Maolin Che
Yimin Wei

Theory and
Computation
of Complex
Tensors and its
Applications

2 Springer



Theory and Computation of Complex Tensors
and its Applications



Maolin Che ¢ Yimin Wei

Theory and Computation
of Complex Tensors
and 1ts Applications

@ Springer



Maolin Che Yimin Wei

School of Economics Mathematics School of Mathematical Sciences
Southwestern University of Finance Fudan University
and Economics Shanghai, China

Chengdu, Sichuan, China

ISBN 978-981-15-2058-7 ISBN 978-981-15-2059-4  (eBook)
https://doi.org/10.1007/978-981-15-2059-4

© Springer Nature Singapore Pte Ltd. 2020

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore


https://doi.org/10.1007/978-981-15-2059-4

Preface

This book can be divided into five categories based on the main purposes: (1) the
development of tensor spectral theory; (2) the study of tensor complementarity
problems using structured tensors; (3) the development and enrichment of the theory
of nonnegative tensors; (4) the presentation of new numerical algorithms for solving
the real tensor rank-one approximation and computing the US- or U-eigenpairs of
complex tensors; (5) the study of randomized algorithms for the computation of the
approximate Tucker and Tensor Train decompositions.

There are eight chapters in this book. In Chap. 1, we give some examples to
illustrate that tensors can be abstracted from some real and mathematical objects.
Some basic operations and definitions of tensors, for example, tensor-matrix multi-
plication, the Frobenius norm and inner product of tensors, rank-one and symmetric
tensors, are introduced. We also provide a summary of the relevant background for
the tensor spectral theory, the Perron—Frobenius theorem of nonnegative tensors,
and the tensor rank-one approximation problem.

In Chap.2, we generalize the pseudo-spectral theory of matrices to tensors.
We obtain the fundamental properties of the tensor e-pseudo-spectrum, leading
to alternative definitions of the tensor e-pseudo-spectrum. We also consider the
stability of homogeneous dynamical systems. Similarly, we derive the fundamental
properties for the e-pseudo-spectrum of tensor polynomial eigenvalue problems.
Furthermore, we discuss the implications of the e-pseudo-spectrum on computing
the backward errors of an approximate eigenpair of a tensor polynomial and the
distance from a regular tensor polynomial to its nearest irregular tensor polynomial.

In Chap.3, we analyze the perturbation of tensor eigenvalue problems. We
consider the first-order perturbation results for the algebraically simple Z- and
H-eigenvalues of tensors and H-eigenvalues of tensor polynomials with relative
Frobenius normwise or componentwise perturbations. Based on the perturbation
for the algebraically simple Z-eigenvalue of a symmetric real tensor and mode-
symmetric embedding, we obtain the perturbation of the algebraically simple
singular value of a real tensor. Specifically, we focus on the perturbation for the
smallest eigenvalue of an irreducible and symmetric nonsingular M-tensor for
relative componentwise perturbations.
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In Chap. 4, we first analyze the first-order necessary conditions for the solution of
the tensor complementarity problem. From the properties of copositive tensors, we
prove that the problem with copositive tensors has a nonempty and compact solution
set. We also consider a special case via structured tensors.

In Chap. 5, we introduce the sign nonsingular tensors and derive the relationship
between the combinatorial determinant and the permanent of nonnegative tensors.
We generalize the results from doubly stochastic matrices to totally plane stochastic
tensors and obtain a probabilistic algorithm for locating a positive diagonal in a non-
negative tensor. We obtain a normalization algorithm to convert some nonnegative
tensors to plane stochastic tensors. We obtain a lower bound for the minimum of the
axial N-index assignment problem using the set of plane stochastic tensors.

Chapter 6 deals with the local optimal rank-one approximation of a real tensor
via neural networks. We prove that the solution of the neural network is locally
asymptotically stable in the sense of Lyapunov stability theory. We define the tensor
restricted singular pairs and present several numerical algorithms for computing
them. Similarly, we use the neural networks for the computation of the local optimal
generalized H-eigenpairs of symmetric-definite tensor pairs.

Chapter 7 presents the iterative algorithms (QRCST or QRCT) for computing
the US- and U-eigenpairs of complex tensors. Specifically, we derive a higher order
power type method for computing a US- or a U-eigenpair, similar to the higher-order
power method for computing the best rank-one approximation of a real tensor.

In Chap. 8, we design adaptive randomized algorithms for computing the approx-
imate tensor decompositions. For a low multilinear rank approximation of a real
tensor with unknown multilinear rank, we analyze its probabilistic error bound
under certain assumptions. Finally, we also consider the tensor train approximations
of the tensors. Based on the bounds of the singular values of sub-Gaussian matrices
with independent columns or independent rows, we analyze these randomized
algorithms. Several illustrated numerical examples are provided.

Chapters 2 and 3 are based closely on [1-3]. The main content in Chap. 4 comes
from [4]. Chapters 5, 6, and 7 are adopted from [5—7]. Chapter 8 is from [§].

In this book, the computations are carried out in MATLAB Version 2013a and
the MATLAB Tensor Toolbox [9] on a laptop with an Intel Core i5-4200M CPU
(2.50 GHz) and a 8.00 GB RAM. All floating point numbers in each example have
four digits after the decimal point. For A € C/1*2X*IN 'we assume that “all i,,”
and “all n” mean i, = 1,2,..., [ andn = 1,2,..., N, respectively; for A €
CTn,1, we assume that “all i,,” means i, = 1,2,..., [ for all n. We assume that
“all I” means “/ =0,1,...,L”.

We would like to thank Prof. Andrzej Cichocki for computing the tensor rank-one
approximation via neural network models, Prof. Guoyin Li for the tensor pseudo-
spectral theory, and Prof. Changjiang Bu for the study of plane stochastic tensors.

We also thank Prof. Liqun Qi of the Hong Kong Polytechnic University, who
leads us to the research of tensor spectral theory and always encourages us to explore
the research. We would like to thank Prof. Eric King-wah Chu and Prof. Sanzheng
Qiao, who read this book carefully and provide feedback during the writing process.
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Chapter 1 )
Introduction Check for

An increasing number of applications in signal processing, data analysis and
higher-order statistics, as well as independent component analysis [1-5] involve
the manipulation of data whose elements are addressed by more than two indices.
In the literature, these higher-order extensions of vectors (first-order) and matrices
(second-order) are called higher-order tensors, multi-dimensional matrices, or
multiway arrays.

Tensor problems have wide applications in chemometrics, signal processing and
high order statistics [4]. For the theory and applications of tensors, we refer to
Comon et al. [6], Kolda and Bader [7], Cichocki et al. [8], Yang and Yang [9],
Qi and Luo [10], Wei and Ding [11], and Qi et al. [12].

We use C or R to denote the complex or real field. A tensor is an Nth-order
array of numbers denoted by script notation A € C/1*2X*IN with entries given
by aii,..iy € C for all i, and n. When all the I, are the same, i.e., I, = I for all
n, A e C>2xxIN i called an Nth-order /-dimensional complex tensor. We use
RTy. 1 (or CTy, 1) to denote the set of all Nth-order /-dimensional real (or complex)
tensors.

1.1 Examples for Tensors

Tensors can be abstracted from some real and mathematical objects.

Example 1.1.1 (Homogeneous Polynomials) Given ¢ € R/, the first-degree homo-
geneous polynomial with respect to x € R’ can be represented as ¢'x =
c1x1 + caxa + -+ + cyx7. Given A € R/ the second-degree homogeneous

polynomial with respect to x € R/ andy € R’ can be represented as x' Ay =
1 J
Dimt 21 GijXiYj-

© Springer Nature Singapore Pte Ltd. 2020 1
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In general, the Nth-degree homogeneous polynomial, with respect to x; €
R, x; e R™2, ... xy € RV, can be denoted by

L I

Iy
pPN(X1,X2,...,XyN) = E Z E Qijin.inX1,i1X2,ir -+ - XN,iy s

i1=lix=1 in=1

where a;,;,...i,y 15 the coefficient of the term x1 ;; x2,;, . . . XN iy ID pN (X1, X2, ..., XN)
and x, ;, is the i, th entry of x,, for all i, and n. If we set a tensor A € RIxxxIy
such that its (iy, i2, ..., Iy)-entry is a;,;,...iy, then the polynomial can be expressed
as

T T T
PN(X1,X2, ..., Xy) = A X1 X] X2Xy -+ XN Xp.

The tensor-vector multiplication will be introduced in the next section.

Example 1.1.2 (The Discretization of Multivariate Functions) Suppose that

fx,y,2) = g(x,y,2) =cos(x +y +2),

x+y+z’
h(x,y,z) =exp((=0.01 +4m)(x + y + z—2))+exp((—=0.02 + 4.2m0)(x + y +z — 2)),

where 1 < x,y,z <2and (= +/—1.

Let {x1,x2,...,x7} be any monotonically increasing sequence in the open
interval (1, 2). When the values of x, y and z are chosen from {x1, x2, ..., x7},
we define three tensors A, B € RT3 ; and C € CT3,; such that

ajjk = f(xi, xj, %), bijk = g(xi, xj, x1), cijk = h(xi, xj, xp).

From the definitions of f, g and A, it is clear that A € RT3 ; is symmetric and
positive, 8 € RT3 1 is symmetric but not nonnegative and C € CT3 ; is complex
symmetric.

Example 1.1.3 (The Associated Tensors of Uniform Hypergraphs) Analogous to
spectral graph theory [13], adjacency tensors and Laplacian tensors have been
introduced in spectral hypergraph theory. The notations related to the hypergraph
can be referred to [14].

A hypergraph H is a pair (V, E), where E C (V). The elements of V = V(H)
are referred to as vertices and the elements of E = E(H) are called hyperedges.
A hypergraph H is said to be N-uniform for an integer N > 2, if, for all e €
E(H), the cardinality of e is N. Such an N-uniform hypergraph is also called an
N-graph.
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Fig. 1.1 Examples of the third-order tensor data

For a given N-uniform hypergraph H = (V,[E), the adjacency tensor
A e RTy 1, with respect to H, is defined as [15-18]:

1 I, if{i1,iz,...,in} €E;
Aijiy...iy = .
(N=D!|0, otherwise.

Obviously, a;,i,..iy = 0 if at least two indices are the same. Note that A is
symmetric and nonnegative. The degree of i € V is defined as d(i) = |{ep :

i € p € V}|. We assume that every vertex has at least one edge. Thus, d(i) > 0
for i € V. The degree tensor D(H) is an Nth-order /-dimensional diagonal
tensor, with its main diagonal elements as d(i). The Laplacian tensor £ of H
is defined by D(H) — A. The signless Laplacian tensor £ of H is defined
by D(H) + A [19-22]. Note that £ is symmetric and nonnegative and £ is
symmetric.

Example 1.1.4 (Description of Complex Social Networks [23]) Third-order tensors
are three-dimensional (3D), with some examples shown in Fig. 1.1. The left part
of Fig. 1.1 illustrates social network analysis data organized in three modes of
conference, author and keyword. The web graph mining data organized in three
modes of source, destination and text is demonstrated in the middle part of Fig. 1.1.
Lastly, the environmental sensor monitoring data organized in the three modes of
type, location and time is demonstrated in the right part of Fig. 1.1.

Generally speaking, there are two kinds of tensors: a data structure, which admits
different dimensions according to the complexity of the data; or an operator, where
it possesses different meanings in different situations. All tensors mentioned in this
book can be viewed as a data structure.

1.2 Basics of Tensors

Throughout this book, I, J, and N are reserved to denote the index upper
bounds, unless stated otherwise. We use small letters x, u, v, ... for scalars, small
bold letters x, u, v, ... for vectors, bold capital letters A, B, C, ... for matrices,
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and calligraphic letters A, B,C, ... for higher-order tensors. This notation is
consistently used for lower-order parts of a given structure. For example, the entry
with row index i and column index j in a matrix A, i.e., (A);;, is written by a;; (also
(x); = x; and (A)iyiy...ixy = Gijiy...iy)-

We use - 1, -, | -] and -* to denote the transpose, complex conjugate, element-wise
modulus and complex conjugated transpose, respectively. We use || - |2 and || - || r to
denote the 2-norm and the Frobenius norm, respectively. We use 3%(z) and J(z) to
denote the real and imaginary parts of a vector z € C/, respectively. The argument
of z € C is denoted by arg(z) € (—m,m]. Also, 0; € C is the zero vector. We
use I; € C'*! and 0;,; € C'*/ to denote the identity and the zero matrices,
respectively. Lastly, ¢ = +/—1 and S; are the imaginary unit and the symmetric
group on the set {1, 2, ..., I'}, respectively.

We use parentheses to denote the concatenation of two or more vectors, e.g.,
(a, b) is equivalent to (a’,b")", wherea € C/ and b € C’ are two column
vectors. Given two vectors X,y € R x > y and X > y mean x; > y; and x; > y;,
respectively, for all i. Similarly, we can also define x < y and x <y for any x,y €
R’. Finally, we introduce the following notations:

I xIpx--x1I .
RPN = (A e RIIXIN g i > 0,0 =1,2,..., L,n=1,2,..., N}

RIG2CxIN g e RIXDXXIN g 0> 0,0, = 1,20, L,n=1,2,..., N},
. . L1 xIpx--xIy .

is called the set of all nonnegative tensors and R\ is called
the set of all positive tensors in R */2X*IN 1T particular, when N = 1, we have
R ={xeR :x>0,i=12,....,}and R, :={xe R : x; >0,i =
1,2,...,I}. Foragivenx € c!, diag(x) denotes the diagonal matrix whose main
diagonal entries are the entries of x.

I xIpx--xIy
R-‘r

1.2.1 Basic Operations

The mode-n product [7] of a complex tensor A € C/1*2X*IN by a matrix B €
C/n*In denoted by A x, B, is a tensor C € Cl1>X > In—1XJnxIn1xxIN 'wyith entries

In
Ciy.vip_1 jing1..in = E Qiyi...ix Djiy

in=1

for all i, and n.
In particular, the mode-n multiplication of a complex tensor A €
by a vector x € C! is denoted by Ax,x. If we set C = A x, X' €

(Cll X1 x---x1Iy
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Clhix -1 xInp 1 XIN _then we have element-wise [7],

Iy
Citodp—tiny1.in = E :ailmin—linin+l~~iinn‘

in=1

For any given tensor A € CN*/2%*IN and the matrices F € C/"*/» and G €
C/m*Im one has [7]

A F) Xy G= (A Xy G) xy F=Ax;, F % G
Ax, F) x, G=Ax, (G-F), with J, = I,

with different integers m and n, where ‘-’
matrices.

For a given x € C! and A € CTy,;, we introduce the following two notations
[24]:

represents the multiplication of two

AxN ! :=ﬂxsz~-~ xNxT, AxN :=J7l><1xT xsz~-~ xNxT.
Scalar products and the Frobenius norm of a tensor are extensions of the well-

known definitions, from matrices to tensors of arbitrary order [7, 25]. Suppose that
A, B € ClirxhxxIN the gcalar product (A, B) is defined as [25]

I I Iy

(A, B) = Z Z e Z Diviy..inQirig...in »

i1=1liy=1 in=1

and the Frobenius norm of a tensor A is given by || Al r = /(A, A).

1.2.2 Structured Tensors

We recommend [10] for a thorough survey of structured tensors. For given N vectors
x, € CI with all n, if the entries of A € CH*2XXIN can pe represented as
Qijis...iy = X1,i;X2,iy - . - XN,iy, Where x, ; is the i,th element of x,, then A is a
complex rank-one tensor [26, 27] given by

A=X13X Q- Xy,

where “®” denotes the outer (tensor) product. If x,, € R’ with all n, then A is a
real rank-one tensor.

For any A € CTy,1, A is complex symmetric [28], if a;;,. iy 1S invariant by
any permutation w € Sy, that is, a;,..iy = Qi (1yin @ in () for all i,, and n. For any
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A € RTy, 1, Ais real symmetric [24,29], if a;,;,...;, 1S invariant by any permutation
7, that is, ajyiy..iy = Qi (1yin@)in () for all i, and n. For a given vector x € Cl,if
the entries of A € CTy,; can be represented as

Ajjiy..iy = XiyXip « - - Xiy

where x;, is the i, th element of x, then A is a complex symmetric rank-one tensor
given by

If x € R, then x®¥ is a real symmetric rank-one tensor.

For any given symmetric tensor A € RTy.; with an even N, if Ax" > 0 for all
nonzero x € R’ then A is positive definite [24]; if AxN > 0 forall x € R?, then A
is positive semi-definite [24]; if AxY > 0 for all nonzero x € RZ, then A is strictly
copositive [30]; if AxN > 0 forall x € RL, then A is copositive [30].

When we consider positive definite tensors and copositive tensors, symmetry is
unnecessary. According to [31], we can relate a tensor A € RTy, ; to a symmetric
tensor 8 € RTy 1 as follows. For any A € RTny,, there is a unique symmetric
tensor 8 € RTy,; such that AxN = BxN forall x € R.

We call an index set {i1,i2,...,iy} a permutation of another index set
{ki, ko, ..., ky} if the former is a rearrangement of the latter, denoting this
operation by m, that is m(ky, k2, ..., ky) = {i1,i2,...,in}. Denote the set of
all distinct permutations of an index set {k1, k2, ..., kny} by X(k1, ko, ..., kn).

Note that | X (k1, k2, . . ., kn)|, the cardinality of ¥ (k1, k2, . .., k), is variant for
different index sets. Then the entries of 8 are given as

b Zne):(kl,kz,m,kN) A (ky.ka,....kn)
Jij2--JN =
| X k1, k2, ... k)]

for all i,,, j, and n. Here, we call 8 a symmetrization of A.

Suppose that A € CTN’I, the I—tuple {alj'[z(l)...J'[N(l)v 275 (2)..tN (2)s -+ - 5
Almy D).ty (D) 18 a diagonal [32] of the tensor A associated with 7w, € S; and
n=2,3,...,N. In particular, {a11.1,a2..2,...,aj;..1} is the main diagonal of
the tensor A. A diagonal is positive, if its elements are positive.

The product ]_[l-l=1 Aizy(iy...my () 18 the diagonal product [32] of the tensor A asso-
ciated with 7, € S; withn = 2,3, ..., N. Meanwhile, the sum Y"7_, dix,(i)..zn i)
is the diagonal sum of A associated with 7, € S; withn =2,3,..., N.

A tensor A € RTy j is nonnegative [33], if the elements are nonnegative, and we
denote the set of all nonnegative tensors by NTu j; atensor O € RTy j is diagonal
[24], if the entries not in the main diagonal are zero. In particular, if the entries on
the main diagonal of any diagonal tensor A € CTy s are 1, then A is the unit tensor
or the identity tensor, denoted by 7.
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Analogous to the reducible matrices [34, Chapter 2], A € RTy ; is reducible
[33], if there exists a nonempty proper index subset I C {1, 2, ..., I} such that

aj,..iy =0, foralliy eland iy, ... iy ¢ L.

Otherwise, A is irreducible. Similarly, we can define the irreducibility of any A €
(Cll ><12><---><1N.

Qi [24] introduces the principal symmetric sub-tensors of any symmetric tensor
A € RTy, and proves that if A is positive definite, then all of its principal
symmetric sub-tensors are also positive definite. Now, we introduce the definition
of a sub-tensor of A € CH*12>xxIn

Suppose that L, < I,, are positive integers for all n. We use Q. , to denote the
set of C;‘n" increasing sequences w = (w1, @2, ..., wr,) suchthat | < w; < wy <

L ! .
. < o, < I, where Cln" = Ln!(I{ln—Ln)!' Ifa, € Qp,.1,, where P, < I, is a

positive integer with n = 1,2, ..., N, then Alay|az] . .. |ay] € CH*P2xxPN j5 5
sub-tensor of A, whose (i1, iz, ..., iy)-entry is Aoy @2 iy oo,
The (i1, .5 im—1>im+1»---»in—1,in+1, - - -, iy)th mode-(m, n) slice of A €

Clixbx-xIN i defined as a matrix in C/n*In, denoted by AL, equaling A x|

T T T T
iy = Xmd iy Xt Gy X Gy Xl Cgy o XN
e; in where e, ;, is the i, th column of I;, € RZ>In for all i, and m < n. Note that
for a given i, all the (i, i, . . ., i)th mode-(m, n) slices, or the ith mode-(m, n) slices,

of any complex symmetric tensor A € CTy,  are the same complex symmetric
matrix with all m < n.

1.3 Basic Results

1.3.1 Tensor Spectral Theory

The eigenvalue problem of tensors can be regarded as the generalizations of the
eigenvalue problem of matrices (i.e., matrix standard eigenvalue problems, matrix
generalized eigenvalue problems and matrix polynomial eigenvalue problems).The
eigenvalue problem of tensors are widely used in polynomial optimization [35],
spectral hypergraph theory [16, 36], higher-order Markov chain [37], image science
[38] and other fields. Very recently, the eigenvalue problem of tensors, positive
semi-definite tensors and copositive tensors have been used to study some physical
problems, such as the quantum spin state, the quantum field theory and liquid
crystals [39—41].

In 2005, Qi [24] defines two kinds of eigenvalues and investigates relative
results similar to the matrix eigenvalues. Independently, Lim [29] proposes another
definition of eigenvalues, eigenvectors, singular values, and singular vectors for
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tensors based on a constrained variational approach, in the flavor of the Rayleigh
quotient for symmetric matrix eigenvalues [42, Chapter §].

Definition 1.3.1 ([24]) Suppose that A € RTy,; is symmetric. If there exist a
nonzero vector x € C! and A € C such that AxY ! = 2xI¥V -1 where x!IV-11 =
(x{V*1 5717 R xﬁvfl)T, then (X; x) is called an eigenpair of A. The spectrum
A (A), and the spectral radius p (A) of A are defined as

A(A) = {1 : Ais an eigenvalue of A}, p(A) = max{|r]|: X € A(A)}.

Moreover, if x € R! and A € R, then (A; x) is called an H-eigenpair of ‘A.

Definition 1.3.2 Suppose that A € RTy ; is symmetric. If there exist a nonzero
vector x € C! and A € C such that AxV~! = Ax and x*x = 1, then (}; x) is called
an E-eigenpair of A [43, Definition 5.1.1].

Moreover, if x € R! is unit and A € R, then (A; x) is called a Z-eigenpair of A.

Note that the E-eigenpair of any real symmetric tensor, defined by Definition 1.3.2,
is different from the E-eigenpair in [24].

In 2008, Qi et al. [44] introduce the D-eigenvalues for a diffusion kurtosis tensor
and indicate that the largest, the smallest and the average D-eigenvalues correspond
with the largest, the smallest and the average apparent kurtosis coefficients of a
water molecule in the space, respectively. The strong ellipticity condition plays
an important role in nonlinear elasticity and in materials. In 2009, Qi et al. [45]
define the M-eigenvalues for an elasticity tensor and prove that the strong ellipticity
condition holds if and only if the smallest M-eigenvalue is positive. Hu et al. [35]
investigate properties of the determinants of tensors, and their applications. It is
pointed out in [33, 46—48] that the generalized eigenvalue framework unifies several
definitions of eigenvalues of tensors, such as eigenvalues and H-, E-, Z- and D-
eigenvalues. Ding and Wei [11, 49] focus on the properties and perturbations of the
spectra of regular tensor pairs and extend several classical results from matrices or
matrix pairs to tensor pairs.

Kolda and Mayo [43] derive a shifted symmetric higher-order power method
(SS-HOPM) for computing the Z-eigenpairs of real symmetric tensors and indicate
that SS-HOPM can be viewed as a generalization of the power iteration method
for matrices or the symmetric higher-order power method. Kolda and Mayo [48]
present the adaptive power method for solving the tensor generalized eigenvalue
problem associated with symmetric positive tensor pairs, which is an extension of
SS-HOPM for finding the Z-eigenpairs. Cui et al. [47] propose a new approach for
computing all real eigenvalues (that is, Z- and H-eigenvalues) of real symmetric
tensors sequentially, from the largest to the smallest. Chen et al. [50] derive an
upper bound for the number of equivalence classes of generalized tensor eigenpairs
using mixed volumes. Based on this bound and the structures of tensor eigenvalue
problems, they propose two homotopy algorithms for the tensor eigenvalue problem.
Using the state-of-the-art L-BFGS approach, Chang et al. [51] develop a first-
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order optimization algorithm for computing the H- and Z-eigenvalues of large scale
sparse real symmetric tensors. Batselier and Wong [52] derive the QR algorithm for
computing the Z-eigenpairs of a real symmetric tensor, based on the symmetric QR
algorithm for the real symmetric matrix eigenvalue problem.

Chang et al. [33] generalize the Perron-Frobenius theorem for nonnegative
matrices to the class of nonnegative tensors. We state the Perron-Frobenius theorem
for nonnegative tensors as follows:

Theorem 1.3.1 If A € RTy | is nonnegative, then there exist Ao > 0 and a nonzero
X0 € Rfr such that

AxY T = pox[V . (1.3.1)

Theorem 1.3.2 If A € RTy,; is irreducible nonnegative, then (Ao; Xo) in (1.3.1)
satisfies: (1) Lo is an H-eigenvalue; (2) all components of Xo are positive; (3) if A is
an eigenvalue with nonnegative eigenvector, then .. = Ao, moreover, the nonnegative
eigenvector is unique up to a multiplicative constant; (4) if A is an eigenvalue of A,
then || < Ao.

More similar results can be found in [53, 54]. Ng et al. [37] derive an iterative
method (denoted by NQZ) for computing the spectral radius of an irreducible
nonnegative tensor. Zhang and Qi [55] establish an explicit linear convergence rate
of the NQZ method for nonnegative tensors under certain conditions. Liu et al. [56]
propose an inverse iterative method for computing the Perron pair of an irreducible
nonnegative third-order tensor and prove that this method converges quadratically
and is positivity preserving in the sense that the vectors approximating the Perron
vector are strictly positive in each iteration. By combining the idea of Newton’s
method with the idea of the Noda iteration, Liu et al. [S7] present a Newton-Noda
iteration (NNI) for computing the Perron pair of a weakly irreducible nonnegative
tensor. A survey on eigenvalues of nonnegative tensors can be found in [58]. Li
and Ng [59, 60] extend the well-known column sum bound of the spectral radius
for nonnegative matrices to the tensor case, and also derive an upper bound of the
spectral radius for a nonnegative tensor via the largest eigenvalue of a symmetric
tensor. Chen et al. [61] introduce three new classes of symmetric nonnegative
tensors and discuss their properties and applications in the context of polynomial
and tensor optimization.

1.3.2 Real Tensor Rank-One Approximations

The rank-one approximation of a real tensor is a special case of tensor low-rank
approximations. The common tensor low-rank approximations consist of approx-
imated canonical polyadic (CP) decompositions, approximated Tucker decom-
positions and approximated tensor train (TT) decompositions. We recommend
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[7, 62, 63] and their references for thorough surveys of these three types of tensor
decompositions. Note that when the order of tensors is two, then these three tensor
decompositions reduce to the singular value decompositions (SVD). However,
when the order of the tensors is larger than 2, these three kinds of tensor low-
rank approximations have essential differences. The low CP-rank approximation
is generally ill-posed [64] for the case of CP-rank larger than 1, contrary to the low
Tucker-rank approximation.

The problem of the best rank-one approximation of A € R/1>*2X*IN js to find
areal scalar o € R and N unit vectors x, € R’ with all # to minimize

L I Iy

2
Z Z e Z @iiy..iy — 0 - (X1,i1X2,iy - - - XN,iy )75

i1=lix=1 in=1

where x,, ;, is the i, th element of x,, € R’ forall i,, and n, and o € R. Note that the
best tensor rank-1 approximation is in fact always well-posed. The Kurash-Kuhn-
Tucker (KKT) conditions for the rank-one approximation of real tensors are given
below.

Definition 1.3.3 ([29]) Suppose that x, € R satisfies ||x,]lo = 1 with all

nand o € R. For a given A e RI2XXIN if (5:x1,Xa,...,Xy) solves

the following system of nonlinear equations F(Xi,X2,...,Xy)—y = 0X, with
T T T T

F(X1,X2, ..., XN)op = A X1 X| -+ X1 X, Xpil X, XN Xy, then o

and the unit vectors X, are a singular value of A and the mode-n singular vector
associated to o, respectively.

Another analogue of the Perron-Frobenius theorem is proved for nonnegative
normalized singular pairs in [64], (0; X1, X2, ..., Xx), defined in Definition 1.3.3,
is called the normalized singular pair of A. For all n, when the entries of u,
are nonnegative, (o; X1, X2, ..., Xy) is called the nonnegative normalized singular
pair of A. The singular value and singular value inclusion sets for tensors are
investigated in [65].

There are several numerical methods for computing a tensor rank-one approxi-
mation, such as the alternating least squares (ALS) or higher-order power method
(HOPM) [26, 27], the truncated higher-order singular value decomposition, opti-
mization methods based on the product of several Grassmannian manifolds [66—68],
semi-definite relaxation methods [69], and sequential rank-one approximation
and projection [70]. Recently, Jiang and Kong [71] study the uniqueness of the
best rank-one approximation of a tensor under the Frobenius norm. Espig and
Khachatryan [72] analyze the convergence of the alternating least squares algorithm.
For applications of best rank-one and low multilinear rank approximations, we refer
to Cichocki et al. [2], Yang et al. [73], Konakli and Sudret [74], Shah et al. [75], da
Silva et al. [76] and the references therein. Applications in machine learning can be
found in [77-79].

Many scholars have researched the computation of the symmetric rank-one
approximations of real symmetric tensors; see Friedland [80], Kofidis and Regalia
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[81], Qi [82], Qi et al. [83], Hu et al. [84], Ni and Wang [85], Wang and Qi [86],
and Jiang et al. [87] and the references therein.

For a given A € RN *11x12xD2 if the entries of A satisfy the symmetric property:
Qitisisiy = Qisivizia = Qiyinigiz With 11,72 = 1,2,..., [ and i3,i4 = 1,2,..., D1,
then we call A partially symmetric.

The fourth-order partially symmetrity have received much attention [45, 88—93].
Zhang et al. [94] prove that the best rank-one approximation of a symmetric tensor
is its best symmetric rank-one approximation. Similarly, we can prove that the
best rank-one approximation of a fourth order partially symmetric tensor is its best
partially symmetric rank-one approximation. The rank-one approximation problem
of a partially symmetric tensor A € RN */1x12%12 j5 to find a real scalar o € R and
two unit vectors x,, € R’ with n = 1, 2 to minimize

I b
2
Z Z (ai|i2i3i4 — 0 - (xl,ilxl,i2x2,i3x2,i4)) . (132)
i1,ip=113,ig=1

The minimization problem (1.3.2) is equivalent to finding two unit vectors X, €
R (|xyll2 = 1;n = 1, 2) to maximize

max | AXTX3|, (1.3.3)
with ﬂx%x% = AXq Xir X2 Xir X3 x;— X4 x;— . The biquadratic optimization problems
arise from the strong ellipticity condition problem in solid mechanics [95-98] and
the entanglement problem in quantum physics [88, 99]. Before considering the KKT
conditions for the minimization problem (1.3.2), we introduce two notations:

ﬂx%xz =A X x]— X2 Xir X4 x;r, ﬂxlx% =Axy Xir X3 X;r X4 x;—.
For any maximizer (X1, Xxp) of (1.3.3), by the optimality theory [100], there exist
A, 0 € R such that

AKXy = 0Xg, AxX; = Ax1, [[x1ll2 = [x2]2 = 1. (1.3.4)

The optimal conditions can further be simplified with (1.3.4)and A = 0. If 0, X1
and x, are real solutions of (1.3.4), then o is said to be an M-eigenvalue of ‘A, and
x] and x; are said to be the first and the second (left and right in [45]) M-eigenvector
of A, associated with o, respectively.

There are several numerical methods for solving the minimization prob-
lem (1.3.2), such as ALS or HOPM [92] and semi-definite programming (SDP)
relaxations [93].
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1.3.3 Complex Tensor Rank-One Approximations

Entanglement has been identified as a resource central to quantum information
processing and we are motivated to investigate its quantification in the bipartite
and multipartite pure states [101]. A useful tool for quantifying the amount of
entanglement of a state is given by the so-called entanglement measures. The
geometric measure of entanglement is one of most natural entanglement measures
for pure states in bipartite and multipartite systems [102, 103]. This measure is the
injective tensor norm [104], which appears in the theory of operator algebra [105].
It also has applications in many-body physics [106, 107], entanglement witnesses
[108, 109] and the study of quantum channel capacities [110-112].

The best rank-one approximation of complex tensors is the core problem for
computing the geometric measure for pure states. For A € Cl1*/2xxIN 'we need
to find a real scalar ¢ € R and N unitary vectors x,, € C» with all n to minimize

L Db Iy

2
Z Z Z |ai1i2...iN — 0 - (X1, X2,y - - -XN,iN)| ,

i1=1ix=1 in=1

where x, ;, is the i,th element of x,, € C' forall i, and n, and o € R. By means
of the Wirtinger calculus of complex functions [113-116], the corresponding KKT
conditions are given below.

Definition 1.3.4 For a given A € CN*2xxIN let v, € Cl» be nonzero vectors
with ||[vylo=1m=1,2,...,N)andleto € R.If (o; vq, v2, ..., Vy) solves the
following system of nonlinear equations

F(vi,va,...,VN)—p=0V,, F(V{,V2,...,VN)—p = OV,
where
F(vi,va,...,vy)—p = A X1 vir Xn_1 VLI Xn41 VIH S XN V;
=AXIV] - X1 V| X1 Vppp oo XN Vi,
F(vi,vo,...,vN)_n = A xlvir~-~ Xn—1 V;Ll Xn+1 VIH S XN V;,

then v, and o are called the mode-n unitary eigenvector (the mode-n U-
eigenvector) and unitary eigenvalue (U-eigenvalue) of A, respectively. We call
(o;v1,v2,...,vy) aU-eigenpair of A.

In particular, if A is complex symmetric, then all v,, are identical, denoted by v,
and (o; v) is a US-eigenpair of A. Hu et al. [117] consider how to use the spectral
theory of nonnegative tensors for computing the geometric measure of entanglement
in multipartite pure states. Ni et al. [28] define the concept of the U-eigenvalue
of a complex tensor, the US-eigenvalue of a complex symmetric tensor and the
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best complex rank-one approximation. They also derive an upper bound on the
number of distinct US-eigenvalues of a complex symmetric tensor. Based on the
theory of the spherical optimization problem with complex variables, Ni and Bai
[118] design an iterative algorithm for computing the US-eigenpairs of complex
symmetric tensors. Che et al. [119] present the complex-valued neural networks for
solving the quantum eigenvalue problem for multipartite pure states. Wang et al.
[120] derive the partial orthogonal rank-one decomposition of complex symmetric
tensors based on the Takagi factorization.
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Chapter 2 )
The Pseudo-Spectrum Theory s

Pseudo-spectra, developed and popularized mainly by Trefethen and his co-authors
[1-5], are an important tool for assessing the global sensitivity of matrix eigenvalues
to perturbations in the matrix. Most research has emphasised on pseudospectra
of standard and generalized eigenvalue problems. Pseudospectra for square matrix
polynomials are defined and characterized by Tisseur and Higham [6], Higham and
Tisseur [7], and Lancaster and Psarrakos [8], for the generalization of the e-pseudo-
spectrum to matrix polynomials.

To our best knowledge, an investigation of e-pseudo-spectra for tensors and
tensor polynomials seems to be little in the literature. The main purpose of this
chapter is to bridge this gap by introducing e-pseudo-spectra for tensors and tensor
polynomial eigenvalue problems, and develop some fundamental properties.

2.1 Preliminaries

We recall the definition of eigenvalues and associated eigenvectors of A € CT y ;.
This definition is presented in [9] when A € RT y ; is symmetric.

Definition 2.1.1 Let A € CTy ;. If there exist a nonzero vector X € Clandr e C
such that

AxNT = pxIN-1

then A and x are called an eigenvalue and the associated eigenvector of A,
respectively.

© Springer Nature Singapore Pte Ltd. 2020 19
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We call (1; x) as an eigenpair of A. The spectrum A (A) of A is defined as
A(A) = {x € C: Ais an eigenvalue of A}.

Furthermore, if A € RTy j,X € R’ and 1 € R, then (A; x) is called an H-eigenpair
of A.

We now recall the definition of determinant of A € CTy_; introduced in Hu et
al. [10]. If A € RTy,; is symmetric, then the following definition reduces to the
definition of determinant in [9].

Definition 2.1.2 ([10, Definition 1.2]) The determinant of Nth-order I-
dimensional complex tensors denoted by DET, is defined as the irreducible
polynomial with variables v;, ;. for all i, and n such that it is the resultant of
the polynomial system

PxN-1 = 0;,

where V € CTn ;.

The value of the determinant for a given tensor A € CTy  is denoted by det(A),
and is defined as the evaluation of DET at the point v;, ;y, = a;,..;y for all i, and
n. For any A € CTy j, if det(A) # 0, then A is said to be nonsingular.

An interesting property of the determinant is that, for A € CTy 1, det(A) = 0
if and only if Ax¥~! = 0; has a nonzero solution in C’ [10, Theorem 3.1]. We
know that & € A(A) if and only if det(A — A7) = 0. It is clear that det(A — AT) is
a scalar polynomial with complex coefficients. This together with the fundamental
theorem of algebra gives us

A(A) # 0. (2.1.1)

Another important property of the determinant of any symmetric tensor A €
RTy, ;1 has been established by Qi [9, Theorem 1 (b)], which is stated as det(A) =

[T Ai. The result also holds for the case of complex-valued tensors [10,
Ai€EA(A)

Corollary 6.5].
For (L 4 1) given tensors A; € CTy,; with all [, we define a tensor polynomial
P corresponding to the tensor tuple {Ag, Ay, ..., AL} as
P(z) = Ao + 2 A + -+ L AL, (2.1.2)
forall z € C.

Definition 2.1.3 ([11, Definition 2.5]) For a tensor polynomial # as in (2.1.2), if
there exist a nonzero vector x € C! and A € C such that P(L)xV~1 = 0;, then A
and x are called an eigenvalue and the associated eigenvector of P, respectively. We
call (1; x) as an eigenpair of P. The set of eigenvalues of the tensor polynomial
is defined by A(P) = {A : det(P(A)) = 0} = {A : A is an eigenvalue of P}.
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Furthermore, if x € R/, A € Rand A; € RTy ; with all [, then (X; x) is called
an H-eigenpair of . We next introduce the definition of a regular tensor polynomial
corresponding to any given tensor tuple.

Definition 2.1.4 ([11, Definition 2.6]) For a tensor polynomial # as in (2.1.2), if
for all A € C, det(P(A)) = 0 holds, then we call {Ag, Ay, ..., AL} as singular.
Otherwise the tensor tuple is said to be regular.

Furthermore, we say the tensor polynomial # is singular (resp. regular) if the
corresponding tensor tuple {Ag, Ay, ..., AL} is singular (resp. regular).

According to Definition 2.1.4, if there exists A € C such that det(SD()AL)) # 0,
then P is a regular tensor polynomial. In this chapter, we only consider the tensor
polynomial eigenvalue problem where its associated % is regular.

We can choose another tensor tuple {ﬁ(o, ﬁh, e, ﬁ(L} such that 3~{L =
ZZL=0 ):13{1 and there is a one-to-one map between A(P) and A(7~3), where
det(Az) # 0 and P(z) = Ao + zA; + -+ + zL Ay with all z € C. Hence, we
can assume that Ay, is nonsingular, that is, det(Ar) # 0. As shown in [11], when
Ay is nonsingular, A (P) is a finite subset of C.

It is well known that the matrix eigenvalue and the generalized eigenvalue
problem are special cases of the matrix polynomial eigenvalue problem [12]. For
the tensor polynomial eigenvalue problem, we have the following conclusions.

Remark 2.1.1 For (L + 1) given tensors A; € CTy,; with all [, suppose that
P(z) = Ay + zA; + --- + 7L AL with z € C. The following three special cases of
Definition 2.1.3 have been discussed in the literature.

(@) When L = 1, Ay = —7 and Ap € RTy,; is symmetric, Definition 2.1.3
reduces to the eigenvalue problem with real symmetric tensors proposed in [9].

(b) When L = 1 and A € RTy,; with [ = 0, 1, Definition 2.1.3 has been
considered by Chang et al. [13] where (A; x) is called a generalized eigenpair of
the tensor pair {Ap, A;}. For a related work, see [14]. Furthermore, Ding and
Wei [15] present several properties of the generalized eigenpairs of the tensor
pair {Ap, A1} with A; € CTy 1 (1 =0,1).

(c) When L = 2, (X; x), satisfying Definition 2.1.3, is called an eigenpair of the
tensor tuple {Ag, A, Az}.

2.2 Pseudo-Spectrum of a Complex Tensor

We first define the e-pseudo-spectrum of A € CTy ; in the Frobenius norm and
characterize its fundamental properties. We reveal the relationship between the e-
pseudo-spectrum and the spectrum (i.e., the set of all eigenvalues). Finally, we
define the e-pseudo-spectral abscissa and e-pseudo-spectral radius with respect to
the Frobenius norm.
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2.2.1 Definition and Properties

The unstructured perturbations bounds in the Frobenius and spectral norms lead to
the same matrix e-pseudo-spectrum. Lim [16] provides some definitions for the e-
pseudo-spectrum of a tensor by its smallest singular value [17]. However, we define
the e-pseudo-spectrum of a tensor in term of unstructured perturbations bounds in
the Frobenius norm. These two definitions of the e-pseudo-spectrum of a tensor are,
in general, independent (see Remark 2.2.3).

Definition 2.2.1 (e-Pseudo-Spectrum for Tensors) Lete > 0. Then the e-pseudo-
spectrum of A € CTy ; is defined as

Ac(A) = {A eC: A+ XN = 2x¥ 1 for some & € CTn g
with ||E||r < € and nonzero vectors X € (CI] .

When € = 0, we have Ag(A) = A(A). If A is a matrix, then the definition of the
e-pseudo-spectrum A, (A) reduces to the e-pseudo-spectrum of A with respect to
unstructured perturbations bounds in the Frobenius norm [2]. We now present some
fundamental properties of the e-pseudo-spectrum A, (A).

Proposition 2.2.1 Let A € CTn,; and € > 0. Then the following results hold.

(a) Forall0 < €1 < €3, we have A¢; (A) S Ae, (A).
(b) If there exists a positive integer P € {1,2,...,1} such that A[P + 1
I11:P|...|1:P] € CU=PIXPxxP qug Al : PIP+1:I|...|P+1:
N1
I] € CP*U=PyxxU=P) qpo 7010 tensors, then,

Ae (\ﬂl) U Ae (ﬂZ) c Ae (ﬂ)a

where Ay = A[l : P|1 : P|...|1 : P] € CTy,p and Ay = AP + 1 :
HP+1:1|...|P+1:1]1€CTyN —p.

(©) Ifa. B € C, then Ap (@l + BA) = (o) + BA(A).

(d) (Equivalent definition via rank-one perturbation) A complex number A
belongs to the e-pseudo-spectrum of A if and only if

A+ &N = wxV-1, (2.2.1)
for some rank-one tensors & € CTy 1 with |E|F < € and nonzero vectors
xeCl.

(e) For the spectrum and €-pseudo-spectrum, we have Ne¢=oAe (A) = A(A).
(f) Let A; = A[l :i|l:i|...|1:i]le€ CTy,; withalli. Then we have

Ae(A1) S Ae(A) S -+ € Ac(Ap) = Ae(A).
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Proof Parts (a), (e) and (f) are immediate from the definition of the e-pseudo-
spectrum.

[Proof of (b)]. If A € Ac(Ajy), then there exist a tensor & € CTy, p with
IE11lF < € and a nonzero vector x € C” such that

(A + DN = axIV-1, (2.2.2)

Lety = (x,0;_p) and & € CTy ; be atensorsuch that &[1: P|1: P|...|1: P] =
&1 and it takes the zero value otherwise. Then, we have ||E||F = ||E1]|F < €. Note
that the entries of A(P + 1 : I|1 : P|...,1: P) € RUTPIXPxxP are zeros.
From (2.2.2), one has (A + &)y"Y ! = Ay!" =1l Then 1 € A(A), which implies
that A¢ (A1) € Ac(A). Similarly, we can prove A¢(Az) S A (A). Thus part (b)
follows.

[Proof of (c)]. If B = 0, then part (d) has been established in Corollary 3 of [9].
We only need to consider the case when 8 # 0. Let A € A¢ig|(ad + BA), there
exist & € CTy, ; with ||&||F < |Ble, and a nonzero vector X € C! such that

(a + BA+ExN 1 = axV-1,

We prove that

& A—«
A+ )XN—I — X[N_l].
( B B

It is obvious that |&/B||r < € and there exists A € A¢(A) such that A = A—a)/B.
Thus A¢g)(ad + BA) C {a} + BA(A).

To prove the reverse inclusion, let A € A¢(A) and A = B\ + a. Then there
exist a tensor & € CTy,; with ||E||F < €, and a nonzero vector X € C' such that
(A+&xN ! = axIV=1 Tt implies that

(@ + BA+ BEXN T = (Br + a)x!N 1 = AxINV-1L,
Xe Acig(@d 4+ BA), and the result follows.
[Proof of (d)] Let A be an element in the e-pseudo-spectrum A (A). There exist
& € CTy,; with ||E||r < € and a nonzero vector X € C! such that

A+ ExN 1 = axIV-H,

Letv = x/||x||2 Then v is an unit vector whose image y := (A — AZ)v" ! satisfies
y=&vV ! Define & = y®V®N 1eCTN[ We have EvV— I'=yand

A-E-rDVV T =@A@A-—aDWV ' &N T =evV T —y =0,
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which implies that A is also an eigenvalue of A — &. The Frobenius norm of & is at
most &, because

I
) N=1y. 121, 2 2 2 e dN-D _ 2
IElF = E EVT i 7 i |7+ uiy 7 < ISRV, <€

i1,i2,...,iy=1

Then (2.2.1) holds with a rank-one tensor &. The converse is straightforward. |

Next, we present a Gerschgorin type result which informs that the e-pseudo-
spectrum of A lie in the union of I disks in C. These I disks have the diagonal
elements of the tensor as their centers, with the sums of the moduli of the off-
diagonal elements and a constant multiple of € as their radii. The result is developed
in [18, Theorem 12¢] for the matrix case.

Theorem 2.2.1 (Gerschgorin Theorem for e-Pseudo-Spectrum) Let A € CTy
and € > 0. Then

N-—1
Ac(A) C U AeC: | —a. il < Z |@iiy.iy| +1 2 €
l<i<I I<ijiz,in<I

(02,0 iN)F£( 1)

Proof Let A € Ac(A). There exist & € CTy, ; with ||E|F < € and a nonzero vector
x € C! such that

A+ XN = HxIN

Leti € {1,2,..., I} besuch that |x;| = max{|x;|: j =1,2,..., I}. Itimplies that

N—1
(@ij..i +eiii—Mx;' = E (aiizmiN + eiizmiN)xiz ce e Xiy -
1<i,ip,....in<I

(12, iN)F (.. 1)

From the choice of i and x # 07, one has x; # 0 and lli;" |‘ < 1 forall j. Thus

Xiy Xin
laii..i +eiii—Al = E |Giiy...iy + €ityeiyl | |- N
1<iyin,...,in<I ! !
({2500, IN)F (0 0)
< E |@iiy...iy T €iiy.iy |-

I<iji,.,in =1 (P2, iN)F (0 0)
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We then have

A —aii.il < Z |@iiy...ixn | + Z l€iiy...iy |-
1<i,iz, ... in<I 1<ia,...,in<I
(250 IN)F (0 0)
It follows from the Holder inequality that

N—1
Z l€ii..in] < \/INI Z leiiy.iy|> <1 2 ||E|lF.

I<ip,...,in<1 I<ip,....in=I

Thus
N—-1
A —aij..il < Z |@iiy..ix | +1 2 €,
1<i,in,....in<I
(@25000siN)F (U o000)
and the result follows. O

Remark 2.2.1 In the matrix case, Gerschgorin bounds on pseudo-spectra can be
improved (see [19] for a recent development). It would be natural to ask how the
techniques can be used to improve the previous theorem [20].

2.2.2 Computational Interpretation of e-Pseudo-Spectrum

In the computation of the eigenvalues of A € CTy,;, we terminate the algorithm
after obtaining a number A with || (A — A7)vV =], < e for some small tolerance €
and a unit vector v € C!. The next theorem proves that one obtains an element of
the e-pseudo-spectrum of A.

Theorem 2.2.2 Let € > 0. A complex number A belongs to the e-pseudo-
spectrum of A € CTy,j if and only if there exists a unit vector v such that
[(A—2D)vV 1|, <e

Proof (=) Let A be an element of the e-pseudo-spectrum of A. We proceed by
contradiction and assume that for all unit vectors v € C/, we have

H (A — ATV H2 > .

Then for any A+ & € CTy,; which is a small perturbation of A (with & having the
Frobenius norm at most €) and for any unit vector v € C!, one has

H(ﬂ+8—)\f)vN—1H2 > H(ﬂ—u)vN—IH ‘8VN_1H2 —e—e=0

-
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by the triangle inequality, which implies that A cannot be an eigenvalue of A 4 &.
This contradicts the assumption that A is an element of the e-pseudo-spectrum of A.
(<=) Note that there exists a unit vector v € C’ such that || (A — AD)vV ||, <e.

Lety ;== (A— ANV ' and & = y @ v®V~!. Then we have ||y, <€, &V =y
and

A-E— 2DV = A-ADVV &V T =y—y=0,.

IEIF < ||y||2||V||§v_1 < €. Then X is an element of the e-pseudo-spectrum of A.
O

According to Theorem 2.2.2, the e-pseudo-spectrum of A € CTy,; can be also
represented as

Ac(A) = {x €C: min H (A — AI)xN~ 1H2 < e} (2.2.3)

Ix[l2=1

As a corollary of Theorem 2.2.2, we know that A (A) always contains the (o, 115)-
neighborhood of the spectrum A (A) for some constant py ; depending on the order
of the tensor A and the dimension of the underlying space.

Corollary 22.1 Let e > 0.and py.; = min {H (N— “H X[l = 1} > 0. Then
A + A1 S AR, (2.2.4)

— . —1
where Ap;,},e ={zeC:|z] < PN 1€}

Remark 2.2.2 Proposition 2.2.2 shows that there exist tensors A € CTy,; such that
A(A) + Ap&lﬁ = Ac(A) forall e > 0.

We present an example illustrating the sharpness of (2.2.4) in Corollary 2.2.1.

01 2x2
M = .
(OO)G(C

Let N be an even number. Define A € CTy 7 as

Example 2.2.1 Let

[1seees iy = MiiyMizigy oo s Miy_ iy

where m;; denotes the (i, j)-element of M. For all x = (x1, x2)T e C2, it can be
verified that

¥
AxN! = (XTMX> T = (1) (12,007

Thus the only eigenvalue of A is zero, and hence A (A) = {0}.
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For e > 0, let

ME — 01
€0)’
and A € CTy 2 bedefined by a;, ;= m§; misi, - -miy_,iy. Direct verification
proves that
| A=Al <€

and for all x = (x1, xz)—r € C2, we have
N—1 T the N_1 T
AXN! = (x Mx) (MEx) = (x1x2) 2 ' (x2, ex1) .

Letu = (1, ¥/e)T. Then AuN ! = (e, e v )T, and
AU = JeulN 1,

It illustrates that A (A) contains an element with modulus with /e, which is larger
than p{llze when € is small. Thus (2.2.4) is strict in this example.

In the following theorem, we develop a lower bound of the distance between any
scalar zo € C and the e-pseudo-spectrumof A € CTy ;.

Theorem 2.2.3 Lete > 0,z0 € Cand A € CTy 1. Then

dist(z0, Ac(A) = oy, ( min | (A— 2Dx""! H2 - e) :

Ix[l2=1
where py.; = min {[xN 7| |ix]ls = 1} > 0.
xeC!

Proof Let A be an element of the e-pseudo-spectrum of (A. Then there exist a tensor
& € CTy,; with |E]|F < € and a nonzero vector X € C! such that

N-1 [N—1]
(A+Ex; = Axg .
For any scalar zg € C, we obtain
(A - Zo])Xév_l + SXSI_1 = (- zo)ng_l].
Thus

H (A — Z()I)X(I)V_l + Sx(])v_l H2 = H - zo)ngfu H2
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By the triangle inequality and the definition of py, ;, we get

= zolows = min {20~ ieie iy
I2

Since ||E||F < €, we have
dist(zo. Ae(A) = pyl; (lmm GRS _6).

Then it is completely proved. O

Furthermore, we consider the real e-pseudo-spectrum of A € RTy j, defined as
Ag(ﬂ) = ’A eR: A+ S)XN_1 = 2xV " for some & € RTyn,
with |&||r < € and nonzero vectors X € R’ ] .
If € = 0, then the real O-pseudo-spectrum consists of all H-eigenvalues of A. When

N is even, we reveal a relationship between the real e-pseudo-spectrum and the real
numerical range of A, where the latter is given by Ding and Wei [15],

W(A) = {ﬂvN vl = 1,V€R1}

where [[VIIN = [v1|Y + [va|V + - + |vf]V forall vectors v € R’.

Theorem 2.2.4 Let N be even, € > 0and A € RTy, ;. Denote 5.1 = ma)§{||v||§/ :
veR
Ivlly = 1} > 0. Then

AR(A) S WA + Asy e

Proof Let A € A?(ﬂ). There exist a tensor & € RTy ; with ||E]|F < € and a
nonzero vector X € R/ such that

(A+ExN = xV
Letv = HX)ﬁN’ we have
(A+EVV T = N1,
Multiplying v, we have (A + &)VY = )»||v||% = A, which implies that

A=A+ EVY = Aavy + &vlV.
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Obviously, the first term is an element of the real numerical range W (A) while the
second satisfies

N N
evY| < I8l FIvIY < edn.r.

The the proof is completed. O

Next, we present explicit expressions for py ; and § ;. For any unit vector x €
C!,if we setx; = r;e'’ withr; e Rand 6; € (—m, 7], thenr = (r1, 72, ...,7r7) | €
R’ is a unit vector and

py.7 = min {HX[N—”H Il = 1} — min {HXW—”H Il = 1}.
xeC! 2 xeR! 2

When N = 2, itis clear that piy ; = dn,7 = 1. We only need to consider the case
of N > 3. We consider the following constrained optimization problem

2
(P) min HX[N_l]Hz subjectto ||x|]2 =1; x € R’

The Lagrangian function for the optimization problem is

2
Lex, ) =[x i - 0.
Any critical point of the Lagrangian function satisfies
{ 2N — VT o =0, i=1,2,...,1,
x12~|—x§~|—--~~|—x12\, =1.

It implies that u = (N — 1)(x12(N71) + xg(Nfl) + -+ x?(Nfl)), either x; = 0 or
p=(N—Dx*N"" Letl={1 <i<1I:x =0}andT be the cardinality of L.
Thenwe have 0 <7 <[ — 1 and

" 1/2N—4)
Xi = foralli ¢ I
N -1

withpuy = (N — 1) (IET)Niz =(N-1DU - T)Z—N, and

)‘XWIIHE = —-T)NI.



30 2 The Pseudo-Spectrum Theory

Table 2.1 The values of py ; and &y ; for integer pairs (N, I) with N € {2,3,4,5,6} and I €
{5,6,7,8,9, 10}
PN.I Sn.1

1 N:=2 3 4 5 6 N:=2 3 4 5 6

1.00 045 020 0.09 0.04 1.00 2.24 5.00 11.18 25.00
1.00 041 0.17 0.07 0.03 1.00 2.45 6.00 14.70 36.00
1.00 038 0.14 0.05 0.02 1.00 2.65 7.00 18.52 49.00
1.00 035 0.13 0.04 0.02 1.00 2.83 8.00 22.63 64.00
1.00 033 0.11 0.04 0.01 1.00 3.00 9.00 27.00 81.00
10 1.00 032 0.10 0.03 0.01 1.00 3.16 10.00 31.62 100.00

O 0 3 N W

Note with N > 3 that

The optimal solution of the optimization problem (P) are attained when 7 = 0 and
x| = --- = x; = 4/1/1. The value of py.; = 1%N)/2 ¢ (0, 1]. Similar, we can
show that the value of 1 is IN/2=1 > 1, For some given pairs (N, 1), the values
of pn 1 and 8y, are shown in Table 2.1.

We next illustrate the e-pseudo-spectrum of diagonal tensors.

