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Preface

Purpose

The purpose of The Electrical Engineering Handbook, 3rd Edition is to provide a ready reference for the

practicing engineer in industry, government, and academia, as well as aid students of engineering. The third

edition has a new look and comprises six volumes including:

Circuits, Signals, and Speech and Image Processing

Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar

Sensors, Nanoscience, Biomedical Engineering, and Instruments

Broadcasting and Optical Communication Technology

Computers, Software Engineering, and Digital Devices

Systems, Controls, Embedded Systems, Energy, and Machines

Each volume is edited by Richard C. Dorf, and is a comprehensive format that encompasses the many

aspects of electrical engineering with articles from internationally recognized contributors. The goal is to

provide the most up-to-date information in the classical fields of circuits, signal processing, electronics,

electromagnetic fields, energy devices, systems, and electrical effects and devices, while covering the emerging

fields of communications, nanotechnology, biometrics, digital devices, computer engineering, systems, and

biomedical engineering. In addition, a complete compendium of information regarding physical, chemical,

and materials data, as well as widely inclusive information on mathematics is included in each volume. Many

articles from this volume and the other five volumes have been completely revised or updated to fit the needs

of today and many new chapters have been added.

The purpose of this volume (Circuits, Signals, and Speech and Image Processing) is to provide a ready

reference to subjects in the fields of electric circuits and components, analysis of circuits, and the use of the

Laplace transform. We also discuss the processing of signals, speech, and images using filters and algorithms.

Here we provide the basic information for understanding these fields. We also provide information about the

emerging fields of text-to-speech synthesis, real-time processing, embedded signal processing, and biometrics.

Organization

The information is organized into three sections. The first two sections encompass 27 chapters and the last

section summarizes the applicable mathematics, symbols, and physical constants.

Most articles include three important and useful categories: defining terms, references, and further

information. Defining terms are key definitions and the first occurrence of each term defined is indicated in

boldface in the text. The definitions of these terms are summarized as a list at the end of each chapter or

article. The references provide a list of useful books and articles for follow-up reading. Finally, further

information provides some general and useful sources of additional information on the topic.

Locating Your Topic

Numerous avenues of access to information are provided. A complete table of contents is presented at the

front of the book. In addition, an individual table of contents precedes each section. Finally, each chapter

begins with its own table of contents. The reader should look over these tables of contents to become familiar



with the structure, organization, and content of the book. For example, see Section II: Signal Processing, then

Chapter 18: Multidimensional Signal Processing, and then Chapter 18.2: Video Signal Processing. This tree-

and-branch table of contents enables the reader to move up the tree to locate information on the topic of

interest.

Two indexes have been compiled to provide multiple means of accessing information: subject index and

index of contributing authors. The subject index can also be used to locate key definitions. The page on which

the definition appears for each key (defining) term is clearly identified in the subject index.

The Electrical Engineering Handbook, 3rd Edition is designed to provide answers to most inquiries and direct

the inquirer to further sources and references. We hope that this handbook will be referred to often and that

informational requirements will be satisfied effectively.
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1.1 Resistors.............................................................................. 1-1
Resistor Characteristics * Resistor Types
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1.1 Resistors

Michael Pecht and Pradeep Lall

The resistor is an electrical device whose primary function is to introduce resistance to the flow of electric

current. The magnitude of opposition to the flow of current is called the resistance of the resistor. A larger

resistance value indicates a greater opposition to current flow.

The resistance is measured in ohms. An ohm is the resistance that arises when a current of one ampere is

passed through a resistor subjected to one volt across its terminals.

The various uses of resistors include setting biases, controlling gain, fixing time constants, matching and

loading circuits, voltage division, and heat generation. The following sections discuss resistor characteristics

and various resistor types.

Resistor Characteristics

Voltage and Current Characteristics of Resistors

The resistance of a resistor is directly proportional to the resistivity of the material and the length of the

resistor and inversely proportional to the cross-sectional area perpendicular to the direction of current flow.

The resistance R of a resistor is given by

R ¼ rl
A

ð1:1Þ

where r is the resistivity of the resistor material (O·cm), l is the length of the resistor along direction of current
flow (cm), and A is the cross-sectional area perpendicular to current flow (cm2) (Figure 1.1). Resistivity is an

inherent property of materials. Good resistor materials typically have resistivities between 2 · 10 6 and

200 · 10 6 O·cm.

1-1



The resistance can also be defined in terms of sheet resistivity.

If the sheet resistivity is used, a standard sheet thickness is assumed

and factored into resistivity. Typically, resistors are rectangular in

shape; therefore the length l divided by the width w gives the number

of squares within the resistor (Figure 1.2). The number of squares

multiplied by the resistivity is the resistance.

Rsheet ¼ rsheet
l

W
ð1:2Þ

where rsheet is the sheet resistivity (O/square), l is the length of resistor (cm), w is the width of the resistor

(cm), and Rsheet is the sheet resistance (O).
The resistance of a resistor can be defined in terms of the voltage drop across the resistor and current

through the resistor related by Ohm’s law:

R ¼ V

I
ð1:3Þ

where R is the resistance (O), V is the voltage across the resistor (V), and I is the current through the resistor

(A). Whenever a current is passed through a resistor, a voltage is dropped across the ends of the resistor.

Figure 1.3 depicts the symbol of the resistor with the Ohm’s law relation.

All resistors dissipate power when a voltage is applied. The power dissipated by the resistor is represented by

P ¼ V2

R
ð1:4Þ

where P is the power dissipated (W), V is the voltage across the resistor (V), and R is the resistance (O). An
ideal resistor dissipates electric energy without storing electric or magnetic energy.

Resistor Networks

Resistors may be joined to form networks. If resistors are joined in series, the effective resistance (RT) is the

sum of the individual resistances (Figure 1.4).

RT ¼
Xn
i¼1

Ri ð1:5Þ

FIGURE 1.1 Resistance of a rectangular

cross-section resistor with cross-sectional

area A and length L.

FIGURE 1.2 Number of squares in rectangular resistor.

FIGURE 1.3 A resistor

with resistance R having a

current I flowing through it

will have a voltage drop of

IR across it.
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If resistors are joined in parallel, the effective resistance (RT) is the reciprocal of the sum of the reciprocals of

individual resistances (Figure 1.5).

1

RT
¼

Xn
i¼1

1

Ri
ð1:6Þ

Temperature Coefficient of Electrical Resistance

The resistance for most resistors changes with temperature. The

temperature coefficient of electrical resistance is the change in electrical

resistance of a resistor per unit change in temperature. The temperature

coefficient of resistance is measured in O/–C. The temperature

coefficient of resistors may be either positive or negative. A positive

temperature coefficient denotes a rise in resistance with a rise in

temperature; a negative temperature coefficient of resistance denotes a

decrease in resistance with a rise in temperature. Pure metals typically

have a positive temperature coefficient of resistance, while some metal

alloys such as constantin and manganin have a zero temperature

coefficient of resistance. Carbon and graphite mixed with binders

usually exhibit negative temperature coefficients, although certain

choices of binders andprocess variationsmay yield positive temperature

coefficients. The temperature coefficient of resistance is given by

RðT2Þ ¼ RðT1Þ½1þ aT1ðT2 T1Þ ð1:7Þ
where aT1 is the temperature coefficient of electrical resistance at reference temperature T1, R(T2) is the
resistance at temperature T2 (O), and R(T1) is the resistance at temperature T1 (O). The reference temperature
is usually taken to be 20–C. Because the variation in resistance between any two temperatures is usually not
linear as predicted by Equation (1.7), common practice is to apply the equation between temperature

increments and then to plot the resistance change versus temperature for a number of incremental

temperatures.

High-Frequency Effects

Resistors show a change in their resistance value when subjected to

ac voltages. The change in resistance with voltage frequency is

known as the Boella effect. The effect occurs because all resistors

have some inductance and capacitance along with the resistive

component and thus can be approximated by an equivalent circuit

shown in Figure 1.6. Even though the definition of useful frequency

range is application dependent, typically, the useful range of the

resistor is the highest frequency at which the impedance differs

from the resistance by more than the tolerance of the resistor.

The frequency effect on resistance varies with the resistor construction. Wire-wound resistors typically exhibit

an increase in their impedance with frequency. In composition resistors the capacitances are formed by the

many conducting particles which are held in contact by a dielectric binder. The ac impedance for film resistors

remains constant until 100 MHz (1 MHz¼ 106 Hz) and then decreases at higher frequencies (Figure 1.7).

FIGURE 1.4 Resistors connected in series.

FIGURE 1.5 Resistors connected in

parallel.

FIGURE 1.6 Equilavent circuit for a

resistor.
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For film resistors, the decrease in dc resistance at higher frequencies decreases with increase in resistance. Film

resistors have the most stable high-frequency performance.

The smaller the diameter of the resistor the better is its frequency response. Most high-frequency resistors

have a length to diameter ratio between 4:1 and 10:1. Dielectric losses are kept to a minimum by proper choice

of base material.

Voltage Coefficient of Resistance

Resistance is not always independent of the applied voltage. The voltage coefficient of resistance is the change

in resistance per unit change in voltage, expressed as a percentage of the resistance at 10% of rated voltage. The

voltage coefficient is given by the relationship

voltage coefficient ¼ 100ðR1 R2Þ
R2ðV1 V2Þ ð1:8Þ

where R1 is the resistance at the rated voltage V1, and R2 is the resistance at 10% of rated voltage V2.

Noise

Resistors exhibit electrical noise in the form of small ac voltage fluctuations when dc voltage is applied. Noise

in a resistor is a function of the applied voltage, physical dimensions, and materials. The total noise is a sum of

Johnson noise, current flow noise, noise due to cracked bodies, and loose end caps and leads. For variable

resistors the noise can also be caused by the jumping of a moving contact over turns and by an imperfect

electrical path between the contact and resistance element.

The Johnson noise is temperature-dependent thermal noise (Figure 1.8). Thermal noise is also called ‘‘white

noise’’ because the noise level is the same at all frequencies. The magnitude of thermal noise, ERMS (V), is

dependent on the resistance value and the temperature of the resistance due to thermal agitation:

ERMS ¼
ffiffiffiffiffiffiffiffiffiffi
4kRTDf

p ð1:9Þ

where ERMS is the root-mean-square value of the noise voltage (V), R is the resistance (O), K is the Boltzmann
constant (1.38 · 10 23 J/K), T is the temperature (K), and Df is the bandwidth (Hz) over which the noise
energy is measured.

Figure 1.8 shows the variation in current noise versus voltage frequency. Current noise varies inversely with

frequency and is a function of the current flowing through the resistor and the value of the resistor.

FIGURE 1.7 Typical graph of impedance as a percentage of dc resistance versus frequency for film resistors.
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The magnitude of current noise is directly proportional to the square root of current. The current noise

magnitude is usually expressed by a noise index given as the ratio of the root-mean-square current noise

voltage (ERMS) over one decade bandwidth to the average voltage caused by a specified constant current passed

through the resistor at a specified hot-spot temperature (Phillips, 1991).

N:I: ¼ 20 log10
noise voltage

dc voltage
ð1:10Þ

ERMS ¼ Vdc · 10
N:I:=20

ffiffiffiffiffiffiffiffiffiffi
log

f2
f1

s
ð1:11Þ

where N.I. is the noise index, Vdc is the dc voltage drop across the resistor, and f1 and f2 represent the frequency

range over which the noise is being computed. Units of noise index are mV/V. At higher frequencies, the
current noise becomes less dominant compared to Johnson noise.

Precision film resistors have extremely low noise. Composition resistors show some degree of noise due to

internal electrical contacts between the conducting particles held together with the binder. Wire-wound

resistors are essentially free of electrical noise unless resistor terminations are faulty.

Power Rating and Derating Curves

Resistors must be operated within specified temperature limits to avoid permanent damage to the materials.

The temperature limit is defined in terms of the maximum power, called the power rating, and the derating

curve. The power rating of a resistor is the maximum power in watts which the resistor can dissipate. The

maximum power rating is a function of resistor material, maximum voltage rating, resistor dimensions, and

maximum allowable hot-spot temperature. The maximum hot-spot temperature is the temperature of the

hottest part on the resistor when dissipating full-rated power at rated ambient temperature.

The maximum allowable power rating as a function of the ambient temperature is given by the derating

curve. Figure 1.9 shows a typical power rating curve for a resistor. The derating curve is usually linearly drawn

from the full-rated load temperature to the maximum allowable no-load temperature. A resistor may be

operated at ambient temperatures above the maximum full-load ambient temperature if operating at lower

than full-rated power capacity. The maximum allowable no-load temperature is also the maximum storage

temperature for the resistor.

FIGURE 1.8 The total resistor noise is the sum of current noise and thermal noise. The current noise approaches the

thermal noise at higher frequencies. (Source: Phillips Components, Discrete Products Division, 1990–91 Resistor/Capacitor

Data Book, 1991. With permission.)
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Voltage Rating of Resistors

The maximum voltage that may be applied to the resistor is called the voltage rating and is related to the

power rating by

V ¼ ffiffiffiffi
PR

p ð1:12Þ
where V is the voltage rating (V), P is the power rating (W), and R is the resistance (O). For a given value of
voltage and power rating, a critical value of resistance can be calculated. For values of resistance below the

critical value, the maximum voltage is never reached; for values of resistance above the critical value, the power

dissipated is lower than the rated power (Figure 1.10).

Color Coding of Resistors

Resistors are generally identified by color coding or direct digital marking. The color code, given in Table 1.1,

is commonly used in composition resistors and film resistors, and essentially consists of four bands of different

colors. The first band is the most significant figure, the second band is the second significant figure, the third

band is the multiplier or the number of zeros that have to be added after the first two significant figures, and

the fourth band is the tolerance on the resistance value. If the fourth band is not present, the resistor tolerance

is the standard 20% above and below the rated value. When the color code is used on fixed wire-wound

resistors, the first band is applied in double width.

FIGURE 1.9 Typical derating curve for resistors.

FIGURE 1.10 Relationship of applied voltage and power above and below the critical value of resistance.
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Resistor Types

Resistors can be broadly categorized as fixed, variable, and special-purpose. Each of these resistor types is

discussed in detail with typical ranges of their characteristics.

Fixed Resistors

The fixed resistors are those whose value cannot be varied after manufacture. Fixed resistors are classified into

composition resistors, wire-wound resistors, and metal-film resistors. Table 1.2 outlines the characteristics of

some typical fixed resistors.

Wire-Wound Resistors. Wire-wound resistors are made by winding wire of nickel–chromium alloy on a

ceramic tube covering with a vitreous coating. The spiral winding has inductive and capacitive characteristics

that make it unsuitable for operation above 50 kHz. The frequency limit can be raised by noninductive

winding so that the magnetic fields produced by the two parts of the winding cancel.

Composition Resistors. Composition resistors are composed of carbon particles mixed with a binder. This

mixture is molded into a cylindrical shape and hardened by baking. Leads are attached axially to each end, and

the assembly is encapsulated in a protective encapsulation coating. Color bands on the outer surface indicate

the resistance value and tolerance. Composition resistors are economical and exhibit low noise levels for

resistances above 1 MO. Composition resistors are usually rated for temperatures in the neighborhood of

70–C for power ranging from 1/8 to 2 W. Composition resistors have end-to-end shunted capacitance that

may be noticed at frequencies in the neighborhood of 100 kHz, especially for resistance values above 0.3 MO.

Metal-Film Resistors. Metal-film resistors are commonly made of nichrome, tin-oxide, or tantalum nitride,

either hermetically sealed or using molded-phenolic cases. Metal-film resistors are not as stable as the

TABLE 1.1 Color Code Table for Resistors

Color First Band Second Band Third Band

Fourth Band

Tolerance, %

Black 0 0 1

Brown 1 1 10

Red 2 2 100

Orange 3 3 1,000

Yellow 4 4 10,000

Green 5 5 100,000

Blue 6 6 1,000,000

Violet 7 7 10,000,000

Gray 8 8 100,000,000

White 9 9 1,000,000,000

Gold 0.1 5%

Silver 0.01 10%

No band 20%

Blanks in the table represent situations which do not exist in the color code.

TABLE 1.2 Characteristics of Typical Fixed Resistors

Resistor Types Resistance Range Watt Range

Operating

Temperature Range a, ppm/–C

Wire-wound resistor

Precision 0.1 to 1.2 MO 1/8 to 1/4 55 to 145 10

Power 0.1 to 180 kO 1 to 210 55 to 275 260

Metal-film resistor

Precision 1 to 250 MO 1/20 to 1 55 to 125 50–100

Power 5 to 100 kO 1 to 5 55 to 155 20–100

Composition resistor

General purpose 2.7 to 100 MO 1/8 to 2 55 to 130 1500
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wirewound resistors. Depending on the application, fixed resistors are manufactured as precision resistors,

semiprecision resistors, standard general-purpose resistors, or power resistors. Precision resistors have low

voltage and power coefficients, excellent temperature and time stabilities, low noise, and very low reactance.

These resistors are available in metal-film or wire constructions and are typically designed for circuits having

very close resistance tolerances on values. Semiprecision resistors are smaller than precision resistors and are

primarily used for current-limiting or voltage-dropping functions in circuit applications. Semiprecision

resistors have long-term temperature stability. General-purpose resistors are used in circuits that do not require

tight resistance tolerances or long-term stability. For general-purpose resistors, initial resistance variationmay be

in the neighborhood of 5% and the variation in resistance under full-rated power may approach 20%. Typically,

general-purpose resistors have a high coefficient of resistance and high noise levels. Power resistors are used for

power supplies, control circuits, and voltage dividers where operational stability of 5% is acceptable. Power

resistors are available in wire-wound and film constructions. Film-type power resistors have the advantage of

stability at high frequencies and have higher resistance values than wire-wound resistors for a given size.

Variable Resistors

Potentiometers. The potentiometer is a special form of variable resistor with three terminals. Two terminals

are connected to the opposite sides of the resistive element, and the third connects to a sliding contact that can

be adjusted as a voltage divider.

Potentiometers are usually circular in form with the movable contact attached to a shaft that rotates.

Potentiometers are manufactured as carbon composition, metallic film, and wire-wound resistors available in

single-turn or multiturn units. The movable contact does not go all the way toward the end of the resistive

element, and a small resistance called the hop-off resistance is present to prevent accidental burning of the

resistive element.

Rheostat. The rheostat is a current-setting device in which one terminal is connected to the resistive element

and the second terminal is connected to a movable contact to place a selected section of the resistive element

into the circuit. Typically, rheostats are wire-wound resistors used as speed controls for motors, ovens, and

heater controls and in applications where adjustments on the voltage and current levels are required, such as

voltage dividers and bleeder circuits.

Special-Purpose Resistors

Integrated Circuit Resistors. Integrated circuit resistors are classified into two general categories: semicon-

ductor resistors and deposited film resistors. Semiconductor resistors use the bulk resistivity of doped semi-

conductor regions to obtain the desired resistance value. Deposited film resistors are formed by depositing

resistance films on an insulating substrate which are etched and patterned to form the desired resistive

network. Depending on the thickness and dimensions of the deposited films, the resistors are classified into

thick-film and thin-film resistors.

Semiconductor resistors can be divided into four types: diffused, bulk, pinched, and ion-implanted.

Table 1.3 shows some typical resistor properties for semiconductor resistors. Diffused semiconductor resistors

use resistivity of the diffused region in the semiconductor substrate to introduce a resistance in the circuit.

Both n-type and p-type diffusions are used to form the diffused resistor.

A bulk resistor uses the bulk resistivity of the semiconductor to introduce a resistance into the circuit.

Mathematically the sheet resistance of a bulk resistor is given by

Rsheet ¼ re
d

ð1:13Þ

where Rsheet is the sheet resistance in (O/square), re is the sheet resistivity (O/square), and d is the depth of the
n-type epitaxial layer.

Pinched resistors are formed by reducing the effective cross-sectional area of diffused resistors. The reduced

cross section of the diffused length results in extremely high sheet resistivities from ordinary diffused resistors.
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Ion-implanted resistors are formed by implanting ions on the semiconductor surface by bombarding the

silicon lattice with high-energy ions. The implanted ions lie in a very shallow layer along the surface (0.1 to

0.8 mm). For similar thicknesses ion-implanted resistors yield sheet resistivities 20 times greater than diffused
resistors. Table 1.3 shows typical properties of diffused, bulk, pinched, and ion-implanted resistors. Typical

sheet resistance values range from 80 to 250 O/square.

Varistors. Varistors are voltage-dependent resistors that show a high degree of nonlinearity between their

resistance value and applied voltage. They are composed of a nonhomogeneous material that provides

a rectifying action. Varistors are used for protection of electronic circuits, semiconductor components,

collectors of motors, and relay contacts against overvoltage.

The relationship between the voltage and current of a varistor is given by

V ¼ kIb ð1:14Þ
where V is the voltage (V), I is the current (A), and k and b are constants that depend on the materials and
manufacturing process. The electrical characteristics of a varistor are specified by its b and k values.
Varistors in Series. The resultant k value of n varistors connected in series is nk. This can be derived by

considering n varistors connected in series and a voltage nV applied across the ends. The current through each

varistor remains the same as for V volts over one varistor. Mathematically, the voltage and current are

expressed as

nV ¼ k1I
b ð1:15Þ

Equating the expressions (1.14) and (1.15), the equivalent constant k1 for the series combination of varistors is

given as

k1 ¼ nk ð1:16Þ
Varistors in Parallel. The equivalent k value for a parallel combination of varistors can be obtained by

connecting n varistors in parallel and applying a voltage V across the terminals. The current through the

varistors will still be n times the current through a single varistor with a voltage V across it. Mathematically the

current and voltage are related as

V ¼ k2ðnIÞb ð1:17Þ

TABLE 1.3 Typical Characteristics of Integrated Circuit Resistors

Resistor Type

Sheet Resistivity

(per square)

Temperature

Coefficient

(ppm/–C)

Semiconductor

Diffused 0.8 to 260 O 1100 to 2000

Bulk 0.003 to 10 kO 2900 to 5000

Pinched 0.001 to 10 kO 3000 to 6000

Ion-implanted 0.5 to 20 kO 100 to 1300

Deposited resistors

Thin-film

Tantalum 0.01 to 1 kO 7100

SnO2 0.08 to 4 kO 1500 to 0

Ni–Cr 40 to 450 O 7100

Cermet (Cr–SiO) 0.03 to 2.5 kO 7150

Thick-film

Ruthenium–silver 10 O to 10 MO 7200

Palladium–silver 0.01 to 100 kO 500 to 150
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From Equation (1.14) and Equation (1.17) the equivalent constant k2 for the series combination of varistors is

given as

k2 ¼ k

nb
ð1:18Þ

Thermistors. Thermistors are resistors that change their resistance exponentially with changes in temperature.

If the resistance decreases with increase in temperature, the resistor is called a negative temperature coefficient

(NTC) resistor. If the resistance increases with temperature, the resistor is called a positive temperature

coefficient (PTC) resistor.

NTC thermistors are ceramic semiconductors made by sintering mixtures of heavy metal oxides such as

manganese, nickel, cobalt, copper, and iron. The resistance temperature relationship for NTC thermistors is

RT ¼ AeB=T ð1:19Þ
where T is temperature (K), RT is the resistance (O), and A, B are constants whose values are determined by
conducting experiments at two temperatures and solving the equations simultaneously.

PTC thermistors are prepared from BaTiO3 or solid solutions of PbTiO3 or SrTiO3. The resistance

temperature relationship for PTC thermistors is

RT ¼ Aþ CeBT ð1:20Þ
where T is temperature (K), RT is the resistance (O), and A, B are constants determined by conducting

experiments at two temperatures and solving the equations simultaneously. Positive thermistors have a PTC

only between certain temperature ranges. Outside this range the temperature is either zero or negative.

Typically, the absolute value of the temperature coefficient of resistance for PTC resistors is much higher than

for NTC resistors.

Defining Terms

Doping: The intrinsic carrier concentration of semiconductors (e.g., Si) is too low to allow controlled

charge transport. For this reason some impurities called dopants are purposely added to the

semiconductor. The process of adding dopants is called doping. Dopants may belong to group IIIA (e.g.,

boron) or group VA (e.g., phosphorus) in the periodic table. If the elements belong to the group IIIA,

the resulting semiconductor is called a p-type semiconductor. On the other hand, if the elements belong

to the group VA, the resulting semiconductor is called an n-type semiconductor.

Epitaxial layer: Epitaxy refers to processes used to grow a thin crystalline layer on a crystalline substrate. In

the epitaxial process the wafer acts as a seed crystal. The layer grown by this process is called an epitaxial

layer.

Resistivity: The resistance of a conductor with unit length and unit cross-sectional area.

Temperature coefficient of resistance: The change in electrical resistance of a resistor per unit change in

temperature.

Time stability: The degree to which the initial value of resistance is maintained to a stated degree of

certainty under stated conditions of use over a stated period of time. Time stability is usually expressed

as a percent or parts per million change in resistance per 1000 h of continuous use.

Voltage coefficient of resistance: The change in resistance per unit change in voltage, expressed as a

percentage of the resistance at 10% of rated voltage.

Voltage drop: The difference in potential between the two ends of the resistor measured in the direction of

flow of current. The voltage drop is V¼ IR, where V is the voltage across the resistor, I is the current

through the resistor, and R is the resistance.

Voltage rating: The maximum voltage that may be applied to the resistor.
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1.2 Capacitors and Inductors

Glen Ballou

Capacitors

If a potential difference is found between two points, an electric field exists that is the result of the separation

of unlike charges. The strength of the field will depend on the amount the charges have been separated.

Capacitance is the concept of energy storage in an electric field and is restricted to the area, shape, and

spacing of the capacitor plates and the property of the material separating them.

When electrical current flows into a capacitor, a force is established between two parallel plates separated by

a dielectric. This energy is stored and remains even after the input is removed. By connecting a conductor

(a resistor, hard wire, or even air) across the capacitor, the charged capacitor can regain electron balance,

that is, discharge its stored energy.

The value of a parallel-plate capacitor can be found with the equation

C ¼ xE½ðN 1ÞA
d

· 10 13 ð1:21Þ

where C¼ capacitance, F; E¼ dielectric constant of insulation; d¼ spacing between plates; N¼ number of

plates; A¼ area of plates; and x¼ 0.0885 when A and d are in centimeters, and x¼ 0.225 when A and d are in

inches.

The work necessary to transport a unit charge from one plate to the other is

e ¼ kg ð1:22Þ
where e¼ volts expressing energy per unit charge, g¼ coulombs of charge already transported, and

k¼ proportionality factor between work necessary to carry a unit charge between the two plates and charge

already transported. It is equal to 1/C, where C is the capacitance, F.

The value of a capacitor can now be calculated from the equation

C ¼ q

e
ð1:23Þ
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where q¼ charge (C) and e is found with Equation (1.22).

The energy stored in a capacitor is

W ¼ CV2

2
ð1:24Þ

whereW¼energy, J; C¼ capacitance, F; and V¼applied voltage, V.
The dielectric constant of a material determines the electrostatic

energy which may be stored in that material per unit volume for a

given voltage. The value of the dielectric constant expresses the

ratio of a capacitor in a vacuum to one using a given dielectric.

The dielectric of air is 1, the reference unit employed for expressing

the dielectric constant. As the dielectric constant is increased or

decreased, the capacitance will increase or decrease, respectively.

Table 1.4 lists the dielectric constants of various materials.

The dielectric constant of most materials is affected by both

temperature and frequency, except for quartz, Styrofoam, and

Teflon, whose dielectric constants remain essentially constant.

The equation for calculating the force of attraction between two

plates is

F ¼ AV2

kð1504SÞ2 ð1:25Þ

where F¼ attraction force, dyn; A¼ area of one plate, cm2; V¼ potential energy difference, V; k¼ dielectric

coefficient; and S¼ separation between plates, cm.

The Q for a capacitor when the resistance and capacitance is in series is

Q ¼ 1

2pfRC
ð1:26Þ

where Q¼ ratio expressing the factor of merit; f¼ frequency, Hz; R¼ resistance, O; and C¼ capacitance, F.

When capacitors are connected in series, the total capacitance is

CT ¼ 1

1=C1 þ 1=C2 þ þ 1=Cn
ð1:27Þ

and is always less than the value of the smallest capacitor.

When capacitors are connected in parallel, the total capacitance is

CT ¼ C1 þ C2 þ þ Cn ð1:28Þ

and is always larger than the largest capacitor.

When a voltage is applied across a group of capacitors connected in series, the voltage drop across the

combination is equal to the applied voltage. The drop across each individual capacitor is inversely

proportional to its capacitance:

VC ¼ VACX
CT

ð1:29Þ

TABLE 1.4 Comparison of Capacitor

Dielectric Constants

Dielectric

K

(Dielectric Constant)

Air or vacuum 1.0

Paper 2.0–6.0

Plastic 2.1–6.0

Mineral oil 2.2–2.3

Silicone oil 2.7–2.8

Quartz 3.8–4.4

Glass 4.8–8.0

Porcelain 5.1–5.9

Mica 5.4–8.7

Aluminum oxide 8.4

Tantalum pentoxide 26

Ceramic 12–400,000

Source: G. Ballou, Handbook for Sound
Engineers, The New Audio Cyclopedia, Carmel,
Ind.: Macmillan Computer Publishing Com-
pany, 1991. With permission.
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where VC¼ voltage across the individual capacitor in the series (C1, C2,. . .,Cn), V; VA¼ applied voltage, V;

CT¼ total capacitance of the series combination, F; and CX¼ capacitance of individual capacitor under

consideration, F.

In an ac circuit, the capacitive reactance, or the impedance, of the capacitor is

XC ¼ 1

2pfC
ð1:30Þ

where XC¼ capacitive reactance, O; f¼ frequency, Hz; and C¼ capacitance, F. The current will lead the voltage

by 90– in a circuit with a pure capacitor.
When a dc voltage is connected across a capacitor, a time t is required to charge the capacitor to the applied

voltage. This is called a time constant and is calculated with the equation

t ¼ RC ð1:31Þ

where t¼ time, sec; R¼ resistance, O; and C¼ capacitance, F.

In a circuit consisting of pure resistance and capacitance, the time constant t is defined as the time required

to charge the capacitor to 63.2% of the applied voltage.

During the next time constant, the capacitor charges to 63.2% of the remaining difference of full value, or to

86.5% of the full value. The charge on a capacitor can never actually reach 100% but is considered to be 100%

after five time constants. When the voltage is removed, the capacitor discharges to 63.2% of the full value.

Capacitance is expressed in microfarads (mF, or 10 6 F) or picofarads (pF, or 10 12 F) with a stated accuracy

or tolerance. Tolerance may also be stated as GMV (guaranteed minimum value), sometimes referred to as

MRV (minimum rated value).

All capacitors have a maximum working voltage that must not be exceeded and is a combination of the dc

value plus the peak ac value which may be applied during operation.

Quality Factor (Q)

Quality factor is the ratio of the capacitor’s reactance to its resistance at a specified frequency and is found by

the equation

Q ¼ 1

2pfCR
¼ 1

PF
ð1:32Þ

where Q¼ quality factor; f¼ frequency, Hz; C¼ value of capacitance, F; R¼ internal resistance, O; and
PF¼ power factor.

Power Factor (PF)

Power factor is the preferred measurement in describing capacitive losses in ac circuits. It is the fraction of

input volt-amperes (or power) dissipated in the capacitor dielectric and is virtually independent of the

capacitance, applied voltage, and frequency.

Equivalent Series Resistance (ESR)

Equivalent series resistance is expressed in ohms or milliohms (O, mO) and is derived from lead resistance,

termination losses, and dissipation in the dielectric material.

Equivalent Series Inductance (ESL)

The equivalent series inductance can be useful or detrimental. It reduces high-frequency performance; however,

it can be used in conjunction with the internal capacitance to form a resonant circuit.
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Dissipation Factor (DF)

The dissipation factor in percentage is the ratio of the effective series resistance of a capacitor to its reactance

at a specified frequency. It is the reciprocal of quality factor (Q) and an indication of power loss within the

capacitor. It should be as low as possible.

Insulation Resistance

Insulation resistance is the resistance of the dielectric material and determines the time a capacitor, once

charged, will hold its charge. A discharged capacitor has a low insulation resistance; however once charged to

its rated value, it increases to megohms. The leakage in electrolytic capacitors should not exceed

IL ¼ 0:04C þ 0:30 ð1:33Þ
where IL¼ leakage current, mA, and C¼ capacitance, mF.

Dielectric Absorption (DA)

The dielectric absorption is a reluctance of the dielectric to give up stored electrons when the capacitor is

discharged. This is often called ‘‘memory’’ because if a capacitor is discharged through a resistance and the

resistance is removed, the electrons that remained in the dielectric will reconvene on the electrode, causing a

voltage to appear across the capacitor. DA is tested by charging the capacitor for 5 min, discharging it for 5 sec,

then having an open circuit for 1 min after which the recovery voltage is read. The percentage of DA is defined

as the ratio of recovery to charging voltage · 100.

Types of Capacitors

Capacitors are used to filter, couple, tune, block dc, pass ac, bypass, shift phase, compensate, feed through,

isolate, store energy, suppress noise, and start motors. They must also be small, lightweight, reliable, and

withstand adverse conditions.

Capacitors are grouped according to their dielectric material and mechanical configuration.

Ceramic Capacitors

Ceramic capacitors are used most often for bypass and coupling applications (Figure 1.11). Ceramic capacitors

can be produced with a variety of K values (dielectric constant). A high K value translates to small size and less

stability. High-K capacitors with a dielectric constant .3000 are physically small and have values between

0.001 to several microfarads.

FIGURE 1.11 Monolythic1 multilayer ceramic capacitors. (Courtesy of Sprague Electric Company.)
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Good temperature stability requires capacitors to have a K value between 10 and 200. If high Q is also

required, the capacitor will be physically larger. Ceramic capacitors with a zero temperature change are called

negative-positive-zero (NPO) and come in a capacitance range of 1.0 pF to 0.033 mF.
An N750 temperature-compensated capacitor is used when accurate capacitance is required over a large

temperature range. The 750 indicates a 750-ppm decrease in capacitance with a 1–C increase in temperature

(750 ppm/–C). This equates to a 1.5% decrease in capacitance for a 20–C temperature increase. N750

capacitors come in values between 4.0 and 680 pF.

Film Capacitors

Film capacitors consist of alternate layers of metal foil and one or more layers of a flexible plastic insulating

material (dielectric) in ribbon form rolled and encapsulated (see Figure 1.12).

Mica Capacitors

Mica capacitors have small capacitance values and are usually used in high-frequency circuits. They are

constructed as alternate layers of metal foil and mica insulation, which are stacked and encapsulated, or are

silvered mica, where a silver electrode is screened on the mica insulators.

Paper-Foil-Filled Capacitors

Paper-foil-filled capacitors are often used as motor capacitors and are rated at 60 Hz. They are made of alternate

layers of aluminum and paper saturated with oil that are rolled together. The assembly is mounted in an oil-

filled, hermetically sealed metal case.

Electrolytic Capacitors

Electrolytic capacitors provide high capacitance in a tolerable size; however, they do have drawbacks. Low

temperatures reduce performance, while high temperatures dry them out. The electrolytes themselves can leak

and corrode the equipment. Repeated surges above the rated working voltage, excessive ripple currents, and

high operating temperature reduce performance and shorten capacitor life.

Electrolytic capacitors are manufactured by an electrochemical formation of an oxide film on a metal

surface. The metal on which the oxide film is formed serves as the anode or positive terminal of the capacitor;

the oxide film is the dielectric, and the cathode or negative terminal is either a conducting liquid or a gel.

The equivalent circuit of an electrolytic capacitor is shown in Figure 1.13, where A and B are the capacitor

terminals, C is the effective capacitance, and L is the self-inductance of the capacitor caused by terminals,

electrodes, and geometry.

FIGURE 1.12 Film-wrapped film capacitors. (Courtesy of Sprague Electric Company.)

1-15Passive Components



The shunt resistance (insulation resistance) Rs accounts for the

dc leakage current. Heat is generated in the ESR from ripple

current and in the shunt resistance by voltage. The ESR is due to

the spacer–electrolyte–oxide system and varies only slightly except

at low temperature, where it increases greatly.

The impedance of a capacitor (Figure 1.14) is frequency-

dependent. The initial downward slope is caused by the capacitive

reactance XC. The trough (lowest impedance) is almost totally resistive, and the upward slope is due to the

capacitor’s self-inductance XL. An ESR plot would show an ESR decrease to about 5–10 kHz, remaining

relatively constant thereafter.

Leakage current is the direct current that passes through a capacitor when a correctly polarized dc voltage is

applied to its terminals. It is proportional to temperature, becoming increasingly important at elevated

ambient temperatures. Leakage current decreases slowly after voltage is applied, reaching steady-state

conditions in about 10 min.

If a capacitor is connected with reverse polarity, the oxide film is forward-biased, offering very little

resistance to current flow. This causes overheating and self-destruction of the capacitor.

The total heat generated within a capacitor is the sum of the heat created by the Ileakage · Vapplied and the I
2R

losses in the ESR.

The ac ripple current rating is very important in filter applications because excessive current produces

temperature rise, shortening capacitor life. The maximum permissible rms ripple current is limited by the

internal temperature and the rate of heat dissipation from the capacitor. Lower ESR and longer enclosures

increase the ripple current rating.

Capacitor life expectancy is doubled for each 10–C decrease in operating temperature, so a capacitor

operating at room temperature will have a life expectancy 64 times that of the same capacitor operating at

85–C (185–F).
The surge voltage specification of a capacitor determines its ability to withstand high transient voltages that

generally occur during the starting up period of equipment. Standard tests generally specify a short on and

long off period for an interval of 24 h or more, and the allowable surge voltage levels are generally 10% above

the rated voltage of the capacitor.

Figure 1.15 shows how temperature, frequency, time, and applied voltage affect electrolytic capacitors.

Aluminum Electrolytic Capacitors. Aluminum electrolytic capacitors use aluminum as the base material

(Figure 1.16). The surface is often etched to increase the surface area as much as 100 times that of unetched

foil, resulting in higher capacitance in the same volume.

Aluminum electrolytic capacitors can withstand up to 1.5 V of reverse voltage without detriment. Higher

reverse voltages, when applied over extended periods, lead to loss of capacitance. Excess reverse voltages

applied for short periods cause some change in capacitance but not to capacitor failure.

Large-value capacitors are often used to filter dc power supplies. After a capacitor is charged, the rectifier

stops conducting and the capacitor discharges into the load, as shown in Figure 1.17, until the next cycle. Then

the capacitor recharges again to the peak voltage. The De is equal to the total peak-to-peak ripple voltage and
is a complex wave containing many harmonics of the

fundamental ripple frequency, causing the noticeable

heating of the capacitor.

Tantalum Capacitors. Tantalum electrolytics are the

preferred type where high reliability and long service

life are paramount considerations.

Tantalum capacitors have as much as three times

better capacitance per volume efficiency than alu-

minum electrolytic capacitors, because tantalum

pentoxide has a dielectric constant three times greater

than that of aluminum oxide (see Table 1.4).

FIGURE 1.13 Simplified equilavent circuit

of an electrolytic capacitor.

FIGURE 1.14 Impedance characteristics of a capacitor.
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The capacitance of any capacitor is determined by the surface area of the two conducting plates, the

distance between the plates, and the dielectric constant of the insulating material between the plates (see

Equation (1.21)).

In tantalum electrolytics, the distance between the plates is the thickness of the tantalum pentoxide film,

and since the dielectric constant of the tantalum pentoxide is high, the capacitance of a tantalum capacitor

is high.

Tantalum capacitors contain either liquid or solid electrolytes. The liquid electrolyte in wet-slug and foil

capacitors, generally sulfuric acid, forms the cathode (negative) plate. In solid-electrolyte capacitors, a dry

material, manganese dioxide, forms the cathode plate.

FIGURE 1.15 Variations in aluminum electrolytic characteristics caused by temperature, frequency, time, and applied

voltage. (Courtesy of Sprague Electric Company.)

FIGURE 1.16 Verti-lytic1 miniature single-ended aluminum electrolytic capacitor. (Courtesy of Sprague Electric

Company.)
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Foil Tantalum Capacitors. Foil tantalum capacitors can be designed to

voltage values up to 300 V dc. Of the three types of tantalum electrolytic

capacitors, the foil design has the lowest capacitance per unit volume and is

best suited for the higher voltages primarily found in older designs of

equipment. It is expensive and used only where neither a solid-electrolyte

(Figure 1.18) nor a wet-slug (Figure 1.19) tantalum capacitor can be

employed.

Foil tantalum capacitors are generally designed for operation over the

temperature range of 55 to 1125–C ( 67 to 1257–F) and are found

primarily in industrial and military electronics equipment.

FIGURE 1.17 Full wave capaci-

tor charge and discharge.

FIGURE 1.18 Tantalex1 solid electrolyte tantalum capacitor. (Courtesy of Sprague Electric Company.)

FIGURE 1.19 Hermetically sealed sintered-anode tantalum capacitor. (Courtesy of Sprague Electric Company.)
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Solid-electrolyte sintered-anode tantalum capacitors differ from the wet versions in their electrolyte, which is

manganese dioxide.

Another variation of the solid-electrolyte tantalum capacitor encases the element in plastic resins, such as

epoxy materials offering excellent reliability and high stability for consumer and commercial electronics with

the added feature of low cost.

Still other designs of ‘‘solid tantalum’’ capacitors use plastic film or sleeving as the encasing material, and

others use metal shells that are backfilled with an epoxy resin. Finally, there are small tubular and rectangular

molded plastic encasements.

Wet-electrolyte sintered-anode tantalum capacitors, often called ‘‘wet-slug’’ tantalum capacitors, use a pellet

of sintered tantalum powder to which a lead has been attached, as shown in Figure 1.19. This anode has an

enormous surface area for its size.

Wet-slug tantalum capacitors are manufactured in a voltage range to 125 V dc.

Use Considerations. Foil tantalum capacitors are used only where high-voltage constructions are required or

where there is substantial reverse voltage applied to a capacitor during circuit operation.

Wet sintered-anode capacitors, or ‘‘wet-slug’’ tantalum capacitors, are used where low dc leakage is required.

The conventional ‘‘silver can’’ design will not tolerate reverse voltage. In military or aerospace applications

where utmost reliability is desired, tantalum cases are used instead of silver cases. The tantalum-cased wet-slug

units withstand up to 3 V reverse voltage and operate under higher ripple currents and at temperatures up to

200–C (392–F).
Solid-electrolyte designs are the least expensive for a given rating and are used where their very small

size is important. They will typically withstand a reverse voltage up to 15% of the rated dc working

voltage. They also have good low-temperature performance characteristics and freedom from corrosive

electrolytes.

Inductors

Inductance is used for the storage of magnetic energy. Magnetic energy is stored as long as current keeps

flowing through the inductor. In a perfect inductor, the current of a sine wave lags the voltage by 90–.

Impedance

Inductive reactance XL, the impedance of an inductor to an ac signal, is found by the equation

XL ¼ 2pfL ð1:34Þ

where XL¼ inductive reactance, O; f¼ frequency, Hz; and L¼ inductance, H.

The type of wire used for its construction does not affect the inductance of a coil. Q of the coil will be

governed by the resistance of the wire. Therefore coils wound with silver or gold wire have the highest Q for

a given design.

To increase inductance, inductors are connected in series. The total inductance will always be greater than

the largest inductor:

LT ¼ L1 þ L2 þ þ Ln ð1:35Þ

To reduce inductance, inductors are connected in parallel:

LT ¼ 1

1=L1 þ 1=L2 þ þ 1=Ln
ð1:36Þ

The total inductance will always be less than the value of the lowest inductor.
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Mutual Inductance

Mutual inductance is the property that exists between two conductors carrying current when their magnetic

lines of force link together.

The mutual inductance of two coils with fields interacting can be determined by the equation

M ¼ LA LB
4

ð1:37Þ

where M¼mutual inductance of LA and LB, H; LA¼ total inductance, H, of coils L1 and L2 with fields aiding;

and LB¼ total inductance, H, of coils L1 and L2 with fields opposing.

The coupled inductance can be determined by the following equations. In parallel with fields aiding:

LT ¼ 1
1

L1 þM
þ 1

L2 þM

ð1:38Þ

In parallel with fields opposing:

LT ¼ 1
1

L1 M
þ 1

L2 M

ð1:39Þ

In series with fields aiding:

LT ¼ L1 þ L2 þ 2M ð1:40Þ

In series with fields opposing:

LT ¼ L1 þ L2 2M ð1:41Þ

where LT¼ total inductance, H; L1 and L2¼ inductances of the individual coils, H; and M¼mutual

inductance, H.

When two coils are inductively coupled to give transformer action, the coupling coefficient is

determined by

K ¼ Mffiffiffiffiffiffi
L1L2

p ð1:42Þ

where K¼ coupling coefficient; M¼mutual inductance, H; and L1 and L2¼ inductances of the two

coils, H.

An inductor in a circuit has a reactance equal to j2pfL O. Mutual inductance in a circuit has a reactance
equal to j2pfL O. The operator j denotes that the reactance dissipates no energy; however, it does oppose

current flow.

The energy stored in an inductor can be determined by the equation

W ¼ LI2

2
ð1:43Þ

where W¼energy, J (W·s); L¼ inductance, H; and I¼ current, A.
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Coil Inductance

Inductance is related to the turns in a coil as follows:

1. The inductance is proportional to the square of the turns.

2. The inductance increases as the length of the winding is increased.

3. A shorted turn decreases the inductance, affects the frequency response, and increases the insertion loss.

4. The inductance increases as the permeability of the core material increases.

5. The inductance increases with an increase in the cross-sectional area of the core material.

6. Inductance is increased by inserting an iron core into the coil.

7. Introducing an air gap into a choke reduces the inductance.

A conductor moving at any angle to the lines of force cuts a number of lines of force proportional to the sine

of the angles. Thus

V ¼ bLvsiny · 10 8 ð1:44Þ

where b¼ flux density; L¼ length of the conductor, cm; and v¼ velocity, cm/sec, of conductor moving at an

angle y.
The maximum voltage induced in a conductor moving in a magnetic field is proportional to the number of

magnetic lines of force cut by that conductor. When a conductor moves parallel to the lines of force, it cuts no

lines of force; therefore, no current is generated in the conductor. A conductor that moves at right angles to the

lines of force cuts the maximum number of lines per inch per second, therefore creating a maximum voltage.

The right-hand rule determines direction of the induced electromotive force (emf). The emf is in the direction

in which the axis of a right-hand screw, when turned with the velocity vector, moves through the smallest

angle toward the flux density vector.

The magnetomotive force (mmf) in ampere-turns produced by a coil is found by multiplying the number

of turns of wire in the coil by the current flowing through it:

ampere-turns ¼ T
V

R
¼ TI ð1:45Þ

where T¼ number of turns; V¼ voltage, V; and R¼ resistance, O.
The inductance of a single layer, a spiral, and multilayer coils can be calculated by using either Wheeler’s or

Nagaoka’s equations. The accuracy of the calculation will vary between 1 and 5%. The inductance of a single-

layer coil can be calculated using Wheeler’s equation:

L ¼ B2N2

9Bþ 10A
mH ð1:46Þ

For the multilayer coil:

L ¼ 0:8B2N2

6Bþ 9Aþ 10C
mH ð1:47Þ

For the spiral coil:

L ¼ B2N2

8Bþ 11C
mH ð1:48Þ
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where B¼ radius of the winding, N¼ number of turns in the coil, A¼ length of the winding, and

C¼ thickness of the winding.

Q

Q is the ratio of the inductive reactance to the internal resistance of the coil and is affected by frequency,

inductance, dc resistance, inductive reactance, the type of winding, the core losses, the distributed capacity,

and the permeability of the core material.

The Q for a coil where R and L are in series is

Q ¼ 2pfL
R

ð1:49Þ

where f¼ frequency, Hz; L¼ inductance, H; and R¼ resistance, O.
The Q of the coil can be measured using the circuit of Figure 1.20 for

frequencies up to 1 MHz. The voltage across the inductance (L) at

resonance equals Q(V) (where V is the voltage developed by the

oscillator); therefore, it is only necessary to measure the output voltage

from the oscillator and the voltage across the inductance.

The oscillator voltage is driven across a low value of resistance, R,

about 1/100 of the anticipated rf resistance of the LC combination, to

assure that the measurement will not be in error by more than 1%. For

most measurements, R will be about 0.10 O and should have a voltage of

0.1 V. Most oscillators cannot be operated into this low impedance, so a

step-down matching transformer must be employed. Make C as large as convenient to minimize the ratio of

the impedance looking from the voltmeter to the impedance of the test circuit. The LC circuit is then tuned to

resonate and the resultant voltage measured. The value of Q may then be equated:

Q ¼ resonant voltage across C

voltage acrossR
ð1:50Þ

The Q of any coil may be approximated by the equation

Q ¼ 2pf L
R

¼ XL
R

ð1:51Þ

where f¼ the frequency, Hz; L¼ the inductance, H; R¼ the dc resistance, O (as measured by an ohmmeter);

and XL¼ the inductive reactance of the coil.

Time Constant

When a dc voltage is applied to an RL circuit, a certain amount of time is required to change the circuit [see

text with Equation (1.31)]. The time constant can be determined with the equation

T ¼ L

R
ð1:52Þ

where R¼ resistance, O; L¼ inductance, H; and T¼ time, sec.

The right-hand rule is used to determine the direction of a magnetic field around a conductor carrying a

direct current. Grasp the conductor in the right hand with the thumb extending along the conductor pointing

in the direction of the current. With the fingers partly closed, the finger tips will point in the direction of

the magnetic field.

FIGURE 1.20 Circuit for measuring

the Q of a coil.
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Maxwell’s rule states, ‘‘If the direction of travel of a right-handed corkscrew represents the direction of

the current in a straight conductor, the direction of rotation of the corkscrew will represent the direction of

the magnetic lines of force.’’

Impedance

The total impedance created by resistors, capacitors, and inductors in circuits can be determined with the

following equations.

For resistance and capacitance in series:

Z ¼
ffiffiffiffiffiffiffiffiffiffiffi
R2 þ X2

C

q
ð1:53Þ

y ¼ arctan
XC
R

ð1:54Þ

For resistance and inductance in series:

Z ¼
ffiffiffi
R2

p
þ X2

L ð1:55Þ

y ¼ arctan
XL
R

ð1:56Þ

For inductance and capacitance in series:

Z ¼ XL XC when XL > XC ð1:57Þ
XC XL when XC > XL ð1:58Þ

For resistance, inductance, and capacitance in series:

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðXL XCÞ2

q
ð1:59Þ

y ¼ arctan
XL XC

R
ð1:60Þ

For capacitance and resistance in parallel:

Z ¼ RXCffiffiffiffiffiffiffiffiffiffiffi
R2 þ X2

C

q ð1:61Þ

For resistance and inductance in parallel:

Z ¼ RXLffiffiffiffiffiffiffiffiffiffi
R2 þ X2

L

q ð1:62Þ
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For capacitance and inductance in parallel:

Z ¼
XLXC
XL XC

when XL > XC ð1:63Þ
XCXL
XC XL

when XC > XL ð1:64Þ

8>><>>:
For inductance, capacitance, and resistance in parallel:

Z ¼ RXLXCffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
LX

2
C þ R2ðXL XCÞ2

q ð1:65Þ

y ¼ arctan
RðXL XCÞ

XLXC
ð1:66Þ

For inductance and series resistance in parallel with resistance:

Z ¼ R2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R21 þ X2

L

ðR1 þ R2Þ2 þ X2
L

s
ð1:67Þ

y ¼ arctan
XLR2

R21 þ X2
L þ R1R2

ð1:68Þ

For inductance and series resistance in parallel with capacitance:

Z ¼ XC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ X2

L

R2 þ ðXL XCÞ2
s

ð1:69Þ

y ¼ arctan
XLðXC XLÞ R2

RXC
ð1:70Þ

For capacitance and series resistance in parallel with inductance and series resistance:

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR21 þ X2

LÞðR22 þ X2
CÞ

ðR1 þ R2Þ2 þ ðXL XCÞ2
s

ð1:71Þ

y ¼ arctan
XLðR22 þ X2

CÞ XCðR21 þ X2
LÞ

R1ðR22 þ X2
CÞ R2ðR21 þ X2

LÞ
ð1:72Þ

where Z¼ impedance, O; R¼ resistance, O; L¼ inductance, H; XL¼ inductive reactance, O; XC¼ capacitive

reactance, O; and y¼ phase angle, degrees, by which current leads voltage in a capacitive circuit or lags voltage

in an inductive circuit (0– indicates an in-phase condition).
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Resonant Frequency

When an inductor and capacitor are connected in series or parallel, they form a resonant circuit. The resonant

frequency can be determined from the equation

f ¼ 1

2p
ffiffiffiffi
LC

p ¼ 1

2pCXC
¼ XL
2pL

ð1:73Þ

where f¼ frequency, Hz; L¼ inductance, H; C¼ capacitance, F; and XL, XC¼ impedance, O.
The resonant frequency can also be determined through the use of a reactance chart developed by the Bell

Telephone Laboratories (Figure 1.21). This chart can be used for solving problems of inductance, capacitance,

frequency, and impedance. If two of the values are known, the third and fourth values may be found with

its use.

Defining Terms

Air capacitor: A fixed or variable capacitor in which air is the dielectric material between the capacitor’s

plates.

Ambient temperature: The temperature of the air or liquid surrounding any electrical part or device.

Usually refers to the effect of such temperature in aiding or retarding removal of heat by radiation and

convection from the part or device in question.

FIGURE 1.21 Reactance chart. (Courtesy AT&T Bell Laboratories.)
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Ampere-turns: The magnetomotive force produced by a coil, derived by multiplying the number of turns

of wire in a coil by the current (A) flowing through it.

Anode: The positive electrode of a capacitor.

Capacitive reactance: The opposition offered to the flow of an alternating or pulsating current by

capacitance measured in ohms.

Capacitor: An electrical device capable of storing electrical energy and releasing it at some predetermined

rate at some predetermined time. It consists essentially of two conducting surfaces (electrodes)

separated by an insulating material or dielectric. A capacitor stores electrical energy, blocks the flow of

direct current, and permits the flow of alternating current to a degree dependent essentially upon

capacitance and frequency. The amount of energy stored, E¼ 0.5 CV2.

Cathode: The capacitor’s negative electrode.

Coil: A number of turns of wire in the form of a spiral. The spiral may be wrapped around an iron core or

an insulating form, or it may be self-supporting. A coil offers considerable opposition to ac current but

very little to dc current.

Conductor: A bare or insulated wire or combination of wires not insulated from one another, suitable for

carrying an electric current.

Dielectric: The insulating (nonconducting) medium between the two electrodes (plates) of a capacitor.

Dielectric constant: The ratio of the capacitance of a capacitor with a given dielectric to that of the same

capacitor having a vacuum dielectric.

Disk capacitor: A small single-layer ceramic capacitor with a dielectric insulator consisting of conductively

silvered opposing surfaces.

Dissipation factor (DF): The ratio of the effective series resistance of a capacitor to its reactance at a

specified frequency measured in percent.

Electrolyte: Current-conducting solution between two electrodes or plates of a capacitor, at least one of

which is covered by a dielectric.

Electrolytic capacitor: A capacitor solution between two electrodes or plates of a capacitor, at least one of

which is covered by a dielectric.

Equivalent series resistance (ESR): All internal series resistance of a capacitor concentrated or ‘‘lumped’’

at one point and treated as one resistance of a capacitor regardless of source, i.e., lead resistance,

termination losses, or dissipation in the dielectric material.

Farad: The basic unit of measure in capacitors. Acapacitor charged to 1 volt with a charge of 1 coulomb

(1 ampere flowing for 1 sec) has a capacitance of 1 farad.

Field: A general term referring to the region under the influence of a physical agency such as electricity,

magnetism, or a combination produced by an electrical charged object.

Impedance (Z ): Total opposition offered to the flow of an alternating or pulsating current measured in

ohms. (Impedance is the vector sum of the resistance and the capacitive and inductive reactance, i.e., the

ratio of voltage to current.)

Inductance: The property which opposes any change in the existing current. Inductance is present only

when the current is changing.

Inductive reactance (XL): The opposition to the flow of alternating or pulsating current by the inductance

of a circuit.

Inductor: A conductor used to introduce inductance into a circuit.

Leakage current: Stray direct current of relatively small value which flows through a capacitor when

voltage is impressed across it.

Magnetomotive force: The force by which the magnetic field is produced, either by a current flowing

through a coil of wire or by the proximity of a magnetized body. The amount of magnetism produced in

the first method is proportional to the current through the coil and the number of turns in it.

Mutual inductance: The property that exists between two current-carrying conductors when the magnetic

lines of force from one link with those from another.

Negative-positive-zero (NPO): An ultrastable temperature coefficient (^30 ppm/–C from 55 to 125–C)
temperature-compensating capacitor.
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Phase: The angular relationship between current and voltage in an ac circuit. The fraction of the period

which has elapsed in a periodic function or wave measured from some fixed origin. If the time for one

period is represented as 360– along a time axis, the phase position is called phase angle.
Polarized capacitor: An electrolytic capacitor in which the dielectric film is formed on only one metal

electrode. The impedance to the flow of current is then greater in one direction than in the other.

Reversed polarity can damage the part if excessive current flow occurs.

Power factor (PF): The ratio of effective series resistance to impedance of a capacitor, expressed as a

percentage.

Quality factor (Q): The ratio of the reactance to its equivalent series resistance.

Reactance (X): Opposition to the flow of alternating current. Capacitive reactance (XC) is the opposition

offered by capacitors at a specified frequency and is measured in ohms.

Resonant frequency: The frequency at which a given system or object will respond with maximum

amplitude when driven by an external sinusoidal force of constant amplitude.

Reverse leakage current: A nondestructive current flowing through a capacitor subjected to a voltage of

polarity opposite to that normally specified.

Ripple current: The total amount of alternating and direct current that may be applied to an electrolytic

capacitor under stated conditions.

Temperature coefficient (TC): A capacitor’s change in capacitance per degree change in temperature.

May be positive, negative, or zero and is usually expressed in parts per million per degree Celsius

(ppm/–C) if the characteristics are linear. For nonlinear types, TC is expressed as a percentage of room

temperature (25–C) capacitance.
Time constant: In a capacitor-resistor circuit, the number of seconds required for the capacitor to reach

63.2% of its full charge after a voltage is applied. The time constant of a capacitor with a capacitance (C)

in farads in series with a resistance (R) in ohms is equal to R · C seconds.

Winding: A conductive path, usually wire, inductively coupled to a magnetic core or cell.
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1.3 Transformers

C. Sankaran

The electrical transformer was invented by an American electrical engineer, William Stanley, in 1885 and was

used in the first ac lighting installation at Great Barrington, Massachusetts. The first transformer was used to

step up the power from 500 to 3000 V and transmitted for a distance of 1219 m (4000 ft). At the receiving end

the voltage was stepped down to 500 V to power street and office lighting. By comparison, present

transformers are designed to transmit hundreds of megawatts of power at voltages of 700 kV and beyond for

distances of several hundred miles.

Transformation of power from one voltage level to another is a vital operation in any transmission,

distribution, and utilization network. Normally, power is generated at a voltage that takes into consideration
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the cost of generators in relation to their operating voltage. Generated power is transmitted by overhead lines

many miles and undergoes several voltage transformations before it is made available to the actual user.

Figure 1.22 shows a typical power flow line diagram.

Types of Transformers

Transformers are broadly grouped into two main categories: dry-type and liquid-filled transformers. Dry-type

transformers are cooled by natural or forced circulation of air or inert gas through or around the transformer

enclosure. Dry-type transformers are further subdivided into ventilated, sealed, or encapsulated types

depending upon the construction of the transformer. Dry transformers are extensively used in industrial

power distribution for rating up to 5000 kVA and 34.5 kV.

Liquid-filled transformers are cooled by natural or forced circulation of a liquid coolant through the

windings of the transformer. This liquid also serves as a dielectric to provide superior voltage-withstand

characteristics. The most commonly used liquid in a transformer is a mineral oil known as transformer oil that

has a continuous operating temperature rating of 105–C, a flash point of 150–C, and a fire point of 180–C.
A good grade transformer oil has a breakdown strength of 86.6 kV/cm (220 kV/in.) that is far higher than the

breakdown strength of air, which is 9.84 kV/cm (25 kV/in.) at atmospheric pressure.

Silicone fluid is used as an alternative to mineral oil. The breakdown strength of silicone liquid is over

118 kV/cm (300 kV/in.) and it has a flash point of 300–C and a fire point of 360–C. Silicone-fluid-filled
transformers are classified as less flammable. The high dielectric strengths and superior thermal conductivities

of liquid coolants make them ideally suited for large high-voltage power transformers that are used in modern

power generation and distribution.

Principle of Transformation

The actual process of transfer of electrical power from a voltage of V1 to a voltage of V2 is explained with

the aid of the simplified transformer representation shown in Figure 1.23. Application of voltage across

FIGURE 1.22 Power flow line diagram.

FIGURE 1.23 Electrical power transfer.
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the primary winding of the transformer results in a magnetic field of f1 Wb in the magnetic core, which

in turn induces a voltage of V2 at the secondary terminals. V1 and V2 are related by the expression V1/V2¼
N1/N2, where N1 and N2 are the number of turns in the primary and secondary windings, respectively. If a

load current of I2 A is drawn from the secondary terminals, the load current establishes a magnetic field of

f2 Wb in the core and in the direction shown. Since the effect of load current is to reduce the amount of

primary magnetic field, the reduction in f1 results in an increase in the primary current I1 so that the net

magnetic field is almost restored to the initial value and the slight reduction in the field is due to

leakage magnetic flux. The currents in the two windings are related by the expression I1/I2¼N2/N1. Since

V1/V2¼N1/N2¼ I2/I1, we have the expression V1·I1¼V2·I2. Therefore, the voltamperes in the two windings are

equal in theory. In reality, there is a slight loss of power during transformation that is due to the energy

necessary to set up the magnetic field and to overcome the losses in the transformer core and windings.

Transformers are static power conversion devices and are therefore highly efficient. Transformer efficiencies

are about 95% for small units (15 kVA and less), and the efficiency can be higher than 99% for units rated

above 5 MVA.

Electromagnetic Equation

Figure 1.24 shows a magnetic core with the area of cross-section A¼W·D m2. The transformer primary

winding that consists of N turns is excited by a sinusoidal voltage v¼Vsin(ot), where o is the angular

frequency given by the expression o¼ 2pf and f is the frequency of the applied voltage waveform. f is

magnetic field in the core due to the excitation current i:

f ¼ Fsin ot
p
2

¼ FcosðotÞ

Induced voltage in the winding:

e ¼ N
df
dt

¼ N
d½FcosðotÞ

dt
¼ NoFsinðotÞ

Maximum value of the induced voltage:

E ¼ NoF

FIGURE 1.24 Electromagnetic relation.
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The root-mean-square value:

Erms ¼ Effiffi
2

p ¼ 2pf NFffiffi
2

p ¼ 4:44f NBA

where flux F (webers) is replaced by the product of the flux density B (teslas) and the area of cross-section of

the core.

This fundamental design equation determines the size of the transformer for any given voltage and

frequency. Power transformers are normally operated at flux density levels of 1.5 T.

Transformer Core

The transformer core is the medium that enables the transfer of power from the primary to the secondary to

occur in a transformer. In order that the transformation of power may occur with the least amount of loss, the

magnetic core is made up of laminations which have the highest permeability, permeability being a measure of

the ease with which the magnetic field is set up in the core.

The magnetic field reverses direction every one half cycle of the applied voltage and energy is expended in

the core to accomplish the cyclic reversals of the field. This loss component is known as the hysteresis loss Ph:

Ph ¼ 150:7Ve f B
1:6 W

where Ve is the volume of the core in cubic meters, f is the frequency, and B is the maximum flux density in

teslas.

As the magnetic field reverses direction and cuts across the core structure, it induces a voltage in the

laminations known as eddy voltages. This phenomenon causes eddy currents to circulate in the laminations.

The loss due to eddy currents is called the eddy current loss Pe:

Pe ¼ 1:65Ve B
2f 2t2=r

where Ve is the volume of the core in cubic meters, f is the frequency, B is the maximum flux density in teslas,

t is thickness of the laminations in meters, and r is the resistivity of the core material in ohm-meters.

Hysteresis losses are reduced by operating the core at low flux densities and using core material of high

permeability. Eddy current losses are minimized by low flux levels, reduction in thickness of the laminations,

and high resistivity core material.

Cold-rolled, grain-oriented silicon steel laminations are exclusively used in large power transformers to

reduce core losses. A typical silicon steel used in transformers contains 95% iron, 3% silicon, 1% manganese,

0.2% phosphor, 0.06% carbon, 0.025% sulphur, and traces of other impurities.

Transformer Losses

The heat developed in a transformer is a function of the losses that occur during transformation. Therefore,

the transformer losses must be minimized and the heat due to the losses must be efficiently conducted away

from the core, the windings, and the cooling medium. The losses in a transformer are grouped into two

categories: (1) no-load losses and (2) load losses. The no-load losses are the losses in the core due to excitation

and are mostly composed of hysteresis and eddy current losses. The load losses are grouped into three

categories: (1) winding I2R losses, (2) winding eddy current losses, and (3) other stray losses. The winding I2R

losses are the result of the flow of load current through the resistance of the primary and secondary windings.

The winding eddy current losses are caused by the magnetic field set up by the winding current, due to

formation of eddy voltages in the conductors. The winding eddy losses are proportional to the square of

the rms value of the current and to the square of the frequency of the current. When transformers are required

to supply loads that are rich in harmonic frequency components, the eddy loss factor must be given
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extra consideration. The other stray loss component is the result of induced currents in the buswork, core

clamps, and tank walls by the magnetic field set up by the load current.

Transformer Connections

A single-phase transformer has one input (primary) winding and one output (secondary) winding. A conven-

tional three-phase transformer has three input and three output windings. The three windings can be

connected in one of several different configurations to obtain three-phase connections that are distinct. Each

form of connection has its own merits and demerits.

Y Connection (Figure 1.25)

In the Y connection, one end of each of the three windings is connected

together to form a Y, or a neutral point. This point is normally grounded, which

limits the maximum potential to ground in the transformer to the line to

neutral voltage of the power system. The grounded neutral also limits transient

overvoltages in the transformer when subjected to lightning or switching surges.

Availability of the neutral point allows the transformer to supply line to neutral

single-phase loads in addition to normal three-phase loads. Each phase of the

Y-connected winding must be designed to carry the full line current, whereas

the phase voltages are only 57.7% of the line voltages.

Delta Connection (Figure 1.26)

In the delta connection, the finish point of each winding is connected to

the start point of the adjacent winding to form a closed triangle, or delta.

A delta winding in the transformer tends to balance out unbalanced

loads that are present on the system. Each phase of the delta winding

only carries 57.7% of the line current, whereas the phase voltages are

equal to the line voltages.

Large power transformers are designed so that the high-voltage side is

connected in Y and the low-voltage side is connected in delta.

Distribution transformers that are required to supply single-phase

loads are designed in the opposite configuration so that the neutral

point is available at the low-voltage end.

Open-Delta Connection (Figure 1.27)

An open-delta connection is used to deliver three-phase power if

one phase of a three-phase bank of transformers fails in service.

When the failed unit is removed from service, the remaining units

can still supply three-phase power but at a reduced rating. An open-

delta connection is also used as an economical means to deliver

three-phase power using only two single-phase transformers. If P is

the total three-phase kVA, then each transformer of the open-delta

bank must have a rating of P=
ffiffi
3

p
kVA. The disadvantage of the

open-delta connection is the unequal regulation of the three phases

of the transformer.

T Connection (Figure 1.28)

The T connection is used for three-phase power transformation when two separate single-phase transformers

with special configurations are available. If a voltage transformation from V1 to V2 volts is required, one of the

units (main transformer) must have a voltage ratio of V1/V2 with the midpoint of each winding brought out.

The other unit must have a ratio of 0.866V1/0.866V2 with the neutral point brought out, if needed.

FIGURE 1.25 Y connection.

FIGURE 1.26 Delta connection.

FIGURE 1.27 Open-delta connection.
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The Scott connection is a special type of T connec-

tion used to transform three-phase power to two-phase

power for operation of electric furnaces and two-phase

motors. It is shown in Figure 1.29.

Zigzag Connection (Figure 1.30)

This connection is also called the interconnected star

connection where the winding of each phase is divided

into two halves and interconnected to form a zigzag

configuration. The zigzag connection is mostly used to

derive a neutral point for grounding purposes in three-

phase, three-wire systems. The neutral point can be used

to (1) supply single-phase loads, (2) provide a safety

ground, and (3) sense and limit ground fault currents.

Transformer Impedance

Impedance is an inherent property in a transformer that results in a voltage drop as power is transferred from

the primary to the secondary side of the power system. The impedance of a transformer consists of two parts:

resistance (R) and reactance (X). The resistance component is due to the resistance of the material of the

winding and the percentage value of the voltage drop due to resistance becomes less as the rating of the

transformer increases. The reactive component, which is also known as leakage reactance, is the result of

incomplete linkage of the magnetic field set up by the secondary winding with the turns of the primary

winding, and vice versa. The net impedance of the transformer is given by Z ¼ ffiffiffiffiffiffiffiffiffiffi
R2 þ X2

p
. The impedance

value marked on the transformer is the percentage voltage drop due to this impedance under full-load

operating conditions:

% impedance z ¼ IZ
100

V

where I is the full-load current of the transformer, Z is the impedance in ohms of the transformer, and V is the

voltage rating of the transformer winding. It should be noted that the values of I and Z must be referred to the

same side of the transformer as the voltage V.

Transformers are also major contributors of impedance to limit the fault currents in electrical power

systems.

FIGURE 1.29 Three-phase–two-phase transformation. FIGURE 1.30 Zigzag connection.

FIGURE 1.28 T connection.

1-32 Circuits, Signals, and Speech and Image Processing



Defining Terms

Breakdown strength: Voltage gradient at which the molecules of medium break down to allow passage of

damaging levels of electric current.

Dielectric: Solid, liquid, or gaseous substance that acts as an insulation to the flow of electric current.

Harmonic frequency: Integral multiples of fundamental frequency. For example, for a 60-Hz supply the

harmonic frequencies are 120, 180, 240, 300, . . .

Magnetic field: Magnetic force field where lines of magnetism exist.

Magnetic flux: Term for lines of magnetism.

Regulation: The change in voltage from no-load to full-load expressed as a percentage of full-load voltage.
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1.4 Electrical Fuses

Nick Angelopoulos

The fuse is a simple and reliable safety device. It is second to none in its ease of application and its ability to

protect people and equipment.

The fuse is a current-sensitive device. It has a conductor with a reduced cross-section (element) normally

surrounded by an arc-quenching and heat-conducting material (filler). The entire unit is enclosed in a body

fitted with end contacts. A basic fuse element design is illustrated in Figure 1.31.

Ratings

Most fuses have three electrical ratings: ampere rating, voltage rating, and interrupting rating. The ampere

rating indicates the current the fuse can carry without melting or exceeding specific temperature rise limits.

The voltage rating, ac or dc, usually indicates the maximum system voltage that can be applied to the fuse. The

interrupting rating (I.R.) defines the maximum short-circuit current that a fuse can safely interrupt. If a fault

current higher than the interrupting rating causes the fuse to operate, the high internal pressure may cause the

fuse to rupture. It is imperative, therefore, to install a fuse, or any other type of protective device, that has an

interrupting rating not less than the available short-circuit current. A violent explosion may occur if the

interrupting rating of any protective device is inadequate.

A fuse must perform two functions. The first, the ‘‘passive’’ function, is one that tends to be taken for

granted. In fact, if the fuse performs the passive function well, we tend to forget that the fuse exists at all. The

passive function simply entails that the fuse can carry up to its normal load current without aging

FIGURE 1.31 Basic fuse element.
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or overheating. Once the current level exceeds predetermined limits, the ‘‘active’’ function comes into play

and the fuse operates. It is when the fuse is performing its active function that we become aware of its

existence.

In most cases, the fuse will perform its active function in response to two types of circuit conditions.

The first is an overload condition, for instance, when a hair dryer, teakettle, toaster, and radio are plugged into

the same circuit. This overload condition will eventually cause the element to melt. The second condition is

the overcurrent condition, commonly called the short circuit or the fault condition. This can produce a

drastic, almost instantaneous, rise in current, causing the element to melt usually in less than a quarter of a

cycle. Factors that can lead to a fault condition include rodents in the electrical system, loose connections, dirt

and moisture, breakdown of insulation, foreign contaminants, and personal mistakes. Preventive maintenance

and care can reduce these causes. Unfortunately, none of us is perfect and faults can occur in virtually every

electrical system—we must protect against them.

Fuse Performance

Fuse performance characteristics under overload conditions are published in the form of average melting time–

current characteristic curves, or simply time–current curves. Fuses are tested with a variety of currents, and the

melting times are recorded. The result is a graph of time versus current coordinates that are plotted on log-log

scale, as illustrated in Figure 1.32.

Under short-circuit conditions the fuse operates and fully opens the circuit in less than 0.01 sec. At 50 or

60 Hz, this represents operation within the first half cycle. The current waveform let-through by the fuse is the

shaded, almost triangular, portion shown in Figure 1.33(a). This depicts a fraction of the current that would

have been let through into the circuit had a fuse not been installed.

Fuse short-circuit performance characteristics are published in the form of peak let-through (Ip) graphs and

I2t graphs. Ip (peak current) is simply the peak of the shaded triangular waveform, which increases as the fault

current increases, as shown in Figure 1.33(b). The electromagnetic forces, which can cause mechanical damage

to equipment, are proportional to I2p.

I2t represents heat energy measured in units of A2 sec (ampere squared seconds) and is documented on I2t

graphs. These I2t graphs, as illustrated in Figure 1.33(c), provide three values of I2t: minimum melting I2t,

arcing I2t, and total clearing I2t. I2t and Ip short-circuit performance characteristics can be used to coordinate

fuses and other equipment. In particular, I2t values are often used to selectively coordinate fuses in a

distribution system.

Selective Coordination

In any power distribution system, selective coordination exists when the fuse immediately upstream from

a fault operates, leaving all other fuses further upstream unaffected. This increases system reliability by

isolating the faulted branch while maintaining power to all other branches. Selective coordination is

easily assessed by comparing the I2t characteristics for feeder and branch circuit fuses. The branch

fuse should have a total clearing I2t value that is less than the melting I2t value of the feeder or

upstream fuse. This ensures that the branch fuse will melt, arc, and clear the fault before the feeder fuse

begins to melt.

Standards

Overload and short-circuit characteristics are well documented by fuse manufacturers. These characteristics

are standardized by product standards written in most cases by safety organizations such as CSA (Canadian

Standards Association) and UL (Underwriters Laboratories). CSA standards and UL specify product designa-

tions, dimensions, performance characteristics, and temperature rise limits. These standards are used in
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conjunction with national code regulations such as CEC (Canadian Electrical Code) and NEC (National

Electrical Code) that specify how the product is applied.

IEC (International Electrotechnical Commission, Geneva, Switzerland) was founded to harmonize electrical

standards to increase international trade in electrical products. Any country can become a member and

participate in the standards-writing activities of IEC. Unlike CSA and UL, IEC is not a certifying body that

certifies or approves products. IEC publishes consensus standards for national standards authorities such as

CSA (Canada), UL (USA), BSI (UK), and DIN (Germany) to adopt as their own national standards.

FIGURE 1.32 Time–current characteristic curves.
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Products

North American low-voltage distribution fuses can be classified under two types: Standard or Class H, as

referred to in the United States, and HRC (high rupturing capacity) or current-limiting fuses, as referred to in

Canada. It is the interrupting rating that essentially differentiates one type from the other.

Most Standard or Class H fuses have an interrupting rating of 10,000 A. They are not classified as HRC or

current-limiting fuses, which usually have an interrupting rating of 200,000 A. Selection is often based on the

calculated available short-circuit current.

FIGURE 1.33 (a) Fuse short-circuit operation. (b) Variation of fuse peak let-through current Ip. (c) I
2t graph.
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In general, short-circuit currents in excess of 10,000 A do not exist in residential applications. In

commercial and industrial installations, short-circuit currents in excess of 10,000 A are very common. Use of

HRC fuses usually means that a fault current assessment is not required.

Standard—Class H

In North America, Standard or Class H fuses are available in 250- and 600-V ratings with ampere ratings up to

600 A. There are primarily three types: one-time, time-delay, and renewable. Rating for rating, they are all

constructed to the same dimensions and are physically interchangeable in standard-type fusible switches and

fuse blocks.

One-time fuses are not reusable once blown. They are used for general-purpose resistive loads such as

lighting, feeders, and cables.

Time-delay fuses have a specified delay in their overload characteristics and are designed for motor circuits.

When started, motors typically draw six times their full load current for approximately 3 to 4 sec. This surge

then decreases to a level within the motor full-load current rating. Time-delay fuse overload characteristics are

designed to allow for motor starting conditions.

Renewable fuses are constructed with replaceable links or elements. This feature minimizes the cost of

replacing fuses. However, the concept of replacing fuse elements in the field is not acceptable to most users

today because of the potential risk of improper replacement.

HRC

HRC or current-limiting fuses have an interrupting rating of 200 kA and are recognized by a letter designation

system common to North American fuses. In the United States they are known as Class J, Class L, Class R, etc.,

and in Canada they are known as HRCI-J, HRC-L, HRCI-R, and so forth. HRC fuses are available in ratings up

to 600 V and 6000 A. The main differences among the various types are their dimensions and their short-

circuit performance (Ip and I
2t) characteristics.

One type of HRC fuse found in Canada, but not in the United States, is the HRCII-C or Class C fuse. This

fuse was developed originally in England and is constructed with bolt-on-type blade contacts. It is available in

a voltage rating of 600 V with ampere ratings from 2 to 600 A. Some higher ampere ratings are also available

but are not as common. HRCII-C fuses are primarily regarded as providing short-circuit protection only.

Therefore, they should be used in conjunction with an overload device.

HRCI-R or Class R fuses were developed in the United States. Originally constructed to Standard or Class H

fuse dimensions, they were classified as Class K and are available in the United States with two levels of short-

circuit performance characteristics: Class K1 and Class K5. However, they are not recognized in Canadian

Standards. Under fault conditions, Class K1 fuses limit the Ip and I
2t to lower levels than do Class K5 fuses.

Since both Class K1 and K5 are constructed to Standard or Class H fuse dimensions, problems with inter-

changeability occur. As a result, a second generation of these K fuses was therefore introduced with a rejection

feature incorporated in the end caps and blade contacts. This rejection feature, when used in conjunction with

rejection-style fuse clips, prevents replacement of these fuses with Standard or Class H 10-kA I.R. fuses. These

rejection style fuses are known as Class RK1 and Class RK5. They are available with time-delay or nontime-

delay characteristics and with voltage ratings of 250 or 600 V and ampere ratings up to 600 A. In Canada, CSA

has only one classification for these fuses, HRCI-R, which have the same maximum Ip and I
2t current-limiting

levels as specified by UL for Class RK5 fuses.

HRCI-J or Class J fuses are a more recent development. In Canada, they have become the most popular

HRC fuse specified for new installations. Both time-delay and nontime-delay characteristics are available in

ratings of 600 V with ampere ratings up to 600 A. They are constructed with dimensions much smaller than

HRCI-R or Class R fuses and have end caps or blade contacts which fit into 600-V Standard or Class H-type

fuse clips.
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However, the fuse clips must be mounted closer together to accommodate the shorter fuse length. Its

shorter length, therefore, becomes an inherent rejection feature that does not allow insertion of Standard or

HRCI-R fuses. The blade contacts are also drilled to allow bolt-on mounting if required. CSA and UL specify

these fuses to have maximum short-circuit current-limiting Ip and I2t limits lower than those specified for

HRCI-R and HRCII-C fuses. HRCI-J fuses may be used for a wide variety of applications. The time-delay type

is commonly used in motor circuits sized at approximately 125 to 150% of motor full-load current.

HRC-L or Class L fuses are unique in dimension but may be considered as an extension of the HRCI-J fuses

for ampere ratings above 600 A. They are rated at 600 V with ampere ratings from 601 to 6000 A. They are

physically larger and are constructed with bolt-on-type blade contacts. These fuses are generally used in low-

voltage distribution systems where supply transformers are capable of delivering more than 600 A.

In addition to Standard and HRC fuses, there are many other types designed for specific applications. For

example, there are medium- or high-voltage fuses to protect power distribution transformers and medium-

voltage motors. There are fuses used to protect sensitive semiconductor devices such as diodes, SCRs, and

triacs. These fuses are designed to be extremely fast under short-circuit conditions. There is also a wide variety

of dedicated fuses designed for protection of specific equipment requirements such as electric welders,

capacitors, and circuit breakers, to name a few.

Trends

Ultimately, it is the electrical equipment being protected that dictates the type of fuse needed for proper

protection. This equipment is forever changing and tends to get smaller as new technology becomes available.

Present trends indicate that fuses also must become smaller and faster under fault conditions, particularly as

available short-circuit fault currents are tending to increase.

With free trade and the globalization of industry, a greater need for harmonizing product standards exists.

The North American fuse industry is taking big steps toward harmonizing CSA and UL fuse standards, and at

the same time is participating in the IEC standards process. Standardization will help the electrical industry to

identify and select the best fuse for the job—anywhere in the world.

Defining Terms

HRC (high rupturing capacity): A term used to denote fuses having a high interrupting rating. Most low-

voltage HRC-type fuses have an interrupting rating of 200 kA rms symmetrical.

I2t (ampere squared seconds): A convenient way of indicating the heating effect or thermal energy which

is produced during a fault condition before the circuit protective device has opened the circuit. As a

protective device, the HRC or current-limiting fuse lets through far less damaging I2t than other

protective devices.

Interrupting rating (I.R.): The maximum value of short-circuit current that a fuse can safely interrupt.

References

R.K. Clidero and K.H. Sharpe, Application of Electrical Construction, Ontario, Canada: General Publishing Co.

Ltd., 1982.

Gould Inc., Shawmut Advisor, Newburyport, MA: Circuit Protection Division.

C.A. Gross, Power Systems Analysis, 2nd ed., New York: Wiley, 1986.

E. Jacks, High Rupturing Capacity Fuses, New York: Wiley, 1975.

A. Wright and P.G. Newbery, Electric Fuses, London: Peter Peregrinus Ltd., 1984.

Further Information

For greater detail the ‘‘Shawmut Advisor’’ (Gould, Inc., 374 Merrimac Street, Newburyport, MA 01950) or the

‘‘Fuse Technology Course Notes’’ (Gould Shawmut Company, 88 Horner Avenue, Toronto, Canada M8Z 5Y3)

may be referred to for fuse performance and application.

1-38 Circuits, Signals, and Speech and Image Processing



2
Voltage and Current

Sources

Richard C. Dorf
University of California

Clayton R. Paul
Mercer University

J.R. Cogdell
University of Texas at Austin

2.1 Step, Impulse, Ramp, Sinusoidal, Exponential,

and DC Signals .................................................................... 2-1
Step Function * The Impulse * Ramp Function * Sinusoidal

Function * Decaying Exponential * Time Constant * DC Signal

2.2 Ideal and Practical Sources .................................................... 2-4
Ideal Sources * Practical Sources

2.3 Controlled Sources ............................................................... 2-7
What Are Controlled Sources? * What Is the Significance

of Controlled Sources? * How Does the Presence of Controlled

Sources Affect Circuit Analysis?

2.1 Step, Impulse, Ramp, Sinusoidal, Exponential, and DC Signals

Richard C. Dorf

The important signals for circuits include the step, impulse, ramp, sinusoid, and dc signals. These signals are

widely used and are described here in the time domain. All of these signals have a Laplace transform.

Step Function

The unit-step function u(t) is defined mathematically by

uðtÞ ¼ 1, t 0
0, t50

Here unit step means that the amplitude of u(t) is equal to 1 for t $ 0. Note that we are following the

convention that u(0) ¼ 1. From a strict mathematical standpoint, u(t) is not defined at t ¼ 0. Nevertheless,

we usually take u(0) ¼ 1. If A is an arbitrary nonzero number, Au(t) is the step function with amplitude A

for t $ 0. The unit step function is plotted in Figure 2.1.

The Impulse

The unit impulse d(t), also called the delta function or the Dirac distribution, is defined by

dðtÞ ¼ 0, t 6¼ 0Re
e
dðlÞdl ¼ 1, for any real number e > 0
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The first condition states that d(t) is zero for all nonzero values of t, while the second condition states that
the area under the impulse is 1, so d(t) has unit area. It is important to point out that the value d(0) of d(t)
at t ¼ 0 is not defined; in particular, d(0) is not equal to infinity. For any real number K, Kd(t) is the impulse
with area K. It is defined by

KdðtÞ ¼ 0; t 6¼ 0Re
e
KdðlÞdl ¼ K; for any real number e > 0

The graphical representation of Kd(t) is shown in Figure 2.2. The notation K in the figure refers to the area

of the impulse Kd(t).
The unit-step function u(t) is equal to the integral of the unit impulse d(t); more precisely, we have

uðtÞ ¼
Zt
1
dðlÞ dl; all t except t ¼ 0

Conversely, the first derivative of u(t) with respect to t is equal to d(t) except at t ¼ 0, where the derivative of

u(t) is not defined.

Ramp Function

The unit-ramp function r(t) is defined mathematically

by

rðtÞ ¼ t; t 0
0; t50

Note that for t $ 0, the slope of r(t) is 1. Thus, r(t) has

unit slope, which is the reason r(t) is called the unit-

ramp function. If K is an arbitrary nonzero scalar (real

number), the ramp function Kr(t) has slope K for t $ 0.

The unit-ramp function is plotted in Figure 2.3.

The unit-ramp function r(t) is equal to the integral of

the unit-step function u(t); that is:

rðtÞ ¼
Zt
1
uðlÞ dl

t
0

(K )

Kδ(t )

FIGURE 2.2 Graphical representation of the impulse Kd(t).

t
1 2 3

1

0

u(t )

FIGURE 2.1 Unit-step function.

t
1 2 3

1

0

r (t )

FIGURE 2.3 Unit-ramp function.
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Conversely, the first derivative of r(t) with respect to t is equal to u(t) except at t ¼ 0, where the derivative of

r(t) is not defined.

Sinusoidal Function

The sinusoid is a continuous-time signal: A cos(otþ y ).
Here A is the amplitude, o is the frequency in radians per second (rad/sec), and y is the phase in radians.

The frequency f in cycles per second, or hertz (Hz), is f ¼ o/2p. The sinusoid is a periodic signal with period
2p/o. The sinusoid is plotted in Figure 2.4.

Decaying Exponential

In general, an exponentially decaying quantity (Figure 2.5)

can be expressed as

a ¼ Ae t=t

where a ¼ instantaneous value

A ¼ amplitude or maximum value

e ¼ base of natural logarithms ¼ 2.718. . .

t ¼ time constant in seconds

t ¼ time in seconds

The current of a discharging capacitor can be approxi-

mated by a decaying exponential function of time.

Time Constant

Since the exponential factor only approaches zero as t increases without limit, such functions theoretically last

forever. In the same sense, all radioactive disintegrations last forever. In the case of an exponentially decaying

current, it is convenient to use the value of time that makes the exponent –1. When t ¼ t¼ the time constant,

the value of the exponential factor is

e t=t ¼ e 1 ¼ 1

e
¼ 1

2:718
¼ 0:368

In other words, after a time equal to the time constant, the exponential factor is reduced to approximately 37%

of its initial value.

π + 2θ
2ω

π − 2θ
2ω

3π − 2θ
2ω

3π + 2θ
2ω

θ
ω

A cos(ωt + θ)

0

–A

A

t

FIGURE 2.4 The sinusoid A cos(otþ y) with –p/2 , y , 0.

FIGURE 2.5 The decaying exponential.
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DC Signal

The direct current signal (dc signal) can be defined mathematically by

iðtÞ ¼ K 15 t5þ1

Here, K is any nonzero number. The dc signal remains a constant value of K for any 1 , t , 1. The dc
signal is plotted in Figure 2.6.

Defining Terms

Ramp: A continually growing signal such that its value is zero for t 0 and proportional to time t for t . 0.

Sinusoid: A periodic signal x(t) ¼ A cos(ot þ y ) where o ¼ 2pf with frequency in hertz.
Unit impulse: A very short pulse such that its value is zero for t j 0z and the integral of the pulse is 1.
Unit step: Function of time that is zero for t , t0 and unity for t . t0. At t ¼ t0 the magnitude changes

from zero to one. The unit step is dimensionless.

References

R.C. Dorf, Introduction to Electric Circuits, 6th ed., New York: Wiley, 2004.

R.C. Dorf, The Engineering Handbook, 2nd ed., Boca Raton, FL: CRC Press, 2004.

Further Information

IEEE Transactions on Circuits and Systems

IEEE Transactions on Education

2.2 Ideal and Practical Sources

Clayton R. Paul

A mathematical model of an electric circuit contains ideal models of physical circuit elements. Some of these

ideal circuit elements (e.g., the resistor, capacitor, inductor, and transformer) were discussed previously. Here

we will define and examine both ideal and practical voltage and current sources. The terminal characteristics of

these models will be compared to those of actual sources.

i ( t )

t
0

K

FIGURE 2.6 The dc signal with amplitude K.
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Ideal Sources

The ideal independent voltage source shown in Figure 2.7 constrains the terminal voltage across the element to

a prescribed function of time, vS(t), as v(t) ¼ vS(t). The polarity of the source is denoted by^ signs within the

circle which denotes this as an ideal independent source. Controlled or dependent ideal voltage sources will be

discussed in Section ‘‘Controlled Sources.’’ The current through the element will be determined by the circuit

that is attached to the terminals of this source.

The ideal independent current source in Figure 2.8 constrains the terminal current through the element to a

prescribed function of time, iS(t), as i(t) ¼ iS(t). The polarity of the source is denoted by an arrow within the

circle which also denotes this as an ideal independent source. The voltage across the element will be determined

by the circuit that is attached to the terminals of this source.

Numerous functional forms are useful in describing the source variation with time. These were discussed in

Section ‘‘The Step, Impulse, Ramp, Sinusoidal, and dc Signals.’’ For example, an ideal independent dc voltage

source is described by vS(t) ¼ VS, where VS is a constant. An ideal independent sinusoidal current source is

described by iS(t) ¼ IS sin(otþ f) or iS(t) ¼ IS cos(otþ f), where IS is a constant, o ¼ 2pf with f the

frequency in hertz, and f is a phase angle. Ideal sources may be used to model actual sources such as

temperature transducers, phonograph cartridges, and electric power generators. Thus usually the time form of

the output cannot generally be described with a simple, basic function such as dc, sinusoidal, ramp, step, or

impulse waveforms. We often, however, represent the more complicated waveforms as a linear combination of

more basic functions.

i(t)
+

–

b

a

v(t) = vS(t)vS(t)
+
–

vS(t)

t

FIGURE 2.7 Ideal independent voltage source.

v(t)

+

–

b

a

i(t) = iS(t)

iS(t)

iS(t)

t

FIGURE 2.8 Ideal independent current source.
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Practical Sources

The preceding ideal independent sources constrain the terminal voltage or current to a known function of time

independent of the circuit that may be placed across its terminals. Practical sources, such as batteries, have their

terminal voltage (current) dependent upon the terminal current (voltage) caused by the circuit attached to the

source terminals. A simple example of this is an automobile storage battery. The battery’s terminal voltage is

approximately 12 V when no load is connected across its terminals. When the battery is applied across the

terminals of the starter by activating the ignition switch, a large current is drawn from its terminals. During

starting, its terminal voltage drops as illustrated in Figure 2.9(a). How shall we construct a circuit model using

the ideal elements discussed thus far to model this nonideal behavior? A model is shown in Figure 2.9(b) and

consists of the series connection of an ideal resistor, RS, and an ideal independent voltage source, VS ¼ 12 V.

i

v

12V

i

v

VS = 12V

Slope = –RS

i

v

VS = 12V

Slope = –RS

IS

Automobile
Storage
Battery

+ –

+

–

v
b

a

i

VS
+

+

–

v

b

a

i

–

RS

VS

+

–

v

b

a

i

RS
RS

IS =

(a)

(b)

(c)

FIGURE 2.9 Practical sources. (a) Terminal v–i characteristic; (b) approximation by a voltage source; (c) approximation

by a current source.
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To determine the terminal voltage–current relation, we sum Kirchhoff ’s voltage law around the loop to give

v ¼ VS RSi ð2:1Þ

This equation is plotted in Figure 2.9(b) and approximates that of the actual battery. The equation gives a

straight line with slope –RS that intersects the v axis (i ¼ 0) at v ¼ VS. The resistance RS is said to be the

internal resistance of this nonideal source model. It is a fictitious resistance but the model nevertheless gives an

equivalent terminal behavior.

Although we have derived an approximate model of an actual source, another equivalent form may be

obtained. This alternative form is shown in Figure 2.9(c) and consists of the parallel combination of an ideal

independent current source, IS ¼ VS/RS, and the same resistance, RS, used in the previous model. Although it

may seem strange to model an automobile battery using a current source, the model is completely equivalent

to the series voltage source–resistor model of Figure 2.9(b) at the output terminals a–b. This is shown by

writing Kirchhoff ’s current law at the upper node to give

i ¼ IS
1

RS
v ð2:2Þ

Rewriting this equation gives

v ¼ RSIS RSi ð2:3Þ

Comparing Equation (2.3) to Equation (2.1) shows that

VS ¼ RSIS ð2:4Þ

Therefore, we can convert from one form (voltage source in series with a resistor) to another form (current

source in parallel with a resistor) very simply.

An ideal voltage source is represented by the model of Figure 2.9(b) with RS ¼ 0. An actual battery

therefore provides a close approximation of an ideal voltage source since the source resistance RS is usually

quite small. An ideal current source is represented by the model of Figure 2.9(c) with RS ¼ 1. This is very
closely represented by the bipolar junction transistor (BJT).

Defining Term

Ideal source: An ideal model of an actual source that assumes that the parameters of the source, such as its

magnitude, are independent of other circuit variables.

Reference

C.R. Paul, Analysis of Linear Circuits, New York: McGraw-Hill, 1989.

2.3 Controlled Sources

J.R. Cogdell

When the analysis of electronic (nonreciprocal) circuits became important in circuit theory, controlled sources

were added to the family of circuit elements. Table 2.1 shows the four types of controlled sources. In this

section, we will address the questions: What are controlled sources? Why are controlled sources important?

How do controlled sources affect methods of circuit analysis?
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What Are Controlled Sources?

By source we mean a voltage or current source in the usual sense. By

controlled we mean that the strength of such a source is controlled by

some circuit variable(s) elsewhere in the circuit. Figure 2.10 illustrates a

simple circuit containing an (independent) current source, is, two

resistors, and a controlled voltage source, whose magnitude is controlled

by the current i1. Thus, i1 determines two voltages in the circuit, the

voltage across R1 via Ohm’s law and the controlled voltage source via

some unspecified effect.

A controlled source may be controlled by more than one circuit

variable, but we will discuss those having a single controlling variable since multiple controlling variables

require no new ideas. Similarly, we will deal only with resistive elements, since inductors and capacitors

introduce no new concepts. The controlled voltage or current source may depend on the controlling variable

in a linear or nonlinear manner. When the relationship is nonlinear, however, the equations are frequently

linearized to examine the effects of small variations about some dc values. When we linearize, we will use the

customary notation of small letters to represent general and time-variable voltages and currents and large

letters to represent constants such as the dc value or the peak value of a sinusoid. On subscripts, large letters

represent the total voltage or current and small letters represent the small-signal component. Thus, the

equation iB ¼ IBþ Ib cos ot means that the total base current is the sum of a constant and a small-signal

component, which is sinusoidal with an amplitude of Ib.

To introduce the context and use of controlled sources we will consider a circuit model for the bipolar

junction transistor (BJT). In Figure 2.11 we show the standard symbol for an npn BJT with base (B), emitter

(E), and collector (C) identified, and voltage and current variables defined. We have shown the common

TABLE 2.1 Names, Circuit Symbols, and Definitions for the Four Possible Types of Controlled Sources

Name Circuit Symbol Definition and Units

Current-controlled voltage source (CCVS) rm

v2
+
–

+

–

i1 i1
v2 ¼ rmi1
rm ¼ transresistance

units, ohms

Current-controlled current source (CCCS)

βi1

i1
i2

i2 ¼ bi1
b, current gain, dimensionless

Voltage-controlled voltage source (VCVS)

v2
+
–

+

–

μv1
v1

+

–

v2 ¼ mv1
m, voltage gain, dimensionless

Voltage-controlled current source (VCCS)

gmv1

+

–

i2

v1

i2 ¼ gmv1
gm, transconductance

units, Siemans (mhos)

FIGURE 2.10 A simple circuit con-

taining a controlled source.
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emitter configuration, with the emitter terminal shared to make input and

output terminals. The base current, iB, ideally depends upon the base-

emitter voltage, vBE, by the relationship

iB ¼ I0 exp
vBE
VT

1 ð2:5Þ

where I0 and VT are constants. We note that the base current depends on

the base-emitter voltage only, but in a nonlinear manner. We can represent

this current by a voltage-controlled current source, but the more common

representation would be that of a nonlinear conductance, GBE(vBE), where

GBEðvBEÞ ¼
iB
vBE

Let us model the effects of small changes in the base current. If the changes are small, the nonlinear nature of

the conductance can be ignored and the circuit model becomes a linear conductance (or resistor).

Mathematically this conductance arises from a first-order expansion of the nonlinear function. Thus, if

vBE ¼ VBEþ vbe, where vBE is the total base-emitter voltage, VBE is a (large) constant voltage and vbe is a

(small) variation in the base-emitter voltage, then the first two terms in a Taylor series expansion are

iB ¼ I0 exp
VBE þ vbe

VT
1 ffi I0 exp

VBE
VT

1 þ I0
VT

exp
VBE
VT

vbe ð2:6Þ

We note that the base current is approximated by the sum of a constant term and a term that is first order in

the small variation in base-emitter voltage, vbe. The multiplier of this small voltage is the linearized

conductance, gbe. If we were interested only in small changes in currents and voltages, only this conductance

would be required in the model. Thus, the input (base-emitter) circuit can be represented for the small-signal

base variables, ib and vbe, by either equivalent circuit in Figure 2.12.

The voltage-controlled current source, gbevbe, can be replaced by a simple resistor because the small-signal

voltage and current associate with the same branch. The process of linearization is important to the modeling

of the collector-emitter characteristic, to which we now turn.

The collector current, iC, can be represented by one of the Eber and Moll equations:

iC ¼ bI0 exp
vBE
VT

1 I00 exp
vBC
VT

1 ð2:7Þ

where b and I00 are constants. If we restrict our model to the amplifying region of the transistor, the second
term is negligible and we may express the collector current as

iC ¼ bI0 exp
vBE
VT

1 ¼ biB ð2:8Þ

FIGURE 2.11 An npn BJT in the

common emitter configuration.

ib

(a)

+

–

vbe gbevbe

ib

(b)

+

–

vbe rbe = 1
gbe

FIGURE 2.12 Equivalent circuits for the base circuit: (a) uses a controlled source and (b) uses a resistor.
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Thus, for the ideal transistor, the collector-emitter circuit may be

modeled by a current-controlled current source, which may be

combined with the results expressed in Equation (2.5) to give the

model shown in Figure 2.13.

Using the technique of small-signal analysis, we may derive

either of the small-signal equivalent circuits shown in Figure 2.14.

The small-signal characteristics of the npn transistor in its

amplifying region is better represented by the equivalent circuit

shown in Figure 2.15. Note we have introduced a voltage-

controlled voltage source to model the influence of the (output) collector-emitter voltage on the (input) base-

emitter voltage, and we have placed a resistor, rce, in parallel with the collector current source to model the

influence of the collector-emitter voltage on the collector current.

The four parameters in Figure 2.15 (rbe, hre, b, and rce) are the hybrid parameters describing the transistor
properties, although our notation differs from that commonly used. The parameters in the small-signal equiv-

alent circuit depend on the operating point of the device, which is set by the time-average voltages and

currents (VBE, IC, etc.) applied to the device. All of the parameters are readily measured for a given transistor

and operating point, and manufacturers commonly specify ranges for the various parameters for a type of

transistor.

What Is the Significance of Controlled Sources?

Commonplace wisdom in engineering education and practice is that information and techniques that are

presented visually are more useful than abstract mathematical forms. Equivalent circuits are universally

used in describing electrical engineering systems and devices because circuits portray interactions in a

universal, pictorial language. This is true generally, and it is doubly necessary when circuit variables

interact through the mysterious coupling modeled by controlled sources. This is the primary significance

of controlled sources: that they represent unusual couplings of circuit variables in the universal visual

language of circuits.

A second significance is illustrated by our equivalent circuit of the npn bipolar transistor, namely, the

characterization of a class of similar devices. For example, the parameter b in Equation (2.8) gives important
information about a single transistor, and similarly for the range of b for a type of transistor. In this

connection, controlled sources lead to a vocabulary for discussing some property of a class of systems or

devices, in this case the current gain of an npn BJT.

B
iB

GBE (vBE)

+

–

vbe

E

C

E

iC

βiB

FIGURE 2.13 Equivalent circuit for BJT.

B
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+
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vbe

E

C

E
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βibrbe

+

–

vce

(a)

B
ib

+

–

vbe

E

C

E

ic

rbe

+

–

vce

(b)

gmvce

FIGURE 2.14 Two BJT small-signal equivalent circuits (gm¼ b/rbe): (a) uses a CCCS and (b) uses a VCCS.
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–

vbe

E

C
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–

vce

+

–
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FIGURE 2.15 Full hybrid parameter model for small-signal BJT.
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How Does the Presence of Controlled Sources Affect Circuit Analysis?

The presence of nonreciprocal elements, which are modeled by controlled sources, affects the analysis of the

circuit. Simple circuits may be analyzed through the direct application of Kirchhoff ’s laws to branch circuit

variables. Controlled sources enter this process similar to the constitutive relations defining R, L, and C, i.e., in

defining relationships between branch circuit variables. Thus, controlled sources add no complexity to this

basic technique.

The presence of controlled sources negates the advantages of the method that uses series and parallel

combinations of resistors for voltage and current dividers. The problem is that the couplings between circuit

variables that are expressed by controlled sources make all the familiar formulas unreliable.

When superposition is used, the controlled sources are left on in all cases as independent sources are turned

on and off, thus reflecting the kinship of controlled sources to the circuit elements. In principle, little

complexity is added; in practice, the repeated solutions required by superposition entail much additional work

when controlled sources are involved.

The classical methods of nodal and loop (mesh) analysis incorporate controlled sources without great

difficulty. For purposes of determining the number of independent variables required, that is, in establishing

the topology of the circuit, the controlled sources are treated as ordinary voltage or current sources. The

equations are then written according to the usual procedures. Before the equations are solved, however, the

controlling variables must be expressed in terms of the unknowns of the problem. For example, let us say we

are performing a nodal analysis on a circuit containing a current-controlled current source. For purposes of

counting independent nodes, the controlled current source is treated as an open circuit. After equations are

written for the unknown node voltages, the current source will introduce into at least one equation its

controlling current, which is not one of the nodal variables. The additional step required by the controlled

source is that of expressing the controlling current in terms of the nodal variables.

The parameters introduced into the circuit equations by the controlled sources end up on the left side of the

equations with the resistors rather than on the right side with the independent sources. Furthermore, the

symmetries that normally exist among the coefficients are disturbed by the presence of controlled sources.

The methods of Thévenin and Norton equivalent circuits continue to be very powerful with controlled

sources in the circuits, but some complications arise. The controlled sources must be left on for calculation of

the Thévenin (open-circuit) voltage or Norton (short-circuit) current and also for the calculation of the

output impedance of the circuit. This usually eliminates the method of combining elements in series or

parallel to determine the output impedance of the circuit, and one must either determine the output

impedance from the ratio of the Thévenin voltage to the Norton current or else excite the circuit with an

external source and calculate the response.

Defining Terms

Controlled source (dependent source): A voltage or current source whose intensity is controlled by a

circuit voltage or current elsewhere in the circuit.

Linearization: Approximating nonlinear relationships by linear relationships derived from the first-order

terms in a power series expansion of the nonlinear relationships. Normally the linearized equations are

useful for a limited range of the voltage and current variables.

Small-signal: Small-signal variables are those first-order variables used in a linearized circuit. A small-

signal equivalent circuit is a linearized circuit picturing the relationships between the small-signal

voltages and currents in a linearized circuit.
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3.1 Voltage and Current Laws

Michael D. Ciletti

Analysis of linear circuits rests on two fundamental physical laws that describe how the voltages and currents

in a circuit must behave. This behavior results from whatever voltage sources, current sources, and energy

storage elements are connected to the circuit. A voltage source imposes a constraint on the evolution of the

voltage between a pair of nodes; a current source imposes a constraint on the evolution of the current in a

branch of the circuit. The energy storage elements (capacitors and inductors) impose initial conditions on

currents and voltages in the circuit; they also establish a dynamic relationship between the voltage and the

current at their terminals.

Regardless of how a linear circuit is stimulated, every node voltage and every branch current, at every

instant in time, must be consistent with Kirchhoff ’s voltage and current laws. These two laws govern even the
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most complex linear circuits. (They also apply to a broad category of nonlinear circuits that are modeled by

point models of voltage and current.)

A circuit can be considered to have a topological (or graph) view, consisting of a labeled set of nodes and a

labeled set of edges. Each edge is associated with a pair of nodes. A node is drawn as a dot and represents a

connection between two or more physical components; an edge is drawn as a line and represents a path, or

branch, for current flow through a component (see Figure 3.1).

The edges, or branches, of the graph are assigned current labels, i1, i2,..., im. Each current has a designated

direction, usually denoted by an arrow symbol. If the arrow is drawn toward a node, the associated current is

said to be entering the node; if the arrow is drawn away from the node, the current is said to be leaving the

node. The current i1 is entering node b in Figure 3.1; the current i5 is leaving node e.

Given a branch, the pair of nodes to which the branch is attached defines the convention for

measuring voltages in the circuit. Given the ordered pair of nodes (a, b), a voltage measurement is formed as

follows:

vab ¼ va vb

where va and vb are the absolute electrical potentials (voltages) at the respective nodes, taken relative to some

reference node. Typically, one node of the circuit is labeled as ground, or reference node; the remaining nodes

are assigned voltage labels. The measured quantity, vab, is called the voltage drop from node a to node b.

We note that

vab ¼ vba

and that

vba ¼ vb va

is called the voltage rise from a to b. Each node voltage implicitly defines the voltage drop between the

respective node and the ground node.

The pair of nodes to which an edge is attached may be written as (a, b) or (b, a). Given an ordered pair of

nodes (a, b), a path from a to b is a directed sequence of edges in which the first edge in the sequence contains

node label a, the last edge in the sequence contains node label b, and the node indices of any two adjacent

members of the sequence have at least one node label in common. In Figure 3.1, the edge sequence {e1, e2, e4}

is not a path, because e2 and e4 do not share a common node label. The sequence {e1, e2} is a path from node a

to node c.

FIGURE 3.1 Graph representation of a linear circuit.
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A path is said to be closed if the first node index of its first edge is identical to the second node index of its last

edge. The following edge sequence forms a closed path in the graph given in Figure 3.1: {e1, e2, e3, e4, e6, e7}.

Note that the edge sequences {e8} and {e1, e1} are closed paths.

Kirchhoff’s Current Law

Kirchhoff ’s current law (KCL) imposes constraints on the currents in the branches that are attached to each

node of a circuit. In simplest terms, KCL states that the sum of the currents that are entering a given node

must equal the sum of the currents that are leaving the node. Thus, the set of currents in branches attached to

a given node can be partitioned into two groups whose orientation is away from (into) the node. The two

groups must contain the same net current. Applying KCL at node b in Figure 3.1 gives

i1ðtÞ þ i3ðtÞ ¼ i2ðtÞ
A connection of water pipes that has no leaks is a physical analogy of this situation. The net rate at which water

is flowing into a joint of two or more pipes must equal the net rate at which water is flowing away from the

joint. The joint itself has the property that it only connects the pipes and thereby imposes a structure on

the flow of water, but it cannot store water. This is true regardless of when the flow is measured. Likewise,

the nodes of a circuit are modeled as though they cannot store charge. (Physical circuits are sometimes

modeled for the purpose of simulation as though they store charge, but these nodes implicitly have a capacitor

that provides the physical mechanism for storing the charge. Thus, KCL is ultimately satisfied.)

KCL can be stated alternatively as: ‘‘the algebraic sum of the branch currents entering (or leaving) any node

of a circuit at any instant of time must be zero.’’ In this form, the label of any current whose orientation is away

from the node is preceded by a minus sign. The currents entering node b in Figure 3.1 must satisfy

i1ðtÞ i2ðtÞ þ i3ðtÞ ¼ 0

In general, the currents entering or leaving each node m of a circuit must satisfyX
ikmðtÞ ¼ 0

where ikm(t) is understood to be the current in branch k attached to node m. The currents used in this

expression are understood to be the currents that would be measured in the branches attached to the node,

and their values include a magnitude and an algebraic sign. If the measurement convention is oriented for the

case where currents are entering the node, then the actual current in a branch has a positive or negative sign

depending on whether the current is truly flowing toward the node in question.

Once KCL has been written for the nodes of a circuit, the equations can be rewritten by substituting into the

equations the voltage–current relationships of the individual components. If a circuit is resistive, the resulting

equations will be algebraic. If capacitors or inductors are included in the circuit, the substitution will produce

a differential equation. For example, writing KCL at the node for v3 in Figure 3.2 produces

i2 þ i1 i3 ¼ 0

and

C1
dv1
dt

þ v4 v3
R2

C2
dv2
dt

¼ 0

KCL for the node between C2 and R1 can be written to eliminate variables and lead to a solution describing the

capacitor voltages. The capacitor voltages, together with the applied voltage source, determine the remaining

voltages and currents in the circuit. Nodal analysis (see Section "Node and Mesh Analysis") treats the

systematic modeling and analysis of a circuit under the influence of its sources and energy storage elements.
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Kirchhoff’s Current Law in the Complex Domain

Kirchhoff ’s current law is ordinarily stated in terms of the real (time-domain) currents flowing in a circuit,

because it actually describes physical quantities, at least in a macroscopic, statistical sense. It also applied,

however, to a variety of purely mathematical models that are commonly used to analyze circuits in the so-

called complex domain.

For example, if a linear circuit is in the sinusoidal steady state, all of the currents and voltages in the circuit

are sinusoidal. Thus, each voltage has the form

vðtÞ ¼ A sinðot þ fÞ
and each current has the form

iðtÞ ¼ B sinðot þ yÞ
where the positive coefficients A and B are called the magnitudes of the signals, and f and y are the phase
angles of the signals. These mathematical models describe the physical behavior of electrical quantities, and

instrumentation, such as an oscilloscope, can display the actual waveforms represented by the mathematical

model. Although methods exist for manipulating the models of circuits to obtain the magnitude and phase

coefficients that uniquely determine the waveform of each voltage and current, the manipulations are cumber-

some and not easily extended to address other issues in circuit analysis.

Steinmetz (Smith and Dorf, 1992) found a way to exploit complex algebra to create an elegant framework

for representing signals and analyzing circuits when they are in the steady state. In this approach, a model is

developed in which each physical sign is replaced by a ‘‘complex’’ mathematical signal. This complex signal in

polar, or exponential, form is represented as

vcðtÞ ¼ Aeð jotþfÞ

The algebra of complex exponential signals allows us to write this as

vcðtÞ ¼ Ae jfe jwt

and Euler’s identity gives the equivalent rectangular form:

vcðtÞ ¼ A cos ðot þ fÞ þ j sin ðot þ fÞ

So we see that a physical signal is either the real (cosine) or the imaginary (sine) component of an abstract,

complex mathematical signal. The additional mathematics required for treatment of complex numbers allows

R1

C2

R2 i1

+

−

v2++ − −v1

i2

C1
v3

vin v4i3

FIGURE 3.2 Example of a circuit containing energy storage elements.
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us to associate a phasor, or complex amplitude, with a sinusoidal signal. The time-invariant phasor associated

with v(t) is the quantity

Vc ¼ Ae jf

Notice that the phasor vc is an algebraic constant and that it incorporates the parameters A and f of the

corresponding time-domain sinusoidal signal.

Phasors can be thought of as being vectors in a two-dimensional plane. If the vector is allowed to rotate

about the origin in the counterclockwise direction with frequency o, the projection of its tip onto the

horizontal (real) axis defines the time-domain signal corresponding to the real part of vc(t), i.e., A cos[ot1f],
and its projection onto the vertical (imaginary) axis defines the time-domain signal corresponding to the

imaginary part of vc(t), i.e., A sin[ot 1 f].

The composite signal vc(t) is a mathematical entity; it cannot be seen with an oscilloscope. Its value lies in the

fact that when a circuit is in the steady state, its voltages and currents are uniquely determined by their

corresponding phasors, and these in turn satisfy Kirchhoff ’s voltage and current laws! Thus, we are able to writeX
Ikm ¼ 0

where Ikm is the phasor of ikm(t), the sinusoidal current in branch k attached to node m. An equation of this

form can be written at each node of the circuit. For example, at node b in Figure 3.1 KCL would have the form

I1 I2 þ I3 ¼ 0

Consequently, a set of linear, algebraic equations describes the phasors of the currents and voltages in a circuit

in the sinusoidal steady state, i.e., the notion of time is suppressed (see Section "Node and Mesh Analysis").

The solution of the set of equations yields the phasor of each voltage and current in the circuit from which the

actual time-domain expressions can be extracted.

It can also be shown that KCL can be extended to apply to the Fourier transforms and the Laplace

transforms of the currents in a circuit. Thus, a single relationship between the currents at the nodes of a circuit

applies to all of the known mathematical representations of the currents (Ciletti, 1988).

Kirchhoff’s Voltage Law

Kirchhoff ’s voltage law (KVL) describes a relationship among the voltages measured across the branches in any

closed, connected path in a circuit. Each branch in a circuit is connected to two nodes. For the purpose of

applying KVL, a path has an orientation in the sense that in ‘‘walking’’ along the path one would enter one of

the nodes and exit the other. This establishes a direction for determining the voltage across a branch in the

path: the voltage is the difference between the potential of the node entered and the potential of the node at

which the path exits. Alternatively, the voltage drop along a branch is the difference of the node voltage at the

entered node and the node voltage at the exit node. For example, if a path includes a branch between node a

and node b, the voltage drop measured along the path in the direction from node a to node b is denoted by vab
and is given by vab¼ va – vb. Given vab, branch voltage along the path in the direction from node b to node a is

vba¼ vb–va¼ –vab.

Kirchhoff ’s voltage law, like Kirchhoff ’s current law, is true at any time. KVL can also be stated in terms of

voltage rises instead of voltage drops.

KVL can be expressed mathematically as ‘‘the algebraic sum of the voltages drops around any closed path of

a circuit at any instant of time is zero.’’ This statement can also be cast as an equation:X
vkmðtÞ ¼ 0

where vkm(t) is the instantaneous voltage drop measured across branch k of path m. By convention, the voltage

drop is taken in the direction of the edge sequence that forms the path.
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The edge sequence {e1, e2, e3, e4, e6, e7} forms a closed path in Figure 3.1. The sum of the voltage drops taken

around the path must satisfy KVL:

vabðtÞ þ vbcðtÞ þ vcdðtÞ þ vdeðtÞ þ vef ðtÞ þ vfaðtÞ ¼ 0

Since vaf (t)¼ –vfa(t), we can also write

vaf ðtÞ ¼ vabðtÞ þ vbcðtÞ þ vcdðtÞ þ vdeðtÞ þ vef ðtÞ

Had we chosen the path corresponding to the edge sequence {e1, e5, e6, e7} for the path, we would have

obtained

vaf ðtÞ ¼ vabðtÞ þ vbeðtÞ þ vef ðtÞ

This demonstrates how KCL can be used to determine the voltage between a pair of nodes. It also reveals the

fact that the voltage between a pair of nodes is independent of the path between the nodes on which the

voltages are measured.

KVL in the Complex Domain

KVL also applies to the phasors of the voltages in a circuit in steady state and to the Fourier transforms and

Laplace transforms of the voltages in a circuit.

Importance of KVL and KCL

KCL is used extensively in nodal analysis because it is amenable to computer-based implementation and

supports a systematic approach to circuit analysis. Nodal analysis leads to a set of algebraic equations in which

the variables are the voltages at the nodes of the circuit. This formulation is popular in CAD programs because

the variables correspond directly to physical quantities that can be measured easily.

KVL can be used to completely analyze a circuit, but it is seldom used in large-scale circuit simulation

programs. The basic reason is that the currents that correspond to a loop of a circuit do not necessarily

correspond to the currents in the individual branches of the circuit. Nonetheless, KVL is frequently used to

troubleshoot a circuit by measuring voltage drops across selected components.

Defining Terms

Branch: A symbol representing a path for current through a component in an electrical circuit.

Branch current: The current in a branch of a circuit.

Branch voltage: The voltage across a branch of a circuit.

Independent source: A voltage (current) source whose voltage (current) does not depend on any other

voltage or current in the circuit.

Node: A symbol representing a physical connection between two electrical components in a circuit.

Node voltage: The voltage between a node and a reference node (usually ground).

References
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Further Information

Kirchhoff ’s laws form the foundation of modern computer software for analyzing electrical circuits. The

interested reader might consider the use of determining the minimum number of algebraic equations that

fully characterizes the circuit. It is determined by KCL, KVL, or some mixture of the two.

3.2 Node and Mesh Analysis

J. David Irwin

In this section, Kirchhoff ’s current law (KCL) and Kirchhoff ’s voltage law (KVL) will be used to determine

currents and voltages throughout a network. For simplicity, we will first illustrate the basic principles of both

node analysis and mesh analysis using only dc circuits. Once the fundamental concepts have been explained

and demonstrated, we will employ them to determine the currents and voltages in an ac circuit. Since the

application of these techniques to large circuits requires the use of computer-aided analysis tools, the use of

MATLAB as a solution method will be demonstrated, together with PSPICE, for purposes of comparison.

Node Analysis

In a node analysis, the node voltages are the variables in a circuit,

and KCL is the vehicle used to determine them. One node in the

network is selected as a reference node, and then all other node

voltages are defined with respect to that particular node. This

reference node is typically referred to as ground using the symbol

( ), indicating that it is at ground-zero potential.

Consider the network shown in Figure 3.3. The network has three

nodes, and the node at the bottom of the circuit has been selected as

the reference node. Therefore the two remaining nodes, labeled V1
and V2, are measured with respect to this reference node.

Suppose that the node voltages V1 and V2 have somehow been

determined, i.e., V1¼ 4 V and V2 ¼ 4 V. Once these node

voltages are known, Ohm’s law can be used to find all branch

currents. For example:

I1 ¼ V1 0

2
¼ 2A

I2 ¼ V1 V2
2

¼ 4 ð 4Þ
2

¼ 4A

I3 ¼ V2 0

1
¼ 4

1
¼ 4A

Note that KCL is satisfied at every node, i.e.:

I1 6þ I2 ¼ 0

I2 þ 8þ I3 ¼ 0

I1 þ 6 8 I3 ¼ 0

FIGURE 3.3 A three-node network.
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Therefore, as a general rule, if the node voltages are known, all

branch currents in the network can be immediately deter-

mined.

In order to determine the node voltages in a network, we

apply KCL to every node in the network except the reference

node. Therefore, given an N-node circuit, we employ N 1

linearly independent simultaneous equations to determine the

N 1 unknown node voltages. Graph theory, which is covered

in Section ‘‘Graph Theory’’, can be used to prove that exactly

N 1 linearly independent KCL equations are required to find

the N 1 unknown node voltages in a network.

Let us now demonstrate the use of KCL in determining the

node voltages in a network. For the network shown in Figure 3.4, the bottom node is selected as the reference

and the three remaining nodes, labeled V1, V2, and V3, are measured with respect to that node. All unknown

branch currents are also labeled. The KCL equations for the three nonreference nodes are

I1 þ 4þ I2 ¼ 0

4þ I3 þ I4 ¼ 0

I1 I4 2 ¼ 0

Using Ohm’s law, these equations can be expressed as

V1 V3
2

þ 4þ V1
2
¼ 0

4þ V2
1
þ V2 V3

1
¼ 0

ðV1 V3Þ
2

V2 V3
1

2 ¼ 0

Solving these equations, using any convenient method, yields V1¼ 8/3 V, V2¼ 10/3 V, and V3¼ 8/3 V.

Applying Ohm’s law we find that the branch currents are I1¼ 16/6 A, I2¼ 8/6 A, I3¼ 20/6 A, and

I4¼ 4/6 A. A quick check indicates that KCL is satisfied at

every node.

The circuits examined thus far have contained only

current sources and resistors. In order to expand our

capabilities, we next examine a circuit containing voltage

sources. The circuit shown in Figure 3.5 has three non-

reference nodes labeled V1, V2, and V3. However, we do not

have three unknown node voltages. Since known voltage

sources exist between the reference node and nodes V1 and

V3, these two-node voltages are known, i.e., V1¼ 12 V and

V3¼ – 4 V. Therefore, we have only one unknown node

voltage, V2. The equations for this network are then

V1 ¼ 12

V3 ¼ 4

FIGURE 3.4 A four-node network.

FIGURE 3.5 A four-node network containing

voltage sources.
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and

I1 þ I2 þ I3 ¼ 0

The KCL equation for node V2 written using Ohm’s law is

ð12 V2Þ
1

þ V2
2
þ V2 ð 4Þ

2
¼ 0

Solving this equation yields V2¼ 5 V, I1¼ 7 A, I2¼ 5/2 A, and

I3¼ 9/2 A. Therefore, KCL is satisfied at every node.

Thus, the presence of a voltage source in the network actually

simplifies a node analysis. In an attempt to generalize this idea,

consider the network in Figure 3.6. Note that in this case

V1¼ 12 V and the difference between node voltages V3 and V2 is

constrained to be 6 V. Hence, two of the three equations needed

to solve for the node voltages in the network are

V1 ¼ 12

V3 V2 ¼ 6

To obtain the third required equation, we form what is called a

supernode, indicated by the dotted enclosure in the network. Just as KCL must be satisfied at any node in the

network, it must be satisfied at the supernode as well. Therefore, summing all the currents leaving the

supernode yields the equation

ðV2 V1Þ
1

þ V2
2
þ V3 V1

1
þ V3

2
¼ 0

The three equations yield the node voltages V1¼ 12 V, V2¼ 5 V, and V3¼ 11 V, and therefore I1¼ 1 A,

I2¼ 7 A, I3 ¼ 5/2 A, and I4 ¼ 11/2 A.

Mesh Analysis

In a mesh analysis, the mesh currents in the network are the

variables and KVL is the mechanism used to determine them. Once

all the mesh currents have been determined, Ohm’s law will yield

the voltages anywhere in a circuit. If the network contains N

independent meshes, then graph theory can be used to prove that N

independent linear simultaneous equations will be required to

determine the N mesh currents.

The network shown in Figure 3.7 has two independent meshes.

They are labeled I1 and I2, as shown. If the mesh currents are known

to be I1¼ 7 A and I2¼ 5/2 A, then all voltages in the network can be

calculated. For example, the voltage V1, i.e., the voltage across the

1-O resistor, is V1¼ I1R ¼ (7)(1) ¼ 7 V. Likewise, V2 ¼ (I1 I2)R ¼ (7 –5/2)(2)¼ 9 V. Furthermore,

we can check our analysis by showing that KVL is satisfied around every mesh. Starting at the lower left-hand

corner and applying KVL to the left-hand mesh, we obtain

ð7Þð1Þ þ 16 ð7 5=2Þð2Þ ¼ 0

FIGURE 3.6 A four-node network used to

illustrate a supernode.

FIGURE 3.7 A network containing two

independent meshes.
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where we have assumed that increases in energy level are positive

and decreases in energy level are negative.

Consider now the network in Figure 3.8. Once again, if we

assume that an increase in energy level is positive and a decrease in

energy level is negative, the three KVL equations for the three

meshes defined are

I1ð1Þ 6 ðI1 I2Þð1Þ ¼ 0

þ12 ðI2 I1Þð1Þ ðI2 I3Þð2Þ ¼ 0

ðI3 I2Þð2Þ þ 6 I3ð2Þ ¼ 0

These equations can be written as

2I1 I2 ¼ 6

I12 þ 3I2 2I3 ¼ 12

2I2 þ 4I3 ¼ 6

Solving these equations using any convenient method yields I1¼ 1 A, I2¼ 8 A, and I3¼ 5.5 A. Any voltage in

the network can now be easily calculated, e.g., V2 ¼ (I2 I3)(2)¼ 5 V and V3 ¼ I3(2)¼ 11 V.

Just as in the node analysis discussion, we now expand our capabilities by considering circuits that contain

current sources. In this case, we will show that for mesh analysis, the presence of current sources makes the

solution easier.

The network in Figure 3.9 has four meshes which are labeled I1,

I2, I3, and I4. However, since two of these currents, i.e., I3 and I4,

pass directly through a current source, two of the four linearly

independent equations required to solve the network are

I3 ¼ 4

I4 ¼ 2

The two remaining KVL equations for the meshes defined by I1 and

I2 are

þ6 ðI1 I2Þð1Þ ðI1 I3Þð2Þ ¼ 0

ðI2 I1Þð1Þ I2ð2Þ ðI2 I4Þð1Þ ¼ 0

Solving these equations for I1 and I2 yields I1¼ 54/11 A and I2¼ 8/11 A. A quick check will show that KCL is

satisfied at every node. Furthermore, we can calculate any node voltage in the network. For example,

V3 ¼ (I3 I4)(1) ¼ 6 V and V1 ¼ V3 1 (I1 I2)(1) ¼ 112/11 V.

An AC Analysis Example

Both node analysis and mesh analysis have been presented and discussed. Although the methods have been

presented within the framework of dc circuits with only independent sources, the techniques are applicable to

ac analysis and circuits containing dependent sources.

FIGURE 3.8 A three-mesh network.

FIGURE 3.9 A four-mesh network con-

taining current sources.
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To illustrate the applicability of the two techniques to ac

circuit analysis, consider the network in Figure 3.10. All voltages

and currents are phasors and the impedance of each passive

element is known.

In the node analysis case, the voltage V4 is known and the

voltage between V2 and V3 is constrained. Therefore, two of the

four required equations are

V4 ¼ 12=0–

V2 þ 6=0– ¼ V3

KCL for the node labeled V1 and the supernode containing the nodes labeled V2 and V3 is

V1 V3
2

þ V1 V4
j1

¼ 2=0–

V2
1
þ 2=0– þ V3 V1

2
þ V3 V4

j2
¼ 2=0–

Solving these equations yields the remaining unknown node voltages:

V1 ¼ 11:9 j0:88 ¼ 11:93= 4:22–V

V2 ¼ 3:66 j1:07 ¼ 3:91= 16:34–V

V3 ¼ 9:66 j1:07 ¼ 9:72= 6:34–V

In the mesh analysis case, the currents I1 and I3 are constrained to be

I1 ¼ 2=0–

I4 I3 ¼ 4=0–

The two remaining KVL equations are obtained from the mesh defined by mesh current I2 and the loop that

encompasses the meshes defined by mesh currents I3 and I4:

2ðI2 I1Þ ð j1ÞI2 j2ðI2 I4Þ ¼ 0

I3 þ 6=0– j2ðI4 I2Þ 12=0– ¼ 0

Solving these equations yields the remaining unknown mesh currents

I2 ¼ 0:88= 6:34–A

I3 ¼ 3:91=163:66–A

I4 ¼ 1:13=72:35–A

FIGURE 3.10 A network containing five

nodes and four meshes.
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As a quick check we can use these currents to compute the node voltages. For example, if we calculate

V2 ¼ 1ðI3Þ
and

V1 ¼ j1ðI2Þ þ 12=0–Þ
we obtain the answers computed earlier.

Since both node and mesh analyses will yield all currents and voltages in a network, which technique should

be used? The answer to this question depends upon the network to be analyzed. If the network contains more

voltage sources than current sources, node analysis might be the easier technique. If, however, the network

contains more current sources than voltage sources, mesh analysis may be the easiest approach.

Computer Simulation of Networks

While any network can be analyzed using mesh or nodal techniques, the required calculations are cumbersome

for more than three loops or nodes. In these cases, computer simulation is an attractive alternative. As an

example, we will solve for the voltage V0 in the circuit in Figure 3.11 using first MATLAB and then PSPICE.

MATLAB requires a matrix representation of the network. Using mesh analysis yields the equations

I1 ¼ 2IX

I1 þ ð2 j1ÞI2 þ ð j1ÞI4 ¼ 0

ð j1ÞI2 þ ð j1ÞI3 þ ð2 j1ÞI4 ð j1ÞI5 2I6 ¼ 6=30–

I3 I4 ¼ 3= 60–

ð j1ÞI3 þ ð4þ j1ÞI6 2I6 ¼ 0

2I4 2I5 þ 4I6 þ 4VX ¼ 0

I4 I6 ¼ IX

ðI4 I1Þð1Þ ¼ VX

Note that a ‘‘super-mesh’’ path around the I3 and I4 meshes has been used to avoid the 3-A current source.

This is analogous to the supernode in Figure 3.6. Eliminating IX and VX, the equations are put into matrix

format:

1 0 0 2 0 2
1 ð2 j1Þ 0 j1 0 0
0 j1 j1 2 j1 j1 2
0 0 1 1 0 0
0 0 j1 0 4þ j1 2
4 4 0 2 2 4

266666664

377777775

I1
I2
I3
I4
I5
I6

266666664

377777775 ¼

0
0

5:196þ j3
1:5 j2:598

0
0

266666664

377777775
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Solving for the currents:

I1
I2
I3
I4
I5
I6

266666664

377777775 ¼

1 0 0 2 0 2
1 ð2 j1Þ 0 j1 0 0
0 j1 j1 2 j1 j1 2
0 0 1 1 0 0
0 0 j1 0 4þ j1 2
4 4 0 2 2 4

266666664

377777775

1 0
0

5:196þ j3
1:5 j2:598

0
0

266666664

377777775
In MATLAB, we first specify the sources, V1 and I1:

44V1 ¼ 5:196þ 3i

44I1 ¼ 1:5 2:598i

(In MATLAB, ‘‘i’’ is the imaginary operator
ffiffiffiffi
1

p
.) Next, we enter the impedance matrix and voltage

vector:

44 Z ¼ ½1 0 0 2 0 2; 1 2 1i 0 1i 0 0; 0 1i 1i 2 1i 1i 2; 0 0 1
1 0 0; 0 0 1i 0 4þ 1i 2; 4 4 0 2 2 4

44V ¼ ½0; 0; V1; I1; 0; 0

To solve for the current vector, we enter

44I ¼ invðZÞ*V
The results are

I ¼ 1.3713 þ 0.5786i

1.7369 þ 0.4299i

2.9556 0.0655i

1.4556 þ 2.5325i

0.8155 þ 1.6566i

0.7700 þ 2.2432i

1Ω

1Ω

21x

Vx

V1

6/30 V

− +

−
+

−
+

−

+

I2

I1 I3

Vo

4Vx

I5

I6I4

I1

Ix

3/−60 A

−j1Ω

j1Ω

2Ω

2Ω

2Ω

FIGURE 3.11 A six mesh–five non-reference node network.
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Finally, V0 ¼ 2I5. Since I5 ¼ 0.8155 þ j1.6566 A, or 1.8464=63:79– in polar form, we find V0 ¼
3.6928=63:79– V.
In PSPICE, we draw the circuit using one of the accompanying schematic entry tools, either Schematics or

Capture. The resulting Schematics file is shown in Figure 3.12. Note that capacitors and inductors must be

specified in Farads and Henries, respectively. Therefore, any excitation frequency can be chosen with the L and

C values calculated from the known impedances. The most convenient frequency is o¼ 1 rad./sec or

0.1591 Hz. Figure 3.13 shows the AC Sweep settings to produce a single frequency analysis at 0.1591 Hz. Also,

the VPRINT1 part is required to load the simulation results into the OUTPUT file.

Finally, to preserve the clarity of the schematic, the controlling connections on both dependent sources are

reversed with respect to Figure 3.12. To accommodate, we set the gains of the sources at – 4 and – 2. From the

FIGURE 3.12 The Schematics file for the network in Figure 3.11 ready for simulation.

FIGURE 3.13 The AC Sweep attribute window in PSPICE.
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OUTPUT file, the simulation results are

FREQ VMðOUTÞ VPðOUTÞ

0:1591 3:692 63:79

or V0¼ 3.692=63:79– V. The PSPICE and MATLAB results match to four significant digits.

Defining Terms

ac: An abbreviation for alternating current.

dc: An abbreviation for direct current.

Kirchhoff’s current law (KCL): This law states that the algebraic sum of the currents either entering or

leaving a node must be zero. Alternatively, the law states that the sum of the currents entering a node

must be equal to the sum of the currents leaving that node.

Kirchhoff’s voltage law (KVL): This law states that the algebraic sum of the voltages around any loop is

zero. A loop is any closed path through the circuit in which no node is encountered more than once.

MATLAB and PSPICE: Computer-aided analysis techniques.

Mesh analysis: A circuit analysis technique in which KVL is used to determine the mesh currents in a

network. A mesh is a loop that does not contain any loops within it.

Node analysis: Acircuit analysis technique inwhich KCL is used to determine the node voltages in a network.

Ohm’s law: A fundamental law which states that the voltage across a resistance is directly proportional to

the current flowing through it.

Reference node: One node in a network that is selected to be a common point, and all other node voltages

are measured with respect to that point.

Supernode: A cluster of nodes, interconnected with voltage sources, such that the voltage between any two

nodes in the group is known.

Reference

J.D. Irwin, Basic Engineering Circuit Analysis, 7th ed., New York: John Wiley & Sons, 2002.

3.3 Network Theorems

Allan D. Kraus

Linearity and Superposition

Linearity

Consider a system (which may consist of a single network element) represented by a block, as shown in

Figure 3.14, and observe that the system has an input designated by e (for excitation) and an output designated

by r (for response). The system is considered to be linear if it satisfies the homogeneity and superposition

conditions.

The homogeneity condition: If an arbitrary input to the system, e, causes a response, r, then if ce is the input,

the output is cr where c is some arbitrary constant.

The superposition condition: If the input to the system, e1, causes a

response, r1, and if an input to the system, e2, causes a response, r2,

then a response, r1 1 r2, will occur when the input is e1 1 e2.

If neither the homogeneity condition nor the superposition

condition is satisfied, the system is said to be nonlinear. FIGURE 3.14 A simple system.
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The Superposition Theorem

While both the homogeneity and superposition conditions are necessary for linearity, the superposition

condition, in itself, provides the basis for the superposition theorem:

If cause and effect are linearly related, the total effect due to several causes acting simultaneously is equal to

the sum of the individual effects due to each of the causes acting one at a time.

Example 3.1

Consider the network driven by a current source at the left and a voltage source at the top, as shown

in Figure 3.15(a). The current phasor indicated by Î is to be determined. According to the super-

position theorem, the current Î will be the sum of the two current components ÎV due to the voltage

source acting alone as shown in Figure 3.15(b) and ÎC due to the current source acting alone shown in

Figure 3.15(c):

ÎI ¼ ÎIV þ ÎIC

Figure 3.15(b) and (c) follow from the methods of removing the effects of independent voltage and current

sources. Voltage sources are nulled in a network by replacing them with short circuits and current sources are

nulled in a network by replacing them with open circuits.

FIGURE 3.15 (a) A network to be solved by using superposition; (b) the network with the current source nulled; and

(c) the network with the voltage source nulled.
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The networks displayed in Figure 3.15(b) and (c) are simple ladder networks in the phasor domain, and the

strategy is to first determine the equivalent impedances presented to the voltage and current sources. In Figure

3.15(b), the group of three impedances to the right of the voltage source are in series-parallel and possess an

impedance of

ZP ¼ ð40 j40Þð j40Þ
40þ j40 j40

¼ 40þ j40O

and the total impedance presented to the voltage source is

Z ¼ ZP þ 40 j40 ¼ 40þ j40þ 40 j40 ¼ 80O

Then Î1, the current leaving the voltage source, is

ÎI1 ¼ 240þ j0

80
¼ 3þ j0A

and by a current division

ÎIV ¼ j40

40 j40þ j40
ð3þ j0Þ ¼ jð3þ j0Þ ¼ 0þ j3 A

In Figure 3.15(b), the current source delivers current to the 40O resistor and to an impedance consisting of the

capacitor and Zp. Call this impedance Za so that

Za ¼ j40þ ZP ¼ j40þ 40þ j40 ¼ 40O

Then, two current divisions give ÎC:

ÎIC ¼ 40

40þ 40

j40

40 j40þ j40
ð0 j6Þ ¼ j

2
ð0 j6Þ ¼ 3þ j0A

The current ÎC in the circuit of Figure 3.15(a) is

ÎI ¼ ÎIV þ ÎIC ¼ 0þ j3 þ ð3þ j0Þ ¼ 3þ j3A

The Network Theorems of Thévenin and Norton

If interest is to be focused on the voltages and across the currents through a small portion of a network such as

network B in Figure 3.16(a), it is convenient to replace network A, which is complicated and of little interest,

by a simple equivalent. The simple equivalent may contain a single, equivalent, voltage source in series with an

equivalent impedance in series as displayed in Figure 3.16(b). In this case, the equivalent is called a Thévenin

equivalent. Alternatively, the simple equivalent may consist of an equivalent current source in parallel with an

equivalent impedance. This equivalent, shown in Figure 3.16(c), is called a Norton equivalent. Observe that as

long as ZT (subscript T for Thévenin) is equal to ZN (subscript N for Norton), the two equivalents may be

obtained from one another by a simple source transformation.

Conditions of Application

The Thévenin and Norton network equivalents are only valid at the terminals of network A in Figure 3.16(a)

and they do not extend to its interior. In addition, there are certain restrictions on networks A and B. Network

A may contain only linear elements but may contain both independent and dependent sources. Network B, on
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the other hand, is not restricted to linear elements; it may contain nonlinear or time-varying elements and

may also contain both independent and dependent sources. Together, there can be no controlled source

coupling or magnetic coupling between networks A and B.

The Thévenin Theorem

The statement of the Thévenin theorem is based on Figure 3.16(b):

Insofar as a load which has no magnetic or controlled source coupling to a one-port is concerned, a

network containing linear elements and both independent and controlled sources may be replaced by an

ideal voltage source of strength, V̂VT, and an equivalent impedance, ZT, in series with the source. The value

of V̂VT is the open-circuit voltage, V̂VOC, appearing across the terminals of the network and ZT is the driving

point impedance at the terminals of the network, obtained with all independent sources set equal to zero.

The Norton Theorem

The Norton theorem involves a current source equivalent. The statement of the Norton theorem is based on

Figure 3.16(c):

Insofar as a load which has no magnetic or controlled source coupling to a one-port is concerned, the

network containing linear elements and both independent and controlled sources may be replaced by an

ideal current source of strength, ÎIN, and an equivalent impedance, ZN, in parallel with the source. The

value of ÎIN is the short-circuit current, ÎISC, which results when the terminals of the network are shorted

and ZN is the driving point impedance at the terminals when all independent sources are set equal to

zero.

The Equivalent Impedance, ZT¼ZN
Three methods are available for the determination of ZT. All of them are applicable at the analyst’s discretion.

When controlled sources are present, however, the first method cannot be used.

The first method involves the direct calculation of Zeq¼ZT¼ZN by looking into the terminals of the

network after all independent sources have been nulled. Independent sources are nulled in a network by

FIGURE 3.16 (a) Two one-port networks; (b) the Thévenin equivalent for network A; and (c) the Norton equivalent for

network A.
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replacing all independent voltage sources with a short circuit and all independent current sources with an

open circuit.

The second method, which may be used when controlled sources are present in the network, requires the

computation of both the Thévenin equivalent voltage (the open-circuit voltage at the terminals of the network)

and the Norton equivalent current (the current through the short-circuited terminals of the network).

The equivalent impedance is the ratio of these two quantities:

ZT ¼ ZN ¼ Zeq ¼ V̂VT

ÎIN
¼ V̂VOC

ÎISC

The third method may also be used when controlled sources are present within the network. A test voltage

may be placed across the terminals with a resulting current calculated or measured. Alternatively, a test current

may be injected into the terminals with a resulting voltage determined. In either case, the equivalent resistance

can be obtained from the value of the ratio of the test voltage V̂V0 to the resulting current Î0:

ZT ¼ V̂V0

ÎI0
Example 3.2

The current through the capacitor with impedance –j35 O in Figure 3.17(a) may be found using Thévenin’s

theorem. The first step is to remove the –j35 O capacitor and consider it as the load. When this is done, the

network in Figure 3.17(b) results.

The Thévenin equivalent voltage is the voltage across the 40-O resistor. The current through the 40-O
resistor was found in Example 3.1 to be I ¼ 3 1 j3 O. Thus

V̂VT ¼ 40ð3þ j3Þ ¼ 120þ j120 V

The Thévenin equivalent impedance may be found by looking into the terminals of the network in

Figure 3.17(c). Observe that both sources in Figure 3.17(a) have been nulled and that, for ease of computation,

impedances Za and Zb have been placed on Figure 3.17(c). Here

Za ¼ ð40 j40Þð j40Þ
40þ j40 j40

¼ 40þ j40O

Zb ¼ ð40Þð40Þ
40þ 40

¼ 20O

and
ZT ¼ Zb þ j15 ¼ 20þ j15O

Both the Thévenin equivalent voltage and impedance are shown in Figure 3.17(d); and when the load is

attached, as in Figure 3.17(d), the current can be computed as

ÎI ¼ V̂VT
20þ j15 j35

¼ 120þ j120

20 j20
¼ 0þ j6 A

The Norton equivalent circuit is obtained via a simple voltage-to-current source transformation and is

shown in Figure 3.18. Here it is observed that a single current division gives

ÎI ¼ 20þ j15

20þ j15 j35
ð6:72þ j0:96Þ ¼ 0þ j6 A
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Tellegen’s Theorem

Tellegen’s theorem states:

In an arbitrarily lumped network subject to KVL and KCL constraints, with reference directions

of the branch currents and branch voltages associated with the KVL and KCL constraints, the

product of all branch currents and branch voltages must equal zero.

FIGURE 3.18 The Norton equivalent of Figure 3.17(d).

FIGURE 3.17 (a) A network in the phasor domain; (b) the network with the load removed; (c) the network for the

computation of the Thévenin equivalent impedance; and (d) the Thévenin equivalent.
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Tellegen’s theorem may be summarized by the equation

Xb
k¼1

vk jk ¼ 0

where the lower case letters v and j represent instantaneous values of the branch voltages and branch currents,

respectively, and where b is the total number of branches. A matrix representation employing the branch

current and branch voltage vectors also exists. Because V and J are column vectors

V · J ¼ VTJ ¼ JTV

The prerequisite concerning the KVL and KCL constraints in the statement of Tellegen’s theorem is of crucial

importance.

Example 3.3

Figure 3.19 displays an oriented graph of a particular network in which there are six branches labeled with

numbers within parentheses and four nodes labeled by numbers within circles. Several known branch currents

and branch voltages are indicated. Because the type of elements or their values is not germane to the

construction of the graph, the other branch currents and branch voltages may be evaluated from repeated

applications of KCL and KVL. KCL may be used first at the various nodes:

node 3 : j2 ¼ j6 j4 ¼ 4 2 ¼ 2A

node 1 : j3 ¼ j1 j2 ¼ 8 2 ¼ 10A

node 2 : j5 ¼ j3 j4 ¼ 10 2 ¼ 12 A

Then KVL gives

v3 ¼ v2 v4 ¼ 8 6 ¼ 2 V

v6 ¼ v5 v4 ¼ 10 6 ¼ 16 V

v1 ¼ v2 þ v6 ¼ 8 16 ¼ 8 V

The transpose of the branch voltage and current vectors are

VT ¼ ½ 8 8 2 6 10 16 V

FIGURE 3.19 An oriented graph of a particular network with some known branch currents and branch voltages.
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and

JT ¼ ½8 2 10 2 12 4 V

The scalar product of V and J gives

8ð8Þ þ 8ð2Þ þ 2ð 10Þ þ 6ð2Þ þ ð 10Þð 12Þ þ ð 16Þð4Þ ¼ 148 þ 148 ¼ 0

and Tellegen’s theorem is confirmed.

Maximum Power Transfer Theorem

The maximum power transfer theorem pertains to the connections of a load to the Thévenin equivalent of a

source network in such a manner as to transfer maximum power to the load. For a given network operating at

a prescribed voltage with a Thévenin equivalent impedance

ZT ¼ ZTj j=yT
the real power drawn by any load of impedance

Z0 ¼ Z0j j=y0
is a function of just two variables, jZ0j and y0. If the power is to be a maximum, there are three alternatives to
the selection of jZ0j and y0:

(1) Both jZ0j and y0 are at the designer’s discretion and both are allowed to vary in any manner in order to
achieve the desired result. In this case, the load should be selected to be the complex conjugate of the

Thévenin equivalent impedance

Z0 ¼ Z*T

(2) The angle y0 is fixed but the magnitude jZ0j is allowed to vary. For example, the analyst may select
and fix y0 ¼ 0–. This requires that the load be resistive (Z is entirely real). In this case, the value of

the load resistance should be selected to be equal to the magnitude of the Thévenin equivalent

impedance

R0 ¼ ZTj j
(3) The magnitude of the load impedance jZ0j can be fixed, but the impedance angle y0 is allowed to vary.

In this case, the value of the load impedance angle should be

y0 ¼ arcsin
2 Z0j j ZTj jsinyT
Z0j j2þ ZTj j2

Example 3.4

Figure 3.20(a) is identical to Figure 3.17(b) with the exception of a load, Z0, substituted for the capacitive

load. The Thévenin equivalent is shown in Figure 3.20(b). The value of Z0 to transfer maximum power is

to be found if its elements are unrestricted, if it is to be a single resistor, or if the magnitude of Z0 must

be 20 O but its angle is adjustable.
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For maximum power transfer to Z0 when the elements of Z0 are completely at the discretion of the network

designer, Z0 must be the complex conjugate of ZT :

Z0 ¼ Z*T ¼ 20 j15O

If Z0 is to be a single resistor, R0, then the magnitude of Z0 ¼ R0 must be equal to the magnitude of ZT.

Here

ZT ¼ 20þ j15 ¼ 25 =36.87–

so that

R0 ¼ Z0j j ¼ 25O

If the magnitude of Z0 must be 20 O but the angle is adjustable, the required angle is calculated from

y0 ¼ arcsin
2 Z0j j ZTj j
Z0j j2þ ZTj j2 sin yT

¼ arcsin
2ð20Þð25Þ

ð20Þ2 þ ð25Þ2 sin =36:87
–

¼ arcsinð 0:585Þ ¼ 35:83–

This makes Z0 :

Z0 ¼ 20 = 35:83– ¼ 16:22 j11:71O

FIGURE 3.20 (a) A network for which the load, Z0, is to be selected for maximum power transfer, and (b) the Thévenin

equivalent of the network.
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The Reciprocity Theorem

The reciprocity theorem is a useful general theorem that applies to all linear, passive, and bilateral networks.

However, it applies only to cases where current and voltage are involved:

The ratio of a single excitation applied at one point to an observed response at another is

invariant with respect to an interchange of the points of excitation and observation.

The reciprocity principle also applies if the excitation is a current and the observed response is a voltage. It

will not apply, in general, for voltage–voltage and current–current situations, and, of course, it is not

applicable to network models of nonlinear devices.

Example 3.5

It is easily shown that the positions of vs and i in Figure 3.21(a) may be interchanged as in Figure 3.21(b)

without changing the value of the current i.

In Figure 3.21(a), the resistance presented to the voltage source is

R ¼ 4þ 3ð6Þ
3þ 6

¼ 4þ 2 ¼ 6 O

Then

ia ¼ vs
R
¼ 36

6
¼ 6 A

and by current division

ia ¼ 6

6þ 3
ia ¼ 2

3
6 ¼ 4 A

In Figure 3.21(b), the resistance presented to the voltage source is

R ¼ 3þ 6ð4Þ
6þ 4

¼ 3þ 12

5
¼ 27

5
O

Then

ib ¼ vs
R
¼ 36

27=5
¼ 180

27
¼ 20

3
A

FIGURE 3.21 Two networks that can be used to illustrate the reciprocity principle.
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and again, by current division

i ¼ 6

4þ 6
ib ¼ 3

5

20

3
¼ 4A

The network is reciprocal.

The Substitution and Compensation Theorems

The Substitution Theorem

Any branch in a network with branch voltage, vk, and branch current, ik, can be replaced by another branch

provided it also has branch voltage, vk, and branch current, ik.

The Compensation Theorem

In a linear network, if the impedance of a branch carrying a current Î is changed from Z to Z 1 DZ, then the
corresponding change of any voltage or current elsewhere in the network will be due to a compensating

voltage source, DZÎ, placed in series with Z 1 DZ with polarity such that the source, DZÎ, is opposing the
current Î.

Defining Terms

Linear network: A network in which the parameters of resistance, inductance, and capacitance are

constant with respect to voltage or current or the rate of change of voltage or current and in which the

voltage or current of sources is either independent of or proportional to other voltages or currents or

their derivatives.

Maximum power transfer theorem: In any electrical network that carries direct or alternating current,

the maximum possible power transferred from one section to another occurs when the impedance of

the section acting as the load is the complex conjugate of the impedance of the section that acts as the

source. Here, both impedances are measured across the pair of terminals in which the power is

transferred with the other part of the network disconnected.

Norton theorem: The voltage across an element that is connected to two terminals of a linear, bilateral

network is equal to the short-circuit current between these terminals in the absence of the element

divided by the admittance of the network looking back from the terminals into the network with all

generators replaced by their internal admittances.

Principle of superposition: In a linear electrical network, the voltage or current in any element resulting

from several sources acting together is the sum of the voltages or currents from each source acting alone.

Reciprocity theorem: In a network consisting of linear, passive impedances, the ratio of the voltage intro-

duced into any branch to the current in any other branch is equal in magnitude and phase to the ratio

that results if the positions of the voltage and current are interchanged.

Thévenin theorem: The current flowing in any impedance connected to two terminals of a linear, bilateral

network containing generators is equal to the current flowing in the same impedance when it is

connected to a voltage generator whose voltage is the voltage at the open-circuited terminals in question

and whose series impedance is the impedance of the network looking back from the terminals into the

network, with all generators replaced by their internal impedances.

References

J.D. Irwin, Basic Engineering Circuit Analysis, 7th ed., New York: Wiley, 2003.

A.D. Kraus, Circuit Analysis, St. Paul: West Publishing, 1991.

R.C. Dorf, Introduction to Electric Circuits, New York: Wiley, 2004.
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3.4 Power and Energy

Norman Balabanian and Theodore A. Bickart

The concept of the voltage, v, between two points was introduced

in Section ‘‘Voltage and Current Laws’’ as the energy, w, expended

per unit charge in moving the charge between the two points.

Coupled with the definition of current, i, as the time rate of charge

motion and that of power, p, as the time rate of change of energy,

this leads to the following fundamental relationship between the

power delivered to a two-terminal electrical component and the

voltage and current of that component, with standard references

(meaning that the voltage reference plus is at the tail of the current

reference arrow) as shown in Figure 3.22:

p ¼ vi ð3:1Þ

Assuming that the voltage and current are in volts and amperes, respectively, the power is in watts. This

relationship applies to any two-terminal component or network, whether linear or nonlinear.

The power delivered to the basic linear resistive, inductive, and capacitive elements is obtained by inserting

the v–i relationships into this expression. Then, using the relationship between power and energy (power as

the time derivative of energy, and energy, therefore, as the integral of power), the energy stored in the

capacitor and inductor is also obtained:

pR ¼ vRiR ¼ Ri2

pC ¼ vCiC ¼ CvC
dvC
dt

wCðtÞ ¼
Zt
0

CvC
dvC
dt

dt ¼ 1

2
Cv2CðtÞ

pL ¼ vLiL ¼ LiL
diL
dt

wLðtÞ ¼
Zt
0

LiL
diL
dt

dt ¼ 1

2
Li2LðtÞ

ð3:2Þ

where the origin of time (t¼ 0) is chosen as the time when the capacitor voltage (respectively, the inductor

current) is zero.

Tellegen’s Theorem

A result that has far-reaching consequences in electrical engineering is Tellegen’s theorem. It will be stated in

terms of the networks shown in Figure 3.23. These two are said to be topologically equivalent; that is, they are

represented by the same graph but the components that constitute the branches of the graph are not

necessarily the same in the two networks. They can even be nonlinear, as illustrated by the diode in one of the

networks. Assuming all branches have standard references, including the source branches, Tellegen’s theorem

states that

_X
all j

X
all j

vbjiaj ¼ 0

v0bia ¼ 0

ð3:3Þ

In the second line, the variables are vectors and the prime stands for the transpose. The a and b subscripts refer

to the two networks.

FIGURE 3.22 Power delivered to a circuit.
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This is an amazing result. It can be easily proved with the use of Kirchhoff ’s two laws. The products of v and

i are reminiscent of power as in Equation (3.1). However, the product of the voltage of a branch in one

network and the current of its topologically corresponding branch (which may not even be the same type of

component) in another network does not constitute power in either branch. Furthermore, the variables in one

network might be functions of time, while those of the other network might be steady-state phasors or Laplace

transforms.

Nevertheless, some conclusions about power can be derived from Tellegen’s theorem. Since a network is

topologically equivalent to itself, the b network can be the same as the a network. In that case each vi product

in Equation (3.3) represents the power delivered to the corresponding branch, including the sources. The

equation then says that if we add the power delivered to all the branches of a network, the result will be zero.

This result can be recast if the sources are separated from the other branches and one of the references of

each source (current reference for each v-source and voltage reference for each i-source) is reversed. Then the

vi product for each source, with new references, will enter Equation (3.3) with a negative sign and will

represent the power supplied by this source. When these terms are transposed to the right side of the equation,

their signs are changed. The new equation will state in mathematical form that:

In any electrical network, the sum of the power supplied by the sources is equal to the sum of the

power delivered to all the nonsource branches.

This is not very surprising since it is equivalent to the law of conservation of energy, a fundamental principle

of science.

AC Steady-State Power

Let us now consider the ac steady-state case, where all voltages and currents are sinusoidal. Thus, in the

two-terminal circuit of Figure 3.22:

vðtÞ ¼ ffiffi
2

p jV j cosðot þ aÞ $ V ¼ jV je ja

iðtÞ ¼ ffiffi
2

p jIj cosðot þ bÞ $ I ¼ jIje jb
ð3:4Þ

The capital V and I are phasors representing the voltage and current, and their magnitudes are the

corresponding rms values. The power delivered to the network at any instant of time is given by

pðtÞ ¼ vðtÞiðtÞ ¼ 2jV jjIjcosðot þ aÞcosðot þ bÞ

¼
h
jV jjIjcosða bÞ

i
þ

h
jV jjIjcosð2ot þ aþ bÞ

i ð3:5Þ

The last form is obtained by using trigonometric identities for the sum and difference of two angles.

Whereas both the voltage and the current are sinusoidal, the instantaneous power contains a constant term

(independent of time) in addition to a sinusoidal term. Furthermore, the frequency of the sinusoidal term is

twice that of the voltage or current. Plots of v, i, and p are shown in Figure 3.24 for specific values of a and b.
The power is sometimes positive, sometimes negative. This means that power is sometimes delivered to

the terminals and sometimes extracted from them.

FIGURE 3.23 Topologically equivalent networks.
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The energy that is transmitted into the network over some interval of time is found by integrating the power

over this interval. If the area under the positive part of the power curve were the same as the area under the

negative part, the net energy transmitted over one cycle would be zero. For the values of a and b used in the

figure, however, the positive area is greater, so there is a net transmission of energy toward the network.

The energy flows back from the network to the source over part of the cycle, but on average, more

energy flows towards the network than away from it.

In Terms of RMS Values and Phase Difference

Consider the question from another point of view. The preceding equation shows the power to consist of a

constant term and a sinusoid. The average value of a sinusoid is zero, so this term will contribute nothing to

the net energy transmitted. Only the constant term will contribute. This constant term is the average value of

the power, as can be seen either from the preceding figure or by integrating the preceding equation over one

cycle. Denoting the average power by P and letting y¼ a – b, which is the angle of the network impedance,

the average power becomes

P ¼ jV jjIj cos y

¼ jV jjIjRe e jy ¼ Re jV jjIje jða bÞh i
¼ Re jV je ja jIje jb

h i
¼ Re VI*

ð3:6Þ

The third line is obtained by breaking up the exponential in the previous line by the law of exponents. The first

factor between square brackets in this line is identified as the phasor voltage and the second factor as the

conjugate of the phasor current. The last line then follows. It expresses the average power in terms of the

voltage and current phasors and is sometimes more convenient to use.

Complex and Reactive Power

The average ac power is found to be the real part of a complex quantity VI*, labeled S, that in rectangular

form is

S ¼ VI* ¼ jV jjIje jy ¼ jV jjIj cos yþ jjV jjIj sin y
¼ P þ jQ

ð3:7Þ

FIGURE 3.24 Instantaneous voltage, current, and power.
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where

P ¼ jV jjIj cos y ðaÞ
Q ¼ jV jjIj sin y ðbÞ
jSj ¼ jV jjIj ðcÞ

ð3:8Þ

We already know P to be the average power. Since it is the real part of some complex quantity, it would be

reasonable to call it the real power. The complex quantity S of which P is the real part is, therefore, called the

complex power. Its magnitude is the product of the rms values of voltage and current: jSj ¼ jV jjIj. It is called
the apparent power and its unit is the volt-ampere (VA). To be consistent, then, we should call Q the imaginary

power. This is not usually done, however; instead, Q is called the reactive power and its unit is a VAR (volt-

ampere reactive).

Phasor and Power Diagrams

An interpretation useful for clarifying and understanding the preceding relationships and for the calculation of

power is a graphical approach. Figure 3.25(a) is a phasor diagram of V and I in a particular case. The phasor

voltage can be resolved into two components, one parallel to the phasor current (or in phase with I) and

another perpendicular to the current (or in quadrature with it). This is illustrated in Figure 3.25(b). Hence,

the average power P is the magnitude of phasor I multiplied by the in-phase component of V; the reactive

power Q is the magnitude of I multiplied by the quadrature component of V.

Alternatively, one can imagine resolving phasor I into two components, one in phase with V and one in

quadrature with it, as illustrated in Figure 3.25(c). Then P is the product of the magnitude of V with the

in-phase component of I, and Q is the product of the magnitude of V with the quadrature component of

I. Real power is produced only by the in-phase components of V and I. The quadrature components contribute

only to the reactive power.

The in-phase or quadrature components of V and I do not depend on the specific values of the angles of

each, but on their phase difference. One can imagine the two phasors in the preceding diagram to be rigidly

held together and rotated around the origin by any angle. As long as the angle y is held fixed, all of the

discussion of this section will still apply. It is common to take the current phasor as the reference for angle;

that is, to choose b¼ 0 so that phasor I lies along the real axis. Then y¼ a.

Power Factor

For any given circuit it is useful to know what part of the total complex power is real (average) power and what

part is reactive power. This is usually expressed in terms of the power factor Fp, defined as the ratio of real

power to apparent power:

Power factor _¼¼ FP ¼ P

jSj ¼
P

jV jjIj ð3:9Þ

FIGURE 3.25 In-phase and quadrature components of V and I.
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Not counting the right side, this is a general relationship although we developed it here for sinusoidal

excitations. With P ¼ jV jjIjcos y, we find that the power factor is simply cos y. Because of this, y itself is called
the power factor angle.

Since the cosine is an even function ½cosð yÞ ¼ cosy , specifying the power factor does not reveal the sign of
y. Remember that y is the angle of the impedance. If y is positive, this means that the current lags the voltage;
we say that the power factor is a lagging power factor. However, if y is negative, the current leads the voltage
and we say this represents a leading power factor.

The power factor will reach its maximum value, unity, when the voltage and current are in phase. This will

happen in a purely resistive circuit, of course. It will also happen in more general circuits for specific element

values and a specific frequency.

We can now obtain a physical interpretation for the reactive power. When the power factor is unity, the

voltage and current are in phase and siny¼ 0. Hence, the reactive power is zero. In this case, the

instantaneous power is never negative. This case is illustrated by the current, voltage, and power

waveforms in Figure 3.26; the power curve never dips below the axis, and there is no exchange of energy

between the source and the circuit. At the other extreme, when the power factor is zero, the voltage and

current are 90– out of phase and sin y¼ 1. Now the reactive power is a maximum and the average power

is zero. In this case, the instantaneous power is positive over half a cycle (of the voltage) and negative over

the other half. All the energy delivered by the source over half a cycle is returned to the source by the

circuit over the other half.

It is clear, then, that the reactive power is a measure of the exchange of energy between the source and the

circuit without being used by the circuit. Although none of this exchanged energy is dissipated by or stored in

the circuit, and it is returned unused to the source, nevertheless it is temporarily made available to the circuit

by the source.1

Average Stored Energy

The average ac energy stored in an inductor or a capacitor can be established by using the expressions for the

instantaneous stored energy for arbitrary time functions in Equation (3.2), specifying the time function to be

sinusoidal, and taking the average value of the result:

WL ¼ 1

2
LjIj2 WC ¼ 1

2
CjV j2 ð3:10Þ

FIGURE 3.26 Power waveform for unity and zero power factors.

1Power companies charge their industrial customers not only for the average power they use but for the reactive power they

return. There is a reason for this. Suppose a given power system is to deliver a fixed amount of average power at a constant voltage

amplitude. Since P ¼ jV jjIj cosy, the current will be inversely proportional to the power factor. If the reactive power is high, the
power factor will be low and a high current will be required to deliver the given power. To carry a large current, the conductors

carrying it to the customer must be correspondingly larger and better insulated, which means a larger capital investment in physical

plant and facilities. It may be cost-effective for customers to try to reduce the reactive power they require, even if they have to buy

additional equipment to do so.
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Application of Tellegen’s Theorem to Complex Power

An example of two topologically equivalent networks was shown in Figure 3.23. Let us now specify that two

such networks are linear, all sources are same-frequency sinusoids, they are operating in the steady state, and

all variables are phasors. Furthermore, suppose the two networks are the same, except that the sources of

network b have phasors that are the complex conjugates of those of network a. Then, if V and I denote the

vectors of branch voltages and currents of network a, Tellegen’s theorem in Equation (3.3) becomes

_X
all j

X
all j

V*
j Ij ¼ V*I ¼ 0 ð3:11Þ

where V* is the conjugate transpose of vector V.

This result states that the sum of the complex power delivered to all branches of a linear circuit operating in

the ac steady state is zero. Alternatively stated, the total complex power delivered to a network by its sources

equals the sum of the complex power delivered to its nonsource branches. Again, this result is not surprising.

Since, if a complex quantity is zero both the real and imaginary parts must be zero, the same result can be

stated for the average power and for the reactive power.

Maximum Power Transfer Theorem

The diagram in Figure 3.27 illustrates a two-terminal linear circuit at whose terminals an impedance ZL is

connected. The circuit is assumed to be operating in the ac steady state. The problem to be addressed is this:

given the two-terminal circuit, how can the impedance connected to it be adjusted so that the maximum

possible average power is transferred from the circuit to the impedance?

The first step is to replace the circuit by its Thévenin equivalent, as shown in Figure 3.27(b). The current

phasor in this circuit is I ¼ VT=ðZT þ ZLÞ. The average power transferred by the circuit to the impedance is

P ¼ jIj2ReðZLÞ ¼ jVTj2ReðZLÞ
jZT þ ZLj2

¼ jVTj2RL
ðRT þ RLÞ2 þ ðXT þ XLÞ2 ð3:12Þ

In this expression, only the load (that is, RL and XL) can

be varied. The preceding equation, then, expresses a

dependent variable (P) in terms of two independent

ones (RL and XL).

What is required is to maximize P. For a function of

more than one variable, this is done by setting the partial

derivatives with respect to each of the independent

variables equal to zero; that is, qP=qRL ¼ 0 and

qP=qXL ¼ 0. Carrying out these differentiations leads

to the result that maximum power will be transferred

FIGURE 3.27 A linear circuit delivering power to a load in the steady state.

FIGURE 3.28 Matching with an ideal transformer.
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when the load impedance is the conjugate of the Thévenin impedance of the circuit: ZL ¼ Z*T. If the Thévenin

impedance is purely resistive, then the load resistance must equal the Thévenin resistance.

In some cases, both the load impedance and the Thévenin impedance of the source may be fixed. In such

a case, the matching for maximum power transfer can be achieved by using a transformer, as illustrated

in Figure 3.28, where the impedances are both resistive. The transformer is assumed to be ideal, with turns

ratio n. Maximum power is transferred if n2 ¼ RT=RL.

Measuring AC Power and Energy

With ac steady-state average power given in the first line of Equation (3.6), measuring the average power

requires measuring the rms values of voltage and current, as well as the power factor. This is accomplished

by the arrangement shown in Figure 3.29, which includes a breakout of an electrodynamometer-type

wattmeter. The current in the high-resistance pivoted coil is proportional to the voltage across the load. The

current to the load and the pivoted coil together through the energizing coil of the electromagnet

establishes a proportional magnetic field across the cylinder of rotation of the pivoted coil. The torque on

the pivoted coil is proportional to the product of the magnetic field strength and the current in the pivoted

coil. If the current in the pivoted coil is negligible compared to that in the load, then the torque becomes

essentially proportional to the product of the voltage across the load (equal to that across the pivoted coil)

and the current in the load (essentially equal to that through the energizing coil of the electromagnet). The

dynamics of the pivoted coil together with the restraining spring, at ac power frequencies, ensures that the

angular displacement of the pivoted coil becomes proportional to the average of the torque or, equivalently,

the average power.

FIGURE 3.29 A wattmeter connected to a load.

FIGURE 3.30 A watthour meter connected to a load.
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One of the most ubiquitous of electrical instruments is the induction-type watthour meter, which

measures the energy delivered to a load. Every customer of an electrical utility has one, for example. In

this instance the pivoted coil is replaced by a rotating conducting (usually aluminum) disk, as shown in

Figure 3.30. An induced eddy current in the disk replaces the pivoted coil current interaction with the

load-current-established magnetic field. After compensating for the less-than-ideal nature of the electrical

elements making up the meter as just described, the result is that the disk rotates at a rate proportional

to the average power to the load and the rotational count is proportional to the energy delivered to the

load.

At frequencies above the ac power frequencies and, in some instances, at the ac power frequencies, electronic

instruments are available to measure power and energy. They are not a cost-effective substitute for these

meters in the monitoring of power and energy delivered to most of the millions upon millions of homes and

businesses.

Defining Terms

AC steady-state power: Consider an ac source connected at a pair of terminals to an otherwise isolated

network. Let
ffiffi
2

p
·jV j and ffiffi

2
p

·jIj denote the peak values, respectively, of the ac steady-state voltage and
current at the terminals. Furthermore, let y denote the phase angle by which the voltage leads the

current. Then the average power delivered by the source to the network would be expressed as

P ¼ jV j·jIjcosðyÞ.
Power and energy: Consider an electrical source connected at a pair of terminals to an otherwise isolated

network. Power, denoted by p, is the time rate of change in the energy delivered to the network by the

source. This can be expressed as p¼ vi, where v, the voltage across the terminals, is the energy expended

per unit charge in moving the charge between the pair of terminals and i, the current through the

terminals, is the time rate of charge motion.

Power factor: Consider an ac source connected at a pair of terminals to an otherwise isolated network. The

power factor, the ratio of the real power to the apparent power jV j·jIj, is easily established to be cos (y),
where y is the power factor angle.

Reactive power: Consider an ac source connected at a pair of terminals to an otherwise isolated

network. The reactive power is a measure of the energy exchanged between the source and the

network without being dissipated in the network. The reactive power delivered would be expressed

as Q ¼ jV j·jIjsinðyÞ.
Real power: Consider an ac source connected at a pair of terminals to an otherwise isolated network. The

real power, equal to the average power, is the power dissipated by the source in the network.

Tellegen’s theorem: Two networks, here including all sources, are topologically equivalent if they are

similar structurally, component by component. Tellegen’s theorem states that the sum over all products

of the product of the current of a component of one network, network a, and of the voltage of the

corresponding component of the other network, network b, is zero. This would be expressed as

Sall jvbjiaj ¼ 0. From this general relationship it follows that in any electrical network, the sum of the

power supplied by the sources is equal to the sum of the power delivered to all the nonsource

components.
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3.5 Three-Phase Circuits

Norman Balabanian

Figure 3.31(a) represents the basic circuit for considering the flow of power from a single sinusoidal source to

a load. The power can be thought to cross an imaginary boundary surface (represented by the dotted line in

the figure) separating the source from the load. Suppose that

vðtÞ ¼ ffiffi
2

p jV j cosðot þ aÞ
iðtÞ ¼ ffiffi

2
p jIj cosðot þ bÞ

ð3:13Þ

Then the power to the load at any instant of time is

pðtÞ ¼ jV jjIj ½cosða bÞ þ cosð2ot þ aþ bÞ ð3:14Þ

The instantaneous power has a constant term and a sinusoidal term at twice the frequency. The quantity in

brackets fluctuates between a minimum value of cosða bÞ 1 and a maximum value of cosða bÞ þ 1. This

fluctuation of power delivered to the load has certain disadvantages in some situations where the transmission

of power is the purpose of a system. An electric motor, for example, operates by receiving electric power and

transmitting mechanical (rotational) power at its shaft. If the electric power is delivered to the motor in spurts,

the motor is likely to vibrate. In order to run satisfactorily, a physically larger motor will be needed, with a

larger shaft and flywheel, to provide inertia than would be the case if the delivered power were constant.

This problem is overcome in practice by the use of what is called a three-phase system. This section will

provide a brief discussion of three-phase systems.

Consider the circuit in Figure 3.31(b). This arrangement is similar to a combination of three of the simple

circuits in Figure 3.31(a) connected in such a way that each one shares the return connection from O to N. The

three sources can be viewed collectively as a single source and the three loads—which are assumed to be

FIGURE 3.31 Flow of power from source to load.
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identical—can be viewed collectively as a single load. Then, as before, the dotted line represents a surface

separating the source from the load. Each of the individual sources and loads is referred to as one phase of the

three-phase system.

The three sources are assumed to have the same frequency; they are said to be synchronized. It is also

assumed that the three voltages have the same rms values and the phase difference between each pair of

voltages is ^120– (2p/3 rad). Thus, they can be written:

va ¼
ffiffi
2

p jV j cosðot þ a1Þ $ Va ¼ jV j e j0–

vb ¼
ffiffi
2

p jV j cosðot þ a2Þ $ Vb ¼ jV j e j120–

vc ¼
ffiffi
2

p jV j cosðot þ a3Þ $ Vc ¼ jV j e j120–
ð3:15Þ

The phasors representing the sinusoids have also been shown. For convenience, the angle of va has been

chosen as the reference for angles; vb lags va by 120
– and vc leads va by 120–.

Because the loads are identical, the rms values of the three currents shown in Figure 3.32 will also be the

same and the phase difference between each pair of them will be ^120–. Thus, the currents can be written:

i1 ¼
ffiffi
2

p jIj cosðot þ b1Þ $ I1 ¼ jIj e jb1

i2 ¼
ffiffi
2

p jIj cosðot þ b2Þ $ I2 ¼ jIj e jðb1 120–Þ

i3 ¼
ffiffi
2

p jIj cosðot þ b3Þ $ I3 ¼ jIj e jðb1þ120–Þ
ð3:16Þ

Perhaps a better form for visualizing the voltages and currents is a graphical one. Phasor diagrams for the

voltages separately and the currents separately are shown in Figure 3.32. The value of angle b1 will depend on

the load. An interesting result is clear from these diagrams. First, V2 and V3 are each other’s conjugates. So

if we add them, the imaginary parts cancel and the sum will be real, as illustrated by the construction in the

voltage diagram. Furthermore, the construction shows that this real part is negative and equal in size to V1.

Hence, the sum of the three voltages is zero. The same is true of the sum of the three currents, as can be

established graphically by a similar construction.

FIGURE 3.32 Voltage and current phasor diagrams.
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By Kirchhoff ’s current law applied at node N in Figure 3.31(b), we find that the current in the return line is

the sum of the three currents in Equation (3.16). However, since this sum was found to be zero, the return line

carries no current. Hence, it can be removed entirely without affecting the operation of the system. The

resulting circuit is redrawn in Figure 3.33. Because of its geometrical form, this connection of both the sources

and the loads is said to be a wye (Y) connection.

The instantaneous power delivered by each of the sources has the form given in Equation (3.14), consisting

of a constant term representing the average power and a double-frequency sinusoidal term. The latter, being

sinusoidal, can be represented by a phasor also. The only caution is that a different frequency is involved here,

so this power phasor should not be mixed with the voltage and current phasors in the same diagram or

calculations. Let jSj ¼ jV jjIj be the apparent power delivered by each of the three sources and let the three
power phasors be Sa, Sb, and Sc , respectively. Then:

Sa ¼ jSje jða1þb1Þ ¼ jSje jb1

Sb ¼ jSje jða2þb2Þ ¼ jSje jð 120–þb1 120–Þ ¼ jSje jðb1þ120–Þ

Sc ¼ jSje jða3þb3Þ ¼ jSje jðþ120–þb1þ120–Þ ¼ jSje jðb1 120–Þ

ð3:17Þ

It is evident that the phase relationships among these three phasors are the same as the ones among the

voltages and the currents. That is, the second leads the first by 120– and the third lags the first by 120–. Hence,
just like the voltages and the currents, the sum of these three phasors will also be zero. This is a very significant

result. Although the instantaneous power delivered by each source has a constant component and a sinusoidal

component, when the three powers are added, the sinusoidal components add to zero, leaving only the

constants. Thus, the total power delivered to the three loads is constant.

To determine the value of this constant power, use Equation (3.14) as a model. The contribution of the kth

source to the total (constant) power is jSjcosðak bkÞ. One can easily verify that ak bk ¼ a1 b1 ¼ b1.
The first equality follows from the relationships among the a’s from Equation (3.15) and among the b’s
from Equation (3.16). The choice of a1¼ 0 leads to the last equality. Hence, the constant terms

contributed to the power by each source are the same. If P is the total average power, then

P ¼ Pa þ Pb þ Pcþ ¼ 3Pa ¼ 3jV jjIjcosða1 b1Þ ð3:18Þ

Although the angle a1 has been set equal to zero, for the sake of generality we have shown it explicitly in

this equation.

What has just been described is a balanced three-phase three-wire power system. The three sources in

practice are not three independent sources but consist of three different parts of the same generator. The same

FIGURE 3.33 Wye-connected three-phase system.
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is true of the loads.1 What has been described is ideal in a number of ways. First, the circuit can be

unbalanced— for example, by the loads being somewhat unequal. Second, since the real devices whose ideal

model is a voltage source are coils of wire, each source should be accompanied by a branch consisting of the

coil inductance and resistance. Third, since the power station (or the distribution transformer at some

intermediate point) may be at some distance from the load, the parameters of the physical line carrying the

power (the line inductance and resistance) must also be inserted in series between the source and the load.

For an unbalanced system, the analysis of this section does not apply. An entirely new analytical technique is

required to do full justice to such a system.2 However, an understanding of balanced circuits is a prerequisite

for tackling the unbalanced case.

The last two of the conditions that make the circuit less than ideal (line and source impedances) introduce

algebraic complications, but nothing fundamental is changed in the preceding theory. If these two conditions

are taken into account, the appropriate circuit takes the form shown in Figure 3.34. Here, the internal

impedance of a source and the line impedance connecting that source to its load are both connected in series

with the corresponding load. Thus, instead of the impedance in each phase being Z, it is Z þ Zw þ Zl, where w

and l are subscripts standing for ‘‘winding’’ and ‘‘line,’’ respectively. Hence, the rms value of each current is

jIj ¼ jV j
jZ þ Zw þ Zlj ð3:19Þ

instead of jVj=jZj. All other results we had arrived at remain unchanged, namely that the sum of the phase

currents is zero and that the sum of the phase powers is a constant. The detailed calculations simply become a

little more complicated.

One other point, illustrated for the loads in Figure 3.35, should be mentioned. Given wye-connected sources

or loads, the wye and the delta can be made equivalent by proper selection of the arms of the delta. Thus,

either the sources in Figure 3.33, or the loads, or both, can be replaced by a delta equivalent; thus, we can

conceive of four different three-phase circuits; wye–wye, delta–wye, wye–delta, and delta–delta. Not only can

we conceive of them, they are extensively used in practice.

FIGURE 3.34 Three-phase circuit with nonzero winding and line impedances.

1An ac power generator consists of (a) a rotor, which produces a magnetic field and which is rotated by a prime mover (say a

turbine), and (b) a stator on which are wound one or more coils of wire. In three-phase systems, the number of coils is three. The

rotating magnetic field induces a voltage in each of the coils. The 120– leading and lagging phase relationships among these voltages
are obtained by distributing the conductors of the coils around the circumference of the stator so that they are separated

geometrically by 120–. Thus, the three sources described in the text are in reality a single physical device, a single generator.

Similarly, the three loads might be the three windings on a three-phase motor, again a single physical device.
2The technique for analyzing unbalanced circuits utilizes what are called symmetrical components.
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It is not worthwhile to carry out detailed calculations for these four cases. Once the basic properties

described here are understood, one should be able to make the calculations. Observe, however, that in the delta

structure there is no neutral connection, so the phase voltages cannot be measured. The only voltages that can

be measured are the line-to-line or simply the line voltages. These are the differences of the phase voltages taken

in pairs, as is evident from Figure 3.34.

Defining Terms

Delta connection: The sources or loads in a three-phase system connected end-to-end, forming a closed

path, like the Greek letter D.
Phasor: A complex number representing a sinusoid; its magnitude and angle are the rms value and phase of

the sinusoid, respectively.

Wye connection: The three sources or loads in a three-phase system connected to have one common

point, like the letter Y.
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3.6 Graph Theory1

Shu-Park Chan

Topology is a branch of mathematics; it may be described as ‘‘the study of those properties of geometric forms

that remain invariant under certain transformations, as bending, stretching, etc.’’2 Network topology (or

network graph theory) is a study of (electrical) networks in connection with their nonmetric geometrical

(namely topological) properties by investigating the interconnections between the branches and the nodes of

the networks. Such a study will lead to important results in network theory such as algorithms for

formulating network equations and the proofs of various basic network theorems (Seshu and Reed, 1961;

Chan, 1969).

FIGURE 3.35 Wye connection and delta connection.

1Based on S.-Pchan, ‘‘Graph theory and some of its applications in electrical network,’’ in Mathematical Aspects of Electrical

Network Analysis, Vol. 3, SIAM/AMS Proceedings, American Mathematical Society, Providence, RI,1971. With permission.
2This brief description of topology is quoted directly from the Random House Dictionary of the English Language, Random

House, New York, 1967.
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The following are some basic definitions in network graph theory, which will be needed in the development

of topological formulas in the analysis of linear networks and systems.

A linear graph (or simply a graph) is a set of line segments called edges and points called vertices, which are

the endpoints of the edges, interconnected in such a way that the edges are connected to (or incident with) the

vertices. The degree of a vertex of a graph is the number of edges incident with that vertex.

A subset Gi of the edges of a given graph G is called a subgraph of G. If Gi does not contain all of the edges

of G, it is a proper subgraph of G. A path is a subgraph having all vertices of degree 2 except for the two

endpoints, which are of degree 1 and are called the terminals of the path. The set of all edges in a path

constitutes a path-set. If the two terminals of a path coincide, the path is a closed path and is called a circuit

(or loop). The set of all edges contained in a circuit is called a circuit-set (or loop-set).

A graph or subgraph is said to be connected if there is at least one path between every pair of its

vertices. A tree of a connected graph G is a connected subgraph which contains all the vertices of G but

no circuits. The edges contained in a tree are called the branches of the tree. A 2-tree of a connected

graph G is a (proper) subgraph of G consisting of two unconnected circuitless subgraphs, each subgraph

itself being connected, which together contain all the vertices of G. Similarly, a k-tree is a subgraph of k

unconnected circuitless subgraphs, each subgraph being connected, which together include all the vertices

of G. The k-tree admittance product of a k-tree is the product of the admittances of all the branches of

the k-tree.

Example 3.5

The graph G shown in Figure 3.37 is the graph of the network N of Figure 3.36. The edges of G are e1, e2, e4, e5,

and e6; the vertices of G are V1, V2, V3, and V4. A path of G is the subgraph G1 consisting of edges e2, e3, and e6
with vertices V2 andV4 as terminals. Thus, the set {e2, e3, e6} is a

path-set. With edge e4 added to G1, we form another subgraph

G2, which is a circuit since as far as G2 is concerned all its

vertices are of degree 2. Hence the set {e2, e3, e4, e6} is a circuit-

set. Obviously, G is a connected graph since there exists a path

between every pair of vertices of G. A tree of G may be the

subgraph consisting of edges e1, e4, and e6. Two other trees of G

are {e2, e5, e6} and {e3, e4, e5}. A 2-tree of G is {e2, e4}; another

one is {e3, e6}; and still another one is {e3, e5}. Note that both

{e2, e4} and {e3, e6} are subgraphs which obviously satisfy the

definition of a 2-tree in the sense that each contains two

disjoint circuitless connected subgraphs, both of which include

all the four vertices of G. Thus, {e3, e5} does not seem to be a

2-tree. However, if we agree to consider {e3, e5} as a subgraph

which contains edges e3 and e5 plus the isolated vertex V4, we

FIGURE 3.36 A passive network N with a voltage driver E.

FIGURE 3.37 The graph G of the network N of

Figure 3.33.
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see that {e3, e5} will satisfy the definition of a 2-tree since it now has two circuitless connected subgraphs with e3
and e5 forming one of them and the vertex V4 alone forming the other. Moreover, both subgraphs together

indeed include all the four vertices of G. It is worth noting that a 2-tree is obtained from a tree by removing any

one of the branches from the tree; in general, a k-tree is obtained from a (k 1) tree by removing from it any one of

its branches. Finally, the tree-admittance product of the tree {e2, e5, e6} is 1/2 1/5 1/6; the 2-tree admittance

product of the 2-tree {e3, e5} is 1/3 1/5 (with the admittance of a vertex defined to be 1).

The k-Tree Approach

The development of the analysis of passive electrical networks using topological concepts may be dated back to

1847 when Kirchhoff formulated his set of topological formulas in terms of resistances and the branch-current

system of equations. In 1892, Maxwell developed another set of topological formulas based on the k-tree

concept, which are the duals of Kirchhoff ’s. These two sets of formulas were supported mainly by heuristic

reasoning and no formal proofs were then available.

In the following we shall discuss only Maxwell’s

topological formulas for linear networks without mutual

inductances.

Consider a network N with n independent nodes, as

shown in Figure 3.38. The node 1 0 is taken as the reference
(datum) node. The voltages V1, V2, . . ., Vn (which are

functions of s) are the transforms of the node-pair voltages

(or simply node voltages) v1, v2, . . . , vn (which are function

s of t) between the n nodes and the reference node 1 0 with
the plus polarity marks at the n nodes. It can be shown

(Aitken, 1956) that the matrix equation for the n

independent nodes of N is given by

y11 y12 . . . y1n
y21 y22 . . . y2n
..
. ..

. ..
. ..

.

yn1 yn2 . . . ynn

26664
37775

V1
V2
..
.

Vn

26664
37775 ¼

I1
I2
..
.

In

26664
37775 ð3:20Þ

or in abbreviated matrix notation:

YnVn ¼ In ð3:21Þ

where Yn is the node-admittance matrix, Vn the n· 1 matrix of the node voltage transforms, and In the n · 1
matrix of the transforms of the known current sources.

For a relaxed passive one-port (with zero initial conditions) shown in Figure 3.39, the driving-point

impedance function Zd(s) and its reciprocal, namely driving-point admittance function Yd(s), are given by

ZdðsÞ ¼ V1=I1 ¼ D11=D

and

YdðsÞ ¼ 1=ZdðsÞ ¼ D=D11

respectively, where D is the determinant of the node-admittance matrix Yn, and D11 is the (1,1)-cofactor of D.
Similarly, for a passive reciprocal RLC two-port (Figure 3.40), the open-circuit impedances and the

short-circuit admittances are seen to be

FIGURE 3.38 A network N with n independent

nodes.
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z11 ¼ D11=D ð3:22aÞ

z12 ¼ z21 ¼ ðD12 D120 Þ=D ð3:22bÞ

z22 ¼ ðD22 þ D2020 2D220 Þ=D ð3:22cÞ
and

y11 ¼ ðD22 þ D2020 2D220 Þ=ðD1122 þ D112020 2D11220 Þ ð3:23aÞ

y12 ¼ y21 ¼ D120 D12=ðD1122 þ D112020 2D11220 Þ ð3:23bÞ

y22 ¼ D11=ðD1122 þ D112020 2D11220 Þ ð3:23cÞ
respectively, where Dij is the (i,j)-cofactor of D, and Dijkm is the cofactor of D by deleting rows i and k and

columns j and m from D (Aitken, 1956).

Expressions in terms of network determinants and cofactors for other network transfer functions are given

by (Figure 3.41)

z12 ¼ V2
I1
¼ D12 D120

D
ðtransfer-impedance functionÞ ð3:24aÞ

G12 ¼ V2
V1

¼ D12 D120
D11

ðvoltage-ratio transfer functionÞ ð3:24bÞ

FIGURE 3.40 A passive two-port.

