

Consider

where we have labeled the individual generators ai as ai(1), ai(2), · · · ai(n)
from left to right so as to be able to distinguish each letter in the formula. Since
SR = RS(S, R) by definition of the commutator, we may replace the right-hand
side of (12.3.1) by another expression equal to it in which a pair of consecutive
elements SR is replaced by RS(S, R). This replacement puts R nearer the
beginning of the expression and introduces a commutator (S, R). By a
succession of such replacements we may move any letter as near to the
beginning as we choose. We shall alter (12.3.1) in a specific way. We begin by
moving a1(2) to the left until it is next to a1(1), then move a1(3) to the left until
it is next to a1(2), and continue until we have collected all a1’s at the beginning.
This completes the first stage of collection. Next we collect in order the a2’s
immediately to the right of the a1’s.

Let us describe the collection process precisely. At the end of the ith stage
we have

where c1, c2, · · ·, ci are the first i basic commutators and R1, · · ·, Rt are basic
commutators later than ci. If Rj1, Rj2, · · ·, Rjs, are in order, the basic
commutators among R1, ···, Rt which are ci+1, we first move Rj1, to the position
immediately following ci

e
i then Rj2, Rj3, · · ·, and finally Rjs, so that with ei+1 =

s, (12.3.2) takes the form



which is the (i + 1)st stage. In (12.3.2) we call c1
e

1 · · · ci
e

i the collected part
and R1 · · · Rt the uncollected part. But to validate this description we must
show that only basic commutators appear in any formula. The initial formula
(12.3.1) is stage zero and contains only generators ai which are basic
commutators of weight one. Let us assume by induction that at stage i the
uncollected part R1 · · · Rt contains only basic commutators later than ci. In
collecting R’s equal to ci+1, we introduce only further commutators (cj, ci+1, · ·
·, ci+1) where j ≥ i + 2. Such a commutator is basic, since if cj = (cr, cs), then cj
arose at stage s when cs was collected, whence s < i + 1 and so cs < ci+1. Thus
(cj, ci+1) is basic and so also is (cj, ci+1, · · ·, ci+1).

We have already in (12.3.1) labeled the generators ai with labels j, ai
(j), j =

1, · · ·, n. If a commutator R of weight w1 has a label (λ1, · · ·, λw1) and S of
weight w2 has a label (μ1, · · ·,μw2), we assign to (R, S) the label (λ1, · · ·, λw1,
u1, · · ·, λw2). The calculation of the exponents e1, · · ·, ei, ei+1 in (12.3.3) may
be made to depend on these labels. Here ei+1 = s is the number of uncollected
commutators at stage i equal to ci+1 Thus it is the number Ei+1 of commutators
ci+1 existing at this stage. Also if ci+1 = (cr, cs), then ci+1 arose when cs was
collected and this particular cr preceded this particular cs in the uncollected
part. Hence we must also consider precedence conditions for a commutator cr
to precede cs when they both exist in an uncollected part.

At stage zero the commutators of weight one (and no others) exist, and ak
(λ)

exists for any label λ = 1, · · ·, n. Moreover, ak
(λ) precedes as

(μ) at stage zero
when k > s if λ < μ and when k < s if λ ≤ μ. More formally at stage zero we
have existence and precedence conditions on the uncollected part in terms of
labels :

Let λ1, · · ·, λm be a set of integers and consider conditions of the type λt < λu, λt
≤ λu. Any logical sum and product of such conditions we shall call conditions
(L). We shall show that conditions Ek

i for existence of a commutator ck with



label (λi, · · ·, λm) at stage i are conditions (L) on λ1, · · ·, λm, and the
precedence conditions prs

i for the precedence of a commutator cr before a
commutator cs in the uncollected part of the ith stage are conditions (L) on λ1, ·
· · λm, μ1, · · · μq if (λ1, · · ·, λm) is the label of cr and (μ1, · · ·, μq) is the label
of cs. We have observed that at stage zero, existence and precedence conditions
were conditions (L) as above. We prove this true in general by induction on the
stage. Suppose this to be true at the ith stage. To show this to be true at the (i +
1st) stage, we compare (12.3.2) and (12.3.3). With Rj1 = Rj2 = · · · = Rjs = ci+1,
we collected first Rj1, then Rj2, and finally Rjs. Each step in the collection was a
replacement SR = RS(S, R). Here any commutators existing at stage i different
from ci+1 also exist at stage i + 1 and are in the same order. Thus

for such commutators. Hence we need consider only the existence of
commutators ck arising in the (i + 1)st stage and precedence Prs where one or
both of cr, cs arose at this stage. A commutator arising at this stage will be of
the form ck = (cj, Ru1, · · ·, Rum), obtained by moving Ru1 past cj, then Ru2 past
this commutator, and so on until we move Rum past (cj, Ru1, · · ·, Rum−1). Here
all of Ru1, · · ·, Rum are equal to ci+1. Here Ek

i+1 is the logical product of the
conditions for existence of cj, Ru1, · · ·, Rum at stage i together with the
precedence conditions that cj, Ru1, · · ·, Rum are in this order at stage i. Thus
Ek

i+1 is a condition (L) on the label of ck. In the collecting for the (i + 1)st
stage, a commutator (S, R) arises in SR =RS(S, R) immediately to the right of S
and to the left of all commutators following S. We must find the precedence
condition Prs

i+1 where cr = cj1 or (cj1, Ru1, · · · Rum) and cs = cj2 or (cj2, Rv1, · ·
·, Rvw. Here Prs

i+1 = Pj1j2
i if cj1 ≠ cj2. If, however, cj1 = cj2, Prs

i+1 involves the
Rs’. Suppose e is the largest integer such that Ru1 = Rv1, · · ·, Rue = Rve. Then cr
precedes cs if either (1) m = e and there is no Rue+1, in which case cs is a
commutator of cr, or (2) Rve+1 precedes Rue+1. Here Prs

i+1 is a logical sum of
precedence conditions, and so, are conditions (L) on the labels of cr and cs are
combined.



LEMMA 12.3.1. The number of sets λ1, · · ·, λm with 1 ≤ λi ≤ n satisfying
given conditions (L) is an integer valued polynomial in n b1n + b2n(2) + · · · +
bmn(m), where n(i) = n(n − 1) · · · (n − 1 + i)/i! and the b’s are integers
determined by the conditions (L) but not depending on n.

Proof: Let us divide the indices 1, · · ·, m into disjoint sets S1, S2, · · ·, St.
Then an ordering of λ1, · · ·, λm is given by λj = vi, , i = 1, · · ·, t,
where v1 < v2 < · · · < vt. Every possible choice of the λ’s belongs to a unique
ordering of this type, and there are n(t) choices for the v’s, this being merely the
number of combinations of n things t at a time. For this ordering either all λ’s
satisfy the conditions (L) or none. Hence the number of sets of λ’s satisfying
given conditions (L) is the polynomial b1n + b2n(2) + · · · + bmn(m), where bt is
the number of orderings with t distinct values which satisfy the conditions (L),
and clearly, bt depends on the conditions but not on n.

For example, if λ1, λ2, λ3 satisfy conditions (L) λ1 < λ2, λ3 ≤ λ2, the
orderings satisfying (L) are

1) λ1 = v1, λ2 = λ3 = v2, v1 < v2,

2) λ1 = λ3, v1 = λ2 = v2, v1 < v2,

3) λ1 = v1, λ3 = v2 λ2 = v3, v1 < v2 < v3,

4) λ3 = v1, λ1 = v2, λ2 = v3, v1 < v2 < v3,

and the number of sets satisfying the conditions (L) is 2n(2) + 2n(3).
We have shown that the exponent ei in (12.3.2) of the commutator ci is the

number of commutators in the uncollected part at stage i − 1 equal to ci and that
this number is given as the number of sets λ1, · · ·, λm satisfying certain
conditions (L), where m is the weight of ci. Thus Lemma 12.3.1 gives us
information on these exponents. We state our results in a theorem.

THEOREM 12.3.1. We may collect the product (a1a2 · · · ar)n in the form
(a1a2 · · · ar)n = a1

na2
n · · · ar

ncr+1
c

r+1 · · · ci
e

i · · · R1 · · · Rt, where cr+1, · · ·,
ci are the basic commutators on a1, · · ·, ar in order, and R1, · · ·, Rt are basic
commutators later than ci in the ordering. For 1 ≤ j ≤ i, the exponent ej is of
the form ej = b1n + b2n(2) + · · · + bmn(m), where m is the weight of cj, the b’s



are non-negative integers and do not depend on n but only on cj. Here n(k) =
n(n − 1) · · · (n − k + 1)/k!

We may prove immediately an important corollary if G is a p-group whose
class is less than p. Collecting all commutators of weight less than p, the
uncollected part reduces to the identity. Moreover, with n = pα all exponents
are multiples of pα, since an n(i), i ≤ p − 1 is a binomial coefficient with n as a
factor of the numerator and denominator with factors not exceeding p − 1.

COROLLARY 12.3.1. If P is a p-group of class less than p, then with n = pα

where S1, S2, · · ·, St belong to the commutator subgroup of the group
generated by a1, a2, · · ·, ar.

12.4. Regular p-Groups.

We define a regular p-group as a group P in which for any two elements a,
b, and any n = pα satisfy

with S1, · · ·, St appropriate elements from the commutator subgroup of the
group generated by a and b. Immediate consequences of the definition and the
corollary to Theorem 12.3.1 are

1) Every p-group of class less than p is regular.
2) Every p-group of order at most pp is regular.
3) P is regular if every subgroup generated by two elements is regular.
4) Every subgroup and factor group of a regular group is regular.
For every p there is an irregular group of order pp+1, namely, the Sylow

subgroup S(p) of the symmetric group Sp
2 on p2 letters. This group is generated

by two elements of order p and yet it contains elements of order p2. This will
be shown impossible for a regular group.



THEOREM 12.4.1 In a regular p group with n = pα, anbn = (ab)nS1
n = (ab

S2)n, with S1, S2 in the derived group H2 (a, b) of the group H(a, b), generated
by a and b.

By repeated application of the theorem we get the corollary

COROLLARY 12.4.1. In a regular p-group with n = pα, a1
na2

n · · · ar
n =

(a1a2 · · · arS2)n = (a1 · · · ar)nS1
n with S1, S2 in H2(a1 · · · ar).

Proof: The theorem and corollary both hold in an Abelian group with S1 =
1, S2 = 1. We shall use induction to prove the theorem for a group H, assuming
the theorem and its corollary to be true for any proper subgroup of H. We note
that if H is generated by a1 · · · ar, then H2(a1 · · · ar), the derived subgroup of
H, is a proper subgroup of H. From (12.4.1)

By induction St
−n · · · S1

−n = Sn with . But if H = H(a, b) is not
Abelian, then H2 and ab generate a proper subgroup of H whence by induction
(ab)nSn = (abS2)n. For it follows from the Burnside basis theorem that if H/H2
is cyclic, then H is cyclic. Thus the theorem holds in H if both the theorem and
corollary hold in any proper subgroup of H. Applying the theorem r − 1 times
to a1

n a2
n · · · ar

n, we get

with all of S1 · · · Sr−1 in H2.
Thus a1

n · · · ar
n = (a1 a2 · · · ar)n Sn, applying the corollary to H2, and by the

theorem, (a1 a2 · · · ar)n Sn = (a1 a2 · · · arS1)n.

THEOREM 12.4.2. A finite p-group P is regular if, and only if, for any a, b
in P we have

with S in the derived group of the group generated by a and b.



The condition (12.4.3) is clearly necessary in a regular p-group since it is a
special case of Theorem 12.4.1. We must show conversely that (12.4.3) implies

Now the relations

with S1,  are surely satisfied with S1 = S2 = 1 when
H is Abelian. If (12.4.5) is satisfied for every proper subgroup of H, then
applying (12.4.3) r − 1 times a1

p a2
p · · · ar

p = (a1a2 · · · ar)p u1
p · · · ur−1

p,
with u1, · · ·, ur−1 in H2. By induction u1

p · · · ur
p

1 = S1
p. But b = a1 a2 · · · ar

and S1 generate a proper subgroup of H, whence (a1a2 · · · ar)pS1
p = (a1 · · ·

arS2)p, proving (12.4.5) in general.

LEMMA 12.4.1. Assuming (12.4.3), x−p y−p xp yp = Sp, with S in the derived
group of {x, y}.

Proof:

whence

and also

and so



From this it follows that any commutator in a1
p, a2

p, · · ·, ar
p is the pth power

of an element in the derived group of {a1, · · ·, ar}.
From (12.4.3) we have

where S1 is in the derived group of {ap, bP} and S3 in the derived group of
(ab)p, S2

p. By the lemma these are pth powers of elements in the derived group
of {a, b}, whence

and applying induction (12.4.4) holds for n = p2. The same procedure and use
of lemma enables us to prove (12.4.4), going from n = pα to n = pα+1.

THEOREM 12.4.3. If P is a regular p-group then with n = pα.
1) Each of (an,b) = 1 and (a,b)n = 1 implies the other.
2) If (an,b) = 1, then (a,bn) = 1.
3) A commutator S involving an element u has order at most that of u

modulo the center of P.
4) The order of a product a1 a2 · · · ar cannot exceed the order of all of

a1, a2, · · ·, ar.

Proof: In an Abelian group the first three properties are vacuously true and
the fourth is true. We shall assume by induction that the theorem holds for all
proper subgroups of P, and we also take P to be non-Abelian.

Let us apply (12.4.4) to

with s in the derived group of K(a, b−1ab) ⊂ H(a, b); this becomes



Now if (an, b) = 1, then the order of a modulo the center of H(a, b) is n or less,
whence by property (3) for the proper subgroup K(a, b−1ab) with u = a, every
commutator in K involves a and is of order at most n. The element s1 in
(12.4.9) is a product of commutators in K, and by (4) for K, the order of s1 is at
most n. Thus (an, b) = 1 implies s1

n = 1 in (12.4.9), and so, (a, b)n = 1.
Conversely, if (a, b)n = 1, then in K = K(a, a−b−1ab) = K (a, u) with u = (a, b),
the order of u modulo the center is at most n and every commutator involves u.
Thus by (3) for K, all commutators in K2 are of order at most n, and so by (4) in
K2, the order of s1 in (12.4.9) is at most n.

Thus (a, b)n = 1 implies S1
n = 1, and so, (an, b) = 1, This proves property

(1) for P, and of course (2) follows immediately from (1). Property (3) in P
follows from repeated application of (1). If the order of u modulo the center of
P is n, then a fortiori (un, v) = 1, whence (u, v)n = 1. Here, with x = (u, v) and
since xn = 1, it follows that (x, y)n = 1.

It remains to prove property (4) for P. If an = 1, bn = 1, then by (3), any
commutator involving a or b is of order at most n. Hence in (12.4.4), S1 is a
product of commutators of order at most n, and by property (4) for the proper
subgroup P2, S1 itself is of order at most n. Hence S1

n = 1, and so, (ab)n = 1.
Thus the product of two factors has order not exceeding that of both factors, and
by repetition it follows that the product of r factors has an order not exceeding
that of all the factors.

THEOREM 12.4.4. If an = bn with n = pα, then (a b−1)n = 1, and conversely.

Proof: In H(a,b) all commutators are of order at most n from property (3)
in Theorem 12.4.3. Hence in 1 = anb−n = (ab−1)ns1

n we have s1
n = 1, and so,

(ab−1)n = 1. Conversely, with anb−n = (ab−1)ns1
n and (ab−1)n = 1, we may write

H(a, b) = H(a, ab−1), and so by property (3) with u = ab−1, we have s1
n = 1 and

hence an = bn.

THEOREM 12.4.5. In a regular p-group P the (pα)th powers of the elements
form a characteristic subgroup Cα(P), the elements of order at most pα a
characteristic subgroup Cα(P).



Proof: With n = pα the relation of Theorem 12.4.1, anbn = (abs2)n, shows
that the (pα)th powers of elements form a subgroup Cα(P) which is necessarily
characteristic and in fact fully invariant. Property (4) of Theorem 12.4.3 shows
that elements whose orders are at most pα form a subgroup which will be fully
invariant.

12.5. Some Special p-Groups. Hamiltonian Groups.

THEOREM 12.5.1. The groups of order pn which contain a cyclic subgroup
of index p are of the following types:

Abelian,
, cyclic:

1) apn = 1.

2) apn−1 = 1, bp = 1, ba = ab.

Non-Abelian,
p odd, :

3) apn−1 = 1, bp = 1, ba = a1+pn−2b.
p = 2, ;

4) Generalized quaternion group.
a2n−1 = 1, b2 = a2n−2, ba = a−1b.

p = 2, 
5) Dihedral group.

a2n−1 = 1, b2 = 1, ba = a−1b
p = 2, 

6) a2n−1 = 1, b2 = 1, ba = a1+2n−2b.
p = 2, 

7) a2n−1 = 1, b2 = 1, ba = a−1+2n−2b.

Proof: An Abelian group of order pn which contains an element of order
pn−1 must have a basis element of order pn−l or pn. This settles the theorem for
Abelian groups, giving the first two cases.

In considering non-Abelian groups of order pn containing an element of
order pn−1, let us first suppose p odd. If apn−1 = 1, then {a} as a subgroup of



index p is a normal subgroup, and so for , we have bab−1 = ar, where r
 (mod pn−1), since our group is not Abelian. We find that biab−i = ari by

induction on i, since (bad−1)j = bajb−1 = arj for any j, and in particular for j = r
we have b(bab−1)b−1 = b2ab−2 = barb−1 = ar2. The general case biab−i = ari

follows readily by induction. As , we have bpab−p = a, whence rp ≡
1 (mod pn−1). Since p is odd, we may conclude from this congruence that r ≡ 1
+ kpn−2(mod pn−1), where  (mod p), since  (mod pn−1). Now
take b1 = bi, where i is determined by the congruence ik ≡ 1 (mod p). Then ri ≡
(1 + kpn−2)i ≡ 1 + ikpn−2 ≡ 1 + pn−2 (mod pn−1). Hence b1ab1

−1 = biab−i = ari =
a1+pn−2. Let us write h = 1 + pn−2. Then (ajb1)2 = ajb1ajb1

−1b1
2 = aj(1+h)b1

2, and
we find by induction that (ajb1)t = ajTbt, where T = 1 + h + · · · + ht−1. For t = p
we have 1 + h + · · · + hp−1 ≡ p + pn−2 [1 + 2 + · · · + (p — 1)] ≡ p + pn−1(p −
1)/2 ≡ p (mod pn−1) since p is odd. Thus (ajb1)p = ajpb1

p. This formula could
also have been found by an appeal to the collection formula. Now 

, where u = pv since b1 is not of order pn, and since the
group is not cyclic. If we put b2 = a−vb1, then b2

p = (a−vb1)p = a−v
pb1

p = a−pv apv

= 1, and also b2ab2
−1 = a−vb1ab1

−1av = a−va1+pn−2av = a1+pn−2. Thus a and b2
satisfy the relations given in the theorem as type 3 for non-Abelian groups with
p odd.

Let us now take p = 2 and find the non-Abelian groups of order 2n

containing an element of order 2n−1. Let a2n−1 = 1, . Then bab−1 = ar,
where r2 ≡ 1 (mod 2n−1),  (mod 2n−1). This gives three distinct choices
of r modulo 2n−1, r = −1, r = 1 + 2n−2, r = −1 + 2n−2. Also let 

. Then, since b(b2)b−1 = b2, we have awr = aw or wr ≡ w
(mod 2n−1) as a condition on w. For r = −1 we find −w ≡ w (mod 2n−1), whence
aw = 1 or aw = a2n−2. Thus with r = −1 we find the generalized quaternion group
or the dihedral group, types 4 and 5 in the theorem, respectively. For n = 3
these are the only groups, as we determined in §4.4.

Suppose now  and ba = arb, with r = 1 + 2n−2. With b2 = aw, the
condition on w that wr ≡ w (mod 2n−2) is merely that 2n−2w ≡ 0 (mod 2n−1) or
that w be an even number w = 2w1. Determine j by the congruence j(1 + 2n−3) +
w1 ≡ 0 (mod 2n−2). Then with b1 = ajb, we have b1

2 = aj(baj)b = aj(2+2n−2)b2 =



a2[j(1+2n−3)+w1
1 = a2n−1 = 1. Here b1a = a1+2n−2b1, and a and b1 satisfy the

relations of type 6 in the theorem. Finally, if n ≥ 4, ba = arb with r = −1 + 2n−2,
the condition on w in b2 = aw that w ≡ rw (mod 2n−1) is that (2 + 2n−2)w ≡ 0
(mod 2n−1) or w ≡ 0 (mod 2n−2). Thus b2 = 1 or b2 = a2n−2. If b2 = a2n−2, take b1

= ab and b2 = a(ba)b = a(a−1+2n−2 b2 = a2n−2a2n−2 = 1. Thus either a and b or a
and b1 satisfy the relations of type 7 in the theorem.

All the relations in Theorem 12.5.1 determine groups, as may be verified in
every case, except that of the generalized quaternion groups, by means of
Theorem 6.5.1. For the generalized quaternion groups, we may make a direct
verification or refer ahead to Theorem 15.3.1.

THEOREM 12.5.2. A p-group which contains only one subgroup of order p
is cyclic or a generalized quaternion group.

Proof: Let P be of order pn and contain only one subgroup of order p. We
prove by induction on n that P is cyclic or of generalized quaternion type. This
is trivial for n = 1. First, suppose p odd. Then by induction a subgroup P1 of
index p is cyclic, and so by Theorem 12.5.1, P is of one of types 1, 2, or 3 for p
odd, and of these types 2 and 3 contain more than one subgroup of order p.
Hence P is cyclic. When p = 2, if P contains a cyclic subgroup P1 of index 2,
then by Theorem 12.5.1, P is one of types 1 through 7 for p = 2, and each of
these contains more than one subgroup of order 2, except for the cyclic group
and the generalized quaternion group. Thus P is cyclic or of generalized
quaternion type.

There remains to be considered the case in which, by induction every
subgroup P1 of index 2 is generalized quaternion. We shall show that this
situation cannot arise. Here . First let n = 4 and a subgroup of index 2
be a quaternion group Q, and let c be an element not in Q. Q is given by a4 = b4

= 1, a2 = b2, ba = a−1b, and P = Q + Qc. The element c, being of order a power
of 2, must transform into itself at least one of the three subgroups of order 4 in
Q, {a}, {b}, {ab}. Relabeling if necessary, we may take this to be {a}. Then
c−1ac = a or c−1ac = a−1. If c−1ac = a, then {a, c} is an Abelian subgroup of
index 2, contrary to assumption. If c−1ac = a−1, then (cb)−1a(cb) = a, and {a,
cb} is an Abelian subgroup of index 2, contrary to assumption. This takes care
of n = 4.



Finally, suppose , and P1 a generalized quaternion subgroup of
index 2. Then P1 is given by a2n−2 = 1, b2 = a2n−3, ba = a−1b, and P = P1 + P1c.
Here {a} is the only subgroup of P1 of order 2n−2, all elements of P1 not in {a}
being of order 4. Thus c−1ac = ar, and c2 = aib or c2 = ai. If c2 = aib, then c−2

and r2 ≡ −1 (mod 2n−2) which is impossible. If c2 = ai then {a, c} is a subgroup
of index 2 and by assumption a generalized quaternion group. Then c−1ac = a−1,
(cb)−1a(cb) = a, and {cb, a} is an Abelian subgroup of index 2, contrary to
assumption. This completes the proof of the theorem in all cases.

THEOREM 12.5.3. A group of order pn which contains only one subgroup of
order pm, where 1 < m < n is cyclic.

Proof: If m = n − 1, then a group P of order pn with only one subgroup of
order pn−1 is generated by any element x not in the subgroup, since {x} is not
contained in the unique maximal subgroup, and so {x} = P and P is cyclic. This
proves the theorem for n = 3, the first value of n to which the theorem applies,
and for all cases with m = n − 1. We proceed by induction on n. We have
proved the theorem when m = n − and therefore we may assume m < n − 1.

Let P1 be the unique subgroup of order pm, and suppose P1 contained in a
maximal subgroup A of order pn−1. Since 1 < m < n − 1, by induction A is
cyclic, and so, P1 as a subgroup of A is also cyclic. Every subgroup of order p
or p2 is contained in a subgroup of order pm since m ≥ 2, and so, in P1. But P1,
being cyclic, contains a unique subgroup of order p and a unique subgroup of
order p2. Thus P contains a unique subgroup of order p and a unique subgroup
of order p2. By Theorem 12.5.2 P is cyclic or generalized quaternion. But the
generalized quaternion group contains more than one subgroup of order 4.
Hence P must be cyclic.

It is trivial that every subgroup of an Abelian group is normal. But the
quaternion group is an example of a non-Abelian group in which every
subgroup is normal. We call a group H Hamiltonian if H is non-Abelian and
every subgroup of H is normal.

THEOREM 12.5.4. A Hamiltonian group is the direct product of a
quaternion group with an Abelian group in which every element is of finite
odd order and an Abelian group of exponent two.



Proof: Let a and b be two elements of a Hamiltonian group H. Then the
commutator c = (a, b) = (a−1b−1a)b = bs = a−1(b−1db) = ar, since {a} and {b}
are both normal subgroups. Note that this implies that c permutes with a and
also with b. By (10.2.1).

and we may prove similarly by induction that

If a and b do not permute, then c = ar ≠ 1, and putting i = r or i = − r, whichever
is positive, then (ai, b) is either (c, b) or (c−1, b) and is the identity in either
event since c permutes with b. Then (ai, b) = 1 = (a, b)i = ci. Hence ci = 1 and
ari = 1, bsi = 1. Hence two elements of H which do not permute are of finite
order. If an element x of H permutes with both a and b, then xa does not
permute with b, and it follows that xa, and so also x, is of finite order. Thus
every element of H is of finite order.

Let a and b be elements of H which do not permute, and aN = 1, bM = 1,
where we suppose N and M minimal. If p is any prime divisor of N, then by the
minimality of N, ap permutes with b, and so, (ap, b) = (a, b)p = 1. The same
will hold for any prime dividing M. As c = (a, b) ≠ 1, there can be only one
prime dividing M and N, and M = pm, N = pn. Thus apn = 1, bpm = 1, c = (a, b),
cp = 1, where by symmetry we may assume n ≥ m. Further, since  and 

, c = ajpn−l = bkpm−1 where j,  (mod p).
In {a, b} the derived group is {c} and is in its center. Thus in {a, b} all

commutators of weight three or more are the identity. We may establish the
formula

by induction. It is true for i = 1, and we have



This proves the formula by induction for any group {a, b} in which (a, b) is in
the center. This formula is also a consequence of the collection formula.

If b1 = aubk, where u = − jpn−m, then {a, b1} = {a, b}, whence b1 does not
permute with a, and therefore by assumption, the order of b1 is at least as great
as that of b. The formula just established yields

whence

Here b1
pm−1 ≠ 1, but since cp = 1, we must have p = 2, n = 2. Thus the relations

on a and b are a2 = b2 = a−1b−1ab = c, c2 = 1, and {a, b} is the quaternion
group. This shows that any non-Abelian subgroup of H contains a quaternion
group.

We next show that H is the union of the quaternion group Q, given by a4 =
b4 = 1, a2 = b2, ba = a−1b, and the group Z of elements centralizing Q. If an
element x of H does not permute with a, then x−1ax = a−1 and xb permutes with
a. Similarly, if x (or xb) does not permute with b, then xa (or xba) permutes
with a. Hence one of the elements x, xb, xa, xba lies in Z. Hence H = Q ∪ Z =
QZ. We now show that Z cannot contain an element of order 4. For, if x4 = 1, 

, then (a, bx) ≠ 1. Since (bx)4 = 1, we have a1(bx)a = (bx)−1, whence
a−1bax = b−1x−1, giving x2 = 1. Since Z contains no element of order 4, Z cannot
contain a quaternion group, and it follows that Z is Abelian. Z ∩ Q = a2. By use
of Zorn’s lemma we find a subgroup Z1 of Z maximal with respect to the
property of not containing a2. Then we easily find that Z = Z1 + Z1a2, H = Q ×



Z1. Z1 is the direct product of an Abelian group U, whose elements are of odd
order, and an Abelian group V of exponent 2, since Z1 contains no element of
order 4. Thus H = Q × U × V.

Conversely, a group of the form Q × U × V is Hamiltonian, for Q is non-
Abelian. It suffices to show that every cyclic subgroup {quv} is normal. U and
V are in the center of Q × U × V, and we need only show that a and b transform
this group into itself. Here a−1(quv)a = qiuv, where i = 1 or 3. The order of u is
an odd number n, and the order of v is 2. Hence the congruences r ≡ i (mod 4),
r ≡ 1 (mod n) are solvable, and a−1(quv)a = (quv)r. This completes our
theorem.



13. FURTHER THEORY OF ABELIAN
GROUPS

13.1. Additive Groups. Groups Modulo One.

Any group may be written with the group operation designated as
addition. It is a common practice to write Abelian groups additively, and it is
particularly convenient to do so if there are operators. Also, certain groups
arise naturally in the addition of familiar systems. Two (which we shall
consider here) are the additive group of rational numbers which we shall
designate as r+ and the additive group of real numbers which we shall
designate as R+.

When we use the additive notation for groups, we shall change our
terminology appropriately, speaking of the sum of elements, Cartesian sums,
and direct sums.

A cyclic group in additive form consists of all the integral multiples na
of a generator a. The groups r+ and R+ are both aperiodic, since na = 0
implies a = 0. In an infinite cyclic group generated by a, there is no element x
such that 2x = a. Since for any a in r+ there is an x with 2x = a, it is clear that
r+ is not a cyclic group. But r+ is very nearly a cyclic group. Any finite set of
elements in r+ will generate a cyclic group. We describe this property by
saying that r+ is of rank one, or locally cyclic. More generally we shall say
that an Abelian group is of rank k if a subgroup generated by any finite
number of elements can be generated by at most k elements, although some
finitely generated subgroup requires k generators.

THEOREM 13.1.1. The additive group of rational numbers, r+, is locally
cyclic.



Proof: Consider a subgroup of r+ generated by the finite set of elements
a1/b1, · · ·, at/bt. Its elements will be the numbers m1a1/b1 + · · · + mtat/bt,
the m’s being arbitrary integers. These can be expressed in the form (m1a1b2
· · · + · · · + mtatb1 · · · bt−1)/b1b2 · · · bt. Here we readily verify that the
numerators form an additive subgroup of the additive group of integers,
which is cyclic. Hence these form a cyclic group consisting of all integral
multiples of some integer w. Thus our group consists of the numbers nw/b1b2
· · · bt and is a cyclic group.

In the group R+ the integers form a subgroup, which like all subgroups of
an Abelian group is a normal subgroup. In the factor group all numbers
differing by integers are identified, and so we speak of the factor groups as
the group R+ modulo 1. Similarly, r+ has a factor group r+ modulo 1, which
is, of course, a subgroup of R+ modulo 1.

The group r+ (mod 1) is a periodic group, since if a/b is any rational
number (a, b being integers), we have b(a/b) ≡ 0 (mod 1). By Theorem 3.2.3,
r+ (mod 1) is the direct sum of its Sylow subgroups S(p). An S(p) of r+ (mod
1) we designate as Z(p∞). Z(p∞) is generated by the infinite set 1/p, 1/p2, · ·
·, 1/pi · · · (mod 1). An element of Z(p∞) is of the form m/pn, (m, p) = 1, and
such an element generates the same cyclic group as 1/pn. Hence a subgroup
of Z(p∞) is either finite or contains infinitely many of the set 1/p, 1/p2, · · ·,
1/p, · · · (mod 1), and so it is the entire group Z(p∞). Thus Z(p∞) is an
infinite group, all of whose proper subgroups are finite cyclic groups.

13.2. Characters of Abelian Groups. Duality of
Abelian Groups.

Given an arbitrary Abelian group A. A character χ of A is a
homomorphism of A into the group R+ (mod 1). Thus our definition is

Here the addition a1 + a2 is the addition in A, the addition of the values of the
characters is, of course, in R+ (mod 1). We shall also define an addition of



characters. If χ1 and χ2 are two characters of A, we define

Then χ3 is also a character of A, since

We readily verify that if we use (13.2.2) to define an addition

then, with respect to the addition (13.2.4), the characters themselves form an
additive group A* whose zero element is the character which maps every
element of A onto zero.

THEOREM 13.2.1. The character group A* of a finite Abelian group A is
isomorphic to A.

Proof: For any homomorphism we must have χ(0) = 0. Hence for an
element a of finite order m, we have mχ(a) = χ(ma) = χ(0) = 0. Thus χ(a)
must have one of the m values 0, 1/m, · · ·, (m − 1)/m (mod 1). In a finite
Abelian group it is clear that a character is completely determined if it is
known for a basis. Let ai, i = 1, · · ·, r be a basis of A where ai is of order ni,
and A is of order n = n1n2 · · · nr. Since there are at most ni choices for χ(ai),
we see that there are at most n = n1n2 · · · nr different characters for A. But
we easily see that there are indeed this many. For if we put χi(ai) = 1/ni,
χi(aj) = 0. j ≠ i, we can show that for each i = 1, · · ·, r this defines a
character and that the correspondence  determines an
isomorphism between A and A*. We note, however, that the isomorphism
between A and A* is not uniquely determined but depends upon a particular
choice of a basis for A.

The following theorem is true for any Abelian group, finite or not:



THEOREM 13.2.2. Let H be a subgroup of the Abelian group A. Then the
characters of A for which χ(h) = 0 for every  are precisely the
characters of the factor group A/H.

Proof: If a character assigns 0 to every element of H, then it assigns the
same value to every element of a coset H + x. We may take this as assigning a
value in R+ (mod 1) to the coset as an element of the factor group A/H. This
is readily seen to be a character for A/H. Conversely, A → A/H is a
homomorphism which when followed by a homomorphism into R+ (mod 1)
yields a homomorphism of A into R+ (mod 1). This will be a character of A in
which all elements of H go onto the zero of A/H, which is in turn mapped
onto 0.

COROLLARY 13.2.1. If a ≠ 0 in a finite Abelian group A, then there is a
character of A for which χ(a) ≠ 0.

For if this were not so, then every character of A would be a character of
the factor group A/{a}, and by Theorem 13.2.1, A* would be isomorphic both
to A and also to A/{a}, which is, of course, of lower order.

A duality between groups A and B is a one-to-one correspondence 
 between subgroups H of A and subgroups K of B which reverses

inclusions; i.e., if  and  and if H1 ⊃ H2, then K1 ⊂
K2, and conversely, if K1 ⊂ K2, then H1 ⊃ H2. There is a natural duality
between a finite Abelian group A and its character group A*, which is given
in the following theorem.

THEOREM 13.2.3. There is a duality between a finite Abelian group A
and its character group A* given by the rule  where, given H a
subgroup of A, K consists of all characters of A such that χ(h) = 0 for every

, and given K a subgroup of A*, H consists of all elements of A such
that χ(h) = 0 for every . A is dual to itself.

Proof: With every subgroup H of A, let us associate the subgroup H* of
A* consisting of all those characters χ such that χ(h) = 0 for every . If
H1 ≠ H2 are distinct subgroups of A, then one of H1, H2 (say, H1) contains an
element b not contained in the other. Then, by Theorem 13.2.2, H2* is the



character group of A/H2, and by Corollary 13.2.1, there exists a 
such that χ(b) ≠ 0. Hence H1* ≠ H2*. Since A and A* are finite and
isomorphic, it follows that the mapping H → H* is a one-to-one
correspondence between the subgroups of A and those of A*, and in
particular, that every subgroup K of A is of the form K = H* for a unique
subgroup H of A. If  and ,
then H1 ⊃ H2 implies K1 ⊂ K2, since χ(h) = 0 for every  implies a
fortiori χ(h) = 0 for every . Similarly, K1 ⊂ K2 implies H1
⊃ H2. Thus the correspondence of the theorem is a duality between A and A*.
The isomorphism between A and A* then leads to a duality of A with itself.

THEOREM 13.2.4. An Abelian group which is periodic and has all its
Sylow subgroups finite is self dual.

Proof: If A is a periodic Abelian group whose Sylow subgroups are
finite, then an S(p) as a finite Abelian group is self-dual. Let us write this 

 where, for Hp any subgroup of S(p), the dual subgroup is .
Now if H is any subgroup of A, then H is the direct sum of its Sylow

subgroups Hp. Then let us put . This is easily seen to be a

duality of A. Note that this argument does not work if we take without
restriction a direct sum of finite Abelian groups because in general such a
direct sum will have many subgroups which are not the direct sum of
subgroups of the summands. It has been shown by Baer [6] that the Abelian
groups which possess duals are precisely those covered by this theorem.

13.3. Divisible Groups.

An additively written Abelian group A is said to be divisible if, for every
 and integer n, there is an element  such that nx = a.

THEOREM 13.3.1. A divisible group is a direct summand of every
Abelian group A which contains it.



Proof: Suppose we are given an Abelian group A and a divisible
subgroup D. We wish to show the existence of a subgroup B such that

For this proof it is convenient to make use of Zorn’s lemma which we
discussed in §1.8. If U1 ⊂ U2 ⊂ U3 ⊂ · · · is an ascending chain of subgroups
of A such that D ∩ Ui = 0, then  also has the property that D ∩
U = 0. Hence, by Zorn’s lemma, A contains a subgroup K maximal with
respect to the property that K ∩ D = 0. We may take B = K in (13.3.1) if it
can be shown that D ∪ K = A. Suppose that x is an element of A not in K ∪ D.
Then by the maximality of K, {x} ∪ K has a nonzero element in common with
D. Hence for some non-negative integer n and , we have 

, d ≠ 0. Here n ≠ 0, since D ∩ K = 0. And if n = 1,
then , contrary to assumption. Since D is divisible, d = nd1
with , and n(x − d1) = −k. Putting x1 = x − d1 then if 
, also , contrary to assumption. The elements of K ∩ {x1} are
of the form mx1 + k, 0 ≤ m < n. By the maximality of K there must be an
element common to {x1} ∪ K and D, n1x1 + k1 = d = n1d2, with 

. Here, with x2 = x1 − d2, we have 
, and if , then also 

. This process leads to a contradiction because we
ultimately find an ni = 1, whence xi, xi−1 · · ·, x1 and x all belong to K ∪ D,
contrary to assumption. Thus K ∪ D = A and our theorem is proved.

See Kaplansky [1] for a proof that every divisible group is a direct sum
of groups isomorphic to r+ or groups Z(p∞).

13.4. Pure Subgroups.

We say that H is a pure subgroup of the Abelian group A if it is true that
whenever  for some , then there is an 
such that nh1 = h. Thus the property of being pure is a sort of relative
divisibility, division being possible in H if it is possible at all. A divisible
group is certainly a pure subgroup of any Abelian group containing it. A



direct summand is a pure subgroup. But although a divisible group is
necessarily infinite, there can be pure subgroups in finite groups, and hence
the concept is useful in the study of finite groups.

The periodic subgroup of an Abelian group is pure, since if nx = h where
h is of finite order, then x, if it exists, must also be of finite order. The union
of an ascending chain of pure subgroups will be pure, for if h is any element
of such a union, then h is an element of one of the groups in the chain and so
nx = h will have a solution in the chain.

Theorem 13.4.1 shows that in a great many cases, a pure subgroup is
indeed a direct summand.

THEOREM 13.4.1. Let A be an Abelian group, H a pure subgroup, and
suppose that A/H is the direct sum of cyclic groups. Then H is a direct
summand of A.

Proof: We first prove a lemma.

LEMMA 13.4.1. If H is a pure subgroup of A, and the element y is in A/H,
then there is an element x of A mapping onto y in the homomorphism A →
A/H of the same order as y.

If y is of infinite order, then any x mapping onto y will do. If ny = 0 and u
→ y, then nu → 0, . But then, by the purity of H, h = nh1.
Here put x = u − h1. Then x → y and nx = n(u − h1) = nu − nh1 = h − h = 0,
as we wished to show.

The proof of the theorem is now fairly simple. Let A/H be the direct sum
of cyclic groups generated by basis elements yi, . Choose in A
elements xi → yi where in every case we have chosen xi of the same order as
yi, this choice being possible by the lemma. Let K be the subgroup generated
by the xi. If a relation  holds in A,
then in A/H we have ni1yi1 + · · · + nisyis = 0, and so as the y’s are a basis for
A/H, we have niyi = 0 for each of these terms. But since the x’s are of the
same order as the y’s, then also xixi = 0 for each of the terms and also the h is
zero. Hence K ∩ H = 0. Also K ∪ H = A, since K contains one element from
each coset of A. Thus A = H ⊕ K, as was to be proved.



13.5. General Remarks.

For a more detailed study of Abelian groups the reader is referred to
Kaplansky’s monograph [1] and to Part II of Kurosch’s book [2]. A
particularly useful feature of Kaplansky’s monograph is a section discussing
the literature.

In general, Theorem 3.2.3 reduces the study of periodic groups to that of
primary groups. One of the major results on primary groups is the Theorem
of Ulm, which fully characterizes countable primary Abelian groups in terms
of certain cardinal numbers, the “Ulm invariants” of the group.

The direct sum of infinite cyclic groups is called a free Abelian group.
Every Abelian group with r generators is the homomorphic image of the free
Abelian group with r generators. Every subgroup of a direct sum of cyclic
groups is itself a direct sum of cyclic groups, and in particular, a subgroup of
a free Abelian group is free Abelian.

As remarked in §13.3, every divisible group is the direct sum of groups
isomorphic to r+ and of groups isomorphic to various Z(p∞)’s. Every Abelian
group can be embedded in a divisible group, and so in a certain sense, the
study of all Abelian groups is the study of subgroups of divisible groups.
Thus a torsion-free (i.e., aperiodic) group of rank one is a subgroup of r+.

An Abelian group which contains both elements of finite and elements of
infinite order is called mixed. Examples show that in general a mixed group
is not the direct sum of its periodic subgroup and a torsion-free group. But
since the periodic subgroup is pure, Theorem 13.4.1 will often give the
decomposition of a mixed group as the direct sum of the periodic part and
another group.



14. MONOMIAL REPRESENTATIONS
AND THE TRANSFER

14.1. Monomial Permutations.

Let us consider a set S of indeterminates u1, · · ·, un which may be
multiplied on the left by elements of a group H. We postulate the rules

1 the identity of H ; and

A monomial permutation M is a mapping ui → hijuj, i = 1 · · · n, j = j(i),
where ui → uj is a permutation of S. For the product of two mappings M1 and
M2, if M1 is ui → hijuj and M2 is uj → hjkuk, we define M1M2 as ui →
(hijhjk)uk. Under this definition the mappings form a group whose identity is
the mapping ui → ui. If we associate with the mapping M1:ui → hijuj the
matrix (hij), which has for its ith row hij in the jth column and zeros
elsewhere, then the rule for multiplying the mappings is the same as the
ordinary matrix multiplication.

In the group M of all monomial permutations the multiplications ui → hiiui
form a normal subgroup D, and the factor group M/D is the symmetric group
of permutations of u1 · · · un. More generally, if G is a subgroup of M, then if 

 is, ui → hijuj, g → g*:ui → uj is a homomorphism of G onto a group
of permutations whose kernel is G ∩ D.

We shall say that a monomial permutation group G is transitive if the
corresponding permutation group is transitive.



THEOREM 14.1. Let G be a group with a subgroup K and G = K + Kx2 · ·
· + Kxn. Also let K → H be a homomorphism of K onto a group H. Then a
transitive monomial representation of G with H as multipliers is given in
the following way: For  let xig = kijxj, i = 1, · · ·, n, j = j(i), 
. Also let kij → hij in the homomorphism K→H. Then π(g): ui → hijuj is a
transitive monomial representation of G with H as multipliers. Conversely,
every transitive monomial representation is of this type or is conjugate
under the group of multiplications D to a representation of this type.

Proof: Given G, the left coset representation G = K + Kx2 + · · · + Kxn
and the homomorphism K → H. Let g1 and g2 be any two elements of G. Then,
if xig1 = kijxj and xjg2 = kjsxs, we have xi(g1g2) = kijkjsxs, whence we see that
π(g1g2) = π(g1)π(g2) for the corresponding monomial permutations, whence
we have a representation of G (of course not necessarily faithful). The
corresponding permutation group is the permutation group of left cosets
discussed in §5.3 and is, of course, transitive.

Conversely, let us consider any transitive monomial representation R of G,
, g → π(g): ui → hijuj. Let us select a particular letter u1 and consider

all elements k of G such that π(k) maps u1 onto h11u1 for some .
These form a subgroup K. By the transitivity of R, for each i = 2, · · ·, n there
is an element xi such that π(xi) takes u1 into h1iui. Then we see easily that

If we transform R by the multiplication d:u1 → u1, · · ·, ui → h1i
−1ui, then in

d−1Rd we see that d−1π(xi)d takes u1 into ui. Let us consider R* = d−1Rd. Here,
if for , π(k) takes u1 into hu1, π(xi

−1kxj) takes ui into huj, and
conversely. Thus in R* every h that occurs as a multiplier at all occurs in K.
These may indeed be a proper subgroup H1 of the group H originally used.
But if π(k) takes u1 into hu1, then k→ h is a homomorphism of K onto H1.
Moreover, if π(g) takes ui into hijuj, then π(igxj

−1) takes u1 into hiju1, whence 
 and kij → hij in the homomorphism of K onto H1.

We note in passing that changing the representatives of the left cosets of K
in G yields another monomial representation conjugate to the first under the



group D of multiplications.

14.2. The Transfer.

Suppose we have a monomial representation R of a group G with
multipliers from H:

Suppose further that the number n of letters is finite. Then the mapping

is easily seen to be a homomorphism of G onto the factor group H/H′, where
H′ is the derived group of H. Let us take in particular the case where we have
H = K:

Here we have, if ϕ(z) = xj for z = kxj, ,

and VG→K(g) is a homomorphism of G into K/K′. This homomorphism is
called the transfer (in German: Verlagerung) of G into K. If H is a
homomorphic image of K, then the mapping of (14.2.2) is a homomorphic
image of the transfer, since if K → H, K/K′ is mapped onto H/H′, K′ being a
fully invariant subgroup of K. The chief properties of the transfer are given by
Theorem 14.2.1.

THEOREM 14.2.1.

1) The mapping g→VG→K(g) is a homomorphism of G into K/K′.



2) The transfer VG→K(g) is independent of the choice of representatives
xi.

3) If G ⊃ K ⊃ T, then VG→T(g) = VK→T[VG→K(g)].

Proof: We have already observed the first property as a consequence of
the theory of monomial representations. But we shall prove all three
properties directly from the definition (14.2.4) of the transfer. For the first
property we observe that if xig1 = kijxj, i = 1 · · · n, xjg2 = kjsxs, j = 1 · · · n,

then , 

, and ,

where = kis* = kijkjs. For the second property if xi* = aixi is the relation
between the first and second choice of representatives and if xig = kijxj, then
xi*g = aixig = aikijxj = aikijaj

−1xj*; then in the first case V(g) is 

, and in the second case is 

. For the third property let

Then

Here, for , let xig = kijxj and yrkij = tijrsys.
Thus



Then

Now

Hence

We note here that, as the transfer of K onto T maps K′ onto the identity, there is
no ambiguity in the transfer of VG→K(g) into T, although this is an element of
K/K′ rather than of K.

