

In memory of Toby Kross.

Contents

Acknowledgements 1

Introduction . 2

What is Unix? . 4

Getting Unix . 5
Mac & Ubuntu Users 5
Windows . 5

Command Line Basics 6
Hello Terminal! 6
Navigating the Command Line 9
Creation and Inspection 16
Migration and Destruction 29

Working with Unix 37
Self-Help . 37
Get Wild . 40
Search . 46
Configure . 66
Differentiate . 69
Pipes . 72
Make . 75

CONTENTS

Bash Programming 84
Math . 85
Variables . 89
User Input . 94
Logic and If/Else 96
Arrays . 115
Braces . 119
Loops . 121
Functions . 132
Writing Programs 143

Git and GitHub . 154
What are Git and GitHub? 154
Setting Up Git and GitHub 155
Getting Started with Git 156
Important Git Features 166
Branching . 174
GitHub . 186

Nephology . 212
Introduction to Cloud Computing 212
Setting Up DigitalOcean 213
Connecting to the Cloud 216
Cloud Computing Basics 220
Shutting Down a Server 237

Start Building . 241
Next Steps . 241
Giving Feedback 242

Acknowledgements
Thank you to Jeff Leek, Roger Peng, and Brian Caffo for your
advice and support. Also thank you to Jon Calder and Elissa
Redmiles for your edits and suggestions.

Introduction
This book is intended for folks who are new to programming
and new toUnix-like operating systems likemacOS and Linux
distributions like Ubuntu. Most of the technologies discussed
in this book will be accessed via a command line interface.
Command line interfaces can seem alien at first, so this book
attempts to draw parallels between using the command line
and actions that you would normally take while using your
mouse and keyboard. You’ll also learn how to write little
pieces of software in a programming language called Bash,
which allows you to connect together the tools we’ll discuss.
My hope is that by the end of this book you be able to use
different Unix tools as if they’re interconnecting Lego bricks.

Unix forms a foundation that is often very helpful for accom-
plishing other goals you might have for you and your com-
puter, whether that goal is running a business, writing a book,
curing disease, or creating the next great app. The means to
these goals are sometimes carried out by writing software.
Software can’t be mined out of the ground, nor can software
seeds be planted in spring to harvest by autumn. Software
isn’t produced in factories on an assembly line. Software is
a hand-made, often bespoke good. If a software developer is
an artisan, then Unix is their workbench. Unix provides an
essential and simple set of tools in a distraction-free environ-
ment. Even if you’re not a software developer learning Unix
can open you up to new methods of thinking and novel ways
to scale your ideas. My goal for this book is to help you get
started with Unix by writing the book I would have wanted

Introduction 3

when I was first learning Unix. If you have any additions,
corrections, or comments for this book please open an issue
or send a pull request to: https://github.com/seankross/the-
unix-workbench. If you’re unsure what a pull request is don’t
worry, you’ll find out in the Git and GitHub chapter of this
book!

What is Unix?
Unix is an operating system and a set of tools. The tool
we’ll be using the most in this book is a shell, which is a
computer program that provides a command line interface.
You’ve probably seen a command line interface in the movies:
an elite computer hacker sits in front of a black screen
with green glowing text, furiously typing in commands and
shouting something like “Spike them!” Using the command
line interface lets you enter lines of code into a shell (also
called a console) and that code instructs your computer to
perform a specific task. Throughout this book I may use
the terms command line, shell, and console interchangeably.
You’ll learn about using the command line in the Command
Line Basics chapter.

The shell is a very direct and powerful way to manipulate
a computer. You can produce wonderful creations that help
thousands of people, or you can wreak havoc on yourself
and on others. Like Benjamin Parker1 once said: “With great
power comes great responsibility.”

There are several popular shell programs but in this book
we’ll be using a shell called Bash because it’s the default shell
program on Mac and Ubuntu.

1https://en.wikipedia.org/wiki/Uncle_Ben

https://en.wikipedia.org/wiki/Uncle_Ben
https://en.wikipedia.org/wiki/Uncle_Ben

Getting Unix
An indispensible thing never has much value. -
Russian proverb

Mac & Ubuntu Users

If you’re using a Mac or you’re using the Ubuntu operating
system find a program called Terminal and open it. You can
skip the next section about Windows.

Windows

If you’re using the latest version of Windows 10 you should
enable and install Bash on Ubuntu on Windows. You can find
the installation guide from Microsoft here2.

If you don’t have the latest version ofWindows 10 you should
download VirtualBox3 and then set up the latest version of
Ubuntu with VirtualBox. Instructions for doing this tend to
change slightly over time, so I suggest using Google to search
for “how to install Ubuntu onWindows with VirtualBox” and
then you can follow the instructions that you find.

2https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
3https://www.virtualbox.org/

https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
https://www.virtualbox.org/
https://msdn.microsoft.com/en-us/commandline/wsl/install_guide
https://www.virtualbox.org/

Command Line Basics
Of a small spark a great fire. - Gaelic proverb

Hello Terminal!

Once you have opened up Terminal then you should see a
window that looks something like this:

What you’re looking at is the bash shell! Your shell will surely
look different than mine, but all bash shells have the same
essential parts. As you can see in my shell it says seans-

air:∼ sean$. This string of characters is called the prompt.
You type command line commands after the prompt. The
prompt is just there to let you know that the shell is ready
for you to type in a command. Press Enter on your keyboard
a few times to see what happens with the prompt. Your shell
should now look like this:

Command Line Basics 7

If you don’t type anything after the prompt and you press
enter then nothing happens and you get a new prompt under
the old prompt. The white rectangle after the prompt is just
a cursor that allows you to edit what you’ve typed into the
shell. Your cursor might look like a rectangle, a line, or an
underscore, but all cursors behave the same way. After typing
something into the command line you can move the cursor
back and forth with the left and right arrow keys, just like
you would when typing an email.

Don’t you think your shell looks messy with all of those old
prompts? Don’t worry, you’re about to learn your first shell
command which will clear up your shell! Type clear at the
prompt and then hit enter. Voila! Your shell is back to how
you started.

Every command line command is actually a little computer
program, even commands as simple as clear. These com-
mands all tend to have the following structure:

[command] [options] [arguments]

Some simple commands like clear don’t require any options
or arguments. Options are usually preceded by a hyphen (-)
and they tweak the behavior of the command. Arguments can
be names of files, raw data, or other options that the command

Command Line Basics 8

requires. A simple command that has an argument is echo.
The echo command prints a phrase to the console. Enter echo
'Hello World!' into the command line to see what happens:

echo 'Hello World!'

Hello World!

We’ll be using the above syntax for the rest of the book, where
on one line there will be a command that I’ve entered into
the command line, and then below that command the console
output of the command will appear (if there is any console
output). You can use echo to print any phase surrounded by
double quotes ("") to the console.

If you want to see the last command press the Up arrow key.
You can press Up and Down in order to scroll through the
history of commands that you’ve entered. If you want to re-
execute a past command, you can scroll to that command then
press Enter. Try getting back to the echo "Hello World!"

command and execute it again.

Summary

• You type command line commands after the prompt.
• clear will clean up your terminal.
• echo prints text to your terminal.
• You can scroll through your command history with the
Up and Down arrow keys.

Command Line Basics 9

Exercises

1. Print your name to the terminal.
2. Clear your terminal after completing #1.

Navigating the Command Line

You’ve learned two command line commands (clear and
echo) which is pretty good! Before you learn more commands
we need to discuss how files and folders are organized on your
computer.

Computers are organized in a hierarchy of folders, where a
folder can contain many folders and files. People who use
Unix often refer to folders as directories and these terms are
interchangeable. This directory hierarchy forms a tree, like
the diagram below. You can use the command line to navigate
these trees on your computer.

As you can see in the image below, my Debussy directory is
contained in my Music directory. This is the simplest case of
how directories are structured.

Command Line Basics 10

The directory structure on most computers is much more
complicated, but the structure on your computer probably
looks something like this:

There are a few special directories that you should be aware
of on your computer. The directory at the top of this tree is
called the root directory. The root directory contains all other
directories, and is represented by a slash (/).

The home directory is another special directory that is repre-
sented by a tilde (∼). Your home directory contains your per-
sonal files, like your photos, documents, and the contents of
your desktop. When you first open up your shell you usually
start off in your home directory. Imagine tracing all of the

Command Line Basics 11

directories from your root directory to the directory you’re
currently in. This sequence of directories is called a path. The
diagram below illustrates the path from a hypothetical root
directory to the home directory.

This path can be written as /Users/sean.

Open the command line if you closed it. Your shell starts in
your home directory. Whatever directory your shell is in is
called the working directory. Enter the pwd command into
your shell to print the working directory.

pwd

/Users/sean

You can change your working directory using the cd com-
mand. If you use the cd command without any arguments
then your working directory is changed to your home direc-
tory.

Enter cd into the command line and then enter pwd.

Command Line Basics 12

cd

pwd

/Users/sean

You were in your working directory to start, and by enter-
ing cd into the command line you did technically change
directory, you just changed it to your home directory (the
directory you were in to begin with). To use cd to change
your working directory to a directory other than your home
directory, you need to provide cd with the path to another
directory as an argument. You can specify a path as either
a path that is relative to your current directory, or you can
specify the absolute path to a directory starting from the root
of your computer. Let’s say we simply want to change the
working directory to one of the folders that is inside our home
directory. First we need to be able to see which folders are in
our working directory. You can list the files and folders in a
directory using the ls command. Let’s use the ls command
in our home directory to list the files and folders contained
within it.

ls

Desktop

Documents

Photos

Music

todo.txt

It looks like I have four folders and one text file in my home
directory. Now let’s switch into the Music directory:

Command Line Basics 13

cd Music

As you can see the path to the current working directory has
changed:

pwd

/Users/sean/Music

I specified a relative path when I entered cd Music. The path
to the Music directory is just Music/ relative to my previous
working directory. I can go back to /Users/sean/ with the
command cd .. which changes the working directory to the
folder above the current working directory:

cd ..

pwd

/Users/sean

Notice that .. is also a relative path, since it specifies the
directory above your current working directory. Similarly .

is the path to your current working directory. Therefore since
my current working directory is /Users/sean then cd Music

is the same as cd ./Music.

I can cd to any folder as long as I know the absolute path
to that folder. For example I can cd to /Users/sean/Music by
entering the following into the shell:

Command Line Basics 14

cd ~/Music

pwd

/Users/sean/Music

It doesn’t matter what directory I’m in since I’m using an ab-
solute path, I can jump straight to that directory (Remember
that ∼ is a shortcut for the path to your home folder). Of
course you shouldn’t expect yourself to have every absolute
path on your computer memorized! You can use a terminal
feature called tab completion in order to speed up typing
paths and other commands. Enter the following into your
shell, and then try pressing the Tab key (on some machines
you need to press it twice):

cd ~/

(press Tab)

Desktop

Documents

Photos

Music

todo.txt

Pressing tab shows you a list of all files and folders inside of
the∼/ directory. Now I’m going to type∼/D intomy terminal
and you can see what happens when I press tab again:

Command Line Basics 15

cd ~/D

(press Tab)

Desktop

Documents

Since I added a “D” to the path, only folders with names that
start with a “D” are listed. If I type cd ∼/De into the console
and then press Tab then the command will autocomplete to
cd ∼/Desktop/. If I press tab again, the console will list all of
the files and folders on my desktop.

Make sure to pause and try this yourself in your own terminal!
You won’t have the same files or folders that I do, but you
should try using cd and tab completion with directories and
files that start with the same letters.

Summary

• You can identify a specific file or folder by its path.
• The root directory (/) contains all of the folders and
files on your computer.

• Your home directory (∼) is the directory where your
terminal always starts.

• Use the cd command to change your working directory.
• The pwd command will print the working directory.
• The ls command will list files and folders in a direc-
tory.

Command Line Basics 16

Exercises

1. Set your working directory to the root directory.
2. Set your working directory to your home directory

using three different commands.
3. Find a folder on your computer using your file and

folder browser, and then set your working directory to
that folder using the terminal.

4. List all of the files and folders in the directory you
navigated to in #3.

Creation and Inspection

Now that you can fluidly use your terminal to bound between
directories all over your computer I’ll show you some actions
you can perform on folders and files. One of the first actions
you’ll probably want to take when opening up a fresh termi-
nal is to create a new folder or file. You canmake a directory
with the mkdir command, followed by the path to the new
directory. First let’s look at the contents of my home directory:

cd

ls

Desktop

Documents

Photos

Music

todo.txt

Command Line Basics 17

I want to create a new directory to store some code files I’m
going to write later, so I’ll use mkdir to create a new directory
called Code:

mkdir Code

ls

Desktop

Documents

Photos

Music

todo.txt

Code

It worked! Notice that the argument Code to mkdir is a relative
path, however I could have specified an absolute path. In
general you should expect Unix tools that take paths as
arguments to accept both relative and absolute paths.

There are a few different ways to create a new file on the
command line. The most simple way to create a blank file is
to use the touch command, followed by the path to the file
you want to create. In this example I’m going to create a new
journal entry using touch:

touch journal-2017-01-24.txt

ls

Command Line Basics 18

Desktop

Documents

Photos

Music

todo.txt

Code

journal-2017-01-24.txt

A new file has been created! I’ve been using ls to list the files
and folders in the current directory, but using ls alone doesn’t
differentiate between which of the listed items are folders and
which are files. Thankfully you can use the -l option with ls

in order to get a long listing of files in a directory.

ls -l

drwxr-xr-x 2 sean staff 68 Jan 24 12:31 Code

drwxr-xr-x 2 sean staff 94 Jan 20 12:44 Des\

ktop

drwxr-xr-x 2 sean staff 24 Jan 20 12:44 Doc\

uments

drwxr-xr-x 2 sean staff 68 Jan 20 12:36 Mus\

ic

drwxr-xr-x 2 sean staff 68 Jan 20 12:35 Pho\

tos

-rw-r--r-- 1 sean staff 90 Jan 24 11:33 jou\

rnal-2017-01-24.txt

-rw-r--r-- 1 sean staff 70 Jan 24 10:58 tod\

o.txt

There is a row in the resulting table for each file or folder.
If the entry in the first column is a d, then the row in the

Command Line Basics 19

table corresponds to a directory, otherwise the information
in the row corresponds to a file. As you can see in my
home directory there are five directories and two files. The
string of characters following the d in the case of a directory
or following the first - in the case of a file represent the
permissions for that file or directory. We’ll cover permissions
in a later section. The columns of this table also show who
created the file, the group that the creator of the file belongs to
(we’ll cover groups later when we cover permissions), the size
of the file, the time and date when the file was last modified,
and then finally the name of the file.

Now that we’ve created a file there are a few different ways
that we can inspect and edit this file. First let’s use the wc

command to view the word count and other information
about the file:

wc todo.txt

3 14 70 todo.txt

The wc command displays the number of lines in a file
followed by the number of words and then the number of
characters. Since this file looks pretty small (only three lines)
let’s try printing it to the console using the cat command.

cat todo.txt

Command Line Basics 20

- email Jeff

- write letter to Aunt Marie

- get groceries for Shabbat

The cat command is often used to print text files to the
terminal, despite the fact that it’s really meant to concatenate
files. You can see this concatenation in action in the following
example:

cat todo.txt todo.txt

- email Jeff

- write letter to Aunt Marie

- get groceries for Shabbat

- email Jeff

- write letter to Aunt Marie

- get groceries for Shabbat

The cat command will combine every text file that is pro-
vided as an argument.

Let’s take a look at how we could view a larger file. There’s a
file inside the Documents directory:

ls Documents

a-tale-of-two-cities.txt

Let’s examine this file to see if it’s reasonable to read it with
cat:

Command Line Basics 21

wc Documents/a-tale-of-two-cities.txt

17 1005 5799 Documents/a-tale-of-tw\

o-cities.txt

Wow, over 1000 words! If we use cat on this file it’s liable
to take up our entire terminal. Instead of using cat for this
large file we should use less, which is a program designed
for viewing multi-page files. Let’s try using less:

less Documents/a-tale-of-two-cities.txt

I. The Period

It was the best of times,

it was the worst of times,

it was the age of wisdom,

it was the age of foolishness,

it was the epoch of belief,

it was the epoch of incredulity,

it was the season of Light,

it was the season of Darkness,

it was the spring of hope,

it was the winter of despair,

we had everything before us, we had nothing befor\

e us, we were all going direct

Documents/a-tale-of-two-cities.txt

You can scroll up and down the file line-by-line using the up
and down arrow keys, and if you want to scroll faster you can

Command Line Basics 22

use the spacebar to go to the next page and the b key to go
to the previous page. In order to quit less and go back to the
prompt press the q key.

As you can see the less program is a kind of Unix tool with
behavior that we haven’t seen before because it “takes over”
your terminal. There are a few programs like this that we’ll
discuss throughout this book.

There are also two easy to remember programs for glimpsing
the beginning or end of a text file: head and tail. Let’s quickly
use head and tail on a-tale-of-two-cities.txt:

head Documents/a-tale-of-two-cities.txt

I. The Period

##

It was the best of times,

it was the worst of times,

it was the age of wisdom,

it was the age of foolishness,

it was the epoch of belief,

it was the epoch of incredulity,

it was the season of Light,

it was the season of Darkness,

As you can see head prints the first ten lines of the file to the
terminal. You can specify the number of lines printed with the
-n option followed by the number of lines you’d like to see:

head -n 4 Documents/a-tale-of-two-cities.txt

Command Line Basics 23

I. The Period

##

It was the best of times,

it was the worst of times,

The tail program works exactly the same way:

tail Documents/a-tale-of-two-cities.txt

of an atrocious murderer, and to-morrow of a wret\

ched pilferer who had robbed a

farmer’s boy of sixpence.

All these things, and a thousand like them, came \

to pass in and close upon the

dear old year one thousand seven hundred and seve\

nty-five. Environed by them,

while the Woodman and the Farmer worked unheeded,\

those two of the large jaws,

and those other two of the plain and the fair fac\

es, trod with stir enough,

and carried their divine rights with a high hand.\

Thus did the year one

thousand seven hundred and seventy-five conduct t\

heir Greatnesses, and myriads

of small creatures—the creatures of this chronicl\

e among the rest—along the

roads that lay before them.

We’ve now gone over a few tools for inspecting files, folders,
and their contents including ls, wc, cat, less, head, and tail.
Before the end of this section we should discuss a few more

Command Line Basics 24

techniques for creating and also editing files. One easy way to
create a file is using output redirection. Output redirection
stores text that would be normally printed to the command
line in a text file. You can use output redirection by typing
the greater-than sign (>) at the end of a command followed
by the name of the new file that will contain the output from
the proceeding command. Let’s try an example using echo:

echo "I'm in the terminal."

I'm in the terminal.

echo "I'm in the file." > echo-out.txt

Only the first command printed output to the terminal. Let’s
see if the second command worked:

ls

Desktop

Documents

Photos

Music

todo.txt

Code

journal-2017-01-24.txt

echo-out.txt

Command Line Basics 25

cat echo-out.txt

I'm in the file.

Looks like it worked! You can also append text to the end of
a file using two greater-than signs (>>). Let’s try this feature
out:

echo "I have been appended." >> echo-out.txt

cat echo-out.txt

I'm in the file.

I have been appended.

Now for a word of warning. Imagine that I want to append
another line to the end of echo-out.txt, so typed echo "A

third line." > echo-out.txt into the terminal when really
Imeant to type echo "A third line." >> echo-out.txt (no-
tice I used > when I meant to use >>). Let’s see what happens:

echo "A third line." > echo-out.txt

cat echo-out.txt

A third line.

Command Line Basics 26

Unfortunately I have unintentionally overwritten what was
already contained in echo-out.txt. There’s no undo button
in Unix so I’ll have to live with this mistake. This is the first
of several lessons demonstrating the damage that you should
try to avoid inflicting with Unix. Make sure to take extra
care when executing commands that can modify or delete a
file, a typo in the command can be potentially devastating.
Thankfully there are a few strategies for protecting yourself
from mistakes, including managing permissions for files, and
tracking versions of your files with Git, which we will discuss
thoroughly in a later chapter.

Finally we should discuss how to edit text files. There are sev-
eral file editors that are available for your terminal including
vim4 and emacs5. Entire books have been written about how
to use both of these text editors, and if you’re interested in
one of them you should look for resources online about how
to use them. The one text editor we will discuss using is called
nano. Just like less, nano uses your entire terminal window.
Let’s edit todo.txt using nano:

nano todo.txt

4https://en.wikipedia.org/wiki/Vim_(text_editor)
5https://en.wikipedia.org/wiki/Emacs

https://en.wikipedia.org/wiki/Vim_(text_editor)
https://en.wikipedia.org/wiki/Emacs
https://en.wikipedia.org/wiki/Vim_(text_editor)
https://en.wikipedia.org/wiki/Emacs

Command Line Basics 27

GNU nano 2.0.6 File: todo.txt

- email Jeff

- write letter to Aunt Marie

- get groceries for Shabbat

^G Get Help ^O WriteOut ^R Read File ^Y Prev\

Page ^K Cut Text ^C Cur Pos

^X Exit ^J Justify ^W Where Is ^V Next\

Page ^U UnCut Text ^T To Spell

Once you’ve started nano you can start editing the text file.
The top line of the nano editor shows the file you’re currently
working on, and the bottom two lines show a few commands
that you can use in nano. The carrot character (ˆ) represents
the Control key on your keyboard, so you can for example
type Control + O in order to save the changes you’ve made to
the text file, or Control + X in order to exit nano and go back
to the prompt.

nano is a good editor for beginners because it works similarly
to word processors you’ve used before. You can use the arrow
keys in order to move your cursor around the file, and the rest
of the keys on your keyboard work as expected. Let’s add an
item to my to-do list and then I’ll save and exit nano by typing
Control + O followed by Control + X.

Command Line Basics 28

GNU nano 2.0.6 File: todo.txt

- email Jeff

- write letter to Aunt Marie

- get groceries for Shabbat

- write final section of "command line basics"

^G Get Help ^O WriteOut ^R Read File ^Y Prev\

Page ^K Cut Text ^C Cur Pos

^X Exit ^J Justify ^W Where Is ^V Next\

Page ^U UnCut Text ^T To Spell

Now let’s quickly check if those changes were saved correctly:

cat todo.txt

- email Jeff

- write letter to Aunt Marie

- get groceries for Shabbat

- write final section of "command line basics"

You can also create new text files with nano. Instead of using
an existing path to a file as the argument to nano, use a path
to a file that does not yet exist and then save your changes to
that file.

Summary

• Use mkdir to create new directories.

Command Line Basics 29

• The touch command creates empty files.
• You can use > to redirect the output of a command into
a file.

• >> will append command output to the end of a file.
• Print a text file to the command line using cat.
• Inspect properties of a text file with wc.
• Peak at the beginning and end of a text file with head

and tail.
• Scroll through a large text file with less.
• nano is simple text editor.

Exercises

1. Create a new directory called workbench in your home
directory.

2. Without changing directories create a file called readme.txt
inside of workbench.

3. Append the numbers 1, 2, and 3 to readme.txt so that
each number appears on it’s own line.

4. Print readme.txt to the command line.
5. Use output redirection to create a new file in the

workbench directory called list.txt which lists the
files and folders in your home directory.

