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Theory and Design of Digital Communication Systems

Providing the underlying principles of digital communication and the design techniques of
real-world systems, this textbook prepares senior undergraduate and graduate students for
the engineering practices required in industry. Covering the core concepts, including link
analysis, modulation, demodulation, spread spectrum, equalization, channel fading effects,
and channel coding, it provides step-by-step mathematical derivations to aid understanding
of background material. In addition to describing the basic theory, the principles of system
and subsystem design are introduced, enabling students to visualize the intricate connec-
tions between subsystems and understand how each aspect of the design supports the overall
goal of achieving reliable communications. Throughout the book, theories are linked to
practical applications with over 250 real-world examples, whilst 370 varied homework
problems in three levels of difficulty enhance and extend the text material. With this
textbook, students can understand how digital communication systems operate in the real
world, learn how to design subsystems, and evaluate end-to-end performance with ease and
confidence.
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Preface

This book was written with two goals in mind: to provide the underlying principles of digital
communication and to study design techniques integrated with real world systems. The
ultimate aim of a communication system is to provide reliable transmission of information to
the user(s). This fundamental foundation was established in 1948 by Claude Shannon, the
founding father of information theory, and led eventually to the development of modern
digital communication. Analog communication is near extinction or at the very gate of it.
The full spectrum dominance of digital communication has arrived and new frontiers are
being established every decade; from cellular systems to wireless LAN and MAN, the bit
rates are being pushed ever higher for ubiquitous mobile applications.

Knowing the limit of digital transmission is vital to the design of future communication
systems, particularly mobile wireless systems, where both spectrum and power are precious
resources, and design techniques can be used to manipulate these two main resources to fit
real world applications. No single technique can cover all the requirements of a modern
communication system, which makes it necessary for students to understand the intricate
web between subsystems, each designed to support others to achieve the common goal of
reliable communication.

The book contains more than 250 examples to help students achieve a firmer under-
standing of the subject. The problems at the end of each chapter follow closely the order of
the sections. They are designed for three levels: level one covers the straightforward
application of equations; level two requires patience and deep thinking; whilst level three
requires some research of the literature to assist in finding a solution. A solutions manual for
the instructor accompanies the book.

The book was written for both senior undergraduate and graduate students studying
communications at universities and colleges. The entire book is suitable for two-
semester courses in digital communications. The first course is typically a one-semester
senior course in digital communication, which may be taken by students new to
studying communications (the conventional wisdom is that students should learn analog
communication before learning digital communications) or after completing an intro-
ductory course in communication systems (one that is heavy in analog communication
systems such as AM and FM). The second course is a one-semester course for graduate
students who already have a firm background in random variables and processes. The
practical material included in this book (much of it focused on commercial and military
systems) will be helpful for practitioners and professionals in the digital communication
field.

As in the learning of any subject, some prerequisites are required for the reading of this
book. A first course in probability theory is necessary and exposures to random processes

xvii



would be helpful. Readers should also be familiar with linear system analysis. A knowledge
of analog communication is helpful but not required. For readers who do not have the
patience to go through all the design techniques but would appreciate the beauty of the
underlying principles, we recommend our favorite book, Principles of Digital
Communication, authored by the legendary Robert G. Gallager.
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β proportionality constant, roll-off factor of a raised-cosine filter
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" phase error
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θ phase
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λ wavelength, Lagrange multiplier

μ conditional mean value
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ρ spatial correlation coefficient
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σ2 variance of noise
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1 Introduction

If the mind is in tranquility, time and space cease to exist.
Essence of Buddhism

1.1 Brief overview

This book provides the principles of digital communication and studies techniques to design
and analyze digital communication systems for point-to-point and point-to-multipoint
transmission and reception. Other than for radio broadcasting, modern communication
systems are going digital, and in the USA the conversion of analog TV broadcasting into
digital HDTV broadcasting at the beginning of 2009 signified the coming end of analog
communications. Communications between living beings began with the voice, and the
three biggest voice systems in the world are the telephone, and the cellular and radio
broadcasting systems.

The dissemination of visual activities then propelled the development of TV broadcasting
systems. The pioneer telephone network and radio broadcasting systems employed analog
communication techniques, such as AM and FM, for transmission of analog voice, as did the
analog TV broadcasting systems, which employed VSB-AM for picture transmission. The
quality of the message, such as voice and images, at the analog receiver depends on
how well the waveform that carries the message over the physical channel (twisted-pair
telephone wires, coaxial and fiber-optic cables, space, and water) can be reproduced. In
addition, the fidelity of the received message depends on the signal-to-noise ratio at the
receiver input. For good analog communications, the signal-to-noise ratio must be large, and
this requires high-power transmitters, such as are used in AM radio and TV broadcasting.
For FM radio broadcasting a large frequency spectrum is used, such as 200 kHz for radio
broadcasting, which shows that analog communications do not utilize power and bandwidth
efficiently. Furthermore, the advent of the Internet requires audio, video, imagery, and text
messages to be integrated for transmission over a common channel and this in effect rules
out analog communications such as AM and FM.

In analog communications, the message signal requires an infinite set of continuous time
waveforms for transmission over a physical channel. This is because the message itself, such
as audio or video, must first be converted into a voltage baseband waveform with a
continuous range in amplitude that has countless possible values. When the baseband
voltage waveform is used to modulate an RF carrier for transmission, such as in AM or
FM, the modulated RF signal transmitted over the physical channel also has countless
possible values in both its amplitude and frequency ranges. The only way to recover the
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message signal is to faithfully reproduce the baseband waveform from the modulated signal.
This can be done easily in the case of no noise and no equipment imperfections, but
otherwise the fidelity of the message signal may be reduced. Digital communication does
not involve the faithful reproduction of the baseband waveform in the presence of noise
and equipment imperfections. Digital communication operates instead with a finite set of
continuous time modulation waveforms for transmission over a physical channel. This
implies that the message signal must be represented by a finite set of voltage baseband
waveforms. Mathematically, a finite set of waveforms can only represent a finite set
of alphabets, commonly referred to as symbols. A symbol consists of a fixed number of
binary digits or bits. For example, the set of four distinct symbols {00, 01, 10, 11} can be
represented by four distinct waveforms f�A cos 2πfct,�A sin 2πfctg. The time separation of
consecutive waveforms that represent a symbol stream is called the symbol time, which is
the inverse of the symbol rate. If the waveforms are of finite duration then this duration is the
symbol time. This begs the question of how to obtain the bits or symbols that represent the
message. The process of converting a voltage baseband waveform that represents an audio
or video message into bits is referred to as the analog to digital conversion (or A/D). Text
messages generated by computers are inherently in bits, so with A/D conversion, audio,
video, text, and imagery can all be integrated into a single digital stream of bits. The process
of A/D, bit-symbol mapping, baseband waveform shaping, and modulation is referred to
as digital transmission. The process of demodulating the modulated signal, detecting the
symbol, symbol–bit mapping, and digital to analog conversion (or D/A) is called digital
reception.

Digital communication makes no attempts to reproduce the finite set of voltage baseband
waveforms. Instead, the receiver detects the energy content of each baseband waveform in
the presence of noise and equipment imperfections, and then makes a best estimate of which
transmitted symbol was received. If the signal to noise ratio per symbol is reasonably large,
a symbol will most likely be detected correctly with high probability. If not, a symbol error
may occur. This is the essence of digital communication. For a given signal-to-noise ratio, an
analog communication receiver attempts to reproduce the voltage baseband waveform with
certain subjective fidelity. On the other hand, for a given signal-to-noise ratio per symbol, a
digital communication receiver produces symbols with a quantitative error rate. It is
important to know in advance the lower bound of the signal-to-noise ratio per symbol for
a specified error rate irrespective of the type and size of the set of modulation waveforms. In
1948 Claude Shannon established this lower bound and also provided the channel capacity
for reliable transmission [1]. Shannon’s work gives the designers of digital communication
systems the freedom to choose the set of modulation waveforms that achieve either the
best power or bandwidth efficiency, or a trade-off combination of both. As long as the
transmission rate is below the channel capacity and the signal-to-noise ratio per symbol is
above the Shannon limit, reliable communication is possible with an arbitrarily small error
rate. Guided by the Shannon channel capacity theorem (main theorem), the designer can
further integrate error-correction codes with modulation techniques to lower the signal-to-
noise ratio per symbol to achieve a specified error rate. The first error-correction code, the
Hamming code, was discovered by Richard W. Hamming in 1950, two years after Shannon
published his landmark work [2]. In addition to the main theorem, the Shannon first theorem
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provided the framework for encoding a discrete source of a finite set of symbols to minimize
the bit rate at the source encoder output. This allows the compression of the A/D samples of
the message signal to remove redundancy and any insignificant information not perceptible
by the human eye or ear.

The most common compression algorithms in use today are MP3 for music, JPEG for
pictures, and MPEG for video. Figure 1.1 shows the conceptual block diagram of a digital
communication system. The material in the book is organized to cover the transmitter,
receiver, and channel.

1.2 Scope

Chapter 2 provides a general study of deterministic signals that can be analyzed with Fourier
transform and Fourier series. Simple classification of signals and the concept of power and
energy are reviewed. One important class of signal, namely orthogonal signals, such as the
Walsh functions employed in IS-95, CDMA 2000, and WCDMA, is discussed in detail.
The majority of continuous-time and finite-energy signals in practice can be conveniently
analyzed via their signal spaces. These signal spaces are displays of the signal vectors in
their respective constellations. The signal vectors which can be viewed as the A/D versions
of a signal set contain all the information about the signal set. Practical communication
systems are inherently linear time-invariant systems operating in the small-signal range.
They can be analyzed by Fourier series and Fourier transform to provide a frequency-
domain snapshot of the signal bandwidth. The concept of autocorrelation and its relationship
with energy or power spectral density are discussed for linear time-invariant systems.
The sampling theorem that governs the A/D conversion of an analog signal and the
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Figure 1.1 Conceptual block diagram of a digital communication system.
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Nyquist–Shannon interpolation for reconstruction of the analog signal are presented.
Finally, the representations of a bandpass signal, that is, the signal sent over a physical
channel, are discussed. The complex envelope (equivalent lowpass signal) of a bandpass
signal that can be employed to simplify the analysis of a communication system is also
included.

Chapter 3 studies random signals and their statistics. Although a finite set of deterministic
signals is employed to represent a finite set of information symbols, the transmitted symbols
are truly random, with each one in the set occuring with a fixed probability. Therefore, the
infinite series of signals transmitted over the channel is indeed a random process with finite
power. The study of random processes allows the establishment of the Fourier transform
relationship between the autocorrelation of the random process and its power spectral
density via the Einstein–Wiener–Khinchine theorem. The emphasis here is on cyclo-
stationary processes, which encompass all digitally modulated signals. The Gaussian
process that is used to represent channel noise is discussed in sufficient detail. Sampling
of bandlimited white Gaussian process, sufficient statistics for white Gaussian samples, the
Karhunen–Loeve theorem, and whitening filter are studied. To study the performance of
wireless communication via a fading channel we look at a variety of processes derived
from the Gaussian process, such as the Rayleigh, Rice, Nakagami-m, χ2, and log-normal
processes.

Chapter 4 provides a general study of information theory developed by Shannon, and
addresses both source and channel coding. The concept of source entropy and prefix code is
discussed. Shannon–Fano and Huffman prefix codes are used as examples. The Shannon
first theorem is presented with a proof, and the concept of mutual information is presented
together with the Shannon main theorem for a discrete channel. The concept of differential
entropy for a Gaussian channel is introduced, and leads to mutual information and Shannon
channel capacity. Vector Gaussian channels and the water filling strategy are presented to
highlight the concept of channel coding, which is also interpreted via the sphere packing
bound. The channel capacity of a bandlimited Gaussian channel and the channel capacity of
a Gaussian channel with discrete inputs are derived. The latter provides a snapshot of how
efficient digitally modulated signals perform as compared to the Shannon capacity. Channel
coding can be done with error-correction codes such as block codes and convolutional
codes. Performance of coded digital signals is presented for both block codes and convo-
lutional codes, with the emphasis on low-density parity-check codes (LDPC) and con-
volutional codes. The decoding of LDPC codes is implemented via the message passing
algorithm. The decoding of convolutional codes is carried out via the Viterbi algorithm,
which includes hard decoding, and quantized or unquantized soft decoding.

Chapter 5 examines methods for establishing a communication link between the trans-
mitter and receiver, commonly referred to as link analysis. The link budget involves the
allocation of power to the transmitter and noise temperature (or noise figure) to the receiver
so that a signal-to-noise ratio is established at the receiver to match a specified error rate
range. Given the transmitter power and the channel attenuation, the power of the received
signal can then be established. The channel attenuation is unique for each physical medium.
The chapter begins with the concept of the noise temperature of a two-port network,
which leads to the concept of the system noise temperature of a cascade of two-port
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networks modeling a receiver. The system noise temperature allows the evaluation of noise
power in the receiver bandwidth, and hence the system signal to noise ratio. The physical
channels investigated in this chapter are the cellular and satellite channels. For the cellular
channel, we adopt the well-known Hata model to estimate the median path loss between
the transmitter and receiver. The presence of co-channel interference between cells is also
taken into account. Both narrowband cellular systems (IS-136, GSM) and wideband CDMA
cellular systems (IS-95, CDMA-2000, WCDMA) are covered. For a satellite channel,
the communication link is a point-to-point link, consisting of up- and downlinks. The
Friis formula for free-space attenuation is employed to establish the uplink or downlink
attenuation.

Chapter 6 presents modulation techniques for transmitting information over the physical
channel. The chapter essentially has two parts, namely binary modulation and M-ary
modulation. The structure of each modulation technique is studied via the signal waveform,
the power spectral density, and the modulator. For binary modulation we investigate phase
shift keying (PSK), differential phase shift keying (DPSK), amplitude shift keying (ASK)
(commonly referred to as intensity-modulated on–off keying (OOK), a technique used in
fiber optic communication), frequency shift keying (FSK), minimum shift keying (MSK),
and Gaussian MSK employed by the GSM cellular standard. Many practical applications
require either the higher spectral efficiency or higher power efficiency that binary modu-
lation techniques can provide; M-ary modulation can accommodate both. The second part of
this chapter covers M-ary amplitude shift keying (MASK), M-ary phase shift keying
(MPSK), offset quadrature phase shift keying (OQPSK), differential M-ary phase shift
keying (DMPSK), π=4 shifted differential quadrature phase shift keying (π=4-DQPSK),
M-ary quadrature amplitude modulation (MQAM), code shift keying (CSK), M-ary fre-
quency shift keying (MFSK), and continuous phase modulation (CPM). The chapter con-
tinues with a treatment of the dominant multiplexing-modulation technique, namely
orthogonal frequency division multiplexing (OFDM), which is used in many wireless
standards. The chapter ends with a look at trellis coded modulation (TCM) for bandlimited
channels. Both Ungerboeck and pragmatic TCM are investigated.

Chapter 7 provides a treatment of digital demodulation. A generic digital demodulator
consists of two major subsystems, namely the signal processor and the detector. There are
four types of signal processor: the matched filter, the correlator, the noncoherent matched
filter, and the noncoherent correlator. The first two types are employed in coherent de-
modulation while the last two types are used in noncoherent demodulation. For binary
demodulation the two fundamental detectors are threshold and maximum detectors. For
M-ary demodulation the two fundamental detectors are the minimum Euclidean distance
detector and the M-ary maximum detector. Combining the signal processor(s) and the
detector in that order produces an L-path demodulator for the set of digital signals with
L orthonormal basis functions and an M-path demodulator for the set of M orthogonal
signals. The bit error probability analysis is carried out for binary modulation techniques
such as coherent PSK, coherent DPSK, direct-detection ASK (for fiber optic communica-
tion), coherent FSK, coherent MSK, precoded MSK and GMSK, noncoherent FSK and
MSK, and noncoherent DPSK. For M-ary demodulation, the bit error probability analysis is
carried out for coherent MASK, coherent MPSK, coherent DMPSK, noncoherent DMPSK,
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coherent MQAM and DMQAM, coherent CSK and MFSK, noncoherent CSK and MFSK,
coherent CPM with sequence detection, coherent CPM with symbol-by-symbol detection,
and noncoherent CPM. The chapter continues with OFDM demodulation, with emphasis on
the IEEE 802.11a,g standards. Finally, the demodulation and decoding of TCM are studied
and performance analysis is investigated. The Viterbi algorithm is again used to illustrate the
decoding process.

Chapter 8 investigates two major spread spectrum communication techniques for both
commercial and military applications: direct sequence (DS) and frequency hop (FH). The
chapter begins with a presentation of the pseudo-noise (PN) sequences needed for spreading
the modulated signal. Next the concept of quadrature orthogonal covering using Walsh
functions of the same length for multiplexing DS signals with an identical symbol rate is
discussed. This concept is then extended to variable-length orthogonal covering for variable
symbol rates. IS-95 is used as a real life example for the study of the direct sequence
spread spectrum. The demodulation of DS signals in the presence of tone jamming, broad-
band jamming, and pulse jamming is analyzed. Demodulation of quadrature orthogonal
covering (IS-95 forward link) as well as noncoherent DS-CSK (IS-95 reverse link) is
presented. The analysis of code division multiple access (CDMA) with random spreading
sequences is presented together with a closed form expression and a tight upper bound for bit
error probability. For frequency hop signals, three jamming strategies are studied: partial-
band jamming, multi-tone jamming, and follower jamming. Both slow and fast hops are
considered for follower jamming.

Chapter 9 deals with intersymbol interference (ISI) in a bandlimited channel. The Nyquist
criterion for zero ISI is stated together with the corresponding pulse shapes that satisfy it.
The design of an optimum demodulator for a bandlimited channel with Gaussian noise is
carried out. The optimum demodulator relies on the signal pulse shape implemented at the
modulator. The channel is converted to an ideal channel via an equalizer implemented at the
modulator (the equalizer is a filter with a transfer function equal to the inverse transfer
function of the channel). At the demodulator, a matched filter matched to the signal pulse
shape simultaneously achieves both the maximum signal-to-noise ratio and zero ISI as long
as the pulse shape at the matched filter output satisfies the Nyquist criterion of zero ISI.
In practice, because the channel transfer function is not known or varies with time, ISI
removal is instead implemented at the demodulator. The equalizer implemented at the
demodulator can be classified into two types: linear and nonlinear. The treatment of linear
equalizers covers zero-forcing and mean-square error equalizers. The latter alleviates the
noise enhancement effect that severely degrades the former in channels with deep attenu-
ation in the passband. Nonlinear equalizers such as zero-forcing decision-feedback and
mean-square error decision-feedback can avoid the noise enhancement effect altogether,
although in channels with severe distortion the error propagation due to decision feedback
could worsen the performance. To obtain optimum performance, maximum likelihood
sequence detection may be employed to mitigate the ISI. The motivation behind sequence
detection is to use the symbol energy that resides in the ISI portion of the symbol to aid the
detection instead of throwing it away. The Viterbi algorithm is employed in practice for
sequence detection. Finally, a fractionally spaced equalizer that can mitigate timing error
is presented.
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Chapter 10 studies the transmission and reception of a digitally modulated signal over a
fading channel. Unlike the AWGN channel, where noise is the only problem, a fading
channel is a greater challenge, as it may cause signal envelope variations, phase errors, and
intersymbol interference, all of which are detrimental to the performance of the signal. Thus,
it is necessary to understand the mechanism that causes these unwanted effects and find
ways to mitigate them. A fading channel arises from the movement of the transmitter and
receiver, commonly referred to as the time-varying effect or Doppler effect. This may cause
random amplitude attenuation and random phase rotation of the signal space. In underwater
acoustic communication, the medium also changes over time, further compounding the
problem. A fading channel also exhibits a space-varying effect, where the locations of the
transmitter and receiver and the physical structures in the environment dictate the paths that
the signal may travel. A transmitted signal representing an arbitrary symbol may arrive at the
receiver via multiple paths. Depending on the time delay between paths, signal echoes of a
symbol may overlap the next several symbols causing intersymbol interference. Both time-
varying and space-varying effects can be classified into four fading characteristics: slow
fading with random amplitude attenuation and negligible phase error, fast fading with
random amplitude attenuation and large phase error, flat fading with random amplitude
attenuation and negligible intersymbol interference, and frequency selective fading with
random amplitude attenuation and intersymbol interference. A mobile wireless channel may
have two of these four characteristics where the random amplitude attenuation is described
by a special distribution (Rayleigh, Rice, and Nakagami-m). For analysis, it is convenient to
model a fading channel with a channel impulse response that includes both time- and space-
varying effects. From the channel impulse response, the multipath autocorrelation and
Doppler profiles are derived, which lead to the concept of the Doppler power spectrum.
Clarke–Doppler and Aulin–Doppler spectra are studied as examples. Using a mathematical
model, the performance of a modulated signal in a fading channel is analysed. First, ideal
coherent demodulation (assuming the carrier phase is always available for symbol-by-
symbol detection) is investigated and the fading channel is assumed to produce only random
amplitude attenuation. Channel tap estimation as well as the channel tap error effect is
studied to reflect real world situations.

Next, the slow fading channel with random amplitude attenuation is investigated for pilot
symbol aided demodulation (the pilot symbols are periodically transmitted in the symbol
stream; this represents a less desirable situation than ideal coherent demodulation but
remains in line with practical applications). These investigations are extended to OFDM
(the major waveform that was adopted by IEEE 802.11a-g, 802.16 to name a few) where a
slow and frequency-selective fading channel is assumed. The fundamentals of coherent
demodulation are extended to noncoherent demodulation, where the Doppler tracking of
orthogonal signals is investigated. The next discussion centers on another major waveform
that was adopted by IS-95, CDMA 2000, and WCDMA (for use either in the forward
channel or reverse channel or both) for their respective cellular systems, namely, orthogonal
covering and spread spectrum signals. Complex spreading and despreading as well as
Doppler analysis and tracking are presented. For completeness the demodulation of the
signal used in the reverse channel of IS-95 is also presented. Once the Doppler phase error
resulting from either slow or fast fading is corrected via Doppler tracking, and the ISI
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resulting from frequency-selective fading is mitigated via OFDM and equalization, only
random amplitude attenuation remains to be dealt with. This particular effect can be
effectively alleviated via the use of time, frequency, antenna, or multipath delay diversity.
Diversity is a signal combining method that makes use of uncorrelated signal redundancy
for both transmission and reception to enhance symbol detection in the presence of a
deep fade which may destroy a non-diversity symbol. Diversity can be achieved via
redundant symbol interleaving for time diversity, or via uncorrelated subcarrier com-
bining in OFDM for frequency diversity. It can also be achieved via multiple transmit
antennas for transmit antenna diversity, and via multiple receive antennas for receive
antenna diversity or using a Rake receiver for multipath delay diversity. Combinations of
these methods are also possible. Three main signal combining methods are studied:
maximal ratio combining (MRC), selection combining (SC), and equal gain combining
(EGC). MRC is the optimum combining scheme for coherent or pilot symbol-aided
demodulation in AWGN and is the most commonly used method for wireless LAN,
MAN, WAN, and cellular systems. It is superior to SC and EGC, although it cannot be
used for noncoherent demodulation, unlike the other two schemes. Wireless communi-
cation in a fading channel favors the use of multiple transmit antennas for performance
enhancement. This type of antenna diversity employs orthogonal space-time block codes
with rates of ½, ¾, and 1 with MRC at the receiver. The Alamouti code with unity rate
was recommended for the IEEE 802.16 family. Integrating both transmit and receive
antenna diversity provides the receiver with a powerful method to combat random
amplitude attenuation.

The remaining parts of this chapter investigate the capacity of a fading channel. Since
a fade causes an outage that may drive the instantaneous channel capacity to zero, the
average channel capacity defined for an AWGN channel does not exist for a slow fading
channel. Therefore, the outage channel capacity is defined instead. The evaluation of
outage capacity for a slow fading channel, as well as slow fading channels with receive
antenna diversity (SIMO), transmit antenna diversity (MISO), both receive and transmit
antenna diversity (MIMO), and OFDM are presented. For a fast fading channel, the
average channel capacity is well defined since symbols fade independently and there
exists a coding system that ensures a maximum reliable rate, which is the ensemble
average rate. Fast fading is less detrimental than slow fading from the capacity point of
view but requires more complex channel coding to deal with both Doppler phase error
(virtually eliminated via Doppler tracking in slow fading) and random amplitude
attenuation.

1.3 Summary

The structure of the book can be summarized as follows:

* Acquiring the prerequisite knowledge of communication signals: Chapters 2 and 3.
* Packaging the message and introducing the concept of signal-to-noise ratio and bandwidth: Chapter 4.
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* Measuring and establishing the required signal-to-noise ratio for a given communication coverage:
Chapter 5.

* Sending the message based on the required signal-to-noise ratio and bandwidth: Chapter 6.
* Receiving the message and providing the best detection: Chapter 7.
* Enhancing the survivability of narrowband modulation in the presence of interference via bandwidth

spreading, i.e., spread spectrum modulation: Chapter 8.
* Pulse shaping and equalizing the effect of a bandlimited channel for modulated signals: Chapter 9.
* Dealing with sending and receiving signals over a mobile channel for previously discussed modulation

techniques: Chapter 10.
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2 Deterministic signal analysis

Introduction

In this chapter we lay the foundation for the analysis and design of communication systems,
and digital communication systems in particular. We employ deterministic signals to carry
information from the transmitter to the receiver. These deterministic signals contain certain a
priori features sufficiently adequate for the receiver to retrieve the information. Note that the
information always appears random to the receiver, that is, it does not know which data it
will receive; otherwise, communications would not be needed. Deterministic signals form
a very broad class of signals; therefore, the first step is to categorize them so that their
characterization can be fully exploited. The categorization leads to the labels continuous
time, discrete time, periodic, aperiodic, analog, digital, energy, and power signals. Further
study leads us to orthogonal signals and the use of signal space to represent digital signals as
vectors. We also review linear time invariant (LTI) systems and the important convolution
operation that relates the inputs and outputs of an LTI system.

We then investigate Fourier series representation of continuous-time periodic signals,
and Fourier transform of continuous-time aperiodic signals. The Fourier transform is
indispensable in the analysis and design of LTI systems. The energy spectral density of an
energy signal and the power spectral density of a power signal are studied. From here the
autocorrelation functions of both energy and power signals are examined.

The process of representing a continuous-time signal by its samples is then studied using
the sampling theorem. We also discuss the process of recovering a continuous-time signal
from its samples. Finally, we study various representations of bandpass signals, which are
commonly used in the analysis of communication systems.

2.1 General description of deterministic signals

A deterministic signal is completely specified at any instant of time t. There is no uncertainty
about its value at t. The transmitter employs deterministic signals to carry random informa-
tion. When the receiver receives a transmitted signal that has been corrupted by noise
(a random signal), it attempts to detect the information by stripping away the deterministic
signals. A deterministic signal can fall into a number of categories, which are described
below.
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Continuous-time signals

A continuous time signal x(t) is a signal of the real variable t. For example, the sinusoidal
signal

xðtÞ ¼ A cos 2πf0t (2:1)

shown in Figure 2.1 is a function of the time variable t, with amplitude A and frequency f0.

Discrete-time signals

A discrete time signal xðnÞ is a sequence where the values of the index n are integers. For
example, the discrete-time sinusoidal signal

xðnÞ ¼ A cos 2πf0n (2:2)

with f0 ¼ 1=12 is shown in Figure 2.2.

1
f0

t

A

−A

0

x(t)

Figure 2.1 Sinusoidal signal.

n

2πn

12
x(n) = A cos

Figure 2.2 Discrete-time sinusoidal signal.
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Often a discrete-time signal is obtained from a continuous-time signal x(t) by sampling
at the time instants separated by a sampling interval T. Thus, xðnÞ ¼ xðnTÞ. For example,
if xðtÞ ¼ cos 2π f0t, then xðnÞ ¼ xðnTÞ ¼ cos 2π f0nT . Specifically, f0T ¼ 1=12 for
Figure 2.2.

Periodic and aperiodic signals

A periodic signal x(t) satisfies the following condition:

xðtÞ ¼ xðt þ T0Þ (2:3)

for all time t, where T0 is the period. A signal x(t) that is not periodic is referred to as an
aperiodic or nonperiodic signal.

Example 2.1 Continuous-time sinusoid
The signal xðtÞ ¼ A cos 2πf0t shown in Figure 2.1 is a continuous-time periodic signal with
period T0 ¼ 1=f0. Note that

xðt þ T0Þ ¼ A cos½2πf0ðt þ T0Þ� ¼ A cosð2πf0t þ 2πf0T0Þ
¼ A cos½2πf0t þ 2π� ¼ A cos2πf0t ¼ xðtÞ (2:4)

■

Periodic signals are defined analogously in discrete time. Specifically, a discrete-time
periodic signal x(n) satisfies the following condition:

xðnÞ ¼ xðnþ N0Þ (2:5)

for all integers n, where the positive integer N0 is the period.

Example 2.2 Discrete-time sinusoid
The signal xðnÞ ¼ A cos 2πf0n is periodic if

A cos 2πf0n ¼ A cos 2πf0ðnþ N0Þ
¼ A cosð2πf0nþ 2πf0N0Þ

(2:6)

This implies that 2πf0N0 must be a multiple of 2π. Thus, for an arbitrary integer m

2πf0N0 ¼ 2πm (2:7)

or equivalently

f0 ¼ m=N0 (2:8)
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Thus x(n) is periodic only if f0 is a rational number. Obviously, the fundamental
frequency is f0 ¼ 1=N0, assuming thatm and N0 do not have a common factor. The sequence
xðnÞ ¼ A cosð2πn=12Þ is periodic with period N0 ¼ 1=f0 ¼ 12.
■

Analog and digital signals

An analog signal is a signal with a continuous range of amplitudes. For example, the signal
xðtÞ ¼ A cos 2πf0t, –∞ < t < ∞, is an analog signal.

A digital signal is a member of a set of M unique analog signals that represent M data
symbols.

Example 2.3 Antipodal signals
The binary digital signals s1ðtÞ ¼ A, iTb ≤ t < (i+1)Tb and s2ðtÞ ¼ �A, iTb ≤ t < (i+1) Tb
shown in Figure 2.3 represent bit 1 and bit 0, respectively. The parameter Tb is the duration
of s1(t) or s2(t), and it is called the bit time (bit interval, bit duration). The time index i is an
integer. The amplitude is A. This signaling technique is called antipodal signaling (also
referred to as bipolar, non-return-to-zero (NRZ), or polar NRZ in the literature).

The digital signals s1(t) and s2(t) can be employed to represent the sequence of bits
{1, 0, 1, 1}, as shown in Figure 2.4.
■

Example 2.4 Phase shift keying
The set of two digital signals s1ðtÞ ¼ A cos 2πfct, iTb � t5ðiþ 1ÞTb and
s2ðtÞ ¼ �A cos 2πfct ¼ A cosð2πfct þ πÞ, iTb ≤ t < (i+1) Tb shown in Figure 2.5 can be

s1(t)

t
iTb (i + 1) Tb

t

−A

A

(i + 1) TbiTb

s2(t)

Figure 2.3 Antipodal signals.

t

1 0 11

Figure 2.4 Representation of the bit sequence {1, 0, 1, 1}.
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employed to represent bit 1 and bit 0, respectively. The frequency fc is normally greater than
1=Tb. The parameter Rb ¼ 1=Tb is referred to as the bit rate. Note that there is a phase
shift of π radians between bits 1 and 0. This signaling or modulation technique is called
binary phase shift keying or simply PSK (also referred to as BPSK or 2PSK in the
literature).

The sequence of bits {1, 0, 1, 1} represented by s1(t) and s2(t) is shown in Figure 2.6.
■

A generalization of PSK is M-ary phase shift keying (MPSK) where M data symbols are
represented byM signals with distinct phase shifts. Each symbol has k bits, hence,M ¼ 2k .
The symbol time (symbol interval, symbol duration) is Ts. The parameter Rs ¼ 1=Ts is
referred to as the symbol rate. Note that a symbol has k bits; therefore, a symbol time consists
of k bit times, that is, Ts ¼ kTb. Thus, the symbol rate is 1=k times the bit rate, that is,
Rs ¼ Rb=k ¼ 1=kTb.

The MPSK signals can be written in an arbitrary symbol interval iTs≤ t < (i+ 1)Ts, where
i is an integer, as follows:

snðtÞ ¼ A cos 2πfct þ ð2n� 1Þ π
M

� �
; n ¼ 1; 2; :::;M (2:9)

where the frequency fc > 1/Ts.

Example 2.5 Quadrature phase shift keying
For the caseM ¼ 4, there are four signals representing four distinct symbols 00, 01, 10, 11.
In this case, each symbol has k ¼ 2 bits and the signals are given as

iTb iTb(i + 1)Tb
t

(i + 1)Tb

t

s1(t) s2(t)

Figure 2.5 Binary digital signals.

t•• • •

1 0 1 1

Figure 2.6 Representation of bit sequence {1, 0, 1, 1}
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s1ðtÞ ¼ A cos 2πfct þ π
4

� �
for 00

s2ðtÞ ¼ A cos 2πfct þ 3π

4

� �
for 01

s3ðtÞ ¼ A cos 2πfct þ 5π
4

� �
for 11

s4ðtÞ ¼ A cos 2πfct þ 7π
4

� �
for 10

This signaling or modulation technique is called quadrature phase shift keying or simply
QPSK (also referred to as 4PSK in the literature).
■

Example 2.6 4-ary amplitude shift keying
Consider the set of M = 4 symbols {00, 01, 10, 11}. The following four digital
signals represent the above symbols in an arbitrary symbol interval iTs ≤ t
< (i + 1) Ts:

s1ðtÞ ¼ A cos 2πfct for 00

s2ðtÞ ¼ 3A cos 2πfct for 01

s3ðtÞ ¼ �A cos 2πfct for 10

s4ðtÞ ¼ �3A cos 2πfct for 11

Figure 2.7 shows the sequence {00, 01, 10, 11} as represented by s1ðtÞ, s2ðtÞ, s3ðtÞ, and s4ðtÞ
in time. This signaling or modulation technique is called 4 ary amplitude shift keying or
simply 4ASK.
■

In the next section we will investigate two special types of deterministic signals, namely,
power and energy signals, and their relationship.

• • • • • t

00 01 10 11

Figure 2.7 4ASK for the sequence {00, 01, 10, 11}

15 2.1 General description of deterministic signals



2.2 Power and energy

The average power in watts delivered by a voltage signal v(t) in volts to a resistive load R in
ohms is given by

P ¼ V 2
rms

R
(2:10)

where Vrms is the root mean square (rms) value of v(t), defined as

Vrms ¼ lim
T!1

1

2T

ðT

T
v2 tð Þ dt

� �1=2
(2:11)

In communications, the value of the resistive load is normally assumed to be

R ¼ 1O (2:12)

Thus the average (normalized) power in watts is given by

P ¼ lim
T!1

1

2T

ðT

T
v2 tð Þ dt (2:13)

A signal v(t) is called a power signal if and only if the average power is non-zero and finite,
that is,

05P51 (2:14)

Example 2.7 Power of a sinusoid
Let a voltage signal v(t) = A cos 2πf0t volts be applied across a resistive load R = 1Ω. The
average (normalized) power in watts delivered to the load is

P ¼ lim
T!1

1

2T

ð T

T
A cos 2πf0tð Þ2dt

¼ lim
T!1

A2

4T

ð T

T
1þ cos 4πf0tð Þdt

¼ A2

2
þ lim

T!1
A2

4T

sin 4πf0T
4πf0

þ sin 4πf0T
4πf0

� �

¼ A2

2
þ A2

2
lim
T!1

sin 4πf0T
4πf0T

¼ A2

2

(2:15)

Therefore, vðtÞ ¼ A cos 2πf0t is a power signal.
■
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The energy in joules of a voltage signal v(t) in volts is given by

E ¼
ð1

1
vðtÞj j2dt (2:16)

A signal v(t) is called an energy signal if and only if its energy is non-zero and finite,
that is,

05E51 (2:17)

Example 2.8 Energy of a sinusoid
The power signal in Example 2.7 has infinite energy, as proved below:

E ¼
ð1

1
A cos 2πf0tð Þ2dt

¼
ð1

1

A2

2
1þ cos 4πf0tð Þ dt ¼ 1

(2:18)

■

The above two examples show that a power signal has infinite energy. In the next two
examples we investigate some additional energy signals.

Example 2.9 Energy and power of antipodal signals
Consider the digital signals s1(t) = A, iTb≤ t≤ (i+ 1)Tb, and s2(t) = A, iTb≤ t < (i+ 1)Tb, as
given in Example 2.3. The energy Eb of these two signals, commonly referred to as the bit
energy, can be calculated as follows:

Eb ¼
ð1

1
�Að Þ2dt ¼

ð iþ 1ð ÞTb

iTb

A2dt ¼ A2Tb (2:19)

The energy of s1(t) and the energy of s2(t) satisfy (2.17), hence both signals are energy
signals. However, the average power of these two signals is zero, as shown below:

P ¼ lim
T!1

1

2T

ðT

T
�Að Þ2dt ¼ lim

T!1
1

2T

ð iþ 1ð ÞTb

iTb

A2dt

¼ lim
T!1

1

2T
A2Tb ¼ 0

(2:20)

■
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Example 2.10 Energy and power of PSK signals
Consider thePSKsignals s1ðtÞ ¼ A cos 2πfct, iTb≤ t<(i+1)Tbands2ðtÞ ¼ �A cos 2πfct, iTb≤
t<(i+1)Tb showninExample2.4.Again,wecancalculate theenergyEb of s1(t)or s2(t) as follows:

Eb ¼
ð1

1
�A cos 2πfctð Þ2dt

¼
ð iþ1ð ÞTb

iTb

A2

2
þ A2

2
cos 4πfct

� �
dt

¼ A2Tb
2
þ A2Tb

2

sin 4πfc iþ 1ð ÞTb
4πfcTb

� sin 4πfciTb
4πfcTb

� �
(2:21)

In practice, the frequency fc is normally chosen to be much greater than 1/Tb. Thus, the
second term on the right-hand side of (2.21) is very small compared to the first term, and Eb

is approximately equal to

Eb � A2Tb
2

(2:22)

When fc is selected to be an integer multiple of 1/Tb, that is,

fc ¼ k

Tb
(2:23)

where k is a positive integer, then, the second term on the right-hand side of (2.21) is zero and

Eb ¼ A2Tb
2

(2:24)

It is noted that Eb in (2.21) satisfies (2.17), hence s1(t) and s2(t) are both energy signals. It can
be shown that the average power of both s1(t) and s2(t) is zero.
■

From the above examples we observe that a power signal has infinite energy and an energy
signal has zero average power. This is true for practical signals employed in both digital and
analog communication systems. It is quite obvious that any transmitted signalmust be a power
signal because the transmitter can only have finite power. But, over an infinite time, such a
power signal must have infinite energy since energy is a product of power and time.