14.3.A Theorem of Burnside.

THEOREM 14.3.1. If a Sylow subgroup P of a finite group G is in the
center of its normalizer, then G has a normal subgroup H which has the
elements of P as its coset representatives.

Proof: We begin with a lemma.

LEMMA 14.3.1. If two complexes K1 and K2 are normal in a Sylow
subgroup P of G and are conjugate in G, then K1 and K2 are conjugate in
NG(P).



Proof of the lemma: Suppose x−1K1x = K2 with . As K1 is normal
in P, then K2 = x−1K1x is normal in x−1Px = Q. Thus both P and Q are
contained in the normalizer of K2, and hence as Sylow subgroups are
conjugate in NG(K2). Hence y−1Qy = P for some y with y−1K2y = K2. Thus for
z = xy, z−1Pz = P, z−1K1z = K2, proving the lemma. For the proof of the
theorem, since P is in the center of NG(P), P is Abelian and P′ = 1. Let us
consider VG→P. Let . In calculating VG→P(u), let us use as
representatives of P in G, xi, xiu · · · xiur−1 if  but 
for j < r. Here xiuj−1 · u · ϕ(xiuj)−1 = xiuju−jxi

−1 = 1 for j < r and xiur−1 · u ·
ϕ(xiur)−1 = xiurxi

−1. Hence, for each cycle of length r in representing u on the
left cosets of P, there is a term xiurxi

−1 in the product for VG→P(u) and the rest

are the identity. Thus . Now 

is conjugate to ur in G, and as P is Abelian, both elements are normal in P. By
the lemma xiurxi

−1 = y−1ury with . By hypothesis P is in the
center of its normalizer, whence y−1ury = ur. Hence 

, where n = [G:P] is the sum of the lengths
of all the cycles. Since P is a Sylow subgroup of order, say, ps, it follows that 

. Thus, in the transfer of G onto P, P is mapped
isomorphically onto itself and VG→P(G) = P, since trivially the transfer can
be no larger than P. The kernel of this homomorphism must be a group H of
index ps in G and of order n = [G:P]. Hence H is a normal subgroup of index
ps, and so the elements of P can be taken as the coset representatives of H.

COROLLARY 14.3.1. The order of a finite simple group is either divisible
by 12 or by the cube of the smallest prime dividing its order.

Proof: Let p be the smallest prime dividing the order of the simple group
G, and suppose that a Sylow p-group P is of order p or p2 and hence Abelian.
By the theorem, unless NG(P) induces a nontrivial automorphism in P, then G
has P as a factor group. If P is of order p, its automorphisms are of order
dividing p − 1, and so of orders less than p. If P is cyclic of order p2, the



automorphisms are of order dividing p(p − 1), and if noncyclic of order p2, of
order (p2 − 1) (p2 − p) = p(p − 1)2 (p + 1). No one of these numbers is
divisible by a prime greater than p if p is odd, since p + 1 = 2[(p + 1)/2], and
hence no nontrivial automorphism can be induced by NG(P). If p = 2, then in
the last case p + 1 = 3 and NG(P) can induce an automorphism of order 3 in P
only if the order of NG(P) is divisible by 12.

14.4. Theorems of P. Hall, Grün, and Wielandt.

The following theorems have as their main content the relationship
between the Sylow p-subgroups of a group G and the factor groups G/K of G
which are p-groups.

To describe these relationships, we introduce the concepts of strong and
weak closure.

DEFINITION: If H is a subgroup of G and B is a subgroup of H, we say
that B is strongly closed in H (with respect to G) if H ∩ Bx ⊆ B for Bx =
x−1Bx, any , and that B is weakly closed in H if Bx ⊆ H implies Bx =
B.

We say that a group G is p-normal if the center Z of a Sylow p-subgroup P
is the center of every Sylow p-subgroup P1 which contains it. This is a
special case of weak closure, being equivalent to the assertion that the center
Z of P is weakly closed in P with respect to G. For suppose that G is p-
normal. Then let  be such that Zx ⊆ P. Then Z is contained in P1 =
Px−1. By p-normality Z is the center of P1. But then Zx is the center of 

, whence Zx = Z, and so Z is weakly closed in P. Conversely,
suppose that Z is weakly closed in P, and that Z ⊆ P1, another Sylow
subgroup. Then for some , . Then Zx ⊆ P. By weak
closure Z = Zx. But if Z1 is the center of P1, then  is the center of 

. Hence , and Z = Z1 is the center of P1,
whence G is p-normal.

It is clear that strong closure implies weak closure. A weakly closed finite
subgroup B of H must be normal in H. A subgroup of H generated by all x’s
satisfying some equation xk = 1 will be weakly closed, and if these x’s form a



subgroup X, then X will be strongly closed in H. This will be the case if H is
a regular p-group, and also under certain other circumstances.

We shall write the transfer VG→H(g) as V(g) when no ambiguity may
arise. Here if

We may also replace congruences modulo H′ by congruences modulo H0,
where H0 is any subgroup of H containing H′, so that H/H0 is Abelian. All
congruences we use will be modulo H0.

For  and i = 1, · · ·, n define ig as that one of 1, · · ·, n such that 
. Then for a fixed g, i → ig is the permutation π(g) of the

transitive permutation representation of G on the left cosets of H. Thus we
may write

There will be a number of cycles in the permutation π(g), including fixed
letters as cycles of length one. Choose one value from each cycle and call this
set CH(g). For  let ri be the order of the cycle in which i appears.
Then

which merely says that the total length of the cycles is n.

LEMMA 14.4.1.

Here xigr
ixi

−1 is the first power of xigxi
−1 which lies in H.



Proof: In a cycle of π(g) beginning with i we have i, ig, · · ·, igr
i
−1 all

different, and we may take xi, xig, · · ·, xigr
i
−1 as representatives of the

corresponding cosets of H. These cosets make the contribution

to V(g), since ϕ(xigs) = xigs, s = 1 · · · ri − 1, ϕ(xigr
i) = xi. Since 

for s < ri, xigr
ixi

−1 is the first power of xigxi
−1 which lies in H.

We shall call the contribution of the cycles of length one to V(g) the
diagonal contribution d(g) and write

Here, as with V(g), d(g) is independent modulo H0 of the order of the factors
and the choice of the coset representatives xi.

LEMMA 14.4.2. If u and v are conjugate in G, then d(u) ≡ d(v). Also
d(u−1) ≡ [d(u)]−1.

Proof: Let v = t−1ut. Then iu = i is equivalent to itv = it, and so by
definition,

This follows since xitt−1xi
−1 and xitxit

−1 are in H and are inverses of each
other. Also, since i = iu is equivalent to i = iu−1, we have



For  define d*(h) ≡ h−1d(h). Then h ≡ d(h)[d(h)]−1 ≡ d(h)d*(h−1)
by Lemma 14.4.2, which also gives d(hr) ≡ d(xihrxi

−1), and so if 
, we get

and so finally by Lemma 14.4.1, we have:

LEMMA 14.4.3. If , then

COROLLARY 14.4.1. If  for all , then for any
, V(h) = hn.



Fig. 6. A theorem of Philip Hall.

Let p be a prime, G1 any finite group, and define G = up(G1) to be the
group generated by all elements of G1 of order prime to p. Thus G1/G is the
maximal p-factor group of G. Let P1 be a Sylow p-subgroup of G1, N1 its
normalizer in G1, and H1 any subgroup of G1 containing N1. Let us put P = P1
∩ G, N = N1 ∩ G, H = H1 ∩ G, so that G1 = GP1 = GN1 = GH1 and P1/P =
N1/N = H1/H = G1/G. G is a fully invariant subgroup of G1, and we note that P
is a Sylow p-subgroup of G, and that N normalizes both P1 and G, whence N
normalizes P1 ∩ G = P. Now up(G) = G since G is generated by elements of
order prime to p, but it may happen that up(H) ⊂ H. Let us suppose that up(H)
⊂ H. Here up(H) is a fully invariant subgroup of H, and H is normal in H1.
Indeed, since H1/H is a p-group, it is evident that up(H) = up(H1). Let us
define



Here Hp is the group generated by pth powers of elements of H, and (H, H1) is
the group generated by commutators (h, h1), , . Since
H1/up(H) is a p-group, and these three groups are characteristic subgroups,
their union is their product. Since up(H) = up(H1), H1/up(H) is a p-group and
so nilpotent. Thus (H, H1)/up(H) is a proper subgroup of H/up(H). Moreover,
since Hp is contained in any subgroup T such that H ⊃ T ⊃ (H, H1)up(H) with
[H: T] = p, it follows that if up(H) is a proper subgroup of H, then also H0 is a
proper normal subgroup of H and H/H0 is a p-group. We consider the
problem: What elements of P must be adjoined to H0 to give H?

LEMMA 14.4.4. H is generated by H0 together with the set of all elements
d*(u) with .

Proof: Here we have as before

and we note that with our particular choice of H0, H0 ⊇ (H, H1) ⊇ (H, H) =
H′, surely H/H0 is Abelian. Since , we surely have all 

. Thus . To prove
H ⊆ K, we use the fact that since H/H0 is an Abelian p-group, V(w) ≡ 1 (mod
H0) for every element w of G whose order is prime to p. But by our
construction G is generated by such elements, whence V(u) ≡ 1 (mod H0) for
every . Hence a fortiori  for every . Now for 

, by Lemma 14.4.3,



Here  by definition, and v = xiu−r
ixi

−1 is a p-element of H,
whence for some , , and so d*(v) ≡ v−1d(v) ≡ v−1d(y−1vy)
by Lemma 14.4.2, and so

But  and  by definition, whence 
. It then follows that for ,

But (n, p) = 1 and every element of P is an nth power of some other element
of P. Thus P ⊆ K, and since H/H0 is a p-group and P a Sylow p-subgroup of
H, we have H = H0 ∪ P ⊆ K, proving H = K and thus the lemma.

Since  and H = H1 ∩ G, G ∪ H1 = G1, we may use the left coset
representatives 1, x2, · · ·, xn of H in G as left coset representatives of H1 in
G1. Thus G1 = H1 + H1 + H1x2 + · · · + H1xn. Hence, writing G in terms of
double cosets of H1 and P1, we have

where 1, t1, · · ·, ts are a subset of 1, x2, · · ·, xn. Let π(i = 1, · · ·, s) be the
transitive permutation representation of P1 on the cosets of H1 in H1tiP1. Here
πi is of degree greater than one, since otherwise H1tiP1 = H1ti and then tiP1ti

−1

⊆ H1, but then by Sylow’s theorem, tiP1ti
−1 = y−1P1y for some ,

yielding , whence  which is not the case. Thus
the representation πi of P1 is not the identity, and thus its kernel Ki is properly
contained in P1 and πi faithfully represents P1/Ki. As P1/Ki is a p-group, its
center is not the identity. Hence we may choose an element  such that
πi(zi) is of order p and in the center of πi(P1). Here πi(zi) permutes with every
πi(u) for . Now an element in the center of a transitive permutation
group cannot fix one letter without fixing all letters. Hence πi(zi) fixes no one
of the cosets of H1tiP1 and consists exclusively of cycles of length p. For any 



, πi(u) permutes with πi(zi) and so if πi(u) leaves fixed any
coset, say, H1xj+i contained in H1tiP1, then it must also fix all the cosets
H1xj+1, · · ·, H1xj+p in the cycle of πi(zi) to which H1xj+1 belongs. Hence we
may write for ,

where

and

where xj+1, · · ·, xj+p are, as above, representatives of the cosets of a cycle of
πi(zi) for some i. Here the single factor u = 1 · u · 1−1 is the contribution to
d(u) from H1. We note also that with , since 

, , we have , whence , and
so these are indeed the factors entering into d(u). Now d*(u) = u−1d(u),
whence

With Lemma 14.4.4 this relation immediately establishes:

LEMMA 14.4.5. H is generated by H0 together with all the dj(u) for
.

Consider one of these dj(u) in more detail, writing wk = xj+k, k = 1, · · ·, p
for convenience of notation.

with subscripts mod p. Thus



with . Also

Now

But the , the , and since (H1, H) ⊆ H0, we have

Now P is normal in P1, whence , and so for u1 = (u, zi) the
diagonal contribution to d(u1) from the cosets Hwk, k = 1, · · · p will be
hk

−1hk−1 mod H0, k = 1, · · · p. Thus, from wkuwk
−1 ≡ hk (mod H0), k = 1, · · ·

p, we conclude that wk(u, zi)wk
−1 = hk

−1hk−1 (mod H0), k = 1, · · ·, p. Now
with u = u0, u1 = (u, zi), u2 = (u1, zi), and recursively, us+1 = (us, zi). We have
seen that if

then

Hence, by induction on s,

the exponents being the binomial coefficients with alternating signs. From the
properties of binomial coefficients and the fact that Hp ⊆ H0, we have



Thus

with , . If we write

then Lemma 14.4.5 tells us that H can be obtained by adjoining for all 
certain elements of the form xj+kep(u, zi)xj+k

−1 which belong to H; i.e., certain
diagonal coefficients of the ep(x, zi) for i = 1, · · ·, s and . Since these
coefficients are p-elements lying in H, and P is a Sylow p-subgroup of H, we
may transform them by elements of H so that they lie in P. This will not affect
them mod H0 since H/H0 is Abelian.

This proves our main theorem.

THEOREM 14.4.1 (P. HALL). Let G1 be any finite group, P1 a Sylow p-
subgroup, N1 its normalizer, and H1 a subgroup containing N1. Let G =
up(G1) be the subgroup generated by all elements of G1 of orders prime to
p, and put H = G ∩ H1, N = G ∩ N1, P = G ∩ P1. Then up(H1) = up(H), and if
up(H) ≠ H, H0 = Hp(H1, H)up(H) is a proper subgroup of H, and H can be
obtained by adjoining to H0 certain conjugates lying in H of elements

 where  and zi, i = 1, · · · s are

elements in P1. If

is a decomposition of G1 into double cosets of H1 and P1, let πi, i = 1, · · · s
be the transitive representation of P1 on the cosets of H1 in H1tiP1. Then πi
is not of degree one, and we choose zi so that πi(zi) is of order p in the
center of πi(P1).



COROLLARY 14.4.2. If ep(u, z) = 1 for all u, , then up(N1) = N =
up(G1) ∩ N and G1/up(G1) = N1/up(N1). This will happen in particular if the
class of P1 is less than p.

Here we have taken H1 = N1 and so H = N.
Suppose that Q1 is a weakly closed subgroup of P1. Then, as we have

already remarked, Q1 is normal in the normalizer N1 of P1, and so we may
take the normalizer of Q1 as a subgroup H1 ⊇ N1. Then the preceding theorem
will give a result which is an improvement of a theorem of Wielandt’s [3],

THEOREM 14.4.2 (HALL-WIELANDT). Let P1 be a Sylow p-subgroup of G1
and Q1 be a weakly closed subgroup of P1. Let N1 be the normalizer of P1
and H1 the normalizer of Q1. Then any one of the following conditions will
ensure up(H1) = H = up(G1) ∩ H1 whence G1/up(G1) = H1/up(H1).

1) ep(u, z) = 1 for all , all .
2) ep−1(u, z) = 1 for all u, .
3) Q1 ⊆ Zp−1(P1) the (p − 1)st term of the ascending central series for

P1.

Proof: As in the proof of Theorem 14.4.1, let Ki be the kernel of the
representation πi of P1 on the cosets of H1tiP1. Suppose, if possible, that Q1 ⊆
Ki. Then H1tiQ1 = H1ti, and so tiQ1ti

−1 ⊆ H1. Thus tiQ1ti
−1 is a p-subgroup of

H1, and there exists a  such that y−1tiQ1ti
−1y ⊆ P1 which is a Sylow

p-subgroup of H1. By the weak closure of Q1 this means y−1tiQ1ti
−1y = Q1, and

so , the normalizer of Q1 and also , which is not the
case. Hence . Now Q1 is normal in P1, and so the image of Q1 in
P1/Ki is a normal subgroup and must therefore contain elements of its center.
Hence we may choose our elements zi in Q1. This gives the first condition,
where we note that it would be sufficient to take , but
a priori we do not know which subgroup of P1 is P. The third condition
implies the first, for if Q1 ⊆ Zp−1(P1), then  and 

, , and continuing,



As to the second condition, ep(u, z) = ep−1(u, z), where u1 = (u, z), and for 
, , whence also the second condition implies the first.

COROLLARY 14.4.3. Let Q1 be a characteristic subgroup of P1. If Q1 is
not weakly closed in P1, then there is another Sylow p-subgroup P2 which
contains Q1 but in which Q1 is not normal. This must be the case if Q1
satisfies the conditions (1), (2), or (3) of the theorem, but G1/up(G1) and
H1/up(H1) are not isomorphic.

Proof: As Q1 is characteristic in P1, then Q1 is normal in N1. Hence N1 ⊆
H1, the normalizer of Q1. If Q1 is not weakly closed in P1, then for some x,
x−1Q1x ⊆ P1, but . If x−1Q1x were normal in P1, then by
Lemma 14.3.1, Q1 and x−1Q1x would be conjugate to each other in N1, which
is not the case. Hence x−1Q1x is in P1 but not normal in P1, and so Q1 is in P2

= xP1x−1 but not normal in P2. If Q1 satisfies the conditions (1), (2), or (3) of
the theorem, then the conclusion of the theorem can fail only because Q1 is not
weakly closed in P1.

The following theorems are somewhat more elementary than the preceding
theorems.

THEOREM 14.4.3. Let P be a Sylow p-subgroup of G, and G′ the derived
group of G. Then VG→p(G) ≅ P/P ∩ G′.

Proof: Since VG→P(G) is a homomorphism of G into P/P′, a p-group,
every element of order prime to p is mapped onto the identity. Since G is
generated by P and Sylow subgroups belonging to other primes, V(G) = V(P).

Suppose

By Lemma 14.4.1, for ,



and

Hence, as (n, p) = 1,  if , . But as
V(G) is Abelian, V(G′) ≡ 1. Hence the kernel of P → VG→P(P) is exactly P ∩
G′, and so VG→P(G) ≅ P/P ∩ G′.

THEOREM 14.4.4 (FIRST THEOREM OF GRÜN) [1]. Let P be a Sylow p-
subgroup of G. Then VG→P(G) ≅ P/P*, where

Proof: From Theorem 14.4.3 we know that VG→P(G) ≅ P/P ∩ G′. From
its construction P* is the union of subgroups contained in P ∩ G′, and so P* ⊆
P ∩ G′. We must show that P ∩ G′ ⊆ P*. We prove that every element u in P
∩ G′ is also in P*, using induction on the order of u. Here, trivially, .

Let

be the decomposition of G into double cosets of P. We suppose 
. Then, by Lemma 14.4.1,

Here the contribution to V(u) from a double coset PyP is of the form



with v1 = 1 and . Also  if there are pt left cosets of P

in PyP. In considering the contribution w, we distinguish two cases: Case 1, t
≥ 1 in pt; Case 2, t = 0, pt = 1.

CASE 1. We have

Also, for v1 = 1, we have a factor , and since b ≤ t, we have 
. But also , and so

whence a fortiori

Since , V(u) ≡ 1 (mod P′), and thus V(yupty−1) ≡ 1 (mod P′).
But then yupty−1, since it belongs to P, is in the kernel P ∩ G′, and since t > 1,
it is of lower order than u, whence by our induction . Since
also by induction , we have

CASE 2. Here PyP = Py, and therefore Py ⊆ NG(P). Also

and



and a fortiori w ≡ u (mod P*). Hence in all cases

if wj is the contribution from PyiP which contains pt
j left cosets of P. Hence

where n = [G:P] is prime to p. But V(u) ≡ 1 for , and so 
. Thus un ≡ 1 (mod P*), and so , as we

wished to show.

THEOREM 14.4.5 (SECOND THEOREM OF GRÜN). If G is p-normal, then the
greatest Abelian p-group which is a factor group of G is isomorphic to that
for the normalizer of the center of a Sylow p-subgroup.

Proof: Let P be a Sylow p-subgroup of G, Z its center. Let G′(p) ⊇ G′ be
the smallest normal subgroup of G such that G/G′(p) is an Abelian p-group.
Then G = G′(p) ∪ P, since the order of G′(p) must contain every factor of the
order of G except for powers of p. If G* = P ∪ G′, then G′(p) ∪ G* = G. Also
G* ∩ G′(p) = G′, since G*/G′ contains only p-elements and G′(p)/G′ contains
only elements of orders prime to p. By Theorem 2.4.1, G/G′(p) = G*/G′ = P/P
∩ G′. Let N be the normalizer of P, and H the normalizer of Z. As Z is
characteristic in P, H ⊇ N. Now if H′(p) is the least normal subgroup of H
such that H/H′(p) is an Abelian p-group then, as with G, H/H′(p) = P/P ∩ H′.
Hence to prove our theorem, we must show P ∩ G′ = P ∩ H′. Trivially, G ⊇
H, G′ ⊇ H′, and P ∩ G′ ⊇ P ∩ H′. Thus we need to show P ∩ H′ ⊇ P ∩ G′ By
the First Theorem of Grün,

Since H ⊇ N, P ∩ H′ ⊇ P ∩ N′. We must also show for every  that



Write M = P ∩ x−1P′x. Then Z ⊆ NG(M) and x−1Zx ⊆ NG(M), since x−1Zx is
the center of x−1Px. Here Z is in a Sylow subgroup R of NG(M) and x−1Zx is in
a Sylow subgroup S of NG(M). Hence, for some , both Z and
y−1x−1Zxy are in the same Sylow subgroup Q of G containing R. By p-
normality both Z and y−1x−1Zxy are the center of Q and so equal to each other.
Thus Z = y−1x−1Zxy, and so . But 

, whence

Thus M = P ∩ x−1P′x ⊆ P ∩ H′ and our theorem is proved.
The Theorem of P. Hall also yields an improvement of the Second

Theorem of Grün, dropping the requirement “Abelian.”

THEOREM 14.4.6 (HALL-GRÜN). If G is p-normal, then the greatest factor
group of G which is a p-group is isomorphic to that for the normalizer of
the center of a Sylow p-subgroup.

Proof: In Theorem 14.4.2 take G1 as G, P1 a Sylow p-subgroup, Q1 as the
center of P1, and H1 the normalizer of Q1. Then the p-normality of G1 as we
have observed, means that Q1 is weakly closed in P1. Here, since Q1 = Z(P1),
the third condition holds and we conclude G1/up(G1) ≅ H1/up(H1). These are
the maximal factor p-groups and the theorem is proved.

We can also improve on the Theorem of Burnside. Under what
circumstances is a Sylow p-subgroup P of a group G isomorphic to a factor
group of G? That is to say, when is G/up(G) = P? Assume that this is the case,
writing B = up(G); then B consists of all the elements of G of orders prime to
p. Here B ∩ P = 1, B ∪ P = BP = G. If Q is any subgroup of P, then B ∪ Q =
BQ is a subgroup containing Q and all elements of orders prime to p. Here B
is normal in BQ. Write W = NBQ(Q). Then W ∩ B consists of the elements of
W of orders prime to p. Clearly,  and, of course, 

. But then W = (W ∩ B) × Q. Hence every element of order prime to
p which normalizes Q also centralizes Q. This condition, which is necessary



for G/up(G) ≅ P, we shall show is also sufficient and to this extent
generalizes Theorem 14.3.1.

THEOREM 14.4.7. A group G has a factor group G/up(G) isomorphic to a
Sylow p-subgroup P if, and only if, for every subgroup Q of P an element of
order prime to p which normalizes Q also centralizes Q.

Proof: We proceed by induction on the order of G, the result being
trivially true if G = P. First we show that G is p-normal. Let Z be the center of
P. By the corollary to Theorem 14.4.2, if G is not p-normal, then Z is
contained in another Sylow p-group P2, but is not normal in P2. Then by
Theorem 4.2.5, there is a subgroup Q of P which is normalized but not
centralized by an element of order prime to p. By our hypothesis, this does not
happen, and so G must be p-normal. By Theorem 14.4.6, G/up(G) ≅ H/up(H),
where H is the normalizer of Z. If H is a proper subgroup of G, then by
induction H/up(H) ≅ P and our theorem is proved.

Hence we may suppose that G = H, and so, that Z is normal in G. But if
G/Z contains a p-group Q/Z, which is normalized but not centralized by an
element of order prime to p, then the same holds for its inverse image Q. Thus
our hypothesis holds for G/Z, and so, G/Z has a normal subgroup K/Z such
that the factor group is isomorphic to P/Z. Since Z is normalized by K and K/Z
is of order prime to p, then Z is centralized by K, and so, K = Z × K1 where K1
is of order prime to p. But K1 = up(K) = up(G) consists exclusively of
elements of orders prime to P. Hence G/up(G) = P, as was to be shown.



15. GROUP EXTENSIONS AND
COHOMOLOGY OF GROUPS

15.1. Composition of Normal Subgroup and Factor
Group.

Generally speaking, any group G which contains a given group U as a
subgroup is called an extension of U. General group extensions have been
studied in a broad way by Reinhold Baer [11]. Here, however, we shall
consider only cases in which U is normal in G.

Otto Schreier [1, 2] first considered the problem of constructing all groups
G such that G will have a given normal subgroup N and a given factor group H
≅ G/N. There is always at least one such group, since the direct product of N
and H has this property.

Let us first assume such a group G given, and examine it closely. Let the
elements of the factor group H ≅ G/N be designated as 1, u, v · · ·, w. Each
element x of H corresponds to a coset of N in G. Let us choose a representative 

 in G of the coset N corresponding to x, with the convention that the identity
1 of G shall be chosen as the representative of N. Then

and in every case the homomorphism G → H is such that

Then the mapping

all , is an automorphism of N, since N is a normal subgroup. Also



with , since ,  in the homomorphism from G
onto H. The set of all elements (u, υ) defined by (15.1.4) we call the factor set.
Thus in the structure of G the four following structures enter:

1) The normal subgroup N.
2) The factor group H.
3) The automorphisms of .

4) The factor set of .

It is to be emphasized that, in general, the automorphisms and the factor set as
defined by (15.1.3), and (15.1.4) depend on the choice of representative ū of
the coset ūN corresponding to u.

The automorphisms and factor set must satisfy certain conditions.
Transforming an element  by both sides of (15.1.4), we have

Also, since in  we have

and also

whence it follows that

For the product of two elements ,  of G we have

The convention of taking 1 as the representative of N in G yields, from (15.1.4),



Conversely, the conditions (15.1.5) and (15.1.6) on the automorphisms and
factor set are sufficient for G to exist with N as a normal subgroup and G/N ≅
H. Let us take symbols ūa, ,  and define a system G with a
binary operation of product given by the rule

This product is associative, since

It is convenient (but the reader may verify not necessary) to assume for the
converse, besides (15.1.5) and (15.1.6), also

a particular case of (15.1.8). If in (15.1.5) we put u = v = 1 and use (15.1.10),
we get (a1)1 = a1, and since a1 = c may be an arbitrary element of N, we have
c1 = c for all . In (15.1.6) put u = v = 1. Then 1 = (1, l)w = (1, w).
Similarly, from v = w = 1, we find (u, 1) = 1. Now 

, and , and so 
 is the identity for the system G. Since  is an automorphism of N,

there is an element d of N such that dw = (w−1, w)−lc−l for given , 
. Hence, for an arbitrary  of G, we have 

, the identity. Since every element of
G has a left inverse, this is sufficient to prove that G is a group. The product
rule (15.1.9) is such that the mapping

is a homomorphism of G onto H, where the kernel consists of the elements .
But we verify



whence  is an isomorphism identifying this kernel with N. Since 
, we may take the ū = ū1 as coset

representatives of N, and we may regard ūa as the product of ū and a.
We summarize these results in a theorem.

THEOREM 15.1.1 (SCHREIER). Given a group G with a normal subgroup N
and factor group H = G/N. If we choose coset representatives

, taking , then automorphisms and a factor set are
determined, satisfying

(Conversely, if for every  there is given an automorphism
 of N, and if for these automorphisms and the factor set

, , the above conditions hold, then elements ūa, 
, , with the product rule

define a group G with normal subgroup N and G/N ≅ H.
If the requirement (1, 1) = 1 is omitted, then the theorem still holds with 

 the unit for G.
The unique extension G determined by N, H,  and factor set (u, v)

will be designated E[N, H, au, (u, v)].
If we change the coset representatives of N in G, taking

where by convention , and so, α(1) = 1. Here the
automorphisms are changed and

Also the factor set (u, v) is replaced by the factor set (u, v)1 by the rule



DEFINITION: Two extensions E1 = E[N, H, au, (u, v)] and E2 = E[N, H, au1,
(u, v)1] are equivalent if the automorphisms and factor sets are related by

where α(u) is a function of elements  with values in N and α(1) = 1. We
Write

The equivalence of E2 to E1 amounts to a change of coset representatives for N
in the same group G, and so, clearly this is a true equivalence and is symmetric,
reflexive, and transitive.

If coset representatives  of N in G may be chosen so that

i.e., (u, v)1 = 1, then the coset representatives form a group isomorphic to H,
which we may identify with H. If this happens, we shall say that G splits over
N or that G is the semi-direct product of N and H.

THEOREM 15.1.2. The extension G = E[N, H, au, (u, v)] splits over N if,
and only if, we can find a function ,  such that

for all u, .

Proof: If u are coset representatives such that G = E[N, H, au, (u, v)] splits
over N, then (u, v)1 = 1, and with  we find the relation



Conversely, if a function α(u) exists such that (15.1.16) holds, then define au1

by au1 = α(u)−1auα(u), , and the extension E[N, H, au1, (u, v)1]
= G will exist and be an equivalent extension with (u, v)1 = 1 for all u, ,
whence the extension G splits over N.

15.2. Central Extensions.

Let us suppose that all factors (u, v) in an extension of a group A by a group
H lie in the center B of A. Then we shall say that E[A, H, au, (u, v)] is a central
extension of A by H. Thus, if A is an Abelian group, B = A and all extensions of
A are central extensions.

For a central extension (15.1.5) reduces to

which says that the automorphisms  of A form a group homomorphic
to H. Let us denote by χ a particular way of assigning to each element of H an
automorphism of A, where the automorphisms that are assigned form a group
homomorphic to H. Furthermore, if coset representatives ū are changed only by
factors α(u) lying in B, the automorphisms are unchanged. Hence, for such
extensions, which we call with Baer [1] H-χ extensions, the automorphisms are
fixed and form a group homomorphic to H. This settles condition (15.1.5) for
central extensions, and only (15.1.6) need be considered

Here, for an equivalent extension,

with 
If factor sets (u, v)1 and (u, v)2 both satisfy (15.2.2) and we define



then the elements (u, v)3 also satisfy (15.2.2) and are a factor set determining an
H-χ extension of A. In this definition of product for factor sets there is an
identity, the factor set with all (u, v) = 1 and an inverse, the set in which (u, v)
is replaced by (u, v)−1. Moreover, for equivalent factor sets if (u, v)1* ∼ (u,
v)1, and (u, v)*2 ∼ (u, v)2, then (u, v)1*(u, v)2* ∼ (u, v)i(u, v)2. Hence the
totality of all H-χ factor sets forms an Abelian group even if we identify
equivalent sets. The group in which equivalent sets are identified will be
called the group of extensions.

If H is finite, we define

Multiplying (15.2.2) over all , we have

where n is the order of H. On comparison with (15.2.3),

Again, if m is a multiple of the order of every element of B, since ,

Hence the following theorem holds.

THEOREM 15.2.1. The order of any element of the group of extensions
divides the order of H and the least common multiple of orders of elements of
B.

COROLLARY 15.2.1. If m and n are relatively prime, then all H-χ
extensions of A are equivalent to the semi-direct product of A by H.

As an application of this theorem we may prove Theorem 15.2.2 on
extensions which need not be assumed to be central extensions.

THEOREM 15.2.2. Let G be a group of finite order mn containing a normal
subgroup K of order m and having a factor group H = G/K of order n where m



and n are relatively prime. Then G splits over K.

Proof: It is sufficient to show that G possesses a subgroup of order n. We
shall proceed by induction on m, the theorem being trivial if m = 1. Let m > 1
and p be a prime dividing m. All Sylow subgroups Sp belonging to p in G are
subgroups of K, since K contains at least one Sylow subgroup Sp, and K being
normal, the conjugates of Sp also belong to K. Thus the number of Sylow
subgroups Sp in G is the same as the number in K. Hence by Theorem 1.6.1,
[G:NG(Sp)] = [K:NK(Sp)], whence [NG(Sp):NK(Sp)] = [G:K] = n, NG(Sp), and
NK(Sp) being the normalizers of an Sp respectively in G and K. Here, of course,
NK(Sp) = NG(Sp) ∩ K, and by Theorem 2.4.1, NK(Sp) is normal in NG(SP). If
NG(Sp) is a proper subgroup of G, by induction it contains a subgroup of order
n.

Hence we may assume G = NG(Sp), and so, K = NK(Sp). If Sp is a proper
subgroup of K, then by induction G contains a subgroup of order [G:Sp]
isomorphic to G/Sp, and thus a subgroup isomorphic to G/K of order n, proving
the theorem. Hence our proof is reduced to the case in which K = Sp. Here, if
Sp is Abelian, G is a central extension of Sp, and by the corollary to Theorem
15.2.1, G splits over Sp, proving our theorem. If Sp is not Abelian, then the
center Z of Sp is a proper subgroup of Sp and as a characteristic subgroup of Sp
necessarily a normal subgroup of G. Hence, by our induction, G/Z contains a
subgroup U/Z of order n. But Z is normal and of index n in the corresponding
subgroup U of G, and by induction, U contains a subgroup of order n, proving
the theorem for this final case.

15.3. Cyclic Extensions.

Let us suppose that H is a cyclic group of finite order m, generated by an
element x; the elements of H will be

With G/N = H, choosing a representative  of the coset of N mapped onto x, we
may also choose , · · ·,  as representatives of the cosets mapped
respectively onto x2, · · ·, xm−1, and so,



Here

where α is an element of N.

Thus for the automorphism  of N, we must have for its mth power

Moreover, from the identity

we have

We shall show that (15.3.4) and (15.3.6) are the only conditions required to
define an extension of N by H.

THEOREM 15.3.1. Let H be a cyclic group of finite order m. Then an
extension G of a group N by H exists if, and only if, we have an
automorphism a  of N and an element  such that (1) the mth
power of the automorphism is the inner automorphism of N given by
transformation by a, and (2) α is fixed by the automorphism.

Proof: We have already shown that if an extension exists, then the
automorphism  and the element α satisfy (15.3.4) and (15.3.6).
Conversely, we must show that (15.3.4) and (15.3.6) suffice to determine an
extension. The elements of H are 1, x, · · ·, xm−1, or xi, 0 ≤ i ≤ m-1. Let us
define the automorphisms by

and a factor set put



With these definitions we easily verify that (15.1.5) and (15.1.6) are satisfied,
and so from Theorem 15.1.1, an extension is defined.

If H is a cyclic group of infinite order, we may put (xi, xj) = 1 for all i, j,
and we find that there is no restriction on the automorphism . This
amounts to taking  for all i.

15.4. Defining Relations and Extensions.

In the preceding section we have seen that when H is a cyclic group, the
conditions for extending a group N are particularly simple, corresponding to the
particularly simple defining relation for H. In this section we shall see how the
extension conditions depend on the defining relations for the most general
group H.

Let the group H be given in terms of generators, x, y, z, · · · and relations

We can suppose each element h of H to be represented by a definite word h =
h(x, y, z, · · ·) in the generators and their inverses. Then if G is an extension of
N by H, we can choose representatives of the cosets of N as the corresponding
words in , so that in the homomorphism G → H we have

Now let F1 be the free group with generators x, y, z · · · corresponding to x, y, z
· · ·. Then we have homomorphisms defined by



which map

where  is the subgroup of G generated by , and so must
contain at least one element from each coset of N. Hence .
Hence, if F2 is a free group which has N as a homomorphic image, we may take
a free group F = F1 ∪ F2 and define homomorphisms

Every element  of  induces an automorphism in N by transformation

In the mapping F1 → H, we have H = F1/W, where W is the least normal
subgroup containing the ϕi(x, y, · · ·). Hence in  we have 

. Thus

We shall have an identity in the free group F

if the u’s and z’s are words such that the reduced forms of these two
expressions are the same. In the mapping of F onto G, any identity will remain
valid. In particular W and F2 will be mapped onto elements of N. Thus any
identity involving u’s and z’s from the normal subgroup generated by W and F2
will by means of the replacement rules (15.4.6) and (15.4.7) lead to conditions
on the αi and the automorphisms , which can be interpreted as
conditions for the existence of an extension G of N by H. Since  is in 

, it is the image in G of an element of W, and hence a product of
conjugates of the . Hence each factor 



 is the image in  of an element of W, and if 
, , ,

then (u, v) is the image of

an element of W.
The conditions of Theorem 15.1.1 are identities in F paraphrased into

conditions on the factor set and automorphisms by the rules (15.4.6) and
(15.4.7). Thus the rule (15.1.5)

is a paraphrase of the identity

using (15.4.6) for automorphisms and replacing elements of W by elements in
N. Similarly, the rule (15.1.6), (uv, w) (u, v)w = (u, vw) (v, w), is a paraphrase
of the identity

Thus conditions for the existence of an extension of N by H are paraphrases of
identities in F. Note that the defining relations for N do not enter into these
conditions. The conditions may be regarded as finding elements αi in N and
automorphisms in N consistent with the defining relations of H. Both these
conditions become vacuous when H is a free group, for then in every case we
can choose  and take our factors as the identity, and moreover,
require merely that the automorphisms form a group.

In practice it may be difficult to determine the identities in F leading to
conditions for an extension. In the next section we shall make such a
determination for central extensions of N by a group H.

15.5. Group Rings and Central Extensions.†



We shall consider a central extension of a group N with center C by the
finite group H. We suppose, as in §15.2, that the automorphisms satisfy

We have assumed that the factors  lie in C. But applying
Lemma 7.2.2 (for right cosets rather than left cosets), these elements generate
the subgroup T of  such that . But if

are the defining relations for H, then

since the αi surely belong to T and T is generated by elements of C.
If r and s are endomorphisms of C, then we may define an endomorphism r

+ s by the rule

Thus, by (15.5.1) and (15.5.4), the group ring H* of H is a ring of operators on
C. Here the group ring H* consists of elements

where h1 · · ·, hn are elements of H and c1 · · ·, cn are integers. Elements of H*
are added by adding coefficients. Multiplication in H* is given by the
multiplication hihg = hk in H together with the two distributive laws. It is easily
verified that H* is an associative ring and that the identity of H is the identity of
H*.

We shall say that an Abelian group A which admits H* as an operator ring
is operator free if A has a basis of elements a1, a2, · · ·, ar such that every
element of A is of the form



and has a unique expression of this form. Thus a = 1 implies z1 = z2 = · · · = zr
= 0.

THEOREM 15.5.1. The only extension G of an operator-free group A by a
finite group H is the semi-direct product of A by H.

Proof: In A every element b has a unique expression

Now if zi = ci1 + · · · + cinhn, i = 1, · · · r, put

Thus, with t = h1, h2, · · ·, hn, b has a unique expression

Hence, for a factor set,

and the rule (15.1.6) because of the uniqueness of (15.5.7) becomes

If we now put  for all u of H, we may verify from

direct calculation and substitution from (15.5.9) that

Hence the new representatives form a group and G is the semi-direct product of
A and H.

By the results of §15.4 the conditions for a central extension of a group N
by a group H are (15.5.1) and conditions of the form



with  as in (15.5.3). Now suppose that N is an
operator-free group. We know that αi = 1, i = 1, · · ·, r yields a solution and
that all others are obtainable by changing representatives. If we put 

, · · ·, then . Here, using
the rule

we may write

Hence  must also satisfy conditions (15.5.11), since
these values are given by merely changing the representatives in the semi-direct
product. Taking ξ, η · · · as independent basis elements of N, we have the
following equations holding in H*:

The elements xi yi, · · · of H* are easily computable by the rule (15.5.12) from
the relations ϕi(x, y, · · ·) = 1 defining H. Hence the ui of (15.5.11) are
restricted to quantities of H* satisfying (15.5.14). If we can show conversely
that ui satisfying (15.5.14) yield conditions (15.5.11), we shall have reduced
the determination of the conditions (15.5.11) to the solution of (15.5.14). The
proof of this, given here, will depend on methods due to W. Magnus [2].

THEOREM 15.5.2. Given groups H and N. Conditions for the existence of a
central extension of N by H are that there be automorphisms 
associated with elements of H satisfying (15.5.1); that elements αi of C, the
center of N, exist with , i = 1, · · ·, r, where ϕi(x, y,
· · ·) = 1 are the defining relations of H; and that (15.5.11) hold for the αi,
where the ui are any elements satisfying (15.5.14) in H*.



Proof: The preceding discussion has shown all parts of the theorem except
that every set of ui satisfying (15.5.14) determines a condition (15.5.11).

Consider the free group F1 generated by x, y, · · ·, as discussed in §15.4,
and let H = F1/W, where W is the least normal subgroup containing ϕi(x, y, · ·
·). Let W′ be the derived group of W. Then W′ as a characteristic subgroup of W
will be a normal subgroup of F1. Here T = F1/W′ will be the group with the
properties that (1) T is generated by x, y, · · ·; (2) T has a normal subgroup V =
W/W′ such that T/V = H; and (3) V is Abelian. Finally, it is clear that any group
with these properties is a homomorphic image of T, since any such group must
be a homomorphic image of F1 in which the elements of W′ are mapped onto the
identity. We shall use a lemma for our proof, postponing the proof of the lemma
until the end of the main proof.

LEMMA 15.5.1. Given matrices of the form  with  and L a

linear form in indeterminates with coefficients from H* subject to the
product rule,

Then, corresponding to x, y, · · ·, we have matrices ,

and these matrices generate a group isomorphic to T = F1/W′.

Note that since matrices  generate an additive, and hence Abelian,

group, this group is in any event a homomorphic image of T.
In a central extension  is an image of T. Hence, if a relation

holds in T, then the corresponding relation (15.5.11) must hold in .
Assuming the lemma we have in T as elements of V,



with Li a linear form in tx ty, · · · with coefficients from H*. Let us adjoin to V
further elements:

with tξ, tη being new indeterminates. With ū as before ,

Thus, adjoining the elements of (15.5.17) to V, we have adjoined an
operator-free group. Now

Hence we obtain  by substituting in the Li of (15.5.16),
replacing tx by tξx + tx, and so on. Hence, from

and the linearity of the Li, we have

Hence if the equations , etc., of (15.5.14) hold, then



Here, since the tξ were indeterminates satisfying no relations, it must follow
that

for any arguments for the Li. Applying this to (15.5.16), it follows that

Since this relation holds in T, it must also hold in , and so we have shown

that  in  whenever (15.5.14) holds. Hence (15.5.11) is a

consequence of (15.5.14), and the proof of the theorem is complete except for
the establishment of the lemma.

Proof of the Lemma: With H = F1/W, suppose coset representatives of W
chosen so that they are the earliest possible with respect to an alphabetical
ordering of the elements of F1. Then the same alphabetical ordering may be
carried over to F1, and if h = h(x, y, · · ·) is the earliest element the coset Wh,
then  is a canonical form for h as its earliest
alphabetical expression. Hence the same form may be used for an element of H
and the corresponding coset representatives of W, and we may speak of the
length of an element of H, this being the length of its canonical form. Now
consider the correspondences with matrices

with x, y, · · · generators of H and the rule of composition of the matrices

with h1,  and L1, L2 linear forms tx, ty, · · · with coefficients from H*.
As remarked before, the group K generated by these matrices is at least a



homomorphic image of T, since  is clearly a homomorphism

of K onto H, and the kernel of this homomorphism consists of elements 

, which form an additive Abelian group.

By Theorem 7.2.3, W is a free subgroup of F1, with free generators those
elements cij,

in F1, x a generator of F1.
Moreover, by Lemma 7.2.3, hi does not end in x−1 nor hi, in x. The group

W′ will be the group given by all commutators of the cij, and W/W′ will be the
free Abelian group with the cij as a basis modulo W′. It will follow that K is a
faithful representation of T = F1/W′ if we can show that the elements cij
corresponding to  are independent in K. In the mapping F1 → H we
have Cij → 1, hi → hi, hj → hj, and x → x, and so, hix = hj in H. Now let

Then

using hix = hj in H.
We must examine more closely the linear form L(hi) occurring in the matrix

for an element . Here



Let us write q(a) ta if a = x is a generator and (qa) = −taa−1 if a−1 = x is a
generator. Then if , · · ·, ar is any word where each ai is one of 

, · · ·, we shall have

with

where h = a1a2 · · · ar.
This formula is easily established by induction on r and the product rule for

the matrices. We now note from (15.5.27) the further rule:

If h is in canonical form we note that g(ai) is multiplied by the inverse of a1a2,
· · ·, ai, which is, by the Schreier property of the representtives of W, again in
canonical form. Thus as a basis for the group ring H*, it is convenient to use the
inverses of canonical forms of elements of H.

With each cij of W there is a unique hi and x. Hence we may associate cij

with the term txhf
−1. This term may be characterized by noting that hj is in

canonical form, but that hjx−1 although in reduced form is not in canonical form,
being equal to the canonical form hi. But in (15.5.26) the linear form L(hi)hi

−1 +
txhj

−1 — L(hj)hj
−1 contains no other term of this type. For, by (15.5.28), the

other terms arising from L(hi)hi
−1 or L(hj)hj

−1 are of the type q(ak)ak
−1 · · ·

a1
−1, where a1 · · · ak is an initial section of hi or hj, and so, by the Schreier

condition on the h’s, will itself be an h in canonical form. Here if ak = y, a



generator, q(ak)ak
−1 · · · a1

−1 = tyy−1 · · · a1
−1 = tyh−1, where h ends in y so that

hy−1 is not in reduced form. But if ak = y−1, where y is a generator, q(ak)ak
−1 · ·

· a1
−1 = – ty·ak−1

−1 · · · a1
−1 = − ty h−1, where hy−1 = a1 · · · ak is in canonical

form. Thus the term txhj
−1 is the only term of its type in the linear form

associated with . Also, different,  yield different associated terms.
Hence the linear forms L(cij) are linearly independent and the cij generate a free
Abelian group, which is of course isomorphic to W/W′. Hence the group K of
matrices generated by the matrices corresponding to , · · ·, etc., is a
faithful representation of T = F1/W′ and the lemma is proved.

15.6. Double Modules.

Let Ω be any multiplicative group and let A be a double Ω-module, i.e., an
Abelian group written additively which satisfies the following conditions:

1) A admits Ω as group of operators both on the right and on the left, so that
ξa and aξ are uniquely determined elements of A for given  and .

2) Distributivity,
whence

3) 1a = a1 = a where 1 is the unit element of Ω.
4) Associativity, ξ(ηa) = (ξη)a, (ξa)η = ξ(aη), and (aξ)η = a(ξη).
These rules are to hold for all a1 a2, , and all ξ, .
Effectively, then, a double Ω-module is the same as an additive Abelian

group admitting the elements (ξ, η) of Ω × Ω as distributive operators.
In the applications, it often happens that Ω acts trivially on one side, e.g.,

on the left. This means that ξa = a for all  and . In this case, we
shall simply omit the left-hand operators. Call this the one-sided case.

