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Preface

This book can be divided into five categories based on the main purposes: (1) the
development of tensor spectral theory; (2) the study of tensor complementarity
problems using structured tensors; (3) the development and enrichment of the theory
of nonnegative tensors; (4) the presentation of new numerical algorithms for solving
the real tensor rank-one approximation and computing the US- or U-eigenpairs of
complex tensors; (5) the study of randomized algorithms for the computation of the
approximate Tucker and Tensor Train decompositions.

There are eight chapters in this book. In Chap. 1, we give some examples to
illustrate that tensors can be abstracted from some real and mathematical objects.
Some basic operations and definitions of tensors, for example, tensor-matrix multi-
plication, the Frobenius norm and inner product of tensors, rank-one and symmetric
tensors, are introduced. We also provide a summary of the relevant background for
the tensor spectral theory, the Perron–Frobenius theorem of nonnegative tensors,
and the tensor rank-one approximation problem.

In Chap. 2, we generalize the pseudo-spectral theory of matrices to tensors.
We obtain the fundamental properties of the tensor ε-pseudo-spectrum, leading
to alternative definitions of the tensor ε-pseudo-spectrum. We also consider the
stability of homogeneous dynamical systems. Similarly, we derive the fundamental
properties for the ε-pseudo-spectrum of tensor polynomial eigenvalue problems.
Furthermore, we discuss the implications of the ε-pseudo-spectrum on computing
the backward errors of an approximate eigenpair of a tensor polynomial and the
distance from a regular tensor polynomial to its nearest irregular tensor polynomial.

In Chap. 3, we analyze the perturbation of tensor eigenvalue problems. We
consider the first-order perturbation results for the algebraically simple Z- and
H-eigenvalues of tensors and H-eigenvalues of tensor polynomials with relative
Frobenius normwise or componentwise perturbations. Based on the perturbation
for the algebraically simple Z-eigenvalue of a symmetric real tensor and mode-
symmetric embedding, we obtain the perturbation of the algebraically simple
singular value of a real tensor. Specifically, we focus on the perturbation for the
smallest eigenvalue of an irreducible and symmetric nonsingular M-tensor for
relative componentwise perturbations.
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In Chap. 4, we first analyze the first-order necessary conditions for the solution of
the tensor complementarity problem. From the properties of copositive tensors, we
prove that the problem with copositive tensors has a nonempty and compact solution
set. We also consider a special case via structured tensors.

In Chap. 5, we introduce the sign nonsingular tensors and derive the relationship
between the combinatorial determinant and the permanent of nonnegative tensors.
We generalize the results from doubly stochastic matrices to totally plane stochastic
tensors and obtain a probabilistic algorithm for locating a positive diagonal in a non-
negative tensor. We obtain a normalization algorithm to convert some nonnegative
tensors to plane stochastic tensors. We obtain a lower bound for the minimum of the
axial N-index assignment problem using the set of plane stochastic tensors.

Chapter 6 deals with the local optimal rank-one approximation of a real tensor
via neural networks. We prove that the solution of the neural network is locally
asymptotically stable in the sense of Lyapunov stability theory. We define the tensor
restricted singular pairs and present several numerical algorithms for computing
them. Similarly, we use the neural networks for the computation of the local optimal
generalized H-eigenpairs of symmetric-definite tensor pairs.

Chapter 7 presents the iterative algorithms (QRCST or QRCT) for computing
the US- and U-eigenpairs of complex tensors. Specifically, we derive a higher order
power type method for computing a US- or a U-eigenpair, similar to the higher-order
power method for computing the best rank-one approximation of a real tensor.

In Chap. 8, we design adaptive randomized algorithms for computing the approx-
imate tensor decompositions. For a low multilinear rank approximation of a real
tensor with unknown multilinear rank, we analyze its probabilistic error bound
under certain assumptions. Finally, we also consider the tensor train approximations
of the tensors. Based on the bounds of the singular values of sub-Gaussian matrices
with independent columns or independent rows, we analyze these randomized
algorithms. Several illustrated numerical examples are provided.

Chapters 2 and 3 are based closely on [1–3]. The main content in Chap. 4 comes
from [4]. Chapters 5, 6, and 7 are adopted from [5–7]. Chapter 8 is from [8].

In this book, the computations are carried out in MATLAB Version 2013a and
the MATLAB Tensor Toolbox [9] on a laptop with an Intel Core i5-4200M CPU
(2.50 GHz) and a 8.00 GB RAM. All floating point numbers in each example have
four digits after the decimal point. For A ∈ CI1×I2×···×IN , we assume that “all in”
and “all n” mean in = 1, 2, . . . , In and n = 1, 2, . . . , N , respectively; for A ∈
CTN,I , we assume that “all in” means in = 1, 2, . . . , I for all n. We assume that
“all l” means “l = 0, 1, . . . , L”.

We would like to thank Prof. Andrzej Cichocki for computing the tensor rank-one
approximation via neural network models, Prof. Guoyin Li for the tensor pseudo-
spectral theory, and Prof. Changjiang Bu for the study of plane stochastic tensors.

We also thank Prof. Liqun Qi of the Hong Kong Polytechnic University, who
leads us to the research of tensor spectral theory and always encourages us to explore
the research. We would like to thank Prof. Eric King-wah Chu and Prof. Sanzheng
Qiao, who read this book carefully and provide feedback during the writing process.
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Chapter 1
Introduction

An increasing number of applications in signal processing, data analysis and
higher-order statistics, as well as independent component analysis [1–5] involve
the manipulation of data whose elements are addressed by more than two indices.
In the literature, these higher-order extensions of vectors (first-order) and matrices
(second-order) are called higher-order tensors, multi-dimensional matrices, or
multiway arrays.

Tensor problems have wide applications in chemometrics, signal processing and
high order statistics [4]. For the theory and applications of tensors, we refer to
Comon et al. [6], Kolda and Bader [7], Cichocki et al. [8], Yang and Yang [9],
Qi and Luo [10], Wei and Ding [11], and Qi et al. [12].

We use C or R to denote the complex or real field. A tensor is an N th-order
array of numbers denoted by script notation A ∈ CI1×I2×···×IN with entries given
by ai1i2...iN ∈ C for all in and n. When all the In are the same, i.e., In = I for all
n, A ∈ CI1×I2×···×IN is called an N th-order I -dimensional complex tensor. We use
RTN,I (or CTN,I ) to denote the set of all N th-order I -dimensional real (or complex)
tensors.

1.1 Examples for Tensors

Tensors can be abstracted from some real and mathematical objects.

Example 1.1.1 (Homogeneous Polynomials) Given c ∈ R
I , the first-degree homo-

geneous polynomial with respect to x ∈ R
I can be represented as c�x =

c1x1 + c2x2 + · · · + cIxI . Given A ∈ R
I×J , the second-degree homogeneous

polynomial with respect to x ∈ R
I and y ∈ R

J can be represented as x�Ay =∑I
i=1

∑J
j=1 aij xiyj .
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In general, the N th-degree homogeneous polynomial, with respect to x1 ∈
RI1, x2 ∈ RI2, . . . , xN ∈ RIN , can be denoted by

pN(x1, x2, . . . , xN) =
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN =1

ai1i2...iN x1,i1x2,i2 . . . xN,iN ,

where ai1i2...iN is the coefficient of the term x1,i1x2,i2 . . . xN,iN in pN(x1, x2, . . . , xN)

and xn,in is the inth entry of xn for all in and n. If we set a tensor A ∈ RI1×I2×···×IN

such that its (i1, i2, . . . , iN)-entry is ai1i2...iN , then the polynomial can be expressed
as

pN(x1, x2, . . . , xN) = A ×1 x�
1 ×2 x�

2 · · · ×N x�
N .

The tensor-vector multiplication will be introduced in the next section.

Example 1.1.2 (The Discretization of Multivariate Functions) Suppose that

f (x, y, z) = 1

x + y + z
, g(x, y, z) = cos(x + y + z),

h(x, y, z) = exp((−0.01 + 4πι)(x + y + z−2))+ exp((−0.02 + 4.2πι)(x + y + z − 2)),

where 1 < x, y, z < 2 and ι = √−1.
Let {x1, x2, . . . , xI } be any monotonically increasing sequence in the open

interval (1, 2). When the values of x, y and z are chosen from {x1, x2, . . . , xI },
we define three tensors A,B ∈ RT3,I and C ∈ CT3,I such that

aijk := f (xi, xj , xk), bijk = g(xi , xj , xk), cijk = h(xi, xj , xk).

From the definitions of f , g and h, it is clear that A ∈ RT3,I is symmetric and
positive, B ∈ RT3,I is symmetric but not nonnegative and C ∈ CT3,I is complex
symmetric.

Example 1.1.3 (The Associated Tensors of Uniform Hypergraphs) Analogous to
spectral graph theory [13], adjacency tensors and Laplacian tensors have been
introduced in spectral hypergraph theory. The notations related to the hypergraph
can be referred to [14].

A hypergraph H is a pair (V,E), where E ⊆ P(V). The elements of V = V(H)

are referred to as vertices and the elements of E = E(H) are called hyperedges.
A hypergraph H is said to be N-uniform for an integer N ≥ 2, if, for all e ∈
E(H), the cardinality of e is N . Such an N-uniform hypergraph is also called an
N-graph.
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Fig. 1.1 Examples of the third-order tensor data

For a given N-uniform hypergraph H = (V,E), the adjacency tensor
A ∈ RTN,I , with respect to H, is defined as [15–18]:

ai1i2...iN = 1

(N − 1)!

{
1, if {i1, i2, . . . , iN } ∈ E;
0, otherwise.

Obviously, ai1i2...iN = 0 if at least two indices are the same. Note that A is
symmetric and nonnegative. The degree of i ∈ V is defined as d(i) = |{ep :
i ∈ p ∈ V}|. We assume that every vertex has at least one edge. Thus, d(i) > 0
for i ∈ V. The degree tensor D(H) is an N th-order I -dimensional diagonal
tensor, with its main diagonal elements as d(i). The Laplacian tensor L of H

is defined by D(H) − A. The signless Laplacian tensor L+ of H is defined
by D(H) + A [19–22]. Note that L is symmetric and nonnegative and L+ is
symmetric.

Example 1.1.4 (Description of Complex Social Networks [23]) Third-order tensors
are three-dimensional (3D), with some examples shown in Fig. 1.1. The left part
of Fig. 1.1 illustrates social network analysis data organized in three modes of
conference, author and keyword. The web graph mining data organized in three
modes of source, destination and text is demonstrated in the middle part of Fig. 1.1.
Lastly, the environmental sensor monitoring data organized in the three modes of
type, location and time is demonstrated in the right part of Fig. 1.1.

Generally speaking, there are two kinds of tensors: a data structure, which admits
different dimensions according to the complexity of the data; or an operator, where
it possesses different meanings in different situations. All tensors mentioned in this
book can be viewed as a data structure.

1.2 Basics of Tensors

Throughout this book, I , J , and N are reserved to denote the index upper
bounds, unless stated otherwise. We use small letters x, u, v, . . . for scalars, small
bold letters x, u, v, . . . for vectors, bold capital letters A, B, C, . . . for matrices,
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and calligraphic letters A,B,C, . . . for higher-order tensors. This notation is
consistently used for lower-order parts of a given structure. For example, the entry
with row index i and column index j in a matrix A, i.e., (A)ij , is written by aij (also
(x)i = xi and (A)i1i2...iN = ai1i2...iN ).

We use ·�, ·̄, | · | and ·∗ to denote the transpose, complex conjugate, element-wise
modulus and complex conjugated transpose, respectively. We use ‖ · ‖2 and ‖ · ‖F to
denote the 2-norm and the Frobenius norm, respectively. We use 	(z) and 
(z) to
denote the real and imaginary parts of a vector z ∈ CI , respectively. The argument
of z ∈ C is denoted by arg(z) ∈ (−π, π]. Also, 0I ∈ CI is the zero vector. We
use II ∈ CI×I and 0I×J ∈ CI×J to denote the identity and the zero matrices,
respectively. Lastly, ι = √−1 and SI are the imaginary unit and the symmetric
group on the set {1, 2, . . . , I }, respectively.

We use parentheses to denote the concatenation of two or more vectors, e.g.,
(a, b) is equivalent to (a�, b�)�, where a ∈ CI and b ∈ CJ are two column
vectors. Given two vectors x, y ∈ RI , x > y and x ≥ y mean xi > yi and xi ≥ yi ,
respectively, for all i. Similarly, we can also define x < y and x ≤ y for any x, y ∈
RI . Finally, we introduce the following notations:

R
I1×I2×···×IN+ := {A ∈ R

I1×I2×···×IN : ai1i2...iN ≥ 0, in = 1, 2, . . . , I, n = 1, 2, . . . , N};
R

I1×I2×···×IN++ := {A ∈ R
I1×I2×···×IN : ai1i2...iN > 0, in = 1, 2, . . . , I, n = 1, 2, . . . , N}.

R
I1×I2×···×IN+ is called the set of all nonnegative tensors and R

I1×I2×···×IN++ is called
the set of all positive tensors in RI1×I2×···×IN . In particular, when N = 1, we have
RI+ := {x ∈ RI : xi ≥ 0, i = 1, 2, . . . , I } and RI++ := {x ∈ RI : xi > 0, i =
1, 2, . . . , I }. For a given x ∈ CI , diag(x) denotes the diagonal matrix whose main
diagonal entries are the entries of x.

1.2.1 Basic Operations

The mode-n product [7] of a complex tensor A ∈ CI1×I2×···×IN by a matrix B ∈
CJn×In , denoted by A×n B, is a tensor C ∈ CI1×···×In−1×Jn×In+1×···×IN , with entries

ci1...in−1jin+1...iN =
In∑

in=1

ai1i2...iN bjin,

for all in and n.
In particular, the mode-n multiplication of a complex tensor A ∈ CI1×I2×···×IN

by a vector x ∈ CIn is denoted by A×̄nx. If we set C = A ×n x� ∈
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CI1×···×In−1×In+1×···×IN , then we have element-wise [7],

ci1...in−1in+1...iN =
In∑

in=1

ai1...in−1inin+1...iN xin .

For any given tensor A ∈ CI1×I2×···×IN and the matrices F ∈ CJn×In and G ∈
CJm×Im , one has [7]

{
(A ×n F) ×m G = (A ×m G) ×n F = A ×n F ×m G;
(A ×n F) ×n G = A ×n (G · F), with Jn = Im,

with different integers m and n, where ‘·’ represents the multiplication of two
matrices.

For a given x ∈ CI and A ∈ CTN,I , we introduce the following two notations
[24]:

AxN−1 := A ×2 x� · · · ×N x�, AxN := A ×1 x� ×2 x� · · · ×N x�.

Scalar products and the Frobenius norm of a tensor are extensions of the well-
known definitions, from matrices to tensors of arbitrary order [7, 25]. Suppose that
A,B ∈ CI1×I2×···×IN , the scalar product 〈A,B〉 is defined as [25]

〈A,B〉 =
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN =1

bi1i2...iN ai1i2...iN ,

and the Frobenius norm of a tensor A is given by ‖A‖F = √〈A,A〉.

1.2.2 Structured Tensors

We recommend [10] for a thorough survey of structured tensors. For given N vectors
xn ∈ C

In with all n, if the entries of A ∈ C
I1×I2×···×IN can be represented as

ai1i2...iN = x1,i1x2,i2 . . . xN,iN , where xn,in is the inth element of xn, then A is a
complex rank-one tensor [26, 27] given by

A = x1 ⊗ x2 ⊗ · · · ⊗ xN,

where “⊗” denotes the outer (tensor) product. If xn ∈ RIn with all n, then A is a
real rank-one tensor.

For any A ∈ CTN,I , A is complex symmetric [28], if ai1i2...iN is invariant by
any permutation π ∈ SI , that is, ai1i2...iN = aiπ(1)iπ(2)...iπ(N)

for all in and n. For any
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A ∈ RTN,I , A is real symmetric [24, 29], if ai1i2...iN is invariant by any permutation
π , that is, ai1i2...iN = aiπ(1)iπ(2)...iπ(N)

, for all in and n. For a given vector x ∈ CI , if
the entries of A ∈ CTN,I can be represented as

ai1i2...iN = xi1xi2 . . . xiN ,

where xin is the inth element of x, then A is a complex symmetric rank-one tensor
given by

A = x ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸
N

:= x⊗N .

If x ∈ R
I , then x⊗N is a real symmetric rank-one tensor.

For any given symmetric tensor A ∈ RTN,I with an even N , if AxN > 0 for all
nonzero x ∈ R

I , then A is positive definite [24]; if AxN ≥ 0 for all x ∈ R
I , then A

is positive semi-definite [24]; if AxN ≥ 0 for all nonzero x ∈ R
I+, then A is strictly

copositive [30]; if AxN ≥ 0 for all x ∈ R
I+, then A is copositive [30].

When we consider positive definite tensors and copositive tensors, symmetry is
unnecessary. According to [31], we can relate a tensor A ∈ RTN,I to a symmetric
tensor B ∈ RTN,I as follows. For any A ∈ RTN,I , there is a unique symmetric
tensor B ∈ RTN,I such that AxN = BxN for all x ∈ R

I .
We call an index set {i1, i2, . . . , iN } a permutation of another index set

{k1, k2, . . . , kN } if the former is a rearrangement of the latter, denoting this
operation by π , that is π(k1, k2, . . . , kN ) = {i1, i2, . . . , iN }. Denote the set of
all distinct permutations of an index set {k1, k2, . . . , kN } by �(k1, k2, . . . , kN ).

Note that |�(k1, k2, . . . , kN)|, the cardinality of �(k1, k2, . . . , kN ), is variant for
different index sets. Then the entries of B are given as

bj1j2...jN =
∑

π∈�(k1,k2,...,kN ) aπ(k1,k2,...,kN )

|�(k1, k2, . . . , kN )|
for all in, jn and n. Here, we call B a symmetrization of A.

Suppose that A ∈ CTN,I , the I -tuple {a1π2(1)...πN (1), a2π2(2)...πN (2), . . . ,

aIπ2(I )...πN (I )} is a diagonal [32] of the tensor A associated with πn ∈ SI and
n = 2, 3, . . . , N . In particular, {a11...1, a22...2, . . . , aII ...I } is the main diagonal of
the tensor A. A diagonal is positive, if its elements are positive.

The product
∏I

i=1 aiπ2(i)...πN (i) is the diagonal product [32] of the tensor A asso-
ciated with πn ∈ SI with n = 2, 3, . . . , N . Meanwhile, the sum

∑I
i=1 aiπ2(i)...πN (i)

is the diagonal sum of A associated with πn ∈ SI with n = 2, 3, . . . , N .
A tensor A ∈ RTN,I is nonnegative [33], if the elements are nonnegative, and we

denote the set of all nonnegative tensors by NTN,I ; a tensor D ∈ RTN,I is diagonal
[24], if the entries not in the main diagonal are zero. In particular, if the entries on
the main diagonal of any diagonal tensor A ∈ CTN,I are 1, then A is the unit tensor
or the identity tensor, denoted by I.
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Analogous to the reducible matrices [34, Chapter 2], A ∈ RTN,I is reducible
[33], if there exists a nonempty proper index subset I ⊂ {1, 2, . . . , I } such that

ai1...iN = 0, for all i1 ∈ I and i2, . . . , iN /∈ I.

Otherwise, A is irreducible. Similarly, we can define the irreducibility of any A ∈
CI1×I2×···×IN .

Qi [24] introduces the principal symmetric sub-tensors of any symmetric tensor
A ∈ RTN,I and proves that if A is positive definite, then all of its principal
symmetric sub-tensors are also positive definite. Now, we introduce the definition
of a sub-tensor of A ∈ CI1×I2×···×IN .

Suppose that Ln ≤ In are positive integers for all n. We use QLn,In to denote the
set of C

Ln

In
increasing sequences ω = (ω1, ω2, . . . , ωLn) such that 1 ≤ ω1 < ω2 <

. . . < ωLn ≤ In, where C
Ln

In
= In!

Ln!(In−Ln)! . If αn ∈ QPn,In , where Pn ≤ In is a

positive integer with n = 1, 2, . . . , N , then A[α1|α2| . . . |αN ] ∈ CP1×P2×···×PN is a
sub-tensor of A, whose (i1, i2, . . . , iN )-entry is aα1,i1 ,α2,i2 ,...,αN,iN

.
The (i1, . . . , im−1, im+1, . . . , in−1, in+1, . . . , iN )th mode-(m, n) slice of A ∈

CI1×I2×···×IN is defined as a matrix in CIm×In , denoted by A(i)
m,n, equaling A ×1

e�
1,i1

· · · ×m−1 e�
m−1,im−1

×m+1 e�
m+1,im+1

· · · ×n−1 e�
n−1,in−1

×n+1 e�
n+1,in+1

· · · ×N

e�
N,iN

, where en,in is the inth column of IIn ∈ RIn×In for all in and m < n. Note that
for a given i, all the (i, i, . . . , i)th mode-(m, n) slices, or the ith mode-(m, n) slices,
of any complex symmetric tensor A ∈ CTN,I are the same complex symmetric
matrix with all m < n.

1.3 Basic Results

1.3.1 Tensor Spectral Theory

The eigenvalue problem of tensors can be regarded as the generalizations of the
eigenvalue problem of matrices (i.e., matrix standard eigenvalue problems, matrix
generalized eigenvalue problems and matrix polynomial eigenvalue problems).The
eigenvalue problem of tensors are widely used in polynomial optimization [35],
spectral hypergraph theory [16, 36], higher-order Markov chain [37], image science
[38] and other fields. Very recently, the eigenvalue problem of tensors, positive
semi-definite tensors and copositive tensors have been used to study some physical
problems, such as the quantum spin state, the quantum field theory and liquid
crystals [39–41].

In 2005, Qi [24] defines two kinds of eigenvalues and investigates relative
results similar to the matrix eigenvalues. Independently, Lim [29] proposes another
definition of eigenvalues, eigenvectors, singular values, and singular vectors for
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tensors based on a constrained variational approach, in the flavor of the Rayleigh
quotient for symmetric matrix eigenvalues [42, Chapter 8].

Definition 1.3.1 ([24]) Suppose that A ∈ RTN,I is symmetric. If there exist a
nonzero vector x ∈ CI and λ ∈ C such that AxN−1 = λx[N−1], where x[N−1] =
(xN−1

1 , xN−1
2 , . . . , xN−1

I )�, then (λ; x) is called an eigenpair of A. The spectrum
	(A), and the spectral radius ρ(A) of A are defined as

	(A) = {λ : λ is an eigenvalue of A}, ρ(A) = max{|λ| : λ ∈ 	(A)}.

Moreover, if x ∈ RI and λ ∈ R, then (λ; x) is called an H-eigenpair of A.

Definition 1.3.2 Suppose that A ∈ RTN,I is symmetric. If there exist a nonzero
vector x ∈ CI and λ ∈ C such that AxN−1 = λx and x∗x = 1, then (λ; x) is called
an E-eigenpair of A [43, Definition 5.1.1].

Moreover, if x ∈ RI is unit and λ ∈ R, then (λ; x) is called a Z-eigenpair of A.

Note that the E-eigenpair of any real symmetric tensor, defined by Definition 1.3.2,
is different from the E-eigenpair in [24].

In 2008, Qi et al. [44] introduce the D-eigenvalues for a diffusion kurtosis tensor
and indicate that the largest, the smallest and the average D-eigenvalues correspond
with the largest, the smallest and the average apparent kurtosis coefficients of a
water molecule in the space, respectively. The strong ellipticity condition plays
an important role in nonlinear elasticity and in materials. In 2009, Qi et al. [45]
define the M-eigenvalues for an elasticity tensor and prove that the strong ellipticity
condition holds if and only if the smallest M-eigenvalue is positive. Hu et al. [35]
investigate properties of the determinants of tensors, and their applications. It is
pointed out in [33, 46–48] that the generalized eigenvalue framework unifies several
definitions of eigenvalues of tensors, such as eigenvalues and H-, E-, Z- and D-
eigenvalues. Ding and Wei [11, 49] focus on the properties and perturbations of the
spectra of regular tensor pairs and extend several classical results from matrices or
matrix pairs to tensor pairs.

Kolda and Mayo [43] derive a shifted symmetric higher-order power method
(SS-HOPM) for computing the Z-eigenpairs of real symmetric tensors and indicate
that SS-HOPM can be viewed as a generalization of the power iteration method
for matrices or the symmetric higher-order power method. Kolda and Mayo [48]
present the adaptive power method for solving the tensor generalized eigenvalue
problem associated with symmetric positive tensor pairs, which is an extension of
SS-HOPM for finding the Z-eigenpairs. Cui et al. [47] propose a new approach for
computing all real eigenvalues (that is, Z- and H-eigenvalues) of real symmetric
tensors sequentially, from the largest to the smallest. Chen et al. [50] derive an
upper bound for the number of equivalence classes of generalized tensor eigenpairs
using mixed volumes. Based on this bound and the structures of tensor eigenvalue
problems, they propose two homotopy algorithms for the tensor eigenvalue problem.
Using the state-of-the-art L-BFGS approach, Chang et al. [51] develop a first-
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order optimization algorithm for computing the H- and Z-eigenvalues of large scale
sparse real symmetric tensors. Batselier and Wong [52] derive the QR algorithm for
computing the Z-eigenpairs of a real symmetric tensor, based on the symmetric QR
algorithm for the real symmetric matrix eigenvalue problem.

Chang et al. [33] generalize the Perron-Frobenius theorem for nonnegative
matrices to the class of nonnegative tensors. We state the Perron-Frobenius theorem
for nonnegative tensors as follows:

Theorem 1.3.1 If A ∈ RTN,I is nonnegative, then there exist λ0 ≥ 0 and a nonzero
x0 ∈ RI+ such that

AxN−1
0 = λ0x[N−1]

0 . (1.3.1)

Theorem 1.3.2 If A ∈ RTN,I is irreducible nonnegative, then (λ0; x0) in (1.3.1)
satisfies: (1) λ0 is an H-eigenvalue; (2) all components of x0 are positive; (3) if λ is
an eigenvalue with nonnegative eigenvector, then λ = λ0; moreover, the nonnegative
eigenvector is unique up to a multiplicative constant; (4) if λ is an eigenvalue of A,
then |λ| ≤ λ0.

More similar results can be found in [53, 54]. Ng et al. [37] derive an iterative
method (denoted by NQZ) for computing the spectral radius of an irreducible
nonnegative tensor. Zhang and Qi [55] establish an explicit linear convergence rate
of the NQZ method for nonnegative tensors under certain conditions. Liu et al. [56]
propose an inverse iterative method for computing the Perron pair of an irreducible
nonnegative third-order tensor and prove that this method converges quadratically
and is positivity preserving in the sense that the vectors approximating the Perron
vector are strictly positive in each iteration. By combining the idea of Newton’s
method with the idea of the Noda iteration, Liu et al. [57] present a Newton-Noda
iteration (NNI) for computing the Perron pair of a weakly irreducible nonnegative
tensor. A survey on eigenvalues of nonnegative tensors can be found in [58]. Li
and Ng [59, 60] extend the well-known column sum bound of the spectral radius
for nonnegative matrices to the tensor case, and also derive an upper bound of the
spectral radius for a nonnegative tensor via the largest eigenvalue of a symmetric
tensor. Chen et al. [61] introduce three new classes of symmetric nonnegative
tensors and discuss their properties and applications in the context of polynomial
and tensor optimization.

1.3.2 Real Tensor Rank-One Approximations

The rank-one approximation of a real tensor is a special case of tensor low-rank
approximations. The common tensor low-rank approximations consist of approx-
imated canonical polyadic (CP) decompositions, approximated Tucker decom-
positions and approximated tensor train (TT) decompositions. We recommend
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[7, 62, 63] and their references for thorough surveys of these three types of tensor
decompositions. Note that when the order of tensors is two, then these three tensor
decompositions reduce to the singular value decompositions (SVD). However,
when the order of the tensors is larger than 2, these three kinds of tensor low-
rank approximations have essential differences. The low CP-rank approximation
is generally ill-posed [64] for the case of CP-rank larger than 1, contrary to the low
Tucker-rank approximation.

The problem of the best rank-one approximation of A ∈ RI1×I2×···×IN is to find
a real scalar σ ∈ R and N unit vectors xn ∈ RIn with all n to minimize

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN =1

(ai1i2...iN − σ · (x1,i1x2,i2 . . . xN,iN ))2,

where xn,in is the inth element of xn ∈ RIn for all in and n, and σ ∈ R. Note that the
best tensor rank-1 approximation is in fact always well-posed. The Kurash-Kuhn-
Tucker (KKT) conditions for the rank-one approximation of real tensors are given
below.

Definition 1.3.3 ([29]) Suppose that xn ∈ RIn satisfies ‖xn‖2 = 1 with all
n and σ ∈ R. For a given A ∈ RI1×I2×···×IN , if (σ ; x1, x2, . . . , xN) solves
the following system of nonlinear equations F(x1, x2, . . . , xN)−n = σxn with
F(x1, x2, . . . , xN)−n = A ×1 x�

1 · · · ×n−1 x�
n−1 ×n+1 x�

n+1 · · · ×N x�
N , then σ

and the unit vectors xn are a singular value of A and the mode-n singular vector
associated to σ , respectively.

Another analogue of the Perron-Frobenius theorem is proved for nonnegative
normalized singular pairs in [64], (σ ; x1, x2, . . . , xN), defined in Definition 1.3.3,
is called the normalized singular pair of A. For all n, when the entries of un

are nonnegative, (σ ; x1, x2, . . . , xN) is called the nonnegative normalized singular
pair of A. The singular value and singular value inclusion sets for tensors are
investigated in [65].

There are several numerical methods for computing a tensor rank-one approxi-
mation, such as the alternating least squares (ALS) or higher-order power method
(HOPM) [26, 27], the truncated higher-order singular value decomposition, opti-
mization methods based on the product of several Grassmannian manifolds [66–68],
semi-definite relaxation methods [69], and sequential rank-one approximation
and projection [70]. Recently, Jiang and Kong [71] study the uniqueness of the
best rank-one approximation of a tensor under the Frobenius norm. Espig and
Khachatryan [72] analyze the convergence of the alternating least squares algorithm.
For applications of best rank-one and low multilinear rank approximations, we refer
to Cichocki et al. [2], Yang et al. [73], Konakli and Sudret [74], Shah et al. [75], da
Silva et al. [76] and the references therein. Applications in machine learning can be
found in [77–79].

Many scholars have researched the computation of the symmetric rank-one
approximations of real symmetric tensors; see Friedland [80], Kofidis and Regalia
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[81], Qi [82], Qi et al. [83], Hu et al. [84], Ni and Wang [85], Wang and Qi [86],
and Jiang et al. [87] and the references therein.

For a given A ∈ RI1×I1×I2×I2 , if the entries of A satisfy the symmetric property:
ai1i2i3i4 = ai2i1i3i4 = ai1i2i4i3 with i1, i2 = 1, 2, . . . , I1 and i3, i4 = 1, 2, . . . , I2,
then we call A partially symmetric.

The fourth-order partially symmetrity have received much attention [45, 88–93].
Zhang et al. [94] prove that the best rank-one approximation of a symmetric tensor
is its best symmetric rank-one approximation. Similarly, we can prove that the
best rank-one approximation of a fourth order partially symmetric tensor is its best
partially symmetric rank-one approximation. The rank-one approximation problem
of a partially symmetric tensor A ∈ RI1×I1×I2×I2 is to find a real scalar σ ∈ R and
two unit vectors xn ∈ RIn with n = 1, 2 to minimize

I1∑

i1,i2=1

I2∑

i3,i4=1

(ai1i2i3i4 − σ · (x1,i1x1,i2x2,i3x2,i4))
2. (1.3.2)

The minimization problem (1.3.2) is equivalent to finding two unit vectors xn ∈
RIn (‖xn‖2 = 1; n = 1, 2) to maximize

max |Ax2
1x2

2|, (1.3.3)

with Ax2
1x2

2 := A×1 x�
1 ×2 x�

1 ×3 x�
2 ×4 x�

2 . The biquadratic optimization problems
arise from the strong ellipticity condition problem in solid mechanics [95–98] and
the entanglement problem in quantum physics [88, 99]. Before considering the KKT
conditions for the minimization problem (1.3.2), we introduce two notations:

Ax2
1x2 := A ×1 x�

1 ×2 x�
1 ×4 x�

2 , Ax1x2
2 := A ×2 x�

1 ×3 x�
2 ×4 x�

2 .

For any maximizer (x1, x2) of (1.3.3), by the optimality theory [100], there exist
λ, σ ∈ R such that

Ax2
1x2 = σx2, Ax1x2

2 = λx1, ‖x1‖2 = ‖x2‖2 = 1. (1.3.4)

The optimal conditions can further be simplified with (1.3.4) and λ = σ . If σ , x1
and x2 are real solutions of (1.3.4), then σ is said to be an M-eigenvalue of A, and
x1 and x2 are said to be the first and the second (left and right in [45]) M-eigenvector
of A, associated with σ , respectively.

There are several numerical methods for solving the minimization prob-
lem (1.3.2), such as ALS or HOPM [92] and semi-definite programming (SDP)
relaxations [93].
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1.3.3 Complex Tensor Rank-One Approximations

Entanglement has been identified as a resource central to quantum information
processing and we are motivated to investigate its quantification in the bipartite
and multipartite pure states [101]. A useful tool for quantifying the amount of
entanglement of a state is given by the so-called entanglement measures. The
geometric measure of entanglement is one of most natural entanglement measures
for pure states in bipartite and multipartite systems [102, 103]. This measure is the
injective tensor norm [104], which appears in the theory of operator algebra [105].
It also has applications in many-body physics [106, 107], entanglement witnesses
[108, 109] and the study of quantum channel capacities [110–112].

The best rank-one approximation of complex tensors is the core problem for
computing the geometric measure for pure states. For A ∈ CI1×I2×···×IN , we need
to find a real scalar σ ∈ R and N unitary vectors xn ∈ CIn with all n to minimize

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

∣
∣ai1i2...iN − σ · (x1,i1x2,i2 . . . xN,iN )

∣
∣2 ,

where xn,in is the inth element of xn ∈ CIn for all in and n, and σ ∈ R. By means
of the Wirtinger calculus of complex functions [113–116], the corresponding KKT
conditions are given below.

Definition 1.3.4 For a given A ∈ CI1×I2×···×IN , let vn ∈ CIn be nonzero vectors
with ‖vn‖2 = 1 (n = 1, 2, . . . , N) and let σ ∈ R. If (σ ; v1, v2, . . . , vN) solves the
following system of nonlinear equations

F(v1, v2, . . . , vN)−n = σvn, F (v1, v2, . . . , vN)−n = σvn,

where

F(v1, v2, . . . , vN)−n = A ×1 v�
1 · · · ×n−1 v�

n−1 ×n+1 v�
n+1 · · · ×N v�

N

= A ×1 v∗
1 · · · ×n−1 v∗

n−1 ×n+1 v∗
n+1 · · · ×N v∗

N,

F (v1, v2, . . . , vN)−n = A ×1 v�
1 · · · ×n−1 v�

n−1 ×n+1 v�
n+1 · · · ×N v�

N,

then vn and σ are called the mode-n unitary eigenvector (the mode-n U-
eigenvector) and unitary eigenvalue (U-eigenvalue) of A, respectively. We call
(σ ; v1, v2, . . . , vN) a U-eigenpair of A.

In particular, if A is complex symmetric, then all vn are identical, denoted by v,
and (σ ; v) is a US-eigenpair of A. Hu et al. [117] consider how to use the spectral
theory of nonnegative tensors for computing the geometric measure of entanglement
in multipartite pure states. Ni et al. [28] define the concept of the U-eigenvalue
of a complex tensor, the US-eigenvalue of a complex symmetric tensor and the
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best complex rank-one approximation. They also derive an upper bound on the
number of distinct US-eigenvalues of a complex symmetric tensor. Based on the
theory of the spherical optimization problem with complex variables, Ni and Bai
[118] design an iterative algorithm for computing the US-eigenpairs of complex
symmetric tensors. Che et al. [119] present the complex-valued neural networks for
solving the quantum eigenvalue problem for multipartite pure states. Wang et al.
[120] derive the partial orthogonal rank-one decomposition of complex symmetric
tensors based on the Takagi factorization.
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Chapter 2
The Pseudo-Spectrum Theory

Pseudo-spectra, developed and popularized mainly by Trefethen and his co-authors
[1–5], are an important tool for assessing the global sensitivity of matrix eigenvalues
to perturbations in the matrix. Most research has emphasised on pseudospectra
of standard and generalized eigenvalue problems. Pseudospectra for square matrix
polynomials are defined and characterized by Tisseur and Higham [6], Higham and
Tisseur [7], and Lancaster and Psarrakos [8], for the generalization of the ε-pseudo-
spectrum to matrix polynomials.

To our best knowledge, an investigation of ε-pseudo-spectra for tensors and
tensor polynomials seems to be little in the literature. The main purpose of this
chapter is to bridge this gap by introducing ε-pseudo-spectra for tensors and tensor
polynomial eigenvalue problems, and develop some fundamental properties.

2.1 Preliminaries

We recall the definition of eigenvalues and associated eigenvectors of A ∈ CT N,I .
This definition is presented in [9] when A ∈ RT N,I is symmetric.

Definition 2.1.1 Let A ∈ CTN,I . If there exist a nonzero vector x ∈ C
I and λ ∈ C

such that

AxN−1 = λx[N−1],

then λ and x are called an eigenvalue and the associated eigenvector of A,
respectively.

© Springer Nature Singapore Pte Ltd. 2020
M. Che, Y. Wei, Theory and Computation of Complex Tensors and its Applications,
https://doi.org/10.1007/978-981-15-2059-4_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-15-2059-4_2&domain=pdf
https://doi.org/10.1007/978-981-15-2059-4_2


20 2 The Pseudo-Spectrum Theory

We call (λ; x) as an eigenpair of A. The spectrum 	(A) of A is defined as

	(A) = {λ ∈ C : λ is an eigenvalue of A}.

Furthermore, if A ∈ RTN,I , x ∈ RI and λ ∈ R, then (λ; x) is called an H-eigenpair
of A.

We now recall the definition of determinant of A ∈ CTN,I introduced in Hu et
al. [10]. If A ∈ RTN,I is symmetric, then the following definition reduces to the
definition of determinant in [9].

Definition 2.1.2 ([10, Definition 1.2]) The determinant of N th-order I -
dimensional complex tensors denoted by DET, is defined as the irreducible
polynomial with variables vi1...iN for all in and n such that it is the resultant of
the polynomial system

VxN−1 = 0I ,

where V ∈ CTN,I .
The value of the determinant for a given tensor A ∈ CTN,I is denoted by det(A),

and is defined as the evaluation of DET at the point vi1...iN = ai1...iN for all in and
n. For any A ∈ CTN,I , if det(A) �= 0, then A is said to be nonsingular.

An interesting property of the determinant is that, for A ∈ CTN,I , det(A) = 0
if and only if AxN−1 = 0I has a nonzero solution in CI [10, Theorem 3.1]. We
know that λ ∈ 	(A) if and only if det(A− λI) = 0. It is clear that det(A− λI) is
a scalar polynomial with complex coefficients. This together with the fundamental
theorem of algebra gives us

	(A) �= ∅. (2.1.1)

Another important property of the determinant of any symmetric tensor A ∈
RTN,I has been established by Qi [9, Theorem 1 (b)], which is stated as det(A) =∏

λi∈	(A)

λi . The result also holds for the case of complex-valued tensors [10,

Corollary 6.5].
For (L + 1) given tensors Al ∈ CTN,I with all l, we define a tensor polynomial

P corresponding to the tensor tuple {A0,A1, . . . ,AL} as

P(z) = A0 + zA1 + · · · + zLAL, (2.1.2)

for all z ∈ C.

Definition 2.1.3 ([11, Definition 2.5]) For a tensor polynomial P as in (2.1.2), if
there exist a nonzero vector x ∈ CI and λ ∈ C such that P(λ)xN−1 = 0I , then λ

and x are called an eigenvalue and the associated eigenvector of P, respectively. We
call (λ; x) as an eigenpair of P. The set of eigenvalues of the tensor polynomial P
is defined by 	(P) = {λ : det(P(λ)) = 0} = {λ : λ is an eigenvalue of P}.
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Furthermore, if x ∈ RI , λ ∈ R and Al ∈ RTN,I with all l, then (λ; x) is called
an H-eigenpair of P. We next introduce the definition of a regular tensor polynomial
corresponding to any given tensor tuple.

Definition 2.1.4 ([11, Definition 2.6]) For a tensor polynomial P as in (2.1.2), if
for all λ ∈ C, det(P(λ)) = 0 holds, then we call {A0,A1, . . . ,AL} as singular.
Otherwise the tensor tuple is said to be regular.

Furthermore, we say the tensor polynomial P is singular (resp. regular) if the
corresponding tensor tuple {A0,A1, . . . ,AL} is singular (resp. regular).

According to Definition 2.1.4, if there exists λ̂ ∈ C such that det(P(λ̂)) �= 0,
then P is a regular tensor polynomial. In this chapter, we only consider the tensor
polynomial eigenvalue problem where its associated P is regular.

We can choose another tensor tuple {Ã0, Ã1, . . . , ÃL} such that ÃL =∑L
l=0 λ̂lAl and there is a one-to-one map between 	(P) and 	(P̃), where

det(ÃL) �= 0 and P̃(z) = Ã0 + zÃ1 + · · · + zLÃL with all z ∈ C. Hence, we
can assume that AL is nonsingular, that is, det(AL) �= 0. As shown in [11], when
AL is nonsingular, 	(P) is a finite subset of C.

It is well known that the matrix eigenvalue and the generalized eigenvalue
problem are special cases of the matrix polynomial eigenvalue problem [12]. For
the tensor polynomial eigenvalue problem, we have the following conclusions.

Remark 2.1.1 For (L + 1) given tensors Al ∈ CTN,I with all l, suppose that
P(z) = A0 + zA1 + · · · + zLAL with z ∈ C. The following three special cases of
Definition 2.1.3 have been discussed in the literature.

(a) When L = 1, A1 = −I and A0 ∈ RTN,I is symmetric, Definition 2.1.3
reduces to the eigenvalue problem with real symmetric tensors proposed in [9].

(b) When L = 1 and Al ∈ RTN,I with l = 0, 1, Definition 2.1.3 has been
considered by Chang et al. [13] where (λ; x) is called a generalized eigenpair of
the tensor pair {A0,A1}. For a related work, see [14]. Furthermore, Ding and
Wei [15] present several properties of the generalized eigenpairs of the tensor
pair {A0,A1} with Al ∈ CTN,I (l = 0, 1).

(c) When L = 2, (λ; x), satisfying Definition 2.1.3, is called an eigenpair of the
tensor tuple {A0,A1,A2}.

2.2 Pseudo-Spectrum of a Complex Tensor

We first define the ε-pseudo-spectrum of A ∈ CTN,I in the Frobenius norm and
characterize its fundamental properties. We reveal the relationship between the ε-
pseudo-spectrum and the spectrum (i.e., the set of all eigenvalues). Finally, we
define the ε-pseudo-spectral abscissa and ε-pseudo-spectral radius with respect to
the Frobenius norm.
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2.2.1 Definition and Properties

The unstructured perturbations bounds in the Frobenius and spectral norms lead to
the same matrix ε-pseudo-spectrum. Lim [16] provides some definitions for the ε-
pseudo-spectrum of a tensor by its smallest singular value [17]. However, we define
the ε-pseudo-spectrum of a tensor in term of unstructured perturbations bounds in
the Frobenius norm. These two definitions of the ε-pseudo-spectrum of a tensor are,
in general, independent (see Remark 2.2.3).

Definition 2.2.1 (ε-Pseudo-Spectrum for Tensors) Let ε ≥ 0. Then the ε-pseudo-
spectrum of A ∈ CTN,I is defined as

	ε(A) =
{
λ ∈ C : (A + E)xN−1 = λ x[N−1] for some E ∈ CTN,I

with ‖E‖F ≤ ε and nonzero vectors x ∈ C
I
}

.

When ε = 0, we have 	0(A) = 	(A). If A is a matrix, then the definition of the
ε-pseudo-spectrum 	ε(A) reduces to the ε-pseudo-spectrum of A with respect to
unstructured perturbations bounds in the Frobenius norm [2]. We now present some
fundamental properties of the ε-pseudo-spectrum 	ε(A).

Proposition 2.2.1 Let A ∈ CTN,I and ε ≥ 0. Then the following results hold.

(a) For all 0 ≤ ε1 ≤ ε2, we have 	ε1(A) ⊆ 	ε2(A).
(b) If there exists a positive integer P ∈ {1, 2, . . . , I } such that A[P + 1 :

I | 1 : P | . . . |1 : P
︸ ︷︷ ︸

N−1

] ∈ C(I−P)×P×···×P and A[1 : P |P + 1 : I | . . . |P + 1 :

I ] ∈ CP×(I−P)×···×(I−P) are zero tensors, then,

	ε(A1) ∪ 	ε(A2) ⊆ 	ε(A),

where A1 = A[1 : P |1 : P | . . . |1 : P ] ∈ CTN,P and A2 = A[P + 1 :
I |P + 1 : I | . . . |P + 1 : I ] ∈ CTN,I−P .

(c) If α, β ∈ C, then 	ε|β|(αI + βA) = {α} + β	ε(A).
(d) (Equivalent definition via rank-one perturbation) A complex number λ

belongs to the ε-pseudo-spectrum of A if and only if

(A + E)xN−1 = λx[N−1], (2.2.1)

for some rank-one tensors E ∈ CTN,I with ‖E‖F ≤ ε and nonzero vectors
x ∈ CI .

(e) For the spectrum and ε-pseudo-spectrum, we have ∩ε>0	ε(A) = 	(A).
(f) Let Ai = A[1 : i|1 : i| . . . |1 : i] ∈ CTN,i with all i. Then we have

	ε(A1) ⊆ 	ε(A2) ⊆ · · · ⊆ 	ε(AI ) = 	ε(A).
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Proof Parts (a), (e) and (f) are immediate from the definition of the ε-pseudo-
spectrum.

[Proof of (b)]. If λ ∈ 	ε(A1), then there exist a tensor E1 ∈ CTN,P with
‖E1‖F ≤ ε and a nonzero vector x ∈ CP such that

(A1 + E1)xN−1 = λx[N−1]. (2.2.2)

Let y = (x, 0I−P ) and E ∈ CTN,I be a tensor such that E[1 : P |1 : P | . . . |1 : P ] =
E1 and it takes the zero value otherwise. Then, we have ‖E‖F = ‖E1‖F ≤ ε. Note
that the entries of A(P + 1 : I |1 : P | . . . , 1 : P) ∈ R(I−P)×P×···×P are zeros.
From (2.2.2), one has (A + E)yN−1 = λy[N−1]. Then λ ∈ 	ε(A), which implies
that 	ε(A1) ⊆ 	ε(A). Similarly, we can prove 	ε(A2) ⊆ 	ε(A). Thus part (b)
follows.

[Proof of (c)]. If β = 0, then part (d) has been established in Corollary 3 of [9].
We only need to consider the case when β �= 0. Let λ ∈ 	ε|β|(αI + βA), there
exist E ∈ CTN,I with ‖E‖F ≤ |β|ε, and a nonzero vector x ∈ CI such that

(αI + βA + E)xN−1 = λx[N−1].

We prove that

(

A + E
β

)

xN−1 = λ − α

β
x[N−1].

It is obvious that ‖E/β‖F ≤ ε and there exists λ̃ ∈ 	ε(A) such that λ̃ = (λ−α)/β.
Thus 	ε|β|(αI + βA) ⊆ {α} + β	ε(A).

To prove the reverse inclusion, let λ ∈ 	ε(A) and λ̃ = βλ + α. Then there
exist a tensor E ∈ CTN,I with ‖E‖F ≤ ε, and a nonzero vector x ∈ CI such that
(A + E)xN−1 = λx[N−1]. It implies that

(αI + βA + βE)xN−1 = (βλ + α)x[N−1] = λ̃x[N−1].

λ̃ ∈ 	ε|β|(αI + βA), and the result follows.
[Proof of (d)] Let λ be an element in the ε-pseudo-spectrum 	ε(A). There exist

E ∈ CTN,I with ‖E‖F ≤ ε and a nonzero vector x ∈ CI such that

(A + E)xN−1 = λx[N−1].

Let v = x/‖x‖2. Then v is an unit vector whose image y := (A−λI)vN−1 satisfies
y = E vN−1. Define Ẽ = y ⊗ v⊗N−1 ∈ CTN,I . We have ẼvN−1 = y and

(A − Ẽ − λI)vN−1 = (A − λI)vN−1 − ẼvN−1 = EvN−1 − y = 0I ,
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which implies that λ is also an eigenvalue of A − Ẽ. The Frobenius norm of Ẽ is at
most ε, because

‖Ẽ‖2
F =

I∑

i1,i2,...,iN =1

|(E vN−1)i1 |2 |vi2 |2 . . . |viN |2 ≤ ‖E‖2
F ‖v‖4(N−1)

2 ≤ ε2.

Then (2.2.1) holds with a rank-one tensor Ẽ. The converse is straightforward. ��
Next, we present a Gerschgorin type result which informs that the ε-pseudo-

spectrum of A lie in the union of I disks in C. These I disks have the diagonal
elements of the tensor as their centers, with the sums of the moduli of the off-
diagonal elements and a constant multiple of ε as their radii. The result is developed
in [18, Theorem 12ε] for the matrix case.

Theorem 2.2.1 (Gerschgorin Theorem for ε-Pseudo-Spectrum) Let A ∈ CTN,I

and ε ≥ 0. Then

	ε(A) ⊆
⋃

1≤i≤I

⎧
⎪⎪⎨

⎪⎪⎩

λ ∈ C : |λ − aii...i | ≤
∑

1≤i,i2,...,iN≤I
(i2,...,iN ) �=(i,...,i)

|aii2...iN | + I
N−1

2 ε

⎫
⎪⎪⎬

⎪⎪⎭

.

Proof Let λ ∈ 	ε(A). There exist E ∈ CTN,I with ‖E‖F ≤ ε and a nonzero vector
x ∈ CI such that

(A + E)xN−1 = λx[N−1].

Let i ∈ {1, 2, . . . , I } be such that |xi| = max{|xj | : j = 1, 2, . . . , I }. It implies that

(aii...i + eii...i − λ)xN−1
i =

∑

1≤i,i2,...,iN ≤I
(i2,...,iN ) �=(i,...,i)

(
aii2...iN + eii2...iN

)
xi2 . . . xiN .

From the choice of i and x �= 0I , one has xi �= 0 and
|xj |
|xi | ≤ 1 for all j . Thus

|aii...i + eii...i − λ| ≤
∑

1≤i,i2,...,iN ≤I
(i2,...,iN ) �=(i,...,i)

|aii2...iN + eii2...iN |
∣
∣
∣
∣
xi2

xi

∣
∣
∣
∣ . . .

∣
∣
∣
∣
xiN

xi

∣
∣
∣
∣

≤
∑

1≤i,i2,...,iN≤I (i2,...,iN ) �=(i,...,i)

|aii2...iN + eii2...iN |.
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We then have

|λ − aii...i | ≤
∑

1≤i,i2,...,iN≤I
(i2,...,iN ) �=(i,...,i)

|aii2...iN | +
∑

1≤i2,...,iN ≤I

|eii2...iN |.

It follows from the Hölder inequality that

∑

1≤i2,...,iN ≤I

|eii2...iN | ≤
√

IN−1
∑

1≤i2,...,iN ≤I

|eii2...iN |2 ≤ I
N−1

2 ‖E‖F .

Thus

|λ − aii...i | ≤
∑

1≤i,i2,...,iN ≤I
(i2,...,iN ) �=(i,...,i)

|aii2...iN | + I
N−1

2 ε,

and the result follows. ��
Remark 2.2.1 In the matrix case, Gerschgorin bounds on pseudo-spectra can be
improved (see [19] for a recent development). It would be natural to ask how the
techniques can be used to improve the previous theorem [20].

2.2.2 Computational Interpretation of ε-Pseudo-Spectrum

In the computation of the eigenvalues of A ∈ CTN,I , we terminate the algorithm
after obtaining a number λ with

∥
∥(A − λI)vN−1

∥
∥

2 ≤ ε for some small tolerance ε

and a unit vector v ∈ CI . The next theorem proves that one obtains an element of
the ε-pseudo-spectrum of A.

Theorem 2.2.2 Let ε ≥ 0. A complex number λ belongs to the ε-pseudo-
spectrum of A ∈ CTN,I if and only if there exists a unit vector v such that∥
∥(A − λI)vN−1

∥
∥

2 ≤ ε.

Proof (⇒) Let λ be an element of the ε-pseudo-spectrum of A. We proceed by
contradiction and assume that for all unit vectors v ∈ CI , we have

∥
∥
∥(A − λI)vN−1

∥
∥
∥

2
> ε.

Then for any A+E ∈ CTN,I which is a small perturbation of A (with E having the
Frobenius norm at most ε) and for any unit vector v ∈ CI , one has

∥
∥
∥(A + E − λI)vN−1

∥
∥
∥

2
≥

∥
∥
∥(A − λI)vN−1

∥
∥
∥

2
−

∥
∥
∥EvN−1

∥
∥
∥

2
> ε − ε = 0
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by the triangle inequality, which implies that λ cannot be an eigenvalue of A + E.
This contradicts the assumption that λ is an element of the ε-pseudo-spectrum of A.

(⇐) Note that there exists a unit vector v ∈ CI such that
∥
∥(A − λI)vN−1

∥
∥

2 ≤ ε.

Let y := (A− λI)vN−1 and E = y ⊗ v⊗N−1. Then we have ‖y‖2 ≤ ε, EvN−1 = y
and

(A − E − λI)vN−1 = (A − λI)vN−1 − EvN−1 = y − y = 0I .

‖E‖F ≤ ‖y‖2‖v‖N−1
2 ≤ ε. Then λ is an element of the ε-pseudo-spectrum of A.

��
According to Theorem 2.2.2, the ε-pseudo-spectrum of A ∈ CTN,I can be also

represented as

	ε(A) =
{

λ ∈ C : min‖x‖2=1

∥
∥
∥(A − λI)xN−1

∥
∥
∥

2
≤ ε

}

. (2.2.3)

As a corollary of Theorem 2.2.2, we know that 	ε(A) always contains the (ρ−1
N,I ε)-

neighborhood of the spectrum 	(A) for some constant ρN,I depending on the order
of the tensor A and the dimension of the underlying space.

Corollary 2.2.1 Let ε ≥ 0 and ρN,I = min
x∈CI

{∥
∥
∥x[N−1]

∥
∥
∥

2
: ‖x‖2 = 1

}
> 0. Then

	(A) + �
ρ−1

N,I ε
⊆ 	ε(A), (2.2.4)

where �
ρ−1

N,I ε
= {z ∈ C : |z| ≤ ρ−1

N,I ε}.
Remark 2.2.2 Proposition 2.2.2 shows that there exist tensors A ∈ CTN,I such that
	(A) + �

ρ−1
N,I ε

= 	ε(A) for all ε ≥ 0.

We present an example illustrating the sharpness of (2.2.4) in Corollary 2.2.1.

Example 2.2.1 Let

M =
(

0 1
0 0

)

∈ C
2×2.

Let N be an even number. Define A ∈ CTN,2 as

ai1,...,iN = mi1i2mi3i4 , . . . ,miN−1iN ,

where mij denotes the (i, j)-element of M. For all x = (x1, x2)
� ∈ C

2, it can be
verified that

AxN−1 =
(

x�Mx
)N

2 −1
(Mx) = (x1x2)

N
2 −1(x2, 0)�.

Thus the only eigenvalue of A is zero, and hence 	(A) = {0}.
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For ε > 0, let

Mε =
(

0 1
ε 0

)

,

and Aε ∈ CTN,2 be defined by aε
i1,...,iN

= mε
i1i2

mi3i4 · · · miN−1iN . Direct verification
proves that

∥
∥Aε − A

∥
∥

F
≤ ε,

and for all x = (x1, x2)
� ∈ C2, we have

AεxN−1 =
(

x�Mx
)N

2 −1
(Mεx) = (x1x2)

N
2 −1(x2, εx1)

�.

Let u = (1, N
√

ε)�. Then AεuN−1 = (
√

ε, ε
3N−2

2N )�, and

AεuN−1 = √
εu[N−1].

It illustrates that 	ε(A) contains an element with modulus with
√

ε, which is larger
than ρ−1

N,2ε when ε is small. Thus (2.2.4) is strict in this example.

In the following theorem, we develop a lower bound of the distance between any
scalar z0 ∈ C and the ε-pseudo-spectrum of A ∈ CTN,I .

Theorem 2.2.3 Let ε ≥ 0, z0 ∈ C and A ∈ CTN,I . Then

dist(z0,	ε(A)) ≥ ρ−1
N,I

(

min‖x‖2=1

∥
∥
∥(A − z0I)xN−1

∥
∥
∥

2
− ε

)

,

where ρN,I = min
x∈CI

{∥
∥x[N−1]∥∥

2 : ‖x‖2 = 1
}

> 0.

Proof Let λ be an element of the ε-pseudo-spectrum of A. Then there exist a tensor
E ∈ CTN,I with ‖E‖F ≤ ε and a nonzero vector x0 ∈ CI such that

(A + E)xN−1
0 = λx[N−1]

0 .

For any scalar z0 ∈ C, we obtain

(A − z0I)xN−1
0 + ExN−1

0 = (λ − z0)x
[N−1]
0 .

Thus
∥
∥
∥(A − z0I)xN−1

0 + ExN−1
0

∥
∥
∥

2
=

∥
∥
∥(λ − z0)x

[N−1]
0

∥
∥
∥

2
.
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By the triangle inequality and the definition of ρN,I , we get

|λ − z0|ρN,I ≥ min‖x‖2=1

{∥
∥
∥(A − z0I)xN−1

∥
∥
∥

2
− ‖E‖F ‖x‖N−1

2

}
.

Since ‖E‖F ≤ ε, we have

dist(z0,	ε(A)) ≥ ρ−1
N,I

(

min‖x‖2=1

∥
∥
∥(A − z0I)xN−1

∥
∥
∥

2
− ε

)

.

Then it is completely proved. ��
Furthermore, we consider the real ε-pseudo-spectrum of A ∈ RTN,I , defined as

	H
ε (A) =

{
λ ∈ R : (A + E)xN−1 = λ x[N−1] for some E ∈ RTN,I

with ‖E‖F ≤ ε and nonzero vectors x ∈ R
I
}

.

If ε = 0, then the real 0-pseudo-spectrum consists of all H-eigenvalues of A. When
N is even, we reveal a relationship between the real ε-pseudo-spectrum and the real
numerical range of A, where the latter is given by Ding and Wei [15],

W(A) =
{
AvN : ‖v‖N = 1, v ∈ R

I
}

where ‖v‖N
N = |v1|N + |v2|N + · · · + |vI |N for all vectors v ∈ RI .

Theorem 2.2.4 Let N be even, ε ≥ 0 and A ∈ RTN,I . Denote δN,I = max
v∈RI

{‖v‖N
2 :

‖v‖N = 1} > 0. Then

	H
ε (A) ⊆ W(A) + �δN,I ε .

Proof Let λ ∈ 	H
ε (A). There exist a tensor E ∈ RTN,I with ‖E‖F ≤ ε and a

nonzero vector x ∈ RI such that

(A + E)xN−1 = λx[N−1].

Let v = x
‖x‖N

, we have

(A + E)vN−1 = λv[N−1].

Multiplying v�, we have (A + E)vN = λ‖v‖N
N = λ, which implies that

λ = (A + E)vN = AvN + EvN.
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Obviously, the first term is an element of the real numerical range W(A) while the
second satisfies

∣
∣
∣EvN

∣
∣
∣ ≤ ‖E‖F ‖v‖N

2 ≤ εδN,I .

The the proof is completed. ��
Next, we present explicit expressions for ρN,I and δN,I . For any unit vector x ∈

CI , if we set xi = rie
ιθi with ri ∈ R and θi ∈ (−π, π], then r = (r1, r2, . . . , rI )

� ∈
RI is a unit vector and

ρN,I = min
x∈CI

{∥
∥
∥x[N−1]

∥
∥
∥

2
: ‖x‖2 = 1

}
= min

x∈RI

{∥
∥
∥x[N−1]

∥
∥
∥

2
: ‖x‖2 = 1

}
.

When N = 2, it is clear that ρN,I = δN,I ≡ 1. We only need to consider the case
of N ≥ 3. We consider the following constrained optimization problem

(P) min
∥
∥
∥x[N−1]

∥
∥
∥

2

2
subject to ‖x‖2 = 1; x ∈ R

I .

The Lagrangian function for the optimization problem is

L(x, μ) =
∥
∥
∥x[N−1]

∥
∥
∥

2

2
− μ(‖x‖2

2 − 1).

Any critical point of the Lagrangian function satisfies

{
2(N − 1)x

2(N−1)−1
i − 2μxi = 0, i = 1, 2, . . . , I,

x2
1 + x2

2 + · · · + x2
N = 1.

It implies that μ = (N − 1)(x
2(N−1)
1 + x

2(N−1)
2 + · · · + x

2(N−1)
I ), either xi = 0 or

μ = (N − 1)x2N−4
i . Let I = {1 ≤ i ≤ I : xi = 0} and T be the cardinality of I.

Then we have 0 ≤ T ≤ I − 1 and

xi =
(

μ

N − 1

)1/(2N−4)

for all i /∈ I

with μ = (N − 1)
(

1
I−T

)N−2 = (N − 1)(I − T )2−N , and

∥
∥
∥x[N−1]

∥
∥
∥

2

2
= (I − T )1−NI.
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Table 2.1 The values of ρN,I and δN,I for integer pairs (N, I) with N ∈ {2, 3, 4, 5, 6} and I ∈
{5, 6, 7, 8, 9, 10}

ρN,I δN,I

I N := 2 3 4 5 6 N := 2 3 4 5 6

5 1.00 0.45 0.20 0.09 0.04 1.00 2.24 5.00 11.18 25.00

6 1.00 0.41 0.17 0.07 0.03 1.00 2.45 6.00 14.70 36.00

7 1.00 0.38 0.14 0.05 0.02 1.00 2.65 7.00 18.52 49.00

8 1.00 0.35 0.13 0.04 0.02 1.00 2.83 8.00 22.63 64.00

9 1.00 0.33 0.11 0.04 0.01 1.00 3.00 9.00 27.00 81.00

10 1.00 0.32 0.10 0.03 0.01 1.00 3.16 10.00 31.62 100.00

Note with N ≥ 3 that

I 1−N ≤ (I − 1)1−N ≤ · · · ≤ 11−N = 1.

The optimal solution of the optimization problem (P) are attained when T = 0 and
x1 = · · · = xI = √

1/I . The value of ρN,I = I (2−N)/2 ∈ (0, 1]. Similar, we can
show that the value of δN,I is IN/2−1 ≥ 1. For some given pairs (N, I), the values
of ρN,I and δN,I are shown in Table 2.1.

We next illustrate the ε-pseudo-spectrum of diagonal tensors.

Proposition 2.2.2 If D ∈ CTN,I is a diagonal tensor with all main diagonal entries
di ∈ C for all i, then the ε-pseudo-spectrum of D is {d1, d2, . . . , dI } + �

ρ−1
N,I ε

.

Proof By Corollary 2.2.1, it is evident that {d1, d2, . . . , dI } + �
ρ−1

N,I ε
⊆ 	ε(D)

holds. We will show that 	ε(D) ⊆ {d1, d2, . . . , dI }+�
ρ−1

N,I ε
holds for any diagonal

tensor D ∈ CTN,I .
Let λ ∈ 	ε(D). If λ ∈ {d1, d2, . . . , dI }, then the result follows trivially. We

assume that λ /∈ {d1, d2, . . . , dI }. From (2.2.3), we consider the optimization
problem,

min
∥
∥
∥(D − λI)xN−1

∥
∥
∥

2

2
subject to ‖x‖2 = 1; x ∈ C

I .

According to the explicit expression of ρN,I , the above optimization problem is
equivalent to

min
∥
∥
∥(D − λI)xN−1

∥
∥
∥

2

2
subject to ‖x‖2 = 1; x ∈ R

I .

The corresponding Lagrangian function is

L(x, μ) = |d1−λ|2x2(N−1)
1 +|d2−λ|2x2(N−1)

2 +· · ·+|dI−λ|2x2(N−1)
I −μ(‖x‖2

2−1).
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Differentiating L(x, μ) with respect to x and μ, we have

{
2(N − 1)|di − λ|2x2(N−1)−1

i − 2μxi = 0, i = 1, 2, . . . , I,

x2
1 + x2

2 + · · · + x2
N = 1.