FIGURE 3.39 The network N driven by a single current source.
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Y12 ¼ YLG12 ¼ YL
D12 D120
D11

ðtransfer-admittance functionÞ ð3:24cÞ

a12 ¼ Y1Z12 ¼ YL
D12 D120

D
ðcurrent-ratio transfer functionÞ ð3:24dÞ

The topological formulas for the various network functions of a passive one-port or two-port are derived

from the following theorems which are stated without proof (Chan, 1969).

Theorem 3.1. Let N be a passive network without mutual inductances. The determinant D of the node

admittance matrix Yn is equal to the sum of all tree-admittances of N, where a tree-admittance product t(i)(y)

is defined to be the product of the admittance of all the branches of the tree T(i). That is:

D ¼ detYn ¼
X
i

TðiÞðyÞ ð3:25Þ

Theorem 3.2. Let D be the determinant of the node-admittance matrix Yn of a passive network N with n11

nodes and without mutual inductances. Also let the reference node be denoted by 10. Then the (j,j)-cofactor Djj
of D is equal to the sum of all the 2-tree-admittance products T2j,1 0(y) of N, each of which contains node j in

one part and node 1 0 as the reference node) and without mutual inductances is given by

Djj ¼
X
k

TðkÞ
2j;10 ðyÞ ð3:26Þ

where the summation is taken over all the 2-tree-admittance products of the form T2j,1 0(y).

Theorem 3.3. The (i,j)-cofactor Dij of D of a relaxed passive network N with n independent nodes (with

node 1 0 as the reference node) and without mutual inductances is given by

Dij ¼
X
k

TðkÞ
2ij;10 ðyÞ ð3:27Þ

where the summation is taken over all the 2-tree-admittance products of the form T2ij,1 0(y) with each

containing nodes i and j in one connected port and the reference node 10 in the other.
For example, the topological formulas for the driving-point function of a passive one-port can be readily

obtained from Equations (3.25) and (3.26) in Theorems 3.1 and 3.2 as stated in the next theorem.

Theorem 3.4. With the same notation as in Theorems 3.1 and 3.2, the driving-point admittance Yd(s) and

the driving-point impedance Zd(s) of a passive one-port containing no mutual inductances at terminals 1 and

1 0 are given by

FIGURE 3.41 A loaded passive two-port.
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YdðsÞ ¼ D
D11

¼
P
i

TðiÞðyÞP
k

TðkÞ21;1ðyÞ
and ZdðsÞ ¼ D11

D
¼

P
k

TðkÞ21;1ðyÞP
i

TðiÞðyÞ ð3:28Þ

respectively.

For convenience we define the following shorthand notation:

ðaÞVðYÞ
X
i

TðiÞðyÞ ¼ sum of all tree-admittance products; and

ðbÞWj;rðyÞ
X
k

T2j;rðyÞ ¼ sum of all 2-tree-admittance products with node j

and the reference node r contained in different parts:

ð3:29Þ

Thus Equation (3.28) may be written as

YdðsÞ ¼ VðYÞ=W1;10 ðYÞ and ZdðsÞ ¼ W1;10 ðYÞ=VðYÞ ð3:30Þ

In a two-port network N, there are four nodes to be specified, namely, nodes 1 and 1 0 at the input port (1,1 0)
and nodes 2 and 2 0 at the output port (2,2 0), as illustrated in Figure 3.41. However, for a 2-tree of the type
T2ij,1 0, only three nodes have been used, thus leaving the fourth one unidentified.

With very little effort, it can be shown that, in general, the following relationship holds:

Wij;10 ðYÞ ¼ Wijk;10 ðYÞ þWij;k10 ðYÞ

or simply:

Wij;10 ¼ Wijk;10 þWij;k10 ð3:31Þ

where i, j, k, and 1 0 are the four terminals of N with 1 0 denoting the datum (reference) node. The symbol

Wijk,1 0 denotes the sum of all the 2-tree admittance products, each containing nodes i, j, and k in one

connected part and the reference node, 1 0, in the other.
We now state the next theorem.

Theorem 3.5. With the same hypothesis and notation as stated earlier in this section:

D12 D120 ¼ W12;120 ðYÞ W120;102ðYÞ ð3:32Þ

It is interesting to note that Equation (3.32) is stated by Percival (1953) in the following descriptive fashion:

which illustrates the two types of 2-trees involved in the formula. Hence, we state the topological formulas for

z11, z12, and z22 in the following theorem.

Theorem 3.6. With the same hypothesis and notation as stated earlier in this section:

z11 ¼ W1;10 ðYÞ=VðYÞ ð3:33aÞ
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z12 ¼ z21 ¼ fW12;1020 ðYÞ W120;102ðYÞg=VðYÞ ð3:33bÞ

z22 ¼ W2;20 ðYÞ=VðYÞ ð3:33cÞ

We shall now develop the topological expressions for the short-circuit admittance functions. Let us denote

by Ua,b,c(Y) the sum of all 3-tree-admittance products of the form T3a,b,c(Y) with identical subscripts in both

symbols to represent the same specified distribution of vertices. Then, following arguments similar to those of

Theorem 3.5, we readily see that

D1122 ¼
X
i

TðiÞ31;2;10 ðyÞ U1;2;10 ðYÞ ð3:34aÞ

D112020 ¼
X
j

T
ð jÞ
31;20 ;10

ðyÞ U1;20;10 ðYÞ ð3:34bÞ

D11220 ¼
X
k

TðkÞ31;220 ;10 ðyÞ U1;220;10 ðUÞ ð3:34cÞ

where 1,1 0,2,20 are the four terminals of the two-port with 1 0 denoting the reference node (Figure 3.42).
However, we note that in Equations (3.34a) and (3.34b) only three of the four terminals have been specified.

We can therefore further expand U1,2,1 0 and U1,2 0 ,1 0 to obtain the following:

D1122 þ D112020 2D11220 ¼ U120;2;10 þ U1;2;1020 þ U12;20;10 þ U1;20;102 ð3:35Þ

For convenience, we shall use the shorthand notation SU to denote the sum of the right of Equation (3.35).

Thus, we define

SU ¼ U120;2;10 þ U1;2;1020 þ U12;20;10 þ U1;20;102 ð3:36Þ

Hence, we obtain the topological formulas for the short-circuit admittances as stated in the following theorem.

Theorem 3.7. The short-circuit admittance functions y11, y12, and y22 of a passive two-port network with

no mutual inductances are given by

y11 ¼ W2;20=SU ð3:37aÞ

FIGURE 3.42 The network N of Example 3.7.
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y12 ¼ y21 ¼ ðW120;102 W12;1020 Þ=SU ð3:37bÞ

y22 ¼ W1;10=SU ð3:37cÞ

where SU is defined in Equation (3.36) above.

Finally, following similar developments, other network functions are stated in Theorem 3.8.

Theorem 3.8. With the same notation as before:

Z12ðsÞ ¼
W12;1020 W120;102

V
ð3:38aÞ

G12ðsÞ ¼
W12;1020 W120;102

W1;10
ð3:38bÞ

Y12ðsÞ ¼ YL
W12;1020 W120;102

W1;10
ð3:38cÞ

a12ðsÞ ¼ YL
W12;1020 W120;102

V
ð3:38dÞ

The Flowgraph Approach

Mathematically speaking, a linear electrical network or, more generally, a linear system can be described by a

set of simultaneous linear equations. Solutions to these equations can be obtained either by the method of

successive substitutions (elimination theory), by the method of determinants (Cramer’s rule), or by any of the

topological techniques such as Maxwell’s k-tree approach discussed in the preceding subsection and the

flowgraph techniques represented by the works of Mason (1953, 1956) and Coates (1959).

Although the methods using algebraic manipulations can be amended and executed by a computer, they do

not reveal the physical situations existing in the system. The flowgraph techniques, however, show intuitively

the causal relationships between the variables of the system of interest and hence enable the network analyst to

have an excellent physical insight into the problem.

In the following, two of the more well-known flowgraph techniques are discussed; namely, the signal-

flowgraph technique devised by Mason and the method based on the flowgraph of Coates and recently

modified by Chan and Bapna (1967).

A signal-flowgraph Gm of a system S of n independent linear (algebraic) equations in n unknowns:

Xn
j¼1

aijxj ¼ bi i ¼ 1; 2; . . . ; n ð3:39Þ

is a graph with junction points called nodes that connected by directed line segments called branches with

signals traveling along the branches only in the direction described by the arrows of the branches. A signal xk
traveling along a branch between xk and xj is multiplied by the gain of the branches gkj, so that a signal of gkj xk
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is delivered at node xj. An input node (source) is a node which contains only outgoing branches; an output node

(sink) is a node which has only incoming branches. A path is a continuous unidirectional succession of

branches, all of which are traveling in the same direction; a forward path is a path from the input node to the

output node along which all nodes are encountered exactly once; and a feedback path (loop) is a closed path

which originates from and terminates at the same node, and along which all other nodes are encountered

exactly once (the trivial case is a self-loop which contains exactly one node and one branch). A path gain is the

product of all the branch gains of the path; similarly, a loop gain is the product of all the branch gains of the

branches in a loop.

The procedure for obtaining the Mason graph from a system of linear algebraic equations may be described

in the following steps:

1. Arrange all the equations of the system in such a way that the jth dependent (output) variable xj in the

jth equation is expressed explicitly in terms of the other variables. Thus, if the system under study is

given by Equation (3.39), namely:

a11x1 þ a12x2 þ þ a1nxn ¼ b1

a21x1 þ a22x2 þ þ a2nxn ¼ b2

..

. ..
. ..

. ..
. ..

.

an1x1 þ an2x2 þ þ annxn ¼ bn

ð3:40Þ

where b1,b2,. . ., bn are inputs (sources) and x1, x2, . . . , xn are outputs, the equations may be rewritten as

x1 ¼ 1

a11
b1

a12
a11

x2
a13
a11

x3
a1n
a11

xn

x2 ¼ 1

a22
b2

a21
a22

x1
a23
a22

x3
a2n
a22

xn

..

. ..
. ..

. ..
. ..

. ..
.

xn ¼ 1

ann
bn

an1
ann

x1
an2
ann

x2
an 1;n 1

ann
xn 1

ð3:41Þ

2. The number of input nodes in the flowgraph is equal to the number of nonzero b’s. That is, each of the

source nodes corresponds to a nonzero bj.

3. To each of the output nodes is associated one of the dependent variables x1,x2 , . . . , xn.

4. The value of the variable represented by a node is equal to the sum of all the incoming signals.

5. The value of the variable represented by any node is transmitted onto all branches leaving the node.

It is a simple matter to write the equations from the flowgraph since every node, except the source nodes of

the graph, represents an equation, and the equation associated with node k, for example, is obtained by

equating to xk the sum of all incoming branch gains multiplied by the values of the variables from which these

branches originate.

Mason’s general gain formula is now stated in the following theorem.

Theorem 3.9. Let G be the overall graph gain and Gk be the gain of the kth forward path from the source to

the sink. Then

G ¼ 1

D

X
k

GkDk ð3:42Þ
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where

D ¼ 1
X
m

pm1 þ
X
m

pm2
X
m

pm3 þ þ ð 1Þ j
X
m

pmj

pm1¼ loop gain (the product of all the branch gains around a loop)

pm2¼ product of the loop gains of the mth set of two nontouching loops

pm3¼ product of the loop gains of the mth set of three nontouching loops, and in general

pmj¼ product of the loop gains of the mth set of j nontouching loops

Dk¼ the value of D for that subgraph of the graph obtained by removing the kth forward path along

with those branches touching the path

Mason’s signal-flowgraphs constitute a very useful graphical technique for the analysis of linear systems.

This technique not only retains the intuitive character of the block diagrams but at the same time allows one to

obtain the gain between an input node and an output node of a signal-flowgraph by inspection. However, the

derivation of the gain formula (Equation (3.42)) is by no means simple, and, more importantly, if more than

one input is present in the system, the gain cannot be obtained directly; that is, the principle of superposition

must be applied to determine the gain due to the presence of more than one input. Thus, by slight

modification of the conventions involved in Mason’s signal-flowgraph, Coates (1959) was able to introduce the

so-called ‘‘flowgraphs’’ which are suitable for direct calculation of gain.

Recently, Chan and Bapna (1967) further modified Coates’s flowgraphs and developed a simpler gain

formula based on the modified graphs. The definitions and the gain formula based on the modified Coates

graphs are presented in the following discussion.

The flowgraph Gl (called the modified Coates graph) of a system S of n independent linear equations in n

unknowns

Xn
j¼1

aijxj ¼ bi i ¼ 1; 2; . . . ; n

is an oriented graph such that the variable xj in S is represented by a node (also denoted by xj) in Gl, and the

coefficient aij of the variable xj in S by a branch with a branch gain aij connected between nodes xi and xj in Gl
and directed from xj to xi. Furthermore, a source node is included in Gl such that for each constant bk in S there

is a node with gain bk in Gl from node 1 to node sk. Graph Gl0 is the subgraph of Gl obtained by deleting the

source node l and all the branches connected to it. Graph Gij is the subgraph of Gl obtained by first removing

all the outgoing branches from node xj and then short-circuiting node l to node xj. A loop set l is a subgraph of

Gl0 that contains all the nodes of Gl0 with each node having exactly one incoming and one outgoing branch.

The product p of the gains of all the branches in l is called a loop-set product. A 2-loop-set I2 is a subgraph of Glj
containing all the nodes of Glj with each node having exactly one incoming and one outgoing branch. The

product p2 of the gains of all the branches in l2 is called a 2-loop-set product.

The modified Coates gain formula is now stated in the following theorem.

Theorem 3.10. In a system of n independent linear equations in n unknowns

aijxj ¼ bi i ¼ 1; 2; . . . ; n

the value of the variable xj is given by

xj ¼
X
ðall p2Þ

ð 1ÞNl2p2=
X
ðall p2Þ

ð 1ÞN1p ð3:43Þ

where Nl2 is the number of loops in a 2-loop-set l2 and Nl is the number of loops in a loop set l.
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Since both the Mason graph Gm and the modified Coates graph Gl are topological representations of a

system of equations it is logical that certain interrelationships exist between the two graphs so that one can be

transformed into the other. Such interrelationships have been noted (Chan, 1969), and the transformations are

briefly stated as follows:

1. Transformation of Gm into Gl. Graph Gm can be transformed into an equivalent Coates graph Gl
(representing an equivalent system of equations) by the following steps:

a. Subtract 1 from the gain of each existing self-loop.

b. Add a self-loop with a gain of 1 to each branch devoid of self-loop.

c. Multiply by bk the gain of the branch at the kth source node bk (k¼ 1, 2 , . . . , r, r being the number

of source nodes) and then combine all the (r) nodes into one source node (now denoted by 1).

2. Transformation of Gl into Gm. Graph Gl can be transformed into Gm by the following steps:

a. Add 1 to the gain of each existing self-loop.

b. Add a self-loop with a gain of 1 to each node devoid of self-loop except the source node l.

c. Break the source node l into r source nodes (r being the number of branches connected to the source

node l before breaking), and identify the r new sources nodes by b1,b2, . . . , b, with the gain of the

corresponding r branches multiplied by 1/b1, 1/b2 , . . . , 1/br, respectively, so that the new gains

of these branches are all equal to l, keeping the edge orientations unchanged.

The gain formulas of Mason and Coates are the classical ones in the theory of flowgraphs. From the

systems viewpoint, the Mason technique provides excellent physical insight as one can visualize the signal

flow through the subgraphs (forward paths and feedback loops) of Gm. The graph-reduction technique

based on the Mason graph enables one to obtain the gain expression using a step-by-step approach and at

the same time observe the cause-and-effect relationships in each step. However, since the Mason formula

computes the ratio of a specified output over one particular input, the principle of superposition must be

used in order to obtain the overall gain of the system if more than one input is present. The Coates formula,

however, computes the output directly regardless of the number of inputs present in the system, but because

of such a direct computation of a given output, the graph reduction rules of Mason cannot be applied to a

Coates graph since the Coates graph is not based on the same cause-and-effect formulation of equations as

Mason’s.

The k-Tree Approach versus the Flowgraph Approach

When a linear network is given, loop or node equations can be written from the network, and the analysis of

the network can be accomplished by means of either Coates’s or Mason’s technique.

However, it has been shown (Chan, 1969) that if the Maxwell k-tree approach is employed in solving a linear

network, the redundancy inherent either in the direct expansion of determinants or in the flowgraph

techniques described above can be either completely eliminated for passive networks or greatly reduced for

active networks. This point and others will be illustrated in the following example.

Example 3.7

Consider the network N as shown in Figure 3.42. Let us determine the voltage gain, G12¼V0/V1, using (1)

Mason’s method, (2) Coates’s method, and (3) the k-tree method.

The two node equations for the network are given by

for node 2: ðYa þ Yb þ YeÞV2 þ ð Y3ÞV0 ¼ YaVi

for node 3: ð YeÞV2 þ ðYc þ Yd þ YeÞV0 ¼ YcVi
ð3:44Þ

where

Ya ¼ 1=Za;Yb ¼ 1=Zb;Yc ¼ 1=Zc;Yd ¼ 1=Zd andYe ¼ 1=Ze
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(1) Mason’s approach. Rewrite the system of both parts of Equation (3.44) as follows:

V2 ¼ Ya
Ya þ Yb þ Ye

Vi þ Ye
Ya þ Yb þ Ye

V0

V0 ¼ Yc
Yc þ Yd þ Ye

Vi þ Ye
Yc þ Yd þ Ye

V2

ð3:45Þ

or

V2 ¼ AVi þ BV0 V0 ¼ CVi þ DV2 ð3:46Þ

where

A ¼ Ya
Ya þ Yb þ Ye

B ¼ Ye
Ya þ Yb þ Ye

C ¼ Yc
Yc þ Yd þ Ye

D ¼ Ye
Yc þ Yd þ Ye

The Mason graph of system (Equation (3.46)) is shown in Figure 3.43, and according to the Mason graph

formula (Equation (3.42)), we have

D ¼ 1 BD

GC ¼ C DC ¼ 1

GAD ¼ AD DAD ¼ 1

and hence

G12 ¼ V0
V1

¼ 1

D

X
k

GkDk ¼ 1

1 BD
ðC þ ADÞ

¼ Yc=ðYc þ Yd þ YeÞ þ Ya=ðYa þ Yb þ YeÞðYc þ Yd þ YeÞ
1 Y2e =ðYa þ Yb þ YeÞðYc þ Yd þ YeÞ

Upon cancellation and rearrangement of terms

G12 ¼ YaYc þ YaYe þ YbYc þ YcYe
YaYc þ YaYd þ YaYe þ YbYc þ YbYd þ YbYe þ YcYe þ YdYe

ð3:47Þ

FIGURE 3.43 The Mason graph of N.
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(2) Coates’s approach. From Equation (3.44) we obtain the Coates graphs Gl, Gl0, and Gl3, as shown in

Figure 3.44(a), (b), and (c), respectively. The set of all loop-sets of Gl0 is shown in Figure 3.45, and the set of

all 2-loop-sets of Gl3 is shown in Figure 3.46. Thus, by Equation (3.43):

V0 ¼

P
ðall p2Þ

ð 1ÞNl2p2P
ðall pÞ

ð 1ÞNlp
¼ ð 1Þ1ð YeÞðYaViÞ þ ð 1Þ2ðYa þ Yb þ YeÞðYcViÞ
ð 1Þ1ð YeÞð YeÞ þ ð 1Þ2ðYa þ Yb þ YeÞðYc þ Yd þ YeÞ

Or, after simplification, we find

V0 ¼ ðYaYc þ YaYe þ YbYc þ YcYeÞVi
YaYc þ YaYd þ YaYe þ YbYc þ YbYd þ YbYe þ YcYe þ YdYe

ð3:48Þ

which gives the same ratio V0/Vi as Equation (3.47).

(3) The k-tree approach. Recall that the gain formula for V0/Vi using the k-tree approach is given (Chan,

1969) by

V0
Vi

¼ D13
D11

¼ W13;R

W1;R

¼

P all 2-tree admittance products with nodes 1 and 3 in one part

and the reference node R in the other part of each such 2-tree

!
P all 2-tree admittance products with nodes 1 in one part

and the reference node R in the other part of each such 2-tree

! ð3:49Þ

FIGURE 3.44 The Coates graphs: (a) Gl, (b) Gl0, and (c) Gl3.
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where D13 and D11 are cofactors of the determinant D of the node-admittance matrix of the network.

Furthermore, it is noted that the 2-trees corresponding to Dii may be obtained by finding all the trees of
the modified graph Gi, which is obtained from the graph G of the network by short-circuiting node i

(i being any node other than R) to the reference node R, and that the 2-trees corresponding to Dij can be
found by taking all those 2-trees, each of which is a tree of both Gi and Gj (Chan, 1969). Thus, for D11, we

first find G and G1 (Figure 3.47), and then find the set S1 of all trees of G1 (Figure 3.48); then for D13,

we find G3 (Figure 3.49) and the set S3 of all trees of G3 (Figure 3.50), and then from S1 and S3 we find

all the terms common to both sets (which correspond to the set of all trees common to G1 and G3),

as shown in Figure 3.51. Finally, we form the ratio of 2-tree admittance products according to

Equation (3.49). Thus, from Figures 3.48 and 3.51, we find

V0
Vi

¼ YaYc þ YaYe þ YbYc þ YcYe
YaYc þ YaYd þ YaYe þ YbYc þ YbYd þ YbYe þ YcYe þ YdYe

which is identical to the results obtained by the flowgraph techniques.

From the above discussions and Example 3.7, we see that the Mason approach is the best from a systems

viewpoint, especially when a single source is involved. It gives an excellent physical insight to the system and

reveals the cause-and-effect relationships at various stages when graph reduction technique is employed.

While the Coates approach enables one to compute the output directly regardless of the number of inputs

involved in the system, thus overcoming one of the difficulties associated with Mason’s approach, it does not

FIGURE 3.45 The set of all loop-sets of Gl0.

FIGURE 3.46 The set of all 2-loop-sets of Gl3.
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allow one to reduce the graph step-by-step toward the final solution as Mason’s does. However, it is

interesting to note that in the modified Coates technique the introduction of the loop-sets (analogous to

trees) and the 2-loop-sets (analogous to 2-trees) brings together the two different concepts—the flowgraph

approach and the k-tree approach.

FIGURE 3.47 (a) Graph G and (b) the modified graph Gl of G.

FIGURE 3.48 (a) The set of all trees of the modified graph Gl which corresponds to (b) the set of all 2-trees of G (with

nodes l and R in separate parts in each of such 2-trees).

FIGURE 3.49 The modified graph G3 of G.
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From the network’s point of view, the Maxwell k-tree approach not only enables one to express the solution

in terms of the topology (namely, the trees and 2-trees in Example 3.7) of the network but also avoids the

cancellation problem inherent in all the flowgraph techniques since, as evident from Example 3.7, the trees and

the 2-trees in the gain expression by the k-tree approach correspond (one-to-one) to the uncanceled terms in

the final expressions of the gain by the flowgraph techniques. Finally, it should be obvious that the k-tree

approach depends upon the knowledge of the graph of a given network. Thus, if in a network problem only

the system of (loop or node) equations is given and the network is not known, or more generally, if a system is

characterized by a block diagram or a system of equations, the k-tree approach cannot be applied and one

must resort to the flowgraph techniques between the two approaches.

Some Topological Applications in Network Analysis and Design

In practice, a circuit designer often has to make approximations and analyze the same network structure many

times with different sets of component values before the final network realization is obtained. Conventional

analysis techniques which require the evaluation of high-order determinants are undesirable even on a digital

computer because of the large amount of redundancy inherent in the determinant expansion process. The

extra calculation in the evaluation (expansion of determinants) and simplification (cancelation of terms) is

time consuming and costly and thereby contributes much to the undesirability of such methods.

The k-tree topological formulas presented in this section, however, eliminate completely the cancellation of

terms. Also, they are particularly suited for digital computation when the size of the network is not exceedingly

large. All of the terms involved in the formulas can be computed by means of a digital computation using a

FIGURE 3.50 (a) The set of all trees of the modified graph G3, which corresponds to (b) the set of all 2-trees of G (with

nodes 3 and R in separate parts in each such 2-trees).

FIGURE 3.51 The set of all 2-trees of G (with nodes l and 3 in one part of the reference node R in the other part of each

such 2-trees).
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single ‘‘tree-finding’’ program (Chan, 1969). Thus, the application of topological formulas in analyzing a

network with the aid of a digital computer can mean saving a considerable amount of time and cost to the

circuit designer, especially true when it is necessary to repeat the same analysis procedure a large number of

times. In a preliminary system design, the designer usually seeks one or more concepts that will meet the

specifications, and in engineering practice each concept is generally subjected to some form of analysis. For

linear systems, the signal flowgraph of Mason is widely used in this activity. The flowgraph analysis is popular

because it depicts the relationships existing between system variables, and the graphical structure may be

manipulated using Mason’s formulas to obtain system transfer functions in symbolic or symbolic/numerical

form. Although the preliminary design problems are usually of limited size (several variables), hand derivation

of transfer functions is nonetheless difficult and often prone to error arising from the omission of terms. The

recent introduction of remote, time-shared computers into modern design areas offers a means to handle such

problems swiftly and effectively.

An efficient algorithm suitable for digital compution of transfer functions from the signal flowgraph

description of a linear system has been developed (Dunn and Chan, 1969) which provides a powerful

analytical tool in the conceptual phases of linear system design.

In the past several decades, graph theory has been widely used in electrical engineering, computer science,

social science, and in the solution of economic problems (Swamy and Thulasiraman, 1981; Chen, 1990).

Finally, the application of graph theory in conjunction with symbolic network analysis and computer-aided

simulation of electronic circuits has been well recognized in recent years (Lin, 1991).

Defining Terms

Branches of a tree: The edges contained in a tree.

Circuit (or loop): A closed path where all vertices are of degree 2, thus having no endpoints in the path.

Circuit-set (or loop-set): The set of all edges contained in a circuit (loop).

Connectedness: A graph or subgraph is said to be connected if there is at least one path between every pair

of its vertices.

Flowgraph Gl (or modified Coates graph Gl): The flowgraph Gl (called the modified Coates graph) of a

system S of n independent linear equations in n unknowns:

Xn
j¼1

aijxj ¼ bi i ¼ 1; 2; . . . ; n

is an oriented graph such that the variable xj in S is represented by a node (also denoted by xj) in Gl, and

the coefficient aij of the variable xj in S by a branch with a branch gain aij connected between nodes xi
and xj in Gl and directed from xj to xi. Furthermore, a source node l is included in Gl such that for each

constant bk in S there is a node with gain bk in Gl from node l to node sk. Graph Gij is the subgraph of Gl
obtained by first removing all the outgoing branches from node xj and then short-circuiting node l to

node xj. A loop set l is a subgraph of Gl0 that contains all the nodes of Gl0 with each node having exactly

one incoming and one outgoing branch. The product p of the gains of all the branches in l is called a

loop-set product. A 2-loop-set l2 is a subgraph of Glj containing all the nodes of Glj with each node having

exactly one incoming and one outgoing branch. The product p2 of the gains of all the branches in l2 is

called a 2-loop-set product.

k-Tree admittance product of a k-tree: The product of the admittances of all the branches of the k-tree.

k-Tree of a connected graph G: A proper subgraph of G consisting of k unconnected circuitless

subgraphs, each subgraph itself being connected, which together contain all the vertices of G.

Linear graph: A set of line segments called edges and points called vertices, which are the endpoints of the

edges, interconnected in such a way that the edges are connected to (or incident with) the vertices. The

degree of a vertex of a graph is the number of edges incident with that vertex.
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Path: A subgraph having all vertices of degree 2 except for the two endpoints which are of degree 1 and are

called the terminals of the path, where the degree of a vertex is the number of edges connected to the

vertex in the subgraph.

Path-set: The set of all edges in a path.

Proper subgraph: A subgraph which does not contain all of the edges of the given graph.

Signal-flowgraph Gm (or Mason’s graph Gm): A signal-flowgraph Gm of a system S of n independent

linear (algebraic) equations in n unknowns:

Xn
j¼1

aijxj ¼ bi i ¼ 1; 2; . . . ; n

is a graph with junction points called nodes which are connected by directed line segments called

branches with signals traveling along the branches only in the direction described by the arrows of the

branches. A signal xk traveling along a branch between xk and xj is multiplied by the gain of the branches

gkj, so that a signal gkj xk is delivered at node xj. An input node (source) is a node which contains only

outgoing branches; an output node (sink) is a node which has only incoming branches. A path is a

continuous unidirectional succession of branches, all of which are traveling in the same direction; a

forward path is a path from the input node to the output node along which all nodes are encountered

exactly once; and a feedback path (loop) is a closed path which originates from and terminates at the

same node, and along with all other nodes are encountered exactly once (the trivial case is a self-loop

which contains exactly one node and one branch). A path gain is the product of all the branch gains of

the branches in a loop.

Subgraph: A subset of the edges of a given graph.

Tree: A connected subgraph of a given connected graph G which contains all the vertices of G but no

circuits.
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3.7 Two-Port Parameters and Transformations

Norman S. Nise

Many times we want to model the behavior of an electric network at

only two terminals, as shown in Figure 3.52. Here, only V1 and I1,

not voltages and currents internal to the circuit, need to be

described. To produce the model for a linear circuit, we use

Thévenin’s or Norton’s theorem to simplify the network as viewed

from the selected terminals. We define the pair of terminals shown in

Figure 3.52 as a port, where the current, I1, entering one terminal

equals the current leaving the other terminal.

If we further restrict the network by stating that (1) all external

connections to the circuit, such as sources and impedances, are made at the port and (2) the network can

have internal dependent sources, but not independent sources, we can mathematically model the network at

the port as

V1 ¼ ZI1 ð3:50Þ

or

I1 ¼ YV1 ð3:51Þ

where Z is the Thévenin impedance and Y is the Norton admittance at the terminals. Z and Y can be constant

resistive terms, Laplace transforms Z(s) or Y(s), or sinusoidal steady-state functions Z( jo) or Y( jo).

Defining Two-Port Networks

Electrical networks can also be used to transfer signals from one port to another. Under this requirement,

connections to the network are made in two places, the input and the output. For example, a transistor has an

input between the base and emitter and an output between the collector and emitter. We can model such

circuits as two-port networks, as shown in Figure 3.53. Here, we see the input port, represented by V1 and I1,

and the output port, represented by V2 and I2. Currents are assumed positive if they flow as shown in

FIGURE 3.52 An electrical network port.
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Figure 3.53. The same restrictions about external connections

and internal sources mentioned above for the single port also

apply.

Now that we have defined two-port networks, let us

discuss how to create a mathematical model of the network

by establishing relationships among all of the input and

output voltages and currents. Many possibilities exist for

modeling. In the next section we arbitrarily begin by

introducing the z-parameter model to establish the tech-

nique. In subsequent sections we present alternative models

and draw relationships among them.

Mathematical Modeling of Two-Port Networks via z Parameters

In order to produce a mathematical model of circuits represented by Figure 3.53, we must find relationships

among V1, I1, V2, and I2. Let us visualize placing a current source at the input and a current source at the

output. Thus, we have selected two of the variables, I1 and I2. We call these variables the independent variables.

The remaining variables, V1 and V2, are dependent upon the selected applied currents. We call V1 and V2 the

dependent variables. Using superposition we can write each dependent variable as a function of the indepen-

dent variables as follows:

V1 ¼ z11I1 þ z12I2 ð3:52aÞ
V2 ¼ z21I1 þ z22I2 ð3:52bÞ

We call the coefficients zij, in Equations (3.52) parameters of the two-port network or, simply, two-port

parameters.

From Equations (3.52), the two-port parameters are evaluated as

z11 ¼ V1
I1 I2¼0

; z12 ¼ V1
I2 I1¼0

z21 ¼ V2
I1 I2¼0

; z22 ¼ V2
I2 I1¼0

ð3:53Þ

Notice that each parameter can be measured by setting a port current, I1 or I2, equal to zero. Since the

parameters are found by setting these currents equal to zero, this set of parameters is called open-circuit

parameters. Also, since the definitions of the parameters as shown in Equations (3.53) are the ratio of voltages

to currents, we alternatively refer to them as impedance parameters, or z parameters. The parameters

themselves can be impedances represented as Laplace transforms, Z(s), sinusoidal steady-state impedance

functions, Z( jo), or simply pure resistance values, R.

Evaluating Two-Port Network Characteristics in Terms of z Parameters

The two-port parameter model can be used to find the following characteristics of a two-port network when

used in some cases with a source and load, as shown in Figure 3.54:

input impedance ¼ Zin ¼ V1=I1 ð3:54aÞ
output impedance ¼ Zout ¼ V2=I2jVs ¼ 0 ð3:54bÞ

FIGURE 3.53 A two-port network.
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network voltage gain ¼ Vg ¼ V2=V1 ð3:54cÞ
total voltage gain ¼ Vgt ¼ V2=Vs ð3:54dÞ
network current gain ¼ Ig ¼ I2=I1 ð3:54eÞ

To find Zin of Figure 3.54, determine V1/I1. From Figure 3.54, V2¼ I2ZL. Substituting this value in

Equation (3.52b) and simplifying, Equations (3.52) become

V1 ¼ z11I1 þ z12I2 ð3:55aÞ
0 ¼ z21I1 þ ðz22 þ ZLÞI2 ð3:55bÞ

Solving simultaneously for I1 and then forming V1/I1 ¼ Zin, we obtain

Zin ¼ V1
I1
¼ z11

z12z21
ðz22 þ ZLÞ ð3:56Þ

To find Zout, set VS¼ 0 in Figure 3.54. This step terminates the input with ZS. Next, determine V2/I2. From

Figure 3.54 with VS shorted, V1¼ I1ZS. By substituting this value into Equation (3.52a)) and simplifying,

Equations (3.52) become

0 ¼ ðz11 þ zsÞI1 þ z12I2 ð3:57aÞ

V2 ¼ z21I1 þ z22I2 ð3:57bÞ
By solving simultaneously for I2 and then forming V2/I2¼Zout:

Zout ¼ V2
I2 Vs¼0

¼ z22
z12z21

ðz11 þ zsÞ ð3:58Þ

To find Vg, we see from Figure 3.54 that I2¼ V2/ZL. Substituting this value in Equations (3.52) and

simplifying, we obtain

V1 ¼ z11I1
z12
zL
V2 ð3:59aÞ

0 ¼ z21I1
z22 þ ZL
ZL

V2 ð3:59bÞ

FIGURE 3.54 Terminated two-port network for finding two-port network characteristics.
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By solving simultaneously for V2 and then forming V2/V1¼Vg:

Vg ¼ V2
V1

¼ z21ZL
z11ðz22 þ ZLÞ z12z21

ð3:60Þ

Similarly, other characteristics such as current gain and the total voltage gain from the source voltage to the

load voltage can be found. Table 3.1 summarizes many of the network characteristics that can be found using z

parameters as well as the process to arrive at the result.

To summarize the process of finding network characteristics:

1. Define the network characteristic.

2. Use approproate relationships from Figure 3.54.

3. Substitute the relationships from Step 2 into Equations (3.52).

4. Solve the modified equations for the network characteristic.

An Example Finding z Parameters and Network Characteristics

To solve for two-port network characteristics we can first represent the network with its two-port parameters

and then use these parameters to find the characteristics summarized in Table 3.1. To find the parameters, we

terminate the network adhering to the definition of the parameter we are evaluating. Then we can use mesh or

nodal analysis, current or voltage division, or equivalent impedance to solve for the parameters. The following

example demonstates the technique.

Consider the network of Figure 3.55(a). The first step is to evaluate the z parameters. From their definition,

z11 and z21 are found by open-circuiting the output and applying a voltage at the input, as shown in Figure

3.55(b). Thus, with I2¼ 0:

6I1 4Ia ¼ V1 ð3:61aÞ

4I1 þ 18Ia ¼ 0 ð3:61bÞ

TABLE 3.1 Network Characteristics Developed from z-Parameter Defining Equations (3.52)

Network Characteristic

Definition

From Figure 3.54 Substitute in Defining

Equations (3.52) and Obtain

Solve for Network

Characteristic

Input impedance V2¼ I2ZL V1¼ z11I1þz12I2 Zin ¼ z11
z12z21
z22 þ zL

zin ¼ V1
I1

0¼ z21I1þ(z22þZL)I2

Output impedance V1¼ Vs I1Zs 0¼ (z11þzs)I1þz12I2 Zout ¼ z22
z12z21

z11 þ Zs
Zout ¼ V2

I2 Vs¼0
Vs¼ 0 V2¼Z21I1þz22I2

Network voltage gain I2 ¼ V2

ZL
V1 ¼ z11I1

z12V2
ZL

Vg ¼
z21ZL

z11ðz22 þ ZLÞ z12z21

Vg ¼
V2

V1
0 ¼ z21I1

ðz22 þ ZLÞV2
ZL

Total voltage gain V1¼Vs I1Zs Vs ¼ ðz11 þ ZsÞI1
z12V2
ZL

Vgt ¼
z21ZL

ðz11 þ ZsÞðz22 þ ZLÞ z12z21

Vgt ¼
V2

Vs
I2 ¼ V2

ZL
0 ¼ z21I1

ðz22 þ ZLÞV2
ZL

Network current gain V2¼ I2ZL V1¼ z11I1þz12I2 Ig ¼
z21

z22 þ ZL
Ig ¼ I2

I1
0¼ z21I1þ(z22þZL)I2
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Solving for I1 yields

I1 ¼
V1 4
0 18

6 4
4 18

¼ 18V1
92

ð3:62Þ

from which

z11 ¼ V1
I1 I2¼0

¼ 46

9
ð3:63Þ

We now find z21. From Equation (3.61b):

Ia
I1
¼ 2

9
ð3:64Þ

But, from Figure 3.55(b), Ia¼V2/8. Thus

z21 ¼ V2
I2 I2¼0

¼ 16

9
ð3:65Þ

Based on their definitions, z22 and z12 are found by placing a source at the output and open-circuiting the

input as shown in Figure 3.55(c). The equivalent resistance, R2eq, as seen at the output with I1¼ 0 is

R2eq ¼ 8 · 10
8þ 10

¼ 40

9
ð3:66Þ

Therefore

z22 ¼ V2
I2 I1¼0

¼ 40

9
ð3:67Þ

From Figure 3.55(c), using voltage division:

V1 ¼ ð4=10ÞV2 ð3:68Þ

FIGURE 3.55 (a) Two-port network example; (b) two-port network modified to find z11 and z21; (c) two-port network

modified to find z22 and z12.
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But

V2 ¼ I2R2eq ¼ I2ð40=9Þ ð3:69Þ

Substituting Equation (3.69) into Equation (3.68) and simplifying yields

z12 ¼ V1
I2 I1¼0

¼ 16

9
ð3:70Þ

Using the z-parameter values found in Equation (3.63), Equation (3.65), Equation (3.67), and Equation (3.70)

and substituting into the network characteristic relationships shown in the last column of Table 3.1, assuming

ZS¼ 20 O and ZL¼ 10 O, we obtain Zin¼ 4.89 O, Zout¼ 4.32 O, Vg¼ 0.252, Vgt¼ 0.0494, and Ig¼ 0.123.

Additional Two-Port Parameters and Conversions

We defined the z parameters by establishing I1 and I2 as the independent variables and V1 and V2 as the

dependent variables. Other choices of independent and dependent variables lead to definitions of alternative

two-port parameters. The total number of combinations one can make with the four variables, taking two at a

time as independent variables, is six. Table 3.2 defines the six possibilities as well as the names and symbols

given to the parameters.

The table also presents the expressions used to calculate directly the parameters of each set based upon their

definition as we did with z parameters. For example, consider the y or admittance parameters. These

parameters are seen to be short-circuit parameters, since their evaluation requires V1 or V2 to be zero. Thus,

to find y22 we short-circuit the input and find the admittance looking back from the output. For Figure

3.55(a), y22¼ 23/88. Any parameter in Table 3.2 is found either by open-circuiting or short-circuiting a

terminal and then performing circuit analysis to find the defining ratio.

Another method of finding the parameters is to convert from one set to another. Using the ‘‘Definition’’ row

in Table 3.2, we can convert the defining equations of one set to the defining equations of another set. For

example, we have already found the z parameters. We can find the h parameters as follows.

Solve for I2 using the second z-parameter equation (Equation (3.52b)) and obtain the second h-parameter

equation as

I2 ¼ z21
z22

I1 þ I

z22
V2 ð3:71Þ

which is of the form I2¼ h21I11h22V2, the second h-parameter equation. Now, substitute Equation (3.71) into

the first z-parameter equation (Equation (3.52a)) rearrange, and obtain

V1 ¼ z11z22 z12z21
z22

I1 þ z12
z22

V2 ð3:72Þ

which is of the form V1¼ h11I11h12V2, the first h-parameter equation. Thus, for example, h21¼ z21/z22 from

Equation (3.71). Other transformations are found through similar manipulations and are summarized in

Table 3.2.

Finally, there are other parameter sets that are defined differently from the standard sets covered here.

Specifically, they are scattering parameters used for microwave networks and image parameters used for filter

design. A detailed discussion of these parameters is beyond the scope of this section. The interested reader

should consult the bibliography in the ‘‘Further Information’’ section.
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Two-Port Parameter Selection

The choice of parameters to use in a particular analysis or design problem is based on analytical convenience

or the physics of the device or network at hand. For example, an ideal transformer cannot be represented with

z parameters. I1 and I2 are not linearly independent variables, since they are related through the turns ratio.

A similar argument applies to the y-parameter representation of a transformer. Here, V1 and V2 are not

independent, since they too are related via the turns ratio. A possible choice for the transformer is the

transmission parameters. For an ideal transformer, B and C would be zero. For a BJT transistor, there is

effectively linear independence between the input current and the output voltage. Thus, the hybrid parameters

are the parameters of choice for the transistor.

TABLE 3.2 Two-Port Parameter Definitions and Conversions

Impedance Parameters

(Open-Circuit Parameters)

z

Admittance Parameters

(Short-Circuit Parameters)

y

Hybrid Parameters

h

Definition V1¼ z11I1þz12I2 I1¼ y11V1þy12V2 V1¼ h11I1þh12V2
V2¼ z21I1þz22I2 I2¼ y21V1þy22V2 I2¼ h21I1þh22V2

Parameters z11 ¼ V1
I1 I2¼0

; z12 ¼ V1
I2 I1¼0

y11 ¼ I1
V1 V2¼0

; y12 ¼ I1
V1 V1¼0

h11 ¼ V1
I1 V2¼0

; h12 ¼ V1
V2 I1¼0

z21 ¼ V2
I1 I2¼0

; z22 ¼ V2
I2 I1¼0

y21 ¼ I2
V1 V2¼0

; y22 ¼ I2
V1 V1¼0

h21 ¼ I2
I1 V2¼0

; h22 ¼ I2
V2 I1¼0

Conversion to z

parameters

z11 ¼ y22
Dy
; z12 ¼ y12

Dy
z11 ¼ Dh

h22
; z12 ¼ h12

h22

z21 ¼ y21
Dy

; z22 ¼ y11
Dy

z21 ¼ h21
h22

; z22 ¼ 1

h22

Conversion to y

parameters

y11 ¼ z22
Dz
; y12 ¼ z12

Dz
y11 ¼ 1

h11
; y12 ¼ h12

h11

y21 ¼ z21
Dz

; y22 ¼ z11
Dz

y21 ¼ h21
h11
; y22 ¼ Dh

h11

Conversion to h

parameters

h11 ¼ Dz
z22
; h12 ¼ z12

z22
h11 ¼ 1

y11
; h12 ¼ y12

y11

h21 ¼ z21
z22

; h22 ¼ 1
z22

h21 ¼ y21
y11
; h22 ¼ Dy

y11

Conversion to g

parameters

g11 ¼ 1
z11
; g12 ¼ z12

z11
g11 ¼ Dy

y22
; g12 ¼ y12

y22
g11 ¼ h22

Dh
; g12 ¼ h12

Dh

g21 ¼ z21
z11
; g22 ¼ Dz

z11
g21 ¼ y21

y22
; g22 ¼ 1

y22
g21 ¼ h21

Dh
; g22 ¼ h11

Dh

Conversion to T

parameters

A ¼ z11
z21
; B ¼ Dz

z21
A ¼ y22

y21
; B ¼ 1

y21
A ¼ Dh

h21
; B ¼ h11

h21

C ¼ 1
z21
; D ¼ z22

z21
C ¼ Dy

y21
; D ¼ y11

y21
C ¼ h22

h21
; D ¼ 1

h21

Conversion to T 0

parameters

A0 ¼ z22
z12
; B0 ¼ Dz

z12
A0 ¼ y11

y12
; B0 ¼ 1

y12
A0 ¼ 1

h12
; B0 ¼ h11

h12

C0 ¼ 1
z12
; D0 ¼ z11

z12
C0 ¼ Dy

y12
; D0 ¼ y22

y12
C0 ¼ h22

h12
; D0 ¼ Dh

h12

D Dz¼ z11z22 z12z21 Dy¼ y11y22 y12y21 Dh¼ h11h22 h12h21
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The choice of parameters can be based also upon the ease of analysis. For example, Table 3.3 shows that T

networks lend themselves to easy evaluation of the z parameters, while y parameters can be easily evaluated for

P networks. Table 3.3 summarizes other suggested uses and selections of network parameters for a few specific

cases. When electric circuits are interconnected, a judicious choice of parameters can simplify the calculations

to find the overall parameter description for the interconnected networks. For example, Table 3.3 shows that

the z parameters for series-connected networks are simply the sum of the z parameters of the individual

circuits [see Ruston et al. (1966) for derivations of the parameters for some of the interconnected networks].

The bold entries imply 2 · 2 matrices containing the four parameters. For example

h ¼ h11 h12
h21 h22

ð3:73Þ

TABLE 3.2 (Continued)

Inverse Hybrid Parameters

g

Transmission Parameters

T

Inverse Transmission Par.

T 0

Definition I1¼ g11V1þg12I2 V1¼AV2 BI2 V2 ¼ A0V1 B0I1

V2¼ g21V1þg22I2 I1¼CV2 DI2 I2 ¼ C0V1 D0I1

Parameters g11 ¼ I1
V1 I2¼0

; g12 ¼ I1
I2 V1¼0

A ¼ V1
V2 I2¼0

; B ¼ V1
I2 V2¼0

A0 ¼ V2
V1 I1¼0

; B0 ¼ V2
I1 V1¼0

g21 ¼ V2
V1 I2¼0

; g22 ¼ V2
I2 V1¼0

C ¼ I1
V2 I2¼0

; D ¼ I1
I2 V2 ¼ 0

C0 ¼ I2
V1 I1¼0

; D0 ¼ I2
I1 V1¼0

Conversion to z

parameters

z11 ¼ 1
g11
; z12 ¼ g12

g11
z11 ¼ A

C ; z12 ¼ DT
C z11 ¼ D0

C0
; z12 ¼ 1

C0

z21 ¼ g21
g11
; z22 ¼ Dg

g11
z21 ¼ 1

C ; z22 ¼ D
C z21 ¼ DT 0

C0
; z22 ¼ A0

C0

Conversion to y

parameters

y11 ¼ Dg
g22
; y12 ¼ g12

g22
y11 ¼ D

B ; y12 ¼ DT
B y11 ¼ A0

B0
; y12 ¼ 1

B0

y21 ¼ g21
g22

; y22 ¼ 1
g22

y21 ¼ 1
B ; y22 ¼ A

B
y21 ¼ DT0

B0
; y22 ¼ D0

B0

Conversion to h

parameters

h11 ¼ g22
Dg
; h12 ¼ g12

Dg
h11 ¼ B

D ; h12 ¼ DT
D h11 ¼ B0

A0
; h12 ¼ 1

A0

h21 ¼ g21
Dg

; h22 ¼ g11
Dg

h21 ¼ 1
D ; h22 ¼ C

D h21 ¼ DT0
A0

; h22 ¼ C0
A0

Conversion to g

parameters

g11 ¼ C
A ; g12 ¼ DT

A g11 ¼ C0
D0 ; g12 ¼ 1

D0

g21 ¼ 1
A ; g22 ¼ B

A g21 ¼ DT0
D0 ; g22 ¼ B0

D0

Conversion to T

parameters

A ¼ 1
g21
; B ¼ g22

g21
A ¼ D0

DT0
; B ¼ B0

DT 0

C ¼ g11
g21
; D ¼ Dg

g21
C ¼ C0

DT0
; D ¼ A0

DT0

Conversion to T 0

parameters

A0 ¼ Dg
g12

; B0 ¼ g22
g12

A0 ¼ D
DT
; B0 ¼ B

DT

C0 ¼ g11
g12

; D0 ¼ 1
g12

C0 ¼ C
DT
; D0 ¼ A

DT

D Dg¼ g11g22 g12g21 DT¼AD BC DT 0 ¼A 0D 0 B 0C 0

Adapted from Van Valkenburg, M.E. 1974. Network Analysis, 3rd ed. Table 3.11–2, p. 337. Prentice-Hall, Englewood Cliffs, NJ.
With permission.
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TABLE 3.3 Two-Port Parameter Set Selection

Common Circuit Applications Interconnected Network Applications

Impedance parameters z * T networks * Series connected

z11¼ZaþZe; z12¼ z21¼Zc
z22¼ZbþZc

z¼ zA1zB

Admittance parameters y * P networks * Parallel connected

y11¼YaþYc; y12¼ y21¼ Yc

y22¼YbþYc

y = yA + yB

* Field effect transistor equivalent circuit

where typically:

1/y11¼1, y12¼ 0, y21¼ gm, 1/y22¼ rd

Hybrid parameters h * Transistor equivalent circuit * Series-parallel connected

where typically for common emitter:

h11¼ hie, h12¼ hre, h21¼ hfe, h22¼ hoe h¼hA1hB

Inverse hybrid parameters g * Parallel-series connected

g¼ gA1gB
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Summary

In this section, we developed two-port parameter models for two-port electrical networks. The models define

interrelationships among the input and output voltages and currents. A total of six models exists, depending

upon which two variables are selected as independent variables. Any model can be used to find such network

characteristics as input and output impedance and voltage and current gains. Once one model is found, other

models can be obtained from transformation equations. The choice of parameter set is based upon physical

reality and analytical convenience.

Defining Terms

Admittance parameters: That set of two-port parameters, such as y parameters, where all the parameters

are defined to be the ratio of current to voltage. See Table 3.2 for the specific definition.

Dependent source: A voltage or current source whose value is related to another voltage or current in the

network.

g Parameters: See hybrid parameters.

h Parameters: See hybrid parameters.

Hybrid (inverse hybrid) parameters: That set of two-port parameters, such as h(g) parameters, where

input current (voltage) and output voltage (current) are the independent variables. The parenthetical

expressions refer to the inverse hybrid parameters. See Table 3.2 for specific definitions.

Impedance parameters: That set of two-port parameters, such as z parameters, where all the parameters

are defined to be the ratio of voltage to current. See Table 3.2 for the specific definition.

Independent source: A voltage or current source whose value is not related to any other voltage or current

in the network.

Norton’s theorem: At a pair of terminals a linear electrical network can be replaced with a current source

in parallel with an admittance. The current source is equal to the current that flows through the

terminals when the terminals are short-circuited. The admittance is equal to the admittance at the

terminals with all independent sources set equal to zero.

Open-circuit parameters: Two-port parameters, such as z parameters, evaluated by open-circuiting a port.

Port: Two terminals of a network where the current entering one terminal equals the current leaving the

other terminal.

Short-circuit parameters: Two-port parameters, such as y parameters, evaluated by short-circuiting a port.

Superposition: In linear networks, a method of calculating the value of a dependent variable. First, the

value of the dependent variable produced by each independent variable acting alone is calculated. Then,

these values are summed to obtain the total value of the dependent variable.

TABLE 3.3 (Continued)

Common Circuit Applications Interconnected Network Applications

Transmission parameters T * Ideal transformer circuits * Cascade connected

T¼TATB

Inverse transmission

parameters T

* Cascade connected

T 0 ¼T 0BT 0A
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Thévenin’s theorem: At a pair of terminals a linear electrical network can be replaced with a voltage

source in series with an impedance. The voltage source is equal to the voltage at the terminals when the

terminals are open-circuited. The impedance is equal to the impedance at the terminals with all

independent sources set equal to zero.

T parameters: See transmission parameters.

T 0 parameters: See transmission parameters.

Transmission (inverse transmission) parameters: That set of two-port parameters, such as the T(T0)
parameters, where the dependent variables are the input (output) variables of the network and the

independent variables are the output (input) variables. The parenthetical expressions refer to the inverse

transmission parameters. See Table 3.2 for specific definitions.

Two-port networks: Networks that are modeled by specifying two ports, typically input and output ports.

Two-port parameters: A set of four constants, Laplace transforms, or sinusoidal steady-state functions

used in the equations that describe a linear two-port network. Some examples are z, y, h, g, T, and T 0

parameters.

y Parameters: See admittance parameters.

z Parameters: See impedance parameters.
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4.1 Introduction

This chapter will include detailed design information for passive RLC filters, including Butterworth, Thomson,

and Chebyshev, both singly and doubly terminated. As the filter slope is increased in order to obtain greater

rejection of frequencies beyond cut-off, the complexity and cost are increased and the response to a step input is

worsened. In particular, the overshoot and the settling time are increased. The element values given are for

normalized low-pass configurations to fifth order. All higher order doubly-terminated Butterworth filter

element values can be obtained using Takahasi’s equation, and an example is included. In order to use this

information in a practical filter these element values must be scaled. Scaling rules to denormalize in frequency

and impedance are given with examples. Since all data is for low-pass filters the transformation rules to change

from low-pass to high-pass and to band-pass filters are included with examples.

Laplace Transform

We will use the Laplace operator, s¼sþ jo. Steady-state impedance is thus Ls and 1/Cs, respectively, for an
inductor (L) and a capacitor (C), and admittance is 1/Ls and Cs. In steady state s¼ 0 and therefore s¼ jo.

Transfer Functions

We will consider only lumped, linear, constant, and bilateral elements, and we will define the transfer function

T(s) as response over excitation:

TðsÞ ¼ signal output

signal input
¼ NðsÞ
DðsÞ

The roots of the numerator polynomial N(s) are the zeros of the system, and the roots of the denominator

D(s) are the poles of the system (the points of infinite response). If we substitute s ¼ jo into T(s) and separate

Adapted from Instrumentation and Control: Fundamentals and Applications, edited by Chester L. Nachtigal, pp. 487–497,

copyright 1990, John Wiley & Sons, Inc. Reproduced by permission of John Wiley & Sons, Inc.
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the result into real and imaginary parts (numerator and denominator) we obtain

Tð joÞ ¼ A1 þ jB1
A2 þ jB2

ð4:1Þ

Then the magnitude of the function, jT( jo)j, is

jTð joÞj ¼ A21 þ B21
A22 þ B22

!1
2

ð4:2Þ

and the phase Tð joÞ is

Tð joÞ ¼ tan 1 B1
A1

tan 1 B2
A2

ð4:3Þ

Analysis

Although mesh or nodal analysis can always be used, since we will consider only ladder networks we

will use a method commonly called linearity or working your way through. The method starts at the

output and assumes either 1 volt or 1 ampere as appropriate and uses Ohm’s law and Kirchhoff ’s current

law only.

Example 4.1. Analysis of the circuit in Figure 4.1 for Vo¼ 1 V.

I3 ¼ 3

2
s; V1 ¼ 1þ 3

2
s

4

3
s ¼ 1þ 2s2

I2 ¼ V1
1

2
s ¼ 1

2
sþ s3; I1 ¼ I2 þ I3

Vi ¼ V1 þ I1 ¼ s3 þ 2s2 þ 2sþ 1

TðsÞ ¼ Vo
Vi
¼ 1

s3 þ 2s2 þ 2sþ 1

Vi

V1

I1

I2 I3

I3

Vo
1/2

4/3

3/2

1

FIGURE 4.1 Singly terminated third-order low-pass filter (O, H, F).
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Example 4.2. Determine the magnitude and phase of T(s) in Example 4.1:

jTðsÞj ¼ 1

s3 þ 2s2 þ 2sþ 1 s¼jo

jTðsÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ð1 2o2Þ þ ð2o o3Þ2
s

¼ 1ffiffiffiffiffiffiffiffiffi
o6 þ 1

p

TðsÞ ¼ tan 10 tan 1 2o o3

1 2o2 ¼ tan 1 2o o3

1 2o2

The values used for the circuit of Figure 4.1 were normalized; that is, they are all near unity in ohms, henrys,

and farads. These values simplify computation and, as we will see later, can easily be scaled to any desired set of

actual element values. In addition, this circuit is low-pass because of the shunt capacitors and the series

inductor. By low-pass we mean a circuit that passes the lower frequencies and attenuates higher frequencies.

The cut-off frequency is the point at which the magnitude is 0.707 ( 3 dB) of the dc level and is the dividing

line between the passband and the stopband. In the above example we see that the magnitude of Vo/Vi at

o¼ 0 (dc) is 1.00 and that at o ¼ 1 rad/sec we have

jTð joÞj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiðo6 þ 1Þp ¼ 0:707 o ¼ 1 rad=sec ð4:4Þ

and therefore this circuit has a cut-off frequency of 1 rad/sec.

Thus, we see that the normalized element values used here give us a cut-off frequency of 1 rad/sec.

4.2 Low-Pass Filter Functions1

The most common function in signal processing is the Butterworth. It is a function that has only poles (i.e., no

finite zeros) and has the flattest magnitude possible in the passband. This function is also called maximally

flat magnitude (MFM). The derivation of this function is illustrated by taking a general all-pole function of

third-order with a dc gain of 1 as follows:

TðsÞ ¼ 1

as3 þ bs2 þ csþ 1
ð4:5Þ

The squared magnitude is

jTð joÞj2 ¼ 1

ð1 bo2Þ2 þ ðco ao3Þ2 ð4:6Þ

or

jTð joÞj2 ¼ 1

a2o6 þ ðb2 2acÞo4 þ ðc2 2bÞo2 þ 1
ð4:7Þ

MFM requires that the coefficients of the numerator and the denominator match term by term (or be in the

same ratio) except for the highest power.

1 Adapted from Handbook of Measurement Science, edited by Peter Sydenham, copyright 1982, John Wiley & Sons Limited.

Reproduced by permission of John Wiley & Sons Limited.
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Therefore

c2 2b ¼ 0; b2 2ac ¼ 0 ð4:8Þ

We will also impose a normalized cut-off ( 3 dB) at o¼ 1 rad/sec; that is

jTð joÞjo¼1 ¼ 1ffiffiffiffiffiffiffiffiffiffiða2 þ 1Þp ¼ 0:707 ð4:9Þ

Thus, we find a¼ 1, then b¼ 2, c¼ 2 are solutions to the flat magnitude conditions of Equation (4.8) and our

third-order Butterworth function is

TðsÞ ¼ 1

s3 þ 2s2 þ 2sþ 1
ð4:10Þ

Table 4.1 gives the Butterworth denominator polynomials up to n¼ 5.

In general, for all Butterworth functions the normalized magnitude is

jTð joÞj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiðo2n þ 1Þp ð4:11Þ

Note that this is down 3 dB at o¼ 1 rad/sec for all n.

This may, of course, be multiplied by any constant less than 1 for circuits whose dc gain is deliberately set to

be less than 1.

Example 4.3. A low-pass Butterworth filter is required whose

cut-off frequency ( 3 dB) is 3 kHz and in which the response

must be down 40 dB at 12 kHz. Normalizing to a cut-off

frequency of 1 rad/sec, the 40-dB frequency is

12 kHz

3 kHz
¼ 4 rad=s

thus

40 ¼ 20 log
1ffiffiffiffiffiffiffiffiffi

42n þ 1
p

therefore n¼ 3.32. Since n must be an integer, a fourth-order filter is required for this specification.

There is an extremely important difference between the singly terminated (dc gain¼ 1) and the doubly

terminated filters (dc gain¼ 0.5). As was shown by John Orchard, the sensitivity in the passband (ideally at

maximum output) to all L, C components in an L, C filter with equal terminations is zero. This is true

regardless of the circuit.

This, of course, means component tolerances and temperature coefficients are of much less importance in the

equally terminated case. For this type of Butterworth low-pass filter (normalized to equal 1-O terminations),

TABLE 4.1 Butterworth Polynomials

sþ 1

s2 þ 1:414sþ 1

s3þ 2s2þ 2sþ 1

s4þ 2.6131s3þ 3.4142s2þ 2.6131sþ 1

s5þ 3.2361s4þ 5.2361s3þ 5.2361s2þ 3.2361sþ a

Source: Handbook of Measurement Science,

edited by Peter Sydenham, copyright 1982, John

Wiley & Sons. Reproduced by permission of John

Wiley & Sons.
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Takahasi has shown that the normalized element values are exactly given by

L;C ¼ 2 sin
ð2k 1Þp

2n
ð4:12Þ

for any order n, where k is the L or C element from 1 to n.

Example 4.4. Design a normalized (o 3 dB¼ 1 rad/sec) doubly terminated (i.e., source and load¼ 1 O)
Butterworth low-pass filter of order 6; that is, n¼ 6.

The element values from Equation (4.12) are

L1 ¼ 2 sin
ð2 1Þp
12

¼ 0:5176 H

C2 ¼ 2 sin
ð4 1Þp
12

¼ 1:4141 F

L3 ¼ 2 sin
ð6 1Þp
12

¼ 1:9319 H

The values repeat for C4, L5, C6 so that

C4 ¼ L3; L5 ¼ C2;C6 ¼ L1

Thomson Functions

The Thomson function is one in which the time

delay of the network is made maximally flat.

This implies a linear phase characteristic since

the steady-state time delay is the negative of the

derivative of the phase. This function has

excellent time-domain characteristics and is

used wherever excellent step response is

required. These functions have very little over-

shoot to a step input and have far superior

settling times compared to the Butterworth

functions. The slope near cut-off is more

gradual than the Butterworth. Table 4.2 gives

the Thomson denominator polynomials. The

numerator is a constant equal to the dc gain of the circuit multiplied by the denominator constant. The cut-off

frequencies are not all 1 rad/sec. They are given in Table 4.2.

Chebyshev Functions

A second function defined in terms of magnitude, the Chebyshev, has an equal ripple character within the

passband. The ripple is determined by E.

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10A=10 1Þ

q
ð4:13Þ

where A¼decibels of ripple; then for a given order n, we define n:

TABLE 4.2 Thomson Polynomials

o 3 dB (rad/sec)

sþ 1 1.0000

s2þ 3sþ 3 1.3617

s3þ 6s2þ 15sþ 15 1.7557

s4þ 10s3þ 45s2þ 105sþ 105 2.1139

s5þ 15s4þ 105s3þ 420s2þ 945sþ 945 2.4274

Source: Handbook of Measurement Science, edited by Peter Syden-

ham, copyright 1982, John Wiley & Sons. Reproduced by permission of

John Wiley & Sons.
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n ¼ 1

n
sinh 1 1

E
ð4:14Þ

Table 4.3 gives denominator polynomials for the Chebyshev functions. In all cases, the cut-off frequency

(defined as the end of the ripple) is 1 rad/sec. The 3-dB frequency for the Chebyshev function is

o 3dB ¼ cosh
cosh 1ð1=EÞ

n

" #
ð4:15Þ

The magnitude in the stopband (o . 1 rad/sec) for the normalized filter is

jTð joÞj2 ¼ 1

1þ E2 cosh2ðn cosh 1oÞ ð4:16Þ

for the singly terminated filter. For equal terminations the above magnitude is multiplied by 1/2 (1/4 in

Equation (4.16)).

Example 4.5. What order of singly terminated Chebyshev filter having 0.25-dB ripple (A) is required if the

magnitude must be 60 dB at 15 kHz and the cut-off frequency ( 0.25 dB) is to be 3 kHz? The normalized

frequency for a magnitude of 60 dB is

15 kHz

3 kHz
¼ 5 rad=sec

Thus, for a ripple of A¼ 0.25 dB, we have from Equation (4.13)

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10A=10 1Þ

q
¼ 0:2434

and solving Equation (4.16) for n with o¼ 5 rad/sec and jT(jo)j ¼ 60 dB, we obtain n¼ 3.93. Therefore, we

must use n¼ 4 to meet these specifications.

4.3 Low-Pass Filters1

Introduction

Normalized element values are given here for both singly and doubly terminated filters. The source and load

resistors are normalized to 1 O. Scaling rules will be given in Section 4.4 that will allow these values to be

TABLE 4.3 Chebyshev Polynomials

s þ sinh n

s2 þ ð ffiffi
2

p
sinh nÞsþ sinh2 nþ 1=2

(s þ sinh n)[s2þ (sinh n)sþ sinh2 nþ 3/4]

[s2þ (0.75637 sinh n)sþ sinh2 nþ 0.85355]· [s2þ (1.84776 sinh n)sþ sinh2 nþ 0.14645]

(sþ sinh n)[s2þ (0.61803 sinh n)sþ sinh2 nþ 0.90451]· [s2þ (1.61803 sinh n)sþ sinh2 nþ 0.34549]

Source: Handbook of Measurement Science, edited by Peter Sydenham, copyright 1982, John Wiley &

Sons. Reproduced by permission of John Wiley & Sons.

1Adapted from Handbook of Measurement Science, edited by Peter Sydenham, copyright 1982, John Wiley & Sons. Reproduced by

permission of John Wiley & Sons.
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modified to any specified impedance value and to any cut-off frequency desired. In addition, we will cover the

transformation of these low-pass filters to high-pass or bandpass filters.

Butterworth Filters

For n¼ 2, 3, 4, or 5, Figure 4.2 gives the element values for the singly terminated filters and Figure 4.3 gives the

element values for the doubly terminated filters. All cut-off frequencies ( 3 dB) are 1 rad/sec.

Thomson Filters

Singly and doubly terminated Thomson filters of order n¼ 2, 3, 4, and 5 are shown in Figures 4.4 and 4.5. All

time delays are 1 sec. The cut-off frequencies are given in Table 4.2.

Chebyshev Filters

The amount of ripple can be specified as desired so that only a selective sample can be given here. We will use

0.1, 0.25, and 0.5 dB. All cut-off frequencies (end of ripple for the Chebyshev function) are at 1 rad/sec.

Since the maximum power transfer condition precludes the existence of an equally terminated even-order

FIGURE 4.2 Singly terminated Butterworth filter element values (in O, H, F). (Source: Handbook of Measurement Science,

edited by Peter Sydenham, copyright 1982, John Wiley & Sons. Reproduced by permission of John Wiley & Sons.)

FIGURE 4.3 Doubly terminated Butterworth filter element values (in O, H, F). (Source: Handbook of Measurement

Science, edited by Peter Sydenham, copyright 1982, John Wiley & Sons. Reproduced by permission of John Wiley & Sons.)
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filter, only odd orders are given for the doubly terminated case. Figure 4.6 gives the singly terminated

Chebyshev filters for n¼ 2, 3, 4, and 5 and Figure 4.7 gives the doubly terminated Chebyshev filters for n¼ 3

and n¼ 5.

4.4 Filter Design

We now consider the steps necessary to convert normalized filters into actual filters by scaling both in

frequency and in impedance. In addition, we will cover the transformation laws that convert low-pass filters to

high-pass filters and low-pass to bandpass filters.

Scaling Laws and a Design Example

Since all data previously given are for normalized filters, it is necessary to use the scaling rules to design a low-

pass filter for a specific signal processing application:

Rule 1. All impedances may be multiplied by any constant without affecting the transfer-voltage ratio.

Rule 2. To modify the cut-off frequency, divide all inductors and capacitors by the ratio of the desired

frequency to the normalized frequency.

FIGURE 4.4 Singly terminated Thomson filter element values (in O, H, F). (Source: Handbook of Measurement Science,

edited by Peter Sydenham, copyright 1982, John Wiley & Sons. Reproduced by permission of John Wiley & Sons.)

FIGURE 4.5 Doubly terminated Thomson filter element values (in O, H, F). (Source: Handbook of Measurement Science,

edited by Peter Sydenham, copyright 1982, John Wiley & Sons. Reproduced by permission of John Wiley & Sons.)
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Example 4.6. Design a low-pass filter of MFM type (Butterworth) to operate from a 600-O source into a

600-O load, with a cut-off frequency of 500 Hz. The filter must be at least 36 dB below the dc level at 2 kHz,

that is, 42 dB (dc level is 6 dB).

Since 2 kHz is four times 500 Hz, it corresponds to o¼ 4 rad/sec in the normalized filter. Thus at

o¼ 4 rad/sec we have

42 dB ¼ 20 log
1

2

1ffiffiffiffiffiffiffiffiffi
42n þ 1

p

therefore, n ¼ 2.99, so n ¼ 3 must be chosen. The 1/2 is present because this is a doubly terminated (equal

values) filter so that the dc gain is 1/2.

FIGURE 4.6 Singly terminated Chebyshev filter element values (in O, H, F): (a) 0.1-dB ripple; (b) 0.25-dB ripple;

(c) 0.50-dB ripple. (Source: Handbook of Measurement Science, edited by Peter Sydenham, copyright 1982, John Wiley &

Sons. Reproduced by permission of John Wiley & Sons.)
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Thus a third-order, doubly terminated Butterworth filter is required. From Figure 4.3 we obtain the

normalized network shown in Figure 4.8(a).

The impedance scaling factor is 600/1¼ 600 and the frequency scaling factor is 2p500/1¼ 2p500: that is,
the ratio of the desired radian cut-off frequency to the normalized cut-off frequency (1 rad/sec). Note that the

impedance scaling factor increases the size of the resistors and inductors, but reduces the size of the capacitors.

The result is shown in Figure 4.8(b).

Transformation Rules, Passive Circuits

All information given so far applies only to low-pass filters, yet we frequently need high-pass or bandpass

filters in signal processing.

Ripple (dB) C1 L C2

0.10 1.0316 1.1474 1.0316

0.25 1.3034 1.1463 1.3034

0.50 1.5963 1.0967 1.5963

Ripple (dB) C1 L1 C2 L2 C2

0.10 1.1468 1.3712 1.9750 1.3712 1.1468

0.25 1.3824 1.3264 2.2091 1.3264 1.3824

0.50 1.7058 1.2296 2.5408 1.2296 1.7058

FIGURE 4.7 Doubly terminated Chebyshev filter element values (in O, H, F).

FIGURE 4.8 Third-order Butterworth low-pass filter: (a) normalized (in O, H, F); (b) scaled (in O, H, mF).
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Low-Pass to High-Pass Transformation

To transform a low-pass filter to high-pass, we first scale it to

a cut-off frequency of 1 rad/sec if it is not already at 1 rad/sec.

This allows a simple frequency rotation about 1 rad/sec of s!
1/s. All L’s become C’s, all C’s become L’s, and all values

reciprocate. The cut-off frequency does not change.

Example 4.7. Design a third-order, high-pass Butterworth

filter to operate from a 600-O source to a 600-O load with a

cut-off frequency of 500 Hz.

Starting with the normalized third-order low-pass filter of

Figure 4.3 for which o 3¼ 1 rad/sec, we reciprocate all ele-

ments and all values to obtain the filter shown in Figure 4.9(a)

for which o 3¼ 1 rad/sec.

Now we apply the scaling rules to raise all impedances to

600 O and the radian cut-off frequency to 2p500 rad/sec as
shown in Figure 4.9(b).

Low-Pass to Bandpass Transformation

To transform a low-pass filter to a bandpass filter we must first scale the low-pass filter so that the cut-off

frequency is equal to the bandwidth of the normalized bandpass filter. The normalized center frequency of the

bandpass filter is o0¼ 1 rad/sec. Then we apply the transformation s ! s þ 1/s. For an inductor:

Z ¼ Ls transforms to Z ¼ L sþ 1

s

For a capacitor:

Y ¼ Cs transforms toY ¼ C sþ 1

s

The first step is then to determine the Q of the bandpass filter where

Q ¼ f0
B
¼ o0

Br

( f0 is the center frequency in Hz and B is the 3-dB bandwidth in Hz). Now we scale the low-pass filter to a cut-

off frequency of 1/Q rad/sec, then series tune every inductor, L, with a capacitor of value 1/L and parallel tune

every capacitor, C, with an inductor of value 1/C.

Example 4.8. Design a bandpass filter centered at 100 kHz having a 3-dB bandwidth of 10 kHz starting with

a third-order Butterworth low-pass filter. The source and load resistors are each to be 600 O.
The Q required is

Q ¼ 100 kHz

10 kHz
¼ 10; or

1

Q
¼ 0:1

Scaling the normalized third-order low-pass filter of Figure 4.10(a) to o 3 dB ¼ 1/Q ¼ 0.1 rad/sec, we obtain

the filter of Figure 4.10(b).

FIGURE 4.9 Third-order Butterworth high-pass

filter: (a) normalized (in O, H, F); (b) scaled (in

O, H, mF).
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Now converting to bandpass with o0 ¼ 1 rad/sec, we obtain the normalized bandpass filter of

Figure 4.11(a). Next, scaling to an impedance of 600 O and to a center frequency of f0 ¼ 100 kHz

(o0 ¼ 2p100 k rad/sec), we obtain the filter of Figure 4.11(b).

Defining Terms

Bandpass filter: A filter whose passband extends from a finite lower cut-off frequency to a finite upper cut-

off frequency.

Equal ripple: A frequency response function whose magnitude has equal maxima and equal minima in the

passband.

Frequency scaling: The process of modifying a filter to change from a normalized set of element values to

other usually more practical values by dividing all L, C elements by a constant equal to the ratio of the

scaled (cut-off) frequency desired to the normalized cut-off frequency.

High-pass filter: A filter whose band extends from some finite cut-off frequency to infinity.

Impedance scaling: Modifying a filter circuit to change from a normalized set of element values to other

usually more practical element values by multiplying all impedances by a constant equal to the ratio of

the desired (scaled) impedance to the normalized impedance.

FIGURE 4.11 Sixth-order Butterworth bandpass filter (Q ¼ 10): (a) normalized, o0 ¼ 1 rad/sec (in O, H, F); (b) scaled.

FIGURE 4.10 Third-order Butterworth low-pass filter: (a) normalized (in O, H, F); (b) scaled in (in O, H, F).
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Low-pass filter: A filter whose passband extends from dc to some finite cut-off frequency.

Maximally flat magnitude (MFM) filter: A filter having a magnitude that is as flat as possible versus

frequency while maintaining a monotonic characteristic.

Passband: A frequency region of signal transmission usually within 3 dB of the maximum transmission.

Stopband: The frequency response region in which the signal is attenuated, usually by more than 3 dB from

the maximum transmission.

Transfer function: The Laplace transform of the response (output voltage) divided by the Laplace

transform of the excitation (input voltage).

Transformation: The modification of a low-pass filter to convert it to an equivalent high-pass or bandpass

filter.
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5.1 Diodes and Rectifiers

Jerry L. Hudgins

A diode generally refers to a two-terminal solid-state semiconductor device that presents a low impedance to

current flow in one direction and a high impedance to current flow in the opposite direction. These properties

allow the diode to be used as a one-way current valve in electronic circuits. Rectifiers are a class of circuits

whose purpose is to convert ac waveforms (usually sinusoidal and with zero average value) into a waveform

that has a significant nonzero average value (dc component). Simply stated, rectifiers are ac-to-dc energy

converter circuits. Most rectifier circuits employ diodes as the principal elements in the energy conversion

process; thus the almost inseparable notions of diodes and rectifiers. The general electrical characteristics of

common diodes and some simple rectifier topologies incorporating diodes are discussed.

Diodes

Most diodes are made from a host crystal of silicon (Si) with appropriate impurity elements introduced to

modify, in a controlled manner, the electrical characteristics of the device. These diodes are the typical

pn-junction (or bipolar) devices used in electronic circuits. Another type is the Schottky diode (unipolar),

produced by placing a metal layer directly onto the semiconductor (Mott, 1938; Schottky, 1938;). The metal–

semiconductor interface serves the same function as the pn-junction in the common diode structure. Other

semiconductor materials such as gallium-arsenide (GaAs) and silicon-carbide (SiC) are also in use for new and

specialized applications of diodes. Detailed discussion of diode structures and the physics of their operation

can be found in later paragraphs of this section.

The electrical circuit symbol for a bipolar diode is shown in Figure 5.1. The polarities associated with the

forward voltage drop for forward current flow are also included. Current or voltage opposite to the polarities

indicated in Figure 5.1 are considered to be negative values with respect to the diode conventions shown.
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The characteristic curve shown in Figure 5.2 is representative of the

current–voltage dependencies of typical diodes. The diode conducts

forward current with a small forward voltage drop across the device,

simulating a closed switch. The relationship between the forward

current and forward voltage is approximately given by the Shockley

diode equation (Shockley, 1949):

iD ¼ Is exp
qVD
nkT

1 ð5:1Þ

where Is is the leakage current through the diode, q is the electronic charge, n is a correction factor, k is

Boltzmann’s constant, and T is the temperature of the semiconductor. Around the knee of the curve in Figure

5.2 is a positive voltage that is termed the turn-on or sometimes the threshold voltage for the diode. This value

is an approximate voltage above which the diode is considered turned on and can be modeled to first degree as

a closed switch with constant forward drop. Below the threshold voltage value the diode is considered weakly

conducting and approximated as an open switch. The exponential relationship shown in Equation (5.1) means

that the diode forward current can change by orders of magnitude before there is a large change in diode

voltage, thus providing the simple circuit model during conduction. The nonlinear relationship of

Equation (5.1) also provides a means of frequency mixing for applications in modulation circuits.

Reverse voltage applied to the diode causes a small leakage current (negative according to the sign

convention) to flow that is typically orders of magnitude lower than current in the forward direction. The

diode can withstand reverse voltages up to a limit determined by its physical construction and the

semiconductor material used. Beyond this value the reverse voltage imparts enough energy to the charge

carriers to cause large increases in current. The mechanisms by which this current increase occurs are impact

ionization (avalanche) (McKay, 1954) and a tunneling phenomenon (Zener breakdown) (Moll, 1964).

Avalanche break-down results in large power dissipation in the diode, is generally destructive, and should be

avoided at all times. Both breakdown regions are superimposed in Figure 5.2 for comparison of their effects on

the shape of the diode characteristic curve. Avalanche breakdown occurs for reverse applied voltages in the

range of volts to kilovolts depending on the exact design of the diode. Zener breakdown occurs at much lower

voltages than the avalanche mechanism. Diodes specifically designed to operate in the Zener breakdown mode

are used extensively as voltage regulators in regulator integrated circuits and as discrete components in large

regulated power supplies.

FIGURE 5.1 Circuit symbol for a

bipolar diode indicating the polarity

associated with the forward voltage and

current directions.

FIGURE 5.2 A typical diode dc characteristic curve showing the current dependence on voltage.
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During forward conduction the power loss in the diode can become excessive for large current flow.

Schottky diodes have an inherently lower turn-on voltage than pn-junction diodes and are therefore more

desirable in applications where the energy losses in the diodes are significant (such as output rectifiers in

switching power supplies). Other considerations such as recovery characteristics from forward conduction to

reverse blocking may also make one diode type more desirable than another. Schottky diodes conduct current

with one type of charge carrier and are therefore inherently faster to turn off than bipolar diodes. However,

one of the limitations of Schottky diodes is their excessive forward voltage drop when designed to support

reverse biases above about 200 V. Therefore, high-voltage diodes are the pn-junction type.

The effects due to an increase in the temperature in a bipolar diode are many. The forward voltage drop

during conduction will decrease over a large current range, the reverse leakage current will increase, and the

reverse avalanche breakdown voltage (VBD) will increase as the device temperature climbs. A family of static

characteristic curves highlighting these effects is shown in Figure 5.3 where T3.T2.T1. In addition, a major

effect on the switching characteristic is the increase in the reverse recovery time during turn-off. Some of the

key parameters to be aware of when choosing a diode are its repetitive peak inverse voltage rating, VRRM
(relates to the avalanche breakdown value), the peak forward surge current rating, IFSM (relates to

the maximum allowable transient heating in the device), the average or rms current rating, IO (relates to the

steady-state heating in the device), and the reverse recovery time, trr (relates to the switching speed of the

device).

Rectifiers

This section discusses some simple uncontrolled rectifier circuits that are commonly encountered. The term

uncontrolled refers to the absence of any control signal necessary to operate the primary switching elements

(diodes) in the rectifier circuit. The discussion of controlled rectifier circuits, and the controlled switches

themselves, is more appropriate in the context of power electronics applications (Hoft, 1986). Rectifiers are the

fundamental building block in dc power supplies of all types and in dc power transmission used by some

electric utilities.

A single-phase full-wave rectifier circuit with the accompanying input and output voltage waveforms is

shown in Figure 5.4. This topology makes use of a center-tapped transformer with each diode conducting on

opposite half-cycles of the input voltage. The forward drop across the diodes is ignored on the output graph,

which is a valid approximation if the peak voltages of the input and output are large compared to 1 V. The

circuit changes a sinusoidal waveform with no dc component (zero average value) to one with a dc component

of 2Vpeak/p. The rms value of the output is 0.707Vpeak.

FIGURE 5.3 The effects of temperature variations on the forward voltage drop and the avalanche breakdown voltage in a

bipolar diode.
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The dc value can be increased further by adding a low-pass filter in cascade with the output. The usual form

of this filter is a shunt capacitor or an LC filter as shown in Figure 5.5. The resonant frequency of the LC filter

should be lower than the fundamental frequency of the rectifier output for effective performance. The ac

portion of the output signal is reduced while the dc and rms values are increased by adding the filter. The

remaining ac portion of the output is called the ripple. Though somewhat confusing, the transformer, diodes,

and filter are often collectively called the rectifier circuit.

Another circuit topology commonly encountered is the bridge rectifier. Figure 5.6 illustrates single-

and three-phase versions of the circuit. In the single-phase circuit diodes D1 and D4 conduct on the

positive half-cycle of the input while D2 and D3 conduct on the negative half-cycle of the input.

Alternate pairs of diodes conduct in the three-phase circuit depending on the relative amplitude of the

source signals.

The three-phase inputs with the associated rectifier output voltage are shown in Figure 5.7 as they would

appear without the low-pass filter section. The three-phase bridge rectifier has a reduced ripple content of 4% as

compared to a ripple content of 47% in the single-phase bridge rectifier (Milnes, 1980). The corresponding

diodes that conduct are also shown at the top of the figure. This output waveform assumes a purely resistive load

connected as shown in Figure 5.6. Most loads (motors, transformers, etc.) and many sources (power grid)

FIGURE 5.4 A single-phase full-wave rectifier circuit using a center-tapped transformer with the associated input and

output waveforms.

Vin

L

C
C

+

−

Filter Load

FIGURE 5.5 A single-phase full-wave rectifier with the addition of an output filter.
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include some inductance, and in fact may be dominated by inductive properties. This causes phase shifts

between the input and output waveforms. The rectifier output may thus vary in shape and phase considerably

from that shown in Figure 5.7 (Kassakian et al., 1991).When other types of switches are used in these circuits the

inductive elements can induce large voltages that may damage sensitive or expensive components. Diodes are

used regularly in such circuits to shunt current- and clamp-induced voltages at low levels to protect expensive

components such as electronic switches.

One variation of the typical rectifier is the Cockroft-

Walton circuit used to obtain high voltages without the

necessity of providing a high-voltage transformer. The

circuit in Figure 5.8 multiplies the peak secondary volt-

age by a factor of six. The steady-state voltage level at

each filter capacitor node is shown in the figure.

Adding additional stages increases the load voltage

further. As in other rectifier circuits, the value of the

capacitors will determine the amount of ripple in the

output waveform for given load-resistance values. In

general, the capacitors in a lower voltage stage should

be larger than in the next highest voltage stage.

FIGURE 5.7 Three-phase rectifier output compared to the input signals. The input signals as well as the conducting diode

labels are those referenced to Figure 5.6.

FIGURE 5.6 Single- and three-phase bridge rectifier circuits.

FIGURE 5.8 Cockroft-Walton circuit used for voltage

multiplication.
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Defining Terms

Bipolar device: Semiconductor electronic device that uses positive and negative charge carriers to conduct

electric current.

Diode: Two-terminal solid-state semiconductor device that presents a low impedance to current flow in one

direction and a high impedance to current flow in the opposite direction.

pn-junction: Metallurgical interface of two regions in a semiconductor where one region contains impurity

elements that create equivalent positive charge carriers (p-type) and the other semiconductor region

contains impurities that create negative charge carriers (n-type).

Ripple: The ac (time-varying) portion of the output signal from a rectifier circuit.

Schottky diode: A diode formed by placing a metal layer directly onto a unipolar semiconductor substrate.

Uncontrolled rectifier: A rectifier circuit employing switches that do not require control signals to operate

them in their on or off states.
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Further Information

A good introduction to solid-state electronic devices with a minimum of mathematics and physics is Solid

State Electronic Devices, 3rd edition, by B.G. Streetman, Prentice-Hall, 1989. A rigorous and more detailed

discussion is provided in Physics of Semiconductor Devices, 2nd edition, by S.M. Sze, John Wiley & Sons, 1981.

Both of these books discuss many specialized diode structures as well as other semiconductor devices.

Advanced material on the most recent developments in semiconductor devices, including diodes, can be found

in technical journals such as the IEEE Transactions on Electron Devices, Solid State Electronics, and Journal of

Applied Physics. A good summary of advanced rectifier topologies and characteristics is given in Basic

Principles of Power Electronics by K. Heumann, Springer-Verlag, 1986. Advanced material on rectifier designs as

well as other power electronics circuits can be found in IEEE Transactions on Power Electronics, IEEE

Transactions on Industry Applications, and the EPE Journal. Two good industry magazines that cover power

devices such as diodes and power converter circuitry are Power Control and Intelligent Motion (PCIM) and

Power Technics.

5.2 Limiter (Clipper)

Theodore F. Bogart, Jr., Taan El Ali, and Mahamudunnabi Basunia

A limiter is a device that can keep the voltage excursions at its output to a prescribed level. This is also called

clipping because of the circuit ability to clip both alternations of the input signal. The simplest type consists

simply of diodes (including Zener diodes) and resistors. To improve performance and add precision,

operational amplifiers are usually used. Limiters are used in a wide variety of electronic systems. They are
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generally used to perform one of two functions: (1) altering the shape of a waveform or (2) circuit transient

protection.

Limiter Operator and Circuits

Figure 5.9 shows the general transfer characteristic of the limiter operator. As indicated in the figure, the

limiter acts as an amplifier of gain k, which can be either positive or negative, for inputs in a certain range;

a2/k,¼ vin,¼ a1/k. If input vin exceeds the upper threshold (a1/k), the output voltage limits or clamps to

the upper limiting level, a1, and holds this voltage.

However, if vin is reduced below the lower limiting threshold (a2/k), the output voltage vo will be limited to

lower limiting level a2 and it will hold this voltage.

The general transfer characteristic of Figure 5.9 describes a double limiter, which works for both positive and

negative peaks of input waveform with different limiting levels (a1 and a2). Here, a1 and a2 might have equal or

different absolute values.

Figure 5.9 shows the characteristic of a hard limiter (where linear region to saturation region changes

rapidly). For a soft limiter, there is a smooth transition between linear region and saturation region of its

characteristic curve, as shown in Figure 5.10. The slope in the saturation region should be greater than zero.

If a clipping circuit follows the transfer characteristic of Figure 5.9, then for the sine wave input shown in

Figure 5.11, the output will be as shown in Figure 5.12.

In Figure 5.13, all circuits output are assumed to have unity gain (e.g., k¼ 1); as a result, the slope in the

linear region is 1. Clipping circuits rely on the fact that diodes have very low impedances when they are

forward biased and are essentially open circuits when reverse-biased.

Figures 5.13(a) and (b) are positive limiting circuits. They are identical except for the additional biased dc

voltage source in Figure 5.13(b). Feeding a sinusoid to Figure 5.13(a) results in a 0.7-V output for positive

cycle and 10 V for negative cycle (same as negative input cycle). In Figure 5.13(b), for 4 V fixed voltage in the

FIGURE 5.9 General transfer characteristic of the limiter. FIGURE 5.10 Soft limiter characteristic curve.

FIGURE 5.11 A sine wave with amplitude 10 V (this is

the input vin of all circuits in this chapter).

FIGURE 5.12 Applying a sine wave to a limiter can

result in clipping off its two peaks.
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FIGURE 5.13 Different limiter circuits.
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FIGURE 5.13 (Continued).
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circuit, output is 4 + 0.7¼ 4.7 V peak for positive cycle and –10 V for negative cycle (in this case the diode

works as an open circuit, output will follow the input cycle).

Figure 5.13(c) and (d) are negative limiting circuits. They are identical except for the additional fixed

negative voltage in Figure 5.13(d). Feeding a sinusoid to Figure 5.13(c) results in a 10-V peak voltage for

positive cycle and 0.7 V for negative cycle. For positive cycle, the diode acts as an open circuit, so the output

will follow the input cycle. For negative cycle, the diode is forward biased and works as a short circuit. So the

output is the forward biasing voltage of 0.7 V.

Note that the type of clipping we showed in Figure 5.13(e and f) occurs when the fixed bias voltage tends to

forward bias the diode and the clipping will occur only when the fixed bias voltage tends to reverse bias the

diode.

Figure 5.13(g and h) are double-ended limiting circuits using diodes, where two opposite-polarity diodes are

put in parallel. Figure 5.13(g) results in a crude approximation of a square wave, with about 1.4 V peak-to-peak

amplitude. Figure 5.13(h) with two dc-biased voltages in series with diodesmade a different level clipping circuit.

In Figure 5.13 the output equals the dc source voltage (if we consider diodes are ideal, so forward biasing

voltage VF ¼ 0) when the input reaches the value necessary to forward bias the diode. When the diode is

reverse biased by the input signal, it is like an open circuit that disconnects the dc source, and the output

follows the input. These circuits are called parallel clippers because the biased diode is parallel to the output.

Figure 5.13 illustrates a different kind of limiting action where the output follows the input when the signal

is above or below a certain level.

Figure 5.14, shows a zener shunt clipping circuit, which is used to clip both alternations of the input

signal. The zener shunt clipper uses both the forward and reverse operation characteristics of the zener diode.

Feeding a sinusoid to this circuit results in a crude approximation of a square wave, with the approximately

1.4-V peak-to-peak amplitude.

When input is positive, Z1 is forward biased (0.7 V) and Z2 is reverse biased (VZ2)(assuming that the value

of Vin is sufficiently high to turn both diodes on).

In this circuit, limiting occurs in the positive direction at a voltage of VZ2 + 0.7, where 0.7 V represents the

voltage drop across zener diode Z1 when conducting in the forward direction. For negative inputs, the

opposite condition will exist. Z1 acts as a zener, while Z2 conducts in the forward direction. So, the output

voltage will be –(VZ2 + 0.7). It should be mentioned that pairs of zener diodes connected in series are available

commercially for applications of this type under the name double-anode zener.

In most symmetrical zener shunt clippers, the VZ ratings of the two diodes are equal. VZ1 and VZ2 have

different values in rare practical situations. The symmetrical zener shunt clipper is used primarily for circuit

protection.

Operational Amplifier Limiting Circuits

Figure 5.15(a) shows a biased diode connected in the feedback path of an operational amplifier. It looks like a

clipping circuit. Since inverting terminal (2) is at virtual ground, the output voltage vo is the same voltage

across Rf.

FIGURE 5.14 (a) Zener shunt clipping circuit, (b) limiter output, and (c) transfer characteristic.
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In Figure 5.15(b), where input is the sinusoidal voltage, the output is the bias voltage –(E+ 0.7), the output

is held at –(E + 0.7) V. Notice that output clipping occurs at input voltage (R1/Rf)(E+ 0.7) because the

amplifier inverts and has closed-loop gain magnitude Rf/R1. A characteristic curve for this is shown

in Figure 5.15(c). This circuit is a limiting circuit because it limits the output to the dc level clamped by

the diode.

In practice, the fixed voltage source is replaced by a zener diode. So, in Figure 5.16 and Figure 5.17, the zener

diode is in series with a conventional diode. The zener diode works as a conventional diode when it is forward

biased. In reverse bias, the zener is in a breakdown region, which exhibits a voltage drop (VZ) that is almost

constant and independent of the current through the diode. Every zener diode has a specified value for its

breakdown voltage, also called the zener voltage (VZ).

FIGURE 5.16 (a) Positive limiting circuit and (b) transfer characteristic.

FIGURE 5.17 (a) Negative limiter circuit and (b) transfer characteristic.

FIGURE 5.15 (a) An operational amplifier limiting circuit, (b) output clamps at E+VD volts when input reaches

R1/Rf (E+ 0.7), and (c) transfer characteristic.
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These are useful and practical circuits that function as a comparator if the feedback resistance Rf is not

included and as a limiter when Rf is included. The output voltage v0 equals forward diode voltage plus zener

voltage VZ.

Figure 5.18 shows double-ended limiting circuits, where zeners are in a back-to-back position. Here, both

positive and negative peaks of the output waveform are clipped. In both positive and negative peaks, one zener

diode is forward biased and another one is reverse biased.
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5.3 Distortion

Kartikeya Mayaram

The diode was introduced in the previous sections as a nonlinear device that is used in rectifiers and limiters.

These are applications that depend on the nonlinear nature of the diode. Typical electronic systems are

composed not only of diodes, but also of other nonlinear devices such as transistors. In analog applications,

transistors are used to amplify weak signals (amplifiers) and to drive large loads (output stages). For such

situations it is desirable that the output be an amplified true reproduction of the input signal; therefore, the

transistors must operate as linear devices. However, the inherent nonlinearity of transistors results in an

output that is a ‘‘distorted’’ version of the input.

The distortion due to a nonlinear device is illustrated in Figure 5.19. For an input X, the output is Y ¼ F(X),

where F denotes the nonlinear transfer characteristics of the device; the dc operating point is given by X0.

Sinusoidal input signals of two different amplitudes are applied and the output responses corresponding to

these inputs are also shown.

For an input signal of small amplitude, the output faithfully follows the input; whereas for large-amplitude

signals, the output is distorted; a flattening occurs at the negative peak value. The distortion in amplitude

results in the output having frequency components that are integer multiples of the input frequency,

harmonics, and this type of distortion is referred to as harmonic distortion.

The distortion level places a restriction on the amplitude of the input signal that can be applied to an

electronic system. Therefore, it is essential to characterize the distortion in a circuit. In this section different

types of distortion are defined and techniques for distortion calculation are presented. These techniques are

applicable to simple circuit configurations. For larger circuits, a circuit simulation program is invaluable.

FIGURE 5.18 (a) Double-ended limiting circuit and (b) transfer characteristic.
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Harmonic Distortion

When a sinusoidal signal of a single frequency is applied at the input of a nonlinear device or circuit, the

resulting output contains frequency components that are integer multiples of the input signal. These

harmonics are generated by the nonlinearity of the circuit and the harmonic distortion is measured by

comparing the magnitudes of the harmonics with the fundamental component (input frequency) of the

output.

Consider the input signal to be of the form

xðtÞ ¼ X1cos o1t ð5:2Þ

where f1 ¼ o1/2p is the frequency and X1 is the amplitude of the input signal. Let the output of the nonlinear
circuit be

yðtÞ ¼ Y0 þ Y1cos o1t þ Y2 cos 2o1t þ Y3 cos 3 o1t þ ð5:3Þ

where Y0 is the dc component of the output, Y1 is the amplitude of the fundamental component, and Y2, Y3
are the amplitudes of the second and third harmonic components, respectively. The second harmonic distortion

factor (HD2), the third harmonic distortion factor (HD3), and the nth harmonic distortion factor (HDn) are

defined as

HD2 ¼ jY2j
jY1j ð5:4Þ

HD3 ¼ jY3j
jY1j ð5:5Þ

HDn ¼ jYnj
jY1j ð5:6Þ

The total harmonic distortion (THD) of a waveform is defined to be the ratio of the rms (root-mean-square)

value of the harmonics to the amplitude of the fundamental component.

FIGURE 5.19 The dc transfer characteristics of a nonlinear circuit and the input and output waveforms. For a large input

amplitude the output is distorted.
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THD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y22 þ Y23 þ þ Y2n

q
jY1j ð5:7Þ

THD can be expressed in terms of the individual harmonic distortion factors:

THD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HD2

2 þHD2
3 þ þHD2

n

q
ð5:8Þ

Various methods for computing the harmonic distortion factors are described next.

Power-Series Method

In this method a truncated power-series expansion of the dc transfer characteristics of a nonlinear circuit is

used. Therefore, the method is suitable only when energy storage effects in the nonlinear circuit are negligible

and the input signal is small. In general, the input and output signals comprise both dc and time-varying

components. For distortion calculation we are interested in the time-varying or incremental components

around a quiescent1 operating point. For the transfer characteristic of Figure 5.19, denote the quiescent

operating conditions by X0 and YY0 and the incremental variables by x(t) and y(t) at the input and output,

respectively. The output can be expressed as a function of the input using a series expansion:

YY0 þ y ¼ FðX0 þ xÞ ¼ a0 þ a1x þ a2x
2 þ a3x

3 þ ð5:9Þ
where a0 ¼ YY0 ¼ FðX0Þ is the output at the dc operating point. The incremental output is

y ¼ a1x þ a2x
2 þ a3x

3 þ ð5:10Þ
Depending on the amplitude of the input signal, the series can be truncated at an appropriate term. Typically

only the first few terms are used, which makes this technique applicable only to small input signals. For a pure

sinusoidal input (Equation (5.2)), the distortion in the output can be estimated by substituting for x in

Equation (5.10) and by use of trigonometric identities one can arrive at the form given by Equation (5.3). For

a series expansion that is truncated after the cubic term

Y0 ¼ a2X
2
1

2

Y1 ¼ a1X1 þ 3a3X
3
1

4
> a1X1 ð5:11Þ

Y2 ¼ a2X
2
1

2

Y3 ¼ a3X
3
1

4
Notice that a dc term Y0 is present in the output (produced by the even-powered terms) that results in a shift

of the operating point of the circuit due to distortion. In addition, depending on the sign of a3 there can be an

expansion or compression of the fundamental component. The harmonic distortion factors (assuming Y1 ¼
a1X1) are

HD2 ¼ jY2j
jY1j ¼

1

2

a2
a1
X1

HD3 ¼ jY3j
jY1j ¼

1

4

a3
a1
X2
1

ð5:12Þ

As an example, choose as the transfer function Y ¼ F(X) ¼ exp(X); then a1 ¼ 1, a2 ¼ 1/2, a3 ¼ 1/6. For an

input signal amplitude of 0.1, HD2 ¼ 2.5% and HD3 ¼ 0.04%.

1Defined as the operating condition when the input has no time-varying component.
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Differential-Error Method

This technique is also applicable to nonlinear circuits in which energy storage effects can be neglected. The

method is valuable for circuits that have small distortion levels and relies on one’s ability to calculate the small-

signal gain of the nonlinear function at the quiescent operating point and at the maximum and minimum

excursions of the input signal. Again the power-series expansion provides the basis for developing this

technique. The small-signal gain1 at the quiescent state (x ¼ 0) is a1. At the extreme values of the input signal

X1 (positive peak) and –X1 (negative peak) let the small-signal gains be a
+ and a–, respectively. By defining

two new parameters, the differential errors, E+ and E , as

Eþ ¼ aþ a1
a1

E ¼ a a1
a1

ð5:13Þ

the distortion factors are given by

HD2 ¼ Eþ E

8

HD3 ¼ Eþ þ E

24

ð5:14Þ

The advantage of this method is that the transfer characteristics of a nonlinear circuit can be directly used; an

explicit power-series expansion is not required. Both the power-series and the differential-error techniques

cannot be applied when only the output waveform is known. In such a situation the distortion factors are

calculated from the output signal waveform by a simplified Fourier analysis as described in the next section.

Three-Point Method

The three-point method is a simplified analysis applicable to small levels of distortion and can only be used to

calculate HD2. The output is written directly as a Fourier cosine series as in Equation (5.3) where only terms

up to the second harmonic are retained. The dc component includes the quiescent state and the contribution

due to distortion that results in a shift of the dc operating point. The output waveform values at o1t ¼ 0 (F0),

o1t ¼ p/2 (Fp/2), o1t ¼ p (Fp), as shown in Figure 5.20, are used to calculate Y0, Y1, and Y2:

Y0 ¼
F0 þ 2Fp=2 þ Fp

4

Y1 ¼ F0 Fp
2

ð5:15Þ

Y2 ¼
F0 2Fp=2 þ Fp

4

The second harmonic distortion is calculated from the definition. From Figure 5.20, F0¼ 5, Fp/2 ¼ 3.2, Fp¼ 1,

Y0 ¼ 3.1, Y1 ¼ 2.0, Y2 ¼ 0.1, and HD2 ¼ 5.0%.

Five-Point Method

The five-point method is an extension of the above technique and allows calculation of third and fourth

harmonic distortion factors. For distortion calculation the output is expressed as a Fourier cosine series with

terms up to the fourth harmonic where the dc component includes the quiescent state and the shift due to

distortion. The output waveform values at o1t ¼ 0 (F0), o1t ¼ p/3 (Fp/3), o1t ¼ p/2 (Fp/2), o1t ¼ 2p/3 (F2p/3),
o1t ¼ p (Fp), as shown in Figure 5.20, are used to calculate Y0, Y1, Y2, Y3, and Y4:

1Small-signal gain = dy/dx = a1+2a2x +3a3x
2+ .
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Y0 ¼
F0 þ 2Fp=3 þ 2F2p=3 þ Fp

6

Y1 ¼
F0 þ Fp=3 F2p=3 Fp

3

Y2 ¼
F0 2Fp=2 þ Fp

4
ð5:16Þ

Y3 ¼
F0 2Fp=3 þ 2F2p=3 Fp

6

Y4 ¼
F0 4Fp=3 þ 6Fp=2 4F2p=3 þ Fp

12

For F0¼ 5, Fp/3¼ 3.8, Fp/2¼ 3.2, F2p/3¼ 2.7, Fp¼ 1, Y0¼ 3.17, Y1¼ 1.7, Y2¼ –0.1, Y3¼ 0.3, Y4¼ –0.07, and

HD2 ¼ 5.9%, HD3 ¼ 17.6%. This particular method allows calculation of HD3 and also gives a better estimate

of HD2. To obtain higher-order harmonics a detailed Fourier series analysis is required and for such

applications a circuit simulator such as SPICE should be used.

Intermodulation Distortion

The previous sections have examined the effect of nonlinear device characteristics when a single-frequency

sinusoidal signal is applied at the input. However, if there are two or more sinusoidal inputs, then the

nonlinearity results in not only the fundamental and harmonics but also additional frequencies called the beat

frequencies at the output. The distortion due to the components at the beat frequencies is called

intermodulation distortion. To characterize this type of distortion consider the incremental output given by

Equation (5.10) and the input signal to be

xðtÞ ¼ X1 cos o1t þ X2 cos o2t ð5:17Þ

where f1 ¼ o1/2p and f2 ¼ o2/2p are the two input frequencies. The output frequency spectrum due to the

quadratic term is shown in Table 5.1.

FIGURE 5.20 Output waveform from a nonlinear circuit.
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In addition to the dc term and the second harmonics of the two frequencies, there are additional terms at

the sum and difference frequencies, f1 + f2, f1 – f2, which are the beat frequencies. The second-order intermod-

ulation distortion (IM2) is defined as the ratio of the amplitude at a beat frequency to the amplitude of the

fundamental component,

IM2 ¼ a2X1X2
a1X1

¼ a2X2
a1

ð5:18Þ

where it has been assumed that the contribution to second-order intermodulation by higher-order terms is

negligible. In defining IM2 the input signals are assumed to be of equal amplitude and for this particular

condition, IM2 ¼ 2 HD2 (Equation (5.12)).

The cubic term of the series expansion for the nonlinear circuit gives rise to components at frequencies

2f1 + f2, 2f2 + f1, 2f1 – f2, 2f2 – f1, and these terms result in third-order intermodulation distortion (IM3). The

frequency spectrum obtained from the cubic term is shown in Table 5.2.

For definition purposes the two input signals are assumed to be of equal amplitude and IM3 is given by

(assuming negligible contribution to the fundamental by the cubic term)

IM3 ¼ 3

4

a3X
3
1

a1X1
¼ 3

4

a3X
2
1

a1
ð5:19Þ

Under these conditions IM3 ¼ 3 HD3 (Equation (5.12)). When f1 and f2 are close to one another, then the

third-order intermodulation components, 2f1 – f2, 2f2 – f1, are close to the fundamental and are difficult to

filter out.

Triple-Beat Distortion

When three sinusoidal signals are applied at the input, then the output consists of components at the triple-

beat frequencies. The cubic term in the nonlinearity results in the triple-beat terms:

3

2
a3X1X2X2 cos½o1 6 o2 6 o3 t ð5:20Þ

and the triple-beat distortion factor (TB) is defined for equal-amplitude input signals:

TB ¼ 3

2

a3X
2
1

a1
ð5:21Þ

From the above definition, TB ¼ 2 IM3. If all of the frequencies are close to one another, the triple beats will

be close to the fundamental and cannot be easily removed.

TABLE 5.2 Output Frequency Spectrum due to the Cubic Term

Frequency f1 f2 2f1 ^ f2 2f2 ^ f1 3f1 3f2

Amplitude
3a3
4
½X3

1 þ X1X
2
2

3a3
4
½X3

2 þ X2
1X2

3

4
a3X

2
1X2

3

4
a3X1X

2
2

1

4
a3X

3
1

1

4
a3X

3
2

TABLE 5.1 Output Frequency Spectrum due to the Quadratic Term

Frequency 0 2f1 2f2 f1 ^ f2

Amplitude
a2
2
½X2

1 þ X2
2

a2
2
X2
1

a2
2
X2
2 a2X1X2
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Cross Modulation

Another form of distortion that occurs in amplitude-modulated (AM) systems due to the circuit nonlinearity

is cross modulation. The modulation from an unwanted AM signal is transferred to the signal of interest and

results in distortion. Consider an AM signal:

xðtÞ ¼ X1 cos o1t þ X2½1þm cos omt cos o2t ð5:22Þ
where m, 1 is the modulation index. Because of the cubic term of the nonlinearity, the modulation from the

second signal is transferred to the first and the modulated component corresponding to the fundamental is

a1X1 1þ 3a3X
2
2m

a1
cos omt

" #
cos o1t ð5:23Þ

The cross-modulation factor (CM) is defined as the ratio of the transferred modulation index to the original

modulation:

CM ¼ 3
a3X

2
2

a1
ð5:24Þ

The cross modulation for equal amplitude input signals is a factor of four larger than IM3 and 12 times as

large as HD3.

Compression and Intercept Points

For high-frequency circuits, distortion is specified in terms of compression and intercept points. These

quantities are derived from extrapolated small-signal output power levels. The 1-dB compression point is

defined as the value of the fundamental output power for which the power is 1 dB below the extrapolated

small-signal value.

The nth-order intercept point (IPn), n > 2, is the output power at which the extrapolated small-signal power

of the fundamental and the nth intermodulation term intersect. The third-order intercept (TOI or IP3) is the

point at which the extrapolated small-signal power of the fundamental and the third-order intermodulation

term are identical. IP3 is an important specification for narrow-band communication systems.

Crossover Distortion

This type of distortion occurs in circuits that use devices operating in a ‘‘push–pull’’ manner. The devices are

used in pairs and each device operates only for half a cycle of the input signal (Class AB operation). One

advantage of such an arrangement is the cancellation of even harmonic terms resulting in smaller total

harmonic distortion. However, if the circuit is not designed to achieve a smooth crossover or transition from

one device to another, then there is a region of the transfer characteristics when the output is zero. The

resulting distortion is called crossover distortion.

Failure-to-Follow Distortion

When a properly designed peak detector circuit is used for AM demodulation, the output follows the envelope

of the input signal whereby the original modulation signal is recovered. A simple peak detector is a diode in

series with a low-pass RC filter. The critical component of such a circuit is a linear element, the filter

capacitance C. If C is large, then the output fails to follow the envelope of the input signal, resulting in failure-

to-follow distortion.

Frequency Distortion

Ideally, an amplifier circuit should provide the same amplification for all input frequencies. However, due to

the presence of energy storage elements, the gain of the amplifier is frequency dependent. Consequently,
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different frequency components have different amplifications resulting in frequency distortion. The distortion

is specified by a frequency response curve in which the amplifier output is plotted as a function of frequency.

An ideal amplifier has a flat frequency response over the frequency range of interest.

Phase Distortion

When the phase shift (y) in the output signal of an amplifier is not proportional to the frequency, the output
does not preserve the form of the input signal, resulting in phase distortion. If the phase shift is proportional

to frequency, different frequency components have a constant delay time (y/o) and no distortion is observed.
In TV applications phase distortion can result in a smeared picture.

Computer Simulation of Distortion Components

Distortion characterization is important for nonlinear circuits. However, the techniques presented for

distortion calculation can only be used for simple circuit configurations and at best to determine the second

and third harmonic distortion factors. In order to determine the distortion generation in actual circuits one

must fabricate the circuit and then use a harmonic analyzer for sine curve inputs to determine the harmonics

present in the output. An attractive alternative is the use of circuit simulation programs that allow one to

investigate circuit performance before fabricating the circuit. In this section a brief overview of the techniques

used in circuit simulators for distortion characterization is provided.

The simplest approach is to simulate the time-domain output for a circuit with a specified sinusoidal input

signal and then perform a Fourier analysis of the output waveform. The simulation program SPICE2 provides a

capability for computing the Fourier components of any waveform using a .FOUR command and specifying

the voltage or current for which the analysis has to be performed. A simple diode circuit, the SPICE input file,

and transient voltage waveforms for an input signal frequency of 1 MHz and amplitudes of 10 and 100 mVare

shown in Figure 5.21. The Fourier components of the resistor voltage are shown in Figure 5.22; only the funda-

mental and first two significant harmonics are shown (SPICE provides information to the ninth harmonic).

In this particular example the input signal frequency is 1 MHz, and this is the frequency at which the

Fourier analysis is requested. Since there are no energy storage elements in the circuit another frequency would

FIGURE 5.21 Simple diode circuit, SPICE input file, and output voltage waveforms.
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have given identical results. To determine the Fourier components accurately a small value of the parameter

RELTOL is used and a sufficient number of points for transient analysis are specified. From the output voltage

waveforms and the Fourier analysis it is seen that the harmonic distortion increases significantly when the

input voltage amplitude is increased from 10 to 100 mV.

The transient approach can be computationally expensive for circuits that reach their periodic steady state

after a long simulation time. Results from the Fourier analysis are meaningful only in the periodic steady state,

and although this approach works well for large levels of distortion it is inaccurate for small distortion levels.

For small distortion levels accurate distortion analysis can be performed by use of the Volterra series

method. This technique is a generalization of the power-series method and is useful for analyzing harmonic

and intermodulation distortion due to frequency-dependent nonlinearities. The SPICE3 program supports

this analysis technique (in addition to the Fourier analysis of SPICE2) whereby the second and third harmonic

and intermodulation components can be efficiently obtained by three small-signal analyses of the circuit.

An approach based on the harmonic balance technique is applicable to both large and small levels of

distortion. The periodic steady state of a circuit with sinusoidal input signal can be determined using this

technique. The unknowns are the magnitudes of the circuit variables at the fundamental frequency and at all

the significant harmonics of the fundamental. The distortion levels can be simply calculated by taking the

ratios of the magnitudes of the appropriate harmonics to the fundamental.

Defining Terms

Compression and intercept points: Characterize distortion in high-frequency circuits. These quantities

are derived from extrapolated small-signal output power levels.

Cross modulation: Occurs in amplitude-modulated systems when the modulation of one signal is

transferred to another by the nonlinearity of the system.

Crossover distortion: Present in circuits that use devices operating in a push–pull arrangement such that

one device conducts when the other is off. Crossover distortion results if the transition or crossover from

one device to the other is not smooth.

Failure-to-follow distortion: Can occur during demodulation of an amplitude-modulated signal by a

peak detector circuit. If the capacitance of the low-pass RC filter of the peak detector is large, then the

output fails to follow the envelope of the input signal, resulting in failure-to-follow distortion.

FIGURE 5.22 Fourier components of the resistor voltage for input amplitudes of 10 and 100 mV, respectively.
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Frequency distortion: Caused by the presence of energy storage elements in an amplifier circuit. Different

frequency components have different amplifications, resulting in frequency distortion and the distortion

is specified by a frequency–response curve.

Harmonic distortion: Caused by the nonlinear transfer characteristics of a device or circuit. When a

sinusoidal signal of a single frequency (the fundamental frequency) is applied at the input of a nonlinear

circuit, the output contains frequency components that are integer multiples of the fundamental

frequency (harmonics). The resulting distortion is called harmonic distortion.

Harmonic distortion factors: A measure of the harmonic content of the output. The nth harmonic

distortion factor is the ratio of the amplitude of the nth harmonic to the amplitude of the fundamental

component of the output.

Intermodulation distortion: Distortion caused by the mixing or beating of two or more sinusoidal inputs

due to the nonlinearity of a device. The output contains terms at the sum and difference frequencies

called the beat frequencies.

Phase distortion: Occurs when the phase shift in the output signal of an amplifier is not proportional to

the frequency.

Total harmonic distortion: The ratio of the root-mean-square value of the harmonics to the amplitude of

the fundamental component of a waveform.
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Further Information

Characterization and simulation of distortion in a wide variety of electronic circuits (with and without

feedback) is presented in detail in Pederson and Mayaram (1991). Also derivations for the simple analysis

techniques are provided and verified using SPICE2 simulations. Algorithms for computer-aided analysis of

distortion are available in Weiner and Spina (1980), Nagel (1975), Roychowdhury (1989), Kundert (1987), and

Wambacq and Sansen (1998). Chapter 5 of Kundert (1995) gives valuable information on use of Fourier

analysis in SPICE for distortion calculation in circuits. The software packages SPICE2, SPICE3, and SPECTRE

are available from EECS Industrial Liaison Program Office, University of California, Berkeley, CA 94720.
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6.1 Definitions and Properties

Richard C. Dorf

The Laplace transform is a useful analytical tool for converting time-domain signal descriptions into

functions of a complex variable. This complex domain description of a signal provides new insight into the

analysis of signals and systems. In addition, the Laplace transform method often simplifies the calculations

involved in obtaining system response signals.

Laplace Transform Integral

The Laplace transform completely characterizes the exponential response of a time-invariant linear function.

This transformation is formally generated through the process of multiplying the linear characteristic signal

x(t) by the signal e st and then integrating that product over the time interval ( 1, þ1). This systematic
procedure is more generally known as taking the Laplace transform of the signal x(t).

Definition: The Laplace transform of the continuous-time signal x(t) is

XðsÞ ¼
Zþ1

1
xðtÞe stdt

The variable s that appears in this integrand exponential is generally complex valued and is therefore often

expressed in terms of its rectangular coordinates:

s ¼ sþ jo

where s ¼ Re(s) and o ¼ Im(s) are referred to as the real and imaginary components of s, respectively.

The signal x(t) and its associated Laplace transform X(s) are said to form a Laplace transform pair. This

reflects a form of equivalency between the two apparently different entities x(t) and X(s). We may symbolize
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this interrelationship in the following suggestive manner:

XðsÞ ¼ L ½xðtÞ

where the operator notation L means to multiply the signal x(t) being operated upon by the complex

exponential e st and then to integrate that product over the time interval ( 1, þ1).

Region of Absolute Convergence

In evaluating the Laplace transform integral that corresponds to a given signal, it is generally found that this

integral will exist (that is, the integral has finite magnitude) for only a restricted set of s values.

The definition of region of absolute convergence is as follows. The set of complex numbers s for which the

magnitude of the Laplace transform integral is finite is said to constitute the region of absolute convergence for

that integral transform. This region of convergence is always expressible as

sþ5ReðsÞ5s

where sþ and s denote real parameters that are related to the causal and anticausal components,

respectively, of the signal whose Laplace transform is being sought.

Laplace Transform Pair Tables

It is convenient to display the Laplace transforms of standard signals in one table. Table 6.1 displays the time

signal x(t) and its corresponding Laplace transform and region of absolute convergence and is sufficient for

our needs.

Example
To find the Laplace transform of the first-order causal exponential signal:

x1ðtÞ ¼ e atuðtÞ

where the constant a can in general be a complex number.

The Laplace transform of this general exponential signal is determined upon evaluating the associated

Laplace transform integral:

X1ðsÞ ¼
Zþ1

1
e atuðtÞe stdt ¼

Zþ1
0

e ðsþaÞtdt

¼ e ðsþaÞt

ðsþ aÞ
þ1

0

ð6:1Þ

In order for X1(s) to exist, it must follow that the real part of the exponential argument be positive, that is:

Reðsþ aÞ ¼ ReðsÞ þ ReðaÞ40

If this were not the case, the evaluation of expression (Equation (6.1)) at the upper limit t ¼ þ1 would either

be unbounded if Re(s) þ Re(a) , 0 or undefined when Re(s) þ Re(a)¼ 0. However, the upper limit

evaluation is zero when Re(s) þ Re(a) . 0, as is already apparent. The lower limit evaluation at t¼ 0 is equal

to 1/(s þ a) for all choices of the variable s.
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The Laplace transform of exponential signal e at u(t) has therefore been found and is given by

L ½e utuðtÞ ¼ 1

sþ a
for ReðsÞ > ReðaÞ

Properties of Laplace Transform

Linearity

Let us obtain the Laplace transform of a signal, x(t), that is composed of a linear combination of two other

signals:

xðtÞ ¼ a1x1ðtÞ þ a2x2ðtÞ
where a1 and a2 are constants.
The linearity property indicates that

L½a1x1ðtÞ þ a2x2ðtÞ ¼ a1X1ðsÞ þ a2X2ðsÞ
and the region of absolute convergence is at least as large as that given by the expression

maxðs1þ; s2þÞ5ReðsÞ5minðs1 ; s2 Þ

TABLE 6.1 Laplace Transform Pairs

Time Signal

x(t)

Laplace Transform

X(s)

Region of

Absolute Convergence

1. e atu(t)
1

sþ a
Re(s) . –Re(a)

2. tke atu(–t)
k!

ðsþ aÞkþ1 Re(s) . –Re(a)

3. –e atu(–t)
1

sþ a
Re(s) , –Re(a)

4. (–t)ke atu(–t)
k!

ðsþ aÞkþ1 Re(s) , –Re(a)

5. U(t)
1

s
Re(s) . 0

6. d(t) 1 All s

7. dkdðtÞ
dtk

sk All s

8. tku(t)
k!

skþ1
Re(s) . 0

9. sgnt ¼ 1; t > 0
1; t < 0

2

s
Re(s) ¼ 0

10. sin o0t u(t)
o0

s2 þo2
0

Re(s) . 0

11. cos o0t u(t)
s

s2 þo2
0

Re(s) . 0

12. e at sin o0t u(t)
o

ðsþ aÞ2 þ o2
0

Re(s) . –Re(a)

13. e at cos o0t u(t)
sþ a

ðsþ aÞ2 þ o2
0

Re(s) . –Re(a)
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where the pairs ðs1þ; s2þÞ5ReðsÞmin ðs1 ; s2 Þ identify the regions of convergence for the Laplace transforms
X1(s) and X2(s), respectively.

Time-Domain Differentiation

The operation of time-domain differentiation has then been found to correspond to a multiplication by s in

the Laplace variable s domain.

The Laplace transform of differentiated signal dx(t)/dt is

L
dxðtÞ
dt

¼ sXðsÞ

Furthermore, it is clear that the region of absolute convergence of dx(t)/dt is at least as large as that of x(t).

This property may be envisioned as shown in Figure 6.1.

Time Shift

The signal x(t – t0) is said to be a version of the signal x(t) right shifted (or delayed) by t0 sec. Right shifting

(delaying) a signal by a t0 second duration in the time domain is seen to correspond to a multiplication by e
st0

in the Laplace transform domain. The desired Laplace transform relationship is

L½xðt t0Þ ¼ e st0XðsÞ

where X(s) denotes the Laplace transform of the unshifted signal x(t). As a general rule, any time a term of the

form e–st0 appears in X(s), this implies some form of time shift in the time domain. This most important

property is depicted in Figure 6.2. It should be further noted that the regions of absolute convergence for the

signals x(t) and x(t – t0) are identical.

FIGURE 6.1 Equivalent operations in the (a) time-domain operation and (b) Laplace transform-domain operation.

(Source: J.A. Cadzow and H.F. Van Landingham, Signals, Systems, and Transforms, Englewood Cliffs, NJ: Prentice-Hall,

1985, p. 138. With permission.)

FIGURE 6.2 Equivalent operations in (a) the time domain and (b) the Laplace transform domain. (Source: J.A. Cadzow

and H.F. Van Landingham, Signals, Systems, and Transforms, Englewood Cliffs, NJ: Prentice-Hall, 1985, p. 140. With

permission.)
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Time-Convolution Property

The convolution integral signal y(t) can be expressed as

yðtÞ ¼
Z1

1
hðtÞxðt tÞdt

where x(t) denotes the input signal, the h(t) characteristic signal identifying the operation process.

The Laplace transform of the response signal is simply given by

YðsÞ ¼ HðsÞXðsÞ

where HðsÞ ¼ L½hðtÞ and XðsÞ ¼ L½xðtÞ . Thus, the convolution of two time-domain signals is seen to

correspond to the multiplication of their respective Laplace transforms in the s-domain. This property may be

envisioned as shown in Figure 6.3.

Time-Correlation Property

The operation of correlating two signals x(t) and y(t) is formally defined by the integral relationship

fxyðtÞ ¼
Z1

1
xðtÞyðt þ tÞdt

The Laplace transform property of the correlation function fxy(t) is

FxyðsÞ ¼ Xð sÞYðsÞ

in which the region of absolute convergence is given by

maxð sx ;syþÞ5ReðsÞ5minð sxþ ; sy Þ

FIGURE 6.3 Representation of a time-invariant linear operator in (a) the time domain and (b) the s-domain. (Source:

J.A. Cadzow and H.F. Van Landingham, Signals, Systems, and Transforms, Englewood Cliffs, NJ: Prentice-Hall, 1985,

p. 144. With permission.)
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Autocorrelation Function

The autocorrelation function of the signal x(t) is formally defined by

fxxðtÞ ¼
Z1

1
xðtÞxðt þ tÞdt

The Laplace transform of the autocorrelation function is

FxxðsÞ ¼ Xð sÞXðsÞ

and the corresponding region of absolute convergence is

maxð sx ;syþÞ5ReðsÞ5minð sxþ ; sy Þ

Other Properties

A number of properties that characterize the Laplace transform are listed in Table 6.2. Application of these

properties often enables one to efficiently determine the Laplace transform of seemingly complex time functions.

TABLE 6.2 Laplace Transform Properties

Property

Signal x(t)

Time Domain

Laplace Transform

X(s) s Domain

Region of Convergence of X(s)

sþ , Re(s) , s

Linearity a1x1(t) þ a2x2(t) a1X1(s) þ a2X2(s) At least the intersection of the region of

convergence of X1(s) and X2(s)

Time differentiation
dxðtÞ
dt

sX(s) At least sþ , Re(s) and X2(s)

Time shift x(t – t0) e st0X(s) sþ , Re(s) , s

Time convolution
Z1

1
hðtÞxðt tÞdt H(s)X(s) At least the intersection of the region of

convergence of H(s) and X(s)

Time scaling x(at)
1

aj jX
s

a
sþ < Re

s

a
< s

Frequency shift e atx(t) X(s þ a) sþ – Re(a) , Re(s) , s – Re(a)

Multiplication

(frequency

convolution)

x1(t)x2(t)
1

2pj

Zcþj1

c j1
X1ðuÞX2ðs uÞd sð1Þþ þ sð2Þþ < ReðsÞ < sð1Þ þ sð2Þ

Time integration
Z1

1
xðtÞdt 1

s
XðsÞ for Xð0Þ At least sþ , Re(s) , s

Frequency

differentiation

(–t)k x(t)
dkXðsÞ
dsk

At least sþ , Re(s) , s

Time correlation
Zþ1

1
xðtÞyðt þ zÞdt X(–s)Y(s) max( sx , syþ ) , Re(s) , min( sxþ , sy )

Autocorrelation

function

Zþ1
1
xðtÞxðt þ zÞdt X(–s)X(s) max( sx , sxþ ) , Re(s) , min( sxþ , sx )

Source: J.A. Cadzow and H.F. Van Landingham, Signals, Systems, and Transforms, Englewood Cliffs, NJ: Prentice-Hall, 1985. With
permission.
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Inverse Laplace Transform

Given a transform function X(s) and its region of convergence, the procedure for finding the signal x(t) that

generated that transform is called finding the inverse Laplace transform and is symbolically denoted as

xðtÞ ¼ L61½XðsÞ

The signal x(t) can be recovered by means of the relationship

xðtÞ ¼ 1

2pj

Zcþj1

c j1
XðsÞestds

In this integral, the real number c is to be selected so that the complex number c þ jo lies entirely

within the region of convergence of X(s) for all values of the imaginary component o. For the important
class of rational Laplace transform functions, there exists an effective alternate procedure that does not

necessitate directly evaluating this integral. This procedure is generally known as the partial-fraction

expansion method.

Partial-Fraction Expansion Method

As just indicated, the partial fraction expansion method provides a convenient technique for reacquiring the

signal that generates a given rational Laplace transform. Recall that a transform function is said to be rational

if it is expressible as a ratio of polynomial in s, that is:

XðsÞ ¼ BðsÞ
AðsÞ ¼

bms
m þ bm 1s

m 1 þ þ b1sþ b0
sn þ an 1s

n 1 þ þ a1sþ a0

The partial-fraction expansion method is based on the appealing notion of equivalently expressing this

rational transform as a sum of n elementary transforms whose corresponding inverse Laplace transforms

(i.e., generating signals) are readily found in standard Laplace transform pair tables. This method entails the

simple five-step process as outlined in Table 6.3. A description of each of these steps and their implementation

is now given.

TABLE 6.3 Partial-Fraction Expansion Method for Determining the Inverse Laplace Transform

I. Put rational transform into proper form whereby the degree of the numerator polynomial is less than or equal to that of

the denominator polynomial.

II. Factor the denominator polynomial.

III. Perform a partial fraction expansion.

IV. Separate partial fraction expansion terms into causal and anticausal components using the associated region of absolute

convergence for this purpose.

V. Using a Laplace transform pair table, obtain the inverse Laplace transform.

Source: J.A. Cadzow and H.F. Van Landingham, Signals, Systems, and Transforms, Englewood Cliffs, NJ: Prentice-Hall, 1985,
p. 153. With permission.
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I. Proper Form for Rational Transform. This division process yields an expression in the proper form

as given by

XðsÞ ¼ BðsÞ
AðsÞ

¼ QðsÞ þ RðsÞ
AðsÞ

in which Q(s) and R(s) are the quotient and remainder polynomials, respectively, with the division made so

that the degree of R(s) is less than or equal to that of A(s).

II. Factorization of Denominator Polynomial. The next step of the partial-fraction expansion method

entails the factorizing of the nth-order denominator polynomial A(s) into a product of n first-order factors.

This factorization is always possible and results in the equivalent representation of A(s) as given by

AðsÞ ¼ ðs p1Þðs p2Þ . . . ðs pnÞ

The terms p1, p2, . . ., pn constituting this factorization are called the roots of polynomial A(s), or the poles of

X(s).

III. Partial-Fraction Expansion. With this factorization of the denominator polynomial accomplished,

the rational Laplace transform X(s) can be expressed as

XðsÞ ¼ BðsÞ
AðsÞ ¼

bns
n þ bn 1s

n 1 þ . . .þ b0
ðs p1Þðs p2Þ . . . ðs pnÞ ð6:2Þ

We shall now equivalently represent this transform function as a linear combination of elementary transform

functions.

Case 1: A(s) Has Distinct Roots.

XðsÞ ¼ a0 þ a1
s p1

þ a2
s p2

þ . . .þ an
s pn

where the ak are constants that identify the expansion and must be properly chosen for a valid representation:

ak ¼ ðs pkÞXðsÞ s¼pk for k ¼ 1; 2; . . . ; n

and

a0 ¼ bn

The expression for parameter a0 is obtained by letting s become unbounded (i.e., s ¼ þ1) in expansion

(Equation (6.2)).

Case 2: A(s) Has Multiple Roots.

XðsÞ ¼ BðsÞ
AðsÞ ¼

BðsÞ
ðs p1ÞqA1ðsÞ
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The appropriate partial fraction expansion of this rational function is then given by

XðsÞ ¼ a0 þ a1
ðs p1Þ1 þ þ aq

ðs p1Þq þ ðn qÞ
other elementary
terms due to the
roots of A1ðsÞ

The coefficient a0 may be expediently evaluated by letting s approach infinity, whereby each term on the right

side goes to zero except a0. Thus:

a0 ¼ lim
s!þ1XðsÞ ¼ 0

The aq coefficient is given by the convenient expression:

aq ¼ ðs p1ÞqXðsÞ s¼p1
¼ Bðp1Þ
A1ðp1Þ

ð6:3Þ

The remaining coefficients a1, a2,. . ., aq 1 associated with the multiple root p1 may be evaluated by solving

Equation (6.3) by setting s to a specific value.

IV. Causal and Anticausal Components. In a partial-fraction expansion of a rational Laplace

transform X(s) whose region of absolute convergence is given by

sþ5ReðsÞ5s

it is possible to decompose the expansion’s elementary transform functions into causal and anticausal

functions (and possibly impulse-generated terms). Any elementary function is interpreted as being (1) causal

if the real component of its pole is less than or equal to sþ and (2) anticausal if the real component of its pole

is greater than or equal to s .

The poles of the rational transform that lie to the left (right) of the associated region of absolute

convergence correspond to the causal (anticausal) component of that transform. Figure 6.4 shows the location

of causal and anticausal poles of rational transform.

FIGURE 6.4 Location of causal and anticausal poles of a rational transform. (Source: J.A. Cadzow and H.F. Van

Landingham, Signals, Systems, and Transforms, Englewood Cliffs, NJ: Prentice-Hall, 1985, p. 161. With permission.)
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V. Table Look-Up of Inverse Laplace Transform. To complete the inverse Laplace transform

procedure, one need simply refer to a standard Laplace transform function table to determine the time signals

that generate each of the elementary transform functions. The required time signal is then equal to the same

linear combination of the inverse Laplace transforms of these elementary transform functions.

Defining Terms

Laplace transform: A transformation of a function f(t) from the time domain into the complex frequency

domain yielding F(s):

FðsÞ ¼
Z1

1
f ðtÞe stdt

where s ¼ s þ jo.
Region of absolute convergence: The set of complex numbers s for which the magnitude of the Laplace

transform integral is finite. The region can be expressed as

sþ5ReðsÞ5s

where sþ and s denote real parameters that are related to the causal and anticausal components,

respectively, of the signal whose Laplace transform is being sought.

References
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6.2 Applications1

David E. Johnson

In applications such as electric circuits, we start counting time at t ¼ 0, so that a typical function f(t) has the

property f(t) ¼ 0, t , 0. Its transform is given therefore by

FðsÞ ¼
Z1
0
f ðtÞe stdt

which is sometimes called the one-sided Laplace transform. Since f(t) is like x(t)u(t), we may still use Table 6.1

of the previous section to look up the transforms, but for simplicity we will omit the factor u(t), which is

understood to be present.

Differentiation Theorems

Time-Domain Differentiation

If we replace f(t) in the one-sided transform by its derivative f(t) and integrate by parts, we have the transform

of the derivative

L½f 0ðtÞ ¼ sFðsÞ f ð0Þ ð6:4Þ

1Based on D.E. Johnson, J.R. Johnson, and J.L. Hilburn, Electric Circuit Analysis, 2nd ed., Englewood Cliffs, NJ: Prentice-Hall,

1992, chapters 19 and 20. With permission.
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We may formally replace f by f 0 to obtain

L½f 00ðtÞ ¼ sL½f 0ðtÞ f 0ð0Þ

or by (Equation (6.4)),

L½f 00ðtÞ ¼ s2FðsÞ sf ð0Þ f 0ð0Þ ð6:5Þ

We may replace f by f 0 again in (Equation (6.5)) to obtain L½f mðtÞ , and so forth, obtaining the general result:

L½f ðnÞðtÞ ¼ snFðsÞ sn 1f ð0Þ sn 2f 0ð0Þ f ðn 1Þð0Þ ð6:6Þ

where f (n) is the nth derivative. The functions f, f 0, . . ., f (n 1) are assumed to be continuous on (0,1), and f (n)
is continuous except possibly for a finite number of finite discontinuities.

Example 6.1

As an example, let f(t)¼ tn, for n a nonnegative integer. Then f (n)(t)¼ n! and f(0)¼ f 0(0)¼ · · ·¼ f (n 1)(0)¼ 0.

Therefore, we have

L½n! ¼ snL½tn

or

L½tn ¼ 1

sn
L½n! ¼ n!

snþ1
; n ¼ 0; 1; 2; . . . ð6:7Þ

j

Example 6.2

As another example, let us invert the transform

FðsÞ ¼ 8

s3ðsþ 2Þ
which has the partial fraction expansion

FðsÞ ¼ A

s3
þ B

s2
þ C

s
þ D

sþ 2

where

A ¼ s3FðsÞ s¼0 ¼ 4j
and

D ¼ ðsþ 2ÞFðsÞ s¼ 2 ¼ 1j
To obtain B and C, we clear F(s) of fractions, resulting in

8 ¼ 4ðsþ 2Þ þ Bsðsþ 2Þ þ Cs2ðsþ 2Þ s3
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Equating coefficients of s3 yields C ¼ 1, and equating those of s2 yields B ¼ 2. The transform is therefore

FðsÞ ¼ 2
2!

s3
2
1!

s2
þ 1

s

1

sþ 2

so that

f ðtÞ ¼ 2t2 2t þ 1 e 2t
j

Frequency-Domain Differentiation

Frequency-domain differentiation formulas may be obtained by differentiating the Laplace transform with

respect to s. That is, if FðsÞ ¼ L ½f ðtÞ :

dFðsÞ
ds

¼ d

ds

Z1
0
f ðtÞe stdt

Assuming that the operations of differentiation and integration may be interchanged, we have

dFðsÞ
ds

¼ d

ds

Z1
0

d

ds
½f ðtÞe st dt

¼
Z1
0
½ tf ðtÞ e stdt

From the last integral it follows by definition of the transform that

L½tf ðtÞ ¼ dFðsÞ
ds

ð6:8Þ

Example 6.3

As an example, if f(t) ¼ cos kt, then F(s) ¼ s/(s2 þ k2), and we have

L½t cos kt ¼ d

ds

s

s2 þ k2
¼ s2 k2

ðs2 þ k2Þ2
j

We may repeatedly differentiate the transform to obtain the general case:

dnFðsÞ
dsn

¼
Z1
0
½ð tÞnf ðtÞ e stdt

from which we conclude that

L½tnf ðtÞ ¼ ð 1Þn d
nFðsÞ
dsn

; n ¼ 0; 1; 2; . . . ð6:9Þ

Properties of the Laplace transform obtained in this and the previous section are listed in Table 6.4.
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Applications to Integrodifferential Equations

If we transform both members of a linear differential equation with constant coefficients, the result will be an

algebraic equation in the transform of the unknown variable. This follows from Equation (6.6), which also

shows that the initial conditions are automatically taken into account. The transformed equation may then be

solved for the transform of the unknown and inverted to obtain the time-domain answer.

Thus, if the differential equation is

anx
ðnÞ þ an 1x

ðn 1Þ þ . . .þ a0x ¼ f ðtÞ
the transformed equation is

an

h
snXðsÞ sn 1xð0Þ . . . xðn 1Þð0Þ

i
4

þan 1

h
sn 1XðsÞ sn 2xð0Þ . . . xðn 2Þð0Þ

i
þ . . .þ a0XðsÞ ¼ FðsÞ

The transform X(s) may then be found and inverted to give x(t).

Example 6.4

As an example, let us find the solution x(t), for t . 0, of the system of equations:

x 00 þ 4x 0 þ 3x ¼ e 2t xð0Þ ¼ 1; x 0ð0Þ ¼ 2
Transforming, we have

s2XðsÞ s 2þ 4½sXðsÞ 1 þ 3XðsÞ ¼ 1

sþ 2

from which

XðsÞ ¼ s2 þ 8sþ 13

ðsþ 1Þðsþ 2Þðsþ 3Þ

TABLE 6.4 One-Sided Laplace Transform Properties

f(t) F(s)

1. cf(t) cF(s)

2. f1(t) þ f2(t) F1(s) þ F2(s)

3.
df ðtÞ
dt

sF(s) – f(0)

4.
dnf ðtÞ
dtn

snFðsÞ sn 1f ð0Þ sn 2f 0ð0Þ
sn 1f 00ð0Þ f n 1ð0Þ

5.
Zt

0
f ðtÞdt FðsÞ

s

6. e atf(t) F(s þ a)

7. f(t – t)u(t – t) e–stF(s)

8. f g ¼
Z1

0
f ðtÞgðt tÞdt F(s)G(s)

9. f(ct), c . 0
1

c
F
s

c

10. tnf(t), n ¼ 0,1,2, . . . (–1)nF(n)(s)
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The partial-fraction expansion is

XðsÞ ¼ 3

sþ 1

1

sþ 2

1

sþ 3

from which

xðtÞ ¼ 3e t e 2t e 3t

Integration Property

Certain integrodifferential equations may be trans-

formed directly without first differentiating to

remove the integrals. We need only transform the

integrals by means of

L
Zt

0
f ðtÞdt ¼ FðsÞ

s

Example 6.5

As an example, the current i(t) in Figure 6.5, with no initial stored energy, satisfies the system of equations:

di

dt
þ 2iþ 5

Zt

0
i dt ¼ uðtÞ i

ð0Þ ¼ 0

Transforming yields

sIðsÞ þ 2IðsÞ þ 5

s
IðsÞ ¼ 1

s

or

IðsÞ ¼ 1

s2 þ 2sþ 5
¼ 1

2

2

ðsþ 1Þ2 þ 4

Therefore the current is

iðtÞ ¼ 0:5e t sin 2t A

Applications to Electric Circuits

As the foregoing example shows, the Laplace transform method is an elegant procedure than can be used for

solving electric circuits by transforming their describing integrodifferential equations into algebraic equations

and applying the rules of algebra. If there is more than one loop or nodal equation, their transformed

equations are solved simultaneously for the desired circuit current or voltage transforms, which are then

inverted to obtain the time-domain answers. Superposition is not necessary because the various source

functions appearing in the equations are simply transformed into algebraic quantities.

FIGURE 6.5 An RLC circuit.

6-14 Circuits, Signals, and Speech and Image Processing



The Transformed Circuit

Instead of writing the describing circuit equations, transforming the results, and solving for the transform of

the circuit current or voltage, we may go directly to a transformed circuit, which is the original circuit with

the currents, voltages, sources, and passive elements replaced by transformed equivalents. The current or

voltage transforms are then found using ordinary circuit theory and the results inverted to the time-domain

answers.

Voltage Law Transformation

First, let us note that if we transform Kirchhoff ’s voltage law:

v1ðtÞ þ v2ðtÞ þ . . .þ vnðtÞ ¼ 0

we have

V1ðsÞ þ V2ðsÞ þ . . .þ VnðsÞ ¼ 0

where Vi(s) is the transform of vi(t). The transformed voltages thus satisfy Kirchhoff ’s voltage law. A similar

procedure will show that transformed currents satisfy Kirchhoff ’s current law as well. Next, let us consider the

passive elements. For a resistance R, with current iR and voltage vR, for which

vR ¼ RiR

the transformed equation is

VRðsÞ ¼ RIRðsÞ ð6:10Þ
This result may be represented by the transformed resistor element of Figure 6.6(a).

Inductor Transformation

For an inductance L, the voltage is

vL ¼ L diL=dt

Transforming, we have

VLðsÞ ¼ sLILðsÞ LiLð0Þ ð6:11Þ
which may be represented by an inductor with impedance sL in series with a source, LiL(0), with the

FIGURE 6.6 Transformed circuit elements.
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proper polarity, as shown in Figure 6.6(b). The included voltage source takes into account the initial condition

iL(0).

Capacitor Transformation

In the case of a capacitance C we have

vc ¼ 1

C

Zt

0
iC dt þ vCð0Þ

which transforms to

VcðsÞ ¼ 1

sC
ICðsÞ þ 1

s
vCð0Þ ð6:12Þ

This is represented in Figure 6.6(c) as a capacitor with impedance 1/sC in series with a source, vC(0)/s,

accounting for the initial condition.

We may solve Equation (6.10), Equation (6.11), and Equation (6.12) for the transformed currents and use

the results to obtain alternate transformed elements useful for nodal analysis, as opposed to those of Figure

6.6, which are ideal for loop analysis. The alternate elements are shown in Figure 6.7.

Source Transformation

Independent sources are simply labeled with their transforms in the transformed circuit. Dependent

sources are transformed in the same way as passive elements. For example, a controlled voltage source

defined by

v1ðtÞ ¼ Kv2ðtÞ

transforms to

V1ðsÞ ¼ KV2ðsÞ

which in the transformed circuit is the transformed source controlled by a transformed variable. Since

Kirchhoff ’s laws hold and the rules for impedance hold, the transformed circuit may be analyzed exactly as we

would an ordinary resistive circuit.

FIGURE 6.7 Transformed elements useful for nodal analysis.
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Example 6.6

To illustrate, let us find i(t) in Figure 6.8(a), given that i(0) ¼ 4 A and v(0) ¼ 8 V. The transformed circuit is

shown in Figure 6.8(b), from which we have

IðsÞ ¼ ½2=ðsþ 3Þ þ 4 ð8=sÞ
3þ sþ ð2=sÞ

This may be written

IðsÞ ¼ 13

sþ 1
þ 20

sþ 2

3

sþ 3

so that

iðtÞ ¼ 13e t þ 20e 2t 3e 3t A j

Thévenin’s and Norton’s Theorems

Since the procedure using transformed circuits is identical to that using the phasor equivalent circuits in the ac

steady-state case, we may obtain transformed Thévenin and Norton equivalent circuits exactly as in the phasor

case. That is, the Thévenin impedance will be Zth(s) seen at the terminals of the transformed circuit with the

sources made zero, and the open-circuit voltage and the short-circuit current will be Voc(s) and Isc(s),

respectively, at the circuit terminals. The procedure is exactly like that for resistive circuits, except that in the

transformed circuit the quantities involved are functions of s. Also, as in the resistor and phasor cases, the

open-circuit voltage and short-circuit current are related by

VocðsÞ ¼ ZthðsÞIscðsÞ ð6:13Þ

Example 6.7

As an example, let us consider the circuit of Figure 6.9(a) with the transformed circuit shown in Figure

6.9(b). The initial conditions are i(0) ¼ 1 A and v(0) ¼ 4 V. Let us find v(t) for t . 0 by replacing

everything to the right of the 4-o resistor in Figure 6.9(b) by its Thévenin equivalent circuit. We may find

Zth(s) directly from Figure 6.9(b) as the impedance to the right of the resistor with the two current sources

FIGURE 6.8 (a) A circuit and (b) its transformed counterpart.
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made zero (open circuited). For illustrative purposes we choose, however, to find the open-circuit voltage

and short-circuit current shown in Figure 6.10(a) and (b), respectively, and use Equation (6.13) to get the

Thévenin impedance.

The nodal equation in Figure 6.10(a) is

VocðsÞ
3s

þ 1

s
þ s

24
VocðsÞ ¼ 1

6

from which we have

VocðsÞ ¼ 4ðs 6Þ
s2 þ 8

From Figure 6.10(b)

IscðsÞ ¼ s 6

6s

The Thévenin impedance is therefore

ZthðsÞ ¼ VocðsÞ
IscðsÞ ¼

4ðs 6Þ
s2 þ 8
s 6

6s

¼ 24s

s2 þ 8

FIGURE 6.10 Circuit for obtaining (a) Voc(s) and (b) Isc(s).

FIGURE 6.9 (a) An RLC parallel circuit and (b) its transformed circuit.
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and the Thévenin equivalent circuit, with the 4 o connected, is shown in Figure 6.11. From this circuit we find

the transform

VðsÞ ¼ 4ðs 6Þ
ðsþ 2Þðsþ 4Þ ¼

16

sþ 2
þ 20

sþ 4

from which

vðtÞ ¼ 16e 2t þ 20e 4t V

Network Functions

A network function or transfer function is the ratio H(s) of the Laplace transform of the output function, say

vo(t), to the Laplace transform of the input, say vi(t), assuming that there is only one input. (If there are

multiple inputs, the transfer function is based on one of them with the others made zero.) Suppose that in the

general case the input and output are related by the differential equation

an
dnvo
dtn

þ an 1

dn 1vo
dtn 1 þ þ a1

dvo
dt

þ aovo

¼ bm
dmvi
dtm

þ bm 1

dm 1vi
dtm 1 þ þ b1

dvi
dt
þ bovi

and that the initial conditions are all zero; that is:

voð0Þ ¼ dvoð0Þ
dt

¼ ¼ dn 1voð0Þ
dtn 1 ¼ við0Þ ¼ dvið0Þ

dt
¼ ¼ dm 1við0Þ

dtm 1 ¼ 0

Then, transforming the differential equation results in

ðansn þ an 1s
n 1 þ þ a1sþ a0ÞVoðsÞ

¼ ðbmsm þ bm 1s
m 1 þ þ b1sþ b0ÞViðsÞ

from which the network function, or transfer function, is given by

HðsÞ ¼ VoðsÞ
ViðsÞ ¼

bms
m þ bm 1s

m 1 þ þ b1sþ b0
ans

n þ an 1s
n 1 þ þ a1sþ a0

ð6:14Þ

FIGURE 6.11 Thévenin equivalent circuit terminated in a resistor.
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Example 6.8

As an example, let us find the transfer function for the transformed circuit of Figure 6.12, where the transfer

function is Vo(s)/Vi(s). By voltage division we have

HðsÞ ¼ VoðsÞ
ViðsÞ ¼

4

sþ 4þ ð3=sÞ ¼
4s

ðsþ 1Þðsþ 3Þ ð6:15Þ
j

Step and Impulse Responses

In general, if Y(s) and X(s) are the transformed output and input, respectively, then the network function is

H(s) ¼ Y(s)/X(s) and the output is

YðsÞ ¼ HðsÞXðsÞ ð6:16Þ
The step response r(t) is the output of a circuit when the input is the unit step function u(t), with transform

1/s. Therefore, the transform of the step response R(s) is given by

RðsÞ ¼ HðsÞ=s ð6:17Þ
The impulse response h(t) is the output when the input is the unit impulse d(t). Since L½dðtÞ ¼ 1, we have

from Equation (6.16):

hðtÞ ¼ L 1½HðsÞ=1 ¼ L 1½HðsÞ ð6:18Þ
Example 6.9

As an example, for the circuit of Figure 6.12, H(s), given in Equation (6.15), has the partial-fraction expansion:

HðsÞ ¼ 2

sþ 1
þ 6

sþ 3

so that

hðtÞ ¼ 2e t þ 6e 3t V j

If we know the impulse response, we can find the transfer function:

HðsÞ ¼ L½hðtÞ
from which we can find the response to any input. In the case of the step and impulse responses, it is

understood that there are no other inputs except the step or the impulse. Otherwise, the transfer function

would not be defined.

FIGURE 6.12 An RLC circuit.
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Stability

An important concern in circuit theory is whether the output signal remains bounded or increases indefinitely

following the application of an input signal. An unbounded output could damage or even destroy the circuit,

and thus it is important to know before applying the input if the circuit can accommodate the expected

output. This question can be answered by determining the stability of the circuit.

A circuit is defined to have bounded input–bounded output (BIBO) stability if any bounded input results

in a bounded output. The circuit in this case is said to be absolutely stable or unconditionally stable. BIBO

stability can be determined by examining the poles of the network function (Equation (6.14)).

If the denominator of H(s) in Equation (6.14) contains a factor (s – p)n, then p is said to be a pole of H(s) of

order n. The output Vo(s) would also contain this factor, and its partial fraction expansion would contain the

term K/(s – p)n. Thus, the inverse transform vo(t) is of the form:

voðtÞ ¼ Ant
n 1e pt þ An 1t

n 2e pt þ þ A1e
pt þ v1ðtÞ ð6:19Þ

where v1(t) results from other poles of Vo(s). If p is a real positive number or a complex number with a

positive real part, vo(t) is unbounded because e
pt is a growing exponential. Therefore, for absolute stability

there can be no pole of Vo(s) that is positive or has a positive real part. This is equivalent to saying that Vo(s)

has no poles in the right half of the s-plane. Since vi(t) is bounded, Vi(s) has no poles in the right half-plane.

Therefore, since the only poles of Vo(s) are those of H(s) and Vi(s), no pole of H(s) for an absolutely stable

circuit can be in the right-half of the s-plane.

FromEquation (6.19) we see that vi(t) is bounded, as far as pole p is concerned, if p is a simple pole (of order 1)

and is purely imaginary. That is, p ¼ jo, for which

e pt ¼ cos ot þ j sinot

which has a bounded magnitude. Unless Vi(s) contributes an identical pole jo, vo(t) is bounded. Thus, vo(t) is
bounded on the condition that any jo pole of H(s) is simple.

In summary, a network is absolutely stable if its network function H(s) has only left half-plane poles. It is

conditionally stable if H(s) has only simple jo-axis poles and possibly left half-plane poles. It is unstable

otherwise (right half-plane or multiple jo-axis poles).

Example 6.10

As an example, the circuit of Figure 6.12 is absolutely stable, since from Equation (6.15) the only poles of

its transfer function are s ¼ 1, 3, which are both in the left half-plane. There are countless examples of

conditionally stable circuits that are extremely useful, for example, a network consisting of a single

capacitor with C ¼ 1 F with input current I(s) and output voltage V(s). The transfer function is H(s) ¼
Z(s) ¼ 1/Cs ¼ 1/s, which has the simple pole s ¼ 0 on the jo-axis. Figure 6.13 illustrates a circuit that is

FIGURE 6.13 Unstable circuit.

6-21Laplace Transform



unstable. The transfer function is

HðsÞ ¼ IðsÞ=ViðsÞ ¼ 1=ðs 2Þ
which has the right half-plane pole s ¼ 2.

Defining Terms

Absolute stability: When the network function H(s) has only left half-plane poles.

Bounded input–bounded output stability: When any bounded input results in a bounded output.

Conditional stability: When the network function H(s) has only simple jo-axis poles and possibly left

half-plane poles.

Impulse response, h(t): The output when the input is the unit impulse d(t).
Network or transfer function: The ratio H(s) of the Laplace transform of the output function to the

Laplace transform of the input function.

Step response, r(t): The output of a circuit when the input is the unit step function u(t), with transform 1/s.

Transformed circuit: An original circuit with the currents, voltages, sources, and passive elements replaced

by transformed equivalents.
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7.1 Introduction

An electrical network is describable by a system of algebraic and differential equations known as the primary

system of equations obtained by applying the Kirchhoff ’s current and voltage laws and the element v–i

relations. In the case of linear networks, these equations can be transformed into a system of linear algebraic

equations by means of the Laplace transformation, which is relatively simple to manipulate. The main

drawback is that it contains a large number equations. To reduce this number, three secondary systems of

equations are available: the nodal system, the cutset system, and the loop system. If a network has n nodes, b

branches, and c components, there are n – c linearly independent equations in nodal or cutset analysis and

b – nþ c linearly independent equations in loop analysis. These equations can then be solved to yield the

Laplace transformed solution. To obtain the final time-domain solution, we must take the inverse Laplace

transformation. For most practical networks, the procedure is usually long and complicated and requires an

excessive amount of computer time.

As an alternative we can formulate the network equations in the time domain as a system of first-order

differential equations, which describe the dynamic behavior of the network. Some advantages of representing

the network equations in this form are the following. First, such a system has been widely studied in

mathematics, and its solution, both analytic and numerical, is known and readily available. Second, the

representation can easily and naturally be extended to time-varying and nonlinear networks. In fact,

computer-aided solution of time-varying, nonlinear network problems is almost always accomplished using

the state-variable approach. Finally, the first-order differential equations can easily be programmed for a

digital computer or simulated on an analog computer. Even if it were not for the above reasons, the approach

provides an alternative view of the physical behavior of the network.

The term state is an abstract concept that may be represented in many ways. If we call the set of

instantaneous values of all the branch currents and voltages as the state of the network, then the knowledge of

the instantaneous values of all these variables determines this instantaneous state. Not all of these

instantaneous values are required in order to determine the instantaneous state, however, because some can be
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calculated from the others. A set of data qualifies to be called the state of a system if it fulfills the following two

requirements:

1. The state of any time, say t0, and the input to the system from t0 on determine uniquely the state at any

time t . t0.

2. The state at time t and the inputs together with some of their derivatives at time t determine uniquely

the value of any system variable at the time t.

The state may be regarded as a vector, the components of which are state variables. Network variables that

are candidates for the state variables are the branch currents and voltages. Our problem is to choose state

variables in order to formulate the state equations. Like the nodal, cutset, or loop system of equations, the state

equations are formulated from the primary system of equations. For our purposes, we shall focus our

attention on how to obtain state equations for linear systems.

7.2 State Equations in Normal Form

For a linear network containing k energy storage elements and h independent sources, our objective is to write

a system of k first-order differential equations from the primary system of equations, as follows:

_xxiðtÞ ¼
Xk
j¼ 1

aijxjðtÞ þ
Xh
j¼ 1

bijujðtÞ; ði ¼ 1; 2; . . . ; kÞ ð7:1Þ

In matrix notation, Equation (7.1) becomes

_xx1ðtÞ
_xxðtÞ
·

·

·

_xxkðtÞ

266666666664

377777777775
¼

a11 a12 . . . a1k

a21 a22 . . . a2k

· · . . . ·

· · . . . ·

ak1 ak2 . . . akk

266666664

377777775

x1ðtÞ
x2ðtÞ
·

·

·

xkðtÞ

266666666664

377777777775

þ

b11 b12 . . . b1h

b21 b22 . . . b2h

· · . . . ·

· · . . . ·

bk1 bk2 . . . bkh

266666664

377777775

u1ðtÞ
u2ðtÞ
·

·

·

uhðtÞ

266666666664

377777777775

ð7:2Þ

or, more compactly:

_xxðtÞ ¼ AxðtÞ þ BuðtÞ ð7:3Þ

The real functions x1(t), x2(t),..., xk(t) of the time t are called the state variables, and the k-vector x(t) formed

by the state variables is known as the state vector. The h-vector u(t) formed by the h known forcing functions

or excitations uj(t) is referred to as the input vector. matrices A and B, depending only upon the network
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parameters, are of orders k · k and k · h, respectively. Equation (7.3) is usually called the state equation in

normal form.

The state variables xj may or may not be the desired output variables. We therefore must express the desired

output variables in terms of the state variables and excitations. In general, if there are q output variables yj(t)

(j ¼ 1, 2, ..., q) and h input excitations, the output vector y(t) formed by the q output variables yj(t) can be

expressed in terms of the state vector x(t) and the input vector u(t) by the matrix equation:

yðtÞ ¼ CxðtÞ þDuðtÞ ð7:4Þ

where the known coefficient matrices C and D, depending only on the network parameters, are of orders q · k
and q · h, respectively. Equation (7.4) is called the output equation. The state equation, Equation (7.3), and
the output equation, Equation (7.4), together are known as the state equations.

7.3 The Concept of State and State Variables and Normal Tree

Our immediate problem is to choose the network variables as the state variables in order to formulate the state

equations. If we call the set of instantaneous values of all the branch currents and voltages the state of the

network, then the knowledge of the instantaneous values of all these variables determines this instantaneous

state. Not all of these instantaneous values are required in order to determine the instantaneous state, however,

because some can be calculated from the others. For example, the instantaneous voltage of a resistor can be

obtained from its instantaneous current through Ohm’s law. The question arises as to the minimum number

of instantaneous values of branch voltages and currents that are sufficient to determine completely the

instantaneous state of the network.

In a given network, a minimal set of its branch variables is said to be a complete set of state variables if

their instantaneous values are sufficient to determine completely the instantaneous values of all the branch

variables. For a linear time-invariant nondegenerate network, it is convenient to choose the capacitor voltages

and inductor currents as the state variables. A nondegenerate network is one that contains neither a circuit

composed only of capacitors and/or independent or dependent voltage sources nor a cutset composed only of

inductors and/or independent or dependent current sources, where a cutset is a minimal subnetwork, the

removal of which cuts the original network into two connected pieces. Thus, not all the capacitor voltages and

inductor currents of a degenerate network can be state variables. To help systematically select the state

variables, we introduce the notion of normal tree.

A tree of a connected network is a connected subnetwork that contains all the nodes but does not contain

any circuit. A normal tree of a connected network is a tree that contains all the independent voltage sources,

the maximum number of capacitors, the minimum number of inductors, and none of the independent

current sources. This definition excludes the possibility of having unconnected networks. In the case of

unconnected networks, we can consider the normal trees of the individual components. We remark that the

representation of the state of a network is generally not unique, but the state of a network itself is.

7.4 Systematic Procedure in Writing State Equations

In the following we present a systematic step-by-step procedure for writing the state equation for a network.

They are a systematic way to eliminate the unwanted variables in the primary system of equations:

1. In a given network N, assign the voltage and current references of its branches.

2. In N select a normal tree T and choose as the state variables the capacitor voltages of T and the inductor

currents of the cotree TT, the complement of T in N.

3. Assign each branch of T a voltage symbol, and assign each element of TT, called the link, a current

symbol.
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4. Using Kirchhoff ’s current law, express each tree-branch current as a sum of cotree-link currents, and

indicate it in N if necessary.

5. Using Kirchhoff ’s voltage law, express each cotree-link voltage as a sum of tree-branch voltages, and

indicate it in N if necessary.

6. Write the element v–i equations for the passive elements and separate these equations into two groups:

a. Those element v–i equations for the tree-branch capacitors and the cotree-link inductors

b. Those element v–i equations for all other passive elements

7. Eliminate the nonstate variables among the equations obtained in the preceding step. Nonstate variables

are defined as those variables that are neither state variables nor known independent sources.

8. Rearrange the terms and write the resulting equations in normal form.

We illustrate the preceding steps by the following examples.

Example 1

We write the state equations for the network N of Figure 7.1 by following the eight steps outlined above.

Step l

The voltage and current references of the branches of the active network N are as indicated in Figure 7.1.

Step 2

Select a normal tree T consisting of the branches R1, C3, and vg. The subnetwork C3i5vg is another example of a

normal tree.

Step 3

The tree branches R1, C3, and vg are assigned the voltage symbols v1, v3, and vg; and the cotree-links R2, L4, i5,

and ig are assigned the current symbols i2, i4, i3, and ig, respectively. The controlled current source i5 is given

the current symbol i3 because its current is controlled by the current of the branch C3, which is i3.

Step 4

Applying Kirchhoff ’s current law, the branch currents i1, i3, and i7 can each be expressed as the sums of cotree-

link currents:

FIGURE 7.1 An active network used to illustrate the procedure for writing the state equations in normal form.
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i1 ¼ i4 þ ig i3 ð7:5aÞ

i3 ¼ i2 i4 ð7:5bÞ

i7 ¼ i2 ð7:5cÞ
Step 5

Applying Kirchhoff ’s voltage law, the cotree-link voltages v2, v4, v5, and v6 can each be expressed as the sums of

tree-branch voltages:

v2 ¼ vg v3 ð7:6aÞ

v4 ¼ v3 v1 ð7:6bÞ

v5 ¼ v1 ð7:6cÞ

v6 ¼ v1 ð7:6dÞ
Step 6

The element v–i equations for the tree-branch capacitor and the cotree-link inductor are found to be

C3 _vv3 ¼ i3 ¼ i2 i4 ð7:7aÞ

L4i4 ¼ v4 ¼ v3 v1 ð7:7bÞ
Likewise, the element v–i equations for other passive elements are obtained as

v1 ¼ R1i1 ¼ R1ði4 þ ig i3Þ ð7:8aÞ

i2 ¼ v2
R2
¼ vg v3

R2
ð7:8bÞ

variables

Step 7

The state variables are the capacitor voltage v3 and inductor current i4, and the known independent sources are

ig and vg. To obtain the state equation, we must eliminate the nonstate variables v1 and i2 in Equation (7.7).

From Equations (7.5b) and Equation (7.8) we express v1 and i2 in terms of the state variables and obtain

v1 ¼ R1 2i4 þ ig þ v3
R2

vg

R2
ð7:9aÞ

i2 ¼
vg v3

R2
ð7:9bÞ
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Substituting these in Equation (7.7) yields

C3 _vv3 ¼
vg v3

R2
i4 ð7:10aÞ

L4_ii4 ¼ 1
R1
R2

v3 2R1i4 R1ig þ
R1vg

R2
ð7:10bÞ

Step 8

Equations (7.10a) and (7.10b) are written in matrix form as

_vv3
_ii4

" #
¼

1

R2C3

1

C3

1

L4

R1
R2L4

2R1
L4

266664
377775 v3

i4

" #
þ

1

R2C3
0

R1
R2L4

R1
L4

266664
377775 vg

ig

" #
ð7:11Þ

This is the state equation in normal form for the active network N of Figure 7.1.

Suppose that resistor voltage v1 and capacitor current i3 are the output variables. Then from Equation (7.5b)

and Equation (7.9) we obtain

v1 ¼ R1
R2
v3 þ 2R1i4 þ R1 ig

vg

R2
ð7:12aÞ

i3 ¼ v3
R2

i4 þ
vg

R2
ð7:12bÞ

In matrix form, the output equation of the network becomes

v1
i3

R1
R2

2R1

1

R2
1

2664
3775 v3

i4
þ

R1
R2

R1

1

R2
0

2664
3775 vg

ig
ð7:13Þ

Equation (7.11) and Equation (7.13) together are the state equations of the active network of Figure 7.1.

7.5 State Equations for Networks Described by Scalar
Differential Equations

In many situations we are faced with networks that are described by scalar differential equations of order

higher than one. Our purpose here is to show that these networks can also be represented by the state

equations in normal.

Consider a network that can be described by the nth-order linear differential equation:

dny

dtn
þ a1

dn 1y

dtn 1 þ a2
dn 2y

dtn 2 þ · · ·þ an 1

dy

dt
þ any ¼ bu ð7:14Þ
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Then its state equation can be obtained by defining

x1 ¼ y

x2 ¼ _xx1

·

·

·

xn ¼ _xxn 1

ð7:15Þ

showing that the nth-order linear differential Equation (7.14) is equivalent to

_xx1 ¼ x2

_xx2 ¼ x3

·

·

·

_xxn 1 ¼ xn

_xxn ¼ anx1 an 1x2 · · · a2xn 1 a1xn þ bu

ð7:16Þ

or, in matrix form:

_xx1
_xx2
·
·
·
_xxn 1

_xxn

26666666664

37777777775
¼

0 1 0 0
0 0 1 0
· · · ·
· · · ·
· · · ·
0 0 0 1
an an 1 an 2 a1

26666666664

37777777775

x1
x2
·
·
·

xn 1

xn

26666666664

37777777775
þ

0
0
·
·
·
0
b

26666666664

37777777775
½u ð7:17Þ

More compactly, Equation (7.17) can be written as

_xxðtÞ ¼ AxðtÞ þ BuðtÞ ð7:18Þ

The coefficient matrix A is called the companion matrix of Equation (7.14), and Equation (7.17) is the state-

equation representation of the network describable by the linear differential Equation (7.14).

Let us now consider the more general situation where the right-hand side of (Equation (7.14)) includes

derivatives of the input excitation u. In this case, the different equation takes the general form:

dny

dtn
þ a1

dn 1y

dtn 1 þ a2
dn 2y

dtn 2 þ þ an 1

dy

dt
þ any

¼ b0
dnu

dtn
þ b1

dn 1u

dtn 1 þ þ bn 1

du

dt
þ bnu

ð7:19Þ
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Its state equation can be obtained by defining

x1 ¼ y c0u
x2 ¼ _xx1 c1u

..

.

xn ¼ _xxn 1u

ð7:20Þ

The general state equation becomes

_xx1
_xx2
..
.

_xxn 1

_xxn

26666664

37777775 ¼

0 1 0 0
0 0 1 0
..
. ..

. ..
. ..

. ..
.

0 0 0 1
an an 1 an 2 a1

2666664
3777775

x1
x2
..
.

xn 1

xn

26666664

37777775þ

c1
c2
..
.

cn 1

cn

26666664

37777775½u ð7:21Þ

where n . 1:

c1 ¼ b1 a1b0

c2 ¼ ðb2 a2b0Þ a1c1

c3 ¼ ðb3 a3b0Þ a2c1 a1c2

..

.

cn ¼ ðbn a3b0Þ an 1c1 an 2c2 a2cn 2 a1cn 1

ð7:22Þ

and

x1 ¼ y b0u ð7:23Þ
Finally, if y is the output variable, the output equation becomes

yðtÞ ¼ 1 0 0 0½
x1
x2
..
.

xn

26664
37775þ b0 u½ ð7:24Þ

7.6 Extension to Time-Varying and Nonlinear Networks

A great advantage in the state-variable approach to network analysis is that it can easily be extended to time-

varying and nonlinear networks, which are often not readily amenable to the conventional methods of

analysis. In these cases, it is more convenient to choose the capacitor charges and inductor flux as the the state

variables instead of capacitor voltages and inductor currents.

In the case of a linear time-varying network, its state equations can be written the same as before except that

now the coefficient matrices are time-dependent:

_xxðtÞ ¼ AðtÞxðtÞ þ BðtÞuðtÞ ð7:25aÞ

yðtÞ ¼ CðtÞxðtÞ þDðtÞuðtÞ ð7:25bÞ
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Thus, with the state-variable approach, it is no more difficult to write the governing equations for a linear

time-varying network than it is for a linear time-invariant network. Their solutions are, of course, a different

matter.

For a nonlinear network, its state equation in normal form is describable by a coupled set of first-order

differential equations:

_xx ¼ fðx;u; tÞ ð7:26Þ

If the function f satisfies the familiar Lipshitz condition with respect to x in a given domain, then for every set

of initial conditions x0(t0) and every input u there exists a unique solution x(t), the components of which are

the state variables of the network.

Defining Terms

Companion matrix: The coefficient matrix in the state-equation representation of the network describable

by a linear differential equation.

Complete set of state variables: A minimal set of network variables, the instantaneous values of which

are sufficient to determine completely the instantaneous values of all the network variables.

Cotree: The complement of a tree in a network.

Cutset: A minimal subnetwork, the removal of which cuts the original network into two connected pieces.

Cutset system: A secondary system of equations using cutset voltages as variables.

Input vector: A vector formed by the input variables to a network.

Link: An element of a cotree.

Loop system: A secondary system of equations using loop currents as variables.

Nodal system: A secondary system of equations using nodal voltages as variables.

Nondegenerate network: A network that contains neither a circuit composed only of capacitors and/or

independent or dependent voltage sources nor a cutset composed only of inductors and/or independent

or dependent current sources.

Nonstate variables: Network variables that are neither state variables nor known independent sources.

Normal tree: A tree that contains all the independent voltage sources, the maximum number of capacitors,

the minimum number of inductors, and none of the independent current sources.

Output equation: An equation expressing the output vector in terms of the state vector and the input vector.

Output vector: A vector formed by the output variables of a network.

Primary system of equations: A system of algebraic and differential equations obtained by applying the

Kirchhoff ’s current and voltage laws and the element v–i relations.

Secondary system of equations: A system of algebraic and differential equations obtained from the

primary system of equations by transformation of network variables.

State: A set of data, the values of which at any time t, together with the input to the system at the time,

determine uniquely the value of any network variable at the time t.

State equation in normal form: A system of first-order differential equations that describes the dynamic

behavior of a network and that is put into a standard form.

State equations: Equations formed by the state equation and the output equation.

State variables: Network variables used to describe the state.

State vector: A vector formed by the state variables.

Tree: A connected subnetwork that contains all the nodes of the original network but does not contain any

circuit.
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8.1 Introduction

Discrete-time signals can be represented as sequences of numbers. Thus, if x is a discrete-time signal, its values

can, in general, be indexed by n as follows:

x ¼ f. . . ; xð 2Þ; xð 1Þ; xð0Þ; xð1Þ; xð2Þ; . . . ; xðnÞ; . . .g
In order to work within a transform domain for discrete-time signals, we define the z-transform as follows.

The z-transform of the sequence x in the previous equation is

ZfxðnÞg ¼ XðzÞ ¼
X1

n¼ 1
xðnÞz n

in which the variable z can be interpreted as being either a time-position marker or a complex-valued variable,

and the script Z is the z-transform operator. If the former interpretation is employed, the number multiplying

the marker z n is identified as being the nth element of the x sequence, i.e., x(n). It will be generally beneficial

to take z to be a complex-valued variable.

The z-transforms of some useful sequences are listed in Table 8.1.

8.2 Properties of the z-Transform

Linearity

Both the direct and inverse z-transform obey the property of linearity. Thus, if Z{f(n)} and Z{g(n)} are denoted

by F(z) and G(z), respectively, then:

Zfaf ðnÞ þ bgðnÞg ¼ aFðzÞ þ bGðzÞ
where a and b are constant multipliers.
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Translation

An important property when transforming terms of a difference equation is the z-transform of a sequence

shifted in time. For a constant shift, we have

Zff ðnþ kÞg ¼ zkFðzÞ

for positive or negative integer k. The region of convergence of zkF(z) is the same as for F(z) for positive k; only

the point z ¼ 0 need be eliminated from the convergence region of F(z) for negative k.

Convolution

In the z-domain, the time-domain convolution operation becomes a simple product of the corresponding

transforms, that is:

Zff ðnÞ gðnÞg ¼ FðzÞGðzÞ

TABLE 8.1 Partial-Fraction Equivalents Listing Causal and Anticausal z-Transform

Pairs

z-Domain: F(z) Sequence Domain: f(n)

1a:
1

z a
; for zj j > aj j an 1uðn 1Þ ¼ 0; 1; a; a2; . . .

1b:
1

z a
; for zj j < aj j an 1uð nÞ ¼ ;

1

a3
;

1

a2
;

1

a

2a:
1

ðz aÞ2 ; for zj j > aj j ðn 1Þan 2uðn 1Þ ¼ 0; 1; 2a; 3a2; . . .

2b:
1

ðz aÞ2 ; for zj j < aj j ðn 1Þan 2uð nÞ ¼ . . . ;
3

a4
;
2

a3
;
1

a2

3a:
1

ðz aÞ3 ; for zj j > aj j 1

2
ðn 1Þðn 2Þan 3uðn 1Þ ¼ 0; 0; 1; 3a; 6a2; . . .

3b:
1

ðz aÞ3 ; for zj j < aj j 1

2
ðn 1Þðn 2Þan 3uð nÞ ¼ . . . ;

6

a5
;

3

a4
;

1

a3

4a:
1

ðz aÞm ; for zj j > aj j 1

ðm 1Þ!
Ym 1

k¼1
ðn kÞan muðn 1Þ

4b:
1

ðz aÞm ; for zj j < aj j 1

ðm 1Þ!
Ym 1

k¼1
ðn kÞan muð nÞ

5a: z m; for z 6¼ 0; m> 0 dðn mÞ ¼ . . . ; 0; 0; . . . ; 1; 0; . . . ; 0; . . .

5b: zþm; for zj j < 1; m> 0 dðnþmÞ ¼ . . . ; 0; 0; . . . ; 1; . . . 0; . . . ; 0; . . .

Source: J.A. Cadzow and H.F. Van Landingham, Signals, Systems and Transforms, Englewood
Cliffs, NJ: Prentice-Hall, 1985, p.191. With permission.
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Multiplication by an

This operation corresponds to a rescaling of the z-plane. For a . 0:

Zfanf ðnÞg ¼ F
z

a
for aR15 zj5 aR2j

where F(z) is defined for R1 , jzj, R2.

Time Reversal

Zff ð nÞg ¼ Fðz 1Þ for R 1
2 jzjR 1

1

where F(z) is defined for R15 zj j5R2

8.3 Unilateral z-Transform

The unilateral z-transform is defined as

ZþfxðnÞg ¼ XðzÞ ¼
X1
n¼0

xðnÞz n for jzj4R

where it is called single-sided since n $ 0, just as if the sequence x(n) was in fact single-sided. If there is no

ambiguity in the sequel, the subscript plus is omitted and we use the expression z-transform to mean either the

double- or the single-sided transform. It is usually clear from the context which is meant. By restricting signals

to be single-sided, the following useful properties can be proved.

Time Advance

For a single-sided signal f(n):

Zþff ðnþ 1Þg ¼ zFðzÞ zf ð0Þ

More generally:

Zþff ðnþ kÞg ¼ zkFðzÞ zkf ð0Þ zk 1f ð1Þ zf ðk 1Þ

This result can be used to solve linear constant-coefficient difference equations. Occasionally, it is desirable to

calculate the initial or final value of a single-sided sequence without a complete inversion. The following two

properties present these results.

Initial Signal Value

If f(n) ¼ 0 for n , 0:

f ð0Þ ¼ lim
z)1 FðzÞ

where F(z) ¼ Z{f(n)} for jzj . R.
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Final Value

If f(n) ¼ 0 for n , 0 and Z{f(n)} ¼ F(z) is a rational function with all its denominator roots (poles) strictly

inside the unit circle except possibly for a first-order pole at z ¼ 1:

f ð1Þ ¼ lim
n)1 f ðnÞ ¼ lim

z)1ð1 z 1ÞFðzÞ

8.4 z-Transform Inversion

We operationally denote the inverse transform of F(z) in the form:

f ðnÞ ¼ Z 1fFðzÞg
There are three useful methods for inverting a transformed signal. They are:

1. Expansion into a series of terms in the variables z and z 1

2. Complex integration by the method of residues

3. Partial-fraction expansion and table look-up

We discuss two of these methods in turn.

Method 1

For the expansion of F(z) into a series, the theory of functions of a complex variable provides a practical basis

for developing our inverse transform techniques. As we have seen, the general region of convergence for a

transform function F(z) is of the form a , jzj , b , i.e., an annulus centered at the origin of the z-plane. This

first method is to obtain a series expression of the form:

FðzÞ ¼
X1

n¼ 1
cnz

n

which is valid in the annulus of convergence. When F(z) has been expanded as in the previous equation, that

is, when the coefficients cn, n¼ 0,^1,^2, . . . have been found, the corresponding sequence is specified by f(n)

¼ cn by uniqueness of the transform.

Method 2

We evaluate the inverse transform of F(z) by the method of residues. The method involves the calculation of

residues of a function both inside and outside of a simple closed path that lies inside the region of

convergence. A number of key concepts are necessary in order to describe the required procedure.

A complex-valued function G(z) has a pole of order k at z ¼ z0 if it can be expressed as

GðzÞ ¼ G1ðz0Þ
ðz z0Þk

where G1(z0) is finite.

The residue of a complex function G(z) at a pole of order k at z ¼ z0 is defined by

Res½GðzÞ z¼z0 ¼
1

ðk 1Þ!
dk 1

dzk 1
½ðz z0ÞkGðzÞ

z¼z0
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Inverse Transform Formula (Method 2)

If F(z) is convergent in the annulus 0 , a , jzj , b as shown in Figure 8.1 and C is the closed path shown

(the path C must lie entirely within the annulus of convergence), then

f ðnÞ sum of residues of FðzÞzn 1at poles of FðzÞ inside C; m$ 0

ðsum of residues of FðzÞn 1at poles of FðzÞ outside C Þ; m50

(

wherem is the least power of z in the numerator of F(z)zn 1, e.g.,mmight equal n 1. Figure 8.1 illustrates the

previous equation.

8.5 Sampled Data

Data obtained for a signal only at discrete intervals (sampling period) is called sampled data. One advantage

of working with sampled data is the ability to represent sequences as combinations of sampled time signals.

Table 8.2 provides some key z-transform pairs. So that the table can serve a multiple purpose, there are three

items per line: the first is an indicated sampled continuous-time signal, the second is the Laplace transform of

the continuous-time signal, and the third is the z-transform of the uniformly sampled continous-time signal.

To illustrate the interrelation of these entries, consider Figure 8.2. For simplicity, only single-sided signals have

been used in Table 8.2. Consequently, the convergence regions are understood in this context to be Re[s] , s0
and j z j . r0 for the Laplace and z-transforms, respectively. The parameters s0 and r0 depend on the actual
transformed functions; in factor z, the inverse sequence would begin at n ¼ 0. Thus, we use a modified partial-

fraction expansion whose terms have this extra z-factor.

FIGURE 8.1 Typical convergence region for a transformed discrete-time signal (Source: J.A. Cadzow and H.F. Van

Landingham, Signals, Systems and Transforms, Englewood Cliffs, NJ: Prentice-Hall, 1985, p. 191. With permission.)

FIGURE 8.2 Signal and transform relationships for Table 8.2.
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Defining Terms

Sampled data: Data obtained for a variable only at discrete intervals. Data are obtained once every sampling

period.

Sampling period: The period for which the sampled variable is held constant.

z-Transform: A transform from the s-domain to the z-domain by z ¼ esT.
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TABLE 8.2 z-Transforms for Sampled Data

f(t), t ¼ nT,

n ¼ 0, 1, 2, . . .

F(s), Re[s] . s0 F(z), jz j . r0

1. (unit step)
1

s

z

z 1

2. t (unit ramp)
1

s2
Tz

ðz 1Þ2

3. t2
2

s3
T2zðz þ 1Þ
ðz 1Þ3

4. e at 1

sþ a
z

z e aT

5. te at 1

ðsþ aÞ2
Tze aT

ðz e aTÞ2

6. sin ot
o

s2 þ o2

z sinoT
z2 2z cosoT þ 1

7. cos ot
s

s2 þ o2

zðz cosoTÞ
z2 2z cosoT þ 1

8. e at sin ot
o

ðsþ aÞ2 þ o2

ze aT sinoT
z2 2ze aT cosoT þ e 2aT

9. e at cos ot
sþ a

ðsþ aÞ2 þ o2

zðz e aT cosoTÞ
z2 2ze aT cosoT þ e 2aT

Source: J.A. Cadzow and H.F. Landingham, Signals, Systems and Transforms, Englewood Cliffs, NJ:
Prentice-Hall, 1985, p.191. With permission.
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9.1 Introduction

Two very important two-ports are the T and P networks shown in Figure 9.1. Because we encounter these two

geometrical forms often in two-port analyses, it is useful to determine the conditions under which these two

networks are equivalent. In order to determine the equivalence relationship, we will examine Z-parameter

equations for the T network and the Y-parameter equations for the P network.

For the T network the equations are

V1 ¼ ðZ1 þ Z3ÞI1 þ Z3I2

V2 ¼ Z3I1 þ ðZ2 þ Z3ÞI2
and for the P network the equations are

I1 ¼ ðYa þ YbÞV1 YbV2

I2 ¼ YbV1 þ ðYb þ YcÞV2
Solving the equations for the T network in terms of I1 and I2, we obtain

I1 ¼ Z2 þ Z3
D1

V1
Z3V2
D1

I2 ¼ Z3V1
D1

þ Z1 þ Z3
D1

V2

where D1 ¼ Z1Z2 þ Z2Z3 þ Z1Z3. Comparing these equations with those for the P network, we find that

Ya ¼ Z2
D1

Yb ¼ Z3
D1

Yc ¼ Z1
D1
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or in terms of the impedances of the P network:

Za ¼ D1

Z2

Zb ¼ D1

Z3

Zc ¼ D1

Z1

If we reverse this procedure and solve the equations for the P network in terms of V1 and V2 and then

compare the resultant equations with those for the T network, we find that

Z1 ¼ Yc
D2

Z2 ¼ Ya
D2

Z3 ¼ Yb
D2

ð9:1Þ

where D2 ¼ YaYb þ YbYc þ YaYc. Equation (9.1) can also be written in the form:

Z1 ¼ ZaZb
Za þ Zb þ Zc

Z2 ¼ ZbZc
Za þ Zb þ Zc

Z3 ¼ ZaZc
Za þ Zb þ Zc

The T is a wye-connected network and the P is a delta-connected network, as we discuss in the next section.

FIGURE 9.1 T and P two-port networks.
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9.2 Three-Phase Connections

By far the most important polyphase voltage

source is the balanced three-phase source. This

source, as illustrated by Figure 9.2, has the

following properties. The phase voltages, that is,

the voltage from each line a, b, and c to the neutral

n, are given by

Van ¼ Vp—0
–

Vbn ¼ Vp— 120–

Vcn ¼ Vp—þ 120–

ð9:2Þ

An important property of the balanced voltage set is that

Van þ Vbn þ Vcn ¼ 0 ð9:3Þ

From the standpoint of the user who connects a load to the balanced three-phase voltage source, it is

not important how the voltages are generated. It is important to note, however, that if the load currents

generated by connecting a load to the power source shown in Figure 9.2 are also balanced, there are two

possible equivalent configurations for the load. The equivalent load can be considered as being

connected in either a wye (Y) or a delta (D) configuration. The balanced wye configuration is shown in

Figure 9.3. The delta configuration is shown in Figure 9.4. Note that in the case of the delta connection,

there is no neutral line. The actual function of the neutral line in the wye connection will be examined

and it will be shown that in a balanced system the neutral line carries no current and therefore may be

omitted.

a

b

c

Z∆Z∆

Z∆

FIGURE 9.4 Delta (D)-connected loads.

a

b

c

n

ZYZY

ZY

FIGURE 9.3 Wye (Y)-connected loads.

Van

+

–

Balanced
three-phase

power source
Vbn

Vcn

a

b

c

n

phase a

phase b

phase c

+

+

FIGURE 9.2 Balanced three-phase voltage source.
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9.3 Wye Delta Transformations

For a balanced system, the equivalent load configu-

ration may be either wye or delta. If both of these

configurations are connected at only three termi-

nals, it would be very advantageous if an equiva-

lence could be established between them. It is, in

fact, possible characteristics are the same. Consider,

for example, the two networks shown in Figure 9.5.

For these two networks to be equivalent at each corresponding pair of terminals it is necessary that the input

impedances at the corresponding terminals be equal, for example, if at terminals a and b, with c open-

circuited, the impedance is the same for both configurations. Equating the impedances at each port yields

Zab ¼ Za þ Zb ¼ Z1ðZ2 þ Z3Þ
Z1 þ Z2 þ Z3

Zbc ¼ Zb þ Zc ¼ Z3ðZ1 þ Z2Þ
Z1 þ Z2 þ Z3

Zca ¼ Zc þ Za ¼ Z2ðZ1 þ Z3Þ
Z1 þ Z2 þ Z3

ð9:4Þ

Solving this set of equations for Za, Zb, and Zc yields

Za ¼ Z1Z2
Z1 þ Z2 þ Z3

Zb ¼ Z1Z3
Z1 þ Z2 þ Z3

Zc ¼ Z2Z3
Z1 þ Z2 þ Z3

ð9:5Þ

TABLE 9.1 Current–Voltage Relationships for the Wye

and Delta Load Configurations

Parameter Wye Configuration Delta Configuration

Voltage Vline to line ¼
ffiffi
3

p
Vg Vline to line ¼ VD

Current Iline ¼ Ig Iline ¼
ffiffi
3

p
ID

FIGURE 9.5 General wye- and delta-connected loads.
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Similary, if we solve Equation (9.4) for Z1, Z2, and Z3, we obtain

Z1 ¼ ZaZb þ ZbZc þ ZcZa
Zc

Z2 ¼ ZaZb þ ZbZc þ ZcZa
Zb

Z3 ¼ ZaZb þ ZbZc þ ZcZa
Za

ð9:6Þ

Equations (9.5) and (9.6) are general relationships and apply to any set of impedances connected in awye or delta

configuration. For the balanced case where Za ¼ Zb ¼ Zc and Z1 ¼ Z2 ¼ Z3, the equations above reduce to

Zy ¼ 1

3
Z ð9:7Þ

and ZD¼ 3Zy ð9:8Þ

Defining Terms

Balanced voltages of the three-phase connection: The three voltages satisfy

Van þ Vbn þ Vcn ¼ 0

where

Van ¼ Vp—0–

Vbn ¼ Vp— 120–

Vcn ¼ Vp—þ120–

T network: The equations of the T network are

V1 ¼ ðZ1 þ Z3ÞI1 þ Z3I2

V2 ¼ Z3I1 þ ðZ2 þ Z3ÞI2
P network: The equations of P network are

I1 ¼ ðYa þ YbÞV1 YbV2

I2 ¼ YbV1 þ ðYb þ YcÞV2
T and P can be transferred to each other.
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10.1 Introduction

Filters are widely used to pass signals at selected frequencies and reject signals at other frequencies. An

electrical filter is a circuit that is designed to introduce gain or loss over a prescribed range of frequencies.

In this section, we will describe ideal filters and then a selected set of practical filters.

10.2 Ideal Filters

An ideal filter is a system that completely rejects sinusoidal inputs of the form x(t)¼A cos ot, 1, t ,1,
for o in certain frequency ranges and does not attenuate sinusoidal inputs whose frequencies are outside these

ranges. There are four basic types of ideal filters: low-pass, high-pass, bandpass, and bandstop. The magnitude

functions of these four types of filters are displayed in Figure 10.1. Mathematical expressions for these

magnitude functions are as follows:

ideal low-pass: HðoÞj j ¼ 1; B< o< B
0; oj j4B

ð10:1Þ

ideal high-pass: HðoÞj j ¼ 0; B5o5B
1; oj j> B

ð10:2Þ

ideal bandpass: HðoÞj j ¼ 1; B1 < oj j< B2
0; all other o

ð10:3Þ

ideal bandstop: HðoÞj j ¼ 0; B1 < oj j< B2
1; all other o

ð10:4Þ

10-1



The stopband of an ideal filter is defined to be the set

of all frequencies o for which the filter completely

stops the sinusoidal input x(t)¼A cos ot, 1, t,1.
The passband of the filter is the set of all frequencies o
for which the input x(t) is passed without attenuation.