6. Find out howmany characters are in list.txtwithout
opening the file or printing it to the command line.

Migration and Destruction

In this section we’ll discuss moving, renaming, copying, and
deleting files and folders. First let’s revisit the contents of our
current working directory:

Command Line Basics 30

ls

Code

Documents

Photos

Desktop

Music

echo-out.txt

journal-2017-01-24.txt

todo.txt

It’s gotten a little sloppy, so let’s clean this directory up. First I
want tomake a new directory to store all of my journal entries
in called Journal. We already know how to do that:

mkdir Journal

Now I want to move my journal entry journal-2017-01-

24.txt into the Journal directory. We can move it using the
mv command. mv takes two arguments: first the path to the file
or folder that you wish to move followed by the destination
folder. Let’s try using mv now:

mv journal-2017-01-24.txt Journal

ls

Command Line Basics 31

Code

Documents

Journal

Photos

Desktop

Music

echo-out.txt

todo.txt

Looks like it worked! I just realized however that I want
to move the Journal directory into the Documents folder.
Thankfully we can do this with mv in the same way:

mv Journal Documents

ls

Code

Documents

Photos

Desktop

Music

echo-out.txt

todo.txt

Let’s just make sure it ended up in the right place:

ls Documents

Command Line Basics 32

Journal

a-tale-of-two-cities.txt

Looks good! Another hidden use of the mv command is that
you can use it to rename files and folders. The first argument
is the path to the folder or file that you want to rename, and
the second argument is a path with the new name for the file
or folder. Let’s rename todo.txt so it includes today’s date:

mv todo.txt todo-2017-01-24.txt

ls

Code

Documents

Photos

Desktop

Music

echo-out.txt

todo-2017-01-24.txt

Looks like it worked nicely. Similar to the mv command, the cp
command copies a file or folder from one location to another.
As you can see cp is used exactly like mv when copying files,
the file or folder you wish to copy is the first argument,
followed by the path to the folder where you want the copy
to be made:

cp echo-out.txt Desktop

ls

Command Line Basics 33

Code

Documents

Photos

Desktop

Music

echo-out.txt

todo-2017-01-24.txt

ls Desktop

echo-out.txt

Be aware that there is one difference between copying files
and folders, when copying folders you need to specify the -r
option, which is short for recursive. This ensures that the un-
derlying directory structure of the directory you wish to copy
remains intact. Let’s try copying my Documents directory into
the Desktop directory:

cp -r Documents Desktop

ls Desktop

Documents

echo-out.txt

Finally, let’s discuss how to delete files and folders with the
command line.Aword of extreme caution: in general I don’t
recommend deleting files or folders on the command line
because as we’ve discussed before there is no undo button on

Command Line Basics 34

the command line. If you delete a file that is critical to your
computer functioning you may cause irreparable damage. I
highly recommend moving files or folders to a designated
trash folder and then deleting them the way you would
normally delete files and folders outside of the command
line (The path to the Trash Bin is ∼/.Trash on Mac and
∼/.local/share/Trash on Ubuntu). If you decide to delete
a file or folder on your computer make absolutely sure that
the command you’ve typed is correct before you press Enter.
If you do delete a file or folder by accident stop using your
computer immediately and consult with a computer profes-
sional or your IT department so they can try to recover the
file.

Now that you’ve been warned, let’s discuss rm, the Avada
Kedavra6 of command line programs. When removing files
rm only requires the path to a file in order to delete it. Let’s
test its destructive power on echo-out.txt:

rm echo-out.txt

ls

Code

Documents

Photos

Desktop

Music

todo-2017-01-24.txt

I felt a great disturbance in the Force, as if
millions of voices suddenly cried out in terror,
and were suddenly silenced. - Obi-wan Kenobi

6https://en.wikipedia.org/wiki/Magic_in_Harry_Potter#Unforgivable_Curses

https://en.wikipedia.org/wiki/Magic_in_Harry_Potter#Unforgivable_Curses
https://en.wikipedia.org/wiki/Magic_in_Harry_Potter#Unforgivable_Curses
https://en.wikipedia.org/wiki/Magic_in_Harry_Potter#Unforgivable_Curses

Command Line Basics 35

The file echo-out.txt is gone forever. Remember when we
copied the entire Documents directory into Desktop? Let’s get
rid of that directory now. Just like when we were using cp the
rm command requires you to use the -r option when deleting
entire directories. Let’s test this battle station:

ls Desktop

Documents

echo-out.txt

rm -r Desktop/Documents

ls Desktop

echo-out.txt

Now that the awesome destructive power of rm is on your
side, you’ve learned the basics of the command line! See
you in the next chapter for a discussion of more advanced
command line topics.

Summary

• mv can be used for moving or renaming files or folders.
• cp can copy files or folders.
• You should try to avoid using rm which permanently
removes files or folders.

Command Line Basics 36

Exercises

1. Create a file called message.txt in your home directory
and move it into another directory.

2. Copy the message.txt you just moved into your home
directory.

3. Delete both copies of message.txt. Try to do this
without using rm.

Working with Unix
It is not the knowing that is difficult, but the
doing. - Chinese proverb

Self-Help

Each of the commands that we’ve discussed so far are thor-
oughly documented, and you can view their documentation
using the man command, where the first argument to man is
the command you’re curious about. Let’s take a look at the
documentation for ls:

man ls

LS(1) BSD General Commands Ma\

nual LS(1)

NAME

ls -- list directory contents

SYNOPSIS

ls [-ABCFGHLOPRSTUW@abcdefghiklmnopqrstuwx1]\

[file ...]

DESCRIPTION

Working with Unix 38

For each operand that names a file of a type\

other than directory, ls

displays its name as well as any requested, \

associated information. For

:

The controls for navigating man pages are the same as they
are for less. I often use man pages for quickly searching for
an option that I’ve forgotten. Let’s say that I forgot how to get
ls to print a long list. After typing man ls to open the page,
type / in order to start a search. Then type the word or phrase
that you’re searching for, in this case type in long list and
then press Enter. The page jumps to this entry:

-l (The lowercase letter ``ell''.) Lis\

t in long format. (See below.)

If the output is to a terminal, a to\

tal sum for all the file sizes is

output on a line before the long lis\

ting.

Press the n key in order to search for the next occurrence of
the word, and if you want to go to the previous occurrence
type Shift + n. This method of searching also works with
less. When you’re finished looking at a man page type q to
get back to the prompt.

The man command works wonderfully when you knowwhich
command you want to look up, but what if you’ve forgotten
the name of the command you’re looking for? You can use
apropos to search all of the available commands and their
descriptions. For example let’s pretend that I forgot the name
of my favorite command line text editor. You could type

Working with Unix 39

apropos editor into the command line which will print a list
of results:

apropos editor

ed(1), red(1) - text editor

nano(1) - Nano's ANOther edit\

or, an enhanced free Pico clone

sed(1) - stream editor

vim(1) - Vi IMproved, a prog\

rammers text editor

The second result is nano which was just on the tip of my
tongue! Both man and apropos are useful when a search is
only a few keystrokes away, but if you’re looking for detailed
examples and explanations you’re better off using a search
engine if you have access to a web browser.

Summary

• Use man to look up the documentation for a command.
• If you can’t think of the name of a command use
apropos to search for a word associated with that
command.

• If you have access to a web browser, using a search
engine might be better than man or apropos.

Exercises

1. Use man to look up the flag for human-readable output
from ls.

Working with Unix 40

2. Get help with man by typing man man into the console.
3. Wouldn’t it be nice if there was a calendar command?

Use apropos to look for such a command, then use man
to read about how that command works.

Get Wild

Let’s go into my Photos folder in my home directory and take
a look around:

pwd

/Users/sean

ls

Code

Documents

Photos

Desktop

Music

todo-2017-01-24.txt

cd Photos

ls

Working with Unix 41

2016-06-20-datasci01.png

2016-06-20-datasci02.png

2016-06-20-datasci03.png

2016-06-21-lab01.jpg

2016-06-21-lab02.jpg

2017-01-02-hiking01.jpg

2017-01-02-hiking02.jpg

2017-02-10-hiking01.jpg

2017-02-10-hiking02.jpg

I’ve just been dumping pictures and figures into this folder
without organizing them at all! Thankfully (in the words of
Dr. Jenny Bryan) I have an unwavering commitment to the
ISO 8601 date standard7 so at least I know when these photos
were taken. Instead of using mv to move around each individ-
ual photo I can select groups of photos using the *wildcard. A
wildcard is a character that represents other characters, much
like how joker in a deck of cards can represent other cards in
the deck. Wildcards are a subset of metacharacters, a topic
which we will discuss in detail later on in this chapter. The
* (“star”) wildcard represents zero or more of any character,
and it can be used to match names of files and folders in the
command line. For example if I wanted to list all of the files
in my Photos directory which have a name that starts with
“2017” I could do the following:

ls 2017*

7https://twitter.com/JennyBryan/status/816143967695687684

https://twitter.com/JennyBryan/status/816143967695687684
https://twitter.com/JennyBryan/status/816143967695687684
https://twitter.com/JennyBryan/status/816143967695687684

Working with Unix 42

2017-01-02-hiking01.jpg

2017-01-02-hiking02.jpg

2017-02-10-hiking01.jpg

2017-02-10-hiking02.jpg

Only the files starting with “2017” are listed! The command
ls 2017* literally means: list the files that start with “2017”
followed by zero or more of any character. As you can
imagine using wildcards is a powerful tool for working with
groups of files that are similarly named.

Let’s walk through a few other examples of using the star
wildcard. We could only list the photos starting with “2016”:

ls 2016*

2016-06-20-datasci01.png

2016-06-20-datasci02.png

2016-06-20-datasci03.png

2016-06-21-lab01.jpg

2016-06-21-lab02.jpg

We could list only the files with names ending in .jpg:

ls *.jpg

Working with Unix 43

2016-06-21-lab01.jpg

2016-06-21-lab02.jpg

2017-01-02-hiking01.jpg

2017-01-02-hiking02.jpg

2017-02-10-hiking01.jpg

2017-02-10-hiking02.jpg

In the case above the file name can start with a sequence of
zero or more of any character, but the file name must end in
.jpg. Or we could also list only the first photos from each set
of photos:

ls *01.*

2016-06-20-datasci01.png

2016-06-21-lab01.jpg

2017-01-02-hiking01.jpg

2017-02-10-hiking01.jpg

All of the files above have names that are composed of a
sequence of characters, followed by the adjacent characters
01., followed by another sequence of characters. Notice that if
I had entered ls *01* into the console every file would have
been listed since 01 is a part of all of the file names in my
Photos directory.

Let’s organize these photos by year. First let’s create one
directory for each year of photos:

Working with Unix 44

mkdir 2016

mkdir 2017

Now we can move the photos using wildcards:

mv 2017-* 2017/

ls

2016

2016-06-20-datasci01.png

2016-06-20-datasci02.png

2016-06-20-datasci03.png

2016-06-21-lab01.jpg

2016-06-21-lab02.jpg

2017

Notice that I’ve moved all files that start with “2017-“ into the
2017 folder! Now let’s do the same thing for files with names
starting with “2016-“:

mv 2016-* 2016/

ls

2016

2017

Finally my photos are somewhat organized! Let’s list the files
in each directory just to make sure all was moved as planned:

Working with Unix 45

ls 2016/

2016-06-20-datasci01.png

2016-06-20-datasci02.png

2016-06-20-datasci03.png

2016-06-21-lab01.jpg

2016-06-21-lab02.jpg

ls 2017/

2017-01-02-hiking01.jpg

2017-01-02-hiking02.jpg

2017-02-10-hiking01.jpg

2017-02-10-hiking02.jpg

Looks good! There are a few more wildcards beyond the
star wildcard which we’ll discuss in the next section where
searching file names gets a little more advanced.

Summary

• Wildcards can represent many kinds and numbers of
characters.

• The star wildcard (*) represents zero or more of any
character.

• You can use wildcards on the command line in order to
work with multiple files and folders.

Working with Unix 46

Exercises

1. Before I organized the photos by year, what command
would have listed all of the photos of type .png?

2. Before I organized the photos by year, what command
would have deleted all of my hiking photos?

3. What series of commands would you use in order to put
my figures for a data science course and the pictures I
took in the lab into their own folders?

Search

Regular Expressions

The ability to search through files and folders can greatly im-
prove your productivity using Unix. First we’ll cover search-
ing through text files. I recently downloaded a list of the
names of the states in the US. Let’s take a look at this file:

cd ~/Documents

ls

canada.txt

states.txt

wc states.txt

Working with Unix 47

50 60 472 states.txt

It makes sense that there are 50 lines, but it’s interesting that
there are 60 total words. Let’s a take a peak at the beginning
of the file:

head states.txt

Alabama

Alaska

Arizona

Arkansas

California

Colorado

Connecticut

Delaware

Florida

Georgia

This file looks basically how you would expect it to look!
You may recall from Chapter 3 that the kind of shell that
we’re using is the bash shell. Bash treats different kinds of
data differently, and we’ll dive deeper into data types in
Chapter 5. For now all you need to know is that text data are
called strings. A string could be a word, a sentence, a book,
or a file or folder name. One of the most effective ways to
search through strings is to use regular expressions. Regular
expressions are strings that define patterns in other strings.
You can use regular expressions to search for a sub-string
contained within a larger string, or to replace one part of a
string with another string.

Working with Unix 48

One of the most popular tools for searching through text files
is grep. The simplest use of grep requires two arguments: a
regular expression and a text file to search. Let’s see a simple
example of grep in action and then I’ll explain how it works:

grep "x" states.txt

New Mexico

Texas

In the command above, the first argument to grep is the
regular expression "x". The "x" regular expression represents
one instance of the letter “x”. Every line of the states.txt file
that contains at least one instance of the letter “x” is printed
to the console. As you can see New Mexico and Texas are
the only two state names that contain the letter “x”. Let’s try
searching for the letter “q” in all of the state names using grep:

grep "q" states.txt

Nothing is printed to the console because the letter “q” isn’t in
any of the state names. We can search for more than individ-
ual characters though. For example the following command
will search for the state names that contain the word “New”:

grep "New" states.txt

Working with Unix 49

New Hampshire

New Jersey

New Mexico

New York

In the previous case the regular expression we used was
simply "New", which represents an occurrence of the string
“New”. Regular expressions are not limited to just being
individual characters or words, they can also represent parts
of words. For example I could search all of the state names
that contain the string “nia” with the following command:

grep "nia" states.txt

California

Pennsylvania

Virginia

West Virginia

All of the state names above happen to end with the string
“nia”.

Metacharacters

Regular expressions aren’t just limited to searching with
characters and strings, the real power of regular expressions
come from usingmetacharacters. Remember that metachar-
acters are characters that can be used to represent other
characters. To take full advantage of all of the metacharacters
we should use grep’s cousin egrep, which just extends grep’s

Working with Unix 50

capabilities. The first metacharacter we should discuss is the
"." (period) metacharacter, which represents any character.
If for example I wanted to search states.txt for the character
“i”, followed by any character, followed by the character “g”
I could do so with the following command:

egrep "i.g" states.txt

Virginia

Washington

West Virginia

Wyoming

The regular expression “i.g” matches the sub-string “irg” in
Virginia, and West Virginia, and it matches the sub-string
“ing” in Washington and Wyoming. The period metacharac-
ter is a stand-in for the “r” in “irg” and the “n” in “ing” in the
example above. The periodmetacharacter is extremely liberal,
for example the command egrep "." states.txt would re-
turn every line of states.txt since the regular expression "."

would match one occurrence of any character on every line
(there’s at least one character on every line).

Besides characters that can represent other characters, there
are also metacharacters called quantifiers which allow you
to specify the number of times a particular regular expression
should appear in a string. One of the most basic quantifiers is
"+" (plus) which represents one or more occurrences of the
proceeding expression. For example the regular expression
“s+as” means: one or more “s” followed by “as”. Let’s see if
any of the state names match this expression:

Working with Unix 51

egrep "s+as" states.txt

Arkansas

Kansas

Both Arkansas and Kansas match the regular expression
"s+as". Besides the plus metacharacter there’s also the "*"

(star) metacharacter which represents zero or more occur-
rences of the preceding expression. Let’s see what happens
if we change "s+as" to "s*as":

egrep "s*as" states.txt

Alaska

Arkansas

Kansas

Massachusetts

Nebraska

Texas

Washington

As you can see the star metacharacter is much more liberal
with respect to matching since many more state names are
matched by "s*as". There are more specific quantifies you
can use beyond “zero or more” or “one or more” occurrences
of an expression. You can use curly brackets ({ }) to spec-
ify an exact number of occurrences of an expression. For
example the regular expression "s{2}" specifies exactly two
occurrences of the character “s”. Let’s try using this regular
expression:

Working with Unix 52

egrep "s{2}" states.txt

Massachusetts

Mississippi

Missouri

Tennessee

Take note that the regular expression "s{2}" is equivalent to
the regular expression "ss". We could also search for state
names that have between two and three adjacent occurrences
of the letter “s” with the regular expression "s{2,3}":

egrep "s{2,3}" states.txt

Massachusetts

Mississippi

Missouri

Tennessee

Of course the results are the same because there aren’t any
states that have “s” repeated three times.

You can use a capturing group in order to search for multiple
occurrences of a string. You can create capturing groups
within regular expressions by using parentheses ("()"). For
example if I wanted to search states.txt for the string “iss”
occurring twice in a state name I could use a capturing group
and a quantifier like so:

Working with Unix 53

egrep "(iss){2}" states.txt

Mississippi

We could combine more quantifiers and capturing groups to
dream up even more complicated regular expressions. For
example, the following regular expression describes three
occurrences of an “i” followed by two of any character:

egrep "(i.{2}){3}" states.txt

Mississippi

The complex regular expression above still only matches
“Mississippi”.

Character Sets

For the next couple of examples we’re going to need some text
data beyond the names of the states. Let’s just create a short
text file from the console:

Working with Unix 54

touch small.txt

echo "abcdefghijklmnopqrstuvwxyz" >> small.txt

echo "ABCDEFGHIJKLMNOPQRSTUVWXYZ" >> small.txt

echo "0123456789" >> small.txt

echo "aa bb cc" >> small.txt

echo "rhythms" >> small.txt

echo "xyz" >> small.txt

echo "abc" >> small.txt

echo "tragedy + time = humor" >> small.txt

echo "http://www.jhsph.edu/" >> small.txt

echo "#%&-=***=-&%#" >> small.txt

In addition to quantifiers there are also regular expressions
for describing sets of characters. The \wmetacharacter corre-
sponds to all “word” characters, the \d metacharacter corre-
sponds to all “number” characters, and the \s metacharacter
corresponds to all “space” characters. Let’s take a look at using
each of these metacharacters on small.txt:

egrep "\w" small.txt

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

aa bb cc

rhythms

xyz

abc

tragedy + time = humor

http://www.jhsph.edu/

Working with Unix 55

egrep "\d" small.txt

0123456789

egrep "\s" small.txt

aa bb cc

tragedy + time = humor

As you can see in the example above, the \w metacharacter
matches all letters, numbers, and even the underscore char-
acter (_). We can see the compliment of this grep by adding
the -v flag to the command:

egrep -v "\w" small.txt

#%&-=***=-&%#

The -v flag (which stands for invert match)makes grep return
all of the lines not matched by the regular expression. Note
that the character sets for regular expressions also have their
inverse sets: \W for non-words, \D for non-digits, and \S for
non-spaces. Let’s take a look at using \W:

egrep "\W" small.txt

Working with Unix 56

aa bb cc

tragedy + time = humor

http://www.jhsph.edu/

#%&-=***=-&%#

The returned strings all contain non-word characters. Note
the difference between the results of using the invert flag -v

versus using an inverse set regular expression.

In addition to general character sets we can also create specific
character sets using square brackets ([]) and then including
the characters we wish to match in the square brackets.
For example the regular expression for the set of vowels is
[aeiou]. You can also create a regular expression for the
compliment of a set by including a caret (ˆ) in the beginning
of a set. For example the regular expression [ˆaeiou]matches
all characters that are not vowels. Let’s test both on small.txt:

egrep "[aeiou]" small.txt

abcdefghijklmnopqrstuvwxyz

aa bb cc

abc

tragedy + time = humor

http://www.jhsph.edu/

Notice that the word “rhythms” does not appear in the result
(it’s the longest word without any vowels that I could think
of).

Working with Unix 57

egrep "[^aeiou]" small.txt

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789

aa bb cc

rhythms

xyz

abc

tragedy + time = humor

http://www.jhsph.edu/

#%&-=***=-&%#

Every line in the file is printed, because every line contains
at least one non-vowel! If you want to specify a range of
characters you can use a hyphen (-) inside of the square
brackets. For example the regular expression [e-q] matches
all of the lowercase letters between “e” and “q” in the alphabet
inclusively. Case matters when you’re specifying character
sets, so if you wanted to only match uppercase characters
you’d need to use [E-Q]. To ignore the case of your match
you could combine the character sets with the [e-qE-Q] regex
(short for regular expression), or you could use the -i flag
with grep to ignore the case. Note that the -i flag will
work for any provided regular expression, not just character
sets. Let’s take a look at some examples using the regular
expressions that we just described:

egrep "[e-q]" small.txt

Working with Unix 58

abcdefghijklmnopqrstuvwxyz

rhythms

tragedy + time = humor

http://www.jhsph.edu/

egrep "[E-Q]" small.txt

ABCDEFGHIJKLMNOPQRSTUVWXYZ

egrep "[e-qE-Q]" small.txt

abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

rhythms

tragedy + time = humor

http://www.jhsph.edu/

Escaping, Anchors, Odds, and Ends

One issue you may have thought about during our little
exploration of regular expressions is how to search for cer-
tain punctuation marks in text considering that those same
symbols are used as metacharacters! For example, how would
you find a plus sign (+) in a line of text since the plus sign is
also a metacharacter? The answer is simply using a backslash
(\) before the plus sign in a regex, in order to “escape” the
metacharacter functionality. Here are a few examples:

Working with Unix 59

egrep "\+" small.txt

tragedy + time = humor

egrep "\." small.txt

http://www.jhsph.edu/

There are three more metacharacters that we should discuss,
and two of them come as a pair: the caret (ˆ), which represents
the start of a line, and the dollar sign ($) which represents
the end of line. These “anchor characters” only match the
beginning and ends of lines when coupled with other regular
expressions. For example, going back to looking at states.txt,
I could search for all of the state names that begin with “M”
with the following command:

egrep "^M" states.txt

Working with Unix 60

Maine

Maryland

Massachusetts

Michigan

Minnesota

Mississippi

Missouri

Montana

Or we could search for all of the states that end in “s”:

egrep "s$" states.txt

Arkansas

Illinois

Kansas

Massachusetts

Texas

There’s a mnemonic that I love for remembering which
metacharacter to use for each anchor: “First you get the
power, then you get the money.” The caret character is
used for exponentiation in many programming languages, so
“power” (ˆ) is used for the beginning of a line and “money”
($) is used for the end of a line.

Finally, let’s talk about the “or” metacharacter (|), which is
also called the “pipe” character. This metacharacter allows
you to match either the regex on the right or on the left side
of the pipe. Let’s take a look at a small example:

Working with Unix 61

egrep "North|South" states.txt

North Carolina

North Dakota

South Carolina

South Dakota

In the example above we’re searching for lines of text that
contain the words “North” or “South”. You can also use
multiple pipe characters to, for example, search for lines that
contain the words for all of the cardinal directions:

egrep "North|South|East|West" states.txt

North Carolina

North Dakota

South Carolina

South Dakota

West Virginia

Just two more notes on grep: you can display the line number
that a match occurs on using the -n flag:

egrep -n "t$" states.txt

7:Connecticut

45:Vermont

And you can also grep multiple files at once by providing
multiple file arguments:

Working with Unix 62

egrep "New" states.txt canada.txt

states.txt:New Hampshire

states.txt:New Jersey

states.txt:New Mexico

states.txt:New York

canada.txt:Newfoundland and Labrador

canada.txt:New Brunswick

You now have the power to do some pretty complicated string
searching using regular expressions! Imagine you wanted to
search for all of the state names that both begin and end with
a vowel. Now you can:

egrep "^[AEIOU]{1}.+[aeiou]{1}$" states.txt

Alabama

Alaska

Arizona

Idaho

Indiana

Iowa

Ohio

Oklahoma

I know there a many metacharacters to keep track of here so
below I’ve included a table with several of the metacharacters
we’ve discussed in this chapter:

Working with Unix 63

Metacharacter Meaning

. Any Character
\w A Word
\W Not a Word
\d A Digit
\D Not a Digit
\s Whitespace
\S Not Whitespace

[def] A Set of Characters
[ˆdef] Negation of Set
[e-q] A Range of Characters

ˆ Beginning of String
$ End of String
\n Newline
+ One or More of Previous
* Zero or More of Previous
? Zero or One of Previous

Either the Previous or the
Following

{6} Exactly 6 of Previous
{4, 6} Between 4 and 6 or Previous
{4, } More than 4 of Previous

If you want to experiment with writing regular expressions
before you use them I highly recommend playing aroundwith
http://regexr.com/.

find

If you want to find the location of a file or the location
of a group of files you can use the find command. This
command has a specific structure where the first argument
is the directory where you want to begin the search, and

Working with Unix 64

all directories contained within that directory will also be
searched. The first argument is then followed by a flag that
describes the method you want to use to search. In this case
we’ll only be searching for a file by its name, so we’ll use the
-name flag. The -name flag itself then takes an argument, the
name of the file that you’re looking for. Let’s go back to the
home directory and look for some files from there:

cd

pwd

/Users/sean

Let’s start by looking for a file called states.txt:

find . -name "states.txt"

./Documents/states.txt

Right where we expected it to be! Now let’s try searching for
all .jpg files:

find . -name "*.jpg"

Working with Unix 65

./Photos/2016-06-21-lab01.jpg

./Photos/2016-06-21-lab02.jpg

./Photos/2017/2017-01-02-hiking01.jpg

./Photos/2017/2017-01-02-hiking02.jpg

./Photos/2017/2017-02-10-hiking01.jpg

./Photos/2017/2017-02-10-hiking02.jpg

Good file hunting out there!