These lead to

μ = (N − 1)(|d1 − λ|2x2(N−1)
1 + |d2 − λ|2x2(N−1)

2 + · · · + |dI − λ|2x2(M−1)
I ),

and either xi = 0 or μ = (N − 1)|di − λ|2x2N−4
i . Let I = {1 ≤ i ≤ I : xi = 0} and

T be the cardinality of I. We have 0 ≤ T ≤ I − 1 and

xi =
(

μ

N − 1

1

|di − λ|2
)1/(2N−4)

, for all i /∈ I.

We prove that

μ = (N − 1)

(
∑

i /∈I

(
1

|di − λ|2
)1/(N−2)

)2−N

.

Let k /∈ I be such that |λ − dk| = min{|di − λ| : i /∈ I}. Then

μ ≥ (N − 1)(I − T )2−N |dk − λ|2.

Since

μ

N − 1
= |d1 − λ|2x2(N−1)

1 + |d2 − λ|2x2(N−1)
2 + · · · + |dI − λ|2x2(N−1)

I

=
∥
∥
∥(D − λI)xN−1

∥
∥
∥

2

2
.

Then

min‖x‖2=1

∥
∥
∥(D − λI)xN−1

∥
∥
∥

2
≥ min

0≤T ≤I−1

{
(N − T )

2−N
2 |dk − λ|

}
= ρN,I |dk − λ|.

Thus λ ∈ {d1, d2, . . . , dI } + �
ρ−1

N,I ε
and this completes the proof. ��

Remark 2.2.3 (Comparison with Other Definitions) Lim [16] defines the ε-pseudo-
spectrum of a cubical tensor as

σ�
ε (A) = {λ ∈ C : σmin(A − λI) < ε},

where σmin denotes the smallest singular value of A ∈ CTN,I .
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Without loss of generality, σ ∈ R+ is a singular value of A ∈ CT3,I if there exist
three unitary vectors x, y, z ∈ CI such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A ×2 y� ×3 z� = σx,

A ×1 x� ×3 z� = σy,

A ×1 x� ×2 y� = σz,

‖x‖2 = ‖y‖2 = ‖z‖2 = 1.

We notice that Lim’s definition and Definition 2.2.1 are different. To see this,
consider A = I ∈ RT3,2 where I is the identity tensor in RT3,2 and ε > 0. The
preceding proposition shows that 1 − √

2ε ∈ σε(A). However, 1 − √
2ε /∈ σ�

ε (A)

because σmin(
√

2εI) = √
2ε > ε.

2.2.3 Pseudo-Spectral Abscissa and Radius

We can define the ε-pseudo-spectral abscissa and ε-pseudo-spectral radius of a
tensor in the Frobenius norm as the matrix cases.

Definition 2.2.2 (ε-Pseudo-Spectral Abscissa and Radius) Let A ∈ CTN,I and
ε ≥ 0. We define its ε-pseudo-spectral abscissa as

αε(A) = max
λ∈	ε(A)

{
	(z) : zN−1 = λ

}
.

The maximum in the definition of the ε-pseudo-spectral abscissa is taken over the
set consisting of all the (N − 1)th roots of λ.

If ε = 0, then we refer the 0-pseudo-spectral abscissa of A as the spectral
abscissa of A, and denote it as α(A).

We define the ε-pseudo-spectral radius by

ρε(A) = max
λ∈	ε(A)

{
|z| : zN−1 = λ

}
.

If N = 2, then the definition of the ε-pseudo-spectral abscissa/radius of a tensor
reduces to that for a matrix. The above definition of the ε-pseudo-spectral abscissa
has a close connection to the existence of an asymptotically stable solution of a
homogeneous dynamical system under small perturbations. Consider the following
homogeneous dynamical system (differential inclusion)

u′(t) ∈
(

Au(t)N−1
)[ 1

N−1 ]
with u(t) ∈ C

I , t ∈ [0,+∞), (2.2.5)
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and its perturbed version

u′(t) ∈
(

(A + E)u(t)N−1
)[ 1

N−1 ]
with u(t) ∈ C

I , t ∈ [0,+∞), (2.2.6)

where for a given ε > 0, E ∈ CTN,I satisfies ‖E‖F ≤ ε. a[ 1
N−1 ] = {(z1, . . . , zI )

� ∈
CI : zN−1

1 = a1, . . . , z
N−1
I = aI } for all a = (a1, . . . , aI )

� ∈ CI .
The next theorem indicates that an asymptotically stable solution exists for the

above homogeneous dynamical system and its perturbed version, if the ε-pseudo-
spectral abscissa of A is negative. In the case ε = 0, the stability of homogeneous
dynamical system is discussed in [21] in terms of the tensor logarithm norm (an
upper bound of the spectral abscissa).

Theorem 2.2.5 Let ε ≥ 0 and A ∈ CTN,I . If αε(A) < 0, then for each tensor
E ∈ CTN,I with ‖E‖F ≤ ε, the perturbed homogeneous dynamical system (2.2.5)
has an asymptotically stable solution ū(t) ∈ CI , in the sense that lim

t→+∞ |ū(t)| = 0I .

Proof Let E ∈ CTN,I with ‖E‖F ≤ ε and λ ∈ 	(A + E) (which is possible
by (2.1.1)). Then there exists a nonzero vector x ∈ CI such that

(A + E)xN−1 = λ x[N−1]. (2.2.7)

In particular, λ ∈ 	ε(A). Moreover, as αε(A) < 0, there exists z ∈ C such that
zN−1 = λ and 	(z) < 0. Considering (2.2.5), let ū(t) = γ et zx with γ ∈ R. Then
we have ū′(t) = γ zet zx and

(A + E)
(
ū(t)

)N−1 = (
γ N−1(et z)N−1)(A + E)xN−1

= (
γ N−1(et z)N−1)λx[N−1]

= (
γ N−1(et z)N−1)zN−1x[N−1].

It shows that ū′(t) satisfies (2.2.5). Moreover, from 	(z) < 0, we have

lim
t→+∞ |ū(t)| = lim

t→+∞ |γ |e	(z)t |x| = 0I .

Thus ū(t) is an asymptotically stable solution for the perturbed homogeneous
dynamical system (2.2.5). ��

If α(A) < 0, then the unperturbed homogeneous dynamical system (2.2.6) has
an asymptotically stable solution ū(t) ∈ CI .

Now we illustrate how the Gerschgorin result for the ε-pseudo-spectra of tensors
and Theorem 2.2.5 can be used to determine the existence of an asymptotically
stable solution for a homogeneous dynamical system.
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Example 2.2.2 Denote a permutation of (i1, i2, i3, i4) by π(i1, i2, i3, i4). Consider
A ∈ CT4,2 defined by

a1111 = −8 + ι, a2222 = −6, a1122 = a1212 = a1221 = a2112 = a2121 = a2211 = 1

6
,

and, for any π

ai1i2i3i4 = 0 for all (i1, i2, i3, i4) /∈ {(1, 1, 1, 1), (2, 2, 2, 2), π(1, 1, 2, 2)}.

Let ε = 1. For each E ∈ CT4,2 with ‖E‖F ≤ 1, suppose that u(t) satisfies (2.2.5)
with N = 4 and I = 2. We apply Theorem 2.2.1 that

	1(A) ⊆ {λ ∈ C : |λ − (−8 + ı)| ≤ 1

2
+ 2

√
2} ∪ {λ ∈ C : |λ + 6| ≤ 1

2
+ 2

√
2}.

Direct computation verifies that, for any λ = |λ|eιθ ∈ 	1(A), one has |λ| ≥ 1 and
θ ∈ [θ, θ ] for some θ and θ such that π

2 < θ ≤ θ < 3π
2 . Observe that one of the

cubic roots of λ is |λ| 1
3 eι θ+2π

3 where θ+2π
3 ∈ [ θ+2π

3 , θ+2π
3 ] and

5π

6
<

θ + 2π

3
≤ θ + 2π

3
<

7π

6
,

which implies that α1(A) < 0 and the existence of asymptotically stable solution
follows from Theorem 2.2.5.

In many potential applications of pseudo-spectra, the perturbation of the tensor
often has some specific structure. For example, if the tensor is real, then it is also
reasonable that the perturbation is real. This motivates us to define the structured
ε-pseudo-spectra and ε-pseudo-spectral abscissa.

Definition 2.2.3 (Structured ε-Pseudo-Spectrum and ε-Pseudo-Spectral
Abscissa) Let S be a subspace of CTN,I . Suppose that ε ≥ 0 and A ∈ S. We define
the structured ε-pseudo-spectrum and ε-pseudo-spectral abscissa respectively as

	S
ε (A) =

{
λ ∈ C : (A + E)xN−1 = λ x[N−1] for some E ∈ S

with ‖E‖F ≤ ε and nonzero vectors x ∈ C
I
}

,

and

αS
ε (A) = max

λ∈	S
ε (A)

{
	(z) : zN−1 = λ

}
.

If ε = 0, then the structured 0-pseudo-spectral abscissa of A equals to the
structured spectral abscissa of A, denoted by αS(A).
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It is obvious that, for all A ∈ S, 	S
ε (A) ⊆ 	ε(A) and αS

ε (A) ≤ αε(A).
Moreover, using a similar argument, one can obtain the following result concerning
the stability of the homogeneous dynamical system with structured perturbations.
For simplicity, we omit the proof.

Theorem 2.2.6 Let S be a subspace of CTN,I , ε ≥ 0 and A ∈ S. Suppose that
αS

ε (A) < 0. Then for each tensorE ∈ S with ‖E‖F ≤ ε, the perturbed homogeneous
dynamical system (2.2.5) has an asymptotically stable solution ū(t) ∈ CI , in the
sense that lim

t→+∞ |ū(t)| = 0I .

If αS(A) < 0, then the unperturbed homogeneous dynamical system (2.2.5) has
an asymptotically stable solution ū(t) ∈ CI .

2.3 Pseudo-Spectrum for Tensor Polynomials

In this section, we present the definition of the ε-pseudo-spectrum of a tensor
polynomial associated with a given tensor tuple and derive its basic properties.
We then consider the backward error of the approximate eigenpairs of tensor
polynomials in the Frobenius norm. For a given regular tensor polynomial P, we
measure its distance from the nearest singular tensor polynomial.

2.3.1 Definitions and Properties

For Al , �Al ∈ CTN,I with all l and z ∈ C, we define a tensor polynomial P�,
associated with the tensor tuple {A0,A1, . . . ,AL}, as follows:

P�(z) : = P�A0,...,�AL
(z) = P(z) + (

�A0 + z�A1 + z2�A2 + · · · + zL�AL

)
.

(2.3.1)

Then, for a given nonnegative weight vector w ∈ R
L+1+ and any z ∈ C, we introduce

the set

B(P, w, ε) = {P + �P : �P(z) = �A0 + z�A1 + z2�A2 + · · · + zL�AL, (2.3.2)

where ‖�Al‖F ≤ wlε for all l}

and the scalar polynomial

pw(z) = w0 + w1z + · · · + wLzL. (2.3.3)

Next, we introduce the definition of the ε-pseudo-spectrum of the tensor
polynomial P with respect to w ∈ R

L+1+ in the Frobenius norm.
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Definition 2.3.1 (ε-Pseudo-Spectrum of Tensor Polynomials) For a tensor poly-
nomial P as in (2.3.1), the ε-pseudo-spectrum of the tensor polynomial P with
respect to w ∈ R

L+1+ is defined as

	w,ε(P) = {λ ∈ C : det(P�(λ)) = 0 for some P� ∈ B(P, w, ε)}
= {λ ∈ C : λ is an eigenvalue of P� for some P� ∈ B(P, w, ε)},

with ε ≥ 0.
If λ ∈ 	w,ε(P), then λ is called an ε-pseudo eigenvalue of the tensor polynomial

P with respect to w ∈ R
L+1+ . If ε = 0, then the 0-pseudo-spectrum equals the

spectrum of P, denoted by 	(P).

In the special case of L = 1, if we choose A1 = −I, w0 = 1 and w1 = 0, then
Definition 2.3.1 reduces to the definition of the ε-pseudo-spectrum of the tensor
A0 (see Definition 2.2.1). As in Proposition 2.2.1, similar basic properties of the
ε-pseudo-spectrum of a tensor polynomial can also be derived. Below, we focus on
the equivalent definitions of the ε-pseudo-spectrum of a tensor polynomial in terms
of rank-one tensors.

Proposition 2.3.1 For a tensor polynomial P as in (2.3.1), Then with ε ≥ 0 and
w ∈ R

L+1+ , a complex number λ belongs to 	w,ε(P) if and only if there exists a
nonzero vector x ∈ CI such that

P�(λ)xN−1 = 0I , (2.3.4)

for some P� ∈ B(P, w, ε), where P�(z) = P(z) + �A0 + z�A1 + · · · + zL�AL

and �Al are rank-one tensors with ‖�Al‖F ≤ wlε and all l.

Proof Let λ be an element in the ε-pseudo-spectrum 	w,ε(P) with respect to w ∈
R

L+1+ . Then there exist �Al ∈ CTN,I with ‖�Al‖F ≤ wlε and a nonzero vector
x ∈ CI such that

(P(λ) + �P(λ))xN−1 = 0I ,

where

�P(z) = �A0 + z�A1 + · · · + zL�AL. (2.3.5)

Let v = x/‖x‖2, then v is a unitary vector. For each l, define

zl = �AlvN−1, �̃Ai = zl ⊗ v⊗N−1,

it is easy to see �̃AlvN−1 = zl . Then we have

(P(λ) + �̃P(λ))vN−1 = (
P(λ) + �P(λ)

)
vN−1 = 0I ,

where �̃P(z) = �̃A0 + z�̃A1 + · · · + zL�̃AL.
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Thus λ is an eigenvalue of P+ �̃P. Since the Frobenius norm of each �̃Al is at
most wl ε, for each l,

∥
∥�̃Al

∥
∥2

F
=

I∑

i1,i2,...iN =1
|(�Al vN−1)i1 |2 |vi2 |2 . . . |viN |2 ≤ ‖�Al‖2

F ‖v‖4(N−1)
2 = w2

l ε
2.

Then (2.3.4) holds with these chosen rank-one tensors �̃Al .
The result follows as the reverse implication is immediate by the definition. ��
In order to deduce another equivalent characterization of the ε-pseudo-spectrum

	w,ε(P) with respect to a nonnegative weighting vector w ∈ RL+1, we cite the
following lemma without the proof.

Lemma 2.3.1 For given unit vectors x, y ∈ CI , there exists a tensor B ∈ CTN,I

with ‖B‖F = 1 such that BxN−1 = y.

In the special case where N = 2, this theorem has been established in [7,
Theorem 2.1] or [6, Lemma 2.1].

Theorem 2.3.1 For a tensor polynomial P as in (2.3.1), Then with ε ≥ 0 and
w ∈ R

L+1+ , the ε-pseudo-spectrum with respect to w equals

	w,ε(P) =
{

λ ∈ C : min‖x‖2=1

∥
∥
∥P(λ)xN−1

∥
∥
∥

2
≤ pw(|λ|)ε

}

, (2.3.6)

with pw(|λ|) = w0 + w1|λ| + · · · + wL|λ|L.

Proof Let S denote the set in (2.3.6). If λ ∈ 	w,ε(P), then there exist a nonzero
vector x ∈ CI and a tensor polynomial P� ∈ B(P, w, ε) such that P�(λ)xN−1 =
0I . As P� ∈ B(P, w, ε), there exists �Al ∈ CTN,I with all l such that

P� = P + �P,

where �P(z) is defined in (2.3.5). We have

P(λ)xN−1 = −�P(λ)xN−1.

It implies that

min‖x‖2=1

∥
∥
∥P(λ)xN−1

∥
∥
∥

2
= min‖x‖2=1

∥
∥
∥�P(λ)xN−1

∥
∥
∥

2
≤ ‖�P(λ)‖F ≤ pw(|λ|)ε,

where the last inequality holds from pw in (2.3.1). Thus λ ∈ S and we have

	w,ε(P) ⊆
{

λ ∈ C : min‖x‖2=1

∥
∥
∥P(λ)xN−1

∥
∥
∥

2
≤ pw(|λ|)ε

}

.
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To prove the converse, we suppose that λ ∈ S and we want to prove that λ ∈
	w,ε(P). Let u ∈ CI with ‖u‖2 = 1 be such that

min‖x‖2=1

∥
∥
∥P(λ)xN−1

∥
∥
∥

2
:=

∥
∥
∥P(λ)uN−1

∥
∥
∥

2
.

Let y = P(λ)uN−1. If y = 0I , then we obtain that λ ∈ 	(P) and u is an eigenvector
corresponding to λ, and the result follows.

Next, we assume that y is a nonzero vector, then there exists H ∈ CTN,I with
‖H‖F = 1 such that HuN−1 = −y/‖y‖2 (see Lemma 2.3.1). Let E = ‖y‖2H.
Then (P(λ) + E)uN−1 = y + ‖y‖2HuN−1 = 0I and

‖E‖F = ‖y‖2 =
∥
∥
∥P(λ)uN−1

∥
∥
∥

2
= min‖x‖2=1

∥
∥
∥P(λ)xN−1

∥
∥
∥

2
≤ pw(|λ|)ε.

For all l, define Al ∈ CTN,I as

�Al = sign(λl)wlpw(|λ|)−1E,

where the sign of z ∈ C is defined as

sign(z) =
{

z/|z|, z �= 0,

0, z = 0.
(2.3.7)

By constructions, we see that ‖�Al‖F ≤ wlε. Let �P(z) = �A0 + z�A1 +· · ·+
zL�AL with z ∈ C. Then

�P(λ) =
L∑

l=0

λl�Al =
(

L∑

l=0

|λl |
)

pw(|λ|)−1E = E,

Thus
(
P(λ) + �P(λ)

)
uN−1 = (

P(λ) + E
)
uM−1 = 0I . As u �= 0I , we see that

λ ∈ 	w,ε(P). ��
Remark 2.3.1 For the case of L = 1, with A1 = −I and (w0, w1) = (1, 0), (2.3.6)
reduces to the equivalent characterization for the ε-pseudo-spectrum of a tensor as
in (2.2.3).

If all the coefficients of the matrix polynomial with respect to any nonnegative
weight are real matrices, then its ε-pseudo-spectrum is symmetric with respect to
the real axis. The symmetry holds for tensor polynomials. In the special case where
N = 2, which has been established in [8, Proposition 2.1].

Theorem 2.3.2 For a tensor polynomial P as in (2.3.1), then with ε ≥ 0 and w ∈
R

L+1+ , 	w,ε(P) is symmetric with respect to the real axis.
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Proof Let λ ∈ 	w,ε(P). It suffices to show that its conjugate λ also belongs to
	w,ε(P). The tensor polynomial (A0 + �A0) + λ(A1 + �A1) + · · · + λL(AL +
�AL) ∈ B(P, w, ε) satisfies

det
(
(A0 + �A0) + λ(A1 + �A1) · · · + λL(AL + �AL)

)
= 0,

where �Al ∈ CTN,I for all l. Since Al ∈ RTN,I , then we have

det
(
(A0 + �A0) + λ(A1 + �A1) · · · + λL(AL + �AL)

)

= det
(
(A0 + �A0) + λ(A1 + �A1) · · · + λ

L
(AL + �AL)

)
= 0.

Hence, λ ∈ 	w,ε(P). ��
Next, we apply a simple property of the scalar polynomial z �→ det(P(z)).

Proposition 2.3.2 For a tensor polynomial P as in (2.3.1), if AL is nonsingular,
then the degree of the scalar polynomial det(P(z)) is IL(N − 1)I−1 and its leading
coefficient is det(AL).

In particular, there are IL(N − 1)I−1 eigenvalues, counting multiplicity, of the
tensor polynomial P.

Proof According to [10, Proposition 2.4], we see that det(A) ∈ C[A] gives rise to
an irreducible and homogeneous polynomial of degree IL(N − 1)I−1, where A ∈
CTN,I and C[A] is the polynomial ring consisting of polynomials in indeterminate
variables {ai1i2...iN } with coefficients in C.

Thus for z ∈ C and a tensor polynomial P, det(P(z)) can be treated as an
irreducible and homogeneous polynomial in C[P(z)] of degree IL(N − 1)I−1,
where C[P(z)] is the polynomial ring consisting of polynomials in indeterminate
variables {P(z)i1i2...iN } with coefficients in C. Each entry P(z)i1i2...iN is a scalar
polynomial of z with degree L. It shows that det(P(z)) is of degree IL(N − 1)I−1.

In the following, we consider to check the leading coefficient of det(P(z)). Note
that for α ∈ C and A ∈ CTN,I , det(αA) = αIL(N−1)I−1

det(A) [10, Corollary 2.6].
It follows that

lim|z|→∞
det(P(z))

zIL(N−1)I−1 = lim|z|→∞ det

(
A0 + zA1 + · · · + zlAl

zL

)

= det(AL) �= 0,

where the last relation follows from the assumption that AL is invertible. Then the
leading coefficient of z �→ det(P(z)) is det(AL).

Finally, the result follows from the fundamental theorem of algebra. ��
For a given tensor polynomial P, if there is a perturbation P� ∈ B(P, w, ε) with

identically zero determinant, then 	w,ε(P) coincides with the whole complex plane
and a priori, the ε-pseudo-spectrum with respect to w ∈ R

L+1+ may be unbounded.
If the leading coefficient AL is invertible, then the tensor polynomial P has exactly
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IL(N − 1)I−1 eigenvalues, counting multiplicities, according to Proposition 2.3.2.
For sufficiently small ε, the ε-pseudo-spectrum with respect to w ∈ R

L+1+ must be
bounded and consist of no more than IL(N − 1)I−1 connected components.

These possible scenarios motivate us to investigate when 	w,ε(P) will be
bounded. Next, we present a necessary and sufficient condition for 	w,ε(P) to be
bounded, for any ε ≥ 0 and w ∈ R

L+1+ . In the special case of N = 2, which has
been developed in [8, Theorem 2.2].

Theorem 2.3.3 (Boundedness of Pseudo-Spectra for Tensor Polynomials) For
a tensor polynomial P as in (2.3.1), then with ε ≥ 0 and w ∈ R

L+1+ , the ε-pseudo-
spectrum 	w,ε(P) with respect to w is bounded if and only if the (wL ε)-pseudo-
spectrum of AL does not contain the origin.

Proof Assume that 0 �∈ 	wL ε(AL). Then det(AL + �AL) �= 0 for any �AL ∈
CTN,I with ‖�AL‖F ≤ wLε. We have

ζε = min{| det(AL + �AL)| : ‖�AL‖F ≤ wLε} > 0.

Since B(P, w, ε) is compact, there exists a positive constant Mε > 0 such that any
perturbation P� ∈ B(P, w, ε) has the form

P�(z) = (A0 + �A0) + z(A1 + �A1) · · · + zL(AL + �AL)

with ‖�Al‖F ≤ wlε and all l. For any z ∈ C with |z| > Mε , we have

∣
∣
∣det(P�(z)) − det(AL + �AL)zIL(N−1)I−1

∣
∣
∣ < ζε

∣
∣
∣zIL(N−1)I−1

∣
∣
∣

≤
∣
∣
∣det(AL + �AL)zIL(N−1)I−1

∣
∣
∣ .

The first strict inequality follows because det(P�(z)) is a scalar polynomial with
degree IL(N − 1)I−1 and the leading coefficient det(AL + �AL); the second
inequality holds by the definition of ζε . It implies that det(P�(z)) �= 0 for all z ∈ C

with |z| > Mε . That is to say,

{z : det(P�(z)) = 0} ⊆ {z : |z| ≤ Mε} for all P� ∈ B(P, w, ε),

and 	w,ε(P) is bounded.
To prove the converse, assume that 	w,ε(P) is bounded but there exists a

perturbed tensor polynomial P�̂ ∈ B(P, w, ε) of the form

P�̂(z) = (A0 + �̂A0) + z(A1 + �̂A1) · · · + zL(AL + �̂AL),

for any z ∈ C, where ‖�̂Al‖F ≤ wlε and det(AL + �̂AL) = 0. If wL ε = 0, then
det(AL) = 0 which contradicts our assumption that AL is nonsingular. Thus, we
can assume that wL ε > 0. Moreover, we can also suppose that at least one of the
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coefficients of the scalar polynomial det(P�̂(z)) is nonzero; otherwise 	w,ε(P) =
C, a contradiction. Let βτ be a nonzero coefficient of zτ (τ = 0, 1, . . . , IL(N −
1)I−1 − 1) in the scalar polynomial det(P�̂(z)). The set {C ∈ CTN,I : ‖C‖F ≤
wL ε, det(AL + C) �= 0} is dense in {C ∈ CTN,I : ‖C‖F ≤ wL ε}. There exists a
sequence of tensors {�̂AL,k}k∈N ⊂ CT N,I such that lim

k→∞ �̂AL,k = �̂AL and

det(AL + �̂AL,k) �= 0 and ‖�̂AL,k‖F ≤ wL ε, (k = 1, 2, . . . ).

Define

P̂k(z) = (A0 + �̂A0) + z(A1 + �̂A1) + · · · + zL(AL + �̂AL,k)

and

hk(z) = det(P̂k(z)).

Obviously, P̂k ∈ B(P, w, ε). In particular, any root of hk lies in 	w,ε(P). Denote
the coefficient of zτ in hk by βτ,k . By the continuity, we know that βτ,k → βτ �= 0
as k → ∞. Moreover, since 	w,ε(P) is bounded and the leading coefficient of hk

is det(AL + �̂AL,k), the (IL(N − 1)I−1 − τ )-th elementary symmetric function of
the roots of hk equals to ±βτ,k/ det(AL + �̂AL,k) and is bounded for all k. Note
that βτ,k → βτ �= 0 and det(AL + �̂AL,k) → det(AL + �̂AL) = 0. This is a
contradiction. ��

If the ε-pseudo-spectrum of a tensor polynomial P with respect to w ∈ R
L+1+

is bounded, then the following theorem gives the maximum possible number of
connected components of the pseudo-spectrum of P. It also builds a bridge between
the spectra of P and P�. In the special case N = 2, which has been established in
[8, Theorem 2.3].

Theorem 2.3.4 For a tensor polynomial P as in (2.3.1), if 	w,ε(P) is bounded,
then it has no more than IL(N − 1)I−1 connected components, and any P� ∈
B(P, w, ε) has at least one eigenvalue in each one of these components, with ε ≥ 0
and w ∈ R

L+1+ .
Furthermore, P and P� have the same number of eigenvalues, counting multi-

plicities, in each connected component of 	w,ε(P).

Proof Assume that 	w,ε(P) is bounded. It follows from Theorem 2.3.3 that any
perturbed tensor polynomial P� ∈ B(P, w, ε) of P, of the form

P�(z) = (A0 + �A0) + z(A1 + �A1) · · · + zL(AL + �AL),

for any z ∈ C, must satisfy det(AL + �AL) �= 0. That is the leading coefficient of
the polynomial det(P�(z)) is nonzero. As a consequence, for the tensor polynomial
P�, there are at most LI (N − 1)LI−1 eigenvalues, counting multiplicities and the
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same for every member of the family of tensor polynomials

P�,t (z) = (1 − t)P(z) + tP�(z), t ∈ [0, 1],

for any z ∈ C. Moreover, P�,t belongs to B(P, w, ε) and all of its eigenvalues lie
in 	ε(P).

The coefficients of the scalar polynomial det(P�,t (z)) are continuous functions
of t ∈ [0, 1]. By continuity of the zeros, the eigenvalues of P�,t form a continuous
path from the eigenvalues of P = P�,0 to that of P� = P�,1. Thus, if P has k

eigenvalues (counting multiplicities) in a connected component G of 	w,ε(P) and
its IL(N − 1)I−1 − k remaining eigenvalues are isolated in 	w,ε(P)\G, as for the
eigenvalues of every P�,t , t ∈ [0, 1]. Consequently, P� has exactly k eigenvalues
in G, counting multiplicities. Thus P and P� have the same number of eigenvalues,
counting multiplicities, in each connected component of 	w,ε(P).

Finally, each bounded connected component of 	w,ε(P) contains at least one
eigenvalue of the tensor polynomial P. By the above discussion, it contains at least
one eigenvalue of the perturbed tensor P�. Hence, 	w,ε(P) cannot have more than
IL(N − 1)I−1 connected components. ��

Since the origin lies in 	wL ε(AL) if and only if min‖x‖2=1

∥
∥ALxN−1

∥
∥

2 ≤ wL ε

(see (2.2.3)), we also have the following corollary.

Corollary 2.3.1 For any ε ≥ 0 and w ∈ R
L+1+ , if min‖x‖2=1

∥
∥
∥ALxL−1

∥
∥
∥

2
> wL ε, then

	w,ε(P) consists of no more than IL(N − 1)I−1 bounded connected components,
each containing one or more eigenvalues of the tensor polynomial P.

We also obtain the following corollary for the ε-pseudo-spectrum of a tensor
A ∈ CTN,I .

Corollary 2.3.2 Let ε ≥ 0. For A ∈ CTN,I , its ε-pseudo-spectrum is bounded and
has no more than I (N − 1)I−1 connected components. Moreover, if A ∈ RTN,I ,
then its ε-pseudo-spectrum is symmetric with respect to the real axis.

2.3.2 Backward Errors

For a tensor polynomial P as in (2.3.1), a definition of the normwise backward error
of an approximate eigenpair (λ̃; x̃) of P with respect to w ∈ R

L+1+ is

ηw(λ̃, x̃) := min
{
ε :

(
P(λ̃) + �P(λ̃)

)
x̃N−1 = 0I ,

with �P(z) = �A0 + z�A1 + . . . + zL�AL

for all z ∈ C and ‖�Al‖F ≤ wlε, l = 0, 1, . . . , L} ,
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and the backward error of the approximate eigenvalue λ̃ is characterized by

ηw(λ̃) := min
x̃ �=0I

ηw(λ̃, x̃) = min
‖x̃‖2=1

ηw(λ̃, x̃).

Our first result presents an explicit expression for ηw(λ̃, x̃) and makes precise the
inituition that if the residual r = P(λ̃)x̃N−1 is small, then we have an accurate
approximate eigenpair.

Comparing Definition 2.3.1 with the normwise backward error of an approximate
eigenpair (λ̃; x̃) of P, it is obvious that the ε-pseudo-spectrum can be expressed in
term of the normwise backward error of λ̃ as 	w,ε(P) = {λ̃ ∈ C : ηw(λ̃) ≤ ε}. In
the matrix case where N = 2, this theorem has been established in [6, Lemma 2.2].

Theorem 2.3.5 Let (λ̃; x̃) be an approximate eigenpair of P. Then, the normwise
backward error ηw(λ̃, x̃) is given by

ηw(λ̃, x̃) = ‖r‖2

pw(|λ̃|)‖x̃‖N−1
2

, (2.3.8)

where pw is given in (2.3.3) and r = P(λ̃)x̃N−1.

Proof For any ε ≥ 0 and w ∈ R
L+1+ , according to the definition of the normwise

backward error of an approximate eigenpair (λ̃; x̃) of the tensor polynomial P with
respect to w, there exist some tensor polynomials �P ∈ B(P, w, ε) such that(
P(λ̃) + �P(λ̃)

)
x̃N−1 = 0I . For any z ∈ C, let �P(z) = �A0 + z�A1 · · · +

zL�AL with ‖�Al‖F ≤ wl ε and all l. Then we have

r = P(λ̃)x̃N−1 = −�P(λ̃)x̃N−1 = −
(

�A0x̃N−1 + λ̃�A1x̃N−1 · · · + λ̃L�ALx̃N−1
)

.

It means that

‖r‖2 ≤
(

L∑

l=0

wl|λ̃|l
)

‖x̃‖N−1
2 ε = pw(|λ̃|)‖x̃‖N−1

2 ε.

We see that the right-hand side of (2.3.8) is a lower bound for ηw(λ̃, x̃). This lower
bound is attained by choosing

�P(z) = �A0 + z�A1 · · · + zL�AL,

with z ∈ C, where, for all l,

�Al = − wlε

pw(|λ̃|) sign(λ̃l )r ⊗ x̃
⊗N−1

/‖x̃‖2(N−1)
2 .

Here, sign(λ̃l ) is the sign function defined in (2.3.7) and r = P(λ̃)x̃N−1 =
−�P(λ̃)x̃N−1. ��
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2.3.3 Nearest Irregular Tensor Polynomials

Regularity is a nice property possessed by tensor polynomial eigenvalue problems
in applications. The distance from a regular tensor polynomial to the nearest
irregular one is therefore of great interest. The notion of the ε-pseudo-spectrum
of a polynomial tensor sheds light on this problem.

For a tensor polynomialP as in (2.3.1), suppose that P(z) is regular. The distance
from P to its nearest irregular tensor polynomial with respect to w ∈ R

L+1+ can be
defined as

δw(P) = min{ε : det(P(z) + �P(z)) = 0

with �P(z) = �A0 + z�A1 + . . . + zL�AL

for all z ∈ C and ‖�Al‖F ≤ wlε, l = 0, 1, . . . , L} .

(2.3.9)

From Definition 2.3.1 of 	w,ε(P), it is evident that

δw(P) ≥ min{ε : 	w,ε(P) = C}.

In general, the inequality can be strict. As an immediate consequence of Theo-
rem 2.3.1, a lower bound of δw(P ) is given as follows,

δw(P) ≥ max
λ∈C

min‖x‖2=1

∥
∥P(λ)xN−1

∥
∥

2

pw(|λ|) .

2.4 Further Discussions

In this section, we illustrate our theory via an example, conclude our main results
and list some problems for future research.

2.4.1 An Example

According to the ε-pseudo-spectrum of any given tensor polynomial with respect to
the weights w ∈ R

L+1+ , we have

	w,ε(P) =
{

λ ∈ C : min‖x‖2=1

∥
∥
∥P(λ)xN−1

∥
∥
∥

2
≤ pw(|λ|)ε

}

.
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Let P(z) = A − zB and w = (1, 0)�. Then the ε-pseudo-spectrum of the tensor
generalized eigenvalue problem with the pair {A,B} can be expressed as

	ε(A,B) =
{

λ ∈ C : min‖x‖2=1

∥
∥
∥(A − λB)xN−1

∥
∥
∥

2
≤ ε

}

.

Given A,B ∈ CTN,I , the pair {A,B} is a diagonalizable tensor pair (see [15,
Section 2.3]), if there exist two nonsingular matrices Q1, Q2 ∈ CI×I such that

S = A ×1 Q1 ×2 Q2 · · · ×N Q2, T = B ×1 Q1 ×2 Q2 · · · ×N Q2

are diagonal. Furthermore, if Q1 and Q2 are also unitary, then the pair {A,B} is
called a unitarily diagonalizable tensor pair. Let the main diagonal entries of S and
T be {s1, s2, . . . , sI } and {t1, t2, . . . , tI }, respectively.

For similarity, we suppose that all ti are nonzero with all i. For the unitary
diagonalizable tensor pair {A,B} and y = Q−1

2 x, one has SyN−1 = (
A ×1 Q1 ×2

Q2 · · · ×N Q2
)
(Q−1

2 x)N−1 = Q1(AxN−1) and TyN−1 = Q1(BxN−1). It follows
that the corresponding ε-pseudo-spectrum can be represented as

	ε(A,B) =
{

λ ∈ C : min‖x‖2=1

∥
∥
∥(A − λB)xN−1

∥
∥
∥

2
≤ ε

}

=
{

λ ∈ C : min‖y‖2=1

∥
∥
∥(S − λT)yN−1

∥
∥
∥

2
≤ ε

}

, with y = Q−1
2 x

=
{

λ ∈ C : min‖y‖2=1

∥
∥
∥(D − λI)yN−1

∥
∥
∥

2
≤ ε

}

,

where D is a diagonal tensor with main diagonal entries di = si/ti with all i.
According to Proposition 2.2.2, we have

	ε(A,B) = {d1, d2, . . . , dI } + �
ρ−1

N,I ε
.

Next, we illustrate the ε-pseudo-spectrum of tensor generalized eigenvalue problem
with a unitary diagonalizable tensor pair.

Let (N, I) = (3, 2), (s1, s2) = (1 + ι,−1 − ι) and (t1, t2) = (1, 1). For different
ε > 0, the generalized eigenvalues of the tensor pair {A + �A,B} are displayed
in Fig. 2.1, where Q1, Q2 ∈ C2×2 are two randomized unitary matrices and �A ∈
CT3,2 satisfies ‖�A‖F ≤ ε.
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Fig. 2.1 Illustration for the ε-pseudo-spectrum of tensor generalized eigenvalue problem with the
unitary diagonalizable tensor pair {A,B}. For a given ε, the number of samples is 20. Red stars
represent the generalized eigenvalues of the tensor pair {A,B}, blue dots for the pseudo generalized
eigenvalues and yellow cycles for the boundary of 	ε(A,B)

2.4.2 Conclusion and Remarks

Although we extend the pseudo-spectrum theory from matrices to tensors, there are
a few important distinctions between matrix and tensor pseudo-spectra.

1. In the literature of matrix pseudo-spectra, there are various equivalent definitions
[2, 3]. In this chapter, we only generalize one of their natural extensions by the
Frobenius norm. It is not clear whether other forms of equivalent definitions can
be extended to the tensor case.

2. Many statements of the tensor pseudo-spectra involve the scalar ρN,I (first
mentioned in Corollary 2.2.1) where N is the degree of the associated tensor
and I is the dimension of the underlying space. In the matrix case, the scalar
ρN,I = 1 is independent of I .

3. The computation and display of matrix pseudospectra have been well-studied,
see for example [3, 22–25] and the references therein. In particular, the boundary
structure of the matrix pseudo-spectra is reasonably well-understood, paving the
way in their computation and visualization. There is a lack in computational tools
for locating the boundaries of tensor pseudo-spectra. One is limited to computing
points in the tensor pseudo-spectra via randomized techniques. How to efficiently
compute and visualize the tensor pseudo-spectra is still an open problem.

4. We present the pseudospectrum for generalized tensor eigenvalues, and a set to
locate this pseudospectrum [26].
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Malyshev and Sadkane [27] investigate a component-wise ε-pseudo-spectrum
of a matrix A ∈ RI×I and discuss how to compute it. Rump [28] characterizes
the structured (complex and real) ε-pseudo-spectrum for a number of structures
and points that there is no significant difference to the usual, unstructured ε-
pseudo-spectrum. Tisseur and Higham [6] discuss a structured ε-pseudo-spectrum
for matrix polynomial eigenvalue problems.

Let I ∈ CTN,I be the entire one tensor, that is, Ii1i2...iN = 1 for all in and n.

Definition 2.4.1 Let ε ≥ 0. The component-wise ε-pseudo-spectrum of A ∈
CTN,I is defined as

	c
ε(A) =

{
λ ∈ C : (A + E)xN−1 = λ x[N−1] for some E ∈ CTN,I

with |E| ≤ εI and nonzero vectors x ∈ C
I
}

,

where |A| means the modulus of A, that is, all entries of |A| are |ai1i2...iN | for all in
and n. Here, |E| ≤ εI means the modulus of each entries of E is less or equal to ε.

If ε = 0, then the component-wise 0-pseudo-spectrum equals to 	(A).

In order to define the component-wise ε-pseudo-spectrum of P with respect to
w ∈ R

L+1+ . For a tensor polynomial P as in (2.3.1), we set

Bc(P, w, ε) =
{
P + �P : �P(z) = �A0 + z�A1 + . . . + zL�AL

for all z ∈ C and |�Al | ≤ wlε I, l = 0, 1, . . . , L} .

Definition 2.4.2 For a tensor polynomialP as in (2.3.1) and ε > 0, the component-
wise ε-pseudo-spectrum of the tensor polynomial P with respect to w ∈ R

L+1+ is
defined as

	c
w,ε(P) = {λ ∈ C : det(P�(λ)) = 0 and P� ∈ Bc(P, w, ε)}

= {λ ∈ C : λ is an eigenvalue of P� ∈ Bc(P, w, ε)}.

We introduce the structured ε-pseudo-spectrum of any A ∈ CTN,I in the
Frobenius norm (see Definition 2.2.3). We now define the structured ε-pseudo-
spectrum of any tensor polynomial with respect to nonnegative weights in the
Frobenius norm.

Let S be a subspace of CTN,I . For a tensor polynomial P as in (2.3.1), we define

BS(P, w, ε) =
{
P + �P : �P(z) = �A0 + z�A1 + . . . + zL�AL

for all z ∈ C and ‖�Al‖F ≤ wlε, l = 0, 1, . . . , L} ,
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and

BS
c (P, w, ε) =

{
P + �P : �P(z) = �A0 + z�A1 + . . . + zL�AL

for all z ∈ C and |�Al | ≤ wlεI, l = 0, 1, . . . , L} ,

with �Al ∈ S and w ∈ R
L+1+ .

Definition 2.4.3 For a tensor polynomialP as in (2.3.1) and ε ≥ 0, the structured ε-
pseudo-spectrum of the tensor polynomial P with respect to w ∈ R

L+1+ is defined as

	S
w,ε(P) = {λ ∈ C : det(P�(λ)) = 0 and P� ∈ BS(P, w, ε)}

= {λ ∈ C : λ is an eigenvalue of P� ∈ BS(P, w, ε)}.

Definition 2.4.4 For a tensor polynomial P as in (2.3.1) and ε ≥ 0, the structured
component-wise ε-pseudo-spectrum of the tensor polynomial P with respect to w ∈
R

L+1+ is defined as

	c,S
w,ε(P) = {λ ∈ C : det(P�(λ)) = 0 and P� ∈ BS

c (P, w, ε)}
= {λ ∈ C : λ is an eigenvalue of P� ∈ BS

c (P, w, ε)}.
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Chapter 3
Perturbation Theory

3.1 Preliminaries

Backward errors and condition numbers are important in modern numerical linear
algebra. If a numerical algorithm is backward stable, then the product of the
condition number and the backward error is the first order asymptotic error bound
of the solution. We recommend the monographs Stewart and Sun [1], Golub and
Van Loan [2], Wilkinson [3], and Kågström and Ruhe [4] for the background of
the matrix eigenvalue problem. These consist of the matrix standard eigenvalue
problem, the matrix generalized eigenvalue problem and the matrix polynomial
eigenvalue problem. The perturbation theory of eigenvalue problems for matrices
attracts extensive attention of many researchers, and the interested readers are
referred to [1, 3, 5–7].

Similarly, the eigenvalue problems for tensors in this chapter consist of the tensor
standard eigenvalue problem (i.e., the eigenvalue problem and the E-eigenvalue
problem), the tensor generalized eigenvalue problem and the tensor polynomial
eigenvalue problem. In Sect. 1.3.1, we introduce the definition of the real symmetric
tensor standard eigenvalue problem, i.e., (H-) eigenpairs, and E- or Z-eigenpairs and
the numerical algorithms for the computation of H- and Z-eigenpairs. A systematic
study of the perturbation theory of the eigenvalue problem for tensors appears to be
lacking in the literature. The main purpose is to bridge this gap by considering the
first-order perturbation bound of the eigenvalue problem for tensors with relative
normwise or componentwise perturbations.
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3.1.1 Definitions

In 2005, the definition of symmetric tensors are introduced by Qi [8] and Lim [9].
Now we introduce the definition of mode-symmetric tensors, as a generalization of
symmetric tensors. When N = 2, both symmetric and mode-symmetric tensors are
reduced to symmetric matrices.

Definition 3.1.1 For all in and n, if the entries of A ∈ RTN,I satisfy the following
formulae

ai1i2...iN = ai2i3...iN i1 = · · · = aiN i1...iN−1 ,

then A is called mode-symmetric.

Suppose that a, b, c ∈ RI have unit norms and are orthogonal to each other. If A ∈
RT3,I is given by

A = a ⊗ b ⊗ c + b ⊗ c ⊗ a + c ⊗ a ⊗ b,

then A is mode-symmetric [10]. Sometimes, we call A a cyclically symmetric
tensor [11].

For a given n, we define the mode-n E-eigenpairs of A ∈ RTN,I , which is a
generalization of the E-eigenpairs of the real symmetric tensors. In the following
definition, if x∗x is replaced by x�x, this definition extends that of Qi [8].

Definition 3.1.2 Assume that A ∈ RTN,I . For a given n, if there exist a unitary
vector xn ∈ CI and λn ∈ C such that

A ×1 x�
n · · · ×n−1 x�

n ×n+1 x�
n · · · ×N x�

n = λnxn, (3.1.1)

then (λn; xn) is called a mode-n E-eigenpair of A.
If xn ∈ R

I and λn ∈ R, then (λn; xn) is called a mode-n Z-eigenpair of A.
Moreover, the mode-n E-and Z-spectra of A are defined, respectively, as

En(A) = {λ ∈ C : λ is a mode-n E-eigenvalue of A},
Zn(A) = {λ ∈ C : λ is a mode-n Z-eigenvalue of A}.

For a given n, we also define the mode-n eigenpairs of A ∈ RTN,I , which are
the generalization of the eigenpairs of the real symmetric tensors [8].

Definition 3.1.3 Suppose that A ∈ RTN,I . For a given n, if there exist a nonzero
vector xn ∈ CI and λn ∈ C such that

A ×1 x�
n · · · ×n−1 x�

n ×n+1 x�
n · · · ×N x�

n = λnx[N−1]
n , (3.1.2)

then (λn; xn) is called a mode-n eigenpair of A.
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If xn ∈ RI and λn ∈ R, then (λn; xn) is called a mode-n H-eigenpair of A.
Moreover, the mode-n spectrum 	n(A) of A is defined as

	n(A) = {λ ∈ C : λ is a mode-n eigenvalue of A}.

The mode-n spectral radius ρn(A) is defined as max{|λ| : λ ∈ 	n(A)}. The spectral
radius of A is denoted by ρ(A) = max{ρ1(A), ρ2(A), . . . , ρN (A)}.

For all n, the mode-n eigenvectors of A ∈ RTN,I can be viewed as the
generalization of the left and right eigenvectors of A ∈ R

I×I . Some properties
of the mode-n eigenpairs of A are presented in the following:

(a) Given symmetric or mode-symmetric A ∈ RTN,I and x ∈ CI , we have the
following equalities

A ×2 x� ×3 x� · · · ×N x� = · · · = A ×1 x� · · · ×n−1 x� ×n+1 x� · · · ×N x�

= · · · = A ×1 x� ×2 x� · · · ×N−1 x�.

(b) Generally speaking, for all n, 	n(A) are different sets. For any m �= n,
ρm(A) �= ρn(A). Similar results for the mode-n E- and Z-spectra of A ∈
RTN,I hold.

(c) Let A be symmetric or mode-symmetric. If (λ; x) is a mode-n eigenpair of A,
then for all m and n, (λ; x) is a mode-m eigenpair of A. Furthermore, 	n(A)

are the same set with all n, denoted by 	(A).

We illustrate why (a) and (c) hold. Without loss of generality, let N = 4. We have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A ×2 x� ×3 x� ×4 x�)i =
I∑

jkl=1

aijklxj xkxl,

(A ×1 x� ×3 x� ×4 x�)j =
I∑

ikl=1

aijklxixkxl =
I∑

kli=1

ajklixkxlxi,

(A ×1 x� ×2 x� ×4 x�)k =
I∑

ij l=1

aijklxixkxl =
I∑

lij=1

aklij xkxixj ,

(A ×1 x� ×2 x� ×3 x�)l =
I∑

ijk=1

aijklxixj xk =
I∑

ijk=1

alijkxixj xk.

According to Definitions 3.1.1 and 3.1.3, we have

aijkl = ajkli = aklij = alijk,
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Table 3.1 All approximated mode-n spectral radii of the positive tensors A, B and C

The mode-1 spectral radius The mode-2 spectral radius The mode-3 spectral radius

A 4.7284 4.7340 4.7539

B 4.7686 4.7686 4.7686

C 3.6167 3.6167 3.6167

for all i, j , k and l, then (a) and (c) hold for the case of symmetric or mode-
symmetric tensors. We now illustrate (b) via the following example.

Example 3.1.1 ([12]) Consider the positive tensor A ∈ R3×3×3 with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a111 = 0.4333, a121 = 0.4278, a131 = 0.4140, a211 = 0.8154, a221 = 0.0199,

a231 = 0.5598, a311 = 0.0643, a321 = 0.3815, a331 = 0.8834, a112 = 0.4866,

a122 = 0.8087, a132 = 0.2073, a212 = 0.7641, a222 = 0.9924, a232 = 0.8752,

a312 = 0.6708, a322 = 0.8296, a332 = 0.1325, a113 = 0.3871, a123 = 0.0769,

a133 = 0.3151, a213 = 0.1355, a223 = 0.7727, a233 = 0.4089, a313 = 0.9715,

a323 = 0.7726, a333 = 0.5526.

According to Definition 3.1.1, we define the mode-symmetric tensor B ∈ RT3,3 in
the following strategy: choose two tensors P,Q ∈ RT3,3 such that

pijk = ajki, qijk = akij , bijk = aijk + pijk + qijk

3
,

with i, j, k = 1, 2, 3. Consider the symmetric tensor C ∈ RT3,3 with

⎧
⎨

⎩

c111 = 0.0517, c112 = 0.3579, c113 = 0.5298, c122 = 0.7544, c123 = 0.2156,

c133 = 0.3612, c222 = 0.3943, c223 = 0.0146, c233 = 0.6718, c333 = 0.9723.

Since the entries of A, B and C are positive, for n = 1, 2, 3, we can compute
all approximated mode-n spectral radii of these three tensors via the NQZ method,
which are shown in Table 3.1.

For a given tensorA ∈ RTN,I , if (λ; x) is the mode-1 eigenpair ofA, then (3.1.2)
in Definition 3.1.3 can be simplified as AxN−1 = λx[N−1]. If A is symmetric, then
Qi [8] deduces some properties of the mode-1 eigenpairs.

Qi [8] defines the determinant of a symmetric tensor A ∈ RTN,I . The following
definition extends Hu et al. [13] and we name it as the mode-n determinant of A ∈
RTN,I with a given n.

Definition 3.1.4 ([13, Definition 1.2]) For a given n, the determinant of N th-
order I -dimensional real tensors denoted by DETn, is defined as the irreducible
polynomial with variables vi1...iN ∈ R for all in and n, such that it is the resultant of
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the polynomial system

A ×1 x� · · · ×n−1 x� ×n+1 x� · · · ×N x� = 0I ,

where V ∈ RTN,I .
Moreover, the value of the mode-n determinant of a given tensor A ∈ RTN,I is

denoted by detn(A), and is defined as the evaluation of DETn at the point {vi1...iN =
ai1...iN : in = 1, 2, . . . , I ; n = 1, 2, . . . , N}. For a given A ∈ RTN,I , if detn(A) �=
0, then A is said to be mode-n nonsingular.

When n = 1, Hu et al. [13, Corollary 6.5] derive that

det1(A) =
∏

λi∈	1(A)

λi .

According to Definitions 3.1.3 and 3.1.4, we can derive the more general result for
all n:

detn(A) =
∏

λi∈	n(A)

λi .

Chang et al. [14] consider the tensor generalized eigenvalue problem, in which
the tensors belong to RTN,I . Note that the tensor generalized eigenvalue problem
is a special case of the tensor polynomial eigenvalue problem. We introduce the
definition of a tensor polynomial, determined by some tensors in RTN,I .

For Al ∈ RTN,I with all l, the tensor polynomial P, determined by the tensor
tuple {A0,A2, . . . ,AL}, is defined as

P(z) = A0 + zA1 + · · · + zLAL, (3.1.3)

for all z ∈ C.

Definition 3.1.5 Suppose that P is a tensor polynomial defined in (3.1.3). For a
given n, if there exist a nonzero vector xn ∈ CI and λn ∈ C such that

P(λn) ×1 x�
n · · · ×n−1 x�

n ×n+1 x�
n · · · ×N x�

n = 0I

then (λn; xn) is called a mode-n eigenpair of P.
If xn ∈ RI and λn ∈ R, then (λn; xn) is called a mode-n H-eigenpair of P.

Meanwhile, the mode-n spectrum of P is denoted by

	n(P) = {λ ∈ C : detn(P(λ)) = 0}
= {λ ∈ C : λ is a mode-n eigenvalue of P}.
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Remark 3.1.1 In general, for all n, 	n(P) are different. If all tensors Al ∈ RTN,I

are symmetric or mode-symmetric, then 	n(P) are identical, denoted by 	(P).
Here, (λn; xn) is called as an eigenpair of P.

Ding and Wei [15] introduce the regular tensor pair {A,B}, as a generalization
of the regular matrix pair [1], where A,B ∈ RTN,I . In general, according to
Definition 3.1.4 and the definition of P, we give the definition of the mode-n regular
tensor tuple {A0,A2, . . . ,AL}, where Al ∈ RTN,I with all l and a given n.

Definition 3.1.6 Suppose that P is a tensor polynomial defined in (3.1.3). For a
given n, the tensor tuple {A0,A1, . . . ,AL} is mode-n singular if detn(P(λ)) = 0
for all λ ∈ C. Otherwise the tensor tuple {A0,A1, . . . ,AL} is said to be mode-n
regular.

Furthermore, we say that the tensor polynomialP is mode-n singular (or mode-n
regular) if the corresponding tensor tuple {A0,A1, . . . ,AL} is mode-n singular (or
mode-n regular).

We suppose that the tensor tuple {A0,A1, . . . ,AL} is mode-n regular with a
given n, where Al ∈ RTN,I with all l. Then according to Definition 3.1.6, there
exists a λ̂ ∈ C such that detn(P(λ̂)) �= 0. Hence we can select another tensor tuple{
Ã0, Ã1, . . . , ÃL

}
such that ÃL = ∑L

l=0 λ̃lAl and there is a one-to-one map

between 	n(P) and 	n(P̃), where detn(ÃL) �= 0 and P̃(λ) = Ã0 + λÃ1 + · · · +
+λLÃL.

Thus, for the mode-n regular tensor tuple {A0,A1, . . . ,AL}, we can assume,
without loss of generality, that AL is nonsingular. For all n, all the mode-n spectra
of P, determined by {A0,A1, . . . ,AL}, are finite subsets of C.

For a given tensor tuple {A0,A1, . . . ,AL}, where Al ∈ RTN,I with all l, we
can also define another tensor polynomial P

P(α, β) = αLAL + αL−1βAL−1 + · · · + αβL−1A1 + βLA0,

for all α, β ∈ C.
It is obvious that P(·, ·) is a homogeneous polynomial on α and β. The

relationship between P(λ) and P(α, β) is listed below. If β �= 0, then P(α, β) =
βLP(α/β); and if α �= 0, then P(α, β) = αLP̂(β/α), where

P̂
(

β

α

)

= AL + β

α
AL−1 + · · · +

(
β

α

)L−1

A1 +
(

β

α

)L

A0.

If (λn, xn) is a mode-n eigenpair of the tensor polynomialP, then, we can choose
a pair {αn; βn} such that

P(αn, βn) ×1 x�
n · · · ×n−1 x�

n ×n+1 x�
n · · · ×N x�

n = 0I
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and

λn =
{

αn/βn, βn �= 0,

∞, βn = 0.

with {αn, βn} �= {0, 0}.
In Sect. 1.3.2, we introduce the definition of the singular tuples (i.e., singular

values and associated mode-n singular vectors) of A ∈ RI1×I2×···×IN . The restricted
singular tuples (i.e., restricted singular values and associated restricted mode-n
singular vectors) of A ∈ RI1×I2×···×IN are defined below.

Definition 3.1.7 Let Bn ∈ RIn×In be symmetric positive definite matrices and
xn ∈ RIn satisfy x�

n Bnxn = 1 with all n. For a given A ∈ RI1×I2×···×IN and
σ ∈ R, if (σ ; x1, x2, . . . , xN) is a solution of the nonlinear equations

F(x1, x2, . . . , xN)−n = σBnxn, (3.1.4)

where

F(x1, x2, . . . , xN)−n = A ×1 x�
1 · · · ×n−1 x�

n−1 ×n+1 x�
n+1 · · · ×N x�

N,

then the unit vector xn and σ are called the restricted mode-n singular vector and a
restricted singular value of A, respectively.

3.1.2 Symmetric and Mode-Symmetric Embeddings

Well known relationship exists between the singular value decomposition of
A ∈ R

I×J and the Schur decomposition of its symmetric embedding sym(A) =
([0I×I A; A� 0J×J ]) (see [2, Chapter 8.6]). For a general tensor A ∈ R

I1×I2×···×IN ,
Ragnarsson et al. [16] derive a method for obtaining a symmetric embedding
sym(A) ∈ RT

N,Î
from A with Î = I1 + I2 + · · · + IN .

We now consider how to obtain a mode-symmetric embedding msym(A) ∈
RT

N,Î
from A ∈ R

I1×I2×···×IN . The number of the nonzero entries of msym(A) is
1/(N − 1)! of that of sym(A).

For a given A ∈ R
I1×I2×···×IN , we define An ∈ R

I1×I2×···×IN as follows:

(A1)i1,i2...iN = ai1i2...iN , (A2)i1i2...iN = ai2 ...iN i1 , . . . , (AN)i1i2 ...iN = aiN i1...iN−1 .
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For all n, let Kn = I1 + I2 + · · · + In. Then the nonzero entries of msym(A) ∈
RTN,KN satisfy

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

msym(A)[1 : K1|K1 + 1 : K2| . . . |KN−1 + 1 : KN ] = A1,

msym(A)[K1 + 1 : K2| . . . |KN−1 + 1 : KN |1 : K1] = A2,

...
...

msym(A)[KN−1 + 1 : KN |1 : K1| . . . |KN−2 + 1 : KN−1] = AN.

According to Definition 3.1.1, msym(A) is mode-symmetric. When N = 3,
msym(A) is displayed in Fig. 3.1.

Given N nonzero vectors xn ∈ CIn with all n, let x = (x1, x2, . . . , xN). Then

msym(A)xN = NA ×1 x�
1 ×2 x�

2 · · · ×N x�
N,

and

msym(A)xN−1 =

⎛

⎜
⎜
⎜
⎝

A ×2 x�
2 ×3 x�

3 · · · ×N x�
N

A ×1 x�
1 ×3 x�

3 · · · ×N x�
N

...

A ×1 x�
1 ×2 x�

2 · · · ×N−1 x�
N−1

⎞

⎟
⎟
⎟
⎠

.

Fig. 3.1 msym(A); unlabeled parts are zero elements
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By some manipulations, we have

∂msym(A)xN

∂x
= Nmsym(A)xN−1,

∂2msym(A)xN

∂x2
= N(N − 1)msym(A)xN−2,

with

msym(A)xN−2 = msym(A) ×3 x� · · · ×N x�.

The interested readers are referred to [16, 17] for other details of sym(A)xN and
sym(A)xN−1.

3.2 Perturbation Bounds of Z- and H-Eigenvalues

We first characterize the properties of eigenvalues and Z-eigenvalues of a mode-
symmetric tensor A ∈ RTN,I . Based on these properties and the perturbation
of simple eigenvalues of A ∈ RI×I , we then investigate perturbation bounds
of an algebraically simple eigenvalue and Z-eigenvalue of A. Lastly, for a given
A ∈ RI1×I2×···×IN , based on the symmetric or mode-symmetric embedding fromA,
perturbation bounds of an algebraically simple singular value (or restricted singular
value) are obtained.

Wilkinson [3], Demmel [18], and Stewart et al. [1] study the condition number
of a simple eigenvalue of A ∈ CI×I .

Lemma 3.2.1 ([18, Theorem 4.4], [1, Theorem 2.3]) Let λ be a simple eigenvalue
of A ∈ CI×I with the right and left eigenvectors x ∈ CI and y ∈ CI , respectively,
normalized so that ‖x‖2 = ‖y‖2 = 1. Let λ + δλ be the corresponding eigenvalue
of A + δA. Then

δλ = y∗δAx
y∗x

+ O(‖δA‖2
2),

or

|δλ| ≤ ‖δA‖2

|y∗x| + O(‖δA‖2
2) = sec �(y, x)‖δA‖2 + O(‖δA‖2

2),

where �(y, x) is the acute angle between y and x and ‖A‖2 is the largest singular
value of A. In other words, sec �(y, x) = 1/|y∗x| is a condition number of λ.
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3.2.1 Properties of Eigenvalues and Z-Eigenvalues

In 2005, Qi [8] derives the basic properties of eigenvalues and Z-eigenvalues of a
symmetric tensor A ∈ RTN,I . Those results also hold with any mode-symmetric
tensor. In order to prove Theorems 3.2.4 and 3.2.6, we need the following theorem.

Theorem 3.2.1 Suppose that A ∈ RTN,I is mode-symmetric with an even N .

(a) A always has H-eigenvalues. A is positive definite (positive semi-definite) if
and only if all of its H-eigenvalues are positive (nonnegative).

(b) A always has Z-eigenvalues. A is positive definite (positive semi-definite) if
and only if all of its Z-eigenvalues are positive (nonnegative).

Proof We see (3.1.2) is the optimality condition of

max

{

AxN :
I∑

i=1

xN
i = 1, x ∈ R

I

}

(3.2.1)

and

min

{

AxN :
I∑

i=1

xN
i = 1, x ∈ R

I

}

. (3.2.2)

Since the feasible set is compact and the objective function is continuous, the global
maximizer and minimizer always exist. This shows that (3.1.2) has real solutions,
i.e., A always has H-eigenvalues. Since A is positive definite (resp. positive semi-
definite) if and only if the optimal value of (3.2.1) is positive (resp. nonnegative),
we draw the second result in (a).

The proof of (b) is similar. ��
Chang et al. [14] define the geometric multiplicity of an eigenvalue λ. Hu et al.

[13] consider the algebraic multiplicity of an eigenvalue λ. Similarly, we define
the geometric and algebraic multiplicities of a Z-eigenvalue. A Z-eigenvalue is
algebraically simple if its algebraic multiplicity is one. This definition is applicable
to a tensor generalized eigenvalue, an eigenvalue, a tensor singular value and a
tensor restricted singular value.

Next, we introduce a basic result of algebraic function theory [19].

Lemma 3.2.2 Let

f (x, y) = yL + pL−1(x)yL−1 + · · · + p1(x)y + p0(x),

where pt (x) with t = 0, 1, . . . , L − 1 is a polynomial respect to x. For a given
x ∈ C, the nonlinear equation f (x, y) = 0 has L roots, denoted by yt (x)

with t = 1, 2, . . . , L. Specially, the roots of f (0, y) = 0 are denoted by yt(0),
respectively.
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Suppose that yt (0) is a single root of f (0, y) = 0. Then there exists a positive
scalar δt such that f (x, y) = 0 has a single root satisfying

yt (x) = yt (0) + pt1x + pt2x
2 + . . . , (3.2.3)

and the right-hand side of (3.2.3) is convergent with |x| < δt .

For a symmetric tensor A ∈ RTN,I and all nonzero vectors x ∈ RI , we have

f2(x) = AxN

‖x‖N
2

.

Theorem 3.2.2 Assume that (λ∗; x∗) is an E-eigenpair of the symmetric tensor
A ∈ RTN,I .

(a) If (λ∗; x∗) is a Z-eigenpair of A, then for a small perturbation δx ∈ RI , we
have

f2(x∗ + δx) = f2(x∗) + O(‖δx‖2
2) = λ∗ + O(‖δx‖2

2).

(b) If λ∗ ∈ C is an algebraically simple E-eigenvalue of A, then for any symmetric
tensor B ∈ RTN,I , there exists an algebraically simple E-eigenvalue λ̂∗ ∈ C

of A + μB such that λ̂∗ = λ∗ + O(μ), where μ ∈ R satisfies |μ| ≤ ε with a
sufficiently small ε > 0.

Proof The proof of the first part can be found in [20, Theorem 4.1]. In following,
we prove the second part.

Since N is even, let N = 2K . Define E ∈ RTN,I as ei1i2...,iN =
δi1i2δi3i4 . . . δi2K−1i2K , where

δij =
{

1, if i = j ;
0, if i �= j.

According to [8, Theorem 2], the E-eigenvalues λ of the symmetric tensor A
satisfies det(A−λE) = 0. Let φ(z) = det(A− zE). If λ∗ is an algebraically simple
E-eigenvalue of A, then φ(λ∗) = det(A − λ∗E) = 0 and φ′(λ∗) = dφ

dλ
|λ=λ∗ = 0.