Proposition 2.2.2 [fD e CTy  is a diagonal tensor with all main diagonal entries
d; € Cforalli, then the e-pseudo-spectrum of D is {dy, d>, . ..,dr} + Ap—l -
NI

Proof By Corollary 2.2.1, it is evident that {dy,d>, ..., d;} + Ap—l e S A (D)
N, 1
holds. We will show that A¢ (D) C {dy,d>, ...,d;}+ Ap—l . holds for any diagonal
N,I

tensor D € CTy ;.

Let A € Ac(D). If & € {d1,da,...,d;}, then the result follows trivially. We
assume that A ¢ {di,d>,...,d;}. From (2.2.3), we consider the optimization
problem,

2
min H (D — 2I)xN! H2 subjectto [x[o = 1; x € C/,

According to the explicit expression of py, ;, the above optimization problem is
equivalent to

: N—1]? . 1
min H (D —rAD)x" ™ H2 subjectto  [|x|]2 =1; x e R".
The corresponding Lagrangian function is

2(N—1 2(N-1 2(N—1
L(x, 1) = di AP i N P 41y Py NV 1 =2 P N —x13-1).
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Differentiating L(x, p) with respect to x and ., we have
2N = Dld; — 22NV oy =0, i=1,2,...,1,
x12+x§+---+x12\]= 1.
These lead to

=N =D(d = AP 4 1dy — 2PNV g — P,

and either x; = Oor jt = (N — D)|d; — A>x*~*. LetI={l <i < I:x =0} and
T be the cardinality of [. We have 0 < T <[ — 1 and

| 1/(2N—4)
= " . foralli ¢ I
N —1]di — ]2

We prove that
1 1/(N=2)\ 2N
“Z(N_l)(z(w—w) ) '
i¢l !
Let k ¢ 1 be such that |A — di| = min{|d; — A| : i ¢ [}. Then

> (N -0 —T)"Nd —

Since
w _ — —
R e e /At
N—1]?
- i
Then
. N—1 . 2—-N
min [@—20x¥| = min =1 de - 21} = vl = 4
Ixll2=1 27 0<T<I-1
Thus A € {dy,d>, ..., d;} + Ap—l . and this completes the proof. m]
N, 1

Remark 2.2.3 (Comparison with Other Definitions) Lim [16] defines the e-pseudo-
spectrum of a cubical tensor as

oZ(A) ={A € C: omin(A — AT) < €},

where opin denotes the smallest singular value of A € CTy ;.
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Without loss of generality, o € R is a singular value of A € CT3 ; if there exist
three unitary vectors X, y, z € C! such that

A xo yT X3 2| = oX,
Ax x| ><3zT=0y,
A X1 x| xzyT =01z,
Ixll2 = llyll2 = llzll2 = 1.

We notice that Lim’s definition and Definition 2.2.1 are different. To see this,
consider A = I € RT3, where 7 is the identity tensor in R73 and € > 0. The
preceding proposition shows that 1 — v/2¢ € o (A). However, 1 — +/2¢ ¢ o Z(A)
because amin(\/ZeI) =/2¢ > €.

2.2.3 Pseudo-Spectral Abscissa and Radius

We can define the e-pseudo-spectral abscissa and e-pseudo-spectral radius of a
tensor in the Frobenius norm as the matrix cases.

Definition 2.2.2 (e-Pseudo-Spectral Abscissa and Radius) Let A € CTy,; and
€ > 0. We define its e-pseudo-spectral abscissa as

@ (A) = max [m(z):zN—lz)\]_
AEA(A)

The maximum in the definition of the e-pseudo-spectral abscissa is taken over the
set consisting of all the (N — 1)th roots of A.

If ¢ = 0, then we refer the 0-pseudo-spectral abscissa of A as the spectral
abscissa of (A, and denote it as «(A).

We define the e-pseudo-spectral radius by

Pe(A) = max {|Z| (N = A] .
AEA(A)

If N = 2, then the definition of the e-pseudo-spectral abscissa/radius of a tensor
reduces to that for a matrix. The above definition of the e-pseudo-spectral abscissa
has a close connection to the existence of an asymptotically stable solution of a
homogeneous dynamical system under small perturbations. Consider the following
homogeneous dynamical system (differential inclusion)

1
[Nfll

u(t) e (ﬂu(l)N1> withu(r) € C!, 1 € [0, +00), (2.2.5)
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and its perturbed version

[xii]
u(r) e ((ﬂ+8)u(t)N—1> withu(r) € C’, 1 € [0, +00), (2.2.6)
where for a givene€ > 0,& € CTy j satisfies |E||r < €. a[lel] ={(z1, ..., )" e
ol :zllv_1 =a1,...,zﬁv_1 =ay}foralla = (ai,...,apn" e L.

The next theorem indicates that an asymptotically stable solution exists for the
above homogeneous dynamical system and its perturbed version, if the e-pseudo-
spectral abscissa of A is negative. In the case € = 0, the stability of homogeneous
dynamical system is discussed in [21] in terms of the tensor logarithm norm (an
upper bound of the spectral abscissa).

Theorem 2.2.5 Let € > 0 and A € CTn 1. If ac(A) < O, then for each tensor

& € CTy,; with |E||F < €, the perturbed homogeneous dynamical system (2.2.5)

has an asymptotically stable solutionu(t) € C!, in the sense that hIJP [a()| = 0;.
t—>+00

Proof Let & € CTy,; with |E||F < € and A € A(A + &) (which is possible
by (2.1.1)). Then there exists a nonzero vector x € C’ such that

A+ XN = axIV-1, (2.2.7)

In particular, A € A¢(A). Moreover, as ac(A) < 0, there exists z € C such that
V=1 = X and R(z) < 0. Considering (2.2.5), let a(r) = ye'*x with y € R. Then
we have 0 (1) = yze'*x and

)N—l

(A+ &) () = (N EHV A+ oV

_ (VN—I(etz)N—l))LX[N—l]

_ (VN—I(etz)N—l)ZN—lx[N—l].

It shows that u’(¢) satisfies (2.2.5). Moreover, from R(z) < 0, we have

lim |a()| = lim |y|e"@ x| = 0;.
f——+00 t—+00

Thus u(z) is an asymptotically stable solution for the perturbed homogeneous
dynamical system (2.2.5). O

If a(A) < 0, then the unperturbed homogeneous dynamical system (2.2.6) has
an asymptotically stable solution @(z) € C/.

Now we illustrate how the Gerschgorin result for the e-pseudo-spectra of tensors
and Theorem 2.2.5 can be used to determine the existence of an asymptotically
stable solution for a homogeneous dynamical system.
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Example 2.2.2 Denote a permutation of (i1, i2, i3, i4) by m (i1, i2, i3, i4). Consider
A € CTy 2 defined by

ajjnr = =8+, axn = —6, a2 = a2 = ain = a2 = a221 = ani = 6
and, for any &
Qiiyiziy = 0 forall (iy,i2,173,i4) ¢ {(1,1,1,1),(2,2,2,2),7(1,1,2,2)}.

Lete = 1. For each & € CT4 with ||E|r < 1, suppose that u(?) satisfies (2.2.5)
with N = 4 and I = 2. We apply Theorem 2.2.1 that

1 1
AMA) C{AeC:h—(—8+1) < 2+2«/2}U{AE(C:|A+6I§ 2+2J2}.

Direct computation verifies that, for any A = [Ale? € Ai(A), one has [A| > 1 and
6 € [0, 0] for some 0 and 6 such that g <0 <0 < 35’. Observe that one of the

0+2m 0+2m 6+27T] and

. . 1 0+2n
cubic roots of A is |A[3e' 3 where " € [T, U,

S O0+2n O+2n Inm
< < < s
6 3 - 3 6
which implies that o1 (A) < 0 and the existence of asymptotically stable solution
follows from Theorem 2.2.5.

In many potential applications of pseudo-spectra, the perturbation of the tensor
often has some specific structure. For example, if the tensor is real, then it is also
reasonable that the perturbation is real. This motivates us to define the structured
e-pseudo-spectra and e-pseudo-spectral abscissa.

Definition 2.2.3 (Structured ¢-Pseudo-Spectrum and e¢-Pseudo-Spectral
Abscissa) Let S be a subspace of CTy, ;. Suppose thate > 0 and A € S. We define
the structured e-pseudo-spectrum and e-pseudo-spectral abscissa respectively as

A?(ﬂ) = {A eC: (\?I—I—S)XN_l = AxV U forsome & € S
with ||E||r < € and nonzero vectors X € (CI} ,

and

aES(.?{) = max {SR(Z) (N = )»}.
reAS(A)

If ¢ = O, then the structured O-pseudo-spectral abscissa of A equals to the
structured spectral abscissa of A, denoted by o (A).
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It is obvious that, for all A € S, AS(A) C Ac(A) and o>(A) < ac(A).
Moreover, using a similar argument, one can obtain the following result concerning
the stability of the homogeneous dynamical system with structured perturbations.
For simplicity, we omit the proof.

Theorem 2.2.6 Let S be a subspace of CTn 1, € > 0 and A € S. Suppose that
C(§ (A) < 0. Then for each tensor & € Swith ||E||F < €, the perturbed homogeneous
dynamical system (2.2.5) has an asymptotically stable solution u(t) € C!, in the
sense that lim |u(t)] = 0y.

t——+400

If aS(A) < 0, then the unperturbed homogeneous dynamical system (2.2.5) has
an asymptotically stable solution a(t) € C.

2.3 Pseudo-Spectrum for Tensor Polynomials

In this section, we present the definition of the e-pseudo-spectrum of a tensor
polynomial associated with a given tensor tuple and derive its basic properties.
We then consider the backward error of the approximate eigenpairs of tensor
polynomials in the Frobenius norm. For a given regular tensor polynomial £, we
measure its distance from the nearest singular tensor polynomial.

2.3.1 Definitions and Properties

For A;, AA; € CTy,; with all [ and z € C, we define a tensor polynomial Px,
associated with the tensor tuple {Ap, Aj, ..., AL}, as follows:

PAR) i = Pady,...am, (2) = P@) + (AA + 2AA; + 22AA + - - + 2L AAL).
(2.3.1)

Then, for a given nonnegative weight vector w € Rf‘rﬂ and any z € C, we introduce
the set

BP,w,€) = {P+ AP : AP(Z) = AAg + 2AA] + 2AA + -+ EAAL,  (2.3.2)

where |AA; || r < wye for all [}
and the scalar polynomial
pw() =wo+wiz+---+ wrzt. (2.3.3)

Next, we introduce the definition of the e-pseudo-spectrum of the tensor
polynomial # with respect to w € Ri‘“ in the Frobenius norm.
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Definition 2.3.1 (e-Pseudo-Spectrum of Tensor Polynomials) For a tensor poly-
nomial # as in (2.3.1), the e-pseudo-spectrum of the tensor polynomial £ with
respectto w € Riﬂ is defined as

Aw.eP) ={r € C:det(Pa(r)) = 0 for some Pp € B(P,w,¢€)}
= {A € C: A is an eigenvalue of P for some Pp € B(P, w, €)},

with € > 0.

If A € Aw.(P), then A is called an e-pseudo eigenvalue of the tensor polynomial
P with respect to w € Ri‘“. If ¢ = 0, then the 0-pseudo-spectrum equals the
spectrum of P, denoted by A (P).

In the special case of L = 1, if we choose A} = —7, wg = 1 and w; = 0, then
Definition 2.3.1 reduces to the definition of the e-pseudo-spectrum of the tensor
Ao (see Definition 2.2.1). As in Proposition 2.2.1, similar basic properties of the
e-pseudo-spectrum of a tensor polynomial can also be derived. Below, we focus on
the equivalent definitions of the e-pseudo-spectrum of a tensor polynomial in terms
of rank-one tensors.

Proposition 2.3.1 For a tensor polynomial P as in (2.3.1), Then with ¢ > 0 and
w € RJLFH, a complex number A belongs to Aw (P) if and only if there exists a
nonzero vector x € C! such that

PaxV 1 =0y, (2.3.4)

for some Pa € B(P,w, €), where Pa(z) = P(2) + AAy+zAA 1 +-- -+ zLAﬂL
and AA; are rank-one tensors with | AA;||F < wie and all l.

Proof Let A be an element in the e-pseudo-spectrum Ay () with respect to w €
Ri‘“. Then there exist AA; € CTy,; with |[AA||F < w;e and a nonzero vector
x € C! such that
PO+ APO)X ! =0y,

where

APZ) = ARy + zAA; + -+ 2EAAL. (2.3.5)

Let v = x/||x||2, then v is a unitary vector. For each [, define
2= AAVNT, AR =2 @ vV,

it is easy to see AA?J{[VN’l = z;. Then we have

PO) + APONVY ! = (P + APW)IVV ! = 0y,

where AP(z) = AAy + zAA; + - + L AAL.
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Thus X is an eigenvalue of P + A®P. Since the Frobenius norm of each A7 is at
most w; €, for each /,

A% = : AA vV 12 1y 12 2 <A AN-1) _ 2.2
[AA] = X IAFAVYY P lopl? vy 12 < IAAE IV, wie”.

i1,i2, i =1
Then (2.3.4) holds with these chosen rank-one tensors AA?J{[.
The result follows as the reverse implication is immediate by the definition. O

In order to deduce another equivalent characterization of the e-pseudo-spectrum
Aw.c(P) with respect to a nonnegative weighting vector w € REF!, we cite the
following lemma without the proof.

Lemma 2.3.1 For given unit vectors X,y € C!, there exists a tensor B € CTn 1
with |Bl|r = 1 such that BxN~! =y.

In the special case where N = 2, this theorem has been established in [7,
Theorem 2.1] or [6, Lemma 2.1].

Theorem 2.3.1 For a tensor polynomial P as in (2.3.1), Then with ¢ > 0 and

€ Ri“, the e-pseudo-spectrum with respect to w equals
Aw.e(P) = {)\ €C: min HP(A)XN 1” < pw(|)\|)e} (2.3.6)
Ixll2=1

with pw(|A]) = wo + wilA| + - -+ wr |A[".
Proof Let . denote the set in (2.3.6). If A € Ay (P), then there exist a nonzero

vector x € C! and a tensor polynomial P € B(P, W, €) such that Po (M)xV ! =
0;. As Pp € B(P, w, €), there exists AA; € CTy, ; with all [ such that
Pa =P+ AP,
where AP(z) is defined in (2.3.5). We have
PuxN T = —Ar)xN L

It implies that

min PO = min [aPoox" | < 1aPGIIE < pulaDe,

where the last inequality holds from py in (2.3.1). Thus A € .”and we have

Awe(®) C {xec min HP(A)XN 1” <pw(|x|)e}
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To prove the converse, we suppose that A € . and we want to prove that 1 €
Aw.e(P). Letu € C! with |ul|; = 1 be such that

min HP()\)XN = H2 - Hsv()\)uN = H2 .

lIxll2=1

Lety = P(M)u’~1. Ify = 0;, then we obtain that . € A (%) and u is an eigenvector
corresponding to A, and the result follows.

Next, we assume that y is a nonzero vector, then there exists H € CTy, ; with
|H| r = 1 such that HuV~! = —y/|lyll» (see Lemma 2.3.1). Let & = ||y|>H.
Then (P(L) + Eu ! =y + |ly|l,Hu" ! = 0; and

1611 = lylla = [POu" | = min [POINT| < puGaDe.

For all /, define A; € CTy, as
AR = sign(Wywi pw(2)'E,
where the sign of z € C is defined as

. z/lzl, z#0,
sign(z) = 0 0 2.3.7)
; z=0.

By constructions, we see that || AA; ||F < wie. Let AP(z) = AAy+zAA 1 +---+
7L AA; with z € C. Then

L L
AP = Y AR = (Z m) pw(D'E =€,
=0

=0

Thus (P(A) + AP UV~ = (P + E)uM~! = 0;. As u # 0;, we see that
A€ Ay e(P). O

Remark 2.3.1 For the case of L = 1, with Ay = —7 and (wg, w1) = (1, 0), (2.3.6)
reduces to the equivalent characterization for the e-pseudo-spectrum of a tensor as
in (2.2.3).

If all the coefficients of the matrix polynomial with respect to any nonnegative
weight are real matrices, then its e-pseudo-spectrum is symmetric with respect to
the real axis. The symmetry holds for tensor polynomials. In the special case where
N = 2, which has been established in [8, Proposition 2.1].

Theorem 2.3.2 For a tensor polynomial P as in (2.3.1), then with € > 0 and w €
Ri‘“, Aw.(P) is symmetric with respect to the real axis.
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Proof Let 1 € Ay (P). It suffices to show that its conjugate A also belongs to
Aw.e(P). The tensor polynomial (Ap + AAp) + A(A; + AA) + - + 1L (AL +
AAL) € B(P, w, €) satisfies

det ((ﬂo + AAY) + MA + AAY) -+ 25 (AL + AﬂL)) -0,
where AA; € CTy,; forall [. Since A; € RTw, 1, then we have

det ((ﬂo + AAY) + A AL + AAY) - + AL (AL + AﬂL))

— det ((ﬂo + AFA) + MA + AAY -+ 25 (AL + AﬂL)) — 0.

Hence, A € Ay (P). a
Next, we apply a simple property of the scalar polynomial z > det(P(z)).

Proposition 2.3.2 For a tensor polynomial P as in (2.3.1), if A is nonsingular,
then the degree of the scalar polynomial det(P(z)) is IL(N — D=V and its leading
coefficient is det(Ar).

In particular, there are IL(N — 1
tensor polynomial P.

V=1 eigenvalues, counting multiplicity, of the

Proof According to [10, Proposition 2.4], we see that det(A) € C[A] gives rise to
an irreducible and homogeneous polynomial of degree IL(N — 1)/, where A €
CTy,; and C[A] is the polynomial ring consisting of polynomials in indeterminate
variables {a;,;,...iy } With coefficients in C.

Thus for z € C and a tensor polynomial $, det((z)) can be treated as an
irreducible and homogeneous polynomial in C[P(z)] of degree IL(N — 1)!~1,
where C[P(z)] is the polynomial ring consisting of polynomials in indeterminate
variables {P(2)ii,...iy} With coefficients in C. Each entry $(z);i,..iy 1S a scalar
polynomial of z with degree L. It shows that det(P(z)) is of degree I L(N — DIt

In the following, we consider to check the leading coefficient of det(#(z)). Note
that fora € C and A € CTy 7, det(aA) = o EV=D""" det(A) [10, Corollary 2.6].
It follows that

det(P :
et(P(z)) — lim det<ﬂ0+Zﬂlt +Zﬂl)=det(ﬂL)7ﬁ0,

|z]—>00 ZIL(N*UI*l |z]—>00 Z
where the last relation follows from the assumption that Ay, is invertible. Then the
leading coefficient of z > det(P(z)) is det(AL).

Finally, the result follows from the fundamental theorem of algebra. O

For a given tensor polynomial P, if there is a perturbation Pa € B(P, w, €) with
identically zero determinant, then Ay ¢ (#) coincides with the whole complex plane
and a priori, the e-pseudo-spectrum with respect to w € RJLFH may be unbounded.
If the leading coefficient Ay is invertible, then the tensor polynomial # has exactly
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IL(N — 1)!~! eigenvalues, counting multiplicities, according to Proposition 2.3.2.
For sufficiently small €, the e-pseudo-spectrum with respect to w € Rf‘r“ must be
bounded and consist of no more than IL(N — 1)/ ~1 connected components.

These possible scenarios motivate us to investigate when Ay () will be
bounded. Next, we present a necessary and sufficient condition for Ay () to be
bounded, for any € > 0 and w € Ri‘“. In the special case of N = 2, which has
been developed in [8, Theorem 2.2].

Theorem 2.3.3 (Boundedness of Pseudo-Spectra for Tensor Polynomials) For
a tensor polynomial P as in (2.3.1), then withe€ > 0 and w € Rf‘r“, the €-pseudo-
spectrum Aw ¢ (P) with respect to w is bounded if and only if the (wy, €)-pseudo-
spectrum of Ay, does not contain the origin.

Proof Assume that 0 & Ay, ¢ (AL). Then det(Ar + AAL) # 0 for any AAL €
CTN’I with ||AAL|F < wre. We have

e = min{|det(AL + AAL)| : [[AALIF < wre} > 0.

Since B(P, w, €) is compact, there exists a positive constant M, > 0 such that any
perturbation Pa € B(P, w, €) has the form

Pa(2) = (Ao + AA) + 2(A1 + AAY) -+ + (AL + AAL)
with |[AA;||F < w;e and all [. For any z € C with |z] > M., we have

det(Pa (2)) — det(AL + AAL )/ LD IL(N=D'™!

< e ‘Z
< ‘det(ﬂL + AﬂL)Z”‘(N_l)Iil .

The first strict inequality follows because det($a (z)) is a scalar polynomial with
degree IL(N — DY ~1 and the leading coefficient det(Ar + AAL); the second
inequality holds by the definition of ¢.. It implies that det(Pa(z)) # 0 forall z € C
with |z| > M.. That is to say,

{z:det(Pa(2)) = 0} C {z: |z| < M} forall Pa € B(P, W, e),
and Aw ¢ (#) is bounded.

To prove the converse, assume that Aw (#) is bounded but there exists a
perturbed tensor polynomial Pz € B(P, w, ¢€) of the form

P3() = (Ao + AA) + 2(A1 + AA) - - + 1 (AL + AAL),
for any z € C, where ||&\ﬂl||p < wye and det(Ay, + A/\JHL) =0.If wy € =0, then

det(Ar) = 0 which contradicts our assumption that Ay, is nonsingular. Thus, we
can assume that wy € > 0. Moreover, we can also suppose that at least one of the
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coefficients of the scalar polynomial det($3(z)) is nonzero; otherwise Aw ¢ (P) =
C, a contradiction. Let 8; be a nonzero coefficient of z* (v = 0,1,...,IL(N —
1)!=1 — 1) in the scalar polynomial det(Px(z)). The set {C € CTn,; : IICllF <
wr, €, det(Ar + C) # 0} isdensein {C € CTy.; : |IC|lF < wp €}. There exists a
sequence of tensors {A/\?IT,k}keN C CT .1 such that klim @k = K?TL and

— 00

det(AL + AALL) #0and [AALkllF <wre, (k=1,2,...).
Define
Pr(z) = (Ao + AA) + 2( A1 + DA + -+ + 2 (AL + AAL )
and
hi(z) = det(Pr(2).

Obviously, 5/51( € B(P, w, €). In particular, any root of A lies in Ay (#). Denote
the coefficient of z* in A by B . By the continuity, we know that S, x — B # 0
as k — oo. Moreover, since Ay ¢(#) is bounded and the leading coefficient of Ay

isdet(Ar + A/ﬂL\ ©),the IL(N —1)!=1 —1)-th elementary symmetric function of
the roots of hy equals to £8; x/det(Ar + AAL x) and is bounded for all k. Note

that B — Br # 0 and det(A, + AAL ;) — det(A, + AAL) = 0. This is a
contradiction. m]

If the e-pseudo-spectrum of a tensor polynomial # with respect to w € RJLFH
is bounded, then the following theorem gives the maximum possible number of
connected components of the pseudo-spectrum of P. It also builds a bridge between
the spectra of £ and Pa. In the special case N = 2, which has been established in
[8, Theorem 2.3].

Theorem 2.3.4 For a tensor polynomial P as in (2.3.1), if Aw.c(P) is bounded,
then it has no more than IL(N — 1)~ connected components, and any Pp €
B(P, w, €) has at least one eigenvalue in each one of these components, with € > 0
and w € RET!,

Furthermore, P and Pa have the same number of eigenvalues, counting multi-
plicities, in each connected component of Ay (P).

Proof Assume that Ay ((P) is bounded. It follows from Theorem 2.3.3 that any
perturbed tensor polynomial P € B(P, w, €) of P, of the form

Pa(z) = (A + AAY) + (A + AAY) - - + 2H (AL + AAL),

for any z € C, must satisfy det(Ar + AAL) # 0. That is the leading coefficient of
the polynomial det($a (z)) is nonzero. As a consequence, for the tensor polynomial
P, there are at most LI (N — 1)/~! eigenvalues, counting multiplicities and the
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same for every member of the family of tensor polynomials
Pai(2) =1 —=0P) +1Pa(z), tel0,1],

for any z € C. Moreover, Pa ; belongs to B(P, w, €) and all of its eigenvalues lie
in A (P).

The coefficients of the scalar polynomial det(#a ((z)) are continuous functions
of t € [0, 1]. By continuity of the zeros, the eigenvalues of £ A ; form a continuous
path from the eigenvalues of P = Pa o to that of Po = P 1. Thus, if P has k
eigenvalues (counting multiplicities) in a connected component ¢ of Ay () and
its IL(N — D=1 —k remaining eigenvalues are isolated in Aw ¢ (P)\¥, as for the
eigenvalues of every Pa s, t € [0, 1]. Consequently, P has exactly k eigenvalues
in ¢, counting multiplicities. Thus $ and £ A have the same number of eigenvalues,
counting multiplicities, in each connected component of Ay ¢(P).

Finally, each bounded connected component of Ay (#) contains at least one
eigenvalue of the tensor polynomial . By the above discussion, it contains at least
one eigenvalue of the perturbed tensor a. Hence, Ay, () cannot have more than
IL(N — 1)!~1 connected components. |

Since the origin lies in Ay, «(Ar) if and only if \|£|\1in1 HﬂLxN_l H2 < wpe

=
(see (2.2.3)), we also have the following corollary.

Corollary 2.3.1 Forany € > 0 and w € R+, if min HﬂLx

L1 H
x[2=1

> wyr €, then
2

Aw.e(P) consists of no more than [L(N — /=1 bounded connected components,
each containing one or more eigenvalues of the tensor polynomial P.

We also obtain the following corollary for the e-pseudo-spectrum of a tensor
AeCTy,.

Corollary 2.3.2 Let € > 0. For A € CTn j, its e-pseudo-spectrum is bounded and
has no more than I (N — 1)1_l connected components. Moreover, if A € RTy |,
then its e-pseudo-spectrum is symmetric with respect to the real axis.

2.3.2 Backward Errors

For a tensor polynomial # as in (2.3.1), a definition of the normwise backward error
of an approximate eigenpair (1; X) of  with respectto w € Riﬂ is

(%, %) :=min ’e : (P(X) n AP(X)) V-1 — o,

with AP(z) = AAg + zAA + ...+ 2L AAL
forall z € Cand |AA/||F < wie, 1 =0,1,..., L},
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and the backward error of the approximate eigenvalue X is characterized by

nw(k) = min nyw(A, X) = min 7y(i, X).
XA£0; IX[2=1

Our first result presents an explicit expression for 7y (A, X) and makes precise the
inituition that if the residual r = P(i)iN ~1 is small, then we have an accurate
approximate eigenpair.

Comparing Definition 2.3.1 with the normwise backward error of an approximate
eigenpair (%; X) of P, it is obvious that the e-pseudo-spectrum can be expressed in
term of the normwise backward error of 1 as Ay (P) = {L € C:nw) <e€}.In
the matrix case where N = 2, this theorem has been established in [6, Lemma 2.2].

Theorem 2.3.5 Letﬂ()z; X) be an approximate eigenpair of P. Then, the normwise
backward error nw (A, X) is given by

N lIrll2

wA, X) = ~ a1 (2.3.8)
! pw(ADIXNY !

where py is given in (2.3.3) andr = POHXNL,

Proof For any € > 0 and w € Riﬂ, according to the definition of the normwise
backward error of an approximate eigenpair (i; X) of the tensor polynomial # with
respect to w, there exist some tensor polynomials AP € B(P,w,€) such that

(P(i) + Aso(i)) %V=1 = 0;. Forany z € C, let AP(z) = AAy + zAA; - +
ZLAA; with ||AA;||F < w; € and all /. Then we have

r=PMx" = —APOX" = —<AﬂoiN_1 +iaA R XLAﬂLiN—l)
It means that
L
Iell2 = (Z wzlkll) 1K1Y~ € = pw(ADIRIY .

=0

We see that the right-hand side of (2.3.8) is a lower bound for nw(i, X). This lower
bound is attained by choosing

AP(Z) = AAy + zAA; - -+ FAAL,

with z € C, where, for all /,

wiEe . o~ ~®ON—-1  _ 2(N—1
A=— ' signGhrex IRV,

Pw

Here, §ign(X’) is the sign function defined in (2.3.7) and r = PRV =
—APG)XN L, O
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2.3.3 Nearest Irregular Tensor Polynomials

Regularity is a nice property possessed by tensor polynomial eigenvalue problems
in applications. The distance from a regular tensor polynomial to the nearest
irregular one is therefore of great interest. The notion of the e-pseudo-spectrum
of a polynomial tensor sheds light on this problem.

For a tensor polynomial £ as in (2.3.1), suppose that P(z) is regular. The distance
from P to its nearest irregular tensor polynomial with respect to w € Riﬂ can be
defined as

Sw(P) = min{e :det(P(z) + AP(z)) =0

with AP(z) = AA + zAA; + ...+ z2EAAL (2.3.9)
forall z € Cand |AA||F < wie, 1 =0,1,...,L}.

From Definition 2.3.1 of Ay (P), it is evident that
dw(P) = minfe : Ay (P) = C}.

In general, the inequality can be strict. As an immediate consequence of Theo-
rem 2.3.1, a lower bound of §,(P) is given as follows,

Sw(P) > max min [Pox™"],
YT OEC k=1 pw(IAl)

2.4 Further Discussions

In this section, we illustrate our theory via an example, conclude our main results
and list some problems for future research.

2.4.1 An Example

According to the e-pseudo-spectrum of any given tensor polynomial with respect to
the weights w € Rf‘r“, we have

AW,E(P) = {)» eC: HmiE

X[l2=

Jpooxt] < pw<|x|)e}.
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Let P(z) = A —zBand w = (1,0) 7. Then the e-pseudo-spectrum of the tensor
generalized eigenvalue problem with the pair {A, 8} can be expressed as

Ac(A, B) = {x €C: min H(ﬂ—x@)ﬂﬂ(z < e}.

lIxll2=1

Given A, B € CTy,1, the pair {A, B} is a diagonalizable tensor pair (see [15,
Section 2.3]), if there exist two nonsingular matrices Qp, Q> € C'* guch that

S=Ax1Q x2Q2---xyQ2, T=8x1Q1%x2Q2---xyQ2

are diagonal. Furthermore, if Q and Q; are also unitary, then the pair {A, B} is
called a unitarily diagonalizable tensor pair. Let the main diagonal entries of S and
7 be {s1,52,...,87}and {t1, 12, . . ., t1}, respectively.

For similarity, we suppose that all #; are nonzero with all i. For the unitary
diagonalizable tensor pair {A, B} andy = Q;lx, one has SyN_l = (?l x1 Q1 x2
Q- xy Q)(Q 'Y = Qu(AXN 1) and TyV ! = Qu(BxN ). It follows
that the corresponding e-pseudo-spectrum can be represented as

Ac(A,B) ={reC: min [(A-1B)xN7| < e}
Ixll2=1 2

= )\e(C:Hnnlin1 (S—)\‘T)le)zfe}, withy:Qz_lx
ylla=

={1reC: min |[(D—rDyVN! 56},
llyll2=1 2

where O is a diagonal tensor with main diagonal entries d; = s;/t; with all i.
According to Proposition 2.2.2, we have

AG(\ﬂag) = {d17d27-'-7d1}+Ap*16-
N,I

Next, we illustrate the e-pseudo-spectrum of tensor generalized eigenvalue problem
with a unitary diagonalizable tensor pair.

Let (N,I) = (3,2), (s1,52) = (1 4+, —1—1) and (¢1, 1) = (1, 1). For different
€ > 0, the generalized eigenvalues of the tensor pair {A + AA, B} are displayed
in Fig. 2.1, where Q1, Q2 € C2*2 are two randomized unitary matrices and AA €
CT; satisfies || AA| F < €.
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Fig. 2.1 Illustration for the e-pseudo-spectrum of tensor generalized eigenvalue problem with the
unitary diagonalizable tensor pair {A, B}. For a given €, the number of samples is 20. Red stars
represent the generalized eigenvalues of the tensor pair {A, B}, blue dots for the pseudo generalized
eigenvalues and yellow cycles for the boundary of A (A, B)

2.4.2 Conclusion and Remarks

Although we extend the pseudo-spectrum theory from matrices to tensors, there are
a few important distinctions between matrix and tensor pseudo-spectra.

1.

In the literature of matrix pseudo-spectra, there are various equivalent definitions
[2, 3]. In this chapter, we only generalize one of their natural extensions by the
Frobenius norm. It is not clear whether other forms of equivalent definitions can
be extended to the tensor case.

. Many statements of the tensor pseudo-spectra involve the scalar py ; (first

mentioned in Corollary 2.2.1) where N is the degree of the associated tensor
and [ is the dimension of the underlying space. In the matrix case, the scalar
on,1 = 1 isindependent of .

. The computation and display of matrix pseudospectra have been well-studied,

see for example [3, 22-25] and the references therein. In particular, the boundary
structure of the matrix pseudo-spectra is reasonably well-understood, paving the
way in their computation and visualization. There is a lack in computational tools
for locating the boundaries of tensor pseudo-spectra. One is limited to computing
points in the tensor pseudo-spectra via randomized techniques. How to efficiently
compute and visualize the tensor pseudo-spectra is still an open problem.

. We present the pseudospectrum for generalized tensor eigenvalues, and a set to

locate this pseudospectrum [26].
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Malyshev and Sadkane [27] investigate a component-wise e-pseudo-spectrum
of a matrix A € R/*! and discuss how to compute it. Rump [28] characterizes
the structured (complex and real) e-pseudo-spectrum for a number of structures
and points that there is no significant difference to the usual, unstructured e-
pseudo-spectrum. Tisseur and Higham [6] discuss a structured e-pseudo-spectrum
for matrix polynomial eigenvalue problems.

LetI € CTy,; be the entire one tensor, that is, I;;;, i, = 1 for all i, and n.

Definition 2.4.1 Let ¢ > 0. The component-wise e-pseudo-spectrum of A €
CTy,; is defined as

AL(A) = {A eC: A+ XN = 1x¥ 1 for some € € CTy.1
with |&E] < el and nonzero vectors X € c! } ,

where | A| means the modulus of A, that is, all entries of |A| are |a;,;,...; | for all i,
and n. Here, |E| < €I means the modulus of each entries of & is less or equal to €.
If € = 0, then the component-wise 0-pseudo-spectrum equals to A (A).

In order to define the component-wise e-pseudo-spectrum of # with respect to
w e Ri“. For a tensor polynomial £ as in (2.3.1), we set

B.(P,w, ¢) = [7>+ AP AP(Z) = AAg + zAA + ...+ ZEAAL
forallz € Cand |AA;| < wel, 1 =0,1,...,L}.

Definition 2.4.2 For a tensor polynomial # as in (2.3.1) and € > 0, the component-
wise e-pseudo-spectrum of the tensor polynomial £ with respect to w € Ri“ is
defined as

A;'V’E(P) ={r e C:det(Pa(r)) =0and P € B.(P, W, €)}
= {A € C: A is an eigenvalue of P € B.(P, w,€)}.

We introduce the structured e-pseudo-spectrum of any A € CTy,; in the
Frobenius norm (see Definition 2.2.3). We now define the structured e-pseudo-
spectrum of any tensor polynomial with respect to nonnegative weights in the
Frobenius norm.

Let S be a subspace of CTy_;. For a tensor polynomial # as in (2.3.1), we define

BS(®P,w,€) = {sv+ AP AP(2) = AAg + AR + ... + - AAL

forall z € Cand |AA||F < wie, I =0,1,...,L},
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and

BS®P,w,€) = {sv+ AP : AP(2) = Ay + 2AA; + ...+ L AAL

forallz € Cand |AA;| < wiel, [ =0,1,...,L},

with AA; € Sand w € RYT.

Definition 2.4.3 For a tensor polynomial £ as in (2.3.1) and € > 0, the structured -
pseudo-spectrum of the tensor polynomial $ with respect to w € Ri“ is defined as

AS ((P) = {1 € C:det(Pa(h) = 0and Pa € BS(P, W, €))

= {A € C: X isan eigenvalue of Pp € BS(SD, w,€)}.

Definition 2.4.4 For a tensor polynomial # as in (2.3.1) and € > 0, the structured
component-wise e-pseudo-spectrum of the tensor polynomial # with respect to w €
Ri‘“ is defined as

ASE(P) = (1 € C: det(Pa(2) = 0and Py € B3P, w, )

= {A € C: A is an eigenvalue of Pp € BCS(P, w,€)}.
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Chapter 3 )
Perturbation Theory Shethie

3.1 Preliminaries

Backward errors and condition numbers are important in modern numerical linear
algebra. If a numerical algorithm is backward stable, then the product of the
condition number and the backward error is the first order asymptotic error bound
of the solution. We recommend the monographs Stewart and Sun [1], Golub and
Van Loan [2], Wilkinson [3], and Kagstrom and Ruhe [4] for the background of
the matrix eigenvalue problem. These consist of the matrix standard eigenvalue
problem, the matrix generalized eigenvalue problem and the matrix polynomial
eigenvalue problem. The perturbation theory of eigenvalue problems for matrices
attracts extensive attention of many researchers, and the interested readers are
referred to [1, 3, 5-7].

Similarly, the eigenvalue problems for tensors in this chapter consist of the tensor
standard eigenvalue problem (i.e., the eigenvalue problem and the E-eigenvalue
problem), the tensor generalized eigenvalue problem and the tensor polynomial
eigenvalue problem. In Sect. 1.3.1, we introduce the definition of the real symmetric
tensor standard eigenvalue problem, i.e., (H-) eigenpairs, and E- or Z-eigenpairs and
the numerical algorithms for the computation of H- and Z-eigenpairs. A systematic
study of the perturbation theory of the eigenvalue problem for tensors appears to be
lacking in the literature. The main purpose is to bridge this gap by considering the
first-order perturbation bound of the eigenvalue problem for tensors with relative
normwise or componentwise perturbations.
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3.1.1 Definitions

In 2005, the definition of symmetric tensors are introduced by Qi [8] and Lim [9].
Now we introduce the definition of mode-symmetric tensors, as a generalization of
symmetric tensors. When N = 2, both symmetric and mode-symmetric tensors are
reduced to symmetric matrices.

Definition 3.1.1 For all i, and n, if the entries of A € RTy ; satisfy the following
formulae

Ajiy...iy = Qipiy...iyiy = = Qiyniy...in_1>»

then A is called mode-symmetric.
Suppose that a, b, ¢ € R’ have unit norms and are orthogonal to each other. If A €
RT3, is given by

A=albRc+bR®c®a+c®a®b,

then A is mode-symmetric [10]. Sometimes, we call A a cyclically symmetric
tensor [11].

For a given n, we define the mode-n E-eigenpairs of A € RTy, , which is a
generalization of the E-eigenpairs of the real symmetric tensors. In the following
definition, if x*x is replaced by x ''x, this definition extends that of Qi [8].

Definition 3.1.2 Assume that A € RTy ;. For a given n, if there exist a unitary
vector x, € C! and A, € C such that

T T T T
AX1X, - Xpo1 X, Xpp1 X, - XN X, = AzXp, (3.1.1)

then (A,; X,) is called a mode-n E-eigenpair of A.
If x, € R and A, € R, then (A,;X,) is called a mode-n Z-eigenpair of A.
Moreover, the mode-n E-and Z-spectra of A are defined, respectively, as
E,(A) = {x € C: Ais amode-n E-eigenvalue of A},
Zy(A) = {x € C: ¥ is amode-n Z-eigenvalue of A}.
For a given n, we also define the mode-n eigenpairs of A € RTy, ;, which are
the generalization of the eigenpairs of the real symmetric tensors [8].
Definition 3.1.3 Suppose that A € RTy ;. For a given n, if there exist a nonzero

vector X, € C! and A,, € C such that

T T T T N-1
AXIX, - Xp_1X, Xpgl X, o XN X, :)\nxL ], (3.1.2)

then (A,; X,,) is called a mode-n eigenpair of A.
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If x, € R and A, € R, then (A,:X,) is called a mode-n H-eigenpair of A.
Moreover, the mode-n spectrum A, (A) of A is defined as

Ay (A) = {A € C: A is amode-n eigenvalue of A}.

The mode-n spectral radius p,, (A) is defined as max{|A| : A € A, (A)}. The spectral
radius of A is denoted by p (A) = max{p1(A), p2(A), ..., pN(A)}.

For all n, the mode-n eigenvectors of A € RTy,; can be viewed as the
generalization of the left and right eigenvectors of A € R/*!. Some properties
of the mode-n eigenpairs of A are presented in the following:

(a) Given symmetric or mode-symmetric A € RTy ; and X € C!, we have the
following equalities

‘ﬂxsz X3XT~-~xNxT:-~-:‘J’(xle~-~><,,_1xT Xn+1XT-~-><NXT

:-~-:ﬂx1xT X2XT-~-XN_1XT.

(b) Generally speaking, for all n, A,(A) are different sets. For any m # n,
om(A) # pp(A). Similar results for the mode-n E- and Z-spectra of A €
RTy, 1 hold.

(c) Let A be symmetric or mode-symmetric. If (1; X) is a mode-n eigenpair of A,
then for all m and n, (1; X) is a mode-m eigenpair of A. Furthermore, A, (A)
are the same set with all n, denoted by A (A).

We illustrate why (a) and (c) hold. Without loss of generality, let N = 4. We have
I

T T T
(Axyx' X3X Xg4X'); = Z QijkIX jXkX],
jki=1

1 1
T T, T
(AXIX X3X X4X')j= Z AijkIXiXkX| = Z ajkliXkX1Xi,
iki=1 Kli=1

I 1
T T T
(AXIX X2X' X4X ) = Z QijkIXiXkX| = Z Aklij XkXiX 5
iji=1 lij=1

1 I
T T T
(ﬂ X1X X2X X3X )1 = Z AjjklXiXjXk = Z AlijkXiXjXk-
ijk=1 ijk=1

According to Definitions 3.1.1 and 3.1.3, we have

Qijkl = Ajkli = Aklij = Qlijk,
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Table 3.1 All approximated mode-n spectral radii of the positive tensors A, 8 and C

The mode-1 spectral radius ~ The mode-2 spectral radius ~ The mode-3 spectral radius

A 47284 4.7340 4.7539
B 47686 4.7686 4.7686
C 3.6167 3.6167 3.6167

for all i, j, k and [, then (a) and (c) hold for the case of symmetric or mode-
symmetric tensors. We now illustrate (b) via the following example.

Example 3.1.1 ([12]) Consider the positive tensor A € R3*3*%3 with

ainn = 0.4333, ajp1 = 0.4278, a131 = 0.4140, az11 = 0.8154, azy; = 0.0199,
az31 = 0.5598, a3y = 0.0643, azx; = 0.3815, azz1 = 0.8834, ajjp = 0.4866,
aizz = 0.8087, ajzx = 0.2073, axip = 0.7641, axp = 0.9924, azzy = 0.8752,
az12 = 0.6708, aznn = 0.8296, azzn = 0.1325, aj13 = 0.3871, ajxz = 0.0769,
a133 = 0.3151, az13 = 0.1355, ax3z = 0.7727, azsz = 0.4089, az13 = 0.9715,

azpz = 0.7726, azzz = 0.5526.

According to Definition 3.1.1, we define the mode-symmetric tensor 8 € RT3 3 in
the following strategy: choose two tensors £, Q € RT3 3 such that

ajjk + Pijk + qijk
Dijk = Qjki, qijk = Qkij, bijk = ! 3/ =,
with i, j, k = 1, 2, 3. Consider the symmetric tensor C € RT3 3 with

c111 = 0.0517, 112 = 0.3579, 113 =0.5298, c120 =0.7544, 123 = 0.2156,
c133 = 0.3612, 09 =0.3943, 203 =0.0146, ¢33 =0.6718, 333 = 0.9723.

Since the entries of A, B and C are positive, for n = 1,2, 3, we can compute
all approximated mode-n spectral radii of these three tensors via the NQZ method,
which are shown in Table 3.1.

For a given tensor A € RTy 1, if (A; x) is the mode-1 eigenpair of A, then (3.1.2)
in Definition 3.1.3 can be simplified as AxY ~! = Ax!V =11 If A is symmetric, then
Qi [8] deduces some properties of the mode-1 eigenpairs.

Qi [8] defines the determinant of a symmetric tensor A € RTy ;. The following
definition extends Hu et al. [13] and we name it as the mode-n determinant of A €
RTy,; with a given n.

Definition 3.1.4 ([13, Definition 1.2]) For a given n, the determinant of Nth-
order /-dimensional real tensors denoted by DET,, is defined as the irreducible
polynomial with variables v;,._;, € R for all i, and n, such that it is the resultant of
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the polynomial system
AX X Xy 1 X Xy XXy X =0y,

where V € RTy ;.

Moreover, the value of the mode-n determinant of a given tensor A € RTy j is
denoted by det, (A), and is defined as the evaluation of DET,, at the point {v;, iy, =
aiy.iyin=12,...,I;n=1,2,..., N}. Fora given A € RTy j, if det,(A) #
0, then A is said to be mode-n nonsingular.

When n = 1, Hu et al. [13, Corollary 6.5] derive that

dei(@ =[] w

rENI(A)

According to Definitions 3.1.3 and 3.1.4, we can derive the more general result for
all n:

det, ()= [] -

Ai €Ay (A)

Chang et al. [14] consider the tensor generalized eigenvalue problem, in which
the tensors belong to R7y ;. Note that the tensor generalized eigenvalue problem
is a special case of the tensor polynomial eigenvalue problem. We introduce the
definition of a tensor polynomial, determined by some tensors in Ry, ;.

For A; € RTy,; with all [, the tensor polynomial #, determined by the tensor
tuple {Ap, Az, ..., AL}, is defined as

Pz) = Ay + 2 A, + -+ AL, (3.1.3)

for all z € C.

Definition 3.1.5 Suppose that # is a tensor polynomial defined in (3.1.3). For a
given n, if there exist a nonzero vector x,, € C! and A, € C such that

P(An) X1 x,—lr cee X X,T Xn+1 X,T XN X,T =0
then (A; X,) is called a mode-n eigenpair of P.
If x, € R and A, € R, then (A,;X,) is called a mode-n H-eigenpair of P.

Meanwhile, the mode-n spectrum of # is denoted by

An(P) =[x € C : det,(P(L)) = 0}

= {A € C: X is a mode-n eigenvalue of P}.
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Remark 3.1.1 In general, for all n, A, (P) are different. If all tensors A; € RTn. 1
are symmetric or mode-symmetric, then A, (#) are identical, denoted by A(P).
Here, (A; X;,) is called as an eigenpair of P.

Ding and Wei [15] introduce the regular tensor pair {A, B}, as a generalization
of the regular matrix pair [1], where A, B € RTy, ;. In general, according to
Definition 3.1.4 and the definition of P, we give the definition of the mode-n regular
tensor tuple {Ap, Az, ..., AL}, where A; € RTy, ; with all [ and a given n.

Definition 3.1.6 Suppose that # is a tensor polynomial defined in (3.1.3). For a
given n, the tensor tuple {Ap, Ay, ..., AL} is mode-n singular if det, (P(1)) = 0

for all A € C. Otherwise the tensor tuple {Ag, A1, ..., AL} is said to be mode-n
regular.

Furthermore, we say that the tensor polynomial # is mode-n singular (or mode-n
regular) if the corresponding tensor tuple {Ap, Ay, . .., Ar} is mode-n singular (or

mode-n regular).

We suppose that the tensor tuple {Agy, Ay, ..., AL} is mode-n regular with a
given n, where A; € RTy,; with all [. Then according to Definition 3.1.6, there

exists a A € C such that det, (SD():)) # 0. Hence we can select another tensor tuple
{ﬁ(o, ﬁh, R ﬁ(L} such that ﬁ{L = Z,]“:O Xlﬂl and there is a one-to-one map

between A, () and A, (55), where det,, (Ar) # 0 and Sb(k) =Ay+ 1A + -+
+aL ilL.

Thus, for the mode-n regular tensor tuple {Ay, Ay, ..., AL}, we can assume,
without loss of generality, that A is nonsingular. For all n, all the mode-n spectra
of P, determined by {Aop, Ay, ..., AL}, are finite subsets of C.

For a given tensor tuple {Ay, Aj, ..., AL}, where A; € RTy ; with all [, we
can also define another tensor polynomial

P, B) = ot AL + a7 BAL + -+ apET A+ LA,

foralla, 8 € C.

It is obvious that #(-,-) is a homogeneous polynomial on « and S. The
relationship between #(1) and P (e, B) is listed below. If B # 0, then P(a, ) =
BEP(a/B); and if a # 0, then P(a, B) = atP(B/a), where

L—1 L
¢<ﬂ>=ﬂL+'BﬂL—1+---+<'B> ﬂrl—('B) Ao.
o o o

o

If (A4, X;,) is a mode-n eigenpair of the tensor polynomial #, then, we can choose
a pair {oy; B,} such that

T T T T
Plan, Bn) X1X, -+ Xn—1 X, Xpg1X, - XNX, =0;
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and

A= an/Bn, Bn #0,
=

o0, ;Bn = 0‘
with {on, B} # {0, 0}.

In Sect. 1.3.2, we introduce the definition of the singular tuples (i.e., singular
values and associated mode-n singular vectors) of A € R/1*/2X*IN The restricted
singular tuples (i.e., restricted singular values and associated restricted mode-n
singular vectors) of A € R/1*2XXIN are defined below.

Definition 3.1.7 Let B, € R"*/n be symmetric positive definite matrices and
X, € R satisfy xB,x, = 1 with all n. For a given A e RI1>12>xIN apqd

o € R, if (o; X1, X2, ..., Xy) is a solution of the nonlinear equations
F(x1,x2,...,xXy)—n = 0B;Xx,, (3.1.4)
where
F(xX1,x2,...,Xy)—n = A X1 x]— Xn—1 x;lr_l Xp+1 x;er S XN x;,

then the unit vector x,, and o are called the restricted mode-n singular vector and a
restricted singular value of A, respectively.

3.1.2 Symmetric and Mode-Symmetric Embeddings

Well known relationship exists between the singular value decomposition of
A € R’/ and the Schur decomposition of its symmetric embedding sym(A) =
([07x7 A; AT 07,7]) (see [2, Chapter 8.6]). For a general tensor A € R/t < 2x >y
Ragnarsson et al. [16] derive a method for obtaining a symmetric embedding
sym(A) € RTNj from A with [ = Lh+DLh+---+1Iy.

We now consider how to obtain a mode-symmetric embedding msym(A) <
RT) ; from A € RAx[2xxIN The number of the nonzero entries of msym(A) is
1/(N — 1)! of that of sym(A).

For a given A € RIxDxxXIN e define A, € RI*2%*IN 44 follows:

(ADirigiy = iyin.iys  (ADijigiy = Qiyiniys - (ANDifin.iy = Biyiy.in_1-
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For all n, let K,, = I1 + Io + - - - + I,. Then the nonzero entries of msym(A) €
RTy k) satisfy

msym(A)[1: K1|K1+1:Kz|...|[Kn—1+1: Kyl =HAy,

msym(A)[K; +1: Ka|...|[Ky—1+1: Ky|l: K1]=A,

msym(A)[Ky—1+1: Ky|l: Kq|...|[Ky—2+1: Ky_1] =Ap.

According to Definition 3.1.1, msym(A) is mode-symmetric. When N = 3,
msym(A) is displayed in Fig. 3.1.
Given N nonzero vectors x,, € C’ with all n, let x = (X1,X2,...,Xy). Then

msym(ﬂ)xN = NA x1 xi'— X2 x;'— cee XN x;,

and

T T T
A X2 Xy X3X5 -+ XN Xy

N1 ﬂxlx]—xp(;—-ux]vx;
msym(A)x = .

T T T
A XX X2Xy -+ XN—1 Xy_
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Fig. 3.1 msym(A); unlabeled parts are zero elements
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By some manipulations, we have

P N 82 N
msym(A)x = Nmsym(&f’()xN_l, msym(F)x =N(N — l)msym(ﬂ)xN_z,
ox ax?2
with
msym(?l)xN_2 = msym(A) x3 x| xXyX.

The interested readers are referred to [16, 17] for other details of sym(ﬂ)xN and
sym(A)xN 1,

3.2 Perturbation Bounds of Z- and H-Eigenvalues

We first characterize the properties of eigenvalues and Z-eigenvalues of a mode-
symmetric tensor A € RTy ;. Based on these properties and the perturbation
of simple eigenvalues of A € R!*!, we then investigate perturbation bounds
of an algebraically simple eigenvalue and Z-eigenvalue of A. Lastly, for a given
A € RIxhxxIN based on the symmetric or mode-symmetric embedding from A,
perturbation bounds of an algebraically simple singular value (or restricted singular
value) are obtained.

Wilkinson [3], Demmel [18], and Stewart et al. [1] study the condition number
of a simple eigenvalue of A € C/*1,

Lemma 3.2.1 ([18, Theorem 4.4], [1, Theorem 2.3]) Let A be a simple eigenvalue
of A € C'™! with the right and left eigenvectors x € C! andy € C!, respectively,
normalized so that |X|l2 = ||lyll2 = 1. Let A + §A be the corresponding eigenvalue
of A + §A. Then

*

y*5Ax
= + O(lI8A13),

or

DNE
20 = | 005+ OUBALD = sec Oy I3l + O(IBAIS),

where O(y, X) is the acute angle between 'y and x and ||A||2 is the largest singular
value of A. In other words, sec ©(y, X) = 1/|y*x| is a condition number of \.
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3.2.1 Properties of Eigenvalues and Z-Eigenvalues

In 2005, Qi [8] derives the basic properties of eigenvalues and Z-eigenvalues of a
symmetric tensor A € RTy, ;. Those results also hold with any mode-symmetric
tensor. In order to prove Theorems 3.2.4 and 3.2.6, we need the following theorem.

Theorem 3.2.1 Suppose that A € RTy .| is mode-symmetric with an even N.

(a) A always has H-eigenvalues. A is positive definite (positive semi-definite) if
and only if all of its H-eigenvalues are positive (nonnegative).

(b) A always has Z-eigenvalues. A is positive definite (positive semi-definite) if
and only if all of its Z-eigenvalues are positive (nonnegative).

Proof We see (3.1.2) is the optimality condition of

1
max !ﬂxN : Zx,.N =1,xe R’} (3.2.1)

i=1

and

1
min {ﬂxN : Zx,.N = 1,xeRI}. (3.2.2)

i=1

Since the feasible set is compact and the objective function is continuous, the global
maximizer and minimizer always exist. This shows that (3.1.2) has real solutions,
i.e., A always has H-eigenvalues. Since A is positive definite (resp. positive semi-
definite) if and only if the optimal value of (3.2.1) is positive (resp. nonnegative),
we draw the second result in (a).

The proof of (b) is similar. |

Chang et al. [14] define the geometric multiplicity of an eigenvalue A. Hu et al.
[13] consider the algebraic multiplicity of an eigenvalue A. Similarly, we define
the geometric and algebraic multiplicities of a Z-eigenvalue. A Z-eigenvalue is
algebraically simple if its algebraic multiplicity is one. This definition is applicable
to a tensor generalized eigenvalue, an eigenvalue, a tensor singular value and a
tensor restricted singular value.

Next, we introduce a basic result of algebraic function theory [19].

Lemma 3.2.2 Let

F ) =5+ proi )y !+ 4 pr)y + pox),

where p;(x) witht = 0,1,..., L — 1 is a polynomial respect to x. For a given
x € C, the nonlinear equation f(x,y) = 0 has L roots, denoted by y;(x)
with t = 1,2, ..., L. Specially, the roots of f(0,y) = 0 are denoted by y;(0),
respectively.
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Suppose that y:(0) is a single root of f(0,y) = 0. Then there exists a positive
scalar §; such that f(x,y) = 0 has a single root satisfying

y1(x) = :(0) + prx + px?+..., (3.2.3)

and the right-hand side of (3.2.3) is convergent with |x| < ;.

For a symmetric tensor A € RTy,; and all nonzero vectors x € R!, we have

AxN

x5

Hx) =

Theorem 3.2.2 Assume that (Ay; Xy) is an E-eigenpair of the symmetric tensor
Ae RTN’I.

@) If (As; Xy) is a Z-eigenpair of A, then for a small perturbation §x € R!, we
have

L&+ 8%) = (%) + OI8xI3) = As + O(I5x]13).

(b) If Ay € Cis an algebraically simple E-eigenvalue of A, then for any symmetric
tensor B € RTy |, there exists an algebraically simple E-eigenvalue iy € C
of A+ uB such that A = Ay + O (w), where u € R satisfies || < € with a
sufficiently small € > 0.

Proof The proof of the first part can be found in [20, Theorem 4.1]. In following,
we prove the second part.

Since N is even, let N = 2K. Define & € RTn,; as €ji,..ixy =
5,'”'28,'3,'4 e 8,‘21{4,’21{, where

1, ifi =j;
Sij=qy. ...,
0, ifi # j.