For example, let A be a normal Abelian subgroup of some group G, and
write Ω = G/A. If ξ = Auξ, then uξ

−1auξ depends only on a and ξ, but not on the
choice of uξ in its coset. Hence we may write uξ−1auξ = aξ without ambiguity.



We then have an example of the one-sided case, but with A written
multiplicatively. In developing the general theorems of cohomology, however,
it is more convenient to write A in additive notation.

15.7. Cochains, Coboundaries, and Cohomology
Groups.*

Given a double Ω-modulo A, we define Cn = Cn(A, Ω) to be the additive
group of all functions f of n variables which range independently over Ω, and
taking values in A, subject to the condition

whenever at least one of the ξi = 1. The elements of Cn are called n-
dimensional cochains. C0 = A by definition and a zero dimensional cochain is
simply any element of A.

The coboundary operator δ maps each Cn into the next, Cn+1, in
accordance with the rule

Here  and it is immediately verified that . The map f → δ
f is homomorphic with respect to addition. The only cases genuinely useful in
group theory appear to be the cases n = 0, 1, 2. Here the coboundary formulae
are

THEOREM 15.7.1. If f is any cochain, then δ2f = 0.



Proof: Choose n so that . Then . Therefore when we
express (δ2f)(ξ1, ξ2, · · ·, ξn) in terms of the values of δ f, using the definition,
we obtain n + 1 terms with alternating signs, say,

Each ui, when expressed in terms of the values of f, is an alternating sum of
n terms, which we may write as

Hence

with i and j running from 1 to n. But it is easy to verify that uij = uji for all i, j.
Thus the above sum vanishes.

If  and is such that δ f = 0, then f is called an n-dimensional
cocycle. These cocyces form the kernel Zn = Zn(A, Ω) of the homomorphism of
Cn into Cn+1 induced by δ.

If  and if there exists an element  such that δ g = f, then f
is called an n-dimensional coboundary. These coboundaries form the image Bn

= Bn(A, Ω) of Cn−1 under the mapping δ. We define B0 = 0.
According to the theorem, every coboundary is a cocycle, so that Bn ⊆ Zn

for all n. The quotient group Zn/Bn is called the n-dimensional cohomology
group of the double Ω-module A. We write it

In our definition of cochainsf(ξj, · · ·, ξn) we imposed the restriction
(15.7.1) that the cochain vanish if one or more of the arguments is the identity.
This is a desirable restriction in many cases, in particular in the application to
factor sets as we have defined them. Let us call such cochains normalized. If
the restriction (15.7.1) is omitted, we speak of unnormalized cochains.
Theorem 15.7.1, is of course, valid in either case, since it makes no use of the



restriction (15.7.1). The distinction is a matter of convenience, since we shall
show that the cohomology groups of every dimension for unnormalized
cochains are isomorphic to those for normalized cochains.

THEOREM 15.7.2. The cohomology groups Hn(A, Ω) of every dimension n
for unnormalized cochains are isomorphic to those for normalized cochains.

Proof: Let us designate the normalized cochains, boundaries, and cocycles
of dimension n by Cn, Bn, and Zn, respectively, and for the unnormalized case
use the designations C′n, B′n, and Z′n.

For n = 0 and n = 1 we readily verify that B0 = B′0 = 0, Z0 = Z′0, and B1 =
B′1, Z1 = Z′1, whence H0(A, Ω) and H1(A, Ω) are the same in both cases. The
principal verification involved here is that if , then ξf(η) − f(ξη) +
f(ξ)η = 0, whence putting ξ = η = 1, we find that f(1) = 0, whence f(ξ) is
normalized, and so, Z′1 = Z1.

Now suppose n > 1. Clearly, Bn ⊆ B′n and Zn ⊆ Z′n. Hence a cohomology
class for Cn, i.e., a coset of Bn in Cn, corresponds to a unique cohomology
class for C′n, namely, the coset of B′n which contains it. This correspondence
is, of course, a homomorphism of Hn(A, Ω) into H′n(A, Ω). To prove
isomorphism, we must show that this correspondence is one to one and for this
two lemmas will suffice. Let us say that two cochains are cohomologous if
their difference is a coboundary. Thus two cocycles are cohomologous if they
belong to the same cohomology class.

LEMMA 15.7.1. Every unnormalized cocycle is cohomologous to a
normalized cocycle.

LEMMA 15.7.2. If the coboundary of some cochain is normalized, then it is
the coboundary of a normalized cochain.

Proof of the lemmas: Let us say that a cochain f(x1, · · ·, xn) is i-
normalized, i = 0, · · ·, n if it is zero whenever one of the first i arguments is
the identity. The 0-normalized cochains are then the unnormalized cochains c′n
and the n-normalized are the normalized cochains Cn. For f(x1, · · ·, xn) let us
define cochains f = f0, and recursively,



where

We note that f = f0 and fn differ by a coboundary, and also, since δfi = δfi+1, f =
f0, f1, · · ·, fn all have the same coboundary δf.

LEMMA 15.7.3. If δf is normalized, then fi is i-normalized.
This will prove both lemmas, since for Lemma 15.7.1, if f is an

unnormalized eocycle, then δf = 0, which is trivially normalized whence fn,
which is cohomologous to f0 = f, will be a normalized cocycle. For Lemma
15.7.2, if g = δf is a coboundary and g is normalized, say, , then g =
δf0, = · · · = δfn, where fn is normalized.

We prove Lemma 15.7.3 by induction on i, the statement being trivially true
for i = 0. Suppose the lemma to be true for i, and consider it for i + 1, it being
necessary to prove that

From the definition of fi+1 in (15.7.4), we have



From (15.7.5), since by induction fi is i-normalized, gi+1 is i-normalized. This
means that in (15.7.7) the term with the factor x1 on the left and the sum with j =
1 to i − 1 are all zero. The next two terms cancel. Now let us take the remaining
terms replacing gi+1 according to its definition (15.7.5). This gives for (15.7.7)

But, by hypothesis, δfi = δf is normalized, whence

and since by induction fi is i-normalized, the right-hand side of (15.7.8)
consists of all the terms of the expansion of (15.7.9) which remain. Thus

proving Lemma 15.7.3 by induction and thus Lemmas 15.7.1 and 15.7.2, and in
turn, the theorem.

15.8. Applications of Cohomology to Extension
Theory.

If A is a normal Abelian subgroup of some group G, let Ω = G/A be the factor
group. If the coset Auξ = ξ is an element of Ω, then for , uξ

−1auξ depends
only on a and ξ but not on the choice of uξ in its coset. Hence we may write
uξ

−1auξ = aξ without ambiguity, and in this way Ω is a group of operators on the
right for A and we regard Ω as acting trivially on the left. With the operators
fixed, and A written additively, if we put f(u, v) = (u, v) for the factors of a
factor set, (15.2.2) becomes



Let us rearrange the terms thus

whence we see that a factor set is a cocycle of dimension two. From (15.2.3),
the condition for the equivalence of two factor sets f(u, v) and f1(u, v) is

or that f1 and f differ by the coboundary a(v) − α(uv) + α(u)v. Here we note that
Ω operates trivially on the left. Hence the group of extensions is the second
cohomology group H2(A, Ω). We state this as a theorem.

THEOREM 15.8.1. The group of extensions of an Abelian group A by a
group Ω is the second cohomology group H2(A, Ω), where

1) Ω operates trivially on the left in A.
2) On the right Ω operates to induce automorphisms in A.
3) Factor sets f(u, v) are the cocycles of Z2.
4) Equivalent factor sets differ by coboundaries of B2.

The choice of the identity as the representative of A in writing G as a sum of
cosets of A leads to the normalization f(1,1) = 0. Putting u = v = 1 in (15.8.1),
we have

whence

Similarly, putting v = w = 1, we have

whence also



showing that we deal with normalized cocycles.
We shall prove a general theorem in cohomology which includes Theorem

15.2.1 as a special case.
Suppose that Ω is finite of order m. Then for each n > 0 we can define an

additive homomorphism σ which maps Cn into Cn−1 by the formula

Here , and it is immediately clear that .
Write g = σf and let us calculate (δg)(x1, · · ·, xn):

The summation is over all .
Now consider (δf)(x, x1, · · ·, xn).



Let us now calculate, using (15.8.10),

In the sum , put y = xx1, whence

since as x1 is a fixed element of Ω, y ranges over Ω when x does. Hence
(15.8.11) becomes

This gives:



THEOREM 15.8.2. If , then σ(δf) + δ(σf) = mf.

COROLLARY 15.8.1. If , then .
For  means that δf = 0 so that mf is the coboundary of δf. We

conclude that if Ω has order m then every element of the cohomology group
Hn = Zn/Bn has an order dividing m. Theorem 15.2.1 is the special case n = 2
of this result.

We have a further theorem, due to Gaschütz [1] for factor sets and in more
general form given by Eckmann [1]. This relates the cohomology of a group Ω
and a subgroup B. We suppose that B is of finite index m in Ω.

Here if a1 a2, · · ·, an are elements of Ω, we write , where as
usual the bar designates the coset representative. Then write also

We define the transfer, T(f(a1, · · ·, an)) of  by the
formula

Note that  in every case, whence for an ,
Tf is in the subgroup ΩCn(A, B)Ω.

THEOREM 15.8.3 (THEOREM OF GASCHÜTZ). If 
and B is a subgroup of index m in Ω, then

COROLLARY 15.8.2. The cohomology class of the transfer is independent
of the choice of the coset representatives si in (15.8.13).

Proof of the Theorem: Consider



This is a sum of terms each of which is zero, since , whence δf = 0.
Consider the effect of expanding the coboundary in each of the n + 1 lines
above and taking the sum from i = 1 to m for corresponding terms of the δf ’s.
The first terms of the first line yield

The last terms of the last line yield

Since sij−1
−1 · sij−1ajsij

−1 = aj·sij
−1, the (j + 1)st terms of the jth and (j + 1)st

lines cancel each other, for j = 1, · · ·, n. Let us now take the first j terms of the
(j + 1)st line and terms j + 2, · · ·, n + 2 of the jth line together. These are given
by



But if for arguments u1, · · ·, un−1 we define a function 
 by the formula

where σi = si and recursively , then we see that the terms of
(15.8.18) are the coboundary (−1)i(δFj)(a1, · · ·, an), since, summing over i, sij
or sij−1 will serve equally well as σi. Letting j run from 1 to n, the coboundaries
(−1)i(δFj)(a1, · · ·, an) account for all terms of (15.8.15) except those which
cancel and those of (15.8.16) and (15.8.17), giving our theorem.

The group theoretical form of the theorem of Gaschütz is the following:

THEOREM 15.8.4 (THEOREM OF GASCHÜTZ). Let F = [(u, v)], u, , 
 be the factor set of an H-χ extension of an Abelian group A by a

finite group H. Let B be a subgroup of index m in H, and



Then

The arguments  and  are, of course, elements of B.

COROLLARY 15.8.3. If (x, y) = 1 whenever x, , then (u, v)m ∼ 1.
There are many consequences of this theorem, but a very useful

consequence is the way in which this relates the H − χ extensions of A to the
S(p) − χ extensions of A, where S(p) is a Sylow p-subgroup of H. Let H be of
order n = pem, where S(p) is of order pe. Let E = E(H) be the group of H − χ
extensions of A, as defined in §15.2. Each element of E is a class of equivalent
factor sets Fi = [(u, v)i]. By Theorem 15.2.1 every element of E has order
dividing n. Thus E is a periodic Abelian group and is the direct product of its
Sylow subgroups E(p).

THEOREM 15.8.5. A Sylow p-subgroup E(p) of E = E(H), the group of H − χ
extensions of an Abelian group A by a finite group H, is isomorphic to Ep, the
group of S(p) − χ extensions given by restricting factor sets F = [(u, v)] of H
− χ extensions of A to arguments (x, y), x, , where S(p) is a Sylow
p-subgroup of H.

Proof: On the factor sets F = [(u, v)] for H − χ extensions of A, let us define
a p-equivalence

if, when restricted to arguments x,  to yield an S(p) − χ extension
we have

This is readily seen to be a true equivalence. Furthermore, let E1 be the
subgroup of E of those factor sets F = [(u, v)] for which (x, y) ∼ 1, x, y



restricted to S(p). Then elements of E correspond to p-equivalent factor sets if,
and only if, they are in the same coset of E1. Hence E/E1 is isomorphic to the
group Ep of S(p)-χ extensions obtained by restricting the factor sets F = [(u, v)]
to arguments x, . By the corollary to the Theorem of Gaschütz, with
S(p) as the subgroup B, every element of E1 is of order dividing m, the index of
S(p), and by Theorem 15.2.1, every element of Ep is of order dividing pe. Since
(pe, m) = 1, it follows that both Ep and E(p), a Sylow p-subgroup of E are
isomorphic to E/E1 and hence to each other, thus proving our theorem.

THEOREM 15.8.6. An H − χ extension of A splits over A if, and only if, for
each prime p dividing the order of H, the extension splits when restricted to
some Sylow p-subgroup S(p) of H.

Proof: Trivially, the splitting of H over A implies the splitting of every S(p)
over A. We must prove the converse. Let F = [(u, v)] be the factor set
determining the H − χ extension. By hypothesis (u, v) ∼ (u, v)1, where (x, y)1 =
1 for x, . By the corollary we have (u, v)m ∼ (u, v)1

m ∼ 1, where n =
pem. But this must happen for every p dividing n. The different m’s for which
we have (u, v)m ∼ 1 have greatest common divisor 1, and so (u, v) ∼ 1 and H
splits over A, the conclusion of our theorem.

† See Marshall Hall, Jr. [1].
*See Eilenberg and MacLane [1, 2] and MacLane [2].



16. GROUP REPRESENTATION

16.1. General Remarks.

We shall call a representation of a group G any homomorphism a of G into
some group W. Of particular value are representations of G by groups W which
lend themselves readily to calculation. Thus the permutation representations of
a group G discussed in Chap. 5 are homomorphisms of G into a symmetric
group Sn.

Instead of a symmetric group as a representing group, we may turn to the
endomorphisms of a vector space V over a field F. Those endomorphisms
which are one-to-one form a group, which, if V is of finite dimension n over F,
is called the full linear group Ln(F) and may be expressed by the nonsingular n
× n matrices over F. Here we consider representations of G by linear
transformations. In such a representation we may regard the elements of G as
operators on V. In this context the subspaces of V, taken into themselves by the
linear transformations corresponding to G, are the invariant subspaces of the
representation, and regarding V as an additive group with both F and G as
operators, these are the admissible subgroups N.

The full set of endomorphisms of a vector space V forms a ring. Thus a
linear representation of G over V leads through addition and scalar
multiplication to a linear representation of RG, the group ring of G over F, and
similarly, any admissible subgroup N of V yields a representation of RG along
with that of G. Hence it is not surprising that there is a close relationship
between the decomposition of the group ring RG and the decomposition of
linear representations. Historically, the theory of group representations and the
structure theory of rings were developed separately, and only in comparatively
recent times has the close relationship between these two theories been
recognized.

16.2. Matrix Representation. Characters.*



DEFINITION: A matrix representation of degree n of a group G is a function
ρ defined on G with values in the full linear group Ln(F), for some field F,
such that ρ(xy) = ρ(x)ρ(y) for all x, .

Note that by this definition ρ(x) is a nonsingular matrix and that x → ρ(x) is
a homomorphism of G into Ln(F). Here we must have ρ(1) = In, the unit n × n
matrix, and thus ρ(x−1) = [ρ(x)]−1, the matrix inverse. The kernel K of the
homomorphism x → ρ(x) will be a normal subgroup of G and the matrices ρ(x)
will represent G/K faithfully. The representation will be faithful only if the
kernel K is 1.

DEFINITION: The character χ of a representation ρ is the function defined
on G by χ(x) = trace ρ(x).

Thus the characters are numbers of the field K. If the representation is of
degree 1, then χ = ρ.

We shall say that two representations ρ and ρ* are equivalent if there is a
nonsingular matrix  such that ρ*(x) = S−1ρ(x)S for every .
We note that if S is any nonsingular matrix of Ln(F) and ρ(x) is a representation
in Ln(F), then S−1ρ(x)S is also a representation ρ*(x). Indeed, if we regard ρ(x),

 as a group of linear transformations of the vector space V over F into
itself with basis u1, u2, · · ·, un, and if

then S−1ρ(x)S = ρ*(x),  is the group of the same linear transformations of
V in terms of the basis v1, · · ·, vn.

LEMMA 16.2.1. Characters are class functions, i.e., conjugate elements
have the same character.

LEMMA 16.2.2. Equivalent representations have the same characters.



For if A is a matrix of degree n, its characteristic polynomial is by
definition f(λ) = |A − λI| = (− 1)n[λn − a1λn−1 · · · + (−1)nan]. Here the
coefficient a1 is the trace of A, a1 = Tr(A), and an = |A| the determinant of A.
Now if T is a nonsingular matrix |T−1AT − λI| = |T−1(A − λI)T| = |T−1| · |A − λI| ·
|T| = |A − λI|. Thus A and T−1AT have the same characteristic polynomial and a
fortiori the same trace. Hence ρ(y−1xy) = ρ(y)−1ρ(x)ρ(y) and ρ(x) have the
same trace, and so, χ(y−1xy) = χ(x) and the character is a class function. In the
same way ρ*(x) = S−1ρ(x)S and ρ(x) have the same trace and so equivalent
representations have the same characters.

We recall that a vector space V (or “linear space”) over a field F is given
by the following laws:

V has a binary addition:

V has a scalar product cα for , .

These satisfy
V1) V is an Abelian group under addition.
V2) c(α + β) = cα + cβ, (c + c′)α = cα + c′α.
V3) (cc′)α = c(c′α); 1α = α.

Here α, , c, , 1 unit of F.
Vectors u1, · · ·, ur of V are said to be linearly independent if

implies a1 = · · · = ar = 0. Moreover, u1, · · ·, un are a basis for V if they are
linearly independent and if every  can be expressed as

If V has a basis, then every basis has the same number of elements, and this
number is called the dimension of the vector space.

We shall define an F-G module M as a vector space V over F which admits
the elements of G as operators on V, the rule being

1)



(u + v)g = ug + vg, u, , .
2) u(g1g2) = (ug1)g2, , g1, .

3) u · 1 = u, , 1 the unit of G.
4) (au)g = a(ug), , , .

We shall also call M a representation module for G.
By an operator homomorphism of one F-G module M1 into another M2 we

mean a mapping M1 → M2 such that
1) If u1 → v1, u2 → v2, then u1 + u2 → v1 + v2.

2) If u → v, , then bu → bv.
3) If u → v, , then ug → vg.

An operator isomorphism of M1 and M2 is an operator homomorphism of M1
onto M2 which is one to one.

Now if M is an F-G module and has a basis u1, · · ·, un over F, then if for 

, we take the mapping v → vx, , where 

, i = 1, · · ·, n, ρ(x) = (aij), i, j = 1, · · ·, n will be a representation for G in M.
Conversely, if ρ is a representation for G over a vector space V with basis u1, ·
· ·, un, and if we have ρ(x) = (aij) = [aij(x)], let us put

for every . Then, since ρ(1) = In and ρ(xy) = ρ(x)ρ(y), we see that this
rule makes V into an F-G module M. Thus every F-G module of dimension n
determines a representation of degree n of G, and conversely.

THEOREM 16.2.1. Two F-G modules M1 and M2 give equivalent
representations of G if, and only if, they are operator isomorphic.

Proof: Suppose we have given two equivalent representations of G;

Then if ρ(x) = [aij(x)], , this corresponds to a basis u1, · · ·, un of a
vector space V with G as operators and the mapping ui → uix = Σ aij(x)uj. We
have observed already that this mapping



corresponds to the representation ρ*(x) = S−1ρ(x)S,  in terms of a basis
v1, · · ·, vn, where

If S = (sij), the equivalent representations ρ(x) and ρ*(x) are operator
isomorphic under the mapping determined by 

. Conversely, suppose that two F-G

modules M1 and M2 are operator isomorphic. To be isomorphic as vector
spaces, M1 and M2 must have the same number of basis elements, say, u1, · · ·,
un for M1, and thus in the operator isomorphism u1, · · ·, un are mapped onto a
basis v1, · · ·, vn of M2. With ui → vi and uix → vix then on these bases, M1 and
M2 yield identical representations, since if

we must also have

Thus equivalent representations ρ(x) and ρ*(x) correspond precisely to
operator isomorphisms of representation modules.

16.3. The Theorem of Complete Reducibility.



Suppose that a representation module M has a submodule M1 which is also
a representation module. Then let us take a basis u1, · · ·, ur for M1 and
complete this to a basis for M by taking further elements ur+1, · · ·, un. The
corresponding representation ρ is said to be reducible, and in terms of the basis
u1, · · ·, un, takes the form

and here σ and τ are representations of G of degrees r and n − r, respectively.
The representation σ is associated with the F-G module M1 with basis u1, · · ·,
ur. What about τ? It is the representation defined by the basis M1 + ur+1, · · ·,
M1 + un of the quotient module M/M1. More generally, if

is a chain of submodules and we choose a basis of M adapted to this chain, then
the corresponding representation ρ will take the form

and ρi(x) is the representation corresponding to a suitable basis of Mi/Mi−1,
namely, Mi−1 + uj, where uj runs through the basis elements which belong to Mi
but not to Mi−1. For the characters we clearly have

If we choose our chain to be maximal, i.e., so that it cannot be further refined,
then the Mi/Mi−1 have no proper representation submodules and they give rise
to irreducible representations ρi. As an immediate consequence we have:



LEMMA 16.3.1. Every character is the sum of irreducible characters.

LEMMA 16.3.2. The irreducible constituents ρi are unique apart from
order and operator isomorphism.

Lemma 16.3.2 follows from the Jordan-Hölder theorem.
If a representation module M has a submodule M1 which is a representation

module, it may happen that there is a complementary representation submodule
M2, so that M is their direct sum, M = M1 ⊕ M2. In this case M2 is clearly
operator isomorphic to M/M1, and the representation ρ(x) takes the form

Conversely, if the representation ρ(x) can be put in this form of square blocks
down the main diagonal, M is the direct sum of representation submodules M1
and M2. We say that the representation is completely reduced in this case. Not
every representation which is reducible can be completely reduced. Thus the
representation of the infinite cyclic group generated by an element b given by

is reducible, but if it could be completely reduced it would represent every
element by the identity, since here both ρ1(bi) and ρ2(bi) are the identity. But 

 is not conjugate to the identity and this is clearly impossible.

However, we have an important class of representations for which reducible
representations can be completely reduced.

THEOREM 16.3.1. THEOREM OF COMPLETE REDUCIBILITY. A reducible
representation of a finite group G over a field F whose characteristic does
not divide the order of G can be completely reduced.

Proof: Let M be a representation module for G over F and M1 a
representation submodule. With w1, · · ·, wr a basis for M1, complete this to a



basis for M with elements wr+1, · · ·, wn, which will be a basis for a subspace
N, which, however, will not in general be a representation module. We have for

We also have M = M1 + N, and for  uniquely,

The map η:u → v is idempotent and linear. If g is the order of G, put

Here u → u′ = uζ is a linear mapping. This mapping requires that we be able to
divide by g, the order of G, and this is possible because by our hypothesis G is
of finite order g, not divisible by the characteristic of F.

If , put z = y−1x for , and then

since z runs over G as x does. This shows that M2 = Mζ is a representation
module. We wish to show that M = M1 ⊕ M2, for which we must show that
every  can be written in the form u = u1 + u2, , 
and that this expression is unique, i.e., 0 = u1 + u2 implies u1 = 0 = u2. For any 

, write

Here . Now 

, since uxx−1 = u. But 



, whence . Hence u
= u1 + u2 with , . Now if , , wxη = 0,
whence wζ = 0. Thus for any , (u − = uζ)ζ = 0, and uζ2 = uζ. Hence if
u1 + u2 = 0, u1ζ + u2ζ = 0, and thus 0 + u2ζ = u2 = 0, and so also u1 = 0. Hence
the representation can be completely reduced.

Second Proof by Matrices: With

and σ(x), τ(x) representations of degrees r and n − r, respectively, we wish to
find a matrix

μ independent of x, such that

for all . Clearly, if it can be found, S is nonsingular and will yield an
equivalent representation

all , which is completely reduced. This requires finding an (n − r) × r
matrix μ independent of x such that



all .
From ρ(yx) = ρ(y)ρ(x) we have

whence

and

Hence, if we put

we have θ(x) = −τ(x)μ + μσ(x). Thus we have, found a suitable (n − r) × r
matrix μ, and so a transforming matrix S exists and the equivalent
representation ρ*(x) is completely reduced.

By repeated application of this theorem we find the following major result:

THEOREM 16.3.2. Every representation of a finite group G over a field F
whose characteristic does not divide the order of G can be completely
reduced to the sum of irreducible representations.

COROLLARY 16.3.1. Representations of a finite group G over a field F
whose characteristic does not divide the order of G are equivalent if, and
only if, they reduce to the sum of the same irreducible representations, each
with the same multiplicity.

When a representation ρ is completely reduced we may write

The order of the ρi is immaterial, since we may permute the elements of the
corresponding basis of the representation module M to permute the ρi. The ρi
are, of course, the composition factors of M, taken as an additive group with F



and G as operators, and as such unique by the Jordan-Hölder theorem up to
order and operator isomorphism. By Theorem 16.2.1, operator isomorphism of
irreducible representations means equivalence. Thus by “same irreducible
representations” in the corollary we do not distinguish equivalent
representations.

16.4. Semi-simple Group Rings and Ordinary
Representations.

Given any group G and a field F, we may construct the group ring RG in the
following way:

1) RG is a vector space over F with the elements  as a basis.
2) Products are defined by putting

where gij = gigj in G.
It is not difficult to show that this definition makes RG into an associative

ring with a unit 1·1 = 1, the product of the unit of F and the identity of G.
Clearly, RG is a representation module for G elements of G operating on RG by
multiplication on the right. If G is of finite order n, taking the elements of G, g1,
· · ·, gn as a basis for R, the corresponding representation is

where xij = 1 if gix = gj and xij = 0 otherwise. This we recognize as the right
regular representation of G which as a permutation group is given by

written in matrix form.

LEMMA 16.4.1. In the right regular representation ρ(x) of a group G of
order n we have χ(1) = n, χ(g) = 0, g ≠ 1.



For here ρ(x) = (xij), where xij = 1 if gix = gj and xij = 0 otherwise, and so, 

. If x = 1, gi1 = gj = gi and xii = 1, i = 1, · · ·, n, and so,

χ(1) = n. But for x = g ≠ 1, xii = 0, since gix = gi cannot hold for any gi unless x
= 1.

Nearly all the results we shall obtain will be for the representations of a
finite group G over a field F whose characteristic does not divide the order of
G. Such a representation we shall call an ordinary representation.
Representations of a finite group G over a field F whose characteristic does
divide the order of G are called modular representations. Properties of
modular representations are different from those of ordinary representations.
And, of course, representations of infinite groups can be expected to differ from
representations of finite groups in many ways.

We say that a ring R is regular if for every  there is an element 
 such that uxu = u. A regular ring finite dimensional over a field F is

said to be semi-simple. An element e ≠ 0 such that e2 = e is called an
idempotent.

THEOREM 16.4.1. The group ring RG of a finite group G over a field F is
semi-simple if, and only if, the characteristic of F does not divide the order
of G.

Proof : Let G be of finite order g. If the characteristic of F divides g and x1,
· · ·, xg are the elements of G, then in RG consider the element u = x1 + · · · +
xg. Here xiu = uxi = u. Hence, with x = a1x1 + · · · + agxg, we have ux = (a1 + ·
· · + ag)u and uxu = (a1 + · · · + ag)gu = 0 ≠ u. Hence RG is not semi-simple.

Now suppose that the order g of G is not divisible by the characteristic of
F. We shall prove that RG is semi-simple and indeed shall prove further
properties of RG. Let  be any right ideal of RG. Then  is a representation
submodule of RG, and conversely, the representation submodules of RG are the
right ideals. By the theorem of complete reducibility

where  is another right ideal. Then 1 = a1 + a2, a1, , , and
this representation is unique. But then a1 = a1

2 + a2a1 also holds, and



comparing this with the unique representation a1 = a1, we have a1
2 = a1, a2a1 =

0. Thus a1 = e is an idempotent, and a2 = 1 − e is also an idempotent. Thus for 
 we have x = ex + (1 − e)x with . Conversely, if , we

have y = ey + (1 − e)y = y + 0 by the uniqueness of the representation. Hence
for  we have ey = y. Thus  is the principal right ideal eRG of the
idempotent e, and so every right ideal of RG is the principal right ideal of an
idempotent. In particular, for every element u there is an idempotent e such that
uRG = eRG. Hence for some x, ux = e, and for some y we have ey = u, eu = e2y
= ey = u. Here u = eu = uxu, and so, RG is regular.

THEOREM 16.4.2. A regular ring R of finite dimension over afield F has a
unit and every right (left) ideal is the principal ideal of an idempotent. Every
two-sided ideal is the principal ideal of an idempotent in the center.

Proof: Let R be a regular ring of finite dimension over a field F. If u is any
element, then by regularity there is an x such that uxu = u. Here, with e = ux, we
have e2 = uxux = ux = e, and with f = xu, we have f2 = xuxu = xu = f.
Moreover, u = uxu = eu = uf, whence eR = uR and Ru = Rf. Thus principal
right or left ideals are principal right or left ideals of idempotents. Consider a
left ideal . If , then it contains some idempotent e1 ≠ 0, and thus 

. Suppose . Then there is some , .

with , and

where x2e1 = 0.

Let f be an idempotent such that Rx2 = Rf. Then f = wx2, fe1 = wx2e1 = 0.
Now put e2 = e1 + f − e1f. Here e1e2 = e1, fe2 = f. Thus



and so, e2 is an idempotent belonging to  and Re2 includes both e1 and f,
whence it includes Re1 and the element . Hence Re2 has a greater
dimension than Re1. Continuing, we may construct further idempotents e3, e4, · ·
· in  with each ideal Rei of greater dimension than the last until we reach an
idempotent e such that . This proves that every left ideal is the
principal left ideal of an idempotent. A similar argument shows that every right
ideal is the principal right ideal of an idempotent. If , then for some w,
x = ew and ex = e2w = ew = x, and e is a left unit for elements of eR. Similarly,
for , we have xf = x. Now considering the entire ring R as both a left
ideal and a right ideal, there are idempotents e and f such that R = eR = Rf.
Hence ef = f = e and ex = xe = x, whence e = 1 is a unit for R.

The multiples of an idempotent e in the center of R will surely form a two-
sided ideal. We wish to show that conversely an arbitrary two-sided ideal  is
the principal ideal of an idempotent in the center. Now for appropriate
idempotents we have . Hence ef = f = e, and 

. Now for an arbitrary x of R we have  whence ex
= exe. Also , whence xe = exe. Thus ex = xe, and so, e is in the center
of R.

Let us call a ring R simple if it is semi-simple and contains no two-sided
ideals except 0 and R. The direct sum of right ideals we indicate with ⊕; of
two-sided ideals, we indicate with .

THEOREM 16.4.3. A semi-simple ring R is the direct sum
 of simple rings. The simple rings Ri

are unique apart from order.

Proof: Let R1 be a minimal two-sided ideal contained in R. Then R1 is the
principal ideal of an idempotent e1 in the center of R. Then for , x = xe1
+ x(1 − e1). Hence , where  consists of all elements of
the form x(1 − e1). Now e1 is the unit for R1, ē1 = 1 − e1, the unit for , and for
x, , z, , we have (x + z) + (y + w) = (x + y) + (z + w) and (x +
z)(y + w) = xy + zw, since zy = ze1(1 − e1)y = 0, and similarly, xw = 0. Thus in
this direct sum  both sums and product may be computed by
combining the components separately. Hence, in particular, regularity of R
implies regularity for R1 and  separately. Continuing, take R2 as a minimal



two-sided ideal of  and find . Proceeding in this way,
we ultimately obtain

where 1 = e1 + e2 + · · · + es and ei, i = 1, · · ·, s are idempotents in the center
of R and eiej = 0, i ≠ j.
For

with xi, , we have

Thus, conversely, the direct sum of simple rings R over the same field F will be
regular and hence semi-simple. Now if  is any two-sided ideal in R, it is the
principal ideal of an idempotent e in the center. Here

Thus eie ≠ 0 for some i. But if  is minimal and eie ≠ ei, then the principal ideal
of eie would be properly contained in Ri, and if eie ≠ e, it would be properly
contained in . Hence eie = ei = e, and so, . This proves the
uniqueness of the direct sum.

THEOREM 16.4.4. Any ordinary irreducible representation of a finite group
G is equivalent to the representation on some minimal right ideal of RG. Two
minimal right ideals of RG give equivalent representations if, and only if,
they belong to the same simple component of RG.

Proof: We note that any representation ρ of G yields a representation of RG,

since if ,  is any element of RG, we may



take ρ(h) = Σ axρ(x) and this is a representation of RG. Equivalent
representations of G give equivalent representations of RG, and conversely.

The regular representation of G is the representation of G with RG as an F-
G module. In its completely reduced form

where 1 = e1 + e2 + · · · + et and the ei are idempotents which are orthogonal,
i.e., eiej = 0 if i ≠ j. Here each eiRG is a minimal right ideal. Now let ρ(x) be an
ordinary irreducible representation of G and thus of RG. Let M be an
irreducible F-G module giving the representation of ρ. Then M = M · 1 = M(e1
+ · · · + et). Hence for some ei, Mei ≠ 0. Let m be some vector in M such that
mei ≠ 0. Then meiRG ≠ 0 is a representation module for G different from zero
and contained in M. As M is irreducible, we must have M = meiRG. The
correspondence

is one to one, since the elements eih for which meih = 0 form a right ideal
properly contained in eiRG and hence are zero. We have an operator
isomorphism between the representation module M and the representation
module eiRG, and so, by Theorem 16.1.1, ρ(x) is equivalent to the
representation of G on the minimal right ideal eiRG.

When do two minimal right ideals yield equivalent representations? A
minimal right ideal must be contained in a unique minimal two-sided ideal.
Suppose that

is the decomposition of RG as a sum of simple ideals, i.e., minimal two-sided
ideals. Here 1 = e1 + e2 + · · · es, where the ei are an orthogonal set of
idempotents in the center. Suppose ei1RG and ei2RG are two minimal right
ideals in the same simple ideal Ri. Then all finite sums u1ei1v1 + · · · + umei1vm,



uk,  form a twosided ideal, and hence, since ei(ei1)ei = ei1 ≠ 0 is in
this set, the set is Ri. Hence, for appropriate u’s and v’s,

Since ei2
2 = ei2, we have for some j,

But then ei1vjRG ≠ 0, and since it is a right ideal contained in the minimal ideal
ei1RG, we have ei1vjRG = ei1RG. Similarly ei2ujei1vjRG = ei2RG. Thus with w =
ei2uj we have wei1RG = ei2RG. Hence for  we have ,
an operator isomorphism between the right ideals ei1RG and ei2RG, and so their
representations are equivalent. This shows that minimal right ideals in the same
simple ideal give the same representation.

Now suppose that ei1RG and ej1RG are minimal right ideals from the simple
ideals Ri and Rj, i ≠ j. Representing on ei1RG, we have the mappings for ei, ej
respectively,

whence ρ(ei) = 1 and ρ(ej) = 0. Similarly, on ej1RG, ei is represented by 0 and
ej by 1. Hence the representations are inequivalent.

We have related the decomposition of RG into a direct sum of simple ideals
to finding orthogonal idempotents in the center Z of RG. What is the center of
RG? This is easily answered.

THEOREM 16.4.5. The elements Ci = xi1 + · · · + xih, where xi1, xi2, · · ·, xih
are a class of conjugates in a group G are a basis for the center of RG.

Proof: If Ci = xi1 + · · · + xih, where xi1, xi2, · · ·, xih are a class of
conjugates in G, then for , y−1Ciy = Ci, since transformation by an
element merely permutes the elements of a class among themselves. Since Ci
permutes with every , it permutes with every element of RG and is in the



center of RG. Conversely if u is in the center of RG and , 

, we have , and so in u, conjugate elements

have equal coefficients and thus u is a linear combination of the Ci.

16.5. Absolutely Irreducible Representations.
Structure of Simple Rings.

We have seen that all irreducible ordinary representations occur as
components of the regular representation R(G) of a group G. Thus their
determination is a matter of finding the complete reduction of R(G), or what
comes to the same thing, finding the irreducible right ideals of the group ring
RG.

Irreducibility of a representation is a relative matter, depending on the
field. Thus if G is the cyclic group of order 3, with elements 1, x, x2 over the
rational field, RG has a decomposition  with 1 = e1 + e2,
where

are idempotents, R1 has e1 as a basis, and R2 has a basis e2, e2x. This gives the
representation

and R1 and R2 give irreducible representations of degrees 1 and 2. But if we
extend the rational field by adjoining the cube root of unity 

, the irreducible representation on R2 now
becomes reducible, and with a basis



we have ē2 + ē3 = e2; on this new basis we have

Clearly, further extension of the field will not reduce ρ(x).
A representation ρ of degree n is absolutely irreducible if it cannot be

reduced by extending the field F. Now, clearly, if ρ can be reduced over K ⊃ F,

all , with σ(x) an s × s matrix and τ(x) an (n − s) × (n − s) matrix, then
ρ(h),  as an algebra over K has dimension at most s2 + (n − s)2 < n2.
Hence, if ρ(h),  as an algebra over F has dimension n2, then ρ is
absolutely irreducible over F. We shall show that by appropriate algebraic
extension of the field, any ordinary representation is the direct sum of
irreducible representations in which an irreducible representation of degree n
has dimension n2 over the field.

THEOREM 16.5.1. A division ring D of finite dimension over afield F will
not be a division ring over algebraic extensions of F unless D is of
dimension one over F and then D = F.

Proof: Let D have a basis u1, · · ·, un over F, where we may take u1 = 1 as
the unit of D. If n > 1, consider 1 = u1, u2, u2

2, · · ·, u2
n. These must be linearly

dependent over F, and we have a relation



and so, if we adjoin the roots α1, · · ·, αr of f(x) = xr + a1xr−1 · · · + ar to F, we
have (u2 − α1u1) · · · (u2 − αru1) = 0. Hence, over this algebraic extension of F,
the u2 − αiu1 are divisors of zero. Hence D remains a division ring over
algebraic extension of F only if n = 1, and here D = F.

THEOREM 16.5.2. A simple ring R is a complete matrix ring over a
division ring D, contained in R.

Proof: Let e11R be a minimal right ideal of R, e11 being an idempotent. Then
1 − e11 is an idempotent and R = e11R ⊕ (1 − e11)R. If e2R is a minimal right
ideal in (1 − e11)R, e2 being an idempotent, we have (1 − e11)e2 = e2, whence
e11e2 = 0. Also e22 = e2 − e2e11 is an idempotent, and e22R = e2R and e11e22 = 0,
e22e11 = 0. Here R = e11R ⊕ e22R ⊕ (1 − e11 − e22)R. Suppose we have found
orthogonal idempotents e11, · · ·, eii such that eiiR are minimal and R = e11R +
e22R ⊕ · · · ⊕ eiiR ⊕ (1 − e11 · · · −eii)R. Let ei+1 be an idempotent such that
ei+1R is a minimal right ideal in (1 −e11 · · · −eii)R. Then ei+1 = (1 − e11 · · · −
eii)ei+1, whence ejjei+1 = ejj(1 − e11 · · · − eii)ei+1 = 0, j = 1, · · ·, i. If we put
ei+1,i+1 = ei+1(1 − e11 · · · − eii), we have ei+1,i+1, an idempotent ei+1, i+1R = ei+1R,
and also ei+1, i+1 orthogonal to e11, · · ·, eii. Continuing, we find

where the eii are orthogonal idempotents, the eiiR are minimal right ideals, and
1 = e11 + e22 · · · + enn.

LEMMA 16.5.1. eiiRejj ≠ 0 for i, j = 1, · · ·, n.

Proof: All finite sums  form a two-sided ideal including eii ≠

0, whence these sums are the entire ring R. Thus for appropriate elements uk,
vk, we have Σ ukeiivk = ejj, and so, Σ ukeiivkejj = ejj. Hence for some v, eiivejj ≠
0.

LEMMA 16.5.2. eiiReii is a division ring Di.



Proof: eiiReii is certainly closed under addition and multiplication, and so
is a subring of R. It has eii as a unit. It suffices to find inverses for elements
different from 0. If eiixeii ≠ 0, then eiixeiiR is a right ideal ≠ 0 contained in, and
so equal to, the minimal right ideal eiiR. Hence for some y, eiixeiiy = eii, and so,
eiixeii·eiiyeii = eii. Thus eiiyeii is an inverse for eiixeii in eiiReii, which is
therefore a division ring Di.

Choose for each i = 2, · · ·, n an element e11beii ≠ 0, and write e11beii = e1i.
Then

Now e1iR ⊆ e11R, whence e1iR = e11R. Hence for some y, e1iy = e11, e1i(eiiye11)
= e11. Write ei1 = eiiye11. Then for our elements i = 2, · · ·, n.

Hence e1iei1e1iei1 = e11
2 = e11, and so, ei1e1i ≠ 0. But (ei1e1i)2 = ei1e1i is an

idempotent in eiiReii, whence ei1e1i = eii, the unit being the only nonzero
idempotent in a division ring. Now put ei1e1j = eij if i ≠ j. Then we have eijejk =
ei1e1jej1e1k = ei1e1je1k = ei1e1k = eik. Also if j ≠ k, eijekt = eijejjekkekt = 0. Thus
for our n2 units eij, we have shown in all cases

and so, the eij have the multiplication properties of the n × n matrix elements

if (r, s) ≠ (i, j).
Now from the division ring D1 = e11Re11, define a ring D by putting

for each . We verify without trouble that D is isomorphic to D1 and
hence is a division ring. Corresponding to e11 the unit of D1 we have e11 + e22 +



· · · + enn = 1, the unit of D and also of R. Also for , we find eijd =
ei1d1e1j = deij.

Finally, for an arbitrary , we have 

. But here

for some  whence for  we have xij = ueij = eiju. This
completes our theorem. We have shown that a simple ring R can be exhibited in
the explicit form of an n × n matrix ring over a division ring D whose unit
coincides with the unit of R.

THEOREM 16.5.3. If RG is a semi-simple group ring over a field F, there is
an algebraic extension F* of F in which RG is the direct sum of complete
matrix rings over F*. We can take F* to be a finite algebraic extension of F.

Proof: RG is semi-simple over a field F if, and only if, the characteristic of
the field does not divide the order of the group G. This property is unaltered if
F is replaced by an algebraic extension F* of F. If in the decomposition of RG
over F as the direct sum of simple rings , there is some
simple Rk whose corresponding division ring D is not the field F, then by an
algebraic extension of F to some F*, the ring D loses the property of being a
division ring. This alters the decomposition of RG in one of two ways: (1) we
may increase (but surely not decrease) the number of idempotents in the center
of R and thus break up a simple ring as the direct sum of several simple rings;
or (2) in a simple ring R we find a division ring D* of smaller dimension and
express R as a larger matrix ring over D*. Both these situations can arise. We
have already seen the first case in representing the group of order 3. The
second case arises in the ring RQ of the quaternion group Q over the rational
field F. RQ over F is the direct sum of four simple rings of dimension 1 and one
of dimension 4 which is a division ring (the quaternion algebra). If we adjoin i
to F, the division ring becomes the ring of 2 × 2 matrices over the complex
rational field.



In any event the algebraic closure  of F is a field over which every
simple ring Rk arising in RG is a matrix ring over . The matrix units eij

k of
the simple rings Rk can be expressed in terms of the elements x of G, and any
field F* containing all the coefficients appearing in these expressions will be
such that the Rk are complete matrix rings over F*. F* is clearly finite over F.

THEOREM 16.5.4. The center of a complete matrix ring Rk over a field F
consists of the scalar multiples of the unit of Rk, which is the identity matrix.
The center of the direct sum of matrix rings R = R1 + · · · + Rr over a field F
has as a basis the r units of R1, · · ·, Rr.

Proof: Let Rk be the complete n × n matrix ring over F. Then suppose

is in the center of Rk. From ersx = xers we find

Hence asj = 0 for j ≠ s and ass = arr. Thus x = a11(e11 + · · · + enn) = a11 · 1, and
all such elements are in the center of Rk. If

then the center of R is the direct sum of the centers of the Rk and as such has as
a basis the r units of the Rk.

We now have a number of theorems which relate the ordinary
representations of G to the semi-simple group ring RG. We combine these
results in a theorem.

THEOREM 16.5.5. Every irreducible ordinary representation of a finite
group G occurs as a component of the right regular representation R(G). The
number of inequivalent absolutely irreducible representations is the number
of classes in G. If ρ1, · · ·, ρr are the distinct absolutely irreducible



representations and ρi is of degree ni, i = 1, · · ·, r, then ρi is of dimension ni
2

over F and ρi occurs ni times in R(G). The only matrices permuting with
ρi(x), all  are scalar multiples of the identity. If g is the order of G,
then g = n1

2 + n2
2 + · · · + nr

2.

Proof: By Theorem 16.4.4, every ordinary irreducible representation is
equivalent to a representation on some minimal right ideal of RG and as such
occurs as a component of R(G). Also, there are as many inequivalent
irreducible representations as there are simple ideals in RG. Extending the field
F if necessary to F*, the center of RG has a basis of r idempotents where by
Theorem 16.5.4, RG is the direct sum of r matrix rings. But by Theorem 16.4.5,
the center of RG has the class sums Ci as a basis, and so r is the number of
classes in G. Over F* a minimal right ideal occurring in Ri will be e11R, and if
Ri is an ni × ni matrix ring, this will have a basis e11, e12, · · ·, e1ni. The
corresponding representation ρi will be of degree ni and ρi extended to a
representation of RG will represent faithfully the simple ring Ri and will
represent all other Rj’s by 0, since, as shown in the proof of Theorem 16.4.4,
we shall have ρi(ej) = 0 if ej is the unit of Rj, j ≠ i Thus ρi(RG) is the full matrix
ring of dimension ni

2 over F*, and so, is surely absolutely irreducible since a
further reduction would be possible only if it were of lower dimension over
F*. Also, being of dimension ni

2, the only matrices permuting with every ρi(x), 
 will be scalar multiples of the identity. Finally, as each Ri has a basis of

ni
2 elements, their direct sum has a basis of n1

2 + · · · + nr
2 elements. But RG

has a basis of the g elements of G. Hence

Ri is the direct sum of the ni right ideals e11R, · · · eniniR, and so, ρi occurs ni
times in R(G).

16.6. Relations on Ordinary Characters.



The preceding section gave information on representations of G which
depended on the nature of RG and the fact that a representation of G gives a
representation of RG. In this section we find relations on the characters χ(x), 

. These are more intimately related to G itself than to RG. We assume
throughout this section that we are dealing with ordinary representations.