Similarly, we define φμ(z) = det(zE − A − μB). The degree of φμ(z) in z is
equal to that of φ(z), and the coefficients of φμ(z) are polynomials in μ. According
to Lemma 3.2.2, there exists a simple root λ̂∗ of φμ(z) such that

λ̂∗ = λ∗ + O(μ),

where μ ∈ R satisfies |μ| ≤ ε with a sufficiently small ε > 0. ��
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Let A ∈ RTN,I be symmetric with an even N , and ‖x‖N
N = xN

1 + xN
2 + · · ·+ xN

I

with all nonzero vectors x ∈ RI , we define

fN(x) = AxN

‖x‖N
N

.

Theorem 3.2.3 Suppose that A ∈ RTN,I is symmetric with an even N . Let (λ∗; x∗)
be an eigenpair of A.

(a) If (λ∗; x∗) is an H-eigenpair, then for a small perturbation δx, we have

fN(x∗ + δx) = fN(x∗) + O(‖δx‖2
2) = λ∗ + O(‖δx‖2

2).

(b) If λ∗ is an algebraically simple eigenvalue and B ∈ RTN,I is symmetric, then
there exists an algebraically simple eigenvalue λ̃∗ of A + μB such that λ̃∗ =
λ∗ + O(μ), where real ε satisfies |μ| ≤ ε with a sufficiently small ε > 0.

Proof To prove part (a), we consider the first-order Taylor expansion of f (x) at
x = x0:

f (x) = f (x0) + (x − x0)
�∇f (x0) + O(‖x − x0‖2

2),

where f : RI → R is continuously differentiable and

∇f (x) = (∂f/∂x1, ∂f/∂x2, . . . , ∂f/∂xI )
�.

Since (λ∗; x∗) is an H-eigenpair of A, then

fN (x∗) = λ∗ = AxN∗
‖x∗‖N

N

.

Hence

fN(x∗ + δx) = fN(x∗) + δx�∇fN(x∗) + O(‖δx‖2
2).

Since

∇fN(x∗) = N

‖x∗‖N
N

(
AxN−1∗ − fN(x∗)x[N−1]∗

)
= 0I ,

Part (a) has been proved.
Part (b) is similar to part (b) of Theorem 3.2.2, from the properties of the

characteristic polynomial of A and Lemma 3.2.2. ��
Note that Theorems 3.2.2 and 3.2.3 are also valid for real mode-symmetric

tensors.
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3.2.2 Algebraically Simple Z-Eigenvalues

It is observed [21] that the complex E-eigenpairs of the symmetric tensor A ∈
RTN,I form an equivalence class under a multiplicative transformation [22]. If
(λ; x) is an E-eigenpair of A and y = eιϕx with ϕ ∈ (−π, π], then y∗y = x∗x = 1
and

AyN−1 = eι(N−1)ϕAxN−1 = eι(N−1)ϕλx = eι(N−2)ϕλy. (3.2.4)

Therefore (eι(N−2)ϕλ; eιϕx) is also an E-eigenpair of A for any ϕ ∈ R. We can
choose ϕ∗ ∈ (−π, π] such that eι(N−2)ϕ∗λ ∈ R. We next consider the perturbation
bounds of a Z-eigenvalue of any symmetric or mode-symmetric tensor A ∈ RTN,I .

Theorem 3.2.4 Let A,B ∈ RTN,I be mode-symmetric, ε ∈ R and (λ; x) be an
algebraically simple Z-eigenpair of A. Then there exist ε0 > 0 and an analytic
function λ(ε) with |ε| ≤ ε0 such that

λ(0) = λ, λ′(0) = dλ

dε

∣
∣
∣
∣
ε=0

= BxN,

where x�x = 1. Therefore, λ(ε) is an algebraically simple Z-eigenvalue of A+ εB
over |ε| ≤ ε0, and

λ(ε) = λ + εBxN + O(ε2).

Proof When A is symmetric, we know that A always has Z-eigenvalues [8,
Theorem 5]. This also holds when A is mode-symmetric (see Theorem 3.2.1).

According to [8], the E-characteristic polynomial of A + εB is

ϕε(z) = det(zE − A − εB).

It is obvious that ϕε(z) is an analytic function with respect to ε and z. Define Dr :=
{z ∈ C : |z − λ| ≤ r}. Let r be sufficiently small such that Z(A) ∩ Dr = {λ}.
Denote the boundary of Dr as ∂Dr . Then

min
z∈∂Dr

|ϕ0(z)| = γ > 0.

Since ϕε(z) is a continuous function of ε, there exists ε0 > 0, such that for all ε

with |ε| ≤ ε0, ϕε(z) has only one zero point in Dr and

min
z∈∂Dr , |ε|≤ε0

|ϕε(z)| > 0.
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It follows from the Residue theorem [23] that the zero point λ(ε) of ϕε(z) in Dr

can be represented as λ(ε) = 1
2π

∮
∂Dr

zϕ′
ε(z)

ϕε(z)
dz, where ϕ′

ε(z) = dϕε(z)/dz.

Both zϕ′
ε(z)

ϕε(z)
and d

dz

(
zϕ′

ε(z)

ϕε(z)

)
are continuous on ∂Dr , by the differential and

integral order exchange theorem, λ(ε) is an analytic function, if |ε| ≤ ε0. Hence

λ(ε) = λ(0) + λ′(0)ε + O(ε2), λ(0) = λ, |ε| ≤ ε0.

For an algebraically simple Z-eigenvalue λ of A, there exist x1, x2 ∈ R
I such

that

AxN−1
i = λxi , x�

i xi = 1, i = 1, 2.

If x1 = cx2, then c satisfies that c2 = 1 and cN−2 = 1. In this case, we can see that
x1 and x2 are the same vector. Hence we define

δ = min{‖y − x‖2 : y and x are the different eigenvectors associated with λ}.

Then over {z ∈ CI : ‖z − x‖2 < δ}, there exists a unique eigenvector x of A
associated with λ. (For an algebraically simple Z-eigenvalue λ, if its geometric
multiplicity is also 1, then set δ ≤ ε0.)

For an algebraically simple Z-eigenvalueλ(ε) of A+εB, since λ(ε) is an analytic
function with |ε| ≤ ε0, there exists δ̃ = min{δ, ε0} such that ‖x(ε) − x‖2 < δ̃ and
x(ε) is the unique eigenvector of A+εB corresponding to λ(ε). According to results
on algebraic functions [19], we derive that x(ε) is an analytic function, where |ε| ≤ δ̃

and x(0) = x.
As (A+εB)x(ε)N−1 = λ(ε)x(ε), by differentiation with respect to ε, and setting

ε = 0, we have

Ax̃ + Bx(0)N−1 = λ′(0)x(0) + λ(0)x′(0),

where

Ax̃ = A(×2x′(0)� ×3 x(0)� · · ·×N x(0)� +· · ·+×2x(0)� · · ·×N−1 x(0)� ×N x′(0)�).

Then

λ′(0) = Bx(0)N = BxN,

and the theorem is proved. ��



3.2 Perturbation Bounds of Z- and H-Eigenvalues 65

Gohberg and Koltracht [24] explore condition numbers of maps in finite-
dimensional spaces F : RP → RQ. The condition number of F at a point a ∈ DF

1

characterizes the instantaneous rate of change in F(a) with respect to a.
Another perturbation result of a nonzero algebraically simple Z-eigenvalue λ of

the mode-symmetric tensor A ∈ RTN,I is considered, whose associated eigenvector
x ∈ RI satisfies ‖x‖2 = 1. It is well known that the map FE : ε → λ(A + εB)

is analytic in a neighborhood of 0 [13]. Therefore, the map F : A → λ(A) has
continuous partial derivatives with respect to each entry of A and

∂F

∂i1i2...iN

(A) := lim
t→0

F(A + tS) − F(A)

t
= xi1xi2 . . . xiN ,

where S ∈ RTN,I is the zero tensor except for si1i2...iN = 1 with all in and n.
We illustrate the meaning of S via a special case of N = 4. Without loss of

generality, (i1, i2, i3, i4) = (1, 2, 3, 4), thenS can be written as J = e1⊗e2⊗e3⊗e4
where ei is the ith column of II ∈ R

I×I for i = 1, 2, 3, 4. Then, all entries of S are
given in the following:

sj1j2j3j4 = e1(j1)e2(j2)e3(j3)e4(j4),

where jn = 1, 2, . . . , I and en(jn) is the jnth element of en with n = 1, 2, 3, 4. In
general, S = ei1 ⊗ ei2 ⊗ · · · ⊗ eiN where ein is the inth column of II ∈ RI×I for all
n.

Hence, as a map from RIN → R, F is differentiable at A and

F ′(A) =
[

∂F

∂11...1
, . . . ,

∂F

∂a11...1I

,
∂F

∂a21...1
, . . . ,

∂F

∂aII ...I

]

.

According to a formula by Gohberg and Koltracht [24], for relatively small
componentwise perturbations in A, i.e., |ei1i2...iN | ≤ ε|ai1i2...iN |, for all in and n,
where E ∈ RTN,I is mode-symmetric and ε > 0 is arbitrarily small, the sensitivity
of F(A) is characterized by the componentwise condition number of F at A:

c(F,A) = ‖F ′(A)DA‖∞
‖F(A)‖∞

,

with DA = diag(a11...1, . . . , a11...1I , a21...1, . . . , aII ...I ).
For λ �= 0, it indicates that

c(F,A) = ‖(a11...1x1x1 . . . x1, . . . , a11...1I x1 . . . x1xI ,

a21...1x2x1 . . . x1, . . . , aII ...I xI xI . . . xn)‖∞/|λ|,

1DF is denoted by the domain of the map F : RP → RQ.
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where the infinity norm of the map F ′(A)DA is, in fact, the 1-norm of the row
vector that represents it. Thus

c(F,A) =
I∑

i1i2...iN =1

|ai1i2...iN xi1xi2 . . . xiN |/|λ| = |A||x|N/|λ|,

where

|A||x|N =
I∑

i1,i2,...,iN =1

|ai1i2...iN ||xi1 ||xi2| . . . |xin |.

Theorem 3.2.5 Let A ∈ RTN,I be mode-symmetric. For an arbitrary small ε > 0,
suppose that the mode-symmetric tensor E ∈ RTN,I satisfies |ei1i2...iN | ≤ ε|ai1i2...iN |
for all in and n. Then for an algebraically simple Z-eigenvalue λ �= 0 of A, there
exists a Z-eigenvalue λ̂ of A + E such that

|λ̂ − λ|
|λ| ≤ c(F,A)ε + O(ε2).

If (λ; z) is a Z-eigenpair of the mode-symmetric tensor A ∈ RTN,I , then (λ; −z)
is also a Z-eigenpair of A with an even N . Hence, if � is the Z-spectral radius of
A, then the associated Z-eigenvalue is � or −�. In particular, if A is nonnegative
and irreducible, according to Theorem 3.2.5, we can derive the perturbation bound
of the Z-spectral radius of A.

Corollary 3.2.1 Suppose that A,E ∈ RTN,I are mode-symmetric with an even N

such that A is nonnegative and irreducible. For an arbitrary small ε > 0, suppose
that the mode-symmetric tensor E ∈ RTN,I satisfies |ei1i2...iN | ≤ εai1i2...iN for all in
and n. Let � and �ε denote, respectively, the Z-spectral radii of A and A + E. If A
is nonnegative and irreducible, then

|�ε − �|
�

≤ ε.

Assume that (λ; x) is an algebraically simple E-eigenpair of the mode-symmetric
tensor A ∈ RTN,I . If there exists ϕ∗ ∈ (−π, π] such that eι(N−1)ϕ∗λ ∈ R,
then according to Theorem 3.2.4, we can derive the perturbation bounds of λ.
Furthermore, Theorems 3.2.4 and 3.2.5, and Corollary 3.2.1 hold for symmetric
tensors in RTN,I .
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3.2.3 Algebraically Simple Eigenvalues

Let A,B ∈ RTN,I be mode-symmetric. For any sufficiently small ε > 0, we
provide the explicit expression of an algebraically simple eigenvalue λ(ε) ∈ C of
A + εB, as a generalization of the classical results in [1, Theorem 2.3].

Theorem 3.2.6 Suppose that A,B ∈ RTN,I are mode-symmetric with an even N .
Let (λ; x) be an algebraically simple eigenpair of A with ‖x‖N

N = xN
1 +· · ·+xN

N �= 0,
there exist ε0 > 0 and an analytic function λ(ε) with |ε| ≤ ε0 such that

λ(0) = λ, λ′(0) = dλ

dε

∣
∣
∣
∣
ε=0

= BxN

‖x‖N
N

.

Therefore, λ(ε) is an algebraically simple eigenvalue of A + εB over |ε| ≤ ε0, and

λ(ε) = λ + ε
BxN

‖x‖N
N

+ O(ε2).

In particular, if (λ; x) is an algebraically simple H-eigenpair of A such that
‖x‖N

N = 1, then there exist ε0 > 0 and an analytic function λ(ε) with |ε| ≤ ε0 such
that

λ(0) = λ, λ′(0) = dλ

dε

∣
∣
∣
∣
ε=0

= BxN .

Then λ(ε) is an algebraically simple H-eigenvalue of A + εB over |ε| ≤ ε0, and

λ(ε) = λ + εBxN + O(ε2). (3.2.5)

The proof of the above theorem is similar to that of Theorem 3.2.4 and is omitted.

Remark 3.2.1 For a given ε > 0 if A and B in Theorem 3.2.6 are irreducible and
symmetric nonnegative tensors, then formula (3.2.5) reduces to the result by Li et al.
[25, Theorem 5.2].

Suppose that A,B ∈ RTN,I are mode-symmetric. We now consider the first
relative perturbation bound of the nonzero algebraically simple H-eigenvalues of A
for componentwise perturbations. For a sufficiently small ε ∈ R, it is well known
that the map FE : ε → λ(A+εB) is analytic in a neighborhood of 0 [13]. Therefore,
the map F : A → λ(A) has continuous partial derivatives with respect to each entry
of A and

∂F

∂i1i2...iN

(A) := lim
t→0

F(A + tS) − F(A)

t
= xi1xi2 . . . xiN ,
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where S = ei1 ⊗ ei2 ⊗ · · · ⊗ eiN where ein is the inth column of II for all in and n.

Thus, as a map from R
IN → R, F is differentiable at A and

F ′(A) =
[

∂F

∂a11...1
, . . . ,

∂F

∂a11...1I

,
∂F

∂a21...1
, . . . ,

∂F

∂aII ...I

]

.

Based on a formula by Gohberg and Koltracht [24], for the componentwise
perturbations in A, i.e., |ei1i2...iN | ≤ ε|ai1i2...iN | for all in and n, where E ∈ RTN,I

is mode-symmetric and ε > 0 is arbitrarily small, the sensitivity of F(A) is
characterized by the componentwise condition number of F at A:

c(F,A) = ‖F ′(A)DA‖∞
‖F(A)‖∞

,

with DA = diag(a11...1, . . . , a11...1I , a21...1, . . . , aII ...I ).
For λ �= 0, it indicates that

c(F,A) = ‖(a11...1x1x1 . . . x1, . . . , a11...1I x1 . . . x1xI ,

a21...1x2x1 . . . x1, . . . , aII ...I xI xI . . . xn)‖∞/|λ|,

where the infinity norm of the map F ′(A)DA is the 1-norm of the row vector that
represents it. Thus

c(F,A) =

I∑

i1i2...iN =1
|ai1i2...iN xi1xi2 . . . xiN |

|λ|‖x‖N
N

= |A||x|N
|λ|‖x‖N

N

.

Theorem 3.2.7 Let A,E ∈ RTN,I be mode-symmetric with an even N . If for a
sufficiently small ε > 0, the entries of E satisfy |ei1i2...iN | ≤ ε|ai1i2...iN | for all in
and n, then for an algebraically simple H-eigenvalue λ �= 0 of A, there exists an
eigenvalue λ̂ of A + E such that

|λ̂ − λ|
|λ| ≤ c(F,A)ε + O(ε2).

If a mode-symmetric tensor A ∈ RTN,I is irreducible and nonnegative, then for
any 0 < ε < 1, we can derive the perturbation bound of the spectral radius of A
from Theorem 3.2.7.

Corollary 3.2.2 Suppose that A,E ∈ RTN,I are mode-symmetric with an even
N such that A is nonnegative and irreducible. For a sufficiently small ε > 0, the
entries of E satisfy |ei1i2...iN | ≤ εai1i2...iN for all in and n. Let ρ and ρε be the
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spectral radius of A and A + E, respectively. Then

|ρε − ρ|
ρ

≤ ε.

Proof Since |ei1,...,iN | ≤ εai1,...,iN , for all in and n, we can write

0 ≤ A − εA ≤ A + E ≤ A + εA.

Since the spectral radius ρ(·) of A is monotone [26], it follows that ρ(A − εA) ≤
ρ(A + E) ≤ ρ(A + εA). As ρ(A ± εA) = (1 ± ε)ρ(A), we obtain

(1 − ε)ρ ≤ ρε ≤ (1 + ε)ρ.

As ρ > 0, the last inequality is equivalent to the result. ��
Remark 3.2.2 If A is an irreducible nonnegative tensor, then c(F,A) = 1 for the
spectral radius. The perturbation bound for the Perron root of nonnegative matrices
has been discussed by Elsner et al. [27].

3.2.4 Singular Values

For a given A ∈ RI1×I2×···×IN , Ragnarsson et al. [16] explore the singular tuples of
A through its symmetric embedding sym(A). Chen et al. [17] further develop the
connection between the singular values A and the Z-eigenvalues of sym(A). We
now consider the connection between the singular values ofA and the Z-eigenvalues
of its mode-symmetric embedding msym(A).

For the case of N = 3, if (σ ; x1, x2, x3) is a singular tuple of A ∈ RI1×I2×I3 ,
then

A ×2 x�
2 ×3 x�

3 = σx1, A ×1 x�
1 ×3 x�

3 = σx2, A ×1 x�
1 ×2 x�

2 = σx3.

(3.2.6)
We have the elementwise,

I∑

j,k=1

aijkx2,j x3,k = σx1,i ,

I∑

i,k=1

aijkx1,ix3,k = σx2,j ,

I∑

i,j=1

aijkx1,ix2,j = σx3,k .

(3.2.7)

In (3.2.7), if we change the summation order, then we have

I∑

j,k=1

aijkx2,j x3,k = σx1,i ,

I∑

k,i=1

ajkix3,kx1,i = σx2,j ,

I∑

i,j=1

akij x1,ix2,j = σx3,k .
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Let x = 1√
3
(x1, x2, x3), then ‖x‖2 = 1. Then (3.2.6) can be transformed into

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1√
3

msym(A) ×2 x� ×3 x� = σx,

1√
3

msym(A) ×1 x� ×3 x� = σx,

1√
3

msym(A) ×1 x� ×2 x� = σx.

Furthermore, let Ã = 1√
3

msym(A), then the above set of formulae is equivalent to

Ãx2 = σx, ‖x‖2 = 1.

Generally, suppose that (σ ; x1, . . . , xN) is a singular tuple of A ∈ RI1×I2×···×IN ,
with ‖xn‖2 = 1 for all n. Let x = 1√

N
(x1, x2, . . . , xN), then we have ‖x‖2 = 1 and

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
1√
N

)N−2
msym(A) ×2 x� ×3 x� · · · ×N x� = σx,

(
1√
N

)N−2
msym(A) ×1 x� ×3 x� · · · ×N x� = σx,

...
...

(
1√
N

)N−2
msym(A) ×1 x� ×2 x� · · · ×N−1 x� = σx.

Furthermore, let Ã =
(

1√
N

)N−2
msym(A), then (σ ; x) is a Z-eigenpair of Ã, that

is, (σ ; x) is the solution of the nonlinear equations

ÃxN−1 = σx, ‖x‖2 = 1.

Both msym(A) and Ã are mode-symmetric. The value σ is called an algebraically
simple singular value, if σ is an algebraically simple Z-eigenvalue of Ã.

According to the mode-symmetric embedding of A ∈ R
I1×I2×···×IN and the

perturbation bounds of an algebraically simple Z-eigenvalue of msym(A), it is
trivial to derive the following results for the perturbation of an algebraically simple
singular value.

Theorem 3.2.8 Let (σ ; x1, x2, . . . , xN) be a singular tuple of A ∈ RI1×I2×···×IN

such that σ is the algebraically simple singular value and xn ∈ RIn satisfy ‖xn‖2 =
1 with all n. Then there exist ε0 > 0 and an analytic function σ(ε) with |ε| ≤ ε0
such that

σ(0) = λ, σ ′(0) = dσ

dε

∣
∣
∣
∣
ε=0

= B ×1 x�
1 ×2 x�

2 · · · ×N x�
N,



3.2 Perturbation Bounds of Z- and H-Eigenvalues 71

with B ∈ RI1×I2×···×IN . Thus σ(ε) is an algebraically simple singular value of
A + εB over |ε| ≤ ε0, and

σ(ε) = σ + εB ×1 x�
1 ×2 x�

2 · · · ×N x�
N + O(ε2).

Theorem 3.2.9 Let (σ ; x1, x2, . . . , xN) be a singular tuple of A ∈ R
I1×I2×···×IN

such that σ �= 0 is the algebraically simple singular value and xn ∈ R
In satisfy

‖xn‖2 = 1 with all n. If for 0 < ε < 1, the entries of E ∈ R
I1×I2×···×IN satisfy

|ei1i2...iN | ≤ ε|ai1i2...iN | with all in and n, then there exists a singular value σ̂ of
A + E such that

|σ̂ − σ |
|σ | ≤ c(F,A)ε + O(ε2),

where c(F,A) = 1
|σ | |A| ×1 |x1|� ×2 |x2|� · · · ×N |xN |�.

Corollary 3.2.3 Let A ∈ R
I1×I2×···×IN be nonnegative and irreducible. Suppose

that for 0 < ε < 1, the entries of E ∈ R
I1×I2×···×IN satisfy |ei1i2...iN | ≤ ε|ai1i2...iN |

with all in and n. Let σ̄ and σ̄ε denote, respectively, the modulus largest singular
values of A and A + E. Then

|σ̄ε − σ̄ |
σ̄

≤ ε.

Suppose that A ∈ RI1×I2×···×IN and Bn ∈ RIn×In is symmetric positive definite
with all n. Let (σ ; x1, . . . , xN) be a restricted singular tuple of A. If Bn = GnG�

n

where Gn ∈ RIn×In is a nonsingular upper triangle matrix, then

F(y1, y2, . . . , yN)−n = σyn

where

F(y1, y2, . . . , yN)−n = B ×1 y�
1 · · · ×n−1 y�

n−1 ×n+1 y�
n+1 · · · ×N y�

N

with B = A×1G−1
1 ×2G−1

2 · · ·×N G−1
N and ‖yn‖2 = 1. We see that (σ ; y1, . . . , yN)

is a singular tuple of B.
We can also consider the perturbation results of algebraically simple restricted

singular value of A with respect to Bn according to Theorems 3.2.8 and 3.2.9, and
Corollary 3.2.3.
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3.3 Perturbation for the Tensor Polynomial Eigenvalue
Problem

Let Al ∈ RTN,I be mode-symmetric with all l. Suppose that P is a tensor
polynomial defined in (3.1.3), we define

G(z) = A1 + 2zA2 + · · · + LzL−1AL.

Suppose that the perturbation tensor �Al ∈ RTN,I are mode-symmetric with all l.
For any z ∈ C, denote

�P(z) = �A0 + z�A1 + · · · + zL�AL.

We study the first-order perturbation bounds of the algebraically simple
eigenvalues of P for normwise and componentwise perturbations. We consider
two special cases of the tensor polynomial eigenvalue problem determined by
{A0,A1, . . . ,AL}: the tensor generalized and quadratic eigenvalue problems,
respectively for L = 1, 2. Then we investigate the general case with L > 2. We
assume that AL is nonsingular, which implies that {A0,A1, . . . ,AL} is regular.

3.3.1 Tensor Generalized Eigenvalue Problem

Suppose that L = 1. For any z ∈ C, P(z) = A0 + zA1. The tensor polynomial
eigenvalue problem determined by {A0,A1} reduces to the tensor generalized
eigenvalue problem determined by {A0,A1}. Denote

A = A0, B = −A1.

Since A1 is nonsingular and mode-symmetric, so is B. Hence the generalized
spectrum 	(A,B) of the tensor generalized eigenvalue problem determined by
{A,B} is a finite subset of C and the number of the generalized eigenvalues is
I (N − 1)I−1, counting multiplicity. If the algebraic multiplicity of λ ∈ 	(A,B) is
one, we have the following theorem.

Theorem 3.3.1 Assume that A,B ∈ RTN,I are mode-symmetric and B is nonsin-
gular. If λ ∈ C is an algebraically simple generalized eigenvalue of {A,B}, then
there exists an algebraically simple generalized eigenvalue λ̃ ∈ C of {A+ εE,B +
εF} such that

λ̃ = λ + O(ε),

where |ε| ≤ ε0 for any sufficiently small ε0 > 0 and E,F ∈ RTN,I are mode-
symmetric.
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Proof From [13], we have 	(A,B) = {λ ∈ C : det(A−λB) = 0}, where det(A−
λB) is a I (N − 1)I−1th polynomial with respect to λ and its leading coefficient is
det(B) �= 0. There exists ε̂ > 0 such that det(B + ε̂B1) �= 0. Hence, when |ε| ≤ ε̂,
the set of all generalized eigenvalues of {A + εE,B + εF} satisfies

	ε(A,B) = {λ ∈ C : det((A − λB) + ε(E − λF)) = 0}.

Meanwhile, det((A − λB) + ε(E − λF)) is also a I (N − 1)I−1th polynomial with
respect to λ and its leading coefficient is det(B + εF). Note that det(B + εF) is a
I (N − 1)I−1th polynomial with respect to ε, whose constant term is det(B). Hence
det(B + εF) �≡ 0.

According to theorems of algebraic functions [19], if λ ∈ C is an algebraically
simple generalized eigenvalue, then there exist an algebraically simple generalized
eigenvalue λ̃ ∈ C of {A + εE,B + εF} and ε0 > 0 such that λ̃ = λ + O(ε), where
|ε| ≤ min{ε̂, ε0}. ��
A generalization of Theorem 3.3.1 is stated as follows.

Theorem 3.3.2 Suppose that A,B ∈ RTN,I such that B is nonsingular. For a given
n, if λ ∈ C is an algebraically simple mode-n generalized eigenvalue of {A,B},
then there exists an algebraically simple mode-n generalized eigenvalue λ̃ ∈ C of
{A + εE,B + εF} such that

λ̃ = λ + O(ε),

where |ε| ≤ ε0 for a sufficiently small ε0 > 0 and E,F ∈ RTN,I .

The choice of {E,F} in Theorem 3.3.1 is not unique. In practice, {E,F} = {A,B}
for the relative perturbation case and all entries of E and F are unit for the absolute
perturbation case. Theorem 3.3.1 only states the first-order perturbation of an
algebraically simple generalized eigenvalue, but does not present the coefficient of
the first-order perturbation term. For some nonzero algebraically simple generalized
eigenvalues, we present an expression of this coefficient in the following theorems.

Theorem 3.3.3 Suppose that α, β > 0. Let A,B ∈ RTN,I be mode-symmetric and
B be nonsingular. If (λ; x) is an algebraically simple generalized H-eigenpair of
{A,B} with λ �= 0 and x ∈ RI , then there exists an algebraically simple generalized
H-eigenvalue λ̂ ∈ R of {A + �A,B + �B} such that

|λ̃ − λ|
|λ| ≤ ε

(α + |λ|β)‖x‖N
2

|λ||BxN | + O(ε2),

where two mode-symmetric tensors �A,�B ∈ RTN,I satisfy ‖�A‖F ≤ εα and
‖�B‖F ≤ εβ with ε < 1.
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Proof Since det(B) �= 0, then ByN �= 0 for all nonzero vectors y ∈ RI . Let (λ; x)

be a generalized H-eigenvalue of {A,B} and let λ �= 0 be algebraically simple, then
a normwise condition number of λ can be defined as follows,

κ(λ) := lim sup
ε→0

{ |�λ|
ε|λ| : (A + �A)(x + �x)N−1 = (λ + �λ)(B + �B)(x + �x)N−1,

‖�A‖F ≤ εα, ‖�B‖F ≤ εβ} .

We prove that the following formula holds:

κ(λ) = (α + |λ|β)‖x‖N
2

|λ||BxN | .

The given expression is clearly an upper bound for κ(λ). We now show that the
bound is attainable. From the definition of a normwise condition number of λ, we
have

�λ = �AxN − λ�BxN

BxN
+ O(ε2). (3.3.1)

Let G = x⊗N/‖x‖N
2 . Then ‖G‖F = 1 and GxN = ‖x‖N

2 . Define �A0 = εαG and
�B0 = −sign(λ)εβG, where sign(λ) is defined in (2.3.7). Then ‖�A‖F ≤ εα and
‖�B‖F ≤ εβ. Hence the modulus of the first-order term of (3.3.1) is ε‖x‖N

2 (α +
|λ|β)/|BxN |; dividing (3.3.1) by ε|λ| and taking the limit as ε → 0 gives the desired
equality.

From the definition of κ(λ) we have, for the perturbation system in (3.3.1),

|�λ|
|λ| ≤ κ(λ)ε + O(ε2).

The proof is complete. ��
Theorem 3.3.4 Suppose that E,F ∈ RTN,I are mode-symmetric with positive
entries. Let A,B ∈ RTN,I be mode-symmetric and B be nonsingular. If (λ; x)

is an algebraically simple generalized H-eigenpair of {A,B} with λ �= 0 and
x ∈ RI , then there exists an algebraically simple generalized H-eigenvalue λ̂ ∈ R

of {A + �A,B + �B} such that

|λ̃ − λ|
|λ| ≤ ε

(E + |λ|F)|x|N
|λ||BxN | + O(ε2),

where two mode-symmetric tensors �A,�B ∈ RTN,I satisfy |�A| ≤ εE and
|�B| ≤ εF with ε > 0.
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Proof Since det(B) �= 0, it is obvious that ByN �= 0 for all nonzero vectors
y ∈ RI . Let (λ; x) be a generalized H-eigenvalue of {A,B} and let λ �= 0 be
algebraically simple, then a componentwise condition number for an algebraically
simple generalized H-eigenvalue λ is defined by

cond(λ) := lim sup
ε→0

{|�λ|
ε|λ| : (A + �A)(x + �x)N−1 = (λ + �λ)(B + �B)(x + �x)N−1,

|�A| ≤ εE, |�B| ≤ εF} .

It follows from the above definition that

|�λ|
|λ| ≤ cond(λ)ε + O(ε2).

According to the definition of a componentwise condition number for an
algebraically simple generalized H-eigenvalue λ, we have

cond(λ) ≥ (E + |λ|F)|x|N
|λ||BxN | .

The lower bound of cond(λ) is attained when �A0 = εE ×1 D ×2 D · · · ×N D
and �B0 = −sign(λ)εF ×1 D ×2 D · · · ×N D, where D = diag(sign(x)) with
sign(x) = (sign(x1), sign(x2) . . . , sign(xI ) and sign(·) is defined in (2.3.7). The
proof is complete. ��
Remark 3.3.1 According to [13, Theorem 3.1], for all nonzero vectors y ∈ CI ,
ByN �= 0, where B ∈ RTN,I is mode-symmetric and nonsingular. Hence if A,B ∈
RTN,I are mode-symmetric and B is nonsingular, then the above two theorems also
hold for any nonzero algebraically simple generalized eigenvalue of {A,B}.
Corollary 3.3.1 Suppose that the mode-symmetric tensor A ∈ RTN,I is nonnega-
tive irreducible and B ∈ RTN,I is a diagonal tensor with positive diagonal entries.
Let B ∈ RI×I be a diagonal matrix such that its main diagonal entries equal to the
main diagonal entries of B. If λn is the mode-n Perron root of A ×n B−1, then the
following statements hold.

(1) All Perron roots λn are equal, denoted by λ.
(2) Let λ be simple, E = A and F = B. Then cond(λ) = 2.
(3) Moreover, if λ+�λ is the mode-n Perron root of the pair (A+�A,B+�B),

then for 0 ≤ ε < 1, we have

|�λ|
|λ| ≤ 2ε

1 − ε
.

Proof Parts (1) and (2) are direct to verify. We only prove Part (3) in the case of
n = 1, and other cases are similar. Since |�B| ≤ εB, with the diagonal tensor B,
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and |�A| ≤ εA, we have

(
1 − ε

1 + ε

)

A ×1 D−1 ≤ A ×1 D−1 ≤
(

1 + ε

1 − ε

)

A ×1 D−1.

Since the spectral radius ρ1 is monotonic on the nonnegative tensors [26], then

(
1 − ε

1 + ε

)

ρ1(A ×1 D−1) ≤ ρ1(A ×1 D−1) ≤
(

1 + ε

1 − ε

)

ρ1(A ×1 D−1).

Hence, Part (3) is proved for n = 1. ��
If B is the identity tensor and �B is the zero tensor, Part (3) of Corollary 3.3.1
gives a perturbation bound of the spectral radius of a mode-symmetric nonnegative
irreducible tensor in RTN,I .

According to [15, Theorem 2.1], det(B) �= 0 implies that all generalized
eigenvalues are finite. Then a generalized eigenvalue λ can be represented as
λ = α/β with β �= 0. Hence, a generalized eigenpair (λ; x) can also be represented
as (α, β; x). Denote a generalized eigenvalue λ by (α, β) or 〈α, β〉, where 〈α, β〉 =
τ (α, β) with τ �= 0. A property of the pair 〈α, β〉 is given below.

Theorem 3.3.5 Let A,B ∈ RTN,I be mode-symmetric and B be nonsingular. If
〈α, β〉 is an algebraically simple generalized eigenvalue of the pair {A,B} with
corresponding generalized eigenvector x ∈ RI , then

〈α, β〉 = 〈AxN,BxN 〉.

Proof For the vector x ∈ RI , there exists a Householder matrix [2] P ∈ RI×I such
that Px = ‖x‖e1, where e1 is the first column of II . According to [15], we have
	(A,B) = 	(Â, B̂), where

Â = A ×1 P ×2 P · · · ×N P, B̂ = B ×1 P ×2 P · · · ×N P.

Thus the pair (α, β; e1) satisfies βÂeN−1
1 = αB̂eN−1

1 , that is, 〈α, β〉 =
〈ÂeN

1 , B̂eN
1 〉. ��

3.3.2 Tensor Quadratic Eigenvalue Problem

For z ∈ C, let P(z) = A0 + zA1 + z2A2. Suppose that (λ; x) is an eigenpair of P.
Define μ = λ1/(N−1) and y = μx, then P(λ)xN−1 = 0I can be represented as

λA2yN−1 + A1yN−1 + A0xN−1 = 0I , y[N−1] − λx[N−1] = 0I .
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Fig. 3.2 Left for Ã and right for B̃. Unlabeled parts are zero

Define x̃ = (y, x), then

Ãx̃N−1 = λB̃x̃N−1,

where Ã ∈ RTN,2I is

⎧
⎪⎪⎨

⎪⎪⎩

Ã[1 : I |1 : I | . . . |1 : I ] = A1,

Ã[1 : I |I + 1 : 2I | . . . |I + 1 : 2I ] = A0,

Ã[I + 1 : 2I |1 : I | . . . |1 : I ] = I;

and B̃ ∈ RTN,2I is given by

B̃[1 : I |1 : I | . . . |1 : I ] = −A2, B̃[I + 1 : 2I |I + 1 : 2I | . . . |I + 1 : 2I ] = I.

Other entries of Ã and B̃ are zero, as displayed in Fig. 3.2. Ã is not mode-
symmetric. It follows from [13, Theorem 4.2] that

det(B̃) = det(A2)
(N−1)I �= 0.

Since A2 is mode-symmetric, hence B̃ is mode-symmetric and nonsingular. The
number of mode-1 generalized eigenvalues of {Ã, B̃} is 2I (N−1)2I−1 and 	(Ã, B̃)

is a finite subset of C. Thus, the number of eigenvalues of P is less than or equal to
2I (N − 1)2I−1 and 	(P) is a finite subset of C.

The first-order perturbation of an algebraically simple eigenvalue, a special case
of Theorem 3.3.7, is given in the following theorem without the proof.

Theorem 3.3.6 For given mode-symmetric tensors Al ∈ RTN,I (l = 0, 1, 2),
suppose that P(z) = A0 + zA1 + z2A2 where z ∈ C, and A2 is nonsingular.
If (λ; x) is an algebraically simple eigenpair of P with λ ∈ C and x ∈ CI , then
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there exists an algebraically simple eigenvalue λ̃ ∈ C of P + �P such that

λ̃ = λ + O(ε),

where |ε| ≤ ε0 with ε0 > 0. Here �Al ∈ RTN,I with l = 0, 1, 2 in �P are
mode-symmetric.

Remark 3.3.2 In the above theorem, we assume without loss of generality that A2
is nonsingular. This assumption eliminates infinite eigenvalues.

3.3.3 Tensor Polynomial Eigenvalue Problem

In this section, we suppose that L > 2. Let (λ; x) be an eigenpair of P. Define
μ = λ1/(N−1) and yl = μlx with l = 0, 1, . . . , L − 1, then P(λ)xN−1 = 0I can be
rewritten as the system of nonlinear equations:

⎧
⎪⎪⎨

⎪⎪⎩

λALyN−1
L−1 + · · · + A1yN−1

1 + A0xN−1 = 0I ,

yl = μyl−1, l = 2, 3, . . . , L − 1,

y1 = μx.

Let x̃ = (yL−1, . . . , y1, x), then (λ; x̃) is a solution of the system of nonlinear
equations:

Ãx̃N−1 = λB̃x̃N−1,

where for l = 0, 1, . . . , L − 1, Ã ∈ RTN,LI is given by

{
Ã[1 : I |lI + 1 : (l + 1)I | . . . |lI + 1 : (l + 1)I ] = AL−1−l,

Ã[(l + 1)I + 1 : (l + 2)I |lI + 1 : (l + 1)I | . . . |lI + 1 : (l + 1)I ] = I;

and the entries of B̃ ∈ RTN,LI are given by

{
B̃[1 : I |1 : I | . . . |1 : I ] = −AL,

B̃[I l + 1 : (l + 1)I |I l + 1 : (l + 1)I | . . . |I l + 1 : (l + 1)I ] = I.

Non-specified entries of Ã and B̂ are zero. Ã is not mode-symmetric. According to
[13, Theorem 4.2], we have

det(B̃) = det(A2)
(N−1)(L−1)I �= 0.
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Since AL is mode-symmetric, B̃ is mode-symmetric and nonsingular. As we know,
the number of mode-1 generalized eigenvalues of {Ã, B̃} is LI (N − 1)LI−1 and
	(Ã, B̃) is a finite subset of C. Thus, the number of eigenvalues of P is less than
or equal to LI (N − 1)LI−1 and 	(P) is finite in C.

Theorem 3.3.7 For mode-symmetric tensors Al ∈ RTN,I with all l, suppose that
P(z) = A0 + zA1 + · · · + zLAL where z ∈ C and AL is nonsingular. If (λ; x)

is an algebraically simple eigenpair of P with λ ∈ C and x ∈ CI , there exists an
algebraically simple eigenvalue λ̃ ∈ C of P + �P such that

λ̃ = λ + O(ε),

where |ε| ≤ ε0 with ε0 > 0 and �Al ∈ RTN,I with all l in �P are mode-symmetric.

Proof If (λ; x) is an eigenpair of P, there exist a vector x̃ = (yL−1, . . . , y1, x)

and Ã, B̃ ∈ RTN,LI such that Ãx̃N−1 = λ(−B̃)x̃N−1. If (λ; x) is an algebraically
simple eigenpair, then it is an algebraically simple mode-1 generalized eigenpair of
{Ã,−B̃}.

According to Theorem 3.3.1, for the pair {Ã,−B̃}, there exists an algebraically
simple mode-1 generalized eigenvalue λ̂ of {Ã+εÂ,−(B̃+εB̂)} such that λ̃ = λ+
O(ε). For these two tensors Â and B̂, there exist mode-symmetric tensors �Al ∈
RTN,I with all l such that λ̃ is a algebraically simple eigenvalue of P + �P. ��
Theorem 3.3.8 Let αl > 0 and Al ∈ RTN,I be mode-symmetric with all l. Suppose
that P(z) = A0 + zA1 + · · · + zLAL where z ∈ C and AL is nonsingular. Let
(λ; x) be an algebraically simple H-eigenpair of P with λ �= 0 and x ∈ RI . When
G(λ)xN �= 0, there exists an algebraically simple H-eigenvalue λ̂ of P + �P such
that

|λ̂ − λ|
|λ| ≤ ε

(
L∑

l=0
|λ|lαl

)

‖x‖N
2

|λ||G(λ)xN | + O(ε2),

where for 0 < ε < 1, the mode-symmetric tensors �Al ∈ RTN,I with all l in �P
satisfy ‖�Al‖F ≤ εαl .

Theorem 3.3.9 For all l, let El ∈ RTN,I be mode-symmetric, with positive entries,
and Al ∈ RTN,I be mode-symmetric. Suppose that P(z) = A0 + zA1 + · · · +
zLAL where z ∈ C and AL is nonsingular. Let (λ; x) be an algebraically simple
H-eigenpair of P with λ �= 0 and x ∈ R

I . When G(λ)xN �= 0, there exists an
algebraically simple H-eigenvalue λ̂ of P + �P such that

|λ̂ − λ|
|λ| ≤ ε

(
L∑

l=0
|λ|lEl

)

|x|N

|λ||G(λ)xN | + O(ε2),

where the mode-symmetric tensors �Al ∈ RTN,I with all l in �P satisfy |�Al | ≤
εEl and ε < 1.
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The omitted proofs of Theorems 3.3.8 and 3.3.9 are similar to that of
Theorems 3.3.3 and 3.3.4, respectively. In Theorems 3.3.8 and 3.3.9, we
assume that G(λ)xN �= 0, where (λ; x) is an algebraically simple H-eigenpair
of P(λ). However, in Theorems 3.3.3 and 3.3.4, if B is nonsingular, then
ByN �= 0 holds for all nonzero vectors y ∈ CI .

3.4 The Smallest Eigenvalue of Nonsingular M-Tensors

Suppose that A ∈ RTN,I is symmetric. If A = sI − B, where the symmetric
tensor B ∈ RTN,I is nonnegative irreducible and s > ρ(B), then A is an
irreducible symmetric nonsingular M-tensor [15, 28]. In this section, we focus on
the perturbation theory for the smallest eigenvalue (i.e., the smallest H-eigenvalue)
of an irreducible symmetric nonsingular M-tensor in RTN,I . We need an inequality
for the Perron root of any nonnegative irreducible symmetric tensor in RTN,I .

3.4.1 An Inequality for the Perron Root

We first introduce the weighted arithmetic mean and weighted geometric mean
(AM-GM) inequality. Let xi, wi ≥ 0 with all i. Set w = w1 + w2 + · · · + wI .
If w > 0, then the inequality

w1x1 + w2x2 + · · · + wIxI

w
≥ w

√
x

w1
1 x

w2
2 . . . x

wI

I .

holds, with equality if and only if all the xi with wi > 0 are equal, where
w

√
x

w1
1 x

w2
2 . . . x

wI

I is the wth root of x
w1
1 x

w2
2 . . . x

wI

I . Here the convention 00 = 1
is used.

Assume that the symmetric tensor A ∈ RTN,I is nonnegative irreducible. Use
(ρ(A); u) to denote the Perron pair (defined in Sect. 1.3.1) of A with ρ(A) > 0
and u ∈ RI+. We have the following theorem.

Theorem 3.4.1 Suppose that the symmetric tensor A ∈ RTN,I is nonnegative
irreducible. Let (ρ(A); u) be the Perron pair of A with ρ(A) > 0 and u ∈ RI+.
Then for any positive diagonal matrix D ∈ RI×I , we have the following results.

(1) The inequality AuN ≤ ÂuN holds, where Â = A ×1 D1−N ×2 D · · · ×N D,
and the equality is attained if and only if D = αII for all α > 0.

(2) ρ(A) can be expressed by

max
z>0I

min
y>0I

y�(AzN−1)

y�z[N−1] = ρ(A) = min
z>0I

max
y>0I

y�(AzN−1)

y�z[N−1] .

In above theorem, replace D by D−1, part (1) of Theorem 3.4.1 has another form.
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(1)’ The inequality AuN ≤ ÂuN holds, where Â = A ×1 DN−1 ×2 D−1 · · · ×N

D−1, and the equality is attained if and only if D = αII for all α > 0.

Proof Since the symmetric tensor A ∈ RTN,I is nonnegative irreducible, the
Perron pair (ρ(A); u) is unique, and we have

A ×2 u� · · · ×N u� = A ×1 u� ×3 u� · · · ×N u�

= · · · = A ×1 u� · · · ×N−1 u�

= ρ(A)u[N−1].

Let u = (u1, u2, . . . , uI )
� ∈ RI . Define U = diag(u1, u2, . . . , uI ) ∈ RI×I , and

D̃ = tendiag
(
ρ(A)uN

1 , ρ(A)uN
2 , . . . , ρ(A)uN

I

)
,

σ =
(

1 + max
i=1,2,...,I

[
(ρ(A) − aii...i )u

N
i

])−1

,

where ‘tendiag(v)’ is the function in the MATLAB Tensor Toolbox [29] that creates
a diagonal tensor whose main diagonal entries equal to the entries of v. It is easy to
verify that the tensor

D = σ ·
(
A ×1 U ×2 U · · · ×N U − D̃

)
+ I.

is plane stochastic (cf. Definition 5.1.1). For all i, let two positive vectors y1, y2 ∈
RI satisfy

y2,iy
N−1
1,i = uN

i .

Without loss of generality, we define a positive vector z ∈ RI such that for all i,
y1,i = uizi and y2,i = uiz

1−N
i . Hence, for all i, we have

y2,iy
N−1
1,i = uN

i .

We next show that

D ×1

(
z[1−N])� ×2 z� · · · ×N z� ≥ D ×1 e� ×2 e� · · · ×N e�. (3.4.1)

Since D is plane stochastic, we have

D ×1 e� ×2 e� · · · ×N e� = I.
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Let z = (z1, z2, . . . , zI )
� ∈ RI . According to the AM-GM inequality, we have

D ×1

(
z[1−N])�×2 z� · · · ×N z� =

I∑

i1,i2,...,iN=1

di1i2...iN · zi2 . . . ziN

zN−1
i1

= I

⎛

⎝
I∑

i1,i2,...,iN =1

di1i2...iN

N
· zi2 . . . ziN

zN−1
i1

⎞

⎠

≥ I I

√
√
√
√
√

I∏

i1,i2,...,iN =1

(
zi2 . . . ziN

zN−1
i1

)di1i2 ...iN

. (3.4.2)

Let

Q(z1, z2, . . . , zI )

P (z1, z2, . . . , zI )
=

I∏

i1,i2,...,iN =1

(
zi2 . . . ziN

zN−1
i1

)di1i2 ...iN

.

Since D is plane stochastic, then, for all i1, the number of zi1 in P(z1, z2, . . . , zI ) is

(N − 1)

⎛

⎝
I∑

i2,,...,iN =1

di1i2...iN

⎞

⎠ = N − 1.

Tedious manipulation yields that zi in the numerator Q(z1, z2, . . . , zI ):

I∑

i1,i3,...,iN=1

di1ii3...iN +· · ·+
I∑

i1,...,iN−2,iN =1

di1...iN−2iiN +
n∑

i1,i2,...,iN−1=1

di1i2...iN−1i = N−1.

Hence

Ă ×1

(
z[1−N])� ×2 z� · · · ×N z� ≥ Ă ×1 e� ×2 e� · · · ×N e�,

where Ă = A ×1 U ×2 U · · · ×N U. It is easy to check that

A ×1 u� ×2 u� · · · ×N u� ≤ A ×1 y�
2 ×2 y�

1 · · · ×N y�
1

= A ×1 (u. ∗ z[1−N])� ×2 (u. ∗ z)� · · · ×N (u. ∗ z)�,

where x. ∗ y = (x1y1, x2y2 . . . , xI yI )
� ∈ RI with x, y ∈ RI .
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It remains to prove Part (2). For positive ai , bi and di with n, we prove that

max

{
bi

di

: i = 1, 2, . . . , I

}

≥

I∑

i=1
aibi

I∑

i=1
aidi

≥ min

{
bi

di

: i = 1, 2, . . . , I

}

.

Assume that min
{

bi

di
: i = 1, 2, . . . , I

}
= bk

dk
, we have

I∑

i=1

aibi − min

{
bi

di

: i = 1, 2, . . . , I

} I∑

i=1

aidi =
I∑

i=1

aidi

(
bi

di

− bk

dk

)

≥ 0,

and the equality holds if ai = δik . Thus

I∑

i=1
aibi

I∑

i=1
aidi

≥ min

{
bi

di

: i = 1, 2, . . . , I

}

,

and similarly,

I∑

i=1
aibi

I∑

i=1
aidi

≤ max

{
bi

di

: i = 1, 2, . . . , I

}

.

According to [14, Theorem 4.2], we have

max
z>0I

min
zi>0

(AzN−1)i

zN−1
i

= λ = min
z>0I

max
zi>0

(AzN−1)i

zN−1
i

. (3.4.3)

Since z > 0I , and A is an irreducible nonnegative tensor, we obtain

max
zi>0

(AzN−1)i

zN−1
i

= max
y>0I

y�(AzN−1)

y�z[N−1] .

We prove the second part from (3.4.3). ��
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Remark 3.4.1 The number of zi in Q(z1, z2, . . . , zI ) is N −1. Let N = 3 and i = 1
for illustration. Then the number of z1 in Q(z1, z2, z3) is

2d111 + d121 + d112 + · · · + d1I1 + d11I + 2d211 + d221 + d212 + · · · + d2I1 + d21I

+ · · · + 2dI11 + dI21 + dI12 + · · · + dII1 + dI1I

=
I∑

i1,i2=1

di1i21 +
I∑

i1,i3=1

di11i3 = 2,

the last equality holds due to the plane stochastic tensor D ∈ RT3,I .

A more general form for Part (1) of Theorem 3.4.1 is given below.

Theorem 3.4.2 Suppose that the symmetric tensor A ∈ RTN,I is nonnegative
irreducible. Let (ρ(A); u) be the Perron pair of A with ρ(A) > 0 and u ∈ RI+.
Then for any positive diagonal matrix D ∈ RI×I , we have the following results.

(a) The inequality AuN ≤ ÂnuN holds, where

Ân = A ×1 D · · · ×n−1 D ×n D1−N ×n+1 D · · · ×N D,

and the equality is attained if and only if D = αII for all α > 0.
(b) The inequality AuN ≤ ÂnuN holds, where

Ân = A ×1 Dα1 ×2 Dα2 · · · ×N DαN ,

N∏

n=1

αn = 1, α > 0,

and the equality is attained if and only if D = αII for all α > 0.

3.4.2 Perturbation of the Smallest Eigenvalue of M-Tensors

Suppose that A ∈ RTN,I is an irreducible symmetric nonsingular M-tensor, the
perturbation of the smallest eigenvalue of A is derived. For the perturbation bound,
we need the following theorem, generalizing the matrix case [30].

Theorem 3.4.3 Let A ∈ RTN,I be an irreducible symmetric nonsingularM-tensor
with A = D − N, where D ∈ RTN,I is diagonal and the symmetric nonnegative
tensor N ∈ RTN,I has zero main diagonal. Let D ∈ RI×I be a diagonal matrix,
whose main diagonal entries equal to the main diagonal entries of A. Let (λ; x) be
the smallest eigenpair of A with x ∈ RI++ and λ > 0. Let ρ(N ×n D−1) be the
mode-n spectral radius of N ×n D−1 for all n. Then we have

NxN ≤ ρ(N ×n D−1)DxN . (3.4.4)
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The equality holds if and only if D = αI for α > 0. Denote ρ = min{ρ(N×nD−1) :
n = 1, 2, . . . , N}, (3.4.4) can be simplified as NxN ≤ ρDxN .

Proof Without loss of generality, we only prove the case of n = 1. Since A ∈
RTN,I is an irreducible symmetric nonsingular M-tensor and (λ; x) is the eigenpair
corresponding to the smallest eigenvalue, we have

A×2x�· · ·×Nx� =A×1x�×3x� · · ·×N x� = . . . =A×1x� · · ·×N−1x�= ρ(A)x[N−1].

We apply Theorem 3.4.1 to B = tI − D + N, which for sufficiently large t

satisfies the assumptions. For any diagonal � ∈ RI×I , it holds BxN ≤ B̃xN , where
B̃ = B ×1 �N−1 ×2 �−1 · · · ×N �−1, from which we infer that

NxN ≤ ÑxN,

where Ñ = N ×1 �N−1 ×2 �−1 · · · ×N �−1.
Let ρ(N ×1 D−1) be the mode-1 spectral radius of N ×1 D−1, then

(N ×1 D−1) ×2 y�
1 · · · ×m y�

1 = ρ(N ×1 D−1)y[N−1]
1 ,

We choose y1, y2 ∈ RI++ such that x = � · y1 and x = �1−N · y2, then

NxN ≤ ((N ×1 D−1) ×2 y�
1 · · · ×N y�

1 ) ×1 D ×1 y�
2

= ρ(N ×1 D−1)I ×1

(
y[N−1]

1

)� ×1 D ×1 y�
2

= ρ(N ×1 D−1)DxN.

The equality is attained if and only if � = αII for α > 0. Thus x is also a
H-eigenvector of N ×1 D−1. Hence, we have AxN−1 = (D − N)xN−1 = λx[N−1].

According to the assumptions, we have

Dx[N−1] − NxN−1 = λx[N−1],

i.e.,

x[N−1] − D−1NxN−1 = λD−1x[N−1].

Since D−1NxN−1 = (N ×1 D−1)xN−1, we have DxN−1 = τx[N−1] for some
constant τ . Thus, D = αI for α > 0. Similar, for all n, we have NxN ≤ ρ(N ×n

D−1)DxN . Then, for the smallest ρ(N×nD−1) denoted by ρ, NxN ≤ ρDxN holds.
��

From Theorem 3.4.3, the following corollary is obvious.
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Corollary 3.4.1 Let A be the same as in Theorem 3.4.3. We have 0 < ρ(N ×n

D−1) < 1 for all n.

Theorem 3.4.4 Suppose that A and ρ are as defined in Theorem 3.4.3. Let E ∈
RTN,I be symmetric such that |E| ≤ η|A| and 0 < η < (1 − ρ)/(1 + ρ). If λ and
λ′ are the smallest eigenvalues of A and A + E, respectively, then

|λ − λ′|
λ

≤ 1 + ρ

1 − ρ
η.

Proof It is obvious that A − η|A| ≤ A + E ≤ A + η|A|. Since 0 < η <

(1 − γ )/(1 + γ ), A+E is also an irreducible symmetric nonsingular M-tensor. Let
λ1(η) and λ2(η) be the smallest eigenvalues of A+η|A| and A−η|A|, respectively.
We obtain λ2(η) ≤ λ′ ≤ λ1(η) and the algebraic multiplicity of λ1(η) and λ2(η)

is 1.
For t ∈ [−η, η], let (λ1(t); x(t)) be the smallest eigenpair of A + t|A| with

x(t) ∈ RI++ and λ1(t) > 0, we have

A(t) ×2 x(t)� · · · ×N x(t)� = A(t) ×1 x(t)� ×3 x(t)� · · · ×N x(t)�

= · · · = A(t) ×1 x(t)� · · · ×N−1 x(t)�

= λ1(t)x(t)[N−1].

Let λ (> 0) be the smallest eigenvalue of A. Let x1, x2 ∈ RI+ such that

AxN−1
i = λx[N−1]

i , i = 1, 2.

If x1 = cx2, where c �= 0, then x1 and x2 are the same H-eigenvector. Hence we
define

δ = min{‖y − x‖2 : y and x are the different H-eigenvectors associated with λ}.

Over {z ∈ CI : ‖z − x‖2 < δ}, there exists a unique eigenvector x of A associated
with λ. (For the smallest eigenvalue λ, if its geometric multiplicity is also 1, let
δ ≤ η)

For the smallest eigenvalue λ1(t) of A+ t|A|, since λ1(t) is an analytic function
with |t| ≤ η, there exists δ̃ = min{δ, η} such that ‖x(t) − x‖2 < δ̃ and x(t) is the
unique eigenvector of A+ t|A| corresponding to λ1(t), with 0 ≤ t ≤ η. According
to Theorem 3.2.3 by differentiating this equation with respect to t , we obtain

|A|x(t)N−1 + A(t)x̃(t) = λ̇1(t)x(t)[N−1] + (N − 1)λ1(t)x̂(t),
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where
⎧
⎪⎪⎨

⎪⎪⎩

A(t)x̃(t) = A(t) ×2 x′(t)� ×3 x(t)� · · · ×N x(t)�

+ · · · + A(t) ×2 x(t)� ×3 x(t)� · · · ×N x′(t)�)

(x̂(t))i = x1(t) . . . xi−1(t)ẋi(t)xi+1(t) . . . xn(t), i = 1, 2, . . . , I.

Applying x(t)� with ‖x(t)‖N = 1, we have

λ̇1(t) = |A|x(t)N .

Consequently, we have

d

dt
(ln(λ1(t))) = λ̇1(t)

λ1(t)
= (D + N)x(t)N

[(1 + t)D − (1 − t)N]x(t)m
. (3.4.5)

It follows from Theorem 3.4.3 that

((1 − t)N)x(t)N

((1 + t)D)x(t)N
≤ ρ(((1 − t)N) ×n ((1 + t)D)−1),

i.e., Nx(t)N/Dx(t)N ≤ ρ(N ×n D−1). So we obtain

d

dt
(ln(λ1(t))) ≤ (1 + ρ(N ×n D−1))

(1 − ρ(N ×n D−1)) + (1 + ρ(N ×n D−1))t
.

Noting that λ1(0) = λ and integrating (3.4.5) from 0 to η yields

ln λ1(η) − ln λ1 ≤ ln((1 − ρ(N ×n D−1)) + (1 + ρ(N ×n D−1))η)

− ln(1 − ρ(N ×n D−1)),

i.e., (λ1(η) − λ)/λ ≤ 1+ρ(N×nD−1)

1−ρ(N×nD−1)
η. Similarly, we have (λ − λ2(η))/λ ≤ (1 +

ρ(N ×n D−1))/(1 − ρ(N ×n D−1))η, and

|λ − λ′|
λ

≤ 1 + ρ(N ×n D−1)

1 − ρ(N ×n D−1)
η.

Finally, let f (x) = (1+x)/(1−x) with 0 < x < 1, then f ′(x) = 2/(x2−2x+1).
Since f ′(x) > 0 over 0 < x < 1, f (x) is monotonically increasing. ��
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3.5 Numerical Examples

We verify the inequalities related to the Perron pair of any irreducible symmet-
ric nonnegative tensor in RTN,I in the first part of Theorems 3.4.1, 3.4.3 and
Corollary 3.4.1. Then we illustrate the perturbation bounds via several test tensors:
Theorem 3.4.4 for the smallest eigenvalue of any irreducible symmetric nonsingular
M-tensor in RTN,I , Corollaries 3.2.1 and 3.2.2 for the Z-spectral radius and
the spectral radius of any irreducible symmetric nonnegative tensor in RTN,I ,
respectively, and Corollary 3.2.3 for the modulus largest singular value of any
irreducible nonnegative tensor in R

I1×I2×···×IN .

3.5.1 Verification of Inequalities

We compute the approximate Perron pair of a given irreducible symmetric tensor by
the NQZ method [31].

Example 3.5.1 We verify Theorem 3.4.1 by 100 randomly generated irreducible
symmetric nonnegative tensors. All entries of the test tensors are uniformly
distributed over (0, 1). Let D ∈ RI×I be diagonal and positive definite. For a given
test tensor, we select D = diag(d), where d ∈ RI++ satisfies s1 �= s2 �= · · · �= sI , or
D = αII with α > 0.

Let A ∈ RT4,10 be irreducible and symmetric nonnegative, (ρ(A); x) be the
Perron pair of A.

For each part of Fig. 3.3, the vertical axis represents the value of Âx4 − Ax4,
where Â = A ×1 D−3 ×2 D ×3 D ×4 D and the diagonal matrix D ∈ R10×10 is

Fig. 3.3 Verification of Theorem 3.4.1 with irreducible symmetric nonnegative tensors
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positive definite, and the horizontal axis is the indices of the test tensors. For the left
of Fig. 3.3, the main diagonal entries of D are different, but for the right of Fig. 3.3,
the main diagonal entries of D are the same. In Fig. 3.3, Âx4 ≥ Ax4 holds for any
positive diagonal matrix D ∈ R10×10.

Example 3.5.2 ([12, Example 2]) Consider the symmetric tensor A ∈ RT3,3 such
that

⎧
⎨

⎩

a111 = 0.0517, a112 = 0.3579, a113 = 0.5298, a122 = 0.7544, a123 = 0.2156,

a133 = 0.3612, a222 = 0.3943, a223 = 0.0146, a233 = 0.6718, a333 = 0.9723.

By the NQZ method, the approximated Perron pair of A is calculated by

ρ(A) = 3.6167; u = (0.6674, 0.6655, 0.7417)�.

Let D ∈ R3×3 be positive diagonal, we define

d1 = (A ×1 D−2 ×2 D ×3 D − A)u3, d2 = (A ×1 D2 ×2 D−1 ×3 D−1 − A)u3.

For 100 randomly generated positive diagonal matrices D ∈ R3×3, d1 and d2 are
shown in Fig. 3.4.

According to Fig. 3.4, when D = diag(s), where s ∈ RI++ satisfies s1 �= s2 �=
· · · �= sI , d1 and d2 are positive; and when D = αII with any given α > 0, d1 and
d2 are approximately zero.

To verify Corollary 3.4.1, we need a strategy for computing the smallest
eigenvalue of an irreducible and symmetric nonsingular M-tensor A ∈ RTN,I . It
follows from [15, 28] that A = sI−B with s > ρ(B). If (ρ(B); x) is a Perron pair

Fig. 3.4 Verification of Theorem 3.4.1 with positive diagonal matrices
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of B, then (s − ρ(B); x) is an eigenpair, corresponding to the smallest eigenvalue
of A.

A can be expressed as A = D − N, where D ∈ RTN,I is diagonal and the
symmetric nonnegative tensor N ∈ RTN,I has zero main diagonal. In this form, we
cannot use the NQZ method to compute the smallest eigenvalue of A. However, we
can convert A to the form of sI − B through as follows:

1. Compute the spectrum radius ρ(N) of N by the NQZ method;
2. Find the largest element in D denoted as d > 0;
3. Let s = d +ρ(N) and construct a new diagonal tensor D1 with its main diagonal

element s;
4. Form A = sI − B such that B = D1 − D + N.

Example 3.5.3 We verify Theorem 3.4.3 and Corollary 3.4.1 by 100 randomly gen-
erated irreducible symmetric nonsingular M-tensors. Each test tensor is generated
as follows:

(1) Generate a symmetric nonnegative tensor B such that whose entries are
uniformly distributed over (0, 1);

(2) Compute the spectral radius ρ(B) of B by the NQZ method; and
(3) FormA = (ρ(B)+rand(1))I−B, where the MATLAB function rand generates

a random value uniformly distributed over (0, 1).

We select A ∈ RT4,10 being an irreducible symmetric nonsingular M-tensors.
Let (λ; x) be an eigenpair, corresponding to the smallest eigenvalue of A.

For each part in Fig. 3.5, “Values” means the value of ρ(N×k D−1)Dx4 −Nx4,
where (ρ(N ×k D−1); x) is computed by the NQZ algorithm and D is a diagonal
matrix, with main diagonal entries equal to the main diagonal entries of A. For each
part in Fig. 3.6, “Values” display 1 − ρ(N ×k D−1), where k = 1, 2, 3, 4.

Fig. 3.5 Verification of Theorem 3.4.3 with irreducible symmetric nonsingular M-tensors
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Fig. 3.6 Verification of Corollary 3.4.1 with irreducible symmetric nonsingular M-tensors

3.5.2 Verification of Perturbation Bounds

In the following three examples, let A ∈ RT4,10 be symmetric. Suppose that E ∈
RT4,10 is symmetric such that |E| ≤ ε|A| for ε ∈ (0, 1). For a given A, we consider
these two cases: E = rand(1)εA and E = εA.

Example 3.5.4 Let A = sI−B ∈ RT4,10 be an irreducible symmetric nonsingular
M-tensor, where B ∈ RT4,10 is a randomly generated irreducible symmetric
nonnegative tensors and s = ρ(B)+100. The entries of B are uniformly distributed
over (0, 1). We verify Theorem 3.4.4 with different symmetric perturbation tensors
E ∈ RT4,10.