More complicated examples of ideal filters can be

constructed by cascading ideal low-pass, high-pass,

bandpass, and bandstop filters. For instance, by

cascading bandstop filters with different values of B1
and B2, we can construct an ideal comb filter, whose

magnitude function is illustrated in Figure 10.2.

10.3 The Ideal Linear-Phase Low-Pass Filter

Consider the ideal low-pass filter with the frequency function:

HðoÞ ¼ e jotd ; B< o< B
0; o5 B;o4B

ð10:5Þ

where td is a positive real number. Equation (10.5) is the polar-form representation of H(o). From Equation

(10.5) we have

HðoÞj j ¼ 1; B< o< B
0; o5 B;o4B

and

—HðoÞ ¼ otd; B< o< B
0; o5 B;o4B
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FIGURE 10.2 Magnitude function of an ideal comb

filter.

|H |

B

1

0–B

(a)

B1

1

0–B1

(c)

B2–B2

1

0

(d)

|H ||H |

ωω

ω

|H |

B

1

0–B

(b)

ω

B1–B1 B2–B2

FIGURE 10.1 Magnitude functions of ideal filters: (a) low-pass; (b) high-pass; (c) bandpass; (d) bandstop.
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The phase function —HðoÞ of the filter is plotted in Figure 10.3. Note that over the frequency range 0 to B, the
phase function of the system is linear with slope equal to td.

The impulse response of the low-pass filter defined by Equation (10.5) can be computed by taking the

inverse Fourier transform of the frequency function H(o). The impulse response of the ideal lowpass filter is

hðtÞ ¼ B

p
Sa½Bðt tdÞ ; 15t51 ð10:6Þ

where Sa(x)¼(sin x)/x. The impulse response h(t) of the ideal low-pass filter is not zero for t, 0. Thus, the

filter has a response before the impulse at t¼0 and is said to be noncausal. As a result, it is not possible to build
an ideal low-pass filter.

10.4 Ideal Linear-Phase Bandpass Filters

One can extend the analysis to ideal linear-phase bandpass filters. The frequency function of an ideal linear-

phase bandpass filter is given by

HðoÞ ¼ e jotd ; B1 < oj j< B2
0; all othero

where td, B1, and B2 are positive real numbers. The magnitude function is plotted in Figure 10.1(c) and the

phase function is plotted in Figure 10.4. The passband of the filter is from B1 to B2. The filter will pass the

signal within the band with no distortion, although there will be a time delay of td sec.
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FIGURE 10.3 Phase function of ideal low-pass filter defined by Equation (10.5).
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FIGURE 10.4 Phase function of ideal linear-phase bandpass filter.
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10.5 Causal Filters

As observed in the preceding section, ideal filters cannot be utilized in real-time filtering applications since

they are noncausal. In such applications, one must use causal filters, which are necessarily nonideal; that is,

the transition from the passband to the stopband (and vice versa) is gradual. In particular, the magnitude

functions of causal versions of low-pass, high-pass, bandpass, and bandstop filters have gradual transitions

from the passband to the stopband. Examples of magnitude functions for the basic filter types are shown in

Figure 10.5.

For a causal filter with frequency function H(o), the passband is defined as the set of all frequencies o for

which

HðoÞj j> 1ffiffi
2

p HðopÞ . 0:707HðopÞ ð10:7Þ

where op is the value of o for which jH(o)j is maximum. Note that Equation (10.7) is equivalent to the

condition that jH(o)jdB is less than 3 dB down from the peak value jH(op)jdB. For low-pass or bandpass
filters, the width of the passband is called the 3-dB bandwidth.

A stopband in a causal filter is a set of frequencies o for which jH(o)jdB is down some desired amount
(e.g., 40 or 50 dB) from the peak value jH(op)jdB. The range of frequencies between a passband and a

stopband is called a transition region. In causal filter design, a key objective is to have the transition regions be

suitably small in extent.

10.6 Butterworth Filters

The transfer function of the two-pole Butterworth filter is

HðsÞ ¼ o2
n

s2 þ ffiffi
2

p
onsþ o2

n

0
ωωp−ωp
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FIGURE 10.5 Causal filter magnitude functions: (a) low-pass; (b) high-pass; (c) bandpass; (d) bandstop.
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Factoring the denominator of H(s), we see that the poles are located at

s ¼ onffiffi
2

p 6 j
onffiffi
2

p

Note that the magnitude of each of the poles is equal to on.

Setting s¼ jo in H(s), we have that the magnitude function of the two-pole Butterworth filter is

HðoÞj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðo=onÞ4

p ð10:8Þ

From Equation (10.8) we see that the 3-dB bandwidth of the Butterworth filter is equal to on. For the case

on¼ 2 rad/sec, the frequency response curves of the Butterworth filter are plotted in Figure 10.6. Also

displayed are the frequency response curves for the one-pole low-pass filter with transfer function

H(s)¼ 2/(s+ 2), and the two-pole low-pass filter with z¼ 1 and with 3-dB bandwidth equal to 2 rad/sec. Note

that the Butterworth filter has the sharpest cutoff of all three filters.

10.7 Chebyshev Filters

The magnitude function of the n-pole Butterworth filter has a monotone characteristic in both the passband

and stopband of the filter. Here monotonemeans that the magnitude curve is gradually decreasing over the

passband and stopband. In contrast to the Butterworth filter, the magnitude function of a type 1 Chebyshev

filter has ripple in the passband and is monotone decreasing in the stopband (a type 2 Chebyshev filter has the

opposite characteristic). By allowing ripple in the passband or stopband, we are able to achieve a sharper

transition between the passband and stopband in comparison with the Butterworth filter.

The n-pole type 1 Chebyshev filter is given by the frequency function:

HðoÞj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2T2nðo=o1Þ

p ð10:9Þ

where Tn(o/o1) is the nth-order Chebyshev polynomial. Note that E is a numerical parameter related to the
level of ripple in the passband. The Chebyshev polynomials can be generated from the recursion

TnðxÞ ¼ 2xTn 1ðxÞ Tn 2ðxÞ

2
s + 2

ω
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FIGURE 10.6 Magnitude curves of one- and two-pole low-pass filters.
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where T0(x)¼ 1 and T1(x)¼ x. The polynomials for n¼ 2, 3, 4, and 5 are

T2ðxÞ ¼ 2xðxÞ 1 ¼ 2x2 1

T3ðxÞ ¼ 2xð2x2 1Þ x ¼ 4x3 3x

T4ðxÞ ¼ 2xð4x3 3xÞ ð2x2 1Þ ¼ 8x4 8x2 þ 1

T5ðxÞ ¼ 2xð8x4 8x2 þ 1Þ ð4x3 3xÞ ¼ 16x5 20x3 þ 5x

ð10:10Þ

Using Equation (10.10), the two-pole type 1 Chebyshev filter has the following frequency function:

HðoÞj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2½2ðo=o1Þ2 1 2

p
For the case of a 3-dB ripple (E¼ 1), the transfer functions of the two-pole and three-pole type 1 Chebyshev

filters are

HðsÞ ¼ 0:50o2
c

s2 þ 0:645ocsþ 0:708o2
c
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FIGURE 10.7 Frequency curves of two- and three-pole Chebyshev filters with oc¼ 2.5 rad/sec: (a) magnitude curves;

(b) phase curves.
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HðsÞ ¼ 0:251o3
c

s2 þ 0:597ocs
2 þ 0:928o2

csþ 0:251o3
c

where oc¼ 3-dB bandwidth. The frequency curves for these two filters are plotted in Figure 10.7 for the case

oc¼ 2.5 rad.

The magnitude response functions of the three-pole Butterworth filter and the three-pole type 1 Chebyshev

filter are compared in Figure 10.8 with the 3-dB bandwidth of both filters equal to 2 rad. Note that the

transition from passband to stopband is sharper in the Chebyshev filter; however, the Chebyshev filter does

have the 3-dB ripple over the passband.

Defining Terms

Causal filter: A filter of which the transition from the passband to the stopband is gradual, not ideal. This

filter is realizable.

3-dB bandwidth: For a causal low-pass or bandpass filter with a frequency function H( jo): the frequency
at which jH(o)jdB is less than 3 dB down from the peak value jH(op)jdB.

Ideal filter: An ideal filter is a system that completely rejects sinusoidal inputs of the form

x(t)¼A cos ot, 1, t,1, for o within a certain frequency range, and does not attenuate sinusoidal

inputs whose frequencies are outside this range. There are four basic types of ideal filters: low-pass,

high-pass, bandpass, and bandstop.

Passband: Range of frequencies o for which the input is passed without attenuation.

Stopband: Range of frequencies o for which the filter completely stops the input signal.

Transition region: The range of frequencies of a filter between a passband and a stopband.
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11.1 Introduction

The Institute of Electrical and Electronics Engineers defines frequency response in stable, linear systems as

‘‘the frequency-dependent relation in both gain and phase difference between steady-state sinusoidal inputs

and the resultant steady-state sinusoidal outputs’’ (IEEE, 1988). The frequency-response characteristics of a

system can be found analytically from its transfer function. They are also commonly measured in laboratory or

field tests. A single-input/single-output linear time-invariant system is shown in Figure 11.1.

For dynamic linear systems with no time delay, the transfer function H(s) is in the form of a ratio of

polynomials in the complex frequency s:

HðsÞ ¼ K
NðsÞ
DðsÞ

where K is a frequency-independent constant. For a system in the sinusoidal steady state, s is replaced by the

sinusoidal frequency jo ð j ¼ ffiffiffiffi
1

p Þ and the system function becomes

Hð joÞ ¼ K
Nð joÞ
Dð joÞ ¼ Hð joÞ e j—Hð joÞ

Hð joÞ is a complex quantity. Its magnitude Hð joÞ and its angle or argument —Hð joÞ relate, respectively,
the amplitudes and phase angles of sinusoidal steady-state input and output signals. Referring to Figure 11.1,

if the input and output signals are

xðtÞ ¼ X cosðot þ yxÞ
yðtÞ ¼ Y cosðot þ yyÞ

then the output’s magnitude Y and phase angle yy are related to those of the input by the two equations:

Y ¼ Hð joÞ X
yy ¼ —Hð joÞ þ yx
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The phrase frequency-response characteristics usually

implies a complete description of a system’s sinusoidal

steady-state behavior as a function of frequency.

Because H( jo) is complex, frequency-response charac-
teristics cannot be graphically displayed as a single curve

plotted with respect to frequency. Instead, the magni-

tude and angle of H( jo) can be separately plotted as

functions of frequency. It is often advantageous to plot

frequency-response curves on other than linearly scaled Cartesian coordinates. Bode diagrams (developed in

the 1930s by H.W. Bode of Bell Labs) use a logarithmic scale for frequency and a decibel measure for

magnitude. In Nyquist plots (from Harry Nyquist, also of Bell Labs), H( jo) is displayed in Argand (polar)
diagram form on the complex number plane, Re[H( jo)] being on the horizontal axis and Im[H( jo)] on the
vertical. Frequency is a parameter of such curves. It is sometimes numerically identified at selected points of

the curve and sometimes omitted. The Nichols chart (developed by N.B. Nichols) graphs magnitude versus

phase for the system function, frequency again being a parameter of the curve.

Frequency-response techniques are most obviously applicable to topics such as communications and

electrical filters in which the frequency-response behaviors of systems are central to an understanding of their

operations. It is, however, in the area of control systems that frequency-response techniques are most fully

developed as analytical and design tools. The Nichols chart, for instance, is used exclusively in the analysis and

design of classical feedback control systems.

The remaining sections of this chapter describe several frequency-response plotting methods. Applications

of the methods can be found in other chapters throughout the handbook.

11.2 Frequency-Response Plotting

Frequency-response plots are prepared by computing the magnitude and angle of H( jo).

Linear Plots

In linear plots Hð joÞ and —Hð joÞ are shown in separate diagrams as functions of frequency (either f or o).
Cartesian coordinates are used and all scales are linear.

Example 11.1

Consider the transfer function

HðsÞ ¼ 160;000

s2 þ 220sþ 160;000

The complex frequency variable s is replaced by the sinusoidal frequency jo and the magnitude and angle are

found.

Hð joÞ ¼ 160;000

ð joÞ2 þ 220ð joÞ þ 160;000

Hð joÞ ¼ 160;000ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið160;000 o2Þ2 þ ð220oÞ2p
—Hð joÞ ¼ tan 1 220o

160;000 o2

FIGURE 11.1 A single-input/single-output linear system.
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The plots of magnitude and angle are shown in Figure 11.2. Linear plots are most useful when the frequency

range of interest is small. Such plots give a straightforward representation of system-response characteristics.

Bode Diagrams

A Bode diagram consists of plots of the gain and angle of a transfer function, each with respect to

logarithmically scaled frequency axes. In addition, the gain of the transfer function is scaled in decibels (dB)

according to the definition

HdB ¼ 20 log10 Hð joÞ
Bode diagrams have the advantage of clearly identifying system features even if they occur over wide ranges of

frequency and dynamic response. Before constructing a Bode diagram, the transfer function is normalized so

that each pole or zero term (except those at s ¼ 0) has a dc gain of one. For instance:

HðsÞ ¼ K
sþ oz

sðsþ opÞ ¼
Koz

op

s=oz þ 1

sðs=op þ 1Þ ¼ K 0 stz þ 1

sðstp þ 1Þ
It is common to draw Bode diagrams directly from H(s) without making the formal substitution s¼ jo.
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FIGURE 11.2 Linear frequency-response curves of H( jo).
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When drawn by hand, Bode magnitude and angle curves are developed by adding the individual

contributions of the factored terms of the transfer function’s numerator and denominator polynomials.

In general, these factored terms may include (1) a constant K; (2) a simple s term corresponding to either a

zero at the origin (if in the numerator) or a pole at the origin (if in the denominator); (3) a term such as

ðstþ 1Þ corresponding to a real-valued (nonzero) pole or zero; and (4) a quadratic term with a possible

standard form of ½ðs=onÞ2 þ 2zðs=onÞ þ 1 corresponding to a pair of complex conjugate poles or zeros and

for which 05z51. With the exception of quadratic terms having small z (damping ratio), Bode magnitude,
and angle curves can be reasonably approximated by a series of straight line segments. Detailed procedures for

drawing Bode diagrams are described in many references.

The Bode magnitude and angle curves for the factored terms listed above are shown in Figure 11.3 to

Figure 11.5. Note that both decibel magnitude and angle are plotted semi-logarithmically. The frequency

axis is logarithmically scaled so that every tenfold, or decade, change in frequency occurs over an equal

distance. The magnitude axis is given in decibels. Customarily this axis is marked in 20 dB increments.

Positive decibel magnitudes correspond to amplifications between input and output that are greater than

one (output amplitude larger than input). Negative decibel gains correspond to attenuation between input

and output (output amplitude smaller than input).

Figure 11.3 shows three separate magnitude functions. Curve 1 is trivial: the Bode magnitude of a constant

K is simply the decibel-scaled constant 20 log10K , shown in the figure for an arbitrary value of

K ¼ 5 ð20log105 ¼ 13:98Þ. The angle is not shown. However, a constant of K . 0 has an angle of 0– for all
frequencies. For K , 0, the angle would be ^180–. Curve 2 shows the magnitude frequency-response curve
for a pole at the origin (1/s). It is a straight line with slope of 20 dB/decade. The line passes through 0 dB at

o ¼ 1 rad=sec. The angle associated with a single pole at the origin is 90–, independent of frequency.
The effect of a zero at the origin is shown in Curve 3. It is again a straight line that passes through 0 dB at

o ¼ 1 rad=sec; however, the slope is 120 dB/decade. The angle associated with a single zero at s ¼ 0 is 190–,
independent of frequency.

Note from Figure 11.3 and the foregoing discussion that in Bode diagrams the effect of a pole term at a

given location is simply the negative of that of a zero at the same location. This is true of both magnitude

and angle curves.

Figure 11.4 shows the magnitude and angle curves for a zero term of the form ðs=oz þ 1Þ and pole term
of the form 1=ðs=op þ 1Þ. Exact plots of the curves are shown as solid lines. Straight-line approximations

are shown as dotted lines. Notice that at low and high frequencies the straight-line approximations are

virtually identical to the exact curves. The straight-line approximations differ most significantly from the

FIGURE 11.3 Bode (decibel) magnitude curves for (1) a constant of K¼ 5, (2) a pole at the origin (1/s), and (3) a zero at

the origin (s).
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exact curves at points where the approximations change slope. In magnitude curves these are called

breakpoints. At breakpoints the straight-line approximation and the exact curve differ by 3 dB for each pole

or zero.

In Bode analysis complex conjugate poles or zeros are always treated as pairs in the corresponding quadratic

form ½ðs=onÞ2 þ 2zðs=onÞ þ 1 .1 For quadratic terms in stable, minimum phase systems, the damping ratio z
(Greek letter zeta) is within the range 05z51. Quadratic terms cannot always be adequately represented by

straight-line approximations. This is especially true for lightly damped systems (small z).
The traditional approach was to draw a preliminary representation consisting of a straight line of 0 dB from

dc to the breakpoint at on followed by a straight line of slope ^40 dB/decade beyond the breakpoint,

depending on whether the quadratic term related to conjugate poles or conjugate zeros. Then, referring to

families of curves such as shown in Figure 11.5, the preliminary representation could be improved based on

the value of z.
Bode diagrams are easily constructed by hand because, with the exception of lightly damped quadratic

terms, each contribution can be reasonably approximated with straight lines. Also, the overall frequency

response curve is found by adding the individual contributions. Today, many commercially available

mathematical analysis software packages have built-in utilities for creating Bode diagrams. These have

rendered the plotting of Bode diagrams by hand almost obsolete. Still, there is benefit in understanding the

traditional methods because they give insight into the meanings of Bode diagram features. Breakpoints, for

instance, can be related to the locations of poles and/or zeros and slopes can be related to the numbers of poles

and/or zeros. Two examples of Bode diagram construction follow.
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1Several such standard forms are used. This is the one most commonly encountered in controls engineering.
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FIGURE 11.5 Bode diagram of 1=½ðs=onÞ2 þ 2zðs=onÞ þ 1 . (Source: R.C. Dorf, Modern Control Systems, 4th ed.,

Reading, MA: Addison-Wesley, 1986, p. 258. With permission.)
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Example 11.2

AðsÞ ¼ 104s

s2 þ 1100sþ 105
¼ 104s

ðsþ 100Þðsþ 1000Þ ¼ 10 1 s

ðs=100þ 1Þðs=1000þ 1Þ
In Figure 11.6 the individual contributions of the four factored terms of H(s) are shown as dotted lines. The

overall straight-line approximations for gain and angle are shown with dashed lines. The exact curves are

plotted with solid lines.

Example 11.3

GðsÞ ¼ 1000ðsþ 500Þ
s2 þ 70sþ 10000

¼ 50ðs=500þ 1Þ
ðs=100Þ2 þ 2ð0:35Þðs=100Þ þ 1

Note that for the quadratic term in the denominator the damping ratio is 0.35, an indication of resonance. For

small damping ratios the straight-line approximations of Bode magnitude and phase plots can vary

significantly from the exact curves. For improved accuracy the approximations would have to be adjusted near

the frequency of o ¼ 100 rad/sec. This is not a consideration when a computer is used to generate a Bode

diagram. Figure 11.7 shows the exact gain and angle frequency response curves for G(s).
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FIGURE 11.8 Linear frequency-response curves for T( jo).

−120

−100

−80

−60

−40

−20

0

20

|T
(jω

)|
(d

B
)

Frequency (rad/sec)
100 101 102 103 104

100 101 102 103 104

−270

−225

−180

−135

−90

−45

0

45

Frequency (rad/sec)

A
ng

le
of

T
(jω

)
(d

eg
re

es
)

FIGURE 11.9 Bode diagram curves for T( jo).

11-8 Circuits, Signals, and Speech and Image Processing



11.3 A Comparison of Methods

This chapter ends with the frequency response of a simple system plotted in three different ways.

Example 11.4

TðsÞ ¼ 107

ðsþ 100Þðsþ 200Þðsþ 300Þ
Figure 11.8 shows linear frequency-response curves for T(s). Corresponding Bode and Nyquist diagrams are

shown in Figure 11.9 and Figure 11.10, respectively. The information contained in the three sets of diagrams is

the same.

Defining Terms

Bode diagram: A frequency response plot of 20-log gain and phase angle on a log-frequency base.

Breakpoint: Apoint of abrupt change in slope in the straight-line approximation of a Bodemagnitude curve.

Damping ratio: The ratio between a system’s damping factor (measure of rate of decay of response) and

the damping factor when the system is critically damped.

Decade: Power of ten. In context, a tenfold change in frequency.

Decibel: A measure of relative size. The decibel gain between voltages Vout and Vin is 20 log10ðVout=VinÞ. The
decibel ratio between two powers is 10 log10ðPout=PinÞ

Frequency response: The frequency-dependent relation in both gain and phase difference between steady-

state sinusoidal inputs and the resultant steady-state sinusoidal outputs.

Nichols chart: A plot showing magnitude contours and phase contours of the closed-loop transfer

function referred to ordinates of logarithmic loop gain and abscissas of loop phase.

Nyquist plot: A parametric frequency response plot with the real part of the transfer function on the

abscissa and the imaginary part of the transfer function on the ordinate.

Resonance: The enhancement of the response of a physical system to the steady-state sinusoidal input

when the excitation frequency is near a natural frequency of the system.
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FIGURE 11.10 Nyquist plot of T( jo).
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Further Information

Good coverage of frequency response theory and techniques can be found in many undergraduate-level

electrical engineering textbooks. Refer especially to classical automatic controls or circuit analysis books.

Useful information can also be found in books on active filter design.

Examples of the application of frequency response methods abound in journal articles ranging over such

diverse topics as controls, acoustics, electronics, and communications.
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12.1 Introduction

In this chapter, which is based on Szidarovszky and Bahill (1998), we discuss stability. We start by discussing

interior stability, where the stability of the state trajectory or equilibrium state is examined, and then we

discuss exterior stability, in which we guarantee that a bounded input always evokes a bounded output. We

present four techniques for examining interior stability: (1) Lyapunov functions, (2) checking the

boundedness or limit of the fundamental matrix, (3) finding the location of the eigenvalues for state-space

notation, and (4) finding the location of the poles in the complex frequency plane of the closed-loop transfer

function. We present two techniques for examining exterior (or bounded-input/bounded-output [BIBO])

stability (1) use of the weighting pattern of the system and (2) finding the location of the eigenvalues for state-

space notation.

Proving stability with Lyapunov functions is very general: it even works for nonlinear and time-varying

systems. It is also good for doing proofs. However, proving the stability of a system with Lyapunov functions is

difficult, and failure to find a Lyapunov function that proves a system is stable does not prove that the system is

unstable. The next technique we present, finding the fundamental matrix, requires the solution of systems of

differential equations, or in the time-invariant case, the computation of the eigenvalues. Determining the

eigenvalues or the poles of the transfer function is sometimes difficult because it requires factoring high-order

polynomials. However, many commercial software packages are available for this task. We think most

engineers would benefit by having one of these computer programs. Jamshidi et al. (1992) and advertisements

in technical publications such as the IEEE Control Systems Magazine and IEEE Spectrum describe many

appropriate software packages. The last concept we present, BIBO stability, is very general.

Let us begin our discussion of stability and instability of systems informally. In an unstable system, the state

can have large variations, and small inputs or small changes in the initial state may produce large variations in

the output. A common example of an unstable system is illustrated by someone pointing the microphone of a

public address (PA) system at a speaker; a loud high-pitched tone results. Often instabilities are caused by too

much gain; so to quiet the PA system, decrease the gain by pointing the microphone away from the speaker.

Discrete systems can also be unstable. A friend of ours once provided an example. She was sitting in a chair
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reading and she got cold. So she went over and turned up the thermostat on the heater. The house warmed up.

She got hot, so she got up and turned down the thermostat. The house cooled off. She got cold and turned up

the thermostat. This process continued until someone finally suggested that she put on a sweater (reducing the

gain of her heat loss system). She did, and was much more comfortable. We called this a discrete system,

because she seemed to sample the environment and produce outputs at discrete intervals about 15 minutes

apart.

12.2 Using the State of the System to Determine Stability

The stability of a system can be defined with respect to a given equilibrium point in state space. If the initial

state x0 is selected at an equilibrium state xx of the system, then the state will remain at xx for all future time.

When the initial state is selected close to an equilibrium state, the system might remain close to the

equilibrium state or it might move away. In this section, we introduce conditions that guarantee that whenever

the system starts near an equilibrium state, it remains near it, perhaps even converging to the equilibrium state

as time increases. For simplicity, only time-invariant systems are considered in this section. Time-variant

systems are discussed in Section ‘‘BIBO Stability.’’

Continuous, time-invariant systems have the form:

_xxðtÞ ¼ f ðxðtÞÞ ð12:1Þ

and discrete, time-invariant systems are modeled by the difference equation:

xðt þ 1Þ ¼ f ðxðtÞÞ ð12:2Þ

Here we assume that f : X ! Rn, where X Rn is the state space. We also assume that function f is

continuous; furthermore, for arbitrary initial state x0 2 X, there is a unique solution of the corresponding

initial value problem x t0 ¼ x0, and the entire trajectory x(t) is in X. Assume furthermore that t0 denotes the

initial time period of the system. It is also known that the vector xx 2 X is an equilibrium state of the

continuous system (Equation (12.1)) if and only if f ðxxÞ ¼ 0, and it is an equilibrium state of the discrete

system (Equation (12.2)) if and only if xx ¼ f ðxxÞ. In this chapter the equilibrium of a system will always mean

the equilibrium state, if it is not specified otherwise. In analyzing the dependence of the state trajectory x(t) on

the selection of the initial state x0 nearby the equilibrium, the following stability types are considered.

Definition 12.1

1. An equilibrium state xx is stable if there is an e0 . 0 with the following property For all e1; 05e15e0,
there is an e . 0 such that if k xx x0k5e, then k xx xðtÞk5e1 for all t . t0.

2. An equilibrium state xx is asymptotically stable if it is stable and there is an e . 0 such that whenever

k xx x0k5e, then xðtÞ ! xx as t ! 1.
3. An equilibrium state xx is globally asymptotically stable if it is stable and with arbitrary initial state

x0 2 X; xðtÞ ! xx as t ! 1.
The first definition says an equilibrium state xx is stable if the entire trajectory x(t) is closer to the equilibrium

state than any small e1, if the initial state x0 is selected close enough to the equilibrium state. For asymptotic

stability, in addition x(t) converges to the equilibrium state as t ! 1. If the equilibrium state is globally

asymptotically stable, then x(t) converges to the equilibrium state regardless of how the initial state x0 is

selected.

These stability concepts are called internal, because they represent properties of the state of the system. They

are illustrated in Figure 12.1, where the block dots are the initial states and xx is the origin. In the electrical

engineering literature, sometimes our stability definition is called marginal stability and our asymptotic

stability is called stability.
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12.3 Lyapunov Stability Theory

Assume that xx is an equilibrium state of a continuous or discrete system, and let O denote a subset of the state

space X such that xx 2 O.

Definition 12.2

A real-valued function V defined on O is called a Lyapunov function if:

1. V is continuous.

2. V has a unique global minimum at xx with respect to all other points in O.
3. For any state trajectory x(t) contained in O, V(x(t)) is nonincreasing in t.

The Lyapunov function can be interpreted as the generalization of the energy function in electrical systems.

The first requirement simply means that the graph of V has no breaks. The second requirement means that the

graph of V has its lowest point at the equilibrium, and the third requirement generalizes the well-known fact

of electrical systems that the energy in a free electrical system with resistance always decreases unless the system

is at rest.

Theorem 12.1

Assume that there exists a Lyapunov function V on the spherical region:

O ¼ x kx xxk5e0f g ð12:3Þ

where e0 . 0 is given; furthermore, O˝X. Then the equilibrium state is stable.

Theorem 12.2

Assume that in addition to the conditions of Theorem 12.1, the Lyapunov function V(x(t)) is strictly

decreasing in t unless xðtÞ ¼ xx. Then the equilibrium state is asymptotically stable.

Theorem 12.3

Assume that the Lyapunov function defined on the entire state space X, V(x(t)) is strictly decreasing in t unless

xðtÞ ¼ xx; furthermore, V(x) tends to infinity as any component of x gets arbitrarily large in magnitude. Then

the equilibrium state is globally asymptotically stable.

FIGURE 12.1 Stability concepts. (Source: F. Szidarovszky and A.T. Bahill, Linear Systems Theory, Boca Raton, FL: CRC

Press, 1998, p. 199. With permission.)
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Example 12.1

Consider the differential equation:

_xx ¼ 0 o
o 0

x þ 0
1

which describes a harmonic oscillator.

The stability of the equilibrium state (1/o, 0)T can be verified directly by using Theorem 12.1 without

computing the solution. Select the Lyapunov function:

VðxÞ ¼ ðx xxÞTðx xxÞ ¼ kx xx k22
where the Euclidean norm is used.

This is continuous in x; furthermore, it has its minimal (zero) value at x ¼ xx. Therefore, to establish

the stability of the equilibrium state we have to show that V(x(t)) is decreasing. Simple differentiation

shows that

d

dt
V x tð Þð Þ ¼ 2 x xxð ÞT x_¼ 2 x xxð ÞT Ax þ bð Þ

with

A ¼ 0 o
o 0

and b ¼ 0
1

That is, with x ¼ x1; x2
T,

d

dt
V x tð Þð Þ ¼ 2 x1

1

o
; x2

ox2
ox1 þ 1

¼ 2 ox1x2 x2 ox1x2 þ x2 ¼ 0

Therefore, function V(x(t)) is a constant, which is a nonincreasing function. That is, all conditions of

Theorem 12.1 are satisfied, which implies the stability of the equilibrium state.

Theorem 12.1, Theorem12.2, andTheorem12.3 guarantee, respectively, the stability, asymptotic stability, and

global asymptotic stability of the equilibrium state if a Lyapunov function is found. Failure to find such a

Lyapunov function does not mean that the system is unstable or that the stability is not asymptotic or

globally asymptotic. It only means that you were not clever enough to find a Lyapunov function that proved

stability.

12.4 Stability of Time-Invariant Linear Systems

This section is divided into two subsections. In the first subsection, the stability of linear time-invariant

systems given in state-space notation is analyzed. In the second subsection, methods based on transfer

functions are discussed.

Stability Analysis with State-Space Notation

Consider the time-invariant continuous linear system:

_xx ¼ Ax þ b ð12:4Þ
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and the time-invariant discrete linear system:

xðt þ 1Þ ¼ AxðtÞ þ b ð12:5Þ

Assume that xx is an equilibrium state, and let f(t, t0) denote the fundamental matrix.

Theorem 12.4

1. The equilibrium state xx is stable if and only if f(t, t0) is bounded for t> t0.

2. The equilibrium state xx is asymptotically stable if and only if f(t, t0) is bounded and tends to zero as

t ! 1.
In the case of linear systems, asymptotic stability and global asymptotic stability are equivalent.

We use the symbol s to denote complex frequency, i.e., s ¼ s þ jo. For specific values of s, such as

eigenvalues and poles, we use the symbol l.

Theorem 12.5

1. Assume that for all eigenvalues li of A, Re li< 0 in the continuous case (or lij j< 1 in the discrete case),

and all eigenvalues with the property Re li ¼ 0 (or lij j ¼ 1) have single multiplicity; then the

equilibrium state is stable.

2. The stability is asymptotic if and only if for all i, Re li , 0 (or lij j51Þ.
3. If for at least one eigenvalue of A, Re li . 0(or lij j41) then the equilibrium is unstable.

Remark 1. Note that Part 1 gives only sufficient conditions for the stability of the equilibrium state. As the

following examples show, these conditions are not necessary.

If there is at least one multiple eigenvalue with zero-real part (unit absolute value) then we cannot decide

the stability of the equilibrium based on only the eigenvalues. In such cases the boundedness of the

fundamental matrix has to be checked.

Example 12.2

Consider first the continuous system _xx ¼ Ox, where O is the zero matrix. Note that all constant functions

x tð Þ xx are solutions and also equilibrium states. Since

fffff t; t0 ¼ eO t t0ð Þ ¼ I

is bounded (being independent of t), all equilibrium states are stable, but O has only one eigenvalue l1 ¼ 0

with zero real part and multiplicity n, where n is the order of the system.

Consider next the discrete systems x t þ 1ð Þ ¼ Ix tð Þ, when all constant functions x tð Þ xx are also solutions

and equilibrium states. Furthermore:

fffff t; t0 ¼ At t0 ¼ It t0 ¼ I

which is obviously bounded. Therefore, all equilibrium states are stable, but the condition of Part 1 of the

theorem is violated again.

Remark 2. The following extension of Theorem 12.5 can be proven. The equilibrium state is stable if and

only if for all eigenvalues of A, Re li< 0 (or lij j< 1), and if li is a repeated eigenvalue of A such that Re li ¼ 0

(or lij j ¼ 1), then the size of each block containing li in the Jordan canonical form of A is 1 · 1.

Remark 3. The equilibrium states of inhomogeneous equations are stable or asymptotically stable if and

only if the same holds for the equilibrium states of the corresponding homogeneous equations.
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Example 12.3

Consider again the continuous system:

_xx ¼ 0 o
o 0

x þ 0
1

the stability of which was analyzed earlier in Example 12.1 by using the Lyapunov function method. The

characteristic polynomial of the coefficient matrix is

j sð Þ ¼ det
s o
o s

¼ s2 þ o2

therefore the eigenvalues are l1 ¼ jo and l2 ¼ jo. Both eigenvalues have single multiplicities, and

Re l1 ¼ Re l2 ¼ 0. Hence, the conditions of Part 1 are satisfied, and therefore the equilibrium state is stable.

The conditions of Part 2 do not hold. Consequently, the system is not asymptotically stable.

If a time-invariant system is nonlinear, then the Lyapunov method is the most popular choice for stability

analysis. If the system is linear, then the direct application of Theorem 12.5 is more attractive, since the

eigenvalues of the coefficient matrix A can be obtained by standard methods. In addition, several conditions

are known from the literature that guarantee the asymptotic stability of time-invariant discrete and

continuous systems even without computing the eigenvalues. For examining asymptotic stability, linearization

is an alternative approach to the Lyapunov method as is shown here. Consider the time-invariant continuous

and discrete systems

_xxðtÞ ¼ f ðxðtÞÞ

and

xðt þ 1Þ ¼ f ðxðtÞÞ

Let J(x) denote the Jacobian of f(x), and let xx be an equilibrium state of the system. It is known that the

method of linearization around the equilibrium state results in the time-invariant linear systems

_xxdðtÞ ¼ JðxxÞxdðtÞ

and

xdðt þ 1Þ ¼ JðxxÞxdðtÞ

where xdðtÞ ¼ xðtÞ xx. It is also known from the theory of difference and ordinary differential equations that

the asymptotic stability of the zero vector in the linearized system implies the asymptotic stability of the

equilibrium state xx in the original nonlinear system. The asymptotic stability of the linearized system can be

examined by the methodology being discussed above.

For continuous systems, the following results have special importance.

Theorem 12.6

The equilibrium state of a continuous system (Equation (12.4)) is asymptotically stable if and only if equation

ATQþQA ¼ M ð12:6Þ

has positive definite solution Q with some positive definite matrix M. We note that in practical applications

the identity matrix is usually selected for M.
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Theorem 12.7

Let jðlÞ ¼ ln þ pn 1l
n 1 þ þ p1lþ p0 be the characteristic polynomial of matrix A. Assume that all

eigenvalues of matrix A have negative real parts. Then pi4 0 ði ¼ 0; 1; . . . ; n 1Þ.
Corollary. If any of the coefficients pi is negative or zero, the equilibrium state of the system with

coefficient matrix A cannot be asymptotically stable. This result can be used as an initial stability test. However,

the conditions of the theorem do not imply that the eigenvalues of A have negative real parts, the

corresponding sufficient and necessary conclusions are known as the Routh–Hurwitz stability criteria (see, for

example, Szidarovszky and Bahill, 1998).

Example 12.4

For matrix

A ¼ 0 o
o 0

the characteristic polynomial is j(s) ¼ s2þo2. Since the coefficient of s1 is zero, this system is not

asymptotically stable.

The Transfer Function Approach

The transfer function of the continuous system

_xx ¼ Ax þ Bu
y ¼ Cx

ð12:7Þ

and that of the discrete system

xðt þ 1Þ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ ð12:8Þ

have the common form

TFðsÞ ¼ CðsI AÞ 1B

If both the input and output are single, then

TFðsÞ ¼ YðsÞ
UðsÞ

or in the familiar electrical engineering notation:

TFðsÞ ¼ KGðsÞ
1þ KGðsÞHðsÞ ð12:9Þ

where K is the gain term in the forward loop, G(s) represents the dynamics of the forward loop or the plant,

and H(s) models the dynamics in the feedback loop. We note that in the case of continuous systems, s

is the variable of the transfer function, and for discrete systems, the variable is denoted by z.

After World War II, systems and control theory flourished. The transfer function representation was

the most popular representation for systems. To determine the stability of a system, we merely had to factor

the denominator of the transfer function (Equation (12.9)) and see if the poles were in the left half of the

complex frequency plane. However, with manual techniques, factoring polynomials of large order was

difficult. So, engineers, being naturally lazy people, developed several ways to determine the stability of a
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system without factoring the polynomials (Dorf, 1992). First, we have methods of Routh and Hurwitz,

developed a century ago, that looked at the coefficients of the characteristic polynomial. These methods

showed whether the system was stable or not, but they did not show how close the system was to being stable.

What we want to know is, for what value of gain, K, and at what frequency, o, will the denominator of the
transfer function (Equation (12.9)) become zero. Or, when KGðsÞHðsÞ ¼ 1, meaning when the magnitude of

KGH equals 1 with a phase angle of 180–. These parameters can be determined easily with a Bode diagram.
Construct a Bode diagram for KHG of the system, look at the frequency where the phase angle equals 180–,
and look up at the magnitude plot. If it is smaller than 1.0, then the system is stable. If it is larger than 1.0, then

the system is unstable.

The quantity KG(s)H(s) is called the open-loop transfer function of the system, because it is the effect that

would be encountered by a signal making one loop around the system if the feedback loop were artificially

open (Bahill, 1981).

To gain some intuition, think of a closed-loop negative feedback system. Apply a small sinusoid at frequency

o to the input. Assume that the gain around the loop, KGH, is 1 or more, and that the phase angle is 180–.
The summing junction will flip over the feedback signal and add it to the original signal. The result is a signal

that is bigger than what came in. This signal will circulate around this loop, getting bigger and bigger on every

loop until the real system no longer matches the model. This is what we call instability.

The question of stability can also be answered with Nyquist diagrams. They are related to Bode diagrams,

but they give more information. A simple way to construct a Nyquist diagram is to make a polar plot on the

complex frequency plane of the Bode diagram. Simply stated, if this contour encircles the –1 point in the

complex frequency plane, then the system is unstable (see Figure 12.2).

The two advantages of the Nyquist technique are: (1) in addition to the information of Bode diagrams,

there are about a dozen rules that can be used to help construct Nyquist diagrams, and (2) Nyquist diagrams

handle bizarre systems better, as is shown in the following rigorous statement of the Nyquist stability criterion.

The number of clockwise encirclements minus the number of counter clockwise encirclements of the point

s ¼ 1þj0 by the Nyquist plot of KG(s)H(s) is equal to the number of poles of Y(s)/U(s) minus the number
of poles of KG(s)H(s) in the right half of the s-plane.

The root-locus technique was another popular technique for assessing stability. It furthermore allowed the

engineer to see the effects of small changes in the gain, K, on the stability of the system. The root-locus

diagram shows the location in the s-plane of the poles of the closed-loop transfer function, Y(s)/U(s). All

branches of the root-locus diagram start on poles of open-loop transfer function, KGH, and end either on

FIGURE 12.2 Illustration of Nyquist stability criteria. (Source: F. Szidarovszky and A.T. Bahill, Linear Systems Theory,

Boca Raton, FL: CRC Press, 1998, p. 219. With permission.)
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zeros of the open-loop transfer function, KGH, or at infinity. There are about a dozen rules to help draw these

trajectories.

We consider all these techniques to be old-fashioned. They were developed to help answer the question of

stability without factoring the characteristic polynomial. However, many computer programs are currently

available that factor polynomials. We recommend that engineers merely buy one of these computer packages

and find the roots of the closed-loop transfer function to assess the stability of a system.

The poles of a system are defined as all values of s such that sI-A is singular. The poles of the closed-loop

transfer function are the same as the eigenvalues of the system: engineers prefer the term poles and the symbol

s, and mathematicians prefer the term eigenvalues and the symbol l for specific values of s. We will use s for
complex frequency and l for specific values of s.
Sometimes, some poles could be canceled in the rational function form of TF(s) so that they would not be

explicitly shown. However, even if some poles could be canceled by zeros, we would still have to consider all

the poles in the following criteria. The equilibrium state of a continuous system (Equation (12.7)) with

constant input is stable if all poles of TF(s) have nonpositive real parts and all poles with zero real parts are

single. The equilibrium state is asymptotically stable if and only if all poles of TF(s) have negative real parts;

that is, all poles are in the left half of the s-plane. Similarly, the equilibrium state of a discrete system

(Equation (12.8)) with constant input is stable if all poles of TF(z) have absolute values less than or equal to

one and all poles with unit absolute values are single. The equilibrium state is asymptotically stable if and

only if all poles of TF(z) have absolute values less than one; that is, the poles are all inside the unit circle of the

z-plane.

Example 12.5

Consider again the system

_xx ¼ 0 o
o 0

x þ 0
1

that was discussed earlier. Assume that the output equation has the form:

y ¼ ð1; 1Þx

then

TFðsÞ ¼ sþ o
s2 þ o2

The poles are þjo and –jo, which have zero real parts; that is, they are on the imaginary axis of the s-plane.
Consequently, the equilibrium state is stable but not asymptotically stable. A system such as this would

produce constant amplitude sinusoids at frequency o. So it seems natural to assume that such systems would
be used to build sinusoidal signal generators and to model oscillating systems. However, this is not the case,

because (1) zero resistance circuits are hard to make and therefore, most function generators use other

techniques to produce sinusoids; and (2) most real-world oscillating systems (i.e., biological systems) have

energy dissipation elements in them.

More generally, real-world function generators are seldom made from closed-loop feedback control systems

with 180– of phase shift because (1) it would be difficult to get a broad range of frequencies and several
waveforms from such systems, (2) precise frequency selection would require expensive high-precision

components, and (3) it would be difficult to maintain constant frequency in such circuits in the face of

changing temperatures and power supply variations. Likewise, closed-loop feedback control systems with

180– of phase shift are not good models for oscillating biological systems because most biological systems
oscillate because of nonlinear network properties.
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A special stability criterion for single-input, single-output time-invariant, continuous systems will be

introduced next. Consider the system

_xx ¼ Ax þ bu and y ¼ cTx ð12:10Þ

where A is an n· n constant matrix, and b and c are constant n-dimensional vectors. The transfer function of
this system is

TF1ðsÞ ¼ cTðsI AÞ 1b

which is obviously a rational function of s. Now let us add negative feedback around this system so that u ¼ ky

where k is a constant. The resulting system can be described by the differential equation

_xx ¼ Ax þ kbcTx ¼ ðAþ kbcTÞx ð12:11Þ

The transfer function of this feedback system is

TFðsÞ ¼ TF1ðsÞ
1 kTF1ðsÞ ð12:12Þ

To help show the connection between the asymptotic stability of system (Equation (12.10)) and system

(Equation (12.11)), we introduce the following definition.

Definition 12.3

Let r(s) be a rational function of s. Then the locus of points

LðrÞ ¼ aþ jb a ¼ Reðrð jvÞÞ; b ¼ Imðrð jvÞÞ; v 2 R

is called the response diagram of r. Note that L(r) is the image of the imaginary line Re(s) ¼ 0 under the

mapping r. We shall assume that L(r) is bounded, which is the case if and only if the degree of the denominator

is not less than that of the numerator and r has no poles on the line Re(s) ¼ 0.

Theorem 12.8

The Nyquist stability criterion. Assume that TF1 has a bounded response diagram L(TF1). If TF1 has v poles in

the right half of the s-plane, where Re(s) . 0, then TF has r þ n poles in the right half of the s-plane if the
point 1/k þ j : 0 is not on L(TF1), and L(TF1) encircles 1/kþj : 0 r times in the clockwise sense.
Corollary. Assume that system (Equation (12.10)) is asymptotically stable with constant input and that

L(TF1) is bounded and traversed in the direction of increasing v and has the point 1/kþj : 0 on its left. Then
the feedback system (Equation (12.11)) is also asymptotically stable.

This result has many applications since feedback systems have a crucial role in constructing stabilizers,

observers, and filters for given systems. Figure 12.2 illustrates the conditions of the corollary. The application

of this result is especially convenient, if system (Equation (12.10)) is given and only appropriate values k of the

feedback are to be determined. In such cases, the locus L(TF1) has to be computed first, and then the region of

the appropriate k values can be determined easily from the graph of L(TF1).

This analysis has dealt with the closed-loop transfer function, whereas the techniques of Bode, root-locus,

etc., use the open-loop transfer function. This should cause little confusion as long as the distinction is kept

in mind.
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12.5 BIBO Stability

In the previous sections, internal stability of time-invariant systems was examined, i.e., the stability of

the state was investigated. In this section, the external stability of systems is discussed; this is usually called

the BIBO (bounded-input, bounded-output) stability. Here, we drop the simplifying assumption of the

previous section that the system is time-invariant; we will include time-variant systems in the following

analysis.

Definition 12.4

A system is called BIBO stable if for zero initial conditions, a bounded input always evokes a bounded output.

For continuous systems, a necessary and sufficient condition for BIBO stability can be formulated as

follows.

Theorem 12.9

Let T(t, t) ¼ (tij(t, t)) be the weighing pattern, CðtÞfffffðt; tÞBðtÞ, of the system. Then the continuous time-

variant linear system is BIBO stable if and only if the integral

Zt

t0

tijðt; tÞ dt ð12:13Þ

is bounded for all t > t0, i and j.

Corollary. Integrals (Equation (12.13)) are all bounded if and only if

IðtÞ ¼
Zt

t0

X
i

X
j

tijðt; tÞ dt ð12:14Þ

is bounded for t > t0. Therefore, it is sufficient to show the boundedness of only one integral in order to

establish BIBO stability.

The discrete counterpart of this theorem can be given in the following way.

Theorem 12.10

Let T(t, t) ¼ (tij(t, t)) be the weighing pattern of the discrete linear system. Then it is BIBO stable if and only

if the sum

IðtÞ ¼
Xt 1

t¼t0
tijðt; tÞ ð12:15Þ

is bounded for all t > t0, i and j.

Corollary. The sums (Equation (12.15)) are all bounded if and only if

Xt 1

t¼t0

X
i

X
j

tijðt; tÞ ð12:16Þ

is bounded. Therefore, it is sufficient to verify the boundedness of only one sum in order to establish BIBO

stability.
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Consider next the time-invariant case, when AðtÞ A;BðtÞ B;CðtÞ C. From the foregoing theorems and

the definition T(t, t) we have immediately the following sufficient condition.

Theorem 12.11

Assume that for all eigenvalues li of A, Re li5 0 or lij j51 . Then the time-invariant linear continuous (or

discrete) system is BIBO stable.

BIBO stability is different from stability in the sense of Definition 12.1. For example, a system with a zero

eigenvalue might not be BIBO stable; however, if the eigenvalue with zero real part is single, then the system

still might be stable in the sense of Definition 12.1.

Finally, we note that BIBO stability is not implied by an observation that a certain bounded input generates

bounded output. All bounded inputs must generate bounded outputs in order to guarantee BIBO stability.

Adaptive-control systems are time-varying systems. Therefore, it is usually difficult to prove that they are

stable. Szidarovszky et al. (1990), however, show a technique for doing this. This result gives a necessary and

sufficient condition for the existence of an asymptotically stable model-following adaptive-control system, and

in the case of the existence of such systems, they present an algorithm for finding the appropriate feedback

parameters.

12.6 Bifurcations

The asymptotic properties of the equilibrium state of any dynamic system depend on the particular values of

the model parameters. For certain values, the system might be asymptotically stable and with a sudden change

of one or more parameter values this stability disappears. Such sudden change in asymptotical behavior is

called bifurcation. As a simple illustration, consider the following extension of Example 12.1.

Example 12.6

Consider the system

_xx ¼ d o
o d

x þ 0
1

in which o . 0 and d is a real parameter. The characteristic polynomial of the system can be written as

l2 2ldþ ðd2 þ o2Þ ¼ 0

so the eigenvalues are

l1 ¼ dþ jo and l2 ¼ d jo

If d , 0, then both eigenvalues have negative real parts implying asymptotical stability. If d . 0, then the real

part of the eigenvalues becomes positive, so the equilibrium becomes unstable. So at d ¼ 0 bifurcation occurs

with an eigenvalues with zero-real part.

Parameter d is called the bifurcation parameter, since we examine the change of stability behavior as a

function of the change in its value. The eigenvalues also depend on the value of the bifurcation parameter. If

the real part of the derivative of the pure complex eigenvalue with respect to the bifurcation parameter is

nonzero, then Hopf-bifurcation occurs, which guarantees the birth of limit cycles around the equilibrium.

Other bifurcation types and their conditions with applications are discussed, for example, in Guckenheimer

and Holmes (1983).
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12.7 Physical Examples

In this section, we show some examples of stability analysis of physical systems.

1. Consider a simple harmonic oscillator constructed of a mass and an ideal spring. Its dynamic response is

summarized by

_xx ¼ 0 o
o 0

x þ 0
1

u

In Example 12.3, we showed that this system is stable but not asymptotically stable. This means that if we

leave it alone in its equilibrium state, it will remain stationary, but if we jerk on the mass it will oscillate

forever. There is no damping term to remove the energy, so the energy will be transferred back and forth

between potential energy in the spring and kinetic energy in the moving mass. A good approximation of

such a harmonic oscillator is the pendulum clock. The more expensive it is (i.e., the smaller the

damping), the less often we have to wind it (i.e., add energy).

2. A linear second-order electrical system composed of a series connection of an input voltage source, an

inductor, a resistor, and a capacitor, with the output defined as the voltage across the capacitor, can be

characterized by the second-order equation

Vout
Vin

¼ 1

LCs2 þ RCsþ 1

For convenience, let us define

on ¼
ffiffiffiffi
1

LC

r
and z ¼ R

2

ffiffiffi
C

L

r
With these parameters the transfer function becomes

Vout
Vin

¼ o2
n

s2 þ 2zonsþ o2
n

Is this system stable? The roots of the characteristic equation are

l1;2 ¼ zon 6 jon

ffiffiffiffiffiffiffiffi
1 z2

q
If z . 0, the poles are in the left half of the s-plane, and therefore the systems is asymptotically stable.

If z ¼ 0, as in the previous example, the poles are on the imaginary axis; therefore, the system is stable

but not asymptotically stable. If z , 0, the poles are in the right half of the s-plane and the system is

unstable.

3. An electrical system is shown in Figure 12.3. Simple calculation shows that by introducing the variables

x1 ¼ iL; x2 ¼ vc; and u ¼ vs

the system can be described by the differential equations

_xx1 ¼ R1
L
x1

1

L
x2 þ 1

L
u

12-13Stability Analysis



_xx2 ¼ 1

C
x1

1

CR2
x2

The characteristic equation has the form

s
R1
L

s
1

CR2
þ 1

LC
¼ 0

which simplifies as

s2 þ s
R1
L
þ 1

CR2
þ R1

LCR2
þ 1

LC
¼ 0

Since R1, R2, L, and C are positive numbers, the coefficients of this equation are all positive. The constant

term equals l1l2, and the coefficient of s
1 is –(l1 þl2). Therefore

l1 þ l250 and l1l24 0

If the eigenvalues are real, then these relations hold if and only if both eigenvalues are negative. If they

were positive, then l1 þ l2 . 0. If they had different signs, then l1l2 , 0. Furthermore, if at least one

eigenvalue is zero, then l1l2 ¼ 0. Assume next that the eigenvalues are complex:

l1;2 ¼ Re s6 j Im s

Then

l1 þ l2 ¼ 2Re s

and

l1l2 ¼ ðRe sÞ2 6 ðIm sÞ2

Hence, l1 þ l2 , 0 implies that Re s , 0.

In summary, the system is asymptotically stable, since in both the real and complex cases the

eigenvalues have negative values and negative real parts, respectively.

FIGURE 12.3 A simple electrical system. (Source: F. Szidarovszky and A.T. Bahill, Linear Systems Theory, Boca Raton, FL:

CRC Press, 1998, p. 158. With permission.)
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4. The classical stick-balancing problem shown in Figure 12.4. Simple analysis shows that y(t) satisfies the

second-order equation

€yy ¼ g

L
ðy uÞ

If one selects L ¼ 1, then the characteristic equation has the form

s2 g ¼ 0
So the eigenvalues are

l1;2 ¼ 6 ffiffi
g

p

One is in the right half of the s-plane and the other is in the left half of the s-plane, so the system is

unstable. This instability is understandable, since without an intelligent input to control the system, if

the stick is not upright with zero velocity, it will fall over.

5. A simple transistor circuit can be modeled as shown in Figure 12.5. The state variables are related to the

input and output of the circuit: The base current, ib, is x1 and the output voltage, vout, is x2. Therefore:

_xx ¼
hie
L

0

hfe
C

0

0BB@
1CCAx þ

1

L

0

0B@
1CA es and cT ¼ 0; 1

The A matrix looks strange with a column of all zeros, and indeed the circuit does exhibit odd behavior.

For example, as we will show, there is no equilibrium state for a unit step input of es. This is reasonable,

however, because the model is for mid-frequencies, and a unit step does not qualify. In response to a unit

FIGURE 12.4 Stick balancing. (Source: F. Szidarovszky and A.T. Bahill, Linear Systems Theory, Boca Raton, FL: CRC Press,

1998, p. 165. With permission.)
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step the output voltage will increase linearly until the model is no longer valid. If es is considered the

input, the system is

_xx ¼
hie
L

0

hfe
C

0

0BB@
1CCA x þ

1

L
0

0@ 1Au
If u(t) 1, then at the equilibrium state

hie
L

0

hfe
C

0

0BB@
1CCA xx1

xx2
þ

1

L
0

0@ 1A ¼ 0
0

That is:

hie
L
xx1 þ 1

L
¼ 0

hfe
C
xx1 ¼ 0

Since hfe=C 6¼ 0, the second equation implies that xx1 ¼ 0, and by substituting this value into the first

equation we get the obvious contradiction 1/L ¼ 0. Hence, with nonzero constant input no equilibrium

state exists.

Let us now investigate the stability of this system. First let ~xxðtÞ denote a fixed trajectory of this system,
and let x(t) be an arbitrary solution. Then the difference dddddxðtÞ ¼ xðtÞ ~xxðtÞ satisfies the homogenous
equation

ddddd_xx ¼
hie
L

0

hfe
C

0

0BB@
1CCAdddddx

FIGURE 12.5 A model for a simple transistor circuit. (Source: F. Szidarovszky and A.T. Bahill, Linear Systems Theory, Boca

Raton, FL: CRC Press, 1998, p. 160. With permission.)
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This system has an equilibrium dddddx(t) ¼ 0. Next, the stability of this equilibrium is examined by solving for the

poles of the transfer function. The characteristic equation is

det

hie
L

s 0

hfe
C

s

0BB@
1CCA ¼ 0

which can be simplified as

s2 þ s
hie
L
þ 0 ¼ 0

The roots are

l1 ¼ 0 and l2 ¼ hie
L

Therefore, the system is stable but not asymptotically stable. This stability means that for small changes in the

initial state, the entire trajectory x(t) remains close to ~xxðtÞ.

Defining Terms

Asymptotic stability: An equilibrium state xx of a system is asymptotically stable if, in addition to being

stable, there is an e . 0 such that whenever kxx x0k5e, then xðtÞ ! xx as t!1. A system is

asymptotically stable if all the poles in a closed-loop transfer function are in the left half of the s-plane

(inside the unit circle of the z-plane for discrete systems).

BIBO stability: A system is BIBO stable if for zero initial conditions any bounded input always evokes a

bounded output.

Bifurcation: If a sudden change of a model parameter value results in a change of the asymptotic behavior

of the system. This model parameter is called the bifurcation parameter, and its specific value where the

change occurs, is called the critical value.

External stability: Stability concepts related to the input–ouput behavior of the system.

Global asymptotic stability: An equilibrium state xx of a system is globally asymptotically stable if it is

stable and with arbitrary initial state x0 2 X; xðtÞ ! xx as t!1.
Instability: An equilibrium state of a system is unstable if it is not stable. A system is unstable if at least one

pole of the closed-loop transfer is in the right half of the s-plane (outside the unit circle of the z-plane

for discrete systems). A system might be unstable if poles with zero-real parts (with unit absolute values)

are multiple.

Internal stability: Stability concepts related to the state of the system.

Stability: An equilibrium state xx of a system is stable if there is an e0. 0 with the following property: for all

e1, 0, e1, e0, there is an e. 0 such that if kxx x0k5e, then kxx xðtÞk5e1 for all t. t0. A system is

stable if the poles of its closed-loop transfer function are (1) in the left half of the complex frequency

plane, called the s-plane (inside the unit circle of the z-plane for discrete systems), or (2) on the

imaginary axis, and all of the poles on the imaginary axis are single (on the unit circle and such poles are

single for discrete systems). Stability for a system with repeated poles on the jo axis (the unit circle) is

complicated and is examined in the discussion after Theorem 12.5. In the electrical engineering

literature, this definition of stability is sometimes called marginal stability and sometimes stability in the

sense of Lyapunov.
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A.M. Lyapunov, ‘‘Problème général de la stabilité du mouvement’’ (in French), Ann. Fac. Sci. Toulouse, vol. 9,

1907, pp. 203–474. Reprinted in Ann. Math. Study, no. 17, 1949, Princeton University Press.

F. Szidarovszky and A.T. Bahill, Linear Systems Theory, 2nd ed., Boca Raton, FL: CRC Press, 1998.

F. Szidarovszky, A.T. Bahill and S. Molnar, ‘‘On stable adaptive control systems,’’ Pure Math. and Appl., vol. 1,

ser. B, no. 2–3, pp. 115–121, 1990.

Further Information

For further information, consult the textbooks Modern Control Systems by Dorf (1992) or Linear Systems

Theory by Szidarovszky and Bahill (1998).

12-18 Circuits, Signals, and Speech and Image Processing



13
Computer Software for
Circuit Analysis and

Design1

J. Gregory Rollins
Technology Modeling Associates Inc.

Sina Balkir
University of Nebraska–Lincoln

Peter Bendix
LSI Logic Corp.

13.1 Analog Circuit Simulation ................................................. 13-1
Introduction * DC (Steady-State) Analysis * AC Analysis *

Transient Analysis * Process and Device Simulation * Process

Simulation * Device Simulation * Appendix

13.2 Parameter Extraction for Analog Circuit Simulation .............13-16
Introduction * MOS DC Models * BSIM Extraction Strategy

in Detail

13.1 Analog Circuit Simulation

J. Gregory Rollins (revised by Sina Balkir)

Introduction

Computer-aided simulation is a powerful aid during the design or analysis of electronic circuits and

semiconductor devices. The first part of this chapter focuses on analog circuit simulation. The second part

covers simulations of semiconductor processing and devices. While the main emphasis is on analog circuits,

the same simulation techniques may, of course, be applied to digital circuits (which are, after all, composed of

analog circuits). The main limitation will be the size of these circuits because the techniques presented here

provide a very detailed analysis of the circuit in question and, therefore, would be too costly in terms of

computer resources to analyze a large digital system.

The most widely known and used circuit simulation program is SPICE (simulation program with integrated

circuit emphasis). This program was first written at the University of California at Berkeley by Laurence Nagel

in 1975. Research in the area of circuit simulation is ongoing at many universities and industrial sites.

Commercial versions of SPICE or related programs are available on a wide variety of computing platforms,

from small personal computers to large mainframes. A list of some commercial simulator vendors can be

found in the Appendix to this section.

It is possible to simulate virtually any type of circuit using a program like SPICE. The programs have built-

in elements for resistors, capacitors, inductors, dependent and independent voltage and current sources,

diodes, MOSFETs, JFETs, BJTs, transmission lines, transformers, and even transformers with saturating cores

in some versions. Libraries of standard components which have all the necessary parameters prefitted to

typical specifications are found in commercial versions. These libraries include items such as discrete

transistors, op amps, phase-locked loops, voltage regulators, logic integrated circuits (ICs), and saturating

transformer cores.

1Thematerial in this chapter was previously published by CRC Press in The Circuits and Filters Handbook, Wai-Kai Chen, Ed., 1995.
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Computer-aided circuit simulation is now considered an essential step in the design of integrated circuits,

because without simulation the number of ‘‘trial runs’’ necessary to produce a working IC would greatly

increase the development cost of the IC. Currently, silicon foundries provide very accurate analog simulation

models of the devices they fabricate. This facilitates the design of robust circuits that exhibit tolerance to

process induced device variations during fabrication.

Simulation provides other advantages, however:

. The ability to measure ‘‘inaccessible’’ voltages and currents. Because a mathematical model is used all

voltages and currents are available. No loading problems are associated with placing a voltmeter or

oscilloscope in the middle of the circuit, with measuring difficult one-shot wave forms, or probing a

microscopic die.
. Mathematically ideal elements are available. Creating an ideal voltage or current source is trivial with a

simulator, but impossible in the laboratory. In addition, all component values are exact and no parasitic

elements exist, making it easier to test an initial design idea quickly using ideal models.
. It is easy to change the values of components or the configuration of the circuit. Unsoldering leads or

redesigning IC masks are unnecessary.

Unfortunately, computer-aided simulation has its own problems:

. Real circuits are distributed systems, not the ‘‘lumped element models’’ which are assumed by

simulators. Real circuits, therefore, have resistive, capacitive, and inductive parasitic elements present

besides the intended components. In high-speed circuits these parasitic elements are often the

dominant performance-limiting elements in the circuit, and must be painstakingly modeled.

In addition, this modeling effort requires accompanying parasitic extractor software for the circuit

under development. The results of parasitic extraction then need to be back-annotated to the original

design for further verification and/or fine-tuning, rendering the overall design flow complicated.
. Suitable predefined numerical models have not yet been developed for certain types of devices or

electrical phenomena. The software user may be required, therefore, to create his or her own models

out of other models which are available in the simulator. (An example is the solid-state thyristor which

may be created from a NPN and PNP bipolar transistor.)
. The numerical methods used may place constraints on the form of the model equations used.

The three primary analog simulation modes are dc, ac, and transient analyses. Other simulation modes are

based on the primary ones and can be listed as: ac/dc sensitivity, dc sweep, distortion analysis, model

parameter sweep, Monte Carlo analysis, Fourier analysis, transfer function, pole-zero, noise, and worst-case

analysis. State-of-the-art simulation packages typically contain all these analysis modes and display results

through advanced graphical user interfaces. The following sections consider the three primary simulation

modes. In each section an overview is given of the numerical techniques used. Some examples are then given,

followed by a brief discussion of common pitfalls.

DC (Steady-State) Analysis

DC analysis calculates the state of a circuit with fixed (non-time varying) inputs after an infinite period of

time. DC analysis is useful to determine the operating point (Q-point) of a circuit, power consumption,

regulation and output voltage of power supplies, transfer functions, noise margin and fan-out in logic gates,

and many other types of analysis. In addition dc analysis is used to find the starting point for ac and transient

analysis. To perform the analysis the simulator performs the following steps:

1. All capacitors are removed from the circuit (replaced with opens).

2. All inductors are replaced with shorts.

3. Modified nodal analysis is used to construct the nonlinear circuit equations. This results in one

equation for each circuit node plus one equation for each voltage source. Modified nodal analysis is

used rather than standard nodal analysis because an ideal voltage source or inductance cannot be
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represented using normal nodal analysis. To represent the voltage sources, loop equations (one for each

voltage source or inductor), are included as well as the standard node equations. The node voltages and

voltage source currents then represent the quantities which are solved for. These form a vector x. The

circuit equations can also be represented as a vector F(x)¼ 0.

4. Because the equations are nonlinear, Newton’s method (or a variant thereof) is then used to solve the

equations.

Example 13.1. Simulation of a Voltage Regulator

We shall now consider simulation of the type 723 voltage regulator IC, shown in Figure 13.1. We wish to

simulate the IC and calculate the sensitivity of the output I–V characteristic and verify that the output current

follows a ‘‘fold-back’’ type characteristic under overload conditions.

The IC itself contains a voltage reference source and operational amplifier. Simple models for these elements

are used here rather than representing them in their full form, using transistors, to illustrate model

development. The use of simplified models can also greatly reduce the simulation effort. (For example, the

simple op amp used here requires only eight nodes and ten components, yet realizes many advanced features.)

Note in Figure 13.1 that the numbers next to the wires represent the circuit nodes. These numbers are used

to describe the circuit to the simulator. In most SPICE-type simulators the nodes are represented by numbers,

with the ground node being node zero. Referring to Figure 13.2, the 723 regulator and its internal op amp are

represented by subcircuits. Each subcircuit has its own set of nodes and components. Subcircuits are useful for

encapsulating sections of a circuit or when a certain section needs to be used repeatedly (see next section).

The following properties are modeled in the op amp:

1. Common mode gain

2. Differential mode gain

3. Input impedance

4. Output impedance

5. Dominant pole

6. Output voltage clipping

The input terminals of the op amp connect to a ‘‘T’’ resistance network, which sets the common and

differential mode input resistance. Therefore, the common mode resistance is RCMþRDIF¼ 1.1E6 and the

differential mode resistance is RDIF1 þ RDIF2 ¼ 2.0E5.

FIGURE 13.1 Regulator circuit to be used for dc analysis, created using PSPICE.
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Dependent current sources are used to create the main gain elements. Because these sources force current

into a 1-O resistor, the voltage gain is Gm*R at low frequency. In the differential mode this gives (GDIF*R1 ¼
100). In the common mode this gives (GCM*R1*(RCM/(RDIF1 þ RCM)) ¼ 0.0909). The two diodes D1 and

D2 implement clipping by preventing the voltage at node 6 from exceeding VCC or going below VEE.

The diodes are made ‘‘ideal’’ by reducing the ideality factor n. Note that the diode current is Id ¼
Is[exp(Vd/(nVt)) – 1], where Vt is the thermal voltage (0.026 V). Thus, reducing n makes the diode turn on at

a lower voltage.

A single pole is created by placing a capacitor (C1) in parallel with resistor R1. The pole frequency is

therefore given by 1.0/(2*p*R1*C1). Finally, the output is driven by the voltage-controlled voltage source E1
(which has a voltage gain of unity), through the output resistor R4. The output resistance of the op amp is

therefore equal to R4.

To observe the output voltage as a function of resistance, the regulator is loaded with a voltage source

(VOUT) and the voltage source is swept from 0.05 to 6.0 V. A plot of output voltage vs. resistance can then be

obtained by plotting VOUT vs. VOUT/I(VOUT) (using PROBE in this case; see Figure 13.3). Note that for this

circuit, even though a current source would seem a more natural choice, a voltage source must be used as a

load rather than a current source because the output characteristic curve is multivalued in current. If a current

source were used it would not be possible to easily simulate the entire curve. Of course, many other interesting

quantities can be plotted; for example, the power dissipated in the pass transistor can be approximated by

plotting IC(Q3)*VC(Q3).

For these simulations PSPICE was used running on an IBM PC. The simulation took ,1 min of CPU time.

Pitfalls. Convergence problems are sometimes experienced if ‘‘difficult’’ bias conditions are created.

An example of such a condition is if a diode is placed in the circuit backwards, resulting in a large forward bias

voltage, SPICE will have trouble resolving the current. Another difficult case is if a current source is used

FIGURE 13.2 SPICE input listing of regulator circuit shown in Figure 13.1.
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instead of a voltage to bias the output in the previous example. If the user then tries to increase the output

current above 10 A, SPICE would not be able to converge because the regulator will not allow such a large

current.

AC Analysis

AC analysis uses phasor analysis to calculate the frequency response of a circuit. The analysis is useful for

calculating the gain, 3 dB frequency input, and output impedance, and noise of a circuit as a function of

frequency, bias conditions, temperature, etc.

Numerical Method

1. A DC solution is performed to calculate the Q-point for the circuit.

2. A linearized circuit is constructed at the Q-point. To do this, all nonlinear elements are replaced by their

linearized equivalents. For example, a nonlinear current source I ¼ aV1
2 þ bV2

3 would be replaced by a

linear voltage controlled current source I ¼ V1(2aV1q) þ V2(3bV2q
2).

3. All inductors and capacitors are replaced by complex impedances, and conductances evaluated at the

frequency of interest.

4. Nodal analysis is now used to reduce the circuit to a linear algebraic complex matrix. The ac node

voltages may now be found by applying an excitation vector (which represents the independent voltage

and current sources) and using Gaussian elimination (with complex arithmetic) to calculate the node

voltages.

AC analysis does have limitations and the following types of nonlinear or large signal problems cannot be

modeled:

1. Distortion due to nonlinearities such as clipping, etc.

2. Slew rate-limiting effects

3. Analog mixers

4. Oscillators

Noise analysis is performed by including noise sources in the models. Typical noise sources include thermal

noise in resistors In
2 ¼ 4kT D f/R, and shot In

2 ¼ 2qId Df, and flicker noise in semiconductor devices. Here, T
is temperature in Kelvin, k is Boltzmann’s constant, and Df is the bandwidth of the circuit. These noise sources
are inserted as independent current sources Inj ( f ) into the ac model. The resulting current due to the noise

source is then calculated at a user-specified summation node(s) by multiplying by the gain function between

the noise source and the summation node Ajs ( f ). This procedure is repeated for each noise source and then

FIGURE 13.3 Output characteristics of regulator circuit using PSPICE.
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the contributions at the reference node are root-mean-square (rms) summed to give the total noise at the

reference node. The equivalent input noise is then easily calculated from the transfer function between the

circuit input and the reference node Ais ( f ). The equation describing the input noise is therefore:

Ii ¼ 1

Aisð f Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

½Ajsð f ÞInjð f Þ 2
s

Example 13.2. Cascode Amplifier with Macro Models

Here, we find the gain, bandwidth, input impedance, and output noise of a cascode amplifier. The circuit for

the amplifier is shown in Figure 13.5. The circuit is assumed to be fabricated in a monolithic IC process, so it

will be necessary to consider some of the parasitics of the IC process. A cross-section of a typical IC bipolar

transistor is shown in Figure 13.4 along with some of the parasitic elements. These parasitic elements are easily

included in the amplifier by creating a ‘‘macro model’’ for each transistor. The macro model is then

implemented in SPICE form using subcircuits.

The input to the circuit is a voltage source (VIN), applied differentially to the amplifier. The output will be

taken differentially across the collectors of the two upper transistors at nodes 2 and 3. The input impedance of

the amplifier can be calculated as VIN/I(VIN) or because VIN ¼ 1.0 just as 1/I(VIN). These quantities are

FIGURE 13.5 Cascode amplifier for ac analysis, created using PSPICE.

FIGURE 13.4 BJT cross-section with macro model elements.
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shown plotted using PROBE in Figure 13.6. It can be seen that the gain of the amplifier falls off at high

frequency as expected. The input impedance also drops because parasitic capacitances shunt the input. This

example took ,1 min on an IBM PC.

Pitfalls. Many novice users will forget that ac analysis is a linear analysis. They will, for example, apply a 1-V

signal to an amplifier with 5-V power supplies and a gain of 1000 and be surprised when SPICE tells them that

the output voltage is 1000 V. Of course, the voltage generated in a simple amplifier must be less than the power

supply voltage, but to examine such clipping effects, transient analysis must be used. Likewise, selection of a

proper Q-point is important. If the amplifier is biased in a saturated portion of its response and ac analysis is

performed, the gain reported will be much smaller than the actual large signal gain.

Transient Analysis

Transient analysis is the most powerful analysis capability of a simulator, because the transient response is so

hard to calculate analytically. Transient analysis can be used for many types of analysis, such as switching

speed, distortion, basic operation of certain circuits like switching power supplies. Transient analysis is also the

most CPU intensive and can require 100 or 1000 times the CPU time as a dc or ac analysis.

Numerical Method

In a transient analysis time is discretized into intervals called time steps. Typically the time steps are of unequal

length, with the smallest steps being taken during portions of the analysis when the circuit voltages and

currents are changing most rapidly. The capacitors and inductors in the circuit are then replaced by voltage

and current sources based on the following procedure.

The current in a capacitor is given by Ic ¼ C dVc/dt. The time derivative can be approximated by a

difference equation:

Ikc þ Ik 1
c ¼ 2C

Vk
c Vk 1

c

tk tk 1

In this equation the superscript k represents the number of the time step. Here, k is the time step we are

presently solving for and (k – 1) is the previous time step. This equation can be solved to give the capacitor

FIGURE 13.6 Gain and input impedance of cascode amplifier.
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current at the present time step:

Ikc ¼ Vk
c ð2C=DtÞ Vk 1

c ð2C=DtÞ Ik 1
c

Here, Dt ¼ t k – t k–1, or the length of the time step. As time steps are advanced, Vc
k–1 !V c

k; I c
k–1!I c

k. Note

that the second two terms on the right-hand side of the above equation are dependent only on the capacitor

voltage and current from the previous time step, and are therefore fixed constants as far as the present step is

concerned. The first term is effectively a conductance (g¼ 2C/Dt) multiplied by the capacitor voltage, and the
second two terms could be represented by an independent current source. The entire transient model for the

capacitor therefore consists of a conductance in parallel with two current sources (the numerical values of

these are, of course, different at each time step). Once the capacitors and inductors have been replaced as

indicated, the normal method of dc analysis is used. One complete dc analysis must be performed for each

time point. This is the reason that transient analysis is so CPU intensive. The method outlined here is the

trapezoidal time integration method and is used as the default in SPICE. Moreover, Gear’s method of

numerical integration is also available in SPICE for stiff systems with largely varying time constants.

Example 13.3. Phase-Locked Loop Circuit

Figure 13.7 shows the phase-locked loop circuit. The phase detector and voltage-controlled oscillator are

modeled in separate subcircuits. Examine the VCO subcircuit and note the PULSE-type current source

ISTART connected across the capacitor. The source gives a current pulse 03.E-6 s wide at the start of the

simulation to start the VCO running. To start a transient simulation SPICE first computes a dc operating

point (to find the initial voltages Vk 1
c on the capacitors). As this dc point is a valid, although not necessarily

stable, solution, an oscillator will remain at this point indefinitely unless some perturbation is applied to start

the oscillations. Remember, this is an ideal mathematical model and no noise sources or asymmetries exist that

would start a real oscillator—it must be done manually. The capacitor C1 would have to be placed off-chip,

and bond pad capacitances (CPAD1 and CPAD2) have been included at the capacitor nodes. Including the pad

capacitances is very important if a small capacitor C1 is used for high-frequency operation.

In this example, the PLL is to be used as an FM detector circuit and the FM signal is applied to the input

using a single frequency FM voltage source. The carrier frequency is 600 kHz and the modulation frequency is

60 kHz. Figure 13.8 shows the input voltage and the output voltage of the PLL at the VCO output and at the

phase detector output. It can be seen that, after a brief starting transient, the PLL locks onto the input signal

and that the phase detector output has a strong 60-kHz component. This example took 251 sec on a Sun

SPARC workstation (3046 time steps, with an average of 5 Newton iterations per time step).

FIGURE 13.7 Phase-locked loop circuit for transient analysis, created with PSPICE.
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Pitfalls. Occasionally SPICE will fail and give the message ‘‘Timestep too small in transient analysis,’’ which

means that the process of Newton iterations at certain time steps could not be made to converge. One of the

most common causes of this is the specification of a capacitor with a value that is much too large, for example,

specifying a 1-F capacitor instead of a 1 pF capacitor (an easy mistake to make by not adding the ‘‘p’’ in the

value specification). Unfortunately, we usually have no way of telling which capacitor is at fault from the type

of failure generated other than to manually search the input deck.

Other transient failures are caused by MOSFET models. Some models contain discontinuous capacitances

(with respect to voltage) and others do not conserve charge. These models can vary from version to version so

it is best to check the user’s guide.

Process and Device Simulation

Process and devices simulation are the steps that precede analog circuit simulation in the overall simulation

flow (see Figure 13.9). The simulators are also different in that they are not measurement driven as are analog

circuit simulators. The input to a process simulator is the sequence of process steps performed (times,

temperatures, gas concentrations) as well as the mask dimensions. The output from the process simulator is a

FIGURE 13.8 Transient analysis results of PLL circuit, created using PSPICE.

FIGURE 13.9 Data flow for complete process–device–circuit modeling.
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detailed description of the solid-state device (doping profiles, oxide thickness, junction depths, etc.). The

input to the device simulator is the detailed description generated by the process simulator (or via

measurement). The output of the device simulator is the electrical characteristics of the device (IV curves,

capacitances, switching transient curves).

Process and device simulation are becoming increasingly important and widely used during the integrated

circuit design process. A number of reasons exist for this:

. As device dimensions shrink, second-order effects can become dominant. Modeling of these effects is

difficult using analytical models.
. Computers have greatly improved, allowing time-consuming calculations to be performed in a

reasonable amount of time.
. Simulation allows access to impossible to measure physical characteristics.
. Analytic models are not available for certain devices, for example, thyristors, heterojunction devices,

and IGBTS.
. Analytic models have not been developed for certain physical phenomena, for example, single event

upset, hot electron aging effects, latchup, and snap-back.
. Simulation runs can be used to replace split lot runs. As the cost to fabricate test devices increases, this

advantage becomes more important.
. Simulation can be used to help device, process, and circuit designers understand how their devices and

processes work.

Clearly, process and device simulation is a topic which can be and has been the topic of entire texts. The

following sections attempt to provide an introduction to this type of simulation, give several examples

showing what the simulations can accomplish, and provide references to additional sources of information.

Process Simulation

Integrated circuit processing involves a number of steps which are designed to deposit (deposition, ion

implantation), remove (etching), redistribute (diffusion), or transform (oxidation) the material of which the

IC is made. Most process simulation work has been in the areas of diffusion, oxidation, and ion implantation;

however, programs are available that can simulate the exposure and development of photo-resist, the

associated optical systems, as well as gas and liquid phase deposition and etch.

In the following section a very brief discussion of the governing equations used in SUPREM (from Stanford

University, California) will be given along with the results of an example simulation showing the power of the

simulator.

Diffusion

The main equation governing the movement of electrically charged impurities (acceptors in this case) in the

crystal is the diffusion equation:

qC
qt

¼ H · DHC
DqCa
kT

E

Here, C is the concentration (#/cm3) of impurities, Ca is the number of electrically active impurities (#/cm
3),

q is the electron charge, k is Boltzmann’s constant, T is temperature in degrees Kelvin, D is the diffusion

constant, and E is the built-in electric field. The built-in electric field E in (V/cm) can be found from

E ¼ kT

q

1

n
Hn

In this equation n is the electron concentration (#/cm3), which in turn can be calculated from the number of

electrically active impurities (Ca). The diffusion constant (D) is dependent on many factors. In silicon the
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following expression is commonly used:

D ¼ FIV Dx þ Dþ
ni
ni
þ D

n

ni
þ D¼

n

ni

2

The four D components represent the different possible charge states for the impurity: (x) neutral, (þ)
positive, (–) negative, (¼ ) doubly negatively charged. ni is the intrinsic carrier concentration, which depends

only on temperature. Each D component is in turn given by an expression of the type:

D ¼ A exp
B

kT

Here, A and B are experimentally determined constants, different for each type of impurity (x, þ, –, ¼ ). B is

the activation energy for the process. This expression derives from the Maxwellian distribution of particle

energies and will be seen many times in process simulation. It is easily seen that the diffusion process is

strongly influenced by temperature. The term FIV is an enhancement factor which is dependent on the

concentration of interstitials and vacancies within the crystal lattice (an interstitial is an extra silicon atom

which is not located on a regular lattice site; a vacancy is a missing silicon atom which results in an empty

lattice site) FIV / CI þ Cv. The concentration of vacancies, Cv, and interstitials, CI, are in turn determined by

their own diffusion equation:

qCv
qt

¼ þH·Dv ·HCv Rþ G

In this equation DV is another diffusion constant of the form A exp(–B/kT). R and G represent the

recombination and generation of vacancies and interstitials. Note that an interstitial and a vacancy may

recombine and in the process destroy each other, or an interstitial and a vacancy pair may be simultaneously

generated by knocking a silicon atom off its lattice site. Recombination can occur anywhere in the device via a

bulk recombination process R ¼ A(CVC1)exp(–B/kT). Generation occurs where there is damage to the crystal

structure, in particular at interfaces where oxide is being grown or in regions where ion implantation has

occurred, as the high-energy ions can knock silicon atoms off their lattice sites.

Oxidation

Oxidation is a process whereby silicon reacts with oxygen (or with water) to form new silicon dioxide.

Conservation of the oxidant requires the following equation:

dy

dt
¼ F

N

Here, F is the flux of oxidant (#/cm2/sec), N is the number of oxidant atoms required to make up a cubic

centimeter of oxide, and dy/dt is the velocity with which the Si–SiO2 interface moves into the silicon. In

general the greater the concentration of oxidant (C0), the faster the growth of the oxide and the greater the flux

of oxidant needed at the Si–SiO2 interface. Thus, F ¼ ks C0. The flux of oxidant into the oxide from the

gaseous environment is given by

F ¼ hðHPox C0Þ
Here H is a constant, P is the partial pressure of oxygen in the gas, and C0 is the concentration of oxidant in

the oxide at the surface and h is of the form A exp(–B/kT). Finally, the movement of the oxidant within the

already existing oxide is governed by diffusion: F ¼ D0 HC. When all these equations are combined, it is found

that (in the one-dimensional case) oxides grow linearly dy/dt / t when the oxide is thin and the oxidant can
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move easily/ through the existing oxide. As the oxide grows thicker dy=dt ~
ffiffi
t

p
because the movement of the

oxidant through the existing oxide becomes the rate-limiting step.

Modeling two-dimensional oxidation is a challenging task. The newly created oxide must ‘‘flow’’ away from

the interface where it is begin generated. This flow of oxide is similar to the flow of a very thick or viscous

liquid and can be modeled by a creeping flow equation:

H2V ~ HP

H·V ¼ 0

V is the velocity at which the oxide is moving and P is the hydrostatic pressure. The second equation results

from the incompressibility of the oxide. The varying pressure P within the oxide leads to mechanical stress,

and the oxidant diffusion constant D0 and the oxide growth rate constant ks are both dependent on this stress.

The oxidant flow and the oxide flow are therefore coupled because the oxide flow depends on the rate at which

oxide is generated at the interface and the rate at which the new oxide is generated depends on the availability

of oxidant, which is controlled by the mechanical stress.

Ion Implantation

Ion implantation is normally modeled in one of two ways. The first involves tables of moments of the final

distribution of the ions which are typically generated by experiment. These tables are dependent on the energy

and the type of ion being implanted. The second method involves Monte-Carlo simulation of the

implantation process. In Monte-Carlo simulation the trajectories of individual ions are followed as they

interact with (bounce off) the silicon atoms in the lattice. The trajectories of the ions, and the recoiling Si

atoms (which can strike more Si atoms) are followed until all come to rest within the lattice. Typically several

thousand trajectories are simulated (each will be different due to the random probabilities used in the Monte-

Carlo method) to build up the final distribution of implanted ions.

Process simulation is always done in the transient mode using time steps as was done with transient circuit

simulation. Because partial differential equations are involved, rather than ordinary differential equations,

spatial discretization is needed as well. To numerically solve the problem, the differential equations are

discretized on a grid. Either rectangular or triangular grids in one, two, or three dimensions are commonly

used. This discretization process results in the conversion of the partial differential equations into a set of

nonlinear algebraic equations. The nonlinear equations are then solved using a Newton method in a way very

similar to the method used for the circuit equations in SPICE.

Example 13.4. NMOS Transistor

In this example the process steps used to fabricate a typical NMOS transistor will be simulated using

SUPREM-IV. These steps are:

1. Grow initial oxide (30 min at 1000 K).

2. Deposit nitride layer (a nitride layer will prevent oxidation of the underlying silicon).

3. Etch holes in nitride layer.

4. Implant Pþ channel stop (boron dose ¼ 5e12, energy ¼ 50 keV).

5. Grow the field oxide (180 min at 1000 K wet O2).

6. Remove all nitride.

7. Perform P channel implant (boron dose ¼ 1e11, energy ¼ 40 keV).

8. Deposit and etch polysilicon for gate.

9. Oxidize the polysilicon (30 min at 1000 K, dry O2).

10. Implant the light doped drain (arsenic dose ¼ 5e13 energy ¼ 50 keV).

11. Deposit sidewall space oxide.

12. Implant source and drain (arsenic, dose ¼ 1e15, energy ¼ 200 keV).

13. Deposit oxide layer and etch contact holes.

14. Deposit and etch metal.
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The top 4 mm of the completed structure, as generated by SUPREM-IV, is shown in Figure 13.10. The actual

simulation structure used is 200 mm deep to allow correct modeling of the diffusion of the vacancies and

interstitials. The gate is at the center of the device. Notice how the edges of the gate have lifted up due to the

diffusion of oxidant under the edges of the polysilicon (the polysilicon, as deposited in step 8, is flat). The

dashed contours show the concentration of dopants in both the oxide and silicon layers. The short dashes

indicate N-type material, while the longer dashes indicate P-type material. This entire simulation requires

about 30 min on a Sun SPARC-2 workstation.

Device Simulation

Device simulation uses a different approach from that of conventional lumped circuit models to determine the

electrical device characteristics. Whereas with analytic or empirical models all characteristics are determined

by fitting a set of adjustable parameters to measured data, device simulators determine the electrical behavior

by numerically solving the underlying set of differential equations. The first is the Poisson equation, which

describes the electrostatic potential within the device:

H·e·HC ¼ qðNa Nþ
d pþ n Qf Þ

Nd and Na are the concentration of donors and acceptors, i.e., the N- and P-type dopants. Qf is the

concentration of fixed charge due, for example, to traps or interface charge. The electron and hole

concentrations are given by n and p, respectively, and C is the electrostatic potential.

A set of continuity equations describes the conservation of electrons and holes:

qn
qt
¼ 1

q
H · Jn Rþ G

qp
qt
¼ 1

q
H · Jp Rþ G

In these equations R and G describe the recombination and generation rates for the electrons and holes.

The recombination process is influenced by factors such as the number of electrons and holes present as well as

FIGURE 13.10 Complete NMOS transistor cross-section generated by process simulation, created with TMA SUPREM-IV.
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the doping and temperature. The generation rate is also dependent upon the carrier concentrations, but is

most strongly influenced by the electric field, with increasing electric fields giving larger generation rates.

Because this generation process is included, device simulators are capable of modeling the breakdown of

devices at high voltage. Jn and Jp are the electron and hole current densities (in amperes per square

centimeter). These current densities are given by another set of equations

Jn ¼ qm nHCþ kTn
q
Hn

Jp ¼ qm pHC
kTp
q
Hp

In this equation k is Boltzmann’s constant, m is the carrier mobility, which is actually a complex function of
the doping, n, p, electric field, temperature, and other factors. In silicon the electron mobility will range

between 50 and 1000 and the hole mobility will normally be a factor of 2 smaller. In other semiconductors

such as gallium arsenide the electron mobility can be as high as 5000. Tn and Tp are the electron and hole

mean temperatures, which describe the average carrier energy. In many models these default to the device

temperature (300 K). In the first term the current is proportional to the electric field (HC), and this term
represents the drift of carriers with the electric field. In the second term the current is proportional to the

gradient of the carrier concentration (Hn), so this term represents the diffusion of carriers from regions of high

concentration to those of low concentration. The model is therefore called the drift-diffusion model.

In devices in which self-heating effects are important, a lattice heat equation can also be solved to give the

internal device temperature:

sðTÞ qT
qt

¼ H þ H·lðTÞ·HT
H ¼ ð Jn þ JpÞ·HCþHR

where H is the heat generation term, which includes resistive (Joule) heating as well as recombination heating,

Hu. The terms s(T), l(T) represent the specific heat and the thermal conductivity of the material (both

temperature dependent). Inclusion of the heat equation is essential in many power device problems.

As with process simulation partial differential equations are involved, therefore, a spatial discretization is

required. As with circuit simulation problems, various types of analysis are available:

. Steady state (DC), used to calculate characteristic curves of MOSFETs, BJTs diodes, etc.

. AC analysis, used to calculate capacitances, Y-parameters, small signal gains, and S-parameters

. Transient analysis used for calculation of switching and large signal behavior, and special types of

analysis such as radiation effects

Example 13.5. NMOS IV Curves

The structure generated in the previous SUPREM-IV simulation is now passed into the device simulator and

bias voltages are applied to the gate and drain. Models were included with account for Auger and Shockley

Reed Hall recombination, doping and electric field-dependent mobility, and impact ionization. The set of

drain characteristics obtained is shown in Figure 13.11. Observe how the curves bend upward at high Vds as the

device breaks down. The Vg ¼ 1 curve has a negative slope at Id ¼ 1.5E-4A as the device enters snap-back.

It is possible to model this type of behavior because impact ionization is included in the model.

Figure 13.12 shows the internal behavior of the device with Vgs ¼ 3 V and Id ¼ 3E-4A. The filled contours

indicate impact ionization, with the highest rate being near the edge of the drain right beneath the gate. This is

to be expected because this is the region in which the electric field is largest due to the drain depletion region.

The dark lines indicate current flow from the source to the drain. Some current also flows from the drain to

the substrate. This substrate current consists of holes generated by the impact ionization. The triangular grid
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FIGURE 13.11 Id vs. Vds curves generated by device simulation, created with TMA MEDICI.

FIGURE 13.12 Internal behavior of MOSFET under bias, created with TMA MEDICI.
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used in the simulation can be seen in the source, drain, and gate electrodes. A similar grid was used in the

oxide and silicon regions.

Appendix

Circuit Analysis Software

SPICE2, SPICE3: University of California, Berkeley, CA

PSPICE: Part of OrCAD product line, Cadence Design Systems, San Jose, CA (used in this chapter)

HSPICE: Synopsys, Mountain View, CA

ICAP/4: Intusoft, Gardena, CA

SPECTRE: Cadence Design Systems, San Jose, CA

SABER: Synopsys, Mountain View, CA

MULTISIM: Electronics Workbench, Toronto, Ontario

Process and Device Simulators

SUPREM-IV, PISCES: Stanford University, Palo Alto, CA

MINIMOS: Technical University, Vienna, Austria

TSUPREM-4, MEDICI, DAVINCI: Synopsys, Mountain View, CA (used in this chapter)

SEMICAD: Dawn Technologies, Sunnyvale, CA
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13.2 Parameter Extraction for Analog Circuit Simulation

Peter Bendix

Introduction

Definition of Device Modeling

We use various terms such as device characterization, parameter extraction, optimization, and model fitting to

address an important engineering task. In all of these, we start with a mathematical model that describes the

transistor behavior. The model has a number of parameters which are varied or adjusted to match the IV

(current–voltage) characteristics of a particular transistor or set of transistors. The act of determining the

appropriate set of model parameters is what we call device modeling. We then use the model with the

particular set of parameters that represent our transistors in a circuit simulator such as SPICE1 to simulate

how circuits with our kinds of transistors will behave. Usually the models are supplied by the circuit simulator

we chose. Occasionally we may want to modify these models or construct our own models. In this case we

need access to the circuit simulator model subroutines as well as the program that performs the device

characterization.

1SPICE is a circuit simulation program from the Department of Electrical Engineering and Computer Science at the University

of California at Berkeley.
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Steps Involved in Device Characterization

Device characterization begins with a test chip. Without the proper test chip structures, proper device

modeling cannot be done from measured data. A good test chip for MOS technology would include

transistors of varying geometries, gate oxide capacitance structures, junction diode capacitance structures, and

overlap capacitance structures. This would be a minimal test chip. Additional structures might include ring

oscillators and other circuits for checking the ac performance of the models obtained. It is very important that

the transistors be well designed and their geometries be chosen appropriate for the technology as well as the

desired device model. Although a complete test chip description is beyond the scope of this book, be aware

that even perfect device models cannot correct for a poor test chip.

Next we need data that represent the behavior of a transistor or set of transistors of different sizes. These

data can come from direct measurement or they can be produced by a device simulator such as PISCES.1

It is also possible to use a combination of a process simulator like SUPREM-IV2 coupled to a device

simulator, to provide the simulated results. The benefits of using simulation over measurement are that no

expensive measurement equipment or fabricated wafers are necessary. This can be very helpful when trying to

predict the device characteristics of a new fabrication process before any wafers have been produced.

Once the measured (or simulated) data are available, parameter extraction software is used to find the best

set of model parameter values to fit the data.

Least-Squares Curve Fitting (Analytical)

We begin this section by showing how to do least-squares curve fitting by analytical solutions, using a simple

example to illustrate the method. We then mention least-squares curve fitting using numerical solutions in the

next section. We can only find analytical solutions to simple problems. The more complex ones must rely on

numerical techniques.

Assume a collection of measured data, m1, . . ., mn. For simplicity, let these measured data values be

functions of a single variable, v, which was varied from v1 through vn, measuring each mi data point at each

variable value vi, i running from 1 to n. For example, the mi data points might be drain current of an MOS

transistor, and the vi might be the corresponding values of gate voltage. Assume that we have a model for

calculating simulated values of the measured data points, and let these simulated values be denoted by s1, . . ., sn.

We define the least-squares, rms error as

errorrms ¼
Pn
i¼1
fweightiðsi miÞg2Pn
i¼1
fweightimig2

26664
37775
1=2

ð13:1Þ

where a weighting term is included for each data point. The goal is to have the simulated data match the

measured data as closely as possible, which means we want to minimize the rms error. Actually, what we have

called the rms error is really the relative rms error, but the two terms are used synonymously. There is another

way of expressing the error, called the absolute rms error, defined as follows:

errorrms ¼
Pn
i¼1
fweightiðsi miÞg2Pn

i¼1
fweightimming2

26664
37775
1=2

ð13:2Þ

1PISCES is a process simulation program from the Department of Electrical Engineering at Stanford University, Stanford, CA.
2SUPREM-IV is a process simulation program from the Department of Electrical Engineering at Stanford University,

Stanford, CA.
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where we have used the term mmin in the denominator to represent some minimum value of the measured

data. The absolute rms error is usually used when the measured values approach zero to avoid problems with

small or zero denominators in Equation (13.1). For everything that follows, we consider only the relative rms

error. The best result is obtained by combining the relative rms formula with the absolute rms formula by

taking the maximum of the denominator from Equation (13.1) or Equation (13.2).

We have a simple expression for calculating the simulated data points, si, in terms of the input variable, v,

and a number of model parameters, p1, . . ., pm. That is:

si ¼ f ðvi; p1; . . . ; pmÞ ð13:3Þ

where f is some function. Minimizing the rms error function is equivalent to minimizing its square. Also, we

can ignore the term in the denominator of Equation (13.1) as concerns minimizing, because it is a

normalization term. In this spirit, we can define a new error term:

error ¼ ðerrorrmsÞ2
Xn
i¼1
fweightimig2

" #
ð13:4Þ

and claim that minimizing error is equivalent to minimizing errorrms. To minimize error, we set all partial

derivatives of it with respect to each model parameter equal to zero; that is, write

qðerrorÞ
qpj

¼ 0; for j ¼ 1; . . . ;m ð13:5Þ

Then solve the above equations for the value of pj.

Least-Square Curve Fitting (Numerical)

For almost all practical applications we are forced to do least-squares curve fitting numerically because the

analytic solutions as previously discussed are not obtainable in closed form. What we are calling least-squares

curve fitting is more generally known as nonlinear optimization. Many fine references on this topic are

available. We refer the reader to Gill et al. (1981) for details.

Extraction (as Opposed to Optimization)

The terms ‘‘extraction’’ and ‘‘optimization’’ are, unfortunately, used interchangeably in the semiconductor

industry; however, strictly speaking, they are not the same. By optimization, we mean using generalized least-

squares curve fitting methods such as the Levenberg–Marquardt algorithm (Gill et al., 1981) to find a set of

model parameters. By extraction, we mean any technique that does not use general least-squares fitting

methods. This is a somewhat loose interpretation of the term extraction. The main point is that we write the

equations we want and then solve them by whatever approximations we choose, as long as these

approximations allow us to get the extracted results in closed form. This is parameter extraction.

Extraction vs. Optimization

Extraction has the advantage of being much faster than optimization, but it is not always as accurate. It is also

much harder to supply extraction routines for models that are being developed. Each time you make a change

in the model, you must make suitable changes in the corresponding extraction routine. For optimization,

however, no changes are necessary other than the change in the model itself, because least-squares curve fitting

routines are completely general. Also, if anything goes wrong in the extraction algorithm (and no access to the

source code is available), almost nothing can be done to correct the problem. With optimization, one can

always change the range of data, weighting, upper and lower bounds, etc. A least-squares curve fitting program

can be steered toward a correct solution.
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Novices at device characterization find least-squares curve fitting somewhat frustrating, because a certain

amount of user intervention and intuition is necessary to obtain the correct results. These beginners prefer

extraction methods because they do not have to do anything. However, after being burned by extraction

routines that do not work, a more experienced user will usually prefer the flexibility, control, and accuracy that

optimization provides.

Commercial software is available that provides both extraction and optimization together. The idea here is

to first use extraction techniques to make reasonable initial guesses and then use these results as a starting

point for optimization, because optimization can give very poor results if poor initial guesses for the

parameters are used. Nothing is wrong with using extraction techniques to provide initial guesses for

optimization, but for an experienced user this is rarely necessary, assuming that the least-squares curve fitting

routine is robust (converges well) and the experienced user has some knowledge of the process under

characterization. Software that relies heavily on extraction may do so because of the nonrobustness of its

optimizer.

These comments apply when an experienced user is doing optimization locally, not globally. For global

optimization (a technique we do not recommend), the above comparisons between extraction and

optimization are not valid. The following section contains more detail about local vs. global optimization.

Strategies: General Discussion

The most naive way of using an optimization program would be to take all the measured data for all devices,

put them into one big file, and fit to all these data with all model parameters simultaneously. Even for a very

high quality, robust optimization program the chances of this method converging are slight. Even if the

program does converge, it is almost certain that the values of the parameters will be very unphysical. This kind

of approach is an extreme case of global optimization. We call any optimization technique that tries to fit with

parameters to data outside their region of applicability a global approach. That is, if we try to fit to saturation

region data with linear region parameters such as threshold voltage, mobility, etc., we are using a global

approach. In general, we advise avoiding global approaches, although in the strategies described later,

sometimes the rules are bent a little.

Our recommended approach is to fit subsets of relevant parameters to corresponding subsets of relevant

data in a way that makes physical sense. For example, in the MOS level 3 model, VT0 is defined as the

threshold voltage of a long, wide transistor at zero back-bias. It does not make sense to use this parameter to

fit to a short channel transistor, or to fit at nonzero back-bias values, or to fit to anywhere outside the linear

region. In addition, subsets of parameters should be obtained in the proper order so that those obtained at a

later step do not affect those obtained at earlier steps. That is, we would not obtain saturation region

parameters before we have obtained linear region parameters because the values of the linear region

parameters would influence the saturation region fits; we would have to go back and reoptimize the saturation

region parameters after obtaining the linear region parameters. Finally, never use optimization to obtain a

parameter value when the parameter can be measured directly. For example, the MOS oxide thickness, TOX, is

a model parameter, but we would never use optimization to find it. Always measure its value directly on a large

oxide capacitor provided on the test chip. The recommended procedure for proper device characterization

follows:

1. Have all the appropriate structures necessary on your test chip. Without this, the job cannot be

performed properly.

2. Always measure whatever parameters are directly measurable. Never use otpimization for these.

3. Fit the subset of parameters to corresponding subsets of data, and do so in physically meaningful ways.

4. Fit parameters in the proper order so that those obtained later do not affect those obtained previously.

If this is not possible, iteration may be necessary.

Naturally, a good strategy cannot be mounted if one is not intimately familiar with the model used. There is

no substitute for learning as much about the model as possible. Without this knowledge, one must rely on

strategies provided by software vendors, and these vary widely in quality.
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Finally, no one can provide a completely general strategy applicable to all models and all process

technologies. At some point the strategy must be tailored to suit the available technology and circuit

performance requirements. This not only requires familiarity with the available device models, but also

information from the circuit designers and process architects.

MOS DC Models

Available MOS Models

A number of MOS models have been provided over time with the original circuit simulation program, SPICE.

In addition, some commercially available circuit simulation programs have introduced their own proprietary

models, most notably HSPICE.1 This section is concentrated on the standard MOS models provided by UC

Berkeley’s SPICE, not only because they have become the standard models used by all circuit simulation

programs, but also because the proprietary models provided by commercial vendors are not well documented

and no source code is available for these models to investigate them thoroughly.

MOS Levels 1, 2, and 3. Originally, SPICE came with three MOS models known as level 1, level 2, and

level 3. The level 1 MOS model is a very crude first-order model that is rarely used. The level 2 and level 3

MOS models are extensions of the level 1 model and have been used extensively in the past and present

(Vladimirescu and Liu, 1980). These two models contain about 15 dc parameters each and are usually

considered useful for digital circuit simulation down to 1 mm channel length technologies. They can fit the

drain current for wide transistors of varying length with reasonable accuracy (about 5% rms error), but have

very little advanced fitting capability for analog application. They have only one parameter for fitting the

subthreshold region, and no parameters for fitting the derivative of drain current with respect to drain voltage,

Gds (usually considered critical for analog applications). They also have no ability to vary the mobility

degradation with back-bias, so the fits to Ids in the saturation region at high back-bias are not very good.

Finally, these models do not interpolate well over device geometry; e.g., if a fit it made to a wide-long device

and a wide-short device, and then one observes how the models track for lengths between these two extremes,

they usually do not perform well. For narrow devices they can be quite poor as well. Level 3 has very little

practical advantage over level 2, although the level 2 model is proclaimed to be more physically based, whereas

the level 3 model is called semiempirical. If only one can be used, perhaps level 3 is slightly better because it

runs somewhat faster and does not have quite such an annoying kink in the transition region from linear to

saturation as does level 2.

Berkeley Short-Channel Igfet Model (BSIM). To overcome the many shortcomings of level 2 and level

3, the BSIM and BSIM2 models were introduced. The most fundamental difference between these and the level

2 and 3 models is that BSIM and BSIM2 use a different approach to incorporate the geometry dependence

(Jeng et al., 1987; Ouster et al., 1988). In level 2 and 3 the geometry dependence is built directly into the model

equations. In BSIM and BSIM2 each parameter (except for a very few) is written as a sum of three terms:

parameter Par0 þ ParL
Leff

þ Parw
W eff

; ð13:6Þ

where Par0 is the zero-order term, ParL accounts for the length dependence of the parameter, ParW accounts

for the width dependence, and Leff and Weff are the effective channel width and length, respectively. This

approach has a large influence on the device characterization strategy, as discussed later. Because of this

tripling of the number of parameters and for other reasons as well, the BSIM model has about 54 DC

parameters and the BSIM2 model has over 100.

The original goal of the BSIM model was to fit better than the level 2 and 3 models for submicron channel

lengths, over a wider range of geometries, in the subthreshold region, and for nonzero back-bias. Without

1HSPICE is a commercially available, SPICE-like circuit simulation program from Meta Software, Campbell, CA.
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question, BSIM can fit individual devices better than level 2 and level 3. It also fits the subthreshold region

better and it fits better for nonzero back-biases. However, its greatest shortcoming is its inability to fit over a

large geometry variation. This occurs because Equation (13.6) is a truncated Taylor series in 1/Leff and 1/Weff

terms, and in order to fit better over varying geometries, higher power terms in 1/Leff and 1/Weff are needed. In

addition, no provision was put into the BSIM model for fitting Gds, so its usefulness for analog applications is

questionable. Many of the BSIM model parameters are unphysical, so it is very hard to understand the

significance of these model parameters. This has profound implications for generating skew models (fast and

slow models to represent the process corners) and for incorporating temperature dependence. Another flaw of

the BSIM model is its wild behavior for certain values of the model parameters. If model parameters are not

specified for level 2 or 3, they will default to values that will at least force the model to behave well. For BSIM,

not specifying certain model parameters, setting them to zero, or various combinations of values can cause the

model to become very ill-behaved.

BSIM2. The BSIM2 model was developed to address the shortcomings of the BSIM model. This was

basically an extension of the BSIM model, removing certain parameters that had very little effect, fixing

fundamental problems such as currents varying the wrong way as a function of certain parameters, adding

more unphysical fitting parameters, and adding parameters to allow fitting Gds. BSIM2 does fit better than

BSIM, but with more than twice as many parameters as BSIM, it should. However, it does not address the

crucial problem of fitting large geometry variations. Its major strengths over BSIM are fitting the subthreshold

region better, and fitting Gds better. Most of the other shortcomings of BSIM are also present in BSIM2, and

the large number of parameters in BSIM2 makes it a real chore to use in device characterization.

BSIM3. Realizing the shortcomings of BSIM2, UC Berkeley recently introduced the BSIM3 model. This is

an unfortunate choice of name because it implies BSIM3 is related to BSIM and BSIM2. In reality, BSIM3 is an

entirely new model that in some sense is related more to level 2 and 3 than BSIM or BSIM2. The BSIM3 model

abandons the length and width dependence approach of BSIM and BSIM2, preferring to go back to

incorporating the geometry dependence directly into the model equations, as do level 2 and 3. In addition,

BSIM3 is a more physically based model, with about 30 fitting parameters (the model has many more

parameters, but the majority of these can be left untouched for fitting), making it more manageable, and it has

abundant parameters for fitting Gds, making it a strong candidate for analog applications.

It is an evolving model, so perhaps it is unfair to criticize it at this early stage. Its greatest shortcoming is,

again, the inability to fit well over a wide range of geometries. It is hoped that future modifications will address

this problem. In all fairness, however, it is a large order to ask a model to be physically based, have not too

many parameters, be well behaved for all default values of the parameters, fit well over temperature, fit Gds, fit

over a wide range of geometries, and still fit individual geometries as well as a model with over 100 parameters,

such as BSIM2. Some of these features were compromised in developing BSIM3.

Proprietary Models. A number of other models are available from commercial circuit simulator vendors,

the literature, etc. Some circuit simulators also offer the ability to add a researcher’s own models. In general,

we caution against using proprietary models, especially those which are supplied without source code and

complete documentation. Without an intimate knowledge of the model equations, it is very difficult to

develop a good device characterization strategy. Also, incorporating such models into device characterization

software is almost impossible. To circumvent this problem, many characterization programs have the ability to

call the entire circuit simulator as a subroutine in order to exercise the proprietary model subroutines. This

can slow program execution by a factor of 20 or more, seriously impacting the time required to characterize a

technology. Also, if proprietary models are used without source code, the circuit simulator results can never be

checked against other circuit simulators. Therefore, we want to stress the importance of using standard

models. If these do not meet the individual requirements, the next best approach is to incorporate a

proprietary model whose source code one has access to. This requires being able to add the individual model

not only to circuit simulators, but also to device characterization programs; it can become a very large task.
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MOS Level 3 Extraction Strategy in Detail

The strategy discussed here is one that we consider to be a good one, in the spirit of our earlier comments.

Note, however, that this is not the only possible strategy for the level 3 model. The idea here is to illustrate

basic concepts so that this strategy can be refined to meet particular individual requirements.

In order to do a dc characterization, the minimum requirement is one each of the wide-long, wide-short,

and narrow-long devices. We list the steps of the procedure and then discuss them in more detail.

STEP 1. Fit the wide-long device in the linear region at zero back-bias at Vgs values above the subthreshold

region, with parameters VT0 (threshold voltage), U0 (mobility), and THETA (mobility degradation with Vgs).

STEP 2. Fit the wide-short device in the linear region at zero back-bias, at Vgs values above the subthreshold

region, with parameters VT0, LD (length encroachment), and THETA. When finished with this step, replace

VT0 and THETA with the values from step 1, but keep the value of LD.

STEP 3. Fit the narrow-long device in the linear region at zero back-bias, at Vgs values above the

subthreshold region, with parameters VT0, DW (width encroachment), and THETA. When finished with this

step, replace VT0 and THETA with the values from step 1, but keep the value of DW.

STEP 4. Fit the wide-short device in the linear region at zero back-bias, at Vgs values above the subthreshold

region, with parameters RS and RD (source and drain series resistance).

STEP 5. Fit the wide-long device in the linear region at all back-biases, at Vgs values above the subthreshold

region, with parameter NSUB (channel doping affects long channel variation of threshold voltage with

backbias).

STEP 6. Fit the wide-short device in the linear region at zero back-bias, at Vgs values above the subthreshold

region, with parameter XJ (erroneously called the junction depth; affects short-channel variation of threshold

voltage with back-bias).

STEP 7. Fit the narrow-long device in the linear region at zero back-bias, at Vgs values above the

subthreshold region, with parameter DELTA (narrow channel correction to threshold voltage).

STEP 8. Fit the wide-short device in the saturation region at zero back-bias (or all back-biases) with

parameters VMAX (velocity saturation), KAPPA (saturation region slope fitting parameter), and ETA (Vds
dependence of threshold voltage).

STEP 9. Fit the wide-short device in the subthreshold region at whatever back-bias and drain voltage is

appropriate (usually zero back-bias and low Vds) with parameter NES (subthreshold slope fitting parameter).

One may need to fit with VT0 also and then VT0 is replaced after this step with the value of VT0 obtained

from step 1.

This completes the dc characterization steps for the MOS level 3 model. One would then go on to do the

junction and overlap capacitance terms (discussed later). Note that this model has no parameters for fitting

over temperature, although temperature dependence is built into the model that the user cannot control.

In Step 1 VT0, U0, and THETA are defined in the model for a wide-long device at zero back-bias. They are

zero-order fundamental parameters without any short or narrow channel corrections. We therefore fit them to

a wide-long device. It is absolutely necessary that such a device be on the test chip. Without it, one cannot

obtain these parameters properly. The subthreshold region must be avoided also because these parameters do

not control the model behavior in subthreshold.

In Step 2 we use LD to fit the slope of the linear region curve, holding U0 fixed from step 1. We also fit with

VT0 and THETA because without them the fitting will not work. However, we want only the value of LD that

fits the slope, so we throw away VT0 and THETA, replacing them with the values from Step 1.

Step 3 is the same as Step 2, except that we are getting the width encroachment instead of the length.

In Step 1 the value of THETA that fits the high Vgs portion of the wide-long device linear region curve was

found. Because the channel length of a long transistor is very large, the source and drain series resistances have
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almost no effect here, but for a short-channel device, the series resistance will also affect the high Vgs portion of

the linear region curve. Therefore, in Step 4 we fix THETA from Step 1 and use RS and RD to fit the wide-

short device in the linear region, high Vgs portion of the curve.

In Step 5 we fit with NSUB to get the variation of threshold voltage with back-bias. We will get better results

if we restrict ourselves to lower values of Vgs (but still above subthreshold) because no mobility degradation

adjustment exists with back-bias, and therefore the fit may not be very good at higher Vgs values for the

nonzero back-bias curves.

Step 6 is just like Step 5, except we are fitting the short-channel device. Some people think that the value of

XJ should be the true junction depth. This is not true. The parameter XJ is loosely related to the junction

depth, but XJ is really the short-channel correction to NSUB. Do not be surprised if XJ is not equal to the true

junction depth.

Step 7 uses DELTA to make the narrow channel correction to the threshold voltage. This step is quite

straightforward.

Step 8 is the only step that fits in the saturation region. The use of parameters VMAX and KAPPA is

obvious, but one may question using ETA to fit in the saturation region. The parameter ETA adjusts the

threshold voltage with respect to Vds, and as such one could argue that ETA should be used to fit

measurements of Ids sweeping Vgs and stepping Vds to high values. In doing so, one will corrupt the fit in the

saturation region, and usually we want to fit the saturation region better at the expense of the linear region.

Step 9 uses NFS to fit the slope of the log(Ids) vs. Vgs curve. Often the value of VT0 obtained from Step 1 will

prevent one from obtaining a good fit in the subthreshold region. If this happens, try fitting with VT0 and NFS,

but replacing the final value of VT0 with that from Step 1 at the end, keeping only NFS from this final step.

The above steps illustrate the concepts of fitting relevant subsets of parameters to relevant subsets of data to

obtain physical values of the parameters, as well as fitting parameters in the proper order so that those

obtained in the later steps will affect those obtained in earlier steps minimally. Please refer to Figure 13.13 and

Figure 13.14 for how the resulting fits typically appear (all graphs showing model fits are provided by the

device modeling software package Aurora, from Technology Modeling Associates, Inc., Palo Alto, CA).

An experienced person may notice that we have neglected some parameters. For example, we did not use

parameters KP and GAMMA. This means KP will be calculated from U0, and GAMMA will be calculated

FIGURE 13.13 Typical MOS level 3 linear region measured and simulated plots at various Vbs values for a wide-short

device.
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from NSUB. In a sense U0 and NSUB are more fundamental parameters than KP and GAMMA. For example,

KP depends on U0 and TOX; GAMMA depends on NSUB and TOX. If one is trying to obtain skew models, it

is much more advantageous to analyze statistical distributions of parameters that depend on a single effect

than those that depend on multiple effects. KP will depend on mobility and oxide thickness; U0 is therefore a

more fundamental parameter. We also did not obtain parameter PHI, so it will be calculated from NSUB. The

level 3 model is very insensitive to PHI, so using it for curve fitting is pointless. This illustrates the importance

of being very familiar with the model equations. The kind of judgments described here cannot be made

without such knowledge.

Test Chip Warnings. The following hints will greatly assist in properly performing device characterization.

1. Include a wide-long device; without this, the results will not be physically correct.

2. All MOS transistors with the same width should be drawn with their sources and drains identical. No

difference should be seen in the number of source/drain contacts, contact spacing, source/drain contact

overlap, poly gate to contact spacing, etc.

3. Draw devices in pairs. That is, if the wide-long device is W/L ¼ 20/20, make the wide-short device the

same width as the wide-long device; e.g., make the short device 20/1, not 19/1. If the narrow-long device

is 2/20, make the narrow-short device of the same width; i.e., make is 2/1, not 3/1, and similarly for the

lengths. (Make the wide-short and the narrow-short devices have the same length.)

BSIM Extraction Strategy in Detail

All MOS model strategies have basic features in common; namely, fit the linear region at zero back-bias to get

the basic zero-order parameters, fit the linear region at nonzero back-bias, fit the saturation region at zero

back-bias, fit the saturation region at nonzero back-bias, and then fit the subthreshold region. It is possible to

extend the type of strategy we covered for level 3 to the BSIM model, but that is not the way BSIM was

intended to be used.

The triplet sets of parameters for incorporating geometry dependence into the BSIM model,

(Equation (13.6)), allow an alternate strategy. We obtain sets of parameters without geometry dependence

FIGURE 13.14 Typical MOS level 3 saturation region measured and simulated plots at various Vgs and Vbs values for a

wide-short device.
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by fitting to individual devices without using the ParL and ParW terms. We do this for each device size

individually. This produces sets of parameters relevant to each individual device. So, for device number 1 of

width W(1) and length L(1) we would have a value for the parameter VFB which we will call VFB(1); for

device number n of width W(n) and length L(n) we will have VFB(n). To get the Par0, ParL, and VFBW we fit

to the ‘‘data points’’ VFB(1), . . ., VFB(n) with parameters VFB0, VFBL, and VFBWusing Equation (13.6) where

Leff and Weff are different for each index, 1 through n.

Note that as L and W become very large, the parameters must approach Par0. This suggests that we use the

parameter values for the wide-long device as the Par0 terms and only fit the other geometry sizes to get the

ParL and ParW terms. For example, if we have obtained VFB(1) for our first device which is our wide-long

device, we would set VFB0 ¼ VFB(1), and then fit to VFB(2), . . ., VBF(n) with parameters VFBL and VFBW,

and similarly for all the other triplets of parameters. In order to use a general least-squares optimization

program in this way the software must be capable of specifying parameters as targets, as well as measured data

points.

We now list a basic strategy for the BSIM model:

STEP 1. Fit the wide-long device in the linear region at zero back-bias, at Vgs values above the subthreshold

region, with parameters VFB (flatband voltage), MUZ (mobility), and U0 (mobility degradation), with DL

(length encroachment) and DW (width encroachment) set to zero.

STEP 2. Fit the wide-short device in the linear region at zero back-bias, at Vgs values above the subthreshold

region, with parameters VFB, U0, and DL.

STEP 3. Fit the narrow-long device in the linear region at zero back-bias, at Vgs values above the

subthreshold region, with parameters VFB, U0, and DW.

STEP 4. Refit the wide-long device in the linear region at zero back-bias, at Vgs values above the subthreshold

region, with parameters VFB, MUZ, and U0, now that DL and DW are known.

STEP 5. Fit the wide-short device in the linear region at zero back-bias, at Vgs values above the subthreshold

region, with parameters VFB, RS, and RD. When finished, replace the value of VFB with the value found in

Step 4.

STEP 6. Fit the wide-long device in the linear region at all back-biases, at Vgs values above the subthreshold

region, with parameters K1 (first-order body effect), K2 (second-order body effect), U0, and X2U0 (Vbs
dependence of U0).

STEP 7. Fit the wide-long device in the saturation region at zero back-bias with parameters U0, ETA (Vds
dependence of threshold voltage), MUS (mobility in saturation), U1 (Vds dependence of mobility), and X3MS

(Vds dependence of MUS).

STEP 8. Fit the wide-long device in the saturation region at all back-biases with parameter X2MS (Vbs
dependence of MUS).

STEP 9. Fit the wide-long device in the subthreshold region at zero back-bias and low Vds value with

parameter N0; then fit the subthreshold region nonzero back-bias low Vds data with parameter NB; and finally

fit the subthreshold region data at higher Vds values with parameter ND. Or, fit all the subthreshold data

simultaneously with parameters N0, NB, and ND.

Repeat steps 6 through 10 for all the other geometries, with the result of sets of geometry-independent

parameters for each different size device. Then follow the procedure described previously for obtaining the

geometry-dependent terms Par0, ParL, and ParW.

In the above strategy we have omitted various parameters either because they have minimal effect or because

they have the wrong effect and were modified in the BSIM2 model. Because of the higher complexity of the

BSIM model over the level 3 model, many more strategies are possible than the one just listed. One may be

able to find variations of the above strategy that suit the individual technology better. Whatever modifications

are made, the general spirit of the above strategy probably will remain.
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Some prefer to use a more global approach with BSIM, fitting to measured data with ParL and ParW terms

directly. Although this is certainly possible, it is definitely not a recommended approach. It represents the

worst form of blind curve fitting, with no regard for physical correctness or understanding. The BSIM model

was originally developed with the idea of obtaining the model parameters via extraction as opposed to

optimization. In fact, UC Berkeley provides software for obtaining BSIM parameters using extraction

algorithms, with no optimization at all. As stated previously, this has the advantage of being relatively fast and

easy. Unfortunately, it does not always work. One of the major drawbacks of the BSIM model is that certain

values of the parameters can cause the model to produce negative values of Gds in saturation. This is highly

undesirable, not only from a modeling standpoint, but also because of the convergence problems it can cause

in circuit simulators. If an extraction strategy is used that does not guarantee non-negative Gds, very little can

be done to fix the problem when Gds becomes negative. Of course, the extraction algorithms can be modified,

but this is difficult and time consuming. With optimization strategies, one can weight the fitting for Gds more

heavily and thus force the model to produce non-negative Gds. We, therefore, do not favor extraction strategies

for BSIM, or anything else. As with most things in life, minimal effort provides minimal rewards.

BSIM2 Extraction Strategy

We do not cover the BSIM2 strategy in complete detail because it is very similar to the BSIM strategy, except

more parameters are involved. The major difference in the two models is the inclusion of extra terms in BSIM2

for fitting Gds (refer to Figure 13.15, which shows how badly BSIM typically fits 1/Gds vs. Vds). Basically, the

BSIM2 strategy follows the BSIM strategy for the extraction of parameters not related to Gds. Once these have

been obtained, the last part of the strategy includes steps for fitting to Gds with parameters that account for

channel length modulation and hot electron effects. The way this proceeds in BSIM2 is to fit Ids first, and then

parameters MU2, MU3, and MU4 are used to fit to 1/Gds vs. Vds curves for families of Vgs and Vbs. This can be

a very time-consuming and frustrating experience, because fitting to 1/Gds is quite difficult. Also, the equations

describing how Gds is modeled with MU2, MU3, and MU4 are very unphysical and the interplay between the

parameters makes fitting awkward. The reader is referred to Figure 13.16, which shows how BSIM2 typically

fits 1/Gds vs. Vds. BSIM2 is certainly better than BSIM but it has its own problems fitting 1/Gds.

FIGURE 13.15 Typical BSIM 1/Gd vs. Vds measured and simulated plots at various Vgs values for a wide-short device.
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BSIM3 Comments

The BSIM3 model is very new and will undoubtedly change in the future (Huang et al., 1993). We will not list

a BSIM3 strategy here, but focus instead on the features of the model that make it appealing for analog

modeling.

BSIM3 has terms for fitting Gds that relate to channel length modulation, drain-induced barrier lowering,

and hot electron effects. They are incorporated completely differently from the Gds fitting parameters of

BSIM2. In BSIM3 these parameters enter through a generalized Early voltage relation, with the drain current

in saturation written as

Ids ¼ Idsat 1þ Vds Vdsat
VA

ð13:7Þ

where VA is a generalized Early voltage made up of three terms as

1

VA

¼ 1

VACLM

þ 1

VADIBL

þ 1

VAHCE

ð13:8Þ

with the terms in Equation (13.8) representing generalized early voltages for channel length modulation

(CLM), drain-induced barrier lowering (DIBL), and hot carrier effects (HCE). This formulation is more

physically appealing than the one used in BSIM2, making it easier to fit 1/Gds vs. Vds curves with BSIM2.

Figure 13.17 and Figure 13.18 show how BSIM3 typically fits Ids vs. Vds and 1/Gds vs. Vds.

Most of the model parameters for BSIM3 have physical significance so they are obtained in the spirit of the

parameters for the level 2 and 3 models. The incorporation of temperature dependence is also easier in BSIM3

because the parameters are more physical. All this, coupled with the fact that about 30 parameters exist for

BSIM3 as compared to over 100 for BSIM2, makes BSIM3 a logical choice for analog design. However, BSIM3

is evolving, and shortcomings to the model may still exist that may be corrected in later revisions.

FIGURE 13.16 Typical BSIM2 1/Gd vs. Vds measured and simulated plots at various Vgs values for a wide-short device.
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Which MOS Model to Use?

Many MOS models are available in circuit simulators, and the novice is bewildered as to which model is

appropriate. No single answer exists, but some questions must be asked before making a choice:

1. What kind of technology am I characterizing?

2. How accurate a model do I need?

3. Do I want to understand the technology?

FIGURE 13.17 Typical BSIM3 saturation region measured and simulated plots at various Vgs values for a wide-short

device.

FIGURE 13.18 Typical BSIM3 1/Gd vs. Vds measured and simulated plots at various Vgs values for a wide-short device.
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4. How important are the skew model files (fast and slow parameter files)?

5. How experienced am I? Do I have the expertise to handle a more complicated model?

6. How much time can I spend doing device characterization?

7. Do I need to use this model in more than one circuit simulator?

8. Is the subthreshold region important?

9. Is fitting Gds important?

Let us approach each question with regard to the models available. If the technology is not submicron, perhaps

a simpler model such as level 3 is capable of doing everything needed. If the technology is deep submicron,

then use a more complicated model such as BSIM, BSIM2, or BSIM3. If high accuracy is required, then the

best choice is BSIM3, mainly because it is more physical than all the other models and is capable of fitting

better.

For a good physical understanding of the process being characterized. BSIM and BSIM2 are not good

choices. These are the least physically based of all the models. The level 2 and 3 models have good physical

interpretation for most of the parameters, although they are relatively simple models. BSIM3 is also more

physically based, with many more parameters than level 2 or 3, so it is probably the best choice.

If meaningful skew models need to be generated, then BSIM and BSIM2 are very difficult to use, again,

because of their unphysical parameter sets. Usually, the simplest physically based model is the best for skew

model generation. A more complicated physically based model such as BSIM3 may also be difficult to use for

skew model generation.

If the user is inexperienced, none of the BSIM models should be used until the user’s expertise improves.

Our advice is to practice using simpler models before tackling the harder ones.

If time is critical, the simpler models will definitely be much faster for use in characterization. The more

complicated models require more measurements over wider ranges of voltages as well as wider ranges of

geometries. This, coupled with the larger number of parameters, means they will take some time with which to

work. The BSIM2 model will take longer than all the rest, especially if the Gds fitting parameters are to be used.

The characterization results may need to be used in more than one circuit simulator. For example, if a

foundry must supply models to various customers, they may be using different circuit simulators. In this case

proprietary models applicable to a single circuit simulator should not be used. Also, circuit designers may

want to check the circuit simulation results on more than one circuit simulator. It is better to use standard

Berkeley models (level 2, level 3, BSIM, BSIM2, and BSIM3) in such cases.

If the subthreshold region is important, then level 2 or level 3 cannot be used, and probably not even BSIM;

BSIM2 or BSIM3 must be used instead. These two models have enough parameters for fitting the subthreshold

region.

If fitting Gds is important, BSIM2 and BSIM3 are, again, the only choices. None of the other models has

enough parameters for fitting Gds.

Finally, if a very unusual technology is to be characterized, none of the standard models may be appropriate.

In this case commercially available specialized models or the user’s own models must be used. This will be a

large task, so the goals must justify the effort.

Skew Parameter Files

This chapter discussed obtaining model parameters for a single wafer, usually one that has been chosen to

represent a typical wafer for the technology being characterized. The parameter values obtained from this

wafer correspond to a typical case. Circuit designers also want to simulate circuits with parameter values

representing the extremes of process variation, the so-called fast and slow corners, or skew parameter files.

These represent the best and worst case of the process variation over time.

Skew parameter values are obtained usually by tracking a few key parameters, measuring many wafers over a

long period of time. The standard deviation of these key parameters is found and added to or subtracted from

the typical parameter values to obtain the skew models. This method is extremely crude and will not normally

produce a realistic skew model. It will almost always overestimate the process spread, because the various

model parameters are not independent—they are correlated.
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Obtaining realistic skew parameter values, taking into account all the subtle correlations between

parameters, is more difficult. In fact, skew model generation is often more an art than a science. Many

attempts have been made to utilize techniques from a branch of statistics called multivariate analysis (Dillon

and Goldstein, 1984). In this approach principal component or factor analysis is used to find parameters that

are linear combinations of the original parameters. Only the first few of these new parameters will be kept; the

others will be discarded because they have less significance. This new set will have fewer parameters than the

original set and therefore will be more manageable in terms of finding their skews. The user sometimes must

make many choices in the way the common factors are utilized, resulting in different users obtaining different

results.

Unfortunately, a great deal of physical intuition is often required to use this approach effectively. To date, we

have only seen it applied to the simpler MOS models such as level 3. It is not known if this is a viable approach

for a much more complicated model such as BSIM2 (Power et al., 1993).
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14.1 Fourier Transforms

W. Kenneth Jenkins

The Fourier transform is a mathematical tool that is used to expand signals into a spectrum of sinusoidal

components to facilitate signal representation and the analysis of system performance. In certain applications

the Fourier transform is used for spectral analysis, while in others it is used for spectrum shaping that adjusts
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the relative contributions of different frequency components in the filtered result. In certain applications the

Fourier transform is used for its ability to decompose the input signal into uncorrelated components, so that

signal processing can be more effectively implemented on the individual spectral components. Different forms

of the Fourier transform, such as the continuous-time Fourier series, the continuous-time Fourier transform,

the discrete-time Fourier transform (DTFT), the discrete Fourier Transform (DFT), and the fast Fourier

transform are applicable in different circumstances. One goal of this section is to clearly define the various

Fourier transforms, to discuss their properties, and to illustrate how each form is related to the others in the

context of a family tree of Fourier signal processing methods.

Classical Fourier methods such as the Fourier series and the Fourier integral are used for continuous-time

(CT) signals and systems, i.e., systems in which the signals are defined at all values of t on the continuum

1 , t , 1. A more recently developed set of discrete Fourier methods, including the DTFT and the DFT,

are extensions of basic Fourier concepts for discrete-time (DT) signals and systems. A DTsignal is defined only

TABLE 14.1 Continuous Time Fourier Transform Pairs

Source: A.V. Oppenheim, A.S. Willsky, and I.T. Young, Signals and Systems, Englewood Cliffs, NJ:
Prentice-Hall, 1983. With permission.

14-2 Circuits, Signals, and Speech and Image Processing



for integer values of n in the range 1 , n , 1. The class of DT Fourier methods is particularly useful as a
basis for digital signal processing (DSP) because it extends the theory of classical Fourier analysis to DT signals

and leads to many effective algorithms that can be directly implemented on general computers or special

purpose DSP devices.

The Classical Fourier Transform for Continuous-Time Signals

A continuous time signal s(t) and its Fourier transform S( jo) form a transform pair that are related by

Equation 14.1 for any s(t) for which the integral Equation (14.1a) converges:

Sð joÞ ¼
Z1

1
sðtÞe jotdt ð14:1aÞ

sðtÞ ¼ 1

2P

Z1
1
Sð joÞe jotdo ð14:1bÞ

In most literature, Equation (14.1a) is simply called the Fourier transform, whereas Equation (14.1b) is called

the Fourier integral. The relationship S( jo) ¼ F{s(t)} denotes the Fourier transformation of s(t), where F{·} is

a symbolic notation for the integral operator, and where o is the continuous frequency variable expressed in

rad/sec. A transform pair s(t)$S( jo) represents a one-to-one invertible mapping as long as s(t) satisfies
conditions which guarantee that the Fourier transform converges.

In the following discussion the symbol d(t) is used to denote a CT impulse function that is defined to be
zero for all t 6¼ 0, undefined for t ¼ 0, and has unit area when integrated over the range 1 , t , 1. From
Equation (14.1a) it is found that F{d(t to)} ¼ e joto due to the well-known sifting property of d(t).
Similarly, from Equation (14.1b) we find that F 1{2pd(o oo)} ¼ e joot, so that d(t to)$ e joto and

e joot $ 2pd(o oo) are Fourier transform pairs. Using these relationships it is easy to establish the Fourier

transforms of cos(oot) and sin(oot), as well as many other useful waveforms, many of which are listed in

Table 14.1.

The CT Fourier transform is useful in the analysis and design of CT systems, i.e., systems that process CT

signals. Fourier analysis is particularly applicable to the design of CT filters which are characterized by Fourier

magnitude and phase spectra, i.e., by jH( jo)j and arg H( jo), where H( jo) is commonly called the frequency
response of the filter.

Properties of the Continuous Time (CT) Fourier Transform

The CT Fourier transform has many properties that make it useful for the analysis and design of linear CT

systems. Some of the more useful properties are summarized in this section, while a more complete list of the

CT Fourier transform properties is given in Table 14.2. Proofs of these properties are found in Oppenheim

et al. (1983) and Bracewell (1986). Note that F{.} denotes the Fourier transform operation, F 1{·} denotes the

inverse Fourier transform operation, and ‘‘*’’ denotes the convolution operation defined as:

f 1ðtÞ * f 2ðtÞ ¼
Z1

1
f 1ðt tÞf 2ðtÞdt

Linearity (superposition), a and

b complex constants

Ffaf1ðtÞ þ bf2ðtÞg ¼ aFff ðtÞg þ bFf f 2ðtÞg

Time-shifting Fff ðt t0Þg ¼ e jot0Fff ðtÞg
Frequency-shifting e jo0tF 1fFfjðo o0Þg
Time-domain convolution Ff f 1ðtÞ f 2ðtÞg ¼Fff 1ðtÞg · Fff 2ðtÞg
Frequency-domain convolution Fff 1ðtÞ · f 2ðtÞg ¼

1

2P
Fff 1ðtÞg Fff 2ðtÞg

Time-differentiation joFð joÞ ¼ Ffdðf ðtÞÞ=dtg
Time-integration Ff Rt

1
f ðtÞdtg ¼ 1

jo Fð joÞþpFð0ÞdðoÞ
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The above properties are particularly useful in CT system analysis and design, especially when the system

characteristics are easily specified in the frequency domain, as in linear filtering. Note that properties (1), (6),

and (7) are useful for solving differential or integral equations. Property (4) (time-domain convolution)

provides the basis for many signal processing algorithms, since many systems can be specified directly by their

impulse or frequency response. Property (3) (frequency-shifting) is useful for analyzing the performance of

communication systems where different modulation formats are commonly used to shift spectral energy

among different frequency bands.

TABLE 14.2 Properties of the Continuous Time Fourier Transform

Source: M.E. VanValkenburg, Network Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1974.
With permission.

14-4 Circuits, Signals, and Speech and Image Processing



Fourier Spectrum of a Continuous Time Sampled Signal

The operation of uniformly sampling a continuous time signal s(t) at every T sec is characterized by Equation

14.2, where d(t) is the CT time impulse function defined earlier:

saðtÞ ¼
X1

n¼ 1
saðtÞdðt nTÞ ¼

X1
n¼ 1

saðnTÞdðt nTÞ ð14:2Þ

Since sa(t) is in fact a CT signal, it is appropriate to apply the CT Fourier transform to obtain an expression for

the spectrum of the sampled signal:

FfsaðtÞg ¼ F
X1

n¼ 1
saðnTÞdðt nTÞ

( )
¼

X1
n¼ 1

saðnTÞ½e joT n ð14:3Þ

Since the expression on the right-hand side of Equation (14.3) is a function of e joT it is customary to express

the transform as F(e joT) ¼ F{sa(t)}. If o is replaced with a normalized frequency o0 ¼ o/T, so that

p , o0 , p, then the right side of Equation (14.3) becomes identical to the discrete time Fourier transform
that is defined directly for the sequence s[n] ¼ sa(nT) (to be discussed further in a later section).

Fourier Series Representation of Continuous Time Periodic Signals

The classical Fourier series representation of a periodic time domain signal s(t) involves an expansion of s(t)

into an infinite series of terms that consist of sinusoidal basis functions, each weighted by a complex constant

(Fourier coefficient) that provides the proper contribution of that frequency component to the complete

waveform. The conditions under which a periodic signal s(t) can be expanded in a Fourier series are known as

the Dirichlet conditions. They require that in each period s(t) has a finite number of discontinuities, a finite

number of maxima and minima, and that s(t) satisfies the absolute convergence criterion of Equation (14.4)

(VanValkenburg, 1974):

ZT=2

T=2
jsðtÞjdt51 ð14:4Þ

It is assumed throughout the following discussion that the Dirichlet conditions are satisfied by all functions

that will be represented by a Fourier series.

The Exponential Fourier Series

If s(t) is a CT periodic signal with period T, then the exponential Fourier series expansion of s(t) is given by

sðtÞ ¼
X1

n¼ 1
ane

jno0t ð14:5aÞ

where oo ¼ 2p/T, and the a 0
n s are the complex Fourier coefficients given by

an ¼
1

T

ZT
2

T
2

sðtÞe jno0tdt 15n51 ð14:5bÞ

For every value of t where s(t) is continuous, the right side of Equation (14.5a) converges to s(t). At values of t

where s(t) has a finite jump discontinuity, the right side of Equation (14.5a) converges to the average of s(t )

and s(t1), where sðt Þ ¼ lim
e!0
ðt eÞ and sðtþÞ ¼ lim

e!0
ðt þ eÞ.
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For example, the Fourier series expansion of the sawtooth waveform illustrated in Figure 14.1 is

characterized by T ¼ 2p, oo ¼ 1, a0 ¼ 0, and an ¼ a n ¼ Acos(np)/( jnp) for n ¼ 1, 2, . . .. The coefficients

of the exponential Fourier series given by Equation (14.5b) can be interpreted as a spectral representation of

s(t), since the anth coefficient represents the contribution of the (noo)th frequency component to the complete

waveform. Since the an’s are complex valued, the Fourier domain (spectral) representation has both magnitude

and phase spectra. For example, the magnitude of the an’s is plotted in Figure 14.2 for the saw tooth waveform

of Figure 14.1. The fact that the an’s constitute a discrete set is consistent with the fact that a periodic signal has

a spectrum that contains only integer multiples of the fundamental frequency oo. The equation pair given by

Equations (14.5a) and (14.5b) can be interpreted as a transform pair that is similar to the CT Fourier

transform for periodic signals. This leads to the observation that the classical Fourier series can be interpreted

as a special transform that provides a one-to-one invertible mapping between the discrete-spectral domain and

the continuous-time domain.

Trigonometric Fourier Series

Although the complex form of the Fourier series expansion is useful for complex periodic signals, the Fourier

series can be more easily expressed in terms of real-valued sine and cosine functions for real-valued periodic

signals. In the following discussion it is assumed that the signal s(t) is real-valued for the sake of simplifying

the discussion. When s(t) is periodic and real-valued it is convenient to replace the complex exponential form

of the Fourier series with a trigonometric expansion that contains sin(oot) and cos(oot) terms with

corresponding real-valued coefficients (VanValkenburg, 1974). The trigonometric form of the Fourier series

for a real-valued signal s(t) is given by

sðtÞ ¼
X1
n¼0

bncosðno0Þ þ
X1
n¼1

cnsinðno0Þ ð14:6aÞ

s (t)

0 ¹ 2¹−¹−2¹

A

−A

FIGURE 14.1 Periodic continuous time signal used in Fourier series example.

0 2−2−4 n4

| a |
n

A/¹

A/2¹

1−1 3−3

FIGURE 14.2 Magnitude of the Fourier coefficients for the example in Figure 14.1.
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where oo ¼ 2p/T. The b 0
n s and c

0
n s are real-valued Fourier coefficients determined by

b0 ¼
1

T

ZT=2

T=2
sðtÞdt ð14:6bÞ

bn ¼
2

T

ZT=2

T=2
sðtÞcosðno0tÞdt n ¼ 1; 2; . . .

and

cn ¼
2

T

ZT=2

T=2
sðtÞsinðno0tÞdt n ¼ 1; 2; . . .

An arbitrary real-valued signal s(t) can be expressed as a sum of even and odd components, s(t) ¼ seven(t) +

sodd(t), where seven(t) ¼ seven( t) and sodd(t) ¼ sodd( t), and where seven(t) ¼ [s(t) + s( t)]/2 and

sodd(t) ¼ [s(t) s( t)]/2. For the trigonometric Fourier series, it can be shown that seven(t) is represented by

the (even) cosine terms in the infinite series, sodd(t) is represented by the (odd) sine terms, and b0 is the dc

level of the signal. Therefore, if it can be determined by inspection that a signal has a dc level, or if it is even or

odd, then the correct form of the trigonometric series can be chosen to simplify the analysis. For example, it is

easily seen that the signal shown in Figure 14.3 is an even signal with a zero dc level, and therefore can be

accurately represented by the cosine series with bn ¼ 2Asin(pn/2)/(pn/2), n ¼ 1, 2, . . ., as shown in

Figure 14.4. In contrast, note that the sawtooth waveform used in the previous example is an odd signal with

zero DC level, so that it can be completely specified by the sine terms of the trigonometric series. This result

can be demonstrated by pairing each positive frequency component from the exponential series with its

s(t)

0 ¹ 2¹−¹−2¹

A

FIGURE 14.3 Periodic CT signal used in Fourier series example.

0 1−1−2 n2

bn

4A

4A/¹

3−3

FIGURE 14.4 Fourier coefficients for example of Figure 14.4.
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conjugate partner, i.e., cn ¼ sin(noot) ¼ a ne
jnoot1 a ne

jnoot, whereby it is found that cn ¼ 2Acos(np)/(np)
for this example. In general it is found that an ¼ (bn jcn)/2 for n ¼ 1, 2, . . ., a0 ¼ b0, and a n ¼ an*.

The trigonometric Fourier series is common in the signal processing literature because it replaces complex

coefficients with real ones and often results in a simpler and more intuitive interpretation of the results.

Convergence of the Fourier Series

The Fourier series representation of a periodic signal is an approximation that exhibits mean squared

convergence to the true signal. If s(t) is a periodic signal of period T and s0(t) denotes the Fourier series
approximation of s(t), then s(t) and s0(t) are equal in the mean square sense if

mse ¼
ZT=2

T=2
sðtÞ s0ðtÞ 2dt¼ 0 ð14:7Þ

Even with Equation (14.7) satisfied, mean square error convergence does not guarantee that s(t) ¼ s0(t) at
every value of t. In particular, it is known that at values of t where s(t) is discontinuous, the Fourier series

converges to the average of the limiting values to the left and right of the discontinuity. For example, if t0 is a

point of discontinuity, then s0(t0) ¼ [s(t0 ) þ s(t0
þ)]/2, where s(t0 ) and s(t0

þ) were defined previously (note
that at points of continuity, this condition is also satisfied by the very definition of continuity). Since the

Dirichlet conditions require that s(t) have at most a finite number of points of discontinuity in one period, the

set St such that s(t) 6¼ s0(t) within one period contains a finite number of points, and St is a set of measure zero
in the formal mathematical sense. Therefore s(t) and its Fourier series expansion s0(t) are equal almost

everywhere, and s(t) can be considered identical to s0(t) for analysis in most practical engineering problems.
The condition of convergence described above is satisfied almost everywhere only in the limit as an infinite

number of terms are included in the Fourier series expansion. If the infinite series expansion of the Fourier

series is truncated to a finite number of terms, as it must always be in practical applications, then the

approximation will exhibit an oscillatory behavior around the discontinuity, known as the Gibbs

phenomenon (VanValkenburg, 1974). Let s 0N(t) denote a truncated Fourier series approximation of s(t),

where only the terms in Equation (14.5a) from n ¼ N to n ¼ N are included if the complex Fourier series

representation is used, or where only the terms in Equation (14.6a) from n ¼ 0 to n ¼ N are included if the

trigonometric form of the Fourier series is used. It is well known that in the vicinity of a discontinuity at t0 the

Gibbs phenomenon causes s 0N(t) to be a poor approximation to s(t). The peak magnitude of the Gibbs

oscillation is 13% of the size of the jump discontinuity s(t0 ) s(t0
þ) regardless of the number of terms used

in the approximation. As N increases, the region which contains the oscillation becomes more concentrated in

the neighborhood of the discontinuity, until, in the limit as N approaches infinity, the Gibbs oscillation is

squeezed into a single point of mismatch at t0. The Gibbs phenomenon is illustrated in Figure 14.5 where an

ideal lowpass frequency response is approximated by impulse response function that has been limited to

having only N nonzero coefficients, and hence the Fourier series expansion contains only a finite number of

terms.

An important property of the Fourier series is that

the exponential basis functions e jnoot (or sin(noot)

and cos(noot) for the trigonometric form) for

n ¼ 0, ^1, ^2, . . . (or n ¼ 0, 1, 2, . . . for the tri-

gonometric form) constitute an orthonormal set,

i.e., tnk ¼ 1 for n ¼ k, and tnk ¼ 0 for n 6¼ k, where

tnk ¼
1

T

ZT=2

T=2
ðe jno0tÞðe jko0tÞdt

As terms are added to the Fourier series expansion,

the orthogonality of the basis functions guarantees

FIGURE 14.5 Gibbs phenomenon in a lowpass digital

filter caused by truncating the impulse response to N

terms.
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that the approximation error decreases in the mean square sense, i.e., that mseN monotonically decreases as N

is increased, where

mseN ¼
ZT=2

T=2
jsðtÞ s 0NðtÞj2dt

Therefore, when applying Fourier series analysis, including more terms always improves the accuracy of the

signal representation.

Fourier Transform of Periodic Continuous Time Signals

For a periodic signal s(t) the CT Fourier transform can then be applied to the Fourier series expansion of s(t)

to produce a mathematical expression for the ‘‘line spectrum’’ that is characteristic of periodic signals:

FfsðtÞg ¼ F
X1

n¼ 1
ane

jno0t

( )
¼ 2p

X1
n¼ 1

andðo o0Þ ð14:8Þ

The spectrum is shown in Figure 14.6. Note the similarity between the spectral representation of Figure 14.6

and the plot of the Fourier coefficients in Figure 14.2, which was heuristically interpreted as a line spectrum.

Figure 14.2 and Figure 14.6 are different but equivalent representations of the Fourier line spectrum that is

characteristic of periodic signals.

Generalized Complex Fourier Transform

The CT Fourier transform characterized by Equation (14.1) can be generalized by considering the variable jo
to be the special case of u ¼ s + jo with s ¼ 0, writing Equation (14.1) in terms of u, and interpreting u as a

complex frequency variable. The resulting complex Fourier transform pair is given by Equation (14.9a) and

Equation (14.9b):

sðtÞ ¼ 1

2Pj

Zsþj1

s j1
SðuÞe jutdu ð14:9aÞ

SðuÞ ¼
Z1

1
sðtÞe jutdt ð14:9bÞ

The set of all values of u for which the integral of Equation (14.9b) converges is called the region of

convergence, denoted ROC. Since the transform S(u) is defined only for values of u within the ROC, the path

of integration in Equation (14.9a) must be defined so the entire path lies within the ROC. In some literature

this transform pair is called the bilateral Laplace transform because it is the same result obtained by including

both the negative and positive portions of the time axis in the classical Laplace transform integral.

0 1−1−2 n2

F {s(t)}

−22¹c 2¹c−1 2¹c0 2¹c1 2¹c2

FIGURE 14.6 Spectrum of the Fourier representation of a periodic signal.
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The complex Fourier transform (bilateral Laplace transform) is not often used in solving practical problems,

but its significance lies in the fact that it is the most general form that represents the place where Fourier and

Laplace transform concepts merge together. Identifying this connection reinforces the observation that Fourier

and Laplace transform concepts share common properties because they are derived by placing different

constraints on the same parent form.

Discrete-Time Fourier Transform (DTFT)

The DTFT is obtained directly in terms of the sequence samples s[n] by taking the relationship obtained in

Equation (14.3) to be the definition of the DTFT. Letting T ¼ 1 so that the sampling period is removed from

the equations and the frequency variable is replaced with a normalized frequency o0 ¼ oT, the DTFT pair is
defined by Equation (14.10). In order to simplify notation it is not customary to distinguish between o and

o0, but rather to rely on the context of the discussion to determine whether o refers to the normalized

(T ¼ 1) or the unnormalized (T 6¼ 1) frequency variable:

Sðe jo0 Þ ¼
X1

n¼ 1
s½n e jo0n ð14:10aÞ

s½n ¼ 1

2P

ZP
P
Sðe jo0 Þe jno0do0 ð14:10bÞ

The spectrum S(e jo0) is periodic in o0 with period 2p. The fundamental period in the range

p , o0 # p, sometimes referred to as the baseband, is the useful frequency range of the DT system

because frequency components in this range can be represented unambiguously in sampled form (without

aliasing error). In much of the signal processing literature the explicit primed notation is omitted from

the frequency variable. However, the explicit primed notation will be used throughout this section because

there is a potential for confusion when so many related Fourier concepts are discussed within the same

framework.

By comparing Equation (14.3) and Equation (14.10a), and noting that o0 ¼ oT, we see that

FfsaðtÞ ¼ DTFTfs½n g

where s[n] ¼ sa(t)jt¼nT. This demonstrates that the spectrum of sa(t) as calculated by the CT Fourier transform

is identical to the spectrum of s[n] as calculated by the DTFT. Therefore although sa(t) and s[n] are

quite different sampling models, they are equivalent in the sense that they have the same Fourier

domain representation. A list of common DTFT pairs is presented in Table 14.3. Just as the CT Fourier

transform is useful in CT signal system analysis and design, the DTFT is equally useful for DT system analysis

and design.

In the same way that the CT Fourier transform was found to be a special case of the complex Fourier

transform (or bilateral Laplace transform), the DTFT is a special case of the bilateral z-transform with

z ¼ e jo
0t. The more general bilateral z-transform is given by:

SðzÞ ¼
X1

n¼ 1
s½n z n ð14:11aÞ

s½n ¼ 1

2pj

I
C
SðzÞzn 1dz ð14:11bÞ

where C is a counter-clockwise contour of integration which is a closed path completely contained within the

region of convergence of S(z). Recall that the DTFTwas obtained by taking the CT Fourier transform of the CT

samplingmodel sa(t). Similarly, the bilateral z-transform results by taking the bilateral Laplace transform of sa(t).
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If the lower limit on the summation of Equation (14.11a) is taken to be n ¼ 0, then Equations (14.11a) and

(14.11b) become the one-sided z-transform, which is the DT equivalent of the one-sided Laplace transform

for CT signals.

Properties of the Discrete-Time Fourier Transform (DTFT)

Since the DTFT is a close relative of the classical CT Fourier transform, it should come as no surprise that

many properties of the DTFT are similar to those of the CT Fourier transform. In fact, for many of the

properties presented earlier there is an analogous property for the DTFT. The following list parallels the list

that was presented in the previous section for the CT Fourier transform, to the extent that the same property

exists. A more complete list of DTFT pairs is given in Table 14.4.

Note that the time–differentiation and time–integration properties of the CT Fourier transform do not have

analogous counterparts in the DTFT because time-domain differentiation and integration are not defined for

DT signals. When working with DT systems practitioners must often manipulate difference equations in the

frequency domain. For this purpose the properties of linearity and index-shifting are very important. As with

the CT Fourier transform, time-domain convolution is also important for DT systems because it allows

engineers to work with the frequency response of the system in order to achieve proper shaping of the input

spectrum, or to achieve frequency selective filtering for noise reduction or signal detection.

TABLE 14.3 Some Basic Discrete Time Fourier Transform Pairs

Source: A.V. Oppenheim and R.W. Schafer, 1989. Discrete-Time Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall. With permission.

Linearity (superposition), a and b complex constants DTFTfa f 1½n þ b f 2½n g ¼ a · DTFTff 1½n g þ b · DTFTff 2½n g
Index-shifting DTFTff ½n n0 g ¼ e jon0DTFTff ½n g
Frequency-shifting e jo0nf ½n ¼DTFT 1fFðjðo o0Þg
Time-domain convolution DTFTff 1½n * f 2½n g ¼Fff 1½n g · Fff 2½n g
Frequency-domain convolution DTFTff 1½n · f 2½n g ¼

1

2P
DTFTff 1½n g*DTFTff 2½n g

Frequency-differentiation nf ½n ¼ DTFT 1fdFðjoÞ=dog
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Relationship between the CT and DT Spectra

Since DT signals often originate by sampling a CT signal, it is important to develop the relationship between

the original spectrum of the CT signal and the spectrum of the DT signal that results. First, the CT Fourier

transform is applied to the CT sampling model, and the properties are used to produce the following result:

FfsaðtÞg ¼F saðtÞ
X1

n¼ 1
dðt nTÞ ¼ 1

2p
Sað joÞF

X1
n¼ 1

dðt nTÞ ð14:12Þ

Since the sampling function (summation of shifted impulses) on the right-hand side of Equation (14.12)

is periodic with period T it can be replaced with a CT Fourier series expansion and the frequency-domain

convolution property of the CT Fourier transform can be applied to yield two equivalent expressions for the

DT spectrum:

Sðe joTÞ ¼ 1

T

X1
n¼ 1

Sað j½o nos Þ or Sðe jo0 Þ ¼ 1

T

X1
n¼ 1

Sað j½o0 n2p=T Þ ð14:13Þ

In Equation (14.13) os ¼ (2p/T) is the sampling frequency and o0 ¼ oT is the normalized DT frequency axis
expressed in radians. Note that S(e joT) ¼ S(e jo

0
) consists of an infinite number of replicas of the CT spectrum

S( jo), positioned at intervals of (2p/T) on the o axis (or at intervals of 2p on the o0 axis), as illustrated in
Figure 14.7. Note that if S( jo) is band-limited with a bandwidth oc, and if T is chosen sufficiently small so

that os . 2oc, then the DT spectrum is a copy of S( jo) (scaled by 1/T) in the baseband. The limiting case of
os ¼ 2oc is called the Nyquist sampling frequency. Whenever a CT signal is sampled at or above the Nyquist

rate, no aliasing distortion occurs (i.e., the baseband spectrum does not overlap with the higher order replicas)

and the CT signal can be exactly recovered from its samples by extracting the baseband spectrum of S(e jo
0
)

TABLE 14.4 Properties of the Discrete Time Fourier Transform

Source: A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal
Processing, Englewood Cliffs, NJ: Prentice-Hall, 1989. With permission.
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with an ideal low-pass filter that recovers the original CT spectrum by removing all spectral replicas outside the

baseband and scaling the baseband by a factor of T.

Discrete Fourier Transform (DFT)

To obtain the DFT the continuous-frequency domain of the DTFT is sampled at N points uniformly spaced

around the unit circle in the z-plane, i.e., at the points ok ¼ (2pk/N), k ¼ 0, 1, . . ., N 1. The result is the

DFT transform pair defined by Equations (14.14a) and (14.14b). The signal s[n] is either a finite length

sequence of length N, or it is a periodic sequence with period N:

S½k ¼
XN 1

n¼0
s½n e j2pknN ; k ¼ 0; 1; . . . ;N 1 ð14:14aÞ

s½k ¼ 1

N

XN 1

k¼0
S½k e j2pknN ; n ¼ 0; 1; . . . ;N 1 ð14:14bÞ

Regardless of whether s[n] is a finite length or periodic sequence, the DFT treats the N samples of s[n] as

though they are one period of a periodic sequence. This is a peculiar feature of the DFT, and one that must be

handled properly in signal processing to prevent the introduction of artifacts.

Properties of the DFT

Important properties of the DFT are summarized in Table 14.5. The notation ([k])N denotes k modulo N, and

RN[n] is a rectangular window such that RN[n] ¼ 1 for n ¼ 0, . . ., N 1, and RN[n] ¼ 0 for n , 0 and

n $ N. The transform relationship given by Equations (14.14a) and (14.14b) is also valid when s[n] and S[k]

are periodic sequences, each of period N. In this case n and k are permitted to range over the complete set of

real integers, and S[k] is referred to as the discrete Fourier series (DFS). The DFS is developed by some authors

as a distinct transform pair in its own right (Oppenheim, 1975). Whether or not the DFT and the DFS are

considered identical or distinct is not very important in this discussion. The important point to be emphasized

here is that the DFT treats s[n] as though it were a single period of a periodic sequence, and all signal

processing done with the DFT will inherit the consequences of this assumed periodicity.

Most of the properties listed in Table 14.5 for the DFTare similar to those of the Z-transform and the DTFT,

although there are some important differences. For example, Property 5 (time-shifting property) holds for

circular shifts of the finite length sequence s[n], which is consistent with the notion that the DFT treats s[n] as

one period of a periodic sequence. Also, the multiplication of two DFTs results in the circular convolution of

the corresponding DT sequences, as specified by Property 7. This latter property is quite different from the

linear convolution property of the DTFT. Circular convolution is simply a linear convolution of the periodic

extensions of the finite sequences being convolved, where each of the finite sequences of length N defines the

structure of one period of the periodic extensions.

FIGURE 14.7 Relationship between the CT and DT spectra.
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Figure 14.8 illustrates the functional relationships among the various forms of CT and DT Fourier

transforms that have been discussed in the previous sections. The family of CT Fourier transforms is shown on

the left side of Figure 14.8, whereas the right side of the figure shows the hierarchy of DT Fourier transforms.

The complex Fourier transform is identical to the bilateral Laplace transform, and it is at this level that the

classical Laplace transform techniques and Fourier transform techniques become identical.

Walsh-Hadamard Transform

The Walsh-Hadamard Transform (WHT) is a computationally attractive orthogonal transform that is

structurally related to the DFT, and which can be implemented in practical applications without

multiplication, and with a computational complexity for addition that is of the same order of complexity

as that of an FFT. The tmkth element of the WHT matrix TWHT is given by

tmk ¼
1ffiffiffi
N

p
Yp 1

‘¼0
ð 1Þb‘ðmÞbp 1 ‘ðkÞ m and k ¼ 0; . . . ;N 1

where b‘ðmÞ is the ‘th order bit in the binary representation of m, and N ¼ 2p. The WHT is defined only when

N is a power-of-2. Note that the columns of TWHT form a set of orthogonal basis vectors whose elements are

all 1’s or –1’s, so that the calculation of the matrix-vector product TWHTX can be accomplished with only

additions and subtractions. It is well known that TWHT of dimension (N ·N) for N a power-of-2, can be

TABLE 14.5 Properties of the Discrete Fourier Transform (DFT)

Source: A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1989. With permission.
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computed recursively according to:

Tk ¼ Tk=2 Tk=2
Tk=2 Tk=2

for K ¼ 4; . . . ;NðevenÞ; and T2 ¼ 1 1
1 1

The above relationship provides a convenient way of quickly constructing the Walsh-Hadamard matrix for

any arbitrary (even) size N.

Because of structural similarities between the DFT and the FFT matrices, the WHT transform can be

implemented using a modified FFT algorithm. The core of any FFT program is a butterfly calculation that is

characterized by a pair of coupled equations that have the following form:

Xiþ1ð‘;mÞ ¼ Xið‘;mÞ þ e jyð‘;m; k; sÞXiðk; sÞ
Xiþ1ð‘;mÞ ¼ Xið‘;mÞ e jyð‘;m; k; sÞXiðk; sÞ

If the exponential factor in the butterfly calculation is replaced by a ‘‘1,’’ so the ‘‘modified butterfly’’ calculation

becomes

Xiþ1ð‘;mÞ ¼ Xið‘;mÞ þ Xiðk; sÞ
Xiþ1ð‘;mÞ ¼ Xið‘;mÞ Xiðk; sÞ

FIGURE 14.8 Functional relationships among various Fourier transforms.
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the modified FFT program will in fact perform a WHTon the input vector. This property not only provides a

quick and convenient way to implement the WHT, but it also establishes clearly that in addition to the WHT

requiring no multiplication, the number of additions required has an order of complexity of (N/2)log2N, i.e.,

the same as that of the FFT.

The WHT is used in many signal processing applications that require signals to be decomposed in real time

into a set of orthogonal components. A typical application in which the WHT has been used in this manner is

in CDMAwireless communication systems. A CDMA system requires spreading of each user’s signal spectrum

using a PN sequence. In addition to the PN spreading codes, a set of length-64 mutually orthogonal codes,

called the Walsh codes, are used to ensure orthogonality among the signals for users received from the same

base station. The length N ¼ 64 Walsh codes can be thought of as the orthogonal column vectors from a

(64· 64) Walsh-Hadamard matrix, and the process of demodulation in the receiver can be interpreted as

performing a WHT on the complex input signal containing all the modulated user’s signals so they can be

separated for accurate detection.

DFT (FFT) Spectral Analysis

A FFT program is often used to perform spectral analysis on signals that are sampled and recorded as part of

laboratory experiments, or in certain types of data acquisition systems. There are several issues to be addressed

when spectral analysis is performed on (sampled) analog waveforms that are observed over a finite interval of

time.

Windowing: The FFT treats the block of data as though it were one period of a periodic sequence. If

the underlying waveform is not periodic, then harmonic distortion may occur because the periodic

waveform created by the FFT may have sharp discontinuities at the boundaries of the blocks. This effect is

minimized by removing the mean of the data (it can always be reinserted) and by windowing the data so

the ends of the block are smoothly tapered to zero. A good rule of thumb is to taper 10% of the data on

each end of the block using either a cosine taper or one of the other common windows. An alternate

interpretation of this phenomenon is that the finite length observation has already windowed the true

waveform with a rectangular window that has large spectral sidelobes. Hence, applying an additional

window results in a more desirable window that minimizes frequency-domain distortion.

Zero-Padding: An improved spectral analysis is achieved if the block length of the FFT is increased. This can

be done by: (1) taking more samples within the observation interval, (2) increasing the length of the

observation interval, or (3) augmenting the original dataset with zeros. First, it must be understood that the

finite observation interval results in a fundamental limit on the spectral resolution, even before the signals are

sampled. The CT rectangular window has a (sin x)/x spectrum, which is convolved with the true spectrum of

the analog signal. Therefore, the frequency resolution is limited by the width of the mainlobe in the (sin x)/x

spectrum, which is inversely proportional to the length of the observation interval. Sampling causes a certain

degree of aliasing, although this effect can be minimized by sampling at a high enough rate. Therefore,

lengthening the observation interval increases the fundamental resolution limit, while taking more samples

within the observation interval minimizes aliasing distortion and provides a better definition (more sample

points) on the underlying spectrum.

Padding the data with zeros and computing a longer FFT does give more frequency domain points

(improved spectral resolution), but it does not improve the fundamental limit, nor does it alter the effects of

aliasing error. The resolution limits are established by the observation interval and the sampling rate. No

amount of zero padding can improve these basic limits. However, zero padding is a useful tool for providing

more spectral definition, i.e., it enables one to get a better look at the (distorted) spectrum that results once the

observation and sampling effects have occurred.

Leakage and the Picket-Fence Effect: An FFT with block length N can accurately resolve only frequencies

ok ¼ (2p/N)k, k ¼ 0, . . ., N 1 that are integer multiples of the fundamental o1¼(2p/N). An analog

waveform that is sampled and subjected to spectral analysis may have frequency components between the

harmonics. For example, a component at frequency ok11/2¼(2p/N)(k+1/2) will appear scattered throughout
the spectrum. The effect is illustrated in Figure 14.9 for a sinusoid that is observed through a rectangular

window and then sampled at N points. The ‘‘picket-fence effect’’ means that not all frequencies can be seen by
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the FFT. Harmonic components are seen accurately, but other components ‘‘slip through the picket fence’’

while their energy is ‘‘leaked’’ into the harmonics. These effects produce artifacts in the spectral domain that

must be carefully monitored to ensure that an accurate spectrum is obtained from FFT processing.

Defining Terms

Continuous time (CT) impulse function: A generalized function d(t) defined to be zero for all t 6¼ 0,

undefined at t ¼ 0, and having the special property that
R1

1 dðtÞdt ¼ 1.

Circular convolution: A convolution of finite length sequences in which the shifting operation is

performed circularly within the finite support interval. Alternately called periodic convolution.

Dirichlet conditions: Conditions that must be satisfied in order to expand a periodic signal s(t) in a

Fourier series: each period of s(t) must have a finite number of discontinuities, a finite number of

maxima and minima, and
RT=2

T=2 jsðtÞjdt51 must be satisfied, where T is the period.

DFT (FFT) leakage: An effect that occurs when a signal containing a frequency component that falls

between frequencies is sampled by the DFT and the power from this component incorrectly appears in

adjacent frequency channels.

Gibbs phenomenon: Oscillatory behavior of Fourier series approximations in the vicinity of finite jump

discontinuities.

Line spectrum: A common term for Fourier transforms of periodic signals for which the spectrum has

nonzero components only at integer multiples of the fundamental frequency.

Mean squared error (mse): A measure of ‘‘closeness’’ between two functions given by

mse ¼ 1
T

RT=2
T=2 jf 1ðtÞ f 2ðtÞj2dt, where T is the period.

Nyquist sampling frequency: Minimum sampling frequency for which a CT signal s(t) can be perfectly

reconstructed from a set of uniformly spaced samples s(nT).

Orthonormal set: A countable set of functions for which every pair in the set is mathematically orthogonal

according to a valid norm, and for which each element of the set has unit length according to the same

norm. The Fourier basis functions form an orthonormal set according to the mean squared error norm.

Trigonometric expansion: A Fourier series expansion for a real valued signal in which the basis functions

are chosen to be sin(noot) and cos(noot).

References

R.N. Bracewell, The Fourier Transform, 2nd ed., New York: McGraw-Hill, 1986.

W.K. Jenkins, ‘‘Fourier series, Fourier transforms, and the discrete Fourier transform,’’ in The Circuits and

Filters Handbook, 2nd ed., Wai-Kai Chen, Ed., Boca Raton, FL: CRC Press, 2002a.

FIGURE 14.9 Illustration of leakage and the picket-fence effect.

14-17Digital Signal Processing



W.K. Jenkins, ‘‘Discrete-time signal processing,’’ in Reference Data for Engineers: Radio, Electronics, Computers,

and Communications, 9th ed., Wendy M. Middleton, Editor-in-Chief. Newnes (Butterworth-

Heinemann), 2002b.

A.V. Oppenheim, A.S. Willsky, and I.T. Young, Signals and Systems, Englewood Cliffs, NJ: Prentice-Hall,

1983.

A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing, Englewood Cliffs, NJ: Prentice-Hall,

1989.

A.V. Oppenheim and R.W. Schafer, Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1975.

M.E. VanValkenburg, Network Analysis, Englewood Cliffs, NJ: Prentice-Hall, 1974.

For Further Information

A more thorough treatment of the complete family of CT and DT Fourier transform concepts is given in

Jenkins (2002a). This article emphasizes the parallels between CT and DT Fourier-based signal processing.

Digital filtering design and implementation is discussed in more detail in Jenkins (2002b).

An excellent treatment of Fourier Waveform Analysis is given by D. C. Munson, Jr. in Chapter 7 of Reference

Data for Engineers: Radio, Electronics, Computers, and Communications, Ninth Edition, Wendy M. Middleton,

Editor-in-Chief, Newnes (Butterworth-Heinemann), 2002.

A classic reference on the CT Fourier transform is Bracewell (1986).

14.2 Fourier Transforms and the Fast Fourier Transform

Alexander D. Poularikas

The Discrete-Time Fourier Transform (DTFT)

The discrete-time Fourier transform (DTFT) of a signal { f(n)} is defined by

Fdtff ðnÞg FðoÞ Fðe joÞ ¼
X1

n¼ 1
f ðnÞe jon ð14:15Þ

and its inverse discrete-time Fourier transform (IDTFT) is given by

f ðnÞ ¼ 1

2p

Zp

p
FðoÞe jondo ð14:16Þ

The amplitude and phase spectra are periodic with a period of 2p and thus the frequency range of any discrete
signal is limited to the range ( p,p] or (0,2p].

Example 14.1

Find the DTFT of the sequence f(n) ¼ 0.8n for n ¼ 0,1,2,3. . .

Solution

From Equation (14.15), we write:

FðoÞ ¼
X1
n¼0

0:8ne jon ¼
X1
n¼0
ð0:8e joÞn ¼ 1

1 0:8e jo ð14:17Þ
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jFðoÞj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:64 1:6 coso

p ;ArgFðoÞtan 1 0:8 sino
1 0:8 coso

ð14:18Þ

If we set o ¼ o in the last two equations we find that the amplitude is an even function and the argument is

an odd function.

Relationship to the Z-Transform

FðzÞ z¼e jo ¼
X1

n¼ 1
f ðnÞz n

z¼e jo

Properties

Table 14.6 tabulates the DTFT properties of discrete-time sequences.

Fourier Transforms of Finite-Time Sequences

The trancated Fourier transform of a sequence is given by

FNðoÞ ¼
XN 1

n¼0
f ðnÞe jon ¼

X1
n¼ 1

f ðnÞwðnÞe jon ¼ 1

2p
FðoÞ*WðoÞ ð14:19Þ

where w(n) is a window function that extends from n ¼ 0 to n ¼ N 1. If the value of the sequence is unity

for all n’s, the window is known as the rectangular one. From Equation (14.19) we observe that the truncation

of a sequence results in a smoother version of the exact spectrum.

Frequency Response of LTI Discrete Systems

A first-order LTI discrete system is described by the difference equation

yðnÞ þ a1yðn 1Þ ¼ b0xðnÞ þ b1xðn 1Þ

The DTFT of the above equation is given by

YðoÞ þ a1e
joYðoÞ ¼ b0XðoÞ þ b1e

joXðoÞ

TABLE 14.6 The DTFT Properties of Discrete-Time Sequences

Property Time Domain Frequency Domain

Linearity af1(n) þ bf2(n) aF1(o)þbF2(o)
Time Shifting f (n n0) e–jon0F(o)
Time Reversal f ( n) F( o)
Convolution f1(n) f2(n) F1(o)F2(o)
Frequency Shifting e jo0nf(n) F(o o0)

Time Multiplication nf(n) z
dFðzÞ
dz

z ¼ e jo

Modulation f(n)coso0n
1

2
Fðo o0Þ þ

1

2
Fðoþ o0Þ

Correlation f1(n) : f2(n) F1(o)F2( o)

Parseval’s Formula
P1

n¼ 1
f jðnÞj2 ¼ 1

2p

Rp
p FjðoÞj2do
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from which we write the system function

HðoÞ ¼ YðoÞ
XðoÞ ¼

b0 þ b1e
jo

1þ a1e
jo

To approximate the continuous time Fourier transform using the DTFT we follow the following steps:

1. Select the time interval T such that F (oc)<0 for all oc . p/T. oc designates the frequency of a

continuous time function.

2. Sample f(t) at times nT to obtain f(nT).

3. Compute the DFT using the sequence {Tf(nT)}.

4. The resulting approximation is then F(oc)<F(o) for p/T , oc , p/T.

The Disrete Fourier Transform

One of the methods, and one that is used extensively, calls for replacing continuous Fourier transforms by an

equivalent discrete Fourier transform (DFT) and then evaluating the DFT using the discrete data. However,

evaluating a DFTwith 512 samples (a small number in most cases) requires more than 1.5 · 106 mathematical

operations. It was the development of the fast Fourier transform (FFT), a computational technique that

reduces the number of mathematical operations in the evaluation of the DFT to N log2 (N) (approximately

2.5 · 104 operations for the 512-point case mentioned above), that makes DFT an extremely useful tool in

most all fields of science and engineering.

A data sequence is available only with a finite time window from n ¼ 0 to n ¼ N 1. The transform is

discretized for N values by taking samples at the frequencies 2p/NT, where T is the time interval between

sample points. Hence, we define the DFT of a sequence of N samples for 0< k< N 1 by the relation

FðkOÞ ¼: F dff ðnTÞg ¼ T
XN 1

n¼0
f ðnTÞe j2pnkT=NT

¼ T
XN 1

n¼0
f ðnTÞe jOTnk n ¼ 0; 1; . . . ;N 1 ð14:20Þ

where N ¼ number of sample values, T ¼ sampling time interval, (N 1)T ¼ signal length, f (nT) ¼
sampled form of f(t) at points nT, O ¼ (2p/T) 1/N ¼ os/N ¼ frequency sampling interval, e–iOT ¼ Nth

principal root of unity, and j ¼ ffiffiffiffi
1

p
. The inverse DFT is given by

f ðnTÞ ¼: F 1
d fFðkOÞg ¼

1

NT

XN 1

k¼0
FðkOÞe j2pnkT=NT

¼ 1

NT

XN 1

k¼0
FðkOÞeiOTnk ð14:21Þ

The sequence f (nT) can be viewed as representing N consecutive samples f(n) of the continuous signal, while

the sequence F (kO) can be considered as representing N consecutive samples F (k) in the frequency domain.

Therefore, Equations (14.20) and (14.21) take the compact form:

FðkÞ ¼: F dff ðnÞg ¼
XN 1

n¼0
f ðnÞe j2pnk=N

¼
XN 1

n¼0
f ðnÞWnk

N k ¼ 0; . . . ;N 1 ð14:22Þ
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f ðnÞ ¼: F 1
d fFðkÞg ¼

1

N

XN 1

k¼0
FðkÞe j2pnk=N

¼
XN 1

k¼0
FðkÞW nk

N k ¼ 0; . . . ;N 1 ð14:23Þ

where

WN ¼ e j2p=N j ¼
ffiffiffiffi
1

p

An important property of the DFT is that f(n) and F(k) are uniquely related by the transform pair, Equations

(14.22) and (14.23).

We observe that the functions Wkn are N-periodic; that is:

Wkn
N ¼ W

kðnþNÞ
N k; n ¼ 1;61;62; . . . ð14:24Þ

As a consequence, the sequences f(n) and F(k) as defined by Equations (14.22) and (14.23) are also N-periodic.

It is generally convenient to adopt the convention

ff ðnÞg $ fFðkÞg ð14:25Þ

to represent the transform pair, Equations (14.22) and (14.23).

Properties of the DFT

A detailed discussion of the properties of DFT can be found in the cited references at the end of this section. In

what follows we consider a few of these properties that are of value for the development of the FFT.

1. Linearity:

faf ðnÞ þ byðnÞg $ faFðkÞg þ fbYðkÞg ð14:26Þ
2. Complex conjugate: If f(n) is real, N/2 is an integer and { f(n)} $ {F (k)}, then

F
N

2
þ l ¼ F*

N

2
l l ¼ 0; 1; . . . ;

N

2
ð14:27Þ

where F*ðkÞ denotes the complex conjugate of F(k). The preceding identity shows the folding property
of the DFT.

3. Reversal:

ff ð nÞg $ fFð kÞg ð14:28Þ
4. Time shifting:

ff ðnþ lÞg $ fW lkFðkÞg ð14:29Þ
5. Convolution of real sequences: If

yðnÞ ¼ 1

N

XN 1

l¼0
f ðlÞhðn lÞ n ¼ 0; 1; . . . ;N 1 ð14:30Þ
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then

fyðnÞg $ fFðkÞHðkÞg ð14:31Þ

6. Correlation of real sequences: If

yðnÞ ¼ 1

N

XN 1

l¼0
f ðlÞhðnþ lÞ n ¼ 0; 1; . . . ;N 1 ð14:32Þ

then

fyðnÞg $ fFðrÞ H*ðkÞg ð14:33Þ

7. Symmetry:

1

N
FðnÞ $ ff ð kÞg ð14:34Þ

8. Parseval’s theorem:

XN 1

n¼0
f ðnÞjj 2¼ 1

N

XN 1

k¼0
FðkÞj2 ð14:35Þ

where jFðkÞj ¼ FðkÞF * ðkÞ.

Example 14.2

Verify Parseval’s theorem for the sequence {f(n)} ¼ {1, 2, 1, 3}.

Solution. With the help of Equation (14.22) we obtain

FðkÞ
k¼0

¼ Fð0Þ ¼
X3
n¼0

f ðnÞe jð2p=4Þkn
k¼0

¼ ðle jðp=2Þ0:0 þ 2e jðp=2Þ0:1 e jðp=2Þ0:2 þ 3e jðp=2Þ0:3Þ
¼ 5

Similarly, we find

Fð1Þ ¼ 2þ j Fð2Þ ¼ 5 Fð3Þ ¼ 2 j

Introducing these values in Equation (14.35) we obtain

12 þ 22 þ ð 1Þ2 þ 32 ¼ 1=4½52 þ ð2þ jÞð2 jÞ þ 52 þ ð2 jÞð2þ jÞ or 15 ¼ 60=4

which is an identity, as it should have been.

Relation between DFT and Fourier Transform

The sampled form of a continuous function f(t) can be represented by N equally spaced sampled values f(n)

such that
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f ðnÞ ¼ f ðnTÞ n ¼ 0; 1; . . . ;N 1 ð14:36Þ

where T is the sampling interval. The length of the continuous function is L ¼ NT, where f (N) ¼ f (0).

We denote the sampled version of f(t) by fs(t), which may be represented by a sequence of impulses.

Mathematically it is represented by the expression

fsðtÞ ¼
XN 1

n¼0
½Tf ðnÞ dðt nTÞ ð14:37Þ

where d(t) is the Dirac or impulse function.
Taking the Fourier transform of fs(t) in Equation (14.37) we obtain

FsðoÞ ¼ T
Z1
1

XN 1

n¼0
f ðnÞdðt nTÞe jotdt

¼ T
XN 1

n¼0
f ðnÞ

Z1
1
dðt nTÞe jotdt

¼ T
XN 1

n¼0
f ðnÞe jonT

ð14:38Þ

Equation (14.38) yields Fs(o) for all values of o. However, if we are only interested in the values of Fs(o)
at a set of discrete equidistant points, then Equation (14.38) is expressed in the form (see also

Equation (14.20)):

FsðkOÞ ¼ T
XN 1

n¼0
f ðnÞe jknOt k ¼ 0;61;62; . . . ;6N=2 ð14:39Þ

where O ¼ 2p/L ¼ 2p/NT. Therefore, comparing Equation (14.22) and Equation (14.39) we observe that we
can find F(o) from Fs(o) using the relation

FðkÞ ¼ FsðoÞ o¼kOj ð14:40Þ

Power, Amplitude, and Phase Spectra

If f(t) represents voltage or current waveform supplying a load of 1 O, the left-hand side of Parseval’s

theorem, Equation (14.35) represents the power dissipated in the 1-O resistor. Therefore, the right-hand

side represents the power contributed by each harmonic of the spectrum. Thus the DFT power spectrum

is defined as

PðkÞ ¼ FðkÞF*ðkÞ ¼ jFðkÞj2 k ¼ 0; 1; . . . ;N 1 ð14:41Þ

For real f(n) there are only (N/211) independent DFT spectral points as the complex conjugate property

shows (Equation (14.27)). Hence we write

PðkÞ ¼ jFðkÞj2 k ¼ 0; 1; . . . ;N=2 ð14:42Þ

The amplitude spectrum is readily found from that of a power spectrum, and it is defined as
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AðkÞ ¼ jFðkÞj k ¼ 0; 1; . . . ;N 1 ð14:43Þ

The power and amplitude spectra are invariant with respect to shifts of the data sequence { f(n)}.

The phase spectrum of a sequence {f(n)} is defined as

ff ðkÞ ¼ tan 1 ImfFðkÞg
RefFðkÞg k ¼ 0; 1; . . . ;N 1 ð14:44Þ

As in the case of the power spectrum, only (N/2+1) of the DFT phase spectral points are independent for real

{f(n)}. For a real sequence {f(n)} the power spectrum is an even function about the point k ¼ N/2 and the phase

spectrum is an odd function about the point k ¼ N/2.

Observations

1. The frequency spacing Do between coefficients is

Do ¼ O ¼ 2p
NT

¼ os

N
or Df ¼ 1

NT
¼ fs
N
¼ 1

T0
ð14:45Þ

2. The reciprocal of the record length defines the frequency resolution.

3. If the number of samples N is fixed and the sampling time is increased, the record length and the

precision of frequency resolution is increased. When the sampling time is decreased, the opposite is true.

4. If the record length is fixed and the sampling time is decreased (N increases), the resolution stays the

same and the computed accuracy of F (nO) increases.
5. If the record length is fixed and the sampling time is increased (N decreases), the resolution stays the

same and the computed accuracy of F (nO) decreases.

Data Windowing

To produce more accurate frequency spectra it is recommended that the data are weighted by a window

function. Hence, the new dataset will be of the form { f(n) w(n)}. The following are the most commonly used

windows:

1. Triangle (Fejer, Bartlet) window:

wðnÞ ¼
n

N=2
n ¼ 0; 1; . . . ;

N

2

wðN nÞ n ¼ N

2
; . . . ;N 1

8>><>>: ð14:46Þ

2. Cosa(x) windows:

wðnÞ ¼ sin2
n

N
p

¼ 0:5 1 cos
2n

N
p n ¼ 0; 1 . . . ;N 1 a ¼ 2

ð14:47Þ

This window is also called the raised cosine or Hamming window.
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3. Hamming window:

wðnÞ ¼ 0:54 0:46cos
2p
N
n n ¼ 0; 1; . . . ;N 1 ð14:48Þ

4. Blackman window:

wðnÞ ¼
Xk
m¼0

ð 1Þmamcos 2pm
n

N
n ¼ 0; 1; . . . ;N 1 K <

N

2
ð14:49Þ

for K ¼ 2, a0 ¼ 0.42, a1 ¼ 0.50, and a2 ¼ 0.08.

5. Blackman–Harris window. Harris used a gradient search technique to find three- and four-term

expansion of Equation (14.49) that either minimized the maximum sidelobe level for fixed mainlobe

width, or traded mainlobe width versus minimum sidelobe level (see Table 14.7).

6. Centered Gaussian window:

wðnÞ ¼ exp
1

2
a

n

N=2

2

0< jnj<N

2
a ¼ 2; 3; . . . ð14:50Þ

As a increases, the mainlobe of the frequency spectrum becomes broader and the sidelobe peaks become

lower.

7. Centered Kaiser–Bessel window:

wðnÞ ¼
I0 pa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:0 n

N=2

2
r" #
I0ðpaÞ

0< jnj< N

2
ð14:51Þ

where

I0ðxÞ ¼ zero-order modified Bessel function

¼
X1
k¼0

ðx=2Þk
k!

!2

k! ¼ 1 · 2 · 3 · · k
a ¼ 2; 2:5; 3 ðtypical valuesÞ

ð14:52Þ

Fast Fourier Transform

One of the approaches to speed the computation of the DFT of a sequence is the decimation-in-time method.

This approach is one of breaking the N-point transform into two (N/2)-point transforms, breaking each

(N/2)-point transform into two (N/4)-point transforms, and continuing the above process until we obtain the

two-point transform. We start with the DFT expression and factor it into two DFTs of length N/2:

TABLE 14.7

No. of Terms Maximum Parameter Values

in (14.29) Sidelobe, dB a0 a1 a2 a3

3 70.83 0.42323 0.49755 0.07922

3 62.05 0.44959 0.49364 0.05677

4 92 0.35875 0.48829 0.14128 0.01168

4 74.39 0.40217 0.49703 0.09892 0.00188
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FðkÞ ¼
XN 2

n¼0
f ðnÞWkn

N n even

þ
XN 1

n¼1
f ðnÞWkn

N n odd ð14:53Þ

Letting n ¼ 2m in the first sum and n ¼ 2m11 in the second, Equation (14.53) becomes

FðkÞ ¼
XðN=2Þ 1

m¼0
f ð2mÞW2mk

N þ
XðN=2Þ 1

m¼0
f ð2mþ 1ÞW ð2mþ1Þk

N ð14:54Þ

However, because of the identities

W2mk
N ¼ W2

N

mk¼ e jð2p=NÞ2mk ¼ e jð4pmk=NÞ ¼ Wmk
N=2 ð14:55Þ

and the substitution f(2m) ¼ f1(m) and f(2m11) ¼ f2(m), m ¼ 0, 1,. . ., N/2 1, takes the form

FðkÞ ¼
XðN=2Þ 1

m¼0
f1ðmÞWmk

N=2

N

2
point DFT of even-indexed sequence

þWk
N

XðN=2Þ 1

m¼0
f2ðmÞWmk

N=2

N

2
point DFT of odd-indexed sequence

k ¼ 0; . . . ;N=2 1

ð14:56Þ

We can also write Equation (14.56) in the form

FðkÞ ¼ F1ðkÞ þWk
NF2ðkÞ k ¼ 0; 1; . . . ;N=2 1

F kþN

2
¼ F1ðkÞ þW

kþN=2
N F2ðkÞ

¼ F1ðkÞ Wk
NF2ðkÞ k ¼ 0; 1; . . . ;N=2 1 ð14:57Þ

where W
kþN=2
N ¼ Wk

N and W
mðkþN=2Þ
N=2 ¼ Wmk

N=2. Since the DFT is periodic, F1(k) ¼ F1(k + N/2) and

F2(k) ¼ F2(k + N/2).

We next apply the same procedure to each N/2 samples, where f11(m) ¼ f1(2m) and f21(m) ¼ f2(2m + 1),

m ¼ 0,1,. . ., (N/4) 1. Hence:

F1ðkÞ ¼
XðN=4Þ 1

m¼0
f11ðmÞWmk

N=4þW2k
N

XðN=4Þ 1

m¼0
f21ðmÞWmk

N=4

k ¼ 0; 1; . . . ;N=4 1

ð14:58Þ
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or

F1ðkÞ ¼ F11ðkÞ þW2k
N F21ðkÞ

F1 kþ N

4
¼ F11ðkÞ W2k

N F21ðkÞ k ¼ 0; 1; . . . ;N=4 1
ð14:59Þ

Therefore, each one of the sequences f1 and f2 has been split into two DFTs of length N/4.

Example 14.3

To find the FFT of the sequence {2, 3, 4, 5} we first bit reverse the position of the elements from their priority

{00, 01, 10, 11} to {00, 10, 01, 11} position. The new sequence is {2, 4, 3, 5} (see also Figure 14.10). Using

Equations (14.56) and (14.57) we obtain

F1ð0Þ ¼
X1
m¼0

f1ðmÞWm0
2 ¼ f1ð0ÞW0

2 þ f1ð1ÞW0
2 ¼ f ð0Þ · 1þ f ð2Þ · 1

F1ð1Þ ¼
X1
m¼0

f1ðmÞWm·1
2 ¼ f1ð0ÞW0:1

2 þ f1ð1ÞW1
2 ¼ f ð0Þ þ f ð2Þð jÞ

F2ð0Þ ¼ W0
4

X1
m¼0

f2ðmÞWm·0
2 ¼ f2ð0ÞW0

2 þ f2ð1ÞW0
2 ¼ f ð1Þ þ f ð3Þ

F2ð1Þ ¼ W1
4

X1
m¼0

f2ðmÞWm·1
2 ¼ W1

4 f ð1ÞW0
2 þ f ð3ÞW1

2

h i
¼ W1

4 f ð1Þ W1
4 f ð3Þ

FIGURE 14.10 Illustration of Example 14.2.
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TABLE 14.8 FFT Subroutine

SUBROUTINE FOUR1 (DATA, NN, ISIGN)

Replaces DATA by its discrete Fourier transform, if SIGN is input as 1; or replaces DATA by NN times its inverse

discrete Fourier transform, if ISIGN is input as 1. DATA is a complex array of length NN or, equivalently,

a real array of length 2*NN. NN must be an integer power of 2.

REAL*8 WR, WI, WPR, WPI, WTEMP, THETA Double precision for the trigonometric recurrences.

DIMENSION DATA (2*NN)

N¼2*NN
J¼1
DO 11 I¼1, N, 2 This is the bit-reversal section of the routine.

