croups

The THEORY of GROUPS

The
 THEORY
 of
 GROUPS

Marshall Hall

DOVER PUBLICATIONS, INC. MINEOLA, NEW YORK

Bibliographical Note

This Dover edition, first published in 2018, is an unabridged republication of the work originally published by The Macmillan Company, New York, in 1959.

Library of Congress Cataloging-in-Publication Data

Names: Hall, Marshall, 1910-1990, author.
Title: The theory of groups / Marshall Hall.
Description: Mineola, New York : Dover Publications, Inc., 2018. | Series: Dover books on mathematics
| Reprint. Originally published by The Macmillan Company, New York, in 1959.
Identifiers: LCCN 2017034155| ISBN 9780486816906 (paperback) | ISBN 0486816907 (paperback)
Subjects: LCSH: Group theory. | BISAC: MATHEMATICS / Group Theory.
Classification: LCC QA171 .H27 2018 | DDC 512/.2-dc23
LC record available at https://lcen.loc. gov/2017034155

Manufactured in the United States by LSC Communications 81690701
2018

www.doverpublications.com

DEDICATED TO

PHILIP HALL

PREFACE

The present volume is intended to serve a dual purpose. The first ten chapters are meant to be the basis for a course in Group Theory, and exercises have been included at the end of each of these chapters. The last ten chapters are meant to be useful as optional material in a course or as reference material. When used as a text, the book is intended for students who have had an introductory course in Modern Algebra comparable to a course taught from Birkhoff and MacLane's A Survey of Modern Algebra. I have tried to make this book as self-contained as possible, but where background material is needed references have been given, chiefly to Birkhoff and MacLane.

Current research in Group Theory, as witnessed by the publications covered in Mathematical Reviews is vigorous and extensive. It is no longer possible to cover the whole subject matter or even to give a complete bibliography. I have therefore been guided to a considerable extent by my own interests in selecting the subjects treated, and the bibliography covers only references made in the book itself. I have made a deliberate effort to curtail the treatment of some subjects of great interest whose detailed study is readily available in recent publications. For detailed investigations of infinite Abelian groups, the reader is referred to the appropriate sections of the second edition of Kurosch's Theory of Groups and Kaplansky's monograph Infinite Abelian Groups. The monographs Structure of a Group and the Structure of its Lattice of Subgroups by Suzuki and Generators and Relations for Discrete Groups by Coxeter and Moser, both in the Ergebnisse series, are recommended to the reader who wishes to go further with these subjects.

This book developed from lecture notes on the course in Group Theory which I have given at The Ohio State University over a period of years. The major part of this volume in its present form was written at Trinity College,

Cambridge, during 1956 while I held a Fellowship from the John Simon Guggenheim Foundation. I give my thanks to the Foundation for the grant enabling me to carry out this work and to the Fellows of Trinity College for giving me the privileges of the College.

I must chiefly give my thanks to Professor Philip Hall of King's College, Cambridge, who gave me many valuable suggestions on the preparation of my manuscript and some unpublished material of his own. In recognition of his many kindnesses, this book is dedicated to him.

I wish also to acknowledge the helpfulness of Professors Herbert J. Ryser and Jan Korringa and also Dr. Ernest T. Parker in giving me their assistance on a number of matters relating to the manuscript.

Marshall Hall, Jr.
Columbus, Ohio

CONTENTS

1. INTRODUCTION
1.1 Algebraic Laws
1.2 Mappings
1.3 Definitions for Groups and Some Related Systems
1.4 Subgroups, Isomorphisms, Homomorphisms
1.5 Cosets. Theorem of Lagrange. Cyclic Groups. Indices
1.6 Conjugates and Classes
1.7 Double Cosets
1.8 Remarks on Infinite Groups
1.9 Examples of Groups
2. NORMAL SUBGROUPS AND HOMOMORPHISMS
2.1 Normal Subgroups
2.2 The Kernel of a Homomorphism
2.3 Factor Groups
2.4 Operators
2.5 Direct Products and Cartesian Products
3. ELEMENTARY THEORY OF ABELIAN GROUPS
3.1 Definition of Abelian Group. Cyclic Groups
3.2 Some Structure Theorems for Abelian Groups
3.3 Finite Abelian Groups. Invariants
4. SYLOW THEOREMS
4.1 Falsity of the Converse of the Theorem of Lagrange
4.2 The Three Sylow Theorems
4.3 Finite p-Groups
4.4 Groups of Orders $p, p^{\underline{2}}, p \underline{q}, p^{\underline{3}}$
5. PERMUTATION GROUPS
5.1 Cycles
5.2 Transitivity.
5.3 Representations of a Group by Permutations
5.4 The Alternating Group $A_{\underline{n}}$
5.5 Intransitive Groups. Subdirect Products
5.6 Primitive Groups
5.7 Multiply Transitive Groups
5.8 On a Theorem of Jordan
5.9 The Wreath Product. Sylow Subgroups of Symmetric Groups

6. AUTOMORPHISMS

6.1 Automorphisms of Algebraic Systems
6.2 Automorphisms of Groups. Inner Automorphisms
6.3 The Holomorph of a Group
6.4 Complete Groups
6.5 Normal or Semi-direct Products

7. FREE GROUPS

7.1 Definition of Free Group
7.2 Subgroups of Free Groups. The Schreier Method
7.3 Free Generators of Subgroups of Free Groups. The Nielsen
Method
8. LATTICES AND COMPOSITION SERIES
8.1 Partially Ordered Sets
8.2 Lattices
8.3 Modular and Semi-modular Lattices
8.4 Principal Series and Composition Series
8.5 Direct Decompositions
8.6 Composition Series in Groups
9. A THEOREM OF FROBENIUS; SOLVABLE GROUPS
9.1 A Theorem of Frobenius
9.2 Solvable Groups
9.3 Extended Sylow Theorems in Solvable Groups
9.4 Further Results on Solvable Groups
10. SUPERSOLVABLE AND NILPOTENT GROUPS
10.1 Definitions
10.2 The Lower and Upper Central Series
10.3 Theory of Nilpotent Groups
10.4 The Frattini Subgroup of a Group
10.5 Supersolvable Groups
11. BASIC COMMUTATORS
11.1 The Collecting Process
11.2 The Witt Formulae. The Basis Theorem
12. THE THEORY OF p-GROUPS; REGULAR p-GROUPS
12.1 Elementary results
12.2 The Burnside Basis Theorem. Automorphisms of p-Groups
12.3 The Collection Formula
12.4 Regular p-Groups
12.5 Some Special p-Groups. Hamiltonian Groups
13. FURTHER THEORY OF ABELIAN GROUPS
13.1 Additive Groups. Groups Modulo One
13.2 Characters of Abelian Groups. Duality of Abelian Groups
13.3 Divisible Groups
13.4 Pure Subgroups
13.5 General Remarks
14. MONOMIAL REPRESENTATIONS AND THE TRANSFER
14.1 Monomial Permutations
14.2 The Transfer
14.3 A Theorem of Burnside
14.4 Theorems of P. Hall, Grün, and Wielandt
15. GROUP EXTENSIONS AND COHOMOLOGY OF GROUPS
15.1 Composition of Normal Subgroup and Factor Group
15.2 Central Extensions
15.3 Cyclic Extensions
15.4 Defining Relations and Extensions
15.5 Group Rings and Central Extensions
15.6 Double Modules
15.7 Cochains, Coboundaries, and Cohomology Groups
15.8 Applications of Cohomology to Extension Theory.
16. GROUP REPRESENTATION
16.1 General Remarks
16.2 Matrix Representation. Characters
16.3 The Theorem of Complete Reducibility.
16.4 Semi-simple Group Rings and Ordinary Representations
16.5 Absolutely Irreducible Representations. Structure of Simple Rings
16.6 Relations on Ordinary Characters
16.7 Imprimitive Representations
16.8 Some Applications of the Theory of Characters
16.9 Unitary and Orthogonal Representations
16.10 Some Examples of Group Representation
17. FREE AND AMALGAMATED PRODUCTS
17.1 Definition of Free Product
17.2 Amalgamated Products
17.3 The Theorem of Kurosch
18. THE BURNSIDE PROBLEM
18.1 Statement of the Problem
18.2 The Burnside Problem for $n=2$ and $n=3$
18.3 Finiteness of $B(4, \underline{r})$.
18.4 The Restricted Burnside problem. Theorems of P. Hall and G. Higman. Finiteness of $B(\underline{6}, \underline{r})$.
19. LATTICES OF SUBGROUPS
19.1 General Properties
19.2 Locally Cyclic Groups and Distributive Lattices
19.3 The Theorem of Iwasawa
20. GROUP THEORY AND PROJECTIVE PLANES
20.1 Axioms
20.2 Collineations and the Theorem of Desargues
20.3 Introduction of Coordinates
20.4 Veblen-Wedderburn Systems. Hall Systems
20.5 Moufang and Desarguesian Planes
20.6 The Theorem of Wedderburn and the Artin-Zorn Theorem
20.7 Doubly Transitive Groups and Near-Fields
20.8 Finite Planes. The Bruck-Ryser Theorem
20.9 Collineations in Finite Planes
BIBLIOGRAPHY
INDEX
INDEX OF SPECIAL SYMBOLS

1. INTRODUCTION

1.1. Algebraic Laws.

A large part of algebra is concerned with systems of elements which, like numbers, may be combined by addition or multiplication or both. We are given a system whose elements are designated by letters a, b, c, \cdots. We write $S=S(a, b, c, \cdots)$ for this system. The properties of these systems depend upon which of the following basic laws hold:

Clo	A0. Addition	M0. Multiplication
sur	is well	is well defined.
e	defined.	
La		
ws.		

These mean that, for every ordered pair of elements, a, b of S, $a+b=c$ exists and is a unique element of S, and that also $a b=$ d exists and is a unique element of S.

Assoc	$A 1 .(a+b)+c$	$M 1 .(a b) c=$
iative	$=a+(b+c)$	$a(b c)$

Laws.
Com
mutati
A2. $b+a=a+$
$M 2 . b a=a b$
ve
Laws.

Zero
and
Unit.

Negat

A3. 0 exists
such that $0+a$
$=a+0=a$ for all a.
A4. For every

M3. 1 exists such that $1 a=$ $a 1=a$ for all a.

M4.* For every
ives

$$
a,-a \text { exists }
$$

and
Invers
es.
Distri such that ($-a$)
$+a=a+(-a)$
$=0$.
butive
D1. $a(b+c)=$
Laws.
$a \neq 0, a^{-1}$ exists
such that $\left(a^{-1}\right)$
$a=a\left(a^{-1}\right)=1$.
D2. $(b+c) a=$ $b a+c a$.

Definition: A system satisfying all these laws is called a field. A system satisfying $A 0,-1,-2,-3,-4, M 0,-1$, and $D 1,-2$ is called a ring.

It should be noted that $A 0-A 4$ are exactly parallel to $M 0-M 4$: except for the nonexistence of the inverse of 0 in M4. In the distributive laws, however, addition and multiplication behave quite differently. This parallelism between addition and multiplication is exploited in the use of logarithms, where the basic correspondence between them is given by the law:

$$
\log (x y)=\log x+\log y
$$

In general an n-ary operation in a set S is a function $f=f\left(a_{1} \cdots, a_{n}\right)$ of n arguments $\left(a_{1} \cdots, a_{n}\right)$ which are elements of S and whose value $f\left(a_{1} \cdots\right.$, $\left.a_{n}\right)=b$ is a unique element of S when f is defined for these arguments. If, for every choice of $a_{1} \cdots, a_{n}$ in $S, f\left(a_{1} \cdots, a_{n}\right)$ is defined, we say that the operation f is well defined or that the set S is closed with respect to the operation f.

In a field F, addition and multiplication are well-defined binary operations, while the inverse operation $f(a)=a^{-1}$ is a unary operation defined for every element except zero.

1.2. Mappings,

A very fundamental concept of modern mathematics is that of a mapping of a set S into a set T.

Definition: A mapping α of a set S into a set T is a rule which as signs to each x of the set S a unique y of the set T. Symbolically we write this in either of the notations:

$$
\alpha: x \rightarrow y \quad \text { or } \quad y=(x) \alpha .
$$

The element y is called the image of x under α. If every y of the set T is the image of at least one x in S, we say that α is a mapping of S onto T.

The mappings of a set into (or onto) itself are of particular importance. For example a rotation in a plane may be regarded as a mapping of the set of points in the plane onto itself. Two mappings α and β of a set S into itself may be combined to yield a third mapping of S into itself, according to the following definition.

Definition: Given two mappings α, β, of a set S into itself, we define a third mapping γ of S into itself by the rule: If $y=(x) \alpha$ and $z=(y) \beta$, then $z=$ $(x) \gamma$. The mapping γ is called the product of α and β, and we write $\gamma=\alpha \beta$.

Here, since $y=(x) \alpha$ is unique and $z=(y) \beta$ is unique, $z=[(x) \alpha] \beta=(x) \gamma$ is defined for every x of S and is a unique element of S.

Theorem 1.2.1. The mappings of a set S into itself satisfy M0, M1, and M3 if multiplication is interpreted to be the product of mappings.

Proof: It has already been noted that $M 0$ is satisfied. Let us consider $M 1$. Let α, β, γ be three given mappings. Take any element x of S and let $y=(x) \alpha$, $z=(y) \beta$, and $w=(z) \gamma$. Then $(x)[(\alpha \beta) \gamma]=z(\gamma)=w$, and $(x)[\alpha(\beta \gamma)]=y(\beta \gamma)=$ w. Since both mappings, $(\alpha \beta) \gamma$ and $\alpha(\beta \gamma)$, give the same image for every x in S, it follows that $(\alpha \beta) \gamma=\alpha(\beta \gamma)$.

As for $M 3$, let 1 be the mapping such that $(x) 1=x$ for every x in S. Then 1 is a unit in the sense that for every mapping $\alpha, \alpha 1=1 \alpha=\alpha$.

In general, neither $M 2$ nor $M 4$ holds for mappings. But $M 4$ holds for an important class of mappings, namely, the one-to-one mappings of S onto itself.

Definition: A mapping a of a set S onto T is said to be one-to-one (which we will frequently write 1-1) if every element of T is the image of exactly one element of S. We indicate such a mapping by the notation: $\alpha: x \leftrightarrows y$, where x is an element of S, and y is an element of T. We say that S and T have the same cardinal number* of elements.

Theorem 1.2.2. The one-to-one mappings of a set S onto itself satisfy $M 0, M 1, M 3$, and $M 4$.

Proof: Since Theorem 1.2.1 covers $M 0, M 1$, and $M 3$, we need only verify $M 4$. If $\alpha: x \leftrightarrows y$ is a one-to-one mapping of S onto itself, then by definition, for every y of S there is exactly one x of S such that $y=(x) a$. This assignment of a unique x to each y determines a one-to-one mapping $\tau: y \leftrightarrows x$ of S onto itself. From the definition of τ we see that $(x)(\alpha \tau)=x$ for every x in S and $y(\tau \alpha)=y$ for every y in S. Hence, $\alpha \tau=\tau \alpha=1$, and τ is a mapping satisfying the requirements for α^{-1} in $M 4$.

We call a one-to-one mapping of a set onto itself a permutation. When the given set is finite, a permutation may be written by putting the elements of the set in a row and their images below them. Thus $\alpha=\binom{1,2,3}{2,3,1}$ and $\beta=\binom{1,2,3}{1,3,2}$ are two permutations of the set $S(1,2,3)$. Their product is defined to be the permutation $\alpha \beta=\binom{1,2,3}{3,2,1}$. Note that the product rule for permutations given here is obtained by multiplying from left to right. Some authors define the product so that multiplication is from right to left.

1.3. Definitions for Groups and Some Related Systems.

We see that, as single operations, the laws governing addition and multiplication are the same. Of these, all but the commutative law are satisfied by the product rule for the one-to-one mappings of a set onto itself. The laws obeyed by these one-to-one mappings are those which we shall use to define a group.

Definition (First Definition of a Group): A group G is a set of elements $G(a, b, c, \cdots)$ and a binary operation called "product" such that:

G0. Closure Law. For every ordered pair a, b of elements of G, the product $a b=c$ exists and is a unique element of G.
$G 1$. Associative Law. $(a b) c=a(b c)$.
G2. Existence of Unit. An element 1 exists such that $1 a=a 1=a$ for every a of G.

G3. Existence of Inverse. For every a of G there exists an element a^{-1} of G such that $a^{-1} a=a a^{-1}=1$.

These laws are redundant. We may omit one-half of $G 2$ and $G 3$, and replace them by:

G2.* An element 1 exists such that $1 a=a$ for every a of G.
G3.* For every a of G there exists an element x of G such that $x a=1$.
We can show that these in turn imply $G 2$ and $G 3$. For a given a let

$$
x a=1 \quad \text { and } \quad y x=1,
$$

by G3.*
Then we have

$$
a x=1(a x)=(y x)(a x)=y[x(a x)]=y[1 x]=y x=1
$$

so that $G 3$ is satisfied. Also,

$$
a=1 a=(a x) a=a(x a)=a 1
$$

so that $G 2$ is satisfied.
The uniqueness of the unit 1 and of an inverse a^{-1} are readily established (see Ex. 13). We could, of course, also replace $G 2$ and $G 3$ by the assumption of the existence of 1 and x such that: $a 1=a$ and $a x=1$. But if we assume that they satisfy $a 1=a$ and $x a=1$, the situation is slightly different.*

There are a number of ways of bracketing an ordered sequence $a_{1} a_{2} \cdots$ a_{n} to give it a value by calculating a succession of binary products. For $n=3$ there are just two ways of bracketing, namely, $\left(a_{1} a_{2}\right) a_{3}$ and $a_{1}\left(a_{2} a_{3}\right)$, and the associative law asserts the equality of these two products. An important consequence of the associative law is the generalized associative law.

All ways of bracketing an ordered sequence $a_{1} a_{2}, \cdots a_{n}$ to give it a value by calculating a succession of binary products yield the same value.

It is a simple matter, using induction on n, to prove that the generalized associative law is a consequence of the associative law (see Ex. 1).

Another definition may be given which does not explicitly postulate the existence of the unit.

Definition (Second Definition of a Group): A group G is a set of elements $G(a, b, \cdots)$ such that

1) For every ordered pair a, b of elements of G, a binary product $a b$ is defined such that $a b=c$ is a unique element of G.
2) For every element a of G a unary operation "inverse," a^{-1}, is defined such that a^{-1} is a unique element of G.
3) Associative Law. $(a b) c=a(b c)$.
4) Inverse Laws. $a^{-1}(a b)=b=(b a) a^{-1}$.

It is an easy task to show that any set which satisfies the axioms of the first definition also satisfies those of the second. To show the converse, assume the axioms of the second definition and consider the relation:

$$
a^{-1} a=\left[\left(a^{-1} a\right) b\right] b^{-1}=\left(a^{-1} a\right)\left(b b^{-1}\right)=a^{-1}\left[a\left(b b^{-1}\right)\right]=b b^{-1} .
$$

When $a=b$, we see that $a^{-1} a=a a^{-1}$, and consequently the element $a^{-1} a=$ $a a^{-1}$ is the same for every a in G. Let us call this element " 1 ," so that $G 3$ is satisfied. Also,

$$
1 b=\left(a^{-1} a\right) b=a^{-1}(a b)=b,
$$

and

$$
b 1=b\left(a a^{-1}\right)=(b a) a^{-1}=b
$$

and $G 2$ is satisfied. Therefore the two definitions of a group are equivalent.
There is a third definition of a group as follows:
Definition (Third Definition of a Group): A group G is a set of elements $G(a, b, \cdots)$ and a binary operation a / b such that:

L0. For every ordered pair a, b of elements of $G, a / b$ is defined such that $a / b=c$ is a unique element of G.
$L 1 . a / a=b / b$.

L2. $a /(b / b)=a$.
L3. $(a / a) /(b / c)=c / b$.
$L 4 .(a / c) /(b / c)=a / b$.
In terms of this operation, let us define a unary operation of inverse b^{-1} by the rule

$$
b^{-1}=(b / b) / b
$$

Here

$$
\left(b^{-1}\right)^{-1}=\left(b^{-1} / b^{-1}\right) / b^{-1}=\left(b^{-1} / b^{-1}\right) /[(b / b) / b]=b /(b / b)=b,
$$

using in turn $L 3$ and $L 2$. We now define a binary operation of product by the rule

$$
a b=a / b^{-1}
$$

Then $a / b=a /\left(b^{-1}\right)^{-1}=a b^{-1}$. Let us write 1 for the common value of $a / a=b / b$ as given by $L 1$. Then $L 1$ becomes $a a^{-1}=1$, whence also for any $a, 1=$ $a^{-1}\left(a^{-1}\right)^{-1}=a^{-1} a$. Thus $G 3$ of the first definition holds. In $b^{-1}=(b / b) / b$, put b $=1$, whence $1^{-1}=11^{-1}$, and so $1=1 / 1=11^{-1}=1^{-1}$. $L 2$ now becomes $a 1^{-1}=$ $a 1=\mathrm{a}$. By definition $b^{-1}=1 / b=1 b^{-1}$, and with $b=a^{-1}$, this gives $\left(a^{-1}\right)^{-1}=$ $1\left(a^{-1}\right)^{-1}$, or $a=1 a$. Thus $G 2$ of the first definition holds. $L 3$ now becomes $1\left(b c^{-1}\right)^{-1}=c b^{-1}$, whence $\left(b c^{-1}\right)^{-1}=c b^{-1}$. In $L 4$, put $a=x, b=1, c=y^{-1}$; whence $(x y)(1 y)^{-1}=x 1^{-1}=x$ or $(x y) y^{-1}=x$. Now, for any x, y, z, put $a=x y$, $b=z^{-1}, c=y$. Then $a c^{-1}=(x y) y^{-1}=x$, and $L 4$ becomes $\left(a c^{-1}\right)\left(b c^{-1}\right)^{-1}=$ $a b^{-1}$, whence $\left(a c^{-1}\right)\left(c b^{-1}\right)=a b^{-1}$. But in terms of x, y, z this becomes $x(y z)=$ $(x z) z$, the associative law $G 1$. Thus this definition of group implies the first definition. But in terms of the first definition if we put $a b^{-1}=a / b$, we easily find that the laws $L 0,-1,-2,-3,-4$ are satisfied, and therefore the definitions are equivalent.

There are systems which satisfy some but not all the axioms for a group. The following are the main types:

Definition: A quasi-group Q is a system of elements $Q(a, b, c, \cdots)$ in which a binary operation of product $a b$ is defined such that, in $a b=c$, any
two of a, b, c determine the third uniquely as an element of Q.
Definition: A loop is a quasi-group with a unit 1 such that $1 a=a 1=a$ for every element a.

Definition: A semi-group is a system $S(a, b, c, \cdots)$ of elements with a binary operation of product $a b$ such that $(a b) c=a$ (be).

A group clearly satisfies all these definitions. We may, with Kurosch, further define a group as a set which is both a semi-group and a quasi-group. As a semi-group $G 0$ and $G 1$ are satisfied. Let t be the unique element such that $t b=b$ for some particular b, and let y be determined by b and a so that $b y=a$. Then $(t b) y=b y$ and $t(b y)=b y$, or $t a=a$ for any a, and $G 2^{*}$ is satisfied. In a quasigroup G3* is also satisfied. But we have already shown that these properties define a group.

We call a system with a binary product and unary inverse satisfying

$$
a^{-1}(a b)=b=(b a) a^{-1}
$$

a quasi-group with the inverse property, this law being the inverse property. We must show that the product defines a quasi-group. If $a b=c$, we find $b=$ $a^{-1}(a b)=a^{-1} c$, and $a=(a b) b^{-1}=c b^{-1}$. Thus a and b determine c uniquely; and also given c and a, there is at most one b, and given c and b, there is at most one a. Write $a\left(a^{-1} c\right)=w$. Then $a^{-1}\left[a\left(a^{-1} c\right)\right]=a^{-1} w$, whence $a^{-1} c=$ $a^{-1} w$. Then $\left(a^{-1}\right)^{-1}\left(a^{-1} c\right)=\left(a^{-1}\right)^{-1}\left(a^{-1} c\right)$ whence $c=w$. Hence $a\left(a^{-1} c\right)=c$, and similarly, $\left(c b^{-1}\right) b=c$, and the system is a quasi-group. We note that an inverse quasi-group need not be a loop. With three elements a, b, c and relations $a^{2}=a, a b=b a=c, b^{2}=b, b c=c b=a, c^{2}=c, c a=a c=b$, we find that each element is its own inverse, and we have a quasi-group with inverse property but no unit.

1.4. Subgroups, Isomorphisms, Homomorphisms.

A subset of the elements of a group G may itself form a group with respect to the product as defined in G. Such a set of elements H is called a subgroup.

In any group G the unit 1 satisfies $1^{2}=1$. Conversely, if x is an element of G such that $x^{2}=x$, then $x=x^{-1}\left(x^{2}\right)=x^{-1} x=1$. Thus the unit of a subgroup H, since it satisfies $x^{2}=x$, must be the same as the unit of the whole group G.

Theorem 1.4.1. A non-empty subset H of a group G is a subgroup if the two following conditions hold:

S1. If $h_{1} \in H, h_{2} \in H$, then $h_{1} h_{2} \in H$.
 S2. If $h_{1} \in H$, then $h_{1}^{-1} \in H$.

Proof: The two properties given guarantee the validity of $G 0, G 2, G 3$ in H. And since products in H agree with those in $G, G 1$ is also satisfied in H.

There are various relationships between pairs of groups which are worth considering. The first such relationship is that of isomorphism.

Definition: A one-to-one mapping $G \leftrightarrows H$ of the elements of a group G onto those of a group H is called an isomorphism if whenever $g_{1} \leftrightarrows h_{1}$ and $\boldsymbol{g}_{2} \leftrightarrows h_{2}$, then $g_{1} g_{2} \leftrightarrows h_{1} h_{2}$.

Example 1. Since all the permutations of a set form a group (Theorem 1.2.2), any set of permutations satisfying $S 1$ and $S 2$ will form a group which is a subgroup of the full group of permutations. For example, let us consider the following two such subgroups:

$$
\begin{aligned}
G_{1} & G_{2} \\
x_{1}=\binom{1,2,3}{1,2,3} & y_{1}=\binom{1,2,3,4,5,6}{1,2,3,4,5,6} \\
x_{2}=\binom{1,2,3}{2,3,1} & y_{2}=\binom{1,2,3,4,5,6}{2,3,1,6,4,5} \\
x_{3}=\binom{1,2,3}{3,1,2} & y_{3}=\binom{1,2,3,4,5,6}{3,1,2,5,6,4} \\
x_{4}=\binom{1,2,3}{1,3,2} & y_{4}=\binom{1,2,3,4,5,6}{4,5,6,1,2,3} \\
x_{5}=\binom{1,2,3}{3,2,1} & y_{5}=\binom{1,2,3,4,5,6}{5,6,4,3,1,2} \\
x_{6}=\binom{1,2,3}{2.1} & y_{6}=\binom{1,2,3,4,5,6}{6.4 .5 .2 .3 .1}
\end{aligned}
$$

If we map x_{i} of G_{1} onto y_{i} of G_{2}, we find that products correspond in every instance. Hence G_{1} and G_{2} are isomorphic.

More generally we may have a mapping (usually many to one) of the elements of one group G onto those of another group H, which we call a homomorphism if the mapping preserves products.

Definition: A mapping $G \rightarrow H$ of the elements of a group G onto those of a group H is called a homomorphism if whenever $g_{1} \rightarrow h_{1}$ and $g_{2} \rightarrow h_{2}$ then $g_{1} g_{2} \rightarrow h_{1} h_{2}$.

In the homomorphism $G \rightarrow H$ let 1 be the identity of G and let $1 \rightarrow e$, where e is in H. Then $1^{2} \rightarrow e^{2}$. Since $1^{2}=1$, then $e^{2}=e$. We see that e is therefore the identity of H. Also if $g \rightarrow h$ and $g^{-1} \rightarrow k$, then $g g^{-1} \rightarrow h k$, and so $1 \rightarrow h k=e$. Therefore $k=h^{-1}$ and the mapping takes inverses into inverses. We may observe that a one-to-one homomorphism is an isomorphism.

Example 2. If G_{1} is the permutation group above and H is the multiplicative group of the two real numbers $1,-1$, then we have a
homomorphism:

$$
\begin{array}{ll}
x_{1} \rightarrow 1 & x_{4} \rightarrow-1 \\
x_{2} \rightarrow 1 & x_{5} \rightarrow-1 \\
x_{3} \rightarrow 1 & x_{6} \rightarrow-1
\end{array}
$$

Not only are permutation groups of interest in themselves, but also every such group is isomorphic to a permutation group.

Theorem 1.4.2 (Cayley). Every group G is isomorphic to a permutation group of its own elements.

Proof: For each $g \in G$, define the mapping $R(g): x \rightarrow x g$ for all $x \in G$. For a fixed g this is a mapping of the elements of G onto themselves, since for a given $y, y g^{-1} \rightarrow\left(y g^{-1}\right) g=y$. It is also one-to-one, since from $x_{1} g=x_{2} g$ it follows that $x_{1}=x_{2}$. Thus $R(g)$ is a permutation for each g. The mapping $R\left(g_{1}\right) R\left(g_{2}\right)$ is the mapping $x \leftrightarrows x\left(g_{1}\right) g_{2}=x\left(g_{1} g_{2}\right)$, and so, $R\left(g_{1}\right) R\left(g_{2}\right)$ $=R\left(g_{1} g_{2}\right)$. Moreover, in $R\left(g_{1}\right), 1 \leftrightarrows g_{1}$, and in $1 \leftrightarrows g_{2}$. Hence if $g_{1} \neq g_{2}$, then $R\left(g_{1}\right) \neq R\left(g_{2}\right)$. Thus the mapping $g \leftrightarrows R(g)$ is an isomorphism. We observe in addition that $R(1)=I$, the identical mapping, and that $R\left(g^{-1}\right) R(g)$ $=I$, so that $R\left(g^{-1}\right)=[R(g)]^{-1}$.

The permutations $R(g): x \leftrightarrows x g$ are called the right regular representation of G. We may also consider the permutations $L(g): x \leftrightarrows g x$, the left regular representation of G. We find that $L(g)$ is anti-isomorphic to G. This means that the mapping $L(g)$ is one-to-one and that it reverses multiplication, i.e., $L\left(g_{1} g_{2}\right)=L\left(g_{2}\right) L\left(g_{1}\right)$.

If we have a set of subgroups H_{i} of G where j ranges over a system of indices J, then the set of elements of G, each of which belongs to every H_{i}, will satisfy S_{1} and S_{2} and so be a subgroup H called the intersection of the H_{i}. We write this: $H=\bigcap_{j} H_{j}$. Moreover, the set of all finite products, $g_{1} g_{2} \cdots g_{\mathrm{s}}$, where each g_{i} belongs to some H_{i} also satisfies $S 1$ and $S 2$. This set forms a subgroup T called the union of the H_{i}, written $T=\bigcup_{j} H_{i}$. For the intersection and union of two subgroups H and K we write $H \cap K$ and
$H \cup K$, respectively. This notation is in agreement with that of lattice theory and will be considered more fully in Chap. 8.

An arbitrary set of elements in a group is called a complex. If A and B are two complexes in a group G, we write $A B$ for the complex consisting of all elements $a b, a \in A, b \in B$, and call $A B$ the product of A and B. We easily verify the associative law $(A B) C=A(B C)$ for the multiplication of complexes.

If K is any complex in a group G, we designate by $\{K\}$ the subgroup consisting of all finite products $x_{1} \cdots x_{n}$, where each x_{i} is an element of K or the inverse of an element of K. We say that $\{K\}$ is generated by K. It is easy to see that $\{K\}$ is contained in any subgroup of G which contains K.

1.5. Cosets. Theorem of Lagrange. Cyclic groups. Indices.

Given a group G and a subgroup H. The set of elements $h x$, all $h \in H$, $x \in G, x$ fixed, is called a left coset of H and we write $H x$ to designate this set. Similarly, the set of elements $x h$, all $h \in H$, is called a right coset $x H$ of H.

Theorem 1.5.1. Two left (right) cosets of H in G are either disjoint or identical sets of elements. A left (right) coset of H contains the same cardinal number of elements as H.

Proof: If cosets $H x$ and $H y$ have no element in common, there is nothing to prove. Hence, suppose $z \in H x, z \in H y$. Then $z=h_{1} x=h_{2} y$. Here $x=$ $h_{1}^{-1} h_{2} y$ and $h x=h h_{1}^{-1} h_{2} y=h^{\prime} y$, whence $H x \subseteq H y$. Similarly, $h y=h h_{2}^{-1} h_{1} x$ $=h " x$, whence $H y \subseteq H x$. Here $H x=H y$; that is, the sets are identical. A similar proof holds for right cosets. The correspondences $h \leftrightarrows h x$, $h \leftrightarrows x h, h \in H$, show that $H, H x$, and $x H$ contain the same cardinal number of elements.

The element $x=x 1=1 x$ belongs to the cosets $x H$ and $H x$ and is called the representative of the coset. From Theorem 1.5.1, any element $a \in A$ may be taken as the representative, since $H u=H x$. Thus $H=H 1=1 H$ is one of its own cosets, and it is usually convenient (and under certain conventions
compulsory) to take the identity as the representative of a subgroup regarded as one of its own cosets. We write

$$
\begin{equation*}
G=H+H x_{2}+\cdots+H x_{r}, \tag{1.5.1}
\end{equation*}
$$

to indicate that the cosets $H, H x_{2}, \cdots, H x_{r}$ are disjoint and exhaust G. Here the indicated addition is only a convenient notation and not to be regarded as an operation.

Since $(H x)^{-1}$ (the set of inverses of the elements of the form $h x$) is equal to $x^{-1} H$ and $(y H)^{-1}=H y^{-1}$, there is a one-to-one correspondence between left and right cosets of H. Thus, from (1.5.1),

$$
\begin{equation*}
G=H+x_{2}^{-1} H+\cdots+x_{r}^{-1} H \tag{1.5.2}
\end{equation*}
$$

The cardinal number r of right or left cosets of a subgroup H in a group G is called the index of H in G and is written [G:H]. The order of a group G is the cardinal number of elements in G. The identity alone is a subgroup, and its cosets consist of single elements. Thus the order of a group is the index of the identity subgroup.

Theorem 1.5.2 (Theorem of Lagrange). The order of a group G is the product of the order of a subgroup H and the index of H in G.

Proof: Each of the $r=[G: H]$ disjoint cosets of H in G contains the same number of elements as H, which is the order of H.

If H is a subgroup of G, and K is a subgroup of H, let

$$
\begin{aligned}
G & =H+H x_{2}+\cdots+H x_{s} \\
H & =K+K y_{2}+\cdots+K y_{r}
\end{aligned}
$$

Then, for $g \in G, g=h x_{i}, h \in H$ in a unique way, and $h=k y_{i}, k \in K$ uniquely. Thus the cosets of K in G are given by $K y_{i} x_{j} i=1, \cdots r, j=1, \cdots$, s. For two such cosets to be equal, they would have to belong to the same coset of H and so have the same x_{j}. Multiplying by x_{j}^{-1} on the right, we see that they would also have to have the same y_{i}. Thus the cosets of K in H are given by $K y_{i} x_{j}$, and these are all different. We have thus proved the theorem:

Theorem 1.5.3. If $G \supseteq H \supseteq K$, then $[G: K]=[G: H][H: K]$.
A group G is cyclic if every element in it is a power b^{i} of some fixed element b. If we write $\left(b^{-1}\right)^{r}=b^{-r}$, then by the associative law and induction we can show $b^{m} b^{t}=b^{m+t}$ for any integral exponents m, t. If all powers of b are distinct, then the cyclic group is of infinite order and is isomorphic with the additive group of all integers, these being the exponents of the generator b. If not all powers are distinct, let $b^{m}=b^{t}$ with $m>t$. Then $b^{m-t}=1$, with m $-t$ positive. Let $n>0$ be the least positive integer, with $b^{n}=1$. Then we readily see that the elements of the group are $1, b, \cdots, b^{n-1}$ and that with $0 \leq$ $r, s<n, b^{r} b^{s}=b^{r+s}$ if $r+s<n$, while $b^{r} b^{s}=b^{r+s-n}$ if $r+s \geq n$. From this we may verify directly that for each positive n there is, to within isomorphism, a unique cyclic group of order n. This is also the additive group of integers modulo n. Thus, for a cyclic group generated by an element b, its order will either be infinite or some positive integer n, in which case n is the smallest positive integer such that $b^{n}=1$. We define the order of an element b as the order of the cyclic group $\{b\}$ which it generates.

The nature and number of subgroups of a group G are surely of great value in describing G itself. But if G contains no subgroup except itself and the identity, then there are no proper subgroups which describe its structure. In this case we can give a very simple direct description of G.

Theorem 1.5.4. Let G be a group, not the identity alone. Then G has no subgroup except itself and the identity if, and only if, G is a finite cyclic group of prime order.

Proof: Under the hypothesis if $b \neq 1$ is an element of G, then the cyclic group generated by b is not the identity and must be the entire group G. If b is of infinite order, then b^{2} generates a proper subgroup, the elements $b^{2 j}$. Hence b is of finite order, n, and $b^{n}=1$. If n is not a prime, then $n=u v$ with $u>1, v$ >1. Here the powers of b^{u} generate a proper subgroup of order v. Hence n is a prime and G is a cyclic group of prime order. But from the Theorem of Lagrange a group of prime order cannot contain a subgroup different from the identity and the whole group.

There is a basic relation on indices of subgroups.

Theorem 1.5.5. Inequality on indices. $[A \cup B: B] \geq[A: A \cap B]$.
Proof: Call $A \cap B=D$ and let $A=D 1+D x_{2}+\cdots+D x_{r}$. Then we assert that the cosets $B 1, B x_{2}, \cdots, B x_{r}$ are all distinct in $A \cup B$. For if $B x_{i}=B x_{j} \neq i$, then $x_{i}=b x_{i}$ with $b \in B$. But here x_{i} and x_{j} both belong to A, and so for this b also $b \in A$, whence $b \in A \cap B=D$; so the cosets $D x_{j}$ and $D x_{i}$ have in common the element $x_{j}=b x_{i}$ contrary to assumption. Hence there are at least as many distinct cosets of B in $A \cup B$ as there are of $A \cap B$ in A, proving the inequality.

Theorem 1.5.6. Equality of Indices. If $[A \cup B: B]$ and $[A \cup B: A]$ are finite and relatively prime, then $[A \cup B: B]=[A: A \cap B]$ and $[A \cup B: A]=$ $[B: A \cap B]$.

Proof: By Theorem 1.5.3,
$[A \cup B: A \cap B]=[A \cup B: B][B: A \cap B]=[A \cup B: A][A: A \cap B]$.
By Theorem 1.5.5, $[A \cup B: B] \geq[A: A \cap B]$, but also from the above relation $[A \cup B: B]$ divides $[A: A \cap B]$, since it is relatively prime to $[A \cup B: A]$. Hence $[A \cup B: B]=[A: A \cap B]$ and similarly $[A \cup B: A]=[B: A \cap B]$.

1.6. Conjugates and Classes.

Let G be a group and S any set of elements in G. Then the set S^{\prime} of elements of the form $x^{-1} s x, s \in S, x$ fixed, is called the transform of S by x and is written in either of the forms $S^{\prime}=x^{-1} S x$ or $S^{\prime}=S^{x}$.

Lemma 1.6.1. S and S^{x} contain the same number of elements.
Proof: $s \leftrightarrows x^{-1} s x$ is a $1-1$ correspondence, since $s \rightarrow x^{-1} s x=s^{\prime}$ is a mapping and so is $s^{\prime} \rightarrow x s^{\prime} x^{-1}=x\left(x^{-1} S x\right) x^{-1}=s$.

If S and S^{\prime} are two sets in G, H is some subgroup of G, and some $x \in H$ exists such that $S^{\prime}=S^{x}$, we say that S and S^{\prime} are conjugate under H. If $S^{\prime}=$
$x^{-1} S x$, then $S=\left(x^{-1}\right)^{-1} S^{\prime} x^{-1}$ Moreover, if $S^{\prime \prime}=y^{-1} S^{\prime} y$, then $S^{\prime \prime}=y^{-1} x^{-1} S x y=$ $(x y)^{-1}(x y)^{-1} S(x y)$. Since trivially $S=1^{-1} S 1$, we see that the relation of being conjugate under H is an equivalence relation, being reflexive, symmetric, and transitive. We call the set of all S^{\prime} conjugate to a given S a class of conjugates. From $\left(x^{-1} s x\right)^{-1}=x^{-1} s^{-1} x$ and $x^{-1} s_{1} x \cdot x^{-1} s_{2} x=x^{-1}\left(s_{1} s_{2}\right) x$, we deduce:

Lemma 1.6.2. Any set conjugate to a subgroup is also a subgroup. If $x^{-1} S x=S$, then $S=x S x^{-1}$. If also $y^{-1} S y=S$, then $S=(x y)^{-1} S(x y)$. Hence the set of $x \in H$, such that $S^{x}=S$, is a subgroup of H which we shall call the normalizer of S in H, and we designate this as $N_{H}(S)$. Again the set of $x \in H$ such that $x^{-1} S x=s$ for all $S \in \boldsymbol{S}$, may similarly be shown to be a subgroup of H which we call the centralizer of S in H and designate $C_{H}(S)$ [or $Z_{H}(S)$ if we follow the German spelling]. Note that if S consists of a single element, the centralizer and normalizer are identical; moreover, always $C_{H}(S) \subseteq N_{H}(S)$. When $H=G$ it is customary to speak merely of the normalizer or centralizer of S. The centralizer Z of G in G is called the center of G.

Theorem 1.6.1. The number of conjugates of S under H is the index in H of the normalizer of S in $H,\left[H: N_{H}(S)\right]$.

Proof: Write $N_{H}(S)=D$ for brevity and let

$$
H=D+D x_{2}+\cdots+D x_{r} . \quad r=\left[H: N_{H}(S)\right]
$$

Then $x^{-1} S x=y^{-1} S y, x, y \in H$ if, and only if, $S=\left(y x^{-1}\right)^{-1} S\left(y x^{-1}\right)$; that is, $y x^{-1} \in D$ or $y \in D x$. Hence two conjugates of S under H are the same if, and only if, the transforming elements belong to the same left coset of D. Hence the number of distinct conjugates is the index of D in H, as was to be shown.

If S consists of a single element s, the conjugates under G form a class. Thus the classes of elements in G are a partitioning of the elements of G, and we write

$$
G=C_{1}+C_{2}+\cdots+C_{s},
$$

the C_{i} being disjoint classes and every element being in exactly one class. The identity 1 is always a class. From Theorem 1.6.1 the number of elements in a class C_{i} is the index of a subgroup and hence a divisor of the order of the group.

1.7. Double Cosets.

Given a group G and two subgroups H and K, not necessarily distinct, the set of elements $H x K$, where x is some fixed element of G, is called a double coset. As with ordinary cosets, we may prove:

Lemma 1.7.1. Two double cosets HxK and HyK are either disjoint or identical.

Proof: Here, if $z=h_{1} x k_{1}=h_{2} y k_{2}, h x k=h h_{1}^{-1} h_{2} y k_{2} k_{1}^{-1} k$, whence $H x K \subseteq$ $H y K$, and similarly, $H y K \subseteq H x K$.

A double coset $H x K$ contains all left cosets of H of the form $H x k$ and all right cosets of K of the form $h x K$. Moreover, it is clear that $H x K$ consists of complete left cosets of H and of complete right cosets of K.

Theorem 1.7.1. The number of left cosets of H in $H x K$ is $[K: K \cap$ $\left.x^{-1} H x\right]$, and the number of right cosets of K in $H x K$ is $\left[x^{-1} H x: K \cap x^{-1} H x\right]$.

Proof: We put the elements of $H x K$ into a 1-1 correspondence with the elements $x^{-1} H x K$ by the rule $h x k \leftrightarrows x^{-1} h x k$. This correspondence gives a 1-1 correspondence between the left cosets $H x k$ of H in $H x K$ and the left cosets $x^{-1} H x \cdot k$ of $x^{-1} H x$ in $x^{-1} H x K$, and also between the right cosets $h x K$ of K in $H x K$ and the right cosets $x^{-1} h x K$ of K in $x^{-1} H x K$. Let us write $x^{-1} H x=A$, and $A \cap K=D$. Now if $A=1 \cdot D+u_{2} D+\cdots+u_{r} D, r=[A: D]$, then $u_{i} \in A$, whence $K, u_{2} K, \cdots, u_{r} K$ are right cosets of K in $A K$. They are distinct since if $u_{i} K=u_{j} K$, then $u_{i}{ }^{-1} u_{j} \in K$, but since $u_{i}, u_{j} \epsilon A$, this would mean that $u_{i}^{-1} u_{j} \in D$, and thus $u_{i} D=u_{j} D$ contrary to assumption. ${ }^{2}$ Every right coset
of K in $A K$ is of the form $a K$, where $a \in A$ is of the form $u_{i} d$ with $d \in D$. But $u_{i} d K=u_{i} K$. Thus the number of right cosets of K in $A K$ is $[A: D]=$ $\left.{ }^{[} x^{-1} H x: x^{-1} H x \cap K\right]$, and by the $1-1$ correspondence, this is the number of right cosets of K in $H x K$. In the same way it may be shown that the number of left cosets of A in $A K$ is $[K: D]=\left[K: x^{-1} H x \cap K\right]$ and this, by the $1-1$ correspondence, is the number of left cosets of H in $H x K$.

1.8. Remarks on Infinite Groups.

Many of the theorems on groups do not involve the issue as to whether or not the groups are finite. But in some instances the facts are essentially different for finite and infinite groups, and occasionally when the facts are similar, the methods of proof differ.

An infinite group G may have certain finite properties. Some important properties of this kind are:

1) G is finitely generated.
2) G is periodic, that is, the elements of G are of finite order.
3) G satisfies the maximal condition: Every ascending chain of distinct subgroups $A_{1} \subset A_{2} \subset A_{3} \subset \cdots$ is necessarily finite.
4) G satisfies the minimal condition: Every descending chain of distinct subgroups $A_{1} \supset A_{2} \supset A_{3} \supset \cdots$ is necessarily finite.

An infinite group G is said to have a property locally if this property holds for every finitely generated subgroup. A family H_{i} of homomorphic images of a group G is said to be a residual family for G, if for every $g \neq 1$ of G there is at least one H_{i} in which the image of this g is not the identity. We say that G has a property residually if there is a residual family for G of homomorphic images all having the property.

Theorem 1.8.1. A group G satisfies the maximal condition if, and only if, G and every subgroup of G are finitely generated.

Proof: Let H be a subgroup of G which is not finitely generated. We may construct recursively an infinite ascending chain of distinct subgroups of H, $\left\{h_{1}\right\} \subset\left\{h_{1}, h_{2}\right\} \subset \cdots \subset\left\{h_{1}, \cdots, h_{i}\right\} \subset \cdots$, by choosing h_{i} arbitrarily, and recursively h_{i}, an element of H not in $\left\{h_{1}, \cdots, h_{i-1}\right\}$. Such an h_{i} always
exists, since H cannot be the finitely generated group $\left\{h_{1}, \cdots, h_{i-1}\right\}$. Conversely, suppose that G and all its subgroups are finitely generated. Then let $B_{1} \subseteq B_{2} \subseteq B_{3} \subseteq \cdots$ be an ascending chain of subgroups in G. We shall show that after a certain point in this chain all subgroups are equal, and so there is not an infinite ascending chain of distinct subgroups. The set of all elements b, such that $\boldsymbol{b} \boldsymbol{\epsilon} \boldsymbol{B}_{\boldsymbol{i}}$ for some B_{i} in the chain, forms a subgroup B of G, since if $\boldsymbol{b} \boldsymbol{\in} \boldsymbol{B}_{\boldsymbol{i}}$ and $\boldsymbol{b}^{\prime} \boldsymbol{\epsilon} \boldsymbol{B}_{\boldsymbol{j}}$, then both b and b^{\prime} belong to any $B_{\boldsymbol{k}}$ with $k \geq i, k \geq j$, and so also their product and their inverses are in B_{k}.

By hypothesis B is finitely generated, say, by elements $x_{1} \cdots, x_{n}$. Let $B_{i 1}$ be the first B_{i} containing x_{1} and generally $B_{i k}$ be the first B_{i} containing x_{k}, for $k=1, \cdots, n$. Then if m is the largest of $j_{1}, \cdots j_{n}, B_{m}$ will contain all of x_{1}, \cdots, x_{n}, and so $B=B_{m}-B_{m+1}=\cdots$, and all further groups in the chain are equal to B. We shall see later that there are groups which are finitely generated but which have subgroups that are not finitely generated.

Theorem 1.8.2. A group G which satisfies the minimal condition is periodic.

Proof: If G contains an element b of infinite order, then $\left\{b^{2}\right\} \supset\left\{b^{4}\right\} \supset$ • $\cdots \supset\left(b^{2 i}\right\} \supset \cdots$ is an infinite descending chain of distinct subgroups.

In an infinite group we cannot use finite induction on its order, and so some substitute is needed to replace this method of proof which is so valuable for finite groups. One way to make this replacement is to appeal to certain very general axioms on sets and ordering. Suppose that we have an ordering relation $a \leq b$ on the elements of a set S of objects $(a, b, c, \cdots\}$. The ordering may satisfy some of the following axioms:

O1) If $a \leq b$, and $b \leq a$, then $a=b$.
O2) If $a \leq b$, and $b \leq c$, then $a \leq c$.
O3) Either $a \leq b$ or $b \leq a$ for any two a, b.
O4) Any nonempty subset T of S has a first element x_{1}, i.e., an element x_{1} such that $x_{1} \leq t$ for every $t \in T$.

If the first two axioms hold, we say that the ordering is a partial ordering. If the first three axioms hold, we say that the ordering is a simple ordering. If all four axioms hold, we say that the ordering is a well-ordering.

We may appeal to the axiom of well-ordering: Every set S may be wellordered. Let us write $a<b$ to mean $a \leq b$ but $a \neq b$.

In a well-ordered set we may prove propositions by the method of transfinite induction. This proceeds as follows: Designate the first element of S as 1 . Then, if $P(a)$ is a proposition about the elements of S and if $P(1)$ is true, and if the truth of $P(x)$ for all $x<a$ implies the truth of $P(a)$, we conclude that $P(b)$ is true for all $b \boldsymbol{\epsilon} S$. Let T be the subset of S, such that $P(t)$ is false for $t \in T$. If T is nonempty, it contains a first element c. But then either $c=1$ or $P(x)$ is true for all $x<c$. In either event this would lead to the truth of $P(c)$ contrary to the choice of c in T. Hence T must be empty and $P(b)$ true for all $b \in S$. We note in passing that in a well-ordered set any descending sequence $a_{1}>a_{2}>a_{3}>\cdots$ is necessarily finite since it must contain a first element.

Another axiom, logically equivalent to the axiom of well-ordering is Zorn's lemma. This again deals with ordering in sets.

Lemma 1.8.1. (Zorn's Lemma). Given a partially ordered set S. Suppose that every simply ordered subset of S has an upper bound (lower bound) in S. Then S has a maximal (minimal) element. Here if U is a subset of S, then an upper bound b of U is an element such that $b \geq u$ for all $u \in U$. A maximal element w has no upper bound different from itself. Reversing the inclusion, we similarly define lower bound and minimal element.

Suppose we consider subgroups of a group G partially ordered by inclusion $A \subseteq B$ if A is a subgroup of B. Then the set of all elements in a simply ordered subset of subgroups will itself form a subgroup, since if g_{1} is in one of the groups and g_{2} is in another, then both g_{1} and g_{2} are in the greater of the two subgroups and so also are their product and their inverses. For this reason Zorn's lemma is well suited to proofs in group theory or to abstract algebra in general.

Both the Axiom of Well-Ordering and Zorn's lemma are logically equivalent to:

Axiom of Choice. For any family F of subsets $\left\{S_{i}\right\}$ of a set S, there is a choice function $f\left(S_{i}\right)$ defined for the subsets of F whose values are elements of S, such that $f\left(S_{i}\right)=a_{\boldsymbol{i}} \in \boldsymbol{S}_{\boldsymbol{i}}$, the subsets Si not being void.

In certain arguments the Axiom of Choice appears to lead to paradoxes, and for this reason it is suspect. All three principles are surely valid if the set S is countable, i.e., its objects may be put into a one-to-one correspondence with the natural numbers $1,2,3, \cdots$. Presumably, they are valid for other sets S and possibly for all well-defined sets, though it might be remarked that as yet no one has actually constructed a well-ordering of the set of all real numbers. When using any one of these principles in this book, it is to be understood that by "Every set S " we mean "Every set S for which the axiom is valid."

A useful application of these methods is the following:
Theorem 1.8.3. Let g be an element of a group G and H a subgroup of G which does not contain g. Then there is a subgroup M containing H which is maximal with respect to the property of not containing g.

Proof: We use Zorn's lemma. Subgroups containing H but not containing g form a partially ordered set under inclusion. The elements of a simply ordered set of these groups themselves form a group which contains H but not g. Hence a maximal group M exists containing H but not g.

Using this theorem, we easily derive the following:
Theorem 1.8.4. Let G be a finitely generated group and H a proper subgroup of G. Then there exists a maximal subgroup M of G containing H.

Proof: Let G be generated by x_{1}, \cdots, x_{m} and let y_{1} be the first of x_{1}, \cdots, x_{m} not contained in H. Let $M_{1} \supseteq H$ where M_{1} is maximal with respect to the property of not containing y_{1}. Then any subgroup of G containing M_{1} properly contains y_{1} and so also $\left\{M_{1}, y_{1}\right\}=H_{1}$. If $H_{1}=G$, then M_{1} is the maximal subgroup sought. If not, choose $M_{2} \supseteq H_{1}$ where M_{2} is maximal with respect to the property of not containing y_{2}, the first of $x_{1} \cdots, x_{m}$ not contained in H_{1}. Since $G=\left\{x_{1}, \cdots, x_{m}\right\}$, by continuing this process we must reach an $M_{i} \supseteq$ $H_{i-1} \supseteq \cdots \supseteq H$, where $\left\{M_{i}, y_{i}\right\}=G$ and $M_{i}=M$ is the maximal subgroup sought.

1.9. Examples of Groups.

The one-to-one mappings of a set onto itself which preserve some property usually form a group. Many of the most interesting groups arise naturally in this way. The symmetries of a geometric figure are of this kind. These are the congruent (i.e., distance-preserving) mappings of the figure onto itself. The first two examples below are groups of symmetries.

Example 1. Dihedral Groups. The symmetries of a regular polygon of $n \geqq 3$ sides form a group of order $2 n$. These are determined entirely by the way in which the vertices are mapped onto themselves. Let the vertices be numbered $1,2, \cdots, n$ in a clockwise manner. The vertex 1 may be mapped onto any vertex $1,2, \cdots, \mathrm{n}$, and the remaining vertices placed in either a clockwise or a counter-clockwise direction. All symmetries are generated by the rotation

$$
a=\left(\begin{array}{llll}
1,2,3 & \cdots & n-1 & n \\
2,3,4 & \cdots & n & 1
\end{array}\right)
$$

and the reflection

$$
b=\left(\begin{array}{lrr}
1,2, & 3 \cdots & n-1, n \\
1, n, n-1 & \cdots & 3,2
\end{array}\right)
$$

Here $a^{n}=1, b^{2}=1, b a=a^{-1} b$. Moreover, these relations determine the group completely, since every element generated by a and b is of the form $a_{1}^{i} b^{j}{ }_{1}$. - $a_{r}^{i} b^{j}{ }_{r}$ and since $b a^{i}=a^{-i} b$, as we may show from the last relation, every element can be put into the form a^{i} or $a^{i} b$ with $i=0,1, \cdots, n-1$; these are the $2 n$ different elements of the group. These relations also define a group for $n=2$ which is of order 4 . This is called the four group.

Example 2. Symmetries of the Cube. The symmetries of the cube are determined by the mappings of the eight vertices onto themselves. Let these be numbered as in the figure. The symmetries include the rotation

$$
\begin{aligned}
a & =\binom{1,2,3,4,5,6,7,8}{2,3,4,1,6,7,8,5} \\
b & =\binom{1,2,3,4,5,6,7,8}{1,4,8,5,2,3,7,6}
\end{aligned}
$$

and the reflection

$$
c=\binom{1,2,3,4,5,6,7,8}{5,6,7,8,1,2,3,4}
$$

Fig. 1. Symmetries of and the reflection the cube.
The elements a and b generate a group G_{1} which takes every vertex into every other vertex. We may see this from the diagram

$$
1 \xrightarrow{a} 2 \xrightarrow{a} 3 \xrightarrow{a} 4 \xrightarrow{b} 5 \xrightarrow{a} 6 \xrightarrow{a} 7 \xrightarrow{a} 8 \xrightarrow{a} 5 \xrightarrow{b} 2 \xrightarrow{a^{-1}} 1 .
$$

In this diagram $i \xrightarrow{x} j$ means that the element x takes i into j. From this we may read that $b a^{2}$ takes 4 into 7 . The elements that fix 1 form a subgroup H_{1} and we may write

$$
G_{1}=H_{1}+H_{1} x_{2}+H_{1} x_{3}+H_{1} x_{4}+H_{1} x_{5}+H_{1} x_{6}+H_{1} x_{7}+H_{1} x_{8}
$$

where x_{i} is an element taking 1 into i. We may take the x 's as follows: $x_{2}=a$, $x_{3}=a^{2}, x_{4}=a^{3}, x_{5}=a^{3} b, x_{6}=a^{3} b a, x_{7}=a^{3} b a^{2}, x_{8}=a^{3} b a^{3}$. Since there are
only eight letters in all, and all elements in a coset $H_{1} x_{i}$ take 1 into the same i, this includes all conceivable cosets of H_{1} and the index of H_{1} in G_{1} is 8 .

A rotation of the cube fixing the vertex 1 must permute the three adjacent vertices cyclically. Thus H_{1} is of order 3 containing only $1, b, b^{2}$, and so G_{1} is of order 24. The reflection c is not in G_{1} but as $c^{2}=1, c a=a c$ and $c b=$ $a^{2} b a^{2} c$, we see that G, the group generated by a, b, c satisfies $G=G_{1}+G_{1} c$ and is of order 48. G is the full group of symmetries of the cube.

Example 3. What is the order of a group G generated by elements a and b subject only to the relations

$$
a^{7}=1, \quad b^{3}=1, \quad b a=a^{r} b ?
$$

Every element of G may be expressed by a finite sequence of a 's and b 's. From the relation $b a=a^{r} b$ we may ultimately express an element in a form in which no b is followed by an a. Thus every element may be put in the form

$$
g=a^{i} b^{j}, \quad i=0, \quad 1, \cdots, 6 ; \quad j=0,1,2 .
$$

From this we see that the order of G is, at most, 21. But the actual order depends on the value of r in the relation $b a=a^{r} b$. We see that $b a^{2}=a^{r} b a=$ $a^{r}\left(a^{r} b\right)=a^{2 r} b$, and similarly, $b a^{i}=a^{i r} b$. Thus $b^{2} a=b a^{r} b=a^{r 2} b^{2}$. From this we get $b^{2} a^{i}=a^{i r 2} b^{2}$. Hence $b^{3} a=b a^{r 2} b^{2}=a^{r 3} b^{3}$. But as $b^{3}=1$, this gives $a=$ $a^{r 3}$; but also $a^{7}=1$. Of the values $r=1,2,3,4,5,6$, we find that $r=3,5,6$ lead to $a=1$, and the group is merely the cyclic group of order 3 given by b^{3} $=1$. But $r=1,2,4$ do not lead to this result. If $r=1$, then $b a=a b=c$ is an element of order 21. Conversely, in a cyclic group of order 21, with $c^{21}=1$, if we put $b=c^{7}, a=c^{-6}$, we have $a^{7}=1, b^{3}=1, b a=a b=c$. With $r=2$ the following permutations work:

$$
\begin{aligned}
a & =\binom{1,2,3,4,5,6,7}{2,3,4,5,6,7,1} \\
b & =\binom{1,2,3,4,5,6,7}{1,5,2,6,3,7,4}
\end{aligned}
$$

For $r=4$ the same permutation for a and the inverse of the second permutation will do for b. This example is meant to show that an apparently slight change in defining relations can make a major difference in the group defined.

Example 4. Let us find the group of permutations on the seven letters A, B, C, D, E, F, G which permute among themselves the columns of the following diagram, the order of the letters in a column being immaterial:

$$
\begin{aligned}
& A, B, C, D, E, F, G \\
& B, C, D, E, F, G, A \\
& D, E, F, G, A, B, C
\end{aligned}
$$

We see at once that the permutation

$$
a=\binom{A, B, C, D, E, F, G}{B, C, D, E, F, G, A}
$$

permutes the columns cyclically. Thus, if G is the entire group of permutations and H is the subgroup taking the first column into itself, the coset $H a^{i}=1, \cdots 6$ consists of all elements mapping the first column onto the $i+1 \mathrm{st}$. Hence

$$
G=H+\cdots+H a^{6}, \quad[G: H]=7 .
$$

Within H there may be elements permuting A, B, D cyclically. If we try this, we find that this does not appear to determine the mapping of the remaining letters, but if we also assume that C is mapped into itself, a permutation is completely determined which works

$$
b=\binom{A, B, C, D, E, F, G}{B, D, C, A, F, G, E} .
$$

Thus, if K is the subgroup which fixes the first column and also the letter A,

$$
H=K+K b+K b^{2}, \quad b^{3}=1, \quad[H: K]=3
$$

Within K let us seek an element which interchanges B and D. Take

$$
c=\binom{A, B, C, D, E, F, G}{A, D, C, B, F, E, G}
$$

Hence, if T is the subgroup fixing A, B, and D,

$$
K=T+T c, \quad c^{2}=1, \quad[K: T]=2
$$

Within T, the three letters A, B, D are fixed and the letter C can go into any one of the four possibilities C, E, F, G. Each one of these choices leads to exactly one permutation:

$$
\begin{aligned}
& \binom{A, B, C, D, E, F, G}{A, B, C, D, E, F, G}, \\
& \binom{A, B, C, D, E, F, G}{A, B, E, D, C, G, F}, \\
& \binom{A, B, C, D, E, F, G}{A, B, F, D, G, C, E}, \\
& \binom{A, B, C, D, E, F, G}{A, B, G, D, F, E, C} .
\end{aligned}
$$

Thus T is a group of order $4, K$ is of order $8, H$ is of order 24 , and G is of order 168. If the seven letters A, \cdots, G are regarded as points and the columns as lines, the diagram represents the finite projective plane with seven points, and the group G is its collineation group.

Example 5. The Quaternion Group. The following group of order 8 is in many ways an exceptional group. Its unusual properties will be discussed later in $\S 12.5$. Here we are interested in presenting it in terms of its multiplication table, or Cayley table, as it is called after the English mathematician Cayley. In the row with x_{i} on the left and in the column with x_{j} at the top we enter the product $x_{k}=x_{i} x_{j}$.

	$, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}$
x_{1}	$x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}$
x_{2}	$x_{2}, x_{5}, x_{4}, x_{7}, x_{6}, x_{1}, x_{8}, x_{3}$
x_{3}	$x_{3}, x_{8}, x_{5}, x_{2}, x_{7}, x_{4}, x_{1}, x_{6}$
x_{4}	$x_{4}, x_{3}, x_{6}, x_{5}, x_{8}, x_{7}, x_{2}, x_{1}$
x_{5}	$x_{5}, x_{6}, x_{7}, x_{8}, x_{1}, x_{2}, x_{3}, x_{4}$
x_{6}	$x_{6}, x_{1}, x_{8}, x_{3}, x_{2}, x_{5}, x_{4}, x_{7}$
x_{7}	$x_{7}, x_{4}, x_{1}, x_{6}, x_{3}, x_{8}, x_{5}, x_{2}$
x_{8}	$x_{8}, x_{7}, x_{2}, x_{1}, x_{4}, x_{3}, x_{6}, x_{5}$.

In this table, from the fact that every x_{i} occurs exactly once in every row and in every column, we see that in a product $a b=c$ any two of a, b, c determine the third uniquely. Thus the preceding table is the multiplication table of a quasi-group. By inspection we see also that $x_{1} x_{i}=x_{i} x_{1}=x_{i}$ in every instance whence $x_{1}=1$ is a two-sided unit and the table determines a loop. But both these properties are preserved if we replace the last two rows by

$$
\begin{array}{l|l}
x_{7} & x_{7}, x_{4}, x_{2}, x_{1}, x_{3}, x_{8}, x_{6}, x_{5} \\
x_{8} & x_{8}, x_{7}, x_{1}, x_{6}, x_{4}, x_{3}, x_{5}, x_{2}
\end{array}
$$

But the table as given is alleged to be the multiplication table of a group, and for this it is necessary to verify the associative law $(a b) c=a(b c)$ for products.

A full verification of the associative law in this case would involve potentially $8^{3}=512$ verifications. Even though it is easy to see that $(a b) c=$ $a(b c)$ whenever any one of a, b, or c is the identity, this still leaves 343 verifications. Here we appeal to the converse of the Cayley Theorem 1.4.1.

Theorem 1.9.1 (Converse of Cayley's Theorem). A loop is a group if the right regular mappings $x \rightarrow x g$ form a group.

Proof: Here in $R(g) R(h)$ we have $1 \rightarrow g \rightarrow g h$. But also in $R(g h)$ we have $1 \rightarrow g h$, and this is the only mapping taking 1 into $g h$. Hence $R(g) R(h)$ $=R(g h)$, whence, for every $x,(x g) h=x(g h)$ and the associative law holds.

In this case we write $a=x_{2}, b=x_{z}$ and calculate

$$
\begin{aligned}
A & =R(a)=\binom{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}}{x_{2}, x_{5}, x_{8}, x_{3}, x_{6}, x_{1}, x_{4}, x_{7}} \\
B & =R(b)=\binom{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}}{x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{1}, x_{2}}
\end{aligned}
$$

Here $A^{4}=B^{4}=1, A^{2}=B^{2}, B A=A^{3} B$, and we easily see that these generate a group of order 8 that is indeed the right regular representation of the given loop and which is therefore a group. The second rows of the permutations are the columns of the multiplication table. In terms of the generators a and b we have $x_{1}=1, x_{2}=a, x_{3}=b, x_{4}=a b, x_{5}=a^{2}=b^{2}, x_{6}=a^{3}, x_{7}=b^{3}=a^{2} b, x_{8}$ $=a^{3} b ;$ also, $a^{4}=1, b^{4}=1, b^{2}=a^{2}, b a=a^{3} b$.

EXERCISES

1. Show that from the associative law $(a b) c=a(b c)$ it follows that all methods of bracketing $a_{1} a_{2}$ $\cdots a_{n}$, without altering the order of the factors, yield the same product.
2. Show that $(a b)^{-1}=b^{-1} a^{-1}$ in any group and that more generally $\left(a_{1} a_{2} \cdots a_{n-1} a_{n}\right)^{-1}=$ $a_{n}{ }^{-1} a_{n-1}^{-1} \cdots a_{2}^{-1} a_{1}^{-1}$.
3. Show that a and a^{-1} are of the same order.
4. Show that $a b$ and $b a$ are of the same order. (Hint: $a b$ and $b a$ are conjugate elements.)
5. If $a^{m}=1$, and $b^{n}=1$, where m and n are positive integers, and if $b a=a b$, show that $(a b)^{k}=1$, where k is the least common multiple of m and n. Find an example with $b a \neq a b$ where this is untrue.
6. If a group G has only one element a of order 2, show that for every x in $G, x a=a x$.
7. Show that the only finite group with exactly two classes of elements is the group of order 2.
8. If $p<q$ are primes, show that a group of order $p q$ cannot have two distinct subgroups of order q.
9. If H is a proper subgroup of the finite group G, show that the conjugates of H do not include all elements of G.
10. Show that the loops of orders $1,2,3,4$ are groups, but find a loop of order 5 which is not a group.
11. Show that the double coset $H x K$ contains precisely those right cosets of K which have at least one element in common with $H x$.
12. (William Scott.) Show that a system with a binary product and a unit 1 such that $1 a=a 1=a$ for all a will be associative if we take as a law the equality of two distinct bracketings of $a_{1} a_{2} \cdots$ a_{n}.
13. From the axioms of the first definition of a group prove the uniqueness of the unit 1 and the
uniqueness of the inverse a^{-1}.
14. If A and B are two finite subgroups of a group G, show that the complex $A B$ contains exactly $[A: 1][B: 1] /[A \cap B: 1]$ distinct elements.
$\stackrel{*}{-}$ The statement of $M 4$ given here applies to a system in which both addition and multiplication are defined. If addition is not defined, there is no 0 in S, and the law can be rephrased: "For every a, a^{-1} exists such that $\left(a^{-1}\right) a=a\left(a^{-1}\right)=1$."
${ }^{*}$ For a discussion of cardinal numbers, see Birkhoff and MacLane [1], p. 356. This number and others like it throughout the book refer to the Bibliography.
$\stackrel{*}{-}$ H. B. Mann [1].

2. NORMAL SUBGROUPS AND HOMOMORPHISMS

2.1. Normal Subgroups.

A subgroup H of a group G is said to be a normal subgroup if $x^{-1} H x=H$ for all $x \in G$. In the terminology of $\S \underline{1.6}$ a subgroup H of G is a normal subgroup if $N_{G}(H)=G$.

Lemma 2.1.1. A subgroup H of G is a normal subgroup of G if and only if every left coset $H x$ is also a right coset $x H$.

Proof: If $x^{-1} H x=H$ for all x, then $H x=x H$ and conversely, if $H x=y H$ then $x \in y H$ so that $y H=x H$. Hence $H x=x H$ for all $\boldsymbol{x} \boldsymbol{\in} \boldsymbol{G}$ and so $x^{-1} H x$ $=H$.

Corollary 2.2.1. A subgroup of index 2 is necessarily a normal subgroup.

For, if $G=H+H x$, then $G=H+x H$.
For finite groups, $x^{-1} H x \subseteq H$ implies $x^{-1} H x=H$, since $x^{-1} H x$ and H have the same number of elements, but the inclusion need not imply equality for infinite groups. However, if $x^{-1} H x \subseteq H$ and $x H x^{-1} \subseteq H$, then $H=x\left(x^{-1} H x\right) x^{-1}$ $\subseteq x H x^{-1} \subseteq H$, whence $H=x H x^{-1}$ and similarly $H=x^{-1} H x$. Thus $x^{-1} H x \subseteq H$ for all x is sufficient for H to be normal.

A group G that contains no proper normal subgroup is said to be a simple group. The term "simple" must be understood in a purely technical sense. The groups without any proper subgroups are, by Theorem 1.5.4, the finite cyclic groups of prime order, and these are simple groups both in the technical sense and in the more ordinary sense of being uncomplicated. But there are many other simple groups, one of these being the group of order 168 given in the fourth example in $\S \underline{1.8}$. The determination of the finite simple
groups is an unsolved problem. It has been conjectured that a simple finite group, except for those of prime order, is necessarily of even order, but even this seems to be an unusually difficult problem.

2.2. The Kernel of a Homomorphism.

Suppose the group H is a homomorphic image of the group G. Consider the set T of elements $t \in G$ consisting of all elements of G mapped onto the identity of H.

$$
\begin{equation*}
G \rightarrow H, \quad T \rightarrow 1 \tag{2.2.1}
\end{equation*}
$$

As noted in $\S 1.4,1 \rightarrow 1$, whence $1 \in T$. If $t \rightarrow 1, t^{-1} \rightarrow u$, then $1=t t^{-1} \rightarrow$ u. But $1 \rightarrow 1$, whence $u=1$, and so $t^{-1} \rightarrow 1$ and $t^{-1} \in T$. Also if $t_{1} \rightarrow 1, t_{2}$ $\rightarrow 1$, then $t_{1} t_{2} \rightarrow 1$, whence $t_{1} t_{2} \in T$. Hence T is a subgroup of G. Moreover if $x \in G, t \in T$, then $x \rightarrow y, t \rightarrow 1, x^{-1} \rightarrow y^{-1}$, and $x^{-1} t x \rightarrow$ $y^{-1} 1 y=1$, whence $x^{-1} t x \in T$, and so T is a normal subgroup of G. The set T is called the kernel of the homomorphism $G \rightarrow H$.

Theorem 2.2.1 (First Theorem on Homomorphisms). In the homomorphism $G \rightarrow H$ the set T of elements of G mapped onto the identity of H is a normal subgroup of G. Two elements of G have the same image in H if, and only if, they belong to the same coset of T.

Proof: We have already shown that T is a normal subgroup of G. Suppose $x \rightarrow u, y \rightarrow u, x, y \in G, u \in H$. Then $x y^{-1} \rightarrow 1$ and $x y^{-1} \in T$, whence $x \in T y$ and x and y are in the same coset of T. Conversely, if $x \in T y$, then $x=t y$, and if $y \rightarrow u$, then (since $t \rightarrow 1$) we have $x \rightarrow u$ and x and y have the same image in H.

2.3. Factor Groups.

In the preceding section it was shown that the kernel of a homomorphism of a group G is a normal subgroup T. Conversely, it is true that every normal
subgroup T is the kernel of a homomorphism and, in fact, of a unique homomorphism. Suppose

$$
\begin{equation*}
G=T+T x_{2}+\cdots+T x_{r}, \tag{2.3.1}
\end{equation*}
$$

where T is a normal subgroup of G. We shall take the cosets $T x_{i}$ as the elements of a system H. We define a product in H as

$$
\begin{equation*}
\left(T x_{i}\right)\left(T x_{j}\right)=T x_{k}, \tag{2.3.2}
\end{equation*}
$$

if $x_{i} x_{j} \in T x_{k}$ in G.
It is necessary to show that the product is uniquely defined. Let $t_{1} x_{i}$ and $t_{2} x_{j}$ be arbitrary elements of $T x_{i}$ and $T x_{j}$, respectively. Here $t_{1} x_{i} t_{2} x_{j}=t_{1} x_{i} t_{2} x_{i}^{-1} \cdot x_{i} x_{j}=t_{3} x_{i} x_{j}$, since T is a normal subgroup. But if $x_{i} x_{j} \in T x_{k}$, then also $t_{3} x_{i} x_{j} \in T x_{k}$. Thus all products of an element in $T x_{i}$ and an element in $T x_{j}$ yield elements of the same coset $T x_{k}$. Thus the product in (2.3.2) depends solely on the cosets and not on the choice of the representatives; hence the product in H is well defined.

Since T is a normal subgroup $T^{2}=T, T x_{i}=x_{i} T$. Hence, in H, T is a unit as $T \cdot T x_{i}=T x_{i}, T x_{i} \cdot T=T x_{i} T=T T x_{i}=T x_{i}$. Moreover, the product is associative, since $\left(T x_{i} T x_{j}\right) T x_{k}=T x_{i} x_{j} x_{k}=T x_{i}\left(T x_{j} T x_{k}\right)$. If $x_{i}{ }^{-1} \epsilon T x_{j}$, then $T x_{i} T x_{j}$ contains $x_{i} x_{i}^{-1}=1$, and so $T x_{i} T x_{j}=T$, whence in $H, T x_{j}$ is the inverse of $T x_{i}$, as we may also readily verify that $T x_{j} T x_{i}=T$. This completes the verification that H is a group which we call the factor group of G with respect to T. We write $H=G / T$.

Theorem 2.3.1 (Second Theorem on Homomorphisms). Given a group G and a normal subgroup T. Then if $H=G / T$, there is a homomorphism G $\rightarrow H$ whose kernel is T. This homomorphism is given by $g \rightarrow T x_{i}$ if $g \in T x_{i}$ in G.

Proof: Consider the mapping $g \rightarrow T x_{i}$ of G onto H when $g \in T x_{i}$ in G. If $g_{1} \in T x_{i}, g_{2} \in T x_{j}$, then (as we showed) $g_{1} g_{2} \in T x_{k}$, where $x_{i} x_{j} \in T x_{k}$. Hence $g_{1} g_{2} \rightarrow T x_{k}=T x_{i} T x_{j}$. Thus the mapping of G onto H preserves products and so is a homomorphism. Since T is the identity of G / T,
then $g \rightarrow 1(=T$ in $H)$ if, and only if, $g \in T$ in G, whence T is the kernel of the homomorphism. This completes the proof.

Theorem 2.3.2 (Third Theorem on Homomorphisms). If $G \rightarrow K$ is a homomorphism of G onto K, and T is the kernel of the homomorphism, then K is isomorphic to $G / T=H$. If $x \rightarrow x *$ in the homomorphism $G \rightarrow K$, then $x^{*} \leftrightarrows T x$ is an isomorphism between K and H.

Proof: Since elements of G in the same coset of T have the same image in K, the correspondence $x^{*} \leftrightarrows T x$ is one to one. But if $x \rightarrow x^{*}, y \rightarrow y^{*}$, then $x y \rightarrow x^{*} y^{*}$. But $x y \in T x y$, whence $x^{*} y^{*} \leftrightarrows T x y=T x T y$. Thus the correspondence $x^{*} \leftrightarrows T x$ preserves products and is an isomorphism of K and $H=G / T$.

Let us summarize the content of these three main theorems on homomorphisms. We have shown that the kernel of any homomorphism is a normal subgroup, that any normal subgroup is the kernel of a homomorphism whose image is unique (to within isomorphism), and that this image is the factor group of the given group with respect to the normal subgroup.

Theorem 2.3.3. If A and B are subgroups of a group G and either one of them is a normal subgroup, then $A \cup B=A B$.

Proof: We must show that every finite product $x_{1} x_{2} \cdots x_{s}$ with $x_{i} \in A$ or B can be put in the form $a b$. Now if B is normal a product $b a=a a^{-1} b a=$ $a b^{\prime}$, while if A is normal $b a=b a b^{-1} b=a^{\prime} b$ then we can rewrite the product so that no b precedes an a. The product now takes the form $a_{1} a_{2} \cdots a_{j} b_{j+1}$. $\cdots b_{s}=a b$, where $a_{i}, \boldsymbol{a} \in A$ and $b_{i}, b \in B$.

Theorem 2.3.4. Let T be a normal subgroup of G. There is a $1-1$ correspondence between subgroups K^{*} of $H=G / T$ and subgroups K of G such that $G \supseteq K \supseteq T$, where K consists of all elements of G mapped onto elements of K^{*}. If K^{*} is normal in H, then K is normal in G and conversely. Also $[G: K]=\left[H: K^{*}\right]$.

Proof: Trivially, the image in H of a subgroup of G is a subgroup. Now if K^{*} is a subgroup of H, the inverse image K of K^{*} in G will contain T, the
inverse image of 1 . Also the inverse image satisfies the requirements for a subgroup.

Hence the inverse image of a subgroup K^{*} of H is a unique subgroup K such that $G \supseteq K \supseteq T$, and the same K^{*} is the unique image of K in the homomorphism $G \rightarrow H$. Hence $K \leftrightarrows K^{*}$ is a $1-1$ correspondence between $G \supseteq K \supseteq T$ and $H \supseteq K^{*} \supseteq 1$. If K^{*} is normal in H then $x^{-1} K x \rightarrow$ $x^{*-1} K^{*} x^{*}=K^{*}$, whence $x^{-1} K x \subseteq K$ for any x, and so K is normal in G. Again, if K is normal, the normality of its image K^{*} is trivial. Finally, the inverse image of a coset $K^{*} g^{*}$ is seen to be a coset $K g$, whence $[G: K]=$ [$\left.H: K^{*}\right]$.

If an arbitrary subgroup A has the image A^{*}, then the inverse image of A^{*} is readily seen to be $A \cup T=A T$.

2.4. Operators.

A mapping $\alpha: g \rightarrow g^{\alpha}$ of a group G into itself is called an endomorphism of G or an operator on G, if $(x y)^{\alpha}=x^{\alpha} y^{\alpha}$. Thus an endomorphism is a homomorphism of G into itself. An automorphism is a $1-1$ endomorphism mapping G onto itself. If $g^{\alpha}=h^{\alpha}$ implies $g=h$, the endomorphism is an isomorphism, which in a finite group is necessarily an automorphism. But an infinite group may be isomorphic to a proper subgroup. Thus $x \rightarrow 2 x$ is an endomorphism which is an isomorphism of the additive group of integers but not an automorphism.

A subgroup H of G is said to be admissible with respect to endomorphisms α_{i} if $H^{\alpha_{i}} \subseteq H$ for all α_{i}. It follows immediately from the definitions that unions and intersections of admissible subgroups are admissible subgroups. Again it is clear that an operator α may also be regarded as an operator in an admissible subgroup. But it can happen that two operators which are different for an entire group may agree in their effect on an admissible subgroup. Moreover if $G \rightarrow K$ is a homomorphism of G onto K whose kernel T is admissible with respect to an endomorphism α, then we may define a corresponding operator in K. We put

$$
\begin{equation*}
(T x)^{\alpha}=T x^{\alpha} . \tag{2.4.1}
\end{equation*}
$$

This is a natural definition since applying the endomorphism to the coset $T x$ gives only elements belonging to $T x^{\alpha}$. We readily verify that this defines an operator in K and also that $x \rightarrow x^{*}$ in the homomorphism $G \rightarrow K$, then $x^{\alpha} \rightarrow$ $x^{* \alpha}$.

Two groups A and B are operator isomorphic if there is a $1-1$ correspondence $A \leftrightarrows B$ and also $\alpha_{i} \leftrightarrows \beta_{i}$ between the groups and the operators on them such that $a \leftrightarrows b$ is an isomorphism and $a^{\alpha i} \leftrightarrows b^{\beta i}$ in this isomorphism. Thus an operator isomorphism is stronger than an isomorphism.

Theorem 2.4.1. Given a group G and a set Ω of operators on G. Suppose A is an admissible subgroup of G and T an admissible normal subgroup. Then $A \cap T$ is an admissible normal subgroup of A and the factor groups $A \cup T / T$ and $A / A \cap T$ are operator isomorphic.

Proof: $A \cap T$ as an intersection of Ω subgroups (i.e., admissible under Ω) will be an Ω subgroup of A. If $u \in A \cap T, a \in A$, then $a^{-1} u a \in A$. Also, since T is normal in G and $u \in T, a^{-1} u a \in A \cap T$, and so $A \cap$ T is normal in A.

Let us write $D=A \cap T$.

$$
\begin{equation*}
A=D+D a_{2}+\cdots+D a_{r} \tag{2.4.2}
\end{equation*}
$$

Then we assert

$$
\begin{equation*}
A \cup T=T+T a_{2}+\cdots+T a_{r} \tag{2.4.3}
\end{equation*}
$$

using the same coset representatives in (2.4.3) as we did in (2.4.2). Here, if $T a_{i}=T a_{j}$, then $a_{i} a_{j}^{-1} \in T$. But $a_{i} a_{j}^{-1} \in \mathrm{~A}$, whence $a_{i} a_{j}^{-1} \in A \cap T=D$, contrary to (2.4.2). Hence the cosets $T a_{i}$ in (2.4.3) are all distinct. Moreover, since T is a normal subgroup, $A \cup T=T A$, and so any coset of T in $A \cup T$ is of the form $T a=T d a_{i}$, with $a=d a_{i}$ from (2.4.2). But as $d \in T, T d a_{i}=T a_{i}$, and so the cosets in (2.4.3), will exhaust A $\cup T$. The correspondence

$$
\begin{equation*}
D a_{i} \leftrightarrows T a_{i} \tag{2.4.4}
\end{equation*}
$$

is a $1-1$ correspondence between the cosets in (2.4.2) and (2.4.3), and thus a $1-1$ correspondence between the elements of A / D and those of $A \cup T / T$. Also, if $a_{i} a_{j}=d a_{k}$ with $d \epsilon D$, since $D \subseteq T$, we shall have both $D a_{i} D a_{j}=$ $D a_{k}$ and $T a_{i} T a_{j}=T a_{k}$. Thus the rule (2.4.4) is an isomorphism between the factor groups A / D and $A \cup T / T$. An operator $\alpha \in \Omega$ determines an operator in A / D and also one in $A \cup T / T$ by the rules $\left(D a_{i}\right)^{\alpha}=D a_{i}{ }^{\alpha}$ and $\left(T a_{i}\right)^{\alpha}=T a_{i}{ }^{\alpha}$. For the operators given in this way, it is immediate that (2.4.4) determines an operator isomorphism. This completes the proof.

We may easily verify that a subgroup K of a group G is a normal subgroup if, and only if, it is admissible under the family of inner automorphisms of G. In terms of operators we define two successively stronger forms of normality for subgroups. A subgroup admissible under all automorphisms of a group is called a characteristic subgroup, and a subgroup admissible under all endomorphisms is called a fully invariant subgroup. Thus the center Z of a group G is a characteristic subgroup, since if $z g=g z$ for all $g \in G$, then for an automorphism α, we have $z^{\alpha} g^{\alpha}=g^{\alpha} z^{\alpha}$, and as g runs over all elements of G, g^{α} will also run over all elements of G, and we conclude that $Z^{\alpha} \in Z$. But the center is not necessarily a fully invariant subgroup. As an example, consider the group G of order 16 defined by the relations $a^{4}=1, b^{2}=c^{2}=1, b a=a^{-1} b, c a=a c, c b=b c$. Here the center Z is of order 4 and generated by a^{2} and c. But the mapping $a \rightarrow b, b$ $\rightarrow b, c \rightarrow b$ defines an endomorphism of G mapping the element of the center c onto the element b, which is not in the center. But an endomorphism preserves the form of an element, whence the subgroups generated by all x^{3}, $x \in G$ or by all $x^{-1} y^{-1} x y, x, y \in G$ will be fully invariant.

A particularly useful property of these stronger forms of normality is the fact that, although a normal subgroup H of a normal subgroup K of a group G is not in general a normal subgroup, it follows from the definitions that a characteristic subgroup of a characteristic subgroup is characteristic, and a fully invariant subgroup of a fully invariant subgroup is fully invariant. Also a characteristic subgroup of a normal subgroup is a normal subgroup.

2.5. Direct Products and Cartesian Products.

Given two groups A and B, we may form from these the set of ordered pairs $(a, b), a \in A, b \in B$. These ordered pairs will be the elements of a new group, the direct product $A \times B$, if we define our product by the rule

$$
\begin{equation*}
\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)=\left(a_{1} a_{2}, b_{1} b_{2}\right) \tag{2.5.1}
\end{equation*}
$$

The verification that the product rule (2.5.1) satisfies the group axioms with $(1,1)$ as the identity element is straightforward, depending only on the validity of these axioms for A and B. Moreover, the correspondence $(a, b) \leftrightarrows(b, a)$ shows that $A \times B$ and $B \times A$ are isomorphic, so that we may speak of the direct product of two groups without specifying their order. The correspondence $a \leftrightarrows(a, 1)$ is an isomorphism between A and the set of elements in $A \times B$, with the second component the identity. Similarly, $b \leftrightarrows(1, b)$ is an isomorphism between B and the subgroup of elements $(1, b)$. Let us identify A and B with these subgroups. With this identification we say that $G=A \times B$ is the direct product of its subgroups A and B. Since $(a, 1)(1, b)=(a, b)=(1, b)(a, 1)$, it follows that in $A \times B$ every element of A permutes (or commutes) with every element of B; that is, $a b=b a$ for $a \in A, b \in B$.

In the direct product, $(a, b)^{-1}=\left(a^{-1}, b^{-1}\right)$. Hence $\left(a_{1}, b_{1}\right)^{-1}\left(a_{2}, 1\right)-\left(a_{1} b_{1}\right)$ $=\left(a_{1}^{-1} a_{2} a_{1}, 1\right)$, and so A is a normal subgroup of $A \times B$. Similarly, B is a normal subgroup of $A \times B$. The only element simultaneously of the forms (a, $1)$ and $(1, b)$ is $(1,1)$, whence $A \cap B=1$. Moreover, $A \cup B$ includes all products $(a, 1)(1, b)=(a, b)$, whence $A \cup B=A \times B$. These relations between A and B characterize $A \times B$.

Theorem 2.5.1. A group G is isomorphic to the direct product of two subgroups A and B if A and B are normal subgroups such that $A \cap B=1, A$ Ч $B=G$.

Proof: We have already noted that in the direct product $A \times B$, the subgroups A and B have these properties. Suppose conversely that A and B are normal subgroups of G, with $A \cap B=1, A \cup B=G$. Consider an element $a^{-1} b^{-1} a b=a^{-1}\left(b^{-1} a b\right)=\left(a^{-1} b^{-1} a\right) b$, where $a \in A, b \in B$. Since A and B are normal subgroups, from the first bracketing it is an element of A, and from the second, an element of B. This is an element of $A \cap B=1$, whence
$a^{-1} b^{-1} a b=1$, and so $a b=b a$. From Theorem 2.3.3, $G=A \cup B=A B$, whence every element g can be put in the form $g=a b$. Moreover, this form is unique since $a_{1} b_{1}=a_{2} b_{2}$ implies $a_{2}^{-1} a_{1}=b_{2} b_{1}^{-1} \in A \cap B=1$, whence $a_{1}=a_{2}, b_{1}=b_{2}$. If $g=a b$, let us put $g \leftrightarrows(a, b)$. If $g_{1}=a_{1} b_{1}, g_{2}=a_{2} b_{2}$, then $g_{1} g_{2}=a_{1} b_{1} a_{2} b_{2}=\left(a_{1} b_{2}\right)\left(b_{1} b_{2}\right)$. Thus the correspondence between G and $A \times B$ is not only one-to-one but also preserves products, and we have established an isomorphism between G and $A \times B$.

We may generalize the preceding ideas to define a product of any number of groups, finite or infinite. Suppose we are given an indexed system of groups A_{i} where i runs over some index system I (we shall assume that I is well ordered for some of our theorems). We construct formal products

Π
a_{i}. A formal product is simply a choice of one element a_{i} from each of the groups A_{i}. All formal products form a group called the Cartesian product of the A_{i}, where the product rule is

$$
\begin{align*}
\prod_{i \in I} a_{i} \cdot \prod_{i \in I} b_{i} & =\prod_{i \in I} c_{i}, \tag{2.5.2}\\
c_{i} & =a_{i} b_{i},
\end{align*}
$$

for every $\boldsymbol{i} \boldsymbol{\epsilon} \boldsymbol{I}$.
The subgroup of the Cartesian product in which $a_{i}=1$ for all but a finite number of indices is called the direct product of the A_{i}. Clearly, the direct and Cartesian product coincide when the number of factors is finite. In both cases the elements $\prod_{i} a_{i}$, where $a_{i}=1$ for $i \neq j$, form a normal subgroup isomorphic to A_{j}, and identifying A_{j} with this subgroup in every case, we observe that $A_{j} \cap\left(\bigcup_{i \neq j} A_{i}\right)=1$. Here $\bigcup_{i \in I} A_{i}$ is the direct product.

Theorem 2.5.2. A group G is isomorphic to the direct product of subgroups $A_{i}, i \in I$, if

1) Every A_{i} is a normal subgroup.

$$
\begin{aligned}
& \text { 2) } A_{i} \cap\left(\bigcup_{i \neq j} A_{i}\right)=1 \text { for every } j \in I . \\
& \text { 3) } G=\bigcup_{i \in I} A_{i} .
\end{aligned}
$$

Proof: The proof follows very closely that of Theorem 2.5.1. From 1) and 2) every a_{j} permutes with every finite product of a_{i} 's with $i \neq j$. Also from 1), 2), and 3) every $g \in G$ is expressible as a finite product of elements from the A_{i}, and apart from order, has a unique form as a product using at most one factor from each A_{i}. This gives us an isomorphism between G and the direct product of the A_{i}. An element of G can be put in the form $g=$ 1 or $g=b_{1} \cdots b_{m}, b_{k} \neq 1, k=1, \cdots, m$, where the b 's are from different A_{i} 's. Here g corresponds to the element $\prod_{i \in I} a_{i}$, where $a_{i}=b_{k}$ if there is a $b_{k} \in A_{i}$ in the product form for g, and $a_{i}=1$ otherwise. This correspondence yields the isomorphism between G and the direct product of the A_{i}.

EXERCISES

1. Show that every dihedral group is homomorphic to the group of order 2 .
2. Show that if $p<q$ are primes, then in a group of order $p q$ a subgroup of order q is normal. (See Ex. 8 in Chap. 1.)
3. Show that the subgroups of the quaternion group are all normal.
4. In a cube let x, y, z be the three lines joining mid-points of opposite faces. Show that the symmetries G of the cube permute these lines in a permutation group H of order 6 . Show that H is a homomorphic image of G.
5. Consider the $1-1$ mappings $x \leftrightarrows a x+b, a, b$, real, $a \neq 0$ of the real numbers onto themselves. Show that these form a group G in which the translations $T: x \leftrightarrows x+t$ form a normal subgroup. What is the factor group G / T ?
6. For each element b of a group G define an operator of conjugation by $b: g \rightarrow g^{b}=b^{-1} g b$. Which subgroups are admissible with respect to all such operators? If T is a normal subgroup of G, show that the operator induced in $H=G / T$ is also a conjugation.

3. ELEMENTARY THEORY OF ABELIAN GROUPS

3.1. Definition of Abelian Group. Cyclic Groups.

A group G which satisfies the commutative law

$$
G 4, b a=a b, \quad \text { for all } a, b \in G
$$

is called an Abelian group after the mathematician Abel. We also say that elements a and b permute if $b a=a b$.

In $\S 1.5$ we defined a cyclic group as a group generated by a single element (say, b), with all its elements being powers of b. Since $b^{i} b^{j}=b^{j} b^{i}=$ b^{i+j} for any integers i, j, we see that every cyclic group is Abelian. We also noted in $\S 1.5$ that, within isomorphism, there is a unique cyclic group of infinite order and a unique cyclic group of each finite order n. It is also true that every subgroup of a cyclic group is cyclic. We prove this in a precise form.

Theorem 3.1.1. Every subgroup of an infinite cyclic group different from the identity is an infinite cyclic group of finite index, and there is a unique subgroup for each finite index. Every subgroup of a finite cyclic group of order n is a cyclic group of order dividing n, and there is a unique subgroup of each order dividing n.

Proof: Given a cyclic group G generated by an element b and a subgroup H of G. If H is not the identity and if $b^{i} \in H$, then $b^{-i} \in H$, and one or the other of these exponents is positive. Suppose m is the least positive exponent of any element occurring in H, and let b^{t} be any element of H. Then, choosing r appropriately, we have $t=m r+s$ with $0 \leq s<m$. Here $b^{t}=\left(b^{m}\right)^{r} b^{s}$. Since both b^{t} and b^{m} belong to H, it follows that b^{s} also belongs to H. But if s is
anything except 0 in the range $0 \leq s<m$, this would conflict with our definition of m as the least positive exponent of b occurring for an element of H. Hence $s=0$, and $b^{t}=\left(b^{m}\right)^{r}$, and all elements of H are powers of b^{m}, whence H is cyclic. Since for any x which is an integer we have $x=k m+i$, where i is one of $0,1, \cdots, m-1$, we readily verify that

$$
\begin{equation*}
G=H+H b+\cdots+H b^{m-1} . \tag{3.1.1}
\end{equation*}
$$

The equation (3.1.1) contains all possible cosets of H and these are different, since $b^{i}=h b^{j}$ with $i \neq j$ in the range from 0 to $m-1$ would give a smaller positive power of b in H, this being either b^{i-j} or b^{j-i}. Hence $[G: H]=m$. Here m is the smallest positive power of b contained in H and also is the index of H in G. Thus, if G is infinite, since for any positive m the elements $\left(b^{m}\right)^{r}$ form a subgroup, there is a unique subgroup of index m. If G is finite, of order n, then $b^{n}=1$, and so $n=m r$, and m is a divisor of n. Here, for any m dividing n, if $n=m r$ we have the elements $1, b^{m}, b^{2 m}, \cdots, b\left(r^{-1) m}\right.$ forming a subgroup of order r and index m. Since $n=m r$ can be any factorization of n into two factors, we see that there is one, and only one, subgroup of each order r dividing n.

3.2. Some Structure Theorems for Abelian Groups.

An infinite Abelian group may have a very complicated structure. As a relatively simple example, the multiplicative group of all complex numbers except zero contains elements of infinite order and also of every finite order.

If $a^{n}=1, b^{m}=1$ in an Abelian group, then $\left(a^{-1}\right)^{n}=1$ and $(a b)^{m n}=1$, whence the elements of finite order in any Abelian group A form a subgroup F. Every endomorphism α of A maps an element of finite order onto an element of finite order. Thus, in the sense of $\S 2.4, F$ is a fully invariant subgroup of A. In $\S 1.8$ we introduced the term periodic group (the term torsion group is used in certain applications) for a group all of whose elements are of finite order. In contrast a group in which no element except the identity is of finite order is called an aperiodic group (or torsion-free group).

Theorem 3.2.1. Given an Abelian group A. Let F be the subgroup of elements of finite order. Then A / F is aperiodic.

Proof: Suppose to the contrary that $x \neq 1$ in A / F is of finite order m. Then in the homomorphism $A \rightarrow A / F$ let $u \rightarrow x$. Then $u^{m} \rightarrow x^{m}=1$, whence $u^{m} \in F$ and u^{m} is of some finite order, say, n. Here $\left(u^{m}\right)^{n}=1$ and u itself is of finite order. Thus $u \in F$ and $u \rightarrow 1$ although we assumed $x \neq 1$.

This theorem reduces the problem of constructing all Abelian groups to three more explicit problems:

1) The determination of all periodic Abelian groups.
2) The determination of all aperiodic Abelian groups.
3) The construction of an Abelian group A with a given periodic group F as a subgroup, such that the factor group A / F shall be isomorphic to a given aperiodic group H. No one of these is completely settled, but it appears that we know most about the first and least about the last.

We shall say that a set of elements a_{i} in an Abelian group A is independent if a finite product $\prod_{i} a_{i}^{e_{i}}=1$ only when $a_{i}^{e_{i}}=1$ for every i. If the a_{i} are independent and also generate A, we say that the a_{i} form a basis for A. Thus elements a_{i} form a basis for A if, and only if, A is the direct product of the cyclic groups generated by the a_{i}.

Suppose an Abelian group A is generated by elements $a_{1} \cdots, a_{r}$. Then every element of A is of the form $a_{1}^{u_{1}} \cdots a_{r}^{u_{r}}$, where the u_{i} are integers. If

$$
\begin{equation*}
a_{1}^{x_{1}} \cdots a_{r}^{x_{r}}=1 \tag{3.2.1}
\end{equation*}
$$

is a relation on these generators, we say that

$$
\begin{equation*}
a_{1}^{-x_{1}} \cdots a_{r}^{-x_{r}}=1 \tag{3.2.2}
\end{equation*}
$$

is its inverse relation. From a set S of relations holding in A we may derive others by taking the product of relations of S and inverses of relations of S. Two sets of relations S_{1} and S_{2} are said to be equivalent if the relations of each set may be derived in this way from the relations of the other set. This is easily seen to be a true equivalence. We say that a set S is a set of defining relations for A if every relation holding in A may be derived from those of S.

It may be shown that an arbitrary set S of relations on generators a_{1}, \cdots, a_{r} is a set of defining relations for that Abelian group A generated by $a_{1} \cdots, a_{r}$ in which the relations derived from S hold, but no others hold. The group A may, of course, reduce to the identity element alone.

Theorem 3.2.2. An Abelian group generated by a finite number r of elements has a basis of, at most, relements.

Proof: The theorem is trivially true for $r=1$, since then the group is cyclic. Suppose that A is generated by a_{1}, \cdots, a_{r}. Our proof will be based on induction on r, and for fixed r on the smallest positive integer m such that $x_{i}=$ m in a relation

$$
\begin{equation*}
a_{1}^{x_{1}} \cdots a_{r}^{x_{r}}=1 \tag{3.2.3}
\end{equation*}
$$

If there is only the relation with all $x_{i}=0$, then A is the direct product of the infinite cyclic groups $\left\{a_{i}\right\}$ and our theorem is true. Otherwise, some relation or its inverse will contain some positive exponents. Let us renumber the a 's, if necessary, so that the smallest positive exponent in a relation is $x_{1}=m$. If $m=1$, then we have

$$
\begin{equation*}
a_{1}=a_{2}^{-x_{2}} \cdots a_{r}^{-x_{r}} \tag{3.2.4}
\end{equation*}
$$

and A is generated by the $r-1$ elements a_{2}, \cdots, a_{r}, and by induction our theorem is true. Now suppose $x_{1}=m>1$ in the relation

$$
\begin{equation*}
a_{1}^{m} a_{2}^{x_{2}} \cdots a_{r}^{x_{r}}=1 \tag{3.2.5}
\end{equation*}
$$

Let y_{1}, \cdots, y_{r} be the exponents in a further relation. Then, for any integer k, from this relation and (3.2.5) we may derive a relation with exponents $y_{1}-$ $k m, y_{2}-k x_{2}, \cdots, y_{r}-k x_{r}$. We may choose k so that $0 \leq y_{1}-k m<m$. But since m was the smallest positive exponent in any relation, we must have y_{1} $-k m=0$, and so the relation with exponents y_{1}, \cdots, y_{r} can be derived from (3.2.5) and the relation with exponents $0, y_{2}-k x_{2}, \cdots, y_{r}-k x_{r}$. Thus the set
of all relations for A is equivalent to the set S consisting of (3.2.5) and relations involving only a_{2}, \cdots, a_{r}.

In (3.2.5). let $x_{2}=k_{2} m+s_{2}, \cdots, x_{r}=k_{r} m+s_{r}$, where we choose $k_{i}, i=2$, \cdots, r so that $0 \leq s_{i}<m$. If we take a new element

$$
\begin{equation*}
a_{1}^{*}=a_{1} a_{2}^{k_{2}} \cdots a_{r}^{k_{r}} \tag{3.2.6}
\end{equation*}
$$

then $a_{1}{ }^{*}, a_{2}, \cdots, a_{r}$ also generate A, and in terms of these generators, (3.2.5). becomes

$$
\begin{equation*}
a_{1}^{* m} a_{2}^{s_{2}^{2}} \cdots a_{r}^{s_{r}}=1 \tag{3.2.7}
\end{equation*}
$$

Here if any s is different from zero, it is a positive number less than m and we may apply our induction. But if $s_{2}=\cdots=s_{r}=0$, then (3.2.7) becomes

$$
\begin{equation*}
a_{1}^{* m}=1, \tag{3.2.8}
\end{equation*}
$$

and since (3.2.5) and relations involving only a_{2}, \cdots, a_{r} were a defining set of relations for A in terms of generators $a_{1}, a_{2}, \cdots, a_{r}$, it follows that (3.2.8). and relations involving only a_{2}, \cdots, a_{r} are a defining set of relations in terms of generators $a_{1}{ }^{*}, a_{2}, \cdots, a_{r}$. Hence A is the direct product of the cyclic group of order m generated by $a_{1}{ }^{*}$ and the group generated by the $r-1$ elements a_{2}, \cdots, a_{r}, which by our induction is the direct product of, at most, $r-1$ cyclic groups. Thus we have proved our theorem in all cases.

To study periodic Abelian groups we need a lemma which holds in any group.

Lemma 3.2.1. Let x be an element of order $m n$ in any group where m and n are relatively prime integers. Then x has a unique representation $x=$ $y z=z y$, where y is of order m and z of order n. Both y and z are powers of x.

Proof: We write (a, b) for the greatest common divisor of two integers. The statement that m and n are relatively prime is that $(m, n)=1$. From the Euclidean algorithm, integers u and v exist such that $u m+v n=1$, and hence x
$=x^{v n} x^{u m}=x^{u m} x^{v n}$. Put $y=x^{v n}, z=x^{u m}$. Then $x=y z=z y$ and $y^{m}=x^{v n m}=1$, and $z^{n}=x^{u m n}=1$. Thus the exact order of y is some divisor m_{1} of m, and of z some divisor n_{1} of n. But from $x=y z=z y$ it will follow that the order of x is a divisor of $m_{1} n_{1}$. Since this order was $m n$, it follows that $m_{1}=m$ is the order of y and $n_{1}=n$ is the order of z. If x had a second representation $x=$ $y_{1} z_{1}=z_{1} y_{1}$ with y_{1} of order m and z_{1} of order n, let us note first that y_{1} and z_{1} permute with x, since $x y_{1}=y_{1} z_{1} y_{1}=y_{1} x$ and $x z_{1}=z_{1} y_{1} z_{1}=z_{1} x$. But then y_{1} and z_{1} permute with y and z, which are powers of x. Now $y z=x=y_{1} z_{1}$ leads to $w=y_{1}{ }^{-1} y=z_{1} z^{-1}$. But y and y_{1} are permuting elements of order m, and z and z_{1} are permuting elements of order n. Hence the element w satisfies $w^{m}=1$ and also $w^{n}=1$, and since $(m, n)=1$, this yields $w=1$; so, $y_{1}=y, z_{1}$ $=z$, proves the uniqueness of the representation.

By repeated application of this lemma we find:
LEmmA 3.2.2. Let x be an element of order $n=n_{1} n_{2} \cdots n_{r}$ where $\left(n_{i}, n_{j}\right)$ $=1$ for $i \neq j$. Then x has a unique representation $x=x_{1} x_{2} \cdots x_{r}$ where $x_{j} x_{i}$ $=x_{i} x_{j}$ and x_{i} is of order n_{i}. Every x_{i} is a power of x.

In particular, if $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, where p_{1}, \cdots, p_{r} are distinct primes, we may apply this lemma with $n_{i}=p_{i}^{e_{i}}$.

In a periodic Abelian group A consider the set of elements P whose orders are powers of a fixed prime p, where we include the identity as being of order $p^{\circ}=1$. If $x^{p a}=1, y^{p b}=1$, then $(x y)^{p c}=1$ with $c=\max (a, b)$ and $\left(x^{-1}\right)^{p a}=1$. Hence P is a subgroup which we call the Sylow p-subgroup, $S(p)$. We call P an Abelian p-group.

Theorem 3.2.3. A periodic Abelian group is the direct product of its Sylow subgroups, $S(p)$.

Proof: Clearly, $\prod_{p} S(p)$, the direct product of the Sylow subgroups of A, is a subgroup of A. But, from Lemma 3.2.2, if $x \in A$ is of order $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$, then, $x=x_{1} x_{2} \cdots x_{r}$ with $x_{i} \in S\left(p_{i}\right)$; so, every element of x of A belongs to the direct product of the Sylow subgroups, whence this direct product must be the entire group A.

3.3. Finite Abelian Groups. Invariants.

A finite Abelian group is, of course, periodic and finitely generated. Applying the results of the preceding section, we may say the following:

Theorem 3.3.1. A finite Abelian group of order $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ is the direct product of Sylow subgroups $S\left(p_{1}\right), \cdots, S\left(p_{r}\right)$. Here $S\left(p_{i}\right)$ is of order $p_{i}^{e_{i}}$ and is the direct product of cyclic groups of orders $p_{i}^{e e_{i 1}}, \cdots, p_{i}^{e e_{i s}}$ where $e_{i 1}+\cdots+e_{i s}=e_{i}$.

Proof: In the Abelian group of order n, we know that the orders of the elements are divisors of n, whence a Sylow subgroup belonging to a prime not dividing n can consist only of the identity. Thus, if p_{1}, \cdots, p_{r} are the distinct primes dividing n, the group is the direct product $S\left(p_{1}\right) \times \cdots \times$ $S\left(p_{r}\right)$. But this much does not tell us the orders of the $S\left(p_{i}\right)$, some of which might trivially be the identity. Since $S\left(p_{i}\right)$ is the identity or the direct product of cyclic groups of orders $p_{i}^{e_{i 1}}, \cdots, p_{i}^{e_{i s}}$, the order of $S\left(p_{i}\right)$ will be the product of these orders (say, $p_{i}^{t_{i}}$ with $t_{i}=e_{i 1}+\cdots+e_{i s}$), and the order of the entire group will be the product of the orders of the $S\left(p_{i}\right)$. But because of the unique factorization of the integer n, it must follow that $p_{i}^{t_{i}}=p_{i}^{e_{i}}$ in each case. As a consequence of this and Theorem 3.1.1 we have the following corollary.

Corollary 3.3.1. An Abelian group of order n contains an element of order p if p is a prime dividing n.

A finite Abelian p-group, $A(p)$, can usually be written as a direct product of cyclic groups in several ways. For example, if $a^{8}=1, b^{4}=1$, the group $A(2)=\{a\} \times\{b\}$ is of order 32. If we put $c=a b$ and $d=a^{4} b$, then $c^{8}=1, d^{4}$ $=1, a=c^{5} d^{-1}, b=c^{4} d$. We readily verify that $A(2)=\{c\} \times\{d\}$. In this case $A(2)$ is a direct product of cyclic groups in two different ways, but the number of factors and their orders are the same. This is true in general for finite Abelian p-groups, but since the cyclic group of order 6 is the direct product of the cyclic groups of orders 2 and 3, it is not true for finite Abelian groups which are not p-groups. If A is an Abelian p-group which is the direct
product of cyclic groups of orders $p^{e}{ }_{1}, \cdots, p^{e}{ }_{r}$, then these numbers are called the invariants of the group. In the special, but important, case in which all the invariants are p, \cdots, p, we say that A is an elementary Abelian group. Clearly, the invariants of an Abelian group A determine A to within isomorphism; but they are invariants in a stronger sense, as given precisely by the following theorem:

Theorem 3.3.2. If a finite Abelian p-group A is the direct product of cyclic groups in two ways, $A=A_{1} \times \cdots \times A_{r}=B_{1} \times \cdots \times B_{s}$, then the number of factors is the same in both cases, $r=s$, and the orders of A_{1}, \cdot \cdot, A_{r} are the same as those of B_{1}, \cdots, B_{s} in some arrangement.

Proof: We use induction on the order of A, the theorem being trivial when A is of order p.

If A is any Abelian p-group, let us write A_{p} for the subgroup of elements x of A satisfying $x^{p}=1$ and A^{p} for the subgroup of elements of the form y^{p}, $y \in A$. Let A have a basis a_{1}, \cdots, a_{r}, where a_{i} is of order $p^{e}{ }_{i}, i=1, \cdots, r$, and let us number the a 's so that $e_{1} \geqq e_{2} \geqq \cdots \geqq e_{r}$. Then we may easily verify that A_{p} has a basis $a_{1}{ }^{p_{i}-1}, \cdots, a_{r}{ }^{p_{r}-1}$ and is of order p^{r}. If A is elementary Abelian, then $A^{p}=1$. Otherwise, let e_{m} be the last exponent greater than 1, i.e., $e_{1} \geqq \cdots \geqq e_{m}>e_{m+1}=\cdots=e_{r}=1$. Then A^{p} has a basis $a_{1}{ }^{p}, \cdots, a_{m}{ }^{p}$, as may easily be shown.

Let A have a second basis, b_{1}, \cdots, b_{s}, where b_{i} is of order $p_{i}^{f}, i=1, \cdots$, s and $f_{1} \geqq f_{2} \geqq \cdots \geqq f_{s}$. Then A_{p} is of order p^{r} from the basis a_{1}, \cdot \cdot, a_{r} and of order p^{s} from the basis b_{1}, \cdots, b_{s}, whence $r=s$. If A is elementary Abelian, this completes the proof. If not, let $f_{1} \geqq f_{2} \geqq \cdots \geqq f_{n}>f_{n+1}=\cdots=f_{s}=1$. Then A^{p} has invariants $\boldsymbol{p}^{e_{1}-1}, \cdots, \boldsymbol{p}^{e_{m}^{-1}}$ and also invariants $\boldsymbol{p}^{f_{1}-1} \cdots, p^{f_{n}-1}$. By induction $m=n$ and $e_{1}-1=f_{1}-1, \cdots, e_{m}-1=f_{m}-1$. From this and the fact that $s=r$, it follows that $e_{1}=f_{1}, \cdots, e_{r}=f_{r}$, proving our theorem.

Corollary 3.3.2. If two finite Abelian p-groups do not have the same invariants, they are not isomorphic.

Theorem 3.3.3. An Abelian group A with invariants $p^{e_{1}}, \cdots, p^{e_{r}} e_{1} \geqq \cdots \geqq e_{r}$ has a subgroup K with invariants $p^{k_{1}}, \cdots, p^{k_{t}} k_{1} \geqq \cdots \geqq k_{t}$ if, and only if, $t \leq r$ and $k_{1} \leq e_{1}, \cdots$, $k_{t} \leq e_{t}$.

Proof: We prove first that the exponents of the invariants of a subgroup K of A satisfy the inequalities of the theorem, proceeding by induction on the order of A, the theorem being trivial if A is of order p.

Since K_{p} is a subgroup of A_{p}, it follows that $t \leq r$, proving the theorem if A is elementary Abelian. Otherwise, let $e_{1} \geqq \cdots \geq e_{m}>e_{m+1}=\cdots=e_{r}=1 \quad$ and $k_{1} \geqq \cdots \geqq k_{u}>k_{u+1}=\cdots=k_{t}=1$. Then K^{p} is a subgroup of A^{p} and the invariants of K^{p} are $p^{k_{j}-1}, \cdots, p^{k^{-1}}$, and those of A^{p} are $p^{e_{1}-1}, \cdots, p^{e} m^{-1}$. By induction $u \leq m$ and $k_{i}-1 \leq e_{i}-1, i=1$, \cdots, u. Hence $k_{i} \leq e_{i}, i=1, \cdots, u$ and as $k_{u+1}=\cdots=k_{t}=1$, also $k_{i} \leq e_{i}, i=$ $u+1, \cdots, t$, whence $k_{i} \leq e_{i}, i=1, \cdots, t$.

If the inequalities of the theorem hold, then there is one subgroup of A with the given invariants which we can take as a basis for appropriate powers of the first t basis elements of A. But it is not in general true that, given A and a subgroup K, we can choose a basis for A and a basis for K so that the basis for K consists of powers of elements in the basis for A. (See Ex. 5.)

EXERCISES

1. An Abelian group A is generated by elements a, b, c with defining relations $a^{3} b^{9} c^{9}=1$ and $a^{9} b^{-3} c^{9}=1$. Find a basis for A and the orders of the basis elements.
2. Show that a finite Abelian p-group is generated by its elements of highest order.
3. An Abelian group has invariants p^{3}, p^{2}. How many subgroups of order p^{2} does it contain?
4. Give two examples of Abelian p-groups which contain exactly $p^{2}+p+1$ subgroups of order p.
5. Let A be the Abelian group generated by a and b with defining relations $a^{p 3}=1, b^{p}=1$. Let K be the subgroup generated by the element $x=a^{p} b$. Show that it is not possible to choose a basis
for A and a basis for K so that the basis element for K is a power of a basis element for A.

4. SYLOW THEOREMS

4.1. Falsity of the Converse of the Theorem of Lagrange.

According to the Theorem of Lagrange, the order of a subgroup of a finite group is a divisor of the order of the group. But, conversely, a group of order n need not have a subgroup of order m if m is a divisor of n. In particular the following permutation group of order 12 will be found to have no subgroup of order 6 :

$$
\begin{array}{ll}
\binom{1,2,3,4}{1,2,3,4} & \binom{1,2,3,4}{1,3,4,2} \\
\binom{1,2,3,4}{2,1,4,3} & \binom{1,2,3,4}{1,4,2,3} \\
\binom{1,2,3,4}{3,4,1,2} & \binom{1,2,3,4}{3,2,4,1} \\
\binom{1,2,3,4}{4,3,2,1} & \binom{1,2,3,4}{4,2,1,3} \\
\binom{1,2,3,4}{2,3,1,4} & \binom{1,2,3,4}{2,4,3,1} \\
\binom{1,2,3,4}{3,1,2,4} & \binom{1,2,3,4}{4,1,3,2}
\end{array}
$$

It does, however, have subgroups of orders 2, 3, and 4.
Thus, in general, if m divides n, we cannot be sure that a group of order n contains a subgroup of order m. But it is true that if m is a prime or prime power, then such subgroups exist. The existence and number of such subgroups is the subject of the Sylow theorems which follow. We begin with a theorem which will serve as a starting point for the Sylow theorems.

Theorem 4.1.1. If the order of a group G is divisible by a prime p, then G contains an element of order p.

Proof: Let $n=m p$ be the order of G. Here, if $m=1, G$ is the cyclic group of order p and the theorem is true. We proceed by induction on m. If G contains a proper subgroup H whose index [$G: H$] is not divisible by p, then the order of H is divisible by p, and so by induction H contains an element of order p. Now suppose that every proper subgroup of G has an index divisible by p. Then, from $\S 1.6, n=$ $n_{1}+n_{2}+\cdots+n_{s}$, where each n_{i} is the number of conjugates in a class of elements of G. Each $n_{i} \neq 1$ is the index of a proper subgroup in G, and hence by hypothesis, divisible by p. Here $n_{1}=1$, the identity being a class. Hence the number of $n_{i}=1$ is a multiple of p. An element a_{i} is a class in G if, and only if, it belongs to the center Z of G. Thus the center Z is of order divisible by p. Then for $\boldsymbol{z} \in Z$ and any $g \in G$, we have $z g=g z$. Hence, a fortiori, the elements of Z permute with each other and Z is an Abelian group. But now from the corollary to Theorem 3.3.1, Z contains an element of order p.

4.2. The Three Sylow Theorems.

From Theorem 4.1.1 we are guaranteed the existence of at least one subgroup of order p whenever p divides the order of G. We shall show that if G is of order n $=p^{m} S$, then there will also be subgroups of orders $p^{2}, p^{3}, \cdots, p^{m}$.

Theorem 4.2.1 (First Sylow Theorem). If G is of order $n=p^{m} s$ where $p \nmid s, p$ a prime, then G contains subgroups of orders $p^{i}, i=1, \cdots, m$, and each subgroup of order $p^{i}, i=1, \cdots, m-1$, is a normal subgroup of at least one subgroup of order p^{i+1}.

Proof: The proof is by induction on i. As previously stated, G contains a subgroup of order p. Let P be a subgroup of order $p^{i}, i \geq 1$. Write G in terms of double cosets of $P, G=P+P x_{2} P+\cdots+P x_{r} P$, and let there be a_{j} right cosets of P in $P x_{j} P$. Then $[G: P]=a_{1}+a_{2}+\cdot \cdot \cdot+a_{r}$, where $a_{j}=\left[x_{j}^{-1} P x_{j}: x_{j}^{-1} P x_{j} \cap P\right]$, and $a_{1}=1$ for the double coset $P \cdot 1 \cdot P$ $=P$. Now $a_{j}=1$ or a power of p. Since $p \mid[G: P]$, the number of a_{j} 's equal to 1 must be a multiple of p. If $a_{j}=1$, then $x_{j}^{-1} P x_{j}=P$ and x_{j}, and the $\operatorname{coset} P x_{j}=x_{j} P$ must belong to the normalizer K of P. Conversely, if $x_{\boldsymbol{j}} \in K$, then $x_{j}{ }^{-1} P x_{j}=P$ and $a_{j}=1$. Thus $[K: P]$ is the number of $a_{j}{ }^{\prime} \mathrm{S}=1$ and so $p \mid$
[K:P]. Hence the factor group K / P has order $[K: P]$ divisible by p. Thus K / P contains a subgroup J^{*} of order p. By Theorem 2.3.4 $J^{*}=J / P$, where $J \subseteq K$, and $[J: P]=\left[J^{*}: 1\right]=p$, and so J is a subgroup of order p^{i+1}, containing P as a normal subgroup.

Definition: A group P is a p-group if every element of P except the identity has order a power of a prime p.

Definition: A subgroup S of a group G is a Sylow subgroup of G if it is a pgroup and is not contained in any larger p-group which is a subgroup of G.

In terms of these definitions we may express some of the consequences of the first Sylow theorem.

Corollary 4.2.1. Every finite group G of order $n=p^{m} s, \boldsymbol{p} \boldsymbol{s}, p$ a prime, contains a Sylow subgroup of order p^{m}, and every p-group which is a subgroup of G is contained in a Sylow subgroup of G.

Every group of order p^{m} is a p-group. From Theorem 4.1.1, if the order of a group is divisible by two different primes, it cannot be a p-group. Hence every finite p-group is of order a power of p, say, p^{m}.

Corollary 4.2.2. Every subgroup of a p-group P of order p^{m} is contained in a maximal subgroup of order p^{m-1}, and all the maximal subgroups of P are normal subgroups.

Theorem 4.2.2 (Second Sylow Theorem). In a finite group G, the Sylow psubgroups are conjugate.

Proof: Let P_{1} and P_{2} be two Sylow p-subgroups. Then $G=P_{1} P_{2}+P_{1} x_{2} P_{2}+\cdots$ - $+P_{1} x_{s} P_{2}$. Let there be b_{i} right cosets of P_{2} in $P_{1} x_{i} P_{2}$. Here $b_{i}=\left[x_{i}^{-1} P_{1} x_{i}: x_{i}^{-1} P_{1} x_{i} \cap P_{2}\right]$ and is 1 or a power of p. But $b_{1}+\cdots+$ $b_{s}=\left[G: P_{2}\right]$ is not a multiple of p. Hence, for some $i, b_{i}=1$ and $x_{i}^{-1} P_{1} x_{i}=P_{2}$.

Theorem 4.2.3 (Third Sylow Theorem). The number of Sylow p-subgroups of a finite group G is of the form $1+k p$ and is a divisor of the order of G.

Proof: This is trivial if there is only one Sylow p-subgroup. Let S_{0} be one Sylow p-subgroup and $S_{1} \cdots, S_{r}$ the remaining ones. These fall into a number of disjoint conjugate sets with respect to transformation by elements of S_{0}. By the
second Sylow theorem, S_{i} is the only Sylow p-subgroup in its normalizer K_{i}. Hence the normalizer of S_{i} in $S_{0}(i \neq 0)$ is a proper subgroup of S_{0}, and so the number of conjugates of S_{i} under S_{0} is a power of $p, p^{e}, e \geq 1$. Hence $r=p^{e}{ }_{1}+\cdots+p^{e s}=k p$, and there are $1+r=1+k p$ Sylow p-subgroups of G. The number of Sylow p subgroups is, by the second Sylow theorem, the index of the normalizer of S_{0}, and so a divisor of the order of G.

Theorem 4.2.4. Let K be the normalizer of the Sylow p-subgroup P in the finite group G. Then if H is any subgroup $G \supseteq H \supseteq K \supseteq P$, it follows that H is its own normalizer in G.

Proof: Suppose $x^{-1} H x=H$. Then $H \supseteq x^{-1} P x=P^{\prime}$, which must be a Sylow p subgroup of H. Hence, for some $u \in H, u^{-1} P^{\prime} u=P$, whence $u^{-1} x^{-1} P x u=P$ and $x u \in K$. Hence $x \in H$, and H is its own normalizer.

The following theorem, apart from its own interest, has some important applications which will be made in later chapters.

Fig. 2. A theorem of Burnside.
Theorem 4.2.5 (Burnside). If in the finite group G a p-group h is normal in one Sylow p-subgroup but not in another which contains it, then there exist $r>1$, $r \not \equiv 0(\bmod p)$ conjugate groups $h=h_{1}, \cdots, h_{r}$ which are all normal in $H=$ $h_{1} \cup h_{2} \cup \cdots \cup h_{r}$ but not all normal in any Sylow p-subgroup of G. Then h_{1}, \cdots \cdot, h_{r} are a complete set of conjugates of each other in N_{H}, the normalizer of H.

Proof: Let N_{h} be the normalizer of h. Let Q be a Sylow p-subgroup of G such that h is a non-normal subgroup of Q and so that $D=N_{h} \cap Q$ is maximal. Let q be the normalizer of D in Q, and N_{D} the normalizer of D in G. We assert $Q \supseteq q \supset D \supset$
h, for h is normal and of index p is some subgroup of Q, but h is non-normal in Q. Hence $Q \supset D \supset h$. Also, D, a proper subgroup of Q, is properly contained in its normalizer q in Q. Hence $Q \supseteq q \supset D \supset h$. Now, since $D=N_{h} \cap Q, h$ is not normal in q and a fortiori not normal in N_{D}. Let $h=h_{1}, \cdots, h_{s}, s>1$ be the conjugates of h in N_{D}. Since h is normal in D, and N_{D} induces automorphisms in D, every h_{i} is also normal in D, and so a fortiori in $H=h_{1} \cup h_{2} \cup \cdots \cup h_{s} \subseteq D$. The normalizer N_{H} of H contains N_{D}, since the elements of N_{D} transform H into itself.

Let p_{1} be a Sylow subgroup of $N_{h} \cap N_{D}$ and $P_{1} \supseteq p_{1}$ be a Sylow subgroup of N_{h}. By hypothesis P_{1} is a Sylow subgroup of G. Then $D \subset p_{1}$ since D is not its own normalizer in P_{1}. Now $N_{h} \cap N_{D} \subseteq N_{D} \subseteq N_{H}$, and let $p_{2} \supseteq p_{1}$ be a Sylow subgroup of N_{H}, and finally let $P \supseteq p_{2}$ be a Sylow subgroup of G. If $P \nsubseteq N_{h}$, then $P \cap$ $N_{h} \supseteq p_{1} \supset D$, contrary to the maximal property of D. Hence $P \subseteq N_{h}$ and so $N_{h} \cap$ $N_{H} \supseteq P \cap N_{H}=p_{2}$, since p_{2} was a Sylow subgroup of N_{H}.

Let $h=h_{1}, \cdots, h_{s}, \cdots, h_{r}$ be the conjugates of h in N_{H} (and hence all normal subgroups of H). The normalizer of h in N_{H} is $N_{H} \cap N_{h}$ and so the number of conjugates of h in N_{H} is $r=\left[N_{H}: N_{H} \cap N_{h}\right]$. But $N_{H} \cap N_{h} \supseteq p_{2}$, a Sylow subgroup of N_{H}. Hence $r \neq 0(\bmod p)$.

If all h_{1}, \cdots, h_{r} were normal subgroups of some Sylow subgroup S_{p}, then $S_{p} \subseteq$ N_{H}, and every Sylow subgroup of N_{H} contains and normalizes all the h 's. But $q \subseteq$ $N_{D} \subseteq N_{H}$ is a p-group of N_{H}, which does not normalize h_{1}.

4.3. Finite \boldsymbol{p}-Groups.

From the Sylow theorems a group G of order $n=p_{1}{ }_{1}{ }_{1} \cdots p_{r}{ }_{r}{ }_{r}$ contains for each i a subgroup of order $p_{i}^{e}{ }_{i}^{e}$, and all subgroups of this order are isomorphic, as they are conjugate. Thus the problem of constructing finite groups may be regarded as having two parts: 1) constructing groups of prime power order, and 2) combining groups of prime power orders dividing a number n to form a group of order n. When all the Sylow subgroups are cyclic (and this will certainly be the case when all $e_{i}=1$), we can solve the second problem; the solution is given in Chap. 9 (Theorem 9.4.3). Thus, although neither of these problems is in any sense solved in general, we must solve the first problem to have the subgroups to use in the second problem. It seems to be true that the difficulties of combining Sylow subgroups to form a group rest very heavily on the complexities of the prime power groups, the p-groups, as we shall call them.

A first fact about p-groups of great value is the following:
Theorem 4.3.1. The center of a finite p-group is greater than the identity alone.

Proof: If P is a finite p-group, let us write P as a sum of classes:

$$
\begin{equation*}
P=C_{1}+C_{2}+\cdots+C_{r} \tag{4.3.1}
\end{equation*}
$$

Here C_{1} consists of the identity alone. Let h_{i} be the number of elements in C_{i}, which by Theorem 1.6.1 is the index of a subgroup of P and so is either 1 for an element of the center or is otherwise a power of p. But if P is of order p^{m} we must have

$$
\begin{equation*}
p^{m}=h_{1}+h_{2}+\cdots+h_{r} . \tag{4.3.2}
\end{equation*}
$$

Here $h_{1}=1$, and consequently in (4.3.2) the remaining h 's cannot all be proper powers of p and so there must be further h 's equal to 1 , so that the center of P is greater than the identity alone.

We restate Corollary 4.2.2 as a theorem.
Theorem 4.3.2. Every proper subgroup of a p-group P of order p^{m} is contained in a maximal subgroup of order p^{m-1}, and all the maximal subgroups of P are normal subgroups.

A further consequence of the (first) Sylow theorem 4.2.1 is that no proper subgroup of a p-group is its own normalizer. This fact even has a converse, which we now prove.

Theorem 4.3.3. In a finite group G the property that no proper subgroup is its own normalizer holds if, and only if, G is the direct product of its Sylow subgroups.

Proof: Suppose that no proper subgroup of G is its own normalizer. By Theorem 4.2.4, K, the normalizer of a Sylow subgroup P, is its own normalizer, whence by the assumption, K must be the entire group G. Thus P is a normal subgroup of G. From this and Theorem 2.5.2, the union of the Sylow subgroups is the direct product of the Sylow subgroups, and so G is the direct product of its Sylow subgroups. Now suppose $G=P_{1} \times \cdots \times P_{r}$, where P_{i} is a group of order $p_{i}^{e}{ }_{i}$ and $p_{i} \neq p_{j}$ for $i \neq j$. Now if $g=g_{1} g_{2} \cdots g_{r}$, with $g_{i} \in P_{i}$, the conditions of Lemma 3.2.2 hold, and each g_{i} is a power of g. Thus, when an element g occurs in
a subgroup H of G, each of its components g_{i} is also an element of H. Thus H must itself be a direct product $H=H_{1} \times \cdots \times H_{r}$ where $H_{i}=H \cap P_{i}$ is a subgroup of P_{i}. If H is a proper subgroup of G, then some H_{j} is a proper subgroup of P_{j}, and by replacing this H_{j} by a larger subgroup of P_{j} in which it is normal, we get a subgroup larger than H in which H is normal.

THEOREM 4.3.4. If A is a normal subgroup of order p contained in the p-group P, then A is in the center of P.

Proof: A, being of order p, is cyclic and is generated by an element a, the elements of A being $1, a, \cdots, a^{p-1}$. Since A is normal, the conjugates of the element a are contained in the set $a, a^{2}, \cdots, a^{p-1}$. But the number of conjugates of a is the index of its centralizer and so is 1 or a power of p. But as the number of conjugates is at most $p-1$, the only possibility is 1 , whence a and so A is in the center of P.

4.4. Groups of Orders $p, p^{2}, p q, p^{3}$.

A group of prime order p cannot have a proper subgroup and so must be a cyclic group, generated by any element different from the identity. We have already shown in Theorem 1.5.4 that a group G without any proper subgroups is cyclic of prime order.

A group G of order p^{2}, if it is not cyclic, will contain two distinct subgroups of order p, say $\{a\}$ and $\{b\}$, where $a^{p}=1, b^{p}=1$, and $\{a\} \cap\{b\}=1$. Since these are both maximal subgroups, by Corollary_4.2.2, they will both be normal, whence, by Theorem 3.2.1, $G=\{a\} \times\{b\}$; and so, G is an Abelian group with a, b as a basis.

Suppose G is of order $p q$, where $p<q$ are primes. By the third Sylow theorem, the number of subgroups of order q is of the form $1+k q$ and divides p, whence it must be 1 , and the unique subgroup of order q will be normal, say $\{b\}$, with $b^{q}=1$. The number of subgroups of order p is of the form $1+k p$ and divides q, whence it is 1 or q. If the number is 1 , we have for some a a normal subgroup $\{a\}$ with $a^{p}=$ 1 , and G as the direct product of $\{a\}$ and $\{b\}$. But here $c=a b$ is of order $p q$ and G is cyclic. There remains the case with $1+k p=q$ subgroups of order p, where a subgroup $\{a\}$ of order p is not normal. Then we have

$$
a^{p}=1, \quad b^{q}=1,
$$

and since $\{b\}$ is normal, $a^{-1} b a=b^{r}$ for some r. Here if $r=1, G$ is Abelian and is the cyclic group above. Hence $r \neq 1$. Then $a^{-1} b^{i} a=b^{i r}$ for any i, and in particular
$a^{-1} b^{r} a=b^{r 2}$, whence $a^{-2} b a^{2}=a^{-1} b^{r} a=b^{r 2}$. More generally we find $a^{-j} b a^{j}=b^{r j}$, proceeding by induction. Thus for $j=p$ we have $b=a^{-p} b a^{p}=b^{r p}$, whence $r^{p} \equiv 1$ $(\bmod q)$. That this necessary condition on r is also sufficient may be verified by establishing the general rule

$$
\left(a^{u} b^{v}\right)\left(a^{x} b^{y}\right)=a^{u+x} b^{v r^{x}+y}
$$

for multiplying any two elements and proving that this rule defines a group of order $p q$. This is a special case of a more general rule which will be established in Theorem 6.5.1.

For groups of order p^{3}, there are three Abelian types, with invariants respectively $\left(p^{3}\right),\left(p^{2}, p\right)$, and (p, p, p). In finding non-Abelian groups, we handle the cases $p=2$ and p-odd separately. First let $p=2$ and consider non-Abelian groups of order 8 . There can be no element of order 8 , since then the group would be cyclic. If all elements are of order 2 , then $(a b)^{2}=1$, or $a b a b=1, b a=a^{2} b a b^{2}=$ $a b$, and the group is Abelian. Hence there must be an element of order 4, say, $a^{4}=$ 1. If $b \notin\{a\}=A$, then $G=A+A b$ and $b^{2} \in A$. If $b^{2}=a$ or a^{3}, then b is of order 8 and G is cyclic. Hence $b^{2}=1$ or a^{2}. Also $b^{-1} a b \in A$, since A is normal, and $b^{-1} a b=a$ or a^{3}, since it is an element of order 4. But with $b^{-1} a b=a, G$ will be Abelian. Hence $b^{-1} a b=a^{3}$. Thus we have found two non-Abelian groups, the dihedral group with defining relations

$$
a^{4}=1, \quad b^{2}=1, \quad b^{-1} a b=a^{3}
$$

and the quaternion group with defining relations

$$
a^{4}=1, \quad b^{2}=a^{2}, \quad b^{-1} a b=a^{3}
$$

It is easily verified that these relations do define two groups of order 8 and that they are not isomorphic to each other.

Finally, consider non-Abelian groups of order p^{3}, p an odd prime. Since G is not cyclic, it contains no element of order p^{3}. Let us first suppose that G contains an element of order $p^{2}, a^{p 2}=1$. Then $\{a\}=A$, as a maximal subgroup is normal. Let $b \notin A$. Then $G=A+A b+\cdots+A b^{p-1}$, and $b^{p} \in A, b^{-1} a b=a^{r}$. Here $r \neq 1$, since G is non-Abelian. Since we find by induction on j that $b^{-j} a b^{j}=a^{r_{j}}$ and since b^{p} as an element of A permutes with a, we have $a=b^{-p} a b^{p}=a^{r_{p}}$, whence $r^{p} \equiv 1$ $\left(\bmod p^{2}\right)$. From the Fermat theorem, $r^{p} \equiv r(\bmod p)$, and so $r \equiv 1(\bmod p)$. Write $r=$ $1+s p$. Then, with j chosen so that $j s \equiv 1(\bmod p)$, we have

$$
b^{-j} a b^{j}=a^{(1+s p) j}=a^{1+s j p}=a^{1+p} .
$$

Since $(j, p)=1, b^{j} \notin A$, we may replace b by b^{j} to get

$$
G=A+A b+\cdots+A b^{p-1}
$$

where $b^{-1} a b=a^{1+p}$.
Now $b^{p} \in A$, whence $b^{p}=a^{t}$. Here t must be a multiple of p since b is not of order p^{3}. Write $b^{p}=a^{u p}$. Then, using the rule $a^{i} b=b a^{i(1+p)}$, we calculate and find

$$
\begin{aligned}
\left(b a^{-u}\right)^{p} & =b^{p} a^{-u}\left[1+(1+p)+(1+p)^{2}+\cdots+(1+p)^{p-1}\right] \\
& =b^{p} a^{-u p-u p(1+2+\cdots+p-1)} \\
& =b^{p} a^{-u p}=1 .
\end{aligned}
$$

Here we use the fact that $1+2+\cdots+p-1=p(p-1) / 2$ is a multiple of p since p is odd. Now with $\mathrm{b}_{1}=b a^{-u}$, we have the relations $a^{p 2}=1, b_{1}{ }^{p}=1$, $b_{1}^{-1} a b_{1}=a^{1+p}$. This last follows since $b_{1}^{-1} a b_{1}=a^{u}\left(b^{-1} a b\right) a^{-u}$.

As a last case suppose that G contains no element of order p^{2}. The center Z must be of order p, since if it were of order as much as p^{2}, G would be Abelian. G / Z will be of the type $x^{p}=1, y^{p}=1, y x=x y$. If in the homomorphism $G \rightarrow G / Z, a$ $\rightarrow x, b \rightarrow y$, then $a^{p}=1, b^{p}=1, \mathrm{a}^{-1} b^{-1} a b=c \in Z$. If $a^{-1} b^{-1} a b=1$, since a, b, and Z generate G, G would be Abelian. Hence $c \neq 1$ is a generator for Z and our relations become

$$
a^{p}=1, \quad b^{p}=1, \quad c^{p}=1, \quad a b=b a c, \quad a c=c a, \quad b c=c b .
$$

Table of Defining Relations.
I. G order p.

1) Cyclic. $a^{p}=1$.
II. G order p^{2}.
2) \quad Cyclic. $a^{p 2}=1$.
3) Elementary Abelian. $a^{p}=1, b^{p}=1, b a=a b$.
III. G order $p q, p<q$.
4) Cyclic. $a^{p q}=1$.
5) Non-Abelian.

$$
\begin{aligned}
a^{p}= & 1, b^{q}=1, a^{-1} b a=b^{r}, \\
r^{p} \equiv & 1(\bmod q), r \not \equiv 1(\bmod q), p \text { divides } \\
& q-1 .
\end{aligned}
$$

The solutions of $z^{p} \equiv 1(\bmod q), z \not \equiv 1(\bmod q)$ are $r, r^{2}, \cdots, r^{p-1}$, and all yield the same group, since replacing a by a^{j} as a generator of $\{a\}$ replaces r by r^{j}.
IV. G order p^{3}.

Abelian.

1) $a^{p 3}=1$
2) $a^{p 2}=1, b^{p}=1, b a=a b$.
3) $a^{p}=b^{p}=c^{p}=1, b a=a b, c a=a c, c b=b c$.

Non-Abelian order $2^{3}=8$.
4) Dihedral, $a^{4}=1, b^{2}=1, b a=a^{-1} b$.
5) Quaternion, $a^{4}=1, b^{2}=a^{2}, b a=a^{-1} b$.

Non-Abelian order p^{3}, p odd.
4) $\quad a^{p 2}=1, b^{p}=1, b^{-1} a b=a^{1+p}$.
5) $\quad a^{p}=1, b^{p}=1, c^{p}=1, a b=b a c, c a=a c, c b=b c$.

EXERCISES

1. Show that if H is a normal subgroup of the finite group G, and if $[G: H]$ is prime to p, then H contains every Sylow p-subgroup of G.
2. Show that in a group G, a normal subgroup K of order p^{a} is contained in every Sylow p-subgroup of G.
3. Show that a group of order $p^{2} q$, where p and q are distinct primes, must contain a normal Sylow subgroup.
4. Show that a group of order 200 must contain a normal Sylow subgroup.
5. How many elements of order 7 are there in a group of order 168 which contains no normal subgroup?
6. The following table lists the number of distinct groups of each order from 1 through 20. Verify this for all orders except 16 .

Order	1	2	3	4	5	6	7	8	9		10	11	12	13	14	15	16	17	18	19	20
			1								2	1	5		2	1	14	1	5	1	

5. PERMUTATION GROUPS

5.1. Cycles.

In Chap. 1 it was noted in the Theorem of Cayley that every group may be written as a permutation group. As noted there, the same group may be written in terms of permutations in various ways. For a permutation π we write $\left(x_{i}\right)_{\pi}=x_{j}$ to mean that π carries x_{i} into x_{j}.

A finite cycle is a permutation π on a finite set of letters $x_{1}, x_{2}, \cdots, x_{n}$ such that $\left(x_{1}\right) \pi=x_{2}, \cdots,\left(x_{n-1}\right) \pi=x_{n},\left(x_{n}\right) \pi=x_{1}$.

An infinite cycle is a permutation π on an infinite set of letters $x_{i}, i=-\infty$, $\cdots,+\infty$ such that $\left(x_{i}\right) \pi=x_{i+1}, i=-\infty, \cdots,+\infty$.

We write $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ for a finite cycle and $\left(\cdots x_{-1}, x_{0}, x_{1}, \cdots\right)$ for an infinite cycle. It is clear that the cycle $\left(x_{2}, \cdots, x_{n}, x_{1}\right)$ is the same permutation as $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$.

Theorem 5.1.1. Given any permutation π on a set of letters S. The set S may be divided into disjoint subsets such that π is a cycle on each subset.

Proof: Let x_{1} be any letter of the set S. If $\left(x_{1}\right) \pi=x_{1}$, then $\left(x_{1}\right)$ is a cycle by itself. If $\left(x_{1}\right) \pi \neq x_{1}$ write $\left(x_{1}\right) \pi=x_{2}$. Now write $\left(x_{2}\right) \pi=x_{3}, \cdots,\left(x_{i}\right) \pi=$ x_{i+1}, continuing indefinitely unless a letter is repeated. If $\left(x_{1}\right) \pi=x_{2}, \cdots$, $\left(x_{n-1}\right) \pi=x_{n}$ are all different, but $\left(x_{n}\right) \pi$ is a letter already used; then $\left(x_{n}\right) \pi=$ x_{i}, for some $i=1, \cdots, n$. If $i=2, \cdots, n$, then also $\left(x_{i-1}\right) \pi=x_{i}$, contrary to the assumption $x_{n} \neq x_{i-1}$. Hence $\left(x_{n}\right) \pi=x_{1}$ and we have a finite cycle $\left(x_{1}, \cdots\right.$ \cdot, x_{n}) as the effect of π on the letters x_{1}, \cdots, x_{n}. If $\left(x_{1}\right) \pi^{i}=x_{i+1}$ are all different $i=1, \cdots$, let x_{0} be the letter such that $\left(x_{0}\right) \pi=x_{1}$. Continuing, define in succession x_{-1}, x_{-2}, \cdots, by $\left(x_{i-1}\right) \pi=x_{i}, i=0,-1,-2, \cdots$. These will all be different since π cannot take two different letters into the same letter. Thus
each x of S is part of a set of letters permuted by π in a cycle. But clearly any letter determines the entire cycle since in $(x) \pi=y$ either letter x or y determines the other uniquely. Hence the different cycles are disjoint.

We may thus write a permutation π as a succession of cycles, and since the cycles are on disjoint sets of letters, clearly the order of writing the cycles is immaterial. It is often customary to omit the cycles of length one, it being understood that all letters omitted are fixed.

Thus $\pi=(1)(2)(3,4,5)=(3,4,5)$. With this convention a permutation may be regarded as the group product of its cycles, whenever the number of cycles is finite.

Theorem 5.1.2. The order of a permutation π is the least common multiple of the lengths of its cycles.

Proof: In the cycle $\left(x_{1} \cdots, x_{n}\right),\left(x_{i}\right) \pi^{j}=x_{i+j}$, where $i+j$ is reduced modulo n. Hence $\left(x_{i}\right) \pi^{t}=x_{i}$ if, and only if, t is a multiple of n. Hence $\left(x_{i}\right) \pi^{m}=$ x_{i} for all $x_{i} \in S$ if, and only if, m is a multiple of the lengths of all the cycles of π. Here $\pi^{m}=1$. If π contains a cycle of infinite length, or arbitrarily long cycles, then π is of infinite order.

A useful computational form is the following:
Lemma 5.1.1. If

$$
T=\left(a_{11} \cdots a_{1 r}\right)\left(a_{21}, \cdots, a_{2 s}\right) \cdots\left(a_{m 1}, \cdots, a_{m t}\right)
$$

and

$$
S=\left(\begin{array}{llllll}
a_{11} \cdots & a_{1 r} a_{21} & \cdots & a_{2 s} & \cdots & a_{m 1}
\end{array} \cdots a_{m t}\right)
$$

then

$$
S^{-1} T S=\left(b_{11} \cdots b_{1 r}\right)\left(b_{21} \cdots b_{2 s}\right) \cdots\left(b_{m 1} \cdots b_{m t}\right)
$$

For a typical element $b_{j k}$ we have

$$
\underset{b_{j, k}}{\stackrel{S^{-1}}{\rightarrow} a_{j, k} \stackrel{T}{\rightarrow} a_{j, k+1} \xrightarrow{S} b_{j, k+1}}
$$

and so $b_{j k} \rightarrow b_{j, k+1}$ under $S^{-1} T S$.
The group of all permutations on a set of letters is called the symmetric group. The symmetric group on n letters is often designated as S_{n}.

Theorem 5.1.3. Two permutations are conjugate in a symmetric group if, and only if, they have the same number of cycles of each length.

Necessity of the condition follows from the rule above. For sufficiency suppose

$$
T=\left(a_{11} \cdots a_{1 r}\right)\left(a_{21} \cdots a_{2 s}\right) \cdots\left(a_{m 1} \cdots a_{m t}\right)
$$

and

$$
R=\left(b_{11} \cdots b_{1 r}\right)\left(b_{21} \cdots b_{2 s}\right) \cdots\left(b_{m}{ }^{\Psi} \cdots b_{m t}\right),
$$

including even cycles of length one. Since by hypothesis T and R have the same number of cycles of each length, we may assume the cycles to be lettered as given here. Then

$$
Q=\left(\begin{array}{llllll}
a_{11} & \cdots & a_{1 r} & \cdots & a_{m 1} & \cdots
\end{array} a_{m t}\right)
$$

is such that $Q^{-1} T Q=\mathrm{R}$. Note that this theorem does not impose any conditions of finiteness, and "same number" refers to the cardinal number involved. We must include cycles of length one since if the number of letters involved is infinite, T and R could have the same number of cycles of lengths greater than one and yet fix a different number of letters. Thus $T=(0,1)(2,3)$ $(4,5) \cdots$ and $R=(0)(1,2)(3,4)(5,6) \cdots$ are not conjugate in the symmetric group on the letters $0,1,2,3, \cdots$.

5.2. Transitivity.

Theorem 5.2.1. Let G be a permutation group on letters $x_{1} \cdots x_{n}$. Let S be any subset of these letters. Then the permutations of G, fixing all the letters of S, form a subgroup K. The permutations permuting the letters of S among themselves form a subgroup H which contains K as a normal subgroup.