Let (λ; x) be an eigenpair, corresponding to the smallest eigenvalue λ of A. We use
λ̂+ and λ̂− to denote the smallest eigenvalues of A + E and A − E, respectively.
The values of |λ̂+ − λ|/λ and |λ̂− − λ|/λ are denoted by δ+ and δ−, respectively.
Similar notations are used in the examples below.

Let ε ∈ linspace(1e − 5, 1 − 1e − 5, 50)(1 − ρ)/(1 + ρ) and ε(ρ) = (1 +
ρ)/(1 −ρ)ε. For two different α, β ∈ R and a positive integer K , linspace(α, β,K)

generates K equally spaced points between α and β. When E = rand(1)εA, the
relationship between ε(ρ) and δ+, or ε(ρ) and δ−, are shown in Fig. 3.7; for E =
εA, see Fig. 3.8.

Example 3.5.5 A ∈ RT4,10 is an irreducible symmetric nonnegative tensor, whose
entries are uniformly distributed over (0, 1). We verify Corollaries 3.2.1 and 3.2.2
with different symmetric perturbation tensors E ∈ RT4,10.
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Fig. 3.7 When E = rand(1)εA, verification of Theorem 3.4.4 with different ε. Left for ε(ρ) and
δ+; right for ε(ρ) and δ−

Fig. 3.8 When E = εA, verification of Theorem 3.4.4 with different ε. Left for ε(ρ) and δ+; right
for ε(ρ) and δ−

We compare the perturbation bounds of the Z-spectral radius of A. Let (�; x) be
the Z-spectral pair of A. We use �̂+ and �̂− to denote the Z-spectral radius of A+E
and A − E, respectively. Let ε ∈ linspace(0.001, 0.1, 50). When E = rand(1)εA,
the relationship between ε and δ+, or ε and δ−, are shown in Fig. 3.9; for E = εA,
see Fig. 3.10.

We also consider the perturbation bound of the spectral radius of A. Let (ρ; x)

be the Perron pair of A. We denote ρ̂+ and ρ̂− the Z-spectral radiuses of A+E and
A−E, respectively. Let ε = linspace(0.001, 0.999, 50). When E = rand(1)εA, the
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Fig. 3.9 When E = rand(1)εA, verification of Corollary 3.2.1 with different ε. Left for ε and δ+;
right for ε and δ−

Fig. 3.10 When E = εA, verification of Corollary 3.2.1 with different ε. Left for ε and δ+; right
for ε and δ−

relationship between ε and δ+, or ε and δ−, are shown in Fig. 3.11; for E = εA, see
Fig. 3.12.

Example 3.5.6 Suppose that A ∈ R
I1×I2×···×IN+ is irreducible, whose entries

are uniformly distributed over (0, 1). We verify Corollary 3.2.3 with different
symmetric perturbation tensors E ∈ RI1×I2×···×IN , where |E| ≤ ε|A| with 0 <

ε < 1.
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Fig. 3.11 When E = rand(1)εA, verification of Corollary 3.2.2 with different ε. Left for ε and
δ+; right for ε and δ−

Fig. 3.12 When E = εA, verification of Corollary 3.2.2 with different ε. Left for ε and δ+; right
for ε and δ−

Let N = 4 and {I1, I2, I3, I4} = {10, 12, 14, 16}. For a given A, we consider
two cases: E = rand(1)εA and E = εA. Let σ be the largest singular value in
modulus of A. We use σ̂+ and σ̂− to denote the Z-spectral radiuses of A + E and
A − E, respectively. Let ε = linspace(0.001, 0.1, 50). When E = rand(1)εA, the
relationship between ε and δ+, or ε and δ−, are shown in Fig. 3.13; for E = εA, see
Fig. 3.14.
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Fig. 3.13 When E = rand(1)εA, verification of Corollary 3.2.3 with different ε. Left for ε and
δ+; right for ε and δ−

Fig. 3.14 When E = εA, verification of Corollary 3.2.3 with different ε. Left for ε and δ+; right
for ε and δ−
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Chapter 4
Tensor Complementarity Problems

4.1 Preliminaries

The research of finite-dimensional variational inequality and complementarity
problems [1–6] have been rapidly developed in the theory of existence, uniqueness
and sensitivity of solutions, algorithms, and the application of these techniques to
transportation planning, regional science, socio-economic analysis, energy model-
ing and game theory.

Linear complementarity problems can be solved by the algorithm [7]. The criss-
cross algorithm terminates only if the associated matrix is a sufficient matrix [7]. A
sufficient matrix is a generalization both of a positive definite matrix [8, Section 4.2]
and a P-matrix [9], whose principal minors are positive. Qi [10] gives the definition
of the symmetric positive definite tensor and derives a method for checking whether
a symmetric tensor is positive definite. The concept of copositive matrices [11] is
important in applied mathematics, with applications in control theory, optimization
modeling, linear complementarity problems, graph theory and linear evolution
variational inequalities [12]. Qi [13] extends the concept to tensors.

The tensor complementarity problem is a class of nonlinear complementarity
problems with the involved function being defined by a tensor, which is also a
direct and natural extension of the linear complementarity problem. In the last
few years, the tensor complementarity problem has attracted a lot of attention, and
has been studied extensively, from theory to solution methods and applications.
Recently, Huang and Qi [14–16] survey the state-of-the-art of studies for the tensor
complementarity problem and related models. Wang et al. [17] introduce tensor
variational inequalities, which are a natural extension of the affine variational
inequality and the tensor complementarity problem.
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4.1.1 Notation and Definitions

Given a mapping F : X ⊂ RK → RI , we assume that F(x) ∈ RI is a vector for
x ∈ X. Our next definition is motivated by the class of copositive matrices [9].

Definition 4.1.1 ([3]) A mapping F : X → RI is said to be

(a) copositive with respect to X if and only if for all x ∈ X, we have

x�(F (x) − F(0I )) ≥ 0;
(b) strictly copositive with respect to X if and only if for all nonzero vectors x ∈ X,

we have

x�(F (x) − F(0I )) > 0;

(c) strongly copositive with respect to X if and only if there exists a scalar α > 0
such that for all nonzero x ∈ X, we have

x�(F (x) − F(0I )) ≥ α‖x‖2
2.

The mapping

G(x) = F(x) − F(0I ) (4.1.1)

plays a fundamental role in the nonlinear complementarity problem, motivated by
the linear version. The strict copositivity of a mapping can be relaxed through the
introduction of the class of d-regular mappings with a given positive d ∈ RI .

Definition 4.1.2 ([3]) For any vector x ∈ RI+, we define the index sets

I+(x) = {i : xi > 0}, I0(x) = {i : xi = 0}.
Let d ∈ RI be an arbitrary positive vector. A mapping G : RI → RI is said to
be d-regular, if the following system of nonlinear equations has no solution (x, t) ∈
RI+ × R+ except for x = 0I ,

{
Gi(x) + tdi = 0, i ∈ I+(x),

Gi(x) + tdi ≥ 0, i ∈ I0(x).
(4.1.2)

Equivalently, G is d-regular if, for any scalar r > 0, the augmented nonlinear
complementarity problem NCP(H) defined by H : RI+1 → RI+1,

H

(
x
t

)

=
(

G(x) + td
r − d�x

)

,

has no solution (x, t) ∈ RI+ × R+ except for x = 0I .
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The definition of the diagonalizable tensors [18, 19] is similar to the diagonaliz-
able matrices [8] as follows.

Definition 4.1.3 Suppose that A ∈ RTN,I is symmetric. It is diagonalizable if and
only if A = D ×1 B ×2 B · · · ×N B, where B ∈ RI×I is nonsingular and D is a
diagonal tensor. Denote the set of all diagonalizable tensors by DN,I .

In particular, in the case of N = 2, A is congruent to D ([20] for more details on
the congruent transformation).

4.2 Lemmas and Problem Description

For F : RI → RI , the corresponding nonlinear complementarity problem NCP(F )

is to find a vector x∗ ∈ RI+ such that

F(x∗) ∈ R
I+, (x∗)�F(x∗) = 0.

If F(x) is an affine function of x, F(x) = q + Mx for q ∈ RI and M ∈ RI×I ,
NCP(F ) reduces to the linear complementarity problem LCP(q, M). Some results
of the linear complementarity problem can be found in [9, 21].

A further generalization of NCP(F ) is the variational inequality, given a mapping
F : RI → RI and ∅ �= K ⊆ RI , find a x∗ ∈ K satisfying

(y − x∗)�F(x∗) ≥ 0,

for all y ∈ K, abbreviated as VI(K, F ). If K = {x : x ≥ 0I }, then a solution x∗ of
VI(K, F ) solves the NCP(F ).

It is well-known that A ∈ RI×I is a P-matrix [9] if and only if the following
linear complementarity problem has a unique solution for all q ∈ RI : find z ∈ RI

such that

z ≥ 0I , q + Az ≥ 0I , z�(q + Az) = 0.

Given a P-tensor1 [22] A ∈ RTN,I (N > 2), for q ∈ RI , the following nonlinear
complementarity problem has a unique solution: find x ∈ RI such that

x ≥ 0I , q + AxN−1 ≥ 0I , x�(q + AxN−1) = 0.

1For a given tensor A ∈ RTN,I , if maxi=1,2,...,I xi (Ax)i > 0 with all nonzero x ∈ RI , then A is a
P-tensor.
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We consider a special kind of NCP(F ), where Fi(x) is a multivariate polynomial
and the degree of Fi(x) is Ki . Note that F(x) can be expressed by

F(x) =
K∑

k=1

Akxk−1, K = max
1≤l≤I

Kl.

where Ak ∈ RTk,I with k ≥ 3, A1 ∈ R
I and A2 ∈ R

I×I .

4.2.1 Lemmas

The following lemma is an existence and uniqueness theorem by Cottle [1]. It
involves the notion of positively bounded Jacobians, and the original proof is
constructive with an algorithm to compute the unique solution.

Lemma 4.2.1 ([1, 3]) Let F : RI+ → RI be continuously differentiable and δ ∈
(0, 1), such that all principal minors of the Jacobian matrix ∇F(x) are bounded
between δ and δ−1, for all x ∈ RI+. Then NCP(F ) has a unique solution.

If F(·) is strictly copositive, then the following result holds.

Lemma 4.2.2 ([5]) Let F : RI+ → R
I be continuous and strictly copositive with

respect to R
I+. If there exists a mapping c : R+ → R such that c(λ) → ∞ as

λ → ∞, and for all λ ≥ 1 and x ≥ 0I ,

x�(F (λx) − F(0I )) ≥ c(λ)x�(F (x) − F(0I )), (4.2.1)

then NCP(F ) has a nonempty, compact solution set.

For the linear complementarity problem, G(·) = F(·)−F(0I ), given in (4.1.1), is
obviously linear. Thus condition (4.2.1) is satisfied with c(λ) = λ. More generally,
the same condition will hold with c(λ) = λα , if G is positively homogeneous of
degree α > 0; i.e., if G(λx) = λαG(x) for λ > 0.

If F(·) is strictly copositive with respect to RI+, then G(·) from (4.1.1) is d-
regular for any d > 0I . The following lemma presents an existence result for
NCP(F ) with a d-regular mapping G(·).
Lemma 4.2.3 ([4]) Let F(·) be a continuous mapping from R

I into itself and G(·)
defined by (4.1.1). Suppose that G(·) is positively homogeneous of degree α > 0 and
G is d-regular for some d > 0I . Then NCP(F ) has a nonempty, compact solution
set.

The main characterization theorem for copositive tensors is quoted.
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Lemma 4.2.4 ([13, Theorem 5]) Let A ∈ RTN,I be symmetric. Then A is
copositive if and only if

min

{

AxN : x ∈ R
I+,

I∑

i=1

xN
i = 1

}

≥ 0.

Also, A is strictly copositive if and only if

min

{

AxN : x ∈ R
I+,

I∑

i=1

xN
i = 1

}

> 0.

4.2.2 Problem Description

Next, we present two research problems.

Problem 4.2.1 ([22]) Given A ∈ RTN,I and q ∈ R
I . The NCP(q,A) seeks a

vector x ∈ R
I+ such that

F(x) = AxN−1 + q ∈ R
I+, AxN + x�q = 0.

Problem 4.2.2 For a given even integer N > 0, let Ak ∈ RTN−(2k−2),I and q ∈ R
I

with k = 1, 2, . . . , N/2. The NCP(q, {Ak}) seeks a vector x ∈ R
I+ such that

F(x) =
N/2∑

k=1

AkxN−(2k−1) + q ∈ R
I+,

N/2∑

k=1

AkxN−2k+2 + x�q = 0,

where AN/2 ∈ RI×I .

We call Problem 4.2.1 the tensor complementarity problem (TCP), which is a
natural generalization of LCP and a special case of NCP. It is a new topic, inspired
by the growing interests in structured tensors. The TCP [14–16] is widely used in
nonlinear compressing sensing, commutations, DNA microarrays and multi-person
games. Problem 4.2.2 is a special case of the polynomial complementarity problem.
Gowda [23] presents Karamardian type results for the polynomial complementarity
problem (PCP), as a special case of the NCP and a generalization of the TCP. In
[23], Gowda also introduces the definition of degree of an R0 tensor and shows that
it is one.

Let the feasible set FEA(q,A) = {x ∈ RI+ : AxN−1+q ∈ RI+}. If FEA(q,A) �=
∅, then we see that NCP(q,A) is feasible. It is obvious that Problem 4.2.1 is a
special case of Problem 4.2.2. For simplicity, we only consider the solvability of
Problem 4.2.1.
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4.3 Main Results

Let A ∈ RTN,I be symmetric positive definite. If q is zero, then the solution of
Problem 4.2.1 is zero. To avoid this triviality, let q ∈ R

I in Problems 4.2.1 and 4.2.2
be nonzero.

If the zero vector 0I solves Problems 4.2.1 and 4.2.2, then we derive that
q ∈ R

I is a nonnegative vector. We only consider a nonzero solution x ∈ R
I of

Problems 4.2.1 and 4.2.2.

4.3.1 Necessary Conditions

We first consider the necessary conditions for Problem 4.2.1. The cornerstone for
the necessary conditions is its nonlinear programming formulation:

min AxN + x�q

s.t. AxN−1 + q ∈ R
I+, x ∈ R

I+.
(4.3.1)

If x∗ minimizes the nonlinear program in (4.3.1) satisfying AxN∗ + q�x∗ = 0,
then x∗ is a solution of Problem 4.2.1. According to first-order necessary conditions
given in [24], we obtain the following theorem.

Theorem 4.3.1 Suppose A ∈ RTN,I is symmetric. If FEA(q,A) �= ∅ and x∗ is a
local solution of (4.3.1), then there exists a vector u∗ of multipliers satisfying the
conditions,

q + NAxN−1∗ − (N − 1)AxN−2∗ u∗ ≥ 0I ,

x�∗ (q + NAxN−1∗ − (N − 1)AxN−2∗ u∗) = 0,

u∗ ≥ 0I ,

u�∗ (q + AxN−1∗ ) = 0.

(4.3.2)

For all i, the vectors x∗ and u∗ satisfy

(N − 1)(x∗ − u∗)i(AxN−2∗ (x∗ − u∗))i ≤ 0. (4.3.3)

Proof Since FEA(q,A) �= ∅, the nonlinear program (4.3.1) is feasible. An optimal
solution x∗ and a suitable vector u∗ of multipliers satisfy the KKT conditions (4.3.2).
To prove (4.3.3), we examine the inner product

x�∗ (q + NAxN−1∗ − (N − 1)AxN−2∗ u∗) = 0,
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componentwise and deduce for all i that,

(N − 1)(x∗)i(AxN−2∗ (x∗ − u∗))i ≤ 0, (4.3.4)

using the fact that x∗ ∈ FEA(q,A). Multiplying the ith component in

q + NAxN−1∗ − (N − 1)AxN−2∗ u∗ ≥ 0I ,

by u∗ and then invoking the complementarity condition

(u∗)i(q + AxN−1∗ )i = 0

which is implied by u∗ ≥ 0I , u�∗ (q + AxN−1∗ ) = 0 and the feasibility of of x∗, we
obtain

− (N − 1)(u∗)i (AxN−2∗ (x∗ − u∗))i ≤ 0. (4.3.5)

Thus, (4.3.3) follows from adding (4.3.4) and (4.3.5). ��
Remark 4.3.1 Theorem 4.3.1 is a special case of the result given in Cottle [1,
Theorem 3].

From Theorem 4.3.1, we have the following conjecture, which has been disproved
by Hieu et al. [25],

Conjecture 4.3.1 If FEA(q,A) �= ∅, then the nonlinear programming prob-
lem (4.3.1) has an optimal solution, x∗. Moreover, there exists a vector u∗ of
multipliers satisfying the conditions,

q + NAxN−1∗ − (N − 1)AxN−2∗ u∗ ≥ 0I ,

x�∗ (q + NAxN−1∗ − (N − 1)AxN−2∗ u∗) = 0,

u∗ ≥ 0I ,

u�∗ (q + AxN−1∗ ) = 0.

For all i, x∗ and u∗ satisfy

(N − 1)(x∗ − u∗)i(AxN−2∗ (x∗ − u∗))i ≤ 0.

When N = 2, the existence result for the quadratic programming problem
associated with LCP is given in [21]. However, Cottle [1] presents some counter
examples to show that this conjecture is not true for the general nonlinear program
problem.
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With Theorem 4.3.1, we prove the following existence result for NCP(q,A).

Theorem 4.3.2 Let a nonzero x∗ ∈ RI be a local solution of (4.3.1). If AxN−2 is
positive definite for all x ∈ RI , then x∗ solves NCP(q,A).

Proof According to Theorem 4.3.1, for all i, there exists a nonnegative vector u∗
such that

(N − 1)(x∗ − u∗)i (AxN−2∗ (x∗ − u∗))i ≤ 0,

that is,

(x∗ − u∗)�(AxN−2∗ (x∗ − u∗)) ≤ 0.

Then we know that x∗ = u∗. Based on (4.3.2), x∗ solves NCP(q,A). ��
Remark 4.3.2 If x∗ = 0I is a local solution of (4.3.1), then x∗ solves NCP(q,A)

for any q ∈ RI+.

We then consider the necessary conditions for Problem 4.2.2. Consider its
nonlinear programming formulation:

min
N/2∑

k=1

AkxN−2k+2 + q�x

s.t.

N/2∑

k=1

AkxN−(2k−1) + q ∈ R
I+, x ∈ R

I+.

(4.3.6)

With FEA(q, {Ak}) denoting the feasible set of (4.3.6), if x∗ minimizes the
nonlinear programming in (4.3.6) satisfying

∑N/2
k=1 AkxN−2k+2∗ + q�x∗ = 0, then

x∗ is a solution of Problem 4.2.2.

Theorem 4.3.3 Suppose Ak ∈ RTN−(2k−2),I is symmetric for k = 1, 2, . . . , N/2
with an even N > 3. If x∗ is a local solution of (4.3.6) and FEA(q, {Ak}) �= ∅, there
exists u∗ of multipliers satisfying the conditions

q +
N/2∑

k=1

(N − 2k + 2)AkxN−2k+1∗ −
N/2∑

k=1

(N − 2k + 2)(N − 2k + 1)AkxN−2k∗ u∗ ≥ 0I ,

x�∗

⎛

⎝q +
N/2∑

k=1

(N − 2k + 2)AkxN−2k+1∗ −
N/2∑

k=1

(N − 2k + 2)(N − 2k + 1)AkxN−2k∗ u∗

⎞

⎠ = 0,

u∗ ≥ 0I ,

u�∗

⎛

⎝
N/2∑

k=1

AkxN−(2k−1)∗ + q

⎞

⎠ = 0.
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For all i, x∗ and u∗ satisfy

(x∗ − u∗)i

⎛

⎝
N/2∑

k=1

(N − 2k + 1)AkxN−2k∗ (x∗ − u∗)

⎞

⎠

i

≤ 0.

4.3.2 Solving Problem 4.2.1

In Problem 4.2.1, let F(x) = AxN−1 +q. We first consider some properties of F(x)

when A is structured.

Theorem 4.3.4 Suppose that A ∈ RTN,I is symmetric and x ∈ R
I is nonnega-

tive.

(a) If A is copositive (resp. strictly copositive), then F(x) is copositive (resp.
strictly copositive) with respect to RI+.

(b) For an even N , if A is positive definite, then F(x) is strongly copositive with
respect to RI+ when α ≤ λmin‖x‖N−2

2 (resp. λmin‖x‖N
N/‖x‖2

2), where λmin is the
smallest Z-eigenvalue (resp. H-eigenvalue) of A.

Proof According to Definition 4.1.1 and F(x) = AxN−1 + q, we have x�(F (x) −
F(0I )) = AxN . Since A is copositive (resp. strictly copositive), that is, AxN ≥ 0
for all x ∈ RI+ (resp. AxN > 0 for all nonzero x ∈ RI+). Part (a) is proved.

If A is positive definite, then it follows from [10, Theorem 5] that the smallest
Z-eigenvalue (resp. H-eigenvalue) of A satisfies λmin > 0.

If λmin is the smallest Z-eigenvalue of A, then

x�(F (x) − F(0I )) = AxN ≥ λmin‖x‖N
2 = λmin‖x‖N−2

2 ‖x‖2
2.

In this case, part (b) is proved. Similarly, we can prove the case where λmin is the
smallest H-eigenvalue of A. ��

When A ∈ DN,I is positive semi-definite, we have the following theorem on the
Jacobian matrix ∇F(x), where x ∈ RI is nonzero.

Theorem 4.3.5 Let A ∈ DN,I be positive semi-definite with an even N . Then the
Jacobian matrix ∇F(x) is positive semi-definite for nonzero x ∈ RI .
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Proof As A is diagonalizable, for x ∈ RI , according to Definition 4.1.3, we have

AxN = (D ×1 B ×2 B · · · ×N B)xN = D(B�x)N

= DyN (y
#= B�x) =

I∑

i=1

diy
N
i ,

where di is the ith main diagonal entry of D. With di ≥ 0, we have AxN ≥ 0 for
all x ∈ R

I .
Since the Jacobian matrix ∇F(x) = (N − 1)AxN−2, for any vector z ∈ R

I , we
obtain

z�∇F(x)z = (N − 1)

I∑

i=1

diy
N−2
i z̃2

i ≥ 0,

where z̃ = B�z = (z̃1, z̃2, . . . , z̃I )
� ∈ RI . The Jacobian matrix ∇F(x) is positive

semi-definite with x ∈ RI . ��
From Theorem 4.3.5, we have an open question in the following.

Question 4.3.1 Suppose A ∈ RTN,I with an even N and a nonzero x ∈ RI . Under
what conditions, there exists δ ∈ (0, 1), such that all principal minors of matrix
AxN−2 are bounded between δ and δ−1, for all x ∈ RI+?

For a given symmetric tensor A ∈ RTN,I , the existence theorems for Prob-
lem 4.2.1 are given below.

Theorem 4.3.6 Suppose that A ∈ RTN,I is symmetric. For Problem 4.2.1, the
following results hold.

(a) For an even N , if A is positive definite, then NCP(q,A) has a nonempty,
compact solution set.

(b) If A is strictly copositive with respect to RI+, then NCP(q,A) has a nonempty,
compact solution set.

Proof If A is positive definite, according to Theorem 4.3.4, F(x) = AxN−1 + q
is strictly copositive. Let c(λ) = λα with 0 < α ≤ N − 1 and λ ≥ 1, we know
that c(λ) → ∞ as λ → ∞ and x�(F (λx) − F(0I )) ≥ c(λ)x�(F (x) − F(0I )). By
Lemma 4.2.2, the NCP(q,A) has a nonempty, compact solution set.

By Theorem 4.3.4, F(x) = AxN−1 +q is strictly copositive. From [4], if F(x) is
strictly copositive with respect to RI+, then the mapping G in (4.1.1) is d-regular for
any positive vector d ∈ R

I and G(λx) = λN−1G(x) with λ > 0. By Lemma 4.2.3,
if A is strictly copositive with respect to R

n+, then NCP(q,A) has a nonempty,
compact solution set. ��
From Theorem 4.3.6, we have the following conjecture.
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Conjecture 4.3.2 If A ∈ DN,I is positive definite with an even N , then NCP(q,A)

has a unique solution.

In the following theorem, we consider how to transform Problem 4.2.1 to a system
of nonlinear equations.

Theorem 4.3.7 Let A ∈ RTN,I , and �,� ∈ R
I×I be nonsingular diagonal

matrices. For NCP(q,A), the following statements hold:

(i) If (w, z) is a solution of NCP(q,A), then x = 1
2 (�−1z − �−1w) satisfies the

implicit fixed-point equation

F(x, |x|) := Â(|x| + x)N−1 − �(|x| − x) + q = 0I , (4.3.7)

where Â = A ×2 � · · · ×N �;
(ii) If x satisfies the implicit fixed-point equation F(x) = 0I , then

z = �(|x| + x), w = �(|x| − x) (4.3.8)

is a solution of NCP(q,A).

Proof As z is a solution of NCP(q,A), it is a nonnegative vector and can be
expressed in the form

z = �(|x| + x), x ∈ R
I .

Define another nonnegative vector

w = �(|x| − x).

Then we have z�w = 0 and w = AzN−1 + q if and only if

�(|x| − x) = Â(|x| + x)N−1 + q,

where Â = A ×2 � · · · ×N �. It proves the validity of (i).
The implicit fixed-point equations (4.3.7) can be rewritten as

�(|x| − x) = Â(|x| + x)N−1 + q,

with Â = A ×2 � · · · ×N �.
For the nonnegative vectors w and z defined in (4.3.8), we have

w = �(|x| − x).
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In addition, we can observe that:

1. if xi > 0, then zi > 0 and wi = 0;
2. if xi = 0, then zi = wi = 0; and
3. if xi < 0, then zi = 0 and wi > 0.

It then follows that z�w = 0. Therefore, (w, z) is a solution of NCP(q,A). ��
If � and � are the identity matrices, then the above theorem is the same as

Theorem 4.3 in [26]. When N = 2, the above theorem reduces to [27, Theorem 2.1].
Based on this, Bai [27] designs a modulus matrix splitting iterative method for
solving the linear complementarity problem.

4.3.3 Solving Problem 4.2.2

In the previous subsection, we have considered the solvability of Problem 4.2.1.
Analogously, the following theorems describe the solvability of Problem 4.2.2.

Theorem 4.3.8 For a given even integer N > 3, suppose that Ak ∈ RTN−(2k−2),I

is symmetric, with k = 1, 2, . . . , N/2 and AN/2 ∈ RI×I . For Problem 4.2.2, the
following results hold.

(a) If Ak with k = 1, 2, . . . , N/2 − 1 is diagonalizable and positive semi-definite
and AN/2 is positive definite, then NCP(q, {Ak}) has a unique solution.

(b) If Ak is positive semi-definite and there exists at least one k0 ∈ {1, 2, . . . , N/2}
such that Ak0 is positive definite, then NCP(q, {Ak}) has a nonempty compact
solution set.

(c) If Ak is strictly copositive with respect to R
I+, then NCP(q, {Ak}) has a

nonempty compact solution set.

Proof For part (a), according to the assumptions, AkxN−2k with k =
1, 2, . . . , N/2 − 1 are symmetric and positive semi-definite for all x ∈ RI . When
AN/2 is symmetric positive definite, then ∇F(x) is symmetric and positive definite,
where F(x) is defined in Problem 4.2.2. Then by Lemma 4.2.1, NCP(q, {Ak}) has
a unique solution.

For part (b), from the assumptions and if k0 = N/2, we have

x�(F (x) − F(0I )) =
N/2∑

k=1

AkxN−(2k) ≥ λ‖x‖2
2 > 0,

for all nonzero x ∈ RI+, where λ is the smallest eigenvalue of AN/2. If k0 ∈
{1, 2, . . . , N/2−1}, then the same result holds, where λ is the smallest Z-eigenvalue
of Ak0 . (We can also consider the case when λ is the smallest H-eigenvalue of Ak0 )
Thus F(x) is strictly copositive. Let c(λ) = λ with α = 1 and λ ≥ 1, we know
that c(λ) → ∞ as λ → ∞ and x�(F (λx) − F(0I )) ≥ c(λ)x�(F (x) − F(0I )).
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From Lemma 4.2.2, if Ak is positive semi-definite and there exists at least one
k0 ∈ {1, 2, . . . , N/2} such that Ak0 is positive definite, then NCP(q, {Ak}) has a
nonempty compact solution set.

Part (c) is similar part (b) without the proof. ��
The constraints of Ak in part (a) of Theorem 4.3.8 can be weakened. A more

general result is given below.

Theorem 4.3.9 For a given even integer N > 3, suppose that Ak ∈ RTN−(2k−2),I

is symmetric, with k ∈ {1, 2, . . . , N/2 − 1} and AN/2 is a square matrix. If Ak are
diagonalizable and positive semi-definite and there exists δ ∈ (0, 1), such that all
principal minors of AN/2 are bounded between δ and δ−1, then NCP(q, {Ak}) has
a unique solution.

Proof Since there exists δ ∈ (0, 1), such that all principal minors of AN/2 are
bounded between δ and δ−1, then the real part of every eigenvalue of AN/2 is
positive. Hence, for all nonzero x, we can derive x�AN/2x > 0. According to
the assumptions, the Jacobian matrix �F(x) in Problem 4.2.2 is positive definite.
Hence, NCP(q, {Ak}) has a unique solution. ��

4.4 Generalizations

Huang and Qi [28] reformulate the multilinear game (a class of N-person nonco-
operative games) as the TCP and show that finding a Nash equilibrium point of
the multilinear game is equivalent to finding a solution of the corresponding TCP.
The readers may consult [22, 28–32] for a thorough survey of the existence of the
solution set of the TCP.

Recently, some researchers focus on the numerical algorithms for TCPs [26, 28,
33–38]. Che et al. [39] consider the stochastic tensor complementarity problem via
the theory of stochastic R0 tensors. Barbagallo et al. [40] study some variational
inequalities on a class of structured tensors. Wang et al. [17] introduce the tensor
variational inequality, where the involved function is the sum of an arbitrary given
vector and a homogeneous polynomial defined by a tensor. The interested readers
are referred to [14–16] for the basic theory, solution methods and applications of
TCPs.

We next consider the stochastic TCPs [39] and generalized order TCPs [41].

4.4.1 Stochastic TCPs

Assume that (�,F,P) is a probability space with the underlying sample space
� ∈ R

I , where the probability distribution P is known. The stochastic linear
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complementarity problem SLCP(M(ω), q(ω)) [42–46] is to find x ∈ RI+ such that

M(ω)x + q(ω) ∈ R
I+, x�(M(ω)x + q(ω)) = 0, a.e. ω ∈ �,

or

P{ω ∈ � : x ∈ R
I+, M(ω)x + q(ω) ∈ R

I+, x�(M(ω)x + q(ω)) = 0} = 1,

where ω ∈ � is a random vector with a given probability distribution P, M(ω) ∈
RI×I and q(ω) ∈ RI . Here “a.e.” is the abbreviation of “almost everywhere”.

For a given probability space (�,F,P), the stochastic nonlinear complemen-
tarity problem SNCP(F (x, ω)) [47–52]) is to find x ∈ RI+ such that

F(x, ω) ∈ R
I+, x�F(x, ω) = 0, a.e. ω ∈ �,

or

P{ω ∈ � : x ∈ R
I+, F (x, ω) ∈ R

I+, x�F(x, ω) = 0} = 1,

where F : RI × � → RI is a given vector-valued function.
Gürkan et al. [53] consider the sample-path approach for stochastic variational

inequalities and provide the convergence theory and applications for the approach.
When applied to SLCP(M(ω), q(ω)) and SNCP(F (x, ω)), the approach is the same
as the expected value method. This uses (i) the expectation of the random function
M(ω)x + q(ω), from the deterministic problem

x ∈ R
I+, E{M(ω)x + q(ω)} ∈ R

I+, E{x�(M(ω)x + q(ω))} = 0,

and (ii) the expectation of F(x, ω), from the deterministic problem

x ∈ R
I+, E{F(x, ω)} ∈ R

I+, E{x�F(x, ω)} = 0.

In particular, the stochastic tensor complementarity problem STCP(M(ω),

q(ω)) [54] is to find x ∈ RI+ such that

A(ω)xN−1 + q(ω) ∈ R
I+, x�(A(ω)xN−1 + q(ω)) = 0, a.e. ω ∈ �,

or

P{ω ∈ � : x ∈ R
I+, A(ω)xN−1 + q(ω) ∈ R

I+, x�(A(ω)xN−1 + q(ω)) = 0} = 1,
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where A(ω) ∈ RTN,I and q(ω) ∈ RI . The STCP(M(ω), q(ω)) is equivalent to
finding a vector x ∈ RI+ such that

E{A(ω)xN−1 + q(ω)} ∈ R
I+, E{x�(A(ω)xN−1 + q(ω))} = 0.

4.4.2 Generalized Order TCPs

For given x, y ∈ RI , the ith components of x ∧ y and x ∨ y are min{xi, yi} and
max{xi, yi}, respectively, for all i. Also, x > y and x ≥ y mean xi > yi and xi ≥ yi

for all i, respectively. Similarly, we define x < y and x ≤ y for x, y ∈ RI .
Let K ≥ 1 be any positive number. Given A1, A2, . . . , AK ∈ RI×I and

q1, q2, . . . , qK ∈ RI , the generalized order linear complementarity problem
(GOLCP) [55] is to find a vector x ∈ RI such that

x ∧ (A1x + q1) ∧ (A2x + q2) ∧ · · · ∧ (AKx + qK) = 0I . (4.4.1)

For A1,A2, . . . ,AK ∈ TN,I and q1, q2, . . . , qK ∈ RI , we denote

Â := {A1,A2, . . . ,AK}, q̂ := {q1, q2, . . . , qK }. (4.4.2)

The corresponding GOTCP(Â, q̂) is to find a vector x ∈ R
I such that

x ∧ (A1xN−1 + q1) ∧ (A2xN−1 + q2) ∧ · · · ∧ (AKxN−1 + qK) = 0I .

We introduce the notations

x ∧ (ÂxN−1 + q̂) := x ∧ (A1xN−1 + q1) ∧ (A2xN−1 + q2) ∧ · · · ∧ (AKxN−1 + qK),

x ∧ ÂxN−1 := x ∧ (A1xN−1) ∧ (A2xN−1) ∧ · · · ∧ (AKxN−1),

x ∨ ÂxN−1 := x ∨ (A1xN−1) ∨ (A2xN−1) ∨ · · · ∨ (AKxN−1).

Also ÂxN−1 + q̂ ≥ 0I means AkxN−1 + qk ≥ 0I for k = 1, 2, . . . ,K . A
vector x ∈ RI+ with ÂxN−1 + q̂ ≥ 0I (> 0I ) is called a feasible (respectively,
strictly feasible) vector for GOTCP(Â, q̂). If there is such a vector, we say that
GOTCP(Â, q̂) is feasible (respectively, strictly feasible). Let

{
F(Â) = {q̂ : ÂxN−1 + q̂ ≥ 0I for some x ∈ RI+},
K(Â) = {q̂ : SOL(Â, q̂) �= ∅},

where SOL(Â, q̂) denotes the solution set of GOTCP(Â, q̂). It is obvious that
K(Â) ⊆ F(Â). Borrowing from LCP, we say that these sets are, respectively (when
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Â is fixed), the set of all “feasible” q̂’s and “solvable” q̂’s. Note that

intF(Â) = {q̂ : ÂxN−1 + q̂ > 0I for some x ∈ R
I+}.

Consider B ∈ RJ×I×···×I with J ≥ I and p ∈ RJ . Let J = J1 + J2 + · · · + JI

and J0 = 0. Suppose that Bi ∈ RJi×I×···×I and pi ∈ RJi satisfy

{
Bi = B(J1 + · · · + Ji−1 + 1 : J1 + · · · + Ji, :, . . . , :) ∈ RJi×I×···×I ,

pi = p(J1 + · · · + Ji−1 + 1 : J1 + · · · + Ji) ∈ RIi ,

for all i. Then VTCP(B, p) is to find a vector x ∈ RI+ such that

BxN−1 + p ∈ R
J+, xi

Ji∏

j=1

(
BixN−1 + pi

)

j
= 0,

for all i, where the j th component of BxN−1 is defined by

(BxN−1)j =
I∑

i2,...,iN =1

bji2...iN xi2 . . . xiN , j = 1, 2, . . . , J.

We show that this problem can be formulated as a GOTCP. Let K = max{Ji : i =
1, 2, . . . , I }. Let Bj

i := Bi (j, :, . . . , :) is the j th mode-1 slice of Bi where j =
1, 2, . . . , Ji and i = 1, 2, . . . , I . We define tensors B̂1, B̂2, . . . , B̂I ∈ RK×I×···×I

of order N in the following way. For each i, the j th mode-1 slice of B̂i is Bj
i if

j ≤ Ji and B1
i if j > Ji . Similarly, we define vectors p̂1, p̂2, . . . , p̂I ∈ RK . For

each i, the j th element of p̂i is the j th element of pi if j ≤ Ji and the first element
of pi if j > Ji .

It is clear that VTCP(B̂, p̂) is equivalent to VTCP(B, p). Let the j th mode-1
slice of Ai ∈ TN,I be the ith mode-1 slice of B̂j with i = 1, 2, . . . ,K and all j . For

example, A1 is formed by considering B̂
1
j for all j . Similarly, let qi be the vector of

size I × 1 whose j th component is the ith component in the vector p̂j . Hence we
can verify that VTCP(B̂, p̂) is equivalent to GOTCP(Â, q̂).

We shall show that every GOTCP can be formulated as a VTCP. For a given
GOTCP(Â, q̂), let the ith mode-1 slice of Bj ∈ RK×I×···×I be the j th mode-1 slice
of Ai with i = 1, 2, . . . ,K and all j . For example, B1 is formed by considering

Â1
i with i = 1, 2, . . . ,K . We define pi ∈ RK for all i. This construction leads

to the pair (B, p), and the corresponding VTCP is easily seen to be equivalent to
GOTCP(Â, q̂).
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Chapter 5
Plane Stochastic Tensors

We study combinatorial properties of nonnegative tensors. We make the following
contributions: (1) we obtain equivalent conditions for sign nonsingular tensors
and relationships between the combinatorial determinant and the permanent of
nonnegative tensors, in Theorems 5.2.1 and 5.2.2; (2) the sets of plane stochastic
tensors and totally plane stochastic tensors are closed, bounded and convex sets, and
an nonnegative tensor has a plane stochastic pattern if and only if its positive entries
are contained in a positive diagonal, in Lemma 5.3.1 and Theorem 5.3.2; (3) from
a nonnegative tensor, we propose a normalization algorithm which converges to a
plane stochastic tensor, in Theorem 5.3.8; (4) we discuss the boundlessness of the
diagonal products of any nonnegative tensor and obtain a probabilistic algorithm
after Theorem 5.4.4 for locating a positive diagonal in a (0, 1)-tensor1; (5) we
explore the axial N-index assignment problem via the set of plane stochastic tensors
in Sect. 5.5.

5.1 Preliminaries

For in and n, the inth mode-n slice [1–5] of A ∈ RTN,I is defined as a tensor in
RTN−1,I , by fixing the mode-n index of A to in: A(:, . . . , :, in, :, . . . , :). Similar to
the row and the column sums of a matrix, for all in and n, the inth mode-n sum of
A ∈ RTN,I is

f (A; in, n) =
I∑

i1,...,in−1,in+1,...,iN =1

ai1...in−1inin+1...iN .

1A tensor is a (0, 1)-tensor [1], if its entries are chosen from the set {0, 1}.
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For both in and n, we denote by A(i1, i2, . . . , iN ) the tensor in RTN,I−1, derived
from A by deleting its inth mode-n slices.

5.1.1 Plane Stochastic Tensors

Similar to a stochastic matrix (see [6, Chapter 2] and [7]), a plane stochastic tensor
is defined as follows.

Definition 5.1.1 For a given n, a tensor A ∈ NTN,I is mode-n plane stochastic
provided that f (A; in, n) = 1 for all in. Particularly, if f (A; in, n) = 1, for all
in and n, then A is called a plane stochastic tensor. We denote the set of all plane
stochastic tensors in NTN,I by �N,I .

Yang and Yang [8] give an alternative proof of the minimax theorem for
nonnegative tensors with positive eigenvectors corresponding to the spectral radius
[9] by using mode-1 plane stochastic tensors. Jurkat and Ryser [4] study the
basic combinatorial properties of tensors and these properties also hold for plane
stochastic tensors. We can refer to [1–4, 10] for the details on plane stochastic
tensors.

Cui et al. [11] define multi-stochastic tensors (or called line stochastic tensors
[3]), and permutation tensors. We make the difference via an example. For N = 3,
Definition 5.1.1 indicates that a plane stochastic tensor A ∈ NT3,I satisfies

I∑

i2,i3=1

ai1i2i3 =
I∑

i1,i3=1

ai1i2i3 =
I∑

i1,i2=1

ai1i2i3 = 1.

In [11], B ∈ NT3,I is called multi-stochastic, provided

I∑

i1=1

bi1i2i3 =
I∑

i2=1

bi1i2i3 =
I∑

i3=1

bi1i2i3 = 1.

Let a nonnegative vector x ∈ RI satisfy x1 + x2 + · · · + xI = 1. Then

I∑

i1,i2,i3=1

bi1i2i3xi2xi3 =
I∑

i1,i2,i3=1

bi1i2i3xi1xi3 =
I∑

i1,i2,i3=1

bi1i2i3xi1xi2 = 1,

I∑

i1,i2,i3=1

ai1i2i3xi2xi3 =
I∑

i1,i2,i3=1

ai1i2i3xi1xi3 =
I∑

i1,i2,i3=1

ai1i2i3xi1xi2 �= 1.
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The tensor B/I is plane stochastic. For C ∈ RTN,I and a nonzero α ∈ R, each
element of the tensor C/α is bi1i2...iN /α for in and n. Furthermore, if A ∈ NTN,I is
multi-stochastic, then A/IN−2 is plane stochastic.

Mode-1 multi-stochastic tensors have been studied in higher order Markov chains
[12], under the name “transition probability tensors” [12–16]. Christensen and
Fischer [17] use the plane stochastic tensors in error-correcting codes [18]. In
Sect. 5.5, we will present a lower bound for the minimum of the axial N-index
assignment problem by means of plane stochastic tensors.

The following definition is a generalization of the permutation matrix [19,
Chapter 1].

Definition 5.1.2 A tensor P ∈ NTN,I is a plane permutation tensor, if for (N − 1)

given πn ∈ SI with n = 2, 3, . . . , N , we have pi1i2...iN = δi1π2(i2)...πN (iN ), where

δi1π2(i2)...πN (iN ) =
{

1, if i1 = π2(i2) = · · · = πN(iN);
0, otherwise.

The number of the plane permutation tensors in NTN,I is Ñ = (I !)N−1.

We denote the set of plane permutation tensors in NTN,I by PN,I . PN,I is a subset of
�N,I , which is the set of all plane stochastic tensors in NTN,I . A plane permutation
tensor can also be characterized by the system of linear equations:

I∑

i1,...,in−1,in+1,...,iN =1

pi1...in−1inin+1...iN = 1,

with the constraints pi1i2...iN ∈ {0, 1}, for all in and n.
In Fig. 5.1, we list four plane permutation tensors in �3,2 with all their entries.

Fig. 5.1 Plane permutation tensors in �3,2
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5.1.2 Combinatorial Determinant and Permanent of Tensors

There are two ways to extend the determinant of matrices to tensors. One is to extend
the usual expression of an I × I matrix determinant as a sum of I ! monomials in the
entries of the matrix, which we call the matrix combinatorial determinant. Another
we call the determinant [20, 21] uses the characterization that a matrix A ∈ RI×I

has det(A) = 0 if and only if Ax = 0I has nonzero solutions.

Definition 5.1.3 (Combinatorial Determinant of Tensors [22]) The combinato-
rial determinant of A ∈ RTN,I , denoted by detc(A), is defined as

detc(A) =
∑

π2,...,πN ∈SI

sign(πN−K+1) . . . sign(πN)

I∏

i=1

aiπ2(i)...πN (i), (5.1.1)

where sign(π) is the sign of π ∈ SI [23] and the positive integer K satisfies

K = (N + 1)/2, for an odd N; or K = N/2, for an even N. (5.1.2)

Cayley begins to study the combinatorial determinant of hypermatrices [24]. The
fundamental properties and applications of the higher-order determinant (our tensor
combinatorial determinant) are considered by Rice [22], Oldenburger [25] and Vein
and Dale [26]. The combinatorial determinant in Definition 5.1.3 is also called a P -
sign determinant [22]. More generally, we refer to [22] for the P -sign determinant
of A ∈ RTN,I with an even P ≤ N . Lim [27] considers the P -sign determinant
with an even K = N .

Analogous to the definition of the tensor combinatorial determinant, we define
the tensor permanent as follows.

Definition 5.1.4 ([1]) The permanent of the tensor A ∈ RTN,I , denoted by
perm(A), is defined as

perm(A) =
∑

π2,...,πN ∈SI

I∏

i=1

aiπ2(i)...πN (i).

Dow and Gibson [1] extend properties from the matrix permanent to the
tensor permanent (or called multi-dimensional permanent) and investigate some
inequalities for the permanent of (0, 1)-tensors. Dow and Gibson deduce that the
permanent of a (0, 1)-tensor is equivalent to the sum of of all perfect matchings
of the N-partite N-uniform hypergraph [28, 29]. We refer to [30] for the theory of
hypergraphs. Recently, Taranenko [31] investigates the properties and applications
for the permanent of multi-dimensional matrices. Barvinok [32] presents a deter-
ministic algorithm to compute the matrix permanent and extends this method to
computing the tensor permanent.
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Avgustinovich [33] indicates that the problem of counting the number of
distinct 1-perfect binary codes reduces to compute the permanent of a particularly
constructed multi-dimensional matrix (tensor). Taranenko [34] derives inequalities
for the permanent of the multi-stochastic tensors. Cui et al. [11] utilize the tensor
permanent to study the extreme points for the set of multi-stochastic tensors. The
tensor permanent defined by Cui et al. [11] is identical to the tensor S-permanent [1].

We give an example to illustrate the permanent and the combinatorial determi-
nant of A ∈ RTN,I .

Example 5.1.1 The permanent of A ∈ RT3,2 is

perm(A) = a111a222 + a112a221 + a121a212 + a122a211.

According to [22], P = 2 and the combinatorial determinant of A ∈ RT3,2 is

detc(A) = a111a222 − a112a221 − a121a212 + a122a211.

Furthermore, the permanent of A ∈ RT4,2 is

perm(A) =a1111a2222 + a1112a2221 + a1121a2212 + a1211a2122

+ a2111a1222 + a1122a2211 + a1212a2121 + a1221a2112.

It follow from [22] that P = 2 and the combinatorial determinant of A ∈ RT4,2 is

detc(A) =a1111a2222 − a1112a2221 − a1121a2212 + a1211a2122

+ a2111a1222 + a1122a2211 − a1212a2121 − a1221a2112.

Both the combinatorial determinant and the permanent of A ∈ RTN,I are special
cases of a more general function of tensors called the tensor immanant, generalized
from that of a matrix [35].

Definition 5.1.5 Let λ = (λ1, λ2, . . . ) be a partition of I and χλ be the corre-
sponding irreducible representation-theoretic character of the symmetric group SI ,
the immanant of A ∈ RTN,I associated with the character χλ is defined as

Immλ(A) =
∑

π2∈SI

· · ·
∑

πN ∈SI

χλ(π2) . . . χλ(πN)

I∏

i=1

aiπ2(i)...πN (i).

For the combinatorial determinant, χλ(πn) is the alternating character of SI ,
defined by the parity of a permutation with n ≥ N − P + 1, and the other χλ

are identically 1. The permanent has χλ identically equal to 1.
More generally, let G be a subgroup of the symmetric group SI of degree I and

χn ∈ SI with n = 2, 3, . . . , N be a linear character of G. The generalized tensor
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function associated with G and χn (also known as the G-immanant) of A ∈ RTN,I

is defined as

dG
χ2,...,χN

(A) =
∑

π2,...,πN ∈G
χ2(π2) . . . χN(πN)

I∏

i=1

aiπ2(i)...πN (i).

For simplicity, we denote d(A) = dG
χ2,...,χN

(A). When N = 2, dG
χ2,...,χN

(A)

reduces to the generalized matrix function [36, 37]. Macrcus and Minc [38] obtain
a relationship between the generalized matrix function and a function involving
the eigenvalues of normal matrices. They reveal the relationship between the
generalized matrix function and an appropriate function of the singular values.
Berndt and Sra [39] obtain the generalized Hlawka and Popoviciu inequalities for
generalized matrix function. Huang et al. [40] derive inequalities on the non-integer
power of products of the generalized matrix function on the sum of positive semi-
definite matrices. Chang et al. [41] present an inequality for the Kronecker product
(or called tensor product) of positive operators on Hilbert spaces and then apply that
to the generalized matrix function. Paksoy et al. [42] obtain some inequalities for
the generalized matrix function of positive semi-definite matrices by an embedding
and the Kronecker product.

It is known that there is a decomposable vector x ∈ CIN
such that d(A) =(⊗IA

)
xN . The Kronecker product of A ∈ RI1×I2×···×IN and B ∈ RJ1×J2×···×JN

yields a tensor C ∈ RI1J1×I2J2×···×IN JN with entries [43]

C(j1 + (i1 − 1)I1, j2 + (i2 − 1)I2, . . . , jN + (iN − 1)IN) = ai1i2...iN bj1j2...jN

for all in, jn and n. When A ∈ RTN,I is diagonalizable and symmetric, Che et al.
[44] investigate the inequalities on dG

χ2,...,χN
(A).

5.2 Sign Nonsingular Tensors

If there exists πn ∈ SI with n = 2, 3, . . . , N such that

α = sign(πN−P+1) . . . sign(πN)

I∏

i=1

aiπ2(i)...πN (i) �= 0,

where K is given in (5.1.2), then α is called a nonzero term in (5.1.1). The sign
pattern of A ∈ RTN,I , denoted by sign(A), belongs to the set RTN,I with entries

(sign(A))i1i2...iN =

⎧
⎪⎪⎨

⎪⎪⎩

1, if ai1i2...iN > 0,

0, if ai1i2...iN = 0,

−1, if ai1i2...iN < 0.
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Let Q(A) = {B ∈ RTN,I : sign(B) = sign(A)} be the set of tensors with
the same sign pattern of A. If detc(Ã) and detc(A) have the same sign for any
Ã ∈ Q(A), then we say that A has a signed determinant. If detc(Ã) �= 0 for any
Ã ∈ Q(A), then A is called a sign nonsingular tensor (differently defined in [45]).
Note that singularity and sign-singularity of tensors do not imply each other. The
following lemma extends [46, Lemma 1.2.4] from matrices to tensors.

Lemma 5.2.1 Suppose that A ∈ RTN,I with an even N . Then the tensor A has a
signed determinant if and only if all nonzero terms in (5.1.1) have the same sign.

Proof If all nonzero terms have the same sign, then A has a signed determinant.
We shall prove that all nonzero terms in (5.1.1) have the same sign. Let

α = sign(πN−K+1) . . . sign(πN)

I∏

i=1

aiπ2(i)...πN (i)

be a nonzero term in (5.1.1). The sign of detc(A) is the same as sign(α) if we
multiply each entry of A not occurring in α by a sufficiently small positive number.
The converse also follows similarly. ��

The following theorem illustrates the relationship between the sign nonsingular
tensors and the signed determinant, which extends [46, Theorem 1.2.5] from
matrices to tensors.

Theorem 5.2.1 Assume that A ∈ RTN,I with an even N . The following are
equivalent:

(1) A is a sign nonsingular tensor.
(2) detc(A) �= 0 and A has a signed determinant.
(3) All nonzero terms in (5.1.1) have the same sign.

Proof Since Q(A) is a connected set and detc(A) is continuous, then (1) is
equivalent to (2). By Lemma 5.2.1, we have (2) being equivalent to (3). ��
We reveal the relationship between the combinatorial determinant and the perma-
nent of nonnegative tensors, summarized in the following theorem.

Theorem 5.2.2 Let A ∈ RTN,I be nonnegative with an even N and its combinato-
rial determinant is nonzero. Then | detc(A)| ≤ perm(A), with equality if and only
if A is sign nonsingular.

Proof Since detc(A) �= 0 with an even N and there exist nonzero terms in (5.1.1),
then we get | detc(A)| ≤ perm(A), with equality if and only if all nonzero terms
in (5.1.1) have the same sign. By Theorem 5.2.1, we have | detc(A)| = perm(A) if
and only if A is a sign nonsingular nonnegative tensor. ��
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5.3 Properties of Plane Stochastic Tensors

Christensen and Fischer [17] indicate that when considering error-correcting codes,
we need to study the extremal points for the set of all T -flat stochastic tensors [3]
with a fixed positive integer 1 ≤ T ≤ N − 1. A doubly stochastic matrix always has
a positive diagonal [47, Lemma 2.1.5]. However, for a plane stochastic tensor, this
result is not true. The following example illustrates the fact.

Example 5.3.1 Let A ∈ NT3,2 be a plane stochastic tensor with

a111 = 0.5, a122 = 0.5, a221 = 0.5, a212 = 0.5,

and zero elsewhere. For diagonals of A, we have

{a111, a222} = {0.5, 0}, {a122, a211} = {0.5, 0},
{a112, a221} = {0, 0.5}, {a121, a212} = {0, 0.5}.

Then A has no positive diagonal.

Generally speaking, all elements in PN,I are extremal points of �N,I , and the set
of all plane stochastic tensors, which also has other extremal points [3]. Please refer
to [1–4, 10, 48–54] on the extremal points for the set of all T -flat stochastic tensors.
Now we consider some interesting properties of a special subset of �N,I :

�+
N,I =

⎧
⎨

⎩
A ∈ �N,I : A =

M̃∑

i=1

λiPi ,

M̃∑

i=1

λi = 1, 0 ≤ λi ≤ 1, i = 1, 2, . . . , M̃

⎫
⎬

⎭
,

(5.3.1)

where Pi ∈ PN,I and M̃ ≤ (I !)N−1.
We call a tensor in �+

N,I totally plane stochastic. A tensor A ∈ RTN,I has a
totally plane stochastic pattern, if there exists a totally plane stochastic tensor in
�+

N,I with the same pattern as A.
For a given A ∈ NTN,I , if perm(A) is positive, according to the definition of

the tensor permanent, then there exists a positive diagonal of A. It is obvious that
any totally plane stochastic tensor has a positive diagonal. A plane stochastic tensor
with a positive permanent does not always belong to �+

N,I , as illustrated below.

Example 5.3.2 Let A ∈ NT3,2 be plane stochastic with

A =
4∑

i=1

λiPi + λ5Q1 + λ6Q2,

6∑

i=1

λi = 1, 0 < λi ≤ 1,
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where Pi ∈ P3,2, and all entries of Q1 and Q2 are zero except

(Q1)111 = 0.5, (Q1)122 = 0.5, (Q1)221 = 0.5, (Q1)212 = 0.5,

(Q2)121 = 0.5, (Q2)112 = 0.5, (Q2)211 = 0.5, (Q2)222 = 0.5.

Manipulation yields

perm(Pi ) = 1, perm(Q1) = perm(Q2) = 0.

Thus perm(A) = ∑4
i=1 λi > 0. However, by (5.3.1), it is obvious that A /∈ �+

3,2.

5.3.1 Totally Plane Stochastic Tensors

For the plane stochastic and totally plane stochastic tensors, we have the following
result.

Lemma 5.3.1 The set �N,I , viewed as a subset of RIN
, is closed, bounded and

convex.

Proof Let A,B ∈ �N,I . For any 0 ≤ λ ≤ 1, the entries of λA + (1 − λ)B are
nonnegative. For any i1, we have

λ

I∑

i2,...,iN=1

ai1i2...iN + (1 − λ)

I∑

i2,...,iN =1

bi1i2...iN = 1.

Similarly, its inth mode-n sums are unity for all n. Hence �N,I is a convex set.
Because 0 ≤ ai1i2...iN ≤ 1 for all in and n, �N,I is bounded.

To show that �N,I is closed, without loss of generality, we assume that N = 3.
Let

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 = {A ∈ NT3,I :
I∑

i2,i3=1

ai1i2i3 = 1, i1 = 1, 2, . . . , I },

S2 = {A ∈ NT3,I :
I∑

i1,i3=1

ai1i2i3 = 1, i2 = 1, 2, . . . , I },

S3 = {A ∈ NT3,I :
I∑

i1,i2=1

ai1i2i3 = 1, i3 = 1, 2, . . . , I }.
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Note that �3,I = S1 ∩ S2 ∩ S3. Next we prove that Sn (n = 1, 2, 3) are closed sets.
For A ∈ S1, let

Uδ(A) = {B = A + E ∈ NTN,I :
I∑

i1,i2,i3=1

|ei1i2i3 | < δ}.

Then Uδ(A) contains neighborhood elements of A. We denote the complement of
S1 as Sc

1:

S
c
1 = {A ∈ NT3,I :

I∑

i2,i3=1

ai1i2i3 �= 1, for some i1}.

Assume that A ∈ S
c
1 and

∑I
i2,i3=1 ai0

1 i2i3
�= 1, let ε = |∑I

i2,i3=1 ai0
1 i2i3

− δ|. Let
us set 0 < δ0 < ε. We find that Uδ0(A) contains neighborhood elements of A and
Uδ0(A) ⊆ S

c
1. Then S

c
1 is an open set, thus S1 is closed. Similarly, S2, S3 and �N,I

are closed sets. ��
Since �+

N,I is a subset of �N,I , it is closed, bounded and convex. A point x0 of

a convex set S ⊂ RI is called an extreme point of S, if S\{x0} is also convex. The
next result identifies the extreme points of �+

N,I .

Lemma 5.3.2 Any plane permutation tensor P ∈ PN,I is an extreme point of �+
N,I .

Proof Let P ∈ PN,I . If P is not an extreme point of �+
N,I , then we have P = (A+

B)/2 with A �= B and A,B ∈ �+
N,I . As shown in [47, Lemma 2.1.2], for all in and

n, the values of pi1i2...iN are 0 or 1; and 0 ≤ ai1i2...iN , bi1i2...iN ≤ 1. If pi1i2...iN = 0,
then ai1i2...iN = bi1i2...iN = 0 and if pi1i2...iN = 1, then ai1i2...iN = bi1i2...iN = 1.
This contradicts the assumption that A �= B. ��
In following lemma, we show that the upper bound of M̃ in (5.3.1) can be reduced.

Lemma 5.3.3 M̃ in (5.3.1) satisfies M̃ ≤ IN − NI + N .

Proof For any given A ∈ �N,I , by Definition 5.1.1, we have

f (A; in, n) = 1, (5.3.2)

for all in and n, and

I∑

i1,i2,...,iN =1

ai1i2...iN = I. (5.3.3)
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Substituting (5.3.3) into (5.3.2), we transform (5.3.2) to a linear system with IN

unknowns and NI−N+1 equations. This linear system has at most IN −NI+N−1
free variables. ��

By Lemma 5.3.3, the set �+
N,I is given in (5.3.1) with Pi ∈ PN,I and M̃ ≤

IN − NI + N .

Lemma 5.3.4 Suppose that A ∈ NT3,I satisfies all inth mode-n sums not
exceeding 1 for all in and n = 1, 2, 3. If f (A; 1, 1) < 1 and f (A; i, 1) = 1 for all
i, then there exist j, k ∈ {1, 2, . . . , I } such that f (A; j, 2) < 1 and f (A; k, 3) < 1.

Remark 5.3.1 Let A be the same as in Lemma 5.3.4, we have the following
results.

(a) If f (A; 1, 2) < 1 and f (A; j, 2) = 1 for j = 2, 3, . . . , I , then there exist
i, k ∈ {1, 2, . . . , I } such that f (A; i, 1) < 1 and f (A; k, 3) < 1.

(b) If f (A; 1, 3) < 1 and f (A; k, 3) = 1 for k = 2, 3, . . . , I , then there exist
i, j ∈ {1, 2, . . . , I } such that f (A; i, 1) < 1 and f (A; j, 2) < 1.

From Lemma 5.3.4, it is obvious to derive the following corollary.

Corollary 5.3.1 Assume that A ∈ NTN,I satisfies all inth mode-n sums not
exceeding 1 for all in and n. For a given in, if f (A; in, n) < 1 and f (A; im,m) = 1
for all im �= in, then for all t ∈ {1, . . . , n − 1, n + 1, . . . , N}, there exists
it ∈ {1, 2, . . . , I } such that f (A; it , t) < 1.

Theorem 5.3.1 Suppose that the inth mode-n sum of A ∈ NTN,I does not exceed
1 for all in and n. Then there exists a D ∈ �N,I such that D ≥ A.

Proof If A ∈ NTN,I is plane stochastic, then the result is trivial. If A ∈ TN,I

is not plane stochastic, according to Corollary 5.3.1, for all n, then there exists
rn ∈ {1, 2, . . . , I } such that f (A; rn, n) < 1. Let urn := f (A; rn, n) < 1 and
δ = min{1 − ur1, 1 − ur2, . . . , 1 − urN }. Adding δ to ar1r2...rN and keeping other
entries unchanged, we derive a new tensor A(1) such that A ≤ A(1). Thus A(1)

is nonnegative with all the inth mode-n sums at most 1. Furthermore, there exists
rn ∈ {1, 2, . . . , I } for all n such that the rn-th mode-n sum is less than 1 in A, but
equals to 1 in A(1).

If A(1) is plane stochastic, then stop; otherwise, the above procedure can be
repeated until we get a plane stochastic tensor D ≥ A. ��

The following theorem without the proof indicates that A ∈ NTN,I has a totally
plane stochastic pattern under certain conditions.

Theorem 5.3.2 Let A ∈ RTN,I be a nonzero nonnegative tensor. Then A has a
totally plane stochastic pattern if and only if any positive entry of A is in a positive
diagonal.
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5.3.2 A Self Map on Totally Plane Stochastic Tensors

Let A ∈ RTN,I be a nonnegative tensor with perm(A) > 0. We define the tensor
f (A) ∈ RTN,I by

(f (A))i1i2...iN = ai1i2...iN perm(A(i1, i2, . . . , iN ))

perm(A)
, (5.3.4)

for all in and n. According to Definition 5.1.1 and the definition of the permanent,
we have f (A) ∈ �+

N,I for all A ∈ �+
N,I . The map f and its restriction to �+

N,I

have interesting properties.

Lemma 5.3.5 If A ∈ �+
N,I , then A and f (A) have the same totally plane

stochastic pattern.

Proof If A ∈ �+
N,I , then perm(A) > 0 and f (A) is well defined. If ai1i2...iN = 0,

then obviously fi1i2...iN (A) = 0. If ai1i2...iN > 0, then by Theorem 5.3.2, there exists
πn ∈ SI (n = 2, 3, . . . , N) such that πn(i) = in and

∏I
i=1 aiπ2(i)...πN (i) > 0. Thus

perm(A(i1, i2, . . . , iN )) > 0 and perm(A) > 0. This shows that (f (A))i1i2...iN >

0. ��
Theorem 5.3.3 Let KN,I ⊂ �+

N,I be the set of all totally plane stochastic tensors
whose entries satisfy a given set of equality constraints. Suppose f (A) ∈ KN,I

whenever A ∈ KN,I , where f is the map defined by (5.3.4). Then f maps KN,I

onto KN,I . In particular, each of the following sets is mapped onto itself by f :

(i) �+
N,I .

(ii) The set of symmetric tensors in �+
N,I .

(iii) The set of tensors in �+
N,I with the first mode-1 slice equal to the second mode-

1 slice.

Proof By Lemma 2.7.3 in [47], Theorem 5.3.2 and Lemma 5.3.5, for any A ∈
�+

N,I , ai1i2...iN = 0 if and only if (f (A))i1i2...iN = 0 for all in and n. The sets in
(i)–(iii) are all defined by imposing equality constraints on the entries of the tensor.
The results are easily verified. ��
Theorem 5.3.4 The map f : �+

N,I → �+
N,I is one-to-one.

Proof Let f (A) = f (B) forA andB in �+
N,I . Since perm(A) > 0 and perm(B) >

0, then the tensor C is well defined with

ci1i2...iN =
(

perm(A)

perm(B)

)1/I

bi1i2...iN .