IF (J.GT.I) THEN Exchange the two complex numbers.

TEMPR¼DATA(J)
TEMPI¼DATA(Jþ1)
DATA(J)¼DATA(I)
DATA(Jþ1)¼DATA(Iþ1)
DATA(I)¼TEMPR
DATA(Iþ1)¼TEMPI

ENDIF

M¼N/2
1 IF ((M.GE.2).AND. (J.GT.M)) THEN

J¼J M

M¼M/2
GO TO 1

ENDIF

J¼JþM
11 CONTINUE

MMAX¼2 Here begins the Danielson–Lanczos section of the routine.

2 IF (N.GT.MMAX) THEN Outer loop executed log2 NN times.

ISTEP¼2*MMAX
THETA¼6.28318530717959D0/(ISIGN*MMAX) Initialize for the trigonometric recurrence.

WPR¼-2.D0*DSIN(0.5D0*THETA)**2
WPI¼DSIN(THETA)
WR¼1.D0
WI¼0.D0
DO 13 M¼1,MMAX,2 Here are the two nested inner loops.

DO 12 I¼M,N,ISTEP
J¼IþMMAX This is the Danielson Lanczos formula:

TEMPR¼SNGL(WR)*DATA(J)-SNGL(WI)*DATA(Jþ1)
TEMPI¼SNGL(WR)*DATA(Jþ1)þSNGL(WI)*DATA(J)

DATA(J)¼DATA(I) TEMPR

DATA(Jþ1)¼DATA(Iþ1) TEMPI

DATA(I)¼DATA(I)þTEMPR
DATA(Iþ1)¼DATA(Iþ1)þTEMPI

12 CONTINUE

WTEMP¼WR Trigonometric recurrence.

WR¼WR*WPR-WI*WPIþWR

WI¼WI*WPRþWTEMP*WPIþWI

13 CONTINUE

MMAX¼STEP
GO TO 2

ENDIF

RETURN

END

Source: # 1986 Numerical Recipes Software. From Numerical Recipes: The Art of Scientific Computing, published by Cambridge
University Press. Used by permission.
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From Equation (14.57) the output is

Fð0Þ ¼ F1ð0Þ þW0
4F2ð0Þ

Fð1Þ ¼ F1ð1Þ þW1
4F2ð1Þ

Fð2Þ ¼ F1ð0Þ W0
4F2ð0Þ

Fð3Þ ¼ F1ð1Þ W1
4F2ð1Þ

Computation of the Inverse DFT

To find the inverse FFT using an FFT algorithm, we use the relation

f ðnÞ ¼ ½FFTðF*ðkÞÞ *
N

ð14:60Þ

For other transforms and their fast algorithms the reader should consult the references given at the end of this

section.

Table 14.8 gives the FFT subroutine for fast implementation of the DFT of a finite sequence.

Defining Terms

FFT: A computational technique that reduces the number of mathematical operations in the evaluation of

the discrete Fourier transform (DFT) to N log2 N.

Phase spectrum: All phases associated with the spectrum harmonics.

Power spectrum: A power contributed by each harmonic of the spectrum.

Window: Any appropriate function that multiplies the data with the intent to minimize the distortions of

the Fourier spectra.
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Further Information

A historical overview of the fast Fourier transform can be found in J.W. Cooley, P.A.W. Lewis, and P.D. Welch,

‘‘Historical notes on the fast Fourier transform,’’ IEEE Trans. Audio Electroacoust., vol. AV-15, pp. 76–79,

June 1967.

Fast algorithms appear frequently in the monthly magazine Signal Processing, published by The Institute of

Electrical and Electronics Engineers.
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14.3 Design and Implementation of Digital Filters

Bruce W. Bomar and L. Montgomery Smith

A digital filter is a linear, shift-invariant system for computing a discrete output sequence from a discrete

input sequence. The input/output relationship is defined by the convolution sum:

yðnÞ ¼
X1

m¼ 1
hðmÞxðn mÞ

where x(n) is the input sequence, y(n) is the output sequence, and h(n) is the impulse response of the filter. The

filter is often conveniently described in terms of its frequency characteristics that are given by the transfer

function H(e jo). The impulse response and transfer function are a Fourier transform pair:

Hðe joÞ ¼
X1

n¼ 1
hðnÞe jon p< o< p

hðnÞ ¼ 1

2p

Zp

p
Hðe joÞe jon do 1< n<1

Closely related to the Fourier transform of h(n) is the z-transform defined by

HðzÞ ¼
X1

n¼ 1
hðnÞz n

The Fourier transform is then the z-transform evaluated on the unit circle in the z-plane (z ¼ e jo).

An important property of the z-transform is that z –1 H(z) corresponds to h(n 1), so z –1 represents a

one-sample delay, termed a unit delay.

In this section, attention will be restricted to frequency-selective filters. These filters are intended to

pass frequency components of the input sequence in a given band of the spectrum while blocking the

rest. Typical frequency-selective filter types are low-pass, high-pass, bandpass, and band-reject. Other special-

purpose filters exist, but their design is an advanced topic that will not be addressed here.

In addition, special attention is given to causal filters, that is, those for which the impulse response is

identically zero for negative n and thus can be realized in real time. Digital filters are further separated

into two classes depending on whether the impulse response contains a finite or infinite number of

nonzero terms.

Finite Impulse Response Filter Design

The objective of finite impulse response (FIR) filter design is to determine N þ 1 coefficients:

hð0Þ; hð1Þ; . . . ; hðNÞ

so that the transfer function H(e jo) approximates a desired frequency characteristic Hd(e
jo). All other impulse

response coefficients are zero. An important property of FIR filters for practical applications is that they can be

designed to be linear phase; that is, the transfer function has the form:

Hðe joÞ ¼ Aðe joÞe joN=2
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where the amplitude A(e jo) is a real function of frequency. The desired transfer function can be similarly

written

Hdðe joÞ ¼ Adðe joÞe joN=2

where Ad(e
jo) describes the amplitude of the desired frequency-selective characteristics. For example, the

amplitude frequency characteristics of an ideal low-pass filter are given by

Adðe joÞ ¼ 1 for joj< oc

0 otherwise

where oc is the cutoff frequency of the filter.

A linear phase characteristic ensures that a filter has a constant group delay independent of frequency. Thus,

all frequency components in the signal are delayed by the same amount, and the only signal distortion

introduced is that imposed by the filter’s frequency-selective characteristics. Since a FIR filter can only

approximate a desired frequency-selective characteristic, some measures of the accuracy of approximation are

needed to describe the quality of the design. These are the passband ripple dp, the stopband attenuation ds , and
the transition bandwidth Do. These quantities are illustrated in Figure 14.11 for a prototype low-pass filter.
The passband ripple gives the maximum deviation from the desired amplitude (typically unity) in the region

where the input signal spectral components are desired to be passed unattenuated. The stopband attenuation

gives the maximum deviation from zero in the region where the input signal spectral components are desired

to be blocked. The transition bandwidth gives the width of the spectral region in which the frequency

characteristics of the transfer function change from the passband to the stopband values. Often, the passband

ripple and stopband attenuation are specified in decibels, in which case their values are related to the

quantities dp and ds by

passband ripple ðdBÞ ¼ P ¼ 20 log10 ð1 dpÞ
stopband attenuation ðdBÞ ¼ S ¼ 20 log10 ds

FIGURE 14.11 Amplitude frequency characteristics of a FIR low-pass filter showing definitions of passband ripple dp,
stopband attenuation ds, and transition bandwidth Do.
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FIR Filter Design by Windowing

The windowing design method is a computationally efficient technique for producing nonoptimal filters.

Filters designed in this manner have equal passband ripple and stopband attenuation:

dp ¼ ds ¼ d

The method begins by finding the impulse response of the desired filter from

hdðnÞ ¼
1

2p

Zp

p
Adðe joÞe joðn N=2Þdo

For ideal low-pass, high-pass, bandpass, and band-reject frequency-selective filters, the integral can be solved

in closed form. The impulse response of the filter is then found by multiplying this ideal impulse response

with a window w(n) that is identically zero for n , 0 and for n . N:

hðnÞ ¼ hdðnÞwðnÞ n ¼ 0; 1; . . . ;N

Some commonly used windows are defined as follows:

1. Rectangular (truncation)

wðnÞ ¼ 1 for 0< n< N
0 otherwise

2. Hamming

wðnÞ ¼ 0:54 0:46 cos
2pn
N

for 0< n< N

0 otherwise

0@8<:
3. Kaiser

wðnÞ ¼
I0 b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ½ð2n NÞ=N 2

q
I0ðbÞ

for 0< n< N

0 otherwise

8>><>>:
In general, windows that slowly taper the impulse response to zero result in lower passband ripple and a wider

transition bandwidth. Other windows (e.g., Hamming, Blackman) are also sometimes used but not as often as

those shown above.

Of particular note is the Kaiser window where I0(.) is the 0th-order modified Bessel function of the first

kind and b is a shape parameter. The proper choice of N and b allows the designer to meet given passband
ripple/stopband attenuation and transition bandwidth specifications. Specifically, using S, the stopband

attenuation in dB, the filter order must satisfy

N ¼ S 8

2:285Do

Then, the required value of the shape parameter is given by

b ¼
0 for S521
0:5842ðS 21Þ0:4 þ 0:07886ðS 21Þ for 21< S< 50
0:1102ðS 8:7Þ for S450

8<:
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As an example of this design technique, consider a low-pass filter with a cutoff frequency of oc ¼ 0.4p.
The ideal impulse response for this filter is given by

hdðnÞ ¼
sin½0:4pðn N=2Þ

pðn N=2Þ

Choosing N ¼ 8 and a Kaiser window with a shape parameter of b ¼ 0.5 yields the following impulse response

coefficients:

hð0Þ ¼ hð8Þ ¼ 0:07568267

hð1Þ ¼ hð7Þ ¼ 0:06236596

hð2Þ ¼ hð6Þ ¼ 0:09354892

hð3Þ ¼ hð5Þ ¼ 0:30273070

hð4Þ ¼ 0:40000000

Design of Optimal FIR Filters

The accepted standard criterion for the design of optimal FIR filters is to minimize the maximum value of the

error function:

Eðe joÞ ¼ Wdðe joÞ dðe joÞ Aðe joÞj

over the full range of p# o# p.Wd(e
jo) is a desired weighting function used to emphasize specifications in

a given frequency band. The ratio of the deviation in any two bands is inversely proportional to the ratio of

their respective weighting.

A consequence of this optimization criterion is that the frequency characteristics of optimal filters are

equiripple: although the maximum deviation from the desired characteristic is minimized, it is reached several

times in each band. Thus, the passband and stopband deviations oscillate about the desired values with equal

amplitude in each band. Such approximations are frequently referred to as minimax or Chebyshev

approximations. In contrast, the maximum deviations occur near the band edges for filters designed by

windowing.

Equiripple FIR filters are usually designed using the Parks–McClellan computer program (Parks and Burrus,

1987), which uses the Remez exchange algorithm to determine iteratively the extremal frequencies at which the

maximum deviations in the error function occur. A listing of this program along with a detailed description of

its use is available in several references including Parks and Burrus (1987) and DSP Committee (1979). The

program is executed by specifying as inputs the desired band edges, gain for each band (usually 0 or 1), band

weighting, and FIR length. If the resulting filter has too much ripple in some bands, those bands can be

weighted more heavily and the filter redesigned. Details on this design procedure are discussed in Rabiner

(1973), along with approximate design relationships which aid in selecting the filter length needed to meet a

given set of specifications.

Although we have focused attention on the design of frequency-selective filters, other types of FIR filters

exist. For example, the Parks–McClellan program will also design linear-phase FIR filters for differentiating

broadband signals and for approximating the Hilbert transform of such signals. A simple modification to this

program permits arbitrary magnitude responses to be approximated with linear-phase filters. Other design

techniques are available that permit the design of FIR filters which approximate an arbitrary complex response

(Chen and Parks, 1987; Parks and Burrus, 1987), and, in cases where a nonlinear phase response is acceptable,

design techniques are available that give a shorter impulse response length than would be required by a linear-

phase design (Goldberg et al., 1981).
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As an example of an equiripple filter design, an 8th-order low-pass filter with a passband 0 # o # 0.3p, a
stopband 0.5p # o # p, and equal weighting for each band was designed. The impulse response coefficients
generated by the Parks–McClellan program were as follows:

hð0Þ ¼ hð8Þ ¼ 0:06367859

hð1Þ ¼ hð7Þ ¼ 0:06912276

hð2Þ ¼ hð6Þ ¼ 0:10104360

hð3Þ ¼ hð5Þ ¼ 0:28574990

hð4Þ ¼ 0:41073000

These values can be compared to those for the similarly specified filter designed in the previous subsection

using the windowing method.

Infinite Impulse Response Filter Design

An infinite impulse response (IIR) digital filter requires less computation to implement than a FIR digital

filter with a corresponding frequency response. However, IIR filters cannot generally achieve a perfect linear-

phase response and are more susceptible to finite wordlength effects.

Techniques for the design of IIR analog filters are well established. For this reason, the most important class

of IIR digital filter design techniques is based on forcing a digital filter to behave like a reference analog filter.

This can be done in several different ways. For example, if the analog filter impulse response is ha(t) and the

digital filter impulse response is h(n), then it is possible to make h(n) ¼ ha(nT), where T is the sample spacing

of the digital filter. Such designs are referred to as impulse-invariant (Parks and Burrus, 1987). Likewise, if ga(t)

is the unit step response of the analog filter and g(n) is the unit step response of the digital filter, it is possible

to make g(n) ¼ ga(nT), which gives a step-invariant design (Parks and Burrus, 1987).

The step-invariant and impulse-invariant techniques perform a time domain matching of the analog and

digital filters but can produce aliasing in the frequency domain. For frequency-selective filters it is better to

attempt matching frequency responses. This task is complicated by the fact that the analog filter response is

defined for an infinite range of frequencies (O ¼ 0 to 1), while the digital filter response is defined for a finite
range of frequencies (o ¼ 0 to p). Therefore, a method for mapping the infinite range of analog frequencies
O into the finite range from o ¼ 0 to p, termed the bilinear transform, is employed.

Bilinear Transform Design of IIR Filters

Let Ha(s) be the Laplace transform transfer function of an analog filter with frequency response Ha( j O). The
bilinear transform method obtains the digital filter transfer function H(z) from Ha(s) using the substitution:

s ¼ 2ð1 z 1Þ
Tð1þ z 1Þ

That is:

HðzÞ ¼ HaðsÞjs ¼
2

T

1 z 1

1þ z 1

This maps analog frequency O to digital frequency o according to

o ¼ 2 tan 1 OT
2
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thereby warping the frequency response Ha( j O) and forcing it to lie between 0 and p for H(e
jo). Therefore, to

obtain a digital filter with a cutoff frequency of oc it is necessary to design an analog filter with cutoff

frequency

O c ¼
2

T
tan

oc

2

This process is referred to as prewarping the analog filter frequency response to compensate for the warping of

the bilinear transform. Applying the bilinear transform substitution to this analog filter will then give a digital

filter that has the desired cutoff frequency.

Analog filters and hence IIR digital filters are typically specified in a slightly different fashion than FIR filters.

Figure 14.12 illustrates how analog and IIR digital filters are usually specified. Notice by comparison to

Figure 14.11 that the passband ripple in this case never goes above unity, whereas in the FIR case the passband

ripple is specified about unity.

Four basic types of analog filters are generally used to design digital filters: (1) Butterworth filters that are

maximally flat in the passband and decrease monotonically outside the passband, (2) Chebyshev filters that are

equiripple in the passband and decrease monotonically outside the passband, (3) inverse Chebyshev filters that

are flat in the passband and equiripple in the stopband, and (4) elliptic filters that are equiripple in both the

passband and stopband. Techniques for designing these analog filters are covered elsewhere (see, for example,

Van Valkenberg, 1982) and will not be considered here.

To illustrate the design of an IIR digital filter using the bilinear transform, consider the design of a

second-order Chebyshev low-pass filter with 0.5 dB of passband ripple and a cutoff frequency of oc ¼ 0.4 p.
The sample rate of the digital filter is to be 5 Hz, giving T ¼ 0.2 sec. To design this filter we first design an

analog Chebyshev low-pass filter with a cutoff frequency of

Oc ¼
2

0:2
tan 0:2p ¼ 7:2654 rad=sec

This filter has a transfer function:

HðsÞ ¼ 0:9441

1þ 0:1249sþ 0:01249s2

Substituting
s ¼ 2

0:2

z 1

z þ 1

FIGURE 14.12 Frequency characteristics of an IIR digital low-pass filter showing definitions of passband ripple dp,
stopband attenuation ds, and transition bandwith Do.
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gives

HðzÞ ¼ 0:2665ðz þ 1Þ2
z2 0:1406z þ 0:2695

Computer programs are available that accept specifications on a digital filter and carry out all steps required

to design the filter, including prewarping frequencies, designing the analog filter, and performing the bilinear

transform. Two such programs are given in Parks and Burrus (1987) Antoniou (1979).

Design of Other IIR Filters

For frequency-selective filters, the bilinear transformation of an elliptic analog filter provides an optimal

equiripple design. However, if a design other than standard low-pass, high-pass, bandpass, or bandstop is

needed or if it is desired to approximate an arbitrary magnitude or group delay characteristic, some other

design technique is needed. Unlike the FIR case, there is no standard IIR design program for obtaining optimal

approximations to an arbitrary response.

Four techniques that have been used for designing optimal equiripple IIR digital filters are (Parks and

Burrus, 1987) (1) minimizing the Lp norm of the weighted difference between the desired and actual

responses, (2) linear programming, (3) iteratively using the Remez exchange algorithm on the numerator and

denominator of the transfer function, and (4) the differential correction algorithm. A computer program for

implementing the first method is available in DSP Committee (1979).

Finite Impulse Response Filter Implementation

For FIR filters, the convolution sum represents a computable process, and so filters can be implemented by

directly programming the arithmetic operations. Nevertheless, some options are available that may be

preferable for a given processor architecture, and means for reducing computational loads exist. This section

outlines some of these methods and presents schemes for FIR filter realization.

Direct Convolution Methods

The most obvious method for the implementation of FIR filters is to directly evaluate the sum of products in

the convolution sum:

yðnÞ ¼ hð0Þ x ðnÞ þ hð1Þ x ðn 1Þ þ . . .þ hðNÞ x ðn NÞ

The block diagram for this is shown in Figure 14.13. This method involves storing the present and previous N

values of the input, multiplying each sample by the corresponding impulse response coefficient, and summing

the products to compute the output. This method is referred to as a tapped delay line structure.

FIGURE 14.13 A direct-form implementation of a FIR filter.
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A modification to this approach is suggested by writing the convolution as

yðnÞ ¼ hð0Þ x ðnÞ þ
XN
m¼1

hðmÞ x ðn mÞ

In this approach, the output is computed by adding the product of h(0) with the present input sample to a

previously computed sum of products and updating a set of N sums of products with the present input sample

value. The signal flow graph for this method is shown in Figure 14.14.

FIR filters designed to have linear phase are usually obtained by enforcing the symmetry constraint:

hðnÞ ¼ hðN nÞ

For these filters, the convolution sum can be written:

yðnÞ ¼
PN=2 1

m¼0
hðmÞ½xðn mÞ þ xðnþm NÞ þ h

N

2
x n

N

2
N even

PðN 1Þ=2

m¼0
hðmÞ½xðn mÞ þ xðnþm NÞ N odd

8>>><>>>:
Implementation of the filter according to these formulas reduces the number of multiplications by

approximately a factor of 2 over direct-form methods. The block diagrams for these filter structures are shown

in Figure 14.15 and Figure 14.16.

FIGURE 14.14 Another direct-form implementation of a FIR filter.

FIGURE 14.15 Implementation of a linear-phase FIR filter for even N.
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Implementation of FIR Filters Using the Discrete Fourier Transform

A method for implementing FIR filters that can have computational advantages over direct-form convolution

involves processing the input data in blocks using the discrete Fourier transform (DFT) via the overlap-save

method. The computational advantage arises primarily from use of the fast Fourier transform (FFT) algorithm

(discussed in Section 14.2) to compute the DFTs of the individual data blocks. In this method, the input data

sequence {x(n); 1 , n , 1} is divided into L-point blocks:
xiðnÞ 0< n< L 1 15i51

where L . N +1, the length of the FIR filter. The L-point DFT of the impulse response is precomputed from

H½k ¼
XL 1

n¼0
hðnÞe j2pkn=L k ¼ 0; 1; . . . ; L 1

where square brackets are used to distinguish the DFT from the continuous-frequency transfer function of the

filter H(e jo). Then, the DFT of each data block is computed according to

Xi½k ¼
XL 1

n¼0
xiðnÞe j2pkn=L k ¼ 0; 1; . . . ; L 1

These two complex sequences are multiplied together term by term to form the DFTof the output data block:

Yi½k ¼ H½k Xi½k k ¼ 0; 1; . . . ; L 1

and the output data block is computed by the inverse DFT:

yiðnÞ ¼
1

L

XL 1

k¼0
Yi½k e j2pkn=L n ¼ 0; 1; . . . ; L 1

However, the output data block computed in this manner is the circular convolution of the impulse response

of the filter and the input data block given by

yiðnÞ ¼
XN
m¼0

hðmÞxiððn mÞ modulo LÞ

Thus, only the output samples from n ¼ N to n ¼ L 1 are the same as those that would result from the

convolution of the impulse response with the infinite-length data sequence x(n). The first N data points are

FIGURE 14.16 Implementation of a linear-phase FIR filter for odd N.
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corrupted and must therefore be discarded. So that the output data sequence does not have N-point ‘‘gaps’’ in

it, it is therefore necessary to overlap the data in adjacent input data blocks. In carrying out the processing,

samples from block to block are saved so that the last N points of the ith data block xi (n) are the same as the

first N points of the following data block xi11(n). Each processed L-point data block thus produces L N

output samples.

Another technique of block processing of data using DFTs is the overlap-add method in which L N-point

blocks of input data are zero-padded to L points, the resulting output blocks are overlapped by N points, and

corresponding samples added together. This method requires more computation than the overlap-save method

and is somewhat more difficult to program. Therefore, its usage is not as widespread as the overlap-save method.

Infinite Impulse Response Filter Implementation

Direct-Form Realizations

For an IIR filter the convolution sum does not represent a computable process. Therefore, it is necessary to

examine the general transfer function, which is given by

HðzÞ ¼ YðzÞ
XðzÞ ¼

g0 þ g1z
1 þ g2z

2 þþgMz M

1þ b1z 1 þ b2z 2 þþbNz N

where Y(z) is the z-transform of the filter output y(n) and X(z) is the z-transform of the filter input x(n). The

unit-delay characteristic of z –1 then gives the following difference equation for implementing the filter:

yðnÞ ¼ g0xðnÞ þ g1xðn 1Þ þ . . .þ gMxðn MÞ b1yðn 1Þ . . . bNyðn NÞ

When calculating y(0), the values of y( 1), y( 2), . . . , y( N) represent initial conditions on the filter. If the

filter is started in an initially relaxed state, then these initial conditions are zero.

Figure 14.17 gives a block diagram realizing the filter’s difference equation. This structure is referred to as

the direct-form I realization. Notice that this block diagram can be separated into two parts, giving two

cascaded networks, one of which realizes the filter zeros and the other the filter poles. The order of these

networks can be reversed without changing the transfer function. This results in a structure where the two

strings of delays are storing the same values, so a single string of delays of length max(M, N) is sufficient,

FIGURE 14.17 Direct-form I realization.

14-39Digital Signal Processing



as shown in Figure 14.18. The realization of Figure 14.18 requires the minimum number of z –1 delay

operations and is referred to as the direct-form II realization.

Cascade and Parallel Realizations

The transfer function of an IIR filter can always be factored into the product of second-order transfer

functions as

HðzÞ ¼ C
YK
k¼1

1þ a1kz
1 þ a2kz

2

1þ b1kz
1 þ b2kz

2 ¼ C
YK
k¼1

HkðzÞ

where we have assumedM ¼ N in the original transfer function and where K is the largest integer contained in

(N11)/2. If N is odd, the values of a2k and b2k in one term are zero. The realization corresponding to this

transfer function factorization is shown in Figure 14.19. Each second-order Hk(z) term in this realization is

referred to as a biquad. The digital filter design programs in Parks and Burrus (1987) and Antoniou (1979)

give the filter transfer function in factored form.

If the transfer function of an IIR filter is written as a partial-fraction expansion and first-order sections with

complex-conjugate poles are combined, H(z) can be expressed in the form:

HðzÞ ¼ Dþ
XK
k¼1

a0k þ a1kz
1

1þ b1kz
1 þ b2kz

2 ¼ Dþ
XK
k¼1

GkðzÞ

This results in the parallel realization of Figure 14.20.

Finite Wordlength Effects in IIR Filters

Since practical digital filters must be implemented with limited-precision arithmetic, four types of finite

wordlength effects result: (1) roundoff noise, (2) coefficient quantization error, (3) overflow oscillations, and

FIGURE 14.18 Direct-form II realization.

FIGURE 14.19 Cascade realization of an IIR filter.
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(4) limit cycles. Round-off noise is that error in the filter output which results from rounding (or truncating)

calculations within the filter. This error appears as low-level noise at the filter output. Coefficient quantization

error refers to the deviation of a practical filter’s frequency response from the ideal due to the filter’s

coefficients being represented with finite precision. The term overflow oscillation, sometimes also referred to as

adder overflow limit cycle, refers to a high-level oscillation that can exist in an otherwise stable filter due to the

nonlinearity associated with the overflow of internal filter calculations. A limit cycle, sometimes referred to as a

multiplier round-off limit cycle, is a low-level oscillation that can exist in an otherwise stable filter as a result of

the nonlinearity associated with rounding (or truncating) internal filter calculations. Overflow oscillations and

limit cycles require recursion to exist and do not occur in nonrecursive FIR filters.

The direct-form I and direct-form II IIR filter realizations generally have very poor performance in terms of all

finite wordlength effects. Therefore, alternative realizations are usually employed. Themost common alternatives

are the cascade and parallel realizations where the direct-form II realization is used for each second-order section.

By simply factoring or expanding the original transfer function, round-off noise and coefficient quantization

error are significantly reduced. A further improvement is possible by implementing the cascade or parallel

sections using state-space realizations (Roberts andMullis, 1987). The price paid for using state-space realizations

is an increase in the computation required to implement each section. Another realization that has been used to

reduce round-off noise and coefficient quantization error is the lattice realization (Parks andBurrus, 1987), which

is usually formed directly from the unfactored and unexpanded transfer function.

Overflow oscillations can be prevented in several different ways. One technique is to employ floating-point

arithmetic that renders overflow virtually impossible due to the large dynamic range which can be represented.

In fixed-point arithmetic implementations it is possible to scale the calculations so that overflow is impossible

(Roberts and Mullis, 1987), to use saturation arithmetic (Ritzerfeld, 1989), or to choose a realization for which

overflow transients are guaranteed to decay to zero (Roberts and Mullis, 1987).

Limit cycles can exist in both fixed-point and floating-point digital filter implementations. Many techniques

have been proposed for testing a realization for limit cycles and for bounding their amplitude when they do

exist. In fixed-point realizations it is possible to prevent limit cycles by choosing a state-space realization for

which any internal transient is guaranteed to decay to zero and then using magnitude truncation of internal

calculations in place of rounding (Diniz and Antoniou, 1986).

Defining Terms

Discrete sequence: A set of values constituting a signal whose values are known only at distinct sampled

points. Also called a digital signal.

Filter design: The process of determining the coefficients of a difference equation to meet a given frequency

or time response characteristic.

FIGURE 14.20 Parallel realization of an IIR filter.
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Filter implementation: The numerical method or algorithm by which the output sequence is computed

from the input sequence.

Finite impulse response (FIR) filter: A filter whose output in response to a unit impulse function is

identically zero after a given bounded number of samples. A FIR filter is defined by a linear constant-

coefficient difference equation in which the output depends only on the present and previous sample

values of the input.

Finite wordlength effects: Perturbations of a digital filter output due to the use of finite precision

arithmetic in implementing the filter calculations. Also called quantization effects.

Infinite impulse response (IIR) filter: A filter whose output in response to a unit impulse function

remains nonzero for indefinitely many samples. An IIR filter is defined by a linear constant-coefficient

difference equation in which the output depends on the present and previous samples of the input and

on previously computed samples of the output.
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Further Information

The monthly journal IEEE Transactions on Circuits and Systems II routinely publishes articles on the design

and implementation of digital filters. Finite wordlength effects are discussed in articles published in the April

1988 issue (pp. 365–374) and in the February 1992 issue (pp. 90–98).

Another journal containing articles on digital filters is IEEE Transactions on Signal Processing. Overflow

oscillations and limit cycles are discussed in the August 1978 issue (pp. 334–338).

The bimonthly journal IEEE Transactions on Instrumentation and Measurement also contains related

information. The use of digital filters for integration and differentiation is discussed in the December 1990

issue (pp. 923–927).

14.4 Minimum ‘‘‘‘‘‘1, ‘‘‘‘‘‘2, and ‘‘‘‘‘‘11 Norm Approximate Solutions to an
Overdetermined System of Linear Equations

James A. Cadzow

Many practical problems encountered in digital signal processing and other quantitative oriented disciplines

entail finding a best approximate solution to an overdetermined system of linear equations. Invariably, the

least squares error approximate solution (i.e., minimum ‘2 norm) is chosen for this task due primarily to the
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existence of a convenient closed expression for its determination. It should be noted, however, that in many

applications a minimum ‘1 or ‘1 norm approximate solution is preferable. For example, in cases where the

data being analyzed contains a few data outliers a minimum ‘1 approximate solution is preferable, since it

tends to ignore the bad data points. In other applications one may wish to determine an approximate solution

whose largest error magnitude is the smallest possible (i.e., a minimum ‘1 norm approximate solution).

Unfortunately, there do not exist convenient closed form expressions for either the minimum ‘1, or minimum

‘1 norm approximate solution and one must resort to nonlinear programming methods for their

determination. Effective algorithms for determining these two solutions are presented here.

Introduction

Many practical problems encountered in digital signal processing and other quantitative oriented disciplines

entail finding a best approximate solution to an overdetermined system of linear equations. It is therefore not

surprising that data analysts have extensively made use of many of the theoretical concepts of linear algebra for

identifying the salient features of a system of linear equations. A general system of M real valued linear

equations in N real unknowns can be compactly represented as

y ¼ Ax ð14:61Þ

where matrix A 2 RM ·N and vector y 2 RM · 1 are given while the vector x 2 RN · 1 is unknown.1 If there exists

at least one choice for the vector x which satisfies this linear relationship then the system of equations is said to

be consistent. However, if no such vector exists then this system of linear equations is said to be inconsistent.

In many data-processing applications, the system of linear equations under consideration is inconsistent

and it is desired to find a best approximation solution. For such situations, the traditional approach is to find a

selection of vector x so that the ‘2 norm (sum of squared errors criterion) of the residual error vector :

rðxÞ ¼ y Ax ð14:62Þ

is minimized. One of the main benefits accrued in employing a minimum ‘2 norm criterion is the existence of

a closed form solution to this approximation problem. In particular, it is well known that a minimum ‘2 norm

approximation solution is any solution of the consistent linear system of normal equations :

ATAxo ¼ ATy ð14:63Þ

In many applications, however, it is more preferable to determine an approximate solution which minimizes

either the ‘1 norm or the ‘1 norm of the residual error vector. Unfortunately, a closed form solution in these

two norm cases is not available and one must resort to nonlinear programming techniques for finding such

approximate solutions. In this section, efficient algorithms are developed for finding optimal minimum ‘1 and

‘1 norm approximate solutions to an inconsistent system of linear equations.

To illustrate how linear equations arise in practical applications let us consider the classical problem of

modeling a set of real valued empirical data yð1Þ; yð2Þ; . . . ; yðMÞ that forms the components of the empirical
data vector y 2 RM · 1. It is now hypothesized that the primary component of the empirical data vector is

composed of a linear combination of N given signal vectors a1; a2; . . . ; aN 2 RM · 1. The an component signal

vectors are typically selected by the data analyst to represent information believed (or conjectured) to be

present in the empirical data. The quality of approximating the empirical data vector as a linear combination

1The vector spaces RM · 1 and RM ·N designate the set of all real valued M · 1 vectors and the set of all real valued M · N
matrices, respectively.
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of the signal vectors results in the residual error vector :

rðxÞ ¼ y
XN
n¼1

xðnÞan

¼ y Ax

ð14:64Þ

In this expression the an signal vectors form the columns of the matrix A 2 RM·N while the coefficient vector

x 2 RN · 1 has as its elements the xðnÞ linear combination coefficients.
If the coefficient vector x can be chosen so that the corresponding residual error vector rðxÞ ¼ y Ax is

made ‘‘small’’ in size then the data vector y is said to be richly endowed with the signals represented by the

composite feature vector Ax. Moreover, each xðnÞ coefficient provides a quantitative measure of the amount of
the hypothesized signal an that is present in the data vector y. However, if the residual error cannot be made

sufficiently small then one might conclude that there is little if any of the hypothesized signals present in the

empirical data vector.

Vector Approximation Problem

The primary objective of this section is that of finding a best approximate solution to an inconsistent system of

M linear equations in N unknowns as represented by Ax ¼ y. To begin this investigation, let us consider the

simplest case ofM linear equations in one unknownN ¼ 1. The residual error vector in this case is specified by

rðxÞ ¼ y xa ð14:65Þ

where a and y are given nonzero vectors contained in RM · 1 and x 2 R is a real parameter to be chosen to give
the best approximation. In particular, this parameter is to be selected so as to minimize the norm-induced

functional:

f ðxÞ ¼ ky xak ð14:66Þ

where k · k designates a norm defined on vector space RM·1. Using the properties defining a norm it is shown

that f ðxÞ is a continuous and convex function of the real variable x . The convexity property is important since
it ensures that any local minimum of f ðxÞ is also a global minimum. A characterization of a minimizing

solution of function f ðxÞ for three commonly employed norms is now described.

Minimum Sum of Squared Errors Approximation

The most commonly employed measure in finding an approximate solution to a linear system of equations is

the sum of squared errors measure. For the case of a linear system of M equations in one variable function as

specified by Equation (14.65) this measure corresponds to the quadratic function in x1

f2ðxÞ ¼
XM
m¼1

jyðmÞ xaðmÞj2 ¼ ½y xa T ½y xa

¼ yTy 2xaTy þ x2aTa ð14:67Þ

A necessary condition for an optimal selection of the real variable x is obtained by setting to zero this function’s

derivative with respect to the variable x. This partial derivative is specified by df ðxÞ=dx ¼ 2aTy þ 2xaTa

thereby giving the unique minimum sum of squared errors solution:

1This criterion is equal to the square of the ‘2 norm of the residual error vector as specified by ky axk22.
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xo ¼ aTy

aTa
ð14:68Þ

This selection corresponds to a global minimum since the second derivative of f2ðxÞ is the positive number
2aTa.

Minimum Sum of Error Magnitudes Approximation

Another popularly used measure of approximation fidelity is the sum of error magnitudes. This particular

measure is appropriate when it is suspected that a small minority of the data points being analyzed

are unreliable (i.e., data outliers). The sum of error magnitudes associated with residual error vector

Equation (14.65) corresponds to the ‘1 norm of the residual error vector, that is:

f1ðxÞ ¼ ky xak1 ¼
XM
m¼1

jyðmÞ xaðmÞj ð14:69Þ

To illustrate why this measure is less sensitive to a bad data point(s) let the element yð pÞ denote a single data
outlier. The impact of this bad data point on the sum of error magnitude squared criterion is given by

jyðpÞ xaðpÞj2 while its impact on the sum of error magnitudes is jyðpÞ xaðpÞj. Clearly, the squaring of a large
residual error is more deleterious thereby suggesting that the ‘1 norm is less susceptible to bad data points.

Upon examination of the sum of error magnitudes criterion, it is first noted that if the term aðmÞ ¼ 0, it

follows that the mth term of the residual error vector is not a function of x and therefore has no influence in

minimizing f1ðxÞ. A plot of f1ðxÞ versus x reveals it to be a continuous convex linear function of x where the
transition from one slope to the next slope occurs at the roots xm ¼ yðmÞ=aðmÞ with aðmÞ 6¼ 0. This claim is

made apparent by observing that the derivative of f1ðxÞ for all values of x not equal to the roots:

xm ¼
yðmÞ
aðmÞ for aðmÞ 6¼ 0 ð14:70Þ

is given by

df1ðxÞ
dx

¼
X
xm5x

aðmÞ
X
xm4x

aðmÞ ¼
XM
m¼1

jaðmÞj þ 2
X
xm5x

jaðmÞj ð14:71Þ

Use of the indentity jyðmÞ xaðmÞj ¼ ½yðmÞ xaðmÞ sgn½yðmÞ xaðmÞ has been made in arriving at this

derivative expression where the sgn function is defined by sgnðxÞ ¼ 1 if x4 0, sgnðxÞ ¼ 1 if x50 and

sgn ð0Þ ¼ 0. Thus, the derivative is a piecewise constant function of x which has a jump of value

aðmÞ0 6¼ at the root xm ¼ yðmÞ=aðmÞ.
The value of the piecewise constant derivative function at x ¼ 1 is seen to be equal to the negative

quantity
PM

m¼1 jaðmÞj and it increases in a piecewise constant fashion to
PM

m¼1 jaðmÞj at x ¼ 1. An optimal
choice of x corresponds to: (i) a root where the derivative changes from a negative number to a positive

number, or (ii) for any x lying in the interval xk < x< xkþ1 where df1ðxkÞ=dx ¼ 0. In the first case, the

optimum value of x is unique, while in the second case the optimum is not unique and can be any point

contained in the interval where the derivative is zero. Whichever case applies, an optimum selection of x is

always equal to one of the roots, that is:

ky xoak1 ¼ min
xm¼yðmÞ=aðmÞ

aðmÞ6¼0
ky xmak1 ð14:72Þ

with the solution xo being unique if there exists only one root xm giving rise to this minimum. If two or more

different roots give rise to the minimum then any point lying within the interval whose end points are the two

most separated of such roots will also be a minimum.
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A more efficient method for determining an optimal xo than the direct evaluation procedure

(Equation (14.73)) is possible (see [3]) and requires the rearrangement of the roots (Equation (14.71)) in

the monotonically increasing fashion so that xm1
5 xm2

5 . . .5 xmq
where q<M in which the aðmÞ coefficient

associated with root xmk
is designated by amk

. It is readily shown that an optimum solution xo ¼ xmk

corresponds to the integer n for which the inequalityXM
m¼1

jaðmÞj þ 2
Xn
k¼1
jaðmkÞj> 0 ð14:73Þ

is first satisfied. In both the direct evaluation method (Equation (14.72)) and this alternative procedure it is

necessary to compute all the roots (Equation (14.70)). Only a partial number of functional evaluations are

required in the alternative method as reflected by expression (Equation (14.73)), however, as opposed to the

evaluation for all roots needed in the direct evaluation method. This advantage is partially offset by the

rearrange of roots operation required in the more efficient method.

Minimum Largest Error Magnitude Approximation

In many applications, it is desired to minimize the size of the largest error magnitude incurred in an

inconsistent system of linear equations. The minimum largest error magnitude of the residual error vector

(Equation (14.61)) corresponds to the ‘1 norm of that vector, that is:

f1ðxÞ ¼ ky xak1 ¼ max
1<m<M

jyðmÞ xaðmÞj ð14:74Þ

Upon examination of this expression it is observed that if a term aðmÞ ¼ 0 then the choice of x has no

influence on the error element yðmÞ xaðmÞ ¼ yðmÞ. With this in mind, any row of the vectors a and y for

which aðmÞ ¼ 0 is removed so that this preprocessing operation results in a vector a which has no zeros. As in

the ‘1 norm case, f1ðxÞ is found to be a piecewise linear convex function of x. Furthermore, it is now shown

that a solution to this problem can be confined to values of x where two residual error vector components have

the same magnitude, that is:

ky xoak1 ¼ min
jyðmÞ xaðmÞj ¼ jyðnÞ xaðnÞj

m6¼n
ky xak1 ð14:75Þ

To prove this conjecture, let xo be a solution for which only one of the components of the residual error vector

as designated by jyðmoÞ xoaðmoÞj has maximum magnitude where aðmoÞ 6¼ 0. Let this solution be perturbed

from xo to xo þ E where E is a scalar chosen small enough in magnitude so as to preserve the sign requirement
sgn fyðmoÞ ðxo þ EÞaðmoÞg ¼ sgn fyðmoÞ xoaðmoÞg. Under this sign preservation requirement it is seen
that jyðmoÞ ðxo þ EÞaðmoÞj ¼ jyðmoÞ xoaðmoÞj EaðmoÞsgn fyðmoÞ xoaðmoÞg. Clearly, it is always

possible to either gradually increase or decrease e from zero in a manner such that jyðmoÞ ðxo þ
EÞaðmoÞj5jyðmoÞ xoaðmoÞj which contradicts the assumption that xo is a solution. It therefore follows that
two or more components of the optimum residual error vector y xoa must have the same maximum

magnitude.

Example 14.4

Let it be desired to find the best ‘1; ‘2, and ‘1 norm approximations of the vector y¼ [2 1]T by a scalarmultiple of

the vector a ¼ [1 1]T. The residual error vector associated with these vector choices is then:

rðxÞ ¼ y xa ¼ 2
1

1
1

x ¼ 2 x
1 x

where x is real valued scalar. It is readily shown that the ‘1 norm of this residual error vector as given by

krðxÞk1 ¼ j2 xj þ j1 xj has the convex function representation:
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krðxÞk1 ¼
3 2x for x51
1 for 1< x< 2
2x 3 for x42

8<:
Clearly, any selection of xo1 in the interval 1< xo < 2 results in a minimum ‘1 solution with krðxo1Þk1 ¼ 1.

Only the two end points of this interval xo1 ¼ 1 and xo1 ¼ 2 result in a residual error vector with one

zero component. However, the unique minimum ‘2 as specified by expression (Equation (14.68)) is given by

xo2 ¼ ðyTaÞ=ðaTaÞ ¼ 3=2 while the unique minimum ‘1 as specified by expression (Equation (14.75)) is found

to be xo1 ¼ 3=2. In summary, these three approximations are specified by

xo1 ¼ x
1
1

for all 1< x< 2; and xo2 ¼ xo1 ¼
3

2

1
1

Although the best ‘1, ‘2, and ‘1 norm approximations are different in general problems, it is seen in this

example that the unique ‘2 and ‘1 approximate solutions are identical. However, the ‘1 approximate solution

is not unique but it does equal to xo2 ¼ xo1 for the scalar selection x ¼ 3=2.

General Minimum Norm Approximation Problem

We now address the more general case ofM inconsistent linear equations in N unknowns which generates the

residual error vector rðxÞ ¼ y Ax. As indicated in the introduction section, a problem of interdisciplinary

importance is that of selecting a vector x 2 RN · 1 so as to make the residual error vector as small as possible in

some sense. Although there exist several metrics that measure the size of a vector, we shall appeal to a norm

induced function as specified by

f ðxÞ ¼ ky Axk ð14:76Þ

where k · k designates any suitable chosen norm defined on vector space RM · 1.1 The approximation problem

then corresponds to finding a vector xo which minimizes this norm function. A minimizing selection then

generates the best approximation Axo of vector y in this norm sense. The minimization problem to be solved

then takes one of the two equivalent forms:

min
x2RN · 1

ky Axk ¼ min
~yy2RðAÞ

ky ~yyk ð14:77Þ

In the second equivalent optimization problem, RðAÞ ¼ f~yy 2 RM · 1 : ~yy ¼ Ax for x 2 RN · 1g designates the

range space of matrix A and this problem is formulated as that of finding a vector ~yyo 2 RðAÞ which most

closely approximates y in the prescribed norm fashion.

There are numerous selections for the norm used in the relationship in Equation (14.76), of which the most

commonly employed are the class of ‘p norms. Independent of which norm is used, however, the following

theorem shows that this norm induced function is a continuous as well as a convex function of x. As such, it

follows that any vector xo which is a local minimum of f ðxÞ is also a global minimum and the set of global

minima is a convex set [18]. This property is of particular importance when applying nonlinear programming

algorithms for finding a numerical solution to the problem of minimizing f ðxÞ. If the algorithm employed has

assured convergence to a local minimum then we are guaranteed that the local minimum is also a global

minimum.

1The mapping jj of a vector space X over the field of scalars F is said to be a norm if it satisfies the three axioms:

(i) kxk > 0 for all x 2 X and kxk ¼ 0 if and only if x 6¼ 0

(ii) kx þ yk< kxk þ kyk for all x; y 2 X
(iii) kaxk ¼ jaj kxk for all x 2 X and scalars a
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Theorem 14.1. Consider the norm induced function f ðxÞ ¼ ky Axk of the vector x 2 RN · 1 in which the

vector y 2 RM · 1 and matrix A 2 RM ·N are given and k · k designates any norm defined on vector space R M · 1.

It then follows that f ðxÞ is a convex and continuous function of x.

The properties of continuity and convexity of function f ðxÞ with respect to vector x are now established.

Since function f ðxÞ is norm induced it follows that the three axioms associated with a norm are applicable.

This being the case, it directly follows that for any choice of the scalar l satisfying 0< l< 1 and arbitrary

vectors x1; x2 2 RN · 1; we have

f ðlx1 þ ð1 lÞx2Þ ¼ ky A½lx1 þ ð1 lÞx2 k ¼ klðy Ax1Þ þ ð1 lÞðy Ax2Þk
< klðy Ax1Þk þ kð1 lÞðy Ax2Þk ¼ lf ðx1Þ þ ð1 lÞf ðx2Þ

In going from line one to line two the triangular inequality axiom of a norm was employed while in going to

the last equality on line two the scalar multiplier axiom of a norm was used. Convexity of f ðxÞ with respect to
vector x is therefore established. Continuity with respect to vector x is shown in a similar fashion by using the

triangular inequality of a norm to give

f ðxþDÞ ¼ ky A½xþD k< ky AxkþkADk< ky AxkþkAk · kDk ¼ f ðxÞþkAk · kDk

In a similar fashion it can be shown that f ðxÞ< f ðxþDÞþkAk · kDk: It then follows that for any value of the
positive scalar e, no matter how small, the requirement for continuity of f ðxÞ relative to vector x as specified by

kDk< e
kAk) jf ðxþDÞ f ðxÞj< e

is satisfied. The following lemma can be proven in a similar fashion and its proof is left as an exercise to the

reader.

Lemma 14.1. The norm induced function gðx; y;AÞ ¼ ky Axk is a convex and continuous function of the
vectors x 2 RN · 1, y 2 RM · 1 and matrix A 2 RM ·N

‘‘‘p Norm-Induced Functions

As indicated above, the measurement of goodness of approximation is defined to be the norm of the residual

error vector rðxÞ ¼ y Ax. The particular norm used is of critical importance and should be selected to reflect

the particular objectives of the approximation problem at hand. For the purposes of this chapter, the norm

induced function to be minimized is taken as the ‘p norm of the residual error vector, that is:

fpðxÞ ¼ ky Axkp ¼
XM
m¼1

jyðmÞ eTmAxjp
" #1=p

ð14:78Þ

In this expression em 2 RM · 1 denotes the standard basis vector whose components are all zero except for its

mth component which is 1. Thus the 1 · N vector eTmA corresponds to the m
th row of matrix A while the entity

eTmAx is the mth component of the vector Ax. This residual error vector measure corresponds to a norm

provided that the parameter p is any real number greater than or equal to one. As Theorem 14.1 indicates, this

norm function fpðxÞ is a convex and continuous function of x.
Unfortunately, a closed form solution for an optimal coefficient vector x 2 RN·1 which minimizes norm

function fpðxÞ does not exist except for the widely used sum-squared errors selection p ¼ 2. With this in mind,

algorithms are herein developed for finding solutions for the important special cases: (i) p ¼ 1 associated with

the minimization of the sum of error magnitude criterion:
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f1ðxÞ ¼
XM
m¼1

yðmÞ eTmAx ð14:79Þ

and (ii) P ¼ 1 corresponding to the minimization of the maximum error magnitude (Chebyshev) norm as

specified by

f1ðxÞ ¼ max yð1Þ eT1Ax ; yð2Þ eT2Ax ; . . . ; yðMÞ eTMAx
n o

ð14:80Þ

The sum of error magnitudes criterion f1ðxÞ is of particular use in those applications where the data vector y
contains a small number of data outliers (i.e., unrepresentative or bad data points). In such cases, the sum of

squared errors criterion f2ðxÞ is unduly influenced by these data outliers thereby often leading to a poor

selection of the coefficient vector x. The sum of error magnitudes criterion, however, tends to ignore the data

outliers provided that they are relatively few in number. The maximum error magnitude criterion is used in

those applications where the cost of making large errors is of central importance.

Minimum ‘‘‘‘‘‘2 Norm Approximate Solution

It has been previously stated that the problem of finding a vector x that minimizes the ‘2 norm of the residual

error vector rðxÞ ¼ y Ax has a convenient closed form solution. Furthermore, it is shortly shown that this

minimum ‘2 norm solution can be used for finding solutions to the associated problems of finding vectors

x that minimize the ‘1 and ‘1 norms of the residual error vector. With this importance established, let us now

direct our attention to the problem of minimizing the sum of squared residual errors criterion:

f2ðxÞ ¼ ky Axk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½y Ax T½y Ax

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yTy 2yTAx þ xT ATAx

q
ð14:81Þ

A necessary condition for a vector xo to minimize function f2ðxÞ is that the gradient of this function when
evaluated at xo must be equal to the zero vector. Using standard differentiation it is found that the gradient of

function f2ðxÞ is given by

Hx f2ðxÞ ¼
1

ky Axk2
ðATAx ATyÞ ð14:82Þ

Upon setting this gradient equal to the zero vector, it is clear that a necessary condition for a least squared

residual error selection for xo is one that satisfies the consistent normal system of equations ATAxo ¼ ATy

which corresponds to N linear equations in the N unknowns xo. This fundamental result is now formally

stated in theorem format.

Theorem 14.2. For any vector y 2 RM · 1 and matrix A 2 RM ·N , a necessary and sufficient condition that a

vector xo minimizes the sum of squared residual errors function f2ðxÞ ¼ ky Axk2 is that it satisfies the
consistent linear system of normal equations:

ATAxo ¼ ATy ð14:83Þ
Furthermore, all solutions to these normal equations result in the same associated residual error vector

rðxoÞ ¼ y Axo, which is orthogonal to the row vectors of matrix A; that is:

ATrðxoÞ ¼ o ð14:84Þ
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If the matrix A has full column rank N , then there exists a unique solution to the normal equations as

given by

xo ¼ ½ATA 1
ATy ð14:85Þ

Proof

The fact that all solutions to the problem of minimizing f2ðxÞ satisfy the normal equations has already

been proven. To establish the validity of orthogonality condition ATrðxoÞ ¼ o, one simply left

multiplies the residual error rðxoÞ ¼ y Ax0 by matrix AT to give ATrðxoÞ ¼ ATy ATAxo, which is

equal to the zero vector since xo satisfies the normal equations. Finally, if matrix A has rank N, then the

N · N matrix product ATA has rank N and is therefore invertible, which leads to the unique solution

(Equation (14.85)).

An illustration of a minimum ‘2 norm approximation is shown in Figure 14.21 where RðAÞ designates the
range space of matrix A (i.e., all vectors of the form Ax with x 2 RN · 1) whose dimension is equal to rankðAÞ.
The boundary of the hypersphere with center at y and radius c corresponds to all those vectors in RM·1 that are

located a distance c from y. The minimum ‘2 approximate solution then corresponds to that smallest selection

of radius c for which this hypersphere just touches the subspace RðAÞ: Clearly, the point of contact is unique
provided that the dimension of RðAÞ is N: Moreover, the residual error vector ro2 is orthogonal to RðAÞ, as
shown by expression (Equation (14.84)).

It is useful to note that the results expressed in this theorem can be extended to the case in which the

vectors x and y and matrix A are complex valued. The optimal solution in this complex data case

are readily shown to give rise to the normal system of equations A*Ax0 ¼ A*y, while the optimum

residual error orthogonality condition becomes A* rðxo2Þ ¼ o, the asterisk symbol * designates the

complex transpose operator. It is to be noted that the real valued data case Equation 14.83 is a special

case of this complex data result in which the complex transpose operator * is replaced by the transpose

operator T.

Fundamental Properties of Minimum ‘‘‘‘‘‘1 Norm Approximation

The use of an ‘1 norm criterion is appropriate when it is suspected that a small portion of the data being

analyzed is unreliable (i.e., contains data outliers). The ‘1 norm criterion has the capability of effectively

ignoring a few bad data points while emphasizing the majority of data points that more properly reflect the

true nature of the data. An insightful and useful characterization of a solution to the problem of minimizing

y

R(A)

||y−ya||2 = c

FIGURE 14.21 Approximate solution of Ax ¼ y using the ‘2 norm.
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the sum of residual error magnitude criterion as specified by

f1ðxÞ ¼ ky Axk1 ¼
XM
m¼1

jyðmÞ eTmAxj ð14:86Þ

is now provided. To aid in our analysis, this summation for 1<m<M may be decomposed over three

disjoint integer sets where residual error components rmðxÞ ¼ yðmÞ eTmAx are positive, negative, or zero.

Under this decomposition the sum of residual error magnitude function can be expressed as

f1ðxÞ ¼
X

yðmÞ4eTmAx

yðmÞ eTmAx
h i X

yðmÞ5eTmAx

yðmÞ eTmAx
h i

where the first-right side summation is taken over all summation index integers for which rmðxÞ ¼
yðmÞ eTmAx4 0 and the second summation is taken over all summation index integers for which

rmðxÞ ¼ yðmÞ eTmAx5 0.

It is now shown that there exists a vector xo which minimizes the sum of residual error magnitudes function

f1ðxÞ, in which at least N components of the associated residual error vector rðxoÞ ¼ y Axo are zero. To

prove this conjecture, let xo be an optimum approximation solution for which only No < N 1 components

of the residual error vector are zero. Let the vector xo be perturbed to xo þ ED, where E is a real valued step size
scalar and D is a perturbation direction vector. The perturbation direction vector is chosen so that the original

zeros in the unperturbed residual error vector rðxoÞ ¼ y Axo are maintained at zero in the perturbed

residual error vector rðxo þ EDÞ ¼ y Axo EAD. This is always possible by choosing the nonzero

perturbation direction vector D to be orthogonal to each of the No5N row vectors of matrix A associated

with the zero components of rðxoÞ ¼ y Axo: The scalar E is restricted to be small enough in magnitude so
that the signs of the nonzero components in the unperturbed residual error vector y Ax0 and the perturbed

residual error vector rðx0 þ EDÞ ¼ y Ax0 EAD are maintained. Under this restriction the corresponding

sum of residual error magnitude criterion at the perturbed point xo þ ED is given by

f1ðxo þ EDÞ ¼
X

yðmÞ4 eTmAx

ym eTmAðxo þ EDÞ
h i X

yðmÞ5 eTmAx

½ym eTmAðxo þ EDÞ

¼ f1ðxoÞ E
X

yðmÞ4 eTmAx

eTm
X

yðmÞ5 eTmAx

eTm

24 35
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

pT

AD ¼ f1ðxoÞ EpTAD

Clearly, the vector p appearing in this expression has components which are exclusively one, minus one, or

zero. It is further observed that if vector p is not orthogonal to vector AD, then E can be chosen so that

f1ðxo þ EDÞ5 f1ðxoÞ which contradicts the fact that xo is an optimal solution. Thus, the vector p must be

orthogonal to AD and f1ðxo þ EDÞ ¼ f1ðxoÞ. The step size scalar E is now gradually increased or decreased from

zero until a formally nonzero element of the unperturbed residual error vector rðxoÞ ¼ y Axo is first driven

to zero. The new vector exxo ¼ xo þ EoD causes the perturbed residual error vector y A exxo to have one

additional zero component while maintaining the functional’s value. This perturbation procedure is continued

in this manner until the perturbed residual vector eventually has N zero components while maintaining the

functional value. The following fundamental theorem related to minimum ‘1 norm approximation solutions

has therefore been proven.

Theorem 14.3. For any vector y 2 RM·1 and matrix A 2 RM·N , there exists a real N · 1 vector xo which
minimizes the sum of residual error magnitudes criterion f1ðxÞ such that the associated residual error vector
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rðxo1Þ ¼ y Axo ð14:87Þ

has at least N zero components. Furthermore, if the row vectors comprising the augmented matrix

½A...y 2 RM·ðNþ1Þ satisfy the Haar condition then there exists a real N · 1 vector xo which minimizes criterion
f1ðxÞ such that the residual vector has exactly N zero components.1

An illustration of the minimum ‘1 norm approximation is depicted in Figure 14.22 where the range space

RðAÞ (i.e., all vectors of the form Ax) is a subspace of dimension rankðAÞ. The boundary of the rotated by 458
hypercube with center at y and width c corresponds all those vectors in RM·1 which are located a distance c

from y in the ‘1 norm sense. The minimum ‘1 approximate solution corresponds to that smallest selection of

width c for which this rotated hypercube just touches the subspace RðAÞ: The point of contact may or may
not be unique but one of the points of contact has an associated residual error vector ro1 which has at least N

zeros as indicated in the above theorem. Example 14.1 demonstrates that a minimum ‘1 norm solution need

not be unique although it typically is in many applications.

In an algorithm to be shortly presented for determining a vector x which minimizes the ‘1 induced

functional (Equation (14.61)), a basic requirement is that of finding a best ‘1 norm approximation of given

vector y 2 RM · 1 by a scalar multiple of another given vector a 2 RM · 1. This is a special application of the

above theorem in which A ¼ a is a M · 1 matrix so that N ¼ 1: It therefore follows that there exists a

minimum ‘1 norm approximation solution for which N ¼ 1 components of the residual error vector are zero.

This characterization is now formally described and agrees with the characterization (Equation (14.68))

previously established using a different approach.

Theorem 14.4. Let a and y be any two nonzero vectors contained in RM · 1 and consider the set of roots

xðmÞ ¼ yðmÞ
aðmÞ for 1<m<M in which aðmÞ 6¼ 0 ð14:88Þ

which corresponds to those values of x for which the mth component of the residual error vector e ¼ y xa is

zero. At least one root of these roots is a global minimum of the norm functional f1ðxÞ ¼ jy xaj1, that is:

min
x2R

f1ðxÞ ¼ min
xðmÞ ¼ yðmÞ=aðmÞ
for all aðmÞ 6¼ 0

f1ðxÞ ð14:89Þ

y

R(A)

||y−ya||1 = c

FIGURE 14.22 Approximate solution of Ax ¼ y using a ‘1 norm.

1Let there be given the set of vectors {a1, a2, . . . , aQ} contained in vector space R
N · 1 (or RN · 1) in which Q > N . This set of

vectors is said to satisfy the Harr condition if every subset of N of these vectors forms a linerarly independent set.

14-52 Circuits, Signals, and Speech and Image Processing



Furthermore, this global minimum is unique provided that only one of the roots achieves this global

minimum. If two distinct roots achieve this global minimum, then any value of x contained in the closed

interval with these roots serving as end points is also a global minimum.

Brute Force Method for Finding a Minimum ‘‘‘‘‘‘1 Approximate Solution

A brute force method of finding a minimum ‘1 approximate solution to a general system ofM linear equations

y ¼ Ax in N unknowns is apparent from Theorem 14.3. This method makes use of the fact that an optimal

selection of x exists for which at least N components of the associated error vector are zero. In this approach,

one determines solutions to all subsets of N equations of the originalM system of linear equations y ¼ Ax and

evaluates the ‘1 norm of the associated residual error vector y Ax corresponding to each of these solutions.

An optimal solution then corresponds to a residual error vector(s) that possesses the smallest ‘1 norm.

Unfortunately, this brute force procedure is inefficient since the number of subsets of N equations in a system

of M equations is given by the combination of M things taken N at a time, that is,

cMN ¼
M!

N!ðM NÞ! ð14:90Þ

This number can be large, which often precludes the brute force method from being of use in real-time

applications.

The algorithmic approach to be now described is predicated on systematically proceeding from one such

subset of N linear equations to another subset of N linear equations so that the ‘1 norm functional f1ðxÞ is
decreased at each transition. The efficiency of this algorithm is measured by the number of such subsets

(iterations) that need be evaluated until an optimal solution is reached. It has been empirically found that this

number is significantly smaller than the brute force number (Equation (14.90)) as well as many proposed

linear programming based methods.

Improving ‘‘‘‘‘‘1 Norm Perturbation Procedure

We shall now incorporate the characterization specified in Theorem 14.3 to develop an effective algorithm for

numerically generating a minimum ‘1 norm approximate solution to the inconsistent system of linear

equations Ax ¼ y for a given vector y 2 RM · 1 and matrix A 2 RM ·N . Since this linear system of equations is

hypothesized as being inconsistent, it follows that y RðAÞ. Thus, associated with each x 2 RN · 1 there is

generated a nonzero residual error vector as specified by

rðxÞ ¼ y Ax ð14:91Þ

It is now desired to select x so that the transformed vector Ax best approximates y in the sense of minimizing

the ‘1 norm-induced functional:

f1ðxÞ ¼ ky Axk1 ð14:92Þ

It has been previously shown that functional f1ðxÞ is a continuous and convex function of x. Moreover, if one
were to make a plot of the surface f1ðxÞ vs. x in RðNþ1Þ · 1, it would be a convex polyhedron. A nonunique

minimum ‘1 norm solution corresponds to those choices of the pair ðA; yÞ for which this polyhedron has a flat
bottom face.

Many of the algorithms for determining a minimum ‘1 norm solution are based on fundamental Theorem

14.3, which establishes the existence of a solution xo for which at least N components of the residual error

vector rðxoÞ are zero. The majority of these algorithms are based on an exchange principle whereby one of the
N equations associated with the prevailing N zero residual components being considered for an optimum

choice is exchanged for another equation in the remaining set of M N equations in such a manner that the
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new set of N equations results in a smaller ‘1 residual error vector norm. A primary goal of this and the next

section is to develop a more effective solution algorithm that converges at a faster rate than this class of

exchange algorithms.

In our development, a vector x is said to be an extreme point of a system of linear equations if the associated

residual error vector rðxÞ ¼ Ax y has at least N zero components. Fundamental Theorem 14.3 indicates that

at least one of the extreme points is a minimum ‘1 approximate solution. If more than N components of the

residual error vector are zero, then the extreme point is said to be degenerate. A degenerate extreme point can

arise if and only if the row vectors of the augmented matrix ½A...y do not satisfy the Haar condition.

Perturbation Analysis

In the algorithm to be shortly proposed, the first step entails proceeding from an arbitrary nonextreme point

x to an extreme point xe in such a manner that the ‘1 norm of the residual error vector is either decreased

or at worst maintained (i.e., f1ðxeÞ< f1ðxÞ). To achieve such a procedure, a perturbation analysis of the

functional f1ðxÞ is made whereby it is assumed that No components of the residual error vector are zero where

0< No5N: It is convenient to decompose the residual error vector rðxÞ ¼ y Ax into the two component

vectors:

r1ðxÞ ¼ y1 A1x ¼ 0 and r2ðxÞ ¼ y2 A2x ð14:93Þ

where the entities y1 2 RNo · 1 and A1 2 RNo ·N correspond to that subset of No equations that have zero

residuals and y2 2 RðM NoÞ · 1 and A2 2 RðM NoÞ·N correspond to the entities of the remaining subset of

M No equations that have nonzero residuals. It therefore follows that the ‘1 norm of the residual error

vector rðxÞ ¼ y Ax simplifies to

f1ðxÞ ¼ ky2 A2xk1
The prevailing vector x can now be perturbed to x þ ED, where D is a nonzero perturbation direction vector

and e is a step size scalar. The perturbation vector D is now selected to lie in the null space of matrix A1, that is,

A1D ¼ o

There always exists such a nonzero vector because the null space of the No· N matrix A1 has a dimension

greater than or equal to N No40. It therefore follows that for this perturbation vector selection, the

perturbed residual error vector has its component vectors specified by

r1ðx þ EDÞ ¼ o and r2ðx þ EDÞ ¼ r2ðxÞ EA2D

In arriving at this result, it is seen that r1ðx þ EDÞ ¼ y1 A1ðx þ EDÞ ¼ r1ðxÞ EA1D ¼ 0 and

r2ðx þ EDÞ ¼ y2 A2ðx þ EDÞ ¼ r2ðxÞ EA2D. Since r1ðx þ EDÞ ¼ 0 it follows that the ‘1 norm of the

perturbed residual error vector as specified by krðx þ EDÞk1 ¼ kr2ðx þ EDÞk1. The step size scalar e is now
chosen to minimize the ‘1 norm of the perturbed residual error vector component r2ðx þ EDÞ¼ r2ðxÞ EA2D.
In accordance with Theorem 14.4, an optimal step size selection is obtained by employing relationship (14.93)

in which a ¼ A2D and y ¼ r2ðxÞ, namely:

r2ðxÞ EoA2Dk k1 ¼ min
E2R

kr2ðxÞ EA2Dk1 ¼ min
Em¼eTmr2ðxÞ=eTmA2D
for all eTmA2D6¼0

kr2ðxÞ EA2Dk1

This choice of E ¼ Eo causes at least one of the components of r2ðx þ EoDÞ to be zero. Based on this

perturbation analysis the following fundamental theorem characterizing minimum ‘1 approximate solutions

has been proven.
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Theorem 14.5. Let there be given a vector y 2 RM · 1 and a matrix A 2 RM ·N . For any vector x 2 RN let the

associated residual error vector rðxÞ ¼ y Ax have No zeros where 0< No5N and let the residual error

vector be decomposed as specified by relationship (14.93). The vector x is now perturbed to

x þ EoD ð14:94Þ
in which the nonzero perturbation direction vector D is chosen to lie in the null space of matrix A1, that is:

A1D ¼ o ð14:95Þ
The step size scalar eo is specified by

r2ðxÞ EoA2Dk k1 ¼ min
Em¼ eTmr2ðxÞ=eTmA2D
for all eTmA2D 6¼ 0

kr2ðxÞ EA2Dk1 ð14:96Þ

The perturbed selection x þ EoD causes the ‘1 norm criterion is be improved or at worst maintained so

that f1ðx þ EoDÞ< f1ðxÞ and the perturbed residual error vector rðx þ EoDÞ has at least No þ 1 zero

components in which No of these zero components are the same as those of the unperturbed residual error

vector rðxÞ.

It is to be noted that when the vector x appearing in this theorem is not a minimum ‘1 norm solution, it

has been empirically found that this procedure for selecting the perturbation vector D has generally led to

an improvement in the ‘1 norm’s value so that f1ðx þ EDÞ5f1ðxÞ. Moreover, by continuing this procedure
in an iterative fashion an extreme point xe is eventually arrived at in which the associated error vector

rðxeÞ ¼ y Axe has at least N zeros. The ‘1 norm of the residual error vector is either decreased or at worst

maintained during the iterative process (i.e., f1ðxeÞ< f1ðxÞ). Once an extreme point has been obtained, it is
necessary to determine whether that extreme point is a required minimum ‘1 norm solution. The following

theorem provides a mechanism for making this determination.

Theorem 14.6. (Bloomfield and Steiger [3]) For a given vector y 2 RM · 1 and matrix A 2 RM ·N , let the

vector x 2 RN · 1 be a nondegenerate extreme point of the residual error vector rðxÞ ¼ y Ax. Furthermore, let

the submatrix A1 2 RN ·N designate the N rows of matrix A associated with the N zero elements of the residual

error vector. If matrix A1 is invertible then the nondegenerate extreme point x is a minimum ‘1 solution if and

only if all the components of the vector:

c ¼ AT1

h i 1
AT2 sgnfy2 A2xg ð14:97Þ

have magnitudes less than or equal to one (i.e., kck1<1).1 Moreover, this solution is unique if and only if all
the components of c have magnitudes strictly less than one (i.e., kck151). In the case kck141; let cðn1Þ

1The sgn function as applied to a real N · 1 vector x is defined by

sgnðxÞ ¼

sgnðxð1ÞÞ
sgnðxð2ÞÞ

_
_
_

sgnðxðNÞÞ

26666666664

37777777775
where it is recalled that the sign of a real number a as specified by sgnðaÞ ¼ 1 if a40, = 1 if a50 and is 0 when a ¼ 0.
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denote any component of c whose magnitude is larger than one. It then follows that a perturbation vector ED
which renders the improvement f1ðx þ EDÞ5 f1ðxÞ is given by

ED ¼ aoA 1
1 en1 ð14:98Þ

where ao is any value of the scalar a for which the vector aA 1
1 en1 best approximates the residual error vector

rðxÞ in the minimum ‘1 norm sense.

A proof of this theorem is found in Bloomfield and Steiger [3]. An alternative proof is now given that is

both more concise and utilizes procedures which are subsequently employed in the minimum ‘1 norm

algorithm to be presented in the next section. This proof makes use of the fact that the column vectors of

A 1
1 form a basis of RN · 1 so that any perturbation vector can be uniquely represented as ED ¼ A 1

1 b for an

appropriate choice of vector b 2RN · 1. It is now assumed that the size of the perturbation vector A 1
1 b is

restricted so that the sign preservation of the residual error vector sgnfy2 A2ðx þ ½A1 1bÞg ¼ sgnfy2 A2xg
is maintained. Under this restriction it follows that the perturbed residual error vectors are given by

r1ðx þ A 1
1 bÞ ¼ b and r2ðx þþA 1

1 bÞ ¼ y2 A2x A2A
1

1 b: Thus:

f1ðx þ A 1
1 bÞ ¼ kbk1þ y2 A2x A2A

1
1 bÞ

h iT
sgnfy2 A2xg

¼ kbk1þf1ðxÞ bT AT1

h i 1
AT2 sgnfy2 A2xg

¼ f1ðxÞ þ kbk1 bTc ¼ f1ðxÞ þ
XN
n¼1

bðnÞj j½1 sgnfbðnÞgcðnÞ

The fundamental issue to be now explored is that of determining conditions under which the vector b can be

chosen so that the improvement condition f1ðx þ A 1
1 bÞ5 f1ðxÞ is realized. Clearly, for the given vector c

specified in Equation (14.97), the signs of the bðnÞ coefficients should be chosen so that sgnðbðnÞÞ ¼ sgnðcðnÞÞ,
in order that the summand terms jbðnÞj½1 sgnfbðnÞgcðnÞ appearing in the above summation be made as

small as possible. Under this choice, it follows that

f1 x þ A 1
1 b ¼ f1ðxÞ þ

XN
n¼1

bðnÞj j½1 jcðnÞj

From this expression it is apparent that if the cðnÞ elements all have magnitude less or equal to 1 then this
summation is always nonpositive and an improvement in the ‘1 norm functional f1ðxÞ cannot be made.
However, if cðn1Þ designates any element of c whose magnitude is greater than one then the choice bðnÞ ¼ 0

for all n except for bðn1Þ which is set equal to a positive scalar b (i.e., b ¼ ben1Þ. For this selection of b we have

f1 x þ A 1
1 ben1 ¼ f1ðxÞ þ b½1 jcðn1Þj

which results in the desired improvement f1ðx þ EDÞ5 f1ðxÞ. The positive scalar b must be chosen sufficiently
small to achieve the aforementioned sign preservation of the residual error vector. When more than one

component of c has a magnitude greater than 1, then a variety of different improving perturbation directions

can be devised.

The validity of perturbation selection (Equation (14.98)) is established by appealing to the fact that an

improving vector perturbation lies in the one-dimensional space spanned by A 1
1 en1. Application of Theorem

14.4 then generates the scalar b for which vector bA 1
1 en1 best approximates the residual error vector rðxÞ in

the ‘1 norm sense. The above results have been predicated on the assumption that an extreme point is
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nondegenerate. When a degenerate extreme point is encountered, the following theorem addresses the issue of

whether that point is optimum or not.

Theorem 14.7. Let the full column rank matrix A satisfy the Haar condition and let x 2 RN be a degenerate

extreme point so that its associated residual error vector rðxÞ ¼ y Ax has No4N zero elements.

Furthermore, let A1 designate the No · N matrix whose rows correspond to the row vectors of matrix A

associated with these No zero residual error elements. This degenerate extreme point is a minimum ‘1 norm

solution if and only if none of the vectors

cðkÞ ¼ AðkÞT1

h i 1
AT2 sgnfy2 A2xg for 1< k<

No!
N!ðNo NÞ!

has a kcðkÞk141 where the fAðkÞ1 g designates the set of all N · N submatrices of matrix A1.

Algorithm for Computing a Minimum ‘‘‘‘‘‘1 Norm Approximate Solution

A straightforward procedure for finding a minimum ‘1 approximate solution to the general system of linear

equations y ¼ Ax is obtained by appealing to the results spelled out in Theorem 14.3 indicating that an

optimal selection of x exists for which at least N components of the associated residual error vector are zero.

This algorithmic approach is predicated on systematically proceeding from one subset of N linear equations

being set to zero to another subset of N linear equations being set to zero in a manner that the ‘1 norm

functional f1ðxÞ is decreased at each transition. The efficiency of this algorithm is measured by the number of

such subsets (iterations) that need be evaluated until an optimal solution is reached. It has been empirically

found that this number is significantly smaller than the brute force number (Equation (14.91)) as well as many

so-called row exchange algorithms. The steps of this algorithm are outlined in Table 14.9.

Since the vector x arrived at in going to Step 5 has an associated residual error vector with N zero elements,

it is a candidate for an optimal solution in accordance with Theorem 14.3. Furthermore, if an improvement in

vector x cannot be made, the algorithm must have converged to an optimal solution due to the convexity of

functional f1ðxÞ. Many of most widely employed algorithms for solving the minimum ‘1 norm approximation

problem make use of linear programming methods. Three of the most popular of these linear programming

algorithms share a common trait [1–3]. Specifically, once the condition that the residual error vector r ¼
y Ax has N zeros has been reached, an improving perturbation vector is then determined so that the

perturbed residual error vector err ¼ y Aðx þ DÞ maintains N 1 of the unperturbed zero residual error

elements at their zero value while setting to zero a previously nonzero residual error element. The proposed

algorithm differs from these approaches in that once the state has been reached where the residual error vector

has N zeros, an improving perturbation vector is then determined (from Steps 2 to 5) in which no restriction

of maintaining N 1 of the previous zero residual error elements is imposed. This property has the potential

TABLE 14.9 Minimum ‘1 Approximate Solution Algorithm

Step 1. Using an arbitrary initial selection of x (e.g., the zero vector or the minimum ‘2 approximate solution)

generate the associated residual error vector rðxÞ ¼ y Ax.

Step 2. If the residual error vector rðxÞ has No5N zero elements go to Step 3. Otherwise go to Step 5.

Step 3. Set the new trial solution x equal to x þ EoD where the nonzero perturbation vector D and step size scalar

E are chosen according to Equations (14.95) and (14.96). The new residual error vector rðx þ EoDÞ has at least
No þ 1 zero elements with f1ðx þ EoDÞ< f1ðxÞ.

Step 4. If the residual error vector associated with the new trial solution x vector has fewer than N zero elements go

to Step 3. Otherwise go to Step 5.

Step 5. Determine whether the vector c ¼½AT1 1AT2 sgnfy2 A2xg has at least one component whose magnitude is
greater than one (i.e., kck14 1). If kck14 1 then make the improvement in the ‘1 norm functional f1ðxÞ
in accordance with Equation (14.98). Set the new trial. Solution x equal to x þ ED and go to Step 2. If kck1 < 1

then x is an optimal solution.
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of making the proposed algorithm be more rapidly convergent than these linear programming based methods.

As the next example indicates, empirical experience has shown that it takes far fewer than cMN iterations to

reach convergence indicating a very efficient algorithm.

Example 14.5

To illustrate the efficiency of the proposed algorithm, an example of 24 overdetermined linear equations in

four unknowns was considered in which the elements of the 24 · 4 matrix A and the 24 · 1 vector y

where independent samples of: (i) a Gaussian random variable with zero mean and unit variance, or (ii) a

uniform random variable taking on values in the interval ½0; 1 . The proposed algorithm was found to have

converged to the correct minimum ‘1 norm solution as verified by the brute force method in each of the

1000 trial runs made on the Gaussian and uniform random samples. Furthermore, the mean and variance

of the number of iterations (i.e., algorithmic Steps 2 to 5) required to reach convergence in these 1000 trial

runs was found to be 2.6880 and 1.0177, respectively, for the 1000 Gaussian random variable trial runs and

3.4210 and 1.3673, respectively, for the 1000 uniform random variable trial runs. Since there are a total of

c244 ¼ 10;626 possible trial solutions which render a residual error vector with four zeros, the fact that the

proposed algorithm converges while evaluating on an average less than four of these possibilities

indicates that the proposed algorithm is very efficient. This conclusion is further reinforced by the fact that

in the 1000 trial runs made, a maximum of nine iterations was required for convergence on only one of

the trial runs.

Solution in Degenerate Extreme Point Case

The algorithm described above operates in an efficient and effective manner provided that the row vectors of A

satisfy the Haar condition. If this is not the case, it is possible that the matrix A1 arising at Step 5 of the

Algorithm given in (14.99) may not be invertible. Similarly, if more than N residual error vector components

are zero then the requirements of Theorem 14.6 are not valid and the algorithm becomes stuck at Step 5. This

condition can occur only if the row vectors of the ½A...y 2 RM · ðNþ1Þ do not satisfy the Haar condition. To
overcome these two potential drawbacks, use is made of the fact that the functional

fpðxÞ ¼ ky Axkp

is a continuous function of the vector y and matrix A for any p satisfying 1< p<1.
With these ideas in mind, let us consider the perturbed linear system of equations ‘1 based functional

(i.e., p ¼ 1Þ as specified by

~ff 1ðx; aÞ ¼ ky þ ayp ðAþ aApÞxk1 ð14:99Þ

where yp is a M · 1 perturbation vector, Ap is a M · N perturbation matrix and a is a scalar. These vector
and matrix perturbations are chosen so that no extreme degenerate points exist for this perturbed functional

for nonzero selections of the scalar a. A little thought should convince oneself that this condition may be met

with probability one by selecting the elements of this vector and matrix to be independent samples of a

random variable. Once these these perturbation entities have been generated, use is made of the observation

that

lim
a!0

~ff 1ðx; aÞ ¼ f1ðxÞ

In particular, one solves the nondegenerate minimization of functional (14.99) for a sequence of a values

which converge to zero (e.g., a ¼ ð0:5Þk for k ¼ 1; 2; . . .). The sequence of solutions will be such that exactly N

residual error elements are zero in each case. One terminates this sequential process once the vector and matrix

perturbations are sufficiently small. At this termination point, the N zero residual error elements are identified.
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The required solution in minimizing f1ðxÞ is then obtained by setting to zero the same residual error elements
in the unperturbed residual error equation y Ax. Continuity of functional f1ðxÞ ensures that this will be the
desired solution.

Let us first consider the case in which row vectors of matrix A satisfy the Haar condition, but No4N

components of the residual error vector y Ax obtained at Step 5 of the algorithm are zero. One then slightly

perturbs No N of the components of vector fpðxo þ EDÞ associated with the zero components of the residual
error vector so that the perturbed residual error vector then has exactly N zero components. These

perturbations must be made sufficiently small in magnitude. We are then able to carry out Step 5 of the

algorithm on the perturbed system of linear equations. The algorithm is then implemented in the normal

fashion on the perturbed system until either convergence is obtained or when more than N components of the

residual error vector are zero at Step 5. In this latter case, the perturbed vector y þ Dy is again perturbed in the
same fashion described earlier in the paragraph to cause the reperturbed residual error vector to have exactly

N zeros. Using this perturbation procedure, eventually convergence is achieved in which exactly N

components of the residual error vector are zero. One then determines the unique vector x so that these same

N components in the original residual error vector r ¼ y Ax are set to zero. Continuity of f1ðxÞ relative to y
indicates that this will be an optimum solution provided that the perturbations Dy that led to this result were
made sufficiently small.

If the N · N matrix A1 obtained at Step 5 of the algorithm fails to be invertible, the Haar assumption

on matrix A is not valid. In this case, one slightly perturbs the rows of matrix A that are associated with

Az so that the perturbed Az is invertible. One continues in a fashion similar to that taken for the

perturbation of y described in the previous paragraph until convergence at Step 5 on the perturbed

system of equations is achieved. One then selects that unique vector x so that the same N components in

the original residual error vector rðxÞ ¼ y Ax are zero. Continuity of f1ðxÞ relative to A indicates that

this will be an optimum solution provided that the perturbations on A that led to this result were made

sufficiently small.

Best Line Fit to Two-Dimensional Data

In investigations involving a linear system of equations, one of the primary reasons for preferring an ‘1
approximate solution to the more widely employed ‘2 approximate solution lies in the ability of the ‘1 norm

to ignore unrepresentative data (i.e., data outliers). To illustrate this predisposition, let us consider the task of

the finding a best line fit to a set of two-dimensional data as specified by

ðaðmÞ; yðmÞÞ for 1<m<M ð14:100Þ

A plot of this data in the ða; yÞ plane (i.e., a scatter diagram) provides a visual mechanism for determining the

basic nature of the interrelationship between these two variables. It often happens that these data points cluster

about a line in the ðx; yÞ plane. In such situations, it is then desirable to employ a linear model of the form:

ŷyðmÞ ¼ x1aðmÞ þ x2 ð14:101Þ

to approximate the yðmÞ elements. The associated modeling residual errors rðmÞ ¼ yðmÞ byyðmÞ for

1<m<M may then be represented by the model residual error vector :

rð1Þ
rð2Þ
..
.

rðMÞ

26664
37775 ¼

yð1Þ
yð2Þ
..
.

yðMÞ

26664
37775

að1Þ 1
að2Þ 1

..

. ..
.

aðMÞ 1

26664
37775 xð1Þ

xð2Þ ð14:102Þ
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or more compactly:

r ¼ y Ax ð14:103Þ

The linear modeling problem then corresponds to selecting the model parameter vector x 2 R2· 1 so as to

minimize the model residual error vector’s size.

As indicated previously, the ‘2 norm provides the most widely employed means for measuring the model

residual error vector’s size. It then follows from relationship (14.104) that the unique minimum ‘2 norm

selection of the model parameter vector is specified by xo ¼ ½ATA 1ATy. Upon substitution of the vector y

and matrix A appearing in relationship (14.103) into this expression for xo it is found that the parameters of

the optimal least squares fit to the given two-dimensional data are given by

xo1 ¼
MðaTyÞ ðaT1ÞðyT1Þ
MðaTaÞ ðaT1Þ2 and xo2 ¼

ðaTaÞðyT1Þ ðaT1ÞðyTaÞ
MðaTaÞ ðaT1Þ2 ð14:104Þ

in which the vectors a and 1 2 RM have as their components aðmÞ and 1, respectively, for 1<m<M. As is

shown in the following example, this least squares residual error based model is particularly susceptible to data

outliers while the ‘1 norm-based model is relatively immune to a few data outliers.

Example 14.6

Let us consider the case in which the data being analyzed is specified by

yðnÞ ¼ 2þ 3nþ wðnÞ for 1< n< 24

where wðnÞ is Gaussian white noise of zero mean and unit variance. Furthermore, the data points at n ¼ 5 and

n ¼ 18 are altered to yð5Þ ¼ 62 and yð18Þ ¼ 12 so as to represent two data outliers. These data points are

plotted in Figure 14.23 and are represented by the asterisks. An examination of these data points suggests that,

with the exception of the two data points yð5Þ and yð18Þ, the points approximately lie on a line. With this in
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FIGURE 14.23 Minimum L1 and L2 linear fit to noise contaminated linear data with two data outliers.
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mind, a linear fit to the data is next made where the 18 · 2 matrix A associated with this approximation

problem is specified by

A ¼

1 1
2 1
3 1
..
. ..

.

18 1

2666664
3777775

with the true values of the parameter vector being xð1Þ ¼ 3 and xð2Þ ¼ 2. The optimum lines fit obtained by

the closed form minimum ‘2 norm solution (14.104) and the ‘1 solution obtained by the proposed algorithm

are also displayed in this plot. It is apparent that the minimum ‘1 norm line fit conforms more accurately to

the given data points and tends to ignore two data outliers while the minimum ‘2 norm fit is deleteriously

impacted by the data outliers. The proposed ‘1 algorithm only took two iterations before convergence and

gave the parameter estimates x1ð1Þ– ¼ 3:0071 and x1ð2Þ– ¼ 1:6582 with the x
ð1Þ
1 approximation seen to be

very close to its true value of 3. However, a least squares residual error fit led to the less accurate estimates

x2ð1Þ– ¼ 2:4011 and x2ð2Þ– ¼ 5:0993.

Example 14.7

We next consider the example treated by Hawley and Gallagher [13] whereby a best ‘1 linear fit byyðmÞ ¼
xð1ÞaðmÞ þ xð2Þ to the data sequence:

y ¼ ½3 1 5 7 5 9 11 15 13 6 T

is to be obtained. Linear model (Equation (14.102)) and this section’s ‘1 algorithm described in section

‘‘Algorithm for Computing a Minimum ‘1 Norm Approximate Solution’’ were used to provide an optimum ‘1
norm linear fit in which the initial parameter vector was set at x ¼ 0. The algorithm converged in two

iterations to an ‘1 optimum selection of the model parameters x1ð1Þo ¼ 4=3 and x1ð2Þo ¼ 1. This selection

caused the third, sixth, and ninth components of the residual error vector to be zero and is in agreement with

the solution obtained using the approach of Hawley and Gallagher.

Minimum ‘‘‘‘‘‘1111 Norm Approximate Solution

In certain applications, it is desired to find an approximate solution to an inconsistent system of linear

equations y ¼ Ax in which the largest error magnitude is to be minimized. The ‘1 norm of the associated

residual error vector provides this measure as formally specified by

f1ðxÞ ¼ ky Axk1 ¼ max y1 eT1Ax ; y2 eT2Ax ; ; yM eTMAx ð14:105Þ

It is well known that a solution xo to this problem exists in which at least N þ 1 components of the associated

residual error vector ro ¼ y Axo are equal to the maximum residual error magnitude ky Axok1. We shall
now prove this characterization using techniques that are subsequently employed in developing an effective

algorithm for numerically finding a minimum ‘1 approximate solution.

To begin this characterization, let xo designate any solution to the problem of minimizing the maximum

residual error magnitude criterion f1ðxÞ: Furthermore, let the associated residual error vector ro ¼ y Axo

have Nm components whose magnitudes are equal to the maximum residual error magnitude criterion

f1ðxoÞ ¼ ky Axok1 where 1< Nm < N. Let us now isolate those equations which are associated with the

Nm largest residual error magnitudes, that is:

r1ðxoÞ ¼ y1 A1x
o
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where the vectors r1ðxoÞ, y1 2 RNm · 1 and matrix A1 2 RNm ·N are the components of the vectors rðxoÞ,
y 2 RM · 1 and matrix A 2 RM ·N associated with the Nm largest residual error magnitudes.

Let us now perturb xo to xo þ ED where E is a small positive scalar multiplier and the perturbation vector D
is any solution to the system of underdetermined equations:

A1D ¼ sgnfr1ðxoÞg

This system of equations always has a solution provided that matrix A1 2 RNm ·N has full row rank Nm where it

is recalled that Nm < N. This full rank condition is always assured provided that the row vectors of matrix A

satisfy the Haar condition. Under this assumption, it follows that the Nm · 1 residual error vector associated

with the subset of equations corresponding to the largest residual error magnitude components becomes

y1 A1ðxo þ eDÞ ¼ r1ðxoÞ e sgnfr1ðxoÞg

It therefore follows that the ‘1 norm of this perturbed residual error vector is given by ky1 A1½xo þ ED k1 ¼
ky1 A1x

ok1 E provided that E is confined to the interval 0< E< kr1ðxoÞk1. Furthermore, each

component of the perturbed residual error vector y1 A1½xo þ ED has its magnitude decreased by E: With

this in mind, let Eo be the smallest positive value for which one previously nonmaximum magnitude

component has a ‘1 norm equal to ky1 A1x
ok1 Eo. It then follows that the perturbed vector xo þ EoD

renders a smaller ‘1 norm than f1ðxoÞ ¼ ky Axok1, which is contrary to the assumption that xo was a

minimum ‘1 solution. It is therefore concluded that Nm4N. This result is now formalized as a theorem.

Theorem 14.8. For any vector y 2 RM · 1 and matrix A 2 RM ·N whose row vectors satisfy the Haar

condition there exists a vector xo 2 RN · 1 which minimizes the maximum of residual error magnitude

criterion f1ðxÞ ¼ ky Axk1 in which the associated residual error vector

rðxoÞ ¼ y Axo ð14:106Þ
has at least N þ 1 components equal to the maximum residual error magnitude krðxoÞk1. Furthermore, this
solution is unique if and only if the row vectors of the augmented matrix ½A...y satisfy the Haar condition.

An illustration of the minimum ‘1 norm approximation is illustrated in Figure 14.24, where the range

space RðAÞ has dimension rankðAÞ (i.e., of all vectors of the form Ax). The boundary of the hypercube with

center at y and width 2c corresponds all those vectors in RM · 1 which are located a distance c from y in the

‘1 norm sense. The minimum ‘1 approximate solution corresponds to that smallest selection of width

parameter c for which this hypercube just touches the range space RðAÞ: In most applications, this point of

y

R(A)

||y−ya||∞ =c

FIGURE 14.24 Approximate solution of Ax ¼ y using a ‘1 norm.
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contact is unique and is such that the residual error vector rðxoÞ has N þ 1 components with the maximum

magnitude. The following example, however, illustrates the fact that a minimum ‘1 norm solution need not

be unique although it typically is in most applications.

Example 14.8

Let it be desired to find the best ‘1 approximation of the vector y ¼ ½2 1 T by a scalar multiple of the vector

a ¼ ½1 0 T. The residual error vector associated with these vector choices is then

rðxÞ ¼ y ax ¼ 2
1

1
0

x ¼ 2 x
1

where x is real valued scalar. The ‘1 norm of this residual error vector is specified by krðxÞk1 ¼
maxfj2 xj; 1g and it is readily shown that krðxÞk1 has the convex function representation:

krðxÞk1 ¼
2 x for x51
1 for 1< x< 3
x 2 for x43

8<:
Clearly, any selection of xo in the interval 1< xo < 3 results in a minimum ‘1 solution with krðxoÞk1 ¼ 1.

Only the two end points of this interval xo ¼ 1 and xo ¼ 3 result in an residual error vector whose N þ 1 ¼ 2

largest component magnitudes are equal to krðxÞk1 ¼ 1.

Brute Force Method for Finding a Minimum ‘‘‘‘‘‘1111 Approximate Solution
As in the minimum ‘1 norm approximate problem, it is possible to apply a brute force method for finding a

minimum ‘1 norm approximate solution to the general system of linear equations by appealing to the results

spelled out in Theorem 14.1. Specifically, use is made of the fact that an optimal selection of x exists for which

at least N þ 1 components of the associated residual error vector are equal to the maximum residual error

magnitude krðxo1Þk1. In this brute force procedure, one finds a minimum ‘1 approximate solution of all

subsets of N þ 1 linear equations of the system of linear equations y ¼ Ax and then evaluates the ‘1 norm of

the associated residual error vector y Ax corresponding to each of these solutions. A required optimal

solution then corresponds to that solution(s) which possesses the largest ‘1 norm. Unfortunately, this brute

force procedure can be a computationally intensive process since the number of subsets of N þ 1 equations

from the original M equations as given by

cMNþ1 ¼
M!

ðN þ 1Þ!ðM N 1Þ! ð14:107Þ

can be a rather large number. Nonetheless, this direct approach will generate a desired minimum ‘1
approximate solution.

In order to implement this brute force method, it is necessary to develop an effective method for finding a

minimum ‘1 approximate solution to a system of N þ 1 linear equations in N unknowns. The following

theorem provides the mechanism for determining this solution [9].

Theorem 14.9. Let there be given a vector y 2 RðNþ1Þ· 1 and matrix A 2 RðNþ1Þ·N of rank N . The residual

error vector associated with the generally inconsistent system of N þ 1 linear equations in N unknowns as

specified by Ax ¼ y is given by rðxÞ ¼ y Ax. The unique vector that minimizes the ‘2 norm of this residual

error vector is given by xo2 ¼ ½ATA 1
ATy in which the residual error vector rðxo2Þ ¼ y A½ATA 1ATy satisfies

the orthogonality property AT rðxo2Þ ¼ o. The vector xo1 that minimizes the ‘1 norm of the residual error

vector rðxÞ is equal to the unique solution of the consistent linear system of equations:
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Ax ¼ y
rðxo2ÞTy
k rðxo2Þk1

sgnfrðxo2Þg ð14:108Þ

with this solution being given by

xo1 ¼ xo2
rðxo2ÞTy
k rðxo2Þk1

½ATA 1ATsgnfrðxo2Þg ð14:109Þ

Moreover, the associated ‘1 norm of the minimum residual error vector is

k rðxo1Þk1 ¼ ky Axo1k1 ¼
rðxo2ÞTy
k rðxo2Þk1

¼ rðxo2ÞT rðxo2Þ
k rðxo2Þk1

ð14:110Þ
Proof

It has been previously established that the vector x which minimizes the ‘2 norm of the residual error vector

rðxÞ ¼ y Ax is given by xo2 ¼ ½ATA 1ATy where the subscript 2 on xo2 is used to explicitly denote the fact

that this is the unique minimum ‘2 norm approximate solution. If xo2 satisfies the system of linear equations

then it is also the minimum l1 norm approximation solution. We now treat the more interesting problem in

which rðX0
2Þ is a nonzero vector. Upon left multiplying each side of the associated minimum residual error

vector rðX0
2Þ ¼ y Ax02 by A

T it is seen that ATrðXo
2 Þ ¼ o which indicates that the residual error vector rðXo

2 Þ is
orthogonal to each column vector of matrix A. It is now shown that the vector appearing on the left side of

Equation (14.108) is orthogonal to rðXo
2 Þ. This conjecture is true since

rðxo2ÞT y
rðxo2ÞTy
krðxo2Þk1

sgnfrðxo2Þg
" #

¼ rðxo2ÞTy
rðxo2ÞTy
krðxo2Þk1

rðxo2ÞTsgnfrðxo2Þg ¼ 0

where use of the identity krðxo2ÞTk1 ¼ rðxo2ÞTsgnfrðxo2Þg has been made. This orthogonality condition implies
that the vector in brackets must be equal to a linear combination of the column vectors of matrix A thereby

proving that the system of linear equations (14.108) is consistent. The unique solution to this consistent

system of equations is obtained by appealing to the relationship in which vector y is replaced by the vector

appearing on the right side of Equation (14.108), that is:

xo1 ¼ ½ATA 1AT y
rðxo2ÞTy
krðxo2Þk1

sgnfrðxo2Þg
!
¼ xo2

rðxo2ÞTy
krðxo2Þk1

½ATA 1ATsgnfrðxo2Þg

By employing the Holder inequality that states that for any vectors u;w 2 RMx1 that juTwj< kuk1kwk1, it
follows that xo1 is the minimum ‘1 norm approximate solution since for all x 2 RN·1

ky Axk1 ¼ sup
w 6¼o

jðy AxÞTwj
kwk1

>
jðy AxÞTrðxo2Þj

krðxo2Þk1
¼ yTrðxo2Þ
krðxo2Þk1

¼ krðxo2Þk1

Algorithmic for Computing a Minimum ‘‘‘‘‘‘1111 Norm Approximate Solution

Similar to the procedure taken in solving the minimum ‘1 approximation problem, an effective algorithm

for solving the minimum ‘1 approximate solution is now developed. The basic nature of this algorithm is

predicated on Theorem 14.8 which states that a minimum ‘1 approximate solution xo exists that

minimizes the ‘1 norm of the residual error vector r(x)¼ y –Ax in which Nþ 1 components of the

residual error vector rðxo1Þ have magnitudes equal to krðxo1Þk1. In this algorithmic approach, one first

generates a vector x in a systematic manner for which the associated residual error vector has Nþ1 of it
components equal to the residual error vector’s ‘1 norm. This residual error vector is then tested to
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determine if it is optimal. If it is found not to be optimal, then x is perturbed to x þ ED in an

appropriate manner, so that the improvement condition f1ðx þ EDÞ5 f1ðxÞ is met. The resultant

perturbed residual error vector rðx þ EDÞ, however, typically has fewer that Nþ 1 maximum magnitude

elements. The vector x þ ED is then perturbed in a systematic manner until Nþ 1 components of the

perturbed residual vector all have the same maximum magnitude while maintaining or improving the ‘1
norm criterion. These basic steps are repeated until a point xo1 is found that satisfies the optimal

condition. To explain the steps of the algorithm, a perturbation analysis of the residual error vector

r(x) ¼ y – Ax is now made.

The basic steps of this algorithm are implemented in the fashion now described. For any vector x 2 RN · 1,

let the residual error vector r(x) ¼ y – Ax have 1< Nm < N components that have the same maximum

magnitudes equal to ky Axk1. The residual error vector is now decomposed into two separate residual error

vector components:

r1ðxÞ ¼ y1 A1x and r2ðxÞ ¼ y2 A2x ð14:111Þ

where vector y1 2 RNm · 1 and matrix A1 2 RNm ·N correspond to those Nm equations of the residual error

vector r(x) ¼ y – Ax that have the same largest equal magnitudes while vector y2 and matrix A2 2 RðM NmÞ·N

correspond to the remaining M –Nm equations. The vector x is then perturbed to x þ ED where E is a small
positive step size scalar while the perturbation direction vector D 2 RN · 1 is specified by

D ¼ AT1 ½A1AT1 1r1ðxÞ ð14:112Þ

in which it is assumed that the matrix A1 has rank Nm. The first and second component vectors of the

perturbed residual error vector are then specified by

r1ðx þ eDÞ ¼ y1 A1ðx þ eDÞ ¼ ð1 eÞr1ðxÞ and

r2ðx þ eDÞ ¼ r2ðxÞ eA2A
T
1 ½A1AT1 1r1ðxÞ

Upon examination of first component vector r1ðx þ EDÞ, it is clear that as the scalar E is gradually

increased from zero, that the magnitude of each element of the residual error vector r1ðx þ EDÞ is

decreased by ð1 EÞ kr1ðxÞk1 until they all become zero at E ¼ 1. However, the majority of the elements

of the second component vector r2ðx þ EDÞ behave in a more irregular fashion. The parameter e now
increased from zero until the magnitude of a component of r2ðx þ EDÞ is first equal to ð1 EÞ kr1ðxÞk1.
Such a positive value of E must exist since otherwise the residual error vector could be driven to zero,

indicating that the original system of equations had a solution. Thus, the required value for the step size

is equal to that smallest positive step size E for which the equality kr2ðx þ EDÞk1 ¼ ð1 EÞ kr1ðxÞk1 is

first satisfied. This smallest positive value Eo is readily shown to be the smallest positive number in the set
of roots:

Ek ¼
kr1ðxÞk1 6 eTk r2ðxÞ

kr1ðxÞk1 6 eTk A2A
T
1 ½A1AT1 1r1ðxÞ

for 1< k<M Nm ð14:113Þ

At this choice of E, the residual error vector rðx þ EoDÞ has at least Nm+1 or more components that have the

same smaller maximum magnitude ð1 EoÞkr1ðxÞk1.
Using this approach in an iterative manner, the state whereby Nm > N þ 1 components of the residual error

vector have the same maximum magnitude is eventually reached. It is then necessary to test whether the vector

x producing this condition is optimal or not. This determination is readily made by examining the behavior of

the residual error vector component associated with the Nm largest magnitudes when the prevailing vector x is
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perturbed to x þ ED, that is:

r1ðx þ EDÞ ¼ y1 A1x EA1 D ¼ r1ðxÞ EA1D

To determine whether x is optimum or not, the perturbation direction vector D is now chosen so as to

minimize the criterion kr1ðxÞ EA1Dk1. In accordance with Theorem 14.9 this minimizing solution is given

by

Do1 ¼ Do2
r1 ðDo2ÞTr1ðxÞ
kr1 ðDo2Þk1

½AT1A1 1AT1 sgnfr1 ðDo2Þg ð14:114Þ

where

Do2 ¼ ½AT1A1 1AT1 r1ðxÞ and r1ðDo2Þ ¼ r1ðxÞ A1D
o
2 ð14:115Þ

If Do1 ¼ o then x is a local minimum solution and since f1ðxÞ ¼ ky Axk1 is a convex function it follows

that this local minimum must also be a global minimum.

For Do1 6¼ o an improving trial solution is obtained by gradually increasing the step size scalar E from zero

until the equality kr1ðxÞ EA1D
o1Þk1 ¼ kr2ðxÞ EA2D

o1k1 is first met. A little thought indicates that those

components of the vector A1D
o1 that have the largest and smallest magnitudes are the only candidates for the

entity kr1ðxÞ EoA1D
o1Þk1, that is:

jeTmmin
A1D

o
1j ¼ min

1< k<Nþ1
fjeTk A1Do1jg and jeTmmax

A1D
o
1j ¼ max

1<k<Nþ1
fjeTk A1Do1jg

where 1<mmin;mmax < Nm. The optimum value of the step size scalar eo is that smallest positive number of
the set of roots:

ek;m ¼
eTmr1ðxÞ6 eTk r2ðxÞ
eTmA1D

o1 6 eTk A2D
o1

for 1< k<M N 1 ð14:116Þ

Using this perturbation analysis, it follows that the algorithm listed in Table 14.10 provides a systematic

procedure for computing an optimum ‘1 norm approximate solution to an inconsistent system of linear

equations. It has the potential of being an efficient algorithm since when the state where Nm > N þ 1

components of the residual error vector having the same magnitude has been reached (Step 2), the trial

TABLE 14.10 Minimum ‘1 Approximate Norm Solution Algorithm

Step 1. Using an arbitrary initial selection of x (e.g., the zero vector or the minimum ‘2 approximate solution)

generate the associated residual error vector r(x)¼y Ax.

Step 2. If the residual error vector r(x) has Nm components equal to ky Axk1where 1< Nm < N then go to Step 3.

Otherwise go to Step 5.

Step 3. Perturb the prevailing trial solution x to x þ eD where the perturbation direction vector D is chosen according

to relationship (14.112) and e is selected to be the smallest positive scalar in the set (14.113). This results in
f1ðx þ eoDÞ5f1ðxÞ and the perturbed residual error vector rðx þ eoDÞ ¼ y Aðx þ eoDÞ has the same Nm

maximum magnitude elements and at least one additional maximum amplitude. Set the new trial solution

x equal to x þ eD.
Step 4. If the new perturbed residual error vector y Ax has fewer than N þ 1 maximum magnitude elements than go to

Step 3. Otherwise go to Step 5.

Step 5. Compute vector Do1 using Equation (14.113). If Do1 ¼ o then x is an optimum solution. If Do1 6¼ o then set the new

improving trial solution x equal to x þ eoDo1 where eo is the smallest positive number in the set of roots (14.116).
Go to Step 2.
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solution x is checked to determine if it is optimal or not optimal. If it is not optimal then an improving trial

solution is generated resulting in a perturbed residual error vector which generally has fewer than N þ 1

maximum magnitude components. Thus, many of the steps of algorithms based on the replacement of one of

the N þ 1 equations approach are bypassed. This has been found to result in a rapidly convergent algorithm.

Sequential Algorithm

The previous sections have been primarily directed to the problem of finding a best approximate solution to a

system of inconsistent linear equations Ax ¼ y in which a specific norm (i.e., the ‘p norm with p ¼ 1; 2; and

1) is used to define the notion of optimal. Once the norm has been selected, salient properties associated with

that specific optimum solution were then used in developing an algorithmic solution. For example, when an ‘1
norm was employed, it is known that an optimal vector selection xo exists in which at least N components of

the residual error vector rðxÞ ¼ y Ax are zero. This property was then used to develop an algorithm for

finding an optimal ‘1 approximate solution.

In this section, a sequential algorithm is developed which finds a vector x 2 RN · 1 which provides a small

value to the norm induced function:

f ðxÞ ¼ ky Axk ð14:117Þ

for a given vector y 2 RM · 1 and matrix A 2 RM ·N . The norm used here is general in nature and need not be

an ‘p norm. It is to be emphasized that this algorithm does not have guaranteed convergence to a minimum

norm solution. It does, however, typically converge to a good approximate solution at a reasonable

computation expense. This sequential algorithm is not explicitly dependent on the particular vector norm

used, but it is assumed that one has the ability to solve the basic problem of determining a scalar xo that solves

the following fundamental vector approximation problem:

ky xoak ¼ min
x2R

ky xak ð14:118Þ

for given vectors a; y 2 RN · 1. For example, if the vector norm employed is the ‘1; ‘2, or ‘1 norm, this

fundamental vector approximation problem has the solution given by Equations (14.118), (14.114), and

(14.121), respectively.

Sequential Algorithm

To initiate the sequential algorithm, an initial value of the vector x is assigned. For example, the least sum of

errors squared selection given in Equation (14.115) often constitutes a good initial selection. Let the trial

solution at the end of the kth iteration be designated by xk so that the associated residual error vector is

specified by

rðxkÞ ¼ y Axk ¼ y
XN
n¼1

xkðnÞan ð14:119Þ

in which an denotes the nth column of matrix A (i.e., an ¼ Aen). In the first step of the kþ 1st iteration, the

components xkðnÞ for 2< n< N are fixed at their prevailing values while the first component (i.e., xkð1Þ)
takes on the variable value x: The residual error vector then is a function of this real variable x as expressed by

~rrðxÞ ¼ y
XN
n¼2

xkðnÞan
" #

xa1 ð14:120Þ

where the vector component enclosed within the rectangular braces is given. A selection of the variable x

is now determined which minimizes the norm of this residual error vector by employing the
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solution (Equation (14.118)) in which y is replaced by the term within the braces and a ¼ a1. This leads to

a selection designated by xkþ1ð1Þ which either improves upon xkþ1ð1Þ or at worst maintains the residual
error norm value.

This process of extracting one component at a time and considering it as a variable x while maintaining the

remaining N 1 components at their prevailing values is continued on in a systematic fashion. For example,

at the nth step of the kþ 1st iteration, the residual error vector becomes

~rrðxÞ ¼ y
Xn 1

m¼1
xkþ1ðmÞam

XN
m¼nþ1

xkðmÞam
" #

xan

Equation (14.118) in then used to obtain the minimizing value of x as designated by xkþ 1ðnÞ in which y is
replaced by the term within the braces and a ¼ an. Application of this sequential process is continued for

1< n< N to complete the kþ 1st iteration. This iterative procedure is continued until no significant change

is made in the trial solution from one iteration to the next. A convenient stopping condition is one in which

the following inequality is first satisfied:

rk ¼
kxk xk 1k
kxk 1k 5E ð14:121Þ

for k ¼ 1; 2; 3; where E is a suitably chosen small positive scalar (e.g., E ¼ 10 20).

Nonnorm Approach to Data Outlier Removal

When seeking the best approximate solution to a system of M linear equations in N unknowns as designated

by the residual error expression rðxÞ ¼ y Ax, an ‘1 norm criterion for measuring goodness of

approximation is often useful in those cases in which a small number data outliers are present in the

vector y or the matrix A. An ‘1 norm criterion tends to ignore such data outliers in contrast to the widely

employed ‘2 norm criterion. The reason for this behavior is made apparent by examining the function to be

minimized when seeking a best approximation as specified by

fpðxÞ ¼
XM
m¼1

jym eTmAxjp ð14:122Þ

Clearly, the parameter selection p ¼ 1 is seen to give less weight to residual errors whose magnitudes are

relatively large in comparison to the parameter selection p ¼ 2. As such, the selection of a minimizing x is less

influenced by data outliers for the norm choice p ¼ 1.

If data outlier removal is an important factor in a given data processing application, it is seen that a

selection of parameter p lying in the interval 05 p5 1 would seem to provide an additional immunization to

large data outliers. Unfortunately, the function fpðxÞ mapping RN · 1 into R is no longer convex for 05 p5 1

and as such a local minimum need not be a global minimum. The loss of this important convexity property,

however, might be offset by possible improvements in data outlier immunity. The approximation error

function (14.122) for selections 05p51 is now shown to share many of the same properties as for the convex

case p ¼ 1. A determination of some characteristic properties of function fpðxÞ is obtained by decomposing the
summation on the interval 1<m<M into three disjoint integer sets over which the residual error

components rmðxÞ ¼ yðmÞ eTmAx are positive, negative, or zero. This decomposition takes the form:

fpðxÞ ¼
X

ym4 eTmAx

½ym eTmAx
pþ

X
ym5 eTmAx

½eTmAx ym
p
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In this decomposition the first summation is taken over all integers in the integer interval 1<m<M for

which rmðxÞ ¼ yðmÞ eTmAx4 0 and the second summation is taken over all integers in the integer interval

1<m<M for which rmðxÞ ¼ yðmÞ eTmAx5 0. The remaining residual error vector components are zero.

It is now shown that a vector x exists which minimizes fpðxÞ and causes at least N components of the

associated residual error vector rðxoÞ ¼ y Axo to be zero. Specifically, let xo minimize function fpðxÞ in
which only No components of the residual error vector are zero where 0< No < N 1. Let us now perturb xo

to xo þ ED where E is a real valued step size scalar and D is a perturbation direction vector. The perturbation

direction vector is chosen so that the original zeros in the unperturbed residual error vector rðxoÞ ¼ y Axo

are maintained at zero in the perturbed residual error vector rðxo þ EDÞ ¼ y Axo EAD. This is always
possible since the perturbation direction vector D can be chosen to be any nonzero vector which is orthogonal
to each of the No5N row vectors of matrix A associated with the zero components of rðxoÞ ¼ y Axo.

The scalar E is now chosen small enough in magnitude so that the signs of the nonzero components in the

perturbed residual error vector rðxo þ EDÞ ¼ y Axo EAD remain the same as the signs of the nonzero

components in the unperturbed residual error vector y Axo. Under this restriction the corresponding sum

of residual error magnitude criterion at the perturbed point xo þ ED is given by

fpðxo þ eDÞ ¼
X

ym4eTmAx

½ ym eTmAðxo þ eDÞ pþ
X

ym5eTmAx

½eTmAðxo þ eDÞ ym
p

¼
X

ym4eTmAx

½ ym eTmAx
o p

1
eeTmAD

ym eTmAx
o
Þ

" #p

þ
X

ym4eTmAx

eTmAx
o ym

h ip
1þ eeTmAD

eTmAx
o ym

Þ
" #p

We now examine the behavior of this perturbed function for a small magnitude selection of the step size

parameter e. This behavior makes use of the following lemma.

Lemma 16. The function ½1þ y p has the Taylor series expansion about y ¼ 0:

½1þ y p ¼ 1þ
X1
k¼1

pðp 1Þ . . . ðp kþ 1Þyk

where p 6¼ 1. Moreover, for values of y such that jyj551 this function can be approximated by the linear term

½1þ y p < 1þ py ð14:123Þ
For small values of the step size parameter E; use of approximation (14.123) in the perturbed function

fpðxo þ EDÞ then results in

fpðxo þ EDÞ < fpðxoÞ þ Ep
X

ym5eTmAx

eTmAD ½ym eTmAx
o p 1 X

ym4eTmAx

eTmAD ½ym eTmAx
o p 1

24 35
The term within the braces must be zero for otherwise a small magnitude selection of e can be made in which
fpðxo þ EDÞ5 fpðxoÞ which is contrary to the assumption that xo is optimum. Let the parameter e be gradually
increased or decreased from zero until a formally nonzero element of the unperturbed residual error vector

rðxoÞ ¼ y Axo is first driven to zero while maintaining f1ðxo þ EDÞ ¼ f1ðxoÞ. This process is continued until
eventually N components of the perturbed residual error vector are zero. This result is now formally stated in

theorem format.
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Theorem 14.10. Let there be given a vector y 2 RM · 1 and matrix A 2 RM ·N of rank N . It then follows that

for any 05p< 1 there exists a real N · 1 vector xo which minimizes the function:

fpðxÞ ¼
XM
m¼1

jym eTmAxjp

such that the associated residual error vector rðxoÞ ¼ y Axo has at least N zero components.

As in the ‘1 case, we can employ the computational costly brute force method for finding an optimum

solution which entails determining solutions to all subsets of N linear equations of the system of linear

equations y ¼ Ax and then evaluating fpðxÞ at each of these solutions. A required optimal solution then

corresponds to that solution(s) for which fpðxÞ takes on its smallest value. In order to ease the computational
burden of the brute force method, one might be tempted to develop algorithms similar to the primal or duals

algorithms for the case p ¼ 1. Unfortunately, for 05p51 the function fpðxÞ is not convex and therefore

generally has several local minimum which are not a global minimum. As such, algorithms based on small

perturbations are typically ineffective for the case 05p51. This being the case, there is much to be said about

the brute force method when 05p51. Moreover, it is to be noted that on several simulated data examples,

the optimal solutions for the case p ¼ 1 also turned out to be optimal solutions for choices of p ¼ 0:25

and p ¼ 0:5. This provides further evidence of the utility of a minimum ‘1 criterion for removing data

outliers.
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14.5 Adaptive Signal Processing

W. Kenneth Jenkins and Dean J. Krusienski

Introduction

Adaptive digital signal processing methodologies have become increasingly important in recent years due to

demands for improved performance in high data rate digital communication systems and in wideband image/

video processing systems. Adaptive system identification, adaptive noise cancellation, adaptive signal

compression, and adaptive channel equalization are just a few of the important application areas that have

seen significant applications in state-of-the-art systems. Much of the recent success in adaptive signal

processing has been facilitated by improvements in VLSI digital signal processor (DSP) integrated circuit

technology, which now enables large amounts of digital signal processing power in convenient and reliable

forms. Since further advancements in integrated circuit technology are sure to develop in the future, it is

expected that adaptive techniques will assume even more importance in high-performance electronic systems

of the future.

Linear FIR Adaptive Filters

A finite impulse response (FIR) adaptive filter consists of a digital tapped delay line with variable multiplier

coefficients that are adjusted by an adaptive algorithm. The adaptive algorithm attempts to minimize a cost

function that is designed to provide an instantaneous on-line estimate of how closely the adaptive filter

achieves a prescribed optimum condition. The cost function most frequently used is an approximation to the

expected value of the squared error, E{jej2(n)}, where e(n)¼d(n) y(n) is the difference between a training

signal d(n) (desired response) and the filter output y(n), and E{·} denotes the statistical expected value. The

acquisition of the training signal d(n) is obtained by different means in different applications, and is often a

limiting factor in the use of adaptive methodologies (Diniz, 2002; Haykin, 2002; Widrow, 1985).

The input vector and the coefficient weight vector of the adaptive filter at the nth iteration are defined as

X(n)¼ [x(n), x(n 1),. . ., x(n N þ 1)]T andW(n)¼ [w0(n), w1(n),. . ., wn 1(n)]
T, where the superscript T

denotes vector transpose. The filter output at iteration n is given by

yðnÞ ¼
XN 1

k¼0
wkxðn kÞ ¼WTðnÞXðnÞ ð14:124Þ

In the following discussion, the training signal d(n) and the input signal x(n) are assumed to be stationary and

ergodic. An adaptive filter uses an iterative method by which the tap weightsW(n) are made to converge to the
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optimal solutionW* that minimizes the cost function. It is well known thatW*, known in the literature as the

Wiener solution, is given by

W* ¼ R 1
x pxd ð14:125Þ

where Rx¼ E{X(n)XT(n)} is the autocorrelation matrix of the input and pxd¼ E{X(n)d(n)}is the cross

correlation vector between the input and the desired response. The most common approach is to update each

tap weight according to a steepest descent strategy; i.e., the tap weight vector is incremented in proportion to

the gradient HHHHHw according to

Wðnþ 1Þ ¼WðnÞ mHw ð14:126Þ

where m is the step size, HHHHHw¼ [Hw0(n),. . ., HwN 1(n)]
T, and Hwk(n)¼ dE{jej2(n)}/dwk is the partial derivative

of the cost function with respect to wk(n), k¼ 0,. . ., N 1. In typical applications the precise value of the cost

function is not known, nor is the gradient known explicitly, so it is necessary to make some simplifying

assumptions that allow gradient estimates to be computed on-line. Different approaches to estimating the cost

function (or the gradient) lead to different adaptive algorithms, such as the well known least mean squares

(LMS) and the recursive least squares (RLS) algorithms. Including the Hessian matrix in Equation (14.126) to

accelerate the steepest descent optimization strategy leads to the family of quasi-Newton algorithms that are

characterized by rapid convergence at the expense of greater computational complexities.

The LMS algorithm (Widrow, 1985) makes the simplifying assumption that the expected value of the

squared error is approximated by the squared error itself, i.e., E{je(n)j2} , je(n)j2. In deriving the algorithm,
the error squared is differentiated with respect to W to approximate the true gradient. In vector notation the

LMS update relation becomes

Wðnþ 1Þ ¼WðnÞ þ 2meðnÞXðnÞ ð14:127Þ

The value of m determines both the convergence rate of the adaptive process and the minimum mean squared

error after convergence. To ensure stability and guarantee convergence of both the tap weight vector

and the mean squared error estimate, m must satisfy the condition 0, m, 1/NE{jx(n)j2}, where E{x2(n)}¼
(1/N)tr[Rx] is the average input signal power which can be calculated from Rx if the input autocorrelation

matrix is known. When m is properly chosen, the weight vector converges to a neighborhood of the optimal
(Wiener) solution.

Convergence Properties of the LMS Adaptive Filter

It is well known that the convergence behavior of the LMS algorithm, as applied to a direct form FIR filter

structure, is controlled by the autocorrelation matrix Rx of the input process, where

Rx E½x*ðnÞxTðnÞ ð14:128Þ

and where * denotes complex conjugate to account for the general case of complex input signals. The

autocorrelation matrix Rx is usually positive definite, which is one of the conditions necessary to guarantee

convergence to the Wiener solution. Another necessary condition for convergence is 0, m, 1/lmax, where
lmax is the largest eigenvalue of Rx. The convergence of this algorithm is directly related to the condition

number of Rx, defined as k¼ lmax/lmin, where lmin is the minimum eigenvalue of Rx Ideal conditioning

occurs when k¼ 1 (white noise); as this ratio increases, slower convergence results. The condition number

depends on the spectral distribution of the input signal, and can be shown to be related to the maximum and

minimum values of the input power spectrum. From this line of reasoning it becomes clear why white noise is

the ideal input signal for rapidly training an LMS adaptive filter. The adaptive process becomes slower and

requires more computation for input signals that are more severely colored.
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Convergence properties are reflected in the geometry of the MSE surface, which is simply the mean squared

output error E[je(n)j2] expressed as a function of the N adaptive filter coefficients in (N + 1)-space. An

expression for the error surface of the direct form filter is

JðzÞ E jeðnÞj2 ¼ Jminþz*TRxz ð14:129Þ

with Rx defined in Equation (14.128) and z w wopt, where wopt is the optimum filter coefficient vector in

the sense of minimizing the mean squared error (wopt is the Wiener solution). An error surface for a simple

two-tap filter is shown in Figure 14.25. In this example x(n) was specified to be a colored noise input signal

with an autocorrelation matrix :

Rx ¼ 1:0 0:9
0:9 1:0

Figure 14.25 shows three equal-error contours on the three dimensional surface. The term z*TRxz in

Equation (14.129) is a quadratic form that describes the bowl shape of the FIR error surface. When Rx is

positive definite, the equal-error contours of the surface are hyperellipses (N-dimensional ellipses) centered at

the origin of the coefficient parameter space. Furthermore, the principal axes of these hyperellipses are the

eigenvectors of Rx, and their lengths are proportional to the eigenvalues of Rx. Since the convergence rate of

the LMS algorithm is inversely related to the ratio of the maximum to the minimum eigenvalues of Rx, large

eccentricity of the equal-error contours implies slow convergence of the adaptive system. In the case of an ideal

white noise input, Rx has a single eigenvalue of multiplicity N, so that the equal-error contours are

hyperspheres.

Common Applications of Adaptive Methods

An adaptive filter is said to be used in the system identification configuration when both the adaptive filter and

an unknown system are excited by the same input signal x(n), the system ouput signals are compared to form

the error signal e(n)¼ d(n) y(n), and the parameters of the adaptive filter are iteratively adjusted to

minimize some specified function of the error e(n). In the system identification configuration shown in

Figure 14.26, the desired signal is produced as the output of an unknown plant whose input is accessible

−10 10

−10

10

Rx =
1.0 0.9

0.9 1.0

J−Jmin =
1

4

9

FIGURE 14.25 2-D error surface with a colored input signal.
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for excitation. When the minimum of the cost function is achieved and the adaptive filter parameters have

converged to stable values, the adaptive filter provides a model of the unknown system in the sense that the

adaptive process has formed the best approximation in the MSE sense using the structure imposed by the

adaptive system. The converged coefficients provide good estimates of the model parameters.

In order for the adaptive system to form a good model of the unknown system at all frequencies, it is

important that the input signal have sufficiently rich spectral content. For example, if the adaptive filter is an

FIR filter structure with N adjustable coefficients, the input signal must contain at least N distinct frequency

components in order to uniquely determine the set of coefficients that minimizes the MSE. Awhite noise input

signal is ideal because it excites all frequencies with equal power. A broadband colored noise input will also

provide a good excitation signal in the sense of driving the adaptive filter to the minimum MSE solution,

although in general the convergence rate of the learning process will be slower than for white noise inputs

because the frequencies that are excited with small power levels will converge slowly. Many adaptive algorithms

attempt to normalize (or whiten) the input power spectrum in order to improve the convergence rate of the

learning process.

The system identification configuration is a fundamental adaptive filtering concept that underlies many

applications of adaptive filters. The major attraction of the system identification configuration is that the

training signal is automatically generated as the output of the unknown system. The disadvantage is that the

input of the unknown system must be accessible to be excited by an externally applied input noise signal. In

some applications obtaining a model of the unknown system is the desired result, and the accuracy of the

adaptive coefficients is a primary concern. In other applications it is not necessary that the unknown system be

identified explicitly, but rather that the adaptive filter is required to model the unknown system only to

generate accurate estimates of its output signal.

A block diagram for an adaptive noise cancelling configuration is shown in Figure 14.27, where the unknown

system in this configuration is neither shown explicitly nor identified in a direct way. The primary signal is

assumed to be the sum of an information bearing signal s(n) and an additive noise component N0(n), which is

output
FilterAdaptive

primary input

x(n)

d(n)

y(n) e(n)

−

+

+

s(n)+N0(n)

N1(n)

reference
signal

FIGURE 14.27 Noise canceling configuration.

output

Adaptive
Filter

Unknown
Systeminput

x(n) d(n)

y(n)

e(n)
−

+

+

FIGURE 14.26 System identification configuration.
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uncorrelated with s(n). The primary signal is used to train the adaptive noise canceler, so that

d(n)¼ s(n)+N0(n) and the error signal becomes e(n)¼ d(n) y(n)¼ s(n) +N0(n) y(n). The reference

signal, which is used as the input to the adaptive filter, should be a reference noise N1(n), which is uncorrelated

to s(n), but which is correlated in an unknown way with N0(n). The adaptive filter forms an estimate of N0(n)

and subtracts this estimate from the primary input signal, thereby forming a good estimate of the information

signal at the output of the noise canceled. Note that :

E jeðnÞj2 ¼ E jsðnÞj2 þ E jN0ðnÞ ðyðnÞj2 ð14:130Þ

so that minimizing E[je(n)j2] will also minimize E[jN0(n) (y(n)j2] because the first term in Equation

(14.130) is dependent only on the information signal s(n) and its mean squared value cannot be affected by the

adaptive filter as long as s(n) and N1(n) are uncorrelated. After the adaptive filter converges, y(n) becomes the

best estimate of N0(n) according to the MSE criterion.

Since the unknown system in the adaptive noise canceling configuration is implicit, there is no need for

access to its input in this configuration. However, it is necessary to find a suitable reference signal that does not

contain significant amount of the information signal s(n). If the reference contains even small levels of

s(n), then some part of the primary signal s(n) will be canceled and the overall signal-to-noise ratio will

degrade.

Adaptive linear prediction is a very important and well-developed subject that spans many different areas of

engineering. A block diagram of this configuration is shown in Figure 14.28. In this configuration the

input vector is delayed, usually by one time sample, and the delayed input vector x(n 1)¼ [x(n 1),

x(n 2),. . ., x(n N)]T is then used to predict x(n), the current value of the input. The prediction error is

given by e(n) ¼ d(n) y(n)¼ x(n) y(n).

Sometimes the entire system of Figure 14.28 from the input x(n) to output 1 is considered to be a complete

system, in which case it is referred to as a prediction error filter. Whenever the mean squared prediction error is

minimized, e(n) will become uncorrelated with x(n), while y(n) remains highly correlated with x(n).

Therefore, since d(n)¼ y(n) + e(n), the prediction filter decomposes the input signal into two components,

one that is uncorrelated to the input and one that is highly correlated to the input. In this sense the linear

predictor is a type of correlation filter.

Two distinct outputs, output 1 and output 2, in Figure 14.28 provide access to both the correlated and

uncorrelated components. Output 1 is used in applications such as adaptive linear predictive coding (LPC) for

speech analysis and synthesis, and in adaptive differential pulse code modulation (ADPCM) for speech (and

image) waveform compression. Since the prediction error is a difference between the actual value of x(n) and

its predicted value y(n), the dynamic range needed for accurately encoding e(n) is usually much smaller than

x(n) itself. This is the fundamental mechanism by which a linear prediction filter is able to compress

waveforms. Alternately, output 2 produces a filtered version of x(n) with the uncorrelated noise component

removed. When used in this mode, the adaptive linear predictor becomes a line enhancer, which is capable of

removing broadband noise from a narrow band information signal, a function frequently needed in

communication systems.

The fourth adaptive filtering configuration is the inverse system configuration shown in Figure 14.29. In this

case the adaptive filter is placed in series with an unknown system and the output y(n) is driven by the adaptive

Adaptive
Filter

input

output 1x(n)

d(n)

y(n) e(n)
−

+

+Delay

output 2

FIGURE 14.28 Linear prediction configuration.
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algorithm to form the best MSE approximation to a delayed copy of the input signal. When the adaptive filter

reaches convergence, the series combination of the unknown and adaptive systems forms an overall frequency

response that approximates a pure delay, i.e., the overall system approximates a flat magnitude response and a

linear phase characteristic across the usable bandwidth of the excited spectrum. In this case the adaptive filter

estimates H 1(jo), where H(jo) is the frequency response of the unknown system. The inverse system

configuration is the basis for adaptive equalization, in which nonideal communication channels are equalized

in order to reduce dispersion and to eliminate inter-symbol interference in high-speed digital

communications. The adaptive equalizer forms an essential component of most state-of-the-art modems

today, where the equalization function is required to maintain acceptable bit error rates when binary

information is transmitted across narrowband (4 kHz) telephone channels. Equalizers have also been used to

equalize the dispersive channel that a computer faces when transferring high-speed digital data to a magnetic

recording medium (disk or tape). It has been shown that properly designed equalizers will permit symbols to

be more densely written on the magnetic recording medium due to the reduction in inter-symbol interference.

The training of an adaptive equalizer in the inverse system configuration raises a number of problems that

are unique to this configuration. Note that by the nature of the configuration, the input to the adaptive filter

has been filtered by the unknown system. Hence, in most situations, the input to the equalizer cannot be a

white noise signal, and depending on the severity of the channel imperfections, the equalizer may experience

trouble converging quickly. In a communication system, the transmitter and the receiver are typically located

at separate physical locations, so it may not be a simple matter to provide a training signal that is an exact

delayed copy of the transmitted waveform. For this reason, channel equalizers are often trained during

prescribed ‘‘hand shaking’’ intervals, during which time a pseudorandom binary sequence with known spectral

characteristics is transmitted. Once the equalizer has converged to equalize the present characteristics of the

unknown channel, the parameters of the equalizer are frozen and held at their converged values during the

data transfers that follow.

Because of the difficulty in obtaining a suitable training reference, there has been a great deal of interest in

combining certain blind equalization schemes with decision feedback equalizers. In these cases the blind

equalization technique is used to bring the equalizer into the neighborhood of proper convergence, at which

point the scheme is switched over to a decision feedback algorithm that performs well as long as the equalizer

remains in the neighborhood of its optimum solution.

Linear IIR Adaptive Filters

The mean squared error approximation that led to the conventional LMS algorithm for FIR filters has also

been applied to infinite impulse response (IIR) filters (Jenkins, 1996; Farhang-Boroujeny, 1999). An IIR digital

filter is characterized by a difference equation:

yðnÞ ¼
XNb 1

k¼0
bkxðn kÞ þ

XNa 1

j¼0
ajyðn jÞ ð14:131Þ

output

Adaptive
Filter

input

x(n) d(n)

y(n)

e(n)
−

+

+

Delay

Unknown
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FIGURE 14.29 Inverse system configuration.

14-76 Circuits, Signals, and Speech and Image Processing



where the bk’s are the coefficients that define the zeros of the filter and the ak’s define the poles. The LMS

adaptive algorithm for IIR filters is derived in a similar manner as in the FIR case, although the recursive

relation (Equation (14.131)) is used instead of the convolution sum (Equation (14.124)) to characterize the

input–output relationship of the filter. If derivatives of the squared error function are calculated using the

chain rule, with first-order dependencies taken into account and higher-order dependencies ignored, the

result is

HE½jej2 ¼ 2eðnÞ qðyðnÞÞ
qa

; 2eðnÞ qðyðnÞÞ
qb

where

qyðnÞ
qbk

¼ xðn kÞ þ
XNa

j¼1
ajðnÞ

qyðn jÞ
qbk

k ¼ 0; . . . ;Nb 1 ð14:132aÞ

and

qyðnÞ
qak

¼ yðn kÞ þ
XNa

j¼1
ajðnÞ

qyðn jÞ
qak

k ¼ 0; . . . ;Na 1 ð14:132bÞ

This procedure does not result in a closed form expression for the gradient but it does produce a recursive

relation by which the gradients can be generated using Equation (14.132).

The output error formulation prevents bias in the solution due to noise in the desired signal, but the effect

of the feedback terms is to make the problem nonlinear in the feedback coefficient parameters. Also, the

current filter parameters now depend directly upon previous filter coefficients, which are time-varying. This

often leads to MSE surfaces that are not quadratic in nature. There are many examples in the literature for

which IIR MSE surfaces contain local minima in addition to the global minimum. In these cases, gradient

search techniques may become entrapped in local minima, resulting in poor performance due to improper

convergence of the adaptive filter.

Nonlinear Adaptive Systems

There are many applications where voice signals, audio signals, images, or video signals are subjected to

nonlinear processing, and which require nonlinear adaptive compensation to achieve the proper system

identification and parameter extraction. For example, a generic nonlinear communication system is shown in

Figure 14.30. The overall communication channel between the transmitter and the receiver is often nonlinear,

since the amplifiers located in the (satellite) repeaters usually operate at or near saturation in order to conserve

power. The saturation nonlinearities of the amplifiers introduce nonlinear distortions in the signal they

process. The path from the transmitter to the repeater as well as from the repeater to the receiver may each be

modeled as a linear system. The amplifier characteristics are usually modeled using memoryless nonlinearities.

In general, the static nonlinearity is comprised of a linear term and higher-order polynomial terms; hence,

the output of such a system can be represented as the sum of a linear part and a nonlinear part. Such systems

can be modeled by connecting nonlinear and linear filter modules into a series cascade configuration.

In particular, many nonlinear systems can be represented by the LNL model shown in Figure 14.31 (Yao, 1994).

Linear (L) Nonlinear (N) Linear (L)

FIGURE 14.30 Model of a typical nonlinear communication channel.
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A similar nonlinear model can be used for magnetic recording channels, where the interaction between the

electronic bit stream and the magnetic recording medium via the read/write heads exhibits nonlinear behavior.

As in the case of IIR adaptive structures, nonlinear adaptive filters can also produce multimodal error surfaces

on which stochastic gradient optimization strategies may fail to reach the global minimum due to premature

entrapment. Neural networks and Volterra nonlinear adaptive filters are known for their tendency to generate

multimodal error surfaces (Mathews, 2000).

Structured Stochastic Optimization Algorithms

Stochastic optimization algorithms aim at increasing the probability of encountering the global minimum

without performing an exhaustive search of the entire parameter space. Unlike gradient-based techniques, the

performance of stochastic optimization techniques in general is not dependent upon the filter structure.

Therefore, these types of algorithms are capable of globally optimizing any class of adaptive filter structures or

objective functions by assigning the parameter estimates to represent filter tap weights, neural network weights,

or any other possible parameter of the unknown system model (even the exponents of polynomial terms).

The foundation of a structured stochastic search is to intelligently generate and modify the randomized

estimates in a manner that efficiently searches the error space, based on some previous or collective

information generated by the search (Engelbrecht, 2002). Several different structured stochastic optimization

techniques can be found in adaptive filtering literature, most notably simulated annealing (Aarts, 1989),

evolutionary algorithms such as the genetic algorithm (Goldberg, 1989) and swarm intelligence algorithms

such as particle swarm optimization (Eberhardt, 1995). One interesting item to note is that all of the

prominent structured stochastic techniques are inspired by a natural or biological process. This can be

attributed to the observance that such natural processes exhibit a sense of structure and stability achieved

through some sort of randomness or chaos. This section reviews the two prominent population-based

structured stochastic optimization strategies, evolutionary algorithms, and particle swarm optimization

(PSO), due to their superior convergence properties for adaptive filtering applications. Special emphasis is

placed on PSO due to its relative novelty.

Evolutionary Algorithms

Evolutionary algorithms (EA) begin with a random set of possible solutions (the unknown parameters to be

optimized), termed the population. Each possible solution in the population is termed an individual. Each

individual’s set of parameters is termed a chromosome or genome, and each parameter is termed a gene.

Depending on the nature of the problem, the chromosomes may represent real numbers or can be encoded as

binary strings.

At every generation, the fitness of each individual is evaluated by a predetermined fitness function that is

assumed to have an extremum at the desired optimal solution. An individual with a fitness value closer to

that of the optimal solution is considered better fit than an individual with a fitness value farther from that

of the optimal solution. The population is then evolved based on a set of principles rooted in evolutionary

theory such as natural selection, survival of the fittest, and mutation. Natural selection is the mating of the

fittest individuals (parents) within the population to produce a new individual (offspring). This equates to

randomly swapping corresponding parameters (crossover) between the parents to produce a new, potentially

fitter individual. The new offspring then replace the least-fit individuals in the population, which is the

survival of the fittest facet of the evolution. A portion of the population is then randomly mutated in order

to add new parameters to the search. The expectation is that only the offspring that inherit the best

Linear
Stationary

Nonlinearity
Linear

UPLINK CHANNEL DOWNLINK

FIGURE 14.31
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parameters from the parents will survive and the population will continually converge to the best possible

fitness that represents the optimal or suitable solution. Several EA paradigms exist, such as the genetic

algorithm, evolutionary programming, and evolutionary strategies, each emphasizing only specific

evolutionary constructs, encoding, and operators.

Particle Swarm Optimization (PSO)

Particle swarm optimization was first developed in 1995 (Eberhart, 1995) rooted on the notion of swarm

intelligence of insects, birds, etc. The algorithm attempts to mimic the natural process of group

communication of individual knowledge that occurs when such swarms flock, migrate, forage, etc., in

order to achieve some optimum property such as configuration or location. The premise is to efficiently search

the solution space by swarming the particles toward the best-fit solution encountered in previous epochs with

the intent of encountering better solutions through the course of the process and eventually converging on a

single minimum error solution.

Similar to EAs, conventional PSO begins with a random population of individuals, here termed a swarm of

particles. As with EAs, each particle in the swarm is a different possible set of the unknown parameters to be

optimized; therefore the particles’ parameters can be real-valued or encoded, depending on the particular

circumstances.

The conventional PSO algorithm begins by initializing a random swarm of M particles, each having R

unknown parameters to be optimized. At each epoch, the fitness of each particle is evaluated according to the

selected fitness function. The algorithm stores and progressively replaces the most-fit parameters of each

particle (pbesti, i ¼ 1, 2, . . ., M) as well as a single most-fit particle (gbest) as better fit parameters are

encountered. The parameters of each particle (pi) in the swarm are updated at each epoch (n) according to the

following equations.

veliðnÞ ¼ w * veliðn 1Þ þ acc1 * diag½e1; e2; . . . ; eR i1 * ðgbest piðn 1ÞÞ
þ acc2 * diag½e1; e2; . . . ; eR i2 * ð pbesti piðn 1ÞÞ ð14:133Þ

piðnÞ ¼ piðn 1Þ þ veliðnÞ ð14:134Þ

where veliðnÞ is the velocity vector of particle i, er is a vector of random values E (0, 1), acc1 and acc2 are the
acceleration coefficients toward gbest, pbesti respectively, and w is the inertia weight.

It can be gathered from the update equations that the trajectory of each particle is influenced in a

direction determined by the previous velocity and the location of gbest and pbesti. Each particle’s previous

position (pbesti) and the swarm’s overall best position (gbest) are meant to represent the notion of individual

experience memory and group knowledge of a ‘‘leader or queen,’’ respectively, that emerges during the

natural swarming process. The acceleration constants are typically chosen in the range E (0, 2) and serve dual
purposes in the algorithm. For one, they control the relative influence toward gbest and pbesti respectively, by

scaling each resulting distance vector, as illustrated for a two-dimensional case in Figure 14.32. Second, the

two acceleration coefficients combined form what is analogous to the step size of an adaptive algorithm.

Acceleration coefficients closer to 0 will produce fine searches of a region, while coefficients closer to 1 will

result in lesser exploration and faster convergence. Setting the acceleration greater than 1 allows the particle

to possibly overstep gbest or pbest, resulting in a broader search. The random ei vectors have R different

components, which are randomly chosen from a uniform distribution in the interval (0, 1). This allows the

particle to take constrained randomly directed steps in a bounded region between gbest and pbesti, as shown

in Figure 14.32.

A single particle update is graphically illustrated in two dimensions in Figure 14.33. The new particle

coordinates can lie anywhere within the bounded region, depending upon the weights and random

components associated with each vector. The particle update bounds in Figure 14.33 are basically composed of

all of the bounded regions for each vector, as shown in Figure 14.32, with the addition of the nonrandom
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velocity component. When a new gbest is encountered during the update process, all other particles begin to

swarm toward the new gbest, continuing the directed global search along the way.

The search regions continue to decrease as new pbesti’s are found within the search regions. When all of the

particles in the swarm have converged to gbest, the gbest parameters characterize the minimum error solution

obtained by the algorithm.

One of the key advantages of PSO is the ease of implementation in both the context of coding and

parameter selection. This is much simpler and intuitive to implement than complex, probability-based

selection and mutation operators required for evolutionary algorithms.

Modified Particle Swarm Optimization

Certain enhancements of the standard PSO algorithm are known to improve the overall efficiency and

performance of the stochastic search procedure. The inclusion of three particular enhancements provides

substantial performance improvements in virtually all variations of PSO. These three enhancements are

(1) mutation, (2) re-randomization about gbest, and (3) adaptive inertia operations. When these are added to

the basic PSO algorithm, the result is referred to as the modified PSO (MPSO). The MPSO algorithm is

designed to balance convergence speed and search quality trade-offs, and by so doing provides significantly

improved performance compared to conventional PSO.

FIGURE 14.32 Example of scaling and random direction bounds for the vectors.

FIGURE 14.33 Example of the possible search region for a single particle.

14-80 Circuits, Signals, and Speech and Image Processing



Illustrative Examples

In these examples the properties of the aforementioned algorithms are demonstrated for both IIR and

nonlinear adaptive filters in a system identification configuration, using a windowed mean squared error

between the desired training signal and the adaptive filter output as the fitness function. The algorithms were

initialized with the same population of real-valued parameters and allowed to evolve. The population sizes

were selected to provide reasonable performance, while revealing the performance characteristics of each

algorithm. The window length was set to 100 in each case. Unless specified otherwise, the input signals are

zero-mean Gaussian white noise with unit variance. For each simulation, the MSE is averaged over 50

independent Monte-Carlo trials.

Matched High-Order IIR Filter, White Noise Input

In this example, the following five algorithms were compared:

Algorithm Description

PSO The conventional PSO algorithm

MPSO The modified PSO algorithm, with matching PSO parameters

PSO–LMS The PSO–LMS hybrid algorithm, with parameters matching the conventional PSO

CON–LMS The congregational LMS algorithm is implemented where a population

of independent LMS estimates is updated at each epoch

GA The genetic algorithm using a ranked elitist strategy

The PSO algorithm is the basic PSO algorithm described by Equations (11.133) and (11.134), while the

MPSO is a modified PSO algorithm that includes the three enhancements described earlier (rerandomization,

mutation, and an adaptive inertial parameter). The PSO–LMS is a hybrid algorithm that combines the

standard PSO with an LMS update term in an attempt to pull the PSO solution toward the global minimum.

The CON–LMS constitutes the simultaneous operation of an entire population of LMS filters, each started

with different random initial conditions. This population-based LMS algorithm was used to place the

computational complexity of the LMS and the other algorithms on the same order, although no swarm

intelligence is included in this algorithm. Finally, the GA algorithm is the standard genetic algorithm that

forms a baseline against which to compare the performance of the others.

The unknown system to be identified in this example is a fifth-order, low-pass Butterworth filter (Mars,

1996).

HPLANTðz 1Þ ¼ 0:1084þ 0:5419z 1 þ 1:0837z 2 þ 1:0837z 3 þ 0:5419z 4 þ 0:1084z 5

1þ 0:9853z 1 þ 0:9738z 2 þ 0:3864z 3 þ 0:1112z 4 þ 0:0113z 5

ð14:135Þ

HAFðz 1Þ ¼ p1i þ p2i z
1 þ p3i z

2 þ p4i z
3 þ p5i z

4 þ p6i z
5

1þ p7i z
1 þ p8i z

2 þ p9i z
3 þ p10i z

4 þ p11i z
5 ð14:136Þ

The learning curves for this example are given in Figure 14.34 and Figure 14.35. The simulations having the

larger population illustrate the case where the population size is sufficient and all of the algorithms rarely

become trapped in a local minimum.

Nonlinear LNL System Identification

In this example, the identification of an LNL nonlinear system taken from Mathews (2000) is performed using

an unmatched LNL adaptive filter. The LNL plant consists of a fourth-order Butterworth low-pass filter

(Equation (14.137)), followed by a fourth-power memoryless nonlinear operator, followed by a fourth-order

Chebyshev lowpass filter (Equation (14.138)). This system is a common model for satellite communication

systems in which the linear filters model the dispersive transmission paths to and from the satellite, and the
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nonlinearity models the traveling wave tube (TWT) transmission amplifiers operating near the saturation

region:

HBðz 1Þ ¼ ð0:2851þ 0:5704z 1 þ 0:2851z 2Þð0:2851þ 0:5701z 1 þ 0:2851z 2Þ
ð1 0:1024z 1 þ 0:4475z 2Þð1 0:0736z 1 þ 0:0408z 2Þ ð14:137Þ

HCðz 1Þ ¼ ð0:2025þ 0:288z 1 þ 0:2025z 2Þð0:2025þ 0:0034z 1 þ 0:2025z 2Þ
ð1 1:01z 1 þ 0:5861z 2Þð1 0:6591z 1 þ 0:1498z 2Þ ð14:138Þ
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FIGURE 14.34 Population ¼ 50.
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FIGURE 14.35 Population ¼ 100.
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The LNL adaptive filter structure is given as follows:

HBðz 1Þ ¼ p1i þ p2i z
1 þ p3i z

2 þ p4i z
3

1þ p5i z
1 þ p6i z

2 þ p7i z
3 ð14:139Þ

nonlinearity ¼ p8i ½HBðz 1Þ 4 ð14:140Þ

HCðz 1Þ ¼ p9i þ p10i z
1 þ p11i z

2 þ p12i z
3

1þ p13i z
1 þ p14i z

2 þ p15i z
3 ð14:141Þ

The learning characteristics for this example are shown in Figure 14.37 for the PSO, MPSO, and GA

algorithms. Note that both the GA and MPSO algorithms are effective in quickly finding the minimum mean

squared error solution, while the conventional PSO algorithm stagnates at an error condition that is

considerably above the minimum mean squared error solution. Note that in this example the minimum mean

squared error is approximately 33 dB, because the adaptive filter is of insufficient order to accurately match

the unknown system.

The results of these two examples demonstrate that the structured stochastic algorithms are capable of

quickly and effectively adapting the coefficients of both IIR and nonlinear structures. From the simulation

results, it is observed that, with a sufficient population size, all of the structured stochastic algorithms are

capable of converging rapidly to below 20 dB in most instances, which is an order of magnitude faster than

most existing gradient-based techniques. In all cases, the congregational LMS algorithm exhibits the slowest

convergence rate due to the fact that there is no information transfer between the estimates. The LMS
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FIGURE 14.36 Nonlinear LNL system to be identified.
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algorithm is capable of eventually attaining the noise floor when the number of generations is increased,

assuming that they are not trapped in a local minimum.

Since the GA does not have an explicit step size, the convergence rate can only be controlled to a limited

extent through the crossover and mutation operations, and the algorithm must evolve at its own intrinsic rate.

Because of the nature of the algorithm, these GA operators become increasingly taxed as the population

decreases, resulting in depreciating performance. However, as the population size increases, the performance

gap between the GA and MPSO begins to diminish for large parameter spaces.

Though conventional PSO exhibits a fast convergence initially, it fails to improve further because the swarm

quickly becomes stagnant, converging to a suboptimal solution in all instances. However, with the same set of

algorithm parameters, the MPSO particles do not stagnate, allowing it to reach the noise floor. Smaller

acceleration coefficients can be used with conventional PSO to allow it to approach the noise floor, forsaking

the rapid convergence rate. With the introduction of a simple mutation-type operator, adaptive inertia

weights, and rerandomization, MPSO can retain the favorable convergence rate with a smaller population

while still achieving the noise floor and avoiding local minima. This can offer considerable savings in cases

where computational complexity is an issue.

Defining Terms

Adaptive linear prediction: Process by which the value of a signal s(n) at time n is predicted by a linear

combination of N past values s(n 1), s(n 2), . . ., s(n N) while minimizing the mean squared error

between the predicted ŝsðnÞ and the true value of s(n).
Adaptive noise canceler: An adaptive filter configuration that uses the adaptive filter to estimate an

additive noise that corrupts an information signal and removes the optimal mean squared estimate of

the noise component from the contaminated information bearing signal.

Adaptive echo canceler: An adaptive filter configuration that uses the adaptive filter to estimate an echo

leakage path so that an optimal mean squared estimate of the echo signal can be removed from the

contaminated information bearing signal.

Evolutionary algorithm: A structured stochastic optimization algorithm based on a population of

solutions that evolve from one generation to the next based on a set of principles rooted in evolution

theory such as natural selection, survival of the fittest, and mutation.

Finite impulse response (FIR) adaptive filter: A class of adaptive digital filters whose unit pulse

response consists of a finite number of nonzero values.

Genetic algorithm: A type of evolutionary algorithm that attempts to mimic the laws of genetics while

trying to achieve some optimal property through the principles of evolution.

Infinite impulse response (IIR) adaptive filter: A class of adaptive digital filters whose unit pulse

response consists of an infinite number of nonzero values.

Least mean squares (LMS) algorithm: A popular algorithm used to adjust the tap weights of an adaptive

filter based on an approximation to a steepest decent strategy whereby the mean squared error is

approximated by the instantaneous squared error.

LNL nonlinear system model: A representation of a nonlinear system that consists of a series cascade

connection of a linear module, a memoryless nonlinear module, and a second linear module.

Mean square error (MSE) surface: A surface in an N + 1-dimensional hyperspace that represents the

expected value of the squared error as a function of N parameters that characterize the related adaptive

system.

Particle swarm optimization (PSO) algorithm: A structured stochastic optimization algorithm that

attempts to mimic the behavior of swarming insects while trying to achieve some optimal property

through the principles of swarm intelligence.

Structured stochastic search algorithm: A stochastic search algorithm that is structured so as to

intelligently generate and modify the randomized estimates in a manner that efficiently searches the

error space based on some previous or collective information generated by the search.
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System identification: A method of adaptively modeling an unknown system by driving the unknown

system and the adaptive system with the same excitation signal, comparing their outputs to form an

error signal, and then iteratively adjusting the parameters of the adaptive system until the error signal is

minimized according to some prespecified criterion.

Training signal: A signal against which the output of an adaptive system is compared in order to form an

error signal to be minimized by the learning process.

Weiner solution: The set of parameters that characterize an adaptive system when the output error has

been minimized according to the mean squared criterion.
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15.1 Coding, Transmission, and Storage

Jerry D. Gibson, Bo Wei, and Hui Dong

The goal of speech coding, or speech compression, is to represent speech in digital form with as few bits as

possible while maintaining the intelligibility and quality required for the particular application. Interest in

speech coding is motivated by the desire or requirement to conserve bit rate or bandwidth. There is always a

tradeoff between lowering the bit rate while maintaining quality and intelligibility; however, depending on the

application, many other constraints also must be considered, such as complexity, delay, and performance with

bit errors or packet losses [1]. Two networks that have been developed primarily with voice communications

in mind are the public switched telephone network (PSTN) and digital cellular networks. Additionally, with

the pervasiveness of the Internet, voice over Internet protocol (VoIP) is growing rapidly and is expected to

continue to do so over the near future. A new and powerful development for data communications is the

emergence of wireless local area networks (WLANs) in the embodiment of the 802.11a, b, g standards,

collectively referred to as Wi-Fi. Because of the proliferation and expected expansion of Wi-Fi networks,

considerable attention is now being turned to voice over Wi-Fi, with some companies already offering

proprietary networks, handsets, and solutions. Each of these networks has its own set of requirements, and

these are discussed in the section ‘‘Networks for Voice Communications.’’
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Speech and audio coding can be classified according to the bandwidth occupied by the input and the

reproduced source. Narrowband or telephone bandwidth speech occupies the band from 200 to 3400 Hz,

while wideband speech is contained in the range of 50 Hz to 7 kHz. High-quality audio is generally taken to

cover the range of 20 Hz to 20 kHz. The discussion in this chapter addresses narrowband and wideband

speech, with an emphasis on narrowband speech. The most common approaches to narrowband speech

coding today primarily center around two paradigms, namely, waveform-following coders and analysis-by-

synthesis methods. Waveform-following coders attempt to reproduce the time-domain speech waveform as

accurately as possible, while analysis-by-synthesis methods utilize the linear prediction model and a perceptual

distortion measure to reproduce only those characteristics of the input speech that are determined to be most

important. Familiar waveform-following methods are logarithmic pulse code modulation (log-PCM) and

adaptive differential pulse code modulation (ADPCM). The most common analysis-by-synthesis method is

called code-excited linear prediction (CELP) [1–3]. General structures for speech coding are developed in the

section ‘‘Narrowband Speech Coding Methods.’’

In many important applications, it is usual for the designated standards body to specify standards for speech

coding in that particular application. There was almost an exponential growth of speech coding standards in

the 1990s. For each of the networks examined in the section ‘‘Networks for Voice Communications,’’ we

discuss the most prominent speech coding standards and their characteristics.

In order to compare the various speech coding methods and standards, it is necessary to have methods for

establishing the quality and intelligibility produced by a speech coder. It is a difficult task to find objective

measures of speech quality, and often the only acceptable approach is to perform subjective listening tests.

However, there have been some recent successes in developing objective quantities, experimental procedures,

and mathematical expressions that have a good correlation with speech quality and intelligibility. We provide

an overview of these methods in the section ‘‘Speech Quality and Intelligibility.’’

The chapter is completed by discussing current directions in speech coding, including variable rate coding

in the section ‘‘Variable Rate Coding’’ and wideband speech coding in the section ‘‘Wideband Speech Coding.’’

Speech Quality and Intelligibility

To compare the performance of two speech coders, it is necessary to have some indicator of the intelligibility

and quality of the speech produced by each coder. The term intelligibility usually refers to whether the output

speech is easily understandable, while the term quality is an indicator of how natural the speech sounds. It is

possible for a coder to produce highly intelligible speech that is low quality in that the speech may sound very

machine-like and the speaker unidentifiable. However, it is unlikely that unintelligible speech would be called

high quality, but there are situations in which perceptually pleasing speech does not have high intelligibility.

We briefly discuss here the most common measures of intelligibility and quality used in formal tests of speech

coders. We also highlight some newer performance indicators that attempt to incorporate the effects of the

network on speech coder performance in particular applications [4,5,12].

MOS

The mean opinion score (MOS) is an often-used performance measure [4]. To establish a MOS for a coder,

listeners are asked to classify the quality of the encoded speech in one of five categories: excellent (5), good (4),

fair (3), poor (2), or bad (1). Alternatively, the listeners may be asked to classify the coded speech according to

the amount of perceptible distortion present, i.e., imperceptible (5), barely perceptible but not annoying (4),

perceptible and annoying (3), annoying but not objectionable (2), or very annoying and objectionable (1). The

numbers in parentheses are used to assign a numerical value to the subjective evaluations, and the numerical

ratings of all listeners are averaged to produce a MOS for the coder. A MOS between 4.0 and 4.5 usually

indicates high quality.

It is important to compute the variance of MOS values. A large variance, which indicates an unreliable test,

can occur because participants do not know what categories such as ‘‘good’’ and ‘‘bad’’ mean. It is sometimes

useful to present examples of good and bad speech to the listeners before the test to calibrate the five-point

scale. MOS values can and will vary from test to test and so it is important not to put too much emphasis on
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particular numbers when comparing MOS values across different tests. We will quote some MOS values for

common speech coders in later sections.

EMBSD

A relatively new objective measure that has a high correlation with MOS is the enhanced modified bark

spectral distance (EMBSD) measure [5]. The EMBSD is based on the bark spectral distance measure that

relates to perceptually significant auditory attributes. A value of zero for the EMBSD indicates no distortion

and a higher value indicates increasing distortion. The G.729 codec has been tested to have an EMBSD of 0.9,

indicating low distortion in the reconstructed speech. The EMBSD values are often mapped into MOS values,

since acceptable MOS values are more readily known.

DRT

The diagnostic rhyme test (DRT)was devised to test the intelligibility of coders known to produce speech of lower

quality. Rhyme tests are so named because the listener must determine which consonant was spoken when

presented with a pair of rhyming words; that is, the listener is asked to distinguish between word pairs such as

meat–beat, pool–tool, saw–thaw, and caught–taught. Each pair of words differs on only one of six phonemic

attributes: voicing, nasality, sustention, sibilation, graveness, and compactness. Specifically, the listener is

presented with one spoken word from a pair and asked to decide which word was spoken. The final DRTscore is

the percent responses computed according to P ¼ (R W)· 100/T, where R is the number correctly chosen,W is

the number of incorrect choices, and T is the total of word pairs tested. Usually, 75 #DRT # 95, with a ‘‘good’’

system being about 90.

DAM

The diagnostic acceptability measure (DAM) developed by Dynastat is an attempt to make the measurement

of speech quality more systematic. For the DAM, it is critical that the listener crews be highly trained and

repeatedly calibrated in order to get meaningful results. The listeners are each presented with encoded

sentences taken from the Harvard 1965 list of phonetically balanced sentences, such as ‘‘Cats and dogs each

hate the other’’ and ‘‘The pipe began to rust while new.’’ The listener is asked to assign a number between 0

and 100 to characteristics in three classifications: signal qualities, background qualities, and total effect. The

ratings of each characteristic are weighted and used in a multiple nonlinear regression. Finally, adjustments are

made to compensate for listener performance. A typical DAM score is 45 to 55%, with 50% corresponding to a

‘‘good’’ system.

The perception of ‘‘good-quality’’ speech is a highly individual and subjective area. As such, no single

performance measure has gained wide acceptance as an indicator of the quality and intelligibility of speech

produced by a coder. Further, there is no substitute for subjective listening tests under the actual

environmental conditions expected in a particular application.

PESQ

A new and important objective measure is the perceptual evaluation of speech quality (PESQ) method in ITU

Recommendation P.862, which attempts to incorporate more than just speech codecs but also end-to-end

network measurements [12]. The PESQ has been shown to have good accuracy for the factors listed in

Table 15.1. It is clear that this is a very ambitious and promising testing method. There are parameters for

which the PESQ is known to provide inaccurate predictions or is not intended to be used with, such as

listening levels, loudness loss, effect of delay in conversational tests, talker echo, and two-way communications.

The PESQ also has not been validated to test for packet loss and packet-loss concealment with PCM codecs,

temporal and amplitude clipping of speech, talker dependencies, music as input to a codec, CELP and hybrid

codecs , 4 kbits/sec, and MPEG-4 HVXC, among others.

The PESQ is being used more often but it is not freely available, so cost has been a hindrance to its

widespread use so far.
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The E-Model

Another relatively recent objective method for speech-quality evaluation is the E-Model in ITU

Recommendation G.107 and G.108. The E-Model attempts to assess the ‘‘mouth-to-ear’’ quality of a

telephone connection and is intended to be used in network planning. The E-Model has components for

representing the effects of ‘‘equipment’’ and different types of impairments. The equipment effects can be

mapped into packet losses so that the E-Model can be helpful in voice-over-IP evaluations.

Narrowband Speech Coding Methods

Logarithmic PCM (log PCM) and ADPCM are waveform-following speech coders and have found widespread

applications. Log PCM at 64 kbits/sec is the speech codec (coder/decoder) used in the long-distance public

switched telephone network at a rate of 64 kbits/sec. It is a simple coder and it achieves what is called toll quality,

which is the standard level of performance against which all other narrowband speech coders are judged. Log

PCMuses a nonlinear quantizer to reproduce low-amplitude signals, which are important to speech perception.

There are two closely related types of log-PCM quantizer used in the world: m-law, which is used in North
America and Japan, and A-law, which is used in Europe, Africa, Australia, and South America. Both achieve toll-

quality speech, and in terms of the MOS value it is usually between 4.0 and 4.5 for log-PCM [2].

ADPCM operates at 32 kbits/sec or lower, and it achieves performance comparable to log-PCM by using a

linear predictor to remove short-term redundancy in the speech signal before quantization. The most

common form of ADPCM uses what is called backward adaptation of the predictors and quantizers to follow

the waveform closely. Backward adaptation means that the predictor and quantizer are adapted based upon

past reproduced values of the signal that are available at the encoder and decoder. No predictor or quantizer

parameters are sent along with the quantized waveform values (called forward adaptation). By subtracting a

predicted value from each input sample, the dynamic range of the signal to be quantized is reduced, and

hence, good reproduction of the signal is possible with fewer bits [1].

Analysis-by-synthesis (AbS) methods are a considerable departure from waveform-following techniques.

The most common and most successful analysis-by-synthesis method is code-excited linear prediction (CELP).

In CELP speech coders, a segment of speech is synthesized using the linear prediction model along with a long-

term redundancy predictor for all possible excitations in what is called a codebook. For each excitation, an

error signal is calculated and passes through a perceptual weighting filter. The excitation that produces the best

perceptually weighted coded speech is selected for use at the decoder. Hence the name analysis-by-synthesis.

The predictor parameters and the excitation codeword are sent to the receiver to decode the speech.

TABLE 15.1 Factors for which the PESQ has Demonstrated Acceptable Accuracy

Test Factors

Speech input levels to a codec

Transmission channel errors

Packet loss and packet loss concealment with CELP codecs

Bit rates for multiple bit rate codecs

Transcodings

Environmental noise at the sending side

Effect of varying delay in listening only tests

Short-term time warping of the audio signal

Long-term time warping of the audio signal

Coding Technologies

Waveform codecs such as G.711, G.726, G.727

CELP and hybrid codecs at rates $ 4 kbits/sec, such As G.728, G.729, G.723.1

Other codecs: GSM-FR, GSM-HR, GSM-EFR, GSM-AMR, CDMA-EVRC, TDMA-ACELP, TDMA-VSELP, TETRA

Applications

Codec evaluation

Codec selection

Live network testing using a digital or analog connection to the network

Testing of emulated and prototype networks
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The analysis-by-synthesis procedure is very complicated, and it is fortunate that algebraic codebooks, which

have mostly zero values and only a few nonzero pulses, have been discovered and work well [1,2].

Networks for Voice Communications

In this section, we describe the relevant details of current voice codecs in the context of the network for which

they were designed. In particular, we develop the voice codecs for the PSTN, digital cellular networks, VoIP,

and voice over wireless local area networks (voice over Wi-Fi).

The Public Switched Telephone Network (PSTN)

The most familiar form of network for voice communications is the PSTN, which consists of a wired, time

division multiplexed (TDM), circuit-switched backbone network with (often) copper wire pair local loops [6].

The PSTN was designed and evolved with voice communications as a primary application. The voice codec

most often used in the PSTN is 64 kbits/sec logarithmic pulse code modulation (log-PCM) designated by the

ITU-T as G.711, and which is taken as the standard for toll-quality voice transmission. The TDM links in the

PSTN are very reliable with bit error rates (BERs) of 10 6 to 10 9. As a result, bit error concealment is not an

issue for G.711 transmission over TDM PSTN links, even though bit errors in G.711 encoded voice generate

very irritating ‘‘pops’’ in reconstructed speech. Furthermore, G.711 is designed with several asynchronous

tandems in mind, since it was possible to encounter several analog switches during a long-distance telephone

call prior to the mid-1980s. Even eight asynchronous tandems of G.711 with itself has been shown to still

maintain a MOS greater than 4.0 when a single encoding is 4.4 to 4.5.

Other voice codecs have been standardized for the PSTN over the years. These include G.721 (now G.726),

G.727, G.728, G.729, and G.729A for narrowband (telephone bandwidth) speech (200 to 3400 Hz) and G.722,

G.722.1 [13], and G.722.2 [14] for wideband speech (50 Hz to 7 kHz). Table 15.2 summarizes the rate,

performance, complexity, and algorithmic delay of each of the narrowband speech codec standards. It is

emphasized that the MOS values shown are approximate since they are taken from several different sources. It

is recognized that MOS values for a given codec can (and will) change from test to test, but the values given

here provide an approximate ordering and indication of codec performance.

Note that for the waveform-based and low-delay codecs, the principal mode of error dissipation was not

error concealment per se, but error dissipation due to fading the ‘‘memories’’ of the adaptive algorithms

involved. Table 15.3 presents some results concerning the tandem performance of the narrowband speech

codecs. Note that asynchronous tandem connections of these codecs with themselves do not cause an

unacceptable loss in performance compared to a single encoding, although the MOS for four tandems of

G.726 and three tandems of G.729 drops considerably.

Digital Cellular Networks

Digital cellular networks provide wireless voice connectivity by combining high-quality voice codecs, unequal

forward error correction of sensitive bits, error detection and concealment of uncorrected errors, and

interleaving [7,8]. Table 15.4 contains the rate, performance, complexity, and algorithmic delay for selected

digital cellular speech codecs. As in previous tables, the MOS values and complexity in MIPS are representative

TABLE 15.2 Comparison of Voice Codecs for the PSTN

Codec Rate (kbits/sec) MOS Complexity (MIPS) Frame Size/Look-Ahead (msec)

G.711 64 4.0þ ,,1 0.125

G.721/726 32 ,4.0 1.25 0.125

G.728 16 3.9 30 0.625

G.729 8 4.0 20 10/5

G.729A 8 4.0 12 10/5

G.723.1 5.3/6.3 3.7/3.9 11 30/7.5
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numbers taken from several sources. It is evident from Table 15.3 that the voice codecs have good performance

in ideal conditions without large algorithmic delay or excessive complexity.

As mentioned before, the bits to be transmitted are typically classified into categories for unequal error

protection, as well as for enabling different modes of error concealment for errors detected after forward error

correction. In Table 15.4, the rate is for the voice codec only without error correction/detection, and the frame

size/look-ahead numbers in the table do not include delay due to interleaving.

Table 15.5 shows available results for multiple tandem encodings of the codecs in Table 15.4, including

results from tandem connections of these codecs with the PSTN backbone codecs in Table 15.2. It is clear that

tandem encodings result in a drop in performance as seen in the lower MOS values. Furthermore, tandem

encodings add to the end-to-end delay because of the algorithmic delays in decoding and reencoding. Tandem

encodings are not discussed often within digital cellular applications since the codec for the backbone wireline

network is often assumed to be G.711. However, it is recognized that tandem encodings with codecs other than

G.711 can lead to a loss in performance and that tandem encodings constitute a significant problem for end-

to-end voice quality. In particular, transcoding at network interfaces and source coding distortion

accumulation due to repeated coding have been investigated with the goal of obtaining a transparent

transition between certain speech codecs. Some system-wide approaches also have been developed for specific

networks. The general tandeming/transcoding problem remains open.

TABLE 15.4 Comparison of Selected Digital Cellular Voice Codecs

Codec Rate (kbits/sec) MOS Complexity (MIPS)

Frame Size/

Look-Ahead (msec)

IS-641 7.4 4.09 14 20/5

IS-127-2 EVRC 8.55, 4.0, 0.8 3.82 20 20

GSM-EFR 12.2 4.26 14 20

NB-AMR 4.75–12.2 3.4–4.2 14 20/5

IS-893, cdma2000 8.5, 4.0, 2.0, 0.8 3.93 at 3.6 kbits/sec ADR 18 20

TABLE 15.3 Representative Asynchronous

Tandem Performance of Selected PSTN Codecs

Voice Codec Mean Opinion Score (MOS)

G.711· 4 .4.0

G.726· 4 2.91

G.729· 2 3.27

G.729· 3 2.68

G.726þG.729 3.56

G.729þG.726 3.48

TABLE 15.5 Representative Asynchronous Tandem Performance

of Selected Digital Cellular Codecs

Voice Codec Mean Opinion Score (MOS)

IS-641· 2 3.62

GSM-EFR· 2 4.13

IS-641þ G.729 3.48

GSM-FRþG.729 3.05

GSM-EFRþG.729 3.53

GSM-EFRþG.729þG.729 3.21

IS-641þG.729þ G.729 3.10
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Digital cellular networks perform exceedingly well given the difficulty of the task. The melding of voice

coder design, forward error correction and detection, unequal error protection, and error concealment

in digital cellular has important lessons for designing voice communications systems for VoIP and voice

over Wi-Fi.

Voice Over Internet Protocol (VoIP)

VoIP has been evolving for more than ten years, but it is now projected finally to be taking off as a voice

communications service [9]. Among the issues in developing good VoIP systems are voice quality, latency,

jitter, packet loss performance, packetization, and the design of the network. Broadly speaking, the voice codec

in VoIP systems should achieve toll or near toll quality, have as low a delay as possible, and have good

resilience to packet loss. ITU-T Recommendation G.114 provides specifications for delay when echo is

properly controlled. In particular, one-way transmission time (including processing and propagation delay) is

categorized as: (a) 0 to 150 msec; acceptable for most user applications; (b) 150 to 400 msec; acceptable

depending upon the transmission time impact; (c) above 400 msec; unacceptable for general network

planning purposes.

Furthermore, guidelines are given in G.114 for calculating the delay based upon the codec frame size and

look ahead and the application. For example, it is assumed that there is a delay of one frame before processing

can begin and then that the time required to process a frame of speech is the same as the frame length. As a

result, if there is no additional delay at the interface of the codec and the network, the mean one-way delay of a

codec is 2 · frame size þ look-ahead. Thus, for G.729 the codec delay is 25 msec, and for G.723.1, the codec

delay is 67.5 msec. Another one frame delay may be incurred due to clocking out bits to match the network in

a wireline environment or due to placing more than one frame per packet. From this calculation, it is evident

that frame size is a critical parameter, and the delay totals that appear in publications with respect to the

standard codecs may be one, two, or three frames plus look-ahead. It is noted that none of these delays

includes a delay due to a jitter buffer.

Interestingly, voice codecs used in prominent VoIP products are all ported from previous standards and

other applications. Some of the earliest VoIP applications used G.723.1, which was originally intended for

video telephony, but the relatively long frame size and look-ahead and the somewhat lower quality led

developers to consider other alternatives. Today’s VoIP product offerings typically include G.711, G.729, and

G.722, in addition to G.723.1. See Table 15.6 for a summary of the relevant properties offered by each coder.

G.723.1 is often favored for videophone applications since the delay of the video coding, rather than the voice

codec, sets the delay of the videophone operation.

The coders in Table 15.6, as a set, offer a full range of alternatives in terms of rate, voice quality, complexity,

and delay. What is not evident from this table is how effectively one can conceal packet losses with each of

these coders. Packet-loss concealment is particularly important since in order to reduce latency,

retransmissions are not allowed in VoIP.

Rather recently, a packet-loss concealment algorithm has been developed for G.711. Based upon 10-msec

packets and assuming the previous frame was received correctly, the method generates a synthesized or

concealment waveform from the last pitch period with no attenuation. If the next packet is lost as well, the

method uses multiple pitch periods with a linear atttentuation at a rate of 20% per 10 msec. After 60 msec, the

synthesized signal is zero.

G.729 and G.723.1 suffer from the problem that the predictor parameters (line spectral frequencies) are

predictively encoded from frame to frame. For G.729, the basic approach to packet-loss concealment if a

TABLE 15.6 Properties of Common VoIP Codecs

Codec Relevant Properties

G.711 Low delay, toll quality, low complexity, higher rate

G.729 Toll quality, acceptable delay, low rate, acceptable complexity

G.723.1 Low rate, acceptable quality, relatively high delay

G.722 Wideband speech, low delay, low complexity, higher rate
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single 10-msec frame is erased is: (i) generate a replacement excitation based upon the classification of the

previous frame as voiced or unvoiced, (ii) repeat the synthesis filter parameters from the previous frame,

and (iii) attenuate the memory of the gain predictor. It seems intuitive that a speech codec that allowed

interpolation of erased frames would perform better than using only past information, and this is indeed

true. However, the frame-to-frame predictive coding of the short-term predictor parameters in precludes

using interpolation. Note, however, that interpolation implies additional delay in reconstructing the

speech, and so the performance improvement provided by interpolation schemes must include the effects

of any additional delay.

Voice over Wi-Fi

Wireless local area networks (WLANs), such as 802.11b, 802.11a, and 802.11g, are becoming extremely

popular for use in businesses, homes, and public places. As a result, there is considerable interest in developing

VoIP for Wi-Fi, which we designate here as voice over Wi-Fi. The issues involved for voice over Wi-Fi would

seem to be very much the same as for VoIP over the Internet; and it is certainly true that voice quality, latency,

jitter, packet-loss performance, and packetization all play a critical role. However, the physical link in Wi-Fi is

wireless, and as a result, bit errors will commonly occur and this, in turn, affects link protocol design and

packet loss concealment.

One issue in particular is how to handle packets with bit errors. One approach would be to detect bit errors

in a packet using a cyclic redundancy check (CRC) error detection code, and request a retransmission if a bit

error is detected in the packet. In fact, the IEEE 802.11 MAC layer defines two different access methods. One

method, called the distributed coordination function (DCF), is basically carrier sense multiple access with

collision avoidance (CSMA/CA), and the basic access scheme is, if the channel is sensed to be idle, the node

starts its transmissions. A CRC is computed over the entire received packet and an acknowledgment is sent if

the packet is error-free. If an error is detected in the packet, a retransmission is requested. Up to seven

retransmissions for short packets and up to four retransmissions for large packets are allowed. This method

clearly adds to latency and is in contrast to avoiding retransmissions altogether in Internet VoIP, but how does

one deal with bit errors? The answer lies in a combination of those techniques used in digital cellular in

conjunction with different packetization and packet-loss concealment methods. This is an area for current

research and development.

While voice over Wi-Fi is projected to be an exponentially growing market in the next five years, it is just

now in its formative stages; however, there are some proprietary products and systems being offered. We

mention only two here. First, Cisco announced their Wireless IP Phone 7920 for 802.11b. The voice codecs

available in this phone are G.711 and G.729A. Spectralink offers voice over Wi-Fi voice systems for businesses.

This system also operates over 802.11b and uses G.711 and G.729A as the candidate voice codecs. Additionally,

Spectralink implements a proprietary protocol that gives voice priority over data within the confines of the

802.11 standard. In particular, their protocol specifies zero back-off after each packet transmission if the next

packet is voice (this is in contrast to the requirement of random back-off after each transmission, which would

result in variable delays of packets). Further, a priority queuing method (not specified in 802.11) is used to

push voice packets to the head of the transmission queue.

Numerous research efforts have been conducted to analyze and improve the performance and capacity of

the IEEE 802.11 MAC protocol for WLANs and real-time traffic. An efficient way to transmit voice over

WLANs is to employ a reservation scheme that guarantees delay and bandwidth. Work is underway on a new

standard, 802.11e, which is designed to support delay-sensitive applications with multiple managed levels of

QoS (quality of service) for data, voice, and video.

Variable Rate Coding

For more than 30 years, researchers have been interested in removing silent periods in speech to reduce the

average bit rate [10]. This was successfully accomplished for some digital cellular coders where silence was

removed and coded with a short length code and then replaced at the decoder with ‘‘comfort noise.’’ Comfort

noise is needed because the background sounds for speech coders are seldom pure silence and inserting pure
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silence generates unwelcome artifacts at the decoder. The result, of course, is a variable rate speech coder.

One of the first variable rate speech coders with more than a silence removal mode was the Qualcomm IS-96

QCELP coder, which operated at the rates of 0.8, 2, 4, and 8 kbits/sec, depending upon the classification of the

input speech. This coder was part of the CDMA standard in North America, but it did not have good

performance even at the highest supported rate, achieving an MOS of about 3.3. A replacement coder for IS-96

QCELP is the IS-127 Enhanced Variable Rate Coder (EVRC) that has three possible bit rates of 0.8, 4, and 8

kbits/sec, depending upon voice activity or a command from the network. The IS-127 EVRC coder achieves an

MOS of about 3.8 at the highest rate of 8 kbits/sec, but is not operated at lower average data rates because of

low voice quality.

A more recent variable rate speech codec is the IS-893 Selectable Mode Vocoder (SMV), which has six

different modes that produce different average data rates and voice quality. The highest quality mode, Mode 0,

can achieve a higher MOS than the IS-127 EVRC at an average data rate of 3.744 kbit/sec, and Mode 1 also

typically outperforms IS-127. The SMV coder is part of the IS-893 cdma2000 standard.

Wideband Speech Coding

Even though we are quite comfortable communicating using telephone bandwidth speech (200 to

3400 Hz), there has been considerable recent interest in compression methods for wideband speech

covering the range of 50 Hz to 7 kHz [1,11]. The primary reasons for this interest are that wideband

speech improves intelligibility, naturalness, and speaker identifiability. Originally, the primary application

of wideband speech coding was to videoconferencing, and the first standard, G.722, separated the speech

into two subbands and used ADPCM to code each band. The G.722 codec is relatively simple and

produces good quality speech at 64 kbits/sec, and lower quality speech at the two other possible codec

rates of 56 and 48 kbits/sec. The G.722 speech codec is still widely available in the H.323

videoconferencing standard, and it is often provided as an option in VoIP systems.

Two recently developed wideband speech coding standards, designated as G.722.1 and G.722.2, utilize

coding methods that are quite different from G.722, as well as completely different from each other. The

G.722.1 standard employs a filter bank/transform decomposition called the modulated lapped transform

(MLT) and operates at the rates of 24 and 32 kbits/sec. A categorization procedure is used to determine the

quantization step sizes and coding parameters for each region. The coder has an algorithmic delay of 40 msec,

which does not include any computational delay. Since G.722.1 employs filter bank methods, it performs well

for music and less well for speech. In one MOS test using British English, the G.722.1 coder at 24 kbits/sec

achieved an MOS value of 4.1.

G.722.2 is actually an ITU-T designation for the adaptive multirate wideband (AMR-WB) speech coder

standardized by the 3GPP. This coder operates at rates of 6.6, 8.85, 12.65, 14.25, 15,85, 18.25, 19.85, 23.05, and

23.85 kbits/sec and is based upon an algebraic CELP (ACELP) analysis-by-synthesis codec. Since ACELP

utilizes the linear prediction model, the coder works well for speech but less well for music, which does not fit

the linear prediction model. As noted in Table 15.7, G.722.2 achieves good speech quality at rates greater than

12.65 kbits/sec and performance equivalent to G.722 at 64 kbits/sec with a rate of 23.05 kbits/sec and higher.

For speech, one MOS test for the French language showed the G.722.2 codec achieving an MOS value of 4.5 at

the 23.85 kbits/sec rate and an MOS value of around 4.2 for the 12.65 kbits/sec rate.

TABLE 15.7 Characteristics of Some Wideband Speech Coding Standards

Standard Bit Rate (kbit/sec) Coding Method Quality

Frame Size/

Look-Ahead Complexity

G.722 48, 56, 64 Subbband ADPCM Commentary grade 10 MIPS

G.722.1 24 and 32 Transform Good music/poorer for speech ,15 MIPS

G.722.2 23.85 ACELP Good speech/poor music ,40 MIPS
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The MPEG-4 Natural Audio Coding Tool

The MPEG-4 audio coding standard specifies a complete toolbox of compression methods for everything

including low bit rate narrowband speech, wideband speech, and high-quality audio. It offers several

functionalities not available in other standards as well, such as bit rate scalability (also called SNR scalability)

and bandwidth scalability. We provide an overview here with an emphasis on narrowband and wideband

speech coding. Tables 15.8 and 15.9 summarize the many options available in the MPEG-4 toolbox [15].

The harmonic vector excitation coder (HXVC) tool performs a linear prediction analysis and calculates the

prediction error signal. The prediction error is then transformed into the frequency domain where the pitch

and envelope are analyzed. The envelope is quantized using vector quantization for voiced segments and a

search for an excitation is performed for unvoiced speech.

The CELP coder in the MPEG-4 toolbox utilizes either a multipulse excitation (MPE) or a regular pulse

excitation (RPE), which were both predecessors of code-excited systems. The MPE provides for better quality

but it is more complicated than RPE. The coder also uses a long-term pitch predictor rather than an adaptive

codebook.

Note from Table 15.9 that there are 28-bit rates from 3850 bits/sec to 12.2 kbits/sec for narrowband speech,

and 30-bit rates from 10.9 kbits/sec to 23.8 kbits/sec for wideband speech. The larger changes in rate come

about by changes in the frame size, which, of course, leads to greater delay.

The functionalities built into the HVXC and CELP speech coding tools are impressive. The HVXC speech

coder has a multibit rate capability and a bit rate scalability option. For multibit rate coding, the bit rate is

chosen from a set of possible rates upon call setup. For HVXC, there are only two rates, 2 kbits/sec and

4 kbits/sec. For CELP, bit rates are selectable in increments as small as 200 bits/sec. Bit rate scalability can be

useful in multicasting as well as many other applications. The bit rate scalability options in MPEG-4 are many

indeed. The HVXC and CELP coders can be used to generate core bit streams that are enhanced by their own

coding method or by one of the other coding methods available in the MPEG-4 natural audio coding tool. In

bit rate scalability, the enhancement layers can be added in rate increments of 2 kbits/sec for narrowband

speech, and in increments of 4 kbits/sec for wideband speech. For bandwidth scalable coding, the

enhancement bit stream increments depend upon the total coding rate. Table 15.10 summarizes the

enhancement bit streams for bandwidth scalability in relation to the core bit stream rates.

The speech quality produced by the MPEG-4 natural audio coding tool is very good in comparison to other

popular standards, especially considering the range of bit rates covered. For example, at 6 kbits/sec the

MPEG-4 tool produces an MOS comparable to G.723.1, and at 8.3 kbits/sec, the MOS value achieved is

TABLE 15.8 Specifications of the HVXC Speech Coding Tool

Sampling Frequency 8 kHz

Bandwidth 300–3400 Hz

Bit Rate (bits/sec) 2000 and 4000

Frame Size 20 msec

Delay 33.5–56 msec

Features Multibit rate coding/bit rate scalability

TABLE 15.9 Specifications of the CELP Speech Coding Tool

Sampling Frequency 8 kHz 16 kHz

Bandwidth 300–3400 Hz 50–7000 Hz

Bit Rate (bits/sec) 3850–12,200 (28-bit rates) 10,900–23,800 (30-bit rates)

Frame Size 10–40 msec 10–20 msec

Delay 15–45 msec 15–26.75 msec

Features Multibit rate coding/bit rate

scalability/bandwidth scalability
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comparable to G.729, while at 12 kbits/sec, it performs as well as the GSM EFR at 12.2 kbits/sec. The bit rate

scalable modes perform slightly poorer than G.729 at 8 bits/sec and the GSM EFR at 12 kbits/sec. Thus, as

should be expected, bit rate scalability functionality extracts a penalty in coder performance.

Summary and Conclusions

Speech coding has become an integral part of our communications backbone services. New speech coders

continue to be designed and standardized. Current efforts emphasize functionalities such as bit-rate scalability,

bandwidth scalability, and selectable multiple bit rates. As VoIP becomes more important and voice over Wi-Fi

is introduced, new challenges in terms of asynchronous tandem connections of speech coders move to the

forefront. Also, reducing latency and jitter and improving packet-loss concealment methods are paramount to

maintaining voice services at the level we have become to expect.

Defining Terms

Analysis-by-synthesis: Constructing several versions of a waveform and choosing the best match.

Asynchronous tandeming: A series connection of speech coders that requires digital-to-analog conversion

followed by resampling and reencoding.

Bandwidth scalable coding: A core layer bit stream that represents narrowband speech that can be

enhanced to a wideband signal using an incremental bit stream plus the core.

Bit-rate scalable coding: A core layer bit stream that represents speech that can be represented with

greater accuracy by adding an incremental bit stream to the core layer.

Mean Opinion Score (MOS): A popular method for classifying the quality of encoded speech based on a

five-point scale.

Narrowband speech: A speech signal that occupies the band from 200 to 3400 Hz.

Predictive coding: Coding of time-domain waveforms based on a (usually) linear prediction model.

Standard: An encoding technique adopted by an industry to be used in a particular application.

Variable-rate coders: Coders that output different amounts of bits based on the time-varying

characteristics of the source.

Wideband speech: A speech signal that occupies the band from 50 to 7000 Hz.
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15.2 Recent Advancements in Speech Enhancement

Yariv Ephraim and Israel Cohen

Speech enhancement is a long-standing problem with numerous applications ranging from hearing aids to

coding and automatic recognition of speech signals. In this section we focus on enhancement from a single

microphone, and assume that the noise is additive and statistically independent of the signal. We present the

principles that guide researchers working in this area, and provide a detailed design example. The example

focuses on minimum mean square error estimation of the clean signal’s log-spectral magnitude. This approach

has attracted significant attention in the past 20 years. We also describe the principles of a Monte-Carlo

simulation approach for speech enhancement.

Introduction

Enhancement of speech signals is required in many situations in which the signal is to be communicated or

stored. Speech enhancement is required when either the signal or its receiver is degraded. For example, hearing

impaired individuals require enhancement of perfectly normal speech to fit their individual hearing

capabilities. Speech signals produced in a room generate reverberations, which may be quite noticeable when a

hands-free single channel telephone system is used and binaural listening is not possible. A speech coder may

be designed for clean speech signals while its input signal may be noisy. Similarly, a speech recognition system

may be operated in an environment different from that it was designed to work in. This short list of examples

illustrates the extent and complexity of the speech enhancement problem.

Here, we focus on enhancement of noisy speech signals for improving their perception by human. We assume

that the noise is additive and statistically independent of the signal. In addition, we assume that the noisy signal is

the only signal available for enhancement. Thus, no reference noise source is assumed available. This problem is of

great interest, and has attracted significant research effort for over 50 years. A successful algorithmmay be useful

as a preprocessor for speech coding and speech recognition of noisy signals.

The perception of a speech signal is usually measured in terms of its quality and intelligibility. The quality is

a subjective measure that reflects on individual preferences of listeners. Intelligibility is an objective measure

that predicts the percentage of words that can be correctly identified by listeners. The two measures are not

correlated. In fact, it is well known that intelligibility can be improved if one is willing to sacrifice quality. This

can be achieved, for example, by emphasizing high frequencies of the noisy signal [35]. It is also well known

that improving the quality of the noisy signal does not necessarily elevate its intelligibility. On the contrary,

quality improvement is usually associated with loss of intelligibility relative to that of the noisy signal. This is
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due to the distortion that the clean signal undergoes in the process of suppressing the input noise. From a pure

information theoretic point of view, such loss in ‘‘information’’ is predicted by the data processing theorem

[10]. Loosely speaking, this theorem states that one can never learn from the enhanced signal more than can be

learnt from the noisy signal about the clean signal.

A speech-enhancement system must perform well for all speech signals. Thus, from the speech-

enhancement system point of view, its input is a random process whose sample functions are randomly

selected by the user. The noise is naturally a random process. Hence, the speech-enhancement problem is a

statistical estimation problem of one random process from the sum of that process and the noise. Estimation

theory requires statistical models for the signal and noise, and a distortion measure which quantifies the

similarity of the clean signal and its estimated version. These two essential ingredients of estimation theory are

not explicitly available for speech signals. The difficulties are with the lack of a precise model for the speech

signal and a perceptually meaningful distortion measure. In addition, speech signals are not strictly stationary.

Hence, adaptive estimation techniques, which do not require explicit statistical model for the signal, often fail

to track the changes in the underlying statistics of the signal.

In this section, we survey some of the main ideas in the area of speech enhancement from a single

microphone. We begin in the section ‘‘Statistical Models and Estimation’’ by describing some of the most

promising statistical models and distortion measures which have been used in designing speech-enhancement

systems. In the section ‘‘MMSE Spectral Magnitude Estimation,’’ we present a detailed design example for a

speech-enhancement system which is based on minimum mean squared error (MSE) estimation of the speech

spectral magnitude. This approach integrates several key ideas from the section ‘‘Statistical Models and

Estimation’’, and has attracted much attention in the past 20 years. In the section ‘‘Monte-Carlo Simulation’’, we

present the principles of a Monte-Carlo simulation approach to speech enhancement. Some concluding

comments are given in ‘‘Comments.’’