According to [8, Theorem 2], the E-eigenvalues A of the symmetric tensor A
satisfies det(A — AE) = 0. Let ¢ (z) = det(A — zE). If L, is an algebraically simple
E-eigenvalue of A, then ¢ (Ay) = det(A — 1,.E) = 0 and ¢’ (Ay) = ‘j‘f lx=r, = 0.

Similarly, we define ¢, (z) = det(z& — A — uB). The degree of ¢, (z) in z is
equal to that of ¢ (z), and the coefficients of ¢, (z) are polynomials in x. According
to Lemma 3.2.2, there exists a simple root )A\* of ¢, (z) such that

he =i+ O(),

where u € R satisfies || < e with a sufficiently small € > 0. O
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Let A € RTy,; be symmetric with an even N, and ||x||% = x{v —l—xév +--- —i—x}v
with all nonzero vectors x € R’, we define

AxN

v =

Il

Theorem 3.2.3 Suppose that A € RTy.j is symmetric with an even N. Let (A X4)
be an eigenpair of A.

(a) If (A«; X4) is an H-eigenpair, then for a small perturbation 5x, we have
SN+ 8%) = fiv (%) + OISX]13) = Ao + O(I8x113).

(b) If Ay is an algebraically simple eigenvalue and B € RTy 1 is symmetric, then
there exists an algebraically simple eigenvalue Ly of A+ uB such that Ly, =
Ax + O (), where real € satisfies ||| < € with a sufficiently small € > 0.

Proof To prove part (a), we consider the first-order Taylor expansion of f(x) at
X = Xo:

fX) = f(x0) + (x —X0) "V f(x0) + O(IIx — x0[13),

where f : R/ — R is continuously differentiable and

Vf(x) = (3f/0x1,0f/0x2, ..., 0f/0x) .

Since (Ay; X4) is an H-eigenpair of A, then

AxN
fN(X*)Z)\*Z *N‘
%1
Hence
v +8%) = fv(x) + 8%V fiy(x0) + O(16x]13).
Since
N _ _
Viveo = (A pveoxM ) =0y,
%1

Part (a) has been proved.
Part (b) is similar to part (b) of Theorem 3.2.2, from the properties of the
characteristic polynomial of ‘A and Lemma 3.2.2. O

Note that Theorems 3.2.2 and 3.2.3 are also valid for real mode-symmetric
tensors.
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3.2.2 Algebraically Simple Z-Eigenvalues

It is observed [21] that the complex E-eigenpairs of the symmetric tensor A €
RTy,; form an equivalence class under a multiplicative transformation [22]. If
(A; x) is an E-eigenpair of A and y = ¢'?x with ¢ € (—m, 7], then y*y = x*x = 1
and

AyN T = WD AN =T — ot N=Do) g — ot N=200) g (3.2.4)

Therefore (‘N =2%); ¢'x) is also an E-eigenpair of A for any ¢ € R. We can
choose ¢, € (—m, ] such that e‘(N=2)¢:) ¢ R. We next consider the perturbation
bounds of a Z-eigenvalue of any symmetric or mode-symmetric tensor A € RTy ;.

Theorem 3.2.4 Let A, B € RTn | be mode-symmetric, ¢ € R and (A; X) be an
algebraically simple Z-eigenpair of A. Then there exist g > 0 and an analytic
function A(g) with |e| < eo such that

A0)=A, A(0) = d* = 8Bx",
de e=0

where X' x = 1. Therefore, 1(¢) is an algebraically simple Z-eigenvalue of A+ B
over |e| < g9, and

A(e) = A +eBxY + 0(e).
Proof When A is symmetric, we know that A always has Z-eigenvalues [8,
Theorem 5]. This also holds when A is mode-symmetric (see Theorem 3.2.1).
According to [8], the E-characteristic polynomial of A 4 ¢B is
@e(z) = det(zE — A — B).
It is obvious that ¢, (z) is an analytic function with respect to ¢ and z. Define ©, :=

{z € C: |z —A| < r}. Let r be sufficiently small such that Z(A) N D, = {A}.
Denote the boundary of ©, as 99,. Then

min =y > 0.
zeaz),l(pO(Z)' Y

Since @, (z) is a continuous function of ¢, there exists &g > 0, such that for all ¢
with |e] < &0, ¢:(z) has only one zero point in ®, and

min ()] = 0.
2€0D,, |e|<eo e @)1
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It follows from the Residue theorem [23] that the zero point A(¢) of ¢ (z) in D,

can be represented as A(e) = 2; fa@, e (@) dz, where ¢.(z) = dg:(z)/dz.

e (2)
Both Z;ZS((ZZ)) and ;z (Z;ZS((ZZ))) are continuous on 99,, by the differential and

integral order exchange theorem, A(¢) is an analytic function, if || < 9. Hence
A(e) = A(0) + X (0)e + O(?), A (0) = A, |e| < &.

For an algebraically simple Z-eigenvalue A of A, there exist X1, Xy € R’ such
that

ﬂxlN—l = AX;, x;rxi =1, i=1,2.
If X1 = ¢xjy, then c satisfies that ¢® = 1and ¢¥~2 = 1. In this case, we can see that
X1 and x, are the same vector. Hence we define

6 = min{|ly — x||2 : y and x are the different eigenvectors associated with A}.

Then over {z € C! : |z — x|| < 8}, there exists a unique eigenvector x of A
associated with A. (For an algebraically simple Z-eigenvalue A, if its geometric
multiplicity is also 1, then set § < g9.)

For an algebraically simple Z-eigenvalue A(¢) of A-+eB, since A(¢) is an analytic
function with |¢| < o, there exists § = min{3, g9} such that ||x(¢) — x|» < § and
x(¢) is the unique eigenvector of A4-¢8B corresponding to A(¢). According to results
on algebraic functions [19], we derive that x(¢) is an analytic function, where |g| < s
and x(0) = x.

As (A+eB)x(e)V ™! = A(e)x(e), by differentiation with respect to ¢, and setting
e = 0, we have

AX + BX(O)N’1 = 1 (0)x(0) + A(0)x'(0),
where
A% = Ax2X (0) " x3x(0) "+ xyx(0) " +- -+ x2x(0) " -+ xy_1x(0)" xy X' (0)").
Then
2 (0) = 8x(0)N = Bx",

and the theorem is proved. O
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Gohberg and Koltracht [24] explore condition numbers of maps in finite-
dimensional spaces F : R” — R€. The condition number of F at a pointa € Df!
characterizes the instantaneous rate of change in F (a) with respect to a.

Another perturbation result of a nonzero algebraically simple Z-eigenvalue A of
the mode-symmetric tensor A € RTy ; is considered, whose associated eigenvector
x € R/ satisfies ||x||; = 1. It is well known that the map Fg : ¢ — A(A + £B)
is analytic in a neighborhood of 0 [13]. Therefore, the map F : A — A(A) has
continuous partial derivatives with respect to each entry of A and

oF . FA+1S) - FA)
(A) = tlgI(l) . = Xi; Xiy -+ - Xip»

ailizml‘N
where S € RTy ; is the zero tensor except for s;,4,..;y = 1 with all i, and n.

We illustrate the meaning of S via a special case of N = 4. Without loss of
generality, (i1, i2, i3, i4) = (1, 2, 3, 4), then S can be written as J = e;®e; ®e3Req
where e; is the ith column of I; € RIX! fori = 1,2, 3, 4. Then, all entries of S are
given in the following:

Sijajage = €1(j1ea(j2)es(jz)es(ja),

where j, = 1,2,..., I and e, (j,) is the j,th element of e, withn = 1,2,3,4.In
general, S =e;, ®e;, ®--- ®e;, where e;, is the i,th column of I} € R for all
n.

Hence, as a map from RIN — R, F is differentiable at A and

, [ IF OF IF IF }
F'(A) = .

011...1 dayy..ir 0azi.q dajyy.. g

According to a formula by Gohberg and Koltracht [24], for relatively small
componentwise perturbations in A, i.e., |ej,iy..iy| < €ldii,..iy|, for all i, and n,
where & € RTy, 1 is mode-symmetric and ¢ > 0 is arbitrarily small, the sensitivity
of F(A) is characterized by the componentwise condition number of F at A:

F'(AD
(F. ) = | F'(A) ?I”oo’
| F(A) oo
with Dg = diag(aii..1,...,a11..11,a21..1, ..., arr..1).
For A # 0, it indicates that
c(F, A) = (a11.1X1X1 ... X1, ..., A11..1IX] . . . X1X],
a21.1X2X1 .. X1, ..., Q11 1X1X] ... Xp) |loo /2],

1 Dr is denoted by the domain of the map F : R” — RZ.
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where the infinity norm of the map F/(A)D4 is, in fact, the 1-norm of the row
vector that represents it. Thus

1
C(F.A) = Y aiyip.iyXirXiy - - - Xiy /1A = |ANX|N /2],

i1i2...in=1
where

1
N
AT = > aniiy i lxn] - x|

i1,in,....in=1

Theorem 3.2.5 Let A € RTy.1 be mode-symmetric. For an arbitrary small ¢ > 0,
suppose that the mode-symmetric tensor & € RTy | satisfies |e;jiy...ix| < €liis..iy|
for all i,, and n. Then for an algebraically simple Z-eigenvalue . # 0 of A, there
exists a Z-eigenvalue A of A+ & such that

=2 (P e + 0

] <c(F,A)e+ 0(&7).

If (A; z) is a Z-eigenpair of the mode-symmetric tensor A € RTy 1, then (A; —z)
is also a Z-eigenpair of A with an even N. Hence, if ¢ is the Z-spectral radius of
A, then the associated Z-eigenvalue is o or —p. In particular, if A is nonnegative
and irreducible, according to Theorem 3.2.5, we can derive the perturbation bound
of the Z-spectral radius of A.

Corollary 3.2.1 Suppose that A, & € RTy,1 are mode-symmetric with an even N
such that A is nonnegative and irreducible. For an arbitrary small ¢ > 0, suppose
that the mode-symmetric tensor & € RTy | satisfies |e;i,..iy| < €aiyiy..iy fOr all iy
and n. Let o and o, denote, respectively, the Z-spectral radii of A and A+ E. If A
is nonnegative and irreducible, then

loe — ol <
0

E.

Assume that (X; X) is an algebraically simple E-eigenpair of the mode-symmetric
tensor A € RTy ;. If there exists ¢, € (—m, ] such that e N=Dexy e R,
then according to Theorem 3.2.4, we can derive the perturbation bounds of A.
Furthermore, Theorems 3.2.4 and 3.2.5, and Corollary 3.2.1 hold for symmetric
tensors in RTy ;.
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3.2.3 Algebraically Simple Eigenvalues

Let A,B8 € RTy,; be mode-symmetric. For any sufficiently small ¢ > 0, we
provide the explicit expression of an algebraically simple eigenvalue A(¢) € C of
A + e8, as a generalization of the classical results in [1, Theorem 2.3].

Theorem 3.2.6 Suppose that A, B € RTy, | are mode-symmetric with an even N.
Let (A; X) be an algebraically simple eigenpair of A with ||X||% =x{v~|—- . -~|—x% #0,
there exist eg > 0 and an analytic function L(¢) with |e| < &g such that

dx BxN
A0) =1, N (0) = S
del.—o Ixlly

Therefore, A(¢) is an algebraically simple eigenvalue of A+ ¢B over |e| < gy, and

N

Bx 2
rMe)=r+e o+ 0.
Xy

In particular, if (X; X) is an algebraically simple H-eigenpair of ‘A such that
||X||% = 1, then there exist e > 0 and an analytic function A(g) with |e| < &g such
that

1 di N
AMO0) =, N(0)= — Bx".
de e=0

Then A(¢) is an algebraically simple H-eigenvalue of A+ €B over |e| < &y, and
A(e) = A +eBxY + 0(e). (3.2.5)

The proof of the above theorem is similar to that of Theorem 3.2.4 and is omitted.

Remark 3.2.1 For a given ¢ > 0 if A and B in Theorem 3.2.6 are irreducible and
symmetric nonnegative tensors, then formula (3.2.5) reduces to the result by Li et al.
[25, Theorem 5.2].

Suppose that A, B € RTy,; are mode-symmetric. We now consider the first
relative perturbation bound of the nonzero algebraically simple H-eigenvalues of A
for componentwise perturbations. For a sufficiently small ¢ € R, it is well known
that the map Fg : ¢ & A(A+eB) is analytic in a neighborhood of 0 [13]. Therefore,
the map F : A — A(A) has continuous partial derivatives with respect to each entry
of A and

oF . FA+1S) — FA)
(ﬂ) = tlgI(l) = X1 Xiy «« - Xiy,

ailizml‘N t
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where S = ¢;, ® e;, ® --- ® e;,, where e;, is the i,th column of I, for all i,, and n.

Thus, as a map from R! AN R, F is differentiable at A and
, oF oF oF oF
F'(A) = s , s .

dair..1 dair..1r dazi.a dary .1

Based on a formula by Gohberg and Koltracht [24], for the componentwise
perturbations in A, i.e., |eji,..iy| < €laijiy..iy| for all i, and n, where & € RTn g
is mode-symmetric and ¢ > 0 is arbitrarily small, the sensitivity of F(A) is
characterized by the componentwise condition number of F at A:

F'(A)D
(F. ) = | F'(FA) ?I”oo’
| F(A) oo
with Dg = diag(aii..1, ..., a11..11,a21..1, - - -, A11...1)-
For A # 0, it indicates that
c(F,A) = (a11.1X1X1 ... X1, ..., A11..1[X] .. . X1X],
A21.1X2X1 .. X1, ..o, Q11 1XIX] ... Xp) |loo /2],

where the infinity norm of the map F’'(A)D 4 is the 1-norm of the row vector that
represents it. Thus

I

Z |ai|i2miN-xi1-xi2 -~--xiN| N
irip...iy=1 |ﬂ||X|
c(F, A) = N = N

X1 ALY

Theorem 3.2.7 Let A,E € RTy,; be mode-symmetric with an even N. If for a
sufficiently small ¢ > 0, the entries of & satisfy |ejyiy..iy| < €laiyiy..iy| for all iy
and n, then for an algebraically simple H-eigenvalue A # 0 of A, there exists an
eigenvalue A of A+ & such that

A=A 2
] < c(F,A)e + 0(e).

If a mode-symmetric tensor A € RTy ; is irreducible and nonnegative, then for
any 0 < ¢ < 1, we can derive the perturbation bound of the spectral radius of A
from Theorem 3.2.7.

Corollary 3.2.2 Suppose that A, & € RTn,1 are mode-symmetric with an even
N such that A is nonnegative and irreducible. For a sufficiently small ¢ > 0, the
entries of & satisfy |eji,..iy| < €aijiy..iy for all iy and n. Let p and p; be the
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spectral radius of A and A + &, respectively. Then

loe — pl <
0

€.

Proof Since le;, ... iy < ea;,,. . iy, forall i, and n, we can write

0O<A—eA<A+E<A+:cA.

Since the spectral radius p(-) of A is monotone [26], it follows that p(A — e A) <
PA+E) < p(A+eA). As p(AE£ eA) = (1 £ ¢)p(A), we obtain

(I—8)p < pe < (1+¢)p.

As p > 0, the last inequality is equivalent to the result. O

Remark 3.2.2 If A is an irreducible nonnegative tensor, then c(F, A) = 1 for the
spectral radius. The perturbation bound for the Perron root of nonnegative matrices
has been discussed by Elsner et al. [27].

3.2.4 Singular Values

For a given A € RI1*2xxIN Ragnarsson et al. [16] explore the singular tuples of
A through its symmetric embedding sym(A). Chen et al. [17] further develop the
connection between the singular values A and the Z-eigenvalues of sym(A). We
now consider the connection between the singular values of A and the Z-eigenvalues
of its mode-symmetric embedding msym(A).

For the case of N = 3, if (¢; X1, X2, X3) is a singular tuple of A € RI*2x/5,
then

ﬂxzx;—xy(;r:axl, ﬂxlx—lrx_o,x;rzoxz, ﬂxlx]—xzxgzax_o,.

(3.2.6)
We have the elementwise,
I I I
Z AijkX2,j X3,k = OXL,i, Z AjjkX1,iX3,k = 0X2 j, Z QjjkX1,iX2,j = OX3 k.
Jok=1 ik=1 i,j=1
3.2.7)
In (3.2.7), if we change the summation order, then we have
I I I
Z QjjkX2,jX3,k = OX1,i, Z ajkiX3,kX1,i = 0X2,j, Z QkijX1,iX2,j = OX3 k.

jk=1 ki=1 ij=1
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Letx = \}3 (x1, X2, X3), then ||x|| = 1. Then (3.2.6) can be transformed into

msym(A) xo X' X3 x| = oX,
N
msym(A) x| x' X3 x| = oX,
N
1
msym(A) x x! X2 x| =ox.
s

Furthermore, let A = \/13 msym(A), then the above set of formulae is equivalent to

Ax> =ox, |x|l2=1.

Generally, suppose that (o' X1, . .., X ) is a singular tuple of A € R /2> xIn
with ||x, |l = 1 forall n. Let x = jN (X1, X2, ..., Xy), then we have ||x|l = 1 and
N-2
(jN> msym(A) x2 X' X3X' - Xy X' =O0X,
N-2
( ! ) msym(A) x1 X' X3X' --- Xy X =o0X,
VN
N-2
(jN> msym(A) X1 X' XX --- Xy_|X| =0X.
N-2

Furthermore, let A = ( msym(A), then (o; X) is a Z-eigenpair of A, that

1
Furthermore et A= () ) msym(7D,
is, (0; x) is the solution of the nonlinear equations

AN =0ox, |x|2=1.

Both msym(A) and A are mode-symmetric. The value o is called an algebraically
simple singular value, if o is an algebraically simple Z-eigenvalue of A.

According to the mode-symmetric embedding of A € RN*12x>xIN and the
perturbation bounds of an algebraically simple Z-eigenvalue of msym(A), it is
trivial to derive the following results for the perturbation of an algebraically simple
singular value.

Theorem 3.2.8 Let (0;X1,X2,...,Xy) be a singular tuple of A € RI>[2xxIy
such that o is the algebraically simple singular value and x, € R satisfy ||x, > =
1 with all n. Then there exist g > 0 and an analytic function o (¢) with |g| < &g
such that

d
s =xr o O=""] =Bxix] x2x] - xy X},
de |,—g
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with 8 € RIV2xXIN Thys o (e) is an algebraically simple singular value of
A+ eBover |e| < g9, and

o(6) =0 +eBx1X] X2%; -+ Xy Xg + O(&?).

Theorem 3.2.9 Let (0; X1, X2, ...,Xy) be a singular tuple of A € RN* 12Xy
such that ¢ # 0 is the algebraically simple singular value and x,, € R satisfy
IX:1l2 = 1 with all n. If for 0 < & < 1, the entries of & € RI*2XXIN sqrigfy
|€iyi...in | < €laii..ix| With all iy, and n, then there exists a singular value & of
A+ E such that

A

lo —a|

ol < c(F, A)e + 0(eY),
o

1
where ¢(F, A) = 1 |Al x1 x1]T x2 x| "+ xwv [xn|T.

Corollary 3.2.3 Let A € RIV2xXIN pe nonnegative and irreducible. Suppose
that for 0 < & < 1, the entries of & € RN >*2XXIN sarisfy [€iyi...in| < €laiiy...ix]
with all i, and n. Let 6 and &, denote, respectively, the modulus largest singular
values of A and A+ &E. Then

log — 0| <.

o

Suppose that A € RI*2xxIN and B, € R*/» is symmetric positive definite
with all n. Let (0; X, ..., Xy) be a restricted singular tuple of A. If B, = GnGI
where G,, € R*/» is a nonsingular upper triangle matrix, then

F(yi1,y2,...,¥N)—n =0Ya

where
FY1,Y2, - YN)=n = B X1Y] X1 Y1 X1 Yog1 XN YN

with B = Ax1G; ' x2G, ' - -xnGy' and |lys |2 = 1. We see that (a; y1, ..., yn)
is a singular tuple of B.

We can also consider the perturbation results of algebraically simple restricted
singular value of ‘A with respect to B,, according to Theorems 3.2.8 and 3.2.9, and
Corollary 3.2.3.
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3.3 Perturbation for the Tensor Polynomial Eigenvalue
Problem

Let Ay € RTy,; be mode-symmetric with all /. Suppose that # is a tensor
polynomial defined in (3.1.3), we define

Q(Z) = ﬂl + 22.?{2 4. 4+ LZLilﬂL,

Suppose that the perturbation tensor AA; € RTx ; are mode-symmetric with all /.
For any z € C, denote

AP(z) = AAg + zAA + - + 2L AAL.
We study the first-order perturbation bounds of the algebraically simple

eigenvalues of # for normwise and componentwise perturbations. We consider
two special cases of the tensor polynomial eigenvalue problem determined by

{Aop, Ay, ..., AL} the tensor generalized and quadratic eigenvalue problems,
respectively for L = 1, 2. Then we investigate the general case with L > 2. We
assume that Ay is nonsingular, which implies that {Ay, Ay, ..., AL} is regular.

3.3.1 Tensor Generalized Eigenvalue Problem

Suppose that L = 1. For any z € C, P(z) = Ap + zA;. The tensor polynomial
eigenvalue problem determined by {Ap, A1} reduces to the tensor generalized
eigenvalue problem determined by {Ag, A;}. Denote

A=Ay, B=-A.

Since A; is nonsingular and mode-symmetric, so is 8. Hence the generalized
spectrum A (A, B) of the tensor generalized eigenvalue problem determined by
{A, B} is a finite subset of C and the number of the generalized eigenvalues is
I(N — 1)!~1, counting multiplicity. If the algebraic multiplicity of A € A (A, B) is
one, we have the following theorem.

Theorem 3.3.1 Assume that A, B € RTy,; are mode-symmetric and B is nonsin-
gular. If » € C is an algebraically simple generalized eigenvalue of {A, B}, then
there exists an algebraically simple generalized eigenvalue i € C of (A + €&, B+
€F} such that

L=+ 0(e),

where €| < € for any sufficiently small eg > 0 and &, F € RTy,; are mode-
symmetric.
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Proof From [13], we have A(A, B) = {1 € C : det(A—AB) = 0}, where det(A—
A8B) is a I(N — 1)!~'th polynomial with respect to A and its leading coefficient is
det(B) # 0. There exists € > 0 such that det(B + €B;) # 0. Hence, when |¢| < €,
the set of all generalized eigenvalues of {A + €&, B + €F} satisfies

Ac(A, B) = {1 € C: det((A — AB) + €(E — AF)) = 0}.

Meanwhile, det((A — AB) + €(E& — AF)) is also a I (N — 1)/ ~th polynomial with
respect to A and its leading coefficient is det(B + €¥). Note that det(B + €F) is a
I(N —1)!~'th polynomial with respect to €, whose constant term is det(8). Hence
det(B+ €5) # 0.

According to theorems of algebraic functions [19], if A € C is an algebraically
simple generalized eigenvalue, then there exist an algebraically simple generalized
eigenvalue X € Cof {A+ €&, B+ €F} and €9 > 0 such that h=xr+ O(€), where
le] < min{€, €p}. |

A generalization of Theorem 3.3.1 is stated as follows.

Theorem 3.3.2 Suppose that A, B € RTn | such that B is nonsingular. For a given
n, if . € Cis an algebraically simple mode-n generalized eigenvalue of {A, B},
then there exists an algebraically simple mode-n generalized eigenvalue ). € C of

{A+ €&, B+ €F} such that
A=21+0(e),

where |€| < € for a sufficiently small eg > 0 and &, F € RTn 1.

The choice of {&, ¥} in Theorem 3.3.1 is not unique. In practice, {&, ¥} = {A, B}
for the relative perturbation case and all entries of € and ¥ are unit for the absolute
perturbation case. Theorem 3.3.1 only states the first-order perturbation of an
algebraically simple generalized eigenvalue, but does not present the coefficient of
the first-order perturbation term. For some nonzero algebraically simple generalized
eigenvalues, we present an expression of this coefficient in the following theorems.

Theorem 3.3.3 Suppose that a, B > 0. Let A, B € RTy 1 be mode-symmetric and
B be nonsingular. If (A; X) is an algebraically simple generalized H-eigenpair of
(A, By with ) # 0andx € R!, then there exists an algebraically simple generalized
H-eigenvalue AeR of A+ AA, B+ AB} such that

=2 _ @+ B

<e + 0(?),
[A] |A||BxN|

where two mode-symmetric tensors AA, AB € RTy | satisfy |AA||r < ea and
IAB|F < eBwithe < 1.
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Proof Since det(B) # 0, then By" = 0 for all nonzero vectors y € R’. Let (1; x)
be a generalized H-eigenvalue of {AA, B} and let A # 0 be algebraically simple, then
a normwise condition number of A can be defined as follows,

« () = limsup { |EA|)):|| S A+ AR+ ANV T = A+ ANB + AB)(x + Ax)V T

e—0

IAAlF < €a, |AB|F < €p}.

We prove that the following formula holds:

ey @t IAB) X115
|A|1BxN|

The given expression is clearly an upper bound for « (1). We now show that the
bound is attainable. From the definition of a normwise condition number of A, we
have

AAXN — A ABxN
Ax = 7% X 0. (33.1)
BxN

LetG = X®N/||x||§/. Then |G|lr = 1 and Gx" = ||x||§v. Define AA) = eaG and
ABy = —sign(A)eBG, where sign(}) is defined in (2.3.7). Then | AA| F < ex and
IAB||F < eB. Hence the modulus of the first-order term of (3.3.1) is e||x||év(oz +
[A18)/1B8x"|; dividing (3.3.1) by €|A| and taking the limit as € — O gives the desired
equality.

From the definition of « (A) we have, for the perturbation system in (3.3.1),

[AA|

N <k(M)e+ 0(eH).

The proof is complete. O

Theorem 3.3.4 Suppose that &, F € RTy.1 are mode-symmetric with positive
entries. Let A, B € RTy,| be mode-symmetric and B be nonsingular. If (A; X)
is an algebraically simple generalized H-eigenpair of {A, B} with » # 0 and
x € RY, then there exists an algebraically simple generalized H-eigenvalue LeR
of {A+ AA, B+ AB} such that

A=Al _ @E+MDIXY

<e + 0(e?),
[A] |A||BxN|

where two mode-symmetric tensors AA, AB € RTy, satisfy |[AA| < €& and
|AB| < eF withe > 0.
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Proof Since det(8) # 0, it is obvious that ByY = 0 for all nonzero vectors
y € R’. Let (1;x) be a generalized H-eigenvalue of {A, B} and let » # 0 be
algebraically simple, then a componentwise condition number for an algebraically
simple generalized H-eigenvalue A is defined by

cond() := lim sup{|A|j|| LA+ AR+ AV = 0+ ANB+ AB)x + Ax)V T
€

e—0

|AA| < €&, |AB| < €F}.

It follows from the above definition that

|AA

N < cond(M)e + 0(62).

According to the definition of a componentwise condition number for an
algebraically simple generalized H-eigenvalue A, we have

E+ MPIxIY

dn) >
cond(h) = 3 1Bx|

The lower bound of cond()) is attained when AA) = €e€E x1 D xo D--- xy D

and ABy = —sign(A)eF x1 D xo D--- xy D, where D = diag(sign(x)) with
sign(x) = (sign(xy), sign(xy) ..., sign(x;) and sign(-) is defined in (2.3.7). The
proof is complete. O

Remark 3.3.1 According to [13, Theorem 3.1], for all nonzero vectors y € C!,
ByN £ 0, where B € RTy; is mode-symmetric and nonsingular. Hence if A, B €
RTy, | are mode-symmetric and 8 is nonsingular, then the above two theorems also
hold for any nonzero algebraically simple generalized eigenvalue of {A, B}.

Corollary 3.3.1 Suppose that the mode-symmetric tensor A € RTy.; is nonnega-
tive irreducible and 8 € RTy | is a diagonal tensor with positive diagonal entries.
Let B € R*! be a diagonal matrix such that its main diagonal entries equal to the
main diagonal entries of B. If A, is the mode-n Perron root of A x, B\, then the
following statements hold.

(1) All Perron roots A, are equal, denoted by A.

(2) Let A be simple, &E = A and F = B. Then cond()) = 2.

(3) Moreover, if . + A is the mode-n Perron root of the pair (A+ AA, B+ AB),
then for 0 < € < 1, we have

AN 2
< .
A T 1—¢

Proof Parts (1) and (2) are direct to verify. We only prove Part (3) in the case of
n = 1, and other cases are similar. Since |AB| < €8, with the diagonal tensor B,
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and |AA| < €A, we have

1— 1
Nax;p' <ax;p < T¢)ax,p.
1+e 1—¢€

Since the spectral radius p; is monotonic on the nonnegative tensors [26], then

1—¢ _ _ 1+e€ _
pI(Ax D < pi(Ax; DN < p1(Ax; D).
1+e€ 1 —¢

Hence, Part (3) is proved forn = 1. m]

If B is the identity tensor and AB is the zero tensor, Part (3) of Corollary 3.3.1
gives a perturbation bound of the spectral radius of a mode-symmetric nonnegative
irreducible tensor in RTx ;.

According to [15, Theorem 2.1], det(8) # O implies that all generalized
eigenvalues are finite. Then a generalized eigenvalue A can be represented as
A = «a/B with B # 0. Hence, a generalized eigenpair (A; X) can also be represented
as (o, B; x). Denote a generalized eigenvalue A by («, B) or (¢, 8), where (¢, B) =
T(a, B) with T # 0. A property of the pair («, 8) is given below.

Theorem 3.3.5 Let A, B € RTn,; be mode-symmetric and B be nonsingular. If
(o, B) is an algebraically simple generalized eigenvalue of the pair {A, B} with
corresponding generalized eigenvector x € R!, then

(o, p) = (AN, BxY).
Proof For the vector x € R/, there exists a Householder matrix [2] P € R/*/ such
that Px = ||x|ley, \A)vhere e is the first column of I;. According to [15], we have
A(A, B) = A(A, B), where

A=Ax PxaP---xyP, B=Bx;Px;P-.- xyP.

Thus the pair (o, B;e1) satisfies ,Bﬁlejlvfl = a@eivfl, that is, (o, 8) =
(Ael, Bel). O

3.3.2 Tensor Quadratic Eigenvalue Problem

For z € C, let P(z) = Ao + zA; + z°Ay. Suppose that (1; X) is an eigenpair of P.
Define u = A/N=D and y = ux, then P(A)x"¥~! = 0; can be represented as

3AYN T+ AT 4 AN T =0y, NI XN =g
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Fig. 3.2 Left for A and right for 8. Unlabeled parts are zero

Define X = (y, x), then
AN = 8%V
where A € RTy oy is

All:N1:I]...|1:1]=3A,
AL : I +1:21]...]1+1:21]= A,
Al +1:2111:1|...]1:11=1T;

and B € RTy 25 is given by
Bll:I1:1|...)1:1]=~-Ay, BI+1:2[1I+1:21|...|11+1:21]=1.

Other entries of A and B are zero, as displayed in Fig.3.2. A is not mode-
symmetric. It follows from [13, Theorem 4.2] that

det(B) = det(A)N D" £ 0.

Since A, is mode-symmetric, hence B is mode-symmetric and nonsingular. The
number of mode-1 generalized eigenvalues of {ﬁ(, Blis2I (N—1)>~1and A (A, B)
is a finite subset of C. Thus, the number of eigenvalues of  is less than or equal to
2I(N — D*~1 and A(P) is a finite subset of C.

The first-order perturbation of an algebraically simple eigenvalue, a special case
of Theorem 3.3.7, is given in the following theorem without the proof.

Theorem 3.3.6 For given mode-symmetric tensors A; € RTy; (I = 0,1,2),
suppose that P(z) = Ayp + z A + 22 A, where 7 € C, and Ay is nonsingular.
If (\; X) is an algebraically simple eigenpair of P with . € C and x € C!, then
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there exists an algebraically simple eigenvalue % € C of P + AP such that
A=A+ 0(e),

where |€| < €y with g > 0. Here AA; € RTy,; withl = 0,1,2 in AP are
mode-symmetric.

Remark 3.3.2 In the above theorem, we assume without loss of generality that A
is nonsingular. This assumption eliminates infinite eigenvalues.

3.3.3 Tensor Polynomial Eigenvalue Problem

In this section, we suppose that L > 2. Let (A; x) be an eigenpair of . Define
w=1/N-Dandy, = p!xwithl =0, 1,..., L — 1, then P(L)x"~! = 0; can be
rewritten as the system of nonlinear equations:

)\ﬂLygfll + ---—1—?(1y11\]_1 + AxN " =0y,
YZ:HYIfls l:2137"'1L_11
Y1 = pX.

LetX = (yr—1,.-.,¥1,X), then (A; X) is a solution of the system of nonlinear
equations:

AN = Bk
where for/ =0,1,...,L — l,ﬁl € RTy, Ly is given by

AN +1: A+ DI+ 1+ DI = A1y,
A +DI+1: A+ +1: @+ DI I +1:(+ DI =T

and the entries of B € RTy r; are given by

Bll:I1:1|...]1:11=—-Ag,
BUI+1:A+DII+1:(+DI|...[[l+1:(1+DI=1.

Non-specified entries of A and B are zero. A is not mode-symmetric. According to
[13, Theorem 4.2], we have

det(ﬁ'ﬂf) = det(;,zlz)(N—l)@—w 40,
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Since Ay, is mode-symmetric, Bis mode-symmetric and nonsingular. As we know,
the number of mode-1 generalized eigenvalues of {A, B} is LI(N — 1)/~ and
A(A, @) is a finite subset of C. Thus, the number of eigenvalues of # is less than
orequalto LI(N — DI~V and A(P) is finite in C.

Theorem 3.3.7 For mode-symmetric tensors A; € RTn 1 with all [, suppose that
P(z) = Ag + 2 A1 + - - + L AL where 7 € C and Ay is nonsingular. If (7; X)
is an algebraically simple eigenpair of P with . € C and x € C!, there exists an
algebraically simple eigenvalue i € C of P + AP such that

XZ)\-+0(€)’

where |€| < g witheg > 0and AA; € RTy, 1 withalll in AP are mode-symmetric.

Proof If (A; x) is an eigenpair of P, there exist a vector X = (yr—1, ..., Y¥1,X)
and A, B € RTy.1; such that AKXV~ = A(—B)XV 1. If (A; x) is an algebraically
simple eigenpair, then it is an algebraically simple mode-1 generalized eigenpair of
{A, -8B}

According to Theorem 3.3.1, for the pair {ﬂ B} there exists an algebraically
simple mode-1 generalized elgenvalue A of {.?H—eﬂ —(B +GB)} such that A = A+
O (¢). For these two tensors A and B there exist mode-symmetric tensors AA; €
RTy.; with all [ such that A is a algebraically simple eigenvalue of P + AP. ]

Theorem 3.3.8 Let oy > 0and A; € RTn, 1 be mode-symmetric with all . Suppose
that P(z) = Ag + A, + - - - + LA where 7 € C and Ay is nonsingular. Let
(A; X) be an algebraically simple H-eigenpair of P with » # 0 and x € R!. When
GWXN #£ 0, there exists an algebraically simple H-eigenvalue A of P + AP such
that

L
. (Z mlal) i1
< =0

0(e?),
=€ ooy O

where for 0 < € < 1, the mode-symmetric tensors AA; € RTy 1 with all | in AP
satisfy | AA | F < €q.

Theorem 3.3.9 Foralll, let & € RTn,1 be mode-symmetric, with positive entries,
and A; € RTy,1 be mode-symmetric. Suppose that P(z) = Ao + z A1 + --- +
LA where z € C and Ay is nonsingular. Let (7; X) be an algebraically simple
H-eigenpair of P with A # 0 and x € RI. When G\)XN # 0, there exists an
algebraically simple H-eigenvalue A of P+ AP such that

L
. |A|’81) x|V
A=Al <e<l§) + 0(?)
Al T AIGO)XN| ’

where the mode-symmetric tensors AA; € RTn 1 with all | in AP satisfy |AA| <
e ande < 1.
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The omitted proofs of Theorems 3.3.8 and 3.3.9 are similar to that of
Theorems 3.3.3 and 3.3.4, respectively. In Theorems 3.3.8 and 3.3.9, we
assume that G(A)xY # 0, where (A;x) is an algebraically simple H-eigenpair
of #£()). However, in Theorems 3.3.3 and 3.3.4, if B is nonsingular, then
By" = 0 holds for all nonzero vectors y € C'.

3.4 The Smallest Eigenvalue of Nonsingular M-Tensors

Suppose that A € RTy  is symmetric. If A = sI — B, where the symmetric
tensor 8 € RTy,; is nonnegative irreducible and s > p(B), then A is an
irreducible symmetric nonsingular M-tensor [15, 28]. In this section, we focus on
the perturbation theory for the smallest eigenvalue (i.e., the smallest H-eigenvalue)
of an irreducible symmetric nonsingular M-tensor in RT ;. We need an inequality
for the Perron root of any nonnegative irreducible symmetric tensor in R7y ;.

3.4.1 An Inequality for the Perron Root

We first introduce the weighted arithmetic mean and weighted geometric mean
(AM-GM) inequality. Let x;, w; > 0 with all i. Set w = w; + wy + -+ + wy.
If w > 0, then the inequality

wix) +wyxy + -+ wrx
11 242 Ilzu’xi‘”xévz...x}”’.
w

holds, with equality if and only if all the x; with w; > O are equal, where

t/xi”'xé”z ...x;' is the wth root of x{"'x,*...x}"". Here the convention 0° = 1

is used.

Assume that the symmetric tensor A € RTy ; is nonnegative irreducible. Use
(p(A); u) to denote the Perron pair (defined in Sect. 1.3.1) of A with p(A) > 0
andu € Rfr. We have the following theorem.

Theorem 3.4.1 Suppose that the symmetric tensor A € RTy,1 is nonnegative
irreducible. Let (p(A); u) be the Perron pair of A with p(A) > 0andu € Rﬂr.
Then for any positive diagonal matrix D € R!*! we have the following results.

(1) The inequality AuV < AuV holds, where A = A x1 DN x,D--- xy D,
and the equality is attained if and only if D = ol for all o > 0.
(2) p(A) can be expressed by

yT(ﬂZN?I) = p(A) = min max yT(ﬂZNil)
yTZ[N71] z>0; y>0; yTZ[Nfll

max min
z>0; y>0;

In above theorem, replace D by D™, part (1) of Theorem 3.4.1 has another form.
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(1) The inequality Au” < Au holds, where A = A x; DV ~1 x, D 1... xy
D!, and the equality is attained if and only if D = oI; forall > 0.

Proof Since the symmetric tensor A € RTy, ; is nonnegative irreducible, the
Perron pair (p(A); w) is unique, and we have

ﬂxzuT~-~xNuT=:7lx1uT ><3uT---><NuT
= . .=Axju ---xy_ju’
= p(AuN 1,
Letu= (u1,uz,...,u;)" € R!. Define U= diag(u1,uz, ..., u;) € R and

D = tendiag (,o(ﬂ)u{v, p(Aud. ... p(ﬂ)uﬁv) ,
—1

_ oA, N
o= <1 + ,211{1;1’)51[ [(p(ﬂ) — Qjj. i )U; D ,

1

where ‘tendiag(v)’ is the function in the MATLAB Tensor Toolbox [29] that creates
a diagonal tensor whose main diagonal entries equal to the entries of v. It is easy to
verify that the tensor

D=a~<ﬂx1szU~-~xNU—@)+I.

is plane stochastic (cf. Definition 5.1.1). For all i, let two positive vectors y1,y2 €
R/ satisfy
Y2,iy]1\{,-_l =u.

Without loss of generality, we define a positive vector z € R’ such that for all i,
yii =u;z;i andyy; = uizilfN. Hence, for all i, we have

N—1 N
Y2.iY1,;, = -

We next show that
=N\ T T T T T
Dxl(z[_ ]> X2Z -+ XNZ >Dxie xXpe ---Xye'. (3.4.1)
Since D is plane stochastic, we have

1)><1eT xzeT-~-xNeT=I.
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Letz = (z1,22,...,2 I)T e R, According to the AM-GM inequality, we have

T . .
1-N T T Ly -+ ZiN
D x; (z[ ]) X2Z' - XNZ = Z diyis.in © N4

i1,02,...,in=1 i

1
-7 Z di]izmiN Zip «« - Ziy

L ‘- N ZN_l
i1,02,.,iN=1 i
I dijiy..iy
Zin « o Zi
> ]"[ RN . (3.4.2)
ZN71
i1,i2,...,in=1 i
Let
I dijiy..iy

0(z1,22,-+,21) _ 1—[ Ziy -+ Ziy

P(z1,22,---,21) N-1

iniz,iv=1 \ i

Since D is plane stochastic, then, for all i1, the number of z;, in P(z1, z2, ..., 27) is

!
(N—-1 Z dijiy..iy | =N — 1.

i2,,...,in=1

Tedious manipulation yields that z; in the numerator Q(z1, 22, ..., 27):

1 1 n
Yo dyineiytot Y dyivaivt Y iy = N-L
i1,i3,....,iy=1 i1,enin—2,iy=1 i1,02,..,iy—1=1
Hence

o T o
ﬂxl(z“_N]) xzzT---xNszﬂxleT xzeT---xNeT,

where A = A x1 U xyU--- xu U. Itis easy to check that

ﬂxluT xzuT---xNquﬂxly;xzy—lr---xNyI

[1-N1yT

=Ax1 (u*xz xz(u.*z)T-~-xN(u.*z)T,

where x. xy = (x1y1, x2y2...,x7y7) | € R withx,y € R’.
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It remains to prove Part (2). For positive a;, b; and d; with n, we prove that

I
a;b;
bi . i;ll b .
max d i=1,2, I > , > min d i=1,2,...,1¢.
i Zaidj i
i=1
Assumethatmin{gf:i:l,2,...,I}=Z’;,wehave

I

bi ! ! bi by
Zaibi —min{dl. = 1,2,...,[};@61,' = ;aidi (dl — dk) >0,

: i i
i=1

and the equality holds if a; = §;. Thus

I
aib,'
- b
i=1 >min{ ' :i=1,2,....1},
I d;
a,'d,'
i=1
and similarly,
I
> aib;
i=1 bi .
Smax{ = 1,2,...,1}.
I d;
> ad;
i=1
According to [14, Theorem 4.2], we have
N—1y. N—1y.
max min (Az )i = A = min max (Az )i (3.4.3)

z>0; z; >0 z

l(v71 Z>01 Z,‘>0 Zl(v71

Since z > 07, and A is an irreducible nonnegative tensor, we obtain

. (ALY i y' (AN
a0 Nl y=0, yTzIN-1]

We prove the second part from (3.4.3). O



84 3 Perturbation Theory

Remark 3.4.1 The numberofz; in Q(z1,22,...,27)isN—1.Let N =3andi =1
for illustration. Then the number of z; in Q(z1, 22, z3) is

2di11) +dip) +dip+ - +di Hdyg+2da +Hdpytdoip+ -+ dop Hdogg

+-+2dp1y Hdpy tdp -+ din tHdpg

1 1
Z di|i21+ Z di11i3=2!

i1,iz=1 i1,i3=1

the last equality holds due to the plane stochastic tensor D € RT3 ;.
A more general form for Part (1) of Theorem 3.4.1 is given below.

Theorem 3.4.2 Suppose that the symmetric tensor A € RTy 1 is nonnegative
irreducible. Let (p(A); u) be the Perron pair of A with p(A) > 0 andua € Rﬂ_.
Then for any positive diagonal matrix D € R'*! we have the following results.

(a) The inequality AuN < Anu holds, where
ﬁ{n =Ax|D--- xn,lenDI*N Xpt1 D+ Xy D,

and the equality is attained if and only if D = ol for all a > 0.
(b) The inequality A < A,uV holds, where

N
Ay = A X1 DY x3 D% .. xy DOV, l—[anzl, a >0,
n=1

and the equality is attained if and only if D = ol for all @ > 0.

3.4.2 Perturbation of the Smallest Eigenvalue of M-Tensors

Suppose that A € RTy,; is an irreducible symmetric nonsingular M-tensor, the
perturbation of the smallest eigenvalue of ‘A is derived. For the perturbation bound,
we need the following theorem, generalizing the matrix case [30].

Theorem 3.4.3 Let A € RTn | be anirreducible symmetric nonsingular M-tensor
with A = D — N, where D € RTy,; is diagonal and the symmetric nonnegative
tensor N € RTy.| has zero main diagonal. Let D € R'*! be a diagonal matrix,
whose main diagonal entries equal to the main diagonal entries of A. Let (A; X) be
the smallest eigenpair of A with X € RﬂrJr and % > 0. Let p(N x,, D) be the
mode-n spectral radius of N x, D~ for all n. Then we have

NxN < p(N x, D"HDxV. (3.4.4)
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The equality holds if and only if D = I fora > 0. Denote p = min{p(N'x,D™!) :
n=1,2,..., N}, (3.4.4) can be simplified as Nx" < pDx".

Proof Without loss of generality, we only prove the case of n = 1. Since A €
RTy. 1 is an irreducible symmetric nonsingular M-tensor and (A; X) is the eigenpair
corresponding to the smallest eigenvalue, we have

?[XZXT~ . ~><NxT =&7[><1XT><3XT x ~><NxT =... =ﬂx1xT .- -xN_lezp(ﬂ)x[N_l].

We apply Theorem 3.4.1 to 8 = 11 — D + N, which for sufficiently large
satisfies the assumptions. For any diagonal A € R/ it holds Bx" < Bx", where
B=8Bx, AN-! X2 Al X N A~!, from which we infer that

NxN < NxN,

where N = N x1 AN-! X7 Al XN AL
Let p(N x1 D~ 1) be the mode-1 spectral radius of N x| DL, then

N>x1 D7) xay -y = pON > Dy
We choose y1,y2 € RiJr suchthatx = A -y andx = A~V . y,, then
NV < (N> D™ s yf - xw yi) x1 D x1y;
= p(Nx1 DI x4 (y[lN_”)T x1 D x1y;
= p(N x; D"HoxV.
The equality is attained if and only if A = «l; for ¢ > 0. Thus x is also a
H-eigenvector of A x| D~!. Hence, we have AxN ™! = (D — MxN~1 = xxIN-11,
According to the assumptions, we have
DxIV—1 AN = kN1
ie.,
xIV-11 _ p=IaAxN—1 — 3p—IxIV-11
Since D~IAXN1 = (N x; D™DHxV~!, we have Dx¥~! = xIV=1 for some
constant 7. Thus, D = «J for « > 0. Similar, for all n, we have NxV < PN x,

D~ )DxV . Then, for the smallest p (N x,, D~!) denoted by p, Nx" < pDx" holds.
O

From Theorem 3.4.3, the following corollary is obvious.
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Corollary 3.4.1 Let A be the same as in Theorem 3.4.3. We have 0 < p(N x,
DY) < 1foralln.

Theorem 3.4.4 Suppose that A and p are as defined in Theorem 3.4.3. Let & €
RTyn.1 be symmetric such that |E| < n|Aland0 < n < (1 — p)/(1 + p). If X and
A are the smallest eigenvalues of A and A + &, respectively, then

3/
A )\|§1~|—,0n.
A 1—0p

Proof 1t is obvious that A — n|A|] < A+ E < A+ n|A|. Since 0 < n <
(1—-y)/(A+y), A+ Eis also an irreducible symmetric nonsingular M-tensor. Let
A1(n) and X2 (n) be the smallest eigenvalues of A+n|A| and A—n|A|, respectively.
We obtain A2(n) < A’ < A1(n) and the algebraic multiplicity of A;(n) and Ay (n)
is 1.

For t € [—n, n], let (A1(¢); X()) be the smallest eigenpair of A + ¢|A| with
x(t) € RL | and A1 (1) > 0, we have

AW x2xO) 7 - xyx(0) T =A@ x1 x0T x3x@O - xyx(®)T
= =A@ X1 X0 - xy_1 x0T

= M (Ox@)WVH,
Let A (> 0) be the smallest eigenvalue of A. Let X1, x» € Rfr such that
AN =V =2,

If x; = cxp, where ¢ # 0, then x; and x, are the same H-eigenvector. Hence we
define

8 = min{|ly — x||2 : y and x are the different H-eigenvectors associated with A}.

Over {z € C! : ||z — x| < 8}, there exists a unique eigenvector x of A associated
with A. (For the smallest eigenvalue A, if its geometric multiplicity is also 1, let
§<n)

For the smallest eigenvalue Aj (¢) of A+ ¢|A|, since A1 (¢) is an analytic function
with || < 5, there exists § = min{8, n} such that ||x(t) — x|l» < & and x(¢) is the
unique eigenvector of A 4 | A| corresponding to A1 (f), with 0 < ¢ < n. According
to Theorem 3.2.3 by differentiating this equation with respect to ¢, we obtain

AN + AOXE) = M Ox@O)N T 4 (N — Da)x(@),
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where

ADXE) = A@) x2 X7 x3x@O T - xyx(@) T
+-+ AC) x2xOT x3x(0) T - xy X (O
@) = x1(8) ... xic1 Ox; Oxig1(8) ... x0 (), i=1,2,...,1.

Applying x(¢) " with ||x(¢) ||y = 1, we have
ha (1) = 1AXDOY.
Consequently, we have

IO D+ Nx®)"Y

d
dr (In(A1 (1)) = A () - [(14+D -1 —=)NIx(@)™'

(3.4.5)

It follows from Theorem 3.4.3 that

1— N
EEI +2g§8,\, < p(((1 = ON) x, (1 +0HD)7H),
i.e., XN /Dx(t)N < p(N x, D™1). So we obtain

(1+pN x, D7)

d
ar MOV =N D) 4 (L4 (N st D

Noting that A1 (0) = A and integrating (3.4.5) from O to 5 yields
InA1 () = Inkp <In((1 = p(N xx D7) + (1 + p(N x, D))

—1In(1 — p(N x, D71,

. 71 . .
e, (M) —M/A < }jﬁiﬁizg,l;n. Similarly, we have (A — A2(p))/A < (1 +

PN %, D7) /(1 = p(N x, D™1))n, and

A — A - 1+ p(N x, D7)
W T 1= pWNx,DHT

Finally, let f(x) = (14x)/(1—x) withO < x < 1,then f'(x) = 2/(x*>—2x+1).
Since f'(x) > 0 over 0 < x < 1, f(x) is monotonically increasing. O
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3.5 Numerical Examples

We verify the inequalities related to the Perron pair of any irreducible symmet-
ric nonnegative tensor in R7y ; in the first part of Theorems 3.4.1, 3.4.3 and
Corollary 3.4.1. Then we illustrate the perturbation bounds via several test tensors:
Theorem 3.4.4 for the smallest eigenvalue of any irreducible symmetric nonsingular
M-tensor in RTy, , Corollaries 3.2.1 and 3.2.2 for the Z-spectral radius and
the spectral radius of any irreducible symmetric nonnegative tensor in RTy j,
respectively, and Corollary 3.2.3 for the modulus largest singular value of any
irreducible nonnegative tensor in R/t <12 xIn

3.5.1 Verification of Inequalities

We compute the approximate Perron pair of a given irreducible symmetric tensor by
the NQZ method [31].

Example 3.5.1 We verify Theorem 3.4.1 by 100 randomly generated irreducible
symmetric nonnegative tensors. All entries of the test tensors are uniformly
distributed over (0, 1). Let D € R’*! be diagonal and positive definite. For a given
test tensor, we select D = diag(d), where d € RfrJr satisfies s1 # s3 # - -+ # s1, Or
D = ol; with @ > 0.

Let A € RT4 10 be irreducible and symmetric nonnegative, (o (A); X) be the
Perron pair of A.

For each part of Fig. 3.3, the vertical axis represents the value of Ax* — Ax*,
where A = A x1 D73 x5 D x3 D x4 D and the diagonal matrix D € R10x10 jg

Case |: general diagonal matrices Case || scalar diagonal matrices
10 1513
e . GE . 10e13}
05e13F 77
10*
» P L ] e s
3 0, 5
&) &)
= > e}
10 .
-1.0e13F
-
)
10 A5e13f
? A . e i e - - i - - 2 3L - e . — . i A i — i
Yo ® ® % @ @ W @ % W0 ® W ® & 0 B @
Samples Samples

Fig. 3.3 Verification of Theorem 3.4.1 with irreducible symmetric nonnegative tensors
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positive definite, and the horizontal axis is the indices of the test tensors. For the left
of Fig. 3.3, the main diagonal entries of D are different, but for the right of Fig. 3.3,
the main diagonal entries of D are the same. In Fig. 3.3, Ax* > Ax* holds for any
positive diagonal matrix D € R10%10,

Example 3.5.2 ([12, Example 2]) Consider the symmetric tensor A € RT3 3 such
that

arpp = 0.0517, aj1p = 0.3579, aj13 = 0.5298, ajpp = 0.7544, ajp3 = 0.2156,
a1z = 0.3612, arpp = 0.3943, azr3 = 0.0146, apzz = 0.6718, azzz = 0.9723.

By the NQZ method, the approximated Perron pair of (A is calculated by
o(A) =3.6167; u=(0.6674,0.6655,0.7417) .
Let D € R*>*3 be positive diagonal, we define
di = (A x D2 x> D x3D —ﬂ)uS, dy = (A x D? X2 D! X3 D! —ﬂ)u3.

For 100 randomly generated positive diagonal matrices D € R**3, d; and d, are
shown in Fig. 3.4.

According to Fig.3.4, when D = diag(s), where s € Rﬂr L satisfies 51 # 52 #
-+ % 57, dy and dy are positive; and when D = «l; with any given o > 0, d; and
dy are approximately zero.

To verify Corollary 3.4.1, we need a strategy for computing the smallest
eigenvalue of an irreducible and symmetric nonsingular M-tensor A € RTy ;. It
follows from [15, 28] that A = s7 — B with s > p(B). If (p(B); x) is a Perron pair
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Fig. 3.4 Verification of Theorem 3.4.1 with positive diagonal matrices
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of B, then (s — p($B); x) is an eigenpair, corresponding to the smallest eigenvalue
of A.

A can be expressed as A = D — N, where D € RTy ; is diagonal and the
symmetric nonnegative tensor N € R7Ty ; has zero main diagonal. In this form, we
cannot use the NQZ method to compute the smallest eigenvalue of ‘A. However, we
can convert A to the form of s — B through as follows:

1. Compute the spectrum radius p (N) of N by the NQZ method;
2. Find the largest element in D denoted as d > 0;
3. Lets = d + p(N) and construct a new diagonal tensor 9; with its main diagonal

element s;
4. Form A =s1 — Bsuchthat B =D; — D+ N.

Example 3.5.3 We verify Theorem 3.4.3 and Corollary 3.4.1 by 100 randomly gen-
erated irreducible symmetric nonsingular M-tensors. Each test tensor is generated
as follows:

(1) Generate a symmetric nonnegative tensor 8 such that whose entries are
uniformly distributed over (0, 1);

(2) Compute the spectral radius p(8) of B by the NQZ method; and

(3) Form A = (p(B)+rand(1))I — B, where the MATLAB function rand generates
a random value uniformly distributed over (0, 1).

We select A € RT4 10 being an irreducible symmetric nonsingular M-tensors.
Let (A; x) be an eigenpair, corresponding to the smallest eigenvalue of ‘A.

For each part in Fig. 3.5, “Values” means the value of p (N xi D_I)Z)X4 — Nx4,
where (p (N xg D 1):x) is computed by the NQZ algorithm and D is a diagonal
matrix, with main diagonal entries equal to the main diagonal entries of ‘A. For each
part in Fig. 3.6, “Values” display 1 — p(N x D_l), where k = 1,2, 3, 4.
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Fig. 3.5 Verification of Theorem 3.4.3 with irreducible symmetric nonsingular M-tensors
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Values

Values

91

Case |I: k=2
' AT 2 o Wt F e st ety
T "4‘*&..’,'.>‘.4§+ " .+
* * + * . *
ARGl + +
+
ot +
+ +
0 10 220 ;0 4 5 & 70 100
Samples
Case IV: k=4
1 & - * &+ & +
AR SR R e RNAT L R &.'
.® .'. i o™ L *
-
ot +
+ +

3.5.2 Verification of Perturbation Bounds

Samples

In the following three examples, let A € RT4 10 be symmetric. Suppose that & €
RTy, 10 is symmetric such that || < ¢|A| for e € (0, 1). For a given A, we consider
these two cases: & = rand(1)eA and & = e A.

Example 3.5.4 Let A = sI — B € RT4 10 be an irreducible symmetric nonsingular
M-tensor, where B8 € RT4 10 is a randomly generated irreducible symmetric
nonnegative tensors and s = p(8B) + 100. The entries of B are uniformly distributed
over (0, 1). We verify Theorem 3.4.4 with different symmetric perturbation tensors

& € RTy 10.