In a digital communication system, data bits or symbols represented by associated digital
signals are transmitted sequentially in time. The sequence of digital signals must therefore
be a power signal due to the finite transmitted power. Although a single digital signal must
have zero average power, an infinite sequence of signals turns out to have finite power. The
next example discusses the energy–power relationship.

Example 2.11 Power of an infinite sequence of PSK signals
Consider an infinite sequence of digital signals that represents a set of integers. Let
s1ðtÞ ¼ x t � iTbð Þ ¼ A cos 2πfct, iTb � t5ðiþ 1ÞTb for even i, represents even integers
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and s2ðtÞ ¼ x t � iTbð Þ ¼ �A cos 2πfct ¼ A cosð2πfct þ πÞ, iTb ≤ t < (i+ 1)Tb for
odd i, represents odd integers. We can write the sequence as one composite signal as
follows:

s tð Þ ¼
X1

i¼ 1
x t � iTbð Þ

¼ A
X1

i¼ 1
�1ð Þip t � iTbð Þ cos 2πfct

(2:25)

where p(t iTb) is a pulse of unit amplitude and duration Tb, as shown in Figure 2.8

p t � iTbð Þ ¼ 1; iTb � t5 iþ 1ð ÞTb
0; otherwise

�
(2:26)

The average power of s(t) is given by (2.13):

P ¼ lim
T!1

1

2T

ð T

T
s2 tð Þ dt

¼ lim
T!1

1

2T

ð T

T
A2

X1

i¼ 1
�1ð Þip t � iTbð Þ cos 2πfct

" #2

dt

(2:27)

Since the pulses p(t – hTb) and p(t – iTb) do not overlap for i≠ h, the cross-terms that involve
the product p(t – hTb) p(t – iTb) are all zeros, and (2.27) reduces to

P ¼ lim
T!1

A2

2T

ð T

T

X1

i¼ 1
p2 t � iTð Þ cos2 2πfct

" #

dt

¼ lim
T!1

A2

2T

ð T

T
cos2 2πfct dt

¼ lim
T!1

A2

4T

ð T

T
1þ cos 4πfctð Þ dt

¼ A2

2

(2:28)

The last two lines of (2.28) follow (2.15). From (2.22) and (2.24), we have the following
relationship between the energy of the digital signals s1(t) and s2(t) and their associated
sequence s(t) in (2.25):

p(t − iTb)

t
iTb (i + 1)Tb

Figure 2.8 Unit amplitude pulse of duration Tb.
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Eb � PTb (2:29)

or

Eb ¼ PTb (2:30)

when the product nfcTb is a positive integer.
■

Example 2.11 shows that although the infinite sequence s(t) of digital signals has finite
average power, its component digital signal must have zero average power. If its component
digital signal has finite power, an infinite number of them would result in a sequence s(t)
possessing infinite power. The concept can be made simpler by the following example.

Example 2.12 Power of a finite sequence of PSK signals
Instead of using the power averaged over infinite time, we can employ the power
averaged over finite time. Let P(T) be the power of a voltage signal v(t) averaged over
the finite time T:

P Tð Þ ¼ 1

2T

ð T

T
v2 tð Þdt (2:31)

Now consider the sequence s(t) in (2.25). For simplicity let fc = k/Tb, where k is a positive
integer. By using the definition of power in (2.31) and choosing T = nTb, where n is a
positive integer, we can calculate the power of s(t) as follows:

P Tð Þ ¼ A2

2
þ A2

2

sin 4πfcT
4πfcT

� �
¼ A2

2
þ A2

2

sin 4πnk
4πnk

� �

¼ A2

2

(2:32)

Similarly, the power of the digital signal s1(t) = Ap(t iTb) cos 2πfct or s2(t) = Ap(t iTb)
cos 2πfct averaged over 2T = 2nTb > 4(i+ 1)Tb is

Ps Tð Þ ¼ 1

2T

ð T

T
A2 p2 t � iTbð Þ cos2 2πfct

	 

dt

¼ A2

4T

ð iþ1ð ÞTb

iTb

1þ cos 4πfctð Þ dt

¼ A2Tb
4T

(2:33)

Substituting T = nTb into (2.33) we get

Ps Tð Þ ¼ A2

4n
(2:34)
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Since there are 2n non-overlapping signals s1(t) and s2(t) in the interval 2T, it is obvious that

PðTÞ ¼ 2nPsðTÞ (2:35)

In practice, (2.31) is used in laboratory instruments to measure power averaged over a
finite time. This is also true for other average quantities, such as dc value and rms value.
■

2.3 Orthogonal signals

Orthogonal signals are employed in many modern communication systems. Two signals x(t)
and y(t) are said to be orthogonal over the interval (a, b) if their inner product is zero, that is,

ð b

a
xðtÞy�ðtÞ dt ¼ 0 (2:36)

where y*(t) is the complex conjugate of y(t). If, in addition, the energy of each signal defined
over the interval (a, b) is unity, that is,

Ex ¼
ð b

a
xðtÞj j2dt ¼ 1; Ey ¼

ð b

a
yðtÞj j2dt ¼1 (2:37)

then the two signals are said to be orthonormal. A set of signals {xi (t)} is said to be
orthogonal (orthonormal) if each pair of signals in the set is orthogonal (orthonormal).
Conditions (2.36) and (2.37) can be relaxed to include quasi orthogonal (quasi
orthonormal) signals. Two signals x(t) and y(t) are said to be quasi-orthogonal over
the interval (a, b) if their inner product is much less than the energy of each signal, that is,

ð b

a
xðtÞy�ðtÞ dt � Ex � Ey (2:38)

In addition, if

Ex � Ey � 1 (2:39)

then the two signals are said to be quasi-orthonormal. A set of signals {xi (t)} is said to be
quasi-orthogonal (quasi-orthonormal) if each pair of signals in the set is quasi-orthogonal
(quasi-orthonormal).

Example 2.13 Orthonormal sinusoids with identical frequency
Consider two sinusoidal signals xðtÞ ¼ 2=T0

p
cos 2πnf0t and yðtÞ ¼ 2=T0

p
sin 2πnf0t,

where n ¼ 1; 2; . . .; and T0 ¼ 1=f0. Substituting xðtÞ and yðtÞ into (2.36) with a ¼ 0 and
b ¼ T0 we have
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ð T0

0

2

T0
cos 2πnf0t sin 2πnf0t dt ¼ 1

T0

ð T0

0
sin 4πnf0t dt

¼ 1

T0
� cos 4πnf0t

4πnf0

� �T0

0

¼ 0

(2:40)

Furthermore, applying (2.37) we obtain the energy of xðtÞ and yðtÞ, defined over (0, T0) as
follows:

E ¼
ð T0

0

2

T0
cos2 2πnf0t dt ¼

ð T0

0

2

T0
sin2 2πnf0t dt

¼ 1

T0

ð T0

0
ð1þ cos 4πnf0tÞ dt ¼ 1

T0

ð T0

0
ð1� cos 4πnf0tÞ dt

¼ 1

(2:41)

Thus, the two signals xðtÞ and yðtÞ are orthonormal over (0, T0).
■

The above example shows that two sinusoidal signals with a relative phase difference of
π=2 radians are orthogonal over an integer multiple of their period 1=nf0 ¼ T0=n: In
practice, the frequency of the sinusoidal signals might not be an integer multiple of 1=T0.
In other words, n is not a positive integer but a positive real number. In this case the energy
Ex of xðtÞ and the energy Ey of yðtÞ as calculated in (2.41) become

Ex ¼ 1þ sin 4πn
4πn

� 1 (2:42a)

Ey ¼ 1� sin 4πn
4πn

� 1 (2:42b)

for a large n. Also from (2.40) we have for a large n:

ð T0

0

2

T0
cos 2πnf0t sin 2πnf0t dt ¼ 1

T0

ð T0

0
sin 4πnf0t dt

¼ 1

T0
� cos 4πnf0t

4πnf0

� �T0

0

¼ 1 � cos 4πn
4πn

� 1

(2:43)

Thus, the two signals xðtÞ and yðtÞ have near unity energy and their inner product is much
smaller than unity. In this case they are quasi-orthonormal.

Example 2.14 Orthonormal sinusoids with different frequencies
Consider the set of sinusoidal signals {xnðtÞ}, n ¼ 1; 2; :::, where xnðtÞ is given by
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xnðtÞ ¼ 2

T0

r

cos ð2πnf0t þ θnÞ; T0 ¼ 1

f0
(2:44)

Substituting a pair of signals xkðtÞ and xmðtÞ with k 6¼ m into (2.36) and setting a ¼ 0 and
b ¼ T0 yields

ðT0

0
xkðtÞxmðtÞ dt ¼

ðT0

0

2

T0
cosð2πkf0t þ θkÞ cosð2πmf0t þ θmÞ dt

¼ 1

T0

ðT0

0
fcos½2πðk � mÞf0t þ θk � θm�

þ cos½2πðk þ mÞf0t þ θk þ θm�gdt
¼ 0

(2:45)

Furthermore, it can be seen that the energy of each signal xkðtÞ and xmðtÞ is unity by applying
(2.37). Thus, the set of sinusoidal signals {xnðtÞ} is orthonormal over (0, T0).
■

The signals in (2.45) are often employed to represent data bits or symbols. For example,
two adjacent signals xnðtÞ and xnþ1ðtÞ can be used to represent bit 0 and bit 1, respectively.
The parameter T0 is set to be the bit time Tb. Note that the frequencies of the two signals
are separated by f0 ¼ 1=T0 ¼ 1=Tb, which is also the bit rate. This is the minimum
frequency spacing between xnðtÞ and xnþ1ðtÞ. This modulation technique is referred to
as binary frequency shift keying or simply FSK (also referred to as BFSK or 2FSK in the
literature). In another example, M ¼ 2k adjacent signals, xnðtÞ, xnþ1ðtÞ, . . . , xnþM ðtÞ, can
be used to represent M symbols. In this case the parameter T0 is set to be the symbol
time Ts. The adjacent frequencies are separated by the minimum frequency spacing
f0 ¼ 1=T0 ¼ 1=Ts, which is also the symbol rate. This is called M ary frequency shift
keying or simply MFSK. Figure 2.9 illustrates an FSK representation of two consecutive
bits 0 and 1.

Example 2.15 Continuous-phase orthonormal sinusoids with minimum frequency spacing
Consider two sinusoidal signals xn;iðtÞ and xnþ1;iðtÞ defined over the interval ðiT0; ðiþ 1ÞT0Þ
as follows:

t

Tb Tb

Figure 2.9 FSK representation of two consecutive and different bits.
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xn;iðtÞ ¼ 2

T0

r

cos ½πnf0ðt � iT0Þ þ θn;i� (2:46)

xnþ1;iðtÞ ¼ 2

T0

r

cos½ ðπðnþ 1Þf0ðt � iT0Þ þ θnþ1;i� (2:47)

where n ¼ 2; 3; :::, T0 ¼ 1=f0, and θn;i and θnþ1;i are the initial phases of xn;iðtÞ and xnþ1;iðtÞ at
time t ¼ iT0, respectively. Note that theminimum frequency spacing between these two signals
is f0=2. Applying these two signals to (2.36) over the interval ðiT0; ðiþ 1ÞT0Þ we get

ððiþ1ÞT0

iT0

xn;iðtÞxnþ1;iðtÞ dt

¼ 1

T0

ððiþ1ÞT0

iT0

fcosðπf0t þ πiþ θnþ1;i � θn;iÞ

þ cos½πð2nþ 1Þ f0ðt � iT0Þ þ θn;i þ θnþ1;i�gdt

¼ 1

T0

sinðπf0t þ πiþ θnþ1;i � θn;iÞ
πf0

�

þ sin½πð2nþ 1Þ f0ðt � iT0Þ þ θn;i þ θnþ1;i�
πð2nþ 1Þf0

�ðiþ1ÞT0

iT0

¼ 1

T0

sinð2π iþ π þ θnþ1;i � θn;iÞ � sinð2π iþ θnþ1;i � θn;iÞ
πf0

�

þ sinðð2nþ 1Þπ þ θn;i þ θnþ1;iÞ � sinðθn;i þ θnþ1;iÞ
πð2nþ 1Þf0

�

(2:48)

The result in (2.48) shows that the two signals are not orthogonal unless the following
conditions are satisfied:

θnþ1;i � θn:i ¼ kπ (2:49a)

θnþ1;i þ θn:i ¼ mπ (2:49b)

where k and m are integers. This implies that θn;i and θnþ1;i must be an integer multiple of π
radians. In practice, it is difficult to force the phases of two sinusoidal signals at different
frequencies to satisfy (2.49). It can be seen that the second term of the last equation in (2.48)
is much smaller than the first term. Thus, when only (2.49a) is required to be satisfied, then
the first term reduces zero. Furthermore, for a large n, the second term is much smaller than
unity. Condition (2.49a) can be implemented in practice since it requires only the phase
difference to be an integer multiple of π radians. It is easy to verify that the energy of the
signals is unity via (2.37). In this case, the signals xn;iðtÞ and xnþ1;iðtÞ are said to be quasi
orthonormal over the interval ðiT0; ðiþ 1ÞT0Þ.

Now consider two signals xn;i 1ðtÞ and xnþ1;iðtÞ in two consecutive intervals
ðði� 1ÞT0; iT0Þ and ðiT0; ðiþ 1ÞT0Þ. At time t ¼ iT0 the phase of xn;i 1ðtÞ is πnþ θn;i 1,
and the phase of xnþ1;iðtÞ is θnþ1;i. It is seen that if the phases of the two signals are forced to
be continuous at the transition time t ¼ iT0, that is, πnþ θn;i 1 ¼ θnþ1;i, then the phase
difference θnþ1;i � θn;i 1 must be an integer multiple of π radians. This is the same condition
as (2.49a). The same result holds if the roles of the signals are reversed.
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Equations (2.46) and (2.47) can be used to represent binary data by selecting T0 to be the
bit interval Tb and θn;i ¼ θnþ1;i. This signaling or modulation technique is called minimum
shift keying or simply MSK. It has the minimum frequency spacing of f0=2 ¼ 1=2Tb, which
is half the bit rate. Furthermore, the phase at the bit transition time is continuous and the
signals are orthonormal. Figure 2.10 shows the MSK representation of two consecutive bits
0 and 1.
■

In the three examples above, orthogonal sinusoids were investigated. In the following
discussion other orthogonals signals called Walsh functions will be studied. The Walsh
functions can be obtained from the Hadamard matrix, which can be generated by means of
the following recursive procedure:

H1 ¼ 1 H2 ¼ 1 1
1 �1

� �
HM ¼ HM=2 HM=2

HM=2 �HM=2

� �
(2:50)

where M is a power of two. For example, the Hadamard matrix of order 4 is

H4 ¼
1 1 1 1
1 �1 1 �1
1 1 �1 �1
1 �1 �1 1

2

664

3

775 (2:51)

Note that the row vectors of the Hadamard matrix are mutually orthogonal, that is, hihtj ¼ 0
where hi is the ith row vector and htj is the jth column vector of HM .

The Walsh functions of M chips are given as follows:

wnðtÞ ¼
XM

i¼1
hni pðt � ði� 1ÞTcÞ; n ¼ 1; 2; :::;M (2:52)

where Tc is the chip time, pðt � ði� 1ÞTcÞ is a pulse of unit amplitude and duration Tc,
ði� 1ÞTc � t5 iTc, and hni is the element ðn; iÞ of HM . Since Walsh functions are formed
from the orthogonal row vectors of the Hadamard matrix, they are also mutually orthog-
onal. A normalization constant 1= MTc

p
can be used in the Walsh functions to form an

orthonormal set. The orthonormality of Walsh functions can be verified by using (2.36)
and (2.37).

t

Tb Tb

Figure 2.10 MSK representation of two consecutive and different bits.
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Example 2.16 4-ary Walsh functions
If we let M ¼ 4 in (2.52), we obtain the set of four Walsh functions, each function having
four chips, as follows:

wnðtÞ ¼
X4

i¼1
hnipðt � ði� 1ÞTcÞ; n ¼ 1; 2; 3; 4 (2:53)

Figure 2.11 shows these four Walsh functions.
■

Another extension of the Walsh functions referred to as the sinusoidal Walsh functions is
defined as follows:

wnðtÞ ¼
XM

i¼1
hnipðt � ði� 1ÞTcÞ cos 2πfct; n ¼ 1; 2; :::; 2n (2:54)

where fc ¼ m=Tc and m is a positive integer. It can be verified that the sinusoidal Walsh
functions form an orthogonal set by using (2.36). A normalization constant 1= MTc=2

p
can

be used in the sinusoidal Walsh functions to form an orthonormal set.
The Walsh functions and the sinusoidal Walsh functions can be used to representM ¼ 2k

k-bit symbols. The cellular standard IS-95 employs 64-chip Walsh functions in both
forward (base station-to-mobile) and reverse (mobile-to-base station) channels.

Example 2.17 4-ary sinusoidal Walsh functions
If we let M ¼ 4 in (2.54), we obtain four sinusoidal Walsh functions, each with four chips.
Figure 2.12 shows these functions with fc ¼ 2=Tc. Note the phase change of π radians at the
chip transition time.
■

Tc 2Tc 3Tc 4Tc0
t

w2 (t)

2Tc 4Tc0
t

w3(t)

Tc 3Tc 4Tc0
t

w4(t)

0
t

w1 (t)

4Tc

Figure 2.11 4-ary Walsh functions of four chips.

26 Deterministic signal analysis



2.4 Signal space

In the analysis of digital communication systems it is often convenient to represent a set of
finite energy digital signals by a corresponding set of vectors. Each vector represents a
digital signal; thus the time dependency can be removed. These vectors define a signal
space. To obtain the signal vectors, each digital signal must be represented by an orthogonal
series in terms of the basis functions. This orthogonalization process can be achieved by
means of the Gram–Schmidt procedure.

Gram–Schmidt procedure

Let si(t), i = 1, 2, . . . , M be a set of real-valued signals with corresponding finite
energies Ei. In terms of representation, each signal in the set can be expressed as a linear
combination of L orthonormal basis functions xk(t), k = 1, 2, . . . , L, where L � M .
When the signals si(t), i = 1, 2, . . . , M form a linearly independent set, then L = M. We
have

siðtÞ ¼
XL

k¼1
sikxkðtÞ (2:55)

where the coefficients of the series expansion are defined by

sik ¼
ð1

1
siðtÞxkðtÞ dt (2:56)

t

w1 (t)

4Tc

0

t

w2 (t)

4Tc

0

t

w3 (t)

4Tc

0

w4 (t)

4Tc

0 t

Figure 2.12 4-ary sinusoidal Walsh functions with four-chip duration.
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The orthonormal basis functions can be obtained by means of the following recursive
procedure:

x1ðtÞ ¼ s1ðtÞ
Ð1
1 s21ðtÞ dt

q ¼ s1ðtÞ
E1
p (2:57)

x2ðtÞ ¼ f2ðtÞ
Ð1
1 f 22 ðtÞdt

q ; f2ðtÞ ¼ s2ðtÞ � s21x1ðtÞ (2:58)

xkðtÞ ¼ fkðtÞ
Ð1
1 f 2k ðtÞdt

q ; fkðtÞ ¼ skðtÞ �
Xk 1

m¼1
skmxmðtÞ; k � L (2:59)

Signal vectors

From the Gram–Schmidt procedure we observe that for each orthonormal basis function
xk(t) there is a corresponding orthonormal basis vector xk:

x1 ¼

1
0
:
:
:
0

2

6666664

3

7777775

; x2 ¼

0
1
0
:
:
0

2

6666664

3

7777775

; . . . ; xL ¼

0
0
:
:
:
1

2

6666664

3

7777775

(2:60)

The set of orthonormal basis vectors xk spans an L-dimentional Euclidean signal space. In this
signal space we observe that each signal si(t) is completely determined by the signal vector si:

si ¼

si1
si2
:
:
:
siL

2

6666664

3

7777775

¼
XL

k¼1
sikxk ; i ¼ 1; 2; . . . ;M (2:61)

Wemay visualize the set ofM signal vectors as defining a set ofM points in the signal space
with Lmutually perpendicular axes labeled x1, x2, . . . , xL. The signal vector contains all the
information such as energy and relative phase shift or orthogonality needed to analyze the
performance of the signal.

The energy of a signal turns out to be the squared length or squared norm of its signal
vector as shown below. First consider the length or norm of a signal vector si of the signal
si(t), defined as

sik k ¼
XL

k¼1
s2ik

vuut (2:62)
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Now consider the signal energy Ei, evaluated with the help of (2.55):

Ei ¼
ð1

1
s2i ðtÞ dt ¼

ð1

1

XL

k¼1

XL

m¼1
siksimxkðtÞxmðtÞ dt

¼
XL

k¼1

XL

m¼1
siksim

ð1

1
xkðtÞxmðtÞdt ¼

XL

k¼1
s2ik

(2:63)

The last expression on the right-hand side of (2.63) results from the fact that xk(t) and xm(t)
form a pair of orthonormal functions, and therefore

ð1

1
xkðtÞxmðtÞdt ¼ 1; k ¼ m

0; k 6¼ m

�
(2:64)

Comparing (2.63) and (2.62) we obtain

Ei ¼ sik k2 (2:65)

Another useful quantity for signal analysis is the Euclidean distance between the two signal
vectors:

si � sj
�� �� ¼

XL

k¼1
ðsik � sjkÞ2

vuut (2:66)

The Euclidean distance indicates the degree of separation between two signals in the signal
space.

Example 2.18 Signal space of antipodal signals
Consider the set of two antipodal signals s1ðtÞ ¼ Apðt � iTbÞ and s2ðtÞ ¼ �Apðt � iTbÞ,
where pðt � iTbÞ is defined in (2.26). The signal energy is E1 ¼ E2 ¼ Eb ¼ A2Tb. From the
Gram–Schmidt procedure we obtain

x1ðtÞ ¼ A

E1
p pðt � iTbÞ ¼ A

A2Tb
p pðt � iTbÞ ¼ 1

Tb
p pðt � iTbÞ (2:67)

Furthermore,

s11 ¼
ð1

1
s1ðtÞx1ðtÞdt ¼

ð1

1
½Apðt � iTbÞ� 1

Tb
p pðt � iTbÞ

� �
dt

¼ A Tb
p (2:68)

s21 ¼
ð1

1
s2ðtÞx1ðtÞdt ¼

ð1

1
�Apðt � iTbÞ½ � 1

Tb
p pðt � iTbÞ

� �
dt

¼ �A Tb
p (2:69)

Substituting (2.67) and (2.69) into (2.58) we have
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x2ðtÞ ¼ �Apðt � iTbÞ � �A Tb
p

Tb
p pðt � iTbÞ ¼ 0 (2:70)

In addition, we also get s12 ¼ s22 ¼ 0. Thus, the signal space is a one dimensional space.
The signal vectors are given by

s1 ¼ ½A Tb
p
� ¼ ½ Eb

p
� ¼ Eb

p
x1 (2:71)

s2 ¼ ½�A Tb
p
� ¼ ½� Eb

p
� ¼ � Eb

p
x1 (2:72)

It is seen that the signal energy is equal to the squared length of the signal vector. The
Euclidean distance between the two signal vectors is given by

s1 � s2k k ¼ 2 Eb

p
(2:73)

The signal space for the set of antipodal signals is given in Figure 2.13.
■

Example 2.19 Signal space of PSK signals
Consider the set of PSK signals s1ðtÞ ¼ A cos 2πfct and s2ðtÞ ¼ �A cos 2πfct defined over
the bit time ( iTb; ðiþ 1ÞTb), where i is an arbitrary integer and the frequency fc is an integer
multiple of the bit rate 1/Tb. The signal energy is E1 ¼ E2 ¼ Eb ¼ A2Tb=2. From (2.57) and
(2.58) we obtain

x1ðtÞ ¼ 2

Tb

r

cos 2πfct (2:74)

x2ðtÞ ¼ 0 (2:75)

By using (2.56) the coefficients of the signal vector can be calculated as follows:

s11 ¼ A
Tb
2

r

; s12 ¼ 0 ; s21 ¼ �A Tb
2

r

; s22 ¼ 0 (2:76)

Thus the signal space is a one dimensional space. The signal vectors are given by

s1 ¼ ½A Tb=2
p

� ¼ ½ Eb

p
� ¼ Eb

p
x1 (2:77)

s2 ¼ ½�A Tb=2
p

� ¼ ½� Eb

p
� ¼ � Eb

p
x1 (2:78)

••
Eb− Eb0

x1

Figure 2.13 Signal space of antipodal signals.

30 Deterministic signal analysis



It is seen that the signal energy is equal to the squared length of the signal vector. The
Euclidean distance between the two signal vectors is given by

s1 � s2k k ¼ 2 Eb

p
(2:79)

The signal space of PSK signals is therefore identical with that of the antipodal signals given
in Figure 2.13, although their waveforms differ.
■

For many digital signal sets, the orthonormal basis functions and the signal vectors can be
found by inspection without going through the Gram–Schmidt procedure. The following
example illustrates this.

Example 2.20 Signal space of FSK signals
Consider the set of two FSK signals s1ðtÞ ¼ A cos 2πf1t and s2ðtÞ ¼ A cos 2πf2t defined
over the bit time ( iTb; ðiþ 1ÞTb), where i is an arbitrary integer and the frequencies f1 and f2
are integer multiples of the bit rate 1/Tb. The minimum frequency spacing is equal to the bit
rate f1 � f2j j ¼ 1=Tb. Thus, from the result in Example 2.14, the signals s1(t) and s2(t) are
orthogonal. We can write them as follows:

s1ðtÞ ¼ A
Tb
2

r
2

Tb

r

cos 2πf1t
� �

¼ A
Tb
2

r

x1ðtÞ ¼ Eb

p
x1ðtÞ (2:80)

s2ðtÞ ¼ A
Tb
2

r
2

Tb

r

cos 2πf2t
� �

¼ A
Tb
2

r

x2ðtÞ ¼ Eb

p
x2ðtÞ (2:81)

where Eb ¼ A2Tb=2 is the signal energy, and the two functions x1ðtÞ ¼ 2=Tb
p

cos 2πf1t
and x2ðtÞ ¼ 2=Tb

p
cos 2πf2t form a set of orthonormal functions over the

interval (iTb; ðiþ 1ÞTb). The signal vectors are displayed in Figure 2.14 and given as
follows:

x2

x1
0

•

•

Eb

Eb

Figure 2.14 FSK signal space.
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s1 ¼ Eb
p
0

� �
¼ Eb

p
x1 (2:82)

s2 ¼ 0
Eb
p

� �
¼ Eb

p
x2 (2:83)

The Euclidean distance between the two signal vectors is given by

s1 � s2k k ¼ 2Eb

p
(2:84)

■

Example 2.21 Signal space of MPSK signals
Consider the set of MPSK signals given in (2.9) forM42. The signals are defined over the
symbol time (iTs; ðiþ 1ÞTsÞ:

snðtÞ ¼ A cos 2πfct þ ð2n� 1Þ π
M

� �
; n ¼ 1; 2; :::;M (2:85)

The frequency fc is assumed to be an integer multiple of the symbol rate 1=Ts. Expanding
(2.85) we obtain

snðtÞ ¼ A cos ð2n� 1Þ π
M

h i
cos 2πfct � A sin ð2n� 1Þ π

M

h i
sin 2πfct (2:86)

snðtÞ ¼ A
Ts
2

r

cos ð2n� 1Þ π
M

h i 2

Ts

r

cos 2πfct
� �

� A
Ts
2

r

sin ð2n� 1Þ π
M

h i 2

Ts

r

sin 2πfct

� �

¼ Es

p
cos ð2n� 1Þ π

M

h i
x1ðtÞ þ Es

p
sin ð2n� 1Þ π

M

h i
x2ðtÞ

(2:87)

where Es ¼ A2Ts=2 is the signal energy, and the two functions x1ðtÞ ¼ 2=Ts
p

cos 2πfct
and x2ðtÞ ¼ � 2=Ts

p
sin 2πfct form a set of orthonormal functions over the symbol time

(iTs; ðiþ 1ÞTs). The signal vectors are given as follows:

sn ¼
Es
p

cos ð2n� 1Þ π
M

h i

Es
p

sin ð2n� 1Þ π
M

h i

2

64

3

75

¼ Es

p
cos ð2n� 1Þ π

M

h i
x1 þ Es

p
sin ð2n� 1Þ π

M

h i
x2

(2:88)

Thus the MPSK signal space is a two dimensional space. The Euclidean distance between
the two adjacent MPSK signals is given by
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sk � smk k ¼ Es

p
cos ð2k � 1Þ π

M

h i
� Es

p
cos ð2m� 1Þ π

M

h ih i2�

þ Es

p
sin ð2k � 1Þ π

M

h i
� Es

p
sin ð2m� 1Þ π

M

h ih i2�1=2

¼ 2Es � 2Es cos ð2k � 1Þ π
M

h i
cos ð2m� 1Þ π

M

h ih�

þ sin ð2k � 1Þ π
M

h i
sin ð2m� 1Þ π

M

h ii�1=2

(2:89)

Consequently,

sk � smk k ¼ 2Es 1� cosðk � mÞ 2π
M

� �s

(2:90)

The Euclidean distance between two adjacent MPSK signal vectors corresponds to the case
of k � mj j ¼ 1, that is,

sk � sk 1k k ¼ sk � skþ1k k ¼ 2Es 1� cos
2π
M

� �s

¼ 2 Es

p
sin

π
M

(2:91)

Figures 2.15 and 2.16 show the signal spaces of QPSK and 8PSK, respectively.
■

From Examples 2.18 and 2.19 we observe that antipodal signals and PSK signals have the
identical signal space. Therefore, these two sets of signals must have the same noise
performance. From Examples 2.19 and 2.20 it is seen that PSK has a larger Euclidean
distance than FSK. It turns out that a larger Euclidean distance corresponds to a better noise
performance. A PSK signal is less likely to be mistaken by the other PSK signal in noise than
its FSK counterpart.

x1

• •

• •

x2

Es

Figure 2.15 QPSK signal space.
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2.5 Linear time-invariant systems

Many physical communication systems are linear time invariant (LTI) and can be easily
analyzed in detail. A system is time-invariant if a time shift in the input signal causes the
same time shift in the output signal. Specifically, if y(t) is the output of a continuous-time LTI
system when x(t) is the input, then y(t t0) is the output when x(t t0) is the input. In a
discrete-time LTI system with yðnÞ the output when xðnÞ is the input, then yðn� n0Þ is the
output when xðn� n0Þ is the input.

Example 2.22 Time-invariant system
Consider the output voltage v(t) at time t across a resistor with resistance R and input current
i(t). The output voltage v(t) is given by

vðtÞ ¼ RiðtÞ (2:92)

Now consider a second input obtained by shifting i(t) by t0, that is, iðt � t0Þ. The corres-
ponding output v1(t) is

v1ðtÞ ¼ Riðt � t0Þ ¼ vðt � t0Þ (2:93)

Hence the system is time-invariant.
■

Example 2.23 Time-varying system
(a) Consider the discrete-time system

yðnÞ ¼ xðnÞ � xðn� 1Þ (2:94)

x2

x1

•

•

• •

•

•

•

•

Es

Figure 2.16 8PSK signal space.
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It is seen that by applying the shifted input xðn� n0Þ � xððn� n0Þ � 1Þ we get the output
ŷðnÞ as

ŷðnÞ ¼ xðn� n0Þ � xððn� n0Þ � 1Þ
¼ yðn� n0Þ

(2:95)

Thus this is a linear time-invariant system.
(b) Now consider the discrete-time system

yðnÞ ¼ n xðnÞ (2:96)

By applying the shifted input xðn� n0Þ we get
ŷðnÞ ¼ nxðn� n0Þ (2:97)

On the other hand,

yðn� n0Þ ¼ ðn� n0Þ xðn� n0Þ (2:98)

Thus

ŷðnÞ 6¼ yðn� n0Þ (2:99)

Hence this system is time varying.
■

A system is linear if the response to the input

x ¼
X

k

akxk ¼ a1x1 þ a2x2 þ 	 	 	 (2:100)

is

y ¼
X

k

akyk ¼ a1y1 þ a2y2 þ 	 	 	 (2:101)

where yk, k = 1, 2, . . . , is the response to xk, k = 1, 2, . . . . Equations (2.100) and (2.101) hold
for both continuous-time and discrete-time systems.

2.6 Convolution

The output of a continuous-time LTI system can be expressed in terms of the input x(t) and
the impulse response h(t) as a convolution integral:

y tð Þ ¼ x tð Þ � h tð Þ ¼
ð1

1
x τð Þ h t � τð Þ dτ

¼
ð1

1
h τð Þ x t � τð Þdτ ¼ hðtÞ � xðtÞ

(2:102)
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For a discrete-time system, the convolution integral in (2.102) becomes the convolution
sum

yðnÞ ¼ xðnÞ � hðnÞ ¼
X1

k¼ 1
xðkÞhðn� kÞ ¼

X1

k¼ 1
hðkÞxðn� kÞ (2:103)

Example 2.24 Convolution
Let us verify (2.102) by means of a substitution of variables. If we let λ ¼ t � τ or,
equivalently, τ ¼ t � λ, (2.102) becomes

yðtÞ ¼
ð1

1
xðt � λÞ hðλÞ dλ ¼ hðtÞ � xðtÞ (2:104)

■

Example 2.25 Convolution of two squared pulses
Let x(t) be the input to an LTI system with impulse response h(t), where x(t) and h(t) are both
unit amplitude squared pulses of duration T defined in (2.26):

x tð Þ ¼ h tð Þ ¼ 1; 0 � t5T
0; otherwise

�
(2:105)

Figure 2.17 depicts the evaluation of the output y(t) as a convolution of x(t) and h(t). It is
seen that the product of xðτÞ and hðt � τÞ is zero for t < 0, and for t > 2T. For 0 � t5T the
value of the product is 1 in 0 � τ � t:

ττ τ

h(− τ)h(τ)x(τ)

0 T 0 T 0−T

1 1 1

τ

h(t −  τ)

t − T t

1

0
τ

t − T t

1

0

0 ≤ t < T

τ
t − T t

1

0

t < 0

(a) (b) (c)

(d)

h(t −  τ)

T ≤ t < 2T

(e)

h(t −  τ)

(f)

Figure 2.17 x(τ) and h(t − τ) for different values of t.
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y tð Þ ¼
ðt

0
x τð Þ h t � τð Þ dτ ¼

ðt

0
dτ ¼ t; 0 � t5T (2:106)

For T ≤ t < 2T the value of the product is 1 in t T ≤ τ ≤ T:

y tð Þ ¼
ðT

t T
dτ ¼ 2T � t; T � t52T (2:107)

The function y(t) is shown in Figure 2.18.
■

2.7 Fourier series of continuous-time periodic signals

In the analysis of signals and LTI systems, it is often useful to represent an input
signal as a linear combination of basis functions, as in (2.100). One famous re-
presentation is the Fourier series, which employs periodic complex exponentials as
basis functions to represent periodic signals. The periodic fundamental complex
exponential is

x1 tð Þ ¼ ej2πf0t (2:108)

It is easy to see that x1(t + T0) = x1(t), where T0 = 1/f0, as shown below:

x1 t þ T0ð Þ ¼ ej2πf0 tþT0ð Þ ¼ ej2πf0tþj2π

¼ ej2πf0t ¼ x1 tð Þ
(2:109)

The period of x1(t) is T0. Associated with x1(t) is an infinite set of periodic harmonic
components:

xk tð Þ ¼ ej2πkf0t; k ¼ 0; �1; �2; . . . (2:110)

The period of the kth harmonic xk(t) is T0/k and its frequency is kf0. It is obvious that xk(t) is
also periodic with period T0, as seen below:

y(t)

0 T 2T

T

t

Figure 2.18 Response y(t).
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xk t þ T0ð Þ ¼ ej2πkf0 tþT0ð Þ ¼ ej2πkf0tþj2πk

¼ ej2πkf0t ¼ xk tð Þ
(2:111)

Furthermore, a linear combination x(t) of the harmonics xk(t) is also periodic with
period T0:

x tð Þ ¼
X1

k¼ 1
akej2πkf0t (2:112)

ak ¼ 1

T0

ðT0

0
x tð Þe j2πkf0tdt (2:113)

The representation of a periodic signal x(t) in the form of (2.112) is termed the Fourier series
representation. By multiplying both sides of (2.112) by e j2πkf0t and integrating from 0 to T0
we obtain the complex Fourier series coefficient ak in (2.113).

We note that the coefficient a0 is given by

a0 ¼ 1

T0

ðT0

0
x tð Þdt (2:114)

Thus, a0 represents the average value (dc value) of x(t) averaged over one period T0. The
other ak coefficients represent the portion of x(t) in each harmonic component. Specifically,
the magnitude |ak| of the complex Fourier series coefficient ak is the amplitude of the kth
harmonic component of x(t).

Example 2.26 Periodic pulse signal
Consider the periodic pulse signal x(t) with period T0 ¼ 1=f0 and pulse width Tp < T0, as
shown in Figure 2.19.

Using (2.13) we can evaluate the complex Fourier series coefficient ak as follows:

a0 ¼ 1

T0

ðT0

0
A dt ¼ 1

T0

ðT0=2

T0=2
A dt ¼ 1

T0

ðTp=2

Tp=2
A dt ¼ATp

T0
(2:115)

t

x(t)

0

2

Tp−

A

2

Tp T0−T0

Figure 2.19 Periodic pulse signal.
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ak ¼ 1

T0

ðT0=2

T0=2
A e j2πkt=T0 dt ¼ 1

T0

ðTp=2

Tp=2
A e j2πkt=T0 dt ¼ �A

j2πk
e jπkTp=T0 � ejπkTp=T0
h i

¼ A
sinðπkTp=T0Þ

πk
¼ ATp

T0

sinðπkTp=T0Þ
πkTp=T0

� �
; k 6¼ 0 (2:116)

The Fourier series coefficients in this case are real and assume the form of the well-known
function ðsin uÞ=u. Figure 2.20 shows a plot of ak as a function of the discrete frequency
kf0 ¼ k=T0, together with their envelope, for T0 ¼ 2Tp:
■

Parseval relation for periodic signals

The Parsevals relation states that the average power in a periodic signal equals the sum of
the average power in all of its harmonic components. The relation can be proved by using the
definition of average power in (2.13) and letting the time interval T be an integer multiple of
the period T0, that is, T ¼ nT0:

P ¼ lim
n!1

1

nT0

ðnT0=2

nT0=2
xðtÞj j2 dt ¼ lim

n!1
n

nT0

ðT0=2

T0=2
xðtÞj j2 dt ¼ 1

T0

ðT0=2

T0=2
xðtÞj j2 dt

¼ 1

T0

ðT0

0
xðtÞx�ðtÞ dt ¼ 1

T0

ðT0

0
xðtÞ

X1

k¼ 1
a�ke

j2πkf0t dt ¼
X1

k¼ 1
a�k

1

T0

ðT0

0
xðtÞe j2πkf0t dt

¼
X1

k¼ 1
a�kak ¼

X1

k¼ 1
jak j2 (2:117)

Note that akj j2 is the average power in the kth harmonic component akej2πkf0t of x(t).