THEOREM 16.6.1. Let A and B be two F-G modules. If A is of dimension m
and yields the representation ρ(x), , and B is of dimension n and
yields the representation σ(x), then the additive group of operator
homomorphisms of A into B is isomorphic to the additive group of all m × n
matrices α such that ρ(x)α = ασ(x), all .

COROLLARY 16.6.1. The ring of operator endomorphisms of A into itself is
isomorphic to the ring of m × m matrices α such that ρ(x)α = αρ(x).

Proof: Let A have a basis u1, · · ·, um and B have a basis v1, · · ·, vn. Then
any linear mapping of A into B is determined by the images of the basis, say,

and let us write α = (aij), i = 1, · · ·, m; j = 1, · · ·, n. These linear mappings
form an additive group isomorphic to the additive group of the matrices α. If in
addition to being a linear mapping, the mapping is to be an operator
homomorphism, whenever u → v we must have also ux → vx for . This
means that the mappings  and  are
identical, but this is the relation

for all .
If we map A into itself, the mappings are called endomorphisms and here if

α, β are two operator endomorphisms, we have



and thus the matrices α with ρ(x)α = αρ(x) are isomorphic to the ring of
operator endomorphisms of A.

Theorem 16.6.2 holds for any Ω module, where Ω is any ring of operators,
but, of course, we are interested mainly in F-G modules.

THEOREM 16.6.2 (SCHUR’S LEMMA). If A, B are two irreducible Ω modules,
then unless they are operator isomorphic, the only operator homomorphism
of A into B maps A onto 0. If A is irreducible, every operator endomorphism
of A not identically zero is an operator isomorphism.

Proof: Let , , . Then if for some , an operator
homomorphism maps u → v ≠ 0, then uω → vω for all . Here uΩ is a
submodule of A, and hence, as A is irreducible, all of A. Thus A = uΩ → vΩ ≠
0, whence A → vΩ = B. The mapping must be one to one, since otherwise,
nonzero elements of A are mapped onto zero and these form an Ω submodule of
A, contrary to the assumption that A was irreducible. Hence the mapping is an
isomorphism, and so, in particular, every operator endomorphism of A into
itself is an operator isomorphism.

THEOREM 16.6.3. If ρ and σ are irreducible and inequivalent
representations of the finite group G of degree m and n, respectively, and ξ is
any m × n matrix, then

Proof: Write

Then for , xy = z, y−1 = z−1x,



all .
Hence, by Theorems 16.6.1 and 16.6.2, if ρ and σ are irreducible and

inequivalent, we must have α = 0. Note that these theorems hold for
representations of G over any field.

If f1(y) and f2(y) are any two functions defined for  with values in F
(where we now assume that the characteristic of F does not divide the order of
G), then we define the symmetric bilinear scalar product:

We verify, noting that y−1 runs over G as y does, that
1) (f1, f2) = (f2, f1)
2) (f1 + f2, f3) = (f1, f3) + (f2, f3).
3) (af1, f2) = a(f1, f2), .

Now suppose that ρ(x) and σ(x) are irreducible inequivalent representations. If
in Theorem 16.6.3 we take ξ = ers, the m × n matrix with 1 in position (r, s) and

0 elsewhere, we find α = (αij), where  where

Since α = 0 by Theorems 16.6.1 and 16.6.2, we have (ρir, σsj) = 0. We may
show even more.

THEOREM 16.6.4. If ρ and σ are inequivalent ordinary irreducible
representations of a finite group G, then the symmetric bilinear scalar



product (ρir, σsj) = 0 for all i, r, s, j. If ρ is an absolutely irreducible ordinary
representation of degree n then (ρir, ρsj) = 0 unless i = j, r = s, and then (ρij,
ρji) = 1/n for all i, j.

Proof: We have already shown the first part. Now consider an absolutely
irreducible ordinary representation ρ of G. Let n be the degree of ρ. If ξ is an
arbitrary n × n matrix, then we verify as before that

where ξ is an arbitrary n × n matrix, satisfies ρ(x)α = αρ(x) for all .
Hence by Theorem 16.5.5, α is a scalar multiple of the identity α = λIn, where
the scalar λ depends on ξ. If ξ = ers, write λ = λrs. Then we find λrsδij = (ρir,
ρsj). But (ρir, ρsj) = (ρsj, ρir), so λrsδij = λjiδsr = 0 unless both i = j and r = s,
while (ρij, ρji) = λii = (ρji, ρij) = λjj. Hence λ11 = λ22 · · · = λnn = λ has the same
value for all subscripts. Thus

Hence λ = 1/n. This proves the rest of the theorem. Note that nλ = 1 shows that
the degree n is not divisible by the characteristic of F.

These results carry over to the characters.

THEOREM 16.6.5. If χ, ψ are distinct irreducible characters, then (χ, ψ) =
0. If χ is an absolutely irreducible character, then (χ, χ) = 1.

Proof: If χ and ψ are irreducible characters of the representations ρ and σ,

then for , . Since the

scalar product is bilinear,



since each individual summand is zero. Now let χ be an absolutely irreducible
character of the representation ρ of degree n. Here

This completes the proof.

COROLLARY 16.6.2.  for the identical representation. 

 for any other irreducible representation.

For χ(x) = 1 for any x in the identical representation, whence here 

. But if χ is the character of any other irreducible

representation, take ψ as the identical character. Then (χ, ψ) = 0 gives 1/gΣχ(x)
= 0.

THEOREM 16.6.6. If χ, ψ are characters and χ = Σ aiχi = Σbiχi, where the χi,
i = 1, · · ·, r are the absolutely irreducible characters, then (χ, ψ) = Σ aibi.
Thus for a character ϕ, (ϕ, ϕ) = 1 is necessary and sufficient for ϕ to be an
absolutely irreducible character if the field F is of characteristic zero.

Proof: This is essentially a corollary to Theorem 16.6.5, using the
bilinearity of the scalar product. If ϕ = Σ ciχi, then the c’s are non-negative
integers, and if (ϕ, ϕ) = Σci

2 = 1, we may conclude in a field of characteristic
zero that one ci is 1 and the rest are zero.

THEOREM 16.6.7. The absolutely irreducible representations of an Abelian
group G are all of degree one.

Proof: Since G is Abelian, every element is a class and so if g is its order,
we have g absolutely irreducible representations of degrees n1, · · ·, ng, where
g = n1

2 + n2
2, · · · + ng

2. Hence n1 = n2 · · · = ng = 1. Here for every



representation ρ of degree one, we have χ(x) = ρ(x). Thus the representations
coincide with the characters and are indeed the same as the characters of an
Abelian group as treated in Chap. 13.

THEOREM 16.6.8. Let x be an element of order m in a group G and let ρ be
a representation of G of degree n. Then, adjoining the mth roots of unity to F,
if necessary, ρ(x) is similar to a diagonal matrix whose elements are mth

roots of unity. If F is the complex field,  the complex
conjugate of χ(x).

Proof: The matrices 1, ρ(x), · · ·, ρ(xm−1) are a representation of the cyclic
group C of order m. But the absolutely irreducible representations of C are of
degree 1, with σ(x) = (b), where since 1 = xm, we must have bm = 1, and so b is
an mth root of unity. In Rc we easily verify that 1/m(1 + ωx + ω2x2 · · · +
ωm−1xm−1), since ω ranges over all mth roots of unity, are idempotents yielding
the irreducible representations. Hence, adjoining the mth roots of unity to the
field F (whose characteristic is, of course, not a divisor of m), the
representation ρ(x) of C reduces completely and we have a matrix similar to
ρ(x) which is a diagonal matrix, diag. (b1, · · ·, bn), where each bi is an mth
root of unity. Hence χ(x) = b1 + · · · + bn. Here ρ(x−1) must be similar to diag.
(b1

−1, · · ·, bn
−1) and χ(x−1) = b1

−1 + ... + bn
−1. But if F is the complex field,

then the inverse of any root of unity is its complex conjugate, , and
so, .

Let ρ be any representation of a group G and for each  let us define 
, where we designate the transpose of a matrix by the

superscript T. Then

Thus  is also a representation of G, called the contragredient representation.
Suppose that L is the representation module for ρ with a basis u1, · · ·, un

over a field F. Take another space  over F with a basis v1, · · ·, vn, and
define a scalar product u·v for  and 

 by the rule



This scalar product is the bilinear function on  defined by ui·vj = δij.
We make v1, · · ·, vn a representation basis for  by the rule

Then

since ρ(x)ρ(x−1) = In. Thus ux·vx = u·v for all , , and ,
and the scalar product is preserved by operation on both factors by the same
element of G. To any subspace M′ of  let us make correspond the subspace M
of L of all , such that u·v = 0 for all . Hence dim. M′ + dim. M
= n, and this is a dual correspondence between the subspaces of L and . If M′
is a representation submodule of , and , then for , 

, and so, u·vx−1 = 0 and ux·v = 0 for all , ,
whence  and M is a representation submodule of L. Hence, in
particular,  is irreducible if, and only if, L is irreducible. If ρ is an absolutely
irreducible n × n representation, then since ρ is of dimension n2 over F, it
would follow that  is also of dimension n2 over F, and so it is clearly
absolutely irreducible.

From the definition . Also if ρ and σ are equivalent, then for some
S,

all .
Then taking transposes,



all , and so  and  are equivalent.
Let r be the number of classes in G. Let ρ1, · · ·, ρr be the absolutely

irreducible representations of G over F, where by convention we take ρ1, the
identical representation, ρ1(x) = 1, all . (This corresponds to the

idempotent .) Then  will be the same

representations in some order. Similarly, let C1, · · ·, Cr be the classes of G,
where by convention we take C1 = 1, the class consisting of the identity alone.
The inverses of the elements in a class Ci will themselves be a class Ci′. Hence
Ci′ = C1, · · ·, Cr′ will again be the classes of C.

If χ(x) is the character of ρ(x), let us designate the character of  by 
. Here χ(x) = trace ρ(x):

and we have noted in Theorem 16.6.8 that for the complex field, 
, the complex conjugate. Thus this notation agrees with

that for complex conjugates over the complex field. We note that over the
complex field,  only if all characters χ(x) for ρ are real.

Let us designate by χi
a the absolutely irreducible character of an element of

the class Ci in the representation ρa. We also write hi for the number of
elements in Ci. The number hi is the index of the normalizer of an element 

, and if its order is gi we have gihi = g.

THEOREM 16.6.9. The following orthogonality relations hold for
absolutely irreducible characters of a group G:

Proof: By Theorem 16.6.5 we have



But χ(x) = χ(y) if x and y are in the same class Ci, and then x−1 and y−1 are in
the same class Ci′. Here . Hence for x in Ci, the above
sum will contain hi terms equal to . Hence

or

But this says that if M is the matrix, M = (mai) a, i = 1, · · ·, r, where mai = χi
a,

then the matrix

with

is such that

and so M′ is the inverse of M. But then it is also true that M′M = Ir, and then it
follows

from which the second relation follows.



The structure of the group ring yields further relations on characters. In the
decomposition of RG as a direct sum of simple rings

let eij
a, i, j = 1, · · ·, n be the matrix units for Ra whose unit is ea = e11

a + e22
a +

· · · + enn
a. The irreducible representation ρa = ρa associated with Ra is

equivalent to that on a minimal right ideal of Ra. Let this be associated in a
specific way, using the minimal ideal e11

aR with the basis

Then

Now x = x1 + x2 + · · · + xa + · · · + xr with . Here

Then if

we have e1i
ax = e1i

aeax = e1i
axa, and

But the definition of the representation gives

Hence xij
a = ρij

a(x) in all cases, and so,



We write , since no ambiguity will arise in using the same

letter for the class and the sum of the elements regarded as an element of RG.
Then C1, C2, · · ·, Cr are a basis for the center ZG of RG. Let

with . Then, since Ck
a is in the center of Ra, it is a scalar multiple

of ea. Here

But

whence nauk
a = hkχk

a, where na is the degree of ρa. Hence

and so,

The elements C1, · · ·, Cr of RG as a basis of Z(RG) will have a
multiplication table



where over a field F of characteristic zero the cijk are non-negative integers,
since CiCj = CjCi contains no negative terms.

As RG is the direct sum of the simple rings Ra, the components Ci
a will

satisfy the same relations as the Ci. Thus:

THEOREM 16.6.10.

and

In the proof of Theorem 16.6.4 we found the relation nλ = 1, where n = na was
the degree of an absolutely irreducible representation. Hence the division by na
in Theorem 16.6.10 is permissible.

Given any two linear spaces L and M over a field F, we define their tensor
product L × M in the following way: If u1, · · ·, um are a basis for L, and v1, · ·
·, vn are a basis for M, then L × M is the linear space over F with a basis uivj, i
= 1, · · ·, m, j = 1, · · ·, n. If

and

the product  is defined as an element of L × M. We

verify that a change of basis for L or M corresponds to a change of basis for L
× M.

If L is an F-G module for the representation ρ of the group G and M for the
representation σ of G, we define the Kronecker product ρ × σ of the
representations as the representation of G on L × M given by



Thus if ρ1 is equivalent to ρ and σ1 is equivalent to σ, we have ρ1 × σ1
equivalent to ρ × σ, since this corresponds to a change of basis for L and M.

THEOREM 16.6.11. If ρ and σ are representations of G with characters χ
and ψ, respectively, and if ϕ is the character of ρ × σ, then for every 
we have ϕ(x) = χ(x)ψ(x).

Proof: If , i = 1, · · ·, m, ,

i = 1, · · ·, n,

we have

But with

then

From their definitions we see that the tensor product and the Kronecker
product are commutative and associative. Hence if ρa and ρb are absolutely
irreducible representations of G, then

where the gabc are non-negative integers giving the decomposition of ρa × ρb as
the direct sum of irreducible representations ρc with multiplicity gabc. The



same relation will hold for the characters. Thus we state as a theorem:

THEOREM 16.6.12. The absolutely irreducible characters of a group G
satisfy

where the gabc are non-negative integers, being the multiplication constants
of a commutative and associative algebra.

We summarize the character relations we have found. Let C1 = 1, C2, · · ·,
Cr be the classes of G, ρ1 = the identity representation, and ρ2, · · ·, ρr be the
absolutely irreducible representations, where χi

a is the character of an element
of the ith class in the ath representation

Here we have, gihi = g, where there are hi elements in the class Ci.

1) On the rows:

2) On the columns:

3) Within each row:



4) Within each column:

Here cijk and gabc are non-negative integers which are the multiplication
constants of commutative and associative algebras.

Every representation of a group G as a permutation group π(G) can also be
regarded as a matrix representation, since if

for , we may regard this as the representation ρ on a basis u1, · · ·, un,
where

Here χ(x) is the number of letters fixed by π(x).

THEOREM 16.6.13. In a permutation representation π(G) of a group G of

order g, , where k is the number of transitive constituents.

Here the representation as a matrix representation contains the identical
representation exactly k times.

Proof: Let n1, n2, · · ·, nk be the number of letters in the k transitive
constituents. Then a subgroup Hj fixing a letter aj of the jth transitive constituent
will be of index nj and of order g/nj. Hence the letter aj is fixed g/nj times in
all the elements of G. Thus the number of times letters of the jth constituent are
fixed is nj·g/nj = g. Hence the number of times letters of any of the k

constituents are fixed is kg or . If  gives



χ as a sum of absolutely irreducible characters, then  by

the corollary to Theorem 16.6.5. Hence the representation contains the identical
representation m1 = k times.

THEOREM 16.6.14. If χ is the character of a transitive permutation group

G, then , where t is the number of transitive constituents

of a subgroup H fixing a letter. t is also the number of double cosets H x H in
G.



Proof: Let G be a transitive permutation group on letters 1, 2, · · ·, n. Let
Hi be the subgroup fixing i, i = 1, · · ·, n. We may take H = H1, since all the
Hi are conjugate. Let h be the order of H. Then

by the previous theorem. Hence

But on the left we have counted χ(x) once for every Hi containing x. But x
fixes χ(x) letters and so is contained in χ(x) different Hi’s. (This number is
zero if x displaces all letters.) Hence

But we easily see that t is the number of double cosets H x H in G. For let G
= H + Hx2 · · · + Hxn, where H is the subgroup fixing 1 and xi, = (1, i, · · ·) i
= 2, · · ·, n. Then if HxiH = HxjH, we have xi = h1xjh2 with h1, .
Here the element h2 must take j into i, whence i and j are in a transitive
constituent of H. Conversely, suppose that i and j are in a transitive
constituent of H. Then for some , h2 takes j into i, xjh2 takes 1 into i,
whence  and xi = h1xjh2 and HxiH = HxjH. Now every double
coset of H is one of HxiH. Hence there are exactly as many double cosets
HxH as there are transitive constituents in H.

THEOREM 16.6.15. A doubly transitive permutation representation of a
group G over the complex field is the sum of the identical representation
and an absolutely irreducible representation.

Proof: For a doubly transitive representation,



since a subgroup H fixing a letter 1, has exactly two transitive constituents, 1,
and the remaining letters. Since χ(x) is real, we may write this

But if  expresses χ as a sum of absolutely irreducible

characters, we have

by the orthogonality relations. Hence , whence c1 = 1, as we

already know, and for exactly one further ca we have ca = 1.

16.7. Imprimitive Representations.

Suppose that we have a representation module M for a group G which is
the direct sum of subspaces M1, M2, · · ·, Mn, on which the representation is
transitive but imprimitive. By this we mean:

1) For any Mi and Mj there is an  such that

2) For every Mi and every  there is an Mj such that

The first of these is the transitive property; the second, the imprimitivity.



Choose a particular subspace M1. The set of all x such that M1x = M1
surely includes the identity x = 1 and so is not vacuous and is readily seen to
be a subgroup H of G. Thus for ,

and so M1 is a representation module for H. If  is an element such
that

then the elements x such that M1x = Mi are the elements of the coset Hbi. Thus
we have

where

and we have associated the subspaces with the left cosets of H. If x is such
that

then

and

whence  or , a subgroup conjugate to H. Finally,
if



then

Let ρ1 be the representation of H associated with a basis v1 · · ·, vm of M1.
We may then take v1bi, · · ·, vmbi as a basis of Mi. Then for an arbitrary 

 we have

Here Mj1 · · ·, Mjn must be a permutation of M1 · · ·, Mn, since operating on
them with x−1 we must get back to M1, · · ·, Mn. Here if Mix = Mj (j = ji), we
have , or . Hence, with vkbi, k = 1, · · ·,
m as a basis of Mi, we have

In other words this part of the representation is completely determined by the
representation of hij on M1:

Hence

with the convention that ρ1(y) = 0 if . Here ρ(x) is of degree mn, made
up of n2 matrices of degree m. Thus every representation transitive on
subspaces M1, · · ·, Mn and imprimitive on these is determined by a
representation ρ1 of a subgroup H of index n in G. The converse is also true.
Let ρ1 be any representation of H where

Then define



with the convention that ρ(y) = 0 if . Then, using block multiplication
of matrices,

and trivially,

Thus ρ(x) is a representation for G.

THEOREM 16.7.1. Given a representation ρ1 of degree m of a subgroup
H of a group G, if G = H + Hb2 + · · · + Hbn, then

with the convention ρ1(y) = 0 if  is a representation of G of degree
mn on a module M with subspaces M1, M2, · · ·, Mn corresponding to H,
Hb2, · · ·, Hbn, respectively. ρ is transitive and imprimitive on M1, · · ·,
Mn. Conversely, any representation transitive and imprimitive on
subspaces of a module is of this type.

Proof: If u1 · · ·, um, · · ·, umn are a basis for the representation module
of ρ of the theorem, then u1 · · ·, um are a basis for ρ1 on H and um(i−1)+j =
ujbi, i = 1, · · ·, n. It follows that the module M with basis u1, · · ·, umn has
subspaces M1, · · ·, Mn on which ρ is transitive and imprimitive. We say that
the representation ρ of G is induced by the representation ρ1 of H.

COROLLARY 16.7.1. The representation ρ of G induced by the
representation ρ1 of H does not depend on the choice of coset
representatives of H in G.



This follows since a change of representatives does not alter the
subspaces M1, · · ·, Mn but merely changes the bases for them.

THEOREM 16.7.2. Let χ be the character of the representation ρ of G
induced by the representation ρ1 of H, whose character is χ1. Let x be in
the class Cj of conjugates in G with hj elements, and let g = gjhj, where g is
the order of G. Let h be the order of H. Then

Proof:  with the convention χ1(w) = 0 if 

. Then

since every element y of Hbi contributes the same amount to the sum on the
right, viz., χ1(bixbi

−1). Here yxy−l, as y ranges over G, ranges over Cj and
gives each  exactly gi, times. Thus

proving the theorem.

THEOREM 16.7.3 (RECIPROCITY THEOREM). Let ρ, ρ1 be absolutely
irreducible representations of a group G and a subgroup H, respectively
over a field of characteristic zero. Then the multiplicity of ρ1 occurring in
ρ restricted to H is the same as the multiplicity of ρ in the representation
ρ* of G induced by ρ1.



Proof: Let χ = χa be the character of ρ, and χ1 = χ1
c be the character of

ρ1. Let χ* be the character of ρ*, , χb the irreducible

characters of G. When restricted to H, let , χ1
d the

irreducible characters of H. Here the multiplicity of ρ in ρ* is ma and the
multiplicity of ρ1 in ρ restricted to H is nc. By the previous theorem,

Here the convention is that a void sum is zero. Multiply this by  and sum
over j. We have

whence, using the orthogonality relations in G and also in H,

the statement of the theorem.

16.8. Some Applications of the Theory of
Characters.

We shall assume throughout this section that we are dealing with the field
F of complex numbers, though it will be clear to the reader that a number of



the results carry over to all fields whose characteristic is not divisible by the
order of the group G being represented.

First some facts will be needed about algebraic numbers.† A number θ is
said to be an algebraic number if it is the root x = θ of a monic polynomial:

where a1, · · ·, an are rational numbers. θ is said to be an algebraic integer
if it is the root of such a polynomial where a1, · · ·, an are rational integers.

THEOREM 16.8.1. A rational number which is an algebraic integer is a
rational integer.

Proof: Suppose that θ = r/s is a rational number expressed in its lowest
terms and that it satisfies

where a1, · · ·, an are integers. Then

Hence any prime dividing s must divide rn and hence r. This cannot happen if
r/s is in its lowest terms and s ≠ 1. Hence s = 1, and so θ = r is a rational
integer.

THEOREM 16.8.2. Algebraic numbers form a field. The sum or product
of two algebraic integers is an algebraic integer.

Proof: Let θ be an algebraic number satisfying xn + a1xn−1 + · · · + an =
0, and ϕ be an algebraic number satisfying xm + b1xm−1 + · · · + bm = 0. Let

Then



and

Similarly,

and

LEMMA 16.8.1. If y1, · · ·, yN are numbers not all zero and if z is a
number such that

with all aij rational, then z is an algebraic number. If the aij are integers,
then z is an algebraic integer.

Proof: The hypothesis gives us a system of equations:

which, when regarded as linear equations for the y’s, has the solution y1, · ·
·, yN, where not all y’s are zero. Hence the determinant of the coefficients
must be zero.
Thus



But this, on expansion, is

where the p’s are integral polynomials in the a’s. Hence if the a’s are
rational, z is an algebraic number, and if the a’s are integers, z is an algebraic
integer.

We may use this lemma to prove our theorem. We exclude the trivial
cases when θ or ϕ is 0. Then we take y1, · · ·, yN to be the vij, and since v00 =
1, the vij are not all zero. Here take z as θ + ϕ or as θϕ. The aij of the lemma
in these cases will be integral polynomials in the a1, · · ·, an and b1, · · ·, bm.
Hence z = θ + ϕ and z = θϕ will be algebraic numbers, and if a1, · · ·, an and
b1, · · ·, bm are integers, then θ + ϕ and θϕ will be algebraic integers. Thus
the sum and product of algebraic numbers are algebraic numbers, and the sum
and product of algebraic integers are algebraic integers. Finally, if θ is an
algebraic number ≠ 0 satisfying zn + a1zn−1 · · · + an = 0, we may, if
necessary, divide by a power of z to get a constant term an ≠ 0. Here

is an equation which 1/θ satisfies. Trivially, −θ satisfies zn − a1zn−1 · · · +
(−1)nan = 0. Hence algebraic integers form an integral domain and algebraic
numbers form a field.

THEOREM 16.8.3. Every character χ(x) is an algebraic integer. The
numbers hiχi

a/na of Theorem 16.6.10 are algebraic integers.

Proof: An mth root of unity satisfies xm − 1 = 0 and so is an algebraic
integer. Thus, by Theorem 16.6.8, every character χ(x) is a sum of roots of



unity and so is an algebraic integer. Since the cijk are integers in Theorem
16.6.10, we may apply Lemma 16.8.1 with the

as the y’s of the lemma and also any one of them as z, and we conclude that
ηi

a are algebraic integers.

THEOREM 16.8.4. The degrees na of the absolutely irreducible
representations of the finite group G are divisors of its order g.

Proof: From our orthogonality relations

This becomes, since gihi = g,

or

But the left side is a sum of products of algebraic integers. Hence g/na is an
algebraic integer and, being rational, is a rational integer. Thus na divides g.

For our use of algebraic numbers we need a little of the theory of
symmetric functions. If we expand

we have



Here E1, · · ·, En are clearly unchanged by any permutation of x1, · · ·, xn and
are called the elementary symmetric functions of x1, · · ·, xn. A polynomial
P(x1, · · ·, xn) over a field F is called a symmetric function if it is unchanged
by the entire symmetric group of permutations of x1, · · ·, xn.

THEOREM 16.8.5. Every symmetric function P(x1, · · ·, xn) is a
polynomial Q(E1, · · ·, En) in the elementary symmetric functions E1, · · ·,
En, and the coefficients in Q are integral polynomials in the coefficients of
P.

Proof: If P is symmetric, then its terms of each degree are separately
symmetric functions. The theorem is trivially true for degree 1, the only
symmetric functions being cE1, . Moreover, P is a sum of symmetric
polynomials, each determined by a single term in it, say,

where the exponents a > b · · · > t are strictly decreasing. It is enough to
prove the theorem for symmetric sums:

with a > b · · · > t. We proceed by induction on (1) the degree of K; (2) the
value of a; and (3) the value of r. If x1, · · ·, xn appear in every term, we
factor out En and have the remaining factor symmetric of lower degree.
Hence we may assume u + v < n. If a = 1r then K = Er. Otherwise consider



Here Er·K* = K + other terms. Both K* and the other terms appearing
precede K in our induction, and so our theorem is proved.

The rational polynomial of lowest degree which has an algebraic number
θ as a root is called the minimal polynomial for θ. If

is the minimal polynomial, it is a divisor of any rational polynomial h(x)
which has θ as a root. Now if

where θ = θ1, we say that θ1 · · ·, θn are the conjugates of θ. Hence the
conjugates of θ also satisfy any rational equation h(x) = 0 which θ satisfies.
Hence if θ is an algebraic integer, its conjugates are also algebraic integers,
and so the coefficients of the minimal polynomial for θ, being the symmetric
functions of the conjugates of θ, are algebraic integers and hence rational
integers.

In the study of representations we are mostly concerned with roots of
unity. The primitive mth roots of unity are ω = exp (2πi/m) and powers ωj

where (j, m) = 1. ω and the other primitive mth roots of unity satisfy xm − 1 =
0, and no equation xr − 1 = 0 with 0 < r < m. The remaining mth roots of unity
satisfy equations xd − 1 = 0, where d runs over the divisors of m. Removing
all factors from xm − 1 which it has in common with xd − 1, we are left with a
rational f(x) which has its roots precisely the primitive mth roots of unity.
Hence

and f(x) is rational and integral of degree ϕ(m), this being the Euler ϕ
function. f(x) is in fact irreducible, but this is difficult to prove without using
more theory of algebraic numbers than we can prove here. We need only



know that the elementary symmetric functions of the primitive mth roots are
rational integers.

THEOREM 16.8.6. Let ρa be an absolutely irreducible representation of
G of degree n, and let there be a class Ci where (hi, n) = 1. Then either (1)
χi

a = 0, or (2) χi
a = nω, where ω is a root of unity and Ci is in the center of

pa.
Proof: For a particular  we may transform ρa so that ρa (x) is in

diagonal form. If all the n characteristic roots of x are equal, say, to some mth
root of unity ω, then

and x is in the center of ρa. This is the second alternative of the theorem.
Thus we must show that if the characteristic roots of x are not all equal, then,
under the hypotheses of the theorem, χ(x) = 0. Now in this case, χ being of
order m, χi

a = χ(x) = ωe
1 + · · · + ωe

n and |χia| < n, since the ωei do not all
have the same argument. Here

is an algebraic integer, and since (hi, n) = 1, there are integers r and s so that
rhi + sn = 1. Hence

is an algebraic integer. Here

and also



Replacing ω by its conjugates ωj, we have

a polynomial whose coefficients are symmetric functions of the conjugates of
ω and hence rational. Thus the conjugates of ξ lie among the numbers.

and so, for every conjugate ξ(i) of ξ we have |ξ(i)| ≤ 1, and every conjugate is
an algebraic integer. Now |ξ| = |ξ(1)| < 1, and so the product |ξ(1) · · · ξ(s)| < 1,
this being the product of all conjugates of ξ. This must be a rational integer
and hence must be 0. Thus ξ(1) · · · ξ(s) = 0. Thus at least one of the
conjugates is 0. But 0 is its own only conjugate and so ξ = ξ(1) = 0, and so,

whence χi
a = 0, as we were to prove.

THEOREM 16.8.7*. (1) If the number hi of elements in a class Ci of a
group G is a prime power, then G is not a simple group. More explicitly,
there is a homomorphic image of G in which the elements of Ci are in the
center. (2) Groups of order paqb, p, q primes are solvable.

Proof: (1) Let n1 = 1, n2, · · ·, nr be the degrees of the absolutely
irreducible representations of G. Let hi = ps be the number of elements in Ci.
For the regular representation of G we have χ(x) = 0 for  (since x ≠
1); also



by the decomposition of the regular representation.
Here n1χi

1 = 1. For the remaining terms if , then by Theorem
16.8.6, either xi

a = 0 or Ci is in the center of the homomorphic image ρa(G).
But if χi

a = 0 in every instance where , we would have

where α is an algebraic integer. This would make − (1/p) an algebraic
integer, which is a conflict. Hence for some ρa, Ci is in the center of ρa(G).

(2) Let G be a group of order paqb. We proceed by induction on the order
of such groups, p-groups being solvable. An element in the center of a Sylow
q-group is either in the center of G or has a number of conjugates which is a
power of p. In either event G has a proper normal subgroup H and both H
and G/H are solvable by our induction, and so G itself is solvable.

THEOREM 16.8.8 (FROBENIUS). If G is a transitive permutation group of
degree n whose permutations other than the identity leave at most one of
the symbols invariant, then those permutations of G which displace all the
symbols form together with the identity a normal subgroup of order n.

Proof: Let G permute 1, 2, · · ·, n and let Hi be the subgroup fixing i.
Then by hypothesis Hi ∩ Hj = 1 for i ≠ j. If H = H1 has order h, then all Hi
have order h and the elements x ≠ 1 belonging to the Hi will number (h − 1)n.
[G:H] = n so that G is of order hn. This leaves exactly n other elements, the
identity and n − 1 elements displacing all letters.

Let ψ be an absolutely irreducible character of H and ψ′ the induced
character of G. G is given as a representation of itself and as such has a
character θ1 = ψ1′, where ψ1 is the unit character of H. By Theorem 16.6.13,
θ1 is the sum of the unit character of G and another character, say, θ. Denote
by rG the character of the regular representation of G. Let us put ω = rG − hθ.
Our theorem will depend on proving that ω is a character of G. In the



following character table let x be a typical element ≠ 1 of the H’s, and y a
typical element displacing all letters.

Here ψ′, θ, rG are known to be characters. If ω is a character, then since ω(1)
= h, it is the character of a representation of degree h. Since ω(y) = h, ω(x) =
0, every y but no x is represented by the identity. Hence ω is a representation
of G homomorphic to G with a kernel consisting of precisely 1 and the
elements y displacing all letters. As the kernel of a homomorphism, the
identity and the n − 1 elements displacing all letters form a normal subgroup
of G.

We now prove that ω is a character. Let s be the number of classes in H
and ψa, a = 1 · · · s the absolutely irreducible characters of H of degree ma.
Then

But rG = (rH)′ and . Hence

Hence it is enough to prove ψ′ − mθ is a character of G for any ψ = ψa, m =
ma.

We calculate the scalar product

Now g = nh, so from our preceding character table,



But

whence

Similarly, from our table, (ψ′, θ) = m(n − 1)/h, and

Hence

But ψ′ − mθ is in any event a linear combination of characters with integral
coefficients, say, , which gives

whence , and there is exactly one ca = ± 1 and the remainder
zero. Thus ψ′ − mθ = ± ψa. But (ψ′ − mθ)(1) = m > 0, whence ψ′ − mθ = ± ψa

is a character of G. This proves that ψ′ − mθ is a character, and so, ω is a
character, proving our theorem.

16.9. Unitary and Orthogonal Representations.



With an arbitrary n × n matrix A,

we may associate a bilinear form B(y, x),

and, of course, we may also associate the matrix A with the bilinear form. We
are interested in the way in which linear transformation of the x’s and y’s in a
bilinear form affects the corresponding matrix. Let us put

Then

Thus we see that B′(y′, x′) corresponds to

We are not interested here in the most general bilinear forms, but in
certain special kinds. We shall throughout this section take our coefficients
from the field of complex numbers. If

where aij denotes the complex conjugate of aij, we say that the matrix A is
Hermitian. Thus a Hermitian matrix is associated with a Hermitian form

:



Note that in a Hermitian form or matrix, the coefficients aij = āij are real. A
real Hermitian matrix is a real symmetric matrix and corresponds to a real
quadratic form Q(x):

The non-singular linear transformations which leave a Hermitian form (or a
quadratic form) invariant clearly form a group. Here it is understood that the
conjugates  undergo the transformation conjugate to that applied to the xi.

DEFINITION: A matrix U satisfying

is called a unitary matrix.

DEFINITION: A matrix V satisfying

is called an orthogonal matrix.
It is immediately evident that unitary and orthogonal matrices are

nonsingular, and that they form groups. The unitary matrices are those giving
the group of linear transformations leaving 
invariant, and the orthogonal matrices are those giving the group of linear
transformations leaving x1

2 + · · · + xn
2 invariant. A real unitary matrix is

orthogonal, but in a strict sense there are also orthogonal matrices which are
not real; for example,



But here when we speak of an orthogonal matrix, it will be understood that
we mean a real matrix.

We say that a representation ρ(g) of a group G is unitary if all the
matrices ρ(g),  are unitary, and orthogonal if all the matrices ρ(g), 

 are orthogonal.

THEOREM 16.9.1. Every representation of a finite group G over the
complex (real) field is equivalent to a unitary (orthogonal) representation.

Proof: If in a Hermitian form

the variables xi are given complex values, then H represents a real number,
since we may pair the terms:

each pair being the sum of a complex number and its complex conjugate. The
diagonal terms  are, of course, real. We say that  is
positive definite if it represents zero only when all variables are zero and
when it otherwise represents positive numbers. Clearly, the property of being
positive definite is unchanged if the variables are transformed by a
nonsingular transformation. A particular positive definite form with n
variables is

the form associated with the identity matrix.  is positive definite,
since each term  is positive unless xj = 0, for j = 1, · · ·, n.

LEMMA 16.9.1. A positive definite Hermitian form  in n
variables can be transformed into .

We note that if  is positive definite, where



then every diagonal coefficient, arr is positive. For, otherwise, with arr ≤ 0,
putting xr = 1, xj = 0, for j ≠ r, , contrary to the
property of being positive definite. Now in

put

this being a permissible transformation since a11 is real and positive. We
readily calculate

where the terms in x2′, · · ·, xn′ are a positive definite form in these
variables. Continuing, we finally transform H into the form

This proves the lemma. We note that if H were a real quadratic form Q to
start with, the same procedure would transform Q into x1

2 + · · · + xn
2.

Now let ρ(g),  be a complex representation of degree n of the
finite group G, and let the elements of G be g1 = 1, g2, · · ·, gt. Then

is a matrix corresponding to a positive definite Hermitian form, since each of
the summands separately corresponds to a positive definite form.
Furthermore, for any ,



Hence M corresponds to a positive definite Hermitian form H left invariant
by ρ(g) for every . By a change of variables,

H becomes , and
correspondingly,

is a representation equivalent to ρ(g) which is unitary, as we wished to
prove.

We may see this in matrix form. We have

and for every ,

or

whence



and so, ρ′(g) = C−1ρ(g)C is unitary.

16.10. Some Examples of Group Representation.

We begin with an example, of interest to physicists, of the representation
of an infinite matrix group by another group of matrices. The two-
dimensional unitary and unimodular matrices U2 are of the form

where α and β are complex numbers arbitrary except for the condition 
. Thus U2 is the group of the linear transformations

and these leave  invariant. In terms of the complex variables u
and v we may define three real variables

We note that

A linear transformation (16.10.2) when substituted into (16.10.3) induces a
real linear transformation of the x’s, which by (16.10.4) belongs to the real
orthogonal group O3. The linear transformation of the x’s induced by
(16.10.2) is



Thus the group U2 has a representation ρ given by (16.10.5) in the real three
dimensional orthogonal group O3.

This representation is not faithful, but is two to one, both  and 

 of U2 being represented by the identity of O3. U2 is

represented by the entire group of proper rotations (those of determinant +
1). The inverse image in U2 of a group G of proper rotations is known as the
double group 2G. Group 2G is an extension of a subgroup of order 2 in its
center by a factor group isomorphic to G.

It was found by Pauli [1] that when a physical system S has a certain
subgroup K of O3 associated with it, then the wave functions for the electron
spin of S are associated with the doubled group 2K.



Fig. 7. Three dimensional rotation.

Besides (16.10.5) there is another formula giving an explicit connection
between U2 and this representation of it in O3. Given a proper rotation of
Euclidean three-space (i.e., an element of O3), let OT be the line in which the
coordinate plane XOY intersects its image X′OY′. Then (see figure) if ϕ is the
angle X′OT, ψ the angle XOT, and θ is the angle ZOZ′, we may find
corresponding elements of U2 in (16.10.1) by putting

This is also valid when XOY and X′OY′ coincide (i.e., for a rotation about the
Z-axis) if we put θ = 0, ϕ = 0 and take ψ as the angle of rotation about the Z-
axis.

The group of proper rotations of the regular tetrahedron can be faithfully
represented as a permutation group on its four vertices. For each vertex there
is a subgroup fixing this vertex and rotating the three vertices of the opposite
face, this being a group of order 3. The symmetry fixing two vertices and
interchanging the other two is a reflection about a plane and not a proper
rotation, since it reverses orientation. Thus the group of proper rotations, the



tetrahedral group, is of order 12 and is isomorphic to A4, the alternating
group on four letters. Let us list the elements by classes.

The multiplication table of the classes is

We now look for the idempotents in the center Z of the group ring which
form an orthogonal basis for Z. An idempotent e such that eZ is a minimal
ideal in Z will be one of these, and conversely. This process may be
regarded as a decomposition of Z into the direct sum of (two-sided) ideals.
In particular, any proper divisor of zero will yield a proper ideal in Z. Thus
by finding proper divisors of zero in two-sided ideals, we find smaller two-
sided ideals, and ultimately the minimal ideals, and from these the orthogonal
idempotents. In general let f be an idempotent in Z. If fCi = aif for every
class, then fZ is a minimal ideal in Z and f is one of the orthogonal
idempotents. If for some class C we have fC linearly independent of f, then
let s be the smallest integer such that fCj j = 0, · · ·, s − 1 are independent,
but fCs is dependent on these. Then we have a relation f(Cs + a1Cs−1 + · · · +
as) = 0. Adjoin to the field of coefficients, if necessary, a root of xs + a1xs−1

+ · · · + as = 0. If u is such a root, then f(C − u) is a proper divisor of zero in
the ideal fZ and leads to a smaller two-sided ideal. This general procedure is
illustrated in our study of the tetrahedral group.

In any group G of order g, the sum of the elements divided by g is an
idempotent e whose ideal is minimal in Z. This idempotent corresponds to



the identical representation of G. Here this is e1 = (C1 + C2 + C3 + C4)/12.
We also note the relation, from (16.10.8),

Thus both C2 − 3C1 and C2 + C1 are proper divisors of zero. We find in fact
that (C2 − 3C1)Z is a minimal ideal and that e2 = (3C1 − C2)/4 is the
idempotent generating this minimal ideal. Also e1e2 = e2e1 = 0. We now
construct the idempotent f = 1 − e1 − e2 which must be the unit for the part of
Z which remains. Indeed fZ must be of dimension 2 and f = e3 + e4, where e3
and e4 are the remaining orthogonal idempotents of a basis for Z. Here we
find

The ideal fZ is of dimension 2, as it should be, and we note

a linear dependency, showing the dimension of fZ to be 2. We have the
following relation:

If we adjoin to the rational field of coefficients, the complex cube root of
unity, , then (16.10.12) takes the form

Thus the principal ideal of each of f(C3 −4ω) and f(C3 −4ω2) is smaller than
the principal ideal fZ. The first of these differs by a scalar factor from the



idempotent e3 in (16.10.14) and the second from e4.

From the expressions for the minimal orthogonal idempotents in terms of the
classes, we may immediately write down the character table, and conversely.
Immediately preceding Theorem 16.6.10 we established a relation which
may be written

In this multiply by  and sum over k. This gives

If we sum the right-hand side first with respect to k and use the orthogonality
relation

then when we sum with respect to a, all terms are zero except that for a = b,
and our relation (16.10.16) becomes

This we write in the form



Since we know that the character of the unit class is the degree, ,
the coefficient of C1 in the expression (16.10.19) for eb must be nb

2/g. This
determines nb, and we may then use (16.10.19) to read off the remaining
characters.

Using the general rule (16.10.19) and the table (16.10.14) for the
tetrahedral group, we may write down the character table for it:

Conversely, using the character table (16.10.20), we could use (16.10.19) to
write down the minimal orthogonal idempotents in (16.10.14).

The three irreducible representations of degree one, ρ1, ρ3, and ρ4, may
of course be written down directly from the character table.

By Theorem 16.6.15 the representation of the tetrahedral group as A4 is
the sum of the identical representation and an irreducible representation
which, being of degree 3, must be ρ2. The permutations of A4 on variables x1,
x2, x3, and x4 fix the linear form x1 + x2 + x3 + x4 and take the complementary
space spanned by y1 = x1 − x4, y2 = x2 − x4, y3 = x3 − x4 into itself. Here the
permutation (12) (34) is the linear transformation

and on the y’s this is



Thus

Similarly,

Since the two elements (12) (34) and (123) generate the entire group, the
entire representation is determined. This is not the orthogonal form of ρ2, but
this may be obtained from the next example, since the tetrahedral group is a
subgroup of the octahedral group.

The group of symmetries of the cube was discussed in Example 2 of
Chap. 1. The proper rotations form a group G24 of order 24 generated by

Fig. 8. Symmetries of the cube.

and



The group G24 is also the group of symmetries of the regular octahedron,
which may be regarded as inscribed in the cube with one vertex in the middle
of each face of the cube. Thus G24 may also be represented as a permutation
group on the six faces of the cube, corresponding to the six vertices of the
inscribed octahedron. We shall use six variables, corresponding to the six
vertices of the inscribed octahedron, whose three dimensional coordinates
we give. We write:

Variabl
e

Face of
Cube

Vertex of
Octahedron

x1 Face 1234 (0, 0, 1)
x2 Face 1256 (0, 1, 0)
x3 Face 1458 (−1,0, 0)
x4 Face 5678 (0, 0, −1)
x5 Face 3478 (0, −1,0)
x6 Face 2367 (1, 0, 0)

Then a = (x1)(x4)(x2, x6, x5, x3), b = (x1, x3, x2)(x4, x6, x5). The 24 elements of
G24 are the following: We give each element both as a permutation of the x’s
and also as a monomial linear transformation of the x, y, z coordinates which
yields the appropriate permutation of the vertices of the octahedron.



We may map the even permutations of this representation of G24 (those of
classes C1, C2, C5) onto +1 and the odd permutations (those of classes C3,
C4) onto −1. This gives us, besides the identical representation, still another
representation of degree one. The degrees of the irreducible representations,
ni, satisfy the relation



With n1 = 1, n2 = 1, we find that n3, n4, n5 must be 2, 3, 3. The three-
dimensional representation we have given above has the following
characters:

In general, if

is the expression of a representation ρ, as a sum of irreducible
representations ρa, then for the ith class we have

and by the orthogonality relations,

Since for our representation of degree 3, we have, from (16.10.26)

it follows that , and so our representation (which we shall

designate ρ4) is irreducible. Let us note that ρ4 is orthogonal, and since the
even permutations (elements of classes C1, C2, C5) form a subgroup
isomorphic to the tetrahedral group, this gives the orthogonal representation
of degree 3, promised when we discussed the tetrahedral group.

We now have a partial table of the characters:



From the orthogonality relations involving the second column with the
first and with itself, we have

These equations give either y2 = 2 and z2 = −1, or y2 = −22/13 and z2 =
19/13. As y2 is the sum of two square roots of unity, ,
the first values, y2 = 2 and z2 = − 1 are the true values.

The orthogonality between the third column and the first two columns
gives

These equations give y3 = 0, z3 = −1. In the same way we may find the
missing values in the remaining columns. The complete table of characters is
:



The representation ρ of degree 8 of G24 as a permutation group on the
vertices of a cube has the following characters:

From these characters we may find the decomposition of ρ, since if

then from orthogonality,

This gives the multiplicity cb of each irreducible representation ρb occurring
in ρ. In this way we find from (16.10.35) that

We may use this to find ρ5 explicitly from ρ. Using (16.10.19) and our table
of characters (16.10.34), we find

The representation ρ of G24 also represents the group ring RG, and we find
the representation of e5 to be



Taking xi = (0, · · ·, 1, · · ·, 0), i = 1, · · ·, 8 as the basis of the
representation module M for ρ, then the rows of the matrix ρ(e5) span the
submodule Me5, which is, of course, of dimension 3. We may take the first
three rows, r1, r2, r3 as a basis. It is, however, more convenient to take as a
basis vectors proportional to r1 + r3, r1 + r2, and r2 + r3. This basis is

With this basis we find

These generate the entire representation ρ5. Thus ρ5 is a monomial and
orthogonal representation of G24 as given by (16.10.42.) But this is not a
group of proper rotations, as we note that the determinant of ρ5(a) is − 1. A
representation equivalent to ρ5 may be obtained by taking ρ4 and multiplying



the matrices for elements of C3 and C4 by −1. Thus ρ5 is the Kronecker
product of ρ4 and ρ2.

The representation ρ3 is not faithful but has a kernel of order 4 consisting
of the identity and the elements of C2. We may take as generators

In our representation ρ4 of G24 as a group of proper rotations we had

Thus ρ4 is a subgroup of O3, and using (16.10.5), which gives the mapping of
U2 on O3, we find that

The entire double group D = 2G24 has eight classes. In general, in a double
group 2G, the inverse image of a class Ci in G is either a class in 2G with
twice as many elements as Ci in G, or two classes  and ,
each with the same number of elements as Ci in G.