From f (A) = f (B), we have

ai1i2...iN perm(A(i1, i2, . . . , iN))

perm(A)
= bi1i2...iN perm(B(i1, i2, . . . , iN ))

perm(B)
.
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Therefore

ai1i2...iN perm(A(i1, i2, . . . , iN )) = ci1i2...iN perm(C(i1, i2, . . . , iN ))

for all in and n.
For πn ∈ SI with n = 2, 3, . . . , N , let

απ2,...,πN =
I∏

i=1

aiπ2(i)...πN (i), βπ2,...,πN =
I∏

i=1

ciπ2(i)...πN (i),

we have

∏

π2,...,πN∈SI

α
απ2,...,πN
π2,...,πN

=
∏

π2,...,πN∈SI

(
I∏

i=1

aiπ2(i)...πN (i)

)απ2,...,πN

=
∏

π2,...,πN∈SI

I∏

i=1

a
απ2,...,πN

iπ2(i)...πN (i)

=
I∏

i=1

∏

π2,...,πN∈SI

a
απ2,...,πN

iπ2(i)...πN (i). (5.3.5)

Recall the convention of 00 = 1. Let Kii2...iN = {(π2, π3, . . . , πN) : π2(i) =
i2, π3(i) = i3, . . . , πN(i) = iN }. Then

I∏

i=1

∏

π2,...,πN ∈SI

a
απ2,...,πN

iπ2(i)...πN (i) =
I∏

i,i2,...,iN =1

∏

(π2,...,πN )∈Kii2...iN

a
απ2,...,πN

iπ2(i)...πN (i)

=
I∏

i,i2,...,iN =1

a

∑
(π2,...,πN )∈Kii2...iN

απ2,...,πN

ii2...iN

=
I∏

i,i2,...,iN =1

a
aii2...iN

perm(A(i,i2,...,iN ))

ii2...iN

=
I∏

i,i2,...,iN =1

a
cii2...iN

perm(C(i,i2,...,iN ))

ii2...iN

=
∏

π2,...,πN∈SI

(
I∏

i=1

aiπ2(i)...πN (i)

)βπ2,...,πN

=
∏

π2,...,πN∈SI

α
βπ2 ,...,πN
π2,...,πN .
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From (5.3.5), we obtain

∏

π2,...,πN∈SI

α
απ2 ,...,πN
π2,...,πN

=
∏

π2,...,πN ∈SI

α
βπ2,...,πN
π2,...,πN

, (5.3.6)

we prove in a similar way,

∏

π2,...,πN∈SI

β
απ2,...,πN
π2,...,πN =

∏

π2,...,πN∈SI

β
βπ2,...,πN
π2,...,πN . (5.3.7)

Combining (5.3.6) and (5.3.7), we obtain

∏

π2,...,πN ∈SI

(
απ2,...,πN

βπ2,...,πN

)απ2,...,πN ·
(

βπ2,...,πN

απ2,...,πN

)βπ2,...,πN = 1.

Note that

perm(A) =
∑

π2,...,πN∈SI

απ2,...,πN =
∑

π2,...,πN∈SI

βπ2,...,πN .

By [47, Lemma 2.6.2], we have απ2,...,πN = βπ2,...,πN for all πn ∈ SI with n =
2, 3, . . . , N , i.e.,

I∏

i=1

aiπ2(i)...πN (i) =
I∏

i=1

ciπ2(i)...πN (i) = perm(A)

perm(B)

I∏

i=1

biπ2(i)...πN (i),

By Corollary 5.4.1, this is possible only if A = B. ��
We say that tensors A and B have proportional diagonal products, if for all

πn ∈ SI with n = 2, 3, . . . , N , there exists a nonzero constant α such that

I∏

i=1

aiπ2(i)...πN (i) = α

I∏

i=1

biπ2(i)...πN (i).

By Theorems 5.3.3, 5.3.4 and Corollary 5.4.1, we have the following theorem.

Theorem 5.3.5 If A ∈ RTN,I is a nonnegative tensor with a totally plane
stochastic pattern, then there exists a unique totally plane stochastic tensor B such
that A and B have proportional diagonal products.
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5.3.3 Relationship Between Nonnegative and Plane Stochastic
Tensors

A tensor A ∈ RTN,I has a plane stochastic pattern if there exists a plane stochastic
tensor B ∈ �N,I such that

ai1i2...iN = 0 ⇔ bi1i2...iN = 0,

for all in and n.
Sinkhorn [55] derives a relationship between arbitrary positive matrices and

doubly stochastic matrices. For a positive matrix A ∈ RI×I , we can derive a
matrix sequence by alternately normalizing the rows and columns of A and show
that the limit of the sequence is a doubly stochastic matrix. Sinkhorn’s theorem
can be generalized from positive matrices to certain nonnegative matrices [56, 57].
Furthermore, Bapat [58] generalizes Sinkhorn’s theorem from matrices to multi-
dimensional matrices (i.e., tensors). Also, Raghavan [59] and Franklin and Lorenz
[60] consider the relationship between nonnegative and plane stochastic tensors.

Theorem 5.3.6 ([60, Theorem 3]) Let A ∈ RTN,I be nonnegative with a plane
stochastic pattern. Then there exists N positive diagonal matrices Dn ∈ RI×I such
that A ×1 D1 ×2 D2 · · · ×N DN is plane stochastic.

In the following, we consider how to numerically implement the normalization
process. Starting from a symmetric nonnegative tensor with certain conditions,
Shashua et al. [61] propose a normalization algorithm which converges to a
symmetric plane stochastic tensor.

Theorem 5.3.7 ([61, Proposition 2]) For any symmetric A(0) ∈ NTN,I without
vanishing slices, the iterative process:

a
(k+1)
i1i2...iN

= a
(k)
i1i2...iN

(a
(k)
i1

a
(k)
i2

. . . a
(k)
iN

)1/N
, (5.3.8)

where for all i,

a
(k)
i =

I∑

i2,...,iN=1

a
(k)
ii2...iN

(5.3.9)

converges to a symmetric plane stochastic tensor.

As shown in Example 5.3.1, the permanent of all plane stochastic tensors in �N,I

cannot be always positive. Hence, the original proof of Theorem 5.3.7 in [61] is
incomplete. We have the following more general theorem.
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Theorem 5.3.8 For any A(0) ∈ NTN,I , without vanishing slices, the iterative
process:

a
(k+1)
i1i2...iN

= a
(k)
i1i2...iN

(a
(k)
1,i1

a
(k)
2,i2

. . . a
(k)
N,iN

)1/N
, k = 0, 1, . . . , (5.3.10)

where for all in and n,

a
(k)
n,in

=
I∑

i1,...,in−1,in+1,...,iN =1

a
(k)
i1...in−1inin+1...iN

> 0 (5.3.11)

converges to a plane stochastic tensor.

Proof Suppose that perm(A(0)) > 0. By the definition of the permanent and one
step of the normalization step described in (5.3.10), we have

perm(A(k+1)) =
∑

π2,...,πN∈SI

I∏

i=1

a
(k+1)
iπ2(i)...πN (i)

=
∑

π2,...,πN∈SI

I∏

i=1

a
(k)
i1i2...iN

(a
(k)
1,i1

a
(k)
2,i2

. . . a
(k)
N,iN

)1/N

= 1
(

I∏

i=1
a

(k)
1,i a

(k)
2,i . . . a

(k)
N,i

)1/N
perm(A(k)).

.

To show that the normalization scheme produces non-decreasing the permanents
we need to prove

∏I
i=1 a

(k)
1,i a

(k)
2,i . . . a

(k)
N,i ≤ 1. From the arithmetic-geometric means

inequality it is sufficient to show that
∑I

i=1(a
(k)
1,i + a

(k)
2,i + · · · + a

(k)
N,i ) ≤ NI . From

the definition of a
(k)
n,i , we have

I∑

i=1

(a
(k)
1,i + a

(k)
2,i + · · · + a

(k)
N,i )

=
I∑

i,i2,...,iN =1

a
(k−1)
ii2...iN

1
(
a

(k−1)
1,i a

(k−1)
2,i2

. . . a
(k−1)
N,iN

)1/N

+
I∑

i1,i,...,iN =1

a
(k−1)
i1i...iN

1
(
a

(k−1)
1,i1

a
(k−1)
2,i . . . a

(k−1)
N,iN

)1/N
+ . . .

+
I∑

i1,...,iN−1,i=1

a
(k−1)
i1...iN−1i

1
(
a

(k−1)
1,i1

. . . a
(k−1)
N−1,iN−1

a
(k−1)
N,i

)1/N
.
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From the inequality (
∏J

j=1 xj )
1/J ≤ (1/J )

∑J
j=1 xj , replacing xj with 1/aj (recall

that aj > 0), we obtain

1

(a1a2 . . . aJ )1/J
≤ 1

J

(
1

a1
+ 1

a2
+ · · · + 1

aJ

)

.

We obtain
∑I

i=1(a
(k)
1,i + a

(k)
2,i + · · · + a

(k)
N,i ) ≤ NI . Therefore, we conclude that each

step of the normalization scheme does not decrease the tensor of the previous step.
Furthermore, we have

perm(A(k+1)) ≤
(

I∏

i=1

a
(k)
1,i a

(k)
2,i . . . a

(k)
N,i

)1/N

≤ 1.

For the case of perm(A(0)) = 0, we consider B(0) := A(0) + εI with any arbitrary
small ε > 0. Note that perm(B(0)) > 0. The entries of B(k) are given by

b
(k+1)
i1i2...iN

= b
(k)
i1i2...iN

(b
(k)
1,i1

b
(k)
2,i2

. . . b
(k)
N,iN

)1/N
, k = 1, 2, . . . ,

where for all in and n

b
(k)
n,in

=
I∑

i1,...,in−1,in+1,...,iN =1

b
(k)
i1...in−1inin+1...iN

> 0.

The sequence {B(k)} (k = 0, 1, 2, . . . ) converges to a plane stochastic tensor.
Furthermore, as ε → 0, we have b

(1)
i1i2...iN

→ a
(1)
i1i2...iN

and b
(0)
i1

→ a
(0)
i1

for all in

and n, where a
(1)
i1i2...iN

and a
(0)
i1

are respectively generated from (5.3.10) and (5.3.11)
with k = 0.

For each k = 0, 1, . . . , as ε → 0, we have b
(k+1)
i1i2...iN

→ a
(k+1)
i1i2...iN

and b
(k)
i1

→ a
(k)
i1

for all in and n, where a
(k+1)
i1i2...iN

and a
(k)
i1

are respectively generated from (5.3.10)

and (5.3.11). The sequence {A(k)} (k = 0, 1, 2, . . . ), generated by (5.3.10),
converges to a plane stochastic tensor. ��
For a given A ∈ R

I1×I2×···×IN+ and all n, if we have

I1∑

i1=1

· · ·
In−1∑

in−1=1

In+1∑

in+1=1

· · ·
IN∑

iN =1

ai1...in−1inin+1...iN = 1,

then we call A a plane stochastic tensor. We have the following conjecture.
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Conjecture 5.3.1 For any A(0) ∈ R
I1×I2×···×IN+ without vanishing slices, the

iterative process:

a
(k+1)
i1i2...iN

= a
(k)
i1i2...iN

(a
(k)
1,i1

a
(k)
2,i2

. . . a
(k)
N,iN

)1/N
, k = 0, 1, . . .

where

a
(k)
n,in

=
I1∑

i1=1

· · ·
In−1∑

in−1=1

In+1∑

in+1=1

· · ·
IN∑

iN =1

a
(k)
i1...in−1inin+1...iN

> 0,

for all in and n, converges to a plane stochastic tensor.

From [62], consider the symmetric A ∈ NT3,3 with entries

⎧
⎨

⎩

a111 = 0.0517, a112 = 0.3579, a113 = 0.5298, a122 = 0.7544, a123 = 0.2156,

a133 = 0.3612, a222 = 0.3943, a223 = 0.0146, a233 = 0.6718, a333 = 0.9723.

and the positive B ∈ NT3,3 with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b111 = 0.4333, b121 = 0.4278, b131 = 0.4140, b211 = 0.8154, b221 = 0.0199,

b231 = 0.5598, b311 = 0.0643, b321 = 0.3815, b331 = 0.8834, b112 = 0.4866,

b122 = 0.8087, b132 = 0.2073, b212 = 0.7641, b222 = 0.9924, b232 = 0.8752,

b312 = 0.6708, b322 = 0.8296, b332 = 0.1325, b113 = 0.3871, b123 = 0.0769,

b133 = 0.3151, b213 = 0.1355, b223 = 0.7727, b233 = 0.4089, b313 = 0.9715,

b323 = 0.7726, b333 = 0.5526.

We illustrate Theorems 5.3.7 and 5.3.8 via A and B, respectively.
Suppose that e = (1, 1, 1)�. At the kth step, we define γ (k) = ‖e − a(k)‖2 for

A(0) := A and γ
(k)
n = ‖e − a(k)

n ‖2 for B(0) := B with n = 1, 2, 3, where the entries
of a(k) and a(k)

n are given by (5.3.9) and (5.3.11), respectively. The related results
are shown in Fig. 5.2.

Consider A ∈ NT2,2 with

a111 = 1, a112 = 0, a121 = 0, a211 = 0, a122 = 2, a212 = 3, a221 = 4, a222 = 0,



5.3 Properties of Plane Stochastic Tensors 135

Fig. 5.2 The values of γ (k) and γ
(k)
n as k increases

with perm(A) = 0. Starting from A, the sequence generated by (5.3.10) converges
to B ∈ �2,2:

{
b111 = 0.5, b112 = 0, b121 = 0, b211 = 0,

b122 = 0.5, b212 = 0.5, b221 = 0.5, b222 = 0.

For a given A ∈ NTN,I , for all in and n, if

I∑

i1=1

ai1i2...iN =
I∑

i2=1

ai1i2...iN = · · · =
I∑

iN =1

ai1i2...iN = 1,

we call A line stochastic. Hence we propose the following conjecture.

Conjecture 5.3.2 For any A(0) ∈ NTN,I without vanishing fibers,2 the process:

a
(k+1)
i1i2...iN

= a
(k)
i1i2...iN

(a
(k)
1,i2i3...iN

a
(k)
2,i1i3...iN

. . . a
(k)
N,i1i2...iN−1

)1/N
, k = 0, 1, . . .

where

a
(k)
n,i1...in−1in+1...iN

=
I∑

in=1

a
(k)
i1...in−1inin+1...iN

> 0,

2For any A ∈ TN,I and a given n, the mode-n (i1, . . . , in−1, in+1, . . . , iN )-fiber [63] of A is
defined by A(i1, . . . , in−1, :, in+1, . . . , iN ) ∈ RI for all i1, . . . , in−1, in+1, . . . , iN .
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converges to a line stochastic tensor.

In general, for all in and n, if the entries of A ∈ R
I1×I2×···×IN+ satisfy

I1∑

i1=1

ai1i2...iN =
I2∑

i2=1

ai1i2...iN = · · · =
IN∑

iN =1

ai1i2...iN = 1,

then we call A line stochastic. We propose the following conjecture.

Conjecture 5.3.3 For any A(0) ∈ R
I1×I2×···×IN+ without vanishing fibers, the

process:

a
(k+1)
i1i2...iN

= a
(k)
i1i2...iN

(a
(k)
1,i2i3...iN

a
(k)
2,i1i3...iN

. . . a
(k)
N,i1i2...iN−1

)1/N
, k = 0, 1, . . .

where

a
(k)
n,i1...in−1in+1...iN

=
In∑

in=1

a
(k)
i1...in−1inin+1...iN

> 0,

converges to a line stochastic tensor.

To define the T -flat stochastic tensors with 1 ≤ T ≤ N−1, we need the following
notations [64]. Let N index sets Pn = {1, 2, . . . , I } be given with all n. For a fixed
T ∈ {1, 2, . . . , N − 1}, let QT be the class of all subsets of K = {1, 2, . . . , I } with
cardinality T , i.e., QT = {Q : Q ⊂ K, |Q| = T }. A set Q ∈ QT determines “fixed”
indices. Therefore, we call the indices in K\Q “free” indices. For every fixed T -
tuple (iq1, iq2, . . . , iqT ) ∈ Pq1 ×Pq2 ×· · ·×PqT and for any Q = {q1, q2, . . . , qT } ∈
QT , we define JQ1 × J

Q

2 × · · · × J
Q

N by

J
Q
r :=

{ {1, 2, . . . , I }, if r is a free index,

{iql }, if r is the fixed index ql.

This definition is independent of the sequence (q1, q2, . . . , qT ) but depends only on
Q. A tensor A is called T -flat stochastic if its entries satisfy

K∑

r=1

∑

ir∈JQr
ai1i2...iN = 1,

with all (iq1, iq2, . . . , iqT ) ∈ Pq1 × Pq2 × · · · × PqT and Q ∈ QT .
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We raise the following question.

Question 5.3.1 From any A ∈ NTN,I without vanishing flats, how can we generate
a sequence {Ak} (k = 1, 2, . . . ) such that, {Ak} converges to a T -flat stochastic
tensor as k → ∞?

5.4 Some Results for Diagonals

In this section, we investigate a relationship between the entries of a nonnegative
tensor and its permanent. We obtain a probabilistic algorithm for locating a positive
diagonal in a (0, 1)-tensor, if such a diagonal exists.

5.4.1 Diagonal Products

If there is an upper bound on the diagonal products of A ∈ NTN,I , then its entries
are also bounded.

Theorem 5.4.1 Suppose A ∈ NTN,I satisfies perm (A) > 0. Then for a given
c > 0, the following conditions are equivalent:

(i)
I∏

i=1
aiπ2(i)...πN (i) ≤ c for any πn ∈ SI with n = 2, 3, . . . , N .

(ii) There exists a positive matrix X ∈ RI×N with
I∏

i=1
xi1xi2 . . . xiN ≤ c such that

ai1i2...iN ≤ xi11xi22 . . . xiNN for all in and n.

Proof Suppose that (ii) holds. Then for (N − 1) given πn ∈ SI , (i) holds as

I∏

i=1

aiπ2(i)...πN (i) ≤
I∏

i=1

xi1xπ2(i)2 . . . xπN(i)N ≤ c.

Suppose that (i) holds. Define a tensor B ∈ TN,I with entries

bi1i2...iN =
{

ln(ai1i2...iN ), if ai1i2...iN > 0,

−M, if ai1i2...iN = 0,

where M > 0 is chosen as follows: for two different πn, τn ∈ SI such that

I∏

i=1

aiπ2(i)...πN (i) > 0,

I∏

i=1

aiτ2(i)...τN (i) = 0,
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we have

I∏

i=1

biπ2(i)...πN (i) >

I∏

i=1

biτ2(i)...τN (i).

Since the cardinality of SI is I !, such a choice of M is possible. By (5.3.1), we have

max
π2,...,πN∈SI

I∑

i=1

biπ2(i)...πN (i) = max
P∈PN,I

I∑

i1,i2,...,iN =1

bi1i2...iN pi1i2...iN = max
P∈PN,I

〈B,P〉.

Any totally plane stochastic tensor can be represented as a convex combination of
some plane permutation tensors. Hence, we have

max
P∈PN,I

〈B,P〉 = max
C∈�+

N,I

〈B,C〉 ≤ max
C∈�N,I

〈B,C〉.

Next we consider the maximal programming problem maxC∈�N,I 〈B,C〉. By the
duality Theorem, there must be an optimal solution to the dual problem

min

⎛

⎝
I∑

i1=1

xi11 +
I∑

i2=1

xi22 + · · · +
I∑

iN =1

xiNN

⎞

⎠

subject to xi11 + xi22 + · · · + xiN N ≥ bi1i2...iN for all in and n.
Let {xi11, xi22, . . . , xiN N } with given in and all n be the optimal solution with

∑I
i1=1 xi11 + ∑I

i2=1 xi22 + · · · + ∑I
iN =1 xiN N := θ . Hence, we have

max
P∈PN,I

〈B,P〉 ≤ max
C∈�N,I

〈B,C〉 = θ.

According to the hypothesis, the target tensor A has at least one positive diagonal,
then

max
π2,...,πN∈SI

I∏

i=1

aiπ2(i)...πN (i) = max
π2,...,πN∈SI

I∏

i=1

ebiπ2(i)...πN (i) = exp(θ) ≤ c.

Let xinn = exp(xinn) with given in and all n. From ai1i2...iN > 0 and the definition
of bi1i2...im , we have

bi1i2...iN = ln(ai1i2...iN ) ≤ xi11 + xi22 + · · · + xiN N .
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If ai1i2...iN > 0, then we have ai1i2...iN ≤ xi11xi22 . . . xiNN with given in and all n.
Trivially,

ai1i2...iN ≤ xi11xi22 . . . xiNN , if ai1i2...iN = 0.

Furthermore,

I∏

i=1

xi1xi2 . . . xiN = exp

⎛

⎝
I∑

i1=1

xi11 +
I∑

i2=1

xi22 + · · · +
I∑

iN =1

xiN N

⎞

⎠ = exp(θ) ≤ c.

This completes the proof. ��
Theorem 5.4.2 Let A ∈ RTN,I be a nonnegative tensor with a totally plane
stochastic pattern. Let every diagonal product take the value of either 0 or some
constant α. Then, there exists a rank-one tensor C ∈ RTN,I such that the positive
entries of A coincide with the corresponding entries of C.

Proof Suppose that
∏I

i=1 aiπ2(i)...πN (i) = 0 or α for any πn ∈ SI with n =
2, 3, . . . , N . Since A has a totally plane stochastic pattern, there exists τn ∈ SI

such that
∏I

i=1 aiτ2(i)...τN (i) = α > 0. By Theorem 5.4.1, there exists a positive

matrix X ∈ RI×N with
I∏

i=1
xi1xi2 . . . xiN ≤ c such that ai1i2...iN ≤ xi11xi22 . . . xiN N

for all in and n. If ai1i2...iN > 0, we know from Theorem 5.3.2 that πn(i) = in and
∏I

i=1 aiπ2(i)...πN (i) = α for πn ∈ SI with n = 2, 3, . . . , N .
We also have

α =
I∏

i=1

aiπ2(i)...πN (i) ≤
I∏

i=1

xi1xi2 . . . xiN ≤ α.

Then we obtain ai1i2...iN = xi11xi22 . . . xiNN if ai1i2...iN > 0. Define C ∈ TN,I with
ci1i2...iN = xi11xi22 . . . xiNN . Then C is a rank-one tensor, which satisfies ai1i2...iN =
ci1i2...iN if ai1i2...iN > 0. ��
Theorem 5.4.3 Let A and B be two distinct totally plane stochastic tensors. There
exists πn ∈ SI with n = 2, 3, . . . , N such that

I∏

i=1

aiπ2(i)...πN (i) >

I∏

i=1

biπ2(i)...πN (i).

Proof We assume that bi1i2...iN = 0 ⇒ ai1i2...iN = 0, otherwise, ai1i2...iN > 0
and bi1i2...iN = 0 for all in and n. The diagonal through ai1i2...iN (which exists by
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Theorem 5.3.2) is positive. With the convention ln
(

0
0

)
= 1, for X ∈ �N,I , let

φ(X) =
I∑

i1,i2,...,iN =1

xi1i2...iN ln

(
ai1i2...iN

bi1i2...iN

)

.

The linear function φ(X) attains its maximum at an extreme point of the domain
�+

N,I . By the Information Inequality [47, Theorem 2.6.2], we have

φ(A) =
I∑

i1,i2,...,iN =1

ai1i2...iN ln

(
ai1i2...iN

bi1i2...iN

)

> 0.

Thus, there exists πn ∈ SI with n = 2, 3, . . . , N such that the corresponding
plane permutation tensor P = (δiπ2(i)...πN (i)) satisfies

φ(P) =
I∑

i1,i2,...,iN=1

pi1i2...iN ln

(
ai1i2...iN

bi1i2...iN

)

= ln

[
I∏

i=1

ai1i2...iN

bi1i2...iN

]

> 0.

It follows that
∏I

i=1 aiπ2(i)...πN (i) >
∏I

i=1 biπ2(i)...πN (i). ��
From Theorem 5.4.3, we have the following corollary.

Corollary 5.4.1 For a given constant α and any πn ∈ SI with n = 2, 3, . . . , N ,
suppose that two totally plane stochastic tensors A and B satisfy

I∏

i=1

aiπ2(i)...πN (i) = α

I∏

i=1

biπ2(i)...πN (i),

then A = B.

5.4.2 Finding a Positive Diagonal

First, we have the following theorem.

Theorem 5.4.4 Let each entry of W ∈ RTN,I be a nonnegative integer. Suppose
that

min
π2,...,πN ∈SI

I∑

i=1

wiπ2(i)...πN (i)
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is attained at the unique τn ∈ SI with n = 2, 3, . . . , N and let the minimum value be
θ . Let B ∈ RTN,I be defined as bii2...iN = 0, if wii2...iN = 0; and bii2...iN = 2wii2...iN

otherwise. Then (i, i2, . . . , iN ) lies on the diagonal associated with πn ∈ SI with
n = 2, 3, . . . , N , i.e., in = πn(i), if and only if

2wii2 ...iN detc(B(i, i2, . . . , iN ))

2θ
(5.4.1)

is odd.

Proof Fix (i, i2, . . . , iN) such that wii2...iN is nonzero. Let P = {(π2, π3, . . . , πN) :
τn(i) = in, n = 2, 3, . . . , N}. The numerator in (5.4.1) can be expressed,
unique up to sign, as a sum of those diagonal products of B corresponding to
(π2, π3 . . . , πN) ∈ P. Let us write

(−1)i+i2+···+iN 2wii2...iN detc(B(i, i2, . . . , iN))

=
∑

(π2,...,πN )∈P
sign(τN−P+1) . . . sign(τN)

I∏

i=1

biπ2(i)...πN (i), (5.4.2)

where P is given in (5.1.2). Each term in the summation in (5.4.2) is, unique up to
a sign, either zero or 2α for some α ≥ θ .

In view of the uniqueness of τn, there exists precisely one 2θ term in the sum
if and only if (τ2, τ3, . . . , τN ) ∈ P. Thus, the expression in (5.4.2) is of the term
2θ (1+u) for an even integer u if (τ2, τ3, . . . , τN ) ∈ P, or 2θ v for some even integer
v otherwise. It follows that the ratio (5.4.1) is odd if and only if (τ2, τ3, . . . , τN ) ∈ P.

��
Let A ∈ RTN,I be a (0, 1)-tensor such that perm(A) > 0. From Theorem 5.4.4,

an algorithm for locating a positive diagonal is given in the following steps:

Step 1: Let the number of nonzero entries in A be β. For each ai1i2...iN = 1, we
choose an integer wi1i2...iN at random from {1, 2, . . . , 2β}. Define B ∈ TN,I

by bi1i2...iN = 0, if ai1i2...iN = 0 and bi1i2...iN = 2wi1 i2...iN , otherwise.
Step 2: Compute detc(B) and let θ be the highest power of 2 such that 2θ divides

detc(B). (Observe that θ is precisely the minimum diagonal sum in W)
Step 3: For each (i1, i2, . . . , iN ), compute 2wi1i2 ...iN detc(B(i1, i2, . . . , iN ))/2θ .

Select (i1, i2, . . . , iN ), if this number is odd.

To analyze the convergence of the algorithm, we need the following lemma.

Lemma 5.4.1 ([47, Lemma 2.5.1]) Let F = {S1,S2, . . . ,SK } be a family of
nonempty subsets of the finite set S = {x1, x2, . . . , xI }. Let the elements of S

be assigned integer weights chosen at random, uniformly and independently from
{1, 2, . . . , 2I }. Then the probability that there is a unique set in F with minimum
weights is at least 1/2.
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By the above lemma, with probability at least 1/2, there are unique πn ∈ SI with
n = 2, 3, . . . , N such that the corresponding diagonal sum of W is minimum.
In this case, the hypotheses of Lemma 5.4.1 are satisfied and the particular
(i1, i2, . . . , iN ) selected in Step 3 corresponds to a positive diagonal of the tensor
A.

If we repeat the algorithm T times, then the probability that it fails every
time is at most (1/2)T ; therefore, we successfully locate a positive diagonal with
probability at least 1 − (1/2)T . The main computational cost in the algorithm
involves calculating the combinatorial determinant of the integer tensor B.

5.5 Axial N -Index Assignment Problems

Multi-index assignment problems are introduced by Pieskalla [65] in 1968 as a
natural extension of linear assignment problems [64]. In this section, we only
consider the axial N-index assignment problems. We investigate how to convert the
axial N-index assignment problem to an integer linear programming problem based
on the set of totally plane stochastic tensors. In particular, the 3-index assignment
problem has been introduced by Schell [66] in 1955 and applied in quite a number of
situations, such as the investment of capital into different possible physical locations
over some time horizon [67]. Qi and Sun [68] mention the following application
in a rolling mill: ingots are to be scheduled through soaking pits (temperture
stabilizing baths) so as to minimize the idle time for the rolling mill. Minimizing the
maximum cost instead of a sum of costs leads to the bottleneck objective functions.
Axial 3-index assignment problems with a bottleneck objective function have been
considered by Malhotra et al. [69] as well as Geetha and Vartk [70].

The axial N-index assignment problem can be stated in the following way. Let
IN cost coefficients ci1i2...iN for all in and n be given. We seek π∗

n ∈ SI with n =
2, 3, . . . , N such that

∑I
i=1 ciπ∗

2 (i)...π∗
N(i) is minimum, i.e.,

min
π2,...,πN ∈∈SI

I∑

i=1

ciπ2(i)...πN (i) =
I∑

i=1

ciπ∗
2 (i)...π∗

N (i).

Since πn ∈ SI with n = 2, 3, . . . , N which describe a feasible solution can
be chosen arbitrarily, the axial N-index assignment problem has (I !)N−1 feasible
solutions. If we treat the coefficients ci1i2...iN for all in and n as all entries of the
tensor C and introduce plane permutation tensors, then we can rewrite the axial
N-index assignment problem as an integer linear programming problem:

min〈C,P〉, s.t. P ∈ PN,I .
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We present this problem as follows.

Problem 5.5.1 Suppose that C ∈ RTN,I is positive. Find A∗ ∈ �+
N,I such that

〈C,A∗〉 = min
A∈�+

N,I

〈C,A〉.

Any A ∈ �+
N,I is of the form A = ∑M̃

j=1 λjPj , where
∑M̃

j=1 λj = 1 with

λj ≥ 0 and Pj ∈ PN,I with j = 1, 2, . . . , M̃). Thus 〈C,A〉 = ∑M̃
j=1 λj 〈C,Pj 〉

and Problem 5.5.1 reduces to minimizing
∑M̃

j=1 λj 〈C,Pj 〉 subject to λj ≥ 0 and
∑M̃

j=1 λj = 1. The axial N-index assignment problem is clearly equivalent to
finding the diagonal of C such that the corresponding sum of the entries on the
diagonal is minimum. Thus, we have

min
π2,...,πN∈SI

I∑

i=1

ciπ2(i)...πN (i) = min
P∈PN,I

〈C,P〉 = min
A∈�+

N,I

〈C,A〉 ≥ min
A∈�N,I

〈C,A〉.

Finding minA∈�N,I 〈C,A〉 is a linear programming problem and the corresponding
dual problem is given as follows.

Problem 5.5.2 Suppose that C ∈ RTN,I is positive. Find a positive X ∈ R
I×N

such that

max

⎛

⎝
I∑

i1=1

xi11 +
I∑

i2=1

xi22 + · · · +
I∑

iN =1

xiN N

⎞

⎠

with for all in and n

xi11 + xi22 + · · · + xiNN ≥ ci1i2...iN .

Suppose that the maximum of Problem 5.5.2 is denoted by θ , then we have

min
π2,...,πN ∈SI

I∑

i=1

ciπ2(i)...πN (i) = min
P∈PN,I

〈C,P〉 ≥ θ.

After we solve Problem 5.5.2, we derive a lower bound for the minimum of
Problem 5.5.1, or a lower bound for the solution of the axial N-index assignment
problem.
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Chapter 6
Neural Networks

We focus on the rank-one approximation problem of a tensor A ∈ RI1×I2×···×IN by
neural networks: finding a real scalar σ and N unit xn ∈ RIn to minimize

I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN =1

[ai1i2...iN − σ · (x1,i1x2,i2 . . . xN,iN )]2,

where xn,in is the inth element of xn ∈ RIn for all in and n, and σ > 0 is a scaling
factor.

The rank-one approximation problem of a tensor can be viewed as the multi-
parameter constrained optimization problems. Multi-parameter optimization, con-
strained or otherwise, can be accomplished by the associated dynamical gradient
systems, whose state evolves in time towards the steady-state solution or a critical
point [1–3]. In the neurodynamic optimization approach [2], they minimize an
(nonnegative) energy function of a dynamical system, typically described by first-
order ordinary differential equations (ODE). For example, Cichocki [4] proposes
a massively parallel algorithm (neural network) for the matrix singular value
decomposition. Further research on this topic can be found in [5–7].

The neural networks for the rank-one approximation problem of a tensor,
described by ODEs, are generalizations of those in [5, 6]. We prove the locally
asymptotic stability of the solution by establishing an appropriate Lyapunov
function. Semi-definite relaxation methods often produce the best rank-one approx-
imation. However, these methods are generally expensive. Furthermore, the best
rank-one approximations can not be obtained by ALS or HOPM [8]. The neural
network models in this chapter can compute all locally optimal rank-one approxi-
mations starting from different initial values and one of them is the best rank-one
approximation. Unfortunately, selecting an optimal initial value is an open problem.
In general, neural network models converge to a local minimum.
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Liu and Wu [9] propose a neural network to compute eigenvectors related to
the largest or smallest generalized eigenvalues of a symmetric-definite matrix pair.
Many results on the generalized matrix eigenvalue problem using neural networks
have been presented, see [10, 11]. Similarly, we design a continuation algorithm
(neural networks) for the generalized tensor eigenvalue problem for a symmetric-
definite tensor pairs, i.e., the neural network given by (6.5.3).

Numerical methods for solving differential equations (6.2.1), (6.2.3) and (6.5.3)
can be applied, e.g., the Runge-Kutta methods. We only consider the simple
continuous gradient descent method as an illustration.

6.1 Preliminaries

6.1.1 Tensor Singular Values and the Rank-One
Approximation

In this section, we consider only tensors in R
I1×I2×···×IN . Let xn ∈ R

In be nonzero
vectors and ‖xn‖2 = 1 with all n. If the (N + 1)-tuple (σ ; x1, x2, . . . , xN) is a
solution of the following nonlinear equations [12, 13]:

F(x1, x2, . . . , xN)−n = A ×1 x�
1 · · · ×n−1 x�

n−1 ×n+1 x�
n+1 · · · ×N x�

N = σxn,

(6.1.1)

then σ ∈ R and the unit vectors xn are called the singular value of A and the
corresponding mode-n singular vector for all n, respectively.

In order to better illustrate the singular values and the associated mode-n singular
vectors, we need the signs of a scalar and a vector [14]. Given α ∈ R, the sign δ(α)

is defined as:

δ(α) ∈ {−1,+1}, if α �= 0; and δ(α) = +1, if α = 0.

Similarly, for a vector x ∈ R
I , the sign δ(x) is defined as:

δ(x) ∈ {−1,+1}, if x �= 0I ; and δ(x) = +1, if x = 0I .

If σ is a singular value of A and xn is the associated mode-n singular vectors,
then δ(σ )σ is also the singular value of the tensor A and δ(xn)xn are the associated
mode-n singular vectors with δ(σ )

∏N
n=1 δ(xn) = 1. Based on the definitions of the

sign of α ∈ R and x ∈ RI , we can ensure that all singular values of the tensor
A are nonnegative by changing the sign of all mode-n singular vectors such that∏N

n=1 δ(xn) = 1 if σ ≥ 0 or
∏N

n=1 δ(xn) = −1 if σ < 0.
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We can rewrite the best rank-one approximation of A as follows: to find σ ∈ R

and the unit vectors un ∈ RIn such that

σ · (u1 ⊗ u2 ⊗ · · · ⊗ uN) = argmin‖A − τ · (x1 ⊗ x2 ⊗ · · · ⊗ xN)‖F , (6.1.2)

subject to τ ∈ R and xn ∈ RIn with ‖xn‖2 = 1.
This optimization problem is equivalent to a homogeneous polynomial optimiza-

tion problem [15]. For convenience, we consider the homogeneous polynomial

F(x1, x2, . . . , xN) : = A ×1 x�
1 ×2 x�

2 · · · ×N x�
N

=
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN =1

ai1i2...iN x1,i1x2,i2 . . . xN,iN .
(6.1.3)

Note that F(x1, x2, . . . , xN) is a multilinear form, since it is linear in each xn.
De Lathauwer et al. [15] prove the following result.

Theorem 6.1.1 ([15]) For a given A ∈ RI1×I2×···×IN , the rank-one approximation
minimization problem (6.1.2) is equivalent to the optimization problem

max |F(x1, x2, . . . , xN)|, s.t. ‖xn‖2 = 1 (6.1.4)

for all n.
A rank-one tensor σ∗ · (u1 ⊗ u2 ⊗ · · · ⊗ uN), with σ∗ ∈ R and each ‖un‖2 = 1,

is the best rank-one approximation for A if and only if {u1, u2, . . . , uN } is a global
maximizer of (6.1.4) and σ∗ = F(u1, u2, . . . , uN). Moveover, we also have

‖A − σ∗ · (u1 ⊗ u2 ⊗ · · · ⊗ uN)‖2
F = ‖A‖2

F − σ 2∗ .

A well-known algorithm for the optimization problem (6.1.4) is ALS or HOPM,
which is summarized in Algorithm 6.1.1.

It follows from [13, 16] that (N + 1)-tuple (σ∗; u1, u2, . . . , uN) is a solution
of (6.1.1) and σ∗ is the norm of the multilinear function F : RI1 ×RI2 ×· · ·×RIN →
R induced by the norm ‖ · ‖2 and defined as

‖A‖2 := sup
|F(x1, x2, . . . , xN)|

‖x1‖2‖x2‖2 . . . ‖xN‖2
,

where the supremum is taken over all nonzero xn ∈ R
In for all n.

The nuclear norm [17] of A is defined as

‖A‖∗ := min

{
R∑

r=1

|λr | : A =
R∑

r=1

λrx1,r ⊗ x2,r ⊗ · · · ⊗ xN,r

}
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Algorithm 6.1.1 The alternating least squares algorithm for (6.1.4) [15, Algo-
rithm 3.2]

Input: A ∈ R
I1×I2×···×IN .

Output: Â ∈ R
I1×I2×···×IN : estimator of the best rank-one approximation of A.

1: Initial values: xn(0) is the dominant left singular vector of A(n) with n = 2, 3, . . . , N or repeat
the algorithm for several initial values.

2: Iterate until convergence:

1. Compute x̃1(k + 1) = F(x1(k), x2(k), . . . , xN(k))1, λ1(k + 1) = ‖̃x1(k + 1)‖2 and x1(k +
1) = x̃1(k + 1)/λ1(k + 1);

2. Compute x̃2(k + 1) = F(x1(k + 1), x2(k), . . . , xN(k))2, λ2(k + 1) = ‖̃x2(k + 1)‖2 and
x2(k + 1) = x̃2(k + 1)/λ2(k + 1);

3. · · ·
4. Compute x̃N(k+1) = F(x1(k+1), . . . , xN−1(k+1), xN(k))N , λN(k+1) = ‖̃xN (k+1)‖2

and xN(k + 1) = x̃N(k + 1)/λN (k + 1).

3: Collect converged values: xn and λ.
4: Compute Â = λ(̇x1 ⊗ x2 ⊗ · · · ⊗ xN).

where xn,r ∈ R
In have unit norm for all n. The spectral norm ‖ · ‖2 is dual to the

nuclear norm ‖ · ‖∗, i.e.,

{ ‖A‖2 = max{|〈A,X〉| : X ∈ R
I1×I2×···×IN , ‖X‖∗ = 1};

‖A‖∗ = max{|〈A,Y〉| : X ∈ R
I1×I2×···×IN , ‖Y‖2 = 1}.

Nie [18] considers how to compute symmetric tensor nuclear norms, depending on
the order and ground field.

Since the KKT conditions of the optimization problem (6.1.4) is the system of
nonlinear equations (6.1.1), then un are the mode-n principal singular vectors of
A, corresponding to the singular value σ∗ with |σ∗| = max{|σ | : σ ∈ σ(A)}. The
rank-one tensor (δ(σ∗)σ∗) · (δ(u1)u1 ⊗ δ(u2)u2 ⊗ · · · ⊗ δ(uN)uN) is also the best
rank-one approximation for the tensor A with δ(σ∗)

∏N
n=1 δ(un) = 1.

Remark 6.1.1 We can force σ∗ ≥ 0 by altering the sign of un with

N∏

n=1

δ(un) =
{

1, σ∗ ≥ 0,

−1, σ∗ < 0.

If {v1, v2, . . . , vN } is a local solution of the optimization problem (6.1.4), where
‖vn‖2 = 1 for all n, then τ · (v1 ⊗ v2 ⊗ · · · ⊗ vN) is called a locally optimal
rank-one approximation of A ∈ RI1×I2×···×IN , where τ = F(v1, v2, . . . , vN). It is
obvious that the best rank-one approximation of A is also a locally optimal rank-one
approximation of A.
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6.1.2 Tensor Z-Eigenvalues and the Symmetric Rank-One
Approximation

In this section, we assume that tensors are symmetric and real. Zhang et al. [19]
prove that when A ∈ RTN,I is symmetric, the best rank-one approximation of A is
also the best symmetric rank-one approximation of A.

For such a case, the system of nonlinear equations (6.1.1) can be simplified to

AxN−1 = A ×2 x� ×3 x� . . . ×N x� = σx, ‖x‖2 = 1. (6.1.5)

If any pair (σ ; x) satisfies (6.1.5), then we call σ as a Z-eigenvalue of the tensor
A and x is the associated Z-eigenvector [20, 21].

We review the symmetric higher-order power method (S-HOPM), summarized
in Algorithm 6.1.2, for the comptation of Z-eigenpairs of A, which is introduced by
De Lathauwer et al. [15] and analyzed by Kofidis and Regalia [22].

Algorithm 6.1.2 The symmetric higher-order power method [23, Algorithm 1]
Input: Symmetric A ∈ RTN,I .
Require: x0 ∈ R

I with ‖x0‖2 = 1. Let σ0 = AxN
0 .

1: for k = 1, 2, . . . do
2: Compute yk = AxN−1

k .
3: Normalize xk+1 = yk/‖yk‖2.
4: Compute σk+1 = AxN

k+1.
5: end for

When k is larger than a given positive integer or ‖AxN−1
k − σkx‖2 is less than

tolerance, we can terminate Algorithm 6.1.2. Kolda and Mayo [22] present SS-
HOPM, summarized in Algorithm 6.1.3, which is guaranteed to converge to an
Z-eigenpair of A.

Algorithm 6.1.3 The shifted symmetric higher-order power method [23, Algo-
rithm 2]

Input: Symmetric A ∈ RTN,I .
Require: x0 ∈ R

I with ‖x0‖2 = 1 and α ∈ R. Let σ0 = AxN
0 .

1: for k = 1, 2, . . . do
2: if α ≥ 0 then
3: Compute yk = AxN−1

k + αxk .
4: else
5: Compute yk = −AxN−1

k − αxk .
6: end if
7: Normalize xk+1 = yk/‖yk‖2.
8: Compute σk+1 = AxN

k+1.
9: end for
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It is obvious that the tensor Z-eigenvalue problem is a special case of the tensor
singular value problem. As shown in Sect. 6.1.1, we can ensure that all singular
values of A ∈ RI1×I2×···×IN are positive by changing the sign of all mode-n
singular vectors. However, the statement is not true for Z-eigenvalues. If a pair
(σ ; x) satisfies (6.1.5), the pair (σ ; −x) solves (6.1.5) with an even N , and the pair
(−σ ; −x) solves (6.1.5) with an odd N [23]. Hence, for a symmetric tensor A, we
cannot make all its Z-eigenvalues nonnegative by changing the sign of the associated
Z-eigenvector.

The best symmetric rank-one approximation of the symmetric tensor A can also
be formulated as follows: to find σ ∈ R and a unit vector u ∈ RI such that

σ · u⊗N = argmin
∥
∥
∥A − τ · x⊗N

∥
∥
∥

F
, (6.1.6)

subject to τ ∈ R and x ∈ RI satisfying ‖x‖2 = 1. In the spirit of Theorem 6.1.1 and
the results in [19], the minimization problem (6.1.6) is equivalent to the optimization
problem

max |f (x)| := |F(x, x, . . . , x
︸ ︷︷ ︸

N

)| s.t. ‖x‖2 = 1. (6.1.7)

If u is a global maximizer of the optimization problem (6.1.7) and σ∗ = f (u),
then σ∗ · u⊗N is the best symmetric rank-one approximation of A. Thus two
symmetric rank-one tensors σ∗ · (δ(u)u

)⊗N (for an even N and δ(u) = ±1), and

(δ(σ∗)σ∗)·
(
δ(u)u

)⊗N
(for an odd N and δ(σ∗)δ(u) = 1) are also the best symmetric

rank-one approximation of the symmetric tensor A.
Furthermore, if v is a local maximizer of the optimization problem (6.1.7) and

τ = f (v), then τ · v⊗N is a local optimal symmetric rank-one approximation of
A. It is obvious that the best symmetric rank-one approximation of A is the locally
optimal symmetric rank-one approximation of A.

6.2 Neural Networks Models

We propose the neural network model for computing the locally optimal rank-one
approximation of A ∈ RI1×I2×···×IN and the locally optimal symmetric rank-one
approximation of a symmetric tensorA ∈ RTN,I . We prove that the proposed neural
networks are asymptotically stable in the sense of Lyapunov stability theory.
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6.2.1 Tensor Rank-One Approximation

Suppose that A ∈ RI1×I2×···×IN . We present the dynamics of the neural network
model for computing the nonzero singular values and the associated mode-n
singular vectors.

For the nonzero singular values of A, the dynamics of the neural network model
is described by

dxn(t)

dt
= F

(
x1(t), x2(t), . . . , xN(t)

)
−n

F
(
x1(t), x2(t), . . . , xN(t)

) − xn(t), (6.2.1)

for t ≥ 0, where F
(
x1(t), x2(t), . . . , xN(t)

)
−n

and F
(
x1(t), x2(t), . . . , xN(t)

)
are

defined in (6.1.1) and (6.1.3), respectively, and xn(t) ∈ RIn is the state of the neural
network. For arbitrary nonzero initial values xn(0) ∈ RIn and all n, a simplest
discrete-time iterative algorithm corresponding to the neural network in (6.2.1) is

xn(k + 1) = xn(k) + α

(
F
(
x1(k), x2(k), . . . , xN(k)

)
−n

F
(
x1(k), x2(k), . . . , xN(k)

) − xn(k)

)

, (6.2.2)

where α > 0 is called the time-step length or learning rate.
In general, (6.2.2) is a special case of the following adaptive algorithm,

xn(k + 1) = xn(k) + αk

(
F
(
x1(k), x2(k), . . . , xN(k)

)
−n

F
(
x1(k), x2(k), . . . , xN(k)

) − xn(k)

)

,

where αk is a decreasing gain sequence.
From [24], we have the assumption that the gain sequence {ηk ≥ 0} is decreasing

such that
∑∞

k=0 αk = ∞,
∑∞

k=0 αr
k < ∞ for some r > 1 and limk→∞(α−1

k −
α−1

k−1) < ∞. For simplicity, we assume that α in (6.2.2) is constant in each step.
In particular, when α = 1, the discrete-time iterative algorithm (6.2.2) for

computing a locally optimal rank-one approximation of A is reduced to ALS
or HOPM. However, for a general α, such an iterative scheme is not simply a
generalization of ALS.

For the (k + 1)th step, the key point of ALS is to find the maximizer of the
optimization problem (6.1.4) on the subspace

⊗N
n=1

{
F (x1(k), x2(k), . . . , xN(k))−n

}
.

However, in (6.2.2), this maximizer is found on the subspace

⊗N
n=1span

{
xn(k), F (x1(k), x2(k), . . . , xN(k))−n

}
.
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span{x, y} ⊂ RI is the subspace generated by x, y ∈ RI , and U⊗V = {(u, v) : u ∈
U, v ∈ V} for U,V ⊂ RI .

It is worth noting that several existing algorithms can be extended to solve the
local optimal best rank-one approximation of a real tensor, but their optimal learning
rate is difficult to determine. The main reason to adopt (6.2.1) is that the learning
rate in (6.2.2) can be easily selected in advance. We establish the following theorem.

Theorem 6.2.1 Given the neural network in (6.2.1) with arbitrary initial conditions
xn(0) for all n, then ‖xn(t)‖2 converges exponentially to 1 as t → +∞, and the
convergence is independent of A.

Proof This theorem is similar to Lemma 1 in [6], we neglect the proof. ��
Remark 6.2.1 We refer to ‖xn(t)‖2

2 ≡ 1 if ‖xn(0)‖2
2 = 1 as the unit-norm

conservation. From Theorem 6.2.1, if ‖xn(0)‖2
2 > 1, then ‖xn(t)‖2

2 > 1 for
t > 0. Similarly, if ‖xn(0)‖2

2 < 1, then ‖xn(t)‖2
2 < 1 for t > 0. According to

Theorem 6.2.1, the suitable learning rate α in (6.2.2) satisfies 0 < α < 0.5 for the
stability of the algorithm.

From Theorem 6.2.1, we deduce the following result.

Corollary 6.2.1 For any bounded initial values of xn(0) and all n, the state vectors
of the neural network in (6.2.1) are bounded.

By using Gn(x1(t), x2(t), . . . , xN(t)) to denote the right-hand side of the neural
network in (6.2.1), we have the following lemma.

Lemma 6.2.1 Suppose that there exist N unit vectors x∗
n such that Gn(x∗

1, x∗
2, . . . ,

x∗
N) = 0I . For the neural network in (6.2.1), given any initial values xn(0) ∈ R

In

with ‖xn(0)‖2 = 1, let xn(t) → x∗
n as t → +∞. Then σ ∗ and x∗

n are the singular
value and the corresponding mode-n singular vectors of the tensor A, respectively,
where σ ∗ = F(x∗

1, x∗
2, . . . , x∗

N).

Proof The proof is given in [25] and we omit it. ��

6.2.2 Symmetric Tensor Rank-One Approximation

We present a neural network in (6.2.1) to compute the local maximizers of the
optimization problem (6.1.4). As shown in Sect. 6.1.2, there is a relationship
between the tensor singular value problem and the symmetric tensor Z-eigenvalue
problem. In this section, we focus on the symmetric rank-one approximation of a
symmetric tensor, and assume that all tensors are real symmetric tensors.

We now state how to find a locally optimal symmetric rank-one approximation of
the symmetric tensor A by a neural network, similar to (6.2.1) for the tensor rank-
one approximation problem. The dynamics of the neural network can be described
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by the ODE

dx(t)

dt
= Ax(t)N−1

Ax(t)N
− x(t), (6.2.3)

for t ≥ 0, where x(t) ∈ R
In represents the state of the neural network.

We present several results related to (6.2.3), similar to Theorem 6.2.1, Corol-
lary 6.2.1 and Lemma 6.2.1 for (6.2.1).

Theorem 6.2.2 Given the neural network in (6.2.3) for an arbitrary initial value
x(0) ∈ RI , ‖x(t)‖2 exponentially converges to 1 as t → +∞, and the convergence
is independent of A.

For an arbitrary nonzero initial value x(0) ∈ RI , a discrete-time iterative
algorithm corresponding to (6.2.3) is

x(k + 1) = x(k) + α

(
Ax(k)N−1

Ax(k)N
− x(k)

)

, (6.2.4)

where α > 0 is the learning rate.
According to Theorem 6.2.2, a suitable learning rate α in (6.2.4) can be taken in

(0, 0.5).

Corollary 6.2.2 For any bounded initial values x(0), the state vectors of the neural
network in (6.2.3) are bounded.

By using G(x(t)) to denote the right-hand side of (6.2.3), we have the following
lemma.

Lemma 6.2.2 Suppose that there exists a unit vectors x∗ such that G(x∗) = 0I .
Consider the neural network in (6.2.3), given x(0) ∈ RI with ‖x(0)‖2 = 1. If
x(t) → x∗ as t → +∞, then σ ∗ = f (x∗) and x∗ are the Z-eigenvalue and the
corresponding Z-eigenvector of A, respectively.

For the positive Z-eigenvalues of symmetric positive definite tensors, Samardz-
ijia and Waterland [26] propose a dynamical ODE system to estimate their
Z-eigenvectors:

dx(t)

dt
= Ax(t)N−1 − fp(x(t))x(t), (p > N − 1) (6.2.5)

for t ≥ 0, where fp(x) > 0 is a positive 1-dimensional p-form, that is, fp(x) is a p-
degree homogeneous polynomial with real-coefficients for all nonzero x ∈ RI . For
N ≥ 2, the nontrivial solutions, or fixed points, of (6.2.5) are the Z-eigenvectors of
the symmetric positive definite tensor A associated with the Z-eigenvalues. Vegas
and Zufiria [27] analyze the neural network in (6.2.5) for matrices and prove a local
stability result.
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It is interesting that the ODE system (6.2.5) can be used to compute the Z-
eigenvectors of A with fp(x) = AxN , and the associated neural network is

d

dt
x(t) = Ax(t)N−1 − Ax(t)N x(t), t ≥ 0.

We can generalize the ODE system (6.2.5) to compute the mode-n singular vectors
of A ∈ RI1×I2×···×IN as follows:

d

dt
xn(t) = F

(
x1(t), x2(t), . . . , xN(t)

)
−n

− F
(
x1(t), x2(t), . . . , xN(t)

)
xn(t),

(6.2.6)

for t ≥ 0, where xn(t) ∈ RIn represents the state.
We do not prove that the neural networks in (6.2.6) is locally asymptotically

stable in the sense of Lyapunov stability theory. Howevre, based on the KKT
conditions, Che et al. [28] propose a neural network model for the low multilinear
rank approximation of A ∈ RI1×I2×···×IN with the known multilinear rank
{R1, R2, . . . , RN } and prove that the state of this model is locally stable. For the
case of Rn = 1 and all n, the neural networks in (6.2.6) is a special case of that of
[28].

The definition of a higher-order multi-partially symmetric tensor is presented as
follows.

Definition 6.2.1 Suppose A ∈ C
J1×J2×···×JP1+···+PN . Define Q0 = 1 and Qn =

P1 + · · · + Pn for all n and N given positive integers In, with Jq = In for q =
Qn−1 + 1,Qn−1 + 2, . . . ,Qn. If the entries of A satisfy

ai1,1...i1,P1 i2,1...i2,P2 ...iN,1 ...iN,PN
= aπ1(i1,1)...π1(i1,P1 )i2,1...i2,P2 ...iN,1 ...iN,PN

= ai1,1...i1,P1 π2(i2,1)...π2(i2,P2 )...iN,1 ...iN,PN

= . . .

= ai1,1...i1,P1 i2,1...i2,P2 ...πN (iN,1)...πN (iN,PN
),

where πn ∈ SIn , A is called higher-order multi-partially symmetric. We use
ST

[P1,...,PN ]
I1×···×IN

to denote the set of all (P1 + P2 + · · · + PN)th-order multi-partially
symmetric tensors.

Remark 6.2.2 In Sect. 1.3, we reveal the relationship between the biquadratic
optimization problem and the rank-one approximation of fourth-order partially
symmetric tensors. Wang et al. [29] define the higher-order multi-partially sym-
metric tensors, as a generalization of fourth-order partially symmetric tensors, and
consider the computation of the multi-partially symmetric rank-one approximations
for higher-order multi-partially symmetric tensors via neural networks. This is
generalization of the partially symmetric rank-one approximation for fourth-order
partially symmetric tensors, related to the biquadratic optimization problem.
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For any A ∈ ST
[P1,...,PN ]
I1×···×IN

and arbitrary xn ∈ R
In , we define a polynomial

AxP1
1 . . . xPN

N := A ×1 x�
1 · · · ×P1 x�

1 · · · ×(P1+···+PN−1+1) x�
N · · · ×(P1+···+PN ) x�

N .

The partial derivative of AxP1
1 . . . xPN

N with respect to xn is denoted by

PnAxP1
1 . . . xPn−1

n . . . xPn

N , where AxP1
1 . . . xPn−1

n . . . xPn

N is defined as

A×1x�
1 · · ·×Q1 x�

1 · · ·×Qn−1 x�
n−1×Qn−1+2x�

n · · ·×Qn x�
n · · ·×QN−1+1x�

N · · ·×QN
x�
N ,

with Qn = P1 + P2 + · · · + Pn for all n.
For a given σ ∈ R and unit vectors xn ∈ RIn , if (σ, x1, x2, . . . , xN) is a solution

of the nonlinear equations

AxP1
1 . . . xPn−1

n . . . xPN

N = σxn; ‖xn‖2 = 1,

then σ and xn are called the M-singular value and the nth M-singular vector of
A ∈ ST

[P1,...,PN ]
I1×···×IN

.

For any nonzero M-singular value of A ∈ ST
[P1,...,PN ]
I1×···×IN

, the dynamics of the
neural network model can be described by

dxn(t)

dt
= AxP1

1 . . . xPn−1
n−1 xPn−1

n xPn+1
n+1 . . . xPN

N

AxP1
1 . . . xPN

N

− xn(t), (6.2.7)

for t ≥ 0, where xn(t) ∈ RIn represents the state of the network. As shown in
[29], we shall prove that the solution of (6.2.7) is locally asymptotically stable in
the sense of Lyapunov stability theory.

6.3 Asymptotic Stability

We shall show that the neural networks in (6.2.1) and (6.2.3) are locally asymptoti-
cally stable in the sense of Lyapunov stability theory.

6.3.1 Tensor Rank-One Approximation

We see that σ ∗ in Lemma 6.2.1 must be nonzero for the neural network described
in (6.2.1). For all local maximizers of the optimization problem (6.1.4), two distinct
subsets are

{
S+ = {{u1, u2, . . . , uN } : {u1, u2, . . . , uN } solves (6.1.4) and F(u1, u2, . . . , uN ) ≥ 0},
S− = {{u1, u2, . . . , uN } : {u1, u2, . . . , uN } solves (6.1.4) and F(u1, u2, . . . , uN ) < 0}.
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It is obvious that S+ ∩ S− = ∅ and S = S+ ∪ S− is the set of local maximizers
of (6.1.4). Based on the relationship between the tensor singular value problem and
the tensor rank-one approximation problems, it is easy to see that vn for all n are
nonzero with {v1, v2, . . . , vN } ∈ S.

Given any local maximizer {u1, u2, . . . , uN } ∈ S, we define ε0 = min ‖u − v‖2,
where u = (u1, u2, . . . , uN) and v = (v1, v2, . . . , vN) with {v1, v2, . . . , vN } ∈ S

and un �= vn for all n. We define a neighbourhood of u as

B(u; ε̂) := B(u1, u2, . . . , uN ; ε̂) = {x : ‖x − u‖2 ≤ ε̂} (6.3.1)

where xn ∈ RIn and x = (x1, x2, . . . , xN) with 0 < ε̂ ≤ ε0.
Since F(x1, x2, . . . , xN) is continuous and differentiable, (u1, u2, . . . , uN) is a

stationary point of F(x1, x2, . . . , xN), then there exists ε ≤ ε̂ such that the sign of
F(x1, x2, . . . , xN) is the same as the sign of F(u1, u2, . . . , uN) and

|F(x1, x2, . . . , xN)| ≤ |F(u1, u2, . . . , uN)|

for all (x1, x2, . . . , xN) ∈ B(u; ε).
By (6.3.1), there exists a unique local maximizer of the optimization prob-

lem (6.1.4) in B(u; ε). Since ‖un‖2 = 1 for all n, xn are nonzero. The neural network
in (6.2.1) is locally asymptotically stable in the sense of Lyapunov stability theory
at a local maximizer from S. We obtain the following theorem.

Theorem 6.3.1 Suppose that {u1, u2, . . . , uN } is a local maximizer of the optimiza-
tion problem (6.1.4) with un ∈ RIn . If the initial unit values xn(0) of the neural
network in (6.2.1) belong to B(δ(u)u; ε), given in (6.3.1), with

δ(u)u = (δ(u1)u1, δ(u2)u, . . . , δ(uN)uN),

then the solution of (6.2.1) is locally asymptotically stable in the sense of Lyapunov
stability theory at {δ(u1)u1, δ(u2)u, . . . , δ(uN)uN }, where

∏N
n=1 δ(un) = 1 with

{u1, u2, . . . , uN } ∈ S+; or
∏N

n=1 δ(un) = −1 with {u1, u2, . . . , uN } ∈ S−.

Proof For illustration, without loss of generality, we assume that N = 3 and
{u1, u2, u3} ∈ S+. We can see that F(x1, x2, x3) > 0 for all x ∈ B(u1, u2, u3; ε)

with x = (x1, x2, x3). For (6.2.1), we define the Lyapunov function as

V (x1, x2, x3) = σ∗ − F(x1, x2, x3)

‖x1‖2‖x2‖2‖x3‖2
.

From the proof of Theorem 6.2.1, we have ‖xn(t)‖2 = 1 for t ≥ 0. Together
with the definition of B(u1, u2, u3; ε), it is clear that V (x1, x2, x3) > 0, where
x ∈ B(u1, u2, u3; ε) and xn �= αnun with

∏3
n=1 δ(αn) = 1. Let

G(x1, x2, x3) = F(x1, x2, x3)

‖x1‖2‖x2‖2‖x3‖2
,
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we have

dV

dt
= −

(
dx1

dt

)� [∇x1G(x1, x2, x3)
]

−
(

dx2

dt

)� [∇x2G(x1, x2, x3)
] −

(
dx3

dt

)� [∇x3G(x1, x2, x3)
]
. (6.3.2)

Computing the partial derivative ∇x1G(x1, x2, x3), we obtain

∇x1G(x1, x2, x3) =‖x1‖2‖x2‖2‖x3‖2F(x1, x2, x3)−1

(‖x1‖2‖x2‖2‖x3‖2)2 − ‖x2‖2‖x3‖2F(x1, x2, x3)

(‖x1‖2‖x2‖2‖x3‖2)2 · x1

‖x1‖2

= F(x1, x2, x3)−1

‖x1‖2‖x2‖2‖x3‖2
− F(x1, x2, x3)

‖x1‖3
2‖x2‖2‖x3‖2

x1

= 1

‖x1‖2‖x2‖2‖x3‖2

(

F(x1, x2, x3)−1 − F(x1, x2, x3)

‖x1‖2
2

x1

)

.

By routine manipulations, we have

(
dx1

dt

)� [∇x1 G(x1, x2, x3)
]

= (F (x1, x2, x3)−1 − x1)
�

F(x1, x2, x3)
∇x1 G(x1, x2, x3)

= 1

‖x1‖2‖x2‖2‖x3‖2

[
(F (x1, x2, x3)−1)

�F(x1, x2, x3)−1

F(x1, x2, x3)
− F(x1, x2, x3)

‖x1‖2
2

]

.

By the Cauchy-Schwartz inequality, we obtain

F(x1, x2, x3)
2 ≤ (

F(x1, x2, x3)−1
)�

F(x1, x2, x3)−1‖x1‖2
2.

Hence
(

dx1

dt

)� [∇x1G(x1, x2, x3)
] ≥ 0,

and the equality holds if and only if xn = αnun with
∏3

n=1 δ(αn)αn = 1. Similarly,
we have

(
dx2

dt

)� [∇x2G(x1, x2, x3)
] ≥ 0,

(
dx3

dt

)� [∇x3G(x1, x2, x3)
] ≥ 0.

According to (6.3.2), we have

dV (x1, x2, x3)

dt
< 0
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for t ≥ 0, where x ∈ B(u1, u2, u3; ε) and xn �= αnun with
∏3

n=1 δ(αn) = 1. The
neural network in (6.2.1) is locally asymptotically stable in the sense of Lyapunov
stability theory at {u1, u2, u3} ∈ S+.

Moreover, we can prove that the solution of (6.2.1) is locally asymptotically
stable in the sense of Lyapunov stability theory at (δ(u1)u1, δ(u2)u2, δ(u3)u3) with
{u1, u2, u3} ∈ S+ and

∏3
n=1 δ(un) = 1.