Unit step and unit impulse functions

Two functions that play important roles in signal analysis are the unit step and the unit
impulse functions. The unit step function is defined as

ak

•
0 1

Tp Tp

2
Tp

2−
•• •• •

T0

k

Tp

1− 1
T0

Figure 2.20 Fourier series coefficients and their envelope, for T0 = 2TP.
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uðtÞ ¼ 0; t50
1; t40

�
(2:118)

and is shown in Figure 2.21.
The unit impulse function is defined as

δðzÞ ¼ 1; z ¼ 0
0; z 6¼ 0

�
(2:119)

and
ð1

1
δðzÞ dz ¼ 1 (2:120)

The variable z can be time or frequency depending on the application. The unit impulse
function has the following properties:

ð1

1
xðzÞδðzÞ dz ¼ xð0Þ (2:121)

ð1

1
xðzÞδðz� z0Þ dz ¼ xðz0Þ (2:122)

xðzÞδðz� z0Þ ¼ xðz0Þδðz� z0Þ (2:123)

δðtÞ ¼ d uðtÞ
dt

(2:124)

uðtÞ ¼
ðt

1
δðzÞ dz (2:125)

Figure 2.22 shows the unit impulse as a function of time at location t ¼ 0 and t ¼ t0:

t

u(t)

1

0

Figure 2.21 The unit step function.

t
0 t0

δ (t) δ (t − t0)

Figure 2.22 The unit impulse function.
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Power spectral density

From (2.117) we may define the power spectral density or power spectrum Sxðf Þ of a
periodic signal x(t) as a function of the frequency f, the total area under the graph of which
yields the average power of the signal, that is,

P ¼
ð1

1
Sxðf Þ df (2:126)

Combining (2.117) and (2.126) we obtain the power spectral density as an infinite series of
impulses occurring at the harmonically related frequencies, and for which the area of the
impulse at the kth harmonic frequency kf0 is akj j2:

Sxðf Þ ¼
X1

k¼ 1
akj j2δðf � kf0Þ ¼

X1

k¼ 1
akj j2δ f � k

T0

� �
(2:127)

Figure 2.23 shows the power spectral density Sxðf Þ, and its envelope, of the periodic pulse
signal in Example 2.26.

From (2.127) we observe that the power spectral density of a real-valued periodic signal is
a nonnegative real-valued and even function of frequency, that is,

Sxðf Þ40; for all f (2:128)

Sxð�f Þ ¼ Sxðf Þ (2:129)

A signal with a power spectral density concentrated around the zero frequency is referred to
as a baseband or lowpass signal. This definition applies to power signals that include
periodic signals. The periodic pulse signal in Example 2.26 is a baseband signal.

Bandwidth

The power spectral density allows us to determine the frequency range that contains most of
the power of the signal. The positive part of this frequency range denoted as B is loosely
defined as the bandwidth of the signal. For example, the frequency range �B � f � B that

Sx( f )

•
0

Tp

1
Tp

2
Tp

2
−

•• •• • f

Tp

1
−

1
T0

Figure 2.23 Power spectral density and corresponding envelope.
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contains most of the power of the periodic pulse signal shown in Figure 2.23 is the main
lobe. This is called the first null bandwidth, and is equal to B ¼ 1=Tp. It is seen that a
narrower pulse width Tp results in a wider first-null bandwidth.

Frequency shifting property

This property plays an important role in the analysis of signals with dominant higher harmonic
components. Let xðtÞ be a periodic signal with period T0 ¼ 1=f0, and yðtÞ be defined as

yðtÞ ¼ xðtÞ ej2πfct ¼ xðtÞ ej2πnf0t (2:130)

where the shifting frequency fc ¼ nf0, and n is a positive integer. We observe that

yðt þ T0Þ ¼ xðt þ T0Þ ej2πnf0ðtþT0Þ
¼ xðtÞ ej2πnf0t ¼ yðtÞ

(2:131)

Therefore, y(t) is also periodic with period T0. The Fourier series representation of y(t) is
given by

y tð Þ ¼
X1

k¼ 1
bkej2πkf0t (2:132)

bk ¼ 1

T0

ðT0

0
y tð Þe j2πkf0tdt (2:133)

Substituting (2.130) into (2.133) we have

bk ¼ 1

T0

ðT0

0
x tð Þ e j2πðk nÞf0t dt (2:134)

The right-hand side of (2.134) is just ak n as viewed from (2.113). Thus

bk ¼ ak n (2:135)

In other words, bn 1 ¼ a 1; bnþ1 ¼ a1; bn ¼ a0, and so on. Hence, the harmonic compo-
nents of y(t) are simply the harmonic components of x(t) shifted in frequency by fc ¼ nf0.

Similarly, the Fourier series coefficients of the signal

yðtÞ ¼ xðtÞ e j2πfct ¼ xðtÞ e j2πnf0t (2:136)

is given by

bk ¼ akþn (2:137)

Example 2.27 Periodic sinusoidal pulse signals
Consider the periodic sinusoidal pulse sequence y(t) shown in Figure 2.24. The pulse
repetition period is T0 ¼ 1=f0 and the pulse width is Tp5T0: The oscillating frequency of
the sinusoidal pulse is fc ¼ nf0, where n is a positive integer.
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The periodic signal y(t) is simply the product of the periodic signal x(t) in Figure 2.19 and
cos 2πfct. We have

yðtÞ ¼ xðtÞ cos 2πfct
¼ 1

2
xðtÞ ej2πfct þ e j2πfct

 �

¼ 1

2
xðtÞ ej2πnf0t þ e j2πnf0t

 �
(2:138)

It is seen that y(t) is periodic with period T0. The Fourier series representation of y(t) is given
by (2.132) and (2.133) with the following coefficients:

bk ¼ 1

2
ak n þ akþnð Þ (2:139)

Using (2.116) we have

bk ¼ ATp
2T0

sinðπðk � nÞf0TpÞ
πðk � nÞf0Tp þ sinðπðk þ nÞf0TpÞ

πðk þ nÞf0Tp

� �
(2:140)

A plot of bk as a function of kf0 for T0 ¼ 2Tp is shown in Figure 2.25.
Note that bn ¼ ða0 þ a2nÞ=2; b n ¼ ða 2n þ a0Þ=2, bn 1 ¼ ða 1 þ a2n 1Þ=2,

bnþ1 ¼ ða1 þ a2nþ1Þ=2, b n 1 ¼ ða 2n 1 þ a 1Þ=2, b nþ1 ¼ ða 2nþ1 þ a1Þ=2, and so on.
For fc 
 1=Tp, we have the following approximations: bn � a0=2; b n � a0=2;
bn 1 � a 1=2; bn 1 � a1=2; b n 1 � a 1=2; b nþ1 � a1=2; and so on.
■

Example 2.28 Power spectral density of periodic sinusoidal pulse signals
Consider the periodic sinusoidal pulse signals y(t) in Example 2.27. From the Parseval
relation, the power of y(t) is given by

t

y(t)

A

−A

T0−T0

2

Tp

2

Tp−

Figure 2.24 Periodic sinusoidal pulse signals.
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P ¼
X1

k¼ 1
jbk j2 (2:141)

Consequently, the power spectral density of y(t) is

Syðf Þ ¼
X1

k¼ 1
jbk j2δðf � kf0Þ (2:142)

Substituting (2.139) into (2.142) we obtain

Syðf Þ ¼ 1

4

X1

k¼ 1
jak n þ akþnj2δðf � kf0Þ

¼ 1

4

X1

k¼ 1
ak nj j2þReðak na

�
kþnÞ

h i
δðf � kf0Þ

þ 1

4

X1

k¼ 1
akþnj j2þReðak na

�
kþnÞ

h i
δðf � kf0Þ

¼ 1

4

X1

i¼ 1
aij j2þReðaia�iþ2nÞ

h i
δðf � ðiþ nÞf0Þ

þ 1

4

X1

m¼ 1
amj j2þReðam 2na

�
mÞ

h i
δðf � ðm� nÞf0Þ

¼ 1

4

X1

i¼ 1
aij j2þReðaia�iþ2nÞ

h i
δðf � fc � if0Þ

þ 1

4

X1

m¼ 1
amj j2þReðam 2na

�
mÞ

h i
δðf þ fc � mf0Þ

(2:143)

When fc 
 1=Tp we have Re ðaia�iþ2nÞ � aij j2 and Re ðam 2na�mÞ � amj j2; hence Syðf Þ can
be approximated as

bk

T0

k•
−fc

•• •• • •
fc

• •• •
0

Figure 2.25 The Fourier series coefficients of periodic sinusoidal pulse signals.
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Syðf Þ � 1

4

X1

i¼ 1
aij j2 δðf � fc � if0Þ þ 1

4

X1

m¼ 1
amj j2 δðf þ fc � mf0Þ

� 1

4
Sxðf � fcÞ þ Sxðf þ fcÞ½ �

(2:144)

The power spectral density of y(t) is shown in Figure 2.26 for T0 ¼ 2Tp.
The bandwidth of y(t) is defined loosely as the positive frequency range around fc that

contains most of the power of y(t). The null to null bandwidth B is the frequency range
from fc � 1=Tp to fc þ 1=Tp, that is, B ¼ 2=Tp. The signal y(t) is referred to as a bandpass
or passband signal. It is seen that the power spectral density of y(t) is one-fourth the
power spectral density of x(t) shifted to the positive frequency range by fc and one-fourth
the power spectral density of x(t) shifted to the negative frequency range by �fc for
fc 
 1=Tp. The periodic signal x(t) is referred to as the equivalent baseband or lowpass
signal of y(t).
■

The above study shows that Fourier series representation is an indispensable tool for
analyzing periodic signals in the frequency domain via their harmonic components or their
power spectral density. The frequency domain approach allows us to determine the fre-
quency range that contains most of the signal power. This frequency range is defined loosely
as the bandwidth of the signal. In the next section we will investigate the response of an LTI
system to a periodic input signal.

Response of an LTI system to a periodic signal

The output response y(t) of an LTI system, with impulse response h(t) when a signal x(t) is
applied to its input, is determined by the convolution operation in (2.102):

y tð Þ ¼ x tð Þ � h tð Þ ¼
ð1

1
x τð Þ h t � τð Þ dτ ¼

ð1

1
h τð Þ x t � τð Þdτ (2:145)

Sy( f )

•
−fc

•• •• • •
fc

•• •• •
0

Tp
fc

1+
Tp

fc
1−

f

Figure 2.26 Power spectral density of periodic sinusoidal pulse signals.
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Let x(t) be a periodic signal with the Fourier series representation given in (2.112).
Substituting (2.112) into (2.145) we obtain

yðtÞ ¼
ð1

1
hðτÞ

X1

k¼ 1
akej2πkf0ðt τÞ dτ

¼
X1

k¼ 1
akej2πkf0t

ð1

1
hðτÞ e j2πkf0τ dτ

(2:146)

The transfer function of the LTI system is defined as follows:

Hðf Þ ¼
ð1

1
hðtÞ e j2πft dt (2:147)

Note that the transfer function is a function of the frequency f. By using (2.147) in (2.146)
we get

yðtÞ ¼
X1

k¼ 1
Hðkf0Þ akej2πkf0t (2:148)

From (2.148) we note that the Fourier series coefficients of y(t) are the Fourier coefficients of
x(t) weighted by the values of the transfer function at the harmonic frequencies.
Consequently, the power spectral density function of y(t) is given by

Syðf Þ ¼
X1

k¼ 1
Hðkf0Þj j2 akj j2δðf � kf0Þ (2:149)

Substituting (2.127) into (2.149), and with the help of (2.123), we obtain the following
relation between the power spectral density Syðf Þ of the output signal y(t) of an LTI system
and the power spectral density Sxðf Þ of the periodic input signal x(t):

Syðf Þ ¼ Hðf Þj j2Sxðf Þ (2:150)

The result in (2.150) is very important because it enables the design of LTI filters to pass
certain desirable harmonic components and to eliminate undesirable ones.

Example 2.29 Periodic pulse signals and the ideal lowpass filter
Let the periodic pulse signal x(t) in Example 2.26 be the input to an ideal lowpass filter with
the following transfer function:

Hðf Þ ¼
1; � 1

Tp
� f � 1

Tp

0; otherwise

(

(2:151)

A plot of H(f ) is shown in Figure 2.27(a). The ideal lowpass filter passes all the harmonic
components of x(t) within the main lobe. Figure 2.27(b) shows the power spectral density of
y(t) and its envelope, for T0 ¼ 2Tp:
■
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2.8 Fourier transform of continuous-time signals

The previous section dealt with the Fourier series representation of continuous-time periodic
signals. In this section, we extend this concept to cover aperiodic signals, which includes all
finite-energy signals used in communications. We can view an aperiodic signal as a periodic
signal with an arbitrarily large period T0 and we can examine the limiting behavior of the
Fourier series representation of this signal. For simplicity, assume that the aperiodic signal
xðtÞ is of finite duration. Let us construct the periodic signal xpðtÞ for which xðtÞ is one
period. As the period T0 !1, xpðtÞ is equal to xðtÞ for any finite value of t. Figure 2.28
illustrates this process.

The periodic signal xpðtÞ can be represented by the Fourier series as follows:

(a) (b)

Sy( f )

•
0

Tp

1
• f

Tp

1− 1
T0

H ( f )

1

Tp

1
Tp

1− 0
f

Figure 2.27 (a) Ideal lowpass filter; (b) power spectral density of output signal.

(a)

(b)

t

x(t)

−T T0

t

xp(t)

T−T 0 T0−T0

Figure 2.28 (a) Aperiodic signal x(t); (b) periodic signal xP(t), constructed to be equal to x(t) over one period T0.

47 2.8 Fourier transform of continuous-time signals



xpðtÞ ¼
X1

k¼ 1
akej2πkf0t (2:152)

ak ¼ 1

T0

ðT0=2

T0=2
xpðtÞ e j2πkf0tdt (2:153)

Define the following quantity:

X ðkf0Þ ¼ T0ak ¼
ðT0=2

T0=2
xpðtÞ e j2πkf0t dt (2:154)

Rewriting (2.152) in terms of X ðkf0Þ we obtain

xpðtÞ ¼
X1

k¼ 1
X ðkf0Þej2πkf0t f0 (2:155)

As T0 !1, xpðtÞ approaches xðtÞ and consequently (2.155) becomes a representation of
xðtÞ. The summation becomes an integral, and the term inside the summation becomes the
integrand X ðf Þej2πft , with f0 becoming df . Thus, (2.155) and (2.154) become

xðtÞ ¼
ð1

1
X ðf Þej2πftdf (2:156)

X ðf Þ ¼
ð1

1
xðtÞe j2πftdt (2:157)

The above two equations are referred to as the Fourier transform pair. The function X ðf Þ is
called the Fourier transform of the signal xðtÞ, and xðtÞ is the inverse Fourier transform of
X ðf Þ. The following notations are often used:

xðtÞ !X ðf Þ (2:158)

X ðf Þ ¼ FfxðtÞg (2:159)

xðtÞ ¼ F 1fX ðf Þg (2:160)

A signal xðtÞ has a Fourier transform if it satisfies the following Dirichlet conditions:

1. xðtÞ is absolutely integrable, that is,
ð1

1
xðtÞj j dt51:

2. x(t) has a finite number of maxima and minima within any finite interval.
3. x(t) has a finite number of finite discontinuities within any finite interval.

Another sufficient condition for the existence of the Fourier transform is that the signal x(t) is
a finite energy signal, that is, it is square integrable, so that
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ð1

1
xðtÞj j2dt51:

Example 2.30 Fourier transform of a pulse signal
Consider the pulse signal

xðtÞ ¼ A; � Tp
2 � t � Tp

2

0; otherwise

(

(2:161)

as shown in Figure 2.29(a). Applying (2.157) we obtain the Fourier transform of x(t) as

X ðf Þ ¼
ðTp=2

Tp=2
Ae j2πft dt ¼ A

e jπfTp � ejπfTp

�j2πf

¼ ATp
sin πfTp
πfTp

(2:162)

The plot of X(f) is shown in Figure 2.29(b). Note that T0X ðf Þ is exactly the
envelope of the Fourier series coefficients of the periodic pulse signal x(t) shown in
Example 2.26.
■

Example 2.31 Inverse Fourier transform
Consider the following signal x(t), whose Fourier transform X(f ) is shown in
Figure 2.30(a):

X ðf Þ ¼ 1; �B � f � B

0; otherwise

(

(2:163)

Applying the inverse Fourier transform in (2.156) we obtain

(a) (b)

X( f )

f
0

ATp

Tp

1
Tp

1−

x(t)

A

2

Tp0
t

2

Tp−

Figure 2.29 (a) Pulse signal; (b) its Fourier transform.
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xðtÞ ¼
ðB

B
ej2πft df ¼ ej2πBt � e j2πBt

j2πt

¼ 2B
sin 2πBt
2πBt

(2:164)

The pulse x(t) is shown in Figure 2.30(b).
■

Frequency shifting property

As in the case of periodic signals, the frequency shifting property plays an important role in
the frequency domain analysis of aperiodic signals. Let x(t) be a signal with Fourier trans-
form X(f ). Define the signal y(t) as follows:

yðtÞ ¼ xðtÞ ej2πfct (2:165)

Applying the Fourier transform to y(t) we have

Y ðf Þ ¼
ð1

1
yðtÞ e j2πftdt

¼
ð1

1
xðtÞ e j2πðf fcÞtdt

¼ X ðf � fcÞ

(2:166)

Similarly, the Fourier transform of the signal

yðtÞ ¼ xðtÞ e j2πfct (2:167)

is given by

Y ðf Þ ¼ X ðf þ fcÞ (2:168)

(a) (b)

X( f )

1

B0
f

−B

x(t)

t
0

2B

2B
1

2B
1−

Figure 2.30 (a) Fourier transform of x(t); (b) the signal x(t).
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Example 2.32 Sinusoidal pulse signal
Consider the sinusoidal pulse signal

yðtÞ ¼ A cos 2πfct; � Tp
2 � t � Tp

2

0; otherwise

(

(2:169)

as shown in Figure 2.31(a). We note that y(t) is simply the product of x(t) in (2.161) and
cos 2πfct, that is,

yðtÞ ¼ xðtÞ cos 2πfct ¼ 1

2
xðtÞ ej2πfct þ xðtÞ e j2πfct
	 


(2:170)

The Fourier transform of y(t) as sketched in Figure 2.31(b) can be obtained from (2.166) and
(2.168) as

(a)

(b)

t

y(t)

A

−A

2

Tp

2

Tp−

Y( f )

f
−fc fc0

2

ATp

Tp
fc

1−
Tp

fc + 
1

Figure 2.31 (a) Sinusoidal pulse signal; (b) its Fourier transform.
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Y ðf Þ ¼ 1

2
½X ðf � fcÞ þ X ðf þ fcÞ� (2:171)

where X(f ) is given in (2.162).
■

Parseval relation

For aperiodic signals such as energy signals, the Parseval relation is the direct counterpart
of the Parseval relation for periodic signals. It expresses the signal energy in terms of the
Fourier transform of the signal. If we consider an energy signal x(t), its energy is given by

E ¼
ð1

1
xðtÞj j2 dt ¼

ð1

1
xðtÞx�ðtÞ dt

¼
ð1

1
xðtÞ

ð1

1
X �ðf Þe j2πft df

� �
dt

¼
ð1

1
X �ðf Þ

ð1

1
xðtÞe j2πft dt

� �
df

(2:172)

The bracketed term in the last line is the Fourier transform of x(t), thus

E ¼
ð1

1
xðtÞj j2 dt ¼

ð1

1
X ðf Þj j2 df (2:173)

The quantity X ðf Þj j2 is referred to as the energy spectral density or energy spectrum of the
signal x(t), and displays the distribution of the energy in the frequency domain. The energy
spectral density of the pulse signal x(t) in Example 2.30 is shown in Figure 2.32. This is a
baseband signal with the first null bandwidth equal to 1=Tp.
The energy spectral density of the sinusoidal pulse signal in Example 2.32 is obtained

from (2.171) as follows:

Y ðf Þj j2¼ 1

4
X ðf � fcÞ þ X ðf þ fcÞj j2

� 1

4
½ X ðf � fcÞj j2þ X ðf þ fcÞj j2�

(2:174)

X ( f )

0

Tp

1
Tp

2
Tp

2−
f

Tp

1−

2

Figure 2.32 Energy spectral density of the pulse signal.
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The approximation results from the fact that the term 2Re X ðf � fcÞX �ðf þ fcÞf g is very
small compared to either X ðf � fcÞj j2 or X ðf þ fcÞj j2, because these two energy spectral
densities are almost non overlapping for fc much larger than 1=Tp. Figure 2.33 shows the
energy spectral density of the sinusoidal pulse signal.

Fourier transform of periodic signals

Consider a periodic signal x(t) with the Fourier representation in (2.112). Applying the
Fourier transform in (2.156) we have

X ðf Þ ¼
ð1

1

X1

k¼ 1
akej2πkf0t e j2πftdt

¼
X1

k¼ 1
ak

ð1

1
ej2πkf0t e j2πftdt

(2:175)

Using the property of impulse function in (2.122) we obtain

ð1

1
δðf � kf0Þ ej2πft df ¼ ej2πkf0t (2:176)

Note that the left-hand side of (2.176) is simply the inverse Fourier transform of δðf � kf0Þ,
therefore we conclude that the integral inside the summation on the right side of (2.175) is
just the Fourier transform of ej2πkf0t, which is precisely δðf � kf0Þ. Thus

X ðf Þ ¼
X1

k¼ 1
akδðf � kf0Þ (2:177)

Response of LTI systems

The Fourier transform provides a very convenient way to analyze LTI systems. Consider an
LTI system with impulse response h(t) and input x(t). The output y(t) is given by the
convolution operation

2Y( f )

f
−fc fc0

Tp
fc

1−
Tp

fc +
1

Figure 2.33 Energy spectral density of the sinusoidal pulse signal.
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yðtÞ ¼
ð1

1
xðτÞhðt � τÞ dτ (2:178)

Taking the Fourier transform of both sides of (2.178) we get

Y ðf Þ ¼
ð1

1

ð1

1
xðτÞhðt � τÞ dτ

� �
e j2πft dt

¼
ð1

1
xðτÞ

ð1

1
hðt � τÞ e j2πft dt

� �
dτ

¼
ð1

1
xðτÞ

ð1

1
hðt0Þ e j2πf ðt0þτÞ dt0

� �
dτ

¼
ð1

1
xðτÞ e j2πf τ

ð1

1
hðt0Þ e j2πft0 dt0

� �
dτ

¼
ð1

1
hðt0Þ e j2πft0 dt0

ð1

1
xðτÞ e j2πf τ dτ

(2:179)

The above integrals are just the Fourier transforms H(f ) and X(f ) of h(t) and x(t), respec-
tively. Note that H(f ) is simply the transfer function of the LTI system as defined in (2.147).
Thus

Y ðf Þ ¼ Hðf ÞX ðf Þ (2:180)

is the Fourier transform of

yðtÞ ¼ hðtÞ � xðtÞ (2:181)

Equation (2.180) provides a convenient means to evaluate the frequency response of an LTI
system. It also allows the design of LTI filters to shape the output signal.

Example 2.33 Pulse signals and ideal lowpass filter
Consider an ideal lowpass filter with the transfer function H(f ) in (2.151) and shown in
Figure 2.27(a). Let the input to the filter be the pulse signal x(t) in (2.161). The Fourier
transform Y(f ) of the output signal y(t) is shown in Figure 2.34, which is themainlobe ofX(f )
in Figure 2.29(b).
■

Y( f )

f
0

ATp

Tp

1
Tp

1−

Figure 2.34 Fourier transform of the output signal of an ideal lowpass filter with a pulse signal input.
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Example 2.34 Response to a periodic input signal
Consider an LTI system with a periodic input signal x(t) whose Fourier transform is given in
(2.177). Applying (2.180) we obtain the Fourier transform of the output signal as follows:

Y ðf Þ ¼ Hðf Þ
X1

k¼ 1
akδðf � kf0Þ

¼
X1

k¼ 1
Hðf Þakδðf � kf0Þ

(2:182)

Using property (2.123) of the unit impulse function we have

Y ðf Þ ¼
X1

k¼ 1
Hðkf0Þakδðf � kf0Þ (2:183)

Now taking the inverse Fourier transform of both sides of the above equation and noting that
the inverse Fourier transform of δðf � kf0Þ is ej2πkf0t as given in (2.176) we obtain

yðtÞ ¼
X1

k¼ 1
Hðkf0Þakej2πkf0t (2:184)

This is exactly the same expression for y(t) given in (2.148) by the convolution operation.
■

Example 2.35 Distortionless transmission
Consider an LTI system with transfer function H(f ) and input x(t) with Fourier transform
X(f ). For the input signal x(t) to pass through the LTI system undistorted, the output signal
y(t) must be a delayed version of x(t), that is,

yðtÞ ¼ Axðt � t0Þ (2:185)

where t0 is the time delay through the system and A is an arbitrary constant. Taking the
Fourier transform of (2.185) we obtain

Y ðf Þ ¼
ð1

1
Axðt � t0Þ e j2πft dt ¼

ð1

1
AxðτÞ e j2πf ðτþt0Þ dτ

¼ A e j2πft0

ð1

1
xðτÞ e j2πf τ dτ ¼ A e j2πft0 X ðf Þ

(2:186)

Comparing (2.180) and (2.186) we observe that a distortionless transmission occurs if and
only if

Hðf Þ ¼ Hðf Þj j ejθðf Þ ¼ A e j2πft0 (2:187)
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where Hðf Þj j and θðf Þ are the magnitude and phase of the transfer function H(f ), respec-
tively. Equation (2.187) indicates that the transfer function magnitude must be a constant,
and the transfer function phase must be a linear function of frequency, that is,

Hðf Þj j ¼ A (2:188)

θðf Þ ¼ �2πt0f (2:189)

Such a distortionless LTI system is referred to as an ideal linear phase filter.
■

Tables of Fourier properties and Fourier transform pairs

The Fourier transform possesses many important properties that are useful for signal
analysis. These properties are listed in Table 2.1. The Fourier transforms of signals com-
monly used in communication are listed in Table 2.2.

2.9 Autocorrelation

We have seen the important role of energy spectral density and power spectral density in
determining the bandwidth of energy signals and power signals, respectively. In this section
we investigate the counterparts of these functions in the time domain.

Table 2.1 Properties of the Fourier transform

Property Signal Fourier transform

Conjugate symmetry xðtÞ real X ðf Þ ¼ X �ð f Þ
Linearity axðtÞ þ byðtÞ aX ðf Þ þ bY ðf Þ
Time scaling xðatÞ 1

aj jX
f

a

� �

Time reversal xð tÞ X ð f Þ
Conjugation x�ðtÞ X �ð f Þ
Time shifting xðt t0Þ X ðf Þe�j2πft0
Frequency shifting xðtÞe�j2πfct X ðf � fcÞ
Modulation xðtÞ cos 2πfct 1

2 X ðf fcÞ þ X ðf þ fcÞð Þ
Convolution xðtÞ � hðtÞ X ðf ÞHðf Þ
Multiplication xðtÞyðtÞ X ðf Þ � Y ðf Þ
Duality X ðtÞ xð f Þ
Differentiation

dnxðtÞ
dtn

ðj2πf ÞnX ðf Þ
Differentiation in frequency tnxðtÞ ð j2πÞ�n d

nX ðf Þ
df n

Integration
Ð t
�1 xðtÞ dt X ðf Þ

j2πf
þ 1

2
X ð0Þδðf Þ
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Autocorrelation and energy spectral density

Let X ðf Þj j2 be the energy spectral density of a real-valued signal x(t) with a corresponding
Fourier transform X(f). We are interested in the inverse Fourier transform RxðτÞ of X ðf Þj j2.
By convention, the time variable τ is used to distinguish it from the time variable t of the
signal x(t). We have

RxðτÞ ¼ F 1 X ðf Þj j2
n o

¼
ð1

1
X ðf Þj j2ej2πf τ df ¼

ð1

1
X ðf ÞX �ðf Þ ej2πf τ df

¼
ð1

1
X ðf ÞX ð�f Þ ej2πf τ df ¼

ð1

1
X ðf Þ

ð1

1
xðtÞ ej2πft dt

� �
ej2πf τ df

¼
ð1

1
xðtÞ

ð1

1
X ðf Þ ej2πf ðtþτÞ df

� �
dt

(2:190)

or

RxðτÞ ¼
ð1

1
xðtÞxðt þ τÞ dt (2:191)

Table 2.2 Fourier transform pairs

Signal Fourier transform

Unit impulse δðtÞ 1
Unit step uðtÞ 1

j2πf þ 1
2 δðf Þ

Unit impulse at t ¼ t0 δðt t0Þ e�j2πft0

Constant 1 δðf Þ
Signum sgnðtÞ ¼ 1; t40

1; t50

�
1
jπf

Hilbert transformer 1
πt jsgnðf Þ

Impulse train
P

k �1
δðt kTÞ 1

T

P1

k �1
δ ðf k

T

 �

Periodic signal
P1

k �1
akej2πkf0t

P1

k �1
akδðf kf0Þ

Complex exponential ej2πf0 t δðf f0Þ
Cosine cos 2πfct 1

2j δðf fcÞ þ δðf þ fcÞ½ �
Sine sin 2πfct 1

2j δðf fcÞ δðf þ fcÞ½ �
Gaussian pulse e�πðt=TÞ

2

T e�πðfTÞ
2

Rectangular pulse xðtÞ ¼ A; Tp
2 � t � Tp

2
0; otherwise

�
ATp

sin πfTp
πfTp

(sinz)/z pulse 2B
sin 2πBt
2πBt

X ðf Þ ¼ 1; B � f � B
0; otherwise

�

One sided exponential e�at uðtÞ; a40 1
aþj2πf

Two sided exponential e�a tj j uðtÞ; a40 2a
a2þð2πf Þ2

tk 1

ðk�1Þ! e
�at uðtÞ; a40 1

ðaþj2πf Þk

Parseval formula:
Ð1
�1 xðtÞy�ðtÞ dt ¼ Ð1

�1 X ðf ÞY �ðf Þ df
Poisson sum formula xðtÞ ¼P1

n �1 mðt nTÞ ¼ 1
T

P1
k �1Mðk=TÞej2πkt=T
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The function RxðτÞ is referred to as the autocorrelation of the energy signal x(t). It provides a
measure of the similarity between the signal and its delayed version. An important property
of the autocorrelation is that the energy E of the signal x(t) is equal to the value of RxðτÞ at the
delay time τ ¼ 0:

E ¼
ð1

1
x2ðtÞ dt ¼ Rxð0Þ (2:192)

From (2.191) let t0 ¼ t þ τ, then we can formulate the autocorrelation as follows:

RxðτÞ ¼
ð1

1
xðt0Þxðt0 � τÞ dt0 ¼ xðτÞ � xð�τÞ (2:193)

Thus, the autocorrelation of a real-valued energy signal is a real-valued even function, that
is,

RxðτÞ ¼ Rxð�τÞ (2:194)

Furthermore, the maximum value of the autocorrelation occurs at the origin, that is,

RxðτÞj j � Rxð0Þ for all τ (2:195)

The inequality in (2.195) holds because the similarity between the signal x(t) and its delayed
version xðt þ τÞ is reduced as τ is increased. We can prove (2.195) by considering the
following inequality:

ð1

1
xðtÞ � xðt þ τÞ½ �2dt � 0 for all τ (2:196)

Equivalently, we have
ð1

1
x2ðtÞ dtþ

ð1

1
x2ðt þ τÞ dt � 2

ð1

1
xðtÞxðt þ τÞ dt

� 2

ð1

1
xðtÞxðt þ τÞ dt

����

���� for all τ

(2:197)

The left-hand side of (2.197) is simply the sum of Rxð0Þ and Rxð0Þ and the right-hand side is
just 2 RxðτÞj j. This proves (2.195).

Now consider an LTI system with input x(t), transfer function H(f ), and corresponding
real-valued impulse response h(t). We are interested in the energy spectral density of the
output signal y(t) whose Fourier transform is Y(f ). Let the input signal x(t) be an energy
signal with the Fourier transform X(f ). From (2.180) we obtain

Y ðf Þj j2¼ Hðf Þj j2 X ðf Þj j2 (2:198)

Taking the inverse Fourier transform of both sides of (2.198), and noting that
Hðf Þj j2¼ H�ðf ÞHðf Þ, we have

RyðτÞ ¼ hð�τÞ � hðτÞ � RxðτÞ (2:199)

where RyðτÞ and RxðτÞ are the autocorrelation functions of y(t) and x(t), respectively.
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Autocorrelation and power spectral density

In this section we derive the inverse Fourier transform of the power spectral density. First we
consider periodic signals that are special cases of power signals. For a periodic signal x(t)
with a Fourier representation in (2.112), the power spectral density is given by (2.127) and
repeated here for convenience:

Sxðf Þ ¼
X1

k¼ 1
jak j2δðf � kf0Þ (2:200)

Denoting RxðτÞ as the inverse Fourier transform of SxðxÞ, and applying (2.156) to (2.200) we
obtain

RxðτÞ ¼ F 1fSxðf Þg ¼
X1

k¼ 1
jak j2ej2πkf0τ (2:201)

We observe that the power P of the periodic signal x(t) is equal to Rxð0Þ via (2.117), that is,

P ¼ Rxð0Þ ¼
X1

k¼ 1
jak j2 (2:202)

For a real-valued signal x(t) that is not periodic, the power spectral density must be derived
separately. From (2.13) the average power of x(t) is given by

P ¼ lim
T!1

1

2T

ðT

T
x2 tð Þ dt ¼ lim

T!1
1

2T

ð1

1
x2T tð Þ dt (2:203)

where xT ðtÞ is a truncated version of x(t):

xT ðtÞ ¼ xðtÞ; �T � t � T
0; otherwise

�
(2:204)

Although the power signal x(t) might not have a Fourier transform because its energy is
infinite, its truncated version xT ðtÞ has finite energy and hence possesses a Fourier transform
XT ðf Þ. By using the Parseval relation for (2.203) we have

P ¼ lim
T!1

1

2T

ð1

1
XT ðf Þj j2 df (2:205)

Since the average power P is finite, we can exchange the order in which the limit and the
integration are performed:

P ¼
ð1

1
lim
T!1

1

2T
XT ðf Þj j2 df (2:206)

If we let Sxðf Þ be the power spectral density of the power signal x(t), by definition we have

P ¼
ð1

1
Sxðf Þ df ¼

ð1

1
lim
T!1

1

2T
XT ðf Þj j2 df (2:207)
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Hence, the power spectral density of a power signal is defined as

Sxðf Þ ¼ lim
T!1

1

2T
XT ðf Þj j2 (2:208)

The function XT ðf Þj j2=2T is commonly referred to by statisticians as the periodogram of the
power signal.

If we denote the inverse Fourier transform of Sxðf Þ as RxðτÞ, we have

RxðτÞ ¼ F 1 Sxðf Þf g ¼
ð1

1
lim
T!1

1

2T
XT ðf Þj j2

� �
ej2πf τdf

¼ lim
T!1

1

2T

ð1

1
XT ðf Þj j2 ej2πf τdf

(2:209)

Using the relation that leads to (2.190) we obtain

RxðτÞ ¼ lim
T!1

1

2T

ð1

1
xT ðtÞxT ðt þ τÞ dt (2:210)

Substituting (2.204) into (2.210) we obtain

RxðτÞ ¼ lim
T!1

1

2T

ðT

T
xðtÞxðt þ τÞ dt (2:211)

The function RxðτÞ in (2.211) is referred to as the autocorrelation of the power signal x(t).
Note that the autocorrelation of the periodic signal given in (2.201) is a special case of
(2.211). In fact, (2.201) can be obtained by substituting (2.112) directly into (2.211).We also
observe that the average power P of the power signal x(t) is equal to Rxð0Þ by virtue of
(2.203) and (2.211). Thus, the average power of the power signal x(t) is equal to the
autocorrelation at the origin, that is,

P ¼ Rxð0Þ (2:212)

Furthermore, the autocorrelation of a power signal also satisfies (2.194) and (2.195).
The autocorrelation reflects the degree of coupling between a signal and its delayed

version. If the signal xðtÞ varies slowly, the signal’s delayed version xðt þ τÞ looks almost
like the signal as the delayed interval τ gets larger. In the extreme case of a dc (constant)
signal, the autocorrelation is a constant, meaning that the power spectral density is an
impulse function at zero frequency. This is expected since all power must be concentrated
at zero frequency. When xðtÞ varies rapidly then its delayed version xðt þ τÞ can be very
much different to xðtÞwithin a short delayed interval τ, and the autocorrelation can go down
to zero. In this case the signal may contain many harmonics at various frequencies. The
high-frequency harmonics are the rapidly time-varying signals and may contain a large
amount of power. In this case, the power spectral density may have high weighting at
the high frequencies, which means that the signal has a large bandwidth. In the extreme case,
the signal varies so rapidly that its autocorrelation is an impulse function at time zero. This
implies that the power spectral density is a constant, and the signal has infinite bandwidth
and infinite power.
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Output autocorrelation and power spectral density

In this section we investigate the autocorrelation and power spectral density of the output
signal y(t) of an LTI system with an input power signal x(t). As usual, let h(t) be the real-
valued impulse response of the LTI system. The corresponding transfer function H(f ) is
simply the Fourier transform of h(t). The autocorrelation of y(t) is given by

RyðτÞ ¼ lim
T!1

1

2T

ðT

T
yðtÞyðt þ τÞ dt (2:213)

Noting that yðtÞ ¼ hðtÞ � xðtÞ, we can express (2.213) as

RyðτÞ ¼ lim
T!1

1

2T

ðT

T

ð1

1
hðuÞxðt � uÞ du

ð1

1
hðvÞxðt þ τ � vÞ dv dt (2:214)

Making the following change of variable, λ ¼ t � u, we can write (2.214) as

RyðτÞ ¼
ð1

1

ð1

1
hðuÞ hðvÞ lim

T!1
1

2T

ðT

T
xðλÞ xðλþ ðuþ τ � vÞÞ dλ

� �
du dv (2:215)

Note that the term in the bracket is simply the autocorrelation of x(t) with the argument
uþ τ � v, that is, Rxðuþ τ � vÞ, thus (2.215) can be expressed as

RyðτÞ ¼
ð1

1

ð1

1
hðuÞ hðvÞRxðuþ τ � vÞdu dv

¼
ð1

1
hðuÞ

ð1

1
hðvÞRxððuþ τÞ � vÞ dv

� �
du

¼
ð1

1
hðuÞ hðuþ τÞ � Rxðuþ τÞ½ � du

(2:216)

Again, making a change of variable, z ¼ uþ τ, we obtain

RyðτÞ ¼
ð1

1
hðz� τÞ hðzÞ � RxðzÞ½ � dz (2:217)

The right-hand side of (2.217) is just the convolution operation of hð�τÞ and hðτÞ � RxðτÞ,
therefore

RyðτÞ ¼ hð�τÞ � hðτÞ � RxðτÞ (2:218)

The power spectral density of the output signal y(t) can be obtained from (2.218) by
taking the Fourier transform of RyðτÞ. Using the convolution, conjugate symmetry, and real
signal properties in Table 2.2 we have

Syðf Þ ¼ H�ðf ÞHðf ÞSxðf Þ (2:219)

or, equivalently,
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Syðf Þ ¼ Hðf Þj j2Sxðf Þ (2:220)

This is exactly the same expression that we derived for periodic signals in (2.150).