Proof: If two elements a and b permute the letters of S among themselves, or fix the letters of S, so does the product $a b$ and the inverse a^{-1}. Hence there is a subgroup H permuting the letters of S and a subgroup K fixing the letters of S. If $h \in H, k \in K$; then $h^{-1} k h$ fixes the letters of S whence K is a normal subgroup of H.

Definition: A permutation group G on letters $x_{1} \cdots, x_{n}$ is transitive on a subset S of x_{1}, \cdots, x_{n} if for every $\sigma \in G$ and $x_{i} \in S,\left(x_{i}\right) \sigma \in S$, and if for $x_{i}, x_{j} \in S$ there is a $\sigma \in G$ with $\left(x_{i}\right) \sigma=x_{j}$. The letters of S constitute a set of transitivity.

Theorem 5.2.2. If for a fixed letter x_{1} the set S consists of all $x_{i}=\left(x_{1}\right) \sigma$, $\sigma \in G$, then S is a set of transitivity.

Proof: If $\left(x_{1}\right) \sigma=x_{i},\left(x_{1}\right) \tau=x_{j}$, then $\left(x_{i}\right) \sigma^{-1} \tau=x_{j}$. Moreover, if $\left(x_{1}\right) \sigma=x_{i}$, $\left(x_{i}\right) \rho=x_{k}$, then $\left(x_{1}\right) \sigma \rho=x_{k}$.

Theorem 5.2.3. If S is a set of transitivity for a permutation group G and x_{1} is a letter of S, for each $x_{i} \in S$ choose $\sigma_{i} \in G$ with $\left(x_{1}\right) \sigma_{i}=x_{i}$. Let H be the subgroup of G fixing x_{1}. Then $G=H \sigma_{1}+\cdots+H \sigma_{i}+\cdots$.

Proof: If $g=h \sigma_{i}$ with $h \in H$, then $\left(x_{1}\right) g=x_{i}$, whence the cosets $H \sigma_{i}$ are distinct. Moreover, let g be any element of G. Then $\left(x_{1}\right) g=x_{i}$ for some $x_{i} \in S$. Then $\left(x_{1}\right) g \sigma_{i}^{-1}=x_{1}$, whence $g \sigma_{i}^{-1} \in H, g=h \sigma_{i} \in H \sigma_{i}$, and so the cosets $H \sigma_{i}$ exhaust G.

Corollary 5.2.1. If S is a set of transitivity for G which contains exactly r letters, then H, the subgroup fixing one letter of S, is of index r in G.

Definition: A group G is k-ply transitive on letters of a set S if it is transitive on S and if any ordered set of k different letters of S is taken into an arbitrary ordered set of k different letters of S by some element of G.

The analogue of Theorem 5.2.2 holds for k-ply transitive groups. If G takes a fixed set of k letters $x_{1}, x_{2}, \cdots, x_{k}$ into an arbitrary ordered set y_{1}, y_{2}, \cdots, y_{k} of letters of S, then G is k-ply transitive on the letters of S. Also the subgroup of G, which fixes $r<k$ letters of S, will be $(k-r)$-ply transitive on the remaining letters of S. Also, if G is r-ply transitive and if a subgroup H fixing r letters is itself s-ply transitive, then G is $(r+s)$-ply transitive.

5.3. Representations of a Group by Permutations.

It has been noted that an abstract group may be represented in more than one way as a permutation group. We shall call a group of permutations P a representation of G if there is a mapping of G onto $P, g \rightarrow \pi(g), g \in G$, $\pi(g) \boldsymbol{\epsilon} P$ such that $\pi\left(g_{1}\right) \pi\left(g_{2}\right)=\pi\left(g_{1} g_{2}\right)$. Note that P is necessarily a homomorphic image of G. If P is in fact isomorphic to G, we shall say that P is a faithful representation of G. Just as all homomorphic images of G are given by factor groups modulo a normal subgroup of G, all transitive permutation representations of G may be found in terms of left cosets of subgroups.

Since the non-Abelian group of order 6 may be faithfully represented as a transitive permutation group on three letters and also on six letters, we must distinguish as permutation groups certain groups which are isomorphic as abstract groups.

Definition: A permutation group P_{1} on a set S_{1} is isomorphic as a permutation group to a permutation group P_{2} on a set S_{2} if there is an isomorphism $\pi_{P_{1}} \leftrightarrows \pi_{P_{2}}$ between P_{1} and P_{2} and a one-to-one correspondence $x_{i} \leftrightarrows y_{i}$ between S_{1} and S_{2} such that $\left(x_{i}\right) \pi_{P_{1}}=x_{j}$ if, and only if, $\left(y_{i}\right) \pi_{P_{2}}=y_{i}$.

Theorem 5.3.1. Given a group G and a subgroup H.
a) For each $g \in G$ there is a permutation of the set of left cosets of H :

$$
\pi(g)=\binom{H x}{H x g}, x \in G .
$$

b) $g \rightarrow \pi(g)$ is a representation of G as a transitive permutation group on the set of distinct left cosets of H, and $\pi(g)$ fixes H if, and only if, $g \in H$.

Conversely suppose $g \rightarrow \pi(g)$ is a representation of G as a transitive permutation group P on a set of elements S.
c) If s_{1} is a particular element of S, the g 's such that $\pi(g)$ fixes s_{1} are a subgroup H of G.
d) The elements of S may be put into a one-to-one correspondence with the left cosets of H so that P is isomorphic as a permutation group to the group of permutations $\pi(g)$ given in a$)$ and b$)$.

Proof: a) $H x \rightarrow(H x) g=H x g$ maps each left coset $H x$ onto a unique left coset $H x g$. Since $\left(H x g^{-1}\right) g=H x, \pi(g)=\binom{H x}{H x g}$ is a permutation of the set of distinct left cosets of H.
b) Since $\left(H x g_{1}\right) g_{2}=H x\left(g_{1} g_{2}\right)$, it follows that $\pi\left(g_{1}\right) \pi\left(g_{2}\right)=\pi\left(g_{1} g_{2}\right)$, and so $g \rightarrow \pi(g)$ is a representation of G. $H \rightarrow H g=H$ if, and only if, $g \in H$. Otherwise expressed, $\pi(g)$ fixes H if, and only if, $g \in H$. Since $H \rightarrow H x$ by $\pi(x)$, the representation is transitive.
c) We verify directly that those g 's such that $\left(s_{1}\right) \pi(g)=s_{1}$ are a subgroup H, since if g_{1} and g_{2} have this property, so do $g_{1} g_{2}$ and $g_{1}{ }^{-1}$.
d) The set of g 's such that $\left(s_{1}\right) \pi(g)=s_{i}$ is not vacuous, since P is transitive. If one of these g 's is designated as x_{i}, it follows immediately that the entire set is the left coset $H x_{i}, H$ being the subgroup found in c) which fixes s_{1}. Conversely, all the elements of a left coset $H x$ have the property that their corresponding permutations all map s_{1} onto the same image. This establishes a one-to-one correspondence, $s_{i} \leftrightarrows H x_{i}$, between elements of S and left cosets of H. Let P_{1} be the permutation group of left cosets of H as given by a) and b), with $\pi_{1}(g)=\binom{H x}{H x g}, g \in G$ the permutations of
P_{1}. In P if $\left(s_{i}\right) \pi(g)=s_{j}$, then $\left(s_{1}\right)\left[\pi\left(x_{i}\right) \pi(g)\right]=s_{j}$, whence $x_{i} g \in H x_{j}$, and hence $\left(H x_{i}\right) g=H x_{j}$; conversely, this relation implies $\left(s_{i}\right) \pi(g)=s_{j}$. Thus $s_{i} \pi(g)=s_{j}$ if, and only if, $H x_{i} \pi_{1}(g)=H x_{j}$. In particular $\pi(g)$ is the identity if, and only if, $\pi_{1}(g)$ is the identity. Thus P and P_{1} are homomorphic images of G, both with the same kernel, and $\pi(g) \leftrightarrows \pi_{1}(g)$ is an isomorphism between P and P_{1}. And with $s_{i} \leftrightarrows H x_{i}$, a one-to-one correspondence between S and the set of left cosets of H, we have established that P is isomorphic as a permutation group to P_{1}, since $\left(s_{i}\right) \pi(g)=s_{j}$ if, and only if, $H x_{i} \pi_{1}(g)=H x_{j}$.

In the light of this theorem we may speak of any transitive permutation representation of a group G as the representation on a subgroup H. If H is the identity, then the representation is the right regular representation given in §1.4.

Theorem 5.3.2. In the representation $g \rightarrow \pi(g)$ of Theorem 5.3.1, the elements mapped onto the identity form the largest normal subgroup of G contained in H, and so the representation is faithful if, and only if, H contains no normal subgroup of G greater than the identity.

Proof: For what g is $\pi(g)$ the identity? Here $H x g=H x$ for all $x \in G$. Hence $x^{-1} H x g=x^{-1} H x$ or $g \in x^{-1} H x$. Then $g \in \bigcap_{x} x^{-1} H x=N$. Here N is clearly a normal subgroup of G contained in H. Moreover, any normal subgroup of G contained in H is contained in every $x^{-1} H x$ and so in N. Thus N is the largest normal subgroup of G contained in H. Conversely, if $g \in N$, then $H x g=H x$ for every x, and so $\pi(g)=1 . N=1$ is the necessary and sufficient condition that $g \rightarrow \pi(g)$ be a faithful representation of G.

Corollary 5.3.1. The only faithful transitive representation of an Abelian group is the regular representation.

Theorem 5.3.3. Two faithful representations of G on subgroups H_{1} and H_{2} are isomorphic as permutation groups if, and only if, there is an automorphism α of G such that $H_{1}{ }^{\alpha}=H_{2}$.

Proof: If α is an automorphism of G such that $H_{1}{ }^{\alpha}=H_{2}$, then

$$
H_{1} x \rightleftarrows H_{1}{ }^{\alpha} x^{\alpha}=H_{2} x^{\alpha}
$$

is a one-to-one correspondence between the cosets of H_{1} and H_{2} such that, if $g \rightarrow \pi(g)$ is the representation on H_{1} and $g \rightarrow \pi_{2}(g)$ on H_{2}, then

$$
\pi_{1}(g) \rightleftarrows \pi_{2}\left(g^{\alpha}\right)
$$

On the other hand suppose there is a permutation isomorphism

$$
\pi_{1}(g) \rightleftarrows \pi_{2}\left(g^{*}\right)
$$

Since the representations are faithful, this defines a one-to-one correspondence $g \rightleftarrows g^{*}$ which will be an automorphism β of G. In the permutation isomorphism $\quad \pi_{1}(g) \rightleftarrows \pi_{2}\left(g^{*}\right)$, we shall have $H_{1} \leftrightarrows H_{2} u$. Hence, if $H_{1 g}=H_{1}$,

$$
H_{2} u g^{\beta}=H_{2} u
$$

or

$$
u^{-1} \mathrm{H}_{2} u g^{\beta}=u^{-1} \mathrm{H}_{2} u
$$

and conversely. Hence if $g \in H_{1}$ then $g^{\beta} \in u^{-1} H_{2} u$, and conversely. Or $H_{1}{ }^{\beta}=u^{-1} H_{2} u$ or $H_{2}=u H_{1}^{\beta} u^{-1}=H_{1}^{\alpha}$, where α is an automorphism of G.

5.4. The Alternating $\operatorname{Group} \boldsymbol{A}_{\boldsymbol{n}}$.

$\Delta=\prod_{i<j}^{\text {Consider }}\left(x_{i}-x_{j}\right) ; i, j \leq n ; n \geqslant 2$. If $x_{1}, x_{2}, \cdots, x_{n}$ are replaced by a permutation of themselves, then Δ is replaced either by Δ or $-\Delta$. Writing Δ out,

$$
\begin{aligned}
& \Delta=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right) \cdots\left(x_{1}-x_{n}\right) \cdot \\
& \left(x_{2}-x_{3}\right) \cdots\left(x_{2}-x_{n}\right) \\
& \text { • } \\
& \text { - }\left(x_{n-1}-x_{n}\right) \text {, }
\end{aligned}
$$

we see that the interchange $\left(x_{1}, x_{2}\right)$ replaces $x_{1}-x_{2}$ by $x_{2}-x_{1}=-\left(x_{1}-x_{2}\right)$, interchanges the remaining terms of the first row with the terms of the second row, and leaves the remaining terms unchanged. Thus the permutation $\left(x_{1}, x_{2}\right)$ replaces Δ by $-\Delta$. We shall call a permutation even if it leaves Δ unchanged, and odd if it replaces Δ by $-\Delta$.

Theorem 5.4.1. The even permutations on $x_{1}, x_{2}, \cdots, x_{n}$ form a normal subgroup of index two in the symmetric group S_{n}. This group is called the alternating group A_{n}.

Proof: We may verify directly that the product of two even permutations is even, the product of two odd permutations is even, and that the product of an even and odd permutation in either order is odd. We note that the identity is an even permutation.

Hence the even permutations of S_{n} form a subgroup A_{n}. Since $\left(x_{1}, x_{2}\right)$ is an odd permutation, the coset $A_{n}\left(x_{1}, x_{2}\right)$ consists entirely of odd permutations. But if π is any permutation, then one of $\pi, \pi \cdot\left(x_{1}, x_{2}\right)$ is even and the other is odd. Since $\pi=\left[\pi \cdot\left(x_{1}, x_{2}\right)\right] \cdot\left(x_{1}, x_{2}\right)$, we see that A_{n} and $A_{n}\left(x_{1}, x_{2}\right)$ exhaust the elements of S_{n}, and $S_{n}=A_{n}+A_{n}\left(x_{1}, x_{2}\right)=A_{n}+\left(x_{1}\right.$, $\left.x_{2}\right) A_{n}$. Thus A_{n} is of index 2 in S_{n} and so is a normal subgroup.

A cycle of length two $\left(x_{i}, x_{j}\right)$ is called a tranposition. Hence all transpositions in S_{n} are conjugate (Theorem 5.1.3) to $\left(x_{1}, x_{2}\right)$. But whatever π is, π and π^{-1} have the same parity, and so $\pi^{-1}\left(x_{1}, x_{2}\right) \pi=\left(x_{i}, x_{j}\right)$ is odd. We may also compute directly that every transposition $\left(x_{i}, x_{j}\right)$ is an odd permutation.

Any cycle of length n is the product of $n-1$ transpositions, since (x_{1}, x_{2}, $\left.\cdots x_{n}\right)=\left(x_{1}, x_{2}\right)\left(x_{1}, x_{3}\right) \cdots\left(x_{1}, x_{n}\right)$. Thus (Theorem 5.1.1) any finite permutation may be written as a product of transpositions. The product of an even number of transpositions is an even permutation, of an odd number, odd.

Hence, though a permutation may be written in many ways as a product of transpositions, the number of transpositions involved will always have the same parity.

THEOREM 5.4.2. $A_{n}, n \geq 3$, is ($n-2$)-ply transitive.

Proof: Let $y_{1}, \cdots, y_{n-2}, y_{n-1}, y_{n}$ be an arbitrary ordering of x_{1}, \cdots, x_{n-2}, x_{n-1}, x_{n}. Then if

$$
u=\binom{x_{1}, \cdots, x_{n-2}, x_{n-1}, x_{n}}{y_{1}, \cdots, y_{n-2}, y_{n-1}, y_{n}}
$$

and

$$
v=\binom{x_{1}, \cdots, x_{n-2}, x_{n-1}, x_{n}}{y_{1}, \cdots, y_{n-2}, y_{n}, y_{n-1}},
$$

we have $v=u\left(y_{n-1}, y_{n}\right)$ and one of u, v is even, the other odd. Hence A_{n} is (n - 2)-ply but not n-ply transitive. Clearly, it could not be ($n-1$)-ply transitive without also being n-ply transitive.

In the group of permutations on an infinite set of ω letters we may define the alternating group A_{ω} as consisting of those permutations which may be written as the product of an even number of transpositions. A_{ω} will be a subgroup of index two in the group H_{ω} of those permutations each of which displaces only a finite number of letters. From Theorem 5.1.3, H_{ω} will be a normal subgroup of S_{ω}, and A_{ω} will be a normal subgroup of S_{ω} index 2 in H_{ω}.

Theorem 5.4.3. The alternating group A_{n} is a simple group for any value of n, finite or infinite, except $n=4$.
A_{2} is the identity. A_{3} is the cyclic group of order 3 and, so, simple. The group A_{4} must be treated separately. We may suppose that there are at least 5 letters.

Lemma 5.4.1. $A_{n}, n \geq 3$ is generated by all cycles (a, b, c) of length three.

Proof: A_{n} is surely generated by all elements which are the product of two transpositions. If the two transpositions are identical, their product is 1. If they have one letter in common, say (a, b) and (a, c), we have $(a, b)(a, c)$ $=(a, b, c)$. If they have no letter in common, $(a, b)(c, d)=(a, b)(a, c)(c, a)(c$, $d)=(a, b, c)(c, a, d)$, proving the lemma.

We shall prove that a normal subgroup G, greater than the identity and contained in $A_{n}, n \geq 5$ must contain all cycles of length three and hence be equal to A_{n}. This will be established by treating a number of cases. Note that since $G \subseteq A_{n}$, every element of G can be written as a product of a finite number of finite cycles.

CASE 1. G contains a cycle of length three (a, b, c).
Here any other cycle of length three (x, y, z) belongs with (a, b, c) in an alternating group A_{r} on a finite number r of letters, where we may take $r \geq 5$. Since A_{r} is $r-2 \geq 3$-ply transitive, (a, b, c) and (x, y, z) are conjugate in A_{r} and a fortiori in A_{n}. But G, being normal, must contain all conjugates of (a, b, c) in A_{n}, and so all cycles of length three, whence by the Lemma 5.4.1. $G=$ A_{n}.

CASE 2. G contains an element g with a cycle of length $s \geq 4$. Write

$$
g=\left(a_{1}, a_{2}, \cdots, a_{r}\right) \cdots\left(c_{1}, c_{2}, \cdots, c_{s-3}, c_{s-2}, c_{s-1}, c_{s}\right)
$$

Here $t=\left(c_{s-2}, c_{s-1}, c_{s}\right) \in A_{n}$, and

$$
t^{-1} g t=\left(a_{1}, a_{2}, \cdots, a_{\tau}\right) \cdots\left(c_{1}, c_{2}, \cdots, c_{s-3}, c_{s-1}, c_{s}, c_{s-2}\right)
$$

But $g t^{-1} g^{-1} t=\left(c_{s-3}, c_{s}, c_{s-2}\right)$ will belong to G since G is normal.
We have thus reduced Case 2 to Case 1. We now consider cases in which the lengths of the cycles are not greater than 3 .

CASE 3. Some $g \in G$ has two or more cycles of length 3 .

$$
g=\left(a_{1}, a_{2}, a_{3}\right)\left(b_{1}, b_{2}, b_{3}\right) \cdots\left(c_{1}, \cdots c_{r}\right)
$$

Take $t=\left(a_{3}, b_{1}, b_{2}\right) \in A_{n}$. Here

$$
h=t^{-1} g t=\left(a_{1}, a_{2}, b_{1}\right)\left(b_{2}, a_{3}, b_{3}\right) \cdots\left(c_{1}, \cdots, c_{r}\right) \in G
$$

and

$$
g h^{-1}=\left(a_{2}, b_{2}, a_{3}, b_{1}, b_{3}\right) \in G
$$

which reduces to Case 2.
Case 4. Some $g \in G$ has one or more cycles of length three and its remaining cycles of length two.

$$
g=\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) \cdots\left(z_{1}, z_{2}\right)(a, b, c) \cdots(d, e, f)
$$

Here

$$
g^{2}=(a, c, b) \cdots(d, f, e) \in G
$$

This reduces either to Case 1 or Case 3 .
Case 5. Some $g \in G$ contains only cycles of length two and has at least four of these.

$$
g=(x, y)(z, u) \cdots(a, b)(c, d) \in G
$$

Take $t=(y, a)(b, c) \in A_{n}$.

$$
\begin{aligned}
h=t^{-1} g t & =(x, a)(z, u) \cdots(y, c)(b, d) \in G \\
g h & =(x, c, b)(y, a, d) \epsilon G .
\end{aligned}
$$

This reduces to Case 3.
CASE $6 . g \in G$ contains only two cycles of length two.

$$
g=(a, b)(c, d) \in G
$$

Here, since we assume $n \geq 5$, there will be some letter e of the permutation set, $e \neq a, b, c, d$.

Here

$$
\begin{aligned}
t & =(a, b, e) \in A_{n} \\
h=t^{-1} g t & =(b, e)(c, d) \in G \\
g h & =(a, e, b) \in G
\end{aligned}
$$

and this reduces to Case 1.
The alternating group A_{4} on 1, 2, 3, 4 contains a normal subgroup of order 4 whose elements are (1), (12)(34), (13)(24), and (14)(23).

5.5. Intransitive Groups. Subdirect Products.

If a permutation group G is intransitive, let $S_{i}\left(x_{i 1}, \cdots\right), i \in I$, an index system, be the various sets of letters on which it is transitive. If we suppress all letters except those of the set S_{i}, then these permutations of the set S_{i} themselves form a group G_{i}. For each $i \in I$ an element g of G will determine a $g_{i} \in G_{i}$, namely, the permutation of the letters of S_{i} which g induces. We can moreover write

$$
\begin{equation*}
g=\prod_{i} g_{i} \tag{5.5.1}
\end{equation*}
$$

regarding g as an element of the Cartesian product of the G_{i}, since within G the group operations agree with those in the Cartesian product $\prod_{i} G_{i}$. Thus an intransitive group may be regarded as a subgroup of the Cartesian product of transitive groups. Here we say that G is the subdirect product of groups G_{i}. More precisely, a group is said to be a subdirect product of groups G_{i} if (1) G is a subgroup of the Cartesian product of the G_{i}; and (2) for each $g_{j} \in G_{j}$ there is at least one $g \in G$ which has g_{j} as its j th component. Here
the second condition requires that all elements of the groups G_{i} actually occur in this representation of G.

If in the subdirect product $G \subseteq \prod_{i} G_{i}$ all components g_{i} may occur independently, then G is the entire Cartesian product. This will not be true in general, and the following theorem describes the kind of dependence which arises between the components of a subdirect product. Let G_{i} and G_{j} be two components or possibly the groups determined by disjoint sets of components $G_{i}, i \in I_{1}, G_{j}, j \in I_{2}, I_{1} \cap I_{2}=0$. Suppressing all components except G_{i} and G_{j}, the elements of G determine a group G^{*} which is the subdirect product of G_{i} and G_{j}. We may describe the interdependence of the components G_{i} and G_{j} in G by describing exactly the induced subdirect product G^{*} of G_{i} and G_{j}.

Theorem 5.5.1. Let G^{*} be the subdirect product of the groups G_{i} and G_{j} and let $H_{i j}$ and $H_{j i}$ be the subgroups of G_{i} and G_{j}, respectively, of elements of one factor occurring in G^{*} with the identity of the other factor. Then $H_{i j}$ is normal in G_{i} and $H_{j i}$ is normal in G_{j}, and there is an isomorphism between the factor groups $G_{i} / H_{i j} \cong K \cong G_{j} / H_{j i}$ such that $\left(g_{1}, g_{2}\right), g_{1} \in G_{i}$, $g_{2} \in G_{j}$ is an element of $G^{*} i f$, and only if, g_{1} and g_{2} have the same image k in the homomorphisms $G_{i} \rightarrow K, G_{j} \rightarrow K$.

Proof: If $(h, 1)$ are the elements $H_{i j}$ of G_{i} occurring with the identity of G_{j} in G^{*}, then we easily verify that $H_{i j}$ is a normal subgroup of G_{i} and similarly that elements $H_{j i}$ of the type $(1, h)$ in G^{*} are a normal subgroup of G_{j}. Moreover, for $g_{1} \in G_{i}$, the set of elements $g_{2} \in G_{j}$ occurring with a fixed g_{1} is seen to be a coset of $H_{j i}$. In the same way the set of g_{1} 's occurring with a fixed g_{2} is seen to be a coset of $H_{i j}$. Still further, if $\left(g_{1}, g_{2}\right)$ belongs to G^{*}, then all elements of the form $\left(H_{i j} g_{1}, H_{j i} g_{2}\right)$ belong to G^{*} and no other pair $\left(g_{1}^{\prime}, g_{2}^{\prime}\right)$ of G^{*} involves any one of these elements as a component. Hence for each $\left(g_{1}, g_{2}\right)$ of G^{*} there is determined a one-to-one correspondence $H_{i j} g_{1} \rightleftarrows H_{j i} g_{2}$ between a coset of $H_{i j}$ in G_{i} and a coset of $H_{j i}$ in G_{j}.

If $\left(g_{1}, g_{2}\right)$ and $\left(g_{3}, g_{4}\right)$ belong to G^{*}, then $\left(g_{1} g_{3}, g_{2} g_{4}\right)$ also belongs to G^{*}, and so this correspondence preserves products and must therefore be an isomorphism between the factor groups $G_{i} / H_{i j}$ and $G_{j} / H_{j i}$. Here if we write $G_{i} / H_{i j}=K=G_{j} / H_{j i}$, then if $\left(g_{1} g_{2}\right)$ belongs to G^{*}, we see that g_{1} and g_{2} belong to corresponding cosets and so have the same image k in the homomorphic image K of both G_{i} and G_{j}.

Conversely, if two groups G_{i} and G_{j} have normal subgroups $H_{i j}$ and $H_{j i}$, respectively, such that $G_{i} / H_{i j}=K=G_{j} / H_{j i}$, then all pairs $\left(g_{1}, g_{2}\right)$ with $g_{1} \in G_{i}, g_{2} \in G_{j}$ such that $g_{1} \rightarrow k, g_{2} \rightarrow k$ in the homomorphisms $G_{i} \rightarrow$ $K, G_{j} \rightarrow K$ will form a subdirect product G^{*} as above.

5.6. Primitive Groups.

Suppose G is a permutation group $G \neq 1$ on letters which can be divided into disjoint sets S_{1}, \cdots, S_{m} such that every permutation of G either maps all letters of a set S_{i} onto themselves or onto the letters of another set S_{j}. Except for the trivial cases in which there is only one set or in which every set consists of a single letter, we say that G is imprimitive, and we call S_{1}, \cdots, S_{m} the sets of imprimitivity. Thus an intransitive group is a fortiori imprimitive. If G is not imprimitive, we say that G is primitive. Thus a primitive group is a transitive group whose letters cannot be divided into proper sets permuted among themselves.

Theorem 5.6.1. Let G be a transitive but imprimitive group. Let S_{1} be one of the sets of imprimitivity and y_{1} one of the letters of S_{1}, and H the subgroup of elements fixing y_{1}. Then the elements of G taking S_{1} into itself form a subgroup K properly contained between G and H. The number of sets of imprimitivity is the index [G:K], and each set of imprimitivity has the same number of letters $[K: H]$. Conversely, if G is a transitive group and H is the subgroup fixing a letter y_{1}, and if there is a subgroup K such that $G \supset K \supset H$, then G is imprimitive and one of its sets of imprimitivity consists of the $[K: H]$ letters into which elements of K take y_{1}. There are [G:K] sets of imprimitivity corresponding to left cosets of K. Thus a
permutation group G is primitive if, and only if, the subgroup H fixing a letter is a maximal subgroup.

Proof: Suppose that G is transitive and imprimitive. Let S_{1}, \cdots, S_{m} be the sets of imprimitivity for G, and let H be the subgroup fixing a letter y_{1} of S_{1}. Then, if

$$
\begin{equation*}
G=H+H x_{2}+\cdots+H x_{n}, \tag{5.6.1}
\end{equation*}
$$

we may, by Theorem 5.3.1, regard the letters permuted by $G y_{1}, y_{2}, \cdots, y_{n}$ as being the left cosets $H x_{i}$ of (5.6.1). permuted by the rule $\pi(g)$: $H x_{i} \rightarrow H x_{i} g$ for each $g \boldsymbol{\epsilon}$. If $y_{1}, y_{2}, \cdots, y_{t}$ are the letters of S_{1}, then the elements of G taking these letters into themselves form a subgroup K. An element fixing y_{1} must take all of S_{1} into itself, whence $H \subset K$, the inclusion being proper since an element taking y_{1} into y_{2} will belong to K but not to H. Now K is transitive on the letters of S_{1}. Thus

$$
\begin{equation*}
K=H+H x_{2}+\cdots+H x_{t} \tag{5.6.2}
\end{equation*}
$$

and we see that the number t of letters in S_{1} is $[K: H]$. Since S_{1} does not contain all letters permuted by G, K will be a proper subgroup of G. Now if S_{i} is any one of the sets of imprimitivity, there is a permutation of G taking y_{1} into a letter of S_{i}, whence all of S_{1} is mapped onto all of S_{i}, and so S_{i} has the same number of letters as S_{1}. Moreover, in the permutation $H x_{i} \rightarrow H x_{i} g$, we also have $K x_{i} \rightarrow K x_{i} g$, whence the sets of imprimitivity are seen to be the left cosets of K in (5.6.1), and so their number is [$G: K]$.

Conversely, suppose that G is a transitive group given by the permutations $H x_{i} \rightarrow H x_{i} g$ of the cosets of the subgroup H fixing a letter y_{1}, and suppose there is a subgroup K such that $G \supset K \supset H$. Then the cosets of K consist of sets of cosets of H, and these will form a system of imprimitivity for G. Hence G is primitive if, and only if, the subgroup H is maximal.

We may make a few elementary remarks which follow from the definition of primitivity and this theorem. A doubly transitive group is surely primitive, since if S_{1} is any set of letters which are part of the letters permuted by a
doubly transitive group G, then there is a permutation which takes one letter of S_{1} into itself and a second letter of S_{1} into a letter outside of S_{1}. Thus S_{1} cannot be a set of imprimitivity. Secondly, a group of degree n (the degree of a permutation group is the number of letters it permutes) can have a set of imprimitivity of t letters only if t is a divisor of n, since in Theorem 5.6.1 $n=$ [G:H] and $t=[K: H]$. Thus a group of prime degree is certainly primitive. Now in a p-group every subgroup is contained in a maximal subgroup of index p, which is normal (Corollary 4.2.2). Thus a permutation group which is a p-group is imprimitive unless it is on p letters, in which case it is the cyclic group of order p.

Theorem 5.6.2. Let G be a permutation group on n letters which is primitive, and let H be a transitive subgroup of G on m letters, fixing the remaining $n-m$ letters. Then (1) if H is primitive, G is $n-m+1$ fold transitive; (2) in any event G is doubly transitive.

Proof: H is transitive on a set of m of the n letters of G. Each of the conjugates of H is transitive on some set of m letters, and since G is transitive, every letter occurs in at least one of these sets. If these sets are either disjoint or identical, then they would be sets of imprimitivity for G. Hence H has conjugates which displace some of but not all the same letters as H. Let H^{\prime} be one of those which has the largest number of letters in common with H. Let us write

$$
\begin{gather*}
H:\left(a_{1}, \cdots, a_{r}, \quad c_{1}, \cdots, c_{s}\right) \tag{5.6.3}\\
H^{\prime}:\left(b_{1}, \cdots, b_{r}, \quad c_{1}, \cdots, c_{s}\right), \quad r+s=m
\end{gather*}
$$

By this we understand that the c 's are the letters which both H and H^{\prime} displace, the group H also displacing r letters a_{i}, and H^{\prime} also displacing r letters b_{i}. We assert that when H is primitive, then $r=1$, and if H is imprimitive and $r>1$, then a_{1}, \cdots, a_{r} are a set of imprimitivity for H. Consider an element h^{\prime} of H^{\prime}.

$$
\begin{equation*}
h^{\prime}=\binom{b_{1}, \cdots, b_{u}, b_{u+1}, \cdots, b_{r}, c_{1}, \cdots, c_{r-u}, c_{r-u+1}, \cdots, c_{s}}{b, \cdots, b, c \quad, \cdots, c, b, \cdots, b, c \quad, \cdots, c} \tag{5.6.4}
\end{equation*}
$$

where this indicates primarily the number u of b 's mapped onto b 's, b 's mapped onto c 's, c 's onto b 's, and c 's mapped onto c 's. We note that the number $r-u$ of b 's mapped onto c 's must be the same as the number of c 's mapped onto b 's, since there must be $(r) b$'s in the second row of h ' in (5.6.4). Hence $h^{\prime-1} H h^{\prime}$ displaces (r) a^{\prime} 's, $(r-u) b$'s, and $(s-r+u) c$'s, and so will have $s+u$ letters in common with H. Thus, if $r>1$ and H^{\prime} is primitive, we can choose an element h^{\prime}, taking some of but not all the b 's into themselves, whence $1 \leq u<r$; thus $h^{r-1} H h^{\prime}$ has $s+u$ letters in common with H, which is more than s but not all $r+s=m$. In any event we must have $r=1$ when H is primitive, and if $r=1$ whether H is primitive or not, then $H \cup H^{\prime}$ is doubly transitive on $m+1$ letters and, so, primitive. We can continue with this group in the role of H until we reach G itself, obtaining in succession a doubly transitive group on $m+1$ letters, a triply transitive group on $m+2$ letters, and ultimately G as an $n-m+1$-ply transitive group.

In case H is imprimitive, this argument does not apply, but we note that we can increase the number s of letters in common between H and H^{\prime} unless b_{1}, \cdots, b_{r} are a set of imprimitivity for H^{\prime} and a_{1}, \cdots, a_{r} are a set of imprimitivity for H. Moreover, $H \cup H^{\prime}$ is a transitive group on $s+2 r=m+r$ letters. Thus, if m is at most $n / 2, m+r$ will be less than n. We may continue to form transitive subgroups on more and more letters until we have a transitive subgroup H on a number m of letters greater than $n / 2$ but less than n. In this case any conjugate H^{\prime} of H displaces some letters in common with H. Here, suppose H is transitive on the largest possible number of letters less than n. If $s+2 r=n$ and $r=1$, then H is transitive on $n-1$ letters and so G is doubly transitive. If this does not happen, we reach a group H where $s+2 r=$ n with $r \neq 1$. In this case the a 's, b 's, and c 's are all the letters of G. But since G is primitive, there is an element g taking b_{1} into some b_{i} but not all b 's into themselves, and so at least one a or c into a b. Here H and $g^{-1} H g$ both fix b_{i}, and their union is transitive on more letters than H. Thus we must ultimately reach a subgroup transitive on $n-1$ letters and so G is doubly transitive.

The second alternative in the theorem can actually arise. Example 4 in Chap. 1 illustrates this, where the group is transitive on seven letters and thus primitive. It has a transitive subgroup on the four letters C, E, F, G, and it is doubly but not triply transitive.

5.7. Multiply Transitive Groups.

The symmetric group on n letters is, of course, n-ply transitive, and the alternating group A_{n} (as we remarked in $\S 5.4$) is ($n-2$)-ply transitive. We shall exclude these in further discussion of multiple transitivity. There are infinitely many groups which are triply transitive. But apart from the alternating and symmetric groups, there are only four groups known which are quadruply transitive. These are the Mathieu groups on 11, 12, 23, and 24 letters, respectively, of which the groups on 12 and 24 letters are quintuply transitive and contain as subgroups fixing a letter the groups on 11 and 23 letters, respectively. These somewhat mysterious groups have been the subject of considerable investigation, but it is not known whether these groups are truly exceptional or whether they are part of an infinite family of groups which are quadruply transitive.

Theorem 5.7.1, due to G. A. Miller [1], gives a limit on the transitivity of groups of degree n. This theorem combined with "Bertrand's postulate," proves that for $n>12$ a group of degree n cannot be t-fold transitive for $t \geq 3 \sqrt{n}-2$. Bertrand's postulate (proved correct by Chebyshev in 1850) states that for any real number $x \geqq 7$, there exists a prime number p in the interval $x / 2<p \leq x-2$. Miller's theorem gives a considerably better limit for most specific values of n. Still better restrictions are known,_ but their proofs are too complicated to include here.

Theorem 5.7.1. Let Ge a t-ply transitive group on n letters. Let H be a subgroup fixing t letters, and let P be a Sylow p-subgroup of H, where P fixes $w \geq t$ letters. Then the normalizer in G of P is t-ply transitive on the w letters fixed by P.

Proof: Let a_{1}, \cdots, a_{t} and b_{1}, \cdots, b_{t} be two ordered sets of t letters, both sets being from the w letters fixed by P. Then, since G is t-ply transitive, there is an element x of G taking a_{i} into b_{i} for $i=1, \cdots, t$. Then $x^{-1} P x$ fixes b_{1}, \cdots, b_{t}, and thus both P and $x^{-1} P x$ are Sylow subgroups of the group fixing b_{1}, \cdots, b_{t}. By the second Sylow theorem these groups must be conjugate in the group fixing b_{1}, \cdots, b_{t}. Thus, for some y fixing b_{1}, \cdots, b_{t}, we have $y^{-1}\left(x^{-1} P x\right) y=P$. But here, with $z=x y, z$ takes $a_{1} \cdots, a_{t}$ into b_{1}, \cdots
\cdot, b_{t} and $z^{-1} P z=P$. Hence there is an element in the normalizer of P taking any ordered set of t of the w letters fixed by P into any other ordered set of t of these letters. Thus the normalizer in G of P is t-fold transitive on the w letters fixed by P, proving the theorem.

Theorem 5.7.2. Let the integer $n=k p+r$, where p is a prime and $p>k$, $r>k$. Except for $k=1, r=2$, a group of degree n cannot be as much as $(r+$ 1)-fold transitive unless it is S_{n} or A_{n}.

Proof: Suppose that G of degree n is $(r+1)$-fold transitive. The subgroup H fixing the first r letters, $1,2, \cdots, r$, is transitive on the remaining $k p$ letters. Thus the order of H is divisible by the prime p, and contains a Sylow p-subgroup P. A subgroup of H fixing a letter is of index $k p$ in H, and so its order is not divisible by the highest power of p dividing the order of H. Thus P must displace every one of the $k p$ letters on which H is transitive. Furthermore since $k p<p^{2}$, by the hypothesis P cannot contain a transitive constituent on p^{2} letters. As the number of letters in a transitive constituent of P is a divisor of the order of P, the group P must have on the $k p$ letters of H exactly k transitive constituents of p letters each. (We have already excluded the possibility that any constituent is a single letter.) On each of these constituents P must be the cyclic group of order p. Thus P is a subdirect product of k cyclic groups of order p on p letters each. Thus every element of P is of order p, and P is an Abelian group. But for the most part we shall not have to concern ourselves with the manner in which P is a subdirect product.

Let N be the normalizer in G of P. By Theorem 5.7.1, N is the symmetric group S_{r} on the first r letters of G. Let us first consider cases with $r \geq 5$, and let N_{1} be the subgroup of N which is the alternating group A_{r} on the first r letters. By Theorem 5.4.3, A_{r} is a simple group of order $r!/ 2$, and being of composite order, is not Abelian. Let T_{1}, \cdots, T_{k} be the k transitive constituents of p letters of P. Then a homomorphic image of N_{1} is given if we combine the permutations on the first r letters with the permutations on the transitive constituents T_{i} themselves, which are permuted among themselves in N_{1}. This image is the subdirect product of A_{r} on the first r letters and a group permuting the $k T$ s among themselves in some manner. But a group on k symbols is of order at most $k!$ and so, since $k!<r!/ 2$, it can have no factor
group isomorphic to A_{r}, which is a simple group; thus the only factor group of this group isomorphic to a factor group of A_{r} is the identity. Hence this group involving A_{r} and the constituents T_{i} is, by the results of $\S 5.5$, the direct product of A_{r} and the other group. Here A_{r} and the identity in the other group has as its inverse image in N_{1} a group N_{2}, which is A_{r} on the first r letters, and takes the letters of each transitive constituent T_{i} into themselves. To analyze N_{2} we must pause to consider the nature of the normalizer on p letters of the cyclic group generated by $a=\left(x_{1}, \cdots, x_{p}\right)$ on these letters. Since $a^{p}=$ 1, if $b^{-1} a b=a^{i}$ and $c^{-1} a c=a^{j}$, we see that both $b c$ and $c b$ transform a into $a^{i j}$. Thus the automorphisms induced on a cyclic group by transformation themselves form an Abelian group. (We shall see in the next chapter that the automorphisms of a cyclic group of order p are themselves a cyclic group of order $p-1$.)

Now an element u on x_{1}, \cdots, x_{p} permuting with a, when multiplied by an appropriate power a^{i} of a, will be an element $v=u a^{i}$ which permutes with a and fixes the letter x_{1}. But with $a^{-1} v a=v$ and v fixing x_{1}, we can readily show that v fixes x_{2}, \cdots, x_{p}, and so $v=1$, whence $u=a^{-i}$ Thus N_{2} on any one of the transitive constituents T_{i} of the k transitive constituents of p letters of P will have a normal subgroup of order p, consisting of the powers of a cycle of p letters and a factor group of elements inducing different automorphisms on the group of order p; this factor group is Abelian. Thus any factor group of this group is either Abelian or has an Abelian factor group. Therefore the only factor group isomorphic with a factor group of A_{r} is the identity. Thus, neglecting T_{2}, \cdots, T_{k} momentarily, N_{2}, applying the results of $\S \underline{5.5}$ to the first r letters and T_{1}, has a subgroup which is A_{r} on the first r letters and the identity on the letters of T_{1}. This subgroup N_{3} of N_{2} in turn has a subgroup N_{4} which is A_{r} on the first r letters and is the identity on both T_{1} and T_{2}.

Continuing, we have a subgroup which is A_{r} on the first r letters and the identity on the remaining letters. But A_{r} contains a cycle (a, b, c) on three letters, and since G is at least 5-ply transitive on all n letters, this may be transformed into any cycle of three letters of the n letters. By Lemma 5.4.1 these three-cycles generate A_{n}, and since G contains A_{n}, G is either A_{n} or S_{n}.

The preceding argument required $r \geq 5$ and leaves to be considered the cases $r=3, k=1$ or 2 , and $r=4, k=1,2$, or 3 . Let us first consider cases in which P is cyclic, generated by an element a, and $k=1$ or 2 . As we have remarked above, if $u=(12)(3) \cdots$ and $v=(1)(23) \cdots$ are elements of the normalizer N of P (which will be the symmetric group on the first three or four letters fixed by P), then since P is cyclic, $u v$ and $v u$ will both transform a into the same power of itself. Thus $u^{-1} v^{-1} u v=(1,2,3) \cdots$ will permute with a. This element $w=u^{-1} v^{-1} u v$ either interchanges the two constituents T_{1}, T_{2} or takes both into themselves. In either event $w^{2}=(1,3,2) \cdots$ fixes both constituents if there are two of them. This element will have order divisible by 3 , and so some power of it will be of order 3^{s} and will still be a threecycle on the first three letters, taking the constituents into themselves, and permuting with a. But for each cycle of a, the only permuting elements are the power of the cycle and are of order p if they are not the identity. Thus, unless $p=3$, an element of order 3^{s} which permutes with a in this manner will be the three-cycle $(1,2,3)$ or $(1,3,2)$ on the first three letters and the identity on the remaining. Here G contains a three-cycle and is triply transitive, and so must be either A_{n} or S_{n} We have excluded only $p=3$, and this corresponds with $k=1$ or 2 and $r=3$ or 4 to $n=6,7,9,10$. Actually, with $p=3, k=1, P$ itself is a three-cycle and the conclusion follows. This settles $n=6,7$, leaving $n=9,10$ to be treated as special cases. Here all cases with $k=1$ are covered, since P is surely cyclic in these cases. Now if $k=2$ and P is not cyclic, then P is the direct product of two p-cycles, and Theorem 5.6.2 applies with G primitive and H a cycle of order p, and thus a primitive group. Here G must be $(p+4)$ - or $(p+5)$-fold transitive, and we may use the argument with $r=p+3$ or $p+4$ and $k=1$ to conclude that $G=A_{n}$ or S_{n}.

There remain to be considered cases with $k=3, r=4$. First, if P is cyclic, we may argue as before that there are elements which are $(1,2,3)(4)$ $\cdots(1)(2,3,4) \cdots$, and, indeed, all eight possible three-cycles on the first four letters which permute with a generator a of P. But they may permute the three transitive constituents of a cyclically in either of the ways (T_{1}, T_{2}, T_{3}) or $\left(T_{1}, T_{3}, T_{2}\right)$, and at least two of the eight must permute the T 's in the same way. Combining these, we get an element either of the type $(1,2,3)(4) \cdots$ or $(1,2)(3,4) \cdots$ which takes T_{1}, T_{2}, T_{3} into themselves. Here p is at least 5 , and an element permuting with a and taking the cycles of a into themselves
of one of these forms leads to an element of the same form fixing the $3 p$ letters of a. Thus there is in G either a three-cycle $(1,2,3)$ or an element (1 , $2)(3,4)$, and by quadruple transitivity, also $(1,2)(3,5)$ and also the threecycle ($3,4,5$). Hence G contains A_{n} and is either A_{n} or S_{n}. On the other hand, if P contains a single cycle of p letters, then Theorem 5.6.2 applies, and G is $(2 p+4)$ - or $(2 \mathrm{p}+5)$-fold transitive, whence again G is A_{n} or S_{n}.

As a final case we must consider the possibility that P is not cyclic nor does it contain a p-cycle. In this case P must be of order p^{2}. We may take a basis for P of two elements, $a=\left(x_{1}, x_{2}, \cdots, x_{p}\right)\left(y_{1}, y_{2}, \cdots, y_{p}\right)$ and $b=\left(y_{1}\right.$, $\left.y_{2}, \cdots, y_{p}\right)\left(z_{1}, z_{2}, \cdots, z_{p}\right)$, where we have chosen a and b with the same cycle on the y 's. Thus $a b^{-1}$ and its powers are the only elements of P fixing the constituent T_{2} of the y 's. Now an element normalizing P of the form (1,2, $3,4) \cdots$ can be found so that it either fixes the three constituents or permutes two of them and fixes the third. Thus its square, $u=(1,3)(2,4) \cdots$, fixes all three constituents. Hence u transforms each of a, b, and $a b^{-1}$ into some power of itself and thus transforms both a and b into the same power of themselves (say, the i th power, and so every element of P into its i th power). Such an automorphism must permute with any other automorphism of P, and in particular with an automorphism induced by an element $w=(1)(2,3)(4) \cdot$ \cdots Therefore $v=w^{-1} u w=(1,2)(3,4) \cdots$ also transforms every element of P into its ith power and so naturally fixes the constituents of P. But now $u v^{-1}$ $=(1,4)(2,3) \cdots$ permutes with every element of P, fixing the constituents. This leads to an element $(1,4)(2,3)$ in G, and since G is quadruply transitive on more than four letters, G will again be A_{n} or S_{n}.

5.8. On a Theorem of Jordan.

In 1872 Jordan [2] showed that a finite quadruply transitive group in which only the identity fixes four letters must be one of the following groups: the symmetric group on four or five letters; the alternating group on six letters, or the Mathieu group on eleven letters.

Jordan's theorem on quadruply transitive groups is generalized here in two ways. The number of letters is not assumed to be finite; instead of assuming that the subgroup fixing four letters consists of the identity alone,
we assume only that it is a finite group of odd order. The conclusion is essentially the same as that of Jordan's theorem, the only other group satisfying the hypotheses being the alternating group on seven letters.

The theorem is the following:
Theorem 5.8.1. A group G quadruply transitive on a set of letters, finite or infinite, in which a subgroup H fixing four letters is of finite odd order, must be one of the following groups: $S_{4}, S_{5}, A_{6}, A_{7}$, or the Mathieu group on 11 letters.

Case 1. G on not more than seven letters. A quadruply transitive group on four or five letters must be the symmetric group. On six letters its order must be at least $6 \cdot 5 \cdot 4 \cdot 3$, and hence it is A_{6} or S_{6} On seven letters, its index is, at most, 6 in S_{7}. Since S_{7} does not have a subgroup of index 3 or 6 , the only possibilities are A_{7} and S_{7}. In both S_{6} and S_{7} there are elements of order 2 fixing at least four letters, and so these groups do not satisfy our hypothesis.

To treat the case in which G is on more than seven letters, we begin with a lemma.

LEMMA 5.8.1. Elements a and b in a group, satisfying the relations

$$
a^{2}=1, \quad b^{2}=1, \quad(a b)^{s}=1
$$

generate the dihedral group of order $2 s$. If $s=2 t-1$ is odd, then a power of $y=a b$ transforms a into b. If $s=2 r$ is even, then a and b permute with y^{r}.

Proof: With $y=a b$, we have

$$
a^{2}=1, \quad y^{s}=1, \quad b=a y=y^{-1} a
$$

If $s=2 t-1$, then

$$
y^{-t} a y^{t}=a y^{2 t}=b
$$

If $s=2 r$, then

$$
a y^{\tau}=y^{-\tau} a=y^{\tau} a
$$

From here on, G will denote (as in Theorem 5.8.1) a group quadruply transitive on more than seven letters, and H will denote a subgroup of odd order m fixing four letters.

Lemma 5.8.2. The group G contains elements of order 2, and all elements of order 2 are conjugate. Either (1) every element of order 2 fixes two letters, or (2) every element of order 2 fixes three letters.

Proof: By quadruple transitivity G contains an element

$$
g=(12)(34) \cdots
$$

Here g^{2} fixes $1,2,3,4$, and so belongs to H and will be of finite odd order m_{1}. Thus

$$
x=g^{m_{1}}=(12)(34) \cdots,
$$

with $x^{2}=1$. Since H is of odd order, any element u of order 2 will fix, at most, three letters and hence will displace at least four letters. With

$$
u=(a b)(c d) \cdots
$$

there is a conjugate of u,

$$
v=w^{-1} u w=(12)(34) \cdots
$$

Either $v=x$, or $v x$ fixes four letters and is of odd order, whence, by Lemma 5.8.1, v and x are conjugate. Thus all elements of order 2 are conjugate. On the other hand, there is in G an element $z=(1)(2)-(34) \cdots$, and either z or an odd power of z is an element of order 2 fixing at least two letters. Hence every element or order 2 fixes either two or three letters, since they fix at least two and not as many as four.

CASE 2. G on more than seven letters.
Let

$$
a_{1}=(1)(2)(34) \cdots
$$

be an element of order 2 and

$$
b=(12)(34) \cdots,
$$

another element of order 2 . Then $f=a_{1} b=(12)(3)(4) \cdots$ will be of even order, and f^{2} will be of odd order m_{1}. Hence $f_{1}^{m}=a_{3}$ is of order 2 , and by Lemma 5.8.1, will permute with a_{1}. Hence in G we have permuting elements of order 2 , with $a_{2}=a_{1} a_{3}$.

$$
\begin{align*}
& a_{1}=(1)(2)(34) \cdots, \\
& a_{2}=(12)(34) \cdots, \tag{5.8.1}\\
& a_{3}=(12)(3)(4) \cdots
\end{align*}
$$

Now a_{2} as an element of order 2 fixes either two letters 5 and 6 , or three letters 5,6 , and 7 . As a_{1} permutes with the element a_{2}, it takes these letters into themselves. But a_{1} fixes 1 and 2 and, at most, one other letter. Hence we have

$$
\begin{array}{lll}
a_{1}=(1)(2)(34)(56) \cdots, & & a_{1}=(1)(2)(34)(56)(7) \cdots, \\
a_{2}=(12)(34)(5)(6) \cdots, & \text { or } & a_{2}=(12)(34)(5)(6)(7) \cdots, \tag{5.8.2}\\
a_{3}=(12)(3)(4)(56) \cdots ; & & a_{3}=(12)(3)(4)(56)(7) \cdots
\end{array}
$$

The first case arises if elements of order 2 all fix two letters; the second, if all fix three letters. The elements $a_{1} a_{2} a_{3}$ of (5.8.2) and the identity form a four-group, V. Further letters will occur in sets of four which will be sets of transitivity for V :

$$
\begin{align*}
& a_{1}=(1)(2)(34)(56)(7)(h i)(j k) \cdots \\
& a_{2}=(12)(34)(5)(6)(7)(h j)(i k) \cdots \tag{5.8.3}\\
& a_{3}=(12)(3)(4)(56)(7)(h k)(i j) \cdots
\end{align*}
$$

Here it is understood that the 7 may not be present.
The order of the subgroup K taking h, i, j, k into themselves will be $24 m$, and $H=H(h, i, j, k)$, fixing these letters, of order m will be normal in K.

There will be a subgroup $U, K \supset U \supset H$, in which h, i, j, k are permuted in the following way:

$$
\begin{align*}
& \quad(h) \\
& (h i)(j k) \\
& (h j)(i k) \\
& (h k)(i j) \\
& (h j i k) \tag{5.8.4}\\
& (h k i j) \\
& (h i)(j)(k) \\
& (h)(i)(j k) .
\end{align*}
$$

Now U is of order $8 m$, and so a Sylow subgroup of U will be of order 8 . The elements taking h, i, j, k into themselves in a particular way will be a coset of H in U. Since H is normal in U, a group of order 8 in U will have one element from each coset and will be isomorphic to U / H, and hence will be faithfully represented by the permutations on these letters. V will be contained in a Sylow subgroup of order 8 in U. This yields

$$
\begin{align*}
a_{1} & =(1)(2)(34)(56)(7)(h i)(j k) \cdots, \\
a_{2} & =(12)(34)(5)(6)(7)(h j)(i k) \cdots, \\
a_{3} & =(12)(3)(4)(56)(7)(h k)(i j) \cdots \\
u & =(1)(2)(3546)(7)(h j i k) \cdots, \tag{5.8.5}\\
a_{1} u & =(1)(2)(3645)(7)(h k i j) \cdots, \\
a_{2} u & =(12)(36)(45)(7)(h i)(j)(k) \cdots, \\
a_{3} u & =(12)(35)(46)(7)(h)(i)(j k) \cdots,
\end{align*}
$$

or the same permutations with 5 and 6 interchanged. The way in which the last four elements permute the letters $1, \cdots, 7$ is determined by the relations

$$
u^{2}=a_{1}, \quad u^{-1} a_{2} u=a_{3}, \quad\left(a_{2} u\right)^{2}=1 .
$$

Here u normalizes V and so fixes the only letter, 7, fixed by V (if the 7 occurs). Also, u must take the fixed letters of a_{3} into those of a_{2}, whence

$$
u=\binom{3,4, \cdots}{5,6, \cdots} \text { or } \quad u=\binom{3,4, \cdots}{6,5, \cdots}
$$

but also $u^{2}=a_{1}$, whence

$$
u=(3546) \cdots \quad \text { or } \quad u=(3645) \cdots
$$

Finally, u must fix 1 and 2 or interchange them. But if u interchanges 1 and 2, then $a_{2} u$ is of order 2 and fixes the letters $1,2, j, k$. Thus

$$
u=(1)(2)(3546) \cdots \quad \text { or } \quad u=(1)(2)(3645) \cdots,
$$

and the rest follows.
Each further transitive constituent of V, such as h, i, j, k, yields a group S such as that in (5.8.5). The elements

$$
(12)(36)(45) \cdots \quad \text { and } \quad(12)(35)(46) \cdots
$$

in each of these groups fix two letters of the constituent. Since an element of order 2 cannot fix four letters, each constituent yields a different element, permuting the first six letters in the way (12)(36)-(45). But there are, at most, m elements with this effect on the first six letters. Thus if there are t such constituents, $t \leq m$ is finite and G is a group on $n=4 t+6$, or $4 t+7$ letters. If G is on 10 or 11 letters we have $t=1$.

There is no quadruply transitive group on ten letters (except, of course, A_{10} and S_{10}), for the normalizer of a cycle of length 7 by Theorem 5.7.2 is S_{3} on the remaining three letters; and so this normalizer, which is the subdirect product of S_{3} and the normalizer on the letters of the seven-cycle, will pair a three-cycle with the identity. Hence G contains a three-cycle and, being quadruply transitive, all three-cycles; thus G contains A_{10}.

On 11 letters G is of order $11 \cdot 10 \cdot 9 \cdot 8 m$, and even without assuming m odd, consideration of normalizers of Sylow subgroups fixing four letters shows that we must have $m=1$. The group of order 8 fixing three letters contains a single element of order 2 , and so it is the cyclic or quaternion group. The cyclic group, having only four automorphisms, could not have a normalizer triply transitive on the remaining three letters, for then G would
contain a three-cycle. Hence the subgroup fixing three letters must be the quaternion group Q. Then G will be a transitive extension of Q, and the methods of T.C. Holyoke [1] will readily enable us to construct from Q not only the quadruply transitive Mathieu group on 11 letters, but also the quintuply transitive group on 12 letters.

We shall now show that $t>1$ conflicts with the hypothesis that H is of odd order, and thus complete the proof of our theorem. If w, x, y, z is another transitive constituent of V, we have

$$
a_{2} u=(12)(36)(45)(7)(h i)(j)(k) \cdots
$$

from (5.8.5), and we will have another element

$$
a_{2} u^{\prime}=(12)(36)(45)(7)(w x)(y)(z) \cdots .
$$

Each of these elements permutes with a_{1} and transforms a_{2} into a_{3} and a_{3} into a_{2}. Their product is an element q fixing the first six (or seven) letters and, so, is of odd order. Also, q centralizes V. By Lemma 5.8.1, a power of q transforms $a_{2} u$ into $a_{2} u^{\prime}$, and so takes the fixed letters j, k, of $a_{2} u$ into the fixed letters y, z, of $a_{2} u^{\prime}$. Centralizing V, this element must take the entire constituent $h i j k$ into $w x y z$. Hence there is a group C in G which fixes the first six (or seven) letters, centralizes V, and is transitive on the t remaining constituents of V. An element of C taking a constituent of V into itself, being of odd order, must fix all four letters. Thus the transitive constituents of C are $(1)(2)(3)(4)(5)(6)(7) T_{h}, T_{i}, T_{j}, T_{k}$, the last four sets of t each, the letters h, i, j, k being in different constituents of C.

Let p be a prime dividing t. (Here we use the assumption $t>1$.) Let P be the corresponding Sylow subgroup of C. Then P displaces all $4 t$ letters which C displaces, since a subgroup of C fixing a letter is of index $t \equiv 0$ $(\bmod p)$ and cannot contain such a Sylow subgroup. Now let P_{1} be a Sylow subgroup of H, the subgroup fixing $1,2,3,4$, which contains P. Then P_{1} displaces the $4 t$ letters of C and no others, unless possibly we have the case

$$
p=3, \quad t=3^{w}, \quad n=4 t+7
$$

where P_{1} might be on $4 t+3$ letters. This possibility will be considered later. With P_{1} on $4 t$ letters, by Theorem 5.7.2, the group $N_{G}\left(P_{1}\right)$ is quadruply transitive on the first six or seven letters and so contains A_{6} or A_{7} on these letters. But the subgroup taking the first six (or seven) letters into themselves also contains the element u of (5.8.5), which is not in the alternating group on these letters. Thus in G we have the full symmetric group on the first six or seven letters, and hence some element fixing the first four letters and interchanging the fifth and sixth. This conflicts with the hypothesis that H is of odd order. Finally, consider the possibility that

$$
t=3^{w}, \quad n=4 t+7
$$

and that P_{1} displaces 5, 6, 7, as well as the $4 t$ letters of P. If $w>1$, then surely $(5,6,7)$ is a transitive constituent of P_{1} and there is an element

$$
z=(1)(2)(3)(4)(567) \cdots
$$

in G. If $w=1$, then P is of order 3, and (even though in $P_{1}, 5,6,7$ are in a constituent with $8,9,10$, and $11,12,13$ of P) since there is an element (5)(6) $(7)(8,9,10)(11,12,13)$, there will also be one such as z fixing $8,9,10$. But with $z=(1)(2)(3)(4)(567) \cdots$, and u of (5.8.5), we have

$$
(z u)^{3}=(1)(2)(35)(4)(6)(7) \cdots
$$

contradicting the assumption that a subgroup H fixing four letters is of odd order.

Let G be a quadruply transitive group on 11 letters, excluding S_{11} and A_{11}. If G contains an element of one of the forms $(a, b),(a, b)(c, d)$, or (a, b, c), then by quadruple transitivity, G contains all such elements and must be A_{11} or S_{11}. If G contains a five-cycle or seven-cycle, such an element generates a group transitive and primitive on the letters it displaces. In this case, by Theorems 5.6.2 and 5.7.1, G must be S_{11} or A_{11}. With these exclusions a subgroup $V=V_{1234}$ fixing four letters is of order dividing $2^{4} \cdot 3^{2}$. If V is not the identity, then V must have a Sylow 2-group or a Sylow 3-group. In either case because of our exclusion such a Sylow subgroup P must displace
exactly six letters. By Theorem 5.7.2 the normalizer of P is quadruply transitive on the remaining five letters, and because P has transitive constituents of three and three letters, or four and two letters, or two, two, and two letters, it will follow that G contains a five-cycle, a possibility already excluded. Thus the only possibility remaining is that a subgroup V fixing four letters is the identity and G is of order $11 \cdot 10 \cdot 9 \cdot 8$.

The subgroup W fixing three letters, say, $9,10,11$, is regular and transitive on the remaining eight letters, and so it is the regular representation of one of the five distinct groups of order $8 . W$ will contain an element of order 2 , say, $x=(1,2)(3,4)(5,6)(7,8)(9)(10)(11)$. In the subgroup H fixing the two letters 10 and 11 , there are nine conjugates of W, each fixing one letter. If two different elements of order 2 contained the same transposition, say (i, j), their product would be an element different from the identity displacing, at most, seven letters. This cannot be. But each element of order 2 contains four transpositions and there are only $9 \cdot 8 / 2=36$ possible transpositions of $1, \cdots, 9$. Hence W contains only one element of order 2 and must be the cyclic group of order 8 or the quaternion group. But if W is the cyclic group, its normalizer contains an element of order 3, and this can only be the cycle $(9,10,11)$, which is not possible. Hence W must be the quaternion group Q.

The subgroup H fixing 10 and 11 is of order 72 and contains nine quaternion subgroups, any two of which intersect in the identity. The identity and the remaining eight elements form a subgroup U of order 9 which is normal on H. The eight elements of U different from the identity are conjugate under Q, and so U must be the elementary Abelian group.

From this information we can easily construct H, which is unique to within permutation isomorphism. U may be generated by

$$
\begin{aligned}
u & =(123)(456)(789)(10) \\
v & =(147) \\
(258) & (369)
\end{aligned}(10)(11) .
$$

$H=Q U$, where Q is the quaternion group generated by

$$
\begin{aligned}
& a=(1)(2437)(5698)(10)(11) \\
& b=(1)(2539)(4876)(10)(11)
\end{aligned}
$$

and

$$
\begin{aligned}
a^{2} & =b^{2} \\
& =(1)(23)(47)(59)(68)(10)(11) .
\end{aligned}
$$

The subgroup K fixing 11 will be generated by H and a conjugate x of a^{2} fixing 2 and 11 and interchanging 1 and 10 . Such an element must exist, since G is quadruply transitive. Clearly, x normalizes Q. Adjoining x to H must not yield an element different from the identity fixing four letters. The only possibilities are

$$
\begin{aligned}
& x_{1}=(1,10)(2)(3)(11)(4,5)(6,8)(7,9), \\
& x_{2}=(1,10)(2)(3)(11)(4,6)(5,9)(7,8), \\
& x_{3}=(1,10)(2)(3)(11)(4,7)(5,6)(8,9)
\end{aligned}
$$

The element $(4,5,6)(7,9,8)$ transforms H into itself and permutes these three elements among themselves, therefore, to within permutation isomorphism, we may adjoin any one of these three. Let K be obtained by adjoining x_{1} to H. Then G is obtained by adjoining to H a conjugate y of a^{2} which interchanges 1 and 11 and fixes 2 and 10 . Here y normalizes Q and also the subgroup fixing 1 and 11 . The only possibilities for y are

$$
\begin{aligned}
& y_{1}=(1,11)(2)(3)(10)(4,6)(5,9)(7,8) \\
& y_{2}=(1,11)(2)(3)(10)(4,7)(5,6)(8,9)
\end{aligned}
$$

Here the element $(4,9)(5,7)(6,8)$ normalizes K and interchanges y_{1} and y_{2}. Hence, to within permutation isomorphism, we may suppose G obtained by adjoining y_{i} to K. $G=\left\{H, x_{1}, y_{1}\right\}$. Strictly speaking, what we have shown so far is that if there is a quadruply transitive group on 11 letters, not A_{11} or S_{11}, then it is permutation isomorphic to G. Verification that G has these properties is given in Ex. 4. G is known as the Mathieu group on 11 letters, M_{11}. As a remarkable fact, if we regard M_{11} as a permutation group on 12 letters, fixing 12 , and we take the group $M_{12}=\left\{M_{11}, z\right\}$, where

$$
z=(1,12)(2)(3)(10)(11)(4,7)(5,6)(8,9)
$$

we find that M_{12} is quintuply transitive of order $12 \cdot 11 \cdot 10 \cdot 9 \cdot 8$, and M_{11} is the subgroup fixing 12 .

By arguments similar to those used in constructing M_{11}, we may show that the only quadruply transitive (not alternating or symmetic) groups on less than 35 letters are M_{11}, M_{12}, and the Mathieu groups on 23 and 24 letters, M_{23} and M_{24}, where if

$$
\begin{aligned}
A= & (0,1,2,3, \cdots, 22) \\
B= & (2,16,9,6,8)(4,3,12,13,18) \cdot \\
& (10,11,22,7,17)(20,15,14,19,21) \\
C= & (0,23)(1,22)(2,11)(3,15)(4,17) \\
& (5,9)(6,19)(7,13)(8,20)(10,16) \cdot \\
& (12,21)(18,14) .
\end{aligned}
$$

Thus, $M_{23}=\{A, B\}$ and $M_{24}=\{A, B, C) \cdot M_{23}$ is quadruply transitive of degree 23 and order $23 \cdot 22 \cdot 21 \cdot 19 \cdot 16 \cdot 3$, and M_{24} is quintuply transitive, M_{23} being the subgroup of M_{24} fixing 24.

5.9. The Wreath Product. Sylow Subgroups of Symmetric Groups.

Let G and H be permutation groups on sets A and B, respectively. We define the wreath product of G by H, written $G\rangle H$ in the following way: $G \geqslant H$ is the group of all permutations θ on $A \times B$ of the following kind:

$$
\begin{equation*}
(a, b) \theta=\left(a \gamma_{b}, b \eta\right), \quad a \in A, b \in B \tag{5.9.1}
\end{equation*}
$$

where for each $b \in B, \gamma_{b}$ is a permutation of G on A, but for different b 's the choices of the permutations γ_{b} are independent. The permutation η is a permutation of H on B. The permutations θ with $\eta=1$ form a normal subgroup G^{*} isomorphic to the direct product of n copies of G, where n is the number of letters in the set B. The factor group $G \geqslant H / G^{*}$ is isomorphic to H, and the permutations θ with all $\gamma_{b}=1$ form a subgroup isomorphic to H, whose elements may be taken as coset representatives of G^{*} in G.

The wreath product is associative in the sense that if K is a third permutation group on a set C, then $(G \geqslant H)$ २ K and G २ $(H$ 〉 $K)$ are isomorphic, and if we identify the sets $(A \times B) \times C$ and $A \times(B \times C)$ with $A \times$ $B \times C$, then they are identical.

The Sylow subgroups of symmetric group S_{n} are easily constructed by means of the wreath product. What is the highest power of p dividing $n!$? The factors of n ! divisible by p are $p, 2 p, 3 p, \cdots, k p$, where $k=[n / p]$ is the largest integer not exceeding n / p. Hence n ! is divisible by p^{k} and the further powers of p dividing $k!$. We note that $[k / p]=\left[n / p^{2}\right]$ and continue, finding that the power of p dividing $n!$ is p^{M}, where

$$
M=\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\left[\frac{n}{p^{3}}\right]+\cdots .
$$

If we express n in the scale of p,

$$
\begin{equation*}
n=a_{0} p^{u}+a_{1} p^{u-1}+\cdots+a_{u-1} p+a_{u} \tag{5.9.2}
\end{equation*}
$$

where each a_{i} is in the range $0 \leq a_{i} \leq p-1$, we find that
(5.9.3) $\quad M=a_{0}\left(p^{u-1}+p^{u-2}+\cdots+p+1\right)+a_{1}\left(p^{u-2}+\cdots\right.$ $+p+1)+\cdots+a_{u-1}$.

In particular, a Sylow subgroup of the symmetric group on p^{r} elements will be of order p_{r}^{N}, where $N_{r}=p^{r-1}+p^{r-2}+\cdots+1$. Thus we see that, having constructed Sylow subgroups for symmetric groups on p, p^{2}, \cdots, p^{u} letters, we can easily construct a Sylow subgroup for the symmetric group on n letters, where n is given by (5.9.2). We divide the n letters into a_{0} blocks of p^{u} letters, a_{1} or p^{u-1} letters, \cdots, a_{u-1} of p letters, and a_{u} single letters. Then, if in each block we construct the appropriate Sylow subgroup and take the direct product of these, we shall have a group P of order p^{M}, where M is given by (5.9.3). Hence P will be a Sylow subgroup of S_{n}.

A Sylow subgroup of S_{p} on $1,2, \cdots, p$ will be of order p, and so a Sylow subgroup will be the cyclic group of order p generated by $a_{1}=(1,2$,
\cdots, p). $S_{p}{ }^{2}$ on $1,2, \cdots, p^{2}$ will have a subgroup which is the direct product of the cyclic groups generated by $a_{1}=(1,2, \cdots, p), a_{2}=(p+1, p+2, \cdots$, $2 p), \cdots, a_{p}=\left[p^{2}-p+1, \cdots, p^{2}\right]$. If we take a further element of order p, b $=\left[1, p+1,2 p+1, \cdots, p^{2}-p+1\right](2, p+2, \cdots), \cdots,\left(p, 2 p, \cdots, p^{2}\right)$, then $b^{-1} a_{i} b=a_{i+1}$, where the subscripts are taken modulo p. Thus b and the a 's generate a group P_{2} of order p^{p+1}, which is the wreath product of the first cycle of b and the cyclic group $\left\{a_{1}\right\}$. Here P_{2} is a Sylow subgroup of $S_{p 2}$. In general let P_{r} be a Sylow subgroup of $S_{p}{ }^{r}$ on $1, \cdots, p^{r}$. Take letters $1, \cdots$, $p^{r}, p^{r}+1, \cdots, 2 p^{r}, \cdots, p^{r+1}$ as the letters of S_{p}^{r+1}. Then, choosing an element

$$
\begin{aligned}
c= & {\left[1, p^{r}+1,2 p^{r}+1, \cdots,(p-1) p^{r}+1\right] \cdots } \\
& {\left[j, p^{r}+j, \cdots,(p-1) p^{r}+j\right] \cdots, }
\end{aligned}
$$

where j runs 1 to $-p^{r}$, we have $P_{r}^{(i)}=c^{-i} P_{r} c^{i}$ as a group of order $p^{N r}$ on the letters $i p^{r}+1, \cdots(i+1) p^{r}$. As each of $P_{r}^{(i)}, i=0,1, \cdots, p-1$ displaces a distinct set of letters, the group which they generate is their direct product. Here c and P_{r} generate a group which is of order $p^{p N_{r}+1}$. But $p N_{r}+1=p\left[p^{r-1}\right.$ $+\cdots+(p+1)]+1=N_{r+1}$ and so c and P_{r} generate P_{r+1}, a Sylow subgroup of the symmetric group on p^{r+1} letters. With P_{r} acting on letters $1, \cdots, p^{r}$, and taking c as the cycle $c=\left(u_{0}, u_{1}, \cdots, u_{\mathrm{p}-1}\right)$, then the wreath product $P_{r} \\{c\}$ permutes symbols $\left(i, u_{j}\right), i=1, \cdots, p^{r}, j=0, \cdots, p-1$. If we identify $\left(i, u_{j}\right)$ with $i+j p^{r}$ we see that P_{r+1} as defined before is precisely the wreath product $\left.P_{r}\right\}\{c\}$. Incidentally we note that P_{r} is generated by r elements of order p.

As an illustration, a Sylow 2 -subgroup of S_{8} is of order 2^{7} and is generated by

$$
\begin{aligned}
& a_{1}=(1,2) \\
& b_{1}=(1,3)(2,4) \\
& c_{1}=(1,5)(2,6)(3,7)(4,8)
\end{aligned}
$$

EXERCISES

1. If an infinite group G has a subgroup H of finite index, show that there is a subgroup $K \subset H$, where K is normal and of finite index in G. (Hint: Represent G as a permutation group on the cosets of H.)
2. Show that there is only one simple group of order 60 , namely, the alternating group on five letters.
3. Show that S_{4} has two transitive representations on six letters which are both faithful but are not permutation isomorphic.
4. Given the permutations

$$
\begin{aligned}
& u=(1,2,3)(4,5,6)(7,8,9) \\
& a=(2,4,3,7)(5,6,9,8) \\
& b=(2,5,3,9)(4,8,7,6), \\
& x=(1,10)(4,5)(6,8)(7,9) \\
& y=(1,11)(4,6)(5,9)(7,8), \\
& z=(1,12)(4,7)(5,6)(8,9) .
\end{aligned}
$$

Show that $\{u, a, b, x, y\}$ is the Mathieu group M_{11} quadruply transitive of degree 11 and of order $11 \cdot 10 \cdot 9 \cdot 8$ and M_{11}, and that $\left\{M_{11}, z\right\}$ is the quintuply transitive Mathieu group M_{12} in which M_{11} is the subgroup fixing 12 .
5. Given the permutations

$$
\begin{aligned}
a= & (0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22), \\
b= & (2,16,9,6,8)(3,12,13,18,4)(7,17,10,11,22)(14,19,21,20,15), \\
c= & (0,23)(1,22)(2,11)(3,15)(4,17)(5,9)(6,19)(7,13)(8,20) \\
& (10,16)(12,21)(14,18) .
\end{aligned}
$$

Show that $\{a, b\}$ is the quadruply transitive Mathieu group of degree $23, M_{23}$, of order $23 \cdot 22 \cdot 21 \cdot 20 \cdot 16 \cdot 3$, and that $M_{24}=\{a, b, c\}$ is the quintuply transitive Mathieu group in which M_{23} is the subgroup fixing 23 .
$\underset{-}{*}$ E. Parker has obtained a limit with t of the order of magnitude $\sqrt[3]{n}$ for reasonable values of n. The best asymptotic value is due to Wielandt [1] which gives $t<3 \log n$.

6. AUTOMORPHISMS

6.1. Automorphisms of Algebraic Systems.

In $\S 1.2$ we saw that all the $1-1$ mappings of any set onto itself form a group. In general those $1-1$ mappings of a set S onto itself, which preserve certain properties P, will also form a group.

Let A be a general algebraic system with elements $X=\{x\}$ and operations f_{μ} such that $f_{\mu}\left(x_{1}, \cdots, x_{n}\right)=y$ is an element of A whenever x_{1}, \cdots, x_{n} are elements of A. There may be arbitrarily many operations, but each operation is a single valued function of a finite number n of elements. The "laws" or "axioms" of A will be relations involving the operations. Then a $1-1$ mapping α of X onto itself, $X \leftrightarrows X^{\alpha}$, is an automorphism of A if
(6.1.1) $f_{\mu}\left(x_{1}, \cdots, x_{n}\right)=y$ implies $f_{\mu}\left(x_{1}{ }^{\alpha}, \cdots, x_{n}{ }^{\alpha}\right)=y^{\alpha}$
for every operation f_{μ} and for each f_{μ} for all x_{1}, \cdots, x_{n}. The mapping that is a product of two automorphisms will itself be an automorphism, and with respect to this product, the automorphisms will form a group. In particular the automorphisms of a group form a group. In a group there is a single binary operation, the product operation, and we require that $a b=c$ imply $a^{\alpha} b^{\alpha}=c^{\alpha}$, or more briefly, $(a b)^{\alpha}=a^{\alpha} b^{\alpha}$ for a 1-1 mapping α to be an automorphism.

The automorphisms of algebraic systems are a natural source of groups. Historically the development of group theory arose from the study of the automorphisms of algebraic fields.

6.2. Automorphisms of Groups. Inner Automorphisms.

If $\alpha: x \leftrightarrows x^{\alpha}$ is a $1-1$ mapping of a group G onto itself, α will be an automorphism if, and only if, $a b=c$ implies $a^{\alpha} b^{\alpha}=c^{\alpha}$, or more briefly,

The relation (6.2.1) alone defines an endomorphism, and in $\S 2.4$ we have already defined an automorphism as a $1-1$ endomorphism. Thus the two definitions of a group automorphism agree.

For a fixed $a \in G$, the mapping A_{a} in which

$$
\begin{equation*}
A_{a}: x \rightleftarrows a^{-1} x a, \quad \text { all } \quad x \in G \tag{6.2.2}
\end{equation*}
$$

is in fact one to one, since $a x a^{-1} \rightarrow a^{-1}\left(a x a^{-1}\right) a=x$. It is an automorphism, since $a^{-1} x y a=a^{-1} x a \cdot a^{-1} y a$. The automorphism A_{a} of G in (6.2.2) is called an inner automorphism. Automorphisms of G not of this type are called outer automorphisms. Since $b^{-1}\left(a^{-1} x a\right) b=(a b)^{-1} x(a b)$, and $a\left(a^{-1} x a\right) a^{-1}=x$, we have

$$
\begin{equation*}
A_{a} A_{b}=A_{a b} ; \quad A_{a^{-1}}=A_{a}^{-1} \tag{6.2.3}
\end{equation*}
$$

Theorem 6.2.1. The inner automorphisms of a group G are a normal subgroup $I(G)$ of the group $A(G)$ of all automorphisms of G. The mapping a $\rightarrow A_{\alpha}$ is a homomorphism of G onto $I(G)$ whose kernel is the center of G.

Proof: From (6.2.3) the inner automorphisms form a subgroup $I(G)$ of $A(G)$. Let α be any automorphism of G. Then $\left(a^{-1} x a\right)^{\alpha}=\left(a^{\alpha}\right)^{-1} x^{\alpha} a^{\alpha}$. Hence $\alpha^{-1} A_{a} \alpha$ maps x into $\left(a^{\alpha}\right)^{-1} x a^{\alpha}$, whence $\alpha^{-1}\left(A_{a}\right) \alpha=A_{a}{ }^{\alpha}$ and so $I(G)$ is a normal subgroup of $A(G)$. From (6.2.3) the mapping $a \rightarrow A_{a}$ is a homomorphism of G onto $I(G)$. Now $A_{a}=1$ if, and only if, $x a=a x$ for every $x \in G$. Thus $A_{a}=1 \mathrm{if}$, and only if, a belongs to the center of G. Thus the kernel of the homomorphism $G \rightarrow I(G)$ is the center of G.

A finite Abelian group X is the direct product of its Sylow subgroups (Theorem 3.2.3).

$$
\begin{equation*}
X=S\left(p_{1}\right) \times S\left(p_{2}\right) \times \cdots \times S\left(p_{r}\right) \tag{6.2.4}
\end{equation*}
$$

$A(X)$, the group of automorphisms of X, must include the direct product of the automorphism groups $A\left[S\left(p_{i}\right)\right]$. But since an automorphism of X must map each of $S\left(p_{i}\right), i=1, \cdots, r$ onto itself, there can be no further automorphisms, and so

$$
\begin{equation*}
A(X)=A\left[S\left(p_{1}\right)\right] \times \cdots \times A\left[S\left(p_{r}\right)\right] \tag{6.2.5}
\end{equation*}
$$

More generally, the group of automorphisms of a periodic Abelian group is the Cartesian product of groups of automorphisms of the Sylow subgroups.

The problem of finding the automorphisms of a periodic Abelian group has thus been reduced to finding the automorphisms of ap Abelian p-group. Any automorphism of a finite Abelian p-group, A_{p}, maps a basis onto another basis. Conversely, let a_{1}, \cdots, a_{s} and $b_{1},=\cdots, b_{s}$ be two bases for A_{p}, arranged as they may be by Theorem 3.3.2 so that a_{i} is of the same order as $b_{i}, i=1, \cdots, s$. Since

$$
\begin{align*}
A_{p} & =\left\{a_{1}\right\} \times\left\{a_{2}\right\} \times \cdots \times\left\{a_{s}\right\} \tag{6.2.6}\\
& =\left\{b_{1}\right\} \times\left\{b_{2}\right\} \times \cdots \times\left\{b_{s}\right\}
\end{align*}
$$

it follows that the mapping

$$
\begin{equation*}
a_{i} \rightarrow\left(a_{i}\right) \alpha=b_{i}, \quad i=1, \cdots, s \tag{6.2.7}
\end{equation*}
$$

determines an automorphism α of A_{p}.
In the cyclic group C of order $p, C=\{a\}, a^{p}=1$, every element $a^{i}, i=1, \cdots$ $\cdot, p-1$ is a generator. Hence there are $p-1$ automorphisms determined by a $\rightarrow(a) \alpha_{i}=a^{i}$. If r is a primitive root \ddagger modulo p, then $a \rightarrow(a) \beta=a^{r}$ determines an automorphism β. Here $a \rightarrow(a) \beta^{j}=a^{r j}$. With r a primitive root, the first power of r such that $r^{j} \equiv 1(\bmod p)$ is $j=p-1$. Hence the automorphism β is of order $p-1$, and the automorphism group $A(C)$ is cyclic of order $p-1$ and generated by β.

6.3. The Holomorph of a Group.

Both the right and left regular representations of G are subgroups of the group S_{G} of all permutations of the elements of $G(\S \underline{1.4})$. In addition, if α is an automorphism of G, then $\alpha: x \rightleftarrows x^{\alpha}$ is an element of S_{G} fixing the identity 1 of G.

Since $\left(g_{1} x\right) g_{2}=g_{1}\left(x g_{2}\right)$, we have $L\left(g_{1}\right) R\left(g_{2}\right)=R\left(g_{2}\right) L\left(g_{1}\right)$. Thus the right and left representations of G permute with each other elementwise.

Theorem 6.3.1. Each of the right and left regular representations of G is the centralizer of the other in S_{G}.

Proof: Let π be a permutation in S_{G} belonging to the centralizer of $L(G)$. Let (1) $\pi=g$. Then $\pi R(g)^{-1}=\pi^{*}$ belongs to the centralizer of $L(G)$ and fixes the identity (1) $\pi^{*}=1$. Here (1) $\pi^{*} L\left(g^{\prime}\right)=g^{\prime}$. Hence also (1) $L\left(g^{\prime}\right) \pi^{*}=g^{\prime}$, and so $\left(g^{\prime}\right) \pi^{*}=g^{\prime}$. But g^{\prime} may be any arbitrary element of G, whence $\pi^{*}=1$, and so $\pi \in R(G)$. Hence the centralizer of $L(G)$ is $R(G)$. Similarly, $L(G)$ is the centralizer of $R(G)$.

This disposes of the centralizer of $R(G)$ in S_{G} We shall call the normalizer of $R(G)$ in S_{G} the holomorph of G.

Theorem 6.3.2. Let H be the holomorph of G, the normalizer of $R(G)$ in S_{G}. The subgroup of H fixing the identity of G is the group $A(G)$ of automorphisms of G.

Proof: Let H be the normalizer of $R(G)$ and let α be an element of H fixing 1. Here $R(g) \leftrightarrows \alpha^{-1} R(g) \alpha$ is surely an automorphism of $R(G)$, since $R(G)$ is a normal subgroup of H. Hence $\alpha^{-1} R(g) \alpha=R\left(g^{\alpha}\right)$ defines a $1-1$ mapping $g \leftrightarrows g^{\alpha}$ of G onto itself. But since $\left(g_{1} g_{2}\right)^{\alpha}=g_{1}{ }^{\alpha} g_{2}{ }^{\alpha}$ under this mapping, $g \leftrightarrows g^{\alpha}$ is an automorphism of G. But α is in fact the permutation $g \leftrightarrows g^{\alpha}$. Since (1) $\alpha=1$ and $\alpha^{-1} R(g) \alpha=R\left(g^{\alpha}\right)$, we have (1) $\alpha R\left(g^{\alpha}\right)=g^{\alpha}$ and also (1) $R(g) \alpha=g^{\alpha}$, whence $(g) \alpha=g^{\alpha}$. Thus, if α belongs to H and fixes 1 , then α is an automorphism of G. Conversely, let $\alpha: g \leftrightarrows g^{\alpha}$ be an automorphism of G. Then α is an element of S_{G} fixing the identity 1 of G. We may now verify that $\alpha^{-1} R(g) \alpha=R\left(g^{\alpha}\right)$, whence α belongs to the normalizer of $R(G)$. For $(x) R(g) \alpha=x^{\alpha} g^{\alpha}$ and also $(x) \alpha R\left(g^{\alpha}\right)=x^{\alpha} g^{\alpha}$. Thus the subgroup of H fixing 1 consists entirely of automorphisms and contains every automorphism. In the proof of Theorem 6.3.1 we showed that only the identity of S_{G} fixes 1 and permutes with every element of $R(G)$. Hence every automorphism of G occurs exactly once in the subgroup of H fixing 1 whence this subgroup is $A(G)$. Since the normalizer of a group includes its centralizer it follows that $H \supset L(G)$.

6.4. Complete Groups.

Definition: A complete group is a group whose center is the identity and all of whose automorphisms are inner automorphisms.

THEOREM 6.4.1. Let G be a complete group which is a normal subgroup of a group T. Then T is the direct product $G \times K$ of G and the centralizer K of G in T.

Proof: Let

$$
\begin{equation*}
T=G+G x_{2}+\cdots+G x_{i}+\cdots \tag{6.4.1}
\end{equation*}
$$

Here $x_{i}^{-1} G x_{i}=G$ since G is normal in T. Thus $g \leftrightarrows x_{i}^{-1} g x_{i}=g^{\alpha}$ is an automorphism of G. Since every automorphism of G is an inner automorphism, $g^{\alpha}=a^{-1} g a$ for some $a \in G$ and all g. Hence $x_{i}^{-1} g x_{i}=a^{-1} g a$ for all g. Here $y i=$ $x_{i} a^{-1}$ belongs to the centralizer K of G in T. But $G x_{i}=x_{i} G=x_{i} a^{-1} G=y_{i} G=G y_{i}$, and we may take y_{i} as the coset representative of G. Thus every coset of G in T contains an element of K. Hence $T=G \cup K=G K=K G$ as G is normal. But K $\cap G=1$, since the center of G is the identity. Hence $T=G \times K$, since every element of K permutes with every element of G.

Corollary 6.4.1. The holomorph H of a complete group G is the direct product $R(G) \times L(G)$.

This follows since $L(G)$ is the centralizer of $R(G)$ in H.

6.5. Normal or Semi-direct Products.

Theorem 6.5.1. Given two groups H and K and for every element $h \in H$ an automorphism of K,

$$
\begin{equation*}
k \leftrightarrows k^{h} \quad \text { all } \quad k \in K, \tag{6.5.1}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left(k^{h_{1}}\right)^{h_{2}}=k^{h_{1} h_{2}}, h_{1}, h_{2} \in H \tag{6.5.2}
\end{equation*}
$$

Then the symbols $[h, k], h \in H, k \in K$ form a group under the product rule

$$
\begin{equation*}
\left[h_{1}, k_{1}\right] \cdot\left[h_{2}, k_{2}\right]=\left[h_{1} h_{2}, k_{1}^{h_{2}} k_{2}\right] \tag{6.5.3}
\end{equation*}
$$

called the normal product of K by H or the semi-direct product of K by H.
Proof: Since for every k and $h, k^{h} \in K$, the product rule (6.5.3) is well defined.

1) The product rule (6.5.3) is associative, since

$$
\begin{align*}
& \left(\left[h_{1}, k_{1}\right] \cdot\left[h_{2}, k_{2}\right]\right) \cdot\left[h_{3}, k_{3}\right] \\
= & {\left[h_{1} h_{2}, k_{1} h_{2} k_{2}\right] \cdot\left[h_{3}, k_{3}\right] } \tag{6.5.4}\\
= & {\left[\left(h_{1} h_{2}\right) h_{3},\left(k_{1} k_{2} k_{2}\right)^{h_{3}} k_{3}\right] } \\
= & {\left[h_{1} h_{2} h_{3}, k^{h_{2} h_{3}} k_{2}^{h_{3}} k_{3}\right], }
\end{align*}
$$

using (6.5.1) and (6.5.2).

$$
\begin{align*}
& {\left[h_{1}, k_{1}\right] \cdot\left(\left[h_{2}, k_{2}\right] \cdot\left[h_{3}, k_{3}\right]\right)} \\
& =\left[h_{1}, k_{1}\right] \cdot\left[h_{2} h_{3}, k_{2}{ }^{h_{3}} k_{3}\right] \tag{6.5.5}\\
& =\left[h_{1} h_{2} h_{3}, k_{1}{ }^{h_{2} h_{3} k_{2}}{ }_{2}^{h_{3}} k_{3}\right] .
\end{align*}
$$

2) The element $[1,1]$ is the identity, since

$$
\begin{aligned}
& {[1,1][h, k]=\left[1 h, 1^{h} k\right]=[h, k]} \\
& {[h, k][1,1]=\left[h 1, k^{1} 1\right]=[h, k]}
\end{aligned}
$$

Here $k^{1}=k$ because of (6.5.2).
3) An arbitrary $[h, k]$ has a left inverse $\left[h^{-1},\left(k^{-1}\right)^{h-1}\right]$

$$
\begin{equation*}
\left[h^{-1},\left(k^{-1}\right)^{h^{-1}}\right] \cdot[h, k]=\left[h^{-1} h, k^{-1} k\right]=[1,1] . \tag{6.5.6}
\end{equation*}
$$

Hence the symbols $[h, k]$ with the product rule (6.5.3) form a group G.
Theorem 6.5.2. If G is the normal product of K by H, then the elements [$h, 1$] of G form a subgroup isomorphic to H and the elements $[1, k]$ form a normal subgroup isomorphic to K. Moreover, the automorphism (6.5.1) of K as a subgroup of G is induced by transformation by the element $h=[h, 1]$ of H as a subgroup of G, since

$$
\begin{equation*}
[h, 1]^{-1}[1, k][h, 1]=\left[1, k^{h}\right] . \tag{6.5.7}
\end{equation*}
$$

Moreover, $G=H \cup K$, since

$$
\begin{equation*}
[h, 1][1, k]=[h, k] . \tag{6.5.8}
\end{equation*}
$$

Proof: We have only to observe that $h \leftrightarrows[h, 1]$ and $k \leftrightarrows[1, k]$ are isomorphisms between H and K and subgroups of G, using the rule (6.5.3) and noting that $k^{1}=k$. Also, (6.5.7) and (6.5.8) follow directly from the rule (6.5.3). Here (6.5.7) shows that K is a normal subgroup and that the automorphism (6.5.1) is induced by transformation by the element $h=[h, 1]$. Here $H \cap K=[1,1]=1$, and (6.5.8) shows that the elements of H may be taken as coset representatives of K.

Theorem 6.5.3. G is the normal product of K by H if, and only if, K is a normal subgroup of G and H is a subgroup of G whose elements may be taken as the coset representatives of K. Otherwise expressed

1) $\quad K$ is a normal subgroup of G.
2) H is a subgroup of G.
3) $K \cap H=1$.
4) $H \cup K=G$.

Proof: We have already observed that these properties hold if G is the normal product of K by H. Conversely, suppose these properties hold. Then from $K \cap H=1, H \cup K=G$, with K normal in G, it follows (Theorem 2.3.3) that every element of G has a unique representation of the form

$$
\begin{equation*}
g=h k \tag{6.5.9}
\end{equation*}
$$

Since K is normal,

$$
\begin{equation*}
h^{-1} k h=k^{h} \in K \tag{6.5.10}
\end{equation*}
$$

and clearly $k \leftrightarrows k^{h}$ is an automorphism of K. Moreover, from (6.5.10) we have

$$
\begin{equation*}
\left(k^{h_{1}}\right)^{h_{2}}=k^{h_{1} h_{2}} \tag{6.5.11}
\end{equation*}
$$

For the product of two elements of G,

$$
\begin{align*}
g_{1} & =h_{1} k_{1}, \quad g_{2}=h_{2} k_{2}, \\
g_{1} g_{2} & =h_{1} k_{1} h_{2} k_{2} \tag{6.5.12}\\
& =h_{1} h_{2}\left(h_{2}{ }^{-1} k^{1} h_{2}\right) k_{2} \\
& =h_{1} h_{2} \cdot k_{1}^{h_{2}} k_{2},
\end{align*}
$$

and so the rule for the product in G is precisely the same as (6.5.3), and G is the normal product of K by H.

We observe that the association of an automorphism of K with an element of H is a homomorphism of H into the group of automorphisms of K. If H is mapped into the identical automorphism of K, i.e., $k^{h}=k$ for every h, k, then the rule (6.5.3) is that for the direct product of H and K.

EXERCISES

1. Show that the dihedral group of order 8 is isomorphic to its group of automorphisms.
2. Show that the group of automorphisms of the elementary Abelian group of order p^{r} is of order (p^{r} $-1)\left(p^{r}-p\right) \cdots\left(p^{r}-p^{r-1}\right)$.
3. Find an outer automorphism of the symmetric group on six letters, S_{6}. This will interchange the two classes of elements of order 3.
4. Show that if the order of a group is divisible by p^{2}, the square of a prime, then the order of its group of automorphisms is divisible by p. (Hint: If there is no inner automorphism of order p, show that a Sylow p-subgroup is Abelian and a direct factor of G.)
5. An automorphism α of a group G is called a central automorphism if for every x of G, $x^{-1}(x) \alpha \epsilon Z$, where Z is the center of G. Show that the group of central automorphisms, which are inner automorphisms of G, is isomorphic to the center of G / Z.
6. Let G be the group generated by elements a, b, c, with defining relations $a^{8}=b^{8}=c^{4}=1, b^{-1} a b$ $=a^{5}, c^{-1} a c=a^{5}, c^{-1} b c=a^{6} b$. Show that $\{a, b\}$ is the normal product of $\{a\}$ by $\{b\}$, and that G is the normal product of $\{a, b\}$ by $\{c\}$. Hence conclude that these relations define a group of order 256 whose elements are of the form $a^{i} b^{i} c^{k}$.
[^0]
7. FREE GROUPS

7.1. Definition of Free Group.

Suppose we are given a set of elements $S=s_{1}, \cdots s_{n}$, where it is not assumed that the elements $s_{1} \cdots s_{n}$ are finite in number or even countable. But whenever it is desirable, we shall assume that the indices i of the s_{i} are well ordered. We now define symbols $s_{i}{ }^{1}, s_{i}{ }^{-1}$ where $s_{i}{ }^{1}=s_{i}$ and $s_{i}{ }^{-1}$ is a new symbol.

A word or string is either void (written 1) or a finite succession $a_{1} a_{2} \cdots$ a_{t}, where each a_{i} is one of the $s_{j}{ }^{e}, \epsilon= \pm 1$.

A word is a reduced word if it is void or if in $a_{1} \cdots a_{t}$ no pair $a_{i} a_{i+1}, i=1$ $\cdots t-1$ is of the form $s_{j}{ }^{\epsilon} s_{j}{ }^{-\epsilon}, \epsilon= \pm 1$.

Two words f_{1} and f_{2} are adjacent if they are of the form $f_{1}=g s_{j}{ }^{\epsilon} s_{j}^{-\epsilon} h_{h}$, $f_{2},=g h$. Each of f_{1} and f_{2} is adjacent to the other.

Two words f and g are equivalent written $f \sim g$ if $f_{1}=f, f_{2} \cdots f_{m}=g$ exist such that f_{i} and f_{i+1} are adjacent for $i=1 \cdots m-1$. Clearly $f \sim g$ is a true equivalence relation. All words equivalent to f form a class which we may designate as $[f]$.

Lemma 7.1.1. Any class contains one, and only one, reduced word.
Proof: If $f=a_{1} \cdots a_{t}$ contains any $a_{i} a_{i+1}=s_{j}{ }^{\boldsymbol{\epsilon}} S_{j}^{-\epsilon}$, then there is a word adjacent to $f, a_{1} \cdots a_{i-1} a_{i+2} \cdots a_{t}$ involving fewer symbols. After successive reductions we shall find in, at most, $t / 2$ steps a reduced word equivalent to f. This shows that $[f]$ contains at least one reduced word.

Now, for $f=a_{1} a_{2} \cdots a_{t}$ we define the W-process

$$
\begin{aligned}
W_{0} & =1 & & \text { the void word } \\
W_{1} & =a_{1} & & \\
W_{i+1} & =W_{i} a_{i+1} & & \text { if } W_{i} \text { is not of the reduced form } X a_{i+1}^{-1} \\
& =X & & \text { if } W_{i} \text { is of the reduced form } X a_{i+1}^{-1} .
\end{aligned}
$$

Now, by induction, it is seen that $W_{0}, W_{1}, \cdots, W_{t}$ are all of reduced form and that $W_{t}=f$ if f is in reduced form. Now, if

$$
\begin{aligned}
& f_{1}=a_{1} \cdots a_{r} a_{r+1} \cdots a_{t}, \\
& f_{2}=a_{1} \cdots a_{r} s_{j}^{*} s_{j}^{-\epsilon} a_{r+1} \cdots a_{t},
\end{aligned}
$$

let $W_{0}{ }^{1}, W_{1}{ }^{1}, \cdots, W_{t}^{1}$ be the words of the W-process for f_{1} and $W_{0}{ }^{2}, \cdots, W_{t+2}{ }^{2}$ be the words for f_{2}. We want to show that $W_{t}{ }^{1}=W_{t+2}{ }^{2}$. Now $W_{0}{ }^{1}=W_{0}{ }^{2} \cdots W_{r}{ }^{1}$ $=W_{r}^{2}$, since the processes are identical. Consider two cases:

1) $W_{r}^{1}=W_{r}^{2}$ is of the reduced form $X s_{j}^{-\epsilon}$. Since $X s_{j}^{-\epsilon}$ is in reduced form, X is not of reduced form $Y s_{j}{ }^{\epsilon}$. Here, for $f_{2}, W_{r+1}{ }^{2}=X$, $W_{r+2}^{2}=X s_{j}^{-\epsilon}=W_{r}^{2}=W_{r}^{1}$.
2) $W_{r}^{1}=W_{r}^{2}$ is not of the reduced form $X s_{j}^{-\epsilon}$. Here $W_{r+1}{ }^{2}=W_{r}^{2} s_{j}^{\epsilon}$, $W_{r+2}{ }^{2}=W_{r}^{2}=W_{r}^{1}$.

Hence in both cases $W_{r+2}{ }^{2}=W_{r}^{1}$, and so inductively, $W_{r+2+i}{ }^{2}=W_{r+i}{ }^{1}$, since the processes are identical. Thus the W-process yields the same reduced word for any two adjacent words, and hence for any two equivalent words. But also the W-process leaves a reduced word unchanged. Hence there cannot be two distinct reduced words in the same class.

We may define a multiplication for these classes of words, and under this definition these classes form a group which we shall call the free group F generated by S.

Theorem 7.1.1. For any two classes, $\left[f_{1}\right]$, $\left[f_{2}\right]$ of words on S define their product $\left[f_{1}\right]\left[f_{2}\right]=\left[f_{1} f_{2}\right]$. This product is well defined, and with respect to this product, all the classes of words on S form a group, the free group F generated by S.

Proof: Suppose $f_{1} \sim f_{1}^{\prime}, f_{2} \sim f_{2}^{\prime}$. Then $f_{1} f_{2} \sim f_{1} f_{2}^{\prime}$ since we may first show $f_{1} f_{2} \sim f_{1}^{\prime} f_{2}$ by replacing f_{1} in turn by the words adjacent to it which lead to f_{1}^{\prime}.

Similarly, $f_{1}^{\prime} f_{2} \sim f_{1}^{\prime} f_{2}^{\prime}$, whence $f_{1} f_{2} \sim f_{1}^{\prime} f_{2}^{\prime}$, whence $\left[f_{1}^{\prime} f_{2}^{\prime}\right]=\left[f_{1} f_{2}\right]$, and so the product $\left[f_{1} f_{2}\right]=\left[f_{1}\right]\left[f_{2}\right]$ depends only on the class of f_{1} and f_{2} and not on the particular representatives. The void word is the identity for this product, as [1] $[f]=[f][1]=[f]$. Moreover, if $f=a_{1} \cdots a_{t}$ and $h=a_{t}^{-1} \cdots a_{1}^{-1}$, then $[f][h]=$ $[f h]=[1]$ and $[h][f]=[h f]=[1]$. Hence $\left[a_{t}^{-1} \cdots a_{1}^{-1}\right]$ is the inverse of the class $\left[a_{1} \cdots a_{t}\right]$. We find moreover that $\left.\left(\left[f_{1}\right]\left[f_{2}\right]\right)\left[f_{3}\right]=\left[f_{1} f_{2} f_{3}\right]=\left[f_{1}\right]\left[f_{2}\right]\left[f_{3}\right]\right)$, whence the associative law holds. Thus the classes of words form a group, called the free group F generated by S. We may write F_{S} to indicate the generators.

It is convenient to write $f_{1}=f_{2}$ if the two words are equivalent and hence represent the same element of F. We shall write $f_{1} \equiv f_{2}$ to indicate that f_{1} and f_{2} are the same word. Naturally it is usually convenient to represent an element of F in its reduced form. Thus if $f=a_{1} \cdots a_{t}$ is in reduced form, we say f is reduced as written.

In any group G a set of elements $X: x_{1}, \cdots, x_{n}$ generate a subgroup H consisting of all finite products $b_{1} b_{2} \cdots b_{t}$, each b_{j} being some $x_{j}{ }^{\epsilon}$, $\epsilon= \pm 1$. There is no difficulty in verifying that these finite products do form a subgroup. In general an element of H may be written in many ways as such a finite product. Moreover, it is trivial that all elements of G generate G. Hence every group G may be regarded as generated by a set of elements X, and we write $G=\{X\}$. The following theorem shows why free groups are interesting not merely in their own right, but also as a tool in the study of all groups.

Theorem 7.1.2. Let the group G be generated by a set of elements $X: x_{1}$,. \cdot, x_{n}. Then if F is the free group generated by $S: s_{1}, \cdots, s_{n}$, there is a homomorphism $F \rightarrow G$ determined by $s_{i} \rightarrow x_{i}$ all i.

Proof: Let $f=a_{1} \cdots a_{t}$ be any word of S. Consider the element $g=b_{1} \cdots b_{t} \epsilon G$, where $b_{i}=x_{j}{ }^{\epsilon}$ if $a_{i}=s_{j}{ }^{\epsilon}$. Then $f \rightarrow g$ maps every word of S onto an element of G. Clearly adjacent, and therefore equivalent, words of S are mapped onto the same element of G. Hence the mapping $f \rightarrow g$ is in fact a mapping of elements of F onto elements of G. Moreover, if $f_{1} \rightarrow g_{1}, f_{2} \rightarrow g_{2}$, then $f_{1} f_{2} \rightarrow g_{1} g_{2}$. Hence the mapping $s_{i} \rightarrow x_{i}$
determines a homomorphism of F onto G. From the theorems on homomorphisms we have the corollary:

Corollary 7.1.1. Every group G given as generated by a set X is the factor group of a free group F with the same number of generators.

As an alternate definition of a free group we may take the following:
Definition: The free group F generated by a set S of elements is the group with the following properties:

1) F is generated by S.
2) If G is any group generated by a set of elements X and if there is a one-to-one correspondence between S and $X, S \leftrightarrows X$, then there is a homomorphism of F onto $G, F \rightarrow G$ taking S onto X.

In light of Theorem 7.1.2, this is a valid definition. From the previous definition the free group F_{S} satisfies these requirements. Moreover, if F^{\prime} is a group generated by S and $F^{\prime} \rightarrow F_{S}$ this homomorphism must be an isomorphism, since the only element of F^{\prime} which can be mapped onto the identity is the identity.

However, there seem to be several disadvantages in this definition. It is not a constructive definition and it does not make clear, without the constructive process given above, that any group with properties 1 and 2 exists, nor does it make clear that if such a group exists, no nontrivial relations hold. Moreover, on broader grounds, the concept of a "free" system, a system in which no relations hold save those implied by the axioms, is tenable even though no theorem analogous to Theorem 7.1.2 may hold.

7.2. Subgroups of Free Groups. The Schreier Method.

The nature of subgroups is always fundamental in the study of groups, and for free groups, from Theorem 7.1.2, the normal subgroups are of particular interest. It was proved by Nielsen [1] and Schreier [3] that subgroups of free groups are themselves free groups. Nielsen's proof held only for finitely generated subgroups, but Nielsen's proof has been extended by Levi [1] and others so as to avoid this restriction. Nielsen's method works directly with the elements of the subgroup, Schreier's with the cosets of the subgroup. The first proof given here* is a simplification of the Schreier proof.

A set G of elements of a free group F is said to be a Schreier system if for each $g \in G$:

1) $g=a_{1} a_{2} \cdots a_{t}$ is reduced as written.
2) $a_{1} a_{2} \cdots a_{t-1}$ is also a $g \in G$.

We say that G is a two-sided Schreier system if in addition to 1 and 2 the following also holds:
3) $a_{2} \cdots a_{t}$ is also a $g \in G$.

Note that a Schreier system always contains the identity.
Let F be the free group generated by S and let U be a subgroup of F. Consider the decomposition of F into left cosets of U :

$$
\begin{equation*}
F=U \cdot 1+U g_{2}+\cdots+U g_{i}+\cdots \tag{7.2.1}
\end{equation*}
$$

We shall always choose the identity as the representative of U itself. We find that it is advantageous to choose the representatives of the remaining cosets so that they will satisfy certain relations.

Lemma 7.2.1 (Extended Lemma of Schreier). If U is a subgroup of the free group F, it is possible to choose the representatives of the left cosets of U as a Schreier system. If U is a normal subgroup of F, it is possible to choose the representatives as a two-sided Schreier system.

Proof: Let the generators of $F, S: s_{1} \cdots s_{n}$ and their inverses be well ordered in any way; for example, $s_{1}<s_{1}^{-1}<s_{2}<s_{2}^{-1} \cdots<s_{n}<s_{n}^{-1}$ if the number n is finite. But it is not to be assumed that the set S is finite or even countable, merely that the set $S \cup S^{-1}$ may be well ordered.

This ordering of $S \cup S^{-1}$ may be extended to yield an alphabetical ordering for all the elements of F. If we have two elements of F, f and g, then we define f $<g$ in the alphabetical ordering if the reduced forms of f and g are

$$
\begin{aligned}
& f=a_{1} \cdots a_{t}, \\
& g=b_{1} \cdots b_{u}
\end{aligned}
$$

where the a_{i} and b_{i} belong to $S \cup S^{-1}$, and one of the following holds:

1) $t<u$.
2) $t=u, a_{1}<b_{1}$.
3) $t=u ; a_{1}=b_{1} \cdots a_{i}=b_{i} ; a_{i+1}<b_{i+1}$.

The alphabetical ordering so defined is clearly a simple order, indeed a well ordering, and the following useful properties hold:

If $f<g$ and $g h$ is reduced as written, then $f h<g h$. If $f<g$ and $h g$ is reduced as written, then $h f<h g$. This may be verified from the definition of the ordering.

To prove the lemma, let us choose the representative g_{i} of the coset $U g_{i}$ as that element of the coset earliest in the alphabetical ordering of F. Then we assert that the g_{i} form a Schreier system, and in fact a two-sided Schreier system, if U is a normal subgroup. Since the identity is the first element of F, the identity is chosen as the representative of the subgroup U. Let $g=a_{1} \cdots a_{t-1} a_{t}$ be the representative of the coset $U g$, being the earliest element in this coset. Let h be the earliest element in the coset containing $h^{*}=a_{1} \cdots a_{t-1}$. If $h=b_{1}$. $\cdots b_{u}$, then $h \leq a_{1} \cdots a_{t-1}$. But $h a_{t} \in U g$, and so $g \leq h a_{t}$. But also $h a_{t} \leq a_{1}$. $\cdots a_{t-1} a_{t}=g$. Thus $g=h a_{t}$ and, so, $h=h^{*}=a_{1} \cdots a_{t-1}$ is also a coset representative. Thus the g 's form a Schreier system. If U is a normal subgroup, let $a_{2} \cdots a_{t}$ be in the coset $U f=f U$ whose earliest element is f. Then $f \leq a_{2} \cdots$ a_{t}, and $a_{1} f$ belongs to the same coset as $a_{1} \cdots a_{t} U=g U=U g$. Then $g \leq a_{1} f$. But also $a_{1} f \leq a_{1} a_{2} \cdots a_{t}=g$. Thus $g=a_{1} f$ and $f=a_{2} \cdots a_{t}$. Hence the g 's form a two-sided Schreier system. Note that the lemma merely guarantees the existence of a Schreier system of left coset representatives. But the same subgroup may possess more than one set of coset representatives which is a Schreier system.

The Main Theorem: Theorem 7.2.1. Every subgroup of a free group is a free group.

Let F be the free group generated by the set S, and let U be a given subgroup of F. Then by the Schreier lemma we may suppose the left coset representatives G to be a Schreier system.

$$
\begin{equation*}
F=U \cdot 1+U g_{2}+\cdots+U g_{i}+\cdots \tag{7.2.2}
\end{equation*}
$$

We begin with a lemma which is true for any group F whether a free group or not. Let F be generated by a set of elements S, let U be a subgroup of F, and let (7.2.2) be the decomposition of F into left cosets of U.

If an element f of F belongs to the coset $U g_{i}$ in (7.2.2), let us define a function $\Phi(f)$ by putting $\Phi(f)=g_{i}$. Note that $\Phi(u f)=\Phi(f)$ if $u \in U \cdot \Phi(f)=1$ if,
and only if, $f \in U$.
Suppose $f=a_{1} a_{2} \cdots a_{t}$ with each $a_{i} \in S \cup S^{-1}$. Write $f_{0}=1, f_{1}=a_{1}$, $f_{2}=a_{1} a_{2}, \cdots f_{t},=a_{1} a_{2} \cdots a_{t}=f$. Then write $h_{0}=\Phi\left(f_{0}\right)=1, h_{1}=\Phi\left(f_{1}\right), \cdots$, $h_{t}=\Phi(f)$. Then, identically,

$$
\begin{align*}
f h_{t}^{-1} & =h_{0} a_{1} h_{1}^{-1} \cdot h_{1} a_{2} h_{2}^{-1} \cdot h_{2} \cdots h_{t-1}^{-1} \cdot h_{t-1} a_{t} h_{t}^{-1} \tag{7.2.3}\\
& =f, \quad \text { if } f \in U,
\end{align*}
$$

since then $h_{t}=1$.
Now,
$h_{i}=\Phi\left(h_{i}\right)=\Phi\left(f_{i}\right)=\Phi\left(f_{i-1} a_{i}\right)=\Phi\left(h_{i-1} a_{i}\right)=\Phi\left(h_{i-1} s^{\epsilon}{ }_{\alpha}\right)$, $a_{i}=s_{\alpha}{ }^{\epsilon}, \epsilon= \pm 1, h_{i} \epsilon G$, it is clear that in (7.2.3), we need only the function Φ for arguments of the form $g s^{\epsilon}, g \in G, s^{\epsilon} \in S \cup S^{-1}$. Let us then write $\phi\left(g s^{\epsilon}\right)=\Phi\left(g s^{\epsilon}\right)$ so that $\phi(f)$ is defined only for arguments $f=g s^{\epsilon}$.

Lemma 7.2.2. In any group F the elements $g s \phi(g s)^{-1}$ are generators of the subgroup U, where g runs over the left coset representatives of U in (7.2.2); s over the generators of F and $\phi\left(g s^{\epsilon}\right)$ is the representative of the coset containing $g s^{\epsilon}$.

Proof: If $f \boldsymbol{\epsilon} U$, then $h_{t}=1$ and (7.2.3). expresses f as a product of elements $h_{i-1} a_{i} h_{i}^{-1}$, and since $h_{i}=\Phi\left(h_{i-1} a_{i}\right)$, then $h_{i-1} a_{i} h_{i}^{-1}$ is of the form $g s^{\epsilon} \phi\left(g s^{\epsilon}\right)^{-1}$, with $h_{i-1}=g$ and $a_{i}=s^{\epsilon}$, since then $h_{i}=\phi\left(g s^{\epsilon}\right)$. But $g s^{\epsilon} \epsilon U \boldsymbol{\phi}\left(g s^{\boldsymbol{\epsilon}}\right)$, whence for any $g s^{\boldsymbol{\epsilon}}$ the element $g s^{\boldsymbol{\epsilon}} \boldsymbol{\phi}\left(g s^{\boldsymbol{\epsilon}}\right)^{-1} \boldsymbol{\epsilon} U$. Note that if $\phi\left(g_{j} s^{\epsilon}\right)=g_{k}$, then $\phi\left(g_{k} s^{-\epsilon}\right)=g_{j}$. Hence, if $g_{j} s^{\epsilon} \phi\left(g_{j} s^{\epsilon}\right)^{-1}=g_{j} s^{\epsilon} g_{k}^{-1}$, its inverse is $g_{k} s^{-\epsilon} g_{j}^{-1}=g_{k} s^{-\epsilon} \phi\left(g_{k} s^{-\epsilon}\right)^{-1}$, which is of the same form with the opposite sign for the exponent of s. Hence the elements $g s \phi(g s)^{-1}$ generate U.

Corollary 7.2.1. If F is a finitely generated group and U is of finite index in F, then U is finitely generated.

This follows since there are only a finite number of choices for g and s in $g s \phi(g s)^{-1}$.

From here on we shall assume that F is a free group and that the coset representatives G form a Schreier system.

We shall use the following properties of the function $\phi\left(g s^{\epsilon}\right)$:

1) $\phi\left(g s^{\epsilon}\right) \in G$.
2) If $g s^{\epsilon} \epsilon G$, then $\phi\left(g s^{\epsilon}\right)=g s^{\epsilon}$.
3) $\phi\left[\phi\left(g s^{\epsilon}\right) s^{-\epsilon}\right]=g$.

As a generic notation let us write $v=g s^{\epsilon} \boldsymbol{\phi}\left(g s^{\boldsymbol{\epsilon}}\right)^{-1}$ and $u=g s \phi(g s)^{-1}$. Thus a u is a v with exponent +1 and a v is either a u or the inverse of a u, for if $v=$ $g_{i} s^{-1} \phi\left(g_{i} s^{-1}\right)^{-1}$, put $\phi\left(g_{i} s^{-1}\right)=g_{j}$. Then, by the third property, $v^{-1}=g_{j} s g_{i}^{-1}=$ $g_{j} s \phi\left(g_{j} s\right)^{-1}$ is a u, and also, similarly, the inverse of a u is a v.

Lemma 7.2.3. $A v=g s^{\epsilon} \boldsymbol{\phi}\left(g s^{\epsilon}\right)^{-1}$ is either reduced as written or equal to 1 .

Proof: Let $\quad v=g_{j} s_{a}{ }^{e} \phi\left(g_{j} s_{a}{ }^{\epsilon}\right)^{-1}=g_{j} s_{a}{ }^{\epsilon} g_{k}{ }^{-1}$, \quad where $g_{k}=\phi\left(g_{j} s_{a}^{\epsilon}\right)$. Both g_{i} and g_{k}^{-1} are reduced as written. Hence, if there is any cancellation in v, either (1) g_{i} ends in $S_{a}^{-\epsilon}$, or (2) g_{k}^{-1} begins with $s_{a}{ }^{-\epsilon}$. If (1) holds, $g_{i}=a_{1} \cdots a_{t-1} s_{a}^{-\epsilon}$ is the reduced form of g_{j}, whence $g_{j} \delta_{a}{ }^{\epsilon}=a_{1} \cdots a_{t-1}$ is a g, and by property 2 of the ϕ function, $g_{k}=\phi\left(g_{j} s_{a}{ }^{\epsilon}\right)=g_{j} s_{a}{ }^{\epsilon}$; so, $v=g_{j} s_{a}{ }^{\epsilon} g_{k}{ }^{-1}=1$. If (2) holds, then similarly $g_{j}=\phi\left(g_{k} s_{a}^{-\epsilon}\right)=g_{k} s_{a}^{-\epsilon}$, and again $v=1$.

For a $v=g s^{\epsilon} \phi\left(g s^{\epsilon}\right)^{-1} \neq 1$, let us call the factor δ^{ϵ} the significant factor of v. Suppose $v=g_{j} s_{a}{ }^{\epsilon} \phi\left(g_{j} s_{a}{ }^{\epsilon}\right)^{-1}=g_{k} s_{b}{ }^{\eta} \phi\left(g_{k} s_{b}{ }^{\eta}\right)^{-1} \neq 1$. If g_{j} and g_{k} are of the same length, then since v is reduced as written, $g_{j}=g_{k}$, $s_{a}{ }^{\boldsymbol{\epsilon}}=s_{b}{ }^{\eta}$. If g_{j} and g_{k} are of different lengths, say, g_{k} longer, then $g_{j} s_{a}{ }^{\boldsymbol{\epsilon}}$ as a beginning section of g_{k} is itself a g; so, $\phi\left(g_{j} s_{a}{ }^{\epsilon}\right)=g_{j} s_{a}{ }^{\epsilon}$, and so $v=1$ contrary to assumption. Thus a $v \neq 1$ has a unique expression of the form $g s^{\epsilon} \phi\left(g s^{\epsilon}\right)^{-1}$ and in particular has a unique significant factor.

LEMmA 7.2.4. In a product $v_{1} v_{2}, v_{1} \neq 1, v_{2} \neq 1, v_{2} \neq v_{1}^{-1}$, the cancellation does not reach the significant factor of either v.

Proof: Let $v_{1}=g_{i} s_{a}{ }^{\epsilon} g_{j}{ }^{-1}, g_{j}=\phi\left(g_{i} s_{a}{ }^{\epsilon}\right), v_{2}=g_{k} s_{b}{ }^{\eta} g_{l}{ }^{-1}, g_{l}=$ $\phi\left(g_{k} s_{b}{ }^{\eta}\right) . v_{1}$ and v_{2} are both reduced as written, and since $v_{2} \neq v_{1}{ }^{-1}$, we cannot have both $g_{k}=g_{i}$ and $s_{b}{ }^{-\eta}=s_{a}{ }^{\boldsymbol{\epsilon}}$ holding. Let us deny the lemma and assume that the cancellation reaches a significant factor. If the cancellation reaches $s_{b}{ }^{n}$
first, then $g s_{b}{ }^{n}$ is a beginning section of g_{j}, whence $\phi\left(g s_{b}{ }^{n}\right)=g s_{b}{ }^{n}$ and $v_{2}=1$, contrary to assumption. Similarly, if the cancellation reaches $S_{a}{ }^{\epsilon}$ first, then $g_{j} s_{a}^{-\epsilon}$ is a beginning section of g_{k} and $v_{1}=1$, contrary to assumption. If the cancellation includes $\boldsymbol{S}_{\boldsymbol{a}}{ }^{\boldsymbol{\epsilon}}$ and s_{b} simultaneously, then $g_{k}=g_{j}, S_{b}{ }^{\boldsymbol{n}}=\boldsymbol{s}_{\boldsymbol{a}}{ }^{\boldsymbol{\epsilon}}$ and $v_{2}=v_{1}{ }^{-1}$, contrary to assumption.

We are now close to the proof of the main theorem.
Lemma 7.2.5. A product of v 's, $v_{1} v_{2} \cdots v_{m}, v_{i} \neq 1, i=1 \cdots m, v_{i+1} \neq v_{i}^{-1}, i$ $=1, \cdots, m-1$ cannot be the identity.

Proof: By the repeated application of Lemma 7.2.4, the cancellation between v_{i} and v_{i+1} does not reach either significant factor. Hence, when put in its reduced form in terms of the s 's, the product $v_{1} \cdots v_{m}$ contains all the original significant factors and cannot be the identity.

Now consider the elements $u, u=g s \phi(g s)^{-1} \neq 1$. From Lemma 7.2.2, all the u 's and so the u 's $\neq 1$ generate U. The u 's will be free generators of U if no product of u 's which is a reduced word in the u 's is equal to the identity, i.e., reduces to 1 when expressed in terms of the s 's. But every $v \neq 1$ is either a u or u^{-1} and in just one way. Hence a reduced word in the u 's $\neq 1$ will be of the form $v_{1} v_{2} \cdots v_{m}, v_{i} \neq 1 v_{i+1} \neq v_{i}^{-1}$ treated in Lemma 7.2.5, and therefore will not be the identity. Hence Lemma 7.2 .6 will hold.

Lemma 7.2.6. The elements $u=g s \phi(g s)^{-1} \neq 1$ are free generators of U.
Thus we have found free generators for U, and so U is a free group.
The role of the significant factor in Lemma 7.2.4 is the key to this proof of Theorem 7.2.1. We may generalize this idea by an independent definition of significant factor.

A set Y of elements such that $Y \cap Y^{-1}=0$ is said to possess significant factors if for each $y \in Y$ we may select a factor from the reduced form of y and y^{-1} :

$$
\begin{aligned}
y & =a_{1} \cdots a_{i} \cdots a_{t}, \\
y^{-1} & =a_{t}^{-1} \cdots a_{i}^{-1} \cdots a_{1}^{-1}
\end{aligned}
$$

selecting a_{i} from y and a_{i}^{-1} from y^{-1} in such a way that in any product

$$
z w, z \neq w^{-1}, z, w \in Y \cup Y^{-1}
$$

the cancellation does not reach the significant factor in z or w. In other words Y possesses significant factors if Lemma 7.2.4 is valid in $Y \cup Y^{-1}$ for these factors. The significant factors for a set Y are said to be central significant factors if for a y of odd length the significant factor is its central term and for a y of even length the significant factor is one of the two central terms.

Theorem 7.2.2. If a set Y possesses significant factors, then Y consists of free generators for the subgroup generated by its elements. If G is a Schreier system with each g a shortest element in its coset $U g$, then for the u's with $u=$ $g s \phi(g s)^{-1} \neq 1$, the s's form a set of central significant factors.

Proof: By definition of the significant factor, Lemma 7.2.4 holds for v_{1}, $v_{2} \epsilon Y \cup Y^{-1}$. But then Lemma 7.2.5 holds also. Hence no word in the y 's and their inverses is the identity unless its reduced form in the y 's is the identity; thus the y 's are free generators of the group which they generate.

If G is a Schreier system of coset representatives g for a subgroup U such that a coset $U g$ contains no element shorter than g, then since

$$
\begin{gathered}
g s \in U \phi(g s), \\
\phi(g s) s^{-1} \in U g,
\end{gathered}
$$

we see that g and $\phi(g s)$ can differ in length by, at most, one. Thus s, which in Lemma 7.2.4 has already been shown to be a significant factor, is a central significant factor, since in $u=g s \phi(g s)^{-1}$ it is between two words of length differing, at most, by one.

We may prove a converse to Lemma 7.2.6 and the main theorem.
Theorem 7.2.3. Let G be a Schreier system in a free group F generated by a set S of free generators. Let $\phi(h)$ be a function defined for arguments $h=g s^{\epsilon}, \epsilon= \pm 1, g \in G, s \in S$ such that

1) $\phi\left(g s^{\epsilon}\right) \in G$.
2) If $g s^{\epsilon} \epsilon G$, then $\phi\left(g s^{\epsilon}\right)=g s^{\epsilon}$.
3) $\phi\left[\phi\left(g s^{\epsilon}\right) s^{-\epsilon}\right]=g$.

Then the elements $u=g s \phi(g s)^{-1} \neq 1$ are free generators of a subgroup U of F, and the Schreier system is a set of representatives of left cosets of U in F.

Proof: Let us write $v=g s^{\epsilon} \phi\left(g s^{\epsilon}\right)^{-1}$ as a generic notation. The proofs of Lemmas 7.2.3, 7.2.4, and 7.2.5 are valid under the hypotheses given here, since only the preceding properties of the ϕ function were used in the proof of these lemmas. From Lemma 7.2.5 it follows that the elements $u=g s \phi(g s)^{-1} \neq 1$ are free generators of some subgroup U of F.

In order to show that the Schreier system of G is a set of representatives of the left cosets of U, we define a function $\Phi(f)$ for every word f in $S \cup S^{-1}$. Suppose

$$
f=a_{1} a_{2} \cdots a_{t}, \quad a_{i} \in S \cup S^{-1}, \quad i=1 \cdots t .
$$

Put

$$
\begin{aligned}
& h_{0}=1 \\
& h_{i}=\phi\left(h_{i-1} a_{i}\right), i=1 \cdots t, \\
& h_{t}=\Phi(f) .
\end{aligned}
$$

The essential properties of $\Phi(f)$ are easily proved:
1)
$\Phi\left(a_{1} \cdots a_{i} a_{i+1} \cdots a_{k}\right)=\Phi\left(a_{1} \cdots a_{i} s^{\epsilon} s^{-\epsilon} a_{i+1} \cdots a_{t}\right)$.
By definition every $h_{i}, i=1 \cdots t$ is a $g \in G$. Hence in evaluating the right hand side we have successively $h_{i}, \phi\left(h_{i} s^{\epsilon}\right)$, and $\phi\left[\phi\left(h_{i} s^{\epsilon}\right) s^{-\epsilon}\right]=h_{i}$ by property (3). Otherwise the process is identical in evaluating both sides. Thus $\Phi(f)$ is the same for any two words representing the same element of F.
2) $\Phi(g)=g$.

Here if $g=a_{1} \cdots a_{t}$ is the reduced form of a $g \boldsymbol{\epsilon} G$, every beginning section is also a g and, by property (2), $h_{i}=a_{1} \cdots a_{i}, i=1 \cdots t$.
3) $\Phi\left(f_{1} f_{2}\right)=\Phi\left[\Phi\left(f_{1}\right) f_{2}\right]$.

Write $f=f_{1} f_{2}, f_{1}=a_{1} \cdots a_{i}, f_{2}=a_{i+1} \cdots a_{t}$. Then $h_{i}=\Phi\left(f_{1}\right)$ is a g, and so $\Phi\left(h_{i}\right)=h_{i}$. Thus, in evaluating $\Phi\left(h_{i} f_{2}\right)$, we have a term equal to h_{i} and then further terms equal to $h_{i+1}, \cdots, h_{t}=\Phi\left(f_{1} f_{2}\right)$
4) $\Phi\left(g s^{\epsilon}\right)=\phi\left(g s^{\epsilon}\right)$.

Here $\Phi\left(g s^{\epsilon}\right)=\phi\left(\Phi(g) s^{\epsilon}\right)$ by the definition of the Φ function. Here $\Phi(g)=g$, and so $\Phi\left(g s^{\epsilon}\right)=\phi\left(g s^{\epsilon}\right)$.
5) $\Phi\left[g s^{\epsilon} \phi\left(g s^{\epsilon}\right)^{-1}\right]=1$.

Here
$\Phi\left[g s^{\epsilon} \phi\left(g s^{\epsilon}\right)^{-1}\right]=\Phi\left[\Phi\left(g s^{\epsilon}\right) \phi\left(g s^{\epsilon}\right)^{-1}\right]=\Phi\left[\phi\left(g s^{\epsilon}\right) \cdot \phi\left(g s^{\epsilon}\right)^{-1}\right]=\Phi(1)=1$.
6) If $f \in U$, then $\Phi(f)=1$.

This comes from a repeated application of (3) and (5).
7) If $\Phi(f)=g$, then $f \in U g$.

Here $f=a_{1} a_{2} \cdots a_{t}$

$$
=\left(1 \cdot a_{1} \cdot h_{1}^{-1}\right)\left(h_{1} a_{2} h_{2}^{-1}\right) \cdots\left(h_{t-1} a_{t} h_{t}^{-1}\right) h_{t}
$$

and each of $h_{i-1} a_{i} h_{i}^{-1}=g s^{\epsilon} \phi\left(g s^{\epsilon}\right)^{-1} \in U, i=1 \cdots t$, whereas $h_{t}=$ $\Phi(f)=g$. In particular, if $\Phi(f)=1$ then $f \epsilon U$.
8) If $g_{i} \neq g_{j}$, then g_{i} and g_{j} are in different cosets of U.

Otherwise, $g_{i}=w g_{j}$ with $w \in U$ and $g_{i}=\Phi\left(g_{i}\right)=\Phi\left[\Phi(w) g_{j}\right]=\Phi\left(g_{j}\right)=g_{j}$, a contradiction.

Thus we have shown that the cosets $U g$ are all different and include all the free group F. In proving Theorem 7.2.3 we have shown even more than was required. We state this as a theorem.

Theorem 7.2.4. Given the Schreier system G and the function $\boldsymbol{\phi}\left(g s^{\boldsymbol{\epsilon}}\right)$ of Theorem 7.2.3. From these alone we may decide whether or not an arbitrary element f belongs to the subgroup U determined by G and ϕ.

Proof: We may compute $\Phi(f)$ from ϕ and G, and $\Phi(f)=1$ if, and only if, $f \in U$. Since ϕ and G determine U in this unambiguous fashion, we shall regard ϕ and G as representing U, and speak of $U=U\left[G, \phi\left(g s^{\epsilon}\right)\right]$ as a standard representation of U.

Two questions raise themselves naturally:

1) How are different standard representations of the same subgroup related to each other?
2) How many subgroups, if any, can be represented in terms of a given Schreier system?

We shall answer both these questions in turn.
Theorem 7.2.5. $U_{1}=U_{1}\left[G_{1}, \phi_{1}\left(g s^{\epsilon}\right)\right] \quad$ and $U_{2}=U_{2}\left[G_{2}, \phi_{2}\left(g s^{\epsilon}\right)\right]$ are the same subgroup if, and only if, there is a one-to-one correspondence. $g^{1} \leftrightarrows g^{2}$, including $1 \leftrightarrows 1$ between the Schreier system G_{1} and G_{2} such that whenever $g^{1} \leftrightarrows g^{2}$ then $\phi_{1}\left(g^{1} s^{\epsilon}\right) \leftrightarrows \phi_{2}\left(g^{2} s^{\epsilon}\right)$ for any s^{ϵ}.

Proof: If $U_{1}=U_{2}=U$, then each coset of U has a representative from G_{1} and also from G_{2}. Thus, if $U g^{1}=U g^{2}$, the correspondence $G^{1} \leftrightarrows g^{2}$ is clearly one-to-one and includes $1 \leftrightarrows 1$. Since $g^{1} s^{\epsilon}$ and $g^{2} s^{\epsilon}$ are in the same coset, then $\phi_{1}\left(g^{1} s^{\epsilon}\right) \leftrightarrows \phi_{2}\left(g^{2} s^{\epsilon}\right)$.

Conversely, suppose a one-to-one correspondence $g^{1} \leftrightarrows g^{2}$ given, including $1 \leftrightarrows 1$ such that $\phi_{1}\left(g^{1} s^{e}\right) \leftrightarrows \phi_{2}\left(g^{2} s^{e}\right)$ in all cases. We find that $\Phi_{1}(f) \leftrightarrows \Phi_{2}(f)$ for every f, and in particular, $\Phi_{1}(f)=1$ if, and only if, $\Phi_{2}(f)=1$. But this says that U_{1} and U_{2} contain the same elements f, and therefore are of the same subgroup U. Moreover, by induction on the length of g^{1} we may show that $U g^{1}=U g^{2}$.

Before answering the second question we shall note some properties of the function ϕ. The mappings $\pi(s): g \rightarrow \phi(g s), \pi\left(s^{-1}\right): g \rightarrow \phi\left(g s^{-1}\right)$ for all $g \in G$ and a fixed generator s map all of G into itself. From property (3) of the ϕ function the products $\pi(s) \pi\left(s^{-1}\right)$ and $\pi\left(s^{-1}\right) \pi(s)$ are both the identity. Hence $\pi(s)$ and $\pi\left(s^{-1}\right)$ are permutations (one-to-one mappings) and are inverses of each other. In addition, from property (2), certain values of ϕ are compulsory in that they depend entirely on the nature of G and not on the subgroup U. Again consider a fixed s and all $g \in \boldsymbol{G}$. The g 's may be divided into classes $C(s)$ and $C^{*}(s)$ such that

$$
\begin{array}{ll}
g \in C(s) & \text { if, and only if, } g s \in G, \\
g \in C^{*}(s) & \text { if, and only if, } g s \notin G .
\end{array}
$$

Let $N(s)$ be the cardinal number of the class $C(s)$ and $M(s)$ the cardinal number of $C^{*}(s)$. Here

$$
N(s)+M(s)=N
$$

where N is the cardinal number of G. Similarly,

$$
\begin{array}{ll}
g \in C\left(s^{-1}\right) & \text { if, and only if, } g s^{-1} \epsilon G \\
g \notin C^{*}\left(s^{-1}\right) & \text { if, and only if, } g s^{-1} \notin G
\end{array}
$$

and again with $N\left(s^{-1}\right)$ the cardinal of $C\left(s^{-1}\right)$ and $M\left(s^{-1}\right)$ the cardinal of $C^{*}\left(s^{-1}\right)$ we have

$$
N\left(s^{-1}\right)+M\left(s^{-1}\right)=N
$$

Now if g_{i} and g_{j} are g 's such that $g_{i} s=g_{j}$, whence $g_{j} s^{-1}=g_{i}$, then $g_{i} \in C(s)$ and $g_{j} \in C\left(s^{-1}\right)$. This relation establishes a one-to-one correspondence between $C(s)$ and $C\left(s^{-1}\right)$, whence

$$
N(s)=N\left(s^{-1}\right)
$$

Now if N is finite, it will also follow that

$$
M(s)=M\left(s^{-1}\right)
$$

But if N is infinite, it need not follow that $M(s)=M\left(s^{-1}\right)$ for an arbitrary Schreier system. In particular, take $1, s, s^{2} \cdots s^{i} \cdots$. Here $M(s)=0, M\left(s^{-1}\right)=$ 1. On the other hand if a ϕ exists for a given $G, \pi(s)$ maps $C(s)$ onto $C\left(s^{-1}\right)$, and being a permutation, also maps $C^{*}(s)$ onto $C^{*}\left(s^{-1}\right)$. Hence $M(s)=M\left(s^{-1}\right)$ is a necessary condition for the existence of ϕ.

Theorem 7.2.6. Given a Schreier system G such that $M(s)=M\left(s^{-1}\right)$ for every generator s. Then it is possible to find a function $\phi\left(g s^{\epsilon}\right)$ satisfying the three properties:

1) $\phi\left(g s^{\epsilon}\right)$ is a $g \epsilon G$.
2) If $g s^{\epsilon} \epsilon G$ then $\phi\left(g s^{\epsilon}\right)=g s^{\epsilon}$.
3) $\phi\left[\phi\left(g s^{\epsilon}\right) s^{-\epsilon}\right]=g$.

The most general choice for ϕ is given by taking for each s:
i) $\phi(g s)=g s$ if $g s$ is a g.
ii) For $g s$ not a g choose the set of $\phi(g s)$ in any way such that $\pi(s): g \rightarrow \phi(g s)$ is a permutation G.
iii) Having defined $\phi(g s)$ for all g, define $\phi\left(g s^{-1}\right)$ so that $\pi\left(s^{-1}\right): g \rightarrow \phi\left(g s^{-1}\right)$ is the inverse o. (s).

Proof: Given the condition $M(s)=M\left(s^{-1}\right)$ on G for all generators s, the theorem not only asserts that $\phi\left(g s^{\epsilon}\right)$ exists but also describes what is clearly the most general construction if the construction is valid. Hence we must prove the validity of this construction. For a given s, clearly:

1) $\quad \phi(g s)$ is a g.
2) If $g s$ is a g, then $\phi(g s)=g s$.

If for some g_{i} we have $g_{i} s=g_{j} \in G$, we have put $\phi\left(g_{i} s\right)=g_{j}$. Here $g_{j} s^{-1}$ $=g_{i}$ Thus in $g \rightarrow \phi(g s)$ we have mapped the class $C(s)$ onto the class $C\left(s^{-1}\right)$. There are $M(s) g$'s remaining to be mapped into the remaining $M\left(s^{-1}\right) g$'s. Since $M(s)=M\left(s^{-1}\right)$, a one-to-one correspondence is possible, mapping $C^{*}(s)$ onto $C^{*}\left(s^{-1}\right)$ by $g \in C^{*}(s), g \leftrightarrows g^{\prime} \in C^{*}\left(s^{-1}\right)$. We put $g^{\prime}=\phi(g s)$. Here $\pi(s): g \leftrightarrows \phi(g s)$ is a one-to-one correspondence taking $C(s)$ onto $C\left(s^{-1}\right)$ and $C^{*}(s)$ onto $C^{*}\left(s^{-1}\right)$. Now $\pi(s)$ is a permutation, and so, if we take $\pi\left(s^{-1}\right): g \leftrightarrows \phi\left(g s^{-1}\right)$ as the inverse of $\pi(s)$, we have defined values for $\phi\left(g s^{-1}\right)$. Here, clearly, $\phi\left(g s^{-1}\right)$ is a g. Moreover, since $\pi(s)$ mapped $C(s)$ onto $C\left(s^{-1}\right)$, it will follow that:
3) If $g s^{-1}$ is a g, then $\phi\left(g s^{-1}\right)=g s^{-1}$ Thus properties (1) and (2) hold for all $g \epsilon G$ and both s and s^{-1} Finally property (3), $\phi\left[\phi\left(g s^{\epsilon}\right) s^{-\epsilon}\right]=g$, holds since $\pi(s)$ and $\pi\left(s^{-1}\right)$ are inverse permutations.

In both Theorems 7.2.5 and 7.2.6 the permutations $\pi(s)$ played a central role. If $g=a_{1} a_{2} \cdots a_{t}$, we observe that the permutation $\pi\left(a_{1}\right) \pi\left(a_{2}\right) \cdots \pi\left(a_{t}\right)$ takes 1 into g and hence that the permutations $\pi(s)$ generate a group transitive on the g 's. These permutations alone determine the subgroup U uniquely, as we shall now show.

Theorem 7.2.7. Let F be the free group on a set S of free generators. Let a set of permutations $\pi(s)$ be given, one for each $s \in S$, the permutations $\pi(s)$ being on symbols $1, y_{2}, \cdots y_{i}, \cdots$, and let the group generated by the $\pi(s)$ be transitive on the symbols. With each element f of F where $f=a_{1} a_{2} \cdots a_{t}$, associate the permutation $\pi(f)=\pi\left(a_{1}\right) \pi\left(a_{2}\right) \cdots \pi\left(a_{t}\right)$. Then those elements f such that $\pi(f)$ fixes 1 will form a subgroup U. If $g_{1}=1, g_{2}, \cdots, g_{i} \cdots$ is any Schreier system of left coset representatives for U, we may associate the g 's with the symbols yi, putting $g_{i} \leftrightarrows y_{i}$ if $\pi\left(g_{i}\right)$ takes 1 into y_{i}. In this way the $\pi(s)$ on the y_{i} are permutation isomorphic to the $\pi(s)$ of Theorems 7.2.5 and 7.2.6 on the g_{i}.

Proof: Clearly, those f 's with $\pi(f)$ fixing 1 form a subgroup U of F. By Theorem 5.3.1 we may regard the permutations $\pi(f)$ as a representation of F on cosets of U, replacing 1 by U and the y 's by other left cosets of U. Hence each y_{i} corresponds uniquely to some left coset $U g_{i}$, where $\pi\left(g_{i}\right)$ takes 1 into y_{i}. In
this representation $\pi(s)$ takes the coset $U g$ into $U g s$, which is the same as $U \phi(g s)$. Thus, if we replace a coset $U g_{i}$ by its representative g_{i} the permutation $\pi(s)$ now becomes the permutation $\pi(s)$ of Theorems 7.2.5 and 7.2.6, and so we have fully established the permutation isomorphism of the original permutations on the y 's with those on the Schreier system G.

For a subgroup U of finite index in a finitely generated free group, we may give some explicit values for the number of generators of U and for their total length.

Theorem 7.2.8. Let $U=U\left[G, \phi\left(g s^{\epsilon}\right)\right]$ be a subgroup of finite index n in a free group F_{r} with r free generators $s_{1}, s_{2}, \cdots, s_{r}$. Then

1) U is a free group on $1+n(r-1)$ free generators.
2) If L is the total length of the Schreier system G, then the total length of the free generators of $U, u=g s \phi\left(g s^{-1}\right) \neq 1$, is $K=(2 L+n) r-2 L$.

Proof: We have shown that a set of free generators of U is given by the elements

$$
u_{i a}=g_{i} s_{a} \phi\left(g_{i} s_{a}\right)^{-1}, \quad i=1, \cdots, n ; \quad a=1, \cdots, r
$$

which are not equal to the identity. Moreover, by Lemma 7.2.3, $u_{i a}$ is either reduced as written or equal to the identity. Now

$$
\sum_{i=1}^{n} L\left(g_{i}\right)+L\left(s_{a}\right)+L\left[\phi\left(g_{i} s_{a}\right)\right]=2 L+n
$$

since for s_{a} fixed, $\phi\left(g_{i} s_{a}\right)$ is a permutation of the g 's. Hence before cancellation we have ($n r$) u's of total length $r(2 L+n)$. Thus we must subtract from these totals, respectively, the number $u_{i a}$ equal to the identity and the lengths $L\left(g_{i}\right)+$ $L\left(s_{a}\right)+L\left(g_{i} s_{a}\right)$ counted for these u 's. When is $u_{i a}$ equal to the identity? Now g_{i}, s_{a}, and $\phi\left(g_{i} s_{a}\right)^{-1}$ are reduced as written. Hence there will be cancellation, and by Lemma 7.2.3 then $u_{i a}=1$, if, and only if, s_{a} cancels with g_{i} or $\phi\left(g_{i} s_{a}\right)^{-1}$. In the first case g_{i} ends in $s_{a}^{-1}, g_{i}=g_{j} s_{a}^{-1}$ with $g_{j} \in G$ reduced as written. In the second case $\phi\left(g_{i} s_{a}\right)=g_{k}$ ends in s_{a}, and in fact, $g_{k}=g_{i} s_{a}$. Thus for s_{a} the number of u 's equal to the identity is equal to the number of g 's ending in s_{a} or $s_{a}{ }^{-1}$. But every g except $g=1$ ends in some s_{a} or $s_{a}{ }^{-1}$ and so is counted exactly
once in this process. Hence there are $(n-1) u$'s equal to the identity in all, and consequently there remain $n r-(n-1)=n(r-1)+1$ free generators for U. What about the lengths? First, if $g_{i}=g_{j} s_{a}^{-1}$, then $\phi\left(g_{i} s_{a}\right)=g_{j}$, and so $L\left(g_{i}\right)+$ $L\left(s_{a}\right)+L\left[\left(\phi\left(g_{i} s_{a}\right)\right]=2 L\left(g_{i}\right)=2 L\left(g_{j} s_{a}^{-1}\right)\right.$. Secondly, if $g_{i} s_{a}=g_{k}$, then $L\left(g_{i}\right)+$ $L\left(s_{a}\right)+L\left[\phi\left(g_{i} s_{a}\right)\right]=2 L\left(g_{i} s_{a}\right)$. Thus for s_{a} we have included for $u_{i a}=1$ twice the length of every g ending in s_{a} or $s_{a}{ }^{-1}$. Hence for all s_{a} we have included for u 's equal to the identity twice the length of every g except $g=1$. But $L(1)=0$, and so we must subtract exactly $2 L$, leaving $(2 L+n) r-2 L$ as the total length of the free generators of U.

Finally, using Theorem 7.2.7, we may enumerate recursively the number of subgroups of index n in F_{r}.

Theorem 7.2.9. The number $N_{n, r}$ of subgroups of index n in F_{r} is given recursively by $N_{1 r}=1$

$$
N_{n, r}=n(n!)^{r-1}-\sum_{i=1}^{n-1}(n-i)!^{r-1} N_{i, r}
$$

Proof: $N_{1 r}=1$ asserts merely that F_{r} is its own unique subgroup of index 1 . Choose r permutations P_{1}, \cdots, P_{r} on symbols $1, x_{2}, \cdots, x_{n}$. In general P_{1}, \cdots, P_{r} need not generate a group transitive on all of $1, x_{2}, \cdots x_{n}$. Let the transitive constituent including 1 be $1, b_{2}, \cdots b_{t}$. Disregarding the remaining letters, we may take as $\pi\left(s_{1}\right) \cdots, \pi\left(s_{r}\right)$ the permutations on $1, b_{2}, \cdots, b_{t}$, and by Theorem 7.2.7, these will determine a unique subgroup of index t. The remaining $n-t$ letters could occur in P_{1}, \cdots, P_{r} in $[(n-t)!]^{r}$ ways. In addition the same subgroup will be determined if we replace $1, b_{2}, \cdots, b_{t}$ by any other combination $1, c_{2}, \cdots, c_{t}$, and let the remaining $n-t$ letters occur in an arbitrary way. Thus a total of

$$
(n-1)(n-2) \cdots(n-t+1)[(n-t)!]^{r}=(n-1)![(n-t)!]^{r-1}
$$

different permutations P_{1}, \cdots, P_{r} may be associated with the same subgroup of index t. Hence

$$
\sum_{t=1}^{n}(n-1)![(n-t)!]^{r-1} N_{t, r}=(n!)^{r}
$$

counting the ($n!)^{r}$ possible choices of P_{1}, \cdots, P_{r} according to the index of the subgroup with which they are associated. Dividing by ($n-1$)! and transposing the sum from 1 to $n-1$, we have the formula of the theorem.

7.3. Free Generators of Subgroups of Free Groups. The Nielsen Method.

In the Sec. 7.2 the properties of a subgroup U of a free group F were studied in terms of the cosets of U in F. In this section we shall be concerned more directly with the elements of U.

Let $A=\left\{a_{i}\right\}$ be a set of elements in a free group F indexed by a set I of indices i, and let us suppose that the set A consists of free generators of the group which they generate, which we shall designate as $[A]$. For an element $f \epsilon[A]$ we write $L_{A}(f)$ for the length of f written as a reduced word in the a 's and their inverses.

Let the set X be a free set of generators for the free group F. Then a set A of elements of F will be said to have the Nielsen property with respect to the generators X if, and only if,

1) $A \cap A^{-1}=0\left(A^{-1}\right.$ is the set of inverses of elements of $\left.A\right)$.
2) If $a, b \in A \cup A^{-1}, L_{X}(a b)<L_{X}(a)$ implies that $b=a^{-1}$.
3) If $a, b, c \in A \cup A^{-1}, L_{X}(a b c) \leq L_{X}(a)-L_{X}(b)+L_{X}(c)$ implies that either $b=a^{-1}$ or $b=c^{-1}$.