Following Bethe [1] we may list the elements of D, expressing them in
terms of four matrices

Now the list of elements of D by classes is



As G24 is a homomorphic image of D, every irreducible representation of
G24 is also an irreducible representation of D. But D has three further
irreducible representations which are in fact faithful representations of D.
The further characters are:

* The properties of matrices, determinants, and the full linear group that are assumed here can be
found in Birkhoff and MacLane [1], Chapters VI through IX.

† These facts are covered in Birkoff and MacLane [1], pp. 410–422.
* W. Burnside [2], pp. 322–323.



17. FREE AND AMALGAMATED
PRODUCTS

17.1. Definition of Free Product.

Let Gi be a set of groups indexed by letters , where we shall
assume I well ordered. We shall define the free product πi*Gi of the groups
Gi in a manner similar to that for defining the free group with given
generators.

Consider words (or strings)

which are either void (written 1) or in which each ai, i = 1 · · · t is an
element of some Gj. For these strings we define operations of elementary
equivalence.

is equivalent to a1 · · · ai−1ai+1 · · · at if ai is the identity of some group Gj.

is equivalent to a1a2 · · · ai−1ai*ai+2 · · · at if ai and ai+1 belong to the same
group Gj and if aiai+1 = ai* in Gj.

It is to be understood that the elementary equivalences are symmetric. We
say that two words, x and y, are equivalent if there is a finite sequence x1 =
x, x2, x3, · · · xn = y, with xi and xi+1 elementary equivalent for i = 1, 2, · · · n
− 1. All equivalent words form a class.



A word a1a2 · · · at is reduced if it is the void word or if (1) no ai is the
identity of its group Gj and (2) ai and ai+1 belong to different groups G for i =
1, · · · t − 1. As in §7.1 we may define a W-process for a word f = a1a2 · · ·
at taking:

W0 = 1.
W1 = 1, if a1 is the identity of its group.
W1 = a1 otherwise.
If Wi is of the reduced form b1b2 · · · bs, we take
1) Wi+1 = b1 · · · bsai+1, if ai+1 is not the identity of its group and is not in

the same group as bs.
2) Wi+1 = b1 · · · bs, if ai+1 = 1 in its group.
3) If bs and ai+1 are in the same group and bsai+1 = 1, take Wi+1 = b1 · · ·

bs−1.
4) If bs and ai+1 are in the same group and bsai+1 = bs* ≠ 1, take Wi+1 = b1

· · · bs−1bs*.
Here W(f) = Wt, as in §7.1, can be shown to be reduced, and it can be

shown that the W process gives the same result for elementary equivalent
words and thus for an entire class of equivalent words. It thus follows that
there is a unique reduced word in each class. If f = a1 · · · at is reduced, we
call t the length of f.

We may now define a product for classes of words, putting

and we can show that this product is independent of the representatives
chosen, following the proof of Theorem 7.1.1. This product is associative
and forms a group with the void words as the identity. This group is the free

product  of the groups Gi. We note that by (E1) the identity of every

group Gi is equivalent to the void word 1. We shall not further distinguish
these identities. Elements ≠ 1 of different groups are, however, distinct
reduced words, and so are not identified.



THEOREM 17.1.1. Let G be a group which is the union of subgroups Hi, 
, where Hi are isomorphic to groups Gi. Then G is a homomorphic

image of the free product .

Proof: As in the proof of Theorem 7.1.2, consider an element a1a2 · · · at
of Q. If ai is an element of Gj, then let bi be the corresponding element of Hj
and map a1a2 · · · ax onto b1b2 · · · bt. We see that equivalent words of Q are
mapped onto the same element of G. This mapping of elements of Q onto
elements of G also preserves products and hence is a homomorphism of Q
onto the union of the Hj, which was given to be G.

17.2. Amalgamated Products.

Let Gi,  be a set of groups indexed by the set I. Let us suppose that
each Gi contains a subgroup Ui and that all Ui are given as isomorphic to a
group U. It is to be emphasized that there is a specific isomorphism given
between each Ui and U. We wish to consider the most general group
generated by the Gi in which all Ui are identified with each other so that all
Ui form the same group U1 isomorphic to U. This is clearly the image of the
free product of the Gi obtained by identifying in every case  and 

 if, in the given isomorphisms between Ui, Uj, and U, ui and uj
correspond to the same element u. There must, of course, be some such
group, but it is not at all obvious how much identification results from these
basic identifications. In particular, it is conceivable that this might result in
identifying all elements with the identity. This is not the case, and in fact, this
identification has essentially no effect on elements not in the Ui.

We shall construct the group generated by the Gi with all Ui’s identified
with each other, and this we shall call the amalgamated product of the Gi.
Consider words a1a2 · · · at, with each ai from some Gj. We define
elementary equivalences:

(E1) If ai = 1, then



is equivalent to a1a2 · · · ai−1ai+1 · · · at.
(E2) If ai and ai+1 belong to the same Gj and aiai+1 = ai* in Gj, then

is equivalent to a1a2 · · · ai* · · · at.
(E3) If ai = ui is an element of Uj ⊆ Gj and if  is such

that in the isomorphisms between Uj, Uk, and U, ui and uk correspond to
the same element u, then

is equivalent to a1 · · · ai+1biai+1 · · · at.
We now define words x and y as equivalent if there is a finite sequence x

= x1, x2 · · · yn = y such that xi and xi+1 are elementary equivalent for i = 1, · ·
· n − 1. Classes of equivalent words form the elements of a group if the
product of [f] and [g] is defined as [f g]. As in Theorem 7.1.1, this product is
well defined for the classes, and with respect to this product, the classes
form a group T, the free product of the Gi with the amalgamated subgroup U.
More briefly, T is the amalgamated product of the Gi. But as yet we have no
knowledge of the nature of T. For this we need a canonical form for the
elements of T.

We shall define a canonical form associated with words f = a1a2 · · · at, 
. It will then be necessary to show that this canonical form is the

same for equivalent words, and thus be shown to be a canonical form for
elements of T.

For each Gi, , let us choose representatives xik for left cosets of Ui,
choosing the identity of Gi as the representative for Ui, but leaving the choice
otherwise arbitrary.



From the elementary equivalence (E1) the void word is the identity of T and
the identity of all Gi. Also from (E3) we may regard all  as
identified with U. Thus we may write instead of (17.2.1),

Hence an element  can be written

In an amalgamated product it is convenient to modify the usual definition of
length of words. We define l(a0a1 · · · at) = t if , and l(a1 · · · at) = t
if a1 ≠ U. Thus we do not count the first letter if it is an element of U.

We say an element of T is in canonical form if it is of the form

where , zj, j = 1 · · · t are coset representatives, xik ≠ 1 as given in
(17.2.2), and if zj, zj+1 for j = 1, · · · t − 1 are in different G’s.

THEOREM 17.2.1. In the amalgamated product of groups Gi with the
amalgamated subgroup U, there is in each class of equivalent words one,
and only one, element in canonical form f = uz1z2 · · · zt. Here  and
the zi, i = 1 · · · t are coset representatives xjk ≠ 1 of U in the Gi, taken from
some arbitrary but fixed selection of coset representatives. z1 and zi+1, i = 1
· · · t − 1 belong to different G’s.

The proof of this theorem is very similar to the proof of the lemma in
§7.1. Lack of space prevents giving the details. For more advanced work on
this subject see H. Neumann [1,2].

17.3. The Theorem of Kurosch.

It was shown by Kurosch† that every subgroup of a free product is itself
a free product. This result will be proved here. Subgroups of a product with
an amalgamated subgroup need not themselves be of this type. If U is the



amalgamated subgroup, then if there are more than two groups Gi in the
product, we can take subgroups Hi of the Gi which have various different
intersections with U. Here the different Hi will amalgamate in various ways
and we are dealing with what is called a generalized amalgamated product.
A number of complications arise. At present the theory is still incomplete.

THEOREM 17.3.1 (THEOREM OF KUROSCH). A subgroup H ≠ 1 of a free
product

is itself a free product.

where F is a free group and each  is the conjugate of a subgroup
Uj of one of the free factors Av of G.

Proof: The elements of the free factors of G may be well ordered by
beginning with the identity, then taking an ordering of the free factors, and
within a free factor taking an ordering of the elements ≠ 1. Based on this
ordering we define an alphabetical ordering for the elements of G. Write

as the reduced form of an element g of G. The void product is the identity;
and for g ≠ 1 each ai is an element ≠ 1 of one of the free factors Av, and no
two consecutive terms ai, ai+1 (i = 1, · · ·, t − 1) belong to the same free
factor Av. The length l(g) of an element g is defined as zero for g = 1, and for
g ≠ 1 as the number t of terms in its reduced form (1). We define the
alphabetical ordering of elements by ordering successively on:

1) The length of g;
2.1) The order of the first term a1 if g = a1a2 · · · at is its reduced form;
2.2) The order of a2;



· · · · · · ·
2.t) The order of at;

This is clearly a well ordering of the elements of G.
We now define a second ordering for the elements of G, the

semialphabetical ordering. For this we write an element g of even length t =
2r in the form g = αβ−1, where l(α) = l(β) = r and an element g of odd length
t = 2s + 1 in the form g = αas+1β−1, where l(α) = l(β) = s. The semi-
alphabetical ordering for elements g is determined successively by:

1) The length of g;
2) For g = αβ−1 of even length by (2.1), the alphabetical order of α, and

by (2.2), the alphabetical order of β;
3) For g = αas+1β−1 of odd length by (3.1), the alphabetical order of α,

and by (3.2), the alphabetical order of β, and by (3.3), the order of as+1.
The proof that the subgroup H of G is a free product will be carried out

by selecting, in terms of the semi-alphabetical ordering, a subset K of the
elements of H and showing (1) that the elements of K generate H and then (2)
that the elements K generate a free product,

where F is a free group and each Uj is a subgroup of some free factor A.
The set K of elements shall consist of all elements k ≠ 1, such that (1) 

, and (2) k does not belong to the group generated by the elements of
H which precede k in the semi-alphabetical ordering.

Since H ≠ 1, the first h ≠ 1 of H belongs to the set K, and so K is not
vacuous. Consider the group |K| generated by the set K. Clearly |K| ⊆ H. If |K|
≠ H, there must be a first  such that . Such an h does not
belong to K, and so is a product of elements hi preceding h and belonging to
H. But these hi belong to |K|, and so h as a product of these hi’s also belongs
to |K|. Hence |K| = H, and this covers the first part of the proof.

We shall use the sign < for numerical inequalities and for both the
alphabetical and semi-alphabetical orderings. It will be clear from the
context which meaning is appropriate, the semi-alphabetical ordering
applying to entire words, the alphabetical to beginnings or endings of words.



Writing u ≠ 1 in the form u = αβ−1 or u = αaβ−1, we cannot have β = α for
words of even length since αα−1 = 1. For elements of odd length, β = α is
possible; and those elements of H of the form αaα−1 for fixed α, and a’s
belonging to some fixed Av, together with the identity, form a subgroup αBα−1

conjugate to B ⊆ Av. Let us call elements αaα−1 transforms. Let us extend the
set K to a larger set T which consists of K, and for each α and Av, those
transforms αa1α−1, , generated by transforms αaα−1, ,
belonging to K. Hence T consists of elements of H not generated by their
predecessors and transforms αa1α−1 generated by earlier transforms of the
same kind.

An element  can be written in the form

where  or T−1 (the set of inverses of elements in T). Moreover,
we can take (17.3.2) so that (a) uiui+1 ≠ (i = 1, · · ·, t − 1) and (b) no two
consecutive ui, ui+1 belong to the same conjugate group αBα−1, B ⊆ Av. If
these conditions are satisfied, then we shall say that u1 · · · ut is in half-
reduced form.

The theorem will follow immediately if it can be shown that any
nonvacuous half-reduced form cannot be the identity. For then it will follow
that the elements of K that are not transforms generate a free group F, and that
H is the free product of F and the conjugates αβα−1, β ⊆ Av.

If u is an element of K, and u−1 ≠ u, then u < u−1, since u = (u−1)−1 and u−1

cannot be a predecessor of u. Also, if u ≠ v are elements of K, then 
 will follow both u and v, since any two of u,

v, w generate the third, and by the choice of K neither u nor v is generated by
predecessors. These two principles are the main tools in studying the way in
which the elements of T and T−1 combine. In reducing a product a1a2 · · · am
in G, where each ai belongs to one of the free factors, we say that ai and ai+1

amalgamate into ai
1 if ai and ai+1 belong to the same free factor A and aiai+1 =

ai
1 ≠ 1, and that they cancel if aiai+1 = 1.



LEMMA 17.3.1 If u = αβ−1 or , and β ≠ α, then α < β.

Proof: Since β ≠ α, we have  and if β < α, we would have u−1 <
u. Thus the elements of T are of three kinds:

1) l(u) even, u = αβ−1, α < β, .
2) l(u) odd, u = αaβ−1, α < β, .
3) l(u) odd, u = αaα−1, generated by transforms of the same kind in K.

LEMMA 17.3.2. If u ≠ v belong to T and are not both in the same
conjugate αBα−1, and w is any one of  or ,
then w follows both u and v in the semi-alphabetical ordering. This leads
to the following restrictions on cancelation and amalgamation in the
product w:

1) If u = αβ−1, β−1 does not cancel, and if α cancels, then the adjacent
term of β−1 does not amalgamate.

2) If u = αaβ1, α < β, α and a do not cancel, and if β−1 cancels, then a
does not amalgamate.

3) If , α, and a do not cancel, and if vη =
αa−1σ, with a, , then a−1 is the earliest element in the coset Ba1.

Proof: Of the two different elements u and v belonging to T, let the letter
u represent the earlier, so that u < v. If w does not follow both u and v, then w
< v. Here the possibility w = v may be eliminated at once, since it would
imply u = 1, which cannot hold, or u = v2 or v−2. Now the square of a
transform v is 1, or is a similar transform, while if v is not a transform then
l(v2) > l(v). In either case u = v2 or v−2 is impossible.

Since any two of u, v, w generate the third, w must be the third if v
belongs to K. Thus we need only consider cases with 

 a transform. Now with u < v, since 
, we also have u < v*, where v* is any transform in αBα−1. Hence, if the
canceling between u and v = αaα−1 involves only α (or α−1), the same will
hold for u and some , yielding a product 

 or , with w* < v* contrary to . Hence, the
canceling between u and v = αaα−1 involves all of α and cancellation or
amalgamation with the center term a. Thus , where a″



amalgamates or cancels with a. Since u < v = αaα−1, either l(σ) < l(α) or l(σ)
= l(α); and u = σa″–1, with σ < α. In either event, u and σ(a″−1a*a″)σ−1

precede and generate , a contradiction. Thus in all
cases we reach a contradiction if w < v, and so w follows both u and v.

In consequence of the fact that all eight products  and  follow
both u and v, we have the restrictions on canceling and amalgamating listed
in the theorem. These say explicitly that not more than half of either u or v
cancels, and that in cases where canceling and amalgamating with one
replaces an initial (or final) segment of the other with another segment of the
same length, the result is an element later in the ordering.

LEMMA 17.3.3. In a product u1u2 · · · ut with 
, uiui+1 ≠ 1(i = 1, · · ·, t – 1), and ui,

ui+1 not both in the same group αBα−1 (B ⊆ Av), the reduced form will end
as follows:

1) β−1 if ut = αβ−1.
2)
b*α−1

if ut = (αβ−1)−1.

3)
α*β−1

if ut = αaβ−1, α
< β.

4)
a−1α−

1

if ut = (αaβ−1)−1,
α < β.

5)
a*α−1

if ut = αaα−1.

Here b* in (2) and a* in (5) are either the term immediately preceding in ut
or are amalgamations with a similar term in ut−1. In (3), a* can involve
amalgamation with ut−1 and ut−2.

Proof: This lemma will be proved by induction on t, being trivial for t =
1. For t = 2, the results come directly from Lemma 17.3.2 with the added
observation that for u = αβ−1 or αaβ−1, the cancellation in u2 does not go
through α or β. In proving the induction from t to t + 1, we need only apply



Lemma 17.3.2 to each of the five cases listed, as well as to each of the five
possibilities for ut+1, using only one additional property not an immediate
consequence of Lemma 17.3.2. This is as follows: It may happen that ut =
αaα−1, that α cancels, and that a amalgamates with ut−1 = σa′−1α−1, and
similarly, with ut+1 = αa″λ. Now by Lemma 17.3.2 each of a′ and a″ is the
earliest element in its own coset Ba′, Ba″. If a′–1aa″ = 1, this would mean
that a′ and a″ were in the same coset, and hence a′ = a″, a = 1, ut = 1, would
be a contradiction. Hence a′−1aa″ ≠ 1, and the reduced form of ut−1utut+1 is
σ(a′−1aa″)λ. This is the only way in which amalgamation can involve as
many as three consecutive terms in any product u1u2, · · ·, um which is half-
reduced.

In establishing the ending of the reduced form for the half-reduced
expression h = u1u2, · · ·, ut, we have shown a fortiori that h ≠ 1, and hence
that H is the free product of the infinite cyclic groups generated by the
elements αβ−1 and αa−1β−1(α < β) and the conjugates αBα−1 of subgroups B
of free factors A.

† A. Kurosch [1]. The proof given here is that of the author [6].



18. THE BURNSIDE PROBLEM

18.1. Statement of the Problem.

In 1902 Burnside [1] wrote “A still undecided point in the theory of
discontinuous groups is whether the order of a group may be not finite while
the order of every operation it contains is finite.” He is, of course, discussing
finitely generated groups. The question is still undecided. In this generality
the problem has not really been attacked. He considers a more specialized
form of the problem in which it is assumed that the given group is finitely
generated and that the orders of the elements are bounded.

If G is generated by r elements and n is the least common multiple of the
orders of elements of G, then the problem is: Is G a finite group? This
problem is known as the Burnside problem. If x1, · · ·, xr generate a group
B(n, r) with relations gn = 1 for every , then this group is
called the Burnside group of order n with r generators. Clearly, every group
with r generators and elements of orders dividing n will be a homomorphic
image of this particular group. Thus the Burnside problem reduces to the
question: Which of the groups B(n, r) are finite?

If Fr is the free group generated by x1 · · ·, xr and N is the fully invariant
subgroup generated by all zn, with , then B(n, r) = Fr/N.

18.2. The Burnside Problem for n = 2 and n = 3.

If every element of a group G besides the identity is of order 2, then from
x2 = 1, y2 = 1, (xy)2 = 1 we have xyxy = 1, xy = y−1x−1 = yx, whence G is
Abelian. Thus the Burnside group B(2, r) generated by x1, · · ·, xr, in which
the square of every element is the identity, is Abelian of order 2r, having x1 ·
· ·, xr as a basis. This settles n = 2.



When n = 3 it is easy to show that B(3, r) is finite. We proceed by
induction on r. B(3, 1) is the cyclic group of order 3. Suppose that Bh = B(3,
h) is of order 3m(h) We use the relation

which is a consequence of (xy)3 = 1. Bh+1 is obtained by adjoining a new
generator z to Bh. Hence the elements of Bh+1 are of the form

with . We show that g can be expressed, using at most two z’s. If in
(18.2.2) we have two consecutive terms with the same exponent, we use
(18.2.1) to put zuiz = ui

−1z−1ui
−1 or z−1ujz−1 = uj

−1zuj
−1, thus reducing the

number of z’s by one. Thus g can be expressed in the form (18.2.2) with the
exponents of z alternating in sign. Here if g has as many as three z terms, then
in g = u1zu2z−1u3z · · · we write g = u1zu2z · zu3z · · · =
u1u2

−1z−1u2
−1u3

−1z−1u3
−1 · · ·, reducing the number of z’s by one. A similar

argument holds if g = u1z−1u2zu3z−1 · · ·. Hence g can be expressed, using at
most two z’s. We may also write u1z−1u2zu3 = u1z−1u2z−1z−1u3 =
u1u2

−1zu2
−1u3. Hence every element of Bh+1 can be put in one of the forms:

Hence Bh+1 has at most 3m + 2·32m + 33m < 33m+1 elements, and so, m(h + 1)
≤ 3m(h), whence generally m(r) ≤ 3r−1 and B(3, r) is of order at most 33r−1.
In his original paper, using a more complicated method, Burnside obtains the
better restriction m(r) ≤ 2r − 1. We shall, however, proceed to obtain the

exact result  as obtained by Levi and van

der Waerden [1].



We begin with a formula, applying (18.2.1) three times,

As a special case of (18.2.4) with z = y, we find x−1yxyx−1 = yx−1y, whence

Thus any element y permutes with any of its conjugates x−1yx. Hence y also
permutes with y−1x−1yx, and so, in the notation of commutators,

This also leads to

From these we also have

We now consider (a, c, b)−1 = b−1(c−1a−1cdba−1c−1)ac and apply (18.2.4) to
the part in parentheses with x = c, y = a−1, z = aba−1. This yields

We also have (a, c, b)−1 = ((a, c)−1, b) = (c, a, b). These results combine to
give



We are now in a position to show that every commutator of weight four is
the identity. Consider first the complex commutator (a, b; c, d). Using
(18.2.9), we have

But also

Hence (a, b; c, d) = (c, d; a, b) = (a, b; c, d)−1, whence

From the preceding results a commutator of weight 3 is the identity if it
involves a repeated element. With three distinct generators, a commutator of
weight 3, by (18.2.9), may be put in the form (xi, xj, xk) i < j < k or the
inverse of this form. By (18.2.10) commutators of weight 3 are in the center,
and the commutator subgroup is Abelian. Hence every element of B(3, r) may
be put in the form:

where for (xi, xj) i < j, for (xi, xj, xk) i < j < k, and the exponents are 0, 1, or
2. The total number of such expressions is 3m(r), where 

 is the number of ways of choosing

combinations of the r generators x1, · · ·, xr one, two, or three at a time.
Hence the Burnside group B(3, r) is of order at most 3m(r), and this will be
the exact order unless some of the elements of (18.2.11) whose exponents are



not all zero reduce to the identity. For if two different expressions g1 and g2
represent the same element of B(3, r), they do so in every homomorphic
image of B(3, r), in particular in the elementary Abelian group of order 3r

whence their exponents ai, i = 1, · · ·, r agree. The commutator subgroup
being A belian g = g1g2

−1 = 1 would be an element with some bij or cijk
different from zero modulo 3 representing the identity. Regarding g = 1 as a
relation of B(3, r), this remains valid if we add additional relations xs = 1, s
≠ i, j, k. Hence, to show that the exact order of B(3, r) is 3m(r), it is sufficient
to show that the exact order of B(3, 3) is 37.

We shall use the normal product as given in Theorems 6.5.1 and 6.5.2 to
construct B(3, 3) as a group of order 37. Let us write

First construct A = {C4, C5, C6, C7} as an elementary Abelian group of order
34. We then extend A by adjoining C3 with relations

From Theorems 6.5.1 and 6.5.2 the group B = {A, C3} will be of order 35

and an extension of A by the cyclic group C3, if we verify that from the
relations (18.2.13) transformation by C3 induces an automorphism of order 3
in A. In the same way we may extend B by C2 to obtain H = {B, C2} of order
36, using relations

and finally extend H by C1 to G = {C1, H} of order 37, using



From these relations G is of class 3 and the collection formula,

holds. Taking P = z and Q an arbitrary element of A, it follows that B is of
exponent 3. Similarly, H and G may in turn be shown to be of exponent 3.
Thus G = B(3, 3) is of order 37. We have observed above that this leads to a
general theorem.

THEOREM 18.2.1. The Burnside group B(3, r) is of order 3m(r), where

. An element of B(3, r) has a unique

expression of the form given by (18.2.11).

18.3. Finiteness of B(4, r).

It was shown by Burnside in his original paper that B(4, 2) is of order at
most 212. It was proved by Sanov [1] that B(4, r) is finite for every r. The
order of B(4, r) is not known exactly, but B(4, 2) is indeed of order 212.

THEOREM 18.3.1. The groups B(4, r) are finite.

Proof: Let H be any finite group whose elements are all of orders
dividing 4. We wish to show that adjoining an element b of order 4 to H and
putting the fourth power of every element equal to the identity in the extended
group G = H ∪ (b) requires that G be finite. We can accomplish this
adjunction in two steps, first adjoining b2 to H to yield a group H1 = H ∪
(b2), and then adjoin b to H1 to yield G = H1 ∪ (b) = H ∪ (b). Each of these
extensions is such that we are adjoining an element whose square is in the
preceding group. Hence it is enough to show that adjoining to a finite group



H an element x with  and putting z4 = 1 for  implies
that H ∪ (x) is finite.

Every element g of H ∪ (x), with  is of the form

From the relation (xh)4 = 1 we get

where h* also belongs to H. Thus, without increasing the length n of the word
in (18.3.1), we may use (18.3.2) to alter its form to

If any hj is 1 in (18.3.1), 2 ≤ j ≤ n − 1, we may reduce the length by putting 
. We may also be able to use (18.3.2) a number of times to

change some hj to 1.
Sanov observes that, using (18.3.2) repeatedly, we may replace hi−1 by

hi−1hi
−1, then hi−2 by hi−2(hi−1hi

−1)−1 = hi−2hihi−1
−1, and so on. In this way we

may replace h2 by any one of h2, h2h3
−1, h2h4h3

−1, h2h4h5
−1h3

−1, · · ·, h2h4 · ·
· h2sh2s−1

−1 · · · h3
−1, h2h4 · · · h2sh2s+1

−1 · · · h3
−1. If any one of these is 1,

we may reduce the length of g. But if H is of order M and n ≥ M + 2, then
either one of these expressions is 1 or there will be a repeated value, say, h2

· · · h2rh2r+1
−1 · · · h3

−1 = h2 · · · h2r · · · h2sh2s+1
−1 · · · h2r+1

−1 · · · h3
−1,

whence h2r+2 · · · h2sh2s+1
−1 · · · h2r+3

−1 = 1. But this is one of the values
with which we could replace h2r+2. Similarly, if the repetition involves h2h4

· · · h2rh2r−1
−1 · · · h3

−1, h2r+1 can be replaced by a combination whose value
is 1. In any event if n ≥ M + 2, we may reduce the length. Hence any g may
be represented by a word of length n ≤ M + 1. Thus H ∪ (x) is of order at
most MM+1.



18.4. The Restricted Burnside Problem. Theorems
of P. Hall and G. Higman. Finiteness of B(6, r).

A weaker form of the Burnside conjecture is the following proposition ;
its proof is known as the restricted Burnside problem:

Rn: For each positive integer r there is an integer bn,r such that every
finite group of exponent n that can be generated by r elements has
order at most bn,r.

If for some value of n, Rn is true, it is conceivable that there may be an
infinite group of exponent n with r generators. But Rn being true, there will
be a largest finite group R(n, r) of exponent n generated by r elements. For
each finite group of exponent n generated by r elements is a factor group
Fr/Ni, where Fr is the free group with r generators and Ni is some normal
subgroup containing all nth powers of elements of Fr. If Rn is true, there can
be only a finite number of such normal subgroups Ni, and their intersection is
a normal subgroup N of finite index and Fi/N = R(n, r) will be a finite group
of exponent n generated by r elements such that all others are homomorphic
images of it.

Let G be a group with lower central series:

Suppose that a relation Gs = Gs+1 holds. Then from the properties of the
lower central series we have Gs = Gs+1 = · · · = Gs+i = · · ·. If G is nilpotent,
then some Gs+i = 1, whence Gs = 1. Since a finite group G of prime power
exponent n = pt is nilpotent, the relation Gs = Gs+1 in such a group implies Gs

= 1. Now suppose that G is of exponent pt and is generated by r elements.
Then each Gi/Gi+1 is a finite Abelian group. If we can show that for every
such group G there is an integer s = s(pt, r) such that Gs = Gs+1, then we shall
have solved the restricted Burnside problem for exponent n = pt.

In the collecting process (Theorem 12.3.1) as applied to (xy)n we have
found



where if ci is of weight m, then its exponent, ai(n), is of the form

And if ci is of the form

the exponent ai(n) is the number of ways of choosing indices j1, j2, · · ·, js+1
such that in

we have

and

But this is merely the number of ways of choosing s + 1 distinct numbers

from 1, 2, · · ·, n and is .

If n = p is a prime, the exponents for commutators of weights at most p −
1 are all multiples of p, since the binomial coefficients with 1 ≤ i ≤ p −

1 are all multiples of p. But for the commutator



the exponent is . Hence in a group G of exponent p we have

where v1, v2, · · ·, vt are commutators of weight at least p, and for those of
weight p the weight in y is at least 2.

This gives the relation in Gp modulo Gp+1.

where v1, · · ·, vs are commutators of weight p in x and y, and of weight at
least 1 and at most p − 2 in x. From our rules (10.2.1) we have generally in
any group that if (u, v) is of weight m. then

Using this we find that if a v in (18.4.9) is of weight r in x, the replacement of
x by xi in (18.4.9) replaces v by vir. Putting i = 1, 2, · · ·, p − 1 in turn and
multiplying, we have for the exponent of v in the product

for 1 ≤ r ≤ p − 2, but for the leading term, , r = p − 1 and ir

≡ 1 (mod p). Hence the product takes the form

and so,



This relation has been the key to investigation of the restricted Burnside
problem for groups of prime exponent p. Starting with this, Kostrikin [1] has
solved the restricted Burnside problem for the group G of exponent 5 with
two generators. He has shown that G13 = G14 and that G, if finite, has order at
most 534.

A number of authors have studied the restricted Burnside problem, and
for this it has often been convenient to carry out calculations in the associated
Lie ring of a group. We shall describe this now.

In an associative ring R let us define a Lie product [x, y] by the rule

Then with respect to the addition in R and the Lie product, the elements of R
form a Lie ring L. A Lie ring L satisfies the following laws:

L0. Addition x + y, and Lie product [x, y] are well-defined operations.
L1. Addition is an Abelian group with zero element 0.
L2. [x + y, z] = [x, z] + [y, z].

[x, y + z] = [x, y] + [x, z].
L3. [x, x] = 0.
L4. [[x, y], z] + [[y, z, x] + [[z, x], y] = 0.
It is easy to check that [x, y] as defined by (18.4.14) satisfies these laws.
From L2 and L3 we find

whence

If R is generated by elements x1, · · ·, xr, then the elements generated from x1,
· · ·, xr by addition and the Lie product [x, y] will not in general include all
the elements generated in R by addition and the associative product. The
elements generated by the Lie product are called Lie elements. Thus x1

2 is
not a Lie element, but x1

2x2 − 2x1x2x1 + x2x1
2 = x1(x1x2 − x2x1) − (x1x2 −



x2x1)x1 is a Lie element. It may, of course, happen because of relations in R
that x1

2 is equal to a Lie element.
We may take the laws L0, L1, L2, L3, L4 as the definition of a Lie ring L. It

has been shown by Garrett Birkhoff [1] and E. Witt [1] that every Lie ring L
can be represented as a ring of Lie elements of an appropriate associative
ring R. This important result is not, however, needed here.

If G is a group with lower central series,

The associated Lie ring L of G is formed in the following way:
1) L is the Cartesian sum of the additively written factor groups Gi/Gi+1,

and this Cartesian sum gives the addition in L.
2) The elements of Gi/Gi+1 are regarded as homogeneous of degree i.
3) The Lie product of a homogeneous element A of degree i with a

homogeneous element B of degree j is the group commutator (A, B) modulo
Gi+j+1.

4) The Lie product of general elements of L is given by (3) and the
distributive laws.

We shall not prove here that these rules do define a Lie ring. We note
only that L2 corresponds to the commutator identities (10.2.1.2) and
(10.2.1.3) and that L4 corresponds to (10.2.1.5). The results of §11.2 can be
restated to show that the Lie ring corresponding to a free group with r
generators is the free Lie ring with r generators except that some infinite
sums are allowed. A modification of the methods of §11.2 may be used to
prove that these rules define a Lie ring.

In a Lie ring L let us write monomials in left normed form, i.e., write x1x2
for [x1, x2], and recursively, x1x2, · · ·, xn for [x1 · · · xn−1, xn]. The following
theorem is due to Graham Higman [1].

THEOREM 18.4.1. The associated Lie ring of a group of prime exponent
p satisfies the identical relation yxp−1 = 0.

Proof: The relation (18.4.13) holds in a group G of exponent p, and this
we write in the form



where c1, c2, · · ·, ct are commutators in x and y of total weight p + 1 or
higher, and naturally of weight at least one in y.

In this put x = x1x2 · · · xp−1. Using the rules (10.2.1) and collecting so as
to leave on the left-hand side only the commutators with distinct x’s, we have

where σ runs over the (p − 1)! permutations of 1, 2, · · ·, p − 1 in some order,
and d1, d2, · · · ds are commutators which are of positive weight in y and
either (1) of total weight at least p + 1 in y, x1 · · · xp−1, or (2) of total weight
p in y, x1, · · ·, xp−1 and having some xj missing. We may suppose that each di
is of positive weight in each of y, x1, · · ·, xp−1. This is proved inductively.
Suppose, in fact, that we already have such a relation with each di of positive
weight in y, x1, · · ·, xj−1. At the cost of introducing further commutators, we
may evidently suppose that the di which are of zero weight in xj form the
initial segment d1 · · · dt. Putting xj = 1, we see that d1d2 · · · dt = 1, and so
they can be omitted. Hence we may suppose that the d’s are of positive
weight in each of y, x1, · · ·, xp−1 and of total weight p + 1. The commutators
of weight p originally present had some xj missing, and these have been
omitted at some stage. But this now means in terms of the associated Lie ring
L that if y, x1, x2, · · ·, xp−1 are any homogeneous elements of whatever
weight, we have

But (18.4.20) is an identity in L valid for homogeneous elements y, x1, · · ·,
xp. Since it is linear in each argument, the identity therefore will be valid for
any arguments. Thus with x1 = x2 = · · · = xp = x, and y arbitrary, (18.4.20)
becomes



and as L is easily seen to be of characteristic p, we have

proving our theorem.
Using the relation yx4 = 0 in a Lie ring L of characteristic 5 (more

precisely of characteristic prime to 2 or 3), Graham Higman [1] has shown
that if L is generated by r elements, then in L, products of degree Nr or higher
are zero, where N is some integer not depending on r. A little work shows
that he has in fact proved this with N = 25, but he states that with further
calculations he believes it possible to prove the result with N = 9, though
even this is probably not the best possible result.

In a very important paper, Philip Hall and Graham Higman [1] have,
among other things, related the restricted Burnside problem for general
exponents to that for prime power exponents. But for this it is necessary to
restrict ourselves to finite solvable groups. Here the conjecture, weaker than
Rn, takes the following form:

Sn: For each positive integer r there is an integer bn,r such that every
finite solvable group of exponent n that can be generated by r
elements has order at most bn, r.

Their result takes the precise form:

THEOREM 18.4.2. If n = p1
e

1p2
e

2, · · · ps
e

s and if Spiei is true for i = 1, · ·
·, s, then Sn is true.

We shall not give the proof of this theorem here, since it depends on some
long and complicated preliminary results. Since a finite group of order paqb

is solvable (Theorem 16.8.7), Rn and Sn are the same statement when n is
divisible by at most two distinct primes. But since the Burnside groups B(2,
r), B(3, r), and B(4, r) are known to be finite, and Graham Higman has
shown R5 to be true, Theorem 18.4.2 proves the truth of R6, R12, R10, R15, R20,
and also S30 and S60. Encouraged by these results, the author has shown that
the groups B(6, r) are finite, and a sketch of this proof will be given below.



We shall give here a small part of the results of Philip Hall and Graham
Higman, and some indication of the lines along which the rest proceeds.

Let a group be called a p′-group, where p is a prime if its order is prime
to p, and as usual, a p-group if its order is a power of p.

DEFINITION: A finite group G is called p-solvable if it has a normal
series.

in which each factor group Vi+1/Vi is either a p-group or a p′-group. We
note from Theorem 9.2.4 that a finite solvable group G is p-solvable for
every prime p. For a p-solvable group G we define the upper p-series

recursively by the rule that Nk/Pk is the greatest normal p′-subgroup of G/Pk,
and Pk+1/Nk is the greatest normal p-subgroup of G/Nk. The number l, which
is the least integer such that Nl = G, we call the p-length of G, and we write
this lp or lp(G). It is easy to see that lp is the smallest number of p factor
groups that can occur in any normal series for G, such as (18.4.23), in which
the factor groups Vi+1/Vi are either p-groups or p′-groups.

The purpose of the Hall-Higman paper is to relate the p-length of a p-
solvable group G to properties of a Sylow p-subgroup S(p) of G. In
particular let pe

p be the exponent of S(p), i.e., the highest order of an element
of S(p). Then the exponent of G, i.e., the least common multiple n of the

orders of elements of G is . Their main theorems apply to

odd primes p, and the results are slightly different for the Fermat primes p,
which are of the form p = 2n + 1, and for primes which are not Fermat
primes. The theorem, which is relevant to the Burnside problem, is the
following:

THEOREM 18.4.3. If G is a p-solvable group where p is an odd
prime,then

1) ep ≥ lp, if p is not a Fermat prime, and



2) , if p is a Fermat prime.

We may readily deduce Theorem 18.4.2 from Theorem 18.4.3. Let n =
p1

e
1p2

e
s · · · ps

e
s. We can take p1 = 2 if n is even and proceed by induction on

s, assuming Sm to be true for m = p1
e

1p2
e

2 · · · ps−1
e

s−1. Then by Theorem
18.4.3 a finite solvable group G of exponent n has a bound of at most 2es on
its ps-length; l = lPs ≤ 2es. Then if G is generated by r elements, from Sm, the
order of G/Pl is bounded by bm,r, and so also Pl has a bound on the number of
its generators (corollary to Lemma 7.2.2), say, r1. Then from Sps

e
s, Pl/Nl−1

has a bound on its order and on the number of the generators of Nl−1.
Continuing, each of Ni/Pi and Pi/Ni−1 is of an order bounded by some bm,k or
bp

e
s, k and hence, since l ≤ 2es, we find a bound on the order of G.

THEOREM 18.4.4. In the upper p-series for a finite p-solvable group G,

P1/N0 contains its centralizer in G/N0.

COROLLARY 18.4.1. P1 contains its centralizer in G.

Proof of corollary: If x centralizes P1 in G, then in G/N0, xN0/N0
centralizes P1/N0. Hence, by the theorem xN0/N0 lies in P1/N0, whence in G
the coset xN0 lies in P1, and so x lies in P1.

Proof of theorem: In the group G1 = G/N0 there is no normal p′-subgroup,
since N0 was the greatest normal p′-subgroup in G. The subgroup 

 of G1 is the greatest normal p-subgroup of G1, by its
construction. Let Z be the centralizer of  in G1 and suppose, contrary to
the theorem, that . Now Z is a normal subgroup of G1, and so, Z ∪
P1 = ZP1 is a normal subgroup of G1. Since we are supposing ,
let M be a minimal normal subgroup of G such that .
Then  cannot be a p-group, since  was a maximal normal p-



subgroup of G1. Hence  is a p′-subgroup because G is p-solvable.
But then  and  are of relatively prime orders, and by Theorem
15.2.2, M splits over , i.e., , where  for
a subgroup K of M isomorphic to . Since ,
transformation of P1 by an element y of K induces an inner automorphism in 

, and since the orders of K and  are relatively prime, this inner
automorphism can only be the identity. Hence M is the direct product of K
and , . But then K, as a characteristic subgroup of M,
is a normal subgroup of G1, contrary to the fact that G1 contains no normal p′-
subgroup. Thus the assumption that  leads to a contradiction and
our theorem is proved.

Our next step is essentially a refinement of the preceding theorem.

THEOREM 18.4.5. If G is a p-solvable group with upper p-series,

and if F/N0 is the Frattini subgroup of P1/N0, the automorphisms of P1/F
induced by transformation with elements of G represent G/P1 faithfully.

Proof: F/N0 is the intersection of the maximal subgroups of the p-group
P1/N0, and P1/F is an elementary Abelian p-group (Theorem 12.2.1). Since
F/N0 contains the derived group of P1/N0, every element of P1 induces by
transformation the identical automorphism in P1/F. Hence the set of elements
of G that induce the identical automorphism in P1/F is a subgroup K of G
(necessarily normal in G) and K ⊇ P1. We show that K ⊃ P1 leads to a
contradiction, and hence K = P1, and so, G/P1 is faithfully represented by
transformation on P1/F. If K ⊃ P1, then K/P1 is not a p-group, since by
construction, P1/N0 is the maximal normal p-subgroup of G/N0. Then K
contains an element x not in P1 of order prime to p which induces the
identical automorphism in P1/F by transformation. But, by Theorem 12.2.2,
an automorphism of a p-group P1/N0 which is the identity on P1/F is of order
a power of p. But then, since the order of x is prime to p, x induces the



identical automorphism in P1/N0, and by Theorem 18.4.4, this means that 
, which conflicts with our choice of x. Thus K ⊃ P1 leads to a

contradiction, and so, K = P1, giving our theorem.
From Theorem 18.4.5 we have G/P1 faithfully represented by

transformation of the elementary Abelian p-group P1/F. Here G/P1 is a p-
solvable group and lp(G/P1) = lp(G) − 1. Further, by definition, G/P1
contains no normal p-subgroup. The rest of the Hall-Higman paper consists
in studying properties of the representation of G/P1 on P1/F, i.e., in effect, by
linear transformations in a vector space over the field with p elements. G/P1
is a p-solvable group which contains no normal p-subgroup, and the theory
depends upon what can be said about such groups which can be faithfully
represented by a representation over a field of characteristic p. These results
also depend on the induction on p-length, using lp(G) = lp(G/P1) + 1.

Apart from the results already quoted, we shall restrict our attention to
finite groups G of exponent 6 in order to determine the nature of the Burnside
groups B(6, r) if they can be shown to be finite.

THEOREM 18.4.6. In a finite group G of exponent 6, l2(G) ≤ 1 and l3(G)
≤ 1.

Proof: A finite group G of exponent 6 is necessarily of order 2a3b, and
so is solvable. In the upper 2-series for G, P1/N0 is a 2-group containing its
own centralizer in G/N0. But since G is of exponent 6, a Sylow 2-subgroup of
G is of exponent 2, and so is elementary Abelian. Hence P1/N0 is centralized
by a Sylow 2-subgroup of G/N0 containing it. Thus P1/N0 is a Sylow 2-
subgroup of G/N0, and so l2(G) = 1, and the upper 2-series for G is of the
form

where N0/P0 is a 3-group; P1/N0, a 2-group; and N1/P1, a 3-group.
Since (18.4.25) is a normal series for G, with at most two factor groups

which are 3-groups, we have l3(G) ≤ 2. We show that l3(G) = 2 implies that



G contains an element of order 9, conflicting with the hypothesis that G is of
exponent 6, and we conclude that l3(G) ≤ 1. The upper 3-series is of the form

where B0/A0, B1/A1, and B2/A2 are 2-groups, and A1/B0 and A2/B1 are 3-
groups. We note that

is the upper 2-series for G/B0, and since its 2-length is one, we have A2 = B2
= G. By Theorem 18.4.4 the 2-group B1/A1 is its own centralizer in A2/A1.
Hence in A2/A1, given an element x of order 3, there is an element u of order
2 in B1/A1 such that x does not permute with u. If we now write

then x−1u3x = u1 since x3 = 1. Let us put y = y1 = u1u2 and y2 = u2u3. Since u1,
u2, u3 belong to an elementary Abelian 2-group, u3u1 = (u1u2)(u2u3) = y1y2.
Hence the group C = {x, y1, y2} satisfies the relations

Since x does not permute with u1, u2 ≠ u1, and so, y1 = u1u2 ≠ 1. Also, y2 = y1

would imply x−1y2x = 1 and 1 = y2 = y1. Hence y2 ≠ y1 and the group C is
seen, from the relations (18.4.29), to be of order 12 and in fact isomorphic to
the alternating group on four letters. By Theorem 18.4.5, if F/B0 is the
Frattini subgroup of A1/B0, G/A1 is faithfully represented by transformation of
the elementary Abelian 3-group A1/F. In particular, C is faithfully
represented by transformation of A1/F = W. If we write W additively, then
transformation of W by an element z of G/A1 may be represented by taking z
as an operator on the right. Here not only C but also the group ring C*
operates on W. Those operators of C*, which map every element of W onto



zero, are easily seen to form a two-sided ideal in C*. We consider C as
generated by x and y = y1 subject to the relations

Then a two-sided ideal of C* containing 1 + x + x2 also contains

If for every  we had w(1 + x + x2) = 0, then from (18.4.31) we would
also have w(2 − 2y) = 0, and since elements of W are of order 3, this means
wy = w for every . But then y is not faithfully represented by
transformation of W = A1/F, contrary to Theorem 18.4.5. Hence, for some 

, we have w(1 + x + x2) ≠ 0. In multiplicative form this means that
for  a representative of the coset , this being the element x in A2/F, we
have

But this is the element

Both  and  are elements of W. Not both of these can be the
identity by (18.4.33). Hence either  or  is an element of order 9. Thus
l3(G) = 2 implies the existence of an element of order 9 in conflict with the
hypothesis that G is of exponent 6. Hence l3(G) ≤ 1, and our theorem is
proved.

With the help of Theorem 18.4.6 we can find the exact order of the
largest finite group of exponent 6 generated by r elements.

THEOREM 18.4.7. The order of R(r, 6) is



where

Proof: Let Fr be the free group with r generators. The subgroup S
generated by the squares of elements of Fr is such that Fr/S is the elementary
Abelian group of order 2r. Hence, by Theorem 7.2.8, S is a free group with b
= 1 + (r − 1)2r generators. In S the fully invariant subgroup T generated by
the cubes of elements of S is such that S/T is B(3, b), and so, T is of index 

 in S. Here Fr/T is a finite group of exponent 6, since for , 
 and . Similarly, Fr has a subgroup C of index 

generated by the cubes of elements of Fr, and by Theorem 7.2.8, C has 
 free generators. The fully invariant

subgroup D generated by the squares of elements of C is of index 2a in C.
Now let X = D ∩ T. Fr/X is a finite group of exponent 6, since both D and T
contain g6 for every . We easily see that the upper 2-series for Fr/X is

and the upper 3-series for Fr/X is

Here C/D is isomorphic to a Sylow 2-subgroup of Fr/X and S/T to a Sylow
3-subgroup, whence the order of Fr/X is given by (18.4.34).

Let G be any finite group of exponent 6 generated by r elements. Then if

is the upper 3-series for G, we see that N1/P1 is of order at most 2r, and so,
P1 is generated by at most b elements, whence P1/N0, isomorphic to a Sylow
3-subgroup of G, is of order at most . Similarly, the order of G is
divisible by at most 2a.



There is not space here to give the complete proof of the Burnside
conjecture for exponent 6, since it involves long calculations. The proof does
not depend on the preceding work and, as it stands, the proof gives the right
power of 2 dividing the order of B(6, r), but to get the right power of 3 it is
necessary to apply Theorem 18.4.7. The proof consists in showing that a
finitely generated group G of exponent 6 has 2-length one, and so by the
finiteness of B(2, r) and B(3, r) is finite. This takes the form of showing that
there is a normal chain

in which G/M is a finite 3-group, M/M′ is a finite 2-group, and M′ is a
finitely generated group of exponent 3 and so finite. Almost all the difficulty
consists in showing that M′ is of exponent 3.