2.10 Sampling

Sampling is the first step in the process of converting a continuous-time analog signal into a
set of digital signals that represent bits or symbols. Sampling produces values or samples of
the continuous-time signal at points equally spaced in time. Sampling is useful only when
the continuous-time signal can be reconstructed from its samples. In general, many signals
can generate a given set of samples. Therefore, the samples can uniquely specify the signal if
and only if additional conditions are obeyed. These conditions are stated in a well-known
theorem called the sampling theorem.

Sampling theorem

Let x(t) be a bandlimited signal with a Fourier transform X(f ) such that X ðf Þ ¼ 0 for fj j4B,
where B is the absolute signal bandwidth (highest frequency of the signal). Then, x(t) is
uniquely specified by its samples xðkTÞ; k ¼ 0; �1; �2; . . . , equally spaced in time
T ¼ 1=fs. The parameter T is referred to as the sampling period, and the sampling frequency
fs must be greater than twice the absolute signal bandwidth B, that is,

fs42B (2:221)

The sampling rate fN ¼ 2B is referred to as the Nyquist sampling rate.
The samples can be generated by impulse-train sampling in which the signal x(t) is

multiplied by a periodic unit impulse train of period T. This operation produces impulses
at locations kT with amplitudes x(kT), k ¼ 0; �1; �2; . . . . The signal x(t) can be recon-
structed by passing the sampled signal through an ideal lowpass filter with gain T and
bandwidth W that satisfies the following condition:

B5W5fs � B (2:222)

(a) (b)

H( f )x(t)

∑
∞

k = −∞
p(t) = δ(t − kT)

xr(t)
xs(t) f

H( f )

0 W−W

T

Figure 2.35 (a) Sampling and reconstruction; (b) ideal lowpass filter.
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The sampling theorem is summarized in Figure 2.35, where p(t) is the unit impulse-train,
xsðtÞ is the sampled signal, xrðtÞ is the reconstructed signal, and H(f ) is the transfer function
of the ideal lowpass filter, given by

Hðf Þ ¼ T ;

0;

fj j � W

otherwise

(

(2:223)

Impulse-train sampling

The sampled signal xsðtÞ is generated by multiplying the continuous-time signal x(t) with a
unit impulse train pðtÞ:

xsðtÞ ¼ xðtÞpðtÞ (2:224)

where

pðtÞ ¼
X1

k¼ 1
δðt � kTÞ (2:225)

Thus,

xsðtÞ ¼ xðtÞ
X1

k¼ 1
δðt � kTÞ ¼

X1

k¼ 1
xðtÞδðt � kTÞ (2:226)

Using (2.123) in (2.226) we obtain

xsðtÞ ¼
X1

k¼ 1
xðkTÞδðt � kTÞ (2:227)

Example 2.36 Sampling of a ðsin xÞ=x pulse
Consider the pulse signal x(t) and its Fourier transform X(f ) shown in Figure 2.30 of
Example 2.31 and repeated here for convenience in Figure 2.36. It is obvious that the signal

(a) (b)

X( f )

1

B0
f

−B

x(t)

t
0

2B

2B
1

2B
1−

Figure 2.36 (a) x(t) = 2B[(sin 2πBt)/2πBt] pulse; (b) its Fourier transform.
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x(t) is bandlimited to a bandwidth B.Assume that we want to sample the signal at a sampling
frequency equal to four times the bandwidth, that is,

fs ¼ 4B (2:228)

The sampling period is then given by

T ¼ 1

fs
¼ 1

4B
(2:229)

Consequently, the sampled signal xsðtÞ shown in Figure 2.37 is given by

xsðtÞ ¼
X1

k¼ 1
x

k

4B

� �
δ t � k

4B

� �
(2:230)

¼
X1

k¼ 1
2B

sin ðkπ=2Þ
kπ=2

δ t � k

4B

� �
(2:231)

■

Reconstruction with an ideal lowpass filter

We now look at the sampled signal xsðtÞ in the frequency domain via its Fourier transform
Xsðf Þ, which can be obtained from (2.224). Using the multiplication property in Table 2.1
we have

Xsðf Þ ¼ X ðf Þ � Pðf Þ (2:232)

where X(f ) and P(f ) are the Fourier transforms of x(t) and p(t), respectively. Using the
Fourier transform of the impulse train in Table 2.2 we obtain the Fourier transform P(f ) of
p(t) as follows:

Pðf Þ ¼ 1

T

X1

k¼ 1
δ f � kfsð Þ (2:233)

xs(t)

t
0

2B

4B
1

4B
1−

••

Figure 2.37 The sampled signal produced by impulse-train sampling.
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Substituting (2.233) into (2.232) and performing the convolution operation we get

Xsðf Þ ¼
ð1

1
PðuÞX ðf � uÞ du

¼ 1

T

ð1

1

X1

k¼ 1
δ u� kfsð ÞX ðf � uÞdu

¼ 1

T

X1

k¼ 1

ð1

1
δ u� kfsð ÞX ðf � uÞ du

(2:234)

Applying (2.122) to (2.234) we arrive at the following expression for the Fourier transform
of the sampled signal:

Xsðf Þ ¼ 1

T

X1

k¼ 1
X ðf � kfsÞ (2:235)

It can be seen that the Fourier transform of the sampled signal is the sum of shifted replicas
of X(f ) scaled by the factor 1/T. Furthermore, Xsðf Þ is a periodic function of frequency fwith
period fs. When the sampling frequency fs42B, the adjacent shifted replicas of X(f ) do not
overlap. By passing the sampled signal through an ideal lowpass filter, with a transfer
function given in (2.223) that satisfies the constraint in (2.222), we can recover the original
signal x(t). The recovered signal xrðtÞ can be described in the frequency domain by its
Fourier transform Xrðf Þ as follows:

Xrðf Þ ¼ Hðf ÞXsðf Þ

¼
X1

k¼ 1
X ðf � kfsÞ; fj j � W

0; fj j4W

8
>><

>>:

¼ X ðf Þ

(2:236)

Thus, the original signal x(t) is completely recovered. The next example illustrates the
reconstruction process.

Example 2.37 Reconstruction of sampled ðsin xÞ=x pulse
The Fourier transform of the sampled signal of the pulse given in Figure 2.36 is sketched in
Figure 2.38. The sampling frequency is fs ¼ 3B. It is obvious that any ideal lowpass filter
with gain T and bandwidth W such that B5W52B can recover X(f ) and reject all shifted
replicas of X(f ), as shown in the same figure. Thus, the reconstructed signal xrðtÞ is exactly
the same as the original signal x(t).
■

So far we have investigated the reconstruction process in the frequency domain. An
equivalent time domain approach is also feasible. Let h(t) be the impulse response of the
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ideal lowpass filter. Thus h(t) is the inverse Fourier transform of H(f ). We can write the
reconstructed signal xrðtÞ as follows:

xrðtÞ ¼ xsðtÞ � hðtÞ
¼

ð1

1
xsðτÞhðt � τÞ dτ (2:237)

Substituting (2.227) into (2.237) we obtain

xrðtÞ ¼
ð1

1

X1

k¼ 1
xðkTÞδðτ � kTÞ hðt � τÞ dτ

¼
X1

k¼ 1
xðkTÞhðt � kTÞ

(2:238)

Given H(f) in Figure 2.35(b) the corresponding h(t) can be obtained from Table 2.2 as

hðtÞ ¼ 2WT
sin 2πWt

2πWt
(2:239)

Combining (2.238) and (2.239) we can write the reconstructed signal as follows:

xrðtÞ ¼
X1

k¼ 1
xðkTÞ 2WT

sin 2πW ðt � kTÞ
2πW ðt � kTÞ

� �
(2:240)

The left-hand side of (2.240) is just the inverse Fourier transform of the left-hand side of
(2.236), which is exactly x(t). Equation (2.240) provides a convenient way of repre-
senting a bandlimited signal as a series of time shifted (sin x)/x pulses. The coefficients
of the series are the samples of the signal. It turns out that the above series is also
an orthogonal series when 2WT ¼ 1 or 2W ¼ 1=T ¼ fs: this is proven below in
Example 2.38.

Example 2.38 Orthogonal (sin x)/x functions
Consider the infinite set of time-shifted pulses defined as follows:

xkðtÞ ¼ sin πfsðt � kTÞ
πfsðt � kTÞ ; where k is an integer (2:241)

Xs( f )

1/T

B0
f

−B−fs

H( f )

W fs

Figure 2.38 Fourier transform of the sampled signal of the pulse in Figure 2.36.
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where fs ¼ 1=T . We need to show that this is a set of orthogonal functions. We first establish
the inner product of two distinct functions xkðtÞ and xmðtÞ as indicated by (2.36) and make
use of the Parseval relation in Table 2.2:

ð1

1
xkðtÞx�mðtÞ dt ¼

ð1

1
Xkðf ÞX �mðf Þ df (2:242)

where Xkðf Þ and Xmðf Þ are the Fourier transforms of xkðtÞ and xmðtÞ, respectively. Note that
xkðtÞ ¼ x0ðt � kTÞ and xmðtÞ ¼ x0ðt � mTÞ. Hence, by applying the time shifting property
in Table 2.1 we get

Xkðf Þ ¼ X0ðf Þ e j2πkTf (2:243)

Xmðf Þ ¼ X0ðf Þ e j2πmTf (2:244)

where X0ðf Þ is the Fourier transform of x0ðtÞ. Substituting (2.243) and (2.244) into (2.242)
we obtain

ð1

1
xkðtÞxmðtÞ dt ¼

ð1

1
X0ðf Þj j2e j2πðk mÞTf df (2:245)

Note that X0ðf Þ is given in Figure 2.36(b) with fs replacing 2B, and its amplitude is 1=fs.
Equation (2.245) can now be rewritten as

ð1

1
xkðtÞxmðtÞ dt ¼

ðfs=2

fs=2

1

f 2s
e j2πðk mÞTf df ¼ 0 (2:246)

Thus, the set of functions in (2.241) is an orthogonal set. This example shows that a
continuous-time finite-energy signal x(t), bandlimited to a bandwidth B, can be represented
by an orthogonal series of the form

xðtÞ ¼
X1

k¼ 1
xðkTÞ sin πfsðt � kTÞ

πfsðt � kTÞ
� �

(2:247)

where fs ¼ 1=T ¼ 2B. The above expression is referred to as the Nyquist–Shannon inter
polation formula.
■

Example 2.39 Aliasing
We have shown that impulse sampling produces a sampled signal with a periodic Fourier
transform consisting of scaled replicas of the Fourier transform of the original signal
equally spaced in frequency by the sampling frequency fs. The sampling frequency must
be greater than twice the absolute bandwidth or highest frequency of the original signal.
When this condition is not satisfied, the Fourier transform of the sampled signal no longer
consists of replicas of the original signal. Hence, the Fourier transform of the original
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signal cannot be recovered by lowpass filtering. This happens because the periodic
components of the Fourier transform of the sampled signal overlap. This effect is referred
to as aliasing.

The Fourier transform of the sampled signal of the pulse given in Figure 2.36 is sketched
in Figure 2.39. The sampling frequency is fs ¼ 3B=2. It is seen that lowpass filtering cannot
reconstruct the Fourier transform of the original signal shown in Figure 2.36. Therefore, the
recovered signal after lowpass filtering will be distorted.
■

2.11 Bandpass signals

Most practical communication systems are bandpass systems, and signals that they
transmit and receive are therefore bandpass signals. The sinusoidal pulse signal shown in
Figure 2.31(a) is a classical example of a bandpass signal. In general, the spectral density of
a bandpass signal concentrates around a carrier frequency fc as shown in Figure 2.31(b) for
the sinusoidal pulse signal. The positive and negative parts of the spectral density do not
overlap for all practical purposes, since their values around the zero frequency are very small
compared to their peak values. Also, the bandwidth of the bandpass signal, which is defined
loosely as the frequency range around fc that contains most of the energy or power of the
signal, is normally small compared to the carrier frequency fc.

Representations

A bandpass signal can be described mainly by three representations: envelope phase, in
phase and quadrature or I-Q, and complex envelope. In the envelope-phase representation, a
bandpass signal x(t) can be expressed as

xðtÞ ¼ AðtÞ cos½2πfct þ θðtÞ� (2:248)

where fc is the carrier frequency, A(t) is the time-varying amplitude, and θðtÞ is the time-
varying phase. When a bandpass signal is employed to carry information, the amplitude A(t)

Xs( f )

B0
f

−B fs

Figure 2.39 Aliasing effect of undersampling.
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and/or the phase θðtÞ may vary according to the information, resulting in various types of
modulation techniques.

In the I-Q representation, the bandpass signal x(t) can be expressed as follows:

xðtÞ ¼ xI ðtÞ cos 2πfct � xQðtÞ sin 2πfct (2:249)

The components xI ðtÞ and xQðtÞ are referred to as the in-phase and quadrature components
of x(t), respectively. The term quadrature results from the fact that sin 2πfct is in phase-
quadrature with respect to cos 2πfct, that is, π=2 radians or 90 out-of-phase.

For the complex envelope representation, the bandpass signal x(t) can be written as

xðtÞ ¼ RefxLðtÞ ej2πfctg (2:250)

where the complex envelope xLðtÞ of x(t) is often referred to as the equivalent lowpass
signal. The three representations of a bandpass signal are equivalent and their relations are
shown below:

AðtÞ ¼ x2I ðtÞ þ x2QðtÞ
q

¼ xLðtÞj j (2:251)

xLðtÞ ¼ xI ðtÞ þ jxQðtÞ ¼ AðtÞ ejθðtÞ (2:252)

θðtÞ ¼ tan 1 xQðtÞ
xI ðtÞ

� �
(2:253)

xI ðtÞ ¼ RefxLðtÞg ¼ AðtÞ cos θðtÞ (2:254)

xQðtÞ ¼ ImfxLðtÞg ¼ AðtÞ sin θðtÞ (2:255)

Example 2.40 Fourier transform of the complex envelope representation
Considering the Fourier transform X ðf Þ of the complex envelope representation of the
bandpass signal x(t) in (2.250), we get

X ðf Þ ¼
ð1

1
Re xLðtÞ ej2πfct

� �
e j2πft dt

¼
ð1

1

1

2
xLðtÞ ej2πfct þ x�LðtÞ e j2πfct
	 


e j2πft dt
(2:256)

Applying the conjugation and frequency shifting properties in Table 2.1 we obtain

X ðf Þ ¼ 1

2
XLðf � fcÞ þ X �L ð�f � fcÞ
	 


(2:257)

where XLðf Þ is the Fourier transform of the equivalent lowpass signal xLðtÞ of x(t). Thus, the
characteristics of X ðf Þ are all contained in XLðf Þ.
■
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Example 2.41 Equivalent lowpass signal
Consider the following sinusoidal pulse signal with duration 0 � t5T :

xðtÞ ¼ pðtÞ cos 2πfct þ π
4

� �
(2:258)

where the function p(t) is defined in (2.26). The envelope A(t) and the phase θðtÞ are
given by

AðtÞ ¼ pðtÞ (2:259)

θðtÞ ¼ π
4

(2:260)

By expanding x(t) we can write (2.258) as follows:

xðtÞ ¼ pðtÞ cos π
4

h i
cos 2πfct � pðtÞ sin π

4

h i
sin 2πfct

¼ 2
p

2
pðtÞ

� �
cos 2πfct � 2

p

2
pðtÞ

� �
sin 2πfct

(2:261)

Therefore, the in-phase and quadrature components are

xI ðtÞ ¼ 2
p

2
pðtÞ (2:262)

xQðtÞ ¼ 2
p

2
pðtÞ (2:263)

Finally, the complex envelope or equivalent lowpass signal xLðtÞ is given by

xLðtÞ ¼ 2
p

2
pðtÞ þ j

2
p

2
pðtÞ (2:264)

■

Response of an LTI bandpass system

An LTI bandpass system is designed to pass and/or shape a bandpass signal. Its transfer
function normally centers around the carrier frequency fc of the bandpass signal and is
almost zero at the zero frequency. The impulse response h(t) of an LTI bandpass system can
be expressed by the complex envelope representation as follows:

hðtÞ ¼ Re hLðtÞ ej2πfct
	 


(2:265)
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where the complex envelope hLðtÞ is called the impulse response of the equivalent lowpass
system. Following the derivation of (2.257) we arrive at the Fourier transform Hðf Þ of
h(t) as

Hðf Þ ¼ 1

2
HLðf � fcÞ þ H�Lð�f � fcÞ
	 


(2:266)

where HLðf Þ is the Fourier transform of hLðtÞ. Now assume that the input signal x(t) has a
Fourier transform X ðf Þ, the output signal y(t) of the bandpass system is

yðtÞ ¼ hðtÞ � xðtÞ (2:267)

or equivalently, the Fourier transform Y ðf Þ of y(t) is given by

Y ðf Þ ¼ Hðf ÞX ðf Þ (2:268)

Substituting (2.257) and (2.266) into (2.268) we have

Y ðf Þ ¼ 1

4
HLðf � fcÞ þ H�Lð�f � fcÞ
	 


XLðf � fcÞ þ X �L ð�f � fcÞ
	 


¼ 1

4
HLðf � fcÞXLðf � fcÞ þ H�Lð�f � fcÞX �L ð�f � fcÞ
	 
 (2:269)

We arrive at the above equation with the assumption thatHLðf � fcÞ and X �L ð�f � fcÞ do not
overlap, and neither do H�Lð�f � fcÞ and XLðf � fcÞ. Thus, we have the relations
HLðf � fcÞX �L ð�f � fcÞ ¼ 0 and H�Lð�f � fcÞXLðf � fcÞ ¼ 0. Define the following
parameter

YLðf Þ ¼ 1

2
HLðf ÞXLðf Þ (2:270)

Then, we have

Y ðf Þ ¼ 1

2
YLðf � fcÞ þ Y �L ð�f � fcÞ
	 


(2:271)

Taking the inverse Fourier transform of Y ðf Þ yields the output response y(t):

yðtÞ ¼ 1

2
yLðtÞ ej2πfct þ y�LðtÞ e j2πfct
	 


¼ RefyLðtÞ ej2πfctg
(2:272)

where the complex envelope yLðtÞ of y(t) is the inverse Fourier transform of YLðf Þ in (2.270)
and is given by

yLðtÞ ¼ 1

2
hLðtÞ � xLðtÞ (2:273)

In summary, when the bandwidths of both bandpass signal and bandpass system are much
smaller than the carrier frequency such that the assumption leading to (2.269) holds, we can
obtain the response y(t) via (2.267) or via the equivalent lowpass operation given in (2.272)
and (2.273).
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2.12 Summary

In this chapter we have provided a fairly detailed study of deterministic signals. We have placed the emphasis
on continuous-time signals that are often employed in practical communications systems. The concept of
continuous-time digital signals was introduced via examples such as PSK and ASK.
We then introduced the concept of power and energy signals. We showed that a power signal has infinite

energy and an energy signal has zero average power. It was noted that the digital signals employed in practice
are energy signals and an infinite sequence of them forms a power signal.
The study of energy signals has led to a special class of important digital signals, namely, orthogonal signals,

that are widely used in commercial and military systems. The most well-known pair of orthogonal signals are
the cosine and sine functions with identical frequency. We also studied the well-known orthogonal Walsh
functions, which are derived from the Hadamard matrix. The Walsh functions are employed in the cellular
standard IS-95.
Further study of finite-energy signals has led to the concept of signal space. The Gram–Schmidt procedure

enables us to express continuous-time finite-energy signals as vectors in the signal space, thus simplifying the
analysis.
A review of linear time-invariant systems was provided together with the important convolution operation. It

is worth mentioning that the majority of communication systems are LTI systems. Even nonlinear communication
systems contain many subsystems that are linear time-invariant.
Two great techniques that are indispensable in the analysis of communications systems were presented. They

are Fourier series for periodic signals and Fourier transform for aperiodic signals.
The study of Fourier series has revealed a number of important properties. The Parseval relation states that

the average power in a periodic signal equals the sum of the average power in all of its harmonics components.
The power in a harmonic component is equal to the squared magnitude of the corresponding Fourier series
coefficient. This relation leads to the study of power spectral density, which consists of an infinite series of
weighted impulses at harmonic frequencies. As the signal propagates through an LTI system, its power spectral
density is shaped by the transfer function of the system. The output power spectral density function is
equal to the product of the squared magnitude of the system’s transfer function and the input power spectral
density.
The study of Fourier transform of aperiodic finite energy signals has provided a number of interesting results.

The energy of a signal is equal to the total area under the energy spectral density function, which is simply the
squared magnitude of the Fourier transform of the signal. This is the Parseval relation for an energy signal. One
surprising result is that a continuous-time periodic signal has a Fourier transform that is an infinite series of
impulses at harmonic frequencies. The coefficients of the impulses are simply the Fourier series coefficients. As
an energy signal propagates through an LTI system, its Fourier transform is shaped by the transfer function of
the system. The Fourier transform of the output signal is simply the product of the system’s transfer function
and the Fourier transform of the input signal.
It was shown that the autocorrelation and the energy spectral density of an energy signal form a Fourier

transform pair. For a power signal, the autocorrelation and the power spectral density also form a Fourier
transform pair. The spectral density of the output signal of an LTI system is equal to the product of the squared
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magnitude of the system’s transfer function and the spectral density of the input signal. This applies to both
energy and power signals.
Again using the Fourier transform we have studied the sampling of a bandlimited signal. It was shown that

the original signal can be recovered from the sampled signal by means of an ideal lowpass filter provided that
the sampling rate exceeds the Nyquist rate The Nyquist rate is exactly twice the absolute bandwidth or highest
frequency of the original signal. If the sampling rate is smaller than the Nyquist rate, then aliasing results, and
the original signal cannot be recovered from the sampling signal.
In the last section we have investigated the representations of bandpass signals which are employed in

practical communication systems. Three representations were considered, namely, envelope-phase, in-phase and
quadrature (I-Q), and complex envelope representations. The relationship between a bandpass signal and its
equivalent lowpass signal was studied. The equivalent lowpass signal is simply the complex envelope of the
bandpass signal.

Problems

1. Examine whether the following signals are periodic: sðtÞ ¼ sin 6πt þ cos 7πt,
sðtÞ ¼ 5 cosð14πt þ θÞ þ 7 sinð42πt þ 6θÞ. Specify the smallest period.

2. Write the expression for the PSK waveform s(t) that represents four consecutive bits
1011, assuming that the leftmost bit starts at time t = 0 and the carrier frequency is an
integer multiple of 1=Tb, where Tb is the bit time.

3. Write the expression for the QPSK waveform s(t) that represents four consec-
utive symbols 10 01 11 00, assuming that the leftmost symbol starts at time t =
0 and the carrier frequency is an integer multiple of 1=Ts, where Ts is the
symbol time.

4. Write the expression for the 4ASK waveform s(t) that represents four consecutive
symbols 00 01 10 11, assuming that the leftmost symbol starts at time t = 0 and the
carrier frequency is an integer multiple of 1=Ts, where Ts is the symbol time.

5. Find the energy and power of the following signals: sðtÞ¼10sin6πtþ3cos7πtðVÞ;
sðtÞ¼sinð5πtþθÞþ2cosð7πtþfÞðmVÞ;andsðtÞ¼20cosð15πtþθÞcosð25πtþfÞðVÞ:

6. Find the energy of the unit impulse function. Is it a power signal?
7. Find the energy and power of the unit step function.
8. Find the energy of the signal sðtÞ ¼ 2B sin 2πBt

2πBt .
9. Find the PSK signal energy assuming the bit time Tb ¼ 10 4 s and the amplitude

A=100mV. Find the QPSK signal energy assuming the symbol time Ts ¼ 2� 10 4 s
and the amplitude A=100mV.

10. Consider the following two signals for 0 � t5Tb:

s1 tð Þ ¼ A cos 2πf1t þ θ1ð Þ
s2 tð Þ ¼ A cos 2πf2t þ θ2ð Þ

where for a positive integer ‘41 and fc ¼ ‘=Tb we have
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f1 ¼ fc � 1

2Tb

f2 ¼ fc þ 1

2Tb

Show that the two signals are orthogonal.
11. Consider the following two signals for 0 � t5Tb:

s1 tð Þ ¼ A cos 2π fc þ 1

4Tb

� �
t þ θn

� �

s2 tð Þ ¼ A cos 2π fc � 1

4Tb

� �
t þ θn

� �

where θn 2 0; πf g mod 2πð Þ. Show that the two signals are quasi-orthogonal assum-
ing that the frequency fc is an integer multiple of 1=Tb.

12. Consider the following two signals in the interval 0 � t5Tb:

s1 tð Þ ¼ A cos 2πft þ θð Þ
s2 tð Þ ¼ A cos 2π½f þ Δf �t þ θð Þ

where f 
 Δf . The requirement for both signals to be quasi-orthogonal is their inner
product must be less than 0.01 of the energy of s1ðtÞ or s2ðtÞ. What would be the range
of Δf ?

13. Consider the cascade of two identical 4-aryWalsh functions representing the third row
of the Hadamard matrixH4. Find all 8-ary Walsh functions with the same period that
are orthogonal with it.

14. Show that the Hadamard matrix of order M ¼ 2n divided by M
p

is a unitary matrix.
15. Use the Gram–Schmidt procedure to find the orthonormal basis functions

for the following set of four quadrature phase shift keying signals:
snðtÞ ¼ cos 2π=Tð Þt þ ðn� 1Þπ=2½ �; n ¼ 1; 2; 3; 4; 0 � t5T starting with signal
s1ðtÞ. Express snðtÞ in terms of the basis functions and find the corresponding signal
vectors. Calculate the Euclidean distance between two adjacent signal vectors.

16. Consider the following set of signals:

snðtÞ ¼ �A cos 2πfct; �3A cos 2πfct; 0 � t5Tsf g

Let E be the smallest signal energy. Find the basis function and express each signal in
the set in terms of the basis function and E. Plot the signal space.

17. Determine if the following systems are LTI:
(a) yðtÞ ¼ d

dt ½3xðtÞ � xðt � 7Þ�
(b) yðtÞ ¼ Ð 7t

0 xðτÞdτ
(c) yðtÞ ¼ xðtÞ sin 300πt
(d) yðtÞ ¼ x2ðtÞ
(e) yðnÞ ¼ 2nþ 3xðnÞ þ xðnþ 3Þ

18. Find the convolution of the waveform xðtÞ ¼ pðtÞ � pðt � TÞ þ pðt þ TÞ with pðtÞ,
where pðtÞ is a unit amplitude pulse of duration T.
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19. Find the convolution of pðtÞ and hðtÞ ¼ tp2T ðtÞ, where pðtÞ is a unit amplitude pulse of
duration T, and p2T ðtÞ is a unit amplitude pulse of duration 2T.

20. Find the Fourier series coefficients of xðtÞ ¼P1
k¼ 1 δðt � kTÞ.

21. Consider the periodic signal xðtÞ ¼P1
k¼ 1 wnðt � kTÞ with period T, where wnðtÞ is

the nth Walsh function corresponding to the M �M Hadamard matrix. Express the
signal xðtÞ as a Fourier series for (a) M = 2 and n = 2 (second row of the Hadamard
matrix); and (b) M = 4 and n = 3 (third row of the Hadamard matrix).

22. Find the Fourier series of the periodic signal yðtÞ ¼ xðnt � t0Þ, where xðtÞ is a periodic
signal with period T, t0 is an arbitrary time, and n is an integer.

23. Consider the periodic signal xðtÞ ¼ cos 20πt þ cos 60πt þ cos 100πt. Construct a
circuit to recover the third harmonic.

24. Consider a periodic signal xðtÞ with period T. Find the Fourier coefficients of the
following signal in terms of those of xðtÞ: yðtÞ ¼ d2xð7t � 3Þ=dt2.

25. Find the Fourier transform of the periodic signal shown in Figure 2.40.
26. A periodic signal with period T can be expressed in the summation form

xðtÞ ¼P1
k¼ 1 mðt � kTÞ.

(a) Show that the Fourier series coefficients of xðtÞ are given by

ak ¼ 1

T

ð1

1
mðtÞ e j2πkt=T dt ¼ 1

T
Mðk=TÞ

where Mðk=TÞ is the Fourier transform of m(t) evaluated at f = k/T.
(b) Show that xðtÞ ¼ 1

T

P1
k¼ 1Mðk=TÞej2πkt=T .

27. Consider a Hilbert transformer with impulse response hðtÞ ¼ 1=πt. Let xðtÞ be the
input signal. Write the expression for the output signal yðtÞ ¼ hðtÞ � xðtÞ, that is, the
Hilbert transform of xðtÞ. Find yðtÞ when xðtÞ ¼ sin nt.

28. Given the signal xðtÞ ¼ A
2 m tð Þ cos 2πfct � m̂ tð Þ sin 2πfct½ �, where m̂ðtÞ ¼ mðtÞ � 1=πt

is the Hilbert transform of m(t), find the Fourier transform of x(t).
29. Consider the inner product of two following signals x1ðtÞ ¼ p tð Þ cos 2πfct and

x2ðtÞ ¼ p tð Þ sin 2πfct given the Fourier transform Pðf Þ of p(t). We have

x1; x2h i ¼
ð1

1
x1ðtÞx�2ðtÞ dt

Find the sufficient conditions for x1ðtÞ and x2ðtÞ to be orthogonal in terms of Pðf Þ.

x(t)

t

1

–1/N

0 T NT

Figure 2.40 The periodic signal x(t) with period NT.
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30. An upconverter shifts the carrier frequency f0 of a modulated signal
xðtÞ ¼ RðtÞ cos½2πf0t þ ψðtÞ� to a higher frequency fc 
 f0 for transmission in a
designated spectrum without affecting the envelope R(t) and the phase ψðtÞ. The
reason is that it is much less expensive to design a modulator at the low intermediate
frequency (IF) f0 than to design it at the high radio frequency (RF) fc. Given a local
reference sinusoidal signal at frequency flo, design an upconverter to accomplish the
frequency shifting.

31. A downconverter shifts the carrier frequency fc of a modulated signal
yðtÞ ¼ RðtÞ cos½2πfct þ ψðtÞ� to a lower frequency f0 � fc for demodulation without
affecting the envelope R(t) and the phase ψðtÞ. The reason is that it is much less
expensive to design a demodulator at the low intermediate frequency (IF) f0
than to design it at the high radio frequency (RF) fc. Given a local reference sinusoidal
signal at frequency flo, design a downconverter to accomplish the frequency shifting.

32. Find the autocorrelation of the following function xðtÞ ¼ 7 cos 2000πt. What is its
power spectral density function? Calculate the power of xðtÞ via two methods.

33. Determine the impulse response hðtÞ of a LTI system whose input is x(t) so that the
output y(t) is the autocorrelation of x(t).

34. Given the power signal xðtÞ with autocorrelation RxðτÞ, determine the autocorrelation
RyðτÞ of yðtÞ ¼ xðtÞ cos 2πfct.

35. Given the power signals xðtÞ and x̂ðtÞ with autocorrelation RxðτÞ and Rx̂ðτÞ, respec-
tively, determine the autocorrelation RyðτÞ of yðtÞ ¼ xðtÞ cos 2πfct � x̂ðtÞ sin 2πfct.

36. The following signal xðtÞ ¼ cos 20πt is sampled at rate fs ¼ 8Hz. Plot the Fourier
transform of the sampled signal. Can an ideal lowpass filter with a bandwidth of 11Hz
be able to extract x(t)?

37. The signal xðtÞ ¼ sinð2πf0t þ θÞ is sampled at a rate fs ¼ 2f0. Can an ideal lowpass
filter with a cut-off frequency f0 recover the signal x(t)?

38. Consider the bandpass signal yðtÞ ¼ xðtÞ sin 2πfct, where x(t) is a bandlimited lowpass
signal given as xðtÞ ¼ 2Bðsin 2πBt=2πBtÞ. The frequency fc is much larger than B.
What is the Nyquist sampling frequency? Plot the Fourier transform of the sampling
signal. Find the smallest fc so that the signal yðtÞ can be recovered without aliasing.

39. Consider the bandpass signal xðtÞ ¼ xI ðtÞ cos 2πfct � xQðtÞ sin 2πfct, where both low-
pass signals xI (t) and xQ (t) are bandlimited to B (Hz).
(a) First, perform frequency shifting and lowpass filtering of x(t) to produce xI ðtÞ.

Next, perform frequency shifting and lowpass filtering of x(t) to produce xQðtÞ.
(b) Sample both xI (t) and xQ (t) at Nyquist rate. Write the expressions for both xI (t)

and xQ (t) in terms of their samples.
(c) Write the expression for the samples of x(t) in terms of the samples of xI (t) and

xQ (t).
(d) Write the expression for x(t) in terms of its samples.

40. Consider the bandpass signal xðtÞ ¼ xI ðtÞ cos 2πfct � xQðtÞ sin 2πfct, where both low-
pass signals xI (t) and xQ (t) are bandlimited to B (Hz).
(a) Multiply x(t) with e j2πfct. Write the expression for the resulting signal xðtÞe j2πfct.
(b) Filter xðtÞe j2πfct with an ideal complex-valued lowpass filter with cutoff fre-

quency equal to B. Write the expression for the output signal y(t).
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41. Design an upconverter to shift the carrier frequency f0 of the bandpass signal
xðtÞ ¼ RefxLðtÞ ej2πf0tg to the new carrier frequency fc, where fc 
 f0, using the
complex local reference signal ej2πflot at frequency flo≫ f0. Identify the signals at the
output of every device employed in the upconverter.

42. Design a downconverter to shift the carrier frequency fc of the bandpass signal
xðtÞ ¼ RefxLðtÞ ej2πfctg to the new carrier frequency f0, where f0 � fc, using the
complex local reference signal e j2πflot at frequency flo≫ f0. Identify the signals at the
outputs of all devices employed in the downconverter.

Further reading

For a thorough analysis of Fourier series, Fourier transforms, discrete-time Fourier trans-
forms, and z-transforms we recommend Oppenheim, Willsky, and Nawab [1]. Advanced
materials in signal analysis can be found in Bracewell [2].
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3 Random signal analysis

Introduction

So far we have studied deterministic signals that are used to carry information. As far as
the receiver is concerned, the stream of transmitted digital waveforms that carries informa-
tion symbols is a random signal because the information is random. Also, as the transmitted
signal travels through the channel, it is modified by noise, which is a random signal and is
often referred to as a random process. Therefore, the receiver receives the transmitted signal
plus noise. Such a channel is called an additive noise channel. Furthermore, wireless signals
such as cellular signals and wireless LAN and MAN signals always travel through a time
varying multipath fading channel, which causes the signal envelopes to vary randomly.
The time varying phenomenon arises fromDoppler shift, which is the result of the motion of
the transmitters and/or receivers. The multipath fading is the result of the destructive
interference of signal rays that travel via randomly delayed and attenuated paths.
Therefore, the received signal itself becomes a random signal. To analyze random signals
in communication receivers we need to know their statistics. In this section we explore some
tools necessary for such a task. We divide the discussion into reviews of probability theory
and random variables, and study of random processes and their applicability to communi-
cation theory.

3.1 Review of probability theory

Let S denote the sample space. The elements of S are called experimental outcomes, and its
subsets are called events. The sample space S is a certain event, and the empty set f is the
impossible event. The union of two events A and B is denoted as A [ B and their intersection
as AB (also A \ B). For an event Awe assign a number PrðAÞ called probability of event A
that satisfies the following axioms:

I. PrðAÞ � 0
II. Pr (S) = 1
III. If AB ¼ f then PrðA [ BÞ ¼ PrðAÞ þ PrðBÞ
The following two theorems are widely used in the performance analysis of digital commu-
nications systems.
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Total probability theorem

Let fA1;A2; . . . ;Ang be the partition of the sample space S and let B be an event in S. The
total probability theorem states the following result:

PrðBÞ ¼
Xn

i¼1

PrðBjAiÞPrðAiÞ (3:1)

where PrðBjAiÞ is the conditional probability of the event B given that the event Ai

occurred.

Bayes theorem

The a-posteriori probability PrðAijBÞ is expressed in terms of the a-priori probability PrðAiÞ,
the conditional probability PrðBjAiÞ, and the total probability Pr(B) as follows:

PrðAijBÞ ¼ PrðBjAiÞPrðAiÞ
Pn

i¼1
PrðBjAiÞPrðAiÞ

¼ PrðB;AiÞ
Pn

i¼1
PrðBjAiÞPrðAiÞ

(3:2)

Here PrðB;AiÞ is the joint probability of B and Ai.

Independence

The concept of independence plays an important role in signal analysis. Two events A and B
are independent if

PrðABÞ ¼ PrðAÞPrðBÞ (3:3)

Union bound

Let
Sn

i¼1
Ai be the union of n events Ai, then, we have the following union bound:

Pr
[n

i¼1

Ai

 !

�
Xn

i¼1

PrðAiÞ (3:4)

In the following discussion we study random variables that are essential to signal analysis
where they represent decision voltage samples at the receiver

3.2 Random variables

In a digital communication system the received signal representing a symbol is a random
signal due to noise and other factors such as fading. It is processed to achieve the maximum
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signal-to-noise ratio and then sampled to obtain a decision sample for the detector to decide
which symbol had been transmitted. The decision sample is referred to mathematically as a
random variable.