The case of local maximizers {u1, u2, u3} ∈ S− is similar to that in S+.
Moreover, we can prove that the solution of (6.2.1) is locally asymptotically stable
in the sense of Lyapunov stability theory at

(δ(u1)u1, δ(u2)u2, δ(u3)u3)

with {u1, u2, u3} ∈ S− and
∏3

n=1 δ(un) = −1.
In general, we prove that the solution of (6.2.1) is locally asymptotically stable

in the sense of Lyapunov stability theory at

(δ(u1)u1, δ(u2)u, . . . , δ(uN)uN),

where

N∏

n=1

δ(un) =
{

1, with (u1, u2, . . . , uN) ∈ S+;
−1, with (u1, u2, . . . , uN) ∈ S−.

The theorem is proved. ��
Remark 6.3.1 Theorem 6.3.1 indicates, independent of the nonzero initial con-
ditions, that the neural network in (6.2.1) generally has a sub-linear speed of
convergence. The neural networks in (6.2.3) and (6.5.3) have similar results.

6.3.2 Symmetric Tensor Rank-One Approximation

By Lemma 6.2.2, σ∗ must be nonzero for the neural network in (6.2.3). Suppose
that u is a local maximizer of the optimization problem (6.1.7), we define a
neighborhood of u as

B(u; ε) = {x : ‖u − x‖2 ≤ ε̂}, (6.3.3)

where 0 < ε̂ ≤ ε0 := min ‖u−v‖2 and v �= u is another local maximizer of (6.1.7).
Since f (x) is continuous and differentiable, u is a stationary point of f (x), there

exists ε ≤ ε̂ such that δ(f (x)) is the same as δ(f (u)) and |f (x)| ≤ |f (u)| for all
x ∈ B(u; ε).

Theorem 6.3.1 states that the neural network in (6.2.1) is locally asymptotically
stable in the sense of Lyapunov stability theory at a local maximizer of (6.1.4),
belonging to S. For the neural network in (6.2.3), we have a similar result,
summarized in following theorem.
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Theorem 6.3.2 Suppose that u ∈ RI is a local maximizer of the problem (6.1.7).
For x(0) ∈ B(δ(u), ε), defined by (6.3.3), then the solution of (6.2.3) is locally
asymptotically stable in the sense of Lyapunov stability theory at δ(u)u.

Proof Suppose u ∈ RI is a local maximizer of (6.1.7). According to the sign of
f (u) and the value of the positive integer N , the proof procedure is divided into
four cases: (i) N is even and f (u) < 0, (ii) N is even and f (u) > 0, (iii) N is odd
and f (u) < 0, and (iv) N is odd and f (u) > 0.

For (i), we have 0 > f (x) ≥ f (u) with x ∈ B(u, ε). We cannot change the sign
of u to ensure f (δ(u)u) > 0, because if (σ ; v) is a Z-eigenpair of the symmetric
tensorA, then (σ ; −v) is also a Z-eigenpair [23]. Hence, by replacing the symmetric
tensor A, we rewrite the neural network in (6.2.3) as

dx(t)

dt
= (−A)x(t)N−1

(−A)x(t)N
− x(t) = Ax(t)N−1

Ax(t)N
− x(t),

and the associated Lyapunov function is

V (x) = −σ∗ − (−A)xN

‖x‖N
2

= −σ∗ + AxN

‖x‖N
2

, σ∗ = f (u) < 0.

By Theorem 6.2.2, we have ‖x(t)‖2 = 1 for all t ≥ 0. According to the definition
of B(u, ε) and the property of f (x) with x ∈ B(u, ε), we have V (x) > 0 where
x ∈ B(u, ε) and x �= αu with a nonzero α.

We then have

∇xG(x) = N

‖x‖N
2

(

AxN−1 − AxN

‖x‖2
2

x

)

, G(x) = AxN

‖x‖N
2

.

After some manipulation, we obtain

dV

dt
=

(
dx(t)

dt

)�
[∇xG(x)] = N

‖x‖N
2

(
AxN−1

AxN
− x

)� (

AxN−1 − AxN

‖x‖2
2

x

)

= N

‖x‖N
2

(
(AxN−1)�AxN−1

AxN
− AxN

‖x‖2
2

− AxN + AxN

)

= N

‖x‖N+2
2 AxN

(
‖x‖2

2((AxN−1)�AxN−1) − (AxN)2
)

= − N

‖x‖N+2
2 (−A)xN

(
‖x‖2

2(((−A)xN−1)�(−A)xN−1) − ((−A)xN)2
)

≤ 0
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by the Cauchy-Schwartz inequality and the equality holds if and only if x = αu
with a nonzero α. Note that f (u) = f (δ(u)u) with δ(u) = ±1. The case of x ∈
B(δ(u)u, ε) is similar to that of x ∈ B(u, ε). Case (i) is proved.

Since the last three cases are similar to Case (i), we leave the proof as an exercise.
��

6.4 Generalized Models: TCCA

In Sect. 6.1.1, when we define the tensor singular values and tensor singular vectors,
we restrict ‖xn‖2 = 1 for all n. In this section, we give a more general form of the
constraints. For N given symmetric positive definite matrices Bn ∈ R

In×In and A ∈
R

I1×I2×···×IN , let xn ∈ R
In be nonzero and x�

n Bnxn = 1 for all n. If the (N+1)-tuple
(σ ; x1, x2, . . . , xN) is a solution of the nonlinear equations [30, Definition 2.7]:

F(x1, x2, . . . , xN)−n = σBnxn, (6.4.1)

then σ ∈ R and the unit vectors xn are called the restricted singular value of A and
the corresponding mode-n restricted singular vector for all n.

When N = 2, the restricted singular values of A ∈ RI1×I2 are reduced to the
(B1, B2)-singular values of the matrix A [31, Definition 3], where B1 ∈ RI1×I1 and
B2 ∈ RI2×I2 are symmetric positive definite matrices.

Luo et al. [32] develop the tensor canonical correlation analysis (TCCA),
which straightforwardly yet naturally generalizes the canonical correlation analysis
(CCA), to analyze the data of an arbitrary number of views through the covariance
tensor. For N given views {Xn}Nn=1 of M instances, and Xn = [xn1, xn2, . . . , xnM ] ∈
RIn×M , the main problem of the TCCA is equivalent to solving the following
constraint optimization problem:

maxC ×1 h�
1 ×2 h�

2 · · · ×N h�
N s.t. h�

n Cnnhn = 1, for all n, (6.4.2)

where

C = 1

M

M∑

m=1

x1m ⊗ x2m ⊗ · · · ⊗ xNm, Cnn = 1

M

M∑

m=1

xnmx�
nm.

Since the matrices Cnn may be symmetric positive semi-definite, we usually add
a regularization term in the constraints of the optimization problem (6.4.2) to control
the model complexity. Thus, the constraints of the optimization problem (6.4.2)
become

h�
n (Cnn + εIIn )hn = 1, for all n,
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where ε is a nonnegative tradeoff parameter to ensure that Cnn + εIIn is symmetric
positive definite.

The optimization problem (6.4.2) is a special case of

maxA ×1 x�
1 ×2 x�

2 · · · ×N x�
N s.t. x�

n Bnxn = 1, for all n, (6.4.3)

where A ∈ RI1×I2×···×IN and Bn ∈ RIn×In is symmetric positive definite.
The first-order necessary condition for (6.4.3) is the system of nonlinear equa-

tions (6.4.1) with x�
n Bnxn = 1. Since our methods for solving (6.4.3) is based

on (6.4.1), the approximate x̃n may satisfy A×1 x̃�
1 ×2 x̃�

2 · · ·×N x̃�
N < 0. However,

we can change the sign of x̃n to ensure that A ×1 y�
1 ×2 y�

2 · · · ×N y�
N > 0, where

yn = δ(̃xn)̃xn with
∏N

n=1 δ(̃xn) = −1.
We next design some strategies to solve (6.4.3), solving (6.1.4) numerically.
We use the matrix factorizations of Bn to transfer (6.4.3) to (6.1.4). Consider the

Cholesky factorization Bn = GnG�
n , where Gn ∈ R

In×In is lower triangular with
positive diagonal entries. Let yn = G�

n xn, then the optimization problem (6.4.3) is
simplified as

max Ã ×1 y�
1 ×2 y�

2 · · · ×N y�
N s.t. y�

n yn = 1, for all n, (6.4.4)

where Ã = A ×1 G−1
1 ×2 G−1

2 · · · ×N G−1
N .

We can use HOMP [15, 16] or the neural network in (6.2.1) to solve the
optimization problem. Luo et al. [32] also apply the method for (6.4.2).

Next, we will generalize the neural network in (6.2.1) to directly solve (6.4.3).
For the nonzero restricted singular values of A, the dynamics of the neural network
model is

Bn

dxn(t)

dt
= F

(
x1(t), x2(t), . . . , xN(t)

)
−n

F
(
x1(t), x2(t), . . . , xN(t)

) − Bnxn(t), (6.4.5)

for t ≥ 0, where xn(t) ∈ RIn represents the state.
Note that (6.4.3) can be rewritten as

max
A ×1 x�

1 ×2 x�
2 · · · ×N x�

N√
x�

1 B1x1

√
x�

2 B2x2 . . .

√
x�
N BN xN

s.t. x�
n xn = 1, for all n. (6.4.6)

Some manipulation shows that the optimization problems (6.4.3) and (6.4.6) are
equivalent. We list the results of the neural network in (6.4.5), such as the locally
asymptotic stability of its solutions. Since the proof is similar to that of (6.2.1), we
omit it.

Theorem 6.4.1 Given the neural network in (6.4.5) and the arbitrary initial value
xn(0) for all n, xn(t)

�Bnxn(t) converges exponentially to 1 as t → +∞, and the
convergence is independent of A.
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For an arbitrary nonzero initial value xn(0) ∈ RIn , a discrete-time iterative algorithm
corresponding to the neural network in (6.4.5) is

Bn(xn(k+1)−xn(k)) = α

(
F
(
x1(k), x2(k), . . . , xN(k)

)
−n

F
(
x1(k), x2(k), . . . , xN(k)

) − xn(k)

)

, (6.4.7)

for all n, where α > 0 is the learning rate.
According to Theorem 6.4.1, the value of α can be selected so that 0 < α <

0.5. Since Bn is symmetric positive definite, then for b ∈ RIn , we can use the
preconditioning conjugate gradient method [33] for solving Bnx = b.

From Theorem 6.4.1, we deduce the following results.

Corollary 6.4.1 For bounded initial values xn(0) for all n, the state vectors of the
neural network in (6.4.5) are bounded.

Using Gn(x1(t), x2(t), . . . , xN(t)) to denote the right-hand side of the neural
network in (6.4.5), we have the following lemma.

Lemma 6.4.1 Suppose that there exists N unit vectors x∗
n ∈ RIn such that

Gn(x∗
1, x∗

2, . . . , x∗
N) = 0I for all n. For the neural network in (6.4.5), let xn(0) ∈

RIn with xn(0)�Bnxn(0) = 1. If xn(t) → x∗
n as t → +∞, then σ ∗ =

F(x∗
1, x∗

2, . . . , x∗
N) and x∗

n are the restricted singular value and the corresponding
mode-n restricted singular vectors of A, respectively.

Theorem 6.4.2 Assume that {u1, u2, . . . , uN } is a local maximizer of the opti-
mization problem (6.4.3) with un ∈ RIn . If xn(0) ∈ B̃(δ(u)u; ε) satisfies
xn(0)�Bnxn(0) = 1, with δ(u)u = (δ(u1)u1, δ(u2)u, . . . , δ(uN)uN), then the
solution of (6.4.5) is locally asymptotically stable in the sense of Lyapunov
stability theory at {δ(u1)u1, δ(u2)u, . . . , δ(uN)uN }, where

∏N
n=1 δ(un) = 1 with

F(u1, u2, . . . , uN) > 0; or
∏N

n=1 δ(un) = −1 with F(u1, u2, . . . , uN) < 0.

It should be noted that the set B̃(δ(u)u; ε) in the above theorem is similar to the set
B(δ(u)u; ε) in (6.3.1).

6.5 Neural Networks for Generalized Tensor Eigenvalues

In this section, we assume that N is even and all tensors are real symmetric tensors.
A tensor C is positive definite [21], if CxN > 0 for all nonzero x ∈ RI . A symmetric-
definite tensor pair {A,B} is defined as: A and B are symmetric and B is positive
definite (see [33, Section 8.7.1] for the matrix cases). Chang et al. [34] prove the
existence of the H-eigenvalues for symmetric-definite tensor pairs. Assume that both
AxN−1 and BxN−1 are not identically zero for all nonzero x ∈ RI . The pair (λ; x)

is a generalized eigenpair (with generalized eigenvalue λ and the corresponding
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generalized eigenvector x) of the tensor pair {A,B}, if

(A − λB)xN−1 = 0I . (6.5.1)

If B is the identity tensor, then the pair (λ; x) is called as an H-eigenpair of A
[13, 21].

There is a clear interpretation of the maximal and minimal H-eigenvalues of a
symmetric-definite tensor pair. Ding and Wei [35] derive the following theorem
as a generalization of the Rayleigh-Ritz theorem for a Hermitian matrix [33,
Section 8.1.1]. If B is the identity tensor, then this theorem simplifies into the single
tensor case [21, Theorem 5].

Theorem 6.5.1 ([35, Theorem 3.5]) Let {A,B} be a symmetric-definite tensor
pair. Denote the maximal generalized eigenvalue of {A,B} as

λmax = max
{
λ ∈ R : AxN−1 = λBxN−1, x ∈ R

I\{0I }
}

,

and the minimal generalized eigenvalue λmin of {A,B} similarly. Then

λmax = max
x∈RI\{0I }

AxN

BxN
= max

x∈RI

‖x‖2=1

AxN

BxN
, λmin = min

x∈RI\{0I }
AxN

BxN
= min

x∈RI

‖x‖2=1

AxN

BxN
.

For a given symmetric-definite tensor pair {A,B}, we can formulate the follow-
ing nonlinear programming problem

max
x∈RI

AxN

BxN
‖x‖N

2 s.t. ‖x‖2 = 1. (6.5.2)

A pair (λ; x) is called a local maximal (resp. minimal) generalized H-eigenpair
of the symmetric-definite tensor pair {A,B}, if x is the local maximizer (resp.
minimizer) of (6.5.2). We compute the generalized H-eigenvectors of a symmetric-
definite tensor pair by (6.5.2), rather than the local maximal (or the local minimal)
generalized H-eigenvalues, because of its close relationship with the generalized
tensor eigenvalue problem (6.5.1).

Theorem 6.5.2 ([36, Theorem 3.2]) Any pair (λ; x) is a solution to (6.5.1) if and
only if the scaled version with ‖x‖2 = 1 is a KKT point of (6.5.2), where λ is the
Lagrange multiplier.

Analogous to the neural network in (6.2.5), we design a neural network for
computing the local extremal generalized H-eigenvalue of the symmetric-definite
tensor pair {A,B}. The dynamics of the new neural network model is

dx(t)

dt
= Bx(t)NAx(t)N−1 − Ax(t)NBx(t)N−1, (6.5.3)
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for all t ≥ 0, where x(t) ∈ RI represents the state. The solution of the neural
network in (6.5.3) has the following important property.

Theorem 6.5.3 If x(t) is a solution of the neural network in (6.5.3) for t ≥ 0, then
‖x(t)‖2

2 is invariant for t ≥ 0, i.e., ‖x(t)‖2
2 = ‖x(0)‖2

2.

Proof For t ≥ 0, let x(t) be a solution of (6.5.3) starting from any nonzero initial
value x(0). It follows that

d‖x(t)‖2
2

dt
= 2x(t)� dx(t)

dt
= 2x� [

Bx(t)NAx(t)N−1 − Ax(t)NBx(t)N−1
]

= 0.

Hence ‖x(t)‖2
2 is invariant for t ≥ 0. ��

For an arbitrary nonzero x(0) ∈ RI , a discrete-time iterative algorithm corre-
sponding to (6.5.3) is

x(k + 1) = x(k) + α
(
Bx(k)NAx(k)N−1 − Ax(k)NBx(k)N−1

)
, (6.5.4)

where α > 0 is the learning rate.
With G(x(t)), denoting the right-hand side of (6.5.3), we have the following

lemma.

Lemma 6.5.1 Suppose that there exists a unit vector x∗ ∈ RI such that G(x∗) =
0I . Consider the neural network in (6.5.3)with x(0) ∈ RI and ‖x(0)‖2 = 1. If
x(t) → x∗ as t → +∞, then λ∗ = AxN∗ /BxN∗ := g(x∗) and x∗ are the generalized
eigenvalue and the corresponding generalized eigenvector of the symmetric-definite
tensor pair {A,B}, respectively.

Given a symmetric-definite tensor pair {A,B}, denote the set of all generalized
eigenvectors corresponding to the local maximal generalized eigenvalues λLocal

max and
the local minimal generalized eigenvalues λLocal

min by Smax and Smin, respectively. It is
obvious that the maximal (resp. minimal) generalized eigenvalue is one of the local
maximal (resp. minimal) generalized eigenvalues. A neighbourhood of u ∈ Smax
(resp. u ∈ Smin) is defined by

B(u; ε) = {x : ‖x − u‖2 ≤ ε} (6.5.5)

where 0 < ε ≤ ε0 := min ‖u − v‖2 and v ∈ Smax (resp. u ∈ Smin) with u �= v.
Since u is nonzero, all vectors in B(u; ε) are nonzero for a small enough ε.

We show that the (6.5.3) is locally asymptotically stable in the sense of Lyapunov
stability theory at a generalized eigenvector u, in Smax or Smin.

Theorem 6.5.4 Suppose that the unit vector u ∈ RI is a generalized eigenvector
of a symmetric-definite tensor pair {A,B} corresponding to a local maximal (resp.
minimal) generalized eigenvalue. If x(0) ∈ B(δ(u)u; ε) defined by (6.5.5), then the
solution of (6.5.3) is locally asymptotically stable in the sense of Lyapunov stability
theory at δ(u)u.
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Proof If (λ; x) is a generalized eigenpair of the symmetric-definite tensor pair
{A,B}, then so is (λ; −x). We show that the neural network in (6.5.3) is locally
asymptotically stable in the sense of Lyapunov stability theory at a generalized
eigenvector ±u, with u ∈ Smax (resp. u ∈ Smin).

Let u ∈ Smax and g(u) > 0. It is easy to see g(−u) > 0 because of the even N .
Then, we have 0 < g(x) ≤ g(δ(u)u) for all x ∈ B(δ(u)u; ε).

For (6.5.3), we define the Lyapunov function

V (x) = λLocal
max − AxN

BxN
, λLocal

max = g(δ(u)u) > 0.

We have V (x) > 0 for x ∈ B(δ(u)u; ε) but not parallel to δ(u)u. Computing the
partial derivative of V (x) with respect to x, we have

dV

dt
= −

(
dx
dt

)� [

∇x

(
AxN

BxN

)]

.

We also have

∇x

(
AxN

BxN

)

= NAxN−1

BxN
− NAxNBxN−1

(BxN)2
.

Hence

(
dx
dt

)� [

∇x

(
AxN

BxN

)]

= (BxNAxN−1 − AxNBxN−1)�
(

mAxN−1

BxN
− NAxNBxN−1

(BxN)2

)

= N

(

(AxN−1)�AxN−1 − 2
AxN

BxN
(AxN−1)�BxN−1

+
(
AxN

BxN

)2

(BxN−1)�BxN−1

)

≥ N

(

AxN−1 − AxN

BxN
BxN−1

)� (

AxN−1 − AxN

BxN
BxN−1

)

≥ 0,

and the equality holds if and only if x is parallel to u.
Thus we have

dV

dt
< 0

for t ≥ 0, where x ∈ B(δ(u)u; ε) is not parallel to u.
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Assume that u ∈ Smax and g(u) < 0. It is easy to see that g(−u) < 0 because
of the even N . Then, we have g(x) ≤ g(δ(u)u) < 0 for all x ∈ B(δ(u)u; ε). Define
the Lyapunov function

V (x) = λLocal
max − AxN

BxN
, with λLocal

max = g(δ(u)u) < 0.

Since g(x) ≤ g(δ(u)u) < 0 for x ∈ B(δ(u)u; ε), then 0 < −g(δ(u)u) ≤ −g(x)

for x ∈ B(δ(u)u; ε). Hence, we have V (x) > 0 for all x ∈ B(δ(u)u; ε) but not
parallel to u. The proof is similar to that of u ∈ Smax and g(u) > 0.

Since λLocal
min is a local minimal generalized eigenvalue of the symmetric-definite

tensor pair {A,B}, then −λLocal
min is the local maximal generalized eigenvalue of the

symmetric-definite tensor pair {−A,B} with its generalized eigenvector u ∈ Smin.
For the symmetric-definite tensor pair {−A,B}, the neural network in (6.5.3) can

be represented by

dx(t)

dt
= −Bx(t)NAx(t)N−1 + Ax(t)NBx(t)N−1, (6.5.6)

for all t ≥ 0. The associated Lyapunov function is defined as

V (x) = −λLocal
min − (−A)xN

BxN
= −λLocal

min + AxN

BxN
.

The proof is similar for the local maximal generalized eigenvalues of the
symmetric-definite tensor pair {A,B}. The theorem is proved. ��

6.6 Numerical Examples

In this section, we present numerical examples of neural networks for finding locally
optimal rank-one approximations. We terminate the corresponding iterations using
the criterion

∣
∣F

(
x1(k + 1), x2(k + 1), . . . , xN(k + 1)

) − F
(
x1(k), x2(k), . . . , xN(k)

)∣
∣ < 10−8,

for nonsymmetric tensors and

∣
∣f

(
x(k + 1)) − f (x(k)

)∣
∣ < 10−8,

for symmetric tensors, or when the algorithm runs over 1000 iterations.
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Note that xn(k) ∈ RIn and x(k) ∈ RI are computed from the first-order
difference approximation (6.2.2) and HOPM, and the first-order difference approx-
imation (6.2.4) and SHOPM, respectively.

For a local maximizer {v1, v2, . . . , vN } of the optimization problem (6.1.4), we
have

Sτ =
{

(δ(τ )τ ) · (δ(v1)v1 ⊗ δ(v2)v2 ⊗ · · · ⊗ δ(vN)vN

) : δ(τ )

N∏

n=1

δ(vn) = 1

}

being the set of all locally optimal rank-one approximations corresponding to the
locally optimal rank-one approximation τ ·(v1⊗v2⊗· · ·⊗vN) of A ∈ RI1×I2×···×IN ,
where τ = F(v1, v2, . . . , vN). It is obvious that the best rank-one approximation
of A belongs to Sτ . The related results are shown in tables and the running time is
measured by the Matlab “tic-toc” pairs in seconds. We only list one locally optimal
rank-one approximation of A for each Sτ in all examples. We follow the same
practice for symmetric tensors.

In Sect. 6.6.3, we present three numerical methods for computing the restricted
singular values and associated restricted singular vectors.

Finally, we present numerical examples to illustrate that we can utilize the neural
network in (6.5.3) to compute the generalized eigenvector of a symmetric-definite
tensor pair (cf. Sect. 6.5), corresponding to the maximal or the minimal generalized
eigenvalue. We terminate the iterations when

∥
∥
∥Ax(k)N−1 − λ(k)Bx(k)N−1

∥
∥
∥

2
≤ 10−8,

or the number of the iterations exceeds 5000, with x(k) from the first-order

difference approximation (6.5.4) and λ(k) = Ax(k)N

Bx(k)N
.

We only record the Matlab “tic-toc” estimates of the execution times by the first-
order difference approximations (6.2.2), (6.2.4) and (6.5.4) for the local maximizers
of the optimization problems (6.1.4), (6.1.7) and (6.5.2), respectively.

6.6.1 Nonsymmetric Tensor Examples

We present numerical results for nonsymmetric tensors. The locally optimal rank-
one approximation ratio of a real tensor A ∈ RI1×I2×···×IN is investigated by Qi
[19, 37]:

ρ(A) := max
|〈A,X〉|

‖A‖F ‖X‖F

,

where X = x1 ⊗ x2 ⊗ · · · ⊗ xN with nonzero xn ∈ RIn .
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Clearly, if σ∗ · (u1 ⊗ u2 ⊗ · · · ⊗ uN) is a locally optimal rank-one approximation
of A, with each ‖un‖2 = 1 and σ∗ = F(u1, u2, . . . , uN), then ρ(A) = |σ∗|/‖A‖F .

Suppose that σ∗ · (u1 ⊗ u2 ⊗ · · · ⊗ uN) is returned by the first-order difference
approximation (6.2.2), then we measure the quality of the rank-one approximation
by the residual:

RESNET(A) = ‖A − σ∗ · (u1 ⊗ u2 ⊗ · · · ⊗ uN)‖F .

There are well known connections exist between the singular value decompo-
sition [33, Section 2.4] of a matrix A ∈ RI×J and the Schur decomposition [33,
Section 7.4.1] of its symmetric embedding

sym(A) =
(

0I×I A
A� 0J×J

)

.

Ragnarsson and Van Loan [38] develop similar connections for tensors by building
on Lim’s variational approach. Through the symmetric embedding sym(A), if
(σ ; x1, x2, . . . , xN) is a solution of (6.1.1) with σ �= 0, then (σα; xα) is an Z-
eigenpair of sym(A), where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σα = α1α2 . . . αN
N !√
NN

σ,

xα = 1√
N

(
α1x�

1 , α2x�
2 , . . . , αN x�

N

)�
,

α = [α1, α2, . . . , αN ] = [1,±1, . . . ,±1
︸ ︷︷ ︸

N−1

].

If (σ ; u1, u2, . . . , uN) can be computed by the neural network in (6.2.1), then we
can define

C(σα, uα) = U� [
(N − 1)sym(A)uN−1

α − σ II

]
U ∈ R

(I−1)×(I−1),

where the columns of U ∈ RI×(I−1) form an orthonormal basis for u⊥
α with I =

I1 + I2 + . . . + IN .
Suppose that (σ ; u1, u2, . . . , uN) is a singular pair of the tensor A, then

⎧
⎪⎪⎨

⎪⎪⎩

C(σα; uα) positive definite ⇒ un is a local maximum of (6.1.4),

C(σα; uα) negative definite ⇒ un is a local maximum of (6.1.4),

C(σα; uα) indefinite ⇒ un is a saddle point of (6.1.4).
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Example 6.6.1 ([37, Example 1]) Consider the positive tensor A ∈ R
3×3×3 with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a111 = 0.4333, a121 = 0.4278, a131 = 0.4140, a211 = 0.8154,

a221 = 0.0199, a231 = 0.5598, a311 = 0.0643, a321 = 0.3815,

a331 = 0.8834, a112 = 0.4866, a122 = 0.8087, a132 = 0.2073,

a212 = 0.7641, a222 = 0.9924, a232 = 0.8752, a312 = 0.6708,

a322 = 0.8296, a332 = 0.1325, a113 = 0.3871, a123 = 0.0769,

a133 = 0.3151, a213 = 0.1355, a223 = 0.7727, a233 = 0.4089,

a313 = 0.9715, a323 = 0.7726, a333 = 0.5526.

If we employ the first-order difference approximation (6.2.2), then we get a
locally optimal rank-one tensor σ∗ · (u1 ⊗ u2 ⊗ u3) with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ∗ = −2.8167, ρ(A) = 0.9017, RESNET = 1.3510.

u1 = (0.4281, 0.6557, 0.6219)�,

u2 = (−0.5706,−0.6467,−0.5062)�,

u3 = (0.4501, 0.7094, 0.5423)�.

It takes 0.0625 s. Figure 6.1 displays the convergence of the global maximizer
estimation for the optimization problem (6.1.4).

Comparing to [8, Example 3.12], we see that σ∗ · (u1 ⊗ u2 ⊗ u3) is the best
rank-one approximation.

Fig. 6.1 Estimation of a global maximizer of (6.1.4) with Example 6.6.1
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Example 6.6.2 ([8, Example 3.14]) Consider the tensor A ∈ RI×I×I given as

ai1i2i3 = cos(i1 + 2i2 + 3i3).

For I = 5, by applying the first-order difference approximation (6.2.2), we obtain
a locally optimal rank-one tensor σ∗ · (u1 ⊗ u2 ⊗ u3) with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ∗ = −6.0996, ρ(A) = 0.7728, RESNET = 5.0093,

u1 = ( 0.4295, 0.5611, 0.1768,−0.3700,−0.5767)�,

u2 = ( 0.6210,−0.2957,−0.3749, 0.6077,−0.1309)�,

u3 = (−0.4528, 0.4590,−0.4561, 0.4441,−0.4231)�.

It takes 0.2188 s. Figure 6.2 presents the convergence of the global maximizer
estimation for the optimization problem (6.1.4).

Comparing to [8, Example 3.14], we know that σ∗ · (u1 ⊗ u2 ⊗ u3) is the best
rank-one approximation.

For I from 5 to 100, we apply the first-order difference approximation (6.2.2)
to find the best rank-one approximations. The computational results are listed in
Table 6.1.

Example 6.6.3 ([8, Example 3.15]) Consider A ∈ RT4,I given as

ai1i2i3i4 =

⎧
⎪⎪⎨

⎪⎪⎩

4∑

j=1

arcsin

(

(−1)ij
j

ij

)

, if all ij ≥ j,

0, otherwise.

Fig. 6.2 Estimation of a global maximizer of (6.1.4) with Example 6.6.2
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Table 6.1 Related results for
Example 6.6.2

I σ∗ Time ρ(A) RESNET(A)

5 −6.0996 0.2969 0.7728 5.0093

10 −14.7902 1.9063 0.6629 16.7026

15 25.4829 0.5156 0.6203 32.2270

20 33.7020 3.8125 0.5329 53.5095

25 46.7997 7.6875 0.5295 74.9817

30 64.9106 3.0781 0.5587 96.3619

35 80.7697 7.0938 0.5517 122.1175

40 −95.0878 5.1719 0.5316 151.5162

95 −338.5683 65.3750 0.5171 560.4087

100 368.6851 67.1719 0.5214 603.3848

For I = 5, if we use the first-order difference approximation (6.2.2), then we
obtain two locally optimal rank-one tensors σ i∗ · (ui

1 ⊗ ui
2 ⊗ ui

3 ⊗ ui
4) with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 1∗ = −15.3155, ρ(A) = 0.7076, RESNET = 15.2957,

u1
1 = (−0.6711,−0.2776,−0.4398,−0.3285,−0.4138)�,

u1
2 = (−0.0000,−0.1709,−0.6708,−0.3985,−0.6017)�,

u1
3 = (−0.0000,−0.0000,−0.8048,−0.1804,−0.5654)�,

u1
4 = (0.0000, 0.0000, 0.0000,−0.0073,−1.0000)�,

and
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2∗ = −13.4801, ρ(A) = 0.6228, RESNET = 16.9354,

u2
1 = (−0.2089,−0.5643,−0.4178,−0.5183,−0.4413)�,

u2
2 = (−0.0000, 0.7280, 0.2800, 0.5241, 0.3420)�,

u2
3 = (−0.0000,−0.0000,−0.2742,−0.8293,−0.4870)�,

u2
4 = (0.0000,−0.0000,−0.0000,−0.9777, 0.2102)�.

It takes 0.1719 s and 0.4063 s, respectively. We conclude that σ 1∗ ·(u1
1 ⊗u1

2 ⊗u1
3 ⊗

u1
4) is the best rank-one approximation and the results are consistent with those in

[8, Example 3.15].
For I from 5 to 12, we apply the first-order difference approximation (6.2.2)

to obtain the best rank-one approximation. The computational results are listed in
Table 6.2.

Remark 6.6.1 For A ∈ RI1×I2×···×IN , suppose that τ∗ · (v1 ⊗ v2 ⊗ · · · ⊗ vN) is the
best rank-one approximation returned by the semi-definite relaxation methods [8],
we measure the quality of the rank-one approximation by the residual:

RESSPD(A) = ‖A − τ∗ · (v1 ⊗ v2 ⊗ · · · ⊗ vN)‖F .
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Table 6.2 Related results for
Example 6.6.3

I σ∗ Time ρ(A) RESNET(A)

5 −15.3155 0.1719 0.7076 15.2957

6 −25.3934 0.1406 0.7478 22.5473

7 33.0389 0.1719 0.6874 34.9113

8 −44.6644 0.1406 0.7052 44.9052

9 −54.3981 0.4063 0.6782 58.9426

10 67.3464 0.3125 0.6872 71.2040

11 −78.9268 0.4063 0.6731 86.7219

12 −93.0160 0.4688 0.6775 100.9830

Let σ∗ · (u1 ⊗ u2 ⊗ · · · ⊗ uN) be the best rank-one approximation returned by
the first-order difference approximation (6.2.2). When the iterations are termi-
nated, RESNET(A) is not significantly bigger than RESSPD(A) and the CPU time
for (6.2.2) is smaller than the CPU time for the semi-definite relaxation methods, as
shown in [8].

Example 6.6.4 ([8, Example 3.19]) We compare the first-order difference approx-
imation (6.2.2) with HOPM in [15, Algorithm 3.2], which is widely used for
computing rank-one approximation for nonsymmetric tensors. Meanwhile, we can
also use the semi-definite relaxation methods to check the convergence of HOPM.
The tensor A ∈ T3,I is given by

ai1i2i3 = tan

(

i1 − i2

2
+ i3

3

)

.

Suppose that λ · (x1 ⊗ x2 ⊗ · · · ⊗ xN) is a rank-one approximation returned by
HOPM, then we measure its quality by the residual:

RESHOPM(A) = ‖A − λ · (x1 ⊗ x2 ⊗ · · · ⊗ xN)‖F .

Suppose I = 20. When we implement (6.2.2) and HOPM 100 times on the testing
tensor A, the absolute values of σ∗ and λ are chosen from the set

{382.6558, 385.8545, 386.0731, 399.3615, 400.6770, 508.8158, 508.8218}.

The computational results are presented in Table 6.3.
According to Table 6.3, we can use (6.2.2) and HOPM to compute all locally

optimal rank-one approximations of A ∈ RI1×I2×···×IN . However, we do not know
how to choose an optimal initial value to ensure that the sequence, which converges
to the global minimizer.
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Table 6.3 Related results for Example 6.6.4

Values Occ. Time RESNET(A) Occ. Time RESHOPM(A)

382.6558 2 69.3516 1.8119e+3 2 63.7344 1.8119e+3

385.8545 15 9.0479 1.8112e+3 18 21.0113 1.8112e+3

386.0731 9 9.3576 1.8112e+3 9 21.4833 1.8112e+3

399.3615 11 3.9105 1.8083e+3 15 8.4948 1.8083e+3

400.6770 16 4.0439 1.8080e+3 10 8.1656 1.8080e+3

508.8158 21 0.7649 1.7806e+3 24 1.6680 1.7806e+3

508.8218 26 0.8305 1.7806e+3 22 1.6747 1.7806e+3

6.6.2 Symmetric Tensor Examples

We report some numerical results for symmetric tensors here. Qi [37] defines the
locally optimal symmetric rank-one approximation ratio of a symmetric tensor A ∈
RTN,I as

ρ(A) := max
|〈A,X〉|

‖A‖F ‖X‖F

,

where X = x⊗N with a nonzero vector x ∈ RI .
If σ∗ · u⊗N is a locally optimal symmetric rank-one approximation of A, with

‖u‖2 = 1 and σ∗ = f (u), then ρ(A) = |σ∗|/‖A‖F . Estimates for ρ(A) are
given by Qi in [37]. Let σ∗ · u⊗N be the locally optimal symmetric rank-one
approximation returned by the first-order difference approximation (6.2.4). We
measure the quantity of the approximation by the residual:

RESNET(A) =
∥
∥
∥A − σ∗ · u⊗N

∥
∥
∥

F
.

As discussed in [15, 22, 23], a Z-eigenpair may be associated with a local maximum,
a local minimum, or a saddle point. For a given Z-eigenpair (σ ; x) normalized so
that ‖x‖2 = 1, we can categorize it by the projected Hessian of the Lagrangian, i.e.,

C(σ ; x) = U� [
(N − 1)AxN−1 − σ II

]
U ∈ R

(I−1)×(I−1),

where the columns of U ∈ RI×(I−1) form an orthonormal basis for x⊥. We have
three situations

⎧
⎪⎪⎨

⎪⎪⎩

C(σ ; x) positive definite ⇒ x is a local maximum of (6.1.7),

C(σ ; x) negative definite ⇒ x is a local maximum of (6.1.7), or

C(σ ; x) indefinite ⇒ x is a saddle point of (6.1.7).
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For the illustrative examples in this subsection, the solutions of the neural network
in (6.2.3) are the local maxima of (6.1.7).

Example 6.6.5 ([23, Example 3.6], [19, Example 4.2]) Consider the symmetric
tensor A ∈ RT3,3 with

a111 = −0.1281, a112 = 0.0516, a113 = −0.0954, a122 = −0.1958, a123 = −0.1790;
a133 = −0.2676, a222 = 0.3251, a223 = 0.2513, a233 = 0.1773, a333 = 0.0338.

Applying the first-order difference approximation (6.2.4), we obtain two locally
optimal symmetric rank-one tensors σ i∗ · (ui )⊗3 (i = 1, 2) with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ 1∗ = −0.8730, ρ(A) = 0.8890, RESNET = 0.4498,

u1 = (0.3922,−0.7249,−0.5664)�;
σ 2∗ = −0.4306, ρ(A) = 0.4385, RESNET = 0.8826,

u2 = (0.7187, 0.1245, 0.6840)�.

It takes 0.0313 s and 0.0469 s, respectively. We conclude that σ 1∗ · (u1)⊗3 is the
best symmetric rank-one approximation, which is consistent with [8, Example 3.3].

Example 6.6.6 ([37, Example 2]) Consider the positive symmetric tensor A ∈
RT3,3 with

a111 = 0.0517, a112 = 0.3579, a113 = 0.5298, a122 = 0.7544, a123 = 0.2156,

a133 = 0.3612, a222 = 0.3943, a223 = 0.0146, a233 = 0.6718, a333 = 0.9723.

Employing the first-order difference approximation (6.2.4), we obtain a locally
optimal symmetric rank-one tensor σ∗ · u⊗3 with

{
u = (−0.5204,−0.5113,−0.6839)�,

σ∗ = −2.1110, ρ(A) = 0.8574, RESNET = 1.2672.

It takes 0.0781 s. Figure 6.3 shows the convergence of the global maximizer
estimation for the optimization problem (6.1.7).

Comparing to [8, Example 3.3], it is obvious that σ∗ · u⊗3 is the best symmetric
rank-one approximation and |σ∗| is the Z-spectral radius of A.

Example 6.6.7 ([8, Example 3.5]) Consider the symmetric tensor A ∈ RT3,I with

aijk = (−1)i

i
+ (−1)j

j
+ (−1)k

k
.
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Fig. 6.3 Estimation of a global maximizer of (6.1.7) with Example 6.6.6

For I = 5, when the first-order difference approximation (6.2.4) is applied, we get
two locally optimal symmetric rank-one tensors σ i∗ · (ui )⊗3 (i = 1, 2) with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ 1∗ = 9.9779, ρ(A) = 0.8813, RESNET = 5.3498,

u1 = (−0.7313,−0.1375,−0.4674,−0.2365,−0.4146)�;
σ 2∗ = 4.2876, ρ(A) = 0.3787, RESNET = 10.4783,

u2 = (−0.1859, 0.7158, 0.2149, 0.5655, 0.2950)�.

It takes 0.0313 s and 0.0625 s, respectively. We see that σ 1∗ · (u1)⊗3 is the best
symmetric rank-one approximation, consistent with [8, Example 3.7].

For I from 10 to 105, we apply the first-order difference approximation (6.2.4)
to find the best symmetric rank-one approximation. The computational results are
presented in Table 6.4.

Example 6.6.8 ([8, Example 3.6]) Consider the symmetric tensor A ∈ RT4,I with

ai1i2i3i4 = arctan

(

(−1)i1
i1

I

)

+arctan

(

(−1)i2
i2

I

)

+arctan

(

(−1)i3
i3

I

)

+arctan

(

(−1)i4
i4

I

)

.

For I = 5, making use of the first-order difference approximation (6.2.4), we obtain
two locally optimal symmetric rank-one tensors σ i∗ · (ui )⊗4 (i = 1, 2) with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ 1∗ = −23.5741, ρ(A) = 0.8135, RESNET = 16.8501,

u1 = (0.4403, 0.2382, 0.5602, 0.1354, 0.6459)�;
σ 2∗ = 13.0779, ρ(A) = 0.4513, RESNET = 25.8579,

u2 = (0.3174, 0.5881, 0.1566, 0.7260, 0.0418)�.
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Table 6.4 Related results for
Example 6.6.7

I σ∗ Time ρ(A) RESNET(A)

10 −17.8002 0.0156 0.8042 13.1565

15 −26.4770 0.0156 0.7932 20.3254

20 24.1589 0.0313 0.7698 28.3238

25 42.5109 0.0625 0.7651 35.7736

30 −50.1376 0.0625 0.7528 43.8345

35 −58.3303 0.0938 0.7501 1.4221

40 −65.9255 0.0938 0.7423 59.5166

45 74.0191 0.0625 0.7404 67.1900

50 81.5934 0.0625 0.7349 75.3064

55 −89.4178 0.0625 0.7335 83.0399

100 158.9902 0.0938 0.7158 155.0992

105 −166.8380 0.1250 0.7153 162.9868

Table 6.5 Related results for
Example 6.6.8

I σ∗ Time ρ(A) RESNET(A)

5 −23.5741 0.0781 0.8135 16.8501

10 77.0689 0.0625 0.7268 72.8350

15 −165.0965 0.0938 0.7081 164.6400

20 282.9708 0.0938 0.6911 295.9706

25 −435.3152 0.1250 0.6849 463.0760

30 617.5361 0.1563 0.6779 669.7284

35 −834.2093 0.1563 0.6749 912.1421

40 1.0808e+3 0.1875 0.6710 1.1941e+3

45 −1.3618e+3 0.2813 0.6693 1.5118e+3

50 1.6727e+3 0.5000 0.6669 1.8691e+3

55 −2.0180e+3 0.6875 0.6657 2.2622e+3

60 2.3933e+3 0.6563 0.6640 2.6948e+3

It takes 0.0469 s and 0.0625 s, respectively. Comparing to [8, Example 3.6], σ 1∗ ·
(u1)⊗4 is the best symmetric rank-one approximation.

For I from 5 to 60, we apply the first-order difference approximation (6.2.4)
for the best symmetric rank-one approximation. The computational results are in
Table 6.5.

Example 6.6.9 ([8, Example 3.7]) Consider the symmetric tensor A ∈ RT5,I with

ai1i2i3i4i5 = (−1)i1 ln(i1)+(−1)i2 ln(i2)+(−1)i3 ln(i3)+(−1)i4 ln(i4)+(−1)i5 ln(i5).
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For I = 5, taking advantage of the first-order difference approximation (6.2.4), we
get two locally optimal symmetric rank-one tensors σ i∗ · (ui )⊗5 (i = 1, 2) with

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ 1∗ = 110.0083, ρ(A) = 0.7709, RESNET = 90.8819,

u1 = (−0.3906, −0.2782, −0.5666, −0.1669, −0.6490)�;
σ 2∗ = −69.8573, ρ(A) = 0.4598, RESNET = 124.4248,

u2 = (−0.4132, −0.5505, −0.1902, −0.6943, −0.0894)�.

It takes 0.0313 s and 0.0156 s, respectively, and σ 1∗ · (u1)⊗5 is the best symmetric
rank-one approximation, comparable to [8, Example 3.7].

For I from 5 to 20, we apply the first-order difference approximation (6.2.4) to
find the best symmetric rank-one approximations, as summarized in Table 6.6.

Remark 6.6.2 Suppose that τ∗ · v⊗N is the best symmetric rank-one approximation
returned by the semi-definite relaxation method [8], then we measure its quality by
the residual:

RESSPD(A) =
∥
∥
∥A − τ∗ · v⊗N

∥
∥
∥

F
.

If σ∗ · u⊗N is the best rank-one approximation by the first-order difference
approximation (6.2.4), its residual RESNET(A) is not significantly bigger than
RESSPD(A) and the CPU time for (6.2.4) is smaller than the CPU time for the
semi-definite relaxation methods.

Table 6.6 Computational
results for Example 6.6.9

I σ∗ Time ρ(A) RESNET(A)

5 −110.0083 0.0313 0.7709 90.8818

6 −209.6261 0.0625 0.8109 151.2544

7 297.4530 0.0625 0.7376 272.3047

8 −470.6419 0.0781 0.7675 393.1087

9 −619.1962 0.0313 0.7174 601.3126

10 883.2849 0.0625 0.7408 801.0223

11 −1.1067e+3 0.0625 0.7040 1.1165e+3

12 −1.4780e+3 0.0625 0.7229 1.4126e+3

13 1.7897e+3 0.0625 0.6945 1.8544e+3

14 −2.3836e+3 0.1250 0.7103 2.3633e+3

15 −2.6966e+3 0.1094 0.6974 2.8494e+3

16 3.3277e+3 0.2656 0.7008 3.3870e+3

17 −3.8543e+3 0.1094 0.6819 4.1347e+3

18 −4.6369e+3 0.0938 0.6936 4.8160e+3

19 −5.2891e+3 0.1563 0.6775 5.7416e+3

20 6.2367e+3 0.2344 0.6878 6.5816e+3
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Fig. 6.4 Comparison (6.2.4) and SHOPM in Example 6.6.10

Table 6.7 Related results for
Example 6.6.10

Values Occ. Time RESNET(A)

29.0085 36 0.1905 56.1536

32.7139 35 0.1496 54.1218

32.9758 29 0.1487 53.9626

Example 6.6.10 ([8, Example 3.10]) We will compare the first-order difference
approximation (6.2.4) with S-HOPM in [22, Algorithm 2], which is widely used
for computing rank-one approximatiosn for symmetric tensors. We can also use
the semi-definite relaxation methods to check the convergence of S-HOPM. The
symmetric tensor A ∈ RT3,I is given by ai1i2i3 = sin(i1 + i2 + i3).

Suppose I = 20. If the unit vector u ∈ RI is derived from the first-order difference
approximation (6.2.4) or S-HOPM, then we define Error := ‖Au2 − σu‖2, where
σ = Au3. When we test (6.2.4) and S-HOPM on the tensor A 100 times, the values
of “Error” are shown in Fig. 6.4.

According to Fig. 6.4, we cannot use S-HOPM to compute a rank-one approx-
imation of A. By the first-order difference approximation (6.2.4), we find σ∗ ∈
{29.0885, 32.7139, 32.9758}. The computational results are presented in Table 6.7.

6.6.3 Restricted Singular Values

In Sect. 6.4, we introduce three methods for finding the local maximizers of
the optimization problem (6.4.3): Cholesky factorization+HOPM (Chol+HOPM),
Cholesky factorization+the first-order difference approximation (6.2.2) (Chol+NN
I) and the first-order difference approximation (6.4.7) (NN II). We compare these
methods via an example.
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We implement three methods: Chol+HOPM, Chol+NN I and NN II, and
terminate the iterations when

max
n=1,2,...,N

‖F(x1(k), x2(k), . . . , xN(k))−n − σ(k)Bnxn(k)‖2 < tol

for NN II, or

max
n=1,2,...,N

∥
∥F̃ (y1(k), y2(k), . . . , yN(k))−n − σ̃ (k)yn(k)

∥
∥

2 < tol

for Chol+HOPM and Chol+NN, or k > 5000.
Here we have

{
σ(k) = F(x1(k), x2(k), . . . , xN(k)), xn(0)�Bnxn(0) = 1;
σ̃ (k) = F̃ (y1(k), y2(k), . . . , yN(k)), yn(0)�yn(0) = 1;

and the symbol F̃ is related to the tensor Ã, as given in (6.4.4) for F .

Example 6.6.11 Consider A ∈ RI×I×I given in Example 6.6.2. Three symmetric
positive definite matrices Bi ∈ RI×I are chosen from [39] with i = 1, 2, 3 as
follows:

B1 = U�1U�, B2 = U�2U�, B3 = U�3U�,

in which U is a randomly chosen orthogonal matrix (obtained from a QR factoriza-
tion of a matrix whose entries are drawn from a uniform distribution over (−1, 1));
the entries of

�i = diag(σi1, σi2, . . . , σiI ), i = 1, 2, 3,

are: (a) σij = (i + j) + ηij ; (b) σij = (i + j) + ηij and σ1j = (1 + η1j ) ∗ 10
2
I j ;

(c) σij = (i + j) + ηij and σ2j = (2 + η2j ) ∗ 10
3
I j ; (d) σij = (i + j) + ηij and

σ3j = (3 + η3j ) ∗ 10
4
I j ; (e) σ1j = (1 + j) + ηij , σ2j = (2 + η2j ) ∗ 10

3
I j and

σ3j = (3 + η3j ) ∗ 10
4
I j ; and (f) σ1j = (1 + η1j ) ∗ 10

2
I j , σ2j = (2 + η2j ) ∗ 10

3
I j

and σ3j = (3 + η3j ) ∗ 10
4
I
j with i = 1, 2, 3 and j = 1, 2, . . . , I , where η is drawn

from a uniform distribution over [0, 1).
We note that all Bn are well-conditioned or have a moderate condition number.

In this example, we have I = 10 and tol = 1e − 13. The computational results are
in Table 6.8.
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Table 6.8 Related results of Chol+HOPM, Chol+NN I and NN II for Example 6.6.11

Chol+HOPM Chol+NN I NN II

Cases σ Time σ Time σ Time

(a) 2.7236 10.8594 2.7236 39.0313 2.7236 43.8594

(b) 5.3084 9.1094 −5.3084 24.5156 5.3084 33.9531

(c) 2.8049 12.3438 2.8049 40.0313 −2.8049 486.9063

(d) 2.5504 8.2188 −2.5504 30.5469 2.5504 484.3438

(e) 3.5350 4.0625 −3.5350 15.1250 3.5350 482.5000

(f) 5.3357 10.6719 5.3357 41.8906 5.3357 486.4063

6.6.4 Symmetric-Definite Tensor Pairs

In this subsection, all testing tensors are quoted from Kolda and Mayo [36]. If the
pair (λ; x) is a generalized eigenpair of a symmetric-definite tensor pair {A,B}, we
define

C(λ; x) = U� [(N − 1)H(x) − λNII ] U ∈ R
(I−1)×(I−1),

where the columns of U ∈ RI×(I−1) form an orthonormal basis for x⊥ and H(x)

is given in [36, Theorem 3.1]. One hundred tests of the first-order difference
approximation (6.5.4) are performed, each with a different random initial vector.
Selecting the initial vectors from either a uniform or normal distribution had no
effect on the finial result.

Example 6.6.12 ([36, Example 5.2]) We consider a special case of the generalized
tensor eigenvalue problem with the identity tensor B. All entries of the symmetric
tensor A are given in Table 6.9. We compute all the local maxima and the local
minima of the optimization problem (6.5.2).

For the local maxima of the optimization problem (6.5.2), a summary of the results is
provided in Table 6.10. We elaborate on the last column in Table 6.10. For example,
14 times out of 100 times, λ(k) converges to 4.8422, then it takes (2.0045 × 14) s
for the 14 tests of (6.5.3) (Table 6.11).

We use (6.5.4) for computing all local minima of the optimization prob-
lem (6.5.2) by replacing A in the (6.5.4) with −A, as summarized in Table 6.12.
For example, 36 times out of 100 times, λ(k) converges to −10.7440, then it takes
(1.1385 × 36) s for the 36 tests of (6.5.4).

Example 6.6.13 ([36, Example 5.5]) For a general symmetric-definite tensor pair,
all the entries of A ∈ RT6,4 and positive definite B ∈ RT6,4 are given in
Tables 6.9 and 6.11. We compute maxima and all local minima of the optimization
problem (6.5.2) by (6.5.4).

For all local maxima of the optimization problem (6.5.2), a summary of the
results is provided in Table 6.13. For example, in the last column in Table 6.13,
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Table 6.9 A from Examples 6.6.12 and 6.6.13

a111111 = 0.2888 a111112 = −0.0013 a111113 = −0.1422 a111114 = −0.0323

a111122 = −0.1070 a111123 = −0.0899 a111124 = −0.2487 a111133 = 0.0231

a111134 = −0.0106 a111144 = 0.0740 a111222 = 0.1490 a111223 = 0.0527

a111224 = −0.0710 a111233 = −0.1039 a111234 = −0.0250 a111244 = 0.0169

a111333 = 0.2208 a111334 = 0.0662 a111344 = 0.0046 a111444 = 0.0943

a112222 = −0.1144 a112223 = −0.1295 a112224 = −0.0484 a112233 = 0.0238

a112234 = −0.0237 a112244 = 0.0308 a112333 = 0.0142 a112334 = 0.0006

a112344 = −0.0044 a112444 = 0.0353 a113333 = 0.0947 a113334 = −0.0610

a113344 = −0.0293 a113444 = 0.0638 a114444 = 0.2326 a122222 = −0.2574

a122223 = 0.1018 a122224 = 0.0044 a122233 = 0.0248 a122234 = 0.0562

a122244 = 0.0221 a122333 = 0.0612 a122334 = 0.0184 a122344 = 0.0226

a122444 = 0.0247 a123333 = 0.0847 a123334 = −0.0209 a123344 = −0.0795

a123444 = −0.0323 a124444 = −0.0819 a133333 = 0.5486 a133334 = −0.0311

a133344 = −0.0592 a133444 = 0.0386 a134444 = −0.0138 a144444 = 0.0246

a222222 = 0.9207 a222223 = −0.0908 a222224 = 0.0633 a222233 = 0.1116

a222234 = −0.0318 a222244 = 0.1629 a222333 = 0.1797 a222334 = −0.0348

a222344 = −0.0058 a222444 = 0.1359 a223333 = 0.0584 a223334 = −0.0299

a223344 = −0.0110 a223444 = 0.1375 a224444 = −0.1405 a233333 = 0.2613

a233334 = 0.0809 a233344 = 0.0205 a233444 = 0.0196 a234444 = 0.0226

a244444 = −0.2487 a333333 = 0.6007 a333334 = −0.0272 a333344 = −0.1343

a333444 = −0.0233 a334444 = −0.0227 a344444 = −0.3355 a444444 = −0.5937

Table 6.10 Local maximal H-eigenpairs for Example 6.6.12

Occ. λ∗ u�∗ Time

14 4.8422 (0.5895, −0.2640, −0.4728, 0.5994) 2.0045

15 5.8493 (0.6528, 0.5607, −0.0627, −0.5055) 0.9271

34 8.7371 (0.4837, 0.5502, 0.6671, −0.1354) 1.2757

15 9.6386 (0.5364, −0.5625, 0.5490, −0.3210) 2.3302

22 14.6941 (0.5426, −0.4853, 0.4760, 0.4936) 0.7131

62 times out of 100 times, λ(k) converges to 11.3476, then it takes (1.7467 × 64) s
for the 64 tests of (6.5.4).

We use (6.5.4) for computing all local minima of the optimization prob-
lem (6.5.2) by replacing A with −A while keeping B unchange. A summary of
the results is provided in Table 6.14. For example, in the last column in Table 6.14,
48 times out of 100 times, λ(k) converges to −6.3985, then it takes (3.4261 × 48) s
for the 64 tests of (6.5.4).
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Table 6.11 B from Example 6.6.13

b111111 = 0.2678 b111112 = −0.0044 b111113 = −0.0326 b111114 = −0.0081

b111122 = 0.0591 b111123 = −0.0009 b111124 = −0.0045 b111133 = 0.0533

b111134 = −0.0059 b111144 = 0.0511 b111222 = −0.0020 b111223 = −0.0072

b111224 = −0.0016 b111233 = −0.0005 b111234 = 0.0007 b111244 = −0.0006

b111333 = −0.0185 b111334 = 0.0001 b111344 = −0.0058 b111444 = −0.0046

b112222 = 0.0651 b112223 = −0.0013 b112224 = −0.0050 b112233 = 0.0190

b112234 = −0.0023 b112244 = 0.0190 b112333 = −0.0011 b112334 = −0.0014

b112344 = 0.0000 b112444 = −0.0043 b113333 = 0.0498 b113334 = −0.0061

b113344 = 0.0169 b113444 = −0.0060 b114444 = 0.0486 b122222 = −0.0054

b122223 = −0.0078 b122224 = −0.0016 b122233 = −0.0006 b122234 = 0.0008

b122244 = −0.0006 b122333 = −0.0067 b122334 = 0.0001 b122344 = −0.0022

b122444 = −0.0016 b123333 = −0.0002 b123334 = 0.0006 b123344 = −0.0002

b123444 = 0.0006 b124444 = −0.0003 b133333 = −0.0286 b133334 = 0.0017

b133344 = −0.0056 b133444 = 0.0001 b134444 = −0.0051 b144444 = −0.0073

b222222 = 0.3585 b222223 = −0.0082 b222224 = −0.0279 b222233 = 0.0610

b222234 = −0.0076 b222244 = 0.0636 b222333 = −0.0042 b222334 = −0.0044

b222344 = −0.0002 b222444 = −0.0145 b223333 = 0.0518 b223334 = −0.0067

b223344 = 0.0184 b223444 = −0.0069 b224444 = 0.0549 b233333 = −0.0059

b233334 = −0.0034 b233344 = −0.0002 b233444 = −0.0039 b234444 = 0.0010

b244444 = −0.0208 b333333 = 0.2192 b333334 = −0.0294 b333344 = 0.0477

b333444 = −0.0181 b334444 = 0.0485 b344444 = −0.0304 b444444 = 0.2305

Table 6.12 Local minimal H-eigenpairs for Example 6.6.12

Occ. λ∗ u�∗ Time

36 −10.7440 (0.4664, 0.4153, −0.5880, −0.5140) 1.1385

27 −8.3200 (0.5970, −0.5816, −0.4740, −0.2842) 1.1765

13 −4.1781 (0.4397, 0.5139, −0.5444, 0.4962) 7.3834

16 −3.7179 (0.6843, 0.5519, 0.3136, 0.3589) 1.2734

8 −2.9314 (0.3161, 0.5173, 0.4528, −0.6537) 2.3867

Table 6.13 Local maximal generalized eigenpairs for Example 6.6.13

Occ. λ∗ u�∗ Time

20 2.9979 (0.8224, 0.4083, −0.0174, −0.3958) 0.6398

18 3.7394 (0.2185, −0.9142, 0.2197, −0.2613) 2.2335

62 11.3476 (0.8224, 0.4083, −0.0174, −0.3958) 1.7467

Table 6.14 Local minimal generalized eigenpairs for Example 6.6.13

Occ. λ∗ u�∗ Time

48 −6.3985 (0.0733, 0.1345, 0.3877, 0.9090) 3.4261

16 −3.5998 (0.7899, 0.4554, 0.2814, 0.2991) 1.2686

19 −3.2777 (0.6888, −0.6272, −0.2914, −0.2174) 0.8808

17 −1.1507 (0.1935, 0.5444, 0.2991, −0.7594) 3.2960
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Chapter 7
US- and U-Eigenpairs of Complex
Tensors

In this chapter we discuss the computation of US-eigenpairs of complex symmetric
tensors and U-eigenpairs of complex tensors. We derive an iterative algorithm
for computing US-eigenpairs of complex symmetric tensors which is based on
the Takagi factorization of complex symmetric matrices that are denoted as the
QRCST Algorithm. We observe that multiple US-eigenpairs can be found from a
local permutation heuristic, which is effectively a tensor similarity transformation,
resulting in the permuted version of QRCST. We also present a generalization of
their techniques to general complex tensors and derive a higher-order power type
method for computing a US- or a U-eigenpair, similar to the higher-order power
method for computing Z-eigenpairs of real symmetric tensors or a best rank-one
approximation of real tensors. We illustrate the algorithms via numerical examples.

7.1 Preliminaries

7.1.1 US- and U-Eigenpairs

For a given symmetric tensor A ∈ CTN,I , a nonnegative number σ ∈ R is called a
unitary symmetric eigenvalue (US-eigenvalue [1]) of A, if there exist a unit vector
v ∈ CI and σ ∈ R such that

AvN−1 = σv, AvN−1 = σv. (7.1.1)

In this case, v is called a unitary symmetric eigenvector (US-eigenvector) of A
associated with the US-eigenvalue σ and (σ ; v) is called a US-eigenpair of A. The
concept of the US-eigenvalues arises in quantum entanglement. The absolute largest
σ is the entanglement eigenvalue and the corresponding complex symmetric rank-
one tensor v⊗N is the closest symmetric separable state [1, 2].
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When N = 2, the US-eigenvalues are the same as the Takagi values of A. The
tensor A is reduced to a complex symmetric matrix.

In Sect. 1.3.3, we present the definition of the U-eigenpairs of A ∈ CI1×I2×···×IN .
In this section, we assume that In = I for all n. For a given A ∈ CTN,I , let
vn ∈ CI be nonzero vectors with ‖vn‖2 = 1 for all n, σ be nonnegative and
(σ ; v1, v2, . . . , vN) be a solution of the following nonlinear equations,

F(v1, v2, . . . , vN)−n = σvn, F (v1, v2, . . . , vN)−n = σvn, (7.1.2)

where

⎧
⎪⎪⎨

⎪⎪⎩

F(v1, v2, . . . , vN)−n = A ×1 v�
1 · · · ×n−1 v�

n−1 ×n+1 v�
n+1 · · · ×N v�

N

= A ×1 v∗
1 · · · ×n−1 v∗

n−1 ×n+1 v∗
n+1 · · · ×N v∗

N,

F (v1, v2, . . . , vN)−n = A ×1 v�
1 · · · ×n−1 v�

n−1 ×n+1 v�
n+1 · · · ×N v�

N,

then σ ∈ R and vn are called the unitary eigenvalue (U-eigenvalue) and the corre-
sponding mode-n unitary eigenvector (the mode-n U-eigenvector) A, respectively.

We call (σ ; v1, v2, . . . , vN) a U-eigenpair of A. Ragnarsson et al. [3] derive a
method for obtaining a symmetric embedding sym(A) from A ∈ RTN,I . Similarly,
for a general A ∈ CTN,I , we derive a complex symmetric embedding csym(A) ∈
CTN,NI . We can establish a relationship between the US- and U-eigenpairs.

If (σ ; v1, v2, . . . , vN) is a U-eigenpair of A ∈ CTN,I , then (σα; vα) is
a US-eigenpair of the symmetric tensor csym(A) ∈ CTN,NI , where σα =
α1α2 . . . αN

N !√
NN

σ and

vα = 1√
N

(
α1v�

1 , α2v�
2 , . . . , αN v�

N

)�
, α = [α1, α2, . . . , αN ] = [1,±1, . . . ,±1

︸ ︷︷ ︸
N−1

].

Furthermore, if θ is the argument of σα , then the pair (σ, eιθ/N v) is a US-eigenpair
of csym(A).

It is obvious when N = 2 that, i.e., A is a complex matrix, U-eigenvalues are
the same as singular values. The Takagi factorization (another form for the singular
value decomposition) of A ∈ C

I×I can be written as

A = U�V�, (7.1.3)

where U, V ∈ CI×I are unitary matrices and � ∈ RI×I is diagonal and positive
semi-definite. Denote the main diagonal entry of � by σi .

The ith columns of U and V are respectively the left and the right Takagi vectors
of A, corresponding to the Takagi value σi . We call (σ ; u, v) as a Takagi tuple of A,
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which satisfies
⎧
⎪⎪⎨

⎪⎪⎩

Av = σu, Av = σu,

A�u = σv, A∗u = σv,

u∗u = 1, v∗v = 1, σ ∈ R.

In particular, if U = V, A is a complex symmetric matrix and � ∈ R
I×I is

diagonal, (7.1.3) is the Takagi factorization of A [4–6].

7.2 Takagi Factorization of Complex Matrices

In order to analyze Algorithm 7.2.3 for the Takagi factorization, it is convenient
to define the left and right Takagi invariant subspaces of a complex matrix,
respectively generalized from the left and the right Takagi vectors.

Definition 7.2.1 Let A ∈ CI×I . A Takagi invariant subspace pair of A is made up
of two subspace X and Y of CI , with the property that x ∈ X and y ∈ Y imply that
Ax ∈ Y and A�y ∈ X. In other words, we have AX ⊆ Y and A�Y ⊆ X, where
X̄ = {x : x ∈ X} and Ȳ = {y : y ∈ Y}. The dimensions of X and Y are the same.

Let the Takagi values of A ∈ CI×I satisfy σ1 ≥ · · · ≥ σK > σK+1 ≥ · · · ≥ σI ≥ 0
and ui and vi are the left and the right Takagi vectors corresponding to σi with
i = 1, 2, . . . ,K . From Definition 7.2.1, the subspaces span{u1, u2, . . . , uK } and
span{v1, v2, . . . , vK} are respectively called the left and the right dominant Takagi
invariant subspaces of dimension K of A.