THEOREM 18.4.8. A group G of exponent 6 generated by r elements is
finite.

COROLLARY 18.4.2. The order of B(6, r) is given by (18.4.34).

LEMMA 18.4.1. The cubes of the elements of G generate a normal
subgroup M of index at most .

LEMMA 18.4.2. M is generated by a finite number of elements of order
2. The derived group M′ of M is of index a power of 2 in M and is
generated by a finite number of elements of the form abab, where a2 = b2 =
1.

LEMMA 18.4.3. If a group H is generated by x1, · · ·, xn and if every
subgroup of H generated by four of the x’s is of exponent 3, then H is of
exponent 3.

LEMMA 18.4.4. If H = {a, b, c, d} is of exponent 6 and {a, b, c}, {a, b,
d}, {a, c, d}, and {b, c, d} are of exponent 3, then H is of exponent 3.

LEMMA 18.4.5. If H = {x, a, b} is of exponent 6 and if x2 = 1, a3 = b3 =
1, xax = a−1, xbx = b−1, then {a, b} is of exponent 3.



This is the most difficult lemma of all and involves some complicated
calculations with relations.

LEMMA 18.4.6. If H = {x, a, b} is of exponent 6 and if x2 = 1, a3 = b3 = 1,
xax = a−1, xbx = b, then {a, b} is of exponent 3.

LEMMA 18.4.7. If H = {x, a, b, c} is of exponent 6 and if x2 = 1, a3 = b3

= c3 = 1, xax = a−1, xbx = b−1, xcx = c−1, then {a, b, c} is of exponent 3.

LEMMA 18.4.8. If H = {x, ai} i = 1, · · ·, n is of exponent 6 and if (x2 = 1,
ai

3 = 1, xaix = ai
−1, i = 1, · · · n), then {ai} i = 1, · · ·, n is of exponent 3.

This is easily seen to follow from Lemmas 18.4.3, 4, and 7.

LEMMA 18.4.9. If H = {a, b, c} is of exponent 6 and a2 = b2 = c2 = 1,
then H′ is of exponent 3.

LEMMA 18.4.10. If H = {a, b, c, d} is of exponent 6 and a2 = b2 = c2 = d2

= 1, then {abab, cdcd} is of exponent 3.

LEMMA 18.4.11. If H = {a, b, c, d, e, f} is of exponent 6 and a2 = b2 = c2

= d2 = e2 = f2 = 1, then {abab, cdcd, efef} is of exponent 3.

LEMMA 18.4.12. M′ is of exponent 3 and so finite. Hence G is finite.
This lemma is an immediate consequence of Lemmas 18.4.2, 3, 4, and 11.



19. LATTICES OF SUBGROUPS

19.1. General Properties.

The subgroups of a group G may be taken as the elements of a lattice
L(G) under the operations of union and intersection. Every cyclic group of
prime order has as subgroups only the entire group and the identity subgroup,
whence all these cyclic groups have the same subgroup lattice, consisting
merely of a two-element chain. We have already shown (Theorem 1.5.4) that,
conversely, a group with no proper subgroups is the identity alone or a finite
cyclic group of prime order. We note also that the non-Abelian group of
order pq with p < q, p|q – 1 and the elementary Abelian group of order q2

both have the same subgroup lattice, consisting of the identity, q + 1
subgroups of prime order, and the whole group, where any two of the proper
subgroups have the identity as their intersection and the whole group as their
union.

Thus, although G determines L(G) uniquely, in general L(G) does not
determine G uniquely. Moreover, it is easy to find examples of lattices L
which are not the lattice L(G) for any group G. But many groups G are indeed
determined uniquely by L(G), this being true, for example, for the alternating
and symmetric groups on four letters. It may even be true that, except for a
few groups of relatively simple types, L(G) does determine G uniquely.

In the terminology of lattice theory, L(G) is complete. This means that
infinite unions and intersections always exist, for the set of elements common
to all subgroups of a family of subgroups will itself form a group, and this is
clearly the intersection of the family. Similarly, the set of all finite products
of elements chosen from a family of subgroups will itself form a group, and
this is the union of the family.

For a fuller treatment of the study of lattices of subgroups, the reader is
referred to the monograph by Suzuki [1].



19.2. Locally Cyclic Groups and Distributive
Lattices.

In a lattice the two distributive laws

D1. a ∩ (b ∪ c) = (a ∩ b) ∪ (a ∩ c),
D2. a ∪ (b ∩ c) = (a ∪ b) ∩ (a ∪ c)

are equivalent to each other. Let us show that D1 implies D2. Here, using D1,

which is the law D2. Similarly, the law D2 implies D1. The distributive law
is a very strong condition in lattices. We shall show that for groups G the
condition that L(G) be distributive is very strong and implies that G is
locally cyclic.

DEFINITION: A group G is a locally cyclic group if, and only if, every
finite set of elements in G generates a cyclic group. (This is to be compared
with §13.1.)

Since an element of finite order greater than 1 and an element of infinite
order cannot generate a cyclic group, it follows that in a locally cyclic group
every element ≠ 1 is of infinite order or every element is of finite order. The
additive group of rationals R+ is a locally cyclic group which is aperiodic,
and the group R+ modulo 1 is a periodic locally cyclic group. It is not too
difficult to show that a locally cyclic group is a subgroup of one of these two
groups.

THEOREM 19.2.1. The lattice L(G) is distributive if, and only if, G is a
locally cyclic group.

Proof: Let us first suppose that G is a locally cyclic group. Let A, B, C be
any three subgroups of G. We wish to prove that D1 holds. Now generally



whence U = A ∩ (B ∪ C) ⊇ A ∩ B. Also,

whence U = A ∩ (B ∪ C) ⊇ A ∩ C. Combining these inclusions,

Thus it is necessary to show only the inclusion

Now consider an arbitrary element . Here g is of the form

where we note that, since G is Abelian, B ∪ C = BC. Since G is locally
cyclic, the elements b and c generate a cyclic group {u} and ur = b, us = c,
and since for some m and n, bmcn = u, it follows that urm+sn = u. Also, a = bc
= ur+s. Now , and 

. Hence a = ur+s =
umr(r+s)+ns(r+s) = xmyn is an element of (A ∩ B) ∪ (A ∩ C), as we wished to
prove. Hence in all cases

for subgroups of a locally cyclic group.
Now, to prove the converse, we assume that L(G) is distributive

satisfying both D1 and D2. Let b and c be any two elements of G and write a
= bc and



Then, since , we have

As subgroups of cyclic groups both A ∩ B and A ∩ C are cyclic and, say,

where for appropriate exponents,

Here u and v as powers of a will permute, and since A = {u} ∪ {v}, we must
have, since , a = urvs = vsur, or remembering that a = bc, bc = urvs =
byrcws = cwsbyr. Here b1–yr = cws–1, whence c–ws+1 = byr–1 or v–sc = urb–1,
whence cb = vsur = urvs = bc. Hence b and c must permute and G is Abelian.

We now note that G cannot contain an element a ≠ 1 of finite order and an
element b of infinite order. For putting c = ab, c is also of infinite order and
{a} = {a} ∩ ({b} ∪ {c}), since a = b–1c, while ({a} ∩ {b}) ∪ ({a} ∩ {c})
= (1) ∪ (1) = 1 ≠ {a}, since the infinite cyclic groups {b} and {c} containing
no elements ≠ 1 of finite order must intersect {a} in the identity. Thus we
may consider only two cases; first, that in which G is aperiodic, and second,
that in which G is periodic. In either case if two elements do not generate a
cyclic group, then, by the basis theorem for Abelian groups, they generate the
direct product of two cyclic groups, say, {b} and {c}. Here with a = bc and
A = {a}, B = {b}, C = {c}, we have A = A ∩ (B ∪ C), and (A ∩ B) ∪ (A ∩ C)
= (1) ∪ (1) = (1), and hence D1 does not hold. In the periodic case if b and c
have relatively prime orders, then {b} ∪ {c} = {bc}, and they do generate a
cyclic group. But the direct product of two cyclic groups {b} and {c} whose
orders do have a common factor, say, a prime p, will not have a distributive
lattice, since for  and  both of order p and a1 = b1c1, the
law D1 fails as above with A = {a1}, B = {b1}, C = {c1}. Here again for the
distributive law to hold it is necessary that any two elements generate a
cyclic group. But if any two elements generate a cyclic group, then it follows
immediately that any finite number of elements generate a cyclic group, and
thus G is locally cyclic, proving the converse part of the theorem.



19.3. The Theorem of Iwasawa.

One of the properties of a composition series (or chief series) shown in
§8.5 is that all series have the same length. This property is a result of the
modularity of the lattice of normal subgroups and of a weak form of
modularity in the composition series. But, in general, maximal chains of
unrestricted subgroups may differ in length. By Theorem 10.5.5 it follows
that in a finite supersolvable group, all maximal chains of subgroups have the
same length. The following theorem, due to Iwasawa [1], shows the converse
to be true.

THEOREM 19.3.1. The maximal subgroup chains of a finite group G all
have the same length if, and only if, G is supersolvable.

Proof: As noted above, Theorem 10.5.5 shows that in a supersolvable
group G, all maximal subgroup chains have the same length, this being the
total number of primes, counting repetitions, dividing the order of G.

Let us call the property of having all maximal chains the same length the
equi-chain condition. This property is clearly inherited by subgroups and
factor groups. Let G be a finite group with the equi-chain property. Since a
group whose lattice is the chain of length one is a cyclic group of prime
order and thus supersolvable, we may assume by induction on the length of
maximal chains that all subgroups and factor groups of G are supersolvable.

We need first a lemma on supersolvable groups.

LEMMA 19.3.1. Let G be a finite supersolvable group of order n = p1p2 ·
· · pm where p1 ≤ p2 ≤ · · · ≤ pm. Then G has a chief series

where Ki/Ki–1 is of order pm–i+1, i = 1, · · ·, m.

This is Corollary 10.5.2.
The next and most difficult step in the proof consists in showing that G

has a normal subgroup. For this we need a choice of methods. Lemma 19.3.2
guarantees the possibility of this choice for any finite group.



LEMMA 19.3.2. If G is a finite group of order divisible by the prime p,
then either (1) G is p-normal or (2) G has a subgroup P of order a power
of p which is normal in one Sylow subgroup S1(p) but is a non-normal
subgroup of another Sylow subgroup S2(p).

Proof: We recall that a group G is by definition p-normal if the center Z
of a Sylow subgroup S1(p) is the center of any other Sylow subgroup S2(p)
which contains it. Hence if G is not p-normal, then the center Z of some S1(p)
is contained in another S2(p) but is not the center of S2(p). In this case we
show that the second alternative holds, taking P as Z by showing that Z is not
normal in S2(p). Assume to the contrary that Z is normal in S2(p). Then both
S1(p) and S2(p) are contained in N = NG(Z), and hence as Sylow subgroups
of N, will be conjugate in N. Thus for some , x–1S1(p)x = S2(p). Since
Z is the center of S1(p), the center of S2(p) = x–1S1(p)x will be x–1Zx = Z,
since , and this conflicts with the assumption that Z was not the
center of S2(p). This proves the lemma. We note that in the second alternative
the Burnside Theorem 4.2.5 applies.

Let our group G be of the order n = p1
e

1p2
e

2 · · · Pr
e

r, where p1 < p2 < · ·
· < pr are distinct primes. We use the alternatives of Lemma 19.3.2 for p1, the
smallest prime dividing n. We show that the second alternative cannot arise
in G. Here, by Theorem 4.2.5, there are  p1-groups h1,
h2, · · ·, ht normal in their union H and conjugate in the normalizer of H in G,
N = NG(H). If H is normal in G, we have a normal subgroup, as we wished to
find. Suppose N is a proper subgroup of G and thus supersolvable by
induction. Applying Lemma 19.3.1 to N, we find that N has a normal
subgroup Q which has index in N, the highest power of p1 dividing the order
of N. But then both Q and H are normal subgroups in N, and so, since Q ∩ H
= 1 (H is a p1-group), then Q ∪ H = Q × H. Thus Q permutes with every
element of H, and so, the normalizer of h1 contains Q and cannot have an
index t prime to p1. Strictly, we have shown only that the second alternative
cannot arise when N is a proper subgroup, but when we have finished and
proved that G is supersolvable, the above argument holds also for N = G.



Now we consider the first alternative, namely, that G is p1-normal. Let Z
be the center of a Sylow subgroup S1(p1). Let K = NG(Z). If K = G, then we
have Z as a proper normal subgroup of G, as we wished to show. Hence
suppose K is a proper subgroup of G and therefore, by our induction
hypothesis, supersolvable. Then by Lemma 19.3.1 applied to K, K must have
a normal subgroup W of index p1, and since K/W is the cyclic group of order
p1, W ⊇ K′, K has a nontrivial homomorphic image which is an Abelian p1,-
group, this being denoted by K/K′(p1). But by Theorem 14.4.5, since G is p1-
normal, G/G′(p1) is isomorphic to K/K′(p1), and thus G′(p1,) is a proper
normal subgroup. Having shown in all cases that G has a proper normal
subgroup, and since by induction both the normal subgroup and factor group
are supersolvable, we conclude that G is solvable.

Now with G of order n = p1
e

1p2
e

2 · · · pr
e

r, p1 < p2 < · · · < pr and m = e1
+ e2 + · · · + er, and having shown G solvable, we now know that all
maximal chains are of length m and that every covering A > B is such that [A :
B] is a prime. Let S(pr) be a Sylow subgroup of order pr

e
r, and let 1 ⊂ A1 ⊂

A2 ⊂ · · · ⊂ Aer = S(pr) ⊂ B1 ⊂ · · · ⊂ Bm–er = G be a maximal chain in
which S(pr) is at the bottom. We wish to show that S(pr) is normal in G. Now
B1/S(pr) is of order some prime pj < pr. Since the number of conjugates of
S(pr) in B1 must divide pj and be of the form 1 + kpr by the third Sylow
theorem, this number must be 1, and so, . Similarly, if we
have shown that S(pr) is normal in some Bi, then the number of conjugates of
S(pr) in Bi+1 must be of the form 1 + kpr and also a divisor of [Bi+1:Bi] = pj <
pr. Hence S(pr) is normal in Bi+1 and, by continuing this argument, 

. As a solvable group G possesses a Sylow complement C to
S(pr) of order p1

e
1 · · · pr–1

e
r–1. This is given by Theorem 9.3.1. Let Z be the

center of S(pr). As a characteristic subgroup of S(pr), Z is normal in G. Thus
C ∪ Z = CZ = U. In U a maximal chain of C can be extended to a maximal
chain of U, and in this, C ⊂ V for a group V such that [V : C] = pr. By the
same argument that showed S(pr) normal in G, it follows that V has a normal
subgroup R of order pr. Now R must be contained in Z, which is the unique
Sylow subgroup for pr in U. Thus R is normalized by C and, belonging to the
center of S(pr), is also normalized by S(pr). Hence R is normal in G. Having



shown that G possesses a normal subgroup R of prime order pr, since by
induction G/R is supersolvable, it follows at once that G is supersolvable.
This proves the theorem.



20. GROUP THEORY AND
PROJECTIVE PLANES

20.1. Axioms.

A projective plane is a set of points, of which certain distinguished subsets
are called lines, satisfying the following axioms:

P1. Any two distinct points are contained in one and only one line.
P2. Any two distinct lines contain one and only one point in common.
P3. There exist four points, no three of which are contained in one line.
The unique line k containing two distinct points A and B will be called the

line joining A and B. The unique point P contained in two distinct lines k and t
will be called the intersection of k and t.

Let A1, A2, A3, A4 be four points, no three on a line, whose existence is given
by P3. Then there are six distinct lines joining the different pairs:

Here the points B1, B2, B3 are the intersections of these lines, and from the
distinctness of the lines we easily find that the B’s are different from the A’s and
from each other.

LEMMA 20.1.1. Every line contains at least three points.

Proof: The lines L1, · · ·, L6 as constructed each contain at least three
points. A further line L, if it does not contain A1, will intersect L1, L2, L3 in
three distinct points. If L does not contain A2, then L intersects L1, L4, L5 in



three distinct points. If L contains both A1 and A2, then L is L1, which does
contain at least the three points A1, A2, B1.

LEMMA 20.1.2. There exist four lines, no three of which contain the same
point.

Proof: Here L1, L2, L5, L6 are four lines, no three of which intersect in a
common point.

If we interchange the roles of points and lines and replace “contains” by “is
contained in,” Axioms P1 and P2 are interchanged and Axiom P3 and Lemma
20.1.2 are interchanged. This leads to the concept of duality. More precisely if
π is any projective plane, then there is a plane π* dual to π which may be
constructed as follows:

Let {Pi} be the set of points of π and {kj} the set of lines of π. Then in π*
we have lines {Pi} in a one-to-one correspondence with the points {Pi} of π
and points {Kj} in a one-to-one correspondence with the lines {kj} of π.
Further, if  in π, we put  in π*, where  and 

. Our observations show that if π satisfies the axioms for a
projective plane, then π* also does so. Furthermore, the dual of π* is π, i.e.,
(π*)* = π. Hence, interchanging the roles of points and lines and reversing
inclusions, every statement about a plane π becomes a statement about its dual
π*. This is the principle of duality. In particular from the principle of duality, if
some statement is true of every projective plane π, then its dual is also true.
Thus, applying the principle of duality, Lemma 20.1.1 becomes:

LEMMA 20.1.3. Every point is on at least three lines.

The reader will not find it difficult to verify that the axioms given here are
equivalent, for planes, to the axioms of projective geometry as given in Veblen
and Young, “Projective Geometry,” vol. I, pages 16–18.

Suppose that one line L1 of a projective plane π contains a finite number of
points. Call this number n + 1, where n ≥ 2 by Lemma 20.1.1. By Axiom P3
there are at least two points, say, P3 and P4, not on L1. Let P3P4 intersect L1 in
B1 and let P1 and P2 be two other points of L1. Then P1P3 and P2P4 intersect in
a further point B2 not on L1 and not on P3P4. If P is any point not on L1 joining P
to the n + 1 points of L1, we have n + 1 lines through P and these are all the



lines through P since every line through P must intersect L1. In particular there
are n + 1 lines through each of P3, P4, and B2. If there are n + 1 lines through a
point P, these intersect a line L not through P in n + 1 points and these are all
the points on L, since every point on L is joined to P by a line. Hence every
line L of π contains n + 1 points, since at least one of P3, P4, or B2 is not on L.
Also there are n + 1 lines through every point P of π, these being the lines
joining P to the n + 1 points of some line L not through P. We have now proved
the major part of the following theorem.

THEOREM 20.1.1. Let n ≥ 2 be an integer. In a projective plane the
following properties are equivalent:

1) One line contains exactly n + 1 points.
2) One point is on exactly n + 1 lines.
3) Every line contains exactly n + 1 points.
4) Every point is on exactly n + 1 lines.
5) There are exactly n2 + n + 1 points in π.
6) There are exactly n2 + n + 1 lines in π.

Proof: We have already shown that (1) implies (2), (3), and (4). To prove
(5), let P0 be one point of π and let L1 · · ·, Ln+1 be the n + 1 lines through P0.
These lines include all the points of π, and each of them contains P0 and n other
points. P0 is the only point common to any two of L1, · · ·, Ln. Hence π contains
1 + (n + l)n = n2 + n + 1 points. To prove (6), let L0 be a line of π, and P1, P2, ·
· ·, Pn+1 the n + 1 points of L0. Each of P1, · · ·, Pn+1 is on L0 and n other lines.
In this way we obtain all the lines of π, and there are 1 + (n + 1)n = n2 + n + 1
lines in π. Hence property (1) implies the remaining properties. By duality (2)
implies the remaining properties. Trivially, (3) implies (1), and (4) implies (2).
If (5) holds, then some line has m + 1 points, where m is an integer, and we
conclude that π has m2 + m + 1 = n2 + n + 1 points, whence m = n and (5)
implies (1). Similarly, (6) implies (2).

20.2. Collineations and the Theorem of Desargues.*

A plane π1 is said to be isomorphic to a plane π2 if there is a one-to-one
correspondence  between the points {P1} of π1 and



the points {P2} of π2 and a one-to-one correspondence 
between the lines {k1} of π1 and the lines {k2} of π2, such that if , then

. Clearly, each of the correspondences α or β fully determines
the other, and a one-to-one correspondence of points  will
determine an isomorphism if whenever three points P1, Q1, R1 of π1 are on a
line, then (P1)α, (Q1)α, and (R1)α are on a line. Similarly, a one-to-one
correspondence β of lines will determine an isomorphism if every set of three
concurrent lines is mapped onto a set of three concurrent lines. A
homomorphism of planes would be a many-to-one correspondence of points
and lines preserving incidence, but this does not seem to be as valuable a
concept in planes as in other subjects.

An isomorphism a of a plane π with itself is called a collineation. The
collineations of a plane form a group.

A plane π1 which can be embedded in a three-dimensional space E3 always
has a large family of collineations. Let π2 be another plane in E3, and let L be
the line in which π2 intersects π1. Take P1 and P2 as any two points of E3 not
lying in either π1 or π2. We define a perspectivity of π1 onto π2 with center P1.
This is a mapping of an arbitrary point Q of π1 onto a point R of π2, written as

where R is defined as that point of π2 in which the line P1Q pierces π2. Here
P1QR are on a line, with , . The perspectivity (20.2.1) is an
isomorphism of π1 onto π2, since if M1 is a line of π1, the plane π3 containing
M1 and P1 intersects π2 in a line M2, and the perspectivity maps the points of
M1 onto the points of M2. Furthermore, every point of L is mapped onto itself,
this being the intersection of π1 and π2. If we follow the perspectivity (20.2.1)
by a perspectivity with center P2 mapping π2 onto π1,

this is also an isomorphism of π2 onto π1, leaving all points of L fixed. The
combination of the two perspectivities



will be a collineation α of π1 fixing all points of L. In addition let O be the
point in which the line P1P2 intersects π1. We shall have

since P1P2OT are on a line, whence (0)α = O. Furthermore, let k be any line
through 0. If Q is a point of k, then in (20.2.3) R will be a point in the plane π4
containing the intersecting lines k and P1P2OT, whence also S in (20.2.3) will
be a point of π4 and hence a point of k. Thus α takes every line through 0 into
itself. Such a collineation α is called a perspective collineation and sometimes
a perspectivity. The line L, all of whose points are fixed by α, is called the
axis of the collineation, and the point 0 through which every line is fixed is
called the center of the collineation. The center 0 may or may not lie on the
axis L. If we wish to make a distinction in these two cases, then if the center 0
lies on the axis L, the collineation is called an elation, while if 0 does not lie
on L, the collineation is called a homology. The nature of perspective
collineations can be seen in the accompanying diagram, labeled Theorem of
Desargues.

Fig. 9. Theorem of Desargues.

Suppose we have a perspective collineation α with center 0 and axis L and
that A1 is a point of π not on L and different from 0. Then (A1)α = A2 must be on



the line OA1. Now given 0, L, and A1 and A2 with OA1A2 on a line but neither A1
nor A2 on L or equal to 0, then we assert that with 0 as center, L as axis, and
(A1)α = A2, the collineation α is completely determined, for let B1 be any
further point of π not on OA1A2 or L. Let A1B1 intersect L in C3. Then (B1)α must
lie on OB1. But also, since A1, B1, C3 were collinear, (A1)α = A2, (B1)α, and
(C3)α = C3 must also be collinear. Hence (B1)α must lie on both OB1 and C3A2,
whence (B1)α = B2 is the intersection of OB1 and C3A2. Thus from (A1)α = A2
the image of every point B1 not on OA1A2 is uniquely determined. But with
(B1)α = B2, the images of points on OA1A2 can be uniquely determined.

Now let C1 be a point not on OA1A2 or on OB1B2. Then let B1C1 meet L in
A3 and A1C1 meet L in B3. Then (C1)α = C2 is determined as the intersection of
A2B3 and OC1. But since B1C1A3 are on a line, then also (B1)α = B2, (C1)α = C2,
and (A3)α = A3 are on a line. This gives us the nontrivial configuration of our
figure, known as the configuration of Desargues. The existence of this
configuration is called the Theorem of Desargues. We shall say that triangles
A1, B1, C1 and A2,B2,C2 are perspective with respect to a center 0 if
corresponding vertices are on lines through 0, i.e., that OA1A2, OB1B2, and
OC1C2 are lines. The triangles are perspective with respect to an axis L if
corresponding sides intersect in points of L.

THEOREM 20.2.1 (THEOREM OF DESARGUES). If two triangles A1,B1,C1 and
A2,B2,C2 are perspective with respect to a center 0, then corresponding sides
A1B1 and A2B2, A1C1 and A2C2, B1C1 and B2C2 meet in points C3,B3, and A3
lying on a line L.

The validity of the Theorem of Desargues in a plane π is equivalent to the
existence of all possible perspective collineations in π. This we see in the
following theorems:

THEOREM 20.2.2. In a plane π given a line L, a point O, and two points A1,
A2 different from 0 and not lying on L, and such that OA1A2 are on a line.
Then there is at most one perspective collineation α of π with center 0 and
axis L such that (A1)α = A2. If π can be embedded in a three-dimensional
space there is one such collineation.



Proof: We saw above that given the center O, axis L, and (A1)α = A2, where
OA1A2 are on a line, then the perspective collineation α is completely
determined. Hence there is at most one such collineation in π. Now suppose
that π can be embedded in a three-dimensional space E3. Take a plane π2 in E3
intersecting π in L and choose some point P1 of E3 not on π or π2. Join P1 to O
and let P1O intersect π2 in T. (See the figure.)

Fig. 10. Perspectivities.

If A1P1 intersects π2 in Q, then Q and A2 are in the plane π3 of OP1 and
OA1A2. π3 is the plane of the figure. Hence A2Q intersects OP1 in a point P2.
Now P2 is not in π2, since then it would be T and A2 would coincide with X, the
intersection of OA1A2 and the line L, contrary to our assumption that A2 was not
on L. Similarly, since A2 is not O, P2 is not on π1. Now we see that the
perspective collineation α

has L as its axis and O as its center; also we have . Hence
A2 = (A1)α, as was required, and the collineation of the theorem does exist.

THEOREM 20.2.3. The Theorem of Desargues is valid in a plane π if, and
only if, all possible perspective collineations exist in π.



COROLLARY 20.2.1. The Theorem of Desargues is valid in any plane π
which can be embedded in a projective three space.

Proof: Once the theorem is established, the corollary will follow from the
previous theorem.

Suppose first that all possible perspective collineations exist in π. We are
given the two triangles A1B1C1 and A2B2C2 such that the three lines A1A2, B1B2,
and C1C2 meet in a point O. (See figure for Theorem of Desargues.) Let A1B1
and A2B2 meet in a point C3, and A1C1 and A2C2 meet in a point B3. Call the line
joining B3 and C3 the line L. Then, by our hypothesis, there is a perspective
collineation α with center O, axis L, and such that (A1)α = A2. Then, by our
construction, (B1)α = B2 and (C1)α = C2. Let B1C1 meet L in A3. Then (B1)α =
B2, (C1)α = C2, and (A3)α = A3 lie on a line whence A3, the intersection of B1C1
and B2C2, lies on the line L with B3 and C3. This proves the Theorem of
Desargues.

Now suppose conversely that the Theorem of Desargues is valid in π. We
are given the line L and the points O, A1, A2 which are distinct and on a line,
and A1 and A2 are not on L (though O may be). We define a mapping α of the
points of π and show that it is a collineation. (We refer again to the figure of the
Theorem of Desargues.) For any point X on L we put (X)α = X. We also put
(O)α = O and (A1)α = A2. If B1 is not on L or on OA1A2, let A1B1 meet L in C3. If
A2C3 intersects OB1 in B2, put (B1)α = B2. This defines the mapping α for all
points of π except those of OA1A2. Now if A1C1 meets L in B3, then if A2B3
meets OC1 in C2, we put C2 = (C1)α. If OA1, OB1, and OC1 are distinct lines,
then the triangles A1B1C1 and A2B2C2 are perspective with respect to the center
O, and by the Theorem of Desargues, corresponding sides meet in points on a
line. But C3 and B3 are on L, whence B1C1 and B2C2 intersect in a point A3 of L.
But if we had started with (B1)β = B2, we would have defined (C1)β as the
intersection of B2A3 with OC1. But this is C2, and hence we have (C1)α = (C1)β
= C2 as a consequence of either (A1)α = A2 or (B1)β = B2. Thus the mappings α
= β agree on all lines such as OC1C2 for which they are both defined. But α is
defined on all of OB1B2 and β is defined on all of OA1A2. In this way our
mapping α is defined for all points of π.



Again from the same figure with (A1)α = A2 and k an arbitrary line not
through O or A1, let k intersect L in A3 and let B1, C1 be two further points on k.
Then, by our definition, (B1)α = B2, (C1)α = C2, and (A3)α = A3, and by the
Theorem of Desargues applied to the triangles A1B1C1 and A2B2C2, we
conclude that B2, C2, and A3 are on a line. This tells us that the mapping α takes
points C1 of k = A3B1 into points of A3B2, except possibly if C1 is the
intersection of A3B1 with OA1A2. But if C1 = D1 is the intersection of B1A3 with
OA1A2, then from (B1)α = (B1)β = B2 we define the image (D1)β = D2 as the
intersection D2 of A3B2 with OA1A2. Hence the mapping takes all the points of k
onto the points of A3B2. Clearly, the mapping takes L into itself and lines
through O into themselves. Hence α is the required collineation.

We have indeed proved a more precise result than Theorem 20.2.3. This we
state as a theorem.

THEOREM 20.2.4. In a plane ir there are all possible perspective
collineations with a given center O and given axis L if, and only if, the
Theorem of Desargues is valid for all triangles perspective with respect to O
and having two pairs of corresponding sides intersect on L whence the third
pair also intersect on L.

Not every plane π can be embedded in a three-dimensional space, and there
are cases in which Theorem 20.2.4 is applicable for a limited number of axes L
and centers O.

20.3. Introduction of Coordinates.

Let π be any projective plane and choose four points X, Y, O, I, no three on
a line. Call the line XY the line of infinity L∞. Call the line OI the line y = x.

On the line OI give coordinates (0, 0) to O, (1, 1) to I and the single
coordinate (1) to the point C which is the intersection of OI and XY. For other
points of OI assign coordinates (b, b), taking different symbols b for different
points. For a point P not on L∞ let XP intersect OI in (b, b) and YP intersect OI
in (a, a). Then assign coordinates (a, b) to P. This rule reassigns the same
coordinates to points OI. Let the line joining (0, 0) and (1, m) intersect L∞ in a
point M. Assign to M the single coordinate (m), which we may think of



intuitively as a slope. We have now assigned coordinates to every point except
Y, and to this we arbitrarily assign the single coordinate (∞).

Fig. 11. Introduction of coordinates.

We shall use the lines of our plane to define algebraic operations on the
system of coordinates. This algebraic system will be a ternary ring, and every
line of π except L∞ will have an equation expressible in terms of the operations
of the ternary ring. If (x, y) is a finite point of OI, we shall have y = x, and so,
we take y = x as the equation for OI. A line through Y different from L∞ will
have the property that all its finite points (x, y) have the same x coordinate, say,
x = c, and this we take as its equation.

If (x, y) is a finite point of the line joining C = (1) and (0, b) we define a
binary operation of addition by putting

and taking this as the equation of the line. If (x, y) is a finite point of the line
joining O = (0, 0) and (m), we define a binary operation of multiplication,
putting



and taking this as the equation of the line. In general, any line not through Y will
intersect L∞ in some point (m) and OY in some point (0, b). If Q = (x, y) is a
point of this line, we define a ternary operation

and take this as the equation of the line. Thus both addition and multiplication
are special cases of the ternary operation, and we see that

The elements 0 and 1 have the familiar properties

The plane π can be represented by a ternary ring R whose ternary operation
satisfies certain properties, and conversely, a ternary ring with these properties
uniquely determines a plane. This we state as our main theorem on ternary
rings.

THEOREM 20.3.1 For every choice of four points X, Y, O, I, no three on a
line in a plane π, there is determined a ternary ring R. The elements of R
include a zero, 0, and a unit 1 ≠ 0. The ternary operation  satisfies
the following laws:

T3. Given a,m,c, there exists exactly one z such that .
T4. If m1 ≠ m2, b1, b2 are given, there exists a unique x such that

T5. If a1 ≠ a2, c1, c2 are given, then there exists a unique pair m,b such
that



Proof: Having chosen four points X, Y, O, I, no three on a line in a plane π,
we construct a ternary ring as before with an operation . Properties T1
and T2 are immediate consequence of the definition. T3 says that the line
joining (m) and (a, c) intersects OY in a unique point (0, z). T4 says that two
lines  and  with different slopes m1 and m2
intersect in a unique finite point. T5 says that if (a1, c1) and (a2, c2) are two
finite points with a1 ≠ a2, then there is a unique line of the form 
passing through them.

Conversely, suppose that a ternary ring R is given, satisfying T1, · · ·, T5.
Let us construct finite points (a, b) and infinite points (m) and (∞), where a, b,
m range over the elements of R. A line L∞ is to contain all the infinite points
(m), (∞) and no other points. All points (c, y), with c fixed and also (∞), are to
be the points of a line x = c. The point (m) and points (x, y) such that 

 for fixed m and b are to be the points of the line 
. There are several cases to be considered, but the net result of

the above axioms is easily found to be that two distinct points lie on one and
only one line, and that two distinct lines intersect in one and only one point.
Also the four points (∞), (0), (0, 0) and (1, 1) are such that no three are on a
line. We give only one verification, others being of the same type. Consider two
distinct lines  and . These both contain the
infinite point (m) but no other infinite point. If both also were to contain a finite
point (a, c) we would have , which would
conflict with T3 since b1 ≠ b2.

20.4. Veblen-Wedderburn Systems. Hall Systems.

We shall investigate the properties of planes with certain collineation
groups and relate these properties to coordinatizing ternary rings.

LEMMA 20.4.1. A collineation in a projective plane π which fixes every
point on each of two distinct lines is the identical collineation.

Proof: Let the collineation α fix every point on the lines L1 and L2, and let
L1 and L2 intersect in the point Q. Let P be any point of π not on L1 or L2. Take



R and S as two points on L1 distinct from Q. Let PR intersect L2 in T and PS
intersect L2 in U. Then R, S, T, U are fixed by α, and hence the lines RT and SU
are fixed by α and thus also their intersection P. Hence not only the points of L1
and L2 but every point P not on L1 or L2 is fixed by α, and so, every point of the
plane is fixed and α is the identical collineation.

LEMMA 20.4.2. A collineation in a projective plane which fixes every
point on one line and two points not on the line is the identical collineation.

Proof: Let α be a collineation fixing every point on a line L and two points
P1 and P2 not on L. Let P be any point of the plane not on L and not on the line
P1P2. Let P1P intersect L in Q1 and P2P intersect L in Q2. Since P was not on
P1P2 or L, the lines P1PQ1 and P2PQ2 are distinct. Since P1, Q1, P2, Q2 are
distinct and fixed points, the lines P1Q1 and P2Q2 are fixed lines of α, and so,
their intersection P is fixed. Hence α fixes every point on L and every point not
on P1P2. Hence α fixes every point on L and on some line, say, P1Q1, through
P1 but distinct from P1P2. Hence, by Lemma 20.4.1, α is the identical
collineation.

Thus we see that a collineation fixing every point on a line can fix at most
one point not on the line.

THEOREM 20.4.1. Given a collineation α of a plane which fixes a line L
and every point on L. Then there is a point C such that α fixes C and every
line through C. If α is not the identity, then α fixes no further points or lines.
Dually, if a collineation α fixes a point C and all the lines through C, then
there is a line L such that α fixes L and all the points on L but has no further
fixed points or lines if α is not the identity.

Proof: Let α ≠ 1 be a collineation of a plane π fixing every point of a line
L. Then, from Lemma 20.4.2, α fixes at most one point not on L. Suppose first
that α fixes one point C not on L. Then a line through C intersects L in a point Q
different from C, and since both C and Q are fixed by α, the line CQ is fixed by
α, and so, every line through C is fixed by α. If there were a fixed line L2
besides L and the lines through C, then every point of L2 at the intersection of
L2 and a line through C would be fixed, and by Lemma 20.4.1, α would be the
identity. Equally, by Lemma 20.4.2, there can be no further points fixed by α.



Now suppose that α fixes no point not on L. Let P be a point not on L. Then
Pα, the image of P under α, is different from P and not on L. Hence the line M
= PPα intersects L in a point C ≠ P, Pα. Thus M = PC and Mα = PαCα = PαC.
But PPαC are on a line and so M = Mα. Thus every point P not on L lies on a
fixed line M. Moreover, such a P could not lie on two distinct fixed lines, since
then it would itself be fixed. Now if M = PC is one fixed line, consider a point
Q not on L or on M. Then Q also lies on a unique fixed line N. Now the
intersection of M and N is a fixed point, and by hypothesis there are no fixed
points not on L. Hence N must intersect M in the point C lying on L. Thus every
fixed line passes through C. But an arbitrary line K through C, different from L,
contains a point, say, R, not on L. But R lies on a fixed line which passes
through C, and so, this fixed line must be RC = K. Thus every line through C is
a fixed line. Here again if there were any fixed elements besides L and the
points on it and C and the lines through, then by Lemmas 20.4.1 and 20.4.2, α
would be the identity.

The rest of the theorem follows by duality.
Thus the collineations of the theorem are just the perspective collineations

discussed in §20.2. These are sometimes called central collineations. If we
wish to specify the center C and axis L, we say we have a C-L collineation.
Clearly all collineations with center C and axis L form a group. As in §20.2 we
call the collineation an elation if the center C lies on the axis L, a homology if
C does not lie on L.

LEMMA 20.4.3. A central collineation α is completely determined by its
center C, axis L and the mapping P → Pα of any point P not on L and
different from C. P, Pα and C must be collinear.

Proof: If there were two collineations α1 and α2 with center C and axis L
and Pα1 = Pα2, then  would fix the points of L, have center C, and also
fix P, whence by Theorem 2.4.1,  and α1 = α2. This is the
assertion of the lemma.

THEOREM 20.4.2. The product of two elations with the same axis L but
different centers C1 and C2 is an elation with axis L and center C3 ≠, C1, C2.

Proof: Let α1 be an elation with center C1 lying on the axis L and α2 with
center C2 ≠ C1 lying on L. Then α1α2 is a collineation fixing all points on L.



Hence, by Theorem 20.4.1, α1α2 = α3 is a central collineation with axis L. To
show that α3 is an elation, we must show that α3 does not fix any point not on L.
If Pα3 = P, then . Here C1, P, Pα1 lie on a line and C2, P, 

 lie on a line. Hence if , these lines would coincide
and the intersections with L would coincide, giving C1 = C2, contrary to
hypothesis. Hence α3 = α1α2 fixes no point not on L and hence is an elation with
center C3 on L. If C3 = C1, then α2 = α1

–1α3 would be an elation with center C1
contrary to assumption. Hence C3 ≠ C1, and similarly, C3 ≠ C2.

Let us consider the group G = G(C, L) of C-L central collineations. If P ≠ C
and , then for any , C, P, Pα are on a line. If for every Q on CP
with Q ≠ C,  there is an  such that pα = Q, we say that π is C-L
transitive. This says that every conceivable C-L collineation actually arises.
Equivalently, the statement that π is C-L transitive means that for a line M
through C, M ≠ L, the C-L collineations permute transitively the points of M
except for C and the intersection of M and L. This will be true for any line M ≠
L passing through C.

By Theorem 20.4.2 all elations with axis L form a group G(L). We call this
group G(L) the translation group with axis L.

THEOREM 20.4.3 (BAER [10]). If for two different centers C1 and C2 on an
axis L the elation groups G(C1, L) and G(C2, L) are different from the
identity, then the entire translation group G(L) is Abelian. Also every element
≠ 1 of G(L) is either (1) of infinite order or (2) of the same prime order p.

Proof: Suppose  and . Let
P be any point not on L. Then we have the following lines:

L1: C1, P, Pα1, L2: C2, P, Pα2.
L1α2: C1, Pα2, P(α1α2), L2α1: C2, Pα1, P(α2α1).

But C2, Pα2 and (Pα1)α2 = P(α1α2) are on a line, and C1, Pα2 and (Pα2)α1 =
P(α2α1) are on a line. Hence the intersection of the distinct lines C2Pα1 and
C1Pα2 is P(α1α2) and also P(α2α1). Hence P(α1α2) = P(α2α1) for every 

. Hence α1α2 = α2α1. Hence an element  permutes
with every element α2 of any G(C2, L) with C2 ≠ C1. Suppose that β1 ≠ 1 is
another element of G(C1, L). Then β1α2 is an elation with center C3 ≠ C1, C2.
Hence α1 permutes with β1α2, and since α1 permutes with α2, α1 also permutes



with β1. Hence an α1 ≠ 1 of G(C1, L) permutes with every element of G(L), and
so G(L) is Abelian. Examples exist showing that G(C1, L) need not be Abelian
if every other G(Ci, L) = 1 with .

If every element of G(L) is of infinite order, then (1) holds. If G(L) contains
elements of finite order, then there is an element of prime order, say, 

, . Now with , C2 ≠ C1, we
have , C3 ≠ C1, C2. Here 

 is an element common to G(C2, L) and G(C3, L)
and hence the identity. Thus α2

p = 1. Similarly, from , follows 
 for any . Hence every element of G(L) except the

identity is of order p.

THEOREM 20.4.4. If a plane π is C1-L transitive and C2-L transitive for
two centers C1 ≠ C2 on L, then π is C-L transitive for every .

Proof: Take a line M ≠ L through C ≠ C1, C2 and let P and Q be any two
points of M different from C. Let PC1 and QC2 intersect in S. Then let 

 be such that Pα1 = S and  be such that Sα2 =
Q. By C1-L and C2-L transitivity α1 and α2 exist. Here α1α2 = α3 is an elation
with axis L and P, Pα3 = Q, C are on a line. Hence  and π is
C-L transitive.

COROLLARY 20.4.1. If π is C1-L and C2-L transitive with C1 ≠ C2 points of
L, then G(L) contains every conceivable elation with center on L. If π is C-L
transitive for every , we say that π is a translation plane with respect
to the axis L.

What is the meaning of elations in terms of properties of a ternary ring
coordinatizing π? Let us consider first the case in which π is C-L transitive for
a point C on L. We shall take the axis L as L∞ and the center as Y = (∞).



Fig. 12. Linearity theorem.

THEOREM 20.4.5. A plane is Y-L∞ transitive if, and only if, in the
corresponding coordinatizing ternary ring R we have

1) , and
2) Addition is a group.

Proof: Suppose that π is Y-L∞ transitive. In the figure let us take YQV as x =
0, V = (0, 0), Q = (0, b), X = (0), T = (1), M = (m). Here MQ is 

. Take P on MQ as . Draw VM which is
y = xm, TQ which is y = x + b, and YP which is x = a. Then U, the intersection
of YP and VM, is U = (a, am). Then draw UX which is y = am. UX intersects
VT which is y = x in W = (am, am). Then YW, which is x = am intersects QT,
which is y = x + b, in R = (am, am + b). Now if it is true that PRX lie on a line,
since RX is y = am + b, we shall have from 

. Hence we must show that PRX lie on a line. By
hypothesis π is Y-L∞ transitive. Let β be the Y-L∞ collineation fixing all points
on L∞, all lines through Y and on x = 0 through Y such that Vβ = Q or (0, 0)β =
(0, b). Then β fixes the lines YPU, (x = a) YRW, (x = am). Moreover, (VM)β =
QM, (VT)β = QT. Hence Uβ = P, Wβ = R, and of course, Xβ = X. But UWX
were on the line y = am. Hence Uβ, Wβ, Xβ, or PRX are on the line y = am + b



Hence P is (a, am + b) and , the first part of our
theorem.

What is the effect of the collineation β determined by (0, 0)β = (0, b) on a
general point (a, c)? This we easily find in a few steps. Thus

Hence if (0, 0)β = (0, b) then

Now if δ is the Y-L∞ collineation determined by

we find in general (u, v)δ = (u, v + d).
For βδ we find

Hence, generally, (a, c)(βδ) = [a, c + (b + d)]. But [(a, c)β]δ = (a, c + b)δ = [a,
(c + b) + d]. Hence addition satisfies the associative law

Since addition in a plane always has a zero and is a loop, it follows that
addition will be a group. Hence we have proved (2).

Conversely, suppose that a ternary ring R of π satisfies
1) , and
2) Addition is a group.

For any  define a mapping β = β(b) for points:



For lines:

This is a collineation, since if (a, c) is on y = xm + t, then c = am + t, whence

and so (a, c + b) is on y = xm + (t + b). The other verifications needed to show
that β is a collineation are immediate. But this is a Y-L∞ collineation, taking (0,
0) into (0, b). But since b was arbitrary, π is Y-L∞ transitive.

The following is the corresponding theorem for translation planes:

THEOREM 20.4.6. A plane π is a translation plane with respect to the axis
L∞ if, and only if, the corresponding ternary ring is a Veblen-Wedderburn
system. This means that:

1) Addition is an Abelian group.
2) Multiplication (excluding 0) is a loop.
3) (a + b)m = am + bm.
4) If r ≠ s, xr = xs + t has a unique solution x.
5) .

Proof: By Theorem 20.4.4 π will be a translation plane with axis L∞ if it is
Y-L∞ transitive and also X-L∞ transitive. From Theorem 20.4.5, we know (5), 

 and that addition is a group. In the proof of Theorem
20.4.5 we showed the existence of an elation β(b) for every  which
maps an arbitrary (a, c) into (a, c + b). By Theorem 20.4.3 the entire translation
group is Abelian, whence



and so (a, c + b + d) = (a, c + d + b), whence b + d = d + b and the addition in
R is Abelian, proving (1).

Let b be an arbitrary element of R and consider the elation with center X
taking (0, 0) into (b, 0). We have, in turn,

Also, since (0, 0) → (b, 0),

But then, since (a, am) is on y = xm, we have (a + b, am) on y = xm-bm,
whence

and so, am + bm = (a + b)m. This proves the distributive law (3).
In a plane multiplication is always a loop, and condition (4) says that if r ≠

s, the lines y = xr and y = xs + t intersect in a unique finite point.
A system of elements with binary operations of addition and multiplication

satisfying conditions (1), (2), (3), (4) is called a Veblen-Wedderburn system,
since this was first described in a paper [1] by these authors.

We show that, conversely, any Veblen-Wedderburn system R may be used as
the coordinate system of a translation plane with axis L∞. We take as our
points: (1) the finite points (a, b) with a, b arbitrary elements of R; (2) the
infinite points (m) with ; and (3) the point Y = ( ∞ ). As our lines we
take (1) L∞ with points ( ∞ ) and (m); (2) lines x = c containing ( ∞ ) and all
points (c, d); and (3) lines y = xm + b containing the points (m) and (a, am + b)
for every . It is now straight forward to verify that there is a unique line
joining any two distinct points, a unique point lying on two distinct lines, and
that of the four points (0, 0), (1, 1), ( ∞ ), and (0), no three are on a line. This



verification involves several cases and we need condition (4) to show that
lines y = xr + b and y = xs + c with r ≠ s intersect in a unique finite point.