A random variable is a function defined on the sample space.We use a capital letter such
as X for a random variable and the lower-case letter x for the value it assumes. Depending on
the experiment, the random variable X can be discrete or continuous. Let X be a discrete
random variable and let xi, i = 1, 2, . . . , n, be the values that X assumes. For each event
fX ¼ xig and its probability PrfX ¼ xig the function

pX ðxiÞ ¼ PrfX ¼ xig i ¼ 1; 2; . . . ; n (3:5)

is called the (probability) distribution function of X which satisfies pX ðxiÞ � 0 and
Pn

i¼1
pX ðxiÞ ¼ 1. Now let X be a continuous random variable. The distribution function of

X is then defined as

FX ðxÞ ¼ PrðX � xÞ �15x51 (3:6)

It satisfies the properties FX ð�1Þ ¼ 0; FX ðþ1Þ ¼ 1; and FX ðx2Þ � FX ðx1Þ ¼
Prðx15X � x2Þ. The density function of X is the derivative of the distribution function
FX ðxÞ and is given as

fX ðxÞ ¼ dFX ðxÞ
dx

(3:7)

This yields the following equivalent relationship:

FX ðxÞ ¼ PrðX � xÞ ¼
ðx

1
f X ðyÞ dy (3:8)

The density function satisfies the following properties:

fxðxÞ � 0

ð1

1
f X ðxÞ dx ¼ 1 Prðx15x � x2Þ ¼

ðx2

x1

f X ðxÞ dx (3:9)

The joint distribution function of two random variables X and Y is defined as

FXY ðx; yÞ ¼ PrðX � x; Y � yÞ (3:10)

and the corresponding joint density function is

fXY ðx; yÞ ¼ ∂2FXY ðx; yÞ
∂x ∂y

(3:11)

Thus, the density function of either X or Y can be found by integrating its joint density
function with respect to the other variable. We have

fX ðxÞ ¼
ð1

1
fXY ðx; yÞ dy (3:12)
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Bayes theorem and total probability revisited

For continuous random variables, Bayes theorem is expressed as follows:

fX jY ðxjyÞ ¼
fY jX ðyjxÞfX ðxÞ

fY ðyÞ ¼ fY jX ðyjxÞfX ðxÞÐ
fXY ðx; yÞ dx

¼ fY jX ðyjxÞfX ðxÞÐ
fY jX ðyjxÞfX ðxÞdx

¼ fXY ðx; yÞÐ
fY jX ðyjxÞfX ðxÞdx

(3:13)

where fX jY ðxj yÞ is the conditional density function of X given Y and the joint density is
given by

fXY ðx; yÞ ¼ fY jX ðyjxÞfX ðxÞ ¼ fX jY ðxjyÞfY ðyÞ (3:14)

If X and Y are independent random variables, then the following relationship holds:

fX ðx; yÞ ¼ fX ðxÞfY ðyÞ (3:15)

The total probability theorem is expressed explicitly above as

fY ðyÞ ¼
ð
fY jX ðyjxÞ fX ðxÞ dx (3:16)

In random signal analysis it is sometimes necessary to get a snapshot of a random
variable, such as a decision sample at the receiver. This can be done via the statistical
averages of the random variable, such as the mean value or expected value X ¼ EðX Þ, the
mean square value X 2 ¼ EðX 2Þ, and the variance σ2X ¼ VarðX Þ ¼ EfðX � X Þ2g. These
quantities are defined for both discrete and continuous random variables as follows:

X ¼ EðX Þ ¼
X

i

xipX ðxiÞ X ¼ EðX Þ ¼
ð1

1
xfX ðxÞ dx (3:17)

X 2 ¼ EðX 2Þ ¼
X

i

x2i pX ðxiÞ X 2 ¼ EðX 2Þ ¼
ð1

1
x2fX ðxÞ dx (3:18)

σ2X ¼ VarðX Þ ¼ EfðX � X Þ2g ¼ EðX 2Þ � X 2 (3:19)

The quantity σX is called the standard deviation of the random variable X. The mean and
mean-square values of a random variable are also referred to as its first and second moments.
The nth moment of the random variable X is defined as

Xn ¼ EðXnÞ ¼
X

i

xni pX ðxiÞ X n ¼ EðX nÞ ¼
ð1

1
xnfX ðxÞ dx (3:20)

The above results can be generalized to a function g(X). For example, the expected value of
g(X) is given by

EfgðX Þg ¼
X

i

gðxiÞpX ðxiÞ EfgðX Þg ¼
ð1

1
gðxÞfX ðxÞ dx (3:21)
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In the following discussion we present the application of probability theory and random
variables to the analysis of digital communication signals from the standpoint of random
processes.

3.3 Random processes

In a communication system the received signal is always a random signal due to the fact that
the transmitted signal is subjected to channel distortion and, moreover, because it is
contaminated by noise and possibly unintended or intended interference. Therefore, the
performance analysis of a communication signal cannot be based solely on the theory
developed for deterministic signals. For example, the Gaussian channel required the knowl-
edge of the noise variance (noise power) together with the signal power to establish the
signal-to-noise ratio at the receiver. In order to calculate the noise variance, the statistics of
noise at the receiver must be known a priori. Furthermore, filters employed at the receiver for
signal processing can affect the noise statistics. For example, if Gaussian noise is processed
by a linear filter, will the noise at the filter output still be Gaussian? In this section we study
random processes to provide the background for applying random signal analysis to
communication systems. We use the term random process as customarily cited in the
literature to include noise and other random signals of interest to communication theorists.
We will use a time function to represent a sample of a random process. We consider real-
valued processes unless stated otherwise.

Definition 3.1 A random process is an indexed sequence (ensemble, family) of random
variables. The index can be a real variable t for a continuous-time random process X(t) or an
integer i for a discrete-time random process Xi.

The definitions of mean value, mean square value, and variance of a random variable
also apply to a random process. The mean valueEfX ðtÞg of a noise voltage X(t) across a 1Ω
resistor represents its dc-component, its mean-square value EfX 2ðtÞg is the power, and its
variance Ef½X ðtÞ � EfX ðtÞg�2g is the ac-power.

Autocorrelation and autocovariance

Themost important parameter of a random process is its autocorrelation, which is defined as
follows:

RX ðt1; t2Þ ¼ EfX ðt1ÞX ðt2Þg (3:22)

The autocovariance is simply the autocorrelation of a random process minus its mean value,
that is,

CX ðt1; t2Þ ¼ Ef½X ðt1Þ � EfX ðt1Þg�½X ðt2Þ � EfX ðt2Þg�g (3:23)
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Therefore, the autocorrelation and autocovariance are related by the following expression:

CX ðt1; t2Þ ¼ RX ðt1; t2Þ � EfX ðt1ÞgEfX ðt2Þg (3:24)

It is seen that the autocovariance is zero, that is, CX ðt1; t2Þ ¼ 0 if and only if
RX ðt1; t2Þ ¼ EfX ðt1ÞgEfX ðt2Þg. In this case the two random variables X ðt1Þ and X ðt2Þ
are uncorrelated. Obviously, if they are independent then the autocovariance is also
zero. Also RX ðt; tÞ ¼ EfX 2ðtÞg is the average power of the random process and
CX ðt; tÞ ¼ RX ðt; tÞ � ½EfX ðtÞg�2 ¼ EfX 2ðtÞg � ½EfX ðtÞg�2 ¼ VarfX ðtÞg is its ac-power.

Example 3.1 Autocorrelation of a sequence of antipodal signals

Consider an antipodal signal sequence X tð Þ ¼ P1

i¼ 1
di p t � iTbð Þ that represents independ

ent and equally likely bits f0; 1g, where p(t) is the squared pulse shape of unit amplitude and
duration Tl, which is a bit time, and di 2 f1;�1Þ represents the normalized signal ampli-
tudes. The mapping 0 ! 1 and 1 ! �1 maps bit 0 to amplitude 1 and bit 1 to amplitude
�1 (the mapping 0 ! �1 and 1 ! 1 maps bit 0 to amplitude� 1 and bit 1 to amplitude 1
would give the same result). Since the amplitudes are equally likely, the mean value of this
random process is zero. Consider the times t1 ¼ t and t2 ¼ t þ τ, where τ is an arbitrary
time interval. We have

RX ðt; t þ τÞ ¼ EfX ðtÞX ðt þ τÞg ¼ EfX ðtÞgEfX ðt þ τÞg ¼ 0; jτj 4Tb (3:25)

since the process has zero mean and the bits are independent. For jτj 5Tb, and with an
arbitrary time index i = 0, let us assume that the time origin t of the zeroth bit is uniformly
distributed in the bit interval Tb (without any knowledge about the location of the time origin
the uniform distribution is the worst-case assumption), we have

RX ðt; t þ τÞ ¼ EfX ðtÞX ðt þ τÞg ; 0 5 t þ τ � Tb

¼
Ð Tb τ
0 ð�1Þ2 1

Tb
dt ¼ Tb τ

Tb
¼ 1� τ

Tb
; 0 � τ � Tb

Ð Tb
τ ð�1Þ2 1

Tb
dt ¼ Tbþτ

Tb
¼ 1þ τ

Tb
; �Tb � τ � 0

8
<

:

¼ 1� jτj
Tb

; jτj � Tb ¼ RX ðτÞ

(3:26)

3Tb2Tb

4Tb

Tb−Tb 0

(a)

t

1

Tb−Tb 0

(b)

τ

RX(τ) 

Figure 3.1 (a) Antipodal signal; (b) corresponding autocorrelation.
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Thus, the random sequence of antipodal signals with a uniform time origin has a triangular
autocorrelation, which depends only on the time difference jτj ¼ jt2 � t1j , that is,
RX ðt; t þ τÞ ¼ RX ðτÞ. Note that RX ð0Þ ¼ 1 as expected. Figure 3.1 shows the representa-
tive antipodal signal sequence and its autocorrelation.

In the above analysis we assume that the time origin of the zeroth bit is uniformly
distributed in the bit time Tb. This is equivalent to shifting the process X(t) by a time
delay Δ uniformly distributed in a bit time and independent of X(t).
■

Example 3.2 Autocorrelation of a sequence of on–off keying (OOK) signals

Consider an OOK signal sequence X tð Þ ¼ P1

i¼ 1
di p t � iTbð Þ that represents independent

and equally likely bits {0,1}, where p(t) is the squared pulse shape of unit amplitude and
duration Tb, which is a bit time, and di 2 f1; 0g represents the normalized signal amplitudes.
The mapping 0 ! 1 and 1 ! 0 maps bit 0 to amplitude 1 and bit 1 to amplitude 0 (the
mapping 0 ! 0 and 1 ! 1 maps bit 0 to amplitude 0 and bit 1 to amplitude 1 would give
the same result). We assume that the time origin is uniform in a bit time Tb. The mean value
of this random process is

EfX ðtÞg ¼
X1

i¼ 1
EfdigEfp t � iTbð Þg

¼ 0:5
X1

i¼ 1

ðiTbþTb

iTb

ð1Þ 1

Tb
dt ¼ 0:5

(3:27)

The process Y ðtÞ ¼ X ðtÞ � 0:5 therefore represents an antipodal signal sequence of ampli-
tudes 0.5 and �0:5. Since X ðtÞ ¼ Y ðtÞ þ 0:5 the autocorrelation of X(t) can be obtained
from that of Y(t), which has been derived in the previous example. Consider the times
t1 ¼ t and t2 ¼ t þ τ, where τ is an arbitrary time interval. We have

RY ðt; t þ τÞ ¼ EfY ðtÞY ðt þ τÞg ; 0 5 t þ τ � Tb

¼ 1

4
1� jτj

Tb

� �
; jτj � Tb

(3:28)

And consequently the autocorrelation of the OOK signal sequence with a uniform time
origin is given as

RX ðt; t þ τÞ ¼ RY ðt; t þ τÞ þ 0:52

¼
1
4 1� jτj

Tb

� �
þ 1

4 ; jτj � Tb

1
4 ; jτj4Tb

8
<

:

¼ RX ðτÞ

(3:29)
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Thus, this autocorrelation depends only on the time difference jτj ¼ jt2 � t1j , that is,
RX ðt; t þ τÞ ¼ RX ðτÞ. Figure 3.2 shows the representative OOK sequence and its
autocorrelation.
■

Types of random processes

Definition 3.2 A random process is stationary (or strict sense stationary) if the joint
distribution of any set of samples is invariant with a shift of the time origin. In other
words, the statistical properties are unchanged if the random process is shifted in time.

Stationarity is a strong property and not easily verifiable in practice. Instead communi-
cation theorists rely on a milder property called wide sense stationarity.

Definition 3.3 A random process is wide sense stationary (WSS) if its mean value is
constant and its autocorrelation is a function of the time difference, that is,
RX ðt1; t2Þ ¼ RX ðt2 � t1Þ, or, for notational convenience, RX ðt; t þ τÞ ¼ RX ðτÞ:

A stationary process is obviously wide-sense stationary but not necessarily vice versa.
The antipodal signal and OOK signal sequences with uniform time origin are both WSS
processes. For a WSS process we have

RX ð0Þ ¼ EfX 2ðtÞg;RX ðτÞ ¼ RX ð�τÞ; jRX ðτÞj � RX ð0Þ (3:30)

Definition 3.4 A random process is cyclostationary (or strict sense cyclostationary) with
period T if the joint distribution of any set of samples is invariant to a shift of the time origin
by integer multiples of T. In other words, the statistical properties are unchanged if the
random process is shifted periodically in time.

Cyclostationarity is a weaker form of stationarity and many physical processes possess
this property.

Definition 3.5 A random process is wide sense cyclostationary (WSCS) if its mean value
and its autocorrelation are periodic in time twith some period T, that is, they are invariant to

0

(a)

t

0.5

(b)

τ

0.25

−Tb Tb 2Tb
3Tb 4Tb

Tb−Tb 0

RX(τ) 

Figure 3.2 (a) OOK sequence; (b) corresponding autocorrelation.
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a shift of the time origin by integer multiples of T. In other words, we have
mX ðtÞ ¼ mX ðt þ iTÞ, where mX ðtÞ ¼ EfX ðtÞg, and RX ðt1 þ iT ; t2 þ iTÞ ¼ RX ðt1; t2Þ.

The antipodal signal and OOK signal sequences are both WSCS random processes given
a fixed time origin. But if we assume the time origin is uniform over (0, Tb) and average out
the mean and autocorrelation we obtain a constant mean value and an autocorrelation of the
time difference.

Example 3.3 Wide-sense cyclostationary process

Consider a signal sequence X tð Þ ¼ P1

i¼ 1
di p t � iTbð Þ that represents independent and

equally likely bits [0,1] where di 2 f1;�1g represents the normalized signal amplitudes.
The mapping 0 ! 1 and 1 ! �1 maps bit 0 to amplitude 1 and bit 1 to amplitude�1 (the
mapping 0 ! �1 and 1 ! 1 maps bit 0 to amplitude � 1 and bit 1 to amplitude 1 would
give the same result). Also, p(t) is the half-squared pulse shape of unit amplitude
and duration Tb, which is a bit time, and is defined as pðtÞ ¼ 1; 0 � t5Tb=2 and
pðtÞ ¼ 0; Tb=2 � t5Tb. A sample function of this signal sequence is shown in Figure 3.3.

We wish to evaluate the mean value and autocorrelation at different fixed time origins t.
We consider two cases with a common time delay τ ¼ Tb=4 and two time origins t = 0 and
t = 3Tb/4 as follows:

EfX ð0Þg ¼ 0

EfX ð3Tb=4Þg ¼ 0
(3:31)

RX ð0; Tb=4Þ ¼ EfX ð0ÞX ðTb=4Þg ¼ 1

RX ð3Tb=4; TbÞ ¼ EfX ð3Tb=4ÞX ðTbÞg ¼ 0
(3:32)

Since the autocorrelation depends on the time origin the process is not WSS. Let us examine
the mean value and autocorrelation of this random process in general. We have

EfX ðtÞg ¼ E
X1

i¼ 1
di p t � iTbð Þ

( )

¼
X

i

EðdiÞp t � iTbð Þ

¼ EðdiÞ
X

i

p t � iTbð Þ
(3:33)

Tb
0

t

p(t)

Tb0 t

X(t)

2
3Tb

2
Tb

2
Tb

(a) (b)

Figure 3.3 (a) Half-squared pulse shape; (b) sequence of half-squared pulse shapes.
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RX ðt; t þ τÞ ¼ EfX ðtÞX ðt þ τÞg ¼ E
X1

i¼ 1
di p t � iTbð Þ

X1

j¼ 1
dj p t þ τ � jTbð Þ

( )

¼
X

i

X

j

EðdidjÞp t � iTbð Þp t þ τ � jTbð Þ (3:34)

Using the fact that EðdiÞ ¼ 0, and EðdidjÞ ¼ 1; i ¼ j and EðdidjÞ ¼ 0; i 6¼ j , we obtain
EfX ðtÞg ¼ 0, and RX ðt; t þ τÞ ¼P

i
p t � iTbð Þp t þ τ � iTbð Þ is time varying but periodic

with period Tb. Thus, for a fixed time origin, this random process is a WSCS process.
■

Digital signal sequences that are often found in practice are wide-sense cyclostationary
processes in nature. This property implies that the sequence’s mean value and autocorrela-
tion are periodic in T (bit or symbol time). Therefore, these statistical averages possess
Fourier series with a harmonic at frequency 1/T, the data clock rate. This provides a means
for designing timing recovery circuits to extract the data clock signal, for the purpose of
sampling the received signal to obtain a decision sample for bit or symbol detection to
recover the transmitted information. The following theorem shows how a WSS process can
be derived from a WSCS process.

Theorem 3.6 (Conversion of a WSCS process into a WSS process) If X(t) is a WSCS process
with periodic mean value mX ðtÞ and autocorrelation RX ðt; t þ τÞ of period T , then the shifted
process Y ðtÞ ¼ X ðt � ΔÞ, where Δ is a uniform random variable in (0, T) and independent of
X (t), is a WSS process with constant mean and t invariant autocorrelation given by

mY ¼ 1

T

ðT

0
mX ðtÞ dt

RY ðτÞ ¼ 1

T

ðT

0
RX ðt; t þ τÞ dt

(3:35)

Proof With the time delay Δ independent of the process X(t) and mX ðtÞ periodic with
period T, the mean value of Y(t) is given by

mY ¼ EfX ðt � ΔÞg ¼ EfE½X ðt � ΔÞjΔ�g ¼ EfmX ðt � ΔÞg

¼ 1

T

ðT

0
mX ðt � ΔÞ dΔ ¼ 1

T

ðT

0
mX ðtÞ dt

(3:36)

Also, with RX ðt; t þ τÞ periodic with period T, we have

RY ðτÞ ¼ EfX ðt � ΔÞX ðt þ τ � ΔÞg ¼ EfE½X ðt � ΔÞX ðt þ τ � ΔÞjΔ�g
¼ EfRX ðt � Δ; t þ τ � ΔÞg

¼ 1

T

ðT

0
RX ðt � Δ; t þ τ � ΔÞ dΔ ¼ 1

T

ðT

0
RX ðt; t þ τÞ dt

(3:37)

■
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The above theorem enables us to calculate the time averages of the mean value and
autocorrelation of a WSCS process. This will prove to be very useful in dealing with the
power spectral density of the process, which will be covered later. In fact, since the
autocorrelation function of a WSCS process is a function of both t and τ, its power spectral
density is not defined. By doing time-averaging we can convert aWSCS process into aWSS
process so that its power spectral density can be calculated.

So far we have presented examples of WSCS and WSS processes that are of lowpass or
baseband types, such as the antipodal and OOK signal sequences. The waveform that
represents a bit is a lowpass waveform (such as the squared pulse shape) whose amplitude
spectrum (the magnitude of its Fourier transform) centers on the zero frequency. In the
following examples we present two cases of digital signals that are of bandpass or modu
lated types, used to carry information over high frequency channels.

Example 3.4 Sequence of phase shift keying signals
If we multiply an antipodal signal sequence with a carrier cos 2πfct at carrier frequency fcwe

obtain a PSK signal sequence X tð Þ ¼ P1

i¼ 1
di p t � iTbð Þ cos 2πfct. By convention we

assume the carrier frequency is integer multiples of the bit rate 1/Tb. The mean and
autocorrelation of this bandpass process are given by

EfX ðtÞg ¼ E
X1

i¼ 1
di p t � iTbð Þ cos 2πfct

( )

¼
X

i

EðdiÞp t � iTbð Þ cos 2πfct

¼ EðdiÞ
X

i

p t � iTbð Þ cos 2πfct
(3:38)

and

RX ðt; t þ τÞ ¼ EfX ðtÞX ðt þ τÞg

¼ E
X1

i¼ 1
di p t � iTbð Þ cos 2πfct

X1

j¼ 1
dj p t þ τ � jTbð Þ cos 2πfcðt þ τÞ

( )

¼ 1

2

X

i

X

j

EðdidjÞp t � iTbð Þp t þ τ � jTbð Þ ½cos 2πfcτ þ cos ð4πfct þ 2πfcτÞ�

(3:39)

Using the fact that EðdiÞ ¼ 0, and EðdidjÞ ¼ 1; i ¼ j and EðdidjÞ ¼ 0; i 6¼ j, the mean
value of the process is zero, that is, EfX ðtÞg ¼ 0, and the autocorrelation RX ðt; t þ τÞ ¼
1
2

P

i
p t � iTbð Þp t þ τ � iTbð Þ½cos 2πfcτ þ cos ð4πfct þ 2πfcτÞ� is time varying but periodic

with period Tb. Thus for a fixed time origin, this random process is a WSCS process.
To convert this WSCS process into a WSS we need to time-average the autocorrelation
function using the same procedure as used in the case of the antipodal signal sequence.
By introducing a uniform time shift into the data sequence but not the carrier we obtain a
WSS PSK signal sequence. Therefore, the time-averaged autocorrelation function is given
as follows:
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RX ðτÞ ¼ 1

2

Tb � jτj
Tb

� �
cos 2πfcτ ¼ 1

2
1� jτj

Tb

� �
cos 2πfcτ; jτj � Tb

¼ 0; jτj 4 Tb

(3:40)

■

Example 3.5 Sequence of quadrature phase shift keying signals
The QPSK signaling requires two carriers, namely, an in-phase carrier cos 2πfct (I-carrier)
and a quadrature carrier sin 2πfct (Q-carrier). The iid data bits {0,1} are grouped in pairs to
form four distinct symbols [00,01,10,11]. The four symbols are mapped into the amplitude
pair (I, Q) as shown in Table 3.1. Note that the amplitudes I and Q are independent and have
zero mean.

Thus the QPSK signal sequence can be represented as follows:

X tð Þ ¼
X1

i¼ 1
½Iip t � iTsð Þ cos 2πfct � Qip t � iTsð Þ sin 2πfct� (3:41)

where Ts is the symbol time, which is twice the bit time, and the carrier frequency is taken to
be integer multiples of the symbol rate 1/Ts. We observe that the QPSK signal sequence is
the sum of two orthogonal PSK signal sequences at the symbol rate, and that both areWSCS
processes. Thus, the QPSK signal sequence is itself a WSCS process. If we convert this
WCCS process into a WSS process by assuming a uniform time origin over (0, Ts), we
obtain a mean value of zero and a time averaged autocorrelation identical to the sum of the
autocorrelations of two orthogonal PSK signal sequences with Tb replaced by Ts and
amplitude �1 replaced by � 2

p
=2, as follows:

RX ðτÞ ¼ 1

2
1� jτj

Ts

� �
cos 2πfcτ; jτj � Ts

¼ 0; jτj 4 Ts

(3:42)

The QPSK signal sequence can be represented in complex notation as

X ðtÞ ¼ XI ðtÞ cos 2πfct � XQðtÞ sin 2πfct

¼ RefXLðtÞ e j2πfctg (3:43)

Table 3.1 QPSK symbol mapping

Symbol number Input bits I Q

1 1 1 þ 2
p

=2 þ 2
p

=2
2 0 1 2

p
=2 þ 2

p
=2

3 0 0 2
p

=2 2
p

=2
4 1 0 þ 2

p
=2 2

p
=2
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where XL(t) is the complex envelope (equivalent lowpass process, or baseband process) of
the bandpass process X(t) and is given by

XLðtÞ ¼ XI ðtÞ þ jXQðtÞ

XI ðtÞ ¼
X1

i¼ 1
Iip t � iTsð Þ; XQðtÞ ¼

X1

i¼ 1
Qip t � iTsð Þ (3:44)

The autocorrelation of the complex envelope is defined as

RXLðt; t þ τÞ ¼ EfXLðtÞX �
L ðt þ τÞg ¼ RXI ðt; t þ τÞ þ RXQðt; t þ τÞ (3:45)

Because the amplitudes Ii and Qi are iid, the in-phase process XI ðtÞ and the quadrature
process XQðtÞ, both with zero mean, are independent and therefore their cross-correlations
RXIXQðτÞ ¼ EfXI ðtÞXQðt þ τÞg and RXQXI ðτÞ ¼ EfXQðtÞXI ðt þ τÞg are both zero. Note that
the time averaged autocorrelations of XI ðtÞ and XQðtÞ are identical and are given by

RXI ðτÞ ¼ RXQðτÞ ¼ 1

2
1� jτj

Ts

� �
; jτj � Ts

¼ 0; jτj 4 Ts

(3:46)

The time averaged autocorrelation of the complex envelope XLðtÞ is simply the sum of two
time averaged autocorrelations RXI ðτÞ and RXQðτÞ, thus, RXLðτÞ ¼ RXI ðτÞ þ RXQðτÞ. On the
other hand, the time averaged autocorrelation of the bandpass process X(t) is given by
RX ðτÞ ¼ 1

2½RXI ðτÞ þ RXQðτÞ� cos 2πfcτ ¼ RXI ðτÞ cos 2πfcτ ¼ 1
2RXLðτÞ cos 2πfcτ:

■

Definition 3.7 A bandpass signal X ðtÞ ¼ XI ðtÞ cos 2πfct � XQðtÞ sin 2πfct belongs to a
class of jointly wide sense stationary processes if and only if it possesses the following
properties:

1. The in-phase process XI ðtÞ and quadrature process XQðtÞ are jointly WSS and have zero
mean.

2. RXI ð τÞ =RXQð τÞ.
3. RXIXQð τÞ ¼ EfXI ðtÞXQðt þ τÞg ¼ �RXQXI ð τÞ ¼ �EfXQðtÞXI ðt þ τÞg.

The time averaged autocorrelation of the WSS bandpass process X(t) is given as

RX ðτÞ ¼ 1
2½RXI ðτÞ þ RXQðτÞ� cos 2πfcτ � 1

2½RXIXQðτÞ � RXQXI ðτÞ� sin 2πfcτ
¼ RXI ðτÞ cos 2πfcτ � RXIXQðτÞ sin 2πfcτ

(3:47)

If, in addition, the in-phase and quadrature processes are uncorrelated, that is, RXIXQðτÞ ¼
EfXI ðtÞgEfXQðt þ τÞg ¼ 0 for all τ (this also implies that they are orthogonal), then the
time averaged autocorrelation of X(t) is reduced to the following expression:
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RX ðτÞ ¼ RXI ðτÞ cos 2πfcτ ¼
1

2
RXLðτÞ cos 2πfcτ (3:48)

where XLðtÞ ¼ XI ðtÞ þ jXQðtÞ is the equivalent lowpass process of X(t) and its autocorrela-
tion is RXLðτÞ ¼ EfXLðtÞgEfX �

L ðt þ τÞg.
So far we have dealt with ensemble averages (statistical averages) of a random

process. This can be achieved if a large number of sample functions (realizations) of the
random process are available. In practice, we perform measurements on a single sample of a
random process to obtain time averages instead. This results in the estimation of the
ensemble averages if the length of the available sample is very long. In that case, we expect
the sample function to be typical of all realizations of the random process. This property is
referred to as ergodicity. The following theorems establish the criteria for a random process
to be ergodic.

Theorem 3.8 (Slutsky theorem) A WSS process X(t) is said to be mean-ergodic, that is,

1

2T

ðT

T
X ðtÞ dt !

T!1
EfX ðtÞg (3:49)

if and only if

1

T

ðT

0
CX ðτÞ dτ !

T!1
0 (3:50)

■

Theorem 3.9 A WSS process X(t) is said to be autocovariance-ergodic, that is,

1

2T

ðT

T
½X ðtÞ � EfX ðtÞg�½X ðt þ τÞ � EfX ðtÞg�g dt !

T!1
CX ðτÞ (3:51)

if and only if

1

T

ðT

0
CY ðτÞ dτ !

T!1
0 (3:52)

where Y ðtÞ ¼ X ðtÞX ðt þ ΔÞ and CY ðτÞ is its autocovariance, given by

CY ðτÞ ¼ EfX ðtÞX ðt þ ΔÞX ðt þ τÞX ðt þ Δþ τÞg � C2
X ðΔÞ (3:53)

The result also applies to autocorrelation-ergodic processes if we replace the autocovar
iance with autocorrelation. Also the process is variance-ergodic if we set Δ ¼ 0 in the
autocovariance CY ðτÞ.
■
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Example 3.6 Sequence of quadrature phase shift keying signals revisited
The QPSK signal sequence with uniform time origin is a WSS process with zero mean and
autocorrelation (and hence covariance) given in (3.48). So the time average of the autocor-
relation is

1

T

ðT

0
CX ðτÞ dτ ¼ 1

2T

ðT

0
1� jτj

Ts

� �
cos 2πfcτ dτ; jτj � Ts

¼ 0; elsewhere

(3:54)

The integral approaches zero as T ! 1, and when fc is integer multiples of Ts the integral is
zero independent of T. Therefore the sequence is mean-ergodic.
■

Definition 3.10 The normalized autocovariance of a WSS process is defined as

ρX ðτÞ ¼
CX ðτÞ
CX ð0Þ (3:55)

We note that as the delay time τ increases the process decorrelates, that is, it loses its
correlation. Thus, it makes sense to define a delay spread to reflect this characteristic of the
process.

Definition 3.11 The delay spread τd of a WSS process is the delay time beyond which the
normalized autocovariance remains below 0.1, that is,

jρX ðτÞj � 0:1 for all τ4τd (3:56)

The normalized autocovariance of the QPSK signal sequence with uniform origin is a
scaled version of its time-averaged autocorrelation. The delay spread is τd � 0:9Ts. By
observation we see that the autocorrelation is zero for jτj 4 Ts, that is, the sequence looses
its correlation after one symbol time. Hence the delay spread gives a fairly accurate
prediction of the decorrelation. We note that the inequality (3.56) is purely empirical and
can be adjusted to fit any decorrelation requirement.

Power spectral density

In the previous chapter we established a relation between the autocorrelation of a determin-
istic signal and its power spectral density, that is, they form a Fourier transform pair. This
same relation holds for a WSS process and for convenience we restate it here.

Definition 3.12 The power spectral density SX ðf Þ and the autocorrelation RX ðτÞ of a WSS
process X(t) form a Fourier transform pair known as the Einstein–Wiener–Khinchine relation:

SX ðf Þ ¼
ð1

1
RX ðτÞ e j2πf τ dτ ¼ F½RX ðτÞ� (3:57)
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RX ðτÞ ¼
ð1

1
SX ðf Þ ej2πf τ df ¼ F 1½SX ðf Þ� (3:58)

Theorem 3.13 (Einstein–Wiener–Khinchine theorem) The power spectral density of a WSS
process is given by

SX ðf Þ ¼ lim
T!1

1

2T
E jF½XT ðtÞ�j2
n o

¼
ð1

1
RX ðτÞ e j2πf τ dτ (3:59)

if the following condition holds:

ð1

1
jτRX ðτÞj dτ5 1 (3:60)

where XT ðtÞ is a 2T-truncation of a single sample of the random process X(t) and F½XT ðtÞ� is
its Fourier transform.

Proof We consider the truncated version of a sample function for the reason that it is not an
energy signal and may not have a Fourier transform. We have

F½XT ðtÞ� ¼
ð1

1
XT ðtÞ e j2πft dt ¼

ðT

T
X ðtÞ e j2πft dt (3:61)

Therefore,

1

2T
E jF½XT ðtÞ�j2
n o

¼ 1

2T
E
ðT

T
X ðt1Þ e j2πft1 dt1

ðT

T
X ðt2Þej2πft2 dt2

� �

¼ 1

2T

ðT

T

ðT

T
E X ðt1ÞX ðt2Þf ge j2πf ðt1 t2Þ dt1 dt2

¼ 1

2T

ðT

T

ðT

T
RX ðt1 � t2Þ e j2πf ðt1 t2Þ dt1 dt2

(3:62)

Making the change of integration variable as τ ¼ t1 � t2, we have

1

2T
E jF½XT ðtÞ�j2
n o

¼ 1

2T

ðT

T

ðT t2

T t2

RX ðτÞ e j2πf τdτ dt2

¼ 1

2T

ð0

2T

ðT

T τ
RX ðτÞ e j2πf τ dt2 dτ þ 1

2T

ð2T

0

ðT τ

T
RX ðτÞ e j2πf τ dt2 dτ

¼ 1

2T

ð0

2T
ð2T þ τÞRX ðτÞe j2πf τ dτ þ 1

2T

ð2T

0
ð2T � τÞRX ðτÞe j2πf τ dτ

¼ 1

2T

ð2T

2T
ð2T � jτjÞRX ðτÞe j2πf τ dτ ¼

ð2T

2T
1� jτj

2T

� �
RX ðτÞe j2πf τ dτ

(3:63)
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In the limit as T ! 1 the periodogram E jF½XT ðtÞ�j2
n o

=2T becomes the power spectral
density.
■

The periodogram is a nonnegative function for all frequencies, consequently, the power
spectral density is also a nonnegative function for all frequencies, that is,

SX ðf Þ � 0 for all f (3:64)

Furthermore, since the autocorrelation is real and even, the power spectral density is an even
function, hence

SX ðf Þ ¼ SX ð�f Þ (3:65)

The power of the WSS process is given by

P ¼ EfX 2ðtÞg ¼ RX ð0Þ ¼
ð1

1
SX ðf Þ df (3:66)

Example 3.7 Power spectral densities of digital signal sequences with squared pulse shape
The power spectral density of a digital signal sequence of uniform time origin is the Fourier
transform of its autocorrelations. We have added the amplitude�A to the original sequence,
which also has the amplitude �1 to make the results more general.

Antipodal: SX ðf Þ ¼ A2Tb
sin πfTb
πfTb

� �2

(3:67)

OOK: SX ðf Þ ¼ 1

4
A2Tb

sin πfTb
πfTb

� �2

þ 1

4
A2δðf Þ (3:68)

PSK: SX fð Þ ¼ A2Tb
4

sin π f � fcð ÞTb
π f � fcð ÞTb

� �2

þ sin π f þ fcð ÞTb
π f þ fcð ÞTb

� �2
" #

(3:69)

QPSK: SX fð Þ ¼ A2Ts
4

sin π f � fcð ÞTs
π f � fcð ÞTs

� �2

þ sin π f þ fcð ÞTs
π f þ fcð ÞTs

� �2
" #

(3:70)

Jointly WSS process with uncorrelated in-phase XI ðtÞ and quadrature XQðtÞ data
sequences and complex envelope, XLðtÞ ¼ XI ðtÞ þ jXQðtÞ:

SX ðf Þ ¼ 1

2
SXI ðf � fcÞ þ SXI ðf þ fcÞ½ � ¼ 1

4
SXLðf � fcÞ þ SXLðf þ fcÞ½ � (3:71)
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Figure 3.4 shows the power spectral densities of the antipodal, OOK, PSK, and QPSK
signals.
■

Linear filters are used in communication systems for signal processing purposes,
such as limiting noise within a prescribed bandwidth, shaping a signal spectrum to meet
the FCC requirement, rejecting the out-of-band interference, and so forth. Therefore,
it is necessary to know the response of linear filters to random processes. We will
consider a linear time-variant filter with impulse response h(t) and corresponding Fourier
transform H(f ).

Theorem 3.14 Let the input X(t) of a linear time invariant filter with impulse response h(t)
and corresponding Fourier transform H(f ) be a WSS process with power spectral density
SX ðf Þ and autocorrelation RX ðτÞ. The output Y(t) of the filter is also a WSS process with
power spectral density SY ðf Þ and autocorrelation RY ðτÞ given by

SY ðf Þ ¼ jHðf Þj2SX ðf Þ (3:72)

RY ðτÞ ¼ hðτÞ � h�ð�τÞ � RX ðτÞ (3:73)

SX( f )

f

(a)

2
Tb

− 1
Tb

− 1
Tb

2
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SX( f )

(b)

2
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− 1
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− 1
Tb

2
Tb

0
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1fc Ts

−−fc 1fc Ts
+fc

Figure 3.4 Power spectral densities of various random processes: (a) antipodal; (b) OOK; (c) PSK; (d) QPSK.
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Proof Let XT ðtÞ be a 2T-truncation of a single sample of the random process X(t) and
F½XT ðtÞ� be its Fourier transform. Also let YT ðtÞ be the response of the filter to the input
XT ðtÞ. We have

1

2T
E jF½YT ðtÞ�j2
n o

¼ 1

2T
E jHðf ÞF½XT ðtÞ�j2
n o

¼ jHðf Þj2 1

2T
E jF½XT ðtÞ�j2
n o� � (3:74)

Taking the limit as T ! 1 we obtain

SY ðf Þ ¼ lim
T!1

1

2T
E jF½YT ðtÞ�j2
n o

¼ jHðf Þj2 lim
T!1

1

2T
E jF½XT ðtÞ�j2
n o

¼ jHðf Þj2SX ðf Þ
(3:75)

We also have

SY ðf Þ ¼ Hðf ÞH�ðf ÞSX ðf Þ (3:76)

Taking the inverse Fourier transform of SY ðf Þ and realizing that the inverse Fourier trans-
form of H�ðf Þ is h�ð�τÞ we obtain

RY ðτÞ ¼ hðτÞ � h�ð�τÞ � RX ðτÞ (3:77)
■

Example 3.8 Power spectral density of a digital signal sequence with arbitrary pulse shape
In Example 3.7 we calculated the power spectral densities of digital signal sequences
employing a squared pulse shape. This particular pulse shape yields a ðsin x=xÞ2 power
spectral density that requires an infinite bandwidth, although about 90% of the sequence
power is contained within the null-to-null bandwidth. In practice, other pulse shapes that
yield finite bandwidth may be used such as the raised cosine pulse shape. We wish to derive
the general expression for power spectral density for an arbitrary pulse shape in this

example. We consider a WSCS digital signal sequence X tð Þ ¼ P1

i¼ 1
di p t � iTð Þ and con-

vert it into a WSS process by assuming a uniform time origin over (0, T), where T is a bit time
or a symbol time depending on the type of digital signal. The data di can be real or complex. If
it is complex, the process represents the envelope of another bandpass process. The pulse
shape p(t) is assumed to have a Fourier transform P(f ). The autocorrelation of the sequence is

RX ðt; t þ τÞ ¼ EfX �ðtÞX ðt þ τÞg ¼ E
X1

i¼ 1
d�i p

� t � iTð Þ
X1

j¼ 1
dj p t þ τ � jTð Þ

( )

¼
X

i

X

j

Eðd�i djÞE½p� t � iTð Þp t þ τ � jTð Þ� (3:78)
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The term Eðdid�j Þ is the autocorrelation of the data and is denoted as Rdði� jÞ. Hence

RX ðt; t þ τÞ ¼ 1

T

X

i

X

j

Rdði� jÞ
ðT

0
p� t � iTð Þp t þ τ � jTð Þ dt

¼ 1

T

X

m

RdðmÞ
X

i

ð iTþT

iT
p� λð Þp λþ τ � mTð Þ dλ

¼ 1

T

X

m

RdðmÞ
ð1

1
p� λð Þp λþ τ � mTð Þ dλ

¼ 1

T

X

m

RdðmÞ½pðτ � mTÞ � p�ð�τÞ�

¼ RX ðτÞ

(3:79)

Taking the Fourier transform of the autocorrelation we obtain

SX ðf Þ ¼ 1

T

X

m

RdðmÞ½Pðf Þ e j2πmfTP�ðf Þ�

¼ 1

T
jPðf Þ j2

X

m

RdðmÞ e j2πmfT

¼ 1

T
jPðf Þ j2Sdðej2πfT Þ

(3:80)

The term Sdðej2πfT Þ ¼
P

m
RdðmÞ e j2πmfT ¼ DTFT½RdðmÞ� is the discrete time Fourier

transform of the autocorrelation of the data sequence.
White data
The data sequence fdig is said to be white if its autocorrelation RdðmÞ and its discrete-time
Fourier transform Sdðej2πfT Þ are given by

Sdðej2πfT Þ ¼ 1; RdðmÞ ¼ 1;m ¼ 0
0;m 6¼ 0

�
(3:81)

Thus, for white data that is encountered in practice, the power spectral density is simply
jPðf Þ j2=T . In the case of the antipodal signal sequence with squared pulse shape of duration
T, its Fourier transform is given by Pðf Þ ¼ Tðsin πfT=πfTÞ and we get the previously
derived result.
■

Definition 3.15 The coherence bandwidth Bc of a WSS lowpass process is defined as one-
half the inverse of its delay spread τd:

Lowpass: Bc ¼ 1

2τd
(3:82)

Furthermore, the coherence bandwidth of a WSS bandpass process is the inverse of the
delay spread of its in-phase or quadrature process:
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Bandpass: Bc ¼ 1

τd
(3:83)

The coherence bandwidth of a WSS antipodal signal sequence is Bc ¼ 1=2τd �
1=ð2	 0:9TbÞ ¼ 0:55=Tb. This is about 55% of its first null bandwidth.