Theorem 7.3.1. If the set A has the Nielsen property with respect to a set of free generators X of F, then A consists of free generators of the subgroup [A] which it generates. The Nielsen property is equivalent to the existence of central significant factors in the A's.

Proof: It is sufficient to show that the Nielsen property is equivalent to the existence of a central significant factor, since by Theorem 7.2.2 this will imply that A consists of free generators of $[A]$.

Assume that A has the Nielsen property. Then from property (2), if $b \neq a^{-1}$, $L_{X}(a b) \geq L_{X}(a)$ and $L_{X}\left(b^{-1} a^{-1}\right) \geq L_{X}\left(b^{-1}\right)$, whence $L_{X}(a b) \geq L_{X}(b)$. If more than one-half of one factor, say b, canceled with a in the reduced form of $a b$, we would have $a=u \nu^{-1}, b=v w, L_{X}(v)>L_{X}(w)$, and $L_{X}(a b)=L_{X}(u w)<L_{X}(u)+$ $L_{X}(v)=L_{X}(a)$. Hence this cannot happen, and at most one-half of a or b is canceled in the reduced form of $a b$. Thus for an element of odd length its central term may be taken as a significant factor. If b is of even length, conceivably the first half v of b may be canceled in a product $a b$ with $b \neq a^{-1}$. If also the second half w of b may be canceled in the reduced form of a product $b c, b \neq c^{-1}$, then we have $a=u v^{-1}, b=v w, c=w^{-1} z$, and $L_{X}(a b c)=L_{X}(u z) \leq L_{X}(u)+L_{X}(z)=$ $L_{X}(a)-L_{X}(b)+L(c)$, contrary to the third requirement for the Nielsen property. Since this cannot happen, one-half of b, either v or w, cannot be canceled in any product, and so, that one of the two central terms of b belonging to this half may be taken as its central factor. Thus the Nielsen property implies the existence of central significant factors. Conversely, if central significant factors exist for a set A with $A \cap A^{-1}=0$, then if $b \neq a^{-1}$ half of b, at most, is canceled in $a b$ against an equal number of terms in a; so, $L_{X}(a b) \geq L_{X}(a)+L_{X}(b)-2 \cdot 1 / 2 L_{X}(b)$ $=L_{X}(a)$, yielding the second requirement. Moreover in a product $a b c$, with $b \neq$ $a^{-1}, b \neq c^{-1}$, the cancellation between a and b and between b and c stops short of the significant factor of b; so, $L_{X}(a b c)>L_{X}(a)+L_{X}(b)+L_{X}(c)-2 L_{X}(b)$, which is the third requirement. It is not difficult to show that the third requirement alone is equivalent to the existence of significant factors. For given b, take as $a \neq b^{-1}$ an element which cancels the greatest number of terms on the left of b, and take as $c \neq b^{-1}$ an element which cancels the greatest number of terms on the right of b. The requirement asserts that not all of b is canceled out, and any remaining term may be taken as the significant factor for b.

Theorem 7.3.2. Given a finite set B of elements $\beta_{1}, \cdots, \beta_{m}$ in a free group F on a given set X of free generators. In a finite number of changes of the following types:

Type 1: Delete a $\beta_{i}=1$,
Type 2: Replace a β_{i} by β_{i}^{-1},
Type 3: Replace a β_{i} by $\beta_{i} \beta_{j}, i \neq j$,
we may replace the set B by another set $A: \alpha_{1}, \cdots, \alpha_{n}, n \leq m$ such that A generates the same subgroup as B and A has the Nielsen property with respect
to X. Hence A is a set of free generators for $[A]=[B]$.
Proof: Clearly, each change replaces a set by another set generating the same group. The first type reduces the number of elements, the second and third leave the number of elements unchanged. We note that a combination of changes of types 2 and 3 will replace β_{j} by $\beta_{i}{ }^{\boldsymbol{\epsilon}} \beta_{j}{ }^{\eta}$ or $\beta_{j}{ }^{\eta} \boldsymbol{\beta}_{i}{ }^{\boldsymbol{\epsilon}}, \boldsymbol{\epsilon}= \pm 1, \eta= \pm 1$, and leave the remaining β 's unchanged.

If two β 's are equal or inverses, we may make changes to replace a β by 1 and then delete this 1 . This reduces the number of β 's and so could happen, at most, m times. If for $a, b \in B \cup B^{-1}, b \neq a^{-1}$, we have $L_{X}(a b)<L_{X}(a)$, we cannot have $b=a$ since always $L_{X}\left(a^{2}\right)>L_{X}(a)$. Hence we may replace the $\beta=a^{\epsilon}$ by $a b$ and so reduce the total length of all the β 's. Thus there can be only a finite number of changes of this kind, and so requirements (1) and (2) for the Nielsen property can be satisfied in a finite number of steps. Satisfying the third requirement is more difficult.

Whether or not the set X is infinite, the set Y of generators in X which occur in the β 's is certainly finite. Let us list the elements of F generated by Y according to length, the order for a given length being arbitrary but fixed. There are only a finite number of each length, and so every element has only a finite number of predecessors in this list.

If a β is of even length $2 k$ write β in the form $\beta=\gamma \delta^{-1}$, where each of γ and δ is of length k. If $\beta \neq 1$, then $\delta \neq \gamma$. Since $\beta^{-1}=\delta \gamma^{-1}$. we may replace β by β^{-1} if necessary so that its first half is earlier than its second half in the list. If $\beta_{i}=$ $\gamma \delta^{-1}$ and a β_{j} begins with the terms of $\delta, \beta_{j}=\delta z$, we replace β_{j} by $\beta_{j} \beta_{j}=\gamma z$. Similarly, if β_{k} ends in δ^{-1}, we replace $\beta_{k}=w \delta^{-1}$ by $\beta_{k} \beta_{i}^{-1}=w \gamma^{-1}$. Hence we may change the β 's so that if $\beta_{i}=\gamma \delta^{-1}$ no other β begins with δ or ends with δ^{-1}. Since we are replacing a series of terms δ by another γ of the same length but earlier in the list, this process will terminate in a finite number of steps. It is important to note that if we begin with the shortest β of even length and then continue with longer β 's of even length, the process will terminate in a finite number of steps. For working with β 's of the same length, we continually replace a half word by an earlier half word, and so we come to an end in a finite number of steps. In working with β 's of greater length than $\beta_{i}=\gamma \delta^{-1}$, there will be no beginning section δ or end δ^{-1} in any of them. Naturally, if at any point either condition $A \cap A^{-1}=0$ or $L_{X}(a b) \geq L_{X}(a)$ is violated, we make an appropriate change, either by reducing the number of β 's or by reducing their
total length and then starting over in replacement of half words, which leaves both the number and length of the β 's unchanged. Hence after a finite number of changes this process will terminate, yielding a set A of elements $\alpha_{1}, \cdots, \alpha_{n}, n \leq$ m. We assert that the set A has the Nielsen property with respect to X. Both $A \cap$ $A^{-1}=0$ and $L_{X}(a b) \geq L_{X}(a), b \neq a^{-1}, a, b \in A \cup A^{-1}$ will surely hold, since otherwise we could reduce either the number or total length of the β 's. Now consider a product $a b c, b \neq a^{-1}, b \neq c^{-1}$. If b is of odd length, $2 k+1$ at most, the first k terms of b cancel with a and, at most, the last k terms cancel with c; so, $L_{X}(a b c)>L_{X}(a)-L_{X}(b)+L_{X}(c)$ holds. If b is of even length, then b is of the form $\gamma \delta^{-1}$ or $\delta \gamma^{-1}$, with γ earlier than δ. Since the second property holds, half of b, at most, is canceled by a and at most half by c. But a cannot end with δ^{-1} or c begin with δ, and so the half of b which is either δ or δ^{-1} is not entirely canceled; thus b itself is not entirely canceled and $L_{X}(a b c)>L_{X}(a)-$ $L_{X}(b)+L_{X}(c)$, proving the third requirement for the Nielsen property for A.

Theorem 7.3.3. Two free groups are isomorphic if, and only if, they have the same cardinal number of free generators. A free group F_{r} with a finite number r of generators is freely generated by any set of r elements which generate it.

Proof: Let F_{X} and F_{Y} be free groups on sets of free generators X and Y, respectively.

If X and Y have the same cardinality, there is a one-to-one correspondence between X and Y which can be extended to a one-to-one correspondence between F_{X} and F_{Y}, which is clearly an isomorphism.

Conversely, suppose that F_{x} and F_{Y} are isomorphic. Then F_{x} and F_{Y} have the same number of subgroups of index 2 . A subgroup of index 2 is the kernel of a homomorphism onto the group of order 2. Such a homomorphism is uniquely determined by the set of generators mapped onto the identity. Thus the number of subgroups of index 2 of a free group F_{Z} on a set of generators Z is the number of nonvacuous subsets of Z. This number is uncountable if Z is infinite and is $2^{r}-$ 1 if Z is finite with r elements. Thus, if F_{X} and F_{Y} are isomorphic, it follows that X and Y are either both infinite or both finite, and that in the latter case X and Y have the same number of elements. If X and Y are infinite, F_{X} and F_{Y} have the same cardinal number as X and Y, respectively. Since F_{X} and F_{Y} have the same cardinal number, so do X and Y.

Now suppose that F_{r}, the free group on $X: x_{1}, x_{2}, \cdots, x_{r}$, is also generated by $\beta_{1}, \beta_{2}, \cdots, \beta_{r}$. Then, by Theorem 7.3.2, after a certain number of changes of types $1,2,3$ (from $\beta_{1}, \cdots, \beta_{r}$), we shall have F_{r} freely generated by α_{1}, \cdots, α_{s}, with $s \leq r$. But then we must have $s=r$, and so no changes of type 1 have been used. We may verify directly that if a change of type 2 or 3 is made from a set B to a set B^{\prime}, then if either B or B^{\prime} consists of free generators so does the other. Hence, since $\alpha_{1}, \cdots, \alpha_{r}$ are free generators of F_{r}, so will $\beta_{1}, \cdots, \beta_{r}$ be free generators of F_{r}.

This proves the theorem, but we may obtain even more explicit information on $\alpha_{1}, \cdots, a_{r}$. The α_{i} have the Nielsen property and thus possess central significant factors (Theorem 7.3.1). Moreover for each $x_{i}, i=1, \cdots, r, x_{i}=\gamma_{1}$. $\cdots \gamma_{m}$, with each γ an α or its inverse and $\gamma_{i} \gamma_{i+1} \neq 1$. Now the product of the γ 's in its reduced form includes every central factor. Hence there can be only one and this must be equal to x_{i}. Thus every x_{i} is an α_{j} or α_{j}^{-1}. Hence, if we further apply changes of the second type, the α 's are precisely x_{1}, \cdots, x_{r} in some order. Thus, apart from order, we know how any set of free generators β_{1}, \cdots, β_{r} of F_{r} may be obtained from $x_{1} \cdots, x_{r}$. But this is to say that we have a knowledge of the automorphisms of F_{r}.

Theorem 7.3.4. All automorphisms of a free group F_{r} on a finite number r of generators X are generated by the automorphisms:

1) $P_{i j}: x_{i} \rightarrow x_{j}, x_{j} \rightarrow x_{i}, x_{k} \rightarrow x_{k}, k \neq i, j$,
2) $V_{i}: x_{i} \rightarrow x_{i}^{-1}, x_{j} \rightarrow x_{j}, j \neq i$,
3) $W_{i j}: x_{j} \rightarrow x_{i} x_{j}, i \neq j, x_{k} \rightarrow x_{k}, k \neq j$,
where $i \neq j$ are any of $1, \cdots, r$.
Proof: Each of these is surely an automorphism of F_{r}, since it replaces X by a set of r elements which generate F_{r}. We must show that an arbitrary automorphism of F_{r} is expressible as a product of these. We have just shown above that the most general automorphism of F_{r} is obtained by replacing $X: x_{1}$, \cdots, x_{r} by a set of generators $B: \beta_{1}, \cdots, \beta_{r}$ and that the set B is related to X by a finite succession of replacements,

$$
B=B_{1}, B_{2}, \cdots, B_{N-1}, B_{N}=X
$$

where B_{i} is B_{i+1} changed by a type 2 or 3 change of Theorem 7.2 .3 for $i=1, \cdots$ $\cdot, N-2$, and the change from B_{N-1} to B_{N} is a permutation of the set X and hence a product of transpositions $P_{i j}$ ($\left.\$ \underline{5.4}\right)$. Thus each of the replacements of B_{i+1} by $B_{i}, i=1, \cdots, N-2$ is an automorphism V_{i} or $W_{i j}$ in terms of the elements B_{i+1}. We must show that these may be expressed in terms of automorphisms V_{i} and $W_{i j}$ in terms of the elements of X.

Now let

$$
\begin{gathered}
Y: y_{1}, \cdots, y_{r}, \\
Z: z_{1}, \cdots, z_{r}, \\
W: w_{1}, \cdots, w_{r}
\end{gathered}
$$

be three sets of free generators for F_{r} where

1) $z_{i}=y_{i}^{-1}, z_{j}=y_{j}, j \neq i$, or
2) $z_{j}=z_{i} z_{j}, z_{k}=y_{k}, k \neq j$, and
3) $w_{m}=z_{m}{ }^{-1}, w_{n}=z_{n}, n \neq m$, or
4) $w_{n}=z_{m} z_{n}, w_{t}=z_{t}, t \neq n$.

Here the replacement of Y by Z is a V or W automorphism in Y; the replacement of Z by W, an automorphism of type V or W in Z. We must show that (3) or (4) can be expressed by V and W automorphisms on the Y 's. This involves several cases, all relatively simple. Only the two most difficult will be given here. Suppose we have (2) $z_{j}=y_{i} y_{j}$ and (3) $w_{m}=z_{m}{ }^{-1}$ with $m=j$. We must express the automorphism (3) which here replaces $y_{i} y_{j}$ by $y_{j}^{-1} y_{i}^{-1}$ and leaves y_{k} fixed for k $\neq j$. This is equivalent to the replacement of y_{i} by $y_{i}^{-1} y_{j}^{-1} y_{i}^{-1}$ leaving all other y 's fixed. But this is the product $y_{j} \rightarrow y_{i}^{-1} y_{j} \rightarrow y_{i}^{-i} y_{j}^{-1} \rightarrow y_{i}^{-1} y_{j}^{-1} y_{i}^{-1}$, which is $W_{i j}^{-1}(y) V_{j}(y) W_{i j}(y)$. Next, suppose we have (2) $z_{i}=y_{i} y_{j}$ and (4) $w_{n}=z_{m} z_{n}$ with $m=j, n=i$. Here the automorphism (4) replaces $z_{j}=y_{i} y_{j}$ by $y_{i} y_{j}$ and $z_{i}=y_{i}$ by $y_{i} y_{j} y_{i}$ and leaves all other $z_{k}=y_{k}$ fixed. This is the same as the replacement

$$
\begin{aligned}
& y_{i} \rightarrow y_{i} y_{j} y_{i}, \\
& y_{i} \rightarrow y_{i}^{-1} .
\end{aligned}
$$

But this is the product $W_{i j}{ }^{-1}(y) W_{j i}(y) W_{i j}(y)$; thus

$$
\begin{aligned}
& y_{i} \rightarrow y_{i} \rightarrow y_{i} y_{i} \rightarrow y_{i} y_{j} y_{i} \\
& y_{j} \rightarrow y_{i}^{-1} y_{j} \rightarrow y_{i}^{-1} \rightarrow y_{i}^{-1} .
\end{aligned}
$$

Hence every V or W automorphism on the z 's may be expressed in terms of V and W automorphisms on the y 's. We may now proceed to the proof of the theorem, using induction on N. The replacement of B_{N-2} by B_{1} may by induction be assumed to be a product of V 's and W 's on the generators of B_{N-2}. But with B_{N-1} as the set Y, and B_{N-2} as the set Z, we may express the replacement of $B_{\mathrm{N}-2}$ by B_{1} in terms of V 's and W 's on the set B_{N-1}. The replacement of B_{N-1} by B_{N-2} is a V or W on B_{N-1}. Hence the replacement of B_{N-1} by B_{1} is a product of V 's and W 's on B_{N-1}, and these are also V 's and W 's on X since B_{N-1} is merely a permutation of X. This proves the theorem.

If A is a set with the Nielsen property, with respect to the free generators X of F_{X}, then A in various ways may be regarded as the "shortest" set of generators for $[A]$.

Theorem 7.3.5. If A has the Nielsen property with respect to X and if

$$
f=a_{1} a_{2} \cdots a_{t}, \quad a_{i} \in A \cup A^{-1}, \quad a_{i} a_{i+1} \neq 1
$$

then

$$
L_{X}(f) \geq \frac{1}{2} L_{X}\left(a_{1}\right)+t-2+\frac{1}{2} L_{X}\left(a_{t}\right)
$$

and

$$
L_{X}(f) \geq L_{X}\left(a_{i} \cdots a_{j}\right), \quad 1 \leq i \leq j \leq t
$$

Moreover, if X is finite and the elements of A are listed in order of increasing length,
and if

$$
\begin{aligned}
& \alpha_{1}, \alpha_{2} \cdots \alpha_{r} \cdots \\
& \beta_{1}, \beta_{2} \cdots \beta_{i} \cdots
\end{aligned}
$$

is any other set of free generators for A, also listed in order of increasing length, then

$$
L_{X}\left(\beta_{n}\right) \geq L_{X}\left(\alpha_{n}\right), n=1,2, \cdots
$$

Proof: $\operatorname{In} f=a_{1} a_{2} \cdots a_{t}$ each a_{i} has a central factor which is not canceled in the reduced form for f. Hence, in the reduced form for f, at least the first half of a_{1} the central factors of $a_{2} \cdots a_{t-1}$, and the last half of a_{t} remain, yielding $L_{X}(f) \geq \frac{1}{2} L_{X}\left(a_{1}\right)+t-2+\frac{1}{2} L_{X}\left(a_{t}\right)$. In the reduced form of a_{1} $\cdots a_{t-1} a_{t}$ the cancellation between the reduced form of $a_{1} \cdots a_{t-1}$ and a_{t} involves k terms in a_{t-1} and k terms in a_{t}, where $k \leq \frac{1}{2} L_{X}\left(a_{t-1}\right), k \leq$ $L_{X}\left(a_{t}\right)$, since neither central factor is canceled. Thus $L_{X}(f)=L_{X}\left(a_{1} \cdots a_{t-1}\right)+$ $L_{X}\left(a_{t}\right)-2 k$. But $2 k \leq L_{X}\left(a_{t}\right)$, whence $L_{X}\left(a_{1} \cdots a_{t-1}\right)+L_{X}\left(a_{t} \cdots a_{t-1}\right)$. Similarly, $L_{X}\left(a_{1} \cdots a_{t}\right) \geq L_{X}\left(a_{i} \cdots a_{j}\right)$. By repeating this argument, dropping an a at one end or the other, we have $L_{X}\left(a_{1} \cdots a_{t}\right) \geq L_{X}\left(a_{i} \cdots a_{j}\right)$.

If X is finite, there are only a finite number of elements of any given length, and therefore a listing of A in order of increasing length will exhaust all the set. This is given as $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{i}, \cdots$. For a second set of generators this list is $\beta_{1}, \beta_{2}, \cdots, \beta_{i}, \cdots$ Let $\beta_{1}(\alpha), \cdots, \beta_{n}(\alpha)$ be the expressions for the first (n) β 's in terms of the free generators A, and let α_{r} be the last α occurring in these expressions. We assert that $r \geq n$. Let us deny the assertion and assume $r<n$. Then modulo the commutator group K of $[A]$, we have

$$
\begin{array}{cccc}
\beta_{1} \equiv \alpha_{1} e_{11} & \cdots & \alpha_{r} e_{1 r} & (\bmod K) \\
\cdot & \cdot & \cdot & \cdot \\
\beta_{n} \equiv & \cdot \alpha_{1}{ }_{1} e_{n 1} & \cdots & \alpha_{r} e_{n r} \\
e_{n} & (\bmod K) & \cdot
\end{array}
$$

With $r<n$ there surely exist* integers u_{1}, \cdots, u_{n}, not all zero, such that

$$
\begin{aligned}
& e_{11} u_{1}+\cdots+e_{n 1} u_{n}=0 \\
& \cdot \cdot \\
& e_{1 r} u_{1}+\cdots+e_{n r} u_{n}=0
\end{aligned}
$$

But then $\beta_{1}{ }^{u_{1}} \cdots \beta_{n}{ }^{u_{n}} \in K$ with $u_{1} \cdots u_{n}$ not all zero, contrary to the assertion that the β 's are free generators of $[A]$. Hence $r \geq n$. Let α_{r} actually occur in for some $j \leq n$. Then, by the first part of the theorem, $L_{X}\left(\beta_{j}\right) \geq L_{X}\left(\alpha_{r}\right)$. But $L_{X}\left(\beta_{n}\right) \geq L_{X}\left(\beta_{j}\right)$ and $L_{X}\left(\alpha_{r}\right) \geq L_{X}\left(\alpha_{n}\right)$, since $r \geq n$, and so, $L_{X}\left(\beta_{n}\right) \geq L_{x}\left(\alpha_{n}\right)$.

[^1]
EXERCISES

1. Let F be the free group generated by x and y. Show that a fully invariant subgroup of F containing $x^{2} y x y^{-1}$ is either F itself or is of index 9 in F.
2. Let F be the free group with two generators. Find all its subgroups of index 3.
3. Let F be the free group generated by three elements a, b, c. Find a set of free generators of the subgroup of index 8 generated by the squares of all elements of F.
4. Let $A_{1}, A_{2}, \cdots, A_{m}$ be elements of a free group given in reduced form, no one of them the identity, such that $A_{1} A_{2}, \cdots, A_{m}=1$. Show that for some i, A_{i} is completely canceled in the product $A_{\mathrm{i}-1} A_{i} A_{i+1}$.
5. Given a reduced word $g=a_{1} a_{2} \cdots a_{t} \neq 1$ in a free group F. Show that F has a subgroup H of index $t+1$, such that $g \notin H$. (Hint: Take coset representatives of H to be $1, a_{1}, a_{1} a_{2}, \cdots, a_{1} a_{2}$ $\cdots a_{t}$.)
6. Show that if $g=g\left(x_{1}, \cdots, x_{r}\right)$ is a word in generators x_{1}, \cdots, x_{r} which is not the identity in the free group generated by x_{1}, \cdots, x_{r} as free generators, then there is a finite group G generated by elements x_{1}, \cdots, x_{r} in which g is not the identity. (Use Ex. 5 of this chapter and Ex. 1 of Chap. 5.)
${ }_{\sim}^{*}$ See Hall and Rado [1]. For further results see M. Hall [4, 5].

8. LATTICES AND COMPOSITION SERIES

8.1. Partially Ordered Sets.

Definition: A partially ordered set is a system S of elements in which a relation $a \supseteq b$ (read " a contains b ") is defined for some pairs of elements of S such that

P1. $a \supseteq a$.
P2. If $a \supseteq b$ and $b \supseteq c$, then $a \supseteq c$.
P3. If $a \supseteq b$ and $b \supseteq a$, then $a=b$.
Definition: An upper bound of a subset T of a partially ordered S is an element x of S such that $x \supseteq t$ for every t of T. Similarly, a lower bound of a subset T is a y such that $t \supseteq y$ for every t of T.

Definition: A least upper bound (l.u.b.) of a subset T of S is an element x such that

1) x is an upper bound of T.
2) If z is any upper bound of T, then $z \supseteq x$.

Similarly, a greatest lower bound (g.l.b.) of a subset T is a y such that
a) y is a lower bound of T.
b) If z is any lower bound of T, then $y \supseteq z$.

In general a subset T need not possess either a least upper bound or a greatest lower bound. But if T does have a least upper bound x, then this is unique, for by the definition, two least upper bounds must contain each other and by P_{3} they must be equal. The same applies to greatest lower bounds.

If a partially ordered set S also satisfies:
P4. For any pair a, b, either $a \supseteq b$ or $b \supseteq a$.
We say that S is a simply ordered set or a chain.

We write $b \subseteq a$ as meaning $a \supseteq b$. We also write $a \subset b$ if $a \supseteq b$ and $a \neq b$. Similarly, $b \subset a$ means $a \supset b$. A further useful notation is $a>b$ (read "a covers b"), which means $a \supset b$ and $a \supseteq x \supseteq b$ implies $x=a$ or $x=b$. Also b $<a$ means $a>b$.

Example: Let S be the set of elements a, b, c, d, e, f, where the inclusion relation is given by the diagram, $x \supseteq y$ if x is above y and connected to it, or if $x=y$. Here the subset consisting of c and d has no upper bound and has two lower bounds but no greatest lower bound.

8.2. Lattices.

Definition: A lattice is a partially ordered set any two of whose elements a, b have a l.u.b. or union $a \cup b$ and a g.I.b. or intersection $a \cap b$.

Fig. 3. A partially ordered set.
Since each of $a \cup b$ and $a \cap b$ is unique, union and intersection are welldefined binary operations in a lattice.

Theorem 8.2.1. In a lattice the following laws hold:
L1. Idempotent laws. $x \cap x=x$ and $x \cup x=x$.
L2. Commutative laws. $x \cap y=y \cap x$ and $x \cup y=y \cup x$.
L3. Associative laws. $x \cap(y \cap z)=(x \cap y) \cap z$ and $x \cup(y \cup z)=(x \cup y)$ U z.

L4. Absorption laws. $x \cap(x \cup y)=x$ and $x \cup(x \cap y)=x$.

Proof: $L 1, L 2$, and $L 4$ are immediate consequences of the definition of 1.u.b. and g.l.b. For $L 3$ put $y \cap z=u$ and $x \cap u=w$. Here w is a lower bound of x and u, and hence of x, y, and z. But any lower bound of x, y, and z is contained in u, and so in $x \cap u=w$. Thus w is the g.l.b. of x, y, and z. But, similarly, $(x \cap y) \cap z$ is the g.l.b. of x, y, and z, whence $x \cap(y \cap z)=(x \cap y)$ $\cap z$. In like manner each of $x \cup(y \cup z)$ and $(x \cup y) \cup z$ is the l.u.b. of x, y, and z.

Theorem 8.2.2. The laws L1,-2,-3,-4 completely characterize lattices.
Proof: In any system satisfying $L 1,-2,-3,-4, x \cap y=y$ if, and only if, $x \cup y$ $=x$. If we define $x \supseteq y$ to mean $x \cap y=y$ in such a system, then the system is a partially ordered set with respect to this relation. Thus $a \cap a=a$ implies $P 1$. If $a \cap b=b$ and $b \cap c=c$, then $a \cap c=a \cap(b \cap c)=(a \cap b) \cap c=b \cap c=c$, which proves $P 2$. If $a \cap b=b$ and $b \cap a=a$, since $a \cap b=b \cap a$, we have $P 3$. Thus, under this definition of inclusion the system is a partially ordered set. In addition $a \cap(a \cap b)=(a \cap a) \cap b=a \cap b$ and $b \cap(a \cap b)=a \cap b$, whence $a \cap b$ is a lower bound of a and b. But if $a \supseteq x$ and $b \supseteq x$, then $a \cap x$ $=x, b \cap x=x$, whence $(a \cap b) \cap x=a \cap(b \cap x)=a \cap x=x$, and so $a \cap b$ is the g.l.b. of a and b. Similarly, if $y \supseteq a$ and $y \supseteq b$, then $a \cup y=y$ and $b \cup y=$ y, whence $y=(a \cup b) \cup y$; it follows that not only is $a \cup b$ an upper bound of a and b but it is also the l.u.b.

Certain lattices possess further properties. The following are of some interest for our purposes.

Definition: A lattice L_{1} is said to be isomorphic to a lattice L_{2} if there is a one-to-one correspondence $x_{i} \leftrightarrows y_{i}$ between the elements x_{i} of L_{1} and y_{i} of L_{2} such that $x_{i} \cap x_{j} \leftrightarrows y_{i} \cap y_{j}$ and $x_{i} \cup x_{j} \leftrightarrows y_{i} \cup y_{r}$

Definition: A lattice L is said to be complete if every subset of L possesses a g.l.b. and a l.u.b.

If the set of all elements of L possesses a l.u.b., this is called the all element; if a g.l.b., this is called the zero element.

Definition: A lattice L is said to be distributive if it satisfies the law:

$$
D_{1} \cdot a \cap(b \cup c)=(a \cap b) \cup(a \cap c)
$$

Definition: A lattice L is said to be modular if it satisfies the law:

$$
(M) \text { If } a \supseteq b \text {, then } a \cap(b \cup c)=b \cup(a \cap c)
$$

A lattice, or more generally a partially ordered set, is said to satisfy the minimal condition if any chain $a_{1} \supset a_{2} \supset a_{3} \supset \cdots$ is necessarily finite, and the maximal condition if any chain $a_{1} \subset a_{2} \subset a_{3} \subset \cdots$ is necessarily finite.

DEFInITION: In a lattice L, a finite chain $x=x_{0} \subseteq x_{1} \subseteq \cdots \subseteq x_{d}=y$ is maximal if x_{i} covers x_{i+1} for $i=0,1, \cdots, d-1$; that is, $x=x_{0}>x_{1}>\cdots>$ $x_{d}=y$. The chain is said to have length d.

Definition: An element x of a lattice L has finite dimension d [written $d(x)$] if L has a zero element 0 , providing that every chain from x to 0 is finite and that d is the length of the longest maximal chain from x to 0 .

8.3. Modular and Semi-modular Lattices.

In any lattice the set of x 's such that $a \supseteq x \supseteq b$ form a sublattice, which we call the quotient a / b. Two quotients that may be put in the forms $a \cup b / b$ and $a / a \cap b$ are said to be perspective to each other, and if a_{i} / b_{i} is perspective to a_{i+1} / b_{i+1} for $i=1, \cdots, n-1$, we say that a_{1} / b_{1} is projective to a_{n} / b_{n}.

Theorem 8.3.1. In a modular lattice perspective quotients are isomorphic.

Fig. 4. Perspective quotients.
Proof: Given the quotients $a \cup b / b$ and $a / a \cap b$ in a modular lattice. For any x in $a / a \cap b$ define

$$
y(x)=x \cup b
$$

For any y in $a \cup b / b$ define

$$
x(y)=y \cap a .
$$

The first mapping takes elements of $a / a \cap b$ into elements of $a \cup b / b$, and the second takes elements of $a \cup b / b$ into elements of $a / a \cap b$. For x in $a / a \cap b$, $x[y(x)]=(x \cup b) \cap a$. Since $a \supseteq x$, we may apply the modular law and $a \cap(x$ $\cup b)=x \cup(a \cap b)=x$, since $x \supseteq a \cap b$. Hence $x[y(x)]=x$. Similarly for y in $a \cup b / b$, by application of the modular law, $y[x(y)]=y$. Thus $x \rightarrow y(x)$ and y $\rightarrow x(y)$ yield a one-to-one correspondence between the two quotients. In addition this correspondence preserves the lattice operations. Thus for x_{1}, x_{2} in $a / a \cap b, y\left(x_{1} \cup x_{2}\right)=\left(x_{1} \cup x_{2}\right) \cup b=\left(x_{1} \cup b\right) \cup\left(x_{2} \cup b\right)=y\left(x_{1}\right) \cup y\left(x_{2}\right)$. Also $x_{1}=x\left(y_{1}\right), x_{2}=x\left(y_{2}\right)$, and $x_{1} \cap x_{2}=x\left(y_{1}\right) \cap x\left(y_{2}\right)=\left(y_{1} \cap a\right) \cap\left(y_{2} \cap a\right)=$ $y_{1} \cap y_{2} \cap a=x\left(y_{1} \cap y_{2}\right)$. Here $y\left(x_{1} \cap x_{2}\right)=y\left[x\left(y_{1} \cap y_{2}\right)\right]=y_{1} \cap y_{2}=y\left(x_{1}\right) \cap$ $y\left(x_{2}\right)$; therefore both operations are preserved by the mapping $x \rightarrow y(x)$. From the fact that the correspondence is one to one, it therefore follows that the operations are also preserved by $y \rightarrow x(y)$. A similar proof would show that y $\rightarrow x(y)$ preserves both operations.

Corollary 8.3.1. In a modular lattice projective quotients are isomorphic.

Theorem 8.3.2. In a modular lattice if x is an element with finite dimension $d(x)$ then every maximal chain from x to zero has the same length.

Proof: The proof will be by induction on the dimension of x. If $d(x)=1$, then $x>0$ is the only chain from x to 0 . Let $x=x_{0}>x_{1}>\cdots>x_{d}=0$ be one maximal chain from x to 0 , and let $x=y_{0}>y_{1} \cdots>y_{s}=0$ be another. If $x_{1}=$ y_{1} then by induction the maximal chains from x_{1} and y_{1} have the same length d
-1 , whence $s-1=d-1$ and $s=d$. If $x_{1} \neq y_{1}$, then write $z_{2}=x_{1} \cap y_{1}$. Here the quotients x / x_{1} and y_{1} / z_{2} are perspective and also x / y_{1} and x_{1} / z_{2}. Both x / x_{1} and x / y_{1} contain no intermediate elements, and so $y_{1}>z_{2}$ and $x_{1}>z_{2}$. Since all maximal chains from x_{1} to 0 are of length $d-1$, all maximal chains from z_{2} to 0 are of length $d-2$. Hence, from y_{1} to z_{2} to 0 is of length $d-1$, and so by induction, the chain $y_{1}>y_{2} \cdots>0$. Hence $x=y_{0}>y_{2}>\cdots>y_{s}=0$ is also of length $d=s$.

As a consequence of this theorem we have the Jordan-Dedekind chain condition holding in modular lattices.

Fig. 5. Jordan-Dedekind condition.
Jordan-Dedekind Chain Condition: All finite maximal chains between two elements have the same length.

If $a \supset b$ we may take b as the zero element in the quotient lattice a / b and apply the theorem.

In a modular lattice the dimension satisfies an important relation.
Theorem 8.3.3. In a lattice whose elements are of finite dimension, the law

$$
d(x)+d(y)=d(x \cup y)+d(x \cap y)
$$

holds if, and only if, the lattice is modular.

Proof: In a modular lattice the quotients $x \cup y / x$ and $y / x \cap y$ are isomorphic. The length of a maximal finite chain in each of these is respectively $d(x \cup y)-d(x)$ and $d(y)-d(x \cap y)$. From the isomorphism these two maximal lengths are equal and we have

$$
\begin{equation*}
d(x)+d(y)=d(x \cup y)+d(x \cap y) \tag{M}
\end{equation*}
$$

Conversely, suppose the law (M) holds in a lattice. Suppose $A \supseteq B$; consider the two expressions $A \cap(B \cup C)$ and $B \cup(A \cap C)$. Here

$$
\begin{aligned}
B & \subseteq A \\
B & \subseteq B \cup C, \\
B & \subseteq A \cap(B \cup C), \\
A \cap C & \subseteq A \\
A \cap C & \subseteq C \subseteq B \cup C, \\
A \cap C & \subseteq A \cap(B \cup C), \\
B \cup(A \cap C) & \subseteq A \cap(B \cup C)
\end{aligned}
$$

Hence these two expressions will be equal if their dimensions are equal. Using (M)

$$
\begin{aligned}
d[B \cup(A \cap C)] & =d(B)+d(A \cap C)-d(B \cap A \cap C) \\
& =d(B)+d(A \cap C)-d(B \cap C) \\
& =d(B \cup C)-d(C)+d(A \cap C) \\
& =d(B \cup C)+d(A)-d(A \cup C) \\
& =d(A)+d(B \cup C)-d(A \cup B \cup C) \\
& =d[A \cap(B \cup C)] .
\end{aligned}
$$

Hence $A \cap(B \cup C)=B \cup(A \cap C)$ and the modular law holds.
In terms of the covering relation $A>B$, we define two properties of semimodularity which may hold in a lattice.

Definitions. Lower semi-modularity: A lattice is lower semi-modular if whenever $A>B$ and $A>C, B \neq C$, then $B>B \cap C$ and $C>B \cap C$.

Upper semi-modularity: A lattice is upper semi-modular if whenever $A<$ B and $A<C, B \neq C$, then $B<B \cup C$ and $C<B \cup C$.

Clearly, the two kinds of semi-modularity are dual to each other, and by Theorem 8.3.1, are both consequences of modularity. We shall show that in a finite dimensional lattice, both kinds of semimodularity taken together imply modularity.

Theorem 8.3.4. In a semi-modular lattice L, if $A \supseteq B$, and if there is a finite maximal chain between A and B, then all finite maximal chains between A and B are of the same length.

Proof: The proof is essentially the same as that of Theorem 8.3.2. Suppose that L is lower semi-modular. If there is a maximal chain of length one from A to B, then $A>B$, and there is no other chain from A to B. We proceed by induction on the length of a maximal chain from A to B. Suppose that

$$
A=A_{0}>A_{1}>A_{2}>\cdots>A_{r}=B
$$

is a maximal chain of length r from A to B, the theorem being true for chain lengths less than r. Now let

$$
A=U_{0}>U_{1}>U_{2}>\cdots>U_{s}=B
$$

be a second maximal chain from A to B. Then, if $U_{1}=A_{1}$, maximal chains from $A_{1}=U_{1}$ to B must by induction be of length $r-1$, and the theorem follows. If, however, $U_{1} \neq A_{1}$ then by lower semi-modularity,

$$
A_{1}>U_{1} \cap A_{1}, \quad U_{1}>U_{1} \cap A_{1}
$$

Writing $U_{1} \cap A_{1}=V_{2}$, we shall have chains

$$
\begin{aligned}
& A=A_{0}>A_{1}>A_{2}>\cdots>A_{r}=B \\
& A=A_{0}>A_{1}>V_{2}>\cdots>V_{m}=B \\
& A=U_{0}>U_{1}>V_{2}>\cdots>V_{m}=B \\
& A=U_{0}>U_{1}>U_{2}>\cdots>U_{s}=B
\end{aligned}
$$

By induction on the chains from A_{1} to B we have $m=r$, and the first two chains have the same length. The second and third have the same length m, and
by induction on the chains from U_{1} to B, we have $m=s$. Hence all four chains have the same length, and the theorem is proved for lower semi-modular lattices. A dual argument proves the same result for upper semi-modular lattices.

From this theorem, we see that in a semi-modular lattice, the dimension of an element $d(A)$ is the length of all maximal chains between A and the null element 0 . In finite dimensional semi-modular lattices, we have inequalities relating the dimension functions of elements.

Theorem 8.3.5. Let L be a finite dimensional lattice. If L is upper semimodular, then, (1) $d(X \cup Y)+d(X \cap Y) \leq d(X)+d(Y)$. If L is lower semimodular, then $d(X \cup Y)+d(X \cap Y) \geqq d(X)+d(Y)$. Conversely, implies upper semi-modularity, but (2) does not imply lower semimodularity.

Proof: By Theorem 8.3.4, if L is semi-modular and if $R \supset S$, then $d(R)-$ $d(S)$ is the length of a maximal chain between R and S, since all maximal chains from the zero element to R have the same length; therefore the dimension of R is the length of a maximal chain from R to zero including S. We shall use this fact in our proof.

Suppose L is upper semi-modular. Let us write $A \geqq B$ to mean $A=B$ or $A>B$; read this " A at most covers B." Then, if

$$
\begin{aligned}
& X \cap Y=U_{0}<U_{1}<U_{2}<\cdots<U_{m}=X \\
& X \cap Y=V_{0}<V_{1}<V_{2}<\cdots<V_{n}=Y
\end{aligned}
$$

we assert that $U_{i} \cup V_{i} \geqq U_{i-1} \cup V_{j} \quad$ and
$U_{i} \cup V_{j} \geqq U_{i} \cup V_{j-1}$ for all $i=1, \cdots, m$ and $j=1, \cdots, n$. This we prove by induction on $i+j$, the smallest significant value for $i+j$ being 2 , and for this value the upper semi-modularity asserts that
$U_{1} \cup V_{1} \geqq U_{1}=U_{1} \cup V_{0}$ and $U_{1} \cup V_{1} \geqq V_{1}=U_{0} \cup V_{1}$. Then $U_{i} \cup V_{i}=\left(U_{i} \cup V_{j-1}\right) \cup\left(U_{i-1} \cup V_{j}\right)$,
and by induction $U_{i} \cup V_{j-1} \geqq U_{i-1} \cup V_{j-1}$ and $U_{i-1} \cup V_{j} \geqq U_{i-1} \cup V_{j-1}$, whence by upper semi-modularity,
$U_{i} \cup V_{j} \geqq U_{i} \cup V_{j-1}$ and $U_{i} \cup V_{j} \geqq U_{i-1} \cup V_{j}$, as we wished to prove. From this for $j=n$, since $V_{n}=Y$,

$$
Y \leq U_{1} \cup Y \leq U_{2} \cup Y \leq \cdots \leq U_{m} \cup Y=X \cup Y .
$$

Thus the length of a maximal chain from Y to $X \cup Y$ is at most m. But as we have stated before, this means

$$
d(X \cup Y)-d(Y) \leq m=d(X)-d(X \cap Y)
$$

whence the inequality (1) holds in an upper semi-modular lattice. By a dual argument, the inequality (2) holds in a lower semi-modular lattice. This proves the direct part of the theorem.

Lemma 8.3.1. If inequality (1) holds in L, then $U>V$ implies $d(U)=$ $d(V)+1$.

Proof: Let $0=U_{0}<U_{1}<U_{2}<\cdots<U_{t-1}<U_{t}=U$ be a longest chain from 0 to U. There cannot be a chain longer than i from 0 to U_{i} because if there were we could construct a longer chain from 0 to U. Hence $d(U)=t$ and $d\left(U_{i}\right)=i$, for $i=0, \cdot \cdot \cdot t-1$. Also, since $U>V$, we have $d(U) \geqq d(V)+1$, and so $t-1 \geqq d(V)$. Let us select U_{j} so that $U_{i} \subseteq V, U_{j+1} \nsubseteq V$. There must be such a j in the range $0,1, \cdots, t-1$. Then $U_{j+1}=U, U_{j+1} \cup V=U_{j}$. By inequality (1), $d\left(U_{j+1} \cup V\right)+d\left(U_{j+1} \cap V\right) \leq$ $d(V)+d\left(U_{j+1}\right)$, whence $t+j \leq d(V)+j \leq d(V)+j+1$ or $t-1 \leq d(V)$, and so, $d(V)=t-1, d(U)=t=d(V)+1$.

Now using the lemma and inequality (1), suppose $A<B, A<C$ and $B \neq C$. Then $A=B \cap C, d(B)=d(A)+1, d(C)=d(A)+1$. By inequality (1) $d(B \cup C)$ $+d(B \cap C) \leq d(B)+d(C)$, which gives $d(B \cup C) \leq d(A)+2$. But $B \cup C \neq B$, C, and so $d(B \cup C)=d(B)+1=d(C)+1$, giving $B \cup C>B, B \cup C>C$, the conclusion that L is upper semi-modular. Because dimension $(d X)$ is defined as the length of the longest chain from 0 to X and is not of a dual nature, the inequality (2) does not imply that L is lower semi-modular. The five-element lattice with elements $0, T, A_{1}, B_{1} \subset B_{2}$, such that $A_{1} \cap B_{1}=A_{1} \cap B_{2}=0, A_{1} \cap$ $B_{1}=A_{1} \cup B_{2}=T$ satisfies inequality (2) but is not lower semi-modular.

Theorem 8.3.6. A finite dimensional lattice is modular if, and only if, it is both upper and lower semi-modular.

Proof: We have already observed that modularity implies both kinds of semi-modularity. But if both kinds hold, then by Theorem 8.3 .5 we have $d(X$ $\cup Y)+d(X \cap Y)=d(X)+d(Y)$, and by Theorem 8.3.3 this implies modularity.

TheOrem 8.3.7. The subgroups of a finite p-group form a lower semimodular lattice.

Proof: Union and intersection of subgroups as defined in $\S \underline{1.4}$ do indeed satisfy the axioms for a lattice, the subgroups of a group being partially ordered by inclusion. If $A>B, A>C$, where A, B, C are subgroups of a finite p-group, then B and C are maximal subgroups of A and by Theorem 4.3.2 are of index p. By Theorem 1.5.5 on the inequality of indices $[B: B \cap C]$ and $[C: B \cap C]$ are, at most, p, and so either 1 or p. Thus, if $B \neq C$, we have $B>B$ $\cap C$ and $C>B \cap C$.

8.4. Principal Series and Composition Series.

We shall now combine the results of the preceding sections and apply them to a study of the structure of the subgroups of groups. We shall consider a chain of subgroups of a group G, each a normal subgroup of the preceding group.

$$
\begin{equation*}
G=A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \cdots \supseteq A_{n} \tag{8.4.1}
\end{equation*}
$$

where each A_{i} is a normal subgroup of A_{i-1}, for which we write

$$
\begin{equation*}
A_{i} \triangleleft A_{i-1}, \quad i=1 \cdots n \tag{8.4.2}
\end{equation*}
$$

The groups A_{i} are called subinvariant groups of G.
There will be associated with this chain the sequence of factor groups

$$
\begin{equation*}
A_{i-1} / A_{i}, \quad i=1 \cdots n \tag{8.4.3}
\end{equation*}
$$

If every A_{i} is a normal subgroup of G, we shall call (8.4.1) a normal chain or normal series. We may also use the term invariant series. If $A_{i} \triangleleft A_{i-1}, i$ $=1 \cdots n$, it does not in general follow that $A_{i} \triangleleft G$, and so the requirements for a normal series are stronger than (8.4.2). If we assume only (8.4.2), we shall call the series a subinvariant series* A normal series in which every A_{i} is a maximal normal subgroup contained in A_{i-1} will be called a principal series or chief series. A subinvariant series in which each A_{i} is a maximal normal subgroup of i will be called a composition series. In lattice terminology, if the inclusions in (8.4.1) are coverings, a normal series is called a principal series; a subinvariant series, a composition series. We may in addition require that the groups A_{i} be admissible subgroups with respect to a set of operators Ω.

We shall be able to interpret general theorems on modular lattices as theorems on subgroups, or as theorems on congruence relations on loops, or more generally, as theorems on congruence relations on any algebraic system whose congruence relations permute. The main theorem which will enable us to get the strongest result on groups is Theorem 2.4.1. The lattice theorems depend on the modular law, and this arises in different ways in the algebras. Thus by altering the hypotheses on the algebras, different theorems come from the same theorem on lattices. An auxiliary theorem on modularity in groups is needed. We shall say that subgroups A and B of a group G are permutable if the complexes $A B$ and $B A$ are equal. In this case it is readily verified that $A \cup$ $B=A B=B A$, and the complex $A B=B A$ is in fact a subgroup. From theorem 2.3.3, subgroups A and B are permutable if either of them is a normal subgroup, and clearly, normality in $A \cup B$ is all that is required.

Theorem 8.4.1. Let A, B, C be subgroups of a group G such that $A \supseteq B$. Then a sufficient condition for

$$
A \cap(B \cup C)=B \cup(A \cap C)
$$

to hold is that B and C be permutable.
Proof: As in the proof of Theorem 8.3.3 we note that always, if $A \supseteq B$,

$$
B \cup(A \cap C) \subseteq A \cap(B \cup C)
$$

It is necessary only to prove the opposite inclusion. An element of $\mathrm{A} \cap(B \cup$ C) is of the form $a=b c, a \in A, b \in B, c \in C$, being simultaneously an element of A and also of $B \cup C$, and since B and C permute, the elements of B $\cup C$ are of the form $b c$. Here $c=b^{-1} a \in A$ since $B \subseteq A$. Hence this $c \in A \cap C$, and therefore $b c \in B \cup(A \bigcap C)$. Thus $A \cap(B \cup C) \subseteq B$ $\cup(A \cap C)$, and the theorem is proved. This also holds for subloops of inverse loops where the permutability of B and C means $B \cup C=B C$. The conclusion $b^{-1} a=b^{-1}(b c)=c$ requires only the inverse law.

Theorem 8.4.2. Refinement Theorem._ Let $U=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{n}=V$ and $U=B_{0} \supseteq B_{1} \supseteq \cdots \supseteq B_{m}=V$ be two finite chains from U to V in a modular lattice. Then it is possible to refine both chains by inserting additional elements $A_{i-1}=A_{i, 0} \supseteq A_{i, 1} \cdots \supseteq A_{i, m}=A_{i}, i=1, \cdots, n$, and B_{j-1} $=B_{j, 0} \supseteq B_{j, 1} \supseteq \cdots \supseteq B_{j, n}=B_{i}, j=1, \cdots, m$ in such that the quotients $A_{i, j-}$ ${ }_{1} / A_{i, j}$ and $B_{j, i-1} / B_{j, i}$ are projective.

Proof: Put $A_{i, j}=A_{i} \cup\left(A_{i-1} \cap B_{j}\right), B_{j, i}=B_{j} \cup\left(B_{j-1} \cap A_{i}\right) i=1, \cdots, n, j=$ $1, \cdots, m$. Here $A_{i, j-1} / A_{i, j}$ is perspective to

$$
\begin{equation*}
A_{i-1} \cap B_{j-1} /\left(A_{i-1} \cap B_{j}\right) \cup\left(A_{i} \cap B_{j-1}\right) \tag{8.4.4}
\end{equation*}
$$

since from $B_{j} \subseteq B_{j-1}$ we have

$$
\begin{equation*}
\left(A_{i-1} \cap B_{i-1}\right) \cup A_{i} \cup\left(A_{i-1} \cap B_{j}\right)=A_{i} \cup\left(A_{i-1} \cap B_{j-1}\right) \tag{8.4.5}
\end{equation*}
$$

Also

$$
\begin{align*}
& \left(A_{i-1} \cap B_{j-1}\right) \cap\left[A_{i} \cup\left(A_{i-1} \cap B_{j}\right)\right] \tag{8.4.6}\\
& =\left(A_{i-1} \cap B_{j}\right) \cup\left(A_{i-1} \cap B_{j-1} \cap A_{i}\right) \\
& =\left(A_{i-1} \cap B_{j}\right) \cup\left(A_{i} \cap B_{j-1}\right),
\end{align*}
$$

using modularity in (8.4.6). Similarly, $B_{j, i-1} / B_{j, i}$ is perspective to the quotient in (8.4.4) and our theorem is proved.

This theorem and its proof also holds for subinvariant series in a group G where, if we take G to be a group with operators Ω, the subgroups are all
admissible subgroups. This naturally includes groups without operators if we take Ω to be trivially the identical operator.

Theorem 8.4.3 (Refinement Theorem for Groups). Let G be a group with operators Ω, and let $G=A_{0} \supseteq A_{1} \supseteq \cdots \supseteq A_{n}=H$ and $G=B_{0} \supseteq B_{1} \supseteq$. $\cdot \supseteq B_{m}=H$ be two subinvariant series from G to H of admissible subgroups. Then it is possible to refine both series by inserting additional admissible subinvariant groups

$$
A_{i-1}=A_{i, 0} \supseteq A_{i, 1} \supseteq \cdots \supseteq A_{i, m}=A_{i}, \quad i=1, \cdots, n
$$

and

$$
B_{i-1}=B_{j, 0} \supseteq B_{i, 1} \supseteq \cdots \supseteq B_{i, n}=B_{i}, \quad j=1, \cdots, m
$$

in such a way that the quotient groups

$$
A_{i, j-1} / A_{i, j} \quad \text { and } \quad B_{j, i-1} / B_{j, i}
$$

are operator isomorphic.
Proof: By Theorem 2.4.1 perspective (and hence projective) quotient groups of admissible subgroups are operator isomorphic. Hence, to show that the proof of Theorem 8.4.2 gives this theorem, we must show that in the quotients X / Y occurring in the proof that $Y \triangleleft X$ and that the use of the modular law in (8.4.6) is valid. As the union and intersection of admissible subgroups are again admissible, all subgroups used in the proof are admissible. Now $A_{i, j}=A_{i} \cup\left(A_{i-1} \cap B_{j}\right)$ is a normal subgroup of $A_{i, j-1}=A_{i} \cup$ ($A_{i-1} \cap B_{j-1}$), since both A_{i} and $A_{i-1} \cap B_{j}$ are transformed into themselves by $A_{i-1} \cap B_{j-1}$. Similarly, $B_{j, i} \triangleleft B_{j, i-1}$. Both $A_{i-1} \cap B_{j}$ and $A_{i} \cap B_{j-1}$, and so also their union, are normal subgroups of $A_{i-1} \cap B_{j-1}$, whence (8.4.4). is a quotient group. In (8.4.6), since A_{i} is normal in A_{i-1}, A_{i} permutes with any subgroup of A_{i-1} and in particular with $A_{i-1} \cap B_{j}$. Hence by Theorem 8.4.1 the modular law may be applied as was done in (8.4.6). Thus our theorem is proved.

In a principal series or composition series (with or without operators), no further refinement is possible, and so as a direct consequence of the
refinement theorem we have the following:
Theorem 8.4.4. Theorem of Jordan-Hölder. If $G=A_{0} \supset A_{1} \supset \cdots$ כ $A_{n}=H$ and $G=B_{0} \supset \cdots \supset B_{m}=H$ are two principal series (or two composition series), with operators Ω, then $m=n$ and the factor groups A_{i-} ${ }_{1} / A_{i}$ are operator isomorphic to the factor groups B_{j-1} / B_{j} in some order.

The fact $m=n$ is of course a consequence of the one-to-one correspondence between the factor groups of the refinement theorem which are not the identity.

In the case of normal series all the subgroups, being normal subgroups, are admissible under all inner automorphisms $x \rightarrow a^{-1} x a$, and we may include all inner automorphisms in the set of operators Ω. An isomorphism preserved under all inner automorphisms is called a central isomorphism. Thus a consequence of the refinement theorem is the following:

THEOREM 8.4.5. In the refinement of normal series, corresponding factor groups are centrally isomorphic.

Now if $x \rightarrow(x) a$ is a central automorphism of a group, then

$$
a^{-1}(x) \alpha a=\left(a^{-1} x a\right) \alpha=(a) \alpha^{-1}(x) \alpha(a) \alpha
$$

whence (a) αa^{-1} permutes with every $(x) \alpha$ and must be an element of the center of the group, say, z. Hence, for a central automorphism, (a) $\alpha=a z$ for every element a of the group and an appropriate z of the center, where z depends on a. Conversely, an automorphism with this form is readily seen to be a central automorphism.

8.5. Direct Decompositions.

Suppose that in a modular lattice we have m elements A_{1}, \cdots, A_{m} such that if we write $\bar{A}_{i}=A_{1} \cup \cdots \cup A_{i-1} \cup A_{i+1} \cdots \cup A_{m}, i=1 \cdots m$, then $A_{i} \cap$ $\overline{A_{i}}=0$, the zero element for $i=1 \cdots m$. We then say that $A=A_{1} \cup \cdots \cup A_{m}$ is the direct union of A_{1}, \cdots, A_{m} and write

$$
\begin{equation*}
A=A_{1} \times A_{2} \times \cdots \times A_{m} \tag{8.5.1}
\end{equation*}
$$

This will arise in groups when A is the direct product of $A_{1} \cdots, A_{m}$.
Theorem 8.5.1 (Theorem of Ore). Let L be any modular lattice of finite dimension. If the all element T of L has two decompositions $T=A_{1} \times \cdots \times$ $A_{m}, T=B_{1} \times \cdots \times B_{n}$, where the A_{i} and B_{j} are not further decomposable as direct unions, then $m=n$ and the A_{i} and B_{j} are projective in pairs.

Proof: We shall show that any given A (say, A_{1}) may be replaced by some Bj projective to it, where $T=A_{1} \times A_{2} \times \cdots \times A_{m}=B_{j} \times A_{2} \times \cdots \times A_{m}$. This is the main part of our proof. Having replaced A_{1} by B_{j}, we proceed to replace A_{2} in the second decomposition by some $B_{k}{ }^{\prime}$ and so on. In the process of replacement we cannot possibly use the same B_{j} twice, since this would be in conflict with the requirement that any factor intersect the union of the remaining ones in zero. We must have enough B 's to replace all the A 's, and clearly, since every $B \subseteq T$, we cannot have any remaining when all A 's have been replaced. Thus $m=n$. We write $\bar{A}_{i}=A_{1} \cup \cdots \cup A_{i-1} \cup A_{i+1} \cup \cdots \cup A_{m}, i=1$, \cdots, m, and $\bar{B}_{j}=B_{1} \cup \cdots \cup B_{i-1} \cup B_{i+1} \cdots \cup B_{n}, j=$ $1, \cdots, n$, and base our proof on induction on the dimension of T, the theorem being trivial for dimension one.

Case 1.

$$
\begin{aligned}
A_{1} \cup \bar{B}_{j} & =\bar{A}_{1} \cup B_{i}=T \text { for some } j . \text { Here } \\
d\left(A_{1}\right) & =d(T)-d\left(\bar{B}_{j}\right)+d\left(A_{1} \cap \bar{B}_{j}\right) \\
& =d\left(B_{j}\right)+d\left(A_{1} \cap \bar{B}_{j}\right) \geq d\left(B_{j}\right)
\end{aligned}
$$

and similarly, $d\left(B_{j}\right) \geq d\left(A_{1}\right)$, giving $d\left(A_{1}\right)=d\left(B_{j}\right)$. Thus $d\left(A_{1} \cap \bar{B}_{j}\right)=d\left(\bar{A}_{1} \cap B_{j}\right)=0, \quad$ and \quad so $T=A_{1} \times \bar{B}_{j}=\bar{A}_{1} \times B_{j}$ and A_{1} and B_{j} are mutually replaceable.

Case 2. Suppose $A_{1} \cup \bar{B}_{j} \subset T$ for some j (say, $j=1$).
Write $D_{h}=A_{1} \cup \bar{B}_{h}, Q_{h}=D_{h} \cap B_{h}, h=1$, • n. If $D_{1}=A_{1} \cup \bar{B}_{1} \supseteq B_{1}$, then $D_{1} \supseteq \bar{B}_{1} \cup B_{1}=T$, contrary to hypothesis. Hence $Q_{1}=D_{1} \cap B_{1} \subset B_{1}$ and $d\left(Q_{1}\right)<d\left(B_{1}\right)$. T is the direct
union of the B 's, and therefore the union of the Q 's will be their direct union, since $Q_{h} \subseteq B_{h}, h=1, \cdots n$.

Define

$$
C=\bigcup_{h=1}^{n} Q_{h} .
$$

Thus both T and C, being direct unions and $Q_{1} \subset B_{1}, d(T)=d\left(B_{1}\right)+\cdots+$ $d\left(B_{n}\right)$,

$$
\begin{equation*}
d(C)=d\left(Q_{1}\right)+\cdots+d\left(Q_{n}\right)<d(T) \tag{8.5ॅ.2}
\end{equation*}
$$

Since C is properly contained in T, we may by induction on dimension assume the theorem true for C.

Let us write $U_{r}=Q_{1} \cup \cdots \cup Q_{r}$. We wish to prove $U_{r}=M_{r} \cap N_{r}$, where $M_{r}=B_{1} \cup \cdots \cup B_{r}, N_{r}=D_{1} \cap \cdots \cap D_{r}$. For $r=1$ this reduces to $U_{1}=B_{1} \cap$ D_{1}, the definition of $U_{1}=Q_{1}$. The proof is by induction. We assume $U_{j}=M_{j} \cap$ N_{j}. Then $\frac{U_{j+1}}{}=U_{j} \cup Q_{i+1}=\left(M_{j} \cap N_{j}\right) \cup\left(B_{j+1} \cap D_{j+1}\right)$. Here $D_{j+1} \supseteq \bar{B}_{j+1} \supseteq M_{j} \supseteq \mathrm{M}_{j}$ 〇 N_{j}. By modularity $U_{j+1}=D_{j+1} \cap$ $\left[\left(M_{j} \cap N_{j}\right) \cup B_{j+1}\right]$. Here $B_{j+1} \subseteq \bar{B}_{h} \subseteq D_{h}, h=1, \cdots, j, h=$ $1, \cdots, j$, whence $B_{j+1} \subseteq N_{j}$. Finally, $U_{j+1}=D_{j+1} \cap\left[N_{j} \cap\left(B_{j+1} \cup M_{j}\right)\right]=N_{j+1}$ $\cap M_{j+1}$, proving the induction. For $r=n, M_{r}=T$, whence

$$
\begin{equation*}
C=Q_{1} \cup \cdots \cup Q_{n}=D_{1} \cap D_{2} \cap \cdots \cap D_{n} \supseteq A_{1} \tag{8.5.3}
\end{equation*}
$$

the last relation holding since $D_{h} \supseteq A_{1}=1, \cdots, n$. Since $C \supseteq A_{1}$ we may apply modularity to find $\left(C \cap \bar{A}_{1}\right) \cap A_{1}=C \cap\left(\overline{A_{1}} \cup \overline{\mathrm{~A}}_{1}\right)=C \cap T=C$. Since, trivially, $C \cap \overline{A_{1}} \cap A_{1}=0$, we have

$$
\begin{equation*}
C=A_{1} \times\left(C \cap \bar{A}_{1}\right)=Q_{1} \times \cdots \times Q_{n} . \tag{8.5.4}
\end{equation*}
$$

Hence, by induction on dimension, the theorem is valid for C, and so A_{1} is replaceable by some indecomposable factor of some Q (say, $E \subseteq Q_{h}$). By replaceability in $C, d(E)=d\left(A_{1}\right)$. Also, since $C=E \times\left(C \cap \overline{A_{1}}\right)$, we have $0=$
$E \cap C \cap \overline{A_{1}}=E \cap \overline{A_{1}}$. Hence, $d\left(E \cup \overline{A_{1}}\right)=d(E)+d\left(\overline{A_{1}}\right)=d(A)+d\left(\overline{A_{1}}\right)=d(T)$, and so $T=\overline{A_{1}} \cup E=E \times \overline{A_{1}}$. Moreover, $E \subseteq Q_{h}=\left(A_{1} \cup \bar{B}_{h}\right) \cap B_{h} \subseteq B_{h}$ and $E \cap\left(\bar{A}_{1} \cap B_{h}\right)=E \cap \bar{A}_{1}=$ 0 . $E \cup\left(\bar{A}_{1} \cap B_{h}\right)=B_{h} \cap\left(E \cup \bar{A}_{1}\right)=B_{h} \cap T=B_{h}$, whence

$$
\begin{equation*}
B_{h}=E \times\left(\bar{A}_{1} \cap B_{h}\right) . \tag{8.5.5}
\end{equation*}
$$

But by assumption B_{h} was indecomposable and $d(E)=d\left(A_{1}\right)>0$. Hence $B_{h}=$ E and $\overline{A_{1}} \cap B_{h}=0$. This yields

$$
\begin{equation*}
T=A_{1} \times \bar{A}_{1}=B_{h} \times \bar{A}_{1} \tag{8.5.6}
\end{equation*}
$$

Also $B_{h}=E \subseteq Q_{h} \subseteq B_{h}$, and so, $B_{h}=Q_{h}=\left(A_{1} \cup \bar{B}_{h}\right) \cap B_{h}$. Thus $\quad B_{h} \subseteq \underline{A}_{1} \cup \bar{B}_{h}, \quad$ and \quad so, $A_{1} \cup \bar{B}_{h} \supseteq B_{h} \cup \bar{B}_{h}=T$. Since $d\left(A_{1}\right)=d\left(B_{h}\right)$, we must also have
$d\left(A_{1} \cap \bar{B}_{h}\right)=d\left(A_{1}\right)+d\left(\bar{B}_{h}\right)-d\left(A_{1} \cup \bar{B}_{h}\right)=d\left(B_{h}\right)+d\left(\bar{B}_{h}\right)-d(T)=0$. Hence

$$
\begin{equation*}
T=A_{1} \times \bar{B}_{h} \tag{8.5.7}
\end{equation*}
$$

and A_{1} and B_{h} are mutually replaceable. Here $h \neq 1$, since $A_{1} \cup \bar{B}_{h}=T$, while $A_{1} \cup \bar{B}_{1} \neq T$.

CASE 3. $A_{1} \cup \bar{B}_{j}=T$ for all j but $\bar{A}_{1} \cup B_{j} \supset T$ for all j, the only possibility not covered by Cases 1 or 2 .

Reversing the roles of the A 's and B 's, we may apply Case 2 and then any specified B (say, B_{n}) is mutually replaceable with some A not A_{1}, which by renumbering we may take as A_{m}. Then

$$
\begin{align*}
T & =A_{1} \times \cdots \times A_{m-1} \times A_{m} \tag{8.5.8}\\
& =B_{1} \times \cdots \times B_{n-1} \times A_{m}=\bar{B}_{n} \times A_{m} .
\end{align*}
$$

Here $z \rightarrow\left(z \cup A_{m}\right) \cap \bar{A}_{m}$ is a projectivity of the quotient $\bar{B}_{n} / 0$ onto $\bar{A}_{m} / 0$ and by the corollary to Theorem 8.3.1, is a lattice isomorphism. Hence, if we put $B_{j}^{*}=\left(B_{j} \cup A_{m}\right) \cap \bar{A}_{m}, j=1, \cdots, n-1$, we find from the isomorphism

$$
\begin{equation*}
\bar{A}_{m}=A_{1} \times \cdots \times A_{m-1}=B_{1}^{*} \times \cdots \times B_{n-1}^{*} \tag{8.5.9}
\end{equation*}
$$

By induction on dimension the theorem is true for $\overline{A_{m}}$, and so, A_{1} is replaceable by some $B_{j}{ }^{*}\left(\right.$ say, $\left.B_{1}{ }^{*}\right)$ in \bar{A}_{m}. Here $B_{1} \cup A_{m}=\left(B_{1} \cup A_{m}\right) \cap\left(\bar{A}_{m} \cup\right.$ $\left.A_{m}\right)=\left[\left(B_{1} \cup A_{m}\right) \cap \bar{A}_{m}\right] \cup A_{m}=B_{1}{ }^{*} \cup A_{m}$. Hence $B_{1} \cup \bar{A}_{1}=\left(B_{1}{ }^{*} \cup A_{2} \cup \cdots\right.$ $\left.\cup A_{m-1}\right) \cup A_{m}=\left(A_{1} \cup A_{2} \cdots \cup A_{m-1}\right) \cup A_{m}=T$, since $B_{1} *$ replaces A_{1} in $\overline{A_{m}}$. But here $A_{1} \cup \bar{B}_{1}=T=B_{1} \cup \bar{A}_{1}$, and therefore Case 1 applies, and A_{1} and B_{1} are mutually replaceable. Note that Case 3 does not actually arise and that in every case for a given A_{1}, there is a B_{j} such that A_{1} and B_{j} are mutually replaceable.

For groups the theorem is:
Theorem 8.5.2 (Theorem of Wedderburn-Remak-Schmidtì). Let G be a group whose normal subgroups form a finite dimensional lattice. Then if G has two representations as direct products of indecomposable subgroups

$$
\begin{aligned}
& G=A_{1} \times \cdots \times A_{m} \\
& G=B_{1} \times \cdots \times B_{n}
\end{aligned}
$$

then $m=n$, any A_{i} is mutually replaceable by some B_{j}, and the A's and B's are pairwise centrally isomorphic. The theorem is valid for G as a group with operators or for the congruence relations on inverse loops.

Proof: Since we have already established that normal subgroups form a modular lattice, we need only observe that the definitions of direct product agree. In $G=A_{i} \times \bar{A}_{i}=B_{j} \times \bar{A}_{i}$ we have both A_{i} and B_{j} perspective to G / \bar{A}_{i} and hence projective. Thus there is a central isomorphism established between A_{i} and B_{j} which becomes a central automorphism of G if we map \bar{A}_{i} into itself. Hence corresponding elements of A_{i} and B_{j} differ by a factor in the center of G.

8.6. Composition Series in Groups.

Suppose $G=A_{0} \supset A_{1} \supset \cdots \supset A_{n}=H$ is a composition series from G to a subgroup H. By definition A_{i+1} is a maximal normal subgroup of A_{i}. Hence A_{i} / A_{i+1} is a simple group, since a normal subgroup of A_{i} / A_{i+1} would correspond to a normal subgroup of A_{i} containing A_{i+1} (Theorem 2.3.4). Hence if A_{i} / A_{i+1} is Abelian it can contain no proper subgroup and must be finite of prime order. There is a relation between chief series and composition series given in the following theorem:

Theorem 8.6.1. Let H be a normal subgroup of G such that there is a composition series from G to H. Then there is a chief series from G to H,

$$
G=B_{0} \supset B_{1} \supset \cdots \supset B_{m}=H
$$

and each factor group B_{i} / B_{i+1} is the direct product of a finite number of isomorphic simple groups. Conversely, if such a series exists with B_{i} / B_{i+1} a direct product of a finite number of isomorphic simple groups, then there is a series of composition from G to H.

Proof: Any normal series from G to H can be refined to a composition series by inserting further terms. Hence any normal series from G to H is necessarily shorter than a composition series and therefore is of finite length. Hence there must be a chief series from G to H,

$$
G=B_{0} \supset B_{1} \supset \cdots \supset B_{m}=H
$$

If $m=1, G / H$ is a simple group and the theorem is true. Let us use induction on m, whence each of $B_{0} / B_{1}, \cdots, B_{m-2} / B_{m-1}$ is the direct product of a finite number of isomorphic simple groups. It remains to be proved that B_{m-1} / B_{m} is the direct product of a finite number of isomorphic simple groups.

Any normal subgroup of B_{m-1} / B_{m} corresponds to a group normal in B_{m-1} containing B_{m}. Hence there exists a minimal normal subgroup K / B_{m} where K $\supset B_{m}$ and K is normal in B_{m-1}. If $K=B_{m-1}$, then B_{m-1} / B_{m} is simple and there is nothing further to prove. Now consider the conjugates K_{j} of K under G. $K_{j} \subseteq$ B_{m-1}, since B_{m-1} is normal in G. Moreover, since transformation by an
element of G induces an automorphism in B_{m-1} every K_{j} is a normal subgroup of B_{m-1}. Also, $\bigcup_{j} K_{j}$ is a normal subgroup of G, since transformation by an element of G merely permutes the K_{j} among themselves. Hence $\bigcup_{j} K_{j}=B_{m-1}$ since there is no normal subgroup of G between B_{m-1} and $B_{m} \quad$ Take $K=K_{1}, \quad K_{2} \nsubseteq K_{1}, \quad K_{3} \nsubseteq K_{1} \cup K_{2}$, and $K_{j} \nsubseteq K_{1} \cup \cdots \cup K_{j-1}$. Each of $U_{j}=K_{1} \cup \cdots \cup K_{j}$ is a normal subgroup of B_{m-1} and contains the preceding U_{j-1}. Since there is a composition series from G to B_{m} including B_{m-1}, there can be only a finite number of U_{j} 's, whence for some finite $j, B_{m-1}=K_{1} \cup \cdots \cup K_{j}$. Now a K_{i} not contained in the union of the remaining K 's must intersect the union of the remaining ones in B_{m}, since every K is a minimal normal subgroup of B_{m-1} containing B_{m}. Hence, deleting the K 's contained in the union of the remainder, $B_{m-1} / B_{m}=K_{1} / B_{m} \cup \cdots \cup K_{s} / B_{m}$, where each K_{i} / B_{m} is a normal subgroup of B_{m-1} / B_{m} intersecting the union of the remainder in the identity. But by Theorem 3.2.2, B_{m-1} / B_{m} is the direct product of $K_{1} / B_{m}, \cdots, K_{s} / B_{m}$. Now if K_{1} / B_{m} had a proper normal subgroup, this would be a normal subgroup of B_{m-} ${ }_{1} / B_{m}$, since it would be normal in K_{1} / B_{m} and surely normalized by the remaining direct factors. But K_{1} / B_{m} was assumed to be a minimal normal subgroup; therefore K_{1} / B_{m} is a simple group and B_{m-1} / B_{m} is the direct product of the s isomorphic simple groups.

For the converse part of the theorem we observe that $B_{m} \subset K \subset U_{2} \subset U_{3}$. $\cdots \subset B_{m-1}$ is part of a composition series since each factor group is simple.

Theorem 8.6.2.* The intersection of two subinvariant subgroups of G is a subinvariant group of G. Both the union and intersection of two subgroups occurring in composition series will occur in a composition series.

Proof: Suppose A and B are two subinvariant groups of G. Then by definition we have two chains:

$$
\begin{aligned}
& A=A_{r} \triangleleft A_{r-1} \triangleleft \cdots \triangleleft A_{1} \triangleleft G, \\
& B=B_{s} \triangleleft B_{s-1} \triangleleft \cdots \triangleleft B_{1} \triangleleft G .
\end{aligned}
$$

Here, in the chain $A=A_{r} \supseteq A_{r} \cap B_{1} \supseteq \cdots A_{r} \cap B_{s}=A \cap B$, each subgroup is either equal to or normal in its predecessor (Theorem 2.4.1). Hence

$$
A \cap B \triangleleft C_{u} \triangleleft C_{u-1} \cdots \triangleleft C_{1} \triangleleft A_{r} \triangleleft \cdots \triangleleft A_{1} \triangleleft G
$$

where the C_{i} are the distinct subgroups of the set above and $A \cap B$ is subinvariant.

Now suppose the preceding two chains are composition series. Then if B_{1} $\neq A_{1}, G=A_{1} \cup B_{1}$, since both B_{1} and A_{1} were maximal normal subgroups of G. Here $A_{1} \cap B_{1}$ is a normal subgroup of G, and $A_{1} / A_{1} \cap B_{1} \cong G / B_{1}$ and is therefore simple; therefore $A_{1} \cap B_{1}$ is a maximal normal subgroup of A_{1}. Here either $A_{1} \cap B_{1}=A_{2}$ or $A_{1} \cap B_{1}$ and A_{2} are both maximal normal subgroups of A_{1}, whence $A_{1}=A_{2} \cup\left(A_{1} \cap B_{1}\right)$ and $A_{2} \cap B_{1}=A_{2} \cap\left(A_{1} \cap B_{1}\right)$ and so $A_{2} / A_{2} \cap$ $B_{1} \cong A_{1} / A_{1} \cap B_{1} \cong G / B_{1}$ is simple. Also $A_{1} \cap B_{1} / A_{2} \cap B_{1} \cong A_{1} / A_{2}$. Continuing in this way, either $A=A_{r}=A_{r} \cap B_{1}$ or $A_{r} \cap B_{1} \triangleleft A_{r}$ and $A_{r} / A_{r} \cap B_{1}=$ G / B_{1} is simple. Here we have series of composition,

$$
\begin{gathered}
A_{r} \cap B_{1} \triangleleft A_{r-1} \cap B_{1} \triangleleft \cdots \triangleleft A_{1} \cap B_{1} \triangleleft B_{1} \triangleleft G, \\
B_{s} \triangleleft B_{s-1} \triangleleft \cdots \triangleleft B_{2} \triangleleft B_{1} \triangleleft G,
\end{gathered}
$$

similar to those above but involving fewer terms below B. Now repeat with B_{2} in the role of B_{1}, etc., and we shall ultimately find a composition series from G to $A \cap B$.

To show that the union of two composition groups (as we shall refer to subgroups occurring in composition series) is again a composition group is more difficult. We use induction on the lengths r and s of the two composition series from $A=A_{r}$ and $B=B_{s}$ to G. Specifically, we shall use induction on $r+$ s, the theorem being true for $r+s=2$, since $A_{1} \cup B_{1}$ is a normal subgroup of G. For this we need a lemma.

LEmMA 8.6.1. If C is a composition group of G which properly contains the composition group A, then there is a composition series from G to A
which includes C, and in particular, the length of a composition series from G to C is less than the length of a composition series from G to A.

This follows since if

$$
C=C_{t} \triangleleft C_{t-1} \triangleleft \cdots \triangleleft C_{1} \triangleleft G
$$

and

$$
A=A_{r} \triangleleft A_{r-1} \triangleleft \cdots \triangleleft A_{1} \triangleleft G
$$

are composition series for A and C, then as before,

$$
A_{r}=A_{r} \cap C_{t} \triangleleft A_{r-1} \cap C_{t} \cdots \triangleleft A_{1} \cap C_{t} \triangleleft C_{t} \cdots \triangleleft C_{1} \triangleleft G
$$

and the distinct groups from C_{t} to A_{r} will complete a composition series from G to A_{r} which is therefore of length r, and hence $r>t$.

By induction both $A_{r-1} \cup B_{s}$ and $A_{r} \cup B_{s-1}$ are composition groups of G. If $A_{r-1} \cup B_{s}$ is a proper subgroup of G then A_{r} and B_{s} are composition groups in $A_{r-1} \cup B_{s}$ with lengths $r^{\prime}<r$ and $s^{\prime}<s$ (by the lemma) as composition groups in $A_{r-1} \cup B_{s}$. Then by induction $A_{r} \cup B_{s}$ is a composition group of $A_{r-1} \cup B_{s}$, and hence of G. Hence assume $A_{r-1} \cup B_{s}=G$. Similarly, we may apply induction unless we also assume $A_{r} \cup B_{s-1}=G$. Now suppose by symmetry that $r<s$. Here, if $b \in B_{s}$,

$$
b^{-1} A_{r} b \triangleleft b^{-1} A_{r-1} b \triangleleft \cdots \triangleleft b^{-1} A_{2} b \triangleleft A_{1} \triangleleft G
$$

where $b^{-1} A_{1} b=A_{1}$ since A_{1} is normal. Now if $b^{-1} A_{r} b \neq A_{r}$, then in A_{1}, A_{r}, and $b^{-1} A_{r} b$ are composition groups and the length of the series is $r-1$ in both cases. Hence by induction $A^{*}=A_{r} \cup b^{-1} A_{r} b$ is a composition group in A_{1}, where the length of a chain from A_{1} to A^{*} is less than $r-1$ Hence by induction $B_{s} \cup A^{*}$ is a composition group. But $B_{s} \cup A^{*}=B_{s} \cup A_{r}=B \cup A$. Thus we may suppose that A_{r} is transformed into itself by every element of B_{s}. But A_{r} is also transformed into itself by every element of A_{r-1}. Hence A_{r} is normal in $A_{r-1} \cup$ $B_{s}=G$. As a normal subgroup of G we may take A_{r} as A_{1}. But then $B \cup A=B_{s} \cup A_{1} \triangleleft B_{s-1} \cup A_{1} \triangleleft \cdots B_{1} \cup A_{1} \triangleleft G$

. This holds since B_{i} and A_{1} are transformed into themselves by B_{i-1}, and clearly, A_{1} as a subgroup of $B_{i} \cup A_{1}$ transforms it into itself. Hence $B_{i} \cup A_{1} \triangleleft B_{i-1} \cup A_{1}$. Thus $B \cup A$, as a subinvariant group of G containing a group A in a composition series, is also a composition group.

EXERCISES

1. Let the group G be of order $p^{r} q^{s}$. If G has two composition series $1 \subset A_{1} \subset A_{2} \subset \cdots \subset A_{r} \subset$ $A_{r+1} \subset \cdots \subset A_{r+s}=G$ and $1 \subset B_{1} \subset B_{2} \subset \cdots \subset B_{S} \subset B_{S+1} \subset \cdots \subset B_{r+s}=G$, where A_{r} is of order p^{r} and B_{S} is of order q^{S}, show that G is the direct product of A_{r} and B_{S}.
2. Generalize the result of Ex. 1 to show that if G is a finite group and if for every prime p dividing the order of G there is a composition series of G, one of whose terms is a Sylow subgroup $S(p)$, then G is the direct product of its Sylow subgroups.
3. Show that an automorphism of the direct product of a finite number of non-Abelian simple groups permutes the factors.
4. If a finitely generated group G has exactly one maximal subgroup A, show that G is generated by any element not in A. Prove that G is cyclic of prime power order.
5. If a finitely generated group G has exactly two maximal subgroups A and B and $[G: A]=p,[G: B]$ $=q$, where p and q are different primes, show that G is cyclic of order $p^{i} q^{i}$. (Hint: Show that A $\cap B$ is normal and that $G / A \cap B$ is cyclic.)
6. Suppose that G is a finite group such that $L(G)$ is of dimension 2 . Show that if the order of G is not divisible by a square, then at least one Sylow subgroup is normal. Hence conclude that G is of order p^{2} or $p q, p$ and q being primes.

* These results are due to H . Wielandt [2].
${ }^{*}$ The more colorful term subnormal series has been urged on the writer by Irving Kaplansky, but this seems unnecessarily distracting.
${ }^{*}$ The original Jordan-Hölder theorem has been extended and generalized by a long series of authors. The original theorem is due to C. Jordan [1] and to 0 . Holder [1]. Generalization to groups with operators is due to E. Noether [1] and W. Krull [1, 2]. The refinement theorem is due to O. Schreier [4] and H. Zassen-haus [1]. The lattice theoretical formulation given here is a modification of that given by O. Ore [2]. Generalization to partially ordered sets has been made by O. Ore [1] and S. MacLane [3].
\pm The original proof of this theorem is due to J. H. M. Wedderburn [1]. R. Remak corrected an omission [1, 2]. P. Schmidt extended this to groups with operators. The lattice theorem (8.5.1) was proved by Ore [1], but the form given here is taken from G. Birkhoff [1] with a few changes.

9. A THEOREM OF FROBENIUS; SOLVABLE GROUPS

9.1. A Theorem of Frobenius.

Theorem 9.1.1. in its original form due to Frobenius [2], is of an entirely different nature from most of the other results in group theory. It does not deal with subgroups, homomorphisms, or permutation representation but with the number of solutions of an equation in a finite group. It has been greatly generalized by Philip Hall [3], who has generalized both the equation studied and the information on the solutions. But here we shall give only a mild generalization of the original theorem.

Theorem 9.1.1. Let G be a group of order g and let C be a class of h conjugate elements. The number of solutions of $x^{n}=c$, where c ranges over C is a multiple of $(h n, g)$.

Proof: Let $A(K, n)$ designate the complex of those elements of G whose nth powers lie in the complex K, and let $a(K, n)$ designate the number of elements in $A(K, n)$. For $g=1,(h n, 1)=1$, and the result is trivial, while for $n=1$ the number of solutions is $h=(h, g)$. We shall use induction on g and n, assuming the theorem for any $g^{\prime}<g$ or $g^{\prime}=g$ and $n^{\prime}<n$.

If $c^{\prime}=u^{-1} c u$ and $x^{n}=c$, then $\left(u^{-1} x u\right)^{n}=c^{\prime}$, giving a one-to-one correspondence between the solutions for an element c and any of its conjugates. Thus $a(C, n)=h \cdot a(c, n)$. If $x^{n}=c$, then $x^{-1} c x=x^{-1}\left(x^{n}\right) x=x^{n}=$ c, and the solutions of $x^{n}=c$ lies in the normalizer N_{c} of c, which by Theorem 1.6.1 is of order g / h. Hence if $h>1$, the theorem being true in N_{c}, $a(c, n)$ is a multiple of $(n, g / h)$, and so, $a(C, n)=h \cdot a(c, n)$ is a multiple of $h(n, g / h)=(h n, g)$, proving the theorem.

Hence, suppose $h=1$. If $n=n_{1} n_{2},\left(n_{1}, n_{2}\right)=1, n_{1}>1, n_{2}>1$, and if $D=$ $A\left(C, n_{2}\right)$, then $A(C, n)=A\left(D, n_{1}\right) . D$ consists of complete classes. By induction $\left(n_{1}, g\right)$ is a divisor of $a(C, n)$ and, similarly, $\left(n_{2}, g\right)$ is a divisor of $a(C, n)$. But then, since $\left(n_{1}, g\right)$ and $\left(n_{2}, g\right)$ are relatively prime, their product $\left(n_{1}, g\right)\left(n_{2}, g\right)=\left(n_{1} n_{2}, g\right)=(n, g)$ divides $a(C, n)$, proving the theorem. We may now suppose $n=p^{e}$ is the e th power of a prime. If p divides the order u of c, then an element x in $A(c, n)$ has order $n u$. Then exactly n elements in the cyclic subgroup generated by x belong to $A(c, n)$, and all these generate the same subgroup. Hence $A(c, n)$ is divisible by n.

Finally, we suppose that $n=p^{e}$ is relatively prime to the order u of c. Since $h=1, c$ is in the center of G. The elements in the center of G whose orders are not divisible by p form an Abelian group B whose order b is not divisible by p.

Now let c_{1} and c_{2} be two elements of B. Since $\boldsymbol{p} \boldsymbol{\forall}$, the equation $c_{2}=$ $c_{1} y^{n}$ has a unique solution y in B. But then if $x^{n}=c_{1}$, we have $(x y)^{n}=c_{2}$ and so, $a(c, n)$ has the same value for every $\boldsymbol{c} \in B$. Finally, the equation

$$
g=\sum_{C, B} a(C, n)+b a(c, n)
$$

counts the g elements of G according to the class in which their nth powers lie, counting first for those classes not in B, and last for B, b times the number for one of them. Now (n, g) divides every term $a(C, n)$ in the first sum, each term of this being covered by induction or a previous part of the proof. Also, since (n, g) divides g and is prime to b, it must follow that (n, g) divides $a(c$, n), completing the proof of the theorem in all cases.

If c is the identity then $h=1$ and we have the original form of the Theorem of Frobenius. Here $x^{g}=1$ for all elements, and so, if $(n, g)=m$, from $x^{n}=1$ follows $x^{m}=1$.

Theorem 9.1.2. If n is a divisor of the order of a group G, then the number of solutions of $x^{n}=1$ in G is a multiple of n.

Note that since the identity satisfies the equations, the number of solutions is not zero and hence must be at least n.

In connection with this theorem there is an interesting conjecture: If n divides the order of G and there are exactly n solutions of $x^{n}=1$, then these solutions form a normal subgroup of G.

Note that if G contains a subgroup H of order n, then the elements of H will be the solutions. Moreover, if $x^{n}=1$, then for an arbitrary $z,\left(z^{-1} x z\right)^{n}=$ 1 , whence H will be a normal subgroup. The problem then consists in showing that the n solutions form a subgroup H. The assumption that n divide the order of G is essential, since by the Theorem of Lagrange the order of a subgroup divides the order of the group. Also, $x^{4}=1$ has exactly four solutions in the symmetric group on three letters, which is of order 6 , but these do not form a subgroup.

9.2. Solvable Groups.

The element $x^{-1} y^{-1} x y$ of a group G is called the commutator of x and y, and we write $x^{-1} y^{-1} x y=(x, y)$. We also define commutators of higher order by the recursive rule $\left(x_{1} \cdots, x_{n-1}, x_{n}\right)=\left(\left(x_{1}, \cdots, x_{n-1}\right), x_{n}\right)$. These are the simple commutators. More generally, the set of all elements which can be obtained by successive commutation are called complex commutators; for example, $((a, b),(c, d, e))$. We define the weight ω of a commutator recursively by saying that elements g of G are of weight one, $\omega(g)=1$, and putting $\omega(x, y)=\omega(x)+\omega(y)$. Thus the weight of an element which is a commutator depends on the form of the commutator by which it is expressed and not on the element itself.

From its definition $(x, y)=1$ if, and only if, $y x=x y$. Thus all commutators in G are 1 if, and only if, G is an Abelian group, and the commutators may be regarded as measuring the extent to which a group departs from being Abelian. The subgroup G^{\prime} of G generated by all commutators $x^{-1} y^{-1} x y$ is called the commutator subgroup or derived group. Clearly, G^{\prime} is a fully invariant subgroup of G.

Theorem 9.2.1. The factor group G / G^{\prime} is Abelian. If K is a normal subgroup of G such that G / K is Abelian, then $K \supseteq G^{\prime}$.

Proof: In the mapping $G \rightarrow G / G^{\prime}=H$, let u, v be arbitrary elements of H, and suppose $x \rightarrow u, y \rightarrow v$. Then $x^{-1} y^{-1} x y \rightarrow u^{-1} v^{-1} u v$. But $x^{-1} y^{-1} x y \in G^{\prime}$, whence $x^{-1} y^{-1} x y \rightarrow 1=u^{-1} v^{-1} u v$, and hence $v u=u v$ and G / G^{\prime} is Abelian. Now suppose that G / K is Abelian. For $x, y \in G$, and $x \rightarrow$ $u, y \rightarrow v$ in $G \rightarrow G / K$, we have $x^{-1} y^{-1} x y \rightarrow u^{-1} v^{-1} u v=1$. Thus every commutator $x^{-1} y^{-1} x y$ belongs to K, and therefore $K \supseteq G^{\prime}$.

Definition: A group G is said to be solvable if the sequence $G \supseteq G^{\prime} \supseteq$ $G^{\prime \prime} \cdots \supseteq \cdots \supseteq G^{(i)} \cdots$, where each group ${ }^{(i)}$ is the derived group of the preceding, terminates in the identity in a finite number of steps, say, $G^{(e)}=$ 1.

By Theorem 9.2.1 each factor group $G^{(i)} / G^{(i+1)}$ is Abelian. Note that if $G^{(i)}=G^{(i+1)}$, then $G^{(i)}=G^{(j)}$ all $j \geq i$. Hence the inclusions of Theorem 9.2.1 are proper until $G^{(i)}=1$.

THEOREM 9.2.2. Every subgroup and factor group of a solvable group is solvable.

Proof: Let G be solvable and H a subgroup of G. Then by definition $H^{\prime} \subseteq$ G^{\prime}, since H^{\prime} is generated by all commutators of elements in H and G^{\prime} by all commutators in G. Hence $H^{\prime \prime} \subseteq G^{\prime \prime}$, etc., and so if $G^{(e)}=1$, then $H^{(e)}=1$ and H is solvable. Here $H^{(i)}$ may be the identity for some $i<e$. If $Q=G / K$ is a factor group of G, consider the homomorphism $G \rightarrow Q$. Here every commutator in Q is the image of a commutator in G, whence $G^{\prime} \rightarrow Q^{\prime}$. Continuing, $G^{(e)} \rightarrow Q^{(e)}$, whence $Q^{(e)}=1$ if $G^{(e)}=1$. Again $Q^{(i)}$ may be the identity for some $i<e$.

Theorem 9.2.3.* A group of finite order is solvable if, and only if, the factor groups in a series of composition from G to 1 are cyclic of prime order.

Proof: Suppose $G=A_{0} \supset A_{1} \supset \cdots \supset A_{r}=1$, where each $A_{i-1} / A_{i}, i=1$. $\cdots r$ is cyclic of some prime order. By Theorem 9.2.1, since G / A_{1} is Abelian, $A_{1} \supseteq G^{\prime}$. Similarly, $A_{2} \supseteq A_{1}{ }^{\prime} \supseteq G^{\prime \prime}$, and finally $A_{r} \supseteq G^{(r)}$, whence $G^{(r)}=1$ and
G is solvable. Conversely, suppose G is solvable and finite. Since G / G^{\prime} is Abelian, in

$$
G \supset G^{\prime} \supset G^{\prime \prime} \supset \cdots \supset G^{(e)}=1
$$

a maximal normal subgroup $A_{1} \supseteq G^{\prime}$ will exist. Since G / A_{1} is simple and Abelian, it is cyclic of prime order. Similarly, since A_{1} is solvable, A_{1} contains a maximal normal subgroup A_{2} such that A_{1} / A_{2} is cyclic of finite order. Continuing, we have $G=A_{0} \supset A_{1} \supset \cdots \supset A_{r}=1$ with each A_{i-1} / A_{i} cyclic of prime order. By the Jordan-Hölder theorem the same is true of every composition series.

Theorem 9.2.4. In a chief series for a solvable finite group G

$$
G=C_{0} \supset C_{1} \supset \cdots \supset C_{s}=1
$$

the factor groups $C_{i-1} / C_{i}, i=1, \cdots$, s are elementary Abelian groups.
Proof: By Theorem 8.6.1, C_{i-1} / C_{i} is the direct product of isomorphic simple groups. By Theorem 9.2.2 these simple groups are solvable and hence cyclic of prime order. Thus C_{i-1} / C_{i} is the direct product of cyclic groups of the same prime order p and is an elementary Abelian group. Conversely, if G has such a chief series, since the factor groups are Abelian, G will be solvable. The numbers c_{1}, \cdots, c_{s}, which are the orders of $C_{0} / C_{1}, \cdots$, C_{s-1} / C_{s}, respectively, are called the chief factors of G and are prime powers as shown. Clearly, for a factor group G / K, the chief factors are a subset of those for G, since there will be a chief series of G including the normal subgroup K. For a subgroup H of G, the distinct members of

$$
H \supseteq H \cap C_{1} \supseteq H \cap C_{2} \supseteq \cdots \supseteq H \cap C_{s}=1
$$

will be a normal series in H and either this or its refinement will be a chief series for H, whence the chief factors of H will be divisors of those for G, since $H \cap C_{i-1} / H \cap C_{i}$ is isomorphic to a subgroup of C_{i-1} / C_{i}.

Theorem 9.2.5. The following two properties of a group G are equivalent to solvability:

1) G has a finite normal series

$$
G=A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \cdots \supseteq A_{s}=1
$$

in which every $A_{i-1} / A_{i}, i=1, \cdots, s$ is Abelian.
2) G has a finite subinvariant series

$$
G=B_{0} \supseteq B_{1} \supseteq B_{2} \supseteq \cdots \supseteq B_{t}=1
$$

in which every $B_{i-1} / B_{i}, i=1, \cdots$, t is Abelian.
Proof: If G is solvable, then its derived series

$$
G \supset G^{\prime} \supset G^{\prime \prime} \supset \cdots \supset G^{(r)}=1
$$

is a finite normal series in which $G^{(i-1} / G^{(i)}$ is Abelian for $i=1, \cdots, r$, whence property (1) holds and a fortiori property (2) holds. It remains to show that property (2) implies solvability. Here if $G=B_{0} \supseteq B_{1} \supseteq B_{2} \supseteq$ $\supseteq B_{t}=1$ is a subinvariant series with B_{i-1} / B_{i} Abelian for $i=1, \cdots, t$; then, as $G / B_{1}=B_{0} / B_{1}$ is Abelian, $B_{1} \supseteq G^{\prime}$. Similarly, if $B_{i-1} \supseteq G^{(i-1)}$, then $B_{i} \supseteq$ $B_{i-1}^{\prime} \supseteq G^{(i)}$. Hence, ultimately, $1=B_{t} \supseteq G^{(t)}$ and $G^{(t)}=1$, whence G is solvable.

Corollary 9.2.1. A group G is solvable if it has a normal subgroup H such that both H and, G / H are solvable.

If $G / H \supseteq A_{1} / H \supseteq \cdots \supseteq A_{r-1} / H \supseteq H / H$, and $H \supseteq B_{1} \supseteq \cdots \supseteq B_{s-1} \supseteq 1$ are series satisfying the second property for G / H and H, respectively, then G $\supseteq A_{1} \supseteq \cdots \supseteq A_{r-1} \supseteq H \supseteq B_{1} \supseteq \cdots \supseteq B_{s-1} \supseteq 1$ is a series satisfying the second property for G.

9.3. Extended Sylow Theorems in Solvable Groups.

A Sylow subgroup of a finite group has the property that its order $m=p^{a}$ is prime to the order of its index n. Philip Hall [1] has shown that the Sylow theorems generalize for solvable groups in terms of subgroups whose order m is prime to their index n without the requirement that m be a prime power.

THEOREM 9.3.1. Let G be a solvable group of order $m n$ where $(m, n)=1$. Then

1) G possesses at least one subgroup of order m.
2) Any two subgroups of order m are conjugate.
3) Any subgroup whose order m^{\prime} divides m is contained in a subgroup of order m.
4) The number h_{m} of subgroups of order m may be expressed as a product of factors, each of which (a) is congruent to 1 modulo some prime factor of m, and (b) is a power of a prime and divides one of the chief factors of G.

Proof: Note that for $m=p^{a}$, a prime power, properties (1) and (3) are given in the first Sylow theorem (Theorem 4.2.1), property (2) is the second Sylow theorem, and property (4) in a stronger statement than the third Sylow theorem.

The proof will be by induction on the order of G being trivially true if the order of G is a power of a prime. The proof will rest heavily on the structure of a chief series of G as given in Theorem 8.3.3 and the structure of factor groups (Theorem 2.3.4).

CASE 1. G has a proper normal subgroup H of order $m_{1} n_{1}$ and index $m_{2} n_{2}$, where $m=m_{1} m_{2}, n=n_{1} n_{2}$, and $n_{1}<n$.

For property (1) G / H by induction contains a subgroup of order m_{2} which corresponds to a subgroup D of G or order $m n_{1} . D$ by induction contains a subgroup of order m.

For property (2), if M and M^{\prime} are two subgroups of order $m, M \cup H=$ $M H$ and $M^{\prime} \cup H=M^{\prime} H$ are subgroups whose orders divide $m_{1} m_{2} \cdot m_{1} n_{1}$, since $M \cup H / H \cong M / M \cap H$ (Theorem 2.4.1). Since the order also divides $m n$, it must divide $m n_{1}$. But it is also a multiple of m and a multiple of n_{1}. Hence both $M \cup H$ and $M^{\prime} \cup H$ are of order $m n_{1}=m_{1} n_{2} m_{2}$, and therefore $M \cup H / H$ and $M^{\prime} \cup H / H$ are subgroups of G / H of order m_{2} and are by induction
conjugate. If a^{*} in G / H transforms $M^{\prime} \cup H / H$ into $M \cup H / H$, and a in G is mapped into a^{*} by the homomorphism $G \rightarrow G / H$, then $a^{-1}\left(M^{\prime} \cup H\right) a$ is mapped into $M \cup H / H$; in other words, $a^{-1}\left(M^{\prime} \cup H\right) a=M \cup H$. Here $a^{-1} M^{\prime} a$ and M are of order m in $M \cup H$ and are by induction conjugate. Hence M and M^{\prime} are conjugate in G.

For property (3), if M_{1} is a subgroup of order m^{\prime}, a divisor of m, then the order of $M_{1} \cup H / H$ is a divisor of m_{2} and hence it belongs to a subgroup of G / H of order m_{2}. Thus M_{1} belongs to the corresponding subgroup of G order $m n_{1}$ and by induction on this group M_{1} belongs to a subgroup of order m.

For property (4), following the proof of (2), the number h_{m} of conjugates of M of order m is the product of $h_{m_{2}}$, the number of subgroups of order m_{2} in G / H and the number of conjugates of M in $M \cup H=D$. Here the chief factors of D divide those of G and the chief factors of G / H are a subset of those of G. Thus by induction h_{m} is a product of two factors, both of which satisfy property (4) and thus the property is proved.

Now the least normal subgroup K in a chief series is of order p^{a}, with p a prime. K will satisfy the requirements for the H of Case 1 unless $n=p^{a}$. Thus we may assume that every minimal normal subgroup is of order p^{a}. But as Sylow subgroups of order p^{a} there can be only one.

CASE 2. G contains a unique minimal normal subgroup K of order $n=p^{a}$.
For property (1) let L be a minimal normal subgroup properly containing K. Then L / K is of order q^{b} with $q \neq p$. Let Q be a Sylow subgroup of L of order q^{b}, and let M be the normalizer of Q in G. Consider $M \cap K=T . T$ is a normal subgroup of M and, as a subgroup of K, is elementary Abelian. Every element of T permutes with every element of Q, since a commutator of an element in Q and an element in T lies in $T \cap Q=1$. Hence T belongs to the center C of L, which, as a characteristic subgroup of L, is a normal subgroup of G. Since K is minimal and unique, $C=K$ or $C=1$. If $C=K$, then $L=K \times$ Q, and Q is a normal subgroup of G contrary to the uniqueness of K. Hence T $=C=1$. Thus Q is its own normalizer in L and has as many conjugates in L as its index in L; that is, Q has $n=p^{a}$ conjugates in L. Any conjugate of Q in G lies in L, since L is normal. Hence Q has $n=p^{a}$ conjugates in G, whence M is of index $n=p^{a}$ in G and hence of order m.

For properties (2) and (4), the normalizers of the p^{a} conjugates of Q are conjugate and distinct. Thus we have p^{a} conjugate subgroups of order m. Also $p^{a} \equiv 1(\bmod q)$ as the number of Sylow subgroups of order q^{b} in L. Now, if M^{\prime} is any subgroup of order m, the order of $M^{\prime} \cup L$ is divisible by both m and n, whence $M^{\prime} \cup L=G$. As $G / L=M^{\prime} / M^{\prime} \cap L$, we see that $M^{\prime} \cap L$ is of order q^{b} and hence a conjugate of Q. Also, $M^{\prime} \cap L$ is normal in M^{\prime}, whence M^{\prime} is the normalizer of a conjugate of Q. Thus the p^{a} conjugate subgroups of order m already found constitute all subgroups of order m. This proves both (2) and (4).

For property (3), let M^{\prime} be a subgroup of order $m^{\prime} \mid m$. Then, if M is of order $m, M \cap\left(M^{\prime} \cup K\right)=M^{*}$ is of order m^{\prime}, and by property (2) for $M^{\prime} \cup K$, M^{*} is conjugate to M^{\prime} Hence M^{\prime} is contained in a conjugate of M, proving (3).

The above properties of solvable groups are usually violated in simple groups. The simple group of order 60 (the alternating group on five letters) has no subgroup of order 15 and therefore violates (1); it contains a subgroup of order 6 , generated by (123) and (12) (45) which is not contained in a subgroup of order 12 and therefore violates (3). Finally the number of Sylow subgroups of order 5 is six, and since $6=2 \cdot 3$, the property (4) is also violated. The group of automorphisms of the elementary Abelian group A of order 8 is a simple group G of order 168. G permutes the seven subgroups of A of order 2 transitively and also the seven subgroups of order 4 transitively. Hence G possesses two distinct conjugate sets of subgroups of index 7 and order 24 and therefore violates property (2).

The first property of Theorem 9.3.1 in fact characterizes solvable groups. For the proof of this we need a theorem, which will be proved in Chap. 16 as Theorem 16.8.7.

Theorem 9.3.2 (Burnside). A group of order $p^{a} q^{b}$, where p and q are primes, is solvable.

Assuming this theorem we may characterize solvable groups in terms of the first property. In a group G of order g, a p-complement is a subgroup $S_{p}{ }^{\prime}$ whose index p^{e} is the highest power of p dividing its order g. Thus the first property asserts the existence of p-complements in solvable groups, and with the aid of the Burnside theorem we shall prove the converse.

Theorem 9.3.3. If a group G contains a p-complement for every prime p dividing its order, then G is solvable.

Proof: Let the order of G be g and let $g=p_{1}{ }_{1}{ }_{1} \cdots p_{r}{ }_{r}{ }_{r}$, where the p_{i} are primes. If H_{1} and H_{2} are subgroups of indices, $p_{i}{ }_{i}^{e}$ and $p_{j}{ }_{j}{ }_{j}$, respectively, then because the indices are relatively prime (Theorem 1.5.6), $H_{12}=H_{1} \cap H_{2}$ is of index $p_{i}^{e} p_{j}{ }_{j}^{e}$. The intersection of H_{12} with a p^{k} complement will again by Theorem 1.5.6 be of index $p_{i}{ }^{e} p_{j}{ }_{j} p_{k}{ }_{k}{ }_{k}$. Continuing in this way, if $g=m n$ with $(m, n)=1$, we may find a subgroup of order m and index n, which will be the intersection of p-complements for primes p dividing n. Thus, the existence of p-complements is sufficient to prove the existence of a subgroup of order m prime to its index n and thus to prove the full first property.

We shall assume the theorem true for groups of order less than g and proceed by induction. In a group of order p^{a} every maximal subgroup is of index p and a normal subgroup (Corollary 4.1.2), and therefore a group of order p^{a} is solvable. We assume the Burnside theorem that a group of order $p^{a} q^{b}$ is solvable, and hence we may now consider only cases in which the order of G is divisible by at least three distinct primes. G contains a subgroup H of order $p^{a} q^{b}=m$ prime to its index n, $m n=g$, where p and q are two different primes dividing g. Now H, as a solvable group, contains a least normal subgroup K which (Theorem 9.2.4) is elementary Abelian of prime power order, say, p^{i} Now K will be contained in a Sylow subgroup P $\subseteq H \subseteq G$ of order p^{a}. Here a q-complement L^{*} in G will contain a Sylow subgroup P^{*} conjugate to P in G. Hence transforming by some element in G will take L^{*} into a q-complement L containing P. Here $L \supseteq P$ and $H \supseteq P$, and so by their orders, $L \cap H=P, L \cup H=G$, and in fact, $L H=G$, since $L H$ contains g distinct elements. Thus every coset of L contains an element of H, and therefore all conjugates of L are obtained by transforming by elements $h \in H$. But $h^{-1} L h \supseteq K$, since $h^{-1} K h=K, K$ being normal in H. Thus the intersection M of the conjugates of L is a proper subgroup of G, since $K \subseteq M$ $\subseteq L$ and being an intersection of a complete set of conjugates is a normal subgroup of G.

Hence G contains a proper normal subgroup M. If S_{p}^{\prime} is a p-complement in G, then $S_{p}^{\prime} \cap M$ is a p-complement in M and $S_{p}^{\prime} \cup M / M$ is a p-complement
in G / M. Hence both M and G / M possess p-complements and by induction are solvable. Thus G is solvable.

9.4. Further Results on Solvable Groups.

THEOREM 9.4.1. If G is a solvable group of order g and if n is a divisor of g such that $x^{n}=1$ has exactly n solutions, then these solutions form a normal subgroup in G.

Proof: We shall assume the theorem true for solvable groups of order lower than G, the theorem being true if g is a prime. Now, as a solvable group, G contains a least normal subgroup K which is elementary Abelian of order p^{i}. We consider two cases, one in which p divides n and one in which it does not.

CASE 1. p divides n.
Here every element of K is of order p and hence is among the solutions of $x^{n}=1$. Let $n=p^{j} n_{1}, g=p^{s} g_{1}$. Here G / K is of order $p^{s-i} g_{1}$ and has order divisible by $u=p^{j-i} n_{1}$ if $j \geq i, u=n_{1}$ if $j<i$. Hence in G / K there are $k u$ elements z such that $z^{u}=1$. Now if x is an element of G such that $x \rightarrow z$ in the homomorphism $G \rightarrow G / K$ with $z^{u}=1$, then $x^{u} \in K$, whence $x^{u p}=1$, and since $u p$ divides $n, x^{n}=1$ for any such x. But these x 's are the elements of $k u$ cosets of K in G / K. Hence there are at least these $k u p^{i} x^{\prime}$'s in G satisfying $x^{n}=$ 1. Now if $j<i, u p^{i}$ is a proper multiple of n, yielding more than n solutions of $x^{n}=1$ contrary to assumption. Hence $j \geq i$ and $u p^{i}=n$ and there are at least $k n$ solutions. Thus $k=1$ and there are exactly u solutions of $z^{u}=1$ in G / K. By induction these u solutions form a normal subgroup H / K of G / K, and then H, the corresponding group in G, is a normal subgroup of G of order $u p^{i}$ $=n$ whose elements are the n solution of $x^{n}=1$.

CASE 2. p does not divide n.

Here n divides the order of G / K and there are $k n$ solutions of $z^{n}=1$ in G / K. Here, if $y \in G$ with $y \rightarrow z$ in the homomorphism, $y^{n} \in K$ and $y^{p n}=$ 1. Hence in G there are $k n$ cosets of K of elements y satisfying $y^{p n}=1$. We
assert that each coset K_{y} yields a distinct solution of $x^{n}=1$. For, let $K y_{1}$ and $K y_{2}$ be distinct cosets of K with $y_{1} \rightarrow z_{1}, y_{2} \rightarrow z_{2}, z_{1} \neq z_{2}$. Here $y_{1}{ }^{p n}=1, y_{2}{ }^{p n}$ $=1$, and therefore $y_{1}^{p}=x_{1}, y_{2}^{p}=x_{2}$ are solutions of $x^{n}=1$ in G. If $y_{1}^{p}=y_{2}^{p}$, then $z_{1}^{p}=z_{2}^{p}$. But $z_{1}^{n}=1, z_{2}^{n}=1$, and since $(p, n)=1$, from this we would have $z_{1}=z_{2}$, contrary to assumption. Hence if $z^{n}=1$ has $k n$ solutions in G / K, then $x^{n}=1$ has at least $k n$ solutions in G. Thus $k=1$, and by induction, G / K contains a normal subgroup U / K of order n. Here the corresponding group U in G is of order $p^{i} n$. But as a solvable group, U contains a p-complement H of order n. Thus the n elements of H are the n solutions of $x^{n}=1$, and since transformation by an arbitrary element of G permutes the solutions of $x^{n}=1$ among themselves, H is a normal subgroup of G.

Theorem 9.4.2. If two consecutive factor groups of derived groups G^{\prime} $\supset G^{\prime \prime} \supset G^{\prime \prime \prime} \cdots$ of a group G are cyclic, then the latter is the identity.

Proof: We may take $G^{\prime \prime \prime}=1$, taking $G^{\prime} / G^{\prime \prime}$ and $G^{\prime \prime} / G^{\prime \prime}$ as cyclic, and must show $G^{\prime \prime}=1$. Let b be a generator of $G^{\prime \prime}$. Now G is the normalizer of $G^{\prime \prime}$, and if Z_{b} is the centralizer of $G^{\prime \prime}, G / Z_{b}$ is isomorphic to a group of automorphisms of a cyclic group, and so, Abelian. Hence $Z_{b} \supseteq G^{\prime}$. But then $G^{\prime \prime}$ is in the center of G^{\prime} and G^{\prime} is given by adjoining a single element to $G^{\prime \prime}$. But then G^{\prime} is Abelian, and so, $G^{\prime \prime}=1$, as was to be shown.

We say that G is metacyclic if G / G^{\prime} and G^{\prime} are both cyclic. Here $G^{\prime \prime}=1$ and we have a two-step metacyclic group. By Theorem 9.4.2 there could not be a three-step metacyclic group.

Theorem 9.4.3. If the Sylow subgroups of a finite group G of order g are all cyclic, then G is metacyclic and is generated by two elements a and b with defining relations:

$$
\begin{aligned}
& a^{m}=1, \quad b^{n}=1, \quad b^{-1} a b=a^{r}, \\
& m n=g, \\
& {[(r-1) n, m]=1,} \\
& r^{n} \equiv 1(\bmod m)
\end{aligned}
$$

Conversely, a group given by such defining relations has all its Sylow subgroups cyclic.

Proof: We must first show that G is solvable. Let $g=p_{1}{ }_{1}{ }_{1} \cdots p_{s}{ }_{s}, p_{1}<$ $p_{2}<\cdots<p_{s}$ be the decomposition of g as a product of primes. We show first that for $m=p_{j}^{f} p_{j+1}{ }_{j+1} \cdots p_{s}{ }_{s}, f_{i} \leq e_{j}$, the equation $x^{m}=1$ has exactly m solutions. This is surely true for $m=g$. Hence it suffices to show that if $x^{m p}=$ 1 has exactly $m p$ solutions and p is the smallest prime dividing $m p$, then $x^{m}=$ 1 has exactly m solutions. Since the Sylow subgroup belonging to p is cyclic, then if p^{f+1} is the highest power of p dividing $p m$, there are elements of order p^{f+1} in G; therefore not all solutions of $x^{m p}=1$ are also solutions of $x^{m}=1$. Hence the $k m$ solutions of $x^{m}=1$ (Theorem 9.1.2) are a proper part of the solutions of $x^{m p}=1$, and hence $1 \leq k<p$. An element satisfying $x^{m p}=1$ but not $x^{m}=1$ has order t exactly divisible by p^{f+1}. Here there will be $\phi(t)$ elements, all generating the same cyclic group, all of which have order exactly divisible by p^{f+1}. Here, since p^{f+1} divides $t, \phi(t)$ is divisible by $p-$ 1 . Hence $p m-k m=(p-k) m$, the number of elements satisfying $x^{p m}=1$ but not $x^{m}=1$, is divisible by $p-1$. Since p was the smallest prime dividing m, $p-1$ has no factor in common with m. Thus $p-1$ divides $p-k$, and since 1 $\leq k \leq p$, this is possible only if $k=1$; that is, if $x^{m}=1$ has exactly m solutions. In particular for $m=p_{s}^{e}, x^{m}=1$ has exactly m solutions. But there is a Sylow subgroup of this order which must therefore be a normal subgroup of G. This is cyclic and so, of course, solvable.

We have shown that a group G with cyclic Sylow subgroups must have a normal subgroup H. Then both H and G / H also have cyclic Sylow subgroups. We may assume inductively that H and G / H are solvable and so, G is also solvable, since a group of prime order is solvable.

An Abelian group whose Sylow subgroups are cyclic is itself cyclic. Hence in $G \supset G^{\prime} \supset G^{\prime \prime} \cdots$ the factor groups are cyclic, and hence by Theorem 9.4.2, $G^{\prime \prime}=1$. If $G^{\prime}=1$, then G is cyclic, and this case is covered if we take $b=1, r=1, n=1, m=g$. Hence, suppose $G^{\prime} \neq 1$, and let a be a generator of G^{\prime} with $a^{m}=1$. Let b be an element from a coset $G^{\prime} b$ which is a generator of the cyclic factor group G / G^{\prime}. Here a and b generate G and $b^{-1} a b$ $=a^{r}$ with $r \neq 1$, since G^{\prime} is a normal subgroup; if $r=1, G$ would be Abelian
and hence cyclic, contrary to assumption. If G / G^{\prime} is of order n, then $b^{-n} a b^{n}=$ $a^{r_{n}}=a$ and $r^{n} \equiv 1(\bmod m)$. Now every element of G is of the form $b^{j} a^{i}$, whence the most general commutator ($b^{u} a^{v}, b^{j} a^{i}$) may be expressed in terms of commutators of the form $\left(a^{k}, b^{t}\right)$; these in turn are powers of $a^{-1} b^{-1} a b=$ a^{r-1}. Hence a^{r-1} generates G^{\prime} and therefore $(r-1, m)=1$. Now $b^{n} \in G^{\prime}$ is a power a^{j} of a which permutes with b, whence $a^{r j}=a^{j}$, but since $(r-1, m)=$ $1, j=0$ and so $b^{n}=1$. If m and n had a prime factor p in common, $a^{m / p}$ and $b^{n / p}$ would generate a noncyclic subgroup of order p^{2}, contrary to the fact that Sylow subgroups are cyclic. Hence $(m, n)=1$. This completes the direct part of the proof.

Conversely, suppose m, n, r, and g satisfy the relations above. Then $a \rightarrow$ a^{r}, since $r^{n}=1(\bmod m)$, is an automorphism of the cyclic group generated by a, whose nth power (and possibly a lower power) is the identity. Thus with $m n$ elements $b^{j} a^{i}, j$ modulo n, i modulo m, and the product law $b^{j} a^{i} \cdot b^{k} a^{t}$ $=b^{j+k} a^{h}=i r^{k}+t$, we may verify the associative law and the existence of inverses whence we have a group of order $g=m n$ with relations $a^{m}=1, b^{n}=$ $1, b^{-1} a b=a^{r}$ and observe that the product law is a consequence of these defining relations. In this group every commutator is a power of $a^{-1} b^{-1} a b=$ a^{r-1}, whence since $(r-1, m)=1, G^{\prime}$ is generated by a. Since $(m, n)=1$, every Sylow subgroup is a conjugate of the subgroup $\{a\}$ or the subgroup $\{b\}$ and hence cyclic.

Corollary 9.4.1. Every group G of square free order is metacyclic of the type in Theorem 9.4.3.

This follows, since the Sylow subgroups are all of prime order and necessarily cyclic.

EXERCISES

1. Show that if a group G is of finite order divisible by 12 and if $x^{12}=1$ has exactly 12 solutions in G, then these solutions form a normal subgroup.
2. Show that if G is of order $p^{2} q$, where p and q are different primes, then one of the Sylow subgroups is normal and G is solvable.
3. Show that if G is of order $p^{2} q r$, where p, q, r are different primes, then either G is solvable or G is the alternating group A_{5} of order 60 . Use Theorem 14.3.1 and its corollary.
4.

Show that if $x^{n}=1$ has exactly m solutions, $x_{1}=1, x_{2}, \cdots, x_{m}$, in a group G, then $K=\left\{x_{1}, \cdots\right.$ $\left.\cdot, x_{m}\right\}$ is a normal subgroup of G and its elements are of the form $x_{2}{ }^{a} x_{3} a_{3} \cdots x_{m}{ }^{a}{ }_{m}$ and K is of order at most $\left(n^{m-1}\right)$.

10. SUPERSOLVABLE AND NILPOTENT GROUPS

10.1. Definitions.

There are two properties of groups, qualitatively stronger than solvability, which are of considerable importance. These are supersolvability and nilpotence.

Definition: A group G is super solvable if it possesses a finite normal series $G=A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \cdots \supseteq A_{r}=1$, in which each factor group A_{i-1} / A_{i} is cyclic.

Definition: A group G is nilpotent if it possesses a finite normal series $G=A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \cdots \supseteq A_{r}=1$, in which A_{i-1} / A_{i} is in the center of G / A_{i} for $i=1, \cdots, r$.

Since in both these cases A_{i-1} / A_{i} is Abelian, these properties do imply solvability of G. Note that in a supersolvable group $G, A_{i-1}=\left\{b_{i-1}, A_{i}\right\}$, where b_{i-1} is any element of A_{i-1} mapped onto a generator of the cyclic group A_{i-1} / A_{i}, and thus G is finitely generated. Since nilpotent groups include all Abelian groups, it is clear that a nilpotent group need not be finitely generated.

Baer [12] defines supersolvability in a more general way, saying that G is supersolvable if every homomorphic image of G contains a cyclic normal subgroup. He shows this definition to be equivalent to ours for finitely generated groups, but with the broader definition, the properties proved in this chapter do not hold.

10.2. The Lower and Upper Central Series.

We write the commutator $x^{-1} y^{-1} x y$ as (x, y). For subgroups A, B, the notation (A, B) will mean the group generated by all (a, b) with $a \in A$, $b \in B$. We have defined simple commutators by the rule

$$
\left(x_{1}, \cdots, x_{n-1}, x_{n}\right)=\left(\left(x_{1}, \cdots, x_{n-1}\right), x_{n}\right)
$$

and similarly for subgroups $A_{1}, \cdots, A_{n-1}, A_{n}$ we define

$$
\left(A_{1}, \cdots, A_{n-1}, A_{n}\right)=\left(\left(A_{1}, \cdots, A_{n-1}\right), A_{n}\right)
$$

Let us represent conjugation by an exponent; thus

$$
a^{x}=x^{-1} a x
$$

There are a number of important identities on the higher commutators:
$(10.2 .1 .1) \quad(y, x)=(x, y)^{-1}$.
(10.2.1.2) $\quad(x y, z)=(x, z)^{y}(y, z)=(x, z)(x, z, y)(y, z)$.
(10.2.1.3) $\quad(x, y z)=(x, z)(x, y)^{z}=(x, z)(x, y)(x, y, z)$.
(10.2.1.4) $\quad\left(x, y^{-1}, z\right)^{y}\left(y, z^{-1}, x\right)^{z}\left(z, x^{-1}, y\right)^{x}=1$.
(10.2.1.5) $\quad(x, y, z)(y, z, x)(z, x, y)$

$$
=(y, x)(z, x)(z, y)^{x}(x, y)(x, z)^{y}(y, z)^{x}(x, z)(z, x)^{y}
$$

These may be verified by direct calculation from the definitions of the commutators.

We define a series of subgroups of a group G by the rules:

$$
\begin{aligned}
& \Gamma_{1}(G)=G \\
& \Gamma_{k}(G)=\left\{\left(x_{1}, \cdots, x_{k}\right)\right\}
\end{aligned}
$$

for arbitrary $\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{\in} \boldsymbol{G}$.
Since $\left(y_{1}, y_{2}, \cdots y_{k+1}\right)=\left[\left(y_{1}, y_{2}\right), y_{3}, \cdots, y_{k+1}\right]$, we see that $\Gamma_{k+1}(G) \subseteq$ $\Gamma_{k}(G)$ for all k. Clearly, the $\Gamma_{k}(G)$ are fully invariant subgroups of G. The series

$$
G=\Gamma_{1}(G) \supseteq \Gamma_{2}(G) \supseteq \Gamma_{3}(G) \supseteq \cdots
$$

is called the lower central series of G.
Theorem 10.2.1. $\Gamma_{k+1}(G)=\left(\Gamma_{k}(G), G\right)$.
Proof: Since $\left(y_{1}, \cdots, y_{k}, y_{k+1}\right)=\left(\left(y_{1}, \cdots, y_{k}\right), y_{k+1}\right)$, we have trivially $\Gamma_{k+1}(G) \subseteq\left(\Gamma_{k}(G), G\right)$. To prove the inclusion in the other direction, we need the identities (10.2.1). In (10.2.1.2). put $x=\left(a_{1}, \cdots, a_{k}\right), y=\left(a_{1} \cdots a_{k}\right)^{-1}, z$ $=a_{k+1}$. Then $1=\left(1, a_{k+1}\right)=\left(a_{1} \cdots, a_{k}, a_{k+1}\right)^{y}\left(\left(a_{1}, \cdots, a_{k}\right)^{-1}, a_{k+1}\right)$. Thus we have $\left(\left(a_{1}, \cdots, a_{k}\right)^{-1}, a_{k+1}\right) \in \Gamma_{k+1}(G)$, since the other term belongs to $\Gamma_{k+1}(G)$. Now $\left(\Gamma_{k}(G), G\right)$ is generated by elements $\left(u_{1} u_{2} \cdots u_{n}\right.$, g), where $u_{i}=\left(a_{1}, \cdots, a_{k}\right)$ or $\left(a_{1}, \cdots, a_{k}\right)^{-1}$. We have shown that $\left(u_{i}, g\right) \in \Gamma_{k+1}(G)$. We show by induction on n that $\left(u_{1} u_{2} \cdots u_{n}, g\right) \in \Gamma_{k+1}(G)$. This we do by putting $x=u_{1} u_{2} \cdots$ $u_{\mathrm{n}-1}, y=u_{n}, z=g$ in (10.2.1.2), so that we have $\left(u_{1} \cdots u_{n-1} u_{u}, g\right)=\left(u_{1} \cdots\right.$ $\left.u_{n-1}, g\right)^{u}{ }_{n}\left(u_{n}, g\right)$; by induction the two expressions on the right are in $\Gamma_{k+1}(G)$. Hence we have shown $\left(\Gamma_{k}(G), G\right) \subseteq \Gamma_{k+1}(G)$ and have proved the theorem.

This theorem leads to an important corollary.
Corollary 10.2.1. $\Gamma_{k}(G) / \Gamma_{k+1}(G)$ is in the center of $G / \Gamma_{k+1}(G)$.
We may also define an upper central series for an arbitrary group G.

$$
Z_{0}=1 \subseteq Z_{1}(G) \subseteq Z_{2}(G) \subseteq \cdots \subseteq Z_{i}(G) \subseteq Z_{i+1}(G) \subseteq \cdots
$$

where we define $Z_{i+1}(G)$ by the rule: $Z_{i+1}(G) / Z_{i}(G)$ is the center of $G / Z_{i}(G)$. Since the center of a group is a characteristic subgroup (but not in general fully invariant), each Z_{i} is a characteristic subgroup of G. The following theorem justifies the use of the terms upper and lower as applied to the central series we have defined.

A series $G=A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \cdots \supseteq A_{r+1}=1$, in which each A_{i} / A_{i+1} is in the center of G / A_{i+1}, is called a central series.

Theorem 10.2.2. Let $G=A_{1} \supseteq A_{2} \supseteq A_{3} \supseteq \cdots \supseteq A_{r+1}=1$ be a central series for G. Then $A_{i} \supseteq \Gamma_{i}(G), i=1, \cdots, r+1$ and $A_{r+1-j} \subseteq Z_{j}(G), j=0,1$, • \cdot, r.

Proof: We have $A_{1}=G=\Gamma_{1}(G)$. Suppose that $A_{i} \supseteq \Gamma_{i}(G)$. Since A_{i} / A_{i+1} is in the center of G / A_{i+1}, we have $\left(A_{i}, G\right) \subseteq A_{i+1}$. But then $\Gamma_{i+1}(G)=\left(\Gamma_{i}(G), G\right)$ $\subseteq\left(A_{i}, G\right) \subseteq A_{i+1}$, and this proves by induction that $A_{i} \supseteq \Gamma_{i}(G)$ for all i. Suppose for some $i A_{r+1-i} \subseteq Z_{i}(G)$. Then $T=G / Z_{i}(G)$ is a homomorphic image of $U=G / A_{r+1-i}$ with kernel $Z_{i}(G) / A_{r+1-i}$. Now A_{r-i} / A_{r+1-i} is in the center of U, whence its homomorphic image in T must lie in the center of T. But this image is $A_{r-i} \cup Z_{i} / Z_{i}$, while the center of T is Z_{i+1} / Z_{i}. Hence $A_{r-i} \subseteq A_{r-i} \cup Z_{i} \subseteq Z_{i+1}$, proving our theorem by induction.

As a consequence of this theorem we have the following corollary:
Corollary 10.2.2. In a nilpotent group G, the upper and lower central series have finite length and both have the same length c. For, if there is a finite central series of length r, the theorem shows that the upper and lower central series have at most length r. And if the two series are compared with each other, we conclude that neither one can be longer than the other. Hence they both have the same length c, and this number c is called the class of the nilpotent group. A nilpotent group of class 1 is simply an Abelian group.

Theorem 10.2.3. If a group G is generated by elements x_{1}, \cdots, x_{r}, then $\Gamma_{k}(G) / \Gamma_{k+1}(G)$ is generated by the simple commutators $\left(y_{1}, y_{2}, \cdots, y_{k}\right) \bmod$ $\Gamma_{k+1}(G)$, where the y's are chosen from x_{1}, \cdots, x_{r} and are not necessarily distinct.

Corollary 10.2.3. If G is generated by r elements, then $\Gamma_{k}(G) / \Gamma_{k+1}(G)$ is generated by at most r^{k} elements.

Proof: We proceed by induction on k, the theorem being immediate for $k=$ 1. Assume the theorem true for $k-1 . \Gamma_{k}(G)$ is generated by all commutators C $=\left(a_{1} \cdots, a_{k-1}, a_{k}\right)$ with $a_{i} \in G$. Here $C=\left(\left(a_{1} \cdots, a_{k-1}\right), a_{k}\right)$ and $\begin{array}{cccc}\left(a_{1}, \cdots,\right. & \left.a_{k-1}\right) \\ \left(a_{1}, \cdots,\right. & \left.a_{k-1}\right) \\ =\Gamma_{k-1}(G), & \text { whence } & \text { by } & \text { induction } \\ \epsilon_{1} u_{2} \epsilon_{2} & \cdots & u_{n} \epsilon_{n} w, \epsilon_{i}= & \pm 1 \text {, with } u_{1}, \cdots\end{array}$
\cdot, u_{n} being commutators of the form $\left(y_{1}, \cdots, y_{k-1}\right)$ and the y 's being x 's and $w \in \Gamma_{k}(G)$. Then $C=\left(u_{1}{ }^{\epsilon} u_{2}{ }^{\epsilon}{ }_{2} \cdots u_{n}{ }^{{ }^{\epsilon}}{ }^{n} w, a_{k}\right)$. Applying (10.2.1.2). we have
 $\left(\bmod \Gamma_{k+1}\right)$. Now $a_{k}=x_{i 1}{ }^{\eta}{ }_{2} \cdots x_{i m}{ }^{\eta}{ }_{m}, \eta_{j},= \pm 1$, and since the u 's $\in \Gamma_{k-1}$, we find by repeated application of (10.2.1.2) and (10.2.1.3) that modulo Γ_{k+1}, C is a product of commutators $\left(u_{j}{ }^{\epsilon}{ }_{j}, x_{i s}{ }^{\eta_{s}}\right)$. Since also from these rules $\left.\left(u^{\epsilon}, x^{\eta}\right) \equiv(u, x)^{\epsilon \eta}\left(\bmod \Gamma_{k+1}(G)\right)\right]$, it follows that $\Gamma_{k}(G) / \Gamma_{k+1}(G)$ is generated by commutators $(u, x) \bmod \Gamma_{k+1}(G)$ or $\left(y_{1} \cdots, y_{k-1}, x_{i k}\right) \bmod$ $\Gamma_{k+1}(G)$, as we wished to prove. Note that we do not need finiteness of r for this theorem.

An almost immediate consequence of this is the following, which gives the relationship between nilpotent and supersolvable groups:

TheOrem 10.2.4. A finitely generated nilpotent group is supersolvable.
Proof: Let G be finitely generated and nilpotent. Let its lower central series be

$$
G=\Gamma_{1}(G) \supset \Gamma_{2}(G) \supset \cdots \supset \Gamma_{c}(G) \supset \Gamma_{c+1}(G)=1
$$

Since $\Gamma_{c}(G)$ is Abelian and finitely generated, it is the direct product of, say, m cyclic groups. Also since $\Gamma_{c}(G)$ is in the center of G, any subgroup of it is normal in G. Thus there is a chain $\Gamma_{c+1}=1 \subset\left\{a_{1}\right\} \subset\left\{a_{1}, a_{2}\right\} \subset \cdots \subset\left\{a_{1}\right.$, $\left.a_{2}, \cdots, a_{m}\right\}=\Gamma_{c}(G)$, all being normal subgroups of G and having the property that the factor group of consecutive groups is cyclic. Similarly, we may insert normal subgroups between $\Gamma_{i+1}(G)$ and $\Gamma_{i}(G)$, with the property that the factor group of consecutive groups is cyclic. In this way we find a series for G which is the defining property for G to be supersolvable.

Corollary 10.2.4. A finitely generated nilpotent group satisfies the maximal condition.

A group G satisfies the maximal condition if there are no infinite ascending chains of subgroups. This is equivalent to the requirement that G and every subgroup of G be finitely generated. But we shall show in Theorem 10.5.1 that every subgroup of a supersolvable group is supersolvable and so
finitely generated. The corresponding statement is false for solvable groups. Thus if F is the free group with two generators, a, b, then $F / F^{\prime \prime}$ is a solvable group, but $F^{\prime} / F^{\prime \prime}$ has infinitely many generators $a^{-i} b^{-j} a^{i} b^{j}$.

10.3. Theory of Nilpotent Groups.

We note that if a group G is nilpotent of class c, then every commutator (a_{1} $\left.\cdots, a_{c+1}\right)$ is the identity, and conversely, that if every $\left(a_{1}, \cdots, a_{c+1}\right)=1$, then G is nilpotent of class c at most. We describe the property that $\left(a_{1}, \cdots, a_{c+1}\right)$ $=1$ for all $a_{i} \in G$ by saying that G has nil- c.

THEOREM 10.3.1. If G has nil-c, then every subgroup and factor group of G has nil-c.

Proof: If G has nil- c, then a fortiori for a subgroup H all commutators (a_{1}, \cdots, a_{c+1}) with $a_{i} \in H$ must be 1 , and so H has nil-c. Also if T is a homomorphic image of G, then every commutator $\left(b_{1}, \cdot \cdot, b_{c+1}\right)$ with $b_{i} \in T$ is the homomorphic image of some commutator $\left(a_{1}, \cdots, a_{c+1}\right)$ in G and hence is the identity, whence T has nil- c.

The following theorem applies to nilpotent normal subgroups of a group G which may not itself be nilpotent.

Theorem 10.3.2. If H, K are normal subgroups of G, and if H has nil-c and K has nil-d, then $H \cup K=H K$ has nil $-(c+d)$.

Proof: $\Gamma_{m}(H K)$ is generated by all commutators $\left(u_{1}, u_{2}, \cdots, u_{m}\right)$ with $u_{i} \in H K$, whence $u_{i}=h_{i} k_{i}, h_{i} \in H, k_{i} \in K$. We assert that $\left(u_{1}, u_{2}, \cdots\right.$ $\left.\cdot, u_{m}\right)$ is a product of commutators of the form $w=\left(v_{1}, v_{2}, \cdots v_{m}\right)$, where each v_{i} is an $h \in H$ or a $k \in K$. This is trivial for $m=1$. Suppose this to be true for $m-1$. Then

$$
\begin{aligned}
\left(u_{1}, \cdots, u_{m-1}, u_{m}\right) & =\left(w_{1} w_{2} \cdots w_{t}, h_{m} k_{m}\right) \\
& =\left(w_{1} \cdots w_{t}, k_{m}\right)\left(w_{1} \cdots w_{t}, h_{m}\right)^{k_{m}} \\
& =\left(w_{1} \cdots w_{t}, k_{m}\right)\left(w_{1}{ }^{k_{m}} \cdots w_{t}{ }^{k_{m}, h_{m}{ }^{k} m}\right) \\
& =\left(w_{1} \cdots w_{t}, k_{m}\right)\left(w_{1}^{\prime} \cdots w_{t}^{\prime}, h_{m}^{\prime}\right)
\end{aligned}
$$

by applying (10.2.1.3) and the normality of H and K.
Similarly, applying (10.2.1.2),

$$
\begin{aligned}
\left(w_{1} \cdots w_{t}, k_{m}\right) & =\left(w_{1}, k_{m}\right)^{w_{2}} \cdots w_{t}\left(w_{2} \cdots w_{t}, k_{m}\right) \\
& =\left(w_{1}^{\prime \prime}, k_{m}^{\prime \prime}\right)\left(w_{2} \cdots w_{t}, k_{m}\right) .
\end{aligned}
$$

Continuing, we finally express $\left(u_{1}, \cdots, u_{m-1}, u_{m}\right)$ as a product of terms (w, $h_{m}{ }^{(i)}$ and $\left(w, k_{m}{ }^{(i)}\right)$, which will be of the form $\left(v_{1}, \cdots, v_{m}\right)$, with each v an h or a k. This proves our assertion by induction. We have now shown that $\Gamma_{c+d+1}(H K)$ is generated by commutators $\left(v_{1}, \cdots, v_{c+d+1}\right)$, with each v_{i} an h or a k. We have in general $\left(v_{1}, \cdots, v_{t-1}, v_{t}\right)=\left(v_{1}, \cdots, v_{t-1}\right)^{-1} v_{t}^{-1}\left(v_{1}, \cdots\right.$, $\left.v_{t-1}\right) v_{t}$. By the normality of $\Gamma_{i}(H)$ in $H K$, if $\left(v_{1}, \cdots, v_{t-1}\right) \in \Gamma_{i}(H)$, then if v_{t} is a k, then $\left(v_{1}, \cdots, v_{t}\right) \in \Gamma_{i}(H)$, whereas if v_{t} is an h, then $\left(v_{1}, \cdots, v_{t}\right) \in \Gamma_{i+1}(H)$. Hence if there are as many as $(c+1) h$'s in $\left(v_{1}\right.$ $\left.\cdots, v_{c+d+1}\right)$, it will belong to $\Gamma_{c+1}(H)=1$, and hence be the identity. If not, there must be at least $(d+1) k$'s in $\left(v_{1} \cdots, v_{c+d+1}\right)$, and it will follow in the same way that it is in $\Gamma_{d+1}(K)=1$. In all cases $\left(v_{1} \cdots, v_{c+d+1}\right)=1$, and therefore $H \cup K=H K$ has nil $-(c+d)$.

Theorem 10.3.3. If a group G has nil-c, $H=H_{0}$ is any subgroup and H_{i+1} is the normalizer of H_{i} in G, then $H_{c}=G$.

Proof: $H_{0} \supseteq Z_{0}=1$ trivially. We prove by induction that $H_{m} \supseteq Z_{m}$ for all m. Assume that $H_{i} \supseteq Z_{i}$. Then by definition of Z_{i+1}, we have for any $z_{i+1} \in Z_{i+1}$ and any $g \in G, z_{i+1}^{-1} g^{-1} z_{i+1} g=z_{i} \in Z_{i}$, whence with $g^{-1}=h_{i} \epsilon H_{i}$, we have $z_{i+1}^{-1} h_{i} z_{i+1}=z_{i} h_{i} \in H_{i}$, and so Z_{i+1} normalizes H_{i} whence $H_{i+1} \supseteq Z_{i+1}$, proving our assertion by induction. Since $Z_{c}=G$, we must have $H_{c}=G$.

Corollary 10.3.1. Every proper subgroup of a nilpotent group is a proper subgroup of its normalizer.

Corollary 10.3.2. Every maximal subgroup of a nilpotent group is normal, is of prime index, and contains the derived group.

Let M be a maximal subgroup of the nilpotent group G. Since $N_{G}(M)$ properly contains M, we must have $N_{G}(M)=G$, or $M \triangleleft G$. Then, by the maximality of $M, G / M$ contains no proper subgroup, whence it must be a cyclic group of prime order. Thus M is of prime index, and as G / M is Abelian, M contains the derived group G^{\prime}.

Corollary 10.3.3. If G is nilpotent and H is a subgroup such that $G=$ $G^{\prime} H$ then $H=G$.

Here if $H \neq G$, then by the theorem, with $H=H_{0}$ and $H_{i+1}=H_{i} Z_{i+1}$, we shall have each H_{i} normal in H_{i+1}. If $H_{j} \neq G$, but $H_{j+1}=G$, then H_{j} is a proper normal subgroup of G and G / H_{j}, is Abelian, whence $H_{j} \supseteq G^{\prime}$. But then $H G^{\prime} \subseteq$ $H_{j} G^{\prime}=H_{j} \neq G$, contrary to our hypothesis. Hence we must have $H=G$, proving our theorem. Note that we have not assumed here that G possesses maximal subgroups.

Theorem 10.3.4. Finite p-groups are nilpotent. A finite group is nilpotent if, and only if, it is the direct product of its Sylow subgroups.

Proof: By Theorem 4.3.1, every finite p-group P has a center different from the identity. Hence the upper central series for P terminates with the entire group, whence P is nilpotent. The same argument holds for a direct product of finite p-groups. Now suppose that G is any finite nilpotent group, and let P be a Sylow p-subgroup of G. Then $N_{G}(P)$ is its own normalizer by Theorem 4.2.4, and by Corollary 10.3.1, $N_{G}(P)$ cannot therefore be a proper subgroup of G. Hence $P \triangleleft G$. As every Sylow subgroup of G is normal, G must be the direct product of its Sylow subgroups.

Corollary 10.3.4 (Wielandt): A finite group is nilpotent if, and only if, its maximal subgroups are normal.

For, by Corollary 10.3.2 of Theorem 10.3.3, the maximal subgroups of a nilpotent group are normal. On the other hand, by Theorem 4.2.4, $N_{G}(P)$ cannot be contained in a proper normal subgroup of G if P is a Sylow p subgroup. Hence if maximal subgroups are normal, then $P \triangleleft G$, and G is the direct product of its Sylow subgroups.

Theorem 10.3.5. If X, Y, Z are subgroups of a group G, and if K is a normal subgroup of G containing (Y, Z, X) and (Z, X, Y), then K also
contains (X, Y, Z).
Proof: From (10.2.1.4) we have

$$
(x, y, z)=\left(\left(z, x^{-1}, y^{-1}\right)^{x y}\right)^{-1}\left(\left(y^{-1}, z^{-1}, x\right)^{z y}\right)^{-1}
$$

and the conclusion follows.
Theorem 10.3.6. If $H=H_{0} \supseteq H_{1} \supseteq \cdots$ are normal subgroups of a group G such that $\left(H_{i-1}, L\right) \subseteq H_{i}$ for all i and a subgroup L, then $\left(H_{i}, \Gamma_{j}(L)\right) \subseteq H_{i+j}$.

Corollary 10.3.5. $\left(\Gamma_{i}(G), \Gamma_{j}(G)\right) \subseteq \Gamma_{i+j}(G)$.
Proof: We proceed by induction on j, the hypothesis including the case $j=$ 1. Suppose that $\left(H_{i}, \Gamma_{j-1}(L)\right) \subseteq H_{i+j-1}$ for all i. Then by induction (L, H_{i}, $\left.\Gamma_{j-1}(L)\right) \subseteq\left(H_{i+1}, \Gamma_{j-1}(L)\right) \subseteq H_{i+j}$ and $\left(H_{i}, \Gamma_{j-1}(L), L\right) \subseteq\left(H_{i+j-1}, L\right) \subseteq H_{i+j}$. Since $\left(\Gamma_{j-1}(L), L\right)=\Gamma_{j}(L)$, we may apply Theorem 10.3.5 to conclude that

$$
\left(H_{i}, \Gamma_{j}(L)\right)=\left(H_{i},\left(\Gamma_{j-1}(L), L\right)\right)=\left(\Gamma_{j-1}(L), L, H_{i}\right) \subseteq H_{i+j},
$$

the conclusion of our theorem.

10.4. The Frattini Subgroup of a Group.

Let G be an arbitrary group. We define a subgroup Φ of G, called the Frattini subgroup, in the following way: $\Phi=G \bigcap_{M} M$, where M ranges over the maximal subgroups of G if G has any maximal subgroups. Thus $\Phi=$ G if, and only if, G has no maximal subgroups. Since any automorphism of G permutes the maximal subgroups among themselves, the Frattini subgroup is clearly a characteristic subgroup.

The Frattini subgroup has an interesting relation to the generation of G. It consists of the elements of G which are nongenerators of G in the following precise sense:

Definition: An element x of a group G is said to be a nongenerator of G if whenever $G=\{T, x\}$ for a subset T of G, then also $G=\{T\}$.

Note that we require $\{T, x\}=\{T\}$ for every set T for which $\{T, x)=G$. Here if $G \neq 1$, surely 1 is a nongenerator.

Theorem 10.4.1. If a group G is not the identity alone, then its Frattini subgroup Φ consists of the set of nongenerators of G.

Proof: Let x be an element of G. If there is a maximal subgroup M which does not contain x, then the group $\{M, x\}$ properly contains M, and as M is maximal, we must have $\{M, x)=G$. But here $\{M\}=M \neq G$. Thus x is an essential generator in $\{M, x\}=G$. Thus the nongenerators of G belong to every maximal subgroup, and so every nongenerator is an element of $\Phi=G \bigcap_{M} M$. We must show conversely that if $u \in \Phi$, then u is a nongenerator of G. By hypothesis $G \neq 1$, whence 1 is surely a nongenerator.

Now suppose that $G=\{T, u\}$ for a subset T of G. We show that if $\{T\}=H$ $\neq G$, we reach a contradiction. Now if $H \neq G$, we cannot have $u \in H$, since in this case $H=\{H, u) \supseteq\{T, u\}=G$. Hence $u \notin H$. Then, by Zorn's lemma, there exists a subgroup, $K \supseteq H$ maximal with respect to the property that $u \notin K$. Now $\{K, u\} \supseteq\{T, u\}=G$, whence $\{K, u)=G$. But by our choice of K, any group containing K properly must contain u. Hence $K=M$ is a maximal subgroup not containing u, which conflicts with $u \epsilon \Phi=G \bigcap_{M} M$. Hence we must have $\{T\}=G$, and so every $u \in \Phi$ is a nongenerator of G.

Theorem 10.4.2. The Frattini subgroup of a finite group is nilpotent

Proof: Let G be a finite group and Φ its Frattini subgroup. Let P be a Sylow p-subgroup of Φ. Now Φ as a characteristic subgroup of G is a normal subgroup. Thus every conjugate of P in G lies in Φ and so is conjugate to P in Φ, being a Sylow p-subgroup of Φ. Thus P has as many conjugates in Φ as it does in G, and so $\left[G: N_{G}(P)\right]=\left[\Phi: N_{\Phi}(P)\right]$. But $\left[G: N_{\Phi}(P)\right]=[G: \Phi][\Phi:$ $\left.N_{\Phi}(P)\right]=\left[G: N_{G}(P)\right]\left[N_{G}(P): N_{\Phi}(P)\right]$, whence $[G: \Phi]=\left[N_{G}(P): N_{\Phi}(P)\right]$. We note that $N_{\Phi}(P)=N_{G}(P) \cap \Phi$ and apply the inequality on indices of Theorem 1.5.5 to find $\left[N_{G}(P) \cup \Phi: \Phi\right] \geqq\left[N_{G}(P): N_{G}(P) \cap \Phi\right]=[G: \Phi] . \quad$ From this we conclude that $N_{G}(P) \cup \Phi=G$. Now, since $G=\left\{N_{G}(P), \Phi\right\}$, we also have, removing the elements of Φ one at a time, since Φ is finite, $G=$
$\left\{N_{G}(P)\right\}=N_{G}(P)$. Thus $P \triangleleft G$, and a fortiori $P \triangleleft \Phi$. Since every Sylow subgroup of Φ is normal, Φ must be the direct product of its Sylow subgroups and is therefore a nilpotent group.

Theorem 10.4.3. The Frattini subgroup of a nilpotent group contains the derived group.

Proof: From Corollary 10.3.3 if G is nilpotent and $G=H G^{\prime}$, then $G=H$. This says that G^{\prime} can be omitted from any set of generators for G, whence it follows that $\Phi \supseteq G^{\prime}$. The converse holds for finite groups.

Theorem 10.4.4 (Wielandt). If the Frattini subgroup of a finite group G contains the derived group G^{\prime}, then G is nilpotent.

Proof: Let P be a Sylow subgroup of G. If $N_{G}(P)=H \neq G$, then H is contained in some maximal subgroup M of G. Now $M \supseteq \Phi$, and by hypothesis, $\Phi \supseteq G^{\prime}$. As G / G^{\prime} is Abelian, M is a normal subgroup of G. On the other hand, by Theorem 4.2.4, since $M \supseteq N_{G}(P), M$ is its own normalizer. This is a contradiction and we conclude that we must have $N_{G}(P)=G$. The Sylow subgroups of G all being normal, we conclude that G is their direct product and is nilpotent.

10.5. Supersolvable Groups.

Theorem 10.5.1. Subgroups and factor groups of supersolvable groups are supersolvable.

Proof: Let G be supersolvable and $G=A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \cdots \supseteq A_{r}=1$ be a normal series with every A_{i-1} / A_{i} a cyclic group. Then, for a factor group G / K $=T$, the homomorphic images B_{i} of the A_{i} will form a normal series $T=B_{0} \supseteq$ $B_{1} \supseteq B_{2} \supseteq \cdots \supseteq B_{r}=1$, where, if we delete repetitions of the same group, consecutive terms B_{i-1}, B_{i} will have a cyclic factor group B_{i-1} / B_{i} since every homomorphic image of a cyclic group is cyclic or the identity. For a subgroup H take

$$
H=C_{0} \supseteq C_{1} \supseteq C_{2} \supseteq \cdots \supseteq C_{r}=1
$$

where $C_{i}=H \cap A_{i}$. For every $i, H \cap A_{i}$ is normal in H, and by Theorem 2.4.1, we have $C_{i} / C_{i+1}=H \cap A_{i} / H \cap A_{i+1} \cong A_{i+1} \cup\left(H \cap A_{i}\right) / A_{i+1}$. But the right-hand side of this is a subgroup of A_{i} / A_{i+1}, and hence cyclic or the identity. Thus C_{i} / C_{i+1} is cyclic or the identity, and so H is supersolvable.