For a Veblen-Wedderburn plane we easily verify that the mapping of finite
points (x, y) → (x + r, y + s) is a collineation for any r and s, fixing all points
on L∞ and for finite lines mapping x = c → x = r + c, y = xm + b → y = xm –
rm + s + b. If s = rt this collineation is an elation with axis L∞ and center (t).
Hence a Veblen-Wedderburn plane is a translation plane with axis L∞.

It is, of course, true that any associative division ring is a Veblen-
Wedderburn system, and even any nonassociative division ring. A Veblen-
Wedderburn system in which the multiplication is associative is called a near-
field. This will be considered later. It will be remarked here and illustrated
later (in §20.9) that nonisomorphic Veblen-Wedderburn systems may coordinate
the same plane. For if we alter our choice of the points X and Y on the line L∞
for which π is a translation plane, then the coordinatizing ternary ring will, by
Theorem 2.4.6, be a Veblen-Wedderburn system, but not all such systems need
be isomorphic.

A class of Veblen-Wedderburn systems known as Hall [2] systems is easily
constructed. Suppose we have a field F such that there exists a quadratic
polynomial x2 – rx – s irreducible over F. Then we may construct a Veblen-
Wedderburn system J over F.

THEOREM 20.4.7. Given a field F and a quadratic polynomial f(x) = x2 –
rx – s irreducible over F. Then the set of elements a + ub, a,  is a
Veblen-Wedderburn system J under the following rules:

1) (a1 + ub1) + (a2 + ub2) = (a1 + a2) + u(b1 + b2).
2) For  put (a + ub)c = ac + u(bc).
3) For z = a + ub where a, , b ≠ 0, and w = c + zd, c, , put

Under these rules J is a Veblen-Wedderburn system satisfying the distributive
law (x + y)z = xz + yz. Elements  have the property that cx = xc, c(xy) =
(cx)y = (xc)y. Moreover, every  satisfies the equation z2 – rz – s = 0.

Proof: Addition is well defined and is clearly an Abelian group.
Multiplication is well defined, but there are two essentially different rules for a
product xy: rule (2) for , and rule (3) for . The



distributive law (x + y)z = xz + yz holds, since these products are all calculated
by rule (2) if  and all by rule (3) if , and each of these rules
separately satisfies this distributive law.

We note that if , rule (3) gives the product z2 = rz + s. Also, rule
(3) gives cz = zc when . Trivially, cx = xc with c, . The
unit 1 of F is a unit for J. To show that multiplication is a loop, we must show
that in xy = v any two of x, y, v (all ≠ 0) uniquely determine the third. Here x
and y determine xy = v uniquely, using rule (2) if  and rule (3) if ,
and with x ≠ 0, y ≠ 0 we readily verify that v ≠ 0, using in (3) the fact that b ≠ 0
and s ≠ 0. Given y ≠ 0 and v ≠ 0, the appropriate rule (2) or (3) uniquely
determines x ≠ 0, satisfying xy = v.

The situation is a little more complicated if we are given x ≠ 0 and v ≠ 0.
Write x = a + ub, v = c + ud with a, b, c, . If ad – bc = 0, then there is a
unique f ≠ 0,  such that af = c and bf = d, whence xf = v, and this is the
only element of J satisfying this relation. Now suppose ad – bc ≠ 0. If there
were a y = y1 + uy2 with y1, , y2 ≠ 0, we would have x = (a–by1y2

–1) +
y(by2

–1), xy = sby2
–1 + y(a – by1y2

–1 + rby2
–1), and v = (c–dy1y2

–1) + y(dy2
–1).

Here xy = v yields the relations:

Since ad – bc ≠ 0 these equations do have a unique solution for y1 and y2, and
y2 = (d2 – rbd – sb2)/(ad – bc). Here y2 ≠ 0, since because x2 – rx – s is
irreducible over F, we cannot have d2 – rbd – sb2 = 0 with d, b elements of F
not both zero. The values obtained for y1, y2 will yield an element 
satisfying xy = v. This shows that under multiplication, the nonzero elements of
J form a loop.

To show that when m ≠ n, xm = xn + v has a unique solution, it is enough to
find a solution, since if there were two solutions x1 and x2, we would have (x1
– x2)m = (x1 – x2)n, contrary to the loop property of multiplication. It is also
easy to find a solution if m and n are both in F. Hence suppose . (If 

, , we consider xn = xm – v.) We may express n and v in terms
of m. Suppose , v = v1 + mv2, v1, . If x = x1 + mx2, then
we find



which is solvable, since by the irreducibility of x2 – rx – s the determinant c2 –
rc – s is not zero. Finally if n = a + mb, v = v1 + mv2 and we put x = x1 + mx2,
then we have –ax1 + (a2b–1 – ab–1r – b–1s + s)x2 = v1, (1 – b)x1 + ax2 = v2.

Here the determinant is –b–1[a2 – ra(1 – b) – s(1 – b)2] and is not zero
since b ≠ 0 and x2 – rx – s is irreducible. Hence a solution exists and xm = xn +
v has a unique solution x. Thus J is a Veblen-Wedderburn system.

20.5. Moufang and Desarguesian Planes.

In the preceding section it was shown that a plane can be coordinatized by a
Veblen-Wedderburn system if, and only if, it is a translation plane with respect
to one line, taken as L∞. What can be said of the plane and its coordinates if it
is a translation plane with respect to more than one line? This we shall answer
in this section.

THEOREM 20.5.1. If a plane π is a translation plane with respect to two
lines intersecting in a point Q, then it is a translation plane for every line of
the pencil of lines passing through Q

COROLLARY 20.5.1. If π is a translation plane with respect to three lines
not passing through a common point, then it is a translation plane for every
line.

Proof: For the corollary we note that a family of lines, which with any two
lines contains the pencil of lines through their intersections, is necessarily the
family of all lines in the plane if it contains three lines not through a common
point.

Suppose that L1 and L2 are two lines intersecting in a point Y and that π is a
translation plane with respect to both L1 and L2. Let L3 be a third line passing
through Y and let C be any point of L3 different from Y. Let RCS be any line
through C different from L3 and intersecting L1 in R and L2 in S. Then there is an
elation α with axis L1 and center R taking S into C and L2 into L3. Since π has
all elations with axis L2 and center S, then the linearity theorem configuration is



valid for all cases with S as center and L2 as axis. The collineation α takes all
these configurations into all linearity theorem configurations with center C and
axis L3. Hence in π there are all possible elations with center C and axis L3.
Since this argument is valid for every point of L3 different from Y, then by the
corollary to Theorem 20.4.4, π is a translation plane with axis L3.

THEOREM 20.5.2. A plane π is a translation plane for every line passing
through the point Y = ( ∞ ) if, and only if, (1) its finite lines are given by
linear equations x = c and y = xm + b, and (2) the coordinates satisfy the
following laws:

2.1) Addition is an Abelian group.
2.2) (a + b)m = am + bm.
2.3) a(s + t) = as + at.
2.4) Each a ≠ 0 has an inverse a–l such that aa–1 = 1 = a–1a.
2.5) a–1(ab) = b.

Proof: Suppose that π is a translation plane for every line through Y = ( ∞ ).
This includes L∞, and so by Theorem 20.4.6, we know that the linearity
conditions (1) are satisfied and that the coordinates are a Veblen-Wedderburn
system. This gives conditions (2.1) and (2.2) of the theorem. The remaining
three conditions must be proved.

Consider the elation with Y = ( ∞ ) as center, x = 0 as axis, which maps the
point (0) onto the point (m).

Here all points (0, b) are fixed and the lines L∞ and x = c are fixed. We find
in turn,

This gives the mapping for an arbitrary finite point.
In particular



and

whence

But

and since (a, at) is on y = xt, we have (a, am + at) on y = x(m + t), whence

the distributive law (2.3).
Now consider the elation with center (0, 0) and axis x = 0, which takes (0)

to (–1–a, 0). Here

whence y = 1 + a → y = x + 1 + a.

whence y = b + ab → y = xb + b + ab.

whence

where d(1 + a) = d + 1 + a.



Also

whence x = 1 → x = d.
Now

and so

where also

Here we assume not only a ≠ 0, but also (–1–a, 0) ≠ (0, 0), i.e., a ≠ = –1.
For such an a there exists a d such that d(1 + a) = d + 1 + a, and for any b, d(b
+ ab) = db + b + ab. If we put d = u + 1 and use the distributive laws, we find

and

From the distributive laws we find directly that even for a = –1, these relations
hold with u = –1. Since for u ≠ 0 there is a v, with

and



we have v = a. Hence we write u = a–1 and have the laws (2.4) aa–1 = a–1a =
1, and (2.5) a–1(ab) = b.

Conversely, let us suppose that the conditions (1) and (2) hold for the
coordinates of a plane π From Theorem 20.4.6 we know that π is a translation
plane with respect to L∞. Using Theorem 20.5.1, it will be sufficient to show
that π has a collineation which maps L∞ onto some other line through Y = ( ∞ ).

The following mapping is such a collineation:

To show this, we must prove that incidences are preserved by the mapping; in
particular, that if (c, d) is on y = xm + b, then the image point is on the image
line. This reduces to showing that

is an identity. This follows from the laws of the theorem, both of the following
being identities:

We shall prove, following R. H. Bruck, a further identity from the laws
above. Write:



where we exclude only the values y = 0, y = –z–1. Then multiplying by y + z–1,
we have

Hence t = 1 and y–1 – (y + z–1)–1, and y(zy) + y are inverses. Then for any x,

Now write

We now find

Hence w = x. Now comparing expressions for w and x we see that we must
have

the Moufang identity. This identity is clearly valid for the excluded values y =
0, y = –z–1, and so holds without exception. In particular, the Moufang identity
with z = 1 reduces to the left alternative law

If a plane is a translation plane for every line, it is called a Moufang plane,
after Ruth Moufang [1] who first studied these.

THEOREM 20.5.3. A plane is a Moufang plane if, and only if, every ternary
ring is (1) linear and (2) is an alternative division ring, i.e., satisfies the
following laws:



2.1) Addition is an Abelian group.
2.2) (a + b)m = am + bm.
2.3) a(s + t) = as + at.
2.4) Each a ≠ 0 has an inverse a–l satisfying a–1a = aa–1 = 1.
2.5) a–l(ab) = b.
2.6) (ba)a–1 = b.
In addition the alternative laws are valid:
2.7) a(ab) = (aa)b, (ba)a = b(aa).

Proof: From Theorem 20.5.2 we have (1) and also (2.1) · · · (2.5). We
must prove (2.6), since clearly the right alternative law (ba)a = b(aa) follows
from (2.6) in just the same way that the left alternative law follows from (2.5).

We consider the elation with axis y = 0 and center (0, 0) such that Y = ( ∞ )
is mapped onto (0, –1). We have in turn:

Comparing images of y = 1 – ab, we must have



Using this as a law, we find, since b–1 = a(a–1b–1),

This proves (2.6).
We have now shown that in a Moufang plane the coordinates satisfy the

above laws for an alternative division ring. Conversely, suppose we are given
an alternative division ring. Constructing a plane with these coordinates, by
Theorem 20.5.2 the plane is a translation plane for every line passing through Y
= ( ∞ ). Hence, by Theorem 20.5.1 and its corollary, it will follow that the
plane is a translation plane for every line if we can find a collineation moving
Y = ( ∞ ). The following reflection is valid:

This completes the proof of the theorem. A few comments may be in order.
More is true than has been proved here, but the proof requires more of the

theory of alternative rings than can be given here. It is true that if a plane is a
translation plane for two different lines, then it is a Moufang plane, a
translation plane for every line. This means algebraically that the law (2.6),
(ba)a–1 = b, is a consequence of the preceding laws. No simple proof of this
fact is known to the author. As we saw, the left alternative law, x(xy) = (xx)y, is
a consequence of (2.5). Kleinfeld [2] and Skornyakov [2] have shown that for
characteristic different from 2 this law (in a division ring) also implies the
right alternative law (yx)x = y(xx). This is false for characteristic 2, but with
the stronger Moufang law [y(zy)]x = y[z(yx)], which we showed was a
consequence of (2.5), San Soucie [1] has shown that even for characteristic 2
the right alternative law is a consequence. Bruck and Kleinfeld [1] studied
alternative division rings R and found the surprising result that such a ring R is
either associative or is a particular kind of algebra over its center, which is a
field F. R is a Cayley-Dickson algebra over F, this being an algebra with eight
basis elements, any single element not in F generating a quadratic field over F,



any two elements (not in the same quadratic extension of F) generating a
quaternion algebra. This detailed knowledge enables them to show that in a
Moufang plane every ternary ring not only yields an alternative division ring of
coordinates, but also the same alternative division ring. For a complete account
of all these results, except for that of San Soucie, the reader is referred to
Pickert [1].

THEOREM 20.5.4. The following conditions in a plane π are equivalent:

1) π is X-OY transitive, i.e., π has all homologies with center X = (0) and
axis x = 0.

2) In the ternary ring for π given by the four points X, Y, O, I, we have
2.1) , and
2.2) Multiplication is a group.

Proof: Assume that (1) holds in π. Consider the homology with axis x = 0,
center X = (0) and mapping (m) → (1) on L∞. We have

Hence if (a, c) is on , we have (am, c) on y = x + b. Thus 
 implies c = am + b, whence , the



linearity condition (2.1).
Here the homology determined by (m) → (1) maps (a, 1) → (am, 1), and in

particular, (1, 1) → (m, 1). If we follow this by the homology mapping (n) →
(1), we have (1, 1) → (m, 1) → (mn, 1) and (a, 1) → (am, 1) → ((am)n, 1).

But the product must be the homology (mn) → (1), whence (a, 1) →
[a(mn), 1], and so (am)n = a(mn), the associative law for multiplication. But
since multiplication is a loop, it follows that multiplication is a group.

Now suppose that (2) holds. Then the following is a homology in π for
fixed m ≠ 0.

Letting m range over all values ≠0, we have all homologies with center X = (0)
and axis x = 0. Hence (2) implies (1).

THEOREM 20.5.5. In a plane π if the following special cases of the
Theorem of Desargues hold:

1) The linearity theorem in all cases with three different axes not through
a point;

2) The general theorem for one axis and one center not on the axis; then
π can be coordinatized by an associative division ring. In this case the
Theorem of Desargues holds throughout π. The collineation group for π is
transitive on quadrilaterals, and every ternary ring for π is the same
associative division ring.

Proof: From the hypothesis we may apply Theorem 20.5.3 and 20.5.4, and
find that for one choice of a quadrilateral X, Y, O, I from which a ternary ring is
given for π, we have , and the coordinates form an
associative division ring. Clearly, if there is a collineation of π taking the
points of a quadrilateral X1, Y1, O1, I1 into those of a second X2, Y2, O2, I2 in
this order, the ternary rings will be isomorphic. We prove first that if a plane π



is coordinatized by an associative division ring D for one quadrilateral X1, Y1,
O1, I, then the collineations of π are transitive on quadrilaterals, whence every
quadrilateral yields a coordinate ring isomorphic to D. From Theorem 20.5.3,
π is a translation plane for every line in π. Given a triangle ABC and taking AB
as an axis, there is an elation fixing A and B and moving C to any point C′ not
on AB. In this way start from any quadrilateral X2, Y2, O2, I2. With appropriate
use of such elations we find a collineation mapping X2 onto X1, Y2 onto Y1 and
O2 onto O1. The new point I2 does not lie on any side of the triangle X2, Y2, O2,
and so, in the coordinates of X1, Y1, O1, I1 it will be a finite point I2 = (a, b)
with a ≠ 0, b ≠ 0. The following collineation fixes X, Y, O and maps I2 onto I1:

Thus all ternary rings yield the same associative division ring D, and π is
transitive on quadrilaterals.

It remains only to show that the Theorem of Desargues holds throughout π.
If the center lies on the axis, this is surely true, since π has all possible elations.
Now suppose the center is not on the axis. Take the center to be O and the axis
L∞. We show that π has all homologies with center O and axis L∞. For fixed a ≠
0 the following is such a homology:

Letting a range over all values different from 0, we get all possible homologies
with center O and axis L∞.



20.6. The Theorem of Wedderburn and the Artin-
Zorn Theorem.

We give here some of the properties of finite fields which we shall need.
For the proof of these properties see Van der Waerden [1] vol. 1, Chapter V,
§37.

1) The number of elements in a finite field is a power of a prime. For each
prime power pr there is a finite field GF(pr) with pr elements, and it is unique
to within isomorphism.

2) Every element x of GF(pr) satisfies the relation xpr = x. The
multiplicative group F*(pr) of the pr – 1 elements of GF(pr), excluding zero, is
cyclic. A generator of this cyclic group is called a primitive root.

3) GF(pr) may be represented as the residue classes of polynomials P(x)
with coefficients in the field Fp, with p elements modulo a polynomial f(x)
irreducible of degree r over Fp. Equivalently GF(pr) may be represented as the
residue classes of integral polynomials modulo the ideal [p, f(x)].

4) The automorphisms of GF(pr) are a cyclic group of order r generated by
the automorphism z → α(z) = zp.

THEOREM 20.6.1 (THE THEOREM OF WEDDERBURN). A finite division ring R
is necessarily commutative and so is a finite field GF(pr).

Proof: The following proof is due to Witt [1]. The unit of R generates the
characteristic subfield of R, and this must be a finite field Fp for some prime p.
Let R have a basis of r elements x1 = 1, x2, · · ·, xr over Fp. Then R has exactly
pr elements. The center Z of R consists of all elements z of R such that zx = xz
for every . Z is a commutative subring of R and so is a finite field. Let Z
have q = ps elements. We wish to show that Z is all of R. In any event R is a
vector space over Z, and if R has a basis of t elements over Z, then R has qt =
pst = pr elements in all. Here t = 1 if R = Z. The normalizer Nx of an element x
of R is a subring containing Z. Hence Nx contains qd elements, and since R is a
vector space over Nx, we have necessarily d|t. Hence, in the multiplicative
group R* of the pr – 1 = qt – 1 elements of R excluding 0, an element x not in Z



has normalizer of order qd – 1, where d is a divisor of t and d < t. Counting the
elements of R* we have

where q – 1 enumerates the elements of the center and each remaining summand
counts the elements in a class (qt – 1)/(qd – 1), where d/t, d < t.

We showed in §16.8 that the polynomial f(x) = xt – 1 has the factor with
rational integral coefficients, k(x) = Π(x – wj), where w is a primitive tth root
of unity and the wj for j = 1, · · ·, t, (j, t) = 1 are all the primitive tth roots of
unity. Then if d|t, d < t, we have xt – 1 = k(x) (xd – l)r(x), since k(x) does not
contain any of the factors of xd – 1. Here r(x) contains all remaining factors of
xt – 1, if there are any. Hence (xt – l)/(xd – 1) = k(x)r(x). For x = q, 

, and since wj ≠ 1 is a complex root of unity, we have

|q – wj| > q – 1. Hence k(q) is a rational integer greater in absolute value than q
– 1. Hence if t > 1 we have k(q) dividing every term in (20.6.1) except q – 1.
But then k(q) also divides q – 1, and this is impossible because |k(q)| > q – 1.
Hence the only possibility is that t = 1, and this means that Z = R, and so, R is
commutative and is a finite field.

THEOREM 20.6.2 (ARTIN-ZORN).* A finite alternative division ring is a
finite field GF(pr).

Proof: We begin by developing a little of the theory of alternative rings. An
alternative ring R is a system with a binary addition and multiplication in which
(1) the addition is an Abelian group, (2) both distributive laws hold, and (3)
the multiplication satisfies the two weak associative laws,

R is a division ring if the nonzero elements form a loop with respect to
multiplication. We noted in the preceding section that a Moufang plane is
coordinatized by an alternative division ring. Here, instead of (20.6.1), we had
the multiplicative laws,



We showed that laws (20.6.2) implied the laws (20.6.1).
We shall define two quantities for any ring in which the distributive laws

hold, the associator (x, y, z) and the commutator (x, y). These are defined by
the rules

Thus the associator vanishes identically in any associative ring and the
commutator vanishes identically in any commutative ring. Both the associator
and the commutator are linear in each argument. The laws (20.6.1) can be
rewritten in the form

From the linearity of the associator we have

and

From this we have

This says that (x, y, z) under the permutations of the symmetric group on x, y, z
is unchanged by the alternating group and is changed in sign by the odd



elements. It is this property which has led to the name alternative for these
rings. The rules (20.6.6) give immediately (x, y, x) = –(x, x, y) = 0, whence

The law (20.6.7) by itself is called the reflexive law.
A function h(x1, · · ·, xn) in a ring is said to be skew symmetric if it is (1)

linear in each of its arguments, and (2) vanishes whenever any two of its
arguments are equal. We note that skew symmetry implies the alternating
property and that the associator and commutator are symmetric in an alternative
ring.

We shall develop here a few formulae valid in alternative rings. More will
be given than are really needed to prove our theorem, but all are of sufficient
interest to include here. The following identity may be verified as valid in any
ring with the distributive laws

We define the function f(w, x, y, z) by the rule

LEMMA 20.6.1. In any alternative ring R the function f(w, x, y, z) of
(20.6.9) is skew symmetric and satisfies the identities

Proof: From (20.6.6) we may rewrite (20.6.8) in the form



Substituting for (wx, y, z) its expression in terms of f as given by (20.6.9), and
similarly for the other terms on the left of (20.6.12), we get

where F(x, y, z, w) is the right-hand side of (20.6.10) and thus changes sign
when its arguments are permuted cyclically. Hence from (20.6.13), 0 = F(w, x,
y, z) + F(x, y, z, w) = f(w, x, y, z) + f(z, w, x, y), and so,

Hence f changes sign when its arguments are permuted cyclically and, from
(20.6.9), when its last two arguments are interchanged, and therefore when any
two are interchanged. Since f(w, x, y, y) = 0, f is skew symmetric. In particular,
(20.6.13) reduces to (20.6.10). Subtract from (20.6.8) the result of
interchanging w and x and get

Computed thus, the right-hand side of (20.6.11) in view of (20.6.10) reduces to
the left-hand side.

LEMMA 20.6.2. For all x, y, z of an alternative ring we have:

and the Moufang identities

Proof: We obtain (20.6.15) from f(x, x, y, z) = 0. We get the two parts of
(20.6.16) by observing that f(x, y, z, x) = 0 and f(x, z, x, y) = 0. We obtain



(20.6.17) from f(y, x, x, z) = 0 and f(z, x, x, y) = 0. To prove (20.6.18) we note
that:

by (20.6.17). The first equation of (20.6.19) may be derived as follows:

by (20.6.16). The second may similarly be derived from (20.6.17).
We can now show that the laws (20.6.2) follow from those of (20.6.1) in a

division ring. Given an element a ≠ 0, then there is a u such that au = 1. Then a
= (au)a = a(ua), whence also ua = 1, and we may write u = a–1, where a–1a =
aa–1 = 1. Given any a, b not zero, determine c by the relation b = a–1c. Then

using the first law of (20.6.19). Similarly, (ba)a–1 = b follows from the second
law of (20.6.19).

We now have more than enough information about alternative rings to prove
the Artin-Zorn theorem. Let R be a finite alternative ring. It will be enough to
show that a finite division ring R1 generated by two elements b and c is
associative. For then by the Wedderburn theorem, R1 is a finite field and is
generated by a single element d. Hence, if R is generated by b1, b2, · · ·, bs, then
b1, b2 generate a finite field which is generated by the single element c1. Thus R
is generated by c1, b3, · · ·, bs. Continuing, we may reduce the number of
generators until R itself is generated by a single element and is associative and
thus is a finite field GF(pr).

Consider R1 generated by b and c, where R1 is a subsystem of R closed
under addition and multiplication. R1 is finite and has no zero divisors. Let a1, ·
· ·, at be the elements of R1 different from zero. Then for any , xa1, · ·



·, xat are all different, since R1 contains no zero divisors, and so are a1, a2, · ·
·, at in some order. Hence for some element, say, a1, we have xa1 = x, whence
a1 = 1 is the unit of R. Also tor some ai we have xai = 1, whence ai = x–1.
Hence R1 is a division ring. The elements of R1 are sums of monomials (x1 · · ·
xr)(xr+1 · · · xn), where each xi is b or c and the terms are bracketed in any way.
Since both distributive laws hold, multiplication will be associative in R1 if,
and only if, the multiplication of the monomials is associative. To show this,
we define normal (or left-bracketed) monomials recursively by the rules:

If it can be shown that an arbitrary bracketing is equal to the normal monomial,
then associativity is immediate, for then

That every monomial is equal to the normal monomial with the same factors in
order, we prove by induction on the length of the monomial. From (20.6.4) and
(20.6.6) this is true for monomials in b and c of length three, since there must
be a repeated factor, and so,

We must show that

using induction on n = r + s, and for fixed n, using induction on s, this being the
definition (20.6.20) for s = 1. Suppose s > 1 and v1 = vs = b or v1 = vs = c. Then
in the second identity of (20.6.19), z[x(yx)] = [(zx)y]x, take z = [u1, · · ·, ur], v1
= vs = x and [v2 · · · vs–1] = y. This gives



using our induction and proving (20.6.22) when v1 = vs. Now suppose v1 ≠ vs,
where, say, v1 = b, vs = c. Here ur is either b or c. If ur = b, write

Then f(x, b, b, y) = 0 = (xb, b, y) – b(x, b, y) – (x, b, b)y. Here (x, b, b) = 0, and
by induction on the length, x, b, and y associate, whence (x, b, y) = 0. Hence
(xb, b, y) = 0, whence (xb)(by) = [(xb)b]y or

using our induction on s in the last step.
Similarly, if ur = c, write

Now f(x, c, z, c) = 0 = (xc, z, c) – c(x, z, c) – (c, z, c)x. Here (c, z, c) = 0, and
by induction on length, (x, z, c) = 0, whence (xc, z, c) = 0 and this gives (xc)
(zc) = [(xc)z]c or

Hence (20.6.23,24,25) establish (20.6.22) in every case. This proves the
associativity of R1, and so proves our theorem.



20.7. Doubly Transitive Groups and Near-Fields.

A certain class of groups is intimately related to projective planes. This is
the class of doubly transitive groups in which only the identity fixes two letters.
We shall need an additional hypothesis which may not be necessary but is
required for our proof. This is condition (3) or (3′) of the following theorem:

THEOREM 20.7.1. Suppose that G is a permutation group on letters c0, c1,
· · ·, cn–1 such that

1) G is doubly transitive.
2) Only the identity fixes two letters.
3) At most one element taking ci into cj displaces all letters, or (3′) n is

finite.

Then the identity and the elements of G displacing all letters form a
transitive normal Abelian subgroup A. G is isomorphic to the group of linear
substitutions x → xm + b in a near field K. Conversely, the linear
substitutions x → xm + b,m ≠ 0 of a near field K yield a group satisfying (1)
(2), the linear substitutions being regarded as a permutation group on the
elements of K. If for m ≠ 0,1, xm + b = x always has a solution, (3) is
satisfied, and we may take x = c and y = xm + b as the finite lines of a plane
coordinatized by the near field K. A permutation of

, regarded as a permutation of the elements of K,

corresponds to a line of π whose points are (ci, di) i = 0, · · ·, n – 1.

Proof: We first prove the purely group theoretical part of the theorem. We
wish to show that the identity and the elements of G displacing all letters form a
transitive normal Abelian subgroup. We prove a number of lemmas.

LEMMA 20.7.1. There exists one and only one element of order 2 in G
which interchanges a specified pair of letters (i, j).

Since G is doubly transitive, one such element g must exist. Here g2, fixing
two letters, is the identity. A second element h with this property would be such
that gh–1 fixes two letters, whence gh–1 = 1, g = h.



LEMMA 20.7.2. The elements of order 2 are in a single conjugate class.
An element of order 2 fixes at most one letter. When n = 2, there is only one

element. For n ≥ 3, then g and h of order 2 must both displace some letter i, g =

(i, j) · · ·, h = (i, k) · · ·. An x in G with  will be such

that x–1gx = (ik) ··· = h. If any element of the class of elements of order 2 fixes
a letter, then all do. We may subdivide into two cases:

CASE 1. The elements of order 2 displace all letters.

CASE 2. Every element of order 2 fixes a letter.

LEMMA 20.7.3. In Case 2 there is one and only one element of order 2
fixing a given letter.

As before, g = (i, j) · · · is transformed into h = (i, k) · · · by 

. But if g and h both fix the same letter s, then x must also

fix s and x ≠ 1 fixes both i and s, contrary to our hypothesis (2). If g fixes a
letter s, then we may find an element of order 2 fixing a specified letter t by
transforming g by any element carrying s into t.

Note that this lemma implies that if g = (ij)(s) · · ·, then g is in the center of
the subgroup Hs fixing s.

LEMMA 20.7.4. The product of turn different elements of order 2 is an
element displacing all letters.

If g2 = 1, h2 = 1, g ≠ h, suppose to the contrary that gh fixes a letter i. By
Lemma 20.7.3, g and h cannot both fix i, whence neither can fix i. But then we
shall have g = (i, j) · · ·, h = (j, i) · · · and gh = (i)(j) · · · = 1, and so g = h,
contrary to assumption. It is thus impossible for gh to fix any letter.

LEMMA 20.7.5. In G there is one and only one element, displacing all
letters, which takes a given i into a give j ≠ i.

In Case 1 an element g = (i, j) · · · gives such an element. In Case 2, take g
= (i) · · · of order 2 and h = (i, j) · · ·, and by Lemma 20.7.4, gh takes i into j
and displaces all letters. Hence at least one such element exists. Hypothesis (3)
says that there is at most one such element. We observe that hypothesis (3′)
implies Lemma 20.7.5. Since G is doubly transitive on n letters, the subgroup



fixing a letter c0 is of index n, and the subgroup H0 fixing c0 is transitive on the
remaining n – 1 letters and, since only the identity fixes two letters, H0 is of
order n – 1. Thus G is of order n(n − 1). Hence the elements taking i into j form
a left coset of Hi, the subgroup fixing i, and so there are exactly n – 1 such
elements. For given three letters i, j, k, there is in G by double transitivity one

element  in G and only one, since only the identity fixes

two letters. For given i, j there are exactly n − 2 choices for k, and this leaves
exactly one of the n − 1 elements taking i into j, which displaces all letters.

LEMMA 20.7.6. In Case 1 every element displacing all letters is of order 2
and these together with the identity form a normal Abelian subgroup.

Clearly, g = (i, j) · · · is one, and hence is the only element displacing all
letters taking i into j. If g2 = 1, h2 = 1, then if g = h, gh = 1, while if g ≠ h, then
gh displaces all letters of order 2, (gh)2 = 1, whence hg = gh and the elements
of order 2 together with the identity form an Abelian group A. By Lemma
20.7.2, A is a normal subgroup. This proves the lemma.



LEMMA 20.7.7. In Case 2 a given element g displacing all letters may be
written as the product g = ab of two elements of order 2, where either a or b
may be taken arbitrarily.

Suppose a2 = 1 and a fixes the letter i and that g takes i into j. Choose b =
(i, j) · · · ; then b2 = 1 and g = ab, since ab displaces all letters and takes i into
j. Similarly, suppose we are given g and b with b2 = 1, where b fixes k. If g
takes i into k, then with a = (i, k) · · ·, we have g = ab.

LEMMA 20.7.8. In Case 2 the product abc of three elements of order 2 is
again of order 2 and abc = cba.

If a = b, the lemma is trivial. If b ≠ a, then ab = g = dc, where by Lemma
20.7.7, d2 = 1. Hence abc = dc2 = d. As d = d−1, abc = c−1b−1a−1 = cba.

LEMMA 20.7.9. In Case 2 the elements displacing all letters, together with
the identity, form a normal Abelian subgroup.

Let g and h displace all letters. By Lemmas 20.7.4 and 20.7.7, g = ab, h =
cd with a, b, c, d of order 2. Writing h = eb with e2 = 1, we have gh−1 = ae,
whence if e = a, gh–1 = 1, or if a ≠ e, gh−1 displaces all letters. Hence the
elements displacing all letters, together with the identity, form a subgroup A.
Using Lemma 20.7.8, gh = (abc)d = (cba)d = c(bad) = c(dab) = hg, and hence
the group A is Abelian. Since a conjugate of an element displacing all letters
also displaces all letters, A is a normal subgroup.

We shall now construct an algebraic system S whose elements shall be the
letters c0, c1, · · ·, cn−1 permuted by G. We arbitrarily designate one of them as
0 and another as 1, say, c0 = 0, c1 = 1. In S we define an addition

if, and only if, in the subgroup A we have the permutation:

In S we define a multiplication



if, and only if, in the subgroup H0 fixing 0 we have the permutation

Addition is well defined, since in A there is a unique element taking 0 into b.
Multiplication by an m ≠ 0 is well defined, since in H0 there is a unique
element taking 1 into m. If we have in A

then

From our definition of addition we have

This gives

the associative law of addition. Clearly, the identity is

, and we have the laws



Moreover, if u is such that , then a + u = 0 and u

= −a. Moreover, since A is an Abelian group, if AaAb = AbAa = Ac, then

and addition is commutative. Hence our addition is an Abelian group, and
indeed if we put , addition in S is isomorphic to A.

In the same way, reasoning on the permutations of H0, we may show that the
nonzero elements of S form a group under multiplication. For zero we already
have the rule 0·m = 0, and we arbitrarily set m0 = 0 and 00 = 0. Now let g be
an arbitrary permutation of G. If (0)g = b, write g1 = gAb

−1. Then g1 fixes 0 and
is an element of H0, say, g1 = Mm. Hence

Here if (x)g = y, then

The representation (20.7.11) is unique, since the identity is the only element
common to A and H0, and so the permutations of G must, by (20.7.12), be the
linear substitutions in S.

We note the following relations:

The first is immediate, the second follows because Mm
−1A1Mm displaces all

letters and takes 0 into m, whence it must be Am. It then follows that



or in terms of the operations of S,

Putting x = yt in this relation, we get

the distributive law. Hence, in S, addition is a group, multiplication is a group
for elements different from zero, and the right distributive law (20.7.17) holds.
Hence S is a near-field, and the permutations of G are the linear substitutions in
S.

where, because of the laws of the near-field, if α:x → xm1 + b1 and β : x →
xm2 + b2, then

Conversely, suppose we are given a near-field S. The linear substitutions
(20.7.18) of S will form a group G with composition as in (20.7.19). Let r ≠ s
be two different elements of S. Then

is an element of G such that (0)g = s, (1)g = r. Hence G is doubly transitive. An
element of G fixing two letters is conjugate to an element fixing 0 and 1. But if
x → xm + b fixes 0 and 1, we find, in turn, b = 0, m = 1, and so this is the
identity. Hence the identity is the only element of G fixing two letters. The
substitution x → x + (c − b) displaces all letters and takes a given b into a
given c. If xm + b = x for m ≠ 0, 1 always has a solution, then the only
permutations displacing all letters are the additions x → x + t, and of these only
x → x + (c − b) takes a given b into a given c. Hence (3) is satisfied. But then
(xm + b)r = xr or xs + t = xr always has a solution (which is clearly unique),
and this is just the condition that S, regarded as a Veblen-Wedderburn system, is
the coordinate system of a plane whose finite lines are x = c and y = xm + b.
This completes the proof of all parts of the theorem.



We have noted that condition (3) is automatically satisfied if G is a finite
permutation group. Thus the determination of all finite doubly transitive groups
in which only the identity fixes two letters is equivalent to the determination of
all finite near-fields. This determination has been made by Zassenhaus [2]. We
shall now discuss this.

Let K be a finite near-field. If the multiplication in K is an Abelian group,
then K satisfies both distributive laws and is a finite field GF(pr). This
possibility need not be further discussed, and we shall assume from here on that
the multiplication in K is non-Abelian. In this case it is not possible that the left
distributive law should hold, since by the Wedderburn theorem, K would then
be a finite associative division ring and so a finite field GF(pr). We shall
follow the notation of the preceding theorem. K is a finite near-field with n
elements, and G is a doubly transitive group of degree n in which only the
identity fixes two letters. G is the group of linear substitutions:

A is the Abelian normal subgroup of G consisting of the identity and the
elements displacing all letters of G. H0 = M is the subgroup fixing the letter 0.
A is the additive group of K, M the multiplicative group of K*, then n − 1
elements of K different from 0.

LEMMA 20.7.K1. A is an elementary Abelian group and n is a prime power
n = pr. The elements ≠ 1 of A are conjugate under M.

A is an Abelian group, and by (20.7.14), Am = Mm
−1A1Mm. Thus all

elements ≠ 1 of A are conjugate under M, and so, since A must contain some
element of prime order, say, p, then all elements ≠ 1 of A are of order p, and so
A is elementary Abelian. Since A is regular and of order n, n = pr.

LEMMA 20.7.K2. The elements of M are automorphisms of A and each
automorphism ≠ 1 fixes only the element 0 of K.

The elements of M are the permutations a → am of the elements of K, and
each of these ≠ 1 is an automorphism of the additive group A fixing only the
element 0.

Lemma 20.7.K3. If q and s are primes, a subgroup of M of order q2 or qs
is necessarily cyclic.



We note first that if (x1, · · ·, xk) is a cycle in the permutation form of Mm,
then x1m = x2, x2m = x3, · · ·, xkm = x1, whence (x1 + · · · + xk)m = x1 + · · · +
xk, and so if m ≠ 1, we have x1 + · · · + xk = 0. Now suppose that M has a
subgroup W of order q2 which is not cyclic, and so is the direct product of two
groups of order q. Let W be generated by elements x and y, and consider a
transitive constituent of W which necessarily has q2 letters; the elements will be
of the form

Here xyj will have as its transitive constituent, involving a1, the following:

Hence, by our observation on cycles,

Summing (20.7.22) over j = 0, 1, · · ·, q − 1, and adding (20.7.23), we have
every ai ≠ a1 exactly once and a1, q + 1 times. Hence

But summing over all the cycles for x, we have

whence

But M is of order n − 1 = pr − 1, and so q is prime to p, and (20.7.26) would
yield the conflict a1 = 0. Hence M cannot contain a noncyclic subgroup of order
q2.



Similarly, if M contains a noncyclic group W of order qs, where q < s, then
W is generated by elements x, y with

Since M is a regular group, W will have a transitive constituent of qs letters. W
contains one subgroup of order s and s subgroups of order q. Consider the
cycles containing a given letter a1 one from each of these groups:

Each of the qs letters except a1 occurs exactly once in these cycles and a1
occurs s + 1 times. But the sum of all qs letters, since these are all the cycles
of, say, x taken together, is zero. Hence we conclude that sa1 = 0, and since s|pr

− 1, we would have a1 = 0, a conflict. Hence M cannot contain a noncyclic
subgroup of order qs.

LEMMA 20.7.K4. A Sylow subgroup of M of odd order is cyclic. A Sylow 2-
subgroup of M is cyclic or a generalized quaternion group.

We have shown in Theorem 12.5.2 that a p-group P is cyclic if p is odd and
P contains no noncyclic subgroup of order p2. For p = 2, P is either cyclic or a
generalized quaternion group.

Let us assume that M has a cyclic subgroup C such that M/C is also cyclic.
From Lemma 20.7.K4 and Theorem 9.4.3, M will certainly have this property
unless it has a Sylow 2-subgroup which is a generalized quaternion subgroup,
and will even have this property if M is the direct product of a generalized
quaternion subgroup and a group of odd order. Theorem 20.7.2 gives all finite
near-fields K for which M has this property. Zassenhaus has shown that there
are precisely seven other finite near-fields; we shall list these. For proof the
reader is referred to the original paper by Zassenhaus.



THEOREM 20.7.2. Let q = ph be a power of a prime p and let v be an
integer all of whose prime factors divide q − 1, where we also require

 (mod 4) if q ≡ 3 (mod 4). Then with hv = r we may construct a near-
field K with n = pr elements from the finite field GF(pr) in the following way:

1) The elements of K shall be the same as the elements of GF(pr)
2) Addition in K shall be the same as addition in GF(pr).
3) A product  in K can be defined in terms of a product x·y in GF(pr),

in the following way:
Let z be a fixed primitive root of GF(pr); then if u = zkv+j, an integer i is

uniquely determined modulo v by qi ≡ 1 + j(q − 1) [mod v(q − 1)]. We define
the product  by the rule

4) The center of K is GF(q). Every near-field K with n = pr elements can
be constructed in the above way from GF(pr), if K has the property that its
multiplicative group M has a normal cyclic subgroup C such that M/C is
cyclic.

Apart from the finite near-fields of the preceding theorem, Zassenhaus
shows that there are exactly seven others. In these cases the near-fields K are of
order p2, and it is sufficient to give generators of the multiplicative group M as
matrix transformations of two generators of the additive group. We give the
same numbering as Zassenhaus.



Here M(2, 3) is of order 24, as given by I; M(2, 5) is of order 120, as given
by V; and G3 is of order 48, as given by III. M(2, 5) has a center Z of order 2,
and the factor group M(2, 5)/Z is the simple group of order 60.

20.8. Finite Planes. The Bruck-Ryser Theorem.

In a finite plane of order n we have shown that the following properties
hold:

1) There are n2 + n + 1 lines.
2) There are n2 + n + 1 points.



3) Each line contains n + 1 points.
4) Each point is on n + 1 lines.
5) There is one and only one line through two distinct points.
6) Two distinct lines intersect in one and only one point.

In verifying that a system is indeed a finite plane, it is convenient to know
that a system of “points” and “lines” satisfying part of the above properties is
indeed a finite plane of order n and satisfies the rest.

THEOREM 20.8.1. A system of points and lines satisfying (1), (3), (5), or
dually (2), and (4), (6) is a finite plane of order n and satisfies the remaining
properties.

Proof: Suppose a system satisfies (1), (3), (5). Let a point Pi be on mi lines.
Then Pi is joined to n other points on each of the mi lines. But these must be all
the remaining points, each counted exactly once. Hence there are in all 1 + nmi
points. Hence m = mi is the same for every point. Counting incidences of points
on lines, we have

since there are n2 + n + 1 lines, each containing n + 1 points, and there are 1 +
mn points each on m lines. This gives m = n + 1 and (2) and (4) follow. From
(5) we could not have two distinct lines intersecting in more than one point. To
show (6) we need only show that there is one point in which two distinct lines
intersect. A point P of a given line L is on n other lines, and this is true of each
of the n + 1 points of L. Thus L has an intersection with n(n + 1) = n2 + n other
lines, but these are all the remaining lines, and so (6) holds. This shows that
(1), (3), (5) imply the remainder. A dual argument shows that (2), (4), (6) imply
the remainder.

COROLLARY 20.8.1. In a finite Veblen-Wedderburn system the condition
(4) of Theorem 20.4.6, i.e., that if r ≠ s, then xr = xs + t has a unique solution,
is a consequence of the remainder.

For without using condition (4), we see that properties (1), (3), (5) are
satisfied.

There do not exist finite planes of every integral order n. If a conjecture of
Euler’s is true, then there are no planes of order n where n ≡ 2 (mod 4), n ≠ 2.
It was shown by Tarry [1] in 1900 by a method of trial and error that there is no



plane of order 6. For every prime power n = pr there is a field GF(pr), and so,
by Theorem 20.5.5, a Desarguesian plane of order pr. There are Hall systems
of orders p2r, and except for order 4, these yield non-Desarguesian planes.
Also the near-fields yield non-Desarguesian planes. Albert [1] has given a
construction for nonassociative division rings of orders pr, for p an odd prime,
and for r > 2. This, of course, yields non-Desarguesian planes of these orders,
by Theorem 20.4.6. We give a simple construction due to Albert for powers pr,
p odd, r odd and r > 1.

THEOREM 20.8.2 (ALBERT). Let p be an odd prime and r odd, r > 1. Then
from GF(pr) we may construct a nonassociative division algebra N with pr

elements.

Proof: We first construct a new product (x, y) for elements of GF(pr),
where p is an odd prime, r > 1, r odd by the rule:

Since x → xp is an automorphism of GF(pr) we easily verify that the product
(x, y) satisfies the distributive laws. We wish to show that if x ≠ 0, y ≠ 0, then
(x, y) ≠ 0. Suppose to the contrary that x ≠ 0, y ≠ 0 but (x, y) = 0. Then we find

whence

Since r and p are both odd, m = (pr − 1)/(p − 1) is odd. Raising (20.8.3) to the
mth power, we find

a conflict, since p ≠ 2. Hence if x ≠ 0, y ≠ 0, then (x, y) ≠ 0. Since our system is
finite and has no zero divisors, it must be a quasi-group and, given x ≠ 0, there
is a unique u ≠ 0 such that



Hence let us define a one-to-one mapping α by

if u and x satisfy (20.8.5).
We now define a system D whose elements are those of GF(pr). Addition in

D is the same as that in GF(pr), but in D we have a product  given by

using the product of (20.8.1) and the mapping α of (20.8.6). The unit 1 of
GF(pr) is the unit of D, since we verify that

The product in D is commutative but not associative. Albert has shown that the
powers of an element not in Fp will not associate.

The methods given here yield non-Desarguesian planes of orders pr for all
r ≥ 2 and p odd, and of orders 2r when r is even and r ≥ 4. It has been shown
that only the Desarguesian plane exists for orders 2, 3, 4, 5, 7, 8. Other finite
planes are known, in particular the Hughes planes which will be discussed
later, but no finite plane has been constructed except for a prime or prime
power order.

Apart from Tarry’s isolated result that no plane of order 6 exists, no
restrictions on possible orders of planes were known until 1949, when the
following major theorem was proved by Bruck and Ryser [1].

THEOREM 20.8.3. If n ≡ 1, 2 (mod 4), there cannot be a plane of order n
nunless n can be expressed as a sum of two integral squares, n = a2 + b2.

Proof: The proof given here will be a modification of the original proof by
the methods used by Chowla and Ryser [1]. Let N = n2 + n + 1. Let variables xi,
i = 1, · · ·, N be associated with the points Pi i = 1, · · ·, N of a plane π of order
n. Let the lines of π be Lj, j = 1, · · ·, N. We may define incidence numbers aij,
where



Then the incidence matrix A of π is defined as

This incidence matrix A satisfies the basic relations:

where I is the identity matrix and S is the matrix with every entry 1.
Let AAT = C. Then C = (crs), where

Here crr = n + 1, since Pr is on exactly n + 1 lines, since of arj, j = 1, · · ·, N
exactly n + 1 are 1 and the rest are 0. Also, if r ≠ s, we have crs = 1, since
arjasj = 0 unless both arj = 1, asj = 1. But arj = asj = 1 means that the line Lj
contains both Pr and Ps. But given Pr and Ps there is exactly one line Lj

containing both points. Hence crr = n + 1, crs = 1, r ≠ s, and so AAT = nI + S. A
dual argument shows that ATA = nI + S.