The coherence bandwidth of a WSS QPSK signal sequence is Bc ¼ 1=τd �
1=0:9Ts ¼ 1:11=Ts. This is about 55% of the null to null bandwidth.

In communications the channel noise is composed of thermal noise generated by elec-
tronics components in the receiver and cosmic noise from the sky. These noise processes
have a constant spectrum that extends to very high frequencies beyond the frequency band
of all communication signals. Therefore, they are commonly modeled as noise with ideal
constant power spectral densities that extend to infinite frequency.

Definition 3.16 The WSS process n(t) is called white noise if it has the following power
spectral density and autocorrelation:

Snðf Þ ¼ N0

2
RnðτÞ ¼ N0

2
δðτÞ (3:84)

where N0 is a constant to be discussed in Chapter 5.
The term white noise is employed in analogy with white light, which is light that contains

all frequencies.

More properties of WSS bandpass processes

In the following discussion we present some more properties of a WSS process that are
helpful in the analysis of random signals, especially noise. As usual, we consider the jointly
WSS bandpass process

X ðtÞ ¼ XI ðtÞ cos 2πfct � XQðtÞ sin 2πfct (3:85)

By direct substitution, the lowpass in-phase and quadrature processes can be expressed in
terms of the bandpass process and its Hilbert transform X̂ ðtÞ ¼ 1=πt � X ðtÞ as follows [1,2]:

XI ðtÞ ¼ X ðtÞ cos 2πfct þ X̂ ðtÞ sin 2πfct

XQðtÞ ¼ X̂ ðtÞ cos 2πfct � X ðtÞ sin 2πfct
(3:86)

Furthermore, it can be shown that the autocorrelations of both XI ðtÞ and XQðtÞ are given by
RXI ð τÞ ¼ RXQð τÞ ¼ RX ðτÞ cos 2πfcτ þ R̂X ðτÞ sin 2πfcτ (3:87)

where R̂X ðtÞ ¼ 1=πt � RX ðtÞ is the Hilbert transform of RX ðτÞ. In addition we get

RXIXQð τÞ ¼ �RXQXI ð τÞ ¼ RX ðτÞ sin 2πfcτ � R̂X ðτÞ cos 2πfcτ (3:88)

Note that the Fourier transform of R̂X ðtÞ ¼ 1=πt � RX ðtÞ is �jsgnðf ÞSX ðf Þ. Therefore,
taking the Fourier transform of both sides of (3.87) we obtain

SXI ðf Þ ¼ SXQðf Þ ¼
1

2
½1� sgnðf � fc� SX ðf � fcÞ þ 1

2
½1þ sgnðf þ fcÞ� SX ðf þ fcÞ (3:89)

98 Random signal analysis



The Fourier transforms of the crosscorrelations RXIXQð τÞ and RXQXI ð τÞ are referred to as their
cross spectral densities. From (3.88) we have

SXIXQðf Þ ¼ �SXQXI ðf Þ ¼ � j
2
½1� sgnðf � fcÞ� SX ðf � fcÞ þ j

2
½1þ sgnðf þ fcÞ� SX ðf þ fcÞ

(3:90)

Bandlimited WSS bandpass processes

When the power spectral density of the bandpass process X(t) is strictly limited to a
frequency band fc � B � jf j � fc þ B, where fc 4B, then the power spectral densities
of both in-phase and quadrature processes simplify to the following expression

SXI ðf Þ ¼ SXQðf Þ ¼ SX ðf � fcÞ þ SX ðf þ fcÞ; jf j � B

¼ 0; jf j 4 B
(3:91)

In addition the cross-spectral densities of the in-phase and quadrature processes become

SXIXQðf Þ ¼ �SXQXI ðf Þ ¼ j½SX ðf þ fcÞ � SX ðf � fcÞ�; jf j � B

¼ 0; jf j 4 B
(3:92)

When the power spectral density of the WSS bandpass process is symmetric around the
carrier frequency �fc then

SX ðf þ fcÞ ¼ SX ðf � fcÞ; jf j � B (3:93)

Consequently,

SXIXQðf Þ ¼ �SXQXI ðf Þ ¼ 0 ! RXIXQð τÞ ¼ �RXQXI ð τÞ ¼ 0 (3:94)

And the in-phase and quadrature processes are uncorrelated. Figure 3.5 illustrates the power
spectral densities of strictly bandlimited white noise n(t).

N0

–B  0 B

SnI
( f ) = SnQ

( f )

(b)

Sn(f)

f
−fc

–fc + B

2

N0

(a)

–fc – B fc – B fc + B−fc

Figure 3.5 (a) Power spectral density of bandlimited white noise process. (b) Power spectral density of in-phase and quadrature
noise processes.
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3.4 Gaussian process

The Gaussian process plays an important role in communication theory. Noise in a commu-
nication channel is modeled as a Gaussian process and the detection theory of signals in
noise is developed based on this assumption, and can be accurately verified by measure-
ments. In this section we discuss some basic properties of the Gaussian process and its
applications to communication theory

Definition 3.17 The Gaussian process X(t) is characterized by a set of n jointly Gaussian
random variables X1 ¼ X ðt1Þ; . . . ;Xn ¼ X ðtnÞ for all n and tn. The joint density function of
the random variables is given by

fXðxÞ ¼ e ðx XÞ tK 1 ðx XÞ=2

ð2πÞn=2jKj1=2
(3:95)

where X ¼ ðX1 X2 . . . XnÞt, X is the mean of X, and K is the n	 n covariance matrix
defined as K ¼ ½CX ðti; tjÞ�, where CX ðti; tjÞ ¼ EfðXi � XiÞðXj � XjÞg. The symbol jKj
denotes the determinant of K as usual.

Example 3.9 Independent and identically distributed Gaussian random variables
Consider a discrete-time Gaussian sequence of n iid random variables of mean m
and variance σ2. The covariance matrix is K ¼ σ2In and In is the n	 n identity
matrix. The corresponding density function is given by the product of n Gaussian density
functions,

fXðxÞ ¼ 1

ð 2π
p

σÞn e
Pn

i 1

ðxi mÞ2=2σ2
(3:96)

We note that if the n Gaussian random variables are uncorrelated, that is,
CX ðti; tjÞ ¼ 0; i 6¼ j, then they are automatically independent.
■

Linear transformation

In a communication system Gaussian noise is processed by linear filters of various kinds
such as the matched filter and integrator for signal processing. Linear filtering does not
change the Gaussian nature of noise as we will subsequently show. The following theorem
shows that a linear transformation of a sequence of jointly Gaussian random variables
preserves the Gaussian property.

Theorem 3.18 The linear transformation of a jointly Gaussian vector is another jointly
Gaussian vector.
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Proof Consider a jointly Gaussian vector X ¼ ðX1 X2 . . . XnÞt with mean X and cova-
riance matrix K. We now consider the following linear transformation:

Y ¼ AX (3:97)

where Y is the linear transformation of X, and A is an n	 n nonsingular matrix. We wish to
find the density function of the random vector Y, which can be calculated by the following
general expression:

fYðyÞ ¼ fXðxÞ=jJðy; xÞj (3:98)

The parameter J is the Jacobian of the transformation and is given by
Jðy; xÞ ¼ j∂y=∂xj ¼ j½∂yi=∂xj�j . For the linear transformation we get Jðy; xÞ ¼ jAj.
Substituting X ¼ A 1Y we obtain the density of Y:

fYðyÞ ¼ e ðA 1y A 1YÞ tK 1 ðA 1y A 1YÞ=2

ð2πÞn=2jKj1=2jAj

¼ e ðy YÞ tðA 1Þ tK 1A 1 ðy YÞ=2

ð2πÞn=2jKj1=2jAj

(3:99)

which is a jointly Gaussian density function. By integrating on (n� 1) variables yi from�1
to1 the remaining variable is shown to be a Gaussian density function. Thus, we conclude
that a linear combination of n jointly Gaussian random variables is a new Gaussian random
variable.
■

Example 3.10 Integral of a Gaussian process
The integral of a Gaussian process occurs in signal detection in noise. Therefore, it is
necessary to examine the output Y(t) of an integrator when the input process X(t) is Gaussian
and characterized by a joint density function. We have

Y ðtÞ ¼
ðt

0
X ðτÞ dτ (3:100)

This integral can be approximated by a sum of n terms as

Y ðtÞ �
Xn

j¼1

X ðτjðtÞÞΔτjðtÞ (3:101)

which converges to the exact value as n ! 1 and ΔτjðtÞ ! 0. This is a linear combination
of n jointly Gaussian random variables. Hence, for a given t, Y(t) is a Gaussian random
variable.
■
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Example 3.11 Response of a linear filter to a Gaussian process
The integrator treated in the above example is the special case of a linear filter. We wish to
generalize the above result to any linear filter with impulse response h(t). Again, considering
a Gaussian process X(t) at the input of the filter, the output process Y(t) is given by the
convolution operation as

Y ðtÞ ¼
ð1

1
hðt � τÞ xðτÞ dτ (3:102)

We can approximate this integral by a sum of n terms as

Y ðtÞ �
Xn

j¼1

hðt � τjÞ xðτjÞΔτj (3:103)

which converges to the exact value as n ! 1 and Δτj ! 0. This is a linear combination
of n jointly Gaussian random variables. This holds for any t, hence Y(t) is a Gaussian
process.
■

The above examples show that the Gaussian process is closed under a linear operation.
That is, any linear operation on a Gaussian process produces another Gaussian process.
This forms the basic foundation for detection of random signals in Gaussian noise that are
processed by a linear system. Only the impulse response of the system, the mean, and
autocorrelation of the input process are required to completely characterize the density
function of the output process and hence the calculation of the probability of detection or
error of any output sample.

Theorem 3.19 The response of a linear system to an input Gaussian process is also a
Gaussian process.
■

Sampling

The sampling theorem plays an important role in the processing of deterministic signals. In
the following discussion we show that the same sampling theorem can be applied to a strictly
bandlimited white Gaussian process to produce independent Gaussian samples. This pro-
vides an alternative means of analyzing a continuous-time signal as a discrete-time sequence
and the derivation of the information capacity of a strictly bandlimited white Gaussian
channel.

Theorem 3.20 (Sampling Theorem) The samples of a strictly bandlimited zero mean
white Gaussian process taken at the Nyquist rate are independent Gaussian random
variables.

102 Random signal analysis



Proof Let us consider the white noise process n(t) with the following power spectral
density

Snðf Þ ¼ N0

2
; jf j � B

¼ 0; otherwise
(3:104)

The corresponding autocorrelation is the inverse Fourier transform of the power spectral
density and is given as

RnðτÞ ¼ N0B
sin 2πBτ
2πBτ

� �
(3:105)

Consider two Nyquist samples taken at time t1 ¼ iT and t2 ¼ jT for integers i and j, where
T ¼ 1=2B. Since the mean of the process is zero, the autocovariance is the same as the
autocorrelation, hence

Cnðt1; t2Þ ¼ Rnðt1; t2Þ ¼ Rn½ðj� iÞT � ¼ N0B
sin 2πBðj� iÞT
2πBðj� iÞT

� �
(3:106)

which is zero when i 6¼ j for any i and j. This proves that the Gaussian samples are
uncorrelated and hence independent.
■

Sufficient statistics for signal processing in white Gaussian noise

In the following discussion we consider the case of signal processing in white Gaussian
noise. We are particularly interested in obtaining the statistics of a transmitted signal that has
been contaminated by noise for the purpose of detection. The detection of signal in noise
will be studied in Chapter 7. Such a communication channel is often referred to as an
additive white Gaussian noise (AWGN) channel. Suppose we consider a set of M digital
signals siðtÞ; i ¼ 1; 2; . . . ;M , as described in Chapter 2, and that each of them can be
represented by a linear combination of orthonormal basis functions xkðtÞ ; k ¼ 1; 2; . . . ; L,
via the Gram–Schmidt orthogonalizing procedure. We have

siðtÞ ¼
XL

k¼1

sikxkðtÞ (3:107)

where, for each i and k,

sik ¼
ð1

1
siðtÞxkðtÞ dt (3:108)

The coefficients sik contain all the information about the transmitted signal siðtÞ. Now
consider an AWGN channel with noise n(t) having power spectral density N0=2. There is
no constraint on the bandwidth of noise so that its autocorrelation is RnðτÞ ¼ ðN0=2Þ δðτÞ.
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The signal plus noise at the receiver input is modeled as the sum of a transmitted signal siðtÞ
and noise n(t) as

X ðtÞ ¼ siðtÞ þ nðtÞ (3:109)

How do we extract the information in the transmitted signal? By using (3.108) we simply
multiply the received signal X(t) with the known orthonormal basis functions
x1ðtÞ; . . . ; xLðtÞ to obtain the set of L samples

Xk ¼ sik þ Nk k ¼ 1; 2; . . . ; L (3:110)

where the noise samples Nk are the projection of noise n(t) onto the orthonormal basis
functions and are given by

Nk ¼
ð1

1
nðtÞxkðtÞ dt k ¼ 1; 2; . . . ; L (3:111)

Note that these noise samples are zero mean Gaussian random variables with covariance
given by

CovðNjNkÞ ¼ EðNjNkÞ

¼ E
ð1

1

ð1

1
nðtÞnðτÞxjðtÞxkðτÞ dt dτ

	 

¼
ð1

1

ð1

1
E½nðtÞnðτÞ�xjðtÞxkðτÞ dt dτ

¼
ð1

1

ð1

1
Rnðt � τÞxjðtÞxkðτÞ dt dτ ¼

ð1

1

ð1

1

N0

2
δðt � τÞ xjðtÞxkðτÞ dt dτ

¼ N0

2

ð1

1
xjðtÞxkðtÞ dt

¼
N0=2; j ¼ k

0; j 6¼ k

(

(3:112)

Thus the noise samples are uncorrelated for j 6¼ k and since they are Gaussian they are also
independent.

The received signal can be represented by

X ðtÞ ¼
XL

k¼1

XkxkðtÞ þ eðtÞ (3:113)

where the process e(t) is defined by

e tð Þ ¼ X tð Þ �
X

k

Xkxk tð Þ ¼ si tð Þ þ n tð Þ �
X

k

sikxk tð Þ �
X

k

Nkxk tð Þ

¼ n tð Þ �
X

k

Nkxk tð Þ (3:114)

This process depends only on the noise, not on the signal, and it is also a zero mean Gaussian
process. Furthermore, the following derivation shows that the Gaussian process e(t) is
independent of the received samples Xk ¼ sik þ Nk ; k ¼ 1; 2; . . . ; L and hence irrelevant
in the detection of X(t):
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E½eðtÞXj� ¼ E ½nðtÞ �
X

k

NkxkðtÞ�ðsij þ NjÞ
( )

¼ E nðtÞ
ð1

1
nðτÞxjðτÞ dτ

� �
�
X

k

EðNkNjÞxkðtÞ

¼ N0

2
xjðtÞ � N0

2
xjðtÞ ¼ 0

(3:115)

Thus only L samples Xk ¼ sik þ Nk ; k ¼ 1; 2; . . . ; L are needed to completely characterize
the received signal X(t). They represent sufficient statistics for any decision making on X(t).
Note that the joint density of the Xks is the product of L Gaussian density functions, each of
mean sik and variance N0=2. The AWGN channel is thus a memoryless channel.

When the Gaussian noise is non-white, that is, it has an arbitrary power spectral density,
then the noise samples are no longer independent. For applications that require an inde-
pendent set of random variables another kind of series expansion called the Karhunen–
Loeve expansion can be employed.

Karhunen–Loeve expansion

Again we consider a zero mean Gaussian noise process n(t) with autocorrelation RnðτÞ that
accompanies a transmitted signal siðtÞ; 0 � t5T , for arbitrary T. The following theorem
verifies the existence of a set of orthonormal eigenfunctions fkðtÞ of the noise autocorre-
lation. This set represents the noise process n(t) as a series expansion with coefficients nk
forming a set of independent Gaussian random variables with zero mean and variance equal
to the eigenvalues of the noise autocorrelation function. In other words we have

nðtÞ ¼
X1

k¼ 1
nkfkðtÞ (3:116)

where, for all values of i and j,

ðT

0
fiðtÞfjðtÞ dt ¼ 1 i ¼ j

0 i 6¼ j

�
(3:117)

such that the series coefficients are uncorrelated, that is,

EðninjÞ ¼ 0 i 6¼ j (3:118)

where

nk ¼
ðT

0
fkðtÞnðtÞ dt (3:119)

Theorem 3.21 (Karhunen–Loeve theorem) Let fkðtÞ and λk represent the orthonormal
eigenfunctions and eigenvalues, respectively, of the integral equation
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ðT

0
Rnðt � τÞfkðτÞ dτ ¼ λkfkðtÞ (3:120)

where RnðτÞ is the autocorrelation of the zero mean random process n(t). Then the

expansion coefficients nk of the series nðtÞ ¼ P1

k¼ 1
nkfkðtÞ are uncorrelated and have

variances λk ¼ Eðn2kÞ. Furthermore, if n(t) is Gaussian, then the coefficients nk are inde
pendent Gaussian random variables.

Proof We establish the following relation to show that the series coefficients are uncorrelated:

EðninjÞ ¼ E

ðT

0
nðtÞfiðtÞ dt

ðT

0
nðτÞfjðτÞ dτ

	 


¼
ðT

0
fiðtÞ

ðT

0
E½nðtÞnðτÞ�fjðτÞ dτdt

¼
ðT

0
fiðtÞ

ðT

0
Rnðt � τÞfjðτÞ dτdt

¼ λj

ðT

0
fiðtÞ fjðtÞ dt

¼ λj i ¼ j

0 i 6¼ j

�

(3:121)

Since the random variables nk are both Gaussian and uncorrelated, they are also independent.
■

The eigenfunctions fkðtÞ form a complete set of orthonormal basis functions for the finite-
energy signals siðtÞ; 0 � t5T , when the noise autocorrelation is a positive-definite func-
tion. The signals can then be represented by the series

siðtÞ ¼
X

k

sikfkðtÞ i ¼ 1; 2; . . . ;M (3:122)

where

sik ¼
ð1

1
siðtÞfkðtÞ dt (3:123)

The receiver for this type of channel will not be practical since the samples of noise and
signal form a countable set and are hence infinitely dimensional. In the next section we
discuss a method to transform non-white noise into white noise so that the result of the
previous section applies.

Whitening filter

The power spectral density of noise at the receiver is shaped by the receiver transfer function
Hðf Þwhose corresponding impulse response is h(t). For example, if the input noise is white
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and has power spectral density N0=2, then as the noise propagates through the receiver the
noise at the detector ends up with a new power spectral density Snðf Þ ¼ jHðf Þj2N0=2 and
becomes non-white. In another scenario, the noise at the input of the receiver could already
be non-white with arbitrary power spectral density Snðf Þ, and the receiver is wide-band such
that its transfer function can be considered constant over a bandwidth of the signal. In either
case we can whiten the input noise by using a filter whose transfer function satisfies
jGðf Þj ¼ 1= Snðf Þ

p
. Such a filter reproduces white noise at its output. In the first scenario

the signals yiðtÞ; i ¼ 1; 2; . . . ;M , at the output of the whitening filter are
yiðtÞ ¼ siðtÞ � hðtÞ � gðtÞ, where siðtÞ; i ¼ 1; 2; . . . ;M , are the original transmitted signals,
and g(t) is the inverse Fourier transform of G(f ). In the second scenario the output of the
whitening filter is yiðtÞ ¼ siðtÞ � gðtÞ.

Example 3.12 Spectral factorization
When the power spectral density of non-white noise is rational, that is, the ratio of two
polynomials in f 2, we can design a stable and causal filter G(f ) called a minimum phase
filter from Snðf Þ via spectral factorization. Let us consider the following non-white noise
rational power spectral density:

Snðf Þ ¼ Aðf 2Þ
Bðf 2Þ (3:124)

Let s ¼ j2πf to obtain the transfer function SnðsÞ as follows:

SnðsÞ ¼ Að�s2Þ
Bð�s2Þ (3:125)

The roots of Sn(s) which are either zeros or poles must be either real or complex conjugate.
Furthermore, if zk is a root, then �zk is also a root. Therefore, we can factor Sn(s) into
products of polynomials with roots in the left half s plane ðRe s50Þ and roots in the right
half s plane ðRe s40Þ:

SnðsÞ ¼ CðsÞCð�sÞ
DðsÞDð�sÞ (3:126)

The minimum-phase factorG(s) is the ratio of two polynomials formed with roots in the left
half s plane:

GðsÞ ¼ CðsÞ
DðsÞ (3:127)

Consider the following rational noise power spectral density:

Snðf Þ ¼ a

b2 þ ð2πf Þ2 (3:128)

We have

SnðsÞ ¼ a

b2 � s2
¼ a

ðbþ sÞðb� sÞ (3:129)
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Thus the whitening filter has the following transfer function:

GðsÞ ¼ a
p
bþ s

! Gðf Þ ¼ a
p

bþ j2πf
(3:130)

■

We now conclude the study of Gaussian processes with the following important theorem.

The central limit theorem

Consider n independent continuous random variables Xi with means Xi and variances σ2i .
We form their sum X ¼Pn

i¼1 Xi with mean X ¼Pn
i¼1 Xi and variance σ2 ¼

Pn
i¼1 σ

2
i . The

central limit theorem states that as n increases the probability density function of X
approaches a Gaussian density function:

fX ðxÞ �!n!1 1

2π
p

σ
e ðx X Þ2=2σ2 (3:131)

3.5 Gaussian-derived processes

Besides the Gaussian process, communication theorists often encounter other important
random processes that influence their design. These random processes may arise from the
method of signal detection in Gaussian noise or from the type of channel through which the
signal passes, such as a multipath fading channel in mobile communication systems. Two
well-known Gaussian-derived processes are the Rayleigh and Rice processes. They play an
important role in the analysis of communication systems that focus on the detection of the
signal envelopes of digital waveforms, such as orthogonal signals (FSK, Walsh, OOK).

Rayleigh and Rice processes

Let us consider a simple example of detecting the envelope of a bandpass OOK signal
sðtÞ ¼ ApðtÞ cosð2πfct þ θÞ (bit 0) and sðtÞ ¼ 0 (bit 1), where p(t) is the squared pulse shape
of unit amplitude and bit time Tb. The zero mean Gaussian noise is a WSS bandpass process
represented by nðtÞ ¼ nI ðtÞ cos 2πfct � nQðtÞ sin 2πfct . Practical communication systems
are bandlimited so we assume n(t) is also bandlimited. When bit 1 is transmitted the signal is
not present and the received signal is just noise n(t). When bit 0 is transmitted the signal is
present and the received signal is the sum of both signal and noise. In the first case the
receiver detects the envelope of noise, and in the second case the envelope of the signal plus
noise. Let us consider the first case where we write the bandpass noise n(t) via the envelope-
phase representation

nðtÞ ¼ RðtÞ cos½2πfct þCðtÞ� (3:132)
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The envelope R(t) and phaseCðtÞ of the noise process are related to the in phase noise nI ðtÞ
and quadrature noise nQðtÞ as follows:

RðtÞ ¼ ½n2I ðtÞ þ n2QðtÞ�1=2 CðtÞ ¼ tan 1 nQðtÞ
nI ðtÞ

� �
(3:133)

nI ðtÞ ¼ RðtÞ cosCðtÞ nQðtÞ ¼ RðtÞ sinCðtÞ (3:134)

Both in-phase and quadrature noise components of n(t) are uncorrelated. Since they
are Gaussian processes, they are also independent. Let us consider a sample of a realiza-
tion of the envelope R(t) at a fixed time t. We represent this sample via the random
variable R. Similarly, we obtain a sample of the phase process at time t, which can be
represented by the random variable C. At the fixed time t, we also obtain the in-phase and
quadrature noise samples nI and nQ, which are independent zero mean Gaussian random
variables of the same variance as the variance of n(t), that is, VarðnI Þ ¼ VarðnQÞ ¼
VarðnÞ ¼ Eðn2Þ ¼ σ2.

Applying the theory of transformation of random variables we obtain the probability
density functions of both random variables R and C:

fRðrÞ ¼ r

σ2
e r2=2σ2 r � 0 (3:135)

fCðψÞ ¼ 1

2π
0 � ψ � 2π (3:136)

Note that the probability density function of R is independent ofC, hence, these two random
variables are independent when they are taken at the same time. This does not mean that the
two random processes R(t) and CðtÞ are independent. The density function of the noise
envelope is the well-known Rayleigh density function. The density function of the phase is
the uniform density function. Note that EðR2Þ ¼ 2σ2.

Example 3.13 Complex envelope representation of noise
We can use the complex envelope representation of the noise n(t) to get its envelope and
phase. We have

nðtÞ ¼ RefnLðtÞe j2πfctg (3:137)

where the complex envelope is nLðtÞ ¼ nI ðtÞ þ jnQðtÞ. The envelope is simply the absolute
value of nLðtÞ, which is RðtÞ ¼ ½n2I ðtÞ þ n2QðtÞ�1=2:
■

Now let us return to the second case where we attempt to detect the envelope of the signal
plus noise. The received signal for bit 0 plus noise can be written as

X ðtÞ ¼ A cosð2πfct þ θÞ þ nðtÞ
¼ ½A cos θ þ nI ðtÞ� cos 2πfct � ½A sin θ þ nQðtÞ� sin 2πfct

(3:138)
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The process X(t) has an envelope-phase representation as follows:

X ðtÞ ¼ RðtÞ cos½2πfct þCðtÞ� (3:139)

RðtÞ ¼ f½A cos θ þ nI ðtÞ�2 þ ½A sin θ þ nQðtÞ�2g1=2

CðtÞ ¼ tan 1 A sin θ þ nQðtÞ
A cos θ þ nI ðtÞ
� � (3:140)

The Gaussian processes n0I ðtÞ ¼ A cos θ þ nI ðtÞ and n0QðtÞ ¼ A sin θ þ nQðtÞ are independ-
ent with mean A cos θ and A sin θ, respectively, and variance σ2, the variance of n(t).
Applying the theory of transformation of random variables we obtain the following well-
known Rice density function for the envelope

fRðrÞ ¼ r

σ2
e ðr2þA2Þ=2σ2 I0

Ar

σ2

� �
r � 0 (3:141)

The function I0ðxÞ is the modified Bessel function of the first kind of zero order. When there
is no signal, that is, A = 0 and I0ð0Þ ¼ 1, the Rice density function reduces to the Rayleigh
density function. Note that EðR2Þ ¼ A2 þ 2σ2. The ratio A2=2σ2 is the familiar signal to
noise ratio.

Example 3.14 Complex envelope representation of signal and noise
The sum process of signal plus noise X(t) can be represented in its complex envelope form as
follows:

X ðtÞ ¼ RefXLðtÞe j2πfctg (3:142)

where the complex envelope is

XLðtÞ ¼ ½A cos θ þ nI ðtÞ� þ j½A sin θ þ nQðtÞ� (3:143)

The envelope of X(t) is the absolute value of XLðtÞ, which is R(t) given the above.
■

Example 3.15 Envelope of signal in a multipath fading channel
In a multipath fading channel, such as the one encountered by cellular systems, local area
networks, metropolitan area networks, and home networks, the transmitted signal arrives at
the receiver via multiple paths. Signal rays can arrive via a direct path plus paths resulting
from reflection from large objects, scattering from small objects, and diffraction via ray
bending around structures. These signal rays add at the receiver to form a received signal
that can be quite different from the transmitted signal. We are interested in the envelope
of such a multipath fading signal. We assume that the signal travels via independent
paths and arrives at the receiver with independent attenuations, paths delays, and phase
shifts. Let us consider bandpass digital signals that can be represented by the process
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X ðtÞ ¼ XI ðtÞ cos 2πfct � XQðtÞ sin 2πfct , where both in-phase and quadrature processes
are independent. The received signal is a sum of attenuated and delayed-shifted and phase-
shifted versions of X(t). For n independent paths we have

Y ðtÞ ¼
Xn

k¼1

XI ; kðtÞ cos 2πfct�
Xn

k¼1

XQ; kðtÞ sin 2πfct

¼ YI ðtÞ cos 2πfct � YQðtÞ sin 2πfct
(3:144)

The in-phase component of the received signal Y(t) is YI ðtÞ ¼
Pn

k¼1
XI ;kðtÞ and the quadrature

component is YQðtÞ ¼
Pn

k¼1
XQ;kðtÞ. The complex envelope of Y(t) is

YLðtÞ ¼ YI ðtÞ þ kYQðtÞ (3:145)

The path components XI ;kðtÞ and XQ;kðtÞ are functions of path attenuations, path delays,
and path phase-shifts. We are interested in the envelope R(t) of the received multipath
fading signal Y(t) at a fixed time t. We observe that as the number of paths n approaches
infinity, the central limit theorem dictates that both YI ðtÞ and YQðtÞ approach independent
Gaussian random variables with common variance σ2s , which is also the variance of Y(t). If
there is no direct path then the mean of these in-phase and quadrature components is zero
and the density function of the envelope R(t) of Y(t) at a fixed time t is a Rayleigh density
function. Note that EðR2Þ ¼ 2σ2s is the power of all non-direct (diffuse) paths. If there is a
direct path with amplitude A then the density function of the envelope R(t) of Y(t) at a fixed
time t is a Rice density function. Note that EðR2Þ ¼ A2 þ 2σ2s is the power of the direct
path and all diffuse paths. The ratio A2=2σ2s is referred to as the direct signal to diffuse
signal ratio.
■

Squared envelope

The detection of the envelope of signal plus noise is the same as the detection of its
squared envelope since both quantities are nonnegative. For some applications it is more
mathematically tractable to deal with the squared envelope. The density function of the
squared envelope of noise ZðtÞ ¼ R2ðtÞ at a fixed time t is the exponential density function
given by

fZðzÞ ¼ 1

2σ2
e z=2σ2 z � 0 (3:146)

On the other hand, the density function of the squared envelope of signal plus noise at a fixed
time t is

fZðzÞ ¼ 1

2σ2
e ðA2þzÞ=2σ2 I0

A z
p
σ2

� �
z � 0 (3:147)
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Sum of squared Gaussian processes

In many wireless communication systems the use of diversity to improve the performance of a
digital signal is necessary to combat the multipath fading effect. This effect can cause losses in
the signal-to-noise ratio, especially in a Rayleigh channel. Diversity can be achieved via
independent multiple channel reception of the same signal. Frequency diversity employs
multiple channels of different frequencies. The same signal is transmitted simultaneously on
these frequencies and their energies are combined at the receiver. If each channel fades
independently, then the average error rate will improve. The same principle applies to time
diversity, which transmits the same signal serially in consecutive time slots. The fading in each
time slot is assumed to be independent. The signal energies in these time slots are then
combined at the receiver to improve the average error rate. The third type of diversity is
antenna diversity, where multiple antennas are employed to receive the transmitted signal that
arrives at the receiver via independent paths. The signal energies from these paths are
combined to improve the average error rate. When diversity is used the squared envelopes
of the signals plus the noise in each path are combined to yield the following sum:

UðtÞ ¼
XL

k¼1

jYL;kðtÞþnL;kðtÞj2 ¼
XL

k¼1

j½YI ;kðtÞ þ nI ;kðtÞ� þ j½YQ;kðtÞ þ nQ;kðtÞ�j2

¼
XL

k¼1

f½YI ;kðtÞ þ nI ;kðtÞ�2 þ ½YQ;kðtÞ þ nQ;kðtÞ�2g
(3:148)

where L is the diversity order, and YL;kðtÞ and nL;kðtÞ are the complex envelopes of the signal
and noise in the kth diversity channel, respectively. We are interested in the density function
of U(t).

Case 1: Signal is not present

UðtÞ ¼
XL

k¼1

½n2I ;kðtÞ þ n2Q;kðtÞ� (3:149)

In this case we have the sum of 2L squared Gaussian processes. These Gaussian processes are
mutually independent and each has zero mean and common variance σ2. The density function
of U(t) at a fixed time t is commonly referred to as the χ2-density function (English pronunci-
ation: chi squared; Greek pronunciation: hee squared) with n degrees of freedom, given by

fU ðuÞ ¼ 1

ð2σ2ÞLðL� 1Þ! u
L 1e u=2σ2 u � 0 (3:150)

Case 2: Diffuse signal is present

In this case the received signal in the kth diversity channel is a multipath fading signal
consisting of the diffuse (non-direct) paths only and we have
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UðtÞ ¼
XL

k¼1

f½YI ;kðtÞ þ nI ;kðtÞ�2 þ ½YQ;kðtÞ þ nQ;kðtÞ�2g (3:151)

At a fixed time t, the Gaussian random variablesUI ;kðtÞ ¼ YI ;kðtÞ þ nI ;kðtÞ and the Gaussian
random variables UQ;kðtÞ ¼ YQ;kðtÞ þ nQ;kðtÞ are independent and have zero mean and
common variance σ2k ¼ σ2s þ σ2, where σ2s is the power of the diffuse paths. The density
function of U(t) is the χ2-density function with 2L degrees of freedom, given by

fU ðuÞ ¼ 1

ð2σ2kÞLðL� 1Þ! u
L 1e u=2σ2k u � 0 (3:152)

Case 3: Direct and diffuse signals are present

In this case the received signal in the kth diversity channel is a multipath fading signal
consisting of a direct path and the diffuse (non-direct) paths. Therefore, we have

UðtÞ ¼
XL

k¼1

f½YI ;kðtÞ þ nI ;kðtÞ�2 þ ½YQ;kðtÞ þ nQ;kðtÞ�2g (3:153)

At a fixed time t, the Gaussian random variablesUI ;kðtÞ ¼ YI ;kðtÞ þ nI ;kðtÞ and the Gaussian
random variables UQ;kðtÞ ¼ YQ;kðtÞ þ nQ;kðtÞ are independent and have non-zero mean
Ak cos θk and Ak sin θk , respectively, and common variance σ2k ¼ σ2s þ σ2. The
density function of U(t) is the non central χ2-density function with 2L degrees of freedom,
given by

fU ðuÞ ¼ 1

2σ2k

u

A2

� �ðL 1Þ=2
e ðA2þuÞ=2σ2k IL 1

A u
p
σ2k

� �
u � 0 (3:154)

where the non-central parameter A2 is defined as

A2 ¼
XL

k¼1

½A2
k cos

2 θk þ A2
k sin

2 θk � ¼
XL

k¼1

A2
k (3:155)

We also have A2
k=2σ

2
k ¼ A2

k=ð2σ2s þ 2σ2Þ ¼ 1=½ðA2
k=2σ

2
s Þ 1 þ ðA2

k=2σ
2Þ 1�. Note that

A2
k=2σ

2
s is the direct signal to diffuse signal ratio and A2

k=2σ
2 is the direct signal to noise

ratio of the kth diversity channel.

Nakagami-m density function

The Rayleigh and Rice density functions are particular solutions of the random amplitude-
phase problem

jRðtÞj ¼ jYI ðtÞ þ jYQðtÞj ¼
Xn

k¼1

XI ;kðtÞ þ j
Xn

k¼1

XQ;kðtÞ
�����

�����
¼

Xn

k¼1

RkðtÞe jCkðtÞ
�����

�����
(3:156)

The Nakagami m density function is a general but approximate solution and is given by
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fRðrÞ ¼ 2mmr2m 1

�ðmÞOm e mr2=O (3:157)

where

O ¼ EðR2Þ m ¼ O2

E½ðR2 � OÞ2� �
1

2
(3:158)

�ðmÞ ¼
ð1

0
xm 1e x dx; m40

�ðmÞ ¼ ðm� 1Þ!; m ¼ positive integer

�ð12Þ ¼ π
p

; �ð32Þ ¼ 1
2 π
p

(3:159)

The Rayleigh density function is a special case of the Nakagami-m density function where
m = 1 and O ¼ 2σ2. The Nakagami-m density function only approximates the exact density
function of the envelope of the sum of random vectors whose amplitudes and phases vary
according to certain statistical laws. However, the approximation is sufficiently good
for many engineering applications. This fact has been verified experimentally in the
ionospheric and troposheric propagations.