Summary

• grep and egrep can be used along with regular expres-
sions to search for patterns of text in a file.

• Metacharacters are used in regular expressions to de-
scribe patterns of characters.

• find can be used to search for the names of files in a
directory.

Exercises

1. Search states.txt and canada.txt for lines that con-
tain the word “New”.

2. Make five text files containing the names of states that
don’t contain one of each of the five vowels.

3. Download the GitHub repository for this book and find
out how many .html files it contains.

Working with Unix 66

Configure

History

Near the start of this book we discussed how you can browse
the commands that you recently entered into the prompt
using the Up and Down arrow keys. Bash keeps track of all of
your recent commands, and you can browse your command
history two different ways. The commands that we’ve used
since opening our terminal can be accessed via the history

command. Let’s try it out:

history

...

48 egrep "^M" states.txt

49 egrep "s$" states.txt

50 egrep "North|South" states.txt

51 egrep "North|South|East|West" states.txt

52 egrep -n "t$" states.txt

53 egrep "New" states.txt canada.txt

54 egrep "^[AEIOU]{1}.+[aeiou]{1}$" states.txt

55 cd

56 pwd

57 find . -name "states.txt"

58 find . -name "*.jpg"

59 history

We’ve had our terminal open for a while so there are tons of
commands in our history! Whenever we close a terminal our
recent commands are written to the ∼/.bash_history file.
Let’s a take a look at the beginning of this file:

Working with Unix 67

head -n 5 ~/.bash_history

echo "Hello World!"

pwd

cd

pwd

ls

Looks like the very first commands we entered into the termi-
nal! Searching your∼/.bash_history file can be particularly
useful if you’re trying to recall a command you’ve used in the
past. The ∼/.bash_history file is just a regular text file, so
you can search it with grep. Here’s a simple example:

grep "canada" ~/.bash_history

egrep "New" states.txt canada.txt

Customizing Bash

Besides ∼/.bash_history, another text file in our home
directory that we should be aware of is ∼/.bash_profile.
The ∼/.bash_profile is a list of Unix commands that are
run every time we open our terminal, usually with a different
command on every line. One of the most common commands
used in a ∼/.bash_profile is the alias command, which
creates a shorter name for a command. Let’s take a look at a
∼/.bash_profile:

Working with Unix 68

alias docs='cd ~/Documents'

alias edbp='nano ~/.bash_profile'

The first alias creates a new command docs. Now entering
docs into the command line is the equivalent of entering
cd ∼/Documents into the comamnd line. Open let’s edit our
∼/.bash_profile with nano. If there’s anything in your
∼/.bash_profile already then start adding lines at the end
of the file. Add the line alias docs='cd ∼/Documents', then
save the file and quit nano. In order to make the changes
to our ∼/.bash_profile take effect we need to run source

∼/.bash_profile in the console:

source ~/.bash_profile

Now let’s try using docs:

docs

pwd

/Users/sean/Documents

It works! Setting different aliases allows you to save time
if there are long commands that use often. In the example
∼/.bash_profile above, the second line, alias edbp='nano

∼/.bash_profile' creates the command edbp (edit bash
profile) so that you can quickly add aliases. Try adding it
to your∼/.bash_profile and take your new command for a
spin!

There are a few other details about the ∼/.bash_profile

that are important when you’re writing software which we’ll
discuss in the Bash Programming chapter.

Working with Unix 69

Summary

• history displays what commands we’ve entered into
the console since opening our current terminal.

• The ∼/.bash_history file lists commands we’ve used
in the past.

• alias creates a command that can be used as a substi-
tute for a longer command that we use often.

• The ∼/.bash_profile is a text file that is run every
time we start a shell, and it’s the best place to assign
aliases.

Differentiate

It’s important to be able to examine differences between files.
First let’s make two small simple text files in the Documents
directory.

cd ~/Documents

head -n 4 states.txt > four.txt

head -n 6 states.txt > six.txt

If we want to look at which lines in these files are different
we can use the diff command:

diff four.txt six.txt

Working with Unix 70

4a5,6

> California

> Colorado

Only the differing lines are printed to the console. We could
also compare differing lines in a side-by-side comparison
using sdiff:

sdiff four.txt six.txt

Alabama Alabama

Alaska Alaska

Arizona Arizona

Arkansas Arkansas

> California

> Colorado

In a common situation you might be sent a file, or you
might download a file from the internet that comes with
code known as a checksum or a hash. Hashing programs
generate a unique code based on the contents of a file. People
distribute hashes with files so that we can be sure that the file
we think we’ve downloaded is the genuine file. One way we
can prevent malicious individuals from sending us harmful
files is to check to make sure the computed hash matches the
provided hash. There are a few commonly used file hashes
but we’ll talk about two called MD5 and SHA-1.

Since hashes are generated based on file contents, then two
identical files should have the same hash. Let’s test this my
making a copy of states.txt.

Working with Unix 71

cp states.txt states_copy.txt

To compute the MD5 hash of a file we can use the md5

command:

md5 states.txt

MD5 (states.txt) = 8d7dd71ff51614e69339b03bd1c\

b86ac

md5 states_copy.txt

MD5 (states_copy.txt) = 8d7dd71ff51614e69339b0\

3bd1cb86ac

As we expected they’re the same! We can compute the SHA-1
hash using the shasum command:

shasum states.txt

588e9de7ffa97268b2448927df41760abd3369a9 stat\

es.txt

shasum states_copy.txt

Working with Unix 72

588e9de7ffa97268b2448927df41760abd3369a9 stat\

es_copy.txt

Once again, both copies produce the same hash. Let’s make
a change to one of the files, just to illustrate the fact that the
hash changes if file contents are different:

head -n 5 states_copy.txt > states_copy.txt

shasum states_copy.txt

b1c1c805f123f31795c77f78dd15c9f7ac5732d4 stat\

es_copy.txt

Summary

• The md5 and shasum commands use different algo-
rithms to create codes (called hashes or checksums) that
are unique to the contents of a file.

• These hashes can be used to ensure that a file is genuine.

Pipes

One of the most powerful features of the command line is
skilled use of the pipe (|) which you can usually find above
the backslash (\) on your keyboard. The pipe allows us to take
the output of a command, which would normally be printed
to the console, and use it as the input to another command.
It’s like fitting an actual pipe between the end of one program
and connecting it to the top of another program! Let’s take a
look at a basic example. We know the cat command takes the
contents of a text file and prints it to the console:

Working with Unix 73

cd ~/Documents

cat canada.txt

Nunavut

Quebec

Northwest Territories

Ontario

British Columbia

Alberta

Saskatchewan

Manitoba

Yukon

Newfoundland and Labrador

New Brunswick

Nova Scotia

Prince Edward Island

This output from cat canada.txt will go into our pipe, and
we’ll attach the dispensing end of the pipe to head, which we
use to look at the first few lines of a file:

cat canada.txt | head -n 5

Nunavut

Quebec

Northwest Territories

Ontario

British Columbia

Working with Unix 74

Notice that this is the same result we would get from head

-n 5 canada.txt, we just used cat to illustrate how the pipe
works. The general syntax of the pipe is [program that pro-

duces output] | [program uses pipe output as input in-

stead of a file].

A more common and useful example where we could use the
pipe is answering the question: “How many US states end in
a vowel?” We could use grep and regular expressions to list
all of the state names that end with a vowel, then we could
use wc to count all of the matching state names:

grep "[aeiou]$" states.txt | wc -l

32

The pipe can also be used multiple times in one command
in order to take the output from one piped command and
use it as the input to yet another program! For example we
could use three pipes with ls, grep, and less so that we could
scroll through the files in out current directory were created
in February:

ls -al | grep "Feb" | less

-rw-r--r-- 1 sean staff 472 Feb 22 13:47 sta\

tes.txt

Remember you can use the Q key to quit less and return to
the prompt.

Working with Unix 75

Summary

• The pipe (|) takes the output of the program on its
left side and directs the output to be the input for the
program on its right side.

Exercises

1. Use pipes to figure out how many US states contain the
word “New.”

2. Examine your ∼/.bash_history to try to figure out
how many unique commands you’ve ever used. (You
may need to look up how to use the uniq and sort

commands).

Make

Once upon a time there were no web browsers, file browsers,
start menus, or search bars. When somebody booted up a
computer all they got a was a shell prompt, and all of the
work they did started from that prompt. Back then people still
loved to share software, but there was always the problem of
how software should be installed. The make program is the
best attempt at solving this problem, and make’s elegance has
carried it so far that it is still in wide use today. The guiding
design goal of make is that in order to install some new piece
of software one would:

1. Download all of the files required for installation into
a directory.

2. cd into that directory.

Working with Unix 76

3. Run make.

This is accomplished by specifying a file called makefile,
which describes the relationships between different files and
programs. In addition to installing programs, make is also
useful for creating documents automatically. Let’s build up
a makefile that creates a readme.txt file which is automat-
ically populated with some information about our current
directory.

Let’s start by creating a very basic makefile with nano:

cd ~/Documents/Journal

nano makefile

draft_journal_entry.txt:

touch draft_journal_entry.txt

The simple makefile above shows illustrates a rulewhich has
the following general format:

[target]: [dependencies...]

[commands...]

In the simple example we created draft_journal_entry.txt

is the target, a file which is created as the result of the
command(s). It’s very important to note that any commands
under a target must be indented with a Tab. If we don’t use
Tabs to indent the commands then make will fail. Let’s save
and close the makefile, then we can run the following in the
console:

Working with Unix 77

ls

makefile

Let’s use the make command with the target we want to be
“made” as the only argument:

make draft_journal_entry.txt

touch draft_journal_entry.txt

ls

draft_journal_entry.txt

makefile

The commands that are indented under our definition of the
rule for the draft_journal_entry.txt target were executed,
so now draft_journal_entry.txt exists! Let’s try running
the same make command again:

make draft_journal_entry.txt

Working with Unix 78

make: 'draft_journal_entry.txt' is up to date.

Since the target file already exists no action is taken, and
instead we’re informed that the rule for draft_journal_en-
try.txt is “up to date” (there’s nothing to be done).

If we look at the general rule format we previously sketched
out, we can see that we didn’t specify any dependencies for
this rule. A dependency is a file that the target depends on
in order to be built. If a dependency has been updated since
the last time make was run for a target then the target is not
“up to date.” This means that the commands for that target
will be run the next time make is run for that target. This
way, the changes to the dependency are incorperated into the
target. The commands are only run when the dependencies
or change, or when the target doesn’t exist at all, in order to
avoid running commands unnecessarily.

Let’s update our makefile to include a readme.txt that is
built automatically. First, let’s add a table of contents for our
journal:

echo "1. 2017-06-15-In-Boston" > toc.txt

Now let’s update our makefile with nano to automatically
generate a readme.txt:

nano makefile

Working with Unix 79

draft_journal_entry.txt:

touch draft_journal_entry.txt

readme.txt: toc.txt

echo "This journal contains the following numbe\

r of entries:" > readme.txt

wc -l toc.txt | egrep -o "[0-9]+" >> readme.txt

Take note that the -o flag provided to egrep above extracts the
regular expression match from the matching line, so that only
the number of lines is appended to readme.txt. Now let’s run
make with readme.txt as the target:

make readme.txt

echo "This journal contains the following numb\

er of entries:" > readme.txt

wc -l toc.txt | egrep -o "[0-9]+" >> readme.txt

Now let’s take a look at readme.txt:

cat readme.txt

This journal contains the following number of \

entries:

1

Looks like it worked! What do you think will happen if we
run make readme.txt again?

Working with Unix 80

make readme.txt

make: 'readme.txt' is up to date.

You guessed it: nothing happened! Since the readme.txt file
still exists and no changes were made to any of the dependen-
cies for readme.txt (toc.txt is the only dependency) make
doesn’t run the commands for the readme.txt rule. Now let’s
modify toc.txt then we’ll try running make again.

echo "2. 2017-06-16-IQSS-Talk" >> toc.txt

make readme.txt

echo "This journal contains the following numb\

er of entries:" > readme.txt

wc -l toc.txt | egrep -o "[0-9]+" >> readme.txt

Looks like it ran! Let’s check readme.txt to make sure.

cat readme.txt

This journal contains the following number of \

entries:

2

Working with Unix 81

It looks like make successfully updated readme.txt! With
every change to toc.txt, running make readme.txtwill pro-
grammatically update readme.txt.

In order to simplify the make experience, we can create a rule
at the top of our makefile called all where we can list all
of the files that are built by the makefile. By adding the
all target we can simply run make without any arguments
in order to build all of the targets in the makefile. Let’s open
up nano and add this rule:

nano makefile

all: draft_journal_entry.txt readme.txt

draft_journal_entry.txt:

touch draft_journal_entry.txt

readme.txt: toc.txt

echo "This journal contains the following numbe\

r of entries:" > readme.txt

wc -l toc.txt | egrep -o "[0-9]+" >> readme.txt

While we have nano open let’s add another special rule at
the end of our makefile called clean which destroys the files
created by our makefile:

Working with Unix 82

all: draft_journal_entry.txt readme.txt

draft_journal_entry.txt:

touch draft_journal_entry.txt

readme.txt: toc.txt

echo "This journal contains the following numbe\

r of entries:" > readme.txt

wc -l toc.txt | egrep -o "[0-9]+" >> readme.txt

clean:

rm draft_journal_entry.txt

rm readme.txt

Let’s save and close our makefile then let’s test it out first
let’s clean up our repository:

make clean

ls

rm draft_journal_entry.txt

rm readme.txt

makefile

toc.txt

make

ls

Working with Unix 83

touch draft_journal_entry.txt

echo "This journal contains the following numb\

er of entries:" > readme.txt

wc -l toc.txt | egrep -o "[0-9]+" >> readme.txt

draft_journal_entry.txt

readme.txt

makefile

toc.txt

Looks like our makefile works! The make command is ex-
tremely powerful, and this section is meant to just be an intro-
duction. For more in-depth reading about make I recommend
Karl Broman8’s tutorial9 or Chase Lambert10’s makefiletuto-
rial.com11.

Summary

• make is a tool for creating relationships between files
and programs, so that files that depend on other files
can be automatically rebuilt.

• makefiles are text files that contain a list of rules.
• Rules are made up of targets (files to be built), com-
mands (a list of bash commands that build the target),
and dependencies (files that the target depends on to be
built).

8https://twitter.com/kwbroman
9http://kbroman.org/minimal_make/
10http://chaselambda.com
11http://makefiletutorial.com

https://twitter.com/kwbroman
http://kbroman.org/minimal_make/
http://chaselambda.com/
http://makefiletutorial.com/
http://makefiletutorial.com/
https://twitter.com/kwbroman
http://kbroman.org/minimal_make/
http://chaselambda.com/
http://makefiletutorial.com/

Bash Programming
Communities begin by building their kitchen. -
French proverb

The last two chapters have discussed how to use the bash
shell. Bash itself is a little programming language, and this
chapter we’re going to discuss how you can write your own
computer programs in Bash. Programming in Bash is useful to
know because of how seamlessly it integrates with all of the
command line programs you’ve already learned. By the end of
this chapter you should be able to write your own command
line tools!

You can use nano to write all of the programs we’re going
to discuss in this chapter, however I recommend using the
Atom12 text editor because it’s more user friendly.

Now let’s create a new file called math.sh in the ∼/Code/

directory and let’s open that file with either nano or Atom.

cd ~/Code/

nano math.sh

You should now have a new, clean text file open. Any code
block in the following chapters that starts with the code (or
similar) below should indicate to you that we’re working on
a particular text file.

12https://atom.io/

https://atom.io/
https://atom.io/

Bash Programming 85

#!/usr/bin/env bash

File: math.sh

You do not need to add these lines to your file, though you
should type exactly what I have typed below these lines.
Note: please type all of the lines out for every program that
we’re going to write, do not copy and paste. Typing code is a
little different from typing an email, and you should practice
typing the code out yourself as much as possible. Both of
these lines start with the pound symbol (#) and in the Bash
programming language anything that is typed after a pound
symbol is ignored (unless the pound symbol is between curly
brackets ({ }), but that’s only in very specific situations). The
pound symbol allows you to make comments in your code
which you can use to annotate code so that another human
being who is reading your code can understand how your
program is designed to function.

If you’re using nano or another shell-based text editor you
should perhaps open up two terminals, one where you can
edit and save the programs you’re working on, and one where
you can run your programs. One advantage of using Atom is
that you can keep Atom open in a separate window and then
run your programs in your terminal window.

Math

The Bash programming language can do very basic arith-
metic, which we’ll demonstrate in this section. Now that you
have math.sh open in your preferred text editor type the
following into your text editor:

Bash Programming 86

#!/usr/bin/env bash

File: math.sh

expr 5 + 2

expr 5 - 2

expr 5 * 2

expr 5 / 2

Save math.sh and then run this script in your shell:

bash math.sh

7

3

10

2

Let’s break down what’s going on in the Bash script you
just created. Bash executes programs in order from the fist
line in your file to the last line. The expr command can be
used to evaluate Bash expressions. An expression is just a
valid string of Bash code that, when run, produces a result.
The arithmetic operators that you’re already familiar with
for addition (+), subtraction (-), and multiplication (*) work
like you would expect them to. Notice that when doing mul-
tiplication you need to escape the star character, otherwise
Bash thinks you’re trying to create a regular expression! The
division operator (/) does not work as you might expect it to
since 5 / 2 = 2.5. Bash does integer division, which means
that the result of dividing one number by another is always
rounded down to the nearest integer. Let’s take a look at a few
examples on the command line:

Bash Programming 87

expr 1 / 3

expr 10 / 3

expr 40 / 21

expr 40 / 20

0

3

1

2

The other numerical operator you should be aware of that
you might not be familiar with is the modulus operator (%).
The modulus operator returns the remainder after integer
division. In integer division if A / B = C, and A % B = D,
then B * C + D = A. Let’s take a look at some examples on the
command line:

expr 1 % 3

expr 10 % 3

expr 40 % 21

expr 40 % 20

1

1

19

0

Notice that when one number is completely divisible by
another number then the result of the modulus is zero.

Bash Programming 88

If you want to do more complex math, for example math with
fractions and numbers with decimals then I highly suggest
combining echo and the bench calculator program called
bc. Open up a new file called bigmath.sh and type in the
following:

#!/usr/bin/env bash

File: bigmath.sh

echo "22 / 7" | bc -l

echo "4.2 * 9.15" | bc -l

echo "(6.5 / 0.5) + (6 * 2.2)" | bc -l

Save bigmath.sh and then run this script in your shell:

bash bigmath.sh

3.14285714285714285714

38.430

26.2

You can pipe any mathematical string to bc with the -l flag
in order to use decimal numbers in your calculations.

Summary

• Bash programs are executed in order from the first line
in a file until the last line.

• Anything written after a pound sign (#) is a comment
and is not executed by Bash.

• You can do simple arithmetic with the expr command.
• Performmore complicated arithmetic by piping a string
expression into bc using echo.

Bash Programming 89

Exercises

1. Look at the man pages for bc.
2. Try doing some math in bc interactively.
3. Try writing some equations in a file and then provide

that file as an argument to bc.

Variables

In Bash you can store data in variables. In chapter 4 we dis-
cussed environmental variables that are set by your operating
system. You can also create your own variables. Make sure
you follow these rules when you’re naming variables:

• Every character should be lowercase.
• The variable name should start with a letter.
• The name should only contain alphanumeric charac-
ters and underscores (_).

• Words in the name should be separated by underscores.

If you follow those rules then you can avoid accidentally
overwriting data stored in environmental variables.

You can assign data to a variable using the equals sign (=). The
data you store in a variable can either be a string or a number.
Let’s create a variable now on the command line:

chapter_number=5

The variable name is on the left hand side of the equals sign,
and the data which will be stored in that variable is on the
right hand side of the equals sign. Notice that there are no
spaces on either side of the equals sign, this is not allowed
when assigning variables:

Bash Programming 90

chapter_number = 5

Error in running command bash

In order to print the data in a variable, also called the value
of a variable, we can use echo. When you want to retrieve the
value of a variable you must use the dollar sign ($) before the
name of the variable. Let’s try this out:

echo $chapter_number

5

You can modify the value of a variable using arithmetic
operators by using the let command:

let chapter_number=$chapter_number+1

echo $chapter_number

6

You can also store strings in variables:

the_empire_state="New York"

echo $the_empire_state

Bash Programming 91

New York

Occasionally you might want to run a command like you
would on the command line and store the result of that
command in a variable. We can do this by wrapping the
command in a dollar sign and parentheses ($()) around a
command. This syntax is called command substitution. The
command is executed and then gets replaced by the string
that resulted from running the command. For example if we
wanted to store the number of lines in math.sh:

math_lines=$(cat math.sh | wc -l)

echo $math_lines

7

Variable nameswith a dollar sign can also be used inside other
strings in order to insert the value of the variable into the
string:

echo "I went to school in $the_empire_state."

I went to school in New York.

When writing a Bash script, the script gives you a few
variables for free. Let’s create a new file called vars.sh with
the following code:

Bash Programming 92

#!/usr/bin/env bash

File: vars.sh

echo "Script arguments: $@"

echo "First arg: $1. Second arg: $2."

echo "Number of arguments: $#"

Now let’s try running the script a few times in a few different
ways:

bash vars.sh

Script arguments:

First arg: . Second arg: .

Number of arguments: 0

bash vars.sh red

Script arguments: red

First arg: red. Second arg: .

Number of arguments: 1

bash vars.sh red blue

Bash Programming 93

Script arguments: red blue

First arg: red. Second arg: blue.

Number of arguments: 2

bash vars.sh red blue green

Script arguments: red blue green

First arg: red. Second arg: blue.

Number of arguments: 3

Your script can accept arguments just like a command line
program! The first argument to your script is stored in $1, the
second argument is stored in $2, etc, etc. An array of all of
the arguments passed to your script is stored in $@, and we’ll
discuss how to handle arrays later on in this chapter. The total
number of arguments passed to your script is stored in $#.
Now that you know how to pass arguments to your scripts
you can start writing your own command line tools!

Summary

• Variables can be assigned with the equal sign (=) oper-
ator.

• Strings or numbers can be assigned to variables.
• The value of a variable can be accessed with the dollar
sign ($) before the variable name.

• You can use the dollar sign and parentheses syntax
(command substitution) to execute a command and
save the output in a variable.

• You can access command line arguments within your
own scripts using the dollar sign followed by the num-
ber of the argument.

Bash Programming 94

Exercises

1. Write a Bash program where you assign two numbers
to different variables, and then the program prints the
sum of those variables.

2. Write another Bash program where you assign two
strings to different variables, and then the program
prints both of those strings. Write a version where the
strings are printed on the same line, and a version
where the strings are printed on different lines.

3. Write a Bash program that prints the number of argu-
ments provided to that program multiplied by the first
argument provided to the program.