Let (A; x) be an eigenpair, corresponding to the smallest eigenvalue A of A. We use
X+ and A_ to denote the smallest eigenvalues of A 4 & and A — &, respectively.
The values of |)A\+ — Al/X and |):, — A|/A are denoted by 8+ and 6_, respectively.
Similar notations are used in the examples below.

Let ¢ € linspace(le — 5,1 — le — 5,50)(1 — p)/(1 4+ p) and e(p) = (1 +
p)/ (1 — p)e. For two different v, B € R and a positive integer K, linspace(, 8, K)
generates K equally spaced points between o and B. When & = rand(1)eA, the
relationship between €(p) and &4, or £(p) and §_, are shown in Fig.3.7; for & =

eA, see Fig. 3.8.

Example 3.5.5 A € RT4 10 is an irreducible symmetric nonnegative tensor, whose
entries are uniformly distributed over (0, 1). We verify Corollaries 3.2.1 and 3.2.2
with different symmetric perturbation tensors & € RTj 1o.



92 3 Perturbation Theory
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Fig. 3.7 When & = rand(1)eA, verification of Theorem 3.4.4 with different ¢. Left for £(p) and
8. right for e(p) and §_
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Fig. 3.8 When & = ¢A, verification of Theorem 3.4.4 with different ¢. Left for e(p) and 8 ; right
for e(p) and §_

We compare the perturbation bounds of the Z-spectral radius of A. Let (o; X) be
the Z-spectral pair of A. We use 04 and o_ to denote the Z-spectral radius of A+&
and A — &, respectively. Let ¢ € linspace(0.001, 0.1, 50). When & = rand(1)eA,
the relationship between ¢ and 8, or € and §_, are shown in Fig.3.9; for & = ¢ A,
see Fig.3.10.

We also consider the perturbation bound of the spectral radius of A. Let (p; x)
be the Perron pair of A. We denote p and p_ the Z-spectral radiuses of A+ & and
A — &, respectively. Let ¢ = linspace(0.001, 0.999, 50). When & = rand(1)eA, the
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relationship between ¢ and ., or € and §_, are shown in Fig. 3.11; for & = A, see
Fig.3.12.

Example 3.5.6 Suppose that A € RQXIZX"'XIN is irreducible, whose entries
are uniformly distributed over (0, 1). We verify Corollary 3.2.3 with different
symmetric perturbation tensors & € RI1*X2%XIN where |§] < &|A| with 0 <
e < 1.
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Fig. 3.11 When & = rand(1)eA, verification of Corollary 3.2.2 with different ¢. Left for ¢ and
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Fig. 3.12 When & = ¢A, verification of Corollary 3.2.2 with different €. Left for ¢ and &5 ; right
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Let N = 4 and {[1, b, I3, 14} = {10, 12, 14, 16}. For a given A, we consider
two cases: & = rand(1)eA and & = eA. Let o be the largest singular value in
modulus of A. We use 64 and 6_ to denote the Z-spectral radiuses of A + & and
A — &, respectively. Let ¢ = linspace(0.001, 0.1, 50). When & = rand(1)eA, the
relationship between ¢ and ., or € and §_, are shown in Fig. 3.13; for & = ¢ A, see
Fig.3.14.
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Chapter 4 )
Tensor Complementarity Problems Shethie

4.1 Preliminaries

The research of finite-dimensional variational inequality and complementarity
problems [1-6] have been rapidly developed in the theory of existence, uniqueness
and sensitivity of solutions, algorithms, and the application of these techniques to
transportation planning, regional science, socio-economic analysis, energy model-
ing and game theory.

Linear complementarity problems can be solved by the algorithm [7]. The criss-
cross algorithm terminates only if the associated matrix is a sufficient matrix [7]. A
sufficient matrix is a generalization both of a positive definite matrix [8, Section 4.2]
and a P-matrix [9], whose principal minors are positive. Qi [10] gives the definition
of the symmetric positive definite tensor and derives a method for checking whether
a symmetric tensor is positive definite. The concept of copositive matrices [11] is
important in applied mathematics, with applications in control theory, optimization
modeling, linear complementarity problems, graph theory and linear evolution
variational inequalities [12]. Qi [13] extends the concept to tensors.

The tensor complementarity problem is a class of nonlinear complementarity
problems with the involved function being defined by a tensor, which is also a
direct and natural extension of the linear complementarity problem. In the last
few years, the tensor complementarity problem has attracted a lot of attention, and
has been studied extensively, from theory to solution methods and applications.
Recently, Huang and Qi [14—16] survey the state-of-the-art of studies for the tensor
complementarity problem and related models. Wang et al. [17] introduce tensor
variational inequalities, which are a natural extension of the affine variational
inequality and the tensor complementarity problem.

© Springer Nature Singapore Pte Ltd. 2020 97
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4.1.1 Notation and Definitions

Given a mapping F : X ¢ RX — R/, we assume that F(x) € R is a vector for
x € X. Our next definition is motivated by the class of copositive matrices [9].

Definition 4.1.1 ([3]) A mapping F : X — R/ is said to be
(a) copositive with respect to X if and only if for all x € X, we have

x"(F(x) — F(0y)) > 0;

(b) strictly copositive with respect to X if and only if for all nonzero vectors x € X,
we have

x" (F(x) — F(0))) > 0;

(c) strongly copositive with respect to X if and only if there exists a scalar ¢ > 0
such that for all nonzero x € X, we have

x (F(x) — F(0))) > a|x]3.

The mapping
Gx)=Fx) — F(p) (4.1.1)

plays a fundamental role in the nonlinear complementarity problem, motivated by
the linear version. The strict copositivity of a mapping can be relaxed through the
introduction of the class of d-regular mappings with a given positive d € R’ .

Definition 4.1.2 ([3]) For any vector x € R! , we define the index sets
Iyx)={i : x; >0}, Iop(x)=1{i:x; =0}.

Let d € R’ be an arbitrary positive vector. A mapping G : R — R is said to
be d-regular, if the following system of nonlinear equations has no solution (x, f) €
R x Ry except for x = 0y,

: Gi(x)+1td; =0, ieli(x),
(4.1.2)

Gi(x) +1td; >0, ielyx).

Equivalently, G is d-regular if, for any scalar r > 0, the augmented nonlinear
complementarity problem NCP(H) defined by H : R/+1 — R+,

X\ (Gx)+1td
n ()= (7).

has no solution (x, t) € Rfr x R4 except forx = 0.
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The definition of the diagonalizable tensors [18, 19] is similar to the diagonaliz-
able matrices [8] as follows.

Definition 4.1.3 Suppose that A € RTy, is symmetric. It is diagonalizable if and
only if A =D x1 B x3B--- xy B, where B € R’*/ is nonsingular and D is a
diagonal tensor. Denote the set of all diagonalizable tensors by Dy ;.

In particular, in the case of N = 2, A is congruent to D ([20] for more details on
the congruent transformation).

4.2 Lemmas and Problem Description

For F : R — R/, the corresponding nonlinear complementarity problem NCP(F)
is to find a vector x* € R4 such that

Fx eRL, &TFx"=0.

If F(x) is an affine function of x, F(x) = q + Mx for q € R/ and M e R/*/,
NCP(F) reduces to the linear complementarity problem LCP(q, M). Some results
of the linear complementarity problem can be found in [9, 21].

A further generalization of NCP(F) is the variational inequality, given a mapping
F:R! - R and ¥ # K C R/, find a x* € K satisfying

(y—x)TFx*) >0,
for all y € K, abbreviated as VI(K, F). If K = {x : x > 0;}, then a solution x* of
VI(K, F) solves the NCP(F).
It is well-known that A € R’*! is a P-matrix [9] if and only if the following

linear complementarity problem has a unique solution for all ¢ € R’: find z € R/
such that

2>0;, q+Az>0;, z'(q+ Az)=0.

Given a P-tensor! [22] A € RTy.; (N > 2), for q € R/, the following nonlinear
complementarity problem has a unique solution: find x € R/ such that

x>0;,, q+AN'>0;, x'(@q+ANH=0.

IFor a given tensor A € RTy 1, if max;=12, 1 x; (AX); > 0 with all nonzero x € R!, then Ais a
P-tensor.
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We consider a special kind of NCP(F'), where F; (x) is a multivariate polynomial
and the degree of F;(x) is K;. Note that F(x) can be expressed by

K
Fx) =) Ax"' K= max K.
k=1

1<I<I

where Ay € RTy; with k > 3, A € R! and A, € R,

4.2.1 Lemmas

The following lemma is an existence and uniqueness theorem by Cottle [1]. It
involves the notion of positively bounded Jacobians, and the original proof is
constructive with an algorithm to compute the unique solution.

Lemma 4.2.1 ([1, 3]) Let F : Ri — R pe continuously differentiable and § €
(0, 1), such that all principal minors of the Jacobian matrix V F (X) are bounded
between § and 87, for all x € Rfr. Then NCP(F) has a unique solution.

If F(-) is strictly copositive, then the following result holds.

Lemma 4.2.2 ([5]) Let F : Rfr — R! be continuous and strictly copositive with
respect to Ri. If there exists a mapping ¢ : Ry — R such that c(A) — o0 as
A — 00, and forall A > 1 andx > 0y,

X (F(x) — F(07)) > c()x" (F(x) — F(0))), (4.2.1)

then NCP(F) has a nonempty, compact solution set.

For the linear complementarity problem, G(-) = F(-)— F(0;), givenin (4.1.1), is
obviously linear. Thus condition (4.2.1) is satisfied with c(A) = A. More generally,
the same condition will hold with c¢() = A%, if G is positively homogeneous of
degree o > 0;i.e., if G(Ax) = A*G (x) for A > 0.

If F(-) is strictly copositive with respect to R%, then G(-) from (4.1.1) is d-
regular for any d > 0;. The following lemma presents an existence result for
NCP(F) with a d-regular mapping G (-).

Lemma 4.2.3 ([4]) Let F(-) be a continuous mapping from R! into itself and G (-)
defined by (4.1.1). Suppose that G (-) is positively homogeneous of degree o > 0 and
G is d-regular for some d > 07. Then NCP(F') has a nonempty, compact solution
set.

The main characterization theorem for copositive tensors is quoted.
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Lemma 4.2.4 ([13, Theorem 5]) Let A € RTn,; be symmetric. Then A is
copositive if and only if

I
min{ﬂxN:xeRi, inNz 1} > 0.
i=1

Also, A is strictly copositive if and only if

I
min:ﬂxN:xeRi, inNzl} > 0.
i=1

4.2.2 Problem Description

Next, we present two research problems.

Problem 4.2.1 ([22]) Given A € RTn and q € R’. The NCP(q, A) seeks a
vector X € Rﬂr such that

Fx)=AxN "1 +qeRl, AxN +x'q=0.

Problem 4.2.2 For a given even integer N > 0,let Ay € RTy_2k—2),7 andq € R/
withk =1,2,..., N/2. The NCP(q, {Ax}) seeks a vector x € Ri such that

N/2 N/2
F(x) = ZﬂkXN_(Zk_l) +qeR., ZﬂkxN_2k+2 +x'q=0,
k=1 k=1

where A2 € RIXI,

We call Problem 4.2.1 the tensor complementarity problem (TCP), which is a
natural generalization of LCP and a special case of NCP. It is a new topic, inspired
by the growing interests in structured tensors. The TCP [14-16] is widely used in
nonlinear compressing sensing, commutations, DNA microarrays and multi-person
games. Problem 4.2.2 is a special case of the polynomial complementarity problem.
Gowda [23] presents Karamardian type results for the polynomial complementarity
problem (PCP), as a special case of the NCP and a generalization of the TCP. In
[23], Gowda also introduces the definition of degree of an R tensor and shows that
it is one.

Let the feasible set FEA(q, A) = {x € R] : AxV~!+q € RL}.IFFEA(q, A) #
#, then we see that NCP(q, A) is feasible. It is obvious that Problem 4.2.1 is a
special case of Problem 4.2.2. For simplicity, we only consider the solvability of
Problem 4.2.1.
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Let A € RTy,; be symmetric positive definite. If q is zero, then the solution of
Problem 4.2.1 is zero. To avoid this triviality, let q € R! in Problems 4.2.1 and 4.2.2
be nonzero.

If the zero vector 0; solves Problems 4.2.1 and 4.2.2, then we derive that
q € R’ is a nonnegative vector. We only consider a nonzero solution x € R’ of
Problems 4.2.1 and 4.2.2.

4.3.1 Necessary Conditions

We first consider the necessary conditions for Problem 4.2.1. The cornerstone for
the necessary conditions is its nonlinear programming formulation:

min AxY —l—qu
(4.3.1)
s.t. ﬂXN_l—i—qeRl, xeRfr.

If X, minimizes the nonlinear program in (4.3.1) satisfying AxY + q"x, = 0,
then x, is a solution of Problem 4.2.1. According to first-order necessary conditions
given in [24], we obtain the following theorem.

Theorem 4.3.1 Suppose A € RTy 1 is symmetric. If FEA(q, A) # ¥ and X, is a
local solution of (4.3.1), then there exists a vector W, of multipliers satisfying the
conditions,

q+ NAxXN ! — (N — AXY “2u, > 05,
x, (q+ NAxY 1 — (N — DAxY 2u,) =0,

4.3.2)
u* Z 011
u (q+ AN =o.
For all i, the vectors X, and u, satisfy
(N = D (% — )i (AXY 2 (x4 — 1,)); < 0. (4.3.3)

Proof Since FEA(q, A) # @, the nonlinear program (4.3.1) is feasible. An optimal
solution X, and a suitable vector u, of multipliers satisfy the KKT conditions (4.3.2).
To prove (4.3.3), we examine the inner product

x, (q+ NAXN ! — (¥ — DAY “2u,) =0,
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componentwise and deduce for all i that,
(N = D)%) (A} > (% — w)); <0, (4.3.4)
using the fact that x,, € FEA(q, A). Multiplying the ith component in
q+NAxY ' — (N — DAXY 2w, > 0y,
by u, and then invoking the complementarity condition
()i(q+ A% =0

which is implied by u, > 07, u/ (q + AxY ') = 0 and the feasibility of of x,, we
obtain

— (N — D) (AxY 72 (x4 — w,)); <0. (4.3.5)

Thus, (4.3.3) follows from adding (4.3.4) and (4.3.5). |

Remark 4.3.1 Theorem 4.3.1 is a special case of the result given in Cottle [I,
Theorem 3].

From Theorem 4.3.1, we have the following conjecture, which has been disproved
by Hieu et al. [25],

Conjecture 4.3.1 If FEA(q, A) # ¢, then the nonlinear programming prob-
lem (4.3.1) has an optimal solution, x,. Moreover, there exists a vector u, of
multipliers satisfying the conditions,

q+ NAxXN ! — (N — AXY “2u, > 05,
x,; (q+ NAXY ! — (N — hAxY ~2u,) = 0,
u, > 0y,
u (q+ AN =o.
For all i, x, and u, satisfy

(N — 1) (% — w); (AXY 2 (x4 — w,)); < 0.

When N = 2, the existence result for the quadratic programming problem
associated with LCP is given in [21]. However, Cottle [1] presents some counter
examples to show that this conjecture is not true for the general nonlinear program
problem.
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With Theorem 4.3.1, we prove the following existence result for NCP(q, A).

Theorem 4.3.2 Let a nonzero X, € Ry be a local solution of (4.3.1). If AxN 72 is
positive definite for all x € R!, then x,. solves NCP(q, A).

Proof According to Theorem 4.3.1, for all i, there exists a nonnegative vector u,
such that

(N — 1) (x5 — w); (AXY 2 (x4 — 1)) <0,
that is,
Xy — ) T (ALY 2 (x, —u,)) < 0.

Then we know that X, = u,. Based on (4.3.2), x, solves NCP(q, A). O

Remark 4.3.2 If x, = 0y is a local solution of (4.3.1), then x, solves NCP(q, A)
forany q € R. .

We then consider the necessary conditions for Problem 4.2.2. Consider its
nonlinear programming formulation:

N/2
min Z ApxN-2HA2 qTX

k=1

N (4.3.6)
s.t. ZﬂkxN*Qk*l) +q¢€ R, x e Rﬂr.

k=1

With FEA(q, {Ax}) denoting the feasible set of (4.3.6), if X, minimizes the
nonlinear programming in (4.3.6) satisfying Z,iv:/ % ApxN—242 4 qTx, = 0, then
X, 1S a solution of Problem 4.2.2.

Theorem 4.3.3 Suppose Ax € RTn_(2k—2),1 is symmetric fork =1,2,...,N/2
with an even N > 3. If X, is a local solution of (4.3.6) and FEA(q, {Ax}) # 0, there
exists Uy of multipliers satisfying the conditions

N/2 N/2
q+ Z(N — 2k + 2)ApxYTHFT _ Z(N — 2k + 2)(N — 2k + DAY ~*u, > 0y,
k=1 k=1

N/2 N/2
x, (q + Y (N =2k + DAY T N (N =2k +2)(N - 2k + l)ﬂkx*NZku*) =0,
k=1 k=1

u, > 0y,

N/2
u*T (Z ﬂkx*N_(Zk_l) + q) =0.

k=1
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For all i, x, and u, satisfy

N/2
e —w)i [ Y (N =2k + DAY H(x, —uw) | <0.
k=1

4.3.2 Solving Problem 4.2.1

In Problem 4.2.1, let F(x) = AxN 14+ q. We first consider some properties of F (x)
when (A is structured.

Theorem 4.3.4 Suppose that A € RTy ; is symmetric and x € R! is nonnega-
tive.

(a) If A is copositive (resp. strictly copositive), then F(X) is copositive (resp.
strictly copositive) with respect to Rﬂr.

(b) For an even N, if A is positive definite, then F(X) is strongly copositive with
respect to Ri when a < )»min||x||év_2 (resp. )»min||x||%/||x||%), where Amin is the
smallest Z-eigenvalue (resp. H-eigenvalue) of A.

Proof According to Definition 4.1.1 and F(x) = AxY —1 4 q, we have x T (F(x) —
F(07)) = AxV. Since A is copositive (resp. strictly copositive), that is, Ax" > 0
forall x € R (resp. Ax" > 0 for all nonzero x € RY). Part (a) is proved.

If A is positive definite, then it follows from [10, Theorem 5] that the smallest
Z-eigenvalue (resp. H-eigenvalue) of A satisfies Amin > 0.

If Amin is the smallest Z-eigenvalue of (A, then

X' (F(x) = F07) = A" = hninlIX115" = AminlIx]15 1113
In this case, part (b) is proved. Similarly, we can prove the case where A, iS the

smallest H-eigenvalue of A. O

When A € Dy is positive semi-definite, we have the following theorem on the
Jacobian matrix V F(x), where x € R/ is nonzero.

Theorem 4.3.5 Let A € Dy, be positive semi-definite with an even N. Then the
Jacobian matrix V F (X) is positive semi-definite for nonzero x € RY.
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Proof As A is diagonalizable, for x € R, according to Definition 4.1.3, we have

AxN = (D x1Bx2B--- xy B)xY = 0B x)"
A 1
=oy" (y=BTx) =) dyl,
i=1

where d; is the ith main diagonal entry of O. With d; > 0, we have AxN > 0 for
allx e R,

Since the Jacobian matrix VF(x) = (N — )AxY —2, for any vector z € R/, we
obtain

1
2 VFxz=(N -1 diyN 7?7 >0,

i
i=1

wherez =BTz = (31,%2,...,%;) " € R!. The Jacobian matrix VF(x) is positive
semi-definite with x € RZ. a

From Theorem 4.3.5, we have an open question in the following.

Question 4.3.1 Suppose A € RTy ; with an even N and a nonzero x € R’. Under
what conditions, there exists § € (0, 1), such that all principal minors of matrix
AxY =2 are bounded between & and §~!, for all x € Ri?

For a given symmetric tensor A € RTy , the existence theorems for Prob-
lem 4.2.1 are given below.

Theorem 4.3.6 Suppose that A € RTy, is symmetric. For Problem 4.2.1, the
following results hold.

(a) For an even N, if A is positive definite, then NCP(q, A) has a nonempty,
compact solution set.

(b) If A is strictly copositive with respect to Ri, then NCP(q, A) has a nonempty,
compact solution set.

Proof 1f A is positive definite, according to Theorem 4.3.4, F(x) = AN 4 q
is strictly copositive. Let c(A) = A* with0 < « < N — 1 and X > 1, we know
that ¢c(1) = oo as A — oo andx' (F(Ax) — F(07)) > c(L)x' (F(x) — F(0;)). By
Lemma 4.2.2, the NCP(q, A) has a nonempty, compact solution set.

By Theorem 4.3.4, F(x) = Ax" “lyqis strictly copositive. From [4], if F(X) is
strictly copositive with respect to Rfr, then the mapping G in (4.1.1) is d-regular for
any positive vector d € R! and G(Ax) = ANflG(x) with A > 0. By Lemma 4.2.3,
if A is strictly copositive with respect to R}, then NCP(q, A) has a nonempty,
compact solution set. O

From Theorem 4.3.6, we have the following conjecture.
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Conjecture 4.3.2 If A € Dy is positive definite with an even N, then NCP(q, A)
has a unique solution.

In the following theorem, we consider how to transform Problem 4.2.1 to a system
of nonlinear equations.

Theorem 4.3.7 Let A € RTy., and R, T € R'™*! be nonsingular diagonal
matrices. For NCP(q, A), the following statements hold:

(i) If (W, z) is a solution of NCP(q, A), then x = }(T 'z — @~'w) satisfies the
implicit fixed-point equation

F(x, |x]) := A(x| + )V - @(x| - x) + q =0y, (4.3.7)

whereﬁlz\?lxzr-u xn I;
(1) Ifx satisfies the implicit fixed-point equation F (x) = 0y, then

z=T(x|+x), w=Q(x]—Xx) (4.3.8)

is a solution of NCP(q, A).

Proof As z is a solution of NCP(q, A), it is a nonnegative vector and can be
expressed in the form

z=T(x|+x), xeR.
Define another nonnegative vector
w = (x| — x).
Then we have z'w = 0 and w = AzV ! + q if and only if
Qx| —x) = Alx| +0"" +q,

where A = A xo I' - xn T. It proves the validity of (i).
The implicit fixed-point equations (4.3.7) can be rewritten as

(x| —x) = A(x| + 0V ! +q,

with A=Axy - xyT.
For the nonnegative vectors w and z defined in (4.3.8), we have

w = (x| — x).
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In addition, we can observe that:

1. if x; > 0, then z; > 0 and w; = 0;
2. if x; = 0, then z; = w; = 0; and
3. if x; <0, thenz; = 0and w; > 0.

It then follows that z"w = 0. Therefore, (W, z) is a solution of NCP(q, A). O

If @ and I' are the identity matrices, then the above theorem is the same as
Theorem 4.3 in [26]. When N = 2, the above theorem reduces to [27, Theorem 2.1].
Based on this, Bai [27] designs a modulus matrix splitting iterative method for
solving the linear complementarity problem.

4.3.3 Solving Problem 4.2.2

In the previous subsection, we have considered the solvability of Problem 4.2.1.
Analogously, the following theorems describe the solvability of Problem 4.2.2.

Theorem 4.3.8 For a given even integer N > 3, suppose that Ay € RTn_(2k-2),1
is symmetric, withk = 1,2,...,N/2 and Ay € RXI For Problem 4.2.2, the
following results hold.

(@) If A withk = 1,2,..., N/2 — 1 is diagonalizable and positive semi-definite
and Ay 2 is positive definite, then NCP(q, {Ar}) has a unique solution.

(b) If Ay is positive semi-definite and there exists at least one kg € {1,2,..., N/2}
such that Ay, is positive definite, then NCP(q, {Ax}) has a nonempty compact
solution set.

(c) If Ax is strictly copositive with respect to Rfr, then NCP(q, {Ak}) has a
nonempty compact solution set.

Proof For part (a), according to the assumptions, AxxV=2* with k =
1,2,...,N/2 — 1 are symmetric and positive semi-definite for all x € R’. When
Ap/2 is symmetric positive definite, then V F'(x) is symmetric and positive definite,
where F(x) is defined in Problem 4.2.2. Then by Lemma 4.2.1, NCP(q, {A}) has
a unique solution.

For part (b), from the assumptions and if k) = N /2, we have

N/2
X (F(x)— F(0) = Y Ax"~ > x|3 > 0,
k=1

for all nonzero x € Ri, where A is the smallest eigenvalue of Ay . If ky €
{1,2,..., N/2—1}, then the same result holds, where 1 is the smallest Z-eigenvalue
of Ay,. (We can also consider the case when A is the smallest H-eigenvalue of Ay,)
Thus F(x) is strictly copositive. Let c(A) = A withao = 1 and A > 1, we know
that c(A) — oo as A — oo and X' (F(AX) — F(07)) > c(L)Xx " (F(x) — F(07)).
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From Lemma 4.2.2, if Ay is positive semi-definite and there exists at least one
ko € {1,2,..., N/2} such that Ay, is positive definite, then NCP(q, {Ax}) has a
nonempty compact solution set.

Part (c) is similar part (b) without the proof. O

The constraints of Ay in part (a) of Theorem 4.3.8 can be weakened. A more
general result is given below.

Theorem 4.3.9 For a given even integer N > 3, suppose that Ay € RTn_(2x-2),1
is symmetric, with k € {1,2, ..., N/2 — 1} and Ay 2 is a square matrix. If Ay are
diagonalizable and positive semi-definite and there exists 6 € (0, 1), such that all
principal minors of Ay 2 are bounded between § and 871, then NCP(q, {AL)}) has
a unique solution.

Proof Since there exists § € (0, 1), such that all principal minors of Ay/> are
bounded between § and 87!, then the real part of every eigenvalue of Anyz is
positive. Hence, for all nonzero x, we can derive XTﬂN/zx > 0. According to
the assumptions, the Jacobian matrix A F(x) in Problem 4.2.2 is positive definite.
Hence, NCP(q, {Ax}) has a unique solution. O

4.4 Generalizations

Huang and Qi [28] reformulate the multilinear game (a class of N-person nonco-
operative games) as the TCP and show that finding a Nash equilibrium point of
the multilinear game is equivalent to finding a solution of the corresponding TCP.
The readers may consult [22, 28-32] for a thorough survey of the existence of the
solution set of the TCP.

Recently, some researchers focus on the numerical algorithms for TCPs [26, 28,
33-38]. Che et al. [39] consider the stochastic tensor complementarity problem via
the theory of stochastic Ry tensors. Barbagallo et al. [40] study some variational
inequalities on a class of structured tensors. Wang et al. [17] introduce the tensor
variational inequality, where the involved function is the sum of an arbitrary given
vector and a homogeneous polynomial defined by a tensor. The interested readers
are referred to [14-16] for the basic theory, solution methods and applications of
TCPs.

We next consider the stochastic TCPs [39] and generalized order TCPs [41].

4.4.1 Stochastic TCPs

Assume that (2, .%#, &) is a probability space with the underlying sample space
Q € R/, where the probability distribution & is known. The stochastic linear
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complementarity problem SLCP(M(w), q(w)) [42-46] is to find x € Ri such that
M@@)x +q) e RL, x'(M(@)x+qw) =0, ae. weQ,
or
PloeQ:xeR, Mwx+q) e R, x"M(wx+qw)=0}=1,
where w €  is a random vector with a given probability distribution &, M(w) €
R’*! and q(w) € R!. Here “a.e.” is the abbreviation of “almost everywhere”.

For a given probability space (2, %, &), the stochastic nonlinear complemen-
tarity problem SNCP(F (x, w)) [47-52]) is to find x € Rfr such that

Fx,w) eRL, x"F(x,0)=0, ae.weQ,
or
PloeQ:xeR, FxoeRl, x"Fix,0)=0 =1,
where F : R! x Q@ — R is a given vector-valued function.

Giirkan et al. [53] consider the sample-path approach for stochastic variational
inequalities and provide the convergence theory and applications for the approach.
When applied to SLCP(M(w), q(w)) and SNCP(F (X, w)), the approach is the same
as the expected value method. This uses (i) the expectation of the random function
M(w)x + q(w), from the deterministic problem

xeRL, EM@x+q@)eR, &x' M@x+q@)}=0,
and (ii) the expectation of F (X, w), from the deterministic problem

xeRL, HFx0)}eRl, &x'Fx w)}=0.

In particular, the stochastic tensor complementarity problem STCP(M(w),
q(w)) [54] is to find x € Ri such that

A)x" '+ q) e RL, xT(A@xXY "+ qw) =0, ae we,
or

PloeQ:xeR, AN +q) eRl, xT (A" +qw)) =0} =1,
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where A(w) € RTy,; and q(w) € R’. The STCP(M(w), q(w)) is equivalent to
finding a vector x € R/ such that

A"+ q)) eRL,  &x" (AW)XN ! + qw)) = 0.

4.4.2 Generalized Order TCPs

For given x,y € R/, the ith components of x A y and x V y are min{x;, y;} and
max{x;, y;}, respectively, for all i. Also, x > y and X > y mean x; > y; and x; > y;
for all i, respectively. Similarly, we define x < y andx <y forx,y € R’.

Let K > 1 be any positive number. Given Ay, Aj,...,Ax € RI*! and
q1, 92, --.,qx € R! , the generalized order linear complementarity problem
(GOLCP) [55] is to find a vector x € R’ such that

XA AIX+q) A (Ax+q) A~ A (Agx +qg) =07, (4.4.1)
For Ay, A, ..., Ag € Ty and qi, q2, . .., qx € R!, we denote
A= (AL A, ..., Ax), Q:={q1.q,....qk)}. (4.4.2)
The corresponding GOTCP(A, q) is to find a vector x € R such that
XA AN @) A AN Fao) A A (AT +ax) = 05
We introduce the notations

xA AN+ @ =x A AN T g A AT g A A AT + g0,
xAAXN T =x A (ﬂlxN_l) A (ﬂsz_l) ARERIWA (ﬂKXN_l),
xvaxN-l.=xv (ﬂlfol) \% (.?(QXN*l) VeV (.?(Kfol).

Also AxN—! + q > 0; means .?{kxN’l +qr > 0;fork =1,2,....,K. A

vector X € Rﬂr with AxN -1 + q > 0; (> 0)) is called a feasible (respectively,

strictly feasible) vector for GOTCP(A, q). If there is such a vector, we say that
GOTCP(A, q) is feasible (respectively, strictly feasible). Let

F(A) = {q : AxN ! + § > 0; for some x € R},
K(A) = {d : SOL(A, ) # 0},

where SOL(?{, ) denotes the solution set of GOTCP(A, §). It is obvious that
K(A) € F(A). Borrowing from LCP, we say that these sets are, respectively (when
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A is fixed), the set of all “feasible” q’s and “solvable” q’s. Note that
intF(A) = {q : Ax" "' +§ > 0; for some x € Ri}.

Consider 8 € R/ xl with J > Tandp e R’. Let J = J1 + L+ -+ J;
and Jo = 0. Suppose that B; € R/I*/>>*I and p; € R’ satisfy

Bi:B(J1+"'+Ji71+1:Jl+"'+J[,:,..,,:)eRjiXIX‘“XI,
pi:p(‘ll'i‘"'-i-.]i,l—i—l:J1+...+Ji)eR1,~’

for all i. Then VTCP(B, p) is to find a vector x € Ri such that

Ji

BN 4peR], x][] (BixN_l +p;) =0,
. J
Jj=1

for all i, where the jth component of 8x" ! is defined by

1
(gXN_l)jz Z bj,'z_._,'inz...x,'N, Jj=12,...,J.

i2,....in=1

We show that this problem can be formulated as a GOTCP. Let K = max{J; : i =
1,2,...,1}. Let B{ = Bi(j,:...,:) is the jth mode-1 slice of B; where j =
1,2,...,Jiandi = 1,2,..., 1. We define tensors @1,@2, .. .,ZAB] € RKXIX”"XI
of order N in the following way. For each i, the jth mode-1 slice of B; is 8{ if
j < J; and B} if j > J;. Similarly, we define vectors py, P2, ..., p; € RX. For
each i, the jth element of p; is the jth element of p; if j < J; and the first element
of Pi ifj > J;.

It is clear that VTCP(@, p) is equivalent to VTCP(B, p). Let the jth mode-1
slice of A; € Ty, be the ith mode-1 slice of@j withi =1,2,..., K and all j. For

example, A, is formed by considering @; for all j. Similarly, let q; be the vector of
size I x 1 whose jth component is the ith component in the vector p;. Hence we
can verify that VTCP(B, Pp) is equivalent to GOTCP(A, Q.-

We shall show that every GOTCP can be formulated as a VTCP. For a given
GOTCP(A, q), let the ith mode-1 slice of 8; € RX*/**/ pe the jth mode-1 slice
of A; withi = 1,2,..., K and all j. For example, 8; is formed by considering

~1

A; withi = 1,2,..., K. We define p; € RX for all i. This construction leads
to the pair (8B, p), and the corresponding VTCP is easily seen to be equivalent to
GOTCP(A, §).
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Chapter 5 )
Plane Stochastic Tensors G

We study combinatorial properties of nonnegative tensors. We make the following
contributions: (1) we obtain equivalent conditions for sign nonsingular tensors
and relationships between the combinatorial determinant and the permanent of
nonnegative tensors, in Theorems 5.2.1 and 5.2.2; (2) the sets of plane stochastic
tensors and totally plane stochastic tensors are closed, bounded and convex sets, and
an nonnegative tensor has a plane stochastic pattern if and only if its positive entries
are contained in a positive diagonal, in Lemma 5.3.1 and Theorem 5.3.2; (3) from
a nonnegative tensor, we propose a normalization algorithm which converges to a
plane stochastic tensor, in Theorem 5.3.8; (4) we discuss the boundlessness of the
diagonal products of any nonnegative tensor and obtain a probabilistic algorithm
after Theorem 5.4.4 for locating a positive diagonal in a (0, 1)-tensor'; (5) we
explore the axial N-index assignment problem via the set of plane stochastic tensors
in Sect.5.5.

5.1 Preliminaries

For i, and n, the i,th mode-n slice [1-5] of A € RTy,; is defined as a tensor in
RTy_1 1, by fixing the mode-n index of A to i,: A(C, ..., in, 1, ..., ). Similar to
the row and the column sums of a matrix, for all i, and »n, the i,,th mode-n sum of
A e RTy i

1

f(Aip,n) = Z iy i1 iy -

l’l,---,l.n—lql'n+l,---,l'N:1

T A tensor is a (0, 1)-tensor [1], if its entries are chosen from the set {0, 1}.
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For both i, and n, we denote by A(iy, i2, ..., iy) the tensor in RTy ;—1, derived
from A by deleting its i,,th mode-n slices.

5.1.1 Plane Stochastic Tensors

Similar to a stochastic matrix (see [6, Chapter 2] and [7]), a plane stochastic tensor
is defined as follows.

Definition 5.1.1 For a given n, a tensor A € NTy ; is mode-n plane stochastic
provided that f(A; iy, n) = 1 for all ij,. Particularly, if f(A;i,,n) = 1, for all
i, and n, then A is called a plane stochastic tensor. We denote the set of all plane
stochastic tensors in NTn 1 by Q1.

Yang and Yang [8] give an alternative proof of the minimax theorem for
nonnegative tensors with positive eigenvectors corresponding to the spectral radius
[9] by using mode-1 plane stochastic tensors. Jurkat and Ryser [4] study the
basic combinatorial properties of tensors and these properties also hold for plane
stochastic tensors. We can refer to [1-4, 10] for the details on plane stochastic
tensors.

Cui et al. [11] define multi-stochastic tensors (or called line stochastic tensors
[3]), and permutation tensors. We make the difference via an example. For N = 3,
Definition 5.1.1 indicates that a plane stochastic tensor A € N T3 j satisfies

1 1 1
E : Aiyiniy = E Qiyiyiy = E Qiyinis = 1.

in,i3=1 i1,iz=1 i1,ir=1

In [11], B € NT;,; is called multi-stochastic, provided

I 1 I
Zbi1i2i3 = Z bi1i2i3 = Zbi1i2i3 =1

ii=1 ir=1 iz=1

Let a nonnegative vector X € R! satisfy x; +x2 + -+ +x7 = 1. Then

1 1 1
§ bi1i2i3xi2xi3 = § bi1i2i3xi1xi3 = § bi1i2i3xi1xi2 =1,

i1,iz,i3=1 i1,12,i3=1 i1,12,i3=1

1 1 1

E Qi \iriz Xy Xis = E QjiyizXiy Xis = E QiyinizXiy Xiy # 1.

i1,i2,i3=1 i1,i2,i3=1 i1,i2,i3=1
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The tensor $/1 is plane stochastic. For C € RTy,; and a nonzero o € R, each
element of the tensor C/o is bj,j,...iy /o for i, and n. Furthermore, if A € NTy ; is
multi-stochastic, then A/ I N-2 g plane stochastic.

Mode-1 multi-stochastic tensors have been studied in higher order Markov chains
[12], under the name “transition probability tensors” [12—16]. Christensen and
Fischer [17] use the plane stochastic tensors in error-correcting codes [18]. In
Sect. 5.5, we will present a lower bound for the minimum of the axial N-index
assignment problem by means of plane stochastic tensors.

The following definition is a generalization of the permutation matrix [19,
Chapter 1].

Definition 5.1.2 A tensor P € NTy,; is a plane permutation tensor, if for (N — 1)
given 7w, € Sy withn =2,3,..., N, we have Diiir...iy = 5,’1712(,'2)_._”[\,(,'1\,), where

1, if i1=m@) =---=an(y);

Onma(ia).. e i) = 0, otherwise

The number of the plane permutation tensors in NTy j is N = (IHN-1,

We denote the set of plane permutation tensorsin N7y j by Py ;. Py.j is a subset of
Qn,1, which is the set of all plane stochastic tensors in N7y ;. A plane permutation
tensor can also be characterized by the system of linear equations:

1

E Pl vin—tinins1iy = 1

iLseensin—1slnt1,-iN=1

with the constraints p;,;, iy € {0, 1}, for all i,, and n.
In Fig. 5.1, we list four plane permutation tensors in €23 » with all their entries.

Fig. 5.1 Plane permutation tensors in €3 >
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5.1.2 Combinatorial Determinant and Permanent of Tensors

There are two ways to extend the determinant of matrices to tensors. One is to extend
the usual expression of an 7 x I matrix determinant as a sum of /! monomials in the
entries of the matrix, which we call the matrix combinatorial determinant. Another
we call the determinant [20, 21] uses the characterization that a matrix A € R/*/
has det(A) = 0 if and only if Ax = 0; has nonzero solutions.

Definition 5.1.3 (Combinatorial Determinant of Tensors [22]) The combinato-
rial determinant of A € RTy ;, denoted by det.(A), is defined as

1
dete(A) = Y signGy-k11)...sign(n) [ [@imy.aviy, (.11

72,..., INES] i=1
where sign(s) is the sign of w € S; [23] and the positive integer K satisfies
K =(N+1)/2, foranodd N; or K = N/2, foraneven N. (5.1.2)

Cayley begins to study the combinatorial determinant of hypermatrices [24]. The
fundamental properties and applications of the higher-order determinant (our tensor
combinatorial determinant) are considered by Rice [22], Oldenburger [25] and Vein
and Dale [26]. The combinatorial determinant in Definition 5.1.3 is also called a P-
sign determinant [22]. More generally, we refer to [22] for the P-sign determinant
of A € RTy,; with an even P < N. Lim [27] considers the P-sign determinant
with aneven K = N.

Analogous to the definition of the tensor combinatorial determinant, we define
the tensor permanent as follows.

Definition 5.1.4 ([1]) The permanent of the tensor A € RTy,, denoted by
perm(A), is defined as

TTyenny 7TN6511=1

Dow and Gibson [1] extend properties from the matrix permanent to the
tensor permanent (or called multi-dimensional permanent) and investigate some
inequalities for the permanent of (0, 1)-tensors. Dow and Gibson deduce that the
permanent of a (0, 1)-tensor is equivalent to the sum of of all perfect matchings
of the N-partite N-uniform hypergraph [28, 29]. We refer to [30] for the theory of
hypergraphs. Recently, Taranenko [31] investigates the properties and applications
for the permanent of multi-dimensional matrices. Barvinok [32] presents a deter-
ministic algorithm to compute the matrix permanent and extends this method to
computing the tensor permanent.
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Avgustinovich [33] indicates that the problem of counting the number of
distinct 1-perfect binary codes reduces to compute the permanent of a particularly
constructed multi-dimensional matrix (tensor). Taranenko [34] derives inequalities
for the permanent of the multi-stochastic tensors. Cui et al. [11] utilize the tensor
permanent to study the extreme points for the set of multi-stochastic tensors. The
tensor permanent defined by Cui et al. [11] is identical to the tensor S-permanent [1].

We give an example to illustrate the permanent and the combinatorial determi-
nant of A € RTy ;.

Example 5.1.1 The permanent of A € RT3 is

perm(A) = aj11a222 + arpazi + aziaziz + aixazi;.

According to [22], P = 2 and the combinatorial determinant of A € RT3 is

det.(A) = aj11a222 — ar2a221 — az1az12 + a122a211.

Furthermore, the permanent of A € RTj 5 is

perm(A) =ai111a2222 + ai1112a2221 + ar121a2212 + a121162122

+ azi11a1222 + ar22a2211 + ai212a2121 + ai2214az112.

It follow from [22] that P = 2 and the combinatorial determinant of A € RTj > is

detc(A) =ai111a2202 — a1112a2221 — a112142212 + a121142122

+ az111a1222 + a1122a2211 — a1212a2121 — a122142112-

Both the combinatorial determinant and the permanent of A € RTy ; are special
cases of a more general function of tensors called the tensor immanant, generalized
from that of a matrix [35].

Definition 5.1.5 Let A = (X1, A2, ...) be a partition of I and y; be the corre-
sponding irreducible representation-theoretic character of the symmetric group Sy,
the immanant of A € RTy ; associated with the character y; is defined as

I

Imm,; (A) = Z Z XA(7T2)---XA(NN)Hamz(i)...nN(i)-

T €Sy TNEST i=1

For the combinatorial determinant, x; (7,) is the alternating character of Sy,
defined by the parity of a permutation with n > N — P + 1, and the other x,
are identically 1. The permanent has x; identically equal to 1.

More generally, let G be a subgroup of the symmetric group Sy of degree / and
Xn € Sy withn = 2,3,..., N be a linear character of G. The generalized tensor
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function associated with G and x,, (also known as the G-immanant) of A € RTy |
is defined as

i
dg,.._,x,v(ﬂ)= Z X2(7T2)~-~XN(7TN)1_[ain2(i)...nN(i)-

72,...,aNEG i=1

,,,,,

reduces to the generalized matrix function [36, 37]. Macrcus and Minc [38] obtain
a relationship between the generalized matrix function and a function involving
the eigenvalues of normal matrices. They reveal the relationship between the
generalized matrix function and an appropriate function of the singular values.
Berndt and Sra [39] obtain the generalized Hlawka and Popoviciu inequalities for
generalized matrix function. Huang et al. [40] derive inequalities on the non-integer
power of products of the generalized matrix function on the sum of positive semi-
definite matrices. Chang et al. [41] present an inequality for the Kronecker product
(or called tensor product) of positive operators on Hilbert spaces and then apply that
to the generalized matrix function. Paksoy et al. [42] obtain some inequalities for
the generalized matrix function of positive semi-definite matrices by an embedding
and the Kronecker product.

It is known that there is a decomposable vector x € C! " Such that d A =
(®A)xN. The Kronecker product of A € RI1*2xxIv gnd B ¢ RI1> /x> Iy
yields a tensor C € RN /1x12J2xxINJIN with entries [43]

Ciir+ G —Dh, o+ G =D, ..., jn+(n — DIN) = aijiy..inbji jo...jx

for all iy,, j, and n. When A € RTy ; is diagonalizable and symmetric, Che et al.
[44] investigate the inequalities on dgw xv (D

5.2 Sign Nonsingular Tensors

If there exists 7, € Sy withn = 2,3, ..., N such that

i
o = sign(y—pi1) . .. sign(n) [ | @imar.oniy # 0,
i=1

where K is given in (5.1.2), then « is called a nonzero term in (5.1.1). The sign

pattern of A € RTy 1, denoted by sign(A), belongs to the set RTx, ; with entries

1, ifailiz---iN > 0,
(Sign(ﬂ))iliz...il\/ =10, ifailiz.-.iN =0,

—1, ifailiz---iN < 0.
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Let Q(A) = {B € RTy, : sign(B) = sign(A)} be the set of tensors with
the same sign pattern of A. If det.(A) and det.(A) have the same sign for any
A € Q(A), then we say that A has a signed determinant. If det, (A) # 0 for any
Ac Q(A), then A is called a sign nonsingular tensor (differently defined in [45]).
Note that singularity and sign-singularity of tensors do not imply each other. The
following lemma extends [46, Lemma 1.2.4] from matrices to tensors.

Lemma 5.2.1 Suppose that A € RTn 1 with an even N. Then the tensor ‘A has a
signed determinant if and only if all nonzero terms in (5.1.1) have the same sign.

Proof If all nonzero terms have the same sign, then A has a signed determinant.
We shall prove that all nonzero terms in (5.1.1) have the same sign. Let

I
a =sign(my_g41) .. .sign(wy) l_[ Qi (i)... oy (i)
i=1

be a nonzero term in (5.1.1). The sign of det.(A) is the same as sign(«) if we
multiply each entry of A not occurring in « by a sufficiently small positive number.
The converse also follows similarly. O

The following theorem illustrates the relationship between the sign nonsingular
tensors and the signed determinant, which extends [46, Theorem 1.2.5] from
matrices to tensors.

Theorem 5.2.1 Assume that A € RTy,; with an even N. The following are
equivalent:

(1) Ais a sign nonsingular tensor.
(2) det.(A) # 0 and A has a signed determinant.

(3) All nonzero terms in (5.1.1) have the same sign.

Proof Since Q(A) is a connected set and det.(A) is continuous, then (1) is
equivalent to (2). By Lemma 5.2.1, we have (2) being equivalent to (3). |

We reveal the relationship between the combinatorial determinant and the perma-
nent of nonnegative tensors, summarized in the following theorem.

Theorem 5.2.2 Let A € RTy. 1 be nonnegative with an even N and its combinato-
rial determinant is nonzero. Then | det.(A)| < perm(A), with equality if and only
if A is sign nonsingular.

Proof Since det.(A) # 0 with an even N and there exist nonzero terms in (5.1.1),
then we get | det.(A)| < perm(A), with equality if and only if all nonzero terms
in (5.1.1) have the same sign. By Theorem 5.2.1, we have | det.(A)| = perm(A) if
and only if A is a sign nonsingular nonnegative tensor. O
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5.3 Properties of Plane Stochastic Tensors

Christensen and Fischer [17] indicate that when considering error-correcting codes,
we need to study the extremal points for the set of all T-flat stochastic tensors [3]
with a fixed positive integer | < T < N — 1. A doubly stochastic matrix always has
a positive diagonal [47, Lemma 2.1.5]. However, for a plane stochastic tensor, this
result is not true. The following example illustrates the fact.

Example 5.3.1 Let A € NT3 2 be a plane stochastic tensor with
ainn =05, a;=05, axp; =05, a=05,
and zero elsewhere. For diagonals of ‘A, we have

{ai11, az2} ={0.5,0}, {ai122,a211} = {0.5, 0},
{a112, a21} = {0, 0.5}, {ai21, a212} = {0, 0.5}.

Then A has no positive diagonal.

Generally speaking, all elements in Py ; are extremal points of Qp 7, and the set
of all plane stochastic tensors, which also has other extremal points [3]. Please refer
to [1-4, 10, 48-54] on the extremal points for the set of all 7-flat stochastic tensors.
Now we consider some interesting properties of a special subset of Qp j:

M M
Qf ={AcQy A=) LPLY N=10<n<li=12..M¢t,
i=1 i=1

(5.3.1)

where P; € Py, and M < (I!)N_l.

We call a tensor in Q;J totally plane stochastic. A tensor A € RTy  has a
totally plane stochastic pattern, if there exists a totally plane stochastic tensor in
Q; ; With the same pattern as A.

For a given A € NTy j, if perm(A) is positive, according to the definition of
the tensor permanent, then there exists a positive diagonal of A. It is obvious that
any totally plane stochastic tensor has a positive diagonal. A plane stochastic tensor
with a positive permanent does not always belong to Q; ;- as illustrated below.

Example 5.3.2 Let A € NT;3, be plane stochastic with
4 6

A= Z)»ﬂ’i + A5Q1 + AsQ2, Z)»i =1,0<A; <1,
i=1 i=1
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where P; € P32, and all entries of Q and Q; are zero except

@)111 =05, @Di122=0.5, (@)1 =05, (@Q)22=0.5,
(@)121 =05, (@)112=0.5, ()21 =05, (@) =0.5.

Manipulation yields
perm(P;) =1, perm(Q;) = perm(Q,) = 0.

Thus perm(A) = Z?:l A; > 0. However, by (5.3.1), it is obvious that A ¢ 9;2'

5.3.1 Totally Plane Stochastic Tensors

For the plane stochastic and totally plane stochastic tensors, we have the following
result.

Lemma 5.3.1 The set Qy.1, viewed as a subset of RIN, is closed, bounded and
convex.

Proof Let A, B € Qn 1. Forany 0 < A < 1, the entries of AA + (1 — A)B are
nonnegative. For any i1, we have

! 1
A Z Qiyiy..iy + (1 —A) Z biji...iy = 1.

i7,.,in=1 i7,..,in=1

Similarly, its i,th mode-n sums are unity for all n. Hence Qp s is a convex set.
Because 0 < a;,4,..;y < 1foralli, and n, Qu,; is bounded.

To show that Qp ; is closed, without loss of generality, we assume that N = 3.
Let

1
SI={AENTy : Y ayniy=101=12...1}

ir,iz=1

1
S)={AENTy 1 : Y aGyniy=1i2=12..1}

ir,iz=1

1
S3={AENT;: Y Gy, =1i3=12,...1)

i1,ip=1
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Note that Q23 ;7 = S1 NS N'S3. Next we prove that S, (n = 1, 2, 3) are closed sets.
For A € Sy, let

1
Us(A) = {B=A+EeNTN.1: Y leiiis] < 8).

i1,12,i3=1

Then Us(A) contains neighborhood elements of ‘A. We denote the complement of
Sy as S{:

I
S{={AeNT;;: Z Qjyiri; 7 1, for some iy}.

ip,iz=1

Assume that A € S and Z{Liz:l a0, 7 1, let € = |Zi[21i3:1 a;0;,;, — 1. Let
us set 0 < §p < €. We find that Us, (A) contains neighborhood elements of A and
Us, (A) € Sf. Then S is an open set, thus S; is closed. Similarly, S;, S3 and Qy ;
are closed sets. |

Since Q;{, ; is a subset of Qyy, it is closed, bounded and convex. A point x¢ of

a convex set S C R/ is called an extreme point of S, if S\{Xo} is also convex. The
next result identifies the extreme points of QE Iz

Lemma 5.3.2 Any plane permutation tensor P € Py | is an extreme point of Q;J.

Proof Let®P € Py 1.1f P is not an extreme point of Q; ;> then we have P = (A +

B)/2 with A # Band A, B € Q;,I' As shown in [47, Lemma 2.1.2], for all i, and
n, the values of p;, iy are Oor 1;and 0 < a4y iy, Dijis..iy < 1.If pijiy..iy =0,
then Ajjiy..iy = bilizmiN = 0 and if Pijiy...iy = 1, then Ajjiy..iy = bilizmiN =L
This contradicts the assumption that A # B. O

In following lemma, we show that the upper bound of M in (5.3.1) can be reduced.
Lemma 5.3.3 M in (5.3.1) satisfies M < I¥ — NI + N.
Proof For any given A € Q. 1, by Definition 5.1.1, we have

f(A;ip,n) =1, (5.3.2)

for all i, and n, and

I

Do iy =1 (5.3.3)

i1,in,....in=1
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Substituting (5.3.3) into (5.3.2), we transform (5.3.2) to a linear system with IV
unknowns and N I — N +1 equations. This linear system has at most IV —NT+N —1
free variables. O

By Lemma 5.3.3, the set Q;{,J is given in (5.3.1) with $; € Py and M <
IN — NI +N.

Lemma 5.3.4 Suppose that A € NT3 satisfies all i,th mode-n sums not
exceeding 1 for all i, andn = 1,2,3. If f(A; 1, 1) < land f(A;i, 1) =1 forall
i, then there exist j, k € {1,2,...,I}suchthat f(A; j,2) < land f(A; k,3) < 1.

Remark 5.3.1 Let A be the same as in Lemma 5.3.4, we have the following
results.

(@ If f(A;1,2) < 1land f(A; j,2) = 1for j = 2,3,...,1, then there exist
i,ke{l,2,...,I}suchthat f(A;i,1) < 1and f(A; k,3) < 1.

®) If f(A;1,3) < 1land f(A;k,3) = 1 fork = 2,3,...,1, then there exist
i,je{l,2,...,I}suchthat f(A;i,1) < land f(A; j,2) < 1.

From Lemma 5.3.4, it is obvious to derive the following corollary.

Corollary 5.3.1 Assume that A € NTy 1 satisfies all inth mode-n sums not
exceeding 1 for all i,, and n. For a given iy, if f(A; ip,n) < land f(A; iy, m) =1
for all i, # iy, then forallt € {1,....,n — 1,n + 1,..., N}, there exists
ire{l,2,..., I} suchthat f(A; i;, t) < 1.

Theorem 5.3.1 Suppose that the i,th mode-n sum of A € NTn 1 does not exceed
1 for all iy, and n. Then there exists a D € Q. 1 such that D > A.

Proof If A € NTy ; is plane stochastic, then the result is trivial. If A € T
is not plane stochastic, according to Corollary 5.3.1, for all n, then there exists
rn € {1,2,...,1} such that f(A;r,,n) < 1. Let u,, := f(A;ry,n) < 1 and
6 = min{l —u,,1 —up,...,1 —u,}. Adding § to a,,. ry and keeping other
entries unchanged, we derive a new tensor AD such that A < AD. Thus AD
is nonnegative with all the i,th mode-n sums at most 1. Furthermore, there exists
rp € {1,2,..., 1} for all n such that the r,-th mode-n sum is less than 1 in A, but
equals to 1 in AW,

If AW is plane stochastic, then stop; otherwise, the above procedure can be
repeated until we get a plane stochastic tensor D > A. O

The following theorem without the proof indicates that A € NTy ; has a totally
plane stochastic pattern under certain conditions.

Theorem 5.3.2 Let A € RTn | be a nonzero nonnegative tensor. Then A has a
totally plane stochastic pattern if and only if any positive entry of A is in a positive
diagonal.
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5.3.2 A Self Map on Totally Plane Stochastic Tensors

Let A € RTy,; be a nonnegative tensor with perm(A) > 0. We define the tensor
f(A) € RTy ; by

F Ay = “20P e“;e(if(i ;0’ 2::c 2 N)) (53.4)

for all i,, and n. According to Definition 5.1.1 and the definition of the permanent,
we have f(A) € Q; ; forall A € Q; ;- The map f and its restriction to Q; ]
have interesting properties.

Lemma5.3.5 If A € Q; p» then A and f(A) have the same totally plane
stochastic pattern.

Proof 1f A € Q;J, then perm(A) > 0 and f(A) is well defined. If a;;,..;y, = 0,
then obviously fi,i,...iy (A) = 0.1f a;,4,..;y > 0, then by Theorem 5.3.2, there exists
7n €S (n=2,3,...,N) such that 7, (i) = i, and []/_; @inyi)..nyG) > O. Thus
perm(A(1, i2, ..., in)) > 0 and perm(A) > 0. This shows that (f(A))ii,...iy >
0. O

Theorem 5.3.3 Let Ky, C Q; ; be the set of all totally plane stochastic tensors
whose entries satisfy a given set of equality constraints. Suppose f(A) € Ky.1
whenever A € Ky, 1, where f is the map defined by (5.3.4). Then [ maps Ky.1
onto Ky 1. In particular, each of the following sets is mapped onto itself by f:

N oot
) Qy -
(i) The set of symmetric tensors in Q2 .

(iii) The set of tensors in Q;(, 1 with the first mode-1 slice equal to the second mode-
1 slice.

Proof By Lemma 2.7.3 in [47], Theorem 5.3.2 and Lemma 5.3.5, for any A €
Q;,I’ Qjyiy...ixy = 01f and only if (f(A))iip..iy = 0 for all i, and n. The sets in
(i)—(iii) are all defined by imposing equality constraints on the entries of the tensor.
The results are easily verified. O

Theorem 5.3.4 The map f : Q; I Q; ; s one-to-one.