Log-normal density function

In wireless communications the path losses between mobile receivers at various locations
but at the same distance from the transmitter may vary due to different terrains. This effect is
often referred to as shadowing. The uncertainty in the path loss around its mean value is
commonly expressed in terms of a Gaussian random variable Xwith mean LdB and variance
σ2dB since path loss is calculated in decibels (dB). The density function of X is referred to as
the log normal density function and is given by

fX ðxÞ ¼ 1

2π
p

σdB
e ðx LdBÞ2=2σ2dB (3:160)

We can transform the log-normal random variable X with decibel unit to ratio via the
following relation:

Y ¼ 10X=10 $ X ¼ 10 log Y (3:161)

Thus the density function of Y is

fY ðyÞ ¼ 10= ln 10

2π
p

σdBy
e ð10 log y LdBÞ2=2σ2dB; y40 (3:162)

Example 3.16 Outage probability
Consider a cell with radius R and a mobile at a distance r from the base station located at the
center of the cell. The path loss is modeled as a log-normal random variable X with mean
LdBðrÞ and variance σ2dB. The received power of the mobile in dBW (1W = 0 dBW) is given
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as PðrÞ ¼ PT � X , where PT (dBW) is the transmit power of the base station. If we
designate PðrÞ ¼ PT � LdBðrÞ as the mean value of the received power of the mobile,
then PðrÞ is a log-normal random variable with mean PðrÞ and variance σ2dB. The probability
that the received power exceeds a given threshold signal power γ (dBW) can be calculated
from the density function in (3.160) as

Pr½PðrÞ4γ� ¼ Q
γ� PðrÞ

σdB

 !

(3:163)

where Qð 
 Þ is the Gaussian integral function defined by

Q að Þ ¼ 1

2π
p

ð1

a
e x2=2dx (3:164)

The outage probability is defined as the probability that the received power falls below the
threshold γ. We have

poutðrÞ ¼ Pr½PðrÞ � γ� ¼ Q
PðrÞ � γ

σdB

 !

(3:165)

For numerical illustration let us fix the outage probability as poutðrÞ ¼ 0:01. The argument of
the Q-function is given by ½PðrÞ � γ�=σdB ¼ 2:32. Thus, we get PðrÞ ¼ γþ 2:32σdB. For
example, with σdB ¼ 10 dB the mean value of the received power of the mobile has to be
23.2 dB above the threshold value to achieve this outage probability. Normally one would
like to achieve this benchmark at the cell boundary, where r ¼ R. In practice, the threshold
γ can be calculated given a threshold signal to noise ratio SNR (dB) at the cell boundary. If
the noise powerN (dBW) is known as described in Chapter 5, the threshold signal power γ at
the cell boundary can be calculated as γ ¼ SNRþ N . For the above numerical example we
can then calculate the received power of the mobile at the cell boundary as
PðRÞ ¼ γþ 2:32σdB ¼ SNRþ N þ 2:32σdB. Since PðRÞ ¼ PT � LdBðRÞ the base station
can adjust the transmit power PT to meet the required threshold SNR if the path loss is known
either by measurements or by using an empirical model such as the Hata model (see
Chapter 5). The Hata model estimates themedian path loss (dB) given the carrier frequency,
the transmit and receive antenna heights, the path loss exponent, and the distance between
base station and mobile for various environments. For the log-normal shadowing path loss
(dB), the median is the same as the mean value (the mean value of the Gaussian random
variable is also its median).
■

Example 3.17 Coverage area
In cellular communication the coverage area of a cell with radius R is defined as the fraction
of the cell area in which the received signal power exceeds a threshold signal power. Let
us consider a differential area ΔAi at distance ri from the base station located at the cell
center. Let PðriÞ be the received power in ΔAi. Using the total probability theorem, the
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probability that the received signal exceeds the threshold γ (the fractional coverage area) is
given by

� ¼
X

i

Pr½PðriÞ4γjΔAi�PrðΔAiÞ (3:166)

Furthermore, we have PrðΔAiÞ ¼ ΔAi=πR2: Therefore,

P ¼ 1

πR2

X

i

Pr½PðriÞ4γjΔAi�ΔAi (3:167)

In the limit the above expression becomes the integral over the cell area. We have

P ¼ 1

πR2

ð

Area
Pr½PðrÞ4γ� dA

¼ 1

πR2

ð2π

0

ðR

0
Pr½PðrÞ4γ� r dr dθ

(3:168)

Substituting (3.163) into (3.168) we obtain the fractional coverage area, as follows:

P ¼ 1

πR2

ð2π

0

ðR

0
Q

γ� PðrÞ
σdB

 !

r dr dθ (3:169)

Since PðrÞ ¼ PT � LdBðrÞ we can evaluate the path loss at distance r based on measure-
ments or on the Hata model.

1. Measurement model: the path loss is given by LdBðrÞ ¼ LdBðr0Þ þ 10n logðr=r0Þ,
where r0 is a reference distance close to the base station but in the far field or
Fraunhofer region of its antenna (the far-field distance is rf ¼ 2D2=λ, where D is the
largest physical dimension of the antenna and λ is the signal wavelength). The reference
path loss LdBðr0Þ can be obtained via measurement or it can be calculated using the Friis
formula for free space loss LdBðr0Þ ¼ 10 logð4πr0=λÞ2. The path loss exponent n is
obtained from measurements. Note that in ratio form the path loss is expressed as the
power law LðrÞ ¼ Lðr0Þðr=r0Þn. For free space (n = 2), the power-law expression
becomes the Friis formula that applies for any distance r.

2. Hata model: the path loss in the Hata model is the median path loss and is given by
LdBðrÞ ¼ αþ 10n log r, where the path loss exponent n is given explicitly as a function
of the base station antenna height hT , n ¼ 4:49� 0:655 log hT , 30m � hT � 200m
(see Chapter 5). The constant α depends on the carrier frequency, and the base station and
mobile antenna heights.

In both cases the path loss can be expressed in general as LdBðrÞ ¼ β þ 10n logðr=RÞ, where
β ¼ LdBðr0Þ þ 10n logðR=r0Þ for the measurement model and β ¼ αþ 10n logR for the
Hata model. The received power is PðrÞ ¼ PT � LdBðrÞ ¼ PT � β � 10n logðr=RÞ. Let

a ¼ γ� PT þ β
σdB

¼ γ� PðRÞ
σdB

; b ¼ 10n

σdB
(3:170)

Then we have the following expression for the fractional coverage area:
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P ¼ 2

R2

ðR

0
Q aþ b log

r

R

� �
r dr (3:171)

The above integral can be evaluated as follows:

P ¼ QðaÞ þ exp
2� 2ab

b2

� �
Q

2� ab

b

� �
(3:172)

In (3.172) we note that QðaÞ ¼ 1� Qð�aÞ ¼ 1� poutðRÞ, where poutðRÞ ¼ Qð�aÞ is the
outage probability at the cell boundary. For numerical illustration, let us consider the case of
σdB ¼ 10 dB, n = 4, and a specified outage probability at the cell boundary of 0.01. Then
a ¼ �2:32, b = 4, and, consequently,P ¼ 0:9986, or 99.86% of the cell is covered with an
outage probability inside the cell of less than 0.01.
■

3.6 Summary

In this chapter we have presented a fairly detailed study of the random signals often encountered in
communications. These signals belong to two broad classes of random processes, namely, wide-sense cyclosta-
tionary (WSCS) and wide-sense stationary (WSS). The sequence of digital signals that carries random information
symbols is itself a WSCS process. Noise that contaminates the signals is a WSS process. Furthermore, in a
multipath fading channel, the envelope of the signal can be represented by special Rayleigh and Rice processes.
A WSS process is characterized by a constant mean and an autocorrelation that is a function of the time
difference. On the other hand, a WSCS process is characterized by periodic mean and autocorrelation.
A WSS process possesses a power spectral density function that is the Fourier transform of its autocorrelation.

A WSCS process with a uniform time shift becomes a WSS process. This procedure allows the calculation of the
power spectral densities of digital signal sequences. White noise has constant power spectral density. The most
important process in communication theory is the Gaussian process. We learned that the processing of a Gaussian
process by a linear filter also produces a Gaussian process. Noise that is encountered in communications is
modeled as white Gaussian noise. Signal processing in an additive white Gaussian noise channel using a
complete set of L orthonormal basis functions has sufficient statistics to be represented by exactly L samples for
detection. If the noise is non-white, a whitening filter can be employed at the receiver to obtain white noise for
subsequent signal processing. There are important Gaussian-derived processes that play an important role in
noncoherent demodulation of digital signals in noise and in analyzing their performance in a multipath fading
environment. They are the Rayleigh and Rice processes, which represent the envelope of noise and that of signal
plus noise in noncoherent demodulation. In a fading channel both processes represent the envelope of the sum
of diffuse signal vectors and that of the sum of direct and diffuse signal vectors, respectively. We also present the
Nakagami-m density function of the envelope of the sum of random signal vectors and the log-normal density
function for signals that encounter the shadowing effect.
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Problems

1. The complementary distribution function of a Gaussian random variable X with zero
mean and unit variance is given by the following Gaussian integral:

QðxÞ ¼ 1� FX ðxÞ ¼ PrðX4xÞ
¼ 1

2π
p

ð1

x
e y2=2dy

Using integration by parts show that Q(x) is upper bounded by QðxÞ5e x2=2= 2π
p

x
2. The characteristic function FX ðωÞ ¼ E ejωX

� 
of the random variable X is defined as

FX ðωÞ ¼
ð1

1
fX ðxÞejωxdx

Similarly, the moment generating function FX ðsÞ ¼ E esXð Þ of the random variable X
is obtained by changing jω to s:

FX ðsÞ ¼
ð1

1
fX ðxÞesxdx

(a) Find FX ðsÞ of a Gaussian random variable X with zero mean and unit variance.
(b) Find FX ðsÞ of a Gaussian random variable X with mean m and variance σ2

3. The Chernoff bound is useful in establishing the upper bound for the distribution
function of a random variable X with corresponding moment generating function
FX ðsÞ ¼ E esXð Þ. We have the following three forms of the Chernoff bound for real s:

1� FX ðxÞ ¼ PrðX4xÞ � e sxFðsÞ; s40

FX ðxÞ ¼ PrðX � xÞ � esxFð�sÞ; s40

Pr esX4a
�  � FX ðsÞ

a
; a40

(a) Verify all three forms of the Chernoff bound.
(b) For a zero mean, unit variance Gaussian random variable, find the Chernoff bound

for the complimentary distribution function, that is, QðxÞ � e x2=2:

(c) For a random variable X40 show that E Q X
p� � �

has the upper bound
E Q X

p� � �
5FX �1 2= Þð , where

QðxÞ ¼ 1

2π
p

ð1

x
e y2=2dy

4. Consider the complex Gaussian random variable X ¼ X1 þ jX2, where X1 and X2 are
independent Gaussian random variables with zero mean and identical variance σ2.
The mean value and variance of X are

X ¼ EðX Þ ¼ EðX1Þ þ jEðX2Þ
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VarðX Þ ¼ E X � X
�� ��2
h i

We have X ¼ 0 and VarðX Þ ¼ E X � X
�� ��2
h i

¼ E Xj j2
h i

¼ 2σ2 . Now consider the

random variable Y ¼ ejθX for arbitrary θ. Show that both Gaussian random variables
Yand X have the same mean and variance. (This property is called circular symmetry.)

5. A complex Gaussian random variable X ¼ X1 þ jX2, where X1 and X2 are independ-
ent Gaussian random variables with zero mean and identical variance σ2, can be
represented in vector form asX ¼ X1 X2½ �t. The mean value of X isX ¼ 0, and the
variance is E X tXð Þ ¼ 2σ2. Express the complex random variable Y ¼ ejθX for
arbitrary θ in vector form Y and calculate the covariance matrix K of Y.

6. Consider the process X ðtÞ ¼ A sinð2πft þ�Þ, where A is a constant and � is a
random variable. Is X(t) wide-sense stationary? Find the conditions for which the
process is wide-sense stationary.

7. Consider the process X ðtÞ ¼ A sinð2πft þ�Þ, where � is a discrete random variable
with probability distribution Prð� ¼ 0Þ ¼ 1=2; Prð� ¼ πÞ ¼ 1=2 . Shows that X(t)
is not stationary by demonstrating that two random variables X(0) and X(a) for a
selected time t = a have different distributions. Is it wide-sense stationary?

8. Find the autocorrelation of the process X ðtÞ ¼ A cosð2πft þ�Þ, where� is uniformly
distributed on ½0; 2π� and A is a Gaussian random variable with zero mean and unit
variance and is independent of �.

9. Find the autocorrelation of the process Y ðtÞ ¼ X ðtÞ cosð2πft þ�Þ, where � is uni-
formly distributed on ½0; 2π� and X(t) is a wide-sense stationary process.

10. Consider a Gaussian vector X ¼ ðX1 X2 
 
 
 XnÞ whose independent elements have
zero mean and identical variance σ2. Find the moment generating function of the
random variable Y ¼ XX t

11. Derive the general expression for the autocorrelation of the random process

X tð Þ ¼ P1

i¼ 1
di p t � iT � Δð Þ with arbitrary pulse shape p(t) and independent bits

di; assuming that the time delay Δ is uniformly distributed in (0, T) and independent
of di, where T is the pulse time. Show that the power spectral density of the process
X(t) is given by

SX ðf Þ ¼ Pðf Þj j2
T

Sdðej2πfT Þ; Sdðej2πfT Þ ¼
X

k

RdðkÞe j2πfkT

where RdðkÞ is the discrete autocorrelation of the data symbols di.
12. Consider the process X ðtÞ ¼ A sinð2πft þ�Þ, where A is a constant and � is a

uniform random variable in ½�π; π�. Is X(t) ergodic in the autocorrelation function?

13. Consider an OOK signal sequence X tð Þ ¼ P1

i¼ 1
di p t � iTbð Þ that represents inde

pendent and equally likely bits [0,1], where p(t) is the half squared pulse shape of unit
amplitude and duration Tb, which is a bit time (Figure 3.3(a)), and di 2 f1; 0g
represents the normalized signal amplitudes. The mapping 0 ! 1 and 1 ! 0
maps bit 0 to amplitude 1 and bit 1 to amplitude 0 (the mapping 0 ! 0 and 1 ! 1
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maps bit 0 to amplitude 0 and bit 1 to amplitude 1 would give the same result).
Assuming the time origin is uniform in a bit time Tb, find the power spectral density
function of X(t).

14. Consider the alternative mark inversion (AMI) signaling, where bit 1 is represented
by alternate positive and negative half-squared pulses and bit 0 is represented by a
zero voltage level. Assuming the time origin is uniform in a bit time Tb, find the power
spectral density function of X(t).

15. Consider the Manchester signaling, where bit 1 is represented by a positive half-
squared pulse followed by a negative half-squared pulse and bit 0 is represented by a
negative half-squared pulse followed by a positive half-squared pulse. Assuming the
time origin is uniform in a bit time Tb, find the power spectral density function of X(t).

16. Let X(t) be aWSS process and Y ðtÞ ¼ X ðt þ TÞ � X ðt � TÞ. Find the autocorrelation
and power spectral density function of Y(t).

17. Let g(t) be a deterministic periodic function and X(t) is a zero mean ergodic process.
Find the autocorrelation and power spectral density of Y ðtÞ ¼ gðtÞ þ X ðtÞ

18. Consider the process X tð Þ ¼ P1

i¼ 1
di p t � iTbð Þ with uncorrelated and equally likely

bits di 2 f�1; 1g. The bit time is Tb. Form the process Y ðtÞ ¼ X ðtÞX ðt � Tb=2Þ
(a) Is Y(t) WSCS?
(b) Find the deterministic periodic component of Y(t) which is also the bit clock.
(c) Design a circuit to extract the bit clock.

19. Consider an RC circuit with frequency response Hðf Þ ¼ 1=ð1þ j2πfRCÞ. The input
to this circuit is white noise with power spectral density function N0=2:
(a) Derive the expression for the output noise power spectral density.
(b) Derive the expression for the output noise autocorrelation.

20. The integrate-and-dump filter is a linear system with output Y ðtÞ ¼ Ð tt T X ðτÞdτ
when X(t) is applied to its input. Derive the expression for the power spectral density
of Y(t).

21. Consider the process X ðtÞ ¼ A sinð2πft þ�Þ where A is a constant, � is a uniform
random variable in ½�π; π�, and f is a random variable with a density function
satisfying the relationship pFðf Þ ¼ pFð�f Þ. Find the power spectral density of X(t).

22. Consider non-white noise of power spectral density Snðf Þ ¼ ðω2 þ 1Þ=ðω4 þ 64Þ.
Design a minimum-phase whitening filter.

23. Consider an integrator over (0, T) driven by zero mean white Gaussian noise of power
spectral density N0=2. Find the variance of the output noise.

24. A Gauss–Markov process X(t) with variance σ2 and time constant 1=β is a stationary
Gaussian process with an exponential autocorrelation of the form RX ðτÞ ¼ σ2e β τj j.
(a) Evaluate the power spectral density function of X(t).
(b) Apply X(t) to the input of an integrator, find the power spectral density of the

output process.
25. Consider the random variable X ¼ log2ð1þ R2γÞ: where R is Rayleigh distributed

with EðR2Þ ¼ 1 and γ is a nonnegative constant. Find PrðX � xÞ.
26. Consider the case of log-normal shadowing with σdB ¼ 10 dB, n = 4, and a specified

outage probability at the cell boundary of 0.1. Find the fractional coverage area.
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27. Consider a log-normal shadowing model with a standard deviation σ ¼ 12 dB and a
single circular cell. The receiver at the cell boundary has a noise power of
�146:9 dBW. The cell has a path loss exponent n = 4. The percentage of coverage
area is determined to be 95%. The received signal threshold (which is set at a smaller
value than the mean received signal) is fixed at�129 dBW.What is the mean received
signal-to-noise ratio?

Further reading

For a thorough review of probability theory, random variables, and random processes, we
recommend Papoulis [3], Helstrom [4], and Leon-Garcia [5]. Advanced materials can be
found in Feller [6].More materials on cyclostationary processes can be found in Gardner [7].
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4 Information theory and channel coding

Introduction

In this chapter we present the applicability of probability theory and random variables to the
formulation of information theory pioneered by Claude Shannon in the late 1940s [1,2].
Information theory introduces the general idea of source coding and channel coding. The
purpose of source coding is to minimize the bit rate required to represent the source
(represented mathematically by a discrete random variable) with a specified efficiency at
the output of the source coder. On the other hand, the goal of channel coding is to maxi-
mize the bit rate at the input of the channel encoder so that code words can be transmitted
through the channel with a specified reliability. Both source coding and channel coding can
be achieved with the knowledge of the statistics of both the source and channel.

4.1 Entropy of a discrete source

Information comes from observing the outcome of an event. Common events occur fre-
quently (high probability) and therefore carry little information. On the other hand, rare
events occur infrequently (low probability) and hence carry much more information. In
1928 R. V. L. Hartley proposed a logarithmic measure of information that illustrates this
observation [3]. Let us consider a discrete source that is represented mathematically by the
discrete random variable X. The source emits M symbols xi, i = 1,2, . . . , M, which are
characterized by the probability distribution function pX ðxiÞ. The self information of the
source is the function I(X) that assumes the values I(xi), defined as follows:

IðxiÞ ¼ � log2 pX ðxiÞ (4:1)

It is seen that the smaller the probability of the outcome xi, the larger its self-information.
Thus, a certain event has zero self-information and an impossible event has infinite self-
information. The average information in the source X with a given distribution is the
expected value of I(X) and is formally denoted as the entropy of X with the designated
notation H(X). Using (3.17) we have

HðX Þ ¼ EfIðX Þg ¼ �
XM

i¼1

pX ðxiÞ log2 pX ðxiÞ (4:2)
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The use of the base two logarithm indicates that the unit of entropy is the bit.

Example 4.1 Binary source
Consider a discrete source that emits binary symbols 0 and 1 with probability distribution
pX ð0Þ ¼ p and pX ð1Þ ¼ 1� p. The entropy of this binary source is given by

HðX Þ ¼ �p log2 p � ð1� pÞ log2ð1� pÞ (4:3)

Let p = 0.1, then H(X) = 0.47 bits. This is the average number of bits needed per source
symbol. The entropy is maximum, that is,maxp HðX Þ ¼ 1 bit, when p = 0.5. This indicates
that the entropy is at maximum when the distribution is uniform or equally likely. Since the
average symbol length is 1 bit and the source is binary, the source coder transmits the symbol
unaltered.
■

Theorem 4.1 Consider a discrete source X with a given probability distribution pX ðxiÞ, i =
1,2, . . . , M. Then its entropy satisfies the following inequality

HðX Þ � log2 M (4:4)

The equality is achieved when the distribution is uniform (equally likely symbols), that is,
pX ðxiÞ ¼ 1=M for all i.

Proof We make use of the identities
PM

i¼1
pX ðxiÞ ¼ 1 and ln a � a� 1 in the following

expression:

HðX Þ � log2 M ¼ �
X

i

pX ðxiÞ log2pX ðxiÞ � log2 M
X

i

pX ðxiÞ

¼ �
X

i

pX ðxiÞ log2fMpX ðxiÞg ¼
X

i

pX ðxiÞ log2
1

MpX ðxiÞ

¼
X

i

pX ðxiÞ
ln 1

MpX ðxiÞ
ln 2

� 1

ln 2

X

i

pX ðxiÞ 1

MpX ðxiÞ � 1

� �

(4:5)

Therefore,

HðX Þ � log2 M � 1

ln 2

X

i

1

M
� pX ðxiÞ

� �

� 1

ln 2

X

i

1

M
�
X

i

pX ðxiÞ
" #

� 1

ln 2
ð1� 1Þ

� 0

(4:6)
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When pX ðxiÞ ¼ 1=M for all i, that is, the distribution is uniform, we have
HðX Þ ¼ �P

i
ð1=MÞ log2ð1=MÞ ¼ �ð1=MÞ log2ð1=MÞP

i
1 ¼ log2 M .

■

The next discussion centers around source encoding, that is, what kind of code should one
use to represent source symbols with a given distribution such that the bit rate at the source
coder output is minimized? Intuitively one would think about a code with the average code
word length (each source symbol is represented by a code word whose length is in bits)
equal to the source entropy. After all, the source entropy, which is the average self-
information of the source, is its best snapshot. We will present the best code that can
approach the prescribed goal. Furthermore, the average code word length is of interest
because if we transmit a long string of n symbols with a total length Ln bits, then the law of
large numbers dictates that the number of bits per symbols Ln=n approaches the average
code word length with a probability close to one.

4.2 Source coding

From the above study we observe that when the source symbols are equally likely the best
code is simply the block code or fixed length code in which all the code words have log2 M
bits (the source entropy). For source symbols that are not equally likely, a variable length
codemust be used to approach the source entropy. Intuitively, we assign a long code word to
a less frequent symbol and a short code word to a more frequent symbol. This is the idea
behindMorse code, with the most frequently used letter E given the code word “dot.” There
is a problemwith decoding a variable-length code at the receiver, that is, recognizing the end
of one code word and the beginning of the next. This problem can be solved if no code word
is the prefix of another code word. A source code that possesses such a property is called a
prefix code or instantaneous code. Thus, a string of prefix code words is self punctuating, as
illustrated for a source of four symbols and their corresponding prefix code words below:

x1 ¼ 0; x2 ¼ 10; x3 ¼ 110; x4 ¼ 111 (4:7)

0011110110 ! 0; 0; 111; 10; 110 ! x1; x1; x4; x2; x3 (4:8)

Thus, in a prefix code each symbol can be decoded without looking to the right of it. The
prefix codes are examples of uniquely decodable codes whose code words can be unambig-
uously reconstructed from the bit sequence. Here, it is assumed that synchronization is
established before decoding starts. The existence of a prefix code can be verified by theKraft
inequality, as stated in the following theorem.

Theorem 4.2 (Kraft inequality) The necessary and sufficient condition for the existence of a
prefix code of M symbols with code words of length lm; m ¼ 1; 2; :::;M , is

XM

m¼1

1

2lm
� 1 (4:9)
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The code in (4.7) satisfies the Kraft inequality with an equals sign. The following theorem
shows a relationship between the average code word length and the entropy.

Theorem 4.3 Consider a discrete source X with a given distribution pX ðxiÞ, i = 1,2, . . . ,M.
Each symbol xi is encoded by a code word of length li of a prefix code. Then, the average code
word length l ¼ P

i pX ðxiÞli of the prefix code satisfies the following relationship:

HðX Þ � l (4:10)

Proof The first step is to establish the expression HðX Þ � l and show that it is less than or
equal to zero. We use the following identities:

log2 x ¼ ðlog2 eÞ ln x; ln x � x� 1

HðX Þ � l ¼ �
X

i

pX ðxiÞ log2pX ðxiÞ �
X

i

pX ðxiÞ li

¼
X

i

pX ðxiÞ log2
1

pX ðxiÞ þ log2 2
li

� �
¼
X

i

pX ðxiÞ log2
2 li

pX ðxiÞ
� �

¼ log2 e
X

i

pX ðxiÞ ln
2 li

pX ðxiÞ
� �

� log2 e
X

i

pX ðxiÞ 2 li

pX ðxiÞ � 1

� �

� log2 e
X

i

2 li �
X

i

pX ðxiÞ
 !

� log2 e ð1� 1Þ � 0

(4:11)
The last line follows the Kraft inequality.
■

Theorem 4.4 Consider a discrete source X with a given distribution pX ðxiÞ, i = 1, 2, . . . ,M.
Each symbol xi is encoded by a Shannon–Fano prefix code, whose code word of length li is
selected according to the relationship

� log2 pX ðxiÞ � li � � log2 pX ðxiÞ þ 1 (4:12)

Then, the average code word length satisfies the following inequalities:

HðX Þ � l � HðX Þ þ 1 (4:13)

Proof The left-hand side of (4.12) yields 2 li � pX ðxiÞ and henceP
i 2

li �Pi pX ðxiÞ ¼ 1. Since the Kraft inequality is satisfied there exists a prefix code
with the above selected lengths such that the left-hand side of (4.13) is satisfied per Theorem
4.3. From the right-hand side of (4.12) we have

l ¼
X

i
pX ðxiÞli � �

X
i
pX ðxiÞ log2 pX ðxiÞ þ

X
i
pX ðxiÞ � HðX Þ þ 1 (4:14)

■

125 4.2 Source coding



Example 4.2 Shannon–Fano code
Consider a discrete source with distribution

pX ðx1Þ ¼ pX ðx2Þ ¼ 0:1; pX ðx3Þ ¼ pX ðx4Þ ¼ 0:2; pX ðx5Þ ¼ 0:4 (4:15)

The Shannon–Fano code words have the following length in bits:

l1 ¼ l2 ¼ 4; l3 ¼ l4 ¼ 3; l5 ¼ 2 (4:16)

The average code word length in bits is

l ¼
X5

i¼1

pX ðxiÞ li ¼ 2:8 4 HðX Þ ¼ �
X5

i¼1

pX ðxiÞ log2 pX ðxiÞ ¼ 2:12 (4:17)

■

The above theorem shows that one can do no worse than H(X) + 1 with Shannon–Fano
codes. The question is, can one do better? In the following discussion we present theHuffman
codes, which are optimum in the sense that they are the prefix codes that approach the entropy
in average lengths. Furthermore, no other prefix codes have smaller average codeword lengths.

Huffman codes

A Huffman code is constructed as follows:

1. The source symbols are listed in order of decreasing probability.
2. A tree is constructed to the right with the two source symbols of the smallest probabilities

combined to yield a new symbol with the probability equal to the sum of the two previous
probabilities.

3. The final tree is labeled with 0 on the lower branch (upper branch) and 1 on the upper
branch (lower branch).

Example 4.3 Huffman code
Consider a discrete source with distribution

pX ðx1Þ ¼ pX ðx2Þ ¼ 0:1; pX ðx3Þ ¼ pX ðx4Þ ¼ 0:2; pX ðx5Þ ¼ 0:4 (4:18)

We construct the two trees shown in Figure 4.1. Both Huffman codes have the following
average length in bits:

l ¼ 0:1ð4Þ þ 0:1ð4Þ þ 0:2ð3Þ þ 0:2ð2Þ þ 0:4ð1Þ ¼ 2:2

l ¼ 0:1ð3Þ þ 0:1ð3Þ þ 0:2ð2Þ þ 0:2ð2Þ þ 0:4ð2Þ ¼ 2:2
(4:19)

The source entropy isH(X) = 2.12. If we compare the Huffman code with the Shannon–Fano
code in the previous example we conclude that the former is more efficient.
■

126 Information theory and channel coding



Shannon noiseless source coding theorem (first theorem)

Consider a discrete source X ofM symbols with a given distribution. The average code word
length can be made to approach the source entropy as close as required, so that

HðX Þ � l5HðX Þ þ " (4:20)

where "51 is an arbitrary positive constant.

Proof Let us consider the nth extension of the source X called Xn, which consists of
Mn extended symbols. Each extended symbol consists of n concatenated original source
symbols and has a probability equal to the product of n probabilities. Since the log of the
product equals the sum of logs, the entropy of the extended source is n times the entropy of
the original source, that is,

HðX nÞ ¼ nHðX Þ (4:21)

Applying the result of Theorem 4.4 to the extended source we obtain the following bounds
on L, the average code word length of X n:

x1 = 0000
x2 = 0001
x3 = 001
x4 = 01
x5 = 1

x3

x4

x2

x1

x5
0.4

0.6

0.4

0.2

0.1

0.1

0.2

0.2

0

1
0

1

0

1

0

1

(a)
x1 = 000
x2 = 001
x3 = 01
x4 = 10
x5 = 11

x3

x4

x2

x1

x5
0.4

0.4

0.1

0.1

0.2

0.2

0.2

0

1
0

1 0

1

(b)

0.6

0

1

Figure 4.1 Huffman codes.
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HðX nÞ � L � HðX nÞ þ 1 (4:22)

Substituting (4.21) into (4.22) and dividing by n, we have

HðX Þ � L

n
� HðX Þ þ 1

n
(4:23)

Note that l , the average code word length of the original source X, is equal to L=n since the
extended symbol has n original symbols. Therefore,

HðX Þ � l � HðX Þ þ 1

n
(4:24)

Choose " � 1=n, and we obtain the result in (4.20).
■

In the subsequent discussion we introduce the concept of channel coding to maximize the
rate of reliable transmission over a noisy channel. This necessitates the evaluation of the
Shannon channel capacity, which cannot be exceeded if reliable transmission is to be
accomplished. We investigate information capacities of discrete and Gaussian channels.

4.3 Discrete channel

All communication channels are noisy and therefore the symbols at the channel output are
not always the same as the input symbols. Thus, we ask ourselves the question, “Howmuch
information can we reliably transmit through a noisy channel?” Or, equivalently, “What is
the maximum data rate for arbitrary small error probability?” The answer had been provided
by Claude Shannon in 1948 [1,2]. In this section we present the Shannon channel capacity
for a discrete channel characterized by a set U of M input symbols ui, a set V of Q output
symbols vj and their conditional probabilities pðvjjuiÞ, called transition probabilities. The
sizes ofM andQ are not necessarily the same. We assume that the channel noise corrupts the
input symbols independently, therefore the channel is said to be memoryless. Figure 4.2
illustrates the discrete channel concept. The discrete channel is a synthetic channel that can
be derived from the physical channel, as illustrated in Figure 4.3 for a wireless communi-
cation system. In this case, the channel transition probability can be evaluated from the
knowledge of the modulated waveform, the received signal-to-noise-ratio via the link
analysis and the demodulation technique. The input mi to the channel encoder is one of M
message blocks (source code words) obtained from the source coder output. For example,
consider a binary source with equally likely symbols x1; x2. Using k-symbol source block

vj ∈V
im m̂i

Channel
decoder

Channel
encoder

Discrete channel

{p(vj ui)}
ui ∈U

Figure 4.2 Discrete channel model.
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code the message block consists of any k source symbols, and hence there are M ¼ 2k

distinct message blocks. The channel encoder may encode each message block into an n-bit
input symbol (channel code word) ui, where n > k. Thus, there are a total of M ¼ 2k input
symbols. Given the n-bit input symbol ui ¼ ðui1; :::; uinÞ the probability of observing the
n-bit output symbol vj ¼ ðvj1; :::; vjnÞ is the following transition probability:

pðvjjuiÞ ¼
Yn

l¼1

pðvjljuilÞ (4:25)

Thus throughout our discussion we assume that the channel is characterized by the condi-
tional probabilities pðvjljuilÞ; i 2 U ; j 2 V , and hence pðvjjuiÞ:

Mutual information

The concept of mutual information is intuitive. Suppose a symbol ui was sent by the channel
encoder with probability pU ðuiÞ. This is often called the a priori probability of the input
symbol ui. The probability that ui was the sent symbol after the observation of the output
symbol vj becomes pðuijvjÞ. This is often referred to as the a posteriori probability of ui . If the
channel is noiseless then after receiving vj one would know exactly that ui was sent and the
a-posteriori probability is 1. Now consider the case of a very noisy channel. The reception of vj
will not help at all in determining what input symbol in the setUwas sent. This means that the
a-posteriori probability is the same as the a-priori probability. If the channel is somewhere
between these two extreme cases, then the a-posteriori probability is larger than the a-priori
probability. Hence, one obtains an information gain from the reception of the output symbol.
This can be expressed quantitatively as the difference between the self-information of ui and
the self-information of ui after vj was observed, and is called the pair wise mutual information:

Iðui; vjÞ ¼ log2
1

pU ðuiÞ � log2
1

pU ðuijvjÞ
¼ log2

pU ðuijvjÞ
pU ðuiÞ ¼ log2

pV ðvjjuiÞ
pV ðvjÞ

(4:26)

Up converter
Channel
encoder Modulator High-power

amplifier 

Antenna 

Channel
decoder Demodulator Low-noise

amplifier 

Antenna 

Discrete channel 

Down
converter

Figure 4.3 A physical channel.
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since pU ðuijvjÞpV ðvjÞ ¼ pV ðvjjuiÞpU ðuiÞ ¼ pUV ðui; vjÞ, where pUV ðui; vjÞ is the joint distri-
bution of ui; vj.

The mutual information is the average of Iðui; vjÞ over the input symbol set U and output
symbol set V and is given by

IðU ;V Þ ¼
X

i

X

j

pUV ðui; vjÞIðui; vjÞ

¼
X

i

X

j

pUV ðui; vjÞ log2
pU ðuijvjÞ
pU ðuiÞ

¼
X

i

X

j

pUV ðui; vjÞ log2
pV ðvjjuiÞ
pV ðvjÞ

(4:27)

Expanding the log term we have

IðU ;V Þ ¼ �
X

i

X

j

pUV ðui; vjÞ log2 pU ðuiÞ þ
X

i

X

j

pUV ðui; vjÞ log2 pU ðuijvjÞ

¼ �
X

i

pU ðuiÞ log2 pU ðuiÞ � �
X

i

X

j

pUV ðui; vjÞ log pU ðuijvjÞ
 !

¼ HðUÞ � HðU jV Þ
(4:28)

where the entropy H(U) and the conditional entropy H(U|V) are given by

HðUÞ ¼ �
X

i

pU ðuiÞ log2pU ðuiÞ (4:29)

HðU jV Þ ¼
X

j

pV ðvjÞHðU jvjÞ ¼ �
X

j

X

i

pV ðvjÞpU ðuijvjÞ log2 pU ðuijvjÞ

¼ �
X

i

X

j

pUV ðui; vjÞ log2 pU ðuijvjÞ
(4:30)

By symmetry we also obtain the following expression:

IðU ;V Þ ¼ HðV Þ � HðV jUÞ (4:31)

where the entropy H(V) and the conditional entropy H(V|U) are given by

HðV Þ ¼ �
X

j

pV ðvjÞ log2pV ðvjÞ (4:32)

HðV jUÞ ¼
X

i

pU ðuiÞHðV juiÞ ¼ �
X

j

X

i

pU ðuiÞpV ðvjjuiÞ log2 pV ðvjjuiÞ

¼ �
X

i

X

j

pUV ðui; vjÞ log2 pV ðvjjuiÞ
(4:33)
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Theorem 4.5 The mutual information obeys the following relationship:

1. I(U,V) ≥ 0.
2. I(U,V) = 0 if and only if U and V are independent.
3. I(U,V) = I(V,U)
■

Channel capacity

The information channel capacity is the maximum of the mutual information over all
possible input symbol distributions

C ¼ max
pU ðuiÞ

IðU ;V Þ (4:34)

To see why the maximum is carried out over pU ðuiÞ only, we need to examine (4.32) and
(4.33). Applying the total probability theorem we have pV ðvjÞ ¼

P
i pV ðvjjuiÞpU ðuiÞ.

Furthermore, pUV ðui; vjÞ ¼ pV ðvjjuiÞpU ðuiÞ, thus I(U,V) is a function of pU ðuiÞ and
pV ðvjjuiÞ. The channel transition probabilities pV ðvjjuiÞ which completely describe the
channel are fixed once the channel model is specified. This leaves the designer with only
the choice of finding a suitable pU ðuiÞ to maximize the mutual information. Thus, the
channel capacity depends only on the channel transition probabilities. In practice, finding
a suitable input symbol (code word) distribution is equivalent to finding a suitable channel
code to approach the channel capacity defined in (4.34). A suitable code must apparently
have code words that contain long message blocks to be efficient and the code must be able
to correct as many errors as possible in the message blocks given the channel model, that is,
its transition probabilities. The smaller the specified bit error probability, the larger the size
of the code words in order to average out the channel errors (by the law of large numbers). In
other words, there exist codes that allow one to arbitrarily approach channel capacity via the
optimization in (4.34) and at the same time arbitrarily approach a specified error rate via
the law of large numbers. This is the essence of Shannon noisy channel coding. If the
information rate exceeds the Shannon channel capacity, then the error rate cannot be kept
arbitrarily small.

The channel capacity unit is coded bits/input symbol since this is the unit of entropy. If the
unit is in coded bits/second, then we need to multiply the channel capacity in coded bits/
input symbol by the input symbol rate in input symbols/second to have the channel capacity
in coded bits/second. We can restate the Shannon channel capacity in an alternate way
using the Shannon main theorem, described next.