Corollary 10.5.1. Supersolvable groups satisfy the maximal condition.
A supersolvable group is finitely generated, and by Theorem 10.5.1, its subgroups are also finitely generated, whence the maximal condition will be satisfied.

Theorem 10.5.2. A supersolvable group G has a normal series $G=B_{0}$ Ј $B_{1} \supset \mathrm{~B}_{2} \supset \cdots \supset B_{k}=1$ in which every factor group B_{i-1} / B_{i} is either infinite cyclic or cyclic of prime order.

Proof: Let $G=A_{0} \supset A_{1} \supset A_{2} \supset \cdots \supset A_{r}=1$ be a normal series, with each A_{i-1} / A_{i} cyclic. If A_{j-1} / A_{j} is of finite order $p_{1} p_{2} \cdots p_{s}$, where p_{1}, p_{2}, \cdots, p_{s} are primes (not necessarily distinct), then A_{j-1} / A_{j} has a unique cyclic subgroup of each of the orders $p_{1}, p_{1} p_{2}, \cdots, p_{1} \cdots p_{s-1}$, and these are characteristic subgroups. Hence the $s-1$ corresponding subgroups between A_{j-1} and A_{j} are normal in G, and the factor groups of consecutive groups are cyclic of prime order. Refining in this way every factor group A_{j-1} / A_{j} of finite order, we obtain the normal series of the theorem in which every factor group is either infinite cyclic or cyclic of prime order.

This theorem can be further improved since we can rearrange the prime factor groups according to the magnitude of the primes.

Theorem 10.5.3. A supersolvable group G has a normal series

$$
G=C_{0} \supset C_{1} \supset C_{2} \supset \cdots \supset C_{k}=1
$$

in which every C_{i-1} / C_{i} is either infinite cyclic or cyclic of prime order, and if C_{i-1} / C_{i} and C_{i} / C_{i+1} are of prime orders p_{i} and p_{i+1}, we have $p_{i} \leq p_{i+1}$.

Proof: Take a series $G=B_{0} \supset B_{1} \supset B_{2} \supset \cdots \supset B_{k}=1$ given by Theorem 10.5.2. If B_{i-1} / B_{i} and B_{i} / B_{i+1} are of prime orders q and p, respectively, with q $>p$, then B_{i-1} / B_{i+1} is of order $p q$, with $p<q$, and this has a characteristic
subgroup of order q whose inverse image B_{i}^{*} will be normal in G. If we replace B_{i} by $B_{i}{ }^{*}$, then $B_{i-1} / B_{i}{ }^{*}$ will be of order p and $B_{i}{ }^{*} / B_{i+1}$ will be of order q. Continuing this process, which does not alter the length of the normal series, we shall ultimately get a series in which the orders of consecutive factor groups of prime order do not increase in magnitude, as stated in the theorem.

Corollary 10.5.2. If G is a finite supersolvable group of order $p_{1} p_{2} \cdots$ - p_{r}, where $p_{1} \leq p_{2} \leq \cdots \leq p_{r}$ are primes, then G has a chief series $G=A_{0}$ Ј $A_{1} \supset \cdots \supset A_{r}=1$, where A_{i-1} / A_{i} is of order p_{i}.

Theorem 10.5.4. The derived group of a supersolvable group is nilpotent.

Proof: Suppose $G=A_{0} \supset A_{1} \supset \cdots \supset A_{r}=1$ is a normal series for G, with A_{i-1} / A_{i} cyclic. Write $H_{i}=G^{\prime} \cap A_{i}$. Then $G^{\prime}=H_{0} \supseteq H_{1} \supseteq \cdots \supseteq H_{r}=1$ is a normal series, and the distinct terms of this series K_{i} are such that $G^{\prime}=K_{0} \supset$ $K_{1} \supset \cdots \supset K_{s}=1$, with K_{i-1} / K_{i} cyclic. We assert that the K 's form a central series for G^{\prime}. Every K_{i} is the intersection of normal subgroups of G, and hence normal in G. Thus, in $G / K_{i}, K_{i-1} / K_{i}$ is a cyclic normal subgroup, and transformation by an element of G induces an automorphism in the cyclic group K_{i-1} / K_{i}. Now the automorphisms of a cyclic group form an Abelian group, and so two elements of G / K_{i} induce permuting automorphisms in K_{i-1} / K_{i}. But then the commutator of any two elements $x^{-1} y^{-1} x y$ induces the identical automorphism in K_{i-1} / K_{i}. But this is to say that in $G^{\prime} / K_{i}, K_{i-1} / K_{i}$ lies in the center, and therefore the K 's form a central series for G^{\prime}, and so G^{\prime} is nilpotent.

There is a very interesting property of chains of arbitrary subgroups in a supersolvable group. We shall say that H_{2} is of index ∞^{1} in H_{1} if $H_{1}=\sum_{x} H_{2} a^{x}$ for some element a and x running over all integers from $-\infty$ to $+\infty$. Thus if $A_{j} \triangleleft A_{j-1}$ and A_{j-1} / A_{j} is an infinite cyclic group, then A_{j} is of index ∞^{1} in A_{j-1}, since for a we may take any element of the coset of
A_{j} which is a generator of the cyclic group A_{j-1} / A_{j}. But H_{2} may be of index $\infty{ }^{1}$ in H_{1} without being normal in H_{1}.

THEOREM 10.5.5. In a supersolvable group G any chain of subgroups G $=M_{0} \supset M_{1} \supset M_{2} \supset \cdots \supset M_{s}=1$ may be refined by the insertion of further groups:
$M_{i-1}=M_{i, 0} \supset M_{i, 1} \supset \cdots \supset M_{i, t}=M_{i}, \quad t=t(i), \quad i=1, \cdots, s$, so that $M_{i, j}$ is of prime index or index ∞^{1} in $M_{i, j-1}$.

Proof: Since M_{1} is supersolvable, it is sufficient to show that the series may be refined by inserting terms between $G=M_{0}$ and M_{1} with the required properties. For repeating the argument with M_{1}, \cdots, M_{s-1} in turn, we may refine the entire series.

Let $G=A_{0} \supset A_{1} \supset A_{2} \supset \cdots \supset A_{r}=1$ be a normal series for G, where each A_{i-1} / A_{i} is cyclic of prime or infinite order. Surely $M_{1} \supseteq A_{r}=1$ and $M_{1} \mp A_{0}=G$. Hence for some i in the range $1, \cdots, r$ we have $M_{1} \supseteq$ A_{i}, and $M_{1} \nsupseteq A_{i-1}$. We consider two cases: (1) A_{i-1} / A_{i} of prime order, and (2) A_{i-1} / A_{i} infinite cyclic.

Case 1. A_{i-1} / A_{i} of Prime Order. Here $A_{i-1} \supset M_{1} \cap A_{i-1} \supseteq A_{i}$. Since A_{i} is of prime index in A_{i-1}, there can be no subgroup between A_{i} and A_{i-1}. Hence $M_{1} \cap A_{i-1}=A_{i}$. If $A_{i-1}=\sum_{x} A_{i} a^{x}, x=0, \cdots, p-1$, then $M_{1} \cup A_{i-1}=$ $M_{1} A_{i-1}=M_{1}{ }^{*}$, and $M_{1}^{*}=\sum_{x} M_{1} a^{x}, x=0,1, \cdots, p-1$ since M_{1} contains A_{i} and $\boldsymbol{a}^{p} \in A_{i}$ but not the element a. Here M_{1} is of prime index in $M_{1}{ }^{*}$ and $M_{1}{ }^{*} \supseteq A_{i-1}$.

CASE 2. A_{i-1} / A_{i} Infinite Cyclic. Here $A_{i-1} \supset M \cap A_{i-1} \supseteq A_{i}$. Now every subgroup of A_{i-1} / A_{i} is characteristic, whence $M_{1} \cap A_{i-1}$ is a normal subgroup of G. If $M_{1} \cap A_{i-1}=A_{i}$ and $A_{i-1}=\sum_{x} A_{i} a^{x}$, then put
$M_{1}{ }^{*}=M_{1} \cup A_{i-1}=M_{1} A_{i-1}=\sum_{x} M_{1} a^{x}$, and M_{1} is of index ∞^{1} in $M_{1}{ }^{*}$, since M_{1} contains A_{i} but no power of the element a. But if $M_{1} \cap A_{i-1} \supset A_{i}$, then since every subgroup of an infinite cyclic group is of finite index, $M_{1} \cap A_{i-1}$ is of finite index in A_{i-1}. Thus in our normal series we may insert terms between A_{i-1} and $M_{1} \cap A_{i-1}$ each of prime index in the one above, and as in Case 1, find an $M_{1}{ }^{*}$ in which M_{1} is of prime index. Repeating the construction, we find a chain $M_{1} \subset M_{1}{ }^{*} \subset M_{1}{ }^{* *} \ldots \subset M_{1}{ }^{(u)}$ with each of prime index in the next and $M_{1}{ }^{(u)} \supseteq A_{i-1}$.

Continuing the construction, we shall in a finite number of steps reach an $M_{1}{ }^{(v)} \supseteq A_{0}=G$ and thus have found the refinement between G and M_{1} as required for the theorem. As already remarked, the same procedure will give the needed refinement for the entire chain.

For finite groups this theorem takes an interesting form.
Theorem 10.5.6. In a finite supersolvable group G, all maximal chains of subgroups have the same length, this being the number r if G is of order $p_{1} p_{2} \cdots p_{r}$, the p 's being primes, but not necessarily distinct.

Proof: By the previous theorem, in a maximal chain every index of one subgroup in the next is a prime, and so the length of a maximal chain is r.

Corollary 10.5.1. Every maximal subgroup of a finite supersolvable group is of prime index.

It is a remarkable fact, first proved by Huppert [1], that the converse of this corollary is true. For this we must use some of the theorems on group representation which will be proved in Chap. 16. First we give an unpublished theorem of P. Hall.

Theorem 10.5.7 (P. Hall). Suppose G is a finite group with the property (M) that all its maximal subgroups are of index a prime, or the square of a prime. Then G is solvable.

Proof: We proceed by induction on the order of G. Let p be the largest prime dividing this order, S a Sylow p-subgroup of G, N its normalizer in G. If $N=G, S$ is normal in G and G / S has property (M), whence G / S is solvable
by induction. S is a p-group and so G is solvable. If on the other hand, $N \subset G$, choose a maximal subgroup H of G containing $N . N$ is the normalizer of S in H as well as in G, and so $[G: N]=1+k_{1} p,[H: N]=1+k_{2} p$ by the third Sylow theorem, these being the number of Sylow p-subgroups in G and H, respectively. Hence $[G: H]=1+k p$. But by hypothesis $[G: H]=q$ or q^{2} for some prime q; and clearly, $q<p, k>0$. Hence $k p=q^{2}-1=(q-1)(q+1)$. Since $p \geq q+1$, we must have $p=q+1$. This is possible only if $p=3, q=2$, and the order of G is of the form $2^{a} 3^{b}$. By Theorem 16.8.7, G is solvable.

Theorem 10.5.8 (Huppert). Suppose G is a finite group with the property $\left(M^{1}\right)$ that all its maximal subgroups are of index a prime. Then G is supersolvable.

Proof: If the theorem is not true, choose G to have property $\left(M^{1}\right)$, but to be not supersolvable, and to have the smallest possible order subject to these two conditions. Then G is solvable by Theorem 10.5.7. Let N be a minimal normal subgroup of G, and let its order be p^{α}, p prime. By the minimal property of $G, G / N$ is supersolvable so that, of the chief factors of G, only N is noncyclic. We conclude that N is the only minimal normal subgroup of G. Let H / N be a minimal normal subgroup of G / N. There are two cases according to whether (1) $[H: N]=p$, (2) $[H: N]=q$, a prime different from p. In case (1) H must be Abelian, since otherwise we would have $1 \subset H^{\prime} \subset N$ and H^{\prime} normal in G. Since $\alpha>1, H$ cannot have elements of order p^{2}, for this would make N contain a characteristic subgroup of H of order p-the same argument again. Thus H is elementary Abelian.

We now have G represented in a natural way by automorphisms of H, i.e., effectively by linear transformations modulo p of degree $\alpha+1$ (since H is of order $p^{\alpha+1}$). Let K be the set of all elements $a \in G$ such that for $x \in H$, we have $a^{-1} x a=x^{m}$, where $m=m(a)$ is independent of x, and let L be the centralizer of H in G. Then K / L is contained in the center of G / L. Also, $K \subset$ G, since N is the only minimal normal subgroup of G, and every subgroup of H is normal in K. Let M / K be a minimal normal subgroup of G / K. If $[M: K]=$ p, we shall have M / L as a direct product of K / L, which is of order prime to p and in the center of G / L, with a group $\{L, a\} / L$, say, of order p, and $M_{1}=\{L$, $a\}$ will be normal in G. Since the group of commutators $(N, L)=1$ and $\left[M_{1}: L\right]$ $=p, N$ must contain elements $\neq 1$ in the center of M_{1}. The center of M_{1} is a
normal subgroup of G, and so by the minimality of N, N is in the center of M_{1} and $\left(M_{1}, N\right)=1$. If $H=\{N, b\}$, the group $\left(H, M_{1}\right)$ will be of order p and generated by $(a, b)=c \in N, c \neq 1$. This group is, however, normal in G, and hence N could not be a minimal normal subgroup of G.

Therefore $[M: K]=q$, some prime different from p, and so M / L is of order prime to p. By the Theorem of Complete Reducibility, Theorem 16.3.1, it follows that $H=N \times P$, where P is normal in M and of order p. The conjugates of P in G are normal subgroups of order p in M and their union Q is a normal subgroup of G. Since N is the only minimal normal subgroup of G and $Q \neq N$, it follows that $Q=H$. Since P does not lie in N, no conjugate of P lies in N. Let $P=\{b\}$, where $b^{p}=1$, and if P_{i} is any conjugate of P except itself, then $P P_{i} \cap N=R$, where, since $[H: N]=p, R$ is of order p. We may take a generator c of P_{i} such that $P_{i}=\{c\}, R=\{b c\}$. Since P, P_{i}, and R are normal subgroups of M, it follows that for any a of $M, a^{-1} b a=b^{m}, a^{-1} c a=c^{n}$, $a^{-1}(b c) a=(b c)^{t}$. But then $(b c)^{t}=b^{m} c^{n}$ and $t=n=m$. But P_{i} was any conjugate of P, and it follows that for any x of H we have $a^{-1} x a=x^{m}$, where $m=m(a)$ is independent of x. Hence $M \subseteq K$ is a contradiction. Thus case (1) cannot arise.

Case (2) can be dismissed at once. If $[H: N]=q$ different from p, let Q be a Sylow q-subgroup of $H ; T$ the normalizer of Q in G. Any conjugate of Q in G lies in H, and hence is a conjugate of Q by an element of N. Hence $G=N T$. Then $N \cap T$ is normal in G. But $T \nsupseteq N$, since this would make $T=G$ and Q normal in G. Hence $N \cap T=1,[G: T]=p^{\alpha}$. But T is a maximal subgroup of G, since if $T \subset T_{1} \subset G$ we should have $1 \subset T_{1} \cap N \subset N$ and $T_{1} \cap N$ normal in G. Thus G has a maximal subgroup of index not a prime, contrary to hypothesis.

EXERCISES

1. Let $I^{(1)}=I^{(1)}(G)$ be the group of inner automorphisms of a group G and $I^{(n)}$ the group of inner automorphisms of $I^{(n-1)}$. If any group of the sequence $G, I^{(1)}, I^{(2)}, \cdots$ is the identity, show that G is nilpotent.
2. Let G be a group satisfying the maximal condition. If $A(G)$, the group of automorphisms of G, is supersolvable, show that G is supersolvable.
3. Let a and b be elements of a nilpotent group G, where $a^{m}=b^{n}=1$ and $(m, n)=1$. Put $w=$ $a^{-1} b^{-1} a b$. Show that if $w \in \Gamma_{i}(G)$, then $w^{m} \in \Gamma_{i+1}(G), w^{n} \in \Gamma_{i+1}(G)$, whence $w \in \Gamma_{i+1}(G)$. Hence conclude $w=1, b a=a b$.
4. Prove the converse of Ex. 2 of Chap. 8, i.e.: If G is a finite nilpotent group and if $p_{1}, p_{2}, \cdots, p_{S}$ is any arrangement of the primes whose product is the order of G, then G has a composition series $G=A_{0} \supset A \supset \cdots \supset A_{S}=1$, where A_{i-1} / A_{i} is of order p_{i}.
5. Let G be a p-group with $\Gamma_{3}(G)=1$. Show that if p^{m} is the highest order of an element of $G /$ $\Gamma_{2}(G)$, then no element of $\Gamma_{2}(G)$ has an order higher than p^{m}.
$\stackrel{*}{-}$ Historically, this property of a composition series was the original definition of solvability, but such a definition is inapplicable to infinite groups. The Galois theory shows that a polynomial equation $f(x)=0$ is solvable by radicals if, and only if, its Galois group is solvable.

11. BASIC COMMUTATORS

11.1. The Collecting Process.

We consider formal words or strings $b_{1} b_{2} \cdots b_{n}$ where each b is one of the letters $x_{1}, x_{2}, \cdots, x_{r}$. We also introduce formal commutators c_{j} and weights $\omega\left(c_{j}\right)$ by the rules:

1) $c_{i}=x_{i}, i=1, \cdots, r$ are the commutators of weight 1 ; i.e., $\omega\left(x_{i}\right)=1$.
2) If c_{i} and c_{j} are commutators, then $c_{k}=\left(c_{i}, c_{j}\right)$ is a commutator and $\omega\left(c_{k}\right)=\omega\left(c_{i}\right)+\omega\left(c_{j}\right)$.

Note that these definitions yield only a finite number of commutators of any given weight. We shall order the commutators by their subscripts, numbering $c_{i}=x_{i}, i=1, \cdots, r$, and listing in order of weight, but giving an arbitrary ordering to commutators of the same weight.

A string $c_{i 1} \cdots c_{i m}$ of commutators is said to be in collected form if $i_{1} \leq$ $i_{2} \leq \cdots \leq i_{m}$, i.e., if the commutators are in order read from left to right. An arbitrary string of commutators,

$$
\begin{equation*}
c_{i_{1}} \cdots c_{i_{m}} c_{i_{m+1}} \cdots c_{i_{n}} \tag{11.1.1}
\end{equation*}
$$

will in general have a collected part $c_{i 1} \cdots c_{i m}$ if $i_{1} \leq \cdots \leq i_{m}$ and if $i_{m} \leq i_{j}$ $\leq i_{j}, j=m+1, \cdots, n$, and will have an uncollected part $c_{i m+1} \cdots c_{i n}$, where i_{m+1} is not the least of $i_{j}, j=m+1, \cdots, n$. The collected part of a string $c_{i 1}$. $\cdots c_{i_{n}}$ will be void unless i_{1} is the least of the subscripts.

We define a collecting process for strings of commutators. If c_{u} is the earliest commutator in the uncollected part and if $c_{i j}=c_{u}$ is the leftmost uncollected c_{u}, we replace

$$
c_{i_{1}} \cdots c_{i_{m}} \cdots c_{i_{-1}} c_{j} \cdots c_{i_{n}}
$$

by

$$
c_{i_{1}} \cdots c_{i_{m}} \cdots c_{i_{j}} c_{i_{j_{-1}}}\left(c_{i_{j_{-1}}}, c_{i j}\right) \cdots c_{i_{n}} .
$$

This has the effect of moving $c_{i j}$ to the left and introducing the new commutator $\left(c_{i j-1}, c_{i j}\right)$ which by its weight is surely later than $c_{i j}$. Thus $c_{i j}$ is still the earliest commutator in the uncollected part. After enough steps $c_{i j}$ will be moved to the $(m+1)$ st position and will become part of the collected part. Since at each step a new commutator is introduced, the process will not in general terminate.

If x_{1}, \cdots, x_{r} are generators of a group F (and we shall be concerned chiefly with the case in which F is the free group with these generators), and if a commutator $(u, v)=u^{-1} v^{-1} u v$, then we note that

$$
\begin{equation*}
c_{i_{j-1}} c_{i_{j}}=c_{i_{j}} c_{i_{j-1}}\left(c_{i_{j-1}}, c_{i_{j}}\right) \tag{11.1.2}
\end{equation*}
$$

and that the collecting process does not alter the group element represented by a word. As it stands, the collecting process has not been defined for all elements of F but only for the positive words, those elements which can be expressed as a product of the generators without using any inverses of generators. This defect will be remedied below.

In applying the collecting process to a positive word, not all commutators will arise. Thus $\left(x_{2}, x_{1}\right)$ may arise but not $\left(x_{1}, x_{2}\right)$, since x_{1} is collected before x_{2}. The commutators that may actually arise are called basic commutators. We give a formal definition of the basic commutators for a group F generated by x_{1}, \cdots, x_{r}.

Definition of Basic Commutators:

1) $c_{i}=x_{i}, i=1, \cdots, r$ are the basic commutators of weight one, $\omega\left(x_{i}\right)=$ 1.
2) Having defined the basic commutators of weight less than n, the basic commutators of weight n are $c_{k}=\left(c_{i}, c_{j}\right)$, where
(a) c_{i} and c_{j} are basic and $\omega\left(c_{i}\right)+\omega\left(c_{j}\right)=n$, and
(b) $c_{i}>c_{j}$, and if $c_{i}=\left(c_{s}, c_{t}\right)$, then $c_{j} \geq c_{t}$.
3) The commutators of weight n follow those of weight less than n and are ordered arbitrarily with respect to each other. Basic commutators will always be numbered so that they are ordered by their subscripts.

We note that if commutators are ordered according to weight, but arbitrarily otherwise, the collection process when applied to a positive word will yield only basic commutators. For, in replacing

$$
\begin{equation*}
c_{u} c_{v}=c_{v} c_{u}\left(c_{u}, c_{v}\right) \tag{11.1.3}
\end{equation*}
$$

we collect c_{v} before c_{u}, whence $c_{u}>c_{v}$, and if $c_{u}=\left(c_{s}, c_{t}\right)$, we have collected c_{t} before collecting this c_{v}, whence $c_{v} \geq c_{t}$.

We shall now show that modulo $\Gamma_{k+1}(F)$, the $(k+1)$ st term of the lower central series of F (k being arbitrary), which we shall write F_{k+1}, an arbitrary element, can be written in the form

$$
\begin{equation*}
f=c_{1}{ }_{1} c_{2}{ }^{e_{2}} \cdots c_{t}{ }^{e_{t}} \bmod F_{k+1} \tag{11.1.4}
\end{equation*}
$$

where c_{1}, \cdots, c_{t} are the basic commutators of weights $1,2, \cdots, k$. In the collection process we have

$$
\begin{equation*}
v u=u v(v, u) \tag{1í.1.5}
\end{equation*}
$$

where u, v, and (v, u) are basic commutators. We must also consider collecting u or u^{-1} in expressions $v u^{-1}, v^{-1} u^{-1}$, and $v^{-1} u$. Now $v u^{-1}=u^{-1} v(v$, u^{-1}), and from (10.2.1.3) we have

$$
\begin{equation*}
1=\left(v, u u^{-1}\right)=\left(v, u^{-1}\right)(v, u)\left(v, u, u^{-1}\right) \tag{11.1.6}
\end{equation*}
$$

whence $\left(v, u^{-1}\right)=\left(v, u, u^{-1}\right)^{-1}(v, u)^{-1}$. Similarly, $\left(v, u, u^{-1}\right)=(v, u, u$, $\left.u^{-1}\right)^{-1}(v, u, u)^{-1}$. Writing $v_{0}=v, v_{t+1}=\left(v_{t}, u\right)$, we have
(11.1.7)

$$
\begin{aligned}
\left(v, u^{-1}\right) & =\left(v_{1}, u^{-1}\right)^{-1} v_{1}^{-1} \\
& =v_{2}\left(v_{2}, u^{-1}\right) v_{1}^{-1} \\
& =v_{2} v_{4} \cdots v_{5}^{-1} v_{3}^{-1} v_{1}^{-1}\left(\bmod F_{k+1}\right)
\end{aligned}
$$

and we note that if $v_{1}=(v, u)$ is basic, then also $v_{2}, v_{3} \cdots$ are basic. Modulo F_{k+1} we may ignore $\left(v_{s}, u^{-1}\right)$ if s is so large that this is of weight $k+1$ or higher. Hence as a step in collection we have
(11.1.8) $\quad v u^{-1}=u^{-1} v \cdot v_{2} v_{4} \cdots v_{5}^{-1} v_{3}^{-1} v_{1}^{-1}\left(\bmod F_{k+1}\right)$.

Similarly,

$$
\begin{equation*}
v^{-1} u=u(v, u)^{-1} v^{-1} \tag{11.1.8}
\end{equation*}
$$

Also, $v^{-1} u^{-1}=u^{-1}\left(u v u^{-1}\right)^{-1}$, and from (11.1.8),

$$
\begin{equation*}
u v u^{-1}=v \cdot v_{2} v_{4} \cdots v_{5}^{-1} v_{3}^{-1} v_{1}^{-1}\left(\bmod F_{k+1}\right), \tag{11.1.10}
\end{equation*}
$$

whence

$$
\begin{equation*}
v^{-1} u^{-1}=u^{-1} v_{1} v_{3} v_{5} \cdots v_{4}^{-1} v_{2}^{-1} v^{-1}\left(\bmod F_{k+1}\right) \tag{11.1.11}
\end{equation*}
$$

Repeated applications of (11.1.5, -8, -9, -11) will lead to the expression (11.1.4) for an arbitrary element f in terms of a sequence of basic commutators.

If F is the free group generated by $x_{1}, x_{2}, \cdots x_{r}$, then for a given sequence of basic commutators we shall show in $\$ 11.2$ that the expression (11.1.4) is unique. In particular the basic commutators of weight k are a free basis for F_{k} / F_{k+1}, which is consequently a free Abelian group. This is, of course, the justification for the term basic as applied to these commutators.

11.2. The Witt Formulae. The Basis Theorem.

Suppose we are given a sequence of basic commutators c_{1}, c_{2}, formed from the generators $x_{1}, x_{2}, \cdots, x_{r}$. We call a product of basic commutators,

$$
\begin{equation*}
c_{i_{1}} c_{i_{2}} \cdots c_{i_{n}} \tag{11.2.1}
\end{equation*}
$$

a basic product if it is in collected order, i.e., $i_{1} \leq i_{2} \leq \cdots \leq i_{n}$. For an arbitrary product of commutators $p=a_{1} a_{2} \cdots a_{n}$, we define the weight $\omega(p)$ as $\omega(p)=\omega\left(a_{1}\right)+\cdots+\omega\left(a_{n}\right)$. The collecting process alters the weight of a product. We define here a bracketing process similar to the collecting process which leaves weights unchanged. In this if u, v, and (u, v) are basic commutators, we replace

$$
\cdots u v \cdots \quad \text { by } \quad \cdots(u, v) \cdots,
$$

rather than the $\cdots v u(u, v) \cdots$ of the collecting process.
Theorem 11.2.1. The number of basic products of weight n formed from generators x_{1}, \cdots, x_{r} is r^{n}.

Proof: For each $k=1,2, \cdots$ we define the family $P_{k}=P_{k}{ }^{(n)}$ of all products of weight $n, a_{1} a_{2} \cdots a_{t}$, the a's being basic commutators which are of the form

$$
\begin{equation*}
c_{1}{ }_{1} c_{2}{ }^{e}{ }_{2} \cdots c_{k}{ }^{e} k c_{i_{1}} \cdots c_{i_{s}}, \tag{11.2.2}
\end{equation*}
$$

where $e_{i} \geq 0, i_{1}>k, i_{2}, \cdots, i_{s} \geq k$, and for each $c_{i j}$ which is a commutator, $c_{i j}$ $=\left(c_{u}, c_{v}\right), c_{v}$ precedes c_{k}. Thus P_{k} may be regarded as the family in which c_{1} \cdots, c_{k-1} have been collected but not c_{k}. We denote the number of products in P_{k} by $\left|P_{k}\right|$. Clearly, P_{1} is the family of all products of n generators, and so $\left|P_{1}\right|=r^{n}$. But we may set up a one-to-one correspondence between the members of P_{k} and P_{k+1}. For, if $c_{1}{ }_{1}^{e} \cdots c_{k}{ }_{k}{ }_{k} c_{i 1} \cdots c_{i s}$ is a member of $P_{k}, c_{i 1}$ is later than c_{k} and so, though there may be a succession of c_{k} 's in the uncollected part, each such string is immediately preceded by a c_{y} with $y>k$. For each string

$$
c_{y} c_{k} \cdots c_{k} c_{w} \quad y>k, \quad w>k
$$

we bracket $\left(\left(\left(c_{y}, c_{k}\right), c_{k}\right) \cdots, c_{k}\right) c_{w}$, and since if $c_{y}=\left(c_{u}, c_{v}\right), k>v$, the new commutator introduced is basic and later than c_{k}. This gives a unique
member of P_{k+1}. Conversely, if in a member of P_{k+1} we remove all brackets involving c_{k}, we have a unique member of P_{k}. Hence $\left|P_{k}\right|=\left|P_{k+1}\right|$, and so for every $k,\left|P_{k}\right|=\left|P_{1}\right|=r^{n}$. But for k sufficiently large, P_{k} consists of all basic products of weight n. This proves the theorem.

We may use Theorem 11.2.1 to find the number of basic commutators of weight n, and even more, we may find the number of basic commutators whose weights in each generator are specified. We define weights $\omega_{i}(c), i=$ $1, \cdots, r$ by the rules $\omega_{i}\left(x_{i}\right)=1, \omega_{i}\left(x_{j}\right)=0, i \neq j$, and recursively by $\omega_{i}\left[\left(c_{u}\right.\right.$, $\left.\left.c_{v}\right)\right]=\omega_{i}\left(c_{u}\right)+\omega_{i}\left(c_{v}\right)$. Let $M_{r}(n)$ be the number of commutators of weight n in r generators $x_{1}, x_{2}, \cdots, x_{r}$, and let $M\left(n_{1}, n_{2}, \cdots n_{r}\right)$ be the number of commutators c such that $\omega_{i}(c)=n_{i}, i=1, \cdots, r$, with $n=n_{1}+n_{2}+\cdots+n_{r}$.

Theorem 11.2.2 (Theorem of Witt).

$$
\begin{gather*}
M_{r}(n)=\frac{1}{n} \sum_{d \mid n} \mu(d) r^{n / d} \tag{11.2.3}\\
(11.2 .2 .4) \quad M\left(n_{1}, n_{2}, \cdots, n_{r}\right)=\frac{1}{n} \sum_{d \mid n_{i}} \mu(d)\left(\frac{n}{d}\right)!/\left(\frac{n_{1}}{d}\right)!\cdots\left(\frac{n_{r}}{d}\right)!
\end{gather*}
$$

Here $\mu(m)$ is the Môbius function which is defined for positive integers by the rules $\mu(1)=+1$, and for $n=p_{1}{ }^{e}{ }_{1} \cdots p_{s}{ }_{s}{ }_{s} ; p_{1}, \cdots p_{s}$ being distinct primes, $\mu(n)=0$ if any $e_{i}>1$, and $\mu\left(p_{1} p_{2} \cdots p_{s}\right)=(-1)^{s}$.

Proof: From Theorem 11.2.1 the number of basic products is r^{n}. This leads to the formal identity in a power series for a variable z,

$$
\begin{equation*}
\frac{1}{1-r z}=\prod_{n=1}^{\infty}\left(1-z^{n}\right)^{-M_{r}(n)} \tag{11.2.5}
\end{equation*}
$$

The bracketing process leaves all the weights $\omega_{i}, i=1, \cdots, r$ unchanged. The number of words W in the x 's with $\omega_{i}(W)=n_{i}$ is, of course, the multinomial coefficient

$$
\frac{n!}{n_{1}!\cdots, n_{r}!}
$$

This leads to the formal identity in variables z_{1}, \cdots, z_{r}
(11.2.6) $\frac{1}{1-z_{1}-\cdots-z_{r}}=\prod_{n_{1}, \ldots, n_{r}=0}^{\infty}\left(1-z_{1}^{n_{1}} \cdots z_{r}^{n_{r}}\right)^{-M\left(n_{1}, \ldots, n_{r}\right)}$.

Witt [2] used these identities, taking logarithms, and applied Möbius inversion to find the formulae of the theorem. Here we shall modify a result of Meier-Wunderli [1], proving it along lines similar to those of the proof of Theorem 11.2.1 to obtain the Witt formulae.

We call a word $a_{1} \cdots a_{n}$ circular if a_{1} is regarded as following a_{n}, where $a_{1} a_{2} \cdots a_{n}, a_{2} \cdots a_{n} a_{1} \cdots, a_{n} a_{1} \cdots a_{n-1}$ are all regarded as the same word. A circular word C of length n may conceivably be given by repeating a segment of d letters n / d times, where d is some divisor of n. We say that C is of period d if this is the case. Each circular word belongs to a unique smallest period, and this smallest period d corresponds to a unique circular word of length d.

Lemma 11.2.1. There is a one-to-one correspondence between basic commutators of weight n and circular words of length and period n. This is given by an appropriate bracketing of the circular word.

Proof : Let $a_{1} a_{2} \cdots a_{n}$ be a circular word of length n. The circular words of weight n form a family $C_{k}{ }^{n}=C_{k}$ if they are of the form $c_{i 1} c_{i 2} \cdots$ $c_{i s}$, where the c 's are basic commutators and for any $c_{i j}=c_{w}$ which is a commutator $c_{w}=\left(c_{u}, c_{v}\right)$, we have $v<k$ and either (1) $i_{1}=i_{2} \cdots=i_{s}$ (including the case $s=1$) or (2) $i_{1}, \cdots, i_{s} \geq k$ and some $i_{j}>k$. If (1) holds, the word is as it stands a word of C_{k+1}. If (2) holds, we take every circular subsequence (if any) of the form

$$
c_{w}, c_{k}, \cdots, c_{k}, c_{t}, w>k, t>k
$$

and bracket thus:

$$
\left(\left(\cdots\left(\left(c_{w}, c_{k}\right), \cdots, c_{k}\right) c_{t}\right.\right.
$$

obtaining a unique circular word of C_{k+1}. By removing the brackets involving c_{k} from a word of C_{k+1}, we obtain a unique word of C_{k}. Thus there is a unique correspondence between words of C_{1} and words of C_{k} for arbitrary k. If k is large enough, the commutator c_{k} is of weight greater than n and (2) cannot hold. Hence, ultimately, our bracketing ceases and (1) holds. Here our word is either a basic commutator of weight n or a succession of $s=n / d$ identical basic commutators of weight d. A bracketing by which we pass from C_{k} to C_{k+1} involves one c_{w} and a number of c_{k} 's. Hence each such bracketing lies in a single period and will be exactly duplicated in every other period. Thus at every stage the number of periods in a word is the same. Hence bracketing all circular words of length n yields all basic commutators of weight n and for $d \mid n$ all basic commutators of weight d repeated identically n / d times, for these are the members of C_{k} if k is sufficiently large. This proves the lemma and somewhat more.

How many circular words of length and period n are there? A circular word of length n and period $d, d \mid n$ yields exactly d ordinary words of length n :

$$
\begin{aligned}
& a_{1} \cdots a_{d} a_{1} \cdots a_{d} \cdots a_{1} \cdots a_{d} \\
& a_{2} \cdots a_{d} a_{1} \cdots a_{1} \cdots a_{d} a_{1} \\
& a_{d} a_{1} \cdots a_{d} \cdots a_{1} \cdots a_{d-1} .
\end{aligned}
$$

Thus

$$
r^{n}=\sum_{d \mid n} d M_{r}(d)
$$

since the number of circular words of length and period d is $M_{r}(d)$ and every one of the r^{n} ordinary words corresponds to a unique period d. From

$$
\begin{equation*}
r^{n}=\sum_{d \mid n} d M_{r}(d) \tag{11.2.7}
\end{equation*}
$$

we may find $M_{r}(n)$, since the Möbius inversion formula* says that if

$$
\begin{equation*}
f(n)=\sum_{d \mid n} g(d) \tag{11.2.8}
\end{equation*}
$$

then

$$
\begin{equation*}
g(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) f(d) . \tag{11.2.9}
\end{equation*}
$$

Hence

$$
n M_{r}(n)=\sum_{d i n} \mu\left(\frac{n}{d}\right) r^{d}
$$

or

$$
\begin{equation*}
M_{r}(n)=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) r^{d} \tag{11.2.10}
\end{equation*}
$$

the Witt formula.
The number of ordinary words W such that $\omega_{i}(W)=n_{i}, n_{1}+\cdots+n_{r}=n$ is the multinomial coefficient

$$
\frac{n!}{n_{1}!\cdots n_{r}!}
$$

This leads to the formula

$$
\begin{equation*}
\frac{n!}{n_{1}!\cdots n_{r}!}=\sum_{d \mid n_{1}, \cdots n_{r}} d M\left(\frac{n_{1}}{d}, \frac{n_{2}}{d}, \cdots, \frac{n_{r}}{d}\right) . \tag{11.2.11}
\end{equation*}
$$

Here d ranges over the divisors of $\left(n_{1}, \cdots, n_{r}\right)=n_{0}$. Applying the Möbius inversion we have
the second of the Witt formulae.
Consider the free associative ring R with integer coefficients having r generators, $x_{1}, x_{2}, \cdots, x_{r}$. The elements R_{m} of degree m form an additively free Abelian group with a basis of the r^{m} products $x_{i 1} \cdots x_{i m}$. In a ring we define a commutator $[u, v]$ by the rule

$$
\begin{equation*}
[u, v]=u v-v u . \tag{11.2.13}
\end{equation*}
$$

The formal properties of bracketing will apply to the ring commutators quite as well as to the group commutators. Indeed we shall show that there is a very close relation between group and ring commutators, originally established by Magnus [1].

Theorem 11.2.3. The basic products of degree m form an additive basis for R_{m}.

Corollary 11.2.1. The basic commutators of degree m are linearly independent.

Proof: Since by Theorem 11.2.1 the number of basic products of degree m is r^{m}, which is the right number for a basis of R_{m}, it is sufficient to show that every element of R_{m} can be expressed as a linear combination with integral coefficients of basic products. Since $P_{1}{ }^{(m)}=P_{1}$ the basis of the r^{m} products $x_{i 1} \cdots x_{i m}$, and since P_{k} consists of the basic products for k sufficiently large, it will be enough to express the elements of P_{k} as linear combinations with integral coefficients of elements of P_{k+1}. For this we need an identity. For this we need an identity. For simplicity of notation write $[\cdots[u, v], v \cdots], v]=[u, \overbrace{v, \cdots, v}^{s}]=\left[{ }^{s} u, v^{s}\right]$ if there are $s v$'s. The identity is

$$
\begin{equation*}
u v^{s}=v^{s} u+\sum_{j=1}^{s}\binom{s}{j} v^{s-j}\left[{ }^{i} u, v^{j}\right] . \tag{11.2.14}
\end{equation*}
$$

For $s=1$ this reduces to

$$
u v=v u+[u, v] .
$$

We note the identity

$$
\begin{equation*}
\left[{ }^{j} u, v^{j}\right] v=\left[{ }^{j+1} u, v^{j+1}\right]+v\left[{ }^{j} u, v^{i}\right] . \tag{11.2.15}
\end{equation*}
$$

Hence (11.2.14) is proved by induction on s by multiplying (11.2.14) by v on the right, making replacements throughout by means of (11.2.15) and combining similar terms.

If a term in P_{k} has a sub-sequence $\cdots u c_{k} \cdots c_{k} w \cdots u$, $w \neq c_{k}$, where u is later than c_{k} and there are $s c_{k}$'s, we apply (11.2.14) with $u=n, v=c_{k}$. This gives terms either belonging to P_{k+1} or terms of P_{k} with fewer c_{k} 's, or having the c_{k} 's nearer the beginning. Repeated application of (11.2.14) will ultimately express an element of P_{k} as a linear combination with integer coefficients of the terms of $P_{k}+1$. This proves the theorem.

Let us adjoin a unit 1 to R, making the rational integers the elements R_{0} of degree zero, and take this ring modulo the two-sided ideal generated by all terms of degree $n+1$ or higher. Call the resulting $\operatorname{ring} \bar{R}$. Then

$$
\begin{equation*}
\bar{R}=R_{0}+R_{1}+\cdots+R_{n} \tag{11.2.16}
\end{equation*}
$$

In \bar{R} the elements with constant term 1 of the form $1+z, z \in R_{1}+\cdots+R_{n}$ form a group G, for, since $z^{n+1}=0$, (11.2.17) $(1+z)^{-1}=1-z+z^{2}+\cdots+(-1)^{n} z^{n}$. If $1+z=1+u_{m}+u_{m+1}+\cdots+u_{n}$, with $u_{j} \in R_{j}$ for $j=m, \cdots, n$ and u_{m} $\neq 0$, we say that u_{m} is the leading term of $1+z$. The leading term of 1 is 0 .

Lemma 11.2.2. Let $u, v \neq 1$ be elements of G with leading terms u_{s}, v_{t} of degree s and t, respectively. The leading terms of u^{-1} and v^{-1} are $-u_{s}$ and $-v_{t}$ If $s<t$, the leading term of $u v$ is u_{s}. If $t<s$, the leading term of $u v$ is u_{t}. It $t=s$ and $u_{s}+v_{t} \neq 0$, the leading term of $u v$ is $u_{s}+v_{t}$. If the ring commutator $\left[u_{r}, v_{s}\right]$ is not zero, it is the leading term of the group commutator (u, v).

$$
\begin{gathered}
\text { Proof: Let } u=1+a, v=1+b, u^{-1}=1+a^{\prime}, v^{-1}=1+b^{\prime} \text {. Then } \\
a+a^{\prime}+a a^{\prime}=0 \quad a a^{\prime}=a^{\prime} a \\
b+b^{\prime}+b b^{\prime}=0 \quad b b^{\prime}=b^{\prime} b \\
a=u_{s}+\cdots+u_{n}, \quad b=v_{t}+\cdots+v_{n} \\
u v=1+a+b+a b .
\end{gathered}
$$

From these relations we get immediately the statements of the lemma about the leading terms of u^{-1}, v^{-1}, and $u v$. Using these relations we find

$$
\begin{aligned}
(u, v)= & u^{-1} v^{-1} u v \\
= & \left(1+a^{\prime}\right)\left(1+b^{\prime}\right)(1+a)(1+b) \\
= & 1+a b-b a \\
& \quad+a a^{\prime} b-b b^{\prime} a+b^{\prime} a b+a^{\prime} b^{\prime} a+a^{\prime} b^{\prime} a b
\end{aligned}
$$

whence

$$
\begin{equation*}
(u, v)=1+\left[u_{s}, v_{t}\right]+\text { higher terms } \tag{11.2.18}
\end{equation*}
$$

giving the final statement of the lemma.
Let c_{1}, c_{2}, \cdots be a sequence of basic commutators in the free group F generated by elements $y_{1} \cdots, y_{r}$ and $d_{1}, d_{2} \cdots$ be the ring commutators in R obtained by replacing y_{1}, \cdots, y_{r} by x_{1}, \cdots, x_{r}. Also let c_{t} be the last commutator of weight n. Then there is a correspondence between the c 's and the d 's in \bar{R} given by the following lemma:

Lemma 11.2.3. If we make $y_{i} \rightarrow 1+x_{i}, i=1, \cdots, r$, mapping F onto G we map $c_{i} \rightarrow g_{i} \in G$, and for $i=1, \cdots$, , the leading term of g_{i} is d_{i}.

Proof: Since $y_{i} \rightarrow 1+x_{i}, i=1, \cdots, r$, the leading term of $g_{i}=1+x_{i}$ is x_{i} for $i=1, \cdots, r$. We proceed by induction. If $c_{w}=\left(c_{u}, c_{v}\right), w \leq t$, then by induction the leading term of g_{u} is d_{u} and of g_{v} is d_{v}. Hence, by Lemma 11.2.2, the leading term of $\left(g_{u}, g_{v}\right)$ is $\left[d_{u}, d_{v}\right]$ if this is not zero; as a basic commutator, it is not zero from the corollary to Theorem 11.2.3. Hence the leading term of $g_{w}=\left(g_{u}, g_{v}\right)$ is $\left[d_{u}, d_{v}\right]=d_{w}$ as the lemma asserts.

Theorem 11.2.4 (Basis Theorem).* If F is the free group with free generators y_{1}, \cdots, y_{r} and if in a sequence of basic commutators c_{1}, \cdots, c_{t} are those of weights $1,2, \cdots, n$, then an arbitrary element f of F has a unique representation,

$$
\begin{equation*}
f=c_{1}{ }^{e_{1}} c_{2}^{e_{2}} \cdots c_{t}^{e^{e t}} \bmod F_{n+1} . \tag{11.2.19}
\end{equation*}
$$

The basic commutators of weight n form a basis for the free Abelian group F_{n} / F_{n+1}.

Proof: We prove the second statement first. Suppose c_{s}, \cdots, c_{t} are the basic commutators of weight n. By Lemma 11.2.3, if we take the mapping of F into G determined by

$$
\begin{equation*}
y_{i} \rightarrow 1+x_{i}=g_{i}, \quad i=1, \cdots, r \tag{11.2.20}
\end{equation*}
$$

then the leading terms of c_{s}, \cdots, c_{t} are the corresponding ring commutators d_{s}, \cdots, d_{t}, which are the basic ring commutators of degree n. By the corollary to Theorem 11.2.3, d_{s}, \cdots, d_{t} are linearly independent, and by Lemma 11.2.2, the leading term of $c_{s}{ }_{s}{ }_{s} \cdot c_{t}^{e}$ is $e_{s} d_{s}+\cdots e_{t} d_{t}$ and so is not zero unless $e_{s}=\cdots=e_{t}=0$. Hence c_{s}, \cdots, c_{t} are independent elements of F_{n} / F_{n+1}, and hence a basis, since we already know from (11.1.4) that every element of F_{n} / F_{n+1} can be expressed in terms of c_{s}, \cdots, c_{t}. The existence of at least one expression for f in the form (11.2.19) was given by (11.1.4). We must show its uniqueness. But if

$$
\begin{equation*}
c_{1}^{e_{1}} \cdots c_{t}^{e_{t}}=c_{1}^{h_{1}} \cdots c_{t}^{h_{t}}\left(\bmod F_{n+1}\right) \tag{11.2.21}
\end{equation*}
$$

and $h_{i}=e_{i}, i=1 \cdots j-1$ but $h_{j} \neq e_{j}$, if c_{j} is of weight k this would lead to a dependence between the basic commutators of weight k modulo F_{k+1} Since this cannot be the case, the expression (11.2.18) is unique. This completes our proof.
$\stackrel{*}{*}$ Hardy and Wright [1] p. 235.
${ }^{*}$ See Marshall Hall, Jr. [6].

12. THE THEORY OF p-GROUPS; REGULAR p-GROUPS

12.1. Elementary Results.

In Chaps. 4 and 10, some elementary properties of finite p-groups P were established. We list them here:

1) P has a center Z greater than the identity. (Theorem 4.3.1.)
2) A proper subgroup H of P is not its own normalizer. (Theorem 4.2.1.)
3) If P is of order p^{n}, then every maximal subgroup M is of order p^{n-1} and is normal. (Theorem 4.3.2.)
4) A normal subgroup of order p in P is contained in the center of P. (Theorem 4.3.4.)
5) P is supersolvable. (Theorem 10.3.4 and Theorem 10.2.4.)
6) P is nilpotent. (Theorem 10.3.4.)

12.2. The Burnside Basis Theorem. Automorphisms of p-Groups.

Let P be of order p^{n}. The intersection of all its maximal subgroups will be a characteristic subgroup D, the Frattini subgroup of P.Then, in the homomorphism $P \rightarrow P / D$, elements generating P will be mapped onto elements generating P / D. The converse of this is true in a strong sense, which is the subject of the Burnside basis theorem.

Theorem 12.2.1 (The Burnside Basis Theorem). Let D be the intersection of the maximal subgroups of the p-group P. The factor group P/D $=A$ is an elementary Abelian group. If A is of order p^{r}, then every set of elements z_{1}, \cdots, z_{s} which generates P contains a subset of r elements x_{1}, \cdots \cdot, x_{r} which generate P. In the mapping $P \rightarrow A$, the elements x_{1}, \cdots, x_{r} are
mapped onto a basis a_{1}, \cdots, a_{r} of A. Conversely, any set of r elements of P which, in $P \rightarrow A$ is mapped onto a set of generators of A, will generate P.

Proof: If M is a maximal subgroup of P, then M is of index p and is normal. Thus P / M is the cyclic group of order p. Hence the pth power of every element of P and every commutator are contained in M. Hence D, the intersection of all the maximal subgroups, contains every p th power and every commutator. Thus P / D is an elementary Abelian group A. If A is of order p^{r}, then every basis of A consists of r elements, say, a_{1}, \cdots, a_{r}. If b_{1}, \cdots, b_{s} are elements generating A, we may find a basis for A by deleting from them the b 's equal to 1 and those b_{i} 's belonging to the subgroup generated by b_{1}, \cdots, b_{i-1}. Hence $s \geqq r$ and b_{1} \cdots, b_{s} contains a subset which is a basis for A.

Now suppose that $z_{1} \cdots, z_{s}$ generate P. In the mapping $P \rightarrow P / D=A$, let z_{i} $\rightarrow b_{i}, i=1, \cdots, s$. Then b_{1}, \cdots, b_{s} generate A and so contain a subset a_{1}, \cdots, a_{r}, which is a basis for A. Let $x_{1}, \cdots x_{r}$ be the subset of z_{1}, \cdots, z_{s} mapped onto a_{1}, \cdots, a_{r}. The theorem will be proved if we can show that any set x_{1}, \cdots - x_{r} of elements of P mapped onto a basis $a_{1} \cdots, a_{r}$ of A will generate P. Let H $=\left\{x_{1}, \cdots, x_{r}\right\}$. If $H \neq P$ then H is contained in some maximal subgroup M of P. But then in $P \rightarrow P / D=A$ we have $H \rightarrow H D / D \subseteq M / D=B$, where B is a subgroup of A of order p^{r-1}. This is in conflict with $H=\left\{x_{1}, \cdots x_{r}\right\} \rightarrow\left\{a_{1}, \cdots\right.$ $\left.\cdot, a_{r}\right\}=A$. Hence $H=P$ and x_{1}, \cdots, x_{r} generate P.

As an application of this theorem we may obtain some information on the group $A(P)$ of automorphisms of P. We may choose a basis a_{1}, \cdots, a_{r} of P / D in $\theta\left(p^{r}\right)=\left(p^{r}-1\right)\left(p^{r}-p\right) \cdots\left(p^{r}-p^{r-1}\right)$ ways. This is easily seen since a_{1} may be taken as any of the $p^{r}-1$ elements different from the identity, and having chosen $a_{1} \cdots, a_{i}$, we may take a_{i+1} as any one of the $p^{r}-p^{i}$ elements not in the subgroup generated by a_{1}, \cdots, a_{i}. Thus there are $\theta\left(p^{r}\right)$ choices for a basis of A, and every mapping of a fixed basis a_{1}, \cdots, a_{r} onto another b_{1}, \cdots, b_{r} yields an automorphism of A. But since every automorphism of A must map a_{1}, \cdots, a_{r} onto a basis, there are exactly $\theta\left(p^{r}\right)$ automorphisms of A.

There will be exactly $p^{r(n-r)} \theta\left(p^{r}\right)$ ordered sets $X=\left(x_{1}, \cdots, x_{r}\right)$ which generate P, since in a mapping $x_{i} \rightarrow a_{i}, i=1, \cdots, r$ of X onto a basis of A, the basis of A may be chosen in $\theta\left(p^{r}\right)$ ways, and for a single a_{i}, any of the p^{n-r}
elements in the coset of D mapped onto a_{i} will be a permissible choice for x_{i}. Every automorphism of P will map a set X onto another. Hence the group $A(P)$ of automorphisms of A may be regarded as a permutation group on the X 's. But $A(P)$ is a regular group on the X 's, since an automorphism fixing any set X fixes every product of these $x ' s$ and hence the entire group P, and so is the identical automorphism. Hence the sets X are permuted among themselves in transitive constituents each of which has k sets in it if k is the order of $A(P)$. Hence $p^{r(n-r)} \theta\left(p^{r}\right)=k t$. Here the number t may be interpreted as the number of essentially different ways of generating P by r elements. Two sets $X=\left(x_{1}, \cdots\right.$, x_{r}) and $Y=\left(y_{1}, \cdots, y_{r}\right)$ are said to generate P in essentially the same way if every relation $w\left(x_{1}, \cdots, x_{r}\right)=1$ is such that $w\left(y_{1}, \cdots, y_{r}\right)=1$, and conversely.

In the same way, let $A_{1}(P)$ be the normal subgroup of $A(P)$ which leaves A / D fixed elementwise. These automorphisms permute regularly the $p^{r(n-r)}$ generating sets $X=\left(x_{1}, \cdots, x_{r}\right)$ which are mapped onto the same basis a_{1}, \cdots, a_{r} of A in the homomorphism $P \rightarrow P / D=A$. Thus the order of $A_{1}(P)$ divides $p^{r(n-r)}$. These results, due to P. Hall [2], we state as a theorem.

Theorem 12.2.2. If P is a p-group of order p^{n}, D the intersection of the maximal subgroups of P, and $[P: D]=p^{r}$, then the order of $A(P)$, the group of automorphisms of P, divides $p^{r(n-r)} \theta\left(p^{r}\right)$. The order of $A_{1}(P)$, the group of automorphisms fixing P / D elementwise, is a divisor of $p^{r(n-r)}$.

12.3. The Collection Formula.

Let G be a group generated by elements $a_{1}, a_{2}, \cdots, a_{r}$. We shall develop a formula for $\left(a_{1} a_{2} \cdots a_{r}\right)^{n}$ in terms of the higher commutators of a_{1}, \cdots, a_{r}. We may take G to be the free group generated by a_{1}, \cdots, a_{r}, for the formula will then hold a fortiori in any group generated by r elements.

We repeat the definition of basic commutators, given in $\S \underline{11.1}$, but make the ordering more precise.

1) a_{1}, \cdots, a_{r} are the commutators of weight one, and are simply ordered by the rule $a_{1}<a_{2}<\cdots<a_{r}$.
2) If basic commutators of weights less than n have been defined and simply ordered, then (x, y) is a basic commutator of weight n if, and only if,
and only if,
(a) x and y are basic commutators with $\omega(x)+\omega(y)=n$.
(b) $x>y$.
(c) If $x=(u, v)$, then $y \geq v$.
3) Commutators of weight n follow all commutators of weight less than n, and for weight $n,\left(x_{1}, y_{1}\right)<\left(x_{2}, y_{2}\right)$ if $y_{1}<y_{2}$ or if $y_{1}=y_{2}$ and $x_{1}<x_{2}$.

Consider

$$
\begin{equation*}
\left(a_{1} a_{2} \cdots a_{r}\right)^{n}=a_{1}(1) a_{2}(1) \cdots a_{r}(1) a_{1}(2) \cdots a_{r}(2) \cdots a_{r}(n) \tag{12.3.1}
\end{equation*}
$$

where we have labeled the individual generators a_{i} as $a_{i}(1), a_{i}(2), \cdots a_{i}(n)$ from left to right so as to be able to distinguish each letter in the formula. Since $S R=R S(S, R)$ by definition of the commutator, we may replace the right-hand side of (12.3.1) by another expression equal to it in which a pair of consecutive elements $S R$ is replaced by $R S(S, R)$. This replacement puts R nearer the beginning of the expression and introduces a commutator (S, R). By a succession of such replacements we may move any letter as near to the beginning as we choose. We shall alter (12.3.1) in a specific way. We begin by moving $a_{1}(2)$ to the left until it is next to $a_{1}(1)$, then move $a_{1}(3)$ to the left until it is next to $a_{1}(2)$, and continue until we have collected all a_{1} 's at the beginning. This completes the first stage of collection. Next we collect in order the a_{2} 's immediately to the right of the a_{1} 's.

Let us describe the collection process precisely. At the end of the ith stage we have

$$
\begin{equation*}
\left(a_{1} a_{2} \cdots a_{r}\right)^{n}=c_{1}{ }^{e_{1}} c_{2} e_{2}^{e_{2}} \cdots c_{i}^{e}{ }_{i} R_{1} R_{2} \cdots R_{t} \tag{12.3.2}
\end{equation*}
$$

where $c_{1}, c_{2}, \cdots, c_{i}$ are the first i basic commutators and R_{1}, \cdots, R_{t} are basic commutators later than c_{i}. If $R_{j 1}, R_{j 2}, \cdots, R_{j s}$, are in order, the basic commutators among R_{1}, \cdots, R_{t} which are c_{i+1}, we first move $R_{j 1}$, to the position immediately following $c_{i{ }_{i}}^{e}$ then $R_{j 2}, R_{j 3}, \cdots$, and finally $R_{j s}$, so that with $e_{i+1}=$ s, (12.3.2) takes the form

$$
\begin{equation*}
\left(a_{1} a_{2} \cdots a_{r}\right)^{n}=c_{1}{ }_{1}^{e_{1} c_{2} e_{2} e_{2}} c_{i+1}{ }^{e_{i+1}} R_{1}^{*} \cdots R_{k}^{*}, \tag{12.3.3}
\end{equation*}
$$

which is the $(i+1)$ st stage. In (12.3.2) we call $c_{1}{ }_{1}{ }_{1} \cdots c_{i}^{e}{ }_{i}$ the collected part and $R_{1} \cdots R_{t}$ the uncollected part. But to validate this description we must show that only basic commutators appear in any formula. The initial formula (12.3.1) is stage zero and contains only generators a_{i} which are basic commutators of weight one. Let us assume by induction that at stage i the uncollected part $R_{1} \cdots R_{t}$ contains only basic commutators later than c_{i}. In collecting R 's equal to c_{i+1}, we introduce only further commutators $\left(c_{j}, c_{i+1}, \cdots\right.$ $\left.\cdot, c_{i+1}\right)$ where $j \geq i+2$. Such a commutator is basic, since if $c_{j}=\left(c_{r}, c_{s}\right)$, then c_{j} arose at stage s when c_{s} was collected, whence $s<i+1$ and so $c_{s}<c_{i+1}$. Thus $\left(c_{j}, c_{i+1}\right)$ is basic and so also is $\left(c_{j}, c_{i+1}, \cdots, c_{i+1}\right)$.

We have already in (12.3.1) labeled the generators a_{i} with labels $j, a_{i}^{(j)}, j=$ $1, \cdots, n$. If a commutator R of weight w_{1} has a label $\left(\lambda_{1}, \cdots, \lambda_{w 1}\right)$ and S of weight w_{2} has a label $\left(\mu_{1}, \cdots, \mu_{w_{2}}\right)$, we assign to (R, S) the label $\left(\lambda_{1}, \cdots, \lambda_{w 1}\right.$, $u_{1}, \cdots, \lambda_{w_{2}}$). The calculation of the exponents $e_{1}, \cdots, e_{i}, e_{i+1}$ in (12.3.3) may be made to depend on these labels. Here $e_{i+1}=s$ is the number of uncollected commutators at stage i equal to c_{i+1} Thus it is the number E_{i+1} of commutators c_{i+1} existing at this stage. Also if $c_{i+1}=\left(c_{r}, c_{s}\right)$, then c_{i+1} arose when c_{s} was collected and this particular c_{r} preceded this particular c_{s} in the uncollected part. Hence we must also consider precedence conditions for a commutator c_{r} to precede c_{s} when they both exist in an uncollected part.

At stage zero the commutators of weight one (and no others) exist, and $a_{k}{ }^{(\lambda)}$ exists for any label $\lambda=1, \cdots, n$. Moreover, $a_{k}{ }^{(\lambda)}$ precedes $a_{s}{ }^{(\mu)}$ at stage zero when $k>s$ if $\lambda<\mu$ and when $k<s$ if $\lambda \leq \mu$. More formally at stage zero we have existence and precedence conditions on the uncollected part in terms of labels :

$$
\begin{array}{ll}
E_{k}^{0}\left[a_{k}^{(\lambda)}\right] \text { is that } \lambda \text { exists (a vacuous condition), } \\
P_{r s}^{0}\left[a_{r}^{(\lambda)} \text { precedes } a_{s}(\mu)\right] \quad & \lambda<\mu \text { if } r \geq s \\
& \lambda \leq \mu \text { if } r<s .
\end{array}
$$

Let $\lambda_{1}, \cdots, \lambda_{m}$ be a set of integers and consider conditions of the type $\lambda_{t}<\lambda_{u}, \lambda_{t}$ $\leq \lambda_{u}$. Any logical sum and product of such conditions we shall call conditions (L). We shall show that conditions $E_{k}{ }^{i}$ for existence of a commutator c_{k} with
label $\left(\lambda_{i}, \cdots, \lambda_{m}\right)$ at stage i are conditions (L) on $\lambda_{1}, \cdots, \lambda_{m}$, and the precedence conditions $p_{r s}{ }^{i}$ for the precedence of a commutator c_{r} before a commutator c_{s} in the uncollected part of the i th stage are conditions (L) on λ_{1}, $\cdots \lambda_{m}, \mu_{1}, \cdots \mu_{q}$ if $\left(\lambda_{1}, \cdots, \lambda_{m}\right)$ is the label of c_{r} and $\left(\mu_{1}, \cdots, \mu_{q}\right)$ is the label of c_{s}. We have observed that at stage zero, existence and precedence conditions were conditions (L) as above. We prove this true in general by induction on the stage. Suppose this to be true at the i th stage. To show this to be true at the ($i+$ $1 \mathrm{st})$ stage, we compare (12.3.2) and (12.3.3). With $R_{j 1}=R_{j 2}=\cdots=R_{j s}=c_{i+1}$, we collected first $R_{j 1}$, then $R_{j 2}$, and finally $R_{j s}$. Each step in the collection was a replacement $S R=R S(S, R)$. Here any commutators existing at stage i different from c_{i+1} also exist at stage $i+1$ and are in the same order. Thus

$$
E_{k}{ }^{i+1}=E_{k}^{i} \quad \text { and } \quad P_{r s}^{i+1}=P_{r s}^{i}
$$

for such commutators. Hence we need consider only the existence of commutators c_{k} arising in the $(i+1)$ st stage and precedence $P_{r s}$ where one or both of c_{r}, c_{s} arose at this stage. A commutator arising at this stage will be of the form $c_{k}=\left(c_{j}, R_{u 1}, \cdots, R_{u m}\right)$, obtained by moving $R_{u 1}$ past c_{j}, then $R_{u 2}$ past this commutator, and so on until we move $R_{u m}$ past ($c_{j}, R_{u 1}, \cdots, R_{u m-1}$). Here all of $R_{u 1}, \cdots, R_{u m}$ are equal to c_{i+1}. Here E_{k}^{i+1} is the logical product of the conditions for existence of $c_{j}, R_{u 1}, \cdots, R_{u m}$ at stage i together with the precedence conditions that $c_{j}, R_{u 1}, \cdots, R_{u m}$ are in this order at stage i. Thus E_{k}^{i+1} is a condition (L) on the label of c_{k}. In the collecting for the $(i+1) \mathrm{st}$ stage, a commutator (S, R) arises in $S R=R S(S, R)$ immediately to the right of S and to the left of all commutators following S. We must find the precedence condition $P_{r s}^{i+1}$ where $c_{r}=c_{j 1}$ or $\left(c_{j 1}, R_{u 1}, \cdots R_{u m}\right)$ and $c_{s}=c_{j 2}$ or $\left(c_{j 2}, R_{v 1}, \cdots\right.$ $\cdot, R_{v w}$. Here $P_{r s}{ }^{i+1}=P_{j 1 j 2}{ }^{i}$ if $c_{j 1} \neq c_{j 2}$. If, however, $c_{j 1}=c_{j 2}, P_{r s}{ }^{i+1}$ involves the $R \mathrm{~s}$ '. Suppose e is the largest integer such that $R_{u 1}=R_{v 1}, \cdots, R_{u e}=R_{v e}$. Then c_{r} precedes c_{s} if either (1) $m=e$ and there is no $R_{u e+1}$, in which case c_{s} is a commutator of c_{r}, or (2) $R_{v e+1}$ precedes $R_{u e+1}$. Here $P_{r s}{ }^{i+1}$ is a logical sum of precedence conditions, and so, are conditions (L) on the labels of c_{r} and c_{s} are combined.

Lemma 12.3.1. The number of sets $\lambda_{1}, \cdots, \lambda_{m}$ with $1 \leq \lambda_{i} \leq n$ satisfying given conditions (L) is an integer valued polynomial in $n b_{1} n+b_{2} n^{(2)}+\cdots+$ $b_{m} n^{(m)}$, where $n^{(i)}=n(n-1) \cdots(n-1+i) / i$! and the b's are integers determined by the conditions (L) but not depending on n.

Proof: Let us divide the indices $1, \cdots, m$ into disjoint sets $S_{1}, S_{2}, \cdots, S_{t}$. Then an ordering of $\lambda_{1}, \cdots, \lambda_{m}$ is given by $\lambda_{j}=v_{i}, j \in S_{i}, i=1, \cdots, t$, where $v_{1}<v_{2}<\cdots<v_{t}$. Every possible choice of the λ 's belongs to a unique ordering of this type, and there are $n^{(t)}$ choices for the v 's, this being merely the number of combinations of n things t at a time. For this ordering either all λ 's satisfy the conditions (L) or none. Hence the number of sets of λ 's satisfying given conditions (L) is the polynomial $b_{1} n+b_{2} n^{(2)}+\cdots+b_{m} n^{(m)}$, where b_{t} is the number of orderings with t distinct values which satisfy the conditions (L), and clearly, b_{t} depends on the conditions but not on n.

For example, if $\lambda_{1}, \lambda_{2}, \lambda_{3}$ satisfy conditions (L) $\lambda_{1}<\lambda_{2}, \lambda_{3} \leq \lambda_{2}$, the orderings satisfying (L) are

1) $\lambda_{1}=v_{1}, \lambda_{2}=\lambda_{3}=v_{2}, v_{1}<v_{2}$,
2) $\lambda_{1}=\lambda_{3}, v_{1}=\lambda_{2}=v_{2}, v_{1}<v_{2}$,
3) $\lambda_{1}=v_{1}, \lambda_{3}=v_{2} \lambda_{2}=v_{3}, v_{1}<v_{2}<v_{3}$,
4) $\lambda_{3}=v_{1}, \lambda_{1}=v_{2}, \lambda_{2}=v_{3}, v_{1}<v_{2}<v_{3}$,
and the number of sets satisfying the conditions (L) is $2 n^{(2)}+2 n^{(3)}$.
We have shown that the exponent e_{i} in (12.3.2). of the commutator c_{i} is the number of commutators in the uncollected part at stage $i-1$ equal to c_{i} and that this number is given as the number of sets $\lambda_{1}, \cdots, \lambda_{m}$ satisfying certain conditions (L), where m is the weight of c_{i}. Thus Lemma 12.3.1 gives us information on these exponents. We state our results in a theorem.

Theorem 12.3.1. We may collect the product $\left(a_{1} a_{2} \cdots a_{r}\right)^{n}$ in the form $\left(a_{1} a_{2} \cdots a_{r}\right)^{n}=a_{1}{ }^{n} a_{2}{ }^{n} \cdots a_{r}{ }^{n} c_{r+1}{ }^{c}{ }_{r+1} \cdots c_{i}^{e}{ }_{i} \cdots R_{1} \cdots R_{t}$, where c_{r+1}, \cdots, c_{i} are the basic commutators on a_{1}, \cdots, a_{r} in order, and R_{1}, \cdots, R_{t} are basic commutators later than c_{i} in the ordering. For $1 \leq j \leq i$, the exponent e_{j} is of the form $e_{j}=b_{1} n+b_{2} n^{(2)}+\cdots+b_{m} n^{(m)}$, where m is the weight of c_{j}, the b 's
are non-negative integers and do not depend on n but only on c_{j}. Here $n^{(k)}=$ $n(n-1) \cdots(n-k+1) / k$!

We may prove immediately an important corollary if G is a p-group whose class is less than p. Collecting all commutators of weight less than p, the uncollected part reduces to the identity. Moreover, with $n=p^{\alpha}$ all exponents are multiples of p^{α}, since an $n^{(i)}, i \leq p-1$ is a binomial coefficient with n as a factor of the numerator and denominator with factors not exceeding $p-1$.

Corollary 12.3.1. If P is a p-group of class less than p, then with $n=p^{\alpha}$

$$
\left(a_{1} a_{2} \cdots a_{r}\right)^{n}=a_{1}{ }^{n} a_{2}{ }^{n} \cdots a_{r}{ }^{n} S_{1}{ }^{n} S_{2}{ }^{n} \cdots S_{t}{ }^{n}
$$

where $S_{1}, S_{2}, \cdots, S_{t}$ belong to the commutator subgroup of the group generated by $a_{1}, a_{2}, \cdots, a_{r}$.

12.4. Regular p-Groups.

We define a regular p-group as a group P in which for any two elements a, b, and any $n=p^{\alpha}$ satisfy

$$
\begin{equation*}
(a b)^{n}=a^{n} b^{n} S_{1}^{n} \cdots S_{t^{n}}, \tag{12.4.1}
\end{equation*}
$$

with S_{1}, \cdots, S_{t} appropriate elements from the commutator subgroup of the group generated by a and b. Immediate consequences of the definition and the corollary to Theorem 12.3.1 are

1) Every p-group of class less than p is regular.
2) Every p-group of order at most p^{p} is regular.
3) P is regular if every subgroup generated by two elements is regular.
4) Every subgroup and factor group of a regular group is regular.

For every p there is an irregular group of order p^{p+1}, namely, the Sylow subgroup $S^{(p)}$ of the symmetric group S_{p}^{2} on p^{2} letters. This group is generated by two elements of order p and yet it contains elements of order p^{2}. This will be shown impossible for a regular group.

Theorem 12.4.1 In a regular p group with $n=p^{\alpha}, a^{n} b^{n}=(a b)^{n} S_{1}{ }^{n}=(a b$ $\left.S_{2}\right)^{n}$, with S_{1}, S_{2} in the derived group $H_{2}(a, b)$ of the group $H(a, b)$, generated by a and b.

By repeated application of the theorem we get the corollary
Corollary 12.4.1. In a regular p-group with $n=p^{\alpha}$, $a_{1}{ }^{n} a_{2}{ }^{n} \cdots a_{r}{ }^{n}=$ $\left(a_{1} a_{2} \cdots a_{r} S_{2}\right)^{n}=\left(a_{1} \cdots a_{r}\right)^{n} S_{1}^{n}$ with S_{1}, S_{2} in $H_{2}\left(a_{1} \cdots a_{r}\right)$.

Proof: The theorem and corollary both hold in an Abelian group with $S_{1}=$ $1, S_{2}=1$. We shall use induction to prove the theorem for a group H, assuming the theorem and its corollary to be true for any proper subgroup of H. We note that if H is generated by $a_{1} \cdots a_{r}$, then $H_{2}\left(a_{1} \cdots a_{r}\right)$, the derived subgroup of H, is a proper subgroup of H. From (12.4.1).

$$
\begin{equation*}
a^{n} b^{n}=(a b)^{n} S_{t}^{-n} \cdots S_{1}^{-n} \tag{12.4.2}
\end{equation*}
$$

By induction $S_{t}^{-n} \cdots S_{1}^{-n}=S^{n}$ with $S \in H_{2}$. But if $H=H(a, b)$ is not Abelian, then H_{2} and $a b$ generate a proper subgroup of H whence by induction $(a b)^{n} S^{n}=\left(a b S_{2}\right)^{n}$. For it follows from the Burnside basis theorem that if $\mathrm{H} / \mathrm{H}_{2}$ is cyclic, then H is cyclic. Thus the theorem holds in H if both the theorem and corollary hold in any proper subgroup of H. Applying the theorem $r-1$ times to $a_{1}{ }^{n} a_{2}{ }^{n} \cdots a_{r}{ }^{n}$, we get

$$
a_{1}^{n} a_{2}^{n} \cdots a_{r}^{n}=\left(a_{1} a_{2} \cdots a_{r}\right)^{n} S_{1}^{n} \cdots S_{r-1}^{n}
$$

with all of $S_{1} \cdots S_{r-1}$ in H_{2}.
Thus $a_{1}{ }^{n} \cdots a_{r}{ }^{n}=\left(a_{1} a_{2} \cdots a_{r}\right)^{n} S^{n}$, applying the corollary to H_{2}, and by the theorem, $\left(a_{1} a_{2} \cdots a_{r}\right)^{n} S^{n}=\left(a_{1} a_{2} \cdots a_{r} S^{1}\right)^{n}$.

Theorem 12.4.2. A finite p-group P is regular if, and only if, for any a, b in P we have

$$
\begin{equation*}
a^{p} b^{p}=(a b)^{p} S^{p} \tag{12.4.3}
\end{equation*}
$$

with S in the derived group of the group generated by a and b.

The condition (12.4.3) is clearly necessary in a regular p-group since it is a special case of Theorem 12.4.1. We must show conversely that (12.4.3) implies

$$
\begin{equation*}
a^{n} b^{n}=(a b)^{n} S_{1}^{n}, \quad n=p^{\alpha}, \quad S_{1} \in H_{2}(a, b) \tag{12.4.4}
\end{equation*}
$$

Now the relations (12.4.5) $\quad a_{1}^{p} a_{2}^{p} \cdots a_{r}^{p}=\left(a_{1} a_{2} \cdots a_{r}\right)^{p} S_{1}^{p}=\left(a_{1} a_{2} \cdots a_{r} S_{2}\right)^{p}$ with $S_{1}, S_{2} \in H_{2}\left(a_{1} \cdots a_{r}\right)$ are surely satisfied with $S_{1}=S_{2}=1$ when H is Abelian. If (12.4.5) is satisfied for every proper subgroup of H, then applying (12.4.3) $r-1$ times $a_{1}{ }^{p} a_{2}{ }^{p} \cdots a_{r}^{p}=\left(a_{1} a_{2} \cdots a_{r}\right)^{p} u_{1}{ }^{p} \cdots u_{r-1}^{p}$, with u_{1}, \cdots, u_{r-1} in H_{2}. By induction $u_{1}{ }^{p} \cdots u_{r}{ }^{p}{ }_{1}=S_{1}{ }^{p}$. But $b=a_{1} a_{2} \cdots a_{r}$ and S_{1} generate a proper subgroup of H, whence $\left(a_{1} a_{2} \cdots a_{r}\right)^{p} S_{1}{ }^{p}=\left(a_{1} \cdots\right.$ $\left.a_{r} S_{2}\right)^{p}$, proving (12.4.5) in general.

Lemma 12.4.1. Assuming (12.4.3), $x^{-p} y^{-p} x^{p} y^{p}=S^{p}$, with S in the derived group of $\{x, y\}$.

Proof:

$$
\begin{aligned}
& x^{p} y^{p}=\left(\begin{array}{ll}
x & y
\end{array}\right)^{p} S_{1}^{p}, \\
& y^{p} x^{p}=(y x)^{p} S_{2}^{p},
\end{aligned}
$$

whence

$$
x^{-p} y^{-p} x^{p} y^{p}=S_{2}^{-p}(y x)^{-p}(x y)^{p} S_{1}^{p},
$$

and also

$$
\begin{aligned}
(y x)^{-p}(x y)^{p} & =\left(x^{-1} y^{-1} x y\right)^{p} S_{3}^{p} \\
& =(x, y)^{p} S_{3}^{p},
\end{aligned}
$$

and so

$$
x^{-p} y^{-p} x^{p} y^{p}=S_{2}^{-p}(x, y)^{p} S_{3}^{p} S_{1}^{p}=S^{p}
$$

From this it follows that any commutator in $a_{1}{ }^{p}, a_{2}{ }^{p}, \cdots, a_{r}^{p}$ is the p th power of an element in the derived group of $\left\{a_{1}, \cdots, a_{r}\right\}$.

From (12.4.3) we have

$$
\begin{align*}
a^{p^{2}} b^{p^{2}} & =\left(a^{p} b^{p}\right)^{p} S_{1}^{p} \tag{12.4.6}\\
& =\left[(a b)^{p} S_{2}^{p}\right]^{p} S_{1}^{p} \\
& =(a b)^{p^{2}} S_{2}^{p^{2}} S_{3}{ }^{p} S_{1}{ }^{p},
\end{align*}
$$

where S_{1} is in the derived group of $\left\{a^{p}, b^{P}\right\}$ and S_{3} in the derived group of $(a b)^{p}, S_{2}^{p}$. By the lemma these are p th powers of elements in the derived group of $\{a, b\}$, whence

$$
\begin{equation*}
a^{p^{2}} b^{p^{2}}=(a b)^{p^{2}} S_{2} p^{p^{2}} S_{4} p^{2} S_{5} p^{p^{2}}, \tag{12.4.7}
\end{equation*}
$$

and applying induction (12.4.4) holds for $n=p^{2}$. The same procedure and use of lemma enables us to prove (12.4.4), going from $n=p^{\alpha}$ to $n=p^{\alpha+1}$.

Theorem 12.4.3. If P is a regular p-group then with $n=p^{\alpha}$.

1) Each of $\left(a^{n}, b\right)=1$ and $(a, b)^{n}=1$ implies the other.
2) If $\left(a^{n}, b\right)=1$, then $\left(a, b^{n}\right)=1$.
3) A commutator S involving an element u has order at most that of u modulo the center of P.
4) The order of a product $a_{1} a_{2} \cdots a_{r}$ cannot exceed the order of all of $a_{1}, a_{2}, \cdots, a_{r}$.

Proof: In an Abelian group the first three properties are vacuously true and the fourth is true. We shall assume by induction that the theorem holds for all proper subgroups of P, and we also take P to be non-Abelian.

Let us apply (12.4.4) to

$$
\begin{equation*}
a^{-n} b^{-1} a^{n} b=\left(a^{-1}\right)^{n}\left(b^{-1} a b\right)^{n}=\left(a^{-1} b^{-1} a b\right)^{n} s^{n} \tag{12.4.8}
\end{equation*}
$$

with s in the derived group of $K\left(a, b^{-1} a b\right) \subset H(a, b)$; this becomes

$$
\begin{equation*}
\left(a^{n}, b\right)=(a, b)^{n} s_{1}{ }^{n} \tag{12.4.9}
\end{equation*}
$$

Now if $\left(a^{n}, b\right)=1$, then the order of a modulo the center of $H(a, b)$ is n or less, whence by property (3) for the proper subgroup $K\left(a, b^{-1} a b\right)$ with $u=a$, every commutator in K involves a and is of order at most n. The element s_{1} in (12.4.9) is a product of commutators in K, and by (4) for K, the order of s_{1} is at most n. Thus $\left(a^{n}, b\right)=1$ implies $s_{1}^{n}=1$ in (12.4.9), and so, $(a, b)^{n}=1$. Conversely, if $(a, b)^{n}=1$, then in $K=K\left(a, a^{-} b^{-1} a b\right)=K(a, u)$ with $u=(a, b)$, the order of u modulo the center is at most n and every commutator involves u. Thus by (3) for K, all commutators in K_{2} are of order at most n, and so by (4) in K_{2}, the order of s_{1} in (12.4.9) is at most n.

Thus $(a, b)^{n}=1$ implies $S_{1}^{n}=1$, and so, $\left(a^{n}, b\right)=1$, This proves property (1) for P, and of course (2) follows immediately from (1). Property (3) in P follows from repeated application of (1). If the order of u modulo the center of P is n, then a fortiori $\left(u^{n}, v\right)=1$, whence $(u, v)^{n}=1$. Here, with $x=(u, v)$ and since $x^{n}=1$, it follows that $(x, y)^{n}=1$.

It remains to prove property (4) for P. If $a^{n}=1, b^{n}=1$, then by (3), any commutator involving a or b is of order at most n. Hence in (12.4.4), S_{1} is a product of commutators of order at most n, and by property (4) for the proper subgroup P_{2}, S_{1} itself is of order at most n. Hence $S_{1}{ }^{n}=1$, and so, $(a b)^{n}=1$. Thus the product of two factors has order not exceeding that of both factors, and by repetition it follows that the product of r factors has an order not exceeding that of all the factors.

THEOREM 12.4.4. If $a^{n}=b^{n}$ with $n=p^{\alpha}$, then $\left(a b^{-1}\right)^{n}=1$, and conversely.
Proof: In $H(a, b)$ all commutators are of order at most n from property (3) in Theorem 12.4.3. Hence in $1=a^{n} b^{-n}=\left(a b^{-1}\right)^{n} s_{1}^{n}$ we have $s_{1}^{n}=1$, and so, $\left(a b^{-1}\right)^{n}=1$. Conversely, with $a^{n} b^{-n}=\left(a b^{-1}\right)^{n} s_{1}^{n}$ and $\left(a b^{-1}\right)^{n}=1$, we may write $H(a, b)=H\left(a, a b^{-1}\right)$, and so by property (3) with $u=a b^{-1}$, we have $s_{1}{ }^{n}=1$ and hence $a^{n}=b^{n}$.

Theorem 12.4.5. In a regular p-group P the $\left(p^{\alpha}\right)$ th powers of the elements form a characteristic subgroup $C^{\alpha}(P)$, the elements of order at most p^{α} a characteristic subgroup $C_{\alpha}(P)$.

Proof: With $n=p^{\alpha}$ the relation of Theorem 12.4.1, $a^{n} b^{n}=\left(a b s_{2}\right)^{n}$, shows that the $\left(p^{\alpha}\right)$ th powers of elements form a subgroup $C^{\alpha}(P)$ which is necessarily characteristic and in fact fully invariant. Property (4) of Theorem 12.4.3 shows that elements whose orders are at most p^{α} form a subgroup which will be fully invariant.

12.5. Some Special p-Groups. Hamiltonian Groups.

Theorem 12.5.1. The groups of order p^{n} which contain a cyclic subgroup of index p are of the following types:

Abelian,
$n \geqq 1$, cyclic:

1) $a^{p_{n}}=1$.
$n \geqq 2$
2) $a^{p_{n-1}}=1, b^{p}=1, b a=a b$.

Non-Abelian, podd, $n \geqq 3$:
3) $a^{p_{n-1}}=1, b^{p}=1, b a=a^{1+p n-2} b$.
$p=2, n \geqq 3$;
4) Generalized quaternion group.

$$
a^{2 n-1}=1, b^{2}=a^{2 n-2}, b a=a^{-1} b .
$$

$p=2, n \geqq 3$
5) Dihedral group.

$$
a^{2 n-1}=1, b 2=1, b a=a^{-1} b
$$

$$
p=2, n \geqq 4
$$

6) $a^{2 n-1}=1, b^{2}=1, b a=a^{1+2 n-2} b$.
$p=2, n \geqq 4$
7) $a^{2 n-1}=1, b^{2}=1, b a=a^{-1+2 n-2} b$.

Proof: An Abelian group of order p^{n} which contains an element of order p^{n-1} must have a basis element of order p^{n-1} or p^{n}. This settles the theorem for Abelian groups, giving the first two cases.

In considering non-Abelian groups of order p^{n} containing an element of order p^{n-1}, let us first suppose p odd. If $a^{p_{n-1}}=1$, then $\{a\}$ as a subgroup of
index p is a normal subgroup, and so for $b \notin\{a\}$, we have $b a b^{-1}=a^{r}$, where r $r \not \equiv 1\left(\bmod p^{n-1}\right)$, since our group is not Abelian. We find that $b^{i} a b^{-i}=a^{r i}$ by induction on i, since $\left(b a d^{-1} y^{j}=b a^{j} b^{-1}=a^{r j}\right.$ for any j, and in particular for $j=r$ we have $b\left(b a b^{-1}\right)^{b-1}=b^{2} a b^{-2}=b a^{r} b^{-1}=a^{r 2}$. The general case $b^{i} a b^{-i}=a^{r i}$ follows readily by induction. As $b^{p} \in\{a\}$, we have $b^{p} a b^{-p}=a$, whence $r^{p} \equiv$ $1\left(\bmod p^{n-1}\right)$. Since p is odd, we may conclude from this congruence that $r \equiv 1$ $+k p^{n-2}\left(\bmod p^{n-1}\right)$, where $k \not \equiv 0(\bmod p)$, since $r \not \equiv 1\left(\bmod p^{n-1}\right)$. Now take $b_{1}=b^{i}$, where i is determined by the congruence $i k \equiv 1(\bmod p)$. Then $r^{i} \equiv$ $\left(1+k p^{n-2}\right)^{i} \equiv 1+i k p^{n-2} \equiv 1+p^{n-2}\left(\bmod p^{n-1}\right)$. Hence $b_{1} a b_{1}{ }^{-1}=b^{i} a b^{-i}=a^{r i}=$ $a^{1+p n-2}$. Let us write $h=1+p^{n-2}$. Then $\left(a^{j} b_{1}\right)^{2}=a^{j} b_{1} a^{j} b_{1}{ }^{-1} b_{1}{ }^{2}=a^{j(1+h)} b_{1}{ }^{2}$, and we find by induction that $\left(a^{j} b_{1}\right)^{t}=a^{j} b^{t}$, where $T=1+h+\cdots+h^{t-1}$. For $t=p$ we have $1+h+\cdots+h^{p-1} \equiv p+p^{n-2}[1+2+\cdots+(p-1)] \equiv p+p^{n-1}(p-$ $1) / 2 \equiv p\left(\bmod p^{n-1}\right)$ since p is odd. Thus $\left(a^{j} b_{1}\right)^{p}=a^{j p} b_{1}{ }^{p}$. This formula could also have been found by an appeal to the collection formula. Now $b_{1}{ }^{p}=a^{u} \in\{a\}$, where $u=p v$ since b_{1} is not of order p^{n}, and since the group is not cyclic. If we put $b_{2}=a^{-v} b_{1}$, then $b_{2}{ }^{p}=\left(a^{-v} b_{1}\right)^{p}=a^{-v}{ }_{p} b_{1}^{p}=a^{-p v} a^{p v}$ $=1$, and also $b_{2} a b_{2}^{-1}=a^{-v} b_{1} a b_{1}^{-1} a^{v}=a^{-v} a^{1+p n_{n-2}} a^{v}=a^{1+p n-2}$. Thus a and b_{2} satisfy the relations given in the theorem as type 3 for non-Abelian groups with p odd.

Let us now take $p=2$ and find the non-Abelian groups of order 2^{n} containing an element of order 2^{n-1}. Let $a^{2 n-1}=1, b \notin\{a\}$. Then $b a b^{-1}=a^{r}$, where $r^{2} \equiv 1\left(\bmod 2^{n-1}\right), r \not \equiv 1\left(\bmod 2^{n-1}\right)$. This gives three distinct choices of r modulo $2^{n-1}, r=-1, r=1+2^{n-2}, r=-1+2^{n-2}$. Also let $b^{2}=a^{w} \in\{a\}$. Then, since $b\left(b^{2}\right) b^{-1}=b^{2}$, we have $a^{w r}=a^{w}$ or $w r \equiv w$ $\left(\bmod 2^{n-1}\right)$ as a condition on w. For $r=-1$ we find $-w \equiv w\left(\bmod 2^{n-1}\right)$, whence $a^{w}=1$ or $a^{w}=a^{2 n-2}$. Thus with $r=-1$ we find the generalized quaternion group or the dihedral group, types 4 and 5 in the theorem, respectively. For $n=3$ these are the only groups, as we determined in $\S 4.4$.

Suppose now $n \geqq 4$ and $b a=a^{r} b$, with $r=1+2^{n-2}$. With $b^{2}=a^{w}$, the condition on w that $w r \equiv w\left(\bmod 2^{n-2}\right)$ is merely that $2^{n-2} w \equiv 0\left(\bmod 2^{n-1}\right)$ or that w be an even number $w=2 w_{1}$. Determine j by the congruence $j\left(1+2^{n-3}\right)+$ $w_{1} \equiv 0\left(\bmod 2^{n-2}\right)$. Then with $b_{1}=a^{j} b$, we have $b_{1}^{2}=a^{j}\left(b a^{j}\right) b=a^{j(2+2 n-2)} b^{2}=$
$a^{2[j(1+2 n-3)}+w_{1}{ }^{1}=a^{2 n-1}=1$. Here $b_{1} a=a^{1+2 n-2} b_{1}$, and a and b_{1} satisfy the relations of type 6 in the theorem. Finally, if $n \geq 4, b a=a^{r} b$ with $r=-1+2^{n-2}$, the condition on w in $b^{2}=a^{w}$ that $w \equiv r w\left(\bmod 2^{n-1}\right)$ is that $\left(2+2^{n-2}\right) w \equiv 0$ $\left(\bmod 2^{n-1}\right)$ or $w \equiv 0\left(\bmod 2^{n-2}\right)$. Thus $b^{2}=1$ or $b^{2}=a^{2 n-2}$. If $b^{2}=a^{2 n-2}$, take b_{1} $=a b$ and $b^{2}=a(b a) b=a\left(a^{-1+2 n-2} b^{2}=a^{2 n-2} a^{2 n-2}=1\right.$. Thus either a and b or a and b_{1} satisfy the relations of type 7 in the theorem.

All the relations in Theorem 12.5.1 determine groups, as may be verified in every case, except that of the generalized quaternion groups, by means of Theorem 6.5.1. For the generalized quaternion groups, we may make a direct verification or refer ahead to Theorem 15.3.1.

Theorem 12.5.2. A p-group which contains only one subgroup of order p is cyclic or a generalized quaternion group.

Proof: Let P be of order p^{n} and contain only one subgroup of order p. We prove by induction on n that P is cyclic or of generalized quaternion type. This is trivial for $n=1$. First, suppose p odd. Then by induction a subgroup P_{1} of index p is cyclic, and so by Theorem 12.5.1, P is of one of types 1,2 , or 3 for p odd, and of these types 2 and 3 contain more than one subgroup of order p. Hence P is cyclic. When $p=2$, if P contains a cyclic subgroup P_{1} of index 2 , then by Theorem 12.5.1, P is one of types 1 through 7 for $p=2$, and each of these contains more than one subgroup of order 2, except for the cyclic group and the generalized quaternion group. Thus P is cyclic or of generalized quaternion type.

There remains to be considered the case in which, by induction every subgroup P_{1} of index 2 is generalized quaternion. We shall show that this situation cannot arise. Here $n \geqq 4$. First let $n=4$ and a subgroup of index 2 be a quaternion group Q, and let c be an element not in $Q . Q$ is given by $a^{4}=b^{4}$ $=1, a^{2}=b^{2}, b a=a^{-1} b$, and $P=Q+Q c$. The element c, being of order a power of 2 , must transform into itself at least one of the three subgroups of order 4 in $Q,\{a\},\{b\},\{a b\}$. Relabeling if necessary, we may take this to be $\{a\}$. Then $c^{-1} a c=a$ or $c^{-1} a c=a^{-1}$. If $c^{-1} a c=a$, then $\{a, c\}$ is an Abelian subgroup of index 2, contrary to assumption. If $c^{-1} a c=a^{-1}$, then $(c b)^{-1} a(c b)=a$, and $\{a$, $c b\}$ is an Abelian subgroup of index 2, contrary to assumption. This takes care of $n=4$.

Finally, suppose $n \geqq 5$, and P_{1} a generalized quaternion subgroup of index 2. Then P_{1} is given by $a^{2 n-2}=1, b^{2}=a^{2 n-3}, b a=a^{-1} b$, and $P=P_{1}+P_{1} c$. Here $\{a\}$ is the only subgroup of P_{1} of order 2^{n-2}, all elements of P_{1} not in $\{a\}$ being of order 4. Thus $c^{-1} a c=a^{r}$, and $c^{2}=a^{i} b$ or $c^{2}=a^{i}$. If $c^{2}=a^{i} b$, then c^{-2} and $r^{2} \equiv-1\left(\bmod 2^{n-2}\right)$ which is impossible. If $c^{2}=a^{i}$ then $\{a, c\}$ is a subgroup of index 2 and by assumption a generalized quaternion group. Then $c^{-1} a c=a^{-1}$, $(c b)^{-1} a(c b)=a$, and $\{c b, a\}$ is an Abelian subgroup of index 2, contrary to assumption. This completes the proof of the theorem in all cases.

TheOrem 12.5.3. A group of order p^{n} which contains only one subgroup of order p^{m}, where $1<m<n$ is cyclic.

Proof: If $m=n-1$, then a group P of order p^{n} with only one subgroup of order p^{n-1} is generated by any element x not in the subgroup, since $\{x\}$ is not contained in the unique maximal subgroup, and so $\{x\}=P$ and P is cyclic. This proves the theorem for $n=3$, the first value of n to which the theorem applies, and for all cases with $m=n-1$. We proceed by induction on n. We have proved the theorem when $m=n$ - and therefore we may assume $m<n-1$.

Let P_{1} be the unique subgroup of order p^{m}, and suppose P_{1} contained in a maximal subgroup A of order p^{n-1}. Since $1<m<n-1$, by induction A is cyclic, and so, P_{1} as a subgroup of A is also cyclic. Every subgroup of order p or p^{2} is contained in a subgroup of order p^{m} since $m \geq 2$, and so, in P_{1}. But P_{1}, being cyclic, contains a unique subgroup of order p and a unique subgroup of order p^{2}. Thus P contains a unique subgroup of order p and a unique subgroup of order p^{2}. By Theorem 12.5.2 P is cyclic or generalized quaternion. But the generalized quaternion group contains more than one subgroup of order 4. Hence P must be cyclic.

It is trivial that every subgroup of an Abelian group is normal. But the quaternion group is an example of a non-Abelian group in which every subgroup is normal. We call a group H Hamiltonian if H is non-Abelian and every subgroup of H is normal.

Theorem 12.5.4. A Hamiltonian group is the direct product of a quaternion group with an Abelian group in which every element is of finite odd order and an Abelian group of exponent two.

Proof: Let a and b be two elements of a Hamiltonian group H. Then the commutator $c=(a, b)=\left(a^{-1} b^{-1} a\right) b=b^{s}=a^{-1}\left(b^{-1} d b\right)=a^{r}$, since $\{a\}$ and $\{b\}$ are both normal subgroups. Note that this implies that c permutes with a and also with b. By (10.2.1).

$$
\left(a^{2}, b\right)=(a, b)(a, b, a)(a, b)=(a, b)(c, a)(a, b)=(a, b)^{2}
$$

and we may prove similarly by induction that

$$
\left(a^{i}, b\right)=(a, b)^{i}=c^{i}
$$

If a and b do not permute, then $c=a^{r} \neq 1$, and putting $i=r$ or $i=-r$, whichever is positive, then $\left(a^{i}, b\right)$ is either (c, b) or $\left(c^{-1}, b\right)$ and is the identity in either event since c permutes with b. Then $\left(a^{i}, b\right)=1=(a, b)^{i}=c^{i}$. Hence $c^{i}=1$ and $a^{r i}=1, b^{s i}=1$. Hence two elements of H which do not permute are of finite order. If an element x of H permutes with both a and b, then $x a$ does not permute with b, and it follows that $x a$, and so also x, is of finite order. Thus every element of H is of finite order.

Let a and b be elements of H which do not permute, and $a^{N}=1, b^{M}=1$, where we suppose N and M minimal. If p is any prime divisor of N, then by the minimality of N, a^{p} permutes with b, and so, $\left(a^{p}, b\right)=(a, b)^{p}=1$. The same will hold for any prime dividing M. As $c=(a, b) \neq 1$, there can be only one prime dividing M and N, and $M=p^{m}, N=p^{n}$. Thus $a^{p_{n}}=1, b^{p_{m}}=1, c=(a, b)$, $c^{p}=1$, where by symmetry we may assume $n \geq m$. Further, since $\boldsymbol{c} \boldsymbol{\epsilon}\{a\}$ and $c \in\{b\}, c=a^{j p n-1}=b^{k p m-1}$ where $j, k \not \equiv 0(\bmod p)$.

In $\{a, b\}$ the derived group is $\{c\}$ and is in its center. Thus in $\{a, b\}$ all commutators of weight three or more are the identity. We may establish the formula

$$
(a b)^{i}=a^{i} b^{i}(b, a)^{i(i-1) / 2}
$$

by induction. It is true for $i=1$, and we have

$$
\begin{aligned}
(a b)^{i+1} & =(a b)^{i} a b=a^{i} b^{i}(b, a)^{\imath(i-1) / 2} a b \\
& =a^{i} b^{i} a b(b, a)^{i(i-1) / 2} \\
& =a^{i} a b^{i}\left(b^{i}, a\right) b(b, a)^{i(i-1) / 2} \\
& =a^{i+1} b^{i}(b, a)^{i} b(b, a)^{i(i-1) / 2} \\
& =a^{i+1} b^{i+1}(b, a)^{i(i+2) / 2} .
\end{aligned}
$$

This proves the formula by induction for any group $\{a, b\}$ in which (a, b) is in the center. This formula is also a consequence of the collection formula.

If $b^{1}=a^{u} b^{k}$, where $u=-j p^{n-m}$, then $\left\{a, b_{1}\right\}=\{a, b\}$, whence b_{1} does not permute with a, and therefore by assumption, the order of b_{1} is at least as great as that of b. The formula just established yields

$$
\begin{aligned}
b_{1}^{p} & =\left(a^{u} b^{k}\right)^{p}=a^{u p} b^{k p}\left(b^{k}, a^{u}\right)^{p(p-1) / 2} \\
& =a^{p u} b^{k p} c^{-u k p(p-1) / 2}
\end{aligned}
$$

whence

$$
\begin{aligned}
b_{1}^{p^{m-1}} & =a^{-i p^{n-1}} b^{k p^{m-1}} c^{j k p^{n-1}(p-1) / 2} \\
& =c^{j k p^{n-1}(p-1) / 2} .
\end{aligned}
$$

Here $b_{1}{ }^{p m-1} \neq 1$, but since $c^{p}=1$, we must have $p=2, n=2$. Thus the relations on a and b are $a^{2}=b^{2}=a^{-1} b^{-1} a b=c, c^{2}=1$, and $\{a, b\}$ is the quaternion group. This shows that any non-Abelian subgroup of H contains a quaternion group.

We next show that H is the union of the quaternion group Q, given by $a^{4}=$ $b^{4}=1, a^{2}=b^{2}, b a=a^{-1} b$, and the group Z of elements centralizing Q. If an element x of H does not permute with a, then $x^{-1} a x=a^{-1}$ and $x b$ permutes with a. Similarly, if x (or $x b$) does not permute with b, then $x a$ (or $x b a$) permutes with a. Hence one of the elements $x, x b, x a, x b a$ lies in Z. Hence $H=Q \cup Z=$ $Q Z$. We now show that Z cannot contain an element of order 4 . For, if $x^{4}=1$, $x \in Z$, then $(a, b x) \neq 1$. Since $(b x)^{4}=1$, we have $a^{1}(b x) a=(b x)^{-1}$, whence $a^{-1} b a x=b^{-1} x^{-1}$, giving $x^{2}=1$. Since Z contains no element of order $4, Z$ cannot contain a quaternion group, and it follows that Z is Abelian. $Z \cap Q=a^{2}$. By use of Zorn's lemma we find a subgroup Z_{1} of Z maximal with respect to the property of not containing a^{2}. Then we easily find that $Z=Z_{1}+Z_{1} a^{2}, H=Q \times$
$Z_{1} . Z_{1}$ is the direct product of an Abelian group U, whose elements are of odd order, and an Abelian group V of exponent 2, since Z_{1} contains no element of order 4. Thus $H=Q \times U \times V$.

Conversely, a group of the form $Q \times U \times V$ is Hamiltonian, for Q is nonAbelian. It suffices to show that every cyclic subgroup $\{q u v\}$ is normal. U and V are in the center of $Q \times U \times V$, and we need only show that a and b transform this group into itself. Here $a^{-1}(q u v) a=q^{i} u v$, where $i=1$ or 3 . The order of u is an odd number n, and the order of v is 2 . Hence the congruences $r \equiv i(\bmod 4)$, $r \equiv 1(\bmod n)$ are solvable, and $a^{-1}(q u v) a=(q u v)^{r}$. This completes our theorem.

13. FURTHER THEORY OF ABELIAN GROUPS

13.1. Additive Groups. Groups Modulo One.

Any group may be written with the group operation designated as addition. It is a common practice to write Abelian groups additively, and it is particularly convenient to do so if there are operators. Also, certain groups arise naturally in the addition of familiar systems. Two (which we shall consider here) are the additive group of rational numbers which we shall designate as r_{+}and the additive group of real numbers which we shall designate as R_{+}.

When we use the additive notation for groups, we shall change our terminology appropriately, speaking of the sum of elements, Cartesian sums, and direct sums.

A cyclic group in additive form consists of all the integral multiples $n a$ of a generator a. The groups r_{+}and R_{+}are both aperiodic, since $n a=0$ implies $a=0$. In an infinite cyclic group generated by a, there is no element x such that $2 x=a$. Since for any a in r_{+}there is an x with $2 x=a$, it is clear that r_{+}is not a cyclic group. But r_{+}is very nearly a cyclic group. Any finite set of elements in r_{+}will generate a cyclic group. We describe this property by saying that r_{+}is of rank one, or locally cyclic. More generally we shall say that an Abelian group is of rank k if a subgroup generated by any finite number of elements can be generated by at most k elements, although some finitely generated subgroup requires k generators.

THEOREM 13.1.1. The additive group of rational numbers, r_{+}, is locally cyclic.

Proof: Consider a subgroup of r_{+}generated by the finite set of elements $a_{1} / b_{1}, \cdots, a_{t} / b_{t}$. Its elements will be the numbers $m_{1} a_{1} / b_{1}+\cdots+m_{t} a_{t} / b_{t}$, the m 's being arbitrary integers. These can be expressed in the form $\left(m_{1} a_{1} b_{2}\right.$ $\left.\cdots+\cdots+m_{t} a_{t} b_{1} \cdots b_{t-1}\right) / b_{1} b_{2} \cdots b_{t}$. Here we readily verify that the numerators form an additive subgroup of the additive group of integers, which is cyclic. Hence these form a cyclic group consisting of all integral multiples of some integer w. Thus our group consists of the numbers $n w / b_{1} b_{2}$ $\cdots b_{t}$ and is a cyclic group.

In the group R_{+}the integers form a subgroup, which like all subgroups of an Abelian group is a normal subgroup. In the factor group all numbers differing by integers are identified, and so we speak of the factor groups as the group R_{+}modulo 1 . Similarly, r_{+}has a factor group r_{+}modulo 1 , which is, of course, a subgroup of R_{+}modulo 1 .

The group $r_{+}(\bmod 1)$ is a periodic group, since if a / b is any rational number $(a, b$ being integers), we have $b(a / b) \equiv 0(\bmod 1)$. By Theorem 3.2.3, $r_{+}(\bmod 1)$ is the direct sum of its Sylow subgroups $S(p)$. An $S(p)$ of $r_{+}(\bmod$ 1) we designate as $Z\left(p^{\infty}\right)$. $Z\left(p^{\infty}\right)$ is generated by the infinite set $1 / p, 1 / p^{2}$, . . $\cdot, 1 / p^{i} \cdots(\bmod 1)$. An element of $Z\left(p^{\infty}\right)$ is of the form $m / p^{n},(m, p)=1$, and such an element generates the same cyclic group as $1 / p^{n}$. Hence a subgroup of $Z\left(p^{\infty}\right)$ is either finite or contains infinitely many of the set $1 / p, 1 / p^{2}, \cdots$, $1 / p, \cdots(\bmod 1)$, and so it is the entire group $Z\left(p^{\infty}\right)$. Thus $Z\left(p^{\infty}\right)$ is an infinite group, all of whose proper subgroups are finite cyclic groups.

13.2. Characters of Abelian Groups. Duality of Abelian Groups.

Given an arbitrary Abelian group A. A character χ of A is a homomorphism of A into the group $R_{+}(\bmod 1)$. Thus our definition is
(13.2.1) $\quad \chi\left(a_{1}\right)+\chi\left(a_{2}\right)=\chi\left(a_{1}+a_{2}\right) \quad$ all $a_{1}, a_{2} \in A$.

Here the addition $a_{1}+a_{2}$ is the addition in A, the addition of the values of the characters is, of course, in $R_{+}(\bmod 1)$. We shall also define an addition of
characters. If χ_{1} and χ_{2} are two characters of A, we define

$$
\begin{equation*}
\chi_{3}(a)=\chi_{1}(a)+\chi_{2}(a) \quad \text { all } a \in A \tag{13.2.2}
\end{equation*}
$$

Then χ_{3} is also a character of A, since
(13.2.3) $\quad \chi_{3}\left(a_{1}+a_{2}\right)=\chi_{1}\left(a_{1}+a_{2}\right)+\chi_{2}\left(a_{1}+a_{2}\right)$

$$
\begin{aligned}
& =\chi_{1}\left(a_{1}\right)+\chi_{1}\left(a_{2}\right)+\chi_{2}\left(a_{1}\right)+\chi_{2}\left(a_{2}\right) \\
& =\chi_{1}\left(a_{1}\right)+\chi_{2}\left(a_{1}\right)+\chi_{1}\left(a_{2}\right)+\chi_{2}\left(a_{2}\right) \\
& =\chi_{3}\left(a_{1}\right)+\chi_{3}\left(a_{2}\right) .
\end{aligned}
$$

We readily verify that if we use (13.2.2) to define an addition

$$
\begin{equation*}
\chi_{3}=\chi_{1}+\chi_{2} \tag{13.2.4}
\end{equation*}
$$

then, with respect to the addition (13.2.4), the characters themselves form an additive group A^{*} whose zero element is the character which maps every element of A onto zero.

Theorem 13.2.1. The character group A^{*} of a finite Abelian group A is isomorphic to A.

Proof: For any homomorphism we must have $\chi(0)=0$. Hence for an element a of finite order m, we have $m_{\chi}(a)=\chi(m a)=\chi(0)=0$. Thus $\chi(a)$ must have one of the m values $0,1 / m, \cdots,(m-1) / m(\bmod 1)$. In a finite Abelian group it is clear that a character is completely determined if it is known for a basis. Let $a_{i}, i=1, \cdots, r$ be a basis of A where a_{i} is of order n_{i}, and A is of order $n=n_{1} n_{2} \cdots n_{r}$. Since there are at most n_{i} choices for $\chi\left(a_{i}\right)$, we see that there are at most $n=n_{1} n_{2} \cdots n_{r}$ different characters for A. But we easily see that there are indeed this many. For if we put $\chi_{i}\left(a_{i}\right)=1 / n_{i}$, $\chi_{i}\left(a_{j}\right)=0 . j \neq i$, we can show that for each $i=1, \cdots, r$ this defines a character and that the correspondence $a_{i} \leftrightarrows \chi_{i}$ determines an isomorphism between A and A^{*}. We note, however, that the isomorphism between A and A^{*} is not uniquely determined but depends upon a particular choice of a basis for A.

The following theorem is true for any Abelian group, finite or not:

Theorem 13.2.2. Let H be a subgroup of the Abelian group A. Then the characters of A for which $\chi(h)=0$ for every $h \in H$ are precisely the characters of the factor group A / H.

Proof: If a character assigns 0 to every element of H, then it assigns the same value to every element of a coset $H+x$. We may take this as assigning a value in $R_{+}(\bmod 1)$ to the coset as an element of the factor group A / H. This is readily seen to be a character for A / H. Conversely, $A \rightarrow A / H$ is a homomorphism which when followed by a homomorphism into $R_{+}(\bmod 1)$ yields a homomorphism of A into $R_{+}(\bmod 1)$. This will be a character of A in which all elements of H go onto the zero of A / H, which is in turn mapped onto 0 .

Corollary 13.2.1. If $a \neq 0$ in a finite Abelian group A, then there is a character of A for which $\chi(a) \neq 0$.

For if this were not so, then every character of A would be a character of the factor group $A /\{a\}$, and by Theorem 13.2.1, A^{*} would be isomorphic both to A and also to $A /\{a\}$, which is, of course, of lower order.

A duality between groups A and B is a one-to-one correspondence $H \leftrightarrows K$ between subgroups H of A and subgroups K of B which reverses inclusions; i.e., if $H_{1} \leftrightarrows K_{1}$ and $H_{2} \leftrightarrows K_{2}$ and if $H_{1} \supset H_{2}$, then $K_{1} \subset$ K_{2}, and conversely, if $K_{1} \subset K_{2}$, then $H_{1} \supset H_{2}$. There is a natural duality between a finite Abelian group A and its character group A^{*}, which is given in the following theorem.

Theorem 13.2.3. There is a duality between a finite Abelian group A and its character group A^{*} given by the rule $H \leftrightarrows K$ where, given H a subgroup of A, K consists of all characters of A such that $\chi(h)=0$ for every $h \in H$, and given K a subgroup of A^{*}, H consists of all elements of A such that $\chi(h)=0$ for every $\chi \in K$. A is dual to itself.

Proof: With every subgroup H of A, let us associate the subgroup H^{*} of A^{*} consisting of all those characters χ such that $\chi(h)=0$ for every $h \in H$. If $H_{1} \neq H_{2}$ are distinct subgroups of A, then one of H_{1}, H_{2} (say, H_{1}) contains an element b not contained in the other. Then, by Theorem 13.2.2, $H_{2}{ }^{*}$ is the
character group of A / H_{2}, and by Corollary 13.2.1, there exists a $\chi \in H_{2}{ }^{*}$ such that $\chi(b) \neq 0$. Hence $H_{1}{ }^{*} \neq H_{2}{ }^{*}$. Since A and A^{*} are finite and isomorphic, it follows that the mapping $H \rightarrow H^{*}$ is a one-to-one correspondence between the subgroups of A and those of A^{*}, and in particular, that every subgroup K of A is of the form $K=H^{*}$ for a unique subgroup H of A. If $H_{1} \leftrightarrows K_{1}=H_{1}^{*}$ and $H_{2} \leftrightarrows K_{2}=H_{2}{ }^{*}$, then $H_{1} \supset H_{2}$ implies $K_{1} \subset K_{2}$, since $\chi(h)=0$ for every $h \in H_{1}$ implies a fortiori $\chi(h)=0$ for every $h \in H_{2} \subset H_{1}$. Similarly, $K_{1} \subset K_{2}$ implies H_{1} $\supset H_{2}$. Thus the correspondence of the theorem is a duality between A and A^{*}. The isomorphism between A and A^{*} then leads to a duality of A with itself.

Theorem 13.2.4. An Abelian group which is periodic and has all its Sylow subgroups finite is self dual.

Proof: If A is a periodic Abelian group whose Sylow subgroups are finite, then an $S(p)$ as a finite Abelian group is self-dual. Let us write this $H_{p} \leftrightarrows H_{p}^{d}$ where, for H_{p} any subgroup of $S(p)$, the dual subgroup is H_{p}^{d}. Now if H is any subgroup of A, then H is the direct sum of its Sylow subgroups H_{p}. Then let us put $H^{d}=\sum_{p} H_{p}^{d}$. This is easily seen to be a duality of A. Note that this argument does not work if we take without restriction a direct sum of finite Abelian groups because in general such a direct sum will have many subgroups which are not the direct sum of subgroups of the summands. It has been shown by Baer [6] that the Abelian groups which possess duals are precisely those covered by this theorem.

13.3. Divisible Groups.

An additively written Abelian group A is said to be divisible if, for every $a \in A$ and integer n, there is an element $x \in A$ such that $n x=a$.

Theorem 13.3.1. A divisible group is a direct summand of every Abelian group A which contains it.

Proof: Suppose we are given an Abelian group A and a divisible subgroup D. We wish to show the existence of a subgroup B such that

$$
\text { (13.3.1) } \quad A=D \oplus B \quad \text { or } \quad D \cap B=0 \quad \text { and } \quad D \cup B=A
$$

For this proof it is convenient to make use of Zorn's lemma which we discussed in $\S 1.8$. If $U_{1} \subset U_{2} \subset U_{3} \subset \cdots$ is an ascending chain of subgroups of A such that $D \cap U_{i}=0$, then $U=\bigcup_{i} U_{i}$ also has the property that $D \cap$ $U=0$. Hence, by Zorn's lemma, A contains a subgroup K maximal with respect to the property that $K \cap D=0$. We may take $B=K$ in (13.3.1). if it can be shown that $D \cup K=A$. Suppose that x is an element of A not in $K \cup D$. Then by the maximality of $K,\{x\} \cup K$ has a nonzero element in common with D. Hence for some non-negative integer n and $k \in K$, we have $n x+k=d \in D, d \neq 0$. Here $n \neq 0$, since $D \cap K=0$. And if $n=1$, then $x \in K \cup D$, contrary to assumption. Since D is divisible, $d=n d_{1}$ with $d_{1} \in D$, and $n\left(x-d_{1}\right)=-k$. Putting $x_{1}=x-d_{1}$ then if $x_{1} \in K \cup D$, also $x \in K \cup D$, contrary to assumption. The elements of $K \cap\left\{x_{1}\right\}$ are of the form $m x_{1}+k, 0 \leq m<n$. By the maximality of K there must be an element common to $\left\{x_{1}\right\} \cup K$ and $\mathrm{D}, n_{1} x_{1}+k_{1}=d=n_{1} d_{2}$, with $n_{1}<n, d, d_{2} \in D$. Here, with $x_{2}=x_{1}-d_{2}$, we have $n_{1} x_{2}=-k_{1} \in K, \quad$ and \quad if $\quad x_{2} \in K \cup D, \quad$ then also $x_{1} \in K \cup D$. This process leads to a contradiction because we ultimately find an $n_{i}=1$, whence $x_{i}, x_{i-1} \cdots, x_{1}$ and x all belong to $K \cup D$, contrary to assumption. Thus $K \cup D=A$ and our theorem is proved.

See Kaplansky [1] for a proof that every divisible group is a direct sum of groups isomorphic to r_{+}or groups $Z\left(p^{\infty}\right)$.

13.4. Pure Subgroups.

We say that H is a pure subgroup of the Abelian group A if it is true that whenever $n x=h \in H$ for some $x \in A$, then there is an $h_{1} \in H$ such that $n h_{1}=h$. Thus the property of being pure is a sort of relative divisibility, division being possible in H if it is possible at all. A divisible group is certainly a pure subgroup of any Abelian group containing it. A
direct summand is a pure subgroup. But although a divisible group is necessarily infinite, there can be pure subgroups in finite groups, and hence the concept is useful in the study of finite groups.

The periodic subgroup of an Abelian group is pure, since if $n x=h$ where h is of finite order, then x, if it exists, must also be of finite order. The union of an ascending chain of pure subgroups will be pure, for if h is any element of such a union, then h is an element of one of the groups in the chain and so $n x=h$ will have a solution in the chain.

Theorem 13.4.1 shows that in a great many cases, a pure subgroup is indeed a direct summand.

Theorem 13.4.1. Let A be an Abelian group, H a pure subgroup, and suppose that A / H is the direct sum of cyclic groups. Then H is a direct summand of A.

Proof: We first prove a lemma.
Lemma 13.4.1. If H is a pure subgroup of A, and the element y is in A / H, then there is an element x of A mapping onto y in the homomorphism $A \rightarrow$ A / H of the same order as y.

If y is of infinite order, then any x mapping onto y will do. If $n y=0$ and u $\rightarrow y$, then $n u \rightarrow 0, n u=h \in H$. But then, by the purity of $H, h=n h_{1}$. Here put $x=u-h_{1}$. Then $x \rightarrow y$ and $n x=n\left(u-h_{1}\right)=n u-n h_{1}=h-h=0$, as we wished to show.

The proof of the theorem is now fairly simple. Let A / H be the direct sum of cyclic groups generated by basis elements $y_{i}, i \in I$. Choose in A elements $x_{i} \rightarrow y_{i}$ where in every case we have chosen x_{i} of the same order as y_{i}, this choice being possible by the lemma. Let K be the subgroup generated by the x_{i}. If a relation $n_{i_{1}} x_{i_{1}}+\cdots+n_{i_{s}} x_{i_{s}}=h \in H$ holds in A, then in A / H we have $n_{i 1} y_{i 1}+\cdots+n_{i s} y_{i s}=0$, and so as the y 's are a basis for A / H, we have $n_{i} y_{i}=0$ for each of these terms. But since the x 's are of the same order as the y 's, then also $x_{i} x_{i}=0$ for each of the terms and also the h is zero. Hence $K \cap H=0$. Also $K \cup H=A$, since K contains one element from each coset of A. Thus $A=H \oplus K$, as was to be proved.

13.5. General Remarks.

For a more detailed study of Abelian groups the reader is referred to Kaplansky's monograph [1] and to Part II of Kurosch's book [2]. A particularly useful feature of Kaplansky's monograph is a section discussing the literature.

In general, Theorem 3.2.3 reduces the study of periodic groups to that of primary groups. One of the major results on primary groups is the Theorem of Ulm, which fully characterizes countable primary Abelian groups in terms of certain cardinal numbers, the "Ulm invariants" of the group.

The direct sum of infinite cyclic groups is called a free Abelian group. Every Abelian group with r generators is the homomorphic image of the free Abelian group with r generators. Every subgroup of a direct sum of cyclic groups is itself a direct sum of cyclic groups, and in particular, a subgroup of a free Abelian group is free Abelian.

As remarked in $\S \underline{13.3}$, every divisible group is the direct sum of groups isomorphic to r_{+}and of groups isomorphic to various $Z\left(p^{\infty}\right)$'s. Every Abelian group can be embedded in a divisible group, and so in a certain sense, the study of all Abelian groups is the study of subgroups of divisible groups. Thus a torsion-free (i.e., aperiodic) group of rank one is a subgroup of r_{+}.

An Abelian group which contains both elements of finite and elements of infinite order is called mixed. Examples show that in general a mixed group is not the direct sum of its periodic subgroup and a torsion-free group. But since the periodic subgroup is pure, Theorem 13.4.1 will often give the decomposition of a mixed group as the direct sum of the periodic part and another group.

14. MONOMIAL REPRESENTATIONS AND THE TRANSFER

14.1. Monomial Permutations.

Let us consider a set S of indeterminates u_{1}, \cdots, u_{n} which may be multiplied on the left by elements of a group H. We postulate the rules

$$
\begin{equation*}
1 u_{i}=u_{i}, \tag{1.4.1.1}
\end{equation*}
$$

1 the identity of H; and

$$
h_{1}\left(h_{2} u_{i}\right)=\left(h_{1} h_{2}\right) u_{i} .
$$

A monomial permutation M is a mapping $u_{i} \rightarrow h_{i j} u_{j}, i=1 \cdots n, j=j(i)$, where $u_{i} \rightarrow u_{j}$ is a permutation of S. For the product of two mappings M_{1} and M_{2}, if M_{1} is $u_{i} \rightarrow h_{i j} u_{j}$ and M_{2} is $u_{j} \rightarrow h_{j k} u_{k}$, we define $M_{1} M_{2}$ as $u_{i} \rightarrow$ $\left(h_{i j} h_{j k}\right) u_{k}$. Under this definition the mappings form a group whose identity is the mapping $u_{i} \rightarrow u_{i}$. If we associate with the mapping $M_{1}: u_{i} \rightarrow h_{i j} u_{j}$ the matrix $\left(h_{i j}\right)$, which has for its i th row $h_{i j}$ in the j th column and zeros elsewhere, then the rule for multiplying the mappings is the same as the ordinary matrix multiplication.

In the group M of all monomial permutations the multiplications $u_{i} \rightarrow h_{i i} u_{i}$ form a normal subgroup D, and the factor group M / D is the symmetric group of permutations of $u_{1} \cdots u_{n}$. More generally, if G is a subgroup of M, then if $g \in G$ is, $u_{i} \rightarrow h_{i j} u_{j}, g \rightarrow g^{*}: u_{i} \rightarrow u_{j}$ is a homomorphism of G onto a group of permutations whose kernel is $G \cap D$.

We shall say that a monomial permutation group G is transitive if the corresponding permutation group is transitive.

Theorem 14.1. Let G be a group with a subgroup K and $G=K+K x_{2}$. . $\cdot+K x_{n}$. Also let $K \rightarrow H$ be a homomorphism of K onto a group H. Then a transitive monomial representation of G with H as multipliers is given in the following way: For $g \in G$ let $x_{i} g=k_{i j} x_{j}, i=1, \cdots, n, j=j(i), k_{i j} \in K$. Also let $k_{i j} \rightarrow h_{i j}$ in the homomorphism $K \rightarrow H$. Then $\pi(g): u_{i} \rightarrow h_{i j} u_{j}$ is a transitive monomial representation of G with H as multipliers. Conversely, every transitive monomial representation is of this type or is conjugate under the group of multiplications D to a representation of this type.

Proof: Given G, the left coset representation $G=K+K x_{2}+\cdots+K x_{n}$ and the homomorphism $K \rightarrow H$. Let g_{1} and g_{2} be any two elements of G. Then, if $x_{i} g_{1}=k_{i j} x_{j}$ and $x_{j} g_{2}=k_{j s} x_{s}$, we have $x_{i}\left(g_{1} g_{2}\right)=k_{i j} k_{j s} x_{s}$, whence we see that $\pi\left(g_{1} g_{2}\right)=\pi\left(g_{1}\right) \pi\left(g_{2}\right)$ for the corresponding monomial permutations, whence we have a representation of G (of course not necessarily faithful). The corresponding permutation group is the permutation group of left cosets discussed in $\S 5.3$ and is, of course, transitive.

Conversely, let us consider any transitive monomial representation R of G, $g \in G, g \rightarrow \pi(g): u_{i} \rightarrow h_{i j} u_{j}$. Let us select a particular letter u_{1} and consider all elements k of G such that $\pi(k)$ maps u_{1} onto $h_{11} u_{1}$ for some $h_{11} \boldsymbol{\epsilon} H$. These form a subgroup K. By the transitivity of R, for each $i=2, \cdots, n$ there is an element x_{i} such that $\pi\left(x_{i}\right)$ takes u_{1} into $h_{1 i} u_{i}$. Then we see easily that

$$
\begin{equation*}
G=K+K x_{2}+\cdots+K x_{n} \tag{14.1.2}
\end{equation*}
$$

If we transform R by the multiplication $d: u_{1} \rightarrow u_{1}, \cdots, u_{i} \rightarrow h_{1 i}{ }^{-1} u_{i}$, then in $d^{-1} R d$ we see that $d^{-1} \pi\left(x_{i}\right) d$ takes u_{1} into u_{i}. Let us consider $R^{*}=d^{-1} R d$. Here, if for $k \in K, \pi(k)$ takes u_{1} into $h u_{1}, \pi\left(x_{i}^{-1} k x_{j}\right)$ takes u_{i} into $h u_{j}$, and conversely. Thus in R^{*} every h that occurs as a multiplier at all occurs in K. These may indeed be a proper subgroup H_{1} of the group H originally used. But if $\pi(k)$ takes u_{1} into $h u_{1}$, then $k \rightarrow h$ is a homomorphism of K onto H_{1}. Moreover, if $\pi(g)$ takes u_{i} into $h_{i j} u_{j}$, then $\pi\left({ }_{i} g x_{j}^{-1}\right)$ takes u_{1} into $h_{i j} u_{1}$, whence $x_{i} g x_{j}^{-1}=k_{i j} \in K$ and $k_{i j} \rightarrow h_{i j}$ in the homomorphism of K onto H_{1}.

We note in passing that changing the representatives of the left cosets of K in G yields another monomial representation conjugate to the first under the
group D of multiplications.

14.2. The Transfer.

Suppose we have a monomial representation R of a group G with multipliers from H :

$$
\begin{equation*}
\pi(g): u_{i} \rightarrow h_{i j} u_{j}, \quad i=1 \cdots n, \quad j=j(i) \tag{14.2.1}
\end{equation*}
$$

Suppose further that the number n of letters is finite. Then the mapping

$$
\begin{equation*}
g \rightarrow \prod_{i=1}^{n} h_{i j} \bmod H^{\prime} \tag{14.2.2}
\end{equation*}
$$

is easily seen to be a homomorphism of G onto the factor group H / H^{\prime}, where H^{\prime} is the derived group of H. Let us take in particular the case where we have $H=K$:

$$
\begin{equation*}
G=K+K x_{2}+\cdots+K x_{n} \tag{14.2.3}
\end{equation*}
$$

Here we have, if $\phi(z)=x_{j}$ for $z=k x_{j}, k \in K$,

$$
\begin{equation*}
V_{G \rightarrow K}(g) \equiv \prod_{i=1}^{n} x_{i} g \phi\left(x_{i} g\right)^{-1} \bmod K^{\prime} \tag{14.2.4}
\end{equation*}
$$

and $V_{G \rightarrow K}(g)$ is a homomorphism of G into K / K^{\prime}. This homomorphism is called the transfer (in German: Verlagerung) of G into K. If H is a homomorphic image of K, then the mapping of (14.2.2) is a homomorphic image of the transfer, since if $K \rightarrow H, K / K^{\prime}$ is mapped onto $H / H^{\prime}, K^{\prime}$ being a fully invariant subgroup of K. The chief properties of the transfer are given by Theorem 14.2.1.

Theorem 14.2.1.

1) The mapping $g \rightarrow V_{G \rightarrow K}(g)$ is a homomorphism of G into K / K^{\prime}.
2) The transfer $V_{G \rightarrow K}(g)$ is independent of the choice of representatives x_{i}.
3) If $G \supset K \supset T$, then $V_{G \rightarrow T}(g)=V_{K \rightarrow T}\left[V_{G \rightarrow K}(g)\right]$.

Proof: We have already observed the first property as a consequence of the theory of monomial representations. But we shall prove all three properties directly from the definition (14.2.4) of the transfer. For the first property we observe that if $x_{i} g_{1}=k_{i j} x_{j}, i=1 \cdots n, x_{j} g_{2}=k_{j s} x_{s}, j=1 \cdots n$, then $V_{G \rightarrow K}\left(g_{1}\right) \equiv \prod_{i} k_{i j} \bmod K^{\prime}$, $V_{G \rightarrow K}\left(g_{2}\right)=\prod_{j} k_{j s} \bmod K^{\prime}$, and $V_{G \rightarrow K}\left(g_{1} g_{2}\right)^{i} \equiv \prod_{i}\left(k_{i s} *\right)$, where $=k_{i s}{ }^{*}=k_{i j} k_{j s}$. For the second property if $x_{i}{ }^{*}=a_{i} x_{i}$ is the relation between the first and second choice of representatives and if $x_{i} g=k_{i j} x_{j}$, then $x_{i}^{*} g=a_{i} x_{i} g=a_{i} k_{i j} x_{j}=a_{i} k_{i j} a_{j}^{-1} x_{j}{ }^{*}$; then in the first case $V(g)$ is $\prod_{i} k_{i j} \bmod K^{\prime}$, and in the second case is $\prod_{i}^{i}\left(a_{i} k_{i j} a_{j}^{-1}\right) \equiv \prod_{i} a_{i} \cdot \prod_{i} k_{i j} \cdot \prod a_{j}^{-1} \equiv \prod_{i} k_{i j} \bmod K_{j}$. For the third property let

$$
\begin{align*}
G & =K+K x_{2}+\cdots+K x_{n} \tag{14.2.5}\\
K & =T+T y_{2}+\cdots+T y_{m}
\end{align*}
$$

Then

$$
\begin{align*}
G=T & +T y_{2}+\cdots+T y_{m} \\
& +\cdots \tag{14.2.6}\\
& +T x_{i}+T y_{2} x_{i} \cdots+T y_{m} x_{i} \\
& +\cdots \\
& +T x_{n}+T y_{2} x_{n} \cdots+T y_{m} x_{n}
\end{align*}
$$

Here, for $\boldsymbol{g} \boldsymbol{\in} \boldsymbol{G}$, let $x_{i} g=k_{i j} x_{j}$ and $y_{r} k_{i j}=t_{i j r s} y_{s}$.
Thus

$$
y_{r} x_{i} g=t_{i j r s} y_{s} x_{j} .
$$

Then

$$
V_{G \rightarrow T}(g) \equiv \prod_{i, r} t_{i j r s} \bmod T^{\prime} \quad \text { and } \quad V_{G \rightarrow K}(g) \equiv \prod_{i} k_{i j} \bmod K^{\prime}
$$

Now

$$
V_{K \rightarrow T}\left(k_{i j}\right) \equiv \prod_{r} t_{i j r s} \bmod T^{\prime}
$$

Hence

$$
\begin{aligned}
V_{K \rightarrow T}(g) & \equiv \prod_{i} V_{K \rightarrow T}\left(k_{i j}\right) \bmod G^{\prime} \\
& \equiv V_{K \rightarrow T}\left(\prod_{i} k_{i j}\right) \bmod T^{\prime} \equiv V_{K \rightarrow T}\left[V_{G \rightarrow K}(g)\right]
\end{aligned}
$$

We note here that, as the transfer of K onto T maps K^{\prime} onto the identity, there is no ambiguity in the transfer of $V_{G \rightarrow K}(g)$ into T, although this is an element of K / K^{\prime} rather than of K.

14.3.A Theorem of Burnside.

Theorem 14.3.1. If a Sylow subgroup P of a finite group G is in the center of its normalizer, then G has a normal subgroup H which has the elements of P as its coset representatives.

Proof: We begin with a lemma.
Lemma 14.3.1. If two complexes K_{1} and K_{2} are normal in a Sylow subgroup P of G and are conjugate in G, then K_{1} and K_{2} are conjugate in $N_{G}(P)$.

Proof of the lemma: Suppose $x^{-1} K_{1} x=K_{2}$ with $x \in G$. As K_{1} is normal in P, then $K_{2}=x^{-1} K_{1} x$ is normal in $x^{-1} P x=Q$. Thus both P and Q are contained in the normalizer of K_{2}, and hence as Sylow subgroups are conjugate in $N_{G}\left(K_{2}\right)$. Hence $y^{-1} Q y=P$ for some y with $y^{-1} K_{2} y=K_{2}$. Thus for $z=x y, z^{-1} P z=P, z^{-1} K_{1} z=K_{2}$, proving the lemma. For the proof of the theorem, since P is in the center of $N_{G}(P), P$ is Abelian and $P^{\prime}=1$. Let us consider $V_{G \rightarrow P}$. Let $u \in P$. In calculating $V_{G \rightarrow P}(u)$, let us use as representatives of P in $G, x_{i}, x_{i} u \cdots x_{i} u^{r-1}$ if $x_{i} u^{r} \in P x_{i}$ but $x_{i} u^{j} \notin P x_{i}$ for $j<r$. Here $x_{i} u^{j-1} \cdot u \cdot \phi\left(x_{i} u^{j}\right)^{-1}=x_{i} u^{j} u^{-j} x_{i}^{-1}=1$ for $j<r$ and $x_{i} u^{r-1} \cdot u$. $\phi\left(x_{i} u_{r}\right)^{-1}=x_{i} u^{r} x_{i}^{-1}$. Hence, for each cycle of length r in representing u on the left cosets of P, there is a term $x_{i} u^{r} x_{i}^{-1}$ in the product for $V_{G \rightarrow P}(u)$ and the rest are the identity. Thus $V_{G \rightarrow P}(u)=\prod_{i} x_{i} u^{r} x_{i}{ }^{-1}$. Now $x_{i} u^{r} x_{i}^{-1} \in P$ is conjugate to u^{r} in G, and as P is Abelian, both elements are normal in P. By the lemma $x_{i} u^{r} x_{i}^{-1}=y^{-1} u^{r} y$ with $y \in N_{G}(P)$. By hypothesis P is in the center of its normalizer, whence $y^{-1} u^{r} y=u^{r}$. Hence $V_{G \rightarrow P}(u) \equiv \prod u^{r} \equiv u^{n}$, where $n=[G: P]$ is the sum of the lengths of all the cycles. Since P is a Sylow subgroup of order, say, p^{s}, it follows that $p \nsim n=[G: P]$. Thus, in the transfer of G onto P, P is mapped isomorphically onto itself and $V_{G \rightarrow P}(G)=P$, since trivially the transfer can be no larger than P. The kernel of this homomorphism must be a group H of index p^{s} in G and of order $n=[G: P]$. Hence H is a normal subgroup of index p^{s}, and so the elements of P can be taken as the coset representatives of H.

Corollary 14.3.1. The order of a finite simple group is either divisible by 12 or by the cube of the smallest prime dividing its order.

Proof: Let p be the smallest prime dividing the order of the simple group G, and suppose that a Sylow p-group P is of order p or p^{2} and hence Abelian. By the theorem, unless $N_{G}(P)$ induces a nontrivial automorphism in P, then G has P as a factor group. If P is of order p, its automorphisms are of order dividing $p-1$, and so of orders less than p. If P is cyclic of order p^{2}, the
automorphisms are of order dividing $p(p-1)$, and if noncyclic of order p^{2}, of order $\left(p^{2}-1\right)\left(p^{2}-p\right)=p(p-1)^{2}(p+1)$. No one of these numbers is divisible by a prime greater than p if p is odd, since $p+1=2[(p+1) / 2]$, and hence no nontrivial automorphism can be induced by $N_{G}(P)$. If $p=2$, then in the last case $p+1=3$ and $N_{G}(P)$ can induce an automorphism of order 3 in P only if the order of $N_{G}(P)$ is divisible by 12 .

14.4. Theorems of P. Hall, Grün, and Wielandt.

The following theorems have as their main content the relationship between the Sylow p-subgroups of a group G and the factor groups G / K of G which are p-groups.

To describe these relationships, we introduce the concepts of strong and weak closure.

Definition: If H is a subgroup of G and B is a subgroup of H, we say that B is strongly closed in H (with respect to G) if $H \cap B^{x} \subseteq B$ for $B^{x}=$ $x^{-1} B x$, any $x \in G$, and that B is weakly closed in H if $B^{x} \subseteq H$ implies $B^{x}=$ B.

We say that a group G is p-normal if the center Z of a Sylow p-subgroup P is the center of every Sylow p-subgroup P_{1} which contains it. This is a special case of weak closure, being equivalent to the assertion that the center Z of P is weakly closed in P with respect to G. For suppose that G is p normal. Then let $x \in G$ be such that $Z^{x} \subseteq P$. Then Z is contained in $P_{1}=$ P^{x-1}. By p-normality Z is the center of P_{1}. But then Z^{x} is the center of $P_{1}^{x}=P$, whence $Z^{x}=Z$, and so Z is weakly closed in P. Conversely, suppose that Z is weakly closed in P, and that $Z \subseteq P_{1}$, another Sylow subgroup. Then for some $x \in G, P_{1}^{x}=P$. Then $Z^{x} \subseteq P$. By weak closure $Z=Z^{x}$. But if Z_{1} is the center of P_{1}, then Z_{1}^{x} is the center of $P_{1}^{x}=P$. Hence $Z_{1}^{x}=Z=Z^{x}$, and $Z=Z_{1}$ is the center of P_{1}, whence G is p-normal.

It is clear that strong closure implies weak closure. A weakly closed finite subgroup B of H must be normal in H. A subgroup of H generated by all x 's satisfying some equation $x^{k}=1$ will be weakly closed, and if these x 's form a
subgroup X, then X will be strongly closed in H. This will be the case if H is a regular p-group, and also under certain other circumstances.

We shall write the transfer $V_{G \rightarrow H}(g)$ as $V(g)$ when no ambiguity may arise. Here if

$$
\begin{aligned}
G & =H+H x_{2}+\cdots+H x_{n} \\
V(g) & \equiv \prod_{i=1}^{n} x_{i} g \phi\left(x_{i} g\right)^{-1} \bmod H^{\prime} .
\end{aligned}
$$

We may also replace congruences modulo H^{\prime} by congruences modulo H_{0}, where H_{0} is any subgroup of H containing H^{\prime}, so that H / H_{0} is Abelian. All congruences we use will be modulo H_{0}.

For $g \in G$ and $i=1, \cdots, n$ define $i g$ as that one of $1, \cdots, n$ such that $x_{i} g x_{i g}{ }^{-1} \in H$. Then for a fixed $g, i \rightarrow i g$ is the permutation $\pi(g)$ of the transitive permutation representation of G on the left cosets of H. Thus we may write

$$
V(g) \equiv \prod_{i} x_{i} g x_{i g}^{-1}
$$

There will be a number of cycles in the permutation $\pi(g)$, including fixed letters as cycles of length one. Choose one value from each cycle and call this set $C_{H}(g)$. For $i \in C_{H}(g)$ let r_{i} be the order of the cycle in which i appears. Then

$$
\sum_{i \in C_{H}(g)} r_{i}=n
$$

which merely says that the total length of the cycles is n.
Lemma 14.4.1.

$$
V(g) \equiv \prod_{i \in C_{H}(g)} x_{i} g^{r} i x_{i}^{-1}
$$

Here $x_{i} g_{i}^{r} x_{i}^{-1}$ is the first power of $x_{i} g x_{i}^{-1}$ which lies in H.

Proof: In a cycle of $\pi(g)$ beginning with i we have i, $i g, \cdots, i g_{i}^{r-1}$ all different, and we may take $x_{i}, x_{i} g, \cdots, x_{i} g_{i}^{r-1}$ as representatives of the corresponding cosets of H. These cosets make the contribution

$$
x_{i} g\left(x_{i} g\right)^{-1} \cdot\left(x_{i} g\right) g\left(x_{i} g^{2}\right)^{-1} \cdot(\cdots) \cdot\left(x_{i} g^{r_{i}-1}\right) g x_{i}^{-1}=x_{i} g^{r i} x_{i}^{-1}
$$

to $V(g)$, since $\phi\left(x_{i} g^{s}\right)=x_{i} g^{s}, s=1 \cdots r_{i}-1, \phi\left(x_{i} g^{r}\right)=x_{i}$. Since $x_{i} g^{s} \notin H x_{i}$ for $s<r_{i}, x_{i} g^{r} x_{i}^{-1}$ is the first power of $x_{i} g x_{i}^{-1}$ which lies in H.

We shall call the contribution of the cycles of length one to $V(g)$ the diagonal contribution $d(g)$ and write

$$
d(g) \equiv \prod_{i=i g} x_{i} g x_{i}^{-1} \bmod H_{0}
$$

Here, as with $V(g), d(g)$ is independent modulo H_{0} of the order of the factors and the choice of the coset representatives x_{i}.

Lemma 14.4.2. If u and v are conjugate in G, then $d(u) \equiv d(v)$. Also $d\left(u^{-1}\right) \equiv[d(u)]^{-1}$.

Proof: Let $v=t^{-1} u t$. Then $i u=i$ is equivalent to $i t v=i t$, and so by definition,

$$
\begin{aligned}
d(v) & \equiv \prod_{i=i u} x_{i t} v x_{i t^{-1}} \\
& \equiv \prod_{i=i u}\left(x_{i t} t^{-1} x_{i}^{-1}\right)\left(x_{i} u x_{i}^{-1}\right)\left(x_{i} t x_{i t} t^{-1}\right) \\
& \equiv \prod_{i=i u}\left(x_{i} u x_{i}^{-1}\right) \equiv d(u)
\end{aligned}
$$

This follows since $x_{i t} t^{-1} x_{i}^{-1}$ and $x_{i} t x_{i t}^{-1}$ are in H and are inverses of each other. Also, since $i=i u$ is equivalent to $i=i u^{-1}$, we have

$$
\begin{aligned}
d\left(u^{-1}\right) & \equiv \prod_{i=i u} x_{i} u^{-1} x_{i}^{-1} \equiv\left(\prod_{i-i u} x_{i} u x_{i}^{-1}\right)^{-1} \\
& \equiv[d(u)]^{-1}
\end{aligned}
$$

For $\boldsymbol{h} \boldsymbol{\epsilon} \boldsymbol{H}$ define $d^{*}(h) \equiv h^{-1} d(h)$. Then $h \equiv d(h)[d(h)]^{-1} \equiv d(h) d^{*}\left(h^{-1}\right)$ by Lemma 14.4.2, which also gives $d\left(h^{r}\right) \equiv d\left(x_{i} h^{r} x_{i}^{-1}\right)$, and so if $x_{i} h^{r} x_{i}^{-1} \in H$, we get

$$
\begin{aligned}
x_{i} h^{r} x_{i}^{-1} & \equiv d\left(h^{r}\right) d^{*}\left(x_{i} h^{-r} x_{i}^{-1}\right) \\
& \equiv h^{r} d^{*}\left(h^{r}\right) d^{*}\left(x_{i} h^{-r} x_{i}^{-1}\right)
\end{aligned}
$$

and so finally by Lemma 14.4.1, we have:
Lemma 14.4.3. If $h \in H$, then

$$
V(h) \equiv h_{i \in C_{H}(h)} \prod^{*}\left(h^{r_{i}}\right) d^{*}\left(x_{i} h^{-r_{i} x_{i}-1}\right)
$$

Corollary 14.4.1. If $d^{*}(h) \in H_{0}$ for all $h \in H$, then for any $h \in \boldsymbol{H}, V(h)=h^{n}$.

Fig. 6. A theorem of Philip Hall.
Let p be a prime, G_{1} any finite group, and define $G=u_{p}\left(G_{1}\right)$ to be the group generated by all elements of G_{1} of order prime to p. Thus G_{1} / G is the maximal p-factor group of G. Let P_{1} be a Sylow p-subgroup of G_{1}, N_{1} its normalizer in G_{1}, and H_{1} any subgroup of G_{1} containing N_{1}. Let us put $P=P_{1}$ $\cap G, N=N_{1} \cap G, H=H_{1} \cap G$, so that $G_{1}=G P_{1}=G N_{1}=G H_{1}$ and $P_{1} / P=$ $N_{1} / N=H_{1} / H=G_{1} / G . G$ is a fully invariant subgroup of G_{1}, and we note that P is a Sylow p-subgroup of G, and that N normalizes both P_{1} and G, whence N normalizes $P_{1} \cap G=P$. Now $u_{p}(G)=G$ since G is generated by elements of order prime to p, but it may happen that $u_{p}(H) \subset H$. Let us suppose that $u_{p}(H)$ $\subset H$. Here $u_{p}(H)$ is a fully invariant subgroup of H, and H is normal in H_{1}. Indeed, since H_{1} / H is a p-group, it is evident that $u_{p}(H)=u_{p}\left(H_{1}\right)$. Let us define

$$
\begin{aligned}
H_{0} & =H^{p} \cup\left(H, H_{1}\right) \cup u_{p}(H) \\
& =H^{p}\left(H, H_{1}\right) u_{p}(H)
\end{aligned}
$$

Here H^{p} is the group generated by p th powers of elements of H, and $\left(H, H_{1}\right)$ is the group generated by commutators $\left(h, h_{1}\right), h \in H, h_{1} \in H_{1}$. Since $H_{1} / u_{p}(H)$ is a p-group, and these three groups are characteristic subgroups, their union is their product. Since $u_{p}(H)=u_{p}\left(H_{1}\right), H_{1} / u_{p}(H)$ is a p-group and so nilpotent. Thus $\left(H, H_{1}\right) / u_{p}(H)$ is a proper subgroup of $H / u_{p}(H)$. Moreover, since H^{p} is contained in any subgroup T such that $H \supset T \supset\left(H, H_{1}\right) u_{p}(H)$ with [H:T] = p, it follows that if $u_{p}(H)$ is a proper subgroup of H, then also H_{0} is a proper normal subgroup of H and H / H_{0} is a p-group. We consider the problem: What elements of P must be adjoined to H_{0} to give H ?

Lemma 14.4.4. H is generated by H_{0} together with the set of all elements $d^{*}(u)$ with $u \in P$.

Proof: Here we have as before

$$
\begin{aligned}
G & =H+H x_{2}+\cdots+H x_{n} \\
d(u) & \equiv \prod_{i=i u} x_{i} u x_{i}^{-1} \bmod H_{0} \\
d^{*}(u) & \equiv u^{-1} d(u) \bmod H_{0}
\end{aligned}
$$

and we note that with our particular choice of $H_{0}, H_{0} \supseteq\left(H, H_{1}\right) \supseteq(H, H)=$ H^{\prime}, surely H / H_{0} is Abelian. Since $u \in P \subseteq H$, we surely have all $d^{*}(u) \in H$. Thus $K=\left\{d^{*}(u) \mid u \in P\right\} \cup H_{0} \subseteq H$. To prove $H \subseteq K$, we use the fact that since H / H_{0} is an Abelian p-group, $V(w) \equiv 1(\bmod$ H_{0}) for every element w of G whose order is prime to p. But by our construction G is generated by such elements, whence $V(u) \equiv 1\left(\bmod H_{0}\right)$ for every $u \in G$. Hence a fortiori $V(u) \epsilon K$ for every $u \in P$. Now for $u \in P$, by Lemma 14.4.3,

$$
V(u) \equiv u_{i \in C H(u)}^{n} \prod^{*}\left(u^{r_{i}}\right) d^{*}\left(x_{i} u^{-r_{i} x_{i}^{-1}}\right)
$$

Here $d^{*}\left(u^{\boldsymbol{r}_{i}}\right) \in K$ by definition, and $v=x_{i} u^{-r} x_{i}^{-1}$ is a p-element of H, whence for some $y \in H, y^{-1} v y \in P$, and so $d^{*}(v) \equiv v^{-1} d(v) \equiv v^{-1} d\left(y^{-1} v y\right)$ by Lemma 14.4.2, and so

$$
\begin{aligned}
d^{*}(v) & \equiv v^{-1} y^{-1} v y d^{*}\left(y^{-1} v y\right) \\
& \equiv(v, y) d^{*}\left(y^{-1} v y\right) .
\end{aligned}
$$

But $(v, y) \in H^{\prime} \subseteq H_{0}$ and $d^{*}\left(y^{-1} v y\right) \in K$ by definition, whence $d^{*}(v)=d^{*}\left(x_{i} u^{-r} x_{i}^{-1}\right) \in K$. It then follows that for $u \in P$,

$$
u^{n} \equiv V(u) \epsilon K .
$$

But $(n, p)=1$ and every element of P is an nth power of some other element of P. Thus $P \subseteq K$, and since H / H_{0} is a p-group and P a Sylow p-subgroup of H, we have $H=H_{0} \cup P \subseteq K$, proving $H=K$ and thus the lemma.