Proof Let f(A) = f(B) for Aand Bin Q;{, ;- Since perm(A) > 0 and perm(8B) >
0, then the tensor C is well defined with

perm(A) i
Cijip...iy = perm(g) bilizml‘N-
From f(A) = f(B), we have

Qiyiy..iy PErM(A( 1, i2, ... iN))  biyiy.iyperm(B(it, iz, ..., IN))
perm(A) N perm(B)
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Therefore
Qjriy...iyPEIM(A(i1, 2, .. ., IN)) = Ciyiy..iyPerm(C(i1, i2, ..., IN))

for all i, and n.
Form, € S; withn =2,3,..., N, let

i i
U,y = l_[ainz(i)“ﬂN(i)a Bty = l_[Cinz(i)mnN(i)a
i=1 i=1
we have

1
Oy, Ty
l_[ Umy.oty = l—[ l—[aiﬂz(i)mmv(i)

m2,...,INES] m2,...,iINES; \i=1

=TI H G )

72,...,iINESy i=1

1
— 0[712 AAAAA b4
N 1_[ 1_[ ”72(1) 1;ITN(1) (535)

i=1m,....iNES]

Recall the convention of 0° = 1. Let Kiiy..iy = {(m2, 73, ...,7w8) ¢ m2(i)
in,m3(i) = i3, ...,y (i) = in}. Then

1 1
[T Il eie= TI1 [T e
i=1 .

2,5, TN €S 512, iN=1 (2,0, TN ) EKGiy iy
1
Z(nz ..... JTN)EKUZ 712....,7ZN
= Il «
llzm N
i,in,....in=1
Giiy...ipy PEIM(AC, 2, ..., iN))
— a.. X
iip...0N
i,ig,....iy=1
I .. .
Ciiy...ipy PEIM(C (0,12, ...,iN))
— a.. X
iip...0N
i,i0,.,iy=1

1
= JI [([Tamo.wo

7,...,iINES; \i=1
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From (5.3.5), we obtain

Ty s T /371 ..... T

1_[ agz,z...,m]\\// B 1_[ anz,z...,m[\\//s (5.3.6)
T enns T ,Bn AAAAA T

l_[ 7(;2,%“,711\1\]] = l_[ nz,zm,m\A;- (5-3-7)

l_[ (O{”L---JTN )anzw‘nN . (:an ..... ITN)/SHZ""‘”N _

Bry,....my
Note that

perm(ﬂ) = Z Uy,..oty = Z ,8712,...,]11\/-

By [47, Lemma 2.6.2], we have oy,
2,3,...,N,ie,

ay = PBry,...wy forall m, € Sy withn =

,,,,,

1 1 1
H“' ' o l_[C' ' ~_ perm(A) Hb' ' '
i imp(i)..tn (D) : iy (i)...ty(0) perm(B) . iy (i)..tn (i)

By Corollary 5.4.1, this is possible only if A = 5. O

We say that tensors A and B have proportional diagonal products, if for all
7w, € S;withn =2,3,..., N, there exists a nonzero constant ¢« such that

1 1
l—[ iy (i), (i) = O l_[ biy (iy...otn (i)
i=1 i=1

By Theorems 5.3.3, 5.3.4 and Corollary 5.4.1, we have the following theorem.

Theorem 5.3.5 If A € RTn, is a nonnegative tensor with a totally plane
stochastic pattern, then there exists a unique totally plane stochastic tensor B such
that A and B have proportional diagonal products.
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5.3.3 Relationship Between Nonnegative and Plane Stochastic
Tensors

A tensor A € RTy,; has a plane stochastic pattern if there exists a plane stochastic
tensor B € Q1 such that

Ajjiy..iy = 0 < bilizmiN = O,

for all i,, and n.

Sinkhorn [55] derives a relationship between arbitrary positive matrices and
doubly stochastic matrices. For a positive matrix A € R/*!, we can derive a
matrix sequence by alternately normalizing the rows and columns of A and show
that the limit of the sequence is a doubly stochastic matrix. Sinkhorn’s theorem
can be generalized from positive matrices to certain nonnegative matrices [56, 57].
Furthermore, Bapat [58] generalizes Sinkhorn’s theorem from matrices to multi-
dimensional matrices (i.e., tensors). Also, Raghavan [59] and Franklin and Lorenz
[60] consider the relationship between nonnegative and plane stochastic tensors.

Theorem 5.3.6 ([60, Theorem 3]) Let A € RTyn,; be nonnegative with a plane
stochastic pattern. Then there exists N positive diagonal matrices D, € R'*! such
that A x1 D1 x2 Dy --- xy Dy is plane stochastic.

In the following, we consider how to numerically implement the normalization
process. Starting from a symmetric nonnegative tensor with certain conditions,
Shashua et al. [61] propose a normalization algorithm which converges to a
symmetric plane stochastic tensor.

Theorem 5.3.7 ([61, Proposition 2]) For any symmetric A0 e N Tn.1 without
vanishing slices, the iterative process:

a®
(k+1) i1i...IN
gD (5.3.8)
i1ip...iN k) (k) &)\1/N’
(al.l a;, ...aiN) /

where for all i,

I

a¥= 3" aff (5.3.9)

iiy...0iN
i2,.,in=1

converges to a symmetric plane stochastic tensor.

As shown in Example 5.3.1, the permanent of all plane stochastic tensors in Qp s
cannot be always positive. Hence, the original proof of Theorem 5.3.7 in [61] is
incomplete. We have the following more general theorem.
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Theorem 5.3.8 For any AY e N Tn.1, without vanishing slices, the iterative
process:

(k)
Gy = (gi'iz“"'N(k) gyt k=01 (5.3.10)
( 1 11a2 i " ‘aN,iN)
where for all i,, and n,
1
r(zkz)n = Z al'(lk‘)“in,li,,inﬂmiN >0 (5.3.11)

i seensin—1sInt1seiN=1
converges to a plane stochastic tensor:

Proof Suppose that perm(A?) > 0. By the definition of the permanent and one
step of the normalization step described in (5.3.10), we have

1
perm(ﬂ(l‘“)) — Z a.(kJrD

iy (i)...7N (i)

a®

> B
OINO) a® YUN -

2,. nNESII—l( 1,i1 212 . NlN

1
= 1N perm(ﬂ(k)).

1
(k) (k) (k)
<.]_[1a1 iay,; - 'aN,i)
i=

To show that the normalization scheme produces non-decreasing the permanents
(k) (k) (k)

we need to prove 1_[1—1 ay;a,;...ay; < 1. From the arithmetic-geometric means
inequality it is sufﬁc1ent to show that Zi[:l(a{kl) + aé"l) 4ot al(\’,‘)i) < NI.From
the definition of an ;» we have

1
Z(“(k) o+ +a®)
i=1

I
= Y !
= TN k1) (k1) -1\ /N
i, iy=1 al’i a2,i2 .. ‘aN,iN
! 1
(k—1)
—+ a. . .
; .Z_l AN (k—1) (k—1) k—D\ /N
1slyeesIN= aul azﬁl. ...aN’l.N

I

3 k=1) 1

+ a"r . .

A R O () k—1) k—D\ /N
Iy IN—1,1= al TR .aN_lJ.NilaN’l.
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From the inequality (T/_, x/)!/’

thata; > 0), we obtain

IA

(1/J) Z]J'=1 xj, replacing x; with 1/a; (recall

1 - 1 /1 n 1 I 1
(araz...apVl — J\a1 a2 aj )’

We obtain Z i 1(a§kl) + aékl) 4+ 4 a(k) ) < NI. Therefore, we conclude that each
step of the normalization scheme does not decrease the tensor of the previous step.
Furthermore, we have

; /N

k) (k k

perm(ARHD) < (na; . ..a,g;) <1
i=1

For the case of perm(A®) = 0, we consider B? := A® + I with any arbitrary
small € > 0. Note that perm(ﬂ(o)) > 0. The entries of 8% are given by

p®
(k+1) i102...IN -1.2
iy = g (k) 4 (k) (k) ’ T
(bl l|b2 i * bN lN)l/N
where for all i,, and n
I
(k) _ (k)
b i = Z bi\ inriningr.in > 0-
iLseensin—1sin41,-,iN=1
The sequence (B8 (k = 0,1,2,...) converges to a plane stochastic tensor.
Furthermore, as ¢ — 0, we have b! ) S adV  and 59 = 4@ for all in
i1i...IN i1i2...IN 1 i
and n, where a(l) iy and a(o) are respectively generated from (5.3.10) and (5.3.11)
with k = 0.
Foreachk =0,1,...,as e — 0, we have pEFD o g®ED  and bl.(lk) — al.(lk)

i107...IN i1i2...IN
for all i, and n, where al(lkljl)w and a(k) are respectively generated from (5.3.10)

and (5.3.11). The sequence {ANX} (k = 0,1,2,...), generated by (5.3.10),
converges to a plane stochastic tensor. O

L1 xIpx---xIn

For a given A € R} and all n, if we have

n+1 Iy
E E E E Qi iy tininst iy = 1
i1=1 in—1=1lip41=1 in=1

then we call A a plane stochastic tensor. We have the following conjecture.
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0) c R{; xIpx-xIn

Conjecture 5.3.1 For any A without vanishing slices, the

iterative process:

(k)

(k+1) irin.iy _o.1
i1i2... iy k) (k) (k) N’ =Y, L,...
(ay; @y ---ay;.) /
where
Ul In—1 It Iy
S JRED DD DESP oY
a",in - ailminflininJrlmiN > O’

i1=1 in—1=1ipy1=1 in=1

for all i,, and n, converges to a plane stochastic tensor.

From [62], consider the symmetric A € N T3 3 with entries

ajpp = 0.0517, ajip =0.3579, a3 =0.5298, ajop =0.7544, ayp3 = 0.2156,
a3z = 0.3612, azyy =0.3943, apxy3 =0.0146, ap33 =0.6718, a3zzz = 0.9723.

and the positive 8 € NT3 3 with

b111 = 0.4333, b1a1 = 0.4278, b131 = 0.4140, by11 = 0.8154, by = 0.0199,
by31 = 0.5598, b311 = 0.0643, b3y = 0.3815, b3z = 0.8834, by12 = 0.4866,
b12o = 0.8087, b1z = 0.2073, br1o = 0.7641, by = 0.9924, byzp = 0.8752,
b312 = 0.6708, b3op = 0.8296, bzzp = 0.1325, by13 = 0.3871, b1p3 = 0.0769,
b133 = 0.3151, by13 = 0.1355, bz = 0.7727, byzz = 0.4089, b33 = 0.9715,
b3p3 = 0.7726, b33 = 0.5526.

We illustrate Theorems 5.3.7 and 5.3.8 via A and B, respectively.

Suppose that e = (1, 1, 1)T. At the kth step, we define y® = |le — a®||, for
A = Aand P = e—aP|, for B := Bwithn = 1, 2, 3, where the entries
of a® and aflk) are given by (5.3.9) and (5.3.11), respectively. The related results
are shown in Fig. 5.2.

Consider A € NT» 2 with

ainn =1, a112=0, a;21 =0, az211 =0, a2 =2, a1 =3, ax1 =4, axy =0,
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The case of nonnegative tensors

The case of symmetric nonnegative tensors 2
10’ )
o =l { 5
_T‘;‘
- _.,Tf;.'l
L 7]
g [}
= E
™ =
= >
.ID 2 o 10 120 140 180 180 200 0t 3 & ® | " R PR
Iteration step k

Iteration step k

Fig. 5.2 The values of y® and y,fk) as k increases

with perm(A) = 0. Starting from A, the sequence generated by (5.3.10) converges
to B e Q0:
b1 =05, b2 =0, b121 =0, ba11 =0,
b122 = 0.5, b212 = 0.5, b1 = 0.5, by =0.

For a given A € NTn 1, for all i, and n, if

I

1 1
Ajjiy..iy = E Ajjiy..iy =" = E Ajjip...iy = 17
1

i1= ir=1 in=1

we call A line stochastic. Hence we propose the following conjecture.

Conjecture 5.3.2 For any A e N Ty, without vanishing fibers,” the process:

a®

(k+1) i1ia...iN k=0.1
irip...in — (Cl(k) Cl(k) Cl(k) )I/N ) =uU, L,...

1,i03...0iN 7 2,i1i3...iNy " " " " N,i1i2...iN—1

where
1
(k) _ Z (k)
A i) i ipg1 iy A\ cinining1 in — 0,
in=1

2For any A € Ty, and a given n, the mode-n (i1, ..., in—1,int+1,...,in)-fiber [63] of A is
defined by A1, ..., in_1, % ing1s ..., in) € RIforall iy, ... in_1,insts--,iN.
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converges to a line stochastic tensor.

In general, for all i, and n, if the entries of A € Ri‘ XN Gatisty

I I In
E Ajjiy..iy = E Ajjiy..iy =" = E Ajjip..iy = 17

i1=1 ir=1 in=1
then we call A line stochastic. We propose the following conjecture.

Conjecture 5.3.3 For any A® ¢ RQXIZX"'XIN without vanishing fibers, the
process:

a®
k+1)  _ Hiz-IN k=0,1
iz = 40 (k) YN’ S
1,iniz...iy%2,i1i3...iny =" " ¥N,ijir...iy—1
where
I
(k) _ Z (k)
an,il...infli,,Jr]...iN - ail---i;z—linin+l---iN >0,
in=1

converges to a line stochastic tensor.

To define the T -flat stochastic tensors with 1 < 7' < N—1, we need the following
notations [64]. Let N index sets P, = {1, 2, ..., I} be given with all n. For a fixed
T e{l,2,..., N — 1}, let Q7 be the class of all subsets of K = {1,2,..., I} with
cardinality 7, i.e., Qr = {Q: Q C K, |Q| = T}. A set Q € Qr determines “fixed”
indices. Therefore, we call the indices in K\Q “free” indices. For every fixed T-
tuple (igy, igys - - -5 igr) € Pyy X Py, x - - x Py and forany Q = {q1, g2, ..., 97} €
QT,wedel‘ineﬂﬂ(lQ X J;Q X e X J% by

0 !{1,2,...,1}, if r is a free index,
r =

{ig:}, if r is the fixed index ¢;.

This definition is independent of the sequence (q1, g2, . . . , gr) but depends only on
Q. A tensor A is called T-flat stochastic if its entries satisfy

K
Z Z Aijiy..iy = 1,

r=1; e]@

with all (ig,, igy, ..., ig;) € Pgy X Pyy X -+ X Py and Q € Q7.
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We raise the following question.

Question 5.3.1 From any A € N Ty, ; without vanishing flats, how can we generate
a sequence {Ax} (k = 1,2,...) such that, {Ax} converges to a T-flat stochastic
tensor as k — 00?

5.4 Some Results for Diagonals

In this section, we investigate a relationship between the entries of a nonnegative
tensor and its permanent. We obtain a probabilistic algorithm for locating a positive
diagonal in a (0, 1)-tensor, if such a diagonal exists.

5.4.1 Diagonal Products

If there is an upper bound on the diagonal products of A € NTy i, then its entries
are also bounded.

Theorem 5.4.1 Suppose A € NTn  satisfies perm (A) > 0. Then for a given
¢ > 0, the following conditions are equivalent:

1
@ T aimyty..oni) < cforany m, € Sy withn =2,3,..., N.
i=1
1
(i) There exists a positive matrix X € RIXN with I1 xi1xiz ... xin < ¢ such that
i=1
Qijiy..iy < Xij1Xiy2 ... XiyN forall iy, and n.

Proof Suppose that (ii) holds. Then for (N — 1) given 7, € Sy, (i) holds as

1 1
l_[ainz(i)mmv(i) = l—[xilxnz(i)2 < Xan (N = C
i=1 i=1

Suppose that (i) holds. Define a tensor 8 € Ty ; with entries
In(ajyiy..iy)s  if Gijiy..iy > 0,
bilizmiN = X
—M, lfailizmiN :07
where M > 0 is chosen as follows: for two different 7r,,, 7, € S; such that

i i
l_[ainz(i)mmv(i) >0, l—[airz(i)mrN(i) =0,

i=1 i=1
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we have

l—[bmz(z) ) > ]_[bnz(w (i)

i=1
Since the cardinality of S; is 7!, such a choice of M is possible. By (5.3.1), we have

I
max thnz(z) yG) = max Z biyiy...in Pirin.iy =PI;1I§;<I(59, P).

L, TINES] 4 PePyN . . /
Ti,ig,ein=1

Any totally plane stochastic tensor can be represented as a convex combination of
some plane permutation tensors. Hence, we have

max (B, P) = max (B,C) < max (B,QC).
PPy, 1 CeQy CeQn,r

Next we consider the maximal programming problem maxceqy , (8, C). By the
duality Theorem, there must be an optimal solution to the dual problem

I 1 I
min in11+zxi22+---+ inNN

i1=1 ir=1 in=1

subject to x;;1 + Xjy2 + -+ - + xXiyN = bijiy..iy foralli, and n.
Let {x;;1, Xi,2, ..., X;yn} With given i, and all n be the optimal solution with
I I I

D=1 Xl D X2 + o+ D0 g Xiyn = 6. Hence, we have

max (B,P) < max (B,C) =6.
PePy,; CeQn,1

According to the hypothesis, the target tensor A has at least one positive diagonal,
then

I
max Hamz(,) oyG) =  max l_[ebi”z<i>~~"1v(i> =exp(d) <c.

.T[NESI TT2yenns ITNESI i=1

Let x;,, = exp(x;,,) with given i, and all n. From g;,;,..;, > 0 and the definition

of bji,...i,,» we have

bijiy...iy =In(@iiy..iy) < Xij1 +Xig2 + -+ XiyN-
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If ajji,..iy > O, then we have a;i,..iy < Xij1Xiy2 ... X;yN With given i, and all n.
Trivially,

Qiriy.iy < Xij1Xi2 ... XiyN, 1if  aijiy iy =0.
Furthermore,

I I I I
l_[xilxiz ... XiN = exp inll + inzz + -+ xiyn | =exp(@) <c.

i=1 i1=1 ir=1 in=1

This completes the proof. O

Theorem 5.4.2 Let A € RTy.; be a nonnegative tensor with a totally plane
stochastic pattern. Let every diagonal product take the value of either 0 or some
constant a. Then, there exists a rank-one tensor C € RTy 1 such that the positive
entries of A coincide with the corresponding entries of C.

Proof Suppose that 1_[1'1=1ai772(i)---711v(i) = O or « for any m, € S; with n =
2,3,..., N. Since A has a totally plane stochastic pattern, there exists 7, € S;
such that ]_[I-I=1 Airy(i)..ty(i) = @ > 0. By Theorem 5.4.1, there exists a positive
I
matrix X € RTN with l_[ Xi1Xi2 ... XxiNy < c such that Ajjiy.iy = Xij1Xip2 -« - XiyN
i=1
for all i, and n. If a;,4,..;, > 0, we know from Theorem 5.3.2 that 7, (i) = i, and
1_[{:1 Aimy(i).. ey (i) = & for m, € S; withn =2,3,..., N.
We also have

1 I

o= l—[ainz(i)mmv(i) =< l_[xilxiz ... XN S .
i=1 i=1

Then we obtain QAijin..iy = Xij1Xiy2 -« - XiyN if Ajjiy.iy > 0. Define C € TN,I with
Citis...iy = Xij1Xiy2 . .. XiyN. Then C is a rank-one tensor, which satisfies a;,;,..iy =
Ciyip...in ifailizmiN > 0. a

Theorem 5.4.3 Let A and B be two distinct totally plane stochastic tensors. There
exists m, € Sy withn = 2,3, ..., N such that

I i
l—[ Aimy (i)..on (i) > l_[ bizy (iy..otn (i) -
i=1 i=1

Proof We assume that b;,;,. iy = 0 = a;y4,..iy = 0, otherwise, a;,;,..iy > 0
and b;,;,. iy = O for all i, and n. The diagonal through a;,;, i, (Which exists by
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Theorem 5.3.2) is positive. With the convention ln( ) =1,for X € Qn 1, let

1
¢X) = Z Xijip...iy In (al'”'z---l.N ) .

.. . bl 12...1
i1,i2,...,iy=1 112-IN

The linear function ¢ (X) attains its maximum at an extreme point of the domain
Q; ;- By the Information Inequality [47, Theorem 2.6.2], we have

1
Aiyip...i
PA) = Y aiipiyin (bl.u.z ,'N> > 0.

1,02, iN=1 2N

Thus, there exists 7, € S; with n = 2,3,..., N such that the corresponding
plane permutation tensor P = (8;x,(;)...zy()) Satisfies

! 1
Qiris i
P = > PiniyIn (bflfz {N) _ [l_[ i ZN}
i1,02,...,iy=1 1112...IN P 1112 iN
It follows that [T{_; aimy(iy..on iy > [Ti—t Dima)..m )- o
From Theorem 5.4.3, we have the following corollary.

Corollary 5.4.1 For a given constant o« and any w,, € Sy withn = 2,3,..., N,
suppose that two totally plane stochastic tensors A and B satisfy

l_[amzm N = a]_[bmzm N ()
i=1

then A = B.

5.4.2 Finding a Positive Diagonal

First, we have the following theorem.

Theorem 5.4.4 Let each entry of W € RTy,; be a nonnegative integer. Suppose
that

min Z Wigy (i)...wN (i)

2,0 ,ﬂNESI
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is attained at the unique t, € Sy withn = 2,3, ..., N and let the minimum value be
6. Let B € RTN,I be deﬁned as biizmiN =0, ifwiizmiN =0; and biizmiN = QWiipiy
otherwise. Then (i, ia, ..., iN) lies on the diagonal associated with w, € Sy with

n=2,3,...,N, ie., i, = m,(i), ifand only if

2Wiinin dete(B(, in, - .. iN))

20 541
is odd.
Proof Fix (i, i2, ..., in) such that wy;, ;. is nonzero.LetP = {(m2, 73, ..., wN) :
7,(@) = iy,n = 2,3,...,N}. The numerator in (5.4.1) can be expressed,

unique up to sign, as a sum of those diagonal products of B corresponding to
(mp, w3 ..., myN) € P. Let us write

(=)t tIN g Wineiy deto (B, i, . ., iN))

1
= Y signy_pyn) .. sign@n) [ [ bimyaviy. (542)
(m2,...,my)EP i=1

where P is given in (5.1.2). Each term in the summation in (5.4.2) is, unique up to
a sign, either zero or 2% for some o > 6.

In view of the uniqueness of 7,, there exists precisely one 2° term in the sum
if and only if (12, 13, ..., T5y) € P. Thus, the expression in (5.4.2) is of the term
20(1 + u) for an even integer u if (12, 73, ..., Ty) € P, or 299 for some even integer
v otherwise. It follows that the ratio (5.4.1) is odd if and only if (12, 73, ..., Ty) € P.

O

Let A € RTy,; be a (0, 1)-tensor such that perm(A) > 0. From Theorem 5.4.4,
an algorithm for locating a positive diagonal is given in the following steps:

Step 1: Let the number of nonzero entries in A be B. For each a;,;,..;y = 1, we
choose an integer wj,;,..;y atrandom from {1,2,...,28}. Define B € Ty |
by bilizmiN =0,if Aiyiy...iy = 0 and bi1i2mi1v = 2Wihig-iy , otherwise.

Step 2: Compute det.(8B) and let 6 be the highest power of 2 such that 2¢ divides
det.(8B). (Observe that 6 is precisely the minimum diagonal sum in W)

Step 3: For each (iy,iz,...,iy), compute 2Vi2-in det.(B(i,i2, ..., iN))/29.
Select (i1, i2, ..., iy), if this number is odd.

To analyze the convergence of the algorithm, we need the following lemma.

Lemma 5.4.1 ([47, Lemma 2.5.1]) Let F = {S1,Sy,...,Sk} be a family of
nonempty subsets of the finite set S = {x1,x2,...,x1}. Let the elements of S
be assigned integer weights chosen at random, uniformly and independently from
{1,2,...,2I}. Then the probability that there is a unique set in F with minimum
weights is at least 1/2.
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By the above lemma, with probability at least 1/2, there are unique 7, € S; with
n = 2,3,..., N such that the corresponding diagonal sum of W is minimum.
In this case, the hypotheses of Lemma 5.4.1 are satisfied and the particular
(i1, 102, ...,in) selected in Step 3 corresponds to a positive diagonal of the tensor
A.

If we repeat the algorithm 7 times, then the probability that it fails every
time is at most (1/2)7; therefore, we successfully locate a positive diagonal with
probability at least 1 — (1/2)7. The main computational cost in the algorithm
involves calculating the combinatorial determinant of the integer tensor 8.

5.5 Axial N-Index Assignment Problems

Multi-index assignment problems are introduced by Pieskalla [65] in 1968 as a
natural extension of linear assignment problems [64]. In this section, we only
consider the axial N-index assignment problems. We investigate how to convert the
axial N-index assignment problem to an integer linear programming problem based
on the set of totally plane stochastic tensors. In particular, the 3-index assignment
problem has been introduced by Schell [66] in 1955 and applied in quite a number of
situations, such as the investment of capital into different possible physical locations
over some time horizon [67]. Qi and Sun [68] mention the following application
in a rolling mill: ingots are to be scheduled through soaking pits (temperture
stabilizing baths) so as to minimize the idle time for the rolling mill. Minimizing the
maximum cost instead of a sum of costs leads to the bottleneck objective functions.
Axial 3-index assignment problems with a bottleneck objective function have been
considered by Malhotra et al. [69] as well as Geetha and Vartk [70].

The axial N-index assignment problem can be stated in the following way. Let

IV cost coefficients Ciyi...iy for all i, and n be given. We seek 7,7 € S; withn =
T . .. .
2,3,...,Nsuchthat ) ;_, Cing ().} () 1S minimum, ie.,
I I

min Z Cimy(i)..ty (i) = Z Cim3 (i)...7%, (i)

72,...,INEES] P P
Since 7, € S; withn = 2,3,..., N which describe a feasible solution can
be chosen arbitrarily, the axial N-index assignment problem has (I!)¥~! feasible
solutions. If we treat the coefficients c;,;,. i, for all i, and n as all entries of the
tensor C and introduce plane permutation tensors, then we can rewrite the axial
N-index assignment problem as an integer linear programming problem:

min(C, P), st P e Pyj.
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We present this problem as follows.
Problem 5.5.1 Suppose that C € RTy ; is positive. Find A, € Q;{, ; such that
(C, Ay) = min (C, A).
AeQY,
Any A € Q;’I is of the form A = Zj&lzl AjP;j, where Zf[:l%»j = 1 with
hjz 0andPj € Py with j = 1,2,.... M). Thus (C.A) = 1L, 4;(C.P;)
and Problem 5.5.1 reduces to minimizing Zf/lzl Aj(C,%P;) subject to A; > 0 and

Zflzl Aj = 1. The axial N-index assignment problem is clearly equivalent to
finding the diagonal of C such that the corresponding sum of the entries on the
diagonal is minimum. Thus, we have

I

min Cimn@)..tv() = min (C,P) = min (C, A) > min (C, A).
1; i (i).. TN (i) PePy Ace,, AcQy 1

Finding mingeq, , (C, A) is a linear programming problem and the corresponding
dual problem is given as follows.

Problem 5.5.2 Suppose that C € RTy; is positive. Find a positive X € R/*V
such that

1 I 1
max me + in22+-~-~|— Z XiyN
i1=1 ir=1 in=1
with for all i,, and n
Xij1 + Xip2 + -+ XiyN = Cijig..iy -
Suppose that the maximum of Problem 5.5.2 is denoted by 6, then we have
1

min ) Z Cimy i)ty (i) = Prenglrvll C,P)=>0.
i=1 :

After we solve Problem 5.5.2, we derive a lower bound for the minimum of
Problem 5.5.1, or a lower bound for the solution of the axial N-index assignment
problem.
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Chapter 6 )
Neural Networks G

We focus on the rank-one approximation problem of a tensor A € R/1*2xxIv¥ by
neural networks: finding a real scalar o and N unit x,, € R’ to minimize

LI I In

2
Z Z Z [Giriy..iy — 0 - (X1,i1X2,ip - - - XN,ix)]7,

i1=lix=1 in=1

where x, ;, is the i, th element of x,, € R’ foralli, andn, ando > Ois a scaling
factor.

The rank-one approximation problem of a tensor can be viewed as the multi-
parameter constrained optimization problems. Multi-parameter optimization, con-
strained or otherwise, can be accomplished by the associated dynamical gradient
systems, whose state evolves in time towards the steady-state solution or a critical
point [1-3]. In the neurodynamic optimization approach [2], they minimize an
(nonnegative) energy function of a dynamical system, typically described by first-
order ordinary differential equations (ODE). For example, Cichocki [4] proposes
a massively parallel algorithm (neural network) for the matrix singular value
decomposition. Further research on this topic can be found in [5-7].

The neural networks for the rank-one approximation problem of a tensor,
described by ODEs, are generalizations of those in [5, 6]. We prove the locally
asymptotic stability of the solution by establishing an appropriate Lyapunov
function. Semi-definite relaxation methods often produce the best rank-one approx-
imation. However, these methods are generally expensive. Furthermore, the best
rank-one approximations can not be obtained by ALS or HOPM [8]. The neural
network models in this chapter can compute all locally optimal rank-one approxi-
mations starting from different initial values and one of them is the best rank-one
approximation. Unfortunately, selecting an optimal initial value is an open problem.
In general, neural network models converge to a local minimum.
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Liu and Wu [9] propose a neural network to compute eigenvectors related to
the largest or smallest generalized eigenvalues of a symmetric-definite matrix pair.
Many results on the generalized matrix eigenvalue problem using neural networks
have been presented, see [10, 11]. Similarly, we design a continuation algorithm
(neural networks) for the generalized tensor eigenvalue problem for a symmetric-
definite tensor pairs, i.e., the neural network given by (6.5.3).

Numerical methods for solving differential equations (6.2.1), (6.2.3) and (6.5.3)
can be applied, e.g., the Runge-Kutta methods. We only consider the simple
continuous gradient descent method as an illustration.

6.1 Preliminaries

6.1.1 Tensor Singular Values and the Rank-One
Approximation

In this section, we consider only tensors in RIxDxxIv etx, € R™ be nonzero
vectors and ||x,|2 = 1 with all n. If the (N + 1)-tuple (o; X1,X2,...,Xy) is a
solution of the following nonlinear equations [12, 13]:

T T T T
F(X1,X0,...,XN)p = AX1X] -+ Xp1X,_| Xpil X, 1" XN Xy = 0Xy,
(6.1.1)

then 0 € R and the unit vectors x,, are called the singular value of A and the
corresponding mode-n singular vector for all n, respectively.

In order to better illustrate the singular values and the associated mode-n singular
vectors, we need the signs of a scalar and a vector [14]. Given @ € R, the sign §(«)
is defined as:

8(a) € {—1,+1}, ifa #0; and (o) = +1, ifa =0.
Similarly, for a vector x € R, the sign §(x) is defined as:
8(x) € {—1,4+1}, ifx#0;; andd(x) = +1, ifx = 0;.

If o is a singular value of A and x,, is the associated mode-n singular vectors,
then 8 (o)o is also the singular value of the tensor A and 6 (x;,)x,, are the associated
mode-n singular vectors with § (o) ]_[,1:]: 1 8(x,) = 1. Based on the definitions of the
sign of @ € R and x € R/, we can ensure that all singular values of the tensor
A are nonnegative by changing the sign of all mode-n singular vectors such that
TV, 8(x) =1ifo = 00r [, 8(x,) = —1if o <O0.
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We can rewrite the best rank-one approximation of (A as follows: to find 0 € R
and the unit vectors u, € R’ such that

- WE- - -Quy) =argmin|A—7- X1 X2 - QxXpN)|F, (6.1.2)

subject to 7 € R and x,, € R’ with ||x,]> = 1.
This optimization problem is equivalent to a homogeneous polynomial optimiza-
tion problem [15]. For convenience, we consider the homogeneous polynomial

. T T T
F(X1,X2,...,XN) i =AX1X| X2Xy -+ XN Xy

Lnoh Iy (6.1.3)

= E § E Aiyiy...inX1,i1X2,ip + - - XN,iy -

i1=lix=1 in=1

Note that F (X1, X2, ..., Xy) is a multilinear form, since it is linear in each x;,.
De Lathauwer et al. [15] prove the following result.

Theorem 6.1.1 ([15]) For a given A € RIxBLxxIN the rank-one approximation
minimization problem (6.1.2) is equivalent to the optimization problem

max |[F(x;,x2,...,xy)|, st X2 =1 (6.1.4)

forall n.

A rank-one tensor o, - (1] QU2 ® - - - @ uy), with o, € R and each ||u, |2 = 1,
is the best rank-one approximation for A if and only if {uy, wa, ..., uy} is a global
maximizer of (6.1.4) and o = F(uy, up, ..., uy). Moveover, we also have

A—0p 1 QU - @uy) |3 = [|AI% — 0.

A well-known algorithm for the optimization problem (6.1.4) is ALS or HOPM,
which is summarized in Algorithm 6.1.1.

It follows from [13, 16] that (N + 1)-tuple (o4; ug, up, ..., uy) is a solution
of (6.1.1) and o is the norm of the multilinear function F : R x R2 x ... xRN —
R induced by the norm || - ||2 and defined as

|F(X1,X2,...,XN)]

[ All2 := sup ,
Ixill2lx2ll2 - .. IXn 2

where the supremum is taken over all nonzero x,, € R’ for all n.
The nuclear norm [17] of A is defined as

R R
A4 := min Z [Ar] : A= Z)"Xl*’ RX2, ® - QXN.r
r=1

r=1
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Algorithm 6.1.1 The alternating least squares algorithm for (6.1.4) [15, Algo-
rithm 3.2]
Input: A € ROX2xxIy,
Output: A € RN *2xxIx: estimator of the best rank-one approximation of A.
1: Initial values: X, (0) is the dominant left singular vector of A(,) withn =2,3,..., N or repeat
the algorithm for several initial values.
2: Iterate until convergence:

1. Compute X (k + 1) = F(x1(k), X2(k), ..., Xy (k))1, A (k4 1) = X1 (k + D)2 and x1 (k +
D =X1k+D/rk+1);

2. Compute Xo(k + 1) = F(x1(k + 1), xa(k), ..., xn k)2, A2k + 1) = |[Xa(k + 1)||2 and
xpk+ 1) =Xk + D /A + 1);

3 ...
4. ComputeXy(k+1) = F(xi(k+1),...,xy_1(k+1),xy k)N, An(k+1) = |Xy(k+1D]2

and xy(k+ 1) =Xy k+ 1)/Ay(k + 1).
3: Collect cop\vergegi values: x, and \.
4: Compute A=A(X] ®X2 ® --- @ Xy).

where x,, , € R’ have unit norm for all n. The spectral norm || - ||2 is dual to the
nuclear norm || - ||, i.e.,

I All> = max{|[(A, X)| : X € RI2XxIv x| = 1);
[ Al = max{|(A, V)| : X € RIxxIv iy, = 1)

Nie [18] considers how to compute symmetric tensor nuclear norms, depending on
the order and ground field.

Since the KKT conditions of the optimization problem (6.1.4) is the system of
nonlinear equations (6.1.1), then u,, are the mode-n principal singular vectors of
A, corresponding to the singular value o, with |ox| = max{|o| : 0 € o(A)}. The
rank-one tensor (6(04)0oy) - (S(upu; ® S(up)uy ® - - - ® S(uy)uy) is also the best
rank-one approximation for the tensor A with § (o) ]_[f:’=1 d(uy) = 1.

Remark 6.1.1 We can force o, > 0 by altering the sign of u,, with

1, o0,>0,

N
[Ts@n =
n=1

—1, o4 <.

If {vi,va,..., vy} is a local solution of the optimization problem (6.1.4), where
[vull2 = 1 for all n, then 7 - (Vi ® V2 ® --- @ vy) is called a locally optimal
rank-one approximation of A € RN >*12XXIN where t = F(vy, V2, ..., vy). Itis
obvious that the best rank-one approximation of (A is also a locally optimal rank-one
approximation of A.
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6.1.2 Tensor Z-Eigenvalues and the Symmetric Rank-One
Approximation

In this section, we assume that tensors are symmetric and real. Zhang et al. [19]
prove that when A € RTy,; is symmetric, the best rank-one approximation of A is
also the best symmetric rank-one approximation of A.

For such a case, the system of nonlinear equations (6.1.1) can be simplified to

AN T = Ax,xT x3x .. xy X =o0X, Ix]2 = 1. (6.1.5)

If any pair (o; x) satisfies (6.1.5), then we call o as a Z-eigenvalue of the tensor
A and x is the associated Z-eigenvector [20, 21].

We review the symmetric higher-order power method (S-HOPM), summarized
in Algorithm 6.1.2, for the comptation of Z-eigenpairs of A, which is introduced by
De Lathauwer et al. [15] and analyzed by Kofidis and Regalia [22].

Algorithm 6.1.2 The symmetric higher-order power method [23, Algorithm 1]

Input: Symmetric A € RTy ;.

Require: xo € R/ with ||xol» = 1. Let oy = ﬂx{)v.
1. fork=1,2,... do

2 Compute y; = ﬂx,ﬁv -1

3:  Normalize X¢+1 = y/|I¥kll2-

4 Compute oy41 = ﬂx{(v“.

5: end for

When k is larger than a given positive integer or ||?(x,16V ~! — o4x|2 is less than
tolerance, we can terminate Algorithm 6.1.2. Kolda and Mayo [22] present SS-
HOPM, summarized in Algorithm 6.1.3, which is guaranteed to converge to an
Z-eigenpair of A.

Algorithm 6.1.3 The shifted symmetric higher-order power method [23, Algo-
rithm 2]
Input: Symmetric A € RTy ;.
Require: xo € R/ with ||xoll, = 1 and @ € R. Let og = ?(X{)V.
1: fork=1,2,... do
2 if « > 0 then
3 Compute y; = ﬂxll{v Ty oX.
4:  else
5: Compute y; = —{ﬂx,iv*l — aXg.
6: endif
7. Normalize x¢+1 = yi/llykll2-
8:  Compute o}y = ﬂx{(v“.
9: end for
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It is obvious that the tensor Z-eigenvalue problem is a special case of the tensor
singular value problem. As shown in Sect.6.1.1, we can ensure that all singular
values of A e RI*2xxIN are positive by changing the sign of all mode-n
singular vectors. However, the statement is not true for Z-eigenvalues. If a pair
(o; x) satisfies (6.1.5), the pair (o; —x) solves (6.1.5) with an even N, and the pair
(—o; —x) solves (6.1.5) with an odd N [23]. Hence, for a symmetric tensor A, we
cannot make all its Z-eigenvalues nonnegative by changing the sign of the associated
Z-eigenvector.

The best symmetric rank-one approximation of the symmetric tensor A can also
be formulated as follows: to find o € R and a unit vector u € R such that

®N

o -u®" = argmin Hﬂ—r~x®NHF, (6.1.6)

subjectto 7 € R and x € R/ satisfying ||x||> = 1. In the spirit of Theorem 6.1.1 and
the results in [19], the minimization problem (6.1.6) is equivalent to the optimization
problem

max |f(x)|:=|F(§,x,...,§)| st. x|l = 1. (6.1.7)
N

If u is a global maximizer of the optimization problem (6.1.7) and o, = f(u),
then o, - u®" is the best symmetric rank-one approximation of A. Thus two

symmetric rank-one tensors oy - (5 (u)u)®N (for an even N and §(u) = =£1), and

(8(0x)0)- (8 (u)u)®N (for an odd N and 8(0)8(u) = 1) are also the best symmetric
rank-one approximation of the symmetric tensor A.

Furthermore, if v is a local maximizer of the optimization problem (6.1.7) and
T = f(v), then 7 - v®" is a local optimal symmetric rank-one approximation of
A. It is obvious that the best symmetric rank-one approximation of A is the locally
optimal symmetric rank-one approximation of A.

6.2 Neural Networks Models

We propose the neural network model for computing the locally optimal rank-one
approximation of A € RN1*/2X*IN and the locally optimal symmetric rank-one
approximation of a symmetric tensor A € RTy, ;. We prove that the proposed neural
networks are asymptotically stable in the sense of Lyapunov stability theory.
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6.2.1 Tensor Rank-One Approximation

Suppose that A € RI1*2xxIN We present the dynamics of the neural network
model for computing the nonzero singular values and the associated mode-n
singular vectors.

For the nonzero singular values of (A, the dynamics of the neural network model
is described by

an(t) o F(Xl(t)sx2(t)v"'7XN(I)),H

— X, (1), (6.2.1)
dr F(a(),x2(0), ..., xn@0)
for 1 > 0, where F(x1(t), X2(t), ..., Xy (1)), and F(x;(1),X2(1), ..., Xy(1)) are
defined in (6.1.1) and (6.1.3), respectively, and x,,(t) € R/ is the state of the neural
network. For arbitrary nonzero initial values x,(0) € R’ and all n, a simplest
discrete-time iterative algorithm corresponding to the neural network in (6.2.1) is

F(x1(k), x2(k), ... xy (k) _,

n(k+1) = x, (k) +
X ( ) X ( ) (X( F(Xl(k),XZ(k)"“’XN(k))

— Xy (k)) . (622)

where a > 0 is called the time-step length or learning rate.
In general, (6.2.2) is a special case of the following adaptive algorithm,

F k), k), ..., k
et D =xn(k)+ak< (x1(k), x2(k) xy(k)_, —Xn(k)),

F(x1(k), x2(k), ..., xn (k)

where o is a decreasing gain sequence.

From [24], we have the assumption that the gain sequence {n; > 0} is decreasing
such that )22 g ax = 00, Y52 af < oo for some r > 1 and limy_oo(; ' —
oz,:l) < oo. For simplicity, we assume that « in (6.2.2) is constant in each step.

In particular, when o« = 1, the discrete-time iterative algorithm (6.2.2) for
computing a locally optimal rank-one approximation of A is reduced to ALS
or HOPM. However, for a general «, such an iterative scheme is not simply a
generalization of ALS.

For the (k + 1)th step, the key point of ALS is to find the maximizer of the
optimization problem (6.1.4) on the subspace

®n_i {F (x1(k), x2(k), ..., xy(K)_,} .
However, in (6.2.2), this maximizer is found on the subspace

®p_yspan {x, (k), F (x1(k), X2(k), ..., xn (k) } -
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span{x, y} C R/ is the subspace generated by x,y € R/, andU®V = {(u,v) :u €
U,veV})forU,VcR

It is worth noting that several existing algorithms can be extended to solve the
local optimal best rank-one approximation of a real tensor, but their optimal learning
rate is difficult to determine. The main reason to adopt (6.2.1) is that the learning
rate in (6.2.2) can be easily selected in advance. We establish the following theorem.

Theorem 6.2.1 Given the neural network in (6.2.1) with arbitrary initial conditions
X, (0) for all n, then ||X,,(t)||2 converges exponentially to 1 as t — 400, and the
convergence is independent of A.

Proof This theorem is similar to Lemma 1 in [6], we neglect the proof. O

Remark 6.2.1 We refer to ||xn(t)||% = 1 if ||xn(0)||% = 1 as the unit-norm
conservation. From Theorem 6.2.1, if ||xn(0)||% > 1, then ||xn(t)||% > 1 for
t > 0. Similarly, if ||xn(0)||% < 1, then ||x,,(t)||% < 1 fort > 0. According to
Theorem 6.2.1, the suitable learning rate « in (6.2.2) satisfies 0 < o < 0.5 for the
stability of the algorithm.

From Theorem 6.2.1, we deduce the following result.

Corollary 6.2.1 For any bounded initial values of x,(0) and all n, the state vectors
of the neural network in (6.2.1) are bounded.

By using G, (x1(¢), Xx2(f), ..., Xy (¢)) to denote the right-hand side of the neural
network in (6.2.1), we have the following lemma.

Lemma 6.2.1 Suppose that there exist N unit vectors X,, such that G, (X}, X3, ...,
X*N) = 0;. For the neural network in (6.2.1), given any initial values x,,(0) € R
with |x,(0)|l2 = 1, let x,(t) — X ast — +o00. Then o* and X}, are the singular
value and the corresponding mode-n singular vectors of the tensor A, respectively,
where 0* = F(X], X3, ..., X}).

Proof The proof is given in [25] and we omit it. O

6.2.2 Symmetric Tensor Rank-One Approximation

We present a neural network in (6.2.1) to compute the local maximizers of the
optimization problem (6.1.4). As shown in Sect.6.1.2, there is a relationship
between the tensor singular value problem and the symmetric tensor Z-eigenvalue
problem. In this section, we focus on the symmetric rank-one approximation of a
symmetric tensor, and assume that all tensors are real symmetric tensors.

We now state how to find a locally optimal symmetric rank-one approximation of
the symmetric tensor A by a neural network, similar to (6.2.1) for the tensor rank-
one approximation problem. The dynamics of the neural network can be described
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by the ODE

dx(t)  Ax@)N!
= —x(1), 6.2.3

di axpy O (6.2.3)

for t > 0, where x(¢) € R represents the state of the neural network.

We present several results related to (6.2.3), similar to Theorem 6.2.1, Corol-
lary 6.2.1 and Lemma 6.2.1 for (6.2.1).

Theorem 6.2.2 Given the neural network in (6.2.3) for an arbitrary initial value
x(0) € RY, ||x(1)|l» exponentially converges to 1 ast — 400, and the convergence
is independent of A.

For an arbitrary nonzero initial value x(0) € R/, a discrete-time iterative
algorithm corresponding to (6.2.3) is

_ Ax(k)yN -1
x(tk+1)=xk)+« ( Ax(N — x(k)) , (6.2.4)

where o > 0 is the learning rate.
According to Theorem 6.2.2, a suitable learning rate « in (6.2.4) can be taken in
(0,0.5).

Corollary 6.2.2 For any bounded initial values x(0), the state vectors of the neural
network in (6.2.3) are bounded.

By using G(x(¢)) to denote the right-hand side of (6.2.3), we have the following
lemma.

Lemma 6.2.2 Suppose that there exists a unit vectors X* such that G(x*) = 0;.
Consider the neural network in (6.2.3), given x(0) € R’ with Ix(O)|l. = L. If
x(t) — x* ast — +oo, then o* = f(x*) and x* are the Z-eigenvalue and the
corresponding Z-eigenvector of A, respectively.

For the positive Z-eigenvalues of symmetric positive definite tensors, Samardz-
ijia and Waterland [26] propose a dynamical ODE system to estimate their
Z-eigenvectors:

dx(t)

0= AxON = f,x(O)x(1), (p>N-—1) (6.2.5)

fort > 0, where f,(x) > 01is a positive 1-dimensional p-form, thatis, f,(x) is a p-
degree homogeneous polynomial with real-coefficients for all nonzero x € R’. For
N > 2, the nontrivial solutions, or fixed points, of (6.2.5) are the Z-eigenvectors of
the symmetric positive definite tensor A associated with the Z-eigenvalues. Vegas
and Zufiria [27] analyze the neural network in (6.2.5) for matrices and prove a local
stability result.
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It is interesting that the ODE system (6.2.5) can be used to compute the Z-
eigenvectors of A with f,(x) = AxN | and the associated neural network is

ddtx(t) =AxON ! — Ax)Vx@), t>0.

We can generalize the ODE system (6.2.5) to compute the mode-n singular vectors
of A e RI*12xXIN a5 follows:

d
thn(t) = F(x1(1). X2(1), ..., xn (1)), — F(x1(1), %2(2), ..., XN (1)) Xn (2),
(6.2.6)

fort > 0, where x,,(t) € R represents the state.

We do not prove that the neural networks in (6.2.6) is locally asymptotically
stable in the sense of Lyapunov stability theory. Howevre, based on the KKT
conditions, Che et al. [28] propose a neural network model for the low multilinear
rank approximation of A e R/I*2XxIN yith the known multilinear rank
{R1, Ra, ..., Ry} and prove that the state of this model is locally stable. For the
case of R, = 1 and all n, the neural networks in (6.2.6) is a special case of that of
[28].

The definition of a higher-order multi-partially symmetric tensor is presented as
follows.

Definition 6.2.1 Suppose A € C/1*/2X>*Jri+-+4ty Define Qg = 1 and Q, =
Py +---+ P, for all n and N given positive integers I, with J, = I, forg =
On-1+1,0n-14+2,..., Q. If the entries of A satisfy

iy 1.it,pyin 1 eia, Py i 1 eiN, Py = G (i11). 1 (1 Py )i2, 1002, Py N 1N Py
= iy iy, py2(i2,1) 70202, Py) - IN.1++IN, Py
= iy iy, pyin 12, Py TN (N TIN (N, Py )2

where 7, € Sj,, A is called higher-order multi-partially symmetric. We use
ST[P"""PN] to denote the set of all (P; + P> + - -- + Py)th-order multi-partially

Iy x-xIn
Symmetrlc tensors.

Remark 6.2.2 In Sect. 1.3, we reveal the relationship between the biquadratic
optimization problem and the rank-one approximation of fourth-order partially
symmetric tensors. Wang et al. [29] define the higher-order multi-partially sym-
metric tensors, as a generalization of fourth-order partially symmetric tensors, and
consider the computation of the multi-partially symmetric rank-one approximations
for higher-order multi-partially symmetric tensors via neural networks. This is
generalization of the partially symmetric rank-one approximation for fourth-order
partially symmetric tensors, related to the biquadratic optimization problem.
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Tlplw,PN]

I x...x1y andarbitrary x, € R/, we define a polynomial

Forany A e §

Py Py, _ T T T T
ﬂXl . .XN =A X1X) o Xpp Xy s X(Pi4 4Py +1) Xy o0 X(Pi4-+Py) XN -

The partial derivative of ﬂxf)l ...XI{)]N with respect to x, is denoted by

Pnﬂxf' .. .x,f”fl .. .XI}\),", where ﬂxf‘ .. .x,f”fl .. .XI}\)," is defined as

T T T T T T T
FAXIXY X0 X)X 0 Xy 1 X Q42X X0, Xy X Q41X X oy Xy

with O, = P{+ P, +---+ P, forall n.
For a given o € R and unit vectors x,, € R, if (0,X1,X2,...,Xy) is a solution
of the nonlinear equations

P Py—1 P
Ax;Lx, X\ =0x (Xl =1,

then o and x, are called the M-singular value and the nth M-singular vector of

[P1,....PN]
Ae STy
For any nonzero M-singular value of A € § Tlllpxljjj‘x’i’vv | the dynamics of the
neural network model can be described by
P Pyt Pu—1_Py P
dx,(t)  Ax;'x Tk XY
= P P — X, (1), (6.2.7)
dt Ax; Xy

for + > 0, where x,,(¢) € Rn represents the state of the network. As shown in
[29], we shall prove that the solution of (6.2.7) is locally asymptotically stable in
the sense of Lyapunov stability theory.

6.3 Asymptotic Stability

We shall show that the neural networks in (6.2.1) and (6.2.3) are locally asymptoti-
cally stable in the sense of Lyapunov stability theory.

6.3.1 Tensor Rank-One Approximation

We see that o* in Lemma 6.2.1 must be nonzero for the neural network described
in (6.2.1). For all local maximizers of the optimization problem (6.1.4), two distinct
subsets are

St = {{ur,uy,...,uyn}: {ug,uy,...,uy}solves (6.1.4) and F(uy,uy,...,uy) > 0},

S_ ={{u,u,...,uy}: {ug,uy,...,uy} solves (6.1.4) and F(up, up, ..., uy) < 0}.
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It is obvious that Sy NS_ = P and S = S; U S_ is the set of local maximizers
of (6.1.4). Based on the relationship between the tensor singular value problem and
the tensor rank-one approximation problems, it is easy to see that v, for all n are
nonzero with {vy, v, ..., vy} €S.

Given any local maximizer {uy, up, ..., uy} € S, we define €9 = min |ju — v/,
where u = (uj,up,...,uy) and v = (vi,vp,...,vy) with {vi,vo,..., vy} € S
and u, # v, for all n. We define a neighbourhood of u as

B(u; €) :=B(uj, uz,...,uy; €) = {x:[[x —ulz <€} (6.3.1)
where x, € R and x = (X1,X2,...,Xy) With0 < € < €.

Since F(x1,X3,...,Xy) is continuous and differentiable, (u;, up, ..., uy) is a
stationary point of F(Xy, X2, ..., Xy), then there exists € < € such that the sign of
F(x1,X2,...,Xy) is the same as the sign of F(uj, up,...,uy) and

|F(X1,X2,...,Xy)| < [F(up,ug, ..., uy)|
for all (x1, X2, ...,xXy) € B(u; €).

By (6.3.1), there exists a unique local maximizer of the optimization prob-
lem (6.1.4)in B(u; €). Since ||u, ||2 = 1 for all , x,, are nonzero. The neural network
in (6.2.1) is locally asymptotically stable in the sense of Lyapunov stability theory
at a local maximizer from S. We obtain the following theorem.

Theorem 6.3.1 Suppose that {u, uy, ..., uy}is alocal maximizer of the optimiza-
tion problem (6.1.4) with u, € R If the initial unit values X, (0) of the neural
network in (6.2.1) belong to B(6 (w)u; €), given in (6.3.1), with

Sdu = ((upuy, su)u, ..., 5(uy)uy),

then the solution of (6.2.1) is locally asymptotically stable in the sense of Lyapunov
stability theory at {§(uy)uy, S(u)u, ..., s(uy)uy}, where ]_[,1,\’:l s(uy) = 1 with
{uj,wp,...,uy} € Sy;or [TV, 8(u,) = —1 with {uj,ua, ..., uy} € S_.

Proof For illustration, without loss of generality, we assume that N = 3 and

{ur,ur, u3z} € S;. We can see that F(x1,X2,x3) > 0 for all x € B(uy, up, u3; €)
with x = (X1, X2, x3). For (6.2.1), we define the Lyapunov function as

F(x1,Xx2,X3)

V(X1,X2,X3) = 0y — .
Ixtll21x211211%3 |2

From the proof of Theorem 6.2.1, we have ||x,(#)|l2 = 1 for ¢+ > 0. Together
with the definition of B(uy, up, u3; €), it is clear that V(xi, xp, x3) > 0, where
X € B(uy, up, u3; €) and x,, # a,u, with ]_[,3121 8(ay) = 1. Let

F(x1,x2,X3)

G(x1,X2,X3) = ,
Ix1ll21Ix2112[1X3 |2
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we have
v _ _ (4 T[v G(x1.%2.X3)]
d[ —_— d[ X1 1, X2, X3

d T d T
_ ( d";) [V, G(x1,%2,X3)] — ( dX:) [Vi, G(x1, X2, X3)]. (6.3.2)

Computing the partial derivative Vx, G (X1, X2, X3), we obtain

IXill2lx2ll2lIX3]l2F (X1, X2, X3) -1 [IX2[l2[X3]l2F (X1, X2, X3)  X)
Vx, G(X1,X2,X3) = 5 - ,
(Ixill2lx2ll211x3112) (Ixill2lx2ll211x3112) X112
_ Fxixax3)1 F(x1,x2,%3)
Ixill2lx2l2lxsll2 1x1 3 1%z l2]%3]l2
1

F(x1, X2, X3)
(F(Xl,Xz,Xs)—l - Xl)-

Ix1ll2lx211211%31l2 X113

By routine manipulations, we have
dX1 T
dt [Vx, G(x1, X2, X3)]

(F(x1,%2,X3)—1 —X1) "
= Vx, G(X1, X2, X3)

F(x1,X2,%3)
_ 1 (F(x1,%2,%3)-1) T F(x1, %2, X3)—1 _ F(X1,%2,X3)
Ix1ll2l1x2ll211%31l2 F(x1,x2,X3) lIx:113

By the Cauchy-Schwartz inequality, we obtain

2 T 2
F(x1,x2,x3)” < (F(x1,%2,X3)_1) F(x1, X2, X3) 11X 5.

Hence

dxi\
( dtl> [Vx, G (x1,%2,%3)] > 0,

and the equality holds if and only if x,, = o1, with ]_[2:1 8(otp)ay, = 1. Similarly,
we have

dxa\ " dx3) "
<dt2) [Vx,G(x1,X2,%3)] > 0, <dt3) [Vxs G(x1, %2, %3) ] = 0.

According to (6.3.2), we have

dV(x1,X2,X3)
<
dt

0
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for t > 0, where x € B(uj, uz, u3; €) and x, # o,u, with ]_[fl=1 S8(ay) = 1. The
neural network in (6.2.1) is locally asymptotically stable in the sense of Lyapunov
stability theory at {uj, up, uz} € S;.