The relation AAT = nI + S can also be expressed in terms of quadratic
forms. With the line Lj we may associate a linear form, which may also be
designated by Lj without confusion. We write

Then



For this we observe that in the Lj, j = 1, · · · N, each xr occurs with a
coefficient 1 exactly n + 1 times, since each point is on n + 1 lines. We also
observe that a cross-product 2xrxs occurs in L1

2 + · · · + LN
2 exactly once,

since there is exactly one line Lj containing both Pr and Ps. This proves the
identity (20.8.14). Now suppose that n ≡ 1, 2 (mod 4). Then N = n2 + n + 1 ≡ 3
(mod 4). We also observe that (20.8.14) can be written in the form:

This is easily checked, observing that the coefficient of x1
2 on the right of

(20.8.15) is (N − 1)/n = n + 1. Let us change variables in (20.8.15), writing

The x’s may be expressed rationally in terms of the y’s. We rewrite (20.8.15) as

We now appeal to the Theorem of Lagrange that every positive integer can be
written as a sum of four squares. For this see Hardy and Wright’s “Theory of
Numbers’” [1], p. 300; we have

and also the celebrated identity of Lagrange,



In (20.8.19) we find that zi, zi+1, zi+2, zi+3 can be expressed rationally in terms
of yi, yi+1, yi+2, yi+3. Remembering that N ≡ 3 (mod 4), we may apply (20.8.18)
and (20.8.19) to (20.8.17) to obtain

We note that each of Lj, j = 1, · · · N was originally a rational (in fact an
integral) linear form in the x’s, and so in turn, a rational linear form in the y’s
and finally in the z’s, where z1, · · ·, zN are independent indeterminates. Since
(20.8.20) is an identity in the z’s, it will remain a valid identity if some of the
z’s are specialized as linear combinations of the rest. Suppose in (20.8.20) that

Let us put L1 = z1 if b1 ≠ 1 and L1 = −z1 if b1 = 1. One of these may be used to
specialize z1 as a rational linear combination of z2, · · ·, zN and also to give L1

2

= z1
2, whence with this specialization.

Continuing, we put L2 = ±z2, · · · LN−2 = ±zN−2 to specialize z2, · · ·, zN−2, and
we have

where LN−1 and LN are rational linear forms in zN−1 and zN which are
independent variables. We may take zN−1 and zN as positive integers which are
multiples of the denominators in LN−1 and LN, whence (20.8.23) becomes a
relation in which all quantities are integers. But now n, an integer which is the
quotient of two integers each of which is a sum of two squares, is itself a sum
of two squares, a well-known result in number theory which follows from
Theorem 366 in Hardy and Wright [1]. We now have



and our theorem is proved. There is a partial converse to our theorem:

THEOREM 20.8.4. If n ≡ 0, 3 (mod 4) or if n ≡ 1, 2 (mod 4) and n = a2 + b2,
then there exist rational linear forms in x1, · · ·, xN, Lj, j = 1, · · · N
satisfying:

L1
2 + · · · + LN

2 = n(x1
2 + · · · + xN

2) + (x1 + · · · + xN)2. There also exists
a rational N × N matrix A satisfying A AT = ATA = n I + S.

Proof: If n ≡ 0, 3 (mod 4), we may use (20.8.18) and (20.8.19) to put
(20.8.17) into the form:

and, of course, Li = zi satisfies the theorem. If n ≡ 1, 2 (mod 4) and n = a2 + b2,
we may use the identity:

instead of (20.8.19) to put (20.8.17) into the form (20.8.25). If

are the linear forms of our theorem, then putting A = (bij), i, j = 1, · · · N, we
have

but not in general ATA = nI + S. It is more difficult to show that under the
hypotheses of the theorem a rational matrix A exists which satisfies both
relations AAT = nI + S = ATA. But this and even more has been shown by Hall
and Ryser [1].

20.9. Collineations in Finite Planes.



If a collineation α of a plane π fixes two points, then it also fixes the line
joining them, and similarly, if α fixes two lines, then it also fixes their
intersection. Hence if α fixes a quadrilateral, then α fixes a proper subplane.
The following theorem gives information on the possible orders of subplanes.

THEOREM 20.9.1 (BRUCK). If a plane π of order n has a subplane π* of
order m, then n = m2 or n ≥ m2 + m.

Proof: Let L be a line of the subplane π* and P a point of L not belonging to
π*. There are m + 1 points of π* on L and m2 points of π* not on L. If we join P
to each of the m2 points of π* not on L, we obtain m2 lines through P which
must all be different, since if two were the same such a line K would contain
two distinct points of π* and so be a line of π*, whence P as the intersection of
K and L would be a point of π*, contrary to assumption. Hence through P there
are at least m2 + 1 lines, namely, L and the m2 others joining P to points of π*.
Hence, since there are n + 1 lines through P, we must have n ≥ m2. If n ≠ m2

there will be a further line L1 through P not passing through any point of π*.
Now consider the intersections of L1 with the m2 + m + 1 lines of π*. If any two
of these intersections were the same point, such a point would be a point of π*,
contrary to hypothesis. Hence L1 contains at least m2 + m + 1 points, and so n ≥
m2 + m.

With a little care we may list the subsets S of a plane which with any two
points contains the line joining them and which with any two lines contains
their intersection.

First, if S contains four points, no three on a line, then S is a subplane. The
remaining possible sets we call degenerate subplanes. These are:

1) The void set.
2) A single point P and possibly one or more lines through P.
3) A single line L and possibly one or more points on L.
4) A single point P and a single line L not passing through P.
5) The vertices and sides of a triangle.
6) A line L and a point P on L and also one or more points on L and one or

more lines through P.
7) A line L containing three or more points, a single-point P not on L, and

the lines joining P to the points of L.



The collineation α is a permutation of the points and also a permutation of
the lines of π. Let P be the permutation of the points and Q the permutation of
the lines, where we write both P and Q as N × N matrices. Here as usual N = n2

+ n + 1.

and otherwise, pij = 0, qij = 0.
Then we have

where A = (aij) is the incidence matrix for π. Conversely, if permutation
matrices P and Q exist, satisfying (20.9.2), they determine a collineation of π.

THEOREM 20.9.2 (PARKER [1]). The permutations P of points and Q of
lines in a collineation are similar as permutations.

COROLLARY 20.9.1 (BAER). A collineation fixes the same number of points
and lines.

Proof: We note that since

then

whence in particular A is nonsingular. Thus (20.9.2) becomes



and so P and Q are similar as matrices. Here P and Q have the same
irreducible constituents, regarded as representations of a cyclic group. But,
reducing a cycle (x1, · · ·, xr) of length r in any permutation, we find that these
constituents have the characters 1, ζ, ζ2, · · ·, ζr−1, where ζ is a primitive rth
root of unity. But this says that an mth root of unity is a character of a
permutation P with a multiplicity am, where am is the number of cycles of P
whose length is a multiple of m. Since these multiplicities am are the same for
both P and Q, it follows that P and Q have the same number of cycles of each
length m. Hence P and Q are similar as permutations. In particular we have the
corollary, which asserts that P and Q have the same number of cycles of length
one, i.e., fixed elements.

THEOREM 20.9.3 (PARKER). A group of collineations G of π has the same
number of transitive constituents as a permutation group on the points as it
has a permutation group on lines.

Proof: Let G be of order g. Then from (20.9.5) we have G represented as a
permutation group G1 on points and G2 on lines, and these representations are
equivalent. Let χ1 χ2 be the respective characters:

But by Theorem 16.6.13,

where k1 is the number of transitive constituents of G1, and k2 is the number of
transitive constituents of G2. Hence k1 = k2, the assertion of the theorem.
Although from the preceding theorem each individual permutation of G1 is
similar as a permutation to the corresponding element of G2, it is not in general
true that G1 and G2 are similar as permutation groups. For example, in a
Desarguesian plane the group of all collineations fixing a point P0 contains no
line fixed by all its collineations.



THEOREM 20.9.4. A Desarguesian plane π of order n = pr has a
collineation group of order r(n2 + n + 1)(n2 + n)n2(n − 1)2.

Proof: In π the number of ordered quadrilaterals P1, P2, P3, P4 is (n2 + n +
1)(n2 + n)n2(n − 1)2, since we may choose P1 as any of the n2 + n + 1 points, P2

as any other point, P3 as any of the n2 points not on P1P2, and P4 as any of the
(n − 1)2 points not on any one of P1P2, P1P3, or P2P3. By Theorem 20.5.5 the
collineation group G of π is transitive on quadrilaterals. The subgroup of G
fixing the quadrilateral X, Y, O, I is the group of automorphisms of the
coordinatizing field GF(pr), and this is of order r, as was noted in §20.6.

THEOREM 20.9.5 (SINGER [1]). A Desarguesian plane π of order n has a
collineation α of order N = n2 + n + 1 which is cyclic on the points and also
on the lines.

Proof: Let n = pr. Then π is coordinatized by GF(pr) = F. It is convenient to
represent π in terms of homogeneous coordinates. A point P will be given as

where x1, x2, x3 are fixed elements of F not all zero, and λ ranges over all
elements of F except 0. Similarly, a line L will be given as

where u1, u2, u3 are fixed elements not all zero, and μ ranges over all elements
of F except 0.  if, and only if,

Because F is a field, we see that the incidence relation (20.9.10) is the same
for any choice of λ in (20.9.8) and any choice of μ in (20.9.9). The
homogeneous coordinates may be identified with the nonhomogeneous
coordinates in the following way:



We easily check that the homogeneous representation of π agrees with the
nonhomogeneous representation. The field GF(p3r) = F1 may be considered as
a cubic extension of F = GF(pr), and if w is a primitive root of F1, every
element x of F1 has a unique expression

Hence if x ≠ 0, , λ ≠ 0 elements λx of F1 correspond to the point (λx1,
λx2, λx3) of π. But in F1 the order of w is p3r − 1 = n3 − 1. The elements of F are
the solutions in F1 of the equation

whence for , x ≠ 0, we have, since n = pr,

Thus F* (the elements of F excluding 0) are the elements of the unique
subgroup of order n − 1 of the cyclic group {w} of order n3 − 1. Hence the
elements of F* are the elements

Hence wu and wv represent the same point of π if, and only if,

Hence the mapping α of elements ,



is a permutation of the points of π in a cycle of length N. If P1 = (x1 x2, x3) and
P2 = (y1, y2, y3) are two distinct points, then we readily verify that the points of
the line P1P2 are given by

where λ1, λ2 are any elements of F not both zero. Hence if wi = x1 + x2w + x3w2,
wj = y1 + y2w + y3w2, then the points of P1P2 are given by

Hence the mapping x → xw takes the elements of (20.9.19) into

and these are the points of the line joining P1α and P2α. Hence α is a
collineation of π and is a cyclic of length N on the points. It is easy to see (for
example, by Theorem 20.9.2) that α is also a cycle of length N on the lines of π.

We can give a crude upper bound on the order of the group G of
collineations of a plane π of order n. An ordered quadrilateral P1, P2, P3, P4

has at most M = (n2 + n + 1) (n2 + n)n2(n − 1)2 images. The subgroups H1 of
index ≤ M fixing P1, P2, P3, P4 fixes the subplane π1 generated by these points.
If π1 is of order m1 then H1 permutes the n − m1 points on a line of π1 which are
not points of π1. The subgroup H2 of index ≤ n − m1 in H1 fixing one of these
points fixes a larger subplane π2 of order m2, where from Theorem 20.9.2, m2 ≥
m1

2. We thus have a descending sequence of subgroups H1 ⊃ H2 ⊃ · · · ⊃ Hs =
1, in which Hi fixes a subplane of order mi, where mi+1 ≥ mi

2, and [Hi:Hi+1] < n.
Thus s ≤ log2n, and the order of G is at most nsM. The collineation groups of
the known non-Desarguesian planes are not as large as the groups for the
Desarguesian planes of the same order, and it seems likely that this is always
the case.



The following two theorems assert that if in certain specified ways the
collineation group of a finite plane is large enough, then the plane is
Desarguesian.

THEOREM 20.9.6 (GLEASON [1]). If for every pair P, L with P a point on a
line L of a finite plane π, the elation group G(P, L) is nontrivial, then π is
Desarguesian.

Proof: By Theorem 20.4.3 if two elation groups G(P1, L) and G(P2, L) with
P1 and P2 different points of L are nontrivial, i.e., different from the identity,
then all elations with axis L form an Abelian group in which every element ≠ 1
is of the same prime order p. By the dual of this theorem, if G(P, L1) and G(P,
L2) are nontrivial, with L1 and L2 different lines through P, then all elations
with center P form an Abelian groups whose elements ≠ 1 are of the same
prime order p. Hence, under the hypothesis of our present theorem, every
elation group G(P, L) is elementary Abelian of order p or a power of p.

LEMMA 20.9.1. Suppose that H is a group of permutations of a finite set S,
and suppose that for some prime p and each  there exists an element
of H of order p which fixes x but no other element of S. Then H is transitive.

Proof: Consider S1 a transitive set of S under H. For  there exists
an element of order p fixing x and displacing all remaining letters in cycles of
length p. Hence the number of elements in S1 is congruent to 1 (mod p), and the
number of elements in another transitive set S2 (if there is another) is a multiple
of p. But then, taking a  by the same argument, the number of elements
in S1 is a multiple of p. This is a conflict, and so there is only one transitive set
and H is transitive on S.

LEMMA 20.9.2. Suppose for a line L of a finite plane the elation groups
G(Pi, L) for all  have the same order h > 1. Then π is a translation
plane with respect to L.

Proof: Let π be of order n. Any two of the n + 1 groups G(Pi, L), each of
order h, have only the identity in common, and together their elements form the
translation group T(L). Hence the order of T(L) is t = (n + 1)(h − 1) + 1. Since



only the identity of T(L) can fix a point not on L, T(L) permutes the n2 points in
sets of t points, whence t divides n2. Write

Since h > 1, we have m < n. On the other hand, taking (20.9.21) modulo n + 1,
we have

But m ≡ 1 (mod n + 1) and m < n together yield m = 1, t = n2, whence T(L) is
transitive on the n2 points of π not on L, and so π is a translation plane with
respect to L.

We can now prove our theorem. Take a fixed line L of π. For each point 
 the elation group G(P, M), where M ≠ L is another line through P,

contains an element of order p fixing P and mapping L onto itself but displacing
all other points of L. Hence, by Lemma 20.9.1, the group G(L) of all
collineations fixing L is transitive on the points of L. It then follows that for the
n + 1 points Pi of L, all elation groups G(Pi, L), being conjugate under G(L),
have the same order h. By Lemma 20.9.2 it follows that π is a translation plane
with respect to L. But L can be taken as any line of π. Thus π is a translation
plane for every line L, and by Theorem 20.5.3, π can be coordinatized by an
alternative division ring. By Theorem 20.6.2 a finite alternative division ring is
a field, and so π is Desarguesian.

Gleason [1] uses this theorem in the study of finite Fano planes. The Fano
configuration is the configuration of the seven points and seven lines making the
finite plane of order 2. A plane is a Fano plane if the diagonal points of every
quadrilateral are on a line, or, what is the same thing, if every quadrilateral
generates a Fano configuration. Gleason shows that every finite Fano plane is
Desarguesian and that these are the finite planes over the fields GF(2r). There
is not space here to prove this very interesting result.

We shall call a collineation of order 2 an involution.

THEOREM 20.9.7 (BAER). Let α be an involution in a projective plane of
order n. Then either (1) n = m2 and the fixed points and lines of α form a
subplane of order m, or (2) α is a central collineation. In case (2) if n is odd,
α is a homology, and if n is even, α is an elation.



Proof: We show first that every point is on a fixed line. If P is not a fixed
point then Pα ≠ P and α fixes the line PPα, which is therefore a fixed line
through P. If P is a fixed point, join P to Q, another point. It may be that L = PQ
is a fixed line. If not, Qα ≠ Q and . Here Lα = PQα. Then if R is a
third point on L, . Then α interchanges the lines QαR and QRα
whose intersection S is another fixed point different from P. In this case PS is a
fixed line through P. By a dual argument every line passes through a fixed
point.

The line joining a pair of fixed points is a fixed line and the intersection of
two fixed lines is a fixed point. Hence if there exists four fixed points, no three
on a line, the fixed elements of α form a proper subplane π1 of π. Let us
suppose this to be the case and suppose that π1 is of order m. Then by Theorem
20.9.1, n ≥ m2, and following the proof of this theorem, we see that if n > m2,
there is a line of π which does not pass through any point of π1. But we have
shown that every line of π contains a fixed point. Hence we cannot have n > m2,
and so n = m2. This proves alternative (1) of the theorem.

Now suppose that there are not four fixed points, no three on a line. What is
the configuration of the fixed points? We show first that there is a line
containing three fixed points. A line L1 contains a fixed point P1. Choose a line
L2 not through P1. Then L2 contains a fixed point P2 ≠ P1. We now have two
fixed points P1, P2, and the line L joining them is a fixed line. Choose a third
point Q on L. If Q is fixed, L is the line we seek. If Q is not a fixed point, a line
L3 through Q contains a fixed point P3 not on L. We now have a triangle P1, P2,
P3 of fixed points. Consider a line L4 not through any one of P1, P2, P3. L4
contains a fixed point P4. If P4 is not on one of the lines P1P2, P1P3, or P2P3,
then P1, P2, P3, P4 are four fixed points, no three on a line, and this is the
situation covered in the first alternative. Hence P4 is on one of these lines, and
we have a line containing three fixed points.

We now have a line L containing three fixed points P1P2P3. If there were as
many as two fixed points not on L, we would have a quadrilateral of fixed
points, the situation of the first alternative. Hence there is either one fixed point
P not on L or none. Consider now any point . There is a line K through
Pi different from L, and, if there is a fixed point P not on L, different from PPi.
K contains a fixed point but, by our choice, no fixed point not on L. Hence the
fixed point on K is Pi, whence it follows that every point Pi of L is a fixed



point. Since α fixes every point of L, α is a central collineation with axis L, the
assertion of our second alternative. There are n2 points of π not on L, and α is
of order 2. Hence if n is odd, α fixes a point not on L and is a homology. If n is
even, α fixes an even number of points not on L, and so at least fixes two if it
fixes any. Hence in this case α cannot fix any point not on L and is an elation.
This completes the proof of all parts of the theorem.

The following is a slight improvement of a Theorem of Ostrom [1], who
made the further assumption that n is odd.

THEOREM 20.9.8 (OSTROM). If the collineation group of a finite projective
plane π of order n, where n is not a square, is doubly transitive on the points
of π, then π is Desarguesian.

Proof: Let G be the collineation group of π. By hypothesis G is doubly
transitive on the N = n2 + n + 1 points of π. Since N(N − 1) divides the order of
G, G must contain an element of order 2, an involution α. Since n is not a
square, by Theorem 20.9.7 it follows that α is an elation if n is even and that α
is a homology if n is odd.

LEMMA 20.9.3. There is an elation in G.

Proof: If n is even, an involution α is an elation. Hence we need consider
only the case in which n is odd. Consider an involution α which is a homology
and let its center be the point P and its axis be the line L. Let A be a point of L
and A1 ≠ P be a point not on L. Then in G there is an element σ which takes P
into P and A into A1. Then β = σ−1ασ is an involution whose center is P and
whose axis K passes through A1, and so is different from L. Then αβ is a central
collineation, since it fixes all lines through P. If ρ = αβ fixes any line T not
through P, suppose T1 = Tα. Then β must also interchange T and T1, and if T ≠
T1, ρ must fix both T and T1, whence by Theorem 20.4.1, ρ = 1 and α = β, a
conflict, since α and β are involutions with different axes. But if T = T1, then T
is the axis of α and also the axis of β, again a conflict, since α and β had
different axes. Hence ρ fixes no lines not through P, and so ρ is an elation. This
proves our Lemma.

We may now consider an elation ρ with center P on an axis L. Let Pi be any
other point of L. Then in G there is an element σ interchanging P and Pi. Then σ
fixes L. Hence the group G(L) of collineations fixing L is transitive on the



points of L, and so for all points Pi of L the elation groups G(Pi, L) are of the
same order h and h > 1, since we had an elation ρ with center P on L. From
Lemma 20.9.2 of Theorem 20.9.6, π is a translation plane with respect to the
axis L. But since G is doubly transitive on points, any two points of L can be
mapped onto two points of any other line K by an appropriate element of G.
Hence π is also a translation plane with respect to K, and so is a Moufang
plane. But as was shown in proving Theorem 20.9.6, this means that π is
Desarguesian. A paper by A. Wagner, as yet unpublished, shows that Theorem
20.9.8 is valid without any restriction on n.

There is a generalization of the incidence matrix of a plane due to D. R.
Hughes [3]. If we are given a plane π and a group G of collineations of π, this
is a matrix whose entries are elements from the group ring G* of G, G* being
taken over the integers or over any field whose characteristic does not divide
the order of G. Analogues of the incidence equations (20.9.3) can be obtained.
From Theorem 20.9.3 we recall that the number of transitive sets of lines under
G is the same as the number of transitive sets of points. Let us call this number
w. We list our notation:



We also use several diagonal matrices:

We observe that a knowledge of the sets Dij of elements x of G such that 
 completely determines the incidences in π, for every point of π can

be written Piu for some i = 1, · · ·, w and some , and similarly, every
line is of the form Ljv. Moreover,  if, and only if, 
or if . Hence a knowledge of D completely determines π. If G is
merely the identity, we see that D is the incidence matrix A for π.

THEOREM 20.9.9. Given a plane π of order n and a group G of
collineations of π of order g, the collineation matrix D satisfies the following
relations:



Proof: We prove the first equation by evaluating the elements of U =
DC2D′, first those on the main diagonal, and later those off the main diagonal. If
U = (ur,s) r, s = 1, · · ·, w, then we have first

In (20.9.26) the terms for a single j are

We note that for  the entire coset HrxTj is contained in Drj. We
consider the left cosets of Hr in G:

For an  the equation xy−1 = h or x = hy with x,  holds for
every  with an appropriate , since Hry ⊆ Drj. Hence for a
given  there are drj choices x,  such that xy−1 = h. Hence in

(20.9.26) the coefficient of h is . But drj is the number of x’s such

that  or . For  the number of distinct lines in
the set Ljx−1 is drj/tj. But Pr is on a total of n + 1 lines. Hence

Hence in (20.9.26) the coefficient of  is n + 1.
Now consider an equation xy−1 = z, . Here Pr, Prz are distinct points

and so lie on a unique line Lmv, where m and the coset Tmv are uniquely
determined. If for some j both , , then Pry and 

. But , , and Prx ≠ Pry. Hence
Lmvy = Lj, whence we must have j = m, . Hence in (20.9.26) the
element z arises only for the summand with j = m, and here with x, ,



we have xy−1 = z for every  so that Lmy−1 = Lmv = PrPrz and an 
 determined by x = zy. But these y’s are such that y−1 is in the coset

Tmv, and there are exactly tm of these. Hence in (20.9.26) the coefficient of z is
tm/tm = 1. Thus we have in (20.9.26) the coefficient of an  as n + 1 and
of a  as 1. Hence we have established the correctness of the first
equation in (20.9.25) so far as the main diagonal is concerned. For the off-
diagonal terms in U = DC2D′ we have

and the terms for a single j are

Here for any , the points Prz and Ps are distinct and lie on a unique line
Lmv, where m and the coset Tmv are uniquely determined. Here if xy−1 = z,
where for some j, , , then Prx = Przy and Psy lie on Lmvy.
But Prx ≠ Psy both lie on Lj. Hence Lmvy = Lj, whence j = m and Ljy−1 = Lmv =
PrzPs. But these y’s are such that y−1 is an element of Tmv, and there are tm of
these. Also for each , Lmvy = Lm and , whence 

. Hence the coefficient of any z in urs reduces to tm/tm, and
so , urs = γ, and this completes the proof of the first
relation in (20.9.25).

The second relation in (20.9.25) is the dual of the first, and its proof can be
carried out in the same fashion.

In calculating DC2S = V = (vrs), we find

but by (20.9.29) this is (n + 1)γ. This proves the third relation, and the fourth is
dual and may be proved in the same way.



Proceeding from the relations (20.9.25), Hughes has obtained restrictions
on the possible collineations in planes similar to the restrictions of the Bruck-
Ryser theorem. The proof depends (as did the original proof of the Bruck-Ryser
theorem) on the deep results of Hasse-Minkowski on the rational equivalence
of quadratic forms. In particular he finds the following:

THEOREM 20.9.10 (HUGHES). Let π be a plane of order n for which the
Bruck-Ryser conditions on n are satisfied. Let G be a group of collineations
of π of odd prime order p. Let the number u of fixed points be even. Then a
necessary condition that such a collineation exists is that the equation:

have a solution in integers x, y, z not all zero.
The same result holds for a collineation group G of odd order g (instead of

p) if every element ≠1 of G displaces the same points.
Hughes’ theorem, like the Bruck-Ryser theorem, denies the existence of

certain collineations but does not, of course, guarantee the existence of
collineations which do satisfy the conditions.

The main content of the following theorem is that if a plane π has a certain
group G of collineations, then π must have still further specific collineations.
We assume that G is of a simple type. Explicitly we shall assume that G is
transitive and regular on the N = n2 + n + 1 points of π, and also that G is
Abelian. This result was first proved by Hall [3] with G a group of order N
cyclic on the N points of π. Bruck [1] extended this to the study of cases in
which G is transitive and regular but had to assume in addition that G is
Abelian to obtain the same result. Hoffman [1] obtained a similar result,
assuming that G is cyclic on the n2 − 1 points of π not on L∞ and different from
the origin.

Suppose that we have a group G of collineations of a plane π of order n,
where G is Abelian and transitive and regular on the N points of π. In this case
if P is a fixed point of π, every point has a unique representation Px, . If
an integer t is prime to N, then x → xt, all  is trivially an automorphism
of G. If, further, for every , Px → Pxt is a collineation of π, we say that t
is a multiplier of π. Trivially, the multipliers form a multiplicative group
modulo N.



THEOREM 20.9.11. If a plane π of order n has a collineation group G
which is Abelian and transitive and regular on the N points of π, then any
prime p which divides n is a multiplier of π.

Proof: Under the hypothesis there is only a single transitive constituent for
points and so also for lines. There is a single representative point P = P1 and a
single representative line L = L1, and if D11 = {x1, x2, · · ·, xn+1}, , then
Pxi, i = 1, · · ·, n + 1 are the points of L1. Then x1u, · · ·, xn+1u,  are the
points of G. Here we have D = δ11, D′ = δ*11.

C2 and C1 reduce to the identity. The first two relations (20.9.25) take the form

The last two relations in (20.9.25) say only that there are n + 1 elements in D
and D′. To show that Px → Pxp is a collineation of π, we must show that Px1

p,
Px2

p, · · ·, Pxn+1
p are on a line. For this we need to show that for some ,

since the points of an arbitrary line Lu are Px1u, Px2u, · · ·, Pxn+1u.
Conversely, if (20.9.34) holds, then Px1

p, · · ·, Pxn+1
p are the points of Lu,

whence generally P(x1v)p, ···, P(xn+1v)p are the points of Luvp, and so Px →
Pxp is a collineation and p is a multiplier. For this theorem we take the group
ring G* to be the group ring of G over the integers. G* (mod p) is the ring G*
with coefficients reduced modulo p. We have

since the multinomial coefficients are multiples of the prime p and since G is
Abelian. The assumption that G is Abelian enters at this point and also in
saying as above that (xiv)p = xi

pvp and that x → xp is an automorphism of G. We



note that since p|n and N = n2 + n + 1, we have (p, N) = 1. Since p|n, we have,
from (20.9.34)

Multiplying by Dp−1, we have

Hence, from (20.9.35),

From this we may write

where (and this is vital to our proof) the coefficients of the group elements in R
are non-negative integers, for in D(p)D′ all coefficients are non-negative, and by
(20.9.38), every term aiui,  has ai ≡ 1 (mod p) ai ≥ 0. Thus ai ≥ 1 and
(ai − 1)/p is a non-negative integer, this being the coefficient of ui in R. Now x
→ x−1,  is an automorphism of G, and hence determines an
automorphism h → h′ for  and D → D′ under this automorphism.
Applied to (20.9.39), this yields

Moreover, x → xp is an automorphism of G and determines an automorphism h
→ h(p) of G*. Applied to (20.9.34), this yields

The product of the left-hand sides of (20.9.34) and (20.9.41) is the same as that
for (20.9.39) and (20.9.49). Hence, putting equal the products of the right-hand
sides, we have



The homomorphism of G* into the integers determined by x → 1, 
applied to (20.9.39), gives

where R → R(1) in the homomorphism. Thus pR(1) = n, and also pR′(1) = n.
But in G*, pRγ = pR(1)γ = nγ. Using this in (20.9.42), we find

But since pR and pR′ have non-negative coefficients, this will be impossible if
there is more than one nonzero term in pR. Hence pR = bu for some integer b
and . But b = pR(1) = n, whence pR = nu. Substituting in (20.9.39), we
have

Multiplying by D, and using (20.9.34), we have

This now gives:

But this is precisely the relation (20.9.34) which we needed, and our theorem
is proved.

As an illustration of the power of this theorem, consider a plane of order 8
with a (necessarily cyclic) collineation group of order 73. Points may be
represented as residues modulo 73. The multiplier is 2, and if a1 · · · a9 are the
points of a line, then 2a1 · · · 2a9 are a1 + s, · · ·, a9 + s in some order for an
appropriate s. Then the points a1 − s, · · ·, a9 − s are on a line fixed by the
multiplier 2. If one of these residues is 1, then the multiplier 2 gives us the
complete set of points on a line 1, 2, 4, 8, 16, 32, 37, 55, 64 (mod 73). Any
other set fixed by 2 differs from this by a constant factor and gives the same
plane. The plane is the Desarguesian plane.



Hughes has proved a further result which is at once more special and more
refined than Theorem 20.9.10.

THEOREM 20.9.12. A plane π of order n, where n ≡ 2 (mod 4), n > 2,
cannot have an involution.

Proof: Suppose that π is a plane of order n, where n ≡ 2 (mod 4), n > 2,
which possesses an involution b. Then by Theorem 20.9.7, since n is even and
not a square, b is an elation. Let M be the axis and  the center of the
elation. Let Qi, i = 1 · · · n be the remaining points on M, and Ki, = 1 · ·· n the
remaining lines through C. Write n = 2m, where m is odd. The n2 lines of π not
through C can be broken up into n2/2 = 2m2 classes of two lines, where a class
with the line L also contains Lb. In each class choose one line Li, i = 1, · · ·,
2m2. Similarly, the n points other than C on a line Ki can be broken up into n/2
= m classes with respect to b. In each class choose a point and name these
points Pij, j = 1, · · ·, n/2 = m. We now define incidence numbers aij

k by the
rule:

LEMMA 20.9.3.

LEMMA 20.9.4.

Proof of Lemma 20.9.3. The point Pij is on n lines either Lk or Lkb, so
Lemma 20.9.3 is immediate.

Proof of Lemma 20.9.4. If i = s, j ≠ t, the points Pij and Pijb all lie on Ki
and no two on any other line, whence the sum is zero. If i ≠ s, let PijPst be Lqx,



PijPstb be Lry, where x and y are 1 or b. Now r ≠ q, for if r = q, x = y, then Lqx
= Lry contains Pst and Pstb, which are distinct points on Ks, a conflict. But if r =
q, x = yb, then Lqx = Lryb contains the distinct points Pij and Pijb which lie on
Ki, a conflict. Hence r ≠ q. But then

and

Thus the nonzero terms of Lemma 20.9.4 can be paired so that the sum of a pair
is zero. Hence the sum of Lemma 20.9.4 is zero.

From our lemma the incidence numbers aij
k can be formed into a 2m2 × 2m2

matrix:

where, by our Lemma, A satisfies

Let us define numbers bik by the rule

Then every bik is +1 or −1, since every line Lk intersects Ki in exactly one
point, either Pij or Pijb, and so exactly one of aij

k is different from 0. The n ×
2m2 matrix B,

is such that its first row is the sum of the first m rows of A, its second row is the
sum of the second m rows of A, and so on. Since from (20.9.50) different rows
of A had an inner product of zero, the same holds for the rows of B. We may
multiply the columns of B by +1 or −1 without changing inner products, and this



we shall do so as to make the first row of B consist exclusively of +1’s. Since n
> 2, there are at least three rows in B, and rearranging the columns of B, the
first three rows of B take the form:

Since the inner product of the second and third lines with the first is zero, we
have r + s = t + u, r + t = s + u. Here r + s + t + u = 2m2, and so:

whence

Since the inner product of the second and third rows is also zero, we have r + u
= s + t = m2. But this gives

which is a conflict because n ≡ 2 (mod 4), n = 2m, and m is odd. Hence π
cannot have an involution, and our theorem is proved. This result can be
obtained from the incidence relations of (20.9.25) by appropriate renumbering
and mapping G* onto the integers by the homomorphism 1 → 1, b → −1.

An example of a non-Desarguesian plane of order 9 was given by Veblen
and Wedderburn [1]. This example has been shown by Hughes [2] to be a
particular case of an infinite class. Let q = pr be a power of an odd prime p.
Then we have shown that there exists a near-field K of order q2 whose center Z
is the field GF(q) = GF(Pr). The Hughes planes are of order q2.

DEFINITION OF HUGHES PLANES: A point P is the set of triples P = (xk, yk,
zk), x, y, z fixed elements of K not all zero and k ≠ 0, an arbitrary element of K.



The Theorem of Singer (20.9.5) gives us a mapping:

where , such that

is a collineation α of order m = q2 + q + 1 in the Desarguesian plane of order q
with coordinates from Z. The Hughes plane is given by extending the
collineation α to points with coordinates from K.

We have base lines Lt given by equation

Here we take either t = 1 or , but otherwise t is an arbitrary element of
K. This gives 1 + (q2 − q) = q2 − q + 1 base lines. We define an incidence 

 if, and only if, x, y, z satisfy (20.9.59). By the
associativity of multiplication in K and the right distributive law, then from
(20.9.59) we also have

and so our incidence rule  does not depend on which representative of
P is chosen to satisfy (20.9.59). Further lines Ltαi, i = 0, · · ·, m − 1 are defined
symbolically, and we say

if, and only if, .
It is not true that the points of Ltαi satisfy a linear equation. To find the

points on Lt, we may in (20.9.59) take x and y arbitrarily, except for taking both
to be zero, and determine z from the equation. This give q4 − 1 triples of which
sets of q2 − 1 represent the same point. Hence Lt contains q2 + 1 = n + 1 distinct



points. Hence, also, Ltαi contains n + 1 points. We have (q2 − q + 1)(q2 + q + 1)
= q4 + q2 + 1 = n2 + n + 1 lines in all, each containing n + 1 points. There are
n2 + n + 1 points in all. Thus to show that we have a projective plane, it is
sufficient to show that any two distinct lines have a unique point in common.
The mapping P → PA is one to one and has period m = q2 + q + 1. If {P}s is the
set of points on the base line Ls, Lsαi contains the set of points {P}sAi, and Ltαj

contains the set of points {P}tAi. Hence to show that Lsαi and Ltαj have a
unique point in common, it is sufficient to show that Ls and Ltαj−i = Ltαh (where
exponents of α are taken modulo m) have a unique point in common.

Let P = (x, y, z) be a point of Ltαh. Then PA−h is a point of Lt, and
conversely. Then if

then the condition that P = (x, y, z) should lie on Ltαh is

If (x, y, z) is on Ls, then we have

We must show that, apart from a factor k on the right, (20.9.63) and
(20.9.64) have a unique solution (x, y, z). We solve (20.9.64) for x and
substitute in (20.9.63). This gives

where



Note that a, , but in general u, v are not in Z. There are three cases to
consider in finding solutions of (20.9.65).

CASE 1: b ≠ 0. Here (20.9.65) can be written as

using the fact that a and b−1 are in the center. If both coefficients b−1a + t and u
− b−av should be zero, then , t = 1, and a + b = 0, u + v = 0. But then
from u + v = 0 we have

whence , and so s = 1. Now a + b = 0 gives

But with both s = 1 and t = 1 this says that (20.9.63) and (20.9.64) represent the
same line in the Desarguesian plane π1 over GF(q). But this is not possible
unless the Ls = L1, Ltαi = L1 because the matrix A was of order m = q2 + + 1 as
a collineation of π1. Hence not both coefficients are zero in (20.9.67). Thus if
b−1a + t ≠ 0, an arbitrary value for y determines vy + bz uniquely, and since b ≠
0, it determines z uniquely. If b−1a + t = 0, then u − b−1av ≠ 0, and so y = 0,
whence z is arbitrary. Thus y and z are determined uniquely apart from a right
factor, and so in turn from (20.9.64), x is determined uniquely by y and z. Thus
(20.9.63) and (20.9.64) are satisfied by a unique point (xk, yk, zk). This gives
the desired unique solution in Case 1.

CASE 2: b = 0, a ≠ 0. Here (20.9.65) becomes



Since a ≠ 0, (20.9.70) and (20.9.64) are satisfied by a unique point (xk, yk, zk).

CASE 3: b = 0, a = 0. Here we have

and we see that the point P = (k, 0, −k) satisfies both (20.9.65) and (20.9.64).
Also, from (20.9.71), we see by (20.9.62) that

where b11 − b13 ≠ 0, since A−h is not singular. But since Ah fixes the point P of
π1, we see that h ≡ 0 (mod m), and so Ltα

h is Lt. Hence our lines are now Ls and
Lt where surely s ≠ t. For these, x + sy + z = 0 and x + ty + z = 0, and so,
clearly, P = (k, 0, − k) lies on both these lines but no other point does. Thus in
every case any two distinct lines have a unique intersection, and we have
proved that they form a projective plane. We state this as a theorem.

THEOREM 20.9.13 (HUGHES). Given a near-field K of order q2 whose
center is GF(q) = Z, q = pr, p an odd prime, and the mapping A of (20.9.57) of
order q2 + q + as a collineation of the Desarguesian plane of order q. Then
lines Ltαi containing points PAi by the rules (20.9.59) and (20.9.61) form a
projective plane π of orer q2.

Hughes has shown that if the near-field K is not the field GF(q2), then the
plane π is not only non-Desarguesian but also is not a Veblen-Wedderburn
plane over any coordinate system.

* For the properties of three-dimensional spaces used here, see Veblen and Young [1], pp. 20–25.
* See Zorn [1].
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INDEX

Abelian group, 35
Absolutely irreducible representation, 262
Absorption laws, 116
Adjacent words, 91
Admissible subgroup, 30
Algebraic number, 285
All element of a lattice, 117
Alphabetical ordering, 315
Alternating group, 59
Alternative division ring, 370
Amalgamated product, 312–314
Aperiodic group, 36
Artin-Zorn, Theorem of, 376
Associative laws, 1, 4, 116
Automorphisms, 29, 84–90

—of Abelian groups, 85–86
—of free groups, 111

Axiom of choice, 18

Basic commutators, 165
Basis, 37
Bertrand’s postulate, 68
Bound, upper and lower, 115
Bruck-Ryser theorem, 394
Burnside

—basis theorem, 176
—problem, 320–338
—Theorems of, 46, 142, 203

Cartesian product, 33
Cayley, Theorem of, 9
Center, 14
Central collineation, 350
Central extensions, 222
Central isomorphism, 127
Central series, 151



Centralizer, 14
Chain, 115
Characteristic subgroup, 31
Characters, 248, 267–281

—of an Abelian group, 194
Chief series, 124
Class of a group, 151
Class of elements, 14
Closure laws, 1
Coboundary, 237
Cochain, 236
Cohomology, 237
Collection process, 165, 182
Collineation, 349
Commutative laws, 1, 116
Commutator, 138

—subgroup, 138
Commute, 32
Complete group, 87
Complete lattice, 117
Complete reducibility Theorem of, 253
Complex, 10
Complex commutator, 138
Composition series, 124
Conjugate elements, 13
Conjugate subgroups, 14
Coordinates, Introduction of, 353–356
Coset, 10
Cover, 115
Cycle, 53
Cyclic group, 12, 35

Defining relations, 37
Definite Hermitian form, 296
Degree of a representation, 247
Derived group, 138
Desargues, Theorem of, 351
Desarguesian planes, 374
Dihedral group, 19
Dimension of a lattice, 117
Direct product, 32, 33
Direct union, 127
Distributive lattice, 117
Distributive laws, 1
Divisible group, 197
Division ring, 263
Double coset, 14–15
Double group, 299



Double module, 235
Doubly transitive group, 382
Duality, 196, 347

Elation, 350
Electron spin, 299
Elementary Abelian group, 41
Endomorphism, 29
Equivalent representations, 248
Even permutations, 59
Extension of groups, 218–246

Factor group, 27
Factor set, 218
Field, 1

—Finite, 375
Frattini subgroup, 156
Free Abelian group, 199
Free groups, 91–114
Free product, 311
Frobenius, Theorems of, 136, 292
Fully invariant subgroup, 31

Gaschütz, Theorem of, 245
Geometries, finite, 392
Greatest lower bound, 115
Group, Definitions of, 4–6
Group of extensions, 223
Groups of order paqb, 291
Groups of orders p, p2, pq, p3, 49–51
Grün, Theorems of, 214, 215

Hall, Philip, Theorems of, 141, 161, 211
Hall-Higman, Theorems of, 325–326
Hall systems, 364
Hamiltonian groups, 190
Hermitian forms, 295
Holomorph, 86–87
Homology, 350
Homomorphisms, 9, 27, 28
Hughes planes, 416
Huppert, Theorem of, 162

Idempotent, 256
Idempotent laws, 116
Image, 2
Imprimitive representation, 281–282
Imprimitivity, 64



Index of a subgroup, 11
Infinite groups, remarks on, 15–19
Inner automorphisms, 85
Intersection of subgroups, 10
Intransitive groups, 63–64
Invariants of an Abelian group, 41
Inverse, 1, 4
Involution, 405
Irreducible representations, 252
Isomorphism, 8
Iwasawa, Theorem of, 342

Jordan, Theorem of, 72–73
Jordan–Dedekind chain condition, 119
Jordan–Hölder, Theorem of, 126

Kronecker product, 277
Kurosch, Theorem of, 315

Lagrange, Theorem of, 11
Lattice, 116
Lattices of subgroups, 339–345
Least upper bound, 115
Lie ring, 328
Local property, 16
Locally cyclic groups, 193, 340
Loop, 7
Lower bound, 115
Lower central series, 150
Lower semi-modular, 120

Mapping, 2
Mathieu groups, 73, 80
Maximal condition, 15, 153
Maximal subgroup, 18
Metacyclic groups, 146
Minimal condition, 16
Modular lattice, 117
Module, representation, 249
Monomial representations, 200
Moufang plane, 370
Multiple transitivity, 56, 68

Near–field, 364, 388–392
Negative, 1
Nielsen property, 107
Nil–c, 153
Nilpotent, 149



Normal product, 88–90
Normal series, 124
Normal subgroup, 26
Normalizer, 14

Odd permutation, 59
Operator, 29
Operator homomorphism, 249
Operator isomorphism, 30
Order of a group, 11
Order of an element, 12
Ordinary representation, 256
Ore, Theorem of, 127
Orthogonal representation, 294–298
Orthogonality relations, 279
Outer automorphism, 85

p-complement, 144
p-group, 45, 176–186
p-normal, 205
p-solvable, 331
Partial ordering, 17
Partially ordered set, 115
Periodic, 15
Permutable subgroups, 124
Permutation, 3
Permutation groups, 53–83
Permute, 32
Perspective quotients, 117
Perspectivity, 349
Primitive group, 64
Principal series, 124
Projective planes, 346–420
Projective quotients, 118
Pure subgroups, 198

Quadruply transitive groups, 73
Quasi-group, 7
Quaternion group, 23
Quotient lattice, 117

Reciprocity theorem, 284
Reduced word, 91
Reducible representation, 251
Refinement theorem, 125, 126
Regular p-group, 183
Regular representation, 9
Regular ring, 256



Representation module, 249
Representation of groups

by matrices, 247–310
by permutations, 56–59

Representative of coset, 11
Residual property, 16
Ring, 1

Schreier system, 94
Schur’s lemma, 269
Semi–direct product, 88–90
Semi–group, 7
Semi–modular lattice, 120
Semi–simple ring, 256
Significant factor, 97
Simple commutator, 138
Simple group, 26
Simple ordering, 17
Simple ring, 258
Simply ordered set, 115
Solvable group, 138
Standard representation, 101
String, 91, 165
Subdirect product, 63–64
Subgroup, 7
Subinvariant, 123
Supersolvable group, 149, 342
Sylow subgroup, 40
Sylow theorems, 44–47
Sylow theorems, Extended, 141
Symmetric group, 54

Tensor product, 277
Torsion–free group, 36
Transfer, 201
Transfinite induction, 17
Transitive group, 55
Transitive set, 55

Union of subgroups, 10
Unit, 1, 4
Unitary representation, 294–298
Upper bound, 115
Upper central series, 151
Upper semi–modular, 120

Veblen–Wedderburn system, 363



Wedderburn, Theorem of, 375
Wedderburn–Remak–Schmidt Theorem of, 130
Well ordering, 17
Wielandt, Theorem of, 212
Witt formulae, 169
Word, 91, 165
Wreath product, 81

Zero, 1
Zero element of a lattice, 117
Zorn, Theorem of, 376
Zorn’s lemma, 17



INDEX OF SPECIAL SYMBOLS

A number of the symbols used in this book are standard. Among these
are: the symbols for set inclusion A ⊇ B, A includes B, A ⊃ B, A includes B
properly, A ⊆ B, A is contained in B, A ⊂ B, A is properly contained in B; 

, a belongs to the set A; a|b, a divides b, a ≡ b (mod m), a is congruent
to b modulo m. Following standard usage, a line through a symbol indicates a
denial of the relation, thus: , p does not divide s, , y does not
belong to G.
α: x → y or y = (x)α, a mapping or homomorphism, 2

, a one-to-one mapping or isomorphism, 3

 permutation, 3

H ∪ K, union, 10
H ∩ K, intersection, 10
{K}, group generated by K, 10
[G:H], index of H in G, 11
NH(S), normalizer of S in H, 14
CH(S), centralizer of S in H, 14
H = G/T, H is the factor group of G with respect to T, 28
gα, α an operator on g, 29
A × B, direct product, 32

, Cartesian product, 33

(x1, x2, · · ·, xn), cycle in a permutation, 53
A ≅ B, A is isomorphic to B, 64

, wreath product of G by H, 81
[x], greatest integer not exceeding x, 81
f ∼ g, f is equivalent to g, 91



Φ(f) = gi, gi is the coset representative of f, 96
a > b, a covers b, 115

, Ai is normal in Ai−1, 123
(x, y) = x−1y−1xy, commutator, 138
(x1, · · ·, xn−1, xn), simple commutator, 138
Φ = Φ(G), Frattini subgroup of G, 156
μ(m), Möbius function, 169
r+, R+, additive groups of rationals and reals, 193
Z(p∞), a certain Abelian group, 194
χ(a), a character, 194, 248
VG→K(g) or V(g), transfer of the element g, 202
(u, v) factor in a factor set, 218

, coset representative, 226
⊕, direct sum of right ideals, 255

, direct sum of two-sided ideals, 258
(f1, f2), symmetric bilinear scalar product, 270

, free product, 312

[x, y], Lie product, 328
, perspectivity, 349
, ternary operation, 355

(x, y, z), associator, 377
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