Since $G \triangleleft G_{1}$ and $H=H_{1} \cap G, G \cup H_{1}=G_{1}$, we may use the left coset representatives $1, x_{2}, \cdots, x_{n}$ of H in G as left coset representatives of H_{1} in G_{1}. Thus $G_{1}=H_{1}+H_{1}+H_{1} x_{2}+\cdots+H_{1} x_{n}$. Hence, writing G in terms of double cosets of H_{1} and P_{1}, we have

$$
G_{1}=H_{1}+H_{1} t_{1} P_{1}+\cdots+H_{1} t_{s} P_{1},
$$

where $1, t_{1}, \cdots, t_{s}$ are a subset of $1, x_{2}, \cdots, x_{n}$. Let $\pi(i=1, \cdots, s)$ be the transitive permutation representation of P_{1} on the cosets of H_{1} in $H_{1} t_{i} P_{1}$. Here π_{i} is of degree greater than one, since otherwise $H_{1} t_{i} P_{1}=H_{1} t_{i}$ and then $t_{i} P_{1} t_{i}^{-1}$ $\subseteq H_{1}$, but then by Sylow's theorem, $t_{i} P_{1} t_{i}^{-1}=y^{-1} P_{1} y$ for some $y \in H_{1}$, yielding $y t_{i} \in N_{1} \subseteq H_{1}$, whence $t_{i} \in H_{1}$ which is not the case. Thus the representation π_{i} of P_{1} is not the identity, and thus its kernel K_{i} is properly contained in P_{1} and π_{i} faithfully represents P_{1} / K_{i}. As P_{1} / K_{i} is a p-group, its center is not the identity. Hence we may choose an element $z_{i} \in P_{1}$ such that $\pi_{i}\left(z_{i}\right)$ is of order p and in the center of $\pi_{i}\left(P_{1}\right)$. Here $\pi_{i}\left(z_{i}\right)$ permutes with every $\pi_{i}(u)$ for $u \in P_{1}$. Now an element in the center of a transitive permutation group cannot fix one letter without fixing all letters. Hence $\pi_{i}\left(z_{i}\right)$ fixes no one of the cosets of $H_{1} t_{i} P_{1}$ and consists exclusively of cycles of length p. For any
$u \in P \subseteq P_{1}, \pi_{i}(u)$ permutes with $\pi_{i}\left(z_{i}\right)$ and so if $\pi_{i}(u)$ leaves fixed any coset, say, $H_{1} x_{j+i}$ contained in $H_{1} t_{i} P_{1}$, then it must also fix all the cosets $H_{1} x_{j+1}, \cdots, H_{1} x_{j+p}$ in the cycle of $\pi_{i}\left(z_{i}\right)$ to which $H_{1} x_{j+1}$ belongs. Hence we may write for $u \in P$,

$$
d(u) \equiv u \cdot \prod d_{j}(u) \bmod H_{0}
$$

where

$$
d_{j}(u)=h_{1} h_{2} \cdots h_{p}
$$

and

$$
h_{k}=x_{i+k} u x_{j+k}^{-1} \quad k=1 \cdots p
$$

where x_{j+1}, \cdots, x_{j+p} are, as above, representatives of the cosets of a cycle of $\pi_{i}\left(z_{i}\right)$ for some i. Here the single factor $u=1 \cdot u \cdot 1^{-1}$ is the contribution to $d(u)$ from H_{1}. We note also that with $x_{j+k} u x_{j+k}^{-1}=h_{k} \in H_{1}$, since $x_{j+k} \epsilon G, u \in P$, we have $h_{k} \epsilon G$, whence $h_{k} \in H_{1} \cap G=H$, and so these are indeed the factors entering into $d(u)$. Now $d^{*}(u)=u^{-1} d(u)$, whence

$$
d^{*}(u) \equiv \prod_{j} d_{i}(u) \bmod H_{0}
$$

With Lemma 14.4.4 this relation immediately establishes:
Lemma 14.4.5. H is generated by H_{0} together with all the $d_{j}(u)$ for $u \in P$.

Consider one of these $d_{j}(u)$ in more detail, writing $w_{k}=x_{j+k}, k=1, \cdots, p$ for convenience of notation.

$$
H_{1} w_{k} z_{i}=H_{1} w_{k+1}
$$

with subscripts $\bmod p$. Thus

$$
w_{k} z_{i}=y_{k} w_{k+1}
$$

with $y_{k} \in H_{1}$. Also

$$
w_{k} u w_{k}^{-1}=h_{k}, \quad d_{j}(u)=h_{1} \cdots h_{p}
$$

Now

$$
\begin{aligned}
w_{k}\left(u, z_{i}\right) w_{k}^{-1} & =w_{k} u^{-1} w_{k}^{-1} \cdot w_{k} z_{i}{ }^{-1} u z_{i} \cdot w_{k}{ }^{-1} \\
& =h_{k}^{-1} y_{k-1}^{-1} w_{k-1} u w_{k-1}^{-1} \cdot w_{k-1} z_{i} w_{k}^{-1} \\
& =h_{k}^{-1} y_{k-1}^{-1} h_{k-1} \cdot y_{k-1} \\
& =h_{k}^{-1} h_{k-1}\left(h_{k-1}, y_{k-1}\right) .
\end{aligned}
$$

But the y 's $\boldsymbol{\epsilon} H_{1}$, the h 'S $\boldsymbol{\epsilon} H$, and since $\left(H_{1}, H\right) \subseteq H_{0}$, we have

$$
w_{k}\left(u, z_{i}\right) w_{k}^{-1} \equiv h_{k}^{-1} h_{k-1} \bmod H_{0}
$$

Now P is normal in P_{1}, whence $\left(u, z_{i}\right) \in P$, and so for $u_{1}=\left(u, z_{i}\right)$ the diagonal contribution to $d\left(u_{1}\right)$ from the cosets $H w_{k}, k=1, \cdots p$ will be $h_{k}^{-1} h_{k-1} \bmod H_{0}, k=1, \cdots p$. Thus, from $w_{k} u w_{k}^{-1} \equiv h_{k}\left(\bmod H_{0}\right), k=1, \cdots$ p, we conclude that $w_{k}\left(u, z_{i}\right) w_{k}^{-1}=h_{k}^{-1} h_{k-1}\left(\bmod H_{0}\right), k=1, \cdots, p$. Now with $u=u_{0}, u_{1}=\left(u, z_{i}\right), u_{2}=\left(u_{1}, z_{i}\right)$, and recursively, $u_{s+1}=\left(u_{s}, z_{i}\right)$. We have seen that if

$$
w_{k} u_{s} w_{k}^{-1} \equiv h_{k}, s\left(\bmod H_{0}\right) \quad k=1, \cdots, p
$$

then

$$
w_{k} u_{s+1} w_{k}^{-1} \equiv h_{k-1, s} h_{k, s^{-1}} \equiv h_{k, s+1}\left(\bmod H_{0}\right)
$$

Hence, by induction on s,

$$
w_{k} u_{s} w_{k}^{-1} \equiv h_{k-s} h_{k-s+1}{ }^{-s} h_{k-s+2}\binom{s}{2} \cdots h_{k}^{(-1)^{s}}
$$

the exponents being the binomial coefficients with alternating signs. From the properties of binomial coefficients and the fact that $H^{p} \subseteq H_{0}$, we have

$$
w_{k} u_{p-1} w_{k}^{-1} \equiv h_{1} h_{2} \cdots h_{p} \equiv d_{j}(u) \bmod H_{0}
$$

Thus

$$
d_{i}(u) \equiv w_{k}\left(u, \widetilde{z_{i}, \cdots, z_{i}}\right) w_{k}^{-1}\left(\bmod H_{0}\right)
$$

with $u \in P, z_{i} \in P_{1}$. If we write

$$
e_{p}\left(u, z_{i}\right)=\left(u, \widetilde{z_{i}, \cdots, z_{i}}\right)
$$

then Lemma 14.4.5 tells us that H can be obtained by adjoining for all $u \in P$ certain elements of the form $x_{j+k} e_{p}\left(u, z_{i}\right) x_{j+k}{ }^{-1}$ which belong to H; i.e., certain diagonal coefficients of the $e_{p}\left(x, z_{i}\right)$ for $i=1, \cdots, s$ and $u \in P$. Since these coefficients are p-elements lying in H, and P is a Sylow p-subgroup of H, we may transform them by elements of H so that they lie in P. This will not affect them $\bmod H_{0}$ since H / H_{0} is Abelian.

This proves our main theorem.
Theorem 14.4.1 (P. Hall). Let G_{1} be any finite group, P_{1} a Sylow psubgroup, N_{1} its normalizer, and H_{1} a subgroup containing N_{1}. Let $G=$ $u_{p}\left(G_{1}\right)$ be the subgroup generated by all elements of G_{1} of orders prime to p, and put $H=G \cap H_{1}, N=G \cap N_{1}, P=G \cap P_{1}$. Then $u_{p}\left(H_{1}\right)=u_{p}(H)$, and if $u_{p}(H) \neq H, H_{0}=H^{p}\left(H_{1}, H\right) u_{p}(H)$ is a proper subgroup of H, and H can be obtained by adjoining to H_{0} certain conjugates lying in H of elements $e_{p}\left(u, z_{i}\right)=\left(u, \widetilde{z}_{i}, \cdots, z_{i}\right)$ where $u \in P$ and $z_{i}, i=1, \cdots s$ are elements in P_{1}. If

$$
G_{1}=H_{1}+H_{1} t_{1} P_{1}+\cdots H_{1} t_{s} P_{1}
$$

is a decomposition of G_{1} into double cosets of H_{1} and P_{1}, let $\pi_{i}, i=1, \cdots s$ be the transitive representation of P_{1} on the cosets of H_{1} in $H_{1} t_{i} P_{1}$. Then π_{i} is not of degree one, and we choose z_{i} so that $\pi_{i}\left(z_{i}\right)$ is of order p in the center of $\pi_{i}\left(P_{1}\right)$.

Corollary 14.4.2. If $e_{p}(u, z)=1$ for all $u, \boldsymbol{z} \in \boldsymbol{P}_{1}$, then $u_{p}\left(N_{1}\right)=N=$ $u_{p}\left(G_{1}\right) \cap N$ and $G_{1} / u_{p}\left(G_{1}\right)=N_{1} / u_{p}\left(N_{1}\right)$. This will happen in particular if the class of P_{1} is less than p.

Here we have taken $H_{1}=N_{1}$ and so $H=N$.
Suppose that Q_{1} is a weakly closed subgroup of P_{1}. Then, as we have already remarked, Q_{1} is normal in the normalizer N_{1} of P_{1}, and so we may take the normalizer of Q_{1} as a subgroup $H_{1} \supseteq N_{1}$. Then the preceding theorem will give a result which is an improvement of a theorem of Wielandt's [3],

Theorem 14.4.2 (Hall-Wielandt). Let P_{1} be a Sylow p-subgroup of G_{1} and Q_{1} be a weakly closed subgroup of P_{1}. Let N_{1} be the normalizer of P_{1} and H_{1} the normalizer of Q_{1}. Then any one of the following conditions will ensure $u_{p}\left(H_{1}\right)=H=u_{p}\left(G_{1}\right) \cap H_{1}$ whence $G_{1} / u_{p}\left(G_{1}\right)=H_{1} / u_{p}\left(H_{1}\right)$.

1) $e_{p}(u, z)=1$ for all $u \in P_{\mathbf{1}}$, all $\boldsymbol{z} \in \boldsymbol{Q}_{\mathbf{1}}$.
2) $e_{p-1}(u, z)=1$ for all $u, \boldsymbol{z} \in Q_{1}$.
3) $Q_{1} \subseteq Z_{p-1}\left(P_{1}\right)$ the $(p-1)$ st term of the ascending central series for P_{1}.

Proof: As in the proof of Theorem 14.4.1, let K_{i} be the kernel of the representation π_{i} of P_{1} on the cosets of $H_{1} t_{i} P_{1}$. Suppose, if possible, that $Q_{1} \subseteq$ K_{i}. Then $H_{1} t_{i} Q_{1}=H_{1} t_{i}$, and so $t_{i} Q_{1} t_{i}^{-1} \subseteq H_{1}$. Thus $t_{i} Q_{1} t_{i}^{-1}$ is a p-subgroup of H_{1}, and there exists a $y \in H_{1}$ such that $y^{-1} t_{i} Q_{1} t_{i}^{-1} y \subseteq P_{1}$ which is a Sylow p-subgroup of H_{1}. By the weak closure of Q_{1} this means $y^{-1} t_{i} Q_{1} t_{i}^{-1} y=Q_{1}$, and so $y^{-1} t_{\boldsymbol{i}} \in H_{1}$, the normalizer of Q_{1} and also $t_{\boldsymbol{i}} \in H_{1}$, which is not the case. Hence $Q_{\mathbf{1}} \nsubseteq K_{\boldsymbol{i}}$. Now Q_{1} is normal in P_{1}, and so the image of Q_{1} in P_{1} / K_{i} is a normal subgroup and must therefore contain elements of its center. Hence we may choose our elements z_{i} in Q_{1}. This gives the first condition, where we note that it would be sufficient to take $u \in P=P_{1} \cap G$, but a priori we do not know which subgroup of P_{1} is P. The third condition implies the first, for if $Q_{1} \subseteq Z_{p-1}\left(P_{1}\right)$, then $\boldsymbol{z} \in \boldsymbol{Z}_{\boldsymbol{p}-\mathbf{1}}\left(\boldsymbol{P}_{\mathbf{1}}\right)$ and $(u, z) \in Z_{p-2}\left(P_{1}\right),(u, z, z) \in Z_{p-3}$, and continuing,

$$
e_{p}(u, z)=(u, \widetilde{z, \cdots, z})=1
$$

As to the second condition, $e_{p}(u, z)=e_{p-1}(u, z)$, where $u_{1}=(u, z)$, and for $\boldsymbol{u} \in P, u_{\mathbf{1}} \in \boldsymbol{Q}_{\mathbf{1}}$, whence also the second condition implies the first.

Corollary 14.4.3. Let Q_{1} be a characteristic subgroup of P_{1}. If Q_{1} is not weakly closed in P_{1}, then there is another Sylow p-subgroup P_{2} which contains Q_{1} but in which Q_{1} is not normal. This must be the case if Q_{1} satisfies the conditions (1), (2), or (3) of the theorem, but $G_{1} / u_{p}\left(G_{1}\right)$ and $H_{1} / u_{p}\left(H_{1}\right)$ are not isomorphic.

Proof: As Q_{1} is characteristic in P_{1}, then Q_{1} is normal in N_{1}. Hence $N_{1} \subseteq$ H_{1}, the normalizer of Q_{1}. If Q_{1} is not weakly closed in P_{1}, then for some x, $x^{-1} Q_{1} x \subseteq P_{1}$, but $x^{-1} Q_{1} x \neq Q_{1}$. If $x^{-1} Q_{1} x$ were normal in P_{1}, then by Lemma 14.3.1, Q_{1} and $x^{-1} Q_{1} x$ would be conjugate to each other in N_{1}, which is not the case. Hence $x^{-1} Q_{1} x$ is in P_{1} but not normal in P_{1}, and so Q_{1} is in P_{2} $=x P_{1} x^{-1}$ but not normal in P_{2}. If Q_{1} satisfies the conditions (1), (2), or (3) of the theorem, then the conclusion of the theorem can fail only because Q_{1} is not weakly closed in P_{1}.

The following theorems are somewhat more elementary than the preceding theorems.

Theorem 14.4.3. Let P be a Sylow p-subgroup of G, and G^{\prime} the derived group of G. Then $V_{G \rightarrow p}(G) \cong P / P \cap G^{\prime}$.

Proof: Since $V_{G \rightarrow P}(G)$ is a homomorphism of G into P / P^{\prime}, a p-group, every element of order prime to p is mapped onto the identity. Since G is generated by P and Sylow subgroups belonging to other primes, $V(G)=V(P)$.

Suppose

$$
G=P+P x_{2}+\cdots P x_{n} .
$$

By Lemma 14.4.1, for $u \in P$,

$$
\begin{aligned}
& V(u) \equiv \prod_{i \in C_{P}(u)} x_{i} u^{r} i x_{i}^{-1} \bmod P^{\prime} \\
& V(u) \equiv \prod_{i \in C_{P}(u)} u^{r_{i}}\left(u^{r}, x_{i}^{-1}\right) \bmod P^{\prime}
\end{aligned}
$$

and

$$
V(u) \equiv \prod_{i \in C_{P}(u)} u^{r_{i}} \equiv u^{n} \bmod G^{\prime}
$$

Hence, as $(n, p)=1, V(u) \not \equiv 1 \bmod G^{\prime}$ if $u \in P, u \notin G^{\prime}$. But as $V(G)$ is Abelian, $V\left(G^{\prime}\right) \equiv 1$. Hence the kernel of $P \rightarrow V_{G \rightarrow P}(P)$ is exactly $P \cap$ G^{\prime}, and so $V_{G \rightarrow P}(G) \cong P / P \cap G^{\prime}$.

Theorem 14.4.4 (First Theorem of Grün) [1]. Let P be a Sylow psubgroup of G. Then $V_{G \rightarrow P}(G) \cong P / P^{*}$, where

$$
P^{*}=\left[P \cap N_{G}^{\prime}(P)\right] \cup_{z \in G}\left(P \cap z^{-1} P^{\prime} z\right)
$$

Proof: From Theorem 14.4.3 we know that $V_{G \rightarrow P}(G) \cong P / P \cap G^{\prime}$. From its construction P^{*} is the union of subgroups contained in $P \cap G^{\prime}$, and so $P^{*} \subseteq$ $P \cap G^{\prime}$. We must show that $P \cap G^{\prime} \subseteq P^{*}$. We prove that every element u in P $\cap G^{\prime}$ is also in P^{*}, using induction on the order of u. Here, trivially, $\mathbf{1} \in P^{*}$.

Let

$$
G=P+P y_{2} P+\cdots+P y_{s} P
$$

be the decomposition of G into double cosets of P. We suppose $u \in P \cap G^{\prime}$. Then, by Lemma 14.4.1,

$$
V(u) \equiv \prod_{i \in C_{P}(u)} x_{i} u^{\tau} i x_{i}^{-1} \bmod P^{\prime}
$$

Here the contribution to $V(u)$ from a double coset $P y P$ is of the form

$$
w=\prod_{k} y v_{k} u^{r} k v_{k}^{-1} y^{-1}
$$

with $v_{1}=1$ and $v_{k} \in P$. Also $\sum_{k} r_{k}=p^{t}$ if there are p^{t} left cosets of P in PyP. In considering the contribution w, we distinguish two cases: Case 1, t ≥ 1 in p^{t}; Case 2, $t=0, p^{t}=1$.

Case 1. We have

$$
w \equiv y u^{p^{t}} y^{-1}\left(\bmod y P^{\prime} y^{-1}\right)
$$

Also, for $v_{1}=1$, we have a factor $y u^{p^{\boldsymbol{b}}} y^{-\mathbf{1}} \boldsymbol{\in} P$, and since $b \leq t$, we have $y u^{p^{t}} y^{-1} \in P$. But also $w \in P$, and so

$$
w \equiv y u^{p^{t}} y^{-1}\left(\bmod P \cap y P^{\prime} y^{-1}\right)
$$

whence a fortiori

$$
w \equiv y u^{p^{t}} y^{-1}\left(\bmod P^{*}\right)
$$

Since $u \in P \cap G^{\prime}, V(u) \equiv 1\left(\bmod P^{\prime}\right)$, and thus $V\left(y u^{p t} y^{-1}\right) \equiv 1\left(\bmod P^{\prime}\right)$. But then $y u^{p t} y^{-1}$, since it belongs to P, is in the kernel $P \cap G^{\prime}$, and since $t>1$, it is of lower order than u, whence by our induction $y u^{p^{t}} y^{-1} \in P^{*}$. Since also by induction $u^{p^{t}} \in P^{*}$, we have

$$
w=y u^{p^{t}} y^{-1}=1=u^{p^{t}}\left(\bmod P^{*}\right)
$$

CASE 2. Here $P y P=P y$, and therefore $P y \subseteq N_{G}(P)$. Also

$$
w \equiv y u y^{-1} \equiv u\left[N_{G}{ }^{\prime}(P)\right]
$$

and

$$
w \equiv u\left[\bmod P \cap N_{G}^{\prime}(P)\right]
$$

and a fortiori $w \equiv u\left(\bmod P^{*}\right)$. Hence in all cases

$$
w_{j} \equiv u^{p^{t_{j}}}\left(\bmod P^{*}\right)
$$

if w_{j} is the contribution from $P y_{i} P$ which contains p_{j}^{t} left cosets of P. Hence

$$
V(u) \equiv u^{n}\left(\bmod P^{*}\right)
$$

where $n=[G: P]$ is prime to p. But $V(u) \equiv 1$ for $u \in P \cap G^{\prime}$, and so $V(u) \in P^{\prime} \subseteq P^{*}$. Thus $u^{n} \equiv 1\left(\bmod P^{*}\right)$, and so $u \in P^{*}$, as we wished to show.

Theorem 14.4.5 (Second Theorem of Grün). If G is p-normal, then the greatest Abelian p-group which is a factor group of G is isomorphic to that for the normalizer of the center of a Sylow p-subgroup.

Proof: Let P be a Sylow p-subgroup of G, Z its center. Let $G^{\prime}(p) \supseteq G^{\prime}$ be the smallest normal subgroup of G such that $G / G^{\prime}(p)$ is an Abelian p-group. Then $G=G^{\prime}(p) \cup P$, since the order of $G^{\prime}(p)$ must contain every factor of the order of G except for powers of p. If $G^{*}=P \cup G^{\prime}$, then $G^{\prime}(p) \cup G^{*}=G$. Also $G^{*} \cap G^{\prime}(p)=G^{\prime}$, since G^{*} / G^{\prime} contains only p-elements and $G^{\prime}(p) / G^{\prime}$ contains only elements of orders prime to p. By Theorem 2.4.1, $G / G^{\prime}(p)=G^{*} / G^{\prime}=P / P$ $\cap G^{\prime}$. Let N be the normalizer of P, and H the normalizer of Z. As Z is characteristic in $P, H \supseteq N$. Now if $H^{\prime}(p)$ is the least normal subgroup of H such that $H / H^{\prime}(p)$ is an Abelian p-group then, as with $G, H / H^{\prime}(p)=P / P \cap H^{\prime}$. Hence to prove our theorem, we must show $P \cap G^{\prime}=P \cap H^{\prime}$. Trivially, $G \supseteq$ $H, G^{\prime} \supseteq H^{\prime}$, and $P \cap G^{\prime} \supseteq P \cap H^{\prime}$. Thus we need to show $P \cap H^{\prime} \supseteq P \cap G^{\prime}$ By the First Theorem of Grün,

$$
P \cap G^{\prime}=\left(P \cap N^{\prime}\right) \bigcup_{x \in G}\left(P \cap x^{-1} P^{\prime} x\right)
$$

Since $H \supseteq N, P \cap H^{\prime} \supseteq P \cap N^{\prime}$. We must also show for every $x \in G$ that

$$
P \cap H^{\prime} \supseteq P \cap x^{-1} P^{\prime} x
$$

Write $M=P \cap x^{-1} P^{\prime} x$. Then $Z \subseteq N_{G}(M)$ and $x^{-1} Z x \subseteq N_{G}(M)$, since $x^{-1} Z x$ is the center of $x^{-1} P x$. Here Z is in a Sylow subgroup R of $N_{G}(M)$ and $x^{-1} Z x$ is in a Sylow subgroup S of $N_{G}(M)$. Hence, for some $y \in N_{G}(M)$, both Z and $y^{-1} x^{-1} Z x y$ are in the same Sylow subgroup Q of G containing R. By p normality both Z and $y^{-1} x^{-1} Z x y$ are the center of Q and so equal to each other. Thus $Z=y^{-1} x^{-1} Z x y$, and so $x y=h \in N_{G}(Z)=H$. But $y \in N_{G}(M)$, whence

$$
\begin{aligned}
M & =y^{-1} M y=y^{-1} P y \cap y^{-1} x^{-1} P^{\prime} x y \\
& =y^{-1} P y \cap h^{-1} P^{\prime} h \subseteq H^{\prime}
\end{aligned}
$$

Thus $M=P \cap x^{-1} P^{\prime} x \subseteq P \cap H^{\prime}$ and our theorem is proved.
The Theorem of P. Hall also yields an improvement of the Second Theorem of Grün, dropping the requirement "Abelian."

Theorem 14.4.6 (Hall-Grün). If G is p-normal, then the greatest factor group of G which is a p-group is isomorphic to that for the normalizer of the center of a Sylow p-subgroup.

Proof: In Theorem 14.4.2 take G_{1} as G, P_{1} a Sylow p-subgroup, Q_{1} as the center of P_{1}, and H_{1} the normalizer of Q_{1}. Then the p-normality of G_{1} as we have observed, means that Q_{1} is weakly closed in P_{1}. Here, since $Q_{1}=Z\left(P_{1}\right)$, the third condition holds and we conclude $G_{1} / u_{p}\left(G_{1}\right) \cong H_{1} / u_{p}\left(H_{1}\right)$. These are the maximal factor p-groups and the theorem is proved.

We can also improve on the Theorem of Burnside. Under what circumstances is a Sylow p-subgroup P of a group G isomorphic to a factor group of G ? That is to say, when is $G / u_{p}(G)=P$? Assume that this is the case, writing $B=u_{p}(G)$; then B consists of all the elements of G of orders prime to p. Here $B \cap P=1, B \cup P=B P=G$. If Q is any subgroup of P, then $B \cup Q=$ $B Q$ is a subgroup containing Q and all elements of orders prime to p. Here B is normal in $B Q$. Write $W=N_{B Q}(Q)$. Then $W \cap B$ consists of the elements of W of orders prime to p. Clearly, $W \cap B \triangleleft W$ and, of course, $Q \triangleleft W$. But then $W=(W \cap B) \times Q$. Hence every element of order prime to p which normalizes Q also centralizes Q. This condition, which is necessary
for $G / u_{p}(G) \cong P$, we shall show is also sufficient and to this extent generalizes Theorem 14.3.1.

Theorem 14.4.7. A group G has a factor group $G / u_{p}(G)$ isomorphic to a Sylow p-subgroup P if, and only if, for every subgroup Q of P an element of order prime to p which normalizes Q also centralizes Q.

Proof: We proceed by induction on the order of G, the result being trivially true if $G=P$. First we show that G is p-normal. Let Z be the center of P. By the corollary to Theorem 14.4.2, if G is not p-normal, then Z is contained in another Sylow p-group P_{2}, but is not normal in P_{2}. Then by Theorem 4.2.5, there is a subgroup Q of P which is normalized but not centralized by an element of order prime to p. By our hypothesis, this does not happen, and so G must be p-normal. By Theorem 14.4.6, $G / u_{p}(G) \cong H / u_{p}(H)$, where H is the normalizer of Z. If H is a proper subgroup of G, then by induction $H / u_{p}(H) \cong P$ and our theorem is proved.

Hence we may suppose that $G=H$, and so, that Z is normal in G. But if G / Z contains a p-group Q / Z, which is normalized but not centralized by an element of order prime to p, then the same holds for its inverse image Q. Thus our hypothesis holds for G / Z, and so, G / Z has a normal subgroup K / Z such that the factor group is isomorphic to P / Z. Since Z is normalized by K and K / Z is of order prime to p, then Z is centralized by K, and so, $K=Z \times K_{1}$ where K_{1} is of order prime to p. But $K_{1}=u_{p}(K)=u_{p}(G)$ consists exclusively of elements of orders prime to P. Hence $G / u_{p}(G)=P$, as was to be shown.

15. GROUP EXTENSIONS AND COHOMOLOGY OF GROUPS

15.1. Composition of Normal Subgroup and Factor Group.

Generally speaking, any group G which contains a given group U as a subgroup is called an extension of U. General group extensions have been studied in a broad way by Reinhold Baer [11]. Here, however, we shall consider only cases in which U is normal in G.

Otto Schreier [1,2] first considered the problem of constructing all groups G such that G will have a given normal subgroup N and a given factor group H $\cong G / N$. There is always at least one such group, since the direct product of N and H has this property.

Let us first assume such a group G given, and examine it closely. Let the elements of the factor group $H \cong G / N$ be designated as $1, u, v \cdots, w$. Each element x of H corresponds to a coset of N in G. Let us choose a representative \bar{x} in G of the $\operatorname{coset} \bar{x} N$ corresponding to x, with the convention that the identity 1 of G shall be chosen as the representative of N. Then

$$
\begin{equation*}
G=N+\bar{u} N+\bar{v} N+\cdots+\bar{w} N, \tag{15.1.1}
\end{equation*}
$$

and in every case the homomorphism $G \rightarrow H$ is such that

$$
\begin{equation*}
\bar{u} \rightarrow u, \quad \bar{u} \in G, \quad u \in H \tag{15.1.2}
\end{equation*}
$$

Then the mapping

$$
\begin{equation*}
a \leftrightarrows \bar{u}^{-1} a \bar{u}=a^{u}, \tag{15.1.3}
\end{equation*}
$$

all $\boldsymbol{a} \in N$, is an automorphism of N, since N is a normal subgroup. Also

$$
\bar{u} \cdot \bar{v}=\overline{u v}(u, v)
$$

with $(u, v) \in N$, since $\bar{u} \rightarrow u, \bar{v} \rightarrow v$ in the homomorphism from G onto H. The set of all elements (u, v) defined by (15.1.4) we call the factor set. Thus in the structure of G the four following structures enter:

1) The normal subgroup N.
2) The factor group H.
3) The automorphisms of $N: a \leftrightarrows a^{u}, a \in N, u \in H$.
4) The factor set of $(u, v) \in N ; u, v \in H$.

It is to be emphasized that, in general, the automorphisms and the factor set as defined by (15.1.3), and (15.1.4) depend on the choice of representative \bar{u} of the coset $\bar{u} N$ corresponding to u.

The automorphisms and factor set must satisfy certain conditions. Transforming an element $a \in N$ by both sides of (15.1.4), we have

$$
\begin{equation*}
\left(a^{u}\right)^{v}=(u, v)^{-1}\left(a^{u v}\right)(u, v) \tag{15.1.5}
\end{equation*}
$$

Also, since in $G(\bar{u} \bar{v}) \bar{w}=\bar{u}(\bar{v} \bar{w})$ we have

$$
(\bar{u} \bar{v}) \bar{w}=[\overline{u v}(u, v)] \bar{w}=\overline{u v} \bar{w}(u, v)^{w}=\overline{u v w}(u v, w)(u, v)^{w},
$$

and also

$$
\bar{u}(\bar{v} \bar{w})=\bar{u}[\overline{v w}(v, w)]=\overline{u v w}(u, v w)(v, w)
$$

whence it follows that

$$
\begin{equation*}
(u v, w)(u, v)^{w}=(u, v w)(v, w) \tag{15.1.6}
\end{equation*}
$$

For the product of two elements $\bar{u} a, \bar{v} b$ of G we have

$$
\begin{gather*}
(\bar{u} a)(\bar{v} b)=\bar{u} \bar{v} a^{v} b=\overline{u v}(u, v) a^{v} b \quad \text { or } \\
(\bar{u} a)(\bar{v} b)=\overline{u v}(u, v) a^{v} b . \tag{15.1.7}
\end{gather*}
$$

The convention of taking 1 as the representative of N in G yields, from (15.1.4),

$$
\begin{equation*}
(u, 1)=1=(1, v) \tag{15.1.8}
\end{equation*}
$$

Conversely, the conditions (15.1.5) and (15.1.6) on the automorphisms and factor set are sufficient for G to exist with N as a normal subgroup and $G / N \cong$ H. Let us take symbols $\bar{u} a, u \in H, a \in N$ and define a system G with a binary operation of product given by the rule

$$
\begin{equation*}
\bar{u} a \cdot \bar{v} b=\overline{u v}(u, v) a^{v} b . \tag{15.1.9}
\end{equation*}
$$

This product is associative, since

$$
\begin{aligned}
(\bar{u} a \cdot \bar{v} b) \cdot \bar{w} c & =\overline{u v}(u, v) a^{v} b \cdot \bar{w} c=\overline{u v w}(u v, w)(u, v)^{w}\left(a^{v}\right)^{w} b^{w} c \\
& =\overline{u v w}(u v, w)(u, v)^{w}(v, w)^{-1} a^{v w}(v, w) b^{w} c \quad[\mathrm{by}(15.1 .5)] \\
& =\overline{u v w}(u, v w) a^{v w}(v, w) b^{w} c \quad[\mathrm{by}(15.1 .6)] \\
& =\bar{u} a \cdot \overline{v w}(v, w) b^{w} c \\
& =\bar{u} a \cdot(\bar{v} b \cdot \bar{w} c) .
\end{aligned}
$$

It is convenient (but the reader may verify not necessary) to assume for the converse, besides (15.1.5) and (15.1.6), also

$$
\begin{equation*}
(1,1)=1 \tag{15.1.10}
\end{equation*}
$$

a particular case of (15.1.8). If in (15.1.5) we put $u=v=1$ and use (15.1.10), we get $\left(a^{1}\right)^{1}=a^{1}$, and since $a^{1}=c$ may be an arbitrary element of N, we have $c^{1}=c$ for all $\boldsymbol{c} \boldsymbol{\epsilon} \boldsymbol{N}$. In (15.1.6) put $u=v=1$. Then $1=(1,1)^{w}=(1, w)$. Similarly, from $v=w=1$, we find $(u, 1)=1$. Now $\overline{1} 1 \cdot \bar{w} c=\bar{w}(1, w) c=\bar{w} c$, and $\bar{u} a \cdot \overline{1} 1=\bar{u}(u, 1) a=\bar{u} a$, and so $\overline{1} 1$ is the identity for the system G. Since $\boldsymbol{a} \leftrightarrows \boldsymbol{a}^{w}$ is an automorphism of N, there is an element d of N such that $d^{w}=\left(w^{-1}, w\right)^{-1} c^{-1}$ for given $\boldsymbol{C} \in \boldsymbol{N}$, $\boldsymbol{w} \in \boldsymbol{H}$. Hence, for an arbitrary $\bar{w} c$ of G, we have $\overline{w^{-1}} d \cdot \bar{w} c=\overline{\mathbf{1}}\left(w^{-1}, w\right) d^{w} c=\overline{1} 1$, the identity. Since every element of G has a left inverse, this is sufficient to prove that G is a group. The product rule (15.1.9) is such that the mapping

$$
\begin{equation*}
\bar{u} a \rightarrow u \tag{15.1.11}
\end{equation*}
$$

is a homomorphism of G onto H, where the kernel consists of the elements $\overline{\mathbf{1}} \boldsymbol{a}$. But we verify

$$
\overline{1} a \cdot \overline{1} b=\overline{1}(1,1) a b=\overline{1} a b
$$

whence $\overline{\mathbf{l}} \boldsymbol{a} \leftrightarrows \boldsymbol{a}$ is an isomorphism identifying this kernel with N. Since $\bar{u} 1 \cdot \overline{1} a=\bar{u}(u, 1) a=\bar{u} \boldsymbol{a}$, we may take the $\bar{u}=\bar{u} 1$ as coset representatives of N, and we may regard $\bar{u} a$ as the product of \bar{u} and a.

We summarize these results in a theorem.
Theorem 15.1.1 (Schreier). Given a group G with a normal subgroup N and factor group $H=G / N$. If we choose coset representatives $\bar{u} N \rightarrow u \in H$, taking $\overline{\mathbf{1}}=1$, then automorphisms and a factor set are determined, satisfying

$$
\begin{aligned}
& \left(a^{u}\right)^{v}=(u, v)^{-1}\left(a^{u v}\right)(u, v), \quad a,(u, v) \in N ; u, v \in H ; \\
& (u v, w)(u, v)^{v v}=(u, v w)(v, w) ;(1,1)=1 .
\end{aligned}
$$

(Conversely, if for every $u \in H$ there is given an automorphism $\boldsymbol{a} \leftrightarrows \boldsymbol{a}^{\mathbf{u}}$ of N, and if for these automorphisms and the factor set $[(u, v) \in N],(u, v \in H)$, the above conditions hold, then elements $\bar{u} a$, $u \in H, a \in N$, with the product rule

$$
\bar{u} a \cdot \bar{v} b=\overline{u v}(u, v) a^{v} b
$$

define a group G with normal subgroup N and $G / N \cong H$.
If the requirement $(1,1)=1$ is omitted, then the theorem still holds with $\overline{1}(1,1)^{-1}$ the unit for G.

The unique extension G determined by $N, H, a \leftrightarrows a^{u}$ and factor set (u, v) will be designated $E\left[N, H, a^{u},(u, v)\right]$.

If we change the coset representatives of N in G, taking

$$
\begin{equation*}
\overline{\bar{u}}=\bar{u} \alpha(u), \quad u \in H, \quad \alpha(u) \in N, \tag{15.1.12}
\end{equation*}
$$

where by convention $\overline{\overline{1}}=\overline{1}=1$, and so, $\alpha(1)=1$. Here the automorphisms are changed and

$$
\begin{equation*}
a \leftrightarrows a^{u^{1}}=\overline{\bar{u}}^{-1} a \overline{\bar{u}}=\alpha(u)^{-1} a^{u} \alpha(u) \tag{15.1.13}
\end{equation*}
$$

Also the factor set (u, v) is replaced by the factor set $(u, v)^{1}$ by the rule

$$
\begin{align*}
\overline{\bar{u}} \cdot \overline{\bar{v}} & =\bar{u} \alpha(u) \bar{v} \alpha(v)=\overline{u v}(u, v) \alpha(u)^{v} \alpha(v) \tag{15.1.14}\\
& =\overline{\overline{u v}}(u, v)^{1}=\overline{u v} \alpha(u v)(u, v)^{1} .
\end{align*}
$$

Definition: Two extensions $E_{1}=E\left[N, H, a^{u},(u, v)\right]$ and $E_{2}=E\left[N, H, a^{u 1}\right.$, $\left.(u, v)^{1}\right]$ are equivalent if the automorphisms and factor sets are related by

$$
\begin{aligned}
a^{u^{1}} & =\alpha(u)^{-1} a^{u} \alpha(u) \\
(u, v)^{1} & =\alpha(u v)^{-1}(u, v) \alpha(u)^{v} \alpha(v)
\end{aligned}
$$

where $\alpha(u)$ is a function of elements $u \in H$ with values in N and $\alpha(1)=1$. We Write

$$
E\left[N, H, a^{u},(u, v)\right] \sim E\left[N, H, a^{u^{1}},(u, v)^{1}\right]
$$

The equivalence of E_{2} to E_{1} amounts to a change of coset representatives for N in the same group G, and so, clearly this is a true equivalence and is symmetric, reflexive, and transitive.

If coset representatives $\overline{\bar{u}}$ of N in G may be chosen so that

$$
\begin{equation*}
\overline{\bar{u} v}=\overline{\bar{u}} \overline{\bar{v}} \tag{15.1.15}
\end{equation*}
$$

i.e., $(u, v)^{1}=1$, then the coset representatives form a group isomorphic to H, which we may identify with H. If this happens, we shall say that G splits over N or that G is the semi-direct product of N and H.

Theorem 15.1.2. The extension $G=E\left[N, H, a^{u},(u, v)\right]$ splits over N if, and only if, we can find a function $\alpha(u) \in N, u \in H$ such that

$$
(u, v) \alpha(u)^{v} \alpha(v)=\alpha(u v)
$$

for all $u, v \in H$.
Proof: If u are coset representatives such that $G=E\left[N, H, a^{u},(u, v)\right]$ splits over N, then $(u, v)^{1}=1$, and with $\overline{\bar{u}}=\overline{\boldsymbol{u}} \boldsymbol{\alpha}(u)$ we find the relation

$$
\begin{equation*}
(u, v) \alpha(u)^{v} \alpha(v)=\alpha(u v) \tag{15.1.16}
\end{equation*}
$$

Conversely, if a function $\alpha(u)$ exists such that (15.1.16) holds, then define $a^{u 1}$ by $a^{u 1}=\alpha(u)^{-1} a^{u} \alpha(u), \overline{\bar{u}}=\bar{u} \alpha(u)$, and the extension $E\left[N, H, a^{u 1},(u, v)^{1}\right]$ $=G$ will exist and be an equivalent extension with $(u, v)^{1}=1$ for all $u, v \in H$, whence the extension G splits over N.

15.2. Central Extensions.

Let us suppose that all factors (u, v) in an extension of a group A by a group H lie in the center B of A. Then we shall say that $E\left[A, H, a^{u},(u, v)\right]$ is a central extension of A by H. Thus, if A is an Abelian group, $B=A$ and all extensions of A are central extensions.

For a central extension (15.1.5) reduces to
(15.2.1)

$$
\left(a^{u}\right)^{v}=a^{u v}
$$

which says that the automorphisms $a \leftrightarrows a^{u}$ of A form a group homomorphic to H. Let us denote by χ a particular way of assigning to each element of H an automorphism of A, where the automorphisms that are assigned form a group homomorphic to H. Furthermore, if coset representatives \bar{u} are changed only by factors $\alpha(u)$ lying in B, the automorphisms are unchanged. Hence, for such extensions, which we call with Baer [1] $H-\chi$ extensions, the automorphisms are fixed and form a group homomorphic to H. This settles condition (15.1.5) for central extensions, and only (15.1.6) need be considered

$$
\begin{equation*}
(u v, w)(u, v)^{w}=(u, v w)(v, w) \tag{15.2.2}
\end{equation*}
$$

Here, for an equivalent extension,

$$
\begin{equation*}
(u, v)^{1}=\alpha(u v)^{-1}(u, v) \alpha(u)^{v} \alpha(v) \tag{15.2.3}
\end{equation*}
$$

with $\alpha(u) \in B$
If factor sets $(u, v)_{1}$ and $(u, v)_{2}$ both satisfy (15.2.2) and we define

$$
\begin{equation*}
(u, v)_{3}=(u, v)_{1}(u, v)_{2} \quad \text { all } u, v \in H \tag{15.2.4}
\end{equation*}
$$

then the elements $(u, v)_{3}$ also satisfy (15.2.2) and are a factor set determining an $H-\chi$ extension of A. In this definition of product for factor sets there is an identity, the factor set with all $(u, v)=1$ and an inverse, the set in which (u, v) is replaced by $(u, v)^{-1}$. Moreover, for equivalent factor sets if $(u, v)_{1}{ }^{*} \sim(u$, $v)_{1}$, and $(u, v)^{*} \sim_{2} \sim(u, v)_{2}$, then $(u, v)_{1}{ }^{*}(u, v)_{2}{ }^{*} \sim(u, v)_{\mathrm{i}}(u, v)_{2}$. Hence the totality of all $H-\chi$ factor sets forms an Abelian group even if we identify equivalent sets. The group in which equivalent sets are identified will be called the group of extensions.

If H is finite, we define

$$
\begin{equation*}
f(v)=\prod_{u}(u, v) \tag{15.2.5}
\end{equation*}
$$

Multiplying (15.2.2) over all $u \in H$, we have

$$
\begin{equation*}
f(w) f(v)^{w}=f(v w)(v, w)^{n}, \tag{15.2.6}
\end{equation*}
$$

where n is the order of H. On comparison with (15.2.3),

$$
\begin{equation*}
(v, w)^{n} \sim 1 \tag{15.2.7}
\end{equation*}
$$

Again, if m is a multiple of the order of every element of B, since $(u, v) \in B$,

$$
\begin{equation*}
(v, w)^{m}=1 \tag{15.2.8}
\end{equation*}
$$

Hence the following theorem holds.
Theorem 15.2.1. The order of any element of the group of extensions divides the order of H and the least common multiple of orders of elements of B.

Corollary 15.2.1. If m and n are relatively prime, then all $H-\chi$ extensions of A are equivalent to the semi-direct product of A by H.

As an application of this theorem we may prove Theorem 15.2.2 on extensions which need not be assumed to be central extensions.

Theorem 15.2.2. Let G be a group of finite order mn containing a normal subgroup K of order m and having a factor group $H=G / K$ of order n where m
and n are relatively prime. Then G splits over K.
Proof: It is sufficient to show that G possesses a subgroup of order n. We shall proceed by induction on m, the theorem being trivial if $m=1$. Let $m>1$ and p be a prime dividing m. All Sylow subgroups S_{p} belonging to p in G are subgroups of K, since K contains at least one Sylow subgroup S_{p}, and K being normal, the conjugates of S_{p} also belong to K. Thus the number of Sylow subgroups S_{p} in G is the same as the number in K. Hence by Theorem 1.6.1, $\left[G: N_{G}\left(S_{p}\right)\right]=\left[K: N_{K}\left(S_{p}\right)\right]$, whence $\left[N_{G}\left(S_{p}\right): N_{K}\left(S_{p}\right)\right]=[G: K]=n, N_{G}\left(S_{p}\right)$, and $N_{K}\left(S_{p}\right)$ being the normalizers of an S_{p} respectively in G and K. Here, of course, $N_{K}\left(S_{p}\right)=N_{G}\left(S_{p}\right) \cap K$, and by Theorem 2.4.1, $N_{K}\left(S_{p}\right)$ is normal in $N_{G}\left(S_{P}\right)$. If $N_{G}\left(S_{p}\right)$ is a proper subgroup of G, by induction it contains a subgroup of order n.

Hence we may assume $G=N_{G}\left(S_{p}\right)$, and so, $K=N_{K}\left(S_{p}\right)$. If S_{p} is a proper subgroup of K, then by induction G contains a subgroup of order [$G: S_{p}$] isomorphic to G / S_{p}, and thus a subgroup isomorphic to G / K of order n, proving the theorem. Hence our proof is reduced to the case in which $K=S_{p}$. Here, if S_{p} is Abelian, G is a central extension of S_{p}, and by the corollary to Theorem 15.2.1, G splits over S_{p}, proving our theorem. If S_{p} is not Abelian, then the center Z of S_{p} is a proper subgroup of S_{p} and as a characteristic subgroup of S_{p} necessarily a normal subgroup of G. Hence, by our induction, G / Z contains a subgroup U / Z of order n. But Z is normal and of index n in the corresponding subgroup U of G, and by induction, U contains a subgroup of order n, proving the theorem for this final case.

15.3. Cyclic Extensions.

Let us suppose that H is a cyclic group of finite order m, generated by an element x; the elements of H will be

$$
\begin{equation*}
1, x, x^{2}, \cdots, x^{m-1} \tag{15.3.1}
\end{equation*}
$$

With $G / N=H$, choosing a representative \bar{x} of the coset of N mapped onto x, we may also choose $\bar{x}^{2}, \cdots, \bar{x}^{m-1}$ as representatives of the cosets mapped respectively onto x^{2}, \cdots, x^{m-1}, and so,

$$
\begin{equation*}
G=N+N \bar{x}+\cdots+N \bar{x}^{m-1} . \tag{15.3.2}
\end{equation*}
$$

Here

$$
\begin{equation*}
\bar{x}^{m}=\alpha \tag{15.3.3}
\end{equation*}
$$

where α is an element of N.
Thus for the automorphism $\boldsymbol{a} \leftrightarrows \boldsymbol{a}^{x}$ of N, we must have for its m th power

$$
\begin{equation*}
a^{x^{m}}=\alpha^{-1} a \alpha, \quad \alpha \in N \tag{15.3.4}
\end{equation*}
$$

Moreover, from the identity

$$
\begin{equation*}
\bar{x}^{-1} \bar{x}^{m} \bar{x}=\bar{x}^{m} \tag{15.3.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
\alpha^{x}=\alpha \tag{15.3.6}
\end{equation*}
$$

We shall show that (15.3.4) and (15.3.6) are the only conditions required to define an extension of N by H.

Theorem 15.3.1. Let H be a cyclic group of finite order m. Then an extension G of a group N by H exists if, and only if, we have an automorphism a $a \leftrightarrows a^{x}$ of N and an element $\alpha \in N$ such that (1) the mth power of the automorphism is the inner automorphism of N given by transformation by a, and (2) α is fixed by the automorphism.

Proof: We have already shown that if an extension exists, then the automorphism $a \leftrightarrows a^{x}$ and the element α satisfy (15.3.4) and (15.3.6). Conversely, we must show that (15.3.4) and (15.3.6) suffice to determine an extension. The elements of H are $1, x, \cdots, x^{m-1}$, or $x^{i}, 0 \leq i \leq m-1$. Let us define the automorphisms by

$$
\begin{equation*}
a^{x^{0}}=a, \quad a^{x^{i}}=\left(a^{x^{i-1}}\right) x, \quad i=1, \cdots, m-2 \tag{15.3.7}
\end{equation*}
$$

and a factor set put
(15.3.8.2)

$$
\begin{align*}
& \left(x^{i}, x^{i}\right)=1 \text { if } i+j \leq m-1, \tag{15.3.8.1}\\
& \left(x^{i}, x^{i}\right)=\alpha \text { if } m \leq i+j .
\end{align*}
$$

With these definitions we easily verify that (15.1.5) and (15.1.6) are satisfied, and so from Theorem 15.1.1, an extension is defined.

If H is a cyclic group of infinite order, we may put $\left(x^{i}, x^{j}\right)=1$ for all i, j, and we find that there is no restriction on the automorphism $a \leftrightarrows a^{x}$. This amounts to taking $x^{i}=\bar{x}^{i}$ for all i.

15.4. Defining Relations and Extensions.

In the preceding section we have seen that when H is a cyclic group, the conditions for extending a group N are particularly simple, corresponding to the particularly simple defining relation for H. In this section we shall see how the extension conditions depend on the defining relations for the most general group H.

Let the group H be given in terms of generators, x, y, z, \cdots and relations

$$
\begin{equation*}
\phi_{i}(x, y, z, \cdots)=1 \quad i=1,2, \cdots, r \tag{15.4.1}
\end{equation*}
$$

We can suppose each element h of H to be represented by a definite word $h=$ $h(x, y, z, \cdots)$ in the generators and their inverses. Then if G is an extension of N by H, we can choose representatives of the cosets of N as the corresponding words in $\bar{x}, \bar{y}, \bar{z}, \cdots$, so that in the homomorphism $G \rightarrow H$ we have
(15.4.2)

$$
\begin{aligned}
& G \rightarrow H \\
& \bar{x} \rightarrow x \\
& h(\bar{x}, \bar{y}, \cdots) \rightarrow h(x, y, \cdots) .
\end{aligned}
$$

Now let F_{1} be the free group with generators $\mathrm{x}, \mathrm{y}, \mathrm{z} \cdot \cdots$ corresponding to x, y, z \cdots. Then we have homomorphisms defined by

$$
\begin{align*}
& x \rightarrow \bar{x} \rightarrow x \tag{15.4.3}\\
& y \rightarrow \bar{y} \rightarrow y \\
& \cdot \cdot \cdot \cdot \cdot
\end{align*}
$$

which map

$$
\begin{equation*}
F_{1} \rightarrow \bar{H} \rightarrow H, \tag{15.4.4}
\end{equation*}
$$

where \bar{H} is the subgroup of G generated by $\bar{x}, \bar{y}, \bar{z}, \cdots$, and so must contain at least one element from each coset of N. Hence $G=\bar{H} \cup N$. Hence, if F_{2} is a free group which has N as a homomorphic image, we may take a free group $F=F_{1} \cup F_{2}$ and define homomorphisms

$$
\begin{align*}
& F \rightarrow G \rightarrow H, \quad F=F_{1} \cup F_{2} \\
& F_{1} \rightarrow \bar{H} \rightarrow H, \tag{15.4.5}\\
& F_{2} \rightarrow N \rightarrow 1
\end{align*}
$$

Every element \bar{h} of \bar{H} induces an automorphism in N by transformation

$$
\begin{equation*}
\bar{h}^{-1} a \bar{h}=a^{h} \quad \bar{h} \in \bar{H}, \quad a \in N . \tag{15.4.6}
\end{equation*}
$$

In the mapping $F_{1} \rightarrow H$, we have $H=F_{1} / W$, where W is the least normal subgroup containing the $\phi_{i}(\mathrm{x}, \mathrm{y}, \cdot \cdot \cdot)$. Hence in $\bar{H} \rightarrow H$ we have $\phi_{i}(\bar{x}, \bar{y}, \cdots) \rightarrow 1$. Thus

$$
\begin{equation*}
\phi_{i}(\bar{x}, \bar{y}, \cdots)=\alpha_{i} \in N \tag{15.4.7}
\end{equation*}
$$

We shall have an identity in the free group F

$$
u_{1} u_{2} \cdots u_{r}=z_{1} z_{2} \cdots z_{s}
$$

if the u 's and z 's are words such that the reduced forms of these two expressions are the same. In the mapping of F onto G, any identity will remain valid. In particular W and F_{2} will be mapped onto elements of N. Thus any identity involving u 's and z 's from the normal subgroup generated by W and F_{2} will by means of the replacement rules (15.4.6) and (15.4.7). lead to conditions on the α_{i} and the automorphisms $a \leftrightarrows a^{h}$, which can be interpreted as conditions for the existence of an extension G of N by H. Since $\overline{u v}^{-1} \bar{u} \bar{v}$ is in $N \cap \bar{H}$, it is the image in G of an element of W, and hence a product of conjugates of the $\phi_{i}(\bar{x}, \bar{y}, \cdots)=\alpha_{i}$. Hence each factor
$(u, v)=\overline{u v}^{-1} \bar{u} \bar{v}$ is the image in \bar{H} of an element of W, and if $\bar{u}=h_{1}(\bar{x}, \bar{y}, \cdots), \bar{v}=h_{2}(\bar{x}, \bar{y}, \cdots), \overline{u v}=h_{3}(\bar{x}, \bar{y}, \cdots)$, then (u, v) is the image of

$$
\begin{equation*}
h_{3}(\mathbf{x}, \mathrm{y}, \cdots)^{-1} h_{1}(\mathbf{x}, \mathrm{y}, \cdots) h_{2}(\mathbf{x}, \mathrm{y}, \cdots), \tag{15.4.8}
\end{equation*}
$$

an element of W.
The conditions of Theorem 15.1.1 are identities in F paraphrased into conditions on the factor set and automorphisms by the rules (15.4.6) and (15.4.7). Thus the rule (15.1.5).

$$
\left(a^{u}\right)^{v}=(u, v)^{-1}\left(a^{u v}\right)(u, v)
$$

is a paraphrase of the identity

$$
\begin{equation*}
\bar{v}^{-1}\left(\bar{u}^{-1} a \bar{u}\right) \bar{v}=\left(\bar{w} \bar{v}^{-1} \bar{u} \bar{v}\right)^{-1}\left(\bar{v} \bar{v}^{-1} a \bar{u} \bar{v}\right)\left(\bar{u} \bar{v}^{-1} \bar{u} \bar{v}\right), \tag{15.4.9}
\end{equation*}
$$

using (15.4.6) for automorphisms and replacing elements of W by elements in N. Similarly, the rule (15.1.6), $(u v, w)(u, v)^{w}=(u, v w)(v, w)$, is a paraphrase of the identity

$$
\begin{equation*}
\left(\overline{u v w}^{-1} \overline{u v} \bar{w}\right) \bar{w}^{-1}\left(\bar{u} \bar{v}^{-1} \bar{u} \bar{v}\right) \bar{w}=\left(\bar{u} \bar{v} \bar{w}^{-1} \overline{u v w}\right)\left(\overline{v w}^{-1} \bar{v} \bar{w}\right) . \tag{15.4.1}
\end{equation*}
$$

Thus conditions for the existence of an extension of N by H are paraphrases of identities in F. Note that the defining relations for N do not enter into these conditions. The conditions may be regarded as finding elements α_{i} in N and automorphisms in N consistent with the defining relations of H. Both these conditions become vacuous when H is a free group, for then in every case we can choose $\bar{u} \bar{v}=\bar{u} \bar{v}$ and take our factors as the identity, and moreover, require merely that the automorphisms form a group.

In practice it may be difficult to determine the identities in F leading to conditions for an extension. In the next section we shall make such a determination for central extensions of N by a group H.
15.5. Group Rings and Central Extensions. $\dot{\perp}$

We shall consider a central extension of a group N with center C by the finite group H. We suppose, as in $\S 15.2$, that the automorphisms satisfy

$$
\begin{equation*}
\left(a^{u}\right)^{v}=a^{u v} \tag{15.5.1}
\end{equation*}
$$

We have assumed that the factors $(u, v)=\overline{u v}^{-1} \bar{u} \bar{v}$ lie in C. But applying Lemma 7.2.2 (for right cosets rather than left cosets), these elements generate the subgroup T of \bar{H} such that $\bar{H} / T=H$. But if

$$
\begin{equation*}
\phi_{i}(x, y, \cdots)=1 \tag{15.5.2}
\end{equation*}
$$

are the defining relations for H, then

$$
\begin{equation*}
\phi_{i}(\bar{x}, \bar{y}, \cdots)=\alpha_{i} \in C \tag{15.5.3}
\end{equation*}
$$

since the α_{i} surely belong to T and T is generated by elements of C.
If r and s are endomorphisms of C, then we may define an endomorphism r $+s$ by the rule

$$
\begin{equation*}
a^{r} a^{s}=a^{r+s} . \tag{15.5.4}
\end{equation*}
$$

Thus, by (15.5.1) and (15.5.4), the group ring H^{*} of H is a ring of operators on C. Here the group ring H^{*} consists of elements

$$
\begin{equation*}
c_{1} h_{1}+\cdots+c_{n} h_{n} \tag{15.5.5}
\end{equation*}
$$

where $h_{1} \cdots, h_{n}$ are elements of H and $c_{1} \cdots, c_{n}$ are integers. Elements of H^{*} are added by adding coefficients. Multiplication in H^{*} is given by the multiplication $h_{i} h_{g}=h_{k}$ in H together with the two distributive laws. It is easily verified that H^{*} is an associative ring and that the identity of H is the identity of H^{*}.

We shall say that an Abelian group A which admits H^{*} as an operator ring is operator free if A has a basis of elements $a_{1}, a_{2}, \cdots, a_{r}$ such that every element of A is of the form

$$
\begin{equation*}
a=a_{1}^{z_{1}} a_{2}^{z_{2}} \cdots a_{r}^{z_{r}} \quad z_{i} \in H^{*} \tag{15.5.6}
\end{equation*}
$$

and has a unique expression of this form. Thus $a=1$ implies $z_{1}=z_{2}=\cdots=z_{r}$ $=0$.

Theorem 15.5.1. The only extension G of an operator-free group A by a finite group H is the semi-direct product of A by H.

Proof: In A every element b has a unique expression

$$
b=a_{1}^{z_{1}} \cdots a_{r}{ }^{z} r \quad z_{i} \in H^{*} .
$$

Now if $z_{i}=c_{i 1}+\cdots+c_{i n} h_{n}, i=1, \cdots r$, put

$$
\left(b ; h_{i}\right)=a_{1}{ }^{c_{1 j}} a_{2}{ }^{c_{2 j}} \cdots a_{r}^{{ }^{c_{r j}}} .
$$

Thus, with $t=h_{1}, h_{2}, \cdots, h_{n}, b$ has a unique expression

$$
\begin{equation*}
b=\prod_{t}(b ; t)^{t} \quad t=h_{1}, \cdots, h_{n} \tag{15.5.7}
\end{equation*}
$$

Hence, for a factor set,

$$
\begin{equation*}
(u, v)=\prod_{t}(u, v ; t)^{t} \tag{15.5.8}
\end{equation*}
$$

and the rule (15.1.6) because of the uniqueness of (15.5.7) becomes

$$
\begin{equation*}
(u v, w ; t)\left(u, v ; t w^{-1}\right)=(u, v w ; t)(v, w ; t) \tag{15.5.9}
\end{equation*}
$$

If we now put $\overline{\bar{u}}=\bar{u} \prod_{t}\left(u, t^{-1} ; 1\right)^{-t}$ for all u of H, we may verify from direct calculation and substitution from (15.5.9) that

$$
\begin{equation*}
\overline{\bar{u}} \overline{\bar{v}}=\overline{\bar{u} \bar{v}} . \tag{15.5.10}
\end{equation*}
$$

Hence the new representatives form a group and G is the semi-direct product of A and H.

By the results of $\S 15.4$ the conditions for a central extension of a group N by a group H are (15.5.1) and conditions of the form

$$
\begin{equation*}
\prod_{i} \alpha_{i}^{u_{i}}=1 \quad u_{x} \in H^{*} \tag{15.5.11}
\end{equation*}
$$

with $\boldsymbol{\phi}_{i}(\bar{x}, \bar{y}, \cdots)=\alpha_{i}$ as in (15.5.3). Now suppose that N is an operator-free group. We know that $\alpha_{i}=1, i=1, \cdots, r$ yields a solution and that all others are obtainable by changing representatives. If we put $\bar{x}=\xi \overline{\bar{x}}, \bar{y}=\eta \overline{\bar{y}}, \cdots$, then $\phi_{i}(\xi \overline{\bar{x}}, \eta \overline{\bar{y}}, \cdots)=1$. Here, using the rule

$$
\begin{equation*}
\alpha \overline{\bar{z}}=\overline{\bar{z}} \alpha^{z}, \quad \alpha \in N \tag{15.5.12}
\end{equation*}
$$

we may write
(15.5.13) $\quad 1=\phi_{i}(\xi \overline{\bar{x}}, \eta \overline{\bar{y}}, \cdots)=\phi_{i}(\overline{\bar{x}}, \overline{\bar{y}}, \cdots) \xi^{x_{i} \eta^{y_{i}} \cdots}$.

Hence $\alpha_{i}^{-1}=\xi^{x_{i}} \eta^{y_{i}} \cdots$ must also satisfy conditions (15.5.11), since these values are given by merely changing the representatives in the semi-direct product. Taking $\xi, \eta \cdots$ as independent basis elements of N, we have the following equations holding in H^{*} :
(15.5.14) $\quad \sum_{i} x_{i} u_{i}=0, \quad \sum_{i} y_{i} u_{i}=0 \cdots, \quad i=1, \cdots, r$.

The elements $x_{i} y_{i}, \cdots$ of H^{*} are easily computable by the rule (15.5.12) from the relations $\phi_{i}(x, y, \cdots)=1$ defining H. Hence the u_{i} of (15.5.11) are restricted to quantities of H^{*} satisfying (15.5.14). If we can show conversely that u_{i} satisfying (15.5.14) yield conditions (15.5.11), we shall have reduced the determination of the conditions (15.5.11) to the solution of (15.5.14). The proof of this, given here, will depend on methods due to W. Magnus [2].

Theorem 15.5.2. Given groups H and N. Conditions for the existence of a central extension of N by H are that there be automorphisms $a \leftrightarrows a^{h}$ associated with elements of H satisfying (15.5.1); that elements α_{i} of C, the center of N, exist with $\phi_{i}(\overline{\bar{x}}, \overline{\bar{y}}, \cdots)=\alpha_{i}, i=1, \cdots, r$, where $\phi_{i}(x, y$, $\cdots \cdot)=1$ are the defining relations of H; and that (15.5.11). hold for the α_{i}, where the u_{i} are any elements satisfying (15.5.14) in H^{*}.

Proof: The preceding discussion has shown all parts of the theorem except that every set of u_{i} satisfying (15.5.14) determines a condition (15.5.11).

Consider the free group F_{1} generated by x, y, \cdots, as discussed in $\S 15.4$, and let $H=F_{1} / W$, where W is the least normal subgroup containing $\phi_{i}(x, y, \cdots$ \cdot). Let W^{\prime} be the derived group of W. Then W^{\prime} as a characteristic subgroup of W will be a normal subgroup of F_{1}. Here $T=F_{1} / W^{\prime}$ will be the group with the properties that (1) T is generated by x, y, \cdots; (2) T has a normal subgroup $V=$ W / W^{\prime} such that $T / V=H$; and (3) V is Abelian. Finally, it is clear that any group with these properties is a homomorphic image of T, since any such group must be a homomorphic image of F_{1} in which the elements of W^{\prime} are mapped onto the identity. We shall use a lemma for our proof, postponing the proof of the lemma until the end of the main proof.

Lemma 15.5.1. Given matrices of the form $\left(\begin{array}{ll}h, & 0 \\ L & 1\end{array}\right)$ with $h \in H$ and L a linear form in indeterminates with coefficients from H^{*} subject to the product rule,

$$
\binom{h_{1}, 0}{L_{1}, 1}\binom{h_{2}, 0}{L_{2}, 1}=\left(\begin{array}{cr}
h_{1} h_{2} & , 0 \\
L_{1} h_{2}+L_{2}, 1
\end{array}\right)
$$

Then, corresponding to x, y, \cdots, we have matrices $\bar{x}=\left(\begin{array}{cc}x, & 0 \\ t_{x}, & 1\end{array}\right) \cdots$, and these matrices generate a group isomorphic to $T=F_{1} / W^{\prime}$.

Note that since matrices $\left(\begin{array}{cc}1, & 0 \\ L & 1\end{array}\right)$ generate an additive, and hence Abelian, group, this group is in any event a homomorphic image of T.

In a central extension \bar{H} is an image of T. Hence, if a relation

$$
\begin{equation*}
\phi_{i}(\bar{x}, \bar{y}, \cdots)^{u_{i}}=1, \quad u_{i} \in H^{*} \tag{15.5.15}
\end{equation*}
$$

holds in T, then the corresponding relation (15.5.11) must hold in \bar{H}.
Assuming the lemma we have in T as elements of V,

$$
\begin{equation*}
\phi_{i}(\bar{x}, \bar{y}, \cdots)=\binom{1,0}{L_{i}, 1} \quad i=1, \cdots, r \tag{15.5.16}
\end{equation*}
$$

with L_{i} a linear form in $t_{x} t_{y}, \cdots$ with coefficients from H^{*}. Let us adjoin to V further elements:

$$
\begin{equation*}
\xi=\binom{1,0}{t_{\xi}, 1}, \quad \eta=\binom{1,0}{t_{\eta}, 1}, \cdots \tag{15.5.17}
\end{equation*}
$$

with t_{ξ}, t_{η} being new indeterminates. With \bar{u} as before $(u \in H)$,
(15.5.18)

$$
\bar{u}^{-1} \xi \bar{u}=\left(\begin{array}{cc}
1, & 0 \\
t_{\xi} u, & 1
\end{array}\right) .
$$

Thus, adjoining the elements of (15.5.17) to V, we have adjoined an operator-free group. Now

$$
\xi \bar{x}=\left(\begin{array}{lr}
x & , 0 \tag{15.5.19}\\
t_{\xi} x+t_{x}, 1
\end{array}\right) .
$$

Hence we obtain $\phi_{i}(\xi \bar{x}, \eta \bar{y}, \cdots)$ by substituting in the L_{i} of (15.5.16), replacing t_{x} by $t_{\xi} x+t_{x}$, and so on. Hence, from

$$
\begin{equation*}
\phi_{i}(\xi \bar{x}, \eta \bar{y}, \cdots)=\phi_{i}(\bar{x}, \bar{y}, \cdots) \xi^{x} i \eta^{y_{i}} \cdots \tag{15.5.20}
\end{equation*}
$$

and the linearity of the L_{i}, we have

$$
\xi^{x} \eta^{y} \cdots=\left(\begin{array}{ll}
1 & , 0 \tag{15.5.21}\\
L_{i}\left(t_{\xi} x\right), & 1
\end{array}\right)
$$

Hence if the equations $\sum_{i} x_{i} u_{i}=0$, etc., of (15.5.14). hold, then

$$
\begin{equation*}
\sum_{i} L_{i}\left(t_{\xi} x\right) u_{i}=0 \tag{15.5.22}
\end{equation*}
$$

Here, since the t_{ξ} were indeterminates satisfying no relations, it must follow that

$$
\begin{equation*}
\sum_{i} L_{i} u_{i}=0 \tag{15.5.23}
\end{equation*}
$$

for any arguments for the L_{i}. Applying this to (15.5.16), it follows that

$$
\begin{equation*}
\prod_{i} \phi_{i}(\bar{x}, \bar{y}, \cdots)^{u_{i}}=1 \tag{15.5.24}
\end{equation*}
$$

Since this relation holds in T, it must also hold in \bar{H}, and so we have shown that $\prod_{i} \alpha_{i}{ }^{u}{ }_{1}=1$ in \bar{H} whenever (15.5.14) holds. Hence (15.5.11) is a consequence of (15.5.14), and the proof of the theorem is complete except for the establishment of the lemma.

Proof of the Lemma: With $H=F_{1} / W$, suppose coset representatives of W chosen so that they are the earliest possible with respect to an alphabetical ordering of the elements of F_{1}. Then the same alphabetical ordering may be carried over to F_{1}, and if $h=h(\boldsymbol{x}, \boldsymbol{y}, \cdots)$ is the earliest element the coset $W h$, then $h=h(x, y, \cdots) \epsilon H$ is a canonical form for h as its earliest alphabetical expression. Hence the same form may be used for an element of H and the corresponding coset representatives of W, and we may speak of the length of an element of H, this being the length of its canonical form. Now consider the correspondences with matrices

$$
\bar{x} \rightarrow\binom{x, 0}{t_{x}, 1}, \quad y \rightarrow\binom{y, 0}{t_{y}, 1}, \cdots
$$

with x, y, \cdots generators of H and the rule of composition of the matrices

$$
\binom{h_{1}, 0}{L_{1}, 1}\binom{h_{2}, 0}{L_{2}, 1}=\left(\begin{array}{lr}
h_{1} h_{2}, & 0 \\
L_{1} h_{2}+L_{2}, 1
\end{array}\right)
$$

with $h_{1}, \boldsymbol{h}_{\mathbf{2}} \boldsymbol{\in} \boldsymbol{H}$ and L_{1}, L_{2} linear forms t_{x}, t_{y}, \cdots with coefficients from H^{*}. As remarked before, the group K generated by these matrices is at least a
homomorphic image of T, since $\binom{h, 0}{L}, \rightarrow h$ is clearly a homomorphism of K onto H, and the kernel of this homomorphism consists of elements $\left(\begin{array}{ll}1, & 0 \\ L & 0\end{array}\right)$, which form an additive Abelian group.

By Theorem 7.2.3, W is a free subgroup of F_{1}, with free generators those elements $c_{i j}$,

$$
\begin{equation*}
c_{i j}=h_{i} x h_{j}^{-1} \neq 1, \quad h_{i}=\phi\left(h_{i} x\right) \tag{15.5.25}
\end{equation*}
$$

in F_{1}, x a generator of F_{1}.
Moreover, by Lemma 7.2.3, h_{i} does not end in $\mathbf{x}^{-\mathbf{1}}$ nor $\boldsymbol{h}_{\boldsymbol{i}}$, in \mathbf{x}. The group W^{\prime} will be the group given by all commutators of the $c_{i j}$, and W / W^{\prime} will be the free Abelian group with the $c_{i j}$ as a basis modulo W^{\prime}. It will follow that K is a faithful representation of $T=F_{1} / W^{\prime}$ if we can show that the elements $c_{i j}$ corresponding to $\bar{h}_{i} \bar{x} \bar{h}_{j}^{-1}$ are independent in K. In the mapping $F_{1} \rightarrow H$ we have $\boldsymbol{C}_{\boldsymbol{i j}} \rightarrow \mathbf{1}, \boldsymbol{h}_{\boldsymbol{i}} \rightarrow \boldsymbol{h}_{\boldsymbol{i}}, \boldsymbol{h}_{\boldsymbol{j}} \rightarrow \boldsymbol{h}_{\boldsymbol{j}}$, and $\mathbf{x} \rightarrow x$, and so, $h_{i} \boldsymbol{x}=h_{j}$ in H. Now let

$$
\begin{array}{ll}
\bar{h}_{i} \rightarrow\binom{h_{i}, 0}{L\left(h_{i}\right), 1} & \bar{x} \rightarrow\binom{x, 0}{t_{x}, 1} \\
\bar{h}_{i} \rightarrow\binom{h_{j}, 0}{L\left(h_{i}\right), 1} .
\end{array}
$$

Then
(15.5.26) $\quad \bar{c}_{i j} \rightarrow\left(\begin{array}{l}h_{i} x h_{j}^{-1} \\ L\left(h_{i}\right) x h_{j}^{-1}\end{array}+t_{x} h_{j}^{-1}-L\left(h_{j}\right) h_{j}^{-1}, 1\right)$

$$
=\left(\begin{array}{lr}
1 & , 0 \\
L\left(h_{i}\right) h_{i}^{-1}+t_{x} h_{j}^{-1}-L\left(h_{j}\right) h_{j}^{-1}, 1
\end{array}\right)
$$

using $h_{i} x=h_{j}$ in H.
We must examine more closely the linear form $L\left(h_{i}\right)$ occurring in the matrix for an element \bar{h}_{i}. Here

$$
\bar{x} \rightarrow\binom{x, 0}{t_{x}, 1} \quad \bar{x}^{-1} \rightarrow\left(\begin{array}{ll}
x^{-1} & , 0 \\
-t_{x} x^{-1}, & 1
\end{array}\right)
$$

Let us write $q(a) t_{a}$ if $a=x$ is a generator and $(q a)=-t_{a} a^{-1}$ if $a^{-1}=x$ is a generator. Then if $\bar{h}=a_{1} a_{2}, \cdots, a_{r}$ is any word where each a_{i} is one of \bar{x}, \bar{y}, \cdots or \bar{x}^{-1}, \cdots, we shall have

$$
\bar{h} \rightarrow\left(\begin{array}{ll}
h & , 0 \\
L(h), & 1
\end{array}\right)
$$

with
(15.5.27)

$$
L(h)=q\left(a_{1}\right) a_{2} \cdots a_{r}+q\left(a_{2}\right) a_{3} \cdots a_{r}+\cdots q\left(a_{r-1}\right) a_{r}+q\left(a_{r}\right)
$$

where $h=a_{1} a_{2} \cdots a_{r}$.
This formula is easily established by induction on r and the product rule for the matrices. We now note from (15.5.27) the further rule:

$$
\begin{align*}
L(h) h^{-1}=q\left(a_{1}\right) a_{1}^{-1} & +q\left(a_{2}\right) a_{2}^{-1} a_{1}^{-1} \tag{15.5.28}\\
& +\cdots+q\left(a_{r}\right) a_{r}^{-1} a_{r-1}^{-1} \cdots a_{1}^{-1} .
\end{align*}
$$

If h is in canonical form we note that $g\left(a_{i}\right)$ is multiplied by the inverse of $a_{1} a_{2}$, \cdots, a_{i}, which is, by the Schreier property of the representtives of W, again in canonical form. Thus as a basis for the group ring H^{*}, it is convenient to use the inverses of canonical forms of elements of H.

With each $c_{i j}$ of W there is a unique h_{i} and x. Hence we may associate $c_{i j}$ with the term $t_{x} h_{f}^{-1}$. This term may be characterized by noting that h_{j} is in canonical form, but that $h_{j} x^{-1}$ although in reduced form is not in canonical form, being equal to the canonical form h_{i}. But in (15.5.26) the linear form $L\left(h_{i}\right) h_{i}^{-1}+$ $t_{x} h_{j}^{-1}-L\left(h_{j}\right) h_{j}^{-1}$ contains no other term of this type. For, by (15.5.28), the other terms arising from $L\left(h_{i}\right) h_{i}^{-1}$ or $L\left(h_{j}\right) h_{j}^{-1}$ are of the type $q\left(a_{k}\right) a_{k}^{-1} \ldots$ a_{1}^{-1}, where $a_{1} \cdots a_{k}$ is an initial section of h_{i} or h_{j}, and so, by the Schreier condition on the h 's, will itself be an h in canonical form. Here if $a_{k}=y$, a
generator, $q\left(a_{k}\right) a_{k}^{-1} \cdots a_{1}^{-1}=t_{y} y^{-1} \cdots a_{1}^{-1}=t_{y} h^{-1}$, where h ends in y so that $h y^{-1}$ is not in reduced form. But if $a_{k}=y^{-1}$, where y is a generator, $q\left(a_{k}\right) a_{k}^{-1}$. $\cdot a_{1}^{-1}=-t y \cdot a_{k-1}^{-1} \cdots a_{1}^{-1}=-t y h^{-1}$, where $h y^{-1}=a_{1} \cdots a_{k}$ is in canonical form. Thus the term $t_{x} h_{j}^{-1}$ is the only term of its type in the linear form associated with $\overline{c_{i j}}$. Also, different, $\overline{c_{i j}}$'s yield different associated terms. Hence the linear forms $L\left(c_{i j}\right)$ are linearly independent and the $c_{i j}$ generate a free Abelian group, which is of course isomorphic to W / W^{\prime}. Hence the group K of matrices generated by the matrices corresponding to \bar{x}, \bar{y}, \cdots, etc., is a faithful representation of $T=F_{1} / W^{\prime}$ and the lemma is proved.

15.6. Double Modules.

Let Ω be any multiplicative group and let A be a double Ω-module, i.e., an Abelian group written additively which satisfies the following conditions:

1) A admits Ω as group of operators both on the right and on the left, so that ξa and $a \xi$ are uniquely determined elements of A for given $a \in A$ and $\xi \in \Omega$.
2) Distributivity,
whence

$$
\begin{aligned}
& \xi\left(a_{1}+a_{2}\right)=\xi a_{1}+\xi a_{2} \\
& \left(a_{1}+a_{2}\right) \xi=a_{1} \xi+a_{2} \xi, \\
& -\xi a=\xi(-a), \quad-a \xi=(-a) \xi \\
& \xi 0=0 \xi=0 .
\end{aligned}
$$

3) $1 a=a 1=a$ where 1 is the unit element of Ω.
4) Associativity, $\xi(\eta a)=(\xi \eta) a$, $(\xi a) \eta=\xi(a \eta)$, and $(a \xi) \eta=a(\xi \eta)$.

These rules are to hold for all $a_{1} a_{2}, a \in A$, and all $\xi, \eta \in \Omega$.
Effectively, then, a double Ω-module is the same as an additive Abelian group admitting the elements (ξ, η) of $\Omega \times \Omega$ as distributive operators.

In the applications, it often happens that Ω acts trivially on one side, e.g., on the left. This means that $\xi a=a$ for all $\xi \in \Omega$ and $a \in A$. In this case, we shall simply omit the left-hand operators. Call this the one-sided case.

For example, let A be a normal Abelian subgroup of some group G, and write $\Omega=G / A$. If $\xi=A u_{\xi}$, then $u_{\xi}^{-1} a u_{\xi}$ depends only on a and ξ, but not on the choice of $u \xi$ in its coset. Hence we may write $u \xi^{-1} a u \xi=a^{\xi}$ without ambiguity.

We then have an example of the one-sided case, but with A written multiplicatively. In developing the general theorems of cohomology, however, it is more convenient to write A in additive notation.

15.7. Cochains, Coboundaries, and Cohomology Groups.*

Given a double Ω-modulo A, we define $C^{n}=C^{n}(A, \Omega)$ to be the additive group of all functions f of n variables which range independently over Ω, and taking values in A, subject to the condition

$$
\begin{equation*}
f\left(\xi_{1}, \cdots, \xi_{n}\right)=0 \tag{15.7.1}
\end{equation*}
$$

whenever at least one of the $\xi_{i}=1$. The elements of C^{n} are called n dimensional cochains. $C^{0}=A$ by definition and a zero dimensional cochain is simply any element of A.

The coboundary operator δ maps each C^{n} into the next, C^{n+1}, in accordance with the rule

$$
\begin{align*}
& (\delta f)\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n}\right)=\xi_{0} f\left(\xi_{1}, \cdots, \xi_{n}\right) \\
& +\sum_{t=1}^{n}(-1)^{t} f\left(\xi_{0}, \xi_{1}, \cdots, \xi_{t-2}, \xi_{t-1} \xi_{t}, \xi_{t+1}, \cdots, \xi_{n}\right) \tag{15.7.2}\\
& +(-1)^{n-1} f\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}\right) \xi_{n}
\end{align*}
$$

Here $f \in C^{n}$ and it is immediately verified that $\delta f \in C^{n+1}$. The map $f \rightarrow \delta$ f is homomorphic with respect to addition. The only cases genuinely useful in group theory appear to be the cases $n=0,1,2$. Here the coboundary formulae are

$$
\begin{align*}
(\delta f)(\xi) & =\xi f-f \xi, \quad f=a \epsilon A \\
& =\xi a-a \xi \\
(\delta f)(\xi, \eta) & =\xi f(\eta)-f(\xi \eta)+f(\xi) \eta \tag{15.7.3}\\
(\delta f)(\xi, \eta, \zeta) & =\xi f(\eta, \zeta)-f(\xi \eta, \zeta)+f(\xi, \eta \zeta)-f(\xi, \eta) \zeta
\end{align*}
$$

THEOREM 15.7.1. If f is any cochain, then $\delta^{2} f=0$.

Proof: Choose n so that $f \in C^{n-2}$. Then $\delta f \in C^{n-1}$. Therefore when we express $\left(\delta^{2} f\right)\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right)$ in terms of the values of δf, using the definition, we obtain $n+1$ terms with alternating signs, say,

$$
u_{0}-u_{1}+u_{2}-\cdots+(-1)^{n} u_{n} .
$$

Each u_{i}, when expressed in terms of the values of f, is an alternating sum of n terms, which we may write as

$$
\begin{aligned}
& u_{i}=u_{i 0}-u_{i 1}+\cdots+(-1)^{i-1} u_{i, i-1} \\
& +(-1)^{i} u_{i, i+1}+\cdots+(-1)^{i+j-1} u_{i, i+j}+\cdots .
\end{aligned}
$$

Hence

$$
\delta^{2} f\left(\xi_{1}, \cdots, \xi_{n}\right)=\sum_{i<j}(-1)^{i+j-1} u_{i j}+\sum_{i>j}(-1)^{i+j} u_{i j}
$$

with i and j running from 1 to n. But it is easy to verify that $u_{i j}=u_{j i}$ for all i, j. Thus the above sum vanishes.

If $f \in C^{n}$ and is such that $\delta f=0$, then f is called an n-dimensional cocycle. These cocyces form the kernel $Z^{n}=Z^{n}(A, \Omega)$ of the homomorphism of C^{n} into C^{n+1} induced by δ.

If $f \boldsymbol{\epsilon} C^{n}$ and if there exists an element $g \boldsymbol{\epsilon} C^{n-1}$ such that $\delta g=f$, then f is called an n-dimensional coboundary. These coboundaries form the image B^{n} $=B^{n}(A, \Omega)$ of C^{n-1} under the mapping δ. We define $B^{0}=0$.

According to the theorem, every coboundary is a cocycle, so that $B^{n} \subseteq Z^{n}$ for all n. The quotient group Z^{n} / B^{n} is called the n-dimensional cohomology group of the double Ω-module A. We write it

$$
H^{n}(A, \Omega)=Z^{n} / B^{n}
$$

In our definition of cochains $f\left(\xi_{j}, \cdots, \xi_{n}\right)$ we imposed the restriction (15.7.1) that the cochain vanish if one or more of the arguments is the identity. This is a desirable restriction in many cases, in particular in the application to factor sets as we have defined them. Let us call such cochains normalized. If the restriction (15.7.1) is omitted, we speak of unnormalized cochains. Theorem 15.7.1, is of course, valid in either case, since it makes no use of the
restriction (15.7.1). The distinction is a matter of convenience, since we shall show that the cohomology groups of every dimension for unnormalized cochains are isomorphic to those for normalized cochains.

Theorem 15.7.2. The cohomology groups $H^{n}(A, \Omega)$ of every dimension n for unnormalized cochains are isomorphic to those for normalized cochains.

Proof: Let us designate the normalized cochains, boundaries, and cocycles of dimension n by C^{n}, B^{n}, and Z^{n}, respectively, and for the unnormalized case use the designations C^{m}, B^{m}, and Z^{m}.

For $n=0$ and $n=1$ we readily verify that $B^{0}=B^{\prime 0}=0, Z^{0}=Z^{\prime 0}$, and $B^{1}=$ $B^{\prime 1}, Z^{1}=Z^{\prime 1}$, whence $H^{0}(A, \Omega)$ and $H^{1}(A, \Omega)$ are the same in both cases. The principal verification involved here is that if $f(\xi) \in Z^{\prime 1}$, then $\xi f(\eta)-f(\xi \eta)+$ $f(\xi) \eta=0$, whence putting $\xi=\eta=1$, we find that $f(1)=0$, whence $f(\xi)$ is normalized, and so, $Z^{11}=Z^{1}$.

Now suppose $n>1$. Clearly, $B^{n} \subseteq B^{\prime n}$ and $Z^{n} \subseteq Z^{\prime n}$. Hence a cohomology class for C^{n}, i.e., a coset of B^{n} in C^{n}, corresponds to a unique cohomology class for C^{m}, namely, the coset of B^{m} which contains it. This correspondence is, of course, a homomorphism of $H^{m}(A, \Omega)$ into $H^{n}(A, \Omega)$. To prove isomorphism, we must show that this correspondence is one to one and for this two lemmas will suffice. Let us say that two cochains are cohomologous if their difference is a coboundary. Thus two cocycles are cohomologous if they belong to the same cohomology class.

Lemma 15.7.1. Every unnormalized cocycle is cohomologous to a normalized cocycle.

Lemma 15.7.2. If the coboundary of some cochain is normalized, then it is the coboundary of a normalized cochain.

Proof of the lemmas: Let us say that a cochain $f\left(x_{1}, \cdots, x_{n}\right)$ is i normalized, $i=0, \cdots, n$ if it is zero whenever one of the first i arguments is the identity. The 0 -normalized cochains are then the unnormalized cochains c^{m} and the n-normalized are the normalized cochains C^{n}. For $f\left(x_{1}, \cdots, x_{n}\right)$ let us define cochains $f=f_{0}$, and recursively,

$$
\begin{equation*}
f_{i+1}=f_{i}-\delta g_{i+1} \quad i=0, \cdots, n-1 \tag{15.7.4}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{i+1}\left(x_{1}, \cdots, x_{n-1}\right)=(-1)^{i} f_{i}\left(x_{1}, \cdots, x_{i}, 1, x_{i+1}, \cdots, x_{n-1}\right) \tag{15.7.5}
\end{equation*}
$$

We note that $f=f_{0}$ and f_{n} differ by a coboundary, and also, since $\delta f_{i}=\delta f_{i+1}, f=$ $f_{0}, f_{1}, \cdots, f_{n}$ all have the same coboundary δf.

Lemma 15.7.3. If δ f is normalized, then f_{i} is i-normalized.
This will prove both lemmas, since for Lemma 15.7.1, if f is an unnormalized eocycle, then $\delta f=0$, which is trivially normalized whence f_{n}, which is cohomologous to $f_{0}=f$, will be a normalized cocycle. For Lemma 15.7.2, if $g=\delta f$ is a coboundary and g is normalized, say, $g \in C^{n+1}$, then $g=$ $\delta f_{0},=\cdots=\delta f_{n}$, where f_{n} is normalized.

We prove Lemma 15.7.3 by induction on i, the statement being trivially true for $i=0$. Suppose the lemma to be true for i, and consider it for $i+1$, it being necessary to prove that

$$
\begin{equation*}
f_{i+1}\left(x_{1}, \cdots, x_{i}, 1, x_{i+2}, \cdots, x_{n}\right)=0 \tag{15.7.6}
\end{equation*}
$$

From the definition of f_{i+1} in (15.7.4), we have

$$
\begin{aligned}
& \quad f_{i+1}\left(x_{1}, \cdots, x_{i}, 1, x_{i+2}, \cdots, x_{n}\right) \\
& \quad=f_{i}\left(x_{1}, \cdots, x_{i}, 1, x_{i+2}, \cdots, x_{n}\right) \\
& \quad-x_{1} g_{i+1}\left(x_{2}, \cdots, x_{i}, 1, x_{i+2}, \cdots, x_{n}\right) \\
& \quad+\sum_{j=1}^{i-1}(-1)^{i-1} g_{i+1}\left(x_{1}, \cdots, x_{j} x_{j+1}, \cdots, x_{i}, 1, x_{i+2}, \cdots, x_{n}\right) \\
& \\
& \quad+7.7) \quad+(-1)^{i-1} g_{i+1}\left(x_{1}, \cdots, x_{i-1}, x_{i} \cdot 1, x_{i+2}, \cdots, x_{n}\right) \\
& \quad+(-1)^{i} g_{i+1}\left(x_{1}, \cdots, x_{i}, 1 \cdot x_{i+2}, \cdots, x_{n}\right) \\
& +\sum_{j=i+2}^{n-1}(-1)^{i-1} g_{i+1}\left(x_{1}, \cdots, x_{i}, 1, x_{i+2}, \cdots, x_{i} x_{j+1}, \cdots, x_{n}\right) \\
& \quad+(-1)^{n} g_{i+1}\left(x_{1}, \cdots, x_{i}, 1, x_{i+2} \cdots, x_{n-1}\right) x_{n} .
\end{aligned}
$$

(15.7.7)

From (15.7.5), since by induction f_{i} is i-normalized, g_{i+1} is i-normalized. This means that in (15.7.7) the term with the factor x_{1} on the left and the sum with $j=$ 1 to $i-1$ are all zero. The next two terms cancel. Now let us take the remaining terms replacing g_{i+1} according to its definition (15.7.5). This gives for (15.7.7).

$$
\begin{aligned}
& f_{i+1}\left(x_{1}, \cdots, x_{i}, 1, x_{i+2}, \cdots, x_{n}\right) \\
& =f_{i}\left(x_{1}, \cdots, x_{i}, 1, x_{i+2}, \cdots, x_{n}\right) \\
& \quad+\sum_{j=i+2}^{n-1}(-1)^{i+j-1} f_{i}\left(x_{1}, \cdots, x_{i}, 1,1, x_{i+2}, \cdots, x_{j} x_{j+1}, \cdots, x_{n}\right) \\
& +(-1)^{n+i} f_{i}\left(x_{1}, \cdots, x_{i}, 1,1, x_{i+2}, \cdots, x_{n-1}\right) x_{n} .
\end{aligned}
$$

(15.7.8)

But, by hypothesis, $\delta f_{i}=\delta f$ is normalized, whence

$$
\begin{equation*}
(-1)^{i+1} \delta f\left(x_{1}, \cdots, x_{i}, 1,1, x_{i+2}, \cdots, x_{n}\right)=0 \tag{15.7.9}
\end{equation*}
$$

and since by induction f_{i} is i-normalized, the right-hand side of (15.7.8). consists of all the terms of the expansion of (15.7.9) which remain. Thus

$$
\begin{equation*}
f_{i+1}\left(x_{1}, \cdots, x_{i}, 1, x_{i+2}, \cdots, x_{n}\right)=0 \tag{15.7.10}
\end{equation*}
$$

proving Lemma 15.7.3 by induction and thus Lemmas 15.7.1 and 15.7.2, and in turn, the theorem.

15.8. Applications of Cohomology to Extension Theory.

If A is a normal Abelian subgroup of some group G, let $\Omega=G / A$ be the factor group. If the coset $A u_{\xi}=\xi$ is an element of Ω, then for $a \in A, u_{\xi}^{-1} a u_{\xi}$ depends only on a and ξ but not on the choice of u_{ξ} in its coset. Hence we may write $u_{\xi}{ }^{-1} a u_{\xi}=a \xi$ without ambiguity, and in this way Ω is a group of operators on the right for A and we regard Ω as acting trivially on the left. With the operators fixed, and A written additively, if we put $f(u, v)=(u, v)$ for the factors of a factor set, (15.2.2) becomes

$$
\begin{equation*}
f(u v, w)+f(u, v) w=f(u, v w)+f(v, w) \tag{15.8.1}
\end{equation*}
$$

Let us rearrange the terms thus

$$
\begin{equation*}
f(v, w)-f(u v, w)+f(u, v w)-f(u, v) w=0 \tag{15.8.2}
\end{equation*}
$$

whence we see that a factor set is a cocycle of dimension two. From (15.2.3), the condition for the equivalence of two factor sets $f(u, v)$ and $f_{1}(u, v)$ is

$$
\begin{equation*}
f_{1}(u, v)=f(u, v)+\alpha(v)-\alpha(u v)+\alpha(u) v \tag{15.8.3}
\end{equation*}
$$

or that f_{1} and f differ by the coboundary $a(v)-\alpha(u v)+\alpha(u) v$. Here we note that Ω operates trivially on the left. Hence the group of extensions is the second cohomology group $H^{2}(A, \Omega)$. We state this as a theorem.

Theorem 15.8.1. The group of extensions of an Abelian group A by a group Ω is the second cohomology group $H^{2}(A, \Omega)$, where

1) Ω operates trivially on the left in A.
2) On the right Ω operates to induce automorphisms in A.
3) Factor sets $f(u, v)$ are the cocycles of Z^{2}.
4) Equivalent factor sets differ by coboundaries of B^{2}.

The choice of the identity as the representative of A in writing G as a sum of cosets of A leads to the normalization $f(1,1)=0$. Putting $u=v=1$ in (15.8.1), we have

$$
\begin{equation*}
f(1, w)+f(1,1) w=f(1, w)+f(1, w) \tag{15.8.4}
\end{equation*}
$$

whence

$$
\begin{equation*}
f(1, w)=0 \tag{15.8.5}
\end{equation*}
$$

Similarly, putting $v=w=1$, we have

$$
\begin{equation*}
f(1,1)-f(u, 1)+f(u, 1)-f(u, 1)=0 \tag{15.8.6}
\end{equation*}
$$

whence also

$$
\begin{equation*}
f(u, 1)=0 \tag{15.8.7}
\end{equation*}
$$

showing that we deal with normalized cocycles.
We shall prove a general theorem in cohomology which includes Theorem 15.2.1 as a special case.

Suppose that Ω is finite of order m. Then for each $n>0$ we can define an additive homomorphism σ which maps C^{n} into C^{n-1} by the formula

$$
\begin{equation*}
(\sigma f)\left(x_{2}, \cdots, x_{n}\right)=\sum_{x \in \Omega} x^{-1} f\left(x, x_{2}, \cdots, x_{n}\right) \tag{15.8.8}
\end{equation*}
$$

Here $\boldsymbol{f} \boldsymbol{\epsilon} C^{\boldsymbol{n}}$, and it is immediately clear that $\boldsymbol{\sigma f} \boldsymbol{\epsilon} C^{\boldsymbol{n}-\mathbf{1}}$.
Write $g=\sigma f$ and let us calculate $(\delta g)\left(x_{1}, \cdots, x_{n}\right)$:

$$
\begin{align*}
& \delta g\left(x_{1}, \cdots, x_{n}\right) \\
&=x_{1} \sum x^{-1} f\left(x, x_{2}, \cdots, x_{n}\right) \\
&-\sum x^{-1} f\left(x, x_{1} x_{2}, \cdots, x_{n}\right) \\
& \cdot \tag{15.8.9}\\
&+(-1)^{j-1} \Sigma x^{-1} f\left(x, x_{1}, \cdots, x_{i-1} x_{i}, \cdots, x_{n}\right) \\
& \cdot \\
&+(-1)^{n-1} \sum x^{-1} f\left(x, x_{1}, \cdots, x_{n-1} x_{n}\right) \\
&+(-1)^{n}\left[\Sigma x^{-1} f\left(x, x_{1}, \cdots, x_{n-1}\right)\right] x_{n} .
\end{align*}
$$

The summation is over all $\boldsymbol{x} \in \boldsymbol{\Omega}$.
Now consider $(\delta f)\left(x, x_{1}, \cdots, x_{n}\right)$.

$$
\begin{aligned}
(\delta f)\left(x, x_{1}\right. & \left.\cdots, x_{n}\right) \\
& =x f\left(x_{1}, \cdots, x_{n}\right) \\
& -f\left(x \cdot x_{1}, x_{2}, \cdots, x_{n}\right) \\
& +f\left(x, x_{1} \cdot x_{2}, \cdots, x_{n}\right) \\
& \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
& +(-1)^{n} f\left(x, x_{1}, \cdots, x_{n-1} x_{n}\right) \\
& +(-1)^{n+1} f\left(x, x_{1}, \cdots, x_{n-1}\right) x_{n}
\end{aligned}
$$

Let us now calculate, using (15.8.10),

$$
\begin{aligned}
\sigma(\delta f) & \left(x_{1}, \cdots, x_{n}\right)=\sum_{x \in \Omega} x^{-1}(\delta f)\left(x, x_{1}, \cdots, x_{n}\right) \\
& =m f\left(x_{1}, \cdots, x_{n}\right) \\
& -\sum x^{-1} f\left(x x_{1}, x_{2}, \cdots, x_{n}\right) \\
& +\sum x^{-1} f\left(x, x_{1} \cdot x_{2}, \cdots, x_{n}\right) \\
& \cdot \\
& +(-1)^{n} \sum x^{-1} f\left(x, x_{1}, \cdots, x_{n-1} x_{n}\right) \\
& +(-1)^{n+1} \sum x^{-1} f\left(x, x_{1}, \cdots, x_{n-1}\right) x_{n}
\end{aligned}
$$

(15.8.11)

In the $\operatorname{sum} S=\sum_{x \in \Omega} x^{-1} f\left(x x_{1}, x_{2}, \cdots, x_{n}\right)$, put $y=x x_{1}$, whence

$$
S=x_{1} \sum y^{-1} f\left(y, x_{2}, \cdots, x_{n}\right)=x_{1} \sigma f\left(x_{2}, \cdots, x_{n}\right)
$$

since as x_{1} is a fixed element of Ω, y ranges over Ω when x does. Hence (15.8.11) becomes

$$
\begin{equation*}
(\sigma(\delta f))=m f-\delta(\sigma f) \tag{15.8.12}
\end{equation*}
$$

This gives:

Theorem 15.8.2. If $f \in \boldsymbol{Z}^{n}$, then $\sigma(\delta f)+\delta(\sigma f)=m f$.
Corollary 15.8.1. If $f \in Z^{n}$, then $m f \in B^{n}$.
For $f \in Z^{n}$ means that $\delta f=0$ so that $m f$ is the coboundary of δf. We conclude that if Ω has order m then every element of the cohomology group $H^{n}=Z^{n} / B^{n}$ has an order dividing m. Theorem 15.2.1 is the special case $n=2$ of this result.

We have a further theorem, due to Gaschütz [1] for factor sets and in more general form given by Eckmann [1]. This relates the cohomology of a group Ω and a subgroup B. We suppose that B is of finite index m in Ω.

$$
\begin{equation*}
\Omega=B \cdot 1+R s_{2}+\cdots+B s_{m}, \quad s_{1}=1 \tag{15.8.13}
\end{equation*}
$$

Here if $a_{1} a_{2}, \cdots, a_{n}$ are elements of Ω, we write $\overline{s_{i} a_{1}}=s_{i 1}$, where as usual the bar designates the coset representative. Then write also

$$
\overline{s_{i 1} a_{2}}=s_{i 2}, \cdots, \overline{s_{i n-1} a_{n}}=s_{i n}
$$

We define the transfer, $T\left(f\left(a_{1}, \cdots, a_{n}\right)\right)$ of $f\left(a_{1}, \cdots, a_{n}\right) \in C^{n}$ by the formula
(15.8.14) $T\left(f\left(a_{1}, \cdots, a_{n}\right)\right)$

$$
=\sum_{i=1}^{m} s_{i}{ }^{-1} f\left(s_{i} a_{1} s_{i 1}{ }^{-1}, s_{i 1} a_{2} s_{i 2}{ }^{-1}, \cdots, s_{i n-1} a_{n} s_{i n}{ }^{-1}\right) s_{i n}
$$

Note that $s_{i j-1} a_{j} s_{i j}^{-1} \in B$ in every case, whence for an $f \in C^{n}(A, \Omega)$, $T f$ is in the subgroup $\Omega C^{n}(A, B) \Omega$.

Theorem 15.8.3 (Theorem of Gaschütz). If $f\left(a_{1}, \cdots, a_{n}\right) \in Z^{n}$ and B is a subgroup of index m in Ω, then

$$
T f\left(a_{1}, \cdots, a_{n}\right) \equiv m f\left(a_{1}, \cdots, a_{n}\right) \bmod B^{n}
$$

Corollary 15.8.2. The cohomology class of the transfer is independent of the choice of the coset representatives s_{i} in (15.8.13).

Proof of the Theorem: Consider

$$
\begin{aligned}
& \sum_{i=1}^{m}(\delta f)\left(s_{i}^{-1}, s_{i} a_{1} s_{i 1}^{-1}, \cdots, s_{i n-1} a_{n} s_{i n}^{-1}\right) s_{i n} \\
& -\sum_{i=1}^{m}(\delta f)\left(a_{1}, s_{i 1}^{-1}, s_{i 1} a_{2} s_{i 2}^{-1}, \cdots, s_{i n-1} a_{n} s_{i n}^{-1}\right) s_{i n}
\end{aligned}
$$

$$
\begin{align*}
& +(-1)^{\imath-1} \sum_{i=1}^{m}(\delta f)\left(a_{1}, \cdots, a_{i-1}, s_{i j-1}{ }^{-1}, s_{i j-1} a_{j s_{i j}}^{-1}, \cdots,\right) s_{i n} \tag{15.8.15}\\
& +(-1)^{i} \sum_{i=1}^{m}(\delta f)\left(a_{1}, \cdots, a_{j-1}, a_{j}, s_{i j}^{-1}, s_{i j} a_{j+1} s_{i j+1}{ }^{-1}, \cdots\right) s_{i n} \\
& \cdot \\
& +(-1)^{n} \sum_{i=1}^{m}(\delta f)\left(a_{1}, \cdots, a_{n}, s_{i n}{ }^{-1}\right) s_{i n}=0 .
\end{align*}
$$

This is a sum of terms each of which is zero, since $\boldsymbol{f} \boldsymbol{\epsilon} Z^{n}$, whence $\delta f=0$. Consider the effect of expanding the coboundary in each of the $n+1$ lines above and taking the sum from $i=1$ to m for corresponding terms of the δf 's. The first terms of the first line yield

$$
\begin{gather*}
\sum s_{i}^{-1} f\left(s_{i} a_{1} s_{i 1}{ }^{-1}, \cdots, s_{i n-1} a_{n} s_{i n}^{-1}\right) s_{i n} \tag{15.8.16}\\
=T f\left(a_{1}, \cdots, a_{n}\right) .
\end{gather*}
$$

The last terms of the last line yield
(15.8.17)

$$
(-1)^{n}(-1)^{n+1} \sum f\left(a_{1}, \cdots, a_{n}\right) s_{i n}^{-1} \cdot s_{i n}=-m f\left(a_{1}, \cdots, a_{n}\right)
$$

Since $s_{i j-1}{ }^{-1} \cdot s_{i j-1} a_{j} s_{i j}{ }^{-1}=a_{j} \cdot s_{i j}{ }^{-1}$, the $(j+1)$ st terms of the j th and $(j+1)$ st lines cancel each other, for $j=1, \cdots, n$. Let us now take the first j terms of the $(j+1)$ st line and terms $j+2, \cdots, n+2$ of the j th line together. These are given by

$$
\begin{array}{ll}
(-1)^{j} a_{1} & \sum_{i=1}^{m} f\left(a_{2}, \cdots, a_{j}, s_{i j}^{-1}, s_{i j} a_{j+1} s_{i j+1}^{-1}, \cdots\right) s_{i n} \\
(-1)^{j+1} & \sum_{i=1}^{m} f\left(a_{1} a_{2}, \cdots, a_{j}, s_{i j}^{-1}, s_{i j} a_{j+1} s_{i j+1}^{-1}, \cdots\right) s_{i n}
\end{array}
$$

$$
\begin{align*}
& (-1)^{2 j} \quad \sum_{i=1}^{m} f\left(a_{1}, \cdots, a_{j-1} a_{i}, s_{i j}^{-1}, s_{i j} a_{j+1} s_{i j+1}^{-1}, \cdots\right) s_{i n} \tag{15.8.18}\\
& (-1)^{2 j+1} \sum_{i=1}^{m} f\left(a_{1}, \cdots, a_{j-1}, s_{i j-1}^{-1}, a_{j} a_{j+1} s_{i j}^{-1}, \cdots\right) s_{i n} \\
& \cdot \\
& (-1)^{n+j+1} \sum_{i=1}^{m} f\left(a_{1}, \cdots, a_{j-1}, s_{i j-1}^{-1}, s_{i j-1} a_{j} s_{i j}^{-1}, \cdots\right) s_{i n-1} a_{n} .
\end{align*}
$$

But if for arguments u_{1}, . . , u_{n-1} we define a function $F_{j}\left(u_{1}, \cdots, u_{n-1}\right) \in C^{n-1}$ by the formula
(15.8.19) $\quad F_{j}\left(u_{1}, \cdots, u_{n-1}\right)$

$$
=\sum_{i=1}^{m} f\left(u_{1}, \cdots, u_{j-1}, \sigma_{i}^{-1}, \sigma_{i} u_{j} \sigma_{i j}^{-1}, \cdots, \sigma_{i n-1} u_{n-1} \sigma_{i n}^{-1}\right) \sigma_{i n}
$$

where $\sigma_{i}=s_{i}$ and recursively $\sigma_{i t}=\overline{\sigma_{i t-1} u_{t}}$, then we see that the terms of (15.8.18) are the coboundary $(-1)^{i}\left(\delta F_{j}\right)\left(a_{1}, \cdots, a_{n}\right)$, since, summing over $i, s_{i j}$ or $s_{i j-1}$ will serve equally well as σ_{i}. Letting j run from 1 to n, the coboundaries $(-1)^{i}\left(\delta F_{j}\right)\left(a_{1}, \cdots, a_{n}\right)$ account for all terms of (15.8.15) except those which cancel and those of (15.8.16) and (15.8.17), giving our theorem.

The group theoretical form of the theorem of Gaschütz is the following:
Theorem 15.8.4 (Theorem of Gaschütz). Let $F=[(u, v)], u, v \in H$, $(u, v) \in A$ be the factor set of an $H-\chi$ extension of an Abelian group A by a finite group H. Let B be a subgroup of index m in H, and

$$
H=B \cdot 1+B s_{2}+\cdots+B s_{m}, \quad s_{1}=1 .
$$

Then

$$
(u, v)^{m} \sim \prod_{i=1}^{m}\left(s_{i} u \overline{s_{i} u} \bar{u}^{-1}, \quad \overline{s_{i} u} v \overline{s_{i} u v^{-1}} \overline{\bar{s}_{i}^{u v}}\right.
$$

Corollary 15.8.3. If $(x, y)=1$ whenever $x, y \in B$, then $(u, v)^{m} \sim 1$.
There are many consequences of this theorem, but a very useful consequence is the way in which this relates the $H-\chi$ extensions of A to the $S(p)-\chi$ extensions of A, where $S(p)$ is a Sylow p-subgroup of H. Let H be of order $n=p^{e} m$, where $S(p)$ is of order p^{e}. Let $E=E(H)$ be the group of $H-\chi$ extensions of A, as defined in $\$ 15.2$. Each element of E is a class of equivalent factor sets $F_{i}=\left[(u, v)_{i}\right]$. By Theorem 15.2.1 every element of E has order dividing n. Thus E is a periodic Abelian group and is the direct product of its Sylow subgroups $E(p)$.

Theorem 15.8.5. A Sylow p-subgroup $E(p)$ of $E=E(H)$, the group of $H-\chi$ extensions of an Abelian group A by a finite group H, is isomorphic to E_{p}, the group of $S(p)-\chi$ extensions given by restricting factor sets $F=[(u, v)]$ of H $-\chi$ extensions of A to arguments $(x, y), x, y \in S(p)$, where $S(p)$ is a Sylow p-subgroup of H.

Proof: On the factor sets $F=[(u, v)]$ for $H-\chi$ extensions of A, let us define a p-equivalence

$$
(u, v)_{\widetilde{\mathcal{p}}}(u, v)_{1}
$$

if, when restricted to arguments $x, y \in S(p)$ to yield an $S(p)-\chi$ extension we have

$$
(x, y) \sim(x, y)_{1}
$$

This is readily seen to be a true equivalence. Furthermore, let E_{1} be the subgroup of E of those factor sets $F=[(u, v)]$ for which $(x, y) \sim 1, x, y$
restricted to $S(p)$. Then elements of E correspond to p-equivalent factor sets if, and only if, they are in the same coset of E_{1}. Hence E / E_{1} is isomorphic to the group E_{p} of $S(p)-\chi$ extensions obtained by restricting the factor sets $F=[(u, v)]$ to arguments $x, y \in S(p)$. By the corollary to the Theorem of Gaschütz, with $S(p)$ as the subgroup B, every element of E_{1} is of order dividing m, the index of $S(p)$, and by Theorem 15.2.1, every element of E_{p} is of order dividing p^{e}. Since $\left(p^{e}, m\right)=1$, it follows that both E_{p} and $E(p)$, a Sylow p-subgroup of E are isomorphic to E / E_{1} and hence to each other, thus proving our theorem.

Theorem 15.8.6. An $H-\chi$ extension of A splits over A if, and only if, for each prime p dividing the order of H, the extension splits when restricted to some Sylow p-subgroup $S(p)$ of H.

Proof: Trivially, the splitting of H over A implies the splitting of every $S(p)$ over A. We must prove the converse. Let $F=[(u, v)]$ be the factor set determining the $H-\chi$ extension. By hypothesis $(u, v) \sim(u, v)_{1}$, where $(x, y)_{1}=$ 1 for $x, y \in S(p)$. By the corollary we have $(u, v)^{m} \sim(u, v)_{1}{ }^{m} \sim 1$, where $n=$ $p^{e} m$. But this must happen for every p dividing n. The different m 's for which we have $(u, v)^{m} \sim 1$ have greatest common divisor 1 , and so $(u, v) \sim 1$ and H splits over A, the conclusion of our theorem.

[^2]
16. GROUP REPRESENTATION

16.1. General Remarks.

We shall call a representation of a group G any homomorphism a of G into some group W. Of particular value are representations of G by groups W which lend themselves readily to calculation. Thus the permutation representations of a group G discussed in Chap. 5 are homomorphisms of G into a symmetric group S_{n}.

Instead of a symmetric group as a representing group, we may turn to the endomorphisms of a vector space V over a field F. Those endomorphisms which are one-to-one form a group, which, if V is of finite dimension n over F, is called the full linear group $L_{n}(F)$ and may be expressed by the nonsingular n $\times n$ matrices over F. Here we consider representations of G by linear transformations. In such a representation we may regard the elements of G as operators on V. In this context the subspaces of V, taken into themselves by the linear transformations corresponding to G, are the invariant subspaces of the representation, and regarding V as an additive group with both F and G as operators, these are the admissible subgroups N.

The full set of endomorphisms of a vector space V forms a ring. Thus a linear representation of G over V leads through addition and scalar multiplication to a linear representation of R_{G}, the group ring of G over F, and similarly, any admissible subgroup N of V yields a representation of R_{G} along with that of G. Hence it is not surprising that there is a close relationship between the decomposition of the group ring R_{G} and the decomposition of linear representations. Historically, the theory of group representations and the structure theory of rings were developed separately, and only in comparatively recent times has the close relationship between these two theories been recognized.
16.2. Matrix Representation. Characters.*

Definition: A matrix representation of degree n of a group G is a function ρ defined on G with values in the full linear group $L_{n}(F)$, for some field F, such that $\rho(x y)=\rho(x) \rho(y)$ for all $x, y \in G$.

Note that by this definition $\rho(x)$ is a nonsingular matrix and that $x \rightarrow \rho(x)$ is a homomorphism of G into $L_{n}(F)$. Here we must have $\rho(1)=I_{n}$, the unit $n \times n$ matrix, and thus $\rho\left(x^{-1}\right)=[\rho(x)]^{-1}$, the matrix inverse. The kernel K of the homomorphism $x \rightarrow \rho(x)$ will be a normal subgroup of G and the matrices $\rho(x)$ will represent G / K faithfully. The representation will be faithful only if the kernel K is 1 .

Definition: The character χ of a representation ρ is the function defined on G by $\chi(x)=$ trace $\rho(x)$.

Thus the characters are numbers of the field K. If the representation is of degree 1 , then $\chi=\rho$.

We shall say that two representations ρ and ρ^{*} are equivalent if there is a nonsingular matrix $S \in L_{n}(F)$ such that $\rho^{*}(x)=S^{-1} \rho(x) S$ for every $x \in G$. We note that if S is any nonsingular matrix of $L_{n}(F)$ and $\rho(x)$ is a representation in $L_{n}(F)$, then $S^{-1} \rho(x) S$ is also a representation $\rho^{*}(x)$. Indeed, if we regard $\rho(x)$, $x \in G$ as a group of linear transformations of the vector space V over F into itself with basis $u_{1}, u_{2}, \cdots, u_{n}$, and if

$$
\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\cdot \\
\cdot \\
\cdot \\
u_{n}
\end{array}\right)=S\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\cdot \\
\cdot \\
\cdot \\
v_{n}
\end{array}\right)
$$

then $S^{-1} \rho(x) S=\rho^{*}(x), x \in G$ is the group of the same linear transformations of V in terms of the basis v_{1}, \cdots, v_{n}.

Lemma 16.2.1. Characters are class functions, i.e., conjugate elements have the same character.

Lemma 16.2.2. Equivalent representations have the same characters.

For if A is a matrix of degree n, its characteristic polynomial is by definition $f(\lambda)=|A-\lambda I|=(-1)^{n}\left[\lambda^{n}-a_{1} \lambda^{n-1} \cdots+(-1)^{n} a_{n}\right]$. Here the coefficient a_{1} is the trace of $A, a_{1}=\operatorname{Tr}(A)$, and $a_{n}=|A|$ the determinant of A. Now if T is a nonsingular matrix $\left|T^{-1} A T-\lambda I\right|=\left|T^{-1}(A-\lambda I) T\right|=\left|T^{-1}\right| \cdot|A-\lambda I|$. $|T|=|A-\lambda I|$. Thus A and $T^{-1} A T$ have the same characteristic polynomial and a fortiori the same trace. Hence $\rho\left(y^{-1} x y\right)=\rho(y)^{-1} \rho(x) \rho(y)$ and $\rho(x)$ have the same trace, and so, $\chi\left(y^{-1} x y\right)=\chi(x)$ and the character is a class function. In the same way $\rho^{*}(x)=S^{-1} \rho(x) S$ and $\rho(x)$ have the same trace and so equivalent representations have the same characters.

We recall that a vector space V (or "linear space") over a field F is given by the following laws:
V has a binary addition:

$$
\text { For } \alpha, \beta \in V, \quad \alpha+\beta \in V \text {. }
$$

V has a scalar product co for $c \in F, \alpha \in V$.
These satisfy
V1) V is an Abelian group under addition.
V2) $c(\alpha+\beta)=c \alpha+c \beta,\left(c+c^{\prime}\right) \alpha=c \alpha+c^{\prime} \alpha$.
V3) $\left(c c^{\prime}\right) \alpha=c\left(c^{\prime} \alpha\right) ; 1 \alpha=\alpha$.
Here $\alpha, \beta \in V, c, c^{\prime} \in F, 1$ unit of F.
Vectors u_{1}, \cdots, u_{r} of V are said to be linearly independent if

$$
a_{1} u_{1}+\cdots+a_{r} u_{r}=0, \quad a_{i} \in F
$$

implies $a_{1}=\cdots=a_{r}=0$. Moreover, u_{1}, \cdots, u_{n} are a basis for V if they are linearly independent and if every $u \in V$ can be expressed as

$$
u=b_{1} u_{1}+\cdots+b_{n} u_{n}, \quad b_{i} \in F
$$

If V has a basis, then every basis has the same number of elements, and this number is called the dimension of the vector space.

We shall define an F - G module M as a vector space V over F which admits the elements of G as operators on V, the rule being
$(u+v) g=u g+v g, u, v \in V, g \in G$.
2) $u\left(g_{1} g_{2}\right)=\left(u g_{1}\right) g_{2}, u \in V, g_{1}, g_{2} \in G$.
3) $u \cdot 1=u, u \in V, 1$ the unit of G.
4) $(a u) g=a(u g), a \in F, u \in V, g \in G$.

We shall also call M a representation module for G.
By an operator homomorphism of one $F-G$ module M_{1} into another M_{2} we mean a mapping $M_{1} \rightarrow M_{2}$ such that

1) If $u_{1} \rightarrow v_{1}, u_{2} \rightarrow v_{2}$, then $u_{1}+u_{2} \rightarrow v_{1}+v_{2}$.
2) If $u \rightarrow v, b \in F$, then $b u \rightarrow b v$.
3) If $u \rightarrow v, g \in G$, then $u g \rightarrow v g$.

An operator isomorphism of M_{1} and M_{2} is an operator homomorphism of M_{1} onto M_{2} which is one to one.

Now if M is an $F-G$ module and has a basis u_{1}, \cdots, u_{n} over F, then if for $x \in G$, we take the mapping $v \rightarrow v x, v \in V$, where $u_{i} \rightarrow u_{i} x=\sum_{j=1}^{n} a_{i j} u_{j}$ $, i=1, \cdots, n, \rho(x)=\left(a_{i j}\right), i, j=1, \cdots, n$ will be a representation for G in M. Conversely, if ρ is a representation for G over a vector space V with basis u_{1}, \cdots, u_{n}, and if we have $\rho(x)=\left(a_{i j}\right)=\left[a_{i j}(x)\right]$, let us put

$$
u_{i} x=\sum_{j=1}^{n} a_{i j}(x) u_{j}, \quad i=1, \cdots, n
$$

for every $\boldsymbol{x} \in \boldsymbol{G}$. Then, since $\rho(1)=I_{n}$ and $\rho(x y)=\rho(x) \rho(y)$, we see that this rule makes V into an $F-G$ module M. Thus every $F-G$ module of dimension n determines a representation of degree n of G, and conversely.

Theorem 16.2.1. Two $F-G$ modules M_{1} and M_{2} give equivalent representations of G if, and only if, they are operator isomorphic.

Proof: Suppose we have given two equivalent representations of G;

$$
\rho(x) x \in G \quad \text { and } \quad S^{-1} \rho(x) S .
$$

Then if $\rho(x)=\left[a_{i j}(x)\right], x \in G$, this corresponds to a basis u_{1}, \cdots, u_{n} of a vector space V with G as operators and the mapping $u_{i} \rightarrow u_{i} x=\Sigma a_{i j}(x) u_{j}$. We have observed already that this mapping

$$
w \rightarrow w x \quad w \in V
$$

corresponds to the representation $\rho^{*}(x)=S^{-1} \rho(x) S, \boldsymbol{x} \boldsymbol{\in} \boldsymbol{G}$ in terms of a basis v_{1}, \cdots, v_{n}, where

$$
\left(\begin{array}{c}
u_{1} \\
\cdot \\
\cdot \\
\cdot \\
u_{n}
\end{array}\right)=S\left(\begin{array}{c}
v_{1} \\
\cdot \\
\cdot \\
\cdot \\
v_{n}
\end{array}\right)
$$

If $S=\left(s_{i j}\right)$, the equivalent representations $\rho(x)$ and $\rho^{*}(x)$ are operator isomorphic under the mapping determined by $u_{i} \rightarrow \sum_{i} s_{i j} v_{j}, i=1, \cdots, n$. Conversely, suppose that two $F-G$ modules M_{1} and M_{2} are operator isomorphic. To be isomorphic as vector spaces, M_{1} and M_{2} must have the same number of basis elements, say, u_{1}, \cdots, u_{n} for M_{1}, and thus in the operator isomorphism u_{1}, \cdots, u_{n} are mapped onto a basis v_{1}, \cdots, v_{n} of M_{2}. With $u_{i} \rightarrow v_{i}$ and $u_{i} x \rightarrow v_{i} x$ then on these bases, M_{1} and M_{2} yield identical representations, since if

$$
u_{i} x=\sum_{j=1}^{n} a_{i j}(x) u_{j}, \quad i=1, \cdots, n
$$

we must also have

$$
u_{i} x=\sum_{j=1}^{n} a_{i j}(x) u_{j}, \quad i=1, \cdots, n
$$

Thus equivalent representations $\rho(x)$ and $\rho^{*}(x)$ correspond precisely to operator isomorphisms of representation modules.

16.3. The Theorem of Complete Reducibility.

Suppose that a representation module M has a submodule M_{1} which is also a representation module. Then let us take a basis u_{1}, \cdots, u_{r} for M_{1} and complete this to a basis for M by taking further elements u_{r+1}, \cdots, u_{n}. The corresponding representation ρ is said to be reducible, and in terms of the basis u_{1}, \cdots, u_{n}, takes the form

$$
\rho(x)=\left(\begin{array}{c|c}
\sigma(x) & 0 \\
\hline \theta(x) & \tau(x)
\end{array}\right),
$$

and here σ and τ are representations of G of degrees r and $n-r$, respectively. The representation σ is associated with the $F-G$ module M_{1} with basis u_{1}, \cdots, u_{r}. What about τ ? It is the representation defined by the basis $M_{1}+u_{r+1}, \cdots$, $M_{1}+u_{n}$ of the quotient module M / M_{1}. More generally, if

$$
0=M_{0} \subset M_{1} \subset M_{2} \cdots \subset M_{k}=M
$$

is a chain of submodules and we choose a basis of M adapted to this chain, then the corresponding representation ρ will take the form

$$
\rho(x)=\left(\begin{array}{c|ccc}
\rho_{1}(x) & & & \\
\hline & \rho_{2}(x) & & \mathbf{0} \\
* & & \ddots & \\
* & & & \rho_{k}(x)
\end{array}\right)
$$

and $\rho_{i}(x)$ is the representation corresponding to a suitable basis of M_{i} / M_{i-1}, namely, $M_{i-1}+u_{j}$, where u_{j} runs through the basis elements which belong to M_{i} but not to M_{i-1}. For the characters we clearly have

$$
\chi(x)=\chi_{1}(x)+\chi_{2}(x)+\cdots+\chi_{k}(x) .
$$

If we choose our chain to be maximal, i.e., so that it cannot be further refined, then the M_{i} / M_{i-1} have no proper representation submodules and they give rise to irreducible representations ρ_{i}. As an immediate consequence we have:

Lemma 16.3.1. Every character is the sum of irreducible characters.
Lemma 16.3.2. The irreducible constituents ρ_{i} are unique apart from order and operator isomorphism.

Lemma 16.3.2 follows from the Jordan-Hölder theorem.
If a representation module M has a submodule M_{1} which is a representation module, it may happen that there is a complementary representation submodule M_{2}, so that M is their direct sum, $M=M_{1} \oplus M_{2}$. In this case M_{2} is clearly operator isomorphic to M / M_{1}, and the representation $\rho(x)$ takes the form

$$
\rho(x)=\left(\begin{array}{c|c}
\rho_{1}(x) & 0 \\
\hline 0 & \rho_{2}(x)
\end{array}\right) .
$$

Conversely, if the representation $\rho(x)$ can be put in this form of square blocks down the main diagonal, M is the direct sum of representation submodules M_{1} and M_{2}. We say that the representation is completely reduced in this case. Not every representation which is reducible can be completely reduced. Thus the representation of the infinite cyclic group generated by an element b given by

$$
\rho\left(b^{i}\right)=\binom{1,0}{i, 1}
$$

is reducible, but if it could be completely reduced it would represent every element by the identity, since here both $\rho_{1}\left(b^{i}\right)$ and $\rho_{2}\left(b^{i}\right)$ are the identity. But $\binom{1,0}{1,1}$ is not conjugate to the identity and this is clearly impossible. However, we have an important class of representations for which reducible representations can be completely reduced.

Theorem 16.3.1. Theorem of Complete Reducibility. A reducible representation of a finite group G over a field F whose characteristic does not divide the order of G can be completely reduced.

Proof: Let M be a representation module for G over F and M_{1} a representation submodule. With w_{1}, \cdots, w_{r} a basis for M_{1}, complete this to a
basis for M with elements w_{r+1}, \cdots, w_{n}, which will be a basis for a subspace N, which, however, will not in general be a representation module. We have for $x \in G$

$$
\rho(x)=\left(\begin{array}{c|c}
\sigma(x) & 0 \\
\hline \theta(x) & \tau(x)
\end{array}\right) .
$$

We also have $M=M_{1}+N$, and for $\boldsymbol{u} \in \boldsymbol{M}$ uniquely,

$$
u=u_{1}+v, \quad u_{1} \in M_{1}, v \in N
$$

The map $\eta: u \rightarrow v$ is idempotent and linear. If g is the order of G, put

$$
u^{\prime}=\frac{1}{g} \sum_{x \in G} u x \eta x^{-1}=u \zeta
$$

Here $u \rightarrow u^{\prime}=u \zeta$ is a linear mapping. This mapping requires that we be able to divide by g, the order of G, and this is possible because by our hypothesis G is of finite order g, not divisible by the characteristic of F.

If $y \in G$, put $z=y^{-1} x$ for $x \in G$, and then

$$
\begin{aligned}
(u \zeta) y & =\frac{1}{g} \sum_{x} u x \eta x^{-1} y=\frac{1}{g} \sum_{z}(u y) z \eta z^{-1} \\
& =(u y) \zeta,
\end{aligned}
$$

since z runs over G as x does. This shows that $M_{2}=M \zeta$ is a representation module. We wish to show that $M=M_{1} \oplus M_{2}$, for which we must show that every $u \in M$ can be written in the form $u=u_{1}+u_{2}, u_{1} \in M_{1}, u_{2} \in M_{2}$ and that this expression is unique, i.e., $0=u_{1}+u_{2}$ implies $u_{1}=0=u_{2}$. For any $u \in M$, write

$$
u=(u-u \zeta)+u \zeta .
$$

Here

$$
u \zeta=u_{2} \in M_{2}
$$

Now

$$
u-u \zeta=\frac{1}{g} \sum_{x}(u x-u x \eta) x^{-1,} \text { since } u x x^{-1}=u . \quad \text { But }
$$

$u x-u x \eta=(u x)_{1} \in M_{1}$, whence $u-u \zeta=u_{1} \in M_{1}$. Hence u $=u_{1}+u_{2}$ with $u_{1} \in M_{1}, u_{2} \in M_{2}$. Now if $w \in M_{1}, w x \in M_{1}$, wxp $=0$, whence $w \zeta=0$. Thus for any $u \in M,(u-=u \zeta) \zeta=0$, and $u \zeta^{2}=u \zeta$. Hence if $u_{1}+u_{2}=0, u_{1} \zeta+u_{2} \zeta=0$, and thus $0+u_{2} \zeta=u_{2}=0$, and so also $u_{1}=0$. Hence the representation can be completely reduced.

Second Proof by Matrices: With

$$
\rho(x)=\left(\begin{array}{c|c}
\sigma(x) & 0 \\
\hline \theta(x) & \tau(x)
\end{array}\right)
$$

and $\sigma(x), \tau(x)$ representations of degrees r and $n-r$, respectively, we wish to find a matrix

$$
S=\left(\begin{array}{c|c}
I_{r} & 0 \\
\hdashline \mu & I_{n-r}
\end{array}\right)
$$

μ independent of x, such that

$$
\left(\begin{array}{c|c}
\sigma(x) & 0 \\
\hline \theta(x) & \begin{array}{c}
\\
\tau(x)
\end{array}
\end{array}\right)\left(\begin{array}{c|c}
I_{r} & 0 \\
\hline \mu & I_{n-r}
\end{array}\right)=\left(\begin{array}{c|c}
I_{r} & 0 \\
\hline \mu & I_{n-r}
\end{array}\right)\left(\begin{array}{c|c}
\sigma(x) & 0 \\
\hline 0 & \tau(x)
\end{array}\right)
$$

for all $x \in G$. Clearly, if it can be found, S is nonsingular and will yield an equivalent representation

$$
\rho^{*}(x)=S^{-1} \rho(x) S=\left(\begin{array}{c|c}
\sigma(x) & 0 \\
\hline 0 & \tau(x)
\end{array}\right),
$$

all $x \in \boldsymbol{G}$, which is completely reduced. This requires finding an $(n-r) \times r$ matrix μ independent of x such that

$$
\mu \sigma(x)-\tau(x) \mu=\theta(x),
$$

all $x \in G$.
From $\rho(y x)=\rho(y) \rho(x)$ we have

$$
\theta(y x)=\theta(y) \sigma(x)+\tau(y) \theta(x)
$$

whence

$$
\theta(x)=\tau\left(y^{-1}\right) \theta(y x)-\tau\left(y^{-1}\right) \theta(y) \sigma(x)
$$

and

$$
\theta(x)=\frac{1}{g} \sum_{y}\left(\tau(x) \tau\left(x^{-1} y^{-1}\right) \theta(y x)-\tau\left(y^{-1}\right) \theta(y) \sigma(x)\right) .
$$

Hence, if we put

$$
-\mu=\frac{1}{g} \sum_{y} \tau\left(y^{-1}\right) \theta(y)=\frac{1}{g} \sum_{y} \tau\left(x^{-1} y^{-1}\right) \theta(y x)
$$

we have $\theta(x)=-\tau(x) \mu+\mu \sigma(x)$. Thus we have, found a suitable $(n-r) \times r$ matrix μ, and so a transforming matrix S exists and the equivalent representation $\rho^{*}(x)$ is completely reduced.

By repeated application of this theorem we find the following major result:
Theorem 16.3.2. Every representation of a finite group G over a field F whose characteristic does not divide the order of G can be completely reduced to the sum of irreducible representations.

Corollary 16.3.1. Representations of a finite group G over a field F whose characteristic does not divide the order of G are equivalent if, and only if, they reduce to the sum of the same irreducible representations, each with the same multiplicity.

When a representation ρ is completely reduced we may write

$$
\rho=\rho_{1} \oplus \rho_{2} \oplus \cdots \oplus \rho_{k} .
$$

The order of the ρ_{i} is immaterial, since we may permute the elements of the corresponding basis of the representation module M to permute the ρ_{i}. The ρ_{i} are, of course, the composition factors of M, taken as an additive group with F
and G as operators, and as such unique by the Jordan-Hölder theorem up to order and operator isomorphism. By Theorem 16.2.1, operator isomorphism of irreducible representations means equivalence. Thus by "same irreducible representations" in the corollary we do not distinguish equivalent representations.

16.4. Semi-simple Group Rings and Ordinary Representations.

Given any group G and a field F, we may construct the group $\operatorname{ring} R_{G}$ in the following way:

1) R_{G} is a vector space over F with the elements $g_{i} \in G$ as a basis.
2) Products are defined by putting

$$
\sum_{i} a_{i} g_{i} \sum_{j} b_{j} g_{j}=\sum_{i, j} a_{i} b_{j} g_{i j}
$$

where $g_{i j}=g_{i} g_{j}$ in G.
It is not difficult to show that this definition makes R_{G} into an associative ring with a unit $1 \cdot 1=1$, the product of the unit of F and the identity of G. Clearly, R_{G} is a representation module for G elements of G operating on R_{G} by multiplication on the right. If G is of finite order n, taking the elements of G, g_{1}, \cdots, g_{n} as a basis for R, the corresponding representation is

$$
\rho(x)=\left(x_{i j}\right), \quad i, j=1, \cdots, n, \quad x \in G
$$

where $x_{i j}=1$ if $g_{i} x=g_{j}$ and $x_{i j}=0$ otherwise. This we recognize as the right regular representation of G which as a permutation group is given by

$$
\pi(x)=\left(\begin{array}{lll}
g_{1} & \cdots & g_{n} \\
g_{1} x & \cdots & g_{n} x
\end{array}\right) \quad x \in G
$$

written in matrix form.
Lemma 16.4.1. In the right regular representation $\rho(x)$ of a group G of order n we have $\chi(1)=n, \chi(g)=0, g \neq 1$.

For here $\rho(x)=\left(x_{i j}\right)$, where $x_{i j}=1$ if $g_{i} x=g_{j}$ and $x_{i j}=0$ otherwise, and so, $\chi(x)=\sum_{i} x_{i i}$. If $x=1, g_{i} 1=g_{j}=g_{i}$ and $x_{i i}=1, i=1, \cdots, n$, and so, $\chi(1)=n$. But for $x=g \neq 1, x_{i i}=0$, since $g_{i} x=g_{i}$ cannot hold for any g_{i} unless x $=1$.

Nearly all the results we shall obtain will be for the representations of a finite group G over a field F whose characteristic does not divide the order of G. Such a representation we shall call an ordinary representation. Representations of a finite group G over a field F whose characteristic does divide the order of G are called modular representations. Properties of modular representations are different from those of ordinary representations. And, of course, representations of infinite groups can be expected to differ from representations of finite groups in many ways.

We say that a ring R is regular if for every $u \in R$ there is an element $x \in R$ such that $u x u=u$. A regular ring finite dimensional over a field F is said to be semi-simple. An element $e \neq 0$ such that $e^{2}=e$ is called an idempotent.

Theorem 16.4.1. The group ring R_{G} of a finite group G over a field F is semi-simple if, and only if, the characteristic of F does not divide the order of G.

Proof: Let G be of finite order g. If the characteristic of F divides g and x_{1}, \cdots, x_{g} are the elements of G, then in R_{G} consider the element $u=x_{1}+\cdots+$ x_{g}. Here $x_{i} u=u x_{i}=u$. Hence, with $x=a_{1} x_{1}+\cdots+a_{g} x_{g}$, we have $u x=\left(a_{1}+\cdot\right.$ $\left.\cdots+a_{g}\right) u$ and $u x u=\left(a_{1}+\cdots+a_{g}\right) g u=0 \neq u$. Hence R_{G} is not semi-simple.

Now suppose that the order g of G is not divisible by the characteristic of F. We shall prove that R_{G} is semi-simple and indeed shall prove further properties of R_{G}. Let \mathfrak{a}_{1} be any right ideal of R_{G}. Then \mathfrak{a}_{1} is a representation submodule of R_{G}, and conversely, the representation submodules of R_{G} are the right ideals. By the theorem of complete reducibility

$$
R_{G}=\mathfrak{a}_{1} \oplus \mathfrak{a}_{2}
$$

where \mathfrak{a}_{2} is another right ideal. Then $1=a_{1}+a_{2}, a_{1}, a_{1} \boldsymbol{\epsilon} \mathfrak{a}_{1}, a_{2} \boldsymbol{\epsilon} \mathfrak{a}_{2}$, and this representation is unique. But then $a_{1}=a_{1}{ }^{2}+a_{2} a_{1}$ also holds, and
comparing this with the unique representation $a_{1}=a_{1}$, we have $a_{1}^{2}=a_{1}, a_{2} a_{1}=$ 0 . Thus $a_{1}=e$ is an idempotent, and $a_{2}=1-e$ is also an idempotent. Thus for $x \in R_{G}$ we have $x=e x+(1-e) x$ with $e x \in \mathfrak{a}_{1}$. Conversely, if $y \in \mathfrak{a}_{1}$, we have $y=e y+(1-e) y=y+0$ by the uniqueness of the representation. Hence for $y \in \mathfrak{a}_{1}$ we have ey $=y$. Thus \mathfrak{a}_{1} is the principal right ideal $e R_{G}$ of the idempotent e, and so every right ideal of R_{G} is the principal right ideal of an idempotent. In particular, for every element u there is an idempotent e such that $u R_{G}=e R_{G}$. Hence for some $x, u x=e$, and for some y we have $e y=u, e u=e^{2} y$ $=e y=u$. Here $u=e u=u x u$, and so, R_{G} is regular.

Theorem 16.4.2. A regular ring R of finite dimension over afield F has a unit and every right (left) ideal is the principal ideal of an idempotent. Every two-sided ideal is the principal ideal of an idempotent in the center.

Proof: Let R be a regular ring of finite dimension over a field F. If u is any element, then by regularity there is an x such that $u x u=u$. Here, with $e=u x$, we have $e^{2}=u x u x=u x=e$, and with $f=x u$, we have $f^{2}=x u x u=x u=f$. Moreover, $u=u x u=e u=u f$, whence $e R=u R$ and $R u=R f$. Thus principal right or left ideals are principal right or left ideals of idempotents. Consider a left ideal \mathfrak{a}. If $\mathfrak{a} \neq 0$, then it contains some idempotent $e_{1} \neq 0$, and thus $R e_{1} \subseteq \mathfrak{a}$. Suppose $\mathfrak{a} \neq R e_{1}$. Then there is some $x \in \mathfrak{a}, x \notin R e_{1}$.

$$
x=x e_{1}+\left(x-x e_{1}\right),
$$

with $x_{1}=x e_{1} \in R e_{1}$, and

$$
x_{2}=x-x e_{1},
$$

where $x_{2} e_{1}=0$.
Let f be an idempotent such that $R x_{2}=R f$. Then $f=w x_{2}, f e_{1}=w x_{2} e_{1}=0$. Now put $e_{2}=e_{1}+f-e_{1} f$. Here $e_{1} e_{2}=e_{1}, f e_{2}=f$. Thus

$$
e_{2}^{2}=\left(e_{1}+f-e_{1} f\right) e_{2}=e_{1}+f-e_{1} f=e_{2}
$$

and so, e_{2} is an idempotent belonging to \mathfrak{a} and $R e_{2}$ includes both e_{1} and f, whence it includes $R e_{1}$ and the element $x \notin R e_{1}$. Hence $R e_{2}$ has a greater dimension than $R e_{1}$. Continuing, we may construct further idempotents $e_{3}, e_{4}, \cdot \cdot$ - in \mathfrak{a} with each ideal $R e_{i}$ of greater dimension than the last until we reach an idempotent e such that $\mathfrak{a}=R e$. This proves that every left ideal is the principal left ideal of an idempotent. A similar argument shows that every right ideal is the principal right ideal of an idempotent. If $\boldsymbol{x} \in \boldsymbol{e} \boldsymbol{R}$, then for some w, $x=e w$ and $e x=e^{2} w=e w=x$, and e is a left unit for elements of $e R$. Similarly, for $x \in R f$, we have $x f=x$. Now considering the entire ring R as both a left ideal and a right ideal, there are idempotents e and f such that $R=e R=R f$. Hence $e f=f=e$ and $e x=x e=x$, whence $e=1$ is a unit for R.

The multiples of an idempotent e in the center of R will surely form a twosided ideal. We wish to show that conversely an arbitrary two-sided ideal \mathfrak{a} is the principal ideal of an idempotent in the center. Now for appropriate idempotents we have $\mathfrak{a}=e R=R f$. Hence ef $=f=e$, and $\mathfrak{a}=e R=R e$. Now for an arbitrary x of R we have $e x \in \mathfrak{a}$ whence $e x$ $=e x e$. Also $x e \in \mathfrak{a}$, whence $x e=e x e$. Thus $e x=x e$, and so, e is in the center of R.

Let us call a ring R simple if it is semi-simple and contains no two-sided ideals except 0 and R. The direct sum of right ideals we indicate with \oplus; of two-sided ideals, we indicate with \dagger.

Theorem 16.4.3. A semi-simple ring R is the direct sum $R=R_{1} \boxminus R_{2} \boxminus \cdots \square R_{s}$ of simple rings. The simple rings R_{i} are unique apart from order.

Proof: Let R_{1} be a minimal two-sided ideal contained in R. Then R_{1} is the principal ideal of an idempotent e_{1} in the center of R. Then for $x \in R, x=x e_{1}$ $+x\left(1-e_{1}\right)$. Hence $R=R_{1} \oplus \bar{R}_{1}$, where \bar{R}_{1} consists of all elements of the form $x\left(1-e_{1}\right)$. Now e_{1} is the unit for $R_{1}, \bar{e}_{1}=1-e_{1}$, the unit for \bar{R}_{1}, and for $x, y \in R_{1}, z, w \in \bar{R}_{1}$, we have $(x+z)+(y+w)=(x+y)+(z+w)$ and $(x+$ $z)(y+w)=x y+z w$, since $z y=z e_{1}\left(1-e_{1}\right) y=0$, and similarly, $x w=0$. Thus in this direct sum $R_{1} \oplus \bar{R}_{1}$ both sums and product may be computed by combining the components separately. Hence, in particular, regularity of R implies regularity for R_{1} and \bar{R}_{1} separately. Continuing, take R_{2} as a minimal
two-sided ideal of \bar{R}_{1} and find $\bar{R}_{1}=R_{2} \oplus \bar{R}_{2}$. Proceeding in this way, we ultimately obtain

$$
R=R_{1} \oplus R_{2} \oplus \cdots \oplus R_{s}
$$

where $1=e_{1}+e_{2}+\cdots+e_{s}$ and $e_{i}, i=1, \cdots, s$ are idempotents in the center of R and $e_{i} e_{j}=0, i \neq j$.
For

$$
\begin{aligned}
& x=x_{1}+x_{2}+\cdots+x_{s} \\
& y=y_{1}+y_{2}+\cdots+y_{s}
\end{aligned}
$$

with $x_{i}, y_{i} \boldsymbol{\in} \boldsymbol{R}_{\boldsymbol{i}}$, we have

$$
\begin{aligned}
x+y & =\left(x_{1}+y_{1}\right)+\left(x_{2}+y_{2}\right)+\cdots+\left(x_{s}+y_{s}\right) \\
x y & =x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{s} y_{s} .
\end{aligned}
$$

Thus, conversely, the direct sum of simple rings R over the same field F will be regular and hence semi-simple. Now if \mathfrak{a} is any two-sided ideal in R, it is the principal ideal of an idempotent e in the center. Here

$$
e=e_{1} e+e_{2} e+\cdots+e_{s} e
$$

Thus $e_{i} e \neq 0$ for some i. But if \mathfrak{a} is minimal and $e_{i} e \neq e_{i}$, then the principal ideal of $e_{i} e$ would be properly contained in R_{i}, and if $e_{i} e \neq e$, it would be properly contained in \mathfrak{a}. Hence $e_{i} e=e_{i}=e$, and so, $\mathfrak{a}=\boldsymbol{R}_{i}$. This proves the uniqueness of the direct sum.

THEOREM 16.4.4. Any ordinary irreducible representation of a finite group G is equivalent to the representation on some minimal right ideal of R_{G}. Two minimal right ideals of R_{G} give equivalent representations if, and only if, they belong to the same simple component of R_{G}.

Proof: We note that any representation ρ of G yields a representation of R_{G}, since if $h=\sum_{x \in G} a_{x} x, a_{x} \in F, x \in G$ is any element of R_{G}, we may
take $\rho(h)=\Sigma a_{x} \rho(x)$ and this is a representation of R_{G}. Equivalent representations of G give equivalent representations of R_{G}, and conversely.

The regular representation of G is the representation of G with R_{G} as an F G module. In its completely reduced form

$$
R_{G}=e_{1} R_{G} \oplus e_{2} R_{G} \oplus \cdots \oplus e_{t} R_{G}
$$

where $1=e_{1}+e_{2}+\cdots+e_{t}$ and the e_{i} are idempotents which are orthogonal, i.e., $e_{i} e_{j}=0$ if $i \neq j$. Here each $e_{i} R_{G}$ is a minimal right ideal. Now let $\rho(x)$ be an ordinary irreducible representation of G and thus of R_{G}. Let M be an irreducible $F-G$ module giving the representation of ρ. Then $M=M \cdot 1=M\left(e_{1}\right.$ $+\cdots+e_{t}$). Hence for some $e_{i}, M e_{i} \neq 0$. Let m be some vector in M such that $m e_{i} \neq 0$. Then $m e_{i} R_{G} \neq 0$ is a representation module for G different from zero and contained in M. As M is irreducible, we must have $M=m e_{i} R_{G}$. The correspondence

$$
m e_{i}\left(\sum_{x \in G} a_{x} x\right) \leftrightarrows e_{i} \sum_{x \in G} a_{x} x
$$

is one to one, since the elements $e_{i} h$ for which $m e_{i} h=0$ form a right ideal properly contained in $e_{i} R_{G}$ and hence are zero. We have an operator isomorphism between the representation module M and the representation module $e_{i} R_{G}$, and so, by Theorem 16.1.1, $\rho(x)$ is equivalent to the representation of G on the minimal right ideal $e_{i} R_{G}$.

When do two minimal right ideals yield equivalent representations? A minimal right ideal must be contained in a unique minimal two-sided ideal. Suppose that

$$
R_{G}=R_{1} \oplus R_{2} \Theta \cdots \boxplus R_{s}
$$

is the decomposition of R_{G} as a sum of simple ideals, i.e., minimal two-sided ideals. Here $1=e_{1}+e_{2}+\cdots e_{s}$, where the e_{i} are an orthogonal set of idempotents in the center. Suppose $e_{i 1} R_{G}$ and $e_{i 2} R_{G}$ are two minimal right ideals in the same simple ideal R_{i}. Then all finite sums $u_{1} e_{i 1} v_{1}+\cdots+u_{m} e_{i 1} v_{m}$,
$u_{k}, v_{k} \in R_{G}$ form a twosided ideal, and hence, since $e_{i}\left(e_{i 1}\right) e_{i}=e_{i 1} \neq 0$ is in this set, the set is R_{i}. Hence, for appropriate u 's and v 's,

$$
u_{1} e_{i 1} v_{1}+\cdots+u_{m} e_{i 1} v_{m}=e_{i 2}
$$

Since $e_{i 2}{ }^{2}=e_{i 2}$, we have for some j,

$$
e_{i 2} u_{j} e_{i 1} v_{j} \neq 0
$$

But then $e_{i 1} v_{j} R_{G} \neq 0$, and since it is a right ideal contained in the minimal ideal $e_{i 1} R_{G}$, we have $e_{i 1} v_{j} R_{G}=e_{i 1} R_{G}$. Similarly $e_{i 2} u_{j} e_{i 1} v_{j} R_{G}=e_{i 2} R_{G}$. Thus with $w=$ $e_{i 2} u_{j}$ we have $w e_{i 1} R_{G}=e_{i 2} R_{G}$. Hence for $h \boldsymbol{\epsilon} R_{G}$ we have $w e_{i 1} h \leftrightarrows e_{i 1} h$, an operator isomorphism between the right ideals $e_{i 1} R_{G}$ and $e_{i 2} R_{G}$, and so their representations are equivalent. This shows that minimal right ideals in the same simple ideal give the same representation.

Now suppose that $e_{i 1} R_{G}$ and $e_{j 1} R_{G}$ are minimal right ideals from the simple ideals R_{i} and $R_{j}, i \neq j$. Representing on $e_{i 1} R_{G}$, we have the mappings for e_{i}, e_{j} respectively,

$$
\begin{aligned}
& e_{i}: e_{i 1} h \rightarrow e_{i 1} h e_{i}=e_{i 1} e_{i} h=e_{i 1} h \\
& e_{j}: e_{i 1} h \rightarrow e_{i 1} h e_{j}=e_{i 1} e_{j} h=0,
\end{aligned}
$$

whence $\rho\left(e_{i}\right)=1$ and $\rho\left(e_{j}\right)=0$. Similarly, on $e_{j 1} R_{G}, e_{i}$ is represented by 0 and e_{j} by 1 . Hence the representations are inequivalent.

We have related the decomposition of R_{G} into a direct sum of simple ideals to finding orthogonal idempotents in the center Z of R_{G}. What is the center of R_{G} ? This is easily answered.

Theorem 16.4.5. The elements $C_{i}=x_{i 1}+\cdots+x_{i h}$, where $x_{i 1}, x_{i 2}, \cdots, x_{i h}$ are a class of conjugates in a group G are a basis for the center of R_{G}.