Algorithm 7.2.1 Orthogonal iteration (simultaneous iteration or left and right
Takagi iteration) for complex matrices

Input: Given A ∈ CI×I and an integer 1 < P < I with σ1 ≥ · · · ≥ σK > σK+1 ≥ · · · ≥ σI ≥
0
Output: �K ∈ RK×K is diagonal positive definite, and UK, VK ∈ CI×K are unitary such that
AVK = UK�K and A�UK = VK�K

Given X0, Y0 ∈ CI×K such that X∗
0X0 = Y∗

0Y0 = IK

for k = 0, 1, 2, . . . do
Compute Ŷk+1 = AXk and X̂k+1 = A�Yk

Factor X̂k+1 = Xk+1R1,k+1 and Ŷk+1 = Yk+1R2,k+1 (thin QR decompositions)
end for
if convergence then

Compute �∞ = Y∗∞AX∞ and �∞ = |�∞|
Choose Ũ∞ = Y∞D∞ and Ṽ∞ = Xk+1Dk+1, where D∞ ∈ C

K×K is diagonal with entires

D∞(j, j) = exp

(

ι
arg(y∗∞,j Ax∞,j )

2

)

and j = 1, 2, . . . , K

end if
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From this definition, we present the result for Takagi values.

Lemma 7.2.1 For A, B ∈ CI×I , if there exist unitary matrices P, Q ∈ CI×I such
that B = P∗AQ, then the Takagi values of A and B are the same.

7.2.1 Orthogonal Type Iteration for Complex Matrices

Let the Takagi values of A ∈ CI×I satisfy σ1 ≥ · · · ≥ σK > σK+1 ≥ · · · ≥ σI ≥ 0.
We compute the largest K Takagi values and the associated left and right Takagi
vectors of A, similar to the orthogonal iteration for symmetric matrix eigenvalue
problems. This idea is summarized in Algorithm 7.2.1.

In particular, when K = 1, Algorithm 7.2.1 is reduced to Algorithm 7.2.2, which
can be used to compute the largest Takagi value and the associated left and right
Takagi vectors of A with σ1 > σ2 ≥ · · · ≥ σI ≥ 0. When the algorithms in this
chapter terminate, the symbol “∞” stands for the maximal iteration step.

Algorithm 7.2.2 Power method iteration for complex matrices

Input: Given A ∈ C
I×I with σ1 > σ2 ≥ · · · ≥ σI ≥ 0

Output: Takagi value σ1 and associated left and right Takagi vectors u1 and v1
Choose x0, y0 ∈ C

I with ‖x0‖2 = ‖y0‖2 = 1
for k = 0, 1, 2, . . . do

Compute ŷk+1 = Axk and x̂k+1 = A�yk

Normalize xk+1 = x̂k+1/‖̂xk+1‖2 and yk+1 = ŷk+1/‖̂yk+1‖2
end for
if convergence then

Compute λ∞ = y∗∞Ax∞ and σ̃∞ = |λ∞|
Choose ũ∞ = exp

(
ι

arg(λ∞)

2

)
y∞ and ṽ∞ = exp

(
ι

arg(λ∞)

2

)
x∞

end if

We analyze the convergence of Algorithm 7.2.1, or that of the subspaces
span{Xk} and span{Yk} of CI . Assume that σK > σK+1, we have

{
span{Xk+1} = span{X̂k+1} = span{A�Yk},
span{Yk+1} = span{Ŷk+1} = span{AXk}.

According to the Takagi factorization of A, we have

{
span{Y2k} = span{U�2kU∗Y0}, span{Y2k+1} = span{U�2k+1V�X0},
span{X2k} = span{V�2kV∗X0}, span{X2k+1} = span{V�2k+1U�Y0}.
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For the convergence of span{Yk}, let A = U�V�. For k = 0, 1, 2, . . . , we
deduce that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(AA∗)k = (U�V�V��U∗)(U�V�V��U∗) . . . (U�V�V��U∗)
︸ ︷︷ ︸

2k times

= U�2kU∗,

(AA∗)kA = (U�V�V��U∗)(U�V�V��U∗) . . . (U�V�V��U∗)
︸ ︷︷ ︸

2k times

U�V�

= U�2k+1V�,

(A�A)k = (V��U�U�V∗)(V��U�U�V∗) . . . (V��U�U�V∗)
︸ ︷︷ ︸

2k times

= V�2kV∗,

(A�A)kA� = (V��U�U�V∗)(V��U�U�V∗) . . . (V��U�U�V∗)
︸ ︷︷ ︸

2k times

V�U�

= V�2k+1U�,

since V�V = U∗U = U�U = V∗V = II . Then, we have

U�2kU∗Y0 = Udiag(σ 2k
1 , σ 2k

2 , . . . , σ 2k
N )U∗Y0

= σ 2k
K Udiag((σ1/σK)2k, . . . , 1, . . . , (σN/σK)2k)U∗Y0,

U�2k+1V�X0 = Udiag(σ 2k+1
1 , σ 2k+1

2 , . . . , σ 2k+1
N )V�X0

= σ 2k+1
K Udiag((σ1/σK)2k+1, . . . , 1, . . . , (σN/σK)2k+1)V�X0.

Since σi/σK ≥ 1 if i ≤ K , and σi/σK < 1 if i > K , we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

diag((σ1/σK)2k, . . . , 1, . . . , (σN/σK)2k)U∗Y0 =
(

P2k

Q2k

)

,

diag((σ1/σK)2k+1, . . . , 1, . . . , (σN/σK)2k+1)V�X0 =
(

P2k+1

Q2k+1

)

.

Since (σK+1/σK)k converges to 0 as k → ∞, Qk ∈ C(N−K)×K approaches the
zero matrix and Pk ∈ CK×K does not. Indeed, if P0 has full rank, so does Pk . Let
U = (u1, u2, . . . , uN) = (UK, ÛK), with UK = (u1, u2, . . . , uK). Then

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

U�2kU∗Y0 = σ 2k
K U

(
P2k

Q2k

)

= σ 2k
K (UKP2k + ÛKQ2k),

U�2k+1V�X0 = σ 2k+1
K U

(
P2k+1

Q2k+1

)

= σ 2k+1
K (UKP2k+1 + ÛKQ2k+1).
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Consequently span{Yk} converges to span span{UK },
{

span{Y2k} = span{(AA∗)kY0} = span{UKP2k + ÛKQ2k}
span{Y2k+1} = span{(AA∗)kAX0} = span{UKP2k+1 + ÛKQ2k+1},

The left Takagi invariant subspace is spanned by the first P left Takagi vectors. The
convergence of the right Takagi invariant subspace span{Xk} is similar.

In particular, we can set |X0| = |Y0| = II and K = I in Algorithm 7.2.1. The
next theorem shows under mild assumptions that we can use Algorithm 7.2.1 for
computing the Takagi factorization of complex matrices.

Theorem 7.2.1 Let A ∈ CI×I . Consider running the orthogonal iteration (Algo-
rithm 7.2.1) on matrix A with |X0| = |Y0| = II and K = I . If all the Takagi values
of A have distinct values and if all the principal submatrices U(1 : j, 1 : j) and
V(1 : j, 1 : j) are of full column ranks, then as k → ∞, Ak = Y∗

kAXk converges
to D�, where D ∈ CI×I satisfies |D| = II .

Equivalently, as k → ∞, Ãi = Ũ∗
i AṼi converges to �. The Takagi values will

appear in decreasing order.

Proof Since X0 and Y0 are unitary matrices, then Xk and Yk are also unitary.
The Takagi values of A and Y∗

kAXk are the same. Write Xk = [X1k, X2k],
Yk = [Y1k, Y2k], where X1k and Y1k have K columns, and X2k and Y2k have
I − K columns, then

Y∗
kAXk =

(
Y∗

1kAX1k Y∗
1kAX2k

Y∗
2kAX1k Y∗

2kAX2k

)

. (7.2.1)

Since span{X1k} and span{Y1k} converge to a right and a left Takagi subspaces of
A, respectively, span{A�Y1k} and span{AX1k} converge to the same subspaces. All
off-diagonal submatrices on the right-hand side of (7.2.1) converge to zero. Since
this is true for all P < N , every off diagonal entry of Y∗

kAXk converges to zero, so
Y∗

kAXk converges to a diagonal matrix. ��

7.2.2 QR Type Algorithm for Complex Matrices

Algorithm 7.2.3 summarizes the main process of the QR algorithm for the Takagi
factorization of complex matrices, originated from the QR algorithm for matrices.

When Algorithm 7.2.3 terminates, we do not restrict the entries of the final
diagonal matrix to be real. For the Takagi factorization of A = U�Q�, then for
arbitrary diagonal matrix D ∈ CI×I , whose diagonal entries satisfy dii = exp(ιϕi),
we have

A = (UD−α)Dα�Dβ(VD−β)� = (UD−α)(Dα+β�)(VD−β)�

= (UD−α)(�Dα+β)(VD−β)�,
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Algorithm 7.2.3 QR algorithm for Takagi factorization of complex matrices

Input: Given A ∈ CI×I

Output: diagonal matrix 	 ∈ CI×I and unitary U, V ∈ CI×I such that AV = U�

Set A0 := A and U0, V0 ← II

for k = 0, 1, 2, . . . do
Factor Ak = PkRk and A�

k = QkTk (QR decompositions)
Compute Ak+1 = P∗

kAkQk , Uk+1 = UkPk and Vk+1 = VkQk

end for

where ϕi ∈ (−π, π] with all i and α, β ∈ R are nonzero. The absolute values of the
diagonal entries of Dα+β�, � and �Dα+β are the same.

Since Ak+1 = RkQk = P∗
kT�

k = P∗
kAkQk , then by Lemma 7.2.1, Ak+1 and Ak

have the same Takagi values. We claim that Ak computed by the QR iteration is
identical to P∗

kAQk implicitly computed by the orthogonal iteration.

Lemma 7.2.2 Let A ∈ CI×I and Ak = Y∗
kAXk , where Yk and Xk are computed

from Algorithm 7.2.1 with Y∗
0Y0 = X∗

0X0 = II . As k → ∞, Ak converges to D� if
all the Takagi values are distinct, where D ∈ CI×I is diagonal with |D| = II . The
choice of D depends on Pk, Qk and A.

Proof We prove by the induction. From Algorithm 7.2.3, we deduce that

AXk = Yk+1R2,k+1, A�Yk = Xk+1R1,k+1,

where Xk+1 and Yk+1 are unitary, and R1,k+1 and R2,k+1 are upper triangular. Then
Y∗

kAXk = Y∗
k(Yk+1R2,k+1) is the product of the unitary matrix Q2 = Y∗

kYk+1

and the upper triangular R2 = R2,k+1 = Y∗
k+1AXk . Similarly, X∗

k(A
�Yk) =

X∗
k(Xk+1R1,k+1) is the product of the unitary matrix Q1 = X∗

kXk+1 and the upper
triangular matrix R1 = X∗

k+1A�Yk . These must be the unique QR decompositions
Ak = Q2R2 and A�

k = Q1R1 (except for the scaling of each column of Q and the
row of R by −1). Then

{
Y∗

k+1AXk+1 = (Y∗
k+1AXk)(X�

k Xk+1) = R2,k+1(X�
k Xk+1) = R2Q2,

X∗
k+1A�Yk+1 = (X∗

k+1A�Yk)(Y�
k Yk+1) = R1,k+1(Y�

k Yk+1) = R1Q1.

This is precisely how the QR iteration maps Ak to Ak+1, so Y∗
k+1AX̄k+1 = Ak+1 as

desired. ��

7.3 Iterative Algorithm for US-Eigenpairs

We suppose that A ∈ CTN,I , is symmetric and the imaginary part of ai1i2...iN is
not zero for all in and n. We deduce some properties of US-eigenpairs of A. We
also present an iterative algorithm for computing the US-eigenpairs and analyze its
convergence.
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7.3.1 Properties of US-Eigenpairs

We present an obvious lemma on a property of US-eigenpairs of complex symmetric
tensors without the proof.

Lemma 7.3.1 Suppose that A ∈ CTN,I is symmetric and θ ∈ (−π, π]. If (σ ; v) is
a US-eigenpair of A, then there exists a scalar ϕ ∈ (−π, π] such that (eιθσ ; e−ιϕv)

and (e−ιθ σ ; eιϕv) are respectively solutions of the two equations in (7.1.1) with
Nϕ = θ .

Two complex symmetric tensors A,B ∈ CTN,I are similar [7], if for a
nonsingular P ∈ CI×I , we have B := APN = A ×1 P ×2 P · · · ×N P. The inverse
transformation of B by P−1 will retrieve A:

B(P−1)N = (APN)(P−1)N = A ×1 (P−1P) ×2 (P−1P) · · · ×N (P−1P) = A.

For a symmetric A ∈ CTN,I and a nonsingular P ∈ CI×I , it is easy to prove that
B = APN is symmetric (see [7, Proposition 10] for the real symmetric tensor case).

In particular, assume that Ã ∈ CTN,I is similar to A through a similarity
transformation by a unitary matrix Q∗ ∈ CI×I . Let Ã = A(Q∗)N and θ ∈ (−π, π]
be the argument of Ã11...1 = ÃeN

1 , where e1 is the first column of II . It follows that
if θ �= 0 and (σ ; eιθ/Ne1) is a US-eigenpair of Ã, then (σ ; q1) is a US-eigenpair of
A, where q1 denotes the first column of Q. Then we have

e−ιθ(N−1)/NÃeN−1
1 = eιθ/Nσe1 ⇔ A ×1 Q∗ ×2 (e�

1 Q∗) · · · ×N (e�
1 Q∗) = σe1

⇔ A ×1 Q∗ ×2 q∗
1 · · · ×N q∗

1 = σe1

⇔ Q∗AqN−1
1 = σe1

⇔ AqN−1
1 = σQe1 = σq1.

(7.3.1)
Also, we have

eιθ(N−1)/NÃeN−1
1 = e−ιθ/Nσe1 ⇔ AqN−1

1 = σq1.

We note that σ = |ÃeN
1 |. In fact, we do not need to apply e1 and the above result

easily generalizes to any ei , the ith column of II for all i, as in Theorem 7.3.1.

Theorem 7.3.1 For a symmetric tensor A ∈ CTN,I , if (σ ; eιθ/Nei ) is a US-
eigenpair of A(Q∗)N , then (σ ; qi ) is a US-eigenpair of A, where qi is the ith
column of the unitary matrix Q ∈ CI×I and θ ∈ (−π, π] is the argument of
(A(Q∗)N)eN

i .

Proof The proof follows from (7.1.1) and (7.3.1) with e1 replaced by ei . ��
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If two complex symmetric tensors are similar through a similarity transformation
by a unitary matrix, then the corresponding US-eigenpairs satisfy the following
theorem.

Theorem 7.3.2 Suppose that A,B ∈ CTN,I are complex symmetric tensors. If
there exists a unitary matrix Q ∈ CI×I such that B = A(Q∗)N and (σ ; v) is a
US-eigenpair of B, then (σ ; Qv) is a US-eigenpair of A.

Proof We leave the proof as an exercise. ��

7.3.2 QR Algorithms for Complex Symmetric Tensors

In Sect. 7.2, we propose a QR-type algorithm for computing the Takagi factorization
of complex matrices. The algorithm is efficient for complex symmetric matrices.
The QR algorithm for a complex symmetric matrix starts from an initial complex
symmetric matrix A0 ∈ CI×I , and computes its QR factorization Q1R1 = A0. Next,
the QR-type product is reversed to give A1 = R1Q1 = Q∗

1A0Q1. In subsequent
iterations, we get QkRk = Ak−1 and

Ak = Q∗
kAk−1Qk = (Q1Q2 . . . Qk)

∗A0(Q1Q2 . . . Qk) = Q∗
k
A0Q

k
,

where Q
k

= Q1Q2 . . . Qk .
Under mild hypothesis, Ak converges to a diagonal form, where its absolute

value contains the Takagi values of A0. In this section, we first present the QRCST
algorithm to compute US-eigenpairs of complex symmetric tensors. Moreover, with
a permutation strategy to scramble tensor entries, a more efficient version of the
QRCST is proposed to produce possibly more distinct US-eigenpairs.

The QRCST is summarized in Algorithm 7.3.1. The core of QRCST is a two-step
iteration, indicated as Steps 1 and 2, for the ith mode-(1, 2) slice with all i.

Some remarks about Algorithm 7.3.1 are presented in the following:

(a) Since the core computation of the QRCST lies in the QR factorization of O(I 3)

complexity for complex matrices and the corresponding similarity transform of
O(NIN+1) complexity, the overall complexity is therefore dominated by the
better.

(b) A0 is a finite sum of R rank-one tensors, the complexity of the QRCST will be
reduced to O(NRI 2).

For structured tensors, we can improve the computation of the similarity
transformation by unitary matrices in Step 2 of Algorithm 7.3.1. For example, for
Hankel tensors [8, 9], we can apply the fast Hankel tensor-vector product technique
[10].

For a given symmetric A ∈ CTN,I , the QRCST algorithm produces at most I

US-eigenpairs in one pass, as some US-eigenairs may be identical. According to
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Algorithm 7.3.1 QRCST
Input: Given a symmetric A ∈ CTN,I , tolerance τ , maximum number of iteration Kmax
Output: US-eigenpairs (σi; qi )

for i = 1, 2, . . . , I do
Set A0 := A and Q ← II

Compute ε ← ‖A0eN−1
i − ei‖2/‖A0eN−2

i ‖2
iteration count k ← 1
while ε ← τ or k ≤ Kmax do

Step 1: factorize QkRk = Ak−1eN−2
i and Compute Q ← QQk

Step 2: compute Ak = Ak−1(Q∗
k)

N

Compute ε ← ‖AkeN−1
i − ei‖2/‖AkeN−2

i ‖2
end while

end for
if converged then

Let σi ← |AkeN
i | and θ be the argument of AkeN

i

Compute qi ← eιθ/N Q(:, i), where Q(:, i) is the ith column of Q
end if

Theorem 7.3.1, we may improve the efficiency of Algorithm 7.3.2 by scrambling
the entries in A0.

Let S be the set of all permutation matrices and I ! be its cardinality. We can apply
QRCST on a complex symmetric tensor with different permutations. The resulting
Permuted QRCST algorithm for complex symmetric tensors is summarized in
Algorithm 7.3.2.

Algorithm 7.3.2 Permuted QRCST
Input: Given a symmetric A0 ∈ CTN,I

Output: US-eigenpairs (σi; qi )

for p = 1, 2, . . . , I ! do
Choose Pp ∈ S and compute Ap ← A0PN

p

Apply Algorithm 7.3.1 with Ap and collect distinct convergent US-eigenpairs
end for

As the cardinality of S is I !, Permuted QRCST quickly becomes impractical for
large I .

7.3.3 Convergence

We next analyze the convergence of Algorithm 7.3.1. We set Q
0

= II and Q
k

=
Q1Q2 . . . Qk . Also, q

i,k
is the ith column of Q

k
and rij,k is the (i, j)-entry of Rk . A
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few iterations of the QRCST can be better visualized as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Q1R1 = A0eN−2
i , A1 = A0(Q∗

1)
N = A0(Q∗

1
)N ,

Q2R2 = A1em−2
i = A0 ×1 Q∗

1
×2 Q∗

1
×3 q∗

i,1
· · · ×N q∗

i,1
= Q∗

1
(A0qN−2

i,1
)Q

1
,

A2 = A1(Q∗
2)

N = A0(Q∗
2
)N ,

Q3R3 = A2eN−2
i = A0 ×1 Q∗

2
×2 Q∗

2
×3 q∗

i,2
· · · ×N q∗

i,2
= Q∗

2
(A0qN−2

i,2
)Q

2
.

(7.3.2)

From (7.3.2), we have for k = 1, 2, . . . ,

Ak−1 = A0(Q∗
k−1

)N , QkRk = Ak−1eN−2
i = Q∗

k−1
(A0qm−2

i,k−1
)Q

k−1
. (7.3.3)

Multiplying Q
k−1

to both sides of (7.3.3), then we get

Q
k
Rk = (A0qN−2

i,k−1
)Q

k−1

⇔
(

q
1,k

q
2,k

. . . q
n,k

)

⎛

⎜
⎜
⎜
⎝

r11,k r12,k . . . r1I,k

r22,k . . . r2I,k

. . .
...

rII,k

⎞

⎟
⎟
⎟
⎠

=
[
A0qN−2

i,k−1

] (
q

1,k−1
q

2,k−1
. . . q

I,k−1

)
.

(7.3.4)

It is obvious that (7.3.4) is the tensor generalization of the matrix orthogo-
nal iteration (or called the simultaneous or the Takagi subspace iteration) for
finding dominant invariant Takagi subspace of complex symmetric matrices (Algo-
rithm 7.2.1).

If we set i = 1 and extract the first columns on both sides of (7.3.4), then we get

q
1,k

r11,k = (A0qN−2
1,k−1

)q
1,k−1

= A0qN−1
1,k−1

or q
1,k

=
A0qN−1

1,k−1∥
∥
∥A0qN−1

1,k−1

∥
∥
∥

2

.

(7.3.5)

According to (7.3.5), we derive a higher order power method for computing
the US-eigenpairs of complex symmetric tensors. This process is summarized in
Algorithm 7.3.3. The convergence analysis of Algorithm 7.3.3 will be presented in
the next subsection.

If we start Algorithm 7.3.1 with i = 2, then the first two columns of (7.3.4)
proceed as

q
1,k

r11,k = (A0qN−2
2,k−1

)q
1,k−1

, q
1,k

r12,k + q
2,k

r22,k = (A0qN−2
2,k−1

)q
2,k−1

.
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Algorithm 7.3.3 Higher order power method for complex symmetric tensors
Input: Given a symmetric A ∈ CTN,I

Output: US-eigenpairs (σ ; v)

Choose an initial vector x0 ∈ C
n with ‖x0‖2 = 1

for k = 0, 1, 2, . . . do
Compute yk+1 = AxN−1

k and normalize xk+1 = yk+1/‖yk+1‖2
end for
Compute λ∞ = AxN∞
Set σ∞ = |λ∞| and v∞ = exp

(
ι θ
N

)
x∞, where θ ∈ (−π, π] is the argument of λ∞

With convergence at k = ∞, we have

q
1,∞r11,∞ = (A0qN−2

2,∞ )q
1,∞, q

1,∞r12,∞ + q
2,∞r22,∞ = (A0qN−2

2,∞ )q
2,∞,

(7.3.6)

from which it is easy to check that r12,∞ = q�
1,∞A0qN−1

2,∞ = r11,∞q∗
1,∞q

2,∞ = 0.
In fact, for any i, if Q

k
and Rk converge to Q∞ and R∞ respectively, then (7.3.4)

implies

R∞ =

⎛

⎜
⎜
⎜
⎝

r11,∞ 0 . . . 0
0 r22,∞ . . . 0
... . . .

. . .
...

0 . . . 0 rII,∞

⎞

⎟
⎟
⎟
⎠

= Q∗
∞(A0qN−2

i,∞ )Q∞, (7.3.7)

where R∞ is a diagonal matrix due to the symmetry on the right. We observe that
if rii,∞ is not nonnegative, then we can derive a strategy to transform R∞ to a
positive semi-definite diagonal form. Any symmetric A ∈ CI×I can be represented
as A = Q�Q�, where Q ∈ CI×I is unitary and � ∈ CI×I is diagonal. If � is
not positive semi-definite, then the Takagi factorization of A can be represented as
A = U�U�, where � = D−1�D−1 and U = PD. The choice of the diagonal
matrix D ∈ CI×I is to ensure that the diagonal matrix � is positive semi-definite.

Suppose that R∞ is a positive semi-definite diagonal matrix. If we pre-multiply
Q∞ onto (7.3.7) and post-multiply with ej , then we have

q
j,∞rjj,∞ = (A0qN−2

i,∞ )q
j,∞

which leads to the US-eigenpair (rii,∞; q
i,∞) with i = j .
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7.3.4 Convergence of Algorithm 7.3.3

Let N = 2L. For a given symmetric A ∈ CTN,I , we define

g(z) = AzN = (z ⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸
K

)∗A(z ⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸
K

),

where aij in A are given by aij = ai1i2...il j1j2...jl , with

{
i = IK−1(i1 − 1) + · · · + I (iK−1 − 1) + iK, 1 ≤ i1, i2, . . . , iK ≤ I,

j = IK−1(j1 − 1) + · · · + I (jK−1 − 1) + jK, 1 ≤ j1, j2, . . . , jK ≤ I.

Here z ∈ CI satisfies ‖z‖2 = 1.
If there exists a unitary vector z0 ∈ CI such that g(z0) is complex, where the

nonzero θ0 ∈ (−π, π] is its argument, let z̃0 = eιθ0/Nz0. Then g(̃z0) is nonnegative.
Hence we can assume that g(z) is nonnegative for all unit vectors z ∈ CI .

Let z = x + ιy where x, y ∈ RI . Then g(z) can be viewed as a real bivariate
function of its real and imaginary parts [11, 12]. An auxiliary function of g is defined
as follows: f (x, y) : Rn × Rn → R where f (x, y) = g(z) and z = x + ιy.
Furthermore, a useful mapping w = ϕ(z) is given by (	(z),
(z)) ∈ R2I , where
	(z) and 
(z) return the real and imaginary parts of z, respectively. The mapping
ϕ : CI → R2I is invertible. Substituting z = ϕ−1(w) into g(z), we have

f (w) = g
(
ϕ−1(w)

)
: R2I → R.

Let g(z) be a function whose values are real or ±∞ and whose domain is a
convex subset S of CI , and the set S1 ∈ R2I is the range of ϕ with domain S. It is
obvious that S is a convex subset in CI if and only if S1 is a convex subset in R2I .
Then f (w) is said to be convex on S1, if the epigraph of f (w):

epi(f ) = {(u, ν) : u ∈ S1, ν ∈ R, ν ≥ f (u)}

is a convex subset of R2I+1.

Theorem 7.3.3 (Convergence of Algorithm 7.3.3) For any symmetric A ∈ CTN,I

with an even N , if the associate function g(z) is convex (concave) on CI , then
Algorithm 7.3.3 converges to a local maximum (minimum) of the restriction of g

to the unit sphere � = {z ∈ CI : ‖z‖2 = 1}, for any initialization, except for saddle
points or crest lines leading to such saddle points.

Proof First consider the case that g(z) is convex on the convex set S ∈ CI .
According to [13, Proposition 1], f (w) is convex on S1. This implies that epi(f )

is a convex subset of R2I+1. Hence a tangent hyperplane at any point (w, f (w)) is
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a supporting hyperplane of epi(f ). By the proof of [14, Theorem 4], we have

f (ϕ(zk+1)) ≥ f (ϕ(zk)), zk, zk+1 ∈ �,

where zk and zk+1 are derived from Algorithm 7.3.3 with some initial vectors
z0 ∈ �. Hence we have g(zk) ≥ g(zk+1). The convergence follows from the
fact that the restriction of g to � is bounded from above, namely, g(z)

‖z‖N
2

=
(z⊗z⊗···⊗z)∗A(z⊗z⊗···⊗z)

‖z‖N
2

≤ σ1, where σ1 is the largest Takagi value of A. The case of

g being concave can be treated similarly, by replacing g with −g. ��

7.4 Iterative Algorithms for U-Eigenpairs

Suppose that A ∈ CTN,I and the imaginary part of ai1i2...iN is not zero for all in and
n. We investigate the properties of U-eigenpairs of A, design an iterative algorithm
for their computation and analyze its convergence.

7.4.1 Properties of U-Eigenpairs

A basic property of a U-eigenpair of A ∈ CTN,I is given in the following lemma.

Lemma 7.4.1 Let A ∈ CTN,I and θ ∈ (−π, π]. If (σ ; v1, v2, . . . , vN) is a U-
eigenpair of A, then there exists N scalars ϕn ∈ (−π, π] such that

(eιθσ ; e−ιϕ1v1, . . . , e
−ιϕN vN), (e−ιθ σ ; eιϕ1v1, e

ιϕ2v2, . . . , e
ιϕN vN)

are solutions of (7.1.2) with ϕ1 + ϕ2 + · · · + ϕN = θ . In particular, for all n, we
can have all ϕn identical with ϕn = θ/N .

Proof From (7.1.2), the lemma is proved. ��
For A ∈ CTN,I , let Un ∈ C

I×I be complex matrices for all n. Define
B = A ×1 U1 ×2 U2 · · · ×N UN ∈ CTN,I with entries bj1j2...jN =
∑I

i1=1
∑I

i2=1 · · ·∑I
iN =1 ai1i2...iN u1,j1i1u2,j2i2 . . . uN,jN iN , where un,injn is the

(in, jn)-entry of Un. By some tedious manipulations, we have the following
theorem.

Theorem 7.4.1 Assume that Un ∈ CI×I are nonsingular for all n and Vn = U−1
n .

If B = A ×1 U1 ×2 U2 · · · ×N UN , then A = B ×1 V1 ×2 V2 · · · ×N VN .
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In particular, if Un is unitary and B = A×1 U∗
1 ×2 U∗

2 · · · ×N U∗
N , then we say that

A is similar to B through similarity transformations by N unitary matrices Un. The
following theorem states the relationship between the U-eigenpairs of A and B.

Theorem 7.4.2 Let A,B ∈ CTN,I . If A is similar to B through similarity
transformations by N unitary matrices Un ∈ CI×I , that is, B = A ×1 U∗

1 ×2
U∗

2 · · · ×N U∗
N , then they have the same U-eigenvalues.

Moreover, if (σ ; v1, v2, . . . , vN) is a U-eigenpair of B with ‖vn‖2 = 1 and σ ≥
0, then (σ ; U1v1, U2v2, . . . , UN vN) is also a U-eigenpair of A.

Proof Since (σ ; v1, v2, . . . , vN) is a U-eigenpair of B, then for all n, we have

{
B ×1 v∗

1 · · · ×n−1 v∗
n−1 ×n+1 v∗

n+1 · · · ×N v∗
N = σvn,

B ×1 v�
1 · · · ×n−1 v�

n−1 ×n+1 v�
n+1 · · · ×N v�

N = σvn.

According to the assumptions, we have

B ×1 v∗
1 · · · ×n−1 v∗

n−1 ×n+1 v∗
n+1 · · · ×N v∗

N

= B ×1 v�
1 · · · ×n−1 v�

n−1 ×n+1 v�
n+1 · · · ×N v�

N

= U∗
n

(
A ×1 (U1v1)

� · · · ×n−1 (Un−1vn−1)
� ×n+1 (Un+1vn+1)

� · · · ×N (UNvN)�
)

.

Since Un ∈ CI×I are unitary and ‖vn‖2 = 1 for all n, then (Unvn)
∗(Unvn) =

v∗
n(U

∗
nUn)vn = 1. Moreover, we have

⎧
⎪⎪⎨

⎪⎪⎩

A ×1 (U1v1)
� · · · ×n−1 (Un−1vn−1)

� ×n+1 (Un+1vn+1)
� · · · ×N (UN vN)�

= σ(Unvn),

A ×1 (U1v1)
� · · · ×n−1 (Un−1vn−1)

� ×n+1 (Un+1vn+1)
� · · · ×N (UN vN)�

= σ(Unvn).

Hence (σ ; U1v1, U2v2, . . . , UN vN) is a U-eigenpair of A. ��
Let θ be the argument of Ã ×1 e�

1 ×2 e�
1 · · · ×N e�

1 , where e1 is the first column
of II . If σ is a U-eigenvalue of B and eιθ/Ne1 is the mode-n U-eigenvector of B
associated to σ , then (σ, u1,1, u2,1, . . . , uN,1) is a U-eigenpair of A, where un,1
is the first column of Un. More generally, we have the following corollary from
Theorem 7.4.2.

Corollary 7.4.1 For A ∈ CTN,I . If (σ, eιθ/Nei , e
ιθ/N ei , . . . , e

ιθ/N ei ) is a U-
eigenpair of B = A ×1 U∗

1 ×2 U∗
2 · · · ×N U∗

N , where Un ∈ CI×I are unitary, then
(σ ; u1,i, u2,i , . . . , uN,i ) is a U-eigenpair of A, where un,i and ei is the ith column of
Un and II , respectively, and θ ∈ (−π, π] is the argument of B×1e�

i ×2e�
i · · ·×N e�

i .
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Algorithm 7.4.1 QRCT
Input: Given a A ∈ CTN,I , tolerance τ , maximum number of iteration Kmax
Output: U-eigenpairs (σi; p1,i , p2,i , . . . , pN,i )

for i = 1, 2, . . . , I do
Set A0 := A and compute εn ← ‖F0(ei , ei , . . . , ei )−n

− en,i‖2/‖F0(ei , ei , . . . , ei )−n,−(n+1)‖2
Set Qn ← II and ε ← max1≤n≤N εn

iteration count ζ ← 1
while ε > τ or ζ ≤ Kmax do

Step 1: factorize Qn,kRn,k = Fk−1(ei , ei , . . . , ei )−n,−(n+1)

Step 2: compute

Ak = Ak−1 ×1 Q∗
1,k ×2 Q∗

2,k · · · ×N Q∗
N,k

εn ← ‖Fk(ei , ei , . . . , ei )−n − ei‖2/‖Fk(ei , ei , . . . , ei )−n,−(n+1)‖2

Compute Qn ← QnQn,k and ε ← max1≤n≤N εn

end while
end for
if converged then

σi ← |Fζ (ei , ei , . . . , ei )|, where θ is the argument of Fζ (ei , ei , . . . , ei )

qi ← eιθ/N Qn(:, i), where Qn(:, i) is the ith column of Qn

end if

7.4.2 QR Algorithms for Complex Tensors

In Sect. 7.3, we propose an iterative algorithm for the US-eigenpairs of complex
symmetric tensors based on the Takagi factorization and Theorem 7.3.1. In this
section, we present an iterative algorithm for computing the U-eigenpairs of general
complex tensors based on the Takagi factorization and Corollary 7.4.1.

We present the QR-type algorithm for computing the Takagi factorization of
general complex matrices in Sect. 7.2. The QR-type algorithm for general complex
matrices starts from an initial complex matrix A0 ∈ C

I×I , and computes two
QR factorizations U1R1 = A0 and V1T1 = A�

0 . The QR-type product is then
reversed to give A1 = U∗

1A0V1. In subsequent iterations, we get UkRk = Ak−1,
VkTk = A�

k−1 and

Ak = U∗
kAk−1Vk = (U1U2 . . . Uk)

∗A0(V1V2 . . . Vk) = U∗
kA0Vk,

where Uk = U1U2 . . . Uk and Vk = V1V2 . . . Vk .
In the following, we present a QRCT algorithm for U-eigenpairs of general

complex tensors. Moreover, with a permutation strategy to scramble tensor entries,
a more efficient version of the QRCT is proposed to compute more U-eigenpairs.
The core of the QRCT consists of Steps 1 and 2, for all ith mode-(m, n) slices with
all i and m < n.
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Remark 7.4.1 In Algorithm 7.4.1, we define

⎧
⎪⎪⎨

⎪⎪⎩

Fk(ei , ei , . . . , ei ) = Ak ×1 e�
i ×2 e�

i · · · ×N e�
i ,

Fk(ei , ei , . . . , ei )−n = Ak ×1 e�
i · · · ×n−1 e�

i ×n+1 e�
i · · · ×N e�

i ,

Fk(ei , ei , . . . , ei )−n,−(n+1) = Ak ×1 e�
i · · · ×n−1 e�

i ×n+2 e�
i · · · ×N e�

i ,

and when k = N , we replace k + 1 by 1.

For A ∈ CTN,I , the QRCT produces at most I U-eigenpairs in one pass.
According to Theorem 7.4.2, a more efficient version of the QRCT can be devised,
by scrambling the entries in A0, as summarized below.

Algorithm 7.4.2 Permuted QRCT
Input: Without loss of generality, let A0 ∈ CTN,I with N = 3.
Output: U-eigenpairs (σi; q1,i , q2,i , q3,i)

for p1 = 1, 2, . . . , P̄1 do
for p2 = 1, 2, . . . , P̄2 do

for p3 = 1, 2, . . . , P̄3 do
Choose Ppi

∈ S and compute Ap1,p2,p3 ← A0 ×1 P�
1 ×2 P�

2 ×3 P�
3

Apply Algorithm 7.4.1 with Ap1,p2,p3 and collect distinct converged U-eigenpairs
end for

end for
end for

Again, the Permuted QRCT quickly becomes impractical for large I and N , since
we need to preform QRCST (I !)N times in one pass.

7.4.3 Convergence

We consider the convergence of Algorithm 7.4.1. We generalize Algorithm 7.3.3,
which can be used to compute the US-eigenpairs of complex symmetric tensors and
the U-eigenpairs of complex tensors.

Without loss of generality, let A ∈ CT3,I . For n = 1, 2, 3, we define Q
n,k

=
Qn,1Qn,2 . . . Qn,k , with Q

n,0
= II and Q

n,1
= Qn,1. We also use q

k,i,ζ
to denote

the ith column in Q
n,k

and rn,ij,k for the (i, j)-entry of Rn,k .
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A few iterations of Algorithm 7.4.1 can be visualized as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1,1R1,1 = A0 ×3 e�
i , Q2,1R2,1 = A0 ×1 e�

i , Q3,1R3,1 = (A0 ×2 e�
i )�,

A1 = A0 ×1 Q∗
1,1 ×2 Q∗

2,1 ×3 Q∗
3,1 = A0 ×1 Q∗

1,1
×2 Q∗

2,1
×3 Q∗

3,1
,

Q1,2R1,2 = A1 ×3 e�
i = Q∗

1,1
A0 ×3 q∗

3,i,1
Q

2,1
= Q∗

1,1
A0 ×3 q�

3,i,1
Q

2,1
,

Q2,2R2,2 = A1 ×1 e�
i = Q∗

2,1
A0 ×1 q∗

1,i,1
Q

3,1
= Q∗

2,1
A0 ×1 q�

1,i,1
Q

3,1
,

Q3,2R3,2 = (A1 ×2 e�
i )� = (Q∗

1,1
(A0 ×2 q∗

2,i,1
)Q

3,1
)� = (Q∗

1,1
A0 ×2 q�

2,i,1
Q

3,1
)�,

A2 = A1 ×1 Q∗
1,2 ×2 Q∗

2,2 ×3 Q∗
3,2 = A0 ×1 Q∗

1,2
×2 Q∗

2,2
×3 Q∗

3,2
Q1,3R1,3 = A2 ×3 e�

i = Q∗
1,2

A0 ×3 q∗
3,i,2

Q
2,2

= Q∗
1,2

A0 ×3 q�
3,i,2

Q
2,2

,

Q2,3R2,3 = A2 ×1 e�
i = Q∗

2,2
A0×̄1q∗

1,i,2
Q

3,2
= Q∗

2,2
A0×̄1q�

1,i,2
Q

3,2
,

Q3,3R3,3 = (A2 ×2 e�
i )� = (Q∗

1,2
(A0 ×2 q∗

2,i,2
)Q

3,2
)� = (Q∗

1,2
A0 ×2 q�

2,i,2
Q

3,2
)�.

(7.4.1)

From (7.4.1), we see that in general for k = 1, 2, . . . ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ak−1 = A0 ×1 Q∗
1,k−1

×2 Q∗
2,it−1

×3 Q∗
3,k−1

,

Q1,kR1,k = Q∗
1,k−1

A0 ×3 q∗
3,i,k−1

Q
2,k−1

,

Q2,kR2,k = Q∗
2,k−1

A0 ×1 q∗
1,i,k−1

Q
3,k−1

,

Q3,kR3,k =
(

Q∗
1,k−1

A0 ×2 q∗
2,i,k−1

Q
3,k−1

)�
.

(7.4.2)

Multiplying Q
1,k−1

, Q
2,k−1

, and Q
3,k−1

to the both sides of (7.4.2), we obtain

{
Q

1,k
R1,k = A0 ×3 q∗

3,i,k−1
Q

2,k−1
, Q

2,k
R2,k = A0 ×1 q∗

1,i,k−1
Q

3,it−1
,

Q
3,k

R3,k = (A0 ×2 q∗
2,i,k−1

)�Q
1,k−1

.

(7.4.3)

It is obvious that (7.4.3) describes a tensor generalization of the matrix orthogonal
iteration for finding the dominant invariant left and right Takagi subspaces of
matrices.

If we set i = 1 and extract the first columns of (7.4.3), then we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q
1,1,k

r1,11,k = (A0 ×3 q∗
3,1,k−1

)q
2,1,k−1

= A0 ×2 q∗
2,1,k−1

×3 q∗
3,1,k−1

,

q
2,1,k

r2,11,k = (A0 ×1 q∗
1,1,k−1

)q
3,1,k−1

= A0 ×1 q∗
1,i,k−1

×3 q∗
3,1,k−1

,

q
3,1,k

r3,11,k = (A0 ×2 q∗
2,1,k−1

)�q
1,1,k−1

= A0 ×1 q∗
1,1,k−1

×2 q∗
2,1,k−1

,
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or,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q
1,1,k

r1,11,k = A0 ×2 q∗
2,1,k−1

×3 q∗
3,1,k−1

/

∥
∥
∥A0 ×2 q∗

2,1,k−1
×3 q∗

3,1,k−1

∥
∥
∥

2
,

q
2,1,k

r2,11,k = A0 ×1 q∗
1,i,k−1

×3 q∗
3,1,k−1

/

∥
∥
∥A0 ×1 q∗

1,i,k−1
×3 q∗

3,1,k−1

∥
∥
∥

2
,

q
3,1,k

r3,11,k = A0 ×1 q∗
1,1,k−1

×2 q∗
2,1,k−1

/

∥
∥
∥A0 ×1 q∗

1,1,k−1
×2 q∗

2,1,k−1

∥
∥
∥

2
,

which is just the higher order power method for computing the U-eigenpairs
of general complex tensors. This algorithm is summarized in Algorithm 7.4.3.
With the complex symmetric embedding and Theorem 7.3.3, we shall analyze its
convergence.

Algorithm 7.4.3 Higher order power method for complex tensors
Input: Given a A ∈ CTN,I

Output: a U-eigenpair (σ ; v1, v2, . . . , vN)

Choose initial vectors xn,0 ∈ C
I with ‖xn,0‖2 = 1

for k = 0, 1, 2, . . . do
Compute yn,k+1 = F(x1,k, x2,k, . . . , xN,k)−n

Normalize xn,k+1 = yn,k+1/‖yn,k+1‖2
end for
Compute λ∞ = F(x1,∞, x2,∞, . . . , xN,∞)

Set σ∞ = |λ∞| and vn,∞ = exp
(
ι θ
N

)
xn,∞, where θ ∈ (π, π] is the argument of λ∞

If we start Algorithm 7.4.1 with i = 2, then the first two columns of (7.4.2)
proceed as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q
1,1,k

r1,11,k = A0 ×2 q∗
2,1,k−1

×3 q∗
3,2,k−1

,

q
1,1,k

r1,12,k + q
1,2,k

r1,22,k = A0 ×2 q∗
2,2,k−1

×3 q∗
3,2,k−1

,

q
2,1,k

r2,11,k = A0 ×1 q∗
1,2,k−1

×3 q∗
3,1,k−1

,

q
2,1,k

r2,12,k + q
2,2,k

r2,22,k = A0 ×1 q∗
1,2,k−1

×3 q∗
3,2,k−1

,

q
3,1,k

r3,11,k = A0 ×1 q
1,1,k−1

×2 q∗
2,2,k−1

,

q
3,1,k

r3,12,k + q
3,2,k

r3,22,k = A0 ×1 q∗
1,2,k−1

×2 q∗
2,2,k−1

.
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Assuming convergence at k = ∞, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q
1,1,∞r1,11,∞ = A0 ×2 q∗

2,1,∞ ×3 q∗
3,2,∞,

q
1,1,∞r1,12,∞ + q

1,2,∞r1,22,∞ = A0 ×2 q∗
2,2,∞ ×3 q∗

3,2,∞,

q
2,1,∞r2,11,∞ = A0 ×1 q∗

1,2,∞ ×3 q∗
3,1,∞,

q
2,1,∞r2,12,∞ + q

2,2,∞r2,22,∞ = A0 ×1 q∗
1,2,∞ ×3 q∗

3,2,∞,

q
3,1,∞r3,11,∞ = A0 ×1 q

1,1,∞ ×2 q∗
2,2,∞,

q
3,1,∞r3,12,∞ + q

3,2,∞r3,22,∞ = A0 ×1 q∗
1,2,∞ ×2 q∗

2,2,∞.

(7.4.4)

Due to (7.4.4), it is easy to check that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r1,12,∞ = A0 ×1 q∗
1,1,∞ ×2 q∗

2,2,∞ ×3 q∗
3,2,∞ = 0,

r2,12,∞ = A0 ×1 q∗
1,2,∞ ×2 q∗

2,1,∞ ×3 q∗
3,2,∞ = 0,

r3,12,∞ = A0 ×1 q∗
1,2,∞ ×2 q∗

2,2,∞ ×3 q∗
3,1,∞ = 0,

(7.4.5)

and

rk,22,∞ = A0 ×1 q∗
1,2,∞ ×2 q∗

2,2,∞ ×3 q∗
3,2,∞, n = 1, 2, 3.

For all i, if Q
n,k

and Rn,k converge to Q
n,∞ and Rn,∞, respectively, then

from (7.4.2), we have

R1,∞ =

⎛

⎜
⎜
⎜
⎜
⎝

r1,11,∞ 0 . . . 0

0 r1,22,∞
...

...
. . . 0

0 . . . 0 r1,I I,∞

⎞

⎟
⎟
⎟
⎟
⎠

= Q∗
1,∞

(
A0 ×3 q∗

3,i,∞
)

Q
2,∞,

R2,∞ =

⎛

⎜
⎜
⎜
⎜
⎝

r2,11,∞ 0 . . . 0

0 r2,22,∞
...

...
. . . 0

0 . . . 0 r2,I I,∞

⎞

⎟
⎟
⎟
⎟
⎠

= Q∗
2,∞

(
A0 ×1 q∗

1,i,∞
)

Q
3,∞,

R3,∞ =

⎛

⎜
⎜
⎜
⎜
⎝

r3,11,∞ 0 . . . 0

0 r3,22,∞
...

...
. . . 0

0 . . . 0 r3,I I,∞

⎞

⎟
⎟
⎟
⎟
⎠

= Q∗
3,∞

(
A0 ×2 q∗

2,i,∞
)�

Q
1,∞.

(7.4.6)
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where Rn,∞ is diagonal due to the Takagi factorization of a complex matrix. We do
not know whether all diagonal entries in Rn,∞ are nonnegative. However, we can
convert all Rn,∞ to diagonal forms through the following strategy: let A = P�Q� ∈
CI×I , where P, Q ∈ CI×I are unitary matrices and 	 ∈ CI×I is diagonal. If 	 is
not positive semi-definite, then the Takagi factorization is A = U�V�, where

� = D−1�D−1, U = PD, V = QD,

and the diagonal D ∈ CI×I is unitary with a positive semi-definite diagonal matrix
�.

According to (7.4.5), we see that all Rn,∞ are identical, denoted by R∞. For each
n, if we pre-multiply (7.4.6) with Q

n,∞ and post-multiply it with ej , then we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q
1,j,∞rjj,∞ = A0 ×2 q∗

2,j,∞ ×3 q∗
3,i,∞,

q
2,j,∞rjj,∞ = A0 ×1 q∗

1,i,∞ ×3 q∗
3,j,∞,

q
3,j,∞rjj,∞ = A0 ×1 q∗

1,j,∞ ×2 q∗
2,i,∞.

which leads to the U-eigenpair (rii,∞; q
1,i,∞, q

2,i,∞, q
3,i,∞) when i = j . For

a more general A ∈ CTN,I , we can prove the convergence of Algorithm 7.4.1
similarly.

We can also compute the U-eigenpairs of A ∈ CI1×I2×···×IN by a slightly modi-
fied version of Algorithm 7.4.1. The process is similar, so we omit its details. Note
that by modifying Algorithm 7.4.1, we can produce at most min{I1, I2, . . . , IN }
U-eigenpairs in one pass.

7.5 Special Case: Real Symmetric Tensors

In the previous two sections, we propose the QRCST algorithm for the US-
eigenpairs and the QRCT algorithm for the U-eigenpairs, if the imaginary parts
of the entries of the target tensors are nonzero. We consider how to apply
Algorithm 7.3.1 for computing the US- or U-eigenpairs of A ∈ RTN,I .

Let (σ ; v) be a US-eigenpair of a symmetric A ∈ RTN,I , then

AvN−1 = σv, AvN−1 = σv, ‖v‖2 = 1.

Since the argument of ι = √−1 is π/4, then (σ ; e−ιπ/4v) is also a US-eigenpair of
ιA, where the imaginary part of the entries of ιA is nonzero. For the US-eigenpairs
of A, we apply Algorithm 7.3.1 or 7.3.2 to the complex symmetric tensor ιA.
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Similarly, if (σ ; v1, v2, . . . , vN) is a U-eigenpair of A ∈ RTN,I , that is,

{
F(v1, v2, . . . , vN)−n = σvn,

F (v1, v2, . . . , vN)−n = σvn, ‖vn‖2 = 1,

then (σ ; e−ιθ1v1, e
−ιθ2v2, . . . , e

−ιθN vN) is also a U-eigenpair of ιA with∑N
n=1 θn = π/2. For the US-eigenpairs of A, we need to apply Algorithm 7.4.1

or 7.4.2 to ιA.

7.6 Numerical Examples

We choose the accuracy tolerance τ = 10−10 and include examples for US- and
U-eigenpairs. Note that ‖x‖2 = ‖x‖2 for any vector x ∈ CI . If A ∈ CTN,I is
symmetric, then

errk :=
∥
∥
∥AxN−1

k − λkxk

∥
∥
∥

2
< τ

or

errk :=
∥
∥
∥AvN−1

k − σkvk

∥
∥
∥

2
< τ

as the convergence criterion in Algorithm 7.3.3. Meanwhile, when A ∈ CTN,I , for
all n, we define

errn,k := ∥
∥F(x1,k, x2,k, . . . , xN,k)−n − λnxn,k

∥
∥

2 ,

or

errn,k := ∥
∥F(v1,k, v2,k, . . . , vN,k)−n − σkvn,k

∥
∥

2 ,

Then we select

errk := max
n=1,2,...,N

errn,k < τ

as the convergence criterion of Algorithm 7.4.3.
Next, we give an example for computing some US-eigenvalues of two given

complex symmetric tensors.

Example 7.6.1 The symmetric A,B ∈ CT3,2 are selected from [1] with

{
a111 = 2, a112 = 1, a122 = −1, a222 = 1;
b111 = 2, b112 = −1, b122 = −2, b222 = 1.



7.6 Numerical Examples 209

For A, when we apply Algorithm 7.3.3 for 100 different initial starting points, we
obtain two US-eigenvalues σ1 = 2.1745 and σ2 = 2.3547. The US-eigenvectors
corresponding to σ1 are:

⎧
⎪⎪⎨

⎪⎪⎩

(−0.4863 − 0.8423ι,−0.1163 − 0.2014ι)�,

(−0.4863 + 0.8423ι,−0.1163 + 0.2014ι)�,

(0.9726, 0.2326)�,

and that corresponding to σ2 are:

⎧
⎪⎪⎨

⎪⎪⎩

(0.2536 + 0.4392ι,−0.4309 − 0.7464ι)�,

(0.2536 − 0.4392ι,−0.4309 + 0.7464ι)�,

(−0.5071, 0.8617)�.

For B, after applying Algorithm 7.3.3 100 times, we obtain one US-eigenvalue σ =
3.1623. The US-eigenvector associated with σ are:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−0.4436 + 0.5506ι,−0.5506 − 0.4436ι)�,

(0.6987 − 0.1088ι,−0.1088 − 0.6987ι)�,

(−0.2551 + 0.6595ι, 0.6595 + 0.2551ι)�,

(−0.4436 − 0.5506ι,−0.5506 + 0.4436ι)�,

(0.6987 + 0.1088ι,−0.1088 + 0.6987ι)�,

(−0.2551 − 0.6595ι, 0.6595 − 0.2551ι)�.

After applying Algorithm 7.3.2 to compute the US-eigenpairs of A and B, we
need to replace A and B by ιA and ιB, respectively. For A, by Algorithm 7.3.2,
then we obtain two US-eigenpairs:

{
σ = 2.3547, v = (−0.4863 − 0.8423ι,−0.1163 − 0.2014ι)�,

σ = 2.1745, v = (0.2536 − 0.4392ι,−0.4309 + 0.7464ι)�.

As for B, we obtain one US-eigenvalue σ = 3.1623 by Algorithm 7.3.3 and two
associated US-eigenvectors:

{
v = (−0.2551 + 0.6595ι, 0.6595 + 0.2551ι)�,

v = (0.6987 + 0.1088ι,−0.1088 + 0.6987ι)�.

Next, two tensors in following example are chosen from [15, Example 3] and
[16, section 4.1].
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Example 7.6.2 Consider the nonnegative tensor A ∈ CT4,2 with nonzero entries

A1111 = 25.1, A1212 = 25.6, A2121 = 24.8, A2222 = 23,

and the entries of B ∈ CT3,3 are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B111 = 0.0072, B121 = −0.4413, B131 = 0.1941,B211 = −0.4413, B221 = 0.0940,

B231 = 0.5901, B311 = 0.1941, B321 = −0.4099,B331 = −0.1012, B112 = −0.4413,

B122 = 0.0940, B132 = −0.4099, B212 = 0.0940,B222 = 0.2183, B232 = 0.2950,

B312 = 0.5901, B322 = 0.2950, B332 = 0.2229,B113 = 0.1941, B123 = 0.5901,

B133 = −0.1012, B213 = −0.4099, B223 = 0.2950,B233 = 0.2229, B313 = −0.1012,

B323 = 0.2229, B333 = −0.4891.

We apply Algorithm 7.4.3 to compute some U-eigenpairs of the symmetric tensors
A and B. For A, according to [17, Example 3.11], we know that 25.6 is a singular
value of A and the associated mode-n (n = 1, 2, 3, 4) singular vectors are

v1 = (−1, 0)�, v2 = (0,−1)�, v3 = (1, 0)�, v4 = (0,−1)�,

and 25.6 · (v1 ⊗ v2 ⊗ v3 ⊗ v4) is the real best rank-one approximation of A.
When we apply Algorithm 7.4.3 100 times, we obtain a U-eigenvalue σ = 25.6

and the associated mode-n unitary eigenvectors

un = eιθnvn, n = 1, 2, 3, 4,

where eι(θ1+θ2+θ3+θ4) = 1 with θn ∈ (−π, π].
Meanwhile, for B, according to [17, Example 3.11], we know that 1 is a singular

value and associated mode-n (n = 1, 2, 3) singular vectors are

⎧
⎪⎪⎨

⎪⎪⎩

v1 = (0.7955, 0.2491, 0.5524)�,

v2 = (−0.0050, 0.9142,−0.4051)�,

v3 = (−0.6060, 0.3195, 0.7285)�,

and 1 · (v1 ⊗ v2 ⊗ v3) is the real best rank-one approximation of B. When we apply
Algorithm 7.4.3 100 times, we obtain a U-eigenvalue σ = 1 and the associated
mode-n unitary eigenvectors are

un = eιθnvn, n = 1, 2, 3,

where eι(θ1+θ2+θ3) = 1 with θk ∈ (−π, π].
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We illustrate the feasibility of Algorithm 7.3.3 where the tensors are chosen from
[9, 10].

Example 7.6.3 Consider symmetric A ∈ CT3,n and B ∈ CT4,n with

ai1i2i3 = exp((−0.01 + 2πι0.20)(i1 + i2 + i3 − 2))

+ exp((−0.02 + 2πι0.22)(i1 + i2 + i3 − 2)) + ei1+i2+i3−2,

bi1i2i3i4 = exp((−0.01 + 2πι0.20)(i1 + i2 + i3 + i4 − 3))

+ exp((−0.02 + 2πι0.22)(i1 + i2 + i3 + i4 − 3)) + ei1+i2+i3+i4−3,

where ei1+i2+i3−2 and ei1+i2+i3+i4−3 are two different complex white Gaussian
noise.

We apply Algorithm 7.3.3 to compute some US-eigenpairs of the symmetric tensors
A and B with I = 5. For A, when we apply Algorithm 7.3.3 100 times, we obtain
a US-eigenvalue σ = 18.0492 and the associated US-eigenvector is

u =α(−0.4019 + 0.1710ι,−0.2677 − 0.3921ι,

0.2203 − 0.3541ι, 0.4520 + 0.1410ι,−0.1232 + 0.4131ι)�,

where the nonzero α ∈ C satisfies |α| = 1.
For B, when we apply Algorithm 7.3.3 100 times, we obtain a US-eigenvalue

σ = 37.9441 and the associated US-eigenvector is

u =α(−0.1701 + 0.4419ι,−0.5187 − 0.0502ι,

− 0.0797 − 0.4268ι, 0.3549 − 0.2051ι, 0.2564 + 0.2862ι)�,

where the nonzero α ∈ C satisfies |α| = 1.

7.7 Conclusions and Further Considerations

In the above sections, we present and analyze Algorithms 7.3.1 and 7.4.1 for
computing the US-eigenpairs of complex symmetric tensors and the U-eigenpairs of
complex tensors, respectively. We generalize the higher order power method to com-
pute the US- or U-eigenpairs of complex tensors, summarized in Algorithm 7.4.3.

In the following, we introduce two types of the Takagi factorizations of complex
tensors [18].

Definition 7.7.1 If A ∈ CI1×I2×···×IN can be represented as

A =
R∑

r=1

σr · (U1(:, r) ⊗ U2(:, r) ⊗ · · · ⊗ UN(:, r)) , (7.7.1)



212 7 US- and U-Eigenpairs of Complex Tensors

where σ1 ≥ σ2 ≥ · · · ≥ σR > 0 and Un ∈ CIn×R satisfy U∗
nUn = IR , then (7.7.1)

is called the Takagi factorization of A, and (σr ; U1(:, r), U2(:, r), . . . , UN(:, r)) is
a Takagi pair of A with r = 1, 2, . . . , R.

Definition 7.7.2 Suppose that A ∈ CTN,I is symmetric. If

A =
R∑

r=1

σr ·
⎛

⎝U(:, r) ⊗ U(:, r) ⊗ · · · ⊗ U(:, r)
︸ ︷︷ ︸

N

⎞

⎠ , (7.7.2)

where σ1 ≥ σ2 ≥ · · · ≥ σR > 0 and U ∈ CI×R is unitary, then (7.7.2) is the Takagi
factorization of the complex symmetric tensor A. We call (σr ; Un(:, r)) a Takagi
pair of A with r = 1, 2, . . . , R.

We also introduce another form of Takagi pairs. The Takagi values of A ∈
CI1×I2×···×IN , denoted by σk(A), where k = 1, 2, . . . ,K and

K = min{rank(A(1)), rank(A(2)), . . . , rank(A(N))},

are defined as follows.
Let S(1)

n := {x ∈ CIn : ‖x‖2 = 1}. Define the first Takagi value of A by

σ1(A) := sup
xn∈S(1)

n , n=1,2,...,N

∣
∣A ×1 x∗

1 ×2 x∗
2 · · · ×N x∗

N

∣
∣

= sup
xn∈S(1)

n , n=1,2,...,N

∣
∣
∣A ×1 x�

1 ×2 x�
2 · · · ×N x�

N

∣
∣
∣ .

(7.7.3)

Since the Cartesian product S(1) := S(1)
1 × S(1)

2 × · · · × S(1)
N of unit spheres is a

compact set, an extremal solution of (7.7.3) exists (i.e., the supremum in (7.7.3) is a
maximum) and is attained by an N-tuple

(
u(1)

1 , . . . , u(1)
N

)
∈ S

(1).

Subsequent Takagi values of A are defined in an inductive manner by setting

S
(k)
n :=

{
x ∈ C

In : ‖x‖2 = 1, x∗u(j)
n = 0, j = 1, 2, . . . , k − 1

}

for all n and k = 1, 2, . . . ,K , and

σk(A) := sup
xn∈S(k)

n , n=1,2,...,N

∣
∣A ×1 x∗

1 ×2 x∗
2 · · · ×N x∗

N

∣
∣

= sup
xn∈S(k)

n , n=1,2,...,N

∣
∣
∣A ×1 x�

1 ×2 x�
2 · · · ×N x�

N

∣
∣
∣ .

(7.7.4)
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Since the Cartesian product S(k) := S(k)
1 × S(k)

2 × · · · × S(k)
N of unit spheres is a

compact set, an extremal solution of (7.7.4) exists (i.e., the supremum in (7.7.4) is a
maximum) and is attained by an N-tuple

(
u(k)

1 , . . . , u(k)
N

)
∈ S

(k).

It follows that u(1)
n , . . . , u(K)

n are unit in CIn . If K < In, for any n, then we extend the
collection of orthogonal elements u(1)

n , . . . , u(K)
n to a complete orthonormal basis of

CIn . This construction leads to a collection of orthonormal bases

{u(i1)
1 , i1 = 1, 2, . . . , I1}, . . . , {u(iN )

N , iN = 1, 2, . . . , IN } (7.7.5)

for the vector spaces CI1, . . . ,CIN , respectively.

Definition 7.7.3 The Takagi values of A ∈ CI1×I2×···×IN are the numbers
σ1, . . . , σK with K = min{rank(A(1)), rank(A(2)), . . . , rank(A(N))} defined
by (7.7.3) and (7.7.4). The Takagi vectors of order k are the extremal solutions
(u(k)

1 , . . . , u(k)
N ) in S(k) that attain the maximum in (7.7.4).

One of our future plan is to consider the numerical computation of the Takagi
factorization of complex tensors. In order to study multivariate polynomial functions
in complex variables and their corresponding symmetric tensor representations,
Jiang et al. [19] introduce two other types of eigenvalues of complex tensors: C-
eigenvalues and G-eigenvalues. Another future research topic is to consider the
numerical computation of C- and G-eigenvalues.
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Chapter 8
Randomized Algorithms

Randomized algorithms provide a useful tool for scientific computing. Compared
with standard deterministic algorithms, randomized algorithms are often faster and
robust. This chapter is devoted to an adaptive randomized algorithms for computing
the approximate tensor decompositions. We present an adaptive randomized algo-
rithm for the low multilinear rank approximation with unknown multilinear rank
and give its probabilistic error bound. Finally, we develop an adaptive randomized
algorithm for the tensor train approximations. We illustrate our algorithms via
several numerical examples.

8.1 Preliminaries

We present adaptive randomized algorithms for low multilinear rank and tensor
train approximations, summarized in Algorithms 8.2.2 and 8.4.2, generalizing
Algorithm 4.2 in [1] to the case N > 2. We list these two problems as follows.

Problem 8.1.1 Suppose that A ∈ R
I1×I2×···×IN . Find N columnwise orthogonal

matrices Q(n) ∈ R
In×μn with μn ≤ In, such that

ai1i2...iN ≈
I1,...,IN∑

j1,...,jN =1

aj1j2...jN p
(1)
i1j1

p
(2)
i2j2

. . . p
(N)
iN jN

,

where P(n) = Q(n)(Q(n))� ∈ RIn×In is a projection matrix.
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Problem 8.1.2 Suppose that A ∈ RI1×I2×···×IN . Find N order-3 tensors U(n) ∈
Rμn−1×In×μn with μ0 = μN = 1, such that

ai1i2...iN ≈
μ1∑

r1=1

μ2∑

r2=1

· · ·
μN−1∑

rN−1=1

u
(1)
i1,r1

u
(2)
r1,i2,r2

. . . u
(N)
rN−1,iN

,

where u
(n)
rn−1,in,rn

is the (rn−1, in, rn)-element of U(n), with r0 = rN = 1.

Many researchers design the numerical algorithms for Problem 8.1.1, such as
the higher-order orthogonal iteration [2], the Newton-Grassmann method [3], the
Riemannian trust-region method [4], the Quasi-Newton method [5], semi-definite
programming (SDP) [6], and Lanczos-type iterations [7, 8]. Readers may refer to
the nice surveys [9, 10] on this topic. Solving Problem 8.1.1 without columnwise
orthogonal constraints has been investigated. For example, if the columns of
each Qn are extracted from the mode-n unfolding matrix A(n), then the solution
of Problem 8.1.1 is called as the CUR-type decomposition of A, and can be
obtained using different versions of the cross approximation method [11–16]. For
Problem 8.1.1, we restrict the entries of A and Qn to be nonnegative with the latter
not columnwise orthogonal, the solution of Problem 8.1.1 is sometimes called a
nonnegative Tucker decomposition [17–20],

The solution for Problem 8.1.2 is called the tensor train approximation.
Oseledets [21] provides a quasi-best approximation in a tensor train decomposition
for a given TT-rank from the SVDs of the matrices obtained from the corresponding
unfoldings by successive projections. Holtz et al. [22] generalize ALS to obtain
a modified approach (MALS) for the tensor train approximations. In [21, 22],
the solutions V(n)∗ ∈ Rμn−1×In×μn of Problem 8.1.2 are restricted so that
reshape(V(n)∗ , [μn−1In, μn]) is columnwise orthogonal with n = 1, 2, . . . , N − 1,

which is not true in general.
For the large-scale symmetric eigenvalue problems [23, 24], the singular value

decompositions [25] and the linear equations [26], we can use the TT format of
vectors and matrices to overcome the curse of dimensionality and to make storage
and computational costs feasible; see [27] and the references therein.