Statistical Models and Estimation

Enhancement of noisy speech signals is essentially an estimation problem in which the clean signal is estimated

from a given sample function of the noisy signal. The goal is to minimize the expected value of some

distortion measure between the clean and estimated signals. For this approach to be successful, a perceptually

meaningful distortion measure must be used, and a reliable statistical model for the signal and noise must be

specified. At present, the best statistical model for the signal and noise and the most perceptually meaningful

distortion measure are not known. Hence, a variety of speech-enhancement approaches have been proposed.

They differ in the statistical model, distortion measure, and in the manner in which the signal estimators are

being implemented. In this section, we briefly survey the most commonly used statistical models, distortion

measures, and the related estimation schemes.

Linear Estimation

Perhaps the simplest scenario is obtained when the signal and noise are assumed statistically independent

Gaussian processes, and the MSE distortion measure is used. For this case, the optimal estimator of the clean

signal is obtained by the Wiener filter. Since speech signals are not strictly stationary, a sequence of Wiener

filters is designed and applied to vectors of the noisy signal. Suppose that Yt and Wt represent, respectively, l-

dimensional vectors from the clean signal and the noise process where t ¼ 0; 1; 2; . . .. Let Zt ¼ Yt þWt denote

the corresponding noisy vector. Let RYt and RWt
denote the covariance matrices of Yt and Wt , respectively.

Then, the minimum mean squared error (MMSE) estimate of the signal Yt is obtained by applying the Wiener

filter to the noisy signal Zt as follows:

ŶYt ¼ RYt ðRYt þ RWt
Þ 1

h i
Zt ð15:1Þ

Remarkably, this simple approach is one of the most effective speech-enhancement approaches known today.

The key to its success is reliable estimation of the covariance matrices of the clean signal and of the

noise process. Many variations on this approach have been developed and were nicely summarized by
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Lim and Oppenheim [26]. When RYt is estimated by subtracting an estimate of the covariance matrix of the

noise vector, say R̂RWt
, from an estimate of the covariance matrix of the noisy vector, say R̂RZt , then the Wiener

filter at time t becomes ðR̂RZt R̂RWt
ÞR̂R 1

Zt
. The subtraction is commonly performed in the frequency domain

where it is simpler to control the positive definiteness of the estimate of RY . This approach results in the

simplest form of the family of ‘‘spectral subtraction’’ speech-enhancement approaches [26].

MMSE estimation under Gaussian assumptions leads to linear estimation in the form of Wiener filtering

given in Equation (15.1). The same filter could be obtained if the Gaussian assumptions are relaxed, and the

best linear estimator in the MMSE sense is sought. If we denote the linear filter for Yt by the l · l matrix Ht ,

then the optimal Ht is obtained by minimizing the MSE given by EfkYt HtZtk2g. Here, Ef·g denotes
expected value, and k · k denotes the usual Euclidean norm. Note that when the filter Ht is applied to the noisy

signal Zt , it provides a residual signal given by

Yt ŶYt ¼ Yt HtZt ¼ ðI HtÞYt þHtWt ð15:2Þ
The term ðI HtÞYt represents the distortion caused by the filter, and the term HtWt represents the residual

noise at the output of the filter. Since the signal and noise are statistically independent, the MSE error is the

sum of two terms, the distortion energy E2d ¼ EfkðI HtÞYtk2g and the residual noise energy

E2n ¼ EfkHtWtk2g. The Wiener filter minimizes E2d þ E2n over all possible filters Ht . An alternative approach

proposed by Ephraim and Van-Trees [18] was to design the filter Ht by minimizing the distortion energy E2d for

a given level of acceptable residual noise energy E2n. This approach allows the design of a filter that controls the

contributions of the two competing components E2d and E
2
n to the MSE. The resulting filter is similar to that in

Equation (15.1) except that RWt
is replaced by mtRWt

where mt is the Lagrange multiplier of the constrained
optimization problem. The idea was extended to filter design which minimizes the distortion energy for a

given desired spectrum of the residual noise. This interesting optimization problem was solved by Lev-Ari and

Ephraim [25]. The estimation criterion was motivated by the desire to adjust the spectrum of the residual

noise so that it is least audible.

In [18], the two estimation criteria outlined above were applied to enhancement of noisy speech signals. It

was noted that there is strong empirical evidence that supports the notion that covariance matrices of many

speech vectors are not full rank matrices. This notion is also supported by the popular sinusoidal model for

speech signals, in which a speech vector with l ¼ 200 to 400 samples at an 8 kHz sampling rate is spanned by

fewer than l sinusoidal components. As such, some of the eigenvalues of RYt are practically zero, and the vector

Yt occupies a subspace of the Euclidean space Rl. A white noise, however, occupies the entire space Rl. Thus,

the Euclidean space Rl may be decomposed into a ‘‘signal subspace’’ containing signal plus noise, and a

complementary ‘‘noise subspace’’ containing noise only. Thus, in enhancing a noisy vector Zt, one can first

null out the component of Zt in the noise subspace and filter the noisy signal in the signal subspace. The

decomposition of Zt into its signal subspace component and noise subspace component can be performed by

applying the Karhunen–Loève transform to Zt.

Spectral Magnitude Estimation

In the section ‘‘Linear Estimation’’ we focused on MMSE estimation of the waveform of the speech signal. This

estimation may be cast in the frequency domain as follows. We use ð·Þ0 to denote conjugate transpose. Let D 0
denote the discrete Fourier transform (DFT) matrix. Let Zt ¼ 1ffi

l
p D 0Zt denote the vector of spectral

components of the noisy vector Zt. For convenience, we have chosen to use normalized DFT. We denote the

kth spectral component of the noisy vector Zt by Ztk. Let LZt be a diagonal matrix with the variances of the

spectral components fZtk; k ¼ 0; 1; . . . ; l 1g on its main diagonal. Assume, for simplicity, that RYt and RWt

are circulant matrices [24]. This means that RYt ¼ 1
l DLYtD

0 and RWt
¼ 1

l DLWt
D0. Let ŶYt ¼ 1ffi

l
p D0ŶYt be the

normalized DFT of the MMSE estimate ŶYt . Under these assumptions, Equation (15.1) becomes

ŶYt ¼ LYtðLYt þ LWt
Þ 1

h i
Zt ð15:3Þ
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This filter performsMMSE estimation of the spectral components fYtkg of the clean vector Yt. It is commonly
believed, however, that the human auditory system is more sensitive to the short-term spectral magnitude

fjYtk j; k ¼ 0; 1; . . . ; l 1g of the speech signal than to its short-term phase fargðYtkÞ; k ¼ 0; 1; . . . ; l 1g.
This has been demonstrated by Wang and Lim [37] in a sequence of experiments. They have synthesized

speech signals using short-term spectral magnitude and phase derived from two noisy versions of the same

speech signal at different signal-to-noise ratios (SNRs). Thus, they could control the amount of noise in

the spectral magnitude and in the phase. Hence, it was suggested that better enhancement results could be

obtained if the spectral magnitude of a speech signal rather than its waveform is directly estimated. In this

situation, the phase of the noisy signal is combined with the spectral magnitude estimator in constructing the

enhanced signal. Maximum likelihood estimates of the short-term spectral magnitude of the clean signal were

developed by McAulay and Malpass [32] for additive Gaussian noise. An MMSE estimator of the short-term

spectral magnitude of speech signal was developed by Ephraim andMalah [14]. The spectral components of the

clean signal and of the noise process were assumed statistically independent Gaussian random variables. Under

the same assumptions, the MMSE estimator of the short-term complex exponential of the clean signal,

expð j argðYtkÞÞ, which does not affect the spectral magnitude estimator (i.e., has a unity modulus), was shown
in Ref. [14] to be equal to the complex exponential of the noisy signal. This confirmed the intuitive use of the

noisy phase in systems which capitalize on spectral magnitude estimation.

It is further believed that the human auditory system compresses the signal’s short-term spectral

magnitude in the process of its decoding. It was suggested that a form of logarithmic compression is

actually taking place. Hence, better enhancement of the noisy signal should be expected if the logarithm of

the short-term spectral magnitude is directly estimated. An MMSE estimator of the log-spectral magnitude

of speech signal was developed by Ephraim and Malah [15] under the same Gaussian assumptions described

above. This approach has attracted much interest in recent years and will be presented in more detail

in the section ‘‘MMSE Spectral Magnitude Estimation.’’

The Gaussian Model

The assumption that spectral components of the speech signal at any given frame are statistically

independent Gaussian random variables underlies the design of many speech-enhancement systems. In this

model, the real and imaginary parts of each spectral component are statistically independent identically

distributed Gaussian random variables. We have mentioned here the Wiener filter for MMSE estimation of

the spectral components of the speech signal, and the MMSE estimators for the spectral magnitude and for

the logarithm of the spectral magnitude of the clean signal. The Gaussian assumption is mathematically

tractable, and it is often justified by a version of the central limit theorem for correlated signals ([4],

Theorem 4.4.2). The Gaussian assumption for the real and imaginary parts of a speech spectral component

has been challenged by some authors [30,33]. In [33], for example, the spectral magnitude was claimed to

have a Gamma distribution. In [30], the real and imaginary parts of a spectral component were assumed

statistically independent Laplace random variables. We now show that the Gaussian and other models are

not necessarily contradictory.

The assumption that a spectral component is Gaussian is always conditioned on knowledge of the variance

of that component. Thus, the Gaussian assumption is attributed to the conditional probability density

function (pdf) of a spectral component given its variance. A conditionally Gaussian spectral component may

have many different marginal pdfs. To demonstrate this point, consider the spectral component Ytk and its

variance s2Ytk . Let the real part of Ytk be denoted by Y. Let the variance s
2
Ytk
=2 of the real part of Ytk be denoted

by V. Assume that the conditional pdf of Y given V is Gaussian. Denote this pdf by pðyjvÞ. Assume that the
variance V has a pdf pðvÞ. Then the marginal pdf of Y is given by

pðyÞ ¼
Z
pðyjvÞpðvÞdv ð15:4Þ

The pdf of Y is thus a continuous mixture of Gaussian densities. This pdf may take many different forms,
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which are determined by the specific prior pdf assumed for V. For example, suppose that V is exponentially

distributed with expected value 2l2, i.e., assume that:

pðyjvÞ ¼ e
y2

2vffiffiffiffiffi
2pv

p and pðvÞ ¼ e
v
2l2

2l2
uðvÞ ð15:5Þ

where uðsÞ is a unit step-function. Substituting Equation (15.5) into Equation (15.4) and using ([23],

Equation (3.325)) shows that

pðyÞ ¼ 1

2l
e
jyj
l ð15:6Þ

or that Y has a Laplace pdf just as was assumed [30]. This argument shows that estimators for a spectral

component of speech signal obtained under non-Gaussian models may be derived using the conditional

Gaussian pdf and an appropriately chosen pdf for the variance of the spectral component. In our opinion,

using the conditional Gaussian model is preferable, since it is much better understood and it is significantly

easier to work with.

The variance of a spectral component must be assumed a random variable, since speech signals are not strictly

stationary. Thus, the variance sequence fs2Ytk ; t ¼ 1; 2; . . .g corresponding to the sequence of spectral

components fYtk; t ¼ 1; 2; . . .g at a given frequency k, is not known in advance and is best described as a

random sequence. In [14] and [15], the variance of each spectral component of the clean signal was estimated and

updated from the noisy signal using the decision-directed estimator. In [13], the variance sequencewas assumed a

Markov chain and it was estimated online from the noisy signal. In [8], a recursive formulation of the variance

estimator is developed following the rational of Kalman filtering.

A closely related statistical model for speech enhancement is obtained by modeling the clean speech signal as

a hidden Markov process (HMP). An overview of HMPs may be found in [19]. Speech enhancement systems

using this model were first introduced by Ephraim, Malah, and Juang [16]. An HMP is a bivariate process of

state and observation sequences. The state sequence is a homogeneous Markov chain with a given number of

states, say M. The observation sequence is conditionally independent given the sequence of states. This means

that the distribution of each observation depends only on the state at the same time and not on any other state

or observation. Let Sn ¼ fS1; . . . ; Sng denote the state sequence where we may assume without loss of

generality that St 2 f1; . . . ;Mg. Let Yn ¼ fY1; . . . ;Yng denote the observation sequence where each Yt is a

vector in a Euclidean space Rl. The joint density of ðSn;YnÞ is given by

pðsn; ynÞ ¼
Yn
t¼1

pðstjst 1Þpðyt jstÞ ð15:7Þ

where pðs1js0Þ ¼ pðs1Þ. When St ¼ j, we replace pðyt jstÞ by pðyt jjÞ. In [16] and [17], pðyt jjÞ was assumed to be
the pdf of a vector from a zero mean Gaussian autoregressive process. The parameter of the process, i.e., the

autoregressive coefficients and gain, depends on the state j. This parameter characterizes the power spectral

density of the signal in the given vector. Thus, pðyt jjÞ was assumed in [16,17] to be conditionally Gaussian,
given the power spectral density of the signal. There areM power spectral density prototypes for all vectors of

the speech signal. The HMP assumes that each vector of the speech signal is drawn with some probability from

one of theM autoregressive processes. The identity of the autoregressive process producing a particular vector

is not known, and hence the pdf of each vector is a finite mixture of Gaussian autoregressive pdfs. In contrast,

Equation (15.4) represents a mixture of countably infinite Gaussian pdfs. In the HMP model, spectral

components of each vector of the speech signal are assumed correlated since each vector is assumed

autoregressive, and consecutive speech vectors are weakly dependent since they inherit the memory of the

Markov chain.
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Signal Presence Uncertainty

In all models presented thus far in this section, the clean signal was assumed to be present in the noisy signal.

Thus, we have always viewed the noisy signal vector at time t as Zt ¼ Yt þWt . In reality, however, speech

contains many pauses while the noise may be continuously present. Thus, the noisy signal vector at time t may

be more realistically described as resulting from two possible hypotheses: H1 indicating signal presence and H0

indicating signal absence. We have:

Zt ¼ Yt þWt under H1

Wt under H0
ð15:8Þ

This insightful observation was first made by McAulay and Malpass [32], who have modified their speech

signal estimators accordingly. For MMSE estimation, let EfYt jZt ;H1g denote the conditional mean estimate of
Yt when the signal is assumed present in Zt . Let PðH1jZtÞ denote the probability of signal presence given the
noisy vector. The MMSE of Yt given Zt is given by

EfYt jZtg ¼ PðH1jZtÞEfYt jZt ;H1g ð15:9Þ

The model of speech presence uncertainty may be refined and attributed to spectral components of the vector

Zt [14]. This aspect will be dealt with in more detail in the section ‘‘MMSE Spectral Magnitude Estimation.’’

Multi-State Speech Model

The signal presence uncertainty model may be seen as a two-state model for the noisy signal. A five-state

model for the clean signal was proposed earlier by Drucker [12]. The states in his model represent fricative,

stop, vowel, glide, and nasal speech sounds. For enhancing a noisy signal, he proposed to first classify each

vector of the noisy signal as originating from one of the five possible class sounds, and then to apply a class-

specific filter to the noisy vector.

The HMP model for the clean signal described in the section ‘‘The Gaussian Model’’ is a multi-class model.

When HMPs are used, the classes are not a priori defined, but they are rather created in a learning process

from some training data of clean speech signals. The learning process is essentially a clustering process that

may be performed using vector quantization techniques [22]. For example, each class may contain spectrally

similar vectors of the signal. Thus, each class may be characterized by a prototype power spectral density

which may be parameterized as an autoregressive process. Transitions from one spectral prototype to another

are probabilistic and are performed in a Markovian manner. The noise process may be similarly represented. If

there are M speech classes and N noise classes, then M · N estimators must be designed for enhancing noisy

speech signals. Suppose that we are interested in estimating the speech vector Yt given a sequence of noisy

speech vectors zt ¼ fz1; . . . ; ztg. Let pðði; jÞjztÞ denote the probability of the signal being in state i and the

noise being in state j given zt . Then, the MMSE estimator of Yt from zt is given [17]:

EfYtjztg ¼
XM
i¼1

XN
j¼1

pðði; jÞjztÞEfYt jzt ; ði; jÞg ð15:10Þ

MMSE Spectral Magnitude Estimation

In this section we focus on MMSE estimation of the logarithm of the short-term spectral magnitude of the

clean signal. We provide a design example of a speech enhancement system that relies on conditional Gaussian

modeling of spectral components and on speech presence uncertainty. Recall that the kth spectral component

of the clean speech vector Yt is denoted by Ytk. The variance of Ytk is denoted by s
2
Ytk
. It is assumed that spectral

components fYtkg with given variances fs2Ytk40g are statistically independent Gaussian random variables.

Similar assumptions are made for the spectral components of the noise process fWtkg.
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The spectral component Ztk of the noisy signal is given by

Ztk ¼ Ytk þWtk ð15:11Þ
Let Htk

1 and Htk
0 denote the hypotheses of speech presence and speech absence in the noisy spectral component

Ztk, respectively. Let qtk denote the probability of H
tk
1 . The spectral components of the noisy signal fZtkg are

statistically independent Gaussian random variables given their variances fs2Ztkg.
We are interested in estimating the logarithm of the spectral magnitude of each component of the clean

signal from all available spectral components of the noisy signal. Under the statistical model assumed here,

given the variances of the spectral components and the probabilities of speech presence, estimation of log jYtkj
is performed from Ztk only. Since the variances of the spectral components and the probabilities of speech

presence are not available, however, these quantities are estimated for each frequency k from the noisy spectral

components observed up to time t, and the estimates are plugged in the signal estimate. We use ds2Ytks2Ytk and
ds2Wtk
s2Wtk

to denote estimates of the variances of Ytk and Wtk, respectively, and q̂qtk to denote an estimate of qtk. We next

present estimation of the signal and its assumed known parameter.

Signal Estimation

The signal estimator is conveniently expressed in terms of the a priori and a posteriori SNRs. These quantities

are defined as

xtk ¼
s2Ytk
s2Wtk

and gtk ¼
jZtkj2
s2Wtk

ð15:12Þ

respectively. We also define

Wtk ¼
xtk

xtk þ 1
gtk ð15:13Þ

The estimates of xtk and gtk used here are x̂xtk ¼ ds2Ytks2Ytk=
ds2Wtk
s2Wtk

and ĝgtk ¼ Ztkj j2=ds2Wtk
s2Wtk

. To prevent estimation of the

logarithm of negligibly small spectral magnitudes under the hypothesis that speech is absent in Ztk, Cohen and

Berdugo [6] proposed to estimate the conditional mean of the following function of Ytk:

f ðYtkÞ ¼ log jYtkj; under Htk
1

log ntk; under Htk
0

ð15:14Þ

where ntk is a spectral threshold. They showed that

djYtkjjYtkj ¼ exp E f ðYtkÞjZtk;ds2Ytks2Ytk ; x̂xtk; q̂qtk

¼ Gðx̂xtk; ĝgtkÞjZtkj
h iq̂qtk

n1 q̂qtk
tk

ð15:15Þ

where

Gðx; gÞ ¼ x
xþ 1

exp
1

2

Z1
W

e x

x
dx

0B@
1CA ð15:16Þ
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represents the spectral gain function derived by Ephraim and Malah [15] under Htk
1 . Note that this gain

function depends on Ztk and hence the estimator in Equation (15.5) is nonlinear even when the parameter of

the statistical model is known. It was further proposed to replace ntk in Equation (15.5) by GminjZtkj where
Gmin551 [6]. This substitution provides a constant attenuation of jZtkj under Htk

0 rather than using a

constant term that is independent of jZtkj. This practice is closely related to the ‘‘spectral floor’’ modification of
the spectral subtraction method proposed by Berouti, Schwartz, and Makhoul [3]. The constant attenuation

retains the naturalness of the residual noise when the signal is absent. Substituting this constant attenuation in

Equation (15.5) gives

djYtkjjYtkj ¼ ½Gðx̂xtk; ĝgtkÞ q̂qtkG1 q̂qtk
min jZtkj ð15:17Þ

To form an estimator ŶYtk for the clean spectral component Ytk, the spectral magnitude estimator
djYtkjjYtkj is

combined with an estimator of the phase of Ytk. Ephraim and Malah [14] proposed to use the MMSE

estimator of the complex exponential of that phase. The modulus of the estimator was constrained to a unity

so that it does not affect the optimality of the spectral magnitude estimator djYtkjjYtkj. They showed that the

constrained MMSE estimator is given by the complex exponential of the noisy phase.

The integral in Equation (15.6) is the well-known exponential integral of W, and it can be numerically

evaluated, e.g., using the expint function in MATLAB. Alternatively, it may be evaluated by using the following

computationally efficient approximation, which was developed by Martin et al. [31]:

exp intðWÞ ¼
Z1
W

e x

x
dx <

2:31 log10ðWÞ 0:6; for W50:1
1:544 log10ðWÞ þ 0:166; for 0:1< W< 1

10 0:52W 0:26; for W41

8<: ð15:18Þ

Signal Presence Probability Estimation

In this section we address the problem of estimating the speech presence probability qtk. Define a binary

random variable Vtk, which indicates whether or not speech is present in the spectral component Ztk:

Vtk ¼ 1 underHtk
1

0 underHtk
0

ð15:19Þ

Cohen and Berdugo [6] proposed to estimate qtk as the conditional mean of Vtk given Ztk and an estimate of

the parameter of the statistical model. Specifically:

q̂qtk ¼ EfVtkjztk; ds2Wtk
s2Wtk

; x̂xtg ¼ PðHtk
1 jztk; ds2Wtk

s2Wtk
; x̂xtÞ ð15:20Þ

Using Bayes’ rule, they expressed the conditional probability of Hkt
1 in Equation (15.20) in terms of the

Gaussian densities of Ztk under the two hypotheses and some estimate of the prior probability of Htk
1 .

They provided a scheme for estimating the prior probability from spectral components observed up to

time t 1. Let the prior probability estimate be denoted by q̂qtkjt 1. Following this approach they showed

that

q̂qtk ¼ 1þ 1 q̂qtkjt 1

q̂qtkjt 1

ð1þ x̂xtkÞ expð ŴWtkÞ
" # 1

ð15:21Þ

where ŴWtk is the estimate of Wtk defined in Equation (15.13) [6].
The estimator q̂qtkjt 1 is based on the distribution of the a priori SNR, and the relation between

the likelihood of speech absence in the time–frequency domain and the local and global averages of the
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a priori SNR. The speech absence probability is estimated for each frequency bin and each frame by a soft-

decision approach, which exploits the strong correlation of speech presence in neighboring frequency bins

of consecutive frames.

A Priori SNR Estimation

Reliable estimation of the speech spectral component variances is crucial for successful implementation of the

signal estimator (Equation (15.7)). Ephraim and Malah [14] proposed a decision-directed variance estimator

for their MMSE spectral magnitude estimator. The variance estimator at a given frame uses the signal spectral

magnitude estimate from the previous frame along with the current noisy spectral component. Let ÂAtk ¼ jŶYtkj
denote the MMSE signal spectral magnitude estimate from Ztk. The decision-directed estimate of the variance

of Ytk is given by

ds2Ytks2Ytk ¼
1

q̂qtk
aÂA2t 1;k þ ð1 aÞmax jZtkj2 ds2Wtk

s2Wtk
; 0 ð15:22Þ

where 0 # a # 1 is an experimental constant. The estimator was also found useful when ÂAtk is the MMSE

log-spectral magnitude estimator [15]. In the latter case, the estimator was used with q̂qtk ¼ 1, since the signal

was assumed zero under the null hypothesis. While this estimator was found useful in practice, the division

by q̂qtk may deteriorate the performance of the speech-enhancement system [34]. In some cases, it

introduces interaction between the estimated q̂qtk and the a priori SNR, resulting in unnaturally structured

residual noise [28].

Cohen and Berdugo [6] showed that a preferable variance estimator is obtained if ÂAt 1;k in Equation

(15.22) is replaced by the estimator ÂAt 1;kjHtk
1
for the magnitude of Yt 1;k obtained under the signal presence

hypothesis, and the division by q̂qtk is not performed. The resulting estimator is given by

ds2Ytks2Ytk ¼ aÂA2t 1;kjHtk
1
þ ð1 aÞmax jZtkj2 ds2Wtk

s2Wtk
; 0 ð15:23Þ

Expressing ÂAt 1;kjHtk
1
in terms of the gain function form (15.17), dividing by ds2Wtk

s2Wtk
, and imposing a lower bound

xmin40 on the a priori SNR estimate as proposed by Cappé [5], they obtained the following recursive

estimator for xtk:

x̂xtk ¼ max aG2 x̂xt 1;k; ĝgt 1;k ĝgt 1;k þ ð1 aÞ ĝgtk 1ð Þ; xmin
n o

ð15:24Þ

The parameters a and xmin control the trade-off between the noise reduction and the transient distortion

introduced into the signal [5,14]. Greater reduction of the musical noise phenomena is obtained by using a

larger a and a smaller xmin at the expense of attenuated speech onsets and audible modifications of transient
speech components. Typical values for a range between 0.9 and 0.99, and typical values for xmin range between
10 and 25 dB.

Noise Spectrum Estimation

In stationary noise environments, the noise variance of each spectral component is time invariant, i.e.,

s2Wtk
¼ s2Wk

for all t. An estimator for s2Wk
may be obtained from recursive averaging of fjZtkj2g for all spectral

components classified as containing noise only.

In nonstationary noise environments, an alternative approach known as the minimum statistics was

proposed by Martin [27,29]. In this approach, minima values of a smoothed power spectral density estimate

of the noisy signal are tracked, and multiplied by a constant that compensates the estimate for possible bias.

We present here a recent algorithm, developed by Cohen and Berdugo [7,9], which is based on minima
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controlled recursive averaging. This noise variance estimator is capable of fast adaptation to abrupt changes in

the noise spectrum.

Recall that Htk
0 and Htk

1 denote, respectively, speech absence and presence hypotheses in the noisy spectral

component Ztk. A recursive estimate for the noise spectral variance can be obtained as follows:

ds2Wtþ1;ks2Wtþ1;k ¼
mds2Wtk
s2Wtk

þ ð1 mÞbjZtkj2 under Htk
0ds2Wtk

s2Wtk
under Htk

1

8<: ð15:25Þ

where 05m51 is a smoothing parameter and b $ 1 is a bias compensation factor [9]. The probability of Htk
1

is estimated here independently of q̂qtk in section ‘‘Signal Presence Probability Estimation,’’ since the penalty in

misclassification of the two hypotheses has different consequences when estimating the signal than when

estimating the noise spectral variance. Generally, here we tend to decide Htk
0 with higher confidence than in

section ‘‘Signal Presence Probability Estimation’’. Let ~qqtk denote the estimate of the probability of H
tk
1 in this

section. A soft-decision recursive estimator can be obtained from Equation (15.25) by

ds2wtþ1;ks2wtþ1;k ¼ ~qqtk
ds2wtk
s2wtk

þ ð1 ~qqtkÞ m ds2wtk
s2wtk

þ ð1 mÞbjZtkj2 ¼ ~mmtkds2wtk
s2wtk

þ ð1 ~mmtkÞbjZtkj2 ð15:26Þ

where ~mmtk ¼ mþ ð1 mÞ ~qqtk is a time-varying smoothing parameter.
The probability ~qqtk is estimated using Equation (15.21) when q̂qtkjt 1 is substituted by a properly designed

estimate ~qqtkjt 1. Cohen [9] proposed an estimator ~qqtkjt 1, which is controlled by the minima values of a

smoothed power spectrum of the noisy signal. The estimation procedure comprises two iterations of

smoothing and minimum tracking. The first iteration provides a rough voice activity detection in each

frequency. Smoothing during the second iteration excludes relatively strong speech components, which makes

the minimum tracking during speech activity more robust.

Summary of Algorithm

(i) For t ¼ 0 and all k’s, set ds2Wtk
s2Wtk

¼ jZ0kj2, ĝg 1;k ¼ 1, x̂x 1;k ¼ xmin. Set t ¼ 1.

(ii) For each k:
. Calculate ĝgtk from Equation (15.12), and x̂xtk from Equation (15.24).
. Calculate q̂qtkjt 1 from [6], Equation 29, and q̂qtk from Equation (15.21).

. Calculate G x̂xtk; ĝgtk from Equation (15.16), and djYtkjjYtkj by using Equation (15.17).

. Calculate ~qqtkjt 1 from [9], Equation 28, and ~qqtk from the analog of Equation (15.21).

. Update ds2Wtk
s2Wtk

by using Equation (15.26).

(iii) Set t ! t þ 1 and go to step (ii) for enhancement of the next frame.

Monte-Carlo Simulation

The Monte-Carlo simulation approach for audio signal enhancement has been promoted by Vermaak et al.

and Fong et al. [20,36]. In this section, we present the principles of this approach. The clean and noisy

speech signals are represented by the sequences of scalar random variables fYt ; t ¼ 0; 1; . . .g and

fZt ; t ¼ 1; 2; . . .g, respectively. These signals are assumed to satisfy some time-varying state-space

equations. The time-varying parameter of the system is denoted by fyt ; t ¼ 1; 2; . . .g. The system is

characterized by three deterministically known nonlinear transition functions which we denote here by f ,

g and h. The explicit dependence of f on t, and of g and h on yt , is expressed by writing these functions

as ft , g
yt

and h
yt
, respectively. The innovation processes of the dynamical system are denoted by

fUt ; t ¼ 1; 2; . . .g, fVt ; t ¼ 1; 2; . . .g and fWt ; t ¼ 1; 2; . . .g. These three processes are assumed statistically

15-21Speech Signal Processing



independent iid processes. The state-space equations are given by

yt ¼ ftðyt 1;UtÞ
Yt ¼ g

yt
ðYt 1;VtÞ

Zt ¼ h
yt
ðYt ;WtÞ ð15:27Þ

for t ¼ 1; 2; . . ..

Assume first that the sample path of fytg is known. For this case, the signal fYtg can be recursively

estimated from fZtg. To simplify notation, we present these recursions without explicitly showing the

dependence of the various pdfs on the assumed known parameter path. We use lower case letters to denote

realizations of the random variables in Equation (15.27). We also denote zt ¼ fz1; . . . ; ztg. The filtering and
prediction recursions result from Markov properties of the signals in Equation (15.27) and from Bayes’ rule.

These recursions are, respectively, given by

pðyt jztÞ ¼
pðyt jzt 1ÞpðztjytÞR
pðytjzt 1Þpðzt jytÞdyt

; t ¼ 1; . . . ; n ð15:28Þ

where pðy1jz01Þ ¼ pðy1Þ, and by

pðyt jzt 1Þ ¼
Z
pðyt jyt 1Þpðyt 1jzt 1Þdyt 1; t ¼ 2; . . . ; n ð15:29Þ

The smoothing recursion was derived by Askar and Derin in [2, Theorem 1], and it is given by

pðytjznÞ ¼ pðyt jztÞ
Z pðytþ1jztÞpðytþ1jznÞ

pðytþ1jztÞ
dytþ1 ð15:30Þ

for t ¼ n 1; n 2; . . . ; 1, where pðynjznÞ is given by Equation (15.28).
When the sample path of fytg is given, or when the parameter is time-invariant and known (yt ¼ y0 for all t),

these recursions can be implemented with reasonable complexity for two well-known cases. First, when g

and h are linear functions, fVtg and fWtg are Gaussian processes, and the initial distribution of Y0 is

Gaussian. In that case, fYtg can be estimated using the Kalman filter or smoother. Second, when fYtg takes
finitely many values, then the integrals become summations and the recursions coincide with a version of the

forward-backward recursions for hidden Markov processes (see [19], Equation 5.14 to Equation 5.16).

For all other systems, the estimation problem is highly nonlinear and requires multidimensional

integrations. No simple solution exists for these situations. Approximate solutions are often obtained

using the extended Kalman filter. The latter applies Kalman filtering to locally linearized versions of the state-

space equations.

When the sample path of fytg is not known, but the three transition functions are linear and the innovation
processes are Gaussian, maximum a posteriori estimation of fytg is possible using the expectation-

maximization (EM) algorithm.This was shown by Dembo and Zeitouni [11], who developed an EM algorithm

for estimating fytg when the signal fYtg is a time-varying autoregressive process. The parameter estimator
relies on Kalman smoothers for the clean signal fYtg and its covariance at each EM iteration. Thus, an

estimate of the clean signal is obtained as a by-product in this algorithm. A similar approach for maximum

likelihood estimation of a deterministically unknown parameter was implemented and tested for speech

enhancement by Gannot et al. [21].

The computational difficulties in estimating the parameter or the clean signal in Equation (15.27) have

stimulated the use of Monte-Carlo simulations. A good tutorial on the subject was written by Arulampalam

et al. [1]. In this approach, probability distributions are sampled and replaced by empirical distributions. Thus
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integrals involving the sampled pdfs can be straightforwardly evaluated using sums. Recursive sampling is

often desirable to facilitate the approach. The filters or smoothers designed in this way are often referred to as

particle filters. The ‘‘particles’’ refer to the point masses obtained from sampling the distribution which is of

interest in the given problem. There is more than one way to simulate the filtering or smoothing recursions

presented earlier. We focus here on the work in [20] and [36], where the approach has been applied to speech

and audio signals and compared with the extended Kalman filter. In [20], Monte-Carlo approaches for

filtering as well as smoothing were developed. We shall demonstrate here only the principles of the filtering

approach.

Similar to the work of Dembo and Zeitouni [11], the signal in [20] was assumed a Gaussian time-varying

autoregressive process, and the additive noise was assumed Gaussian. In fact, the reflection coefficients of the

time-varying autoregressive process were assumed a Gaussian random walk process, which was constrained to

the interval of ( 1, 1), but the nonlinear transformation from the reflection coefficients to the autoregressive

coefficients was ignored. The logarithm of the gain of the autoregressive process was also modeled as a

Gaussian random walk. The pdf pðyt jztÞ of yt given zt was shown to be proportional to

pðyt jztÞ ~
Z
pðzt jyt; zt 1Þpðytjyt 1Þpðyt 1jzt 1Þdyt 1 ð15:31Þ

This equation can be derived similarly to Equation (15.28). The goal now is to recursively sample pðyt jztÞ and
estimate the signal using an efficient algorithm such as the Kalman filter. Suppose that at time t we have an

estimate of pðyt 1jzt 1Þ. This pdf can be sampled N times to produce N sample paths of yt 1. Let these sample

paths be denoted by fyt 1ðiÞ; i ¼ 1; . . . ;Ng. Next, for each i ¼ 1; . . . ;N , the pdf pðyt jyt 1ðiÞÞ can be sampled
N times to provide fytð1Þ; . . . ; ytðNÞg. Augmenting the former and latter samples, we obtain N sample paths

of yt given zt 1. We denote these sample paths by fytðiÞ; i ¼ 1 . . . ;Ng. The empirical distribution of yt given
zt 1 is given by

qðyt jzt 1Þ ¼ 1

N

XN
i¼1

dðyt ytðiÞÞ ð15:32Þ

where dð·Þ denotes the Dirac function. Substituting Equation (15.32) for pðyt jyt 1Þpðyt 1jzt 1Þ in Equation
(15.31) gives

pðyt jztÞ ~
XN
i¼1

pðzt jytðiÞ; zt 1Þdðyt ytðiÞÞ ð15:33Þ

Next, it was observed that Zt given y
tðiÞ and zt 1 is Gaussian with conditional mean and covariance that can

be calculated using the Kalman filter for estimating Yt given y
tðiÞ and zt 1. Following this procedure, we now

have an estimate of pðyt jztÞ which can be resampled to obtain a new estimate of ytþ1 and of Ytþ1 at time t þ 1,

and so on. Note that the estimate of the signal is obtained as a by-product in this procedure.

Comments

We have reviewed traditional as well as more recent research approaches to enhancement of noisy speech

signals. The section was not intended to be comprehensive but rather to provide a general overview of the area.

We have emphasized the methodology and principles of the various approaches, and presented in some more

detail one design example of a speech-enhancement system.
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Defining Terms

Speech enhancement: A subject dealing with processing of speech signals, in particular of noisy speech

signals, aimed at improving their perception by human or their correct decoding by machines.

Quality: A subjective measure of speech perception reflecting individual preferences of listeners.

Intelligibility: An objective measure that predicts the percentage of spoken words (often meaningless) that

can be correctly transcribed.

Statistical model: A set of assumptions, formulated in mathematical terms, on the behavior of many

examples of signal and noise samples.

Distortion measure: A mathematical function that quantifies the dissimilarity of two speech signals such

as the clean and processed signals.

Signal estimator: A function of the observed noisy signal that approximates the clean signal by minimizing

a distortion measure based on a given statistical model.

Wiener filter: An optimal linear signal estimator in the minimum mean squared error sense.

Monte Carlo simulation: A statistical approach to develop signal estimators by sampling their statistical

model.

Hidden Markov process: A Markov chain observed through a noisy communication channel.
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The following is a noncomprehensive list of references for further reading on the subject. The edited book by

Lim [R1] provides a collection of key papers in the area of speech enhancement. The book by Quatieri [R4]

provides extensive background for speech processing including speech enhancement. The National Academy

Press Report [R2] details the state of the art of speech enhancement at the time of publication. It also addresses

evaluation of speech enhancement systems.
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15.3 Analysis and Synthesis

Jesse W. Fussell

After an acoustic speech signal is converted to an electrical signal by a microphone, it may be desirable to

analyze the electrical signal to estimate some time-varying parameters which provide information about a

model of the speech production mechanism. Speech analysis is the process of estimating such parameters.

Similarly, given some parametric model of speech production and a sequence of parameters for that model,

speech synthesis is the process of creating an electrical signal which approximates speech. While analysis and

synthesis techniques may be done either on the continuous signal or on a sampled version of the signal, most

modern analysis and synthesis methods are based on digital signal processing.

A typical speech productionmodel is shown in Figure 15.1. In this model the output of the excitation function

is scaled by the gain parameter and then filtered to produce speech. All of these functions are time-varying.

For many models, the parameters are varied at a periodic rate, typically 50 to 100 times per second. Most

speech information is contained in the portion of the signal below about 4 kHz.

The excitation is usually modeled as either a mixture or a choice of random noise and periodic waveform. For

human speech, voiced excitation occurs when the vocal folds in the larynx vibrate; unvoiced excitation occurs at

constrictions in the vocal tract which create turbulent air flow (Flanagan, 1965). The relative mix of these two

types of excitation is termed voicing. In addition, the periodic excitation is characterized by a fundamental

frequency, termed pitch or F0. The excitation is scaled by a factor designed to produce the proper amplitude or

level of the speech signal. The scaled excitation function is then filtered to produce the proper spectral

characteristics. While the filter may be nonlinear, it is usually modeled as a linear function.

Analysis of Excitation

In a simplified form, the excitation function may be considered to be purely periodic for voiced speech, or

purely random for unvoiced. These two states correspond to voiced phonetic classes such as vowels and nasals

and unvoiced sounds such as unvoiced fricatives. This binary voicing model is an oversimplification for sounds

such as voiced fricatives, which consist of a mixture of periodic and random components. Figure 15.2 is an

example of a time waveform of a spoken /i/ phoneme, which is well modeled by only periodic excitation.

FIGURE 15.1 A general speech production model.
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Both time-domain and frequency-domain analysis techniques have been used to estimate the degree of

voicing for a short segment or frame of speech. One time domain feature, termed the zero crossing rate, is the

number of times the signal changes sign in a short interval. As shown in Figure 15.2, the zero crossing rate for

voiced sounds is relatively low. Since unvoiced speech typically has a larger proportion of high-frequency

energy than voiced speech, the ratio of high-frequency to low-frequency energy is a frequency domain

technique that provides information on voicing.

Another measure used to estimate the degree of voicing is the autocorrelation function, which is defined for

a sampled speech segment, S, as

ACFðtÞ ¼ 1

N

XN 1

n¼0
sðnÞsðn tÞ ð15:34Þ

where s(n) is the value of the nth sample within the segment of length N. Since the autocorrelation function of

a periodic function is itself periodic, voicing can be estimated from the degree of periodicity of the

autocorrelation function. Figure 15.3 is a graph of the nonnegative terms of the autocorrelation function for a

FIGURE 15.2 Waveform of a spoken phoneme /i/ as in ‘‘beet.’’

FIGURE 15.3 Autocorrelation function of one frame of /i/.
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64 msec frame of the waveform of Figure 15.2. Except for the decrease in amplitude with increasing lag that

results from the rectangular window function which delimits the segment, the autocorrelation function is seen

to be quite periodic for this voiced utterance.

If an analysis of the voicing of the speech signal indicates a voiced or periodic component is present,

another step in the analysis process may be to estimate the frequency (or period) of the voiced component.

There are a number of ways in which this may be done. One is to measure the time lapse between peaks in

the time domain signal. For example in Figure 15.2 the major peaks are separated by about 0.0071 sec, for a

fundamental frequency of about 141 Hz. Note, it would be quite possible to err in the estimate of

fundamental frequency by mistaking the smaller peaks that occur between the major peaks for the major

peaks. These smaller peaks are produced by resonance in the vocal tract which, in this example, happen to be

at about twice the excitation frequency. This type of error would result in an estimate of pitch approximately

twice the correct frequency.

The distance between major peaks of the autocorrelation function is a closely related feature that is

frequently used to estimate the pitch period. In Figure 15.3, the distance between the major peaks in the

autocorrelation function is about 0.0071 sec. Estimates of pitch from the autocorrelation function are also

susceptible to mistaking the first vocal track resonance for the glottal excitation frequency.

The absolute magnitude difference function (AMDF), defined as

AMDFðtÞ ¼ 1

N

XN 1

n¼0
jsðnÞ sðn tÞj ð15:35Þ

is another function often used in estimating the pitch of voiced speech. An example of the AMDF is shown in

Figure 15.4 for the same 64-msec frame of the /i/ phoneme. However, the minima of the AMDF are used as an

indicator of the pitch period. The AMDF has been shown to be a good pitch period indicator (Ross et al.,

1974) and does not require multiplication.

Fourier Analysis

One of the more common processes for estimating the spectrum of a segment of speech is the

Fourier transform (Oppenheim and Schafer, 1975). The Fourier transform of a sequence is mathematically

defined as

FIGURE 15.4 Absolute magnitude difference function of one frame of /i/.
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Sðe joÞ ¼
X1

n¼ 1
sðnÞe jon ð15:36Þ

where s(n) represents the terms of the sequence. The short-time Fourier transform of a sequence is a time-

dependent function, defined as

Smðe joÞ ¼
X1

n¼ 1
wðm nÞ sðnÞe jon ð15:37Þ

where the window function w(n) is usually zero except for some finite range, and the variable m is used to

select the section of the sequence for analysis. The discrete Fourier transform (DFT) is obtained by uniformly

sampling the short-time Fourier transform in the frequency dimension. Thus an N-point DFT is computed

using Equation (15.38),

SðkÞ ¼
XN 1

n¼0
sðnÞe j2pnk=N ð15:38Þ

where the set of N samples, s(n), may have first been multiplied by a window function. An example of

the magnitude of a 512-point DFT of the waveform of the /i/ is shown in Figure 15.5. Note for this figure,

the 512 points in the sequence have been multiplied by a Hamming window defined by

wðnÞ ¼ 0:54 0:46 cosð2pn=ðN 1ÞÞ 0< n< N 1
¼ 0 otherwise

ð15:39Þ

Since the spectral characteristics of speech may change dramatically in a few milliseconds, the length, type, and

location of the window function are important considerations. If the window is too long, changing spectral

characteristics may cause a blurred result; if the window is too short, spectral inaccuracies result. A Hamming

window of 16 to 32 msec duration is commonly used for speech analysis.

Several characteristics of a speech utterance may be determined by examination of the DFT magnitude.

In Figure 15.5, the DFT of a voiced utterance contains a series of sharp peaks in the frequency domain.

These peaks, caused by the periodic sampling action of the glottal excitation, are separated by the fundamental

FIGURE 15.5 Magnitude of 512-point FFT of Hamming windowed /i/.
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frequency which is about 141 Hz, in this example. In addition, broader peaks can be seen, for example

at about 300 Hz and at about 2300 Hz. These broad peaks, called formants, result from resonances in the

vocal tract.

Linear Predictive Analysis

Given a sampled (discrete-time) signal s(n), a powerful and general parametric model for time-series analysis is

sðnÞ ¼
Xp
k¼1

aðkÞsðn kÞ þ G
Xq
l¼0

bðlÞ uðn lÞ ð15:40Þ

where s(n) is the output and u(n) is the input (perhaps unknown). The model parameters are a(k) for k ¼1,
p, b(l) for l ¼ 1, q, and G. b(0) is assumed to be unity. This model, described as an autoregressive moving

average (ARMA) or pole-zero model, forms the foundation for the analysis method termed linear prediction.

An autoregressive (AR) or all-pole model, for which all of the ‘‘b’’ coefficients except b(0) are zero, is

frequently used for speech analysis (Markel and Gray, 1976).

In the standard AR formulation of linear prediction, the model parameters are selected to minimize

the mean-squared error between the model and the speech data. In one of the variants of linear prediction, the

autocorrelation method, the minimization is carried out for a windowed segment of data. In the

autocorrelation method, minimizing the mean-square error of the time-domain samples is equivalent to

minimizing the integrated ratio of the signal spectrum to the spectrum of the all-pole model. Thus, linear

predictive analysis is a good method for spectral analysis whenever the signal is produced by an all-pole

system. Most speech sounds fit this model well.

One key consideration for linear predictive analysis is the order of the model, p. For speech, if the order is

too small, the formant structure is not well represented. If the order is too large, pitch pulses as well as

formants begin to be represented. Tenth- or twelfth-order analysis is typical for speech. Figure 15.6 and

Figure 15.7 provide examples of the spectrum produced by eighth-order and sixteenth-order linear predictive

analysis of the /i/ waveform of Figure 15.2. Figure 15.6 shows there to be three formants at frequencies of

about 300, 2300, and 3200 Hz, which are typical for an /i/.

FIGURE 15.6 Eighth-order linear predictive analysis of an ‘‘i.’’
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Homomorphic (Cepstral) Analysis

For the speech model of Figure 15.1, the excitation and filter impulse response are convolved to produce the

speech. One of the problems of speech analysis is to separate or deconvolve the speech into these two

components. One such technique is called homomorphic filtering (Oppenheim and Schafer, 1968). The

char-acteristic system for a system for homomorphic deconvolution converts a convolution operation to an

addition operation. The output of such a characteristic system is called the complex cepstrum. The complex

cepstrum is defined as the inverse Fourier transform of the complex logarithm of the Fourier transform of

the input. If the input sequence is minimum phase (i.e., the z-transform of the input sequence has no poles

or zeros outside the unit circle), the sequence can be represented by the real portion of the transforms.

Thus, the real cepstrum can be computed by calculating the inverse Fourier transform of the log-spectrum

of the input.

Figure 15.8 shows an example of the cepstrum for the voiced /i/ utterance from Figure 15.2. The cepstrum of

such a voiced utterance is characterized by relatively large values in the first one or two milliseconds as well as

by pulses of decaying amplitudes at multiples of the pitch period. The first two of these pulses can clearly be

FIGURE 15.7 Sixteenth-order linear predictive analysis of an ‘‘i.’’

FIGURE 15.8 Real cepstrum of /i/.
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seen in Figure 15.8 at time lags of 7.1 and 14.2 msec. The location and amplitudes of these pulses may be used

to estimate pitch and voicing (Rabiner and Schafer, 1978).

In addition to pitch and voicing estimation, a smooth log magnitude function may be obtained by

windowing or ‘‘liftering’’ the cepstrum to eliminate the terms that contain the pitch information. Figure 15.9 is

one such smoothed spectrum. It was obtained from the DFTof the cepstrum of Figure 15.7 after first setting all

terms of the cepstrum to zero except for the first 16.

Speech Synthesis

Speech synthesis is the creation of speech-like waveforms from textual words or symbols. In general, the

speech synthesis process may be divided into three levels of processing (Klatt, 1982). The first level transforms

the text into a series of acoustic phonetic symbols, the second transforms those symbols to smoothed synthesis

parameters, and the third level generates the speech waveform from the parameters. While speech synthesizers

have been designed for a variety of languages and the processes described here apply to several languages, the

examples given are for English text-to-speech.

In the first level of processing, abbreviations such as ‘‘Dr.’’ (which could mean ‘‘doctor’’ or ‘‘drive’’),

numbers (‘‘1492’’ could be a year or a quantity), special symbols such as ‘‘$,’’ upper-case acronyms

(e.g., NASA), and nonspoken symbols such as (apostrophe) are converted to a standard form. Next, prefixes

and perhaps suffixes are removed from the body of words prior to searching for the root word in a lexicon,

which defines the phonetic representation for the word. The lexicon includes words that do not obey the

normal rules of pronunciation, such as ‘‘of.’’ If the word is not contained in the lexicon, it is processed by an

algorithm that contains a large set of rules of pronunciation.

In the second level, the sequences of words consisting of phrases or sentences are analyzed for grammar and

syntax. This analysis provides information to another set of rules that determines the stress, duration, and

pitch to be added to the phonemic representation. This level of processing may also alter the phonemic

representation of individual words to account for coarticulation effects. Finally, the sequences of parameters

that specify the pronunciation are smoothed in an attempt to mimic the smooth movements of the human

articulators (lips, jaw, velum, and tongue).

The last processing level converts the smoothed parameters into a time waveform. Many varieties of

waveform synthesizers have been used, including formant, linear predictive, and filter-bank versions. These

waveform synthesizers generally correspond to the synthesizers used in speech-coding systems, as previously

described.

FIGURE 15.9 Smoothed spectrum of /i/ from 16 points of cepstrum.
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Defining Terms

Cepstrum: Inverse Fourier transform of the logarithm of the Fourier power spectrum of a signal. The

complex cepstrum is the inverse Fourier transform of the complex logarithm of the Fourier tranform of

the signal.

Pitch: Frequency of glottal vibration of a voiced utterance.

Spectrum or power density spectrum: Amplitude of a signal as a function of frequency, frequently

defined as the Fourier transform of the autocovariance of the signal.

Speech analysis: Process of extracting time-varying parameters from the speech signal which represent a

model for speech production.

Speech synthesis: Production of a speech signal from a model for speech production and a set of time-

varying parameters of that model.

Voicing: Classification of a speech segment as being voiced (i.e., produced by glottal excitation), unvoiced

(i.e., produced by turbulent air flow at a constriction), or some mix of those two.
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Further Information

The monthly journal IEEE Transactions on Signal Processing, formerly IEEE Transactions on Acoustics, Speech

and Signal Processing, frequently contains articles on speech analysis and synthesis. In addition, the annual

conference of the IEEE Signal Processing Society, the International Conference on Acoustics, Speech, and

Signal Processing, is a rich source of papers on the subject.

15.4 Speech Recognition

Lynn D.Wilcox and Marcia A. Bush

Speech recognition is the process of translating an acoustic signal into a linguistic message. In certain

applications, the desired form of the message is a verbatim transcription of a sequence of spoken words. For

example, in using speech-recognition technology to automate dictation or data entry to a computer,

transcription accuracy is of prime importance. In other cases, such as when speech recognition is used as an

interface to a database query system or to index by keyword into audio recordings, word-for-word

transcription is less critical. Rather, the message must contain only enough information to reliably

communicate the speaker’s goal. The use of speech-recognition technology to facilitate a dialog between

person and computer is often referred to as ‘‘spoken language processing.’’
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Speech recognition by machine has proven an extremely difficult task. One complicating factor is that,

unlike written text, no clear spacing exists between spoken words; speakers typically utter full phrases or

sentences without pause. Furthermore, acoustic variability in the speech signal typically precludes an unam-

biguous mapping to a sequence of words or subword units, such as phones.1 One major source of

variability in speech is coarticulation, or the tendency for the acoustic characteristics of a given speech

sound or phone to differ depending upon the phonetic context in which it is produced. Other sources of

acoustic variability include differences in vocal-tract size, dialect, speaking rate, speaking style, and

communication channel.

Speech-recognition systems can be constrained along a number of dimensions in order to make the

recognition problem more tractable. Training the parameters of a recognizer to the speech of the user is one

way of reducing variability and, thus, increasing recognition accuracy. Recognizers are categorized as speaker-

dependent or speaker-independent, depending upon whether or not full training is required by each new user.

Speaker-adaptive systems adjust automatically to the voice of a new talker, either on the basis of a relatively

small amount of training data or on a continuing basis while the system is in use.

Recognizers can also be categorized by the speaking styles, vocabularies, and language models

they accommodate. Isolated word recognizers require speakers to insert brief pauses between

individual words. Continuous speech recognizers operate on fluent speech, but typically employ strict

language models, or grammars, to limit the number of allowable word sequences. Wordspotters also

accept fluent speech as input. However, rather than providing full transcription, wordspotters selectively

locate relevant words or phrases in an utterance. Wordspotting is useful both in information-retrieval

tasks based on keyword indexing and as an alternative to isolated word recogniton in voice command

applications.

Speech-Recognition System Architecture

Figure 15.10 shows a block diagram of a speech-recognition system. Speech is typically input to the

system using an analog transducer, such as a microphone, and converted to digital form. Signal pre-

processing consists of computing a sequence of acoustic feature vectors by processing the speech samples

in successive time intervals. In some systems, a clustering technique known as vector quantization is used

to convert these continuous-valued features to a sequence of discrete codewords drawn from a codebook

of acoustic prototypes. Recognition of an unknown utterance involves transforming the sequence of

feature vectors, or codewords, into an appropriate message. The recognition process is typically

constrained by a set of acoustic models which correspond to the basic units of speech employed in the

recognizer, a lexicon which defines the vocabulary of the recognizer in terms of these basic units, and a

language model which specifies allowable sequences of vocabulary items. The acoustic models, and in

some cases the language model and lexicon, are learned from a set of representative training data. These

components are discussed in greater detail in the remainder of this section, as are the two recognition

paradigms most frequently employed in speech recognition: dynamic time warping and hidden Markov

models.

Signal Pre-Processing

An amplitude waveform and speech spectrogram of the sentence ‘‘Two plus seven is less than ten’’ is shown in

Figure 15.11. The spectrogram represents the time evolution (horizontal axis) of the frequency spectrum

(vertical axis) of the speech signal, with darkness corresponding to high energy. In this example, the speech has

been digitized at a sampling rate of 16 kHz, or roughly twice the highest frequency of relevant energy in a

high-quality speech signal. In general, the appropriate sampling rate is a function of the communication

channel. In telecommunications, for example, a bandwidth of 4 kHz and, thus, a Nyquist sampling rate of 8

kHz, is standard.

1Phones correspond roughly to pronunciations of consonants and vowels.
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The speech spectrum can be viewed as the product of a source spectrum and the transfer function of a

linear, time-varying filter which represents the changing configuration of the vocal tract. The transfer function

determines the shape, or envelope, of the spectrum, which carries phonetic information in speech. When

excited by a voicing source, the formants, or natural resonant frequencies of the vocal tract, appear as black

bands running horizontally through regions of the speech spectrogram. These regions represent voiced

segments of speech and correspond primarily to vowels. Regions characterized by broadband high-frequency

energy, and by extremely low energy, result from noise excitation and vocal-tract closures, respectively, and are

associated with the articulation of consonantal sounds.

Feature extraction for speech recognition involves computing sequences of numeric measurements, or

feature vectors, which typically approximate the envelope of the speech spectrum. Spectral features can be

extracted directly from the discrete Fourier transform (DFT) or computed using linear predictive coding

(LPC) techniques. Cepstral analysis can also be used to deconvolve the spectral envelope and the periodic

voicing source. Each feature vector is computed from a frame of speech data defined by windowing N

samples of the signal. While a better spectral estimate can be obtained using more samples, the interval

must be short enough so that the windowed signal is roughly stationary. For speech data, N is chosen such

FIGURE 15.11 Speech spectrogram of the utterance ‘‘Two plus seven is less than ten.’’ (Source: V.W. Zue, ‘‘The use of

speech knowledge in automatic speech recognition,’’ Proc. IEEE, vol. 73, no. 11, pp. 1602–1615, # 1985 IEEE. With
permission.)

FIGURE 15.10 Architecture for a speech-recognition system.
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that the length of the interval covered by the window is approximately 25 to 30 msec. The feature vectors

are typically computed at a frame rate of 10 to 20 msec by shifting the window forward in time. Tapered

windowing functions, such as the Hamming window, are used to reduce dependence of the spectral

estimate on the exact temporal position of the window. Spectral features are often augmented with a

measure of the short time energy of the signal, as well as with measures of energy and spectral change over

time (Lee, 1988).

For recognition systems that use discrete features, vector quantization can be used to quantize continuous-

valued feature vectors into a set or codebook of K discrete symbols, or codewords (Gray, 1984). The K

codewords are characterized by prototypes y1... yK. A feature vector x is quantized to the kth codeword if the

distance from x to yk, or d(x,yk), is less than the distance from x to any other codeword. The distance d(x,y)

depends on the type of features being quantized. For features derived from the short-time spectrum and

cepstrum, this distance is typically Euclidean or weighted Euclidean. For LPC-based features, the Itakura

metric, which is based on spectral distortion, is typically used (Furui, 1989).

Dynamic Time Warping

Dynamic time warping (DTW) is a technique for nonlinear time alignment of pairs of spoken utterances.

DTW-based speech recognition, often referred to as ‘‘template matching,’’ involves aligning feature vectors

extracted from an unknown utterance with those from a set of exemplars or templates obtained from training

data. Nonlinear feature alignment is necessitated by nonlinear time-scale warping associated with variations in

speaking rate.

Figure 15.12 illustrates the time correspondence between two utterances, A and B, represented as feature-

vector sequences of unequal length. The time-warping function consists of a sequence of points F ¼ c1, ..., cK
in the plane spanned by A and B, where ck ¼ (ik,jk). The local distance between the feature vectors ai and bj on

the warping path at point c ¼ (i,j) is given as

dðcÞ ¼ dðai; bjÞ ð15:41Þ

FIGURE 15.12 Dynamic time warping of utterances A and B. (Source: S. Furui, Digital Speech Processing, Synthesis and

Recognition, New York: Marcel Dekker, 1989. With permission.)
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The distance between A and B aligned with warping function F is a weighted sum of the local distances along

the path:

DðFÞ ¼ 1

N

Xk
k¼1

dðckÞwk ð15:42Þ

where wk is a nonnegative weighting function and N is the sum of the weights. Path constraints and weighting

functions are chosen to control whether or not the distance D(F) is symmetric and the allowable degree of

warping in each direction. Dynamic programming is used to efficiently determine the optimal time alignment

between two feature-vector sequences (Sakoe and Chiba, 1978).

In DTW-based recognition, one or more templates are generated for each word in the recognition

vocabulary. For speaker-dependent recognition tasks, templates are typically created by aligning and averaging

the feature vectors corresponding to several repetitions of a word. For speaker-independent tasks, clustering

techniques can be used to generate templates which better model pronunciation variability across talkers. In

isolated word recognition, the distance D(F) is computed between the feature-vector sequence for the

unknown word and the templates corresponding to each vocabulary item. The unknown is recognized as that

word for which D(F) is a minimum. DTW can be extended to connected word recognition by aligning the

input utterance to all possible concatenations of reference templates. Efficient algorithms for computing such

alignments have been developed (Furui, 1989); however, in general, DTW has proved most applicable to

isolated word-recognition tasks.

Hidden Markov Models1

Hidden Markov modeling is a probabilistic pattern matching technique which is more robust than DTW at

modeling acoustic variability in speech and more readily extensible to continuous speech recognition. As

shown in Figure 15.13, hidden Markov models (HMMs) represent speech as a sequence of states, which are

assumed to model intervals of speech with roughly stationary acoustic features. Each state is characterized by

an output probability distribution which models variability in the spectral features or observations associated

with that state. Transition probabilities between states model durational variability in the speech signal. The

probabilities, or parameters, of an HMM are trained using observations (VQ codewords) extracted from a

representative sample of speech data. Recognition of an unknown utterance is based on the probability that

the speech was generated by the HMM.

1Although the discussion here is linited to HMMs with discrete observations, output distributions such as Gaussians can be

defined for continuous-valued features.

FIGURE 15.13 A typical HMM topology.
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More precisely, an HMM is defined by:

1. A set of N states {S1... SN}, where qt is the state at time t

2. A set of K observation symbols {v1... vK}, where Ot is the observation at time t

3. A state transition probability matrix A ¼ {aij}, where the probability of transitioning from state Si at

time t to state Sj at time t þ 1 is aij ¼ P(qtþ1 ¼ Sjjqt ¼ Si)

4. A set of output probability distributions B, where for each state j, bj(k) ¼ P(Ot ¼ vkjqt ¼ Sj)

5. An initial state distribution p ¼ {pi}, where pi ¼ P(q1 ¼ Si)

At each time t, a transition to a new state is made, and an observation is generated. State transitions

have the Markov property, in that the probability of transitioning to a state at time t depends only on the

state at time t 1. The observations are conditionally independent given the state, and the transition

probabilites are not dependent on time. The model is called hidden because the identity of the state at

time t is unknown; only the output of the state is observed. It is common to specify an HMM by its

parameters l ¼ (A, B, p).
The basic acoustic unit modeled by the HMM can be either a word or a subword unit. For small recognition

vocabularies, the lexicon typically consists of whole-word models similar to the model shown in Figure 15.13.

The number of states in such a model can either be fixed or be made to depend on word duration. For larger

vocabularies, words are more often defined in the lexicon as concatenations of phone or triphone models.

Triphones are phone models with left and right context specified (Lee, 1988); they are used to model acoustic

variability which results from the coarticulation of adjacent speech sounds.

In isolated word recognition tasks, an HMM is created for each word in the recognition vocabulary.

In continuous speech recognition, however, a single HMM network is generated by expressing allowable

word strings or sentences as concatenations of word models, as shown in Figure 15.14. In wordspotting,

the HMM network consists of a parallel connection of keyword models and a background model which

represents the speech within which the keywords are embedded. Background models, in turn, typically

consist of parallel connections of subword acoustic units such as phones (Wilcox and Bush, 1992).

FIGURE 15.14 Language model, lexicon, and HMM phone models for a continuous speech-recognition system. (Source:

K.F. Lee, ‘‘Large-Vocabulary Speaker-Independent Continuous Speech Recognition: The SPHINX System,’’ Ph.D. disser-

tation, Computer Science Dept., Carnegie Mellon, April 1988. With permission.)
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The language model or grammar of a recognition system defines the sequences of vocabulary items that are

allowed. For simple tasks, deterministic finite-state grammars can be used to define all allowable word

sequences. Typically, however, recognizers make use of stochastic grammars based on n-gram statistics

(Jelinek, 1985). A bigram language model, for example, specifies the probability of a vocabulary item given the

item which precedes it.

Isolated word recognition using HMMs involves computing, for each word in the recognition vocabulary,

the probability P(Ojl) of the observation sequence O ¼ O1... OT. The unknown utterance is recognized as

the word which maximizes this probability. The probability P(Ojl) is the sum over all possible state sequences

Q ¼ q1. . . qT of the probability of O and Q given l, or:

pðOjlÞ ¼
X
Q

PðO;QjlÞ ¼
X
Q

PðOjQ; lÞPðQjlÞ ¼
X
q1:::qT

pq1bq1ðO1Þaq
1q2
bq2ðO2Þ . . . ð15:43Þ

Direct computation of this sum is computationally infeasible for even a moderate number of states and

observations. However, an iterative algorithm known as the forward–backward procedure (Rabiner, 1989)

makes this computation possible. Defining the forward variable a as

atðiÞ ¼ PðO1 . . .Ot ; qt ¼ SijlÞ ð15:44Þ

and initializing a1(i) ¼ pibi(O1), subsequent at(i) are computed inductively as

atþ1ð jÞ ¼
XN
i¼1

atðiÞaijbjðOtþ1Þ ð15:45Þ

By definition, the desired probability of the observation sequence given the model l is

PðO=lÞ ¼
XN
i¼1

aTðiÞ ð15:46Þ

Similarly, the backward variable b can be defined:

btðiÞ ¼ PðOtþ1 . . .OT jqt ¼ Si; lÞ ð15:47Þ

The bs are computed inductively backward in time by first initializing bT( j) ¼ 1 and computing

btðiÞ ¼
XN
j¼1

aijbjðOtþ1Þbtþ1ð jÞ ð15:48Þ

HMM-based continuous speech recognition involves determining an optimal word sequence using the

Viterbi algorithm. This algorithm uses dynamic programming to find the optimal state sequence through an

HMM network representing the recognizer vocabulary and grammar. The optimal state sequence Q* ¼ (q1*

. . . qT*) is defined as the sequence which maximizes P(QjO,l), or equivalently P(Q,Ojl). Let dt(i) be the joint
probability of the optimal state sequence and the observations up to time t, ending in state Si at time t. Then:

dtðiÞ ¼ max Pðq1 . . . qt 1; qt ¼ Si;O1 . . .Ot jlÞ ð15:49Þ

where the maximum is over all state sequences q1 . . . qt–1. This probability can be updated recursively by

extending each partial optimal path using
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dtþ1ð jÞ ¼ max
i

dtðiÞaijbjðOtþ1Þ ð15:50Þ

At each time t, it is necessary to keep track of the optimal precursor to state j, that is, the state which

maximized the above probability. Then, at the end of the utterance, the optimal state sequence can be retrieved

by backtracking through the precursor list.

Training HMM-based recognizers involves estimating the parameters for the word or phone models used in

the system. As with DTW, several repetitions of each word in the recognition vocabulary are used to train

HMM-based isolated word recognizers. For continuous speech recognition, word or phone exemplars are

typically extracted from word strings or sentences (Lee, 1988). Parameters for the models are chosen based on

a maximum likelihood criterion; that is, the parameters l maximize the likelihood of the training data O,
P(Ojl). This maximization is performed using the Baum-Welch algorithm (Rabiner, 1989), a re-estimation

technique based on first aligning the training data O with the current models, and then updating the

parameters of the models based on this alignment.

Let jt(i,j) be the probability of being in state Si at time t and state Sj at time t þ 1 and observing the

observation sequence O: Using the forward and backward variables at(i) and bt(j), jt(i,j) can be written as

xtði; jÞ ¼ Pðqt ¼ Si; qtþ1 ¼ SjjO; lÞ ¼
atðiÞaijbtþ1ðjÞbjðOtþ1ÞPN

ij¼1
atðiÞaijbtþ1ðjÞbjðOtþ1Þ

ð15:51Þ

An estimate of aij is given by the expected number of transitions from state Si to state Sj divided by the

expected number of transitions from state Si. Define gt(i) as the probability of being in state Si at time t, given
the observation sequence O:

gtðiÞ ¼ Pðqt ¼ SijO; lÞ ¼
XN
j¼1

xtði; jÞ ð15:52Þ

Summing gt(i) over t yields a quantity which can be interpreted as the expected number of transitions from
state Si. Summing jt(i,j) over t gives the expected number of transitions from state i to state j. An estimate of aij
can then be computed as the ratio of these two sums. Similarly, an estimate of bj(k) is obtained as the expected

number of times being in state j and observing symbol vk divided by the expected number of times in state j:

âaij ¼
PT 1

t¼1
xtði; jÞ

PT
t¼1

gtðiÞ
b̂bjðkÞ ¼

P
t:Ot¼yk

gtðjÞ

PT
t¼1

gtðjÞ
ð15:53Þ

State-of-the-Art Recognition Systems

Dictation-oriented recognizers that accommodate isolated word vocabularies of many thousands of words in

speaker-adaptive manner are currently available commercially. So too are speaker-independent, continuous

speech recognizers for small vocabularies, such as the digits; similar products for larger (1000-word) vocab-

ularies with constrained grammars are imminent. Speech recognition research is aimed, in part, at the devel-

opment of more robust pattern classification techniques, including some based on neural networks

(Lippmann, 1989) and on the development of systems that accommodate more natural spoken language

dialogs between human and machine.
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Defining Terms

Baum–Welch: A re-estimation technique for computing optimal values for HMM state transition and

output probabilities.

Continuous speech recognition: Recognition of fluently spoken utterances.

Dynamic time warping (DTW): A recognition technique based on nonlinear time alignment of

unknown utterances with reference templates.

Forward–backward: An efficient algorithm for computing the probability of an observation sequence from

an HMM.

Hidden Markov model (HMM): A stochastic model which uses state transition and output probabilities

to generate observation sequences.

Isolated word recognition: Recognition of words or short phrases preceded and followed by silence.

Signal pre-processing: Conversion of an analog speech signal into a sequence of numeric feature vectors

or observations.

Viterbi: An algorithm for finding the optimal state sequence through an HMM given a particular

observation sequence.

Wordspotting: Detection or location of keywords in the context of fluent speech.
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Papers on speech recognition are regularly published in IEEE Speech and Audio Transactions (formerly part of

the IEEE Transactions on Acoustics, Speech and Signal Processing) and in the journal Computer Speech and

Language. Speech recognition research and technical exhibits are presented at the annual IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), the biannual European Conference on

Speech Communication and Technology (Eurospeech), and the biannual International Conference on Spoken

Language Processing (ICSLP), all of which publish proceedings. Commercial applications of speech

recognition technology are featured at annual American Voice Input-Output Society (AVIOS) and Speech

Systems Worldwide meetings. A variety of standardized databases for speech recognition system development

are available from the National Institute of Standards and Technology in Gaithersburg, MD.
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16.1 Introduction

The goal of text-to-speech (TTS) synthesis is to convert arbitrary input text to intelligible and natural

sounding speech so as to transmit information from a machine to a person. Therefore, TTS goes beyond

simple ‘‘cut-and-paste’’ systems used, for example, in some telecom applications to read back a phone number.

Such systems string together words spoken in isolation and the artifacts of such a scheme are often

perceptible. The methodology used in TTS is to exploit acoustic representations of speech for synthesis,

together with linguistic analyses of text to extract correct pronunciations (‘‘content’’; what is being said) and

prosody in context (‘‘melody’’ of a sentence; how it is being said). Synthesis systems are commonly evaluated

in terms of three characteristics: accuracy of rendering the input text (does the TTS system pronounce, e.g.,

acronyms, names, URLs, email addresses as a knowledgeable human would?), intelligibility of the resulting

voice message (measured as a percentage of a test set that is understood), and perceived naturalness of the

resulting speech (does the TTS sound like a recording of a live human?). Today, applications of TTS are in

automated telecom services (e.g., name and address rendering), as a part of a network voice server for e-mail

(e-mail by phone), in directory assistance, as an aid in providing up-to-the-minute information to a telephone

user (e.g., business locator services, banking services, helplines), in computer games, and last but not least, in

aids to the handicapped (e.g., cosmologist Steven Hawking). For a much more detailed overview of TTS and

its applications, see Reference 1 and 2.

16.2 Overview of TTS

A block diagram of a general TTS engine is depicted in Figure 16.1. We distinguish a TTS ‘‘front-end’’ (i.e., the

part of the system closer to the text input) from a TTS ‘‘back-end’’ (i.e., the part of the system that is closer to

the speech output). Input text, optionally enriched by tags that control prosody or other characteristics, enters

the front-end where a text analysis module detects the document structure (in terms of, e.g., lists vs. running

text, paragraph breaks, sentence breaks, etc.), followed by text normalization (expansion to literal word tokens,
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encompassing transcription of acronyms, abbreviations, currency, dates, times, URLs, etc.), and further

linguistic analysis that enables other tasks down the line. The tagged text then enters a phonetic analysis

module that performs homograph disambiguation, and grapheme-to-phoneme conversion. The latter process is

also called ‘‘letter-to-sound’’ conversion. The string of tagged phones enters a prosodic analysis module that

determines pitch, duration (and amplitude) targets for each phone. Finally, the string of symbols that was

derived from a given input sentence is passed on to the speech synthesis module where it controls the voice

rendering that corresponds to the input text.

16.3 Front-End Issues

The text analysis and normalization module in the front-end determines to a large extend the ‘‘what’’ and

‘‘how’’ of the resulting synthetic speech. Note that punctuation (e.g., ‘‘.’’ and ‘‘?’’) is not infallible. For example,

the TTS system should not misinterpret the dot after ‘‘in’’ in the example ‘‘The table is 36.5 in. long’’ as the end

of the sentence. In addition, punctuation and other special characters can be part of a time (e.g., 7:30 pm), or

date (e.g., 5/25/2004), or currency expression ($10 ¼ ‘‘ten dollars’’). Text normalization is difficult because it is

context sensitive (e.g., $1.5 million ¼ ‘‘one point five million dollars’’).

Abbreviations and acronyms fall in either of two categories. The first category contains a finite set of known

‘‘mappings’’ such as ‘‘Dr.’’ in the sentence ‘‘Dr. Smith lives on Smith Dr.’’ Note that a mapping may be

ambiguous (Dr. can be ‘‘doctor’’ or ‘‘drive’’). More difficult to handle, however, is the open category of

abbreviations that people invent on the fly. COMM could mean ‘‘communications,’’ ‘‘committee,’’ etc. Other

possible short forms are CMNCTNS or COMMS. Also, a specific abbreviation can have different expansions

depending on the task or topic domain. For example, DC could mean ‘‘direct current’’ in this book, but could

mean ‘‘District of Columbia’’ as part of an address. Therefore, it may be necessary to handle certain text

normalization tasks in the form of a domain-specific text ‘‘filter’’ that would alter the raw text before it is

passed on to the TTS system depicted in Figure 16.1. Applications like e-mail reading or web page reading, for

example, also require text filters to strip out mundane header or formatting information. Even the ‘‘simple’’

reading of numbers can be difficult, such as ‘‘370,’’ where the 370 can be part of a phone number (370-1111,

read as ‘‘three-seven-zero. . .’’) or part of a name (e.g., IBM370, read as ‘‘i-b-m-three-seventy’’). Note that the

performance of the text analysis and normalization module affects the accuracy rating of a TTS system.

Linguistic analysis in the front-end encompasses the determination of parts-of-speech (POS), word sense,

emphasis, appropriate speaking style, and speech acts (such as, e.g., greetings, apologies, etc.). A linguistic

parser could be used, but typically only a shallow analysis is done for reasons of computational speed.

TTS Engine

Text Analysis
Document Structure Detection
Text Normalization
Linguistic Analysis

Phonetic Analysis
Homograph disambiguation
Grapheme-to-Phoneme Conversion

Speech Synthesis
Voice Rendering

Raw text
or tagged text

Prosodic Analysis
Pitch & Duration Attachment

Speech
Audio Out

front-end
back-end

tagged text

tagged phone

controls

FIGURE 16.1 Block diagram of a general text-to-speech system.
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Grapheme-to-phoneme conversion involves word pronunciation. The mapping from orthography to

phonemes can be difficult because of context dependence. This is usually handled by trained classification and

regression (decision) trees (CARTs) that capture the probabilities of specific conversions given the context or

the fact that a specific word is a homomorph. Grammatical (POS) analysis helps (‘‘Wind down and let the

wind blow,’’ ‘‘Lead the way down by following the way lead drops.’’) At the word level, pronunciation

dictionaries combined with morphological decomposition are used. Finally, letter-to-sound rules are employed

as a fall-back in most TTS systems. However, names are a difficult problem because even people with the same

name may pronounce it differently and the identification of a name in the text is also difficult (e.g., ‘‘Begin met

the president’’ vs. ‘‘Begin the work now!’’). Finally, note that pronunciation is very much speaker- and accent-

dependent, even within the same language. Because of these difficulties, automation of creating speaker-

dependent pronunciation dictionaries currently is an active area of research.

Prosody determines how a sentence is spoken in terms of melody, phrasing, rhythm, accent locations, and

emotions. Prosody may even carry meaning, even in nontonal languages (e.g., ‘‘I like the Eggs Benedict’’ vs. ‘‘I

like the eggs, Benedict’’). Therefore, prosody affects naturalness and intelligibility ratings of a TTS system.

Prosody is difficult to annotate automatically. Mainly for use in manual annotation efforts, so-called tone and

break indices (ToBI) have emerged as the standard [3]. Speech-signal correlates of prosody are the presence

and duration of pauses, the pitch (fundamental frequency value, in particular, its dynamic behavior), as well as

phone durations and amplitudes. As in the case of pronunciation, prosody can be dependent on the speaker

gender, on the specific speech act or application task, and even on the individual speaker. This may be one

reason why researchers now seem to move to using data-driven prosody approaches that employ large speech

databases of a single speaker over rule-based systems [4].

16.4 Back-End Issues

An important decision a designer of a TTS system needs to make is which synthesis method to use. In the

literature [5] we find two basic categories of methods: synthesis by rule and concatenative synthesis. Synthesis by

rule exploits the expert knowledge of speech scientists in speech production and perception by putting the

human expert in the design (and quality) loop. Concatenative synthesis employs recordings of a human

speaker, inherently putting more emphasis on data. Experts generally disagree on which is the more promising

approach although, today, the concatenative approach clearly produces higher quality synthetic speech.

Articulatory synthesis uses computational models of the articulators (e.g., tongue, lips, etc.) and the glottis

(voice box) to synthesize speech. Instead of describing the speech signal itself, it employs control parameters

such as tongue position and movement, lip and glottal opening, etc., that are meaningful in speech production.

Therefore, articulatory synthesis has appeal to speech scientists that explore speech-production theories and

related topics. Mathematically, articulatory synthesizers can be as simple as describing the vocal tract as a

straight tube of variable cross-section [6], or as complicated as solving the full blown Navier–Stokes equations

[7]. Early articulatory synthesizers clearly followed the synthesis by rule approach [8,9]; recently, researchers

have adopted some data-driven concepts [10]. Although the method of choice for a few specific uses,

articulatory synthesis has so far not delivered synthesis that can be mistaken as a recording of a specific

speaker. In addition, deriving rules or dynamic system control parameters for it is computationally expensive

and/or requires speech production measurements (e.g., dynamic MRI [11], tracing of x-ray pellets [12]) that

may be considered as somewhat ‘‘invasive.’’ However, a highly accurate articulatory synthesizer still carries the

promise of producing completely ‘‘tunable’’ (e.g., made to sound like different speakers, speaking styles, etc.)

high-quality speech that then could be used to ‘‘train’’ other, more practical synthesizers.

Formant Synthesis

Within the rule-based synthesis category, formant synthesis is the most prominent example. Well-known

examples include efforts by Dennis Klatt [13,14], whose TTS system later was productized as ‘‘MITalk’’ and

‘‘DECTalk,’’ and is now maintained and sold commercially by Scansoft. In its simplest form, formant synthesis

employs second-order filter sections either in cascade/series, or in a parallel structure. Figure 16.2 depicts these
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two options. Starting from the vocal-tract transfer function on the left that relates volume flow at the lips

(output) to volume flow at the glottis (input), the task is to approximate all vocal-tract resonances (peaks in

the transfer function, ‘‘formants’’) by a network of second-order filters, depicted on the right. It can be shown

that the series representation of filters (top right) approximates a nonnasal (no nasal side branch) vocal tract

reasonably well. For example, given about three to five filter sections (each matching one formant), we are able

to approximate vocal-tract transfer functions for vowels even between the formant frequencies (peaks). In this

approach, we only need to specify formant frequencies and bandwidths, plus an overall gain factor. However,

for nasal sounds, as well as for any fricative or mixed (voiced/unvoiced) sounds, a series representation of

second-order filters may not be good enough. Parallel filters (shown in the bottom right of Figure 16.2) create

the flexibility to approximate any speech spectrum (see, e.g., Reference 15), but require individual gain factors,

in addition to formant frequencies and bandwidths. As a side effect, parallel filters also introduce spectral zeros

between the formant frequencies that may be cancelled by special correction filters.

The source excitation can be either voice pulses (approximating glottal pulses) or noise (approximating

fricative or aspirative noise sources in the vocal tract), or mixtures of the two. For example, for the word ‘‘two’’

the /t/ phoneme pattern might specify a sudden (burst) onset of noise excitation of a filter with a flat

characteristic followed by the /uw/ pattern of voice excitation of three formant filters with peak frequencies at

300, 850, and 2250 Hz, representing formants F1, F2, and F3, respectively. Note that in this case, one usually

also sees a transition region between the burst and the vowel that is filled with aspiration noise but already

shows the formant structure of the following vowel.

Deriving rules for synthesizing running speech is the main problem for formant synthesis. These rules

specify the timings of source (voiced/unvoiced) and the dynamic values of all filter parameters. This is difficult

to do by hand, even for simple words, let alone full sentences at high intelligibility. Automatic derivation

of these rules can be achieved by analysis-by-synthesis approaches that try to mimic input speech [16].

A commercial system that makes use of articulatory and acoustic-phonetic knowledge and drives the Klatt

synthesizer is HLSyn [17].

Formant synthesizers have moderate computational requirements. Some implementations allow a full TTS

system to run within 2 MB of memory or less. Therefore, embedded applications, such as in handheld

devices, for example, talking dictionaries, calendars, etc., or even in cellphones (e.g., for reading back names

and key presses for car drivers who should not take their eyes off the road) are enabled by formant synthesis.

Voice quality can be controlled to a high degree, but it is usually impossible to match the voice quality of a

given target speaker. Intelligibility, however, is usually high. Finally, formant synthesis is highly appropriate

for creating speech stimuli for research in speech perception, given the high level of control such

experiments require.

FIGURE 16.2 The vocal-tract transfer function (left) shows four formants in the frequency range from 0 to 4 kHz. It can

be approximated in two different ways using second-order filter sections: serial (top right) or parallel (bottom right).
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Concatenative Synthesis

Concatenative synthesis uses actual short segments of recorded speech that were cut from recordings and

stored in an inventory (‘‘voice database’’), either as ‘‘waveforms’’ (uncoded) or encoded by a suitable

speech coding method (see the ‘‘Speech Signal Representation for Concatenative Synthesis’’). A block

diagram of a typical concatenative TTS system is shown in Figure 16.3. As described in more detail above,

and previously depicted in Figure 16.1, the front-end on the left converts a given input text string into a

string of phonetic symbols and prosody (fundamental frequency, duration, and amplitude) targets. The

front-end employs a set of rules and/or a pronunciation dictionary. Together with a string of phonetic

symbols, it produces target values for fundamental frequency (pitch), phoneme durations, and amplitudes.

The center block in Figure 16.3 assembles the units according to the list of targets set by the front-end.

These units are selected from a store (top center in Figure 16.3) that holds the inventory of available

sound units.

Different types of speech units may be stored in the inventory of a concatenative TTS system. Storing whole

word units is impractical for general TTS because of the tremendous demands on a voice talent that would

have to read a few hundreds of thousands of words in a consistent voice and manner. Even if recorded

successfully in multiple sessions spread over several weeks, a lack of coarticulation and phonetic recoding at

word boundaries may result in unnatural sounding speech. On the other extreme, using phones (e.g., about 50

for English) is also unsatisfactory because of the large coarticulatory effects that exist between adjacent phones.

Therefore, transitions from one unit to the next may be audible as ‘‘glitches’’ that introduce perceptually

disruptive discontinuities. Intuitively, longer units are more likely to result in higher quality synthesis, given

that the rate of concatenations (how many unit-to-unit transitions occur per second of speech) is lower than

in the case of shorter units. However, we need a larger set of longer units to ‘‘cover’’ any application domain,

for example, travel (with TTS-generated prompts such as ‘‘From which airport do you want to leave?’’),

because of the tremendous multiplicity of possible unit variants [18]. Given these contradictory requirements,

most practical TTS implementations until the mid-1990s compromised by using one of two types of inventory

units: the diphone and the demisyllable.

A diphone is the snippet of speech from the middle of one phone to the middle of the next phone. (Note

that the average length of a diphone is identical to that of a phone!) The middle of a phone tends to be its

acoustically most stable region. Therefore, diphones represent acoustic transitions from the stable midsection

of one phone to the next. A minimum inventory of about 1000 diphones is required to synthesize unrestricted

English text [19]. Because concatenative synthesis preserves the acoustic detail of natural speech, diphone

synthesis is generally highly intelligible. A disadvantage of strict diphone synthesis is that coarticulation is only

FIGURE 16.3 Block diagram of a concatenative text-to-speech system showing the front-end (left), and back-end (right),

plus the sound store in the center that holds the voice inventory.
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provided with the immediately preceding and following phonemes, whereas some phonemes can affect the

articulation over several phonemes. Demisyllables are alternative units for concatenative synthesis [20].

A demisyllable encompasses half a syllable; that is, either the syllable-initial portion up to the first half of the

syllable nucleus, or the syllable-final portion starting from the second half of the syllable nucleus. The number

of demisyllables in English is roughly the same as the number of diphones. Because demisyllable units are

usually longer than diphones, and allow for better capture of coarticulation effects compared to diphones, they

should pose fewer concatenation problems.

Note that a typical database (a database that covers all possible diphone units in a minimum amount of

sentences) might contain as little as 30 minutes of speech of a single speaker (voice), given that the units must

be modified by signal processing to match the front-end predictions and to smooth over the concatenation

points. In the following, we will look into some of the signal representations used in TTS. Note, however, that

the latest high-quality TTS systems all employ voice databases containing many hours of recorded speech,

because not having to modify a segment of speech (because you have the right one in the inventory) will always

produce higher quality speech synthesis.

Speech Signal Representation for Concatenative Synthesis

A good speech signal representation for concatenative synthesis approximates the following set of

requirements:

1. The speech signal can be stored in a highly compressed (i.e., coded) form so that a large voice database

can be used even under tight memory limitations. Coder and decoder are of low computational

complexity.

2. Coding/decoding is perceptually transparent. Since we would like to mimic all the voice characteristics

of a real person, subjecting the speech signal to ‘‘vocoder’’-like degradations will not lead to speech

synthesis of high naturalness.

3. Coding algorithms (see Chapter 15) have to allow for ‘‘random access.’’ Since most speech coders

contain some sort of autoregressive memory, all state variables of the coder have to be made available at

concatenation points since the decoder will have to switch between units of speech that are very unlikely

to have been recorded consecutively in time.

4. An ideal speech representation must allow for natural-sounding modifications of pitch, duration, and

amplitude. This is particularly important for small inventories with one, or just a few, ‘‘typical’’

examples for each unit. Unfortunately, experience shows that, for most signal processing algorithms,

modifying pitch more than a few percent may destroy the perceived naturalness; that is, a pitch-

modified speech signal is likely to be perceptually very different from a speech signal that has been

recorded without modifications from the speaker producing the desired pitch value directly. (This is the

reason why ‘‘singing TTS’’ does not sound like an opera star.)

5. For some advanced applications, it even might be desirable to allow for fine-tuning of the voice, for

example, to add more aspiration, mellowness, or let the voice ‘‘scream’’ when needed. Instead of

recording different voice inventories for different speaking ‘‘styles,’’ advanced ‘‘voice conversion’’ might

be used to approximate an ‘‘angry’’ voice using a ‘‘happy’’ (or ‘‘neutral’’) voice as a starting point. Today,

algorithms for voice conversion (usually concerned with converting the speech of one speaker to sound

like speech from another speaker) still do not produce consistently good enough results for sounding

like the ‘‘real thing,’’ but might be sufficient for applications such as computer games where even the

original voice does not sound ‘‘human.’’

Given this set of requirements, in the following we will briefly touch on three classes of speech signal

processing algorithms with their (native) speech representations: low-complexity time-domain algorithms

such as TD-PSOLA and its variants, LPC-based algorithms, and frequency domain-based speech

representations.

Time-domain pitch-synchronous overlap add (TD-PSOLA [21]) consists of cutting exactly two pitch

periods from a voiced speech signal (a vowel), windowing each segment with a Hanning window centered on
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one glottal closure (maximum excitation) point and weighing down the signal in the vicinity of the previous

and next glottal closure points. This process is depicted in Figure 16.4(a) and (b). For all panels (a) through

(c) on the left, we see time-domain signals, and on the right, spectra. The extracted and tapered signal traces

(b) are recombined (via ‘‘overlap-add’’) in (c), after shortening (for increased pitch) or padding with zero

amplitude signal samples (for lowering pitch). The resulting reconstructed signal of a different pitch value is

shown in panel (c). TD-PSOLA, although extremely efficient and widely used, can introduce audible glitches

at concatenation points because it has no inherent way of smoothing the transition, which happens abruptly.

A variant of TD-PSOLA may use the LPC filter excitation (‘‘PSRELP’’ [22]) instead of the speech waveform

directly. This allows for smoothing of the spectral envelope at concatenation points, but still leaves the task of

smoothing the LPC excitation itself.

Some TTS systems employ modified LPC-based (see Chapter 15) coder/decoders such as CELP or multi-

pulse [23], and/or coders that employ glottal model excitation pulses. The latter approximate true glottal flow

waveforms, but can be synthesized given a small set of parameters. Since such parameters can be smoothed

over a few pitch periods, the concatenation problem can be addressed. However, it is very difficult to achieve a

‘‘transparent’’ coder/decoder system using this approach. Results usually sound a bit ‘‘buzzy.’’

Finally, so-called ‘‘hybrid’’ speech representations such as the harmonic-plus-noise model (HNM) [24]

make use of the fact that the speech spectrum of a voiced sound tends to be composed of two distinct

T0

T

L

(a)

(b)

(c)

FIGURE 16.4 Pitch modification using TD-PSOLA. The lengths of individual pitch epochs are modified by adding up

neighboring segments to form the pitch-modified output speech. (Source: T. Dutoit, (1997). An Introduction to Text-to-

Speech Synthesis. Kluwer Academic Publishers, Dordrecht; Figure 10.1. With permission.)
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components: a harmonic (i.e., periodic) part, mostly at lower frequencies and highly relevant for representing

a specific speaker, and a stochastic (noise-like) part, mostly at higher frequencies. Consequently, two separate

synthesizers might be used as depicted in Figure 16.5: a harmonic (or sinusoidal [25]) synthesizer, shown at the

top, and an LPC-based synthesizer using a high-pass filtered stochastic (noise) excitation at the bottom

of the figure. Note that the harmonic synthesizer is controlled by parameters like the fundamental frequency

o0, the amplitudes ai and phases fi for the ith harmonic, and the parameters of an optional time-varying filter
with the impulse response hp(n, m). It synthesizes the harmonic speech waveform sp(n). The stochastic

synthesizer (bottom) consists of a time-varying filter with the impulse response hr(n, m), excitation signal

er(n), and creates the output speech waveform sr(n). Both speech components are then added to form the full-

band speech signal s(n). Note that the HNM and similar approaches allow for sophisticated spectral and

excitation smoothing at concatenation points. Another advantage is that hybrid synthesizers, such as HNM,

can exploit any relevant knowledge of speech perception. However, one drawback of the hybrid approach is

their relatively high computational complexity.

Voice Creation for Concatenative Synthesis

As stated above, concatenative speech synthesis exploits recorded speech that forms the content of the speech

inventory. An example fragment from such a database is shown in Figure 16.6. The top panel shows the time

waveform of the recorded speech signal for the words ‘‘pink silk dress,’’ the middle panel shows the

spectrogram (‘‘voice print’’), and the bottom panel shows the annotations that are needed to make the

recorded speech useful for concatenative synthesis. For the word ‘‘dress,’’ we have highlighted the phone /s/

and the diphone /eh-s/ that encompasses the latter half of the /eh/ and the first half of the /s/ of the word

‘‘dress.’’ Until recently, expert labelers were employed to examine waveform and spectrogram, as well as using

their sophisticated listening skills, in order to produce annotations (‘‘labels’’) such as those shown in the

bottom panel of the figure. The set consists of word labels (time markings for the end of words), tone labels

(symbolic representations of the ‘‘melody’’ of the utterance and syllable and stress labels, all labeled in the ToBI

standard [3]), phone labels, and break indices (that distinguish between breaks between words, subphrases,

and sentences, for example). Experience shows that expert labelers need approximately 100 to 250 sec of

work time to label one second of speech with the set depicted in Figure 16.6. For a diphone-based synthesizer,

this might be a reasonable investment, given that a ‘‘diphone-rich’’ database (a database that covers all possible

diphones in a minimum amount of sentences) might be as short as 30 min. Clearly, manual labeling

would be impractical for much larger databases (dozens of hours), and/or if we were interested in creating

+

2π /ω0
ep(n)

s(n)

er(n)

hp(n,m)

hr(n,m)

sp(n)

sr(n)

Sr(ω)aai ϕϕi

ω i= i ω0

ω0

FIGURE 16.5 A hybrid harmonic/stochastic synthesizer. (Source: T. Dutoit, (1997). An Introduction to Text-to-Speech

Synthesis, Dordrecht: Kluwer Academic Publishers, Figure 9.2. With permission.)
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many voices, factory-style. In such cases, we would require fully automatic labeling, using speech-recognition

tools. Fortunately, these tools have become so good that speech synthesized from an automatically labeled

speech database may be of higher quality than speech synthesized from the same database that has been labeled

manually [26].

Automatic labeling tools fall into two categories: automatic phonetic labeling tools to create the necessary

phone labels and automatic prosodic labeling tools to create the necessary tone and stress labels, as well as

break indices. Automatic phonetic labeling is adequate, provided it is done with a speech recognizer in ‘‘forced

alignment mode’’ (i.e., with the help of the known text message so that the recognizer is only allowed to

choose the proper phone boundaries but not the phoneme identities). The speech recognizer also needs be

speaker-dependent (i.e., be trained on the given voice), and has to be properly bootstrapped from a small

manually labeled corpus for best results. Finally, it should be obvious that both the labeling tool and the TTS

system that is the target for the voice database to be labeled should use identical phone labels and unit

definition conventions. Automatic prosodic labeling tools work from a set of linguistically motivated acoustic

features (e.g., normalized durations, maximum/average pitch ratios) plus some binary features looked up in

the lexicon (e.g., word-final vs. word-initial stress) [27], plus the output from the phonetic labeling.

Recording large voice databases can bring with it daunting organizational tasks that should not be

underestimated. Selecting the right voice talent, choosing the optimal material to record, providing a

consistent recording environment (low background noise, negligible acoustic reflections from walls, tables,

manuscript, constant microphone position relative to mouth, etc.), and ensuring a correct and consistent

speaking style are all part of the effort.

Unit Selection Synthesis

With the availability of good automatic speech labeling tools, concatenative speech synthesis has now

embraced the use of multi-hour voice databases. With the availability of several (potentially hundreds of

thousand) instances of a specific type unit (only different in pitch, duration, linguistic context at recording

time), so-called Unit-Selection Synthesis has become viable for obtaining high-quality TTS. Based on early

research done at ATR in Japan [28–30], this method enables the use of large speech databases recorded using

specific, carefully crafted and controlled speaking styles (e.g., angry, happy, apologetic, etc.). In addition,

a given database may be focused on narrow-domain applications (such as ‘‘travel reservations’’ or ‘‘telephone

“..p-ink s-ilk dre--s--s.”

⇐Waveform

⇐ Spectrogram

Symbolic Representation
⇒word labels
⇒tone labels
⇒syllable and stress labels
⇒phone labels
⇒break indices

/eh-s/ diphone

/s/ phone

FIGURE 16.6 Screenshot of a speech labeler’s screen showing waveform (top), spectrogram (middle), and edited labels

(bottom) for the speech segment corresponding to the text ‘‘pink silk dress.’’
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number synthesis’’) that commonly allow for the use of smaller databases for a preset level of quality, or it may

be used for general applications like e-mail or news reading (requiring a larger voice database). In the latter

case, unit-selection synthesis can require on the order of ten hours of recording of spoken general material to

achieve a desired level of quality, and several dozen hours for ‘‘natural quality’’ (that can be mistaken for direct

recordings). In contrast with earlier concatenative synthesizers, unit-selection synthesis automatically picks the

optimal synthesis units (on the fly) from an inventory that may contain thousands of tokens of a specific unit,

and concatenates the selected units to produce the synthetic speech. This is in stark contrast with the fact that

as late as the mid-1990s voice inventories for concatenative TTS were always carefully crafted by hand, trying

to find the one or few units of each type that lead to optimum results in all possible synthesis scenarios

(contexts). In more than one sense, the unit-selection approach has succeeded in putting ‘‘the expert into the

box,’’ that is, has automated the process of finding the optimal sequence of inventory units given a ‘‘search

query’’ of tagged phoneme strings. One important difference between ‘‘old’’ and ‘‘new’’ TTS is that unit-

selection synthesis ‘‘knows’’ the text to be synthesized at selection time, while previous methods tried to satisfy

more global selection criteria without explicit knowledge of the text to be synthesized.

The unit selection ‘‘database query’’ process is outlined in Figure 16.7, which shows how the method must

dynamically find the best path through the unit-selection network corresponding to the diphones for the word

‘‘two.’’ (Note that, in practice, a better choice would be to use half-phones instead of diphones because half-

phones allow the search algorithm to create diphones on the fly from two half-phones that were not recorded

in sequence.) For any query, the optimal choice of units selected from the database depends on factors such as

spectral similarity at unit boundaries (components of the ‘‘join cost’’ between two units) and on matching

prosodic targets set by the front-end (components of the ‘‘target cost’’ of each unit).

16.5 TTS Evaluation

Evaluation of TTS systems is currently a much discussed research topic. Here, we can only give broad

guidelines. The three quality criteria mentioned in the beginning of this section—accuracy, intelligibility, and

naturalness—overlap with respect to which part of a TTS system impacts which criteria. Accuracy, that is, the

ability to read a given input text the way a knowledgeable human reader would, is the one criterion solely

FIGURE 16.7 Viterbi search of diphone inventory to select units for synthesizing the word ‘‘two’’ or ‘‘to’’ in isolation

(i.e., between silence /#/ segments). Arrow line width symbolizes appropriateness of a given transition (thicker is better)

evaluated, e.g., in terms of spectral match across unit boundaries. Candidates in each of the three columns are assumed to

be ordered according to their suitability in terms of pitch, context match between recording and synthesis, etc.
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homed in the TTS front-end. Contrary to this, unsatisfactory intelligibility or naturalness is much harder to

pinpoint. Between the latter two, designers of formant synthesizers should aim at maximizing intelligibility,

accepting the fact that they are unlikely to deliver high naturalness. However, some of the newer

concatenative synthesis systems may overemphasize naturalness with the undesired result of less-than-stellar

intelligibility.

Accuracy can be evaluated by running a test corpus of task-relevant acronyms, abbreviations, embedded in

context-defining input text through the TTS front-end and judging the generated output text (or transcribing

the output speech back to text). Evaluating intelligibility and/or naturalness requires conducting elaborate

listening tests. Intelligibility tests, known from testing speech coders, present word or sentence lists and let

subjects transcribe words they heard [31] on TTS-related testing. Unfortunately, TTS intelligibility has many

more aspects to it than are covered by standard word-list driven intelligibility tests. On a sentence level, for

example, a wrong prosody can destroy intelligibility/comprehension. So far, a generally accepted standard

intelligibility test for TTS systems is lacking. For overall quality evaluation, the International

Telecommunication Union (ITU) recommends a specific method [32] that, in this author’s opinion, is

suitable for also testing ‘‘naturalness.’’ Such tests involve five (or more) point rating scales for characteristics

such as ‘‘overall impression,’’ ‘‘listening effort,’’ ‘‘comprehension,’’ etc. Alternatively, listeners might be asked to

state their preference (A/B tests) of which one of two systems sounds ‘‘better.’’ Selection of the test material is

also very relevant. For example, some systems sound very good for short sentences spoken in isolation, but

show weaknesses when longer paragraphs of text are being rendered. Generally, a rule-of-thumb is to use

material from the intended application. For more details on quality testing, see [33].

16.6 Conclusions

This chapter has highlighted some aspects of TTS synthesis with a slant toward catering to electrical engineers.

Many aspects, such as, for example, prosody generation, natural language processing, and others, have been

skimmed only for space reasons. It is clear that TTS systems have come a long way toward delivering high-

quality output to listeners that sometimes fools them to believe that they are listening to recordings. This said,

it is also clear that we are still far from delivering the perfect synthesis for all possible applications. Shorter

term, the best way toward high-quality synthesis seems to be to tailor TTS specifically for a given application.

Both the front-end and the back-end of a TTS system can be optimized for this purpose. For example,

including and maintaining a pronunciation dictionary of names of all prescription drugs on the market could

be essential for using TTS in a healthcare application. Eliciting the desired voice characteristics from a voice

talent that is being recorded for a unit-selection synthesis voice database could be essential for customers

accepting an automated dialog system that speaks with a TTS voice. Last but not least, typical engineering

choices, such as trading off memory vs. speed, quality vs. complexity, and time in development vs. market

pressures, are also very relevant for TTS systems.

Defining Terms

Homographs: Words that are spelled the same but pronounced differently such as, e.g., the present and past

tense form of the verb ‘‘to read.’’

Graphemes: ‘‘Functional spelling units’’ encompassing one or more letters of the text input; a grapheme in

the text input corresponds to a single phoneme.

Morphology: Deals with the units of meaning.

Pitch: The fundamental frequency of vibration of the vocal cords that produce voiced sounds such as

vowels.

Phones: Characterize any sound that can be produced by a human vocal tract; if a phone is part of a specific

language, it becomes a phoneme of that language.

Phonemes: The elementary sounds of a language, such as /ow/ in the word ‘‘boat.’’
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Further Information

There is a treasure of information on speech synthesis available on the Web.

For information on how TTS fits in and what it contributes to Language Technology, see, for example:

http://cslu.cse.ogi.edu/HLTsurvey/HLTsurvey.html (Chapter 5, spoken output technologies).

To get started on speech synthesis, readers may want to explore the Festival project: http://www.cstr.ed.ac.uk/

projects/festival/, and the follow-up project at http://www.festvox.org.

People interested in the earlier efforts in speech synthesis find historic examples at http://www.cs.indiana.

edu/rhythmsp/ASA/Contents.html and at http://www.mindspring.com/,ssshp/ssshp_cd/ss_home.htm.

Finally, readers new to the topic might enjoy the interactive demos available at http://www.research.att.com/

projects/tts.
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17.1 Spectral Analysis

S. Unnikrishna Pillai and Theodore I. Shim

Historical Perspective

Modern spectral analysis dates back at least to Sir Isaac Newton (1671), whose prism experiments with

sunlight led him to discover that each color represented a particular wavelength of light and that the sunlight

contained all wavelengths. Newton used the word spectrum, a variant of the Latin word specter, to describe the

band of visible light colors.

In the early eighteenth century, Bernoulli discovered that the solution to the wave equation describing a

vibrating string can be expressed as an infinite sum containing weighted sine and cosine terms. Later, the

French engineer Joseph Fourier in his Analytical Theory of Heat (Fourier, 1822) extended Bernoulli’s wave

equation results to arbitrary periodic functions that might contain a finite number of jump discontinuities.

Thus, for some T0 . 0, if f(t) ¼ f(t þ T0) for all t, then f(t) represents a periodic signal with period T0 and in
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the case of real signals, it has the Fourier series representation:

f ðtÞ ¼ A0 þ 2
X1
k¼1
ðAk cos ko0t þ Bk sin ko0tÞ

where o0 ¼ 2p/T0, and

Ak ¼
1

T0

ZT0
0

f ðtÞ cos ko0tdt; Bk ¼
1

T0

ZT0
0

f ðtÞ sin ko0tdt

with A0 representing the dc term (k ¼ 0). Moreover, the infinite sum on the right-hand side of the above

expression converges to [f(t–0) þ f(tþ0)]/2. The total power P of the periodic function satisfies the relation:

P ¼ 1

T0

ZT0
0

jf ðtÞj2dt ¼ A20 þ 2
X1
k¼1
ðA2k þ B2kÞ

implying that the total power is distributed only among the dc term, the fundamental frequency o0 ¼ 2p/T0
and its harmonics ko0, k > 1, with 2ðA2k þ B2kÞ representing the power contained at the harmonic ko0.

For every periodic signal with finite power, since Ak!0, Bk!0, eventually the overharmonics become of

decreasing importance.

The British physicist Schuster (1898) used this observation to suggest that the partial power Pk ¼
2ðA2k þ B2kÞ at frequency ko0, k ¼ 0 ! 1, be displayed as the spectrum. Schuster termed this method the
periodogram, and information over a multiple of periods was used to compute the Fourier coefficients and/or

to smooth the periodogram, since depending on the starting time, the periodogram may contain irregular and

spurious peaks. A notable exception to periodogram was the linear regression analysis introduced by the

British statistician Yule (1927) to obtain a more accurate description of the periodicities in noisy data. Because

the sampled periodic process x(k) ¼ cos ko0T containing a single harmonic component satisfies the recursive

relation:

xðkÞ ¼ axðk 1Þ xðk 2Þ

where a¼ 2 cos o0T represents the harmonic component, its noisy version x(k) þ n(k) satisfies the recursion:

xðkÞ ¼ axðk 1Þ xðk 2Þ þ nðkÞ

Yule interpreted this time series model as a recursive harmonic process driven by a noise process and used this

form to determine the periodicity in the sequence of sunspot numbers. Yule further generalized the above

recursion to

xðkÞ ¼ axðk 1Þ þ bxðk 2Þ þ nðkÞ

where a and b are arbitrary, to describe a truly autoregressive process and since for the right choice of a, b the

least-square solution to the above autoregressive equation is a damped sinusoid, this generalization forms the

basis for the modern-day parametric methods.

Modern Spectral Analysis

Norbert Wiener’s classic work on Generalized Harmonic Analysis (Wiener, 1930) gave random processes a firm

statistical foundation, and with the notion of ensemble average several key concepts were then introduced.
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The formalization of modern-day probability theory by Kolmogorov and his school also played an

indispensable part in this development. Thus, if x(t) represents a continuous-time stochastic (random)

process, then for every fixed t, it behaves like a random variable with some probability density function

fx(x,t). The ensemble average or expected value of the process is given by

mxðtÞ ¼ E½xðtÞ ¼
Z1
1
xfxðx; tÞdx

and the statistical correlation between two time instants t1 and t2 of the random process is described through

its autocorrelation function:

Rxxðt1; t2Þ ¼ E½xðt1Þx*ðt2Þ ¼
Z1
1

Z1
1
x1x2*fx1x2ðx1; x2; t1; t2Þdx1dx2 ¼ Rxx* ðt2; t1Þ

where fx1x2(x1, x2, t1, t2) represents the joint probability density function of the random variable x1 ¼ x(t1) and

x2 ¼ x(t2) and * denotes the complex conjugate transpose in general. Processes with autocorrelation functions

that depend only upon the difference of the time intervals t1 and t2 are known as wide sense stationary

processes. Thus, if x(t) is wide sense stationary, then

E½xðt þ tÞx*ðtÞ ¼ RxxðtÞ ¼ Rxx* ð tÞ

To obtain the distribution of power vs. frequency in the case of a stochastic process, one can make use of the

Fourier transform based on a finite segment of the data. Letting

PTðoÞ ¼
1

2T

ZT
T

xðtÞe jotdt

2

represent the power contained in a typical realization over the interval (–T, T), its ensemble average value as

T !1 represents the true power contained at frequency o. Thus, for wide sense stationary processes:

SðoÞ ¼ lim
T!1

E½PTðoÞ ¼ lim
T!1

ZT
T

ZT
T

Rxxðt1 t2Þe joðt1 t2Þdt1dt2

¼ lim
T!1

Z2T
2T

RxxðtÞ 1
jtj
2T

e jotdt ¼
Z1
1
RxxðtÞe jotdt> 0 ð17:1Þ

Moreover, the inverse relation gives

RxxðtÞ ¼
1

2p

Z1
1
SðoÞe jotdo ð17:2Þ

and hence

Rxxð0Þ ¼ E½jxðtÞj2 ¼ P ¼ 1

2p

Z1
1
SðoÞdo
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Thus, S(o) represents the power spectral density and from Equation (17.1) and Equation (17.2), the power

spectral density and the autocorrelation function form a Fourier transform pair, the well-known Wiener–

Khinchin theorem.

If x(kT) represents a discrete-time wide sense stationary stochastic process, then

rk ¼ Efx ðnþ kÞTð Þx*ðnTÞg ¼ r k*

and the power spectral density is given by

SðoÞ ¼
X1

k¼ 1
rke

jkoT

or in terms of the normalized variable y ¼ oT:

S yð Þ ¼
X1

k¼ 1
rke

jky ¼ Sðyþ 2pkÞ> 0 ð17:3Þ

and the inverse relation gives the autocorrelations to be

rk ¼
1

2p

Zp
p

SðyÞe jkydy ¼ r k*

Thus, the power spectral density of a discrete-time process is periodic. Such a process can be obtained by

sampling a continuous-time process at t ¼ kT, jkj¼ 0 ! 1, and if the original continuous-time process is
band-limited with a two-sided bandwidth equal to 2ob ¼ 2p/T, then the set of discrete samples so obtained is
equivalent to the original process in a mean-square sense.

As Schur (1917) has observed, for discrete-time stationary processes, that the nonnegativity of the power

spectrum is equivalent to the nonnegative definiteness of the Hermitian Toeplitz matrices, i.e.:

SðyÞ> 0, Tk ¼
r0 r1 . . . rk
r1* r0 . . . rk 1

..

. ..
. . .

. ..
.

rk* rk 1 . . . r0

26664
37775 ¼ Tk

* > 0; k ¼ 0! 1 ð17:4Þ

If x(nT) is the output of a discrete-time linear time-invariant causal system driven by w(nT), then we have the

following representation:

wðnTÞ ! HðzÞ ¼
X1
k¼0

hðkTÞzk ! xðnTÞ ¼
X1
k¼0

hðkTÞw ðn kÞTð Þ ð17:5Þ

In the case of a stationary input, the output is also stationary, and its power spectral density is given by

SxðyÞ ¼ jHðe jyÞj2SwðyÞ ð17:6Þ

where Sw(y) represents the power spectral density of the input process. If the input is a white noise process,
then Sw(y) ¼ s2 and
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SxðyÞ ¼ s2jHðe jyÞj2

Clearly if H(z) is rational, so is Sx(y). Conversely, given a power spectral density:

SxðyÞ ¼
X1

k¼ 1
rke

jky > 0 ð17:7Þ

that satisfies the integrability condition Zp
p

SxðyÞdy51 ð17:8Þ

and the physical realizability (Paley–Wiener) criterionZp
p

ln SxðyÞdy4 1 ð17:9Þ

there exists a unique function H(z) that is analytic together with its inverse in jzj, 1 (minimum phase factor)

such that

HðzÞ ¼
X1
k¼0

bkz
k; jzj51 ð17:10Þ

and

SxðyÞ ¼ lim
r!1 0

jHðrejyÞj2 ¼ jHðejyÞj2; a:e:

H(z) is known as the Wiener factor associated with Sx(y) and as Equation (17.5) shows, when driven by white
noise, it generates a stochastic process x(nT) from past samples and its power spectral density matches with

the given Sx(y).
In this context, given a finite set of autocorrelations r0, r1, . . . , rn, the spectral extension problem is to obtain

the class of all extensions that match the given data, i.e., such an extension K(y) must automatically satisfy

KðyÞ> 0
and

1

2p

Zp
p

KðyÞe jkydy ¼ rk; k ¼ 0! n

in addition to satisfying Equation (17.8) and Equation (17.9).

The solution to this problem is closely related to the trigonometric moment problem, and it has a long and

continuing history through the works of Schur (1917), Nevanlinna, Akheizer and Krein (1962), Geronimus

(1954), and Shohat and Tamarkin (1970), to name a few. If the given autocorrelations are such that the matrix

Tn in Equation (17.4) is singular, then there exists an m < n such that Tm 1 is positive definite (Tm 1 . 0)

and Tm is singular (det Tm ¼ 0, det (.) representing the determinant of (.)). In that case, there exists a unique

vector X¼ (x0, x1, . . . , xm)
T such that TmX¼ 0 and further, the autocorrelations have a unique extension given

by

ck ¼
Xm
i¼1

Pie
jkyi ; jkj ¼ 0! 1 ð17:11Þ
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where e jyi, i ¼ 1!m are the m zeros of the polynomial x0 þ x1 z þ . . . þ xmz
m and Pi . 0. This gives

Tm 1 ¼ A

P1 0 . . . 0
0 P2 . . . 0

..

. ..
. . .

. ..
.

0 0 . . . Pm

26664
37775A* ð17:12Þ

where A is an m·m Vandermonde matrix given by

A ¼

1 1 . . . 1
l1 l2 . . . lm
l21 l22 . . . l2m
..
. ..

.
. . . ..

.

lm 1
1 lm 1

2 . . . lm 1
m

26666664

37777775; li ¼ e jyi ; i ¼ 1! m

and Equation (17.12) can be used to determine Pk . 0, k ¼ 1!m. The power spectrum associated with

Equation (17.11) is given by

SðyÞ ¼
Xm
k¼1

Pkdðy ykÞ

and it represents a discrete spectrum that corresponds to pure uncorrelated sinusoids with signal powers P1,

P2, · · · , Pm.

If the given autocorrelations satisfy Tn . 0, from Equation (17.4), every unknown rk , k > n þ 1, must be

selected so as to satisfy Tk . 0, and this gives

jrkþ1 zkj2 < R2k ð17:13Þ

where zk ¼ fTkT
1

k bk; fk ¼ ðr1; r2; . . . ; rkÞT; bk ¼ ðrk; rk 1; . . . ; r1Þ and Rk ¼ det Tk /det Tk–1.

From Equation (17.13), the unknowns could be anywhere inside a sequence of circles with center zk and
radius Rk, and as a result, there are an infinite number of solutions to this problem. Schur and Nevanlinna

have given an analytic characterization to these solutions in terms of bounded function extensions. A bounded

function r(z) is analytic in jzj , 1 and satisfies the inequality jr(z)j < 1 everywhere in jzj , 1.

In a network theory context, Youla (1980) has also given a closed form parametrization to this class of

solutions. In that case, given r0, r1, . . ., rn, the minimum phase transfer functions satisfying Equation (17.8)

and Equation (17.9) are given by

HrðzÞ ¼
GðzÞ

PnðzÞ zrðzÞ ~PPnðzÞ
ð17:14Þ

where r(z) is an arbitrary bounded function that satisfies the inequality (Paley–Wiener criterion):

Zp
p

ln 1 jrðejyÞj2
h i

dy > 1

and G(z) is the minimum phase factor obtained from the factorization:

1 jrðejyÞj2 ¼ jGðejyÞj2
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Further, Pn(z) represents the Levinson polynomial generated from r0!rn through the recursion:ffiffiffiffiffiffiffiffiffiffiffi
1 jsnj2

q
PnðzÞ ¼ Pn 1ðzÞ zsn ~PPn 1ðzÞ

that starts with P0ðzÞ ¼ 1=
ffiffiffi
r0

p
, where

sn ¼ Pn 1ðzÞ
Xn
k¼1

rkz
k

( )
n

Pn 1ð0Þ ð17:15Þ

represents the reflection coefficient at stage n. Here, { }n denotes the coefficient of z
n in the expansion { }, and

~PPnðzÞ D ¼ znPn*ð1=z*Þ represents the polynomial reciprocal to Pn(z). Notice that the given information r0!rn
enters Pn(z) through Equation (17.5). The power spectral density:

KðyÞ ¼ jHrðe jyÞj2

associated with Equation (17.14) satisfies all the interpolation properties described before. In Equation

(17.14), the solution r(z) 0 gives H(z) ¼ 1/Pn(z), a pure AR(n) system that coincides with Burg’s maximum

entropy extension. Clearly, if Hr(z) is rational, then r(z) must be rational and, more interestingly, every
rational system must follow from Equation (17.14) for a specific rational bounded function r(z). Of course,
the choice of r(z) brings in extra freedom, and this can be profitably used for system identification as well as

rational and stable approximation of nonrational systems (Pillai and Shim, 1993).

Defining Terms

Autocorrelation function: The expected value of the product of two random variables generated from a

random process for two time instants; it represents their interdependence.

Expected value (or mean) of a random variable: Ensemble average value of a random variable that is

given by integrating the random variable after scaling by its probability density function (weighted

average) over the entire range.

Power spectrum: A nonnegative function that describes the distribution of power vs. frequency. For wide

sense stationary processes, the power spectrum and the autocorrelation function form a Fourier

transform pair.

Probability density function: The probability of the random variable taking values between two real

numbers x1 and x2 is given by the area under the nonnegative probability density function between

those two points.

Random variable: A continuous or discrete valued variable that maps the set of all outcomes of an

experiment into the real line (or complex plane). Because the outcomes of an experiment are inherently

random, the final value of the variable cannot be predetermined.

Stochastic process: A real valued function of time t, which for every fixed t behaves like a random variable.
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17.2 Parameter Estimation

Ping Xiong, Stella N. Batalama, and Dimitri Kazakos

Parameter estimation is the operation of assigning a value in a continuum of alternatives to an unknown

parameter based on a set of observations that involve some function of the parameter. Estimate is the value

assigned to the parameter and estimator is the function of the observations that yields the estimate.

Applications of parameter estimation are broad and numerous, arising from problems in radar, sonar,

communications, signal processing, and many more. Examples include target location/range estimation in

radar, channel estimation in wireless communications, medical image processing for early diagnosis, global

positioning systems (GPS), seismic engineering, and environment identification in outer space explorations,

just to name a few.

The basic elements in parameter estimation are a vector parameter ym and a vector parameter space Em, a
stochastic process X(t) parameterized by ym, an optimization criterion, and a cost or penalty function. The
estimate ŷy

mðxnÞ based on the observation vector xn ¼ ½x1; x2; . . . ; xn is the solution of an optimization

problem that is formulated according to the cost function. Usually the optimization criterion coincides with

the estimator’s performance measure of interest. However, when the latter is mathematically intractable or of

high complexity, we may prefer to proceed with a rather simple optimization criterion and then evaluate the

performance of the estimator under the measure of interest. In the following, the function f ðxnjymÞ will
denote the joint conditional probability density function (pdf) of the random variables x1; . . . ; xn.

There are several parameter estimation schemes. If the stochastic process X(t) is parametrically known, i.e.,

if the conditional probability density functions are known for each fixed value of the vector parameter ym,
then the corresponding parameter estimation scheme is called parametric. If X(t) is nonparametrically

described, i.e., given ym 2 Em any joint probability density function of X(t) is a member of some

nonparametric class of probability density functions, then nonparametric estimation schemes arise. When the

parameter is modeled as deterministic, then we deal with classical or deterministic or nonrandom parameter

estimation. If the parameter is modeled as random, then the estimation process is called Bayesian or random.

Let Gn denote the n-dimensional observation space. Then an estimator ŷy
mðxnÞ of a vector parameter ym is a

function from the observation space, Gn, to the parameter space, Em. Since this is a function of random

variables, it is itself a random variable (scalar or vector). Throughout this section, we assume real parameters

and observations (generalizations to the complex case are often straightforward).

There are certain stochastic properties of estimators that quantify their quality. The most important

measures of quality are the bias and variance. An estimator is unbiased if its expected value is equal to the

true parameter value, i.e., if

EfŷymðxnÞg ¼ ym ð17:16Þ

where the expectation is taken with respect to the probability density function fymðxnÞ (the subscript ym
signifies that the pdf is parameterized by ym). In the case where the observation space is Rn and the parameter

is a scalar, it is
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EfŷyðxnÞg ¼
Z

Rn
ŷyðxnÞfyðxnÞdxn ð17:17Þ

The bias of the estimator is defined as BðymÞ ¼ EfŷymðxnÞg ym. Thus, the bias measures the distance between
the expected value of the estimator and the true value of the parameter. Usually, it is of interest to know the

conditional variance of an unbiased estimator given by

E ŷy
mðxnÞ EfŷymðxnÞg 2n o

ð17:18Þ

The bias of the estimator ŷy
mðxnÞ and the conditional variance generally represent a trade-off. Indeed, an

unbiased estimator may induce relatively large variance. However, the introduction of some low-level bias may

then result in significant reduction of the induced variance. In general, the bias vs. variance trade-off should be

studied carefully for the correct evaluation of any given parameter estimator. A parameter estimator is called

efficient if the conditional variance equals a lower bound known as the Cramér–Rao bound. It will be useful to

present briefly this bound.

The Cramér–Rao bound gives a theoretical minimum for the variance of any estimator. More specifically, let

ŷyðxnÞ be the estimate of a scalar parameter y given the observation vector xn. Let fyðxnÞ be given, twice
continuously differentiable with respect to y, and satisfy also some other mild regularity conditions. Then:

E ½ŷyðxnÞ y 2
n o

> E
q
qy

log fyðxnÞ
2

( ) 1

ð17:19Þ

If an estimate ŷyðxnÞ is biased, then EfŷyðxnÞg ¼ yþ BðyÞ, and the Cramér–Rao lower bound takes the form:

E ½ŷyðxnÞ y 2
n o

>
1þ dBðyÞ

dy

2

E q
qy log fyðxnÞ

h i2 ð17:20Þ

Many times it is of interest to examine the properties of an estimator as the number of independent samples n

approaches infinity. In this context, an estimator is said to be consistent if

ŷyðxnÞ ! y as n! 1 ð17:21Þ

Since the estimate ŷyðxnÞ is a random variable, we have to specify in what sense Equation (17.21) holds. Thus, if

the above limit holds w.p. 1, we say that the estimator is strongly consistent or consistent w.p. 1. In a similar

way we can define a weakly consistent estimator. As far as the asymptotic distribution of yðxnÞ as n! 1 is

concerned, it turns out that the central limit theorem can often be applied to ŷyðxnÞ to infer that ffiffi
n

p ½ŷyðxnÞ y
is asymptotically normal with zero mean as n! 1.
Finally, penalty or cost function c½ŷymðxnÞ; ym is a scalar, nonnegative function whose values vary as ym

varies in the parameter space Em and as the sequence xn takes different values in the observation space Gn. The
conditional expected penalty cðŷym; ymÞ induced by the parameter estimate ŷymðxnÞ and the penalty function
c½ŷymðxnÞ; ym is defined as

cðŷym; ymÞ ¼ E c½ŷymðxnÞ; ym jym
n o

¼
Z
Gn
c½ŷymðxnÞ; ym f ðxnjymÞdxn ð17:22Þ

17-9Spectral Estimation and Modeling



where the expectation is taken with respect to the joint conditional probability f ðxnjymÞ. If the a priori density
function pðymÞ is available, then the expected penalty cðŷym; pÞ can be evaluated as

cðŷym; pÞ ¼
Z
Em

cðŷym; ymÞpðymÞdym ¼
Z
Em

Z
Gn
c½ŷymðxnÞ; ym f ðxnjymÞdxnpðymÞdym ð17:23Þ

Bayesian Estimation Schemes

Bayesian estimation schemes utilize:

. A parametrically known stochastic process parameterized by ym, or, in other words, a given joint
conditional density function f ðxnjymÞ defined on the observation space Gn, where ym is a well-defined
parameter vector

. A realization xn from the underlying active process (it is assumed that the process remains unchanged

throughout the whole observation period)
. A density function pðymÞ defined on the parameter space Em
. A penalty scalar function c½ym; ŷymðxnÞ defined for each data sequence xn, parameter vector ym, and
parameter estimate ŷy

mðxnÞ
The Bayesian estimate, ŷy

m
o ¼ argminŷymcðŷy

m
; pÞ, minimizes the expected penalty cðŷym; pÞ, and is called the

optimal Bayesian estimate at p.

If the penalty/cost function has the form c½ym; ŷym ¼ 1 d kym ŷy
mk , where d( : ) is the Dirac delta

function, then the optimal Bayesian estimate is called maximum a posteriori (MAP) estimate since it

maximizes the a posteriori probability, i.e., ŷy
m
MAP ¼ argminŷym f ðymjxnÞ. If the penalty/cost function is given

by ym ŷy
m 2

, then the Bayesian estimate is called the minimum mean-square error (MMSE) estimate

and equals the conditional mean Efymjxng. The following section presents further details on MMSE

estimation.

Minimum Mean-Square Error (MMSE) Estimator

For simplicity in presentation, we consider the case of estimating a single continuous-type random variable y
with density pðyÞ. We also assume that the dimension of the observation space is 1. The penalty function is the
square of the estimation error ðy ŷyÞ2 and the optimality criterion is the minimization of the mean

(expected) square value of the estimation error.

Example 1: Let us consider the case of estimating a random variable y by a constant ŷy. The MMSE estimate ŷy
minimizes the mean-square error (MSE):

e ¼ Efðy ŷyÞ2g ¼
Z1
1
ðy ŷyÞ2pðyÞdy ð17:24Þ

In other words:

de

dy y¼ŷy ¼ 0)
Z1
1
2ðy ŷyÞpðyÞdy

y¼ŷy

¼ 0 ð17:25Þ

that is,

ŷy ¼ Efyg ¼
Z1
1
ypðyÞdy ð17:26Þ
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Example 2: Let us now consider the case where y is to be estimated by a function ŷyðxÞ of the random variable

(observation) x. In this case, the MSE takes the form:

e ¼ Efðy ŷyÞ2g ¼
Z1
1

Z1
1
½y ŷyðxÞ 2pðy; xÞdydx ð17:27Þ

where pðy; xÞ is the joint density of the random variables y and x. It can be shown that the function that

minimizes the MSE is

ŷyðxÞ ¼ Efyjxg ¼
Z1
1
ypðyjxÞdy ð17:28Þ

That is, the MMSE estimate is the conditional mean Efyjxg.
If x and y are jointly Gaussian, then the above conditional mean is a linear function of x, and it is easy to

obtain the MMSE estimate. However, in general, the conditional mean is a nonlinear function of x; thus ŷyðxÞ
is, in general, nonlinear. A popular, although suboptimum, Bayesian scheme is the linear MMSE estimator that

provides the estimate that minimizes the expected quadratic penalty in Equation (17.27) within the class of

linear parameter estimates.

Example 3: The linear estimation problem involves estimation of a random variable y in terms of a

linear function of x, i.e., ŷyðxÞ ¼ Ax þ B. In this case we need to find the constants A and B that minimize

the MSE:

e ¼ Ef½y ðAx þ BÞ 2g ð17:29Þ

A fundamental principle in MMSE estimation is the orthogonality principle. This principle states that the

optimum linear MMSE estimate Ax þ B of y is such that the estimation error y ðAx þ BÞ is orthogonal to
the data x, i.e.:

Ef½y ðAx þ BÞ xg ¼ 0 ð17:30Þ

Using the above principle, we can prove that e is minimum if

A ¼ rsy
sx

and B ¼ my Amx ð17:31Þ

where

mx ¼ Efxg; my ¼ Efyg
s2x ¼ Efðx mxÞ2g; s2y ¼ Efðy myÞ2g

r ¼ Efðx mxÞðy myÞg
sxsy

that is, mx, my, s
2
x and s2y are the mean and variance of x and y, respectively, while r is the correlation

coefficient of x and y. Thus, the MSE takes the form e ¼ s2yð1 r2Þ.
The estimate

ŷyðxÞ ¼ Ax þ B ð17:32Þ
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is called the nonhomogeneous linear estimate of y. If y is estimated by a function ŷyðxÞ ¼ Ax, then the

estimate is called homogeneous. Parameter A in Equation (17.32) can be evaluated using the orthogonality

principle:

A ¼ Efxyg
Efx2g ð17:33Þ

We note that if the random variables y and x are Gaussian zero mean, then the optimum nonlinear estimate

of y equals the linear estimate. In other words, if ŷyðxÞ ¼ Efyjxg is the optimum nonlinear estimate of y
and ŷyðxÞ ¼ Ax is the optimum linear estimate, then Efyjxg ¼ Ax. This is true because the random variables

y and x have zero mean, Efyg ¼ 0, Efxg ¼ 0, and thus the linear estimate ŷy has zero mean too, Efŷyg ¼ 0. The

latter implies that the linear estimation error e ¼ y ŷy has also zero mean, Efeg ¼ Efy ŷyg ¼ 0. However,

the orthogonality principle implies that the linear estimation error e is orthogonal to the data, Efexg ¼ 0. Since

e is Gaussian, it is independent of x and thus Efejxg ¼ Efeg ¼ 0, which is equivalent to the following:

Efy ŷyjxg ¼ 0) Efyjxg Efŷyjxg ¼ 0 ð17:34Þ

) Efyjxg ¼ Efŷyjxg ) ŷyðxÞ ¼ ax) ŷyðxÞ ¼ ŷy ð17:35Þ

That is, the nonlinear and the linear estimates coincide. In addition, since the linear estimation error e ¼ y ŷy
is independent of the data x, so is the mean-square error; that is,

Efðy ŷyÞ2jxg ¼ Efðy ŷyÞ2g ¼ V ð17:36Þ
Thus, the conditional mean of y given the data x is equal to the MMSE estimate of y while the conditional
variance is equal to the MSE. We emphasize that the optimum linear MMSE estimate Ax and the corres-

ponding MSE in Equation (17.36) are the conditional mean and conditional variance of the Gaussian random

variable y. The latter makes the evaluation of the pdf f ðyjxÞ an easy task, i.e., f ðyjxÞ ¼ 1ffiffiffiffiffiffi
2pV

p exp
ðy AxÞ2
2V

( )
.

Minimax Estimator

Minimax estimation schemes utilize:

. A parametrically known stochastic process parameterized by ym

. A realization xn from the underlying active process

. A scalar penalty function c½ym; ŷymðxnÞ for each data sequence xn, parameter vector ym, and parameter
estimate ŷy

mðxnÞ
Inminimax estimationwe know a family fpiðymÞg of a priori densities and we seek an estimate that minimizes

the maximum penalty within this family. The minimax estimates are solutions of saddle-point game

formalizations, with payoff function the expected penalty cðŷym; pÞ that is parameterized by the parameter

estimate ŷy
m
and the a priori parameter density function p. Specifically, we want to find a pair ðŷym* ; p*Þ such that:

" pðymÞ; ym 2 Em cðŷym* ; pÞ< cðŷym* ; p*Þ< cðŷym; p*Þ " ŷy
mðxnÞ 2 Em " xn 2 Gn ð17:37Þ

In other words, if a minimax estimate ŷy
m
* exists, it is an optimal Bayesian estimate at some least favorable a

priori distribution p*.

Minimum Variance Unbiased Estimator

The unbiased estimator that has minimum variance is called the minimum variance unbiased estimator

(MVUE). An MVUE does not always exist. Under certain conditions, an MVUE can be found either as the

solution that maximizes the likelihood function or through the use of sufficient statistics. In particular, if an

efficient estimator exists, then it is also MVUE and can be found as the unique solution that maximizes the
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likelihood function (the maximum likelihood estimator will be discussed in detail in the next section).

However, if an efficient estimate does not exist, the ML estimator is not MVUE. An alternative way to find an

MVUE, provided it exists, is through the use of sufficient statistics.

A sufficient statistic is a set of the observations (or functions of the data) that carries all the information

about the unknown parameter. Thus, given a sufficient statistic, the distribution of the data no longer depends

on the unknown parameter. A sufficient statistic is said to be minimal if of all sufficient statistics it provides the

greatest possible reduction of the data. Furthermore, a sufficient statistic is complete if there is only one

function of the statistic that is unbiased.

Identifying sufficient statistics can be difficult. A useful tool for this task is the Neyman–Fisher factorization

theorem. The Neyman–Fisher factorization theorem states that if we can factor the density function fymðxnÞ as
fymðxnÞ ¼ gðym;TðxnÞÞhðxnÞ, where g depends on xn only through TðxnÞ and h depends only on xn, then TðxnÞ
is a sufficient statistic for ym. Conversely, if TðxnÞ is a sufficient statistic for ym, then the density can be factored
as above.

Once we find a sufficient statistic TðxnÞ, we can apply the Rao–Blackwell–Lehmann–Scheffe theorem to find

the MVUE estimator. The Rao–Blackwell–Lehmann–Scheffe theorem states that if ~yy
m
is an unbiased estimator

of ym and TðxnÞ is a sufficient statistic for ym, and if TðxnÞ is complete, then ŷym ¼ Ef~yym jTðxnÞg is the MVUE
estimator. Alternatively, if TðxnÞ is complete and we can find some function g such that ŷym ¼ gðTðxnÞÞ is an
unbiased estimator of ym, then ŷy

m
is the MVUE estimator. The latter is usually easier to evaluate and thus, it is

favored in practice.

Example 4: In wireless communications, empirical measurements suggest that Rayleigh distribution is a

suitable model of the wireless channel. Let us suppose that we receive n independent identically distributed

(iid) data xi, i ¼ 1; . . . ; n. Let their common distribution be Rayleigh, given by

pyðxiÞ ¼
xi
y
exp

x2i
2y

( )
; xi > 0 ð17:38Þ

and let y be the parameter that needs to be estimated.
The joint probability density of the data parameterized by y is then

pyðxnÞ ¼
Yn
i¼1

xi
y
exp

x2i
2y

( )
¼ exp

Pn
i¼1 x

2
i

2y
n log y

( )Yn
i¼1

xi ð17:39Þ

The Neyman–Fisher factorization theorem implies that TðxnÞ ¼ Pn
i¼1 x

2
i is a sufficient statistic. Furthermore,

TðxnÞ is complete because the Rayleigh density function is a member of the exponential family. Since

EfTðxnÞg ¼ 2ny, it is implied that ŷy ¼ 1

2n

Pn
i¼1 x

2
i is unbiased. Thus, ŷy is the MVUE estimator.

When the MVUE cannot be obtained by either one of the approaches presented above, then we utilize

suboptimum estimators. A popular such estimator that is unbiased, linear with respect to the data, and has

minimum variance is the best linear unbiased estimator (BLUE). The major advantage of BLUE is that it can be

obtained from the first- and second-order moments of the data (rather than the distribution).

Example 5: In this example, we would like to estimate a signal y that is embedded in Laplacian noise. Again, n
iid measurements xi, i ¼ 1; . . . ; n, are taken. The signal model and the joint density of the data are as follows:

pyðxiÞ ¼
1

2
exp xi yj jð Þ ð17:40Þ

pyðxnÞ ¼
1

2n
exp

Xn
i¼1

xi yj j
!

ð17:41Þ

The Cramér–Rao lower bound is equal to
1

n
. The BLUE estimator is such that:
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ŷyBL ¼ argmin
ŷy
E ðŷy EfŷygÞ2
n o

ð17:42Þ

subject to ŷy ¼ aTxn and Efŷyg ¼ y ð17:43Þ

The unbiased constraint leads to EfaTxng ¼ aTEfxng ¼ aTsy ¼ y, that is, aTs ¼ 1, where s ¼ ½1; 1; . . . ; 1 T is a

vector with all elements equal to 1. The variance of the estimator is VarðŷyBLÞ ¼ aTCxna, where the data

covariance matrix is Cxn ¼ E ðxn ysÞðxn ysÞT
n o

¼ 2I. Solving the convex quadratic optimization problem

we obtain a ¼ 1

n
s, thus ŷyBL ¼

1

n
sTxn ¼ 1

n

Pn
i¼1 xi, which is just the sample mean of the observations. We note

that VarðŷyBLÞ ¼
2

n
, and this value is always larger than the Cramér–Rao bound.

Maximum Likelihood Estimator

Let XðtÞ be a random process parameterized by ym, where ym is an unknown but fixed parameter vector

of finite dimension m (e.g., ym 2 Rm). We assume that the joint probability density function fymðx1; . . . ; xnÞ
is known, where xn ¼ ½x1; . . . ; xn is a realization (or observation vector or sample vector) of the

process X(t). The problem is to find an estimate of the parameter vector ym based on the realization

of X(t). (We note that the dimension of the parameter vector ym remains fixed throughout the

observation period.)

The intuition behind the maximum likelihood method is that we choose those parameters ½y1; . . . ; ym
from which the observed sample vector is most likely to have come. That is, the estimator of ym

is selected so that the observed sample vector becomes ‘‘as likely as possible.’’ In this context, we define

the likelihood function lðymÞ as the deterministic function that is obtained by the joint probability

density function fymðxnÞ after setting the variables x1; . . . ; xn equal to their observed value. In other words,

in the likelihood function, the parameter ym is variable and the sample vector xn is fixed, while in the

joint probability density function, xn is variable and ym is fixed. The maximum likelihood (ML) estimate,

ŷy
m
ML, of y

m is the value of the parameter vector for which the likelihood function is maximized. In many

cases it is more convenient to work with the natural logarithm of lðymÞ, LðymÞ ¼ log lðymÞ, rather than
the likelihood function. This function is called the log-likelihood function. Since the logarithm is a

monotonic function and the likelihood function is nonnegative, it follows that both lðymÞ and LðymÞ
achieve maximum at the same value of parameter vector ym. Thus, the log-likelihood function is

maximized for the value of the vector parameter ym for which the gradient with respect to ym is equal to

zero; that is,

ŷy
m
ML :

qLðymÞ
qyi

¼ 0; i ¼ 1; . . . ;m ð17:44Þ

There is a close connection between the ML estimate ŷy
m
ML ¼ argmaxym fymðxnÞ and the MAP estimate ŷymMAP ¼

argmaxym f ðymjxnÞ. Since f ðymjxnÞ ¼ f ðxnjymÞpðymÞ=pðxnÞ; ŷymMAP ¼ argmaxymðlog f ðxnjymÞ þ log pðymÞÞ. The
cost function of MAP estimation has a similar form to the cost function of ML estimation, except for a term

log pðymÞ that represents our knowledge of the a priori density of the parameter ym. We recall that in MAP
estimation, the parameter is modeled as random while in MLE, the parameter is treated as deterministic

unknown.

It can be shown that when the process X(t) is memoryless and stationary (i.e., when x1; . . . ; xn are

independent identically distributed), then ML estimators are consistent, asymptotically efficient, and

asymptotically Gaussian. That is, even when an efficient estimator does not exist, the ML estimator is still

nearly optimal. These asymptotic properties, coupled with the fact that whenever an efficient estimate exists it

is the MLE, justify the popularity of ML estimation.
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Example 6: We return to Example 5. However, instead of BLUE, we are interested in obtaining the

MLE ŷyML:

ŷyML ¼ argmax
y

1

2n
exp

Xn
i¼1

xi yj j
!
¼ argmin

y

Xn
i¼1

xi yj j ð17:45Þ

Thus ŷyML is the median of xi, i ¼ 1; . . . ; n.

Example 7: Let xi, i ¼ 1; . . . ; n, be Gaussian independent random variables with mean y and variance s2i :
xi , Nðy; s2i Þ. We would like to estimate the mean y and evaluate the Cramér–Rao bound. Since y is unknown
but fixed, we will use the maximum likelihood estimation scheme. The probability density function of the

random variable xi is given by

fyðxiÞ ¼
1ffiffiffiffi
2p

p
si
exp

ðxi yÞ2
2s2i

( )
ð17:46Þ

Since xi, i ¼ 1; . . . ; n, are independent, the joint density function is given by

fyðxi; . . . ; xnÞ ¼
Yn
i¼1

1ffiffiffiffi
2p

p
si
exp

ðxi yÞ2
2s2i

( )
ð17:47Þ

which is exactly the likelihood function for this estimation problem. The log-likelihood function is

log fyðxi; . . . ; xnÞ ¼
n

2
logð2pÞ

Xn
i¼1

logðsiÞ
1

2

Xn
i¼1

ðxi yÞ2
s2i

ð17:48Þ

Then the value of y that maximizes the log-likelihood function is given by

ŷyMLðxnÞ ¼
1Pn
i¼1 1

s2
i

Xn
i¼1

xi
s2i
: ð17:49Þ

We note that when the variances are equal, the maximum likelihood estimate coincides with the sample mean.

The Cramér–Rao bound can be found as follows:

E
d

dy
log fyðxnÞ

2
( ) 1

¼ E
d2

dy2
log fyðxnÞ

( )
¼

Xn
i¼1

1

s2i
ð17:50Þ

In conclusion, we see that for Gaussian data the sample mean estimate is efficient, because it coincides with the

maximum likelihood estimate and achieves the Cramér–Rao bound. However, in the presence of outliers, the

sample mean performs poorly even when the fraction of outliers is small. This observation gave birth to the

branch of statistics called robust statistics.

Other Parameter Estimation Schemes

The Bayesian, minimax, minimum variance unbiased, and maximum likelihood estimation schemes described

above are members of the class of parametric parameter estimation procedures. All of these schemes require
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knowledge of the underlying probability density function of the observations (as well as the probability density

function of the parameter in the case of Bayesian schemes). This requirement may not be satisfied in many

applications and as such, suboptimum estimators that are easy to derive and simple to realize are also of

practical interest.

The common characteristic of all estimation procedures described in this section is the availability of some

parametrically known stochastic process that generates the observation sequence xn. When the stochastic

process that generates xn is nonparametrically described for every given parameter value ym, nonparametric
estimation schemes arise. Nonparametric estimation schemes may result as solutions of certain saddle-point

games, whose payoff function originates from parametric maximum likelihood formalizations.

Defining Terms

Bayesian estimator: An estimation scheme in which the parameter to be estimated is modeled as a

random variable with known probability density function.

Bias: The difference between the mean value of the estimate and its true value.

Consistent estimator: An estimator whose value converges to the true parameter value as the sample size

tends to infinity. If the convergence holds w.p. 1; then the estimator is called strongly consistent or

consistent w.p. 1.

Efficient estimator: An estimator whose variance achieves the Cramér–Rao bound.

Estimate: Our best guess of the parameter of interest based on a set of observations.

Estimator: A mapping from the data space to the parameter space that yields the estimate.

Homogeneous linear estimator: An estimator that is a homogeneous linear function of the data.

Linear MMSE estimator: The estimator that minimizes the mean-square error under the constraint that

it is a linear function of the data.

Maximum a posteriori estimator: The estimator that maximizes the a posteriori density of the

parameter conditioned on the observed data.

Maximum likelihood estimator: The estimator that maximizes the probability density function of the

data conditioned on the parameter.

Minimum mean-square error estimator: The estimation scheme in which the cost function is the

mean-square error.

Minimax estimator: The optimum Bayesian estimator for the least favorable prior distribution.

Nonhomogeneous linear estimator: An estimator that is a nonhomogeneous linear function of the data.

Nonparametric estimator: An estimation scheme in which no parametric description of the statistical

model is available.

Orthogonality principle: The fundamental principle for MMSE estimates. It states that the estimation

error is orthogonal to the data.

Parameter estimation: The procedure by which we combine all available data to obtain our best guess

about a parameter of interest.

Parametric estimator: An estimation scheme in which the statistical description of the data is given

according to a parametric family of statistical models.

Penalty or cost function: A nonnegative scalar function that represents the cost incurred by an inaccurate

value of the estimate.

Robust estimator: An estimation scheme in which we optimize performance for the least favorable

statistical environment among a specified statistical class.

Sufficient statistic: A set of the observations (or functions of the data) that carries all the information

about the unknown parameter.

Unbiased estimator: An estimator whose mean value is equal to the true parameter value.
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17.3 Multiple-Model Estimation and Tracking

David D. Sworder and John E. Boyd

Notation

1. S designates an integer index set 1; :::; Sf g.
2. ei is the ith canonical unit vector in a space whose dimension is apparent from the context.

3. A subscript may identify time, the component of a vector, or the element of an indexed family with the

meaning determined by context; e.g., mi is the conditional mean of the ith distribution of an indexed

family.

4. A superscript may denote an estimate before ( ) or after (þ) an update; e.g., mþi is the conditional

value after an observation update.

5. When a process, xtf g, is sampled every T sec, the discrete sequence so generated is written x k½f g.
6. Conditional expectation is denoted with a circumflex with the relevant observation apparent from

context; e.g., x̂x k½f g.
7. A Gaussian random variable with mean x̂xt and covariance Pxx is indicated by x , N x̂xt ; Pxxð Þ with the
same symbol used for the density function itself.

8. If A is a positive symmetric matrix and x a compatible vector, x0Ax is denoted xk k2A.
9. If P is a positive covariance matrix, D denotes its positive symmetric inverse with F the positive sym-

metric square root of D. If P is a covariance matrix, D is called the information matrix.

Introduction

A dynamic model of a system describes how the system state changes over time when acted upon by an

external forcing function. In a tracking problem, the conventional state vector (called the base state), xt ,

consists of positions, velocities, rotation angles and the like. The dynamic model generates broad motion

templates that are recognizable by the estimator in the observation. An estimation algorithm uses the

observations and the model to improve its assessment of the base state, to compute uncertainty regions for the

state, and to predict the future evolution of the system. The exogenous processes in the model may have both

unstructured and structured components. The former is commonly expressed by Gaussian white noise.

A comprehensive description of current modeling practice is presented in Li and Jilkov [1]. The most

familiar dynamic models use a mixed-time representation in which the time-continuous base state is
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represented by a stochastic differential equation and a state measurement is taken every T sec. When the base

state is also sampled, a time-discrete model results. Often the equations of plant dynamics and the observation

are linearized about the estimated base state to yield a linear-Gauss–Markov (LGM) model:

x kþ 1½ ¼ Ax k½ þ
ffiffiffiffi
Pw

p
w kþ 1½ ð17:51Þ

y k½ ¼ Hx k½ þ
ffiffiffi
Pn

p
n k½ ð17:52Þ

where w k½f g and n k½f g are independent unit Gaussian white sequences. The positive matrices Pw and Pn are
noise scaling factors. The measurements, y k½f g, generate an aggregate observation process, y k½ , and state

estimates are based upon y k½ .

Equation (17.51) and Equation (17.52) underlie the Kalman filter—and its nonlinear version, the extended

Kalman filter (EKF).The EKF is a predictor-corrector that extrapolates along the drift direction of the unforced

system and then corrects the forward estimate by integrating the new measurement. The EKF mapping is

written:

Extrapolation:

x̂x kþ 1½ ¼ Ax̂x k½ ð17:53Þ

Pxx kþ 1½ ¼ APxx k½ A0 þ Pw ð17:54Þ

Correction:

Dx̂x kþ 1½ ¼ K kþ 1½ n kþ 1½ ð17:55Þ

DPxx kþ 1½ ¼ K kþ 1½ Pyy kþ 1½ K kþ 1½ 0 ð17:56Þ

The innovations process, n k½ ¼ y k½ Hx̂x k½f g, is a white process. The covariance of innovations is given by
Pyy k½ ¼ HPxx k½ H0 þ Pn with inverse Dyy k½ . The Kalman gain is given by K k½ ¼ Pxx kþ 1½ H0Dyy kþ 1½ .

The y k½ -conditional distribution of x k½ is N x̂x k½ ; Pxx k½ð Þ [2]. The EKF locates the base state at x̂x k½ , and

assesses its error with Pxx k½ .

To illustrate the use (and misuse) of the EKF, consider tracking a maneuvering aircraft flying the path shown

in Figure 17.1 at constant altitude (the solid curve beginning at [35, 10] km). The base-state consists of

X;Yf g, the position coordinates, and fVx;VYg, the associated velocities. The target is subject to two

accelerations: a wide-band, omnidirectional acceleration described by the Brownian motion fwx;wyg with
intensity Pw ; and a lateral acceleration represented by the turn rate process Ftf g. The speed is slowly varying
when the turn rate is constant, so the omnidirectional acceleration is small, the intensity is about 0.1 g. The

jinking behavior can be captured by positing a turn rate process of value 60:2r=s. Further, suppose that when

the aircraft turns, it slows by 40% with a return to nominal speed after a turn.

At the origin of the coordinate system there is a radar measuring range and bearing every second with

1sð Þ-errors of 40 m in range and 1.75 mr in bearing. The measurement can be linearized about x̂xt . This

ancillary linearization is acceptable when the sensor nonlinearities are smooth and the estimation errors

reasonably small.
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The most rudimentary approach to the tracking problem would be to ignore the turn process and design an

EKF based upon the specification of radar quality given above. Figure 17.1 displays the target path along with

the computed 1sð Þ-error ellipses (shown every 0.2 sec for clarity) centered at the location estimates. At first,
when the dynamic hypotheses of the EKF match the motion, tracking uncertainty is reduced (the ellipses

shrink) with each radar measurement and the path lies within or next to the envelope of the 1sð Þ-error circles.
When the target turns to the right and slows, EKF tacks away from the true path because the gain is too small

to bring x̂xt back to xt. The error ellipses evidence no sensitivity to the growth in the size of the measurement

residuals. The residuals may exceed 10s, a near impossibility if the errors were truly Gaussian. The

performance of the EKF could be improved by injecting pseudo-noise although this approach has its own

shortcomings.

The EKF fails in this application because the model does not exhibit the full extent of dynamic variability.

Specifically, the target motion has distinct regimes which require individuated models. A broader

representation of the motion would use a family of local models, one for each motion mode. Let fi k½ be a

pointer vector to the event the aircraft is in motion mode i : fi k½ ¼ ei implies the current mode is the ith.

Then:

x kþ 1½ ¼
X
i2S

Aix k½ þ ffiffiffiffi
Pwi

p
w kþ 1½ fi k½ ð17:57Þ

y k½ ¼
X
i2S

Hix k½ þ ffiffiffi
Pni

p
n k½ fi k½ ð17:58Þ

where the Gaussian white sequences are as before. A single mode plant (S ¼ 1) is called unimodal

(orunimorphic) to distinguish it from polymodal (polymorphic) case.

The modal process, ftf g, is commonly represented by a Markov process on the unit vectors with generator
Q0 selected to match the mean sojourn times and the transition likelihoods. The time-sampled modal process,
f k½f g, is characterized by a transition rate matrix, Pij ¼ P fj ! fi ; derived from Q in the usual way. The

discernibility matrix, Dij ¼ Pðf k½ ¼ ej ) z k½ ¼ eiÞ, quantifies the fidelity of the modal measurement; e.g.,
Dii ¼ Pðf k½ ¼ ei yields the measurement z k½ ¼ eiÞ:

f kþ 1½ ¼ Pf k½ þ o kþ 1½ ð17:59Þ
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FIGURE 17.1 The path of a target with error ellipses generated by an EKF.
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k½ ¼ Df k½ þ Z k½ ð17:60Þ

where Z k½f g and o k½f g are white (discrete martingale increment sequences in this case). The measurements
z k½f g generate an aggregate observation process, Z k½ , which can be combined with Y k½ to yield a composite

observation process, G k½ . This observation model (often absent the modal measurement) has been used in the

development of many polymorphic estimators and tracking algorithms. The integrated base- and modal-state

dynamics and measurement equations in Equation (17.57) to Equation (17.60) are called a time-discrete

hybrid system and are described in detail in the recent book by Sworder and Boyd [3].

The modal process points toward the global status of the system. During operation, the system will operate

in one regime for a time f k½ ¼ eið Þ, and then suddenly shift f kþ 1½ ¼ ep to another. In most applications,

the discontinuous sample paths of ftf g are an approximation to the continuous, albeit abrupt, modal

transitions that actually occur. Figure 17.2 illustrates a situation that requires the flexibility of a polymorphic

model. Let us follow the north-bound car entering the intersection from the lower left corner of the picture.

The vehicle has begun a left turn and will head west. Suppose the tracker has a road map showing the direction

of the street segments and the location of intersections. The map is, however, too coarse to show the lane

structure. As the vehicle travels north ðe:g:;f k½ ¼ e1Þ, there is considerably more uncertainty in position and
velocity in the N–S direction (along the road) than there is in E–W (across the road). This is represented in

Equation (17.57) by selecting Pw1 so that the axis of the uncertainty ellipse is far longer in N–S than it is in

E–W. If the modal state distinguishes direction of motion on a (N–S, E–W) grid, then four local kinematic

models delineate motion in all of the permitted directions, S ¼ 4.

However, the problem of tracking on a road grid is more complicated than simply specifying a local

model for each directional motion. As the car enters the intersection, it turns west. There is a modal

transition at the intersection entry time ðe:g:;f k½ ¼ e1 ! f kþ 1½ ¼ e4Þ, and there will be a concomitant
reduction in speed if the E–W roads are known to be impaired. These transition events require subtle

adjustments in the tracker. The error covariance matrix, Pxx, quantifies the tracker’s internal uncertainty

regarding its kinematic estimates. As pointed out earlier, this will initially be more diffuse in N–S than in

E–W. But when the vehicle turns west, the N–S uncertainty is reduced to make the estimate map-compliant.

The E–W uncertainty begins to grow from its small value at the intersection. Such adjustments are beyond

the capacity of a unimodal model, which has neither the needed flexibility in Pw nor the recognition of

mode-induced, base-state discontinuities.

Integrating the modal transitions into a polymorphic model requires engineering judgment. When the car is

traveling in a region of restricted access, e.g., between intersections,modal change is unlikely, but at a junction, the

car could turn either east or west, or continue north—if a U-turn is not permitted. The modal transition rates

must be adjusted accordingly. Thus, P in Equation (17.59) is actually strongly dependent upon x k½ . However,

FIGURE 17.2 A car entering an intersection.
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x k½ is not precisely known to the tracker, and the filter must improvise. Here again, the multiple model

representation has a significant advantage over the unimodal. An EKF establishes the base state with the single

distribution,N x̂x k½ ; Pxx k½ð Þ. A polymorphic algorithm uses a family of parallel models and estimators that can be

adjusted independently.

Multiple-Model Estimation

A time-discrete hybrid model supposes that modal changes are coincident with a sample times. A polymorphic

estimator creates a family of local estimates, each one associated with a different modal sequence of length L

ending at the measurement time, t ¼ kT. Denote the set of all length-L sequences by k. Then, each local

estimator gauges the base state with a Gaussian distribution with (mean, covariance)-pair, mþi k½ ; Pþi k½ð Þ;
i 2 k; where i runs over the set k. The index variable is a partial history of a hypothetical modal path

extending back to t ¼ 0. Most of the current fixed structure multiple-model (FSMM) estimators are based

upon a family of local linear representations as displayed in Equation (17.57) and Equation (17.58) [4].

Such estimators include an affiliated group of EKFs as submodules, each tuned to one of the modal hypotheses

encapsulated in k. To keep track of a specific local filter it is advantageous to have a simple notation for modal
L-segments. Let us focus on kth-time interval, t 2 kT; kþ 1ð ÞT½ Þ. Denote the current modal state by ei ; i.e.,
f k½ ¼ ei. Denote the predecessor mode by ej ; i.e., f k 1½ ¼ ej. A modal fragment of length L counting back

from t ¼ kþ 1ð ÞT is written i ¼ ei; ej; :::; el

h i
where i is an S · L array of unit vectors. The collection of all

such arrays identifies with k. An even more compact notation for the path L-fragments is created by simply
listing the modal values in sequence as a single number; e.g., i ¼ ij:::l is an L-digit, S-radix number with k
again used to represent the aggregate.

From i, other modal fragments can be created. The L 1ð Þ-fragment preceding the current time is denoted
iiiii ; e.g., iiiii ¼ ej; :::; el

h i
. Alternatively, an element of k can be extended forward by prefixing the L-fragment

with any of the possible modes on t 2 kþ 1½ T; kþ 2ð ÞTÞ. This set of Lþ 1ð Þ-fragments, kþ, carries the index
variable iþ ¼ pij:::l where ep is the mode at t ¼ kþ 1ð ÞT.
This extended notation might seem extravagant. The local model in Equation (17.57) is an explicit function

of i alone, and the other digits in k appear superfluous. Although plausible, this is not correct. The

initialization in Equation (17.57) at t ¼ kT actually depends on the modal chronology. Thus, even though

there are only S forms of extrapolation, there are far more modal path hypotheses, and account must be taken

of this variety. This is evident in the interpretation of the measurement equation, Equation (17.58). Sensor

linearization takes place about a base-state estimate. With the dynamic memory implicit in Equation (17.57),

there are more such estimates than are symbolized by the index i. Actually, Equation (17.58) should be more

correctly written with an expanded notation: i! iiiii.
The common FSMM estimators differ in the depth of the modal sequence retained. Some do not look back

at all: L ¼ 1 and iiiii ¼ i. Some only look back to an immediate predecessor: L ¼ 2 and iiiii ¼ ij. Others look more

deeply, and it is such a one, the Gaussian wavelet estimator (GWE) that we will consider here. The GWE has

the flexibility to accommodate arbitrary values of L, and it easily fuses the modal measurements (if any) as

well. Unfortunately, as L increases, the number of EKF submodules grows as SL. In the example that follows,

we will let L ¼ 3 : iiiii ¼ ijk, and k is the set of all three-digit S-radix numbers.
The GWE approximates the conditional distribution of the system state with a highly partitioned

Gaussian sum [5]. At the beginning of the kth time interval, the joint base-state, modal-state conditional

density is given by

p k½ zð Þ ¼
X
i2k

ai k½ Nz mi ½k ; Pi k½ð Þ ð17:61Þ

All of the coefficients in Equation (17.61) are functions of the observation G k½ .

The algorithm is a predictor-corrector that maps a family of estimates forward from k k½ ! k k½ þ; i.e., it
maps the L-deep past–present to the Lþ 1ð Þ-deep past–present–future. Gaussian merging is then used to
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reduce the size of this extended index set to that of the nominal index set: k k½ þ! k kþ 1½ . Extrapolation

begins by first initializing mi k½ ;Pi k½ð Þ at time t ¼ kT. In more elementary FSMM algorithms, the

statistics from the preceding interval are simply carried forward: mi k½ ; Pi k½ð Þ ¼ mi k½ ; Pi k½ð Þ; iiiii 2 k.
However, if there is supplementary information at t ¼ kT; mi k½ ; Pi k½ð Þ should integrate these data. In the

example that follows, initialization depends upon only i; jð Þ, and the initialization transformation will be

labeled Iij:

mi k½ ; Pi k½ð Þ !Iij mi k½ ; Pi k½ ; i 2 kð Þ ð17:62Þ

The GWE employs a family of tuned EKFs for extrapolation and correction:

mi k½ ; Pi k½ð Þ !EKFi mþi kþ 1½ ;Pþi kþ 1½ ð17:63Þ

If there is supplementary terminal information, mþi kþ 1½ ; Pþi kþ 1½ð Þ should integrate these data at

t ¼ kþ 1ð ÞT. In the example that follows, this depends upon i 2 S alone, and the closure transformation will
be labeled Ii:

mþi kþ 1½ ; Pþi kþ 1½ !Ii mþi kþ 1½ ; Pþi kþ 1½ ð17:64Þ

Again, Ii is the identity transformation for the conventional multiple-model estimators.

Usually the modal transition rate matrix,P, is assumed to be known and constant. Indeed, the development
of conventional FSMM trackers is premised on the assumption that f k½f g is a Markov process; i.e., constant
P. The FSMM estimators distinguish themselves by the way they update the modal probabilities, aif g, and the
way they control the growth in number of modal hypotheses. The simplest way to compute the likelihood of

the various modal states is to ignore modal switching; i.e., P ¼ I. The more sophisticated estimators require

modal mixing. Since the computation of the conditional state distribution is only approximate, various forms

of merging have been proposed. The GWE uses a linear form to update the conditional probabilities of the

modal Lþ 1ð Þ-segments. First y kþ 1½ is assimilated, and then z kþ 1½ fusing takes place. The result is

smoothed:

ai kþ 1½ ¼ ai k½ Fyij jexp 1

2
y kþ 1½k k2Dn

i
D dik k2P y

i
ð17:65Þ

ai þ kþ 1½ ¼ ai kþ 1½ Ppiz kþ 1½ 0Dp ð17:66Þ

where the observation covariances are P
y
i ; iiiii 2 kf g. The updated probability of the modal segment iiiii 2 k k½

is aþif g where

aþi kþ 1½ ¼
X

iþ2kþi k½
ai þ kþ 1½ ð17:67Þ

The various aif g are then renormalized.
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The expanded conditional distribution of the hybrid state is by an SL-fold Gaussian sum:

p kþ 1½ ¼
X
i2k k½

aþi Nz m
þ
i ; P

þ
i ð17:68Þ

Various moments of interest can be computed from Equation (17.68); e.g., the value of

G kþ 1½ -mean of the target state:

f̂fi k½ ¼
X
ki

aþi kþ 1½ ð17:69Þ

and

x̂x kþ 1½ ¼
X
k
aþi kþ 1½ mþi kþ 1½ ð17:70Þ

To reduce Equation (17.68) to the form given in Equation (17.61), the number of terms in the density must be

reduced. This may be done by pruning or merging, with the latter used here (see Sworder et al. [6]). The set k
can be partitioned into disjoint subsets, kif g such that i 2 ki has the form i kþ 1½ ; el½ for some l 2 S: the
elements of ki are identified by their first L 1 digits. Mixture is achieved by averaging over the most distant

modal hypothesis using the conventional Gaussian sum merging formula:

ai kþ 1½ ¼
X

iþ2kþ
i kþ1½

aiþ kþ 1½ ; mi kþ 1½ ¼
X

i2ki kþ1½

mþi kþ 1½ aþi kþ 1½ ð17:71Þ

Pi kþ 1½ ¼
X

i2ki kþ1½

Pþi kþ 1½ þ mþi kþ 1½ mi kþ 1½ ð·Þ0 aþi kþ 1½ ð17:72Þ

The GWE recurrence is now complete.

Map-Enhanced Tracking

To illustrate the flexibility of a polymorphic model, let us study in detail the problem of tracking a vehicle on a

known road network. Figure 17.2 illustrates some of the broad uncertainties that arise. The subject automobile

is limited in its lateral motion by roadbed constraints. The local models express this by making Pwi a function

of direction. At a junction there may be a change in direction and velocity. The forward motion depends on

the both the current direction and the predecessor direction from which the vehicle accelerates after a turn.

Figure 17.3 illustrates an extended route. The left panel shows the actual path (the solid curve) of a

vehicle initially at (–500, –400) m (labeled ‘‘start’’). The target moves north until it reaches a crossroad at (–500,

–200) m at which time the target turns east. It progresses east until it comes to an intersection and turns south.

The vehicle follows the indicated path, ending northbound at (–700, 450) m. The turns shownoccur at junctions,

but there may be junctions that are not manifest in the figure because the target passed through them.

This irregular motion can be described using a four-mode polymorphic model. List the nominal speeds in the

N, S, E, W sequence: V ¼ {20, 20, 10, 10} m/sec. In each model the kinematic state consists of the velocity

vector and its integral, the position. For example, ifft ¼ e1, the car ismoving north on a roadwith nominal speed

20 m/sec. If the target continues in a specific direction, ft ei, the primary acceleration is white and along

the road direction: dVt ¼
ffiffiffiffi
Wi

p
dwt with the major axis of Wi along the ith road direction. Specifically, Wi is
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such that the N S 1sð Þ-speed uncertainty grows at the rate 0:6 m=sec2 along the road and 0:2 m=sec2 laterally.
Similarly, in the E–W direction the 1sð Þ-speed uncertainty grows at the rate 0:3 m=sec2 along the road and
0:1 m=sec2 in the transverse direction.

While a Brownian excitation oriented in the road direction suffices if there is no change in direction, when

the direction does change, there is a velocity discontinuity. When ft ¼ ei 6¼ ft , the vehicle position is

continuous but the velocity jumps to that associated with the new forward direction.

The sensor suite contains a pair of range-bearing, rt ; ytð Þ; sensors of variable quality situated as shown in the
figure, and an acoustic target-speed indicator. The nominal 1sð Þ-sensor quality is: 54 m in range and 17 mr in

bearing. The time interval between observations is 5 sec. Outside a fixed design range, the sensors degrade to

160 m in range and 50 mr in bearing. The acoustic measurement, z k½ ; is simultaneous with the location

measurements. Given the speed variability within a mode, the quality of acoustic sensor is only fair: speed is

classified correctly 75% of the time. The velocity classification errors parallel the nominal speed differences;

e.g., a north velocity is more likely to be classified as south than as east. Of course, a speed sensor cannot

distinguish direction: a north motion is equally likely to be classified as south.

In the time-discrete model presented in Equation (17.57), the Aif g matrices are the same for all i 2 S. The
wideband disturbance individuates the modes. For the purpose of this example, we will use a three-deep GWE:

L ¼ 3. Extrapolation requires 64 EKFs tuned to the alternative modal sequences. The measurements from the

rt ;ctð Þ-sensor grid are converted to the common X Yð Þ-coordinate system and grouped as the vector y k½ .
The quality of the range-bearing measurement depends on the range to the vehicle with severe degradation

outside the dotted circles. Equation (17.58) involves 64 separate linearizations with the decision on the

additive noise based on mi .

The polymorphic model delineates the formal kinematic structure of this encounter. More subtle is the

selection of the modal transition rates. The GWE utilizes P to alert it to the possibility of a turn. An adaptive

GWE uses the road map to adjust the transition rates. If the vehicle is close to a junction, P should gauge the

likelihood of the various continuation directions. Alternatively, in a region of limited access, there is
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FIGURE 17.3 A motion of a ground target on a grid with several intersections. The left panel shows the response of a

map-based tracker. The right panel uses a tracker without a map. The design range of each sensor (shown by ‘‘x’’) is 600 m.

A line from the true target location is drawn to a 1sð Þ-error ellipse centered on the mean target location.
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little likelihood of a turn. To quantify close to a junction, list the locations of the junctions: wr; r 2 Ncr. Consider

the ith local filter with G kþ 1½ -position statistic mþi kþ 1½ ; Pþi kþ 1½ð Þp; the (mean, variance) of target
location. This planar statistic can be used to infer the distance of the i-local target state to intersection r:

Denote by Ri r; kþ 1½ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kwr mþi kþ 1½ð Þpk2Dþi kþ1½

r
. Denote the minimum distance to a junction

measured in standard units by RRi kþ 1½ . We will suppose here that if RRi kþ 1½ > 3 (the local filter places the

target more than 3s½ from any crossroad), P< I (the target is unlikely to turn); if RRi K þ 1½ < 3 (the local

filter places the target within a 3sð Þ neighborhood of a crossroad), the likelihood of selecting each of the three
forward directions is equal.

Each of the local filters in the GWE must be initialized according to the map. Since the conditioning at the

end of every interval, I, translates the estimate to the map mi k½ ; Pi k½ð Þ will be map-compliant. If i is
such that i ¼ iil, then there is no change in direction and the local statistics are unchanged. When i ¼ ijl; i 6¼ j,

the velocity is reinitialized. The local covariance, Pi k½ , is adjusted in accord with the remaining kinematic

uncertainties.

At the end of a sample interval, there are several ways that the map can be used to correct the

estimates generated by the local EKFs [7]. The simplest one will be used here: mþi kþ 1½ ; Pþi K þ 1½ð Þ is
projected back to the road in the map coordinates. For example, suppose i ¼ 1jl; i.e., the target is

moving north. Then Ii moves the X-coordinate back to the E–W location of the road and sets Vx ¼
0: Pþi kþ 1½ is adjusted to eliminate the E–W uncertainty in location and velocity while the retaining

uncertainty in N–S.

The utility of map-integration can be seen by contrasting the performance of the adaptive GWE (labeled

GWE-M using the map) and the basic GWE (ignoring the map). Figure 17.3 shows an example when the

vehicle is within the high quality region of the sensor half of the time (the design range of the sensors is

600 m). Look first at the left panel. When the path is within the design range of either sensor, the tracking

error of GWE-M is minimal. In only one instance is this tracker uncertain about the target motion. When the

range-to-target extends to 1 km, the GWE-M becomes more tentative; there are a few bigger error ellipses and

even some confusion about a turn. Part of the reason for the modal uncertainty exhibited by the GWE-M after

the first west turn is due to a peculiarity of the modal modeling. Immediately after the turn, the local error

covariances are relatively large. If RRi kþ 1½ < 3, GWE-M will prepare to turn even though the crossroad is

behind the target.

The basic GWE experiences difficulty when the range-to-target exceeds a couple of hundred meters. Only

when the target is near sensor-W is tracking uniformly well. Even when the target is within the high-quality

region of both locations sensors, large errors are seen. The computed error ellipses are far too small to

adequately describe the uncertainty; the tracking error consistently exceeds a computed 2s value, and the

model-based statistics should be considered unsatisfactory. The tight lattice structure of the path is not

apparent to this tracker. The GWE smooths the southernmost segment of the path, swinging 200 m south of

the actual road.

Increasing the design range for the location sensors will reduce tracking error. Figure 17.4 shows a sample of

the response of the trackers when the entirety of the path is included in the high-quality measurement region

of both sensors. The GWE-M has no significant error, and the error ellipses are so small as to be invisible on

the scale of the plot. The basic GWE has difficulty recognizing a turn even at close range. Its error ellipses are

so small that several measurements are required to identify directional changes. Again, the lack of a map leads

to a curved path estimate for the GWE.

These general behaviors are compounded in Figure 17.5. The design range of the location sensors is now

only 300 m. The regions of good measurements are disjoint and the target spends most of its time outside

either region. Even so, the map-compliant GWE does well. It again imagines turns to be plausible immediately

post-crossroad. It exhibits one misplaced change-in-direction estimate in the midst of the southernmost

segment of the path. This is due to the imprecision of theP-matrix and the poor quality of the measurements.
Even here, the large error ellipse indicates that the GWE-M identifies this estimate as an anomaly—truth is

within a 2s ellipse. The quality of the basic GWE is simply unacceptable.
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FIGURE 17.4 A motion of a ground target on a grid with several crossroads. The design range of the sensors is 1200 m.

The full encounter is within the high-quality region of both sensors.
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FIGURE 17.5 A motion of a ground target on a grid with several crossroads. The design range of the sensors is 300 m.

The target is in a low-quality measurement region for most of the encounter.
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The improvement has been shown to be fairly constant across a large range of sensor qualities. As the design

range is reduced, the measurement error increases. The GWE-M maintains a 10 dB advantage over the

GWE in mean-radial-error. Of course, this GWE could be improved by adding more pseudo-noise to the

model—making Pn larger. However, that would increase the size of the error ellipses and dilute its predictions.

Conclusions

The intrinsic value of a model-based estimator is often difficult to quantify. Many such trackers are grounded

on an LGM-model—or models in the case of the FSMM estimators. The most used of these algorithms is the

EKF. The ubiquity of the EKF leads to its use in situations in which its modeling paradigm is crude; e.g., hard

nonlinearities are smoothed, etc. The loose description of the tracking environment is sometimes concealed by

arbitrarily adding pseudo-noise. Pseudo-noise desensitizes the estimates to the modeling errors but sacrifices

the specificity that careful modeling could provide. Additionally, the computed error covariances are broader

than they should be. This lack of refinement leads many designers to dismiss LGM-based methods.

The multiple-model approaches avoid some of these criticisms by representing complex kinematic environ-

ments with a family of LGM models. Each model provides a local description of the target/sensor at a different

point in the neighborhood of the true base-state. In this way, several parallel system representations are

maintained, each with its restricted domain of applicability. The FSMM estimator acts as a ‘‘self-adjusting

variable bandwidth filter,’’ weighting current measurements more when the uncertainty is greater [8].

Further Reading

There are several sources of further reading on FSMM estimation. The survey papers by Li and Jilkov [4] cover

LGM-modeling and FSMM estimation with a large number of well-chosen references. The basic issues of

hybrid estimation are examined in a recent book [3]. Applications of multiple model estimation are found in

many journals and conference proceedings [9–11].
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18.1 Digital Image Processing

Yun Q. Shi, Wei Su, and Chih-Ming Chen

In the early 1960s, the joint advent of the semiconductor computer and the space program formally brought

the field of digital image processing into public focus. Swiftly, digital image processing found many

applications other than the space program and became an active research area and a graduate course offered in

many universities in the 1970s and early 1980s. With the tremendous advancements continuously made in the

very large scale integration (VLSI) computer and information processing, images, image sequences, and video

have become indispensable elements of our modern daily life. The trend is powerfully continuing nowadays.

Examples include the high availability of laptop personal computers (PCs), digital cameras, scanners, mobile

phones, and Internet in our daily life. Examples also include popularly utilized international image and video

compression standards such as Joint Photographic Experts Group (JPEG), JPEG2000, Moving Picture Experts

Group (MPEG)-1, MPEG-2, MPEG-4, and International Telecommunication Union (ITU) video

coding standards H.263 and H.26L. Therefore, it is not surprising to know that imaging technologies are

considered one of the 20 Greatest Engineering Achievements made by mankind in the 20th century

(www.greatachievements.org).
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Digital Image Generation

When three-dimensional (3D) world scenery is perceived by our human visual system (HVS), what happens in

our HVS is that the light of the scenery has been projected through lens in our eyes onto our retina. When 3D

scenery is projected via an optical system onto film in an analogue camera, an analogue image is captured.

Digital images are different from analogue images in that both the coordinates of picture elements (referred to

as pixels) and the image brightness or intensity (referred to as grayscale levels for multitone or gray level

images) are digitized. That is, these quantities are all represented with finitely many integers. Two typical

scenarios are described here. One is the digital camera, where the incoming light projected to the charge-

coupled device (CCD) sensors. The two-dimensional (2D) (often rectangular-shaped) array of CCD sensors

converts the incoming light into electronic signals, and the read-out mechanism and analog/digital (A/D)

converter then formulate a digital image. Another is the digital scanner (often flatbed-shaped). When the

hardcopy of an image is being scanned, a line of light source is moving parallel to the plane in which the

hardcopy is placed, and the sensors are converting the light into electronic signals, thus resulting in a digital

image. In both scenarios, the processes of sampling (discretization of the input signal in image plane) and

quantization (discretization of the input signal in magnitude) are involved in formulating 2D digital images.

Both sampling and quantization have been well addressed in many texts on digital signal processing. Images as

2D signals follow the general principle of the sampling and quantization theory. Hence, sampling and

quantization will not be discussed in detail in this chapter. The readers are referred to Gonzalez and Woods

(2002), Shi and Sun (1999), and Section 18.2 in this handbook.

Note that not only visible light but also some other energy formats can be used to generate digital images via

some proper transducers. Examples in this regard include ultrasound, infrared radiation, and electromagnetic

waves.

Image, Image Sequence, and Imaging Space

Without loss of generality, we discuss visible light imaging in this section. Consider a sensor located in a

specific position in 3D space. It generates images about the scene one after another. As time goes by the images

form a sequence. The set of these images can be represented with a brightness function denoted by g(x, y, t),

where x and y are coordinates on image plane, t represents time moments, and g represents grayscale levels of

the pixel at (x, y). Now a generalization of the above basic outline is considered. A sensor as a solid article

(which has three free dimensions) can be translated and rotated (two free dimensions). It is noted that here the

rotation of a sensor about its optical axis is not counted since the images generated will remain unchanged

when this type of rotation takes place. So we can obtain a variety of images when a sensor is translated to

different coordinates and rotated to different angles in the 3D space. Equivalently, we can imagine that there

are infinitely many sensors in the 3D space which occupy all of possible spatial coordinates and assume all of

possible orientations at each coordinate, i.e., they are located in all possible positions. At one specific moment

all of these images form a set of images. When time varies these sets of images form a much bigger set of

images. Clearly, it is impossible to describe such a set of images by using the above-mentioned brightness

function g(x, y, t). Instead, it should be described by a more general brightness function gðx; y; t;~ss Þ where~ss
indicates the sensor’s position in the 3D space, i.e., the coordinates of the sensor center and the orientation of

the optical axis of the sensor. As mentioned previously,~ss is a 5D vector. That is,~ss ¼ ð~xx; ~yy; ~zz; b; gÞ, where ~xx; ~yy,
and ~zz represent the coordinates of the optical center of the sensor in the 3D space; and b and g represent the
orientation of the optical axis of the sensor. More specifically, each sensor may be considered associated with a

3D Cartesian coordinate system such that its optical center is located on the origin and its optical axis is

aligned with the OZ axis. We choose in the 3D space a 3D Cartesian coordinate system as the reference

coordinate system. Hence, a sensor with its associated Cartesian coordinate system coincident with the

reference coordinate system has its position in the 3D space denoted by~ss ¼ ð0; 0; 0; 0; 0Þ. An arbitrary sensor
position denoted by~ss ¼ ð~xx; ~yy; ~zz; b; gÞ can be described as follows. The sensor’s associated Cartesian coordinate
system has been first shifted from the reference coordinate system in 3D space with its origin settled at ð~xx; ~yy; ~zzÞ
in the reference coordinate system and has then been rotated, with the rotation angles b and g being the same
as Euler angles. Figure 10.1 in Shi and Sun (1999) shows the reference coordinate system and an arbitrary

18-2 Circuits, Signals, and Speech and Image Processing



Cartesian coordinate system (indicating an arbitrary sensor position). There oxy and o 0x 0y 0 represent,
respectively, the related image planes.

Hence, all possible forms assumed by the general brightness function gðx; y; t;~ss Þ construct an imaging

space. If we consider a sensor at a fixed position, we then consider a temporal image sequence, i.e., gðx; y; tÞ.
However, if we consider a fixed moment, all images represented by gðx; y;~ss Þ are a spatial image sequence. Each
picture, which is taken by a sensor located in a particular position at a specific moment, is merely a special

cross-section of this imaging space, and can be represented by gðx; yÞ (Shi and Sun, 1999).

Grayscale, Binary, Halftone, and Color Images

So far, what we considered are grayscale images, i.e., multitone images. That is, each pixel will assume one of

finitely many grayscale levels. Often, each pixel is represented by 8 bits. That is, the allowed range of grayscale

levels is from 0 to 255. Conventionally, 0 represents the darkest grayscale, while 255 the brightest grayscale. In

binary images, say, text document images, each pixel is only allowed to assume two different levels, either 0 or

1, representing black and white, respectively. In what is known as halftone images, each pixel’s grayscale is

represented by a group of white and black elements. Imagine a pixel is represented by a group of white

elements, hence representing the brightest grayscale level, while another pixel is represented by a group of

black elements, hence representing the darkest grayscale level. In between, many different grayscale levels can

be denoted. Halftone images are often used in newspaper and text production.

Color images have been used more and more frequently in our daily life, say, from color television (TV)

frames to those generated by using digital cameras. For display purposes color images often consist of three

prime color components, i.e., red (R), green (G), and blue (B), each represented by 8 bits. A specific color is

then associated with a specific combination of different amounts of these three primary colors. In color image

compression and manipulation, however, some other color models are preferred and are often used. That is,

instead of the RGB model mentioned above, the color is characterized by three features: intensity, hue, and

saturation. Here, intensity is the counterpart of grayscale used to describe brightness of image pixels, while hue

and saturation are two features used to describe the so-called chromaticity. Roughly speaking, hue has

something to do with the dominant color and saturation has something to do with relative purity of the

dominant color. The separation of intensity from chromaticity is shown to facilitate color image

processing including color image compression. Several color models along this line have been proposed

and used, say, HSI, YUV, YIQ, YDbDr, and YCbCr. The YUV model is used in most European countries for

phase alternating line (PAL) TV systems, the YIQ model is used in North America and Japan for the National

Television Systems Committee (NTSC) TV systems, and YDbDr is used in France, Russia, and some other

European countries for the Sequential Couleur a Memoire (SECAM) TV system. The YCbCr model is used in

international compression standards for image (JPEG) and video (MPEG). The YUV, YIQ, YDbDr, and YCbCr

models can be derived from the RGB model. For more detail, readers are referred to Shi and Sun (1999).

Image Quality Measurement

To evaluate the effectiveness of some digital image processing techniques, we often need to compare the image

quality before and after a digital image processing procedure. For instance, in image and video compression,

which is going to be discussed later in this chapter, image and video quality is an important factor in dealing

with image and video compression. In evaluating two different compression methods, for example, we have to

base the evaluation on some definite image and video quality. When both methods achieve the same quality of

reconstructed image and video, the one that requires less data is considered to be superior. Alternatively, with

the same amount of data to represent an image, the method providing a higher quality reconstructed image or

video is considered the better method. Note that here we have not considered other performance criteria, such

as computational complexity.

Surprisingly, however, it turns out that the measurement of image and video quality is not straightforward.

There are two types of visual quality assessment. One is objective assessment (using electrical measurements),

and the other is subjective assessment (using human observers). Each has its merits and drawbacks.

A combination of these two methods is now widely utilized in practice.
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Subjective Quality Measurement

It is natural that the visual quality of reconstructed video frames should be judged by human viewers if they

are to be the ultimate receivers of the data. Therefore, subjective visual quality measure plays an important role

in visual communications.

In subjective visual quality measurement, a set of video frames is generated with varying coding parameters.

Observers are invited to subjectively evaluate the visual quality of these frames. Specifically, observers are asked

to rate the pictures by giving some measure of picture quality. Alternatively, observers are requested to provide

some measure of impairment to the pictures. A five-scale rating system of the degree of impairment, used by

Bell Laboratories, is listed below (Sakrison, 1979). It has been adopted as one of the standard scales in CCIR

Recommendation 500–3 (CCIR 1986). Note that CCIR is now International Telecommunications Union-

Recommendations (ITU-R):

Impairment is not noticeable.

Impairment is just noticeable.

Impairment is definitely noticeable, but not objectionable.

Impairment is objectionable

Impairment is extremely objectionable.

In the subjective evaluation, there are a few things worth mentioning. In most applications there is a whole

array of pictures simultaneously available for evaluation. These pictures are generated with different encoding

parameters. By keeping some parameters fixed while making one parameter (or a subset of parameters) free to

change, the resulting quality rating can be used to study the effect of the one parameter (or the subset of

parameters) on encoding. An example using this method to study the effect of varying numbers of

quantization levels on image quality can be found in (Gonzalez and Woods, 2002).

Another possible way to study this is to identify pictures with the same subjective quality measure from the

whole array of pictures. From this subset of test pictures, we can produce, in the encoding parameter space,

isopreference curves that can be used to study the effect of the parameter(s) under investigation. An example

using this method to study the effect of varying both image resolution and numbers of quantization levels on

image quality can be found in Huang (1965).

In the rating, a whole array of pictures is usually divided into columns with each column sharing some

common conditions. The evaluation starts within each column with a pairwise comparison. This is because a

pairwise comparison is relatively easy for the eyes. As a result, pictures in one column are arranged in an order

according to visual quality, and quality or impairment measures are then assigned to the pictures in the one

column. After each column has been rated, a unification between columns is necessary. That is, different

columns need to have a unified quality measurement. As pointed out in Sakrison (1979), this task is not easy

since it means we may need to equate impairment that results from different types of errors.

One thing is understood from the above discussion; subjective evaluation of visual quality is costly. It needs

a large number of pictures and observers. The evaluation takes a long time because human eyes are easily

fatigued and bored. Some special measures have to be taken in order to arrive at an accurate subjective quality

measure. Examples in this regard include averaging subjective ratings and taking their deviation into

consideration. For further details on subjective visual quality measurement, readers may refer to Sakrison

(1979), Hidaka and Ozawa (1990), and Webster et al. (1993).

Objective Quality Measurement

Here, we first introduce the concept of signal-to-noise ratio (SNR), which is a popularly utilized objective

quality assessment. Then we present a promising new objective visual quality assessment technique based on

human visual perception.

Signal-to-Noise Ratio

Consider Figure 18.1, where f ðx; yÞ is the input image to a processing system. The system can be a low-pass

filter, a subsampling system, or a compression system. It can even represent a process in which additive white

Gaussian noise corrupts the input image. Then gðx; yÞ is the output of the system. In evaluating the quality of

18-4 Circuits, Signals, and Speech and Image Processing



gðx; yÞ, we define an error function eðx; yÞ as the difference between the input and the output. That is:

e ðx; yÞ ¼ f ðx; yÞ gðx; yÞ ð18:1Þ
The mean square error is defined as Ems:

Ems ¼ 1

MN

XM 1

x¼0

XN 1

y¼0
eðx; yÞ2 ð18:2Þ

where M and N are the dimensions of the image in the horizontal and vertical directions. Note that it is

sometimes denoted by MSE. The root mean square error is defined as Erms:

Erms ¼
ffiffiffiffiffi
Ems

p ð18:3Þ
It is sometimes denoted by RMSE.

As noted earlier, SNR is widely used in objective quality measurement. Depending whether mean square

error or root mean square error is used, the SNR may be called the mean square signal-to-noise ratio, SNRms,

or the root mean square signal-to-noise ratio, SNRrms. We have:

SNRms ¼ 10 log10

PM 1

x¼0

PN 1

y¼0
gðx; yÞ2

MN · Ems

0BBBB@
1CCCCA ð18:4Þ

and

SNRrms ¼
ffiffiffiffiffiffiffiffiffi
SNRms

p ð18:5Þ
In image and video data compression, another closely related term, peak signal-to-noise ratio (PSNR), which

is essentially a modified version of SNRms, is widely used. It is defined as follows:

PSNR ¼ 10 log10
2552

Ems

!
ð18:6Þ

The interpretation of the SNR is: The larger the SNR (SNRms, SNRrms, or PSNR), the better the quality of the

processed image, gðx; yÞ. That is, the closer the processed image g(x, y) is to the original image f(x, y). This
seems correct, however, from our above discussion about the features of the HVS, we know that the HVS does

not respond to visual stimuli in a straightforward way. Refer to the two-unit cascade model of our HVS shown

in Figure 18.2. Its low-level processing unit is known to be nonlinear. Several masking phenomena exist, which

will be discussed later in this section. Each confirms that the visual perception of the HVS is not simple. It is

worth noting that our understanding of the high-level processing unit of the HVS is far from complete.

Processing
System

Output
g (x, y)

Input
f (x, y)

FIGURE 18.1 An image processing system.
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Therefore, we can understand that the SNR does not always provide us with reliable assessments of image

quality. One good example is presented in (Chapter 1, page 14, Shi and Sun, 1999), which uses the so-called

IGS quantization technique to achieve high compression (using only 4 bits for quantization instead of the

usual 8 bits) without introducing noticeable false contouring. In this case, the subjective quality is higher, and

the SNR decreases due to low-frequency quantization noise and additive high-frequency random noise.

Another example drawn from our discussion about the masking phenomena is that some additive noise in

bright areas or in highly textured regions may be masked, while some minor artifacts in dark and uniform

regions may turn out to be quite annoying. In this case, the SNR cannot truthfully reflect visual quality.

On the one hand, we see that an objective quality measure does not always provide reliable picture quality

assessment. On the other hand, however, its implementation is much faster and easier than that of the

subjective quality measure. Furthermore, objective assessment is repeatable. Owing to these merits, objective

quality assessment is still widely used despite this drawback.