Proof: If $C_{i}=x_{i 1}+\cdots+x_{i h}$, where $x_{i 1}, x_{i 2}, \cdots, x_{i h}$ are a class of conjugates in G, then for $y \in G, y^{-1} C_{i} y=C_{i}$, since transformation by an element merely permutes the elements of a class among themselves. Since C_{i} permutes with every $y \in G$, it permutes with every element of R_{G} and is in the
center of R_{G}. Conversely if u is in the center of R_{G} and $u=\sum_{x \in G} a_{x} x, y \in G$, we have $y^{-1} u y=u=\sum_{x \in G} a_{x} y^{-1} x y$, and so in u, conjugate elements have equal coefficients and thus u is a linear combination of the C_{i}.

16.5. Absolutely Irreducible Representations. Structure of Simple Rings.

We have seen that all irreducible ordinary representations occur as components of the regular representation $R(G)$ of a group G. Thus their determination is a matter of finding the complete reduction of $R(G)$, or what comes to the same thing, finding the irreducible right ideals of the group ring R_{G}.

Irreducibility of a representation is a relative matter, depending on the field. Thus if G is the cyclic group of order 3 , with elements $1, x, x^{2}$ over the rational field, R_{G} has a decomposition $R_{G}=R_{1} \boxminus R_{2}$ with $1=e_{1}+e_{2}$, where

$$
e_{1}=\frac{1+x+x^{2}}{3}, \quad e_{2}=\frac{2-x-x^{2}}{3}
$$

are idempotents, R_{1} has e_{1} as a basis, and R_{2} has a basis $e_{2}, e_{2} x$. This gives the representation

$$
\rho(x)=\left(\begin{array}{r|rr}
1 & 0, & 0 \\
\hline 0 & 0, & 1 \\
0 & -1, & -1
\end{array}\right)
$$

and R_{1} and R_{2} give irreducible representations of degrees 1 and 2 . But if we extend the rational field by adjoining the cube root of unity $\boldsymbol{\epsilon}=(-1+\sqrt{-3}) / 2$, the irreducible representation on R_{2} now becomes reducible, and with a basis

$$
\begin{aligned}
& e_{1}=\frac{1+x+x^{2}}{3} \\
& \bar{e}_{2}=\frac{1+\epsilon x+\epsilon^{2} x^{2}}{3}, \quad \bar{e}_{3}=\frac{1+\epsilon^{2} x+\epsilon x^{2}}{3}
\end{aligned}
$$

we have $\bar{e}_{2}+\bar{e}_{3}=e_{2}$; on this new basis we have

$$
\rho(x)=\left(\begin{array}{c}
1,0,0 \\
0, \epsilon^{2}, 0 \\
0,0, \\
0,
\end{array}\right) \quad \epsilon^{3}=1
$$

Clearly, further extension of the field will not reduce $\rho(x)$.
A representation ρ of degree n is absolutely irreducible if it cannot be reduced by extending the field F. Now, clearly, if ρ can be reduced over $K \supset F$,

$$
\rho(x)=\left(\begin{array}{c|c}
\sigma(x) & 0 \\
\hline 0 & \tau(x)
\end{array}\right)
$$

all $x \in G$, with $\sigma(x)$ an $s \times s$ matrix and $\tau(x)$ an $(n-s) \times(n-s)$ matrix, then $\rho(h), h \in R_{G}$ as an algebra over K has dimension at most $s^{2}+(n-s)^{2}<n^{2}$. Hence, if $\rho(h), h \in R_{G}$ as an algebra over F has dimension n^{2}, then ρ is absolutely irreducible over F. We shall show that by appropriate algebraic extension of the field, any ordinary representation is the direct sum of irreducible representations in which an irreducible representation of degree n has dimension n^{2} over the field.

Theorem 16.5.1. A division ring D of finite dimension over afield F will not be a division ring over algebraic extensions of F unless D is of dimension one over F and then $D=F$.

Proof: Let D have a basis u_{1}, \cdots, u_{n} over F, where we may take $u_{1}=1$ as the unit of D. If $n>1$, consider $1=u_{1}, u_{2}, u_{2}{ }^{2}, \cdots, u_{2}{ }^{n}$. These must be linearly dependent over F, and we have a relation

$$
u_{2}^{r}+a_{1} u_{2}^{r-1} \cdots+a_{r}=0, \quad a_{i} \in F
$$

and so, if we adjoin the roots $\alpha_{1}, \cdots, \alpha_{r}$ of $f(x)=x^{r}+a_{1} x^{r-1} \cdots+a_{r}$ to F, we have $\left(u_{2}-\alpha_{1} u_{1}\right) \cdots\left(u_{2}-\alpha_{r} u_{1}\right)=0$. Hence, over this algebraic extension of F, the $u_{2}-\alpha_{i} u_{1}$ are divisors of zero. Hence D remains a division ring over algebraic extension of F only if $n=1$, and here $D=F$.

Theorem 16.5.2. A simple ring R is a complete matrix ring over a division ring D, contained in R.

Proof: Let $e_{11} R$ be a minimal right ideal of R, e_{11} being an idempotent. Then $1-e_{11}$ is an idempotent and $R=e_{11} R \oplus\left(1-e_{11}\right) R$. If $e_{2} R$ is a minimal right ideal in $\left(1-e_{11}\right) R$, e_{2} being an idempotent, we have $\left(1-e_{11}\right) e_{2}=e_{2}$, whence $e_{11} e_{2}=0$. Also $e_{22}=e_{2}-e_{2} e_{11}$ is an idempotent, and $e_{22} R=e_{2} R$ and $e_{11} e_{22}=0$, $e_{22} e_{11}=0$. Here $R=e_{11} R \oplus e_{22} R \oplus\left(1-e_{11}-e_{22}\right) R$. Suppose we have found orthogonal idempotents $e_{11}, \cdots, e_{i i}$ such that $e_{i i} R$ are minimal and $R=e_{11} R+$ $e_{22} R \oplus \cdots \oplus e_{i i} R \oplus\left(1-e_{11} \cdots-e_{i i}\right) R$. Let e_{i+1} be an idempotent such that $e_{i+1} R$ is a minimal right ideal in $\left(1-e_{11} \cdots-e_{i i}\right) R$. Then $e_{i+1}=\left(1-e_{11} \cdots-\right.$ $\left.e_{i i}\right) e_{i+1}$, whence $e_{j j} e_{i+1}=e_{j j}\left(1-e_{11} \cdots-e_{i i}\right) e_{i+1}=0, j=1, \cdots, i$. If we put $e_{i+1, i+1}=e_{i+1}\left(1-e_{11} \cdots-e_{i i}\right)$, we have $e_{i+1, i+1}$, an idempotent $e_{i+1, i+1} R=e_{i+1} R$, and also $e_{i+1, i+1}$ orthogonal to $e_{11}, \cdots, e_{i i}$. Continuing, we find

$$
R=e_{11} R \oplus e_{22} R \oplus \cdots \oplus e_{n n} R
$$

where the $e_{i i}$ are orthogonal idempotents, the $e_{i i} R$ are minimal right ideals, and $1=e_{11}+e_{22} \cdots+e_{n n}$.

Lemma 16.5.1. $e_{i i} R e_{j j} \neq 0$ for $i, j=1, \cdots, n$.
Proof: All finite sums $\sum_{k} u_{k} e_{i i} v_{k}$ form a two-sided ideal including $e_{i i} \neq$ 0 , whence these sums are the entire ring R. Thus for appropriate elements u_{k}, v_{k}, we have $\Sigma u_{k} e_{i i} v_{k}=e_{j j}$, and so, $\Sigma u_{k} e_{i i} v_{k} e_{j j}=e_{j j}$. Hence for some $v, e_{i i} v e_{j j} \neq$ 0 .

Lemma 16.5.2. $e_{i i} R e_{i i}$ is a division ring D_{i}.

Proof: $e_{i i} R e_{i i}$ is certainly closed under addition and multiplication, and so is a subring of R. It has $e_{i i}$ as a unit. It suffices to find inverses for elements different from 0 . If $e_{i i} x e_{i i} \neq 0$, then $e_{i i} x e_{i i} R$ is a right ideal $\neq 0$ contained in, and so equal to, the minimal right ideal $e_{i i} R$. Hence for some $y, e_{i i} x e_{i i} y=e_{i i}$, and so, $e_{i i} x e_{i i} \cdot e_{i i} y e_{i i}=e_{i i}$. Thus $e_{i j} y e_{i i}$ is an inverse for $e_{i i} x e_{i i}$ in $e_{i i} R e_{i i}$, which is therefore a division ring D_{i}.

Choose for each $i=2, \cdots, n$ an element $e_{11} b e_{i i} \neq 0$, and write $e_{11} b e_{i i}=e_{1 i}$. Then

$$
e_{11} e_{1 i}=e_{1 i} e_{i i}=e_{1 i}
$$

Now $e_{1 i} R \subseteq e_{11} R$, whence $e_{1 i} R=e_{11} R$. Hence for some $y, e_{1 i} y=e_{11}, e_{1 i}\left(e_{i i} y e_{11}\right)$ $=e_{11}$. Write $e_{i 1}=e_{i \nu} y e_{11}$. Then for our elements $i=2, \cdots, n$.

$$
e_{i i} e_{i 1}=e_{i 1} e_{11}=e_{i 1}, \quad e_{1 i} e_{i 1}=e_{11}
$$

Hence $e_{1 i} e_{i 1} e_{1 i} e_{i 1}=e_{11}^{2}=e_{11}$, and so, $e_{i 1} e_{1 i} \neq 0$. But $\left(e_{i 1} e_{1 i}\right)^{2}=e_{i 1} e_{1 i}$ is an idempotent in $e_{i i} R e_{i i}$, whence $e_{i 1} e_{1 i}=e_{i i}$, the unit being the only nonzero idempotent in a division ring. Now put $e_{i 1} e_{1 j}=e_{i j}$ if $i \neq j$. Then we have $e_{i j} e_{j k}=$ $e_{i 1} e_{1 j} e_{j 1} e_{1 k}=e_{i 1} e_{1 j} e_{1 k}=e_{i 1} e_{1 k}=e_{i k}$. Also if $j \neq k, e_{i j} e_{k t}=e_{i j} e_{j j} e_{k k} e_{k t}=0$. Thus for our n^{2} units $e_{i j}$, we have shown in all cases

$$
e_{i j} e_{k t}=\delta_{j k} e_{i t} \quad \delta_{j i}=1, \quad \delta_{j k}=0, \quad j \neq k
$$

and so, the $e_{i j}$ have the multiplication properties of the $n \times n$ matrix elements

$$
i, j=1, \cdots, n, \quad E_{i j}=\left(a_{r s}\right), \quad a_{i j}=1, \quad a_{r s}=0
$$

if $(r, s) \neq(i, j)$.
Now from the division ring $D_{1}=e_{11} R e_{11}$, define a ring D by putting

$$
d=d_{1}+e_{21} d_{1} e_{12}+\cdots+e_{n 1} d_{1} e_{1 n}
$$

for each $d_{1} \in D_{1}$. We verify without trouble that D is isomorphic to D_{1} and hence is a division ring. Corresponding to e_{11} the unit of D_{1} we have $e_{11}+e_{22}+$
$\cdots+e_{n n}=1$, the unit of D and also of R. Also for $d \in D$, we find $e_{i j} d=$ $e_{i 1} d_{1} e_{1 j}=d e_{i j}$.

Finally, for an arbitrary $x \in R$, we have $x=1 x 1=\left(e_{11}+\cdots+e_{n n}\right) x\left(e_{11}+\cdots+e_{n n}\right)=\sum_{i, j} e_{i i} x e_{j i}$
. But here

$$
x_{i j}=e_{i i} x e_{j i}=e_{i 1} e_{1 i} x e_{j 1} e_{1 j}=e_{i 1} u_{1} e_{1 j}
$$

for some $u_{1} \in D_{1}$ whence for $u \in D$ we have $x_{i j}=u e_{i j}=e_{i j} u$. This completes our theorem. We have shown that a simple ring R can be exhibited in the explicit form of an $n \times n$ matrix ring over a division ring D whose unit coincides with the unit of R.

Theorem 16.5.3. If R_{G} is a semi-simple group ring over a field F, there is an algebraic extension F^{*} of F in which R_{G} is the direct sum of complete matrix rings over F^{*}. We can take F^{*} to be a finite algebraic extension of F.

Proof: R_{G} is semi-simple over a field F if, and only if, the characteristic of the field does not divide the order of the group G. This property is unaltered if F is replaced by an algebraic extension F^{*} of F. If in the decomposition of R_{G} over F as the direct sum of simple rings $R_{1} \square \cdots \quad \begin{aligned} & \square \\ & \text {, there is some }\end{aligned}$ simple R_{k} whose corresponding division ring D is not the field F, then by an algebraic extension of F to some F^{*}, the ring D loses the property of being a division ring. This alters the decomposition of R_{G} in one of two ways: (1) we may increase (but surely not decrease) the number of idempotents in the center of R and thus break up a simple ring as the direct sum of several simple rings; or (2) in a simple ring R we find a division ring D^{*} of smaller dimension and express R as a larger matrix ring over D^{*}. Both these situations can arise. We have already seen the first case in representing the group of order 3. The second case arises in the ring R_{Q} of the quaternion group Q over the rational field $F . R_{Q}$ over F is the direct sum of four simple rings of dimension 1 and one of dimension 4 which is a division ring (the quaternion algebra). If we adjoin i to F, the division ring becomes the ring of 2×2 matrices over the complex rational field.

In any event the algebraic closure \bar{F} of F is a field over which every simple ring R_{k} arising in R_{G} is a matrix ring over \bar{F}. The matrix units $e_{i j}{ }^{k}$ of the simple rings R_{k} can be expressed in terms of the elements x of G, and any field F^{*} containing all the coefficients appearing in these expressions will be such that the R_{k} are complete matrix rings over $F^{*} . F^{*}$ is clearly finite over F.

ThEOREM 16.5.4. The center of a complete matrix ring R_{k} over a field F consists of the scalar multiples of the unit of R_{k}, which is the identity matrix. The center of the direct sum of matrix rings $R=R_{1}+\cdots+R_{r}$ over a field F has as a basis the r units of R_{1}, \cdots, R_{r}.

Proof: Let R_{k} be the complete $n \times n$ matrix ring over F. Then suppose

$$
x=\sum_{i, j} a_{i j} e_{i j}, \quad a_{i j} \in F
$$

is in the center of R_{k}. From $e_{r s} x=x e_{r s}$ we find

$$
\sum_{j} a_{s j} e_{r j}=\sum_{i} a_{i r} e_{i s}
$$

Hence $a_{s j}=0$ for $j \neq s$ and $a_{s s}=a_{r r}$. Thus $x=a_{11}\left(e_{11}+\cdots+e_{n n}\right)=a_{11} \cdot 1$, and all such elements are in the center of R_{k}. If

$$
R=R_{1}+\cdots+R_{r}
$$

then the center of R is the direct sum of the centers of the R_{k} and as such has as a basis the r units of the R_{k}.

We now have a number of theorems which relate the ordinary representations of G to the semi-simple group ring R_{G}. We combine these results in a theorem.

Theorem 16.5.5. Every irreducible ordinary representation of a finite group G occurs as a component of the right regular representation $R(G)$. The number of inequivalent absolutely irreducible representations is the number of classes in G. If $\rho_{1}, \cdots, \rho_{r}$ are the distinct absolutely irreducible
representations and ρ_{i} is of degree $n_{i}, i=1, \cdots, r$, then ρ_{i} is of dimension n_{i}^{2} over F and ρ_{i} occurs n_{i} times in $R(G)$. The only matrices permuting with $\rho_{i}(x)$, all $x \in G$ are scalar multiples of the identity. If g is the order of G, then $g=n_{1}{ }^{2}+n_{2}^{2}+\cdots+n_{r}^{2}$.

Proof: By Theorem 16.4.4, every ordinary irreducible representation is equivalent to a representation on some minimal right ideal of R_{G} and as such occurs as a component of $R(G)$. Also, there are as many inequivalent irreducible representations as there are simple ideals in R_{G}. Extending the field F if necessary to F^{*}, the center of R_{G} has a basis of r idempotents where by Theorem 16.5.4, R_{G} is the direct sum of r matrix rings. But by Theorem 16.4.5, the center of R_{G} has the class sums C_{i} as a basis, and so r is the number of classes in G. Over F^{*} a minimal right ideal occurring in R_{i} will be $e_{11} R$, and if R_{i} is an $n_{i} \times n_{i}$ matrix ring, this will have a basis $e_{11}, e_{12}, \cdots, e_{1 n i}$. The corresponding representation ρ_{i} will be of degree n_{i} and ρ_{i} extended to a representation of R_{G} will represent faithfully the simple ring R_{i} and will represent all other R_{j} 's by 0 , since, as shown in the proof of Theorem 16.4.4, we shall have $\rho_{i}\left(e_{j}\right)=0$ if e_{j} is the unit of $R_{j}, j \neq i$ Thus $\rho_{i}\left(R_{G}\right)$ is the full matrix ring of dimension n_{i}^{2} over F^{*}, and so, is surely absolutely irreducible since a further reduction would be possible only if it were of lower dimension over F^{*}. Also, being of dimension n_{i}^{2}, the only matrices permuting with every $\rho_{i}(x)$, $x \in G$ will be scalar multiples of the identity. Finally, as each R_{i} has a basis of n_{i}^{2} elements, their direct sum has a basis of $n_{1}{ }^{2}+\cdots+n_{r}^{2}$ elements. But R_{G} has a basis of the g elements of G. Hence

$$
g=n_{1}^{2}+\cdots+n_{r}^{2}
$$

R_{i} is the direct sum of the n_{i} right ideals $e_{11} R, \cdots e_{\text {nini }} R$, and so, ρ_{i} occurs n_{i} times in $R(G)$.

16.6. Relations on Ordinary Characters.

The preceding section gave information on representations of G which depended on the nature of R_{G} and the fact that a representation of G gives a representation of R_{G}. In this section we find relations on the characters $\chi(x)$, $x \in G$. These are more intimately related to G itself than to R_{G}. We assume throughout this section that we are dealing with ordinary representations.

Theorem 16.6.1. Let A and B be two $F-G$ modules. If A is of dimension m and yields the representation $\rho(x), x \in G$, and B is of dimension n and yields the representation $\sigma(x)$, then the additive group of operator homomorphisms of A into B is isomorphic to the additive group of all $m \times n$ matrices α such that $\rho(x) \alpha=\alpha \sigma(x)$, all $x \in G$.

Corollary 16.6.1. The ring of operator endomorphisms of A into itself is isomorphic to the ring of $m \times m$ matrices α such that $\rho(x) \alpha=\alpha \rho(x)$.

Proof: Let A have a basis u_{1}, \cdots, u_{m} and B have a basis v_{1}, \cdots, v_{n}. Then any linear mapping of A into B is determined by the images of the basis, say,

and let us write $\alpha=\left(a_{i j}\right), i=1, \cdots, m ; j=1, \cdots, n$. These linear mappings form an additive group isomorphic to the additive group of the matrices α. If in addition to being a linear mapping, the mapping is to be an operator homomorphism, whenever $u \rightarrow v$ we must have also $u x \rightarrow v x$ for $x \in G$. This means that the mappings $u \rightarrow u x \xrightarrow{a}(v x)$ and $u \xrightarrow{a} v \rightarrow v x$ are identical, but this is the relation

$$
\rho(x) \alpha=\alpha \sigma(x)
$$

for all $x \in G$.

If we map A into itself, the mappings are called endomorphisms and here if α, β are two operator endomorphisms, we have

$$
\rho(x)(\alpha \beta)=[\rho(x) \alpha] \beta=[\alpha \rho(x)] \beta=(\alpha \beta) \rho(x),
$$

and thus the matrices α with $\rho(x) \alpha=\alpha \rho(x)$ are isomorphic to the ring of operator endomorphisms of A.

Theorem 16.6.2 holds for any Ω module, where Ω is any ring of operators, but, of course, we are interested mainly in $F-G$ modules.

Theorem 16.6.2 (Schur's Lemma). If A, B are two irreducible Ω modules, then unless they are operator isomorphic, the only operator homomorphism of A into B maps A onto 0 . If A is irreducible, every operator endomorphism of A not identically zero is an operator isomorphism.

Proof: Let $u \in A, v \in B, \omega \in \Omega$. Then if for some $u \in A$, an operator homomorphism maps $u \rightarrow v \neq 0$, then $u \omega \rightarrow v \omega$ for all $\omega \in \Omega$. Here $u \Omega$ is a submodule of A, and hence, as A is irreducible, all of A. Thus $A=u \Omega \rightarrow v \Omega \neq$ 0 , whence $A \rightarrow \nu \Omega=B$. The mapping must be one to one, since otherwise, nonzero elements of A are mapped onto zero and these form an Ω submodule of A, contrary to the assumption that A was irreducible. Hence the mapping is an isomorphism, and so, in particular, every operator endomorphism of A into itself is an operator isomorphism.

Theorem 16.6.3. If ρ and σ are irreducible and inequivalent representations of the finite group G of degree m and n, respectively, and ξ is any $m \times n$ matrix, then

$$
\sum_{y \in G} \rho(y) \xi \sigma\left(y^{-1}\right)=0
$$

Proof: Write

$$
\alpha=\sum_{y \in G} \rho(y) \xi \sigma\left(y^{-1}\right) .
$$

Then for $x \in G, x y=z, y^{-1}=z^{-1} x$,

$$
\begin{aligned}
\rho(x) \alpha & =\sum_{y} \rho(x) \rho(y) \xi \sigma\left(y^{-1}\right) \\
& =\sum_{y} \rho(x y) \xi \sigma\left(y^{-1}\right) \\
& =\sum_{z} \rho(z) \xi \sigma\left(z^{-1}\right) \sigma(x) \\
& =\alpha \sigma(x)
\end{aligned}
$$

all $x \in G$.

Hence, by Theorems 16.6 .1 and 16.6 .2 , if ρ and σ are irreducible and inequivalent, we must have $\alpha=0$. Note that these theorems hold for representations of G over any field.

If $f_{1}(y)$ and $f_{2}(y)$ are any two functions defined for $y \in G$ with values in F (where we now assume that the characteristic of F does not divide the order of $G)$, then we define the symmetric bilinear scalar product:

$$
\left(f_{1}, f_{2}\right)=\frac{1}{g} \sum_{y \in G} f_{1}(y) f_{2}\left(y^{-1}\right)
$$

We verify, noting that y^{-1} runs over G as y does, that

1) $\left(f_{1}, f_{2}\right)=\left(f_{2}, f_{1}\right)$
2) $\left(f_{1}+f_{2}, f_{3}\right)=\left(f_{1}, f_{3}\right)+\left(f_{2}, f_{3}\right)$.
3) $\left(a f_{1}, f_{2}\right)=a\left(f_{1}, f_{2}\right), a \in F$.

Now suppose that $\rho(x)$ and $\sigma(x)$ are irreducible inequivalent representations. If in Theorem 16.6.3 we take $\xi=e_{r s}$, the $m \times n$ matrix with 1 in position (r, s) and 0 elsewhere, we find $\alpha=\left(\alpha_{i j}\right)$, where $\alpha_{i j}=\sum_{y \in G} \rho_{i r}(y) \sigma_{s j}\left(y^{-1}\right)$ where

$$
\begin{aligned}
& \rho(x)=\left(\rho_{i j}(x)\right) \quad i, j=1, \cdots, m \\
& \sigma(x)=\left(\sigma_{i j}(x)\right) \quad i, j=1, \cdots, n .
\end{aligned}
$$

 show even more.

THEOREM 16.6.4. If ρ and σ are inequivalent ordinary irreducible representations of a finite group G, then the symmetric bilinear scalar
product $\left(\rho_{i r}, \sigma_{s j}\right)=0$ for all i, r, s, j. If ρ is an absolutely irreducible ordinary representation of degree n then $\left(\rho_{i r}, \rho_{s j}\right)=0$ unless $i=j, r=s$, and then $\left(\rho_{i j}\right.$, $\left.\rho_{j i}\right)=1 / n$ for all i, j.

Proof: We have already shown the first part. Now consider an absolutely irreducible ordinary representation ρ of G. Let n be the degree of ρ. If ξ is an arbitrary $n \times n$ matrix, then we verify as before that

$$
\alpha=\frac{1}{g} \sum_{y \in G} \rho(y) \xi \rho\left(y^{-1}\right),
$$

where ξ is an arbitrary $n \times n$ matrix, satisfies $\rho(x) \alpha=\alpha \rho(x)$ for all $x \in G$. Hence by Theorem 16.5.5, α is a scalar multiple of the identity $\alpha=\lambda I_{n}$, where the scalar λ depends on ξ. If $\xi=e_{r s}$, write $\lambda=\lambda_{r s}$. Then we find $\lambda_{r s} \delta_{i j}=\left(\rho_{i r}\right.$, $\rho_{s j}$). But $\left(\rho_{i r}, \rho_{s j}\right)=\left(\rho_{s j}, \rho_{i r}\right)$, so $\lambda_{r s} \delta_{i j}=\lambda_{j i} \delta_{s r}=0$ unless both $i=j$ and $r=s$, while $\left(\rho_{i j}, \rho_{j i}\right)=\lambda_{i i}=\left(\rho_{j i}, \rho_{i j}\right)=\lambda_{j j}$. Hence $\lambda_{11}=\lambda_{22} \cdots=\lambda_{n n}=\lambda$ has the same value for all subscripts. Thus

$$
\begin{aligned}
n \lambda & =\sum_{j} \lambda_{j i} \\
& =\frac{1}{g} \sum_{y, j} \rho_{i j}(y) \rho_{j i}\left(y^{-1}\right) \\
& =\frac{1}{g} \sum_{y} \rho_{i i}(1)=1
\end{aligned}
$$

Hence $\lambda=1 / n$. This proves the rest of the theorem. Note that $n \lambda=1$ shows that the degree n is not divisible by the characteristic of F.

These results carry over to the characters.
Theorem 16.6.5. If χ, ψ are distinct irreducible characters, then $(\chi, \psi)=$ 0 . If χ is an absolutely irreducible character, then $(\chi, \chi)=1$.

Proof: If χ and ψ are irreducible characters of the representations ρ and σ, then for $y \in G, \chi(y)=\sum_{i} \rho_{i i}(y), \psi(y)=\sum_{i} \sigma_{j i}(y)$. Since the scalar product is bilinear,

$$
(\chi, \psi)=\sum_{i, j}\left(\rho_{i i}, \sigma_{j i}\right)=0
$$

since each individual summand is zero. Now let χ be an absolutely irreducible character of the representation ρ of degree n. Here

$$
(\chi, \chi)=\sum_{i, j}\left(\rho_{i i}, \rho_{i j}\right)=\sum_{i}\left(\rho_{i i}, \rho_{i i}\right)=\sum_{i} \frac{1}{n}=1 .
$$

This completes the proof.
Corollary 16.6.2. $\sum_{x \in G} \chi(x)=g$ for the identical representation. $\sum_{x \in G} \chi(x)=0$ for any other irreducible representation.

For $\chi(x)=1$ for any x in the identical representation, whence here $\sum_{x \in G} \chi(x)=g$. But if χ is the character of any other irreducible representation, take ψ as the identical character. Then $(\chi, \psi)=0$ gives $1 / g \Sigma \chi(x)$ $=0$.

THEOREM 16.6.6. If χ, ψ are characters and $\chi=\Sigma a_{i} \chi_{i}=\Sigma b_{i} \chi_{i}$, where the χ_{i}, $i=1, \cdots, r$ are the absolutely irreducible characters, then $(\chi, \psi)=\Sigma a_{i} b_{i}$. Thus for a character $\phi,(\phi, \phi)=1$ is necessary and sufficient for ϕ to be an absolutely irreducible character if the field F is of characteristic zero.

Proof: This is essentially a corollary to Theorem 16.6.5, using the bilinearity of the scalar product. If $\phi=\Sigma c_{i} \chi_{i}$, then the c 's are non-negative integers, and if $(\phi, \phi)=\Sigma c_{i}^{2}=1$, we may conclude in a field of characteristic zero that one c_{i} is 1 and the rest are zero.

Theorem 16.6.7. The absolutely irreducible representations of an Abelian group G are all of degree one.

Proof: Since G is Abelian, every element is a class and so if g is its order, we have g absolutely irreducible representations of degrees n_{1}, \cdots, n_{g}, where $g=n_{1}{ }^{2}+n_{2}{ }^{2}, \cdots+n_{g}{ }^{2}$. Hence $n_{1}=n_{2} \cdots=n_{g}=1$. Here for every
representation ρ of degree one, we have $\chi(x)=\rho(x)$. Thus the representations coincide with the characters and are indeed the same as the characters of an Abelian group as treated in Chap. 13.

Theorem 16.6.8. Let x be an element of order m in a group G and let ρ be a representation of G of degree n. Then, adjoining the $m^{\text {th }}$ roots of unity to F, if necessary, $\rho(x)$ is similar to a diagonal matrix whose elements are $m^{\text {th }}$ roots of unity. If F is the complex field, $\chi\left(x^{-1}\right)=\overline{\chi(x)}$ the complex conjugate of $\chi(x)$.

Proof: The matrices $1, \rho(x), \cdots, \rho\left(x^{m-1}\right)$ are a representation of the cyclic group C of order m. But the absolutely irreducible representations of C are of degree 1 , with $\sigma(x)=(b)$, where since $1=x^{m}$, we must have $b^{m}=1$, and so b is an m th root of unity. In R_{c} we easily verify that $1 / m\left(1+\omega x+\omega^{2} x^{2} \cdots+\right.$ $\omega^{m-1} x^{m-1}$), since ω ranges over all m th roots of unity, are idempotents yielding the irreducible representations. Hence, adjoining the m th roots of unity to the field F (whose characteristic is, of course, not a divisor of m), the representation $\rho(x)$ of C reduces completely and we have a matrix similar to $\rho(x)$ which is a diagonal matrix, diag. $\left(b_{1}, \cdots, b_{n}\right)$, where each b_{i} is an m th root of unity. Hence $\chi(x)=b_{1}+\cdots+b_{n}$. Here $\rho\left(x^{-1}\right)$ must be similar to diag. $\left(b_{1}{ }^{-1}, \cdots, b_{n}{ }^{-1}\right)$ and $\chi\left(x^{-1}\right)=b_{1}{ }^{-1}+\ldots+b_{n}{ }^{-1}$. But if F is the complex field, then the inverse of any root of unity is its complex conjugate, $b_{i}{ }^{-1}=\bar{b}_{i}$, and so, $\chi\left(x^{-1}\right)=\overline{\chi(x)}$.

Let ρ be any representation of a group G and for each $x \in G$ let us define $\hat{\rho}(x)=\rho\left(x^{-1}\right)^{T}$, where we designate the transpose of a matrix by the superscript T. Then

$$
\begin{aligned}
\hat{\rho}(x y) & =\rho\left(y^{-1} x^{-1}\right)^{T}=\left[\rho\left(y^{-1}\right) \rho\left(x^{-1}\right)\right]^{T} \\
& =\rho\left(x^{-1}\right)^{T} \rho\left(y^{-1}\right)^{T}=\hat{\rho}(x) \hat{\rho}(y) .
\end{aligned}
$$

Thus $\hat{\rho}$ is also a representation of G, called the contragredient representation.
Suppose that L is the representation module for ρ with a basis u_{1}, \cdots, u_{n} over a field F. Take another space \hat{L} over F with a basis v_{1}, \cdots, v_{n}, and define a scalar product $u \cdot v$ for $u=a_{1} u_{1}+\cdots+a_{n} u_{n} \in L$ and $v=b_{1} v_{1}+\cdots+b_{n} v_{n} \epsilon \hat{L}$ by the rule

$$
u \cdot v=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n} \epsilon F
$$

This scalar product is the bilinear function on (L, \hat{L}) defined by $u_{i} \cdot v_{j}=\delta_{i j}$.
We make v_{1}, \cdots, v_{n} a representation basis for $\hat{\rho}$ by the rule

$$
v_{i} x=\sum_{j} \hat{\rho}_{i j}(x) v_{j}=\sum_{j} \rho_{i i}\left(x^{-1}\right) v_{j}
$$

Then

$$
\begin{aligned}
u_{i} x \cdot v_{j} x & =\sum_{k, s} \rho_{i k}(x) \rho_{s j}\left(x^{-1}\right)\left(u_{k} \cdot v_{s}\right) \\
& =\sum_{k} \rho_{i k}(x) \rho_{k j}\left(x^{-1}\right)=\delta_{i j}
\end{aligned}
$$

since $\rho(x) \rho\left(x^{-1}\right)=I_{n}$. Thus $u x \cdot v x=u \cdot v$ for all $u \in L, v \in \hat{L}$, and $x \in G$, and the scalar product is preserved by operation on both factors by the same element of G. To any subspace M^{\prime} of \hat{L} let us make correspond the subspace M of L of all $u \in L$, such that $u \cdot v=0$ for all $v \in M^{\prime}$. Hence $\operatorname{dim} . M^{\prime}+\operatorname{dim} . M$ $=n$, and this is a dual correspondence between the subspaces of L and \hat{L}. If M^{\prime} is a representation submodule of \hat{L}, and $v \in M^{\prime}$, then for $x \in G$, $v x^{-1} \in M^{\prime}$, and so, $u \cdot v x^{-1}=0$ and $u x \cdot v=0$ for all $v \in M^{\prime}, u \in M$, whence $u x \in M$ and M is a representation submodule of L. Hence, in particular, \hat{L} is irreducible if, and only if, L is irreducible. If ρ is an absolutely irreducible $n \times n$ representation, then since ρ is of dimension n^{2} over F, it would follow that $\hat{\rho}$ is also of dimension n^{2} over F, and so it is clearly absolutely irreducible.

From the definition $\hat{\hat{\rho}}=\rho$. Also if ρ and σ are equivalent, then for some S,

$$
S^{-1} \rho\left(x^{-1}\right) S=\sigma\left(x^{-1}\right)
$$

all $x \in G$.
Then taking transposes,

$$
S^{T} \rho\left(x^{-1}\right)^{T} S^{T^{-1}}=\sigma\left(x^{-1}\right)^{T}
$$

all $x \in G$, and so $\hat{\rho}$ and $\hat{\sigma}$ are equivalent.
Let r be the number of classes in G. Let $\rho_{1}, \cdots, \rho_{r}$ be the absolutely irreducible representations of G over F, where by convention we take ρ_{1}, the identical representation, $\rho_{1}(x)=1$, all $x \in G$. (This corresponds to the idempotent $\frac{1}{g} \sum_{x \in G} x$.) Then $\hat{\rho}_{1}=\rho_{1}, \cdots, \hat{\rho}_{r}$ will be the same representations in some order. Similarly, let C_{1}, \cdots, C_{r} be the classes of G, where by convention we take $C_{1}=1$, the class consisting of the identity alone. The inverses of the elements in a class C_{i} will themselves be a class $C_{i}{ }^{\prime}$. Hence $C_{i}{ }^{\prime}=C_{1}, \cdots, C_{r}{ }^{\prime}$ will again be the classes of C.

If $\chi(x)$ is the character of $\rho(x)$, let us designate the character of $\hat{\rho}(x)$ by $\bar{\chi}(x)$. Here $\chi(x)=$ trace $\rho(x)$:

$$
\bar{\chi}(x)=\operatorname{trace} \rho\left(x^{-1}\right)^{T}=\operatorname{trace} \rho\left(x^{-1}\right)=\chi\left(x^{-1}\right),
$$

and we have noted in Theorem 16.6.8 that for the complex field, $\chi\left(x^{-1}\right)=\overline{\chi(x)}$, the complex conjugate. Thus this notation agrees with that for complex conjugates over the complex field. We note that over the complex field, $\rho=\hat{\rho}$ only if all characters $\chi(x)$ for ρ are real.

Let us designate by χ_{i}^{a} the absolutely irreducible character of an element of the class C_{i} in the representation ρ_{a}. We also write h_{i} for the number of elements in C_{i}. The number h_{i} is the index of the normalizer of an element $x \in C_{\dot{v}}$, and if its order is g_{i} we have $g_{i} h_{i}=g$.

TheOrem 16.6.9. The following orthogonality relations hold for absolutely irreducible characters of a group G :

$$
\begin{aligned}
& \sum_{i=1}^{r} \frac{\chi_{i}{ }^{a} \overline{\chi_{i}^{b}}}{g_{i}}=\delta_{a b} \\
& \sum_{a=1}^{r} \overline{\chi_{i}{ }^{a}} \chi_{j}^{a}=\delta_{i j} g_{j}
\end{aligned}
$$

Proof: By Theorem 16.6.5 we have

$$
\frac{1}{g} \sum_{x \in G} \chi^{a}(x) \chi^{b}\left(x^{-1}\right)=\delta_{a b}
$$

But $\chi(x)=\chi(y)$ if x and y are in the same class C_{i}, and then x^{-1} and y^{-1} are in the same class C_{i}^{\prime}. Here $\chi^{b}\left(x^{-1}\right)=\overline{\chi^{b}}(x)$. Hence for x in C_{i}, the above sum will contain h_{i} terms equal to $\chi_{i}{ }^{a} \overline{\chi_{i}{ }^{b}}$. Hence

$$
\sum_{i=1}^{r} \frac{h_{i}}{g} \chi_{i}^{a} \overline{\chi_{i}^{b}}=\delta_{a b}
$$

or

$$
\sum_{i=1}^{r} \frac{\chi_{i}^{a} \overline{\chi_{i}^{b}}}{g_{i}}=\delta_{a b}
$$

But this says that if M is the matrix, $M=\left(m_{a i}\right) a, i=1, \cdots, r$, where $m_{a i}=\chi_{i}{ }^{a}$, then the matrix

$$
M^{\prime}=\left(r_{i j}\right) \quad i, j=1, \cdots, r
$$

with

$$
r_{i b}=\frac{1}{g_{i}} \overline{\chi_{i}^{b}},
$$

is such that

$$
M M^{\prime}=I_{r}
$$

and so M^{\prime} is the inverse of M. But then it is also true that $M^{\prime} M=I_{r}$, and then it follows

$$
\sum_{a=1}^{r} \frac{1}{g_{i}} \chi_{i}^{a} \overline{\chi_{j}^{a}}=\delta_{i j}
$$

from which the second relation follows.

The structure of the group ring yields further relations on characters．In the decomposition of R_{G} as a direct sum of simple rings

$$
R_{G}=R_{1} \text { 田 } \cdots \text { 田 } R_{a} \text { 田 } \cdots \text { 田 } R_{r} \text {, }
$$

let $e_{i j}{ }^{a}, i, j=1, \cdots, n$ be the matrix units for R_{a} whose unit is $e_{a}=e_{11}^{a}+e_{22}^{a}+$ $\cdots+e_{n n}{ }^{a}$ ．The irreducible representation $\rho_{a}=\rho_{a}$ associated with R_{a} is equivalent to that on a minimal right ideal of R_{a} ．Let this be associated in a specific way，using the minimal ideal $e_{11}{ }^{a} R$ with the basis

$$
e_{11}{ }^{a}, e_{12}{ }^{a}, \cdots, e_{1 n}{ }^{a}
$$

Then

$$
e_{1 i}{ }^{a} x=\sum_{j} \rho_{i j}{ }^{a}(x) e_{1 j}{ }^{a}, \quad i=1, \cdots, n
$$

Now $x=x_{1}+x_{2}+\cdots+x_{a}+\cdots+x_{r}$ with $x_{\boldsymbol{a}} \boldsymbol{\epsilon} \boldsymbol{R}_{\boldsymbol{a}}$ ．Here

$$
x_{a}=e_{a} x e_{a}=e_{a} x=x e_{a}
$$

Then if

$$
x_{a}=\sum_{i, j} x_{i j}{ }^{a} e_{i j}^{a},
$$

we have $e_{1 i}{ }^{a} x=e_{1 i}{ }^{a} e_{a} x=e_{1 i}{ }^{a} x_{a}$ ，and

$$
e_{1 i}{ }^{a} x e_{i j}{ }^{a}=x_{i j}{ }^{a} e_{1 j}{ }^{a} .
$$

But the definition of the representation gives

$$
e_{1 i}{ }^{a} x e_{i j}{ }^{a}=\rho_{i j}{ }^{a}(x) e_{1 j}{ }^{a} .
$$

Hence $x_{i j}{ }^{a}=\rho_{i j}{ }^{a}(x)$ in all cases，and so，

$$
x_{a}=\sum_{i, j} \rho_{i j}{ }^{a}(x) e_{i j}{ }^{a} .
$$

We write $C_{k}=\sum_{\boldsymbol{C}_{k}} x$, since no ambiguity will arise in using the same letter for the class and the sum of the elements regarded as an element of R_{G}. Then $C_{1}, C_{2}, \cdots, C_{r}$ are a basis for the center Z_{G} of R_{G}. Let

$$
C_{k}=C_{k}{ }^{1}+\cdots+C_{k}{ }^{a}+\cdots+C_{k}{ }^{r},
$$

with $C_{k}{ }^{a} \in R_{a}$. Then, since $C_{k}{ }^{a}$ is in the center of R_{a}, it is a scalar multiple of e_{a}. Here

$$
C_{k}{ }^{a}=u_{k}{ }^{a} e_{a} .
$$

But

$$
\text { Trace } \rho^{a}\left(C_{k}^{a}\right)=\sum_{x \in C_{k}} \text { trace } \rho^{a}(x)
$$

whence $n_{a} u_{k}{ }^{a}=h_{k} \chi_{k}{ }^{a}$, where n_{a} is the degree of ρ_{a}. Hence

$$
u_{k}{ }^{a}=\frac{h_{k} \chi_{k}{ }^{a}}{n_{a}},
$$

and so,

$$
C_{k}^{a}=\frac{h_{k} \chi_{k}^{a}}{n_{a}} e_{a}
$$

The elements C_{1}, \cdots, C_{r} of R_{G} as a basis of $Z\left(R_{G}\right)$ will have a multiplication table

$$
C_{j} C_{i}=C_{i} C_{j}=\sum_{k} c_{i j k} C_{k}
$$

where over a field F of characteristic zero the $c_{i j k}$ are non-negative integers, since $C_{i} C_{j}=C_{j} C_{i}$ contains no negative terms.

As R_{G} is the direct sum of the simple rings R_{a}, the components C_{i}^{a} will satisfy the same relations as the C_{i}. Thus:

Theorem 16.6.10.

$$
C_{i}{ }^{a} C_{j}^{a}=C_{j}{ }^{a} C_{i}{ }^{a}=\sum_{i} c_{i j k} C_{k}{ }^{a}, \quad a=1, \cdots, r
$$

and

$$
\frac{h_{i} \chi_{i}{ }^{a}}{n_{a}} \frac{h_{j} \chi_{j}^{a}}{n_{a}}=\sum_{k} c_{i j k} \frac{h_{k} \chi_{k}{ }^{a}}{n_{a}}, \quad a=1, \cdots, r .
$$

In the proof of Theorem 16.6.4 we found the relation $n \lambda=1$, where $n=n_{a}$ was the degree of an absolutely irreducible representation. Hence the division by n_{a} in Theorem 16.6.10 is permissible.

Given any two linear spaces L and M over a field F, we define their tensor product $L \times M$ in the following way: If u_{1}, \cdots, u_{m} are a basis for L, and v_{1}, \cdots \cdot, v_{n} are a basis for M, then $L \times M$ is the linear space over F with a basis $u_{i} v_{j}, i$ $=1, \cdots, m, j=1, \cdots, n$. If

$$
\begin{aligned}
u & =a_{1} u_{1}+\cdots+a_{m} u_{m} \epsilon L \\
v & =b_{1} v_{1}+\cdots+b_{n} v_{n} \epsilon M
\end{aligned}
$$

and
the product $u v=\sum_{i, j} a_{i} b_{j} u_{i} v_{j}$ is defined as an element of $L \times M$. We verify that a change of basis for L or M corresponds to a change of basis for L $\times M$.

If L is an $F-G$ module for the representation ρ of the group G and M for the representation σ of G, we define the Kronecker product $\rho \times \sigma$ of the representations as the representation of G on $L \times M$ given by

$$
(u v) x=(u x)(v x), \quad \text { all } u \in L, v \in M, x \in G .
$$

Thus if ρ_{1} is equivalent to ρ and σ_{1} is equivalent to σ, we have $\rho_{1} \times \sigma_{1}$ equivalent to $\rho \times \sigma$, since this corresponds to a change of basis for L and M.

Theorem 16.6.11. If ρ and σ are representations of G with characters χ and ψ, respectively, and if ϕ is the character of $\rho \times \sigma$, then for every $x \in G$ we have $\phi(x)=\chi(x) \psi(x)$.

$$
\text { Proof: If } u_{i} x=\sum_{\mathbf{j}} \rho_{i j}(x) u_{i, i=1, \cdots, m,} v_{i} x=\sum_{\mathbf{j}} \sigma_{i j}(x) v_{j}
$$ $i=1, \cdots, n$,

we have

$$
\chi(x)=\sum_{i} \rho_{i i}(x), \quad \psi(x)=\sum_{i} \sigma_{i i}(x) .
$$

But with

$$
\left(u_{i} v_{j}\right) x=\sum_{k, t}\left[\rho_{i k}(x) u_{k}\right]\left[\sigma_{j t}(x) v_{t}\right]
$$

then

$$
\begin{aligned}
\phi(x) & =\sum_{i, j} \rho_{i i}(x) \sigma_{j i}(x) \\
& =\left[\sum_{i} \rho_{i i}(x)\right]\left[\sum_{j} \sigma_{j i}(x)\right] \\
& =\chi(x) \psi(x) .
\end{aligned}
$$

From their definitions we see that the tensor product and the Kronecker product are commutative and associative. Hence if ρ_{a} and ρ_{b} are absolutely irreducible representations of G, then

$$
\rho_{b} \times \rho_{a}=\rho_{a} \times \rho_{b}=\sum_{c=1} g_{a b c} \rho_{c},
$$

where the $g_{a b c}$ are non-negative integers giving the decomposition of $\rho_{a} \times \rho_{b}$ as the direct sum of irreducible representations ρ_{c} with multiplicity $g_{a b c}$. The
same relation will hold for the characters. Thus we state as a theorem:
Theorem 16.6.12. The absolutely irreducible characters of a group G satisfy

$$
\chi_{i}{ }^{a} \chi_{i}{ }^{b}=\sum_{c} g_{a b c} \chi_{i}{ }^{c},
$$

where the $g_{a b c}$ are non-negative integers, being the multiplication constants of a commutative and associative algebra.

We summarize the character relations we have found. Let $C_{1}=1, C_{2}, \cdots$, C_{r} be the classes of $G, \rho_{1}=$ the identity representation, and $\rho_{2}, \cdots, \rho_{r}$ be the absolutely irreducible representations, where χ_{i}^{a} is the character of an element of the i th class in the a th representation

$$
\begin{array}{c|c|c}
\rho_{1} & \begin{array}{c}
C_{1} \cdots C_{i} \cdots C_{r} \\
\chi_{1}{ }^{1} \cdots \chi_{i}{ }^{1} \cdots \chi_{r}{ }^{1} \\
\rho_{a}
\end{array} & \chi_{1}{ }^{a} \cdots \chi_{i}{ }^{a} \cdots \chi_{r}{ }^{a} \\
\rho_{r} & \cdots \cdots \cdot \\
\chi_{1}{ }^{r} \cdots \chi_{i}{ }^{r} \cdots \chi_{r}^{r} .
\end{array}
$$

Here we have, $g_{i} h_{i}=g$, where there are h_{i} elements in the class C_{i}.

1) On the rows:

$$
\sum_{i=1}^{r} \frac{\chi_{i}^{a} \overline{\chi_{i}^{b}}}{g_{i}}=\delta_{a b}
$$

2) On the columns:

$$
\sum_{a=1}^{r} \chi_{i} \overline{\chi_{i}^{a}}=\delta_{i j} g_{i}
$$

3) Within each row:

$$
\frac{h_{i} \chi_{i}{ }^{a}}{n_{a}} \frac{h_{j} \chi_{j}^{a}}{n_{a}}=\sum_{k} c_{i j k} \frac{h_{k} \chi_{k}^{a} .}{n_{a}}
$$

4) Within each column:

$$
\chi_{i}{ }^{a} \chi_{i}{ }^{b}=\sum_{c} g_{a b c} \chi_{i}{ }^{c}
$$

Here $c_{i j k}$ and $g_{a b c}$ are non-negative integers which are the multiplication constants of commutative and associative algebras.

Every representation of a group G as a permutation group $\pi(G)$ can also be regarded as a matrix representation, since if

$$
\pi(x)=\left(\begin{array}{lll}
u_{1} & \cdots & u_{n} \\
u_{i_{1}} & \cdots & u_{i_{n}}
\end{array}\right)
$$

for $x \in G$, we may regard this as the representation ρ on a basis u_{1}, \cdots, u_{n}, where

$$
u_{j} x=u_{i_{j}} .
$$

Here $\chi(x)$ is the number of letters fixed by $\pi(x)$.
Theorem 16.6.13. In a permutation representation $\pi(G)$ of a group G of order $g, \sum_{x \in G} \chi(x)=k g$, where k is the number of transitive constituents. Here the representation as a matrix representation contains the identical representation exactly k times.

Proof: Let $n_{1}, n_{2}, \cdots, n_{k}$ be the number of letters in the k transitive constituents. Then a subgroup H_{j} fixing a letter a_{j} of the j th transitive constituent will be of index n_{j} and of order g / n_{j}. Hence the letter a_{j} is fixed g / n_{j} times in all the elements of G. Thus the number of times letters of the j th constituent are fixed is $n_{j} \cdot g / n_{j}=g$. Hence the number of times letters of any of the k constituents are fixed is $k g$ or $\sum_{x \in G} \chi(x)=k g$. If $\chi=\sum_{a} m_{a} \chi^{a}$ gives
χ as a sum of absolutely irreducible characters, then $\sum_{x \in G} \chi(x)=m_{1} g$ by the corollary to Theorem 16.6.5. Hence the representation contains the identical representation $m_{1}=k$ times.

THEOREM 16.6.14. If χ is the character of a transitive permutation group G, then $\sum_{x \in G} \chi^{2}(x)=t g$, where t is the number of transitive constituents of a subgroup H fixing a letter. t is also the number of double cosets H x H in G.

Proof: Let G be a transitive permutation group on letters $1,2, \cdots, n$. Let H_{i} be the subgroup fixing $i, i=1, \cdots, n$. We may take $H=H_{1}$, since all the H_{i} are conjugate. Let h be the order of H. Then

$$
\sum_{x \in H_{i}} \chi(x)=t h
$$

by the previous theorem. Hence

$$
\sum_{i} \sum_{x \in H_{i}} \chi(x)=t n h=t g .
$$

But on the left we have counted $\chi(x)$ once for every H_{i} containing x. But x fixes $\chi(x)$ letters and so is contained in $\chi(x)$ different H_{i} 's. (This number is zero if x displaces all letters.) Hence

$$
\operatorname{tg}=\sum_{i} \sum_{x \in H_{i}} \chi(x)=\sum_{x \in G} \chi^{2}(x)
$$

But we easily see that t is the number of double cosets $H x H$ in G. For let G $=H+H x_{2} \cdots+H x_{n}$, where H is the subgroup fixing 1 and $x_{i},=(1, i, \cdots) i$ $=2, \cdots, n$. Then if $H x_{i} H=H x_{j} H$, we have $x_{i}=h_{1} x_{j} h_{2}$ with $h_{1}, h_{2} \in H$. Here the element h_{2} must take j into i, whence i and j are in a transitive constituent of H. Conversely, suppose that i and j are in a transitive constituent of H. Then for some $h_{2} \in H, h_{2}$ takes j into $i, x_{j} h_{2}$ takes 1 into i, whence $x_{j} h_{2} \in H x_{i}$ and $x_{i}=h_{1} x_{j} h_{2}$ and $H x_{i} H=H x_{j} H$. Now every double coset of H is one of $H x_{i} H$. Hence there are exactly as many double cosets $H x H$ as there are transitive constituents in H.

Theorem 16.6.15. A doubly transitive permutation representation of a group G over the complex field is the sum of the identical representation and an absolutely irreducible representation.

Proof: For a doubly transitive representation,

$$
\sum \chi^{2}(x)=2 g
$$

since a subgroup H fixing a letter 1 , has exactly two transitive constituents, 1 , and the remaining letters. Since $\chi(x)$ is real, we may write this

$$
\sum_{x \in G} \chi(x) \overline{\chi(x)}=2 g
$$

But if $\chi=\sum_{a} c_{a} \chi^{a}$ expresses χ as a sum of absolutely irreducible characters, we have

$$
\begin{aligned}
\sum_{x \in G} \chi(x) \overline{\chi(x)} & =\sum_{x}\left[\sum_{a} c_{a} \chi^{a}(x)\right]\left[\sum c_{a} \overline{\chi^{a}(x)}\right] \\
& =g \sum_{a} c_{a}^{2}
\end{aligned}
$$

by the orthogonality relations. Hence $\sum_{a} c_{a}{ }^{2}=2$, whence $c_{1}=1$, as we already know, and for exactly one further c_{a} we have $c_{a}=1$.

16.7. Imprimitive Representations.

Suppose that we have a representation module M for a group G which is the direct sum of subspaces $M_{1}, M_{2}, \cdots, M_{n}$, on which the representation is transitive but imprimitive. By this we mean:

1) For any M_{i} and M_{j} there is an $x \in G$ such that

$$
M_{i} x=M_{j}
$$

2) For every M_{i} and every $x \in G$ there is an M_{j} such that

$$
M_{i} x=M_{j} .
$$

The first of these is the transitive property; the second, the imprimitivity.

Choose a particular subspace M_{1}. The set of all x such that $M_{1} x=M_{1}$ surely includes the identity $x=1$ and so is not vacuous and is readily seen to be a subgroup H of G. Thus for $h \in H$,

$$
M_{1} h=M_{1}
$$

and so M_{1} is a representation module for H. If $b_{i} \in G$ is an element such that

$$
M_{1} b_{i}=M_{i}
$$

then the elements x such that $M_{1} x=M_{i}$ are the elements of the $\operatorname{coset} H b_{i}$. Thus we have

$$
G=H+H b_{2}+H b_{3} \cdots+H b_{n}
$$

where

$$
M_{1}\left(h b_{i}\right)=M_{i} \quad i=1, \cdots, n
$$

and we have associated the subspaces with the left cosets of H. If x is such that

$$
M_{i} x=M_{i}
$$

then

$$
M_{1} b_{i} x=M_{1} b_{i}
$$

and

$$
M_{1} b_{i} x b_{i}^{-1}=M_{1}
$$

whence $b_{i} x b_{i}^{-1} \in H$ or $x \in b_{i}^{-1} H b_{i}$, a subgroup conjugate to H. Finally, if

$$
M_{i} x=M_{j},
$$

then

$$
x \in b_{i}{ }^{-1} H b_{j} .
$$

Let ρ_{1} be the representation of H associated with a basis $v_{1} \cdots, v_{m}$ of M_{1}. We may then take $v_{1} b_{i}, \cdots, v_{m} b_{i}$ as a basis of M_{i}. Then for an arbitrary $x \in G$ we have

$$
M_{1} x=M_{i_{1}} \cdots, \quad M_{i} x=M_{i_{i}} \cdots, \quad M_{n} x=M_{i_{n}} .
$$

Here $M_{j_{1}} \cdots, M_{j_{n}}$ must be a permutation of $M_{1} \cdots, M_{n}$, since operating on them with x^{-1} we must get back to M_{1}, \cdots, M_{n}. Here if $M_{i} x=M_{j}\left(j=j_{i}\right)$, we have $x \in b_{i}^{-1} H b_{i}$, or $b_{i} x b_{j}^{-1}=h_{i j} \boldsymbol{\epsilon} H$. Hence, with $v_{k} b_{i}, k=1, \cdots$, m as a basis of M_{i}, we have

$$
v_{k} b_{i} \cdot x=\left(v_{k} \cdot h_{i j}\right) b_{i} \quad k=1, \cdots, m
$$

In other words this part of the representation is completely determined by the representation of $h_{i j}$ on M_{1} :

$$
v_{k}\left(b_{i} x b_{j}^{-1}\right)=v_{k} h_{i j} .
$$

Hence

$$
\rho(x)=\left(\rho_{1}\left(b_{i} x b_{j}^{-1}\right)\right) \quad i, j=1, \cdots, n,
$$

with the convention that $\rho_{1}(y)=0$ if $y \notin H$. Here $\rho(x)$ is of degree $m n$, made up of n^{2} matrices of degree m. Thus every representation transitive on subspaces M_{1}, \cdots, M_{n} and imprimitive on these is determined by a representation ρ_{1} of a subgroup H of index n in G. The converse is also true. Let ρ_{1} be any representation of H where

$$
G=H+H b_{2}+\cdots+H b_{n} .
$$

Then define

$$
\rho(x)=\left(\rho_{1}\left(b_{i} x b_{j}^{-1}\right)\right) i, j=1, \cdots, n
$$

with the convention that $\rho(y)=0$ if $y \notin H$. Then, using block multiplication of matrices,

$$
\begin{aligned}
\rho(x) \rho(y) & =\left(\rho_{1}\left(b_{i} x b_{j}^{-1}\right)\right)\left(\rho_{1}\left(b_{k} y b_{t}^{-1}\right)\right) \\
& =\left(\rho_{1}\left(b_{i} x b_{j}^{-1}\right)\right)\left(\rho_{1}\left(b_{i} y b_{t}^{-1}\right)\right) \\
& =\left(\rho_{1}\left(b_{i} x y b_{t}^{-1}\right)\right)=\rho(x y),
\end{aligned}
$$

and trivially,

$$
\rho(1)=\left(\rho_{1}\left(b_{i} 1 b_{i}^{-1}\right)\right)=\left(\rho_{1}(1)\right)=I .
$$

Thus $\rho(x)$ is a representation for G.
Theorem 16.7.1. Given a representation ρ_{1} of degree m of a subgroup H of a group G, if $G=H+H b_{2}+\cdots+H b_{n}$, then

$$
\rho(x)=\left(\rho_{1}\left(b_{i} x b_{j}^{-1}\right)\right) i, j=1, \cdots, n
$$

with the convention $\rho_{1}(y)=0$ if $y \notin H$ is a representation of G of degree mn on a module M with subspaces $M_{1}, M_{2}, \cdots, M_{n}$ corresponding to H, $H b_{2}, \cdots, H b_{n}$, respectively. ρ is transitive and imprimitive on M_{1}, \cdots, M_{n}. Conversely, any representation transitive and imprimitive on subspaces of a module is of this type.

Proof: If $u_{1} \cdots, u_{m}, \cdots, u_{m n}$ are a basis for the representation module of ρ of the theorem, then $u_{1} \cdots, u_{m}$ are a basis for ρ_{1} on H and $u_{m}(i-1)_{+j}=$ $u_{j} b_{i}, i=1, \cdots, n$. It follows that the module M with basis $u_{1}, \cdots, u_{m n}$ has subspaces M_{1}, \cdots, M_{n} on which ρ is transitive and imprimitive. We say that the representation ρ of G is induced by the representation ρ_{1} of H.

Corollary 16.7.1. The representation ρ of G induced by the representation ρ_{1} of H does not depend on the choice of coset representatives of H in G.

This follows since a change of representatives does not alter the subspaces M_{1}, \cdots, M_{n} but merely changes the bases for them.

Theorem 16.7.2. Let χ be the character of the representation ρ of G induced by the representation ρ_{1} of H, whose character is χ_{1}. Let x be in the class C_{j} of conjugates in G with h_{j} elements, and let $g=g_{j} h_{j}$, where g is the order of G. Let h be the order of H. Then

$$
\chi(x)=\frac{g_{j}}{h} \sum_{z \in C_{j} \cap H} \chi_{1}(z)
$$

Proof: $\chi(x)=\sum_{i=1}^{n} \chi_{1}\left(b_{i} x b_{i}{ }^{-1}\right)$ with the convention $\chi_{1}(w)=0$ if $w \notin H$. Then

$$
\chi(x)=\frac{1}{h} \sum_{y \in G} \chi_{1}\left(y x y^{-1}\right)
$$

since every element y of $H b_{i}$ contributes the same amount to the sum on the right, viz., $\chi_{1}\left(b_{i} x b_{i}^{-1}\right)$. Here $y x y^{-1}$, as y ranges over G, ranges over C_{j} and gives each $z \in C_{j}$ exactly g_{i}, times. Thus

$$
\sum_{y \in G} \chi_{1}\left(y x y^{-1}\right)=g_{j} \sum_{z \in C_{j} \cap H} \chi_{1}(z),
$$

proving the theorem.
Theorem 16.7.3 (Reciprocity Theorem). Let ρ, ρ_{1} be absolutely irreducible representations of a group G and a subgroup H, respectively over a field of characteristic zero. Then the multiplicity of ρ_{1} occurring in ρ restricted to H is the same as the multiplicity of ρ in the representation ρ^{*} of G induced by ρ_{1}.

Proof: Let $\chi=\chi^{a}$ be the character of ρ, and $\chi_{1}=\chi_{1}^{c}$ be the character of ρ_{1}. Let χ^{*} be the character of $\rho^{*}, \chi^{*}=\sum_{b} m_{b} \chi^{b}, \chi^{b}$ the irreducible characters of G. When restricted to H, let $\chi=\chi^{a}=\sum_{d} n_{d}{\chi_{1}}^{d}, \chi_{1}{ }^{d}$ the irreducible characters of H. Here the multiplicity of ρ in ρ^{*} is m_{a} and the multiplicity of ρ_{1} in ρ restricted to H is n_{c}. By the previous theorem,

$$
\frac{1}{g_{i}} \chi_{j}^{*}=\frac{1}{g_{j}} \sum_{b} m_{b} \chi_{j}^{b}=\frac{1}{h} \sum_{z \in C_{j} \cap H} \chi_{1}^{c}(z)
$$

Here the convention is that a void sum is zero. Multiply this by $\overline{\chi_{\boldsymbol{j}}{ }^{a}}$ and sum over j. We have

$$
\sum_{j, b} m_{b} \frac{\bar{\chi}_{j}^{a} \chi_{j}^{b}}{g_{j}}=\frac{1}{h} \sum_{j} \overline{\chi_{j}^{a}} \sum_{z \in C_{j} \cap H} \chi_{1}^{c}(z)
$$

whence, using the orthogonality relations in G and also in H,

$$
\begin{aligned}
m_{a} & =\frac{1}{h} \sum_{d, j} n_{d} \bar{\chi}_{1, j}^{d} \sum_{z \in C j n H} \chi_{1}^{c}(z) \\
& =\frac{1}{h} \sum_{d, z \in H} n_{d} \bar{\chi}_{1}^{d}(z) \chi_{1}^{c}(z) \\
& =\frac{1}{h} h n_{c}=n_{c},
\end{aligned}
$$

the statement of the theorem.

16.8. Some Applications of the Theory of Characters.

We shall assume throughout this section that we are dealing with the field F of complex numbers, though it will be clear to the reader that a number of
the results carry over to all fields whose characteristic is not divisible by the order of the group G being represented.

First some facts will be needed about algebraic numbers. \ddagger A number θ is said to be an algebraic number if it is the root $x=\theta$ of a monic polynomial:

$$
x^{n}+a_{1} x^{n}+\cdots+a_{n}=0
$$

where a_{1}, \cdots, a_{n} are rational numbers. θ is said to be an algebraic integer if it is the root of such a polynomial where a_{1}, \cdots, a_{n} are rational integers.

Theorem 16.8.1. A rational number which is an algebraic integer is a rational integer.

Proof: Suppose that $\theta=r / s$ is a rational number expressed in its lowest terms and that it satisfies

$$
x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=0
$$

where a_{1}, \cdots, a_{n} are integers. Then

$$
r^{n}=-s\left(a_{1} r^{n-1}+a_{2} s r^{n-2} \cdots+a_{n} s^{n-1}\right)
$$

Hence any prime dividing s must divide r^{n} and hence r. This cannot happen if r / s is in its lowest terms and $s \neq 1$. Hence $s=1$, and so $\theta=r$ is a rational integer.

Theorem 16.8.2. Algebraic numbers form a field. The sum or product of two algebraic integers is an algebraic integer.

Proof: Let θ be an algebraic number satisfying $x^{n}+a_{1} x^{n-1}+\cdots+a_{n}=$ 0 , and ϕ be an algebraic number satisfying $x^{m}+b_{1} x^{m-1}+\cdots+b_{m}=0$. Let

$$
v_{i, j}=\theta^{i} \phi^{j} \quad i=0, \cdots n-1, j=0, \cdots m-1 .
$$

Then

$$
\theta v_{i, j}=v_{i+1, j} \text { for } i=0, \cdots n-2
$$

and

$$
\theta v_{n-1, j}=-a_{1} v_{n-1, j} \cdots-a_{n} v_{0 j} .
$$

Similarly,

$$
\phi v_{i, j}=v_{i, j+1} \quad \text { for } j=0, \cdots, m-2
$$

and

$$
\phi v_{i, m-1}=-b_{1} v_{i, m-1} \cdots-b_{m} v_{i 0} .
$$

Lemma 16.8.1. If y_{1}, \cdots, y_{N} are numbers not all zero and if z is a number such that

$$
z y_{i}=\sum_{j} a_{i j} y_{j} \quad i=1, \cdots, N
$$

with all $a_{i j}$ rational, then z is an algebraic number. If the $a_{i j}$ are integers, then z is an algebraic integer.

Proof: The hypothesis gives us a system of equations:

$$
\begin{array}{r}
\left(a_{11}-z\right) y_{1}+a_{12} y_{2}+\cdots+a_{1 N} y_{N}=0 \\
a_{21} y_{1}+\left(a_{22}-z\right) y_{2}+\cdots+a_{2 N} y_{N}=0 \\
\cdot \\
a_{N 1} y_{1}+a_{N 2} y_{2}+\cdots+\left(a_{N N}-z\right) y_{N}=0
\end{array}
$$

which, when regarded as linear equations for the y 's, has the solution y_{1}, \cdots ', y_{N}, where not all y 's are zero. Hence the determinant of the coefficients must be zero.
Thus

$$
\left|\begin{array}{c}
a_{11}-z, \quad a_{12}, \cdots, a_{1 N} \\
a_{21}, a_{22}-z, \cdots, a_{2 N} \\
\cdots \cdots \cdots \cdots \cdots \cdots \\
a_{N 1}, \cdots, \cdots, a_{N N}-z
\end{array}\right|=0
$$

But this, on expansion, is

$$
(-1)^{N} z^{N}+p_{1} z^{N-1} \cdots+p_{N}=0
$$

where the p 's are integral polynomials in the a 's. Hence if the a 's are rational, z is an algebraic number, and if the a 's are integers, z is an algebraic integer.

We may use this lemma to prove our theorem. We exclude the trivial cases when θ or ϕ is 0 . Then we take y_{1}, \cdots, y_{N} to be the $v_{i j}$, and since $v_{00}=$ 1 , the $v_{i j}$ are not all zero. Here take z as $\theta+\phi$ or as $\theta \phi$. The $a_{i j}$ of the lemma in these cases will be integral polynomials in the a_{1}, \cdots, a_{n} and b_{1}, \cdots, b_{m}. Hence $z=\theta+\phi$ and $z=\theta \phi$ will be algebraic numbers, and if a_{1}, \cdots, a_{n} and b_{1}, \cdots, b_{m} are integers, then $\theta+\phi$ and $\theta \phi$ will be algebraic integers. Thus the sum and product of algebraic numbers are algebraic numbers, and the sum and product of algebraic integers are algebraic integers. Finally, if θ is an algebraic number $\neq 0$ satisfying $z^{n}+a_{1} z^{n-1} \cdots+a_{n}=0$, we may, if necessary, divide by a power of z to get a constant term $a_{n} \neq 0$. Here

$$
w^{n}+\frac{a_{n-1}}{a_{n}} w^{n-1}+\cdots+\frac{1}{a_{n}}=0
$$

is an equation which $1 / \theta$ satisfies. Trivially, $-\theta$ satisfies $z^{n}-a_{1} z^{n-1} \cdots+$ $(-1)^{n} a_{n}=0$. Hence algebraic integers form an integral domain and algebraic numbers form a field.

Theorem 16.8.3. Every character $\chi(x)$ is an algebraic integer. The numbers $h_{i} \chi_{i}^{a} / n_{a}$ of Theorem 16.6.10 are algebraic integers.

Proof: An m th root of unity satisfies $x^{m}-1=0$ and so is an algebraic integer. Thus, by Theorem 16.6.8, every character $\chi(x)$ is a sum of roots of
unity and so is an algebraic integer. Since the $c_{i j k}$ are integers in Theorem 16.6.10, we may apply Lemma 16.8.1 with the

$$
\frac{h_{i} \chi_{i}^{a}}{n_{a}}=\eta_{i}{ }^{a}, \quad i=1, \cdots, r
$$

as the y 's of the lemma and also any one of them as z, and we conclude that $\eta_{i}{ }^{a}$ are algebraic integers.

Theorem 16.8.4. The degrees n_{a} of the absolutely irreducible representations of the finite group G are divisors of its order g.

Proof: From our orthogonality relations

$$
\sum_{i=1}^{r} \frac{\chi_{i}{ }^{a} \overline{\chi_{i}^{a}}}{g_{i}}=1
$$

This becomes, since $g_{i} h_{i}=g$,

$$
\sum_{i=1}^{r} \frac{\chi_{i}{ }^{a} h_{i} \overline{\chi_{i}^{a}}}{g}=1
$$

or

$$
\sum_{i=1}^{r} \frac{h_{i} \chi_{i}{ }^{a}}{n_{a}} \overline{\chi_{i}^{a}}=\frac{g}{n_{a}} .
$$

But the left side is a sum of products of algebraic integers. Hence g / n_{a} is an algebraic integer and, being rational, is a rational integer. Thus n_{a} divides g.

For our use of algebraic numbers we need a little of the theory of symmetric functions. If we expand

$$
\begin{aligned}
& \left(z-x_{1}\right)\left(z-x_{2}\right) \cdots\left(z-x_{n}\right) \\
& \quad=z^{n}-E_{1} z^{n-1}+E_{2} z^{n-2} \cdots+(-1)^{n} E_{n}
\end{aligned}
$$

we have

$$
\begin{aligned}
& E_{1}=\sum x_{i} \\
& E_{2}=\sum x_{i} x_{j} \\
& \cdot \cdot \cdot \cdot \cdot \cdot \\
& E_{r}=\sum x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} \\
& \cdot \cdot \cdot \cdot \cdot \cdot \cdot \\
& E_{n}=x_{1} x_{2} \cdots x_{n} .
\end{aligned}
$$

Here E_{1}, \cdots, E_{n} are clearly unchanged by any permutation of x_{1}, \cdots, x_{n} and are called the elementary symmetric functions of x_{1}, \cdots, x_{n}. A polynomial $P\left(x_{1}, \cdots, x_{n}\right)$ over a field F is called a symmetric function if it is unchanged by the entire symmetric group of permutations of x_{1}, \cdots, x_{n}.

Theorem 16.8.5. Every symmetric function $P\left(x_{1}, \cdot \cdot \cdot x_{n}\right)$ is a polynomial $Q\left(E_{1}, \cdots, E_{n}\right)$ in the elementary symmetric functions E_{1}, \cdots, E_{n}, and the coefficients in Q are integral polynomials in the coefficients of P.

Proof: If P is symmetric, then its terms of each degree are separately symmetric functions. The theorem is trivially true for degree 1 , the only symmetric functions being $c E_{1}, \boldsymbol{c} \in F$. Moreover, P is a sum of symmetric polynomials, each determined by a single term in it, say,

$$
c\left(x_{1} \cdots x_{r}\right)^{a}\left(x_{r+1} \cdots x_{r+s}\right)^{b} \cdots\left(x_{u+1} \cdots x_{u+v}\right)^{t}
$$

where the exponents $a>b \cdots>t$ are strictly decreasing. It is enough to prove the theorem for symmetric sums:

$$
K=\sum\left(x_{1} \cdots x_{r}\right)^{a}\left(x_{r+1} \cdots x_{r+s}\right)^{b} \cdots\left(x_{u+1} \cdots x_{u+v}\right)^{t}
$$

with $a>b \cdots>t$. We proceed by induction on (1) the degree of K; (2) the value of a; and (3) the value of r. If x_{1}, \cdots, x_{n} appear in every term, we factor out E_{n} and have the remaining factor symmetric of lower degree. Hence we may assume $u+v<n$. If $a=1_{r}$ then $K=E_{r}$. Otherwise consider

$$
\begin{aligned}
& \sum x_{1} \cdots x_{r} \cdot \sum\left(x_{1} \cdots x_{r}\right)^{a-1}\left(x_{r+1} \cdots x_{r+s}\right)^{b} \cdots\left(x_{u+1} \cdots x_{u+v}\right)^{t} \\
& \quad=E_{r} \cdot K^{*}
\end{aligned}
$$

Here $E_{r} \cdot K^{*}=K+$ other terms. Both K^{*} and the other terms appearing precede K in our induction, and so our theorem is proved.

The rational polynomial of lowest degree which has an algebraic number θ as a root is called the minimal polynomial for θ. If

$$
f(x)=x^{n}+a_{1} x^{n+1}+\cdots+a_{n}
$$

is the minimal polynomial, it is a divisor of any rational polynomial $h(x)$ which has θ as a root. Now if

$$
f(x)=\left(x-\theta_{1}\right)\left(x-\theta_{2}\right) \cdots\left(x-\theta_{n}\right),
$$

where $\theta=\theta_{1}$, we say that $\theta_{1} \cdots, \theta_{n}$ are the conjugates of θ. Hence the conjugates of θ also satisfy any rational equation $h(x)=0$ which θ satisfies. Hence if θ is an algebraic integer, its conjugates are also algebraic integers, and so the coefficients of the minimal polynomial for θ, being the symmetric functions of the conjugates of θ, are algebraic integers and hence rational integers.

In the study of representations we are mostly concerned with roots of unity. The primitive m th roots of unity are $\omega=\exp (2 \pi i / m)$ and powers ω^{j} where $(j, m)=1 . \omega$ and the other primitive m th roots of unity satisfy $x^{m}-1=$ 0 , and no equation $x^{r}-1=0$ with $0<r<m$. The remaining m th roots of unity satisfy equations $x^{d}-1=0$, where d runs over the divisors of m. Removing all factors from $x^{m}-1$ which it has in common with $x^{d}-1$, we are left with a rational $f(x)$ which has its roots precisely the primitive m th roots of unity. Hence

$$
f(x)=\prod_{j}\left(x-\omega^{j}\right) \quad(j, m)=1
$$

and $f(x)$ is rational and integral of degree $\phi(m)$, this being the Euler ϕ function. $f(x)$ is in fact irreducible, but this is difficult to prove without using more theory of algebraic numbers than we can prove here. We need only
know that the elementary symmetric functions of the primitive m th roots are rational integers.

THEOREM 16.8.6. Let ρ_{a} be an absolutely irreducible representation of G of degree n, and let there be a class C_{i} where $\left(h_{i}, n\right)=1$. Then either (1) $\chi_{i}^{a}=0$, or $(2) \chi_{i}^{a}=n \omega$, where ω is a root of unity and C_{i} is in the center of p_{a}.

Proof: For a particular $\boldsymbol{x} \boldsymbol{\in} \boldsymbol{C}_{\boldsymbol{i}}$ we may transform ρ_{a} so that $\rho_{a}(x)$ is in diagonal form. If all the n characteristic roots of x are equal, say, to some m th root of unity ω, then

$$
\rho_{a}(x)=\omega I_{n}, \quad \chi(x)=n \omega,
$$

and x is in the center of ρ_{a}. This is the second alternative of the theorem. Thus we must show that if the characteristic roots of x are not all equal, then, under the hypotheses of the theorem, $\chi(x)=0$. Now in this case, χ being of order $m, \chi_{i}^{a}=\chi(x)=\omega^{e}{ }_{1}+\cdots+\omega^{e}{ }_{n}$ and $\left|\chi^{a}\right|<n$, since the $\omega^{e} i$ do not all have the same argument. Here

$$
\frac{h_{i} \chi_{i}{ }^{a}}{n}
$$

is an algebraic integer, and since $\left(h_{i}, n\right)=1$, there are integers r and s so that $r h_{i}+s n=1$. Hence

$$
r\left(\frac{h_{i} \chi_{i}{ }^{a}}{n}\right)+s \cdot \chi_{i}^{a}=\frac{\chi_{i}{ }^{a}}{n}
$$

is an algebraic integer. Here

$$
\left|\frac{\chi_{i}{ }^{a}}{n}\right|<1
$$

and also

$$
\xi=\frac{\chi_{i}^{a}}{n}=\frac{\omega_{1}^{e}+\cdots+\omega_{n}^{e}}{n}
$$

Replacing ω by its conjugates ω^{j}, we have

$$
\prod_{(j, m)=1}\left[z-q\left(\omega^{j}\right)\right]
$$

a polynomial whose coefficients are symmetric functions of the conjugates of ω and hence rational. Thus the conjugates of ξ lie among the numbers.

$$
\frac{\omega^{j e_{1}}+\cdots+\omega^{j e_{n}}}{n}
$$

and so, for every conjugate $\xi^{(i)}$ of ξ we have $\left|\xi^{(i)}\right| \leq 1$, and every conjugate is an algebraic integer. Now $|\xi|=\left|\xi^{(1)}\right|<1$, and so the product $\left|\xi^{(1)} \cdots \xi^{(s)}\right|<1$, this being the product of all conjugates of ξ. This must be a rational integer and hence must be 0 . Thus $\xi^{(1)} \cdot \cdots \xi^{(s)}=0$. Thus at least one of the conjugates is 0 . But 0 is its own only conjugate and so $\xi=\xi^{(1)}=0$, and so,

$$
\xi=\frac{\chi_{i}{ }^{a}}{n}=0
$$

whence $\chi_{i}^{a}=0$, as we were to prove.
Theorem 16.8.7*. (1) If the number h_{i} of elements in a class C_{i} of a group G is a prime power, then G is not a simple group. More explicitly, there is a homomorphic image of G in which the elements of C_{i} are in the center. (2) Groups of order $p^{a} q^{b}, p, q$ primes are solvable.

Proof: (1) Let $n_{1}=1, n_{2}, \cdots, n_{r}$ be the degrees of the absolutely irreducible representations of G. Let $h_{i}=p^{s}$ be the number of elements in C_{i}. For the regular representation of G we have $\chi(x)=0$ for $\boldsymbol{x} \boldsymbol{\in} \boldsymbol{C}_{\boldsymbol{i}}$ (since $x \neq$ 1); also

$$
\chi(x)=\sum_{a=1}^{r} n_{a} \chi_{i}^{a}
$$

by the decomposition of the regular representation.
Here $n_{1} \chi_{i}^{1}=1$. For the remaining terms if $\boldsymbol{p} \boldsymbol{\psi} n_{\boldsymbol{a}}$, then by Theorem 16.8.6, either $x_{i}^{a}=0$ or C_{i} is in the center of the homomorphic image $\rho_{a}(G)$. But if $\chi_{i}^{a}=0$ in every instance where p \& n_{a}, we would have

$$
0=1+\sum_{a=2}^{r} n_{a} \chi_{i}^{a}=1+p \alpha
$$

where α is an algebraic integer. This would make - (1/p) an algebraic integer, which is a conflict. Hence for some ρ_{a}, C_{i} is in the center of $\rho_{a}(G)$.
(2) Let G be a group of order $p^{a} q_{b}$. We proceed by induction on the order of such groups, p-groups being solvable. An element in the center of a Sylow q-group is either in the center of G or has a number of conjugates which is a power of p. In either event G has a proper normal subgroup H and both H and G / H are solvable by our induction, and so G itself is solvable.

Theorem 16.8.8 (Frobenius). If G is a transitive permutation group of degree n whose permutations other than the identity leave at most one of the symbols invariant, then those permutations of G which displace all the symbols form together with the identity a normal subgroup of order n.

Proof: Let G permute 1, 2, \cdots, n and let H_{i} be the subgroup fixing i. Then by hypothesis $H_{i} \cap H_{j}=1$ for $i \neq j$. If $H=H_{1}$ has order h, then all H_{i} have order h and the elements $x \neq 1$ belonging to the H_{i} will number $(h-1) n$. $[G: H]=n$ so that G is of order $h n$. This leaves exactly n other elements, the identity and $n-1$ elements displacing all letters.

Let ψ be an absolutely irreducible character of H and ψ^{\prime} the induced character of G. G is given as a representation of itself and as such has a character $\theta_{1}=\psi_{1}{ }^{\prime}$, where ψ_{1} is the unit character of H. By Theorem 16.6.13, θ_{1} is the sum of the unit character of G and another character, say, θ. Denote by r_{G} the character of the regular representation of G. Let us put $\omega=r_{G}-h \theta$. Our theorem will depend on proving that ω is a character of G. In the
following character table let x be a typical element $\neq 1$ of the H 's, and y a typical element displacing all letters.

Here $\psi^{\prime}, \theta, r_{G}$ are known to be characters. If ω is a character, then since $\omega(1)$ $=h$, it is the character of a representation of degree h. Since $\omega(y)=h, \omega(x)=$ 0 , every y but no x is represented by the identity. Hence ω is a representation of G homomorphic to G with a kernel consisting of precisely 1 and the elements y displacing all letters. As the kernel of a homomorphism, the identity and the $n-1$ elements displacing all letters form a normal subgroup of G.

We now prove that ω is a character. Let s be the number of classes in H and $\psi^{a}, a=1 \cdots s$ the absolutely irreducible characters of H of degree m_{a}. Then

$$
r_{H}=\sum_{a=1}^{s} m_{a} \psi^{a}
$$

But $r_{G}=\left(r_{H}\right)^{\prime}$ and $h=\sum_{a} m_{a}{ }^{2}$. Hence

$$
\omega=\sum_{a} m_{a}\left[\left(\psi^{a}\right)^{\prime}-m_{a} \theta\right] .
$$

Hence it is enough to prove $\psi^{\prime}-m \theta$ is a character of G for any $\psi=\psi^{a}, m=$ m_{a}.

We calculate the scalar product

$$
\left(\psi^{\prime}-m \theta, \psi^{\prime}-m \theta\right)=\left(\psi^{\prime}, \psi^{\prime}\right)-2 m\left(\psi^{\prime}, \theta\right)+m^{2}(\theta, \theta)
$$

Now $g=n h$, so from our preceding character table,

$$
\begin{aligned}
\left(\psi^{\prime}, \psi^{\prime}\right) & =\frac{m^{2} n}{h}+\frac{1}{n h} \sum_{x \neq 1} \psi(x) \overline{\psi(x)} \\
& =\frac{m^{2} n}{h}+\frac{1}{h} \sum_{\substack{x \in H \\
x \neq 1}} \psi(x) \overline{\psi(x)}
\end{aligned}
$$

But

$$
\sum_{x \in H} \psi(x) \overline{\psi(x)}=h
$$

whence

$$
\left(\psi^{\prime}, \psi^{\prime}\right)=\left[m^{2} n+\left(h-m^{2}\right)\right] / h
$$

Similarly, from our table, $\left(\psi^{\prime}, \theta\right)=m(n-1) / h$, and

$$
(\theta, \theta)=\left[(n-1)^{2}+(n-1)\right] / n h=(n-1) / h
$$

Hence

$$
\left(\psi^{\prime}-m \theta, \psi^{\prime}-m \theta\right)=1
$$

But $\psi^{\prime}-m \theta$ is in any event a linear combination of characters with integral coefficients, say, $\psi^{\prime}-m \theta=\sum c_{a} \chi^{a}$, which gives

$$
\left(\psi^{\prime}-m \theta, \psi^{\prime}-m \theta\right)=\sum c_{a}^{2}
$$

whence $\sum c_{a}^{2}=1$, and there is exactly one $c_{a}= \pm 1$ and the remainder zero. Thus $\psi^{\prime}-m \theta= \pm \psi^{a}$. But $\left(\psi^{\prime}-m \theta\right)(1)=m>0$, whence $\psi^{\prime}-m \theta= \pm \psi^{a}$ is a character of G. This proves that $\psi^{\prime}-m \theta$ is a character, and so, ω is a character, proving our theorem.
16.9. Unitary and Orthogonal Representations.

With an arbitrary $n \times n$ matrix A,

$$
\begin{equation*}
A=\left(a_{i j}\right) \quad i, j=1, \cdots, n \tag{16.9.1}
\end{equation*}
$$

we may associate a bilinear form $B(y, x)$,

$$
\begin{equation*}
B(y, x)=\sum_{i, j} a_{i j} y_{i} x_{j}, \quad i, j=1, \cdots, n \tag{16.9.2}
\end{equation*}
$$

and, of course, we may also associate the matrix A with the bilinear form. We are interested in the way in which linear transformation of the x 's and y 's in a bilinear form affects the corresponding matrix. Let us put

$$
\begin{array}{ll}
x_{i}=\sum_{k} c_{i k} x_{k}^{\prime} & j, k=1, \cdots, n \tag{16.9.3}\\
y_{i}=\sum_{s} d_{i s} y_{s}^{\prime} & i, s=1, \cdots, n
\end{array}
$$

Then

$$
\begin{equation*}
B(y, x)=B^{\prime}\left(y^{\prime}, x^{\prime}\right)=\sum_{i, j, k, s} d_{i s} a_{i j} c_{j k} y_{s}^{\prime} x_{k}^{\prime} \tag{16.9.4}
\end{equation*}
$$

Thus we see that $B^{\prime}\left(y^{\prime}, x^{\prime}\right)$ corresponds to

$$
\begin{equation*}
A^{\prime}=D^{T} A C, \quad D=\left(d_{i s}\right), \quad C=\left(c_{j k}\right) \tag{16.9.5}
\end{equation*}
$$

We are not interested here in the most general bilinear forms, but in certain special kinds. We shall throughout this section take our coefficients from the field of complex numbers. If

$$
\begin{equation*}
a_{j i}=\overline{a_{i j}}, \quad i, j=1, \cdots, n \tag{16.9.6}
\end{equation*}
$$

where $a_{i j}$ denotes the complex conjugate of $a_{i j}$, we say that the matrix A is Hermitian. Thus a Hermitian matrix is associated with a Hermitian form $H(\bar{x}, x)$:

$$
\begin{equation*}
H(\bar{x}, x)=\sum_{i, j} a_{i j} \bar{x}_{i} x_{j}, \quad a_{j i}=\overline{a_{i j}}, \quad i, j=1, \cdots, n \tag{16.9.7}
\end{equation*}
$$

Note that in a Hermitian form or matrix, the coefficients $a_{i j}=\bar{a}_{i j}$ are real. A real Hermitian matrix is a real symmetric matrix and corresponds to a real quadratic form $Q(x)$:

$$
\begin{equation*}
Q(x)=\sum_{i, j} a_{i j} x_{i} x_{j}, \quad a_{j i}=a_{i j}, \quad i, j=1, \cdots, n \tag{16.9.8}
\end{equation*}
$$

The non-singular linear transformations which leave a Hermitian form (or a quadratic form) invariant clearly form a group. Here it is understood that the conjugates \bar{x}_{i} undergo the transformation conjugate to that applied to the x_{i}.

Definition: A matrix U satisfying

$$
\begin{equation*}
\bar{U}^{T} I U=I \tag{16.9.9}
\end{equation*}
$$

is called a unitary matrix.

Definition: A matrix V satisfying

$$
\begin{equation*}
V^{T} I V=I \tag{16.9.10}
\end{equation*}
$$

is called an orthogonal matrix.
It is immediately evident that unitary and orthogonal matrices are nonsingular, and that they form groups. The unitary matrices are those giving the group of linear transformations leaving $\bar{x}_{1} x_{1}+\cdots \neq \bar{x}_{n} x_{n}$ invariant, and the orthogonal matrices are those giving the group of linear transformations leaving $x_{1}{ }^{2}+\cdots+x_{n}{ }^{2}$ invariant. A real unitary matrix is orthogonal, but in a strict sense there are also orthogonal matrices which are not real; for example,

$$
V=\left(\begin{array}{rr}
i, & \sqrt{2} \tag{16.9.11}\\
-\sqrt{2}, & i
\end{array}\right)
$$

But here when we speak of an orthogonal matrix, it will be understood that we mean a real matrix.

We say that a representation $\rho(g)$ of a group G is unitary if all the matrices $\rho(g), g \in G$ are unitary, and orthogonal if all the matrices $\rho(g)$, $g \in G$ are orthogonal.

Theorem 16.9.1. Every representation of a finite group G over the complex (real) field is equivalent to a unitary (orthogonal) representation.

Proof: If in a Hermitian form

$$
\begin{equation*}
H(\bar{x}, x)=\sum a_{i j} \bar{x}_{i} x_{j}, \quad a_{j i}=\bar{a}_{i j} \tag{16.9.12}
\end{equation*}
$$

the variables x_{i} are given complex values, then H represents a real number, since we may pair the terms:

$$
\begin{equation*}
a_{j i} \bar{x}_{j} x_{i}+a_{i j} \bar{x}_{i} x_{j}=\bar{a}_{i j} \bar{x}_{j} x_{i}+a_{i j} \bar{x}_{i} x_{j} \tag{16.9.13}
\end{equation*}
$$

each pair being the sum of a complex number and its complex conjugate. The diagonal terms $a_{i i} \bar{x}_{i} x_{i}$ are, of course, real. We say that $H(\bar{x}, x)$ is positive definite if it represents zero only when all variables are zero and when it otherwise represents positive numbers. Clearly, the property of being positive definite is unchanged if the variables are transformed by a nonsingular transformation. A particular positive definite form with n variables is

$$
\begin{equation*}
I(\bar{x}, x)=\bar{x}_{1} x_{1}+\cdots+\bar{x}_{n} x_{n} \tag{16.9.14}
\end{equation*}
$$

the form associated with the identity matrix. $I(\bar{x}, x)$ is positive definite, since each term $\bar{x}_{j} x_{j}$ is positive unless $x_{j}=0$, for $j=1, \cdots, n$.

Lemma 16.9.1. A positive definite Hermitian form $H(\bar{x}, x)$ in n variables can be transformed into $\bar{x}_{1} x_{1}+\cdots+\bar{x}_{n} x_{n}$.

We note that if $H(\bar{x}, x)$ is positive definite, where

$$
H(\bar{x}, x)=\sum_{i, j} a_{i j} \bar{x}_{i} x_{j}, a_{j i}=\overline{a_{i j}}
$$

then every diagonal coefficient, $a_{r r}$ is positive. For, otherwise, with $a_{r r} \leq 0$, putting $x_{r}=1, x_{j}=0$, for $j \neq r, H(\bar{x}, x)=a_{r r} \leq 0$, contrary to the property of being positive definite. Now in

$$
\begin{equation*}
H=\sum_{i, j} a_{i j} \bar{x}_{i} x_{j}, \quad a_{j i}=\overline{a_{i j}}, \quad i, j=1, \cdots, n \tag{16.9.15}
\end{equation*}
$$

put

$$
\begin{align*}
& x_{1}^{\prime}=\sqrt{a_{11}}\left(x_{1}+\frac{a_{12} x_{2}}{a_{11}}+\cdots+\frac{a_{1 n} x_{n}}{a_{11}}\right), \tag{16.9.16}\\
& x^{\prime}{ }_{j}=x_{j}, \quad j=2, \cdots, n,
\end{align*}
$$

this being a permissible transformation since a_{11} is real and positive. We readily calculate

$$
\begin{equation*}
H=\bar{x}_{1}{ }^{\prime} x_{1}{ }^{\prime}+\sum b_{i j} \bar{x}_{i}{ }^{\prime} x_{j}^{\prime}, \quad i, j=2, \cdots, n \tag{16.9.17}
\end{equation*}
$$

where the terms in $x_{2}{ }^{\prime}$, $\cdot \cdot, x_{n}{ }^{\prime}$ are a positive definite form in these variables. Continuing, we finally transform H into the form

$$
\begin{equation*}
H=\bar{x}_{1} x_{1}+\cdots+\bar{x}_{n} x_{n} \tag{16.9.18}
\end{equation*}
$$

This proves the lemma. We note that if H were a real quadratic form Q to start with, the same procedure would transform Q into $x_{1}^{2}+\cdots+x_{n}{ }^{2}$.

Now let $\rho(g), g \in G$ be a complex representation of degree n of the finite group G, and let the elements of G be $g_{1}=1, g_{2}, \cdots, g_{t}$. Then

$$
\begin{equation*}
\left.M=I+{\overline{\rho\left(g_{2}\right)}}^{T} I \rho\left(g_{2}\right)+\cdots+\overline{\rho(g} t^{t}\right)^{T} I \rho\left(g_{t}\right) \tag{16.9.19}
\end{equation*}
$$

is a matrix corresponding to a positive definite Hermitian form, since each of the summands separately corresponds to a positive definite form. Furthermore, for any $g \in G$,
(16.9.20) $\overline{\rho(g)}^{T} M \rho(g)=\sum_{i=1}^{t} \overline{\rho(g)} \bar{\rho}^{\rho\left(g_{i}\right)^{T}}{ }^{T} \rho\left(g_{i}\right) \rho(g)$

$$
\begin{aligned}
& =\sum_{i=1}^{t}{\left.\overline{\rho\left(g_{i} g\right.}\right)}^{T} \rho\left(g_{i} g\right)=\sum_{i=1}^{t}{\overline{\rho\left(g_{i}\right)}}^{T} \rho\left(g_{i}\right) \\
& =M
\end{aligned}
$$

Hence M corresponds to a positive definite Hermitian form H left invariant by $\rho(g)$ for every $g \in G$. By a change of variables,
(16.9.21)

$$
x_{j}=\sum_{k=1}^{n} c_{j k} x_{k}^{\prime}, \quad j=1, \cdots, n
$$

H becomes $\quad \bar{x}_{1}{ }^{\prime} x_{1}{ }^{\prime}+\cdots+\bar{x}_{n}{ }^{\prime} x_{n}{ }^{\prime}=I\left(\bar{x}^{\prime}, x^{\prime}\right)$, and correspondingly,

$$
\begin{equation*}
\rho^{\prime}(g)=C^{-1} \rho(g) C, \quad C=\left(c_{j k}\right) \tag{16.9.22}
\end{equation*}
$$

is a representation equivalent to $\rho(g)$ which is unitary, as we wished to prove.

We may see this in matrix form. We have

$$
\begin{equation*}
C^{T} M C=I, \quad M=\overline{C^{-1} T} C^{-1} \tag{16.9.23}
\end{equation*}
$$

and for every $g \in \boldsymbol{G}$,

$$
\begin{equation*}
\overline{\rho(g)^{T}} M \rho(g)=M \tag{16.9.24}
\end{equation*}
$$

or

$$
\begin{equation*}
\overline{\rho(g)^{T}} C^{-1 T} C^{-1} \rho(g)=\overline{C^{-1} T} C^{-1} \tag{16.9.25}
\end{equation*}
$$

whence

$$
\begin{equation*}
\overline{\left(C^{-1} \rho(g) C\right)^{T}} C^{-1} \rho(g) C=I, \tag{16.9.26}
\end{equation*}
$$

and so, $\rho^{\prime}(g)=C^{-1} \rho(g) C$ is unitary.

16.10. Some Examples of Group Representation.

We begin with an example, of interest to physicists, of the representation of an infinite matrix group by another group of matrices. The twodimensional unitary and unimodular matrices U_{2} are of the form

$$
\left(\begin{array}{rr}
\alpha, & \beta \tag{16.10.1}\\
-\bar{\beta}, & \bar{\alpha}
\end{array}\right) \quad \alpha \bar{\alpha}+\beta \bar{\beta}=1
$$

where α and β are complex numbers arbitrary except for the condition $\alpha \bar{\alpha}+\beta \bar{\beta}=1$. Thus U_{2} is the group of the linear transformations

$$
\begin{align*}
u & =\alpha u^{\prime}+\beta v^{\prime} \tag{16.10.2}\\
v & =-\bar{\beta} u^{\prime}+\bar{\alpha} v^{\prime} \quad \alpha \bar{\alpha}+\beta \bar{\beta}=1,
\end{align*}
$$

and these leave $\bar{u} u+\bar{v} v$ invariant. In terms of the complex variables u and v we may define three real variables

$$
\begin{align*}
& x_{1}=\bar{u} v+\bar{v} u, \\
& x_{2}=\frac{1}{i}(\bar{u} v-\bar{v} u), \tag{16.10.3}\\
& x_{3}=\bar{u} u-\bar{v} v .
\end{align*}
$$

We note that

$$
\begin{equation*}
x_{1}{ }^{2}+x_{2}{ }^{2}+x_{3}{ }^{2}=(\bar{u} u+\bar{v} v)^{2} . \tag{16.10.4}
\end{equation*}
$$

A linear transformation (16.10.2), when substituted into (16.10.3) induces a real linear transformation of the x 's, which by (16.10.4) belongs to the real orthogonal group O_{3}. The linear transformation of the x 's induced by (16.10.2) is
(16.10.5)
$x_{1}=\frac{1}{2}\left(\alpha^{2}+\bar{\alpha}^{2}-\beta^{2}-\bar{\beta}^{2}\right) x_{1}{ }^{\prime}+\frac{i}{2}\left(-\alpha^{2}+\bar{\alpha}^{2}-\beta^{2}+\bar{\beta}^{2}\right) x_{2}{ }^{\prime}+(-\alpha \beta-\overline{\alpha \beta}) x_{3}{ }^{\prime}$. $x_{2}=\frac{i}{2}\left(\alpha^{2}-\bar{\alpha}^{2}-\beta^{2}+\bar{\beta}^{2}\right) x_{1}{ }^{\prime}+\frac{1}{2} \quad\left(\alpha^{2}+\bar{\alpha}^{2}+\beta^{2}+\bar{\beta}^{2}\right) x_{2}{ }^{\prime}+i(\overline{\alpha \beta}-\alpha \beta) x_{3}{ }^{\prime}$.
$x_{3}=\quad(\alpha \bar{\beta}+\beta \bar{\alpha}) x_{1}{ }^{\prime}+\quad i(\alpha \bar{\beta}-\beta \bar{\alpha}) x_{2}{ }^{\prime}+(\alpha \bar{\alpha}-\beta \bar{\beta}) x_{3}{ }^{\prime}$.
Thus the group U_{2} has a representation ρ given by (16.10.5) in the real three dimensional orthogonal group O_{3}.
This representation is not faithful, but is two to one, both $\left(\begin{array}{ll}1, & 0 \\ 0, & 1\end{array}\right)$ and $\left(\begin{array}{rr}-1, & 0 \\ 0, & -1\end{array}\right)$ of U_{2} being represented by the identity of $O_{3} . U_{2}$ is represented by the entire group of proper rotations (those of determinant + 1). The inverse image in U_{2} of a group G of proper rotations is known as the double group $2 G$. Group $2 G$ is an extension of a subgroup of order 2 in its center by a factor group isomorphic to G.

It was found by Pauli [1] that when a physical system S has a certain subgroup K of O_{3} associated with it, then the wave functions for the electron spin of S are associated with the doubled group $2 K$.

Fig. 7. Three dimensional rotation.
Besides (16.10.5) there is another formula giving an explicit connection between U_{2} and this representation of it in O_{3}. Given a proper rotation of Euclidean three-space (i.e., an element of O_{3}), let $O T$ be the line in which the coordinate plane $X O Y$ intersects its image $X^{\prime} O Y^{\prime}$. Then (see figure) if ϕ is the angle $X^{\prime} O T, \psi$ the angle $X O T$, and θ is the angle $Z O Z$ ', we may find corresponding elements of U_{2} in (16.10.1) by putting
(16.10.6)

$$
\alpha=\cos \frac{\theta}{2} \exp i\left(\frac{\phi+\psi}{2}\right), \quad \beta=i \sin \frac{\theta}{2} \exp i\left(\frac{\phi-\psi}{2}\right) .
$$

This is also valid when $X O Y$ and $X^{\prime} O Y^{\prime}$ coincide (i.e., for a rotation about the Z-axis) if we put $\theta=0, \phi=0$ and take ψ as the angle of rotation about the Z axis.

The group of proper rotations of the regular tetrahedron can be faithfully represented as a permutation group on its four vertices. For each vertex there is a subgroup fixing this vertex and rotating the three vertices of the opposite face, this being a group of order 3. The symmetry fixing two vertices and interchanging the other two is a reflection about a plane and not a proper rotation, since it reverses orientation. Thus the group of proper rotations, the
tetrahedral group, is of order 12 and is isomorphic to A_{4}, the alternating group on four letters. Let us list the elements by classes.
(16.10.7)

$$
\begin{aligned}
& C_{1}=(1), \\
& C_{2}=(12)(34),(13)(24),(14)(23), \\
& C_{3}=(123),(142),(134),(243), \\
& C_{4}=(132),(124),(143),(234)
\end{aligned}
$$

The multiplication table of the classes is
(16.10.8)

$$
\begin{aligned}
& C_{1} C_{i}=C_{i} C_{1}=C_{i}, i=1,2,3,4 . \\
& C_{2}{ }^{2}= \\
& C_{2} C_{3}=C_{3} C_{2}= \\
& C_{2} C_{4}=C_{4} C_{2}= \\
& C_{3}{ }^{2}= \\
& C_{3} C_{4}=C_{4} C_{3}=4 C_{1}+4 C_{2} . \\
& C_{4}{ }^{2}= \\
& 4 C_{4} . \\
& 4 C_{3} .
\end{aligned}
$$

We now look for the idempotents in the center Z of the group ring which form an orthogonal basis for Z. An idempotent e such that $e Z$ is a minimal ideal in Z will be one of these, and conversely. This process may be regarded as a decomposition of Z into the direct sum of (two-sided) ideals. In particular, any proper divisor of zero will yield a proper ideal in Z. Thus by finding proper divisors of zero in two-sided ideals, we find smaller twosided ideals, and ultimately the minimal ideals, and from these the orthogonal idempotents. In general let f be an idempotent in Z. If $f C_{i}=a_{i} f$ for every class, then $f Z$ is a minimal ideal in Z and f is one of the orthogonal idempotents. If for some class C we have $f C$ linearly independent of f, then let s be the smallest integer such that $f C^{j} j=0, \cdots, s-1$ are independent, but $f C^{s}$ is dependent on these. Then we have a relation $f\left(C^{s}+a_{1} C^{s-1}+\cdots+\right.$ $\left.a_{s}\right)=0$. Adjoin to the field of coefficients, if necessary, a root of $x^{s}+a_{1} x^{s-1}$ $+\cdots+a_{s}=0$. If u is such a root, then $f(C-u)$ is a proper divisor of zero in the ideal $f Z$ and leads to a smaller two-sided ideal. This general procedure is illustrated in our study of the tetrahedral group.

In any group G of order g, the sum of the elements divided by g is an idempotent e whose ideal is minimal in Z. This idempotent corresponds to
the identical representation of G. Here this is $e_{1}=\left(C_{1}+C_{2}+C_{3}+C_{4}\right) / 12$. We also note the relation, from (16.10.8),

$$
\begin{equation*}
C_{2}^{2}-2 C_{2}-3 C_{1}=\left(C_{2}-3 C_{1}\right)\left(C_{2}+C_{1}\right)=0 \tag{16.10.9}
\end{equation*}
$$

Thus both $C_{2}-3 C_{1}$ and $C_{2}+C_{1}$ are proper divisors of zero. We find in fact that $\left(C_{2}-3 C_{1}\right) Z$ is a minimal ideal and that $e_{2}=\left(3 C_{1}-C_{2}\right) / 4$ is the idempotent generating this minimal ideal. Also $e_{1} e_{2}=e_{2} e_{1}=0$. We now construct the idempotent $f=1-e_{1}-e_{2}$ which must be the unit for the part of Z which remains. Indeed $f Z$ must be of dimension 2 and $f=e_{3}+e_{4}$, where e_{3} and e_{4} are the remaining orthogonal idempotents of a basis for Z. Here we find
(16.10.10)

$$
\begin{aligned}
& f=\left(2 C_{1}+2 C_{2}-C_{3}-C_{4}\right) / 12 \\
& f C_{1}=f \\
& f C_{2}=3 f \\
& f C_{3}=\left(-4 C_{1}-4 C_{2}+8 C_{3}-4 C_{4}\right) / 12 \\
& f C_{4}=\left(-4 C_{1}-4 C_{2}-4 C_{3}+8 C_{4}\right) / 12
\end{aligned}
$$

The ideal $f Z$ is of dimension 2 , as it should be, and we note

$$
\begin{equation*}
f C_{4}+f C_{3}+4 f=0 \tag{16.10.11}
\end{equation*}
$$

a linear dependency, showing the dimension of $f Z$ to be 2 . We have the following relation:

$$
\begin{equation*}
f\left(C_{3}{ }^{2}+4 C_{3}+16\right)=0 \tag{16.10.12}
\end{equation*}
$$

If we adjoin to the rational field of coefficients, the complex cube root of unity, $\omega=(-1+\sqrt{3} i) / 2$, then (16.10.12). takes the form

$$
\begin{equation*}
f\left(C_{3}-4 \omega\right)\left(C_{3}-4 \omega^{2}\right)=0 \tag{16.10.13}
\end{equation*}
$$

Thus the principal ideal of each of $f\left(C_{3}-4 \omega\right)$ and $f\left(C_{3}-4 \omega^{2}\right)$ is smaller than the principal ideal $f Z$. The first of these differs by a scalar factor from the
idempotent e_{3} in (16.10.14) and the second from e_{4}.
(16.10.14)

$$
\begin{aligned}
& e_{1}=\left(C_{1}+C_{2}+C_{3}+C_{4}\right) / 12 \\
& e_{2}=\left(3 C_{1}-C_{2}\right) / 4 \\
& e_{3}=\left(C_{1}+C_{2}+\omega C_{3}+\omega^{2} C_{4}\right) / 12 \\
& e_{4}=\left(C_{1}+C_{2}+\omega^{2} C_{3}+\omega C_{4}\right) / 12 \\
& e_{1}+e_{2}+e_{3}+e_{4}=C_{1}=1
\end{aligned}
$$

From the expressions for the minimal orthogonal idempotents in terms of the classes, we may immediately write down the character table, and conversely. Immediately preceding Theorem 16.6 .10 we established a relation which may be written

$$
\begin{equation*}
C_{k}=h_{k} \sum_{a} \frac{\chi^{a} k_{k}}{n_{a}} e_{a} \tag{16.10.15}
\end{equation*}
$$

In this multiply by $\bar{\chi}_{k}{ }^{b}$ and sum over k. This gives

$$
\begin{equation*}
\sum_{k} \bar{\chi}_{k}^{b} C_{k}=\sum_{a, k} \frac{h_{k} \bar{\chi}_{k}^{b} \chi_{k}^{a} e_{a}}{n_{a}} \tag{16.10.16}
\end{equation*}
$$

If we sum the right-hand side first with respect to k and use the orthogonality relation

$$
\begin{equation*}
\sum_{k} h_{k} \bar{\chi}_{k}^{b} \chi_{k}^{a}=\delta_{a b} g \tag{16.10.17}
\end{equation*}
$$

then when we sum with respect to a, all terms are zero except that for $a=b$, and our relation (16.10.16) , becomes

$$
\begin{equation*}
\sum_{k} \bar{\chi}_{k}^{b} C_{k}=g e_{b} / n_{b} \tag{16.10.18}
\end{equation*}
$$

This we write in the form

$$
\begin{equation*}
e_{b}=\frac{n_{b}}{g} \sum_{k} \bar{\chi}_{k}^{b} C_{k} \tag{16.10.19}
\end{equation*}
$$

Since we know that the character of the unit class is the degree, $\bar{\chi}_{1}{ }^{b}=n_{b}$, the coefficient of C_{1} in the expression (16.10.19) for e_{b} must be $n_{b}{ }^{2} / g$. This determines n_{b}, and we may then use (16.10.19) to read off the remaining characters.

Using the general rule (16.10.19) and the table (16.10.14) for the tetrahedral group, we may write down the character table for it:

	C_{1}	C_{2}	C_{3}	C_{4}
ρ_{1}	1	1	1	1
ρ_{2}	3	-1	0	0
ρ_{3}	1	1	ω^{2}	ω
ρ_{4}	1	1	ω	ω^{2}

Conversely, using the character table (16.10.20), we could use (16.10.19) to write down the minimal orthogonal idempotents in (16.10.14).

The three irreducible representations of degree one, ρ_{1}, ρ_{3}, and ρ_{4}, may of course be written down directly from the character table.

By Theorem 16.6.15 the representation of the tetrahedral group as A_{4} is the sum of the identical representation and an irreducible representation which, being of degree 3 , must be ρ_{2}. The permutations of A_{4} on variables x_{1}, x_{2}, x_{3}, and x_{4} fix the linear form $x_{1}+x_{2}+x_{3}+x_{4}$ and take the complementary space spanned by $y_{1}=x_{1}-x_{4}, y_{2}=x_{2}-x_{4}, y_{3}=x_{3}-x_{4}$ into itself. Here the permutation (12) (34) is the linear transformation

$$
\begin{align*}
& x_{1}=\quad x_{2}^{\prime}, \\
& x_{2}=x_{1}^{\prime}, \tag{16.10.21}\\
& x_{3}= \\
& x_{4}=
\end{align*}
$$

and on the y 's this is

$$
\begin{array}{ll}
y_{1}= & y_{2}^{\prime}-y_{3}^{\prime}{ }^{\prime} \\
y_{2}=y_{1}^{\prime} & -y_{3}^{\prime} \tag{16.10.22}\\
y_{3}= & -y_{3}^{\prime}
\end{array}
$$

Thus

$$
\rho_{2}[(12)(34)]=\left(\begin{array}{l}
0,1,-1 \tag{16.10.23}\\
1,0,-1 \\
0,0,-1
\end{array}\right)
$$

Similarly,

$$
\rho_{2}[(123)] \quad\left(\begin{array}{l}
0,1,0 \tag{16.10.24}\\
0,0,1 \\
1,0,0
\end{array}\right)
$$

Since the two elements (12) (34) and (123) generate the entire group, the entire representation is determined. This is not the orthogonal form of ρ_{2}, but this may be obtained from the next example, since the tetrahedral group is a subgroup of the octahedral group.

The group of symmetries of the cube was discussed in Example 2 of Chap. 1. The proper rotations form a group G_{24} of order 24 generated by

Fig. 8. Symmetries of the cube.

$$
a=\binom{1,2,3,4,5,6,7,8}{2,3,4,1,6,7,8,5}=(1234)(5678)
$$

and

$$
b=\binom{1,2,3,4,5,6,7,8}{1,4,8,5,2,3,7,6}=(1)(245)(7)(386)
$$

The group G_{24} is also the group of symmetries of the regular octahedron, which may be regarded as inscribed in the cube with one vertex in the middle of each face of the cube. Thus G_{24} may also be represented as a permutation group on the six faces of the cube, corresponding to the six vertices of the inscribed octahedron. We shall use six variables, corresponding to the six vertices of the inscribed octahedron, whose three dimensional coordinates we give. We write:

Variabl	Face of	
e	Cube	Vertex of Octahedron
x_{1}	Face 1234	$(0,0,1)$
x_{2}	Face 1256	$(0,1,0)$
x_{3}	Face 1458	$(-1,0,0)$
x_{4}	Face 5678	$(0,0,-1)$
x_{5}	Face 3478	$(0,-1,0)$
x_{6}	Face 2367	$(1,0,0)$

Then $a=\left(x_{1}\right)\left(x_{4}\right)\left(x_{2}, x_{6}, x_{5}, x_{3}\right), b=\left(x_{1}, x_{3}, x_{2}\right)\left(x_{4}, x_{6}, x_{5}\right)$. The 24 elements of G_{24} are the following: We give each element both as a permutation of the x 's and also as a monomial linear transformation of the x, y, z coordinates which yields the appropriate permutation of the vertices of the octahedron.

We may map the even permutations of this representation of G_{24} (those of classes C_{1}, C_{2}, C_{5}) onto +1 and the odd permutations (those of classes C_{3}, C_{4}) onto -1 . This gives us, besides the identical representation, still another representation of degree one. The degrees of the irreducible representations, n_{i}, satisfy the relation

$$
\begin{equation*}
n_{1}^{2}+n_{2}^{2}+n_{3}^{2}+n_{4}^{2}+n_{5}^{2}=24 \tag{16.10.25}
\end{equation*}
$$

With $n_{1}=1, n_{2}=1$, we find that n_{3}, n_{4}, n_{5} must be $2,3,3$. The threedimensional representation we have given above has the following characters:

$$
\begin{align*}
& \chi_{1}=3, \quad \chi_{2}=\chi\left(g_{2}\right)=-1, \quad \chi_{3}=\chi\left(g_{5}\right)=1, \tag{16.10.26}\\
& \chi_{4}=\chi\left(g_{11}\right)=-1, \quad \chi_{5}=\chi\left(g_{17}\right)=0 .
\end{align*}
$$

In general, if

$$
\begin{equation*}
\rho=\sum_{a} c_{a} \rho_{a} \tag{16.10.27}
\end{equation*}
$$

is the expression of a representation ρ, as a sum of irreducible representations ρ_{a}, then for the i th class we have

$$
\begin{equation*}
\chi_{i}=\sum_{a} c_{a} \chi_{i}^{a}, \tag{16.10.28}
\end{equation*}
$$

and by the orthogonality relations,

$$
\begin{equation*}
\sum_{i} h_{i} \chi_{i} \bar{\chi}_{i}=g \sum_{a} c_{a}^{2} . \tag{16.10.29}
\end{equation*}
$$

Since for our representation of degree 3, we have, from (16.10.26)

$$
\begin{equation*}
\sum_{i} h_{i} \chi_{i} \bar{\chi}_{i}=24 \tag{16.10.30}
\end{equation*}
$$

it follows that $\sum c_{a}^{2}=1$, and so our representation (which we shall designate ρ_{4}) is irreducible. Let us note that ρ_{4} is orthogonal, and since the even permutations (elements of classes C_{1}, C_{2}, C_{5}) form a subgroup isomorphic to the tetrahedral group, this gives the orthogonal representation of degree 3, promised when we discussed the tetrahedral group.

We now have a partial table of the characters:

		$h_{1}=1$	$h_{2}=3$	$h_{3}=6$	$h_{4}=6$	$h_{5}=8$
		C_{1}	C_{2}	C_{3}	C_{4}	C_{5}
(16.10.31)	ρ_{1}	1	1	1	1	1
	ρ_{2}	1	1	-1	-1	1
	ρ_{3}	2	y_{2}	y_{3}	y_{4}	y_{5}
	ρ_{4}	3	-1	1	-1	0
	ρ_{5}	3	z_{2}	z_{3}	z_{4}	z_{5}

From the orthogonality relations involving the second column with the first and with itself, we have

$$
\begin{align*}
& 1+1+2 y_{2}-3+3 z_{2}=0 \tag{16.10.32}\\
& 1+1+y_{2}^{2}+1+z_{2}^{2}=8
\end{align*}
$$

These equations give either $y_{2}=2$ and $z_{2}=-1$, or $y_{2}=-22 / 13$ and $z_{2}=$ $19 / 13$. As y_{2} is the sum of two square roots of unity, $y_{2}= \pm 1 \pm 1$, the first values, $y_{2}=2$ and $z_{2}=-1$ are the true values.

The orthogonality between the third column and the first two columns gives

$$
\begin{align*}
& 1-1+2 y_{3}+3+3 z_{3}=0 \tag{16.10.33}\\
& 1-1+2 y_{3}-1-z_{3}=0
\end{align*}
$$

These equations give $y_{3}=0, z_{3}=-1$. In the same way we may find the missing values in the remaining columns. The complete table of characters is
(16.10.34)

	$h_{1}=1$	$h_{2}=3$	$h_{3}=6$	$h_{4}=6$	$h_{5}=8$
	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}
ρ_{1}	1	1	1	1	1
ρ_{2}	1	1	-1	-1	1
ρ_{3}	2	2	0	0	-1
ρ_{4}	3	-1	1	-1	0
ρ_{5}	3	-1	-1	1	0

The representation ρ of degree 8 of G_{24} as a permutation group on the vertices of a cube has the following characters:

$$
\left.\begin{array}{ccccc}
C_{1} & C_{2} & C_{3} & C_{4} & C_{5} \tag{16.10.35}\\
\chi & 8 & 0 & 0 & 0
\end{array}\right)
$$

From these characters we may find the decomposition of ρ, since if

$$
\begin{align*}
\rho & =\sum_{a} c_{a} \rho_{a} \tag{16.10.36}\\
\chi_{i} & =\sum_{a} c_{a} \chi_{i}^{a}
\end{align*}
$$

then from orthogonality,

$$
\begin{equation*}
\sum_{i} h_{i} \chi_{i} \bar{\chi}_{i}^{b}=\sum_{i, a} c_{a} h_{i} \chi_{i}^{a} \bar{\chi}_{i}^{b}=g \sum_{a} c_{a} \delta_{a b}=g c_{b} . \tag{16.10.37}
\end{equation*}
$$

This gives the multiplicity c_{b} of each irreducible representation ρ_{b} occurring in ρ. In this way we find from (16.10.35) that

$$
\begin{equation*}
\rho=\rho_{1}+\rho_{2}+\rho_{4}+\rho_{5} . \tag{16.10.38}
\end{equation*}
$$

We may use this to find ρ_{5} explicitly from ρ. Using (16.10.19) and our table of characters (16.10.34), we find

$$
\begin{equation*}
e_{5}=\left(3 C_{1}-C_{2}-C_{3}+C_{4}\right) / 4 \tag{16.10.39}
\end{equation*}
$$

The representation ρ of G_{24} also represents the group ring R_{G}, and we find the representation of e_{5} to be
(i)

Taking $x_{i}=(0, \cdots, 1, \cdots, 0), i=1, \cdots, 8$ as the basis of the representation module M for ρ, then the rows of the matrix $\rho\left(e_{5}\right)$ span the submodule Me_{5}, which is, of course, of dimension 3. We may take the first three rows, r_{1}, r_{2}, r_{3} as a basis. It is, however, more convenient to take as a basis vectors proportional to $r_{1}+r_{3}, r_{1}+r_{2}$, and $r_{2}+r_{3}$. This basis is

$$
\begin{align*}
& y_{1}=x_{1}-x_{2}+x_{3}-x_{4}+x_{5}-x_{6}+x_{7}-x_{8} \\
& y_{2}=x_{1}+x_{2}-x_{3}-x_{4}-x_{5}-x_{6}+x_{7}+x_{8} \tag{16.10.41}\\
& y_{3}=x_{1}-x_{2}-x_{3}+x_{4}-x_{5}+x_{6}+x_{7}-x_{8} .
\end{align*}
$$

With this basis we find
(16.10.42)

$$
\rho_{5}(a)=\left(\begin{array}{rr}
-1,0, & 0 \\
0,0, & -1 \\
0,1, & 0
\end{array}\right)=\left(\begin{array}{rr}
y_{1}, & y_{2}, y_{3} \\
-y_{1}, & -y_{3}, y_{2}
\end{array}\right)
$$

$$
\rho_{5}(b)=\left(\begin{array}{cc}
0,1, & 0 \\
0,0, & 1 \\
1,0, & 0
\end{array}\right)=\left(\begin{array}{ll}
y_{1}, & y_{2}, y_{3} \\
y_{2}, & y_{3}, y_{1}
\end{array}\right)
$$

These generate the entire representation ρ_{5}. Thus ρ_{5} is a monomial and orthogonal representation of G_{24} as given by (16.10.42.). But this is not a group of proper rotations, as we note that the determinant of $\rho_{5}(a)$ is -1 . A representation equivalent to ρ_{5} may be obtained by taking ρ_{4} and multiplying
the matrices for elements of C_{3} and C_{4} by -1 . Thus ρ_{5} is the Kronecker product of ρ_{4} and ρ_{2}.

The representation ρ_{3} is not faithful but has a kernel of order 4 consisting of the identity and the elements of C_{2}. We may take as generators

$$
\rho_{3}(a)=\binom{0,1}{1,0}, \quad \rho_{3}(b)=\left(\begin{array}{rr}
0, & 1 \tag{16.10.43}\\
-1, & -1
\end{array}\right) .
$$

In our representation ρ_{4} of G_{24} as a group of proper rotations we had

$$
\rho_{4}(a)=\left(\begin{array}{rr}
0, & -1,0 \tag{16.10.44}\\
1, & 0,0 \\
0, & 0,1
\end{array}\right), \quad \rho_{4}(b)=\left(\begin{array}{rr}
0, & -1,0 \\
0, & 0,1 \\
-1, & 0,0
\end{array}\right) .
$$

Thus ρ_{4} is a subgroup of O_{3}, and using (16.10.5), which gives the mapping of U_{2} on O_{3}, we find that

$$
\begin{gather*}
\pm 1 \tag{16.10.45}\\
\sqrt{2}
\end{gather*}\left(\begin{array}{cc}
1-i, & 0 \\
0, & 1+i
\end{array}\right) \rightarrow \rho_{4}(a), \quad \sqrt{2}\left(\begin{array}{cc}
1-i, & -1+i \\
1+i, & 1+i
\end{array}\right) \rightarrow \rho_{4}(b) .
$$

The entire double group $D=2 G_{24}$ has eight classes. In general, in a double group $2 G$, the inverse image of a class C_{i} in G is either a class in $2 G$ with twice as many elements as C_{i} in G, or two classes $C_{i}{ }^{\prime}$ and $C_{i}{ }^{\prime \prime}=-C_{i}{ }^{\prime}$, each with the same number of elements as C_{i} in G.

Following Bethe [1] we may list the elements of D, expressing them in terms of four matrices
(16.10.46)

$$
1=\binom{1,0}{0,1}, \quad \sigma_{x}=\binom{0,1}{1,0}, \quad \sigma_{y}=\left(\begin{array}{rr}
0, & -i \\
i, & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{rr}
1, & 0 \\
0, & -1
\end{array}\right)
$$

Now the list of elements of D by classes is

$$
\begin{align*}
& E=[1], \tag{16.10.47}\\
& R=[-1], \\
& C_{2}= \pm\left[-i \sigma_{x},-i \sigma_{y},-i \sigma_{z}\right], \\
& C_{3}{ }^{\prime}=\left[\frac{1 \pm i \sigma_{x},}{\sqrt{2}} \frac{1 \pm i \sigma_{y},}{\sqrt{2}} \frac{1 \pm i \sigma_{z}}{\sqrt{2}}\right], \\
& C_{3}^{\prime \prime}=-C_{3}^{\prime} \\
& C_{4}= \pm\left[\frac{-i\left(\sigma_{y} \pm \sigma_{z}\right)}{\sqrt{2}}, \frac{-i\left(\sigma_{z} \pm \sigma_{x}\right)}{\sqrt{2}}, \frac{-i\left(\sigma_{x} \pm \sigma_{y}\right)}{\sqrt{2}}\right], \\
& C_{5}{ }^{\prime}=\left[\frac{1}{2}\left\{1 \pm i\left(\sigma_{x}+\sigma_{y}+\sigma_{z}\right)\right\}, \quad \frac{1}{2}\left\{1 \pm i\left(-\sigma_{x}+\sigma_{y}-\sigma_{z}\right)\right\}\right. \\
& \left.C_{5}{ }^{\prime \prime}=\frac{1}{2}\left\{1 \pm i\left(-\sigma_{x}-\sigma_{y}+\sigma_{z}\right)\right\}, \quad \frac{1}{2}\left\{1 \pm i\left(\sigma_{x}-\sigma_{y}-\sigma_{z}\right)\right\}\right],
\end{align*}
$$

As G_{24} is a homomorphic image of D, every irreducible representation of G_{24} is also an irreducible representation of D. But D has three further irreducible representations which are in fact faithful representations of D. The further characters are:

		E	R	C_{2}	$C_{3}{ }^{\prime}$	$C_{3}{ }^{\prime \prime}$	C_{4}	$C_{5}{ }^{\prime}$	$C_{5}{ }^{\prime \prime}$
	ρ_{6}	2	-2	0	$\sqrt{2}$	$-\sqrt{2}$	0	1	-1
$(16.10 .48)$	ρ_{7}	2	-2	0	$-\sqrt{2}$	$\sqrt{2}$	0	1	-1
	ρ_{8}	4	-4	0	0	0	0	-1	1

[^3]
17. FREE AND AMALGAMATED PRODUCTS

17.1. Definition of Free Product.

Let G_{i} be a set of groups indexed by letters $i \in I$, where we shall assume I well ordered. We shall define the free product $\pi_{i} * G_{i}$ of the groups G_{i} in a manner similar to that for defining the free group with given generators.

Consider words (or strings)

$$
\begin{equation*}
a_{1} a_{2} \cdots a_{t} \tag{17.1.1}
\end{equation*}
$$

which are either void (written 1) or in which each $a_{i}, i=1 \cdots t$ is an element of some G_{j}. For these strings we define operations of elementary equivalence.

$$
\begin{equation*}
a_{1} a_{2} \cdots a_{i-1} a_{i} a_{i+1} \cdots a_{t} \tag{E1}
\end{equation*}
$$

is equivalent to $a_{1} \cdots a_{i-1} a_{i+1} \cdots a_{t}$ if a_{i} is the identity of some group G_{j}.

$$
\begin{equation*}
a_{1} a_{2} \cdots a_{i-1} a_{i} a_{i+1} \cdots a_{t} \tag{E2}
\end{equation*}
$$

is equivalent to $a_{1} a_{2} \cdots a_{i-1} a_{i}{ }^{*} a_{i+2} \cdots a_{t}$ if a_{i} and a_{i+1} belong to the same group G_{j} and if $a_{i} a_{i+1}=a_{i} *$ in G_{j}.

It is to be understood that the elementary equivalences are symmetric. We say that two words, x and y, are equivalent if there is a finite sequence $x_{1}=$ $x, x_{2}, x_{3}, \cdots x_{n}=y$, with x_{i} and x_{i+1} elementary equivalent for $i=1,2, \cdots n$ -1 . All equivalent words form a class.

A word $a_{1} a_{2} \cdots a_{t}$ is reduced if it is the void word or if (1) no a_{i} is the identity of its group G_{j} and (2) a_{i} and a_{i+1} belong to different groups G for $i=$ $1, \cdots t-1$. As in $\$ 7.1$ we may define a W-process for a word $f=a_{1} a_{2} \cdots$ a_{t} taking:
$W_{0}=1$.
$W_{1}=1$, if a_{1} is the identity of its group.
$W_{1}=a_{1}$ otherwise.
If W_{i} is of the reduced form $b_{1} b_{2} \cdots b_{s}$, we take

1) $W_{i+1}=b_{1} \cdots b_{s} a_{i+1}$, if a_{i+1} is not the identity of its group and is not in the same group as b_{s}.
2) $W_{i+1}=b_{1} \cdots b_{s}$, if $a_{i+1}=1$ in its group.
3) If b_{s} and a_{i+1} are in the same group and $b_{s} a_{i+1}=1$, take $W_{i+1}=b_{1} \cdots$ b_{s-1}.
4) If b_{s} and a_{i+1} are in the same group and $b_{s} a_{i+1}=b_{s}{ }^{*} \neq 1$, take $W_{i+1}=b_{1}$ $\cdots b_{s-1} b_{s}$.

Here $W(f)=W_{t}$, as in $\S 7.1$, can be shown to be reduced, and it can be shown that the W process gives the same result for elementary equivalent words and thus for an entire class of equivalent words. It thus follows that there is a unique reduced word in each class. If $f=a_{1} \cdots a_{t}$ is reduced, we call t the length of f.

We may now define a product for classes of words, putting

$$
\begin{equation*}
\left[f_{1}\right]\left[f_{2}\right]=\left[f_{1} f_{2}\right] \tag{17.1.2}
\end{equation*}
$$

and we can show that this product is independent of the representatives chosen, following the proof of Theorem 7.1.1. This product is associative and forms a group with the void words as the identity. This group is the free product $\prod_{i}^{*} G_{i}$ of the groups G_{i}. We note that by $(\underline{E 1})$ the identity of every group G_{i} is equivalent to the void word 1 . We shall not further distinguish these identities. Elements $\neq 1$ of different groups are, however, distinct reduced words, and so are not identified.

Theorem 17.1.1. Let G be a group which is the union of subgroups H_{i}, $i \in I$, where H_{i} are isomorphic to groups G_{i}. Then G is a homomorphic image of the free product $Q=\prod_{i}^{*} G_{i}$.

Proof: As in the proof of Theorem 7.1.2, consider an element $a_{1} a_{2} \cdots a_{t}$ of Q. If a_{i} is an element of G_{j}, then let b_{i} be the corresponding element of H_{j} and map $a_{1} a_{2} \cdots a_{x}$ onto $b_{1} b_{2} \cdots b_{t}$. We see that equivalent words of Q are mapped onto the same element of G. This mapping of elements of Q onto elements of G also preserves products and hence is a homomorphism of Q onto the union of the H_{j}, which was given to be G.

17.2. Amalgamated Products.

Let $G_{i}, i \in I$ be a set of groups indexed by the set I. Let us suppose that each G_{i} contains a subgroup U_{i} and that all U_{i} are given as isomorphic to a group U. It is to be emphasized that there is a specific isomorphism given between each U_{i} and U. We wish to consider the most general group generated by the G_{i} in which all U_{i} are identified with each other so that all U_{i} form the same group U^{1} isomorphic to U. This is clearly the image of the free product of the G_{i} obtained by identifying in every case $u_{i} \in U_{i}$ and $u_{i} \in U_{i}$ if, in the given isomorphisms between U_{i}, U_{j}, and U, u_{i} and u_{j} correspond to the same element u. There must, of course, be some such group, but it is not at all obvious how much identification results from these basic identifications. In particular, it is conceivable that this might result in identifying all elements with the identity. This is not the case, and in fact, this identification has essentially no effect on elements not in the U_{i}.

We shall construct the group generated by the G_{i} with all U_{i} 's identified with each other, and this we shall call the amalgamated product of the G_{i}. Consider words $a_{1} a_{2} \cdots a_{t}$, with each a_{i} from some G_{j}. We define elementary equivalences:
(E1). If $a_{i}=1$, then

$$
a_{1} a_{2} \cdots a_{i-1} a_{i} a_{i+1} \cdots a_{t}
$$

is equivalent to $a_{1} a_{2} \cdots a_{i-1} a_{i+1} \cdots a_{t}$.
(E2). If a_{i} and a_{i+1} belong to the same G_{j} and $a_{i} a_{i+1}=a_{i}{ }^{*}$ in G_{j}, then

$$
a_{1} a_{2} \cdots a_{i} a_{i+1} \cdots a_{t}
$$

is equivalent to $a_{1} a_{2} \cdots a_{i}{ }^{*} \cdots a_{t}$.
(E3) If $a_{i}=u_{i}$ is an element of $U_{j} \subseteq G_{j}$ and if $b_{i}=u_{k} \in U_{k}$ is such that in the isomorphisms between U_{j}, U_{k}, and U, u_{i} and u_{k} correspond to the same element u, then

$$
a_{1} \cdots a_{i-1} a_{i} a_{i+1} \cdots a_{t}
$$

is equivalent to $a_{1} \cdots a_{i+1} b_{i} a_{i+1} \cdots a_{t}$.
We now define words x and y as equivalent if there is a finite sequence x $=x_{1}, x_{2} \cdots y_{n}=y$ such that x_{i} and x_{i+1} are elementary equivalent for $i=1, \cdots$ - $n-1$. Classes of equivalent words form the elements of a group if the product of $[f]$ and $[g]$ is defined as $[f g]$. As in Theorem 7.1.1, this product is well defined for the classes, and with respect to this product, the classes form a group T, the free product of the G_{i} with the amalgamated subgroup U. More briefly, T is the amalgamated product of the G_{i}. But as yet we have no knowledge of the nature of T. For this we need a canonical form for the elements of T.

We shall define a canonical form associated with words $f=a_{1} a_{2} \cdots a_{t}$, $a_{i} \in G_{j}$. It will then be necessary to show that this canonical form is the same for equivalent words, and thus be shown to be a canonical form for elements of T.

For each $G_{i}, i \in I$, let us choose representatives $x_{i k}$ for left cosets of U_{i}, choosing the identity of G_{i} as the representative for U_{i}, but leaving the choice otherwise arbitrary.

$$
\begin{equation*}
G_{i}=U_{i}+U_{i} x_{i 2}+\cdots+U_{i} x_{i n_{i}}, \quad i \in I \tag{17.2.1}
\end{equation*}
$$

From the elementary equivalence $(\underline{E 1})$ the void word is the identity of T and the identity of all G_{i}. Also from (E3) we may regard all $U_{i} i \in I$ as identified with U. Thus we may write instead of (17.2.1),

$$
\begin{equation*}
G_{i}=U+U x_{i 2}+\cdots+U x_{i n_{i}}, \quad i \in I . \tag{17.2.2}
\end{equation*}
$$

Hence an element $g_{i} \boldsymbol{\epsilon} G_{i}$ can be written

$$
\begin{equation*}
g_{i}=u \quad \text { or } \quad g_{i}=u z, u \in U, z=x_{i k} \neq 1 \tag{17.2.3}
\end{equation*}
$$

In an amalgamated product it is convenient to modify the usual definition of length of words. We define $l\left(a_{0} a_{1} \cdots a_{t}\right)=t$ if $a_{0} \in U$, and $l\left(a_{1} \cdots a_{t}\right)=t$ if $a_{1} \neq U$. Thus we do not count the first letter if it is an element of U.

We say an element of T is in canonical form if it is of the form

$$
\begin{equation*}
f=u z_{1} z_{2} \cdots z_{t} \tag{17.2.4}
\end{equation*}
$$

where $u \boldsymbol{\epsilon} U, z_{j}, j=1 \cdots t$ are coset representatives, $x_{i k} \neq 1$ as given in (17.2.2), and if z_{j}, z_{j+1} for $j=1, \cdots t-1$ are in different G 's.

Theorem 17.2.1. In the amalgamated product of groups G_{i} with the amalgamated subgroup U, there is in each class of equivalent words one, and only one, element in canonical form $f=u z_{1} z_{2} \cdots z_{t}$. Here $u \in U$ and the $z_{i}, i=1 \cdots$ t are coset representatives $x_{j k} \neq 1$ of U in the G_{i}, taken from some arbitrary but fixed selection of coset representatives. z_{1} and $z_{i+1}, i=1$ $\cdots t-1$ belong to different G's.

The proof of this theorem is very similar to the proof of the lemma in §7.1. Lack of space prevents giving the details. For more advanced work on this subject see H. Neumann [1,2].

17.3. The Theorem of Kurosch.

It was shown by Kurosch \ddagger that every subgroup of a free product is itself a free product. This result will be proved here. Subgroups of a product with an amalgamated subgroup need not themselves be of this type. If U is the
amalgamated subgroup, then if there are more than two groups G_{i} in the product, we can take subgroups H_{i} of the G_{i} which have various different intersections with U. Here the different H_{i} will amalgamate in various ways and we are dealing with what is called a generalized amalgamated product. A number of complications arise. At present the theory is still incomplete.

Theorem 17.3.1 (Theorem of Kurosch). A subgroup $H \neq 1$ of a free product

$$
G=\prod_{v}^{*} A_{v}
$$

is itself a free product.

$$
H=F^{*} \prod_{j}^{*} x_{i}^{-1} U_{j} x_{i}
$$

where F is a free group and each $x_{j}^{-1} U_{j} x_{j}$ is the conjugate of a subgroup U_{j} of one of the free factors A_{v} of G.

Proof: The elements of the free factors of G may be well ordered by beginning with the identity, then taking an ordering of the free factors, and within a free factor taking an ordering of the elements $\neq 1$. Based on this ordering we define an alphabetical ordering for the elements of G. Write

$$
g=a_{1} a_{2} \cdots a_{t}
$$

as the reduced form of an element g of G. The void product is the identity; and for $g \neq 1$ each a_{i} is an element $\neq 1$ of one of the free factors A_{v}, and no two consecutive terms $a_{i}, a_{i+1}(i=1, \cdots, t-1)$ belong to the same free factor A_{v}. The length $l(g)$ of an element g is defined as zero for $g=1$, and for $g \neq 1$ as the number t of terms in its reduced form (1). We define the alphabetical ordering of elements by ordering successively on:

1) The length of g;
2.1) The order of the first term a_{1} if $g=a_{1} a_{2} \cdots a_{t}$ is its reduced form;
2.2) The order of a_{2};

2.t) The order of a_{t};

This is clearly a well ordering of the elements of G.
We now define a second ordering for the elements of G, the semialphabetical ordering. For this we write an element g of even length $t=$ $2 r$ in the form $g=\alpha \beta^{-1}$, where $l(\alpha)=l(\beta)=r$ and an element g of odd length $t=2 s+1$ in the form $g=\alpha a_{s+1} \beta^{-1}$, where $l(\alpha)=l(\beta)=s$. The semialphabetical ordering for elements g is determined successively by:

1) The length of g;
2) For $g=\alpha \beta^{-1}$ of even length by (2.1), the alphabetical order of α, and by (2.2), the alphabetical order of β;
3) For $g=\alpha a_{s+1} \beta^{-1}$ of odd length by (3.1), the alphabetical order of α, and by (3.2), the alphabetical order of β, and by (3.3), the order of a_{s+1}.

The proof that the subgroup H of G is a free product will be carried out by selecting, in terms of the semi-alphabetical ordering, a subset K of the elements of H and showing (1) that the elements of K generate H and then (2) that the elements K generate a free product,

$$
\begin{equation*}
F^{*} \prod_{j}^{*} x_{j}^{-1} U_{j} x_{j} \tag{17.3.1}
\end{equation*}
$$

where F is a free group and each U_{j} is a subgroup of some free factor A.
The set K of elements shall consist of all elements $k \neq 1$, such that (1) $k \in H$, and (2) k does not belong to the group generated by the elements of H which precede k in the semi-alphabetical ordering.

Since $H \neq 1$, the first $h \neq 1$ of H belongs to the set K, and so K is not vacuous. Consider the group $|K|$ generated by the set K. Clearly $|K| \subseteq H$. If $|K|$ $\neq H$, there must be a first $h \in H$ such that $h \in|K|$. Such an h does not belong to K, and so is a product of elements h_{i} preceding h and belonging to H. But these h_{i} belong to $|K|$, and so h as a product of these h_{i} 's also belongs to $|K|$. Hence $|K|=H$, and this covers the first part of the proof.

We shall use the sign < for numerical inequalities and for both the alphabetical and semi-alphabetical orderings. It will be clear from the context which meaning is appropriate, the semi-alphabetical ordering applying to entire words, the alphabetical to beginnings or endings of words.

Writing $u \neq 1$ in the form $u=\alpha \beta^{-1}$ or $u=\alpha a \beta^{-1}$, we cannot have $\beta=\alpha$ for words of even length since $\alpha \alpha^{-1}=1$. For elements of odd length, $\beta=\alpha$ is possible; and those elements of H of the form $\alpha a \alpha^{-1}$ for fixed α, and a 's belonging to some fixed A_{v}, together with the identity, form a subgroup $\alpha B \alpha^{-1}$ conjugate to $B \subseteq A_{v}$. Let us call elements $\alpha a \alpha^{-1}$ transforms. Let us extend the set K to a larger set T which consists of K, and for each α and A_{v}, those transforms $\alpha a^{1} \alpha^{-1}, a^{1} \in A_{v}$, generated by transforms $\alpha a \alpha^{-1}, a \in A_{v}$, belonging to K. Hence T consists of elements of H not generated by their predecessors and transforms $\alpha a^{1} \alpha^{-1}$ generated by earlier transforms of the same kind.

An element $h \in H$ can be written in the form

$$
\begin{equation*}
h=u_{1} u_{2} \cdots u_{t} \tag{17.3.2}
\end{equation*}
$$

where $u_{i} \boldsymbol{\epsilon} T$ or T^{-1} (the set of inverses of elements in T). Moreover, we can take (17.3.2), so that (a) $u_{i} u_{i+1} \neq(i=1, \cdots, t-1)$ and (b) no two consecutive u_{i}, u_{i+1} belong to the same conjugate group $\alpha B \alpha^{-1}, B \subseteq A_{v}$. If these conditions are satisfied, then we shall say that $u_{1} \cdots u_{t}$ is in halfreduced form.

The theorem will follow immediately if it can be shown that any nonvacuous half-reduced form cannot be the identity. For then it will follow that the elements of K that are not transforms generate a free group F, and that H is the free product of F and the conjugates $\alpha \beta \alpha^{-1}, \beta \subseteq A_{v}$.

If u is an element of K, and $u^{-1} \neq u$, then $u<u^{-1}$, since $u=\left(u^{-1}\right)^{-1}$ and u^{-1} cannot be a predecessor of u. Also, if $u \neq v$ are elements of K, then $w=u^{\epsilon} v^{\eta}(\epsilon, \eta= \pm 1)$ will follow both u and v, since any two of u, v, w generate the third, and by the choice of K neither u nor v is generated by predecessors. These two principles are the main tools in studying the way in which the elements of T and T^{-1} combine. In reducing a product $a_{1} a_{2} \cdots a_{m}$ in G, where each a_{i} belongs to one of the free factors, we say that a_{i} and a_{i+1} amalgamate into $a_{i}{ }^{1}$ if a_{i} and a_{i+1} belong to the same free factor A and $a_{i} a_{i+1}=$ $a_{i}{ }^{1} \neq 1$, and that they cancel if $a_{i} a_{i+1}=1$.

Lemma 17.3.1 If $u=\alpha \beta^{-1}$ or $\alpha a \beta^{-1} \in T$, and $\beta \neq \alpha$, then $\alpha<\beta$.
Proof: Since $\beta \neq \alpha$, we have $u \in K$ and if $\beta<\alpha$, we would have $u^{-1}<$ u. Thus the elements of T are of three kinds:

1) $l(u)$ even, $u=\alpha \beta^{-1}, \alpha<\beta, u \in K$.
2) $l(u)$ odd, $u=\alpha a \beta^{-1}, \alpha<\beta, u \in K$.
3) $l(u)$ odd, $u=\alpha a \alpha^{-1}$, generated by transforms of the same kind in K.

LEMMA 17.3.2. If $u \neq v$ belong to T and are not both in the same conjugate $\alpha B \alpha^{-1}$, and w is any one of $u^{\epsilon} v^{\eta}$ or $v^{\eta} u^{\epsilon}(\epsilon, \eta= \pm 1)$, then w follows both u and v in the semi-alphabetical ordering. This leads to the following restrictions on cancelation and amalgamation in the product w :

1) If $u=\alpha \beta^{-1}, \beta^{-1}$ does not cancel, and if α cancels, then the adjacent term of β^{-1} does not amalgamate.
2) If $u=\alpha a \beta^{1}, \alpha<\beta, \alpha$ and a do not cancel, and if β^{-1} cancels, then a does not amalgamate.
3) If $u=\alpha a \alpha^{-1} \epsilon \alpha B \alpha^{-1}, \alpha$, and a do not cancel, and if $v^{\eta}=$ $\alpha a^{-1} \sigma$, with $a, a^{1} \in A_{v}$, then a^{-1} is the earliest element in the coset $B a^{1}$.

Proof: Of the two different elements u and v belonging to T, let the letter u represent the earlier, so that $u<v$. If w does not follow both u and v, then w $<v$. Here the possibility $w=v$ may be eliminated at once, since it would imply $u=1$, which cannot hold, or $u=v^{2}$ or v^{-2}. Now the square of a transform v is 1 , or is a similar transform, while if v is not a transform then $l\left(v^{2}\right)>l(v)$. In either case $u=v^{2}$ or v^{-2} is impossible.

Since any two of u, v, w generate the third, w must be the third if v belongs to K. Thus we need only consider cases with $v=\alpha a \alpha^{-1} \epsilon \alpha B \alpha^{-1}$ a transform. Now with $u<v$, since $u \notin \alpha B \alpha^{-1}$, we also have $u<v^{*}$, where v^{*} is any transform in $\alpha B \alpha^{-1}$. Hence, if the canceling between u and $v=\alpha a \alpha^{-1}$ involves only α (or α^{-1}), the same will hold for u and some $v^{*}=\alpha a^{*} \alpha^{-1} \in K$, yielding a product $w^{*}=u^{\epsilon} v^{*}$ or $v^{*} u^{\epsilon}$, with $w^{*}<v^{*}$ contrary to $v^{*} \in K$. Hence, the canceling between u and $v=\alpha a \alpha^{-1}$ involves all of α and cancellation or amalgamation with the center term a. Thus $u^{\epsilon}=\sigma a^{\prime \prime-1} \alpha^{-1}$, where $a^{\prime \prime}$
amalgamates or cancels with a. Since $u<v=\alpha a \alpha^{-1}$, either $l(\sigma)<l(\alpha)$ or $l(\sigma)$ $=l(\alpha)$; and $u=\sigma a^{\prime \prime-1}$, with $\sigma<\alpha$. In either event, u and $\sigma\left(a^{\prime \prime-1} a^{*} a^{\prime \prime}\right) \sigma^{-1}$ precede and generate $a v^{*}=\alpha a^{*} \alpha^{-1} \epsilon K$, a contradiction. Thus in all cases we reach a contradiction if $w<v$, and so w follows both u and v.

In consequence of the fact that all eight products $u^{\epsilon} v^{\eta}$ and $v^{\eta} u^{\epsilon}$ follow both u and v, we have the restrictions on canceling and amalgamating listed in the theorem. These say explicitly that not more than half of either u or v cancels, and that in cases where canceling and amalgamating with one replaces an initial (or final) segment of the other with another segment of the same length, the result is an element later in the ordering.

LEMMA 17.3.3. In a product $u_{1} u_{2} \cdot$. u_{t} with $u_{i} \in T \cup T^{-1}(i=1, \cdots, t), u_{i} u_{i+1} \neq 1(i=1, \cdots, t-1)$, and u_{i}, u_{i+1} not both in the same group $\alpha B \alpha^{-1}\left(B \subseteq A_{v}\right)$, the reduced form will end as follows:

1) $\beta^{-1} \quad$ if $u_{t}=\alpha \beta^{-1}$.
2)

$$
\text { if } u_{t}=\left(\alpha \beta^{-1}\right)^{-1} .
$$

$b^{*} a^{-1}$
3)
if $u_{t}=\alpha a \beta^{-1}, \alpha$
$\alpha^{*} \beta^{-1}$
$<\beta$.
4)
if $u_{t}=\left(\alpha a \beta^{-1}\right)^{-1}$,
$a^{-1} \alpha^{-}$ $\alpha<\beta$.
1
5) if $u_{t}=\alpha a \alpha^{-1}$.
$a^{*} \alpha^{-1}$
Here b^{*} in (2) and a^{*} in (5) are either the term immediately preceding in u_{t} or are amalgamations with a similar term in u_{t-1}. In (3), a^{*} can involve amalgamation with u_{t-1} and u_{t-2}.