User Input

If you’re making Bash programs for you or for others to use
one way you can get user input is to specify arguments for
users to provide to your program, as we discussed in the
previous section. You could also ask users to type in a string on
the command line by temporarily stopping the execution of
your program using the read command. Let’s a write a small
script where you can see how the read command works:

#!/usr/bin/env bash

File: letsread.sh

echo "Type in a string and then press Enter:"

read response

echo "You entered: $response"

Now let’s run this script:

Bash Programming 95

bash letsread.sh

Type in a string and then press Enter:

##

Let’s type Hello! into the console, then press enter:

Type in a string and then press Enter:

Hello!

You entered: Hello!

The read command prompts the user to type in a string, and
the string that the user provides is stored in the variable that
is given to the read command in the script.

Summary

• read stores a string that the user provides in a variable.

Exercises

1. Write a script that asks the user for an adjective, a noun,
and a verb, and then use those words in a sentence (like
Mad Libs13).

13https://en.wikipedia.org/wiki/Mad_Libs

https://en.wikipedia.org/wiki/Mad_Libs
https://en.wikipedia.org/wiki/Mad_Libs

Bash Programming 96

Logic and If/Else

Conditional Execution

When writing computer programs it is often useful for your
program to be able to make decisions based on inputs like
arguments, files, and environmental variables. Bash provides
mechanisms for creating logical expressionswhich resemble
mathematical equations. These logical expressions can be
evaluated until they are either true or false. In fact, true and
false are both simple Bash commands! Let’s try them both
out now:

true

false

At first it doesn’t look like they do much. In order to see how
they work, we’re going to need to look under the hood of
Unix a little bit. Whenever you execute a program on the
command line, in general one of two things will happen:
either the command is executed successfully, or there’s an
error. In terms of errors there are many ways that a program
can go wrong, and Unix can take different actions depending
on what kind of error occurs. For example if I enter the name
of a command that does not exist into the terminal, then I’ll
see an error:

this_command_does_not_exist

Bash Programming 97

Error in running command bash

Since that command does not exist, it creates a specific kind
of error which is indicated by the program’s exit status. The
exit status of a program is an integer which indicates whether
the programwas executed successfully or if an error occurred.
The exit status of the last program run is stored in the question
mark variable ($?). We can take a look at the exit status of the
last program with echo:

echo $?

127

This particular exit status made an indication to the shell that
it should print an error message to the console. What’s the
exit status of a program that runs successfully? Let’s take a
look:

echo I will succeed.

echo $?

I will succeed.

0

So the exit status of a successful program is 0. Now let’s take
a look at the exit statuses of true and false:

Bash Programming 98

true

echo $?

false

echo $?

0

1

As you can see true has an exit status of 0 and false has an
exit status of 1. Since these programs don’t do much else, you
could define true as a program that always has an exit status
of 0 and false as a program that always has an exit status of
1.

Knowing the exit status of these programs is important when
discussing the logical operators: the AND operator (&&) and
the OR operator (||). The AND and OR operators can be
used for conditional execution of programs on the command
line. Conditional execution occurs when the execution of one
program depends on the exit status of another program. For
example in the case of the AND operator, the program on the
right hand side of && will only be executed if the program on
the left hand side of && has an exit status of 0. Let’s take a look
at some small examples:

true && echo "Program 1 was executed."

false && echo "Program 2 was executed."

Program 1 was executed.

Since false has an exit status of 1, the program echo "Pro-

gram 2 was executed." is not executed, so nothing is printed
to the console for that command. Several AND operators can
be chained together like so:

Bash Programming 99

false && true && echo Hello

echo 1 && false && echo 3

echo Athos && echo Porthos && echo Aramis

1

Athos

Porthos

Aramis

In a series of programs joined together by AND operators, any
programs to the right of a program that has a non-zero exit
status is not executed.

The OR operator (||) follows a similar set of principles.
Commands on the right hand side of || are only executed
if the command on the left hand side fails and therefore has
an exit status other than 0. Let’s take a look at how this works:

true || echo "Program 1 was executed."

false || echo "Program 2 was executed."

Program 2 was executed.

Only echo "Program 2 was executed." runs because false
has a non-zero exit status. You can combine multiple OR
operators so that only the first program with an exit status
of 0 is executed:

Bash Programming 100

false || echo 1 || echo 2

echo 3 || false || echo 4

echo Athos || echo Porthos || echo Aramis

1

3

Athos

You can combine AND and OR operators in commands,
which are evaluated from left to right:

echo Athos || echo Porthos && echo Aramis

echo Gaspar && echo Balthasar || echo Melchior

Athos

Aramis

Gaspar

Balthasar

By combining AND and OR operators you can precisely
control the conditions for when certain commands should be
executed.

Conditional Expressions

Enabling your Bash script to make decisions is extremely
useful. Conditional execution allows you to control the cir-
cumstances where certain programs are executed based on
whether those programs succeed or fail, but you can also

Bash Programming 101

construct conditional expressions which are logical state-
ments that are either equivalent to true or false. Conditional
expressions either compare two values, or they ask a question
about one value. Conditional expressions are always between
double brackets ([[]]), and they either use logical flags or
logical operators. For example, there are several logical flags
you could use for comparing two integers. If we wanted to
see if one integer was greater than another we could use -gt,
the greater than flag. Enter this simple conditional expression
into the command line:

[[4 -gt 3]]

The logical expression above is asking: Is 4 greater than 3? No
result is printed to the console so let’s check the exit status of
that expression.

echo $?

0

It looks like the exit status of this program is 0, the same exit
status as true. This conditional expression is saying that [[4

-gt 3]] is equivalent to true, which of course we know is
logically consistent, 4 is in fact greater than 3! Let’s see what
happens if we flip the expression around so we’re asking if 3
is greater than 4:

[[3 -gt 4]]

Again, nothing is printed to the console so we’ll look at the
exit status:

Bash Programming 102

echo $?

1

Ah-ha! Obviously 3 is not greater than 4, so this false logical
expression resulted in an exit status of 1, which is the same
exit status as false! Because they have the same exit status [[
3 -gt 4]] and false are essentially equivalent. To quickly
test the logical value of a conditional expression, we can use
the AND and OR operators so that an expression will print
“t” if it’s true and “f” if its false:

[[4 -gt 3]] && echo t || echo f

[[3 -gt 4]] && echo t || echo f

t

f

This is a little trick you can use to quickly look at the resulting
value of a logical expression.

These binary logical expressions compare two values, but
there are also unary logical expressions that only look at one
value. For example, you can test whether or not a file exists
using the -e logical flag. Let’s take a look at this flag in action:

cd ~/Code

[[-e math.sh]] && echo t || echo f

Bash Programming 103

t

As you can see the file math.sh exists! Most of the time when
you’re writing bash scripts you won’t be comparing two raw
values or trying to find something out about one raw value,
instead you’ll want to create a logical statement about a value
contained in a variable. Variables behave just like raw values
in logical expressions. Let’s take a look at a few examples:

number=7

[[$number -gt 3]] && echo t || echo f

[[$number -gt 10]] && echo t || echo f

[[-e $number]] && echo t || echo f

t

f

f

As you can see 7 is greater than 3 though it is not greater
than 10, and there is not file in this directory called 7. There
are several other varieties of logical flags, and you can find a
table of several of these flags below.

Bash Programming 104

Logical Flag Meaning Usage

-gt Greater Than [[$planets

-gt 8]]
-ge Greater Than

or Equal To
[[$votes -ge

270]]
-eq Equal [[$fingers

-eq 10]]
-ne Not Equal [[$pages -ne

0]]
-le Less Than or

Equal To
[[$candles

-le 9]]
-lt Less Than [[$wives -lt

2]]
-e A File Exists [[-e

$taxes_2016

]]
-d A Directory

Exists
[[-d $photos

]]
-z Length of

String is Zero
[[-z $name

]]
-n Length of

String is
Non-Zero

[[-n $name

]]

Try using each of these flags on the command line before
moving on to the next section.

In addition to logical flags there are also logical operators.
One of the most useful logical operators is the regex match
operator =∼. The regex match operator compares a string
to a regular expression and if the string is a match for the
regex then the expression is equivalent to true, otherwise it’s
equivalent to false. Let’s test this operator a couple different
ways:

Bash Programming 105

[[rhythms =~ [aeiou]]] && echo t || echo f

my_name=sean

[[$my_name =~ ^s.+n$]] && echo t || echo f

f

t

There’s also the NOT operator !, which inverts the value
of any conditional expression. The NOT operator turns true
expressions into false expressions and vice-versa. Let’s take a
look at a few examples using the NOT operator:

[[7 -gt 2]] && echo t || echo f

[[! 7 -gt 2]] && echo t || echo f

[[6 -ne 3]] && echo t || echo f

[[! 6 -ne 3]] && echo t || echo f

t

f

t

f

Here’s a table of some of the useful logical operators in case
you need to reference how they’re used later:

Bash Programming 106

Logical
Operator

Meaning Usage

=∼ Matches
Regular
Expression

[[

$consonants

=∼ [aeiou]

]]
= String Equal

To
[[$password

= "pegasus"

]]
!= String Not

Equal To
[[$fruit !=

"banana"]]
! Not [[! "apple"

=∼ ˆb]]

If and Else

Conditional expressions are powerful because you can use
them to control how a Bash program that you’re writing is
executed. One of the fundamental constructs in Bash pro-
gramming is the IF statement. Code written inside of an
IF statement is only executed if a certain condition is true,
otherwise the code is skipped. Let’s write a small program
with an IF statement:

Bash Programming 107

#!/usr/bin/env bash

File: simpleif.sh

echo "Start program"

if [[$1 -eq 4]]

then

echo "You entered $1"

fi

echo "End program"

First this program will print “Start program”, then the IF
statement will check if the conditional expression [[$1 -

eq 4]] is true. It will only be true if you provide 4 as the
first argument to the script. If the conditional expression if
true then it will execute the code in between then and fi,
otherwise it will skip over that code. Finally the program will
print “End program.”

Let’s try running this Bash program a few different ways. First
we’ll run this program with no arguments:

bash simpleif.sh

Start program

End program

Since we didn’t provide any arguments to simpleif.sh the
code within the IF statement was skipped! Now let’s try
providing an argument to this script:

Bash Programming 108

bash simpleif.sh 77

Start program

End program

We provided the argument 77, however 77 is not equal to 4,
therefore the code within the IF statement was once again
skipped. Finally let’s provide 4 as an argument:

bash simpleif.sh 4

Start program

You entered 4

End program

It worked! Since the first argument to this script was 4,
and 4 is equal to 4, the code within the IF statement was
executed. You can pair IF statements with ELSE statements.
An ELSE statement only runs if the conditional expression
being evaluated by the IF statement is false. Let’s create a
simple program that uses an ELSE statement:

Bash Programming 109

#!/usr/bin/env bash

File: simpleifelse.sh

echo "Start program"

if [[$1 -eq 4]]

then

echo "Thanks for entering $1"

else

echo "You entered: $1, not what I was looking f\

or."

fi

echo "End program"

Now let’s try running this program a few different ways:

bash simpleifelse.sh 4

Start program

Thanks for entering 4

End program

The conditional expression [[$1 -eq 4]] was true so code
inside of the IF statement was run and the code in the ELSE
statement was not run. What do you think will happened
when we make the conditional expression false?

bash simpleifelse.sh 3

Bash Programming 110

Start program

You entered: 3, not what I was looking for.

End program

The conditional expression [[$1 -eq 4]]was false so code
inside of the ELSE statement was run and the code in the IF
statement was not run.

Between IF and ELSE statements you can also have ELIF
statements. These statements act like IF statements except
they’re only evaluated if preceding IF and ELIF statements
have all evaluated false conditional expressions. Let’s create
a brief program using ELIF:

#!/usr/bin/env bash

File: simpleelif.sh

if [[$1 -eq 4]]

then

echo "$1 is my favorite number"

elif [[$1 -gt 3]]

then

echo "$1 is a great number"

else

echo "You entered: $1, not what I was looking f\

or."

fi

First let’s run the program with 4 as the first argument:

bash simpleelif.sh 4

Bash Programming 111

4 is my favorite number

The condition in the IF statement was true, so only the first
echo commandwas executed. Now let’s run the programwith
5 as the first argument:

bash simpleelif.sh 5

5 is a great number

If first condition is false since 5 is not equal to 4, but then the
next condition in the ELIF statement is true since 5 is greater
than 3, so that echo command is executed and the rest of the
statement is skipped. Try to guess what will happen if we use
2 as an argument:

bash simpleelif.sh 2

You entered: 2, not what I was looking for.

Since 2 is neither equal to 4 nor greater than 5, the code in the
ELSE statement is executed.

You should also know that you can combine conditional
execution, conditional expressions, and IF/ELIF/ELSE state-
ments. The conditional execution operators AND (&&) and OR
(||) can be used in an IF or ELIF statement. Let’s look at an
example using these operators in an IF statement:

Bash Programming 112

#!/usr/bin/env bash

File: condexif.sh

if [[$1 -gt 3]] && [[$1 -lt 7]]

then

echo "$1 is between 3 and 7"

elif [[$1 =~ "Jeff"]] || [[$1 =~ "Roger"]] ||\

[[$1 =~ "Brian"]]

then

echo "$1 works in the Data Science Lab"

else

echo "You entered: $1, not what I was looking f\

or."

fi

Now let’s test this script with a few different arguments:

bash condexif.sh 2

bash condexif.sh 4

bash condexif.sh 6

bash condexif.sh Jeff

bash condexif.sh Brian

bash condexif.sh Sean

You entered: 2, not what I was looking for.

4 is between 3 and 7

6 is between 3 and 7

Jeff works in the Data Science Lab

Brian works in the Data Science Lab

You entered: Sean, not what I was looking for.

Bash Programming 113

The conditional execution operators work just like theywould
on the command line. If the entire conditional expression
evaluates to the equivalent of true then the code within the
IF statement is executed, otherwise it is skipped.

Finally we should note that IF/ELIF/ELSE statements can be
nested inside of other IF statements. Here’s a small example
of a program with nested statements:

#!/usr/bin/env bash

File: nested.sh

if [[$1 -gt 3]] && [[$1 -lt 7]]

then

if [[$1 -eq 4]]

then

echo "four"

elif [[$1 -eq 5]]

then

echo "five"

else

echo "six"

fi

else

echo "You entered: $1, not what I was looking f\

or."

fi

Now let’s run it a few times:

Bash Programming 114

bash nested.sh 2

bash nested.sh 4

bash nested.sh 6

You entered: 2, not what I was looking for.

four

six

In order to get to the inner IF statement, the conditions for
the outer IF statement must be met first (the first argument
for the script must be between 3 and 7). As you can see com-
bining variables, arguments, conditional expressions, and IF
statements allow you to write more powerful Bash programs.

Summary

• All Bash programs have an exit status. true has an exit
status of 0 and false has an exit status of 1.

• Conditional execution uses two operators: AND (&&)
and OR (||) which you can use to control what com-
mand get executed based on their exit status.

• Conditional expressions are always in double brackets
([[]]). They have exit an exit status of 0 if they
contain a true assertion or 1 if they contain a false
assertion.

• IF statements evaluate conditional expressions. If an
expression is true then the code within an IF statement
is executed, otherwise it is skipped.

• ELIF and ELSE statements also help control the flow of
a Bash program, and IF statements can be nested within
other IF statements.

Bash Programming 115

Exercises

1. Write a Bash script that takes a string as an argument
and prints “how proper” if the string starts with a
capital letter.

2. Write a Bash script that takes one argument and prints
“even” if the first argument is an even number or “odd”
if the first argument is an odd number.

3. Write a Bash script that takes two arguments. If both
arguments are numbers, print their sum, otherwise just
print both arguments.

4. Write a Bash script that prints “Thank Moses it’s Fri-
day” if today is Friday. (Hint: take a look at the date

program).

Arrays

Arrays in Bash are ordered lists of values. You can create a
list from scratch by assigning it to a variable name. Lists are
created with parentheses (()) with a space separating each
element in the list. Let’s make a list of the plagues of Egypt:

plagues=(blood frogs lice flies sickness boils ha\

il locusts darkness death)

To retrieve the array you need to use parameter expansion,
which involves the dollar sign and curly brackets (${ }).
The positions of the elements in the array are numbered
starting from zero. To get the first element of this array use
${plagues[0]} like so:

Bash Programming 116

echo ${plagues[0]}

blood

Notice that the first element has an index of 0. You can get
any of the elements this way, for example the fourth element:

echo ${plagues[3]}

flies

To get all of the elements of plagues use a star (*) between
the square brackets:

echo ${plagues[*]}

blood frogs lice flies sickness boils hail loc\

usts darkness death

You can also change an individual elements in the array by
specifying their index with square brackets:

echo ${plagues[*]}

plagues[4]=disease

echo ${plagues[*]}

Bash Programming 117

blood frogs lice flies sickness boils hail loc\

usts darkness death

blood frogs lice flies disease boils hail locu\

sts darkness death

To get only part of an array you have to specify the index you
would like to start at, followed by the number of elements you
would like to retrieve from the array, separated by colons:

echo ${plagues[*]:5:3}

boils hail locusts

The above query essentially says: get 3 array elements starting
from the sixth element of the array (remember, the sixth
element has an index of 5).

You can find the length of an array using the pound sign (#):

echo ${#plagues[*]}

10

You can use the plus-equals operator (+=) to add an array onto
the end of an array array:

Bash Programming 118

dwarfs=(grumpy sleepy sneezy doc)

echo ${dwarfs[*]}

dwarfs+=(bashful dopey happy)

echo ${dwarfs[*]}

grumpy sleepy sneezy doc

grumpy sleepy sneezy doc bashful dopey happy

Summary

• Arrays are a linear data structure with ordered ele-
ments which can be stored in variables.

• The each element of an array has an index and the first
index is 0.

• Individual elements of an array can be accessed using
their index.

Exercises

1. Write a bash script where you define an array inside of
the script, and the first argument for the script indicates
the index of the array element that is printed to the
console when the script is run.

2. Write a bash script where you define two arrays inside
of the script, and the sum of the lengths of the arrays
are printed to the console when the script is run.

Bash Programming 119

Braces

Bash has a very handy tool for creating strings out of se-
quences called brace expansion. Brace expansion uses the
curly brackets and two periods ({ .. }) to create a sequence
of letters or numbers. For example to create a string with
all of the numbers between zero and nine you could do the
following:

echo {0..9}

0 1 2 3 4 5 6 7 8 9

In addition to numbers you can also create sequences of
letters:

echo {a..e}

echo {W..Z}

a b c d e

W X Y Z

You can put strings on either side of the curly brackets
and they’ll be “pasted” onto the corresponding end of the
sequence:

Bash Programming 120

echo a{0..4}

echo b{0..4}c

a0 a1 a2 a3 a4

b0c b1c b2c b3c b4c

You can also combine sequences so that two or more se-
quences are pasted together:

echo {1..3}{A..C}

1A 1B 1C 2A 2B 2C 3A 3B 3C

If you want to use variables in order to define a sequence you
need to use the eval command in order to create the sequence:

start=4

end=9

echo {$start..$end}

eval echo {$start..$end}

{4..9}

4 5 6 7 8 9

You can combine sequences with a comma between brackets
({,}):

Bash Programming 121

echo {{1..3},{a..c}}

1 2 3 a b c

In fact you can do this with any number of strings:

echo {Who,What,Why,When,How}?

Who? What? Why? When? How?

Summary

• Braces allow you create string sequences and expan-
sions.

• To use variables with braces you need to use the eval
command.

Exercises

1. Create 100 text files using brace expansion.

Loops

for

Loops are one of the most important programming structures
in the Bash language. All of the programs we’ve written so far
are executed from the first line of the script until the last line,
but loops allow you to repeat lines of code based on logical
conditions or by following a sequence. The first kind of loop
that we’ll discuss is a FOR loop. FOR loops iterate through
every element of a sequence that you specify. Let’s take a look
at a small example FOR loop:

Bash Programming 122

#!/usr/bin/env bash

File: forloop.sh

echo "Before Loop"

for i in {1..3}

do

echo "i is equal to $i"

done

echo "After Loop"

Now let’s execute this script:

bash forloop.sh

Before Loop

i is equal to 1

i is equal to 2

i is equal to 3

After Loop

Let’s walk through forloop.sh line-by-line. First "Before

Loop" is printed before the FOR loop, then the loop begins.
FOR loops start with the syntax for [variable name] in

[sequence] followed by do on the next line. The variable
name that you define immediately after for will take on a
value inside of the loop that corresponds to an element in the
sequence you provide after in, starting with the first element
of the sequence, followed by every subsequent element. Valid
sequences include brace expansions, explicit lists of strings,

Bash Programming 123

arrays, and command substitutions. In this instance we’re
using the brace expansion {1..3} which we know expands
to the string "1 2 3". The code executed in each iteration of
the loop is written between do and done. In the first iteration
of the loop, the variable $i contains the value 1. The string
"i is equal to 1" is printed to the console. There are more
elements in the brace expansion after 1, so after reaching
done the first time, the program starts executing back at the
do statement. The second time through the loop variable $i

contains the value 2. The string "i is equal to 2" is printed
to the console, then the loop goes back to the do statement
since there are still elements left in the sequence. The $i

variable is now equal to 3, so "i is equal to 3" is printed
to the console. There are no elements left in the sequence, so
the program moves beyond the FOR loop and finally prints
"After Loop". Stop for a moment and edit this loop yourself.
Try changing the brace expansion to include other sequences
of numbers, letters, or words, then execute the modified code.
Before you execute your modified program, write down what
you think will be printed. How do the results of executing
your program compare with your expectations?

Once you’ve experimented a little take a look at this example
with several other kinds of sequence generating strategies:

Bash Programming 124

#!/usr/bin/env bash

File: manyloops.sh

echo "Explicit list:"

for picture in img001.jpg img002.jpg img451.jpg

do

echo "picture is equal to $picture"

done

echo ""

echo "Array:"

stooges=(curly larry moe)

for stooge in ${stooges[*]}

do

echo "Current stooge: $stooge"

done

echo ""

echo "Command substitution:"

for code in $(ls)

do

echo "$code is a bash script"

done

bash manyloops.sh

Bash Programming 125

Explicit list:

picture is equal to img001.jpg

picture is equal to img002.jpg

picture is equal to img451.jpg

##

Array:

Current stooge: curly

Current stooge: larry

Current stooge: moe

##

Command substitution:

bigmath.sh is a bash script

condexif.sh is a bash script

forloop.sh is a bash script

letsread.sh is a bash script

manyloops.sh is a bash script

math.sh is a bash script

nested.sh is a bash script

simpleelif.sh is a bash script

simpleif.sh is a bash script

simpleifelse.sh is a bash script

vars.sh is a bash script

The example above illustrates three other methods of creating
sequences for FOR loops: typing out an explicit list, using an
array, and getting the result of a command substitution. In
each case a variable name is declared after the for, and the
value of tha variable changes through each iteration of the
loop until the corresponding sequence has been exhausted.
Right now you should take a moment to write a few FOR
loops yourself, generating sequences in all of the ways that
we’ve gone over, just to reinforce your understanding of how
a FOR loop works. Loops and conditional statements are two

Bash Programming 126

of the most important structures that we have at our disposal
as programmers.

while

Now that we’ve gotten a few FOR loops working let’s move
on to WHILE loops. The WHILE loop is truly the Reese’s
Peanut Butter Cup14 of programming structures, combining
parts of the FOR loop and the IF statement. Let’s take a look
at an example WHILE loop so you can see what I mean:

#!/usr/bin/env bash

File: whileloop.sh

count=3

while [[$count -gt 0]]

do

echo "count is equal to $count"

let count=$count-1

done

The WHILE loop begins first with the while keyword fol-
lowed by a conditional expression. As long as the conditional
expression is equivalent to truewhen an iteration of the loop
begins, then the code within the WHILE loop will continue to
be executed. Based on the code for whileloop.shwhat do you
think will be printed to the console when we run this script?
Let’s find out:

14https://youtu.be/O7oD_oX-Gio

https://youtu.be/O7oD_oX-Gio
https://youtu.be/O7oD_oX-Gio
https://youtu.be/O7oD_oX-Gio

Bash Programming 127

bash whileloop.sh

count is equal to 3

count is equal to 2

count is equal to 1

Before the WHILE the count variable is set to be 3, but then
each time the WHILE loop is executed 1 is subtracted from
the value of count. The loop then starts from the top again
and the conditional expression is re-checked to see if it’s still
equivalent to true. After three iterations through the loop
count is equal to 0 since 1 is subtracted from count in every
iteration. Therefore the logical expression [[$count -gt 0

]] is no longer equal to true and the loop ends. By changing
the value of the variable in the logical expression inside of
the loop we’re able to ensure that the logical expression will
eventually be equivalent to false, and therefore the loop will
eventually end.