Moreover, we can prove that the solution of (6.2.1) is locally asymptotically
stable in the sense of Lyagunov stability theory at (§(uy)uy, (up)uy, §(u3)uz) with
{uj,w,u3} € Syand [[,_,8(u,) = 1.

The case of local maximizers {u;,uy,u3} € S_ is similar to that in S;.
Moreover, we can prove that the solution of (6.2.1) is locally asymptotically stable
in the sense of Lyapunov stability theory at

(6(ap)uy, §(uz)uz, §(uz)uz)

with {uy, up, u3} € S_ and 1_[2:1 S(uy) = —1.
In general, we prove that the solution of (6.2.1) is locally asymptotically stable
in the sense of Lyapunov stability theory at

(G(apuy, s(uu, ..., s(uy)uy),

where
N 1, with (u,u uy) € Sy;
b 1’ 2’ AR N b
[Jon = . i
nel —1, with (uj,up,...,uy) €S_.
The theorem is proved. O

Remark 6.3.1 Theorem 6.3.1 indicates, independent of the nonzero initial con-
ditions, that the neural network in (6.2.1) generally has a sub-linear speed of
convergence. The neural networks in (6.2.3) and (6.5.3) have similar results.

6.3.2 Symmetric Tensor Rank-One Approximation

By Lemma 6.2.2, o, must be nonzero for the neural network in (6.2.3). Suppose
that u is a local maximizer of the optimization problem (6.1.7), we define a
neighborhood of u as

Bu; e) = {x: [|[u—x]| <€}, (6.3.3)

where 0 < € < ¢y := min |ju—v||; and v # u is another local maximizer of (6.1.7).

Since f(x) is continuous and differentiable, u is a stationary point of f(x), there
exists € < € such that §(f(x)) is the same as §(f(u)) and | f(x)| < |f(u)]| for all
x € B(u; €).

Theorem 6.3.1 states that the neural network in (6.2.1) is locally asymptotically
stable in the sense of Lyapunov stability theory at a local maximizer of (6.1.4),
belonging to S. For the neural network in (6.2.3), we have a similar result,
summarized in following theorem.
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Theorem 6.3.2 Suppose that u € R! is a local maximizer of the problem (6.1.7).
For x(0) € B(8(uw), €), defined by (6.3.3), then the solution of (6.2.3) is locally
asymptotically stable in the sense of Lyapunov stability theory at §(u)u.

Proof Suppose u € R’ is a local maximizer of (6.1.7). According to the sign of
f(u) and the value of the positive integer N, the proof procedure is divided into
four cases: (i) N is even and f(u) < 0, (ii) NV is even and f(u) > 0, (iii) N is odd
and f(u) < 0, and (iv) N is odd and f(u) > 0.

For (i), we have 0 > f(x) > f(u) with x € B(u, €). We cannot change the sign
of u to ensure f(§(uw)u) > 0, because if (o; v) is a Z-eigenpair of the symmetric
tensor A, then (o; —v) is also a Z-eigenpair [23]. Hence, by replacing the symmetric
tensor A, we rewrite the neural network in (6.2.3) as

dx(t) (=Ax@N! Ax(H)N!
= - X(t) = - X(t)s
dt (—A)x@)N Ax()N
and the associated Lyapunov function is
—A)xN AxN
VX) = —0, — ( )N = —0y + , 0= f(u) <O0.
IIxll; lIxll;

By Theorem 6.2.2, we have ||x(¢)||2 = 1 for all # > 0. According to the definition
of B(u, €) and the property of f(x) with x € B(u, €), we have V(x) > 0 where
x € B(u, €) and x # ou with a nonzero «.

We then have

N AxN AxN
o= (A =T k) ew=T0
1%l %115 115

After some manipulation, we obtain

T N—1 T N
dV=<dx(t)) v N <:7lx _X> (ﬂle_ﬂx X)

dt dt Ixy \ AxN Ix13

N ((ﬂle)Tﬂle AxV

= — AxN + AxN
Ix[1 AxN IIxI13

= Ix[13 (AN H TAxY =) — (Ax)?
x5 T2 AXN ( )

N 2 N—I\T N—1 N2
T —A ~A —(~-A
||X||§V+2(—&7I)XN (”XHZ((( )X ) ( )X ) — (( xN) )

<0
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by the Cauchy-Schwartz inequality and the equality holds if and only if x = au

with a nonzero «. Note that f(u) = f(§(w)u) with §(u) = *1. The case of x €
B(§(w)u, €) is similar to that of x € B(u, €). Case (i) is proved.

Since the last three cases are similar to Case (i), we leave the proof as an exercise.

O

6.4 Generalized Models: TCCA

In Sect. 6.1.1, when we define the tensor singular values and tensor singular vectors,
we restrict ||X,||2 = 1 for all z#. In this section, we give a more general form of the
constraints. For N given symmetric positive definite matrices B, € R*/» and A €
RIxD2xxIN Jetx, e R be nonzero and x,—ernx,, = 1 for all n. If the (N+1)-tuple
(0; X1,X2, ...,Xy) is a solution of the nonlinear equations [30, Definition 2.7]:

F(x1,x2,...,xXy)—n = 0B;Xx,, (6.4.1)

then o € R and the unit vectors x,, are called the restricted singular value of A and
the corresponding mode-n restricted singular vector for all n.

When N = 2, the restricted singular values of A € RI*2 gre reduced to the
(B1, By)-singular values of the matrix A [31, Definition 3], where B; € R/*/1 and
B, € R2*2 are symmetric positive definite matrices.

Luo et al. [32] develop the tensor canonical correlation analysis (TCCA),
which straightforwardly yet naturally generalizes the canonical correlation analysis
(CCA), to analyze the data of an arbitrary number of views through the covariance
tensor. For N given views {Xn}fl\’:l of M instances, and X;, = [X;1, Xn2, ..., Xum] €
R*M ' the main problem of the TCCA is equivalent to solving the following
constraint optimization problem:

maxC x1 h{ x2h) --- xyh} st hlCyh, =1, foralln, (6.4.2)

where
1 1 o
C:MZX1m®X2m®"'®XNma CnnZMZXnmxr—zrm'
m=1 m=1

Since the matrices Cp;,, may be symmetric positive semi-definite, we usually add
aregularization term in the constraints of the optimization problem (6.4.2) to control
the model complexity. Thus, the constraints of the optimization problem (6.4.2)
become

h! (Cp + el;)h, = 1, forall n,
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where ¢ is a nonnegative tradeoff parameter to ensure that C,,, + €I, is symmetric
positive definite.
The optimization problem (6.4.2) is a special case of

max A X1 xlT X2 X;— e XN x; s.t. XIBan =1, forall n, (6.4.3)

where A € RI*2xxIN and B, € R"*!n is symmetric positive definite.

The first-order necessary condition for (6.4.3) is the system of nonlinear equa-
tions (6.4.1) with x;'l—B,,xn = 1. Since our methods for solving (6.4.3) is based
on (6.4.1), the approximate X,, may satisfy A x 12—1'— xz’i;— e xN’)Z; < 0. However,
we can change the sign of X, to ensure that A x| le X2 sz ce XN y; > 0, where
Yo = &)X, with [TV, 8&,) = —1.

We next design some strategies to solve (6.4.3), solving (6.1.4) numerically.

We use the matrix factorizations of B,, to transfer (6.4.3) to (6.1.4). Consider the
Cholesky factorization B, = GnG;',—, where G, € R*In is lower triangular with
positive diagonal entries. Let y, = G;lrx,,, then the optimization problem (6.4.3) is
simplified as

max A x| yir X2 y;r XN Yy sty y, =1, foralln, (6.4.4)

where?l:?lxl Gl_l ><2G2_1~-~ XN G;,l.

We can use HOMP [15, 16] or the neural network in (6.2.1) to solve the
optimization problem. Luo et al. [32] also apply the method for (6.4.2).

Next, we will generalize the neural network in (6.2.1) to directly solve (6.4.3).
For the nonzero restricted singular values of (A, the dynamics of the neural network
model is

B an(t) _ F(Xl(t)sx2(t)v"'7XN(I)),H

= — B,x, (1), 6.4.5
"odt Fla0. 00, oxv@) o (042
fort > 0, where x,,(¢) € Rn represents the state.
Note that (6.4.3) can be rewritten as
A X X; X2X] o XN Xy
max PR 72 NN s.t. xIxn =1, for all n. (6.4.6)

\/XIBIXI\/X;BZXZ . \/X;BNXN

Some manipulation shows that the optimization problems (6.4.3) and (6.4.6) are
equivalent. We list the results of the neural network in (6.4.5), such as the locally
asymptotic stability of its solutions. Since the proof is similar to that of (6.2.1), we
omit it.

Theorem 6.4.1 Given the neural network in (6.4.5) and the arbitrary initial value
X, (0) for all n, x, (1) "B, x, (1) converges exponentially to 1 ast — 400, and the
convergence is independent of A.
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For an arbitrary nonzero initial value x,, (0) € R’ a discrete-time iterative algorithm
corresponding to the neural network in (6.4.5) is

F(xi(k), x2(k), ... xn (k) _,

(Xn(k+1) —x,(k)) 05( F(xi(k), x2(k), ..., xn(k))

— X, (k)) ,  (6.4.7)

for all n, where o > 0 is the learning rate.

According to Theorem 6.4.1, the value of o can be selected so that 0 < o <
0.5. Since B, is symmetric positive definite, then for b € R%, we can use the
preconditioning conjugate gradient method [33] for solving B,x = b.

From Theorem 6.4.1, we deduce the following results.

Corollary 6.4.1 For bounded initial values x,(0) for all n, the state vectors of the
neural network in (6.4.5) are bounded.

Using G, (x1(?), Xx2(t),...,Xny(t)) to denote the right-hand side of the neural
network in (6.4.5), we have the following lemma.

Lemma 6.4.1 Suppose that there exists N unit vectors X € R such that

G, (X}, X3, ...,Xy) = 0; for all n. For the neural network in (6.4.5), let x,(0) €
R with x,(0)"Byx,(0) = 1. If x,(t) — X% ast — +oo, then o* =
F(X],X},...,Xy) and X, are the restricted singular value and the corresponding

mode-n restricted singular vectors of A, respectively.

Theorem 6.4.2 Assume that {uy,uy, ..., uy} is a local maximizer of the opti-
mization problem (6.4.3) with u, € R, If x,(0) € @(S(U)u; €) satisfies
xn(O)Tann(O) = 1, with §(w)u = (S(upuy,s(u)u,...,5(uy)uy), then the
solution of (6.4.5) is locally asymptotically stable in the sense of Lyapunov
stability theory at {§(uy)uy, §(u)u, ..., s(uy)uy}, where ]_[,1:]:1 s(ay) = 1 with
F(up,ug,...,uy) > 0; or [TV, 8(u,) = —1 with F(u, ua, ..., uy) <O.

It should be noted that the set @(8 (u)u; €) in the above theorem is similar to the set
B(§(w)u; €) in (6.3.1).

6.5 Neural Networks for Generalized Tensor Eigenvalues

In this section, we assume that N is even and all tensors are real symmetric tensors.
A tensor C is positive definite [21], if Cx" > 0 for all nonzerox € R’. A symmetric-
definite tensor pair {A, B} is defined as: A and B are symmetric and B is positive
definite (see [33, Section 8.7.1] for the matrix cases). Chang et al. [34] prove the
existence of the H-eigenvalues for symmetric-definite tensor pairs. Assume that both
AxN=1 and BxV~! are not identically zero for all nonzero x € R’. The pair (A; x)
is a generalized eigenpair (with generalized eigenvalue A and the corresponding
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generalized eigenvector X) of the tensor pair {A, B}, if
A-rB)xV 1 =0, (6.5.1)

If B is the identity tensor, then the pair (A; x) is called as an H-eigenpair of A
[13,21].

There is a clear interpretation of the maximal and minimal H-eigenvalues of a
symmetric-definite tensor pair. Ding and Wei [35] derive the following theorem
as a generalization of the Rayleigh-Ritz theorem for a Hermitian matrix [33,
Section 8.1.1]. If B is the identity tensor, then this theorem simplifies into the single
tensor case [21, Theorem 5].

Theorem 6.5.1 ([35, Theorem 3.5]) Let {A, B} be a symmetric-definite tensor
pair. Denote the maximal generalized eigenvalue of {A, B} as

Amax = max {A eR:AxXN T =2a8xVN"! x ¢ RI\{OI}} ,
and the minimal generalized eigenvalue min of {A, B} similarly. Then

N AxN AxN N o AxN o AxN
max = Max = max , min = min = min .
xeRM\{0;} BxN xer!  BxN xeRI\{0;) BxN xer!  BxN

IIxllp=1 Ix[lp=1

For a given symmetric-definite tensor pair {A, B}, we can formulate the follow-
ing nonlinear programming problem

AxN
max BXN”XHQI st. x|z = 1. (6.5.2)
xXe

A pair (A; x) is called a local maximal (resp. minimal) generalized H-eigenpair
of the symmetric-definite tensor pair {A, B}, if x is the local maximizer (resp.
minimizer) of (6.5.2). We compute the generalized H-eigenvectors of a symmetric-
definite tensor pair by (6.5.2), rather than the local maximal (or the local minimal)
generalized H-eigenvalues, because of its close relationship with the generalized
tensor eigenvalue problem (6.5.1).

Theorem 6.5.2 ([36, Theorem 3.2]) Any pair (A; X) is a solution to (6.5.1) if and
only if the scaled version with ||x|l2 = 1 is a KKT point of (6.5.2), where X is the
Lagrange multiplier.

Analogous to the neural network in (6.2.5), we design a neural network for
computing the local extremal generalized H-eigenvalue of the symmetric-definite
tensor pair {A, B}. The dynamics of the new neural network model is

dx(t)

5= Bx)N Ax)N ! — Ax()N Bx ()N !, (6.5.3)
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for all + > 0, where x(t) € R! represents the state. The solution of the neural
network in (6.5.3) has the following important property.

Theorem 6.5.3 Ifx(t) is a solution of the neural network in (6.5.3) fort > 0, then
Ix(0)13 is invariant fort > 0, i.e., [x(t)]5 = [Ix(0) 3.

Proof Fort > 0, let x(¢) be a solution of (6.5.3) starting from any nonzero initial
value x(0). It follows that

d|Ix(t)||3 d
IXO _ ey 7O 7 [Bx(t)N AxON ! — Ax@)N Bx()V —1] —0.
dt dt
Hence ||x(t)||% is invariant for r > 0. |

For an arbitrary nonzero x(0) € R/, a discrete-time iterative algorithm corre-
sponding to (6.5.3) is

x(k+1) =x(k) +« (Bx(k)N Axk)N ' — Ax(k)N Bx (k)N *1) , (6.5.4)

where a > 0 is the learning rate.
With G(x(¢)), denoting the right-hand side of (6.5.3), we have the following
lemma.

Lemma 6.5.1 Suppose that there exists a unit vector x* € R! such that G(x*) =
0;. Consider the neural network in (6.5.3)with x(0) € R and Ix(O)|l2 = L. If
x(t) — x*ast — +00, then \* = ﬂx*N/ﬂx*N = g(X4) and X* are the generalized
eigenvalue and the corresponding generalized eigenvector of the symmetric-definite
tensor pair {A, B}, respectively.

Given a symmetric-definite tensor pair {A, B}, denote the set of all generalized
eigenvectors corresponding to the local maximal generalized eigenvalues )\Ir;l‘;f(al and
the local minimal generalized eigenvalues )\;‘i’gal by Smax and Spin, respectively. It is
obvious that the maximal (resp. minimal) generalized eigenvalue is one of the local
maximal (resp. minimal) generalized eigenvalues. A neighbourhood of u € Spax

(resp. u € Spjp) is defined by
Bu;e) ={x:[x—ull2 <€} (6.5.5)

where 0 < € < ¢y := min |lu — v|j2 and v € Spax (resp. u € Spin) with u # v.
Since u is nonzero, all vectors in B(u; €) are nonzero for a small enough €.

We show that the (6.5.3) is locally asymptotically stable in the sense of Lyapunov
stability theory at a generalized eigenvector u, in Spax Or Spin-

Theorem 6.5.4 Suppose that the unit vector u € R! is a generalized eigenvector
of a symmetric-definite tensor pair {A, B} corresponding to a local maximal (resp.
minimal) generalized eigenvalue. If x(0) € B(S(u)u; €) defined by (6.5.5), then the
solution of (6.5.3) is locally asymptotically stable in the sense of Lyapunov stability
theory at §(u)u.
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Proof 1f (A;x) is a generalized eigenpair of the symmetric-definite tensor pair
{A, B}, then so is (1; —x). We show that the neural network in (6.5.3) is locally
asymptotically stable in the sense of Lyapunov stability theory at a generalized
eigenvector u, with u € Syx (resp. u € Spin)-

Letu € Spax and g(u) > 0. It is easy to see g(—u) > 0 because of the even N.
Then, we have 0 < g(x) < g(§(u)u) for all x € B(5(u)u; €).

For (6.5.3), we define the Lyapunov function

__ qLocal __ ﬂXN Local __ S
V(X) = Agax BN’ A = &6 (wu) > 0.

We have V(x) > 0 for x € B(§(u)u; €) but not parallel to §(u)u. Computing the
partial derivative of V (x) with respect to x, we have

() )]

v (ﬂxN) NAxN-1  NAxN BxN-1
X =

We also have

BxN BxN  (BxN)?
Hence
dx\ " AxN mAxN -1 NAxN gxN -1
V. ZBNﬂN_I—ﬂNBN_IT _
<dt> [ X(BXN>] (B Ax R (Y (BxN)2
= N (AN T ax"-! _zﬂxN (AN T gxN -1
= X BXN X
AxN\?
+<BXN> (BXN—I)TBXN—1>
N—1 ﬂXN( N—-1 ' o1 AN oy
> N | Ax _BXNBX Ax _BXNBX
>0,

and the equality holds if and only if x is parallel to u.
Thus we have

dv
0
dt =

fort > 0, where x € B(6(u)u; €) is not parallel to u.
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Assume that u € Spx and g(u) < 0. It is easy to see that g(—u) < 0 because
of the even N. Then, we have g(x) < g(6(w)u) < O for all x € B(6(u)u; €). Define
the Lyapunov function

Local ﬂXN : Local
V(X) = A — BN with A" = g(d(wu) < 0.

Since g(x) < g(§(w)u) < 0 for x € B(§(w)u; €), then 0 < —g(§(w)u) < —g(x)
for x € B(6(u)u; €). Hence, we have V(x) > 0 for all x € B((u)u; €) but not
parallel to u. The proof is similar to that of u € Spax and g(u) > 0.

Since )LII;I‘i’f]al is a local minimal generalized eigenvalue of the symmetric-definite
tensor pair {A, B}, then —A;?ﬁ“l is the local maximal generalized eigenvalue of the
symmetric-definite tensor pair {—A, B} with its generalized eigenvector u € Spp.

For the symmetric-definite tensor pair {—A, B}, the neural network in (6.5.3) can
be represented by

d’ff? = —BxO" AxON ! + AxOV Bx(HOV !, (6.5.6)

for all + > 0. The associated Lyapunov function is defined as

N N
Local (—FADx Local .~ AX
Voo = -t =T = ke

The proof is similar for the local maximal generalized eigenvalues of the
symmetric-definite tensor pair {A, B}. The theorem is proved. O

6.6 Numerical Examples

In this section, we present numerical examples of neural networks for finding locally
optimal rank-one approximations. We terminate the corresponding iterations using
the criterion

|F(xi(k+ 1), %ok + 1), ..., xn(k + 1)) — F(x1(k), X2(k), ..., xy (k)| < 107,
for nonsymmetric tensors and
| f(x(k+ 1) — f(x(K))] <1078,

for symmetric tensors, or when the algorithm runs over 1000 iterations.
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Note that x,(k) € R and x(k) € R’ are computed from the first-order
difference approximation (6.2.2) and HOPM, and the first-order difference approx-
imation (6.2.4) and SHOPM, respectively.

For a local maximizer {vy, va, ..., vy} of the optimization problem (6.1.4), we
have
N
S = 16D - (BVDVI ®8VIV2 ® -+ @ 8(vi)vw) : 8(0) [[8(va) = 1
n=1

being the set of all locally optimal rank-one approximations corresponding to the
locally optimal rank-one approximation - (V] ®v2®- - -Qvy) of A € RN *12xxIy
where T = F(vy, V2, ..., Vy). It is obvious that the best rank-one approximation
of A belongs to S;. The related results are shown in tables and the running time is
measured by the Matlab “tic-toc” pairs in seconds. We only list one locally optimal
rank-one approximation of A for each S; in all examples. We follow the same
practice for symmetric tensors.

In Sect. 6.6.3, we present three numerical methods for computing the restricted
singular values and associated restricted singular vectors.

Finally, we present numerical examples to illustrate that we can utilize the neural
network in (6.5.3) to compute the generalized eigenvector of a symmetric-definite
tensor pair (cf. Sect. 6.5), corresponding to the maximal or the minimal generalized
eigenvalue. We terminate the iterations when

Hﬂx(k)N—l — Ak Bx (k)N ! H2 <1078,

or the number of the iterations exceeds 5000, with x(k) from the first-order
difference approximation (6.5.4) and A(k) = “2:((]]{‘)),1\\,’

We only record the Matlab “tic-toc” estimates of the execution times by the first-
order difference approximations (6.2.2), (6.2.4) and (6.5.4) for the local maximizers

of the optimization problems (6.1.4), (6.1.7) and (6.5.2), respectively.

6.6.1 Nonsymmetric Tensor Examples

We present numerical results for nonsymmetric tensors. The locally optimal rank-
one approximation ratio of a real tensor A € RN */2XxIN ig investigated by Qi
[19, 37]:

(A, X))

o (A) := max ,
IANFIXI 7

where X = x| ® X2 ® - - - ® Xy with nonzero x,, € R/».
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Clearly, if o, - (1] @ U2 ® - - - ® uy) is a locally optimal rank-one approximation
of A, with each ||lu, |2 = 1 and o, = F(uy, uy, ..., uy), then p(A) = |o.|/I| Al F.

Suppose that oy - (0] @ U2 ® - - - ® uy) is returned by the first-order difference
approximation (6.2.2), then we measure the quality of the rank-one approximation
by the residual:

RESNET(A) = A -0 - (1 Quz ® --- @ uy)||F.

There are well known connections exist between the singular value decompo-
sition [33, Section 2.4] of a matrix A € R/*/ and the Schur decomposition [33,
Section 7.4.1] of its symmetric embedding

sym(A) = <01X1 A > )

AT 0y5y

Ragnarsson and Van Loan [38] develop similar connections for tensors by building
on Lim’s variational approach. Through the symmetric embedding sym(A), if
(0;X1,X2,...,Xy) is a solution of (6.1.1) with o # 0, then (0y; X,) is an Z-
eigenpair of sym(A), where

_ N!
Ow =0102...0N ;\0, .
X = «/1N ((xlxir, azx;—, ey O‘NX;) ,
o0 =loy,ay,...,ay]l=11,%£1,...,£1].
~ -~ -
N—1
If (o;ug,uy, ..., uy) can be computed by the neural network in (6.2.1), then we

can define

C(og,u) = UT [(N ~ Dsym(AuV ! - aI,] U e RU-DXU-D

where the columns of U € R’ =1 form an orthonormal basis for ul with I =
h+hL+...4+ IN.
Suppose that (o; ug, uy, ..., uy) is a singular pair of the tensor A, then
C(oy; uy) positive definite = u,, is a local maximum of (6.1.4),
C(oy; uy) negative definite = u,, is a local maximum of (6.1.4),

C(0gy; uy) indefinite => u, is a saddle point of (6.1.4).
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Example 6.6.1 ([37, Example 1]) Consider the positive tensor A € R3*3*3 with

arrr = 0.4333, ajp1 = 0.4278, a131 = 0.4140, az;1 = 0.8154,
az1 = 0.0199, az31 = 0.5598, az11 = 0.0643, asp; = 0.3815,
azz1 = 0.8834, aj12 = 0.4866, ajz2 = 0.8087, ajsp = 0.2073,
azi2 = 0.7641, axp = 0.9924, axzp = 0.8752, azjp = 0.6708,
az = 0.8296, azzx = 0.1325, a113 = 0.3871, ajz = 0.0769,
a3z = 0.3151, az13 = 0.1355, ax3 = 0.7727, az3z = 0.4089,
az13 = 0.9715, azx3 = 0.7726, az3; = 0.5526.

If we employ the first-order difference approximation (6.2.2), then we get a
locally optimal rank-one tensor oy - (0] ® Uz ® u3) with

0. = —2.8167, p(A) = 0.9017, RESNgr = 1.3510.
u; = (0.4281,0.6557,0.6219) ",

w, = (—0.5706, —0.6467, —0.5062) ",

u3 = (0.4501,0.7094, 0.5423) .

It takes 0.0625s. Figure 6.1 displays the convergence of the global maximizer
estimation for the optimization problem (6.1.4).

Comparing to [8, Example 3.12], we see that o, - (U] ® uy ® u3) is the best
rank-one approximation.

l.l1 l.]2 |.|3
f, |
1H]| . _
| "u h 3
LEL osp (4 osf)
€ — € | € |l
" 5 g |l
£ os | — = o
8 § §
£ o2}l = rs
g ' g g
e 0 | f e 05 s 05
‘s ] ..'. ‘.6 A3 2 T—— ‘l6 43
3 02 I-"I 3 S 3
g (| g L
04 | 1H |
, 24 ||i A,
b b “22 [ Uz
I .t ll 3,
08 o - - 15 - - 2 15> * = - .
] 0] 2 E7 [ 0 10 Ed 0 [] 0 10 2 £l 2
iteration steps iteration steps iteration steps

Fig. 6.1 Estimation of a global maximizer of (6.1.4) with Example 6.6.1
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Example 6.6.2 ([8, Example 3.14]) Consider the tensor A € R!*/*! given as
Qiyipiy = co8(iy + 2ip + 3i3).

For I = 5, by applying the first-order difference approximation (6.2.2), we obtain
a locally optimal rank-one tensor o, - (U] ® Uz ® usz) with

0r = —6.0996, p(A) =0.7728, RESNgr = 5.0093,
u; = ( 0.4295, 0.5611, 0.1768, —0.3700, —0.5767) ",
w, = ( 0.6210, —0.2957, —0.3749, 0.6077, —0.1309) 7,
w3 = (—0.4528, 0.4590, —0.4561, 0.4441, —0.4231)7.

It takes 0.2188s. Figure 6.2 presents the convergence of the global maximizer
estimation for the optimization problem (6.1.4).

Comparing to [8, Example 3.14], we know that o, - (1] ® uy ® u3) is the best
rank-one approximation.

For I from 5 to 100, we apply the first-order difference approximation (6.2.2)
to find the best rank-one approximations. The computational results are listed in
Table 6.1.

Example 6.6.3 ([8, Example 3.15]) Consider A € RT4 ; given as

4 .
Zarcsin ((—l)if J ) , ifalli; > j,
j=1 g

0, otherwise.
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Fig. 6.2 Estimation of a global maximizer of (6.1.4) with Example 6.6.2
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Example 6.6.2

Table 6.1 Related results for 1 Ox Time 0 (ﬂ) RESNET (ﬂ)
5 —6.0996  0.2969 0.7728 5.0093
10 —14.7902 1.9063 0.6629 16.7026

For I =

15 254829  0.5156 0.6203  32.2270
20 33.7020  3.8125 0.5329  53.5095
25 46.7997  7.6875 0.5295  74.9817
30 64.9106  3.0781 0.5587  96.3619
35 80.7697  7.0938 0.5517 122.1175
40 —95.0878  5.1719 0.5316 151.5162
95  —338.5683 65.3750 0.5171 560.4087
100 368.6851 67.1719 0.5214 603.3848

5, if we use the first-order difference.approximation (6.2.2), then we

obtain two locally optimal rank-one tensors o/ - (0} ® ué ® ug ® uy) with

and

ol = 153155, p(A) =0.7076, RESner = 15.2957,

*

1
ul = (=0.6711, —0.2776, —0.4398, —0.3285, —0.4138) T,
u) = (—0.0000, —0.1709, —0.6708, —0.3985, —0.6017) ",
u! = (=0.0000, —0.0000, —0.8048, —0.1804, —0.5654) T,
u! = (0.0000, 0.0000, 0.0000, —0.0073, —1.0000) T,

02 =—13.4801, p(A) =0.6228, RESNgr = 16.9354,
u? = (—0.2089, —0.5643, —0.4178, —0.5183, —0.4413) T,
w3 = (—0.0000, 0.7280, 0.2800, 0.5241, 0.3420) T,

u3 = (—0.0000, —0.0000, —0.2742, —0.8293, —0.4870) T,
uZ = (0.0000, —0.0000, —0.0000, —0.9777,0.2102) .

It takes 0.1719's and 0.4063 s, respectively. We conclude that o, - (ui ®u£ ®u§ ®
ui) is the best rank-one approximation and the results are consistent with those in
[8, Example 3.15].

For I from 5 to 12, we apply the first-order difference approximation (6.2.2)
to obtain the best rank-one approximation. The computational results are listed in

Table 6.2.

Remark 6.6.1 For A € RI*12xxIN quppose that 7, - (V] ® V2 ® - - - @ V) is the
best rank-one approximation returned by the semi-definite relaxation methods [8],

we€ measure

the quality of the rank-one approximation by the residual:

RESgpp(A) = [[A -7 - (Vi® V2 ® - - Q@ VNI F.



174 6 Neural Networks

Table 6.2 Related results for I s Time o(A)  RESNpr(A)
Example 6.6.3
5 —15.3155 0.1719 0.7076  15.2957
6 —25.3934 0.1406 0.7478  22.5473
7 33.0389 0.1719 0.6874  34.9113
8 —44.6644 0.1406 0.7052  44.9052
9 —54.3981 0.4063 0.6782  58.9426
10 67.3464 0.3125 0.6872  71.2040
11 —78.9268 0.4063 0.6731  86.7219
12 —93.0160 0.4688 0.6775 100.9830

Let oy - (u1 ® u2 ® --- ® uy) be the best rank-one approximation returned by
the first-order difference approximation (6.2.2). When the iterations are termi-
nated, RESNgT(A) is not significantly bigger than RESgpp (A) and the CPU time
for (6.2.2) is smaller than the CPU time for the semi-definite relaxation methods, as
shown in [8].

Example 6.6.4 ([8, Example 3.19]) We compare the first-order difference approx-
imation (6.2.2) with HOPM in [15, Algorithm 3.2], which is widely used for
computing rank-one approximation for nonsymmetric tensors. Meanwhile, we can
also use the semi-definite relaxation methods to check the convergence of HOPM.
The tensor A € T3 ; is given by

N I
aj iriz = tan (ll — ) + 3 ) .

Suppose that A - (x] ® X2 ® --- ® Xy) is a rank-one approximation returned by
HOPM, then we measure its quality by the residual:

RESHOPM(A) = A -1 - (X1 @ X2 ® - Q@ Xn) |l F.

Suppose I = 20. When we implement (6.2.2) and HOPM 100 times on the testing
tensor (A, the absolute values of o, and A are chosen from the set

{382.6558, 385.8545, 386.0731, 399.3615, 400.6770, 508.8158, 508.8218}.

The computational results are presented in Table 6.3.

According to Table 6.3, we can use (6.2.2) and HOPM to compute all locally
optimal rank-one approximations of A € R/1*/2%*IN However, we do not know
how to choose an optimal initial value to ensure that the sequence, which converges
to the global minimizer.
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Table 6.3 Related results for Example 6.6.4

Values Occ. Time RESNET(A) Occ. Time RESgopMm (A)
382.6558 2 69.3516 1.8119e+3 2 63.7344 1.8119e+3
385.8545 15 9.0479 1.8112e+3 18 21.0113 1.8112e+3
386.0731 9 9.3576 1.8112e+3 9 21.4833 1.8112e+3
399.3615 11 3.9105 1.8083e+3 15 8.4948 1.8083e+3
400.6770 16 4.0439 1.8080e+-3 10 8.1656 1.8080e+3
508.8158 21 0.7649 1.7806e+3 24 1.6680 1.7806e+3
508.8218 26 0.8305 1.7806e+3 22 1.6747 1.7806e+3

6.6.2 Symmetric Tensor Examples

We report some numerical results for symmetric tensors here. Qi [37] defines the
locally optimal symmetric rank-one approximation ratio of a symmetric tensor A €
RTN ] as

[(A, X))

o (A) ;= max ,
1Al F I Xl 7

where X = x®V with a nonzero vector x € R”.

If o, - u® is a locally optimal symmetric rank-one approximation of A, with
[lul2 = 1 and o, = f(u), then p(A) = |ok|/||A|lr. Estimates for p(A) are
given by Qi in [37]. Let oy - u®V be the locally optimal symmetric rank-one
approximation returned by the first-order difference approximation (6.2.4). We
measure the quantity of the approximation by the residual:

RESNET(A) = Hﬂ — Oy - u®y HF

Asdiscussed in [15,22, 23], a Z-eigenpair may be associated with a local maximum,
a local minimum, or a saddle point. For a given Z-eigenpair (o; X) normalized so
that ||x||2 = 1, we can categorize it by the projected Hessian of the Lagrangian, i.e.,

Clo:x) =UT [V = DA™ — o1, | U e RUZDXU=D,

where the columns of U € R/*U=D form an orthonormal basis for x-. We have
three situations

C(o; x) positive definite =~ = x is a local maximum of (6.1.7),
C(o; x) negative definite = x is a local maximum of (6.1.7), or

C(o; x) indefinite => x is a saddle point of (6.1.7).
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For the illustrative examples in this subsection, the solutions of the neural network

in (6.2.3) are the local maxima of (6.1.7).

Example 6.6.5 ([23, Example 3.6], [19, Example 4.2]) Consider the symmetric
tensor A € RT3 3 with

ail] = —0.1281, aygp = 0.0516, ajgy = —0.0954, ain = —0.1958, a3 = —0.1790;
a3z = —0.2676, axy = 0.3251, azy3 = 0.2513, ax3z = 0.1773, aszzz = 0.0338.

Applying the first-order difference approximation (6.2.4), we obtain two locally
optimal symmetric rank-one tensors aj; - (uH)®3 (i = 1,2) with

= —0.8730, p(A) =0.8890, RESNgT = 0.4498,

= (0.3922, —0.7249, —0.5664) ';

0*2 = —0.4306, p(A) =0.4385, RESner = 0.8826,

u? = (0.7187, 0.1245, 0.6840)".

o
u!

It takes 0.0313 s and 0.0469 s, respectively. We conclude that aj - (uh)®3 is the
best symmetric rank-one approximation, which is consistent with [8, Example 3.3].

Example 6.6.6 ([37, Example 2]) Consider the positive symmetric tensor A €
RT3 3 with
ajy; =0.0517, aji2 =0.3579, apiz =0.5298, aip =0.7544, aj3 = 0.2156,
a13z = 0.3612,  axp =0.3943, a3 =0.0146, ax33 =0.6718, a33z = 0.9723.
Employing the first-order difference approximation (6.2.4), we obtain a locally
optimal symmetric rank-one tensor o - u®3 with
u = (—0.5204, —0.5113, —0.6839) ",
o, = —2.1110, p(A) =0.8574, RESNgT = 1.2672.
It takes 0.0781s. Figure 6.3 shows the convergence of the global maximizer
estimation for the optimization problem (6.1.7).

Comparing to [8, Example 3.3], it is obvious that o - u®3 is the best symmetric
rank-one approximation and |oy| is the Z-spectral radius of A.

Example 6.6.7 ([8, Example 3.5]) Consider the symmetric tensor A € RT3 ; with

—1)i —1)J —1)k
(.1)+(.1)+(1)‘

aiir =
ijk ; j k
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Fig. 6.3 Estimation of a global maximizer of (6.1.7) with Example 6.6.6

For I =5, when the first-order difference approximation (6.2.4) is applied, we get
two locally optimal symmetric rank-one tensors o, - uH)®3 (i = 1,2) with

o) =9.9779, p(A) = 0.8813, RESNgT = 5.3498,

u! = (=0.7313, —0.1375, —0.4674, —0.2365, —0.4146) T;
02 =4.2876, p(A) = 0.3787, RESNgT = 10.4783,

u? = (—0.1859, 0.7158, 0.2149, 0.5655, 0.2950)'.

It takes 0.0313s and 0.0625 s, respectively. We see that o} - (u')®3 is the best
symmetric rank-one approximation, consistent with [8, Example 3.7].

For I from 10 to 105, we apply the first-order difference approximation (6.2.4)
to find the best symmetric rank-one approximation. The computational results are
presented in Table 6.4.

Example 6.6.8 ([8, Example 3.6]) Consider the symmetric tensor A € RTy ; with

Qi iyiziy = arctan ((— i l11 )—l—arctan ((— 12 112 ) +-arctan ((—1)"3 113 ) +-arctan ((— 1) l14) .

For I = 5, making use of the first-order difference approximation (6.2.4), we obtain
two locally optimal symmetric rank-one tensors o - uH)®* (i = 1,2) with

o) = —23.5741, p(A) = 0.8135, RESner = 16.8501,
u' = (0.4403, 0.2382, 0.5602, 0.1354, 0.6459);
o2 = 13.0779, p(A) = 0.4513, RESNgr = 25.8579,
u? = (0.3174, 0.5881, 0.1566, 0.7260, 0.0418) .
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Table 6.4 Related results for I o, Time o(A)  RESNpr(A)
Example 6.6.7
10 —17.8002 0.0156 0.8042  13.1565
15 —26.4770 0.0156 0.7932  20.3254
20 24.1589 0.0313 0.7698  28.3238
25 42.5109 0.0625 0.7651  35.7736
30 —50.1376  0.0625 0.7528  43.8345
35 —58.3303 0.0938 0.7501 1.4221
40 —65.9255 0.0938 0.7423  59.5166
45 74.0191 0.0625 0.7404  67.1900
50 81.5934 0.0625 0.7349  75.3064
55 —89.4178 0.0625 0.7335  83.0399
100 158.9902 0.0938 0.7158 155.0992
105 —166.8380 0.1250 0.7153 162.9868

Table 6.5 Related results for I o Time o(A) RESNET(A)
Example 6.6.8
5 —23.5741 0.0781 0.8135 16.8501
10 77.0689 0.0625 0.7268  72.8350
15 —165.0965 0.0938 0.7081 164.6400
20 282.9708 0.0938 0.6911 295.9706
25 —435.3152 0.1250 0.6849 463.0760
30 617.5361 0.1563 0.6779 669.7284
35 —834.2093 0.1563 0.6749 912.1421
40 1.0808e+3 0.1875 0.6710 1.1941e+3
45 —1.3618e+3 0.2813 0.6693 1.5118e+3
50 1.6727e+3  0.5000 0.6669 1.8691e+3
55 —2.0180e+3 0.6875 0.6657 2.2622e+3
60 2.3933e+3  0.6563 0.6640 2.6948e+3

It takes 0.0469 s and 0.0625 s, respectively. Comparing to [8, Example 3.6], aj .
(u!)®* is the best symmetric rank-one approximation.

For I from 5 to 60, we apply the first-order difference approximation (6.2.4)
for the best symmetric rank-one approximation. The computational results are in
Table 6.5.

Example 6.6.9 ([8, Example 3.7]) Consider the symmetric tensor A € RT5 ; with

iy iyinigis = (=D In(i1) + (=12 In(i2) + (= 1) In(i3) + (= 1) In(is) + (= 1) In(is).
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For I =5, taking advantage of the first-order difference approximation (6.2.4), we
get two locally optimal symmetric rank-one tensors o’ - (u))® (i = 1,2) with

Q
I

! 110.0083, p(A) =0.7709, RESngT = 90.8819,

I = (=0.3906, —0.2782, —0.5666, —0.1669, —0.6490) ';

=
Il

0'*2 = —69.8573, p(A) = 0.4598, RESNET = 124.4248,

u? = (—0.4132, —0.5505, —0.1902, —0.6943, —0.0894)".

It takes 0.0313 s and 0.0156's, respectively, and o, - (u!)® is the best symmetric
rank-one approximation, comparable to [8, Example 3.7].

For I from 5 to 20, we apply the first-order difference approximation (6.2.4) to
find the best symmetric rank-one approximations, as summarized in Table 6.6.

Remark 6.6.2 Suppose that t, - v®¥ is the best symmetric rank-one approximation
returned by the semi-definite relaxation method [8], then we measure its quality by

the residual:

RESspp (A) = Hﬂ — Ty - V&N HF

If o, - u®" is the best rank-one approximation by the first-order difference
approximation (6.2.4), its residual RESNgT(A) is not significantly bigger than
RESspp(A) and the CPU time for (6.2.4) is smaller than the CPU time for the

semi-definite relaxation methods.

Table 6.6 Computational I s
results for Example 6.6.9 5 1100083
6 —209.6261
7 297.4530
8 —470.6419
9 —619.1962
10 883.2849
11 —1.1067e+3
12 —1.4780e+3
13 1.7897e+3
14 —2.3836e+3
15 —2.6966e+3
16 3.3277e+3
17 —3.8543e+3
18 —4.6369¢e+3
19 —5.2891e+3

20 6.2367e+3

Time

0.0313
0.0625
0.0625
0.0781
0.0313
0.0625
0.0625
0.0625
0.0625
0.1250
0.1094
0.2656
0.1094
0.0938
0.1563
0.2344

p(A)

0.7709
0.8109
0.7376
0.7675
0.7174
0.7408
0.7040
0.7229
0.6945
0.7103
0.6974
0.7008
0.6819
0.6936
0.6775
0.6878

RESNET (A)
90.8818
151.2544
272.3047
393.1087
601.3126
801.0223
1.1165e+3
1.4126e+3
1.8544e+-3
2.3633e+3
2.8494e+3
3.3870e+3
4.1347e+3
4.8160e+3
5.7416e+3
6.5816e+3
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Fig. 6.4 Comparison (6.2.4) and SHOPM in Example 6.6.10
Table 6.7 Related results for Values Occ. Time RESNgT(A)

Example 6.6.1
xample 6.6.10 29.0085 36  0.1905 56.1536

327139 35 0.1496 54.1218
32.9758 29 0.1487 53.9626

Example 6.6.10 ([8, Example 3.10]) We will compare the first-order difference
approximation (6.2.4) with S-HOPM in [22, Algorithm 2], which is widely used
for computing rank-one approximatiosn for symmetric tensors. We can also use
the semi-definite relaxation methods to check the convergence of S-HOPM. The
symmetric tensor A € RT3 ; is given by a;,i,i; = sin(i1 4 iz + i3).

Suppose I = 20. If the unit vector u € R/ is derived from the first-order difference
approximation (6.2.4) or S-HOPM, then we define Error := | Au® — oul|», where
o = Au’. When we test (6.2.4) and S-HOPM on the tensor A 100 times, the values
of “Error” are shown in Fig. 6.4.

According to Fig. 6.4, we cannot use S-HOPM to compute a rank-one approx-
imation of A. By the first-order difference approximation (6.2.4), we find o, €
{29.0885, 32.7139, 32.9758}. The computational results are presented in Table 6.7.

6.6.3 Restricted Singular Values

In Sect.6.4, we introduce three methods for finding the local maximizers of
the optimization problem (6.4.3): Cholesky factorization+HOPM (Chol+HOPM),
Cholesky factorization+the first-order difference approximation (6.2.2) (Chol+NN
I) and the first-order difference approximation (6.4.7) (NN II). We compare these
methods via an example.
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We implement three methods: Chol+HOPM, Chol+NN I and NN II, and
terminate the iterations when

max [|F X1 (k). x2(k). ... .. XN (k) —n — 0 (K)Buxy () || < tol

for NN II, or
max [ F@i), y200. . yn(R)n = FER)Y k)|, < 10l

for Chol+HOPM and Chol+NN, or k£ > 5000.
Here we have

:U(k) = Fx1(k), xa(k), ..., X (K)),  %4(0) 'B,x, (0) = 1;
G(k) = Fy1(k), y2(k), ..., yn (), ya(0) T y,(0) = 1;

and the symbol F is related to the tensor A, as given in (6.4.4) for F.

Example 6.6.11 Consider A € R/*'*! given in Example 6.6.2. Three symmetric
positive definite matrices B; € RI*! are chosen from [39] withi = 1,2,3 as
follows:

B, =UX,U", B,=UX,U', B;=UZ;U',

in which U is a randomly chosen orthogonal matrix (obtained from a QR factoriza-
tion of a matrix whose entries are drawn from a uniform distribution over (—1, 1));
the entries of

Y; =diag(oi1,0i2,...,0i1), i=12,3,

. . . . 2.
are: (a) oj; = (i + j) +mij3 (b) 0j; = (i + j) +mij and o1; = (1 + m1;) * 10175
. . 3 . .
(©)oij =G+ j)+mnjandorj = (2+n2;) * 10175 (d) 03j = (i + j) + n;; and
4 . 3.,
03j = G+ m3;) 10175 (&) o1; = (1 + j) + nij, 025 = (2 + n25) % 107/ and
4. 2. 3.
03) = 3+ m3j) % 1017 and (£ o1 = (1 + 1) ¥ 1017, 03j = (2 + ;) % 1017
and o3; = (3 + n3;) * 1017 with i = 1,2,3and j = 1,2,..., I, where 5 is drawn
from a uniform distribution over [0, 1).
We note that all B,, are well-conditioned or have a moderate condition number.

In this example, we have I = 10 and tol = le — 13. The computational results are
in Table 6.8.
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Table 6.8 Related results of Chol+HOPM, Chol+NN I and NN II for Example 6.6.11

Chol+HOPM Chol+NN I NN II

Cases o Time o Time o Time

(a) 2.7236 10.8594 2.7236 39.0313 2.7236 43.8594
(b) 5.3084 9.1094 —5.3084 24.5156 5.3084 33.9531
() 2.8049 12.3438 2.8049 40.0313 —2.8049 486.9063
(d) 2.5504 8.2188 —2.5504 30.5469 2.5504 484.3438
(e) 3.5350 4.0625 —3.5350 15.1250 3.5350 482.5000
) 5.3357 10.6719 5.3357 41.8906 5.3357 486.4063

6.6.4 Symmetric-Definite Tensor Pairs

In this subsection, all testing tensors are quoted from Kolda and Mayo [36]. If the
pair (A; x) is a generalized eigenpair of a symmetric-definite tensor pair {A, B}, we
define

C;x) =UT [(N — DH(X) — ANI;]U € RU=DxU=D),

where the columns of U € R’*U=D form an orthonormal basis for x* and H(x)
is given in [36, Theorem 3.1]. One hundred tests of the first-order difference
approximation (6.5.4) are performed, each with a different random initial vector.
Selecting the initial vectors from either a uniform or normal distribution had no
effect on the finial result.

Example 6.6.12 ([36, Example 5.2]) We consider a special case of the generalized
tensor eigenvalue problem with the identity tensor B. All entries of the symmetric
tensor A are given in Table 6.9. We compute all the local maxima and the local
minima of the optimization problem (6.5.2).

For the local maxima of the optimization problem (6.5.2), a summary of the results is
provided in Table 6.10. We elaborate on the last column in Table 6.10. For example,
14 times out of 100 times, A(k) converges to 4.8422, then it takes (2.0045 x 14)s
for the 14 tests of (6.5.3) (Table 6.11).

We use (6.5.4) for computing all local minima of the optimization prob-
lem (6.5.2) by replacing A in the (6.5.4) with —A, as summarized in Table 6.12.
For example, 36 times out of 100 times, A(k) converges to —10.7440, then it takes
(1.1385 x 36) s for the 36 tests of (6.5.4).

Example 6.6.13 ([36, Example 5.5]) For a general symmetric-definite tensor pair,
all the entries of A € RTp 4 and positive definite 8 € RTs4 are given in
Tables 6.9 and 6.11. We compute maxima and all local minima of the optimization
problem (6.5.2) by (6.5.4).

For all local maxima of the optimization problem (6.5.2), a summary of the
results is provided in Table 6.13. For example, in the last column in Table 6.13,
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Table 6.9 A from Examples 6.6.12 and 6.6.13

apnn = 0.2888
arlie = —0.1070
alizg = —0.0106
aiie = —0.0710
aizzz = 0.2208
arn = —0.1144
aize = —0.0237
aizaa = —0.0044
ai3zaa = —0.0293
aipnz = 0.1018
apnas = 0.0221
apaaa = 0.0247
aipzaas = —0.0323
ai33zaa = —0.0592
axon = 0.9207
axn3a = —0.0318
azn3a4 = —0.0058
a3zae = —0.0110
az3z33a = 0.0809
axqq444 = —0.2487
az3zaaqs = —0.0233

airrz = —0.0013
arnies = —0.0899
arllia4 = 0.0740
ari1233 = —0.1039
arzze = 0.0662
ajnns = —0.1295
aro44 = 0.0308
aro444 = 0.0353
az444 = 0.0638
ajona = 0.0044
a122333 0.0612
a3z = 0.0847
a124444 = —0.0819
a13z444 = 0.0386
a3 = —0.0908
axoas = 0.1629
axnaaa = 0.1359

axzaas = 0.1375
azzas = 0.0205
azzzzzz = 0.6007
azzaaas = —0.0227

arz = —0.1422
ajrpa = —0.2487
ajre = 0.1490
ar234 = —0.0250
aizaa = 0.0046
ajna = —0.0484
a12333 0.0142
a13333 0.0947
ajaaas = 0.2326
ajonnzz = 0.0248
ajnzza = 0.0184
ai23334 = —0.0209
a33333 = 0.5486
ai3qa44 = —0.0138
axona = 0.0633
a3z = 0.1797
ax333z = 0.0584
apaaas = —0.1405
a3zaas = 0.0196
az333ze = —0.0272
azaaaas = —0.3355

Table 6.10 Local maximal H-eigenpairs for Example 6.6.12

Occ. A

14 4.8422
15 5.8493
34 8.7371
15 9.6386
22 14.6941

T

u,

(0.5895, —0.2640, —0.4728, 0.5994)
(0.6528, 0.5607, —0.0627, —0.5055)

(0.4837, 0.5502, 0.6671, —0.1354)

(0.5364, —0.5625, 0.5490, —0.3210)

(0.5426, —0.4853, 0.4760, 0.4936)
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are = —0.0323
ailizs = 0.0231
aps = 0.0527
aipaa = 0.0169
ai1444 0.0943
aazz = 0.0238
aizze = 0.0006
ai3zze = —0.0610
aipon = —0.2574
apza = 0.0562
ainzas = 0.0226
ai33a4 = —0.0795
aizzzze = —0.0311
ajaaaas = 0.0246
a3z = 0.1116
an334 = —0.0348
a3334 = —0.0299
a3z = 0.2613
azaaaq = 0.0226
azzzzaqe = —0.1343
asaaaaa = —0.5937

Time

2.0045
0.9271
1.2757
2.3302
0.7131

62 times out of 100 times, X (k) converges to 11.3476, then it takes (1.7467 x 64)s
for the 64 tests of (6.5.4).

We use (6.5.4) for computing all local minima of the optimization prob-
lem (6.5.2) by replacing A with —A while keeping 8 unchange. A summary of
the results is provided in Table 6.14. For example, in the last column in Table 6.14,
48 times out of 100 times, A (k) converges to —6.3985, then it takes (3.4261 x 48) s
for the 64 tests of (6.5.4).
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Table 6.11 B from Example 6.6.13

bi11111 = 0.2678 bi11112 = —0.0044
bi11122 = 0.0591 bi11123 = —0.0009

bi11113 = —0.0326
bii1124 = —0.0045

bi11134 = —0.0059 bi11144 = 0.0511 bi11222 = —0.0020
bi11224 = —0.0016 b111233 = —0.0005 bi1123¢ = 0.0007
bi11333 = —0.0185 bi1133¢ = 0.0001 b111344 = —0.0058
bi12220 = 0.0651 bi12223 = —0.0013 b112224 = —0.0050
b112234 = —0.0023 b112244 = 0.0190 b112333 = —0.0011
b112344 = 0.0000 b112444 = —0.0043 b113333 = 0.0498
b113344 = 0.0169 b113444 = —0.0060 bi14444 = 0.0486
b122223 = —0.0078 b122224 = —0.0016 b122233 = —0.0006
b122244 = —0.0006 b122333 = —0.0067 b122334 = 0.0001
b122444 = —0.0016 b123333 = —0.0002 b123334 = 0.0006

b123444 = 0.0006 b124444 = —0.0003 b133333 = —0.0286
b133344 = —0.0056 b133444 = 0.0001 b134444 = —0.0051
byoron = 0.3585 by202723 = —0.0082 by20224 = —0.0279
br22234 = —0.0076 bro0244 = 0.0636 by22333 = —0.0042

br22344 = —0.0002
by33a4 = 0.0184
by33334 = —0.0034
bragaaa = —0.0208
b333444 = —0.0181

brooaaa = —0.0145
br23444 = —0.0069
b233344 = —0.0002
0.2192
0.0485

br3333 = 0.0518
broaaas = 0.0549
br33444 = —0.0039
b333334 = —0.0294
b3a4444 = —0.0304

b333333 =
b334444 =

Table 6.12 Local minimal H-eigenpairs for Example 6.6.12

Occ. A ul
36 —10.7440 (0.4664, 0.4153, —0.5880, —0.5140)
27 —8.3200 (0.5970, —0.5816, —0.4740, —0.2842)
13 —4.1781 (0.4397, 0.5139, —0.5444, 0.4962)
16 =3.7179 (0.6843, 0.5519, 0.3136, 0.3589)

8 —2.9314 (0.3161, 0.5173, 0.4528, —0.6537)

Table 6.13 Local maximal generalized eigenpairs for Example 6.6.13

Occ. As u]

20 2.9979 (0.8224, 0.4083, —0.0174, —0.3958)
18 3.7394 (0.2185, —0.9142, 0.2197, —0.2613)
62 11.3476 (0.8224, 0.4083, —0.0174, —0.3958)

Table 6.14 Local minimal generalized eigenpairs for Example 6.6.13

Occ. Ase u,

48 —6.3985 (0.0733, 0.1345, 0.3877, 0.9090)

16 —3.5998 (0.7899, 0.4554, 0.2814, 0.2991)

19 —3.2777 (0.6888, —0.6272, —0.2914, —0.2174)
17 —1.1507 (0.1935, 0.5444, 0.2991, —0.7594)

6 Neural Networks

bi11114 = —0.0081
bi11133 = 0.0533
b111223 = —0.0072
b111244 = —0.0006
bi11444 = —0.0046
bi12233 = 0.0190
b112334 = —0.0014
b113334 = —0.0061
b122002 = —0.0054
b122234 = 0.0008
b122344 = —0.0022
b123344 = —0.0002

bi3zz3a = 0.0017
b144444 = —0.0073
byr2233 = 0.0610

by22334 = —0.0044
br23334 = —0.0067
by33333 = —0.0059
by3aaaa = 0.0010
b3333a4 = 0.0477
baaaaas = 0.2305

Time

1.1385
1.1765
7.3834
1.2734
2.3867

Time

0.6398
2.2335
1.7467

Time

3.4261
1.2686
0.8808
3.2960
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Chapter 7 )
US- and U-Eigenpairs of Complex Shethie
Tensors

In this chapter we discuss the computation of US-eigenpairs of complex symmetric
tensors and U-eigenpairs of complex tensors. We derive an iterative algorithm
for computing US-eigenpairs of complex symmetric tensors which is based on
the Takagi factorization of complex symmetric matrices that are denoted as the
QRCST Algorithm. We observe that multiple US-eigenpairs can be found from a
local permutation heuristic, which is effectively a tensor similarity transformation,
resulting in the permuted version of QRCST. We also present a generalization of
their techniques to general complex tensors and derive a higher-order power type
method for computing a US- or a U-eigenpair, similar to the higher-order power
method for computing Z-eigenpairs of real symmetric tensors or a best rank-one
approximation of real tensors. We illustrate the algorithms via numerical examples.

7.1 Preliminaries

7.1.1 US- and U-Eigenpairs

For a given symmetric tensor A € CTy, j, a nonnegative number o € R is called a
unitary symmetric eigenvalue (US-eigenvalue [1]) of A, if there exist a unit vector
v e C! and o € R such that

AV =ov, AV =ov. (7.1.1)

In this case, v is called a unitary symmetric eigenvector (US-eigenvector) of A
associated with the US-eigenvalue o and (o; v) is called a US-eigenpair of A. The
concept of the US-eigenvalues arises in quantum entanglement. The absolute largest
o is the entanglement eigenvalue and the corresponding complex symmetric rank-
one tensor v® is the closest symmetric separable state [1, 2].
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When N = 2, the US-eigenvalues are the same as the Takagi values of A. The
tensor A is reduced to a complex symmetric matrix.