Proof: This lemma will be proved by induction on t, being trivial for $t=$ 1. For $t=2$, the results come directly from Lemma 17.3.2 with the added observation that for $u=\alpha \beta^{-1}$ or $\alpha a \beta^{-1}$, the cancellation in u^{2} does not go through α or β. In proving the induction from t to $t+1$, we need only apply

Lemma 17.3.2 to each of the five cases listed, as well as to each of the five possibilities for u_{t+1}, using only one additional property not an immediate consequence of Lemma 17.3.2. This is as follows: It may happen that $u_{t}=$ $\alpha a \alpha^{-1}$, that α cancels, and that a amalgamates with $u_{t-1}=\sigma a^{\prime-1} \alpha^{-1}$, and similarly, with $u_{t+1}=\alpha a^{\prime \prime} \lambda$. Now by Lemma 17.3.2 each of a^{\prime} and $a^{\prime \prime}$ is the earliest element in its own coset $B a^{\prime}, B a^{\prime \prime}$. If $a^{\prime-1} a a^{\prime \prime}=1$, this would mean that a^{\prime} and $a^{\prime \prime}$ were in the same coset, and hence $a^{\prime}=a^{\prime \prime}, a=1, u_{t}=1$, would be a contradiction. Hence $a^{-1} a a^{\prime \prime} \neq 1$, and the reduced form of $u_{t-1} u_{t} u_{t+1}$ is $\sigma\left(a^{\prime-1} a a^{\prime \prime}\right) \lambda$. This is the only way in which amalgamation can involve as many as three consecutive terms in any product $u_{1} u_{2}, \cdots, u_{m}$ which is halfreduced.

In establishing the ending of the reduced form for the half-reduced expression $h=u_{1} u_{2}, \cdots, u_{t}$, we have shown a fortiori that $h \neq 1$, and hence that H is the free product of the infinite cyclic groups generated by the elements $\alpha \beta^{-1}$ and $\alpha a^{-1} \beta^{-1}(\alpha<\beta)$ and the conjugates $\alpha B \alpha^{-1}$ of subgroups B of free factors A.
\pm A. Kurosch [1]. The proof given here is that of the author [6].

18. THE BURNSIDE PROBLEM

18.1. Statement of the Problem.

In 1902 Burnside [1] wrote "A still undecided point in the theory of discontinuous groups is whether the order of a group may be not finite while the order of every operation it contains is finite." He is, of course, discussing finitely generated groups. The question is still undecided. In this generality the problem has not really been attacked. He considers a more specialized form of the problem in which it is assumed that the given group is finitely generated and that the orders of the elements are bounded.

If G is generated by r elements and n is the least common multiple of the orders of elements of G, then the problem is: Is G a finite group? This problem is known as the Burnside problem. If x_{1}, \cdots, x_{r} generate a group $B(n, r)$ with relations $g^{n}=1$ for every $g \in B(n, r)$, then this group is called the Burnside group of order n with r generators. Clearly, every group with r generators and elements of orders dividing n will be a homomorphic image of this particular group. Thus the Burnside problem reduces to the question: Which of the groups $B(n, r)$ are finite?

If F_{r} is the free group generated by $x_{1} \cdots, x_{r}$ and N is the fully invariant subgroup generated by all z^{n}, with $\boldsymbol{z} \boldsymbol{\in} \boldsymbol{F}_{\boldsymbol{r}}$, then $B(n, r)=F_{r} / N$.

18.2. The Burnside Problem for $\boldsymbol{n}=2$ and $\boldsymbol{n}=3$.

If every element of a group G besides the identity is of order 2, then from $x^{2}=1, y^{2}=1,(x y)^{2}=1$ we have $x y x y=1, x y=y^{-1} x^{-1}=y x$, whence G is Abelian. Thus the Burnside group $B(2, r)$ generated by x_{1}, \cdots, x_{r}, in which the square of every element is the identity, is Abelian of order 2^{r}, having x_{1}. \cdots, x_{r} as a basis. This settles $n=2$.

When $n=3$ it is easy to show that $B(3, r)$ is finite. We proceed by induction on $r . B(3,1)$ is the cyclic group of order 3. Suppose that $B_{h}=B(3$, $h)$ is of order $3^{m(h)}$ We use the relation

$$
\begin{equation*}
y x y=x^{-1} y^{-1} x^{-1} \tag{18.2.1}
\end{equation*}
$$

which is a consequence of $(x y)^{3}=1 . B_{h+1}$ is obtained by adjoining a new generator z to B_{h}. Hence the elements of B_{h+1} are of the form

$$
\begin{equation*}
g=u_{1} z^{ \pm 1} u_{2} z^{ \pm 1} \cdots z^{ \pm 1} u_{n} \tag{18.2.2}
\end{equation*}
$$

with $u_{i} \in B_{h}$. We show that g can be expressed, using at most two z 's. If in (18.2.2) we have two consecutive terms with the same exponent, we use (18.2.1) to put $z u_{i} z=u_{i}^{-1} z^{-1} u_{i}^{-1}$ or $z^{-1} u_{j} z^{-1}=u_{j}^{-1} z u_{j}^{-1}$, thus reducing the number of z 's by one. Thus g can be expressed in the form (18.2.2). with the exponents of z alternating in sign. Here if g has as many as three z terms, then in $g=u_{1} z u_{2} z^{-1} u_{3} z \cdot \cdot$ we write $g=u_{1} z u_{2} z \cdot z u_{3} z \cdot \cdots=$ $u_{1} u_{2}^{-1} z^{-1} u_{2}^{-1} u_{3}^{-1} z^{-1} u_{3}^{-1} \cdots$, reducing the number of z 's by one. A similar argument holds if $g=u_{1} z^{-1} u_{2} z u_{3} z^{-1} \cdots$. Hence g can be expressed, using at most two z 's. We may also write $u_{1} z^{-1} u_{2} z u_{3}=u_{1} z^{-1} u_{2} z^{-1} z^{-1} u_{3}=$ $u_{1} u_{2}^{-1} z u_{2}^{-1} u_{3}$. Hence every element of B_{h+1} can be put in one of the forms:

$$
\begin{align*}
& u_{1} \\
& u_{1} z u_{2} \\
& u_{1} z^{-1} u_{2} \tag{18.2.3}\\
& u_{1} z u_{2} z^{-1} u_{3}
\end{align*}
$$

Hence B_{h+1} has at most $3^{m}+2 \cdot 3^{2 m}+3^{3 m}<3^{3 m+1}$ elements, and so, $m(h+1)$ $\leq 3 m(h)$, whence generally $m(r) \leq 3^{r-1}$ and $B(3, r)$ is of order at most $3^{3 r-1}$. In his original paper, using a more complicated method, Burnside obtains the better restriction $m(r) \leq 2^{r}-1$. We shall, however, proceed to obtain the exact result $m(r)=\binom{r}{3}+\binom{r}{2}+r$ as obtained by Levi and van der Waerden [1].

We begin with a formula, applying (18.2.1) three times,

$$
\begin{align*}
x^{-1} y x z x^{-1} & =\left(x^{-1} y x^{-1}\right)\left(x^{-1} z x^{-1}\right) \\
& =y^{-1}\left(x y^{-1} z^{-1} x\right) z^{-1} \tag{18.2.4}\\
& =y^{-1} z y x^{-1} z y z^{-1} .
\end{align*}
$$

As a special case of (18.2.4) with $z=y$, we find $x^{-1} y x y x^{-1}=y x^{-1} y$, whence

$$
\begin{equation*}
\left(x^{-1} y x\right) y=y\left(x^{-1} y x\right) \tag{18.2.5}
\end{equation*}
$$

Thus any element y permutes with any of its conjugates $x^{-1} y x$. Hence y also permutes with $y^{-1} x^{-1} y x$, and so, in the notation of commutators,

$$
\begin{equation*}
(y, x, y)=1 \tag{18.2.6}
\end{equation*}
$$

This also leads to

$$
\begin{align*}
(x, y)^{-1} & =\left(x^{-1} y^{-1} x y\right)^{-1}=y^{-1} x^{-1} y x \tag{18.2.7}\\
& =x^{-1} y x y^{-1}=\left(x, y^{-1}\right)
\end{align*}
$$

From these we also have

$$
\begin{align*}
& \left(x^{-1}, y\right)=\left(y, x^{-1}\right)^{-1}=(y, x)=(x, y)^{-1} \tag{18.2.8}\\
& (y, x, x)=\left((x, y)^{-1}, x\right)=(x, y, x)^{-1}=1
\end{align*}
$$

We now consider $(a, c, b)^{-1}=b^{-1}\left(c^{-1} a^{-1} c d b a^{-1} c^{-1}\right) a c$ and apply (18.2.4) to the part in parentheses with $x=c, y=a^{-1}, z=a b a^{-1}$. This yields

$$
\begin{aligned}
(a, c, b)^{-1} & =b^{-1}\left(a \cdot a b a^{-1} a^{-1} c^{-1} a b a^{-1} a^{-1} a b^{-1} a^{-1}\right) a c \\
& =b^{-1} a^{-1} b a c^{-1} a b a^{-1} b^{-1} c \\
& =(a, b, c)
\end{aligned}
$$

We also have $(a, c, b)^{-1}=\left((a, c)^{-1}, b\right)=(c, a, b)$. These results combine to give

$$
\begin{align*}
& (a, b, c)=(c, a, b)=(b, c, a) \tag{18.2.9}\\
& (a, c, b)^{-1}=(a, b, c)
\end{align*}
$$

We are now in a position to show that every commutator of weight four is the identity. Consider first the complex commutator ($a, b ; c, d$). Using (18.2.9), we have

$$
\begin{aligned}
(a, b ;(c, d)) & =((c, d), a, b)=((c, d, a), b)=(a, c, d, b) \\
& =(a, c, b, d)^{-1}=\left((a, b, c)^{-1}, d\right)^{-1} \\
& =(a, b, c, d)
\end{aligned}
$$

But also

$$
(c, d ; a, b)=((a, b), c, d)=(a, b, c, d)
$$

Hence $(a, b ; c, d)=(c, d ; a, b)=(a, b ; c, d)^{-1}$, whence

$$
\begin{equation*}
(a, b ; c, d)=(a, b, c, d)=1 \tag{18.2.10}
\end{equation*}
$$

From the preceding results a commutator of weight 3 is the identity if it involves a repeated element. With three distinct generators, a commutator of weight 3 , by (18.2.9), may be put in the form $\left(x_{i}, x_{j}, x_{k}\right) i<j<k$ or the inverse of this form. By (18.2.10) commutators of weight 3 are in the center, and the commutator subgroup is Abelian. Hence every element of $B(3, r)$ may be put in the form:
(18.2.11)

$$
g=x_{1}{ }_{1}{ }_{1} \cdots x_{r}{ }^{a}{ }_{r}\left(x_{1}, x_{2}\right)^{b_{12}} \cdots\left(x_{i}, x_{j}\right)^{b_{i j}} \cdots\left(x_{i}, x_{j}, x_{k}\right)^{c}{ }_{i j k}
$$

where for $\left(x_{i}, x_{j}\right) i<j$, for $\left(x_{i}, x_{j}, x_{k}\right) i<j<k$, and the exponents are 0,1 , or 2. The total number of such expressions is $3^{m(r)}$, where $m(r)=r+\binom{r}{2}+\binom{r}{3}$ is the number of ways of choosing combinations of the r generators x_{1}, \cdots, x_{r} one, two, or three at a time. Hence the Burnside group $B(3, r)$ is of order at most $3^{m(r)}$, and this will be the exact order unless some of the elements of (18.2.11) whose exponents are
not all zero reduce to the identity. For if two different expressions g_{1} and g_{2} represent the same element of $B(3, r)$, they do so in every homomorphic image of $B(3, r)$, in particular in the elementary Abelian group of order 3^{r} whence their exponents $a_{i}, i=1, \cdots, r$ agree. The commutator subgroup being A belian $g=g_{1} g_{2}^{-1}=1$ would be an element with some $b_{i j}$ or $c_{i j k}$ different from zero modulo 3 representing the identity. Regarding $g=1$ as a relation of $B(3, r)$, this remains valid if we add additional relations $x_{s}=1, s$ $\neq i, j, k$. Hence, to show that the exact order of $B(3, r)$ is $3^{m(r)}$, it is sufficient to show that the exact order of $B(3,3)$ is 3^{7}.

We shall use the normal product as given in Theorems 6.5.1 and 6.5.2 to construct $B(3,3)$ as a group of order 3^{7}. Let us write
(18.2.12) $\quad C_{1}=x, \quad C_{2}=y, \quad C_{3}=z, \quad C_{4}=(x, y)$,

$$
C_{5}=(x, z), \quad C_{6}=(y, z), \quad C_{7}=(x, y, z)
$$

First construct $A=\left\{C_{4}, C_{5}, C_{6}, C_{7}\right\}$ as an elementary Abelian group of order 3^{4}. We then extend A by adjoining C_{3} with relations
(18.2.13) $\quad C_{3}{ }^{3}=1, \quad C_{3}{ }^{-1} C_{4} C_{3}=C_{4} C_{7}, \quad C_{3}{ }^{-1} C_{5} C_{3}=C_{5}$,

$$
C_{3}^{-1} C_{6} C_{3}=C_{6}, \quad C_{3}^{-1} C_{7} C_{3}=C_{7}
$$

From Theorems 6.5.1 and 6.5.2 the group $B=\left\{A, C_{3}\right\}$ will be of order 3^{5} and an extension of A by the cyclic group C_{3}, if we verify that from the relations (18.2.13) transformation by C_{3} induces an automorphism of order 3 in A. In the same way we may extend B by C_{2} to obtain $H=\left\{B, C_{2}\right\}$ of order 3^{6}, using relations
(18.2.14) $\quad C_{2}{ }^{3}=1, \quad C_{2}{ }^{-1} C_{3} C_{2}=C_{3} C_{6}{ }^{-1}, \quad C_{2}{ }^{-1} C_{4} C_{2}=C_{4}$,

$$
C_{2}^{-1} C_{5} C_{2}=C_{5} C_{7}^{-1}, \quad C_{2}^{-1} C_{6} C_{2}=C_{6}, \quad C_{2}^{-1} C_{7} C_{2}=C_{7}
$$

and finally extend H by C_{1} to $G=\left\{C_{1}, H\right\}$ of order 3^{7}, using
(18.2.15)

$$
\begin{aligned}
& C_{1}^{3}=1, \quad C_{1}^{-1} C_{2} C_{1}=C_{2} C_{4}^{-1}, \quad C_{1}^{-1} C_{3} C_{1}=C_{3} C_{5}^{-1}, \\
& C_{1}^{-1} C_{4} C_{1}=C_{4}, \quad C_{1}^{-1} C_{5} C_{1}=C_{5}, \quad C_{1}^{-1} C_{6} C_{1}=C_{6} C_{7}, \quad C_{1}^{-1} C_{7} C_{1}=C_{7} .
\end{aligned}
$$

From these relations G is of class 3 and the collection formula,

$$
\begin{equation*}
(P Q)^{3}=P^{3} Q^{3}(Q, P)^{3}(Q, P, P)(Q, P, Q)^{5} \tag{18.2.16}
\end{equation*}
$$

holds. Taking $P=z$ and Q an arbitrary element of A, it follows that B is of exponent 3. Similarly, H and G may in turn be shown to be of exponent 3. Thus $G=B(3,3)$ is of order 3^{7}. We have observed above that this leads to a general theorem.

Theorem 18.2.1. The Burnside group $B(3, r)$ is of order $3^{m(r)}$, where $m(r)=r+\binom{r}{2}+\binom{r}{3}$. An element of $B(3, r)$ has a unique expression of the form given by (18.2.11).

18.3. Finiteness of $\boldsymbol{B}(4, r)$.

It was shown by Burnside in his original paper that $B(4,2)$ is of order at most 2^{12}. It was proved by Sanov [1] that $B(4, r)$ is finite for every r. The order of $B(4, r)$ is not known exactly, but $B(4,2)$ is indeed of order 2^{12}.

Theorem 18.3.1. The groups $B(4, r)$ are finite.
Proof: Let H be any finite group whose elements are all of orders dividing 4 . We wish to show that adjoining an element b of order 4 to H and putting the fourth power of every element equal to the identity in the extended group $G=H \cup(b)$ requires that G be finite. We can accomplish this adjunction in two steps, first adjoining b^{2} to H to yield a group $H_{1}=H \cup$ $\left(b^{2}\right)$, and then adjoin b to H_{1} to yield $G=H_{1} \cup(b)=H \cup(b)$. Each of these extensions is such that we are adjoining an element whose square is in the preceding group. Hence it is enough to show that adjoining to a finite group
H an element x with $x^{2} \in H$ and putting $z^{4}=1$ for $z \in H \cup(x)$ implies that $H \cup(x)$ is finite.

Every element g of $H \cup(x)$, with $x^{2} \in H$ is of the form

$$
\begin{equation*}
g=h_{1} x h_{2} x h_{3} x \cdots h_{n-1} x h_{n}, \quad h_{i} \in H . \tag{18.3.1}
\end{equation*}
$$

From the relation $(x h)^{4}=1$ we get

$$
\begin{align*}
x h x & =h^{-1} x x^{-1} h^{-1} x^{-1} h^{-1}=h^{-1} x\left(x^{2} h^{-1} x^{2}\right) x h^{-1} \tag{18.3.2}\\
& =h^{-1} x h^{*} x h^{-1},
\end{align*}
$$

where h^{*} also belongs to H. Thus, without increasing the length n of the word in (18.3.1), we may use (18.3.2) to alter its form to

$$
\begin{equation*}
h_{1} x h_{2} \cdots x h_{i-1} h_{i}^{-1} x h_{i}{ }^{*} x h_{i}^{-1} h_{i+1} x \cdots x h_{n} . \tag{18.3.3}
\end{equation*}
$$

If any h_{j} is 1 in (18.3.1), $2 \leq j \leq n-1$, we may reduce the length by putting $x^{2}=h \epsilon H$. We may also be able to use (18.3.2). a number of times to change some h_{j} to 1 .

Sanov observes that, using (18.3.2) repeatedly, we may replace h_{i-1} by $h_{i-1} h_{i}^{-1}$, then h_{i-2} by $h_{i-2}\left(h_{i-1} h_{i}^{-1}\right)^{-1}=h_{i-2} h_{i} h_{i-1}^{-1}$, and so on. In this way we may replace h_{2} by any one of $h_{2}, h_{2} h_{3}{ }^{-1}, h_{2} h_{4} h_{3}{ }^{-1}, h_{2} h_{4} h_{5}{ }^{-1} h_{3}{ }^{-1}, \cdots, h_{2} h_{4} \cdots$ - $h_{2 s} h_{2 s-1}^{-1} \cdots h_{3}^{-1}, h_{2} h_{4} \cdots h_{2 s} h_{2 s+1}^{-1} \cdots h_{3}^{-1}$. If any one of these is 1 , we may reduce the length of g. But if H is of order M and $n \geq M+2$, then either one of these expressions is 1 or there will be a repeated value, say, h_{2} $\cdots h_{2 r} h_{2 r+1}^{-1} \cdots h_{3}^{-1}=h_{2} \cdots h_{2 r} \cdots h_{2 s} h_{2 s+1}^{-1} \cdots h_{2 r+1}^{-1} \cdots h_{3}^{-1}$, whence $h_{2 r+2} \cdots h_{2 s} h_{2 s+1}^{-1} \cdots h_{2 r+3}{ }^{-1}=1$. But this is one of the values with which we could replace $h_{2 r+2}$. Similarly, if the repetition involves $h_{2} h_{4}$ $\cdots h_{2 r} h_{2 r-1}^{-1} \cdots h_{3}{ }^{-1}, h_{2 r+1}$ can be replaced by a combination whose value is 1 . In any event if $n \geq M+2$, we may reduce the length. Hence any g may be represented by a word of length $n \leq M+1$. Thus $H \cup(x)$ is of order at $\operatorname{most} M^{M+1}$.

18.4. The Restricted Burnside Problem. Theorems of P. Hall and G. Higman. Finiteness of $\boldsymbol{B}(6, r)$.

A weaker form of the Burnside conjecture is the following proposition ; its proof is known as the restricted Burnside problem:
R_{n} : For each positive integer r there is an integer $b_{n, r}$ such that every finite group of exponent n that can be generated by r elements has order at most $b_{n, r}$.

If for some value of n, R_{n} is true, it is conceivable that there may be an infinite group of exponent n with r generators. But R_{n} being true, there will be a largest finite group $R(n, r)$ of exponent n generated by r elements. For each finite group of exponent n generated by r elements is a factor group F_{r} / N_{i}, where F_{r} is the free group with r generators and N_{i} is some normal subgroup containing all nth powers of elements of F_{r}. If R_{n} is true, there can be only a finite number of such normal subgroups N_{i}, and their intersection is a normal subgroup N of finite index and $F_{i} / N=R(n, r)$ will be a finite group of exponent n generated by r elements such that all others are homomorphic images of it.

Let G be a group with lower central series:

$$
\begin{equation*}
G=G_{1} \supseteq G_{2} \supseteq G_{3} \supseteq \cdots . \tag{18.4.1}
\end{equation*}
$$

Suppose that a relation $G_{s}=G_{s+1}$ holds. Then from the properties of the lower central series we have $G_{s}=G_{s+1}=\cdots=G_{s+i}=\cdots$. If G is nilpotent, then some $G_{s+i}=1$, whence $G_{s}=1$. Since a finite group G of prime power exponent $n=p^{t}$ is nilpotent, the relation $G_{s}=G_{s+1}$ in such a group implies G_{s} $=1$. Now suppose that G is of exponent p^{t} and is generated by r elements. Then each G_{i} / G_{i+1} is a finite Abelian group. If we can show that for every such group G there is an integer $s=s\left(p^{t}, r\right)$ such that $G_{s}=G_{s+1}$, then we shall have solved the restricted Burnside problem for exponent $n=p^{t}$.

In the collecting process (Theorem 12.3.1) as applied to $(x y)^{n}$ we have found

$$
\begin{equation*}
(x y)^{n}=x^{n} y^{n} c_{1}^{a_{1}(n)} \cdots c_{t}^{a_{t}(n)} \cdots \tag{18.4.2}
\end{equation*}
$$

where if c_{i} is of weight m, then its exponent, $a_{i}(n)$, is of the form

$$
\begin{equation*}
u_{i} \cdot n+u_{i 2}\binom{n}{2}+\cdots+u_{i m}\binom{n}{m} \tag{18.4.3}
\end{equation*}
$$

And if c_{i} is of the form

$$
\begin{equation*}
c_{i}=(y, \overbrace{x, \cdots, x}^{s}), \tag{18.4.4}
\end{equation*}
$$

the exponent $a_{i}(n)$ is the number of ways of choosing indices $j_{1}, j_{2}, \cdots, j_{s+1}$ such that in

$$
\begin{equation*}
\left(y_{i_{1}}, x_{j_{2}}, x_{i_{3}}, \cdots, x_{i_{s+1}}\right) \tag{18.4.5}
\end{equation*}
$$

we have

$$
\begin{equation*}
j_{1}<j_{2}<j_{3} \cdots<j_{s+1} \tag{18.4.6}
\end{equation*}
$$

and

$$
1 \leq j_{k} \leq n .
$$

But this is merely the number of ways of choosing $s+1$ distinct numbers from $1,2, \cdots, n$ and is $\binom{n}{s+1}$.

If $n=p$ is a prime, the exponents for commutators of weights at most $p-$ 1 are all multiples of p, since the binomial coefficients $\binom{p}{i}$ with $1 \leq i \leq p-$ 1 are all multiples of p. But for the commutator

$$
\begin{equation*}
(y, \overparen{x, \cdots, x}) \tag{18.4.7}
\end{equation*}
$$

the exponent is $\binom{p}{p}=1$. Hence in a group G of exponent p we have

$$
\begin{equation*}
1=(x y)^{p}=(y, \overbrace{x, x, \cdots x}^{p-1}) v_{1} \cdots v_{t} \tag{18.4.8}
\end{equation*}
$$

where $v_{1}, v_{2}, \cdots, v_{t}$ are commutators of weight at least p, and for those of weight p the weight in y is at least 2 .

This gives the relation in G_{p} modulo G_{p+1}.

$$
\begin{equation*}
(y, \overbrace{x, \cdots, x}^{p-1}) v_{1} \cdots v_{s} \equiv 1\left(\bmod G_{p+1}\right) \tag{18.4.9}
\end{equation*}
$$

where v_{1}, \cdots, v_{s} are commutators of weight p in x and y, and of weight at least 1 and at most $p-2$ in x. From our rules (10.2.1) we have generally in any group that if (u, v) is of weight m. then

$$
\begin{equation*}
\left(u^{i}, v^{j}\right) \equiv(u, v)^{i j}\left(\bmod G_{m+1}\right) \tag{18.4.10}
\end{equation*}
$$

Using this we find that if a v in (18.4.9) is of weight r in x, the replacement of x by x^{i} in (18.4.9), replaces v by $v^{i r}$. Putting $i=1,2, \cdots, p-1$ in turn and multiplying, we have for the exponent of v in the product

$$
\begin{equation*}
1^{r}+2^{r}+3^{r}+\cdots+(p-1)^{r} \equiv 0(\bmod p) \tag{18.4.11}
\end{equation*}
$$

for $1 \leq r \leq p-2$, but for the leading term, $(y, \overbrace{x, \cdots x}^{p-1}), r=p-1$ and i^{r} $\equiv 1(\bmod p)$. Hence the product takes the form

$$
\begin{equation*}
(y, \overparen{x, \cdots, x})^{p-1} \equiv 1\left(\bmod G_{p+1}\right) \tag{18.4.12}
\end{equation*}
$$ and so,

$$
\begin{equation*}
(y, \widetilde{x, \cdots, x}) \equiv 1\left(\bmod G_{p+1}\right) \tag{18.4.13}
\end{equation*}
$$

This relation has been the key to investigation of the restricted Burnside problem for groups of prime exponent p. Starting with this, Kostrikin [1] has solved the restricted Burnside problem for the group G of exponent 5 with two generators. He has shown that $G_{13}=G_{14}$ and that G, if finite, has order at most 5^{34}.

A number of authors have studied the restricted Burnside problem, and for this it has often been convenient to carry out calculations in the associated Lie ring of a group. We shall describe this now.

In an associative ring R let us define a Lie product $[x, y]$ by the rule

$$
\begin{equation*}
[x, y]=x y-y x \tag{18.4.14}
\end{equation*}
$$

Then with respect to the addition in R and the Lie product, the elements of R form a Lie ring L. A Lie ring L satisfies the following laws:

L0. Addition $x+y$, and Lie product $[x, y]$ are well-defined operations.
L1. Addition is an Abelian group with zero element 0 .
L2. $[x+y, z]=[x, z]+[y, z]$.

$$
[x, y+z]=[x, y]+[x, z] .
$$

L3. $[x, x]=0$.
L4. $[[x, y], z]+[[y, z, x]+[[z, x], y]=0$.
It is easy to check that $[x, y]$ as defined by (18.4.14) satisfies these laws. From $L 2$ and $L 3$ we find
(18.4.15) $0=[x+y, x+y]=[x, x]+[x, y]+[y, x]+[y, y]$

$$
=[x, y]+[y, x]
$$

whence
(18.4.16)

$$
[y, x]=-[x, y]
$$

If R is generated by elements x_{1}, \cdots, x_{r}, then the elements generated from x_{1}, \cdots, x_{r} by addition and the Lie product $[x, y]$ will not in general include all the elements generated in R by addition and the associative product. The elements generated by the Lie product are called Lie elements. Thus $x_{1}{ }^{2}$ is not a Lie element, but $x_{1}^{2} x_{2}-2 x_{1} x_{2} x_{1}+x_{2} x_{1}^{2}=x_{1}\left(x_{1} x_{2}-x_{2} x_{1}\right)-\left(x_{1} x_{2}-\right.$
$\left.x_{2} x_{1}\right) x_{1}$ is a Lie element. It may, of course, happen because of relations in R that x_{1}^{2} is equal to a Lie element.

We may take the laws $L_{0}, L_{1}, L_{2}, L_{3}, L_{4}$ as the definition of a Lie ring L. It has been shown by Garrett Birkhoff [1] and E. Witt [1] that every Lie ring L can be represented as a ring of Lie elements of an appropriate associative ring R. This important result is not, however, needed here.

If G is a group with lower central series,

$$
\begin{equation*}
G=G_{1} \supseteq G_{2} \supseteq G_{3} \supseteq \cdots \supseteq G_{n} \supseteq \cdots \tag{18.4.17}
\end{equation*}
$$

The associated Lie ring L of G is formed in the following way:

1) L is the Cartesian sum of the additively written factor groups G_{i} / G_{i+1}, and this Cartesian sum gives the addition in L.
2) The elements of G_{i} / G_{i+1} are regarded as homogeneous of degree i.
3) The Lie product of a homogeneous element A of degree i with a homogeneous element B of degree j is the group commutator (A, B) modulo G_{i+j+1}.
4) The Lie product of general elements of L is given by (3) and the distributive laws.

We shall not prove here that these rules do define a Lie ring. We note only that $L 2$ corresponds to the commutator identities (10.2.1.2) and (10.2.1.3) and that $L 4$ corresponds to (10.2.1.5). The results of $\S \underline{11.2}$ can be restated to show that the Lie ring corresponding to a free group with r generators is the free Lie ring with r generators except that some infinite sums are allowed. A modification of the methods of $\S 11.2$ may be used to prove that these rules define a Lie ring.

In a Lie ring L let us write monomials in left normed form, i.e., write $x_{1} x_{2}$ for $\left[x_{1}, x_{2}\right]$, and recursively, $x_{1} x_{2}, \cdots, x_{n}$ for $\left[x_{1} \cdots x_{n-1}, x_{n}\right]$. The following theorem is due to Graham Higman [1].

Theorem 18.4.1. The associated Lie ring of a group of prime exponent p satisfies the identical relation $y x^{p-1}=0$.

Proof: The relation (18.4.13) holds in a group G of exponent p, and this we write in the form

$$
\begin{equation*}
(y, \overbrace{x, \cdots, x}^{p-1})=c_{1} c_{2} \cdots c_{t} \tag{18.4.18}
\end{equation*}
$$

where $c_{1}, c_{2}, \cdots, c_{t}$ are commutators in x and y of total weight $p+1$ or higher, and naturally of weight at least one in y.

In this put $x=x_{1} x_{2} \cdots x_{p-1}$. Using the rules (10.2.1) and collecting so as to leave on the left-hand side only the commutators with distinct x 's, we have

$$
\begin{equation*}
X=\prod_{\sigma}\left(y, x_{1 \sigma}, \cdots, x_{\left.(p-1)_{\sigma}\right)}\right)=d_{1} \cdot d_{2} \cdots d_{s} \tag{18.4.19}
\end{equation*}
$$

where σ runs over the $(p-1)$! permutations of $1,2, \cdots, p-1$ in some order, and $d_{1}, d_{2}, \cdots d_{s}$ are commutators which are of positive weight in y and either (1) of total weight at least $p+1$ in $y, x_{1} \cdots x_{p-1}$, or (2) of total weight p in $y, x_{1}, \cdots, x_{p-1}$ and having some x_{j} missing. We may suppose that each d_{i} is of positive weight in each of $y, x_{1}, \cdots, x_{p-1}$. This is proved inductively. Suppose, in fact, that we already have such a relation with each d_{i} of positive weight in $y, x_{1}, \cdots, x_{j-1}$. At the cost of introducing further commutators, we may evidently suppose that the d_{i} which are of zero weight in x_{j} form the initial segment $d_{1} \cdots d_{t}$. Putting $x_{j}=1$, we see that $d_{1} d_{2} \cdots d_{t}=1$, and so they can be omitted. Hence we may suppose that the d 's are of positive weight in each of $y, x_{1}, \cdots, x_{p-1}$ and of total weight $p+1$. The commutators of weight p originally present had some x_{j} missing, and these have been omitted at some stage. But this now means in terms of the associated Lie ring L that if $y, x_{1}, x_{2}, \cdots, x_{p-1}$ are any homogeneous elements of whatever weight, we have

$$
\begin{equation*}
\sum_{\sigma} y x_{1 \sigma} x_{2 \sigma} \cdots x_{(p-1)_{\sigma}}=0 \tag{18.4.20}
\end{equation*}
$$

But (18.4.20) is an identity in L valid for homogeneous elements y, x_{1}, \cdots, x_{p}. Since it is linear in each argument, the identity therefore will be valid for any arguments. Thus with $x_{1}=x_{2}=\cdots=x_{p}=x$, and y arbitrary, (18.4.20). becomes

$$
\begin{equation*}
(p-1)!y x^{p-1}=0 \tag{18.4.21}
\end{equation*}
$$

and as L is easily seen to be of characteristic p, we have

$$
\begin{equation*}
y x^{p-1}=0 \tag{18.4.22}
\end{equation*}
$$

proving our theorem.
Using the relation $y x^{4}=0$ in a Lie ring L of characteristic 5 (more precisely of characteristic prime to 2 or 3), Graham Higman [1] has shown that if L is generated by r elements, then in L, products of degree $N r$ or higher are zero, where N is some integer not depending on r. A little work shows that he has in fact proved this with $N=25$, but he states that with further calculations he believes it possible to prove the result with $N=9$, though even this is probably not the best possible result.

In a very important paper, Philip Hall and Graham Higman [1] have, among other things, related the restricted Burnside problem for general exponents to that for prime power exponents. But for this it is necessary to restrict ourselves to finite solvable groups. Here the conjecture, weaker than R_{n}, takes the following form:
$S_{n}:$ For each positive integer r there is an integer $b_{n, r}$ such that every finite solvable group of exponent n that can be generated by r elements has order at most $b_{n, r}$.

Their result takes the precise form:
THEOREM 18.4.2. If $n=p_{1}{ }^{e}{ }_{1} p_{2}{ }_{2}{ }_{2}, \cdots p_{s}{ }_{s}$ and if $S_{p i} e_{i}$ is true for $i=1, \cdots$ \cdot, s, then S_{n} is true.

We shall not give the proof of this theorem here, since it depends on some long and complicated preliminary results. Since a finite group of order $p^{a} q^{b}$ is solvable (Theorem 16.8.7), R_{n} and S_{n} are the same statement when n is divisible by at most two distinct primes. But since the Burnside groups $B(2$, $r), B(3, r)$, and $B(4, r)$ are known to be finite, and Graham Higman has shown R_{5} to be true, Theorem 18.4.2 proves the truth of $R_{6}, R_{12}, R_{10}, R_{15}, R_{20}$, and also S_{30} and S_{60}. Encouraged by these results, the author has shown that the groups $B(6, r)$ are finite, and a sketch of this proof will be given below.

We shall give here a small part of the results of Philip Hall and Graham Higman, and some indication of the lines along which the rest proceeds.

Let a group be called a p^{\prime}-group, where p is a prime if its order is prime to p, and as usual, a p-group if its order is a power of p.

Definition: A finite group G is called p-solvable if it has a normal series.

$$
\begin{equation*}
1=V_{0} \subset V_{1} \subset \cdots \subset V_{n}=G \tag{18.4.23}
\end{equation*}
$$

in which each factor group V_{i+1} / V_{i} is either a p-group or a p^{\prime}-group. We note from Theorem 9.2.4 that a finite solvable group G is p-solvable for every prime p. For a p-solvable group G we define the upper p-series

$$
\begin{equation*}
1=P_{0} \subseteq N_{0} \subset P_{1} \subset N_{1} \subset P_{2} \cdots \subset P_{l} \subseteq N_{l}=G \tag{18.4.24}
\end{equation*}
$$

recursively by the rule that N_{k} / P_{k} is the greatest normal p^{\prime}-subgroup of G / P_{k}, and P_{k+1} / N_{k} is the greatest normal p-subgroup of G / N_{k}. The number l, which is the least integer such that $N_{l}=G$, we call the p-length of G, and we write this l_{p} or $l_{p}(G)$. It is easy to see that l_{p} is the smallest number of p factor groups that can occur in any normal series for G, such as (18.4.23), in which the factor groups V_{i+1} / V_{i} are either p-groups or p^{\prime}-groups.

The purpose of the Hall-Higman paper is to relate the p-length of a p solvable group G to properties of a Sylow p-subgroup $S(p)$ of G. In particular let $p^{e}{ }_{p}$ be the exponent of $S(p)$, i.e., the highest order of an element of $S(p)$. Then the exponent of G, i.e., the least common multiple n of the orders of elements of G is $n=\prod p^{e} p$. Their main theorems apply to odd primes p, and the results are slightly different for the Fermat primes p, which are of the form $p=2^{n}+1$, and for primes which are not Fermat primes. The theorem, which is relevant to the Burnside problem, is the following:

Theorem 18.4.3. If G is a p-solvable group where p is an odd prime, then

1) $e_{p} \geq l_{p}$, if p is not a Fermat prime, and

2) $e_{p} \geq\left[\frac{1}{2}\left(l_{p}+1\right)\right]$, if p is a Fermat prime.

We may readily deduce Theorem 18.4.2 from Theorem 18.4.3. Let $n=$ $p_{1}{ }^{e} p_{2}{ }^{e}{ }_{s} \cdots p_{s}{ }_{s}$. We can take $p_{1}=2$ if n is even and proceed by induction on s, assuming S_{m} to be true for $m=p_{1}{ }^{e}{ }_{1} p_{2}{ }_{2}^{e} \cdots p_{s-1}{ }^{e}{ }_{s-1}$. Then by Theorem 18.4.3 a finite solvable group G of exponent n has a bound of at most $2 e_{s}$ on its p_{s}-length; $l=l_{P_{s}} \leq 2 e_{s}$. Then if G is generated by r elements, from S_{m}, the order of G / P_{l} is bounded by $b_{m, r}$, and so also P_{l} has a bound on the number of its generators (corollary to Lemma 7.2.2), say, r_{1}. Then from $S_{p s}{ }^{e}, P_{l} / N_{l-1}$ has a bound on its order and on the number of the generators of N_{l-1}. Continuing, each of N_{i} / P_{i} and P_{i} / N_{i-1} is of an order bounded by some $b_{m, k}$ or $b_{p}{ }_{s, k}$ and hence, since $l \leq 2 e_{s}$, we find a bound on the order of G.

THEOREM 18.4.4. In the upper p-series for a finite p-solvable group G,

$$
1=P_{0} \subseteq N_{0} \subset P_{1} \subset N_{1} \subset P_{2} \cdots \subset P_{l} \subseteq N_{l}=G
$$

P_{1} / N_{0} contains its centralizer in G / N_{0}.
Corollary 18.4.1. P_{1} contains its centralizer in G.
Proof of corollary: If x centralizes P_{1} in G, then in $G / N_{0}, x N_{0} / N_{0}$ centralizes P_{1} / N_{0}. Hence, by the theorem $x N_{0} / N_{0}$ lies in P_{1} / N_{0}, whence in G the coset $x N_{0}$ lies in P_{1}, and so x lies in P_{1}.

Proof of theorem: In the group $G_{1}=G / N_{0}$ there is no normal p^{\prime}-subgroup, since N^{0} was the greatest normal p^{\prime}-subgroup in G. The subgroup $\bar{P}_{1}=P_{1} / N_{0}$ of G_{1} is the greatest normal p-subgroup of G_{1}, by its construction. Let Z be the centralizer of \bar{P}_{1} in G_{1} and suppose, contrary to the theorem, that $Z \nsubseteq \bar{P}_{1}$. Now Z is a normal subgroup of G_{1}, and so, $Z \cup$ $P_{1}=Z P_{1}$ is a normal subgroup of G_{1}. Since we are supposing $Z \bar{P}_{1} \supset \bar{P}_{1}$, let M be a minimal normal subgroup of G such that $\bar{P}_{1} \subset M \subseteq Z \bar{P}_{1}$. Then M / \bar{P}_{1} cannot be a p-group, since \bar{P}_{1} was a maximal normal p -
subgroup of G_{1}. Hence M / \bar{P}_{1} is a p^{\prime}-subgroup because G is p-solvable. But then \bar{P}_{1} and M / \bar{P}_{1} are of relatively prime orders, and by Theorem 15.2.2, M splits over \bar{P}_{1}, i.e., $M=K \bar{P}_{1}$, where $K \cap \bar{P}_{1}=1$ for a subgroup K of M isomorphic to M / \bar{P}_{1}. Since $K \subseteq Z \bar{P}_{1}$, transformation of P_{1} by an element y of K induces an inner automorphism in \bar{P}_{1}, and since the orders of K and \bar{P}_{1} are relatively prime, this inner automorphism can only be the identity. Hence M is the direct product of K and $\bar{P}_{1}, M=K \times \bar{P}_{1}$. But then K, as a characteristic subgroup of M, is a normal subgroup of G_{1}, contrary to the fact that G_{1} contains no normal p^{\prime} subgroup. Thus the assumption that $Z \nsubseteq \bar{P}_{1}$ leads to a contradiction and our theorem is proved.

Our next step is essentially a refinement of the preceding theorem.
Theorem 18.4.5. If G is a p-solvable group with upper p-series,

$$
1=P_{0} \subseteq N_{0} \subset P_{1} \subset N_{1} \subset P_{2} \cdots \subset P_{l} \subseteq N_{l}=G
$$

and if F / N_{0} is the Frattini subgroup of P_{1} / N_{0}, the automorphisms of P_{1} / F induced by transformation with elements of G represent G / P_{1} faithfully.

Proof: F / N_{0} is the intersection of the maximal subgroups of the p-group P_{1} / N_{0}, and P_{1} / F is an elementary Abelian p-group (Theorem 12.2.1). Since F / N_{0} contains the derived group of P_{1} / N_{0}, every element of P_{1} induces by transformation the identical automorphism in P_{1} / F. Hence the set of elements of G that induce the identical automorphism in P_{1} / F is a subgroup K of G (necessarily normal in G) and $K \supseteq P_{1}$. We show that $K \supset P_{1}$ leads to a contradiction, and hence $K=P_{1}$, and so, G / P_{1} is faithfully represented by transformation on P_{1} / F. If $K \supset P_{1}$, then K / P_{1} is not a p-group, since by construction, P_{1} / N_{0} is the maximal normal p-subgroup of G / N_{0}. Then K contains an element x not in P_{1} of order prime to p which induces the identical automorphism in P_{1} / F by transformation. But, by Theorem 12.2.2, an automorphism of a p-group P_{1} / N_{0} which is the identity on P_{1} / F is of order a power of p. But then, since the order of x is prime to p, x induces the
identical automorphism in P_{1} / N_{0}, and by Theorem 18.4.4, this means that $x \in P_{1}$, which conflicts with our choice of x. Thus $K \supset P_{1}$ leads to a contradiction, and so, $K=P_{1}$, giving our theorem.

From Theorem 18.4.5 we have G / P_{1} faithfully represented by transformation of the elementary Abelian p-group P_{1} / F. Here G / P_{1} is a p solvable group and $l_{p}\left(G / P_{1}\right)=l_{p}(G)-1$. Further, by definition, G / P_{1} contains no normal p-subgroup. The rest of the Hall-Higman paper consists in studying properties of the representation of G / P_{1} on P_{1} / F, i.e., in effect, by linear transformations in a vector space over the field with p elements. G / P_{1} is a p-solvable group which contains no normal p-subgroup, and the theory depends upon what can be said about such groups which can be faithfully represented by a representation over a field of characteristic p. These results also depend on the induction on p-length, using $l_{p}(G)=l_{p}\left(G / P_{1}\right)+1$.

Apart from the results already quoted, we shall restrict our attention to finite groups G of exponent 6 in order to determine the nature of the Burnside groups $B(6, r)$ if they can be shown to be finite.

Theorem 18.4.6. In a finite group G of exponent $6, l_{2}(G) \leq 1$ and $l_{3}(G)$ ≤ 1.

Proof: A finite group G of exponent 6 is necessarily of order $2^{a} 3^{b}$, and so is solvable. In the upper 2-series for $G, P_{1} / N_{0}$ is a 2 -group containing its own centralizer in G / N_{0}. But since G is of exponent 6 , a Sylow 2 -subgroup of G is of exponent 2, and so is elementary Abelian. Hence P_{1} / N_{0} is centralized by a Sylow 2 -subgroup of G / N_{0} containing it. Thus P_{1} / N_{0} is a Sylow 2subgroup of G / N_{0}, and so $l_{2}(G)=1$, and the upper 2-series for G is of the form

$$
\begin{equation*}
1=P_{0} \subseteq N_{0} \subset P_{1} \subseteq N_{1}=G \tag{18.4.25}
\end{equation*}
$$

where N_{0} / P_{0} is a 3-group; P_{1} / N_{0}, a 2 -group; and N_{1} / P_{1}, a 3-group.
Since (18.4.25) is a normal series for G, with at most two factor groups which are 3-groups, we have $l_{3}(G) \leq 2$. We show that $l_{3}(G)=2$ implies that
G contains an element of order 9 , conflicting with the hypothesis that G is of exponent 6 , and we conclude that $l_{3}(G) \leq 1$. The upper 3 -series is of the form

$$
\begin{equation*}
1=A_{0} \subseteq B_{0} \subset A_{1} \subset B_{1} \subset A_{2} \subseteq B_{2}=G \tag{18.4.26}
\end{equation*}
$$

where $B_{0} / A_{0}, B_{1} / A_{1}$, and B_{2} / A_{2} are 2-groups, and A_{1} / B_{0} and A_{2} / B_{1} are 3groups. We note that

$$
\begin{equation*}
1=B_{0} / B_{0} \subset A_{1} / B_{0} \subset B_{1} / B_{0} \subset A_{2} / B_{0} \subseteq G / B_{0} \tag{18.4.27}
\end{equation*}
$$

is the upper 2-series for G / B_{0}, and since its 2-length is one, we have $A_{2}=B_{2}$ $=G$. By Theorem 18.4.4 the 2-group B_{1} / A_{1} is its own centralizer in A_{2} / A_{1}. Hence in A_{2} / A_{1}, given an element x of order 3, there is an element u of order 2 in B_{1} / A_{1} such that x does not permute with u. If we now write

$$
\begin{equation*}
u=u_{1}, \quad x^{-1} u_{1} x=u_{2}, \quad x^{-1} u_{2} x=u_{3} \tag{18.4.28}
\end{equation*}
$$

then $x^{-1} u_{3} x=u_{1}$ since $x^{3}=1$. Let us put $y=y_{1}=u_{1} u_{2}$ and $y_{2}=u_{2} u_{3}$. Since u_{1}, u_{2}, u_{3} belong to an elementary Abelian 2-group, $u_{3} u_{1}=\left(u_{1} u_{2}\right)\left(u_{2} u_{3}\right)=y_{1} y_{2}$. Hence the group $C=\left\{x, y_{1}, y_{2}\right\}$ satisfies the relations

$$
\begin{gather*}
x^{3}=1, \quad y_{1}^{2}=y_{2}^{2}=1, \quad y_{2} y_{1}=y_{1} y_{2}, \tag{18.4.29}\\
x^{-1} y_{1} x=y_{2}, \quad x^{-1} y_{2} x=y_{1} y_{2} .
\end{gather*}
$$

Since x does not permute with $u_{1}, u_{2} \neq u_{1}$, and so, $y_{1}=u_{1} u_{2} \neq 1$. Also, $y_{2}=y_{1}$ would imply $x^{-1} y_{2} x=1$ and $1=y_{2}=y_{1}$. Hence $y_{2} \neq y_{1}$ and the group C is seen, from the relations (18.4.29), to be of order 12 and in fact isomorphic to the alternating group on four letters. By Theorem 18.4.5, if F / B_{0} is the Frattini subgroup of $A_{1} / B_{0}, G / A_{1}$ is faithfully represented by transformation of the elementary Abelian 3-group A_{1} / F. In particular, C is faithfully represented by transformation of $A_{1} / F=W$. If we write W additively, then transformation of W by an element z of G / A_{1} may be represented by taking z as an operator on the right. Here not only C but also the group ring C^{*} operates on W. Those operators of C^{*}, which map every element of W onto
zero, are easily seen to form a two-sided ideal in C^{*}. We consider C as generated by x and $y=y_{1}$ subject to the relations

$$
\begin{equation*}
x^{3}=1, \quad y^{2}=1, \quad(x y)^{3}=1 \tag{18.4.30}
\end{equation*}
$$

Then a two-sided ideal of C^{*} containing $1+x+x^{2}$ also contains

$$
\begin{align*}
& x^{2} y\left(1+x+x^{2}\right) y x-\left(1+x+x^{2}\right) y \tag{18.4.31}\\
& -y\left(1+x+x^{2}\right)+x y\left(1+x+x^{2}\right) y x^{2} \\
& =2-2 y
\end{align*}
$$

If for every $w \in W$ we had $w\left(1+x+x^{2}\right)=0$, then from (18.4.31) we would also have $w(2-2 y)=0$, and since elements of W are of order 3, this means $w y=w$ for every $w \in W$. But then y is not faithfully represented by transformation of $W=A_{1} / F$, contrary to Theorem 18.4.5. Hence, for some $w \in W$, we have $w\left(1+x+x^{2}\right) \neq 0$. In multiplicative form this means that for \bar{x} a representative of the $\operatorname{coset} \bar{x} A_{1}$, this being the element x in A_{2} / F, we have
(18.4.32)

$$
w\left(\bar{x}^{-1} w \bar{x}\right)\left(\bar{x}^{-2} w \bar{x}^{2}\right) \neq 1
$$

But this is the element

$$
\begin{equation*}
\left(w \bar{x}^{-1}\right)^{3} \bar{x}^{3} \neq 1 \tag{18.4.33}
\end{equation*}
$$

Both \bar{x}^{3} and $\left(w \bar{x}^{-1}\right)^{3}$ are elements of W. Not both of these can be the identity by (18.4.33). Hence either \bar{x} or $w \bar{x}^{-1}$ is an element of order 9 . Thus $l_{3}(G)=2$ implies the existence of an element of order 9 in conflict with the hypothesis that G is of exponent 6 . Hence $l_{3}(G) \leq 1$, and our theorem is proved.

With the help of Theorem 18.4.6 we can find the exact order of the largest finite group of exponent 6 generated by r elements.

Theorem 18.4.7. The order of $R(r, 6)$ is

$$
\begin{equation*}
2^{a} 3^{b+\binom{b}{2}+\binom{b}{3}} \tag{18.4.34}
\end{equation*}
$$

where

$$
a=1+(r-1) 3^{r+\binom{(}{2}+\binom{(}{3}}, \quad b=1+(r-1) 2^{r} .
$$

Proof: Let F_{r} be the free group with r generators. The subgroup S generated by the squares of elements of F_{r} is such that F_{r} / S is the elementary Abelian group of order 2^{r}. Hence, by Theorem 7.2.8, S is a free group with b $=1+(r-1) 2^{r}$ generators. In S the fully invariant subgroup T generated by the cubes of elements of S is such that S / T is $B(3, b)$, and so, T is of index
 $g^{2} \in S$ and $\left(g^{2}\right)^{3} \in T$. Similarly, F_{r} has a subgroup C of index $3^{r+\binom{r}{2}+\binom{r}{3}}$ generated by the cubes of elements of F_{r}, and by Theorem 7.2.8, C has $a=1+(r-1) 3^{r+\binom{r}{2}+\binom{r}{3} \text { free generators. The fully invariant }}$ subgroup D generated by the squares of elements of C is of index 2^{a} in C. Now let $X=D \cap T . F_{r} / X$ is a finite group of exponent 6 , since both D and T contain g^{6} for every $g \in F_{r}$. We easily see that the upper 2-series for F_{r} / X is

$$
\begin{equation*}
1=X / X \subset D / X \subset C / X \subset F_{r} / X \tag{18.4.35}
\end{equation*}
$$

and the upper 3-series for F_{r} / X is

$$
\begin{equation*}
1=X / X \subset T / X \subset S / X \subset F_{r} / X \tag{18.4.36}
\end{equation*}
$$

Here C / D is isomorphic to a Sylow 2-subgroup of F_{r} / X and S / T to a Sylow 3-subgroup, whence the order of F_{r} / X is given by (18.4.34).

Let G be any finite group of exponent 6 generated by r elements. Then if

$$
\begin{equation*}
1=P_{0} \subseteq N_{0} \subseteq P_{1} \subseteq N_{1}=G \tag{18.4.37}
\end{equation*}
$$

is the upper 3-series for G, we see that N_{1} / P_{1} is of order at most 2^{r}, and so, P_{1} is generated by at most b elements, whence P_{1} / N_{0}, isomorphic to a Sylow 3 -subgroup of G, is of order at most $3^{b+\binom{b}{2}+\binom{b}{3} \text {. Similarly, the order of } G \text { is }}$ divisible by at most 2^{a}.

There is not space here to give the complete proof of the Burnside conjecture for exponent 6 , since it involves long calculations. The proof does not depend on the preceding work and, as it stands, the proof gives the right power of 2 dividing the order of $B(6, r)$, but to get the right power of 3 it is necessary to apply Theorem 18.4.7. The proof consists in showing that a finitely generated group G of exponent 6 has 2 -length one, and so by the finiteness of $B(2, r)$ and $B(3, r)$ is finite. This takes the form of showing that there is a normal chain

$$
\begin{equation*}
G \supset M \supset M^{\prime} \supset 1 \tag{18.4.38}
\end{equation*}
$$

in which G / M is a finite 3 -group, M / M^{\prime} is a finite 2 -group, and M^{\prime} is a finitely generated group of exponent 3 and so finite. Almost all the difficulty consists in showing that M^{\prime} is of exponent 3 .

Theorem 18.4.8. A group G of exponent 6 generated by r elements is finite.

Corollary 18.4.2. The order of $B(6, r)$ is given by (18.4.34).
Lemma 18.4.1. The cubes of the elements of G generate a normal subgroup M of index at most $3^{r+\binom{r}{2}+\binom{r}{3} \text {. } . ~ . ~ . ~}$

Lemma 18.4.2. M is generated by a finite number of elements of order 2. The derived group M^{\prime} of M is of index a power of 2 in M and is generated by a finite number of elements of the form abab, where $a^{2}=b^{2}=$ 1.

Lemma 18.4.3. If a group H is generated by x_{1}, \cdots, x_{n} and if every subgroup of H generated by four of the x 's is of exponent 3 , then H is of exponent 3.

Lemma 18.4.4. If $H=\{a, b, c, d\}$ is of exponent 6 and $\{a, b, c\},\{a, b$, $d\},\{a, c, d\}$, and $\{b, c, d\}$ are of exponent 3 , then H is of exponent 3 .

Lemma 18.4.5. If $H=\{x, a, b\}$ is of exponent 6 and if $x^{2}=1, a^{3}=b^{3}=$ $1, x a x=a^{-1}, x b x=b^{-1}$, then $\{a, b\}$ is of exponent 3 .

This is the most difficult lemma of all and involves some complicated calculations with relations.

Lemma 18.4.6. If $H=\{x, a, b\}$ is of exponent 6 and if $x^{2}=1, a^{3}=b^{3}=1$, $x a x=a^{-1}, x b x=b$, then $\{a, b\}$ is of exponent 3 .

LEMMA 18.4.7. If $H=\{x, a, b, c\}$ is of exponent 6 and if $x^{2}=1, a^{3}=b^{3}$ $=c^{3}=1, x a x=a^{-1}, x b x=b^{-1}, x c x=c^{-1}$, then $\{a, b, c\}$ is of exponent 3 .

Lemma 18.4.8. If $H=\left\{x, a_{i}\right\} i=1, \cdots, n$ is of exponent 6 and if $\left(x^{2}=1\right.$, $\left.a_{i}^{3}=1, x a_{i} x=a_{i}^{-1}, i=1, \cdots n\right)$, then $\left\{a_{i}\right\} i=1, \cdots, n$ is of exponent 3.

This is easily seen to follow from Lemmas 18.4.3, 4, and 7 .
Lemma 18.4.9. If $H=\{a, b, c\}$ is of exponent 6 and $a^{2}=b^{2}=c^{2}=1$, then H^{\prime} is of exponent 3 .

Lemma 18.4.10. If $H=\{a, b, c, d\}$ is of exponent 6 and $a^{2}=b^{2}=c^{2}=d^{2}$ $=1$, then $\{a b a b, c d c d\}$ is of exponent 3 .

Lemma 18.4.11. If $H=\{a, b, c, d, e, f\}$ is of exponent 6 and $a^{2}=b^{2}=c^{2}$ $=d^{2}=e^{2}=f^{2}=1$, then $\{a b a b, c d c d$, efef $\}$ is of exponent 3 .

Lemma 18.4.12. M^{\prime} is of exponent 3 and so finite. Hence G is finite. This lemma is an immediate consequence of Lemmas 18.4.2, $\underline{3}, \underline{4}$, and $\underline{11}$.

19. LATTICES OF SUBGROUPS

19.1. General Properties.

The subgroups of a group G may be taken as the elements of a lattice $L(G)$ under the operations of union and intersection. Every cyclic group of prime order has as subgroups only the entire group and the identity subgroup, whence all these cyclic groups have the same subgroup lattice, consisting merely of a two-element chain. We have already shown (Theorem 1.5.4) that, conversely, a group with no proper subgroups is the identity alone or a finite cyclic group of prime order. We note also that the non-Abelian group of order $p q$ with $p<q, p \mid q-1$ and the elementary Abelian group of order q^{2} both have the same subgroup lattice, consisting of the identity, $q+1$ subgroups of prime order, and the whole group, where any two of the proper subgroups have the identity as their intersection and the whole group as their union.

Thus, although G determines $L(G)$ uniquely, in general $L(G)$ does not determine G uniquely. Moreover, it is easy to find examples of lattices L which are not the lattice $L(G)$ for any group G. But many groups G are indeed determined uniquely by $L(G)$, this being true, for example, for the alternating and symmetric groups on four letters. It may even be true that, except for a few groups of relatively simple types, $L(G)$ does determine G uniquely.

In the terminology of lattice theory, $L(G)$ is complete. This means that infinite unions and intersections always exist, for the set of elements common to all subgroups of a family of subgroups will itself form a group, and this is clearly the intersection of the family. Similarly, the set of all finite products of elements chosen from a family of subgroups will itself form a group, and this is the union of the family.

For a fuller treatment of the study of lattices of subgroups, the reader is referred to the monograph by Suzuki [1].

19.2. Locally Cyclic Groups and Distributive Lattices.

In a lattice the two distributive laws

$$
\begin{aligned}
& \text { D1. } a \cap(b \cup c)=(a \cap b) \cup(a \cap c), \\
& D 2 . a \cup(b \cap c)=(a \cup b) \cap(a \cup c)
\end{aligned}
$$

are equivalent to each other. Let us show that $D 1$ implies $D 2$. Here, using $D 1$,

$$
\begin{aligned}
(a \cup b) \cap(a \cup c) & =[(a \cup b) \cap a] \cup[(a \cup b) \cap c] \\
& =a \cup[(a \cap c) \cup(b \cap c)] \\
& =[a \cup(a \cap c)] \cup(b \cap c) \\
& =a \cup(b \cap c)
\end{aligned}
$$

which is the law $D 2$. Similarly, the law $D 2$ implies $D 1$. The distributive law is a very strong condition in lattices. We shall show that for groups G the condition that $L(G)$ be distributive is very strong and implies that G is locally cyclic.

Definition: A group G is a locally cyclic group if, and only if, every finite set of elements in G generates a cyclic group. (This is to be compared with §13.1.)

Since an element of finite order greater than 1 and an element of infinite order cannot generate a cyclic group, it follows that in a locally cyclic group every element $\neq 1$ is of infinite order or every element is of finite order. The additive group of rationals R_{+}is a locally cyclic group which is aperiodic, and the group R_{+}modulo 1 is a periodic locally cyclic group. It is not too difficult to show that a locally cyclic group is a subgroup of one of these two groups.

Theorem 19.2.1. The lattice $L(G)$ is distributive if, and only if, G is a locally cyclic group.

Proof: Let us first suppose that G is a locally cyclic group. Let A, B, C be any three subgroups of G. We wish to prove that $D 1$ holds. Now generally

$$
\begin{array}{r}
A \supseteq A \cap B, \\
B \cup C \supseteq B \supseteq A \cap B,
\end{array}
$$

whence $U=A \cap(B \cup C) \supseteq A \cap B$. Also,

$$
B \cup C \supseteq C \begin{aligned}
& A \supseteq A \cap C, \\
& C \\
& A \supseteq C,
\end{aligned}
$$

whence $U=A \cap(B \cup C) \supseteq A \cap C$. Combining these inclusions,

$$
U=A \cap(B \cup C) \supseteq(A \cap B) \cup(A \cap C)
$$

Thus it is necessary to show only the inclusion

$$
U=A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)=V
$$

Now consider an arbitrary element $g \in U$. Here g is of the form

$$
g=a=b c \quad a \in A, b \in B, c \in C
$$

where we note that, since G is Abelian, $B \cup C=B C$. Since G is locally cyclic, the elements b and c generate a cyclic group $\{u\}$ and $u^{r}=b, u^{s}=c$, and since for some m and $n, b^{m} c^{n}=u$, it follows that $u^{r m+s n}=u$. Also, $a=b c$ $=u^{r+s}$. Now $x=u^{r(r+s)}=a^{r}=b^{r+s} \in A \cap B$, and $y=u^{s(r+s)}=a^{s}=c^{s+s} \in A \cap C$. Hence $a=u^{r+s}=$ $u^{m r(r+s)+n s(r+s)}=x^{m} y^{n}$ is an element of $(A \cap B) \cup(A \cap C)$, as we wished to prove. Hence in all cases

$$
A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

for subgroups of a locally cyclic group.
Now, to prove the converse, we assume that $L(G)$ is distributive satisfying both $D 1$ and $D 2$. Let b and c be any two elements of G and write a $=b c$ and

$$
A=\{a\}, \quad B=\{b\}, \quad C=\{c\}
$$

Then, since $a \in B \cup C$, we have

$$
A=A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
$$

As subgroups of cyclic groups both $A \cap B$ and $A \cap C$ are cyclic and, say,

$$
A \cap B=\{u\}, \quad A \cap C=\{v\},
$$

where for appropriate exponents,

$$
a^{x}=b^{y}=u, \quad a^{z}=c^{w}=v .
$$

Here u and v as powers of a will permute, and since $A=\{u\} \cup\{v\}$, we must have, since $a \in A, a=u^{r} v^{s}=v^{s} u^{r}$, or remembering that $a=b c, b c=u^{r} v^{s}=$ $b^{y r} c^{w s}=c^{w s} b^{v r}$. Here $b^{1-y r}=c^{w s-1}$, whence $c^{-w s+1}=b^{y r-1}$ or $v^{-s} c=u^{v} b^{-1}$, whence $c b=v^{s} u^{r}=u^{r} v^{s}=b c$. Hence b and c must permute and G is Abelian.

We now note that G cannot contain an element $a \neq 1$ of finite order and an element b of infinite order. For putting $c=a b, c$ is also of infinite order and $\{a\}=\{a\} \cap(\{b\} \cup\{c\})$, since $a=b^{-1} c$, while $(\{a\} \cap\{b\}) \cup(\{a\} \cap\{c\})$ $=(1) \cup(1)=1 \neq\{a\}$, since the infinite cyclic groups $\{b\}$ and $\{c\}$ containing no elements $\neq 1$ of finite order must intersect $\{a\}$ in the identity. Thus we may consider only two cases; first, that in which G is aperiodic, and second, that in which G is periodic. In either case if two elements do not generate a cyclic group, then, by the basis theorem for Abelian groups, they generate the direct product of two cyclic groups, say, $\{b\}$ and $\{c\}$. Here with $a=b c$ and $A=\{a\}, B=\{b\}, C=\{c\}$, we have $A=A \cap(B \cup C)$, and $(A \cap B) \cup(A \cap C)$ $=(1) \cup(1)=(1)$, and hence $D 1$ does not hold. In the periodic case if b and c have relatively prime orders, then $\{b\} \cup\{c\}=\{b c\}$, and they do generate a cyclic group. But the direct product of two cyclic groups $\{b\}$ and $\{c\}$ whose orders do have a common factor, say, a prime p, will not have a distributive lattice, since for $b_{1} \epsilon\{b\}$ and $c_{1} \epsilon\{c\}$ both of order p and $a_{1}=b_{1} c_{1}$, the law $D 1$ fails as above with $A=\left\{a_{1}\right\}, B=\left\{b_{1}\right\}, C=\left\{c_{1}\right\}$. Here again for the distributive law to hold it is necessary that any two elements generate a cyclic group. But if any two elements generate a cyclic group, then it follows immediately that any finite number of elements generate a cyclic group, and thus G is locally cyclic, proving the converse part of the theorem.

19.3. The Theorem of Iwasawa.

One of the properties of a composition series (or chief series) shown in $\S 8.5$ is that all series have the same length. This property is a result of the modularity of the lattice of normal subgroups and of a weak form of modularity in the composition series. But, in general, maximal chains of unrestricted subgroups may differ in length. By Theorem 10.5.5 it follows that in a finite supersolvable group, all maximal chains of subgroups have the same length. The following theorem, due to Iwasawa [1], shows the converse to be true.

Theorem 19.3.1. The maximal subgroup chains of a finite group G all have the same length if, and only if, G is supersolvable.

Proof: As noted above, Theorem 10.5.5 shows that in a supersolvable group G, all maximal subgroup chains have the same length, this being the total number of primes, counting repetitions, dividing the order of G.

Let us call the property of having all maximal chains the same length the equi-chain condition. This property is clearly inherited by subgroups and factor groups. Let G be a finite group with the equi-chain property. Since a group whose lattice is the chain of length one is a cyclic group of prime order and thus supersolvable, we may assume by induction on the length of maximal chains that all subgroups and factor groups of G are supersolvable.

We need first a lemma on supersolvable groups.
Lemma 19.3.1. Let G be a finite supersolvable group of order $n=p_{1} p_{2}$. $\cdots p_{m}$ where $p_{1} \leq p_{2} \leq \cdots \leq p_{m}$. Then G has a chief series

$$
K_{0}=1 \subset K_{1} \subset K_{2} \subset \cdots \subset K_{m}=G
$$

where K_{i} / K_{i-1} is of order $p_{m-i+1}, i=1, \cdots, m$.
This is Corollary 10.5.2.
The next and most difficult step in the proof consists in showing that G has a normal subgroup. For this we need a choice of methods. Lemma 19.3.2 guarantees the possibility of this choice for any finite group.

Lemma 19.3.2. If G is a finite group of order divisible by the prime p, then either (1) G is p-normal or (2) G has a subgroup P of order a power of p which is normal in one Sylow subgroup $S_{1}(p)$ but is a non-normal subgroup of another Sylow subgroup $S_{2}(p)$.

Proof: We recall that a group G is by definition p-normal if the center Z of a Sylow subgroup $S_{1}(p)$ is the center of any other Sylow subgroup $S_{2}(p)$ which contains it. Hence if G is not p-normal, then the center Z of some $S_{1}(p)$ is contained in another $S_{2}(p)$ but is not the center of $S_{2}(p)$. In this case we show that the second alternative holds, taking P as Z by showing that Z is not normal in $S_{2}(p)$. Assume to the contrary that Z is normal in $S_{2}(p)$. Then both $S_{1}(p)$ and $S_{2}(p)$ are contained in $N=N_{G}(Z)$, and hence as Sylow subgroups of N, will be conjugate in N. Thus for some $x \in N, x^{-1} S_{1}(p) x=S_{2}(p)$. Since Z is the center of $S_{1}(p)$, the center of $S_{2}(p)=x^{-1} S_{1}(p) x$ will be $x^{-1} Z x=Z$, since $x \in N_{G}(Z)$, and this conflicts with the assumption that Z was not the center of $S_{2}(p)$. This proves the lemma. We note that in the second alternative the Burnside Theorem 4.2.5 applies.

Let our group G be of the order $n=p_{1}{ }_{1}{ }_{1} p_{2}{ }_{2}{ }_{2} \cdots P_{r}{ }_{r}^{e}$, where $p_{1}<p_{2}<\cdots$ $\cdot<p_{r}$ are distinct primes. We use the alternatives of Lemma 19.3.2 for p_{1}, the smallest prime dividing n. We show that the second alternative cannot arise in G. Here, by Theorem 4.2.5, there are $t \not \equiv 0\left(\bmod p_{1}\right) p_{1}$-groups h_{1}, h_{2}, \cdots, h_{t} normal in their union H and conjugate in the normalizer of H in G, $N=N_{G}(H)$. If H is normal in G, we have a normal subgroup, as we wished to find. Suppose N is a proper subgroup of G and thus supersolvable by induction. Applying Lemma 19.3.1 to N, we find that N has a normal subgroup Q which has index in N, the highest power of p_{1} dividing the order of N. But then both Q and H are normal subgroups in N, and so, since $Q \cap H$ $=1$ (H is a p_{1}-group), then $Q \cup H=Q \times H$. Thus Q permutes with every element of H, and so, the normalizer of h_{1} contains Q and cannot have an index t prime to p_{1}. Strictly, we have shown only that the second alternative cannot arise when N is a proper subgroup, but when we have finished and proved that G is supersolvable, the above argument holds also for $N=G$.

Now we consider the first alternative, namely, that G is p_{1}-normal. Let Z be the center of a Sylow subgroup $S_{1}\left(p_{1}\right)$. Let $K=N_{G}(Z)$. If $K=G$, then we have Z as a proper normal subgroup of G, as we wished to show. Hence suppose K is a proper subgroup of G and therefore, by our induction hypothesis, supersolvable. Then by Lemma 19.3.1 applied to K, K must have a normal subgroup W of index p_{1}, and since K / W is the cyclic group of order $p_{1}, W \supseteq K^{\prime}, K$ has a nontrivial homomorphic image which is an Abelian $p_{1},-$ group, this being denoted by $K / K^{\prime}\left(p_{1}\right)$. But by Theorem 14.4.5, since G is $p_{1^{-}}$ normal, $G / G^{\prime}\left(p_{1}\right)$ is isomorphic to $K / K^{\prime}\left(p_{1}\right)$, and thus $G^{\prime}\left(p_{1}\right)$ is a proper normal subgroup. Having shown in all cases that G has a proper normal subgroup, and since by induction both the normal subgroup and factor group are supersolvable, we conclude that G is solvable.

Now with G of order $n=p_{1}{ }^{e}{ }_{1} p_{2}{ }_{2}^{e} \cdots p_{r}{ }_{r}, p_{1}<p_{2}<\cdots<p_{r}$ and $m=e_{1}$ $+e_{2}+\cdots+e_{r}$, and having shown G solvable, we now know that all maximal chains are of length m and that every covering $A>B$ is such that $[A$: $B]$ is a prime. Let $S\left(p_{r}\right)$ be a Sylow subgroup of order $p_{r}{ }_{r}$, and let $1 \subset A_{1} \subset$ $A_{2} \subset \cdots \subset A_{e r}=S\left(p_{r}\right) \subset B_{1} \subset \cdots \subset B_{m-e r}=G$ be a maximal chain in which $S\left(p_{r}\right)$ is at the bottom. We wish to show that $S\left(p_{r}\right)$ is normal in G. Now $B_{1} / S\left(p_{r}\right)$ is of order some prime $p_{j}<p_{r}$. Since the number of conjugates of $S\left(p_{r}\right)$ in B_{1} must divide p_{j} and be of the form $1+k p_{r}$ by the third Sylow theorem, this number must be 1 , and so, $S\left(p_{r}\right) \triangleleft B_{1}$. Similarly, if we have shown that $S\left(p_{r}\right)$ is normal in some B_{i}, then the number of conjugates of $S\left(p_{r}\right)$ in B_{i+1} must be of the form $1+k p_{r}$ and also a divisor of $\left[B_{i+1}: B_{i}\right]=p_{j}<$ p_{r}. Hence $S\left(p_{r}\right)$ is normal in B_{i+1} and, by continuing this argument, $S\left(p_{r}\right) \triangleleft G$. As a solvable group G possesses a Sylow complement C to $S\left(p_{r}\right)$ of order $p_{1}{ }_{1}^{e} \cdots p_{r-1}{ }_{r-1}$. This is given by Theorem 9.3.1. Let Z be the center of $S\left(p_{r}\right)$. As a characteristic subgroup of $S\left(p_{r}\right), Z$ is normal in G. Thus $C \cup Z=C Z=U$. In U a maximal chain of C can be extended to a maximal chain of U, and in this, $C \subset V$ for a group V such that $[V: C]=p_{r}$. By the same argument that showed $S\left(p_{r}\right)$ normal in G, it follows that V has a normal subgroup R of order p_{r}. Now R must be contained in Z, which is the unique Sylow subgroup for p_{r} in U. Thus R is normalized by C and, belonging to the center of $S\left(p_{r}\right)$, is also normalized by $S\left(p_{r}\right)$. Hence R is normal in G. Having
shown that G possesses a normal subgroup R of prime order p_{r}, since by induction G / R is supersolvable, it follows at once that G is supersolvable. This proves the theorem.

20. GROUP THEORY AND PROJECTIVE PLANES

20.1. Axioms.

A projective plane is a set of points, of which certain distinguished subsets are called lines, satisfying the following axioms:
$P 1$. Any two distinct points are contained in one and only one line.
P2. Any two distinct lines contain one and only one point in common.
P3. There exist four points, no three of which are contained in one line.
The unique line k containing two distinct points A and B will be called the line joining A and B. The unique point P contained in two distinct lines k and t will be called the intersection of k and t.

Let $A_{1}, A_{2}, A_{3}, A_{4}$ be four points, no three on a line, whose existence is given by $P 3$. Then there are six distinct lines joining the different pairs:

$$
\begin{aligned}
& L_{1}: A_{1} A_{2} B_{1} . \\
& L_{2}: A_{1} A_{3} B_{2} . \\
& L_{3}: A_{1} A_{4} B_{3} . \\
& L_{4}: A_{2} A_{3} B_{3} . \\
& L_{5}: A_{2} A_{4} B_{2} . \\
& L_{6}: A_{3} A_{4} B_{1} .
\end{aligned}
$$

Here the points B_{1}, B_{2}, B_{3} are the intersections of these lines, and from the distinctness of the lines we easily find that the B 's are different from the A 's and from each other.

Lemma 20.1.1. Every line contains at least three points.
Proof: The lines L_{1}, \cdots, L_{6} as constructed each contain at least three points. A further line L, if it does not contain A_{1}, will intersect L_{1}, L_{2}, L_{3} in three distinct points. If L does not contain A_{2}, then L intersects L_{1}, L_{4}, L_{5} in
three distinct points. If L contains both A_{1} and A_{2}, then L is L_{1}, which does contain at least the three points A_{1}, A_{2}, B_{1}.

Lemma 20.1.2. There exist four lines, no three of which contain the same point.

Proof: Here $L_{1}, L_{2}, L_{5}, L_{6}$ are four lines, no three of which intersect in a common point.

If we interchange the roles of points and lines and replace "contains" by "is contained in," Axioms $P 1$ and $P 2$ are interchanged and Axiom P3 and Lemma 20.1.2 are interchanged. This leads to the concept of duality. More precisely if π is any projective plane, then there is a plane π^{*} dual to π which may be constructed as follows:

Let $\left\{P_{i}\right\}$ be the set of points of π and $\left\{k_{j}\right\}$ the set of lines of π. Then in π^{*} we have lines $\left\{P_{i}\right\}$ in a one-to-one correspondence with the points $\left\{P_{i}\right\}$ of π and points $\left\{K_{j}\right\}$ in a one-to-one correspondence with the lines $\left\{k_{j}\right\}$ of π. Further, if $P_{i} \in k_{j}$ in π, we put $K_{j} \in p_{i}$ in π^{*}, where $k_{j} \rightleftarrows K_{j}$ and $P_{i} \rightleftarrows p_{i}$. Our observations show that if π satisfies the axioms for a projective plane, then π^{*} also does so. Furthermore, the dual of π^{*} is π, i.e., $\left(\pi^{*}\right)^{*}=\pi$. Hence, interchanging the roles of points and lines and reversing inclusions, every statement about a plane π becomes a statement about its dual π^{*}. This is the principle of duality. In particular from the principle of duality, if some statement is true of every projective plane π, then its dual is also true. Thus, applying the principle of duality, Lemma 20.1.1 becomes:

Lemma 20.1.3. Every point is on at least three lines.

The reader will not find it difficult to verify that the axioms given here are equivalent, for planes, to the axioms of projective geometry as given in Veblen and Young, "Projective Geometry," vol. I, pages 16-18.

Suppose that one line L_{1} of a projective plane π contains a finite number of points. Call this number $n+1$, where $n \geq 2$ by Lemma 20.1.1. By Axiom $P 3$ there are at least two points, say, P_{3} and P_{4}, not on L_{1}. Let $P_{3} P_{4}$ intersect L_{1} in B_{1} and let P_{1} and P_{2} be two other points of L_{1}. Then $P_{1} P_{3}$ and $P_{2} P_{4}$ intersect in a further point B_{2} not on L_{1} and not on $P_{3} P_{4}$. If P is any point not on L_{1} joining P to the $n+1$ points of L_{1}, we have $n+1$ lines through P and these are all the
lines through P since every line through P must intersect L_{1}. In particular there are $n+1$ lines through each of P_{3}, P_{4}, and B_{2}. If there are $n+1$ lines through a point P, these intersect a line L not through P in $n+1$ points and these are all the points on L, since every point on L is joined to P by a line. Hence every line L of π contains $n+1$ points, since at least one of P_{3}, P_{4}, or B_{2} is not on L. Also there are $n+1$ lines through every point P of π, these being the lines joining P to the $n+1$ points of some line L not through P. We have now proved the major part of the following theorem.

Theorem 20.1.1. Let $n \geq 2$ be an integer. In a projective plane the following properties are equivalent:

1) One line contains exactly $n+1$ points.
2) One point is on exactly $n+1$ lines.
3) Every line contains exactly $n+1$ points.
4) Every point is on exactly $n+1$ lines.
5) There are exactly $n^{2}+n+1$ points in π.
6) There are exactly $n^{2}+n+1$ lines in π.

Proof: We have already shown that (1) implies (2), (3), and (4). To prove (5), let P_{0} be one point of π and let $L_{1} \cdots, L_{n+1}$ be the $n+1$ lines through P_{0}. These lines include all the points of π, and each of them contains P_{0} and n other points. P_{0} is the only point common to any two of L_{1}, \cdots, L_{n}. Hence π contains $1+(n+1) n=n^{2}+n+1$ points. To prove (6), let L_{0} be a line of π, and P_{1}, P_{2}, \cdots, P_{n+1} the $n+1$ points of L_{0}. Each of P_{1}, \cdots, P_{n+1} is on L_{0} and n other lines. In this way we obtain all the lines of π, and there are $1+(n+1) n=n^{2}+n+1$ lines in π. Hence property (1) implies the remaining properties. By duality (2) implies the remaining properties. Trivially, (3) implies (1), and (4) implies (2). If (5) holds, then some line has $m+1$ points, where m is an integer, and we conclude that π has $m^{2}+m+1=n^{2}+n+1$ points, whence $m=n$ and (5) implies (1). Similarly, (6) implies (2).

20.2. Collineations and the Theorem of Desargues.*

A plane π_{1} is said to be isomorphic to a plane π_{2} if there is a one-to-one correspondence $P_{1} \rightleftarrows P_{2}=\left(P_{1}\right) \alpha$ between the points $\left\{P_{1}\right\}$ of π_{1} and
the points $\left\{P_{2}\right\}$ of π_{2} and a one-to-one correspondence $k_{1} \rightleftarrows k_{2}=\left(k_{1}\right) \beta$ between the lines $\left\{k_{1}\right\}$ of π_{1} and the lines $\left\{k_{2}\right\}$ of π_{2}, such that if $P_{1} \in k_{1}$, then $\left(P_{1}\right) \alpha \boldsymbol{\epsilon}\left(k_{1}\right) \beta$. Clearly, each of the correspondences α or β fully determines the other, and a one-to-one correspondence of points $P_{1} \rightleftarrows\left(P_{1}\right) \alpha$ will determine an isomorphism if whenever three points P_{1}, Q_{1}, R_{1} of π_{1} are on a line, then $\left(P_{1}\right) \alpha,\left(Q_{1}\right) \alpha$, and $\left(R_{1}\right) \alpha$ are on a line. Similarly, a one-to-one correspondence β of lines will determine an isomorphism if every set of three concurrent lines is mapped onto a set of three concurrent lines. A homomorphism of planes would be a many-to-one correspondence of points and lines preserving incidence, but this does not seem to be as valuable a concept in planes as in other subjects.

An isomorphism a of a plane π with itself is called a collineation. The collineations of a plane form a group.

A plane π_{1} which can be embedded in a three-dimensional space E_{3} always has a large family of collineations. Let π_{2} be another plane in E_{3}, and let L be the line in which π_{2} intersects π_{1}. Take P_{1} and P_{2} as any two points of E_{3} not lying in either π_{1} or π_{2}. We define a perspectivity of π_{1} onto π_{2} with center P_{1}. This is a mapping of an arbitrary point Q of π_{1} onto a point R of π_{2}, written as

$$
\begin{equation*}
Q \xrightarrow{P_{1}} R, \tag{20.2.1}
\end{equation*}
$$

where R is defined as that point of π_{2} in which the line $P_{1} Q$ pierces π_{2}. Here $P_{1} Q R$ are on a line, with $Q \in \pi_{1}, R \epsilon \pi_{2}$. The perspectivity (20.2.1) is an isomorphism of π_{1} onto π_{2}, since if M_{1} is a line of π_{1}, the plane π_{3} containing M_{1} and P_{1} intersects π_{2} in a line M_{2}, and the perspectivity maps the points of M_{1} onto the points of M_{2}. Furthermore, every point of L is mapped onto itself, this being the intersection of π_{1} and π_{2}. If we follow the perspectivity (20.2.1). by a perspectivity with center P_{2} mapping π_{2} onto π_{1},

$$
\begin{equation*}
R \xrightarrow{P_{2}} S, \tag{20.2.2}
\end{equation*}
$$

this is also an isomorphism of π_{2} onto π_{1}, leaving all points of L fixed. The combination of the two perspectivities

$$
\begin{equation*}
Q \xrightarrow{P_{1}} R \xrightarrow{P_{2}} S, \tag{20.2.3}
\end{equation*}
$$

will be a collineation α of π_{1} fixing all points of L. In addition let O be the point in which the line $P_{1} P_{2}$ intersects π_{1}. We shall have

$$
\begin{equation*}
O \xrightarrow{P_{1}} T \xrightarrow{P_{2}} O \tag{20.2.4}
\end{equation*}
$$

since $P_{1} P_{2} O T$ are on a line, whence $(0) \alpha=O$. Furthermore, let k be any line through 0 . If Q is a point of k, then in (20.2.3). R will be a point in the plane π_{4} containing the intersecting lines k and $P_{1} P_{2} O T$, whence also S in (20.2.3) will be a point of π_{4} and hence a point of k. Thus α takes every line through 0 into itself. Such a collineation α is called a perspective collineation and sometimes a perspectivity. The line L, all of whose points are fixed by α, is called the axis of the collineation, and the point 0 through which every line is fixed is called the center of the collineation. The center 0 may or may not lie on the axis L. If we wish to make a distinction in these two cases, then if the center 0 lies on the axis L, the collineation is called an elation, while if 0 does not lie on L, the collineation is called a homology. The nature of perspective collineations can be seen in the accompanying diagram, labeled Theorem of Desargues.

Fig. 9. Theorem of Desargues.
Suppose we have a perspective collineation α with center 0 and axis L and that A_{1} is a point of π not on L and different from 0 . Then $\left(A_{1}\right) \alpha=A_{2}$ must be on
the line $O A_{1}$. Now given $0, L$, and A_{1} and A_{2} with $O A_{1} A_{2}$ on a line but neither A_{1} nor A_{2} on L or equal to 0 , then we assert that with 0 as center, L as axis, and $\left(A_{1}\right) \alpha=A_{2}$, the collineation α is completely determined, for let B_{1} be any further point of π not on $O A_{1} A_{2}$ or L. Let $A_{1} B_{1}$ intersect L in C_{3}. Then $\left(B_{1}\right) \alpha$ must lie on $O B_{1}$. But also, since A_{1}, B_{1}, C_{3} were collinear, $\left(A_{1}\right) \alpha=A_{2},\left(B_{1}\right) \alpha$, and $\left(C_{3}\right) \alpha=C_{3}$ must also be collinear. Hence $\left(B_{1}\right) \alpha$ must lie on both $O B_{1}$ and $C_{3} A_{2}$, whence $\left(B_{1}\right) \alpha=B_{2}$ is the intersection of $O B_{1}$ and $C_{3} A_{2}$. Thus from $\left(A_{1}\right) \alpha=A_{2}$ the image of every point B_{1} not on $O A_{1} A_{2}$ is uniquely determined. But with $\left(B_{1}\right) \alpha=B_{2}$, the images of points on $O A_{1} A_{2}$ can be uniquely determined.

Now let C_{1} be a point not on $O A_{1} A_{2}$ or on $O B_{1} B_{2}$. Then let $B_{1} C_{1}$ meet L in A_{3} and $A_{1} C_{1}$ meet L in B_{3}. Then $\left(C_{1}\right) \alpha=C_{2}$ is determined as the intersection of $A_{2} B_{3}$ and $O C_{1}$. But since $B_{1} C_{1} A_{3}$ are on a line, then also $\left(B_{1}\right) \alpha=B_{2},\left(C_{1}\right) \alpha=C_{2}$, and $\left(A_{3}\right) \alpha=A_{3}$ are on a line. This gives us the nontrivial configuration of our figure, known as the configuration of Desargues. The existence of this configuration is called the Theorem of Desargues. We shall say that triangles A_{1}, B_{1}, C_{1} and A_{2}, B_{2}, C_{2} are perspective with respect to a center 0 if corresponding vertices are on lines through 0 , i.e., that $O A_{1} A_{2}, O B_{1} B_{2}$, and $O C_{1} C_{2}$ are lines. The triangles are perspective with respect to an axis L if corresponding sides intersect in points of L.

Theorem 20.2.1 (Theorem of Desargues). If two triangles A_{1}, B_{1}, C_{1} and A_{2}, B_{2}, C_{2} are perspective with respect to a center 0 , then corresponding sides $A_{1} B_{1}$ and $A_{2} B_{2}, A_{1} C_{1}$ and $A_{2} C_{2}, B_{1} C_{1}$ and $B_{2} C_{2}$ meet in points C_{3}, B_{3}, and A_{3} lying on a line L.

The validity of the Theorem of Desargues in a plane π is equivalent to the existence of all possible perspective collineations in π. This we see in the following theorems:

Theorem 20.2.2. In a plane π given a line L, a point O, and two points A_{1}, A_{2} different from 0 and not lying on L, and such that $O A_{1} A_{2}$ are on a line. Then there is at most one perspective collineation α of π with center 0 and axis L such that $\left(A_{1}\right) \alpha=A_{2}$. If π can be embedded in a three-dimensional space there is one such collineation.

Proof: We saw above that given the center O, axis L, and $\left(A_{1}\right) \alpha=A_{2}$, where $O A_{1} A_{2}$ are on a line, then the perspective collineation α is completely determined. Hence there is at most one such collineation in π. Now suppose that π can be embedded in a three-dimensional space E_{3}. Take a plane π_{2} in E_{3} intersecting π in L and choose some point P_{1} of E_{3} not on π or π_{2}. Join P_{1} to O and let $P_{1} O$ intersect π_{2} in T. (See the figure.)

Fig. 10. Perspectivities.
If $A_{1} P_{1}$ intersects π_{2} in Q, then Q and A_{2} are in the plane π_{3} of $O P_{1}$ and $O A_{1} A_{2} . \pi_{3}$ is the plane of the figure. Hence $A_{2} Q$ intersects $O P_{1}$ in a point P_{2}. Now P_{2} is not in π_{2}, since then it would be T and A_{2} would coincide with X, the intersection of $O A_{1} A_{2}$ and the line L, contrary to our assumption that A_{2} was not on L. Similarly, since A_{2} is not O, P_{2} is not on π_{1}. Now we see that the perspective collineation α

$$
\pi \xrightarrow{P_{1}} \pi_{2} \xrightarrow{P_{2}} \pi
$$

has L as its axis and O as its center; also we have $A_{1} \xrightarrow{P_{1}} Q \xrightarrow{P_{2}} A_{2}$. Hence $A_{2}=\left(A_{1}\right) \alpha$, as was required, and the collineation of the theorem does exist.

Theorem 20.2.3. The Theorem of Desargues is valid in a plane π if, and only if, all possible perspective collineations exist in π.

Corollary 20.2.1. The Theorem of Desargues is valid in any plane π which can be embedded in a projective three space.

Proof: Once the theorem is established, the corollary will follow from the previous theorem.

Suppose first that all possible perspective collineations exist in π. We are given the two triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ such that the three lines $A_{1} A_{2}, B_{1} B_{2}$, and $C_{1} C_{2}$ meet in a point O. (See figure for Theorem of Desargues.) Let $A_{1} B_{1}$ and $A_{2} B_{2}$ meet in a point C_{3}, and $A_{1} C_{1}$ and $A_{2} C_{2}$ meet in a point B_{3}. Call the line joining B_{3} and C_{3} the line L. Then, by our hypothesis, there is a perspective collineation α with center O, axis L, and such that $\left(A_{1}\right) \alpha=A_{2}$. Then, by our construction, $\left(B_{1}\right) \alpha=B_{2}$ and $\left(C_{1}\right) \alpha=C_{2}$. Let $B_{1} C_{1}$ meet L in A_{3}. Then $\left(B_{1}\right) \alpha=$ $B_{2},\left(C_{1}\right) \alpha=C_{2}$, and $\left(A_{3}\right) \alpha=A_{3}$ lie on a line whence A_{3}, the intersection of $B_{1} C_{1}$ and $B_{2} C_{2}$, lies on the line L with B_{3} and C_{3}. This proves the Theorem of Desargues.

Now suppose conversely that the Theorem of Desargues is valid in π. We are given the line L and the points O, A_{1}, A_{2} which are distinct and on a line, and A_{1} and A_{2} are not on L (though O may be). We define a mapping α of the points of π and show that it is a collineation. (We refer again to the figure of the Theorem of Desargues.) For any point X on L we put $(X) \alpha=X$. We also put $(O) \alpha=O$ and $\left(A_{1}\right) \alpha=A_{2}$. If B_{1} is not on L or on $O A_{1} A_{2}$, let $A_{1} B_{1}$ meet L in C_{3}. If $A_{2} C_{3}$ intersects $O B_{1}$ in B_{2}, put $\left(B_{1}\right) \alpha=B_{2}$. This defines the mapping α for all points of π except those of $O A_{1} A_{2}$. Now if $A_{1} C_{1}$ meets L in B_{3}, then if $A_{2} B_{3}$ meets $O C_{1}$ in C_{2}, we put $C_{2}=\left(C_{1}\right) \alpha$. If $O A_{1}, O B_{1}$, and $O C_{1}$ are distinct lines, then the triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ are perspective with respect to the center O, and by the Theorem of Desargues, corresponding sides meet in points on a line. But C_{3} and B_{3} are on L, whence $B_{1} C_{1}$ and $B_{2} C_{2}$ intersect in a point A_{3} of L. But if we had started with $\left(B_{1}\right) \beta=B_{2}$, we would have defined $\left(C_{1}\right) \beta$ as the intersection of $B_{2} A_{3}$ with $O C_{1}$. But this is C_{2}, and hence we have $\left(C_{1}\right) \alpha=\left(C_{1}\right) \beta$ $=C_{2}$ as a consequence of either $\left(A_{1}\right) \alpha=A_{2}$ or $\left(B_{1}\right) \beta=B_{2}$. Thus the mappings α $=\beta$ agree on all lines such as $O C_{1} C_{2}$ for which they are both defined. But α is defined on all of $O B_{1} B_{2}$ and β is defined on all of $O A_{1} A_{2}$. In this way our mapping α is defined for all points of π.

Again from the same figure with $\left(A_{1}\right) \alpha=A_{2}$ and k an arbitrary line not through O or A_{1}, let k intersect L in A_{3} and let B_{1}, C_{1} be two further points on k. Then, by our definition, $\left(B_{1}\right) \alpha=B_{2},\left(C_{1}\right) \alpha=C_{2}$, and $\left(A_{3}\right) \alpha=A_{3}$, and by the Theorem of Desargues applied to the triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$, we conclude that B_{2}, C_{2}, and A_{3} are on a line. This tells us that the mapping α takes points C_{1} of $k=A_{3} B_{1}$ into points of $A_{3} B_{2}$, except possibly if C_{1} is the intersection of $A_{3} B_{1}$ with $O A_{1} A_{2}$. But if $C_{1}=D_{1}$ is the intersection of $B_{1} A_{3}$ with $O A_{1} A_{2}$, then from $\left(B_{1}\right) \alpha=\left(B_{1}\right) \beta=B_{2}$ we define the image $\left(D_{1}\right) \beta=D_{2}$ as the intersection D_{2} of $A_{3} B_{2}$ with $O A_{1} A_{2}$. Hence the mapping takes all the points of k onto the points of $A_{3} B_{2}$. Clearly, the mapping takes L into itself and lines through O into themselves. Hence α is the required collineation.

We have indeed proved a more precise result than Theorem 20.2.3. This we state as a theorem.

Theorem 20.2.4. In a plane ir there are all possible perspective collineations with a given center O and given axis L if, and only if, the Theorem of Desargues is valid for all triangles perspective with respect to O and having two pairs of corresponding sides intersect on L whence the third pair also intersect on L.

Not every plane π can be embedded in a three-dimensional space, and there are cases in which Theorem 20.2.4 is applicable for a limited number of axes L and centers O.

20.3. Introduction of Coordinates.

Let π be any projective plane and choose four points X, Y, O, I, no three on a line. Call the line $X Y$ the line of infinity L_{∞}. Call the line $O I$ the line $y=x$.

On the line $O I$ give coordinates $(0,0)$ to $O,(1,1)$ to I and the single coordinate (1) to the point C which is the intersection of $O I$ and $X Y$. For other points of $O I$ assign coordinates (b, b), taking different symbols b for different points. For a point P not on L_{∞} let $X P$ intersect $O I$ in (b, b) and $Y P$ intersect $O I$ in (a, a). Then assign coordinates (a, b) to P. This rule reassigns the same coordinates to points $O I$. Let the line joining $(0,0)$ and $(1, m)$ intersect L_{∞} in a point M. Assign to M the single coordinate (m), which we may think of
intuitively as a slope. We have now assigned coordinates to every point except Y, and to this we arbitrarily assign the single coordinate (∞).

Fig. 11. Introduction of coordinates.
We shall use the lines of our plane to define algebraic operations on the system of coordinates. This algebraic system will be a ternary ring, and every line of π except L_{∞} will have an equation expressible in terms of the operations of the ternary ring. If (x, y) is a finite point of $O I$, we shall have $y=x$, and so, we take $y=x$ as the equation for $O I$. A line through Y different from L_{∞} will have the property that all its finite points (x, y) have the same x coordinate, say, $x=c$, and this we take as its equation.

If (x, y) is a finite point of the line joining $C=(1)$ and $(0, b)$ we define a binary operation of addition by putting

$$
\begin{equation*}
y=x+b \tag{20.3.1}
\end{equation*}
$$

and taking this as the equation of the line. If (x, y) is a finite point of the line joining $O=(0,0)$ and (m), we define a binary operation of multiplication, putting

$$
\begin{equation*}
y=x m \tag{20.3.2}
\end{equation*}
$$

and taking this as the equation of the line. In general, any line not through Y will intersect L_{∞} in some point (m) and $O Y$ in some point $(0, b)$. If $Q=(x, y)$ is a point of this line, we define a ternary operation

$$
\begin{equation*}
y=x \cdot m \circ b \tag{20.3.3}
\end{equation*}
$$

and take this as the equation of the line. Thus both addition and multiplication are special cases of the ternary operation, and we see that

$$
\begin{align*}
x+b & =x \cdot 1 \circ b \tag{20.3.4}\\
x m & =x \cdot m \circ 0
\end{align*}
$$

The elements 0 and 1 have the familiar properties

$$
\begin{align*}
0+a & =a+0=a \\
0 m & =m 0=0 \tag{20.3.5}\\
1 m & =m 1=m
\end{align*}
$$

The plane π can be represented by a ternary ring R whose ternary operation satisfies certain properties, and conversely, a ternary ring with these properties uniquely determines a plane. This we state as our main theorem on ternary rings.

Theorem 20.3.1 For every choice of four points X, Y, O, I, no three on a line in a plane π, there is determined a ternary ring R. The elements of R include a zero, 0 , and a unit $1 \neq 0$. The ternary operation $x \cdot m_{\circ} b$ satisfies the following laws:

T1. $0 \cdot m \circ c=a \cdot 0 \circ c=c$.
$T 2.1 \cdot m \circ 0=m \cdot 1 \circ 0=m$.
T3. Given a, m, c, there exists exactly one z such that $a \cdot m \circ z=c$.
T4. If $m_{1} \neq m_{2}, b_{1}, b_{2}$ are given, there exists a unique x such that
$x \cdot m_{1} \circ b_{1}=x \cdot m_{2} \circ b_{2}$.
T5. If $a_{1} \neq a_{2}, c_{1}, c_{2}$ are given, then there exists a unique pair m, b such that

$$
a_{1} \cdot m_{\circ} b=c_{1} \quad \text { and } \quad a_{2} \cdot m_{\circ} b=c_{2} .
$$

Proof: Having chosen four points X, Y, O, I, no three on a line in a plane π, we construct a ternary ring as before with an operation $x \cdot m \circ b$. Properties $T 1$ and $T 2$ are immediate consequence of the definition. $T 3$ says that the line joining (m) and (a, c) intersects $O Y$ in a unique point $(0, z) . T 4$ says that two lines $y=x \cdot m_{1} \circ b_{1}$ and $y=x \cdot m \circ b$ with different slopes m_{1} and m_{2} intersect in a unique finite point. $T 5$ says that if $\left(a_{1}, c_{1}\right)$ and $\left(a_{2}, c_{2}\right)$ are two finite points with $a_{1} \neq a_{2}$, then there is a unique line of the form $y=x \cdot m \circ b$ passing through them.

Conversely, suppose that a ternary ring R is given, satisfying $T 1, \cdots, T 5$. Let us construct finite points (a, b) and infinite points (m) and (∞), where a, b, m range over the elements of R. A line L_{∞} is to contain all the infinite points $(m),(\infty)$ and no other points. All points (c, y), with c fixed and also (∞), are to be the points of a line $x=c$. The point (m) and points (x, y) such that $y=x \cdot m \circ b$ for fixed m and b are to be the points of the line $y=x \cdot m 。 b$. There are several cases to be considered, but the net result of the above axioms is easily found to be that two distinct points lie on one and only one line, and that two distinct lines intersect in one and only one point. Also the four points $(\infty),(0),(0,0)$ and $(1,1)$ are such that no three are on a line. We give only one verification, others being of the same type. Consider two distinct lines $y=x \cdot m_{\circ} b_{1}$ and $y=x \cdot m \cdot b_{2}$. These both contain the infinite point (m) but no other infinite point. If both also were to contain a finite point (a, c) we would have $a \cdot m_{\circ} b_{1}=c=a \cdot m_{\circ} \dot{\partial}_{2}$, which would conflict with $T 3$ since $b_{1} \neq b_{2}$.

20.4. Veblen-Wedderburn Systems. Hall Systems.

We shall investigate the properties of planes with certain collineation groups and relate these properties to coordinatizing ternary rings.

Lemma 20.4.1. A collineation in a projective plane π which fixes every point on each of two distinct lines is the identical collineation.

Proof: Let the collineation α fix every point on the lines L_{1} and L_{2}, and let L_{1} and L_{2} intersect in the point Q. Let P be any point of π not on L_{1} or L_{2}. Take
R and S as two points on L_{1} distinct from Q. Let $P R$ intersect L_{2} in T and $P S$ intersect L_{2} in U. Then R, S, T, U are fixed by α, and hence the lines $R T$ and $S U$ are fixed by α and thus also their intersection P. Hence not only the points of L_{1} and L_{2} but every point P not on L_{1} or L_{2} is fixed by α, and so, every point of the plane is fixed and α is the identical collineation.

Lemma 20.4.2. A collineation in a projective plane which fixes every point on one line and two points not on the line is the identical collineation.

Proof: Let α be a collineation fixing every point on a line L and two points P_{1} and P_{2} not on L. Let P be any point of the plane not on L and not on the line $P_{1} P_{2}$. Let $P_{1} P$ intersect L in Q_{1} and $P_{2} P$ intersect L in Q_{2}. Since P was not on $P_{1} P_{2}$ or L, the lines $P_{1} P Q_{1}$ and $P_{2} P Q_{2}$ are distinct. Since $P_{1}, Q_{1}, P_{2}, Q_{2}$ are distinct and fixed points, the lines $P_{1} Q_{1}$ and $P_{2} Q_{2}$ are fixed lines of α, and so, their intersection P is fixed. Hence α fixes every point on L and every point not on $P_{1} P_{2}$. Hence α fixes every point on L and on some line, say, $P_{1} Q_{1}$, through P_{1} but distinct from $P_{1} P_{2}$. Hence, by Lemma 20.4.1, α is the identical collineation.

Thus we see that a collineation fixing every point on a line can fix at most one point not on the line.

Theorem 20.4.1. Given a collineation α of a plane which fixes a line L and every point on L. Then there is a point C such that α fixes C and every line through C. If α is not the identity, then α fixes no further points or lines. Dually, if a collineation a fixes a point C and all the lines through C, then there is a line L such that α fixes L and all the points on L but has no further fixed points or lines if α is not the identity.

Proof: Let $\alpha \neq 1$ be a collineation of a plane π fixing every point of a line L. Then, from Lemma 20.4.2, α fixes at most one point not on L. Suppose first that α fixes one point C not on L. Then a line through C intersects L in a point Q different from C, and since both C and Q are fixed by α, the line $C Q$ is fixed by α, and so, every line through C is fixed by α. If there were a fixed line L_{2} besides L and the lines through C, then every point of L_{2} at the intersection of L_{2} and a line through C would be fixed, and by Lemma 20.4.1, α would be the identity. Equally, by Lemma 20.4.2, there can be no further points fixed by α.

Now suppose that α fixes no point not on L. Let P be a point not on L. Then $P \alpha$, the image of P under α, is different from P and not on L. Hence the line M $=P P \alpha$ intersects L in a point $C \neq P, P \alpha$. Thus $M=P C$ and $M \alpha=P \alpha C \alpha=P \alpha C$. But $P P \alpha C$ are on a line and so $M=M \alpha$. Thus every point P not on L lies on a fixed line M. Moreover, such a P could not lie on two distinct fixed lines, since then it would itself be fixed. Now if $M=P C$ is one fixed line, consider a point Q not on L or on M. Then Q also lies on a unique fixed line N. Now the intersection of M and N is a fixed point, and by hypothesis there are no fixed points not on L. Hence N must intersect M in the point C lying on L. Thus every fixed line passes through C. But an arbitrary line K through C, different from L, contains a point, say, R, not on L. But R lies on a fixed line which passes through C, and so, this fixed line must be $R C=K$. Thus every line through C is a fixed line. Here again if there were any fixed elements besides L and the points on it and C and the lines through, then by Lemmas 20.4.1 and 20.4.2, α would be the identity.

The rest of the theorem follows by duality.
Thus the collineations of the theorem are just the perspective collineations discussed in $\S 20.2$. These are sometimes called central collineations. If we wish to specify the center C and axis L, we say we have a $C-L$ collineation. Clearly all collineations with center C and axis L form a group. As in $\S \underline{20.2}$ we call the collineation an elation if the center C lies on the axis L, a homology if C does not lie on L.

Lemma 20.4.3. A central collineation α is completely determined by its center C, axis L and the mapping $P \rightarrow P \alpha$ of any point P not on L and different from C. P, P α and C must be collinear.

Proof: If there were two collineations α_{1} and α_{2} with center C and axis L and $P \alpha_{1}=P \alpha_{2}$, then $\alpha_{1} \alpha_{2}^{-1}$ would fix the points of L, have center C, and also fix P, whence by Theorem 2.4.1, $\alpha_{1} \alpha_{2}^{-1}=1$ and $\alpha_{1}=\alpha_{2}$. This is the assertion of the lemma.

Theorem 20.4.2. The product of two elations with the same axis L but different centers C_{1} and C_{2} is an elation with axis L and center $C_{3} \neq, C_{1}, C_{2}$.

Proof: Let α_{1} be an elation with center C_{1} lying on the axis L and α_{2} with center $C_{2} \neq C_{1}$ lying on L. Then $\alpha_{1} \alpha_{2}$ is a collineation fixing all points on L.

Hence, by Theorem 20.4.1, $\alpha_{1} \alpha_{2}=\alpha_{3}$ is a central collineation with axis L. To show that α_{3} is an elation, we must show that α_{3} does not fix any point not on L. If $P \alpha_{3}=P$, then $P \alpha_{1}=P \alpha_{2}^{-1}$. Here $C_{1}, P, P \alpha_{1}$ lie on a line and C_{2}, P, $P \alpha_{2}^{-1}$ lie on a line. Hence if $P \alpha_{1}=P \alpha_{2}^{-1}$, these lines would coincide and the intersections with L would coincide, giving $C_{1}=C_{2}$, contrary to hypothesis. Hence $\alpha_{3}=\alpha_{1} \alpha_{2}$ fixes no point not on L and hence is an elation with center C_{3} on L. If $C_{3}=C_{1}$, then $\alpha_{2}=\alpha_{1}^{-1} \alpha_{3}$ would be an elation with center C_{1} contrary to assumption. Hence $C_{3} \neq C_{1}$, and similarly, $C_{3} \neq C_{2}$.

Let us consider the group $G=G(C, L)$ of C - L central collineations. If $P \neq C$ and $P \notin L$, then for any $\alpha \in G, C, P, P \alpha$ are on a line. If for every Q on $C P$ with $Q \neq C, Q \notin L$ there is an $\alpha \in G$ such that $p_{\alpha}=Q$, we say that π is C - L transitive. This says that every conceivable $C-L$ collineation actually arises. Equivalently, the statement that π is $C-L$ transitive means that for a line M through $C, M \neq L$, the C - L collineations permute transitively the points of M except for C and the intersection of M and L. This will be true for any line $M \neq$ L passing through C.

By Theorem 20.4.2 all elations with axis L form a group $G(L)$. We call this group $G(L)$ the translation group with axis L.

Theorem 20.4.3 (Baer [10]). If for two different centers C_{1} and C_{2} on an axis L the elation groups $G\left(C_{1}, L\right)$ and $G\left(C_{2}, L\right)$ are different from the identity, then the entire translation group $G(L)$ is Abelian. Also every element $\neq 1$ of $G(L)$ is either (1) of infinite order or (2) of the same prime order p.

Proof: Suppose $\alpha_{1} \neq 1 \in G\left(C_{1}, L\right)$ and $\alpha_{2} \neq 1 \in G\left(C_{2}, L\right)$. Let

 P be any point not on L. Then we have the following lines:$$
\begin{aligned}
& L_{1}: C_{1}, P, P \alpha_{1}, L_{2}: C_{2}, P, P \alpha_{2} \\
& L_{1} \alpha_{2}: C_{1}, P \alpha_{2}, P\left(\alpha_{1} \alpha_{2}\right), L_{2} \alpha_{1}: C_{2}, P \alpha_{1}, P\left(\alpha_{2} \alpha_{1}\right)
\end{aligned}
$$

But $C_{2}, P \alpha_{2}$ and $\left(P \alpha_{1}\right) \alpha_{2}=P\left(\alpha_{1} \alpha_{2}\right)$ are on a line, and $C_{1}, P \alpha_{2}$ and $\left(P \alpha_{2}\right) \alpha_{1}=$ $P\left(\alpha_{2} \alpha_{1}\right)$ are on a line. Hence the intersection of the distinct lines $C_{2} P \alpha_{1}$ and $C_{1} P \alpha_{2}$ is $P\left(\alpha_{1} \alpha_{2}\right)$ and also $P\left(\alpha_{2} \alpha_{1}\right)$. Hence $P\left(\alpha_{1} \alpha_{2}\right)=P\left(\alpha_{2} \alpha_{1}\right)$ for every $P \notin L$. Hence $\alpha_{1} \alpha_{2}=\alpha_{2} \alpha_{1}$. Hence an element $\alpha_{1} \in G\left(C_{1}, L\right)$ permutes with every element α_{2} of any $G\left(C_{2}, L\right)$ with $C_{2} \neq C_{1}$. Suppose that $\beta_{1} \neq 1$ is another element of $G\left(C_{1}, L\right)$. Then $\beta_{1} \alpha_{2}$ is an elation with center $C_{3} \neq C_{1}, C_{2}$. Hence α_{1} permutes with $\beta_{1} \alpha_{2}$, and since α_{1} permutes with α_{2}, α_{1} also permutes
with β_{1}. Hence an $\alpha_{1} \neq 1$ of $G\left(C_{1}, L\right)$ permutes with every element of $G(L)$, and so $G(L)$ is Abelian. Examples exist showing that $G\left(C_{1}, L\right)$ need not be Abelian if every other $G\left(C_{\mathrm{i}}, L\right)=1$ with $\boldsymbol{C}_{\boldsymbol{i}} \boldsymbol{\in} L$.

If every element of $G(L)$ is of infinite order, then (1) holds. If $G(L)$ contains elements of finite order, then there is an element of prime order, say, $\alpha_{1} \in G\left(C_{1}, L\right), \alpha_{1}^{p}=1$. Now with $\alpha_{2} \neq 1 \in G\left(C_{2}, L\right), C_{2} \neq C_{1}$, we have $\quad \alpha_{1} \alpha_{2}=\alpha_{3} \in G\left(C_{3}, L\right), \quad C_{3} \quad \neq \quad C_{1}, \quad C_{2}$. Here $\left(\alpha_{1} \alpha_{2}\right)^{p}=\alpha_{2}^{p}=\alpha_{3}^{p}$ is an element common to $G\left(C_{2}, L\right)$ and $G\left(C_{3}, L\right)$ and hence the identity. Thus $\alpha_{2}^{p}=1$. Similarly, from $\alpha_{2}^{p}=1$, follows $\beta_{1}^{p}=1$ for any $\beta_{1} \in G\left(C_{1}, L\right)$. Hence every element of $G(L)$ except the identity is of order p.

Theorem 20.4.4. If a plane π is $C_{1}-L$ transitive and $C_{2}-L$ transitive for two centers $C_{1} \neq C_{2}$ on L, then π is C - L transitive for every $C \in L$.

Proof: Take a line $M \neq L$ through $C \neq C_{1}, C_{2}$ and let P and Q be any two points of M different from C. Let $P C_{1}$ and $Q C_{2}$ intersect in S. Then let $\alpha_{1} \in G\left(C_{1}, L\right)$ be such that $P \alpha_{1}=S$ and $\alpha_{2} \in G\left(C_{2}, L\right)$ be such that $S \alpha_{2}=$ Q. By $C_{1}-L$ and $C_{2}-L$ transitivity α_{1} and α_{2} exist. Here $\alpha_{1} \alpha_{2}=\alpha_{3}$ is an elation with axis L and $P, P \alpha_{3}=Q, C$ are on a line. Hence $\alpha_{3} \in G(C, L)$ and π is $C-L$ transitive.

Corollary 20.4.1. If π is $C_{1}-L$ and C_{2} - L transitive with $C_{1} \neq C_{2}$ points of L, then $G(L)$ contains every conceivable elation with center on L. If π is $C-L$ transitive for every $C \in L$, we say that π is a translation plane with respect to the axis L.

What is the meaning of elations in terms of properties of a ternary ring coordinatizing π ? Let us consider first the case in which π is $C-L$ transitive for a point C on L. We shall take the axis L as L_{∞} and the center as $Y=(\infty)$.

Fig. 12. Linearity theorem.
Theorem 20.4.5. A plane is $Y-L_{\infty}$ transitive if, and only if, in the corresponding coordinatizing ternary ring R we have

1) $a \cdot m_{0} b=a m+b$, and
2) Addition is a group.

Proof: Suppose that π is $Y-L_{\infty}$ transitive. In the figure let us take $Y Q V$ as $x=$ $0, V=(0,0), Q=(0, b), X=(0), T=(1), M=(m)$. Here $M Q$ is $y=x \cdot m \cdot b$. Take P on $M Q$ as $P=(a, a \cdot m \circ b)$. Draw $V M$ which is $y=x m, T Q$ which is $y=x+b$, and $Y P$ which is $x=a$. Then U, the intersection of $Y P$ and $V M$, is $U=(a, a m)$. Then draw $U X$ which is $y=a m . U X$ intersects $V T$ which is $y=x$ in $W=(a m, a m)$. Then $Y W$, which is $x=a m$ intersects $Q T$, which is $y=x+b$, in $R=(a m, a m+b)$. Now if it is true that $P R X$ lie on a line, since $R X$ is $y=a m+b$, we shall have from $P=(a, a \cdot m \circ b)$ $a \cdot m_{0} b=a m+b$. Hence we must show that $P R X$ lie on a line. By hypothesis π is $Y-L_{\infty}$ transitive. Let β be the $Y-L_{\infty}$ collineation fixing all points on L_{∞}, all lines through Y and on $x=0$ through Y such that $V \beta=Q$ or $(0,0) \beta=$ $(0, b)$. Then β fixes the lines $Y P U,(x=a) Y R W,(x=a m)$. Moreover, $(V M) \beta=$ $Q M,(V T) \beta=Q T$. Hence $U \beta=P, W \beta=R$, and of course, $X \beta=X$. But $U W X$ were on the line $y=a m$. Hence $U \beta, W \beta, X \beta$, or $P R X$ are on the line $y=a m+b$

Hence P is $(a, a m+b)$ and $a \cdot m \circ b=a m+b$, the first part of our theorem.

What is the effect of the collineation β determined by $(0,0) \beta=(0, b)$ on a general point (a, c) ? This we easily find in a few steps. Thus

$$
\begin{gathered}
y=x \rightarrow y=x+b, \\
x=c \rightarrow x=c \\
(c, c) \rightarrow(c, c+b), \\
y=c \rightarrow y=c+b, \\
x=a \rightarrow x=a \\
(a, c) \rightarrow(a, c+b) .
\end{gathered}
$$

Hence if $(0,0) \beta=(0, b)$ then

$$
(a, c) \beta=(a, c+b)
$$

Now if δ is the $Y-L_{\infty}$ collineation determined by

$$
(0,0) \delta=(0, d)
$$

we find in general $(u, v) \delta=(u, v+d)$.
For $\beta \delta$ we find

$$
(0,0)(\beta \delta)=[(0,0) \beta] \delta=(0, b) \delta=(0, b+d)
$$

Hence, generally, $(a, c)(\beta \delta)=[a, c+(b+d)]$. But $[(a, c) \beta] \delta=(a, c+b) \delta=[a$, $(c+b)+d]$. Hence addition satisfies the associative law

$$
c+(b+d)=(c+b)+d
$$

Since addition in a plane always has a zero and is a loop, it follows that addition will be a group. Hence we have proved (2).

Conversely, suppose that a ternary ring R of π satisfies

1) $a \cdot m \cdot b=a m+b$, and
2) Addition is a group.

For any $b \in R$ define a mapping $\beta=\beta(b)$ for points:

$$
\begin{aligned}
(\infty) & \rightarrow(\infty), \\
(m) & \rightarrow(m), \\
(a, c) & \rightarrow(a, c+b) .
\end{aligned}
$$

For lines:

$$
\begin{aligned}
L_{\infty} & \rightarrow L_{\infty}, \\
x=a & \rightarrow x=a \\
y=x m+t & \rightarrow y=x m+(t+b) .
\end{aligned}
$$

This is a collineation, since if (a, c) is on $y=x m+t$, then $c=a m+t$, whence

$$
c+b=(a m+t)+b=a m+(t+b)
$$

and so $(a, c+b)$ is on $y=x m+(t+b)$. The other verifications needed to show that β is a collineation are immediate. But this is a $Y-L_{\infty}$ collineation, taking (0 , 0) into ($0, b$). But since b was arbitrary, π is $Y-L_{\infty}$ transitive.

The following is the corresponding theorem for translation planes:
Theorem 20.4.6. A plane π is a translation plane with respect to the axis L_{∞} if, and only if, the corresponding ternary ring is a Veblen-Wedderburn system. This means that:

1) Addition is an Abelian group.
2) Multiplication (excluding 0) is a loop.
3) $(a+b) m=a m+b m$.
4) If $r \neq s, x r=x s+t$ has a unique solution x.
5) $a \cdot m \cdot b=a m+b$.

Proof: By Theorem 20.4.4 π will be a translation plane with axis L_{∞} if it is $Y-L_{\infty}$ transitive and also $X-L_{\infty}$ transitive. From Theorem 20.4.5, we know (5), $a \cdot m \cdot b=a m+b$ and that addition is a group. In the proof of Theorem 20.4.5 we showed the existence of an elation $\beta(b)$ for every $b \in R$ which maps an arbitrary (a, c) into $(a, c+b)$. By Theorem 20.4.3 the entire translation group is Abelian, whence

$$
\beta(b) \beta(d)=\beta(d) \beta(b),
$$

and so $(a, c+b+d)=(a, c+d+b)$, whence $b+d=d+b$ and the addition in R is Abelian, proving (1).

Let b be an arbitrary element of R and consider the elation with center X taking $(0,0)$ into $(b, 0)$. We have, in turn,

$$
\begin{aligned}
(0,0) & \rightarrow(b, 0) \\
y=x & \rightarrow y=x-b, \\
y=a & \rightarrow y=a \\
(a, a) & \rightarrow(a+b, a) \\
x=a & \rightarrow x=a+b, \\
y=a m & \rightarrow y=a m \\
(a, a m) & \rightarrow(a+b, a m) .
\end{aligned}
$$

Also, since $(0,0) \rightarrow(b, 0)$,

$$
y=x m \rightarrow y=x m-b m
$$

But then, since $(a, a m)$ is on $y=x m$, we have $(a+b, a m)$ on $y=x m-b m$, whence

$$
a m=(a+b) m-b m
$$

and so, $a m+b m=(a+b) m$. This proves the distributive law (3).
In a plane multiplication is always a loop, and condition (4) says that if $r \neq$ s, the lines $y=x r$ and $y=x s+t$ intersect in a unique finite point.

A system of elements with binary operations of addition and multiplication satisfying conditions (1), (2), (3), (4) is called a Veblen-Wedderburn system, since this was first described in a paper [1] by these authors.

We show that, conversely, any Veblen-Wedderburn system R may be used as the coordinate system of a translation plane with axis L_{∞}. We take as our points: (1) the finite points (a, b) with a, b arbitrary elements of R; (2) the infinite points (m) with $m \in R$; and (3) the point $Y=(\infty)$. As our lines we take (1) L_{∞} with points (∞) and (m); (2) lines $x=c$ containing (∞) and all points (c, d); and (3) lines $y=x m+b$ containing the points (m) and $(a, a m+b)$ for every $a \in R$. It is now straight forward to verify that there is a unique line joining any two distinct points, a unique point lying on two distinct lines, and that of the four points $(0,0),(1,1),(\infty)$, and (0), no three are on a line. This
verification involves several cases and we need condition (4) to show that lines $y=x r+b$ and $y=x s+c$ with $r \neq s$ intersect in a unique finite point.

For a Veblen-Wedderburn plane we easily verify that the mapping of finite points $(x, y) \rightarrow(x+r, y+s)$ is a collineation for any r and s, fixing all points on L_{∞} and for finite lines mapping $x=c \rightarrow x=r+c, y=x m+b \rightarrow y=x m-$ $r m+s+b$. If $s=r t$ this collineation is an elation with axis L_{∞} and center (t). Hence a Veblen-Wedderburn plane is a translation plane with axis L_{∞}.

It is, of course, true that any associative division ring is a VeblenWedderburn system, and even any nonassociative division ring. A VeblenWedderburn system in which the multiplication is associative is called a nearfield. This will be considered later. It will be remarked here and illustrated later (in $\S 20.9$) that nonisomorphic Veblen-Wedderburn systems may coordinate the same plane. For if we alter our choice of the points X and Y on the line L_{∞} for which π is a translation plane, then the coordinatizing ternary ring will, by Theorem 2.4.6, be a Veblen-Wedderburn system, but not all such systems need be isomorphic.

A class of Veblen-Wedderburn systems known as Hall [2] systems is easily constructed. Suppose we have a field F such that there exists a quadratic polynomial $x^{2}-r x-s$ irreducible over F. Then we may construct a VeblenWedderburn system J over F.

Theorem 20.4.7. Given a field F and a quadratic polynomial $f(x)=x^{2}-$ $r x-s$ irreducible over F. Then the set of elements $a+u b, a, b \in F$ is a Veblen-Wedderburn system J under the following rules:

1) $\left(a_{1}+u b_{1}\right)+\left(a_{2}+u b_{2}\right)=\left(a_{1}+a_{2}\right)+u\left(b_{1}+b_{2}\right)$.
2) For $c \in F$ put $(a+u b) c=a c+u(b c)$.
3) For $z=a+u b$ where $a, b \in F, b \neq 0$, and $w=c+z d, c, d \in F$, put

$$
\begin{aligned}
w z & =d s+z(c+d r) \\
& =a c+a d r+d s+u(b c+b d r)
\end{aligned}
$$

Under these rules J is a Veblen-Wedderburn system satisfying the distributive law $(x+y) z=x z+y z$. Elements $\mathcal{C} \in F$ have the property that $c x=x c, c(x y)=$ $(c x) y=(x c) y$. Moreover, every $z \notin F$ satisfies the equation $z^{2}-r z-s=0$.

Proof: Addition is well defined and is clearly an Abelian group. Multiplication is well defined, but there are two essentially different rules for a product $x y$: rule (2) for $y=c \in F$, and rule (3) for $y=z \notin F$. The
distributive law $(x+y) z=x z+y z$ holds, since these products are all calculated by rule (2) if $y \notin F$ and all by rule (3) if $m \notin F$, and each of these rules separately satisfies this distributive law.

We note that if $m \in F$, rule (3) gives the product $z^{2}=r z+s$. Also, rule (3) gives $c z=z c$ when $n \notin F$. Trivially, $c x=x c$ with $c, n=c \in F$. The unit 1 of F is a unit for J. To show that multiplication is a loop, we must show that in $x y=v$ any two of $x, y, v($ all $\neq 0)$ uniquely determine the third. Here x and y determine $x y=v$ uniquely, using rule (2) if $v_{2} \in F$ and rule (3) if $y \notin F$, and with $x \neq 0, y \neq 0$ we readily verify that $v \neq 0$, using in (3) the fact that $b \neq 0$ and $s \neq 0$. Given $y \neq 0$ and $v \neq 0$, the appropriate rule (2) or (3) uniquely determines $x \neq 0$, satisfying $x y=v$.

The situation is a little more complicated if we are given $x \neq 0$ and $v \neq 0$. Write $x=a+u b, v=c+u d$ with $a, b, c, d \in F$. If $a d-b c=0$, then there is a unique $f \neq 0, f \in F$ such that $a f=c$ and $b f=d$, whence $x f=v$, and this is the only element of J satisfying this relation. Now suppose $a d-b c \neq 0$. If there were a $y=y_{1}+u y_{2}$ with $y_{1}, y_{2} \in F, y_{2} \neq 0$, we would have $x=\left(a-b y_{1} y_{2}^{-1}\right)+$ $y\left(b y_{2}^{-1}\right), x y=s b y_{2}^{-1}+y\left(a-b y_{1} y_{2}^{-1}+r b y_{2}^{-1}\right)$, and $v=\left(c-d y_{1} y_{2}^{-1}\right)+y\left(d y_{2}^{-1}\right)$. Here $x y=v$ yields the relations:

$$
\begin{aligned}
& a y_{2}-b y_{1}=d-r b \\
& c y_{2}-d y_{1}=s b .
\end{aligned}
$$

Since $a d-b c \neq 0$ these equations do have a unique solution for y_{1} and y_{2}, and $y_{2}=\left(d^{2}-r b d-s b^{2}\right) /(a d-b c)$. Here $y_{2} \neq 0$, since because $x^{2}-r x-s$ is irreducible over F, we cannot have $d^{2}-r b d-s b^{2}=0$ with d, b elements of F not both zero. The values obtained for y_{1}, y_{2} will yield an element $y \notin F$ satisfying $x y=v$. This shows that under multiplication, the nonzero elements of J form a loop.

To show that when $m \neq n, x m=x n+v$ has a unique solution, it is enough to find a solution, since if there were two solutions x_{1} and x_{2}, we would have (x_{1} $\left.-x_{2}\right) m=\left(x_{1}-x_{2}\right) n$, contrary to the loop property of multiplication. It is also easy to find a solution if m and n are both in F. Hence suppose $m \notin F$. (If $m \in F, n \notin F$, we consider $x n=x m-v$.) We may express n and v in terms of m. Suppose $n=c \in F, v=v_{1}+m v_{2}, v_{1}, v_{2} \in F$. If $x=x_{1}+m x_{2}$, then we find

$$
\begin{aligned}
-c x_{1}+s x_{2} & =v_{1} \\
x_{1}+(r-c) x_{2} & =v_{2}
\end{aligned}
$$

which is solvable, since by the irreducibility of $x^{2}-r x-s$ the determinant $c^{2}-$ $r c-s$ is not zero. Finally if $n=a+m b, v=v_{1}+m v_{2}$ and we put $x=x_{1}+m x_{2}$, then we have $-a x_{1}+\left(a^{2} b^{-1}-a b^{-1} r-b^{-1} s+s\right) x_{2}=v_{1},(1-b) x_{1}+a x_{2}=v_{2}$.

Here the determinant is $-b^{-1}\left[a^{2}-r a(1-b)-s(1-b)^{2}\right]$ and is not zero since $b \neq 0$ and $x^{2}-r x-s$ is irreducible. Hence a solution exists and $x m=x n+$ v has a unique solution x. Thus J is a Veblen-Wedderburn system.

20.5. Moufang and Desarguesian Planes.

In the preceding section it was shown that a plane can be coordinatized by a Veblen-Wedderburn system if, and only if, it is a translation plane with respect to one line, taken as L_{∞}. What can be said of the plane and its coordinates if it is a translation plane with respect to more than one line? This we shall answer in this section.

Theorem 20.5.1. If a plane π is a translation plane with respect to two lines intersecting in a point Q, then it is a translation plane for every line of the pencil of lines passing through Q

Corollary 20.5.1. If π is a translation plane with respect to three lines not passing through a common point, then it is a translation plane for every line.

Proof: For the corollary we note that a family of lines, which with any two lines contains the pencil of lines through their intersections, is necessarily the family of all lines in the plane if it contains three lines not through a common point.

Suppose that L_{1} and L_{2} are two lines intersecting in a point Y and that π is a translation plane with respect to both L_{1} and L_{2}. Let L_{3} be a third line passing through Y and let C be any point of L_{3} different from Y. Let $R C S$ be any line through C different from L_{3} and intersecting L_{1} in R and L_{2} in S. Then there is an elation α with axis L_{1} and center R taking S into C and L_{2} into L_{3}. Since π has all elations with axis L_{2} and center S, then the linearity theorem configuration is
valid for all cases with S as center and L_{2} as axis. The collineation α takes all these configurations into all linearity theorem configurations with center C and axis L_{3}. Hence in π there are all possible elations with center C and axis L_{3}. Since this argument is valid for every point of L_{3} different from Y, then by the corollary to Theorem 20.4.4, π is a translation plane with axis L_{3}.

Theorem 20.5.2. A plane π is a translation plane for every line passing through the point $Y=(\infty)$ if, and only if, (1) its finite lines are given by linear equations $x=c$ and $y=x m+b$, and (2) the coordinates satisfy the following laws:
2.1) Addition is an Abelian group.
2.2) $(a+b) m=a m+b m$.
2.3) $a(s+t)=a s+a t$.
2.4) Each $a \neq 0$ has an inverse a^{-1} such that $a a^{-1}=1=a^{-1} a$.
2.5) $\quad a^{-1}(a b)=b$.

Proof: Suppose that π is a translation plane for every line through $Y=(\infty)$. This includes L_{∞}, and so by Theorem 20.4.6, we know that the linearity conditions (1) are satisfied and that the coordinates are a Veblen-Wedderburn system. This gives conditions (2.1) and (2.2) of the theorem. The remaining three conditions must be proved.

Consider the elation with $Y=(\infty)$ as center, $x=0$ as axis, which maps the point (0) onto the point (m).

Here all points $(0, b)$ are fixed and the lines L_{∞} and $x=c$ are fixed. We find in turn,

$$
\begin{aligned}
(0) & \rightarrow(m) \\
(0, b) & \rightarrow(0, b) \\
y=b & \rightarrow y=x m+b, \\
x=a & \rightarrow x=a \\
(a, b) & \rightarrow(a, a m+b)
\end{aligned}
$$

This gives the mapping for an arbitrary finite point.
In particular

$$
(1, t) \rightarrow(1, m+t)
$$

and

$$
(0,0) \rightarrow(0,0)
$$

whence

$$
y=x t \rightarrow y=x(m+t)
$$

But

$$
(a, a t) \rightarrow(a, a m+a t)
$$

and since $(a, a t)$ is on $y=x t$, we have $(a, a m+a t)$ on $y=x(m+t)$, whence

$$
a m+a t=a(m+t)
$$

the distributive law (2.3).
Now consider the elation with center $(0,0)$ and axis $x=0$, which takes (0) to $(-1-a, 0)$. Here

$$
\begin{aligned}
& (0) \rightarrow(-1-a, 0) \\
& (0,1+a) \rightarrow(0,1+a)
\end{aligned}
$$

whence $y=1+a \rightarrow y=x+1+a$.

$$
\begin{aligned}
& (0) \rightarrow(-1-a, 0) \\
& (0, b+a b) \rightarrow(0, b+a b)
\end{aligned}
$$

whence $y=b+a b \rightarrow y=x b+b+a b$.

$$
\begin{aligned}
& y=1+a \rightarrow y=x+1+a \\
& y=x(1+a) \rightarrow y=x(1+a)
\end{aligned}
$$

whence

$$
(1,1+a) \rightarrow(d, d+1+a) \text { if } a \neq 0
$$

where $d(1+a)=d+1+a$.

Also

$$
\begin{aligned}
& (\infty) \rightarrow(\infty) \\
& (1,1+a) \rightarrow(d, d+1+a)
\end{aligned}
$$

whence $x=1 \rightarrow x=d$.
Now

$$
\begin{aligned}
& y=x(b+a b) \rightarrow y=x(b+a b), \\
& y=b+a b \rightarrow y=x b+b+a b
\end{aligned}
$$

and so

$$
(1, b+a b) \rightarrow(d, d[b+a b])
$$

where also

$$
d(b+a b)=d b+b+a b
$$

Here we assume not only $a \neq 0$, but also $(-1-a, 0) \neq(0,0)$, i.e., $a \neq=-1$. For such an a there exists a d such that $d(1+a)=d+1+a$, and for any $b, d(b$ $+a b)=d b+b+a b$. If we put $d=u+1$ and use the distributive laws, we find

$$
u a=1
$$

and

$$
u(a b)=b
$$

From the distributive laws we find directly that even for $a=-1$, these relations hold with $u=-1$. Since for $u \neq 0$ there is a v, with

$$
v u=1,
$$

and

$$
v(u a)=a
$$

we have $v=a$. Hence we write $u=a^{-1}$ and have the laws (2.4) $a a^{-1}=a^{-1} a=$ 1 , and (2.5) $a^{-1}(a b)=b$.

Conversely, let us suppose that the conditions (1) and (2) hold for the coordinates of a plane π From Theorem 20.4.6 we know that π is a translation plane with respect to L_{∞}. Using Theorem 20.5.1, it will be sufficient to show that π has a collineation which maps L_{∞} onto some other line through $Y=(\infty)$.

The following mapping is such a collineation:

$$
\begin{aligned}
(\infty) & \rightarrow(\infty), \\
(m) & \rightarrow(1, m), \\
(-1, m) & \rightarrow(-m), \\
(0, b) & \rightarrow(0, b), \\
(c, d) & \rightarrow\left[\left(1+c^{-1}\right)^{-1},(1+c)^{-1} d\right], \quad c \neq 0,-1 . \\
L_{\infty} & \rightarrow x=1, \\
x=-1 & \rightarrow L_{\infty}, \\
x=0 & \rightarrow x=0 \\
x=c & \rightarrow x=\left(1+c^{-1}\right)^{-1}, c \neq 0,-1 . \\
y=x m+b & \rightarrow y=x(m-b)+b .
\end{aligned}
$$

To show this, we must prove that incidences are preserved by the mapping; in particular, that if (c, d) is on $y=x m+b$, then the image point is on the image line. This reduces to showing that

$$
(1+c)^{-1}(c m+b)=\left(1+c^{-1}\right)^{-1}(m-b)+b
$$

is an identity. This follows from the laws of the theorem, both of the following being identities:

$$
\begin{array}{ll}
(1+c)^{-1}(c m) & =\left(1+c^{-1}\right)^{-1} m \\
(1+c)^{-1} b & =\left(1+c^{-1}\right)^{-1}(-b)+b
\end{array}
$$

We shall prove, following R. H. Bruck, a further identity from the laws above. Write:

$$
\left[y^{-1}-\left(y+z^{-1}\right)^{-1}\right][y(z y)+y]=t
$$

where we exclude only the values $y=0, y=-z^{-1}$. Then multiplying by $y+z^{-1}$, we have

$$
\begin{aligned}
\left(y+z^{-1}\right) t & =\left(y+z^{-1}\right)\left[z y+1-\left(y+z^{-1}\right)^{-1}(y(z y))-\left(y+z^{-1}\right)^{-1} y\right] \\
& =y(z y)+y+y+z^{-1}-y(z y)-y \\
& =y+z^{-1}
\end{aligned}
$$

Hence $t=1$ and $y^{-1}-\left(y+z^{-1}\right)^{-1}$, and $y(z y)+y$ are inverses. Then for any x,

$$
\left[y^{-1}-\left(y+z^{-1}\right)^{-1}\right][(y(z y)) x+y x]=x
$$

Now write

$$
\left[y^{-1}-\left(y+z^{-1}\right)^{-1}\right][y(z(y x))+y x]=w
$$

We now find

$$
\begin{aligned}
\left(y+z^{-1}\right) w & =\left(y+z^{-1}\right)[z(y x)+x]-y[z(y x)]-y x \\
& =y x+z^{-1} x=\left(y+z^{-1}\right) x .
\end{aligned}
$$

Hence $w=x$. Now comparing expressions for w and x we see that we must have

$$
\begin{equation*}
[y(z y)] x=y[z(y x)] \tag{M}
\end{equation*}
$$

the Moufang identity. This identity is clearly valid for the excluded values $y=$ $0, y=-z^{-1}$, and so holds without exception. In particular, the Moufang identity with $z=1$ reduces to the left alternative law

$$
\begin{equation*}
(y y) x=y(y x) \tag{LA}
\end{equation*}
$$

If a plane is a translation plane for every line, it is called a Moufang plane, after Ruth Moufang [1] who first studied these.

Theorem 20.5.3. A plane is a Moufang plane if, and only if, every ternary ring is (1) linear and (2) is an alternative division ring, i.e., satisfies the following laws:
2.1) Addition is an Abelian group.
2.2) $(a+b) m=a m+b m$.
2.3) $a(s+t)=a s+a t$.
2.4) Each $a \neq 0$ has an inverse a^{-1} satisfying $a^{-1} a=a a^{-1}=1$.
2.5) $a^{-1}(a b)=b$.
2.6) $(b a) a^{-1}=b$.

In addition the alternative laws are valid:
2.7) $a(a b)=(a a) b,(b a) a=b(a a)$.

Proof: From Theorem 20.5.2 we have (1) and also (2.1) • • (2.5). We must prove (2.6), since clearly the right alternative law ($b a) a=b(a a)$ follows from (2.6) in just the same way that the left alternative law follows from (2.5).

We consider the elation with axis $y=0$ and center $(0,0)$ such that $Y=(\infty)$ is mapped onto $(0,-1)$. We have in turn:

$$
\begin{aligned}
(\infty) & \rightarrow(0,-1) \\
(1,0) & \rightarrow(1,0)
\end{aligned}
$$

whence
whence

$$
\begin{gathered}
x=1 \rightarrow y=x-1 . \\
(\infty) \rightarrow(0,-1) \\
(a, 0) \rightarrow(a, 0),
\end{gathered}
$$

Thus

$$
\begin{aligned}
x=a & \rightarrow y=x a^{-1}-1 . \\
x=1 & \rightarrow y=x-1 \\
y=x(1-a b) & \rightarrow y=x(1-a b) \\
(1,1-a b) & \rightarrow\left[(a b)^{-1},(a b)^{-1}-1\right] .
\end{aligned}
$$

Also
(0) \rightarrow (0),

$$
(0) \rightarrow(0)
$$

whence

$$
y=1-a b \rightarrow y=(a b)^{-1}-1
$$

$$
x=a \rightarrow y=x a^{-1}-1
$$

$$
y=x\left(a^{-1}-b\right) \rightarrow y=x\left(a^{-1}-b\right)
$$

whence
Since

$$
(a, 1-a b) \rightarrow\left(b^{-1}, b^{-1} a^{-1}-1\right)
$$

$$
(0) \rightarrow(0)
$$

we have

$$
y=1-a b \rightarrow y=b^{-1} a^{-1}-1
$$

Comparing images of $y=1-a b$, we must have

$$
(a b)^{-1}=b^{-1} a^{-1}
$$

Using this as a law, we find, since $b^{-1}=a\left(a^{-1} b^{-1}\right)$,

$$
\begin{aligned}
b & =\left(b^{-1}\right)^{-1}=\left[a\left(a^{-1} b^{-1}\right)\right]^{-1} \\
& =\left(a^{-1} b^{-1}\right)^{-1} a^{-1} \\
& =(b a) a^{-1} .
\end{aligned}
$$

This proves (2.6).
We have now shown that in a Moufang plane the coordinates satisfy the above laws for an alternative division ring. Conversely, suppose we are given an alternative division ring. Constructing a plane with these coordinates, by Theorem 20.5.2 the plane is a translation plane for every line passing through Y $=(\infty)$. Hence, by Theorem 20.5.1 and its corollary, it will follow that the plane is a translation plane for every line if we can find a collineation moving $Y=(\infty)$. The following reflection is valid:

$$
\begin{aligned}
(a, b) & \rightleftarrows(b, a), \\
(0) & \rightleftarrows(\infty), \\
(m) & \rightleftarrows\left(m^{-1}\right), \quad m \neq 0, \\
x=c & \rightleftarrows y=c, \\
y=x m+b & \rightleftarrows y=x m^{-1}-b m^{-1}, \quad m \neq 0 .
\end{aligned}
$$

This completes the proof of the theorem. A few comments may be in order.
More is true than has been proved here, but the proof requires more of the theory of alternative rings than can be given here. It is true that if a plane is a translation plane for two different lines, then it is a Moufang plane, a translation plane for every line. This means algebraically that the law (2.6), $(b a) a^{-1}=b$, is a consequence of the preceding laws. No simple proof of this fact is known to the author. As we saw, the left alternative law, $x(x y)=(x x) y$, is a consequence of (2.5). Kleinfeld [2] and Skornyakov [2] have shown that for characteristic different from 2 this law (in a division ring) also implies the right alternative law $(y x) x=y(x x)$. This is false for characteristic 2 , but with the stronger Moufang law $[y(z y)] x=y[z(y x)]$, which we showed was a consequence of (2.5), San Soucie [1] has shown that even for characteristic 2 the right alternative law is a consequence. Bruck and Kleinfeld [1] studied alternative division rings R and found the surprising result that such a ring R is either associative or is a particular kind of algebra over its center, which is a field $F . R$ is a Cayley-Dickson algebra over F, this being an algebra with eight basis elements, any single element not in F generating a quadratic field over F,
any two elements (not in the same quadratic extension of F) generating a quaternion algebra. This detailed knowledge enables them to show that in a Moufang plane every ternary ring not only yields an alternative division ring of coordinates, but also the same alternative division ring. For a complete account of all these results, except for that of San Soucie, the reader is referred to Pickert [1].

Theorem 20.5.4. The following conditions in a plane π are equivalent:

1) π is X-OY transitive, i.e., π has all homologies with center $X=(0)$ and axis $x=0$.
2) In the ternary ring for π given by the four points X, Y, O, I, we have 2.1) $x \cdot m_{\circ} b=x m+b$, and
2.2) Multiplication is a group.

Proof: Assume that (1) holds in π. Consider the homology with axis $x=0$, center $X=(0)$ and mapping $(m) \rightarrow(1)$ on L_{∞}. We have

$$
\begin{aligned}
(0,0) & \rightarrow(0,0), \\
(m) & \rightarrow(1),
\end{aligned}
$$

whence

$$
y=x m \rightarrow y=x
$$

Now

$$
y=a m \rightarrow y=a m
$$

whence

$$
(a, a m) \rightarrow(a m, a m)
$$

$$
(\infty) \rightarrow(\infty),
$$

we have

$$
x=a \rightarrow x=a m
$$

and also

$$
y=c \rightarrow y=c
$$

whence

$$
(a, c) \rightarrow(a m, c) .
$$

Also
whence

$$
\begin{aligned}
(0, b) & \rightarrow(0, b), \\
(m) & \rightarrow(1) \\
y=x \cdot m \circ b & \rightarrow y=x+b .
\end{aligned}
$$

Hence if (a, c) is on $y=x \cdot m \circ b$, we have $(a m, c)$ on $y=x+b$. Thus $c=a \cdot m \circ b$ implies $c=a m+b$, whence $a \cdot m \circ b=a m+b$, the
linearity condition (2.1).
Here the homology determined by $(m) \rightarrow(1)$ maps $(a, 1) \rightarrow(a m, 1)$, and in particular, $(1,1) \rightarrow(m, 1)$. If we follow this by the homology mapping $(n) \rightarrow$ (1), we have $(1,1) \rightarrow(m, 1) \rightarrow(m n, 1)$ and $(a, 1) \rightarrow(a m, 1) \rightarrow((a m) n, 1)$.

But the product must be the homology $(m n) \rightarrow(1)$, whence $(a, 1) \rightarrow$ [$a(m n), 1]$, and so $(a m) n=a(m n)$, the associative law for multiplication. But since multiplication is a loop, it follows that multiplication is a group.

Now suppose that (2) holds. Then the following is a homology in π for fixed $m \neq 0$.

$$
\begin{aligned}
(\infty) & \rightarrow(\infty), \\
(0) & \rightarrow(0), \\
(n) & \rightarrow\left(m^{-1} n\right), \\
(a, b) & \rightarrow(a m, b), \\
L_{\infty} & \rightarrow L_{\infty} \\
x=a & \rightarrow x=a m, \\
y=x n+b & \rightarrow y=x\left(m^{-1} n\right)+b .
\end{aligned}
$$

Letting m range over all values $\neq 0$, we have all homologies with center $X=(0)$ and axis $x=0$. Hence (2) implies (1).

Theorem 20.5.5. In a plane π if the following special cases of the Theorem of Desargues hold:

1) The linearity theorem in all cases with three different axes not through a point;
2) The general theorem for one axis and one center not on the axis; then π can be coordinatized by an associative division ring. In this case the Theorem of Desargues holds throughout π. The collineation group for π is transitive on quadrilaterals, and every ternary ring for π is the same associative division ring.

Proof: From the hypothesis we may apply Theorem 20.5.3 and 20.5.4, and find that for one choice of a quadrilateral X, Y, O, I from which a ternary ring is given for π, we have $x \cdot m \circ b=x m+b$, and the coordinates form an associative division ring. Clearly, if there is a collineation of π taking the points of a quadrilateral $X_{1}, Y_{1}, O_{1}, I_{1}$ into those of a second $X_{2}, Y_{2}, O_{2}, I_{2}$ in this order, the ternary rings will be isomorphic. We prove first that if a plane π
is coordinatized by an associative division ring D for one quadrilateral X_{1}, Y_{1}, O_{1}, I, then the collineations of π are transitive on quadrilaterals, whence every quadrilateral yields a coordinate ring isomorphic to D. From Theorem 20.5.3, π is a translation plane for every line in π. Given a triangle $A B C$ and taking $A B$ as an axis, there is an elation fixing A and B and moving C to any point C^{\prime} not on $A B$. In this way start from any quadrilateral $X_{2}, Y_{2}, O_{2}, I_{2}$. With appropriate use of such elations we find a collineation mapping X_{2} onto X_{1}, Y_{2} onto Y_{1} and O_{2} onto O_{1}. The new point I_{2} does not lie on any side of the triangle X_{2}, Y_{2}, O_{2}, and so, in the coordinates of $X_{1}, Y_{1}, O_{1}, I_{1}$ it will be a finite point $I_{2}=(a, b)$ with $a \neq 0, b \neq 0$. The following collineation fixes X, Y, O and maps I_{2} onto I_{1} :

$$
\begin{aligned}
(x, y) & \rightarrow\left(x a^{-1}, y b^{-1}\right), \\
(m) & \rightarrow\left(a m b^{-1}\right), \\
(\infty) & \rightarrow(\infty), \\
y=x m+s & \rightarrow y=x\left(a m b^{-1}\right)+s b^{-1}, \\
x=c & \rightarrow x=c a^{-1}, \\
L_{\infty} & \rightarrow L_{\infty} .
\end{aligned}
$$

Thus all ternary rings yield the same associative division ring D, and π is transitive on quadrilaterals.

It remains only to show that the Theorem of Desargues holds throughout π. If the center lies on the axis, this is surely true, since π has all possible elations. Now suppose the center is not on the axis. Take the center to be O and the axis L_{∞}. We show that π has all homologies with center O and axis L_{∞}. For fixed $a \neq$ 0 the following is such a homology:

$$
\begin{aligned}
(\infty) & \rightarrow(\infty), \\
(m) & \rightarrow(m), \\
(c, d) & \rightarrow(a c, a d), \\
L_{\infty} & \rightarrow L_{\infty}, \\
x=c & \rightarrow x=a c, \\
y=x m+b & \rightarrow y=x m+a b .
\end{aligned}
$$

Letting a range over all values different from 0 , we get all possible homologies with center O and axis L_{∞}.