If the logical expression is never equivalent to false then
we’ve created an infinite loop, so the loop never ends and
the program runs forever. Obviously we would like for our
programs to end eventually, and therefore creating infinite
loops is undesirable. However let’s create an infinite loop so
we know what to do if we get into a situation where our pro-
gram won’t terminate. With a simple “typo” we can change
the program above so that it runs forever but substituting the
minus sign -with a plus sign + so that count is always greater
than zero (and growing) after every iteration.

Bash Programming 128

#!/usr/bin/env bash

File: foreverloop.sh

count=3

while [[$count -gt 0]]

do

echo "count is equal to $count"

let count=$count+1 # We only chang\

ed this line!

done

...

count is equal to 29026

count is equal to 29027

count is equal to 29028

count is equal to 29029

count is equal to 29030

...

If the program is working, then count is being incremented
very rapidly and you’re watching number wiz by in your
terminal! Don’t fret, you can terminate any program that’s
stuck in an infinite loop using Control + C. Use Control + C

to get the prompt back so that we can continue.

When constructing WHILE loops, make absolutely sure that
you’ve structured the program so that the loop will terminate!
If the logical expression after while never becomes false then
the program will run forever, which is probably not the kind
of behavior you were planning for your program.

Bash Programming 129

Nesting

Just like IF statements for and while loops can be nested
within each other. In the example below a FOR loop is nested
inside of another FOR loop.

#!/usr/bin/env bash

File: nestedloops.sh

for number in {1..3}

do

for letter in a b

do

echo "number is $number, letter is $letter"

done

done

Based on what we know about FOR loops try to predict what
this program will print out before we run the program. Now
that you’ve written down or typed out your prediction let’s
run it.

bash nestedloops.sh

Bash Programming 130

number is 1, letter is a

number is 1, letter is b

number is 2, letter is a

number is 2, letter is b

number is 3, letter is a

number is 3, letter is b

Let’s closely examine what’s going on here. The outer most
FOR loop starts iterating through the sequence generated by
{1..3}. On the first pass through the loop, the inner loop
iterates through the sequence a b which first prints number
is 1, letter is a followed by number is 1, letter is

b. The first iteration of the outer loop is then finished and
the whole process starts over with number having a value
of 2. This process continues going through the inner loop
until the sequence for the outer loop is exhausted. I again
strongly encourage you to pause for amoment andwrite some
of your own nested loops based on the code above. Try to
predict what your nested loop program will print before you
run your program. If the printed result does not match your
prediction trace your way through the program and try to
figure out why. Don’t just limit yourself to nested FOR loops,
use nested WHILE loops, or FOR and WHILE loops in nested
combinations.

Besides nesting loops within each other you can also nest
loops within IF statements and IF statements within loops.
Let’s take a look at an example:

Bash Programming 131

#!/usr/bin/env bash

File: ifloop.sh

for number in {1..10}

do

if [[$number -lt 3]] || [[$number -gt 8]]

then

echo $number

fi

done

Before we run this example try once more to guess what the
output will be.

bash ifloop.sh

1

2

9

10

For each iteration of the loop above, the value of number was
checked in the IF statement, and the echo command was only
run if number was outside the range from 3 to 8.

There are endless combinations for nesting IF statements and
loops, but one good rule of thumb you should remember is
that your nesting should never go more than two or possibly
three layers deep. If you find yourself writing code with lots
of nesting, you should consider restructuring your program.
Deeply nested code is difficult to read and even more difficult
to debug if your program contains mistakes.

Bash Programming 132

Summary

• Loops allows you repeat sections of your program.
• FOR loops iterate through a sequence so that a variable
that you assign takes on the value of every element of
the sequence in every iteration of the loop.

• WHILE loops check a conditional statement at the
beginning of every iteration. If the condition is equiv-
alent to true then one iteration of the loop is executed
and then the conditional statement is checked again.
Otherwise the loop ends.

• IF statements and loops can be nested in order to make
more powerful programming structures.

Exercises

• Write serval programs with three levels of nesting and
include FOR loops, WHILE loops, and IF statements.
Before you run your program try to predict what your
program is going to print. If the result is different from
your prediction try to figure out why.

• Enter the yes command into the console, then stop the
program from running. Take a look at the man page for
yes to learn more about the program.

Functions

Writing Functions

A function is a small piece of code that has a name. Writing
functions allows us to re-use the same code multiple times
across programs. Functions have the the following syntax:

Bash Programming 133

function [name of function] {

code here

}

Pretty simple, right? Let’s open up a new file called hello.sh

so we can write our first simple function.

#!/usr/bin/env bash

File: hello.sh

function hello {

echo "Hello"

}

hello

hello

hello

The entire structure of the function including the function

keyword, the name of the function, and the code for the
function written inside of the brackets serves as the function
definition. The function definition assigns the code within
the function to the name of the function (hello in this case).
After a function is defined it can be used like any other
command. Using our hello command three times should be
the equivalent of using echo "Hello" three times. Let’s run
this script to find out:

bash hello.sh

Bash Programming 134

Hello

Hello

Hello

It looks like this function works exactly like we expected.

Functions share lots of their behavior with individual bash
scripts including how they handle arguments. The usual bash
script arguments like $1, $2, and $@ all workwithin a function,
which allows you to specify function arguments. Let’s create
a slightly modified version of hello.sh which we’ll call
ntmy.sh:

#!/usr/bin/env bash

File: ntmy.sh

function ntmy {

echo "Nice to meet you $1"

}

In the file above notice that we’re not using the ntmy function
after we’ve defined it. That’s because we’re going to start
using the functions that we define as command line programs.
So far in this chapter we’ve been using the syntax of bash

[name of script] in order to execute the contents of a
script. Now we’re going to start using the source command,
which allows us to use function definitions in bash scripts as
command line commands. Let’s use source with this file so
that we can then use the ntmy command:

Bash Programming 135

source ntmy.sh

ntmy Jeff

ntmy Philip

ntmy Jenny

Nice to meet you Jeff

Nice to meet you Philip

Nice to meet you Jenny

And just like that you’ve created your very own command!
Once you close your current shell you’ll lose access to the
ntmy command, but in the next section we’ll discuss how to
set up your own commands so that you always have access
to them.

Let’s write a more complicated function. Imagine that we
wanted to add up a sequence of numbers from the command
line, but we had no way of knowing how many numbers
would be in the sequence. What components would we need
to write this function? First we would need a way to capture
a list of arguments which can have variable length, second
we would need a way to iterate through that list so we could
add up each element, and we would need a way to store the
cumulative sum of the sequence. These three requirements
can be satisfied by using the $@ variable, a FOR loop, and
variable where we can store the sum. It’s important to break
down a larger goal into a series of individual components
before writing a program, that way we more easily can
identify which features and tools will be required. Let’s write
this program in a file called addseq.sh.

Bash Programming 136

#!/usr/bin/env bash

File: addseq.sh

function addseq {

sum=0

for element in $@

do

let sum=sum+$element

done

echo $sum

}

In the program above we initialize the sum variable to be 0 so
that we can add other values in the sequence to sum. We then
use a FOR loop to iterate through every element of $@, which
is an array of all the arguments we provide to addseq. Finally
we echo the value of sum. Let’s source this program and test
it out:

source addseq.sh

addseq 12 90 3

addseq 0 1 1 2 3 5 8 13

addseq

addseq 4 6 6 6 4

Bash Programming 137

105

33

0

26

By breaking down a large problem we were able to write a
nice little function!

Getting Values from Functions

Functions are used for two primary purposes: computing val-
ues and side effects. In the addseq command in the previous
section we provide the command with a sequence of numbers
and then the command provides us with the sum of the
sequence which is a value that we’re interested in. In this case
we can see that addseq has computed a value based on a few
input values. Many other commands, like pwd for example,
return a value without affecting the state of the file on our
computer. There are however functions like mv or cp which
move and copy files on our computer. A side effect occurs
whenever a function creates or changes files on our computer.
These commands don’t print any value if they succeed.

We’ll often write functions in order to calculate some value,
and it’s important to understand how to store the result of a
function in a variable so that it can be used later. Let’s source
addseq.sh and run it one more time:

source addseq.sh

addseq 3 0 0 7

Bash Programming 138

10

If we look back at the code for addseq.sh we can see that
we created a variable in the function called sum. When you
create variables in functions those variables become globally
accessible, meaning that even after the program is finished
that variable retains its value in your shell. We can easily
verify this by echoing the value of sum:

echo $sum

10

This is an example of one strategy we can use to retrieve
values that a function has calculated. Unfortunately this
approach is problematic because it changes the values of vari-
ables that we might be using in our shell. For example if we
were storing some other important value in a variable called
sum we would destroy that value by accident by running
addseq. In order to avoid this problem it’s important that
we use the local keyword when assigning variables within a
function. The local keyword ensures that variables outside of
our function are not overwritten by our function. Let’s create
a new version of addseq called addseq2 which uses local

when assigning variables.

Bash Programming 139

#!/usr/bin/env bash

File: addseq2.sh

function addseq2 {

local sum=0

for element in $@

do

let sum=sum+$element

done

echo $sum

}

Now let’s source both files so we demonstrate how local

helps us avoid overwriting variables.

source addseq.sh

source addseq2.sh

sum=4444

addseq 5 10 15 20

echo $sum

50

50

Our original addseq overwrites the value we assigned to sum.
Now let’s try addseq2.

Bash Programming 140

sum=4444

addseq2 5 10 15 20

echo $sum

50

4444

By using local within our function the value of sum is
preserved! In order to correctly capture the value of the result
of addseq2 we can use command substitution.

my_sum=$(addseq2 5 10 15 20)

echo $my_sum

50

Summary

• Functions start with the function keyword followed by
the name of the function and curly brackets ({}).

• Functions are small, reusable pieces of code that behave
just like commands.

• You can use variables like $1, $2, and $@ in order to
provide arguments to functions, just like a Bash script.

• Use the source command in order to read in a Bash
script with function definitions so that you can use your
functions in your shell.

• Use the local keyword to prevent your function from
creating or modifying global variables.

• Be sure to echo the results of your function (if there
are any) so that they can be captured with command
substitution.

Bash Programming 141

Exercises

Below this list of exercises you can find examples of how these
programs should work when used on the command line.

1. Write a function called plierwhichmultiplies together
a sequence of numbers.

2. Write a function called isiteven that prints 1 if a
number is even or 0 a number is not even.

3. Write a function called nevenswhich prints the number
of even numbers when provided with a sequence of
numbers. Use isiteven when writing this function.

4. Write a function called howodd which prints the per-
centage of odd numbers in a sequence of numbers. Use
nevens when writing this function.

5. Write a function called fibwhich prints the number of
fibonacci15 numbers specified.

plier 7 2 3

42

isiteven 42

1

15https://en.wikipedia.org/wiki/Fibonacci_number

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Fibonacci_number

Bash Programming 142

nevens 42 6 7 9 33

2

howodd 42 6 7 9 33

.40

fib 4

0 1 1 2

fib 10

0 1 1 2 3 5 8 13 21 34

Bash Programming 143

Writing Programs

The Unix Philosophy

Perhaps there are some design patters that you’ve been notic-
ing since we started talking about Unix tools, and now we’re
going to discuss them explicitly. Unix tools were designed
along a set of guidelines which are best summarized by Ken
Thompson16’s idea that each Unix program should do one
thing well. Following this rule when writing functions and
programs accomplished several goals:

• Limiting a program to only doing one thing reduces the
length of the program, and the shorter a program is the
easier it is to fix if it contains bugs or if it needs to be
revised.

• Writing short programs also helps the users of your
code understand what’s going on in your code in the
event that they need to read your code. Reading a poem
induces a different cognitive load compared to reading
a novel.

• Folks who don’t read the source code of your program
(most users won’t - they shouldn’t have to) will be able
to understand the inputs, outputs, and side effects of
your program more easily.

• Using small programs to write a new program will
increase the likelihood that the new program will also
be small. Composability is the concept of stringing
small programs together to create a new program.

16https://en.wikipedia.org/wiki/Ken_Thompson

https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Ken_Thompson

Bash Programming 144

The concept of composability in Unix is best illustrated by the
use of the pipe operator (|) for creating pipelines of programs.
When you’re considering what inputs your program is going
to have andwhat your program is going to print to the console
you should consider whether or not your program might be
used in a pipeline, and you should organize your program
accordingly.

In the previous section we discussed the difference between
functions that compute values and functions that produce side
effects. You should notice that the side effect functions like
mv and cp do not print any text to the console if they are
successful. The concept of quietness is another important part
of the Unix philosophy. Quietness in this case means that a
function should not print to the console unless it is necessary,
either to inform the user of a value (pwd), to display the result
of a computation (bc), or to warn the user that an error has
occurred.

Making Programs Executable

Let’s take a detailed look at some of the code files in our
current working directory:

ls -l | head -n 3

Bash Programming 145

-rw-rw-r-- 1 sean sean 138 Jun 26 12:51 addseq\

.sh

-rw-rw-r-- 1 sean sean 146 Jun 26 14:45 addseq\

2.sh

-rw-rw-r-- 1 sean sean 140 Jan 29 10:06 bigmat\

h.sh

The left column of this table contains a series of individual
characters and dashes. The first hyphen (-) signifies that
each of the entries in this list are files. If any of them were
directories then instead of a hyphen there would be a d.
Excluding the first hyphen we have the following string: rw-
rw-r--. This string reflects the permissions that are set up
for this file. There are three permissions that we can grant:
the ability to read the file (r), write to or edit the file (w),
or execute the file (x) as a program. These three permissions
can be granted on three different levels of access which
correspond to each of the three sets of rwx in the permissions
string: the owner of the file, the group that the file belongs
to, and everyone other than the owner and the members of a
group. Since you created the file you are the owner of the file,
and you can set the permissions for files that you own using
the chmod command.

The chmod command takes two arguments. The first argument
is a string which specifies how we’re going to change permis-
sions for a file, and the second argument is the path to the file.
The first argument has to be composed in a very specific way.
First we can specify which set of users we’re going to change
permissions for:

Bash Programming 146

Character Meaning

u The owner of the file
g The group that the file belongs to
o Everyone else
a Everyone above

We then need to specify whether we’re going to add, remove,
or set the permission:

Character Meaning

+ Add permission
- Remove permission
= Set permission

Finally we specify what permission we’re changing:

Character Meaning

r Read a file
w Write to or edit a file
x Execute a file

Let’s use echo to write a very short program which we’ll call
short.

echo 'echo "a small program"' > short

Normally if we wanted to run short we would enter bash
short into the console. If we make this file executable we
would only need to enter short into the command line to
run the program, just like a command! Let’s take a look at
the permissions for short.

Bash Programming 147

ls -l short

-rw-r--r-- 1 sean staff 23 Jun 28 09:47 sho\

rt

We want to make this file executable and we’re the owner of
this file since we created it. This means we can combine u, +,
and x in order make short executable. Let’s try it:

chmod u+x short

ls -l short

-rwxr--r-- 1 sean staff 23 Jun 28 09:47 sho\

rt

We successfully added the x! To run an executable file we need
to specify the path to the file, even if the path is in the current
directory, meaning we need to prepend ./ to short. Now let’s
try running the program.

./short

a small program

Looks like it works! There is one small detail we should add
to this program though. Even though we’ve made our file
executable, if we give our program to somebody else they
might be using a shell that doesn’t know how to execute our

Bash Programming 148

program. We need to indicate how the program should be
run by adding a special line of text to the beginning of our
program called a shebang. The shebang always begins with
#! followed by the path to the programwhich will execute the
code in our file. The shebang for indicating that we want to
use Bash is #!/usr/bin/env bash, which we’ve been adding
to the start of our scripts for a while now! Let’s rewrite this
program to include the Bash shebang and then let’s run the
program.

echo '#!/usr/bin/env bash' > short

echo 'echo "a small program"' >> short

a small program

Now our Bash script is ready to go!

Environmental Variables

We’re one step away from being able to use our scripts
and functions as shell commands, but first we need to learn
about environmental variables. An environmental variable is
a variable that Bash creates where data about your current
computing environment is stored. Environmental variable
names use all capitalized letters. Let’s look at the values for
some of these variables. The HOME variable contains the path
to our home directory, and the PWD variable contains the path
to our current directory.

Bash Programming 149

echo $HOME

echo $PWD

/Users/sean

/Users/sean/Code

If we want one of our functions to be available always as a
command then we need to change the PATH variable. Let’s
take a look at this variable first.

echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/local/git/bin

The PATH variable contains a sequence of paths on our com-
puter separated by colons. When the shell starts it searches
these paths for executable files, and then makes those exe-
cutable commands available in our shell. One approach to
making our scripts available is to add a directory to the PATH.
Bash scripts in the directory that are executable can be used
as commands. We need to modify PATH every time we start
a shell, so we can ammend our ∼/.bash_profile so that
our directory for executable scripts is always in the PATH. To
modify an environmental variable we need to use the export
keyword.

First let’s create a new directory called Commands in our Code
directory where we can keep our executable scripts. Then
we’ll add a line to our ∼/.bash_profile so that Commands
is added to the PATH.

Bash Programming 150

mkdir Commands

nano ~/.bash_profile

alias docs='cd ~/Documents'

alias edbp='nano ~/.bash_profile'

export PATH=~/Code/Commands:$PATH

Save∼/.bash_profile and close nano. Now let’s source our
Bash profile (we only need to do this once) and move short
into the Commands directory. Then we should be able to use
short as a command!

source ~/.bash_profile

short

a small program

Looks like it works!

Alternatively to making individual scripts executable we can
add a source command to our ∼/.bash_profile so that we
can use a Bash function on the command line. Let’s use nano
to open up our ∼/.bash_profile again.

nano ~/.bash_profile

Bash Programming 151

alias docs='cd ~/Documents'

alias edbp='nano ~/.bash_profile'

export PATH=~/Code/Commands:$PATH

source ~/Code/addseq2.sh

Save the ∼/.bash_profile, quit nano, and now let’s source
our ∼/.bash_profile so we can test if we can use addseq2.

source ~/.bash_profile

addseq2 9 8 7

24

Again it works! If you havemultiple Bash functions that you’d
like to be able to use on the command line then it’s a good
idea to define these functions in one of a few files so that you
don’t have to source every individual function that you want
to have available.

Summary

• According to the Unix Philosophy you should keep
your programs short, simple, and quiet.

• Use chmod to make your programs executable.
• You can modify your ∼/.bash_profile in order to
make scripts and functions available to use on the
command line.

• Use export to change an environmental variable.

Bash Programming 152

Exercises

Below this list of exercises you can find examples of how
the programs described here should work when used on the
command line.

1. Make a script executable.
2. Put that script in a directory that you create and make

that directory part of your PATH.
3. Write a program called range that takes one number

as an argument and prints all of the numbers between
that number and 0.

4. Write a program called extremeswhich prints themax-
imum and minimum values of a sequence of numbers.

range 6

0 1 2 3 4 5 6

range -3

-3 -2 -1 0

extremes 8 2 9 4 0 3

Bash Programming 153

0 9

Git and GitHub
Proof rather than argument. - Japanese proverb

What are Git and GitHub?

Git is a command line program which allows you to track
versions of any code or plain text documents that you create.
Like the “track changes” feature of a word processor Git keeps
track of who made particular changes, the time and date of
those changes, and where the changes were made. If a critical
file gets deleted by accident, or if you make a breaking change
to your code and you want to try to figure out where the
breaking change was made, you can use Git to restore the
deleted file or find the new bug in your program. Git organizes
groups of files that you’re tracking into a repository, which
is just a directory where all of the changes to files in that
directory are tracked. Git can also help you collaborate with
others when you’re writing software. As Karl Broman17 says
(paraphrasing Mark Holder18): “Your closest collaborator is
you six months ago, but you donâ€™t reply to emails.”

GitHub is a website that provides remote Git repositories.
A remote repository is just a Git repository that you’re able
to access over an internet connection. GitHub allows you to
create public remote repositories for free, and anyone can see

17https://twitter.com/kwbroman
18https://twitter.com/mtholder

https://twitter.com/kwbroman
https://twitter.com/mtholder
https://twitter.com/kwbroman
https://twitter.com/mtholder

Git and GitHub 155

your code in these public repositories. If you want to keep
your code private then you can pay GitHub for private remote
repositories.

If you’re working on code together with a friend GitHub
can help you sync changes to code files between you and
your friend. There’s also a social and community aspect to
GitHub, since you can watch other programmers develop
their projects. GitHub also makes it easy to jump in and help
somebodywith their project. GitHub offers many other useful
features which we will discuss at length.

Setting Up Git and GitHub

Before setting up Git, go to GitHub19 and create a free ac-
count. Take note of which email address you use and which
username you choose.

To see if you have Git installed open up your terminal and
enter the following:

git --version

git version 2.11.0 (Apple Git-81)

If you don’t get a response back telling you the version of Git
that you have installed then you need to install Git. You can
find instructions for installing Git on your operating system
here20.

19https://github.com/
20https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

https://github.com/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://github.com/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

Git and GitHub 156

Open up your shell once you have git installed and run git -

-version again to make sure that installation succeeded (you
may need to restart your shell or your computer). After Git is
installed we need to set up two environmental variables, but
we only need to do this once. The first variable we need to
set up with Git is your GitHub user name, and the second
variable is the email address that you used to create your
GitHub account:

git config --global user.name "myUserName"

git config --global user.email myName@email.com

Getting Started with Git

Let’s create our first Git repository. First we need to create a
directory:

cd

mkdir my-first-repo

cd my-first-repo

“Repo” in this case is just shorthand for “repository.” To start
tracking files with Git in a directory enter git init into the
command line:

git init

Git and GitHub 157

Initialized empty Git repository in /Users/sea\

n/my-first-repo/.git/

You’ve just created your first repository! Now let’s create a
file and start tracking it.

echo "Welcome to My First Repo" > readme.txt

Now that we’ve created a file in this Git repository, let’s use
git status to see what’s going on in this repository. We’ll
be using git status continuously throughout this chapter in
order to get information about the status of this Git repository.

git status

On branch master

##

Initial commit

##

Untracked files:

(use "git add <file>..." to include in what \

will be committed)

##

readme.txt

##

nothing added to commit but untracked files pr\

esent (use "git add" to track)

As you can see readme.txt is listed as an untracked file. In
order to let Git know that you want to track this file we need
to use git addwith the name of the file that we want to track.
Let’s start tracking readme.txt:

Git and GitHub 158

git add readme.txt

Git now knows to track any changes to readme.txt. Let’s see
how the status of the repository has changed:

git status

On branch master

##

Initial commit

##

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

##

new file: readme.txt

##

Git is now tracking readme.txt, or in Git-specific language
readme.txt is now staged. Between the parentheses in the
message above you can see that git status is giving us a tip
about how to unstage (or un-track) this file, which we could
do with git rm --cached readme.txt. Let’s unstage this file
just to see what happens:

git rm --cached readme.txt

rm 'readme.txt'

Git and GitHub 159

git status

On branch master

##

Initial commit

##

Untracked files:

(use "git add <file>..." to include in what \

will be committed)

##

readme.txt

##

Our repository is right back to theway it startedwith readme.txt
as an unstaged file. Let’s start tracking readme.txt again so
we can move on to cooler Git features.

git add readme.txt

Now that Git is tracking readme.txtwe need to create a mile-
stone to indicate the changes that we made to readme.txt. In
this case, the changes that we made were creating the file in
the first place! This milestone is called a commit in Git. A
commit logs the content of all of the currently staged files.
Right now we only have readme.txt staged so let’s commit
the creation of this file. When making a Git commit, we need
to write a commit message which is specified after the -m flag.
The message should briefly describe what changes you’ve
made since the last commit.