Low-rank matrix approximations, such as the truncated singular value decom-
position [28, page 291] and the rank-revealing QR decomposition [29], play a
fundamental role in data analysis and scientific computing. Halko et al. [1] present
a modular framework to construct randomized algorithms for computing partial
matrix decompositions. The topic for decomposing a tensor by the strategy of
randomized algorithms has been developed [11, 30–32].

An important advantage of the adaptive randomized algorithms is that nearly
optimal approximations are possible, even with very noisy data.

The same subroutine (Algorithm 8.2.1) is needed in both Algorithms 8.2.2
and 8.4.1, that is, under certain constraints, Problems 8.1.1 and 8.1.2 have the
same subproblem (Problem 8.2.1). We analyze the convergence of Algorithms 8.2.2
and 8.4.1 via the convergence of Algorithm 8.2.1.
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We need to use the Frobenius norm of matrices to analyze Algorithm 8.2.1.
The core problem is to estimate the singular values of matrices. Reynolds et al.
[33] consider the system of linear equations with Khatri-Rao structures, when they
introduce a randomized variation of ALS for rank reduction of canonical tensor
formats.

To better understand Algorithms 8.2.2 and 8.4.1 the approximate tensor decom-
positions, we compare these two algorithms with other known algorithms on several
test tensors.

There are two subroutines in Algorithm 8.2.1, distinguished by a Boolean
flag “take_max”. We have not presented the theoretical analysis for these two
subroutines. We only compare these two subroutines on several test matrices, from
Hansen Tools [34].

8.1.1 Basic Operations

For xn ∈ R
In with all n and A ∈ R

I1×I2×···×IN , the tensor-vector multiplication [7]
(abbreviation tenvec) is defined as

A×2 x�
2 · · ·×N x�

N, A×1 x�
1 ×3 x�

3 · · ·×N x�
N, . . . , A×1 x�

1 · · ·×N−1 x�
N−1.

We recall the mode-(n,m) product [27] (called tensor-tensor product) of A ∈
RI1×I2×···×IN and B ∈ RJ1×J2×···×JM with common modes In = Jm that produces
an order (M +N − 2) tensor C ∈ RI1×···×In−1×In+1×···×IN ×J1×···×Jm−1×Jm+1×···×JM :

C = A ×m
n B,

where its entries are

ci1...in−1in+1...iN j1...jm−1im+1...jN =
In∑

in=1

ai1...in−1inin+1...iN bj1...jm−1injm+1......jM .

The mode-n unfolding matrix of an order N tensor can be understood as the
process of the construction of a matrix containing all the mode-n vectors of the
tensor. The order of the columns is not unique and chosen in accordance with [10].
The mode-n unfolding matrix of A ∈ RI1×I2×···×IN , denoted by A(n), arranges
the mode-n fibers into columns of a matrix. More specifically, a tensor element
(i1, i2, . . . , iN ) maps to a matrix element (in, j), where

j =i1 + (i2 − 1)I1 + · · · + (in−1 − 1)I1 . . . In−2 + (in+1 − 1)I1 . . . In−1

+ · · · + (iN − 1)I1 . . . In−1In+1 . . . IN−1.
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We briefly review another form for unfolding a tensor into a matrix. We denote
the unfolding matrix of A ∈ RI1×I2×···×IN by A([n]) [21]. In detail, the (i, j)-
element of A([n]) is defined as A([n])(i, j) = ai1i2...iN , where

{
i = i1 + (i2 − 1)I1 + · · · + (in − 1)I1 . . . In−1,

j = in+1 + (in+2 − 1)In+1 + · · · + (iN − 1)In+1 . . . IN−1.

8.1.2 Tucker Decomposition

A Tucker decomposition [35] of a tensor A ∈ RI1×I2×···×IN is defined as

A ≈ G ×1 U(1) ×2 U(2) · · · ×N U(N), (8.1.1)

where U(n) ∈ RIn×Rn are called the mode-n factor matrices and G ∈ RR1×R2×···×RN

the core tensor of the decomposition with the set {R1, R2, . . . , RN }.
Comparing with Problem 8.1.1, Un is not restricted to be columnwise orthogonal

in (8.1.1). We refer to the survey [10] for more details. We summarize the basic
techniques, which are also needed to motivate the tensor train decomposition [21,
36].

The Tucker decomposition is closely related to the mode-n unfolding matrix A(n)

for all n. In particular, the relation (8.1.1) implies

A(n) ≈ U(n)G(n)(U(N) ⊗ · · · ⊗ U(n+1) ⊗ U(n−1) ⊗ · · · ⊗ U(1))�.

It follows that the rank of A(n) is less than or equal to Rn, as the mode-n factor
U(n) ∈ RIn×Rn at most has rank Rn. This motivates us to define the multilinear rank
of A as the tuple

{R1, R2, . . . , RN }, where the rank of A(n) is equal to Rn.

Algorithm 8.1.1 Higher-order singular value decomposition (HOSVD) [10]

Input: A tensor A ∈ RI1×I2×···×IN and the multilinear rank {R1, R2, . . . , RN }.
Output: N columnwise orthogonal matrix U ∈ R

In×Rn and the core tensor G ∈
R

R1×R2×···×RN .
1: for n = 1, 2, . . . , N do
2: Un ← Rn leading left singular vectors of A(n).
3: end for
4: G ← A ×1 U�

1 ×2 U�
2 · · · ×N U�

N .
5: Return G, U1, . . . , UN .
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By applying SVD to A(n) for all n, we obtain a special form of the Tucker
decomposition of a given tensor, which is referred to as the higher-order singular
value decomposition (HOSVD) [37], as shown in Algorithm 8.1.1. The HOSVD
has these properties: all factor matrices are columnwise orthogonal and the core
tensor has the properties of all-orthogonality and ordering. In detail, we have

A = S ×1 U(1) ×2 U(2) · · · ×N U(N) ∈ R
I1×I2×···×IN ,

in which U(n) ∈ RIn×In is orthogonal and S ∈ RI1×I2×···×IN satisfies

(i) for all in and jn with in �= jn, 〈S(:, . . . , :, in, :, . . . , :),S(:, . . . , :, jn, :, . . . , :
)〉 = 0;

(ii) for all n,

‖S(:, . . . , :, 1, :, . . . , :)‖F ≥ ‖S(:, . . . , :, 2, :, . . . , :)‖F

≥ . . .

≥ ‖S(:, . . . , :, In, :, . . . , :)‖F

≥ 0.

The Frobenius norms ‖S(:, . . . , :, in, :, . . . , :)‖F , denoted by σ
(n)
in

, are the mode-n

singular values of A and the vector U(n)(:, in) is an inth mode-n singular vector.
The mode-n singular values of A are different from its singular values, defined in
[38].

When Rn < rank(A(n)) for one or more n, the decomposition is called the
truncated HOSVD. The truncated HOSVD is not optimal in terms of giving the
best fit as measured by the norm of the difference, but it is a good starting point
for an iterative ALS algorithm. With respect to the Frobenius norm of tensors,
Problem 8.1.1 can be rewritten as the optimization problem

min
G,Q(1),...,Q(N)

∥
∥
∥A − G ×1 Q(1) · · · ×N Q(N)

∥
∥
∥

2

F
,

subject to G ∈ R
R1×R2×···×RN ,

Q(n) ∈ R
In×Rn is columnwise orthogonal;

which is equivalent to the following maximization problem

max
Q(1),...,Q(N)

∥
∥
∥A ×1 Q(1)� · · · ×N Q(N)�

∥
∥
∥

2

F
,

subject to Q(n) ∈ R
In×Rn is columnwise orthogonal.
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If Q(n)∗ is a solution of the above maximization problem, then we call A ×1
P(1) · · · ×N P(N) a low multilinear rank approximation of A, where P(n) =
Q(n)∗ (Q(n)∗ )�.

The higher-order orthogonal iteration (HOOI) for the low multilinear rank
approximation of A ∈ RI1×I2×···×IN is summarized in Algorithm 8.1.2.

Algorithm 8.1.2 Higher-order orthogonal iteration (HOOI) [2, Algorithm 4.2]

Input: A tensor A ∈ RI1×I2×···×IN , the multilinear rank {R1, R2, . . . , RN } and maximum
number of iterations Kmax.
Output: N columnwise orthogonal matrix U ∈ RIn×Rn and the core tensor G ∈
R

R1×R2×···×RN .
1: initialize Un ∈ R

In×Rn with all n using HOSVD.
2: for k = 1, 2, . . . , Kmax do
3: for n = 1, 2, . . . , N do
4: Compute B = A ×1 U�

1 · · · ×n−1 U�
n−1 ×n+1 U�

n+1 · · · ×N U�
N .

5: Un ← Rn leading left singular vectors of B(n).
6: end for
7: end for
8: G ← A ×1 U�

1 ×2 U�
2 · · · ×N U�

N .
9: Return G, U1, . . . , UN .

8.1.3 Tensor Train Decomposition

The storage of the core tensor G ∈ RR1×R2×···×RN renders the Tucker decom-
position increasingly unattractive as N gets larger. In order to overcome this
disadvantage, a simple non-recursive form of the tensor decomposition is presented,
called the tensor train decomposition [21, 36, 39], a special case of the Hierarchical
Tucker format [40–42].

The tensor train decomposition of A ∈ RI1×I2×···×IN can be described in the
standard scalar form

ai1i2...iN ≈
R1∑

j1=1

R2∑

j2=1

· · ·
RN−1∑

jN−1=1

q
(1)
i1,j1

q
(2)
j1,i2,j2

. . . q
(N)
jN−1,iN

,

or equivalently by using slice representations:

ai1i2...iN ≈ Q(1)(i1)Q(2)(i2) . . . Q(N)(iN ), (8.1.2)

where slice matrices are defined as

Q(n)(in) = Q(n)(:, in, :) ∈ R
Rn−1×Rn,



8.2 Low Multilinear Rank Approximations 221

i.e., Q(n)(in) is an inth lateral slice of the core Q(n) ∈ RRn−1×In×Rn for all n with
R0 = RN = 1. By the tensor-tensor product, (8.1.2) can be also represented as

A ≈ Q(1) ×1
3 Q

(2) ×1
3 · · · ×1

3 Q
(N).

The tensor train decomposition is closely related with the unfolding matrices
A([n]) of A. Equation (8.1.2) implies that rank(A([n])) ≤ Rn for n = 1, 2, . . . , N −1
[9, 27]. The tuple containing the ranks of these matricizations is called the TT-rank
of A.

8.2 Low Multilinear Rank Approximations

Based on the key idea for probabilistic algorithms to approximate matrix decom-
positions [1], we develop adaptive randomized algorithms for the low multilinear
rank approximation of tensors in RI1×I2×···×IN . We shall reveal the relationship
between our randomized algorithms and the Randomized Tucker decomposition
[32, Algorithm 2].

8.2.1 Randomized Algorithms for Low Multilinear Rank
Approximations

If we add the constraints on Qn ∈ R
In×μn in Problem 8.1.1, that is, Q�

n Qn = Iμn ,
then we can rewrite Problem 8.1.1 as follows.

Problem 8.2.1 Suppose that A ∈ RI1×I2×···×IN and ε is a prescribed tolerance.
Find N columnwise orthogonal matrices Qn ∈ RIn×μn with μn ≤ In, such that

∥
∥
∥A − A ×1 (Q1Q�

1 ) ×2 (Q2Q�
2 ) ×3 · · · ×N (QnQ�

n )

∥
∥
∥

F
≤ √

Nε.

If the N-tuple {Q1, Q2, . . . , QN } is a solution of Problem 8.2.1, then we have

A − A ×1 (Q1Q�
1 ) ×2 (Q2Q�

2 ) · · · ×N (QNQ�
N)

= (A − A ×1 (Q1Q�
1 )) + (A ×1 (Q1Q�

1 ) − A ×1 (Q1Q�
1 ) ×2 (Q2Q�

2 )) + . . .

+(A ×1 (Q1Q�
1 ) · · · ×N−1 (QN−1Q�

N−1)

−A ×1 (Q1Q�
1 ) · · · ×N−1 (QN−1Q�

N−1) ×N (QNQ�
N)). (8.2.1)

The equality (8.2.1) can be found in [43, 44] for the low multilinear rank approxi-
mation of A ∈ RI1×I2×···×IN .
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It follows from (8.2.1) that

∥
∥
∥A − A ×1 (Q1Q�

1 ) ×2 (Q2Q�
2 ) ×3 · · · ×N (QN Q�

N)

∥
∥
∥

2

F
≤

N∑

n=1

∥
∥
∥A − A ×n (QnQ�

n )

∥
∥
∥

2

F
.

(8.2.2)

The result relies on the orthogonality of the projector in the Frobenius norm [44],
i.e., for all n, we have

‖A‖2
F =

∥
∥
∥A ×n (QnQ�

n )

∥
∥
∥

2

F
+

∥
∥
∥A ×n (IIn − QnQ�

n )

∥
∥
∥

2

F
,

and the fact that ‖AP‖F ≤ ‖A‖F with A ∈ RI×J , where the orthogonal projection
P satisfies [28]

P2 = P, P� = P, P ∈ R
J×J .

In order to obtain a solution {Q1, Q2, . . . , QN } for Problem 8.2.1, we need to
consider the following subproblem for all n.

Subproblem 8.2.1 Suppose that A ∈ RI1×I2×···×IN and ε is a prescribed toler-
ance. For a given n, find an columnwise orthogonal matrix Qn ∈ RIn×μn with
μn ≤ In, such that

∥
∥
∥A − A ×n (QnQ�

n )

∥
∥
∥

F
=

∥
∥
∥A ×n (IIn − QnQ�

n )

∥
∥
∥

F
≤ ε.

For each n, if the columnwise orthogonal matrix Qn satisfies Problem 8.2.1 with
the same ε, we have

∥
∥
∥A − A ×1 (Q1Q�

1 ) ×2 (Q2Q�
2 ) ×3 · · · ×N (QNQ�

N)

∥
∥
∥

2

F

≤
N∑

n=1

∥
∥
∥A − A ×n (QnQ�

n )

∥
∥
∥

2

F
= Nε2.

By this hypothesis, we obtain a solution for Problem 8.2.1 by solving Subprob-
lem 8.2.1, for n from 1 to N . For such a given n, we present a randomized algorithm
for seeking an columnwise orthogonal matrix Qn ∈ R

In×μn such that

∥
∥
∥A − A ×n (QnQ�

n )

∥
∥
∥

F
=

∥
∥
∥A ×n (IIn − QnQ�

n )

∥
∥
∥

F
≤ ε,

where ε is a computational tolerance.
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Starting with an initial empty basis matrix Q0, we generate a columnwise
orthogonal matrix Q ∈ RIn×μn such that the range of Q captures the action of
the mode-n unfolding matrix of the tensor A as follows:

for k = 0, 1, . . . , until convergence do
Draw (N − 1) standard Gaussian vectors xm ∈ R

Im for all m (m �= n).
Compute

yk = A×̄1x1 . . . ×̄n−1xn−1×̄n+1xn+1 . . . ×̄N xN.

Compute ỹk = (IIn − Qk−1Q�
k−1)yk if k > 1.

Normalize yk = ỹk/‖̃yk‖2, and form Qk = [Qk−1, yk].
end for
Write Q as Qk.

The above process requires μn tenvecs and O(Iμ2
n) additional operations, where

μn ≤ μmax is the number of the columns of Q. To terminate the computation,
we use one or both of the following stopping criteria: (1) fix maximum number of
iterations, i.e., the desired size of basis Q by μmax; and (2) find a basis Q that allows
approximation of A(n) with a relative accuracy ε.

Unfortunately, the matrix Q generated by the above process is not columnwise
orthogonal and the Frobenius norm of the error matrix Iμn −Q�Q is not sufficiently
small. The reason is that the vector ỹk becomes small as the basis starts to capture
the mode-n unfolding matrix of the tensor A. In finite-precision arithmetics, their
directions are unreliable.

To overcome this difficulty, we re-project the normalized vector yk onto
range(Qk−1)

⊥ in Step 13 to Step 17 of Algorithm 8.2.1, where range(A) is the
subspace generated by the columns of A ∈ RI×J with I ≥ J , and K⊥ is the
orthogonal complement in Rn of a subspace K.

Algorithm 8.2.1 requires (R + μn) tenvecs and O(Iμ2
n) additional operations,

where μn ≤ μmax is the number of the columns of Q, derived by Algorithm 8.2.1.
The calculations in Algorithm 8.2.1 can be organized so that each iteration processes
a block of samples simultaneously. This revision leads to dramatic improvements in
speed, exploiting higher-level linear algebra subroutines (e.g., BLAS3) or parallel
processors.

The main part of Algorithm 8.2.1 consists of Steps 4–18, which generates qk ,
from yk. There are two ways to generate qk , distinguished by the Boolean flag
“take_max”.

When N = 2 and the value of “take_max” is “False”, Algorithm 8.2.1 is
reduced to Algorithm 4.2 in [1] for constructing a subspace that captures most of
the action of the matrix A ∈ RI×J . In Sect. 8.5.3, we illustrate Algorithm 8.2.1
with different values of the Boolean flag “take_max” via certain testing matrices.
The failure probability stated for Algorithm 8.2.1 is pessimistic, since it is derived
from a simple uniform bound argument. In practice, the error is reliable in a range
of circumstances, if we take R = 10.
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Algorithm 8.2.1 Adaptive randomized algorithm for Subproblem 8.2.1

Input: A tensor A ∈ RI1×I2×···×IN , a mode n, an integer R, the prescribed tolerance ε, a
Boolean flag “take_max” and maximum number of iterations μmax.
Output: An columnwise orthogonal matrix Q ∈ RIn×μn .

1: Draw (N − 1) independent families {x(r)
m ∈ RIm : r = 1, 2, . . . , R} of standard Gaussian

vectors for all m (m �= n).
2: Compute yr = A×̄1x(r)

1 . . . ×̄n−1x(r)
n−1×̄n+1x(r)

n+1 . . . ×̄Nx(r)
N with r = 1, 2, . . . , R.

3: Start with an empty basis matrix Q0 and set k = 0.
4: while max{‖yk+1‖2, ‖yk+2‖2, . . . , ‖yk+R‖2} > ε or k < μmax do
5: Set k = k + 1.
6: if the value of “take_max” is “True” then
7: Choose k0 ∈ {k + 1, . . . , k + R} such that ‖yk0 ‖2 =

max{‖yk+1‖2, ‖yk+2‖2, . . . , ‖yk+R‖2}.
8: Overwrite yk by (IIn − Qk−1Q�

k−1)yk0 if k > 1.
9: else

10: Overwrite yk by (IIn − Qk−1Q�
k−1)yk if k > 1.

11: end if
12: Compute qk = yk/‖yk‖2 and form Qk = [Qk−1, qk].
13: Draw (N − 1) standard Gaussian vectors xm ∈ RIm for all m �= n.
14: Compute yk+R = (IIn − QkQ�

k )(A×̄1x1 . . . ×̄n−1xn−1×̄n+1xn+1 . . . ×̄N xN).
15: for i = k + 1, k + 2, . . . , k + R − 1 do
16: Overwrite yi by yi − (q�

k yi )qk .
17: end for
18: end while
19: Set Q = Qk and μk as the number of all columns of Q.

By the relationship between Problem 8.2.1 and Subproblem 8.2.1, we con-
struct an adaptive randomized algorithm for Problem 8.2.1, summarized in Algo-
rithm 8.2.2.

Algorithm 8.2.2 Adaptive randomized algorithm for Problem 8.2.1

Input: A tensor A ∈ RI1×I2×···×IN , an integer R, the prescribed tolerance ε, a Boolean flag
“take_max” and maximum number of iterations μmax.
Output: N columnwise orthogonal matrices Qn ∈ R

In×μn for all n.
1: Set the temporary tensor: C = A.
2: for n = 1, 2, . . . , N do
3: Implement Algorithm 8.2.1 with C to generate the columnwise orthogonal matrix Qn,k ∈

R
In×μn .

4: Set Qn = Qn,k , μn as the number of all columns of Q,
5: Compute C = C ×n Q�

n and let In = μn.
6: end for

If we take R = 10 in Algorithm 8.2.2, then the error estimation is reliable under
certain assumptions. In Step 5 of Algorithm 8.2.2, the temporary tensor C is updated
for each n. The reason is (8.2.1) and the fact ‖AQ‖F ≤ ‖A‖F with A ∈ RI×J and
any columnwise orthogonal matrix Q ∈ RJ×K (K ≤ J ). For clarity, we assume
I1 ∼ I2 ∼ · · · ∼ IN ∼ I and μ1 ∼ μ2 ∼ · · · ∼ μN ∼ μ in complexity estimates
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[7, Page A2], where μn is the number of the columns of Qn. If the size of C is
not updated for each n, Algorithm 8.2.2 requires N(R + μ) tenvecs and O(NIμ2)

additional operations. Similar to Algorithm 3.2 in [44], a more general formwork of
Algorithm 8.2.2 is in the following:

Input: A tensor A ∈ R
I1×I2×···×IN , an integer R, the prescribed tolerance

ε, a Boolean flag “take_max”, maximum number of iterations μmax, and a
processing order p ∈ SN .
Output: N columnwise orthogonal matrices Qn ∈ R

In×μn .
1: Set the temporary tensor: C = A.
2: for n = p1, p2, . . . , pN do
3: Implement Algorithm 8.2.1 with C to generate the columnwise orthogonal

matrix Qn,k ∈ R
In×μn .

4: Set Qn = Qn,k , μn as the number of all columns of Q.
5: Compute C = C ×n Q�

n and let In = μn.
6: end for

If the value of “take_max” is “False” and the multlilinear rank of A is
{R1, R2, . . . , RN }, then Algorithm 8.2.2 can be represented as follows.

Algorithm 8.2.3 Randomized algorithm for Problem 8.2.1 with known multilinear
rank {R1, R2, . . . , RN }
1: Set the temporary tensor: C = A.
2: for n = 1, 2, . . . , N do
3: Compute Z(n) = A(n)�(n), where �(n) = �′

1 , · · · , �′
n−1 , �′

n+1 , · · · , �′
N and

�′
m ∈ R

Im×Rm+10 is a standard Gaussian matrix with m �= n and m = 1, 2, . . . , N .
4: Compute Qn as a columnwise orthogonal basis of Z(n) by using the QR decomposition and

let Qn = Qn(:, 1 : Rn)..
5: Set C = C × Q�

n and let In = Rn.
6: end for

When the multlilinear rank of A is {R1, R2, . . . , RN }, the Randomized Tucker
decomposition can be estimated as follows [32, Algorithm 2].

Algorithm 8.2.4 Randomized Tucker decomposition for solving Problem 8.2.1 with
known multilinear rank {R1, R2, . . . , RN }
1: Set the temporary tensor: C = A.
2: for n = 1, 2, . . . , N do
3: Compute Z(n) = A(n)�(n), where �(n) is an (

∏
k �=n Ik)-by-Rn + 10 standard Gaussian

matrix.
4: Compute Qn as a columnwise orthogonal basis of Z(n) by using the QR decomposition and

let Qn = Qn(:, 1 : Rn).
5: Set C = C × Q�

n and let In = Rn.
6: end for
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For each n, choosing the random matrix �(n) in the Randomized Tucker
decomposition requires O(IN−1K) additional space; drawing the random matrix
�(n) in Algorithm 8.2.2 requires O((N − 1)IK) additional space, where we assume
that R1 ∼ R2 ∼ · · · ∼ RN ∼ K for clarity. Comparing with the Randomized
Tucker decomposition, when we implement Algorithm 8.2.2 to obtain a solution for
Problem 8.2.1, the multilinear rank of the target tensor may be unknown. Before
implementing Algorithm 8.2.2 to compute the low multilinear rank approximation
of A ∈ RI1×I2×···×IN , we choose N random Gaussian matrices Ûn and precondition
A as A := A ×1 Û1 ×2 Û2 · · · ×N ÛN . This strategy is firstly considered in [32].

According to probabilistic error bounds for Algorithm 4.1 in [1], the derivation
bounds for the Frobenius norm and average Frobenius error for the Randomized
Tucker decomposition is easy to obtain. However, we can not use the derivation
bounds for the Frobenius norm for Algorithm 4.1 [1] directly to analyze Algo-
rithm 8.2.2, which will be considered in the next section.

8.2.2 More Considerations

As shown in Algorithm 8.2.3, our analysis is specialized to the case where the
test matrices �′

m are standard Gaussian matrices. But there are potential benefits
from implementing the proposed algorithms using test matrices drawn from another
distribution. The choice of distribution leads to some tradeoffs in the range of
permissible parameters; the costs of randomness, arithmetic, and communication
to generate the test matrices; the storage costs for the test matrices and the sketch;
the arithmetic costs for sketching and updates; the numerical stability of matrix
approximation algorithms; and the quality of a priori error bounds.

Let us list some of the contending distributions along with background refer-
ences. We have ranked these in decreasing order of reliability.

(a) For each n, Step 3 in Algorithm 8.2.3 generates matrices �′
m with orthonormal

columns that span uniformly random subspaces of dimension Rm + 10.
(b) This chapter focuses on test matrices with the standard Gaussian matrices.

Benefits include excellent practical performance and accurate a priori error
bounds.

When we consider the low multilinear rank approximation of A ∈
CI1×I2×···×IN , for each n, the test matrices �′

m have the form �′
m =

�′
1m + ι�′

2m, where �′
1m ∈ RIm×(Rm+10) and �′

2m ∈ RIm×(Rm+10) are standard
Gaussian matrices.

(c) These test matrices have independent Rademacher1 entries. Their behavior is
similar to Gaussian test matrices, but there are minor improvements in the cost
of storage and arithmetic, as well as the amount of randomness required.

1A Rademacher random variable takes the values ±1 with equal probability.
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(d) For each n, the test matrices �′
m take the form

�′
m = DHP,

where D ∈ RIm×Im are diagonal with independent Rademacher variables, H ∈
RIm×Im is orthonormal and P ∈ RIm×(Rm+10) are restrictions onto Rn + 10
coordinates, chosen uniformly at random. In practice, one can choose H with
efficient fast computationable algorithms, such as the discrete cosine transform
matrix, the Walsh-Hadamard transform matrix, the fast Fourier transform matrix
or the discrete wavelet transform matrix.

(e) Let s be a sparsity parameter. For each n, each column of �′
m is placed

independent Rademacher random variables in s uniformly random locations;
the remaining entries of the test matrices are zero. This type of test matrices is
sometime called a sparse embedding matrix.

The interested readers can refer to [1, 45, 46] on the computation of low-rank
approximations via randomized algorithms based on the above test matrices. In the
future, based on these test matrices, we will consider how to improve our proposed
algorithms.

8.3 Theoretical Analysis

We prove Theorem 8.3.1, which is the essential basis for analyzing Algorithm 8.2.2.
We introduce a particular type of random matrices for this: the row are indepen-
dently distributed random vectors, but the columns are not (instead of the standard
case where all entries are independently and identically distributed (i.i.d)). Such
matrices are studied extensively by Vershynin [47] and we rely heavily on this
research for our estimates.

8.3.1 Probabilistic Error Bounds

For each n and a given positive integer R > 0, let �n,m ∈ RIm×(μn+R) with μn +
R ≤ In be standard Gaussian matrix with all m and m �= n. Define �(n) = �1 ,
· · · , �n−1 , �n+1 , · · · , �N . Suppose that A(n) = Un�nV�

n , where Un ∈
RIn×In is orthogonal, �n ∈ RIn×In is diagonal whose entries are nonnegative and
Vn ∈ RI1...In−1In+1...IN ×In is columnwise orthogonal. Let Un = (Qn, Q⊥

n ) with Qn ∈
RIn×μn and Q⊥

n ∈ RIn×(In−μn), �̃n ∈ Rμn×μn and �̃n ∈ R(In−μn)×(In−μn) be the
upper-left and lower-right blocks of �n, respectively, and Vn = (Pn, P⊥

n ) with Pn ∈
RI1...In−1In+1...IN×μn and P⊥

n ∈ RI1...In−1In+1...IN ×(I1...In−1In+1...IN −μn). Let �n,1 =
P�

n �(n) and �n,2 = (P⊥
n )��(n).



228 8 Randomized Algorithms

Lemma 8.3.1 For each n, ��
n,1 ∈ R(μn+R)×μn is a random matrix with

isotropic rows and �n,2 ∈ R
I1...In−1In+1...IN−μn×(μn+R) is a random matrix

with isotropic columns. Moreover, the columns of �n,2 satisfy ‖�n,2(:, rn)‖2 =√
I1 . . . In−1In+1 . . . IN − μn almost surely for rn = 1, 2, . . . , μn + R.

This lemma is a general form of Lemma 8.3.3 with a similar proof. In order to
present the probabilistic error for Algorithm 8.2.2, we introduce the defintion.

Definition 8.3.1 ([47, Definition 5.7]) Let X be a random variable that satisfies one
of the three following equivalent properties:

1. P{|X| > t} ≤ exp(1 − t2/K2
1 ) for all t ≥ 0,

2. (E{|X|p})1/p ≤ K2
√

p for all p ≥ 1,
3. E{exp(X2/K2

3 )} ≤ 1,

where the constants Ki (i = 1, 2, 3) differ from each other by at most an absolute
constant factor (see [47, Lemma 5.5] for a proof of the equivalence of these
properties). Then X is called a sub-Gaussian random variable. The sub-Gaussian
norm of X is defined as the smallest K2 in property 2, i.e.,

‖X‖ψ2 = sup
p≥1

(E{|X|p})1/p

√
p

.

We establish the following theorem to analyze the probabilistic error bound for
Algorithm 8.2.2. In Sect. 8.3.3, we give a rigorous proof for this theorem.

Theorem 8.3.1 Suppose that A ∈ RI1×I2×···×IN where In ≤ I1 . . . In−1In+1 . . . IN

with all n. Let the value of “take_max” be “False” in Algorithm 8.2.2. For given
positive integers μn > 0 and R > 0 with μn + R ≤ In, assume that Qn ∈ RIn×μn

are derived by Algorithm 8.2.2. If for all n, �n,1 have full row rank, then

∥
∥
∥A − A ×1

(
Q1Q�

1

)
×2

(
Q2Q�

2

)
· · · ×N

(
QN Q�

N

)∥
∥
∥

F

≤
N∑

n=1

√

1 +
√

I1 . . . In−1In+1 . . . IN − μn + Cn

√
μn + R + t√

μn + R − C′
n

√
μn − t

�μn+1(A(n))

with probability at least 1 − 2
∑N

n=1

(
exp(−cnt

2) + exp(−c′
nt

2)
)
, where

�μn+1(A(n)) =
⎛

⎝
In∑

in=μn+1

σin(A(n))
2

⎞

⎠

1/2

,

and σin(A(n)) is the inth singular value of A(n). Here Cn = CKn and cn = cKn ≥ 0
depend only on the sub-Gaussian norm Kn = maxj ‖�n,2(:, j)‖ψ2 , and C′

n = CKn

and c′
n = cKn ≥ 0 depend only on the sub-Gaussian norm Kn = maxj ‖�n,1

(:, j)‖ψ2 for all n.
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Remark 8.3.1 In the above theorem, we need to assume that there exists t (> 0)

such that

√
μn + R − C′

n

√
μn − t > 0, n = 1, 2, . . . , N.

Remark 8.3.2 In practice, when we use Algorithm 8.2.2 to compute a low multi-
linear rank approximation of tensors in RI1×I2×···×IN , we restrict the approximation
multilinear rank {μ1, μ2, . . . , μN }, that is, for each mode n in Algorithm 8.2.2, we
shall give an upper bound for μn with all n.

8.3.2 Some Results for Sub-Gaussian Matrices

We introduce the definition of sub-Gaussian random variables and sub-Gaussian
norm in Sect. 8.2, as shown in Definition 8.3.1. Examples of sub-Gaussian random
variables include Gaussian and Bernoulli random variables. We present definitions
for sub-Gaussian random vectors and their norm.

Definition 8.3.2 ([47, Definition 5.7]) A random vector x ∈ R
I is called a sub-

Gaussian random vector if 〈x, y〉 is a sub-Gaussian random variable for all y ∈ R
I .

The sub-Gaussian norm of x is subsequently defined by

‖x‖ψ2 = sup
y∈SI−1

‖〈x, y〉‖ψ2 .

Definition 8.3.3 ([47, Definition 5.19]) A random vector x ∈ RI is called isotropic
if its second moment matrix � = �(x) = E{xx�} is equal to the identity matrix.
This definition is equivalent to

E{〈x, y〉2} = ‖y‖2

for all y ∈ R
I .

The following theorem from [47] provides bounds on the condition numbers of
matrices whose rows are independent sub-Gaussian isotropic random variables.

Theorem 8.3.2 ([47, Theorem 5.38]) Let A be an I ×J matrix whose rows A(i, :)
are independent sub-Gaussian isotropic random vectors in RJ . Then for every t ≥
0, with probability at least 1 − 2 exp(−ct2), one has

√
I − C

√
J − t ≤ σmin(A) ≤ σmax(A) ≤ √

I + C
√

J + t .

Here C = CK and c = cK ≥ 0 depend only on the sub-Gaussian norm K =
maxi ‖A(i, :)‖ψ2 .
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Similarly, the following theorem from [47] provides bounds on the condition num-
bers of matrices whose columns are independent sub-Gaussian isotropic random
variables.

Theorem 8.3.3 ([47, Theorem 5.58]) Let A be an I × J (I ≥ J ) matrix whose
columns A(:, j) are independent sub-Gaussian isotropic random vectors in RI with
‖A(:, j)‖2 = √

I almost surely (a.s.). Then for every t ≥ 0, with probability at least
1 − 2 exp(−ct2), one has

√
I − C

√
J − t ≤ σmin(A) ≤ σmax(A) ≤ √

I + C
√

J + t .

Here C = CK and c = cK ≥ 0 depend only on the sub-Gaussian norm K =
maxj ‖A(:, j)‖ψ2 .

8.3.3 Proof of Theorem 8.3.1

For clarity, suppose that n = 1 and R is a positive integer. Let �m ∈
R

Im×(μ1+R) (μ1 + R ≤ I1) be a standard Gaussian matrix with m = 2, 3, . . . , N .
Define �(1) = �2 , �3 , · · · , �N . As seen in [33], we see that �(1) is a random
matrix whose columns are independent from one another but whose rows are not.
In the following lemma (similar to [33, Lemma 11] without the proof), we show
that each column of �(1) is isotropic.

Lemma 8.3.2 Let �′
m ∈ RIm×(μ1+R) (μ1 + R ≤ I1) be standard Gaussian matrix

with m = 2, 3, . . . , N , and Q ∈ RI2...IN ×RQ be columnwise orthogonal with RQ <

μ1 +R < I2 . . . IN . Define �(1) = �′
2 ,�′

3 ,· · ·,�′
N . Then Q��(1) is a random

matrix with isotropic columns.

Remark 8.3.3 According to Lemma 8.3.2, it is easy to see that ‖Q��(1)(:, r1)‖2 =√
RQ almost surely with r1 = 1, 2, . . . , μ1 + R.

Suppose that A(1) = U�V�, where U ∈ RI1×I1 is orthogonal, � ∈ RI1×I1

is diagonal whose entries are nonnegative and V ∈ RI2...IN ×I1 is columnwise
orthogonal. Let U = (U1, U⊥

1 ) with U1 ∈ RI1×μ1 and U⊥
1 ∈ RI1×(I1−μ1),

�1 ∈ Rμ1×μ1 and �2 ∈ R(I1−μ1)×(I1−μ1) be the upper-left and lower-right
blocks of �, respectively, and V = (V1, V⊥

1 ) with V1 ∈ RI2...IN×μ1 and V⊥
1 ∈

RI2...IN ×(I2...IN −μ1). Let �1 = V�
1 �(1) and �2 = (V⊥

1 )��(1). From Lemma 8.3.2,
it is easily to derive the following lemma.

Lemma 8.3.3 ��
1 ∈ R(μ1+R)×μ1 is a random matrix with isotropic rows and

�2 ∈ R(I2...IN−μ1)×(μ1+R) is a random matrix with isotropic columns. Moreover,
the columns of �2 satisfy ‖�2(:, r1)‖2 = √

I2 . . . IN − μ1 almost surely for r1 =
1, 2, . . . , μ1 + R.

The main result is presented in the following theorem.
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Theorem 8.3.4 Suppose that A ∈ RI1×I2×···×IN with I1 ≤ I2 . . . IN . Let the
value of “take_max” be “False” in Algorithm 8.2.1. For given positive integers
μ1 > 0 and R > 0 with μ1 + R ≤ I1, suppose that Q1 ∈ RI1×μ1 is derived by
Algorithm 8.2.1. If �1 is of full row rank, then

∥
∥
∥A − A ×1

(
Q1Q�

1

)∥
∥
∥

F
≤

√

1 +
√

I2 . . . IN − μ1 + C
√

μ1 + R + t√
μ1 + R − C′√μ1 − t

�μ1+1(A(1))

with probability at least 1 − 2 exp(−ct2) − 2 exp(−c′t2), where

�μ1+1(A(1)) =
⎛

⎝
I1∑

i1=μ1+1

σi1(A(1))
2

⎞

⎠

1/2

.

Here C = CK and c = cK ≥ 0 depend only on the sub-Gaussian norm K =
maxi ‖�2(:, i)‖ψ2; C′ = CK and c′ = cK ≥ 0 depend only on the sub-Gaussian
norm K = maxi ‖�1(:, i)‖ψ2 .

Proof To obtain the matrix Q1, Algorithm 8.2.1 is similar to the following process:
(a) choose �(1) = �2 ,�3 ,· · ·,�N , where �m ∈ RIm×(μ1+R) with μ1 +R ≤ I1
are standard Gaussian matrix with m = 2, 3, . . . , N ; (b) compute Y = A(1)�(1); (c)
factor QR = Y by the QR decomposition; (d) form Q1 = Q(:, 1 : μ1).

According to Theorem 9.1 in [1], we have

∥
∥
∥A − A ×1 (Q1Q�)

∥
∥
∥

F
=

∥
∥
∥(II1 − Q1Q�)A(1)

∥
∥
∥

F
≤

√

1 + ‖�2‖2

∥
∥
∥�

†
1

∥
∥
∥

2
‖�2‖F .

Note that ‖�2‖F = (
∑I1

i1=μ1+1 σi1(A(1))
2)1/2. Now we estimate ‖�2‖2 and

‖�†
1‖2. According to Theorem 8.3.3 and Lemma 8.3.3, with probability at least

1 − 2 exp(−ct2), we have

‖�2‖2 ≤ √
I2 . . . IN − μ1 + C

√
μ1 + R + t,

for t > 0, where C = CK and c = cK ≥ 0 depend only on the sub-Gaussian norm
K = maxj ‖�2(:, j)‖ψ2 .

According to Theorem 8.3.2 and Lemma 8.3.3, with probability at least 1 −
2 exp(−c′t2), we have

∥
∥
∥�

†
1

∥
∥
∥

2
=

∥
∥
∥(�

†
1)

�
∥
∥
∥

2
=

∥
∥
∥(��

1 )†
∥
∥
∥

2
≤ 1√

μ1 + R − C′√μ1 − t
,

for t > 0, where C′ = CK and c′ = cK ≥ 0 depend only on the sub-Gaussian norm
K = maxi ‖(�1)

�(i, :)‖ψ2 = maxi ‖�1(:, i)‖ψ2 . ��
The rigorous proof for Theorem 8.3.1 comes from Theorem 8.3.4 and (8.2.2).
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8.4 Randomized Tensor Train Approximation

In Sect. 8.2, we present an adaptive randomized algorithm for a low multilinear rank
approximation with unknown multiliear rank. In Sect. 8.3, we make the theoretical
analysis for the algorithm. We next develop an adaptive randomized algorithm for
approximate tensor train decompositions of tensors with unknown TT-rank.

We briefly introduce the idea of TT-SVD for computing the approximate tensor
train decompositions. Suppose that A ∈ R

I1×I2×···×IN and ε is the prescribed
tolerance, the process [21, Algorithm 1] for computing an approximate tensor train
decomposition of the tensor A is as follows:

Compute truncation parameter δ = ε√
N−1

‖A‖F .

Set the temporary matrix: C = A(1) and μ0 = 1.
for n = 1, 2, . . . , N − 1 do

Form C = reshape(C, [μn−1In, In+1 . . . IN ]).
Compute the δ-truncated SVD: C = U�V� + E with ‖E‖F ≤ δ and μn =

rankδ(C).
Form Q(n) = reshape(U, [μn−1, In, μn]) and C = �V�.

end for
Form Q(N) = reshape(C, [μN−1, IN ,μN ]) with μN = 1.
Return B in TT-format with cores Q(1),Q(2), . . . ,Q(N).

When we implement the above process, the approximate tensor train decomposition
satisfies

‖A − B‖F ≤ ε‖A‖F .

Similar to the Randomized Tucker decomposition [32], we consider the ran-
domized range finder algorithm (Algorithm 4.1 in [1]) to estimate the basis of the
temporary matrix C for each n in the above process, summarized as Algorithm 8.4.1.

Algorithm 8.4.1 Randomized algorithm for tensor train approximation

Input: A tensor A ∈ RI1×I2×···×IN and the TT-rank {μ1, μ2, . . . , μN−1}.
output: Cores Q(1),Q(2), . . . ,Q(N) of the TT-approximation B of the tensor A
Set the temporary tensor: C = A and μ0 = 1.
for n = 1, 2, . . . , N − 1 do

Form C = reshape(C, [μn−1In, In+1 . . . IN ]).
Compute Z = C�, where � ∈ RIn+1 ...IN ×(μn+R) is a random Gaussian matrix.
Compute U as a columnwise orthogonal basis of Z by using the QR decomposition.
Let U = U(:, 1 : μn).
Form Q(n) = reshape(U, [μn−1, In, μn]).
Compute C = C ×1 U�.

end for
Form C = reshape(C, [μN−1, IN , μN ]) and Q(N) = reshape(C, [μN−1, IN , μN ]) with μN =
1.
Return B in TT-format with cores Q(1),Q(2), . . . ,Q(N).
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In Algorithm 8.4.1, R is referred to as the oversampling parameter. In general,
we set R = 5 or 10. Furthermore, the probabilistic error bound of Algorithm 8.4.1
is easy to obtain, due to the theoretical results for Algorithm 4.1 in [1]. The
disadvantage of Algorithm 8.4.1 is that we need to know the TT-rank of the
target tensors. In the remainder of this section, we design an adaptive randomized
algorithm for an approximate tensor train decomposition of a tensor in RI1×I2×···×IN

with unknown TT-rank. The probabilistic error bound of this approximate tensor
train decomposition can be derived from Theorem 8.3.3.

If we add the orthogonal constraints to Problem 8.1.2 as Q�
n Qn = Iμn , where

Qn = reshape(Q(n), [μn−1In, μn]) with n = 1, 2, . . . , N − 1, then we rewrite
Problem 8.1.2 as follows.

Problem 8.4.1 Suppose that A ∈ RI1×I2×···×IN and ε is a prescribed tolerance.
Find N core tensors Q(n) ∈ Rμn−1×In×μn such that

‖A − B‖F :=
∥
∥
∥A − Q(1) ×1

3 Q
(2) · · · ×1

3 Q
(N)

∥
∥
∥

F
≤ √

N − 1ε, (8.4.1)

with μn ≤ min{I1 . . . In, In+1 . . . IN } and μ0 = μN = 1, where the core tensors
Q(n) ∈ Rμn−1×In×μn satisfy

Q�
n Qn = Iμn, Qn = reshape(Q(n), [μn−1In, μn]), n = 1, 2, . . . , N − 1.

When the TT-rank of A is unknown, Algorithm 8.4.2 is summarized as the
adaptive randomized algorithm for solving Problem 8.4.1.

Algorithm 8.4.2 Adaptive randomized algorithm for TT-approximation

Input: A tensor A ∈ R
I1×I2×···×IN , a positive integer R and the prescribed tolerance ε.

output: Cores Q(1),Q(2), . . . ,Q(N) of the TT-approximation B of the tensor A with approxi-
mate TT-rank {μ1, μ2, . . . , μN−1}.

1: Set the temporary tensor C = A and μ0 = 1.
2: for n = 1, 2, . . . , N − 1 do
3: Implement Algorithm 8.2.1 with the tensor C to generate the columnwise orthogonal matrix

Qk ∈ RInμn−1×k .
4: Set μn = k and form Q(n) = reshape(Qk, [μn−1, In, μn]).
5: Compute C = C ×1 U�.
6: end for
7: Form Q(N) = reshape(C, [μN−1, IN , μN ]) with μN = 1.
8: Return B in TT-format with cores Q(1),Q(2), . . . ,Q(N).

For clarity, we assume μ1 ∼ μ2 ∼ · · · ∼ μN−1 ∼ μ for Problem 8.1.2 in
complexity estimates. Algorithm 8.4.2 requires (N −1)(R+μ) tenvecs and O((N −
1)Iμ2) additional operations. For a given tolerance ε, if the columnwise orthogonal
matrix Q ∈ Rμn−1In×μn satisfies

∥
∥
∥Cn − Cn ×1 (QQ�)

∥
∥
∥

2

F
≤ ε2,
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where Cn ∈ Rμn−1In×In+1×···×IN is generated from Steps 2 to 6 in Algorithm 8.4.2,
for n = 1, 2, . . . , N − 1, then the TT-approximation B with Q(n) ∈ Rμn−1×In×μn

satisfies

‖A − B‖F :=
∥
∥
∥A − Q(1) ×1

3 Q
(2) ×1

3 · · · ×1
3 Q

(N)
∥
∥
∥

F
≤ √

N − 1ε,

with μ0 = μN = 1.

Remark 8.4.1 In practice, when we apply Algorithm 8.4.2, we restrict the approxi-
mation TT-rank {μ1, μ2, . . . , μN−1}, that is, for each n in Algorithm 8.4.2, we shall
give an upper bound for μn with n = 1, 2, . . . , N − 1.

8.5 Numerical Examples

In order to test the algorithms in this chapter, we choose R = 10. We use these
three functions “ttv”, “ttm” and “ttt” in [48] to implement the tensor-vector, the
tensor-matrix and the tensor-tensor products, respectively.

8.5.1 Low Multilinear Rank Approximations

We compare Algorithm 8.2.2 with several known algorithms for computing low
multilinear rank approximations of a tensor via three examples. These algorithms
are:

• Tucker-ALS: higher-order orthogonal iteration [48];
• mlsvd: truncated multilinear singular value decomposition [44];
• lmlra_aca: low multilinear rank approximation by adaptive cross-approximation

[11, 49] and ;
• mlsvd_rsi: truncated multilinear singular value decomposition [44] by a random-

ized SVD algorithm based on randomized subspace iteration [1].

The first two examples are chosen from Caiafa and Cichocki [11]. The form of
the third example is similar to that of [32].

Example 8.5.1 We apply Algorithm 8.2.2 to the Tucker tensors A ∈ RI1×I2×···×IN

(given in Eq. (8.1.1)), where their multilinear rank is {R,R, . . . , R}, by randomly
generating matrices Un ∈ RIn×R and the core tensors G ∈ RR×R×···×R for
different R.

The entries are generated by using Gaussian independent identically distributed
with zero mean and the resulting tensor A is normalized, i.e., A := A/‖A‖F .
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Table 8.1 The relative errors
derived by Algorithm 8.2.2
for the exact representation
case of the random Tucker
tensors with a given
multilinear rank {R,R,R} for
Example 8.5.1

Rank of A Rank of Â Relative error CPU times

10 10 4.4e−15 0.19 s

20 20 4.2e−15 0.25 s

30 30 1.8e−14 0.36 s

40 40 7.8e−15 0.52 s

50 50 8.3e−15 0.65 s

60 60 9.4e−15 0.86 s

70 70 1.4e−14 1.1 s

80 80 1.1e−14 1.3 s

The relative error is defined as

e = ∥
∥A − Â

∥
∥

F
/‖A‖F , (8.5.1)

where Â = A ×1 (Q1Q�
1 ) ×2 (Q2Q�

2 ) ×3 · · · ×N (QNQ�
N) and the columnwise

orthogonal matrices Qn are derived form our Algorithm 8.2.2, Tucker-ALS, mlsvd,
or lmlra_aca.

For N = 3 and {I1, I2, I3} = {100, 100, 100}, suppose that the value of R is
chosen from the set {10, 20, . . . , 80}. When we apply Algorithm 8.2.2 to compute
the low multilinear rank approximation of the tensor A with different R, the relative
errors are shown in Table 8.1. The relative errors were under 10−14, relative to the
maximal attainable machine precision 10−16.

We compare Algorithm 8.2.2 with other algorithms (Tucker-ALS [48], mlsvd and
lmlra_aca [49]) to compute the approximate tensor B of A, where the multilinear
rank {P,P, P } of B satisfies 1 ≤ P ≤ R = 30. For a given positive integer P , we
find three columnwise orthogonal matrices Qn ∈ RIn×P by Algorithm 8.2.2 with
n = 1, 2, 3.

The relative errors given in (8.5.1), and the CPU time of Algorithm 8.2.2, Tucker-
ALS, mlsvd, and lmlra_aca, applied to a multilinear rank {30, 30, 30} random
Tucker tensor, are shown in Fig. 8.1 for P = 1, 2, . . . , 30.

Example 8.5.2 The entries of the testing tensors are generated by sampling some
smooth functions. We analyze the case of applying our Algorithm 8.2.2, Tucker-
ALS, mlsvd and lmlra_aca to find the low multilinear rank approximations for these
testing tensors.

We note that the approximate multilinear rank {P,P, . . . , P } is selected from a
set of integers and the multilinear rank of the testing tensors is unknown.

We set N = 3 and {I1, I2, I3} = {200, 200, 200}. We consider two tensors
generated by sampling two families of smooth functions, respectively, as follows:

aijk = 1

i + j + k
, bijk = 1

ln(i + 2j + 3k)
.

The tensor A is chosen from [11].
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Fig. 8.1 Example 8.5.1 applying Algorithm 8.2.2 to the order-3 tensors (I1 = I2 = I3 = 100): a
randomly generated multilinear rank {30, 30, 30} Tucker tensor. The comparisons with the relative
error and CPU times achieved by Tucker-ALS, mlsvd and lmlra_aca are shown

Fig. 8.2 Example 8.5.2 applying Algorithm 8.2.2, Tucker-ALS, mlsvd and lmlra_aca to the
tensor A

In Figs. 8.2 and 8.3 respectively, the relative errors given in (8.5.1), and the CPU
times of Algorithm 8.2.2, Tucker-ALS, mlsvd and lmlra_aca, applied to A and B,
are shown for P = 1, 2, . . . , 30.



8.5 Numerical Examples 237

Fig. 8.3 Example 8.5.2 applying Algorithm 8.2.2, Tucker-ALS, mlsvd and lmlra_aca to the
tensor B

Example 8.5.3 We present the results of Algorithm 8.2.2 to A ∈ R
I1×I2×···×IN . The

form of A is given as A = B + βN, where B ∈ R
I1×I2×···×IN is given by

B = G ×1 U1 ×2 U2 · · · ×N UN,

with known multilinear rank {R1, R2, . . . , RN }, and N is an unstructured perturba-
tion tensor and β controls the noise level. The entries of the core tensor G, mode-n
factor matrix Un and the perturbation tensor N are randomly drawn from a normal
distribution with mean zero and variance unit.

The resulting tensor A is normalized, i.e., A := A/‖A‖F . The following signal-
to-noise ratio (SNR) measure will be used:

SNR [dB] = 10 log

(
‖B‖2

F

‖βN‖2
F

)

.

Let N = 3, {I1, I2, I3} = {200, 200, 200} and {R1, R2, R3} = {30, 30, 30}.
When we use Algorithm 8.2.2 to find three columnwise orthogonal matrices Qn ∈
R

In×μn , we have μn ≥ Rn. We assume that μn = Rn + 10. The Fit value for
approximating the tensor A is defined by

Fit = 1 − ∥
∥A − Â

∥
∥

F
/‖A‖F ,

where Â = A×1 (Q1Q�
1 )×2 (Q2Q�

2 )×3 (Q3Q�
3 ) is an approximation to the tensor

A and the columnwise orthogonal matrices Qn are derived form Algorithm 8.2.2,
Tucker-ALS, mlsvd, or lmlra_aca. The results of Algorithm 8.2.2, applied to the
tensor A with different noise level, are shown in Fig. 8.4.
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Fig. 8.4 Comparison between Algorithm 8.2.2, Tucker-ALS, mlsvd and lmlra_aca, in term of
mean of Fit and the standard derivation for Example 8.5.3

Algorithm 8.2.2 is better than the existing algorithms. Figure 8.1 shows that
the proposed algorithm is less accurate than and with similar speed to mlsvd.
Figures 8.2, 8.3 and 8.4 show that the proposed algorithm is competitive with but not
convincingly better than existing algorithms. When implementing Algorithm 8.2.2,
we have not utilized higher-level linear algebra subroutines (e.g., BLAS3) or parallel
processors.

Example 8.5.4 The entries of the test tensors are generated by sampling some
smooth functions. We apply Algorithm 8.2.2, the Randomized Tucker decompo-
sition [32, Algorithm 2] and mlsvd_rsi [49] to find the low multilinear rank
approximations for these tensors. The multilinear rank of the tensors is unknown.

Set N = 3 and {I1, I2, I3} = {200, 200, 200}. The test tensor A is defined in
Example 8.5.2. In Fig. 8.5, the relative errors given in (8.5.1), and the CPU times of
our Algorithm 8.2.2, the Randomized Tucker decomposition and mlsvd_rsi, applied
to the tensor A with s = 1, are shown for P = 1, 2, . . . , 30.

8.5.2 Tensor Train Approximation

We have illustrated that it is effective to use Algorithm 8.2.2 to compute the low
multilinear rank approximations of tensors in RI1×I2×···×IN via the some numerical
examples. We give two examples to illustrate the efficiency of Algorithm 8.4.2 for
the approximation tensor train decompositions.
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Fig. 8.5 Example 8.5.4 applying Algorithm 8.2.2, the Randomized Tucker decomposition and
mlsvd_rsi to the tensor A with s = 1

Table 8.2 Example 8.5.5, CPU times with the same relative error level from Algorithm 8.4.2 and
tt_tensor for tensors with generated randomly with TT-rank {R,R,R}
TT-rank 2 4 6 8 10 12

Relative error level 1e−15 1e−15 1e−14 1e−15 1e−13 1e−15

CPU times (Algorithm 3.2) 6.08 s 7.27 s 7.47 s 8.23 s 8.89 s 9.89 s

CPU times (tt_tensor) 53.38 s 61.48 s 53.09 s 82.73 s 61.16 s 106.52 s

Example 8.5.5 We apply Algorithm 8.4.2 to A ∈ R
I1×I2×···×IN with the TT-format,

given in (8.1.2), where their TT-rank is

{R1, R2, . . . , RN−1}

by the random tensors Q(n) ∈ RRn−1×In×Rn with R0 = RN = 1.
The entries are Gaussian independent identically distributed with zero mean and

the resulting tensor A was normalized, i.e., A := A/‖A‖F .

Let N = 4 and {I1, I2, I3, I4} = {100, 100, 100, 100}. We assume the TT-rank
{R1, R2, R3} = {R,R,R}. When we apply Algorithm 8.4.2 and tt_tensor [49] for
the approximate tensor train decomposition of the tensor A, CPU times are shown
in Table 8.2 with the same relative error level.

Furthermore, for a given order-4 tensor A with TT-rank {15, 15, 15}, by applying
Algorithm 8.4.2 and tt_tensor to compute its approximate tensor train approximation
with TT-rank {P,P, P } (P ≤ R), CPU times with the same relative error level are
shown in Table 8.3.
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Table 8.3 Example 8.5.5 for A with TT-rank {R,R,R}, CPU times for the same relative error
level from Algorithm 8.4.2 and tt_tensor for P = 3, 4, . . . , 15

P Relative error level CPU time (Algorithm 3.2) CPU time (tt_tensor)

3 1e−1 5.47 s 56.06 s

5 1e−1 6.22 s 55.03 s

7 1e−1 6.95 s 58.20 s

9 1e−1 7.86 s 56.77 s

11 1e−1 8.61 s 59.67 s

13 1e−1 12.23 s 65.56 s

15 1e−14 13.44 s 111.63 s

We compare Algorithm 8.4.2 with some existed algorithms for computing tensor
train approximations via three examples. These algorithms are:

• tt_tensor: the tensor train approximation the SVDs of the matrices obtained from
the corresponding unfoldings by a successive of projections [21, 50];

• dmrg_cross: DMRG-cross method for the tensor train approximation [50, 51]
and;

• greedy2_cross: the tensor train approximation by the greedy cross interpolation
scheme [50, 52].

Example 8.5.6 The entries of the test tensors are generated by sampling some
smooth functions. For each test tensor, we use the function “tt_tensor” with
accuracy 10−15 in [49] to derive its approximate TT-rank. Based on the approximate
TT-rank, we apply Algorithm 8.4.2 to find the tensor train approximation. We also
compare Algorithm 8.4.2 with “tt_tensor”, “dmrg_cross” and “greedy2_cross”
for finding the tensor train approximation of the test tensors, in terms of CPU times.

The relative error for a tensor train approximation of a tensor in RI1×I2×···×IN is
defined as

e = ∥
∥A − Â

∥
∥

F
/‖A‖F , (8.5.2)

where Â = U(1) ×1
3 U

(2) ×1
3 · · · ×1

3 U
(N) and the the core tensors U(n) are derived

from Algorithm 8.4.2 or tt_tensor.
We assume that the test tensors are chosen from the set RI×I×I×I×I with I =

3, 4, . . . , 30. The entries of three test tensors A and B are

⎧
⎨

⎩

ai1i2i3i4i5 = (−1)i1 ln(i1) + (−1)i2 ln(i2) + (−1)i3 ln(i3) + (−1)i4 ln(i4)+(−1)i5 ln(i5),

bi1i2i3i4i5 = sin(i1 + i2 + i3 + i4 + i5),

where in = 1, 2, . . . , I and n = 1, 2, . . . , 5. The test tensors are chosen from [53]
and [54]. For each I , we can derive the approximate TT-ranks of A and B via the
function “tt_tensor”.
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Fig. 8.6 Applying Algorithm 8.4.2, tt_tensor, “dmrg_cross” and “greedy2_cross” to the tensor A
with unknown TT-rank for Example 8.5.6

Fig. 8.7 Applying Algorithm 8.4.2, tt_tensor, “dmrg_cross” and “greedy2_cross” to the tensor
B with unknown TT-rank for Example 8.5.6

In Figs. 8.6 and 8.7, the relative errors (8.5.2), and the CPU times of Algo-
rithm 8.4.2, “tt_tensor”, “dmrg_cross” and “greedy2_cross”, applied to the tensors
A and B, are shown for I = 3, 4, . . . , 30.
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Fig. 8.8 Applying Algorithm 8.4.2 and tt_tensor to the sparse tensor A with 20 I nonzero entries,
for I = 5, 10, . . . , 40

Table 8.4 Example 8.5.7, CPU times and relative errors with the same approximate TT-rank
from Algorithm 8.4.2 and tt_tensor for the sparse tensors A with 40K nonzero entries, for
K = 1, 10, 100, 1000, 1000

The values of K 1 10 100 1000 10,000

CPU times (Algorithm 8.4.2) 234.89 s 217.43 s 222.86 s 219.30 s 229.74 s

Relative error (Algorithm 8.4.2) 1.32e−15 0.46e−15 8.65e−14 1.23e−10 4.58e−13

CPU times (tt_tensor) 408.16 s 394.15 s 416.48 s 385.17 s 393.56 s

Relative error (tt_tensor) 1.62e−15 0.65e−15 5.72e−15 1.10e−14 1.17e−14

Example 8.5.7 In the previous two examples, the test tensors are dense. In this
example, we apply our Algorithm 8.4.2 to compute the tensor train decomposition
of some sparse tensors with unknown TT-rank.

We set In = I with n = 1, 2, . . . , 5 and use the function “sptenrand” in the
MATLAB Tensor Toolbox [48] to generate the test sparse tensors, with

A = sptenrand([I, I, I, I, I ], 40 K)

creating a random sparse tensor A with approximately 40 K nonzero entries,
where K is a positive integer. The relative errors (8.5.2), and the CPU times of
Algorithm 8.4.2 and tt_tensor, applied to the sparse tensors A ∈ RI×I×I×I×I with
different I , where the number of nonzero entries in A is linear with respect to I , are
shown in Fig. 8.8.

We assume that I = 40. For different positive integer K , when applying
Algorithm 8.4.2 and tt_tensor to the sparse tensor A ∈ R40×40×40×40×40 with 40 K

nonzero entries, CPU times and relative errors with the same approximate TT-rank
are shown in Table 8.4.
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Table 8.5 Example 8.5.8. For deriv2 and phillips, ε = 10−4; the another parameter in deriv2
is 1

Matrix type Num_c CPU_t Err ANum_c ACPU_t AErr

baart 9 0.43 s 1.06e−11 9 0.34 s 1.05e−11

deriv2 207 8.20 s 9.00e−5 122 4.53 s 8.63e−5

foxgood 38 1.44 s 1.81e−11 24 0.97 s 2.67e−11

heat 507 23.44 s 2.76e−12 431 18.62 s 8.33e−11

phillips 360 17.02 s 9.46e−5 214 8.90 s 8.82e−5

shaw 27 0.99 s 1.27e−11 17 0.64 s 1.07e−11

As shown in Figs. 8.6 and 8.7, Algorithm 8.4.2 is better than tt_tensor and
dmrg_cross, but worse than greedy2_cross. Note that Algorithm 8.4.2 have not
utilized higher-level linear algebra subroutines (e.g., BLAS3) or parallel processors.

8.5.3 Comparison Algorithm 8.2.1 with Different “take_max”

Example 8.5.8 In this example, we analyze the difference between Algorithm 8.2.1
and Algorithm 8.2.1A (our Algorithm 8.2.1 with Procedure A) via some testing
matrices. The testing examples baart, deriv2, foxgood, heat, phillips, and shaw
are from Hansen Tools [34].

For a given A ∈ RI×J with I ≥ J , when we apply Algorithm 8.2.1 (or
Algorithm 8.2.1A) to find a columnwise orthogonal matrix Q such that

∥
∥
∥A − QQ�A

∥
∥
∥

F
≤ ε, (8.5.3)

we use “Num_c”, “CPU_t” and “Err” (or “ANum_c”, “ACPU_t” and “AErr”) to
denote the number of the columns of Q, CPU times and error ‖A − QQ�A‖F ,
respectively. We assume that ε = 10−10 and I = J = 512. The results are shown
in Table 8.5.

8.6 Conclusions and Further Research

In this chapter, we develop several adaptive randomized algorithms for the low
multilinear rank approximations and the tensor train approximations. The idea orig-
inates from randomized algorithms for computing partial matrix decompositions.
For a given tensor in RI1×I2×···×IN , the main computational cost for randomized
algorithms is the tensor-vector products.

As we know, the tensor train format is a special case of the Hierarchical
Tucker format. We can use the idea of Algorithm 8.4.2 for the tensor train



244 8 Randomized Algorithms

approximation to design an adaptive randomized algorithm for the Hierarchical
Tucker approximation, and its probabilistic error bound can be also derived from
Theorem 8.3.3.

As illustrated by Example 8.5.8, Algorithm 8.2.1 with “take_max=True” is
superior to Algorithm 8.2.1 with “take_max=False”: CPU times and storage size.
However, we can not prove that rigorously.

For the low multilinear rank approximations of real tensors, as shown in [55],
in terms of CPU time, Tucker-SVD is faster than Algorithm 8.2.2; as shown in
[56], in terms of relative error, Tucker-pSVD is better than Algorithm 8.2.2. More
randomized algorithms for the low multilinear rank approximations of real tensors
should be investigated in the near future.
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