In Sect. 1.3.3, we present the definition of the U-eigenpairs of A e Cl1>x /21
In this section, we assume that /, = [ for all n. For a given A € CTn,y, let
v, € C! be nonzero vectors with ||v,|2 = 1 for all n, o be nonnegative and
(o; vi, V2, ..., Vy) be a solution of the following nonlinear equations,

F(vi,v2,...,VN)pn =0V, F(v1,v2,...,VN) 4 =0V, (7.1.2)

where

T T T T
F(vi, v, s VN)op = AX V] oo X1 V| Xpgl Vyu oo XN Vy
=AXIV] X1 V| X1 Vpyp - XN Vi,

T T T T
F(vi, V2, o s VN)op = A X V] oo X1 V| X1 Vg XN Vs

then o € R and v, are called the unitary eigenvalue (U-eigenvalue) and the corre-
sponding mode-n unitary eigenvector (the mode-n U-eigenvector) A, respectively.

We call (o; vy, va, ..., vy) a U-eigenpair of A. Ragnarsson et al. [3] derive a
method for obtaining a symmetric embedding sym(A) from A € RTy ;. Similarly,
for a general A € CTy, 1, we derive a complex symmetric embedding esym(A) €
CTn, ni1. We can establish a relationship between the US- and U-eigenpairs.

If (o;v1,v2,...,vy) is a U-eigenpair of A € CTy, 1, then (oy4; Vo) 1S
a US-eigenpair of the symmetric tensor esym(A) € CTn ni, where o, =
ol ... AN \/IZJ!NO‘ and

T T T T
(alvl ,azvz,...,ozNVN> , a=laj,ay,...,aNy] = [1,3:1,...,:&_1/].
-~

N-1

1
Vo = N
Furthermore, if 0 is the argument of oy, then the pair (o, e o/N
of csym(A).
It is obvious when N = 2 that, i.e., A is a complex matrix, U-eigenvalues are
the same as singular values. The Takagi factorization (another form for the singular
value decomposition) of A € C'*! can be written as

v) is a US-eigenpair

A=UxV', (7.1.3)

where U,V € C/*! are unitary matrices and = € R/*/ is diagonal and positive
semi-definite. Denote the main diagonal entry of X by o;.

The ith columns of U and V are respectively the left and the right Takagi vectors
of A, corresponding to the Takagi value o;. We call (o; u, v) as a Takagi tuple of A,
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which satisfies

Av=o0u, Av=ou,
ATu=o0v, A*u=ov,

wfu=1, v'v=1, o eR.

In particular, if U = V, A is a complex symmetric matrix and £ € R/*/ is
diagonal, (7.1.3) is the Takagi factorization of A [4-6].

7.2 Takagi Factorization of Complex Matrices

In order to analyze Algorithm 7.2.3 for the Takagi factorization, it is convenient
to define the left and right Takagi invariant subspaces of a complex matrix,
respectively generalized from the left and the right Takagi vectors.

Definition 7.2.1 Let A € C/*/. A Takagi invariant subspace pair of A is made up
of two subspace .2 and % of C!, with the property that x € 2’and y € #imply that
Ax € %and ATy € 2. In other words, we have A2 C #Zand AT% C 2 where
Z2=1{x:x€ 2}and ¥={y : y € #. The dimensions of .2 and % are the same.

Let the Takagi values of A € C'*! satisfy oy > --- > 0 > 01 >--->07 >0
and w; and v; are the left and the right Takagi vectors corresponding to o; with
i = 1,2,..., K. From Definition 7.2.1, the subspaces span{uj, uz, ..., ug} and
span{vy, v2, ..., Vg } are respectively called the left and the right dominant Takagi
invariant subspaces of dimension K of A.

Algorithm 7.2.1 Orthogonal iteration (simultaneous iteration or left and right
Takagi iteration) for complex matrices

Input: Given A € clIx! and aninteger | < P < [ withoy > --- >0 >0g41 > -+ > 07 >
0
Output: X x € RX*K is diagonal positive definite, and Ug, Vg € C'*X are unitary such that
AVK = UKEK and ATUK = VKZK
Given Xo, Yo € C'*K such that X}X = Y§Y = Ix
fork:O,l,AZ,...do R

Compu}\e Yi+1 = AXj and Xkﬂ‘l,\: ATYk

Factor X441 = Xk+1R1 441 and Yi41 = Y1 1Ry 441 (thin QR decompositions)
end for
if convergence then

Compute Aoy = Y5,AX o and T oo = [Ao|

Choose Uso = YooDoo and Voo = Xj41Dg41, Where Do € CKxK ig diagonal with entires
Doo(j, j) = exp (zarg(Yw-gA"”"')> andj=1,2,...,K

end if
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From this definition, we present the result for Takagi values.

Lemma 7.2.1 For A,B € C/*I, if there exist unitary matrices P, Q € C™! such
that B = P*AQ, then the Takagi values of A and B are the same.

7.2.1 Orthogonal Type Iteration for Complex Matrices

Let the Takagi values of A € C/*/ satisfy o1 > --- > 0 > 011 > --- > 07 > 0.
We compute the largest K Takagi values and the associated left and right Takagi
vectors of A, similar to the orthogonal iteration for symmetric matrix eigenvalue
problems. This idea is summarized in Algorithm 7.2.1.

In particular, when K = 1, Algorithm 7.2.1 is reduced to Algorithm 7.2.2, which
can be used to compute the largest Takagi value and the associated left and right
Takagi vectors of A with o7 > 02 > --- > o7 > 0. When the algorithms in this
chapter terminate, the symbol “oco” stands for the maximal iteration step.

Algorithm 7.2.2 Power method iteration for complex matrices

Input: Given A € C'*! withoy >0y > -+ > 07 >0
Output: Takagi value o) and associated left and right Takagi vectors u; and v
Choose xo, yo € C! with [|xo[l2 = [lyoll2 = 1
fork=0,1,2,... do

Compute 5.1 = Ax; and %41 = ATy,

Normalize x¢+1 = X1/ [Xk+11l2 and Yer1 = Vi1 /[¥e+1112
end for
if convergence then

Compute Ao = Y, AXoo and G = |Aool

Choose lis = exp (L arg(;w)) Yoo and Vo, = exp (L arg(;“”) Xoo
end if

We analyze the convergence of Algorithm 7.2.1, or that of the subspaces
span{Xy} and span{Yy} of C!. Assume that og > oK +1, We have

{ span{Xy1) = span{Xe+1} = span{ATY,},
span{Y 41} = span{Yy+1} = span{AXy}.
According to the Takagi factorization of A, we have

span{Ya} = span{US*U*Yo},  span{Ya 11} = span{US* 'V X},
span{Xo;} = span{VszV*Xo}, span{Xox4+1} = span{VszHUTYo}.
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For the convergence of span{Yy}, let A = UXV'. For k = 0,1,2,..., we
deduce that

(AA) =UZVIVETUHUEVTVETUY ... UZVTVETUY = USZU*,
ZkE:nes
(AASA = UEVTVETUHUEZVIVETUY...UsVIVETUH USVT
ZkE;es
— U22k+1VT,
(AT Ak =vz'UTUTvVHVETUTUSVY ... (VETUTUZVY) = V&V,
2k times
ATAAT =vxTuTuzvyvETuTusvy ... (vz'u'uzvy) veuT
Zk:i,r;es
— VEZ]H—IUT

since V'V = U*U = U'U = V*V = I;. Then, we have

U U*Y) = Udiag(oi*, o5%, ..., op)U*Y,

= o Udiag((o1/0x)*, ..., 1,..., (on /ox)*)U*Yo,

UzszerTXO — Udlag(o‘fk+1, 0‘2?k+1, ey O_[%]k+1)VTX0
— o2 Udiag((01 /ox) 1, .. 1, (ow Jo) VT X,
i Udiag((o1/ /

Since o;/ox > 1ifi < K,and o;/ox < lifi > K, we get

i P
diag((o1 /o), ..., 1,..., (on o)UYy = ( 2k)’
2k

P
diag((o1/ox)* 1, 1, (on o) FHVTIXg = ).
Q2k+1
Since (okx41/0k)* converges to 0 as k — oo, Qx € CW—=K)*K approaches the
zero matrix and Py, € CKxK dges not. Indeed, if Py has full rank, so does Py. Let
U= (uj,uy,...,uy) = (Ug,Ug), with Ugx = (uy, uy, ...,ux). Then

Pk

Uz?*U*Y) = o U (
2k

) = o (UkPy + Uk Qu),

P o~
UsHyTY, = 612<k+1U <Q2k+1> = 0'12<k+1(UKP2k+1 + Uk Qor+1).
2k+1
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Consequently span{Y}} converges to span span{Ug},

! span{Ya;} = span{(AA*)* Yo} = span{UxPa + Ux Qax}
span{Yay41} = span{(AA*)*AXo} = span{Ux P41 + Ux Qaer1),

The left Takagi invariant subspace is spanned by the first P left Takagi vectors. The
convergence of the right Takagi invariant subspace span{Xy} is similar.

In particular, we can set |Xo| = |Yo| = I; and K = [ in Algorithm 7.2.1. The
next theorem shows under mild assumptions that we can use Algorithm 7.2.1 for
computing the Takagi factorization of complex matrices.

Theorem 7.2.1 Let A € C'*!. Consider running the orthogonal iteration (Algo-
rithm 7.2.1) on matrix A with |Xo| = |Yo| = Iy and K = 1. If all the Takagi values
of A have distinct values and if all the principal submatrices U(1 : j, 1 : j) and
V(1 : j,1: j)are of full column ranks, then as k — oo, Ax = Y;AXy converges
to DX, where D € C'*! satisfies |D| = 1;.

Equivalently, as k — 0o, A; = fJ;‘Av,' converges to X. The Takagi values will
appear in decreasing order.

Proof Since Xp and Yo are unitary matrices, then X; and Yy are also unitary.
The Takagi values of A and YZAXk are the same. Write X; = [Xix, Xokl,
Y = [Yir, Yor], where X and Y have K columns, and X5, and Yp; have
I — K columns, then

(7.2.1)

YAX, = <YTkAX“‘ YTkAXz") .

Y3, AX ¢ YiAXo

Since span{Xjx} and span{Yi;} converge to a right and a left Takagi subspaces of
A, respectively, span{A T Y.} and span{AX;;} converge to the same subspaces. All
off-diagonal submatrices on the right-hand side of (7.2.1) converge to zero. Since
this is true for all P < N, every off diagonal entry of Y;AX; converges to zero, so

Y;AX converges to a diagonal matrix. O

7.2.2 QR Type Algorithm for Complex Matrices

Algorithm 7.2.3 summarizes the main process of the QR algorithm for the Takagi
factorization of complex matrices, originated from the QR algorithm for matrices.

When Algorithm 7.2.3 terminates, we do not restrict the entries of the final
diagonal matrix to be real. For the Takagi factorization of A = UXQT, then for
arbitrary diagonal matrix D € C/*/, whose diagonal entries satisfy d;; = exp(1¢;),
we have

A = (UD D*ED? (VD AT = (UD ) (D*Px) (VD #)T
= (UD~*)(ZD* ") (VD F)T,
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Algorithm 7.2.3 QR algorithm for Takagi factorization of complex matrices

Input: Given A € C/*/
Output: diagonal matrix A € C'*/ and unitary U, V € C'*/ such that AV = UA
Set Ag := A and Uy, Vo < I;
fork=0,1,2,... do
Factor Ay = PRy and A] = Q; Ty (QR decompositions)
Compute Agt1 = PpA;Qy, Upq1 = UrPy and Vi = Vi Qg
end for

where ¢; € (—m, w] with all i and «, B € R are nonzero. The absolute values of the
diagonal entries of D**# X, ¥ and £D**# are the same.

Since Ax+1 = Ry Qy = P,’{‘T;— = P;AQy, then by Lemma 7.2.1, Ay41 and Ay
have the same Takagi values. We claim that A; computed by the QR iteration is
identical to P;AQy implicitly computed by the orthogonal iteration.

Lemma 7.2.2 Let A € C'*! and Ay, = Y;AXy, where Yy and Xy are computed
from Algorithm 7.2.1 with Y5Yo = X{Xo = I;. As k — 00, Ay converges to DX if
all the Takagi values are distinct, where D € C'*! is diagonal with |D| = 1;. The
choice of D depends on Py, Qi and A.

Proof We prove by the induction. From Algorithm 7.2.3, we deduce that
AXp = YiriRogs1. ATY, = Xep iRy i,

where Xy41 and Yy are unitary, and Ry ;1 and Ry ;1 are upper triangular. Then
Y;AX: = Y;(Yrt1Rok41) is the product of the unitary matrix Q2 = Y Yi41
and the upper triangular R = Roxy1 = Y} +1AXk. Similarly, X} ATY,) =
XZ (Xk+1R1 x+1) is the product of the unitary matrix Q; = XZXkH and the upper
triangular matrix Ry = X} +1ATYk. These must be the unique QR decompositions
Ar = Q2R; and A,j = Q1R (except for the scaling of each column of Q and the
row of R by —1). Then

: Y AXet1 = (Yi AXO(X] Xit1) = Ryt (X Xit1) = RoQy,
X; A Y = X5 ATYO (Y] Yir) = Ry i1 (Y] Yir1) = RiQy.

This is precisely how the QR iteration maps Ak to A1, SO Yz +1A)_(k+1 = Aj41 as
desired. |

7.3 [Iterative Algorithm for US-Eigenpairs

We suppose that A € CTy,y, is symmetric and the imaginary part of a;;, i, 1S
not zero for all i, and n. We deduce some properties of US-eigenpairs of A. We
also present an iterative algorithm for computing the US-eigenpairs and analyze its
convergence.
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7.3.1 Properties of US-Eigenpairs

We present an obvious lemma on a property of US-eigenpairs of complex symmetric
tensors without the proof.

Lemma 7.3.1 Suppose that A € CTy 1 is symmetric and 6 € (—m, w]. If (o; V) is
a US-eigenpair of A, then there exists a scalar ¢ € (—m, 7] such that (¢ o; e V)
and (e=%0; e'v) are respectively solutions of the two equations in (7.1.1) with
Nop =6.

Two complex symmetric tensors A, B € CTy, are similar [7], if for a
nonsingular P € C!*! we have B := APY = A x| P x, P--- x P. The inverse
transformation of 8 by P~! will retrieve A:

BPHY = (APHYPHY = A x; P7'P) x2 PT'P)--- xy (P7'P) =

For a symmetric A € CTy.; and a nonsingular P € C/*/, it is easy to prove that
B =APY is symmetric (see [7, Proposition 10] for the real symmetric tensor case).

In particular, assume that AecC Ty.r is similar to A through a similarity
transformation by a unitary matrix Q* € C/*/ Let A = AQ*N and 6 € (-7, 7]
be the argument of .?{11 1= ﬂel , where e; is the first column of I;. It follows that
if 6 # 0 and (o; e/Ney) is a US-eigenpair of A, then (0; q1) is a US-eigenpair of
A, where q; denotes the first column of Q. Then we have

e WWN-D/NZeN=1 — o0/N5e; & A x1 Q x2 (6] Q%) - xn (¢] Q%) = 0e
S Ax1Q" x2q] -+ XN q] =0€]

=4 ﬂqN L =0Qe = oqj.
(7.3.1)
Also, we have

oel & \?lqjlv_l =o0q;.

ele(N—l)/N’y‘(eJIV—l — p0/N
We note that 0 = |§Ie{v |. In fact, we do not need to apply e; and the above result
easily generalizes to any e;, the ith column of I; for all i, as in Theorem 7.3.1.

Theorem 7.3.1 For a symmetric tensor A € CTy i, if (0; e‘g/Ne,-) is a US-
eigenpair of AQ*)N, then (0; q;) is a US-eigenpair of A, where q; is the ith
column of the unitary matrix Q € C'*! and 6 € (—m, ] is the argument of

(AQHM)el.
Proof The proof follows from (7.1.1) and (7.3.1) with e; replaced by e;. |
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If two complex symmetric tensors are similar through a similarity transformation
by a unitary matrix, then the corresponding US-eigenpairs satisfy the following
theorem.

Theorem 7.3.2 Suppose that A, B € CTy 1 are complex symmetric tensors. If
there exists a unitary matrix Q € C'! such that B = AQ*)N and (o;v) is a
US-eigenpair of B, then (o; Qv) is a US-eigenpair of A.

Proof We leave the proof as an exercise. O

7.3.2 QR Algorithms for Complex Symmetric Tensors

In Sect. 7.2, we propose a QR-type algorithm for computing the Takagi factorization
of complex matrices. The algorithm is efficient for complex symmetric matrices.
The QR algorithm for a complex symmetric matrix starts from an initial complex
symmetric matrix Ag € C'! and computes its QR factorization Qi Ry = Ag. Next,
the QR-type product is reversed to give A = R1Q; = Q7A¢Q;. In subsequent
iterations, we get QxRy = Ax_1 and

Ak = QpA-1Qr = (Q1Q2... Q0 "A0(Q1Q:2 ... Qr) = Q;A0Q,.
where Qk =0Q1Q>...Qx.

Under mild hypothesis, Ay converges to a diagonal form, where its absolute
value contains the Takagi values of Ag. In this section, we first present the QRCST
algorithm to compute US-eigenpairs of complex symmetric tensors. Moreover, with
a permutation strategy to scramble tensor entries, a more efficient version of the
QRCST is proposed to produce possibly more distinct US-eigenpairs.

The QRCST is summarized in Algorithm 7.3.1. The core of QRCST is a two-step
iteration, indicated as Steps 1 and 2, for the ith mode-(1, 2) slice with all i.

Some remarks about Algorithm 7.3.1 are presented in the following:

(a) Since the core computation of the QRCST lies in the QR factorization of O (1 3
complexity for complex matrices and the corresponding similarity transform of
O(NIN*1!) complexity, the overall complexity is therefore dominated by the
better.

(b) Ay is a finite sum of R rank-one tensors, the complexity of the QRCST will be
reduced to O(NRI?).

For structured tensors, we can improve the computation of the similarity
transformation by unitary matrices in Step 2 of Algorithm 7.3.1. For example, for
Hankel tensors [8, 9], we can apply the fast Hankel tensor-vector product technique
[10].

For a given symmetric A € CTy,;, the QRCST algorithm produces at most /
US-eigenpairs in one pass, as some US-eigenairs may be identical. According to
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Algorithm 7.3.1 QRCST
Input: Given a symmetric A € CTy 1, tolerance T, maximum number of iteration Kpax
Output: US-eigenpairs (o;; q;)
fori =1,2,...,1do
Set Ag :=Aand Q « I;
Compute € < [|Aoe} ™" — eill2/Aoe] 12
iteration count k < 1
while € <— 7 or k < Kpax do
Step 1: factorize Q Ry = {ﬂk_lefv ~2 and Compute Q < QQy
Step 2: compute Ay = A1 (Q:)N
Compute € < [Are " —eill2/[Are] ~Il2
end while
end for
if converged then
Let o; < |ﬂkelN| and 0 be the argument of ﬂkelN
Compute q; < ¢‘9/NQC:, i), where Q(, i) is the ith column of Q
end if

Theorem 7.3.1, we may improve the efficiency of Algorithm 7.3.2 by scrambling
the entries in Ay.

Let G be the set of all permutation matrices and /! be its cardinality. We can apply
QRCST on a complex symmetric tensor with different permutations. The resulting
Permuted QRCST algorithm for complex symmetric tensors is summarized in
Algorithm 7.3.2.

Algorithm 7.3.2 Permuted QRCST

Input: Given a symmetric Ayg € CTy 1
Output: US-eigenpairs (0;; q;)
forp=1,2,...,1'do
Choose P, € G and compute A, <« ﬂoPIIY
Apply Algorithm 7.3.1 with A, and collect distinct convergent US-eigenpairs
end for

As the cardinality of & is /!, Permuted QRCST quickly becomes impractical for
large 1.

7.3.3 Convergence

We next analyze the convergence of Algorithm 7.3.1. We set Qo = Iy and Q . =
Qi1Q7...Qx. Also, q, is the ith column of Qk and r;;j i is the (i, j)-entry of Rg. A
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few iterations of the QRCST can be better visualized as follows:

QIRy = Ao} 2, A1 = AQD" = ﬂo(Q*)N
Q:Ry = A" % = Ag x1 Q} x2 Q) x3 4} -+ xn qF, = Q[(Aq, HQ,,
Ay = A1Q3)" = ﬂo(Qz)N
Q3R3 = ﬂzefviz = Ap X1 Q; X2 Q; X3 q;k,Z e XN qf’2 = Q;(ﬂoqﬁ/{z)Qz.
(7.3.2)

From (7.3.2), we have fork = 1,2, ...,
A1 = AoQ_ DN, QR = Ar—re] > = Q;_ (Aoq 2)Q,_,.  (73.3)

Multiplying Q, , to both sides of (7.3.3), then we get

QRi = (g 2)Q,_,

1,k F12,k --- F11k

22,k -+ 121k
0,.) .

& (4,9, (7.3.4)

FILk
[ﬂoql k— 1] (ql,k—l Uy - qI,k—l)‘

It is obvious that (7.3.4) is the tensor generalization of the matrix orthogo-
nal iteration (or called the simultaneous or the Takagi subspace iteration) for
finding dominant invariant Takagi subspace of complex symmetric matrices (Algo-
rithm 7.2.1).

If we set i = 1 and extract the first columns on both sides of (7.3.4), then we get

4, 1k = (FAody, 2 Da, = Foay [l or g, =

According to (7.3.5), we derive a higher order power method for computing
the US-eigenpairs of complex symmetric tensors. This process is summarized in
Algorithm 7.3.3. The convergence analysis of Algorithm 7.3.3 will be presented in
the next subsection.

If we start Algorithm 7.3.1 with i = 2, then the first two columns of (7.3.4)
proceed as

q, M1k = (ﬂoqg{k_fl)ql’kfl, q, "2kt 4y 10k = (?loq2 e 1)(12 1
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Algorithm 7.3.3 Higher order power method for complex symmetric tensors

Input: Given a symmetric A € CTn 1
Output: US-eigenpairs (o; v)
Choose an initial vector xg € C" with ||xg|l» = 1
fork=0,1,2,... do
Compute yx41 = Ax; ' and normalize Xi+1 = Yi+1/¥k+112
end for
Compute Ao = ﬂxgvo
Set 000 = |Aoo| and Voo = exp (L 16\)1) Xo0, Where 6 € (—m, ] is the argument of Ao

With convergence at k = 0o, we have

q) 1100 = (ﬂoqg{;}z)qlm, q) 12,00+, 122,00 = (ﬂoqg;z)qz’oo,
(7.3.6)

from which it is easy to check that 13 o0 = =4q; ooﬂoq =ru OQq1 sod 00 = =0.
In fact, for any i, if Q and Ry converge to Q and Roo respectlvely, then (7.3.4)
implies

Ml 0 ... 0
0 m2e-..- O
Ro=1 . A Q;(ﬂOQf;Z)Qw, (7.3.7)
0 N 0 r”’oo

where Ry is a diagonal matrix due to the symmetry on the right. We observe that
if rj; oo 1S not nonnegative, then we can derive a strategy to transform Ry, to a
positive semi-definite diagonal form. Any symmetric A € C’*/ can be represented
as A = QAQT, where Q € C'*/ is unitary and A € C/*! is diagonal. If A is
not positive semi-definite, then the Takagi factorization of A can be represented as
A = UXU', where ¥ = D"!AD™! and U = PD. The choice of the diagonal
matrix D € C'*/ is to ensure that the diagonal matrix X is positive semi-definite.

Suppose that Ry, is a positive semi-definite diagonal matrix. If we pre-multiply
QOQ onto (7.3.7) and post-multiply with e, then we have

N-2
q; ijeo = (Foq; 4,

which leads to the US-eigenpair (rij 03 q, ) withi = j.
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7.3.4 Convergence of Algorithm 7.3.3

Let N = 2L. For a given symmetric A € CTy,;, we define

K K

where ajj in A are given by aij = Qijiy..ijj1 jo..ji> with

! i=1""N o = D4 Tk = D ik, L <inis..ix ST,
J=1 G =D TGk = DA ks L= ijejr < T
Here z € C/ satisfies ||z||, = 1.

If there exists a unitary vector zg € C’ such that g(zo) is complex, where the
nonzero 0y € (—, 7] is its argument, let Zg = e'%/Ngzy Then g(zp) is nonnegative.
Hence we can assume that g(z) is nonnegative for all unit vectors z € C/.

Let z = x + ty where x,y € R’. Then g(z) can be viewed as a real bivariate
function of its real and imaginary parts [11, 12]. An auxiliary function of g is defined
as follows: f(x,y) : R* x R” — R where f(x,y) = g(z) and z = x + ty.
Furthermore, a useful mapping w = ¢(z) is given by (M (z), J(z)) € R?!| where
N(z) and J(z) return the real and imaginary parts of z, respectively. The mapping
Q: C! - R is invertible. Substituting z = (p‘l(w) into g(z), we have

fw =g (cp*l(w)) RY L R,

Let g(z) be a function whose values are real or =00 and whose domain is a
convex subset .7 of C!, and the set .} € R is the range of ¢ with domain .. It is
obvious that .#is a convex subset in C/ if and only if .#] is a convex subset in R*/.
Then f(w) is said to be convex on .77, if the epigraph of f(w):

epi(f) ={(u,v) :ue A, velR,v> f(u)}

is a convex subset of R2/+1,

Theorem 7.3.3 (Convergence of Algorithm 7.3.3) For any symmetric A € CTn |
with an even N, if the associate function g(z) is convex (concave) on C!, then
Algorithm 7.3.3 converges to a local maximum (minimum) of the restriction of g
to the unit sphere ¥ = {z € C! : ||z||, = 1}, for any initialization, except for saddle
points or crest lines leading to such saddle points.

Proof First consider the case that g(z) is convex on the convex set . € CI.
According to [13, Proposition 1], f(w) is convex on .#]. This implies that epi(f)
is a convex subset of R?/*!. Hence a tangent hyperplane at any point (w, f(W)) is
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a supporting hyperplane of epi( f). By the proof of [14, Theorem 4], we have

flo@rr1) = f(o(zi)), 2k, Ziyr1 € Z,

where z; and z;1; are derived from Algorithm 7.3.3 with some initial vectors

zyp € X. Hence we have g(zx) > g(zx+1). The convergence follows from the
fact that the restriction of g to X is bounded from above, namely, Ifz(\lz’)v
2
(z®z®m®zﬁ;f1§z®z®m®z) < o1, where o}
2
g being concave can be treated similarly, by replacing g with —g. O

is the largest Takagi value of A. The case of

7.4 Iterative Algorithms for U-Eigenpairs

Suppose that A € CTy,; and the imaginary part of a; ;, i is not zero for all i,, and
n. We investigate the properties of U-eigenpairs of A, design an iterative algorithm
for their computation and analyze its convergence.

7.4.1 Properties of U-Eigenpairs

A basic property of a U-eigenpair of A € CTy; is given in the following lemma.

Lemma 7.4.1 Let A € CTy,; and 6 € (—n, ] If (0;v1,V2,...,Vy) is a U-
eigenpair of A, then there exists N scalars ¢, € (—m, ] such that

@o;e v, ... e Nvy), (e Y0 vy, €¥2va, ... eV V)
are solutions of (7.1.2) with ¢1 + @2 + --- + ¢y = 6. In particular, for all n, we
can have all ¢, identical with ¢, = 6/N.
Proof From (7.1.2), the lemma is proved. O

For A € CTny, let U, € CI*! pe complex matrices for all n. Define
B = A x1 Uy x2 Up--- xy Uy € CTy with entries bj . jy =
Yot et X 21 @it iy U1 i U2 iy - UN iy, WheTe w4, is the
(in, jn)-entry of U,. By some tedious manipulations, we have the following
theorem.

Theorem 7.4.1 Assume that U, € C'*! are nonsingular for all n and V,, = U;l.
IfFB=Ax1 U xoUp--- xyUpn,then A=8Bx1 Vi x2Vo--- Xy Vp.
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In particular, if U, is unitary and 8 = A x| U} x2 U3 - - - xy Uy, then we say that
A is similar to B through similarity transformations by N unitary matrices U,. The
following theorem states the relationship between the U-eigenpairs of A and B.

Theorem 7.4.2 Let A, B € CTn. If A is similar to B through similarity
transformations by N unitary matrices U, € C'*! that is, B = A x, Ul x2
Uj - - xn Uy, then they have the same U-eigenvalues.

Moreover, if (o; Vi, V2, ..., VN) is a U-eigenpair of B with ||v,ll» = 1 and o >
0, then (o; Uyvy, Uava, ..., Uyvy) is also a U-eigenpair of A.

Proof Since (o; vy, v2, ..., Vy) is a U-eigenpair of B, then for all n, we have

k k k k
B X1V X1 Vg Xpt1 Vail " XN Vy =0Vp,

T T T T
B X1V - Xyl Vg X4l Var1 XN Vy =0V,
According to the assumptions, we have

* * * *
B X V] X1 V| Xl Yy " XN Vy

T T T T
=B X1V X1 V| Xptl Vypp oo XN Vy

=U; (ﬂ x1 (UIvD) " Xt (U 1¥a—1) T Xt (Ung 1 V) T oo Xy (UNVN)T) .

Since U, € C*! are unitary and ||v,|l = 1 for all n, then (U,v,)*(U,v,) =
vi(UsU,)v, = 1. Moreover, we have

Ax1 (U)Xt (Upe1¥n—1) T Xn1 (U1 Vag1) T - xy (Unvay) T

= G(Unvn)s
T T T T

Axp Urvy) - Xp—1 Wn—1Va—1)" Xp41 Upt1Va+1) - xn (Unvy)

=o(U,vy,).
Hence (o; Ujvy, Uava, ..., Uyvy) is a U-eigenpair of A. |
Let 6 be the argument of A X1 e]— X2 eir Se XN e—lr, where e; is the first column
of I;. If o is a U-eigenvalue of B and ¢'?/Ne; is the mode-n U-eigenvector of B
associated to o, then (o, uy,1,u2,1,...,uy,1) is a U-eigenpair of A, where u, |

is the first column of U,. More generally, we have the following corollary from
Theorem 7.4.2.

Corollary 7.4.1 For A € CTy ;. If (0,¢/Ne;, e?/Ne;, ..., e Ne;) is a U-
eigenpair of B = A x1 U] xa Uj - -« xy Uy, where Uy, € C™! are unitary, then
(o;uy i, w2, ...,uy,;) is a U-eigenpair of A, where u, ; and e; is the ith column of

U, and 1y, respectively, and 0 € (—m, 7] is the argument of Bx 1e;r xze;r .- -xNelT.
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Algorithm 7.4.1 QRCT
Input: Given a A € CTy , tolerance 7, maximum number of iteration Kmax
Output: U-eigenpairs (0;; p1,i, P2.is---»> PN.i)
fori =1,2,...,1do
Set Ay := A and compute €, <« || Fole;, e;,...,€)_p
—enill2/lFolei, €, ..., €)—n—m+1l2

Set Q, < I; and € <~ maxj<,<n €,

iteration count ¢ <« 1

while € > 7 or ¢ < Kpax do
Step 1: factorize Q, xRy x = Fr—1(€i, €, ..., €)_n _m+1)
Step 2: compute

Ar = Ar—1 x1 Qi x2 Q54+ xn Qi

€n < || Fr(ei, e, ..., €)—n —€lla/l| Fr(e;i,€,....€)pn—@m+nl2

Compute Q, < Q,Q k and € <— maxj<,<n €,
end while
end for
if converged then
o; < |F(e;,€;,...,¢e)|, where 6§ is the argument of F;(e;,e;,...,¢;)
qi < e?'NQ,(:, i), where Q, (:, i) is the ith column of Q,,
end if

7.4.2 QR Algorithms for Complex Tensors

In Sect.7.3, we propose an iterative algorithm for the US-eigenpairs of complex
symmetric tensors based on the Takagi factorization and Theorem 7.3.1. In this
section, we present an iterative algorithm for computing the U-eigenpairs of general
complex tensors based on the Takagi factorization and Corollary 7.4.1.

We present the QR-type algorithm for computing the Takagi factorization of
general complex matrices in Sect. 7.2. The QR-type algorithm for general complex
matrices starts from an initial complex matrix Ag € C’*/, and computes two
QR factorizations U R; = Ap and V|T| = A(—)r . The QR-type product is then
reversed to give A| = UTAon. In subsequent iterations, we get UyRy = Ax_1,
ViTr = A,;';l and

A = UzA,HVk = (UiUz...U)*Ag(V1V2... V) = UzA()Vk,

where U, = U1Uy...Ugand V, =V V... V.

In the following, we present a QRCT algorithm for U-eigenpairs of general
complex tensors. Moreover, with a permutation strategy to scramble tensor entries,
a more efficient version of the QRCT is proposed to compute more U-eigenpairs.
The core of the QRCT consists of Steps 1 and 2, for all ith mode-(m, n) slices with
alli and m < n.
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Remark 7.4.1 In Algorithm 7.4.1, we define

Fi(ej,e,...,e) = Ay ><1el-T xzel-T~-~xNel-T,
T T T T
Fi(e. e, ....€)pn=Ar X1€ -+ Xp_ 1€ Xpp1€ -+ XN€ ,
T T T T
Fr(ei,ei,....€) p_(n+1) =Ar X1€; - Xp_1€ Xp42€ - XN €,

and when k = N, we replace k + 1 by 1.

For A € CTy,1, the QRCT produces at most / U-eigenpairs in one pass.
According to Theorem 7.4.2, a more efficient version of the QRCT can be devised,
by scrambling the entries in Ao, as summarized below.

Algorithm 7.4.2 Permuted QRCT

Input: Without loss of generality, let Ay € CTy,; with N = 3.
Output: U-eigenpairs (0;; q1,i, q2,i 43,i)
for py=1,2,..., Py do
for p, = 1,2,..., Py do
for p3=1,2,..., P3do
Choose P, € & and compute Ap, p, p, < Ao x1 P] x2 PJ x3PJ
Apply Algorithm 7.4.1 with A, ,, p; and collect distinct converged U-eigenpairs
end for
end for
end for

Again, the Permuted QRCT quickly becomes impractical for large I and N, since
we need to preform QRCST (1 N times in one pass.

7.4.3 Convergence

We consider the convergence of Algorithm 7.4.1. We generalize Algorithm 7.3.3,
which can be used to compute the US-eigenpairs of complex symmetric tensors and
the U-eigenpairs of complex tensors.

Without loss of generality, let A € CT3 ;. Forn = 1,2, 3, we define Qn =

Q1.1Q1.2...Qp k, with Qn 0= I; and Qn | = Q,..1. We also use q, i to denote
the ith column in Qn L and ry, ;j x for the (i, j)-entry of R, 1.
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A few iterations of Algorithm 7.4.1 can be visualized as follows:

QiR =HAg x3¢], QuiRoi=Ax1¢/, QiiRs1 = (A x2¢/)",
Ar=Ao x1Qf; x2Q5; x3 Q5 = Ao x1 Q7 x2Q5 | x3Q7 ;.

QiaRi2 =A; x3¢] = Q} Ao x34q;,,Q,, =Qf | Ao x3q,,,Q,

Q2Ro2 = Ap x1¢] =Q5 Ao x1q},,Q, =Q Ao x14/,,Q,,.

Q:2Rs32 = (A x26))T = Q] (Ao X245, DQ; )" = (Q] Ao x24,,,Q, )",
Ay = A x1 QY5 x2Qp5 x3 Q35 = Ao x1Q}, x2Q;, x3Q5,

QusRi3 =7 x3¢] =Qf , 7 x34;,,Q,,=Q;, 70 x34,,,Q,,.

Q3R23 = A x1 €] = Q},Ax14q;,,Q,, = Q;,A0x14,,,Q, ,.

Q:3R33 = (A2 x2e0)T = (Q) (Ao x245,,)Q, )" = Q] , 7o x24,,,Q;,) "

(7.4.1)
From (7.4.1), we see that in general fork = 1,2, ...,
Ar—1 = Ao X1 Qf’kfl X2 Q;ikl X3 Q;kfl,
QuiRk=Q Ao xsqy, Q)
(7.4.2)

—_ O *
QR =Q;, FAoxiqy, Q.

.
_ * *
Q3. R3 k= (Ql,kflﬂo %2 q2,i,k—lQ3,k71) :

Multiplying Q and Q to the both sides of (7.4.2), we obtain

Lk—1° Q2,k—1’ 3,k—1

. * _ *
Q,  Rik = Ao x3 q3,i,k71Q_2|_,k71’ QR =HAoxidy;, Q.
Q3’kR3,k = (A x2 q;,i,kq) Ql,kfl‘
(7.4.3)

It is obvious that (7.4.3) describes a tensor generalization of the matrix orthogonal
iteration for finding the dominant invariant left and right Takagi subspaces of
matrices.

If we set i = 1 and extract the first columns of (7.4.3), then we have

_ * _ * *

a4, LIk = (Ao x3 q3,1,k—1)q2,1,k—1 = Ao x2 Q1 3% 41
_ * _ * *

a4y 210k = (Ao x1 ql,l,k—l)q3,l,k—l = Ao x1 Q1 <39 41

_ * T _ * *
Qg 30k = (FAoxady )y, = Ao X dy o X2,y
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or,

_ * * * *
Q pprk = Ao xaly o X3y, / Hﬂo 24y | gy <3 q3,1,k71H2’
_ * * * *
Q2 =Ao X1y, X343,/ Hﬂo X1y X3 q3,1,k—1H2’

4y, ;73010 = FAo X1 q>1k,1,k—1 %2 q;,l,k—l/ Hﬂo X1 q>1k,1,k—1 %2 q;,l,k—luz’
which is just the higher order power method for computing the U-eigenpairs
of general complex tensors. This algorithm is summarized in Algorithm 7.4.3.
With the complex symmetric embedding and Theorem 7.3.3, we shall analyze its
convergence.

Algorithm 7.4.3 Higher order power method for complex tensors

Input: Givena A € CTy 1
Output: a U-eigenpair (o; Vi, V2, ..., VN)
Choose initial vectors X, o € C! with IXz0ll2 =1
fork=0,1,2,... do
Compute yy k+1 = F (X1 ks X2,k - - - » XN k) —n
Normalize Xp k+1 = Yn.k+1/1Yn.k+1112
end for
Compute Aoo = F (X100, X2,005 - - - » XN, 00)
Set 00 = |Aoo| and v, oo = €xp (t N) Xn,00, Where 6 € (mr, 7] is the argument of Ao

If we start Algorithm 7.4.1 with i = 2, then the first two columns of (7.4.2)
proceed as

Q| Lk = Ap X2 q;,1,k71 X3 q;“fl,
qp et dy,roe = Ap X2 q;,z,k—l X3 q;Z,k—l’
qy 7210k = Ao X1 q>1k,2,k—1 X3 q;l,k—l’
Q| 202k 4y, r2226 = Ao X1 Q) K3y,

. *
U730k =Ao X1y X285,

_ * *
Uy, 473024 H g5 73226 = Ao X1 4y 5, X2y 5, -
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Assuming convergence at k = oo, we have

— *
q4) ) o 1loo = Ao x2 4100 *3935 o0
_ *
Q) | oo 112,00 + 4 5 122,00 = Ay X2 95 00 X335 o

_ *
Uy ool2 1000 = A0 X1 4y, X345

’ - (7.4.4)
q 72.12,00 + q r222.00 = Ao X1 q X3 q;
2,1,00 © 15> 2,2,00 550 1,2,00 3,2,00’
— *
431 o3 1100 = Ao x1 4100 X295 o
_ * *
U3 ) oo/312.00 H 5 5 (132200 = Ao x1 4500 %295 o0
Due to (7.4.4), it is easy to check that
_ * * * _
112,00 = Ap X1 U X255 0 X383, 0 = 0,
_ * * * _
212,00 = Ao X141, X2y X3Gy, = 0, (7.4.5)

* * *
131200 = Ao X1y, X204y, X345, =0,
and
* * *
k22,00 = Ao X1 Q) , X205, X343, ., n=1273.

For all i, if Qn r and R, ; converge to Qn ~ and R, ~, respectively, then
from (7.4.2), we have ’

111,00 0 . 0
Ri o = 0 o : =QF (Ao x3q; Q
» 0 . i 1,00 3,i,00 2,00’
. . O
0 0 r1,11,00
211,00 0 . 0
0 72 : ¥ X
| 0 e g (e, e,
. . O
0 0 11,00
311,00 O 0
0 73220 : % * T
Rico=| . =Q; ., (M x2ds, ) Q.
. . O
0 0 r3,11,00

(7.4.6)
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where R, is diagonal due to the Takagi factorization of a complex matrix. We do
not know whether all diagonal entries in R, ~ are nonnegative. However, we can
convert all R, to diagonal forms through the following strategy: let A = PAQT e
C™*! where P, Q € C'*! are unitary matrices and A € C'*! is diagonal. If A is
not positive semi-definite, then the Takagi factorization is A = UX VT, where

*=D'AD"!, U=PD, V=0QD,

and the diagonal D € C/*/ is unitary with a positive semi-definite diagonal matrix
.

According to (7.4.5), we see that all R, o, are identical, denoted by R,. For each
n, if we pre-multiply (7.4.6) with Qn o and post-multiply it with e;, then we have

. _ * *

4y j o iioo = o X2 8y ; X34 ;
.. — * *

q2,j,oor”’°° = Ao x1 qlﬁi’oo X3 q3’j’oo,
- _ * *

U3 j o iioe = Ao X1 ; X2 o

which leads to the U-eigenpair (7} o0; 4. ) when i = j. For

’ q2,i,oo’ q3,i,oo
a more general A € CTy,j, we can prove the convergence of Algorithm 7.4.1
similarly.

We can also compute the U-eigenpairs of A € C/1*2xxI¥ by a slightly modi-
fied version of Algorithm 7.4.1. The process is similar, so we omit its details. Note
that by modifying Algorithm 7.4.1, we can produce at most min{/y, I2, ..., Iy}

U-eigenpairs in one pass.

7.5 Special Case: Real Symmetric Tensors

In the previous two sections, we propose the QRCST algorithm for the US-
eigenpairs and the QRCT algorithm for the U-eigenpairs, if the imaginary parts
of the entries of the target tensors are nonzero. We consider how to apply
Algorithm 7.3.1 for computing the US- or U-eigenpairs of A € RTy ;.

Let (o; v) be a US-eigenpair of a symmetric A € RTy , then

AV =ov, AV =ov, |v[2=1.
Since the argument of ¢ = /—1is 77/4, then (o'; e ~“"/*v) is also a US-eigenpair of
1A, where the imaginary part of the entries of tA is nonzero. For the US-eigenpairs
of A, we apply Algorithm 7.3.1 or 7.3.2 to the complex symmetric tensor tA.



208 7 US- and U-Eigenpairs of Complex Tensors

Similarly, if (o5 vi, V2, ..., vy) is a U-eigenpair of A € RTy j, that is,
F(Vla V27 ey VN)—n = O—V}’la
F(Vi,v2,...,VN)—p = OVp, Vel =1,
then (o; ey e W2y, . TN vy) is also a U-eigenpair of (A with

Zflv:l 6, = m/2. For the US-eigenpairs of A, we need to apply Algorithm 7.4.1
or 7.4.2 to 1 A.

7.6 Numerical Examples

We choose the accuracy tolerance 7 = 107! and include examples for US- and
U-eigenpairs. Note that || x|l = ||x|» for any vector x € C/. If A € CTn, is
symmetric, then

erry = H.?{xlivfl — AkXk H2 <T
or
erry = Hﬂvljy_l — Ok Vi H2 <T

as the convergence criterion in Algorithm 7.3.3. Meanwhile, when A € CTy j, for
all n, we define

erty k= | F(X1ks X2.ks - XN —n — AnXnk [ 5 »
or
erty k := || F(Viks Voo - s VNK) —n — OkVik | 5 -
Then we select
erry ;= max ey <7T
n=1,2,...,.N

as the convergence criterion of Algorithm 7.4.3.
Next, we give an example for computing some US-eigenvalues of two given
complex symmetric tensors.

Example 7.6.1 The symmetric A, B € CT3 7 are selected from [1] with

ain =2, a12= 1, ai;po=~-1, ax;p =1;

bin =2, biio=-1, bipp =-2, bypp = 1.
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For A, when we apply Algorithm 7.3.3 for 100 different initial starting points, we
obtain two US-eigenvalues o1 = 2.1745 and 0o = 2.3547. The US-eigenvectors
corresponding to o7 are:

(—0.4863 — 0.8423:, —0.1163 — 0.20140) T,
(—0.4863 + 0.8423¢, —0.1163 + 0.2014:) T,
(0.9726,0.2326) ",

and that corresponding to o7 are:

(0.2536 4 0.4392:, —0.4309 — 0.74641) T,
(0.2536 — 0.4392:, —0.4309 + 0.74641) T,
(—0.5071,0.8617) T.

For B, after applying Algorithm 7.3.3 100 times, we obtain one US-eigenvalue o =
3.1623. The US-eigenvector associated with o are:

(—0.4436 + 0.5506¢, —0.5506 — 0.44361) T,
(0.6987 — 0.1088:, —0.1088 — 0.6987) ",
(—0.2551 + 0.6595¢, 0.6595 + 0.25511) ",
(—0.4436 — 0.5506¢, —0.5506 + 0.44361) T,
(0.6987 + 0.1088., —0.1088 + 0.69870) T,
(—0.2551 — 0.6595¢, 0.6595 — 0.25511) .

After applying Algorithm 7.3.2 to compute the US-eigenpairs of A and B, we
need to replace A and B by «A and (B, respectively. For A, by Algorithm 7.3.2,
then we obtain two US-eigenpairs:

o =2.3547, v=(—0.4863 —0.84231, —0.1163 — 0.20141) ",
o =2.1745, v = (0.2536 — 0.4392:, —0.4309 + 0.7464.) .

As for B, we obtain one US-eigenvalue o = 3.1623 by Algorithm 7.3.3 and two
associated US-eigenvectors:

v = (—0.2551 + 0.6595:, 0.6595 + 0.25510) T,
v = (0.6987 4 0.1088:, —0.1088 + 0.6987) .

Next, two tensors in following example are chosen from [15, Example 3] and
[16, section 4.1].
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Example 7.6.2 Consider the nonnegative tensor A € CT4 > with nonzero entries
A =251, A =25.6, Az =248, Axpzxp =23,
and the entries of 8 € CT3 3 are given by

Binn = 0.0072, Bip1 = —0.4413, Bi31 = 0.1941, Byy1 = —0.4413, By = 0.0940,
Br31 = 0.5901, B311 = 0.1941, B3y = —0.4099, B331 = —0.1012, B2 = —0.4413,
Bin = 0.0940, Bi3p = —0.4099, Bri1p = 0.0940, Brop = 0.2183, B30 = 0.2950,
B31p = 0.5901, B3n = 0.2950, B3z, = 0.2229, B3 = 0.1941, Bz = 0.5901,

Bizz = —0.1012, Br1z3 = —0.4099, B3 = 0.2950, Byz3 = 0.2229, B33 = —0.1012,

Biyz = 0.2229, Bizz3 = —0.4891.

We apply Algorithm 7.4.3 to compute some U-eigenpairs of the symmetric tensors
A and B. For A, according to [17, Example 3.11], we know that 25.6 is a singular
value of A and the associated mode-n (n = 1, 2, 3, 4) singular vectors are

vi=(=L0T, v»=0,-D", vi=(1,0", vy=(0,-D",

and 25.6 - (vi ® v2 ® v3 ® vy) is the real best rank-one approximation of A.
When we apply Algorithm 7.4.3 100 times, we obtain a U-eigenvalue o = 25.6
and the associated mode-# unitary eigenvectors

u, =eév,, n=123,4,
where ¢t @1 102103+04) — | with 6, € (-7, 7].

Meanwhile, for B, according to [17, Example 3.11], we know that 1 is a singular
value and associated mode-n (n = 1, 2, 3) singular vectors are

vi = (0.7955,0.2491, 0.5524) T,

v2 = (—0.0050, 0.9142, —0.4051) ",

v3 = (—0.6060, 0.3195,0.7285) ",
and 1 - (vi ® v2 ® v3) is the real best rank-one approximation of 8. When we apply
Algorithm 7.4.3 100 times, we obtain a U-eigenvalue 0 = 1 and the associated
mode-n unitary eigenvectors are

w, = ey, n=1,23,

where ¢! @1102103) — | with 6, € (-7, 7].
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We illustrate the feasibility of Algorithm 7.3.3 where the tensors are chosen from
[9, 10].

Example 7.6.3 Consider symmetric A € CT3 , and B € CTy , with

A iri; =exp((—0.01 4+ 27:0.20) (i1 + iz + i3 — 2))
+exp((—=0.02 4+ 2710.22) (i1 + iz + i3 — 2)) + €i|+ir+i3—2-
b5152i3i4 =exp((—0.01 + 27:0.20) (i1 + i2 + i3 +isa — 3))
+exp((—0.02 + 27:0.22) (i1 + iz + i3 + is — 3)) + € tirtiz+ia—3»
where ¢;,tiy+i;—2 and e; 1, +i;+is—3 are two different complex white Gaussian
noise.

We apply Algorithm 7.3.3 to compute some US-eigenpairs of the symmetric tensors
A and B with I = 5. For A, when we apply Algorithm 7.3.3 100 times, we obtain
a US-eigenvalue o = 18.0492 and the associated US-eigenvector is

u =a(—0.4019 + 0.1710¢, —0.2677 — 0.3921¢,
0.2203 — 0.3541¢, 0.4520 + 0.1410¢, —0.1232 4 0.41310) T,

where the nonzero « € C satisfies || = 1.
For B, when we apply Algorithm 7.3.3 100 times, we obtain a US-eigenvalue
o = 37.9441 and the associated US-eigenvector is

u =a(—0.1701 4 0.4419:, —0.5187 — 0.0502,
—0.0797 — 0.4268:, 0.3549 — 0.2051¢, 0.2564 + 0.2862:) T,

where the nonzero « € C satisfies || = 1.

7.7 Conclusions and Further Considerations

In the above sections, we present and analyze Algorithms 7.3.1 and 7.4.1 for
computing the US-eigenpairs of complex symmetric tensors and the U-eigenpairs of
complex tensors, respectively. We generalize the higher order power method to com-
pute the US- or U-eigenpairs of complex tensors, summarized in Algorithm 7.4.3.

In the following, we introduce two types of the Takagi factorizations of complex
tensors [18].

Definition 7.7.1 If A e C/1*2><I¥ can be represented as

R
A= Zar (UG @0, ®---@Un(, 1)), (7.7.1)

r=1
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where 01 > 03 > --- > og > 0and U, € Cn*R gatisfy U*U, = I, then (7.7.1)
is called the Takagi factorization of A, and (o,; U1(:, 1), Ua(:, ), ..., Un(:, 7)) is
a Takagi pair of Awithr =1,2,..., R.

Definition 7.7.2 Suppose that A € CTy,; is symmetric. If

R
A=) o UG neuene---euern) |, (7.7.2)
r=1 7\7
where o1 > 05 > --- > og > 0and U € C/*R is unitary, then (7.7.2) is the Takagi

factorization of the complex symmetric tensor A. We call (o,; U, (:, r)) a Takagi
pairof Awithr =1,2,..., R.

We also introduce another form of Takagi pairs. The Takagi values of A €
ChxlxxIv “denoted by oy (A), where k = 1,2, ..., K and

K = min{rank(A(y)), rank(A(2)), ..., rank(An))},

are defined as follows.
Let S,(ll) :={x € C : |x||; = 1}. Define the first Takagi value of A by

o1 (A) = sup |ﬂX1XT ><2X§-~-><ij§,|
x.eS, n=12,...N
(7.7.3)
_ T T T
= sup A XX X2Xy - XN Xp| .

Xnegp(zl), n=1,2,..,.N
Since the Cartesian product SV := S(ll) X Sgl) X oo X SE\}) of unit spheres is a

compact set, an extremal solution of (7.7.3) exists (i.e., the supremum in (7.7.3) is a
maximum) and is attained by an N-tuple

(ugl), e, ug\})) e sh,
Subsequent Takagi values of (A are defined in an inductive manner by setting
S ix eChixlh=1,xu’ =0, j=1,2,... k— 1}

forallmandk=1,2,..., K, and

o (A) = sup |?l R Y ><2X§-~-><Nx’1‘\,|
x,eSY n=12,..N
(7.7.4)
_ T T T
= sup AXIX] X2Xy <o XN Xy

x:eS® | n=1,2,..N
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Since the Cartesian product S® := S(lk) X Sg{) X - X Sg\]f) of unit spheres is a
compact set, an extremal solution of (7.7.4) exists (i.e., the supremum in (7.7.4) is a
maximum) and is attained by an N-tuple

(ugk), R u%‘)) e S®,

It follows that ufll), R u,(lK) areunitin C». If K < I, for any n, then we extend the

collection of orthogonal elements ufll), e, u,(lK) to a complete orthonormal basis of

C=. This construction leads to a collection of orthonormal bases

{ugil)’ il = 1’ 2’ MR ] 11}1 ceey {ug\i]N)s iN = 11 27 ey IN} (7.7.5)
for the vector spaces C/1, ..., C/¥, respectively.
Definition 7.7.3 The Takagi values of A e CH>*/2X*IN are the numbers
o1,...,0x with K = min{rank(A()), rank(A(z)),...,rank(A(y))} defined
by (7.7.3) and (7.7.4). The Takagi vectors of order k are the extremal solutions
(ugk), R ug\]]‘)) in S® that attain the maximum in (7.7.4).

One of our future plan is to consider the numerical computation of the Takagi
factorization of complex tensors. In order to study multivariate polynomial functions
in complex variables and their corresponding symmetric tensor representations,
Jiang et al. [19] introduce two other types of eigenvalues of complex tensors: C-
eigenvalues and G-eigenvalues. Another future research topic is to consider the
numerical computation of C- and G-eigenvalues.
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Chapter 8 )
Randomized Algorithms Shethie

Randomized algorithms provide a useful tool for scientific computing. Compared
with standard deterministic algorithms, randomized algorithms are often faster and
robust. This chapter is devoted to an adaptive randomized algorithms for computing
the approximate tensor decompositions. We present an adaptive randomized algo-
rithm for the low multilinear rank approximation with unknown multilinear rank
and give its probabilistic error bound. Finally, we develop an adaptive randomized
algorithm for the tensor train approximations. We illustrate our algorithms via
several numerical examples.

8.1 Preliminaries

We present adaptive randomized algorithms for low multilinear rank and tensor
train approximations, summarized in Algorithms 8.2.2 and 8.4.2, generalizing
Algorithm 4.2 in [1] to the case N > 2. We list these two problems as follows.

Problem 8.1.1 Suppose that A € RN *2X>xIN Find N columnwise orthogonal
matrices QU € R *#n with u, < I,, such that

Ii,....IN
L A N € ) N ) (N)
Qiyiy...iy ~ Z AjijainPiy ji Pinjy =+ Piyjno
Jisenin=1

where P = Q™ Q)T e R%* is a projection matrix.
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Problem 8.1.2 Suppose that A € R/1*2>*Iv_Find N order-3 tensors U™ e
RHn—1xInXitn with o = uy = 1, such that

H1 o 2 KN—-1

L A 1 (2 (N)
Giyiy...iy ™~ Z Z Z Wi M iagr Yy iy

ri=1r=1 ry—1=1

(n)

where urnfl sins T

l is the (r,,—1, i, rn)-element of UM, withrg = ry = 1.

Many researchers design the numerical algorithms for Problem 8.1.1, such as
the higher-order orthogonal iteration [2], the Newton-Grassmann method [3], the
Riemannian trust-region method [4], the Quasi-Newton method [5], semi-definite
programming (SDP) [6], and Lanczos-type iterations [7, 8]. Readers may refer to
the nice surveys [9, 10] on this topic. Solving Problem 8.1.1 without columnwise
orthogonal constraints has been investigated. For example, if the columns of
each Q, are extracted from the mode-n unfolding matrix A(,), then the solution
of Problem 8.1.1 is called as the CUR-type decomposition of A, and can be
obtained using different versions of the cross approximation method [11-16]. For
Problem 8.1.1, we restrict the entries of A and Q,, to be nonnegative with the latter
not columnwise orthogonal, the solution of Problem 8.1.1 is sometimes called a
nonnegative Tucker decomposition [17-20],

The solution for Problem 8.1.2 is called the tensor train approximation.
Oseledets [21] provides a quasi-best approximation in a tensor train decomposition
for a given TT-rank from the SVDs of the matrices obtained from the corresponding
unfoldings by successive projections. Holtz et al. [22] generalize ALS to obtain
a modified approach (MALS) for the tensor train approximations. In [21, 22],
the solutions (Vi") € RMn-1xInxtn of Problem 8.1.2 are restricted so that
reshape((Vi"), [n—11n, n]) is columnwise orthogonal withn = 1,2,..., N — 1,
which is not true in general.