20.6. The Theorem of Wedderburn and the ArtinZorn Theorem.

We give here some of the properties of finite fields which we shall need. For the proof of these properties see Van der Waerden [1] vol. 1, Chapter V, §37.

1) The number of elements in a finite field is a power of a prime. For each prime power p^{r} there is a finite field $G F\left(p^{r}\right)$ with p^{r} elements, and it is unique to within isomorphism.
2) Every element x of $G F\left(p^{r}\right)$ satisfies the relation $x^{p r}=x$. The multiplicative group $F^{*}\left(p^{r}\right)$ of the $p^{r}-1$ elements of $G F\left(p^{r}\right)$, excluding zero, is cyclic. A generator of this cyclic group is called a primitive root.
3) $G F\left(p^{r}\right)$ may be represented as the residue classes of polynomials $P(x)$ with coefficients in the field F_{p}, with p elements modulo a polynomial $f(x)$ irreducible of degree r over F_{p}. Equivalently $G F\left(p^{r}\right)$ may be represented as the residue classes of integral polynomials modulo the ideal $[p, f(x)]$.
4) The automorphisms of $G F\left(p^{r}\right)$ are a cyclic group of order r generated by the automorphism $z \rightarrow \alpha(z)=z^{p}$.

Theorem 20.6.1 (The Theorem of Wedderburn). A finite division ring R is necessarily commutative and so is a finite field $G F\left(p^{r}\right)$.

Proof: The following proof is due to Witt [1]. The unit of R generates the characteristic subfield of R, and this must be a finite field F_{p} for some prime p. Let R have a basis of r elements $x_{1}=1, x_{2}, \cdots, x_{r}$ over F_{p}. Then R has exactly p^{r} elements. The center Z of R consists of all elements z of R such that $z x=x z$ for every $x \in R$. Z is a commutative subring of R and so is a finite field. Let Z have $q=p^{s}$ elements. We wish to show that Z is all of R. In any event R is a vector space over Z, and if R has a basis of t elements over Z, then R has $q^{t}=$ $p^{s t}=p^{r}$ elements in all. Here $t=1$ if $R=Z$. The normalizer N_{x} of an element x of R is a subring containing Z. Hence N_{x} contains q^{d} elements, and since R is a vector space over N_{x}, we have necessarily $d \mid t$. Hence, in the multiplicative group R^{*} of the $p^{r}-1=q^{\mathrm{t}}-1$ elements of R excluding 0 , an element x not in Z
has normalizer of order $q^{d}-1$, where d is a divisor of t and $d<t$. Counting the elements of R^{*} we have
(20.6.1) $\quad q^{t}-1=q-1+\Sigma\left(q^{t}-1\right) /\left(q^{d}-1\right)$,
where $q-1$ enumerates the elements of the center and each remaining summand counts the elements in a class $\left(q^{t}-1\right) /\left(q^{d}-1\right)$, where $d / t, d<t$.

We showed in $\S 16.8$ that the polynomial $f(x)=x^{t}-1$ has the factor with rational integral coefficients, $k(x)=\Pi\left(x-w^{j}\right)$, where w is a primitive t th root of unity and the w^{j} for $j=1, \cdots, t,(j, t)=1$ are all the primitive t th roots of unity. Then if $d \mid t, d<t$, we have $x^{t}-1=k(x)\left(x^{d}-1\right) r(x)$, since $k(x)$ does not contain any of the factors of $x^{d}-1$. Here $r(x)$ contains all remaining factors of $x^{t}-1$, if there are any. Hence $\left(x^{t}-1\right) /\left(x^{d}-1\right)=k(x) r(x)$. For $x=q$, $k(q)=\prod\left(q-w^{j}\right)$, and since $w^{j} \neq 1$ is a complex root of unity, we have $(j, t)=1$ $\left|q-w^{j}\right|>q-1$. Hence $k(q)$ is a rational integer greater in absolute value than q -1 . Hence if $t>1$ we have $k(q)$ dividing every term in (20.6.1) except $q-1$. But then $k(q)$ also divides $q-1$, and this is impossible because $|k(q)|>q-1$. Hence the only possibility is that $t=1$, and this means that $Z=R$, and so, R is commutative and is a finite field.

Theorem 20.6 .2 (Artin-Zorn).. ${ }^{*}$ A finite alternative division ring is a finite field $G F\left(p^{r}\right)$.

Proof: We begin by developing a little of the theory of alternative rings. An alternative ring R is a system with a binary addition and multiplication in which (1) the addition is an Abelian group, (2) both distributive laws hold, and (3) the multiplication satisfies the two weak associative laws,

$$
\begin{equation*}
(x x) y=x(x y), \quad y(x x)=(y x) x \tag{20.6.1}
\end{equation*}
$$

R is a division ring if the nonzero elements form a loop with respect to multiplication. We noted in the preceding section that a Moufang plane is coordinatized by an alternative division ring. Here, instead of (20.6.1), we had the multiplicative laws,

$$
\begin{align*}
a a^{-1} & =a^{-1} a=1, \tag{20.6.2}\\
a^{-1}(a b) & =b=(b a) a^{-1} .
\end{align*}
$$

We showed that laws (20.6.2) implied the laws (20.6.1).
We shall define two quantities for any ring in which the distributive laws hold, the associator (x, y, z) and the commutator (x, y). These are defined by the rules
(20.6.3)

$$
\begin{aligned}
& (x, y, z)=(x y) z-x(y z) \\
& (x, y)=x y-y x
\end{aligned}
$$

Thus the associator vanishes identically in any associative ring and the commutator vanishes identically in any commutative ring. Both the associator and the commutator are linear in each argument. The laws (20.6.1) can be rewritten in the form

$$
\begin{equation*}
(x, x, y)=0, \quad(y, x, x)=0 \tag{20.6.4}
\end{equation*}
$$

From the linearity of the associator we have

$$
\begin{align*}
0 & =(x, y+z, y+z) \tag{20.6.5}\\
& =(x, y, y)+(x, y, z)+(x, z, y)+(x, z, z) \\
& =(x, y, z)+(x, z, y)
\end{align*}
$$

and

$$
\begin{aligned}
0 & =(x+y, x+y, z) \\
& =(x, x, z)+(x, y, z)+(y, x, z)+(y, y, z) \\
& =(x, y, z)+(y, x, z)
\end{aligned}
$$

From this we have

$$
\begin{align*}
(x, y, z) & =-(x, z, y)=(z, x, y)=-(z, y, x) \tag{20.6.6}\\
& =(y, z, x)=-(y, x, z)
\end{align*}
$$

This says that (x, y, z) under the permutations of the symmetric group on x, y, z is unchanged by the alternating group and is changed in sign by the odd
elements. It is this property which has led to the name alternative for these rings. The rules (20.6.6) give immediately $(x, y, x)=-(x, x, y)=0$, whence

$$
\begin{equation*}
(x y) x=x(y x) . \tag{20.6.7}
\end{equation*}
$$

The law (20.6.7) by itself is called the reflexive law.
A function $h\left(x_{1}, \cdots, x_{n}\right)$ in a ring is said to be skew symmetric if it is (1) linear in each of its arguments, and (2) vanishes whenever any two of its arguments are equal. We note that skew symmetry implies the alternating property and that the associator and commutator are symmetric in an alternative ring.

We shall develop here a few formulae valid in alternative rings. More will be given than are really needed to prove our theorem, but all are of sufficient interest to include here. The following identity may be verified as valid in any ring with the distributive laws
(20.6.8)

$$
(w x, y, z)-(w, x y, z)+(w, x, y z)=w(x, y, z)+(w, x, y) z
$$

We define the function $f(w, x, y, z)$ by the rule

$$
\begin{equation*}
f(w, x, y, z)=(w x, y, z)-x(w, y, z)-(x, y, z) w \tag{20.6.9}
\end{equation*}
$$

Lemma 20.6.1. In any alternative ring R the function $f(w, x, y, z)$ of (20.6.9) is skew symmetric and satisfies the identities

$$
\begin{align*}
3 f(w, x, y, z) & =(w,(x, y, z))-(x,(y, z, w)) \tag{20.6.10}\\
& +(y,(z, w, x))-(z,(w, x, y)) \\
f(w, x, y, z) & =((w, x), y, z)+((y, z), w, x) \tag{20.6.11}
\end{align*}
$$

Proof: From (20.6.6) we may rewrite (20.6.8) in the form
(20.6.12)

$$
(w x, y, z)-(x y, z, w)+(y z, w, x)=w(x, y, z)+(w, x, y) z
$$

Substituting for ($w x, y, z$) its expression in terms of f as given by (20.6.9), and similarly for the other terms on the left of (20.6.12), we get
(20.6.13) $f(w, x, y, z)-f(x, y, z, w)+f(y, z, w, x)=F(x, y, z, w)$,
where $F(x, y, z, w)$ is the right-hand side of (20.6.10) and thus changes sign when its arguments are permuted cyclically. Hence from (20.6.13), $0=F(w, x$, $y, z)+F(x, y, z, w)=f(w, x, y, z)+f(z, w, x, y)$, and so,

$$
\begin{equation*}
f(w, x, y, z)=-f(z, w, x, y) \tag{20.6.14}
\end{equation*}
$$

Hence f changes sign when its arguments are permuted cyclically and, from (20.6.9), when its last two arguments are interchanged, and therefore when any two are interchanged. Since $f(w, x, y, y)=0, f$ is skew symmetric. In particular, (20.6.13) , reduces to (20.6.10). Subtract from (20.6.8), the result of interchanging w and x and get

$$
((w, x), y, z)=-(w,(x, y, z))+(x,(y, z, w))+2 f(w, x, y, z)
$$

Computed thus, the right-hand side of (20.6.11) in view of (20.6.10) reduces to the left-hand side.

Lemma 20.6.2. For all x, y, z of an alternative ring we have:

$$
\begin{equation*}
\left(x^{2}, y, z\right)=x(x, y, z)+(x, y, z) x \tag{20.6.15}
\end{equation*}
$$

$$
\begin{equation*}
(x, x y, z)=(x, y, x z)=(x, y, z) x \tag{20.6.16}
\end{equation*}
$$

$$
\begin{equation*}
(x, y x, z)=(x, y, z x)=x(x, y, z) \tag{20.6.17}
\end{equation*}
$$

and the Moufang identities
$(20.6 .18) \quad(x y)(z x)=x((y z) x)=(x(y z)) x$.

$$
\begin{equation*}
x(y(x z))=((x y) x) z, \quad((z x) y) x=z(x(y x)) \tag{20.6.19}
\end{equation*}
$$

Proof: We obtain (20.6.15) from $f(x, x, y, z)=0$. We get the two parts of (20.6.16) by observing that $f(x, y, z, x)=0$ and $f(x, z, x, y)=0$. We obtain
(20.6.17) from $f(y, x, x, z)=0$ and $f(z, x, x, y)=0$. To prove (20.6.18). we note that:

$$
\begin{aligned}
(x y)(z x) & =x(y(z x))+(x, y, z x) \\
& =x(y(z x))+x(y, z, x) \\
& =x((y z) x)
\end{aligned}
$$

by (20.6.17). The first equation of (20.6.19) , may be derived as follows:

$$
\begin{aligned}
((x y) x) z & =(x y)(x z)+(x y, x, z) \\
& =x(y(x z))+(x, y, x z)-(x, x y, z) \\
& =x(y(x z))
\end{aligned}
$$

by (20.6.16). The second may similarly be derived from (20.6.17).
We can now show that the laws (20.6.2) follow from those of (20.6.1) in a division ring. Given an element $a \neq 0$, then there is a u such that $a u=1$. Then a $=(a u) a=a(u a)$, whence also $u a=1$, and we may write $u=a^{-1}$, where $a^{-1} a=$ $a a^{-1}=1$. Given any a, b not zero, determine c by the relation $b=a^{-1} c$. Then

$$
\begin{aligned}
a^{-1}(a b) & =a^{-1}\left(a\left(a^{-1} c\right)\right)=\left(\left(a^{-1} a\right) a^{-1}\right) c \\
& =\left(1 a^{-1}\right) c=a^{-1} c=b,
\end{aligned}
$$

using the first law of (20.6.19). Similarly, ($b a) a^{-1}=b$ follows from the second law of (20.6.19).

We now have more than enough information about alternative rings to prove the Artin-Zorn theorem. Let R be a finite alternative ring. It will be enough to show that a finite division ring R_{1} generated by two elements b and c is associative. For then by the Wedderburn theorem, R_{1} is a finite field and is generated by a single element d. Hence, if R is generated by $b_{1}, b_{2}, \cdots, b_{s}$, then b_{1}, b_{2} generate a finite field which is generated by the single element c_{1}. Thus R is generated by $c_{1}, b_{3}, \cdots, b_{\mathrm{s}}$. Continuing, we may reduce the number of generators until R itself is generated by a single element and is associative and thus is a finite field $G F\left(p^{r}\right)$.

Consider R_{1} generated by b and c, where R_{1} is a subsystem of R closed under addition and multiplication. R_{1} is finite and has no zero divisors. Let a_{1}, \cdots, a_{t} be the elements of R_{1} different from zero. Then for any $x \in R_{1}, x a_{1}, \cdots$
$\cdot, x a_{t}$ are all different, since R_{1} contains no zero divisors, and so are a_{1}, a_{2}, \cdots ', a_{t} in some order. Hence for some element, say, a_{1}, we have $x a_{1}=x$, whence $a_{1}=1$ is the unit of R. Also tor some a_{i} we have $x a_{i}=1$, whence $a_{i}=x^{-1}$. Hence R_{1} is a division ring. The elements of R_{1} are sums of monomials ($x_{1} \cdots$ $\left.x_{r}\right)\left(x_{r+1} \cdots x_{n}\right)$, where each x_{i} is b or c and the terms are bracketed in any way. Since both distributive laws hold, multiplication will be associative in R_{1} if, and only if, the multiplication of the monomials is associative. To show this, we define normal (or left-bracketed) monomials recursively by the rules:

$$
\begin{array}{ll}
{\left[x_{1} x_{2}\right]} & =x_{1} x_{2} \tag{20.6.20}\\
{\left[x_{1} \cdots x_{n}\right]} & =\left[x_{1} \cdots x_{n-1}\right] x_{n} .
\end{array}
$$

If it can be shown that an arbitrary bracketing is equal to the normal monomial, then associativity is immediate, for then

$$
\left.\left.\left.\begin{array}{rl}
& \left(\left[x_{1} \cdots\right.\right.
\end{array} x_{r}\right]\left[y_{1} \cdots \cdots y_{s}\right)\right]\left[z_{1} \cdots \cdots z_{t}\right]\right) .
$$

That every monomial is equal to the normal monomial with the same factors in order, we prove by induction on the length of the monomial. From (20.6.4) and (20.6.6), this is true for monomials in b and c of length three, since there must be a repeated factor, and so,

$$
\begin{equation*}
x_{1}\left(x_{2} x_{3}\right)=\left(x_{1} x_{2}\right) x_{3}=\left[x_{1} x_{2} x_{3}\right] . \tag{20.6.21}
\end{equation*}
$$

We must show that
(20.6.22) $\quad\left[u_{1} \cdots u_{r}\right]\left[v_{1} \cdots v_{s}\right]=\left[\begin{array}{llll}u_{1} & \cdots & u_{r} v_{1} & \cdots\end{array} v_{s}\right]$,
using induction on $n=r+s$, and for fixed n, using induction on s, this being the definition (20.6.20) for $s=1$. Suppose $s>1$ and $v_{1}=v_{s}=b$ or $v_{1}=v_{s}=c$. Then in the second identity of (20.6.19), $z[x(y x)]=[(z x) y] x$, take $z=\left[u_{1}, \cdots, u_{r}\right], v_{1}$ $=v_{s}=x$ and $\left[v_{2} \cdots v_{s-1}\right]=y$. This gives
(20.6.23) $\quad\left[u_{1} \cdots u_{r}\right]\left[x v_{2} \cdots v_{s-1} x\right]$

$$
\left.\begin{array}{l}
=\left\{\left(\left[u_{1} \cdots u_{r}\right] x\right)\left[v_{2} \cdots \cdots v_{s-1}\right]\right\} x \\
=\left[\begin{array}{llll}
u_{1} \cdots & \cdots & u_{r} v_{1} v_{2} & \cdots
\end{array} v_{s-1}\right] v_{s} \\
=\left[\begin{array}{llll}
u_{1} & \cdots & u_{r} v_{1} v_{2} & \cdots
\end{array} v_{s-1} v_{s}\right.
\end{array}\right],
$$

using our induction and proving (20.6.22) when $v_{1}=v_{s}$. Now suppose $v_{1} \neq v_{s}$, where, say, $v_{1}=b, v_{s}=c$. Here u_{r} is either b or c. If $u_{r}=b$, write

$$
x=\left[u_{1} \cdots u_{r-1}\right], \quad u_{r}=b, \quad v_{1}=b, \quad\left[v_{2} \cdots y_{s}\right]=y
$$

Then $f(x, b, b, y)=0=(x b, b, y)-b(x, b, y)-(x, b, b) y$. Here $(x, b, b)=0$, and by induction on the length, x, b, and y associate, whence $(x, b, y)=0$. Hence $(x b, b, y)=0$, whence $(x b)(b y)=[(x b) b] y$ or
(20.6.24) $\quad\left[u_{1} \cdots u_{r-1} b\right]\left[b v_{2} \cdots v_{s}\right]$

$$
\begin{aligned}
& =\left(\left[u_{1} \cdots u_{r-1}\right] b b\right)\left[v_{2} \cdots v_{s}\right] \\
& =\left[u_{1} \cdots u_{r-1} b b\right]\left[v_{2} \cdots v_{s}\right] \\
& =\left[u_{1} \cdots u_{r} v_{1} \cdots v_{s}\right],
\end{aligned}
$$

using our induction on s in the last step.
Similarly, if $u_{r}=c$, write

$$
x=\left[u_{1} \cdots u_{r-1}\right], \quad u_{r}=c, \quad\left[v_{1} \cdots v_{s-1}\right]=z, \quad v_{s}=c .
$$

Now $f(x, c, z, c)=0=(x c, z, c)-c(x, z, c)-(c, z, c) x$. Here $(c, z, c)=0$, and by induction on length, $(x, z, c)=0$, whence $(x c, z, c)=0$ and this gives $(x c)$ $(z c)=[(x c) z] c$ or
(20.6.25) $\quad\left[u_{1} \cdots u_{r-1} c\right]\left[v_{1} \cdots v_{s-1} c\right]$

$$
\left.\begin{array}{l}
=\left([u _ { 1 } \cdots \cdots u _ { r - 1 } c] \left[v_{1} \cdots \cdots\right.\right. \\
\left.=\left[v_{s-1}\right]\right) c \\
=\left[\begin{array}{llll}
& u_{1} & \cdots & u_{r-1} u_{r} v_{1}
\end{array} \cdots v_{s-1}\right] c \\
=\left[u_{1} \cdots\right.
\end{array} u_{r-1} u_{r} v_{1} \cdots v_{s-1} v_{s}\right] .
$$

Hence ($\underline{20.6 .23}, \underline{24}, \underline{25}$) establish (20.6.22) in every case. This proves the associativity of R_{1}, and so proves our theorem.

20.7. Doubly Transitive Groups and Near-Fields.

A certain class of groups is intimately related to projective planes. This is the class of doubly transitive groups in which only the identity fixes two letters. We shall need an additional hypothesis which may not be necessary but is required for our proof. This is condition (3) or (3^{\prime}) of the following theorem:

Theorem 20.7.1. Suppose that G is a permutation group on letters c_{0}, c_{1}, \cdots, c_{n-1} such that

1) G is doubly transitive.
2) Only the identity fixes two letters.
3) At most one element taking c_{i} into c_{j} displaces all letters, or (3^{\prime}) n is finite.

Then the identity and the elements of G displacing all letters form a transitive normal Abelian subgroup A. G is isomorphic to the group of linear substitutions $x \rightarrow x m+b$ in a near field K. Conversely, the linear substitutions $x \rightarrow x m+b, m \neq 0$ of a near field K yield a group satisfying (1) (2), the linear substitutions being regarded as a permutation group on the elements of K. If for $m \neq 0,1, x m+b=x$ always has a solution, (3) is satisfied, and we may take $x=c$ and $y=x m+b$ as the finite lines of a plane coordinatized by the near field $K . A$ permutation of $G\left(\begin{array}{ll}c_{0}, & c_{1}, \cdots, \\ d_{0}, & d_{1}, \cdots, \\ d_{n-1} \\ ,\end{array}\right)$, regarded as a permutation of the elements of K, corresponds to a line of π whose points are $\left(c_{i}, d_{i}\right) i=0, \cdots, n-1$.

Proof: We first prove the purely group theoretical part of the theorem. We wish to show that the identity and the elements of G displacing all letters form a transitive normal Abelian subgroup. We prove a number of lemmas.

Lemma 20.7.1. There exists one and only one element of order 2 in G which interchanges a specified pair of letters (i, j).

Since G is doubly transitive, one such element g must exist. Here g^{2}, fixing two letters, is the identity. A second element h with this property would be such that $g h^{-1}$ fixes two letters, whence $g h^{-1}=1, g=h$.

Lemma 20.7.2. The elements of order 2 are in a single conjugate class.
An element of order 2 fixes at most one letter. When $n=2$, there is only one element. For $n \geq 3$, then g and h of order 2 must both displace some letter $i, g=$ $(i, j) \cdots, h=(i, k) \cdots$ An x in G with $x=\left(\begin{array}{ll}i, j, & \cdots \\ i, k, & \cdots\end{array}\right)$ will be such that $x^{-1} g x=(i k) \cdots=h$. If any element of the class of elements of order 2 fixes a letter, then all do. We may subdivide into two cases:

CASE 1. The elements of order 2 displace all letters.
CASE 2. Every element of order 2 fixes a letter.
Lemma 20.7.3. In Case 2 there is one and only one element of order 2 fixing a given letter.

As before, $g=(i, j) \cdot \cdots$ is transformed into $h=(i, k) \cdot \cdot$ by $x=\left(\begin{array}{ll}i, j, & \cdots \\ i, k, & \cdots\end{array}\right)$. But if g and h both fix the same letter s, then x must also fix s and $x \neq 1$ fixes both i and s, contrary to our hypothesis (2). If g fixes a letter s, then we may find an element of order 2 fixing a specified letter t by transforming g by any element carrying s into t.

Note that this lemma implies that if $g=(i j)(s) \cdots$, then g is in the center of the subgroup H_{s} fixing s.

Lemma 20.7.4. The product of turn different elements of order 2 is an element displacing all letters.

If $g^{2}=1, h^{2}=1, g \neq h$, suppose to the contrary that $g h$ fixes a letter i. By Lemma 20.7.3, g and h cannot both fix i, whence neither can fix i. But then we shall have $g=(i, j) \cdots, h=(j, i) \cdots$ and $g h=(i)(j) \cdots=1$, and so $g=h$, contrary to assumption. It is thus impossible for $g h$ to fix any letter.

Lemma 20.7.5. In G there is one and only one element, displacing all letters, which takes a given i into a give $j \neq i$.

In Case 1 an element $g=(i, j) \cdots$ gives such an element. In Case 2, take g $=(i) \cdots$ of order 2 and $h=(i, j) \cdots$, and by Lemma 20.7.4, $g h$ takes i into j and displaces all letters. Hence at least one such element exists. Hypothesis (3) says that there is at most one such element. We observe that hypothesis (3') implies Lemma 20.7.5. Since G is doubly transitive on n letters, the subgroup
fixing a letter c_{0} is of index n, and the subgroup H_{0} fixing c_{0} is transitive on the remaining $n-1$ letters and, since only the identity fixes two letters, H_{0} is of order $n-1$. Thus G is of order $n(n-1)$. Hence the elements taking i into j form a left coset of H_{i}, the subgroup fixing i, and so there are exactly $n-1$ such elements. For given three letters i, j, k, there is in G by double transitivity one element $g=\left(\begin{array}{ll}i, k, & \cdots \\ j, k, & \cdots\end{array}\right)$ in G and only one, since only the identity fixes two letters. For given i, j there are exactly $n-2$ choices for k, and this leaves exactly one of the $n-1$ elements taking i into j, which displaces all letters.

Lemma 20.7.6. In Case 1 every element displacing all letters is of order 2 and these together with the identity form a normal Abelian subgroup.

Clearly, $g=(i, j) \cdots$ is one, and hence is the only element displacing all letters taking i into j. If $g^{2}=1, h^{2}=1$, then if $g=h, g h=1$, while if $g \neq h$, then $g h$ displaces all letters of order $2,(g h)^{2}=1$, whence $h g=g h$ and the elements of order 2 together with the identity form an Abelian group A. By Lemma $\underline{20.7 .2}, A$ is a normal subgroup. This proves the lemma.

Lemma 20.7.7. In Case 2 a given element g displacing all letters may be written as the product $g=a b$ of two elements of order 2 , where either a or b may be taken arbitrarily.

Suppose $a^{2}=1$ and a fixes the letter i and that g takes i into j. Choose $b=$ $(i, j) \cdots$; then $b^{2}=1$ and $g=a b$, since $a b$ displaces all letters and takes i into j. Similarly, suppose we are given g and b with $b^{2}=1$, where b fixes k. If g takes i into k, then with $a=(i, k) \cdots$, we have $g=a b$.

Lemma 20.7.8. In Case 2 the product abc of three elements of order 2 is again of order 2 and $a b c=c b a$.

If $a=b$, the lemma is trivial. If $b \neq a$, then $a b=g=d c$, where by Lemma 20.7.7, $d^{2}=1$. Hence $a b c=d c^{2}=d$. As $d=d^{-1}, a b c=c^{-1} b^{-1} a^{-1}=c b a$.

Lemma 20.7.9. In Case 2 the elements displacing all letters, together with the identity, form a normal Abelian subgroup.

Let g and h displace all letters. By Lemmas 20.7.4 and 20.7.7, $g=a b, h=$ $c d$ with a, b, c, d of order 2 . Writing $h=e b$ with $e^{2}=1$, we have $g h^{-1}=a e$, whence if $e=a, g h^{-1}=1$, or if $a \neq e, g h^{-1}$ displaces all letters. Hence the elements displacing all letters, together with the identity, form a subgroup A. Using Lemma 20.7.8, $g h=(a b c) d=(c b a) d=c(b a d)=c(d a b)=h g$, and hence the group A is Abelian. Since a conjugate of an element displacing all letters also displaces all letters, A is a normal subgroup.

We shall now construct an algebraic system S whose elements shall be the letters $c_{0}, c_{1}, \cdots, c_{n-1}$ permuted by G. We arbitrarily designate one of them as 0 and another as 1 , say, $c_{0}=0, c_{1}=1$. In S we define an addition

$$
\begin{equation*}
y=x+b \tag{20.7.1}
\end{equation*}
$$

if, and only if, in the subgroup A we have the permutation:

$$
\begin{equation*}
A_{b}=\binom{0, \cdots, x, \cdots}{b, \cdots, y, \cdots} \tag{20.7.2}
\end{equation*}
$$

In S we define a multiplication

$$
\begin{equation*}
y=x m \tag{20.7.3}
\end{equation*}
$$

if, and only if, in the subgroup H_{0} fixing 0 we have the permutation

$$
\begin{equation*}
M_{m}=\binom{0,1, \cdots, x, \cdots}{0, m, \cdots, y, \cdots} \tag{20.7.4}
\end{equation*}
$$

Addition is well defined, since in A there is a unique element taking 0 into b. Multiplication by an $m \neq 0$ is well defined, since in H_{0} there is a unique element taking 1 into m. If we have in A

$$
\begin{align*}
A_{a} & =\left(\begin{array}{lll}
0 & \cdots & x \\
a & \cdots & y
\end{array}\right) \tag{20.7.5}\\
A_{b} & =\left(\begin{array}{lllll}
0 & \cdots & a & \cdots & y \\
b & \cdots & c & \cdots & z
\end{array}\right)
\end{align*}
$$

then

$$
A_{a} A_{b}=A_{c}=\left(\begin{array}{llll}
0 & \cdots & x & \cdots \tag{20.7.6}\\
c & \cdots & z & \cdots
\end{array}\right)
$$

From our definition of addition we have

$$
\begin{equation*}
c=a+b, \quad y=x+a, \quad z=y+b, \quad z=x+c \tag{20.7.7}
\end{equation*}
$$

This gives

$$
\begin{equation*}
(x+a)+b=x+(a+b) \tag{20.7.8}
\end{equation*}
$$

the associative law of addition. Clearly, the identity is
$A_{0}=\left(\begin{array}{llllll}0 & \cdots & 1 & \cdots & x & \cdots \\ 0 & \cdots & 1 & \cdots & x & \cdots\end{array}\right)$, and we have the laws
(20.7.9)

$$
x+0=0+x=x
$$

Moreover, if u is such that $A_{u}=\left(\begin{array}{llll}0 & \cdots & a & \cdots \\ u & \cdots & 0 & \cdots\end{array}\right)$, then $a+u=0$ and u $=-a$. Moreover, since A is an Abelian group, if $A_{a} A_{b}=A_{b} A_{a}=A_{c}$, then

$$
\begin{equation*}
c=a+b=b+a \tag{20.7.10}
\end{equation*}
$$

and addition is commutative. Hence our addition is an Abelian group, and indeed if we put $a \rightleftarrows A_{a}$, addition in S is isomorphic to A.

In the same way, reasoning on the permutations of H_{0}, we may show that the nonzero elements of S form a group under multiplication. For zero we already have the rule $0 \cdot m=0$, and we arbitrarily set $m 0=0$ and $00=0$. Now let g be an arbitrary permutation of G. If $(0) g=b$, write $g_{1}=g A_{b}{ }^{-1}$. Then g_{1} fixes 0 and is an element of H_{0}, say, $g_{1}=M_{m}$. Hence

$$
\begin{equation*}
g=M_{m} A_{b} \tag{20.7.11}
\end{equation*}
$$

Here if $(x) g=y$, then

$$
\begin{equation*}
(x) g=y=x m+b, \quad m \neq 0 \tag{20.7.12}
\end{equation*}
$$

The representation (20.7.11) is unique, since the identity is the only element common to A and H_{0}, and so the permutations of G must, by (20.7.12), be the linear substitutions in S.

$$
\begin{equation*}
x \rightarrow x m+b, \quad m \neq 0 \tag{20.7.13}
\end{equation*}
$$

We note the following relations:

$$
\begin{align*}
M_{m} M_{t} & =M_{m t} \tag{20.7.14}\\
M_{m}^{-1} A_{1} M_{m} & =A_{m}
\end{align*}
$$

The first is immediate, the second follows because $M_{\mathrm{m}}{ }^{-1} A_{1} M_{m}$ displaces all letters and takes 0 into m, whence it must be A_{m}. It then follows that

$$
\begin{equation*}
M_{t}^{-1} A_{m} M_{t}=A_{m t} \tag{20.7.15}
\end{equation*}
$$

or in terms of the operations of S,

$$
\begin{equation*}
\left(x t^{-1}+m\right) t=x+m t \tag{20.7.16}
\end{equation*}
$$

Putting $x=y t$ in this relation, we get

$$
\begin{equation*}
(y+m) t=y t+m t \tag{20.7.17}
\end{equation*}
$$

the distributive law. Hence, in S, addition is a group, multiplication is a group for elements different from zero, and the right distributive law (20.7.17) holds. Hence S is a near-field, and the permutations of G are the linear substitutions in S.

$$
\begin{equation*}
x \rightarrow x m+b, \quad m \neq 0, \tag{20.7.18}
\end{equation*}
$$

where, because of the laws of the near-field, if $\alpha: x \rightarrow x m_{1}+b_{1}$ and $\beta: x \rightarrow$ $x m_{2}+b_{2}$, then

$$
\begin{equation*}
\alpha \beta: x \rightarrow x\left(m_{1} m_{2}\right)+b_{1} m_{2}+b_{2} . \tag{20.7.19}
\end{equation*}
$$

Conversely, suppose we are given a near-field S. The linear substitutions (20.7.18) of S will form a group G with composition as in (20.7.19). Let $r \neq s$ be two different elements of S. Then

$$
\begin{equation*}
g: x \rightarrow x(r-s)+s \tag{20.7.20}
\end{equation*}
$$

is an element of G such that $(0) g=s,(1) g=r$. Hence G is doubly transitive. An element of G fixing two letters is conjugate to an element fixing 0 and 1 . But if $x \rightarrow x m+b$ fixes 0 and 1 , we find, in turn, $b=0, m=1$, and so this is the identity. Hence the identity is the only element of G fixing two letters. The substitution $x \rightarrow x+(c-b)$ displaces all letters and takes a given b into a given c. If $x m+b=x$ for $m \neq 0,1$ always has a solution, then the only permutations displacing all letters are the additions $x \rightarrow x+t$, and of these only $x \rightarrow x+(c-b)$ takes a given b into a given c. Hence (3) is satisfied. But then $(x m+b) r=x r$ or $x s+t=x r$ always has a solution (which is clearly unique), and this is just the condition that S, regarded as a Veblen-Wedderburn system, is the coordinate system of a plane whose finite lines are $x=c$ and $y=x m+b$. This completes the proof of all parts of the theorem.

We have noted that condition (3) is automatically satisfied if G is a finite permutation group. Thus the determination of all finite doubly transitive groups in which only the identity fixes two letters is equivalent to the determination of all finite near-fields. This determination has been made by Zassenhaus [2]. We shall now discuss this.

Let K be a finite near-field. If the multiplication in K is an Abelian group, then K satisfies both distributive laws and is a finite field $G F\left(p^{r}\right)$. This possibility need not be further discussed, and we shall assume from here on that the multiplication in K is non-Abelian. In this case it is not possible that the left distributive law should hold, since by the Wedderburn theorem, K would then be a finite associative division ring and so a finite field $G F\left(p^{r}\right)$. We shall follow the notation of the preceding theorem. K is a finite near-field with n elements, and G is a doubly transitive group of degree n in which only the identity fixes two letters. G is the group of linear substitutions:

$$
\begin{equation*}
g: x \rightarrow x m+b, \quad m \neq 0 \tag{20.7.21}
\end{equation*}
$$

A is the Abelian normal subgroup of G consisting of the identity and the elements displacing all letters of G. $H_{0}=M$ is the subgroup fixing the letter 0 . A is the additive group of K, M the multiplicative group of K^{*}, then $n-1$ elements of K different from 0 .

LEMMA 20.7.K1. A is an elementary Abelian group and n is a prime power $n=p^{r}$. The elements $\neq 1$ of A are conjugate under M.
A is an Abelian group, and by (20.7.14), $A_{m}=M_{m}{ }^{-1} A_{1} M_{m}$. Thus all elements $\neq 1$ of A are conjugate under M, and so, since A must contain some element of prime order, say, p, then all elements $\neq 1$ of A are of order p, and so A is elementary Abelian. Since A is regular and of order $n, n=p^{r}$.

Lemma 20.7.K2. The elements of M are automorphisms of A and each automorphism $\neq 1$ fixes only the element 0 of K.

The elements of M are the permutations $a \rightarrow a m$ of the elements of K, and each of these $\neq 1$ is an automorphism of the additive group A fixing only the element 0 .

Lemma 20.7.K3. If q and s are primes, a subgroup of M of order q^{2} or $q s$ is necessarily cyclic.

We note first that if $\left(x_{1}, \cdots, x_{k}\right)$ is a cycle in the permutation form of M_{m}, then $x_{1} m=x_{2}, x_{2} m=x_{3}, \cdots, x_{k} m=x_{1}$, whence $\left(x_{1}+\cdots+x_{k}\right) m=x_{1}+\cdots+$ x_{k}, and so if $m \neq 1$, we have $x_{1}+\cdots+x_{k}=0$. Now suppose that M has a subgroup W of order q^{2} which is not cyclic, and so is the direct product of two groups of order q. Let W be generated by elements x and y, and consider a transitive constituent of W which necessarily has q^{2} letters; the elements will be of the form

$$
\begin{aligned}
& x=\left(a_{1} a_{2} \cdots a_{q}\right)\left(a_{q+1} \cdots a_{2 q}\right) \cdots\left(a_{q^{2}-q+1} \cdots a_{q^{2}}\right) \\
& y=\left(a_{1}, a_{q+1}, a_{2 q+1}, \cdots, a_{q^{2}-q+1}\right) \cdots\left(a_{i}, a_{q+i}, \cdots a_{q^{2}-q+i}\right) \cdots .
\end{aligned}
$$

Here $x y^{j}$ will have as its transitive constituent, involving a_{1}, the following:

$$
\left(a_{1}, a_{2+j q}, a_{3+2 j q}, \cdots, a_{q+j(q-1) q}\right)
$$

Hence, by our observation on cycles,

$$
\begin{gather*}
a_{1}+a_{2+j q}+\cdots+a_{q+j(q-1) q}=0 \tag{20.7.22}\\
a_{1}+a_{q+1}+a_{2 q+1} \cdots+a_{q^{2}-q}=0
\end{gather*}
$$

Summing (20.7.22) over $j=0,1, \cdots, q-1$, and adding (20.7.23), we have every $a_{i} \neq a_{1}$ exactly once and $a_{1}, q+1$ times. Hence

$$
\begin{equation*}
q a_{1}+\left(a_{1}+a_{2} \cdots+a_{q^{2}}\right)=0 \tag{20.7.24}
\end{equation*}
$$

But summing over all the cycles for x, we have

$$
\begin{equation*}
a_{1}+a_{2} \cdots+a_{q^{2}}=0 \tag{20.7.25}
\end{equation*}
$$

whence

$$
\begin{equation*}
q a_{1}=0 \tag{20.7.26}
\end{equation*}
$$

But M is of order $n-1=p^{r}-1$, and so q is prime to p, and (20.7.26), would yield the conflict $a_{1}=0$. Hence M cannot contain a noncyclic subgroup of order q^{2}.

Similarly, if M contains a noncyclic group W of order $q s$, where $q<s$, then W is generated by elements x, y with

$$
\begin{align*}
& x^{s}=1 \quad y^{q}=1, \quad q \mid s-1 \tag{20.7.27}\\
& y^{-1} x y=x^{t}, \quad t^{q} \equiv 1(\bmod s) .
\end{align*}
$$

Since M is a regular group, W will have a transitive constituent of $q s$ letters. W contains one subgroup of order s and s subgroups of order q. Consider the cycles containing a given letter a_{1} one from each of these groups:

Each of the $q s$ letters except a_{1} occurs exactly once in these cycles and a_{1} occurs $s+1$ times. But the sum of all $q s$ letters, since these are all the cycles of, say, x taken together, is zero. Hence we conclude that $s a_{1}=0$, and since $s p^{r}$ -1 , we would have $a_{1}=0$, a conflict. Hence M cannot contain a noncyclic subgroup of order $q s$.

Lemma 20.7.K4. A Sylow subgroup of M of odd order is cyclic. A Sylow 2subgroup of M is cyclic or a generalized quaternion group.

We have shown in Theorem 12.5.2 that a p-group P is cyclic if p is odd and P contains no noncyclic subgroup of order p^{2}. For $p=2, P$ is either cyclic or a generalized quaternion group.

Let us assume that M has a cyclic subgroup C such that M / C is also cyclic. From Lemma 20.7.K4 and Theorem 9.4.3, M will certainly have this property unless it has a Sylow 2-subgroup which is a generalized quaternion subgroup, and will even have this property if M is the direct product of a generalized quaternion subgroup and a group of odd order. Theorem 20.7.2 gives all finite near-fields K for which M has this property. Zassenhaus has shown that there are precisely seven other finite near-fields; we shall list these. For proof the reader is referred to the original paper by Zassenhaus.

Theorem 20.7.2. Let $q=p^{h}$ be a power of a prime p and let v be an integer all of whose prime factors divide $q-1$, where we also require $v \not \equiv 0(\bmod 4)$ if $q \equiv 3(\bmod 4)$. Then with $h v=r$ we may construct a nearfield K with $n=p^{r}$ elements from the finite field $G F\left(p^{r}\right)$ in the following way:

1) The elements of K shall be the same as the elements of $G F\left(p^{r}\right)$
2) Addition in K shall be the same as addition in $G F\left(p^{r}\right)$.
3) A product $w \circ u$ in K can be defined in terms of a product $x \cdot y$ in $G F\left(p^{r}\right)$, in the following way:

Let z be a fixed primitive root of $G F\left(p^{r}\right)$; then if $u=z^{k v+j}$, an integer i is uniquely determined modulo v by $q^{i} \equiv 1+j(q-1)[\bmod v(q-1)]$. We define the product $w \circ u$ by the rule

$$
w \circ u=u \cdot w^{q i} .
$$

4) The center of K is $G F(q)$. Every near-field K with $n=p^{r}$ elements can be constructed in the above way from $G F\left(p^{r}\right)$, if K has the property that its multiplicative group M has a normal cyclic subgroup C such that M/C is cyclic.

Apart from the finite near-fields of the preceding theorem, Zassenhaus shows that there are exactly seven others. In these cases the near-fields K are of order p^{2}, and it is sufficient to give generators of the multiplicative group M as matrix transformations of two generators of the additive group. We give the same numbering as Zassenhaus.

$$
\begin{aligned}
& \text { I. } n=5^{2}, \quad A=\left(\begin{array}{rr}
0, & -1, \\
1, & 0
\end{array}\right) \quad B=\binom{1,-2}{-1,-2} \text {. } \\
& M \cong M(2,3) \\
& \text { II. } n=11^{2}, \quad A=\left(\begin{array}{rr}
0, & -1 \\
1, & 0
\end{array}\right), \quad B=\left(\begin{array}{rr}
1, & 5 \\
-5, & -2
\end{array}\right), \quad C=\binom{4,0}{0,4} \text {. } \\
& \text { III. } n=7^{2}, \quad A=\left(\begin{array}{rr}
0, & -1 \\
1, & 0
\end{array}\right), \quad B=\left(\begin{array}{rr}
1, & 3 \\
-1, & -2
\end{array}\right) \text {. } \\
& M \cong G_{3} . \\
& \text { IV. } n=23^{2}, \quad A=\left(\begin{array}{rr}
0, & -1 \\
1, & 0
\end{array}\right), \quad B=\binom{1,-6}{12,-2}, \quad C=\binom{2,0}{0,2} \text {. } \\
& M \cong G_{3} \times(C) \\
& \text { V. } n=11^{2}, \quad A=\left(\begin{array}{rr}
0, & -1 \\
1, & 0
\end{array}\right), \quad B=\left(\begin{array}{rr}
2, & 4 \\
1, & -3
\end{array}\right) \text {. } \\
& M \cong M(2,5) \\
& \text { VI. } n=29^{2}, \quad A=\left(\begin{array}{c}
0, \\
1, \\
M \cong M(2,5)
\end{array}\right), \quad B=\binom{1,-7}{-12,-2}, \quad C=\left(\begin{array}{r}
16, \\
0 \\
0, \\
\hline
\end{array}\right) \\
& \text { VII. } n=59^{2}, \quad A=\left(\begin{array}{rr}
0, & -1 \\
1, & 0
\end{array}\right), \quad B=\left(\begin{array}{rr}
9, & 15 \\
-10,-10
\end{array}\right), \quad C=\binom{4,0}{0,4} \text {. } \\
& M \cong M(2,5) \times(C) \text {. }
\end{aligned}
$$

Here $M(2,3)$ is of order 24 , as given by $\mathrm{I} ; M(2,5)$ is of order 120 , as given by V ; and G_{3} is of order 48 , as given by III. $M(2,5)$ has a center Z of order 2, and the factor group $M(2,5) / Z$ is the simple group of order 60 .

20.8. Finite Planes. The Bruck-Ryser Theorem.

In a finite plane of order n we have shown that the following properties hold:

1) There are $n^{2}+n+1$ lines.
2) There are $n^{2}+n+1$ points.
3) Each line contains $n+1$ points.
4) Each point is on $n+1$ lines.
5) There is one and only one line through two distinct points.
6) Two distinct lines intersect in one and only one point.

In verifying that a system is indeed a finite plane, it is convenient to know that a system of "points" and "lines" satisfying part of the above properties is indeed a finite plane of order n and satisfies the rest.

Theorem 20.8.1. A system of points and lines satisfying (1), (3), (5), or dually (2), and (4), (6) is a finite plane of order n and satisfies the remaining properties.

Proof: Suppose a system satisfies (1), (3), (5). Let a point P_{i} be on m_{i} lines. Then P_{i} is joined to n other points on each of the m_{i} lines. But these must be all the remaining points, each counted exactly once. Hence there are in all $1+n m_{i}$ points. Hence $m=m_{i}$ is the same for every point. Counting incidences of points on lines, we have

$$
(n+1)\left(n^{2}+n+1\right)=m(1+m n)
$$

since there are $n^{2}+n+1$ lines, each containing $n+1$ points, and there are $1+$ $m n$ points each on m lines. This gives $m=n+1$ and (2) and (4) follow. From (5) we could not have two distinct lines intersecting in more than one point. To show (6) we need only show that there is one point in which two distinct lines intersect. A point P of a given line L is on n other lines, and this is true of each of the $n+1$ points of L. Thus L has an intersection with $n(n+1)=n^{2}+n$ other lines, but these are all the remaining lines, and so (6) holds. This shows that (1), (3), (5) imply the remainder. A dual argument shows that (2), (4), (6) imply the remainder.

Corollary 20.8.1. In a finite Veblen-Wedderburn system the condition (4) of Theorem 20.4.6, i.e., that if $r \neq s$, then $x r=x s+t$ has a unique solution, is a consequence of the remainder.

For without using condition (4), we see that properties (1), (3), (5) are satisfied.

There do not exist finite planes of every integral order n. If a conjecture of Euler's is true, then there are no planes of order n where $n \equiv 2(\bmod 4), n \neq 2$. It was shown by Tarry [1] in 1900 by a method of trial and error that there is no
plane of order 6. For every prime power $n=p^{r}$ there is a field $G F\left(p^{r}\right)$, and so, by Theorem 20.5.5, a Desarguesian plane of order p^{r}. There are Hall systems of orders $p^{2 r}$, and except for order 4, these yield non-Desarguesian planes. Also the near-fields yield non-Desarguesian planes. Albert [1] has given a construction for nonassociative division rings of orders p^{r}, for p an odd prime, and for $r>2$. This, of course, yields non-Desarguesian planes of these orders, by Theorem 20.4.6. We give a simple construction due to Albert for powers p^{r}, p odd, r odd and $r>1$.

Theorem 20.8.2 (Albert). Let p be an odd prime and r odd, $r>1$. Then from $G F\left(p^{r}\right)$ we may construct a nonassociative division algebra N with p^{r} elements.

Proof: We first construct a new product (x, y) for elements of $G F\left(p^{r}\right)$, where p is an odd prime, $r>1, r$ odd by the rule:

$$
\begin{equation*}
(x, y)=\frac{1}{2}\left(x y^{p}+x^{p} y\right) \tag{20.8.1}
\end{equation*}
$$

Since $x \rightarrow x^{p}$ is an automorphism of $G F\left(p^{r}\right)$ we easily verify that the product (x, y) satisfies the distributive laws. We wish to show that if $x \neq 0, y \neq 0$, then $(x, y) \neq 0$. Suppose to the contrary that $x \neq 0, y \neq 0$ but $(x, y)=0$. Then we find

$$
\begin{equation*}
x y^{p}=-x^{p} y, \tag{20.8.2}
\end{equation*}
$$

whence

$$
\begin{equation*}
y^{p-1}=-x^{p-1} \tag{20.8.3}
\end{equation*}
$$

Since r and p are both odd, $m=\left(p^{r}-1\right) /(p-1)$ is odd. Raising (20.8.3) to the m th power, we find

$$
\begin{equation*}
1=y^{p^{r}-1}=-x^{p^{r}-1}=-1 \tag{20.8.4}
\end{equation*}
$$

a conflict, since $p \neq 2$. Hence if $x \neq 0, y \neq 0$, then $(x, y) \neq 0$. Since our system is finite and has no zero divisors, it must be a quasi-group and, given $x \neq 0$, there is a unique $u \neq 0$ such that

$$
\begin{equation*}
x=(u, 1)=\frac{1}{2}\left(u+u^{p}\right) . \tag{20.8.5}
\end{equation*}
$$

Hence let us define a one-to-one mapping α by

$$
\begin{equation*}
u=x \alpha, \tag{20.8.6}
\end{equation*}
$$

if u and x satisfy (20.8.5).
We now define a system D whose elements are those of $G F\left(p^{r}\right)$. Addition in D is the same as that in $G F\left(p^{r}\right)$, but in D we have a product $x \circ y$ given by

$$
\begin{equation*}
x \circ y=(x \alpha, y \alpha) \tag{20.8.7}
\end{equation*}
$$

using the product of (20.8.1) and the mapping α of (20.8.6). The unit 1 of $G F\left(p^{r}\right)$ is the unit of D, since we verify that

$$
\begin{equation*}
x \circ 1=1 \circ x=x \tag{20.8.8}
\end{equation*}
$$

The product in D is commutative but not associative. Albert has shown that the powers of an element not in F_{p} will not associate.

The methods given here yield non-Desarguesian planes of orders p^{r} for all $r \geq 2$ and p odd, and of orders 2^{r} when r is even and $r \geq 4$. It has been shown that only the Desarguesian plane exists for orders $2,3,4,5,7,8$. Other finite planes are known, in particular the Hughes planes which will be discussed later, but no finite plane has been constructed except for a prime or prime power order.

Apart from Tarry's isolated result that no plane of order 6 exists, no restrictions on possible orders of planes were known until 1949, when the following major theorem was proved by Bruck and Ryser [1].

Theorem 20.8.3. If $n \equiv 1,2$ (mod 4), there cannot be a plane of order n nunless n can be expressed as a sum of two integral squares, $n=a^{2}+b^{2}$.

Proof: The proof given here will be a modification of the original proof by the methods used by Chowla and Ryser [1]. Let $N=n^{2}+n+1$. Let variables x_{i}, $i=1, \cdots, N$ be associated with the points $P_{i} i=1, \cdots, N$ of a plane π of order n. Let the lines of π be $L_{j}, j=1, \cdots, N$. We may define incidence numbers $a_{i j}$, where

$$
\begin{array}{ll}
\mathrm{a}_{i j}=1 & \text { if } P_{i} \in L_{i}, \\
a_{i j}=0 & \text { if } P_{i} \notin L_{i}, i, j=1, \cdots, N . \tag{20.8.9}
\end{array}
$$

Then the incidence matrix A of π is defined as

$$
\begin{equation*}
A=\left(a_{i j}\right) i, j=1, \cdots N \tag{20.8.10}
\end{equation*}
$$

This incidence matrix A satisfies the basic relations:

$$
\begin{equation*}
A A^{T}=A^{T} A=n I+S \tag{20.8.11}
\end{equation*}
$$

where I is the identity matrix and S is the matrix with every entry 1 .
Let $A A^{T}=C$. Then $C=\left(c_{r s}\right)$, where

$$
\begin{equation*}
c_{r s}=\sum_{j=1}^{N} a_{r j} a_{s j} \tag{20.8.12}
\end{equation*}
$$

Here $c_{r r}=n+1$, since P_{r} is on exactly $n+1$ lines, since of $a_{r j}, j=1, \cdots, N$ exactly $n+1$ are 1 and the rest are 0 . Also, if $r \neq s$, we have $c_{r s}=1$, since $a_{r j} a_{s j}=0$ unless both $a_{r j}=1, a_{s j}=1$. But $a_{r j}=a_{s j}=1$ means that the line L_{j} contains both P_{r} and P_{s}. But given P_{r} and P_{s} there is exactly one line L_{j} containing both points. Hence $c_{r r}=n+1, c_{r s}=1, r \neq s$, and so $A A^{T}=n I+S$. A dual argument shows that $A^{T} A=n I+S$.

The relation $A A^{T}=n I+S$ can also be expressed in terms of quadratic forms. With the line L_{j} we may associate a linear form, which may also be designated by L_{j} without confusion. We write

$$
\begin{equation*}
L_{j}=\sum_{i=1}^{N} a_{i j} x_{i}, j=1, \cdots, N \tag{20.8.13}
\end{equation*}
$$

Then
(20.8.14)

$$
L_{1}^{2}+\cdots+L^{2}{ }_{N}=n\left(x_{1}^{2}+\cdots+x_{N}^{2}\right)+\left(x_{1}+\cdots+x_{N}\right)^{2} .
$$

For this we observe that in the $L_{j}, j=1, \cdots N$, each x_{r} occurs with a coefficient 1 exactly $n+1$ times, since each point is on $n+1$ lines. We also observe that a cross-product $2 x_{r} x_{s}$ occurs in $L_{1}{ }^{2}+\cdots+L_{N}{ }^{2}$ exactly once, since there is exactly one line L_{j} containing both P_{r} and P_{s}. This proves the identity (20.8.14). Now suppose that $n \equiv 1,2(\bmod 4)$. Then $N=n^{2}+n+1 \equiv 3$ $(\bmod 4)$. We also observe that $(20.8 .14)$ can be written in the form:
(20.8.15)

$$
\begin{gathered}
L_{1}{ }^{2}+\cdots+L_{N}{ }^{2}=n\left(x_{2}+\frac{x_{1}}{n}\right)^{2}+\cdots+n\left(x_{N}+\frac{x_{1}}{n}\right)^{2} \\
+\left(x_{2}+\cdots+x_{N}\right)^{2} .
\end{gathered}
$$

This is easily checked, observing that the coefficient of $x_{1}{ }^{2}$ on the right of (20.8.15) is $(N-1) / n=n+1$. Let us change variables in (20.8.15), writing

$$
\begin{equation*}
y_{1}=x_{2}+\cdots+x_{N}, \quad y_{2}=x_{2}+\frac{x_{1}}{n}, \cdots, y_{N}=x_{N}+\frac{x_{1}}{n} \tag{20.8.16}
\end{equation*}
$$

The x 's may be expressed rationally in terms of the y 's. We rewrite (20.8.15) as (20.8.17) $L_{1}{ }^{2}+\cdots+L_{N}{ }^{2}=y_{1}{ }^{2}+n y_{2}{ }^{2}+n y_{3}{ }^{2}+\cdots+n y_{N^{2}}{ }^{2}$.

We now appeal to the Theorem of Lagrange that every positive integer can be written as a sum of four squares. For this see Hardy and Wright's "Theory of Numbers'" [1], p. 300; we have

$$
\begin{equation*}
n=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2} \tag{20.8.18}
\end{equation*}
$$

and also the celebrated identity of Lagrange,

$$
\begin{align*}
& \left(a_{1}{ }^{2}+a_{2}{ }^{2}+a_{3}{ }^{2}+a_{4}{ }^{2}\right)\left(y_{i}{ }^{2}+y_{i+1}{ }^{2}+y_{i+2}{ }^{2}+y_{i+3}{ }^{2}\right) \\
& =\left(a_{1} y_{i}+a_{2} y_{i+1}+a_{3} y_{i+2}+a_{4} y_{i+3}\right)^{2} \\
& \quad+\left(a_{1} y_{i+1}-a_{2} y_{i}+a_{3} y_{i+3}-a_{4} y_{i+2}\right)^{2} \tag{20.8.19}\\
& \quad+\left(a_{1} y_{i+2}-a_{3} y_{i}+a_{4} y_{i+1}-a_{2} y_{i+3}\right)^{2} \\
& \quad+\left(a_{1} y_{i+3}-a_{4} y_{i}+a_{2} y_{i+2}-a_{3} y_{i+1}\right)^{2} \\
& =z_{i}{ }^{2}+z_{i+1}{ }^{2}+z_{i+2}{ }^{2}+z_{i+3}^{2} .
\end{align*}
$$

In (20.8.19) we find that $z_{i}, z_{i+1}, z_{i+2}, z_{i+3}$ can be expressed rationally in terms of $y_{i}, y_{i+1}, y_{i+2}, y_{i+3}$. Remembering that $N \equiv 3(\bmod 4)$, we may apply (20.8.18). and (20.8.19) to (20.8.17) to obtain
(20.8.20)

$$
L_{1}{ }^{2}+\cdots+L_{N}{ }^{2}=z_{1}{ }^{2}+z_{2}^{2}+\cdots+z_{N-2}{ }^{2}+n\left(z_{N-1}{ }^{2}+z_{N}{ }^{2}\right)
$$

We note that each of $L_{j}, j=1, \cdots N$ was originally a rational (in fact an integral) linear form in the x 's, and so in turn, a rational linear form in the y 's and finally in the z 's, where z_{1}, \cdots, z_{N} are independent indeterminates. Since (20.8.20) is an identity in the z 's, it will remain a valid identity if some of the z 's are specialized as linear combinations of the rest. Suppose in (20.8.20) that

$$
\begin{equation*}
L_{1}=b_{1} z_{1}+\cdots+b_{N} z_{N} \tag{20.8.21}
\end{equation*}
$$

Let us put $L_{1}=z_{1}$ if $b_{1} \neq 1$ and $L_{1}=-z_{1}$ if $b_{1}=1$. One of these may be used to specialize z_{1} as a rational linear combination of z_{2}, \cdots, z_{N} and also to give $L_{1}{ }^{2}$ $=z_{1}^{2}$, whence with this specialization.
(20.8.22)

$$
L_{2}^{2}+\cdots+L_{N}^{2}=z_{2}^{2}+\cdots+z_{N-2}^{2}+n\left(z_{N-1}^{2}+z_{N}^{2}\right)
$$

Continuing, we put $L_{2}= \pm z_{2}, \cdots L_{N-2}= \pm z_{N-2}$ to specialize z_{2}, \cdots, z_{N-2}, and we have

$$
\begin{equation*}
L_{N-1}^{2}+L_{N}^{2}=n\left(z_{N-1}^{2}+z_{N}^{2}\right) \tag{20.8.23}
\end{equation*}
$$

where L_{N-1} and L_{N} are rational linear forms in z_{N-1} and z_{N} which are independent variables. We may take z_{N-1} and z_{N} as positive integers which are multiples of the denominators in L_{N-1} and L_{N}, whence (20.8.23) becomes a relation in which all quantities are integers. But now n, an integer which is the quotient of two integers each of which is a sum of two squares, is itself a sum of two squares, a well-known result in number theory which follows from Theorem 366 in Hardy and Wright [1]. We now have

$$
\begin{equation*}
n=a^{2}+b^{2} \tag{20.8.24}
\end{equation*}
$$

and our theorem is proved. There is a partial converse to our theorem:
Theorem 20.8.4. If $n \equiv 0,3(\bmod 4)$ or if $n \equiv 1,2(\bmod 4)$ and $n=a^{2}+b^{2}$, then there exist rational linear forms in $x_{1}, \cdots, x_{N}, L_{j}, j=1, \cdots N$ satisfying:
$L_{1}{ }^{2}+\cdots+L_{N}{ }^{2}=n\left(x_{1}{ }^{2}+\cdots+x_{N}{ }^{2}\right)+\left(x_{1}+\cdots+x_{N}\right)^{2}$. There also exists a rational $N \times N$ matrix A satisfying $A A^{T}=A^{T} A=n I+S$.

Proof: If $n \equiv 0,3(\bmod 4)$, we may use $(\underline{20.8 .18})$ and (20.8.19) to put (20.8.17) into the form:

$$
\begin{equation*}
L_{1}^{2}+\cdots+L_{N^{2}}{ }^{2}=z_{1}^{2}+\cdots+z_{N}^{2} \tag{20.8.25}
\end{equation*}
$$

and, of course, $L_{i}=z_{i}$ satisfies the theorem. If $n \equiv 1,2(\bmod 4)$ and $n=a^{2}+b^{2}$, we may use the identity:
(20.8.26)

$$
\begin{aligned}
\left(a^{2}+b^{2}\right)\left(y_{i}^{2}+y_{i+1}{ }^{2}\right) & =\left(a y_{i}+b y_{i+1}\right)^{2}+\left(b y_{i}-a y_{i+1}\right)^{2} \\
& =z_{i}{ }^{2}+z_{i+1}{ }^{2},
\end{aligned}
$$

instead of (20.8.19) to put (20.8.17) into the form (20.8.25). If

$$
\begin{equation*}
L_{i}=\sum_{i} b_{i j} x_{i}, \quad j=1, \cdots N \tag{20.8.27}
\end{equation*}
$$

are the linear forms of our theorem, then putting $A=\left(b_{i j}\right), i, j=1, \cdots N$, we have

$$
\begin{equation*}
A A^{T}=n I+S \tag{20.8.28}
\end{equation*}
$$

but not in general $A^{T} A=n I+S$. It is more difficult to show that under the hypotheses of the theorem a rational matrix A exists which satisfies both relations $A A^{T}=n I+S=A^{T} A$. But this and even more has been shown by Hall and Ryser [1].

20.9. Collineations in Finite Planes.

If a collineation α of a plane π fixes two points, then it also fixes the line joining them, and similarly, if α fixes two lines, then it also fixes their intersection. Hence if α fixes a quadrilateral, then α fixes a proper subplane. The following theorem gives information on the possible orders of subplanes.

Theorem 20.9.1 (Bruck). If a plane π of order n has a subplane π^{*} of order m, then $n=m^{2}$ or $n \geq m^{2}+m$.

Proof: Let L be a line of the subplane π^{*} and P a point of L not belonging to π^{*}. There are $m+1$ points of π^{*} on L and m^{2} points of π^{*} not on L. If we join P to each of the m^{2} points of π^{*} not on L, we obtain m^{2} lines through P which must all be different, since if two were the same such a line K would contain two distinct points of π^{*} and so be a line of π^{*}, whence P as the intersection of K and L would be a point of π^{*}, contrary to assumption. Hence through P there are at least $m^{2}+1$ lines, namely, L and the m^{2} others joining P to points of π^{*}. Hence, since there are $n+1$ lines through P, we must have $n \geq m^{2}$. If $n \neq m^{2}$ there will be a further line L_{1} through P not passing through any point of π^{*}. Now consider the intersections of L_{1} with the $m^{2}+m+1$ lines of π^{*}. If any two of these intersections were the same point, such a point would be a point of π^{*}, contrary to hypothesis. Hence L_{1} contains at least $m^{2}+m+1$ points, and so $n \geq$ $m^{2}+m$.

With a little care we may list the subsets S of a plane which with any two points contains the line joining them and which with any two lines contains their intersection.

First, if S contains four points, no three on a line, then S is a subplane. The remaining possible sets we call degenerate subplanes. These are:

1) The void set.
2) A single point P and possibly one or more lines through P.
3) A single line L and possibly one or more points on L.
4) A single point P and a single line L not passing through P.
5) The vertices and sides of a triangle.
6) A line L and a point P on L and also one or more points on L and one or more lines through P.
7) A line L containing three or more points, a single-point P not on L, and the lines joining P to the points of L.

The collineation α is a permutation of the points and also a permutation of the lines of π. Let P be the permutation of the points and Q the permutation of the lines, where we write both P and Q as $N \times N$ matrices. Here as usual $N=n^{2}$ $+n+1$.
(20.9.1)

$$
\begin{aligned}
& P=\left(p_{i j}\right), \\
& Q=\left(q_{i j}\right),
\end{aligned}
$$

where

$$
\begin{array}{ll}
p_{i j}=1 & \text { if } P_{i} \alpha=P_{i}, \\
q_{i j}=1 & \text { if } Q_{i} \alpha=Q_{j},
\end{array}
$$

and otherwise, $p_{i j}=0, q_{i j}=0$.
Then we have

$$
\begin{equation*}
P^{-1} A Q=A \tag{20.9.2}
\end{equation*}
$$

where $A=\left(a_{i j}\right)$ is the incidence matrix for π. Conversely, if permutation matrices P and Q exist, satisfying (20.9.2), they determine a collineation of π.

Theorem 20.9.2 (Parker [1]). The permutations P of points and Q of lines in a collineation are similar as permutations.

Corollary 20.9.1 (BAER). A collineation fixes the same number of points and lines.

Proof: We note that since

$$
\begin{equation*}
A A^{T}=A^{T} A=n I+S \tag{20.9.3}
\end{equation*}
$$

then

$$
\begin{equation*}
(\operatorname{det} . A)^{2}=\operatorname{det} .(n I+S)=(n+1)^{2} n^{N-1} \tag{20.9.4}
\end{equation*}
$$

whence in particular A is nonsingular. Thus (20.9.2) becomes

$$
\begin{equation*}
Q=A^{-1} P A \tag{20.9.5}
\end{equation*}
$$

and so P and Q are similar as matrices. Here P and Q have the same irreducible constituents, regarded as representations of a cyclic group. But, reducing a cycle $\left(x_{1}, \cdots, x_{r}\right)$ of length r in any permutation, we find that these constituents have the characters $1, \zeta, \zeta^{2}, \cdots, \zeta^{-1}$, where ζ is a primitive r th root of unity. But this says that an mth root of unity is a character of a permutation P with a multiplicity a_{m}, where a_{m} is the number of cycles of P whose length is a multiple of m. Since these multiplicities a_{m} are the same for both P and Q, it follows that P and Q have the same number of cycles of each length m. Hence P and Q are similar as permutations. In particular we have the corollary, which asserts that P and Q have the same number of cycles of length one, i.e., fixed elements.

Theorem 20.9.3 (Parker). A group of collineations G of π has the same number of transitive constituents as a permutation group on the points as it has a permutation group on lines.

Proof: Let G be of order g. Then from (20.9.5) we have G represented as a permutation group G_{1} on points and G_{2} on lines, and these representations are equivalent. Let $\chi_{1} \chi_{2}$ be the respective characters:

$$
\begin{equation*}
\sum_{x \in G} \chi_{1}(x)=\sum_{x \in G} \chi_{2}(x) . \tag{20.9.6}
\end{equation*}
$$

But by Theorem 16.6.13,

$$
\begin{equation*}
\sum_{x \in G} \chi_{1}(x)=k_{1} g, \quad \sum_{x \in G} \chi_{2}(x)=k_{2} g \tag{20.9.7}
\end{equation*}
$$

where k_{1} is the number of transitive constituents of G_{1}, and k_{2} is the number of transitive constituents of G_{2}. Hence $k_{1}=k_{2}$, the assertion of the theorem. Although from the preceding theorem each individual permutation of G_{1} is similar as a permutation to the corresponding element of G_{2}, it is not in general true that G_{1} and G_{2} are similar as permutation groups. For example, in a Desarguesian plane the group of all collineations fixing a point P_{0} contains no line fixed by all its collineations.

Theorem 20.9.4. A Desarguesian plane π of order $n=p^{r}$ has a collineation group of order $r\left(n^{2}+n+1\right)\left(n^{2}+n\right) n^{2}(n-1)^{2}$.

Proof: In π the number of ordered quadrilaterals $P_{1}, P_{2}, P_{3}, P_{4}$ is $\left(n^{2}+n+\right.$ 1) $\left(n^{2}+n\right) n^{2}(n-1)^{2}$, since we may choose P_{1} as any of the $n^{2}+n+1$ points, P_{2} as any other point, P_{3} as any of the n^{2} points not on $P_{1} P_{2}$, and P_{4} as any of the $(n-1)^{2}$ points not on any one of $P_{1} P_{2}, P_{1} P_{3}$, or $P_{2} P_{3}$. By Theorem 20.5.5 the collineation group G of π is transitive on quadrilaterals. The subgroup of G fixing the quadrilateral X, Y, O, I is the group of automorphisms of the coordinatizing field $G F\left(p^{r}\right)$, and this is of order r, as was noted in \S 20.6.

Theorem 20.9.5 (Singer [1]). A Desarguesian plane π of order n has a collineation α of order $N=n^{2}+n+1$ which is cyclic on the points and also on the lines.

Proof: Let $n=p^{r}$. Then π is coordinatized by $G F\left(p^{r}\right)=F$. It is convenient to represent π in terms of homogeneous coordinates. A point P will be given as

$$
\begin{equation*}
P=\left(\lambda x_{1}, \lambda x_{2}, \lambda x_{3}\right), \tag{20.9.8}
\end{equation*}
$$

where x_{1}, x_{2}, x_{3} are fixed elements of F not all zero, and λ ranges over all elements of F except 0 . Similarly, a line L will be given as

$$
\begin{equation*}
L=\left[u_{1} \mu, u_{2} \mu, u_{3} \mu\right] \tag{20.9.9}
\end{equation*}
$$

where u_{1}, u_{2}, u_{3} are fixed elements not all zero, and μ ranges over all elements of F except $0 . P \in L$ if, and only if,

$$
\begin{equation*}
x_{1} u_{1}+x_{2} u_{2}+x_{3} u_{3}=0 \tag{20.9.10}
\end{equation*}
$$

Because F is a field, we see that the incidence relation (20.9.10) is the same for any choice of λ in (20.9.8) and any choice of μ in (20.9.9). The homogeneous coordinates may be identified with the nonhomogeneous coordinates in the following way:

$$
\begin{align*}
(\infty) & =(0, \lambda, 0), \\
(m) & =(\lambda, \lambda m, 0), \\
(a, b) & =(\lambda a, \lambda b, \lambda), \\
L_{\infty} & =[0,0, \mu], \tag{20.9.11}\\
(x=c) & =[\mu, 0,-c \mu], \\
(y=x m+b) & =[m \mu,-\mu, b \mu] .
\end{align*}
$$

We easily check that the homogeneous representation of π agrees with the nonhomogeneous representation. The field $G F\left(p^{3 r}\right)=F_{1}$ may be considered as a cubic extension of $F=G F\left(p^{r}\right)$, and if w is a primitive root of F_{1}, every element x of F_{1} has a unique expression

$$
\begin{equation*}
x=x_{1}+x_{2} w+x_{3} w^{2}, \quad x_{i} \in F \tag{20.9.12}
\end{equation*}
$$

Hence if $x \neq 0, \boldsymbol{\lambda} \in F, \lambda \neq 0$ elements λx of F_{1} correspond to the point (λx_{1}, $\lambda x_{2}, \lambda x_{3}$) of π. But in F_{1} the order of w is $p^{3 r}-1=n^{3}-1$. The elements of F are the solutions in F_{1} of the equation

$$
\begin{equation*}
x^{p^{r}}=x \tag{20.9.13}
\end{equation*}
$$

whence for $x \in F, x \neq 0$, we have, since $n=p^{r}$,

$$
\begin{equation*}
x^{n-1}=1 \tag{20.9.14}
\end{equation*}
$$

Thus F^{*} (the elements of F excluding 0) are the elements of the unique subgroup of order $n-1$ of the cyclic group $\{w\}$ of order $n^{3}-1$. Hence the elements of F^{*} are the elements

$$
\begin{equation*}
w^{N i}, \quad N=n^{2}+n+1 \tag{20.9.15}
\end{equation*}
$$

Hence w^{u} and w^{v} represent the same point of π if, and only if,

$$
\begin{equation*}
u \equiv v(\bmod N) \tag{20.9.16}
\end{equation*}
$$

Hence the mapping α of elements $x \in F_{1}$,

$$
\begin{equation*}
x \rightarrow x w \tag{20.9.17}
\end{equation*}
$$

is a permutation of the points of π in a cycle of length N. If $P_{1}=\left(x_{1} x_{2}, x_{3}\right)$ and $P_{2}=\left(y_{1}, y_{2}, y_{3}\right)$ are two distinct points, then we readily verify that the points of the line $P_{1} P_{2}$ are given by

$$
\begin{array}{ll}
(20.9 .18) & \lambda_{1}\left(x_{1}, x_{2}, x_{3}\right)+\lambda_{2}\left(y_{1}, y_{2}, y_{3}\right) \\
& =\left(\lambda_{1} x_{1}+\lambda_{2} y_{1}, \lambda_{1} x_{2}+\lambda_{2} y_{2}, \lambda_{1} x_{3}+\lambda_{2} y_{3}\right)
\end{array}
$$

where λ_{1}, λ_{2} are any elements of F not both zero. Hence if $w^{i}=x_{1}+x_{2} w+x_{3} w^{2}$, $w^{j}=y_{1}+y_{2} w+y_{3} w^{2}$, then the points of $P_{1} P_{2}$ are given by

$$
\begin{equation*}
\lambda_{1} w^{i}+\lambda_{2} w^{2} \tag{20.9.19}
\end{equation*}
$$

Hence the mapping $x \rightarrow x w$ takes the elements of (20.9.19) into

$$
\begin{equation*}
\lambda_{1} w^{i+1}+\lambda_{2} w^{j+1} \tag{20.9.20}
\end{equation*}
$$

and these are the points of the line joining $P_{1} \alpha$ and $P_{2} \alpha$. Hence α is a collineation of π and is a cyclic of length N on the points. It is easy to see (for example, by Theorem 20.9.2) that α is also a cycle of length N on the lines of π.

We can give a crude upper bound on the order of the group G of collineations of a plane π of order n. An ordered quadrilateral $P_{1}, P_{2}, P_{3}, P_{4}$ has at most $M=\left(n^{2}+n+1\right)\left(n^{2}+n\right) n^{2}(n-1)^{2}$ images. The subgroups H_{1} of index $\leq M$ fixing $P_{1}, P_{2}, P_{3}, P_{4}$ fixes the subplane π_{1} generated by these points. If π_{1} is of order m_{1} then H_{1} permutes the $n-m_{1}$ points on a line of π_{1} which are not points of π_{1}. The subgroup H_{2} of index $\leq n-m_{1}$ in H_{1} fixing one of these points fixes a larger subplane π_{2} of order m_{2}, where from Theorem 20.9.2, $m_{2} \geq$ $m_{1}{ }^{2}$. We thus have a descending sequence of subgroups $H_{1} \supset H_{2} \supset \cdots \supset H_{s}=$ 1 , in which H_{i} fixes a subplane of order m_{i}, where $m_{i+1} \geq m_{i}^{2}$, and $\left[H_{i}: H_{i+1}\right]<n$. Thus $s \leq \log _{2} n$, and the order of G is at most $n^{s} M$. The collineation groups of the known non-Desarguesian planes are not as large as the groups for the Desarguesian planes of the same order, and it seems likely that this is always the case.

The following two theorems assert that if in certain specified ways the collineation group of a finite plane is large enough, then the plane is Desarguesian.

Theorem 20.9.6 (Gleason [1]). If for every pair P, L with P a point on a line L of a finite plane π, the elation group $G(P, L)$ is nontrivial, then π is Desarguesian.

Proof: By Theorem 20.4.3 if two elation groups $G\left(P_{1}, L\right)$ and $G\left(P_{2}, L\right)$ with P_{1} and P_{2} different points of L are nontrivial, i.e., different from the identity, then all elations with axis L form an Abelian group in which every element $\neq 1$ is of the same prime order p. By the dual of this theorem, if $G\left(P, L_{1}\right)$ and $G(P$, L_{2}) are nontrivial, with L_{1} and L_{2} different lines through P, then all elations with center P form an Abelian groups whose elements $\neq 1$ are of the same prime order p. Hence, under the hypothesis of our present theorem, every elation group $G(P, L)$ is elementary Abelian of order p or a power of p.

Lemma 20.9.1. Suppose that H is a group of permutations of a finite set S, and suppose that for some prime p and each $x \in S$ there exists an element of H of order p which fixes x but no other element of S. Then H is transitive.

Proof: Consider S_{1} a transitive set of S under H. For $x \in S_{1}$ there exists an element of order p fixing x and displacing all remaining letters in cycles of length p. Hence the number of elements in S_{1} is congruent to $1(\bmod p)$, and the number of elements in another transitive set S_{2} (if there is another) is a multiple of p. But then, taking a $y \boldsymbol{\in} \boldsymbol{S}_{\mathbf{2}}$ by the same argument, the number of elements in S_{1} is a multiple of p. This is a conflict, and so there is only one transitive set and H is transitive on S.

Lemma 20.9.2. Suppose for a line L of a finite plane the elation groups $G\left(P_{i}, L\right)$ for all $P_{i} \in L$ have the same order $h>1$. Then π is a translation plane with respect to L.

Proof: Let π be of order n. Any two of the $n+1$ groups $G\left(P_{i}, L\right)$, each of order h, have only the identity in common, and together their elements form the translation group $T(L)$. Hence the order of $T(L)$ is $t=(n+1)(h-1)+1$. Since
only the identity of $T(L)$ can fix a point not on $L, T(L)$ permutes the n^{2} points in sets of t points, whence t divides n^{2}. Write

$$
\begin{equation*}
n^{2}=t m=[(n+1)(h-1)+1] m \tag{20.9.21}
\end{equation*}
$$

Since $h>1$, we have $m<n$. On the other hand, taking (20.9.21) modulo $n+1$, we have
(20.9.22) $\quad n^{2} \equiv 1 \equiv m(\bmod n+1)$.

But $m \equiv 1(\bmod n+1)$ and $m<n$ together yield $m=1, t=n^{2}$, whence $T(L)$ is transitive on the n^{2} points of π not on L, and so π is a translation plane with respect to L.

We can now prove our theorem. Take a fixed line L of π. For each point $P \in L$ the elation group $G(P, M)$, where $M \neq L$ is another line through P, contains an element of order p fixing P and mapping L onto itself but displacing all other points of L. Hence, by Lemma 20.9.1, the group $G(L)$ of all collineations fixing L is transitive on the points of L. It then follows that for the $n+1$ points P_{i} of L, all elation groups $G\left(P_{i}, L\right)$, being conjugate under $G(L)$, have the same order h. By Lemma 20.9.2 it follows that π is a translation plane with respect to L. But L can be taken as any line of π. Thus π is a translation plane for every line L, and by Theorem 20.5.3, π can be coordinatized by an alternative division ring. By Theorem 20.6.2 a finite alternative division ring is a field, and so π is Desarguesian.

Gleason [1] uses this theorem in the study of finite Fano planes. The Fano configuration is the configuration of the seven points and seven lines making the finite plane of order 2. A plane is a Fano plane if the diagonal points of every quadrilateral are on a line, or, what is the same thing, if every quadrilateral generates a Fano configuration. Gleason shows that every finite Fano plane is Desarguesian and that these are the finite planes over the fields $G F\left(2^{r}\right)$. There is not space here to prove this very interesting result.

We shall call a collineation of order 2 an involution.
THEOREM 20.9.7 (BAER). Let α be an involution in a projective plane of order n. Then either (1) $n=m^{2}$ and the fixed points and lines of α form a subplane of order m, or (2) α is a central collineation. In case (2) if n is odd, α is a homology, and if n is even, α is an elation.

Proof: We show first that every point is on a fixed line. If P is not a fixed point then $P \alpha \neq P$ and α fixes the line $P P \alpha$, which is therefore a fixed line through P. If P is a fixed point, join P to Q, another point. It may be that $L=P Q$ is a fixed line. If not, $Q \alpha \neq Q$ and $Q \alpha \notin P Q$. Here $L \alpha=P Q \alpha$. Then if R is a third point on $L, R \alpha \in L \alpha$. Then α interchanges the lines $Q \alpha R$ and $Q R \alpha$ whose intersection S is another fixed point different from P. In this case $P S$ is a fixed line through P. By a dual argument every line passes through a fixed point.

The line joining a pair of fixed points is a fixed line and the intersection of two fixed lines is a fixed point. Hence if there exists four fixed points, no three on a line, the fixed elements of α form a proper subplane π_{1} of π. Let us suppose this to be the case and suppose that π_{1} is of order m. Then by Theorem 20.9.1, $n \geq m^{2}$, and following the proof of this theorem, we see that if $n>m^{2}$, there is a line of π which does not pass through any point of π_{1}. But we have shown that every line of π contains a fixed point. Hence we cannot have $n>m^{2}$, and so $n=m^{2}$. This proves alternative (1) of the theorem.

Now suppose that there are not four fixed points, no three on a line. What is the configuration of the fixed points? We show first that there is a line containing three fixed points. A line L_{1} contains a fixed point P_{1}. Choose a line L_{2} not through P_{1}. Then L_{2} contains a fixed point $P_{2} \neq P_{1}$. We now have two fixed points P_{1}, P_{2}, and the line L joining them is a fixed line. Choose a third point Q on L. If Q is fixed, L is the line we seek. If Q is not a fixed point, a line L_{3} through Q contains a fixed point P_{3} not on L. We now have a triangle P_{1}, P_{2}, P_{3} of fixed points. Consider a line L_{4} not through any one of $P_{1}, P_{2}, P_{3} . L_{4}$ contains a fixed point P_{4}. If P_{4} is not on one of the lines $P_{1} P_{2}, P_{1} P_{3}$, or $P_{2} P_{3}$, then $P_{1}, P_{2}, P_{3}, P_{4}$ are four fixed points, no three on a line, and this is the situation covered in the first alternative. Hence P_{4} is on one of these lines, and we have a line containing three fixed points.

We now have a line L containing three fixed points $P_{1} P_{2} P_{3}$. If there were as many as two fixed points not on L, we would have a quadrilateral of fixed points, the situation of the first alternative. Hence there is either one fixed point P not on L or none. Consider now any point $P_{i} \in L$. There is a line K through P_{i} different from L, and, if there is a fixed point P not on L, different from $P P_{i}$. K contains a fixed point but, by our choice, no fixed point not on L. Hence the fixed point on K is P_{i}, whence it follows that every point P_{i} of L is a fixed
point. Since α fixes every point of L, α is a central collineation with axis L, the assertion of our second alternative. There are n^{2} points of π not on L, and α is of order 2 . Hence if n is odd, α fixes a point not on L and is a homology. If n is even, α fixes an even number of points not on L, and so at least fixes two if it fixes any. Hence in this case α cannot fix any point not on L and is an elation. This completes the proof of all parts of the theorem.

The following is a slight improvement of a Theorem of Ostrom [1], who made the further assumption that n is odd.

Theorem 20.9.8 (Оstrom). If the collineation group of a finite projective plane π of order n, where n is not a square, is doubly transitive on the points of π, then π is Desarguesian.

Proof: Let G be the collineation group of π. By hypothesis G is doubly transitive on the $N=n^{2}+n+1$ points of π. Since $N(N-1)$ divides the order of G, G must contain an element of order 2 , an involution α. Since n is not a square, by Theorem 20.9.7 it follows that α is an elation if n is even and that α is a homology if n is odd.

Lemma 20.9.3. There is an elation in G.

Proof: If n is even, an involution α is an elation. Hence we need consider only the case in which n is odd. Consider an involution α which is a homology and let its center be the point P and its axis be the line L. Let A be a point of L and $A_{1} \neq P$ be a point not on L. Then in G there is an element σ which takes P into P and A into A_{1}. Then $\beta=\sigma^{-1} \alpha \sigma$ is an involution whose center is P and whose axis K passes through A_{1}, and so is different from L. Then $\alpha \beta$ is a central collineation, since it fixes all lines through P. If $\rho=\alpha \beta$ fixes any line T not through P, suppose $T_{1}=T_{\alpha}$. Then β must also interchange T and T_{1}, and if $T \neq$ T_{1}, ρ must fix both T and T_{1}, whence by Theorem 20.4.1, $\rho=1$ and $\alpha=\beta$, a conflict, since α and β are involutions with different axes. But if $T=T_{1}$, then T is the axis of α and also the axis of β, again a conflict, since α and β had different axes. Hence ρ fixes no lines not through P, and so ρ is an elation. This proves our Lemma.

We may now consider an elation ρ with center P on an axis L. Let P_{i} be any other point of L. Then in G there is an element σ interchanging P and P_{i}. Then σ fixes L. Hence the group $G(L)$ of collineations fixing L is transitive on the
points of L, and so for all points P_{i} of L the elation groups $G\left(P_{i}, L\right)$ are of the same order h and $h>1$, since we had an elation ρ with center P on L. From Lemma 20.9.2 of Theorem 20.9.6, π is a translation plane with respect to the axis L. But since G is doubly transitive on points, any two points of L can be mapped onto two points of any other line K by an appropriate element of G. Hence π is also a translation plane with respect to K, and so is a Moufang plane. But as was shown in proving Theorem 20.9.6, this means that π is Desarguesian. A paper by A. Wagner, as yet unpublished, shows that Theorem 20.9.8 is valid without any restriction on n.

There is a generalization of the incidence matrix of a plane due to $\mathrm{D} . \mathrm{R}$. Hughes [3]. If we are given a plane π and a group G of collineations of π, this is a matrix whose entries are elements from the group ring G^{*} of G, G^{*} being taken over the integers or over any field whose characteristic does not divide the order of G. Analogues of the incidence equations (20.9.3) can be obtained. From Theorem 20.9.3 we recall that the number of transitive sets of lines under G is the same as the number of transitive sets of points. Let us call this number w. We list our notation:
π, a given projective plane of order n.
G, a group of collineations of π of order g.
$P_{i}, i=1, \cdots, w$, a fixed representative of the
$\quad i$ th transitive set of points.
$L_{i}, j=1, \cdots, w$, a fixed representative of the
$\quad j$ th transitive set of lines.
H_{i}, subgroup of G fixing P_{i}, of order h_{i}.
T_{i}, subgroup of G fixing L_{j}, of order t_{j}.
$D_{i j}=\left\{x \mid x \epsilon G, P_{i} x \in L_{j}\right\}$, a set of $d_{i j}$ elements
of G.
(20.9.23) $\quad \delta_{i j}=\sum x, x \in D_{i j}$,

$$
\begin{aligned}
\delta^{*}{ }_{i j} & =\sum x^{-1}, x \in D_{i j} \\
D & =\left(\delta_{i j}\right) i, j=1, \cdots, w, \text { a matrix over } G^{*} \\
D^{\prime} & =\left(\delta^{*}{ }_{i j}\right)^{T} i, j=1, \cdots, w, \text { a matrix over } G^{*} \\
\rho_{i} & =\sum x, x \in H_{i}, i=1, \cdots, w \\
\tau_{j} & =\sum x, x \in T_{i}, j=1, \cdots, w \\
\gamma & =\sum x, x \in G \\
S & =w \times w \text { matrix with every entry } \gamma
\end{aligned}
$$

We also use several diagonal matrices:

$$
\begin{align*}
C_{1} & =\text { diag. }\left(h_{1}^{-1}, h_{2}^{-1}, \cdots, h_{w}^{-1}\right) \\
C_{2} & =\text { diag. }\left(t_{1}^{-1}, t_{2}^{-1}, \cdots, t_{w}^{-1}\right) \tag{20.9.24}\\
P & =\text { diag. }\left(\rho_{1}, \rho_{2}, \cdots, \rho_{w}\right) \\
L & =\text { diag. }\left(\tau_{1}, \tau_{2}, \cdots, \tau_{w}\right)
\end{align*}
$$

We observe that a knowledge of the sets $D_{i j}$ of elements x of G such that $P_{i} x \in L_{j}$ completely determines the incidences in π, for every point of π can be written $P_{i} u$ for some $i=1, \cdots, w$ and some $u \in G$, and similarly, every line is of the form $L_{j} v$. Moreover, $P_{i} u \in L_{j} v$ if, and only if, $P_{i} u v^{-1} \in L_{j}$ or if $u v^{-1} \in D_{i j}$. Hence a knowledge of D completely determines π. If G is merely the identity, we see that D is the incidence matrix A for π.

Theorem 20.9.9. Given a plane π of order n and a group G of collineations of π of order g, the collineation matrix D satisfies the following relations:

$$
\begin{align*}
& D C_{2} D^{\prime}=n P+S \\
& D^{\prime} C_{1} D=n L+S \tag{20.9.25}\\
& D C_{2} S=(n+1) S \\
& S C_{1} D=(n+1) S
\end{align*}
$$

Proof: We prove the first equation by evaluating the elements of $U=$ $D C_{2} D^{\prime}$, first those on the main diagonal, and later those off the main diagonal. If $U=\left(u_{r, s}\right) r, s=1, \cdots, w$, then we have first

$$
\begin{equation*}
u_{r r}=\sum_{j=1}^{w} \frac{\delta_{r} \delta^{*}{ }_{r j}}{t_{j}} \tag{20.9.26}
\end{equation*}
$$

In (20.9.26) the terms for a single j are

$$
\begin{equation*}
\sum \frac{x y^{-1}}{t_{j}}, \quad x \in D_{r j}, \quad y \in D_{r j} \tag{20.9.27}
\end{equation*}
$$

We note that for $x \in D_{r j}$ the entire coset $H_{r} x T_{j}$ is contained in $D_{r j}$. We consider the left cosets of H_{r} in G :
(20.9.28) $\quad G=H_{r}+H_{r} x_{2}+\cdots+H_{r} x_{v_{r}}, \quad v_{r} h_{r}=g$.

For an $h \in H_{r}$ the equation $x y^{-1}=h$ or $x=h y$ with $x, y \in D_{r j}$ holds for every $y \in D_{r j}$ with an appropriate $x \in D_{r j}$, since $H_{r} y \subseteq D_{r j}$. Hence for a given $h \in H_{r}$ there are $d_{r j}$ choices $x, y \in D_{r j}$ such that $x y^{-1}=h$. Hence in (20.9.26) , the coefficient of h is $\sum_{j} d_{r j} / t_{j}$. But $d_{r j}$ is the number of x 's such that $P_{r} x \in L_{j}$ or $P_{r} \in L_{j} x^{-1}$. For $x \in D_{r j}$ the number of distinct lines in the set $L_{j} x^{-1}$ is $d_{r j} / t_{j}$. But P_{r} is on a total of $n+1$ lines. Hence

$$
\begin{equation*}
\sum_{j} \frac{d_{r j}}{t_{j}}=n+1 \tag{20.9.29}
\end{equation*}
$$

Hence in (20.9.26) the coefficient of $h \in H_{r}$ is $n+1$.
Now consider an equation $x y^{-1}=z, z \notin H_{r}$. Here $P_{r}, P_{r} z$ are distinct points and so lie on a unique line $L_{m} v$, where m and the coset $T_{m} v$ are uniquely determined. If for some j both $x \in D_{r j}, y \in D_{r j}$, then $P_{r} y$ and $P_{r} z y=P_{r} x \in L_{m} v y$. But $P_{r} y \in L_{j}, P_{r} x \in L_{j}$, and $P_{r} x \neq P_{r} y$. Hence $L_{m} v y=L_{j}$, whence we must have $j=m, v y \in T_{m}$. Hence in (20.9.26) the element z arises only for the summand with $j=m$, and here with $x, y \in D_{r m}$,
we have $x y^{-1}=z$ for every $y \in D_{r m}$ so that $L_{m} y^{-1}=L_{m} v=P_{r} P_{r} z$ and an $x \in D_{r m}$ determined by $x=z y$. But these y 's are such that y^{-1} is in the coset $T_{m} v$, and there are exactly t_{m} of these. Hence in (20.9.26) the coefficient of z is $t_{m} / t_{m}=1$. Thus we have in (20.9.26) the coefficient of an $h \notin H_{r}$ as $n+1$ and of a $z \in H_{r}$ as 1 . Hence we have established the correctness of the first equation in (20.9.25) so far as the main diagonal is concerned. For the offdiagonal terms in $U=D C_{2} D^{\prime}$ we have

$$
\begin{equation*}
u_{r s}=\sum_{j=1}^{w} \frac{\delta_{r j} \delta^{*}{ }_{s j}}{t_{j}} \tag{20.9.30}
\end{equation*}
$$

and the terms for a single j are

$$
\begin{equation*}
\sum \frac{x y^{-1}}{t_{j}}, \quad x \in D_{r j}, \quad y \in D_{s j} \tag{20.9.31}
\end{equation*}
$$

Here for any $\boldsymbol{z} \boldsymbol{\epsilon} \boldsymbol{G}$, the points $P_{r} z$ and P_{s} are distinct and lie on a unique line $L_{m} v$, where m and the coset $T_{m} \nu$ are uniquely determined. Here if $x y^{-1}=z$, where for some $j, \boldsymbol{x} \in D_{\boldsymbol{r} \boldsymbol{j}}, \boldsymbol{y} \in D_{\boldsymbol{s} j}$, then $P_{r} x=P_{r} z y$ and $P_{s} y$ lie on $L_{m} v y$. But $P_{r} x \neq P_{s} y$ both lie on L_{j}. Hence $L_{m} v y=L_{j}$, whence $j=m$ and $L_{j} y^{-1}=L_{m} v=$ $P_{r} z P_{s}$. But these y 's are such that y^{-1} is an element of $T_{m} v$, and there are t_{m} of these. Also for each $y^{-1} \in T_{m} v, L_{m} v y=L_{m}$ and $P_{r} z y \in L_{m}$, whence $x=z y \in D_{r m}$. Hence the coefficient of any z in $u_{r s}$ reduces to t_{m} / t_{m}, and so $u_{r s}=\sum z, z \in G, u_{r s}=\gamma$, and this completes the proof of the first relation in (20.9.25).

The second relation in (20.9.25) is the dual of the first, and its proof can be carried out in the same fashion.

In calculating $D C_{2} S=V=\left(v_{r s}\right)$, we find

$$
\begin{equation*}
v_{r s}=\sum_{j} \frac{\delta_{r j}}{t_{j}} \gamma=\sum_{j} \frac{d_{r j}}{t_{j}} \gamma, \tag{20.9.32}
\end{equation*}
$$

but by (20.9.29) this is $(n+1) \gamma$. This proves the third relation, and the fourth is dual and may be proved in the same way.

Proceeding from the relations (20.9.25), Hughes has obtained restrictions on the possible collineations in planes similar to the restrictions of the BruckRyser theorem. The proof depends (as did the original proof of the Bruck-Ryser theorem) on the deep results of Hasse-Minkowski on the rational equivalence of quadratic forms. In particular he finds the following:

Theorem 20.9.10 (Hughes). Let π be a plane of order n for which the Bruck-Ryser conditions on n are satisfied. Let G be a group of collineations of π of odd prime order p. Let the number u of fixed points be even. Then a necessary condition that such a collineation exists is that the equation:

$$
x^{2}=n y^{2}+(-1)^{(p-1) / 2} p z^{2}
$$

have a solution in integers x, y, z not all zero.
The same result holds for a collineation group G of odd order g (instead of p) if every element $\neq 1$ of G displaces the same points.

Hughes' theorem, like the Bruck-Ryser theorem, denies the existence of certain collineations but does not, of course, guarantee the existence of collineations which do satisfy the conditions.

The main content of the following theorem is that if a plane π has a certain group G of collineations, then π must have still further specific collineations. We assume that G is of a simple type. Explicitly we shall assume that G is transitive and regular on the $N=n^{2}+n+1$ points of π, and also that G is Abelian. This result was first proved by Hall [3] with G a group of order N cyclic on the N points of π. Bruck [1] extended this to the study of cases in which G is transitive and regular but had to assume in addition that G is Abelian to obtain the same result. Hoffman [1] obtained a similar result, assuming that G is cyclic on the $n^{2}-1$ points of π not on L_{∞} and different from the origin.

Suppose that we have a group G of collineations of a plane π of order n, where G is Abelian and transitive and regular on the N points of π. In this case if P is a fixed point of π, every point has a unique representation $P x, x \in G$. If an integer t is prime to N, then $x \rightarrow x^{t}$, all $x \in G$ is trivially an automorphism of G. If, further, for every $x \in G, P x \rightarrow P x^{t}$ is a collineation of π, we say that t is a multiplier of π. Trivially, the multipliers form a multiplicative group modulo N.

Theorem 20.9.11. If a plane π of order n has a collineation group G which is Abelian and transitive and regular on the N points of π, then any prime p which divides n is a multiplier of π.

Proof: Under the hypothesis there is only a single transitive constituent for points and so also for lines. There is a single representative point $P=P_{1}$ and a single representative line $L=L_{1}$, and if $D_{11}=\left\{x_{1}, x_{2}, \cdots, x_{n+1}\right\}, x_{i} \in \boldsymbol{G}$, then $P x_{i}, i=1, \cdots, n+1$ are the points of L_{1}. Then $x_{1} u, \cdots, x_{n+1} u, u \in G$ are the points of G. Here we have $D=\delta_{11}, D^{\prime}=\delta^{*}{ }_{11}$.

$$
\begin{align*}
& D=x_{1}+\cdots+x_{n+1} \tag{20.9.33}\\
& D^{\prime}=x_{1}^{-1}+\cdots+x_{n+1^{-1}}
\end{align*}
$$

C_{2} and C_{1} reduce to the identity. The first two relations (20.9.25) take the form

$$
D D^{\prime}=D^{\prime} D=n \cdot 1+\gamma
$$

The last two relations in (20.9.25) say only that there are $n+1$ elements in D and D^{\prime}. To show that $P x \rightarrow P x^{p}$ is a collineation of π, we must show that $P x_{1}{ }^{p}$, $P x_{2}{ }^{p}, \cdots, P x_{n+1}^{p}$ are on a line. For this we need to show that for some $\boldsymbol{u} \in \boldsymbol{G}$,

$$
\begin{equation*}
D^{(p)}=x_{1}^{p}+\cdots+x_{n+1}^{p}=\left(x_{1}+\cdots+x_{n+1}\right) u \tag{20.9.34}
\end{equation*}
$$

since the points of an arbitrary line $L u$ are $P x_{1} u, P x_{2} u, \cdots, P x_{n+1} u$. Conversely, if (20.9.34) holds, then $P x_{1}{ }^{p}, \cdots, P x_{n+1}{ }^{p}$ are the points of $L u$, whence generally $P\left(x_{1} v\right)^{p}, \cdots, P\left(x_{n+1} v\right)^{p}$ are the points of $L u v^{p}$, and so $P x \rightarrow$ $P x^{p}$ is a collineation and p is a multiplier. For this theorem we take the group ring G^{*} to be the group ring of G over the integers. $G^{*}(\bmod p)$ is the ring G^{*} with coefficients reduced modulo p. We have

$$
\begin{equation*}
D^{(p)}=x_{1}^{p}+\cdots+x_{n+1}^{p} \equiv\left(x_{1}+\cdots+x_{n+1}\right)^{p}=D^{p}(\bmod p) \tag{20.9.35}
\end{equation*}
$$

since the multinomial coefficients are multiples of the prime p and since G is Abelian. The assumption that G is Abelian enters at this point and also in saying as above that $\left(x_{i} v\right)^{p}=x_{i}^{p} \nu^{p}$ and that $x \rightarrow x^{p}$ is an automorphism of G. We
note that since $p \mid n$ and $N=n^{2}+n+1$, we have $(p, N)=1$. Since $p \mid n$, we have, from (20.9.34).

$$
\begin{equation*}
D D^{\prime} \equiv \gamma(\bmod p) \tag{20.9.36}
\end{equation*}
$$

Multiplying by D^{p-1}, we have

$$
\begin{equation*}
D^{p} D^{\prime} \equiv D^{p-1} \gamma \equiv(n+1)^{p-1} \gamma \equiv \gamma(\bmod p) \tag{20.9.37}
\end{equation*}
$$

Hence, from (20.9.35),

$$
\begin{equation*}
D^{(p)} D^{\prime} \equiv \gamma(\bmod p) \tag{20.9.38}
\end{equation*}
$$

From this we may write

$$
\begin{equation*}
D^{(p)} D^{\prime}=\gamma+p R \tag{20.9.39}
\end{equation*}
$$

where (and this is vital to our proof) the coefficients of the group elements in R are non-negative integers, for in $D^{(p)} D^{\prime}$ all coefficients are non-negative, and by (20.9.38), every term $a_{i} u_{i}, u_{i} \in G$ has $a_{i} \equiv 1(\bmod p) a_{i} \geq 0$. Thus $a_{i} \geq 1$ and $\left(a_{i}-1\right) / p$ is a non-negative integer, this being the coefficient of u_{i} in R. Now x $\rightarrow x^{-1}, x \in G$ is an automorphism of G, and hence determines an automorphism $h \rightarrow h^{\prime}$ for $h \in G^{*}$ and $D \rightarrow D^{\prime}$ under this automorphism. Applied to (20.9.39), this yields
(20.9.40)

$$
D D^{\prime(p)}=\gamma+p R^{\prime}
$$

Moreover, $x \rightarrow x^{p}$ is an automorphism of G and determines an automorphism h $\rightarrow h^{(p)}$ of G^{*}. Applied to (20.9.34), this yields

$$
\begin{equation*}
D^{(p)} D^{\prime(p)}=n \cdot 1+\gamma \tag{20.9.41}
\end{equation*}
$$

The product of the left-hand sides of (20.9.34) and (20.9.41) is the same as that for (20.9.39) and (20.9.49). Hence, putting equal the products of the right-hand sides, we have

$$
\begin{equation*}
(n \cdot 1+\gamma)^{2}=(\gamma+p R)\left(\gamma+p R^{\prime}\right) \tag{20.9.42}
\end{equation*}
$$

The homomorphism of G^{*} into the integers determined by $x \rightarrow 1, x \in G$ applied to (20.9.39), gives

$$
\begin{equation*}
(n+1)^{2}=n^{2}+n+1+p R(1) \tag{20.9.43}
\end{equation*}
$$

where $R \rightarrow R(1)$ in the homomorphism. Thus $p R(1)=n$, and also $p R^{\prime}(1)=n$. But in $G^{*}, p R \gamma=p R(1) \gamma=n \gamma$. Using this in (20.9.42), we find

$$
\begin{equation*}
n^{2} \cdot 1=(p R)\left(p R^{\prime}\right) \tag{20.9.44}
\end{equation*}
$$

But since $p R$ and $p R^{\prime}$ have non-negative coefficients, this will be impossible if there is more than one nonzero term in $p R$. Hence $p R=b u$ for some integer b and $u \in G$. But $b=p R(1)=n$, whence $p R=n u$. Substituting in (20.9.39), we have

$$
\begin{equation*}
D^{(p)} D^{\prime}=\gamma+n u \tag{20.9.45}
\end{equation*}
$$

Multiplying by D, and using (20.9.34), we have

$$
\begin{align*}
D^{(p)} D^{\prime} D & =\gamma D+n D u \\
D^{(p)}(n+\gamma) & =(n+1) \gamma+n D u \tag{20.9.46}\\
n D^{(p)}+(n+1) \gamma & =(n+1) \gamma+n D u .
\end{align*}
$$

This now gives:

$$
\begin{equation*}
D^{(p)}=D u \tag{20.9.47}
\end{equation*}
$$

But this is precisely the relation (20.9.34) which we needed, and our theorem is proved.

As an illustration of the power of this theorem, consider a plane of order 8 with a (necessarily cyclic) collineation group of order 73 . Points may be represented as residues modulo 73 . The multiplier is 2 , and if $a_{1} \cdots a_{9}$ are the points of a line, then $2 a_{1} \cdots 2 a_{9}$ are $a_{1}+s, \cdots, a_{9}+s$ in some order for an appropriate s. Then the points $a_{1}-s, \cdots, a_{9}-s$ are on a line fixed by the multiplier 2. If one of these residues is 1 , then the multiplier 2 gives us the complete set of points on a line $1,2,4,8,16,32,37,55,64(\bmod 73)$. Any other set fixed by 2 differs from this by a constant factor and gives the same plane. The plane is the Desarguesian plane.

Hughes has proved a further result which is at once more special and more refined than Theorem 20.9.10.

Theorem 20.9.12. A plane π of order n, where $n \equiv 2(\bmod 4), n>2$, cannot have an involution.

Proof: Suppose that π is a plane of order n, where $n \equiv 2(\bmod 4), n>2$, which possesses an involution b. Then by Theorem 20.9.7, since n is even and not a square, b is an elation. Let M be the axis and $C \in M$ the center of the elation. Let $Q_{i}, i=1 \cdots n$ be the remaining points on M, and $K_{i},=1 \cdots n$ the remaining lines through C. Write $n=2 m$, where m is odd. The n^{2} lines of π not through C can be broken up into $n^{2} / 2=2 m^{2}$ classes of two lines, where a class with the line L also contains $L b$. In each class choose one line $L_{i}, i=1, \cdots$, $2 m^{2}$. Similarly, the n points other than C on a line K_{i} can be broken up into $n / 2$ $=m$ classes with respect to b. In each class choose a point and name these points $P_{i j}, j=1, \cdots, n / 2=m$. We now define incidence numbers $a_{i j}{ }^{k}$ by the rule:

$$
\begin{array}{ll}
a_{i j}{ }^{k}+1 & \text { if } P_{i j} \in L_{k}, \\
a_{i j}=-1 & \text { if } P_{i j} b \in L_{k}, \tag{20.9.48}\\
a_{i j}{ }^{k}=0 & \text { (otherwise). }
\end{array}
$$

Lemma 20.9.3.

$$
\sum_{k}\left(a_{i j}^{k}\right)^{2}=n .
$$

Lemma 20.9.4.

$$
\sum_{k} a_{i j}{ }^{k} a_{s t}{ }^{k}=0 \quad \text { if }(i, j) \neq(s, t) .
$$

Proof of Lemma 20.9.3. The point $P_{i j}$ is on n lines either L_{k} or $L_{k} b$, so Lemma 20.9.3 is immediate.

Proof of Lemma 20.9.4. If $i=s, j \neq t$, the points $P_{i j}$ and $P_{i j} b$ all lie on K_{i} and no two on any other line, whence the sum is zero. If $i \neq s$, let $P_{i j} P_{s t}$ be $L_{q} x$,
$P_{i j} P_{s t} b$ be $L_{r} y$, where x and y are 1 or b. Now $r \neq q$, for if $r=q, x=y$, then $L_{q} x$ $=L_{r} y$ contains $P_{s t}$ and $P_{s t} b$, which are distinct points on K_{s}, a conflict. But if $r=$ $q, x=y b$, then $L_{q} x=L_{r} y b$ contains the distinct points $P_{i j}$ and $P_{i j} b$ which lie on K_{i}, a conflict. Hence $r \neq q$. But then

$$
a_{i j}{ }^{q}=a_{s t} t^{q}, \quad a_{i j}{ }^{q} a_{s t}=+1
$$

and

$$
a_{i j}{ }^{r}=-a_{s t} t^{r}, \quad a_{i j}{ }^{r} a_{s t}{ }^{r}=-1
$$

Thus the nonzero terms of Lemma 20.9.4 can be paired so that the sum of a pair is zero. Hence the sum of Lemma 20.9.4 is zero.

From our lemma the incidence numbers $a_{i j}{ }^{k}$ can be formed into a $2 m^{2} \times 2 m^{2}$ matrix:
(20.9.49) $\quad A=\left(a_{i j}{ }^{k}\right) \quad$ with $i j$ giving row, k column,
where, by our Lemma, A satisfies

$$
\begin{equation*}
A A^{T}=n I \tag{20.9.50}
\end{equation*}
$$

Let us define numbers $b_{i k}$ by the rule
(20.9.51) $\quad b_{i k}=\sum_{j=1}^{m} a_{i j}{ }^{k} . \quad i=1, \cdots, n, k=1 \cdots 2 m^{2}$.

Then every $b_{i k}$ is +1 or -1 , since every line L_{k} intersects K_{i} in exactly one point, either $P_{i j}$ or $P_{i j} b$, and so exactly one of $a_{i j}{ }^{k}$ is different from 0 . The $n \times$ $2 m^{2}$ matrix B,

$$
\begin{equation*}
B=\left(b_{i k}\right) i=1 \cdots n, \quad k=1 \cdots 2 m^{2} \tag{20.9.52}
\end{equation*}
$$

is such that its first row is the sum of the first m rows of A, its second row is the sum of the second m rows of A, and so on. Since from (20.9.50) different rows of A had an inner product of zero, the same holds for the rows of B. We may multiply the columns of B by +1 or -1 without changing inner products, and this
we shall do so as to make the first row of B consist exclusively of +1 's. Since n >2, there are at least three rows in B, and rearranging the columns of B, the first three rows of B take the form:
$\left|\begin{array}{c|c|c|}+1, & \cdots & ,+1 \\ \hline+1, \cdots,+1 & +1, \cdots,+1 & +1, \\ \hline-1, \cdots,-1 & -1, \cdots,-1 \\ \hline+1, \cdots,+1 & -1, \cdots,-1 & +1, \cdots,+1 \\ \hline-1, \cdots,-1\end{array}\right|$

r	s	t	u

Since the inner product of the second and third lines with the first is zero, we have $r+s=t+u, r+t=s+u$. Here $r+s+t+u=2 m^{2}$, and so:

$$
\begin{equation*}
r+s=t+u=m^{2}, \quad r+t=s+u=m^{2} \tag{20.9.54}
\end{equation*}
$$

whence

$$
\begin{equation*}
u=r, \quad s=t=m^{2}-r . \tag{20.9.55}
\end{equation*}
$$

Since the inner product of the second and third rows is also zero, we have $r+u$ $=s+t=m^{2}$. But this gives

$$
\begin{equation*}
2 r=m^{2} \tag{20.9.56}
\end{equation*}
$$

which is a conflict because $n \equiv 2(\bmod 4), n=2 m$, and m is odd. Hence π cannot have an involution, and our theorem is proved. This result can be obtained from the incidence relations of (20.9.25) by appropriate renumbering and mapping G^{*} onto the integers by the homomorphism $1 \rightarrow 1, b \rightarrow-1$.

An example of a non-Desarguesian plane of order 9 was given by Veblen and Wedderburn [1]. This example has been shown by Hughes [2] to be a particular case of an infinite class. Let $q=p^{r}$ be a power of an odd prime p. Then we have shown that there exists a near-field K of order q^{2} whose center Z is the field $G F(q)=G F\left(P^{r}\right)$. The Hughes planes are of order q^{2}.

Definition of Hughes Planes: A point P is the set of triples $P=(x k, y k$, $z k$), x, y, z fixed elements of K not all zero and $k \neq 0$, an arbitrary element of K.

The Theorem of Singer (20.9.5) gives us a mapping:

$$
\begin{align*}
& x \rightarrow a_{11} x+a_{12} y+a_{13} z \\
& y \rightarrow a_{21} x+a_{22} y+a_{23} z \tag{20.9.57}\\
& z \rightarrow a_{31} x+a_{32} y+a_{33} z
\end{align*}
$$

where $a_{i j} \in Z$, such that
(20.9.58)

$$
(x, y, z)=P \rightarrow P A=\left(a_{11} x \cdots, \cdots, a_{33} z\right)
$$

is a collineation α of order $m=q^{2}+q+1$ in the Desarguesian plane of order q with coordinates from Z. The Hughes plane is given by extending the collineation α to points with coordinates from K.

We have base lines L_{t} given by equation

$$
\begin{equation*}
x+t y+z=0 \tag{20.9.59}
\end{equation*}
$$

Here we take either $t=1$ or $t \notin Z$, but otherwise t is an arbitrary element of K. This gives $1+\left(q^{2}-q\right)=q^{2}-q+1$ base lines. We define an incidence $P=(x k, y k, z k) \in L_{t}$ if, and only if, x, y, z satisfy (20.9.59). By the associativity of multiplication in K and the right distributive law, then from (20.9.59) we also have

$$
\begin{equation*}
0=(x+t y+z) k=x k+t(y k)+z k \tag{20.9.60}
\end{equation*}
$$

and so our incidence rule $P \in L_{t}$ does not depend on which representative of P is chosen to satisfy (20.9.59). Further lines $L_{t} \alpha_{i}, i=0, \cdots, m-1$ are defined symbolically, and we say

$$
\begin{equation*}
P A^{i} \in L_{t} \alpha^{i} i=0, \cdots, m-1 \tag{20.9.61}
\end{equation*}
$$

if, and only if, $P \in L_{t}$.
It is not true that the points of $L_{t} \alpha^{i}$ satisfy a linear equation. To find the points on L_{t}, we may in (20.9.59) , take x and y arbitrarily, except for taking both to be zero, and determine z from the equation. This give $q^{4}-1$ triples of which sets of $q^{2}-1$ represent the same point. Hence L_{t} contains $q^{2}+1=n+1$ distinct
points. Hence, also, $L_{t} \alpha^{i}$ contains $n+1$ points. We have $\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)$ $=q^{4}+q^{2}+1=n^{2}+n+1$ lines in all, each containing $n+1$ points. There are $n^{2}+n+1$ points in all. Thus to show that we have a projective plane, it is sufficient to show that any two distinct lines have a unique point in common. The mapping $P \rightarrow P A$ is one to one and has period $m=q^{2}+q+1$. If $\{P\}_{S}$ is the set of points on the base line $L_{s}, L_{s} \alpha^{i}$ contains the set of points $\{P\}_{s} A^{i}$, and $L_{t} \alpha^{j}$ contains the set of points $\{P\}_{t} A^{i}$. Hence to show that $L_{s} \alpha^{i}$ and $L_{t} \alpha^{j}$ have a unique point in common, it is sufficient to show that L_{s} and $L_{t} \alpha^{j-i}=L_{t} \alpha^{h}$ (where exponents of α are taken modulo m) have a unique point in common.

Let $P=(x, y, z)$ be a point of $L_{t} \alpha^{h}$. Then $P A^{-h}$ is a point of L_{t}, and conversely. Then if
(20.9.62) $\quad(x, y, z) A^{-h}$

$$
=\left(b_{11} x+b_{12} y+b_{13} z, b_{21} x+b_{22} y+b_{23} z, b_{31} x+b_{32} y+b_{33} z\right)
$$ then the condition that $P=(x, y, z)$ should lie on $L_{t} \alpha^{h}$ is

(20.9.63) $\quad\left(b_{11} x+b_{12} y+b_{13} z\right)+t\left(b_{21} x+b_{22} y+b_{23} z\right)$

$$
+\left(b_{31} x+b_{32} y+b_{33} z\right)=0
$$

If (x, y, z) is on L_{s}, then we have

$$
\begin{equation*}
x+s y+z=0 \tag{20.9.64}
\end{equation*}
$$

We must show that, apart from a factor k on the right, (20.9.63) and (20.9.64) have a unique solution (x, y, z). We solve (20.9.64) for x and substitute in (20.9.63). This gives

$$
\begin{equation*}
u y+a z+t(v y+b z)=0 \tag{20.9.65}
\end{equation*}
$$

where

$$
\begin{align*}
u & =b_{12}+b_{32}-\left(b_{11}+b_{31}\right) s \\
v & =b_{22}-b_{21} s \tag{20.9.66}\\
a & =b_{13}+b_{33}-\left(b_{11}+b_{31}\right) \\
b & =b_{23}-b_{21}
\end{align*}
$$

Note that $a, b \in Z$, but in general u, v are not in Z. There are three cases to consider in finding solutions of (20.9.65).

Case 1: $b \neq 0$. Here (20.9.65) can be written as

$$
\begin{equation*}
\left(b^{-1} a+t\right)(v y+b z)+\left(u-b^{-1} a v\right) y=0 \tag{20.9.67}
\end{equation*}
$$

using the fact that a and b^{-1} are in the center. If both coefficients $b^{-1} a+t$ and u $-b^{-} a v$ should be zero, then $t \in Z, t=1$, and $a+b=0, u+v=0$. But then from $u+v=0$ we have

$$
\begin{equation*}
b_{12}+b_{22}+b_{32}=\left(b_{11}+b_{21}+b_{31}\right) s \tag{20.9.68}
\end{equation*}
$$

whence $s \in \boldsymbol{Z}$, and so $s=1$. Now $a+b=0$ gives

$$
\begin{equation*}
(u+t v) y+a z=0 \tag{20.9.70}
\end{equation*}
$$

But with both $s=1$ and $t=1$ this says that (20.9.63) and (20.9.64) represent the same line in the Desarguesian plane π_{1} over $G F(q)$. But this is not possible unless the $L_{s}=L_{1}, L_{t} \alpha^{i}=L_{1}$ because the matrix A was of order $m=q^{2}++1$ as a collineation of π_{1}. Hence not both coefficients are zero in (20.9.67). Thus if $b^{-1} a+t \neq 0$, an arbitrary value for y determines $v y+b z$ uniquely, and since $b \neq$ 0 , it determines z uniquely. If $b^{-1} a+t=0$, then $u-b^{-1} a v \neq 0$, and so $y=0$, whence z is arbitrary. Thus y and z are determined uniquely apart from a right factor, and so in turn from (20.9.64), x is determined uniquely by y and z. Thus (20.9.63) and (20.9.64) are satisfied by a unique point ($x k, y k, z k$). This gives the desired unique solution in Case 1 .

CASE 2: $b=0, a \neq 0$. Here (20.9.65) becomes

$$
\begin{align*}
b_{13}+b_{33} & =b_{11}+b_{31} \tag{20.9.71}\\
b_{23} & =b_{21}
\end{align*}
$$

Since $a \neq 0,(\underline{20.9 .70})$ and (20.9.64) are satisfied by a unique point $(x k, y k, z k)$.
CASE 3: $b=0, a=0$. Here we have
(20.9.64). Also, from (20.9.71), we see by (20.9.62) that
and we see that the point $P=(k, 0,-k)$ satisfies both (20.9.65) and (20.9.64). Also, from (20.9.71), we see by (20.9.62) that

$$
\begin{equation*}
P A^{-h}=(k, 0,-k) A^{-h}=\left(b_{11}-b_{13}\right)(k, 0,-k)=P, \tag{20.9.72}
\end{equation*}
$$

where $b_{11}-b_{13} \neq 0$, since A^{-h} is not singular. But since A^{h} fixes the point P of π_{1}, we see that $h \equiv 0(\bmod m)$, and so $L_{t \alpha}{ }^{h}$ is L_{t}. Hence our lines are now L_{s} and L_{t} where surely $s \neq t$. For these, $x+s y+z=0$ and $x+t y+z=0$, and so, clearly, $P=(k, 0,-k)$ lies on both these lines but no other point does. Thus in every case any two distinct lines have a unique intersection, and we have proved that they form a projective plane. We state this as a theorem.

Theorem 20.9.13 (Hughes). Given a near-field K of order q^{2} whose center is $G F(q)=Z, q=p^{r}, p$ an odd prime, and the mapping A of (20.9.57). of order $q^{2}+q+$ as a collineation of the Desarguesian plane of order q. Then lines $L_{t} \alpha^{i}$ containing points $P A^{i}$ by the rules (20.9.59) and (20.9.61) form a projective plane π of orer q^{2}.

Hughes has shown that if the near-field K is not the field $G F\left(q^{2}\right)$, then the plane π is not only non-Desarguesian but also is not a Veblen-Wedderburn plane over any coordinate system.

* For the properties of three-dimensional spaces used here, see Veblen and Young [1], pp. 20-25.
${ }_{-}^{*}$ See Zorn [1].

Bibliography

Albert, A. A.
[1] On nonassociative division algebras, Trans. Amer. Math. Soc. 72 (1952), 296-309.

Baer, R.
[1] Erweiterung von Gruppen und ihrer Isomorphismen, Math. Zeit. 38 (1934), 375-416.
[2] The decomposition of enumerable primary Abelian groups into direct summands, Quart. J. of Math. 6 (1935), 217-221.
[3] The decomposition of Abelian groups into direct summands, Quart. J. of Math. 6 (1935), 222-232.
[4] Types of elements and the characteristic subgroups of Abelian groups, Proc. London Math. Soc. 39 (1935), 481-514.
[5] The subgroup of elements of finite order of an Abelian group, Ann. of Math. 37 (1936), 766-781.
[6] Dualism in Abelian groups, Bull. Amer. Math. Soc. 43 (1937), 121-124.
[7] Duality and commutativity of groups, Duke Math. J. 5 (1939), 824838.
[8] The significance of the system of subgroups for the structure of a group, Amer. J. of Math. 61 (1939), 1-44.
[9] Abelian groups that are direct summands of every containing Abelian group, Bull. Amer. Math. Soc. 46 (1940), 800-806.
[10] Homogeneity of projective planes, Amer. J. of Math. 64 (1942), 137-152.
[11] Klassification der Gruppenerweiterungen, J. reine angew. Math. 187 (1949), 75-94.
[12] Supersoluble groups, Proc. Amer. Math. Soc. 6 (1955), 16-32.

Bethe, H. A.
[1] Termaufspaltung in Kristallen, Ann. der Physik (5) 3 (1929), 133208.

Birkhoff, Garrett
[1] Lattice Theory, Colloquium publications, Amer. Math. Soc., vol. XXV, rev. ed., 1948.

Birkhoff, G., and MacLane, S.
[1] A Survey of Modern Algebra, The Macmillan Co., revised edition, 1953.

Bruck, R. H.
[1] Difference sets in a finite group. Trans. Amer. Math. Soc. 78 (1955), 464-481.

Bruck, R. H., and Kleinfeld, E.
[1] The structure of alternative division rings, Proc. Amer. Math. Soc. 2 (1951), 878-890.

Bruck, R. H., and Ryser, H. J.
[1] The non-existence of certain finite projective planes. Can. J. Math. 1 (1949), 88-93.

Burnside, W.
[1] On an unsettled question in the theory of discontinuous groups, Quart. J. Pure and Appl. Math. 33 (1902), 230-238.
[2] Theory of Groups of Finite Order, Cambridge Univ. Press, 2nd ed., 1911.

Chowla, S., and Ryser, H. J.
[1] Combinatorial problems, Can. J. Math. 2 (1950), 93-99.

Eckmann, B.
[1] Cohomology of groups and transfer, Ann. of Math. 58 (1953), 481493.

Eilenberg, S., and MacLane, S.
[1] Cohomology theory in abstract groups I, Ann. of Math. 48 (1947), 51-78.
[2] Cohomology theory in abstract groups II, Ann. of Math. 48 (1947), 326-41.

Federer, H., and Jonsson, B.
[1] Some properties of free groups, Trans. Amer. Math. Soc. 68 (1950), 1-27.

Frobenius, G.
[1] Über auflösbare Gruppen IV Berl. Sitz. (1901), 1223-1225.
[2] Über einen Fundamentalsatz der Gruppentheorie, Berl. Sitz. (1903), 987-991.

Gaschütz, W.
[1] Zur Erweiterungstheorie der Endlichen Gruppen, J. reine angew. Math. 190 (1952), 93-107.

Gleason, A. M.
[1] Finite Fano planes, Amer. J. Math. 78 (1956), 797-807.
Grün, O .
[1] Beiträge zur Gruppentheorie I, J. reine angew. Math. 174 (1935), 1-14.

Hall, Marshall, Jr.
[1] Group rings and extensions, Ann. of Math. 39 (1938), 220-234.
[2] Projective planes, Trans. Amer. Math. Soc. 54 (1943), 229-277. Correction, Trans. Amer. Math. Soc. 65 (1949), 473-474.
[3] Cyclic projective planes, Duke Math. J. 14 (1947), 1079-1090.
[4] Coset representation in free groups, Trans. Amer. Math. Soc. 67 (1949), 421-432.
[5] Subgroups of finite index in free groups, Can. J. Math. 1 (1949), 187-190.
[6] A basis for free Lie rings and higher commutators in free groups, Proc. Amer. Math. Soc. 1 (1950), 575-581.
[7] Subgroups of free products, Pacific J. Math. 3 (1953), 115-120.
[8] On a theorem of Jordan, Pacific J. Math. 4 (1954), 219-226.
[9] Solution of the Burnside problem for exponent 6, Proc. Nat. Acad. Sci. 43 (1957), 751-753.

Hall, M. J., and Rado, T.
[1] On Schreier systems in free groups, Trans. Amer. Math. Soc. 64 (1948), 386-408.

Hall, M. J., and Ryser, H. J.
[1] Normal completions of incidence matrices, Amer. J. Math. 76 (1954), 581-589.

Hall, Philip
[1] A note on soluble groups, J. London Math. Soc. 3 (1928), 98105.
[2] A contribution to the theory of groups of prime-power order. Proc. London Math. Soc. 36 (1933), 29-95.
[3] On a Theorem of Frobenius, Proc. London Math. Soc. 40 (1936), 468-501.

Hall, P., and Higman, G.
[1] The p-length of a p-soluble group, and reduction theorems for Burnside's problem, Proc. London Math. Soc. (3) 7 (1956), 1-42.

Hardy, G. H., and Wright, E. M.
[1] An Introduction to the Theory of Numbers, The Clarendon Press, Oxford, 1938.

Higman, Graham
[1] On finite groups of exponent five, Proc. Camb. Phil. Soc. 52 (1956), 381-390.

Hirsch, K. A.
[1] On infinite soluble groups, Proc. London Math. Soc. (2) 44 (1938), 53-60.
[2] On infinite soluble groups II, Ibid. 44 (1938), 336-344.
[3] On infinite soluble groups III, Ibid. 49 (1946), 184-194.
Hoffman, A. J.
[1] Cyclic affine planes, Can. J. Math. 4 (1952), 295-301.

Hölder, O.
[1] Zuruckführung einer beliebigen algebraischen Gleichung auf eine Kette von Gleichungen, Math. Ann. 34 (1889), 26-56.

Holyoke, T. C.
[1] On the structure of multiply transitive permutation groups, Amer. J. Math. 74 (1952), 787-796.

Hughes, D. R.
[1] Regular collineation groups, Proc. Amer. Math. Soc. 8 (1957), 159-164.
[2] A class of non-Desarguesian projective planes, Can. J. Math. 9 (1957), 378-388.
[3] Generalized incidence matrices over group algebras, Ill. J. Math. 1 (1957), 545-551.
[4] Collineations and generalized incidence matrices, Trans. Amer. Math. Soc. 86 (1957), 284-296.

Huppert, B.
[1] Normalteiler und maximale Untergruppen endlicher Gruppen, Math. Zeit. 60 (1954), 409-434.

Iwasawa, K.
[1] Über die endlichen Gruppen und die Verbände ihrer Untergruppen, J. Univ. Tokyo 43 (1941), 171-199.

Jordan, C.
[1] Commentaire sur Galois, Math. Ann. 1 (1869), 141-160.
[2] Recherches sur les substitutions, J. Math. Pures Appl. (2) 17 (1872), 351-363.

Kaplansky, I.
[1] Infinite Abelian Groups, University of Michigan Press, 1954.
Kleinfeld, E.
[1] Alternative division rings of characteristic 2, Proc. Nat. Acad. Sci. USA 37 (1951), 818-820.
[2] Right alternative rings, Proc. Amer. Math. Soc. 4 (1953), 939-944.

Kostrikin, A. I.
[1] Solution of the restricted Burnside problem for exponent 5, Izv. Akad. Nauk SSSR, Ser. mat. 19 (1955), 233-244. (In Russian.)

Krull, W.
[1] Über verallgemeinerte endliche Abelsche Gruppen, Math. Zeit. 23 (1925), 161-196.
[2] Theorie und Anwendung der verallgemeinerten Abelschen Gruppen, Sitz Heidelberg. Akad. Wiss. (1926), 1-32.

Kurosch, A.
[1] Die Untergruppen der freien Produkte von beliebigen Gruppen, Math. Ann. 109 (1934), 647-660.
[2] The Theory of Groups, 2nd. ed., translated from the Russian by K. A. Hirsch, two volumes, Chelsea Publishing Co., New York, 1955.

Levi, F. W.
[1] Über die Untergruppen der freien Gruppen, Math. Zeit. 32 (1930), 315-318.

Levi, F. W., and van der Waerden, B. L.
[1] Über eine besondere Klasse von Gruppen, Abh. Math. Sem. Hamburg 9 (1933), 154-158.

MacLane, S.
[1] A conjecture of Ore on chains in partially ordered sets, Bull. Amer. Math. Soc. 49 (1943), 567-568.
[2] Cohomology theory in abstract groups, III, Ann. of Math. 50 (1949), 736-761.

Magnus, W.
[1] Über Bezhieungen zwischen höheren Kommutatoren, J. reine angew. Math. 177 (1937), 105-115.
[2] On a theorem of Marshall Hall, Ann. of Math. 40 (1939), 764-768.
[3] A connection between the Baker-Hausdorff formula and a problem of Burnside, Ann. of Math. 52 (1950), 111-126.

Mann, H. B.
[1] On certain systems which are almost groups, Bull. Amer. Math. Soc. 50 (1944), 879-881.

Meier-Wunderli, H .
[1] Note on a basis for higher commutators, Commentarii Math. Helvetici, 16 (1951), 1-5.

Miller, G. A.
[1] Limits of the degree of transitivity of substitution groups, Bull. Amer. Math. Soc., 22 (1915), 68-71.

Moufang, R.
[1] Alternativkörper und der Satz vom vollständigen Vierseit, Abh. Math. Sem. Hamburg, 9 (1933), 207-222.

Neumann, B. H.
[1] Die Automorphismengruppe der freien Gruppen, Math. Ann. 107 (1932), 367-386.
[2] On the number of generators of a free product, J. London Math. Soc. 18 (1943), 12-20.

Neumann, H.
[1] Generalized free products with amalgamated subgroups I, Amer. J. Math. 70 (1948), 590-625.
[2] Generalized free products with amalgamated subgroups II, Ibid. 71 (1949), 491-540.

Nielsen, J.
[1] Om Regnig med ikke-kommutative Faktorer og dens Anvendelse i Gruppeteorien, Mat. Tidsskrift B (1921), 77-94.

Noether, E.
[1] Hyperkomplexe Zahlen und Darstellungstheorie, Math. Zeit. 30 (1929), 641-692.

Ore, O.
[1] Direct Decompositions, Duke Math. J. 2 (1936), 581-596.
[2] On the theorem of Jordan-Hölder, Trans. Amer. Math. Soc. 41 (1937), 266-275.
[3] Chains in partially ordered sets, Bull. Amer. Math. Soc. 49 (1943), 558-566.

Ostrom, T. G.
[1] Double transitivity in finite projective planes, Can. J. Math. 8 (1956), 563-567.

Parker, E. T.
[1] On collineations of symmetric designs, Proc. Amer. Math. Soc. 8 (1957), 350-351.

Pauli, W.
[1] Zur Quantenmechanik des Magnetischen Elektrons, Zeit. für Physik, 43 (1927), 601-623.

Pickert, G.
[1] Projektive Ebenen, Springer (1955).
Pontrjagin, L.
[1] Topological Groups, translated from the Russian by Emma Lehmer, Princeton University Press, 1939.

Prüfer, H .
[1] Theorie der abelschen Gruppen I, Math. Zeit. 20 (1924), 165-187.
[2] Theorie der abelschen Gruppen II, Math. Zeit. 22 (1925), 222249.

Remak, R.
[1] Über die Zerlegung der endlichen Gruppen in direkte unzerlegbare Faktoren, J. reine angew. Math. 139 (1911), 293-308.
[2] Über die Zerlegung der endlichen Gruppen in direkte unzerlegbare Faktoren, J. reine angew. Math. 153 (1923), 131140.

Sanov, I. N.
[1] Solution of Burnside's problem for exponent 4, Leningrad State Univ. Ann. 10 (1940), 166-170. (In Russian.)

San Soucie, R. L.
[1] Right alternative division rings of characteristic two, Proc. Amer. Math. Soc. 6 (1955), 291-296.

Schmidt, O.
[1] Über die Zerlegung endlicher Gruppen in direkte unzerlegbare Faktoren, Izvestiya Kiev Univ. (1912), 1-6.

Schreier, O.
[1] Über die Erweiterung von Gruppen, I, Monats. für Math. u. Phys. 34 (1926), 165-180.
[2] Über die Erweiterung von Gruppen II, Abh. Math. Sem. Hamburg, 4 (1926), 321-346.
[3] Die Untergruppen der freien Gruppen, Abh. Math. Sem. Hamburg, 5 (1927), 161-183.
[4] Über den Jordan-Holderschen Satz, Abh. Math. Sem. Hamburg, 6 (1928), 300-302.

Singer, J.
[1] A theorem in finite projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938), 377-385.

Skornyakov, L. A.
[1] Alternative fields, Ukrain. Mat. Zur. 2 (1950), 70-85. (In Russian.)
[2] Right alternative fields, Izv. Akad. Nauk SSSR, Ser. Mat. 15 (1951), 177-184. (In Russian.)

Suzuki, M.
[1] Structure of a group and the structure of its lattice of subgroups, Ergebnisse der Mathematik und ihrer Grenzgebiete, 10 (1956), Springer, Berlin.

Tarry, G.
[1] Le problème des 36 officiers, C. R. Assoc. Fr. Av. Sci. (1900), 122-123; and (1901), 170-203.

Ulm, H .
[1] Zur Theorie der abzählbar unendlichen abelschen Gruppen, Math. Ann. 107 (1933), 774-803.
van der Waerden, B. L.
[1] Moderne Algebra, 2nd ed., Berlin, 1940.
Veblen, O., and Wedderburn, J. H. M.
[1] Non-Desarguesian and non-Pascalian geometries. Trans. Amer. Math. Soc. 8 (1907), 379-388.

Veblen, O., and Young, J. W.
[1] Projective Geometry, vol. 1, Ginn and Co., 1910.
Wedderburn, J. H. M.
[1] On the direct product in the theory of finite groups, Ann. of Math. 10 (1909), 173-176.

Wielandt, H .
[1] Abschatzungen fur den Grad einer Permutationsgruppe von vorgeschrie-benem Transitivitätsgrad, Schriften des Math. Sem. und des Inst, für angew. Math. der Univ. Berlin, 2 (1934), 151-174.
[2] Eine Verallgemeinerung der invarianten Untergruppen, Math. Zeit. 45 (1939), 209-244.
[3] p-Sylowgruppen und p-Faktorgruppen, J. reine angew. Math. 182 (1940), 180-193.

Witt, E.
[1] Über die Kommutativität endlicher Schiefkörper, Abh. Math. Sem. Hamburg, 8 (1931), 413.
[2] Treue Darstellung Liescher Ringe, J. reine angew. Math. 177 (1937), 152-160.

Zassenhaus, H.
[1] Zum Satz von Jordan-Hölder-Schreier, Abh. Math. Sem. Hamburg 10 (1934), 106-108.
[2] Über endliche Fastkörper, Abh. Math. Sem. Hamburg, 11 (1936), 187-220.

Zorn, M.
[1] Theorie der alternativen Ringe, Abh. Math. Sem. Hamburg, 8 (1931), 123-147.

INDEX

Abelian group, 35
Absolutely irreducible representation, $\underline{262}$
Absorption laws, 116
Adjacent words, 91
Admissible subgroup, 30
Algebraic number, $\underline{285}$
All element of a lattice, 117
Alphabetical ordering, 315
Alternating group, $\underline{59}$
Alternative division ring, $\underline{370}$
Amalgamated product, $\underline{312-314}$
Aperiodic group, 36
Artin-Zorn, Theorem of, 376
Associative laws, 1, 4, 116
Automorphisms, $\underline{29}, \underline{84} \underline{90}$
-of Abelian groups, $\underline{85}$ - $\underline{66}$
-of free groups, 111
Axiom of choice, $\underline{18}$
Basic commutators, 165
Basis, 37
Bertrand's postulate, $\underline{68}$
Bound, upper and lower, $\underline{115}$
Bruck-Ryser theorem, $\underline{394}$
Burnside
-basis theorem, 176
-problem, 320-338
-Theorems of, 46, 142, 203
Cartesian product, 33
Cayley, Theorem of, $\underline{9}$
Center, 14
Central collineation, $\mathbf{3 5 0}$
Central extensions, $\underline{222}$
Central isomorphism, $\underline{127}$
Central series, 151

Centralizer, 14
Chain, 115
Characteristic subgroup, 31
Characters, 248, 267-281
-of an Abelian group, 194
Chief series, $\underline{124}$
Class of a group, $\underline{151}$
Class of elements, 14
Closure laws, 1
Coboundary, $\underline{237}$
Cochain, 236
Cohomology, 237
Collection process, 165, 182
Collineation, 349
Commutative laws, $1, \underline{116}$
Commutator, 138
-subgroup, 138
Commute, 32
Complete group, 87
Complete lattice, 117
Complete reducibility Theorem of, $\underline{253}$
Complex, 10
Complex commutator, 138
Composition series, $\underline{124}$
Conjugate elements, 13
Conjugate subgroups, 14
Coordinates, Introduction of, 353-356
Coset, 10
Cover, 115
Cycle, 53
Cyclic group, 12, 35
Defining relations, $\underline{37}$
Definite Hermitian form, $\underline{296}$
Degree of a representation, $\underline{247}$
Derived group, 138
Desargues, Theorem of, $\mathbf{3 5 1}$
Desarguesian planes, $\underline{374}$
Dihedral group, $\underline{19}$
Dimension of a lattice, 117
Direct product, $\underline{32}, \underline{33}$
Direct union, $\underline{127}$
Distributive lattice, $\underline{117}$
Distributive laws, 1
Divisible group, 197
Division ring, $\underline{263}$
Double coset, 14-15
Double group, 299

Double module, $\underline{235}$
Doubly transitive group, $\underline{382}$
Duality, 196, 347
Elation, 350
Electron spin, $\underline{299}$
Elementary Abelian group, 41
Endomorphism, $\underline{29}$
Equivalent representations, $\underline{248}$
Even permutations, $\underline{59}$
Extension of groups, 218-246
Factor group, 27
Factor set, 218
Field, 1
-Finite, 375
Frattini subgroup, 156
Free Abelian group, 199
Free groups, $\underline{91}-\underline{114}$
Free product, $\underline{311}$
Frobenius, Theorems of, 136, 292
Fully invariant subgroup, 31
Gaschütz, Theorem of, 245
Geometries, finite, 392
Greatest lower bound, $\underline{115}$
Group, Definitions of, 4-6
Group of extensions, 223
Groups of order $p^{a} q b, 291$
Groups of orders $p, p^{2}, p q, p^{3}, \underline{49}-\underline{1}$
Grün, Theorems of, 214, $\underline{215}$
Hall, Philip, Theorems of, $141, \underline{161}, \underline{211}$
Hall-Higman, Theorems of, 325-326
Hall systems, $\underline{364}$
Hamiltonian groups, 190
Hermitian forms, $\underline{295}$
Holomorph, $\underline{86}$ - $\underline{87}$
Homology, 350
Homomorphisms, $\underline{9}, \underline{27}, \underline{28}$
Hughes planes, 416
Huppert, Theorem of, $\underline{162}$
Idempotent, $\underline{256}$
Idempotent laws, 116
Image, $\underline{\underline{2}}$
Imprimitive representation, 281-282
Imprimitivity, 64

Index of a subgroup, $\underline{11}$
Infinite groups, remarks on, $\underline{15}-\underline{19}$
Inner automorphisms, $\underline{85}$
Intersection of subgroups, $\underline{10}$
Intransitive groups, 63-64
Invariants of an Abelian group, 41
Inverse, 1, 4
Involution, 405
Irreducible representations, $\underline{252}$
Isomorphism, $\underline{8}$
Iwasawa, Theorem of, $\underline{342}$
Jordan, Theorem of, 72-73
Jordan-Dedekind chain condition, 119
Jordan-Hölder, Theorem of, 126
Kronecker product, $\underline{277}$
Kurosch, Theorem of, $\underline{315}$
Lagrange, Theorem of, $\underline{11}$
Lattice, $\underline{116}$
Lattices of subgroups, 339-345
Least upper bound, $\underline{115}$
Lie ring, 328
Local property, 16
Locally cyclic groups, 193, $\underline{340}$
Loop, 7
Lower bound, $\underline{115}$
Lower central series, $\underline{150}$
Lower semi-modular, 120
Mapping, 2
Mathieu groups, $\mathbf{7 3}, \underline{80}$
Maximal condition, 15, 153
Maximal subgroup, 18
Metacyclic groups, 146
Minimal condition, 16
Modular lattice, $\underline{117}$
Module, representation, $\underline{249}$
Monomial representations, $\underline{200}$
Moufang plane, $\underline{370}$
Multiple transitivity, $\underline{56}$, $\underline{68}$
Near-field, 364, 388-392
Negative, 1
Nielsen property, 107
Nil-c, 153
Nilpotent, $\underline{149}$

Normal product, $\underline{88}-\underline{90}$
Normal series, 124
Normal subgroup, 26
Normalizer, 14
Odd permutation, $\underline{59}$
Operator, $\underline{29}$
Operator homomorphism, 249
Operator isomorphism, $\underline{30}$
Order of a group, $\underline{11}$
Order of an element, $\underline{12}$
Ordinary representation, $\underline{256}$
Ore, Theorem of, 127
Orthogonal representation, 294-298
Orthogonality relations, 279
Outer automorphism, $\underline{85}$
p-complement, 144
p-group, 45, 176-186
p-normal, $\underline{205}$
p-solvable, 331
Partial ordering, 17
Partially ordered set, $\underline{115}$
Periodic, 15
Permutable subgroups, 124
Permutation, $\underline{\underline{3}}$
Permutation groups, $\underline{53-83}$
Permute, 32
Perspective quotients, $\underline{117}$
Perspectivity, $\underline{349}$
Primitive group, $\underline{64}$
Principal series, $\underline{124}$
Projective planes, 346-420
Projective quotients, 118
Pure subgroups, $\underline{198}$
Quadruply transitive groups, 73
Quasi-group, 7
Quaternion group, $\underline{23}$
Quotient lattice, $\underline{117}$
Reciprocity theorem, $\underline{284}$
Reduced word, 91
Reducible representation, 251
Refinement theorem, 125, 126
Regular p-group, 183
Regular representation, $\underline{9}$
Regular ring, $\underline{256}$

Representation module, $\underline{249}$
Representation of groups
by matrices, 247-310
by permutations, 56-59
Representative of coset, 11
Residual property, 16
Ring, 1
Schreier system, $\underline{94}$
Schur's lemma, $\underline{269}$
Semi-direct product, $\underline{88}-\underline{90}$
Semi-group, 7
Semi-modular lattice, 120
Semi-simple ring, 256
Significant factor, 97
Simple commutator, 138
Simple group, 26
Simple ordering, 17
Simple ring, 258
Simply ordered set, 115
Solvable group, 138
Standard representation, $\underline{101}$
String, 91, 165
Subdirect product, 63-64
Subgroup, 7
Subinvariant, 123
Supersolvable group, $149, \underline{342}$
Sylow subgroup, 40
Sylow theorems, 44-47
Sylow theorems, Extended, 141
Symmetric group, 54
Tensor product, $\underline{277}$
Torsion-free group, 36
Transfer, 201
Transfinite induction, 17
Transitive group, $5 \underline{5}$
Transitive set, $\underline{55}$
Union of subgroups, $\underline{10}$
Unit, 1, 4
Unitary representation, 294-298
Upper bound, 115
Upper central series, $\underline{151}$
Upper semi-modular, $\underline{120}$
Veblen-Wedderburn system, $\underline{363}$

Wedderburn, Theorem of, $\underline{375}$
Wedderburn-Remak-Schmidt Theorem of, $\underline{130}$
Well ordering, 17
Wielandt, Theorem of, $\underline{212}$
Witt formulae, 169
Word, 91, 165
Wreath product, $\underline{81}$
Zero, 1
Zero element of a lattice, $\underline{117}$
Zorn, Theorem of, $\underline{376}$
Zorn's lemma, 17

INDEX OF SPECIAL SYMBOLS

A number of the symbols used in this book are standard. Among these are: the symbols for set inclusion $A \supseteq B, A$ includes $B, A \supset B, A$ includes B properly, $A \subseteq B, A$ is contained in $B, A \subset B, A$ is properly contained in B; $a \in A, a$ belongs to the set $A ; a \mid b, a$ divides $b, a \equiv b(\bmod m), a$ is congruent to b modulo m. Following standard usage, a line through a symbol indicates a denial of the relation, thus: $p \ngtr s, p$ does not divide $s, y \notin G, y$ does not belong to G.
$\alpha: x \rightarrow y$ or $y=(x) \alpha$, a mapping or homomorphism, $\underline{2}$
$\alpha: x \rightleftarrows y$, a one-to-one mapping or isomorphism, $\underline{3}$
$\alpha=\binom{1,2,3}{2,3,1}$ permutation, $\underline{3}$
$H \cup K$, union, $\underline{10}$
$H \cap K$, intersection, $\underline{10}$
$\{K\}$, group generated by $K, \underline{10}$
[$G: H$], index of H in $G, \underline{11}$
$N_{H}(S)$, normalizer of S in $H, \underline{14}$
$C_{H}(S)$, centralizer of S in $H, \underline{14}$
$H=G / T, H$ is the factor group of G with respect to $T, \underline{28}$
g^{α}, α an operator on $g, \underline{29}$
$A \times B$, direct product, $\underline{32}$

, Cartesian product, 3 3
$i \in I$
$\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, cycle in a permutation, $\underline{53}$
$A \cong B, A$ is isomorphic to $B, \underline{64}$
$G \geqslant H$, wreath product of G by $H, \underline{81}$
[x], greatest integer not exceeding $x, \underline{81}$
$f \sim g, f$ is equivalent to $g, \underline{91}$
$\Phi(f)=g_{i}, g_{i}$ is the coset representative of $f, \underline{96}$
$a>b, a$ covers $b, \underline{115}$
$A_{i} \triangleleft A_{i-1}, A_{i}$ is normal in $A_{i-1}, \underline{123}$
$(x, y)=x^{-1} y^{-1} x y$, commutator, 138
$\left(x_{1}, \cdots, x_{n-1}, x_{n}\right)$, simple commutator, $\underline{138}$
$\Phi=\Phi(G)$, Frattini subgroup of $G, \underline{156}$
$\mu(m)$, Möbius function, $\underline{169}$
r_{+}, R_{+}, additive groups of rationals and reals, 193
$Z\left(p^{\infty}\right)$, a certain Abelian group, 194
$\chi(a)$, a character, $\underline{194}, \underline{248}$
$V_{G \rightarrow K}(g)$ or $V(g)$, transfer of the element $g, \underline{202}$
(u, v) factor in a factor set, $\underline{218}$
\bar{x}, coset representative, $\underline{226}$
\oplus, direct sum of right ideals, $\underline{255}$

+ , direct sum of two-sided ideals, $\underline{258}$
$\left(f_{1}, f_{2}\right)$, symmetric bilinear scalar product, $\underline{270}$

Пfree product, $\underline{312}$
[x, y], Lie product, 328
$Q \xrightarrow{P} R$, perspectivity, $\underline{349}$
$x \cdot m \circ b$, ternary operation, $\underline{355}$
(x, y, z), associator, $\underline{377}$
www.doverpublications.com

[^0]: \pm For a treatment of primitive roots see Birkhoff and MacLane [1] p. 446, or Hardy and Wright [1] p. 236.

[^1]: $\underset{-}{*}$ Birkhoff and MacLane [1], p. 48. See $\S \underline{9.2}$ for properties of the commutator subgroup.

[^2]: \pm See Marshall Hall, Jr. [1].
 *See Eilenberg and MacLane [1, 2] and MacLane [2].

[^3]: ${ }^{*}$ The properties of matrices, determinants, and the full linear group that are assumed here can be found in Birkhoff and MacLane [1], Chapters VI through IX.
 \pm These facts are covered in Birkoff and MacLane [1], pp. 410-422.
 ${ }^{*}$ W. Burnside [2], pp. 322-323.