It is noted that combining subjective and objective assessments has been a common practice in

international coding-standard activity. A new development along this new direction has been reported in

Webster et al. (1993) and Shi and Sun (1999).

Image Transformation

A digital image as a 2D signal can be processed in either spatial domain (i.e., directly manipulated in the form

of g(x, y)) or transform domain. That is, similar to signal processing in general, an image can also be processed

in the transform domain such as in the discrete Fourier transform (DFT) domain for some consideration. One

example in this regard is that we can easily observe in the DFT domain that image energy is highly

concentrated in the dc and low-frequency ac components of the image. Interested readers are referred to an

illustrative example contained in Figure 4.11 (Gonzalez and Woods, 2002). On contrary, this feature is not

obvious in the spatial domain. Another example is image compression that can be effectively implemented in

the discrete cosine transform (DCT) as in JPEG, or discrete wavelet transform (DWT) domain as in JPEG2000,

more efficiently than in the spatial domain (Shi and Sun, 1999).

Some other useful image transformations include Hotelling transform (Shi and Sun, 1999), which finds

applications in pattern recognition and image compression; Hough transform (Gonzalez and Woods, 2002),

which is useful in pattern recognition; discrete Walsh transform, and discrete Hadamard transform (Shi and

Sun, 1999), which find applications in image transmission.

Image Enhancement and Image Restoration

The purpose of both image enhancement and image restoration is to improve the quality of images for further

image processing or for other applications. The difference between image enhancement and image restoration

can be summarized as follows. Image enhancement is carried out in an empirical and intuitive manner.

However, image restoration first establishes a mathematical model for the degradation the image has gone

through, and then restores the original image based on the model. Three important processing techniques in

enhancement and restoration are depicted below as specific examples.

High-level
processing

unit

Low-level
processing

unit

Perceived visual
information

Incident
light

FIGURE 18.2 A two-unit cascade model of the human visual system (HVS).
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Point Processing

Point processing means that each pixel has its grayscale level changed individually. Hence, it changes

independently of its neighboring pixels. If we denote the original image grayscale level as ‘‘o,’’ and the grayscale

level after point processing as ‘‘p.’’ Then we have p¼T(o), where T stands for the transformation. Therefore,

once a mapping function T is specified, then a point processing is completely specified.

Below we use histogram modification as an example to illustrate the point processing. A histogram is a curve

such that its horizontal axis represents the grayscale levels. Let us consider an 8-bit grayscale image. That is,

each pixel has its grayscale level represented by 8 bits. Hence, each pixel’s grayscale level is one of integers from

0 to 255. The vertical axis of the histogram is either the total number of pixels assuming the corresponding

grayscale level or the percentage number of the total pixels assuming the corresponding grayscale level.

Histograms are statistics often used to depict a grayscale image’s brightness distribution. Given a specific

histogram, one can have a general idea about the image’s grayscale distribution. For instance, from a histogram

one can tell if the image is bright or dark in general and what grayscale levels other pixels are assuming.

Histogram modification is a type of image processing technique which changes the appearance of the image’s

histogram. One well-known histogram modification technique is called histogram equalization. That is, after

the processing, the histogram looks more evenly distributed than before. In an ideal case, histogram

equalization leads to a perfect horizontal histogram. Owing to digitization, however, histogram equalization

actually leads to a more flat histogram than before.

Clearly, histogram modification including histogram equalization belongs to point processing. That can be

depicted as p ¼ T(o).

Window Processing

In contrast to the point processing discussed above, window processing proceeds according to the

neighborhood of a pixel under consideration. Frequently, by a window, it is meant a three by three, often

written as 3 · 3, square neighborhood with the pixel under consideration in the center of the square. The

window is not necessarily 3 · 3; it could be 5 · 5 or 7 · 7, and so on. That is, the grayscale level of the central
pixel of the window after window processing will be replaced by a new grayscale level, which is a function of

the grayscale levels assumed by all the pixels within the window. Mean filter and median filter are examples of

window processing. For instance, one often runs a mean filter pixel-by-pixel from the top to bottom and from

the left to the right. For each pixel under consideration, a 3 · 3 window is opened with the pixel at the center of

the window. The central pixel’s grayscale level is then replaced by the mean value of nine grayscale levels within

the 3 · 3 window. In this way, the image is low-pass filtered. For a median filter, the central pixel’s grayscale
level is replaced by the median value of the nine grayscale levels occupied by the 3· 3 window. Edge detection
can be conducted by running a gradient operator. There are several possible gradient operators available.

Examples include 3 · 3 Sobel and Prewitt gradient operators. Readers are referred to Pratt (1991) and Gonzalez
and Woods (2002).

Motion Deblurring

When a relative motion between camera and scenery takes place, the picture taken will be blurred. To restore

the image, we can establish a model for the experienced motion. Then based on the model, one can deblur the

image. In this process, one can observe that a motion model has been established and used to deblur the

image. This is an example of image restoration using a motion model. Readers are referred to other work

(Pratt, 1991; Shi and Sun, 1999; Gonzalez and Woods, 2002) for more information on image restoration and

motion compensation for image sequence processing.

Image Compression

Image and video (a sequence of video frames) data compression refers to a process in which the amount of

data used to represent image and video is reduced to meet a bit rate requirement (below or at most equal to

the maximum available bit rate), while the quality of the reconstructed image or video satisfies a requirement

for a certain application and the complexity of computation involved is affordable for the application.
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The block diagram in Figure 18.3 shows the functionality of image and video data compression in visual

transmission and storage. Image and video data compression has been found to be necessary in these

important applications because the huge amount of data involved in these and other applications usually

exceeds the capability of today’s hardware despite rapid advancements in semiconductor, computer, and other

industries.

The required quality of the reconstructed image and video is application-dependent. In medical diagnosis

and some scientific measurements, we may need the reconstructed image and video to mirror the original

image and video. In other words, only reversible, information-preserving schemes are allowed. This type of

compression is referred to as lossless compression. In applications such as motion picture and TV, a certain

amount of information loss is allowed. This type of compression is called lossy compression.

This section first addresses the necessity as well as the feasibility of image and video data compression.

Thereafter, fundamental image compression techniques such as quantization, codeword assignment,

differential coding, and transform coding are introduced. With these fundamentals, the international still

image coding standards JPEG and JPEG2000, and video coding standards MPEG-1, MPEG-2, and MPEG-4

can be understood. However, it is not possible for this section to cover all of these standards. Readers are

referred to books on image and video compression (Shi and Sun, 1999).

Practical Needs for Image and Video Compression

Needless to say, visual information is of vital importance for human beings to perceive, recognize, and

understand the surrounding world. With the tremendous progress that has been made in advanced

technologies, particularly in VLSI circuits, increasingly powerful computers and computations, it is becoming

more possible than ever for video to be widely utilized in our daily life. Examples include videophony,

videoconferencing, high-definition TV (HDTV), and digital video disk, also known as digital versatile disk

(DVD), to name a few.

Video as a sequence of video frames, however, involves a huge amount of data. Let us take a look at an

illustrative example. Assume the present switch telephone network (PSTN) modem can operate at a maximum

bit rate of 56,600 bits per second. Assume each video frame has a resolution of 288 by 352 (288 lines and 352

pixels per line), which is comparable with that of a normal TV picture and is referred to as common

intermediate format (CIF). Each of the three primary colors red, green, blue (RGB) is represented for one pixel

with 8 bits, as usual, and the frame rate in transmission is 30 frames per second to provide a continuous

motion video. The required bit rate, then, is 288 · 352 · 8 · 3 · 30 ¼ 72;990;720 bits per second. Therefore,

the ratio between the required bit rate and the largest possible bit rate is about 1289. This implies that we have

to compress the video data by at least 1289 times in order to accomplish the transmission described in this

example. Note that an audio signal has not been accounted for yet in this illustration.

With increasingly demanding video services such as 3D movies and 3D games, and high video quality such

as HDTV, advanced image and video data compression is necessary. It becomes an enabling technology to

bridge the gap between the required huge amount of video data and the limited hardware capability.

Feasibility of Image and Video Compression

Here we shall see that image and video compression is not only a necessity for rapid growth of digital visual

communications, but it is also feasible. Its feasibility rests with two types of redundancies, i.e., statistical

Data
Reconstruction

or
Data Retrieval

Transmission
or

Storage

Image and
Video

Compression

Input Output

FIGURE 18.3 Image and video compression for visual transmission and storage.
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redundancy and psychovisual redundancy. By eliminating these redundancies, we can achieve image and video

compression.

Statistical Redundancy

Statistical redundancy can be classified into two types: interpixel redundancy and coding redundancy.

By interpixel redundancy we mean that pixels of an image frame, and pixels of a group of successive image or

video frames, are not statistically independent. On the contrary, they are correlated to various degrees. This

type of interpixel correlation is referred to as interpixel redundancy. Interpixel redundancy can be divided into

two categories: spatial redundancy and temporal redundancy. By coding redundancy we mean the statistical

redundancy associated with coding techniques.

Spatial Redundancy

Spatial redundancy represents the statistical correlation between pixels within an image frame. Hence, it is also

called intraframe redundancy. It is well known that for most properly sampled TV signals, the normalized

autocorrelation coefficients along a row (or a column) with a one-pixel shift is very close to the maximum

value 1. That is, the intensity values of pixels along a row (or a column) have a very high autocorrelation (close

to the maximum autocorrelation) with these of pixels along the same row (or the same column) but shifted by

a pixel. This does not come as a surprise because most of the intensity values change continuously from pixel

to pixel within an image frame except for the edge regions. That is, often intensity values change gradually

from one pixel to the other along a row and along a column.

Spatial redundancy implies that the intensity value of a pixel can be guessed from that of its neighboring

pixels. In other words, it is not necessary to represent each pixel in an image frame independently. Instead, one

can predict a pixel from its neighbors. Predictive coding, also known as differential coding, is based on this

observation. The direct consequence of recognition of spatial redundancy is that by removing a large amount

of the redundancy (or utilizing the high correlation) within an image frame, we may save a lot of data in

representing the frame, thus achieving data compression.

Temporal Redundancy

Temporal redundancy is concerned with the statistical correlation between pixels from successive frames in a

temporal image or video sequence. Therefore, it is also called interframe redundancy. Consider a temporal

image sequence. That is, a camera is fixed in the 3D world and it takes pictures of a scene one by one as time

progresses. As long as the time interval between two consecutive pictures is short enough, i.e., the pictures are

taken densely enough, we can imagine that the similarity between two neighboring frames is strong. It is stated

in Mounts (1969) that for a videophone-like signal with moderate motion in the scene, on average, less than

10% of pixels change their grayscale levels between two consecutive frames by an amount of 1% of the peak

signal. The high interframe correlation was reported in Kretzmer (1952). There, the autocorrelation between

two adjacent frames was measured for two typical motion-picture films. The measured autocorrelations were

0.80 and 0.86. In summary, pixels within successive frames usually bear a strong similarity or correlation. As a

result, we may predict a frame from its neighboring frames along the temporal dimension. This is referred to

as interframe predictive coding. A more precise, hence more efficient, interframe predictive coding scheme,

which has been in development since the 1980s, uses motion analysis. That is, it considers that the changes

from one frame to the next are mainly due to the motion of some objects in the frame. Taking this motion

information into consideration, we refer to the method as motion compensated predictive coding. Removing a

large amount of temporal redundancy leads to a great deal of data compression. At present, all the

international video coding standards have adopted motion compensated predictive coding, which has been a

vital factor in the increased use of digital video in digital media.

Coding Redundancy

As we discussed, interpixel redundancy is concerned with the correlation between pixels. That is, some

information associated with pixels is redundant. The psychovisual redundancy, which is discussed next in this
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subsection, is related to the information that is psychovisually redundant, i.e., to which the HVS is not

sensitive. It is clear that both the interpixel and psychovisual redundancies are somehow associated with some

information contained in image and video. Eliminating these redundancies, or utilizing these correlations, by

using fewer bits to represent the information results in image and video data compression. In this sense, the

coding redundancy is different. It has nothing to do with information redundancy but rather with the

representation of information, i.e., coding itself.

It is well known that, for example, compared with the fixed-length binary coding, also sometimes referred

to as straightforward binary coding or natural binary coding (NBC), variable-length coding (VLC) is more

efficient. This implies that for the same set of symbols, different codes may perform differently. Some may be

more efficient than others. Huffman coding and arithmetic coding, two variable-length coding techniques, are

popularly utilized in the image and video coding standards such as JPEG, JPEG2000, MPEG-1, MPEG-2, and

MPEG-4.

Psychovisual Redundancy

While interpixel redundancy inherently rests in image and video data, psychovisual redundancy originates

from the characteristics of the HVS. It is known that the HVS perceives the outside world in a rather

complicated way. Its response to visual stimuli is not a linear function of the strength of some physical

attributes of the stimuli, such as intensity and color. HVS perception is different from camera sensing. In the

HVS, visual information is not perceived equally; some information may be more important than other

information. This implies that if we apply less data to represent less important visual information, perception

will not be affected. In this sense, we see that some visual information is psychovisually redundant. Eliminating

this type of psychovisual redundancy leads to data compression.

In order to understand this type of redundancy, let us study some properties of the HVS. We can model the

human vision system as a cascade of two units (Lim, 1990), as depicted in Figure 18.2. The first one is a low-

level processing unit, which converts incident light into a neural signal. The second one is a high-level

processing unit, which extracts information from the neural signal. While much research has been carried out

to investigate the low-level processing, the high-level processing remains relatively unknown. The low-level

processing unit is known as a nonlinear system (approximately logarithmic). While a great body of literature

exists, we will limit our discussion only to image and video compression-related results. That is, several aspects

of HVS which are closely related to image and video compression are discussed in this subsection. They are

luminance masking, texture masking, frequency masking, temporal masking, and color masking. Their

relevance in image and video compression is addressed. Finally, a summary is provided, in which it is pointed

out that all of these features can be unified as one: differential sensitivity. This seems to be the most important

feature of the human visual perception.

Luminance Masking

Luminance masking concerns the brightness perception

of the HVS, which is the most fundamental aspect

among the five to be discussed here. Luminance masking

is also referred to as luminance dependence (Connor

et al., 1972) and contrast masking (Legge and Foley,

1980; Watson, 1987).

Consider the monochrome image shown in Figure

18.4. There, a uniformdisk-shaped object with a gray level

(intensity value) I1 is imposed on a uniform background

with a gray level I2. Now the question is: Under what

circumstances can the disk-shaped object be discrimi-

nated from the background by the HVS? That is, we want

to study the effect of one stimulus (the background in this

example, the masker) on the detectability of another

stimulus (in this example, the disk). Two extreme cases

I1

I2

FIGURE 18.4 A uniform object with grayscale level I1
imposed on a uniform background with grayscale level I2.
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are obvious. That is, if the difference between the two gray levels is quite large, the HVS has no problem with

discrimination, or in other words theHVSnotices the object from the background. If, however, the two gray levels

are the same, the HVS cannot identify the existence of the object. What we are concerned with here is the critical

threshold in the gray level difference for discrimination to take place.

If we define the threshold DI as such a gray level difference DI ¼ I1 I2 that the object can be noticed by the

HVS with a 50% chance, then we have the following relation, known as contrast sensitivity function, according

to Weber’s law:

DI
I

< constant ð18:7Þ

where the constant is about 0.02. Weber’s law states that for a relatively very wide range of I, the threshold for

discrimination, DI, is directly proportional to the intensity I. The implication of this result is that when the
background is bright, a larger difference in grayscale levels is needed for the HVS to discriminate the object

from the background. However, the intensity difference required could be smaller if the background is

relatively dark. It is noted that Equation (18.7) implies a logarithmic response of the HVS, and Weber’s law

holds for all other human senses as well.

The direct impact that luminance masking has on image and video compression is related to quantization.

Roughly speaking, quantization is a process that converts a continuously distributed quantity into a set of

finitely many distinct quantities. The number of these distinct quantities (known as quantization levels) is one

of the keys in quantizer design. It significantly influences the resulting bit rate and the quality of the

reconstructed image and video. An effective quantizer should be able to minimize the visibility of quantization

error. The contrast sensitivity function provides a guideline in analysis of the visibility of quantization error.

Therefore, it can be applied to quantizer design. Luminance masking suggests a nonuniform quantization

scheme that takes the contrast sensitivity function into consideration. One such example was presented in

Watson (1987).

Texture Masking

Texture masking is sometimes also called detail dependence (Connor et al., 1972), spatial masking (Netravali,

1977; Lim, 1990), or activity masking (Mitchell et al., 1997). It states that the discrimination threshold

increases with increasing picture detail. That is, the stronger the texture, the larger the discrimination

threshold. It is known that when the number of quantization levels decreases from 256 (8 bits per pixel) to 16

(4 bits per pixel), for instance, the unnatural contours, caused by the coarse quantization (using only 4 bits to

represent a pixel’s grayscale levels), can be noticed in the relative uniform regions. (For a specific example,

readers are referred to Figure 1.9 in Shi and Sun, 1999). This phenomenon was first noted by Goodall (1951)

and is called false contouring (Gonzalez and Woods, 2002). Now we see that the false contouring can be

explained by using texture masking since texture masking indicates that the human eye is more sensitive to the

smooth region than to the textured region, where intensity exhibits a high variation. A direct impact on image

and video compression is that the number of quantization levels, which affects bit rate significantly, should be

adapted according to the intensity variation of image regions.

Frequency Masking

While the above two characteristics are picture-dependent in nature, frequency masking is picture-

independent. It states that the discrimination threshold increases with frequency increase. It is also referred to

as frequency dependence.

Owing to frequency masking, in the transform domain, say, the discrete cosine transform (DCT) domain,

we can drop some high frequency coefficients with small magnitudes to achieve data compression without

noticeably affecting the perception of the HVS. Note that the frequency masking has been used in JPEG

standard. This leads to what is called transform coding, which is discussed later in this section.
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Temporal Masking

Temporal masking is another picture-independent feature of the HVS. It states that it takes a while for the

HVS to adapt itself to the scene when the scene changes abruptly. During this transition the HVS is not

sensitive to details. The masking takes place both before and after the abrupt change. It is called forward

temporal masking if it happens after the scene change. Otherwise, it is referred to backward temporal masking

(Mitchell et al., 1997). This implies that one should take temporal masking into consideration when allocating

data in image and video coding.

Color Masking

In physics, it is known that any visible light corresponds to an electromagnetic spectral distribution. Therefore,

a color, as a sensation of visible light, is an energy with an intensity as well as a set of wavelengths associated

with the electromagnetic spectrum. Obviously, intensity is an attribute of visible light. The composition of

wavelengths is another attribute: chrominance. There are two elements in the chrominance attribute: hue and

saturation. The hue of a color is characterized by the dominant wavelength in the composition. Saturation is a

measure of the purity of a color. A pure color has a saturation of 100%, whereas white light has a saturation

of 0%.

It is known that the HVS is much more sensitive to the luminance component than to the chrominance

components. Following van Ness and Bouman (1967) and Mullen (1985), Mitchell et al. (1997) included a

figure to quantitatively illustrate the above statement. A modified version is shown in Figure 1.10 in Shi and

Sun (1999). The figure indicates that the HVS is much more sensitive to luminance than to chrominance. The

direct impact of color masking on image and video coding is that by utilizing this psychovisual feature, we can

allocate more bits to the luminance component than to the chrominance components. This leads to a

common practice in color image and video coding: using full resolution for the intensity component, while

using a 2 · 1 subsampling both horizontally and vertically for the two chrominance components. This has been
adopted in related international video coding standards, such as MPEG-1 and MPEG-2.

Summary: Differential Sensitivity

Here, let us summarize what we have discussed so far. We see that luminance masking, also known as contrast

masking, is of fundamental importance among several types of masking. It states that the sensitivity of the eyes

to a stimulus depends on the intensity of another stimulus. Thus it is a differential sensitivity. Both texture

(detail or activity) and frequency of another stimulus significantly influence this differential sensitivity. The

same mechanism exists in color perception, where the HVS is much more sensitive to luminance than to

chrominance. Therefore, we conclude that differential sensitivity is the key in studying human visual

perception. These features can be utilized to eliminate psychovisual redundancy, and thus compress image and

video data. It is noted that this differential sensitivity feature of the HVS is common to human perception. For

instance, there is also forward and backward temporal masking in human audio perception.

Quantization and Codeword Assignment

Recall Figure 18.3, in which the functionality of image and video compression in the applications of visual

communications and storage is depicted. In this subsection, we are mainly concerned with source encoding

and source decoding. To this end, we take a step further. That is, we show block diagrams of a source encoder

and decoder in Figure 18.5. As shown in Figure 18.5(a), there are three components in source encoding:

transformation, quantization, and codeword assignment. After the transformation, some form of an input

information source is presented to a quantizer. In other words, the transformation block decides which types

of quantities from the input image and video are to be encoded. It is not necessary that the original image and

video waveform be quantized and coded; we will show that some formats obtained from the input image and

video are more suitable for encoding. An example is the difference signal. From the discussion of interpixel

correlation in the previous subsection, it is known that a pixel is normally highly correlated with its

immediately horizontal or vertical neighboring pixel. Therefore, a better strategy is to encode the difference of

grayscale levels between a pixel and its neighbor. Since these data are highly correlated, the difference usually
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has a smaller dynamic range. Consequently, the encoding is more efficient. This idea is discussed later in this

section. Another example is what is called transform coding, which is also addressed later in this section.

There, instead of encoding the original input image and video, we encode a transform of the input image and

video. Since the redundancy in the transform domain is reduced greatly, the coding efficiency is much higher

compared to directly encoding the original image and video.

Note that the term transformation in Figure 18.5(a) is sometimes referred to as mapper and signal processing

in the literature (Li and Zhang, 1995; Gonzalez and Woods, 2002). Quantization refers to a process that

converts input data into a set of finitely different values. Often, the input data to a quantizer are continuous in

magnitude.

Hence, quantization is essentially discretization in magnitude, which is an important step in the lossy

compression of digital image and video. (The reason that the term lossy compression is used here will be shown

shortly.) The input and output of quatization can be either scalars or vectors. The quantization with scalar

input and output is called scalar quantization, whereas that with vector input and output is referred to as vector

quantization. Here we will only discuss scalar quantization.

After quantization, codewords are assigned to the finitely many different values, the output of the quantizer.

Natural binary code (NBC) and variable-length code (VLC), introduced previously in this section, are two

examples of codeword assignment. Other examples are the widely utilized entropy code (including Huffman

code and arithmetic code), dictionary code, and run-length code (RLC) (frequently used in facsimile

transmission).

The source decoder, as shown in Figure 18.5(b), consists of two blocks: codeword decoder and inverse

transformation. They are counterparts of the codeword assignment and transformation in the source encoder.

Note that there is no block that corresponds to quantization in the source decoder. The implication of this

observation is the following. First, quantization is an irreversible process. That is, in general there is no way to

find the original value from the quantized value. Second, quantization is, therefore, a source of information

loss. In fact, quantization is a critical stage in image and video compression. It has significant impact on the

distortion of reconstructed image and video as well as the bit rate of the encoder. Obviously, coarse

quantization results in more distortion and lower bit rate than fine quantization.

It is noted that the uniform quantization is the simplest yet the most important case that has been used in

various image and video coding standards. Pulse code modulation (PCM) is the best established and most

frequently implemented digital coding method that involves quantization.

Differential Coding

Instead of encoding a signal directly, the differential coding technique codes the difference between the signal

itself and its prediction. Therefore it is also known as predictive coding. By utilizing spatial and/or temporal

interpixel correlation, differential coding is an efficient and yet computationally simple coding technique.

Codework
assignment

(b) source decoder

(a) source encoder

Reconstructed
information

Codeword
string Inverse

transformation
Codeword

decoder

Codeword
string

QuantizationTransformation

Input
information

FIGURE 18.5 Block diagram of a source encoder and a source decoder.
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There are two components of differential coding, prediction and quantization. When the difference signal (also

known as prediction error) is quantized, the differential coding is called differential pulse code modulation

(DPCM). Delta modulation (DM) is a special case of DPCM. If quantization is not included, the differential

coding is referred to as information-preserving differential coding. For more information, the readers are

referred to Shi and Sun (1999).

Transform Coding

As introduced above, differential coding achieves high coding efficiency by utilizing the correlation between

pixels existing in image frames. Transform coding (TC), the focus of this subsection, is another efficient coding

scheme based on utilization of interpixel correlation. As we see, TC has become a fundamental technique

recommended by the international still image coding standards JPEG and JPEG2000. Moreover, TC has been

found to be efficient in coding prediction error in motion compensated predictive coding. As a result, TC was

also adopted by the international video coding standards such as H.261, H.263, and MPEG-1, MPEG-2, and

MPEG-4.

Recall the block diagram of source encoders shown in Figure 18.5. There are three components in a source

encoder: transformation, quantization, and codeword assignment. It is the transformation component that

decides which format of input source is quantized and encoded. In DPCM, for instance, the difference between

an original signal and a predicted version of the original signal is quantized and encoded. As long as the

prediction error is small enough, i.e., the prediction resembles the original signal well (by using correlation

between pixels), differential coding is efficient.

In transform coding, the main idea is that if the transformed version of a signal is less correlated compared

with the original signal, then quantizing and encoding the transformed signal may lead to data compression.

At the receiver, the encoded data are decoded and transformed back to reconstruct the signal. Therefore, in

transform coding, the transformation component illustrated in Figure 18.5 is a transform. Quantization and

codeword assignment are carried out with respect to the transformed signal or, in other words, carried out in

the transformed domain.

Image Segmentation

In image segmentation, we consider how to segment an image into different segments. For instance, a video-

phone picture may be segmented into two segments: one is the speaker’s head, face, and shoulder, and another

is the background. Apparently, image segmentation is useful for image representation and image analysis.

Image Representation

Image representation deals with how to represent an image. An image or an object in an image can be

represented by its boundary or the region occupied by the image or the object.

Image Analysis

Image analysis deals with how to analyze an image or objects in an image so that human being can have a

high-level understanding about the image and scenery.

In this section, we have discussed some subjects in digital image processing such as image enhancement,

image restoration, and image compression. In some sense, all of these tasks belong to low-level image

processing. Image segmentation can thus be considered as the middle-level image processing task, which is a

necessary step for image representation and image analysis, while image representation and image analysis can

be viewed as high-level image processing tasks.

Note that here by low-level, middle-level, and high-level processing we only mean the division of image

processing tasks from a human point of view. That is, a comprehensive image processing procedure can often

start with low-level processing, say, image enhancement and/or image restoration in order to make image

more suitable for the later processing. Or, an image may need to be compressed prior to other processing.
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These low-level image processings may be viewed as preprocessing of a given image. The preprocessed image

then needs to be segmented. The segmented image needs to be further represented and analyzed for some

applications. Also, it is noted that for some applications, there is no need for image segmentation, image

representation, or image analysis. For instance, in an application, we may only need to compress a given image

and then store it in a computer. The last point that we would like to bring to the reader’s attention is that by

no means do we imply that the image processing techniques in the low and middle levels are trivial. In fact,

image compression remains challenging. There are still many theoretical issues remaining open. Any

significant progress in image compression will bring great advancement in information technologies. Also,

image segmentation has been seen generally as a difficult task for several decades. In summary, the division of

low-, middle-, and high-level processing tasks is only from the human’s point of view based on what level of

the role image processing tasks under consideration are playing.

References

T. Berger, Rate Distortion Theory, Englewood Cliffs, NJ: Prentice-Hall, 1971.

CCIR Recommendation 500-3, ‘‘Method for the subjective assessment of the quality of television pictures,’’ in

Recommendations and Reports of the CCIR, XVIth Plenary Assembly, vol. XI, Part 1, 1986.

D.J. Connor, R.C. Brainard, and J.O. Limb, ‘‘Interframe coding for picture transmission,’’ Proc. IEEE, vol. 60,

no. 7, pp. 779–790, 1972.

R.C. Gonzalez and R.E. Woods, Digital Image Processing, 2nd ed., Upper Saddle River, NJ: Prentice-Hall,

2002.

W.M. Goodall, ‘‘Television by pulse code modulation,’’ Bell Syst. Tech. J., 33–49, 1951, January.

T. Hidaka and K. Ozawa, ‘‘Subjective assessment of redundancy-reduced moving images for interactive

application: test methodology and report,’’ Signal Process.: Image Commun., 2, 201–219, 1990.

T.S. Huang, ‘‘PCM picture transmission,’’ IEEE Spectrum, vol. 2, no. 12, pp. 57–63, 1965.

G.E. Legge and J.M. Foley, ‘‘Contrast masking in human vision,’’ J. Opt. Soc. Am., vol. 70, no. 12,

pp. 1458–1471, 1980 (December).

W. Li and Y.-Q. Zhang, ‘‘Vector-based signal processing and quantization for iamge and video compression,’’

Proc. IEEE, vol. 83, no. 2, pp. 317–335, 1995.

J.S. Lim, Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ: Prentice-Hall, 1990.

E.R. Kretzmer, ‘‘Statistics of television signal,’’ Bell Syst. Tech. J., vol. 31, no. 4, pp. 751–763, 1952.

J.L. Mitchell, W.B. Pennebaker, C.E. Fogg, and D.J. LeGall, MPEG Video Compression Standard, New York:

Chapman & Hall, 1997.

F.W. Mounts, ‘‘A video encoding system with conditional picture-element replenishment,’’ Bell Syst. Tech. J.,

vol. 48, no. 7, pp. 2545–2554, 1969.

K.T. Mullen, ‘‘The contrast sensitivity of human color vision to red-green and blue-yellow chromatic gratings,’’

J. Physiol., 359, 381–400, 1985.

A.N. Netravali and B. Prasada, ‘‘Adaptive quantization of picture signals using spatial masking,’’ Proc. IEEE,

vol. 65, pp. 536–548, 1977.

W.K. Pratt, Digital Image Processing, 2nd ed., New York: Wiley, 1991.

D.J. Sakrison, ‘‘Image coding applications of vision model,’’ in Image Transmission Techniques, W.K. Pratt Ed.,

London: Academic Press, 1979, pp. 21–71.

Y.Q. Shi and H. Sun, Image and Video Compression for Multimedia Engineering: Fundamentals, Algorithms, and

Standards, Boca Raton, FL: CRC Press, 1999.

F.I. Van Ness and M.A. Bouman, ‘‘Spatial modulation transfer in the human eye,’’ J. Opt. Soc. Am. vol. 57 no.

3, pp. 401–406, 1967.

A.B. Watson, ‘‘Efficiency of a model human image code,’’ J. Opt. Soc. Am. A. vol. 4, no. 12, pp. 2401–2417,

1987.

A.A. Webster, C.T. Jones, and M.H. Pinson, ‘‘An objective video quality assessment system based on human

perception,’’ in Proceedings of Human Vision, Visual Processing and Digital Display IV, J.P. Allebach and

B.E. Rogowitz, Eds., SPIE, vol. 1913, pp. 15–26, 1993.

18-15Multidimensional Signal Processing



18.2 Video Signal Processing

Sarah A. Rajala

Video signal processing is the area of specialization concerned with the processing of time sequences of image

data, i.e., digital video. Because of significant advances in computing power and increases in available

transmission bandwidth, there has been a proliferation of potential applications in the area of video signal

processing, including full-motion digital video to the desktop. Thus a desktop workstation can serve as a

personal computer, videophone, high-definition television, and/or fax machine. Other applications of digital

video include aviation, law enforcement, medicine, military, multimedia, and wireless communications.

As diverse as the applications may seem, it is possible to specify a set of fundamental principles and methods

that can be used to develop the applications.

Video signal processing is concerned with the manipulation of digital video data. Processing can include

sampling, filtering, format conversion, motion estimation, compression, and coding. Considerable under-

standing of a video signal processing system can be gained by representing the system with the block diagram

given in Figure 18.6. Light from a real-world scene is captured by a scanning system and causes an image frame

f ðx; y; t0Þ to be formed on a focal plane. A video signal is a sequence of image frames that are created when a
scanning system captures a new image frame at periodic intervals in time. In general, each frame of the video

sequence is a function of two spatial variables x and y and one temporal variable t. An integral part of the

scanning system is the process of converting the original analog signal into an appropriate digital

representation. The conversion process includes the operations of sampling and quantization. Sampling is the

process of converting a continuous-time/space signal into a discrete-time/space signal. Quantization is the

process of converting a continuous-valued signal into a discrete-valued signal.

Once the video signal has been sampled and quantized, it can be processed digitally. Processing can be

performed on special-purpose hardware or general-purpose computers. The type of processing performed

depends on the particular application. For example, if the objective is to generate high-definition

television, the processing would typically include compression and motion estimation. In fact, in most of

the applications listed above, these are the fundamental operations. Compression is the process of

compactly representing the information contained in an image or video signal. Motion estimation is the

process of estimating the displacement of the moving objects in a video sequence. The displacement

information can then be used to interpolate missing frame data or to improve the performance of

compression algorithms.

After the processing is complete, a video signal is ready for transmission over some channel or storage on

some medium. If the signal is transmitted, the type of channel will vary depending on the application. For

example, today’s analog television signals are transmitted one of three ways: via satellite, terrestrially, or by

cable. All three channels have limited transmission bandwidths and the signals can be adversely affected

because of the imperfect frequency responses of the channels. Alternatively, with a digital channel, the primary

limitation will be the bandwidth.

The final stage of the block diagram shown in Figure 18.6 is the display. Of critical importance at this stage

is the human observer. Understanding how humans respond to visual stimuli, i.e., the psychophysics of vision,

will not only allow for better evaluation of the processed video signals but will also permit the design of better

systems.

FIGURE 18.6 Video signal processing system block diagram.
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Sampling

If a continuous-time video signal satisfies certain conditions, it can be exactly represented by and be

reconstructed from its sample values. The conditions that must be satisfied are specified in the sampling

theorem. The sampling theorem can be stated as follows.

Sampling Theorem

Let f ðx; y; tÞ be a band-limited signal with Fðox;oy;otÞ ¼ 0 for joxj4oxM, joyj4oyM, and jot j4otM. Then

f ðx; y; tÞ is uniquely determined by its samples f ð jXS; kYS; lTSÞ ¼ f ð j; k; l Þ, where j; k; l ¼ 0;61;62; . . . if

osx42oxM;osy1t42oyM; and osy1t42otM

and

osx ¼ 2p=XS;osy ¼ 2p=YS; and ost ¼ 2p=TS

XS is the sampling period along the x direction, osx ¼ 2p=XS is the spatial sampling frequency along the x
direction, YS is the sampling period along the y direction, osy ¼ 2p=YS is the spatial sampling frequency along
the y direction, TS is the sampling period along the temporal direction, and ost ¼ 2p=TS is the temporal
sampling frequency.

Given these samples, f ð j; k; l Þ can be reconstructed by generating a periodic impulse train in which

successive impulses have amplitudes that are successive sample values. This impulse train is then processed

through an ideal low-pass filter with appropriate gain and cut-off frequencies. The resulting output signal will

be exactly equal to f ð j; k; l Þ (Oppenheim et al., 1997).

If the sampling theorem is not satisfied, aliasing will occur. Aliasing occurs when the signal is undersampled

and therefore no longer recoverable by low-pass filtering. Figure 18.7(a) shows the frequency spectrum of a

sampled band-limited signal with no aliasing. Figure 18.7(b) shows the frequency response of the same signal

with aliasing. The aliasing occurs at the points where there is overlap in the diamond-shaped regions. For

video signals, aliasing in the temporal direction will give rise to flicker on the display. For analog television

systems, the standard temporal sampling rate is 30 Hz in the United States and Japan and 25 Hz in Europe

with effective temporal refresh rates of 60 Hz and 50 Hz, respectively, through the use of interlace scanning.

However, 72 Hz has become a de facto standard in the computer industry.

FIGURE 18.7 (a) Frequency spectrum of a sampled signal with no aliasing; (b) frequency spectrum of a sampled signal

with aliasing.
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If the sampling rate (spatial and/or temporal) of a system is fixed, a standard approach for minimizing the

effects of aliasing for signals that do not satisfy the sampling theorem is to use a presampling filter.

Presampling filters are low-pass filters whose cutoff frequencies are chosen to be less than oxM, oyM, and otM.

Although the signal still will not be able to be reconstructed exactly, the degradations are less annoying.

Another problem in a real system is the need for an ideal low-pass filter to reconstruct an analog signal.

An ideal filter is not physically realizable, so in practice an approximation must be made. Several very simple

filter structures are common in video systems: sample and hold, bilinear, and raised cosine.

Quantization

Quantization is the process of converting the continuous-valued amplitude of the video signal into a discrete-

valued representation, i.e., a finite set of numbers. The output of the quantizer is characterized by quantities

that are limited to a finite number of values. The process is a many-to-one mapping, and thus there is a loss of

information. The quantized signal can be modeled as

fqð j; k; l Þ ¼ f ð j; k; l Þ eð j; k; l Þ

where fqð j; k; l Þ is the quantized video signal and eð j; k; l Þ is the quantization noise. If too few bits per sample

are used, the quantization noise will produce visible false contours in the image data.

The quantizer is a mapping operation that generally takes the form of a staircase function (see Figure 18.8).

A rule for quantization can be defined as follows: Let fdk; k ¼ 1; 2; . . . ;N þ 1g be the set of decision levels with
d1 the minimum amplitude value and dN the maximum amplitude value of f ð j; k; l Þ. If f ð j; k; l Þ is contained in
the interval ðdk; dkþ1Þ; then it is mapped to the kth reconstruction level r. Methods for designing quantizers can
be broken into two categories: uniform and nonuniform. The input–output function for a typical uniform

quantizer is shown in Figure 18.8. The mean square value of the quantizing noise can be easily calculated if it is

assumed that the amplitude probability distribution is constant within each quantization step. The

quantization step size for a uniform quantizer is

q ¼ dNþ1 d1
N

FIGURE 18.8 Characteristics of a uniform quantizer.
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and all errors between q/2 and –q/2 are equally likely. The mean square quantization error D is given by

he2ð j; k; l Þi ¼
Zq=2

q=2

f 2

q
df ¼ q2

12

If one takes into account the exact amplitude probability distribution, an optimal quantizer can be designed.

Here, the objective is to choose a set of decision levels and reconstruction levels that will yield the minimum

quantization error. If f has a probability density function pf ðf Þ, the mean square quantization error is

he2ð j; k; l Þi ¼
XN
i¼1

Zdiþ1

di

ð f riÞ2pf ð f Þdf

where N is the number of quantization levels. To minimize, the mean square quantization error is

differentiated with respect to di and ri. This results in the Max quantizer:

di ¼ ri þ ri 1

2

and

ri ¼
Rdiþ1

di
fpf ð f ÞdfRdiþ1

di
pf ð f Þdf

Thus, the quantization levels need to be midway between the reconstruction levels, and the reconstruction

levels are at the centroid of that portion of pf ð f Þ between di and diþ1. Unfortunately, these requirements do
not lead to an easy solution. Max used an iterative numerical technique to obtain solutions for various

quantization levels assuming a zero-mean Gaussian input signal. These results and the quantization levels for

other standard amplitude distributions can be found in Jain (1989).

A more common and less computationally intense approach to nonuniform quantization is to use a

compandor (compressor–expander). The input signal is passed through a nonlinear compressor before being

quantized uniformly. The output of the quantizer must then be expanded to the original dynamic range

(see Figure 18.9). The compression and expansion functions can be determined so that the compandor

approximates a Max quantizer.

For more information on vector quantization, see Tekalp (1995) or Wang et al. (2002).

Vector Quantization

Quantization does not have to be done on a single pixel at a time. In fact, better results can be achieved if the

video data are quantized on a vector (block) basis. In vector quantization, the image data are first processed

into a set of vectors. A codebook (set of code words or templates) that best matches the data to be quantized is

then generated. Each input vector is then quantized to the closest code word. Compression is achieved by

transmitting only the indices for the code words. At the receiver, the images are reconstructed using a table

FIGURE 18.9 Nonuniform quantization using a compandor.
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look-up procedure. Two areas of ongoing research are finding better methods for designing the codebooks and

developing better search and update techniques for matching the input vectors to the code words.

For more information on vector quantization, see Tekalp (1995) or Wang et al. (2002).

Video Compression

Digital representations of video signals typically require a very large number of bits. If the video signal is to be

transmitted and/or stored, compression is often required. Applications include conventional and high-

definition television, videophone, video conferencing, multi-media, remote-sensed imaging, and magnetic

resonance imaging. The objective of compression (source encoding) is to find a representation that maximizes

picture quality while minimizing the data per picture element (pixel). A wealth of compression algorithms

have been developed during the past 30 years for both image and video compression. However, the ultimate

choice of an appropriate algorithm is application-dependent. The following summary will provide some

guidance in that selection process.

Compression algorithms can be divided into two major categories: information-preserving, or lossless,

and lossy techniques. Information-preserving techniques introduce no errors in the encoding/decoding

process; thus, the original signal can be reconstructed exactly. Unfortunately, the achievable compression

rate, i.e., the reduction in bit rate, is quite small, typically on the order of 3:1. However, lossy techniques

introduce errors in the coding/decoding process; thus, the received signal cannot be reconstructed exactly.

The advantage of the lossy techniques is the ability to achieve much higher compression ratios. The limiting

factor on the compression ratio is the required quality of the video signal in a specific application.

One approach to compression is to reduce the spatial and/or temporal sampling rate and the number of

quantization levels. Unfortunately, if the sampling is too low and the quantization too coarse, aliasing,

contouring, and flickering will occur. These distortions are often much greater than the distortions introduced

by more sophisticated techniques at the same compression rate. Compression systems can generally be

modeled by the block diagram shown in Figure 18.10. The first stage of the compression system is the mapper.

This is an operation in which the input pixels are mapped into a representation that can be more effectively

encoded. This stage is generally reversible. The second stage is the quantizer and performs the same type of

operation as described earlier. This stage is not reversible. The final stage attempts to remove any remaining

statistical redundancy. This stage is reversible and is typically achieved with one of the information-preserving

coders.

Information-Preserving Coders

The data rate required for an original digital video signal may not represent its average information rate. If the

original signal is represented by M possible independent symbols with probabilities pi, i ¼ 0; 1; . . . ;M 1,

then the information rate as given by the first-order entropy of the signal H is

H ¼
XM 1

i¼1
pi log2 pi bits per sample

According to Shannon’s coding theorem (see Jain, 1989), it is possible to perform lossless coding of a source

with entropy H bits per symbol using H 1 e bits per symbol. e is a small positive quantity. The maximum

FIGURE 18.10 Three-stage model of an encoder.
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obtainable compression rate C is then given by

C ¼ average bit rate of the original data

average bit rate of the encoded data

Huffman Coding

One of the most efficient information-preserving (entropy) coding methods is Huffman coding. Construction

of a Huffman code involves arranging the symbol probabilities in decreasing order and considering them as

leaf nodes of a tree. The tree is constructed by merging the two nodes with the smallest probability to form a

new node. The probability of the new node is the sum of the two merged nodes. This process is continued

until only two nodes remain. At this point, 1 and 0 are arbitrarily assigned to the two remaining nodes.

The process now moves down the tree, decomposing probabilities and assigning 1s and 0s to each new pair.

The process continues until all symbols have been assigned a code word (string of 1s and 0s). An example is

given in Figure 18.11. Many other types of information-preserving compression schemes exist (see, for

example, Tekalp, 1995; Gonzalez and Woods, 2002; Wang et al., 2002), including arithmetic coding, Lempel–

Ziv algorithm, shift coding, and run-length coding.

Predictive Coding

Traditionally one of the most popular methods for reducing the bit rate has been predictive coding. In this

class, differential pulse-code modulation (DPCM) has been used extensively. A block diagram for a basic

DPCM system is shown in Figure 18.12. In such a system, the difference between the current pixel and a

predicted version of that pixel gets quantized, coded, and transmitted to the receiver. This difference is referred

to as the prediction error and is given by

ei ¼ fi f̂fi

The prediction is based on previously transmitted and decoded spatial and/or temporal information and can

be linear or nonlinear, fixed or adaptive. The difference signal ei is then passed through a quantizer. The signal

at the output of the quantizer is the quantized prediction error eiq, which is entropy encoded transmission.

The first step at the receiver is to decode the quantized prediction error. After decoding, diq is added to the

predicted value of the current pixel f̂fi to yield the reconstructed pixel value. Note that as long as a quantizer is

included in the system, the output signal will not exactly equal the input signal.

FIGURE 18.11 An example of constructing a Huffman code.
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The predictors can include pixels from the present frame as well as those from previous frames (see Figure

18.13). If the motion and the spatial detail are not too high, frame (or field) prediction works well. If the

motion is high and/or the spatial detail is high, intrafield prediction generally works better. A primary reason

is that there is less correlation between frames and fields when the motion is high.

For more information on predictive coding, see Tekalp (1995) or Jain (1989).

Motion-Compensated Predictive Coding

Significant improvements in image quality, at a fixed compression rate, can be obtained when adaptive

prediction algorithms take into account the frame-to-frame displacement of moving objects in the sequence.

Alternatively, one could increase the compression rate for a fixed level of image quality. The amount of

increase in performance will depend on one’s ability to estimate the motion in the scene. Techniques for

estimating the motion are described in a later subsection.

Today, motion-compensated prediction algorithms are integral components of modern video-compression

coders such as those standardized in the ISO MPEG standards or ITU H.261 or H.263. Motion prediction can

be divided into two basic categories. One category estimates the motion on a block-by-block basis and the

other estimates the motion one pixel at a time. For the block-based methods, an estimate of the displacement

is obtained for each block in the image. The block matching is achieved by finding the maximum correlation

between a block in the current frame and a somewhat larger search area in the previous frame. A number of

researchers have proposed ways to reduce the computational complexity, including using a simple matching

criterion and using logarithmic searches for finding the peak value of the correlation.

FIGURE 18.12 Block diagram of a basic DPCM system.

FIGURE 18.13 Transform coding system.
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The second category obtains a displacement estimate at each pixel in a frame. These techniques are referred

to as pel recursive methods. They tend to provide more accurate estimates of the displacement but at the

expense of higher complexity. Both categories of techniques have been applied to video data; however, block

matching is used more often in real systems. The primary reason is that more efficient implementations have

been feasible. It should be noted, however, that every pixel in a block will be assigned the same displacement

estimate. Thus, the larger the block size the greater the potential for errors in the displacement estimate for a

given pixel.

More details can be found in Tekalp (1995) or Wang et al. (2002).

Transform Coding

In transform coding, the video signal f ðx; y; tÞ is subjected to an invertible transform, then quantized and

encoded (see Figure 18.13). The purpose of the transformation is to convert statistically dependent picture

elements into a set of statistically independent coefficients. In practice, one of the separable fast transforms in

the class of unitary transforms is used, e.g., cosine, Fourier, or Hadamard. In general, the transform coding

algorithms can be implemented in 2D or 3D. However, because of the real-time constraints of many video

signal processing applications, it is typically more efficient to combine a 2D transform with a predictive

algorithm in the temporal direction, e.g., motion compensation.

For 2D transform coding, the image data are first subdivided into blocks. Typical block sizes are 8 · 8 or
16· 16. The transform independently maps each image block into a block of transform coefficients; thus, the

processing of each block can be done in parallel. At this stage the data have been mapped into a new

representation, but no compression has occurred. In fact, with the Fourier transform there is an expansion in

the amount of data. This occurs because the transform generates coefficients that are complex-valued. To

achieve compression, the transform coefficients must be quantized and then coded to remove any remaining

redundancy.

Two important issues in transform coding are the choice of transformation and the allocation of bits in the

quantizer. The most commonly used transform is the discrete cosine transform (DCT). In fact, many of the

proposed image and video standards utilize the DCT. The reasons for choosing a DCT include: its

performance is superior to the other fast transforms and is very close to the optimal Karhunen–Loeve

transform, it produces real-valued transform coeffi-

cients, and it has good symmetry properties, thus

reducing the blocking artifacts inherent in block-

based algorithms. One way to reduce these artifacts is

by using a transform whose basis functions are even,

i.e., the DCT, and another is to use overlapping

blocks. For bit allocation, one can determine the

variance of the transform coefficients and then

assign the bits so the distortion is minimized. An

example of a typical bit allocation map is shown in

Figure 18.14.

Motion Estimation Techniques

Frame-to-frame changes in luminance are generated

when objects move in video sequences. The lumi-

nance changes can be used to estimate the displace-

ment of the moving objects if an appropriate model

of the motion is specified. A variety of motion models

have been developed for dynamic scene analysis in

machine vision and for video communications

applications. In fact, motion estimates were first

FIGURE 18.14 A typical bit allocation for 16 · 16 block
coding of an image using the DCT. (Source: A.K. Jain,

Fundamentals of Digital Image Processing, Englewood Cliffs,

NJ: Prentice-Hall, 1989, p. 506. With permission.)

18-23Multidimensional Signal Processing



used as a control mechanism for the efficient coding of a sequence of images in an effort to reduce the

temporal redundancy. Motion estimation algorithms can be classified in two broad categories: gradient or

differential-based methods and token matching or correspondence methods. The gradient methods can be

further divided into pel recursive, block matching, and optical flow methods.

Pel Recursive Methods

Netravali and Robbins (1979) developed the first pel recursive method for television signal compression. The

algorithm begins with an initial estimate of the displacement, then iterates recursively to update the estimate.

The iterations can be performed at a single pixel or at successive pixels along a scan line. The true displacement

D at each pixel is estimated by

D̂Di ¼ D̂Di 1 þ Ui

where D̂Di is the displacement estimate at the ith iteration and Ui is the update term. Ui is an estimate of

D̂D D̂Di 1. The displaced frame difference (DFD):

DFDðx; y; D̂Di 1Þ ¼ Iðx; y; tÞ Iðx D̂Di 1; t TSÞ
was then used to obtain a relationship for the update term Ui. In the previous equation, TS is the temporal

sample spacing. If the displacement estimate is updated from sample to sample using a steepest-descent

algorithm to minimize the weighted sum of the squared displaced frame differences over a neighborhood, then

D̂Di becomes

D̂Di ¼ D̂Di 1 e
2
HD̂Di

X
j

Wj½DFDðxk j; D̂D
i 1Þ 2

24 35
where Wj > 0 and X

j

Wj ¼ 1

A graphical representation of pel recursive motion

estimation is shown in Figure 18.15.

A variety of methods to calculate the update term

have been reported. The advantage of one method

over another is mainly in the improvement in

compression. It should be noted that pel recursive

algorithms assume that the displacement to be

estimated is small. If the displacement is large, the

estimates will be poor. Noise can also affect the

accuracy of the estimate.

Block Matching

Block matching methods estimate the displacement

within an M ·N block in an image frame. The

estimate is determined by finding the best match

between the M ·N block in a frame at time t and its

best match from frame at t TS. An underlying

FIGURE 18.15 A graphical illustration of pel recursive

motion estimation. The distance between the · and –
pixels in the frame at t 1 is D̂Di.
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assumption in the block matching techniques is that each pixel within a block has the same displacement.

A general block matching algorithm is given as follows:

1. Segment the image frame at time t into a fixed number of blocks of size M ·N.
2. Specify the size of the search area in the frame at time t 1. This depends on the maximum expected

displacement. If Dmax is the maximum displacement in either the horizontal or vertical direction, then

the size of the search area, SA, is

SA ¼ ðM þ 2DmaxÞ · ðN þ 2DmaxÞ
Figure 18.16 illustrates the search area in the frame at time t 1 for an M ·N block at time t.

3. Using an appropriately defined matching criterion, e.g., mean-squared error or sum of absolute

difference, find the best match for the M ·N block.

4. Proceed to the next block in frame t and repeat Step 3 until displacement estimates have been

determined for all blocks in the image.

Optical Flow Methods

The optical flow is defined as the apparent motion of the brightness patterns from one frame to the next. The

optical flow is an estimate of the velocity field and hence requires two equations to solve for it. Typically a

constraint is imposed on the motion model to provide the necessary equations. Optical flow can give useful

information about the spatial arrangement of the objects in a scene, as well as the rate of change of those

objects. Horn (1986) also defines a motion field, which is a two-dimensional velocity field resulting from the

projection of the three-dimensional velocity field of an object in the scene onto the image plane. The motion

field and the optical flow are not the same.

In general, the optical flow has been found difficult to compute because of the algorithm sensitivity to noise.

Also, the estimates may not be accurate at scene discontinuities. However, because of its importance in

assigning a velocity vector at each pixel, there continues to be research in the field.

The optical flow equation is based on the assumption that the brightness of a pixel at location (x, y) is

constant over time; thus,

Ix ¼ dx

dt
þ Iy

dy

dt
þ It ¼ 0

where dx=dt and dy=dt are the components of the optical flow. Several different constraints have been used

with the optical flow equation to solve for dx=dt and dy=dt. A common constraint to impose is that the

velocity field is smooth.

More details can be found in Tekalp (1995) or Wang et al. (2002).

FIGURE 18.16 An illustration of block matching.
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Token Matching Methods

Token matching methods are often referred to as discrete methods since the goal is to estimate the motion only

at distinct image features (tokens). The result is a sparse velocity field. The algorithms attempt to match the set

of discrete features in the frame at time t 1 with a set that best resembles them in the frame at time t. Most of

the algorithms in this group assume that the estimation will be achieved in a two-step process. In the first step,

the features are identified. The features could be points, corners, centers of mass, lines, or edges. This step

typically requires segmentation and/or feature extraction. The second step determines the various velocity

parameters. The velocity parameters include a translation component, a rotation component, and the rotation

axis. The token matching algorithms fail if there are no distinct features to use.

All of the methods described in this subsection assume that the intensity at a given pixel location is

reasonably constant over time. In addition, the gradient methods assume that the size of the displacements is

small. Block matching algorithms have been used extensively in real systems because the computational

complexity is not too great. The one disadvantage is that there is only one displacement estimate per block.

To date, optical flow algorithms have found limited use because of their sensitivity to noise. Token matching

methods work well for applications in which the features are well defined and easily extracted. They are

probably not suitable for most video communications applications. See Tekalp (1995) for more details.

Hybrid Video Coding

The core of all the international video coding standards today makes use of a combination of block-based

temporal prediction and transforms coding. Each video frame is divided into fixed-size blocks allowing for

relatively independent processing of each block. Each block is then coded using a combination of transform

coding and motion-compensated temporal prediction. Block-based motion estimation is used to predict each

block from a previously encoded reference frame. A prediction error block, the difference between the actual

block data and a motion-compensated prediction of the block, is generated and coded. The coding process

includes transforming by a DCT, quantizing the DCT coefficients, and converting the coefficients into binary

codewords using variable length coding. In practice, different block sizes may be needed for the motion

estimation and the transform coding. Generally, motion estimation will be performed on a larger block, which

is then subdivided into small blocks which are transformed using the DCT. Furthermore, the motion

estimation may need to include multiple frames for increased accuracy. More details can be found in Wang

et al. (2002).

Image Quality and Visual Perception

An important factor in designing video signal processing algorithms is that the final receiver of the video

information is typically a human observer. This has an impact on how the quality of the final signal is assessed

and how the processing should be performed. If our objective is video transmission over a limited bandwidth

channel, we do not want to waste unnecessary bits on information that cannot be seen by the human observer.

In addition, it is undesirable to introduce artifacts that are particularly annoying to the human viewer.

Unfortunately, there are no perfect quantitative measures of visual perception. The human visual system is

quite complicated. Despite the advances that have been made, no complete model of human perception exists.

Therefore, we often have to rely on subjective testing to evaluate picture quality. Although no comprehensive

model of human vision exists, certain functions can be characterized and then used in designing improved

solutions. For more information, see Netravali and Haskell (1988).

Subjective Quality Ratings

There are two primary categories of subjective testing: category-judgment (rating-scale) methods and

comparison methods. Category-judgment methods ask the subjects to view a sequence of pictures and assign

each picture (video sequence) to one of several categories. Categories may be based on overall quality or on

visibility of impairment (see Table 18.1).
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Comparison methods require the subjects to compare a distorted test picture with a reference picture.

Distortion is added to the test picture until both pictures appear of the same quality to the subject. Viewing

conditions can have a great impact on the results of such tests. Care must be taken in the experimental design

to avoid biases in the results.

Visual Perception

In this subsection, a review of the major aspects of human psychophysics that have an impact in video signal

processing is given. The phenomena of interest include light adaptation, visual thresholding and contrast

sensitivity, masking, and temporal phenomena.

Light Adaptation

The human visual system (HVS) has two major classes of photoreceptors: the rods and the cones. Because

these two types of receptors adapt to light differently, two different adaptation time constants exist.

Furthermore, these receptors respond at different rates going from dark to light than from light to dark. It

should also be noted that although the HVS has an ability to adapt to an enormous range of light intensity

levels, on the order of 1010 in millilamberts, it does so adaptively. The simultaneous range is on the order

of 103.

Visual Thresholding and Contrast Sensitivity

Determining how sensitive an observer is to small changes in luminance is important in the design of video

systems. One’s sensitivity will determine how visible noise will be and how accurately the luminance must be

represented. The contrast sensitivity is determined by measuring the just-noticeable difference (JND) as a

function of the brightness. The JND is the amount of additional brightness needed to distinguish a patch from

the background. It is a visibility threshold. What is significant is that the JND is dependent on the background

and surrounding luminances, the size of the background and surrounding areas, and the size of the patch, with

the primary dependence being on the luminance of the background.

Masking

The response to visual stimuli is greatly affected by what other visual stimuli are in the immediate

neighborhood (spatially and temporally). An example is the reduced sensitivity of the HVS to noise in areas of

high spatial activity. Another example is the masking of details in a new scene by what was present in the

previous scene. In both cases, the masking phenomenon can be used to improve the quality of image

compression systems.

Temporal Effects

One relevant temporal phenomenon is the flicker fusion frequency. This is a temporal threshold that

determines the point at which the HVS fuses the motion in a sequence of frames. Unfortunately, this frequency

varies as a function of the average luminance. The HVS is more sensitive to flicker at high luminances than at

low luminances. The spatial–temporal frequency response of the HVS is important in determining the

TABLE 18.1 Quality and Impairment Ratings

5 Excellent 5 Imperceptible 3 Much better

4 Good 4 Perceptible but not annoying 2 Better

3 Fair 3 Slightly annoying 1 Slightly better

2 Poor 2 Annoying 0 Same

1 Bad 1 Very annoying 1 Slightly worse

2 Worse

3 Much worse

Source: A.N. Netravali and B.G. Haskell, Digital Pictures: Representation and Compression,
New York: Plenum Press, 1988, p. 247. With permission.
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sensitivity to small-amplitude stimuli. In both the temporal and spatial directions, the HVS responds as a

bandpass filter (see Figure 18.17). Also significant is the fact that the spatial and temporal properties are not

independent of one another, especially at low frequencies.

For more details on image quality and visual perception, see Netravali and Haskell (1988), Gonzalez and

Woods (2002), and Wang et al. (2002).

Video Compression Standards

With potential applications of digital video including digital movies, digital television, videophones,

multimedia, video mail, personal computers, video conferencing, and video games, it is important to have

digital video compression standards. Use of standardized formats for digital video compresses facilitates the

exchange or reception of information among vendors and across applications. The two international standards

organizations that have the most significant impact on digital video compression are the International

Telecommunications Union (ITU) (www.itu.int) headquartered in Geneva, Switzerland and the International

Organization for Standards (ISO) (www.iso.ch).

Today video coding standards exist for a range of video applications. H.261 was adopted by ITU as a

standard for ISDN video teleconferencing in 1990. About five years later ITU adopted H.263, a standard

that enables video communications over analog telephone lines and in more recent phases video

communication among desktop and mobile terminals connected to the Internet. ISO developed the

MPEG standards. MPEG-1 was developed for progressively scanned video used in multimedia applications

and includes standardization for both audio and video. MPEG-2 was developed as a standard for TV

and HDTV. The goal was to have MPEG-2 systems somewhat compatible with MPEG-1, have error

resilience, allow transmission over ATM networks, and transport more than one TV program in a stream.

With the evolution of highly interactive multimedia applications, the need arose for a new standard.

These applications not only require efficient compression, but also scalability of contents, interactivity

with individual objects, and a high degree of error resilience. MPEG-4 was developed to allow for

object-based coding of natural and synthetic audio and video, along with graphics. Recent efforts are

focused on the development of MPEG-7, a set of tools to facilitate finding the content you need in

multimedia data.

FIGURE 18.17 A perspective view of the spatio-temporal threshold surface. (Source: A.N. Netravali and B.G. Haskell,

Digital Pictures: Representation and Compression, New York: Plenum Press, 1988, p. 273. With permission.)
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For more details on the development and content of the standards, see Tekalp (1995) and Wang et al. (2002).

Defining Terms

Aliasing: Distortion introduced in a digital signal when it is undersampled.

Compression: Process of compactly representing the information contained in a signal.

Motion estimation: Process of estimating the displacement of moving objects in a scene.

Quantization: Process of converting a continuous-valued signal into a discrete-valued signal.

Sampling: Process of converting a continuous-time/space signal into a discrete-time/space signal.

Scanning system: System used to capture a new image at periodic intervals in time and to convert the

image into a digital representation.
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Further Information

Two recent textbooks by Tekalp (1995) and Wang et al. (2002) provide broad coverage of the field of video

signal processing. Other recommended sources of information include IEEE Transactions on Circuits and

Systems for Video Technology, IEEE Transactions on Image Processing, IEEE Signal Processing Magazine, IEEE

Proceedings, Journal of Electronic Imaging, and Signal Processing: Image Communication.

18.3 Sensor Array Processing

N.K. Bose and L.H. Sibul

Multidimensional signal processing tools apply to aperture and sensor array processing. Planar sensor arrays

can be considered to be sampled apertures. Three-dimensional or volumetric arrays can be viewed as

multidimensional spatial filters. Therefore, the topics of sensor array processing, aperture processing, and

multidimensional signal processing can be studied under a unified format. The basic function of the receiving

array is transduction of propagating waves in the medium into electrical signals. Propagating waves are

fundamental in radar, communication, optics, sonar, and geophysics. In electromagnetic applications, basic

transducers are antennas and arrays of antennas. The large body of literature that exists on antennas and

antenna arrays can be exploited in the areas of aperture and sensor array processing. Much of the antenna

literature deals with transmitting antennas and their radiation patterns. Because of the reciprocity of

transmitting and receiving transducers, key results that have been developed for transmitters can be used for

analysis of receiver aperture and/or array processing. Transmitting transducers radiate energy in desired

directions, whereas receiving apertures/arrays act as spatial filters that emphasize signals from a desired look

direction while discriminating against interferences from other directions. The spatial filter wavenumber

response is called the receiver beam pattern. Transmitting apertures are characterized by their radiation

patterns.
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Conventional beamforming deals with the design of fixed beam patterns for given specifications. Optimum

beamforming is the design of beam patterns to meet a specified optimization criterion. It can be compared to

optimum filtering, detection, and estimation. Adaptive beamformers sense their operating environment (for

example, noise covariance matrix) and adjust beamformer parameters so that their performance is optimized

(Monzingo and Miller, 1980). Adaptive beamformers can be compared with adaptive filters.

Multidimensional signal processing techniques have found wide application in seismology—where a group

of identical seismometers, called seismic arrays, are used for event location, studies of the Earth’s

sedimentation structure, and separation of coherent signals from noise, which sometimes may also propagate

coherently across the array but with different horizontal velocities—by employing velocity filtering

(Claerbout, 1976). Velocity filtering is performed by multidimensional filters and allows also for the

enhancement of signals that may occupy the same wavenumber range as noise or undesired signals do. In a

broader context, beamforming can be used to separate signals received by sensor arrays based on frequency,

wavenumber, and velocity (speed as well as direction) of propagation. Both the transfer and unit impulse–

response functions of a velocity filter are two-dimensional functions in the case of one-dimensional arrays.

The transfer function involves frequency and wavenumber (due to spatial sampling by equally spaced sensors)

as independent variables, whereas the unit impulse response depends upon time and location within the array.

Two-dimensional filtering is not limited to velocity filtering by means of seismic array. Two-dimensional

spatial filters are frequently used, for example, in the interpretation of gravity and magnetic maps to

differentiate between regional and local features. Input data for these filters may be observations in the survey

of an area conducted over a planar grid over the Earth’s surface. Two-dimensional wavenumber digital filtering

principles are useful for this purpose. Velocity filtering by means of two-dimensional arrays may be

accomplished by properly shaping a three-dimensional response function Hðk1; k2;oÞ. Velocity filtering by
three-dimensional arrays may be accomplished through a four-dimensional function Hðk1; k2; k3;oÞ as
explained in the following subsection.

Spatial Arrays, Beamformers, and FIR Filters

A propagating plane wave, sðx; tÞ, is, in general, a function of the three-dimensional space variables

ðx1; x2; x3ÞD ¼ x and the time variable t. The 4-D Fourier transform of the stationary signal sðx; tÞ is

Sðk;oÞ ¼
Z1

1

Z1
1

Z1
1

Z1
1
sðx; tÞe

j ot
P3
i¼1

kixi
dx1dx2dx3dt ð18:3Þ

which is referred to as the wavenumber–frequency spectrum of sðx; tÞ, and ðk1; k2; k3Þ D¼ k denotes the

wavenumber variables in radians per unit distance and o is the frequency variable in radians per second. If c

denotes the velocity of propagation of the plane wave, the following constraint must be satisfied:

k21 þ k22 þ k23 ¼ o2

c2

If the 4-D Fourier transform of the unit impulse response hðx; tÞ of a 4-D linear shift-invariant (LSI) filter is

denoted by Hðk;oÞ, then the response yðx; tÞ of the filter to sðx; tÞ is the 4-D linear convolution of hðx; tÞ and
sðx; tÞ, which is uniquely characterized by its 4-D Fourier transform:

Yðk;oÞ ¼ Hðk;oÞSðk;oÞ ð18:4Þ

The inverse 4-D Fourier transform, which forms a 4-D Fourier transform pair with Equation (18.3), is
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sðx; tÞ ¼ 1

ð2pÞ4
Z1

1

Z1
1

Z1
1

Z1
1
Sðk;oÞe

j ot
P3
i¼1

kixi
dk1dk2dk3do ð18:5Þ

It is noted that Sðk;oÞ in Equation (18.3) is product separable, i.e., expressible in the form:

Sðk;oÞ ¼ S1ðk1ÞS2ðk2ÞS3ðk3ÞS4ðoÞ ð18:6Þ

where each function on the right-hand side is a univariate function of the respective independent variable, if

and only if sðx; tÞ in Equation (18.3) is also product separable. In beamforming, Si(ki) in Equation (18.6)

would be the far-field beam pattern of a linear array along the xi-axis. For example, the normalized beam

pattern of a uniformly weighted (shaded) linear array of length L is

Sðk; yÞ ¼
sin

kL sin y
2

kL

2
sin y

where l ¼ ð2p=kÞ is the wavelength of the propagating plane wave and y is the angle of arrival at the array site
as shown in Figure 18.18. Note that y is explicitly admitted as a variable in S(k, y) to allow for the possibility

that for a fixed wavenumber, the beam pattern could be plotted as a function of the angle of arrival. In that

case, when y is zero, the wave impinges the array broadside and the normalized beam pattern evaluates

to unity.

The counterpart in aperture and sensor array processing of the use of window functions in spectral analysis

for reduction of sidelobes is the use of aperture shading. In aperture shading, one simply multiplies a

uniformly weighted aperture by the shading function. The resulting beam pattern is, then, simply the

convolution of the beam pattern of the uniformly shaded volumetric array and the beam pattern of the

shading function. The Fourier transform relationship between the stationary signal sðx; tÞ and the

wavenumber frequency spectrum Sðk;oÞ allows one to exploit high-resolution spectral analysis techniques

for the high-resolution estimation of the direction of arrival (Pillai, 1989). The superscript *, t, and H denote,

respectively, complex conjugate, transpose, and conjugate transpose.

source direction

wavefront

xi

linear array

θ

−L/2 L/2

FIGURE 18.18 Uniformly weighted linear array.
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Discrete Arrays for Beamforming

An array of sensors could be distributed at distinct points in space in various ways. Line arrays, planar arrays,

and volumetric arrays could be either uniformly spaced or nonuniformly spaced, including the possibility of

placing sensors randomly according to some probability distribution function. Uniform spacing along each

coordinate axis permits one to exploit the well-developed multidimensional signal processing techniques

concerned with filter design, DFT computation via FFT, and high-resolution spectral analysis of sampled

signals (Dudgeon, 1977). Nonuniform spacing sometimes might be useful for reducing the number of sensors,

which otherwise might be constrained to satisfy a maximum spacing between uniformly placed sensors to

avoid grating lobes due to aliasing, as explained later. A discrete array, uniformly spaced, is convenient for the

synthesis of a digital filter or beamformer by the performing of digital signal processing operations (namely

delay, sum, and multiplication or weighting) on the signal received by a collection of sensors distributed in

space. The sequence of the nature of operations dictates the types of beamformer. Common beamforming

systems are of the straight summation, delay-and-sum, and weighted delay-and-sum types. The geometrical

distribution of sensors and the weights wi associated with each sensor are crucial factors in the shaping of the

filter characteristics. In the case of a linear array of N equispaced sensors, which are spaced D units apart,

starting at the origin x1 ¼ 0, the function:

Wðk1Þ ¼ 1

N

XN 1

n¼0
wne

jk1nD ð18:8Þ

becomes the array pattern, which may be viewed as the frequency response function for a finite impulse

response (FIR) filter, characterized by the unit impulse response sequence fwng. In the case when wn ¼ 1,

Equation (18.8) simplifies to

Wðk1Þ ¼ 1

N

sin
k1ND

2

sin
k1D

2

exp j
ðN 1Þk1D

2

If the N sensors are symmetrically placed on both sides of the origin, including one at the origin, and the

sensor weights are wn ¼ 1, then the linear array pattern becomes

Wðk1Þ ¼ 1

N

sin
k1ND

2

sin
k1D

2

For planar arrays, direct generalizations of the preceding linear array results can be obtained. To wit, if

the sensors with unity weights are located at coordinates ðkD; lDÞ, where k ¼ 0;61;62; . . . ;6½ðN 1Þ=2 ,
and l ¼ 0;61;62; . . . ;6½ðM 1Þ=2 , for odd integer values of N and M, then the array pattern

function becomes
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Wðk1; k2Þ ¼ 1

NM

XN 1
2ð Þ

k¼ N 1
2ð Þ

XM 1
2ð Þ

l¼ M 1
2ð Þ
expf jðk1kDþ k2lDg

¼ 1

NM

sin
k1ND

2

sin
k1D

2

sin
k2MD

2

sin
K2D

2

ð18:10Þ

Routine generalizations to 3D spatial arrays are also possible. The array pattern functions for other geometrical

distributions may also be routinely generated. For example, if unit weight sensors are located at the six vertices

and the center of a regular hexagon, each of whose sides is D units long, then the array pattern function can be

shown to be

Wðk1; k2Þ ¼ 1

7
1þ 2 cos k1Dþ 4 cos

k1D

2
cos

ffiffi
3

p
k2D

2

" #
ð18:11Þ

The array pattern function reveals how selective a particular beamforming system is. In the case of a typical

array function shown in Equation (18.9), the beamwidth, which is the width of the main lobe of the array

pattern, is inversely proportional to the array aperture. Because of the periodicity of the array pattern function,

the main lobe is repeated at intervals of 2p/D. These repetitive lobes are called grating lobes, whose existence
may be interpreted in terms of spatial frequency aliasing resulting from a sampling interval D due to the N

receiving sensors located at discrete points in space. If the spacing D between sensors satisfies

D<
l
2

ð18:12Þ

where l is the smallest wavelength component in the signal received by the array of sensors, then the grating
lobes have no effect on the received signal. A plane wave of unit amplitude, which is incident upon the array at

bearing angle y degrees, as shown in Figure 18.18, produces outputs at the sensors given by the vector:

sðyÞ ¼D sy ¼ ½expð j0Þ expð jk1D sin yÞ . . . expð jk1ðN 1ÞD sin yÞ t ð18:13Þ

where k1 ¼ 2p=l is the wavenumber. In array processing, the array output yy may be viewed as the inner

product of an array weight vector w and the steering vector sy. Thus, the beamformer response along a

direction characterized by the angle y is, treating w as complex:

yy ¼ hwðyÞ; syi ¼
XN 1

k¼ 0

wk expð jk1kD sin yÞ ð18:14Þ

The beamforming system is said to be robust if it performs satisfactorily despite certain perturbations (Ahmed

and Evans, 1982). It is possible for each component sky of sy to belong to an interval ½sky fky; sky þ fky , and

a robust beamformer will require the existence of at least one weight vector w which will guarantee the

output yy to belong to an output envelope for each sy in the input envelope. The robust beamforming problem

can be translated into an optimization problem, which may be tackled by minimizing the value of the

18-33Multidimensional Signal Processing



array output power:

PðyÞ ¼ wHðyÞRwðyÞ ð18:15Þ
when the response to a unit amplitude plane wave incident at the steering direction y is constrained to be
unity, i.e., wHðyÞsðyÞ ¼ 1, and R is the additive noise-corrupted signal autocorrelation matrix. The solution is

called the minimum variance beamformer and is given by

wMVðyÞ ¼ R 1sðyÞ
sHðyÞR 1sðyÞ ð18:16Þ

and the corresponding power output is

PMVðyÞ ¼ 1

sHðyÞR 1sðyÞ ð18:17Þ

The minimum variance power as a function of y can be used as a form of the data-adaptive estimate of the

directional power spectrum. However, in this mode of solution, the coefficient vector is unconstrained except

at the steering direction. Consequently, a signal tends to be regarded as an unwanted interference and is,

therefore, suppressed in the beamformed output unless it is almost exactly aligned with the steering direction.

Therefore, it is desirable to broaden the signal acceptance angle while at the same time preserving the

optimum beamformer’s ability to reject noise and interference outside this region of angles. One way of

achieving this is by the application of the principle of superdirectivity.

Discrete Arrays and Polynomials

It is common practice to relate discrete arrays to polynomials for array synthesis purposes (Steinberg, 1976).

For volumetric equispaced arrays (it is only necessary that the spacing be uniform along each coordinate axis

so that the spatial sampling periods Di and Dj along, respectively, the ith and jth coordinate axes could be

different for i 6¼ j), the weight associated with sensors located at coordinate ði1D1; i2D2; i3D3Þ is denoted by
wði1; i2; i3Þ. The function in the complex variables (z1, z2, and z3) that is associated with the sequence

fwði1; i2; i3Þg is the generating function for the sequence and is denoted by

Wðz1; z2; z3Þ ¼
X
i1

X
i2

X
i3

wði1; i2; i3Þzi11 zi22 zi33 ð18:18Þ

In the electrical engineering and geophysics literature, the generating functionWðz1; z2; z3Þ is sometimes called
the z-transform of the sequence fwði1; i2; i3Þg. When there are a finite number of sensors, a realistic assumption

for any physical discrete array, Wðz1; z2; z3Þ becomes a trivariate polynomial. In the special case when

wði1; i2; i3Þ is product separable, the polynomial Wðz1; z2; z3Þ is also product separable. Particularly, this

separability property holds when the shading is uniform, i.e., wði1; i2; i3Þ ¼ 1. When the support of the

uniform shading function is defined by i1 ¼ 0; 1; . . . ;N1 1, i2 ¼ 0; 1; . . . ;N2 1, and i3 ¼ 0; 1; . . . ;N3 1,

the associated polynomial becomes

Wðz1; z2; z3Þ ¼
XN1 1

i1¼0

XN2 1

i2¼0

XN3 1

i3¼0
zi11 z

i2
2 z

i3
3 ¼

Y3
i¼1

zNi

i 1

zi 1
ð18:19Þ

In this case, all results developed for the synthesis of linear arrays become directly applicable to the synthesis of

volumetric arrays. For a linear uniform discrete array composed of N sensors with intersensor spacing D1

starting at the origin and receiving a signal at a known fixed wavenumber k1 at a receiving angle y, the far-field
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beam pattern:

Sðk1; yÞ ¼D SðyÞ ¼
XN 1

r¼0
e jk1r D1sin y

may be associated with a polynomial
PN 1

r¼0
zr1,by setting z1 ¼ e jk1D1siny. This polynomial has all its zeros on the

unit circle in the z1-plane. If the array just considered is not uniform but has a weighting factor wr , for

r ¼ 0; 1; . . . ;N1 1, the space factor:

QðyÞ¼D
XN1 1

r¼0
wre

jk1D1r sin y

may again be associated with a polynomial
PN1 1

r¼0
wrz

r
1. By the pattern multiplication theorem, it is possible to

get the polynomial associated with the total beam pattern of an array with weighted sensors by multiplying the

polynomials associated with the array element pattern and the polynomial associated with the space factor

Q(y). The array factor ðyÞj2 may also be associated with the polynomial spectral factor:

jQðyÞj2 $
XN1 1

r¼0
wrz

r
1

XN1 1

r¼0
w*
r ðz*1Þr ð18:20Þ

where the weighting (shading) factor is allowed to be complex. Uniformly distributed apertures and uniformly

spaced volumetric arrays which admit product separable sensor weightings can be treated by using the well-

developed theory of linear discrete arrays and their associated polynomial. When the product separability

property does not hold, scopes exist for applying results from multidimensional systems theory (Bose, 1982)

concerning multivariate polynomials to the synthesis problem of volumetric arrays.

Velocity Filtering

The combination of individual sensor outputs in a more sophisticated way than the delay-and-sum technique

leads to the design of multichannel velocity filters for linear and planar as well as spatial arrays. Consider first a

linear (1D) array of sensors, which will be used to implement velocity discrimination. The pass and rejection

zones are defined by straight lines in the (k1, o)-plane, where

k1 ¼ o
V
¼ o
ðv=sin yÞ

is the wavenumber, o the angular frequency in rad/sec, V the apparent velocity on the Earth’s surface along the

array line, v the velocity of wave propagation, and y the horizontal arrival direction. The transfer function:

Hðo; k1Þ ¼ 1;
joj
V
< k1 <

joj
V

0; otherwise

8<:
9=;

of a ‘‘pie-slice’’ or ‘‘fan’’ velocity filter (Bose, 1985) rejects totally wavenumbers outside the range joj=V <
k1 < joj=V and passes completely wavenumbers defined within that range. Thus, the transfer function defines

a high-pass filter which passes signals with apparent velocities of magnitude greater than V at a fixed frequency

o. If the equispaced sensors are D units apart, the spatial sampling results in a periodic wavenumber response

with period k1 ¼ 1=ð2DÞ. Therefore, for a specified apparent velocity V, the resolvable wavenumber and

18-35Multidimensional Signal Processing



frequency bands are, respectively, 1=ð2DÞ< k1 < 1=ð2DÞ and V=ð2DÞ< o< V=ð2DÞ where o=ð2DÞ
represents the folding frequency in rad/sec.

Linear arrays are subject to the limitation that the source is required to be located on the extended line of

sensors so that plane wavefronts approaching the array site at a particular velocity excite the individual

sensors, assumed equispaced, at arrival times which are also equispaced. In seismology, the equispaced interval

between successive sensor arrival times is called a move-out or step-out and equals ðD sin yÞ=v ¼ D=V .

However, when the sensor-to-source azimuth varies, two or more independent signal move-outs may be

present. Planar (2D) arrays are then required to discriminate between velocities as well as azimuth. Spatial

(3D) arrays provide additional scope to the enhancement of discriminating capabilities when sensor/source

locations are arbitrary. In such cases, an array origin is chosen and the mth sensor location is denoted by a

vector ðx1mx2mx3mÞt and the frequency wavenumber response of an array of sensors is given by

Hðo; k1; k2; k3Þ ¼ 1

N

XN
m¼1

HmðoÞ exp
X3
i¼1

j2pkixim

" #

where HmðoÞ denotes the frequency response of a filter associated with the mth recording device (sensor). The
sum of all N filters provides flat frequency response so that waveforms arriving from the estimated directions

of arrival at estimated velocities are passed undistorted and other waveforms are suppressed. In the planar

specialization, the 2D array of sensors leads to the theory of 3D filtering involving a transfer function in the

frequency wavenumber variables f, k1, and k2. The basic design equations for the optimum, in the least-mean-

square error sense, frequency wavenumber filters have been developed (Burg, 1964). This procedure of Burg

can be routinely generalized to the 4D filtering problem mentioned above.
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Defining Terms

Array pattern: Fourier transform of the receiver weighting function taking into account the positions of the

receivers.

Beamformers: Systems commonly used for detecting and isolating signals that are propagating in a

particular direction.

Grating lobes: Repeated main lobes in the array pattern interpretable in terms of spatial frequency aliasing.

Velocity filtering: Means for discriminating signals from noise or other undesired signals because of their

different apparent velocities.

Wavenumber: 2p (spatial frequency in cycles per unit distance).
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An underlying assumption of most digital signal processing operations is that we have a sampled signal, our

digital signal, that we wish to process. When time is not critical, these signals are often stored for subsequent

retrieval or synthesized when needed. While this storage or synthesis method is very convenient, it does not

allow for real-time processing of a signal.

19.1 Real-Time Processing

We use the term real-time processing to mean that the processing of a given sample must occur within a given

time or the system will not operate properly. In a hard real-time system, the system will fail if the processing is

not done in a timely manner. For example, in a gasoline engine control system, the calculations of fuel

injection and spark timing must be completed in time for the next cycle or the engine will not operate. In a soft

real-time system, the system will tolerate some failures to meet real-time targets and still continue to operate,

but with some degradation in performance. For example, in a hand-held audio player, if the decoding for the

next output sample is not completed in time, the system could simply repeat the previous sample instead. As

long as this happened infrequently, it would be imperceptible to the user. Although general purpose

microprocessors can be employed in many situations, the performance demands and power constraints of

real-time systems often mandate specialized hardware. This may include specialized microprocessors

optimized for signal processing (digital signal processors or DSPs), programmable logic devices, application-

specific integrated circuits (ASICs), or a combination of any or all of them as required to meet system

constraints. Another chapter of this book discussed specific examples of specialized DSP hardware devices.

19.2 Real-Time Hardware

This chapter is written to allow someone with a basic understanding of DSP theory to rapidly transition from

the familiar MATLAB environment to performing real-time DSP operations on an industry-standard hardware

target. Typically, real-time DSP hardware has to communicate with the ‘‘outside’’ world. This is usually
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accomplished on the input side with an analog-to-digital converter (ADC) and on the output side with a

digital-to-analog converter (DAC). Integrated circuit (IC) chips which combine the ADC and DAC functions

in one device are called codec chips, which is an acronym for ‘‘coder and decoder.’’ While the C-code examples

later in this chapter were written for a Texas Instruments TMS320C6713 processor and a specific codec, the

same techniques apply to any manufacturer’s hardware.

19.3 Real-Time DSP Programming

In this section, we will assume an example signal processing system that has been designed based on a

programmable DSP, and that it has a single analog input and a single analog output. There are two common

ways to program for real-time DSP: on a sample-by-sample basis or on a frame basis. While it is easier to

understand most DSP theory and operations on a sample-by-sample basis, in reality this is often an inefficient

way to configure the actual input and output of data. Just as a computer hard disk transfers data in blocks of

many bytes rather than one byte or word at a time, many DSP systems process data in ‘‘blocks’’ known as

frames. The discussion in this chapter is applicable to either form of processing. See Figure 19.1 for a pictorial

comparison of sample-based vs. frame-based processing.

In general, there are three ways to structure the hardware and software that determines the system’s

operation:

. The DSP continually polls the input ADC to see if it has data available, and then processes the new data

sample to determine the next output. The DSP then returns to polling the input until the next sample is

available. Polling is an inherently inefficient use of DSP resources, so it is almost never used in practice.
. The system is designed to be interrupt driven. That is, when the next incoming sample is available (or

the next output sample is required), a processor interrupt is triggered that causes the DSP to

automatically switch to a short, fast subprogram called an interrupt service routine (ISR) which takes

care of getting the sample into or out of the processor. When the ISR finishes execution, control is

returned to the main program. This leads directly to the idea of the real-time schedule. For a given

Analog
signal

Analog
signal

Sample-based

Frame-based

Input one
sample

Input one
sample

Output one
sample

Output N
samples

Reconstructed
analog signal

Reconstructed
analog signal

Process
one sample

by DSP

Process
N samples

by DSP

Collected
N samples?

start assembling
the next frame

No Yes

FIGURE 19.1 A comparison of a generic sample-based (top) vs. frame-based (bottom) processing system. Not all

systems will require the input or output conversions from/to analog as shown here.
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sample frequency Fs, the time between samples is Ts ¼ 1=Fs. If the program is running on a sample-by-

sample basis, the ISR has roughly Ts to do its processing before the next sample arrives. If the program

is operating frame-based, the ISR will simply place the data in a buffer until a full frame is acquired,

then signal the main program that a frame is available for processing. While the interrupt driven system

eliminates the need for polling, the processor is still interrupted for every sample. In the interrupt

service process, the processor context must be saved, control transferred to the ISR, and the processor

context restored; the net result is interrupt overhead that represents lost processing time which can

severely degrade the overall DSP performance.
. Use frame-based processing, but instead of the DSP responding to the sample interrupts, a peripheral

device (typically integrated into the DSP) called a direct memory access (DMA) controller is used to

automatically transfer the samples between the input/output devices and the DSP’s memory. When a

full frame is available, the DMA controller signals the DSP (usually through an interrupt). This

eliminates using the high-performance DSP core to do the mundane sample data transfers, permits the

DSP to be put into a low-power sleep state when it is not actively processing frames, and reduces the

DSP interrupt overhead to a single interrupt per frame. For n-sample frames, a time of nearly nTs is

thus available for processing the samples. This DMA frame-based method is used in most commercial

systems, and although simple in concept, is fraught with programming details that can be quite

daunting to an engineer new to DSP systems.

Properly configuring the peripheral devices and interrupts, external hardware, and other configuration steps

for DSP processors is different for each device and manufacturer. This is often the hardest part of getting

started with real-time DSP, as often small configuration errors result in complete system failure. For simplicity

of the discussion, we will use an FIR filter to demonstrate the process of transforming a nonreal-time DSP

program in MATLAB to a real-time DSP program running on dedicated hardware. Previous chapters in this

book explained FIR filters and explained their use in the MATLAB environment. Note there are many options

for filter design, depending upon what optional Toolboxes you own. For example, the MATLAB Signal

Processing Toolbox comes with versatile graphical filter design programs such as SPTool and FDATool. There is

also a separate MATLAB Filter Design Toolbox.

19.4 MATLAB Implementation

MATLAB has a number of ways of performing the filtering operation; for simplicity we will only discuss two.

The first is the built-in filter function and the second is to build your own routine to perform the FIR filtering

operation. The built-in function allows us to filter signals almost immediately, but does very little to prepare

us for the realities of real-time filtering using DSP hardware.

Built-in Approach

The MATLAB built-in function filter.m can be used to implement both an FIR filter (using only the

numerator [B] coefficients) and an IIR filter (using both the denominator [A] and the numerator [B]

coefficients). The first few lines of the on-line help associated with the filter command are provided below:

..help filter

FILTER One-dimensional digital filter.

Y¼FILTER (B, A, X) filters the data in vector X with the

filter described by vectors A and B to create the filtered

data Y. The filter is a ‘‘Direct Form II Transposed’’

implementation of the standard difference equation:

a(1)*y(n)¼b(1)*x(n)þb(2)*x(n-1)þ. . .þb(nbþ1)*x(n-nb)
-a(2)*y(n-1)-. . .-a(naþ1)*y(n-na)
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Notice that in the difference equation discussion of the MATLAB filter command, the A and B coefficient

vector indices start at 1 instead of at 0. MATLAB does not allow for an index equal to zero. While this may only

seem like a minor inconvenience, improper vector indices account for a significant number of the errors that

occur during MATLAB algorithm development. To remain consistent with most DSP literature, we create

another vector, say n, which is composed of integers with the first element equal to zero (i.e., n¼ 0:15 creates

n ¼ f0; 1; 2; 3; . . . ; 15g), and use this n vector to ‘‘fool’’ MATLAB into counting from zero. See the code given

below for an example of this technique.

The MATLAB code shown below will filter the input vector x using the FIR filter coefficients in vector B.

Notice that the input vector x is zero padded to flush the filter. This technique differs slightly from the direct

implementation of the MATLAB filter command in which forM input values there will beM output values. Our

technique assumes that the input vector is both preceded and followed by a large number of zeros. This

implies that the filter is initially at rest (no initial conditions) and will relax or flush any remaining values at

the end of the filtering operation.

The output for this example follows:

Y¼
Columns 1 through 8

0.2500 0.7500 1.5000 1.5000 1.5000 0.2500 0.5000 0.7500

Column 9 through 11

0.5000 1.2500 0.2500

The stem plot from the example is shown in Figure 19.2.

In this example, eight input samples were filtered and the results were returned all at once. Notice that when

an eight-element vector x is filtered by a four-element vector B that 11 elements were returned

ð8þ 4 1 ¼ 11Þ. This is an example of the general result that states that the length L of the sequence

resulting from the convolution (filtering) of x and B is L ¼ lengthðxÞ þ lengthðBÞ 1.

The FIR filter coefficients associated with this filter were B ¼ ½0:25 0:25 0:25 0:25 . Since there are four
coefficients for the filter, this is a third-order FIR filter (i.e., N ¼ 3). The filtering effect produced is that it

Listing 19.1 Simple MATLAB FIR filter example.
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averages the most recent four input samples (i.e., the current sample and the previous three samples). This

type of filter is called a moving average (MA) filter and is a type of lowpass FIR filter. Figure 19.3 shows the

frequency response associated with MA filters of order N ¼ 3, 7, 15, and 31, for a sample frequency of 48 kHz.

All of the MA filters shown in Figure 19.3 have a 0 Hz (dc) gain of 1 (which equals 0 dB). To insure that any

filter has a dc gain of 0 dB, the impulse response h½n must sum to 1.

Creating Your Own Filter Algorithm

The last example helped us with MATLAB-based filtering, but the built-in function filter.m is of little use to

us in performing real-time FIR filtering with DSP hardware. The next MATLAB example more closely

implements the algorithm needed for a real-time process. This code will calculate a single output value based

upon the current input value and the three previous input values.
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FIGURE 19.2 Stem plot of the filtering of x with B.
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FIGURE 19.3 Magnitude of the frequency response for MA filters of order 3, 7, 15, and 31.
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The input and output vectors from this FIR moving average filter program are shown below. Note that the

four input samples result in a single output sample, as expected of a third-order filter:

x ¼
1 1 2 3

y ¼
1.5000

A few items need to be discussed concerning this example.

1. The filter order N was declared (line 21) despite the fact that MATLAB can determine the filter order

based solely on the length of the vector B (that is, N ¼ lengthðBÞ 1). Declaring both the filter order N

Listing 19.2 FIR filter adjusted for real-time processing.

19-6 Circuits, Signals, and Speech and Image Processing



and the FIR filter coefficients B (line 22), increases the portability of the code when you convert it to C/

Cþþ. Increased code portability may also be thought of as decreased machine dependance, which is
generally a sought-after code attribute.

2. Only four values of x were stored (line 20). FIR filtering involves the dot product of only N þ 1 terms.

Since in this example N ¼ 3, only four x terms are required.

3. The example is called a ‘‘brute force’’ approach based largely on the shifting of the stored x values within

the x vector (lines 30 to 32). This unnecessary operation wastes resources that may be needed for other

operations. Since our ultimate goal is efficient real-time implementation in DSP hardware, the more

elegant and efficient solutions to this problem will be discussed in a later section.

19.5 Implementation in C

Several modifications to the MATLAB thought process are needed as we transition towards efficient real-time

programming.

1. A semantic change is required since in MATLAB B is a vector, but in the C/Cþþ programming language,

B is called an array.

2. The zero memory index, which does not exist in a MATLAB vector, does exist in the C/Cþþ
programming language and it is routinely used in array notation.

3. The DSP hardware must process the data from the ADC in real time, therefore, we cannot wait for all

message samples to be received prior to beginning the algorithmic process.

4. Real-time DSP is inherently an interrupt driven process and the input samples should only be processed

using interrupt service routines (ISRs). Given this observation, it is incumbent upon the DSP

programmer to ensure that the time requirements associated with periodic sampling are met. More

bluntly, if you do not complete the algorithm’s calculation before another input sample arrives, you have

not met your real-time schedule and your system will fail. This leads to the observation that ‘‘the correct

answer, if it arrives late, is wrong!’’

5. Even though the DSP hardware has a phenomenal amount of processing power, this power should not

be indiscriminately wasted.

6. The input and output ISRs are not magically linked! Nothing will come out of your DSP hardware

unless you program the device to do so.

7. The digital portion of both an ADC and a DAC are inherently integer in nature. No matter what the

ADC’s input range is, the analog input voltage is mapped to an integer value. For a 16-bit converter, the

possible values range from +32,767 to 32,768.

8. For clarity and understandability, declarations and assignments of variables, e.g., FIR filter coefficients,

can be moved into .c and .h files.

Brute Force FIR Filtering – Part 1

The first version of the FIR implementation code, similar to the last MATLAB example, takes a brute force

approach. The intention of this first approach is understandability, which comes at the expense of efficiency.

For simple programs, the actual FIR filtering operation code can be placed in the ISR itself. Many codecs are

stereo devices, and your program should actually implement independent left and right channel filters. For

clarity, only the left channel will be discussed here. In the code shown below, N is the filter order, the B array

holds the FIR filter coefficients, the xLeft array holds the current input value x½0 , and past values of x, namely,
x½ 1 , x½ 2 and x½ 3 , and yLeft is the current output value of the filter, y½0 . The integer i is used as an index
counter in the loops.
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The code shown below performs the actual filtering operation. The five main steps involved in this

operation are discussed below the code listing.

The Five Real-Time Steps involved in Brute Force FIR Filtering

An explanation of Listing 19.4 follows:

1. (Line 2): This code receives the next sample from the receive ISR and assigns it to the current input array

element, xLeft[0].

2. (Line 3): The current output of this filter is given the name yLeft. Since this same variable will be used in

the calculation of each output value of the filter, it must be reinitialized before each dot product is

performed.

3. (Lines 5–7): These three lines of code perform the dot product of x and B. The equivalent operation is:

yLeft ¼ xLeft½0 B½0 þ xLeft½ 1 B½1 þ xLeft½ 2 B½2 þ xLeft½ 3 B½3 :
4. (Lines 9–11): These three lines of code shift all of the values in the x array one element to the right. The

equivalent operation is

xLeft½2 ! xLeft½3
xLeft½1 ! xLeft½2
xLeft½0 ! xLeft½1 :

After the shift to the right is complete, the next incoming sample, x[0], can be written into the xLeft[0]

memory location without a loss of information. Also notice that xLeft[3] was overwritten by xLeft[2].

Listing 19.3 Brute force FIR filter declarations.

Listing 19.4 Brute force FIR filtering for real-time.
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The expected operation of xLeft[3] ! xLeft[4] is not needed since there is no xLeft[4] (xLeft only

contains four elements). In summary, xLeft[3] is no longer needed and is, therefore, overwritten.

5. (Line 13): This line of code completes the filtering operation by transferring the result of the dot

product, yLeft, to the DAC via the transmit ISR.

Brute Force FIR Filtering – Part 2

The previous section introduced a brute force approach to FIR filtering. While this implementation is

straightforward and relatively easy to understand, it suffers from two major problems.

1. Most FIR filters use a considerably higher order than the filters discussed in the previous examples. Most

filters also require a great deal of numerical precision to accurately specify the B coefficients. These facts

make manual entry of the B coefficients very inconvenient.

2. Step 4 in the five real-time steps involved in the brute force FIR filtering section discussed above shifted

all of the values in the x array one element to the right after each dot product operation. This shifting is a

very inefficient use of the DSK’s computational resources.

Entering a large number of filter coefficients by hand would be tedious and error prone. What many people

do is use MATLAB to generate the filter coefficients, then copy and paste the values to a separate .c file where

they are defined for the C/Cþþ DSP program. Using an .h header file in which the coefficients are declared

would also be used, assuming separate compilation (the filter program in one .c file, the coefficients defined

in another .c file, and the coefficient array variable declared in a .h file).

Within the coeff.h file, line 4 is used to define the filter order and line 6 allows the B coefficients to be

defined in another file. In this case, the coefficients are defined in the file coeff.c.

Listing 19.5 An example coeff.h file for a 30th-order FIR filter.

Listing 19.6 An example coeff.c file showing only the first 11 coefficients defined for the 30th-order FIR

filter. Don’t forget the closing brace } after the last coefficient!
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Once you become familiar with these procedures and some of the MATLAB filter design techniques, FIR filters

can be designed and implemented extremely quickly. You can easily modify the code shown in Listing 19.4

to use the more flexible separate compilation technique.

Circular Buffered FIR Filtering

As previously stated, shifting all of the values in the x array one element to the right after each dot product

operation is a very inefficient use of the DSK’s computational resources. The need to perform this shift is based

on the assumption that the physical memory is linear. Given linear memory, with the inherent static labeling

of each memory location, this shifting of values would seem to be an absolute requirement.

Figure 19.4 shows a linear memory model for the input to the filter x. As expected, to buffer the N þ 1

elements in the x array, there are memory locations labeled x½0 , x½ 1 ; . . . ; x½ N , but there is also an

x½ ðN þ 1Þ . While this location was not declared, it does physically exist, and any attempt to access the x

array beyond its declared bounds will result in something being retrieved and used in any subsequent

calculations. The results of this indexing error may be catastrophic, e.g., a run-time error, or more subtle, e.g.,

the program runs, but gives inaccurate results. Either way, this type of indexing error must be avoided.

An alternative to linear memory is circular memory. As shown in Figure 19.5, the circular memory concept

wraps the memory location labeled x½ N back to the memory location labeled x½0 . Since the purpose of this
circular memory is to store or buffer x, this concept is routinely referred to as circular buffering.

If instead of using static memory location labels, a pointer is used to point to and insert the most recent

sample, x½0 , into the memory location containing the oldest sample, x½N ; thus, a circular buffer has been

created. No shifting of the x values is required since the pointer will always point to the most recent sample

value. As the pointer advances, the oldest sample in the buffer is replaced by the most recent sample.

This process can be continued indefinitely. The result of inserting the next sample into the buffer is shown in

Figure 19.6.

x[0]

x[−1] x[−2]

x[−3]

x[−4]

x[−(N−1)]

x[−N]

FIGURE 19.5 The circular buffer concept with static memory location labeling.

x[0] x[−1] x[−2] x[−3] x[−N] x[−(N+1)]···

FIGURE 19.4 The linear memory concept with static memory location labeling.
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Notice how the values shifted their effective position by just changing the pointer. To implement the circular

buffer, a pointer must be established to the array xLeft. The required code to create this pointer is shown

below.

The remainder of the circular buffered FIR filter code is shown below. The code comments explain the

algorithm.

The circular buffering technique is commonly used in many real-time applications. Some DSP processors

include special commands to establish and manipulate circular buffers in the hardware.

19.6 Conclusion

Real-time DSP can be one of the ‘‘trickiest’’ topics to master. Even if your algorithm is perfectly valid, the

actual implementation in real-time may suffer from problems that have more to do with computer engineering

x[0]

x[−1]

x[−2] x[−3]

x[−4]

x[−(N−1)]x[−N]

FIGURE 19.6 The circular buffer concept with dynamic memory location labeling.

Listing 19.7 FIR filter using a circular buffer.
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and software engineering principles than anything related to signal processing. Despite this, getting started in

real-time DSP for many is the next logical step beyond MATLAB-based signal processing. While becoming an

expert in real-time DSP typically requires many years of experience and learning, such skills are in very high

demand.
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20.1 Special Architectures

Keshab K. Parhi

Digital signal processing (DSP) is used in numerous applications. These applications include telephony,

mobile radio, satellite communications, speech processing, video and image processing, biomedical

applications, radar, and sonar. Real-time implementations of DSP systems require design of hardware that

can match the application sample rate to the hardware processing rate (which is related to the clock rate and

the implementation style). Thus, real-time does not always mean high speed. Real-time architectures are

capable of processing samples as they are received from the signal source, as opposed to storing them in buffers

for later processing as done in batch processing. Furthermore, real-time architectures operate on an infinite

time series (since the number of the samples of the signal source is so large that it can be considered infinite).

While speech and sonar applications require lower sample rates, radar and video image processing

applications require much higher sample rates. The sample rate information alone cannot be used to choose

the architecture. The algorithm complexity is also an important consideration. For example, a very complex

and computationally intensive algorithm for a low-sample-rate application and a computationally simple

algorithm for a high-sample-rate application may require similar hardware speed and complexity. These

ranges of algorithms and applications motivate us to study a wide variety of architecture styles.

Using very large scale integration (VLSI) technology, DSP algorithms can be prototyped in many ways.

These options include (1) single or multiprocessor programmable digital signal processors, (2) the use of core

programmable digital signal processor with customized interface logic, (3) semicustom gate-array implemen-

tations, and (4) full-custom dedicated hardware implementations. The DSP algorithms are implemented in

the programmable processors by translating the algorithm to the processor assembly code. This can require an

extensive amount of time. On the other hand, high-level compilers for DSP can be used to generate the
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assembly code. Although this is currently feasible, the code generated by the compiler is not as efficient as

hand-optimized code. Design of DSP compilers for generation of efficient code is still an active research topic.

In the case of dedicated designs, the challenge lies in a thorough understanding of the DSP algorithms and

theory of architectures. For example, just minimizing the number of multipliers in an algorithm may not lead

to a better dedicated design. The area saved by the number of multipliers may be offset by the increase in

control, routing, and placement costs.

Off-the-shelf programmable digital signal processors can lead to faster prototyping. These prototyped

systems can prove very effective in fast simulation of computation-intensive algorithms (such as those

encountered in speech recognition, video compression, and seismic signal processing) or in benchmarking and

standardization. After standards are determined, it is more useful to implement the algorithms using dedicated

circuits.

Design of dedicated circuits is not a simple task. Dedicated circuits provide limited or no programming

flexibility. They require less silicon area and consume less power. However, the low production volume, high

design cost, and long turnaround time are some of the difficulties associated with the design of dedicated

systems. Another difficulty is the availability of appropriate computer-aided design (CAD) tools for DSP

systems. As time progresses, however, the architectural design techniques will be better understood and can be

incorporated into CAD tools, thus making the design of dedicated circuits easier. Hierarchical CAD tools can

integrate the design at various levels in an automatic and efficient manner. Implementation of standards for

signal and image processing using dedicated circuits will lead to higher volume production. As time

progresses, dedicated designs will be more acceptable to customers of DSP.

Successful design of dedicated circuits requires careful algorithm and architecture considerations. For

example, for a filtering application, different equivalent realizations may possess different levels of

concurrency. Thus, some of these realizations may be suitable for a particular application while other

realizations may not be able to meet the sample rate requirements of the application. The lower-level

architecture may be implemented in a word-serial or word-parallel manner. The arithmetic functional units

may be implemented in bit-serial or digit-serial or bit-parallel manner. The synthesized architecture may be

implemented with a dedicated data path or shared data path. The architecture may be systolic or

nonsystolic.

Algorithm transformations play an important role in the design of dedicated architectures (Parhi, 1989).

This is because the transformed algorithms can be made to operate with better performance (where the

performance may be measured in terms of speed, area, or power). Examples of these transformations include

pipelining, parallel processing, retiming, unfolding, folding, look-ahead, associativity, and distributivity. These

transformations and other architectural concepts are described in detail in subsequent sections.

Pipelining

Pipelining can increase the amount of concurrency (or the number of activities performed simultaneously) in

an algorithm. Pipelining is accomplished by placing latches at appropriate intermediate points in a data flow

graph that describes the algorithm. Each latch also refers to a storage unit or buffer or register. The latches can

be placed at feed-forward cutsets of the data flow graph. In synchronous hardware implementations, pipelining

can increase the clock rate of the system (and therefore the sample rate). The drawbacks associated with

pipelining are the increase in system latency and the increase in the number of registers. To illustrate the speed

increase using pipelining, consider the second-order three-tap finite impulse response (FIR) filter shown in

Figure 20.1(a). The signal x(n) in this system can be sampled at a rate limited by the throughput of one

multiplication and two additions. For simplicity, if we assume the multiplication time to be two times the

addition time (Tadd), the effective sample or clock rate of this system is 1/4Tadd. By placing latches as shown in

Figure 20.1(b) at the cutset shown by the dashed line, the sample rate can be improved to the rate of one

multiplication or two additions. While pipelining can be easily applied to all algorithms with no feedback

loops by the appropriate placement of latches, it cannot easily be applied to algorithms with feedback loops.

This is because the cutsets in feedback algorithms contain feed-forward and feedback data flow and cannot be

considered as feed-forward cutsets.
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Pipelining can also be used to improve the performance in software programmable multiprocessor systems.

Most software programmable DSP processors are programmed using assembly code. The assembly code is

generated by high-level compilers that perform scheduling. Schedulers typically use the acyclic precedence

graph to construct schedules. The removal of all edges in the signal (or data) flow graph containing delay

elements converts the signal flow graph to an acyclic precedence graph. By placing latches to pipeline a data

flow graph, we can alter the acyclic precedence graph. In particular, the critical path of the acyclic precedence

graph can be reduced. The new precedence graph can be used to construct schedules with lower iteration

periods (although this may often require an increase in the number of processors).

Pipelining of algorithms can increase the sample rate of the system. Sometimes, for a constant sample rate,

pipelining can also reduce the power consumed by the system. This is because the data paths in the pipelined

system can be charged or discharged with lower supply voltage. Since the capacitance remains almost constant,

the power can be reduced. Achieving low power can be important in many battery-powered applications

(Chandrakasan et al., 1992).

Parallel Processing

Parallel processing is related to pipelining but requires replication of hardware units. Pipelining exploits

concurrency by breaking a large task into multiple smaller tasks and by separating these smaller tasks by

storage units. However, parallelism exploits concurrency by performing multiple larger tasks simul-taneously

in separate hardware units.

To illustrate the speed increase due to parallelism, consider the parallel implementation of the second-order,

three-tap FIR filter of Figure 20.1(a) shown in Figure 20.2. In the architecture of Figure 20.2, two input

samples are processed and two output samples are generated in each clock cycle period of four addition times.

Because each clock cycle processes two samples, however, the effective sample rate is 1/2Tadd, which is the same

as that of Figure 20.1(b). The parallel architecture leads to the speed increase with significant hardware

overhead. The entire data flow graph needs to be replicated with an increase in the amount of parallelism.

Thus, it is more desirable to use pipelining as opposed to parallelism. However, parallelism may be useful if

FIGURE 20.1 (a) A three-tap, second-order nonrecursive digital filter; (b) the equivalent pipelined digital filter obtained

by placing storage units at the intersection of the signal wires and the feed-forward cutset. If the multiplication and

addition operations require 2 and 1 units of time, respectively, then the maximum achievable sampling rates for the original

and the pipelined architectures are 1/4 and 1/2 units, respectively.
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pipelining alone cannot meet the speed demand of the application or if the technology constraints (such as

limitations on the clock rate by the I/O technology) limit the use of pipelining. In obvious ways, pipelining

and parallelism can be combined also. Parallelism, like pipelining, can also lead to power reduction but with

significant overhead in hardware requirements. Achieving pipelining and parallelism can be difficult for

systems with feedback loops. Concurrency may be created in these systems by using the look-ahead

transformation.

Retiming

Retiming is similar to pipelining but yet different in some ways (Leiserson et al., 1983). Retiming is the process

of moving the delays around in the data flow graph. Removal of one delay from all input edges of a node and

insertion of one delay to each outgoing edge of the same node is the simplest example of retiming. Unlike

pipelining, retiming does not increase the latency of the system. However, retiming alters the number of delay

elements in the system. Retiming can reduce the critical path of the data flow graph. As a result, it can lead to

clock period reduction in hardware implementations or critical path of the acyclic precedence graph or the

iteration period in programmable software system implementations.

The single host formulation of the retiming transformation preserves the latency of the algorithm. The

retiming formulation with no constraints on latency (i.e., with separate input and output hosts) can also

achieve pipelining with no retiming or pipelining with retiming. Pipelining with retiming is the most desirable

transformation in DSP architecture design. Pipelining with retiming can be interpreted to be identical to

retiming of the original algorithm with a large number of delays at the input edges. Thus, we can increase the

system latency arbitrarily and remove the appropriate number of delays from the inputs after the

transformation.

The retiming formulation assigns retiming variables r(.) to each node in the data flow graph. If iðU ! VÞ is
the number of delays associated with the edge U ! V in the original data flow graph and r(V) and r(U),

respectively, represent the retiming variable value of the nodes V and U, then the number of delays associated

with the edge U ! V in the retimed data flow graph is given by

irðU ! VÞ ¼ iðU ! VÞ þ rðVÞ rðUÞ

FIGURE 20.2 Twofold parallel realization of the three-tap filter of Figure 20.1(a).
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For the data flow graph to be realizable, irðU ! VÞ> 0 must be satisfied. The retiming transformation

formulates the problem by calculating path lengths and by imposing constraints on certain path lengths. These

constraints are solved as a shortest-path problem.

To illustrate the usefulness of retiming, consider the data flowgraph of a two-stage pipelined lattice digital filter

graph shown in Figure 20.3(a) and its equivalent pipelined-retimed data flow graph shown in Figure 20.3(b).

If the multiply time is 2 units and the add time is 1 unit, the architecture in Figure 20.3(a) can be clocked

with period 10 units, whereas the architecture in Figure 20.3(b) can be clocked with period 2 units.

Unfolding

The unfolding transformation is similar to loop unrolling. In J-unfolding, each node is replaced by J nodes

and each edge is replaced by J edges. The J-unfolded data flow graph executes J iterations of the original

algorithm (Parhi, 1991).

FIGURE 20.3 (a) A two-stage pipelinable time-invariant lattice digital filter. If multiplication and addition operations

require 2 and 1 time units, respectively, then this data flow graph can achieve a sampling period of 10 time units (which

corresponds to the critical path M1 ! A2 ! M2 ! A1 ! M3 ! A3 ! A4). (b) The pipelined/retimed lattice digital filter

can achieve a sampling period of 2 time units.
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The unfolding transformation can unravel the hidden concurrency in a data flow program. The achievable

iteration period for a J-unfolded data flow graph is 1/J times the critical path length of the unfolded data flow

graph. By exploiting interiteration concurrency, unfolding can lead to a lower iteration period in the context

of a software programmable multiprocessor implementation.

The unfolding transformation can also be applied in the context of hardware design. If we apply an

unfolding transformation on a (word-serial) nonrecursive algorithm, the resulting data flow graph represents

a word-parallel (or simply parallel) algorithm that processes multiple samples or words in parallel every clock

cycle. If we apply two-unfolding to the three-tap FIR filter in Figure 20.1(a), we can obtain the data flow graph

of Figure 20.2.

Because the unfolding algorithm is based on graph theoretic approach, it can also be applied at the bit level.

Thus, unfolding of a bit-serial data flow program by a factor of J leads to a digit-serial program with digit size

J. The digit size represents the number of bits processed per clock cycle. The digit-serial architecture is clocked

at the same rate as the bit-serial (assuming that the clock rate is limited by the communication I/O bound

much before reaching the computation bound of the bit-serial program). Because the digit-serial program

processes J bits per clock cycle the effective bit rate of the digit-serial architecture is J times higher. A simple

example of this unfolding is illustrated in Figure 20.4, where the bit-serial adder in Figure 20.4(a) is unfolded

by a factor of 2 to obtain the digit-serial adder in Figure 20.4(b) for digit size 2 and word length 4. In obvious

ways, the unfolding transformation can be applied to both word level and bit level simultaneously to generate

word-parallel, digit-serial architectures. Such architectures process multiple words per clock cycle and process

a digit of each word (not the entire word).

Folding Transformation

The folding transformation is the reverse of the unfolding transformation. While the unfolding

transformation is simpler, the folding transformation is more difficult (Parhi et al., 1992).

The folding transformation can be applied to fold a bit-parallel architecture to a digit-serial or bit-serial one

or to fold a digit-serial architecture to a bit-serial one. It can also be applied to fold an algorithm data flow

FIGURE 20.4 (a) A least-significant-bit first bit-serial adder for word length of 4; (b) a digit-serial adder with digit size 2

obtained by two-unfolding of the bit-serial adder. The bit position 0 stands for least significant bit.
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graph to a hardware data flow for a specified folding set. The folding set indicates the processor in which and

the time partition at which a task is executed. A specified folding set may be infeasible, and this needs to be

detected first. The folding transformation performs a preprocessing step to detect feasibility and in the feasible

case transforms the algorithm data flow graph to an equivalent pipelined/retimed data flow graph that can be

folded. For the special case of regular data flow graphs and for linear space–time mappings, the folding

tranformation reduces to systolic array design.

In the folded architecture, each edge in the algorithm data flow graph is mapped to a communicating edge

in the hardware architecture data flow graph. Consider an edge U ! V in the algorithm data flow graph with

associated number of delays iðU ! VÞ. Let the tasks U and V be mapped to the hardware units HU and HV ,

respectively. Assume that N time partitions are available, i.e., the iteration period is N. A modulo operation

determines the time partition. For example, the time unit 20 for N ¼ 4 corresponds to time partition 20

modulo 4 or 2. Let the tasks U and V be executed in time partitions u and v, i.e., the lth iterations of tasks U

and V are executed in time units Nl + u and Nl + n, respectively. The iðU ! VÞ delays in the edge U ! V

implies that the result of the lth iteration of U is used for the (l + i)th iteration of V. The (l + i)th iteration of

V is executed in time unit N(l + i) + v. Thus the number of storage units needed in the folded edge

corresponding to the edge U ! V is

DFðU ! VÞ ¼ Nðlþ iÞ þ v Nl u Pu ¼ Niþ v u pu

where Pu is the level of pipelining of the hardware operator HU. The DFðU ! VÞ delays should be connected to
the edge between HU and HV , and this signal should be switched to the input of HV at time partition v. If the

DFðU ! VÞ’s as calculated here were always nonnegative for all edges ðU ! VÞ, then the problem would be

solved. However, some DF()’s would be negative. The algorithm data flow graph needs to be pipelined and

retimed such that all the DF()’s are nonnegative. This can be formulated by simple inequalities using the

retiming variables. The retiming formulation can be solved as a path problem, and the retiming variables can

be determined if a solution exists. The algorithm data flow graph can be retimed for folding and the

calculation of the DF()’s can be repeated. The folded hardware architecture data flow graph can now be

completed. The folding technique is illustrated in Figure 20.5. The algorithm data flow graph of a two-stage

pipelined lattice recursive digital filter of Figure 20.3(a) is folded for the folding set shown in Figure 20.5.

Figure 20.5(a) shows the pipelined/retimed data flow graph (preprocessed for folding) and Figure 20.5(b)

shows the hardware architecture data flow graph obtained after folding.

As indicated before, a special case of folding can address systolic array design for regular data flow graphs

and for linear mappings. The systolic architectures make use of extensive pipelining and local communication

and operate in a synchronous manner (Kung, 1988). The systolic processors can also be made to operate in an

asynchronous manner, and such systems are often referred to as wavefront processors. Systolic architectures

have been designed for a variety of applications, including convolution, matrix solvers, matrix decomposition,

and filtering.

Look-Ahead Technique

The look-ahead technique is a very powerful technique for pipelining of recursive signal processing

algorithms (Parhi and Messerschmitt, 1989). This technique can transform a sequential recursive algorithm

into an equivalent concurrent one, which can then be realized using pipelining or parallel processing or

both. This technique has been successfully applied to pipeline many signal processing algorithms, including

recursive digital filters (in direct form and lattice form), adaptive lattice digital filters, two-dimensional

recursive digital filters, Viterbi decoders, Huffman decoders, and finite-state machines. This research

demonstrated that the recursive signal processing algorithms can be operated at high speed. This is an

important result since modern signal processing applications in radar and image processing and particularly

in high-definition and super-high-definition television video signal processing require very high throughput.

Traditional algorithms and topologies cannot be used for such high-speed applications because of the

inherent speed bound of the algorithm created by the feedback loops. The look-ahead transformation creates
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additional concurrency in the signal processing algorithms and the speed bound of the transformed

algorithms is increased substantially. The look-ahead transformation is not free from drawbacks. It is

accompanied by an increase in the hardware overhead. This difficulty has encouraged us to develop

inherently pipelinable topologies for recursive signal processing algorithms. Fortunately, this is possible to

achieve in adaptive digital filters using relaxations on the look-ahead or by the use of relaxed look-ahead

(Shanbhag and Parhi, 1992).

To begin, consider a time-invariant, one-pole recursive digital filter transfer function:

HðzÞ ¼ XðzÞ
UðzÞ ¼

1

1 az 1

FIGURE 20.5 (a) A pipelined/retimed data flow graph obtained from Figure 20.3(a) by preprocessing for folding; (b) the

folded hardware architecture data flow graph. In our folding notation, the tasks are ordered within a set and the ordering

represents the time partition in which the task is executed. For example, SA1 ¼ ðA2;A1Þ implies that A2 and A1 are,

respectively, executed in even and odd time partitions in the same processor. The notation F represents a null operation.
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described by the difference equation:

xðnÞ ¼ axðn 1Þ þ uðnÞ
and shown in Figure 20.6(a). The maximum achievable speed in this system is limited by the operating speed

of one multiply–add operation. To increase the speed of this system by a factor of 2, we can express x(n) in

terms of x(n 2) by substitution of one recursion within the other:

xðnÞ ¼ a½axðn 2Þ þ uðn 1Þ þ uðnÞ ¼ a2xðn 2Þ þ auðn 1Þ þ uðnÞ
The transfer function of the emulated second-order system is given by

HðzÞ ¼ 1þ az 1

1 a2z 2

and is obtained by using a pole-zero cancellation at a. In the modified system, x(n) is computed using

x(n 2) as opposed to x(n 1); thus we look ahead. The modified system has two delays in the multiply–add

feedback loop, and these two delays can be distributed to pipeline the multiply–add operation by two stages.

Of course, the additional multiply–add operation that represents one zero would also need to be pipelined by

two stages to keep up with the sample rate of the system. To increase the speed by 4 times, we can rewrite the

transfer function as

HðzÞ ¼ ð1þ az 1Þð1þ a2z 2Þ
ð1 a4z 4Þ

This system is shown in Figure 20.6(b). Arbitrary speed increase is possible. However, for power-of-two speed

increase the hardware complexity grows logarithmically with speed-up factor. The same technique can be

applied to any higher-order system. For example, a second-order recursive filter with transfer function:

HðzÞ ¼ 1

1 2r cos yz 1 þ r2z 2

FIGURE 20.6 (a) A first-order recursive digital filter; (b) a four-stage pipelinable equivalent filter obtained by look-ahead

computation.
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can be modified to

HðzÞ ¼ 1þ 2r cos yz 1 þ r2z 2

1 2r cos 2yz 1 þ r4z 4

for a twofold increase in speed. In this example, the output y(n) is computed using y(n 2) and y(n 4);

thus, it is referred to as scattered look-ahead.

While look-ahead can transform any recursive digital filter transfer function to pipelined form, it leads to a

hardware overhead proportional to N log2M, where N is the filter order andM is the speed-up factor. Instead

of starting with a sequential digital filter transfer function obtained by traditional design approaches and

transforming it for pipelining, it is more desirable to use a constrained filter design program that can satisfy

the filter spectrum and the pipelining constraint. The pipelining constraint is satisfied by expressing the

denominator of the transfer function in scattered look-ahead form. Such filter design programs have now been

developed in both time domain and frequency domain. The advantage of the constrained filter design

approach is that we can obtain pipelined digital filters with marginal or zero hardware overhead

compared with sequential digital filters. The pipelined transfer functions can also be mapped to pipelined

lattice digital filters. The reader might note that the data flow graph of Figure 20.3(a) was obtained by this

approach.

The look-ahead pipelining can also be applied to the design of transversal and adaptive lattice digital filters.

Although look-ahead transformation can be used to modify the adaptive filter recursions to create

concurrency, this requires a large hardware overhead. The adaptive filters are based on weight update

operations, and the weights are adapted based on the current error. Finally, the error becomes close to zero and

the filter coefficients have been adapted. Thus, making relaxations on the error can reduce the hardware

overhead substantially without degradation of the convergence behavior of the adaptive filter. Three types of

relaxations of look-ahead are possible. These are referred to as sum relaxation, product relaxation, and delay

relaxation. To illustrate these three relaxations, consider the weight update recursion:

wðnþ 1Þ ¼ aðnÞwðnÞ þ f ðnÞ

where the term a(n) is typically 1 for transversal least mean square (LMS) adaptive filters and of the form

(1– e(n)) for lattice LMS adaptive digital filters, and f(n) ¼ me(n)u(n) where m is a constant, e(n) is the error,
and u(n) is the input. The use of look-ahead transforms the above recursion to

wðnþMÞ ¼
YM 1

i¼0
aðnþM i 1ÞwðnÞ

þ 1aðnþM 1Þ
Y1
i¼0

aðnþM i 1Þ . . .
YM 2

i¼0
aðnþM i 1Þ

" # f ðnþM 1Þ
f ðnþM 2Þ

·
·
·

f ðnÞ

266666664

377777775
In sum relaxation, we only retain the single term dependent on the current input for the last term of the look-

ahead recursion. The relaxed recursion after sum relaxation is given by

wðnþMÞ ¼
YM 1

i¼0
aðnþM i 1ÞwðnÞ þ f ðnþM 1Þ
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In lattice digital filters, the coefficient a(n) is close to 1 for all n, since it can be expressed as (1 e(n)) and e(n)
is close to zero for all n and is positive. The product relaxation on the above equation leads to

wðnþMÞ ¼ ð1 MeðnþM 1ÞÞwðnÞ þ f ðnþM 1Þ

The delay relaxation assumes the signal to be slowly varying or to be constant over D samples and replaces the

look-ahead by

wðnþMÞ ¼ ð1 MeðnþM 1ÞÞwðnÞ þ f ðnþM D 1Þ

These three types of relaxations make it possible to implement pipelined transversal and lattice adaptive digital

filters with a marginal increase in hardware overhead. Relaxations on the weight update operations change the

convergence behavior of the adaptive filter, and we are forced to examine carefully the convergence behavior of

the relaxed look-ahead adaptive digital filters. It has been shown that the relaxed look-ahead adaptive digital

filters do not suffer from degradation in adaptation behavior. Futhermore, when coding, the use of pipelined

adaptive filters could lead to a dramatic increase in pixel rate with no degradation in signal-to-noise ratio of

the coded image and no increase in hardware overhead (Shanbhag and Parhi, 1992).

The concurrency created by look-ahead and relaxed look-ahead transformations can also be exploited in the

form of parallel processing. Furthermore, for a constant speed, concurrent architectures (especially the

pipelined architectures) can also lead to low power consumption.

Associativity Transformation

The addition operations in many signal processing algorithms can be interchanged since the add operations

satisfy associativity. Thus, it is possible to move the add operations outside the critical loops to increase the

maximum achievable speed of the system. As an example of the associative transformation, consider the

realization of a second-order recursion xðnÞ ¼ 5=8xðn 1Þ 3=4xðn 2Þ þ uðnÞ. Two possible realizations are
shown in Figure 20.7(a). The realization on the left contains one multiplication and two add operations in the

critical inner loop, whereas the realization on the right contains one multiplication and one add operation in

the critical inner loop. The realization on the left can be transformed to the realization on the right using the

associativity transformation. Figure 20.7(b) shows a bit-serial implementation of this second-order recursion

for the realization on the right for a word length of 8. This bit-serial system can be operated in a functionally

correct manner for any word length greater than or equal to 5 since the inner loop computation latency is Five

cycles. However, if associativity were not exploited, then the minimum realizable word length would be 6.

Thus, associativity can improve the achievable speed of the system.

Distributivity

Another local transformation that is often useful is distributivity. In this transformation, a computation

ðA · BÞ þ ðA · CÞ may be reorganized as A · ðBþ CÞ. Thus, the number of hardware units can be reduced

from two multipliers and one adder to one multiplier and one adder.

Arithmetic Processor Architectures

In addition to algorithms and architecture designs, it is also important to address implementation styles and

arithmetic processor architectures.

Most DSP systems use fixed-point hardware arithmetic operators. While many number system

representations are possible, the two’s complement number system is the most popular number

system. The other number systems include the residue number system, the redundant or signed-digit

number system, and the logarithmic number system. The residue and logarithmic number systems are rarely

used or are used in very special cases such as nonrecursive digital filters. Shifting or scaling and division are
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difficult in the residue number system. Difficulty with addition and the overhead associated with logarithm

and antilogarithm converters reduce the attractiveness of the logarithm number system. The use of the

redundant number system leads to carry-free operation but is accompanied by the overhead associated with

redundant-to-two’s complement conversion. Another approach often used is distributed arithmetic. This

approach has recently been used in a few video transformation chips.

The simplest arithmetic operation is addition. Multiplication can be realized as a series of add–shift opera-

tions, and division and square-root can be realized as a series of controlled add–subtract operations. The

conventional two’s complement adder involves carry ripple operation. This limits the throughput of the adder

operation. In DSP, however, the combined multiply–add operation is most common. Carry–save operations

have been used to realize pipelined multiply–adders using fewer pipelining latches. In conventional pipelined

two’s complement multiplier, the multiplication time is approximately 2 times the bit-level addition time.

Recently, a technique has been proposed to reduce the multiplication time from 2W bit-level binary adder

times to 1.25W bit-level binary adder times, whereW is the word length. This technique is based on the use of

FIGURE 20.7 (a) Two associative realizations of a second-order recursion; (b) an efficient bit-serial realization of the

recursion for a word length of 8.
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hybrid number system representation, where one input operand is in two’s complement number represen-

tation and the other in redundant number representation (Srinivas and Parhi, 1992). Using an efficient sign-

select redundant-to-two’s complement conversion technique, this multiplier can be made to operate faster

and, in the pipelined mode, would require fewer pipelining latches and less silicon area.

Computer-Aided Design

With progress in the theory of architectures, the computer-aided design (CAD) systems for DSP application

also become more powerful. In early 1980, the first silicon compiler system for signal processing was developed

at the University of Edinburgh and was referred to as the FIRST design system. This system only addressed the

CAD of bit-serial signal processing systems. Since then more powerful systems have been developed. The

Cathedral I system from Katholieke Universiteit Leuven and the bit-serial silicon compiler (BSSC) from GE

Research Center in Schenectady, New York, also addressed synthesis of bit-serial circuits. The Cathedral system

has now gone through many revisions, and the new versions can systhesize parallel multiprocessor data paths

and can performmore powerful scheduling and allocation. The Lager design tool at the University of California

at Berkeley was developed to synthesize the DSP algorithms using parametrizable macro building blocks (such

as ALU, RAM, ROM). This system has also gone through many revisions. The Hyper system also developed at

the University of California at Berkeley and the MARS design system developed at the University of Minnesota

at Minneapolis perform higher-level transformations and perform scheduling and allocation. These CAD tools

are crucial to rapid prototyping of high-performance DSP integrated circuits.

Future VLSI DSP Systems

Future VLSI systems will make use of a combination of many types of architectures such as dedicated and

programmable. These systems can be designed successfully with proper understanding of the algorithms,

applications, theory of architectures, and with the use of advanced CAD systems.

Defining Terms

Bit serial: Processing of one bit per clock cycle. If word length isW, then one sample or word is processed in

W clock cycles. In contrast, all W bits of a word are processed in the same clock cycle in a bit-parallel

system.

Digit serial: Processing of more than one but not all bits in one clock cycle. If the digit size is W1 and the

word length isW, then the word is processed inW/W1 clock cycles. IfW1 ¼ 1, then the system is referred

to as a bit-serial system and ifW1 ¼W, then the system is referred to as a bit-parallel system. In general,

the digit size W1 need not be a divisor of the word length W since the least and most significant bits of

consecutive words can be overlapped and processed in the same clock cycle.

Folding: The technique of mapping many tasks to a single processor.

Look-ahead: The technique of computing a state x(n) usng previous state xðn MÞ without requiring the
intermediate states x(n – 1) through xðn M þ 1Þ. This is referred to as an M-step look-ahead. In the
case of higher-order computations, there are two forms of look-ahead: clustered look-ahead and

scattered look-ahead. In clustered look-ahead, x(n) is computed using the clustered states xðn M

N þ 1Þ through xðn MÞ for an Nth-order computation. In scattered look-ahead, x(n) is computed

using the scattered states xðn iMÞ where i varies from 1 to N.

Parallel processing: Processing of multiple tasks independently by different processors. This also increases

the throughput.

Pipelining: A technique to increase throughput. A long task is divided into components, and each

component is distributed to one processor. A new task can begin even though the former tasks have not

been completed. In the pipelined operation, different components of different tasks are executed at the

same time by different processors. Pipelining leads to an increase in the system latency, i.e., the time

elapsed between the starting of a task and the completion of the task.
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Retiming: The technique of moving the delays around the system. Retiming does not alter the latency of

the system.

Systolic: Flow of data in a rhythmic fashion from a memory through many processors, returning to the

memory just as blood flows.

Unfolding: The technique of transforming a program that describes one iteration of an algorithm to

another equivalent program that describes multiple iterations of the same algorithm.

Word parallel: Processing of multiple words in the same clock cycle.
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Further Information

A detailed video tutorial on ‘‘Implementation and Synthesis of VLSI Signal Processing Systems’’ presented by

K.K. Parhi and J.M. Rabaey in March 1992 can be purchased from the customer service department of IEEE,

445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

Special architectures for video communications can be found in the book VLSI Implementations for Image

Communications, published as the fourth volume of the series Advances in Image Communications (edited by

Peter Pirsch) by Elsevier Science Publishing Co. in 1993. The informative article ‘‘Research on VLSI for Digital

Video Systems in Japan,’’ published by K.K. Parhi in the fourth volume of the 1991 Office of Naval Research

Asian Office Scientific Information Bulletin (pp. 93–98), provides examples of video codec designs using special

architectures. For video programmable digital signal processor approaches, see I. Tamitani, H. Harasaki, and

T. Nishitani, ‘‘A Real-Time HDTV Signal Processor: HD-VSP,’’ published in IEEE Transactions on Circuits and

Systems for Video Technology, March 1991, and T. Fujii, T. Sawabe, N. Ohta, and S. Ono, ‘‘Implementation of

Super High-Definition Image Processing on HiPIPE,’’ published in 1991 IEEE International Symposium on

Circuits and Systems, held in June 1991 in Singapore (pp. 348–351).

The IEEE Design and Test of Computers published three special issues related to computer-aided design of

special architectures; these issues were published in October 1990 (addressing high-level synthesis), December

1990 (addressing silicon compilations), and June 1991 (addressing rapid prototyping).

Descriptions of various CAD systems can be found in the following references. The description of the FIRST

system can be found in the article ‘‘A Silicon Compiler for VLSI Signal Processing,’’ by P. Denyer et al. in the
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Proceedings of the ESSCIRC conference held in Brussels in September 1982 (pp. 215–220). The Cathedral

system has been described in R. Jain et al., ‘‘Custom Design of a VLSI PCM-FDM Transmultiplexor from

System Specifications to Circuit Layout Using a Computer Aided Design System,’’ published in IEEE Journal of

Solid State Circuits in February 1986 (pp. 73–85). The Lager system has been described in ‘‘An Integrated

Automatic Layout Generation System for DSP Circuits,’’ by J. Rabaey, S. Pope, and R. Brodersen, published in

the July 1985 issue of the IEEE Transactions on Computer Aided Design (pp. 285–296). A description of the

MARS Design System can be found in C.-Y. Wang and K.K. Parhi, ‘‘High-Level DSP Synthesis Using MARS

System,’’ published in Proceedings of the 1992 IEEE International Symposium on Circuits and Systems in

San Diego, May 1992. A tutorial article on high-level synthesis can be found in ‘‘The High-Level Synthesis of

Digital Systems,’’ by M.C. McFarland, A. Parker, and R. Composano, published in the February 1990 issue of

the Proceedings of the IEEE (pp. 310–320).

Articles on pipelined multipliers can be found in T.G. Noll et al., ‘‘A Pipelined 330 MHZ Multiplier,’’ IEEE

Journal of Solid State Circuits, June 1986 (pp. 411–416) and in M. Hatamian and G. Cash, ‘‘A 70-MHz 8-Bit ·
8-Bit-Parallel Pipelined Multiplier in 2.5 mm CMOS,’’ IEEE Journal of Solid State Circuits, 1986.

Technical articles on special architectures and chips for signal and image processing appear in different

places, including proceedings of conferences such as IEEE Workshop on VLSI Signal Processing; IEEE

International Conference on Acoustics, Speech, and Signal Processing; IEEE International Symposium on

Circuits and Systems; IEEE International Solid State Circuits Conference; IEEE Customs Integrated Circuits

Conference; IEEE International Conference on Computer Design; ACM/IEEE Design Automation Conference;

ACM/IEEE International Conference on Computer Aided Design; International Conference on Application

Specific Array Processors; and journals such as IEEE Transactions on Signal Processing, IEEE Transactions on

Image Processing, IEEE Transactions on Circuits and Systems: Part II: Analog and Digital Signal Processing, IEEE

Transactions on Computers, IEEE Journal of Solid State Circuits, IEEE Signal Processing Magazine, IEEE Design

and Test Magazine, and Journal of VLSI Signal Processing.

20.2 Signal Processing Chips and Applications

Rulph Chassaing and Bill Bitler

Recent advances in very large scale integration (VLSI) have contributed to the current digital signal processors.

These processors are just special-purpose fast microprocessors characterized by architectures and instructions

suitable for real-time digital signal processing (DSP) applications. The commercial DSP processor, a little

more than a decade old, has emerged because of the ever-increasing number of signal processing applications.

DSP processors are now being utilized in a number of applications from communications and controls to

speech and image processing. They have found their way into talking toys and music synthesizers. A number

of texts (such as Chassaing, 1992) and articles (such as Ahmed and Kline, 1991) have been written, discussing

the applications that use DSP processors and the recent advances in DSP systems.

DSP Processors

Digital signal processors are currently available from a number of companies, including Texas Instruments,

Inc. (Texas), Motorola, Inc. (Arizona), Analog Devices, Inc. (Massachusetts), AT&T (New Jersey), and NEC

(California). These processors are categorized as either fixed-point or floating-point processors. Several

companies are now supporting both types of processors. Special-purpose digital signal processors, designed

for a specific signal processing application such as for fast Fourier transform (FFT), have also emerged.

Currently available digital signal processors range from simple, low-cost processing units through high-

performance units such as Texas Instruments’ (TI) TMS320C40 (Chassaing and Martin, 1995) and

TMS320C80, and Analog Devices1 ADSP-21060 SHARC (Chassaing and Ayers, 1996).

One of the first-generation digital signal processors is the (N-MOS technology) TMS32010, introduced by

Texas Instruments in 1982. This first-generation, fixed-point processor is based on the Harvard architecture,
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with a fast on-chip hardware multiplier/accumulator, and with data and instructions in separate memory

spaces, allowing for concurrent accesses. This type of pipelining feature enables the processor to execute one

instruction while fetching at the same time the next instruction. Other features include 144 (16-bit) words of

on-chip data RAM and a 16-bit by 16-bit multiply operation in one instruction cycle time of 200 nsec. Since

many instructions can be executed in one single cycle, the TMS32010 is capable of executing 5 million

instructions per second (MIPS). Major drawbacks of this first-generation processor are its limited on-chip

memory size and much slower execution time for accessing external memory. Improved versions of this first-

generation processor are now available in C-MOS technology, with a faster instruction cycle time of 160 nsec.

The second-generation fixed-point processor TMS32020, introduced in 1985 by TI, was quickly followed by

an improved C-MOS version TMS320C25 (Chassaing and Horning, 1990) in 1986. Features of the TMS320C25

include 544 (16-bit) words of on-chip data RAM, separate program and data memory spaces (each 64 Kwords),

and an instruction cycle time of 100 nsec, thus enabling the TMS320C25 to execute 10 MIPS. A faster version,

TI’s fixed-point TMS320C50 processor, is available with an instruction cycle time of 35 ns.

The third-generation TMS320C30 (by TI) supports fixed- as well as floating-point operations (Chassaing,

1992). Features of this processor include 32-bit by 32-bit floating-point multiply operations in one instruction

cycle time of 60 nsec. Since a number of instructions, such as load and store, multiply and add, can be

performed in parallel (in one cycle time), the TMS320C30 can execute a pair of parallel instructions in 30 nsec,

allowing for 33.3 MIPS. The Harvard-based architecture of the fixed-point processors was abandoned for one

allowing four levels of pipelining with three subsequent instructions being consequently fetched, decoded, and

read while the current instruction is being executed. The TMS320C30 has 2 Kwords of on-chip memory and a

total of 16 million words of addressable memory spaces for program, data, and input/output. Specialized

instructions are available to make common DSP algorithms such as filtering and spectral analysis execute fast

and efficiently. The architecture of the TMS320C30 was designed to take advantage of higher-level languages

such as C and ADA. The TMS320C31 and TMS320C32, recent members of the third-generation floating-point

processors, are available with a 40-nsec instruction cycle time.

DSP starter kits (DSK) are inexpensive development systems available from TI and based on both the fixed-

point TMS320C50 and the floating-point TMS320C31 processors. We will discuss both the fixed-point

TMS320C25 and the floating-point TMS320C30 digital signal processors, including the development tools

available for each of these processors and DSP applications.

Fixed-Point TMS320C25-Based Development System

TMS320C25-based development systems are now available from a number of companies such as Hyperception

Inc., Texas, and Atlanta Signal Processors, Inc., Georgia. The Software Development System (SWDS), avail-

able from TI, includes a board containing the TMS320C25, which plugs into a slot on an IBM compatible PC.

Within the SWDS environment, a program can be developed, assembled, and run. Debugging aids supported

by the SWDS include single-stepping, setting of breakpoints, and display/modification of registers.

A typical workstation consists of:

1. An IBM compatible PC. Commercially available DSP packages (such as from Hyperception or Atlanta

Signal Processors) include a number of utilities and filter design techniques.

2. The SWDS package, which includes an assembler, a linker, a debug monitor, and a C compiler.

3. Input/output alternatives such as TI’s analog interface board (AIB) or analog interface chip (AIC).

The AIB includes a 12-bit analog-to-digital converter (ADC) and a 12-bit digital-to-analog converter

(DAC). A maximum sampling rate of 40 kHz can be obtained. With (input) antialiasing and (output)

reconstruction filters mounted on a header on the AIB, different input/output (I/O) filter bandwidths can

be achieved. Instructions such as IN and OUT can be used for input/output accesses. The AIC, which

provides an inexpensive I/O alternative, includes 14-bit ADC and DAC, antialiasing/reconstruction filters,

all on a single C-MOS chip. Two inputs and one output are available on the AIC. (A TMS320C25/AIC

interface diagram and communication routines can be found in Chassaing and Horning, 1990.)
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The TLC32047 AIC is a recent member of the TLC32040 family of voiceband analog interface circuits, with

a maximum sampling rate of 25 kHz.

Implementation of a Finite Impulse Response Filter with the TMS320C25

The convolution equation

yðnÞ ¼
XN 1

k¼0
hðkÞxðn kÞ

¼ hð0ÞxðnÞ þ hð1Þxðn 1Þ þ :::þ hðN 2Þxðn ðN 2ÞÞ
þ hðN 1Þxðn ðN 1ÞÞ ð20:1Þ

represents a finite impulse response (FIR) filter with length N. The memory organization for the coefficients

h(k) and the input samples x(n – k) is shown in Table 20.1. The coefficients are placed within a specified

internal program memory space and the input samples within a specified data memory space. The program

counter (PC) initially points at the memory location that contains the last coefficient h(N – 1), for example, at

memory address FF00 h (in hex). One of the (eight) auxiliary registers points at the memory address of the

last or least recent input sample. The most recent sample is represented by x(n). The following program

segment implements Equation (20.1):

LARP AR1
RPTK N 1
MACD FF00h; *-
APAC

The first instruction selects auxiliary register AR1, which will be used for indirect addressing. The second

instruction RPTK causes the subsequent MACD instruction to execute N times (repeated N – 1 times). The

MACD instruction has the following functions:

1. Multiplies the coefficient value h(N – 1) by the input sample value x(n – (N – 1))

2. Accumulates any previous product stored in a special register (TR)

3. Copies the data memory sample value into the location of the next-higher memory; this ‘‘data move’’ is

to model the input sample delays associated with the next unit of time n 1 1

The last instruction APAC accumulates the last multiply operation h(0)x(n).

TABLE 20.1 TMS320C25 Memory Organization for Convolution

Input Samples

Coefficients Time n Time n þ 1 Time n þ 2

PC ! h(N – 1) x(n) x(nþ1) x(nþ2)
h(N – 2) x(n – 1) x(n) x(nþ1)
· · · ·

· · · ·

· · · ·

h(2) x(n – (N – 3)) x(n – (N – 4)) x(n – (N – 5))

h(1) x(n – (N – 2)) x(n – (N – 3)) x(n – (N – 4))

h(0) AR1 ! x(n – (N – 1)) x(n – (N – 2)) x(n – (N – 3))
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At time n + 1, the convolution Equation (20.1) becomes

yðnþ 1Þ ¼ hð0Þxðnþ 1Þ þ hð1ÞxðnÞ þ . . .
þ hðN 2Þxðn ðN 3ÞÞ þ hðN 1Þxðn ðN 2ÞÞ ð20:2Þ

The previous program segment can be placed within a loop, with the PC and the auxiliary register AR1

reinitialized (see the memory organization of the samples x(k) associated with time n + 1 in Table 20.1). Note

that the last multiply operation is h(0)x(·), where x(·) represents the newest sample. This process can be

continuously repeated for time n + 2, n + 3, and so on.

The characteristics of a frequency-selective FIR filter are specified by a set of coefficients that can be readily

obtained using commercially available filter design packages. These coefficients can be placed within a generic

FIR program. Within 5 to 10 minutes, an FIR filter can be implemented in real-time. This includes finding the

coefficients; assembling, linking, and downloading the FIR program into the SWDS; and observing the desired

frequency response displayed on a spectrum analyzer. A different FIR filter can be quickly obtained since the

only necessary change in the generic program is to substitute a new set of coefficients.

The approach for modeling the sample delays involves moving the data. A different scheme is used with the

floating-point TMS320C30 processor with a circular mode of addressing.

Floating-Point TMS320C30-Based Development System

TMS320C30-based DSP development systems are also currently available from a number of companies. The

following are available from Texas Instruments:

1. An evaluation module (EVM). The EVM is a powerful, yet relatively inexpensive 8-bit card that plugs

into a slot on an IBM AT compatible. It includes the third-generation TMS320C30, 16 K of user RAM,

and an AIC for I/O. A serial port connector available on the EVM can be used to interface the

TMS320C30 to other input/output devices (the TMS320C30 has two serial ports). An additional AIC

can be interfaced to the TMS320C30 through this serial port connector. A very powerful, yet inexpensive

analog evaluation fixture, available from Burr-Brown (Arizona), can also be readily interfaced to the

serial port on the EVM. This complete two-channel analog evaluation fixture includes an 18-bit DSP102

ADC, an 18-bit DSP202 DAC, antialiasing, and reconstruction filters. The ADC has a maximum

sampling rate of 200 kHz.

2. An XDS1000 emulator—powerful but quite expensive. A module can be readily built as a target system

to interface to the XDS1000 (Chassaing, 1992). This module contains the TMS320C30 and 16 K of static

RAM. Two connectors are included on this module, for interfacing to either an AIC module or to a

second-generation analog interface board (AIB). The AIC was discussed in conjunction with the

TMS320C25. The AIB includes Burr-Brown’s 16-bit ADC and DAC with a maximum sampling rate of

58 kHz. An AIC is also included on this newer AIB version.

EVM Tools

The EVM package includes an assembler, a linker, a simulator, a C compiler, and a C source debugger. The

second-generation TMS320C25 fixed-point processor is supported by C with some degree of success. The

architecture and instruction set of the third-generation TMS320C30 processor facilitate the development

of high-level language compilers. An optimizer option is available with the C compiler for the TMS320C30.

A C-code program can be readily compiled, assembled, linked, and downloaded into either a simulator or the

EVM for real-time processing. A runtime support library of C functions, included with the EVM package, can

be used during linking. During simulation, the input data can be retrieved from a file and the output data

written into a file. Input and output port addresses can be appropriately specified. Within a real-time

processing environment with the EVM, the C source debugger can be used. One can single-step through a

C-code program while observing the equivalent step(s) through the assembly code. Both the C code and the
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corresponding assembly code can be viewed through the EVM windows. One can also monitor at the same

time the contents of registers, memory locations, and so on.

Implementation of a Finite Impulse Response Filter with the TMS320C30

Consider again the convolution equation, Equation (20.1), which represents an FIR filter. Table 20.2 shows the

TMS320C30 memory organization used for the coefficients and the input samples. Initially, all the input

samples can be set to zero. The newest sample x(n), at time n, can be retrieved from an ADC using the

following instructions:

FLOAT *AR3;R3
STF R3; *AR1þþ%

These two instructions cause an input value x(n), retrieved from an input port address specified by auxiliary

register AR3, to be loaded into a register R3 (one of eight 40-bit-wide extended precision registers), then stored

in a memory location pointed by AR1 (AR1 would be first initialized to point at the ‘‘bottom’’ or higher-

memory address of the table for the input samples). AR1 is then postincremented in a circular fashion,

designated with the modulo operator %, to point at the oldest sample x(n – (N – 1)), as shown in Table 20.2. The

size of the circular buffer must first be specified. The following program segment implements Equation (20.1):

RPTS LENGTH 1
MPYF *AR0þþ%; *AR1þþ%;R0

k ADDF R0;R2;R2
ADDF R0;R2

The repeat ‘‘single’’ instruction RPTS causes the next (multiply) floating-point instruction MPYF to be

executed LENGTH times (repeated LENGTH 1), where LENGTH is the length of the FIR filter.

Furthermore, since the first ADDF addition instruction is in parallel (designated by k) with the MPYF

instruction, it is also executed LENGTH times. From Table 20.2, AR0, one of the eight available auxiliary

registers, initially points at the memory address (a table address) which contains the coefficient h(N – 1), and a

second auxiliary register AR1 now points to the address of the oldest input sample x(n – (N – 1)). The second

indirect addressing mode instruction multiplies the content in memory (address pointed by AR0) h(N – 1) by

the content in memory (address pointed by AR1) x(n – N – 1)), with the result stored in R0. Concurrently (in

parallel), the content of R0 is added to the content of R2, with the result stored in R2. Initially, R0 and R2 are

set to zero; hence, the resulting value in R2 is not the product of the first multiply operation. After the first

multiply operation, both AR0 and AR1 are incremented, and h(N – 2) is multiplied by x(n – (N – 2)).

Concurrently, the result of the first multiply operation (stored in R0) is accumulated into R2. The second

addition instruction, executed only once, accumulates the last product h(0)x(n) (similar to the APAC

TABLE 20.2 TMS320C30 Memory Organization for Convolution

Coefficients Time n Time n þ 1 Time n þ 2

AR0 ! h(N – 1) AR1 ! x(n – (N – 1)) x(n þ 1) x(n þ 1)

h(N – 2) x(n – (N – 2)) AR1 ! x(n – (N – 2)) x(n þ 2)

h(N – 3) x(n – (N – 3)) x(n – (N – 3)) AR1 ! x(n – (N – 3))

· · · ·

· · · ·

· · · ·

h(1) x(n – 1) x(n – 1) x(n – 1)

h(0) x(n) x(n) x(n)
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instruction associated with the fixed-point TMS320C25). The overall result yields an output value y(n) at time

n. After the last multiply operation, both AR0 and AR1 are post-incremented to point at the ‘‘top’’ or lower-

memory address of each circular buffer. The process can then be repeated for time n + 1 in order to obtain a

second output value y(n + 1). Note that the newest sample x(n + 1) would be retrieved from an ADC using the

FLOAT and STF instructions, then placed at the top memory location of the buffer (table) containing the

samples, overwriting the initial value x(n – (N – 1)). AR1 is then incremented to point at the address

containing x(n – (N – 2)), and the previous four instructions can be repeated. The last multiply operation

involves h(0) and x(·), where x(·) is the newest sample x(n + 1), at time n + 1. The foregoing procedure would

be repeated to produce an output y(n + 2), y(n + 3), and so on. Each output value would be converted to a

fixed-point equivalent value before being sent to a DAC. The frequency response of an FIR filter with 41

coefficients and a center frequency of 2.5 kHz, obtained from a signal analyzer, is displayed in Figure 20.8.

FIR and IIR Implementation Using C and Assembly Code

A real-time implementation of a 45-coefficient bandpass FIR filter and a sixth-order IIR filter with 345

samples, using C code and TMS320C30 code, is discussed in Chassaing and Bitler (1991). Table 20.3 and

Table 20.4 show a comparison of execution times of these two filters. The C language FIR filter, implemented

without the modulo operator % and compiled with a C compiler V4.1, executed two times slower1 than an

equivalent assembly language filter (which has a similar execution time as one implemented with a filter

routine in assembly, called by a C program). The C language IIR filter ran 1.3 times slower than the

corresponding assembly language IIR filter. These slower execution times may be acceptable for many

applications. Where execution speed is crucial, a time-critical function may be written in assembly and called

from a C program. In applications where speed is not absolutely crucial, C provides a better environment

because of its portability and maintainability.

Real-Time Applications

A number of applications are discussed in Chassaing and Horning (1990) using TMS320C25 code and in

Chassaing (1992) using TMS320C30 and C code. These applications include multi-rate and adaptive filtering,

11.5 times slower using a newer C compiler V4.4.

FIGURE 20.8 Frequency response of 41-coefficient FIR filter.
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modulation techniques, and graphic and parametric equalizers. Two applications are briefly discussed here: a

ten-band multi-rate filter and a video line rate analysis.

1. The functional block diagram of the multi-rate filter is shown in Figure 20.9. The multi-rate design

provides a significant reduction in processing time and data storage, compared to an equivalent

single-rate design. With multi-rate filtering, we can use a decimation operation to obtain a sample

rate reduction or an interpolation operation (as shown in Figure 20.9) in order to obtain a sample

rate increase (Crochiere and Rabiner, 1983). A pseudorandom noise generator implemented in

software provides the input noise to the ten octave band filters. Each octave band filter consists of

three 1/3-octave filters (each with 41 coefficients), which can be individually controlled. A controlled

noise source can be obtained with this design. Since each 1/3-octave band filter can be turned on or

off, the noise spectrum can be shaped accordingly. The interpolation filter is a low-pass FIR filter with

a 2:1 data-rate increase, yielding two sample outputs for each input sample. The sample rate of the

highest octave-band filter is set at 32,768 samples per second, with each successively lower band

processing at half the rate of the next-higher band. The multi-rate filter (a nine-band version) was

implemented with the TMS320C25 (Chassaing et al., 1990). Figure 20.10 shows the three 1/3-octave

band filters of band 10 implemented with the EVM in conjunction with the two-channel analog

fixture (made by Burr-Brown). The center frequency of the middle 1/3-octave band 10 filter is at

approximately 8 kHz since the coefficients were designed for a center frequency of 1/4 the sampling

rate (the middle 1/3-octave band 9 filter would be centered at 4 kHz, the middle 1/3-octave band 8

filter at 2 kHz, and so on). Note that the center frequency of the middle 1/3-octave band 1 filter

would be at 2 Hz if the highest sampling rate is set at 4 kHz. Observe from Figure 20.10 that the

crossover frequencies occur at the 3-dB points. Since the main processing time of the multi-rate filter

TABLE 20.3 Execution Time and Program Size of

FIR Filter

FIR

(45 samples)

Execution Time

(msec)

Size

(words)

C with modulo 4.16 122

C without modulo 0.338 116

C-called assembly 0.1666 74

Assembly 0.1652 27

TABLE 20.4 Execution Time and Program Size

of Sixth Order IIR Filter

IIR

(345 samples)

Execution Time

(msec)

Size

(words)

C 1.575 109

Assembly 1.18 29

FIGURE 20.9 Multi-rate filter functional block diagram.
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(implemented in assembly code) was measured to be 8.8 msec, the maximum sampling rate was

limited to 58 kspsec.

2. A video line rate analysis implemented entirely in C code is discussed in Chassaing and Bitler (1992).

A module was built to sample a video line of information. This module included a 9.8-MHz clock, a

high sampling rate 8-bit ADC and appropriate support circuitry (comparator, FIFO buffer, etc.). Inter-

active features allowed for the selection of one (out of 256) horizontal lines of information and the

execution of algorithms for digital filtering, averaging, and edge enhancement, with the resulting effects

displayed on the PC screen. Figure 20.11 shows the display of a horizontal line (line #125) of

information obtained from a test chart with a charge-coupled device (CCD) camera. The function key

F3 selects the 1-MHz low-pass filter resulting in the display shown in Figure 20.12. The 3-MHz filter

(with F4) would pass more of the higher-frequency components of the signal but with less noise

reduction. F5 implements the noise averaging algorithm. The effect of the edge enhancement algorithm

(with F7) is displayed in Figure 20.13.

FIGURE 20.10 Frequency responses of the 1/3-octave band 10 filters.

FIGURE 20.11 Display of a horizontal line of video signal.
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Conclusions and Future Directions

Digital signal processors have been used extensively in a number of applications, even in non-DSP

applications such as graphics. The fourth-generation floating-point TMS320C40, code compatible with the

TMS320C30, features an instruction cycle time of 40 nsec and six serial ports. The fifth-generation fixed-point

TMS320C50, code compatible with the first two generations of fixed-point processors, features an instruction

FIGURE 20.12 Video line signal with 1-MHz filtering.

FIGURE 20.13 Video line signal with edge enhancement.
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cycle time of 35 nsec and 10 Kwords (16-bit) of on-chip data and program memory. Currently, both the fixed-

point and floating-point processors are being supported by TI.

Defining Terms

C compiler: Program that translates C code into assembly code.

Digital signal processor: Special-purpose microprocessor with an architecture suitable for fast execution

of signal processing algorithms.

Fixed-point processor: A processor capable of operating on scaled integer and fractional data values.

Floating-point processor: Processor capable of operating on integers as well as on fractional data values

without scaling.

On-chip memory: Internal memory available on the digital signal processor.

Pipelining feature: Feature that permits parallel operations of fetching, decoding, reading, and executing.

Special-purpose digital signal processor: Digital signal processor with a special feature for handling a

specific signal processing application, such as FFT.
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21.1 Digital Signal Processing in Audio and Electroacoustics

Juergen Schroeter, Gary W. Elko, and M. Mohan Sondhi

Introduction

In this section we will focus on some of the algorithms and technologies in digital signal processing (DSP) that

are used in audio and electroacoustics (A&E). Because A&E embraces a wide range of topics, it is impossible

for us to go here into any depth in any one of them. Instead, this section will try to give a compressed overview

of the topics the authors judge to be most important.

In the following, we will look into steerable microphone arrays, digital hearing aids, spatial processing,

audio coding, echo cancelation, and active noise and sound control. We will not cover basic techniques in

digital recording [1] and computer music [2].

Steerable Microphone Arrays

Steerable microphone arrays have controllable directional characteristics. One important application is in

teleconferencing. Here, sound pickup can be highly degraded by reverberation and room noise. One solution

to this problem is to utilize highly directional microphones. Instead of pointing such a microphone manually

to a desired talker, steerable microphone arrays can be used for reliable automatic tracking of speakers as they

move around in a noisy room or auditorium, if combined with a suitable speech detection algorithm.
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Figure 21.1 depicts the simplest kind of steerable array using N microphones that are uniformly spaced with

distance d along the linear x-axis. It can be shown that the response of this system to a plane wave impinging at

an angle y is

Hð joÞ ¼
XN 1

n 0

ane
jðo=cÞnd cos y ð21:1Þ

Here, j ¼ ffiffiffiffi
1

p
, o is the radian frequency, and c is the speed of sound. Equation (21.1) is a spatial filter with

coefficients an and the delay operator z
1 ¼ expð jdo=c cos yÞ. Therefore, we can apply finite impulse response

(FIR) filter theory. For example, we could taper the weights an to suppress sidelobes of the array. We also have

to guard against spatial aliasing, that is, grating lobes that make the directional characteristic of the array

ambiguous. The array is steered to an angle y0 by introducing appropriate delays into the N microphone lines.

In Equation (21.1), we can incorporate these delays by letting

an ¼ e jot0eþjðo=cÞnd cos y0 ð21:2Þ
Here, t0 is an overall delay equal to or larger than Nd/c cos y0 that ensures causality, while the second term in

Equation (21.2) cancels the corresponding term in Equation (21.1) at y ¼ y0. Because of the axial symmetry
of the one-dimensional (linear, 1D) array, the directivity of the array is a figure of revolution around the

x-axis. Therefore, in case we want the array to point to a single direction in space, we need a 2D array.

Since most of the energy of typical room noise and the highest level of reverberation in a room is at low

frequencies, one would like to use arrays that have their highest directivity (i.e., narrowest beamwidth) at low

frequencies. Unfortunately, this need collides with the physics of arrays: the smaller the array relative to the

wavelength, the wider the beam. (Again, the corresponding notion in filter theory is that systems with shorter

impulse responses have wider bandwidth.) One solution to this problem is to superimpose different-size arrays

and filter each output by the appropriate bandpass filter, similar to a crossover network used in two- or three-

way loudspeaker designs. Such a superposition of three five-element arrays is shown in Figure 21.2. Note that

we only need nine microphones in this example, instead of 5 · 3 ¼ 15.

Another interesting application is the use of an array to mitigate discrete noise sources in a room. For this,

we need to attach an FIR filter to each of the microphone signal outputs. For any given frequency, one can

show that N microphones can produce N 1 nulls in the directional characteristic of the array. Similarly,

FIGURE 21.2 Three superimposed linear arrays depicted by large, midsize, and small circles. The largest array covers the

low frequencies, the midsize array covers the midrange frequencies, and the smallest covers the high frequencies.

FIGURE 21.1 A linear array of N microphones (here, N ¼ 5; t ¼ d/c cos y).
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attaching an M-point FIR filter to each of the microphones, we can get these zeros at M 1 frequencies.

The weights for these filters have to be adapted, usually under the constraint that the transfer function

(frequency characteristic) of the array for the desired source is optimally flat. In practical tests, systems of this

kind work nicely in (almost) anechoic environments. Their performance degrades, however, with increasing

reverberation.

More information on microphone arrays can be found in Ref. [3]; in particular, Flanagan et al. describe

there how to make arrays adapt to changing talker positions in a room by constantly scanning the room with a

moving search beam and by switching the main beam accordingly. Interesting research issues are, among

others, 3D arrays and how to take advantage of low-order wall reflections.

Digital Hearing Aids

Commonly used hearing aids attempt to compensate for both conductive (mechanical response) and

sensorineural (cochlear) hearing loss by delivering an amplified acoustic signal to the external ear canal. As will

be pointed out below, the most important problem is how to find the best aid for a given patient.

Historically, technology has been the limiting factor in hearing aids. Early on, carbon microphone-based

hearing aids provided limited gain and a narrow, peaky frequency response. Nowadays, hearing aid

transducers have broader bandwidth, a flatter frequency response, and higher sound output power.

Consequently, more people can benefit from the improved technology. With the recent wide adoption of

digital technology, there is renewed promise that even more people will be able to benefit from using hearing

aids. Current digital designs are just now starting to add features that are offering the hearing impaired

significant advantages over earlier digitally controlled analog and analog hearing aids. Analog hearing aids

contain only (low-power) pre-amp, filter(s), (optional) automatic gain control (AGC) or compressor, power

amplifier, and output limiter. Digitally controlled aids have certain additional components: one kind adds a

digital controller to monitor and adjust the analog components of the aid. Another kind contains switched-

capacitor circuits that represent sampled signals in analog form, in effect allowing simple discrete-time

processing (e.g., filtering). Aids with switched-capacitor circuits have a lower power consumption compared

to digital aids. Digital aid products are growing rapidly and now account for more that one-half of the

products produced by major hearing aid vendors. Digital aids contain A/D and D/A converters and at least one

programmable digital signal processing (DSP) chip, allowing for the use of sophisticated DSP algorithms,

(small) two- or three-element differential microphone arrays for beamforming (see above), speech

enhancement and noise suppression, feedback suppression, etc. Clinical results have shown that the addition

of directional pickup in hearing aids has been a significant improvement in hearing aid performance as rated

by users. For noise suppression and speech enhancement, however, experts disagree as to the usefulness of

these techniques. To date, the most successful approach for signal enhancement after initial linear

beamforming seems to be to ensure that all parts of the signal get amplified so that they are clearly audible but

not too loud and to ‘‘let the brain sort out signal and noise.’’

Hearing aids pose a tremendous challenge for the DSP engineer, as well as for the audiologist and

acoustician. Because of the continuing progress in chip technology, the physical size of a digital aid is no

longer a serious problem; however, power consumption will still be a design parameter for quite some time.

Besides the obvious necessity of avoiding howling (acoustic feedback), for example, by employing

sophisticated models of the electroacoustic transducers, acoustic leaks, and ear canal to control the aid

accordingly, there is a much more fundamental problem: since DSP allows complex schemes of splitting,

filtering, compressing, and (re)combining the signal, hearing aid performance is no longer limited by

bottlenecks in technology. It is still limited, however, by the lack of basic knowledge about how to map an

arbitrary input signal (i.e., speech from a desired speaker) onto the reduced capabilities of the auditory system

of the targeted wearer of the aid. Hence, the selection and fitting of an appropriate aid becomes the most

important issue. This serious problem is illustrated in Figure 21.3.

It is important to note that for speech presented at a constant level, a linear (no compression) hearing aid

can be tuned to do as well as a hearing aid with compression. However, if parameters like signal and
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background noise levels change dynamically, compression aids, in particular those with two bands or more,

should have an advantage.

While a patient usually has no problem telling whether setting A or B is ‘‘clearer,’’ adjusting more than just

two to three (usually interdependent) parameters is very time consuming. For a multiparameter aid, an

efficient fitting procedure that maximizes a certain objective is needed. Possible objectives are, for example,

intelligibility maximization or loudness restoration. The latter objective is assumed in the following.

It is known that an impaired ear has a reduced dynamic range. Therefore, the procedure for fitting a patient

with a hearing aid could estimate the so-called loudness-growth function (LGF) that relates the sound pressure

level of a specific (band-limited) sound to its loudness. An efficient way of measuring the LGF is described by

Allen et al. [4]. Once the LGF of an impaired ear is known, a multiband hearing aid can implement the

necessary compression for each band [5]. Note, however, that this assumes that interactions between the bands

can be neglected (problem of summation of partial loudnesses). This might not be valid for aids with a large

number of bands. Other open questions include the choice of widths and filter shape of the bands, and

optimization of dynamic aspects of the compression (e.g., time constants). For aids with just two bands, the

crossover frequency is a crucial parameter that is difficult to optimize.

Spatial Processing

In spatial processing, audio signals are modified to give them new spatial attributes such as for example, the

perception of having been recorded in a specific concert hall. The auditory system—using only the two ears as

inputs—is capable of perceiving the direction and distance of a sound source with a high degree of accuracy

by exploiting binaural and monaural spectral cues. Wave propagation in the ear canal is essentially one-

dimensional. Hence, the 3D spatial information is coded by sound diffraction into spectral information before

the sound enters the ear canal. The sound diffraction is caused by the head/torso (in the order of 20-dB and

600-msec interaural level difference and delay, respectively) and at the two pinnae (auriculae) [6]. Binaural

FIGURE 21.3 Peak third-octave band levels of normal to loud speech (hatched) and typical levels/dominant frequencies

of speech sound (identifiers). Both can be compared to the third-octave threshold of normal-hearing people (solid line),

thresholds for a mildly hearing-impaired person A, for a severely hearing-impaired person B, and for a profoundly hearing-

impaired person C. For example, for person A, sibilants and some weak consonants in a normal conversation cannot be

perceived. (Source: H. Levitt, ‘‘Speech discrimination ability in the hearing impaired: spectrum considerations,’’ in The

Vanderbilt Hearing-Aid Report: State of the Art-Research Needs, G.A. Studebaker and F.H. Bess (Eds.), Monographs in

Contemporary Audiology, Upper Darby, PA, 1982, p. 34. With permission.)
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techniques like the one discussed below can be used for evaluating room and concert-hall acoustics (optionally

in reduced-scale model rooms using a miniature dummy head), for noise assessment (e.g., in cars), and for

‘‘Kunstkopfstereophonie’’ (dummy-head stereophony). In addition, there are techniques for loudspeaker

reproduction (like ‘‘Q-Sound’’) that try to extend the range in horizontal angle of traditional stereo speakers by

using interaural cross cancelation. Largely an open question is how to reproduce spatial information for large

audiences, for example, in movie theaters.

Figure 21.4 illustrates the technique for filtering a single-channel source using measured head-related

transfer functions, in effect creating a virtual sound source in a given direction of the listener’s auditory space

(assuming plane waves, i.e., infinite source distance). On the left in this figure, the measurement of head-

related transfer functions is shown. Focusing on the left ear for a moment (subscript l), we need to estimate the

so-called free-field transfer function (subscript ff) for given angles of incidence in the horizontal plane

(azimuth f) and vertical plane (elevation d):

Hff ;1ð jo;j; dÞ ¼ Pprobe;1ð jo;j; dÞ=Pref ð joÞ ð21:3Þ

where Pprobe,1 is the Fourier transform of the sound pressure measured in the subject’s left ear, and Pref is the

Fourier transform of the pressure measured at a suitable reference point in the free field without the subject

being present (e.g., at the midpoint between the two ears). (Note that this is independent of the direction of

sound incidence since we assume an anechoic environment.) The middle of Figure 21.4 depicts the

convolution of any ‘‘dry’’ (e.g., mono, low reverberation) source with the stored Hff ;lð jo;j; dÞ’s and

corresponding Hff ;rð jo;j; dÞ’s. On the right side in the figure, the resulting binaural signals are reproduced via
equalized headphones. The equalization ensures that a sound source with a flat spectrum (e.g., white noise)

does not suffer any perceivable coloration for any direction (f, d).
Implemented in a real-time ‘‘binaural mixing console,’’ the above scheme can be used to create ‘‘virtual’’

sound sources. When combined with an appropriate scheme for interpolating head-related transfer functions,

moving sound sources can be mimicked realistically. Furthermore, it is possible to superimpose early

reflections of a hypothetical recording room, each filterered by the appropriate head-related transfer function.

Such inclusion of a room in the simulation makes the spatial reproduction more robust against individual

differences between ‘‘recording’’ and ‘‘listening’’ ears, in particular if the listener’s head movements are fed

back to the binaural mixing console. (Head movements are useful for disambiguating spatial cues.) Finally,

such a system can be used to create ‘‘virtual acoustic displays,’’ for example, for pilots and astronauts [7].

Other research issues are, for example, the required accuracy of the head-related transfer functions, inter-

subject variability, and psychoacoustic aspects of room simulations.

FIGURE 21.4 Measuring and using transfer functions of the external ear for binaural mixing (FIR ¼ finite impulse

response). (Source: E.M. Wenzel, Localization in virtual acoustic displays, Presence, vol. 1, p. 91, 1992. With permission.)
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Audio Coding

Audio coding is concerned with compressing (reducing the bit rate) of audio signals. The uncompressed

digital audio of compact disks (CDs) is recorded at a rate of 705.6 kbit/sec for each of the two channels of a

stereo signal (i.e., 16 bit/sample, 44.1-kHz sampling rate; 1411.2 kbit/sec total). This is too high a bit rate for

digital audio broadcasting (DAB) or for transmission via end-to-end digital telephone connections (integrated

services digital network, ISDN). Current audio coding algorithms provide at least ‘‘better than FM’’ quality at

a combined rate of 128 kbit/sec for the two stereo channels (two ISDN B channels!), ‘‘transparent coding’’ at

rates of 96 to 128 kbit/sec per mono channel, and ‘‘studio quality’’ at rates between 128 and 196 kbit/sec per

mono channel. (While a large number of people will be able to detect distortions in the first class of coders,

even so-called ‘‘golden ears’’ should not be able to detect any differences between original and coded versions

of known ‘‘critical’’ test signals; the highest quality category adds a safety margin for editing, filtering,

and/or recoding.)

To compress audio signals by a factor as large as 11 while maintaining a high quality requires sophisticated

algorithms for reducing the irrelevance and redundancy in a given signal. A large portion (but usually less than

50%) of the bit-rate reduction in an audio coder is due to the first of the two mechanisms. Eliminating

irrelevant portions of an input signal is done with the help of psychoacoustic models. It is obvious that a coder

can eliminate portions of the input signal that, when played back, will be below the threshold of hearing. More

complicated is the case when we have multiple signal components that tend to cover each other, that is, when

weaker components cannot be heard due to the presence of stronger components. This effect is called masking.

To let a coder take advantage of masking effects, we need to use good masking models. Masking can be

modeled in the time domain where we distinguish so-called simultaneous masking (masker and maskee occur

at the same time), forward masking (masker occurs before maskee), and backward masking (masker occurs

aftermaskee). Simultaneous masking usually is modeled in the frequency domain. This latter case is illustrated

in Figure 21.5.

Audio coders that employ common frequency-domain models of masking start out by splitting and

subsampling the input signal into different frequency bands (using filterbanks such as subband filterbanks or

time-frequency transforms). Then, the masking threshold (i.e., predicted masked threshold) is determined,

followed by quantization of the spectral information and (optional) noiseless compression using variable-

length coding. The encoding process is completed by multiplexing the spectral information with side

information, adding error protection, etc.

The first stage, the filter bank, has the following requirements. First, decomposing and then simply

reconstructing the signal should not lead to distortions (‘‘perfect reconstruction filterbank’’). This results in

the advantage that all distortions are due to the quantization of the spectral data. Since each quantizer works

on band-limited data, the distortion (also band-limited due to refiltering) is controllable by using the masking

FIGURE 21.5 Masked threshold in the frequency domain for a hypothetical input signal. In the vicinity of high-level

spectral components, signal components below the current masked threshold cannot be heard.
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models described above. Second, the bandwidths of the filters should be narrow to provide sufficient coding

gain. However, the length of the impulse responses of the filters should be short enough (time resolution of the

coder!) to avoid so-called pre-echoes, that is, backward spreading of distortion components that result from

sudden onsets (e.g., castanets). These two contradictory requirements, obviously, have to be worked out by a

compromise. Critical band filters have the shortest impulse responses needed for coding of transient signals.

On the other hand, the optimum frequency resolution (i.e., the one resulting in the highest coding gain) for a

typical signal can be achieved by using, for example, a 2048-point modified discrete cosine transform

(MDCT).

In the second stage, the (time-varying) masking threshold as determined by the psychoacoustic model

usually controls an iterative analysis-by-synthesis quantization and coding loop. It can incorporate rules for

masking of tones by noise and of noise by tones, though little is known in the psychoacoustic literature for

more general signals. Quantizer step sizes can be set and bits can be allocated according to the known spectral

estimate, by block companding with transmission of the scale factors as side information or iteratively in a

variable-length coding loop (Huffman coding). In the latter case, one can low-pass filter the signal if the total

required bit rate is too high.

The decoder has to invert the processing steps of the encoder, that is, do the error correction, perform

Huffman decoding, and reconstruct the filter signals or the inverse-transformed time-domain signal. More

information can be found, for example, in [8].

Echo Cancelation

Echo cancelers were first deployed in the U.S. telephone network in 1979. Today, they are virtually ubiquitous

in long-distance telephone circuits where they cancel so-called line echoes (i.e., electrical echoes) resulting

from nonperfect hybrids (the devices that couple local two-wire to long-distance four-wire circuits). In

satellite circuits, echoes bouncing back from the far end of a telephone connection with a round-trip delay of

about 600 msec are very annoying and disruptive. Acoustic echo cancelation—where the echo path is

characterized by the transfer function H(z) between a loudspeaker and a microphone in a room (e.g., in a

speakerphone)—is crucial for teleconferencing where two or more parties are connected via full-duplex links.

Here, echo cancelation can also alleviate acoustic feedback (‘‘howling’’).

The principle of acoustic echo cancelation is depicted in Figure 21.6(a). The echo path H(z) is canceled by

modeling H(z) by an adaptive filter and subtracting the filter’s output ŷyðtÞ from the microphone signal y(t).

The adaptability of the filter is necessary since H(z) changes appreciably with movement of people or objects

in the room and because periodic measurements of the room would be impractical. Acoustic echo cancelation

is more challenging than canceling line echoes for several reasons. First, room impulse responses h(t) are

longer than 200 msec compared to less than 20 msec for line echo cancelers. Second, the echo path of a room

h(t) is likely to change constantly (note that even small changes in temperature can cause significant changes

in h). Third, teleconferencing eventually will demand larger audio bandwidths (e.g., 7 kHz) compared to

standard telephone connections (about 3.2 kHz) and multi-channel transmission (e.g., stereo; extension to

more than two channels is fairly straightforward). We will address the stereo echo cancelation problem later in

this section.

It is obvious that the initially unknown echo path H(z) has to be ‘‘learned’’ by the canceller. It is also clear

that for adaptation to work, there needs to be a nonzero input signal x(t) that excites all the eigenmodes of the

system (resonances, or ‘‘peaks’’ of the system magnitude response jH( jo)j). Another important problem is

how to handle double-talk (speakers at both ends are talking simultaneously). In such a case, the canceller

could easily get confused by the speech from the near end that acts as an uncorrelated noise in the adaptation.

Finally, the convergence rate, that is, how fast the canceller adapts to a change in the echo path, is an important

measure to compare different algorithms.

Adaptive filter theory suggests several algorithms for use in echo cancelation. The most popular one is the

so-called least-mean square (LMS) algorithm that models the echo path by an FIR filter with an impulse

response ĥhðtÞ. Using vector notation h for the true echo path impulse response, ĥh for its estimate, and x for the
excitation time signal, an estimate of the echo is obtained by ŷyðtÞ ¼ ĥh0x, where the prime denotes vector
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transpose. A reasonable objective for a canceler is to minimize the instantaneous squared error e2(t), where

eðtÞ ¼ yðtÞ ŷyðtÞ. The time derivative of ĥh can be set to

dĥh

dt
¼ mHĥhe

2ðtÞ ¼ 2meðtÞHĥheðtÞ ¼ 2meðtÞx ð21:4Þ

resulting in the simple update equation ĥhkþ1 ¼ ĥhk þ aekxk, where a (or m) control the rate of change. In
practice, whenever the far-end signal x(t) is low in power, it is a good idea to freeze the canceler by setting

a ¼ 0. Sophisticated logic is needed to detect double talk. When it occurs, then also set a ¼ 0. It can be shown

that the spread of the eigenvalues of the autocorrelation matrix of x(t) determines the convergence rate, where

the slowest-converging eigenmode corresponds to the smallest eigenvalue. Since the eigenvalues themselves

scale with the power of the predominant spectral components in x(t), setting a ¼ 2m/(x0x) will make the
convergence rate independent of the far-end power. This is the normalized LMS method. Even then, however,

all eigenmodes will converge at the same rate only if x(t) is white noise. Therefore, pre-whitening the far-end

signal will help in speeding up convergence.

The LMS method is an iterative approach to echo cancelation. An example of a noniterative, block-oriented

approach is the least-squares (LS) algorithm. Solving a system of equations to get ĥh, however, is

computationally more costly. This cost can be reduced considerably by running the LS method on a sample-

by-sample basis and by taking advantage of the fact that the new signal vectors are the old vectors with the

oldest sample dropped and one new sample added. This is the recursive least-squares (RLS) algorithm. It also

has the advantage of normalizing x by multiplying it with the inverse of its autocorrelation matrix. This, in

effect, equalizes the adaptation rate of all eigenmodes.

Another interesting approach is outlined in Figure 21.6(b). As in subband coding (discussed earlier),

splitting the signals x and y into subbands with analysis filterbanks A, doing the cancelation in bands, and

resynthesizing the outgoing (‘‘error’’) signal e through a synthesis filterbank S also reduces the eigenvalue

spread of each bandpass signal compared to the eigenvalue spread of the fullband signal. This is true for the

eigenvalues that correspond to the ‘‘center’’ (i.e., unattenuated) portions of each band. It turns out, however,

that the slowly converging ‘‘transition-band’’ eigenmodes get attenuated significantly by the synthesis filter S.

The main advantage of the subband approach is the reduction in computational complexity due to the

down-sampling of the filterbank signals. The drawback of the subband approach, however, is the introduction

of the combined delay of A and S. Eliminating the analysis filterbank on y(t) and moving the synthesis

filterbank into the adaptation branch ŶY will remove this delay, with the result that the canceler will not be able

to model the earliest portions of the echo-path impulse response h(t). To alleviate this problem, we could add

FIGURE 21.6 (a) Principle of using an echo canceler in teleconferencing. (b) Realization of the echo canceler in

subbands. (After M.M. Sondhi and W. Kellermann, ‘‘Adaptive echo cancelation for speech signals,’’ in Advances in Speech

Signal Processing, S. Furui and M.M. Sondhi, Eds., New York: Marcel Dekker, 1991. Courtesy of Marcel Dekker, Inc.)
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in parallel a fullband echo canceler with a short filter. Further information and an extensive bibliography can

be found in [9].

Finally, let us return to the stereo echo cancelation problem. In addition to teleconferencing, there are

several other potential applications for stereophonic echo cancelers. One example is a so-called desktop

teleconference in which the conferees are all at different locations. Each conferee has a desktop with pictures or

videos of all the other conferees displayed on the screen. Here, we would like to associate stereo sound images

with each conferee’s image on the screen (left to right). Other potential applications are in on-line gaming,

where friends and foes need to communicate and should speak from different apparent directions.

In order to understand the fundamental problem of stereo acoustic echo cancelation [10], consider the

schematic of a stereophonic conference shown in Figure 21.7. We will consider echo cancelation for one end of

the circuit (room B, the receiving room), it being understood that analogous configurations are used for echo

cancelation in room A (in our discussion, the transmitting room). Each room has two loudspeakers and two

microphones. The microphones in the transmitting room A pick up signals x1(n) and x2(n). These two signals

are transmitted to loudspeakers in the receiving room B. Each microphone in room B picks up an echo of both

signals, linearly combined via the acoustic echo paths to the microphone from the two loudspeakers. For

simplicity we will consider the cancelation of the echo picked up by only one of the microphones, as shown in

Figure 21.7, and denote the impulse responses from the loudspeakers to that microphone by h1(n) and h2(n).

A similar discussion applies to cancelation of the echo at the other microphone, with h1(n) and h2(n) replaced

by the responses appropriate to that microphone. (The impulse response of an acoustic path is assumed to

include the responses of the loudspeaker and microphone in that path.)

Neglecting ambient noise and signals generated in the receiving room, the signal picked up by the

microphone is

yðnÞ ¼ ĥhT1 ðnÞx1ðnÞ þ ĥhT2 ðnÞ ð21:5Þ
and the error signal is

eðnÞ ¼ yðnÞ ŷyðnÞ ¼ rT1 ðnÞx1ðnÞ þ rT2 ðnÞx2ðnÞ ð21:6Þ
where rT1;2ðnÞ ¼ hT1;2ðnÞ ĥhT1;2ðnÞ are the misalignments in impulse responses. Let us define the ‘‘stacked’’ vector
x(n) as the concatenation of x1(n) and x2(n) (i.e., xðnÞ ¼ ½xT1 ðnÞxT2 ðnÞ T). Similarly define the stacked vectors
h, ĥhðnÞ, and r(n). In terms of these vectors, the expressions for y(n), ŷyðnÞ, and e(n) are exactly the same as the
ones for the single channel canceler discussed above. Therefore, one would expect to be able to use the

algorithm of Equation (21.4) in the ideal case to drive the misalignment vector r(n)! 0, i.e., ĥh1ðnÞ ! h1ðnÞ
and ĥh2ðnÞ ! h2ðnÞ. This turns out not to be true. In the ideal case, the algorithm does drive the error to zero.

+

h1(n) h2(n)

e(n)−

x2(n)

g2(n) g1(n)

x1(n)

y(n)

source

∧∧ ∧∧

∧∧
y (n)

h1 h2

Room B Room A

FIGURE 21.7 Schematic diagram of stereophonic echo cancelation. (Source: J. Benesty, D.R. Morgan, and M.M. Sondhi,

‘‘A better understanding and an improved solution to the specific problems of stereophonic acoustic echo cancellation,’’

IEEE Trans Speech and Audio, vol. 6, no. 2, pp. 156–165, March 1998. With permission.)
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However, the misalignment does not necessarily converge to zero. This is because the condition of zero error

can be achieved by infinitely many nonzero vectors r(n). This nonuniqueness becomes apparent when

Equation (21.6) is written in terms of the signals and impulse responses as time series. The error e(n) can be

written as

eðnÞ ¼ r1ðnÞ x1ðnÞ þ r2ðnÞ x2ðnÞ ð21:7Þ

where denotes convolution, and r1(n) and r2(n) are the misalignments in the two channels. If a single source

is active in the transmitting room, the source signal s(n) is convolved with the two transmitting room impulse

responses g1(n) and g2(n) to generate the two microphone signals x1(n) and x2(n). That is, x1ðnÞ ¼ sðnÞ g1ðnÞ
and x2ðnÞ ¼ sðnÞ g2ðnÞ. Note that, since convolution is commutable,

g2ðnÞ x1ðnÞ ¼ g2ðnÞ g1ðnÞ sðnÞ ¼ g1ðnÞ x2ðnÞ ð21:8Þ

In view of Equation (21.8), the expression for the error in Equation (21.7) can be rewritten as

eðnÞ ¼ ½r1ðnÞ þ ag2ðnÞ x1ðnÞ þ ½r2ðnÞ þ ag1ðnÞ x2ðnÞ ð21:9Þ

where a is an arbitrary constant. Clearly the settings of the adaptive filters ĥh1ðnÞ and ĥh2ðnÞ are not unique.
Thus, although r(n) ¼ 0 implies e(n) ¼ 0, the converse is not true. The condition e(n) ¼ 0 only implies a

relationship between the impulse responses of the receiving room and the transmission room. This

nonuniqueness is the basic difference between single- and two-channel cancelers. It arises when only one

source is active in the transmitting room, and is due to the fact that in such a case the signals x1(n) and x2(n)

are highly correlated.

Examination of Equation (21.7) suggests a possible solution, first proposed in [10]. If the signals x1(n)

and x2(n) were uncorrelated they would not be able to compensate for each other. The minimum of the

error (zero in the ideal case) would then be obtained only when the two misalignments r1(n) and r2(n) were

both zero.

Thus, one could try decorrelating the two channel signals. Of course, x1(n) and x2(n) cannot be completely

decorrelated because then the stereo effect itself would be lost. The challenge, therefore, is to decorrelate them by

an amount adequate to make the adaptive algorithm converge, yet small enough to be perceptually negligible.

Several attempts have been made to exploit this idea. However, the simplest and most effective proposal is to

distort the signals x1(n) and x2(n) by passing each through a zero memory nonlinearity [11], thereby reducing

their coherence. The simple nonlinear transformation:

~xx1;2 ¼ x1;2ðnÞ þ b x1;2ðnÞ ð21:10Þ

allows convergence of the misalignment. Yet, somewhat surprisingly, for speech signals it is hardly perceptible

for b even as large as 0.2. Although this nonlinear transformation provides a good solution to the non-

uniqueness problem for teleconferencing, it does not provide a completely satisfactory solution for music

signals. For complex musical signals consisting of several instruments playing together, the distortion is almost

imperceptible, as in the case of speech signals. However, for certain music signals, the nonlinearity introduces

an unacceptable degradation. The signal from a flute, for instance, is almost a pure sinusoid. The distortion

products for such a signal are quite perceptible.

Active Noise and Sound Control

Active noise control (ANC) is a way to reduce the sound pressure level of a given noise source through

electroacoustic means. ANC and echo cancelation are somewhat related. While even acoustic echo cancelation

is actually done on electrical signals, ANC could be labeled ‘‘wave cancelation,’’ since it involves using one or
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more secondary acoustic or vibrational sources. Another important difference is the fact that in ANC one

usually would like to cancel a given noise in a whole region in space, while echo cancelation commonly

involves only one microphone picking up the echo signal at a single point in space. Finally, the transfer

function of the transducer used to generate a cancelation (‘‘secondary source’’) signal needs to be considered

in ANC.

Active sound control (ASC) can be viewed as an offspring of ANC. In ASC, instead of trying to cancel a

given sound field, one tries to control specific spatial and temporal characteristics of the sound field. One

application is in adaptive sound reproduction systems. Here, ASC aims at solving the large-audience spatial

reproduction problem mentioned in the section "Spatial Processing" in this chapter.

Two important principles of ANC are depicted in Figure 21.8. In the upper half (Figure 21.8(a) and (b)), a

feedback loop is formed between the controller G(s) and the transfer function C(s) of the secondary source,

and the acoustic path to the error microphone. Control theory suggests that E/Y ¼ 1/[1 + C(s)G(s)], where

E(s) and Y(s) are Laplace transforms of e(t) and y(t), respectively. Obviously, if we could make C a real

constant and G !1, we would get a ‘‘zone of quiet’’ around the error microphone. Unfortunately, in practice
C(s) will introduce at least a delay, thus causing stability problems for too large a magnitude jGj at high
enough frequencies. The system can be kept stable, for example, by including a low-pass filter in G and by

positioning the secondary source in close vicinity to the error microphone. A highly successful application of

the feedback control in ANC is in active hearing protective devices (HPDs) and high-quality headsets and

‘‘motional-feedback’’ loudspeakers. Passive HPDs offer little or no noise attenuation at low frequencies due to

inherent physical limitations. Since the volume enclosed by earmuffs is rather small, HPDs can benefit from

the increase in low-frequency attenuation brought about by feedback-control ANC. Finally, note that the same

circuit can be used for high-quality reproduction of a communications signal s(t) fed into a headset by

subtracting s(t) electrically from e(t). The resulting transfer function is E/S ¼ C(s)G(s)/[1 + C(s)G(s)]

assuming Y(s) ¼ 0. Thus, a high loop gain jG(s)j will ensure both a high noise attenuation at low frequencies

and a faithful bass reproduction of the communications signal.