Git and GitHub 160

git commit -m "added readme.txt"

[master (root-commit) 73e53ca] added readme.txt

1 file changed, 1 insertion(+)

create mode 100644 readme.txt

Themessage above confirms that the commit succeeded and it
summarizes the changes that took place since the last commit.
As you can see in the message we only changed one file, and
we only changed one line in that file. Let’s run git status

again to see the state of our repository after we’ve made the
first commit:

git status

On branch master

nothing to commit, working tree clean

All of the changes to the files in this repository have been
committed! Let’s add a few more files to this repository and
commit them.

touch file1.txt

touch fil2.txt

ls

Git and GitHub 161

file1.txt

fil2.txt

readme.txt

Whilewe’re at it let’s also add a new line of text to readme.txt:

echo "Learning Git is going well so far." >> read\

me.txt

Now thatwe’ve added twomore files andwe’vemade changes
to one file let’s take a look at the state of this repository.

git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will\

be committed)

(use "git checkout -- <file>..." to discard \

changes in working directory)

##

modified: readme.txt

##

Untracked files:

(use "git add <file>..." to include in what \

will be committed)

##

fil2.txt

file1.txt

##

no changes added to commit (use "git add" and/\

or "git commit -a")

Git and GitHub 162

We can see that Git has detected that one file has been
modified, and that there are two files in this directory that it
is not tracking. Nowwe need to tell Git to track the changes to
these files. We could tell Git to track changes to each file using
git add, or since all of the files in this repository are .txt

files we could use a wildcard and enter git add *.txt into
the console. However if we want to track all of the changes
to all of the files in our directory we should use the command
git add -A.

git add -A

git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

##

new file: fil2.txt

new file: file1.txt

modified: readme.txt

##

Now the changes to all of the files in this repository are being
tracked. Finally let’s commit these changes:

git commit -m "added two files"

Git and GitHub 163

[master 53a1983] added two files

3 files changed, 1 insertion(+)

create mode 100644 fil2.txt

create mode 100644 file1.txt

Darn it, now looking at this commit summary I realize that I
have a typo in one of the names of my files! Thankfully we can
undo the most recent commit with the command git reset

--soft HEAD∼:

git reset --soft HEAD~

git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

##

new file: fil2.txt

new file: file1.txt

modified: readme.txt

##

This repo is now in that exact same state it was right before
we made the commit. Now we can rename fil2.txt to
file2.txt, then let’s look at the status of the repository again.

mv fil2.txt file2.txt

git status

Git and GitHub 164

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

##

new file: fil2.txt

new file: file1.txt

modified: readme.txt

##

Changes not staged for commit:

(use "git add/rm <file>..." to update what w\

ill be committed)

(use "git checkout -- <file>..." to discard \

changes in working directory)

##

deleted: fil2.txt

##

Untracked files:

(use "git add <file>..." to include in what \

will be committed)

##

file2.txt

##

We previously told Git to track fil2.txt, and we can see that
Git acknowledges that the file has been deleted. We can bring
Git up to speed with what files it should be tracking with git

add -A:

git add -A

git status

Git and GitHub 165

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

##

new file: file1.txt

new file: file2.txt

modified: readme.txt

##

Finally we got the file names right! Now let’s make the correct
commit:

git commit -m "added two files"

[master 12bb9f5] added two files

3 files changed, 1 insertion(+)

create mode 100644 file1.txt

create mode 100644 file2.txt

That looks much better.

Summary

• Git tracks changes to plain text files (code files and text
documents).

• A directory where changes to files are tracked by Git is
called a Git repository.

• Change your working directory, then run git init to
start a repository.

• You can track changes to a file using git add [names

of files].

Git and GitHub 166

• You can create a milestone about the state of your files
using git commit -m "message about changes since

the last commit".
• To examine the state of files in your repository use git
status.

Exercises

1. Start a repository in a new directory.
2. Create a new file in your new Git repository. Make sure

Git is tracking the file and then create a new commit.
3. Make changes to the file, and then commit these changes.
4. Add two new files to your repository, but only commit

one of them. What is the status of your repository after
the commit?

5. Undo the last commit, add the untracked file, and redo
the commit.

Important Git Features

Gitting Help, Logs, and Diffs

Git commands have their own man pages. You can access them
with git help [name of command]. For example here’s the
start of the help page for git status:

git help status

Git and GitHub 167

GIT-STATUS(1) Git \

Manual GIT-STATUS(1\

)

NAME

git-status - Show the working tree status

SYNOPSIS

git status [<options>...] [--] [<pathspec>\

...]

DESCRIPTION

Displays paths that have differences betwe\

en the index file and the current HEAD commit,

paths that have differences between the wo\

rking tree and the index file, and paths in the

working tree that are not tracked by Git (\

and are not ignored by gitignore(5)). The first

are what you would commit by running git c\

ommit; the second and third are what you could

commit by running git add before running g\

it commit.

Just like any other help page that uses less, you can return to
the prompt with the Q key.

If you want to see a list of your Git commits, enter git log

into the console:

git log

Git and GitHub 168

commit 12bb9f53b10c9b720dac8441e8624370e4e071b6

Author: seankross <sean@seankross.com>

Date: Fri Apr 21 15:23:59 2017 -0400

##

added two files

##

commit 73e53cae75301ce9b2802107b1956447241bb17a

Author: seankross <sean@seankross.com>

Date: Thu Apr 20 14:15:26 2017 -0400

##

added readme.txt

If you’ve made many commits to a repository you might need
to press the Q key in order to get back to the prompt. Each
commit has its time, date, and commit message recorded,
along with a SHA-1 hash that uniquely identifies the commit.

Git can also help show the differences between unstaged
changes to your files compared to the last commit. Let’s add
a new line of text to readme.txt:

echo "The third line." >> readme.txt

git diff readme.txt

Git and GitHub 169

diff --git a/readme.txt b/readme.txt

index b965f6a..a3db358 100644

--- a/readme.txt

+++ b/readme.txt

@@ -1,2 +1,3 @@

Welcome to My First Repo

Learning Git is going well so far.

+I added a line.

As you can see a plus sign shows up next to the added line.
Now let’s open up this file in a text editor so we can delete
the second line.

nano readme.txt

Delete the second line

git diff readme.txt

diff --git a/readme.txt b/readme.txt

index b965f6a..e173fdf 100644

--- a/readme.txt

+++ b/readme.txt

@@ -1,2 +1,2 @@

Welcome to My First Repo

-Learning Git is going well so far.

+I added a line.

A minus sign appears next to the line we deleted. Let’s take a
look at the status of our directory at this point.

Git and GitHub 170

git status

On branch master

Changes not staged for commit:

(use "git add <file>..." to update what will\

be committed)

(use "git checkout -- <file>..." to discard \

changes in working directory)

##

modified: readme.txt

##

no changes added to commit (use "git add" and/\

or "git commit -a")

If you read the results from git status carefully you can see
that we can take this repository in one of two directions at this
point. We can either git add the files we’ve made changes to
in order to track those changes, or we can use git checkout

in order to remove all of the changes we’ve made to a file to
restore its content to what was present in the last commit.
Let’s remove our changes to see how this works.

cat readme.txt

Welcome to My First Repo

I added a line.

Git and GitHub 171

git checkout readme.txt

cat readme.txt

Welcome to My First Repo

Learning Git is going well so far.

And as you can see the changes we made to readme.txt have
been undone.

Ignoring Files

Sometimes you might have files that you never want Git
to track, for example binary files that are generated as by-
products of running code (PDFs or images), or secrets like
passwords or API keys. A file in your Git repository called
.gitignore can list names of files and sub-folders, or simple
regular expressions (whatever you can use with ls) in order
to specify files which should never be tracked. Each line of
a .gitignore file should specify a file or group of files that
should not be tracked by Git. Let’s make a .gitignore file to
make sure that we never track image files in this repository:

touch toby.jpg

git status

Git and GitHub 172

On branch master

Untracked files:

(use "git add <file>..." to include in what \

will be committed)

##

toby.jpg

##

nothing added to commit but untracked files pr\

esent (use "git add" to track)

Now that we’ve added an image to our repository, let’s add a
.gitignore file to make sure Git doesn’t track these kinds of
files.

echo "*.jpg" > .gitignore

git status

On branch master

Untracked files:

(use "git add <file>..." to include in what \

will be committed)

##

.gitignore

##

nothing added to commit but untracked files pr\

esent (use "git add" to track)

Now we can see that Git has detected the new .gitignore

file, but it doesn’t see toby.jpg. Let’s add and commit our
.gitignore file:

Git and GitHub 173

git add -A

git commit -m "added gitignore"

[master adef548] added gitignore

1 file changed, 1 insertion(+)

create mode 100644 .gitignore

Now if we add another .jpg file, Git will not see the file:

touch bernie.jpg

git status

On branch master

nothing to commit, working tree clean

ls

bernie.jpg

toby.jpg

file1.txt

file2.txt

readme.txt

Summary

• git help allows you to read the man pages for specific
Git commands.

• git log will show you your commit history.
• git diff displays what has changed between the last
commit and your current untracked changes.

• You can specify a .gitignore file in order to tell Git
not to track certain files.

Git and GitHub 174

Exercises

1. Look at the help pages for git log and git diff.
2. Add to the .gitignore you already started to include a

specific file name, then add that file to your repository.
3. Create a file that contains the Git log for this repository.

Use grep to see which day of the week most of the
commits occurred on.

Branching

Branching is one of the most powerful features that Git offers.
Creating different Git branches allows you to work on a
particular feature or set of files independently from other
“copies” of a repository. That way you and a friend can work
on different parts of the same file on different branches, and
then Git can help you elegantly merge your branches and
changes together.

You can list all of the available branches with the command
git branch:

git branch

* master

The star (*) indicates which branch you’re currently on. The
default branch that is created is always calledmaster. Usually
people use this branch as the working version of the software
that they are writing, while they develop new and potentially
unstable features on other branches.

To add a branch we’ll also use the git branch command,
followed the name of the branch we want to create:

Git and GitHub 175

git branch my-new-feature

Now let’s enter git branch again to confirm that we’ve
created the branch:

git branch

* master

my-new-feature

We can make my-new-feature the current branch using git

checkout with the name of the branch:

git checkout my-new-feature

Switched to branch 'my-new-feature'

git branch

master

* my-new-feature

If we look at git status we can also see that it will tell us
which branch we’re on:

Git and GitHub 176

git status

On branch my-new-feature

nothing to commit, working tree clean

We can switch back to the master branch using git check-

out:

git checkout master

Switched to branch 'master'

git branch

* master

my-new-feature

Now we can delete a branch by using the -d flag with git

branch and the name of the branch we want to delete:

git branch -d my-new-feature

Deleted branch my-new-feature (was adef548).

Git and GitHub 177

git branch

* master

Let’s create a new branch for adding a section to the readme.txt
in our repository. We can create a new branch and switch
to that branch at the same time using the command git

checkout -b and the name of the new branch we want to
create:

git checkout -b update-readme

Switched to a new branch 'update-readme'

Now that we’ve created and switched to a new branch, let’s
make some changes to a file. As you might be expecting right
now we’ll add a new line to readme.txt:

echo "I added this line in the update-readme bran\

ch." >> readme.txt

cat readme.txt

Welcome to My First Repo

Learning Git is going well so far.

I added this line in the update-readme branch.

Now that we’ve added a new line let’s commit these changes:

Git and GitHub 178

git add -A

git commit -m "added a third line to readme.txt"

[update-readme 6e378a9] added a third line to \

readme.txt

1 file changed, 1 insertion(+)

Now thatwe’vemade a commit on the update-readme branch,
let’s switch back to the master branch, and then we’ll take a
look at readme.txt:

git checkout master

Switched to branch 'master'

Now that we’re on the master branch let’s quickly glance at
readme.txt:

cat readme.txt

Welcome to My First Repo

Learning Git is going well so far.

The third line that we added is gone! Don’t fret, the line that
we added isn’t gone forever. We committed the change to
this file while we were on the update-readme branch, so the
updated file is safely in that branch. Let’s switch back to that
branch just to make sure:

Git and GitHub 179

git checkout update-readme

cat readme.txt

Welcome to My First Repo

Learning Git is going well so far.

I added this line in the update-readme branch.

And the third line is back! Let’s add and commit yet another
line while we’re on this branch:

echo "It's sunny outside today." >> readme.txt

git add -A

git commit -m "added weather info"

[update-readme d7946e9] added weather info

1 file changed, 1 insertion(+)

This is a small example of how to use Git branching, but
you can see how you can make incremental edits to plain
text (usually code files) without effecting the master branch
(the tested and working copy of your software) and without
effecting any other branches. You can imagine how this
system could be used for multiple people to work on the
same codebase at the same time, or how you could develop
and test multiple software features without them interfering
with each other. Now that we’ve made a couple of changes
to readme.txt, let’s combine those changes with what we
have in the master branch. This is made possible by a Git
merge. Merging allows you to elegantly combine the changes
that have been made between two branches. Let’s merge

Git and GitHub 180

the changes we made in the update-readme branch with
the master branch. Git incorporates other branches into the
current branch by default. When you’re merging, the current
branch is also called the base branch. Let’s switch to the
master branch so we can merge in the changes from the
update-readme branch:

git checkout master

Switched to branch 'master'

To merge in the changes from another branch we need to use
git merge and the name of the branch:

git merge update-readme

Updating adef548..d7946e9

Fast-forward

readme.txt | 2 ++

1 file changed, 2 insertions(+)

cat readme.txt

Git and GitHub 181

Welcome to My First Repo

Learning Git is going well so far.

I added this line in the update-readme branch.

It's sunny outside today.

It looks like you’vemerged your first branch in Git! Branching
is part of what makes Git so powerful since it enables parallel
developments on the same code base. But what if there are
two commits in two separate branches that make different
edits to the same line of text? When this occurs it is called a
conflict. Let’s create a conflict so we can learn how they can
be resolved.

First we’ll switch to the update-readme branch. Use nano to
edit the last line of readme.txt, then commit your changes:

git checkout update-readme

nano readme.txt

cat readme.txt

Welcome to My First Repo

Learning Git is going well so far.

I added this line in the update-readme branch.

It's cloudy outside today.

Notice that we changed “sunny” to “cloudy” in the last line.

git add -A

git commit -m "changed sunny to cloudy"

Now that our changes are committed on the update-readme
branch, let’s switch back to master:

Git and GitHub 182

git checkout master

Let’s change the same line of code using nano:

nano readme.txt

cat readme.txt

Welcome to My First Repo

Learning Git is going well so far.

I added this line in the update-readme branch.

It's windy outside today.

Now let’s commit these changes:

git add -A

git commit -m "changed sunny to windy"

We’ve now created two commits that directly conflict with
each other. On the update-readme branch the last line says
It's cloudy outside today., while on the master branch
the last line says It's windy outside today.. Let’s see what
happens when we try to merge update-readme into master.

git merge update-readme

Git and GitHub 183

Auto-merging readme.txt

CONFLICT (content): Merge conflict in readme.t\

xt

Automatic merge failed; fix conflicts and then\

commit the result.

Uh-oh, there’s a conflict! Let’s check the status of the repo
right now:

git status

On branch master

You have unmerged paths.

(fix conflicts and run "git commit")

(use "git merge --abort" to abort the merge)

##

Unmerged paths:

(use "git add <file>..." to mark resolution)

##

both modified: readme.txt

##

no changes added to commit (use "git add" and/\

or "git commit -a")

If you’re getting used to reading the result of git status,
you can see that it often offers suggestions about what steps
you should take next. Git is indicating that both versions of
readme.txt have modified the same text. Let’s take a look at
readme.txt to see what’s going on there:

Git and GitHub 184

cat readme.txt

Welcome to My First Repo

Learning Git is going well so far.

I added this line in the update-readme branch.

<<<<<<< HEAD

It's windy outside today.

=======

It's cloudy outside today.

>>>>>>> update-readme

The first three lines of this file look normal, then things get in-
teresting! The line between <<<<<<< HEAD and ======= shows
the version of the conflicted line on the current branch. In Git
terminology the HEAD represents the most recent commit on
the branch which is currently checked out (which is master
in this case). The line between ======= and >>>>>>> update-

readme shows the version of the line on the update-readme

branch. In order to resolve this conflict, all we need to do is
open readme.txtwith nano sowe can delete the lineswewant
to get rid of. In this case let’s keep the “cloudy” version.

nano readme.txt

cat readme.txt

Welcome to My First Repo

Learning Git is going well so far.

I added this line in the update-readme branch.

It's cloudy outside today.

Now we can commit the resolution of this conflict.

Git and GitHub 185

git add -A

git commit -m "resolved conflict"

You’re now familiar with this basics of Git! If you want to go
into further depth with your study of Git I highly recommend
the free and open source book Pro Git21.

Summary

• Git branching allows you and others to work on the
same code base together.

• You can create a branch with the command git branch

[name of branch].
• To switch to a branch use git checkout [name of

branch].
• You can combine a branch with your current branch by
using git merge.

Exercises

1. Start a new branch.
2. Switch to that branch and add commits to it. Switch to

an older branch and then merge the new branch into
your current branch.

3. Purposefully create and resolve a merge conflict.
21https://git-scm.com/book/

https://git-scm.com/book/
https://git-scm.com/book/

Git and GitHub 186

GitHub

Now that you know the basics of using Git, let’s talk about
how you can share your work and start collaborating online
using GitHub. As an added bonus, by the end of this chapter
you will have created your very own website! To get started
go to GitHub22 and sign in with the credentials we set up at
the beginning of the chapter. After you sign in you should see
a plus-sign near the top-right corner of your web browser.
Click the plus-sign and a little menu should appear, then click
“New repository.” You should now see a screen that looks like
this:

In the text box under Repository name type my-first-repo
and then click the green Create repository button. Now you
should see a page like this:

22https://github.com/

https://github.com/
https://github.com/

Git and GitHub 187

GitHub offers a few suggestions about what to do with our
new remote repository. We’ve already been using a local
Git repository, and what GitHub provides is a remote Git
repository. A remote Git repository is just a Git repository
stored on a computer is that always turned on and connected
to the internet, so it can act as a central point where we
can share and sync our changes to files with our friends and
colleagues. We can see which remote repositories our local
repository is connected to with the git remote command
while we have our working directory set to my-first-repo:

git remote

Nothing is printed to the console since you haven’t set any
remotes up yet! Now let’s add your new GitHub repository as
a remote in your local repository:

Git and GitHub 188

git remote add origin https://github.com/seankros\

s/my-first-repo.git

In the command above git remote add adds a new remote to
your local repository, origin is the name we’re assigning to
this remote repository, and https://github.com/seankross/my-
first-repo.git is the URL of the remote repository. You
should of course substitute seankross for your GitHub user
name so that it corresponds to your remote repository URL.
Later I’ll explain why “origin” is the name we chose for this
remote. Let’s run git remote again to confirm that we added
the origin remote successfully:

git remote

origin

Now that we’ve added our GitHub remote, let’s perform our
first Git push. A Git push updates a remote repository with
all of the commits that we’ve made to our local Git repository.
This first Git push you do when setting up a remote on
GitHub with a local repository is a little different from future
Git pushes. We’ll need to use the -u flag in order to set
origin as the default remote repository so we don’t have to
provide its name every time we want to interact with it. Enter
the following command, modified so that you’re using your
GitHub user name:

git push -u origin master

Git and GitHub 189

Counting objects: 23, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (19/19), done.

Writing objects: 100% (23/23), 1.88 KiB | 0 by\

tes/s, done.

Total 23 (delta 9), reused 0 (delta 0)

remote: Resolving deltas: 100% (9/9), done.

To https://github.com/seankross/my-first-repo.\

git

* [new branch] master -> master

Branch master set up to track remote branch ma\

ster from origin.

The command above pushed all of our commits to the remote
repository on GitHub, and it set up the master branch of the
origin remote repository as the default remote repository.
Looking back at the web page for your repository on GitHub,
it should look something like this:

Git and GitHub 190

One neat feature of GitHub is that readme files are rendered
on the repository page so you can write documents which
explain the contents of your repository. Let’s getmore creative
with these readme documents by learning a small language
called Markdown.

Markdown

Markdown is a markup language. Markup languages are sets
of rules for adding decorative features to text. The most
popular markup language is HTML, but you might have also
heard of XML and LaTeX. Markdown is a powerful markup
language because it’s small, intuitive, and readable when
it’s written as plain text. GitHub transforms Markdown files
(which end in the file extension .md) into simple HTML web
pages in your repository. If there is a file called README.md

in any folder in your repository, then that file is rendered to
HTML and displayed on GitHub. Let’s create a README.md file

Git and GitHub 191

for our repository. First we’ll destroy the plain text readme file
we already have:

rm readme.txt

I’ve included a Markdown file below that attempts to explain
some of Markdown’s features. Copy the plain text below,
create a new file called README.md with nano, paste the text
in, and then save the file.

This is a large heading

This is a smaller heading

And as **imagination** bodies forth,

The forms of things *unknown*, the poetâ€™s pen,

Turns them to shapes and gives to airy nothing,

A local *habitation* and a **name**.

- This is

- an unordered

- list

1. This is

2. an ordered

3. list

Here is `some code` in the middle of a sentence.

```

This is

a block



Git and GitHub 192

of code

```

Here is how you make [a link](https://www.wikiped\

ia.org/).

![This is an image.](https://github.com/yihui/xar\

ingan/releases/download/v0.0.2/karl-moustache.jpg\

)

nano README.md

Now let’s add our changes, make a commit, and push those
changes to our remote repository:

git add -A

git commit -m "added README.md"

git push

Counting objects: 3, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 659 bytes | 0 byt\

es/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To https://github.com/seankross/my-first-repo.\

git

ca04f67..2169912 master -> master

Git and GitHub 193

Since we set up a default remote repository the first time
we pushed, we can now simply enter git push in order to
send our latest commits to the master branch on the origin
remote. Now the page on GitHub for your repository should
look something like this:

We’ve got a much more complex readme file! Notice how the
plain text that we wrote has been rendered according to a few
rules:

• Pound signs (#, ##) make headings.
• A word surrounded by single asterisks (*word*) makes
that word italicized.

• A word surrounded by double asterisks (**word**)
makes that word bold.

Git and GitHub 194

• You can create lists with hyphens (-) or numbers (1.,
2., 3.).

• Code can be placed in the middle of a line with single
backticks (`code`).

• A code block can be created by putting code in between
a set of triple backticks (‘).

• You can insert a link with brackets and parentheses
([Link text here](http://jhu.edu)).

• You can use an image with an exclamation point, and a
link to an image (![Alt text here](http://jhu.edu/jeff.jpg))

Personally I really enjoy writing with Markdown, to the
point where I wrote this entire book23 in Markdown! We’re
going to be using Markdown for the rest of this chapter, so
I suggest that you take a few minutes to play around with
the syntax in this in-browser Markdown editor24. For more
information about Markdown see GitHub’s helpfulMastering
Markdown25 guide.