For the large-scale symmetric eigenvalue problems [23, 24], the singular value
decompositions [25] and the linear equations [26], we can use the TT format of
vectors and matrices to overcome the curse of dimensionality and to make storage
and computational costs feasible; see [27] and the references therein.

Low-rank matrix approximations, such as the truncated singular value decom-
position [28, page 291] and the rank-revealing QR decomposition [29], play a
fundamental role in data analysis and scientific computing. Halko et al. [1] present
a modular framework to construct randomized algorithms for computing partial
matrix decompositions. The topic for decomposing a tensor by the strategy of
randomized algorithms has been developed [11, 30-32].

An important advantage of the adaptive randomized algorithms is that nearly
optimal approximations are possible, even with very noisy data.

The same subroutine (Algorithm 8.2.1) is needed in both Algorithms 8.2.2
and 8.4.1, that is, under certain constraints, Problems 8.1.1 and 8.1.2 have the
same subproblem (Problem 8.2.1). We analyze the convergence of Algorithms 8.2.2
and 8.4.1 via the convergence of Algorithm 8.2.1.
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We need to use the Frobenius norm of matrices to analyze Algorithm 8.2.1.
The core problem is to estimate the singular values of matrices. Reynolds et al.
[33] consider the system of linear equations with Khatri-Rao structures, when they
introduce a randomized variation of ALS for rank reduction of canonical tensor
formats.

To better understand Algorithms 8.2.2 and 8.4.1 the approximate tensor decom-
positions, we compare these two algorithms with other known algorithms on several
test tensors.

There are two subroutines in Algorithm 8.2.1, distinguished by a Boolean
flag “take_max”. We have not presented the theoretical analysis for these two
subroutines. We only compare these two subroutines on several test matrices, from
Hansen Tools [34].

8.1.1 Basic Operations

For x, € R’ with all n and A € RI*2XXIN 'the tensor-vector multiplication [7]
(abbreviation tenvec) is defined as

ﬂxzx;---xNx;, ﬂxlxIX3x;r~-~xNx;, e, ﬂX1XI~-~XN71X571.

We recall the mode-(n, m) product [27] (called tensor-tensor product) of A €
RAxDLxxIN apd B € RI1>*/2X*IM with common modes I, = J,, that produces
an order (M + N —2) tensor C € RI X In—13X g1 XXy XX 1 X g1 XX Tt

C=Ax}8B,

where its entries are

in=1
The mode-n unfolding matrix of an order N tensor can be understood as the
process of the construction of a matrix containing all the mode-n vectors of the
tensor. The order of the columns is not unique and chosen in accordance with [10].
The mode-n unfolding matrix of A € RI1*2>X>IN " denoted by A(,), arranges
the mode-n fibers into columns of a matrix. More specifically, a tensor element
(i1, 12, ..., in) maps to a matrix element (i,,, j), where

J=it+ G —Dh+- -+ —Dh... Ly + (p1 — DI .. i
+--+ Gy —Dh ... Lyidyyr . In-1.
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We briefly review another form for unfolding a tensor into a matrix. We denote
the unfolding matrix of A € RI*2XXIN by A ) [21]. In detail, the (i, j)-
element of A () is defined as A, (i, j) = dii...iy, Where

i=i+@G-Dh+ -+ —-Dh...5—1,
J=int1+ Unt2 — D1+ +0Gnv — Dlyr ... In—1.

8.1.2 Tucker Decomposition

A Tucker decomposition [35] of a tensor A € RN*12xxIN i defined as
AxGx; UD x, UP . oxy U 8.1.1)

where U™ e R *Rn are called the mode-n factor matrices and G € RR1*RaxxRy
the core tensor of the decomposition with the set {R1, R2, ..., Ry}.

Comparing with Problem 8.1.1, U, is not restricted to be columnwise orthogonal
in (8.1.1). We refer to the survey [10] for more details. We summarize the basic
techniques, which are also needed to motivate the tensor train decomposition [21,
36].

The Tucker decomposition is closely related to the mode-n unfolding matrix A,
for all n. In particular, the relation (8.1.1) implies

A(n) ~ U(n)G(n)(U(N) R ® U(n+1) ® U(n—l) R - ® U(l))T.

It follows that the rank of A, is less than or equal to R,, as the mode-n factor
U™ e RE*Ru gt most has rank R,. This motivates us to define the multilinear rank
of A as the tuple

{R1, Ry, ..., Ry}, where the rank of A(,) is equal to R,.

Algorithm 8.1.1 Higher-order singular value decomposition (HOSVD) [10]

Input: A tensor A € RAxhxxIN and the multilinear rank {R1, Ra, ..., Ry}.
Output: N columnwise orthogonal matrix U € R»»*Bn and the core tensor G €
RRI ><R2><<~><RN‘

cforn=1,2,...,Ndo

U, < R, leading left singular vectors of A,).

: end for

g<—ﬂx1U1T szvavvaU;.

: Return G, Uy, ..., Upn.
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By applying SVD to A(,) for all n, we obtain a special form of the Tucker
decomposition of a given tensor, which is referred to as the higher-order singular
value decomposition (HOSVD) [37], as shown in Algorithm 8.1.1. The HOSVD
has these properties: all factor matrices are columnwise orthogonal and the core
tensor has the properties of all-orthogonality and ordering. In detail, we have

A=38 x; u® X2 u®... XN U™ ¢ RllxlzxmxIN’

in which U® e R/*!n is orthogonal and S € R/t *2xXIN gatisfies

(i) for all i, and j, with i, # ju, (SC, .. s Lin, e ), SC oy Jny iy enest
)) =0;
(i1) for all n,
ISC, ..o Lo )l = ISCG -5 2,50 )

>
Z ||S(:’“‘7:71}’!7:7"‘7:)”F
> 0.

The Frobenius norms ||S(:, ..., iy, ..., )| F, denoted by al.(:), are the mode-n

singular values of A and the vector U(")(:, in) is an i,th mode-n singular vector.
The mode-n singular values of A are different from its singular values, defined in
[38].

When R, < rank(A(,)) for one or more n, the decomposition is called the
truncated HOSVD. The truncated HOSVD is not optimal in terms of giving the
best fit as measured by the norm of the difference, but it is a good starting point
for an iterative ALS algorithm. With respect to the Frobenius norm of tensors,
Problem 8.1.1 can be rewritten as the optimization problem

2
min - |A-Gx QU xy Q|
g,Q(l)’M’Q(N) F

subjectto G € RR1XRaxxRy

Q(") € R"*Rn i columnwise orthogonal;

which is equivalent to the following maximization problem

2
max Ax; QT ... x (N)TH ,
QM,...QW H 1Q v Q F

subjectto Q" e RI*Rn is columnwise orthogonal.
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If fkn) is a solution of the above maximization problem, then we call A x|

PO ... xy PWY) a low multilinear rank approximation of A, where P™ =
Q@M.

The higher-order orthogonal iteration (HOOI) for the low multilinear rank
approximation of A € RI1 /2% *IN js summarized in Algorithm 8.1.2.

Algorithm 8.1.2 Higher-order orthogonal iteration (HOOI) [2, Algorithm 4.2]

Input: A tensor A € RI*2xXIv  the multilinear rank {R;, Ry, ..., Ry} and maximum
number of iterations Kax.

Output: N columnwise orthogonal matrix U € R™”*R: and the core tensor G €
RRIXRZX“‘XRN

1: initialize U, € R™*®» with all n using HOSVD.

2: fork=1,2,..., Kpix do

3: forn=1,2,...,Ndo

4: Compute B = A x| UlT ce Xpo UI_I Xn+1 UI—H ce XN U;.
5: U, < R, leading left singular vectors of B,.

6:  end for

7: end for

8: g<—_7l><1U1T szvavvaU;.

9: Return G, Uy, ..., Uy.

8.1.3 Tensor Train Decomposition

The storage of the core tensor G € RR1*R2XXRy renders the Tucker decom-
position increasingly unattractive as N gets larger. In order to overcome this
disadvantage, a simple non-recursive form of the tensor decomposition is presented,
called the tensor train decomposition [21, 36, 39], a special case of the Hierarchical
Tucker format [40-42].

The tensor train decomposition of A € RI1*2%xIN can be described in the
standard scalar form

Ry Ry Rn-1 o (
Ay @ N)
T DI DRI D/ ) WA RN T
ji=ljp=1 " jn-1=1
or equivalently by using slice representations:
diiy..iy * QVENQP (1) ... QM (iw), (8.12)

where slice matrices are defined as

Q(n)(in) — Q(")(:, in, ) € RR"’IXR”,
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i.e., QM (i,) is an i,th lateral slice of the core Q™ € RRw—1xInxRu for all n with
Ry = Ry = 1. By the tensor-tensor product, (8.1.2) can be also represented as

A~ QD x5 QP X xh @™,

The tensor train decomposition is closely related with the unfolding matrices
A([n)) of A. Equation (8.1.2) implies that rank(A,)) < R, forn =1,2,... , N -1
[9, 27]. The tuple containing the ranks of these matricizations is called the TT-rank
of A.

8.2 Low Multilinear Rank Approximations

Based on the key idea for probabilistic algorithms to approximate matrix decom-
positions [1], we develop adaptive randomized algorithms for the low multilinear
rank approximation of tensors in R/1*2%xIN We shall reveal the relationship
between our randomized algorithms and the Randomized Tucker decomposition
[32, Algorithm 2].

8.2.1 Randomized Algorithms for Low Multilinear Rank
Approximations

If we add the constraints on Q,, € R *#» in Problem 8.1.1, that is, Q,—lrQn =1,
then we can rewrite Problem 8.1.1 as follows.

Problem 8.2.1 Suppose that A € RI1*2%xIN and ¢ is a prescribed tolerance.
Find N columnwise orthogonal matrices Q,, € Rt with w, < I, such that

|- 7x1 @QD) %2 Q@) x3 -+ xi @@ | < V/Ne.

’

If the N-tuple {Q1, Q2, ..., Qu} is a solution of Problem 8.2.1, then we have

A—Ax (QiIQ]) x2 (QQ;) -+ xn (QvQY)

= (A-Ax1 (QIQ]) + (Ax1 (QIQ) — A x1 (Q1Q]) x2 (Q2Q;)) + ...
FA X1 (QIQ[) - xn-1 (QN-1QN_))
—Ax1 (QIQ]) -+ xn-1 (Qn-1Q)_)) xn (QNQ)). (8.2.1)

The equality (8.2.1) can be found in [43, 44] for the low multilinear rank approxi-
mation of A e RI1x2x-xIy
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It follows from (8.2.1) that

r
P

(8.2.2)

71— 70 @iQD) %2 (@:Q1) x5+ xn @@ = 3 |7 =7, @)
n=1

The result relies on the orthogonality of the projector in the Frobenius norm [44],
i.e., for all n, we have

2
‘ b
F

171 = [0 QD[ + | A<, @, - QD)

and the fact that |AP||r < ||A||r with A € R’*/ where the orthogonal projection
P satisfies [28]

P2=P, P =P, PecR/*.

In order to obtain a solution {Q1, Q2, ..., Qx} for Problem 8.2.1, we need to
consider the following subproblem for all 7.

Subproblem 8.2.1 Suppose that A € RI*12XXIN and € is a prescribed toler-
ance. For a given n, find an columnwise orthogonal matrix Q, € R>Mn with
Un < I, such that

|7 - A%, @.Q])

| =A% @, - QD

| =
F

For each n, if the columnwise orthogonal matrix Q,, satisfies Problem 8.2.1 with
the same €, we have

|7 — 751 @1QT) %2 (Q:Q]) x5+ v <QNQ5)H1

2
‘ = Né2.
F

< zNj |7 = A% @D
n=1

By this hypothesis, we obtain a solution for Problem 8.2.1 by solving Subprob-
lem 8.2.1, for n from 1 to N. For such a given n, we present a randomized algorithm
for seeking an columnwise orthogonal matrix Q,, € R/ such that

|- 7%, @.Q])

| =A% @, - QD

‘ 567
F

where € is a computational tolerance.
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Starting with an initial empty basis matrix Qp, we generate a columnwise
orthogonal matrix Q € R/**#» guch that the range of Q captures the action of
the mode-# unfolding matrix of the tensor A as follows:

for k =0, 1, ..., until convergence do
Draw (N — 1) standard Gaussian vectors x,, € R’ for all m (m #n).
Compute

Y = AXIXL .o Xp—1Xp—1 X 1Xn+1 + - - XNXN.

Compute 5 = (I;, — Qx—1Q/_yk if k > 1.
Normalize yx = ¥i/||¥k |2, and form Qx = [Qx—1, y«].

end for

Write Q as Q.

The above process requires u, tenvecs and O(/ ,u%) additional operations, where
Un < MUmax is the number of the columns of Q. To terminate the computation,
we use one or both of the following stopping criteria: (1) fix maximum number of
iterations, i.e., the desired size of basis Q by max; and (2) find a basis Q that allows
approximation of A,y with a relative accuracy ¢.

Unfortunately, the matrix Q generated by the above process is not columnwise
orthogonal and the Frobenius norm of the error matrix I,,, — QT Q is not sufficiently
small. The reason is that the vector y; becomes small as the basis starts to capture
the mode-n unfolding matrix of the tensor A. In finite-precision arithmetics, their
directions are unreliable.

To overcome this difficulty, we re-project the normalized vector y; onto
range(Qy_1)" in Step 13 to Step 17 of Algorithm 8.2.1, where range(A) is the
subspace generated by the columns of A € R/*/ with I > J, and K* is the
orthogonal complement in R” of a subspace K.

Algorithm 8.2.1 requires (R + u,) tenvecs and O(/ ,u%) additional operations,
where [, < [tmax 1S the number of the columns of Q, derived by Algorithm 8.2.1.
The calculations in Algorithm 8.2.1 can be organized so that each iteration processes
a block of samples simultaneously. This revision leads to dramatic improvements in
speed, exploiting higher-level linear algebra subroutines (e.g., BLAS3) or parallel
processors.

The main part of Algorithm 8.2.1 consists of Steps 4—18, which generates qy,
from yi. There are two ways to generate i, distinguished by the Boolean flag
“take_max”.

When N = 2 and the value of “take_max” is “False”, Algorithm 8.2.1 is
reduced to Algorithm 4.2 in [1] for constructing a subspace that captures most of
the action of the matrix A € R/*/. In Sect.8.5.3, we illustrate Algorithm 8.2.1
with different values of the Boolean flag “take_max” via certain testing matrices.
The failure probability stated for Algorithm 8.2.1 is pessimistic, since it is derived
from a simple uniform bound argument. In practice, the error is reliable in a range
of circumstances, if we take R = 10.



224 8 Randomized Algorithms

Algorithm 8.2.1 Adaptive randomized algorithm for Subproblem 8.2.1

Input: A tensor A € RIxlxxIN 3 mode n, an integer R, the prescribed tolerance €, a
Boolean flag “take_max” and maximum number of iterations jimax.
Output: An columnwise orthogonal matrix Q € R/ *#n

1: Draw (N — 1) independent families {x,(yf) € Rm : r = 1,2,..., R} of standard Gaussian
vectors for all m (m # n).

2: Compute y, = ﬂilxgr) . >_<n71X,(:,)1 >_<n+1x£lr+)1 . >_<NX§G) withr =1,2,..., R.

3: Start with an empty basis matrix Qo and set k = 0.

4: while max{llyk+1ll2, IYx+2ll2, - - -, I¥e+r 2} > € Or k < pmax do

5: Setk=k+1.

6:  if the value of “take_max” is “True” then

7: Choose ko € {k + 1,...,k + R} such that [ygl2 =
max{[|ye+1ll2, lyx+2ll2s - - -5 1¥x+r 12}

8: Overwrite yx by (I, — Qe—1Q/_)yx, if k > 1.

9: else

10: Overwrite yi by (I, — Qk_leT_l)yk ifk > 1.

11:  endif

12:  Compute qx = yi/|lykll2 and form Qg = [Qk-1, k]

13:  Draw (N — 1) standard Gaussian Vectors X, € R for 2_111 m #n. )

14:  Compute yrir = @, — QQ ) (AX1X1 ... Xpno1Xn—1 X1 X041 - - - XNXN).
15: fori=k+1,k+2,...,k+R—1do

16: Overwrite y; by y; — (q; i)

17:  end for

18: end while

19: Set Q = Qg and py as the number of all columns of Q.

By the relationship between Problem 8.2.1 and Subproblem 8.2.1, we con-
struct an adaptive randomized algorithm for Problem 8.2.1, summarized in Algo-
rithm 8.2.2.

Algorithm 8.2.2 Adaptive randomized algorithm for Problem 8.2.1

Input: A tensor A € RI*2xXIN an integer R, the prescribed tolerance €, a Boolean flag
“take_max” and maximum number of iterations fmax-
Output: N columnwise orthogonal matrices Q,, € R ¥t for all n.

: Set the temporary tensor: C = A.

2: forn=1,2,...,Ndo

3: IImplement Algorithm 8.2.1 with C to generate the columnwise orthogonal matrix Q, x €

RInxpn

4:  Set Q, = Qu.k, in as the number of all columns of Q,

Compute C = C %, Q,T and let I, = w,.

6: end for

—

o

If we take R = 10 in Algorithm 8.2.2, then the error estimation is reliable under
certain assumptions. In Step 5 of Algorithm 8.2.2, the temporary tensor C is updated
for each n. The reason is (8.2.1) and the fact |[AQ| r < ||A|r with A € R’*/ and
any columnwise orthogonal matrix Q € R/*K (K < J). For clarity, we assume
h~IL~---~1Iy~1Tandpuj ~ pup ~ ---~ uny ~ W in complexity estimates
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[7, Page A2], where u, is the number of the columns of Q,,. If the size of C is
not updated for each n, Algorithm 8.2.2 requires N (R + ) tenvecs and O(N [ w?)
additional operations. Similar to Algorithm 3.2 in [44], a more general formwork of
Algorithm 8.2.2 is in the following:

—

W

AN

Input: A tensor A € RI*2XXIN ap integer R, the prescribed tolerance
€, a Boolean flag “take_max”, maximum number of iterations pumax, and a
processing order p € Sy .
Output: N columnwise orthogonal matrices Q,, € R/»*Hn,
: Set the temporary tensor: C = A.
: forn = py, p2,..., py do
Implement Algorithm 8.2.1 with C to generate the columnwise orthogonal
matrix Q, x € RInx#n

Set Q, = Q. k, 1n as the number of all columns of Q.
Compute C = C X, Q;',— and let I,, = .
end for

If the value of “take _max” is “False” and the multlilinear rank of A is

{R1, Ra, ..., Ry}, then Algorithm 8.2.2 can be represented as follows.

Algorithm 8.2.3 Randomized algorithm for Problem 8.2.1 with known multilinear
rank {R{, Ry, ..., Ry}

1:

2:
3:

Set the temporary tensor: C = A.
forn=1,2,...,Ndo

Compute Z;y = Ag)R), where ) = 1 0---092,_,02,,,0---0 Ry and
ﬂ,’n € RIn*Ru+10 i 4 standard Gaussian matrix with m #nandm=1,2,...,N.

Compute Q,, as a columnwise orthogonal basis of Z,) by using the QR decomposition and
let Q, = Q,(:,1: Ry)..

SetC=C x Q] and let I, = R,.

: end for

When the multlilinear rank of (A is {R1, R, ..., Ry}, the Randomized Tucker

decomposition can be estimated as follows [32, Algorithm 2].

Algorithm 8.2.4 Randomized Tucker decomposition for solving Problem 8.2.1 with
known multilinear rank {R{, R2, ..., Ry}
1:
2:
3:

4:

Set the temporary tensor: C = A.
forn=1,2,...,Ndo

Compute Z;) = AL, where £, is an (Hk;&n I)-by-R, + 10 standard Gaussian
matrix.

Compute Q,, as a columnwise orthogonal basis of Z,) by using the QR decomposition and
let Q, = Q,(:, 1: Ry).

SetC=C x QI and let I, = R,.

: end for
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For each n, choosing the random matrix £,y in the Randomized Tucker
decomposition requires O(IV~!K) additional space; drawing the random matrix
£, in Algorithm 8.2.2 requires O((N — 1)1 K) additional space, where we assume
that Ry ~ Ry ~ --- ~ Ry ~ K for clarity. Comparing with the Randomized
Tucker decomposition, when we implement Algorithm 8.2.2 to obtain a solution for
Problem 8.2.1, the multilinear rank of the target tensor may be unknown. Before
implementing Algorithm 8.2.2 to compute the low multilinear rank approximation
of A € RIixD X“‘i[N , we choose N random Gaussian matrices U, and precondition
Aas A:=Ax1Up xpUz--- xy Uy. This strategy is firstly considered in [32].

According to probabilistic error bounds for Algorithm 4.1 in [1], the derivation
bounds for the Frobenius norm and average Frobenius error for the Randomized
Tucker decomposition is easy to obtain. However, we can not use the derivation
bounds for the Frobenius norm for Algorithm 4.1 [1] directly to analyze Algo-
rithm 8.2.2, which will be considered in the next section.

8.2.2 More Considerations

As shown in Algorithm 8.2.3, our analysis is specialized to the case where the
test matrices 2, are standard Gaussian matrices. But there are potential benefits
from implementing the proposed algorithms using test matrices drawn from another
distribution. The choice of distribution leads to some tradeoffs in the range of
permissible parameters; the costs of randomness, arithmetic, and communication
to generate the test matrices; the storage costs for the test matrices and the sketch;
the arithmetic costs for sketching and updates; the numerical stability of matrix
approximation algorithms; and the quality of a priori error bounds.

Let us list some of the contending distributions along with background refer-

ences. We have ranked these in decreasing order of reliability.

(a) For each n, Step 3 in Algorithm 8.2.3 generates matrices €2, with orthonormal
columns that span uniformly random subspaces of dimension R,, + 10.

(b) This chapter focuses on test matrices with the standard Gaussian matrices.
Benefits include excellent practical performance and accurate a priori error
bounds.

When we consider the low multilinear rank approximation of A €

Clixl>xxIN - for each n, the test matrices ), have the form @/ =

12, where ) € RIn*(Rut10) ang @) e RIm*Rnt10) gre standard
Gaussian matrices.

(c) These test matrices have independent Rademacher! entries. Their behavior is
similar to Gaussian test matrices, but there are minor improvements in the cost
of storage and arithmetic, as well as the amount of randomness required.

' A Rademacher random variable takes the values £1 with equal probability.
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(d) For each n, the test matrices Sl;” take the form
SZ;n = DHP,

where D € R/"*/n are diagonal with independent Rademacher variables, H €
RIn*Im is orthonormal and P € RIm*(En+10) gre restrictions onto R, + 10
coordinates, chosen uniformly at random. In practice, one can choose H with
efficient fast computationable algorithms, such as the discrete cosine transform
matrix, the Walsh-Hadamard transform matrix, the fast Fourier transform matrix
or the discrete wavelet transform matrix.

(e) Let s be a sparsity parameter. For each n, each column of €, is placed
independent Rademacher random variables in s uniformly random locations;
the remaining entries of the test matrices are zero. This type of test matrices is
sometime called a sparse embedding matrix.

The interested readers can refer to [1, 45, 46] on the computation of low-rank
approximations via randomized algorithms based on the above test matrices. In the
future, based on these test matrices, we will consider how to improve our proposed
algorithms.

8.3 Theoretical Analysis

We prove Theorem 8.3.1, which is the essential basis for analyzing Algorithm 8.2.2.
We introduce a particular type of random matrices for this: the row are indepen-
dently distributed random vectors, but the columns are not (instead of the standard
case where all entries are independently and identically distributed (i.i.d)). Such
matrices are studied extensively by Vershynin [47] and we rely heavily on this
research for our estimates.

8.3.1 Probabilistic Error Bounds

For each n and a given positive integer R > 0, let R, , € RI»*Wn+R) with 1, +
R < I, be standard Gaussian matrix with all m and m # n. Define ;) = 21 ©
O Ry © Ry © -+ © . Suppose that A,y = U,X,V,, where U, €
Rm*In is orthogonal, X, € R"*/» is diagonal whose entries are nonnegative and
V,, € RI-Di-thiiInvxIn jg columnwise orthogonal. Let U, = (Q,,, Q) with Q, €
Rln XMn and Qi— IS Rln X(In*l/«n), E}’l e RMnXHtn and En c R(In*l/vn)x(lnfﬂn) be the
upper-left and lower-right blocks of X, respectively, and V,, = (P, P,}) with P, €
RO dn—tdny1-INX 0 gpd PrJz_ e RI-I—tlugi AN XUty Ip 1 IN=pin) et Q1 =

P/ R, and 2,5 = PH Q.
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Lemma 8.3.1 For each n, SZ;II:I e RWnTRXun jo 4 random matrix with
isotropic rows and R,7 € RI-Dnthir IN=in X +R) i g random matrix
with isotropic columns. Moreover, the columns of S, satisfy ||R,20,rm)l2 =
Voo DLy .. Iy — g almost surely forr, = 1,2, ..., uy, + R.

This lemma is a general form of Lemma 8.3.3 with a similar proof. In order to
present the probabilistic error for Algorithm 8.2.2, we introduce the defintion.

Definition 8.3.1 ([47, Definition 5.7]) Let X be a random variable that satisfies one
of the three following equivalent properties:

1. 2{|1X| >t} <exp(l —t?/K}) forall t > 0,

2. (SUX|PHYP < Ky /p forall p > 1,

3. Sexp(X?/KD} < 1,

where the constants K; (i = 1, 2, 3) differ from each other by at most an absolute
constant factor (see [47, Lemma 5.5] for a proof of the equivalence of these

properties). Then X is called a sub-Gaussian random variable. The sub-Gaussian
norm of X is defined as the smallest K> in property 2, i.e.,

(Ex|PHl/e
| X1y, = sup .
p=1 NiZ

We establish the following theorem to analyze the probabilistic error bound for
Algorithm 8.2.2. In Sect. 8.3.3, we give a rigorous proof for this theorem.

Theorem 8.3.1 Suppose that A € RIV12XXIN ywhepe I, < Iy .. . L_1I,41... Iy
with all n. Let the value of “take_max” be “False” in Algorithm 8.2.2. For given
positive integers (b, > 0 and R > 0 with u,, + R < I,,, assume that Q, € RInxtn
are derived by Algorithm 8.2.2. If for all n, R, 1 have full row rank, then

Hﬂ—ﬂ X1 <Q1Q1T) X2 (QzQzT) Coe XN (QNQ;)HF

Z «/11 1t oo AN = pin + Co/tin + R+ 1
< n n+ / n n n A,u,,,+1 (A(n))
«/lin“‘R_Cn\/Mn_t

with probability at least 1 — 2 ZQJZI (exp(—cntz) + exp(—c{ltz)) , where
L 172

Aty = Y. o, Aw)?| .
in=pn+1

and o;, (Ay)) is the iyth singular value of A(,y. Here C,, = Ck, and ¢, = ck, >0
depend only on the sub-Gaussian norm K, = max; ||, 2, j)|ly,, and C, = Ck,
and ¢, = ck, > 0 depend only on the sub-Gaussian norm K, = max; ||€2,,1
(5 Dy, for all n.
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Remark 8.3.1 In the above theorem, we need to assume that there exists r (> 0)
such that

\//Ln+R—C,’1\//Ln—t>O, n=1,2,...,N.

Remark 8.3.2 In practice, when we use Algorithm 8.2.2 to compute a low multi-
linear rank approximation of tensors in R/ /2% *IN e restrict the approximation
multilinear rank {u1, 42, ..., un}, thatis, for each mode n in Algorithm 8.2.2, we
shall give an upper bound for pu, with all n.

8.3.2 Some Results for Sub-Gaussian Matrices

We introduce the definition of sub-Gaussian random variables and sub-Gaussian
norm in Sect. 8.2, as shown in Definition 8.3.1. Examples of sub-Gaussian random
variables include Gaussian and Bernoulli random variables. We present definitions
for sub-Gaussian random vectors and their norm.

Definition 8.3.2 ([47, Definition 5.7]) A random vector x € R’ is called a sub-
Gaussian random vector if (x, y) is a sub-Gaussian random variable for all y € R,
The sub-Gaussian norm of x is subsequently defined by

[Xlly, = sup [1{X, ¥)lly, -

yeSi—1

Definition 8.3.3 ([47, Definition 5.19]) A random vector x € R is called isotropic
if its second moment matrix £ = X (x) = &[xx '} is equal to the identity matrix.
This definition is equivalent to

x4 =yl

forally e R,

The following theorem from [47] provides bounds on the condition numbers of
matrices whose rows are independent sub-Gaussian isotropic random variables.

Theorem 8.3.2 ([47, Theorem 5.38]) Let A be an I x J matrix whose rows A(i, 3)
are independent sub-Gaussian isotropic random vectors in R”. Then for every t >
0, with probability at least 1 — 2 exp(—ct?), one has

VI = CVT =t < 0min(A) < Omax(A) < VI +CVJT +1.

Here C = Ck and ¢ = cx > 0 depend only on the sub-Gaussian norm K =
max; [|AG, )y,
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Similarly, the following theorem from [47] provides bounds on the condition num-
bers of matrices whose columns are independent sub-Gaussian isotropic random
variables.

Theorem 8.3.3 ([47, Theorem 5.58]) Let A be an I x J (I > J) matrix whose
columns A(:, j) are independent sub-Gaussian isotropic random vectors in R! with
HAG, D2 = VI almost surely (a.s.). Then for every t > 0, with probability at least
1-2 exp(—ctz), one has

VI = CVJT =t < 0min(A) < Omax(A) < VI +CVJ +1.

Here C = Ck and ¢ = cx > 0 depend only on the sub-Gaussian norm K =
max; |AC, j)lly,-

8.3.3 Proof of Theorem 8.3.1

For clarity, suppose that n = 1 and R is a positive integer. Let £,, €
RImx(m1+R) (1 + R < I) be a standard Gaussian matrix withm = 2,3, ..., N.
Define (1) = 2, © 23 © - - © 2y. As seen in [33], we see that 1) is a random
matrix whose columns are independent from one another but whose rows are not.
In the following lemma (similar to [33, Lemma 11] without the proof), we show
that each column of £(j) is isotropic.

Lemma 8.3.2 Let SZ;n € RInx(mi+R) (u1 + R < It) be standard Gaussian matrix
withm =2,3,...,N,and Q € RE2-INXRo pe columnwise orthogonal with Rg <
u1+R < I...In. Define 1) = R, 0,0 --O QY. Then Q') is a random
matrix with isotropic columns.

Remark 8.3.3 According to Lemma 8.3.2, it is easy to see that ||QTSZ(1)(:, 2 =
\/RQ almost surely withr; = 1,2, ..., u1 + R.

Suppose that A(jy = UXV', where U € R/1*/1 is orthogonal, ¥ € RII*N
is diagonal whose entries are nonnegative and V. e R2-¥*/i is columnwise
orthogonal. Let U = (U;,Uy) with U; € R/ and Uf e RAOXUi—r),
¥, € RMXM and X, e RUI#DXUI=HD) be the upper-left and lower-right
blocks of X, respectively, and V = (Vy, V{) with V| € R2-IVXi1 and Vi €
R Inx(hIv=11) Tet @) = V| Q1) and 2, = (V7)) T €(y). From Lemma 8.3.2,
it is easily to derive the following lemma.

Lemma 8.3.3 SZ;'— e RWHRXu js g random matrix with isotropic rows and
Q) € Rz In=p0X(1+R) 6 4 random matrix with isotropic columns. Moreover,
the columns of Q3 satisfy |R2G, r)ll2 = Iz ... Iy — 1 almost surely for r| =
1,2,...,u1+ R.

The main result is presented in the following theorem.
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Theorem 8.3.4 Suppose that A € RIIXXIN with I} < L,...Iy. Let the
value of “take_max” be “False” in Algorithm 8.2.1. For given positive integers
w1 > 0and R > 0 with u1 + R < I, suppose that Q| € RO s derived by
Algorithm 8.2.1. If R is of full row rank, then

1+\/12---1N_M1+C«/,U«1+R+l‘

A A
i+ R—C Ju—t w1 AD)

7= (@), =

with probability at least 1 — 2 exp(—ct*) — 2 exp(—c't?), where

I 1/2

Aprt@) = Y on (A’
i1=p1+1

Here C = Ck and ¢ = cx > 0 depend only on the sub-Gaussian norm K =
max; |2, i) |ly,; C' = Cg and ¢’ = cx > 0 depend only on the sub-Gaussian
norm K = max; |21, i) |ly,.

Proof To obtain the matrix Q;, Algorithm 8.2.1 is similar to the following process:
(a) choose (1) = 20230 --O Ry, where R, € RIXW+R) with i, + R < 1y
are standard Gaussian matrix withm = 2,3, ..., N; (b) compute Y = A(1)8(1); (¢)
factor QR = Y by the QR decomposition; (d) form Q; = Q(;, 1 : uy).

According to Theorem 9.1 in [1], we have

[a-x@Qn|, = |a, -@ieNag)|, = /1 + 1220 2] 120
Note that |Z2lr = (X/'_,

||SZI||2. According to Theorem 8.3.3 and Lemma 8.3.3, with probability at least
1-2 exp(—ct2), we have

1Ui1(A(1))2)1/2- Now we estimate ||€22]]> and

I12 < V... Iy — 1 +Cy/p + R +1,

for t > 0, where C = Cg and ¢ = cx > 0 depend only on the sub-Gaussian norm
K = max; [2(. j)ly,-

According to Theorem 8.3.2 and Lemma 8.3.3, with probability at least 1 —
2 exp(—c’t?), we have

. 1
2], = @b, = @D, < ’
H i, (€2) 2 () 27 Jui+R-C /1 —t

fort > 0, where C' = Cg and ¢’ = cx > 0 depend only on the sub-Gaussian norm
K =max; [|[(0) G, )y, = max; |21, )lly,. o

The rigorous proof for Theorem 8.3.1 comes from Theorem 8.3.4 and (8.2.2).
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8.4 Randomized Tensor Train Approximation

In Sect. 8.2, we present an adaptive randomized algorithm for a low multilinear rank
approximation with unknown multiliear rank. In Sect. 8.3, we make the theoretical
analysis for the algorithm. We next develop an adaptive randomized algorithm for
approximate tensor train decompositions of tensors with unknown TT-rank.

We briefly introduce the idea of TT-SVD for computing the approximate tensor
train decompositions. Suppose that A € R/1*2%xIN and ¢ is the prescribed
tolerance, the process [21, Algorithm 1] for computing an approximate tensor train
decomposition of the tensor A is as follows:

Compute truncation parameter § = \/157 | Al F.
Set the temporary matrix: C = Ay and o = 1.
forn=1,2,...,N —1do
Form C = reshape(C, [pup—11n, In+1 - - . IN]).
Compute the §-truncated SVD: C = UXV' + E with |[E||r < & and u,, =
ranks (C).
Form Q"™ = reshape(U, [in_1, In, tn]) and C = TV T,

end for
Form Q) = reshape(C, [un—1, IN, un]) with uy = 1.
Return B in TT-format with cores Q", Q?, ..., QM.

When we implement the above process, the approximate tensor train decomposition
satisfies

A —BlF < €llAllF.

Similar to the Randomized Tucker decomposition [32], we consider the ran-
domized range finder algorithm (Algorithm 4.1 in [1]) to estimate the basis of the
temporary matrix C for each n in the above process, summarized as Algorithm 8.4.1.

Algorithm 8.4.1 Randomized algorithm for tensor train approximation

Input: A tensor A € RI*2xxIN and the TT-rank {1, 2, ..., -1}
output: Cores QY. Q@ ....Q™ of the TT-approximation 8 of the tensor A
Set the temporary tensor: C = A and po = 1.
forn=1,2,...,N—1do
Form C = reshape(C, [(tn—11n, In+1 .- . IN]).
Compute Z = C2, where @ € RIn+1--Inx(n+R) ig 4 random Gaussian matrix.
Compute U as a columnwise orthogonal basis of Z by using the QR decomposition.
Let U=U(, 1 : up).
Form Q" = reshape(U, [in—1, In, in]).-
Compute C =C x; UT.
end for
Form C = reshape(C. [un—1. Iy, un]) and Q™) = reshape(C, [uy—1. Iy, uy]) with uy =
1.
Return B in TT-format with cores Q, Q?, ..., Q™.
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In Algorithm 8.4.1, R is referred to as the oversampling parameter. In general,
we set R = 5 or 10. Furthermore, the probabilistic error bound of Algorithm 8.4.1
is easy to obtain, due to the theoretical results for Algorithm 4.1 in [1]. The
disadvantage of Algorithm 8.4.1 is that we need to know the TT-rank of the
target tensors. In the remainder of this section, we design an adaptive randomized
algorithm for an approximate tensor train decomposition of a tensor in R/1 ¥ /2x-xIn
with unknown TT-rank. The probabilistic error bound of this approximate tensor
train decomposition can be derived from Theorem 8.3.3.

If we add the orthogonal constraints to Problem 8.1.2 as Q] Q, = I,,,, where
Q. = reshape(Q("), [n_1ly, unl) with m = 1,2,..., N — 1, then we rewrite
Problem 8.1.2 as follows.

Problem 8.4.1 Suppose that A € RI1*2xxIN and ¢ is a prescribed tolerance.
Find N core tensors Q™ € RHn—1*In>in such that

1A - Blr = [A-QV x}@® - xf@™| < VN - 1e, 8.4.1)

with u, < min{ly...I,, I,+1 ... Iy} and po = uy = 1, where the core tensors
Q™ e Rin-1xInx1tn satisfy

Q,Qu=1,,, Q,=reshape(@™, [tn1ly, pal). n=12,....N -1

When the TT-rank of A is unknown, Algorithm 8.4.2 is summarized as the
adaptive randomized algorithm for solving Problem 8.4.1.

Algorithm 8.4.2 Adaptive randomized algorithm for TT-approximation

Input: A tensor A € RI1*12xxIN 3 positive integer R and the prescribed tolerance e.
output: Cores QV, QP ..., Q™) of the TT-approximation 8 of the tensor FA with approxi-
mate TT-rank {1, u2, ..., Un—1}-

1: Set the temporary tensor C = A and po = 1.

2: forn=1,2,...,N—1do

3:  Implement Algorithm 8.2.1 with the tensor C to generate the columnwise orthogonal matrix
Qi € RIntn—1%k

4:  Set p, = k and form Q™ = reshape (Qx, [itn—1, Ln, itn]).

5:  Compute C=C x; UT.

6: end for

7: Form Q™) = reshape(C, [un—1, In, piy]) with uy = 1.

8: Return B in TT-format with cores QV, Q@ ..., Q™.
For clarity, we assume g1 ~ w2 ~ --- ~ uny—1 ~ p for Problem 8.1.2 in

complexity estimates. Algorithm 8.4.2 requires (N — 1) (R + u) tenvecs and O((N —
1)1 11?) additional operations. For a given tolerance e, if the columnwise orthogonal
matrix Q € RHn-11ax1n gatisfies

|

G~ Cux1 QD] <
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where C,, € R#n—1InxIns13xIN j5 oenerated from Steps 2 to 6 in Algorithm 8.4.2,
forn = 1,2,..., N — 1, then the TT-approximation 8 with QM ¢ RHa—1XIn>Xtn
satisfies

1A — Bl = Hﬂ —Q@D x1@® x! ... x! Q<N>HF < N —1e,

with o = uny = 1.

Remark 8.4.1 In practice, when we apply Algorithm 8.4.2, we restrict the approxi-
mation TT-rank {u1, wa, ..., un—1}, thatis, for each n in Algorithm 8.4.2, we shall
give an upper bound for u, withn =1,2,..., N — 1.

8.5 Numerical Examples

In order to test the algorithms in this chapter, we choose R = 10. We use these
three functions “ttv”, “ttm” and “ttt” in [48] to implement the tensor-vector, the
tensor-matrix and the tensor-tensor products, respectively.

8.5.1 Low Multilinear Rank Approximations

We compare Algorithm 8.2.2 with several known algorithms for computing low
multilinear rank approximations of a tensor via three examples. These algorithms
are:

* Tucker-ALS: higher-order orthogonal iteration [48];

* mlsvd: truncated multilinear singular value decomposition [44];

e Imlra_aca: low multilinear rank approximation by adaptive cross-approximation
[11,49] and ;

* mlsvd_rsi: truncated multilinear singular value decomposition [44] by a random-
ized SVD algorithm based on randomized subspace iteration [1].

The first two examples are chosen from Caiafa and Cichocki [11]. The form of
the third example is similar to that of [32].

Example 8.5.1 We apply Algorithm 8.2.2 to the Tucker tensors A € RI1x/2xxIn
(given in Eq. (8.1.1)), where their multilinear rank is {R, R, ..., R}, by randomly
generating matrices U, € R™*R and the core tensors G € REXRx-xR for
different R.

The entries are generated by using Gaussian independent identically distributed
with zero mean and the resulting tensor (A is normalized, i.e., A := A/ || Al F-
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Tal')le 8.1 The rglative errors Rank of A Rank of A Relative error  CPU times
derived by Algorithm 8.2.2

for the exact representation 10 10 44e—15 0.19s
case of the random Tucker 20 20 4.2e—15 0.25s
tensors with a given 30 30 1.8e—14 0.36s
multilinear rank {R, R, R} for 40 40 7.8¢e—15 0.52s
Example 8.5.1 50 50 8.3e—15 0.65s

60 60 9.4e—15 0.86s

70 70 1.4e—14 I.1s

80 80 1.le—14 1.3s

The relative error is defined as
e=|A-A|/1AlF, (8.5.1)

where A = A X1 (QlQI) X2 (QQQ;—) X3 -0 XN (QNQ;) and the columnwise
orthogonal matrices Q,, are derived form our Algorithm 8.2.2, Tucker-ALS, mlsvd,
or Imlra_aca.

For N = 3 and {I1, I, i} = {100, 100, 100}, suppose that the value of R is
chosen from the set {10, 20, ..., 80}. When we apply Algorithm 8.2.2 to compute
the low multilinear rank approximation of the tensor A with different R, the relative
errors are shown in Table 8.1. The relative errors were under 10~!4, relative to the
maximal attainable machine precision 1071°,

We compare Algorithm 8.2.2 with other algorithms (Tucker-ALS [48], mlsvd and
Imlra_aca [49]) to compute the approximate tensor B of A, where the multilinear
rank {P, P, P} of B satisfies | < P < R = 30. For a given positive integer P, we
find three columnwise orthogonal matrices Q, € R*" by Algorithm 8.2.2 with
n=1,2,3.

The relative errors given in (8.5.1), and the CPU time of Algorithm 8.2.2, Tucker-
ALS, mlsvd, and Imlra_aca, applied to a multilinear rank {30, 30, 30} random
Tucker tensor, are shown in Fig. 8.1 for P = 1,2, ..., 30.

Example 8.5.2 The entries of the testing tensors are generated by sampling some
smooth functions. We analyze the case of applying our Algorithm 8.2.2, Tucker-
ALS, mlsvd and Imlra_aca to find the low multilinear rank approximations for these
testing tensors.

We note that the approximate multilinear rank {P, P, ..., P} is selected from a
set of integers and the multilinear rank of the testing tensors is unknown.

We set N = 3 and {I, I, [z} = {200, 200, 200}. We consider two tensors

generated by sampling two families of smooth functions, respectively, as follows:

1 1

S . b= )
k=i ik TR T G 4 2) + 3k)

The tensor (A is chosen from [11].
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error and CPU times achieved by Tucker-ALS, mlsvd and Imlra_aca are shown
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Fig. 8.2 Example 8.5.2 applying Algorithm 8.2.2, Tucker-ALS, mlsvd and Imlra_aca to the

tensor A

In Figs. 8.2 and 8.3 respectively, the relative errors given in (8.5.1), and the CPU
times of Algorithm 8.2.2, Tucker-ALS, mlsvd and Imlra_aca, applied to A and B,
are shown for P = 1,2, ..., 30.
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Fig. 8.3 Example 8.5.2 applying Algorithm 8.2.2, Tucker-ALS, mlsvd and lmlra_aca to the
tensor 8

Example 8.5.3 We present the results of Algorithm 8.2.2to A € R/1*2%xIN The
form of A is given as A = B + BN, where B € RN 12X xIN ig given by

B=Gx1 U x2Uz--- xy Uy,

with known multilinear rank {R1, Rz, ..., Ry}, and N is an unstructured perturba-
tion tensor and S controls the noise level. The entries of the core tensor G, mode-n
factor matrix U, and the perturbation tensor A are randomly drawn from a normal
distribution with mean zero and variance unit.

The resulting tensor (A is normalized, i.e., A := A/||A| r. The following signal-
to-noise ratio (SNR) measure will be used:

I1B1%
SNR [dB] = 10log L)
IBNII%

Let N = 3, {§h, I», Iz} = {200, 200, 200} and {R1, R2, R3} = {30, 30, 30}.
When we use Algorithm 8.2.2 to find three columnwise orthogonal matrices Q, €
RInxtn  we have Un > R,. We assume that u, = R, + 10. The Fit value for
approximating the tensor A is defined by

Fit=1~|A - A|, /I1AlF.

where A = A X1 (QlQlT) X7 (Q2Q2T ) X3 (Q3Q3T) is an approximation to the tensor
A and the columnwise orthogonal matrices Q,, are derived form Algorithm 8.2.2,
Tucker-ALS, mlsvd, or Imlra_aca. The results of Algorithm 8.2.2, applied to the
tensor A with different noise level, are shown in Fig. 8.4.
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Fig. 8.4 Comparison between Algorithm 8.2.2, Tucker-ALS, mlsvd and Imlra_aca, in term of
mean of Fit and the standard derivation for Example 8.5.3

Algorithm 8.2.2 is better than the existing algorithms. Figure 8.1 shows that
the proposed algorithm is less accurate than and with similar speed to mlsvd.
Figures 8.2, 8.3 and 8.4 show that the proposed algorithm is competitive with but not
convincingly better than existing algorithms. When implementing Algorithm 8.2.2,
we have not utilized higher-level linear algebra subroutines (e.g., BLAS3) or parallel
processors.

Example 8.5.4 The entries of the test tensors are generated by sampling some
smooth functions. We apply Algorithm 8.2.2, the Randomized Tucker decompo-
sition [32, Algorithm 2] and mlsvd_rsi [49] to find the low multilinear rank
approximations for these tensors. The multilinear rank of the tensors is unknown.

Set N = 3 and {I1, I», 3} = {200, 200, 200}. The test tensor A is defined in
Example 8.5.2. In Fig. 8.5, the relative errors given in (8.5.1), and the CPU times of
our Algorithm 8.2.2, the Randomized Tucker decomposition and mlsvd_rsi, applied
to the tensor A with s = 1, are shown for P =1, 2, ..., 30.

8.5.2 Tensor Train Approximation

We have illustrated that it is effective to use Algorithm 8.2.2 to compute the low
multilinear rank approximations of tensors in R/1*/2%XIN yia the some numerical
examples. We give two examples to illustrate the efficiency of Algorithm 8.4.2 for
the approximation tensor train decompositions.
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% Qur algorithm 3.2
+— Tucker-ALS
misvd rsi

Our aigorithm 3.2|
Tucker-ALS ]
misvd ral

Relative error
CPU times

P (number of indices) P (number of indices)

Fig. 8.5 Example 8.5.4 applying Algorithm 8.2.2, the Randomized Tucker decomposition and
mlsvd_rsi to the tensor A with s = 1

Table 8.2 Example 8.5.5, CPU times with the same relative error level from Algorithm 8.4.2 and
tt_tensor for tensors with generated randomly with TT-rank {R, R, R}

TT-rank 2 4 6 8 10 12
Relative error level le—15 le—15 le—14 le—15 le—13 le—15
CPU times (Algorithm 3.2)  6.08's 7.27s 7.47s 8.23s 8.89s 9.89s
CPU times (tt_tensor) 53.38s  61.48s  53.09s 82.73s 61.16s 106.52's

Example 8.5.5 We apply Algorithm 8.4.2 to A € RN *12>XXIN with the TT-format,
given in (8.1.2), where their TT-rank is

{R1,R2, ..., Ry_1}

by the random tensors Q"™ € RRi—1xInxRu with Ry = Ry = 1.
The entries are Gaussian independent identically distributed with zero mean and
the resulting tensor A was normalized, i.e., A := A/|| Al F-

Let N = 4 and {11, D, I3, 14} = {100, 100, 100, 100}. We assume the TT-rank
{R1, R2, R3} = {R, R, R}. When we apply Algorithm 8.4.2 and tt_tensor [49] for
the approximate tensor train decomposition of the tensor A, CPU times are shown
in Table 8.2 with the same relative error level.

Furthermore, for a given order-4 tensor A with TT-rank {15, 15, 15}, by applying
Algorithm 8.4.2 and tt_tensor to compute its approximate tensor train approximation
with TT-rank {P, P, P} (P < R), CPU times with the same relative error level are
shown in Table 8.3.
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Table 8.3 Example 8.5.5 for A with TT-rank {R, R, R}, CPU times for the same relative error
level from Algorithm 8.4.2 and tt_tensor for P = 3,4, ..., 15

P Relative error level CPU time (Algorithm 3.2) CPU time (tt_tensor)
3 le—1 5.47s 56.06s
5 le—1 6.22s 55.03s
7 le—1 6.95s 58.20s
9 le—1 7.86s 56.77s
11 le—1 8.61s 59.67s
13 le—1 12.23s 65.56's
15 le—14 13.44s 111.63s

We compare Algorithm 8.4.2 with some existed algorithms for computing tensor
train approximations via three examples. These algorithms are:

 tt_tensor: the tensor train approximation the SVDs of the matrices obtained from
the corresponding unfoldings by a successive of projections [21, 50];

* dmrg_cross: DMRG-cross method for the tensor train approximation [50, 51]
and;

» greedy2_cross: the tensor train approximation by the greedy cross interpolation
scheme [50, 52].

Example 8.5.6 The entries of the test tensors are generated by sampling some
smooth functions. For each test tensor, we use the function “tt tensor” with
accuracy 10~13 in [49] to derive its approximate TT-rank. Based on the approximate
TT-rank, we apply Algorithm 8.4.2 to find the tensor train approximation. We also
compare Algorithm 8.4.2 with “#_tensor”, “dmrg_cross” and “greedy2_cross”
for finding the tensor train approximation of the test tensors, in terms of CPU times.

The relative error for a tensor train approximation of a tensor in RIOxIxxIy g
defined as
e=|A-A|/IAlF, (8.5.2)

where A = U xé U xé e xé UM and the the core tensors U™ are derived
from Algorithm 8.4.2 or tt_tensor.

We assume that the test tensors are chosen from the set RI </ *IXIXI with | =
3,4, ...,30. The entries of three test tensors A and B are

irinizisis = (=D In(i1) + (=12 In(i2) + (= 1) In(i3) + (= 1) In(ig) +(— 1)’ In(is),
biyirizigis = sin(i1 +io + i3 + is +is),

wherei, = 1,2,...,Iandn =1, 2,...,5. The test tensors are chosen from [53]
and [54]. For each I, we can derive the approximate TT-ranks of A and B via the
function “tt_tensor”.
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Fig. 8.6 Applying Algorithm 8.4.2, tt_tensor, “dmrg_cross” and “greedy2_cross” to the tensor A
with unknown TT-rank for Example 8.5.6
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Fig. 8.7 Applying Algorithm 8.4.2, tt_tensor, “dmrg_cross” and “greedy2_cross” to the tensor
B with unknown TT-rank for Example 8.5.6

In Figs. 8.6 and 8.7, the relative errors (8.5.2), and the CPU times of Algo-
rithm 8.4.2, “tt_tensor”, “dmrg_cross” and “greedy2_cross”, applied to the tensors
A and B, are shown for I = 3,4, ..., 30.
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Relative error
CPU times

dimension | dimension |

Fig. 8.8 Applying Algorithm 8.4.2 and tt_tensor to the sparse tensor A with 20 / nonzero entries,
for I =5,10,...,40

Table 8.4 Example 8.5.7, CPU times and relative errors with the same approximate TT-rank
from Algorithm 8.4.2 and tt_tensor for the sparse tensors A with 40K nonzero entries, for
K =1, 10, 100, 1000, 1000
The values of K 1 10 100 1000 10,000
CPU times (Algorithm 8.4.2) 234.89s  217.43s  222.86s  21930s  229.74s
Relative error (Algorithm 8.4.2) 1.32e—15 0.46e—15 8.65e—14 1.23e—10 4.58e—13
CPU times (tt_tensor) 408.16 s 394.15s  416.48s 385.17s 393.56s
Relative error (tt_tensor) 1.62e—15 0.65e—15 5.72e—15 1.10e—14 1.17e—14

Example 8.5.7 In the previous two examples, the test tensors are dense. In this
example, we apply our Algorithm 8.4.2 to compute the tensor train decomposition
of some sparse tensors with unknown TT-rank.

We set I, = I withn = 1,2,...,5 and use the function “sptenrand” in the
MATLAB Tensor Toolbox [48] to generate the test sparse tensors, with

A = sptenrand([1, I, 1, 1,1],40 K)

creating a random sparse tensor A with approximately 40 K nonzero entries,
where K is a positive integer. The relative errors (8.5.2), and the CPU times of
Algorithm 8.4.2 and tt_tensor, applied to the sparse tensors A € R XIxIx] with
different 7, where the number of nonzero entries in A is linear with respect to 1, are
shown in Fig. 8.8.

We assume that / = 40. For different positive integer K, when applying
Algorithm 8.4.2 and tt_tensor to the sparse tensor A € R40x40x40x40x40 \ith 40 K
nonzero entries, CPU times and relative errors with the same approximate TT-rank
are shown in Table 8.4.
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Table 8.5 Example 8.5.8. For deriv2 and phillips, ¢ = 10~*; the another parameter in deriv2

is 1

Matrix type Num_c CPU_t Err ANum_c ACPU_t AErr
baart 9 0.43s 1.06e—11 9 0.34s 1.05e—11
deriv2 207 8.20s 9.00e—5 122 4.53s 8.63e—5
foxgood 38 1.44s 1.81e—11 24 0.97s 2.67e—11
heat 507 23.44s 2.76e—12 431 18.62s 8.33e—11
phillips 360 17.02s 9.46e—5 214 8.90s 8.82e—5
shaw 27 0.99s 1.27e—11 17 0.64s 1.07e—11

As shown in Figs. 8.6 and 8.7, Algorithm 8.4.2 is better than tt_tensor and
dmrg_cross, but worse than greedy2_cross. Note that Algorithm 8.4.2 have not
utilized higher-level linear algebra subroutines (e.g., BLAS3) or parallel processors.

8.5.3 Comparison Algorithm 8.2.1 with Different “take_max”

Example 8.5.8 In this example, we analyze the difference between Algorithm 8.2.1
and Algorithm 8.2.1A (our Algorithm 8.2.1 with Procedure A) via some testing
matrices. The testing examples baart, deriv2, foxgood, heat, phillips, and shaw
are from Hansen Tools [34].

For a given A € R/ with I > J, when we apply Algorithm 8.2.1 (or
Algorithm 8.2.1A) to find a columnwise orthogonal matrix Q such that

HA - QQTAHF <e, (8.5.3)

we use “Num_c”, “CPU_t” and “Err” (or “ANum_c”, “ACPU_t” and “AErr”) to
denote the number of the columns of Q, CPU times and error |A — QQTA| F,
respectively. We assume that ¢ = 1070 and 7 = J = 512. The results are shown
in Table 8.5.

8.6 Conclusions and Further Research

In this chapter, we develop several adaptive randomized algorithms for the low
multilinear rank approximations and the tensor train approximations. The idea orig-
inates from randomized algorithms for computing partial matrix decompositions.
For a given tensor in R/ */2X<IN " the main computational cost for randomized
algorithms is the tensor-vector products.

As we know, the tensor train format is a special case of the Hierarchical
Tucker format. We can use the idea of Algorithm 8.4.2 for the tensor train
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approximation to design an adaptive randomized algorithm for the Hierarchical
Tucker approximation, and its probabilistic error bound can be also derived from
Theorem 8.3.3.

As illustrated by Example 8.5.8, Algorithm 8.2.1 with “take_max=True” is
superior to Algorithm 8.2.1 with “take_max=False”: CPU times and storage size.
However, we can not prove that rigorously.

For the low multilinear rank approximations of real tensors, as shown in [55],
in terms of CPU time, Tucker-SVD is faster than Algorithm 8.2.2; as shown in
[56], in terms of relative error, Tucker-pSVD is better than Algorithm 8.2.2. More
randomized algorithms for the low multilinear rank approximations of real tensors
should be investigated in the near future.
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