The principle of the feedforward control method in ANC is outlined in Figure 21.8(c) and (d). The obvious

difference from the feedback control method is that the separate reference signal x(t) is used. Here, cancelation

is achieved for the filter transfer function W ¼ H(s)/C(s), which is most often implemented by an adaptive

filter. The fact that x(t) reaches the ANC system earlier than e(t) allows for a causal filter, needed in broadband

systems. However, a potential problem with this method is the possibility of feedback of the secondary source

signal ŷyðtÞ into the path of the reference signal x(t). This is obviously the case when x(t) is picked up by a

microphone in a duct just upstream of the secondary source C. An elegant solution for ANC in a duct without

explicit feedback cancelation is to use a recursive filter W.

FIGURE 21.8 Two principles of active noise control. Feedback control system (a) and (b); feedforward control system (c)

and (d). Physical block diagrams (a) and (c), and equivalent electrical forms (b) and (d). (After P.A. Nelson and S.J. Elliott,

Active Control of Sound, London: Academic Press, 1992. With permission.)
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Single error signal/single secondary source systems cannot achieve global cancelation or sound control

in a room. An intuitive argument for this fact is that one needs at least as many secondary sources and

error microphones as there are orthogonal wave modes in the room. Since the number of wave modes in

a room below a given frequency is approximately proportional to the third power of this frequency, it is

clear that ANC (and ASC) is practical only at low frequencies. In practice, using small (point-source)

transducers, it turns out that one should use more error microphones than secondary sources. Examples

of such multidimensional ANC systems are employed for canceling the lowest few harmonics of the

engine noise in an airplane cabin and in a passenger car. In both of these cases, the adaptive filter

matrix is controlled by a multiple-error version of the LMS algorithm. Further information can be

found in [12].

Summary and Acknowledgment

In this section, we have touched upon several topics in audio and electroacoustics. The reader may be

reminded that the authors’ choice of these topics was biased by their background in communication acoustics.

Furthermore, ongoing efforts in integrating different communication modalities into systems for

teleconferencing [13] had a profound effect in focusing this contribution. Experts in topics covered in this

contribution, like Jont Allen, David Berkley, Joe Hall, Jim Johnston, Mead Killion, Harry Levitt, and Dennis

Morgan, are gratefully acknowledged for their patience and help.

Defining Terms

Audio: Science of processing signals that are within the frequency range of hearing, that is, roughly between

20 Hz and 20 kHz. Also the name for this kind of signal.

Critical bands: Broadly used to refer to psychoacoustic phenomena of limited frequency resolution in the

cochlea. More specifically, the concept of critical bands evolved in experiments on the audibility of a

tone in noise of varying bandwidth, centered around the frequency of the tone. Increasing the noise

bandwidth beyond a certain critical value has little effect on the audibility of the tone.

Electroacoustics: Science of interfacing between acoustical waves and corresponding electrical signals.

This includes the engineering of transducers (e.g., loudspeakers and microphones), but also parts of the

psychology of hearing, following the notion that it is not necessary to present to the ear signal

components that cannot be perceived.

Intelligibility maximization and loudness restoration: Two different objectives in fitting hearing aids.

Maximizing intelligibility involves conducting laborious intelligibility tests. Loudness restoration

involves measuring the mapping between a given sound level and its perceived loudness. Here, we

assume that recreating the loudness a normal hearing person would perceive is close to maximizing the

intelligibility of speech.

Irrelevance and redundancy: In audio coding, irrelevant portions of an audio signal can be removed

without perceptual effect. Once removed, however, they cannot be regenerated in the decoder. Contrary

to this, redundant portions of a signal that have been removed in the encoder can be regenerated in the

decoder. The ‘‘lacking’’ irrelevant parts of an original signal constitute the major cause for a

(misleadingly) low signal-to-noise ratio (SNR) of the decoded signal while its subjective quality can still

be high.

Monaural/interaural/binaural: Monaural attributes of ear input signals (e.g., timbre, loudness) require,

in principle, only one ear to be detected. Interaural attributes of ear input signals (e.g., localization in

the horizontal plane) depend on differences between, or ratios of measures of, the two ear input signals

(e.g., delay and level differences). Psychoacoustic effects (e.g., cocktail-party effect) that depend on the

fact that we have two ears are termed binaural.
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Further Information

A highly informative article that is complementary to this contribution is the one by P.J. Bloom, ‘‘High-

quality digital audio in the entertainment industry: An overview of achievements and challenges,’’ IEEE-

ASSP Magazine, October 1985. An excellent introduction to the fundamentals of audio, including music

synthesis and digital recording, is contained in the 1992 book Music Speech Audio, by W.J. Strong and

G.R. Plitnik, available from Soundprint, 2250 North 800 East, Provo, UT 84604 (ISBN 0-9611938-2-4).

Oversampling Delta-Sigma Data Converters is a 1992 collection of papers edited by J.C. Candy and

G.C. Temes. It is available from IEEE Press (IEEE order number PC0274-1). Specific issues of the Journal of

Rehabilitation Research and Development (ISSN 007-506X), published by the Veterans Administration, are a

good source of information on hearing aids, in particular the Fall 1987 issue. Spatial Hearing is the title of a

1982 book by J. Blauert, available from MIT Press (ISBN 0-262-02190-0). Anyone interested in

Psychoacoustics should look into the 1990 book of this title by E. Zwicker and H. Fastl, available from

Springer-Verlag (ISBN 0-387-52600-5).

The Institute of Electrical and Electronics Engineers (IEEE) Transactions on Speech and Audio Processing is

keeping up-to-date on algorithms in audio. Every two to three years, a workshop on applications of signal

processing to audio and electroacoustics covers the latest advances in areas introduced in this section. IEEE can be

found on the web at http://www.ieee.org. The Journal of the Audio Engineering Society (AES) is another useful

source of information on audio (http://www.aes.org). The Journal of the Acoustical Society of America (ASA)

contains information on physical, psychological, and physiological acoustics, as well as on acoustic signal

processing, among other things. ASA’s ‘‘Auditory Demonstrations’’ CD contains examples of signals

demonstrating hearing-related phenomena ranging from ‘‘critical bands’’ over ‘‘pitch’’ to ‘‘binaural beats.’’

ASA can be found on the web at http://asa.aip.org.
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21.2 Underwater Acoustical Signal Processing

Vyacheslav Tuzlukov, Won-Sik Yoon, and Yong Deak Kim

Background of Underwater Acoustics

Underwater acoustics entails the development and employment of acoustical methods to image underwater

features, to communicate information via the oceanic wave-guide, or to measure oceanic properties.

Underwater acoustics is the active or passive use of sound to study physical parameters and processes, as well

as biological species and targets (for example, ships, submarines, mines, fishes, phyto- and zooplankton, etc.)

at sea. In some cases, a specifically designed sound source is used to learn about the ocean and its boundaries

or targets (active underwater acoustics). In other research, a natural sound or a sound generated by targets in

the sea is analyzed to reveal the physical or biological characteristics of the sound source (passive underwater

acoustics). Light, radar, microwaves, and other electromagnetic waves attenuate very rapidly and do not

propagate any significant distance through salt water. Because sound suffers very much less attenuation than

electromagnetics, it has become the preeminent tool for sensing, detection, identifying, and communicating

under the ocean surface. And yet, for decades, inadequate oceanographic information about the

extraordinary spatial and temporal variability of this medium has hindered underwater acousticians in

their desire to predict sound propagation. It was necessary to learn more about those ocean characteristics

that the traditional oceanographic instruments measure rather crudely, with great difficulty, and at great

expense.

Acoustical researchers invert the problem; they use the complex nature of sound propagation to learn about

the ocean. The many successes of this young science range from the identification and counting of physical

and biological inhomogeneties — such as microbubbles, fragile zooplankton, fish, and mammals — to the

remote measurement of distant rainfall and sea surface roughness, deep sea mountains, rocks, consolidated

and suspensed sediments, as well as the shape and strength of internal waves, ocean frontal systems, and

immense churning ocean eddies, hundreds of kilometers in extent. All of these unknowns can be measured by

underwater acoustical techniques.

In retrospect, underwater acoustics started in 1912, when the steamship Titanic struck an iceberg. The sub-

sequent loss of hundreds of lives triggered man’s use of sound to sense scatterers in the sea. Within a month,

two patent applications were filed by L.R. Richardson in the United Kingdom for ‘‘detecting the presence of

large objects under water by means of the echo of compressional waves. . .directed in a beam. . .by a projector.’’

The basic idea was that a precise knowledge of the speed of sound in water, and the time of travel of the sound,

permits the calculation of the distance to the scatterer [1]. By 1935, acoustical sounding was used to determine

the ocean depth as well as to hunt for fish schools. Much more recently it has been realized that the physical

and spatial character of the scatterers can be inferred from the statistical characteristics of the scattered sound

and that high-resolution images can be obtained at long range in optically opaque, turbid water.

Knowing the sound speed in water is critical to many of the applications of underwater acoustics. A value

of 1435 m/sec was found, but it was soon realized that the speed in saline water is somewhat greater than

this, and that in general the temperature of the water is an even more important parameter. Numerous

laboratory and field measurements have now shown that the sound speed increases in a complicated

way with increasing temperature, hydrostatic pressure, and the amount of dissolved salts in the water.

A simplified formula for the speed in m/sec, accurate to 0.1 m/sec but good only to 1 km depth, was given

by Medwin [2]:

c ¼ 1449:2þ 4:6T 0:055T2 þ 0:00029T3 þ ð1:34 0:01TÞ·ðS 35Þ þ 0:016z ð21:11Þ

In the above, temperature T is in degrees centigrade, salinity S is parts per thousand of dissolved weight of

salts, and the depth z is in meters. The effect of salinity is quite small except near estuaries or in polar regions,

where fresh water enters the sea, but microbubbles have a very large effect on the speed of propagation near the
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ocean surface; frequency-dependent sound speed deviations of tens of meters per second are common in the

upper ocean.

The propagation of sound in the sea has been studied intensely since the beginning of World War II when it

was recognized that an understanding of this phenomenon was essential to the successful conduct of anti-

submarine warfare (ASW) operations. These early measurements were quickly transformed into effective,

albeit primitive, prediction tools. The study of sound propagation in the sea is fundamental to the

understanding and prediction of all other underwater acoustic phenomena. Both marine seismologists and

underwater acousticians have achieved advances in sound propagation, although the motivating factors have

been quite different. Marine seismologists have traditionally used Earth-borne propagation or elastic waves to

study the solid Earth beneath the oceans. Underwater acousticians have concentrated on the study of water-

borne, compressional-wave propagation phenomena in the ocean as well as in the shallow sub-bottom layers.

As research in underwater acoustics has extended to frequencies below several hundred Hertz, it has

overlapped with the spectral domain of marine seismologists. Moreover, marine seismologists have become

more interested in exploring the velocity–depth structure of the uppermost layers of the sea floor using higher

frequencies. This area of overlapping interests has been recognized as a sub-discipline of both communities

and is referred to as ‘‘ocean seismo-acoustics.’’

What Is Underwater Acoustical Signal Processing?

The use of acoustical signals that have propagated through water to detect, classify, and localize underwater

objects is referred to as underwater acoustical signal processing or sonar. Sonar stands for ‘‘Sound Navigation

Ranging’’ and is a method or device for detecting and locating objects, especially underwater, by means of

sound waves transmitted or reflected by an object. Specific sonar application problems are submarine

detection, mine hunting, torpedo homing, and bathymetric sounding. There are active and passive sonars.

Active sonars transmit acoustic energy and detect targets by echolocation. Passive sonars operate by listening

for acoustic emissions and can function in a covert manner.

Sonar Systems

Consider briefly the types of sonar systems. Sonar systems are used to remotely sense the interior of the ocean,

what is in it, its surface, its bottom, and the structure beneath the bottom. Many specialized systems have been

developed to do this. Data interpretation methods range from a simple display of ‘‘what is there and what is it

doing’’ to statistical analysis of the pressure signals received by a system. In display and analysis there are two

signal-processing classes: resolved and unresolved scatterers or reverberation. With resolved signals, the

sources, scatterers, and so forth are separately displayed or imaged in time and space. Decades of development

in sonar systems have improved the time and spatial resolution of the systems. With unresolved signals, the

pressure signals from the sources, scatterers, and so forth are not separated in time or space and are called

‘‘reverberation.’’ Statistical analysis, spectral analysis, and directional scattering are used in the study of

unresolved scatterers in the reverberation.

Many sonar systems are almost one-task devices. The introduction of digital recording and data analysis

has broadened the range of usefulness of an instrument so that a single instrument may be able to do several

related tasks. Digital software has replaced many of analog operations in sonar systems, and digital

signal processing has improved the adaptability of a system to new tasks. Sonar hardware and

transducer configurations tend to be specialized to measurement tasks. Starting with simple sonar to

echo sounder, we describe sonar configurations and their relation to remote sensing tasks. Generally,

acoustic pings are used.

Echo Sounder. The most common sonar system is the echo sounder (see Figure 21.9). It employs an

electrical signal generator and amplifier, called a transmitter, a transducer to convert an electrical signal to

sound; a transducer to convert sound to an electrical signal; an electrical receiving circuit; and a display.

Separate transmitting and receiving transducers are shown. A trigger from the display or transmitter starts
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the cycle. Many sonar systems use the same transducer for transmission and reception. Systems range in

complexity from the fish finders that are sold in sporting goods departments to multibeam systems that are

used by commercial fishermen and navies. The multibeam systems are basically combinations of many single-

beam systems.

Side-Scanning Sonar. The side-scanning sonar is an echo sounder that is pointed sideways (see Figure 21.10).

The sonar looks to the side of the ship and makes an echo sounding record as the ship moves. The time of

return of a pulse is interpreted as the range to the bottom feature that caused the scatter. Display software

converts the raw image to a map of features on the bottom. However, although the design concepts are the

same as the simple echo sounder, the sending transducer produces a fan-shaped beam, and the receiver has a

time-variable gain to compensate for range. Side-scanning sonars are used in geological studies to give images

FIGURE 21.10 Side-scanning sonar.

FIGURE 21.9 Echo sounder.
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of rough features on the sea floor. The instruments are also used to locate objects such as sunken ships on

the sea floor.

Multibeam Sonar. Comparisons of mapping and object location operations that use radar in air and sonar in

water demonstrate the large differences between the use of electromagnetic waves in air and sound waves in

water. Radar (electromagnetic wave velocity ¼ 3 · 108 m=sec): the radar pulse travel time for a range of 30 km
is 2 · 10 4 sec, and a simple radar systems can send, receive, and display in a very short time. The time

required to make 360– image at 1– increments can be less than 0.1 sec. Thus, radar systems can use a single
rotating dish to give good images. Consider the airborne radar. In 0.1 sec, an aircraft moving at a little less than

the speed of sound in air (about 600 mph or 1000 kph) moves only about 30 m. The attenuation of

electromagnetic waves in seawater is very large, and radar does not have a useful working range in the ocean.

However, the attenuation of electromagnetic waves in glacial ice is small enough that radar soundings are used.

Sonar (sound speed¼ 1500 m/sec): the time required for sonar to range to 30 km is 40 sec. In a sequential data

acquisition system that takes one echo measurement at a time, several hours at one location would be needed

to make one 360– image. A ship moving at 9 kph (2.5 m/sec) moves 100 m during the time for a single echo

ranging measurement. A technological solution is to acquire sonar data in parallel by transmitting and

receiving in many directions at the same time. Figure 21.11 shows an example of a multibeam sonar for sea-

floor mapping. A cross-section of the ship is shown. The transmission is a broad beam. By adjusting time

delays of the receiving elements, the multi-element receiving array is preformed to a set of narrow beams that

look from port to starboard and measure the depths to various positions such as those shown at 1 to 7 in the

figure. As the ship moves, the computer makes a contour plot of the depths. Using color coding, one gets a

highly revealing picture. This system is intended to map a swath of depths along the ship track. Since these

systems are usually mounted on the hull of the ship, the receiving array points in different directions as the ship

FIGURE 21.11 Multichannel sonar system using preformed beams.
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pitches and rolls. The data-reduction system must compensate for the ship motions and the direction in which

the receiving array is pointing when the echoes arrive.

Doppler Sonars. Doppler sonars are used to measure the velocities of ships relative to the water or the sea

floor (see Figure 21.12). Commonly, Doppler sonars have four channels — two look fore and aft, and

two look to starboard and port. They may also be used to measure the motion of the ocean surface or

swimming objects, or internal waves, within the volume. Another application of the Doppler phenomenon is

the ocean-going portable Doppler velocimeter [1].

Passive Sonar. Passive sonars listen to sounds in the ocean. A system may range in complexity from a single

hydrophone to an elaborate, steered array of hydrophones similar to the multibeam system in Figure 21.11.

There are the following noises at sea:

. Natural physical sounds: wave–turbulence interactions and oscillating bubble clouds (20 to 500 Hz);

near shipping lanes the noise in the 10 to 150 Hz band is due largely to the machinery of distant ships;

ocean sound on the band 500 to 20,000 Hz has been called wind sea, sea state noise, or Knudsen noise,

because, during World War II, Vern O. Knudsen discovered that it correlated very well with wind speed

[3]; the depth dependence owing to the attenuation of sea surface sound by near-surface bubble layers

and bubble plumes cannot be ignored; rainfall sound.
. Natural biological sounds: noise generated by marine animals.
. Shipping noise: this noise can exhibit both spatial and temporal variabilities; the spatial variability is

largely governed by the distribution of shipping routes in the oceans; the temporal variability can be

introduced, for example, by the seasonal activities of fishing fleets.
. Seismoacoustic noise: microseismic band (80 mHz to 3 Hz) contains high-level microseismic noise

resulting from nonlinear wave–wave interactions; noise-notch band (20 to 80 mHz) contains noise

controlled by currents and turbulence in the boundary layer near the sea floor; ultra-low-frequency

band (.20 mHz) contains noise resulting from surface gravity waves.

Steered Array Sonars. Transmitting or receiving arrays of transducers are steered by adding the signals from

each transducer with proper time delays. The same analysis applies to send or to receive; we give the analysis

for a receiving array. Consider the array of transducers in a line perpendicular to the direction c ¼ 0

(see Figure 21.13). To steer the array, the elements at positions y0; y1; and so forth are given time delays t0; t1; and
so forth that depend on the angle. The combination of the transducer sensitivity, analog-to-digital conversion,

FIGURE 21.12 Doppler sonar system: (a) pings from the transmitter are backscattered from zooplankton; (b) block

diagram of one channel.
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and amplifiers for the individual elements has the value an. The concept works for sources as well as receivers. To

electronically/digitally steer the array, we insert appropriate time delays in each yn-channel. Let the signal at the

0th hydrophone be pðtÞ and the channel amplification factor be a0. From the geometry in Figure 21.13, the

plane wave front arrives at the nth hydrophone at advance Dtn before reaching the 0th hydrophone, where

Dtn ¼ yn sinc
c

ð21:12Þ

The signal at hydrophone n is pðt DtnÞ. The analog/digital conversion and amplification is in the an. The
time delay tn is inserted to give the signal pðt Dtn þ tnÞ. The sum signal for N channels is

ANpNðtÞ ¼
XN 1

n¼0
Anpðt Dtn þ tnÞ ð21:13Þ

where An is an amplitude factor. Now, if tn is chosen to equal Dtn, then the signals add in phase for that

direction c, and we have

ANpNðtÞ ¼ pðtÞ
XN 1

n¼0
An for Dtn ¼ tn ð21:14Þ

This method of array steering is called delay and sum. The only assumption is that the signals in each channel

are the sum except for their time delays. Delay and sum processing works for any pðtÞ. The directional response
of a steered array in other directions can be computed by choosing an incoming angle c0 and letting

tn ¼ ynsinc
0

c
ð21:15Þ

Then

FIGURE 21.13 Electronically/digitally steered array for a plane wave entering the line of transducer array elements at

angle c:
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Dtn tn ¼ ynðsinc sinc0Þ
c

ð21:16Þ

The directional response of the array as a function of c depends on the value of c0. We have assumed that the
incident sounds are plane waves. This is equivalent to assuming that the curvature of the wave front is small

over the dimensions of the array, i.e., less than 0:125l, where l is the acoustic wavelength. The plane-wave
assumption is effective for small arrays and distant sources. Arrays are built in many configurations: cylinders,

spheres, and so on. The multibeam sonar described before is one example. By using time delays, almost any

shape can be steered to receive signals of any curvature from any direction. However, when the arrays are built

around a structure, diffraction effects can cause the performance to deteriorate.

Quantitative measurements of sound scattered from an object require that we understand the specifications

and use of the sonar system as well as the physics of the scattering process. Sonars are often designed and

adapted to the physics of a particular type of measurements. However, the operating characteristics of the

sonar and the physics of the reflection and scattering processes are really independent. Now consider a generic

sonar system.

Generic Sonar. The generic sonar, shown in Figure 21.14, is a combination of analog and digital

components. The generic sonar system has an automatic transmit/receive switch. Some systems have separate

transducers for sending and receiving. The trigger, from a clock that is internal and/or external, initiates the

transmission and reception cycle. The receiver includes the electronic and digital signal processing. The

transducers may be mounted on the ship or in a tow body, the fish. The signals may be recorded on an analog

tape, a digital tape, or a compact disc. Typical displays are paper chart recorders and video display terminals.

Sonars that are used for surveys and research usually include control of ping duration, choice of the time-

varying-gain (TVG) function, calibration signals, displays, and analog signal outputs. TVG as a function of

range for two settings for a generic sonar is shown in Figure 21.15. The operation is used to compensate for

range dependence. Unresolved overlapping echoes (volume scatter) have a pressure amplitude proportional to

t 2, and the amplitude compensation is proportional to t and 20 logR, where R is a range. Isolated echoes

from individuals have echo amplitudes proportional to t 2 and compensation is t2 or 40 logR. As shown in

Figure 21.15, for each transmission and reception cycle, the TVG starts at low gain and increases as a function

of time. All sonar receivers have a minimum output that is related to the noise and a maximum output/limit

when the amplifier overloads. Digital systems have equivalent minimum and maximum limits. The TVG is

chosen to keep the output electrical signal amplitudes approximately the same for near and distant scatterers

and to keep the signals above the minimum and less than the maximum limits.

FIGURE 21.14 Block diagram of a generic sonar.
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It is preferable to choose a TVG function that keeps the electrical signals in a good recording range rather

than trying to match some preconceived notion of what the TVG ought to be. Standard preprogrammed

choices are gain proportional to t2 or 40 logR and gain proportional to t or 20 logR. How the TVG operates

on a voltage signal in an instrument depends on the engineering design. Some designs start with a very low

gain and then increase to the amplifiers limit (see Figure 21.15a). Others start with an initial gain of unity (0

dB) and increase to the amplifier’s limit (see Figure 21.15b). If one has individual echoes from many small,

isolated targets, then the echo pressure amplitudes (the echoes) decrease as <t 2, and a TVG of 40 logR

compensates for the spherical divergence.

When the objects are close together, as in a cloud of scatterers, and their echoes overlap, the sum of all of

the unresolved echo pressures tends to decrease as t 1, and a TVG of 20 logR gives compensation. This

is a characteristic of volume scatter. In acoustical surveys, both clouds of fish and individuals can be

present, and neither choice of TVG fits all. It is better to use one TVG choice that keeps the voltage levels in

a good range for recording. Whatever the TVG choice, an appropriate range dependence can be included

in digital signal processing. Digital signal processing technology has enabled the mass manufacture of

small sports-fisherman’s sonars. These inexpensive instruments contain preprogrammed computers and are

actually very sophisticated. The small, portable sonars can identify echoes from individual fish,

display relative fish sizes, look sideways and separate echoes of large fish from reverberation, and show

water depth.

Sonar with Band-Shifting or Heterodyning Operations. The ping from sonar may have a carrier frequency

of 100 kHz and duration of 1 msec. Examples of pings having the same envelope and different carrier

frequencies are sketched in Figure 21.16 and Figure 21.17. Since the carrier frequency fc is known, sampling

the envelope and measuring the relative phase of the carrier frequency can describe the ping. This can

simplify the signal processing operations and greatly reduce memory requirements in sonar systems.

FIGURE 21.15 TVG as a function of range for two settings for a generic sonar: (a) the final TVG reference gain is unity

(0 dB); (b) the initial reference gain is unity (0 dB). The maximum TVG action is limited by the maximum gain of the

amplifier.
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The ping is determined by:

xðtÞ ¼ eðtÞsin 2pfct for 05t5tp
0 otherwise

ð21:17Þ

where the envelope of the ping is

eðtÞ ¼ 0:5 1 cos
2pt
tp

ð21:18Þ

The spectrum of xðtÞ is Xð f Þ, which is sketched in Figure 21.18. The two multiplication operations, shown in
Figure 21.19, are the first step:

xHðtÞ ¼ eðtÞ sin 2pfctcos 2pfHt ð21:19Þ
and

xQðtÞ ¼ eðtÞ sin 2p fct sin 2pfHt ð21:20Þ
We make the approximation that the time dependence of the envelope 1 cos

2p
tp

can be ignored because

FIGURE 21.17 Signals and their spectra. All of the pings have the same duration. Modulus of the spectral amplitudes

jXðf Þj:

FIGURE 21.16 Signals and their spectra. All of the pings have the same duration. Time-domain presentation of pings xðtÞ
with carrier frequencies of 50, 100, and 150 Hz.
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the frequencies are very small compared with fc. Expansion of the products of the sine and cosine terms

gives

2 sin 2pfct cos 2pfHt ¼ sin½2pð fc fHÞt sin½2pð fc þ fHÞt ð21:21Þ

and

2 sin 2pfct sin 2pfHt ¼ cos½2pð fc fHÞt cos½2pð fc þ fHÞt ð21:22Þ

and the H and Q components of the band-shifted pings are

xHðtÞ < 0:5eðtÞfsin½2pð fc fHÞt þ sin½2pð fc þ fHÞt g ð21:23Þ

and

xQðtÞ < 0:5eðtÞf cos ½2pð fc fHÞt cos ½2pð fc þ fHÞt g ð21:24Þ

The spectra of the band-shifted pings are sketched in Figure 21.20. Band-shifting operations are also known as

heterodyning. The final steps are to low-pass-filter the results to select the fc fH bands. It is sufficient to

sample the heterodyned signal at more than twice the frequency bandwidth of the envelope. For example, let a

ping have the duration of 1 msec and a carrier frequency of 100 kHz. The bandwidth of the 1 msec ping is

approximately 1 kHz, and thus the minimum sampling frequency is 2 kHz. At 4 kHz, the envelope would be

sampled four times.

The relative phases of heterodyned signals are preserved in the heterodyning operation. Let the ping given

by Equation (21.17) have a relative phase Z:

xðt; ZÞ ¼ eðtÞ sinð2pfct þ ZÞ ð21:25Þ

The shift of the envelope is very small. Repeating the steps that gave Equation (21.21) to Equation (21.24), the

FIGURE 21.18 Band-shift or heterodyne operations: spectrum of the input signal.

FIGURE 21.19 Band-shift or heterodyne operations: diagram of the band-shift operation for both cosine (H) and the sine

quadrature (Q) multiplications.
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low-pass heterodyned signals with a phase shift are

xHðt; ZÞ < 0:5eðtÞ sinð2pfdt þ ZÞ ð21:26Þ

where fd ¼ fc fH, and

xQðt; ZÞ < 0:5eðtÞcosð2pfdt þ ZÞ ð21:27Þ

The reference signal is xðtÞ, the phase-shifted signal is xðt; ZÞ, and we want to measure the relative phase. The
cross-correlations of the signals are less sensitive to noise than direct comparisons of the phases. Consider

the cross-correlation of xHðtÞ and xQðt; ZÞ:

5xHðtÞxQðt; ZÞ4 1

Norm

Ztp
0

e2ðtÞ sin 2pfdt cos ð2pfdt þ ZÞdt ð21:28Þ

where

Norm
Ztp
0

e2ðtÞ sin2 2pfdtdt ð21:29Þ

The expansions of the product of the sine and cosine are

sin 2pfdt cosð2pfdt þ ZÞ ¼ 0:5 sin Zþ 0:5 sinð4pfdt þ ZÞ ð21:30Þ

and

sin 2 2pfdt ¼ 0:5 0:5 cos 4pfdt ð21:31Þ

The substitution of Equation (21.30) and Equation (21.31) into Equation (21.28) gives the sum of two

integrals. The integral that includes the sin ð4pfdt þ ZÞ term tends to 0. The remaining integral is

5xHðtÞxQðt; ZÞ4<
1

2Norm

Ztp
0

e2ðtÞ sin Zdt ð21:32Þ

The evaluation of Norm, using Equation (21.30) and Equation (21.31), reduces Equation (21.32) to

5xHðtÞxQðt; ZÞ4< sin Z ð21:33Þ

FIGURE 21.20 Band-shift or heterodyne operations: output spectra.
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The other cross-correlations are determined as follows:

5xQðtÞxHðt; ZÞ4< sin Z ð21:34Þ

5xHðtÞxHðt; ZÞ4< cos Z ð21:35Þ

5xQðtÞxQðt; ZÞ4< cos Z ð21:36Þ

The following expression gives the tg Z:

tg Z ¼ 5xHðtÞxQðt; ZÞ4 5xQðtÞxHðt; ZÞ4
5xHðtÞxHðt; ZÞ4þ5xQðtÞxQðt; ZÞ4 ð21:37Þ

The cross-correlation method of measuring the phase difference is useful when two pressure signals (pings) are

received on a pair of transducers and their phase difference is used to calculate the direction of the incident

pressure signal [4].

Echo Identification Rules. The echo amplitude display from echo sounders shows an interesting pheno-

menon as the instrument moves slowly over isolated fish. Normally, TVG compensates for range so that the

echo amplitudes are the same for the same sizes of fish at different ranges. Figure 21.21 shows the details of

echoes from one fish in a sonar beam. First for simplicity of drawing, the sonar is fixed and the fish swims

through the center of the sonar beam. Pings measure the sequence of ranges to the fish at positions ‘‘a’’ to ‘‘i.’’

The graphic recorder plots the echoes beneath the time of the ping and the sequence of echoes form a crescent.

The echo amplitudes are given by the position of the fish in the transducer-response pattern. The graphic

record of echoes would be the same if the fish was fixed and the sonar transducer was moved from left to right

(‘‘a’’ to ‘‘i’’) over the fish. An echo crescent is formed as the scattering object (fish) moves through the echo

sounder’s beam pattern. Starting with the object at the left edge of the beam, the echo is weak, and, from the

geometry, the range is a little larger than at position ‘‘e.’’ As the object moves into the center of the beam (‘‘e’’),

the echo is larger, and the range is smaller. The width of the crescent and its amplitude depend on depth and

whether the object goes through the center of the beam or is off to one side. The procedures to use these effects

in the analysis of echoes from fish are suggested in [5]. The computer identification of an echo requires

acceptance rules. The envelopes of a single echo, reverberations, and several echoes are shown in Figure 21.22.

The sonar return has been compensated for spherical spreading. The echo envelope is eðtÞ. A single echo has

shape parameters. The ping has a duration of tp, and ideally the duration of the echo is tp. A specific example

FIGURE 21.21 Simulation of a graphic display of echoes from a single fish.
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of acceptance rules follows. Single echo identification and acceptance rules are important parts of the

signal processing codes that are used in data analysis. Acceptance rules are used in the fish-finding sonars

for sportsmen.

Signal Processing

Signals are the messages that we want to receive at our hydrophone. Noises are everything that we do not want

to receive. The types of signal messages include impulses and continuous wave (CW) tones of short or long

duration and constant or varying frequency; they also include complicated coded messages and random

sequences. The form of noise can run the gamut. We all know the popular saying ‘‘Beauty (or ugliness) is in

the eye of the beholder.’’ One can propose a comparable acoustical maxim: ‘‘Signals (or noise) are in the ear of

the listener.’’ There are many examples: the sonar operator searching for the signal of a submarine will call the

sounds of whales and dolphins noise. Needless to say, the marine mammals seeking to communicate or locate

food would characterize man-made sounds as noise. Some sounds called noise for many years are now

recognized as bearing information that qualifies them as signals; for example, the sound of rainfall at sea is

now used to measure the size and number of raindrops per square meter per second. Flow noise at a

transducer, electrical circuit noises, and the 60- or 50-Hz electrical interferences from power lines are generally

regarded as noise by everybody.

Traditionally, underwater ambient noise has been specified in terms of the sound measured at a convenient

hydrophone, some distance from the sources. The origins of the sound are often a mystery. We initiate a

different approach. We will survey the acoustic power, source pressure, directionality, and intermittency of

physical, biological, and man-made ocean sounds at their source. When this information is known, one’s

knowledge of propagation in the ocean allows us to calculate the ambient sound at any location. In addition to

our survey of many of the more common sound sources at sea, we need operations that allow the listener to

sort out the signal from the noise

Sampling Rules

Practically all underwater sound signals and noise are recorded digitally, and the results of analysis are

displayed on computer terminals. The acoustician uses signal acquisition and digitizing equipment, signal

FIGURE 21.22 Identification of echoes: (a) at half-echo amplitude, the widthmust be less than 1.5 tp and greater than 0.5 tp;

(b) the echo amplitude must be greater than a threshold and the reverberation noise; (c) the echo is less than the threshold

before and after the echo and the minimum time tmin is greater than the reciprocal frequency bandwidth of the receiver.
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processing algorithms, and graphic display software to make this happen. The noisy signal that comes from

our hydrophone is an electrical voltage that is a continuous function of time. It is called an analog signal.

Hydrophone signals must be sampled to convert them from analog to digital format in order to enter a digital

computer. We must sample signals properly or we get garbage. The sampling rules are general. They apply to

either temporal or spatial sampling of the oceanic environment. When the rules are obeyed, the original signal

can be recovered from the sampled signal with the aid of an interpolation procedure. If the rules are not

obeyed, and sampling is too sparse, the original signal cannot be recovered. The Nyquist sampling rules are [6]:

. Space-Domain Rule. The spatial sampling interval must be less than half of the shortest wavelength of

the spatial variation. Spatial sampling is sometimes described in terms of the spatial wave number,

ks ¼ 2p
ls
, where ls is the distance between samples.

. Time-Domain Rule. The time interval between samples must be less than half of the shortest period in

the signal. Sampling is defined in terms of the sampling frequency fs ¼ t 1
0 , where t0 is the time between

samples. Otherwise stated, the sampling frequency must be greater than twice the highest frequency

component in the signal.

Spatial sampling. In traditional marine biology, samples are taken by towing a net through the water. A net

is lowered to the depth, opened, and towed for a specified distance. Net sampling takes a lot of work.

Temporal sampling. The electrical signal xðtÞ is sampled by an analog-to-digital converter to create a sequence
of numbers (see Figure 21.23). The clock (Figure 21.23(a)) gives the sampling instruction. The sample is the

FIGURE 21.23 Temporal sampling of a simple signal: (a) sampling system to change an analog voltage into a sequence of

numbers; (b) input analog sinusoidal voltage; (c) the result of sampling four times during each half-period (the vertical

lines represent the magnitudes of the sampled voltages and the straight lines between ends of the vertical lines are

interpolations); (d) the result of sampling at times greater than the half-period.
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instantaneous value of the signal voltage at the clock time. No information is recordered about the signal voltage

between samples where straight lines are drawn. Examples of data taken at two different sampling intervals are

shown. In Figure 21.23(c) there are four samples in a half-period. In Figure 21.23(d) the sampling interval is larger

than the half-period. Reconstruction of the inadequately sampled signal in Figure 21. 23(d) does not resemble the

original signal, whereas Figure 21.23(c) does. A practical rule of thumb is to sample at intervals less than the

period/3 for approximate reconstruction of the original signal.

Filter Operations

Electrical filters were originally introduced into electronic systems by radio and telephone engineers to

separate the signals they wanted from those that they did not. Instrumentation manufacturers built analog

filters or black boxes for research laboratories. These filters had switches on the front to make frequency

bandpass choices. We use the filters that are built into our radio or television set when we select a channel that

tunes in our desired station and rejects others. Audio amplifiers have filters (equalizers, bass, and treble

controls) to modify the amplitudes of the input frequencies and to enhance the quality of the sound coming

from the speakers. Digital communication engineers have developed the digital equivalent of the black box

analog filter. An analog-to-digital converter digitizes the incoming analog electrical signal, and a computer

does the filter operations. In many systems, the filtered digital sequence of numbers is converted back to an

analog signal for listening and display. For simplicity in our discussion of operations on signals and noise, we

use the neutral symbols x; h, and y to represent source, filters, and filter outputs, respectively.

Finite Fourier Transformations. Digital computers, digitized data, and efficient algorithms have made the

numerical computations of Fourier transformations practical. The Fourier transformation of a finite number

of data points is called the finite Fourier transformation (FFT) or discrete Fourier transformation (DFT). The

time intervals between all digitally sampled data points are t0. For N data points, the Fourier transformation

pairs are

XfftðmÞ ¼
XN 1

n¼0
xðnÞ · e 2j

pmn
N ð21:38Þ

xðnÞ ¼ 1

N

XN 1

m¼0
XfftðmÞ · e2j

pmn
N ð21:39Þ

where xðnÞ is the nth digital input signal amplitudes, and XfftðmÞ is the mth spectral component.
Equation (21.38) changes a time-dependent series of terms into a frequency spectrum. The companion

Equation (21.39) or inverse finite Fourier transformation or (IFFT), changes a spectrum into a time-

dependent expression. Real xðnÞ transforms to complex XfftðmÞ and vice versa. A simple example demonstrates
the periodic properties. Let N ¼ 64 and suppose that the original digitized signal is real and exists between

n ¼ 0 and n ¼ 63 as shown in Figure 21.24(a). The digitized signal is assumed to be an isolated event (see

Figure 21.24(a)). The FFTmethod assumes that the signal has the period N ¼ 64, as shown in Figure 21.24(b).

Evaluations of the FFT give real and imaginary components of XfftðmÞ. Inspection of Figure 21.24(c) shows
that the real components are symmetric about 0, 0.5N, and N. In Figure 21.24(d) the imaginary components

are antisymmetric about 0, 0.5N, and N. The modulus jXfftðmÞj, Figure 21.24(e), is

jXfftðmÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fReXfftðmÞg2 þ fImXfftðmÞg2

q
ð21:40Þ

which is symmetric about 0, 0.5N, and N. If we had started with ReXfftðmÞ and ImXfftðmÞ, we would have the
periodic xðnÞ. Figure 21.24 shows most of the important properties of the FFT.
Filter-Response Measurements. As shown in Figure 21.25, the frequency response of the filter is the ratio of

the output/input voltages for a long-duration sinusoidal input signal (the oscillator). Two measurements are

sketched in Figure 21.25. To record signals digitally, we need a low-pass filter to prepare the signal for the

digitization operation. The filter shown in Figure 21.25(b) is a low-pass, antialiasing filter. It is adjusted to pass
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FIGURE 21.24 Signal, periodic Fourier series and its spectrum. Even if the orthogonal signal is not periodic, expansion in

the Fourier series creates a new signal that is periodic. In applications, many zeros are appended to the signal to move the

next cycle out of the way: (a) original signal; (b) periodic signal; (c) real component of XfftðmÞ; (d) imaginary component of
XfftðmÞ; and (e) modulus of XfftðmÞ,jXfftðmÞj:

FIGURE 21.25 Filters and their responses: (a) block diagram for a typical filter response measurement; (b) response of an

antialiasing, low-pass filter that is used ahead of analog-to-digital conversion at sampling frequency fs; (c) response of a

bandpass filter.
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frequencies that are less than half the sampling frequency of the analog-to-digital converter and to reject

higher frequencies. It thereby can prevent higher-frequency components from appearing as alias signals. The

action of a bandpass filter is sketched in Figure 21.25(c). It is used to pass a signal and to reject unwanted

signals and noise within the designed frequency range.

Time-Domain View of Bandpass Filtering. Figure 21.26(a) shows a short-duration signal, x1ðtÞ, which then
passes through an appropriate bandpass filter to give the output y1ðtÞ in Figure 21.26(b). The high- and low-
pass settings of the filter were chosen to pass the signal with the signal with an acceptable amount of distortion

of waveform. A longer-duration, low-frequency whale song, x2ðtÞ, is emitted during this same time so that the
sum of the two signals at the input (see Figure 21.26(c)) is

xðtÞ ¼ x1ðtÞ þ x2ðtÞ ð21:41Þ

The output of the bandpass filter yðtÞ is shown in Figure 21.26(d). The bandpass filter effectively removes the
interfering whale song and reveals the short-duration 150-Hz ping.

Filter Operations in the Frequency Domain. Operations in the frequency domain are intuitively simple. The

frequency-dependent functions, Xð f Þ and Yð f Þ, are the amplitude spectral densities of the input and output
signals, and Hð f Þ is the filter-frequency response. The input–output expressions for analog signals are

Yð f Þ ¼ Hð f Þ·Xð f Þ ð21:42Þ

and

Yfftð f Þ ¼ Hfftð f Þ·Xfftð f Þ ð21:43Þ

The output signals Yð f Þ or Yfftð f Þ have the frequency components that are passed by the filters. Our discussion
uses the amplitude spectral densities for brevity.

Figure 21.27 represents a spectrum analyzer that was constructed of many bandpass filters. The complex

signal is an input to each of the filters. The spectral output of the jth filter is

Yjð f Þ ¼ Hjð f Þ·Xjð f Þ ð21:44Þ

FIGURE 21.26 Filter operation shown in the time-domain: (a) signal input is a 150-Hz ping having a duration of 0.01sec;

(b) signal out of a 50 to 150 Hz bandpass filter; (c) input 150-Hz ping and a 20-Hz whale song; (d) filtered signal output

using the 50 to 150 Hz bandpass filter.
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Parseval’s theorem gives the equivalence between the integral squares of signals in the time- and frequency-

domains:

Z1
1
y2ðtÞdt ¼

Z1
1
jYð f Þj2df ¼ 2

Z1
0

jYð f Þj2df ð21:45Þ

where the time integral of y2ðtÞ is finite, and the absolute squares of jYð f Þj and jYð f Þj are equal. For signals
that start at 0 time, the limits of the doubly infinite integral become 0 to 1. Using the filter input and output,
Equation (21.44), and Parseval’s theorem [7], the integral square output of the jth filter is

Z1
0

y2j ðtÞdt ¼ 2
Z1
0

jYjð f Þj2df ð21:46Þ

The substitution of Equation (21.44) into Equation (21.46) gives the filter output:

Z1
0

y2j ðtÞdt ¼ 2
Z1
0

jXjð f Þ·Hjð f Þj2df ð21:47Þ

FIGURE 21.27 Spectral analysis of the signals of Figure 21.26 using a digital spectral analysis. The bandwidths of the

equivalent bandpass filters are 2 Hz: (a) an analog spectrum analyzer that uses a bank of bandpass filters; (b) the digitally

calculated spectrum of the 150-Hz ping in Figure 21.26(a); (c) the digitally calculated spectrum of the ping and whale song

in Figure 21.26(c). The spectral amplitude factor of the ping is 0.025 that of the whale song. The ping does not show the

detail of Figure 21.26(c) because of the change of scale.
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For an approximation, let Hjð f Þ be a boxcar filter defined by

Hjð f Þ ¼ 1 for fj 0:5Df < f < fj þ 0:5Df
0 otherwise

ð21:48Þ

If Xð f Þ is approximately constant in the pass band (Equation (21.48)), then the time integral square

(Equation (21.47)) is approximately:

Z1
0

y2j ðtÞdt < 2jXð fjÞj2Df ð21:49Þ

This is the raw output of the boxcar spectrum analyzer. The spectral density in a 1-Hz bandwidth is obtained

by dividing both sides of Equation (21.49) by Df :

1

Df

Z1
0

y2j ðtÞdt < 2jXð fjÞj2 ð21:50Þ

The quantity in Equation (21.50) is sometimes called an energy spectral density, Exxð fjÞ, when the signal

amplitude is a voltage, because the integral square over time is proportional to the energy of the electrical

signal during that time:

Exxð fjÞ ¼ 1

Df

Z1
0

y2j ðtÞdt < 2jXð fjÞj2 ð21:51Þ

The subscript xx indicates that xðtÞ is the function being analyzed.
The xðtÞ and yðtÞ have units of Pa, the units of Exxð fjÞ are Pa2 sec=Hz. Although the quantity Exxð f Þ is often

called an energy spectral density, it is actually proportional to the energy spectral density of the wave. As shown

in the discussion of intensity [1], true expressions for energy spectral density (joules=m2 Hz) require that

Pa2 sec=Hz be divided by rAc, where rA is the ambient density of the medium and c is the sound speed or

velocity. Most spectrum analyzers are digital and use computers to do the spectral analysis. The digital

spectrum analyzers often can have the equivalent of more than 1000 very narrow band-pass filters. Examples

of spectrum analysis are shown in Figure 21.27(b) and (c). The spectrum of the 150-Hz ping (see

Figure 21.27(b)) and the spectrum of the short-duration ping and longer-duration whale song are shown in

Figure 21.27(c).

Gated Signals

The spectrum of a signal depends on its time-domain waveform. Consider some pings and their spectra. These

comparisons display the relation of periodicity and duration, in the time-domain, to the peak frequency and

bandwidth of the spectrum. For these examples, the ping has a slow turn-on and turn-off. The signal xðtÞ is

xðtÞ ¼ 0:5 1 cos
2pt
tp

sin 2pfct for 05t5tp

0 otherwise

8<: ð21:52Þ

where tp is the total nonzero ping duration and fc is the carrier frequency. The amplitude factor in the brackets

gives a spectrum with very small side lobes. This signal is similar to the sound-pressure signal radiated by

many sonar transducers and some marine animals. The envelope of the sine wave is tapered from zero to a

maximum and then back to zero.
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Dependence of Spectrum on Ping Carrier Periodicity. Figure 21.16 and Figure 21.17 show the dependence of

the peak of the spectrum on the carrier frequency of the pings. The durations of the pings were chosen to be

long so that the widths of spectral peaks are narrow. The 50-Hz signal has a spectral peak at approximately

50 Hz. The other signals have their spectral peaks at 100 and 150 Hz. The period of the signal can be measured

to estimate the peak or central frequency of the spectrum. This is the first rule of thumb.

Dependence of Spectrum on Ping Duration. Figure 21.28 shows the dependence of the widths of the spectral

peaks on the durations of the pings. The effective durations of the signals td are a little less than the tp in

Equation (21.52) because the turn-ons and turn-offs are very gradual. The same frequency, 100 Hz, was used for

all examples. To define the bandwidth Df , we use the half-power width given by the two frequencies where the
amplitude is 0.707 of the peak amplitude. The spectra shown in Figure 21.28(b) are the module of the absolute

amplitudes. The widths of the spectra decrease as the signal duration increases and are approximately the

reciprocals of the durations of the signals. The comparisons are in Table 21.1. These comparisons give a second

rule of thumb:

Df · td > 1 ð21:53Þ

FIGURE 21.28 Signals having the same carrier frequency and different durations: (a) signals in the time-domain;

(b) module of spectral amplitudes in the frequency-domain. The bandwidths were measured at the half-power points

(i.e., at 0.707 of the peak amplitudes).
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We use the > sign for Df ·td because many signals have durations greater than Df
1. The time td gives the

minimum duration of a signal for a sonar system to have a bandwidth Df .

Power Spectra of Random Signals

Sound pressures that have random characteristics are often called noise, whether they are cleverly created as

such or are the result of random and uncontrolled processes in the ocean. The spectral analysis of both is the

same. As inputs to a spectrum analyzer, they are signals, and their spectral descriptions are to be determined.

For a short name, these are called random signals.

Signals Having Random Characteristics. In their simplest form, signals that have random characteristics are

the result of some process that is not predictable. In honest games, the toss of a coin and the roll of a die give

sequences of random events. In the Earth, processes that range from the occurrence and location of

earthquakes to rainfall at sea are generators of random signals. For simulations and laboratory tests, we use

computers and function generators to make sequences or sets of random numbers. Many of the algorithms

generate sequences that repeat, and these algorithms are known as pseudorandom number generators. The

numerical recipe books give random number-generating algorithms. Programming languages usually include

a function call such as rng (.) in the library of functions.

Spectral Density and Correlation Methods. The correlation or covariance method of analyzing random

signals is discussed in detail by Blackman and Tukey in their monograph The Measurement of Power Spectra

[1958]. The random signal is the sequence of numbers xðnÞ, and the sequence has N þ kmax numbers. The

covariance of the random signal is the summation:

cxxðkÞ ¼
1
N

PN 1

n¼0
xðnÞ·xðnþ kÞ;

0 otherwise

8<: ð21:54Þ

The covariance cxxðkÞ is symmetric, and cxxðkÞ ¼ cxxð kÞ. The Fourier transformation of cxxðkÞ is, using
Equation (21.38):

Cxx;fftðmÞ ¼
XN 1

k¼0
cxxðkÞ · e 2j

pkm
N ð21:55Þ

The substitution of Equation (21.54) in Equation (21.55) gives:

CfftðmÞ ¼ 1

N

XN 1

k¼0

XN 1

n¼0
xðnÞ · xðnþ kÞ · e 2j

pmk
N ð21:56Þ

Change variables by letting j ¼ nþ k, and Equation (21.56) becomes:

CfftðmÞ ¼ 1

N

XN 1

n¼0
xðnÞ · e2jpmnN

XN 1

n¼0
xðkÞ · e 2j

pmk
N ð21:57Þ

TABLE 21.1 Comparison between the Signal Duration

and Spectrum Width

tp; sec td; sec
1
td
;Hz Df ;Hz

0.01 0.0085 118.0 120

0.02 0.017 58.8 60

0.04 0.034 29.4 30

0.10 0.08 12.5 13
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The first summation is the complex conjugate XfftðmÞ and the second summation is XfftðmÞ. The spectrum is

Cxx;fftðmÞ ¼ XfftðmÞ · XfftðmÞ
N

ð21:58Þ

and, using Equation 6.2.27 in [1], the spectral density is

CxxðmÞ ¼ Cxx;fftðmÞ·t0 ð21:59Þ

where t0 is the time between samples. Frequency domain expressions for the autocovariance are

cxxðtÞ ¼
Z1
1
Cxxð f Þ · e2jpf tdf ð21:60Þ

and

Cxxð f Þ ¼
Z1
1
cxxðtÞ · e 2jpf tdt ð21:61Þ

where Cxxð f Þ has positive and negative frequencies, and Cxxð f Þ ¼ Cxxð f Þ, or

cxxðtÞ ¼ 2
Z1
0

Cxxð f Þ cosð2pf tÞdf ð21:62Þ

This pair of transformations, Equation (21.61) and Equation (21.62), is known as the Wiener–Khinchine

theorem. The power spectral density of xðtÞ is the sum of the positive and negative frequency components:

Pxxð f Þ ¼ 2Cxxð f Þ ð21:63Þ
Random Signal Simulations: Intensity Spectral Density

In the simulation of a random signal, the random function generator gives a sequence of random numbers:

xð0Þ; xð1Þ; and so on. Figure 21.29(a) shows a sequence where the numbers have been connected by

interpolation lines. The result of bandpass filtering the input random signal gives a new random signal, the

output yðnÞ in Figure 21.29(b). The operations of bandpass filtering, squaring the signal, and summing or

integrating the squared signal are indicated in Figure 21.30. The effective number of independent trials is

Nit ¼ td · Dfm ð21:64Þ
where td is the duration of the signal and Dfm is the filter bandwidth:

Pxxð fmÞ ¼ 1

NDfm

XN 1

n¼0
y2mðnÞ ð21:65Þ

where N is the number of samples.

The filtered signal is ymðnÞ, where the subscript is added to indicate the filtering by the mth filter. The signal
is squared, summed, and averaged over td to give the power. Since the mean square output (e.g., volt2) is
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proportional to the filter bandwidth and the duration of the signal, it is customary to define the power spectral

density by Equation (21.65). The first step in deriving an equivalent integral expression for continuous

functions of time uses the multiplication and division by t0:

Pxxð fmÞ ¼ 1

Nt0Dfm

XN 1

n¼0
y2mðnÞt0 ð21:66Þ

Let Nt0 become td, the duration of the signal, and t0 become dt. The summation becomes the integral:

Pxxð fmÞ ¼ 1

tdDfm

Ztd
0

y2mðnÞdt ð21:67Þ

If xðnÞ has the units of volts, the so-called power spectral density has units of ðvoltsÞ2=Hz: True power spectral
density would require division by a load resistance in an electrical circuit to give watts=Hz: Since a

hydrophone output in volts is proportional to the acoustic pressure, xðnÞ has the units of Pa, the

spectral density has units of ðPaÞ2=Hz; and the true intensity spectral density requires division by rAc; to give

FIGURE 21.29 (a) Random signal created by using a random number generator (the sampling interval was 1 msec).

(b) Result of bandpass filtering the signal in (a) through a 50- to 150-Hz bandpass filter and the duration of the signal is td:

FIGURE 21.30 Block diagram of spectral analysis of a random signal in a computer or a single dedicated instrument; the

set of filters hðmÞ have center frequencies fm and filter widths Dfm; the duration of the random signal is td:
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ðPaÞ2=rAcHz ¼ watts=m2Hz: Acoustic spectra are often reported in dB relative to one ðmPaÞ2=Hz; so that the
intensity spectrum level (ISL):

ISL ¼ 10 log10
Pxxð fmÞ
ðmPaÞ2
Hz

8>><>>:
9>>=>>; ð21:68Þ

The spectrum levels depend on the reference sound pressure, which is sometimes unclear. It is better to

use Pascal units such as ðPaÞ2=Hz or watts=m2Hz.

Spectral Smoothing. Consider the following example of spectrum analysis. A random signal is constructed of

512 magnitudes at separation t0 ¼ 0:001 sec and duration 0.512 sec. Figure 21.31 shows the results of

processing the signal by the equivalents of very narrow, wide, and very wide bandpass filters. The output of the

narrow 2-Hz filter (Figure 21.31(a)) is extremely rough. The number of independent samples given by

Equation (21.54) in the 2-Hz bandpass filter is 1. Figure 21.31(b) shows the result of using a wider filter,

Df ¼ 64Hz: Here the number of independent samples is 32. The spectrum is much smoother and has less

detail. An increase in the filter width to Df ¼ 128Hz and the number of independent samples to 64 is shown

in Figure 21.31(c). Another random signal would have a different spectrum. These examples show the basic

trade-off between resolution and reduction of roughness or variance of the estimate of the spectral density.

The importance of smoothing power spectra and the trade-off between the reduction of frequency resolution

and the reduction of fluctuations is given in detail by Blackman and Tukey in their monograph The

Measurement of Power Spectra [1958].

Traditional Measures of Sound Spectra. The measurement of underwater sounds has inherited the

instrumentation and the vocabulary that were developed for measurements of sounds heard by humans in air.

FIGURE 21.31 Smoothing of power spectra by filtering. The top trace is a random signal xðnÞ or xðtÞ. Filter bandwidths
are (a) Df ¼ 2 Hz, (b) Df ¼ 64 Hz, and (c) Df ¼ 128 Hz.
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The principal areas of interest to humans have been acoustic pressure threshold for hearing; acoustic

threshold of damage to hearing; threshold for speech communication in the presence of noise; and

community response to annoying sounds. The vast amount of data required to evaluate human responses,

and then to communicate the recommendations to laymen, forced psychoacousticians and noise-control

engineers to adopt simple instrumentation and a simple vocabulary that would provide simple numbers

for complex problems. Originally this was appropriate to the analog instrumentation. But even now

digital measurements are reported according to former constraints. For example, the octave band, which is

named for the eight notes of musical notation that corresponds to the 2:1 ratio of the top of the frequency

band to the bottom, remains common in noise-control work. For finer analysis, one-third octave band

instruments are used; they have an upper-to-lower-band frequency ratio of 20:33, so that three bands span

one octave.

The use in water of instruments and references that were designed for air has caused great confusion. The

air reference for acoustic pressure level in dB was logically set at the threshold of hearing (approximately

20 mPa at 1000 Hz) for the average adult human. This is certainly not appropriate for underwater

measurements, where the chosen reference is 1 mPa or 1 Pa. Furthermore, plane-wave intensity of CW is

calculated from Equation 2.5.16 in Reference 1, where Intensity ¼ P2rms=rAc (where P2rms is the mean

squared pressure; rA is the water density; and c is the speed of sound in water). Therefore, the dB reference

for sound intensity in water is clearly different from that in air because the specific acoustic impedance rAc
is about 420 kg=m2sec for air compared with 1:5 · 106 for water. This ratio corresponds to about 36 dB, if
one insists on using the decibel as a reference.

The potential for confusion in describing the effects of sound on marine animals is aggravated when

physical scientists use the decibel notation in talking to biological scientists. Confusion will be minimized if

psychoacoustical characteristics of marine mammals—such as thresholds of pain, hearing communication

perception, and so forth—are described by the use of SI units (i.e., pascals; acoustic pressure at a receiver),

watts=m2 (acoustic intensity for CWat a receiver) and joules=m2 (impulse energy/area at a receiver). Likewise,

only SI units should be used for sources—that is, watts (power output of a continuous source) and joules

(energy output of a transient impulse source). The directivity of the source should always be part of its

specification. All of these quantities are functions of sound frequency and can be expressed as spectral densities

(i.e., per 1-Hz frequency band).

Matched Filters and Autocorrelation

The coded signal and its matched filter and associated concepts have become very important in the

applications to sound transmission in the ocean. The simple elegance of the original paper [8] is well worth a

trip to the library. The generality of their concepts was far ahead of the then-existing signal processing

methods. Digital signal processing facilitates the design of many types of filters for processing sonar signals.

Each definition of an optimum condition also defines a class of optimum filter. We limit our discussion to the

simplest of the optimum filters, the matched filter [8]. An example is shown in Figure 21.32.

An example of a coded signal xðnÞ is shown in Figure 21.32(b). Recalling the convolution summation,

Equation 6.2.29 in Reference 1, the convolution of hMðnÞ and xðnÞ is

yMð jÞ ¼
Xm1

m¼0
xðmÞ·hMð j mÞ ð21:69Þ

where the subscript M means the matched filter. The matched filter uses the criterion that the square of

the peak output value yMð0Þ is a maximum. To maximize the square of yMð0Þ, we use Cauchy’s

inequality [9]:

y2Mð0Þ<
Xm1

m¼0
h2MðmÞ ·

Xm1

m¼0
x2ðmÞ ð21:70Þ
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The filter produces a maximum output (the equal sign in Equation (21.70)) when xðmÞ is time-reversed
to xðmÞ ¼ xð mÞ:

hMðmÞ ¼ Axð mÞ or hMð mÞ ¼ AxðmÞ ð21:71Þ

where A is a constant of proportionality. In our examples we use A ¼ 1

m1 þ 1
. The filter defined by

Equation (21.71) is called the matched filter. In computations, it is convenient to shift the indices by m1 and to

shift the time by m1t0:

hMðm1 mÞ ¼ hMð mÞ ð21:72Þ

to give a causal filter. Except for constants and normalization, yMð jÞ has the same form as the autocorrelation

(see Equation (21.54)):

yMð jÞ ¼ A
Xm1

m¼0
xðmÞ · xðmþ jÞ ð21:73Þ

The output of the matched filter is shown in Figure 21.32(c). Here, the output of the matched filter is the

autocorrelation or covariance of xðnÞ. The signal-to-noise amplitude ratio gain is proportional to the square
root of the number of independent samples of the coded signal. While we do not prove it, ignoring noise in

our derivation is equivalent to assuming that the noise is an uncorrelated sequence of random numbers having

a mean value of zero. This kind of noise is often called white noise.

In 1962, Parvulescu obtained a classified patent for the use of the matched equivalent signal, for measuring

the reproducibility of signal transmissions over large ranges in the ocean. In this first use of the matched filter

technique in the ocean, the multipath received signals were regarded as a coded signal. An analog tape recorder

was employed, with the tape direction reversed to convert the multipath arrivals into a matched filter [10,11].

FIGURE 21.32 Coded signal, matched filter, and output: (a) simple matched filter system; (b) coded signal (here, the

coded signal is a short sequence from a random-number generator); (c) output of the matched filter.
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Summary

Development and employment of acoustical techniques allow us to image underwater features, communicate

information via the oceanic wave-guide or measure oceanic properties. Representative applications of these

techniques can be summarized in the following form:

. Image underwater features: detection, classification and localization of objects in the water column and

in the sediments using monostatic or bistatic sonars; obstacle avoidance using forward-looking sonars;

navigation using echo sounders or sidescan sonars to recognize sea-floor topographic reference

features.
. Communicate information via the oceanic wave-guide: acoustic transmission and reception of voice or

data signals in the oceanic wave-guide; navigation and docking guided by acoustic transponders; release

of moored instrumentation packages using acoustically activated mechanisms.
. Measure oceanic properties: measurement of ocean volume and boundaries using either direct or

indirect acoustical methods; acoustical monitoring of the marine environment for regulatory

compliance; acoustical surveying of organic and inorganic marine resources.
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Nomenclature

Symbol Quantity

ASE Amplified spontaneous emission

ASW Anti submarine warfare

CW Continuous waves

DFT Discrete Fourier transformation

FFT Finite Fourier transformation

Symbol Quantity

IFFT Inverse finite Fourier

transformation

ISL Intensity spectrum level

SI Sound intensity

TVG Time-varying gain
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22.1 Artificial Neural Networks

Jose C. Principe

Definitions and Scope

Introduction

Artificial neural networks are one of the newest signal processing technologies in the engineer’s toolbox. The field

is highly interdisciplinary, but our approach will restrict the view to the engineering perspective. In engineering,

neural networks serve two important functions: pattern classifiers and nonlinear adaptive filters.We will provide

a brief overview of the theory, learning rules, and applications of the most important neural network models.

Definitions and Style of Computation

An artificial neural network (ANN) is an adaptive, most often nonlinear system that learns to perform a

function (an input–output map) from data. The input output map is also called the neural network topology,

and it includes the perceptron, the multilayer perceptron, the radial basis function network, or the recurrent

topologies, to name just a few. Adaptive means that the system parameters are changed during operation,

normally called the training phase. After the training phase, the ANN parameters are fixed and the system is

deployed to solve the problem at hand (the testing phase). The ANN includes a systematic step-by-step

procedure to minimize a performance criterion or to follow some implicit internal constraint, which is

commonly referred to as the learning rule. The input–output training data are fundamental in neural network

technology because they convey the necessary information to ‘‘discover’’ the optimal operating point.

The nonlinear nature of the neural network processing elements provides the system with lots of flexibility to

achieve practically any desired input–output map, i.e., some ANNs are universal mappers.

There is a style in neural computation that is worth describing (Figure 22.1). An input is presented to the

network and a corresponding desired or target response set at the output (when this is the case, the training is
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called supervised). An error is composed from the difference between the desired response and the system output.

This error information is fed back to the system and adjusts the system parameters in a systematic fashion (the

learning rule). The process is repeated until the performance is acceptable. It is clear from this description that the

performance hinges heavily on the data. If one does not have data that covers a significant portion of the operating

conditions, or if they are noisy, then neural network technology is probably not the right solution. However,

if there are plenty of data and the problem is poorly understood to derive an approximate model, then neural

network technology is a good choice.

This operating procedure should be contrasted with the traditional engineering design, made of exhaustive

subsystem specifications, and inter-communication protocols. In ANNs, the designer chooses the network

topology, the performance function, the learning rule, and the criterion to stop the training phase, but the

system automatically adjusts the parameters. So it is difficult to bring in a priori information into the design,

and when the system does not work properly, it is also hard to incrementally refine the solution. However,

ANN-based solutions are extremely efficient in terms of development time and resources, and in many difficult

problems ANNs provide performance that are difficult to match with other technologies. Denker, 15 years ago,

said that ‘‘ANNs are the second best way to implement a solution’’ exactly due to the simplicity of design and

their universality, only shadowed by the traditional design obtained by studying the physics of the problem,

but which becomes too difficult for complex problems. Presently, ANNs are emerging as the technology of

choice for many applications as pattern recognition, data mining, time-series analysis, system identification,

and control.

ANNs Types and Applications

It is always risky to establish a taxonomy of a technology, but our motivation is one of providing a quick

overview of the application areas and the most popular topologies and learning paradigms.

P2 P1

x1 x1
x2 x2
x3 x3

· ·
xk xk

Y2 Y1

y1 y1
y2 y2
y3 y3

· ·
ypWij

ANN

yp

e1, e2

D1

Σ

D2

d1 d1
d2 d2
d3 d3

· ·
dp dp

FIGURE 22.1 The style of neural computation. (Source: Principe, J. et al., Neural and Adaptive Systems: Fundamentals

through Simulation, New York: John Wiley & Sons, 2000.)

Application Topology Supervised Learning Unsupervised Learning

Association Hopfield [1,2]

Multilayer perceptron [1,2,3]

Linear Associative. Mem. [1,2]

Backpropagation [1,2,3] Hebbian [1,2,4]

Hebbian

Pattern

recognition

Multilayer Perceptron [1,2,3]

Radial Basis Functions [1,3]

Backpropagation LMS [1] k-Means [3]

Feature

extraction

Competitive [1,2] Kohonen [1,2]

Multilayer Perceptron [4]

Principal Comp. Anal. [1,4]

Backpropagation Competitive Kohonen

Oja’s [1,4]

Prediction system ID Time Lagged Networks [1,4,5]

Fully Recurrent Networks [1]

Backpropagation through time [1]
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It is clear that multilayer perceptrons (MLPs) and the backpropagation algorithm and its extensions (time

lagged networks and backpropagation through time [BPTT], respectively) hold a prominent position in the

ANN technology. It is therefore only natural to spend most of our overview presenting the theory and tools of

backpropagation learning. It is also important to notice that Hebbian learning (and its extension, the Oja rule)

is also a very useful (and biologically plausible) learning mechanism. It is an unsupervised learning method

since there is no need to specify the desired or target response to the ANN.

Multilayer Perceptrons

Multilayer perceptrons are a layered arrangement of nonlinear processing elements (PEs), as shown in

Figure 22.2. The layer that receives the input is called the input layer, and the layer that produces the output is

the output layer. The layers that do not have direct access to the external world are called hidden layers.

A layered network with just the input and output layers is called the perceptron. Each connection between PEs

is weighted by a scalar wi, called a weight, which is adapted during learning.

The PEs in the MLP are composed of an adder followed by a smooth saturating nonlinearity of the sigmoid

type (Figure 22.3). The most common saturating nonlinearities are the logistic function and the hyperbolic

tangent. The threshold is used in other nets.

The importance of the MLP is that it has been shown to be a universal mapper (implements arbitrary

input–output maps) when the topology has at least two hidden layers (Haykin, 1994). Even MLPs with a single

layer are able to approximate continuous input–output maps. This means that rarely we will need to choose

topologies with more than two hidden layers. However, these are existence proofs, so the issue that we

must solve as engineers is to choose how many layers and how many PEs in each layer are required to produce

good results.

input layer
hidden layer

1

2

k

output layer

x1

x2

xd
wmk

w21

w11 y1

y2

ym

FIGURE 22.2 Multilayer perceptron (MLP) with one hidden layer (d–k–m). (Source: Principe, J. et al., Neural and

Adaptive Systems: Fundamentals through Simulation, New York: John Wiley & Sons, 2000.)
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FIGURE 22.3 A processing element (PE) and most common nonlinearities. (Source: Principe, J. et al., Neural and

Adaptive Systems: Fundamentals through Simulation, New York: John Wiley & Sons, 2000.)
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Many problems in engineering can be thought of as a transformation of an input space, containing the

input to an output space where the desired response exists. For instance, dividing data into classes can be

thought of as transforming the input into 0 and 1 responses that will code the classes (Bishop, 1995). Likewise,

identification of an unknown system can be also be framed as a mapping (function approximation) from the

input to the system output (Kung, 1993). The MLP is highly recommended for these applications.

The Function of Each PE

Let us study briefly the function of a single PE with two inputs (Zurada, 1992). If the nonlinearity is the

threshold nonlinearity, we can immediately see that the output is simply 1 and 1. The surface that divides

these sub-spaces is called a separation surface and in this case it is a line of equation:

yðw1;w2Þ ¼ w1x1 þW2x2 þ b ¼ 0 ð22:1Þ

i.e., the PE weights and the bias control the orientation and position of the separation line, respectively

(Figure 22.4). In many dimensions the separation surface becomes a hyperplane of dimension one less than

the dimensionality of the input space. So, each PE creates a dichotomy in input space. For smooth

nonlinearities, the separation surface is not crisp; it becomes fuzzy but the same principles apply. In this case,

the size of the weights control the with of the fuzzy boundary (larger weights shrink the fuzzy boundary).

The perceptron input–output map is built from a justaposition of linear separation surfaces so, as a

classifier, the perceptron gives zero classification error only for linearly separable classes (i.e., classes that can be

exactly classified by hyperplanes).

When one adds one layer to the perceptron creating a one-hidden-layer MLP, the type of separation surfaces

changes drastically. It can be shown that this learning machine is able to create ‘‘bumps’’ in the input space,

i.e., an area of high response surrounded by low responses (Principe et al., 2000). The function of each PE is

always the same, no matter if the PE is part of a perceptron or MLP. However, notice that the output layer in

the MLP works with the result of the hidden layer activations, creating an embedding of functions and

producing more complex separation surfaces. The one-hidden-layer MLP is able to produce nonconvex

separation surfaces, which can be interpreted as an universal mapper. If one adds an extra layer (i.e., two hidden

layers), the learning machine can now create and combine at will ‘‘bumps,’’ i.e., areas that correspond to one

class surrounded by areas that belong to the other class. One important aspect to remember is that changing a

single weight in the MLP can drastically change the location of the separation surfaces, i.e., the MLP achieves

the input–output map through the interplay of all its weights.

How to Train MLPs

One fundamental issue is how to adapt the weights wi of the MLP to achieve a given input–output map. The

core ideas have been around for many years in optimization, and they are extensions of well-known

x1

w1 y

w2x2

x2

x1

w 2
1 + w 2

2

y(x1, x2) = w1x1 + w2x2 + b = 0

y = ,
−w1

−w1/w2

−b

w2

}

y >0

y<0

FIGURE 22.4 A two-input PE and its separation surface.
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engineering principles such as the least mean square (LMS) algorithm of adaptive filtering (Principe et al.,

2000). Let us review the theory here. Assume that we have a linear PE (f(net)¼net), and that one wants to
adapt the weights as to minimize the square difference between the desired signal and the PE response

(Figure 22.5).

This problem has an analytic solution known as least squares (Haykin, 1994). The optimal weights are

obtained as the product of the inverse of the input autocorrelation function (R 1) and the cross-correlation

vector (P) between the input and the desired response. The analytical solution is equivalent to a search for the

minimum of the quadratic performance surface J(wi) using gradient descent, i.e., where the weights at each

iteration k are adjusted by

wiðkþ 1Þ ¼ wiðkÞ ZDJiðkÞ DJi ¼ qJ
qwi

ð22:2Þ

where Z is a small constant called the step size, and HJðkÞ is the gradient of the performance surface at
iteration k. Bernard Widrow in the late 1960s proposed a very efficient estimate to compute the gradient at

each iteration:

HJiðkÞ ¼ q
qwi

JðkÞ ,
1

2

q
qwi

ðe2ðkÞÞ ¼ eðkÞxiðkÞ ð22:3Þ

which when substituted into Equation (22.2) produces the so-called LMS algorithm. He showed that the LMS

converged to the analytic solution provided the step size Z is small enough. Since it is a steepest descent

procedure, the largest step size is limited by the inverse of the largest eigenvalue of the input autocorrelation

matrix. The larger the step size (below this limit), the faster is the convergence, but the final values will ‘‘rattle’’

around the optimal value in a basin that has a radius proportional to the step size. Hence, there is a

fundamental trade-off between speed of convergence and accuracy in the final weight values. One great appeal

of the LMS algorithm is that it is very efficient (just one multiplication per weight), and that it requires only

local quantities to be computed.

The LMS algorithm can be framed as a computation of partial derivatives of the cost with respect to the

unknowns, i.e., the weight values. In fact, if one writes

qJ
qwi

¼ qJ
qy

qy
qwi

¼ q
qy
ð
X

ðd yÞ2Þ q
qwi

ð
X

wixiÞ ¼ exi ð22:4Þ

we obtain the LMS algorithm for the linear PE. What happens if the PE is nonlinear? If the nonlinearity

is differentiable (smooth), we still can apply the same method, because of the chain rule, which prescribes

xi y

Σ wixi

change
parameters

d

e

+
−

J =

min j →

(dp − yp)2

wopt = R −1P

Σp

p is the pattern number

FIGURE 22.5 Computing analytically optimal weights for the linear PE.
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that (Figure 22.6):

qJ
qwi

¼ qJ
qy

qy
qnet

q
qwi

net ¼ ðd yÞ_ff ðnetÞxi ¼ e_ff ðnetÞxi ð22:5Þ

where f 0(net) is the derivative of the nonlinearity computed at the operating point. Equation (22.5) is known
as the delta rule, and it will train the perceptron (Principe et al., 2000). Note that throughout the derivation we

skipped the pattern index p for simplicity, but this rule is applied for each input pattern. However, the delta

rule cannot train MLPs since it requires the knowledge of the error signal at each PE.

The principle of the ordered derivatives can be extended to multilayer networks provided we organize the

computations in flows of activation and error propagation. The principle is very easy to understand, but a

little complex to formulate in equation form (Principe et al., 2000).

Suppose that we want to adapt the weights connected to a hidden layer PE, the ith PE (Figure 22.7).

One can decompose the computation of the partial derivative of the cost with respect to the weight wij as:

qJ
qwij

¼ qJ
qyi

qyi
qneti

q
qwij

neti

j j j j

1 2

ð22:6Þ

i.e., the partial with respect to the weight is the product of the partial with respect to the PE state (part 1 in

Equation (22.6)) times the partial of the local activation to the weights (part 2 in Equation (22.6)). This last

quantity is exactly the same as for the nonlinear PE ( f 0(neti)xj), so the big issue is the computation of qJ=qy.
For an output PE, qJ=qy becomes the injected error e (Equation (22.4)). For the hidden ith PE, qJ=qy is
evaluated by summing all the errors that reach the PE from the top layer through the topology when the

x j

w ij

wki

y i

yk

i th PE

k th PE

FIGURE 22.7 How to adapt the weights connected to ith PE.
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∂
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FIGURE 22.6 How to extend LMS to nonlinear PEs with the chain rule. (Source: Principe, J. et al., Neural and Adaptive

Systems: Fundamentals through Simulation, New York: John Wiley & Sons, 2000.)
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injected errors ek are clamped at the top layer, or in an equation:

qJ
qyi

¼
X
k

qJqyk
qykqnetk

q
qyi

netk

!
¼

X
k

ek f
0ðnetkÞwki ð22:7Þ

Substituting back in Equation (22.6), we finally get

qJ
qwij

¼ xj f
0ðnetiÞ

X
k

ekf
0ðnetkÞwki

j j j j

1 2

ð22:8Þ

This equation embodies the backpropagation training algorithm (Haykin, 1994; Bishop, 1995). It can be

rewritten as the product of a local activation (part 1) and a local error (part 2), exactly as the LMS and the

delta rules. However, now the local error is a composition of errors that flow through the topology, which

becomes equivalent to the existence of a desired response at the PE.

There is an intrinsic flow in the implementation of the backpropagation algorithm: first, inputs are applied

to the net, and activations computed everywhere to yield the output activation. Second, the external errors are

computed by subtracting the net output from the desired response. Third, these external errors are utilized in

Equation (22.8) to compute the local errors for the layer immediately preceding the output layer, and the

computations chained up to the input layer. Once all the local errors are available, Equation (22.2) can be used

to update every weight. These three steps are then repeated for other training patterns until the error is

acceptable.

Step three is equivalent to injecting the external errors in the dual or adjoint topology and backpropagate

them up to the input layer (Principe et al., 2000). The dual topology is obtained from the original one by

reversing data flow, and substituting summing junctions by splitting nodes and vice versa. The error at each

PE of the dual topology is then multiplied by the activation of the original network to compute the weight

updates. So, effectively, the dual topology is being used to compute the local errors, which makes the

procedure highly efficient. This is the reason backpropagation trains a network of N PEs with a number of

multiplications proportional to N, (O(N)), instead of (O(N2)) for previous methods of computing partial

derivatives known in control theory. Using the dual topology to implement backpropagation is the best and

most general method to program the algorithm in a digital computer.

Applying Backpropagation in Practice

Now that we know how to train MLPs, let us see what are the practical issues to apply it. We will address the

following aspects: size of training set versus weights, search procedures, how to stop training, how to set the

topology for maximum generalization.

Size of Training Set. The size of the training set is very important for good performance. Remember that

the ANN gets its information from the training set. If the training data does not cover the full range of

operating conditions, the system may perform badly when deployed. Under no circumstances should the

training set be less than the number of weights in the ANN. A good size for the training data is ten times the

number of weights in the network, with the lower limit being set around three times the number of weights

(these values should be taken as an indication, subject to experimentation for each case) (Haykin, 1994).

Search Procedures. Going in the direction of the gradient is fine if the performance surface is quadratic.

However, in ANNs rarely is this the case due to the use of nonlinear PEs and topologies with several layers.

So, gradient descent can be caught in local minima and make the search very slow in regions of small

curvature. One efficient way to speed up the search in regions of small curvature and at the same time stabilize
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it in narrow valleys is to include a momentum term in the weight adaptation:

wijðnþ 1Þ ¼ wijðnÞ þ ZdðnÞxjðnÞ þ aðwijðnÞ wijðn 1ÞÞ ð22:9Þ

The value of momentum a should be set experimentally between 0.5 and 0.9. There are many more

modifications to the conventional gradient search, such as adaptive step sizes, annealed noise, conjugate

gradients, and second-order methods (using information contained in the Hessian matrix), but the simplicity

of momentum learning is hard to beat (Principe et al., 2000).

How to Stop Training. The stop criterion is a fundamental aspect of training. The simple ideas of

capping the number of iterations or letting the system train until the error reaches a preset value are not

recommended. The reason is that we want the ANN to perform well in the test set data, i.e., we would like the

system to perform well in data it never saw before (good generalization) (Bishop, 1995). The error in the

training set tends to decrease with iteration when the ANN has enough degrees of freedom to represent the

input–output map. However, the system may be remembering the training patterns (overfitting) instead of

finding the underlying mapping rule. This is called overtraining. To avoid overtraining, the performance in a

validation set, i.e., a set of input data that the system never saw before, must be checked regularly during

training (i.e., once every 50 passes over the training set). The training should be stopped when the

performance in the validation set starts to increase, albeit that the performance in the training set continues to

decrease. This method is called early stopping based on cross-validation. The validation set should be 10% of

the training set and distinct from it.

The Size of the Topology. The size of the topology should also be carefully selected. If the number of

layers or the size of each layer is too small, the network does not have enough degrees of freedom to classify the

data or to approximate the function, and the performance suffers.

However, if the size of the network is too large, performance may also suffer. This is the phenomenon of

overfitting that we mentioned above, but one alternate way to control it is to reduce the size of the network.

There are basically two procedures to set the size of the network: either one starts small and adds new PEs, or

one starts with a large network and prunes PEs (Haykin, 1994). One quick way to prune the network is to

impose a penalty term in the performance function on a regularizing term — such as limiting the slope of the

input–output map (Bishop, 1995). A regularization term that can be implemented locally is

wijðnþ 1Þ ¼ wijðnÞ 1
l

ð1þ wijðnÞÞ2
!
þ ZdiðnÞxjðnÞ ð22:10Þ

where l is the weight decay parameter and d the local error. Weight decay tends to drive unimportant weights
to zero.

A Posteriori Probabilities

We will finish the discussion of the MLP by noting that this topology is able to estimate directly at its outputs a

posteriori probabilities, i.e., the probability that a given input pattern belongs to a given class (Bishop, 1995).

This property is very useful because the MLP outputs can be interpreted as probabilities. In order to guarantee

this property, one has to make sure that each class is attributed to one output PE, that the topology is

sufficiently large to represent the mapping, that the training has converged to the absolute minimum, and that

the outputs are normalized between 0 and 1. The first requirements are met by good design, while the last can

be easily enforced if the softmax activation is used as the output PE (Bishop, 1995):

y ¼ expðnetÞP
j

expðnetjÞ ð22:11Þ
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Radial Basis Function Networks

The radial basis function (RBF) network constitutes another way of implementing arbitrary input–output

mappings. The most significant difference between the MLP and RBF is in the PE nonlinearity. While the PE in

the MLP responds to the full input space, the PE in the radial basis function is local, normally a Gaussian

kernel in the input space. Hence, it only responds to inputs that are close to its center, i.e., it has basically a

local response.

The radial basis function network is also a layered net with the hidden layer built from Gaussian kernels and

a linear (or nonlinear) output layer (Figure 22.8). Training of the RBF network done normally in two stages

(Principe et al., 2000): first, the centers xi are adaptively placed in the input space using competitive learning or

kmeans clustering (Bishop, 1995), which are unsupervised procedures. Competitive learning is explained later

in the chapter. The variances of each Gaussian is chosen as a percentage (30 to 50%) to the distance to the

nearest center. The goal is to cover adequately the input data distribution. Once the RBF is located, the second

layer weights wi are trained using the LMS procedure.

RBF networks are easy to work with, they train very fast, and have shown good properties both for function

approximation and classification. The problem is that they require lots of Gaussian kernels in high-

dimensional spaces.

Time Lagged Networks (TLNs)

The MLP is the most common neural network topology, but it can only handle instantaneous information,

since the system has no memory and it is feedforward. In engineering, the processing of signals that exist in

time require systems with memory, i.e., linear filters. Another alternative to implement memory is to use

feedback, which gives rise to recurrent networks. Fully recurrent networks are difficult to train and to stabilize,

so it is preferable to develop topologies based on MLPs but where explicit subsystems to store the past

information are included. These subsystems are called short-term memory structures (Principe et al., 2000). The

combination of an MLP with short-term memory structures is called a time lagged network (TLN). The

memory structures can be eventually recurrent, but the feedback is local so stability is still easy to guarantee.

Here, we will cover just one TLN topology called focused where the memory is at the input layer. The most

general TLN has memory added anywhere in the network, but requires other more involved training strategies

(back propagation through time (Haykin, 1994)). The interested reader is referred to Principe et al. (2000) for

further details, or to NeuroSolutions (1993) for simulation software.

The function of a short-term memory in the focused TLN is to represent the past of the input signal, while

the nonlinear PEs provide the mapping as in the MLP (Figure 22.9).
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FIGURE 22.8 Radial basis function (RBF) network. (Source: Principe, J. et al., Neural and Adaptive Systems: Fundamentals

through Simulation, New York: John Wiley & Sons, 2000.)
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Memory Structures

The simplest memory structure is built from a tap delay line (Figure 22.10). The memory by delays is a single-

input, multiple-output system that has no free parameters except its size K. The tap delay memory is the

memory utilized in the time delay neural network (TDNN) and has been utilized successfully in speech

recognition and system identification (Principe et al., 2000).

A different mechanism for linear memory is feedback (Figure 22.11). Feedback allows the system to

remember past events because of the exponential decay of the response.

This memory has limited resolution due to the lowpass required for long memories, but notice that unlike

memory by delay, memory by feedback provides the learning system with a free parameter m that controls the
length of the memory. Memory by feedback has been used in Elman and Jordan networks (Haykin, 1994).

It is possible to combine the advantages of memory by feedback with the ones of the memory by delays in

linear systems called dispersive delay lines. The most studied of these memories is a cascade of lowpass

functions called the gamma memory (deVries and Principe, 1992).

The gamma memory has a free parameter m that controls and decouples memory depth from resolution of

the memory.Memory depth D is defined as the first moment of the impulse response from the input to the last

tap K, while memory resolution R is the number of taps per unit time. For the gamma memory D ¼ K/m, and
R ¼ m, i.e., changing mmodifies the memory depth and resolution inversely. This recursive parameter m can be
adapted with the output MSE as the other network parameters, i.e., the ANN is able to choose the best

memory depth to minimize the output error, which is unlike tap delay memory.

ΣΣΣ
Σ

Σ
x(n)

Input representation (memory) MLP (static mapper)

Σ

FIGURE 22.9 A focused time lagged network.
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FIGURE 22.10 Tap delay line memory.

yz

x1 Σ Σ

1−m
1−m
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e (n) = (1−m)e(n+1) + d (n)

FIGURE 22.11 Memory by feedback (context PE). (Source: Principe, J. et al., Neural and Adaptive Systems: Fundamentals

through Simulation, New York: John Wiley & Sons, 2000.)
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Training Focused TLN Architectures. The appeal of the focused architecture is that the MLP weights

can be still adapted with backpropagation. However, the input–output mapping produced by these networks is

static. The input memory layer is bringing in past input information to establish the value of the mapping. As

we know in engineering, the size of the memory is fundamental to identify, for instance, an unknown plant or

to perform prediction with a small error. However, note now that with the focused TLN, the models for system

identification become nonlinear (i.e., nonlinear moving average [NMA]).

When the tap delay implements the short-term memory, straight backpropagation can be utilized since the

only adaptive parameters are the MLP weights. When the gamma memory is utilized (or the context PE), the

recursive parameter is adapted in a total adaptive framework (or preset the parameter by some external

consideration). The equations to adapt the context PE and the gamma memory are shown in Figure 22.11 and

Figure 22.12, respectively. For the context PE d(n) refers to the total error that is backpropagated from the

MLP and that reaches the dual-context PE.

Hebbian Learning and Principal Component Analysis (PCA) Networks

Hebbian learning is an unsupervised learning rule that captures similarity between an input and an output

through correlation. To adapt a weight wi using Hebbian learning, we adjust the weights according to Dwi ¼
Zxiy or in an equation (Haykin, 1994):

wiðnþ 1Þ ¼ wiðnÞ þ ZxiðnÞyðnÞ ð22:12Þ

where Z is the step size, xi is the ith input and y is the PE output.
The output of the single PE is an inner product between the input and the weight vector (formula in

Figure 22.13). It measures the similarity between the two vectors; i.e., if the input is close to the weight vector,

the output y is large, otherwise it is small. The weights are computed by an outer product of the input X and

output Y, i.e., W ¼ XYT where Tmeans transpose. The problem of Hebbian learning is that it is unstable, i.e.,

the weights will keep on growing with the number of iterations (Principe et al., 2000).
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FIGURE 22.13 Hebbian PE.
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FIGURE 22.12 Gamma memory (dispersive delay line).
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Oja proposed to stabilize the Hebbian rule by normalizing the new weight by its size, which gives the rule

(Principe et al., 2000):

wiðnþ 1Þ ¼ wiðnÞ þ ZyðnÞ½xiðnÞ yðnÞwiðnÞ ð22:13Þ

The weights now converge to finite values. They still define in the input space the direction where the data

cluster has its largest projection, which corresponds to the largest eigenvector of the input correlation matrix

(Kung, 1993). The output of the PE provides the largest eigenvalue of the input correlation matrix.

Principal Component Analysis

Principal component analysis is a well-known technique in signal processing that is used to project a signal

into a signal-specific basis. The importance of PCA is that it provides the best linear projection to a subspace in

terms of preserving the signal energy (Haykin, 1994). Normally, PCA is computed analytically through a

singular value decomposition. PCA networks offer an alternative to this computation by providing an iterative

implementation that may be preferred for real-time operation in embedded systems.

The PCA network is a one-layer network with linear processing elements (Figure 22.14). One can extend

Oja’s rule for many output PEs (less or equal to the number of input PEs), according to the formula shown in

Figure 22.14, which is called Sanger’s rule (Haykin, 1994). The weight matrix rows (that contain the weights

connected to the output PEs in descending order) are the eigenvectors of the input correlation matrix. If we set

the number of output PEs equal to M , D, we will be projecting the input data onto the M largest principal

components. Their outputs will be proportional to the M largest eigenvalues. Note that we are performing an

eigendecomposition through an iterative procedure.

Associative Memories

Hebbian learning is also the rule to create associative memories (Zurada, 1992). The most utilized associative

memory implements hetero-association, where the system is able to associate an input X to a designated output

Y, which can be of a different dimension (Figure 22.15). So, in hetero-association, the signal Y works as the

desired response.

We can train such a memory using Hebbian learning or LMS, but LMS provides a more efficient encoding

of information. Associative memories differ from conventional computer memories in several respects. First,

they are content addressable and the information is distributed throughout the network, so they are robust to

noise in the input. With nonlinear PEs or recurrent connections (as in the famous Hopfield network (Haykin,

1994)), they display the important property of pattern completion; i.e., when the input is distorted or only

partially available, the recall can still be perfect.
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FIGURE 22.14 Principal component analysis network. (Source: Principe, J. et al., Neural and Adaptive Systems:

Fundamentals through Simulation, New York: John Wiley & Sons, 2000.)

22-12 Circuits, Signals, and Speech and Image Processing



A special case of associative memories is called the auto-associator (Figure 22.16), where the training output

of size D is equal to the input signal (also a size D) (Kung, 1993). Note that the hidden layer has less PEs

(M,,D) than the input (bottleneck layer). W1 ¼ W2
T is enforced.

The function of this network is one of encoding or data reduction. The training of this network (W2 matrix)

is done with LMS. It can be shown that this network also implements PCAwithM components, even when the

hidden layer is built from nonlinear PEs.

Competitive Learning and Kohonen Networks

Competition is a very efficient way to divide the computing resources of a network. Instead of having each

output PE more or less sensitive to the full input space as in the associative memories, in a competitive

network each PE specializes into a piece of the input space, and represents it (Principe et al., 2000).

Competitive networks are linear, single-layer nets (Figure 22.17).

Their functionality is directly related to the competitive learning rule, which belongs to the unsupervised

category. First, only the PE that has the largest output gets its weights updated. The weights of the winning PE

are updated according to the formula in Figure 22.17 in such a way that they approach the present input. The

step size exactly controls how much is this adjustment (see Figure 22.17).

Notice that there is an intrinsic nonlinearity in the learning rule: only the PE that has the largest output (the

winner) has its weights updated. All the other weights remain unchanged. This is the mechanism that allows

the competitive net PEs to specialize.

Competitive networks are used for clustering, i.e., an M-output PE net will seek M clusters in the input

space. The weights of each PE will correspond to the centers of mass of one of theM clusters of input samples.
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FIGURE 22.15 Associative memory (hetero-association).
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FIGURE 22.16 Auto-associator. (Source: Principe, J. et al., Neural and Adaptive Systems: Fundamentals through

Simulation, New York: John Wiley & Sons, 2000.)
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When a given pattern is shown to the trained net, only one of the outputs will be active and can be used to

label the sample as belonging to one of the clusters. No more information about the input data is preserved.

Competitive learning is one of the fundamental components of the Kohonen self-organizing map (SOM)

network, also a single layer network with linear PEs (Haykin, 1994). Kohonen learning creates annealed

competition in the output space by adapting not only the winner PE weights but also their spatial neighbors

using a Gaussian neighborhood function L. The output PEs are arranged in linear or 2D neighborhoods

(Figure 22.18).

Kohonen SOM networks produce a mapping between the continuous input space to the discrete output

space preserving topological properties of the input space (i.e., local neighbors in the input space are mapped

to neighbors in the output space). During training, both the spatial neighborhoods and the learning constant

are decreased slowly by starting with a large neighborhood s0, and decreasing it (N0 controls the scheduling).

The initial step size Z0 also needs to be scheduled (by K).
The Kohonen SOM network is useful to project the input to a subspace in alternative PCA networks. The

topological properties of the output space provide more information about the input than straight clustering.
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Further Information

The literature in this field is voluminous. We decided to limit the references to textbooks for an engineering

audience, with different levels of sophistication. Zurada and Principe are the most accessible texts, Haykin the

most comprehensive. Kung provides interesting applications of both PCA networks and nonlinear signal

processing and system identification. Bishop stresses the links to statistical pattern recognition. Principe has

the appeal that it is an electronic book that comes with a simulator and over 200 computer examples to

illustrate the important concepts in this exciting field.

Interested readers are directed to the following journals for more information: IEEE Trans. on Signal

Processing, IEEE Trans. on Neural Networks, Neural Networks, Neural Computation, and Proceedings of the

Neural Information Processing System Conference (NIPS).

22.2 Adaptive Signal Processing for Wireless Communications

Mohamed Ibnkahla, Ahmad Iyanda Sulyman, and Yu Cao

Adaptive signal processing plays an important role in wireless communications because it allows the wireless

communication system to adapt itself to the channel changes and to the wireless network conditions.

Adaptation can be applied to the receiver (e.g., channel equalization), to the transmitter side (e.g., adaptive

modulation and coding), or, more generally, to the different levels of the wireless layers (e.g., adaptive call

admission control). Furthermore, for new wireless communication technologies (such as multiple-input

multiple-output [MIMO] systems) the use of efficient adaptive signal processing techniques is essential in

order to achieve high data rates and enable quality of service (QoS) applications. This section reviews several

adaptive techniques and their impact on current and future wireless communications.

Introduction

Extensive research efforts are being made worldwide in order to enable high data rate transmissions over

wireless communications channels while keeping the required QoS. This is expected to allow users, regardless

of their geographic location, to have equal access to leading-edge healthcare, education, government services,

interactive multimedia, Internet banking, e-commerce, online entertainment, etc. However, wireless channels

suffer from performance degradation due to time-varying multipath propagation and fading. Adaptive signal

processing plays a central role in current and future wireless communication systems as it tries to adaptively

overcome these problems and optimize the system parameters according to the available resources, as well as

the network and channel conditions.

Adaptive signal processing which started in the mid-twentieth century from very basic adaptive filtering

algorithms, today covers almost all aspects of wireless communications, such as equalization, channel

identification and estimation, modulation, coding, multiple access, networking, cross-layer design, etc. In each

of these areas, researchers are paying more and more attention to adaptive techniques as alternatives to

classical nonadaptive approaches.

This chapter reviews the basic principles of adaptive signal processing. The section ‘‘Linear Adaptive

Filtering and the LMS Algorithm’’ presents the basics of linear adaptive filtering and the least mean square

(LMS) algorithm. The section ‘‘Channel Identification, Modeling and Tracking’’ reviews adaptive filtering and

adaptive channel identification, including single-input single-output (SISO) systems, satellite mobile channels,

and MIMO systems. The section ‘‘Channel Equalization’’ covers adaptive equalization in both SISO and

MIMO systems. The section ‘‘Other Aspects of Adaptive Processing in Wireless Communications’’ presents

adaptive modulation and coding (AMC) and cross-layer design approaches in wireless communications.
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Linear Adaptive Filtering and the LMS Algorithm

Figure 22.19 represents the block diagram of the adaptive filtering problem, in which xðnÞ is the input signal to
the adaptive filter at time n, yðnÞ is the output, and dðnÞ (desired signal) is a reference signal. The error

between the desired signal and the filter output is computed as

eðnÞ ¼ dðnÞ yðnÞ ð22:14Þ
The adaptive filter has a finite set of parameters, called the parameter vector. The parameter vector is denoted

at time n, as wðnÞ ¼ ½w0ðnÞw1ðnÞ . . . wL 1ðnÞ T (where T denotes the transpose). This has to be updated so that
the output of the adaptive filter becomes a better match to the desired output. In the case of finite impulse

response (FIR) filtering, the output is expressed as

yðnÞ ¼
XL 1

k¼0
wkðnÞxðn kÞ ¼ wTðnÞxðnÞ ð22:15Þ

where xðnÞ ¼ ½xðnÞ xðn 1Þ . . . xðn Lþ 1Þ T denotes the input signal vector.
When dðnÞ is available, the adaptation is called supervised learning. In wireless communication

applications, dðnÞ is not available all the time. In such situations, adaptation occurs typically when dðnÞ is
available. When dðnÞ is not available, an estimated value is used. In some applications, dðnÞ is never available.
In such cases, some additional information can be found (or assumptions can be made) with regard to dðnÞ
(such as its predicted statistical behavior) to form suitable estimates of dðnÞ from the signals available to the

adaptive filter. These methods are called blind adaptive algorithms.

The mean squared error (MSE) is usually taken as the cost function to be minimized:

JðnÞ ¼ 1

2
Eðe2ðnÞÞ ð22:16Þ

where E(.) is the expectation operator.

The Wiener solution is the value of the weight vector that minimizes the cost function. In our case, it is

expressed as

wopt ¼ R 1
x ðnÞpdxðnÞ ð22:17Þ

where RxðnÞ is the correlation matrix of the input signal vector (i.e., RxðnÞ ¼ EðxðnÞxTðnÞÞ), and

p
dx
ðnÞ ¼ EðdðnÞxðnÞÞ. The method of steepest descent adjusts the weights according to

wðnþ 1Þ ¼ wðnÞ mðnÞ gradðJðnÞÞ ð22:18Þ

FIGURE 22.19 Principle of adaptive filtering.
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where mðnÞ is a positive step-size parameter (called learning rate), and gradðJðnÞÞ denotes the ordinary gradient
with respect to the weight vector wðnÞ, which can be expressed here as

gradðJðnÞÞ ¼ qJðnÞ
qwkðnÞ

qJðnÞ
qw2ðnÞ . . . . . .

qJðnÞ
qwLðnÞ

t

¼ p
dx
ðnÞ R 1

x ðnÞwðnÞ ð22:19Þ

Therefore, the weights are updated as

wðnþ 1Þ ¼ wðnÞ þ mðnÞ p
dx
ðnÞ R 1

x ðnÞwðnÞ ð22:20Þ

Thus, the steepest descent approach depends on the statistical quantities R 1
x ðnÞ and p

dx
ðnÞ. In practice,

these quantities are unavailable and need to be estimated from the measurements of x(n) and d(n). The LMS

procedure uses an approximate version of the method of steepest descent and minimizes the instantaneous

squared errors (instead of the MSE):

JðnÞ ¼ 1

2
e2ðnÞ ð22:21Þ

and the weights are updated as

wðnþ 1Þ ¼ wðnÞ mðnÞ gradðJðnÞÞ ¼ wðnÞ þ mðnÞeðnÞxðnÞ ð22:22Þ

Under some statistical assumptions, it can be shown that the weight vector converges to the Wiener solution.

There are several other approaches to update the filter weights, such as the sliding window LMS algorithm,

normalized LMS algorithm, transform domain LMS algorithm, recursive least squares (RLS) algorithm, affine

projection algorithm, etc. [13].

Channel Identification, Modeling, and Tracking

Overview

Channel identification, modeling, and tracking are very important research areas in wireless communications.

For example, for the purpose of receiver design, the effect of the channel on the transmitted symbols has to be

estimated in order to successfully detect the transmitted information. Similarly, for transmitter design, a

channel model is needed, e.g., for the choice of the modulation and coding schemes to be employed, or to

choose the transmission rate and power, etc. In cross-layer design approaches, a channel model is needed in

order to optimize the networking and medium access control (MAC) protocols.

However, in wireless communications, the channel is generally time-varying. Therefore, adaptive

approaches are needed for channel modeling and identification. An example of adaptive identification is

illustrated in Figure 22.20 where both the unknown channel and the adaptive filter are driven by the same

input signal. The channel identification and tracking scheme may include a parameter measurement block

that estimates some useful parameters about the channel which can be used by the adaptive algorithms to

improve the learning and tracking processes.

In Figure 22.20, the adaptive channel model (e.g., adaptive FIR filter) adjusts its parameters (e.g., filter

weights) such that its output is a best least squares fit to that of the unknown channel. For successful

identification or tracking, the structure and parameter values of the adaptive system may or may not be similar

to those of the unknown channel. However, the input–output relationships should be close. The ability to

track the channel variations depends on the algorithm structure and design and on how fast the channel

changes in time. The capabilities of the LMS and RLS algorithms for time-varying system tracking have been

largely studied in the literature [13,14]. The general conclusions drawn from these studies are that the LMS

algorithm exhibits better tracking behavior than the RLS algorithm. In [14], an extended version of the
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RLS algorithm has been proposed exploiting a Kalman-based formulation of the RLS algorithm. This extended

version of the RLS algorithm has shown good tracking capabilities compared to the regular RLS and LMS

algorithms.

Since the transmitted data sequence is unknown to the receiver, the wireless system designers include in the

transmitted sequence, in addition to the data sequence, a set of training and/or pilot symbols which are used

by the adaptive algorithms. The learning algorithm has, in general, two modes: The training sequence (TS)

mode and the decision-directed (DD) mode. In the TS mode, a training sequence (which is a known

transmitted sequence xðnÞ) is used at the adaptive system input. In the DD mode, a training sequence is

unavailable, and the adaptive algorithm uses an estimation of the transmitted sequence, x̂xðnÞ, as input, instead
of the exact transmitted sequence.

Figure 22.21 shows an example of a time division multiple access (TDMA) time slot structure used in

global system for mobile communications (GSM). There is a training sequence of 26 known symbols in the

middle of the time slot. For relatively high transmission rates and low mobile speeds, the channel can be

considered as constant during the time slot and as slowly varying when moving from one time slot to another.

The training sequence can be used, for instance, by the tracking algorithm and the channel parameter

estimator. Figure 22.22 shows an example of the time slot structure used in the IS-136 system. The slot

duration is relatively long and the channel can significantly change during the time slot. Therefore, in addition

FIGURE 22.20 Block diagram of adaptive channel modeling and identification.

FIGURE 22.21 GSM time slot structure.
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to the training sequence at the beginning of the slot, clusters of known pilot symbols are placed through the

time slot. These clusters can be used by the adaptive algorithm for training (this is also called pilot-aided mode

[PA]). They may also be used to estimate the channel parameters (such as fading gain or Doppler spread). An

interpolation technique can then be used to predict the channel state at the data locations (i.e., when pilot or

training sequences are unavailable). In this case, the channel gain carried by the data symbols can be

interpolated as a weighted sum of the channel gain on the nearest K pilot symbols. Obviously, using a larger

interpolation order K or frequently inserting pilot symbols, will yield higher estimation accuracy. However, a

larger interpolation order K will increase the computational complexity and cause longer delay for symbol

detection, while frequently inserting pilot symbols will decrease the system bandwidth efficiency. Therefore, in

practice, choosing these interpolation parameters is a trade-off between the bandwidth redundancy, system

complexity, and estimation accuracy. The interpolation weights, corresponding to different interpolation

methods, also need to be carefully designed to minimize the estimation error. Several interpolation methods

have been suggested in the literature. Cavers [6] derived the optimum Wiener interpolation that yields MMSE

estimation. This Wiener filtering interpolator, however, requires some prior information of the statistical

property of the channel and is very computationally complex. Another interpolator worth to mention is a Sinc

interpolator [21], which gives near-optimum performance and is easy to implement. Therefore, it is

considered to be suitable for practical use. Other interpolation techniques include Gaussian [29], linear

interpolation, and Nyquist filtering [4]. The above conventional fading estimation techniques use only pilot

symbols for channel estimation. A novel idea was proposed [19] that the channel information can be estimated

by utilizing both the pilot and decided data symbols (this is also called DD mode). In this case, decision

feedback and noise smoothing filters are used for fading estimation. The interpolation scheme was later

improved [24]. The challenge here is to carefully design the interpolation algorithm to avoid the large error

caused by wrongly detected symbols.

It is very important that the adaptive algorithm uses the available information about the channel in order to

use it during the learning/tracking process. Doppler spread, delay spread, and angle spread are important

channel parameters that can be used and included in the adaptation process. For example, the step size, mðnÞ,
of an LMS channel tracker can be changed according to the online estimation of the Doppler spread, i.e.,

increase mðnÞ when the Doppler spread is high and decrease it when the Doppler spread is low. In a sliding-
window-based channel tracking algorithm, the window size can be adjusted according to the Doppler spread

and SNR information [3].

Example of Satellite Mobile Channel Identification Using Adaptive Neural Networks

Modeling and identification of satellite mobile channels represents a very good illustration of the capabilities

of adaptive algorithms. A typical satellite mobile channel model is represented in Figure 22.23.

In this model, the transmitted signal is modulated and amplified by a nonlinear high-power amplifier

(HPA), it is then affected by multi-path fading caused by the downlink satellite mobile channel [17].

We assume here that the transmitted signal is multilevel quadrature amplitude modulation (M-QAM),

modulated and expressed in the complex form as:

xðnÞ ¼ rðnÞe jf0ðnÞ ð22:23Þ
where rðnÞ and f0ðnÞ are the amplitude and phase, respectively.

FIGURE 22.22 IS-136 time slot structure.
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The equivalent baseband HPA output, yðnÞ, can be expressed as:

yðnÞ ¼ AðrðnÞÞ expf jðfðrðnÞÞ þ f0ðnÞÞg ð22:24Þ

where AðrÞ and fðrÞ are, respectively, the amplitude to amplitude (AM/AM) and amplitude to phase

(AM/PM) conversions of the on-board HPA, which are taken in this section as:

AðrÞ ¼ 2r

1þ r2
and fðrÞ ¼ p

3
·

r2

1þ r2
ð22:25Þ

The channel output is given by:

dðnÞ ¼ FðnÞ · yðnÞ þ N0ðnÞ ð22:26Þ

where FðnÞ ¼ aðnÞe jcðnÞ is the complex fading gain caused by the downlink propagation channel, and N0 is an

additive white Gaussian noise.

The system identification scheme is composed of a neural network (NN) [15] and a linear fading estimator

(Figure 22.23). The NN serves aims at identifying the HPA nonlinearity while the fading estimator aims at

tracking the time-varying fading gain. (See also [16] and [18] for the case where the propagation channel

is fixed but has memory).

The NN is composed of two subnetworks: the gain network (NNG) and the phase network (NNP). The gain

and phase networks aim at identifying and tracking the AM/AM and AM/PM conversions, respectively. When

the transmitted sequence, xðnÞ, is available at the receiver (i.e., in the TS mode), the NN output is expressed as

FIGURE 22.23 Neural network channel estimator structure.
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ŷyðnÞ ¼ xðnÞNNGðrðnÞÞe jNNPðrðnÞÞ ¼ rðnÞNNGðrðnÞÞe jNNPðrðnÞÞe jF0ðnÞ ð22:27Þ

NNGðrðnÞÞ ¼
XM
i¼1

cGif ðwGirðnÞ þ bGiÞ ð22:28Þ

NNPðrðnÞÞ ¼
XM
i¼1

cPif ðwPirðnÞ þ bPiÞ ð22:29Þ

where xðnÞ is the input to the NN, M is the number of neurons in the hidden layer, cGi; bGi;wGi (respectively,

cPi; bPi;wPi) are the neural weights in the gain network (respectively, phase network), and f ð:Þ is the tanhð:Þ
function. Subscripts G and P are referred to as the gain part and phase part, respectively.

Note that in the DD mode, the detected symbol, x̂xðnÞ, is taken as input instead of xðnÞ.
Learning Process. The goal of this adaptive system is to estimate the fading gain and to update the NN

weights in order to identify the static nonlinearity of the HPA. To achieve this goal, two modes are employed:

Pilot aided mode: During the PA mode, a known pilot, xðnÞ, is transmitted and the fading gain, F̂FpðnÞ, is
estimated according to

F~pðnÞ ¼ dðnÞ=ŷyðnÞ ð22:30Þ

Decision directed mode: In this mode, the pilot symbol is unavailable, therefore we use the decided symbol x̂xðnÞ
(that can be obtained for instance by a maximum likelihood (ML) detector [18]) as input to the NN. In this

case, the fading gain, F̂FDðnÞ, is estimated using an interpolation method.
During the DD mode, the NN weights are updated in order to identify the unknown nonlinearity of the

HPA. In this case, an estimated HPA output is calculated using the true channel output and the fading gain

that was already given by the interpolation method:

~yyðnÞ ¼ dðnÞ
F̂FDðnÞ

ð22:31Þ

The NN weights are updated in order to minimize the loss function JðnÞ between the estimated HPA output

and the NN output:

JðnÞ ¼ 1

2
keðnÞk2 ¼ 1

2
k~yyðnÞ ŷyðnÞk2 ð22:32Þ

where ~yyðnÞ is the estimated HPA output, ŷyðnÞ is the NN output, and eðnÞ is the error between the NN output

and the estimated HPA output.

Let y represent the set of the adaptive weights:

y ¼ ½wG1 . . . wGM; bG1 . . . bGM; cG1 . . . cG1;wP1 . . . wPM; bP1 . . . bPM; cP1 . . . cPM T

A gradient descent-based algorithm updates the NN weights according to

yðnþ 1Þ ¼ yðnÞ mHyðnÞJðnÞ ð22:33Þ
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where H represents a gradient operator. It can be the ordinary gradient, in which case we deal with the classical
backpropagation (BP) algorithm; or the natural gradient (NG) [2,18], in which case the algorithm follows the

steepest descent. The NG algorithm shows, in general, a faster convergence speed than the BP algorithm, but it

is less stable [16].

Simulation Examples. A satellite mobile channel has been simulated using the HPA characteristics given

in Equation (22.25). The transmitted signal is a 16-QAM modulated signal. The fading was assumed to be

Rayleigh distributed with a normalized Doppler frequency of 0.01. For the pilot aided fading estimation

approach, one pilot symbol has been sent after every four consecutive data symbols. Figure 22.24 and

Figure 22.25 show the learning curves (i.e., MSE error vs. iteration number) of the NG and BP algorithms,

respectively. It can be seen that as the learning rate m increases, the algorithms are faster. Figure 22.26 shows
the MSE (obtained after 50,000 iterations) vs. the learning rate. For each algorithm, there is an optimal value

of the learning rate that gives the lowest MSE. The lowest MSE yielded by the NG algorithm is smaller than

that of the BP algorithm. Figure 22.27 and Figure 22.28 show that the amplifier AM/AM and AM/PM curves

have been successfully identified by both algorithms. Finally, Figure 22.29 shows that the estimated fading gain

fits very well with the true fading gain.

This tracking and identification scheme has been used for ML detection. The symbol error rate (SER)

performance of the ML detector is presented in Figure 22.30 for the NG and BP algorithms (Rayleigh fading).

In addition, two other cases have been used for comparison: the linear fading channel case, and the case of

nonlinear fading assuming perfect knowledge of the nonlinearity. It can be seen that the NG algorithm

performs better than the BP algorithm, and is very close to the case where a perfect knowledge of the

nonlinearity is assumed. This result is expected since the NG approach allows a very good approximation of

the nonlinearity.

Figure 22.31 displays the results for the Ricean fading case (Ricean factor K ¼ 6 dB). The SER performances

of the NG and BP algorithms are close to each other and are better than those obtained in the Rayleigh fading

case. This is expected since Ricean fading is less severe than Rayleigh fading. This allows the NN to better

approximate the nonlinearity.

FIGURE 22.24 Learning curve for the NG algorithm.
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FIGURE 22.25 Learning curve for the BP algorithm.

FIGURE 22.26 MSE vs. learning rate.
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FIGURE 22.27 Nonlinearity AM/AM identification (NG vs. BP algorithm).

FIGURE 22.28 Nonlinearity AM/PM identification (NG vs. BP algorithm).
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FIGURE 22.29 Fading gain estimation.

FIGURE 22.30 SER performance of the ML detector, Rayleigh fading.
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MIMO Channel Tracking and Identification

Most MIMO [27] signal processing algorithms, as well as theoretical analyses on performance of MIMO

systems, have traditionally relied on the assumption of the availability of the MIMO channel coefficients (or

MIMO channel state information [CSI]) at the receiver. In this section, we illustrate this presumption by

discussing the space–time encoding and decoding operations. The various problems that arise in the tracking

of MIMO channel coefficients are then explained.

Space–Time Coding. In this section we discuss the idea behind the space–time codes presented in [33],

and illustrate the tracking problems in MIMO channels. Consider a MIMO transmission, with N transmitting

and L receiving antennas, over a wireless communication channel illustrated in Figure 22.32. At any time

instant n, let the information signals be encoded by the space-time encoder into N· 1 code vector

cðnÞ ¼ ½c1ðnÞc2ðnÞ cN ðnÞ t , and let each code symbol be transmitted simultaneously from a different

antenna. Assume that l consecutive code vectors, fcðnÞgln¼1, have been transmitted.
At the receiver side, signals arriving at the different receiving antennas undergo independent fading. The

received signal is a linear combination of the transmitted signal and the MIMO channel coefficients hij,

(i ¼ 1, . . ., N), ( j ¼ 1, . . ., L), corrupted by additive noise. At the nth transmission period, the L · 1
received signal vector is therefore given by

yðnÞ ¼ HðnÞcðnÞ þ N0ðnÞ n ¼ 1; . . . ; l ð22:34Þ

FIGURE 22.31 SER performance of the ML detector, Ricean fading.

FIGURE 22.32 MIMO communications systems.
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where H(n) is the L ·N matrix whose elements, hij, are the channel fading coefficients from the jth transmit

antenna to the ith receive antenna. N0ðnÞ is an L· 1 additive white Gaussian noise (AWGN) vector, and is
assumed to be spatially and temporally white (i.e., N0ðnÞ is a zero mean complex Gaussian vector with

covariance matrix s2I).
Maximum likelihood decoding (MLD) of the transmitted data cðnÞ from the received signal sequences is

then carried out. The maximum likelihood (ML) decoder can be realized using Viterbi algorithm with the ML

metric given, in form of minimum Euclidean distance, as

c ¼ argmin
½~ccð1Þ;~ccð2Þ; ;~ccðlÞ

jjðyð1Þ; yð2Þ; · · · yðlÞÞ ð ~HHð1Þcð1Þ; ~HHð2Þcð2Þ; · · ·; ~HHðlÞcðlÞÞjj2

¼ argmin
½~ccð1Þ;~ccð2Þ; ;~ccðlÞ

Xl
n¼1

jjyðnÞ ~HHðnÞcðnÞjj2 ð22:35Þ

where ~HHðnÞ is the MIMO channel estimate at any time instant n. Therefore, it is clear from Equation (22.35)

that ML detection of space–time codes require the provision of the MIMO CSI at the receiver. In practice,

some form of channel tracking or estimation will have to be employed in order to obtain the MIMO channel

estimate prior to the detection process.

Tracking and Identification of Frequency-Selective MIMO Channels. When MIMO technology is

deployed over mobile radio channels, the memory and time-varying nature of the mobile radio channels have

to be taken into account. In the encoding and decoding operation of space-time codes in the section ‘‘Space–

Time Coding’’ the channel coefficient has been assumed time-varying. In the sequel, however, we will need to

modify the system equations in Equation (22.34) and Equation (22.35) and account for the memory nature of

the mobile radio channels.

Let HkðnÞ ðk ¼ 0; 1; 2 . . . ;m 1Þ be the L ·N complex channel matrix representing the kth tap of the

channel matrix response with cðnÞ as the input and y
n
¼ ½y1ðnÞy2ðnÞ yLðnÞ t as the output at time instant

n. The received signal is given by

yðnÞ ¼
Xm 1

k¼0
HkðnÞcðn kÞ þ N0ðnÞ ð22:36Þ

Finally, modifying this equation to accommodate a block or frame of l consecutive symbols, we obtain:

YðnÞ ¼ ĤHðnÞC þ NðnÞ ð22:37Þ

where ĤHðnÞ ¼ ½H1ðnÞH2ðnÞ HmðnÞ is the L·Nm MIMO-FIR channel matrix, C is the Nm · l
convolution matrix obtained from the l input sequences so that the ith column of C is

½ci 1ðnÞt ; ci 2ðnÞt ; · · ·; ci mðnÞt t . YðnÞ ¼ ½y
1
ðnÞ; y

2
ðnÞ · · · clðnÞ; is the stacked received l samples of the input

sequences. NðnÞ has the same structure as YðnÞ. Next we stack the Nm columns of the matrix HðnÞ into the
vector hðnÞ ¼ vecfHðnÞg and the l columns of the matrix YðnÞ into the vector ŷyðnÞ ¼ vecfYðnÞg to obtain the
final system equation as

ŷyðnÞ ¼ ðCt ILÞhðnÞ þ N0ðnÞ ¼ XhðnÞ þ N0ðnÞ ð22:38Þ

where N0ðnÞ ¼ vecfNðnÞg, X is the result of a Kronecker product operation, , between the transposed matrix

of the input sequences C, and the identity matrix IL. The channel coefficient vector hðnÞ in Equation (22.38)
can then be tracked using the conventional adaptive system identification techniques [13,32].
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Adaptive Algorithms for MIMO Channel Tracking. As evident from Equation (22.34) to

Equation (22.38) MIMO receivers require the knowledge of CSI for the detection process. The CSI can

first be estimated and then tracked at each transmission block by using training sequences/pilot symbols

inserted in each block [1]. In the following, we describe a simple channel estimation and tracking technique

[1] that can be employed to track the MIMO channel coefficients in the system Equation (22.38). At

initialization, an initial channel estimate ~hhð0Þ can be obtained by transmitting a full training block. Subsequent
transmission blocks will contain pilot tones that are then used to acquire new estimates h0ðnÞ. The MIMO
channel estimate for the nth transmission is obtained using a forgetting factor a as follows:

~hhðnÞ ¼ a~hhðn 1Þ þ ð1 aÞh0ðnÞ ð22:39Þ

Obviously, the performance quality of a MIMO receiver employing this estimation and tracking method

will be at its best when frequent retraining (re-initialization) processes are made. This, however, is at

the expense of training symbols overhead. In practice therefore, a compromise will have to be made

between the quality of channel estimates obtained in Equation (22.39) and the affordable training

overhead.

An alternative to this two-step approach is to employ an adaptive algorithm for the MIMO channel

tracking. Adaptive receivers do not explicitly estimate the CSI at the receiver but rather employ adaptive

filtering techniques, using any of the classical algorithms developed for adaptive system identifications, to

adaptively identify the MIMO channel coefficients. However, this method still requires training overhead for

the coefficients of the adaptive filter to converge to their optimum weights. Among the conventional adaptive

algorithms, the LMS algorithm is widely used in the SISO system today due to its low implementation

complexity. Its main drawback, however, is its slow convergence and its performance degradation (relative to

the performance achieved with the optimum weights) when used in channels with large eigenvalue spread.

MIMO communications channels are known to have large eigenvalue spreads due to the temporal correlation

introduced in the transmitted signals via the space-time encoding, and therefore LMS adaptations are

unsuitable for tracking MIMO channels [1]. Faster convergence in MIMO channel tracking can be achieved

using the family of RLS algorithms (including the Kalman algorithm). However, the RLS algorithms suffer

from two major drawbacks: high computational complexity (compared to the LMS algorithm) and instability

problems. For these reasons, the RLS algorithms have traditionally not been as much embraced in real-time

applications compared to the LMS algorithm.

Recently however, the use of the Kalman algorithm for tracking MIMO channel coefficients was given some

attention [22]. This is largely due to the fact that a low-order autoregressive model approximates the MIMO

channel variation and this facilitates tracking via a Kalman filter. Also, it is known that Kalman algorithms

exhibit reasonable measure of tracking robustness. This is, however, without regard to their relatively heavy

implementation complexities. The authors in [22] also show that the Kalman algorithm offers good tracking

behavior for multi-user fading ISI channels at the expense of higher complexity than conventional adaptive

algorithms.

In [8], the authors study the effect of ambiguities in correct determination of the phase, f, of the ith entry,
hie

jf, of the complex MIMO channel coefficients. Phase ambiguities arise from a random rotation of one

constellation point to another. These ambiguities cause error propagation when data detection and channel

estimation are jointly done at the MIMO receiver. The authors in [8] discussed an enhanced channel tracking

with speed estimation method for MIMO applications. They have shown that their improved tracking

algorithm estimates not only the CSI (amplitude and phase) accurately, but also the speed of variations of the

CSI. This additional information on speed of CSI variations enhances further the identification of the

trajectory of the CSI. Using such speed information does not only improve the performance of the channel

tracking, but also reduces the probability of random rotation of the estimated parameters — an event that

leads to the phase ambiguity problem. Consequently, error propagation becomes less probable with such an

improved tracking and speed estimation algorithm.
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Channel Equalization

Adaptive channel equalization [28] is a very important signal processing technique for transmission over

frequency-selective channels that cause intersymbol interference (ISI). A multi-path propagation channel is

considered frequency-selective when the coherence bandwidth of the channel is smaller than the signal

bandwidth. The purpose of the equalizer is to remove or considerably reduce the ISI, so that the overall

propagation channel, plus the receiver, behaves like a flat (or frequency-nonselective) channel (e.g., a pure

delay). In the case where the channel is fixed, analytical approaches give the appropriate linear equalizer

structures to overcome the ISI. However, when the channel is time-varying, an adaptive equalization method

is required. This is so that, for each iteration, the equalizer will be able to track the channel changes and adapt

itself to the new frequency response of the channel.

The Linear FIR Equalizer

The basic scheme of an adaptive linear equalizer is shown in Figure 22.33. At each iteration, the equalizer

parameters are updated in order to minimize the error between a known sequence (training symbols) and the

equalizer output:

JðnÞ ¼ 1

2
jjeðnÞjj2 ¼ 1

2
jjxðn DÞ yðnÞjj2 ð22:40Þ

where D is a delay and yðnÞ is the equalizer output. In the case of real-valued signals, the LMS algorithm

updates the FIR filter weights as

wðnþ 1Þ ¼ wðnÞ mðnÞ gradðJðnÞÞ ¼ wðnÞ þ mðnÞeðnÞdðnÞ ð22:41Þ
where dðnÞ ¼ ½dðnÞ dðn 1Þ . . . dðn Lþ 1Þ T, and dðnÞ is the channel output and equalizer input at time n. In
the case of complex-valued signals, this equation becomes

wðnþ 1Þ ¼ wðnÞ þ mðnÞeðnÞd*ðnÞ ð22:42Þ
where * denotes the complex conjugate.

Note that, with the help of an accurate estimation of the channel parameters, we can improve the equalizer

convergence speed and performance. For example, the learning rate can be chosen as a function of the Doppler

spread. Similarly, an estimation of the RMS delay spread or the maximum delay spread can be used to

optimize the equalizer length L, etc.

FIGURE 22.33 Basic structure of an adaptive FIR equalizer.

22-29Neural Networks and Adaptive Signal Processing



When no training sequence is available, the DD mode can be activated, and the estimated value after

detection, x̂xðnÞ, is taken instead of xðnÞ.
The Decision Feedback Equalizer (DFE)

The basic scheme of the DFE is shown in Figure 22.34. This equalizer uses previously detected symbols to

eliminate the ISI that affects the current symbol to be detected. The feedforward filter acts as a linear equalizer.

The feedback filter has its input from the previously detected symbols. The input to the detector is the

difference between the outputs of the feedforward and feedback filters. Hence, the feedback section removes

the lagging ISI that is beyond the reach of the forward section.

The tap weights of the feedforward and feedback filters are updated so that the MSE error between the input

to the detector and the training sequence is minimized. However, the DFE suffers from error propagation,

since if a wrong decision is made, it is fed back to the equalizer input.

The DFE is a nonlinear equalizer because it uses the hard decisions made by the detector. More generally, the

feedback filter can be replaced by a nonlinear process (e.g., a neural network) to perform the feedback task [35].

Other Equalization Techniques for Fading Channels

In [23], the authors present a survey of non adaptive equalization techniques for fading channels. Two major

structures are presented: block equalizers and serial equalizers, both including linear and DFE equalizers. The

authors present closed-form expressions for the minimum MSE (MMSE) block and serial equalizers based on

the channel knowledge. In practical cases, however, the channel is unknown and has to be determined. This

can be done, for example, through adaptive estimation approaches. See [34] for some examples of other joint

channel estimation-equalization approaches.

MIMO Channel Equalization

For MIMO transmission over frequency-selective channels, the channel output is given by the expression in

Equation (22.23) above and has the Z-transform given by

yðzÞ ¼ HHðzÞcðzÞ þN0ðzÞ ð22:43Þ

where HHðzÞ ¼ Pm 1

k¼0
HkðnÞz k.

An adaptive equalizer employed at the MIMO receiver has the functionality of carrying out a reverse

operation of the frequency-selective MIMO channel actions in Equation (22.43) in order to recover the

information bits from the noisy observation yðzÞ. For the equalizer to function effectively, however, it has to
know the nature of the underlying MIMO channel. Channel tracking (see the section ‘‘MIMO Channel

Tracking and Identification’’) can be employed in order to ‘‘learn’’ the MIMO channel state information

(MIMO CSI) adaptively, and make this information available to the equalizer for effective equalization of the

channel. In the rest of this section, we will assume knowledge of the MIMO CSI at the receiver.

FIGURE 22.34 Block diagram of a DFE equalizer.
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Assuming perfect knowledge of the channel coefficients, it is well known that the optimum receiver is a

maximum likelihood sequence estimator (MLSE). For transmission over frequency-selective MIMO channels

therefore, the best performance in terms of error rate can be achieved through trellis equalization of the space-

time codes based on MLSE or symbol-by-symbol maximum a posteriori probability (MAP) estimation [30].

However, the complexity of these methods is proportional to the number of states of the trellis which grows

exponentially with the product of the channel memory and the number of transmit antennas. When the

channel memory becomes large and high-order constellations are used, the algorithm becomes impractical.

On the other hand, increasing the number of states of the trellis, the constellation size, and the number of

antennas are effective means to achieve high bit rates. It then becomes imperative to develop reduced-

complexity equalization methods without significant performance degradation (i.e., without the need to

significantly reduce these three parameters). In the next section, we review two families of such suboptimum

equalizers achieving a good performance–complexity tradeoff, which have been employed in MIMO channels.

The first of these is the family of block linear and decision-feedback equalizers, and the second is the family of

list-type equalizers.

Block Linear and Decision-Feedback Equalizers. Because block linear and decision-feedback

equalizers are optimized for block transmission systems [20], they are easily adapted for MIMO systems. In

the following, we discuss the performances of four structures. These include:

. Two types of block linear equalizers: zero-forcing block linear equalizer (ZF-BLE) and MMSE block

linear equalizer (MMSE-BLE).
. Two types of block decision-feedback equalizers: ZF block decision-feedback equalizer (ZF-BDFE) and

MMSE block decision-feedback equalizer (MMSE-BDFE).

Block Linear Equalizers. The expression for the signal estimate at the output of ZF-BLE can be written in the

form:

d̂d ZF BLE ¼ d þ kN0 ð22:44Þ

where d is the Nl· 1 vector that stacks the transmitted symbols (from the N transmit antennas) during the

transmission of a block of length l. The matrix k is an amplification factor that represents noise enhancements
due to the zero-forcing operation, and N0 is the noise vector.

A similar expression for the MMSE-BLE can be written as

d̂dMMSE BLE ¼ Wd̂d ZF BLE ð22:45Þ

where the elements of W can be seen as coefficients of a Weiner filter. The estimate from an MMSE-BLE can

then be interpreted as the output of the ZF-BLE followed by a Weiner filter. The Weiner filter reduces the

performance degradation caused by noise enhancement in ZF-BLE. Therefore, the SNR at the output of the

MMSE-BLE per symbol is, in general, larger than that of the ZF-BLE.

Block Decision-Feedback Equalizers. Figure 22.35 shows the block diagram of a block decision-feedback

equalizer employed in a MIMO setup. At any time instant, n, the received signal vector yðnÞ is filtered by the
equalizer’s feedforward filter (FFF), with coefficients WðnÞ, to obtain the filtered signal vector y0ðnÞ. Previous
data estimates are processed through a feedback filter (FBF), with coefficients BðnÞ, and subtracted from y0ðnÞ.
The resultant signals are then fed into threshold detectors from where estimates of the transmitted data

ĉcðn DÞ, are obtained, where D is the delay in the equalizer and cðn DÞ corresponds to the input signals at
time n D. Similar analysis, analogous to Equation 22.44 and Equation 22.45 for the MMSE-BDFE and ZF-
BDFE in [30], shows that the SNR at the output of MMSE-BDFE is in general larger than the SNR at the

output of the counterpart ZF-BDFE. Therefore, both block linear and block decision-feedback equalization of

a MIMO channel based on MMSE criteria will yield better performance than their counterpart zero-forcing

schemes. This conclusion is quite consistent with what is known for the SISO channel case.

22-31Neural Networks and Adaptive Signal Processing



List-Type Equalizers. These equalizers employ a state reduction (complexity reduction) algorithm in the

Viterbi or MAP equalizer, using the concept of per-survivor processing (PSP) [12]. The equalizers consider a

reduced number of taps of the channel to construct the trellis, leading to a reduced number of states, and an

adaptive equalization of the channel is carried out based on the reduced states. To ensure that the best

suboptimum performance is achieved, it is desirable to use a receiver filter that concentrates the channel

energy on the first taps in order to ensure that the first few taps chosen for the trellis construction have the

strongest energy. In the MIMO channel case, this is achieved by using a multidimensional whitened matched

filter (WMF) as a prefilter for the equalizer.

Comparison between the performance of the block equalizers and the prefiltered list-type MAP equalizers in

MIMO channel [30] shows that the prefiltered list-type MAP equalizer achieves better performance than the

block equalizer. However, the list-type MAP equalizer is much more complex to implement. Hence, the regular

trade-off between performance and complexity has to be part of the criteria for selecting any of these

structures for MIMO applications.

Other Aspects of Adaptive Processing in Wireless Communications

New generations of mobile communication systems must achieve the goal of high data rate applications under

spectrum and power constraints, while maintaining the required QoS. The system must provide higher

capacity and performance through better use of the available resources. Therefore, adaptation techniques have

become popular for optimizing mobile radio transmission and reception, not only at the physical layer but

also at the higher layers of the network stack. Here, we briefly introduce adaptive modulation and coding,

time-frequency-space link adaptation, and cross-layer design.

Adaptive Modulation and Coding

Classical wireless designs are based, in general, on the worst-case scenario. This leads to nonefficient use of

resources. Wireless link adaptation can be defined as any alteration of the transmitter parameters based on

information about the channel and network conditions. Methods of adaptation can be classified by the type of

adaptation performed (e.g., power, modulation, code rate, etc.). Similar to what has been discussed in

previous sections, adaptation can be exploited because of the time-varying nature of the channel, traffic

changes, user needs, and QoS requirements. However, this time-varying nature makes the efficiency of the

adaptation process dependent on the quality of the measurements and the delays in transmitting the necessary

information to the transmitter. Figure 22.36 displays the principle of adaptive modulation and coding

schemes.

In uncoded systems, a set of candidate constellations is used. For example, for M-QAM transmissions, the

following schemes can be used: 0-QAM (no transmission), 2-QAM, 4-QAM, 16-QAM, and 64-QAM.

Depending on the application, a target bit error rate is chosen for a given average SNR. The adaptive algorithm

FIGURE 22.35 MIMO DFE block diagram.
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calculates the predicted BER based on the fading conditions and chooses the maximum M (i.e., the highest

rate) that fulfills the BER requirements. Once a constellation has been chosen, the system is essentially a fixed-

rate system. In this case, the goal of the system becomes that of minimizing transmitted power while

maintaining the target BER.

Note that in coded schemes, the memory complicates the design of the adaptive system [10]. If the current

channel fading is accurately known at the transmitter, the effective channel given the outdated estimate is

AWGN. Therefore, coding structure designed for AWGN should be employed [11], where a base trellis coded

modulation tuned to the average received SNR can be selected and uncoded bits can be added or deleted based

on the channel estimate. With a small amount of prediction error, the conditional channel becomes more

Rician (if the channel gain is high) and the same scheme can be used. When the path gain is small, the channel

is rather Rayleigh distributed, and a code appropriate to this fading channel should be employed.

When there is a large amount of channel prediction error, the use of uncoded bits is no longer possible. In

this case, the instantaneous rate is adapted and all bits are coded [9,26].

Space–Time–Frequency Adaptation

In multicarrier systems (such as orthogonal frequency division multiplexing [OFDM]), where multipath

channels introduce frequency selectivity, link adaptation can be made over the frequency domain.

Transmission over multicarrier systems maps the information bits over the various carriers. The idea is to

choose the modulation scheme based on the channel condition on each subband. For example, avoid

transmission over deeply faded subcarriers, while using high-level modulation over carriers that offer good

channel conditions. This technique requires, however, high computational load, since it requires information

about the channel in each subcarrier. Alternate solutions based on adapting the modes on a per-subband

(as opposed to subcarrier) basis offer less overhead [5].

In MIMO transmission, link adaptation can be made over space. Space selectivity occurs when the fading

gain depends on the spatial location of the antennas as well as on the spread of angles at the transmitter and

receiver sides. Therefore, the performance depends on a number of parameters. This includes the mapping

scheme used to map the signals into the transmitting antennas, antenna polarization and location, processing

scheme at the receiver, etc. Space–time adaptation selects the best way of combining antennas (e.g., choosing

the number of antennas, space–time coding scheme, etc.).

In a multi-carrier MIMO system, link adaptation can be exploited in all domains: space, time, and

frequency. This leads to an optimal use of the available resources.

We should mention, however, that there are practical limitations and implementation issues in link

adaptation. These include the additional overhead, the feedback channel required to send back the channel

state information to the transmitter, the different delays, the determination of the best adaptation threshold

and rate, etc. [5].

FIGURE 22.36 Adaptive modulation and coding scheme.
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Cross-Layer Design

The adaptive techniques discussed thus far take place in the physical layer of the wireless communications

network. Future generations of wireless systems will have facilities to allow inter-layer adaptive strategies

among the various network layers: application, transport, network (IP), medium access control (MAC), and

physical layers. This strategy is known as cross-layer design. In cross-layer design, the physical and MAC layers’

knowledge of the wireless medium is shared with higher layers, in order to provide efficient methods of

allocating network resources. Thus, optimization of the network layer functionality is performed by means of

incorporating unconventional lower-layer parameters into the network layer’s traditional function. Since the

parameters of each layer change from time to time in any real-time system, this kind of joint-layer

optimization will therefore have to be done adaptively.

Joint optimization of data transmissions across various layers right from the application layer down to the

physical layer has been considered recently [7]. An observation harnessed for such cross-layer design is the fact

that, while the IP or MAC layer does not know the context of a data packet, the application layer does have

such information. The application layer knows whether a given packet is the beginning, the middle, or end of

a long data stream, or whether it is all alone. However, the physical layer has the knowledge about the amount

of link capacity currently available, the BER performance of the wireless link, etc. If joint coordination

functions or management interfaces (management I/F) are employed, for example at the application and

physical layers, such that cross-layer exchange of such vital information is achieved, the overall performance of

the network will be improved. The idea is as illustrated in Figure 22.37. It is important to mention that the

management I/F does not only span the application and physical layers. This function can be present in all

other OSI protocol entities existing between the application and the physical layers. The main challenge in

cross-layer design, however, is how to communicate the auxiliary information through the management I/Fs

across the layers, with minimum impact on the standard network protocol stack, and using as far as possible

already existing route reservation protocols. Another challenge for cross-layer design consideration is that of

interoperability of separate networks implementing various architectures of the design. In addressing this

challenge, standardization efforts are already in progress to ensure smooth interoperations of the various

architectures [31]. In the following, some examples of cross-layer design schemes proposed in the literature

are reviewed.

Cross-layer design approaches involving joint network and physical layer optimizations [7], or joint MAC

and physical layer optimizations [25] have been proposed. QoS guarantees for CDMA networks are provided

by means of cross-layer optimization across the physical and network layers [7]. At the physical layer, the QoS

requirements are specified in terms of a target signal-to-interference ratio (SIR) requirement, and optimal

target powers are dynamically adjusted according to the current number of users in the system. At the network

layer, both the blocking probabilities as well as call connection delay constraints are considered. A reservation-

based MAC scheme where users reserve data channels through a slotted-ALOHA procedure has been

FIGURE 22.37 Principle of cross-layer design.
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introduced [25]. Users request transmissions by sending a signature randomly chosen from a pool of

orthogonal codes representing the set of available channels. The base station grants or denies access to users

based on (signal strength) measurements at the physical layer and the system information at the MAC layer.

Such random access schemes have been proposed for the UMTS-WCDMA.

One of the difficulties of joint-layer designs in general is the lack of analytical expressions that relate

performance parameters across the various layers. In [25], a novel analytical framework was presented for joint

physical and MAC layer designs.

Due to the heterogeneity and, thus, complexity of 4G/4Gþ wireless networks, it is expected that

application-layer adaptation to network and access conditions is crucial. QoS support becomes an increasingly

challenging issue in the presence of external networks. A time-dependent QoS support is an example of the

dependency of QoS on variable lower-layer performance.

Lower-layer adaptation based on higher-layer information is also an important research direction to be

explored. For example, physical channel sensing mechanisms need to be combined with efficient random

access strategies to ensure that channel utilization is maximized, or at least enhanced. Here, a measure of the

intra-layer network design can be defined as the ability of two protocol entities belonging to different wireless

stations to exchange information of relevance with their internal operation. This would be significantly useful

for medium access control and regulation in which such information may affect the queuing behavior of the

MAC entity.

Conclusion

The chapter has given a survey of the most popular adaptive signal processing techniques used in wireless

communications. We have discussed, in particular, channel identification and equalization, including satellite

communication channels and MIMO channels. Other applications of adaptive techniques such as adaptive

modulation and coding, space–time–frequency adaptation, as well as cross layer design, have been also covered.
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Computing environments provided by software tools allow users to design, simulate, and implement

digital signal processing (DSP) techniques with speed, accuracy, and confidence. With access to libraries of

high-performance algorithms and to advanced visualization capabilities, we can design and analyze

systems using the equations and notations that we use to think about signal processing problems; we do not

have to translate the equations and techniques into a different notation and syntax. The graphics interface

provides an integral part of this design environment, and is accessible from any point within our

algorithms. Within this type of computing environment, we are more productive. However, even more

importantly, we develop better solutions because we have so many more tools for analyzing solutions, for

experimenting with ‘‘what if ’’ questions, and for developing extensive simulations to test our solutions. To

illustrate the power of these environments, we present a brief description of MATLAB, one of the most

popular technical computing environments in both industry and academia, and then present five examples

that use MATLAB.

23.1 MATLAB Environment

MATLAB is an integrated technical environment designed to provide accelerated DSP design capabilities. In

addition to the basic software package that contains powerful functions for numeric computations, advanced

graphics and visualization capabilities, a high-level programming language, and tools for designing a graphical

user interface (GUI), MATLAB also provides a number of application-specific toolboxes that contain

specialized libraries of functions. The discussion and examples contained in this chapter use capabilities from

the Signal Processing and Image Processing toolboxes. Other toolboxes that are applicable to solving signal

processing problems include the following: Communications, Control Systems, Data Acquisition, Fuzzy Logic,

Higher Order Spectral Analysis, Image Acquisition, Neural Networks, Nonlinear Control, Optimization,
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Partial Differential Equations, Quantization Feedback Control, m-Analysis and Synthesis, Statistics, Symbolic
Math, System Identification, and Wavelets.

An interactive environment for modeling, analyzing, and simulating a wide variety of dynamic systems is

also provided by MATLAB through SIMULINK—a graphical user interface designed to construct block

diagram models using ‘‘drag-and-drop’’ operations. Simulations of the block diagrams can be used to test a

number of ‘‘what if ’’ questions. Special purpose block libraries are available for DSP algorithm development,

and include a Communications Blockset, a DSP Blockset, a Fixed-Point Blockset, and a Nonlinear Control

Design Blockset.

In order to bridge the gap between interactive prototyping and embedded systems, MATLAB includes a

compiler to generate optimized C code from MATLAB code. Automatic C code generation eliminates manual

coding and algorithm recoding, thus providing a hierarchical framework for designing, simulating, and

prototyping DSP solutions.

23.2 Example 1: DTMF Signal Analysis (Stationary Signal)

In this first example, we generate a signal that represents a dial tone from a telephone network that uses

dual-tone multi-frequency (DTMF) signaling. In this system, pairs of tones (or sinusoids) are used to signal

each character on the telephone keypad as shown in Figure 23.1. For example, the digit 1 is represented by

tones at 697 Hz and 1209 Hz. Figure 23.2 is a plot of the time domain representation of the signal that

FIGURE 23.1 Dual-tone multi-frequency (DTMF) signaling.

FIGURE 23.2 DTMF signal (top) and spectrum (bottom).
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represents the digit 1, as well as this signal’s frequency content computed using the MATLAB fast

Fourier transform function. The MATLAB code that generated these plots is shown in Figure 23.3. This

code illustrates some of the important characteristics of high-level computational tools. The fundamental

data structure is a matrix, and all operations and functions are designed to work with matrices. Hence, loops

are rarely necessary, and thus the code is generally much shorter, more readable, and more self-

documenting.

23.3 Example 2: Speech Signal Analysis (Nonstationary Signal)

A common DSP application is the analysis of signals that have been collected from experiments or from a

physical environment. These signals are typically stored in data files, and often need preprocessing steps

applied to them before we are able to extract the desired information. Preprocessing can include removing

means or linear trends, filtering noise, removing anomalies, and interpolating for missing data. Once the data

are ready to analyze, we are usually interested in statistical information (mean, median, variance,

autocorrelation, etc.) along with an estimate of the distribution of the values (uniform, Gaussian, etc.).

The frequency content of a signal is also important to determine; if the signal is nonstationary, the frequency

content needs to be determined using relatively short time windows.

To illustrate the use of MATLAB in computing some of the steps mentioned above, we use a speech signal

collected at 8 kHz. After loading the signal from a data file, we will remove any linear trend that might have been

introduced in the collection process (this also removes any constant term). Figure 23.4 contains a plot of the

signal, which clearly shows the time-varying nature of the signal. Figure 23.5 contains a histogram of the

distribution of the values, showing that the values are closer to a Laplacian or Gamma distribution than to a

uniformorGaussian distribution. Figure 23.6 contains a spectrogramwhich displays the frequency content of the

signal computed using short overlapping time windows. The MATLAB code that generated these plots is shown

in Figure 23.7.

FIGURE 23.3 MATLAB code for Example 1.
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FIGURE 23.4 Speech signal.

FIGURE 23.5 Histogram of speech values.

FIGURE 23.6 Spectrogram of speech signal.
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23.4 Example 3: Filter Design and Analysis

MATLAB gives us a number of different options for designing both IIR and FIR digital filters. We can design

classical IIR filters (Butterworth, Chebyshev type I, Chebyshev type II, and elliptic) that are low-pass,

high-pass, bandpass, or bandstop filters. We can also use other techniques, such as the Yule–Walker technique,

to design IIR filters with arbitrary passbands. Several techniques allow us to design FIR filters using windowed

least squares techniques. The Parks–McClellan algorithm uses the Remez exchange algorithm to design filters

with an optimal fit to an arbitrary desired response. Once a filter is designed, it can be easily translated to other

forms, including transfer functions, impulse responses, and poles/zeros.

Assume that we are going to analyze the dial tones from a telephone network that uses dual-tone multi-

frequency (DTMF) signaling as discussed in Example 1. All of the tones are between 697 Hz and 1477 Hz.

Thus, before analyzing the signal to determine the two tones that it contains, we might want to remove signals

outside of the band that contains all possible tones in order to increase the signal-to-noise ratio. In this

example, we design a bandpass filter with a passband between 500 Hz and 1800 Hz. Designs are compared

using an elliptic IIR filter of order 8 and a causal FIR filter of order 70. Figure 23.8 contains magnitude plots

FIGURE 23.8 Comparison of IIR (dashed line) and FIR (solid line) filters.

FIGURE 23.7 MATLAB code for Example 2.
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FIGURE 23.9 Group delays of IIR (top) and FIR (bottom) filters.

FIGURE 23.10 Impulse responses of IIR (top) and FIR (bottom) filters.
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of the two filters, and clearly shows the characteristics of the filters. The elliptic filter has sharp transitions

with ripple in the passband and in the stopband, while the FIR filter (which also uses a Hamming

window) is flat in the passband and the stopband, but has wider transition bands. Figure 23.9 contains the

group delays for the two filters. The FIR filter has a linear phase response, and thus the group delay is a

fixed value of 35 samples; the IIR filter has a nonlinear phase, but has a relatively constant delay in the

passband. Figure 23.10 contains the corresponding impulse responses, illustrating the finite impulse

response of the FIR filter and the infinite impulse response of the IIR filter. Figure 23.11 contains the

pole/zero plots for the IIR solution. The code for performing the designs and generating all of the plots is

shown in Figure 23.12.

23.5 Example 4: Multi-Rate Signal Processing

Given a signal that has been collected or computed using a process that eliminates or minimizes aliasing

from components above the Nyquist frequency (half the sampling frequency), we have a great deal of

flexibility in modifying the sampling rate. For example, if the frequency content of the signal is much

lower than the Nyquist frequency, then the sampling rate can be reduced without losing any of the signal

content. This ‘‘decimation’’ process allows us to compress the signal into a form that requires less

memory. An ‘‘interpolation’’ process can be used to interpolate new data points between points of the

decimated signal in such a way that the frequency content of the new signal is essentially the same as the

original signal. The decimation process requires a reduction of data points by an integer factor, M, such

as a factor of 3. The interpolation process requires that an integral number of points, L 1, be

interpolated between existing points, such as interpolation of five new points between existing pairs of

points. The decimation process increases a sampling interval by M, and the interpolation process

FIGURE 23.11 Poles/zeros for IIR filter.
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decreases a sampling interval by a factor of L. MATLAB contains functions for decimation and

interpolation, as well as a function for a resampling of a signal using a noninteger factor of P/Q where

P and Q are integers.

Consider a signal that is one sinusoid modulated by another sinusoid. The signal has been sampled at a

frequency chosen to provide efficient storage of the data. However, when plotting the data for further analysis,

we want to interpolate by a factor of 8 so that the signal looks smoother. Therefore, we use the MATLAB

interpolation function. Figure 23.13 contains plots of the original and interpolated time signals. Figure 23.14

contains frequency plots to confirm that the interpolation did not significantly affect the frequency content.

Figure 23.15 contains the MATLAB code for this process.

FIGURE 23.12 MATLAB code for Example 3.
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FIGURE 23.13 Original (top) and interpolated (bottom) time signals.

FIGURE 23.14 Frequency content of original (top) and interpolated (bottom) signals.
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23.6 Example 5: Image Analysis and Processing

MATLAB is amatrix-oriented programming language, so it is designed to handlemulti-dimensional signals with

the same ease with which one-dimensional signals are handled. In fact, many of the same commands can be used

with 2D signals, or images, that could be used with one-dimensional signals. Two-dimensional signals are

typically stored in formatted image files. In many cases, it is necessary to preprocess the images to reduce the

effects of noise or illumination conditions, or simply to enhance the image for viewing. Similar to one-

dimensional signals, we are usually interested in statistical information along with an estimate of the statistical

distribution of the pixel values. The frequency content of an image may also be important to determine.

Consider a dark photographic image that is contaminated by ‘‘impulse’’ or ‘‘salt and pepper’’ noise, which

appears as black and white dots superimposed on a grayscale image, as shown in Figure 23.16(a). Suppose it is

desired to use this image on a website, and thus its visual clarity must be improved. A median filter is an order-

statistics filter that is particularly effective in the presence of impulse noise. Once the noise is reduced, the

darkness can be addressed by a number of methods, one being contrast-limited adaptive histogram

equalization (CLAHE). Figure 23.16 contains the original image, the image after denoising, and the image

after denoising/equalization. These operations were all performed using MATLAB functions. The effects of this

processing on the histogram of the original image are shown in Figure 23.17. The histogram of the original

image indicates a large number of low values (darker regions). After denoising, the number of the very

brightest and the very darkest values is somewhat reduced, but the shape of the histogram has not changed

much. However, after histogram equalization, the range of pixel values is more uniformly distributed, which is

reflected in more apparent detail and better contrast in the end result in Figure 23.16(c). Figure 23.18 contains

FIGURE 23.15 MATLAB code for Example 4.
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FIGURE 23.18 MATLAB code for Example 5.

FIGURE 23.16 Image processing example: (a) original; (b) denoised; (c) histogram equalized.

FIGURE 23.17 Histograms of the corresponding images in Figure 23.16. (a) Original; (b) denoised; (c) histogram

equalized.
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the MATLAB code for performing this processing and creating the images displayed. Note that the

denoising and equalization required only two function references. Most of the code is generating and plotting

the results.

23.7 Conclusions

These examples have demonstrated the ease with which MATLAB can be used to perform signal processing

techniques. These techniques included the analysis of stationary and nonstationary signals in both the time

domain and frequency domain; the sampling time conversion of a signal; the design and implementation of

both FIR and IIR filters; and the analysis and modification of a 2D signal. The MATLAB code for each of the

examples was presented to illustrate the ease with which digital signal processing techniques can be

implemented with MATLAB functions.

Defining Terms

Drag and drop operation: Graphical operation for building diagrams by selecting, copying, and moving

icons using a mouse or track ball.

Graphical user interface (GUI): Interface using pull-down menus, push buttons, sliders, and other

point-and-click icons.

Toolbox: Library of specialized functions.

‘‘What if’’ question: Question that allows a user to determine the effect of parameter changes in a problem

solution.
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Further Information

For further information on MATLAB, here are some e-mail addresses and Internet sites:
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E-mail addresses:

news-notes@mathworks.com (MATLAB News and Notes editor)

support@mathworks.com (technical support for all products)

info@mathworks.com (general information)

Web sites:

http://www.mathworks.com (the MathWorks home page)

http://www.mathworks.com/academia (educational products and services)

http://www.mathworks.com/matlabcentral (MATLAB and Simulink user community)
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24.1 Introduction

Biometrics is a relatively new area of technology that uses unique and measurable physical, biological, or

behavioral traits of people to establish or to verify their identification. Identification and verification are two

separate operations. In identification, the biometric system asks and attempts to answer the question ‘‘Who is

this person?’’ by collecting and comparing biometric samples from an individual and comparing it to the

information contained in its database. This is a one-to-many search. With verification, the biometric system

asks and attempts to answer the question ‘‘Is this Joe?’’. Here, Joe claims he is Joe and submits biometric

samples that are compared to the information contained in the database for Joe. This is a one-to-one search.

Biometrics is most often used to perform identity verification for authorized access to computer networks or

secure facilities. The physical attributes typically used include face, iris, fingerprints, hand geometry,

handwriting, and voice. Compared to common identification methods, such as identification (ID) cards,

personal identification numbers (PINs), or passwords, biometrics is more convenient for users, has lower costs

for businesses, reduces fraud, and is more secure.

There is a need for biometrics in federal, state, and local governments, in the military, and in commercial

applications. Biometrics has been used in the criminal justice system, in U.S. immigration and naturalization

services, and in place of passwords or keys for e-commerce. In 2001, the MIT Technology Review named

biometrics ‘‘one of the top ten emerging technologies that will change the world.’’ Since September 11, 2001, a

heightened awareness of security issues is driving the adoption of biometrics within numerous application

environments. Some considerations for choosing a biometric system to use, as well as a description of some of

the more widely used biometrics, are presented in the following sections.

24.2 Biometric Systems

One way to differentiate types of biometric technologies is based on the level of the users’ involvement and

cooperation in providing biometric samples. In this case, they can be termed either active or passive. The active

biometric requires users to submit to some form of measurement such that they are aware a sample is being

taken. This form of biometric would be used more in a verification role, where individuals wish to prove their

identity, such as for log-on to a computer network or in making a banking transaction. Systems that use
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active biometrics are able to control the environment in which the samples are taken, which facilitates

processing. Active biometrics includes iris scanning, fingerprint recognition, and hand geometry recognition.

In contrast, passive biometrics are those that can be sampled without user cooperation or knowledge. These

technologies are very dependent on the environment in which the samples are taken. A noncooperative

subject, with reliance on the environment, complicates the processing. For example, if the subject is not facing

the camera, or is wearing a beard or floppy hat, or if the lighting is dim, facial recognition can fail. Since they

do not require cooperation, passive biometrics are more commonly used in identification (as opposed to

verification) applications. As a case in point, facial recognition was used to scan the crowds entering turnstiles

at the Superbowl in Tampa Bay, Florida, in 2001, searching for known criminals. Common passive biometrics

includes face and voice. Note that there are some applications that result in some overlap in the categories of

active and passive biometrics; for example, voice can be used as an active biometric for entry to a lab, or as a

passive biometric when collected without the speaker’s knowledge.

Like many automatic target recognition systems, the performance of biometric systems is based on the

accuracy with which the system can correctly match or reject previously unseen samples to the templates

contained in its database. Some of the measures of performance can be expressed in terms of the false

acceptance rate (FAR) and the false rejection rate (FRR). The FAR measures the percentage of individuals who

are incorrectly identified, and is defined as

FARð%Þ ¼ number of incidents of false acceptance

total number of samples presented
· 100%: ð24:1Þ

The FRR measures the percentage of individuals who should be identified, but are not, and is defined as

FRRð%Þ ¼ number of incidents of false rejections

total number of samples presented
· 100%: ð24:2Þ

In addition, a biometric system can be judged by its failure to enroll rate (FTER). The FTER measures the

percentage of persons who attempt to enroll, but for various reasons, the system was not able to acquire

samples of sufficient quality to create a user template in its database. For example, people who engage in

sailing as a sport handle ropes frequently and tend to have their fingerprints worn down to an extent that a

fingerprint device may not be able to capture a valid print. The FTER is defined as

FTERð%Þ ¼ number of incidents of unsuccessful enrollment

total number of enrollment attempts
· 100%: ð24:3Þ

Using system performance in these terms can determine the suitability of a particular system for a desired

application.

In addition, there are several other factors that should be considered in implementing a biometric system.

These include (in no particular order):

. Cost. This includes the cost of the system itself, the cost of deploying the system, and the cost to support

and maintain it. Many commercial biometric systems are now affordable to smaller organizations.
. Ease of use. Some systems are more user-friendly than others.
. User acceptance/nonacceptance. This relates to whether those who would use a particular system feel that

it might be of benefit to them, or at least is better than other alternatives.
. Individual privacy protection. With identity theft increasing, people are concerned with providing a

biometric sample and its susceptibility to theft for criminal use.
. Invasive measurements. This relates to the extent to which an individual must cooperate in the

collection of a biometric sample, or the perceived intrusiveness on their privacy. A picture of a person
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taken in public may not be invasive, but collecting an electronic fingerprint can require physical contact

with a collection system.
. Stable technology. How long a technology has been on the market is indicative of its reliability, and how

fast it is evolving relates to its maturity. A stable technology tends to be well supported.
. Spoofing the system. There are those who would actively try to ‘‘beat’’ a biometrics identification system;

an example would be playing a recorded voice with a tape recorder for a voice recognition system. One

means to reduce the chances of spoofing incorporates some type of ‘‘liveness’’ testing to ensure the

submitted sample is from a live human. Some systems are harder to beat than others.

All of these points typify biometric systems in general. Some of the more popular technologies are

introduced in the following section.

24.3 Common Biometric Signals

There are a number of physical, biological, or behavioral traits that can be used for verification or

identification, with varying degrees of success depending on the application. Some of the common biometrics

in reasonably widespread use include: fingerprint, iris, face, and voice. Other biometrics used for identification

or verification include gait, handwriting, hand geometry, retinal scan, and ear, among others. The following

paragraphs provide a brief description of the more common biometrics.

Fingerprints

The practice of using fingerprints as a means of

identification is an indispensable aid to modern law

enforcement, and has been used for over a century.

Every person has raised ridges of skin on the inside

surfaces of their fingers that form interesting

patterns of loops, arches, ridge endings, and ridge

bifurcations. The local ridge characteristics that

occur where a ridge ends or bifurcates (splits into

two ridges) are known as minutiae (Figure 24.1), and

do not change naturally during a person’s life.

Identification algorithms that use fingerprints typi-

cally extract information about the location, type,

and direction of significant minutiae that appear in

a fingerprint image and place that information

into a template where it can be compared to other

templates for matching. Fingerprint recognition

begins with preprocessing in order to segment the

ridges from the background, and to thin the ridges to

a one-pixel width. There are two major categories of

fingerprint recognition algorithms: minutiae-based and correlation-based. Minutiae-based algorithms seek to

determine the presence and relative locations of the minutiae on the finger, including flow direction. The

disadvantages of this method are that it relies on a fairly good quality print in order to locate the minutiae and

does not take into account a more global picture of the ridges and furrows. Correlation-based methods are

sensitive to translation and rotation of the finger, and require both fingerprints to be compared to be precisely

registered. Fingerprint recognition systems usually include a sensor to electronically acquire fingerprints

(instead of an ink pad) and software for fingerprint analysis and recognition.

FIGURE 24.1 A fingerprint image.
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Iris Scans

The iris is the colored portion of the eye that surrounds the pupil. It is an internal organ whose texture is

random, stable, and very unique to an individual throughout their lifetime. The randomness of the pits,

striations, filaments, rings, dark spots, and freckles within the colored membrane allows for high confidence

recognition in very large databases. Typical iris recognition systems use a near infrared (NIR) camera (to

reduce reflections and penetrate glasses and contact lenses) to capture an iris image, then preprocessing

extracts the iris portion of the image from the pupil, eyelid, and eyelash pixels, which can then be further

analyzed. Figure 24.2 (a) is a NIR image of an eye that could be used for iris recognition and Figure 24.2 (b)

shows the iris pattern (within the concentric circles) that might be processed in a recognition algorithm.

Several approaches to using the iris pattern in a matching algorithm have been documented. A two-

dimensional (2D) Gabor wavelet approach for iris pattern analysis and recognition is the basis for

commercially available iris systems today.

Face Images

Face recognition is the primary means by which people recognize each other. It has also become one of the

major areas of biometric research because of its noninvasive nature. Images of the face are captured by

photographs or video. The fundamental principle of face recognition uses a special mathematical model to

measure the dissimilarity of features in the face. Currently, both 2D and three-dimensional (3D) facial

recognition systems are available, and some research has gone into a new area called ‘‘5D,’’ which is a

combination of 2D and 3D technologies.

Two-dimensional facial recognition is based on comparing two digital face images in such a manner as to

be invariant to the subject’s facial hair or expression, pose, and whether or not they are wearing glasses

when the images were captured. The comparison involves the inherent features of the face, such as nose,

eyes, lips, chin, and ears, and their relative position to each other in the two-dimensional plane of the

captured image. The technologies work best under controlled conditions; as the camera angle or

lighting conditions vary, the performance can diminish. Examples of two different facial images are

shown in Figure 24.3. The image on the right would be much more difficult to match to an ‘‘enrollment’’

image.

Three-dimensional facial recognition takes the 2D technology a step further and introduces depth by

generating a 3D face model. In particular, it addresses the two most critical and complicating factors that affect

2D performance: illumination conditions and pose variation. An example of a 3D system is the A4 Vision

system, where structured light is used to acquire the 3D geometry of the face. Three-dimensional

reconstruction algorithms are used to formulate a 3D mesh of the face, which is then used for identification.

FIGURE 24.2 An iris image. (a) Original image. (b) With iris boundaries delineated by concentric circles.

24-4 Circuits, Signals, and Speech and Image Processing



Figure 24.4 (left) shows an example of a 3D mesh of a face used in recognition. Further processing can create a

3D surface of the face (right).

Voice Recognition

Speech is produced via the vocal tract. It is the shape of the vocal tract that makes the voice unique and

suitable for use in speaker identification. The vibration of the vocal cords, as well as the positions, shapes,

and sizes of the various articulators (lips, tongue, etc.) change over time to produce the sound. The

characteristics of the sound vary from person to person, and can be used to identify an individual. For

example, Figure 24.5 shows the speech waveform from three different people speaking the word

‘‘Honolulu.’’ A person’s voice is not necessarily stable over a lifespan, varying with age and in the presence

of disease. It can also vary over the short term, in the presence of stress, colds, and allergies. Voice

recognition is occasionally confused with the technology of speech recognition. In the latter, an algorithm

translates what a user is saying, whereas voice recognition technology verifies the identity of the individual

who is speaking.

FIGURE 24.4 A 3D facial image. (a) 3D mesh template of a face. (b) Reconstructed 3D mesh w/surface added.

FIGURE 24.3 A 2D facial image. (a) Nearly ideal conditions for recognition. (b) A much harder problem.
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24.4 Conclusions

The use of biometrics for security applications is becoming more common. Any particular biometric may

prove most suitable for a given application, but the performance of any can be improved using multimodal

biometrics. Multimodal biometrics is the use of a combination of different biometrics in the identification/

verification process. For example, by requiring both a fingerprint and hand geometry samples, the possibility

of an incorrect match is more unlikely than when using only a fingerprint.

Improvements in the technology have made biometric systems more accurate, more convenient, and more

secure than the more widely accepted means of identification such as ID cards. In an age where identity theft is

becoming more prevalent and terrorist threats substantiate the need for automatic identification of people

from a distance to identify potential terrorists, biometrics appears to be an important part of solutions to these

problems.

FIGURE 24.5 The word ‘‘Honolulu’’ spoken by three different people.
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Defining Terms

Biometric: A unique and measurable physical, biological, or behavioral characteristic of a person that can

be used to establish or to verify their identification.

Identification: The process of comparing a person’s biometric sample to a database to establish their

identity; a one-to-many identity check.

Verification: The process of certifying that an individual is who they say by using biometric samples; a one-

to-one identity check.

Iris recognition: Automatically establishing identity using an infrared image of the iris.

Facial recognition: Automatically establishing identity using a photo or video of a person.

Fingerprint recognition: Automatically establishing identity using a fingerprint image.

Voice recognition: Automatically establishing identity using a speech sample.

Multimodal biometrics: Automatically establishing identity using samples from multiple biometrics.
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Further Information

For further information on biometrics, here are some Internet sites and other resources.

Web sites

http://www.biometrics.org: The Biometrics Consortium

http://www.biometricgroup.com: International Biometrics Group

http://www.eubiometricforum.com: European Biometrics Forum

http://www.biometricdomains.com: Biometrics Domain (a link to other biometric resources)

http://www.iapr.org/: The International Association for Pattern Recognition

FIGURE 24.5 (Continued).
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Other resources

Interested readers are directed to the following journals for more information:

IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE Transactions on Signal Processing

IEEE Transactions on Circuits and Systems for Video Technology

IEEE Transactions on Image Processing

International Journal of Pattern Recognition and Artificial Intelligence (IJPRAI)

Pattern Recognition
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The iris provides one of the most stable biometric signals for use in identification, with a distinctive texture

that is formed before birth and remains constant throughout life unless there is an injury to the eye.

The striations, filaments, and rings that make up the iris pattern are unique to each person, and the left

eye differs from the right eye. Because of its uniqueness to an individual, an iris can provide identification with

very high confidence, even with large databases. Compared with other biometric features such as face and

fingerprint, iris patterns are more stable and reliable. Iris recognition systems are noninvasive, but require a

cooperative subject.

25.1 The Iris

The iris (Figure 25.1) is the round, pigmented tissue that lies behind the cornea. It gives color to the eye and

controls the amount of light entering the eye by varying the size of the black pupillary opening. The iris

contracts and expands its dilator muscles depending on the surrounding light conditions. By regulating the

size of the pupil, the iris directs light on to the retina.

There are four layers in the iris: the anterior border layer, the stroma, the dilator pupillae muscle, and the

posterior pigment epithelium. These layers together determine eye color and produce the pits, striations,

filaments, rings, dark spots, and freckles (which make up the iris patterns through a combination of scattering

effects and pigmentation). The natural substance that gives color (pigment) to the human hair, skin, and iris is

melanin. Brown eyes are due to heavy pigmentation of the anterior border layer with eumelanin. Blue/green

eyes are due to pigmentation with pheomelanin. The dimensions of the iris vary slightly between individuals,

with an average size of 12 mm in diameter.

25.2 Iris Recognition Technology

Ophthalmologists first noted from clinical experience that every iris had a highly detailed and unique texture,

which remained unchanged after the first year of human life. Ophthalmologists Flom and Safir (1987) hold
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a patent for describing methods and apparatus for iris recognition based on visible iris features. They were the

first to propose the use of the iris as a biometric trait for individual identification. In their 1987 patent, their

technique required adjustment of the intensity of a light source until the pupil reached a predetermined size

and then compared it with stored image information from an eye with the same pupil size. The requirement of

the same pupil size made this iris recognition algorithm somewhat cumbersome.

Daugman (1994) was awarded a patent in 1994 for a biometric personal identification system based on iris

analysis. It was the first automatic iris recognition system. He used the two-dimensional (2D) Gabor wavelet

to transform iris images into iris codes. Daugman defines iris recognition as the ‘‘real-time, high confidence

recognition of a person’s identity by mathematical analysis of the random patterns that are visible within the

iris of an eye from some distance.’’ The iris has proven to be the most stable and reliable means of biometric

identification. The block diagram in Figure 25.2 depicts the principal steps of the process of iris recognition,

and is described in the following sections. The iris recognition system has two subsystems: the iris enrollment

system and the iris identification system. The iris enrollment system is used to enroll the iris patterns in the

database for further identification. The iris identification system compares a newly input iris pattern with the

known iris patterns in the database and decides if it is in the database.

Image Acquisition

One of the major challenges of an iris recognition system is to capture a high-quality iris image while

remaining noninvasive to the user. In the image acquisition step, near-infrared (NIR) cameras are used to acquire

iris images and save them in digital format (see Figure 25.1b). A NIR light source may be required to provide

ample illumination. In the visible light wavelengths, the amount of detail visible in the iris varies from person to

person and is correlated to eye color. Lighter color eyes (such as light blue eyes) tend to show more detailed

patterns than darker color eyes (such as dark brown eyes). However, at NIR wavelengths (700 to 900 nm), even

dark irises reveal rich and complex features. The actual focal length to acquire an iris image depends on the iris

camera, typically 5 to 20 in. resolving a minimum of 70 pixels in iris radius. There is research in progress to

enable longer-distance iris scanning.

Preprocessing

The preprocessing step locates the various components of the iris boundary. In particular, it defines the limbic

(outer) boundary of the iris, the pupillary (inner) boundary of the iris, and the eyelids. Edge detection can be

used in this step to find the iris boundaries. The pupillary and limbic boundaries are approximated by circles,

FIGURE 25.1 An iris image.
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and after defining the pupillary boundary, the center of the pupil can be estimated using this circular model.

Then, with this as the center location of the circles, the iris image can be transformed into polar coordinates.

Establish Coordinate System

The size of the same iris captured at different times may be variable as a result of changes in the distance from

the camera to the face. Also, due to stimulation by light or for other reasons, the pupil may be constricted or

dilated. These factors will change the iris resolution and the actual distance between the pupillary and limbic

boundaries. Instead of fixing the pupil size as ophthalmologists Flom and Safir (1987) proposed, in an

automatic iris recognition system, the image is processed to ensure the accurate location of the boundary and

to fix the resolution.

Figure 25.3 illustrates the rectangular to polar transformation. Using (x0, y0) as the location of the center of

the pupil, for each pixel in the original iris image located at rectangular coordinates (xi, yi), we compute its

FIGURE 25.2 Iris recognition system: (a) iris enrollment system; (b) iris identification system.
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polar coordinates (ri, yi) as

ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi x0Þ2 þ ðyi y0Þ2

q
;

yi ¼
arc sin

yi y0
xi x0 yi y0

pþ arc sin
yi y0
xi x0 yi5y0

8<: ð25:1Þ

This transformation takes the circular iris and reforms it into a rectangular shape that can be further analyzed

using image processing.

Iris Pattern Analysis

Iris pattern analysis is a key step in the process, and there are different approaches. Daugman (1994, 2004)

used a quadrature 2D Gabor wavelet method to analyze both coherent and incoherent detailed texture of the

iris. Only the phase information is used for iris recognition, as the phase can provide optimal information

about the orientation, spatial frequency content, and 2D position of the local image structure while the

magnitude provides little discrimination. Du et al. (2004) designed a local texture analysis algorithm to

calculate the local variances of iris images. Some other approaches include the Laplacian parameter approach

by Wildes et al. (1996), zero-crossings of the one-dimensional (1D) wavelet transform at various resolution

levels by Boles and Boashash (1998), the independent component analysis (ICA) approach by Huang et al.

(2002), the texture analysis using multichannel Gabor filtering and wavelet transform by Zhu et al. (2000), the

circular symmetric filter approach by Ma et al. (2002) and the self-organizing neural network approach by

Liam et al. (2002). Among them, Daugman’s 2D Gabor wavelet approach has been successfully tested using a

large scale iris database and has been commercialized by Iridian.

Iris Template Generation

After the iris pattern has been analyzed, iris template generation extracts the unique iris patterns and stores

them as a template that will be used for identification. Again, there are various approaches to template

generation. As an example, Daugman’s (1994, 2004) method transforms the 2D Gabor phase information into

binary 0s and 1s using a zero-crossing method. The iris template is encoded in 2048 bits, while at the same

time an equal number of masking bits are also used to denote non-iris artifacts to prevent their interference

in the comparison. Many other iris recognition methods transfer the iris patterns into 2D codes. However,

Du et al. (2004) generate 1D iris signatures (templates) from the 2D local texture patterns (LTP) of each

FIGURE 25.3 Rectangular to polar transformation.
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row of the rectangular images, after removing the non-iris pixels. Figure 25.4 shows a sample of a 2D iris code

using Daugman’s method, and a 1D signature generated via the method of Du et al.

Enrollment

For an iris pattern to be recognizable in the system, we first need to enroll the iris pattern in the database.

The enrollment process usually takes multiple iris images of the same iris to register and generate the

enrollment iris patterns. Iris recognition systems usually require a higher quality of iris images for enrollment

purposes. For example, to enroll, the users usually cannot wear eyeglasses or contact lenses. However, these

restrictions could be relaxed for identification purposes.

Iris Template Database

The enrolled iris templates are stored in the iris template database for further identification. The security of

this iris template database must be protected, and the templates are usually encrypted.

Iris Matching Algorithm

When an iris image is presented for identification, an iris template is generated by the template generation

algorithm. The iris recognition system then attempts to match it with the enrolled iris templates stored in the

database. Here again, there are various matching algorithms in use. Since the eyes may tilt during the

acquisition step, the iris matching algorithm should take into consideration any rotation of the iris patterns.

Instead of rotating the iris image, Daugman and many other researchers compare templates in the database to

the newly created template by cyclic scrolling of its angular variable (for Daugman’s algorithm, this is the

2D iris phase code). The match score is the best match after numerous relative rotations of the two iris

templates. To compute the match score, Daugman used the Hamming distance (HD) as the measure of the

FIGURE 25.4 An example of different iris templates: (a) iris phase code; (b) 1D iris signature.
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dissimilarity between two irises. For 1D iris signatures by Du et al. (2004), this rotation is not necessary, since

the 1D iris templates are orientation invariant. Here, the Du measure was used to generate the 1D iris

template matching scores.

Iris Identification

Based on the matching score generated by the matching algorithm, this step will decide if the input iris is

identified as the one in the database. The identification step involves statistical analysis of a threshold applied

to the match scores. According to Daugman, if using a Hamming distance threshold of 0.35 (that is, 65% of

the bits match), the false match rate could be as high as 1 in 133,000. However, using 0.26 as the threshold, the

false identification rate could be as high as 1 in 1013 while the false rejection rate will be increased dramatically.

Speed Performance of Iris Recognition

Different iris recognition methods vary in the speed with which they are able to carry out the recognition

process. Daugman showed the execution time for critical steps on a 300 MHz Sun workstation using

optimized integer code. The demodulation and IrisCode creation step (i.e., the iris pattern analysis and iris

template generation steps in Figure 25.2) takes only 102 msec, while the preprocessing step (assess image

focus, scrub specula reflections, localize eye and iris, detect pupillary boundary, detect and fit both eyelids, and

remove eyelashes and contact lens edges) takes a much longer time, 344 msec. For commercialized iris

recognition systems, iris recognition just takes approximately 2 sec.

Iris recognition can be used to search large databases in real time. A 2001 study conducted by the U.K.’s

National Physical Laboratory found that iris technology was capable of nearly 20 times more matches per

minute than fingerprints (Forrester et al., 2001).

25.3 Applications of Iris Recognition

Iris recognition is noninvasive to the user, avoiding any physical contact with the device. The iris is an

extremely difficult characteristic to spoof. In an iris recognition system, a ‘‘liveness’’ test is usually deployed to

test if the iris is from a living person rather than an artificial or lifeless eye. The natural pupillary response

(changing pupil size in response to changes in illumination) can be used to confirm the liveness of an iris. Some

iris recognition systems also use the ‘‘hippus’’ (the constant movement of the pupil) and ‘‘saccade’’ (movement

of the eye) as criteria for the liveness test.

Compared to other biometrics, such as face, fingerprint, and voice, the iris has a number of advantages. The

iris is a highly protected, internal organ of the eye, and yet it is externally visible so patterns can be imaged

from a distance. The iris has six times as many distinct, identifiable features as a fingerprint and a high

information density (approximately 3.2 bits per square millimeter). Like fingerprints, iris patterns develop

randomly. No two iris patterns are alike, even those of identical twins, and even between the right and left eye

of the same person. The iris remains unchanged throughout a person’s life, although damage to the cornea,

disease, or other ailments might hinder or prevent its use for identification. Iris recognition has the highest

accuracy level of all biometrics, with a near 0% false accept rate (FAR) and very low false reject rate (FRR). It

can provide fast, scalable authentication in large database environments.

Iris technologies have provided important assets for security in terms of positive human identification.

Currently, there are three general categories of commercialized iris recognition systems. These are described in

the following sections.

PC Iris Recognition System

This kind of iris recognition system uses a low-end iris camera, such as the Panasonic Authenticam. The iris

camera is linked directly with a PC (Figure 25.5), commonly with a USB connection. This system typically can

hold very small databases (fewer than 200 users). The enrollment and identification are performed with the
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same iris camera. The advantage is the ease of installation and relatively low cost, but this kind of system is

more vulnerable to spoofing compared to the more sophisticated iris systems. The applications are usually

seen in computer access control, Internet authentication, and e-commerce applications.

Walkup Iris Recognition System

The walkup system (Figure 25.6) usually uses a server–client distribution system and comprises multiple iris

cameras, such as the LG IrisAcess System. The enrollment is done within a secure environment with a separate

enrollment iris camera. The identification is performed in a less secured environment, such as outside a door

or gate that leads to a secure area.

The walkup iris recognition system usually includes an administrative server, an enrollment server, a

database server, and the remote access units. The administrative server manages the user accounts and the

access schedule (the schedule each user is allowed to access the door/gate) for each user, and monitors system

events. The enrollment server connects to an iris enrollment camera. The database server contains the entire

FIGURE 25.5 PC iris recognition system (the iris camera is a Panasonic Authenticam).

FIGURE 25.6 Walkup iris recognition system architecture.
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enrolled iris database. These three servers should be located in a secured area. In a smaller user group, these

three server functions could be performed on a single computer. For large user groups, there could be multiple

database and enrollment servers.

A remote access unit has an access control iris camera, a control unit, and a door control unit. The access

control iris camera acquires iris images, and provides audio and visual cues that indicate whether or not the

user is identified. No biometric templates are stored on the optical unit. The control unit is a customized

computer that processes the iris image acquired from the iris camera into iris templates and compares these

with stored templates. If a match is found, the unit generates a signal to the door control unit to open or

unlock the door. The control unit should be installed in a protected area. The iris recognition system can have

multiple remote access units. The remote access unit is typically connected to the servers via a computer

network. Many walkup iris recognition systems are using the Internet (TCP/IP) for connection purposes.

Walkup iris recognition systems are found in government, financial institutions, key research areas, and

other corporations for door/gate access control and positive identification.

Stand-Alone/Portable Iris Recognition System

A portable iris recognition system is a fully self-contained iris enrollment and recognition system. It is a stand-

alone handheld device. SecuriMetrics Inc. developed the first stand-alone iris recognition system named PIER

(portable iris enrollment and recognition) as shown in Figure 25.7. The portable/stand-alone iris recognition

FIGURE 25.7 An example of a portable/stand-alone iris recognition system (from PIER Version 2.2 at http://

www.securimetrics.com/).
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system integrates an iris camera, a computer processor, a database, and a keyboard in a single device. On top

of the PIER is a small monitor that shows the status of iris recognition. On the top back portion is an iris

camera. The bottom part of the PIER is the keyboard that enables users to input user names and allows

interaction with the iris recognition process.

The portable and standalone features of this kind of system enable the application of iris recognition in the

field. According to the Homeland Defense Journal in March 2004, U.S. Special Operations Forces have deployed

PIER Version 2.2 in Iraq in 2003. It has been deployed worldwide in support of Operation Enduring Freedom

for numerous missions, including port security.

25.4 Conclusion

The iris provides a unique stable biometric signal that is the basis of iris recognition algorithms. Most of the

algorithms employ 2D signal processing techniques, but some recent algorithms use 1D techniques. Commercial

systems provide reliable accurate identification, and range from inexpensive PC devices to more expensive

multiple access-point systems. Iris recognition systems are noninvasive, but require a cooperative subject.

Defining Terms

Iris: Round pigmented tissue that lies behind the cornea and gives color to the eye (e.g., blue eyes). It

controls the amount of light entering the eye by varying the size of the black pupillary opening.

Iris recognition: Real-time, high confidence recognition of a person’s identity by mathematical analysis of

the random patterns that are visible within the iris of an eye from some distance.

Iris liveness test: Checks if the iris image is taken from a living person.
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Further Information

For further information on iris recognition technology and systems, some Internet sites and other resources

locations are listed below.

Web Sites

http://www.cl.cam.ac.uk/users/jgd1000 (Dr. John Daugman’s homepage)

http://www.iridiantech.com (Iridian Technologies)

http://www.sinobiometrics.com (Center for Biometric Authentication and Testing, Chinese Academy of

Sciences. You can download very good iris images for your research)

http://www.biometrics.org (Biometrics Organization Webpage)

Other Resources

Currently, many researchers are working on iris recognition technologies. Interested readers are directed to the

following journals for more information:

IEEE Transactions on Pattern Analysis and Machine Intelligence

IEEE Transactions on Signal Processing

IEEE Transactions on Circuits and Systems for Video Technology

IEEE Transactions on Image Processing

Optical Engineering

Pattern Recognition

Additionally, readers are encouraged to attend the following conferences to update information about the

current state of iris recognition:

Biometric Consortium (held annually in Arlington, VA)

SPIE Defense and Security Symposium (held annually in Orlando, FL)

IEEE International Conference on Pattern Recognition (held annually)
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26.1 Introduction

Biometric devices have been suggested for use in applications from access to personal computers, automated

teller machines, credit card transactions, and electronic transactions to access control for airports, nuclear

facilities, and border control. Given this diverse array of potential applications, biometric devices have the

potential to provide additional security over traditional security means such as passwords, keys, signatures,

picture identification, etc. Examples of biometrics include recognition of a fingerprint, face, voice, iris, and

handprint [1,2]. The following are the basic components and function of a system, as shown in Figure 26.1.

First, a sensor measures the biometric sample and converts it into a digital signal or image. An algorithm

then extracts features from the signal or image, that are used for the recognition algorithm. For example, with

fingerprint recognition, features commonly include ridge endings and bifurcations, called minutiae. The

algorithm then compares these features to a template, which are the features stored previously at an

enrollment visit. In the case of verification, the sample is compared to the enrolled template of the person that

they claim to be. In the case of identification, the sample is compared to all templates in the database. A match

score quantifies the degree of match between the sample and the template, and a threshold is set to decide if it

is a match or nonmatch. Typical statistics that define biometric system performance include false accept/

false reject error rates and receiver operating characteristic curves, which balance the tradeoff between false

accept and false reject error rates for a variety of thresholds [3].

Match
Score

Person

Signal or
Image

Decision:
Match or

Nonmatch

Biometric
Sensor

Feature
Extraction

Comparison
With Template(s)

Template

Features

Threshold

FIGURE 26.1 Basic structure of a biometric system.
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While biometrics may improve security, biometric systems also have vulnerabilities. System vulnerabilities

include attacks at the biometric sensor level, replay attacks on the data communication stream, and attacks on

the database, among others [4]. One vulnerability includes attempts to gain unauthorized access at the

biometric sensor with artificial fingers created from fingerprints of authorized users, called spoofs, or, in the

worst-case scenario, dismembered fingers. Previous work has shown that it is possible to spoof a variety of

fingerprint technologies through relatively simple techniques using casts of a finger with molds made of

materials including silicon, Play-Doh, clay, and gelatin (gummy finger). It has been demonstrated that spoof

molds can be scanned and verified when compared to a live enrolled finger [5–10]. In addition, our research

has shown that cadaver fingers can be scanned and verified against enrolled cadaver fingers [10].

Liveness, i.e., determination of whether the introduced biometric is coming from a live source, has been

suggested as a means to circumvent attacks that use spoof fingers. The goal of liveness testing is to determine if

the biometric being captured is an actual measurement from the authorized, live person who is present at the

time of capture. Typically, liveness is a secondary measure after biometric authentication, which must be met

in order to achieve a positive response. Liveness and antispoofing methods are covered in detail in the

following summaries [10–12]. Other techniques that can make spoofing more difficult include the use of

biometrics in combination with a challenge response, passwords, tokens, smart cards, and multiple biometrics.

Liveness falls into three main approaches. The first approach is the utilization of additional hardware in

conjunction with the biometric sensor. Examples of this approach include thermal sensing of finger

temperature [13], ECG [13], impedance and electrical conductivity of the skin (dielectric response) [14], and

pulse oximetry [13,15]. Pulse oximetry is a standard medical monitoring tool, which utilizes the variation over

time of the absorption of light due to oxygenated and deoxygenated blood (typically, 660 and 940 nm) [16].

While effective in determining liveness, these methods require additional hardware, which is costly and, unless

integrated properly, may be spoofed with an unauthorized live person.

The second approach is to further process the biometric sample to gather liveness information. Examples

include quantifying saccade movements in the eye for iris recognition, lip-reading [17], or perspiration in the

fingerprint, illustrated in an example of liveness detection discussed in the next section [9]. The advantage of

this approach is that the biometric and liveness information are linked, such that it would be more difficult to

spoof with an unauthorized live person.

Finally, for some biometrics, liveness is an inherent aspect of the biometric, i.e., ‘‘liveness’’ is a prerequisite

even to capture the biometric. Examples include ECG [18], the electrical measurement of the heart,

spectroscopy [19], and the reflection of different wavelengths of light measuring characteristics of underlying

skin and tissue structure. While the most difficult to circumvent, these methods as biometrics are relatively

new to the field and will need to be evaluated both as a biometric and a liveness measure.

Although many liveness detection methods have been suggested and some have been implemented, no

independent testing has been performed to report on the effectiveness of these methods for detecting liveness.

Liveness detection is a stage in the authentication process. Therefore, it must be treated as part of the

biometric system, in that it has an impact on the false reject ratio, false accept ratio, failure to acquire, and

other statistics. In addition, other characteristics for evaluating biometrics systems such as ease of use,

universality, and user acceptance [1] need to be considered before implementing a liveness algorithm. Liveness

algorithms are not spoof-proof and therefore will also have varying degrees of spoofing vulnerability.

26.2 Use of Signal Processing for Liveness Detection in Biometric
Devices

In this section, an example of signal processing is given where liveness is determined in fingerprint devices

based on a time series of fingerprint images [9,20]. The method uses the physiological process of perspiration

to determine the liveness of a fingerprint. In brief, when in contact with the fingerprint sensor surface, live

fingers, as opposed to cadaver or spoof, demonstrate a distinctive spatial moisture pattern that evolves in time

due to the physiological perspiration process. Optical, electro-optical, and solid-state fingerprint sensors are
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sensitive to the skin’s moisture changes on the contacting ridges of the fingertip skin and can capture the time-

dependent, spatial pattern (Figure 26.2).

To quantify the perspiration phenomenon, our algorithm maps a two-dimensional fingerprint image to

a ‘‘signal’’ that represents the gray-level values along the ridges (Figure 26.3). Variations in gray levels in

the signal correspond to variations in moisture, both statically (on one image) and dynamically (difference

between consecutive images). The static feature measures periodic variability in gray level along the ridges

FIGURE 26.2 Example fingerprint images from live (top), spoof (middle), and cadaver (bottom) fingers captured at 0, 2,

and 5 sec (left to right) after placement on scanner. Live fingerprint images demonstrate changing moisture over time due to

perspiration. (Source: Parthasaradhi, S.T.V. et al., IEEE Trans. Syst., Man and Cybernetics, Part C, Vol. 35, no. 3, pp. 335–343,

2005.)
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due to the presence of perspiration around the pores. In this measure, the small, highly moisturized areas

around the perspiring pores (and not the pores themselves) are detected as a sign of active perspiration

and thus liveness. The dynamic features quantify the temporal change of the ridge signal due to

propagation of this moisture between pores in the initial image relative to image captures 2 (or 5) sec

later, while the pore areas remain saturated and almost unchanged. The cadaver and spoof fingers fail to

provide the mentioned static and dynamic patterns due to the lack of active pore-emanated perspiration.

26.3 Algorithm Details

Two fingerprint images captured within a 2- (or 5-) sec interval (referred to as first and second capture) are the

inputs to the algorithm. The algorithm can be divided into five main components, outlined in Figure 26.4: (1)

preprocessing to remove noise, (2) conversion of images to ‘‘ridge signal,’’ (3) extraction of static-based feature

on first image, (4) extraction of dynamic features based on first and second image, and (5) classification

(neural network) [9,20].

Preprocessing

A program developed to clean the image subtracts the permanent irregularities in the scanner by comparing it

to a ‘‘blank’’ capture taken for each individual case. It also removes the background static by discarding those

pixels that change only within 2% of the blank scan. Next, a median filter is applied here to ‘‘cover’’ the white

pixels in the middle of the pores (3 · 3 for 300 dpi device and scaled accordingly for other devices). This also
smoothes the image further and eliminates ‘‘salt-and-pepper’’ noise, if any. Next, a software module

transforms the image to binary.