Pull Requests

The next two features of GitHub we’re going to discuss - pull
requests and forking - are what make GitHub so great. A
pull request allows you to interactively compare two different
branches before you merge them so you can either go ahead

23https://github.com/seankross/the-unix-workbench/blob/master/docs/06-Git-and-
GitHub.md

24https://jbt.github.io/markdown-editor/#TVFLbtwwDN3rFCxm0xgTOU133WXXA2QXFDDHYizWEmlIctzZ9Rq9Xk9SetqZFNCCIt97/
LwDPEeuYA8hYZkIImFgmZw7HP6r1YwpUXmvPkkArNB1nHFiwcYqXQcnDUwVXrW0eHTPkfYwV9BXaNGIxlhlFt2kO1qGYFFqv3/
+qrCQGGEtUvd8hqZQIy4mhtZq4jeLLIdcziB6ETu6J0g6YoIu4onb3yEueLTJBDN1nXfu/
rqIRSiwipZAhYJ9E9fm3Cd/Qzz6HXIFfPb/EF/tu19iqJoJRg00AMtlg8whJNo3tDORNJKRrOkwDO4qinCyOWdnmJ16qd0ko25w1hUyzgQvZgPL/
O1jbG2pX/p+2za/8cwLBUavZervTPzDy80agd0B8u+UiVtcT37U3J85rtz/
wGLXQukLJcJKtQ9mQFIM/duDf/CP/Ywl3Wdda8Mxkv++THd/AA==

25https://guides.github.com/features/mastering-markdown/

https://github.com/seankross/the-unix-workbench/blob/master/docs/06-Git-and-GitHub.md
https://jbt.github.io/markdown-editor/#TVFLbtwwDN3rFCxm0xgTOU133WXXA2QXFDDHYizWEmlIctzZ9Rq9Xk9SetqZFNCCIt97/LwDPEeuYA8hYZkIImFgmZw7HP6r1YwpUXmvPkkArNB1nHFiwcYqXQcnDUwVXrW0eHTPkfYwV9BXaNGIxlhlFt2kO1qGYFFqv3/+qrCQGGEtUvd8hqZQIy4mhtZq4jeLLIdcziB6ETu6J0g6YoIu4onb3yEueLTJBDN1nXfu/rqIRSiwipZAhYJ9E9fm3Cd/Qzz6HXIFfPb/EF/tu19iqJoJRg00AMtlg8whJNo3tDORNJKRrOkwDO4qinCyOWdnmJ16qd0ko25w1hUyzgQvZgPL/O1jbG2pX/p+2za/8cwLBUavZervTPzDy80agd0B8u+UiVtcT37U3J85rtz/wGLXQukLJcJKtQ9mQFIM/duDf/CP/Ywl3Wdda8Mxkv++THd/AA==
https://guides.github.com/features/mastering-markdown/
https://guides.github.com/features/mastering-markdown/
https://github.com/seankross/the-unix-workbench/blob/master/docs/06-Git-and-GitHub.md
https://github.com/seankross/the-unix-workbench/blob/master/docs/06-Git-and-GitHub.md
https://jbt.github.io/markdown-editor/#TVFLbtwwDN3rFCxm0xgTOU133WXXA2QXFDDHYizWEmlIctzZ9Rq9Xk9SetqZFNCCIt97/LwDPEeuYA8hYZkIImFgmZw7HP6r1YwpUXmvPkkArNB1nHFiwcYqXQcnDUwVXrW0eHTPkfYwV9BXaNGIxlhlFt2kO1qGYFFqv3/+qrCQGGEtUvd8hqZQIy4mhtZq4jeLLIdcziB6ETu6J0g6YoIu4onb3yEueLTJBDN1nXfu/rqIRSiwipZAhYJ9E9fm3Cd/Qzz6HXIFfPb/EF/tu19iqJoJRg00AMtlg8whJNo3tDORNJKRrOkwDO4qinCyOWdnmJ16qd0ko25w1hUyzgQvZgPL/O1jbG2pX/p+2za/8cwLBUavZervTPzDy80agd0B8u+UiVtcT37U3J85rtz/wGLXQukLJcJKtQ9mQFIM/duDf/CP/Ywl3Wdda8Mxkv++THd/AA==
https://jbt.github.io/markdown-editor/#TVFLbtwwDN3rFCxm0xgTOU133WXXA2QXFDDHYizWEmlIctzZ9Rq9Xk9SetqZFNCCIt97/LwDPEeuYA8hYZkIImFgmZw7HP6r1YwpUXmvPkkArNB1nHFiwcYqXQcnDUwVXrW0eHTPkfYwV9BXaNGIxlhlFt2kO1qGYFFqv3/+qrCQGGEtUvd8hqZQIy4mhtZq4jeLLIdcziB6ETu6J0g6YoIu4onb3yEueLTJBDN1nXfu/rqIRSiwipZAhYJ9E9fm3Cd/Qzz6HXIFfPb/EF/tu19iqJoJRg00AMtlg8whJNo3tDORNJKRrOkwDO4qinCyOWdnmJ16qd0ko25w1hUyzgQvZgPL/O1jbG2pX/p+2za/8cwLBUavZervTPzDy80agd0B8u+UiVtcT37U3J85rtz/wGLXQukLJcJKtQ9mQFIM/duDf/CP/Ywl3Wdda8Mxkv++THd/AA==
https://jbt.github.io/markdown-editor/#TVFLbtwwDN3rFCxm0xgTOU133WXXA2QXFDDHYizWEmlIctzZ9Rq9Xk9SetqZFNCCIt97/LwDPEeuYA8hYZkIImFgmZw7HP6r1YwpUXmvPkkArNB1nHFiwcYqXQcnDUwVXrW0eHTPkfYwV9BXaNGIxlhlFt2kO1qGYFFqv3/+qrCQGGEtUvd8hqZQIy4mhtZq4jeLLIdcziB6ETu6J0g6YoIu4onb3yEueLTJBDN1nXfu/rqIRSiwipZAhYJ9E9fm3Cd/Qzz6HXIFfPb/EF/tu19iqJoJRg00AMtlg8whJNo3tDORNJKRrOkwDO4qinCyOWdnmJ16qd0ko25w1hUyzgQvZgPL/O1jbG2pX/p+2za/8cwLBUavZervTPzDy80agd0B8u+UiVtcT37U3J85rtz/wGLXQukLJcJKtQ9mQFIM/duDf/CP/Ywl3Wdda8Mxkv++THd/AA==
https://jbt.github.io/markdown-editor/#TVFLbtwwDN3rFCxm0xgTOU133WXXA2QXFDDHYizWEmlIctzZ9Rq9Xk9SetqZFNCCIt97/LwDPEeuYA8hYZkIImFgmZw7HP6r1YwpUXmvPkkArNB1nHFiwcYqXQcnDUwVXrW0eHTPkfYwV9BXaNGIxlhlFt2kO1qGYFFqv3/+qrCQGGEtUvd8hqZQIy4mhtZq4jeLLIdcziB6ETu6J0g6YoIu4onb3yEueLTJBDN1nXfu/rqIRSiwipZAhYJ9E9fm3Cd/Qzz6HXIFfPb/EF/tu19iqJoJRg00AMtlg8whJNo3tDORNJKRrOkwDO4qinCyOWdnmJ16qd0ko25w1hUyzgQvZgPL/O1jbG2pX/p+2za/8cwLBUavZervTPzDy80agd0B8u+UiVtcT37U3J85rtz/wGLXQukLJcJKtQ9mQFIM/duDf/CP/Ywl3Wdda8Mxkv++THd/AA==
https://jbt.github.io/markdown-editor/#TVFLbtwwDN3rFCxm0xgTOU133WXXA2QXFDDHYizWEmlIctzZ9Rq9Xk9SetqZFNCCIt97/LwDPEeuYA8hYZkIImFgmZw7HP6r1YwpUXmvPkkArNB1nHFiwcYqXQcnDUwVXrW0eHTPkfYwV9BXaNGIxlhlFt2kO1qGYFFqv3/+qrCQGGEtUvd8hqZQIy4mhtZq4jeLLIdcziB6ETu6J0g6YoIu4onb3yEueLTJBDN1nXfu/rqIRSiwipZAhYJ9E9fm3Cd/Qzz6HXIFfPb/EF/tu19iqJoJRg00AMtlg8whJNo3tDORNJKRrOkwDO4qinCyOWdnmJ16qd0ko25w1hUyzgQvZgPL/O1jbG2pX/p+2za/8cwLBUavZervTPzDy80agd0B8u+UiVtcT37U3J85rtz/wGLXQukLJcJKtQ9mQFIM/duDf/CP/Ywl3Wdda8Mxkv++THd/AA==
https://jbt.github.io/markdown-editor/#TVFLbtwwDN3rFCxm0xgTOU133WXXA2QXFDDHYizWEmlIctzZ9Rq9Xk9SetqZFNCCIt97/LwDPEeuYA8hYZkIImFgmZw7HP6r1YwpUXmvPkkArNB1nHFiwcYqXQcnDUwVXrW0eHTPkfYwV9BXaNGIxlhlFt2kO1qGYFFqv3/+qrCQGGEtUvd8hqZQIy4mhtZq4jeLLIdcziB6ETu6J0g6YoIu4onb3yEueLTJBDN1nXfu/rqIRSiwipZAhYJ9E9fm3Cd/Qzz6HXIFfPb/EF/tu19iqJoJRg00AMtlg8whJNo3tDORNJKRrOkwDO4qinCyOWdnmJ16qd0ko25w1hUyzgQvZgPL/O1jbG2pX/p+2za/8cwLBUavZervTPzDy80agd0B8u+UiVtcT37U3J85rtz/wGLXQukLJcJKtQ9mQFIM/duDf/CP/Ywl3Wdda8Mxkv++THd/AA==
https://guides.github.com/features/mastering-markdown/

Git and GitHub 195

with the merge or provide feedback to whoever opened the
pull request. Essentially a pull request allows a person to ask
another person if they’re willing to incorporate changes on
one branch into another branch. This social coding transac-
tion may involve you and a collaborator, you and a stranger,
or you might open a pull request on your own repository just
as a method of staying organized.

Since I can’t guarantee that you have a collaborator I’ll show
you how to open a pull request on your own repository. First
in your local my-first-repo repository let’s switch over to
the update-readme branch.

git checkout update-readme

Switched to branch 'update-readme'

Let’s take a look at what’s currently on this branch:

ls

bernie.jpg

toby.jpg

file1.txt

file2.txt

readme.txt

It looks like we haven’t updated this branch to be current with
the master branch. We can easily do this by merging in the
master branch.

Git and GitHub 196

git merge master

Updating 5aa94fa..2169912

Fast-forward

README.md | 28 ++++++++++++++++++++++++++++

readme.txt | 4 ----

2 files changed, 28 insertions(+), 4 deletion\

s(-)

create mode 100644 README.md

delete mode 100644 readme.txt

Now the master and update-readme branches are identical.
Let’s clean up this directory so that you can make a little
personalized Markdown project. First let’s delete all of the
files in this directory that we don’t really need, meaning
everything except README.md.

rm *.txt

rm *.jpg

ls

README.md

Now that we’ve cleaned up our repository let’s open up
README.md with nano. Delete everything that’s written there
andwrite a few lines about yourself. In the block of text below
you can see what I’ve written in README.md.

Git and GitHub 197

Sean Kross

Geography

I live in the city of Baltimore, in the state of \

Maryland, in the United States

of America.

Reading

Three of my favorite books are:

- *Mindstorms* by Seymour Papert

- *Welcome to the Monkey House* by Kurt Vonnegut

- *Persepolis* by Marjane Satrapi

Food

Last night I dreamt about eating in these restaur\

ants:

1. Linger in Denver.

2. Azura in Jerusalem.

3. Gemma in New York City.

Contact

The best way to get in touch with me is [on Twitt\

er](https://twitter.com/seankross).

Once you’ve written up a few fun things about yourself, add
your changes, and make a new commit.

Git and GitHub 198

git add -A

git commit -m "made readme more personal"

Like a local Git repository, remote repositories on GitHub can
havemultiple branches. Let’s push this commit to the update-
readme branch on GitHub:

git push origin update-readme

Counting objects: 3, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (3/3), done.

Writing objects: 100% (3/3), 630 bytes | 0 byt\

es/s, done.

Total 3 (delta 0), reused 0 (delta 0)

To https://github.com/seankross/my-first-repo.\

git

* [new branch] update-readme -> update-r\

eadme

Notice that we needed to specify which remote we were
pushing to since GitHub didn’t previously know about the
existence of the update-readme branch. When you perform a
git push, only the commits on the current branch are sent to
the remote repository. That way you can create local branches
that cannot be accessed from the remote repository, unless
you explicitly push them to GitHub.

Now let’s go back to the GitHub page for our repository. On
the left side of the page you should see a button that says
“Branch: master.” Click on that button and a little drop-down
menu should appear, as you can see below:

Git and GitHub 199

Click “update-readme” in the menu in order to view the files
in that branch. You should see that the README.md files are
different! You can switch back and forth between looking at
branches using this menu.

Now that you’ve pushed an updated branch to GitHub, let’s
open a pull request. A pull request is like a guided git merge

that is facilitated by GitHub. To start the pull request click the
“New pull request” button next to the branch button (see the
upper left corner of the image above). That button should take
you to a page like this:

Git and GitHub 200

There are a few important details on this page, so let’s go
through them. First under the “Open a pull request” heading
you can see the names of two branches. The branch name
after “base:” shows the branch that changes are being merged
into (in this case the master branch), and the branch name
after “compare:” shows the branch that has the changes (in
this case the update-readme branch).

In the text boxes below you can write a title for your pull
request (the default title in this case is the name of the
last commit) and you can write comments about the pull
request which you can format with Markdown. If you’re
collaborating with somebody else on a project it’s important
to write good comments so that your collaborators know
what changes you made in the branch you are requesting to
merge. If you scroll down the page you can see a line-by-line
comparison of the changes in the “compare” branch compared
to the “base” branch. When you’ve finished going over these

Git and GitHub 201

changes click the green “Create pull request” button in order
to open the pull request. You should now see a screen like this:

Congratulations on opening your first pull request! Let’s take
a look at what’s happening on this page. Below the title of
the pull request we can see three tabs called Conversation,
Commits, and Files changed. In the Conversation tab we
can add comments to the pull request which can be formatted
with Markdown. The Commits tab lists the commits that
have been made to the “compare” branch in this pull request.
Finally the Files changed tab shows the same line-by-line
comparison we saw before.

Usually when you’re working with collaborators there’s a
great deal of discussion that occurs after you open a pull
request. Git commits that are pushed to the “compare” branch
(update-readme in the case) of the GitHub repository will be

Git and GitHub 202

reflected in a pull request even after the request has been
opened. This way changes that are made as a result of the
discussion can be easily incorporated. Once you’re ready go
back to the Conversation tab and click the green “Merge pull
request” button, then click the green “Confirm merge” button
that appears. This will git merge the “compare” branch into
the “base” branch on our remote repository. You just merged
your first pull request! Now click near the top left corner of
this page on the <> Code tab, and you should see that the
changes from the update-readme branch have been merged
into master.

When working on a remote GitHub repository with many
other folks theses pull requests and merges can happen with-
out you being involved at all, if the commits effect parts of the
code that you’re not working on. Still it’s important to keep
your local repository up to date with the latest changes in the
remote repository. Let’s go back to your terminal where you
have my-first-repo set as the current working directory.

When working on a remote GitHub repository with many
other folks thess pull requests andmerges can happenwithout
you being involved at all if the commits effect parts of the
code that you’re not working on. Still it’s important to keep
your local repository up to date with the latest changes in
the remote repository. Let’s go back to your terminal where
you have my-first-repo set as the current working directory.
First let’s switch to the master branch.

git checkout master

Now let’s update our local master branch with the commits
that have been merged into the master branch on our remote

Git and GitHub 203

repository. We can accomplish this with the command git

pull:

git pull

remote: Counting objects: 1, done.

remote: Total 1 (delta 0), reused 0 (delta 0),\

pack-reused 0

Unpacking objects: 100% (1/1), done.

From https://github.com/seankross/my-first-repo

2169912..b9217f6 master -> origin/mast\

er

Updating 2169912..b9217f6

Fast-forward

README.md | 38 ++++++++++++++++++------------\

file1.txt | 0

file2.txt | 0

3 files changed, 18 insertions(+), 20 deletio\

ns(-)

delete mode 100644 file1.txt

delete mode 100644 file2.txt

With git pull Git finds the master branch on the origin

remote repository and updates our local repository with the
new commits. You’ve now completed the full pull request life
cycle! In the Forking section of this chapter we’ll come back
to how discussing how GitHub super-charges pull requests in
order to foster a greater coding community.

Git and GitHub 204

Pages

For now we’re going to take a little detour to discuss GitHub
Pages26. GitHub Pages allows you to create and host a website
onGitHub using onlyGit andMarkdown. Go back to your my-
first-repo repository page on GitHub on click the Settings
tab at the top. Scroll down the page until you see a box that
says GitHub Pages. Then click on the drop-down menu that
says None. You should see a screen like this:

Click master branch and then click Save. Now go to the
website [your-github-username].github.io/my-first-repo (in
my case the address is seankross.github.io/my-first-repo27)
and you should see your very own website!

26https://pages.github.com/
27http://seankross.github.io/my-first-repo

https://pages.github.com/
https://pages.github.com/
http://seankross.github.io/my-first-repo
https://pages.github.com/
http://seankross.github.io/my-first-repo

Git and GitHub 205

How cool is that!? If you want to change your new website
all you need to do is edit your README.md then commit and
push the changes!Websites like these are great for showing off
projects, providing software documentation, creating online
resumes, or writing a blog! GitHub pages websites can be as
simple as a few Markdown documents, or if you’re know
some web programming you can turn them into complex
websites. For more information about GitHub Pages you can
check out the documentation here28.

Forking

If you’re reading this book it’s fairly safe to say that you
probably interact with software every day. Software powers
your computer, the internet, your phone, and this book. Con-
sidering all of the software you use, have you ever thought
aboutmodifying that software? Perhaps you couldwrite some
code to add a new feature you think would be useful or to

28https://pages.github.com/

https://pages.github.com/
https://pages.github.com/

Git and GitHub 206

fix a glitch that you’ve noticed. GitHub makes modifying
other people’s software easy through the process of forking.
Forking a GitHub repository copies somebody else’s GitHub
repository into your GitHub account. You can then modify
this copy of their software however you like. After you’ve
added some commits to your copy of the repository you can
keep the new commits to yourself, share them with others,
or you can open up a pull request for your new commits to
be merged into the original source repository. This original
source repository (the repository you forked) is often called
the upstream repository.

Let’s try forking a repository now. Go to https://github.com/seankross/the-
unix-workbench and click the Fork button in the upper right
corner. GitHub will then ask you what account you want to
use to fork the repository. If you’re a new GitHub user then
you only have one account, so select that account. After a brief
“please wait” screen you should then see the forked repository
at the URL https://github.com/[your-github-username]/the-
unix-workbench. You’ve now forked the repository for this
book! In order to get get a local copy of the repository you’ll
need to use the git clone command. Cloning a repository
copies a Git repository to your computer while keeping track
of the remote repository that it originated from. Let’s clone
your fork of my repository now. On the right side of the
repository page you should see a green button that saysClone
or download. Click that button and the following menu
should appear:

Git and GitHub 207

Click on the little clipboard icon which will copy the Git
URL. Now go back to the terminal and change your working
directory to your home directory.

cd

pwd

/Users/sean

Now let’s clone the repository. Type git clone into the
terminal and then paste in the Git URL we copied from
GitHub:

git clone https://github.com/[your-github-usernam\

e]/the-unix-workbench.git

Git and GitHub 208

Cloning into 'the-unix-workbench'...

remote: Counting objects: 669, done.

remote: Compressing objects: 100% (7/7), done.

remote: Total 669 (delta 2), reused 8 (delta 2\

), pack-reused 660

Receiving objects: 100% (669/669), 4.00 MiB | \

4.55 MiB/s, done.

Resolving deltas: 100% (510/510), done.

Now cd into your cloned repository.

cd the-unix-workbench

You’ve just successfully completed your first Git clone! Like
we mentioned before, cloning has the advantage of keeping
track of the remote repository that should be associated with
the local repository. Let’s test this by entering git remote

with the added -v flag:

git remote -v

origin https://github.com/[your-github-usernam\

e]/the-unix-workbench.git (fetch)

origin https://github.com/[your-github-usernam\

e]/the-unix-workbench.git (push)

As you can see the default name of the remote repository after
you clone that repository is origin. Now that you’ve cloned
your fork you should add a commit! One change that I suggest
is adding your name to guestbook.md. Let’s do this now:

Git and GitHub 209

echo "- Sean Kross" >> guestbook.md # Add your ow\

n name of course!

cat guestbook.md

Guest Book

##

- Sean Kross

Now add, commit, and push your changes:

git add guestbook.md

git commit -m "added my name to guestbook.md"

git push

Now that you’ve added your name to the guest book you
can merge your change into my version of the guest book by
opening up a new pull request as described in the previous
section. If your pull request to the guest book is merged into
the upstream repository (byme) then youwill have completed
the full GitHub lifecycle!

The process of forking a repository, making changes, and
then opening a pull request is a very powerful workflow for
seeing changes that you want made in the software world.
Many large and important software projects have reposito-
ries on GitHub including operating systems29, programming
languages30, and even Git itself31! If there’s a change you want
to see in a public GitHub repository, fork that repository and
make the change!

29https://github.com/torvalds/linux
30https://github.com/golang/go
31https://github.com/git/git

https://github.com/torvalds/linux
https://github.com/golang/go
https://github.com/golang/go
https://github.com/git/git
https://github.com/torvalds/linux
https://github.com/golang/go
https://github.com/git/git

Git and GitHub 210

Summary

• You can use GitHub you create and host remote Git
repositories.

• A remote Git repository is a Git repository that is
always connected to the internet.

• List remote repositories with git remote.
• Add remote repositiories with git remote add [name-

of-remote] https://github.com/[username]/[repo-

name].git

• Add commits to your remote repository with git push

[name-of-remote] [name-of-branch] or just git push

if you’ve set up a default remote and branch.
• To merge commits on a remote repository into your lo-
cal repository use git pull [name-of-remote] [name-

of-branch] or just git pull if you’ve set up a default
remote and branch.

• A pull request allows you to interactively compare two
different branches before you merge them.

• GitHub Pages allows you to host websites written in
Markdown for free!

• Forking a repository allows you to make changes to a
copy of a public repository. You can then open a pull
request if you think your changes should be merged
into the upstream repository!

Exercises

1. Create a new repository on GitHub. Clone your repos-
itory and add a README.md file. Push this file to GitHub
and create a GitHub Pages website for this repository.

Git and GitHub 211

2. Fork an existing repository (try one ofmine https://github.com/seankross)
and try to identify something valuable you could con-
tribute. Make changes or additions to that repository,
then open a pull request.

3. Read through GitHub’s Guides32.

32https://guides.github.com/

https://guides.github.com/
https://guides.github.com/

Nephology
I saw a city in the clouds. - Dagobahnian proverb

Introduction to Cloud Computing

Nephology is the study of clouds. Few modern technology
concepts (other than maybe data science and artificial intelli-
gence) have been hyped as loudly as “the cloud.” The cloud is
simply a computer which we can access over the internet. In
this chapter we’ll set up a cloud computer and we’ll learn the
basics of interacting with one.

To get the most out of this chapter you’re going to need
your credit or debit card, or a PayPal33 account. We’re go-
ing to be using DigitalOcean34, a company which we can
rent cloud computers from. Throughout this chapter I might
refer to cloud computers as servers (computers connected
to the internet) or as droplets, which is a marketing term
DigitalOcean uses to refer to their servers (a droplet is not
a technical term). Renting from DigitalOcean won’t cost you
anymoney since I’m giving you a coupon for two free months
of service! There are several companies that offer similar
services compared to DigitalOcean, but in my opinion they
have the best user interface and the most transparent pricing
model.

33https://www.paypal.com
34https://m.do.co/c/530d6cfa2b37

https://www.paypal.com/
https://m.do.co/c/530d6cfa2b37
https://www.paypal.com/
https://m.do.co/c/530d6cfa2b37

Nephology 213

Warning: At the end of this chapter we will discuss how
to shut down any servers we’ve started on DigitalOcean. If
you don’t shut down your server after two months then your
account will be charged real money for using DigitalOcean.
Please be sure to shut down any servers you start after you
are finished using them.

Setting Up DigitalOcean

To get startedwith DigitalOceanwe need to rent a server from
their website. Click this link35 to sign up for DigitalOcean in
order to get two free months of server use. (If you don’t use
this link then you don’t get two free months). Click Sign Up
in the upper right corner, then enter your email address and
choose your password.

35https://m.do.co/c/530d6cfa2b37

https://m.do.co/c/530d6cfa2b37
https://m.do.co/c/530d6cfa2b37

Nephology 214

Check your email for a message from DigitalOcean and click
the enclosed link to confirm your email. Then you’ll need to
enter your credit or debit card information, or your Paypal
account details. As long as you close down all of your servers
less than two months after you start them you will not be
charged. After entering in your payment information you
should see this screen:

Click the big blueCreate a newDroplet button which should
then bring you to a screen where you can customize the
server you’re going to be renting. Make sure you have Ubuntu
chosen as your distribution, and select the $5 per month size
option:

Nephology 215

Scroll down the page and then select the region that is
geographically closest to you. Some regions have multiple
data centers, it doesn’t matter which data center you pick.
Currently I’m in Baltimore, Maryland, USA, so I’m going to
pick the number 1 data center in New York:

Finally at the bottom of the page click the big green Create
button in order to start your server!

Nephology 216

It will take a minute to launch the server, but once launched
you should receive an email from Digital Ocean with the de-
tails about your new server. Included in this email you should
find the IP address of your server, the default username
(which should be root) and a randomly generated password
that you will need to connect to your server for the first time.
Once you’ve received this email open up a new terminal.

Connecting to the Cloud

We can connect to computers on the internet with the ssh

program, which stands for Secure Shell. The ssh command
provides a command line interface to whichever computer we
point it to. A computer that is connected to the internet has an
address (just like a house has an address) which is specified
by an IP address. The command for connecting to a computer
with ssh generally looks like this:

ssh [username]@[IP address]

Let’s connect to our DigitalOcean server using ssh. Enter
the following command in the terminal substituting the IP
address you received from DigitalOcean for the IP address
I’m using in this example:

Nephology 217

ssh root@159.203.134.88

The authenticity of host '159.203.134.88 (159.\

203.134.88)' can't be established.

ECDSA key fingerprint is SHA256:UhtoIx/3c6/MmA\

IE+H8w5oGE06PsbXdzRRsAUhKtjhs.

Are you sure you want to continue connecting (\

yes/no)?

Type yes and then press Enter.

Warning: Permanently added '159.203.134.88' (E\

CDSA) to the list of known hosts.

root@159.203.134.88's password:

This password should be in the email you received from
DigitalOcean. Copy and paste the password into the terminal,
then press Enter.

You are required to change your password immed\

iately (root enforced)

Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.4.0\

-78-generic x86_64)

##

* Documentation: https://help.ubuntu.com

* Management: https://landscape.canonical\

.com

* Support: https://ubuntu.com/advantage

##

Get cloud support with Ubuntu Advantage Clou\

d Guest:

Nephology 218

http://www.ubuntu.com/business/services/cl\

oud

##

0 packages can be updated.

0 updates are security updates.

##

##

##

The programs included with the Ubuntu system a\

re free software;

the exact distribution terms for each program \

are described in the

individual files in /usr/share/doc/*/copyright.

##

Ubuntu comes with ABSOLUTELY NO WARRANTY, to t\

he extent permitted by

applicable law.

##

Changing password for root.

(current) UNIX password:

We now need to create a new password for this server. First
paste in the old password and press Enter. Then think of a new,
strong password and enter it into the console. Then enter the
new password again to confirm. After entering in the new
password we should have a prompt! Press enter a few times
to make sure that you get the prompt back each time. We’re
in!

Now we have access to all of the Unix commands we would
normally have:

Nephology 219

pwd

/root

In order to disconnect from the server and return to your
machine use logout.

logout

Connection to 159.203.134.88 closed.

To reconnect to the server use ssh again:

ssh root@159.203.134.88

root@159.203.134.88's password:

Enter your password and you should get the prompt back for
your cloud server.

Summary

• ssh connects you to computers that are connected to
the internet. The template for the command to connect
is ssh [username]@[IP address].

• To disconnect from an ssh session use the logout

command.

Nephology 220

Cloud Computing Basics

Moving Files In and Out of the Cloud

So now that we have a cloud computer, what can we do with
it? One thing we can do is store and retrieve files from a cloud
computer. The program scp allows us to copy local files to a
server and it allows us to copy files on a server to our local
computer. First let’s connect to our server so we can create a
file there:

ssh root@159.203.134.88

root@159.203.134.88's password:

(Enter your password)

mkdir textfiles

echo "From the server" > textfiles/server-file.txt

logout

Connection to 159.203.134.88 closed.

Now that we’re back at the prompt on our local machine let’s
try getting server-file.txt from our server. The arguments
for copying files from a server with scp have the following
general structure:

Nephology 221

scp [username]@[IP address]:path/to/file/on/serve\

r path/on/my/computer

This copies the file located on the server at path/to/file/on/server
to a local path at path/on/my/computer. In the same way we
can copy an entire folder from a server using the -r flag:

scp -r [username]@[IP address]:path/to/folder/on/\

server folder/on/my/computer

Let’s try doing this now from our local computer. Enter your
password when asked to do so:

cd

pwd

/Users/sean/

mkdir Cloud

cd Cloud

scp root@159.203.134.88:/root/textfiles/server-fi\

le.txt downloaded.txt

root@159.203.134.88's password:

server-file.txt \

100% 16 1.2KB/s 00:00

Nephology 222

cat downloaded.txt

From the server

It worked! Now let’s try uploading a file to our server. The
arguments for doing this are just the swapped arguments for
downloading a file from a server:

scp path/on/my/computer [username]@[IP address]:p\

ath/to/file/on/server

Let’s create a file and upload it to our server:

echo "from local computer" > to-upload.txt

scp to-upload.txt root@159.203.134.88:/root/textf\

iles/uploaded-file.txt

root@159.203.134.88's password:

to-upload.txt \

100% 20 1.8KB/s 00:00

Now let’s log in to our server and we’ll see if it’s there:

ssh root@159.203.134.88

cat textfiles/uploaded-file.txt

Nephology 223

from local computer

Looks like it worked! Keeping files in the cloud allows you to
work with the same files in the same workspace as long as
you have access to a terminal and ssh.

Talking to Other Servers

There are tons of servers out there on the internet! The way
you’re probably used to talking to a server is through a web
browser, but there are other ways we can talk to servers
on the command line. One of the most popular command
line programs for talking to other servers is curl. The curl

command allows us to send requests and information to other
servers.

One easy task that we can use curl for is downloading files
that are available online. For example, this entire book and
all of the files associated with it are hosted on a server! You
can find the Markdown file for one of the first chapters of this
book here36. To download a file with curl, we simply need to
provide the -O flag and the URL of the file:

curl -O http://website.org/textfile.txt

Let’s try downloading the Markdown file from my website:

curl -O http://seankross.com/the-unix-workbench/0\

1-What-is-Unix.md

36http://seankross.com/the-unix-workbench/01-What-is-Unix.md

http://seankross.com/the-unix-workbench/01-What-is-Unix.md
http://seankross.com/the-unix-workbench/01-What-is-Unix.md

Nephology 224

% Total % Received % Xferd Average Speed\

Time Time Time Current

Dload Upload\

Total Spent Left Speed

100 1198 100 1198 0 0 13681 0 \

--:--:-- --:--:-- --:--:-- 13770

head -n 5 01-What-is-Unix.md

What is Unix?

##

Unix is an operating system and a set of tools\

. The tool we'll be using the

most in this book is a shell, which is a compu\

ter program that provides a

command line interface. You've probably seen a\

command line interface in the

Looks like we got the file! The curl command is also com-
monly used for communicating with APIs. API stands for
application programming interface. APIs are a set of rules
which allow us to communicate with computer programs or
with servers on the web. GitHub has a large API37 which
allows us to find out information about GitHub’s users and
repositories. Let’s use curl to look at what programming
languages are used by some ofmy repositories. Let’s start with
the repository for this book:

37https://developer.github.com/v3/

https://developer.github.com/v3/
https://developer.github.com/v3/

Nephology 225

curl https://api.github.com/repos/seankross/the-u\

nix-workbench/languages

{

"CSS": 2615,

"TeX": 22

}

It looks like most of the repository is dedicated to making
the book website look pretty! Take a look at the URL in the
curl command above, and let’s dissect it a little bit. The
API itself is located at https://api.github.com/. Then each
word in the rest of the url acts as a sort of argument. We’re
interested in repos in this case, specifically a repo belonging
to the username seankross called the-unix-workbench, and
we want to know about which languages are used in that
repo. Let’s take a look at one more of my repositories just to
see how the response can be different:

curl https://api.github.com/repos/seankross/lego/\

languages

{

"R": 4197,

"Shell": 442

}

Use of curl, especially when coupled with using APIs can
become very complicated and much more advanced content
has been written on the subject. Let’s get a little more in depth

Nephology 226

by looking through some of the examples from httpbin.org38.
This website allows us to send requests to it with curl, and it
will return to us a structured version of whatever information
we sent. This is useful for debugging our curl commands.
First let’s send a request which should return our IP address:

curl http://httpbin.org/ip

{

"origin": "159.203.134.88"

}

Looks like we’re getting the response we expect. Before we
go on I should clarify: curl sends HTTP requests. HTTP is
a technology for sending information over a network, and
HTTP powers much of how the internet works. There are
different categories of HTTP requests, and the categories are
often called verbs. When we use curl without any flags we
are sending a GET request (GET is an HTTP verb). A GET
request is a message that says to a server: “Hi, I live at [IP
address]. Would you mind sending some information about
yourself to that IP?” In the case above we asked for our own
IP address, which httpbin.org knew to just send back to us.

Let’s send a general HTTPGET request to http://httpbin.org/get:

curl http://httpbin.org/get

38http://httpbin.org/

http://httpbin.org/
http://httpbin.org/

Nephology 227

{

"args": {},

"headers": {

"Accept": "*/*",

"Connection": "close",

"Host": "httpbin.org",

"User-Agent": "curl/7.47.0"

},

"origin": "159.203.134.88",

"url": "http://httpbin.org/get"

}

The text that we get back from the request specifies four
information groups: args, headers, origin, and url. The
origin shows our own IP address, and url shows where
we sent the request. The headers group shows some inter-
esting information, including the User-Agent which shows
that httpbin.org knows that we sent this request with curl.
Notice that the args group is empty. The args group is short
for arguments, which hints at the fact that we can provide
arguments in an HTTP request, just like arguments we would
use for a function, or the arguments we used in the GitHub
API.

In the general case we can provide arguments to an HTTP
API by putting a question mark (?) after the API’s URL. Let’s
try this out:

curl http://httpbin.org/get?Baltimore

Nephology 228

{

"args": {

"Baltimore": ""

},

"headers": {

"Accept": "*/*",

"Connection": "close",

"Host": "httpbin.org",

"User-Agent": "curl/7.47.0"

},

"origin": "159.203.134.88",

"url": "http://httpbin.org/get?Baltimore"

}

Looks like "Baltimore" showed up in args! For most HTTP
APIs we need to give names to our arguments, unlike most
arguments in Bash. We can specify an argument’s name with
the template [argument name]=[argument value]. Let’s take
a look at a simple example:

curl http://httpbin.org/get?city=Baltimore

{

"args": {

"city": "Baltimore"

},

"headers": {

"Accept": "*/*",

"Connection": "close",

"Host": "httpbin.org",

"User-Agent": "curl/7.47.0"

Nephology 229

},

"origin": "159.203.134.88",

"url": "http://httpbin.org/get?city=Baltimore"

}

Now we can see that in args there’s a correspondence be-
tween city and Baltimore. We can add more named argu-
ments by separating them with an ampersand (&):

curl "http://httpbin.org/get?city=Baltimore&state\

=Maryland"

{

"args": {

"city": "Baltimore",

"state": "Maryland"

},

"headers": {

"Accept": "*/*",

"Connection": "close",

"Host": "httpbin.org",

"User-Agent": "curl/7.47.0"

},

"origin": "159.203.134.88",

"url": "http://httpbin.org/get?city=Baltimore&s\

tate=Maryland"

}

Perhaps you could imagine building a server that accepts
HTTP requests, and sends back different information de-
pending on what arguments are provided (for example, send

Nephology 230

back a weather report given a location). Building these kinds
of servers is an advanced topic that is outside the scope of
this book, but there are lots of resources out there if you’re
interested in building your own HTTP API on a web server.

Automating Tasks

One of the most compelling features about any web server is
that it’s always powered on and always connected to the in-
ternet. This means that we can instruct our server to perform
tasks automatically, without us needing to enter a command
into a shell. One of the most commonly used programs for
executing other programs with a regular frequency is called
cron. Let’s take a look at how to use cron to schedule a
program to be run.

If you’re not already connected to the server use ssh to
connect.

ssh root@159.203.134.88

The cron program is part of a family of programs called
daemons. A daemon is a program that is always running
in the background of our computer. First, let’s see if cron is
running. We can get a list of all running programs with the
ps command while using the -A flag:

ps -A

Nephology 231

PID TTY TIME CMD

1 ? 00:00:13 systemd

2 ? 00:00:00 kthreadd

3 ? 00:00:03 ksoftirqd/0

5 ? 00:00:00 kworker/0:0H

7 ? 00:00:11 rcu_sched

8 ? 00:00:00 rcu_bh

9 ? 00:00:00 migration/0

...

You probably have a huge list of programs in your terminal
now! Instead of sifting through this listing line-by-line, let’s
pipe the output of this command to grep and we’ll look for
cron:

ps -A | grep "cron"

1273 ? 00:00:01 cron

Looks like the cron daemon is running! In order to assign
programs to be executed with cron we need to edit a special
text file called the cron table. Before we edit the cron table
we need to select the default text editor. If you like using nano
(the text editor we’ve been using throughout this book) then
enter select-editor into the console, type in the number that
corresponds to nano (usually 2) and then press enter:

select-editor

Nephology 232

Select an editor. To change later, run 'selec\

t-editor'.

1. /bin/ed

2. /bin/nano <---- easiest

3. /usr/bin/vim.basic

4. /usr/bin/vim.tiny

##

Choose 1-4 [2]:

Now that we’ve chosen a text editor we can edit the cron table
using the command crontab -e (cron table edit) which will
automatically open nano with the appropriate file.

crontab -e

Edit this file to introduce tasks to be run by \

cron.

#

m h dom mon dow command

Let’s go over the layout of the cron table. First you should
notice that any text after a pound sign (#) is a comment, so
it’s not seen by cron (just like bash comments). The cron table
has six columns:

1. Minute (m)
2. Hour (h)
3. Day of Month (dom)
4. Month (mon)
5. Day of Week (dow)

Nephology 233

6. Command to be run (command)

Each column is separated by a single space in the table. The
first five columns allow you to specify when you want a
particular command to be run. Only certain values are valid
in each column:

1. Minute: 00 - 59 (A particular minute in an hour)
2. Hour: 00 - 23 (0 is the midnight hour)
3. Day of Month: 01 - 31 (1 is the first day of the month)
4. Month: 01 - 12 (1 is January)
5. Day of Week 0 - 6 (0 is Sunday)

There are also a few other characters that are valid in the cron
table. The most commonly used character is a star (*) which
represents all of the possible values in a column. So a star in
the Minute column means “run every minute,” and a star in
the Hour column means “run during every hour.” Knowing
this let’s make our first entry in the cron table. If we want
a command to be executed every minute, during every hour,
on every day of the month, during every month, on every
day of the week, then we can put stars in all of the first five
columns, followed by the command that we want to run. In
this case the command that cronwill run everyminute will be
date >> ∼/date-file.txt, which will append the date and
time when the command is executed to a file in our home
directory called date-file.txt. This is what your cron table
should look like before you save and exit from nano:

Nephology 234

Edit this file to introduce tasks to be run by \

cron.

#

m h dom mon dow command

* * * * * date >> ~/date-file.txt

Save and exit nano just like you would for a regular text file
and then wait a little bit! After a minute has gone by use cat
to look at ∼/date-file.txt:

cd

cat date-file.txt

Thu Jun 8 18:50:01 UTC 2017

Look like our entry in the cron table is working! Wait another
minute and then look at the file again:

cat date-file.txt

Thu Jun 8 18:50:01 UTC 2017

Thu Jun 8 18:51:01 UTC 2017

Unless we delete the line that we entered in the cron table, the
output from date will be appended to date-file.txt every
minute.

The single line of bash date >> ∼/date-file.txt is a much
simpler program than we would probably use in a cron table,
though it’s good for illustrating how a cron table works. If

Nephology 235

you want to do more complex tasks with cron it’s better for
cron to execute a bash script that you’ve written in advance.
That way you can just specify bash /path/to/script.sh in
the last column of the table.

Using stars in all columns is the simplest line of a cron table,
so let’s look at some examples of more complex table entries:

m h dom mon dow command

00 * * * * bash /path/to/script.sh # Runs eve\

ry hour at the start of the hour

00 12 * * * bash /path/to/script.sh # Runs eve\

ry day at noon

* 12 * * * bash /path/to/script.sh # Runs eve\

ry minute between 12pm and 12:59pm

00 00 05 * * bash /path/to/script.sh # Runs the\

5th day of every month at midnight

00 00 * 07 * bash /path/to/script.sh # Runs eve\

ry day in the month of July at midnight

00 00 * * 2 bash /path/to/script.sh # Runs eve\

ry Tuesday at midnight

Besides numbers and the star there are a few other characters
that you can use in cron table columns including a hyphen
(-) for specifying ranges and a comma (,) for specifying lists
of items. For example 00-29 in the Minutes column would
specify the first thirty minutes of an hour, while 1,5 in the
Day of Week column would specify Monday and Friday.

Let’s take a look at another example of a cron table that
uses hyphens and ranges so you can get a sense of how each
character works.

Nephology 236

m h dom mon dow command

00-04 * * * * bash /path/to/script.sh # Run\

s every minute for the first five minutes of ever\

y hour

00 00 * * 0,6 bash /path/to/script.sh # Run\

s at midnight every Saturday and Sunday

00 03 01-15 * * bash /path/to/script.sh # Run\

s at 3am for the first fifteen days of every mont\

h

00,30 * * * * bash /path/to/script.sh # Run\

s at the start and middle of every hour

00 00,12 * * * bash /path/to/script.sh # Run\

s every day at midnight and noon

00 * 01-07 01,06 * bash /path/to/script.sh # Run\

s at the start of every hour for the first seven \

days of the months of January and June

A program that is being run by cron is only as powerful as
your imagination can stretch! If you’re familiar with the social
network Twitter39 then you might have come across some
Twitter accounts which create posts automatically like Emoji
Aquarium40, Old Fruit Pictures41, or Endless Screaming42.
Many of these “bot” accounts are powered by cron, which
uses Twitter’s HTTP API to post tweets regularly.

Summary

• scp copies files between a cloud computer and your

39https://twitter.com/
40https://twitter.com/emojiaquarium
41https://twitter.com/pomological
42https://twitter.com/infinite_scream

https://twitter.com/
https://twitter.com/emojiaquarium
https://twitter.com/emojiaquarium
https://twitter.com/pomological
https://twitter.com/infinite_scream
https://twitter.com/
https://twitter.com/emojiaquarium
https://twitter.com/pomological
https://twitter.com/infinite_scream

Nephology 237

personal computer. Use the -r flag in order to copy
directories.

• curl allows you to sendHTTP requests to other servers.
Use the -O flag to download files with curl.

• ps -A lists all of the programs running in the back-
ground of your computer.

• cron allows you to schedule when programs are run.
Use crontab -e in order to edit the cron table.

Exercises

1. Write a bash script that takes a file path as an argument
and copies that file to a designated folder on your
server.

2. Find a file online that changes periodically, then write
a program to download that file every time it changes.

3. Try creating your own Twitter or GitHub bot with the
Twitter API43 or the GitHub API44.

Shutting Down a Server

In order to avoid using more DigitalOcean credits than we
have to or being charged for using the service make sure to
destroy any DigitalOcean droplets that you started. When
you destroy a droplet all files on the droplet are gone forever,
so please be sure that you don’t have any important informa-
tion on a droplet before you destroy it. If there are files you
want to save on your droplet use scp in order to copy them to

43https://dev.twitter.com/rest/public
44https://developer.github.com/v3/

https://dev.twitter.com/rest/public
https://developer.github.com/v3/
https://dev.twitter.com/rest/public
https://developer.github.com/v3/

Nephology 238

your local machine. Let’s walk through destroying a droplet.
Go back to DigitalOcean45 and log in. You should then see a
listing of all of your droplets:

Click on More on the right side of the screen and a menu
should appear. Click Destroy at the bottom of this menu.
Then this screen should appear:

45https://m.do.co/c/530d6cfa2b37

https://m.do.co/c/530d6cfa2b37
https://m.do.co/c/530d6cfa2b37

Nephology 239

Click theDestroy button and then clickConfirm in the menu
that pops up. Your droplet should now be destroyed. If you
have no active droplets then the main droplets page should
look like this:

Nephology 240

Congratulations on your new cloud computing skills!

Start Building
Next Steps

We’ve reached the end of this book, which means that you
now have a formidable foundation in using Unix. Congratu-
lations! As the title of this book suggests Unix serves mostly
as a workbench - a set of tools for building amazing digital
creations. However, what you can create with Unix is usually
not made out of Unix’s constituent parts. You might use a
hammer and saw to build a good birdhouse, but the birdhouse
itself isn’t made out of hammers. Working knowledge of
Unix is best complemented by knowing at least one other
programming language. Here are a few suggestions about
how you can continue your computing and programming
education.

Python46 is an approachable and essential language for any-
one interested in computing. If you don’t have any pro-
gramming experience outside of this book, I very highly
recommend learning Python. My favorite book on the subject
is Learn Python the Hard Way47 by Zed Shaw. Philip Guo’s
Python Tutor48 allows you to visualize how Python is work-
ing under-the-hood, which allows you to develop a better
intuition about the code you’re writing. The pairing of those
two resources is currently the best way to learn how to write

46https://www.python.org/
47https://learnpythonthehardway.org/book/
48http://pythontutor.com/

https://www.python.org/
https://learnpythonthehardway.org/book/
http://pythontutor.com/
https://www.python.org/
https://learnpythonthehardway.org/book/
http://pythontutor.com/

Start Building 242

software outside of formal university or corporate training.
Once you have some Python experience you can try building
your own HTTP API with Flask49.

R50 is a general purpose programming language designed for
folks who are interested in data science, analysis, modeling,
and visualization. R is also fantastic for making digital doc-
uments: this book was created with R! If you want to get
startedwith R I recommend the book R Programming for Data
Science51, the Swirl52 software package, and the interactive R
tutorial website called DataCamp53.

JavaScript54 is the main language that powers the internet
and it forms the backbone of web application programming.
The Mozilla Development Network has wonderful tutorials55

about HTML, CSS, and JavaScript. Usually you use JavaScript
to manipulate HTML and CSS, so learning about all three is
important! I also recommend NodeSchool56 for purely learn-
ing about JavaScript with Unix.

Giving Feedback

Thank you so much for reading this book! If you’d like to
discuss the book or you have any feedback I would love to
hear from you. The best way to contact me is on Twitter57.

49http://flask.pocoo.org/
50https://www.r-project.org/
51https://leanpub.com/rprogramming
52http://swirlstats.com/
53https://www.datacamp.com/
54https://developer.mozilla.org/en-US/docs/Web/JavaScript
55https://developer.mozilla.org/en-US/docs/Web/Tutorials
56https://nodeschool.io/
57https://twitter.com/seankross

http://flask.pocoo.org/
https://www.r-project.org/
https://leanpub.com/rprogramming
https://leanpub.com/rprogramming
http://swirlstats.com/
https://www.datacamp.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/Tutorials
https://nodeschool.io/
https://twitter.com/seankross
http://flask.pocoo.org/
https://www.r-project.org/
https://leanpub.com/rprogramming
http://swirlstats.com/
https://www.datacamp.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/Tutorials
https://nodeschool.io/
https://twitter.com/seankross

Start Building 243

Now that you know how to use Git and GitHub you can
submit changes that you think should be made to this book
including fixing typos and correcting errors. You can find the
repository for this book here58. Fork the repository, and make
your changes to the appropriate .Rmd file (just treat it like a
regularMarkdown file). Add, commit, and push your changes,
then send me a pull request! While you’re on the GitHub if
you wouldn’t mind giving this book’s repository a Star59 I
would really appreciate it so that others can find this book
more easily.

58https://github.com/seankross/the-unix-workbench
59https://github.com/seankross/the-unix-workbench

https://github.com/seankross/the-unix-workbench
https://github.com/seankross/the-unix-workbench
https://github.com/seankross/the-unix-workbench
https://github.com/seankross/the-unix-workbench