Conversion to Ridge Signal

A copy of the last captured image is thinned to locate the ridges. Y-junctions are removed using a simple

nonoverlapping neighbor operation (3· 3 for 300 dpi and scaled accordingly for other devices). Ridges that
are not long enough to cover at least 12 mm (approximately two pores) are discarded. Using the thinned

ridge locations as a mask, the gray levels of the original image underneath these ridge paths are recorded.

FIGURE 26.3 Ridge mask (dark lines) superimposed over the original grayscale fingerprint image (left) and an example

of the resulting ridge signal for the first (solid) and second (dashed) image captures (right). The ridge signal is the gray

levels of the image under the mask, where a larger amplitude indicates a higher gray level. (Source: Parthasaradhi, S.T.V.

et al., IEEE Trans. Syst., Man and Cybernetics, Part C, Vol. 35, no. 3, pp. 335–343, 2005.)
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The resulting signals for the first and the last capture are representative of the moisture level along the

ridges for a given image in the time series. Figure 26.5 illustrates these steps by showing a portion of

the ridge signals derived from the first and last captures from a live, spoof, and cadaver source along the

mentioned mask.

Extraction of Static Feature (Fourier Transform)

Static feature (SM) quantifies variations in the gray levels of the first ridge signal, where the peaks represent

the moist pores and the valleys the dryer regions between each of two pores. The average Fourier transform

of the signal segments is calculated from the first capture using a 256-point FFT for each ridge signal

segment. The total energy is summed across the spatial frequency range between the typical pore spacing of

0.4 to 1.2 mm (8 to 24 pixel distance for a 300 dpi device or 11 and 33 number of FFT points/spatial period).

Before taking the FFT, in order to eliminate the spike around zero frequency, the dc of the signal is removed

by subtracting the mean. The procedure can be mathematically expressed as

SM ¼
X33
k¼11

f ðkÞ2

where

f ðkÞ ¼

Pn
j¼1

P256
i¼1

C1aj;i e
2pðk 1Þði 1Þ=256

n
C1aj ¼ C1j mean ðC1jÞ

Preprocessing
noise removal, median filter

Convert Images to “Ridge Signals”
thinning, removal of short segments

Static Feature
Fourier transform, initial ridge signal

Time series of fingerprint images

Dynamic Features
statistical measures, changes in ridge signals

Classification
neural network, gradient descent, weight decay

Decision: Live or Spoof

FIGURE 26.4 General flowchart of algorithms for detection of liveness in biometric fingerprint devices.
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where C1j,i is the gray level for the jth ridge signal of the first capture and the ith point, j is equal to 1 to the

number of ridge signals (n), i equal to 1 to the length of each ridge signal (m), and f(k) is the average FFT of

the strings. Figure 26.6 plots the average FFT for the first image for live, cadaver, and spoof fingerprints. The

total energy (SM) for cadaver and spoof is very low compared to live.

FIGURE 26.5 Portion of a ridge signals: live (top), cadaver (middle), and spoof (bottom). denotes minimums and

maximums. The ridge signal for the live finger has peaks indicating moist regions around the pores and valleys

indicating the dry region between pores. Over time, the valleys increase in live images as the perspiration diffuses

between the ridges. The peaks and valleys of the spoof and cadaver images are random without a specific time-domain

change. (Source: R. Derakhshani et al., Pattern Recognition, vol. 36, pp. 386–396, 2003.)
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FIGURE 26.6 Average FFTs calculated from signal segments from the live (top), cadaver (middle), and spoof (bottom)

fingerprint images. X-axis is the FFT index where 11 to 33 indicates 8 to 24 pixel spacing. Y-axis is magnitude. Live images

have more total energy than spoof/cadaver for the first capture for frequencies related to the moist pore spacing.

(Source: R. Derakhshani et al., Pattern Recognition, vol. 36, pp. 386–396, 2003.)
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Extraction of Dynamic Features

Each of the dynamic measures uses the ridge signals from both the first and last capture. Each dynamic

measure is an average across the n ridge signals:

. Total swing ratio of first to last fingerprint signal (DM1): The fluctuation of the live fingerprint signal is

more in the first capture, where there are moist pores and drier regions in between pores, compared to

last fingerprint signal, where sweat has diffused into drier regions. In mathematical terms,

DM1 ¼ 1

n

Xn
j¼1

Pm
i¼1
jC1j;i C1j;i 1jPm

i¼1
jC2j;i C2j;i 1j

where C2j,i is second capture. The number of points for each ridge signal (m) is the same for C1 and C2

since the same mask was used.

. Min/max growth ratio of first to last fingerprint signal (DM2): For the live fingerprint signal, the heights

of the maximums do not increase as fast as the minimums as the perspiring pores are already saturated.

In mathematical terms,

DM2 ¼ 1

n

Xn
j¼1

P
i

ðC2minj;i C1minj;i ÞP
k

ðC2maxj;k C1maxj;k Þ

where C1minj;i and C2minj;i are the local minimums for the first and last scan, respectively, and C1maxj;k and

C2maxj;k are the local maximums. Location of minimums and maximums were determined from the

second capture and applied to both.

. Last-first fingerprint signal difference mean (DM3): The first ridge signal is subtracted from the second.

In mathematical terms,

DM3 ¼ 1

n

Xn
j¼1

Pm
i¼1

ðC2j;i C1j;iÞ
m

. Percentage change of standard deviations of first and last fingerprint signals (DM4): This measure is the

percentage change in standard deviation of last and first fingerprint signals. In mathematical terms,

DM4 ¼ 1

n

Xn
j¼1

SDðC1jÞ SDðC2jÞ
SDðC1jÞ

where SD is the standard deviation operator

SDðCjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1
ðCj;i mean ðCjÞÞ2

m 1

vuuut
. Dry saturation percentage change (DM5): This fifth dynamic measure indicates how fast the low cut-off

region of the ridge signal is disappearing where higher DM5 corresponds to faster disappearance of dry

saturation. In mathematical terms,
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DM5 ¼ 1

n

Xn
j¼1

Pm
i¼1

dðC1j;i LTÞ dðC2j;i LTÞ

0:1þ Pm
i¼1

dðC2j;i LTÞ

LT is the low-cutoff threshold of the ridge signal [min(Ci)], d is the discrete delta function, and 0.1 is
added to the denominator to avoid division by zero.

. Wet saturation percentage change (DM6): The sixth dynamic measure indicates how fast the high cut-off

region of the ridge signal is appearing. In mathematical terms,

DM6 ¼ 1

n

Xn
j¼1

Pm
i¼1

dðC2j;i HTÞ dðC1j;i HTÞ

0:1þ Pm
i¼1

dðC1j;i HTÞ

HT is the high-cutoff (saturation) threshold of the ridge signal [max(Ci)].

Classification (Neural Network)

One static and six dynamic measures are used as input features to the neural network. Classification of images

is divided into live and spoof, where spoof, includes images from fingerprint molds and cadavers. A single

hidden layer neural network with gradient descent learning in conjunction with weight decay and momentum

learning was used [21,22]. The hidden layer utilizes five nodes with unipolar logsig activation functions. The

output layer is composed of one node with bipolar tansig activation function. For training, desired output

values were set to þ1 for live and 1 for spoof. In the weight-decay method, a constant value (0.0001) is

subtracted from all the weights during each iteration of the training phase, such that insignificant weights are

driven towards zero and eventually eliminated. This reduces the classifier’s variance by reducing the number of

its free parameters, resulting in robustness and better generalization.

26.4 Example Results

This section details some example results [20]. A dataset of approximately 30 live, 30 spoof (Play-Doh finger

molds created from dental material casts of 30 subjects), and 15 cadaver sets of fingerprint images were used to

test the algorithms from three fingerprint scanner technologies: optical (Secugen, EyeD hamster #HFDUO1A),

capacitive DC (Precise Biometrics, 100 sc), and electro-optical (Ethentica, Ethenticator USB 2500). Of the

data, 75% was used for training and 25% for testing. Classification was performed separately for two different

time windows (2 and 5 sec). Various thresholds (with 0.05 steps) were tested on the output of the neural

network to achieve 100% live classification rate along with the maximum possible spoof classification rate.

Results are shown in Figure 26.7, where 100% detection of live fingerprints is possible, with 80 to 100% spoof

classification depending on device technology.

26.5 Conclusion

An example of signal processing applied to liveness detection in biometric devices has been described. Given

biometric recognition is an emerging technology, the vulnerability of these devices to simple spoofing

techniques will need to be addressed using liveness detection or other antispoofing methods depending on the

risk assessment for the application.
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27.1 Introduction

One of the main goals of computer vision research is to develop methods to recognize objects and events.

A subclass of these topics is the recognition of humans and their activities. In this chapter, we summarize some

recent methods for human recognition using face and gait.

Gait recognition is related to the broader problem of human motion modeling and has important

implications in such areas as surveillance, medical diagnoses, the entertainment industry, and video

communications. Traditionally, there has been a keen interest in studying human motion in various

disciplines. In psychology, Johansson conducted classic experiments by attaching light displays to body parts

and showing that humans can identify motion when presented with only a small set of these moving dots [32].

Muybridge captured the first photographic recordings of humans and animals in motion in his famous

publication on animal locomotion published at the end of the 19th century [52]. In kinesiology, the goal has

been to understand human motion and apply that knowledge to applications in sports, medicine, elderly care,

and the early detecting of movement disorders [28]. Gait recognition is a relatively new area for computer

vision researchers. However, significant progress has been made and reasonably good performance on large

datasets under controlled circumstances has been achieved. Problems in this area include poor performance in

uncontrolled outdoor situations and the effects of time. Some progress has been made in recognizing people

walking in arbitrary directions to the camera.

The problem in face recognition can be defined as follows. A database of a large number of faces is available

as the gallery. The faces can be represented as a single image or by a set of images, either as a video sequence or

as a collection of discrete poses. These images are usually referred to as training images since they train the
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parameters of a recognition algorithm. Given an image or a set of images of an individual (known as test

images), the issue is to identify the individual from the gallery or decide that the person is not part of the

gallery. The main challenges in face recognition are working with:

. varying conditions of illumination between training and test images

. changes in appearance, makeup, and clothing between training and test images

. changes due to differences in time between the recording of training and test images

. different face poses in various instances of recording

All these issues make face recognition a challenging problem. However, considerable progress has been made

in the past decade, and face recognition technologies are under consideration for deployment at public

facilities.

27.2 Review of Existing Work

Human Recognition Using Gait

Human gait is a spatio-temporal phenomenon concerning the motion of an individual. When identification is

attempted in natural settings for surveillance applications, biometrics such as fingerprint or iris processes are

not applicable. Furthermore, night vision capability (an important surveillance component) is usually not

possible with these biometrics. Even though an infrared (IR) camera would reveal the presence of people, the

facial features are far from discernible at long distances. The attractiveness of gait as a biometric comes from

the fact that it is nonintrusive and can be detected and measured even in low-resolution video. Furthermore, it

is harder to disguise than static appearance features such as face and it does not require a cooperating subject.

Although the study of human gait is a relatively new area for computer vision researchers, extensive work

has been performed in the psychophysics community on the ability of humans to recognize others by their

walking style. In the computer vision community, gait research has concentrated mainly on recognition

algorithms. These methods can be divided into two groups—appearance-based and model-based.

Appearance-based methods can be further divided into deterministic or stochastic methods. Deterministic,

appearance-based methods are discussed in References 10, 35 and 55, while well-known stochastic methods in

the same category use hidden Markov models (HMM) [41,70]. Model-based methods are less popular largely

because of the difficulty of obtaining accurate three-dimensional (3D) models of the human body.

The belief that humans can distinguish between gait patterns of different individuals is widely held. These

gait-related qualities include stride length, bounce, rhythm, and speed, and are even found in swagger and

body swing. The suggestion that humans can identify people by their gait was investigated in a series of early

studies by Johansson [33]. He presented participants with images reduced to point-light displays. His

experiments suggested that we have some implicit notion of human movement and can recognize temporal

data within this context. Later work using point-light displays went further, demonstrating that not only could

a walking figure rapidly be extracted from moving lights but also that a perceiver could distinguish between

different sorts of biological motions. These included walking, climbing stairs, and jumping [15]. Attempts to

address the question of identification from gait have proceeded in small steps. Kozlowski and Cutting [38] first

investigated whether perceivers could identify the gender of a point-light walker. Their results indicated an

accuracy rate of 65 to 70% when the walker was viewed from the side. In [14], it was suggested that gender

could be identified indirectly through a determination of the walker’s ‘‘center of moment.’’ The demonstration

that gender could be extracted from gait provided insight into how perceivers might discriminate between the

gait patterns of different individuals. Cutting and Kozlowski [13] demonstrated that perceivers could reliably

recognize themselves and their friends from dynamic point-light displays. Barclay et al. [2] suggested that

individual walking styles might be captured by differences in a basic series of pendular limb motions.

Interestingly, Beardsworth and Buckner [4] have shown that the ability to recognize oneself from a point-light

display is greater than the ability to recognize friends, despite the fact that we rarely see our own gait from a

third-person perspective. Stevenage et al. [69] also explored the ability of people to identify others using gait
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information alone. He found that even with a brief exposure time and unfamiliarity with the walking subjects,

perceivers could identify the target correctly at a rate that was greater than chance.

A recent study by Schollhorn et al. [62] studied the gait of 15 subjects to ascertain the presence of gait

identity information. This study found that kinetic variables (captured using a force platform), as well as

kinematic variables (captured by reflective markers on the thigh, shank, and hip), were necessary for gait

identification. Simply using the leg portion of the body was adequate for good identification performance.

Approaches to gait recognition problems can be broadly classified as being either model-based or model-

free. Both methodologies follow the general framework of feature extraction, feature correspondence, and

high-level processing. The main difference is in feature correspondence between two consecutive frames.

Methods assuming a priori models match the 2D image sequences to the model data. Feature correspondence

is automatically achieved once a match between the images and model data is established. Examples of this

approach include the work of Lee et al. [42], where several ellipses are fitted to different parts of the person’s

binarized silhouette. The parameters of these ellipses, including the location of its centroid and eccentricity,

are used to represent the gait of a person. Recognition is achieved by template matching. Cunado et al. [12]

extracted a gait signature by fitting the movement of the thighs to an articulated, pendulum-like motion

model. The idea is somewhat similar to an early work by Murray [51], who modeled the hip-rotation angle as

a simple pendulum, the motion of which was described by simple harmonic motion. Model-free methods

establish correspondence between successive frames based upon the prediction or estimation of features

related to position, velocity, shape, texture, and color. Alternatively, they assume some implicit notion of what

is being observed. Examples of this approach include the work of Huang et al. [31], where optical flow derives

a motion image sequence for a walk cycle. Principal components analysis is then applied to the binarized

silhouette to derive what are called eigen gaits. Benabdelkader et al. [8] use image self-similarity plots as a gait

feature. Little and Boyd [45] extract frequency and phase features from moments of the motion image derived

from optical flow and use template matching to recognize different people by their gait. A dynamic time-

warping (DTW) [22] algorithm for gait recognition was proposed in [35]. This algorithm matches two gait

sequences (probe and gallery) by computing the distance as a function of time between two feature sets

representing the data. This approach can be used even when substantial training data are not available. It can

also account for modest variation in walking speed. Two of the most successful approaches to date in gait

recognition are shown in [70,72]. In Sundaresan, the authors used a HMM [58] to represent an individual’s

gait. This algorithm will be described in detail in the next section. A method for identifying individuals by

shape, which is automatically extracted from a cluster of similar poses obtained from a spectral partitioning

framework, was proposed in [72]. Most of the above methods rely on the availability of a side view to extract

the gait parameters. Two approaches that address the problem of view-invariant recognition are

Shakhnarovich et al. [27] and Kale et al. [34]. A study of the role of kinematics and shape in computer

vision-based gait recognition problems was presented in Veeraraghavan et al. [75].

Similar to FERET evaluations for face recognition, a HumanID GaitChallenge Problem was introduced to

measure the progress of different recognition algorithms (http://www.gaitchallenge.org) [56]. The challenge

problem consists of a baseline algorithm, a set of 12 experiments, and a dataset of 122 people. The baseline

algorithm estimates silhouettes by background subtraction and performs recognition by the temporal

correlation of silhouettes. Twelve experiments examine the effects of five covariates: change of viewing angle,

change in shoe type, change in walking surface, whether a briefcase is carried, and temporal differences.

A description of the different experiments (probe sets) is shown in Table 27.1. Identification and verification

scores for all the experiments are reported using the baseline algorithm. The relative performance of the

HMM-based method with the baseline is presented in the next section.

Human Recognition Using Face

Chronologically speaking, face recognition started with still images. Popular methods proposed for study are

principal components analysis or eigenfaces [50,73], linear discriminant analysis or Fisherfaces [5,80], elastic

graph matching [77], local feature analysis [53], morphable models [6], and many others. The reader is

referred to a recent survey paper [81] for additional details on recognition.
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Statistical approaches to face modeling have been popular since Turk and Pentland’s work on eigenface

in 1991 [73]. In this statistical approach, the 2D appearance of face image is treated as a vector by scanning

the image in lexicographical order, with the vector dimension referring to the number of pixels in the

image. In the eigenface approach [73], all face images consist of a distinctive face subspace. This subspace

is linear and spanned by the eigenvectors of the covariance matrix found using PCA. Typically, the number

of eigenvectors is kept at less than the true dimension of the vector space. The task of face recognition is to

find the closest match in this face subspace. However, PCA might not be efficient for recognition accuracy,

since the construction of the face subspace does not capture class separability between humans. This

motivated the use of LDA [5] and its variants. In LDA, the linear subspace is constructed so that the

within-class scatter is minimized and the between-class scatter is maximized. This idea is further

generalized in Bayesian face recognition [49], where intra-personal space (IPS) and extra-personal space

(EPS) are used instead of within-class scatter and between-class scatter measures. The IPS models

variations in the appearance of the same individual and EPS models variations in the appearance due to a

difference in identity. Probabilistic subspace density is then fitted on each space. A Bayesian decision is

taken using a maximum a posteriori (MAP) rule to determine identity. In the famous EGM [77] algorithm,

the face is represented as a labeled graph. The graph nodes are located at facial landmarks, such as the

pupils and the tip of the nose. Each node is labeled with jets derived from responses obtained by

convolving the image with a family of Gabor functions. Edges in the graph represent the geometric

distance between two nodes. Face recognition is then formalized as a graph matching problem. The above

approaches are based on 2D appearances and perform poorly when significant pose and illumination

variations are present [81].

While recognition rates under controlled indoor situations are reasonably good, work must continue

before these technologies can be deployed in outdoor situations. Many researchers believe that the use of

video sequences, as opposed to single images, will lead to better recognition rates. This is based on the idea

that integrating the recognition performance over a sequence would give a better result than considering a

single image from that sequence. Most of the current research in this area is focused on exploiting video

sequence.

However, nearly all video-based recognition systems apply still-image-based recognition to selected good

frames. In Kozlowski and Cutting [38], McKenna and Gong [48], and Wechsler et al. [76], radial basis

function (RBF) networks are used for track and recognition purposes. In Howell and Buxton [30], the system

TABLE 27.1 Probe Sets for the GaitChallenge Data

Description of GaitChallenge Data

Experiment

Probe Description

(Surface C/G, Shoe A/B,

Camera L/R, Carry NB/BF, Time)

Number of

Subjects

A (G, A, L, NB, T1þT2) 122

B (G, B, R, NB, T1þT2) 54

C (G, B, L, NB, T1þT2) 54

D (C, A, R, NB, T1þT2) 121

E (C, B, R, NB, T1þT2) 60

F (C, A, L, NB, T1þT2) 121

G (C, B, L, NB, T1þT2) 60

H (G, A, R, BF, T1þT2) 120

I (G, B, R, BF, T1þT2) 60

J (G, A, L, BF, T1þT2) 120

K (G, A/B, R, NB, T2) 33

L (G, A/B, R, NB, T2) 33

The gallery is (G,A,R,NB,T1þT2). C/G represents concrete/grass surface, L/R
represents left or right camera, NB/BF represents carrying a briefcase or not, T1 and
T2 represent the data collected at two different time instants.
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uses an RBF network for recognition. Because no warping is done, the RBF network must learn individual

variations and possible transformations. Performance appears to vary widely, depending on the size of the

training data. Wechsler et al. [76] present a fully automatic person-authentication system. The system uses

video break, face detection, and authentication modules and cycles over successive video images until high-

recognition confidence is reached. This system was tested on three image sequences: the first was taken

indoors with one subject present, the second was taken outdoors with two subjects, and the third was taken

outdoors with one subject in stormy conditions. Perfect results were reported on all three sequences when

verified against a database of 20 still-face images. A multimodal-based person recognition system is

described in Choudhury et al. [9]. This system consists of a face recognition module, a speaker identification

module, and a classifier fusion module. The most reliable video frames and audio clips are selected for

recognition. Three-dimensional information from the head is used to detect the presence of an actual person

as opposed to an image of that person. Recognition and verification rates of 100% were achieved for 26

registered clients.

27.3 Gait Recognition Using Hidden Markov Models

The HMM approach is suitable because the gait of an individual can be visualized as the person adopting

postures from a set in a sequence that has an underlying structured-probabilistic nature. The postures that the

individual adopts can be regarded as the states of the HMM and are typical of that individual. They also

provide a means of discrimination. This approach assumes that, during a walk cycle, the individual transitions

among N discrete postures or states. An adaptive filter automatically detects the cycle boundaries. The method

is not dependent on the particular feature vector to represent the gait information contained in the postures.

The statistical nature of the HMM provides robustness to the model. In the method described below, the

binarized background-subtracted image is used as the feature vector. Different distance metrics, such as those

based on the L1 and L2 norms of the vector difference and the normalized inner product of the vectors, are

used to measure the similarity between feature vectors.

Overview of the HMM Method

Let the database consists of video sequences of P persons. The model for the pth person is given by

lp ¼ ðAp;Bp; ppÞ, with N number of states. The model, lp, is built from the observation sequence for the pth

person, using the sequence of feature vectors given by Op ¼ fOp
1;O

p
2; . . . ;O

p
Tp
g, where Tp is the number of

frames in the sequence of the pth person. Ap is the transition matrix, and pp is the initial distribution. The Bp
parameter consists of the probability distributions for a feature vector conditioned on the state index, or, the

set fP p
1 ð:Þ; P p

2 ð:Þ; . . . ; P p
Nð:Þg. The probability distributions are defined in terms of exemplars, where the jth

exemplar is a typical realization of the jth state. The exemplars for the pth person are given by

Ep ¼ fEp
1;E

p
2; . . . ;E

p
Ng. The superscript denoting the index of the person will be dropped for simplicity. The

reason behind using an exemplar-based model is that recognition can be based on the distance measure

between the observed feature vector and the exemplars. The distance metric is evidently a key factor in the

performance of the algorithm. PjðOtÞ is defined as a function of DðOt ;EjÞ, the distance of the feature vector
Ot from the jth exemplar:

PjðOtÞ ¼ ae aDðOt ;EjÞ ð27:1Þ

During the training phase, a model is built for all the subjects, indexed by p ¼ 1; 2; . . . ; P, in the gallery.

An initial estimate of Ep and lp is formed from Op, and these estimates are refined iteratively. Note that B is

completely defined by E if a is fixed previously. We can iteratively estimate A and p by using the Baum–Welch
algorithm, keeping E fixed. The algorithm to reestimate e is determined by the choice of the distance metric.
During testing, given a gallery L ¼ fl1; l2; . . . ; lPg and the probe sequence of length T, X ¼ fX1;X2; . . . ;XTg
traversing the path Q ¼ fq1; q2; . . . ; qTg, qt being the state index at time t, we obtain the ID of the probe
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sequence as

ID ¼ argpmaxQ;p
Pr½QjX ; lp ð27:2Þ

The feature vector used is the binarized version of the background subtracted images. The images are scaled

and aligned to the center of the frame as in Figure 27.1. This figure features part of a sequence of feature

vectors. We now describe the methods to obtain initial estimates of the HMM parameters, the training

algorithm, and identification results using USF data described in [56].

Initial Estimate of HMM Parameters

To obtain a good estimate of the exemplars and the transition matrix, we first obtain an initial estimate of

an ordered set of exemplars from the sequence and the transition matrix, and successively refine the estimate.

The initial estimate for the exemplars, E 0 ¼ fE0
1;E

0
2; . . . ;E

0
Ng allows only for transitions from the jth state to

either the jth or the state. A corresponding initial estimate of the transition matrix, A0 (with

A0j; j ¼ A0j; jmodNþ1 ¼ 0:5, and all other A0j;k ¼ 0) is also obtained. The initial probabilities pj are set to be

equal to 1=N.

We observe that the gait sequence is quasi-periodic, and we use this fact to obtain the initial estimate e0. We
can divide the sequence into ‘‘cycles,’’ where a cycle is defined as that segment of the sequence bounded by

those silhouettes where the subject has arms on each side and legs approximately aligned with each other. We

can further divide each cycle into N temporally adjacent clusters of approximately equal size. We visualize the

frames of the pth cluster of all cycles to be generated from the jth state. Thus we can get a good initial estimate

of Ej from the feature vectors belonging to the jth cluster. For example, assume that the training sequence is

given by Y ¼ fY1;Y2; . . . ;YTg. We can partition the sequence into K cycles, with the kth cycle given by

frames in the set Yk ¼ fYSk ;YSkþ1; . . . ;YSkþLk 1g, where Sk and Lk are the index of the first frame of the

kth cycle, and the length of the kth cycle, respectively. We define the first cluster as comprising of

frames with indices Sk; Sk þ 1; . . . ; Sk þ 1
2Lk=N; Sk þ Lk

1
2Lk=N; Sk þ Lk

1
2 Lk=N þ 1; . . . ; Sk þ Lk 1.

The jth cluster ð j ¼ 2; 3; . . . ;NÞ consists of frames with indices Sk þ ð j 3
2Þ

Lk=N; Sk þ ð j 3
2ÞLk=N þ 1; . . . ; Sk þ ð j 1

2ÞLk=N. We must robustly estimate the cycle boundaries so that
we can partition the sequence into N clusters and obtain the initial estimates of the exemplars. If the sums of

the foreground pixels of each image are plotted with time then, following our definition of a cycle, the minima

should correspond to the cycle boundaries. We denote the sum of the foreground silhouette pixels in the

nth frame as s½n . This signal is noisy and may contain several spurious minima. However we can exploit

the signal’s quasi-periodicity and filter the signal to remove the noise before identifying the minima. Median

filtering and differential smoothing of s½n are not robust because they do not take into account the gait

frequency.

The specifications of the bandpass filter allow frequencies that are typical for a fast walk. The video is

captured at 30 frames per second and the sampling frequency, fs ¼ 1=30 and Ts ¼ 30a. The maximum gait

frequency is assumed to be fm ¼ 0:1, corresponding to a cycle period of Tm ¼ 10. A Hamming window of

length L is used. The extended sequence x½n is obtained by symmetrically extending s½n a in both directions by
L=2a. Therefore, the sequence x½n has length M ¼ N þ L. The resultant sequence is filtered using a bandpass

filter (with upper cutoff frequency fuc ¼ fm) in both directions to remove phase delay. The distances between

the minima of the filtered sequence provide an estimate of the cycle period. The cycle frequency is estimated as

F1 F2 F3 F4 F5 F6 F7

FIGURE 27.1 Part of an observation sequence.
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the inverse of the median of cycle periods. Using this revised estimate of the gait frequency, f̂f , a new filter is

constructed with upper cutoff frequency fuc ¼ f̂f þ 0:02. A manual examination of all the sequences in the

gallery in the GaitChallenge database revealed a 100% detection rate with hardly any false detection of cycle

boundaries.

Training the HMM Parameters

The iterative refining of the estimates is performed in two steps. In the first step, a Viterbi evaluation [58] of

the sequence is performed using the current values for the exemplars and the transition matrix. Feature vectors

are clustered according to the most likely state where they originated. The exemplars for the states are newly

estimated from these clusters. Using the current exemplar values, EðiÞ, and the transition matrix, AðiÞ, Viterbi
decoding is performed on the sequence Y to obtain the most probable path Q ¼ fqðiÞ1 ; qðiÞ2 ; . . . ; qðiÞT g, where qðiÞt
is the state at time t. The set of observation indices, whose corresponding observation is estimated to have

been generated from state j, is given by T ðiÞj ¼ ft : qðiÞt ¼ jg. We now have a set of frames for each state and we

would like to select the exemplars to maximize the probability in Equation (27.3). If we use the definition in

Equation (27.1), Equation (27.4) follows:

E
ðiþ1Þ
j ¼ argEmax

Y
t2T ðiÞ

j

PðYtjEÞ ð27:3Þ

E
ðiþ1Þ
j ¼ argEmin

X
t2T ðiÞ

j

DðYt;EÞ ð27:4Þ

The actual method for minimizing the distance in Equation (27.4) depends on the distance metric used. We

have experimented with three distance measures, namely the Euclidean (EUCLID) distance, the inner product

(IP) distance, and the sum of absolute difference (SAD) distance. These are given by Equation (27.5), Equation

(27.6), and Equation (27.7), respectively. Note that though Yt and E are two-dimensional images, they are

represented as vectors of dimension D 1 for ease of notation. 1D 1 is a vector of D ones:

DEUCLIDðY;EÞ ¼ ðY EÞTðY EÞ ð27:5Þ

DIPðY;EÞ ¼ 1
YTEffiffiffiffiffiffiffiffiffiffiffiffiffi
YTYETE

p ð27:6Þ

DSADðY;EÞ ¼ Y Ej jT 1D 1 ð27:7Þ

The equations for updating the jth element of the exemplars in the EUCLID distance, IP distance, and the SAD

distance cases are presented in Equation (27.8), Equation (27.9), and Equation (27.10), respectively. ~YY denotes

the normalized vector Y and jT ðiÞ
j j denotes the cardinality of the set T ðiÞ

j :

E
ðiþ1Þ
j ð jÞ ¼ 1

jT ðiÞ
j
j
X

t2T ðiÞ
j

Ytð jÞ ð27:8Þ

E
ðiþ1Þ
j ð jÞ ¼

X
t2T ðiÞ

j

~YYtð jÞ ð27:9Þ

E
ðiþ1Þ
j ð jÞ ¼ median

t2T ðiÞ
j

fYtð jÞg ð27:10Þ
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Given Eðiþ1Þ and AðiÞ, we can calculate Aðiþ1Þ using the Baum–Welch algorithm [58]. Then we can successively

refine estimates of the HMM parameters. This usually only takes a few iterations to obtain an acceptable

estimate.

Identifying from a Test Sequence

Identifying a sequence involves deciding which model parameters to use for discrimination parameters.

Given gallery models L ¼ fl1; l2; . . . ; lPg and the probe sequence X ¼ fX1;X2; . . . ;XTg, we find the model
and the path that maximizes the probability of the path, given the probe sequence. The ID is obtained as in

Equation (27.2).

We do not need to use the trained parameter set, l, as a whole. For example, if we believe that the transition
matrix is predominantly indicative of the speed that the subject walks and is therefore not suitable as a

discriminant of the ID of the subject, then we have the option of using only part of the parameter set given by

gp ¼ ðBp; ppÞ instead of the entire HMM parameter set. In this case, the conditional probability of the

sequence, given the ID, is given as follows. The Baum–Welch algorithm could be used to obtain Aw
p recursively

in Equation (27.12):

Pr½QjX ; gp ¼ Pr½QjX ;AXp ; gp ð27:11Þ

Aw
p ¼ argAmaxPr½XjA; gp ð27:12Þ

Experimental Results

The objective of our experiments was to evaluate the algorithm’s performance and compare the efficacy of the

different distance measures to gauge the similarity between two images for posture. As described before, the

GaitChallenge or USF database contains video sequences of 122 individuals, a subset featuring sequences

collected under each of 12 conditions. The sequences are labeled gallery and probe A–L. We trained our

parameters on the sequences from the gallery set. In each experiment, we attempted to identify the sequences

in each of the seven probe sets from the parameters obtained from the gallery set, using the inner product-

distance measure. The ID was calculated using Equation (27.2). The experiments were repeated with different

distance measures. The results of the experiment, using the IP distance measure between feature vectors in the

form of cumulative match scores (CMS) plots [55], are in Figure 27.2(a). We observe that the distance
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FIGURE 27.2 (a) CMS plots of probes A–L tested against gallery. (b) Comparison of identification rates of HMM and

baseline algorithm.
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measure that works best and is the simplest to implement is the inner product distance. The performance

comparison with the baseline [55] is illustrated in Figure 27.2(b).

From the experiments, we note that the biggest performance drop occurs due to changes in surface types

and when there is a time difference between the gallery and the probe. Reasons for the sudden drop are not yet

fully understood. Probable causes may be changes in the silhouette (especially the lower part for surface

change) and a change in clothing due to time differences. Note that the performance does not change greatly

with small changes in viewing direction. In summary, gait recognition under arbitrary conditions is still an

open research problem.

27.4 View Invariant Gait Recognition

A person’s gait is best reflected from a side view (referred to in this chapter as a canonical view) to the camera.

Most of the above gait recognition algorithms rely on the availability of the subject’s side view. The situation is

analogous to face recognition, where it is desirable to have frontal views of the person’s face. In realistic

scenarios, gait recognition algorithms must work in a situation where the person walks at an arbitrary angle to

the camera. The most general solution to this problem is to estimate the three-dimensional (3D) model for the

person. Features extracted from the 3D model can provide the gait model for a person. This problem requires

the structure’s solution from motion (SfM) or stereo reconstruction problems [18,29], which are known to be

difficult for articulating objects. In the absence of methods for the robust recovery of accurate 3D models, a

simple way to exploit existing appearance-based methods is to synthesize the canonical views of a walking

person. Shakhnarovich et al. [27] compute an image-based visual hull from a set of monocular views, used to

render virtual canonical views for tracking and recognition. Gait recognition is achieved by matching a set of

image features, based on moments extracted from the silhouettes of the synthesized probe video to the gallery.

An alternative to synthesizing canonical views is the work of Bobick and Johnson [7]. In this work, two sets of

activity-specific static and stride parameters are extracted for different individuals. The expected confusion for

each set is computed to guide the choice of parameters under different imaging conditions (indoor vs.

outdoor, side view vs. angular view). A cross-view mapping function accounts for changes in viewing

direction. The set of stride parameters (which is smaller than the set of static parameters) exhibits greater

resilience to viewing direction. A method for recognizing an individual’s gait using joint angle trajectories was

presented in Tanswonsuwan and Bobick [71]. Representation using such a small set of parameters may not

give good recognition rates on large databases.

We have developed a view-invariant gait recognition algorithm for the single camera case by synthesizing a

canonical view from an arbitrary one without explicitly computing the 3D depth. Consider a person walking

along a straight line subtending an angle y with the image plane (AC in Figure 27.4). If the distance, Z0, of the

person from the camera is much larger than the width, DZ, of the person, then it is reasonable to replace the

scaling factor
f

Z0 þ DZ
for perspective projection by an average scaling factor

f

Z0
. In other words, for human

identification at a distance, we can approximate the actual 3D human as a planar object. Assume that we are

given a video of a person walking at a fixed angle y (Figure 27.4). By tracking the direction of motion, a, in the
video sequence, one can estimate the 3D angle y. This can be done by using the optical flow-based SfM

equations. Under the assumption of planarity, knowing angle y and the calibration parameters, we can

synthesize side views of the sequence of images of an unknown walking person without explicitly computing

the 3D model of the person. We refer to this as the ‘‘implicit SfM’’ approach. Where there is no real translation

of the person, such as a person walking on a treadmill, an alternative approach obtains the synthesized views of

the person. Given a set of point correspondences for a planar surface between the canonical and noncanonical

views in a set of training images, we compute a homography. This homography is applied to the person’s

binary silhouette to obtain the synthesized views. We refer to this as the ‘‘homography approach.’’

An overview of our gait recognition framework is given in Figure 27.3. We have reported recognition

experiments [34] using two publicly available gait databases (NIST and CMU). The implicit SfM approach is

used for the NIST databases, while the homography approach is used for the CMU database. Keeping in mind
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the limited quantity of training data, the DTW algorithm [35] is used for gait recognition. Acceptable

recognition results are obtained for y less than 30 . A byproduct of the above method is a simple algorithm to

synthesize novel views of a planar scene.

27.5 Human Recognition Using Face

Though face recognition has been intensively investigated for more than 10 years, state-of-the-art face

recognition systems yield satisfactory performance only when confronted with controlled conditions.

Unconstrained conditions, such as illumimation/pose variations and surveillance video scenarios, impose

significant challenges to existing recognition systems. Below we summarize emerging techniques dealing with

face recognition under illumination/pose variations and from videos. Because different approaches

experimented on different datasets, comparison of recognition performance is not appropriate and no

performance is actually reported below.

Face Recognition under Illumination Variation

Recent works on face recognition under illumination variations [3,23,66,84] employ a Lambertian reflectance

model with a varying albedo field. A pixel hs under a distant illuminant s is formulated as

hs ¼ pnTs ¼ tTs; n3 1 ¼: ½nx; ny; nz T; t3 1 ¼: pn ð27:13Þ
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Y

f

A

B
C

X

Z

PROJECTION
PLANE

(x1,y1)

(X1,Y1,Z1)

Z1>>f

Z1

q

FIGURE 27.4 Imaging geometry.

Reliability analysis
of track

Estimation of
walking
direction

View synthesis Gait Recognition
Tracking and
Background
Subtraction

Video
of
unknown
person
at arbitrary
angle

Identity

FIGURE 27.3 Framework for view invariant gait recognition.
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where p is the albedo at the pixel, n is the unit surface normal vector at the pixe, and s (a 3 1 unit vector

multiplied by its intensity) specifies the distant illuminant s. For an image hs, a collection of d pixels

fhsi ; i ¼ 1; :::; dg, by stacking all the pixels into a column vector, we have

hs ¼: ½hs1; hs2; :::; hsd T ¼ ½t1; t2; :::; td Ts ¼ T s; ð27:14Þ

where T ¼: ½t1; t2; :::; td T contains complete albedo and shape information for the object and is called the

object-specific albedo-shape matrix [84]. The Lambertian reflectance model, when the attached and cast

shadows are ignored, implies a rank-3 subspace [65] where the appearances are located under different

illuminations.

If attached shadows are considered [3], the rank grows to infinity but the energy is largely packed in a few

harmonics components. This enables a low-dimensional subspace approximation. However, in Refs. [3,23],

for one object to be recognized, multiple ð 3Þ images must be stored in a gallery set. This is inconvenient in
practice. Generalization across illumination variation is offered by the illumination model, but no

generalization between identities is available.

The requirement of storing multiple images is relaxed in Refs. [66,84]: Only the training set stores multiple

observations for multiple objects, and the gallery set stores only one image per object. Here, a continuous-

valued identity signature is used, and a linear generalization from the training set to the gallery and probe set is

assumed. The difference between Shashua and Raviv [66] and Zhou et al. [84] lies in how the linear blending

coefficients are learned. Once learned, the blending coefficients offer an illumination-invariant signature of the

identity. Both approaches recognize probe images under illumination different from gallery images. The

quotient image approach in Shashua and Jacobs [66] assumes that shapes of all objects are the same and the

albedo field of an unknown object lies in the rational span of the training set. The approach in Zhou et al. [84]

poses a rank constraint on the product of the albedo and surface normal. Below, we briefly review the

approach in Zhou et al. [84].

It states that any T matrix can be represented as a linear combination of some basis matrices

fT1;T2; . . . ;Tmg coming from some m hypothetical base objects. Mathematically, coefficients fi are present,

such that

T ¼
Xm
i¼1

fiTi ¼ ½T1;T2; :::;Tm ðf I3Þ ¼Wðf I3Þ; ð27:15Þ

where fm 1 ¼: ½ f1; f2; :::; fm T, Wd 3m ¼: ½T1;T2; :::;Tm , and denotes the matrix Kronecker (tensor)

product. So, an image hs can be re-expressed as

hs ¼ Ts ¼Wðf I3Þs ¼Wðf sÞ: ð27:16Þ

Since the coefficient vector f only relates the albedos and surface normals of the basis matrices, it has no

relationship with the illumination s. Thus, f is an illumination-invariant description of the identity and is an

appropriate quantity for face recognition under the illumination variation. Equation (27.16) presents a

bilinear relationship between f and s. Once theW matrix is given, the f vector can be easily recovered using a

bilinear algorithm.

However, learning the W matrix from a set of training images is not trivial. In [20], the recovered W

minimizes the approximation error in the mean square sense and need not satisfy the integrability constraint.

In other words, the hypothetical base objects inW are not integrable. In Zhou et al. [84], the recoveredW

minimizes the above approximation error, as well as a cost function that enforces the integrability constraint.

As a consequence, [20] can only process the image ensemble, consisting of different objects under the same set

of lighting sources (the case considered here) while Zhou et al. [84] can process the image ensemble consisting

of different objects under completely different lighting condition. Figure 27.5 shows the recoveredW using the

algorithm developed in Zhou et al. [84].
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Face Recognition under Pose Variation

The issue of pose essentially amounts to a correspondence problem. If dense correspondences across poses are

available and if a Lambertian reflectance model is further assumed, a rank-1 constraint is implied because,

theoretically, a 3D model can be recovered and used to render novel poses. However, recovering a 3D model

from 2D images is a difficult task. There are two types of approaches: model-based and image-based. Model-

based approaches [6,21,60,64] require explicit knowledge of prior 3D models, while image-based approaches

[39,43,47,57] do not use prior 3D models. In general, model-based approaches [6,21,60,64] register the 2D

face image to 3D models that are given beforehand. In Fox [21] and Shan et al. [64], a generative face model is

deformed through bundle adjustment to fit 2D images. In Chowdhury and Chellappa [60], a generative face

model is used to regularize the 3D model recovered using the SfM algorithm. In Blanz and Vetter [6], 3D

morphable models are constructed based on many prior 3D models. There are mainly three types of image-

based approaches: Structure from motion (SfM) [57], visual hull [39,47], and light field rendering [24,43]

methods. The SfM approach [57], using sparse correspondence, does not reliably recover the 3D model

amenable for practical use. Recently developed methods [61] using optical flow and FFT computation show

promise. The visual hull methods [39,47] assume that the shape of the object is convex, a pattern that is not

always satisfied by the human face, and also require accurate calibration information. The light field rendering

methods [24,43] relax the calibration requirement of calibration by a fine quantization of the pose space and

recover a novel view by sampling the captured data that forms the so-called light field. Figure 27.6 illustrates

the concept using a simple example of the 2D light field of a 2D object.

As mentioned earlier, pose variation essentially amounts to a correspondence problem. If dense

correspondences across poses are available and a Lambertian reflectance is assumed, then a rank-1 constraint

is implied. Unfortunately, finding correspondences is a difficult task. There are no subspaces based on an

appearance representation when confronted with pose variation. Approaches to face recognition under pose

variation [23,26,54] avoid the correspondence problem by sampling the continuous pose space into a set of

poses. This process stores multiple images at different poses for each person, at least in the training set.

In Pentland et al. [54], view-based ‘‘Eigenfaces’’ are learned from the training set and used for recognition.

In Georghiades et al. [23], a denser sampling covers the pose space. However, Georghiades et al. [23] use

object-specific images, and appearances belonging to a novel object (or not in the training set) cannot be

handled. In Gross et al. [26], the concept of light field [43] characterizes the continuous pose space. Eigen light

fields are learned from the training set. However, the implementation of Gross [26] makes the pose space

FIGURE 27.5 (a) The first basis object under eight different illuminations. (b) The second basis object under the same set of

eight different illuminations. (c) Eight images (constructed by random linear combinations of two basis objects) illuminated

by eight different lighting sources. (d) Recovered class-specific albedo-shape matrix W showing the product of varying

albedos and surface normals of two basis objects (i.e., the three columns of T1 and T2) using the algorithm in [84].
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discrete. Recognition can be based on probe images at poses in the discrete set. The light field is not related to

variations in illumination.

Face Recognition under Illumination and Pose Variations

Approaches to handling illumination and pose variations include Blanz and Vetter [6], Gross [25], Vasilescu

and Terzopoulos [74], Zhou and Chellappa [83], and Zhou and Chellappa [82]. The approach in Ref. [6] uses

morphable 3D models to characterize human faces. Both geometry and texture are linearly spanned by the

training ensemble, consisting of 3D prior models. It is able to handle both illumination and pose variations. Its

only weakness is a complicated fitting algorithm. Recently, a fitting algorithm more efficient than Blanz and

Vetter [6] was proposed in Romdhani and Vetter [59]. In Gross et al. [25], the Fisher light field is proposed to

handle illumination and pose variations, where the light field covers the pose variation and Fisher

discriminant analysis covers the illumination variation. Discriminant analysis is a statistical analysis tool that

minimizes the within-class scatter while maximizing between-class scatter and has no relationship with any

physical illumination model. It is questionable that discriminant analysis can generalize to new lighting

conditions. Instead, this generalization may be inferior because discriminant analysis tends to overly tune to

the lighting conditions in the training set. The ‘‘Tensorface’’ approach [74] uses multilinear analysis to handle

factors such as identity, illumination, pose, and expression. The factors of identity and illumination are

suitable for linear analysis, as evidenced by the ‘‘Eigenface’’ approach (assuming a fixed illumination and a

fixed pose), and the subspace induced by the Lambertian model, respectively. However, the factor of

expression is arguably amenable for linear analysis and the factor of pose is not amenable for linear analysis. In

Zhou and Chellappa [83], preliminary results are reported by first warping the albedo and surface normal

fields at the desired pose and then carrying on recognition as usual. The approach in Zhou and Chellappa [82]

extends the algorithm in [84] that is for illumination variation to deal with pose variation. In Zhou et al. [84],

face images are in frontal view and no pose variances are present. In Zhou and Chellappa [82], we consider a

finite set of views that uniformly cover the left profile to the right profile. By treating the images consisting of

all views of the same individual, illuminated by the same lighting source as an ‘‘augmented’’ image, we can

apply the algorithm developed in Zhou et al. [84] to the augmented image, since it is illuminated by one

source. Figure 27.7 shows the part of theW matrix learned using images in the PIE (pose, illumination, and

expression) database [67].

Face Recognition from Videos

Various approaches for performing face recognition based on video sequences have been proposed. However,

most approaches [9] are still-image-based and treat each video frame separately. Typically, they first perform

object
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FIGURE 27.6 This figure illustrates the 2D light field of a 2D object (a square with four differently colored sides) placed

within a circle. The angles y and f relate the viewpoint with the radiance from the object. The right image shows the actual

light field for the square object. See another illustration in [26].
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face tracking and then perform recognition based on one or several tracked face regions satisfying certain

criteria. In the above strategy, two important characteristics of a video sequence are disregarded:

1. Multiple looks. A video sequence provides a large amount of observations. This is attractive considering

the projective nature of the imaging geometry and the uncontrolled lighting distribution. These factors,

coupled with personal variations such as facial expression, make the 2D face appearances of one

individual possess infinitely many possibilities. However, the above approach makes recognition

decisions based only on a sparse set of observations.

2. Temporal continuity. Frames of a video sequence come in a sequential fashion and possess certain

smoothness between successive frames that is referred as temporal continuity. Such continuity is often

exploited in developing tracking algorithms. However, there is psychophysical evidence [37] suggesting

that temporal continuity also is important for recognition.

We now highlight some recent approaches to face recognition from videos, utilizing video characteristics.

FIGURE 27.7 The first nine columns of the learned W matrix.
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In Yamaguchi et al. [79], two mutual view subspaces are prelearned. In testing, for each frame of a video

sequence, the algorithm computes a similarity score with both subspaces and takes the higher ones. A time-

evolving curve of similarity score is plotted. If the temporal information is stripped, this method is similar to

view-based and modular Eigenspaces proposed by Pentland et al. [54]. Evidence integration is also performed

in Edwards et al. [17] and Li et al. [44]. Both Edwards and Li based their concepts on the framework of active

appearance models [17,44]. In Li et al. [44], the kernel discriminant analysis features are extracted from the

image, warped to a frontal view for recognition.

Another line of research effort summarizes the appearances presented in the video sequence. Examples of

such a method are Shaknarovich et al. [63], Fitzgibbon and Zisserman [19], and Wolf and Shashua [78]. In

Shakhnarovich et al. [63], a multivariate Gaussian density is fitted for a video sequence, where all facial images

cropped out by a separate tracker are assumed to be samples from that distribution. Recognition is performed

by comparing the Kullback–Leibler divergence distance [11] between the gallery and probe videos. However, a

multivariate Gaussian density has difficulty in modeling significant variations caused by pose and

illumination. In Fitzgibbon and Zisserman [19], manifolds are formed for multiple images. Recognition is

performed by computing the shortest distance between two manifolds. The manifold takes a certain

parameterized form and the parameters are directly learned from the visual appearances. In Wolf and Shashua

[78], principal subspaces are learned for multiple images, and the principal angle between two subspaces is

used for recognition. The computation of principal angle is carried out on the feature space embedded by

kernel functions. One common disadvantage of the two approaches is that they assume that the face regions

have been cropped previously, either from a detector or a tracker.

When the above approaches utilize the multiple appearances provided by the video sequence, they do not

take into account temporal continuity between successive video frames. We now show approaches that utilize

the temporal coherence embedded in the video sequences.

In Zhou et al. [85], still-to-video recognition is solved, where the gallery consists of still images and the probes

are video sequences. Since the detected face might be moving in the video sequence, we have to deal with

uncertainty in tracking and in recognition. Rather than resolving these two uncertainties separately, our strategy

is to perform simultaneous tracking and recognition of human faces from a video sequence. A time-series–state-

space model is proposed to fuse temporal information in a probe video, which simultaneously characterizes

kinematics and identity using a motion vector and an identity variable, respectively. The joint posterior

distribution of themotion vector and the identity variable is estimated at each time instant and propagated to the

next time instant.Marginalization over themotion vector yields a robust estimate of the posterior distribution of

the identity variable. A computationally efficient sequential importance sampling (SIS) algorithm [16] estimates

the posterior distribution. Empirical results demonstrate that, due to the propagation of the identity variable over

time, a degeneracy in posterior probability of the identity variable is achieved.

The gallery can be extended to have videos as inputs. A learning algorithm to automatically extract

exemplars from the gallery video sequences has been described in Zhou et al. [85]. To represent each gallery

object, multiple exemplars are extracted. During testing, the SIS is adopted to use temporal coherence to boost

recognition performance.

In Liu and Chen [46], hidden Markov models are used to learn the dynamics before successive appearances.

Matching video sequences is equivalent to comparing two Markov models. In Lee et al. [40], pose variations

are learned through view-discretized appearance manifolds from the training ensemble. Transition

probabilities from one view to another regularize the search space. However, in Liu and Chen [46] and Lee

et al. [40], the cropped images are used for testing. Recently, a linear dynamical system model [68] has been

used to model the video sequence, and system model coefficients that are used in face recognition [1].

27.6 Conclusions

In this chapter, we have described some of the methods developed toward the goal of human recognition

using biometrics such as face and gait. While face recognition has been a subject for research in computer

vision for many years, the use of gait for recognition is a more recent phenomenon. There are a
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number of limitations in these techniques for uncontrolled environments, such as outdoors under various

lighting conditions. Progress in computer vision research and allied fields like image/video processing,

pattern recognition, and machine learning will allow us to develop more realistic algorithms in the future.

Most of the present face recognition algorithms work with a frontal view of the face, while most gait

recognition methods assume a side view of the person. The full potential of face recognition using video

sequences still must be explored and its advantages compared to still images need to be studied. The

problems that affect the performance of these techniques include the effects of variable illumination, elapsed

time, and pose invariance. Today, multimodal biometrics are becoming more popular in achieving high

recognition rates. An example of fusing face and gait signatures can be found in Kale et al. [36]. The concept

of multimodal biometrics is to combine different cues like face, gait, fingerprint, iris, and ear to develop an

individual’s identifying signature. Finding efficient means of automatically combining some or all of these

different biometrics is an open question.
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THE GREATACHIEVEMENTS in engineering deeply affect the lives of all of us and also serve to remind us of

the importance of mathematics. Interest in mathematics has grown steadily with these engineering

achievements and with concomitant advances in pure physical science. Whereas scholars in nonscientific

fields, and even in such fields as botany, medicine, geology, etc., can communicate most of the problems and

results in nonmathematical language, this is virtually impossible in present-day engineering and physics. Yet it

is interesting to note that until the beginning of the twentieth century, engineers regarded calculus as

something of a mystery. Modern students of engineering now study calculus, as well as differential equations,

complex variables, vector analysis, orthogonal functions, and a variety of other topics in applied analysis. The

study of systems has ushered in matrix algebra and, indeed, most engineering students now take linear algebra

as a core topic early in their mathematical education.

III-1



This section contains concise summaries of relevant topics in applied engineering mathematics and certain

key formulas, that is, those formulas that are most often needed in the formulation and solution of

engineering problems. Whereas even inexpensive electronic calculators contain tabular material (e.g., tables of

trigonometric and logarithmic functions) that used to be needed in this kind of handbook, most calculators

do not give symbolic results. Hence, we have included formulas along with brief summaries that guide their

use. In many cases we have added numerical examples, as in the discussions of matrices, their inverses, and

their use in the solutions of linear systems. A table of derivatives is included, as well as key applications of the

derivative in the solution of problems in maxima and minima, related rates, analysis of curvature, and finding

approximate roots by numerical methods. A list of infinite series, along with the interval of convergence of

each, is also included.

Of the two branches of calculus, integral calculus is richer in its applications, as well as in its theoretical

content. Though the theory is not emphasized here, important applications such as finding areas, lengths,

volumes, centroids, and the work done by a nonconstant force are included. Both cylindrical and spherical

polar coordinates are discussed, and a table of integrals is included. Vector analysis is summarized in a separate

section and includes a summary of the algebraic formulas involving dot and cross multiplication, frequently

needed in the study of fields, as well as the important theorems of Stokes and Gauss. The part on special

functions includes the gamma function, hyperbolic functions, Fourier series, orthogonal functions, and both

Laplace and z-transforms. The Laplace transform provides a basis for the solution of differential equations and

is fundamental to all concepts and definitions underlying analytical tools for describing feedback control

systems. The z-transform, not discussed in most applied mathematics books, is most useful in the analysis of

discrete signals as, for example, when a computer receives data sampled at some prespecified time interval. The

Bessel functions, also called cylindrical functions, arise in many physical applications, such as the heat transfer

in a ‘‘long’’ cylinder, whereas the other orthogonal functions discussed—Legendre, Hermite, and Laguerre

polynomials—are needed in quantum mechanics and many other subjects (e.g., solid-state electronics) that

use concepts of modern physics.

The world of mathematics, even applied mathematics, is vast. Even the best mathematicians cannot keep up

with more than a small piece of this world. The topics included in this section, however, have withstood the

test of time and, thus, are truly core for the modern engineer.

This section also incorporates tables of physical constants and symbols widely used by engineers. While not

exhaustive, the constants, conversion factors, and symbols provided will enable the reader to accommodate a

majority of the needs that arise in design, test, and manufacturing functions.
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Mathematics,
Symbols, and

Physical Constants

Greek Alphabet

International System of Units (SI)

The International System of units (SI) was adopted by the 11th General Conference on Weights and Measures

(CGPM) in 1960. It is a coherent system of units built form seven SI base units, one for each of the seven

dimensionally independent base quantities: they are the meter, kilogram, second, ampere, kelvin, mole, and

candela, for the dimensions length, mass, time, electric current, thermodynamic temperature, amount of

substance, and luminous intensity, respectively. The definitions of the SI base units are given below. The SI

derived units are expressed as products of powers of the base units, analogous to the corresponding relations

between physical quantities but with numerical factors equal to unity.

In the International System there is only one SI unit for each physical quantity. This is either the appropriate

SI base unit itself or the appropriate SI derived unit. However, any of the approved decimal prefixes, called SI

prefixes, may be used to construct decimal multiples or submultiples of SI units.

It is recommended that only SI units be used in science and technology (with SI prefixes where

appropriate). Where there are special reasons for making an exception to this rule, it is recommended always

to define the units used in terms of SI units. This section is based on information supplied by IUPAC.

Definitions of SI Base Units

Meter: The meter is the length of path traveled by light in vacuum during a time interval of 1/299,792,458

of a second (17th CGPM, 1983).

Kilogram: The kilogram is the unit of mass; it is equal to the mass of the international prototype of the

kilogram (3rd CGPM, 1901).

Second: The second is the duration of 9,192,631,770 periods of the radiation corresponding to the

transition between the two hyperfine levels of the ground state of the cesium-133 atom (13th CGPM, 1967).

Greek

Letter

Greek

Name

English

Equivalent

Greek

Letter

Greek

Name

English

Equivalent

A a Alpha a N n Nu n

B b Beta b X j Xi x

G g Gamma g O o Omicron ŏ

D d Delta d Q p Pi P

E e Epsilon ĕ P r Rho r

Z z Zeta z S s Sigma s

H Z Eta ē T t Tau t

Y y q Theta th Y y Upsilon u

I i Iota i F f j Phi ph

K k Kappa k X w Chi ch

L l Lambda l C c Psi ps

M m Mu m O o Omega ō
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Ampere: The ampere is that constant current which, if maintained in two straight parallel conductors of

infinite length, of negligible circular cross-section, and placed 1 m apart in vacuum, would produce between

these conductors a force equal to 2 · 10 7 newton per meter of length (9th CGPM, 1948).

Kelvin: The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the thermodynamic

temperature of the triple point of water (13th CGPM, 1967).

Mole: The mole is the amount of substance of a system which contains as many elementary entities as there

are atoms in 0.012 kg of carbon-12. When the mole is used, the elementary entities must be specified and may

be atoms, molecules, ions, electrons, or other particles or specified groups of such particles (14th CGPM,

1971).

Examples of the use of the mole:

1 mol of H2 contains about 6.022 · 1023 H2 molecules, or 12.044 · 1023 H atoms.

1 mol of HgCl has a mass of 236.04 g.

1 mol of Hg2Cl2 has a mass of 472.08 g.

1 mol of Hg2
2þ has a mass of 401.18 g and a charge of 192.97 kC.

1 mol of Fe0.91S has a mass of 82.88 g.

1 mol of e has a mass of 548.60 mg and a charge of 96.49 kC.

1 mol of photons whose frequency is 1014 Hz has energy of about 39.90 kJ.

Candela: The candela is the luminous intensity in a given direction of a source that emits monochromatic

radiation of frequency 540 · 1012 hertz and that has a radiant intensity in that direction of (1/683) watt per
steradian (16th CGPM, 1979).

Physical Quantity Name of SI Unit Symbol for SI Unit

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Thermodynamic temperature kelvin K

Amount of substance mole mol

Luminous intensity candela cd

Names and Symbols for the SI Base Units

Physical Quantity

Name of

SI Unit

Symbol for

SI Unit

Expression in

Terms of SI Base Units

Frequency1 hertz Hz s 1

Force newton N m kg s 2

Pressure, stress pascal Pa N m 2 ¼ m 1 kg s 2

Energy, work, heat joule J N m ¼ m2 kg s 2

Power, radiant flux watt W J s 1 ¼ m2 kg s 3

Electric charge coulomb C A s

Electric potential,

electromotive force

volt V J C 1 ¼ m2 kg s 3 A 1

Electric resistance ohm O V A 1 ¼ m2 kg s 3 A 2

Electric conductance siemens S O 1 ¼ m 2 kg 1 s3 A2

Electric capacitance farad F C V 1 ¼ m 2 kg 1 s4 A2

Magnetic flux density tesla T V s m 2 ¼ kg s 2 A 1

Magnetic flux weber Wb V s ¼ m2 kg s 2 A 1

Inductance henry H V A 1 s ¼ m2 kg s 2 A 2

Celsius temperature2 degree Celsius –C K

(continued)

SI Derived Units with Special Names and Symbols
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Units in Use Together with the SI

These units are not part of the SI, but it is recognized that they will continue to be used in appropriate

contexts. SI prefixes may be attached to some of these units, such as milliliter, ml; millibar, mbar;

megaelectronvolt, MeV; kilotonne, ktonne.

SI Derived Units with Special Names and Symbols (continued)

Physical Quantity

Name of

SI Unit

Symbol for

SI Unit

Expression in

Terms of SI Base Units

Luminous flux lumen lm cd sr

Illuminance lux lx cd sr m 2

Activity (radioactive) becquerel Bq s 1

Absorbed dose (of radiation) gray Gy J kg 1 ¼ m2 s 2

Dose equivalent

(dose equivalent index)

sievert Sv J kg 1 ¼ m2 s 2

Plane angle radian rad 1 ¼ m m 1

Solid angle steradian sr 1 ¼ m2 m 2

1For radial (circular) frequency and for angular velocity the unit rad s 1, or simply s 1, should be used,
and this may not be simplified to Hz. The unit Hz should be used only for frequency in the sense of cycles
per second.

2The Celsius temperature y is defined by the equation:

y=–C ¼ T=K 273:15

The SI unit of Celsius temperature interval is the degree Celsius, –C, which is equal to the kelvin, K. –C
should be treated as a single symbol, with no space between the – sign and the letter C. (The symbol –K and
the symbol – should no longer be used.)

Physical

Quantity Name of Unit

Symbol

for Unit Value in SI Units

Time minute min 60 s

Time hour h 3600 s

Time day d 86,400 s

Plane angle degree – (p/180) rad
Plane angle minute 0 (p/10,800) rad
Plane angle second 00 (p/648,000) rad
Length ångstrom1 Å 10 10 m

Area barn b 10 28 m2

Volume liter l, L dm3 ¼ 10 3 m3

Mass tonne t Mg ¼ 103 kg

Pressure bar1 bar 105 Pa ¼ 105 N m 2

Energy electronvolt2 eV (¼ e · V) <1.60218 · 10 19 J

Mass unified atomic mass unit2,3 u (¼ma(
12C)/12) <1.66054 · 10 27 kg

1The ångstrom and the bar are approved by CIPM for ‘‘temporary use with SI units,’’ until CIPM
makes a further recommendation. However, they should not be introduced where they are not used
at present.

2The values of these units in terms of the corresponding SI units are not exact, since they depend
on the values of the physical constants e (for the electronvolt) and Na (for the unified atomic mass
unit), which are determined by experiment.

3The unified atomic mass unit is also sometimes called the dalton, with symbol Da, although the
name and symbol have not been approved by CGPM.
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Conversion Constants and Multipliers

Recommended Decimal Multiples and Submultiples

Conversion Factors—Metric to English

Conversion Factors—English to Metric*

*Boldface numbers are exact; others are given to ten significant figures where so indicated by the multiplier factor.

Multiples and

Submultiples Prefixes Symbols

Multiples and

Submultiples Prefixes Symbols

1018 exa E 10 1 deci d

1015 peta P 10 2 centi c

1012 tera T 10 3 milli m

109 giga G 10 6 micro m (Greek mu)
106 mega M 10 9 nano n

103 kilo k 10 12 pico p

102 hecto h 10 15 femto f

10 deca da 10 18 atto a

To Obtain Multiply By

Inches centimeters 0.3937007874

Feet meters 3.280839895

Yards meters 1.093613298

Miles kilometers 0.6213711922

Ounces grams 3.527396195 · 10 2

Pounds kilogram 2.204622622

Gallons (U.S. liquid) liters 0.2641720524

Fluid ounces milliliters (cc) 3.381402270 · 10 2

Square inches square centimeters 0.155003100

Square feet square meters 10.76391042

Square yards square meters 1.195990046

Cubic inches milliliters (cc) 6.102374409 · 10 2

Cubic feet cubic meters 35.31466672

Cubic yards cubic meters 1.307950619

To Obtain Multiply By

Microns mils 25.4

Centimeters inches 2.54

Meters feet 0.3048

Meters yards 0.9144

Kilometers miles 1.609344

Grams ounces 28.34952313

Kilograms pounds 0.45359237

Liters gallons (U.S. liquid) 3.785411784

Millimeters (cc) fluid ounces 29.57352956

Square centimeters square inches 6.4516

Square meters square feet 0.09290304

Square meters square yards 0.83612736

Milliliters (cc) cubic inches 16.387064

Cubic meters cubic feet 2.831684659 · 10 2

Cubic meters cubic yards 0.764554858
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Conversion Factors—General*

*Boldface numbers are exact; others are given to ten significant figures where so indicated by the multiplier factor.

Temperature Factors
–F ¼ 9/5 (–C) þ 32

Fahrenheit temperature ¼ 1.8 (temperature in kelvins) 459.67
–C ¼ 5/9 [(–F) 32)]

Celsius temperature ¼ temperature in kelvins 273.15

Fahrenheit temperature ¼ 1.8 (Celsius temperature) þ 32

From To

–Celsius –Fahrenheit tF ¼ (tC · 1.8) þ 32

Kelvin TK ¼ tC þ 273.15
–Rankine TR ¼ (tC þ 273.15) · 18

–Fahrenheit –Celsius tC ¼ tF 32
1:8

Kelvin Tk ¼ tF 32
1:8

þ 273:15

–Rankine TR ¼ tF þ 459.67

Kelvin –Celsius tC ¼ TK 273.15
–Rankine TR ¼ TK · 1.8

–Rankine Kelvin TK ¼ TR
1:8–Fahrenheit tF ¼ TR 459.67

Conversion of Temperatures

To Obtain Multiply By

Atmospheres feet of water @ 4–C 2.950 · 10 2

Atmospheres inches of mercury @ 0–C 3.342 · 10 2

Atmospheres pounds per square inch 6.804 · 10 2

BTU foot-pounds 1.285 · 10 3

BTU joules 9.480 · 10 4

Cubic feet cords 128

Degree (angle) radians 57.2958

Ergs foot-pounds 1.356 · 107

Feet miles 5280

Feet of water @ 4–C atmospheres 33.90

Foot-pounds horsepower-hours 1.98 · 106

Foot-pounds kilowatt-hours 2.655 · 106

Foot-pounds per min horsepower 3.3 · 104

Horsepower foot-pounds per sec 1.818 · 10 3

Inches of mercury @ 0–C pounds per square inch 2.036

Joules BTU 1054.8

Joules foot-pounds 1.35582

Kilowatts BTU per min 1.758 · 10 2

Kilowatts foot-pounds per min 2.26 · 10 5

Kilowatts horsepower 0.745712

Knots miles per hour 0.86897624

Miles feet 1.894 · 10 4

Nautical miles miles 0.86897624

Radians degrees 1.745 · 10 2

Square feet acres 43,560

Watts BTU per min 17.5796
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Physical Constants

General

Equatorial radius of the Earth ¼ 6378.388 km ¼ 3963.34 miles (statute)

Polar radius of the Earth, 6356.912 km ¼ 3949.99 miles (statute)

1 degree of latitude at 40– ¼ 69 miles

1 international nautical mile ¼ 1.15078 miles (statute) ¼ 1852 m ¼ 6076.115 ft

Mean density of the earth ¼ 5.522 g/cm3 ¼ 344.7 lb/ft3

Constant of gravitation (6.673 ^ 0.003) · 10 8 cm3 gm 1 s 2

Acceleration due to gravity at sea level, latitude 45– ¼ 980.6194 cm/s2 ¼ 32.1726 ft/s2

Length of seconds pendulum at sea level, latitude 45– ¼ 99.3575 cm ¼ 39.1171 in.

1 knot (international) ¼ 101.269 ft/min ¼ 1.6878 ft/s ¼ 1.1508 miles (statute)/h

1 micron ¼ 10 4 cm

1 ångstrom ¼ 10 8 cm

Mass of hydrogen atom ¼ (1.67339^0.0031) · 10 24 g

Density of mercury at 0–C ¼ 13.5955 g/ml

Density of water at 3.98–C ¼ 1.000000 g/ml

Density, maximum, of water, at 3.98–C ¼ 0.999973 g/cm3

Density of dry air at 0–C, 760 mm ¼ 1.2929 g/l

Velocity of sound in dry air at 0–C ¼ 331.36 m/s 1087.1 ft/s

Velocity of light in vacuum ¼ (2.997925^0.000002) · 1010 cm/s

Heat of fusion of water 0–C ¼ 79.71 cal/g

Heat of vaporization of water 100–C ¼ 539.55 cal/g

Electrochemical equivalent of silver 0.001118 g/s international amp

Absolute wavelength of red cadmium light in air at 15–C, 760 mm pressure ¼ 6438.4696 Å

Wavelength of orange-red line of krypton 86 ¼ 6057.802 Å

p Constants

p ¼ 3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37511

1/p ¼ 0.31830 98861 83790 67153 77675 26745 02872 40689 19291 48091

p2 ¼ 9.8690 44010 89358 61883 44909 99876 15113 53136 99407 24079

logep ¼ 1.14472 98858 49400 17414 34273 51353 05871 16472 94812 91531

log10p ¼ 0.49714 98726 94133 85435 12682 88290 89887 36516 78324 38044

log10
ffiffiffiffi
2p

p ¼ 0.39908 99341 79057 52478 25035 91507 69595 02099 34102 92128

Constants Involving e

e ¼ 2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69996

1/e ¼ 0.36787 94411 71442 32159 55237 70161 46086 74458 11131 03177

e2 ¼ 7.38905 60989 30650 22723 04274 60575 00781 31803 15570 55185

M ¼ log10e ¼ 0.43429 44819 03251 82765 11289 18916 60508 22943 97005 80367

1/M·¼ loge10 ¼ 2.30258 50929 94045 68401 79914 54684 36420 67011 01488 62877

log10M ¼ 9.63778 43113 00536 78912 29674 98645 –10

Numerical Constantsffiffi
2

p ¼ 1.41421 35623 73095 04880 16887 24209 69807 85696 71875 37695

3
ffiffi
2

p ¼ 1.25992 10498 94873 16476 72106 07278 22835 05702 51464 70151

loge2 ¼ 0.69314 71805 59945 30941 72321 21458 17656 80755 00134 36026

log102 ¼ 0.30102 99956 63981 19521 37388 94724 49302 67881 89881 46211
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ffiffi
3

p ¼ 1.73205 08075 68877 29352 74463 41505 87236 69428 05253 81039
3
ffiffi
3

p ¼ 1.44224 95703 07408 38232 16383 10780 10958 83918 69253 49935

loge3 ¼ 1.09861 22886 68109 69139 52452 36922 52570 46474 90557 82275

log103 ¼ 0.47712 12547 19662 43729 50279 03255 11530 92001 28864 19070

Symbols and Terminology for Physical and Chemical Quantities

Name Symbol Definition SI Unit

Classical Mechanics

Mass m kg

Reduced mass m m ¼ m1m2/(m1 þ m2) kg

Density, mass density r r ¼ M/V kg m 3

Relative density d d ¼ r/ry l

Surface density rA, rS rA ¼ m/A kg m 2

Momentum p p ¼ mv kg m s 1

Angular momentum, action L l ¼ r ¥ p J s

Moment of inertia I, J I ¼ Smir
2
i kg m2

Force F F ¼ dp/dt ¼ ma N

Torque, moment of a force T, (M) T ¼ r · F N m

Energy E J

Potential energy Ep, V, F Ep¼Fds J

Kinetic energy Ek, T, K ek ¼ (1/2)mv2 J

Work W, w w ¼ Fds J

Hamilton function H H(q, p) ¼ T(q, p) þ V(q) J

Lagrange function L Lðq; _qqÞTðq; _qqÞ VðqÞ J

Pressure p, P p¼ F/A Pa, N m 2

Surface tension g, s g ¼ dW/dA N m 1, J m 2

Weight G, (W, P) G ¼ mg N

Gravitational constant G F¼ Gm1m2/r
2 N m2 kg 2

Normal stress s s ¼ F/A Pa

Shear stress t t ¼ F/A Pa

Linear strain,

relative elongation

e, e e ¼ Dl/l l

Modulus of elasticity,

Young’s modulus

E E ¼ s/e Pa

Shear strain g g ¼ Dx/d l

Shear modulus G G ¼ t/g Pa

Volume strain, bulk strain y y ¼ DV/V0 l

Bulk modulus, K K ¼ V0(dp/dV) Pa

compression modulus Z, m tx,z ¼ Z(dvx/dz) Pa s

Viscosity, dynamic viscosity

Fluidity f f ¼ 1/Z m kg 1 s

Kinematic viscosity n n ¼ Z/r m2 s 1

Friction coefficient m, (f) Ffrict ¼ mFnorm l

Power P P ¼ dW/dt W

Sound energy flux P, Pa P ¼ dE/dt W

Acoustic factors

Reflection factor r r ¼ Pt/P0 l

Acoustic absorption factor aa, (a) aa ¼ 1 r l

Transmission factor t t ¼ Ptr/P0 l

Dissipation factor d d ¼ aa t l

(continued)
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Symbols and Terminology for Physical and Chemical Quantities (continued)
Name Symbol Definition SI Unit

Electricity and Magnetism

Quantity of electricity,

electric charge

Q C

Charge density r r ¼ Q/V C m 3

Surface charge density s s ¼ Q/A C m 2

Electric potential V, f V ¼ dW/dQ V, J C 1

Electric potential difference U, DV, Df U ¼ V2 V1 V

Electromotive force E E ¼ ðF=QÞds V

Electric field strength E E ¼ F/Q ¼ grad V V m 1

Electric flux C C ¼ DdA C

Electric displacement D D ¼ eE C m 2

Capacitance C C ¼ Q/U F, C V 1

Permittivity e D ¼ eE F m 1

Permittivity of vacuum e0 e0 ¼ m0
1 c0

2 F m 1

Relative permittivity er er ¼ e/e0 l

Dielectric polarization P P ¼ D e0E C m 2

(dipole moment per volume)

Electric susceptibility we we ¼ er 1 l

Electric dipole moment p, m p ¼ Qr C m

Electric current I I ¼ dQ/dt A

Electric current density j, J I ¼ jdxA A m 2

Magnetic flux density,

magnetic induction

B F ¼ Qv · B T

Magnetic flux F F ¼ BdA Wb

Magnetic field strength H B ¼ mH A M 1

Permeability m B ¼ mH N A 2, H m 1

Permeability of vacuum m0 H m 1

Relative permeability mr mr ¼ m/m0 l

Magnetization (magnetic

dipole moment

per volume)

M M ¼ B/m0 H A m 1

Magnetic susceptibility w, k, (wm) w ¼ mr 1 l

Molar magnetic susceptibility wm wm ¼ Vmw m3 mol 1

Magnetic dipole moment m, m Ep ¼ m · B A m2, J T 1

Electrical resistance R P=Y/I O
Conductance G G ¼ 1/R S

Loss angle d d ¼ (p/2) þ fI fU 1, rad

Reactance X X ¼ (U/I)sin d O
Impedance (complex

impedance)

Z Z ¼ R þ iX O

Admittance (complex

admittance)

Y Y ¼ 1/Z S

Susceptance B Y ¼ G þ iB S

Resistivity r r ¼ E/j O m

Conductivity k, g, s k ¼ 1/r S m 1

Self-inductance L E ¼ L(dI/dt) H

Mutual inductance M, L12 E1 ¼ L12(Di2/dt) H

Magnetic vector potential A B ¼ HHHHH · A Wb m 1

Poynting vector S S ¼ E · H Wm 2

Electromagnetic Radiation

Wavelength l m

Speed of light m s 1

in vacuum c0
in a medium c c ¼ c0/n

(continued)
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Symbols and Terminology for Physical and Chemical Quantities (continued)
Name Symbol Definition SI Unit

Electromagnetic Radiation

Wavenumber in vacuum V V ¼ V=c0 ¼ 1=nl m 1

Wavenumber (in a medium) s s ¼ 1/l m 1

Frequency n n ¼ c/l Hz

Circular frequency,

pulsatance

o o ¼ 2pn s 1, rad s 1

Refractive index n n ¼ c0/c l

Planck constant h J s

Planck constant/2p " " ¼ h/2p J s

Radiant energy Q, W J

Radiant energy density r, w r ¼ Q/V J m 3

Spectral radiant energy

density

in terms of frequency rn, wn rn¼ dr/dn J m 3 Hz 1

in terms of wavenumber rvv, wvv rvv ¼ dr=dvv J m 2

in terms of wavelength rl, wl rl¼ dr/dl J m 4

Einstein transition

probabilities

Spontaneous emission Anm dNn/dt ¼ AnmNn s 1

Stimulated emission Bnm dnn=dt ¼ rvvðVVnmÞ · BnmNn s kg 1

Radiant power,

radiant energy per time

F, P F ¼ dQ/dt W

Radiant intensity I I ¼ dF/dO W sr 1

Radiant exitance

(emitted radiant flux)

M M ¼ dF/dAsource W m 2

Irradiance (radiant flux

received)

E, (I) E ¼ dF/dA Wm 2

Emittance e e ¼ M/Mbb l

Stefan–Boltzmann constant s Mbb ¼ sT 4 W m 2 K 4

First radiation constant c1 c1 ¼ 2phc0
2 W m2

Second radiation constant c2 c2 ¼ hc0/k K m

Transmittance, transmission

factor

t, T t ¼ Ftr/F0 l

Absorptance, absorption

factor

a a ¼ fabs/f0 l

Reflectance, reflection factor r r ¼ frefl/F0 l

(Decadic) absorbance A A ¼ lg(1 ai) l

Napierian absorbance B B ¼ ln(1 ai) l

Absorption coefficient

(Linear) decadic a, K a ¼ A/l m 1

(Linear) napierian a a ¼ B/l m 1

Molar (decadic) e e ¼ a/c ¼ A/cl m2 mol 1

Molar napierian k k ¼ a/c ¼ B/cl m2 mol 1

Absorption index k k ¼ a=4pvv l

Complex refractive index n̂n n̂n ¼ nþ ik l

Molar refraction R, Rm R ¼ ðn2 1Þ
ðn2þ2ÞVm m3 mol 1

Angle of optical rotation a l, rad

Solid State

Lattice vector R, R0 m

Fundamental translation

vectors for the crystal

lattice

a1; a2; a3, a; b; c R ¼ n1a1 þ n2a2 þ n3a3 m

(Circular) reciprocal lattice

vector

G G · R ¼ 2pm m 1

(continued)
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Symbols and Terminology for Physical and Chemical Quantities (continued)
Name Symbol Definition SI Unit

Solid State

(Circular) fundamental

translation vectors for

the reciprocal lattice

b1; b2; b3, a*; b*; c* ai · bk ¼ 2pdik m 1

Lattice plane spacing d m

Bragg angle y nl ¼ 2d sin y l, rad

Order of reflection n l

Order parameters

Short range s l

Long range s 1

Burgers vector b m

Particle position vector r, Rj m

Equilibrium position vector

of an ion

Ro m

Displacement vector of an ion u u ¼ R R0 m

Debye–Waller factor B, D l

Debye circular wavenumber qD m 1

Debye circular frequency oD s 1

Grüneisen parameter g, G g ¼ aV/kCV l

Madelung constant a, M Ecoul ¼ aNAzþz e2

4pe0R0
l

Density of states NE NE ¼ dN(E)/dE J 1 m 3

(Spectral) density of

vibrational modes

No, g No ¼ dN(o)/do s m 3

Resistivity tensor rik E ¼ r · j O m

Conductivity tensor sik s ¼ r 1 S m 1

Thermal conductivity tensor lik Jq ¼ l · grad T Wm 1 K 1

Residual resistivity rR O m

Relaxation time t t ¼ l/vF s

Lorenz coefficient L L ¼ l/sT V2 K 2

Hall coefficient AH, RH E ¼ r · j þ RH(B · j) m3 C 1

Thermoelectric force E V

Peltier coefficient Q V

Thomson coefficient m,(t) V K 1

Work function F F ¼ E1 EF J

Number density, number

concentration

n, (p) m 3

Gap energy Eg J

Donor ionization energy Ed J

Acceptor ionization energy Ea J

Fermi energy EF, eF J

Circular wave vector, k, q k ¼ 2p/l m 1

propagation vector

Bloch function uk(r) c(r) ¼ uk(r) exp(ik · r) m 3/2

Charge density of electrons r r(r) ¼ ec*(r) _cc (r) C m 3

Effective mass m* kg

Mobility m m ¼ ndrift/E m2 V 1 s 1

Mobility ratio b b ¼ mn/mp l

Diffusion coefficient D dN/dt ¼ DA(dn/dx) m2 s 1

Diffusion length L L ¼ ffiffiffiffi
Dt

p
m

Characteristic (Weiss)

temperature

f, fW K

Curie temperature TC K

Néel temperature TN K

III-12 Mathematics, Symbols, and Physical Constants



Credits

Material in Section III was reprinted from the following sources:

D. R. Lide, Ed., CRC Handbook of Chemistry and Physics, 76th ed., Boca Raton, FL: CRC Press, 1992:

International System of Units (SI), conversion constants and multipliers (conversion of temperatures),

symbols and terminology for physical and chemical quantities, fundamental physical constants, classification

of electromagnetic radiation.

D. Zwillinger, Ed., CRC Standard Mathematical Tables and Formulae, 30th ed., Boca Raton, FL: CRC Press,

1996: Greek alphabet, conversion constants and multipliers (recommended decimal multiples and

submultiples, metric to English, English to metric, general, temperature factors), physical constants, series

expansion.

III-13Mathematics, Symbols, and Physical Constants



Probability for Electrical and Computer Engineers

Charles W. Therrien

The Algebra of Events

The study of probability is based upon experiments that have uncertain outcomes. Collections of these

outcomes comprise events and the collection of all possible outcomes of the experiment comprise what is

called the sample space, denoted by S. Outcomes are members of the sample space and events of interest are
represented as sets of outcomes (see Figure III.1).

The algebra A that deals with representing events is the usual set algebra. If A is an event, then Ac (the

complement of A) represents the event that ‘‘A did not occur.’’ The complement of the sample space is the

null event, ; ¼ Sc. The event that both event A1 and event A2 have occurred is the intersection, written as
‘‘A1·A2’’ or ‘‘A1A2’’ while the event that either A1 or A2 or both have occurred is the union, written as

‘‘A1 þ A2.’’
1

Table III.1 lists the two postulates that define the algebra A, while Table III.2 lists seven axioms that

define properties of its operations. Together these tables can be used to show all of the properties of the

algebra of events. Table III.3 lists some additional useful relations that can be derived from the axioms

and the postulates.

Since the events ‘‘A1 þ A2’’ and ‘‘A1A2’’ are included in the algebra, it follows by induction that for any finite

number of events A1 þ A2 þ þ AN and A1·A2 AN are also included in the algebra. Since

problems often involve the union or intersection of an infinite number of events, however, the algebra of events

must be defined to include these infinite intersections and unions. This extension to infinite unions and

intersections is known as a sigma algebra.

A set of events that satisfies the two conditions:

1. AiAj ¼ ; 6¼ for 6¼ i 6¼ j

2. A1 þ A2 þ A3 þ ¼ S
is known as a partition and is important for the solution of problems in probability. The events of a

partition are said to be mutually exclusive and collectively exhaustive. The most fundamental

partition is the set outcomes defining the random experiment, which comprise the sample space by

definition.

Probability

Probability measures the likelihood of occurrence of events represented on a scale of 0 to 1. We often estimate

probability by measuring the relative frequency of an event, which is defined as

relative frequency ¼ number of occurrences of the event

number of repetitions of the experiment

(for a large number of repetitions). Probability can be defined formally by the following axioms:

(I) The probability of any event is nonnegative:

Pr½A > 0 ðIII:1Þ

(II) The probability of the universal event (i.e., the entire sample space) is 1:

Pr½S ¼ 1 ðIII:2Þ
1Some authors use ˙ and ¨ rather than · and þ, respectively.
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(III) If A1 and A2 are mutually exclusive, i.e., A1A2 ¼ ;, then

Pr½A1 þ A2 ¼ Pr½A1 þ Pr½A2 ðIII:3Þ

(IV) If fAig represent a countably infinite set of mutually exclusive events, then

Pr½A1 þ A2 þ A3 þ ¼
X1
i¼1

Pr½Ai ð if AiAj ¼ ; i 6¼ jÞ ðIII:4Þ

Note that although the additivity of probability for any finite set of disjoint events follows from (III), the

property has to be stated explicitly for an infinite set in (IV). These axioms and the algebra of events can

be used to show a number of other important properties which are summarized in Table III.4. The last

item in the table is an especially important formula since it uses probabilistic information about

A2

A1

s

eventsS

FIGURE III.1 Abstract representation of the sample space S with outcome s and sets A1 and A2 representing events.

TABLE III.1 Postulates for an Algebra of Events

1. If A 2A then Ac 2A
2. If A1 2A and A2 2A then A1 þ A2 2A

TABLE III.2 Axioms of Operations on Events

A1A
c
1 ¼ ; Mutual exclusion

A1S ¼ A1 Inclusion

ðAc1Þc ¼ A1 Double complement

A1 þ A2 ¼ A2 þ A1 Commutative law

A1 þ ðA2 þ A3Þ ¼ ðA1 þ A2Þ þ A3 Associative law

A1ðA2þA3Þ ¼ A1A2þA1A3 Distributive law

ðA1A2Þc ¼ Ac1 þ Ac2 DeMorgan’s law

TABLE III.3 Additional Identities in the Algebra of Events

Sc ¼ ;
A1 þ ; ¼ A1 Inclusion

A1A2 ¼ A2A1 Commutative law

A1ðA2A3Þ ¼ ðA1A2ÞA3 Associative law

A1 þ ðA2A3Þ ¼ ðA1 þ A2ÞðA1 þ A3Þ Distributive law

ðA1 þ A2Þc ¼ A1
c A2

c DeMorgan’s law
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individual events to compute the probability of the union of two events. The term Pr½A1A2 is referred to

as the joint probability of the two events. This last equation shows that the probabilities of two events add

as in Equation (III.3) only if their joint probability is 0. The joint probability is 0 when the two events

have no intersection (A1A2 ¼ ;).
Two events are said to be statistically independent if and only if

Pr½A1A2 ¼ Pr½A1 ·Pr½A2 ðindependent eventsÞ ðIII:5Þ
This definition is not derived from the earlier properties of probability. An argument to give this definition

intuitive meaning can be found in Ref. [1]. Independence occurs in problems where two events are not

influenced by one another and Equation (III.5) simplifies such problems considerably.

A final important result deals with partitions. A partition is a finite or countably infinite set of

events A1;A2;A3; . . . that satisfy the two conditions:

AiAj ¼ ; for i 6¼ j

A1 þ A2 þ A3 þ ¼ S
The events in a partition satisfy the relation: X

i

Pr½Ai ¼ 1 ðIII:6Þ

Further, if B is any other event, then

Pr½B ¼
X
i

Pr½AiB ðIII:7Þ

The latter result is referred to as the principle of total probability and is frequently used in solving

problems. The principle is illustrated by a Venn diagram in Figure III.2. The rectangle represents the

sample space and other events are defined therein. The event B is seen to be comprised of all of the pieces

TABLE III.4 Some Corollaries Derived from the Axioms

of Probability

Pr½Ac ¼ 1 Pr½A
0< Pr½A < 1

If A1 ˝ A2 then Pr½A1 < Pr½A2
Pr½; ¼ 0

If A1A2 ¼ ; then ¼ Pr½A1A2 ¼ 0

Pr½A1 þ A2 ¼ Pr½A1 þ Pr½A2 Pr½A1A2

A1

A2

An

B

A2B

S

FIGURE III.2 Venn diagram illustrating the principle of total probability.
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that represent intersections or overlap of event B with the events Ai. This is the graphical interpretation of

Equation (III.7).

An Example

Simon’s Surplus Warehouse has large barrels of mixed electronic components (parts) that you can buy by the

handful or by the pound. You are not allowed to select parts individually. Based on your previous experience,

you have determined that in one barrel, 29% of the parts are bad (faulted), 3% are bad resistors, 12% are good

resistors, 5% are bad capacitors, and 32% are diodes. You decide to assign probabilities based on these

percentages. Let us define the following events:

A Venn diagram representing this situation is shown below along with probabilities of various events as

given:

R

CD

G

B Pr[B] = 0.29
Pr[BR] = 0.03
Pr[GR] = 0.12
Pr[BC] = 0.05
Pr[D] = 0.32

Note that since any component must be a resistor, capacitor, or diode, the region labeled D in the diagram

represents everything in the sample space which is not included in R or C.

We can answer a number of questions.

1. What is the probability that a component is a resistor (either good or bad)?

Since the events B and G form a partition of the sample space, we can use the principle of total

probability Equation (III.7) to write:

Pr½R ¼ Pr½GR þ Pr½BR ¼ 0:12þ 0:03 ¼ 0:15

2. Are bad parts and resistors independent?

We know that Pr½BR ¼ 0:03 and we can compute:

Pr½B · Pr½R ¼ ð0:29Þð0:15Þ ¼ 0:0435

Since Pr½BR 6¼ Pr½B · Pr½R , the events are not independent.

3. You have no use for either bad parts or resistors. What is the probability that a part is either bad and/or

a resistor?

Event Symbol

Bad (faulted) component B

Good component G

Resistor R

Capacitor C

Diode D
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Using the formula from Table III.4 and the previous result we can write:

Pr½Bþ R ¼ Pr½B þ Pr½R Pr½BR ¼ 0:29þ 0:15 0:03 ¼ 0:41

4. What is the probability that a part is useful to you?

Let U represent the event that the part is useful. Then (see Table III.4):

Pr½U ¼ 1 Pr½Uc ¼ 1 0:41 ¼ 0:59

5. What is the probability of a bad diode?

Observe that the events R, C, and D form a partition, since a component has to be one and only one

type of part. Then using Equation (III.7) we write:

Pr½B ¼ Pr½BR þ Pr½BC þ Pr½BD

Substituting the known numerical values and solving yields

0:29 ¼ 0:03þ 0:05þ Pr½BD or Pr½BD ¼ 0:21

Conditional Probability and Bayes’ Rule

The conditional probability of an event A1 given that an event A2 has occurred is defined by

Pr½A1jA2 ¼ Pr½A1A2
Pr½A2 ðIII:8Þ

(Pr½A1jA2 is read ‘‘probability of A1 given A2.’’) As an illustration, let us compute the probability that a

component in the previous example is bad given that it is a resistor:

Pr½BjR ¼ Pr½BR
Pr½R ¼ 0:03

0:15
¼ 0:2

(The value for Pr[R] was computed in question 1 of the example.) Frequently the statement of a

problem is in terms of conditional probability rather than joint probability, so Equation (III.8) is used

in the form:

Pr½A1A2 ¼ Pr½A1jA2 · Pr½A2 ¼ Pr½A2jA1 · Pr½A1 ðIII:9Þ

(The last expression follows because Pr½A1A2 and Pr½A2A1 are the same thing.) Using this result, the

principle of total probability Equation (III.7) can be rewritten as

Pr½B ¼
X
j

Pr½BjAj Pr½Aj ðIII:10Þ

where B is any event and fAjg is a set of events that forms a partition.
Now, consider any one of the events Ai in the partition. It follows from Equation (III.9) that

Pr½AijB ¼ Pr½BjAi · Pr½Ai
Pr½B
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Then substituting in Equation (III.10) yields:

Pr½AijB ¼ Pr½BjAi · Pr½AiP
j Pr½BjAj Pr½Aj ðIII:11Þ

This result is known as Bayes’ theorem or Bayes’ rule. It is used in a number of problems that commonly arise

in electrical engineering. We illustrate and end this section with an example from the field of communications.

Communication Example

The transmission of bits over a binary communication channel is represented in the drawing below:

Pr[0R|0S] = 0.95
0S 0R

1R
Pr[1R|1S] = 0.90

Pr[1R| 0S] = 0.05

Pr[0R|1S] = 0.10

Pr[0S] = 0.5

Pr[1S] = 0.5

1S

Transmitter Channel Receiver

where we use notation like 0S, 0R . . . to denote events ‘‘0 sent,’’ ‘‘0 received,’’ etc. When a 0 is transmitted, it is

correctly received with probability 0.95 or incorrectly received with probability 0.05. That is, Pr½0Rj0S ¼ 0:95

and Pr½1Rj0S ¼ 0:05. When a 1 is transmitted, it is correctly received with probability 0.90 and incorrectly

received with probability 0.10. The probabilities of sending a 0 or a 1 are denoted by Pr½0S and Pr½1S . It is
desired to compute the probability of error for the system.

This is an application of the principle of total probability. The two events 0S and 1S are mutually exclusive

and collectively exhaustive and thus form a partition. Take the event B to be the event that an error occurs. It

follows from Equation (III.10) that

Pr[error] ¼ Pr[errorj0S Pr½0S þ Pr[errorj1S Pr½1S
¼ Pr½1Rj0S Pr½0S þ Pr½0Rj1S Pr½1S
¼ ð0:05Þ ð0:5Þ þ ð0:10Þ ð0:5Þ ¼ 0:075

Next, given that an error has occurred, let us compute the probability that a 1 was sent or a 0 was sent. This is

an application of Bayes’ rule. For a 1, Equation (III.11) becomes

Pr½1Sjerror ¼ Pr½errorj1S Pr½1S
Pr½errorj1S Pr½1S þ Pr½errorj0S Pr½0S

Substituting the numerical values then yields:

Pr½1Sjerror ¼ ð0:10Þð0:5Þ
ð0:10Þð0:5Þ þ ð0:05Þð0:5Þ < 0:667
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For a 0, a similar analysis applies:

Pr½0Sjerror ¼ Pr½errorj0S Pr½0S
Pr½errorj1S Pr½1S þ Pr½errorj0S Pr½0S

¼ ð0:05Þð0:5Þ
ð0:10Þð0:5Þ þ ð0:05Þð0:5Þ < 0:333

The two resulting probabilities sum to 1 because 0S and 1S form a partition for the experiment.

Reference
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transient analysis, 13-7 to 13-9

voltage regulator simulation, 13-3 to

13-5

Circuit analysis and design, parameter

extraction

basics, 13-16

Berkeley short-channel Igfet model,

13-20 to 13-21, 13-24 to 13-30

characterization of devices, 13-17

device modeling, 13-16

extraction, 13-18 to 13-19, 13-22 to

13-30

least-square curve fitting, 13-17 to

13-18

model selection, 13-28 to 13-30

MOS DC models, 13-20 to 13-24

optimization, 13-18 to 13-19

skew parameter files, 13-29 to 13-30

strategies, 13-19 to 13-20

test chip warnings, 13-24

Circuits

analysis software, 13-16

basics, 3-39, 3-54

computer software, circuit analysis

and design, 13-1 to 13-30

filter transfer functions, 10-1 to 10-7

frequency response, 11-1 to 11-10

Laplace transform, 6-1 to 6-22

linear circuit analysis, 3-1 to 3-65

nonlinear circuits, 5-1 to 5-21

passive components, 1-1 to 1-38

passive signal processing, 4-1 to 4-13

practical sources model, 2-6

stability analysis, 12-1 to 12-17

state variables, 7-1 to 7-9

T-P equivalent networks, 9-1 to 9-5

transfer functions, filters, 10-1 to

10-7

transformed, 6-22

voltage and current sources, 2-1 to

2-11

z-transform, 8-1 to 8-6

Circuit-set, 3-39, 3-54

Circular buffered FIR filtering, 19-10 to

19-11

Circular convolution

basics, 14-17

discrete Fourier transform, 14-13

finite impulse response filters, 14-38

CLAHE, see Contrast-limited adaptive

histogram equalization

(CLAHE)

Class H electrical fuses, 1-37

Classical parameter estimation, 17-8

Classification and regression (decision)

trees (CARTs), 16-3

Clipper (limiter)

basics, 5-6

operational amplifier limiting circuits,

5-10 to 5-12

operator and circuits, 5-7 to 5-10

CMU (public gait database), 27-9

Coates graph G1, 3-45 to 3-48, 3-50, 3-54

Cockroft-Walton circuit, 5-5

Codec chips, 19-2

Code-excited linear prediction (CELP)

coding, transmission, and storage,

15-2, 15-4, 15-10

text-to-speech synthesis, 16-7

Codeword assignment, 18-12 to 18-13

Coding, transmission, and storage

basics, 15-1 to 15-2, 15-11

diagnostic acceptability measure, 15-3

diagnostic rhyme test, 15-3

digital cellular networks, 15-5 to 15-7

E-model, 15-4

mean opinion score, 15-2 to 15-3,

15-11

modified bark spectral distance, 15-3

MPEG-4 natural audio coding tool,

15-10 to 15-11

narrowband speech coding, 15-4 to

15-5, 15-11

networks, voice communications, 15-5

to 15-8

perceptual evaluation of speech

quality, 15-3

public switched telephone network,

15-5

speech quality and intelligibility, 15-2

to 15-4

variable rate coding, 15-8 to 15-9,

15-11

voice over Internet protocol, 15-7 to

15-8

voice over Wi-Fi, 15-8

wideband speech coding, 15-9, 15-11

Coding redundancy, 18-9 to 18-10

Coefficient quantization, finite

wordlength effects, 14-41

Coil inductance, 1-21 to 1-22

Coils, 1-19, 1-26

Collectively exhaustive events, III-14

Color coding, 1-6 to 1-7

Color images, 18-3

Color masking, 18-12

Common biometric signals, 24-3 to

24-5, see also Biometrics

Communication, oceanic wave-guide,

21-40

Companion matrix, 7-7, 7-9

Comparison methods, video signal

processing, 18-26 to 18-27

Compensation theorem, networks, 3-25

Competitive learning, ANNs, 22-13 to

22-14

Complete set of state variables, 7-3, 7-9

Complex conjugate, 14-21

Complex domains, voltage and current

laws, 3-4 to 3-6

Complex Fourier transform, 14-9 to

14-10, see also Fourier

transforms

Complex power, 3-28 to 3-29, 3-31

Composition resistors, 1-7

Compression

basics, 18-29

digital image processing, 18-7 to 18-14

distortion, 5-18

video signal processing, 18-16, 18-20,

18-28

Compression points, 5-20

Computation style, ANNs, 22-1 to 22-2

Computer-aided design (CAD), 20-13

Computer simulation, see Modeling;

Simulation

Computer software, 3-7, see also specific

software program

Computer software, circuit analysis and

design

AC analysis, 13-5 to 13-7

analog circuit simulation, 13-1 to

13-16

basics, 13-16

Berkeley short-channel Igfet model,

13-20 to 13-21, 13-24 to 13-30

cascode amplifier, macro models, 13-6

to 13-7

characterization of devices, 13-17

circuit analysis software, 13-16

DC (steady-state) analysis, 13-2 to

13-5

device simulation, 13-9 to 13-10,

13-13 to 13-16

diffusion, 13-10 to 13-11

extraction, 13-18 to 13-19, 13-22 to

13-30
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ion implantation, 13-12

least-square curve fitting, 13-17 to

13-18

model selection, 13-28 to 13-30

MOS DC models, 13-20 to 13-24

NMOS IV curves, 13-14 to 13-16

NMOS transistor, 13-12 to 13-13

numerical method, 13-5 to 13-8

optimization, 13-18 to 13-19

oxidation, 13-11 to 13-12

parameter extraction, analog circuit

simulation, 13-16 to 13-30

phase-locked loop circuits, 13-8 to 13-9

process simulation, 13-9 to 13-13,

13-16

skew parameter files, 13-29 to 13-30

strategies, 13-19 to 13-20

test chip warnings, 13-24

transient analysis, 13-7 to 13-9

voltage regulator simulation, 13-3 to

13-5

Computing environments

basics, 23-1, 23-12

DTMF signal analysis, 23-5 to 23-6

filter and design analysis, 23-7 to 23-8

image analysis and processing, 23-9 to

23-12

MATLAB, 23-1 to 23-5

multi-rate signal processing, 23-8 to

23-9

nonstationary signal analysis, 23-6 to

23-7

speech signal analysis, 23-6 to 23-7

stationary signal analysis, 23-5 to 23-6

Concatenative synthesis, 16-3, 16-5 to

16-10

Conditional stability, 6-21 to 6-22

Conductors, 1-11, 1-26

Connectedness, 3-39, 3-54

Connections, transformer, 1-31 to 1-32

Consistent estimator, 17-9, 17-16

Consistent linear equations, 14-43

Constants, physical, III-8 to III-9

Continuous speech recognition, 15-34,

15-41

Continuous time (CT) impulse function,

14-3, 14-17

Continuous-time signals, 14-3 to 14-9

Continuous wave (CW), 21-26, 21-38

Contrast-limited adaptive histogram

equalization (CLAHE), 23-10

Contrast masking, 18-10

Contrast sensitivity, 18-11, 18-27

Controlled ideal voltage and current

sources, 2-5

Controlled voltage and current sources,

2-7 to 2-11

Convergence

adaptive signal processing, 14-72 to

14-73

Fourier transforms, 14-8 to 14-9

Conversions

amplitude, 22-20

constants and multipliers, III-5 to

III-7

ridge signals, 26-4 to 26-5

two-port parameters and

transformations, 3-61

Convolution

discrete Fourier transforms, 14-21 to

14-22

z-transform, 8-2

Convolution sum, 14-30

Coordinate system establishment, 25-3

to 25-4

Correlation methods

artificial neural networks, 22-11

discrete Fourier transforms, 14-22

underwater acoustics, 21-34 to 21-35

Cost, biometric systems, 24-2

Cost function (penalty), 17-9, 17-16

Cotree, 7-3, 7-9

Coupled inductance, 1-20

C programming language

code, 20-20, 23-2

compiler, 20-16, 20-24

implementation, 19-3 to 19-7

Cramér-Rao bound, 17-15

CRC error, see Cyclic redundancy check

(CRC) error

Creating algorithms, 19-5 to 19-7

Critical bands, 21-7, 21-12

Cross-layer design, 22-34 to 22-35

Cross modulation, 5-18, 5-20

Crossover distortion, 5-18, 5-20

CSMA/CA, see Carrier sense multiple

access with collision avoidance

(CSMA/CA)

CT, see Continuous time (CT) impulse

function

Current-ratio transfer function, 3-42

Cutoff frequency, 14-31

Cutset and cutset system, 7-9

CW, see Continuous wave (CW)

Cyclic redundancy check (CRC) error,

15-8

D

DA, see Dielectric absorption (DA)

DAM, see Diagnostic acceptability

measure (DAM)

Damping ratio, 11-7, 11-10

Data outliers

parameter estimation, 17-15

removal, nonnorm approach, 14-68

to 14-70

sum of error magnitude criterion,

14-49

Data reduction, ANNs, 22-13

Data windowing, 14-24 to 14-25, 14-29,

see also specific window

DC signal, see Direct current (DC)

DCT, see Discrete cosine transform

(DCT)

Decade, 11-7, 11-10

Decaying exponential function, 2-3

Decibels (dB), 11-6, 11-10

Decimal multiples and submultiples,

III-6

Decimation-in-time method, 14-25

Decision-directed mode, 22-18, 22-21 to

22-22

Decision feedback equalizers, 22-30 to

22-31

Degenerate extreme points, 14-54, 14-58

to 14-59

Degree of vertex, 3-39

Delay and sum method, 21-19

Delay relaxation, 20-10 to 20-11

Delta connection

basics, 3-38

three-phase circuits, 3-37

transformers, 1-31

Delta function, 2-1

Delta rule, 22-6

Dependence of spectrum, 21-33

Dependent current and voltage sources,

2-11, 3-56, 3-65

Dependent ideal current and voltage

sources, 2-5

Derating curves, resistors, 1-5 to 1-6

Design and implementation, digital

filters

basics, 14-30

bilinear transform design, 14-34 to

14-36

cascade realizations, 14-40

direct convolution methods, 14-36 to

14-37

direct-form realizations, 14-39 to

14-40

discrete Fourier transform, 14-38 to

14-39

finite impulse response filters, 14-30

to 14-34, 14-36 to 14-39, 14-42

finite wordlength effects, 14-40 to

14-41

infinite impulse response filters, 14-34

to 14-36, 14-39 to 14-42

parallel realizations, 14-40

windowing, 14-32 to 14-33

Detail dependence, 18-11

Deterministic parameter estimation,

17-8

Device modeling and simulation, 13-9 to

13-10, 13-13 to 13-16, see also

Modeling; Simulation

DF, see Dissipation factor (DF)

DFT, see Discrete Fourier transform

(DFT)

Diagnostic acceptability measure

(DAM), 15-3
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Diagnostic rhyme test (DRT), 15-3

Dielectric absorption (DA), 1-14

Dielectrics

basics, 1-26, 1-33

capacitors, 1-11

constant, 1-12, 1-26

transformers, 1-28

Difference equation, IIR filters, 14-39

Differential coding, 18-13 to 18-14

Differential-error method, distortion,

5-15

Differential pulse code modulation

(DPCM), 18-21

Differential sensitivity, 18-12

Differentiation theorems, 6-10 to 6-13

Diffusion, analog circuit simulation,

13-10 to 13-11

Digital cellular networks, 15-5 to 15-7

Digital filters, design and

implementation

basics, 14-30

bilinear transform design, 14-34 to

14-36

cascade realizations, 14-40

direct convolution methods, 14-36 to

14-37

direct-form realizations, 14-39 to

14-40

discrete Fourier transform, 14-38 to

14-39

finite impulse response filters, 14-30

to 14-34, 14-36 to 14-39, 14-42

finite wordlength effects, 14-40 to

14-41

infinite impulse response filters, 14-34

to 14-36, 14-39 to 14-42

parallel realizations, 14-40

windowing, 14-32 to 14-33

Digital hearing aids, 21-3 to 21-4

Digital image processing

analysis, 18-14 to 18-15

basics, 18-1

binary images, 18-3

codeword assignment, 18-12 to 18-13

coding redundancy, 18-9 to 18-10

color images, 18-3

color masking, 18-12

compression, 18-7 to 18-14

differential coding, 18-13 to 18-14

differential sensitivity, 18-12

enhancement, 18-6 to 18-7

feasibility, 18-8 to 18-9

frequency masking, 18-11

generation, digital images, 18-2

grayscale images, 18-3

halftone images, 18-3

luminance masking, 18-10 to 18-11

motion deblurring, 18-7

point processing, 18-7

practical needs, 18-8

psychovisual redundancy, 18-10

quality measurement, 18-3 to 18-6

quantization, 18-12 to 18-13

representation, 18-14

restoration, 18-6 to 18-7

segmentation, 18-14

sequence, 18-2 to 18-3

signal-to-noise ratio, 18-4 to 18-6

space, 18-2 to 18-3

spatial redundancy, 18-9

statistical redundancy, 18-9

temporal masking, 18-12

temporal redundancy, 18-9

texture masking, 18-11

transformation, 18-6

transform coding, 18-14

window processing, 18-7

Digital signal processing (DSP)

adaptive signal processing, 14-71 to

14-85

approximate solutions, 14-42 to

14-70

computing environments, 23-1 to

23-13

digital filters, design and

implementation, 14-30 to 14-42

fast Fourier transforms, 14-18 to

14-29

Fourier transforms, 14-1 to 14-29

processors, 20-24

signal processing chips and

applications, 20-15 to 20-16

Digital signal processing (DSP), audio

and electroacoustics

active noise and sound control, 21-10

to 21-12

audio coding, 21-6 to 21-7

basics, 21-1

digital hearing aids, 21-3 to 21-4

echo cancelation, 21-7 to 21-10

spatial processing, 21-4 to 21-5

steerable microphone arrays, 21-1 to

21-3

Digit serial program, 20-6, 20-13

Diodes, 5-1 to 5-3, 5-6

Dirac distribution, 2-1

Dirac function, 14-23

Direct convolution methods, 14-36 to

14-37

Direct current (DC)

analog circuit simulation, 13-2 to 13-5

basics, 2-4, 3-15

Direct-form realizations, 14-39 to 14-40

Direct memory access (DMA), 19-3

Dirichlet conditions, 14-5, 14-17

Discrete arrays, processing, 18-32 to

18-35

Discrete cosine transform (DCT)

digital filters design and

implementation, 14-38 to 14-39

digital image processing, 18-11

video signal processing, 18-23, 18-26

Discrete Fourier transform (DFT)

digital filters design and

implementation, 14-38 to 14-39

digital image processing, 18-6

fast Fourier transform, 14-20 to 14-23

filter operations, 21-28

Fourier transforms, 14-13 to 14-14

leakage, 14-16 to 14-17

spectral analysis, 14-16 to 14-17

speech analysis and synthesis, 15-29,

15-32

speech enhancement, 15-14

speech recognition, 15-35

Discrete Hadamard transform, 18-6

Discrete input sequence, 14-30

Discrete output sequence, 14-30

Discrete sequence, 14-30, 14-41

Discrete-time Fourier transform (DTFT)

fast Fourier transform, 14-18 to

14-19

Fourier transforms, 14-10 to 14-11

Discrete Walsh transform, 18-6

Discrete wavelet transform (DWT), 18-6

Disk capacitor, 1-26

Dispersive delay lines, 22-10

Dissipation factor (DF), 1-14, 1-26

Distortion

basics, 5-12

compression, 5-18

computer simulation, 5-19 to 5-20

cross modulation, 5-18

crossover distortion, 5-18

differential-error method, 5-15

failure-to-follow distortion, 5-18

five-point method, 5-15 to 5-16

frequency distortion, 5-18 to 5-19

harmonic distortion, 5-13 to 5-14

intercept points, 5-18

intermodulation distortion, 5-16 to

5-17

measure, 15-24

phase distortion, 5-19

power-series method, 5-14

three-point method, 5-15

triple-beat distortion, 5-17

Distributivity, 20-11

DMA, see Direct memory access (DMA)

Doping, 1-8, 1-10

Doppler sonars, 21-18

Double limiter, 5-7

DPCM, see Differential pulse code

modulation (DPCM)

Drag and drop operation, 23-2, 23-13

DRT, see Diagnostic rhyme test (DRT)

DSP, see Digital signal processing (DSP)

DTFT, see Discrete-time Fourier

transform (DTFT)

Dual-tone multi-frequency (DTMF)

signal analysis, 23-5 to 23-7

Dual topology, ANNs, 22-7

Du measure, 25-6
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DWT, see Discrete wavelet transform

(DWT)

Dynamic features extraction, 26-8 to

26-9

Dynamic time warping (DTW), 15-34,

15-36 to 15-37, 15-41

Dynamic time warping (DTW)

algorithm, 27-10

E

Early stopping, ANNs, 22-8

Eber-Moll equation, 2-9

Echo

cancelation, 21-7 to 21-10

identification rules, 21-25 to 21-26

sounder, 21-15 to 21-16

Edges, 3-39

Efficient estimator, 17-9, 17-16

EKF, see Extended Kalman filter (EKF)

Electrical fuses

basics, 1-33

Class H, 1-37

high rupturing capacity type, 1-37 to

1-38

performance, 1-34

products, 1-36 to 1-37

ratings, 1-33 to 1-34

selective coordination, 1-34

standards, 1-34 to 1-35, 1-37

trends, 1-38

Electrical systems, stability analysis,

12-13 to 12-14

Electric circuits, Laplace transform, 6-14,

see also Circuits

Electricity, symbols and terminology,

III-10

Electroacoustics and audio

active noise and sound control, 21-10

to 21-12

audio coding, 21-6 to 21-7

basics, 21-1, 21-12

digital hearing aids, 21-3 to 21-4

echo cancelation, 21-7 to 21-10

spatial processing, 21-4 to 21-5

steerable microphone arrays, 21-1 to

21-3

Electrolytes, 1-15, 1-26

Electrolytic capacitors, 1-15 to 1-19,

1-26

Electromagnetic equation, transformers,

1-29 to 1-30

Electromagnetic radiation, symbols and

terminology, III-10 to III-11

Elliptic filters, 14-35

E-model, 15-4

Empirical data and data vector, 14-43

Encoding, ANNs, 22-13

Energy, see Power and energy

Energy spectral density, filter operations,

21-32

English to metric conversion factors,

III-6

Enhanced modified back spectral

distance (EMBSD), 15-4

Enhanced Variable Rate Coder (EVRC),

15-9

Enhancement, digital image processing,

18-6 to 18-7

Enrollment, iris recognition, 25-5

Epitaxial layer, 1-8, 1-10

Equal ripple, 4-5, 4-12, see also

Equiripple

Equations

primary and secondary system, 7-9

writing procedure, 7-3 to 7-6

Equiripple, 14-33, see also Equal ripple

Equivalent impedance, 3-18 to

3-20

Equivalent series inductance (ESL),

1-13

Equivalent series resistance (ESR), 1-13,

1-26

Estimator and estimation

basics, 17-16

estimator, 17-8

parameter estimation, 17-8

speech enhancement, 15-13 to 15-19

Euclidean norm, 15-14

Evaluation

mode, signal processing, 20-18

text-to-speech synthesis, 16-10 to

16-11

two-port parameters and

transformations, 3-57 to 3-59

Even function, 14-24

EVM tools, 20-18 to 20-19

Evolutionary algorithms, 14-78 to 14-79,

14-84

EVRC, see Enhanced Variable Rate Coder

(EVRC)

Excitation, speech analysis and synthesis,

15-26 to 15-28

Exemplars, hidden Markov models,

27-5

Expected value, 17-3

Expected value (or mean) of a random

variable, 17-7

Exponential Fourier series, 14-5 to 14-6,

see also Fourier transforms

Extended Kalman filter (EKF), 17-18 to

17-27, see also Kalman

algorithm and filtering

Exterior/external stability, 12-1, 12-11,

12-17

Extraction

dynamic features, 26-8 to 26-9

parameters, 13-18 to 13-19, 13-22 to

13-30

static features, 26-5 to 26-7

Extremal frequencies, 14-33

Extreme points, 14-54

F

Facial images and recognition, 24-4 to

24-5, 24-7, see also Gait and face

human identification

Factorization, denominator polynomial,

6-8

Fading channels, 22-30

Failure to enroll rate (FTER), 24-2

Failure-to-follow distortion, 5-18, 5-20

False acceptance rate (FAR), 24-2

False contouring, 18-11

False rejection rate (FRR), 24-2

Farad, 1-26

Fast Fourier transforms (FFT)

amplitude, 14-23 to 14-24

data windowing, 14-24 to 14-25, 14-29

discrete Fourier transform, 14-20 to

14-23

discrete-time Fourier transform, 14-18

to 14-19

fast Fourier transform, 14-25 to 14-29

finite-time sequences, 14-19 to 14-29

frequency response, 14-19 to 14-20

inverse discrete Fourier transform,

14-29

observations, 14-24

phase spectrum, 14-23 to 14-24

power spectrum, 14-23 to 14-24

windowing, 14-24 to 14-25, 14-29

Feasibility, digital image processing, 18-8

to 18-9

Features extraction, 26-8 to 26-9

Feedback path (loop), 3-55

Fejer window, 14-24

FFT, 14-29, see also Fast Fourier

transforms (FFT); Finite Fourier

transformations (FFT)

Field, 1-11, 1-26

Fifth-order, low-pass Butterworth filters,

14-81

Film capacitors, 1-15

Filter-response measurements, 21-28 to

21-30

Filters, see also specific type

implementation, 14-42

underwater acoustics, 21-28 to 21-32,

21-38 to 21-39

Filters, design

basics, 14-41

computing environments, 23-7 to 23-8

passive signal processing, 4-8 to 4-13

Filter transfer functions

basics, 10-1

Butterworth filters, 10-4 to 10-5

casual filters, 10-4

Chebyshev filters, 10-5 to 10-7

ideal filters, 10-1 to 10-3, 10-7

linear-phase filters, 10-2 to 10-3, 10-3

Final value, z-transform, 8-4

Fingerprints, 24-3, 24-7, 26-8 to 26-9
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Finite Fourier transformations (FFT),

21-28

Finite impulse response (FIR) adaptive

filters, 14-71 to 14-72, 14-84

Finite impulse response (FIR) filters

basics, 14-42

brute force, 19-7 to 19-10

digital filters design and

implementation, 14-30 to

14-34, 14-36 to 14-39

filter design and analysis, 23-7 to 23-8

sensor array processing, 18-30 to

18-31, 19-7 to 19-10

signal processing chips and

applications, 20-17 to 20-20

steerable microphone arrays, 21-2

Finite-time sequences, 14-19 to 14-29

Finite wordlength effects, 14-34, 14-40 to

14-42

Fish finders, 21-16

Five-point method, distortion, 5-15 to

5-16

Fixed-point processor, 20-15, 20-24

Fixed-point TMS320C25-based

development system, 20-16 to

20-18

Fixed structure multiple-model

(FSMM), 17-21 to 17-27

Fixed-type resistors, 1-7 to 1-8

Floating-point processor, 20-15, 20-24

Floating-point TMS320C30-based

development system, 20-18

Flowgraph approach, 3-45 to 3-53

Flowgraph G1, 3-54

Focused topology, ANNs, 22-9

Foil tantalum capacitors, 1-18 to 1-19

Folding transformation, 20-6 to 20-7,

20-13

Force of attraction, 1-12

Formant synthesis, 16-3 to 16-4

Forward-backward algorithm, 15-41

Forward path, 3-55

Fourier cosine series, 5-15

Fourier transforms, see also specific type

of Fourier transform

basics, 14-1 to 14-3

complex Fourier transform, 14-9 to

14-10

continuous-time signals, 14-3 to 14-9

convergence, 14-8 to 14-9

CT and DT spectra relationship, 14-12

DFT (FFT) spectral analysis, 14-16 to

14-17

digital filters design and

implementation, 14-30

discrete Fourier transform, 14-13 to

14-14

discrete-time Fourier transform, 14-10

to 14-11

exponential Fourier series, 14-5 to

14-6

periodic continuous time signals, 14-9

series representation, 14-5 to 14-9

spectral analysis, 17-3 to 17-4

speech analysis and synthesis, 15-28 to

15-30

static features extraction, 26-5 to 26-7

trigonometric Fourier series, 14-6 to

14-8

Walsh-Hadamard transform, 14-14 to

14-17

Fourier transforms, fast Fourier

transform

amplitude, 14-23 to 14-24

data windowing, 14-24 to 14-25,

14-29

discrete Fourier transform, 14-20 to

14-23

discrete-time Fourier transform, 14-18

to 14-19

fast Fourier transform, 14-25 to 14-29

finite-time sequences, 14-19 to 14-29

frequency response, 14-19 to 14-20

inverse discrete Fourier transform,

14-29

observations, 14-24

phase spectrum, 14-23 to 14-24

power spectrum, 14-23 to 14-24

windowing, 14-24 to 14-25, 14-29

Fourth-order, low-pass Butterworth

filters, 14-81

Frames, real-time digital signal

processing, 19-2

Frequency

dependence, digital image processing,

18-11

distortion, 5-18 to 5-19, 5-21

ideal current and voltage sources, 2-5

masking, digital image processing,

18-11

scaling, 4-10, 4-12

Frequency domain, 21-30 to 21-32

Frequency-domain differentiation, 6-12

to 6-13

Frequency response

basics, 11-1 to 11-4, 11-10

characteristics, 11-2

fast Fourier transform, 14-19 to 14-20

method comparison, 11-10

plotting, 11-4 to 11-10

Frequency-selective filters, 14-30

Frequency-selective MIMO channels,

22-27

Front end issues, 16-2 to 16-3

FRR, see False rejection rate (FRR)

FSMM, see Fixed structure

multiple-model (FSMM)

FTER, see Failure to enroll rate (FTER)

Future directions

signal processing chips and

applications, 20-23 to 20-24

VLSI special architectures, 20-13

G

Gabor functions, face recognition, 27-4

Gabor wavelet approach, 24-4

Gain network, 22-20

Gait and face human identification, see

also Biometrics; Iris

basics, 27-1 to 27-2, 27-15 to 27-16

existing work review, 27-2 to 27-5

experimental results, 27-8 to 27-9

face recognition, 27-3 to 27-5, 27-10

to 27-15

gait recognition, 27-2 to 27-3, 27-5 to

27-9

hidden Markov models, 27-2 to 27-3,

27-5 to 27-9

illumination variation, 27-10 to 27-13

pose variation, 27-12 to 27-13

test sequence, 27-8

training, 27-7 to 27-8

videos, 27-13 to 27-15

view invariant gait recognition, 27-9

to 27-10

GaitChallenge Problem, 27-3, 27-7

Gait databases, public, 27-9

Gamma memory, 22-10

Gated signals, 21-32 to 21-34

Gaussian properties

interpolation, 22-19

model and processes, 15-13 to 15-16,

15-23

wavelet estimator, 17-21 to 17-27

Gear’s method, 13-8

Generation, digital images, 18-2

Generic sonar, 21-20 to 21-21

Genetic algorithm, 14-84

Gibbs phenomenon, 14-8, 14-17

Global asymptotic stability, 12-17

G parameters, see Hybrid

(inverse hybrid) parameters

Graphemes, 16-2, 16-11

Graphical user interface (GUI), 23-1,

23-13

Graph theory

applications, 3-53 to 3-54

basics, 3-38 to 3-40

flowgraph approach, 3-45 to 3-53

k-tree approach, 3-40 to 3-45, 3-48 to

3-53

Grating lobes, 18-32, 18-36

Grayscale images, 18-3

Greek alphabet, III-3

Ground node, 3-2

H

Haar condition, 14-62

Halftone images, 18-3

Hamming window

fast Fourier transform, 14-24 to 14-25

finite impulse response filters, 14-32
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speech analysis and synthesis, 15-29

Hard real-time system, 19-1

Hardware, real-time digital signal

processing, 19-1 to 19-2

Harmonic balance, 5-20

Harmonic distortion

basics, 5-21

distortion, 5-12 to 5-14

factors, 5-21

total, 5-13, 5-21

Harmonic frequency, 1-30, 1-33

Harmonic oscillator, 12-13

Harmonic vector excitation coder

(HXVC), 15-10

Hearing aids, 21-3 to 21-4

Hebbian learning, 22-11 to 22-12

Hermitian Toeplitz matrices, 17-4

Hessian matrix, 14-72

Hetero-association, ANNs, 22-12

Heterodyning operations, 21-21 to 21-25

Hidden layers, ANNs, 22-3

Hidden Markov models (HMMs)

basics, 15-41

gait and face human identification,

27-2 to 27-3, 27-5 to 27-9

speech recognition, 15-34, 15-37 to

15-40

Hidden Markov process (HMP), 15-16

to 15-17, 15-24

High-frequency effects, resistors, 1-3 to

1-4

High-pass filters and functions, 4-7,

4-12, 14-30

High-pass function equation, 10-1

High rupturing capacity (HRC) fuses,

1-36 to 1-38

Histogram equalization, 18-7

Homogeneity condition, 3-15

Homogeneous linear estimator, 17-16

Homogeneous parameter estimation,

17-12

Homographs, 16-2, 16-11

Homomorphic (cepstral) analysis, 15-31

to 15-32

Hopf-bifurcation, 12-12

Hop-off resistance, 1-8

Hotelling transform, 18-6

Hough transform, 18-6

H parameters, 3-61, see also Hybrid

(inverse hybrid) parameters

HSPICE, 13-20, see also SPICE/SPICE2/

SPICE3

Hue, 18-12

Huffman coding, 18-21

Human identification, see Biometrics;

Gait and face human

identification

Human ID GaitChallenge Problem, 27-3,

27-7

Human visual system, 18-5, 18-10 to

18-12, 18-27

HXVC, see Harmonic vector excitation

coder (HXVC)

Hybrid (inverse hybrid) parameters, 3-65

Hybrid video coding, 18-26

I

Ideal bandpass function, 10-1

Ideal bandstop function, 10-1

Ideal filters, 10-1 to 10-3, 10-7

Ideal high-pass functions, 10-1

Ideal low-pass functions, 10-1

Ideal voltage and current sources, 2-4 to

2-5, 2-7

Identification, 24-7, 25-6, see also

Biometrics; Gait and face

human identification

IFFT, see Inverse finite Fourier transform

(IFFT)

IIR, see Infinite impulse response (IIR)

filters

Illumination variation, 27-10 to 27-13

Images, see also Digital image processing

acquisition, iris recognition, 25-2

computing environments, 23-9 to

23-12

quality, video signal processing, 18-26

to 18-27

Image underwater features, 21-40

Imaginary components, Laplace

transform, 6-1

Imaginary power, 3-29

Impedance

basics, 1-26

capacitors, 1-13, 1-16

inductors, 1-19, 1-23 to 1-24

network theorems, 3-18 to 3-20

parameters, 3-57, 3-65

scaling, 4-10, 4-12

transformers, 1-32

Impulse function, 2-1 to 2-2, 2-4, 14-23

Impulse-invariant design, 14-34

Impulse response

basics, 6-22

digital filters design and

implementation, 14-30

Laplace transform, 6-20

Inconsistent linear equations, 14-43

Independent current and voltage sources

basics, 2-5, 3-6, 3-65

two-port parameters and

transformations, 3-56

Independent events, III-16

Individual privacy protection, biometric

systems, 24-2

Inductance, 1-19, 1-26

Inductive reactance, 1-19, 1-26

Inductors, see also Capacitors

basics, 1-19, 1-26 to 1-27

coil inductance, 1-21 to 1-22

impedance, 1-19, 1-23 to 1-24

mutual inductance, 1-20

resonant frequency, 1-25

time constant, 1-22 to 1-23

Inductor transformation, 6-15 to 6-16

Infinite impulse response (IIR) adaptive

filters, 14-84

Infinite impulse response (IIR) filters

basics, 14-42

digital filters design and

implementation, 14-34 to

14-36, 14-39 to 14-41

filter design and analysis, 23-7 to 23-8

Information-preserving coders, 18-20 to

18-21

Initial signal value, z-transform, 8-3

Input layer, ANNs, 22-3

Input nodes, signal-flowgraph, 3-55

Input vector, 7-2, 7-9

Instability, 12-17

Insulation resistance, 1-14

Integral, Laplace transform, 6-1 to 6-2

Integrated circuit resistors, 1-8 to 1-9

Integration property, 6-14

Integrodifferential equations, 6-13 to

6-14

Intelligibility

basics, 15-24

digital hearing aids, 21-4

maximization, 21-4, 21-12

speech enhancement, 15-12

speech quality, 15-2

text-to-speech synthesis, 16-1

Intensity spectral density, 21-35 to 21-38

Interaural attributes, 21-4, 21-12

Intercept points, 5-18, 5-20

Interior/internal stability, 12-1, 12-17

Intermodulation distortion, 5-16 to

5-17, 5-21

Internal/interior stability, 12-1, 12-17

Internal resistance, practical sources, 2-7

International System of units, III-3 to

III-5

Interrupt driven system, 19-2

Interrupting rating (I.R.), 1-33, 1-38

Interrupt overhead, 19-3

Interrupt service routine, 19-2

Invasive measurements, biometric

systems, 24-2

Inverse Chebyshev filters and functions,

14-35

Inverse discrete Fourier transform, 14-29

Inverse finite Fourier transform (IFFT),

21-28

Inverse Fourier transform, 10-3

Inverse hybrid parameters, 3-65

Inverse Laplace transform, 6-7 to 6-10

Inverse system configuration, 14-75

Inverse transform formula, 8-5

Inverse transmission parameters, 3-66

Inversion, z-transform, 8-4 to 8-5

Ion implantation, 13-12
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Iris, see also Biometrics; Gait and face

human identification

applications, 25-6 to 25-9

basics, 24-7, 25-1, 25-9

coordinate system establishment, 25-3

to 25-4

enrollment, 25-5

identification, 25-6

image acquisition, 25-2

liveness test, 25-6, 25-9

matching algorithm, 25-5 to 25-6

pattern analysis, 25-4

PC recognition system, 25-6 to 25-7

portable recognition system, 25-8 to

25-9

preprocessing, 25-2 to 25-3

recognition technology, 25-1 to 25-6,

25-9

scans, 24-4

speed performance, 25-6

stand-alone recognition system, 25-8

to 25-9

technology, 25-1 to 25-6

template generation, 25-4 to 25-5

walkup recognition system, 25-7 to

25-8

Irrelevance, audio coding, 21-6, 21-12

Isolated word recognition, 15-34, 15-41

I2t (ampere squared seconds), 1-38

J

Johnson noise, 1-4

Joint probabilities, III-16

K

Kaiser window, 14-32 to 14-33

Kalman algorithm and filtering, see also

Extended Kalman filter (EKF)

adaptive signal processing, 22-28

multiple-model estimation and

tracking, 17-18

speech enhancement, 15-16, 15-23

Karhunen-Loève transform, 15-14

Kelvin, III-4

Kilogram, III-3

Kirchhoff ’s current and voltage laws

basics, 3-15

complex domains, 3-4 to 3-6

controlled voltage and current sources,

2-11

current laws, 3-3 to 3-5

importance, 3-6

node and mesh analysis, 3-1 to 3-12

passive signal processing, 4-2

practical sources, 2-7

source transformation, 6-16

state variables, 7-1, 7-4 to 7-5

Tellegen’s theorem, 3-20 to 3-22

three-phase circuits, 3-36

voltage laws, 3-5 to 3-6

voltage law transformation, 6-15

Knudsen noise, 21-18

Kohonen networks, 22-13 to 22-14

Kolmogorov theorem, 17-3

Kronecker product operation, 22-27

k-Tree

admittance product, 3-39, 3-54

approach, 3-40 to 3-45, 3-48 to 3-53

connected graph G, 3-54

L

Labeling, ANNs, 22-14

Lagging power factor, 3-30

Lambertian reflectance model, 27-11 to

27-12

Laplace transform

applications, 6-10 to 6-22

autocorrelation function, 6-6

basics, 6-1, 6-10, 6-22

capacitor transformation, 6-16

complex Fourier transform, 14-9 to

14-10

definitions and properties, 6-1 to 6-10

differentiation theorems, 6-10 to 6-13

electric circuits, 6-14

frequency-domain differentiation,

6-12 to 6-13

impulse response, 6-20

inductor transformation, 6-15 to 6-16

integral, 6-1 to 6-2

integration property, 6-14

integrodifferential equations, 6-13 to

6-14

inverse Laplace transform, 6-7 to 6-10

linearity, 6-3 to 6-4

network functions, 6-19 to 6-20

Norton’s theorem, 6-17 to 6-19

pair tables, 6-2 to 6-3

partial-fraction expansion method,

6-7

passive signal processing, 4-1

properties, 6-3 to 6-4

region of absolute convergence, 6-2 to

6-3, 6-10

source transformation, 6-16 to 6-17

stability, 6-21 to 6-22

step response, 6-20

Thévenin’s theorem, 6-17 to 6-19

time-convolution property, 6-5

time-correlation property, 6-5 to 6-6

time-domain differentiation, 6-4, 6-10

to 6-12

time-shift, 6-4

transformed circuits, 6-15 to 6-17,

6-22

voltage law transformation, 6-15

Lattice realization, 14-41

Leading power factor, 3-30

Leakage current, 1-16, 1-26

Learning rules, ANNs, 22-1

Least mean squares (LMS) algorithm

adaptive filters, 14-72 to 14-73, 14-76,

20-10

adaptive signal processing, 22-16 to

22-17, 22-28 to 22-29

artificial neural networks, 22-5

basics, 14-84

echo cancelation, 21-7 to 21-8

Least-square curve fitting, 13-17 to 13-18

Least squares (LS) algorithm, 21-8, 22-5

Levenberg-Marquardt algorithm, 13-18

LGF, see Loudness-growth function

(LGF)

Light adaptation, 18-27

Limit cycle, finite wordlength effects,

14-41

Limiter

basics, 5-6

operational amplifier limiting circuits,

5-10 to 5-12

operator and circuits, 5-7 to 5-10

Linear adaptive filtering, 22-16 to 22-17

Linear circuit analysis

graph theory, 3-38 to 3-55

network theorems, 3-15 to 3-25

node and mesh analysis, 3-7 to 3-15

power and energy, 3-26 to 3-33

three-phase circuits, 3-34 to 3-38

two-port parameters and

transformations, 3-56 to 3-66

voltage and current laws, 3-1 to 3-6

Linear graph, 3-39, 3-54

Linearity

discrete Fourier transforms, 14-21

equations, overdetermined system,

14-57 to 14-58

estimation, speech enhancement,

15-13 to 15-14

FIR adaptive filters, 14-71 to 14-72

FIR equalizer, 22-29 to 22-30

IIR adaptive filters, 14-76 to 14-77

interpolation, 22-19

Laplace transform, 6-3 to 6-4

network system, 3-15, 3-25

network theorems, 3-15

passive signal processing, 4-2

second-order electrical system, 12-13

separable classes, 22-4

z-transform, 8-1 to 8-2

Linearization, 2-9, 2-11

Linear MMSE estimator, 17-16

Linear phase, finite impulse response

filters, 14-30

Linear-phase filters, 10-2 to 10-3

Linear prediction, 15-30

Linear predictive coding (LPC)

adaptive signal processing, 14-75

concatenative synthesis, 16-6 to 16-8

speech recognition, 15-35

Line enhancer, 14-75
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Line spectrum, 14-17

Line-to-line (line) voltages, 3-38

Link, 7-3, 7-9

List-type equalizers, 22-32

Liveness detection, biometric devices

algorithm details, 26-4 to 26-9

applications, 25-6

basics, 25-9, 26-1 to 26-2, 26-9

classification, 26-9

dynamic features extraction, 26-8 to

26-9

example results, 26-9

fingerprints, 26-8 to 26-9

Fourier transform, 26-5 to 26-7

neural network, 26-9

preprocessing, 26-4

ridge signal conversion, 26-4 to 26-5

signal processing, 26-2 to 26-4

static feature extraction, 26-5 to 26-7

LMS, see Least mean squares (LMS)

algorithm

LNL nonlinear system model, 14-84

Local minima, ANNs, 22-7

Local response, ANNs, 22-9

Logarithmic pulse code modulation

(log-PCM), 15-2, 15-4 to 15-5

Look-ahead technique, 20-7 to 20-11,

20-13

Loops (circuits), 3-39, 3-54, see also

Circuits

Loop-set (circuit-set), 3-39, 3-47, 3-54

Loop-set product, 3-47

Loop system, 7-9

Losses, transformers, 1-30 to 1-31

Lossless compression, 18-8

Lossy compression, 18-13

Loudness-growth function (LGF), 21-4

Loudness restoration, 21-4, 21-12

Loudspeaker reproduction, 21-5

Low-pass Butterworth filters, 14-81

Low-pass filters and functions

antialiasing filters, 21-28, 21-30

basics, 4-7, 4-13

digital filters design and

implementation, 14-30

equation, 10-1

ideal linear-phase, 10-2 to 10-3

passive signal processing, 4-3 to 4-8

Low-pass to bandpass transformation,

4-11 to 4-12

Low-pass to high-pass transformation,

4-11

LPC, see Linear predictive coding (LPC)

Luminance masking, 18-10 to 18-11

Lyapunov stability theory, 12-3 to 12-4,

12-6

M

Magnetic field, 1-29, 1-33

Magnetic flux, 1-29, 1-33

Magnetism, symbols and terminology,

III-10

Magnetomotive force, 1-21, 1-26

Mappers

artificial neural networks, 22-1, 22-4

digital image processing, 18-13

Markov process, 17-19, see also Hidden

Markov process (HMP)

Masking

audio coding, 21-6

video signal processing, 18-27

Masons graph Gm, 3-45 to 3-49, 3-55

Matched equivalent signal, 21-39

Matched filters, underwater acoustics,

21-38 to 21-39

Matched high-order IIR filter, 14-81

Matching algorithm, iris recognition,

25-5 to 25-6

Mathematics, symbols, and physical

constants

basics, III-1 to III-2

conversion constants and multipliers,

III-5 to III-7

Greek alphabet, III-3

International System of units, III-3

to III-5

physical constants, III-8 to III-9

probability, III-14 to III-20

quantities, physical and chemical,

III-9 to III-12

MATLAB

basics, 3-15

computing environments, 23-1 to

23-5

dual-tone multi-frequency (DTMF)

signal analysis, 23-6

filter design and analysis, 23-7

image analysis and processing, 23-9

to 23-12

multi-rate signal processing, 23-9

node and mesh analysis, 3-1 to 3-15

real-time digital signal processing,

19-1, 19-3 to 19-7

speech enhancement, 15-19

Maximally flat magnitude (MFM) filter,

4-3, 4-13

Maximum a posteriori estimate, 17-10,

17-16

Maximum a posteriori probability

(MAP)

adaptive signal processing, 22-31 to

22-32

face recognition, 27-4

Maximum error magnitude norm, 14-49

Maximum likelihood decoding, 22-27

Maximum likelihood estimator, 17-14

to 17-16

Maximum likelihood sequence estimator

(MLSE), 22-31

Maximum power transfer

power and energy, 3-31 to 3-32

theorems, 3-22 to 3-23, 3-25

Maximum working voltage, 1-13

Maxwell’s formulas and distribution

circuit analysis and design, 13-11

k-tree approach, 3-40

time constant, 1-23

MDCT, see Modified discrete cosine

transform (MDCT)

Mean filter, point processing, 18-7

Mean Opinion Score (MOS), 15-2 to

15-6, 15-9, 15-11

Mean squared error (MSE)

basics, 14-17

digital image processing, 18-5

Fourier series convergence, 14-8

Mean squared error (MSE) surface,

14-84

Measurement

oceanic properties, 21-40

power and energy, 3-32 to 3-33

Median filter, point processing, 18-7

Medium access control (MAC)

protocols, 22-17

Memory, ANNs, 22-10

Mesh analysis

AC example, 3-10 to 3-12

basics, 3-7, 3-9 to 3-10, 3-15

network computer simulation, 3-12

to 3-15

Metal-film resistors, 1-7 to 1-8

Meter, III-3

Metric and English conversion factors,

III-6

MFM, see Maximally flat magnitude

(MFM) filter

Mica capacitors, 1-15

Microphone arrays, steerable, 21-1 to

21-3

MIMO, see Multiple-input multiple

output (MIMO) channels

Minima controlled recursive averaging,

15-20 to 15-21

Minimax estimator

basics, 17-16

finite impulse response filters, 14-33

parameter estimation, 17-12

Minimum largest error magnitudes

approximation, 14-46 to 14-47

Minimum ‘2 norm approximation,

14-49 to 14-58, 14-61 to 14-67

Minimum mean-square error (MMSE)

estimator

basics, 17-16

parameter estimation, 17-10 to

17-12

speech enhancement, 15-13

Minimum norm approximation

problem, 14-47 to 14-49

Minimum statistics approach, 15-20

Minimum sum of errors magnitudes

approximation, 14-45 to 14-46
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Minimum sum of squared errors

approximation, 14-44 to 14-45

Minimum variance unbiased estimator

(MVUE), 17-12 to 17-14

MLP, see Multilayer perceptrons (MLPs)

MLSE, see Maximum likelihood

sequence estimator (MLSE)

MLT, see Modulated lapped transform

(MLT)

MMSE, seeMinimum mean-square error

(MMSE) estimator

MMSE spectral magnitude estimation,

15-17 to 15-21

Modeling, see also Simulation

device, parameter extraction, 13-16

ideal and practical sources, 2-4

Lambertian reflectance model, 27-11

to 27-13

MOS DC models, 13-20 to 13-24

multi-state speech model, 15-17

parameter extraction, 13-16

parameter vector, 14-59

practical current and voltage sources,

2-6

residual error vector, 14-59

selection, parameter extraction, 13-28

to 13-30

spectral estimation and modeling,

17-1 to 17-27

speech enhancement, 15-13 to 15-17

two-port parameters and

transformations, 3-57

Modified bark spectral distance,

enhanced, 15-3

Modified Bessel function, 14-25

Modified Coates graph G1, 3-45, 3-47 to

3-48, 3-50, 3-54

Modified discrete cosine transform

(MDCT), 21-7

Modified particle swarm optimization

(MPSO), 14-80 to 14-81

Modulated lapped transform (MLT),

15-9

Modulation and coding, 22-32 to

22-33

Mole, III-4

Monaural attributes, 21-4, 21-12

Monotone characteristics, 10-5

Monte Carlo simulation

basics, 15-24

ion implantation, 13-12

speech enhancement, 15-12 to 15-13,

15-21 to 15-23

Morphology, 16-3, 16-11

MOS, see Mean Opinion Score (MOS)

MOS DC models, 13-20 to 13-24

Motion-compensated predictive coding,

18-22 to 18-23

Motion deblurring, 18-7

Motion estimation, 18-16, 18-23 to

18-24, 18-29

MPEG-4 natural audio coding tool,

15-10 to 15-11

MPSO, see Modified particle swarm

optimization (MPSO)

M-QAM, see Multilevel quadrature

amplitude modulation

(M-QAM)

MSE, see Mean squared error (MSE);

Mean squared error (MSE)

surface

Multibeam sonar, 21-17 to 21-18

Multidimensional signal processing

digital image processing, 18-1 to 18-15

sensor array processing, 18-29 to

18-36

video signal processing, 18-16 to 18-29

Multilayer perceptrons (MLPs), 22-3 to

22-8

Multilevel quadrature amplitude

modulation (M-QAM), 22-19,

22-32

Multimodal biometrics, 24-6 to 24-7

Multiple-input multiple output (MIMO)

channels, 22-15, 22-26 to 22-28,

22-30 to 22-32

Multiple looks, identification, 27-14

Multiple-model estimation and tracking,

17-17 to 17-27

Multiplication, z-transform, 8-3

Multiplier round-off limit cycle, 14-41

Multi-rate signal processing, 23-8 to 23-9

Multi-state speech model, 15-17

Mutual exclusive events, probabilities,

III-14

Mutual inductance, 1-20, 1-26

MVUE, see Minimum variance unbiased

estimator (MVUE)

N

Nagaoka’s equation, 1-21

Narrowband speech, 15-4 to 15-5, 15-11

Naturalness, text-to-speech synthesis,

16-1

Navier-Stokes equations, 16-3

Negative-positive-zero (NPO), 1-15, 1-26

Networks

adaptive signal processing, wireless

communications, 22-15 to

22-35

artificial neural networks, 22-1 to

22-14

functions, 6-19 to 6-20, 6-22

P-network, 9-5
node and mesh analysis, 3-12 to 3-15

nondegenerate, 7-3, 7-9

nonlinear, 3-15, 7-8 to 7-9

resistors, 1-2 to 1-3

two-port parameters and

transformations, 3-59 to 3-61

voice communications, 15-5 to 15-8

Network theorems

application conditions, 3-17 to 3-18

compensation theorem, 3-25

equivalent impedance, 3-18 to 3-20

linearity, 3-15

maximum power transfer, 3-22 to

3-23

Norton theorem, 3-17 to 3-22

reciprocity theorem, 3-24 to 3-25

substitution theorem, 3-25

superposition, 3-15 to 3-17

Tellegen’s theorem, 3-20 to 3-22

Thévenin theorem, 3-17 to 3-22

Neural networks, see also Artificial neural

networks (ANNs)

adaptive, 22-19 to 22-26

liveness detection, biometric devices,

26-9

topology, 22-1

Newton algorithms, quasi-, 14-72

Newton method, 13-12

Nichols chart, 11-2, 11-10

NIST (public gait database), 27-9

NMOS IV curves, 13-14 to 13-16

NMOS transistor, 13-12 to 13-13

Nodal system, 7-9

Node analysis

AC example, 3-10 to 3-12

basics, 3-7 to 3-9, 3-15

network computer simulation, 3-12 to

3-15

Nodes, 3-6, 3-45, 3-47

Noise

control, audio and electroacoustics,

21-10 to 21-12

resistors, 1-4 to 1-5

spectrum estimation, 15-20 to 15-21

Nonconvex separation surfaces, 22-4

Nondegenerate network, 7-3, 7-9

Nonhomogeneous linear estimator,

17-12, 17-16

Nonlinear adaptive systems, 14-77 to

14-78

Nonlinear circuits

clipper, 5-6 to 5-12

diodes, 5-1 to 5-3

distortion, 5-12 to 5-21

limiter, 5-6 to 5-12

rectifiers, 5-1, 5-3 to 5-6

Nonlinear LNL system identification,

14-81 to 14-84

Nonlinear networks, 3-15, 7-8 to 7-9

Nonnorm approach, data outlier

removal, 14-68 to 14-70

Nonparametric estimation, 17-8, 17-15

to 17-16

Nonparametric estimator, 17-16

Nonrandom parameter estimation, 17-8

Nonstate variables, 7-4, 7-9

Nonstationary signal analysis, 23-6 to

23-7
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Normal equations, 14-43, 14-49

Normal form, 7-2 to 7-3

Normal system of equations, 14-49

Normal tree, 7-3, 7-9

Norm-induced functions, 14-48 to

14-49

Norton’s theorem and equivalent circuits

basics, 3-25, 3-65

controlled voltage and current sources,

2-11

Laplace transform, 6-17 to 6-19

network theorems, 3-17 to 3-22

NPO, see Negative-positive-zero (NPO)

nth harmonic distortion factor,

5-13

nth-order intercept point, 5-18

Numerical method, analog circuit

simulation, 13-5 to 13-8

Nyquist properties

diagram, stability analysis, 12-8

filtering, 22-19

frequency, 23-8 to 23-9

plots, 11-2, 11-10

sampling frequency, 14-12, 14-17

stability criterion, 12-10

O

Object-specific albedo-shape matrix,

27-11

Observations, fast Fourier transform,

14-24

Ocean seismo-acoustics, 21-15

Octave band, 21-38

Odd function, phase spectrum, 14-24

OFDM, see Orthogonal frequency

division multiplexing (OFDM)

Ohm’s law

basics, 3-15

controlled voltage and current sources,

2-8

node analysis, 3-8

passive signal processing, 4-2

On-chip memory, 20-16, 20-24

One-sided Laplace transform, 6-10

One-to-many/one-to-one searches, 24-1

Open-circuit parameters, 3-57, 3-65

Open-delta connection, transformers,

1-31

Operational amplifier limiting circuits,

5-10 to 5-12

Operator and circuits, 5-7 to 5-10

Optical flow methods, 18-25

Optimization, parameter extraction,

13-18 to 13-19

Orthogonal frequency division

multiplexing (OFDM), 22-33

Orthogonality principle, 17-11, 17-16

Orthonormal set, 14-8, 14-17

Outliers

parameter estimation, 17-15

removal, nonnorm approach, 14-68 to

14-70

sum of error magnitude criterion,

14-49

Output equation, 7-3, 7-9

Output layer, ANNs, 22-3

Output nodes, signal-flowgraph, 3-55

Output terminals, 2-7

Output vector, 7-3, 7-9

Overdetermined system, linear equations

algorithms, 14-57 to 14-58, 14-64 to

14-68

basics, 14-42 to 14-44

best line fit, 14-59 to 14-61

brute force method, 14-61 to 14-64

data outlier removal, nonnorm

approach, 14-68 to 14-70

degenerate extreme point case, 14-58

to 14-59

‘2 norm perturbation procedure,

14-53 to 14-57

minimum largest error magnitudes

approximation, 14-46 to 14-47

minimum ‘2 norm approximation,

14-49 to 14-58, 14-61 to 14-67

minimum norm approximation

problem, 14-47 to 14-49

minimum sum of errors magnitudes

approximation, 14-45 to 14-46

minimum sum of squared errors

approximation, 14-44 to 14-45

nonnorm approach, data outlier

removal, 14-68 to 14-70

norm-induced functions, 14-48 to

14-49

perturbation procedure, ‘2 norm,

14-53 to 14-57

sequential algorithm, 14-67 to 14-68

two-dimensional data, 14-59 to 14-61

vector approximation problem, 14-44

Overfitting, ANNs, 22-8

Overflow oscillation, 14-41

Overlap-add method, 14-39

Overlap-save method, 14-38 to 14-39

Oxidation, analog circuit simulation,

13-11 to 13-12

P

Pair tables, 6-2 to 6-3

Paley-Wiener criterion, 17-6

Paper-foil-filled type, 1-15

Parallel characteristics

capacitors, 1-12

combinations, current and voltage

sources, 2-7

processing, 20-3 to 20-4, 20-13

realizations, 14-40

varistors, 1-9 to 1-10

Parameter estimation

basics, 17-8 to 17-10, 17-16

Bayesian schemes, 17-10

maximum likelihood estimator, 17-14

to 17-15

minimax estimator, 17-12

minimum mean-square error

estimator, 17-10 to 17-12

minimum variance unbiased

estimator, 17-12 to 17-14

nonparametric estimation schemes,

17-15 to 17-16

Parameter estimator, 17-16

Parameter extraction, analog circuit

simulation

basics, 13-16

Berkeley short-channel Igfet model,

13-20 to 13-21, 13-24 to 13-30

characterization of devices, 13-17

device modeling, 13-16

extraction, 13-18 to 13-19, 13-22 to

13-30

least-square curve fitting, 13-17 to

13-18

model selection, 13-28 to 13-30

MOS DC models, 13-20 to 13-24

optimization, 13-18 to 13-19

skew parameter files, 13-29 to 13-30

strategies, 13-19 to 13-20

test chip warnings, 13-24

Parametric estimation, 17-8

Parks-McClellan algorithm, 23-7

Parks-McClellan computer program,

14-33 to 14-34

Parseval’s theorem, 14-22 to 14-23, 21-31

Partial-fraction expansion, 6-7 to 6-9

Particle filters, speech enhancement,

15-23

Particle swarm optimization (PSO),

14-79 to 14-80, 14-84

Partitions, III-16

Parts-of-speech (POS), 16-2

Passband

basics, 4-13, 10-7

filter transfer functions, 10-2

passive signal processing, 4-3

Passband ripple, 14-31

Passive biometric systems, 24-1

Passive circuits, 4-10 to 4-12, see also

Circuits

Passive components

capacitors, 1-11 to 1-19

electrical fuses, 1-33 to 1-38

inductors, 1-19 to 1-25

resistors, 1-1 to 1-10

transformers, 1-27 to 1-33

Passive signal processing

analysis, 4-2 to 4-3

basics, 4-1 to 4-3

Butterworth filters, 4-7

Chebyshev filters and functions, 4-5 to

4-8

filter design, 4-8 to 4-13
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Laplace transform, 4-1

low-pass filters and functions, 4-3 to

4-8

passive circuits, 4-10 to 4-12

scaling laws, 4-8 to 4-10

Thomson filters and functions, 4-5,

4-7

transfer functions, 4-1 to 4-2

transformation rules, 4-10 to 4-12

Passive sonar, 21-18

Path, 3-39, 3-55

Path gain, signal-flowgraph, 3-55

Path-set, 3-39, 3-55

Pattern analysis, iris recognition, 25-4

Pattern completion, ANNs, 22-12

PCA, see Principal component analysis

(PCA) networks

PCM, see Pulse code modulation (PCM)

Pel recursive method, 18-24

Penalty (cost function), 17-9, 17-16

Perceptron, ANNs, 22-3

Perceptual evaluation of speech quality

(PESQ), 15-3

Performance, electrical fuses, 1-34

Periodic continuous time signals, 14-9

Periodogram, 17-2

Perturbation, 14-51, 14-53 to 14-57

PF, see Power factor (PF)

Phase

angle, 1-24

basics, 1-27

difference, 3-28

distortion, 5-19, 5-21

impedance, 1-24

three-phase circuits, 3-35

Phase-locked loop circuits, 13-8 to 13-9

Phase network, 22-20

Phase spectrum, 14-23 to 14-24, 14-29

Phasors

basics, 3-38

power diagrams, 3-29

three-phase circuits, 3-35

Phonemes, 16-2, 16-11

Phones, 16-2, 16-11

Physical constants, III-8 to III-9

Physical examples, stability analysis,

12-13 to 12-17

Picket fence effect, 14-16 to 14-17

Pilot-aided mode, 22-19, 22-21

Ping carrier periodicity, 21-33

Ping duration, 21-33

Pipelining

basics, 20-13, 20-24

signal processing chips and

applications, 20-16

VLSI special architectures, 20-2 to 20-3

PISCES simulator, 13-17

Pitch

basics, 15-33, 16-11

speech analysis and synthesis, 15-26

text-to-speech synthesis, 16-2

Plotting, frequency response, 11-4 to

11-10

Pn-junction devices, 5-1, 5-6

Point processing, 18-7

Poisson equation, 13-13

Polarized capacitors, 1-27

Polynomials, sensor array processing,

18-34 to 18-35

Portable iris enrollment and recognition

(PIER) system, 25-8 to 25-9

Ports, 3-56, 3-65

POS, see Parts-of-speech (POS)

Pose variation, 27-12 to 27-13

Potentiometers, 1-8

Power and energy

AC steady-state power, 3-27 to 3-31

average stored energy, 3-30

basics, 3-26, 3-33

complex power, 3-28 to 3-29

maximum power transfer, 3-31 to 3-32

measurement, 3-32 to 3-33

phase difference, 3-28

phasor and power diagrams, 3-29

power factor, 3-29 to 3-30

reactive power, 3-28 to 3-29

RMS values, 3-28

Tellegen’s theorem, 3-26 to 3-27, 3-31

Power density spectrum, 15-33

Power factor (PF)

basics, 1-27, 3-33

capacitors, 1-13

power and energy, 3-29 to 3-30

Power rating, 1-5 to 1-6

Power-series method, 5-14

Power spectrum

basics, 14-29, 17-7

fast Fourier transform, 14-23 to 14-24

spectral analysis, 17-4

underwater acoustics, 21-34 to 21-35

Practical needs, digital image processing,

18-8

Practical voltage and current sources,

2-4, 2-6 to 2-7

Prediction error, adaptive signal

processing, 14-75

Prediction error filter, 14-75

Predictive coding

basics, 15-11

digital image processing, 18-13

video signal processing, 18-21 to

18-22

Preprocessing, biometrics, 25-2 to 25-3,

26-4

Prewarping, 14-35

Primary system of equations, 7-9

Principal component analysis (PCA)

networks, 22-11 to 22-12

Privacy protection, biometric systems,

24-2

Probabilities

artificial neural networks, 22-8

basics, III-14 to III-20

Probability density function, 17-3, 17-7

Processing element functions, 22-4

Process simulation, 13-9 to 13-13, 13-16

Product relaxation, 20-10 to 20-11

Products, electrical fuses, 1-36 to 1-37

Programming, real-time digital signal

processing, 19-2 to 19-3

Proper subgraph, 3-39, 3-55

Prosody, 16-3

Pseudorandom number generators,

21-34

PSO, see Particle swarm optimization

(PSO)

PSPICE, 3-1, 3-12 to 3-15, 13-4, see also

HSPICE; SPICE/SPICE2/

SPICE3

Psychovisual redundancy, 18-9 to 18-10

Public gait database, 27-9

Public switched telephone network

(PSTN)

coding, transmission, and storage,

15-1, 15-5

digital image processing, 18-8

Pulse code modulation (PCM), 18-13

Q

Qualcomm, 15-9

Quality

basics, 15-24

measurement, digital image

processing, 18-3 to 18-6

speech enhancement, 15-12

speech quality, 15-2

video signal processing, 18-26 to

18-27

Quality factor (Q)

basics, 1-27

capacitors, 1-13

dissipation factor, 1-14

Quality of service (QoS), 22-32 to 22-35

Quantities, physical and chemical, III-9

to III-12

Quantization

basics, 18-29

digital image processing, 18-12 to

18-13

video signal processing, 18-18 to

18-20

Quasi-Newton algorithms, 14-72

R

Radial basis function networks, 22-9

Raised cosine window, 14-24

Ramp function, 2-2, 2-4

Random parameter estimation, 17-8

Random signals, underwater acoustics,

21-34 to 21-38

Random variables, 17-3, 17-7
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Range space, 14-47

Ratings, electrical fuses, 1-33 to 1-34

Rational transform, 6-8

Rayleigh fading, 22-22

Reactance, 1-13, 1-27

Reactive power, 3-28 to 3-29, 3-33

Real components, Laplace transform, 6-1

Real power, 3-29, 3-33

Real-time applications, 20-20 to 20-23

Real-time digital signal processing

algorithm, self-creating, 19-5 to 19-7

basics, 19-1, 19-11 to 12

brute force FIR filtering, 19-7 to 19-10

built-in approach, 19-3 to 19-5

C implementation, 19-3 to 19-7

circular buffered FIR filtering, 19-10 to

19-11

hardware, 19-1 to 19-2

MATLAB implementation, 19-3 to

19-7

programming, 19-2 to 19-3

Real-time schedule, 19-2

Recent advancements, speech

enhancement

algorithm, 15-21

a priori signal-to-noise ratio

estimation, 15-20

basics, 15-12 to 15-13, 15-23-15-24

Gaussian model, 15-15 to 15-16

linear estimation, 15-13 to 15-14

MMSE spectral magnitude estimation,

15-17 to 15-21

models and estimation, 15-13 to 15-17

Monte Carlo simulation, 15-21 to

15-23

multi-state speech model, 15-17

noise spectrum estimation, 15-20 to

15-21

signal estimation, 15-18 to 15-19

signal presence probability estimation,

15-19 to 15-20

signal presence uncertainty, 15-17

signal-to-noise ratio estimation, 15-20

spectral magnitude estimation, 15-14

to 15-15

Reciprocity theorem, 3-24 to 3-25

Rectangular window, 14-32

Rectifiers, nonlinear circuits, 5-1, 5-3

to 5-6

Recurrent networks, 22-9

Recursive least squares (RLS) algorithm,

14-72, 22-17 to 22-18, 22-28

Redundancy

coding, 18-9 to 18-10

digital signal processing, 21-6, 21-12

Reference node, 3-15

Region of absolute convergence, 6-2 to

6-3, 6-10

Regularizing term, ANNs, 22-8

Regulation, open-delta connection, 1-31,

1-33

Remez exchange algorithm, 14-33, 23-7

Representation, digital image processing,

18-14

Residual error vector, 14-44

Resistivity, 1-1, 1-10

Resistors

basics, 1-1

characteristics, 1-1 to 1-7

color coding, 1-6 to 1-7

derating curves, 1-5 to 1-6

fixed-type resistors, 1-7 to 1-8

high-frequency effects, 1-3 to 1-4

networks, 1-2 to 1-3

noise, 1-4 to 1-5

power rating, 1-5 to 1-6

special purpose resistors, 1-8 to 1-10

temperature coefficient of resistance,

1-3, 1-10

types, 1-7 to 1-10

variable-type resistors, 1-8

voltage and current characteristics, 1-1

to 1-2

voltage coefficient of resistance, 1-4,

1-10

voltage rating, 1-6, 1-10

Resolved signals, sonar systems, 21-15

Resonance, 11-10

Resonant frequency, inductors, 1-25,

1-27

Response diagram, 12-10

Restoration, digital image processing,

18-6 to 18-7

Retiming, 20-4 to 20-5, 20-14

Reversal, discrete Fourier transforms,

14-21

Reverse leakage current, 1-27

Rheostats, 1-8

Ricean fading, 22-22

Ridge signal conversion, 26-4 to 26-5

Right-hand rule, time constant, 1-22

Ripple, 5-4, 5-6

Ripple current, 1-16, 1-27

RLS, see Recursive least squares (RLS)

algorithm

RMS values, power and energy, 3-28

Robust estimator, 17-16

Root mean squared error (RMSE), 18-5

Round-off noise, 14-41

Routh-Hurwitz stability criteria, 12-7

S

Sample space, probabilities, III-14

Sampling

basics, 8-6, 18-29

data, 8-5 to 8-6

period, 8-6

rules, underwater acoustics, 21-26 to

21-28

video signal processing, 18-16 to

18-18

z-transform, 8-5 to 8-6

Satellite mobile channels, 22-19 to 22-26

Saturation, digital image processing,

18-12

Scalar differential equations, 7-6 to 7-8

Scalar quantization, 18-13

Scale, 14-41

Scaling laws, 4-8 to 4-10

Scanning system, 18-16, 18-29

Scattered look-ahead technique, 20-10

Schockley diode equation, 5-2

Schottky diodes, 5-1, 5-3, 5-6

Scott connection, 1-32

Search procedures, ANNs, 22-7 to 22-8

Sea state noise, 21-18

Second, III-3

Secondary system of equations, 7-9

Second harmonic distortion factor, 5-13

Second-order electrical system, linear,

12-13

Second-order intermodulation

distortion, 5-17

Security applications, see Biometrics

Segmentation, digital image processing,

18-14

Selective coordination, electrical fuses,

1-34

Self-creating, algorithms, 19-5 to 19-7

Self-loops, signal-flowgraph, 3-55

Sensor array processing

basics, 18-29 to 18-30

beamformers and beamforming, 18-30

to 18-34

discrete arrays, 18-32 to 18-35

FIR filters, 18-30 to 18-31

polynomials, 18-34 to 18-35

spatial arrays, 18-30 to 18-31

velocity filtering, 18-35 to 18-36

Separation surface, ANNs, 22-4

Sequence, digital image processing, 18-2

to 18-3

Sequential algorithm, 14-67 to 14-68

Series connection, practical sources, 2-6

Series representation, Fourier

transforms, 14-5 to 14-9

Series varistors, 1-9

Shannon’s coding theorem, 18-20

Short-circuit parameters, 3-61, 3-65

Short-term memory structures, 22-9

Side-scanning sonar, 21-16 to 21-17

Signal estimation, speech enhancement,

15-18 to 15-19

Signal estimator, 15-24

Signal-flowgraph Gm, 3-45, 3-55

Signal pre-processing, 15-34 to 15-36,

15-41

Signal presence, 15-17, 15-19 to 15-20

Signal processing

acoustic signal processing, 21-1 to

21-40

biometrics, 24-1 to 24-7
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computing environments, 23-1 to

23-13

digital image processing, 18-13

digital signal processing, 14-1 to

14-85

gait and face human identification,

27-1 to 27-16

iris recognition, 25-1 to 25-9

liveness detection, biometric devices,

26-1 to 26-10

multidimensional signal processing,

18-1 to 18-36

networks, 22-1 to 22-35

real-time digital signal processing,

19-1 to 19-12

spectral estimation and modeling,

17-1 to 17-27

speech signal processing, 15-1 to

15-41

text-to-speech synthesis, 16-1 to 16-11

underwater acoustics, 21-26 to 21-29

VLSI, 20-1 to 20-24

Signal processing chips and applications

applications, 20-20 to 20-23

assembly code, 20-20

basics, 20-15, 20-23 to 20-24

C code, 20-20

digital signal processors, 20-15 to

20-16

EVM tools, 20-18 to 20-19

FIR filters, 20-17 to 20-20

fixed-point system, 20-16 to 20-18

floating-point system, 20-18

future directions, 20-23 to 20-24

real-time applications, 20-20 to 20-23

TMS320C25 system, 20-16 to 20-18

TMS320C30 system, 20-18 to 20-20

Signal-to-noise ratio (SNR)

digital image processing, 18-4 to 18-6

speech enhancement, 15-15, 15-18 to

15-20

Simulation, see also Modeling

analog circuit simulation, 13-1 to

13-16

distortion, 5-19 to 5-20

node and mesh analysis, 3-12 to 3-15

parameter extraction, 13-16 to 13-30

SIMULINK, 23-2

Single-input single output (SISO)

channels, 22-15

Sinusoid and sinusoidal function, 2-3,

2-4

Skew parameter files, 13-29 to 13-30

Small-signal components, 2-8, 2-11

Softmax activation, 22-8

Soft real-time system, 19-1

Software, 3-7, see also specific program

Software, circuit analysis and design

AC analysis, 13-5 to 13-7

analog circuit simulation, 13-1 to

13-16

basics, 13-16

Berkeley short-channel Igfet model,

13-20 to 13-21, 13-24 to 13-30

cascode amplifier, macro models, 13-6

to 13-7

characterization of devices, 13-17

circuit analysis software, 13-16

DC (steady-state) analysis, 13-2 to

13-5

device simulation, 13-9 to 13-10,

13-13 to 13-16

diffusion, 13-10 to 13-11

extraction, 13-18 to 13-19, 13-22 to

13-30

ion implantation, 13-12

least-square curve fitting, 13-17 to

13-18

model selection, 13-28 to 13-30

MOS DC models, 13-20 to 13-24

NMOS IV curves, 13-14 to 13-16

NMOS transistor, 13-12 to 13-13

numerical method, 13-5 to 13-8

optimization, 13-18 to 13-19

oxidation, 13-11 to 13-12

parameter extraction, analog circuit

simulation, 13-16 to 13-30

phase-locked loop circuits, 13-8 to

13-9

process simulation, 13-9 to 13-13,

13-16

skew parameter files, 13-29 to 13-30

strategies, 13-19 to 13-20

test chip warnings, 13-24

transient analysis, 13-7 to 13-9

voltage regulator simulation, 13-3 to

13-5

Solid-electrolyte sintered-anode

tantalum capacitors, 1-19

Solid state, symbols and terminology,

III-11 to III-12

Sonar systems, 21-15 to 21-26

Sound control, 21-10 to 21-12

Sound spectra, traditional measures,

21-37 to 21-38

Source node, 3-47

Source transformation, 6-16 to 6-17

Space, digital image processing, 18-2 to

18-3

Space-domain rule, 21-27

Space-time coding, 22-26 to 22-27

Space-time-frequency adaptation, 22-33

Spatial arrays, 18-30 to 18-31

Spatial masking, 18-11

Spatial processing, 21-4 to 21-5

Spatial redundancy, 18-9

Spatial sampling, 21-27

Special architectures, VLSI

arithmetic processor architectures,

20-11 to 20-13

associativity transformation, 20-11

basics, 20-1 to 20-2

computer-aided design, 20-13

distributivity, 20-11

folding transformation, 20-6 to 20-7

future systems, 20-13

look-ahead technique, 20-7 to 20-11

parallel processing, 20-3 to 20-4,

20-13

pipelining, 20-2 to 20-3, 20-13

retiming, 20-4 to 20-5, 20-14

unfolding, 20-5 to 20-6, 20-14

Special-purpose digital signal processor,

20-15, 20-24

Special purpose resistors, 1-8 to 1-10

Spectral analysis, 17-1 to 17-7, see also

Spectrum

Spectral estimation and modeling

multiple-model estimation and

tracking, 17-17 to 17-27

parameter estimation, 17-8 to 17-16

spectral analysis, 17-1 to 17-7

Spectralink system, 15-8

Spectral magnitude estimation, 15-14 to

15-15

Spectral smoothing, 21-37

Spectrum, see also Spectral analysis

amplitude and amplitude spectrum,

14-23 to 14-24

dependence of spectrum, 21-33

line spectrum, 14-17

noise, 15-20 to 15-21

phase spectrum, 14-23 to 14-24

power density, 15-33

power spectrum, 14-23 to 14-24

Speech analysis and synthesis

basics, 15-26, 15-33

excitation, 15-26 to 15-28

Fourier analysis, 15-28 to 15-30

homomorphic (cepstral) analysis,

15-31 to 15-32

linear prediction, 15-30

passive signal processing, 4-2 to 4-3

speech synthesis, 15-26, 15-32

Speech enhancement, recent

advancements

algorithm, 15-21

a priori signal-to-noise ratio

estimation, 15-20

basics, 15-12 to 15-13, 15-23 to 15-24

Gaussian model, 15-15 to 15-16

linear estimation, 15-13 to 15-14

MMSE spectral magnitude estimation,

15-17 to 15-21

models and estimation, 15-13 to 15-17

Monte Carlo simulation, 15-21 to

15-23

multi-state speech model, 15-17

noise spectrum estimation, 15-20 to

15-21

signal estimation, 15-18 to 15-19

signal presence probability estimation,

15-19 to 15-20
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signal presence uncertainty, 15-17

signal-to-noise ratio estimation,

15-20

spectral magnitude estimation, 15-14

to 15-15

Speech quality and intelligibility, 15-2

to 15-4

Speech recognition

architecture, 15-34

basics, 15-33 to 15-34

dynamic time warping, 15-36 to

15-37, 15-41

hidden Markov models, 15-37 to

15-41

signal pre-processing, 15-34 to 15-36,

15-41

state-of-the-art systems, 15-40

Speech signal analysis, 23-6 to 23-7

Speech signal processing

advancements, speech enhancement,

15-12 to 15-24

analysis, 15-26 to 15-32

coding, transmission, and storage,

15-1 to 15-11

speech recognition, 15-33 to 15-41

synthesis, speech, 15-26, 15-32

Speech signal representation, 16-6 to

16-8

Speech synthesis, 15-26, 15-32, 15-33

Speed performance, iris recognition,

25-6

SPICE/SPICE2/SPICE3, see also HSPICE;

PSPICE

analog circuit simulation, 13-1, 13-5

to 9

distortion, 5-19 to 5-20

parameter extraction, 13-16, 13-20

Spoofing, biometric systems, 24-3, 26-2

Stability, 6-21 to 6-22, 12-1, 12-11,

12-17

Stability analysis

basics, 12-1 to 12-2

BIBO stability, 12-11 to 12-12

bifurcations, 12-12

Lyapunov stability theory, 12-3 to

12-4

physical examples, 12-13 to 12-17

state-space notation, 12-4 to 12-7

system state, 12-2 to 12-3

time-invariant linear systems, 12-4 to

12-10

transfer function approach, 12-7 to

12-10

Stable technology, biometric systems,

24-3

Standards

basics, 15-11

compression, video signal processing,

18-28

electrical fuses, 1-34 to 1-35, 1-37

State, 7-9

State equations, 7-2 to 7-3, 7-9

State-of-the-art systems, speech

recognition, 15-40

State-space notation, stability analysis,

12-4 to 12-7

State-space realizations, 14-41

State variables

basics, 7-1 to 7-2, 7-9

complete set, 7-9

concept basics, 7-3

equations, writing procedure, 7-3 to

7-6

nonlinear networks, 7-8 to 7-9

normal form, 7-2 to 7-3

scalar differential equations, 7-6 to 7-8

time-varying networks, 7-8 to 7-9

State vector, 7-2, 7-9

Static feature extraction, 26-5 to 26-7

Stationary signal analysis, 23-5 to 23-6

Statistical model, 15-24

Statistical redundancy, 18-9

Steady-state analysis, 13-2 to 13-5

Steerable microphone arrays, 21-1 to

21-3

Steered array sonars, 21-18 to 21-20

Step function, 2-1

Step-invariant design, 14-34

Step response, 6-20, 6-22

Step size

artificial neural networks, 22-5

scalar, 14-51, 14-54

Stick-balancing problem, 12-15

Stochastic process, 17-3, 17-7

Stopband

attenuation, 14-31

basics, 4-13, 10-7

Chebyshev functions, 4-6

filter transfer functions, 10-2

passive signal processing, 4-3

Storage, 3-3, see also Coding,

transmission, and storage

Strategies, parameter extraction, 13-19 to

13-20

Structured stochastic optimization

algorithms, 14-78 to 14-80

Structured stochastic search algorithm,

14-84

Subgraph, 3-39, 3-55

Subjective quality ratings, 18-26 to 18-27

Substitution theorem, 3-25

Sufficient statistic, 17-13, 17-16

Sum error of magnitude criterion, 14-48

Sum relaxation, 20-10

‘‘Super-mesh’’ path, 3-12

Supernode, 3-15

Superposition

basics, 3-25, 3-65

condition, network system, 3-15

network theorems, 3-15 to 3-17

two-port networks, 3-57

Supervised training, ANNs, 22-2

SUPREM simulator

circuit analysis and design, 13-10,

13-13 to 13-14

parameter extraction, 13-17

Surge voltage, 1-16

Symbols, see Mathematics, symbols, and

physical constants

Symmetry, DFTs, 14-22

Synchronization, three-phase circuits,

3-35

Synthesis, speech, 15-26, 15-32

Synthesis by rule, 16-3

System identification, adaptive signal

processing, 14-73 to 14-74,

14-85

System state, stability analysis, 12-2 to

12-3

Systolic flow and array design, 20-7,

20-14

T

Table look-up, inverse Laplace transform,

6-10

Takahasi’s equation, 4-1

Tantalum capacitors, 1-16 to 1-17

Tapped delay, 14-36

Taylor series expansion, 2-9

T connection, 1-31 to 1-32

TDMA, see Time division multiple access

(TDMA)

TD-PSOLA, see Time-domain

pitch-synchronous overlap add

(TD-PSOLA)

Technology, iris recognition, 25-1 to

25-6

Tellegen’s theorem

basics, 3-33

network theorems, 3-20 to 3-22

power and energy, 3-26 to 3-27, 3-31

Temperature, ambient, 1-25

Temperature coefficient of resistance,

1-3, 1-10

Temperature coefficient (TC), 1-27

Temperature factors and conversions,

III-7

Template database, iris recognition, 25-5

Template generation, iris recognition,

25-4 to 25-5

Temporal continuity, 27-14

Temporal effects, 18-27 to 18-28

Temporal masking, 18-12

Temporal redundancy, 18-9

Temporal sampling, 21-27 to 21-28

Terminal behavior, practical sources, 2-7

Test chip warnings, 13-24

Testing, hidden Markov models, 27-5

Testing phase, ANNs, 22-1

Test sequence, 27-8

Text-to-speech (TTS) synthesis

back-end issues, 16-3 to 16-10
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basics, 16-1 to 16-2, 16-11

concatenative synthesis, 16-5 to 16-10

evaluation, 16-10 to 16-11

formant synthesis, 16-3 to 16-4

front end issues, 16-2 to 16-3

speech signal representation, 16-6 to

16-8

unit selection synthesis, 16-9 to 16-10

voice creation, 16-8 to 16-9

Texture masking, 18-11

Thermistors, 1-10

Thévenin theorem and equivalent

circuits

basics, 3-25, 3-66

controlled voltage and current sources,

2-11

Laplace transform, 6-17 to 6-19

maximum power transfer, 3-31 to

3-32

network theorems, 3-17 to 3-22

two-port parameters and

transformations, 3-56

Third harmonic distortion factor, 5-13

Third-order intercept point, 5-18

Third-order intermodulation distortion,

5-17

Thomson filters and functions, 4-5, 4-7

3-dB bandwidth, 10-4, 10-7

Three-phase circuits, 3-34 to 3-38

Three-phase connections, 9-3, 9-5

Three-point method, distortion, 5-15

Time advance, z-transform, 8-3

Time constant

basics, 1-27

capacitors, 1-13

inductors, 1-22 to 1-23

voltage and current sources, 2-3

Time-convolution property, 6-5

Time-correlation property, 6-5 to 6-6

Time-current curves, 1-34

Time division multiple access (TDMA),

22-18

Time-domain differentiation, 6-4, 6-10

to 6-12

Time-domain pitch-synchronous

overlap add (TD-PSOLA), 16-6

to 16-7

Time-domain rule, 21-27

Time-domain view, underwater

acoustics, 21-30

Time-invariant linear systems, 12-4 to

12-10

Time lagged networks (TLNs), 22-9 to

22-11

Time reversal, z-transform, 8-3

Time shifting

discrete Fourier transforms, 14-21

Laplace transform, 6-4

Time stabilities, 1-8, 1-10

Time steps, circuit analysis and design,

13-7

Time-varying gain (TVG), 21-20 to

21-21, 21-25

Time-varying networks, 7-8 to 7-9

TLNs, see Time lagged networks (TLNs)

T-network, 9-5

Token matching methods, 18-26

Tone and break indices (ToBI), 16-3

Toolbox, 23-1 to 23-2, 23-13

Topology, ANNs, 22-8

Total harmonic distortion, 5-13, 5-21,

see also Harmonic distortion

T parameters, see Transmission (inverse

transmission)parameters

T-P equivalent networks

basics, 9-1 to 9-2

three-phase connections, 9-3

wye,delta transformations, 9-4 to 9-5

Training

artificial neural networks, 22-1, 22-4

to 22-8, 22-11

gait and face human identification,

27-7 to 27-8

hidden Markov models, 27-5

sequence mode, 22-18

signal, 14-85

Transfer-admittance function, 3-42

Transfer functions

basics, 4-13, 6-19, 6-22

digital filters design and

implementation, 14-30

Laplace transform, 6-19 to 6-20

passive signal processing, 4-1 to 4-2

stability analysis, 12-7 to 12-10

Transfer functions, filters

basics, 10-1

Butterworth filters, 10-4 to 10-5

casual filters, 10-4

Chebyshev filters, 10-5 to 10-7

ideal filters, 10-1 to 10-3, 10-7

linear-phase filters, 10-2 to 10-3

Transfer-impedance function, 3-41

Transformation, see also specific

transform

digital image processing, 18-6

filter, 4-13

low-pass filters, 4-7

rules, passive signal processing, 4-10

to 4-12

Transform coding, 18-14, 18-23

Transformed circuits, 6-15 to 6-17, 6-22

Transformers

basics, 1-27 to 1-28

connections, 1-31 to 1-32

core, 1-30

delta connection, 1-31

electromagnetic equation, 1-29 to 1-30

impedance, 1-32

losses, 1-30 to 1-31

open-delta connection, 1-31

principles, 1-28 to 1-29

T connection, 1-31 to 1-32

transformer core, 1-30

types, 1-28

Y connection, 1-31

zigzag connection, 1-32

Transform pair, Laplace, 6-1

Transient analysis, 13-7 to 13-9

Transistors, 2-10

Transition bandwidth, 14-31

Transition region, 10-4, 10-7

Translation, z-transform, 8-2

Transmission, see Coding, transmission,

and storage

Transmission (inverse transmission)

parameters, 3-62, 3-66

Transmitters, echo sounder, 21-15

Tree, 3-39, 3-55, 7-3, 7-9

Tree branches, 3-39, 3-54

Trends, electrical fuses, 1-38

Triangle window, 14-24

Trigonometric expansion, 14-6, 14-17

Trigonometric Fourier series, 14-6 to

14-8

Triple-beat distortion, 5-17

Truncation window, 14-32

TTS, see Text-to-speech (TTS) synthesis

TVG, see Time-varying gain (TVG)

Two-dimensional data, 14-59 to 14-61

Two-dimensional Gabor wavelet

approach, 24-4

Two-port networks, 3-56, 3-66

Two-port parameters and

transformations

basics, 3-56 to 3-57, 3-65 to 3-66

conversions, 3-61

evaluation, 3-57 to 3-59

modeling, 3-57

network characteristics, 3-59 to 3-61

selection, 3-62 to 3-65

z-parameters, 3-57 to 3-61

U

Unbalanced three-phase circuits, 3-37

Unbiased estimator, 17-8, 17-16

Uncanceled terms, 3-53

Uncontrolled rectifiers, 5-3, 5-6

Underwater acoustics

autocorrelation, 21-38 to 21-39

bandpass filtering, 21-30

band-shifting sonar, 21-21 to 21-25

basics, 21-15, 21-40

correlation methods, 21-34 to 21-35

dependence of spectrum, 21-33

Doppler sonars, 21-18

echo identification rules, 21-25 to

21-26

echo sounder, 21-15 to 21-16

filter operations, 21-28 to 21-32

filter-response measurements, 21-28

to 21-30

finite Fourier transformations, 21-28
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frequency domain, 21-30 to 21-32

gated signals, 21-32 to 21-34

generic sonar, 21-20 to 21-21

heterodyning operations, 21-21 to

21-25

historical developments, 21-14 to

21-15

intensity spectral density, 21-35 to

21-38

matched filters, 21-38 to 21-39

multibeam sonar, 21-17 to 21-18

passive sonar, 21-18

ping carrier periodicity, 21-33

ping duration, 21-33

power spectra, 21-34 to 21-35

random signals, 21-34 to 21-38

sampling rules, 21-26 to 21-28

side-scanning sonar, 21-16 to 21-17

signal processing, 21-26 to 21-29

sonar systems, 21-15 to 21-26

sound spectra, traditional measures,

21-37 to 21-38

spatial sampling, 21-27

spectral smoothing, 21-37

steered array sonars, 21-18 to 21-20

temporal sampling, 21-27 to 21-28

time-domain view, 21-30

Unfolding, 20-5 to 20-6, 20-14

Unilateral z-transform, 8-3 to 8-4

Unit delay, 14-30

Unit impulse function, 2-1, 2-4

Unit-ramp function, 2-2, 2-4

Unit selection synthesis, 16-9 to 16-10

Unit slope, 2-2

Unit step function, 2-1, 2-4

Universal mappers, 22-1, 22-4, see also

Mappers

Unresolved signals, 21-15

User acceptance/nonacceptance,

biometric systems, 24-2

V

Validation set, 22-8

Vandermonde matrix, 17-6

Variable-rate coders and coding, 15-8

to 15-9, 15-11

Variable-type resistors, 1-8

Variance, parameter estimation, 17-8

Varistors, 1-9 to 1-10

Vector approximation problem, 14-44

Vector quantization, 18-13, 18-19 to

18-20

Velocity filtering, 18-30, 18-35 to 18-36

Verification, 24-7

Vertices, 3-39

Very large scale integration (VLSI)

signal processing chips and

applications, 20-15 to 20-24

special architectures, 20-1 to 20-14

Videos, identification, 27-13 to 27-15

Video signal processing

basics, 18-16

block matching, 18-24 to 18-25

compression, 18-20, 18-28 to 18-29

contrast sensitivity, 18-27

Huffman coding, 18-21

hybrid video coding, 18-26

image quality, 18-26 to 18-27

information-preserving coders, 18-20

to 18-21

light adaptation, 18-27

masking, 18-27

motion-compensated predictive

coding, 18-22 to 18-23

motion estimation, 18-23 to 18-24,

18-29

optical flow methods, 18-25

pel recursive method, 18-24

predictive coding, 18-21 to 18-22

quality, images, 18-26 to 18-27

quantization, 18-18 to 18-20, 18-29

sampling, 18-17 to 18-18, 18-29

standards, compression, 18-28

subjective quality ratings, 18-26 to

18-27

temporal effects, 18-27 to 18-28

token matching methods, 18-26

transform coding, 18-23

vector quantization, 18-19 to 18-20

visual perception, 18-26 to 18-28

visual thresholding, 18-27

View invariant gait recognition, 27-9 to

27-10

Visual perception, 18-26 to 18-28

Visual thresholding, 18-27

Viterbi algorithm, 15-39, 15-41

VLSI, see Very large scale integration

(VLSI)

Voice creation, text-to-speech synthesis,

16-8 to 16-9

Voice over Internet protocol (VoIP),

15-1, 15-7 to 15-9

Voice over Wi-Fi, 15-8

Voice recognition, 24-5, 24-7

Voicing, 15-26, 15-33

Voltage and current characteristics,

resistors, 1-1 to 1-2

Voltage and current laws

basics, 3-1 to 3-3

complex domains, 3-4 to 3-6

importance, 3-6

Kirchhoff ’s laws, 3-3 to 3-6

Voltage and current sources

controlled sources, 2-7 to 2-11

decaying exponential function, 2-3

direct current signal, 2-4

ideal sources, 2-4 to 2-5

impulse function, 2-1 to 2-2

practical sources, 2-4, 2-6 to 2-7

ramp function, 2-2

sinusoidal function, 2-3

step function, 2-1

time constant, 2-3

Voltage coefficient of resistance, resistors,

1-4, 1-10

Voltage drop, 1-2, 1-10, 3-2

Voltage law transformation, 6-15

Voltage rating, resistors, 1-6, 1-10

Voltage-ratio transfer function, 3-41

Voltage regulator simulation, 13-3 to

13-5

Voltage rise, 3-2

W

Walsh-Hadamard transform (WHT),

14-14 to 14-17

Wavenumber, 18-29, 18-35 to 18-36

Weakly consistent estimator, 17-9

Weight decay, 22-8

Weights, 22-3

Wet-electrolyte sintered-anode tantalum

capacitors, 1-19

‘‘What if ’’ questions, 23-1 to 23-2, 23-13

Wheeler’s equation, 1-21

Whitened matched filter (WMF), 22-32

White noise, matched filters, 21-39

White noise input, 14-81

Wideband speech, 15-9, 15-11

Wiener-Khinchin(e) theorem, 17-4,

21-35

Wiener solution and filter

adaptive signal processing, 22-16

basics, 14-85, 15-24

spectral analysis, 17-5

speech enhancement, 15-14

Winding, 1-21, 1-27

Windowing

basics, 14-29

digital filters design and

implementation, 14-32 to 14-33

fast Fourier transform, 14-24 to 14-25

Fourier transforms, 14-16

Window processing, digital image

processing, 18-7

Wind sea, 21-18

Wireless communications, adaptive

signal processing

adaptive algorithms, 22-28

adaptive modulation and coding,

22-32 to 22-33

adaptive neural networks, 22-19 to

22-26

basics, 22-15, 22-35

block decision feedback equalizers,

22-31

block linear equalizers, 22-31

channel equalization, 22-29 to

22-32

channel identification., modeling, and

tracking, 22-17 to 22-28

cross-layer design, 22-34 to 22-35
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decision feedback equalizers, 22-30 to

22-31

fading channels, 22-30

frequency-selective MIMO channels,

22-27

linear adaptive filtering, 22-16 to

22-17

linear FIR equalizer, 22-29 to

22-30

list-type equalizers, 22-32

LMS algorithm, 22-16 to 22-17

MIMO channels, 22-26 to 22-28,

22-30 to 22-32

modulation and coding, 22-32 to

22-33

satellite mobile channels, 22-19 to

22-26

space-time coding, 22-26 to 22-27

space-time-frequency adaptation,

22-33

Wireless local area networks (WLANs),

15-1, 15-8

Wire-wound resistors, 1-7

WMF, see Whitened matched filter

(WMF)

Word parallel algorithm, 20-6, 20-14

Wordspotting, 15-34, 15-41

Wye connection, 3-37 to 3-38

Wye,delta transformations, 9-4 to 9-5

X

XDS1000 emulator, 20-18

Y

Y connection, transformers, 1-31

y-parameters, 3-62, see also Admittance

parameters

Yule-Walker technique, 23-7

Z

Zener breakdown, 5-2

Zero-order modified Bessel function,

14-25, 14-32

Zero-padding, 14-16

Zigzag connection, transformers,

1-32

z-parameters, 3-57, 3-57 to 3-61, see also

Impedance

z-transform

basics, 8-1, 8-6

bilateral, discrete-time Fourier

transform, 14-10

convolution, 8-2

final value, 8-4

initial signal value, 8-3

inverse transform formula, 8-5

inversion, 8-4 to 8-5

linearity, 8-1 to 8-2

multiplication, 8-3

properties, 8-1 to 8-3

sampled data, 8-5 to 8-6

time advance, 8-3

time reversal, 8-3

translation, 8-2

unilateral z-transform, 8-3

to 8-4
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