Shannon noisy channel coding theorem (main theorem)

Let C be the capacity of a discrete channel, and H be the entropy per second of a discrete
source. If H ≤ C, there exists a coding system such that the output of the source can be
transmitted over the channel with an arbitrarily small frequency of errors.
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The meaning of the Shannon main theorem can be interpreted in the following manner.
Let X be a discrete source with M source symbols and entropy H(X) in bits/source symbol.
The source symbols are encoded intoM channel input symbols (code words). For example,
if the source symbol (message block) has k bits and the input symbol (code word) has n > k
coded bits, then the code rate is r = k/n. Assume that the source transmits R source symbols/
second, then the source entropy in bits/second is H = RH(X) bits/second. The channel
capacity C is given in coded bits/input symbol. The channel capacity isC = RC/r coded bits/
second. If H ≤ C then we have RHðX Þ � RC=r. This implies r � C=HðX Þ. The key to
designing a good communication system is to find a code with rate r close to C=HðX Þ that
can meet a specified error rate.
■

The converse of the Shannon noisy channel coding theorem is ifH > C it is not possible to
transmit the output of the source over the channel with an arbitrarily small frequency of errors.

With the publication of his work [1,2], Shannon opened the field of coding theory and set
the course for coding theorists to discover many types of efficient codes [4,5] capable of
achieving what Shannon stated in his famous main theorem.

Example 4.4 Binary symmetric channel
The binary symmetric channel (BSC) in Figure 4.4 is a simple but widely used model for
binary communication systems. In this channel model the binary source is equally likely
with distribution 0.5 for bit 0 and 0.5 for bit 1. Hence, the source entropy is 1 bit. The source
transmits the bits unaltered (no channel coding) and the channel transition probabilities are
given by

pð0j1Þ ¼ pð1j0Þ ¼ p; pð0j0Þ ¼ pð1j1Þ ¼ 1� p (4:35)

Using (4.31) and (4.34) we obtain the capacity of the binary symmetric channel as follows:

C ¼ 1þ p log2 pþ ð1� pÞ log2ð1� pÞ (4:36)

It is 1 bit when p = 0 or 1, and 0 when p = 0.5.
■

Example 4.5 Repetition code
Let us consider a BSC with p ¼ 10 2. From Example 4.4, we obtain the channel capacity
C = 0.919 bits. Suppose we want to send information bits over this channel with arbitrarily

1–p 

1–p 

p
1 1

00
p

Figure 4.4 Binary symmetric channel.
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small error probability, then according to the Shannon main theorem there exist codes with
rate r � C=HðX Þ ¼ 0:919=1 ¼ 0:919 that can accomplish this task. For simplicity we
consider the repetition code (n,1) with code rate r = 1/n, where an information bit is encoded
by repetition into a code word (channel input symbol) of n identical bits. For example, in a
(3,1) repetition code the following encoding is carried out: 0 ! ð000Þ; 1 ! ð111Þ. In
practice, the code word length n is commonly chosen to be an odd integer. Thus, if a
received code word has more 0s than 1s, the decoded bit is bit 0. Otherwise, the decoded bit
is bit 1. An error occurs when ðn� 1Þ=2b c or more coded bits out of n bits are received
incorrectly, where ðn� 1Þ=2b c is the largest integer no greater than ðn� 1Þ=2. Thus a (n,1)
repetition code can correct t = ðn� 1Þ=2b c errors in a code word. The bit error probability,
which is the same as the code word error probability (a code word carries only one
information bit), for the coded system is given by

Pe ¼
Xn

i¼tþ1

n
i

� �
pið1� pÞn i (4:37)

Numerically we have r ¼ 1=3 yields Pe ¼ 3� 10 4 and r ¼ 1=5 yields Pe ¼ 10 6. Thus
we can achieve arbitrarily small error probability by using longer codes. For the same
transmission rate a repetition code decreases the channel throughput by a factor n. This also
implies that the transmission rate over the channel will be n times larger for a constant
throughput, and hence the physical channel must have a larger bandwidth to accommodate
this higher transmission rate. In the next example we introduce a more efficient code to
reduce the transmission rate as compared with the repetition code.
■

Example 4.6 Hamming code
The historic (n,k) Hamming codes with code rate r = k/n were first discovered by Richard
W. Hamming in 1950 [6]. For a positive integer m � 3 the code structure is summarized as
follows:

Code word length n ¼ 2m � 1
Message block k ¼ 2m � 1� m
Parity-check block n� k ¼ m
Error-correcting capability t = 1
Minimum Hamming distance dmin ¼ 3

The message block is the number of information bits; the parity-check block is unique to
the code and is a linear sum of the information bits. The Hamming distance between two
different code words is the number of positions in which they differ. The error-correcting
capability t is related to the minimum Hamming distance as t ¼ ðdmin � 1Þ=2b c. In other
words, we also have dmin � 2t þ 1. Note that this relationship holds for repetition code (n,1)
for any n (even or odd). To prove this relationship, which is true for any linear block code, let
t be a positive integer such that the following inequalities hold:
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2t þ 1 � dmin � 2t þ 2 (4:38)

Let u, v, andw be the transmitted codeword, the receivedword, and an arbitrary codeword in the
code. Applying the triangle inequality to the Hamming distances among u, v, and w, we obtain

dðu; vÞ þ dðw; vÞ � dðu;wÞ (4:39)

Note that dðu;wÞ � dmin � 2t þ 1, therefore any error pattern which has less than or equal
to t errors, that is, dðu; vÞ � t, results in the following inequality for an arbitrary w:

dðw; vÞ � 2t þ 1� t ¼ t þ 1 (4:40)

The decoder selects u over all w’s in the code since u is closer in Hamming distance to v.
Table 4.1 shows the 16 code words of the (7,4) Hamming code together with the

corresponding message block. The first three bits are the parity-check bits and the last
four bits are the message bits.

The code word error probability is given in (4.37). Using the approximation that for an
error pattern of i > t errors, at most i + t errors can occur if all i channel errors occur in
the information bits and t correct bits are changed by the decoder. Thus, there is a fraction
(i + t)/n of k information bits to be decoded erroneously, and hence the bit error probability
of the coded system is given by [5]

Pe �
Xn

i¼tþ1

iþ t

n
n
i

� �
pið1� pÞn i (4:41)

For a BSC with p ¼ 10 2 we obtain the bit error probability Pe � 6� 10 4. Therefore, the
(7,4) Hamming code increases the transmission rate by a factor 7/4.
■

4.4 Gaussian channel

The Gaussian channel is the most important channel in communication. In practice, it
models most physical channels, including both wired and wireless channels. Theoretically,
the Gaussian channel is depicted in Figure 4.5(a) with the continuous output random

Table 4.1 The (7,4) Hamming code

Message block Code word Message block Code word

0000 0000000 1000 1101000
0001 1010001 1001 0111001
0010 1110010 1010 0011010
0011 0100011 1011 1001011
0100 0110100 1100 1011100
0101 1100101 1101 0001101
0110 1000110 1110 0101110
0111 0010111 1111 1111111
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variable X being the sum of the input random variable S and the independent continuous
channel noise variable N:

X ¼ S þ N (4:42)

The noise variable N is a Gaussian random variable with zero mean and variance σ2. It is a
common practice to write the Gaussian noise variable as Nð0; σ2Þ. The probability density
function of Nð0; σ2Þ is given by

fN ðηÞ ¼ 1

2π
p

σ
e η2=2σ2 (4:43)

This channel model is usually referred to as an additive Gaussian noise (AGN) channel. If
the noise has a constant power spectral density function (calledwhite noise) then the channel
is referred to as an additive white Gaussian noise (AWGN) channel. Figure 4.5(b) depicts
the case of a multiple input multiple output Gaussian channel (vector Gaussian channel),
where the continuous output random vector X is the sum of the input random vector S and
the independent continuous channel noise vector N:

X ¼ S þN (4:44)

The components of N are independent and identically distributed (iid) Gaussian random
variables, each with zero mean and common variance σ2. For the vector Gaussian channel,
the probability density function of the noise vectorNð0; σ2Þ is simply the joint density of its
n independent components and is given by

fNðhÞ ¼ 1

ð 2π
p

σÞn e
Pn

i 1

η2i =2σ
2

(4:45)

Figure 4.6 illustrates the Gaussian channel model of a coded communication system.
The mapping ui ! S i represents the equivalent lowpass model of the modulator. It maps
the code word ui into the voltage vector S i. For example, the code word ui = (010) is
mapped into S i ¼ ð Eb

p
;� Eb

p
; Eb
p Þ, which is the equivalent lowpass vector of the

set of three PSK signals ðA cos 2πfct; �A cos 2πfct; A cos 2πfctÞ, each defined in their
time interval. The mapping X ! vj represents the equivalent lowpass model of the
demodulator. It maps the received voltage vector X into the received word vj. The two
mappings and the Gaussian channel model constitute the discrete channel shown in
Figure 4.2.

N(0,σ 2)

S XΣ

(a)

XΣ

(b)

S

N(0,σ 2)

Figure 4.5 (a) Gaussian channel. (b) Vector Gaussian channel.
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Since the Gaussian random variable is a continuous random variable, the definition of
entropy for a discrete random variable does not apply in a straightforward manner. To
illustrate this case let us approximate the probability density function fX ðxÞ by a probability
distribution function pi, where pi ¼ fX ðxiÞΔx is the area under fX ðxÞ in the ith interval of
width Δx. Note that in the limit we have

X

i

pi ¼
X

i

fX ðxiÞΔx �!Δx!0
ð1

1
fxðxÞdx ¼ 1 (4:46)

The entropy of the approximating distribution is given by

H ¼ �
X

i

pi log2 pi

¼ �
X

i

fX ðxiÞΔx log2½fX ðxiÞΔx�

¼ �
X

i

fX ðxiÞ log2fX ðxiÞΔx � log2 Δx
X

i

fX ðxiÞΔx

¼ �
X

i

fX ðxiÞ log2fX ðxiÞΔx � log2 Δx

(4:47)

In the limit as Δx ! 0 the second term becomes infinite and renders the entropy of a
continuous random variable infinite. But since the second term of H is common to any
two density functions fX ðxÞ and gX ðxÞ, the difference in their entropies is equal to the
difference of the first terms and is finite as long as their first terms are. The first term of H is
commonly referred to as the differential entropy.

Differential entropy

Definition 4.6 The differential entropy h(X) of a continuous random variable Xwith a given
density function fX ðxÞ is defined as

hðX Þ ¼ �
ð1

1
fX ðxÞ log2fX ðxÞ dx (4:48)

Channel
encoder Σ

N(0, σ 2)

Channel
decoder

Mapping
X → vj

ui ∈U m̂iX

Gaussian
channel

Mapping
ui →Si

Si ∈S vj ∈Vmi

Figure 4.6 A coded Gaussian channel.
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Definition 4.7 The differential entropy h(X) of a continuous n-dimensional random vectorX
with a given density function fXðxÞ is defined as

hðXÞ ¼ �
ð
fXðxÞ log2 fXðxÞ dx (4:49)

where the integral symbol represents n-fold integration.

Example 4.7 Differential entropy of a Gaussian random variable
Let X be a Gaussian random variable with mean X and variance σ2. Calculating the differ-
ential entropy in bits we get

hðX Þ ¼ �
ð1

1
fX ðxÞ log2

1

2π
p

σ
e ðx X Þ2=2σ2

� �
dx

¼
ð1

1
fX ðxÞ log2ð 2π

p
σÞ þ ðx� X Þ2

2σ2
log2 e

" #

dx

¼ log2ð 2π
p

σÞ þ log2 e
2σ2

EfðX � X Þ2g

¼ 1

2
log2 2πσ

2 þ 1

2
log2 e

¼ 1

2
log2 2πeσ

2

(4:50)

Therefore, the differential entropy of a Gaussian random variable is independent of
the mean.
■

Example 4.8 Differential entropy of a Gaussian random vector
Let X be an n-dimensional Gaussian random vector with iid components, each with zero
mean and variance σ2. Because entropy adds for independent random variables, the differ-
ential entropy of X is given by the sum of differential entropies of its components, and we
obtain

hðXÞ ¼ n

2
log2 2πeσ

2 (4:51)

■

Theorem 4.8 (Maximum differential entropy) The Gaussian random variable X with
arbitrary mean X and variance σ2 has the largest differential entropy of all random
variables of the same mean and variance.
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Proof By applying the Jensen inequality to a concave function u(X) of a random variable X
(a function is concave if it always lies above any chord; log x and x

p
for x > 0 are examples

of concave functions) which states that

EfuðX Þg � ufEðX Þg (4:52)

we obtain, for arbitrary density functions fX ðxÞ and gðxÞwith the samemeanX and variance σ2,

E log2
gðX Þ
fX ðX Þ

� �
¼
ð1

1
fX ðxÞ log2

gðxÞ
fX ðxÞ dx

� log2 E
gðX Þ
fX ðX Þ
� �

¼ log2

ð1

1
fX ðxÞ gðxÞfX ðxÞ dx

� log2

ð1

1
gðxÞ dx ¼ log2 1 ¼ 0

(4:53)

Hence, the upper bound of the differential entropy h(X) of the random variable X with
arbitrary density function fX ðxÞ is given by

hðX Þ ¼ �
ð1

1
fX ðxÞ log2fX ðxÞ dx � �

ð1

1
fX ðxÞ log2gðxÞ dx (4:54)

Since the density function gðxÞ is arbitrary we can choose it to be a Gaussian density
function with mean X and variance σ2 as those of fX ðxÞ. Therefore, using (4.50) we have

hðX Þ � �
ð1

1
fX ðxÞ log2

1

2π
p

σ
e ðx X Þ2=2σ2

� �
dx

� 1

2
log2 2πeσ

2

(4:55)

The right-hand side of the above inequality is the differential entropy of a Gaussian random
variable with variance σ2. Thus the Gaussian random variable attains the largest differential
entropy. In summary we have

maxEfðX X Þ2g¼ σ2 hðX Þ ¼ 1

2
log2 2πeσ

2 (4:56)

The above result can be generalized to the case of a random vector Xwith iid components as
follows:

maxKhðXÞ ¼ n
2
log2 2πeσ

2 (4:57)

whereK ¼ EfðX � XÞt ðX � XÞg ¼ σ2In is the covariance matrix of X, and In is the n� n
identity matrix.
■

Mutual information and channel capacity

Using the concept of differential entropy we can extend the definition ofmutual information
between two discrete random variables to two continuous random variables.
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Definition 4.9 The mutual information I(X,Y) between two continuous random variables X
and Y with a given joint density function fXY ðx; yÞ ¼ fY jX ðyjxÞfX ðxÞ ¼ fX jY ðxjyÞfY ðyÞ, is
defined as

IðX ; Y Þ ¼
ð1

1

ð1

1
fXY ðx; yÞ log2

fXY ðx; yÞ
fX ðxÞfY ðyÞ dx dy

¼
ð1

1

ð1

1
fXY ðx; yÞ log2

fY jX ðyjxÞ
fY ðyÞ dx dy

¼
ð1

1

ð1

1
fXY ðx; yÞ log2

fX jY ðxjyÞ
fX ðxÞ dx dy

(4:58)

Definition 4.10 Let X and Y be two continuous random variables with the joint
density function fXY ðx; yÞ. The conditional differential entropies h(X|Y) and h(Y|X) are
defined as

hðX jY Þ ¼ �
ð1

1
fY ðyÞ

ð1

1
fX jY ðxjyÞ log2 fX jY ðxjyÞ dx dy

¼ �
ð1

1

ð1

1
fXY ðx; yÞ log2 fX jY ðxjyÞ dx dy

(4:59)

and

hðY jX Þ ¼ �
ð1

1
fX ðxÞ

ð1

1
fY jX ðyjxÞ log2 fY jX ðyjxÞ dx dy

¼ �
ð1

1

ð1

1
fXY ðx; yÞ log2 fY jX ðyjxÞ dx dy

(4:60)

From the above definitions we obtain the mutual information in terms of the differential
entropies as follows:

IðX ; Y Þ ¼ hðX Þ � hðX jY Þ ¼ hðY Þ � hðY jX Þ (4:61)

Definition 4.11 The information capacity of a Gaussian channel X = S + N with S ¼ 0 and
power constraint EðS2Þ � P and independent noise Nð0; σ2Þ in bits/transmission (bits/
channel use) is defined as

C ¼ maxEðS2Þ�PIðS;XÞ ¼ 1
2
log2ð1þ SNRÞ (4:62)

where SNR ¼ P=σ2 is the signal to noise ratio.
Similarly, the information capacity of a vector Gaussian channelX ¼ S þN , where S is

an n-dimensional random vector with independent zero mean components, and variance
EðS2i Þ ¼ Pi, i = 1,2, . . . , n, such that

Pn
i¼1 Pi ¼ P, and noise vector N whose components
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are independent zero mean Gaussian random variables, and variance σ2i , i = 1,2, . . . , n, is
given in bits/vector transmission (bits/vector channel use) as

C ¼ maxEðSS 0Þ�P IðS;XÞ ¼ maxEðSS 0Þ�P

Xn

i¼1

1
2
log2ð1þ SNRiÞ (4:63)

where SNRi ¼ Pi=σ2i and
Pn

i¼1 Pi ¼ P.
The calculation of the channel capacity follows directly from the definition of mutual

information. We have

IðS;X Þ ¼ hðX Þ � hðX jSÞ
¼ hðX Þ � hðS þ N jSÞ
¼ hðX Þ � hðN jSÞ
¼ hðX Þ � hðNÞ

¼ hðX Þ � 1

2
log2 2πeσ

2

(4:64)

Furthermore, EðX 2Þ ¼ EfðS þ NÞ2g ¼ EðS2 þ 2SN þ N 2Þ � P þ σ2 and hence the
entropy of X is upper bounded by the entropy of a Gaussian random variable with variance
P þ σ2, which is 1

2 log2 2πeðP þ σ2Þ. Therefore, we obtain

IðS;X Þ � 1

2
log2 1þ P

σ2

� �
¼ 1

2
log2 1þ SNRð Þ (4:65)

The information capacity of the Gaussian channel is the maximum of I(S, X) and is achieved
when input S is a Gaussian random variable with zero mean and variance P.

The result for a vector Gaussian channel can be investigated via the constraint optimiza-
tion problem, which for this case can be solved using Lagrange multipliers. Consider the
Lagrangian

Lðl;P1; :::;PnÞ ¼
Xn

i¼1

1

2
log2 1þ Pi

σ2i

� �
� l

Xn

i¼1

Pi (4:66)

where l is the Lagrange multiplier. The Kuhn–Tucker condition for the optimality of a
power allocation is given by

∂L
∂Pi

¼ 0 if Pi4 0
� 0 if Pi ¼ 0

�
(4:67)

And hence the power constraint optimization problem yields the following power
allocation:

Pi ¼ max 0;
1
2l

� σ2i

� �
(4:68)

where the Lagrange multiplier is selected such that
Pn

i¼1 Pi ¼ P.
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In the special case where the noise vector has iid components with zero mean and
common variance σ2, the power allocation strategy allocates equal signal power P to each
subchannel, that is, P ¼ P=n. Therefore,

C ¼ maxEðSStÞ�PIðS;XÞ ¼ n
2
log2ð1þ SNRÞ (4:69)

where SNR ¼ P=nσ2 ¼ P=σ2 is the subchannel signal-to-noise ratio. As expected, the
information capacity of a vector Gaussian channel with iid noise is n times its subchannel
capacity. The analysis of a vector Gaussian channel in this case is identical to that of a scalar
Gaussian channel.

Example 4.9 Vector Gaussian channel and water-filling strategy
Let us consider the case of a vector Gaussian channel consisting of n parallel Gaussian
subchannels. One example of this is orthogonal frequency division multiplexing (OFDM),
which is employed in the popular IEEE 802.11a,g and 802.16e standards. OFDM employs n
orthogonal subcarriers separated by the subcarrier symbol rate. In this case a symbol
transmitted by a subcarrier can be represented by a component of the input Gaussian vector S.
Figure 4.7 plots the noise power for each subchannel to illustrate the power allocation
strategy to achieve the channel capacity. The total signal power and noise power in each
subchannel is set at 1=2l. Starting with the subchannel with the lowest noise power, allocate
the signal power to reach this level, and move on to the subchannel with the next lowest
noise power until all subchannels are allocated with power from P. If the noise power is
above 1=2l allocate no signal power. Thus, strong subchannels are allocated more signal
power than weaker subchannels to take advantage of better subchannel conditions, with
none for very poor subchannels since they convey almost no information. This power
allocation is similar to filling a vessel with water and is referred to as the water filling
strategy. The water level is 1=2l and the depth of the water in a subchannel is its signal
power.

P4

1 Subchannel

P2

P3

P9 = 0

P7 = 0
P1 = 0

2σi

1
2λ

2 3 4 5 6 7 8 9

Figure 4.7 Water filling strategy.
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For numerical illustration consider the case of three subchannels with noise powers
σ21 ¼ 5; σ22 ¼ 1; σ23 ¼ 8 power units. The total signal power for allocating to the three
subchannels is P ¼ 10 power units. We have

P1 ¼ max 0;
1
2l

� σ21

� �
¼ max 0;

1
2l

� 5
� �

P2 ¼ max 0;
1
2l

� σ22

� �
¼ max 0;

1
2l

� 1
� �

P3 ¼ max 0;
1
2l

� σ23

� �
¼ max 0;

1
2l

� 8
� �

(4:70)

subject to
Pn

i¼1 Pi ¼ P ¼ 10. Solving for the subchannel signal power we obtain
P1 ¼ 3; P2 ¼ 7, and P3 ¼ 0 with 1=2l ¼ 8.

Using the above background fundamentals we arrive at the following information
capacity theorem for a Gaussian channel with a power constraint.
■

Theorem 4.12 (Gaussian channel capacity theorem) The information capacity of a
Gaussian channel with independent noise Nð0; σ2Þ and power constraint P in bits/trans
mission is

C ¼ 1

2
log2 1þ P

σ2

� �
¼ 1

2
log2ð1þ SNRÞ (4:71)

For a rate less than C, there exists a coding system such that the code words can be
transmitted over the channel with an arbitrarily small frequency of errors.
■

Example 4.10 Sphere packing bound
The sphere packing bound is a simple method to calculate the information capacity of a
Gaussian channel with independent noise Nð0; σ2Þ and power constraint P. Consider a code
with equally likely code words long enough to average out the errors. Each code word is
represented by an n dimensional vector S whose components have a common mean-square
value P. Each reception represented by a component of a received vectorX has a mean-square
value P þ σ2. All received vectors X have a mean-square value nðP þ σ2Þ and lie within an
n dimensional sphere of radius nðP þ σ2Þp

. Each received vector is distributed around its
mean S and variance equal to the variance of the noise vector N, which is nσ2. The decoding
spheres of all received vectors X have a radius equal to nσ2

p
. If a received vector X falls

within its decoding sphere centered on the transmitted vector S there would be no error, and
this happens with high probability with long codewords. Otherwise, if the received vector falls
outside its decoding sphere, there would be an error, and this happens with low probability.

The question is how many decoding spheres can be packed within a sphere of radius
nðP þ σ2Þp

. Since each decoding sphere is associated with a code word, the more
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decoding spheres that can be packed within the larger sphere, the more code words that can
be sent and the higher the channel capacity. The volume of an n dimensional sphere is
proportional to the nth power of its radius. Thus, the maximum number of decoding spheres
that can be packed into the receiving sphere is at most equal to

½nðP þ σ2Þ�n=2
½nσ2�n=2

¼ 1þ P

σ2

� �n=2
¼ 2

n
2 log2 1þP=σ2ð Þ (4:72)

This number is also the maximum number of code words that can be sent. Hence, the
number of bits that can be reliably sent over the Gaussian channel per code word is at most
n
2 log2ð1þ P=σ2Þ, and the number of bits per transmission is 1

2 log2ð1þ P=σ2Þ.
■

Example 4.11 Conversion of a Gaussian channel to a discrete channel
A Gaussian channel with arbitrary discrete input S can be converted into a discrete channel if
the mappings are known (Figure 4.6). Consider the case of a Gaussian channel where PSK
signaling is employed with bits 0 and 1 represented by two physical waveforms
A cos 2πfct and � A cos 2πfct, respectively. The mappings of bits 0 and 1 to the input
scalar random variable S are

0 : A cos 2πfct; 0 � t5T ! S ¼ P
p

, and
1 : �A cos 2πfct; 0 � t5T ! S ¼ � P

p
.

Here T represents the transmission time of a PSK waveform (bit time) and EðS2Þ ¼ P. The
bit error probability for optimum detection of PSK signals is given in Chapter 7 as
p ¼ Qð 2SNR

p Þ, where Qð � Þ is the Gaussian integral function defined in (3.164) and
repeated here for convenience:

Q að Þ ¼ 1

2π
p

ð1

a
e x2=2dx (4:73)

Thus, we can convert the Gaussian channel with PSK signaling into a binary symmetric
channel with crossover probability p and capacity C ¼ 1þ p log2 pþ ð1� pÞ log2ð1� pÞ.
The maximum transmission rate of a PSK signaling is 1 bit per transmission and this
happens when p = 0 (noiseless channel or infinite SNR). For numerical illustration consider
the case of SNR = 2.7 or 4.3 dB, which results in p = 10–2. The capacity of the BSC is C =
0.919 bits. For the same SNR the information capacity of a Gaussian channel with Gaussian
input is given by C ¼ 1

2 log2ð1þ SNRÞ ¼ 1
2 log2ð1þ 2:7Þ ¼ 0:94 bits. Thus, at p = 10–2, the

capacity of a BSC is about 3% below that of a Gaussian channel with Gaussian input.
Now let us consider the case of SNR = 9.1 or 9.6 dB. This results in a PSKbit error probability

of p= 10–5. The information capacity of the BSC is very close to 1 bit/transmission. On the other
hand, to achieve the information capacity of 1 bit/transmission, the Gaussian channel with
Gaussian input requires SNR = 3 or 4.8 dB. Thus, there is a potential power gain of 9.5�4.8 =
4.7 dB for communication over the BSC at 1 bit/transmission at a bit error rate of 10–5.
■
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Bandlimited Gaussian channel capacity

So far the study of the information capacity of both discrete and Gaussian channels makes no
mention of the channel bandwidth. In the physical world all channels are almost bandlimited
and therefore the transmission of physical waveforms over such channels must comply with
this spectrum constraint. Note that a waveform that is strictly bandlimited cannot be time-
limited, although most of them are almost time-limited; that is, most of its energy is confined
within a finite duration of time good enough for practical applications.

Suppose the channel is bandlimited to a bandwidth designated as B (with units in Hz).
According to the sampling theorem, any physical waveform that complies with this band-
width constraint can be uniquely represented in any time interval T seconds by no more than
2BT samples taken every 1/2B seconds apart. This is the case because the Nyquist sampling
rate for a bandlimited waveform is 2B samples/second. Furthermore, if the Gaussian noise
has constant power spectral density (white noise), the noise samples that accompany the
waveform samples are iid Gaussian samples. The information capacity for a bandlimited
Gaussian channel is therefore given by

C ¼ 1

2
log2 1þ P

σ2

� �
¼ 1

2
log2ð1þ SNRÞ bits=sample (4:74)

Since there are 2B samples each second, the capacity can be expressed in bits/second as follows:

C ¼ B log2 1þ P

σ2

� �
¼ B log2ð1þ SNRÞ bits=second (4:75)

Gaussian channel with discrete inputs

The information capacity of a Gaussian channel was achieved with Gaussian inputs.
Suppose we restrict the channel inputs to a finite set. This is the case of digital signaling
where a set ofM distinct waveforms represents a set ofM symbols. The channel outputs are
still continuous random variables because noise is Gaussian. Obviously, the channel
capacity is reduced by putting a restriction on the channel inputs. But if the reduction is
small then the choice is justifiable especially when the coding scheme is less complex. For
digital signals such as those discussed in Chapters 2 and 6, the signal points in their signal
space represent the channel discrete inputs. Let the set of L dimensional signal vectors be
fsi ¼ ðsi1; si2; :::; siLÞ; i ¼ 1; 2; :::;Mg and let their distribution be pi; i ¼ 1; 2; :::;M : By
using a modified version of (4.58), the capacity of a vector Gaussian channel X ¼ si þN
where N ¼ Nð0; σ2Þ, with the above restriction of the channel inputs, is given by

C ¼ max
pi

XM

i¼1

pi

ð
fX jsi ðxjsiÞ log2

fX jsiðxjsiÞ
fXðxÞ dx

¼ max
pi

XM

i¼1

pi

ð
fX jsi ðxjsiÞ log2

fX jsiðxjsiÞ
PM

j¼1
pjfXjsjðxjsjÞ

dx
(4:76)
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where the integral is an L-fold integral and the L-dimensional Gaussian density function
fX jsiðxjsiÞ is

fX jsiðxjsiÞ ¼
1

2π
p

σ
� 	L e

1
2σ2

PL

k 1
xk sikð Þ2

¼ 1

2π
p

σ
� 	L e

kx sik2=2σ2 (4:77)

For digital communications all symbols are equally likely, therefore the signal vector
distribution pi; i ¼ 1; 2; :::;M , is constrained to pi ¼ 1=M ; i ¼ 1; 2; :::;M . Thus the chan-
nel capacity given a set of si; i ¼ 1:2; :::;M is

C ¼
XM

i¼1

1

M

ð
fXjsiðxjsiÞ log2

fX jsiðxjsiÞ
PM

j¼1
pjfXjsjðxjsjÞ

dx

¼
XM

i¼1

1

M

ð
1

2π
p

σ
� 	L e

kx sik2=2σ2 log2
e kx sik2=2σ2

M 1
PM

j¼1
e kx sjk2=2σ2

dx

(4:78)

To simplify the integration we make the following transformation of integration variables.
Letting vi ¼ si=σ and y ¼ ðx� siÞ=σ, we have

C ¼
XM

i¼1

1

M

ð
1

2π
p� 	L e

kyk2=2 log2
e kyk2=2

M 1
PM

j¼1
e kyþvi vjk2=2

dy

¼ log2 M �
XM

i¼1

1

M

ð
1

2π
p� 	L e

kyk2=2 log2
XM

j¼1

e kyþvi vjk2=2ekyk
2=2 dy

(4:79)

Since yþ vi � vj


 

2¼ vi � vj



 

2þ2 vi � vj
� �tyþ yk k2, we obtain

C ¼ log2 M �
XM

i¼1

1

M

ð
1

2π
p� 	L e

kyk2=2 log2
XM

j¼1

e kyþvi vjk2=2ekyk
2=2 dy

¼ log2 M �
XM

i¼1

1

M

ð
1

2π
p� 	L e

kyk2=2 log2
XM

j¼1

e kvi vjk2=2 ðvi vjÞty dy
(4:80)

For one-dimensional (L = 1) signal vectors such as PSK and ASK and two-dimensional (L =
2) signal vectors such as MPSK and MQAM (Chapter 6) we note that the average energy
per dimension is ð1=LMÞPM

i¼1 ksik2, and the noise variance per dimension is σ2, therefore
the average signal to noise ratio per dimension is SNR ¼ ð1=LMÞPM

i¼1 ksi=σk2 ¼
ð1=LMÞPM

i¼1 kvik2. Thus, the channel capacity for these digital signals can be calculated
as a function of the average signal to noise ratio per dimension. For a white Gaussian noise
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channel with power spectral density N0=2, the variance of a component of the noise vectorN
is σ2 ¼ N0=2 (Chapter 7). The squared length (squared norm) of the signal vector si is the
signal energy Ei, that is, Ei ¼ ksik2. This is the result that arises from the use of orthonormal
basis functions to obtain the signal vectors (Chapters 2 and 6). Furthermore, the noise vector
provides sufficient statistics for the detection of signal vectors (Chapter 3). Hence, the
average signal to noise ratio per dimension is SNR ¼ 2Es=LN0, where the average signal
(symbol) energy is Es and is given by Es ¼ ð1=MÞPM

i¼1 Ei. Since vi ¼ si=σ, we get
kvik2 ¼ 2Ei=N0. The normalized signal vector vi can therefore be expressed in term of the
average symbol energy to noise density ratio Es=N0 as vi ¼ Es=N0

p
ci, where ci is a fixed

constant vector characterizing a given signal set. The channel capacity can then be calcu-
lated as a function of Es=N0 and is shown in Figure 4.8 for some digital modulation
techniques [12,14,28]. These are two-dimensional (L = 2) signaling techniques, therefore
the integral in (4.80) is a double-integral. The capacity of the vector Gaussian channel is
C ¼ ðL=2Þ log2ð1þ SNRÞ ¼ log2ð1þ SNRÞ bits/symbol. The average signal to noise
ratio per dimension is SNR ¼ Es=N0. The potential coding gain (reduction in SNR at
the same bit error probability) is about 7.5–8.5 dB if channel coding is employed. For
example, QPSK requires 13.5 dB in SNR to achieve a bit error probability of 10 6 and a
capacity of 2 bits/symbol. On the other hand, the channel capacity theorem says that the
required SNR is only 5 dB for communication at 2 bits/symbol. Furthermore, channel coding
does not need to increase the bandwidth as with repetition codes or Hamming code. Instead,
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Figure 4.8 Capacity of digital modulation techniques versus the Shannon limit log2ð1þ SNRÞ; where SNR ¼ Es=N0.
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one can employ an expand signal space, for example, from 16QAM to 64QAM, to
compensate for the increase in the channel bit rate due to the redundancy of the code. The
use of 64QAM (capacity is 6 bits/symbol) reduces the bandwidth by a factor of 6/4 as
compared to 16QAM (capacity is 4 bits/symbol). This fact permits the use of codes with rate
4/6 with 64QAM to achieve the same bandwidth as uncoded 16QAM (thus, both uncoded
16QAM and coded 64QAM signals provide a capacity of 4 bits/symbol). Furthermore, at
4 bits/symbol, 64QAM requires about 8 dB less in SNR as compared to 16QAM, thus a
potential coding gain of 8 dB can be achieved with codes of rate 4/6.

4.5 Channel coding with block codes

Many types of error-correcting codes have been discovered to realize the coding gain
promised by the Shannon channel capacity. In this section we provide the general descrip-
tion of some popular linear block codes. The famous historic Hamming code has been
discussed previously. An (n, k) linear block code with k information bits and n k parity-
check bits has k linearly independent code words, and the remaining 2k � k code words are
linear combinations of these k code words. A code word can be generated by the k � n
generator matrix G and the 1� k message vector i via the following operation:

c ¼ iG (4:81)

The generator matrixG can be put into the following forms which produce linear systematic
block codes:

G ¼ Ik P½ � or G ¼ P I k
� �

(4:82)

The matrix Ik is the k � k identity matrix. For example, the following generator matrices can
produce the set of 16 Hamming code words:

G ¼
1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

2

664

3

775and G ¼
1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

2

664

3

775 (4:83)

Note that for systematic codes generated by G ¼ P I k
� �

the last k bits of the code words
are identical to the information bits. On the other hand, if G ¼ Ik P½ � is used, the first k
bits of the code words are identical to the information bits. Note that the rows of G are
linearly independent.

Associated with a generator matrix is an ðn� kÞ � n parity check matrix H that satisfies
the relationship

HGt ¼ 0 or GHt ¼ 0 (4:84)
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where 0 is a null matrix. For a systematic code the parity-check matrix assumes the
following forms

H ¼ Pt I n k

� �
or H ¼ In k Pt½ � (4:85)

It is seen that c is a code word if and only if the following relationship holds:

cHt ¼ 0 (4:86)

The parity-check matrices for the above generator matrices are given by

H ¼
1 1 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 1 0 0 1

2

4

3

5 and H ¼
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

2

4

3

5 (4:87)

The symmetry relationship in (4.84) shows that H can be used as a generator matrix for an
ðn; n� kÞ linear block code and G as a parity-check matrix. The rows of H are linearly
independent. The parity-check matrix therefore performs n – k parity checks on n bits of the
received word.

The decoding of simple block codes can be carried out via syndrome decoding. Let the
code word c be transmitted over a noisy channel, and hence the received word rmay contain
errors as follows:

r ¼ cþ e (4:88)

where e is the error word or error pattern, which is the zero vector when there is no error.
The syndrome vector s is defined as

s ¼ rHt

¼ ðcþ eÞHt

¼ eHt

(4:89)

When there is no error, the syndrome is a zero vector. For block codes that can correct a
single error in the code words like Hamming codes, the syndrome is the column of H that
corresponds to the error position in the error vector e. Because all columns ofH are distinct,
it is simple to locate the column ofH that is identical to the syndrome s and correct the error.

Example 4.12 Syndrome decoding of (7,4) Hamming code
Let c ¼ ð0001011Þ be the transmitted code word (first G of (4.83)) and r ¼ ð0101011Þ be
the received word. The syndrome is given by (using the first H of (4.87))

s ¼ ð0101011Þ

1 0 1
1 1 1
1 1 0
0 1 1
1 0 0
0 1 0
0 0 1

2

666666664

3

777777775

¼ ð111Þ (4:90)
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This syndromematches the second column ofH and indicates an error in the second element
of the vector r, which is 1 and can be corrected to 0.
■

In general, syndrome decoding is not effective for long linear block codes with multiple
errors correcting capability. In the following discussion we present some important linear
block codes.

Cyclic codes

A linear block code is cyclic if a cyclic shift of a code word is also a code word. For example,
if ðc0; c1; :::; cn 1Þ is a code word, then ðcn 1; c0; :::; cn 2Þ, . . . , ðc1; c2; :::; cn 1; c0Þ are also
code words. A cyclic linear block code (n, k) is characterized by its generator polynomial
gðxÞ ¼ 1þ g1X þ � � � þ gn k 1Xn k 1 þ Xn k , which yields the following generator
matrix:

G ¼

1 g1 g2 ::: gn k 1 1 0 0 0 ::: 0
0 1 g1 g2 ::: gn k 1 1 0 0 ::: 0
0 0 1 g1 g2 ::: gn k 1 1 0 ::: 0

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 ::: 0 1 g1 g2 ::: gn k 2 gn k 1 1

2

666664

3

777775
(4:91)

Note that the generator matrix of a cyclic code is not in systematic form. For example, the
(7,4) cyclic Hamming code with the generator polynomial gðxÞ ¼ 1þ X þ X 3 is given by

G ¼
1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

2

664

3

775 (4:92)

Another generator polynomial for the (7,4) cyclic Hamming code is gðxÞ ¼ 1þ X 2 þ X 3.

Golay codes

The Golay code is a (23,12) cyclic code with an error-correcting capability of t = 3 and a
minimum Hamming distance dmin ¼ 7. The two generator polynomials for Golay codes are
gðxÞ ¼ 1þ X 2 þ X 4 þ X 5 þ X 6 þ X 10 þ X 11, and gðxÞ ¼ 1þ X þ X 5 þ X 6 þ X 7þ
X 9 þ X 11.

Bose–Chaudhuri–Hocquenghem (BCH) codes

The BCH codes, a generalization of the Hamming code, are cyclic codes with the following
description. For positive integers m � 3 and t52m 1 the code structure is summarized as
follows:
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Code word length n ¼ 2m � 1

Parity-check block n� k � mt

Error-correcting capability t

Minimum Hamming distance dmin � 2t þ 1

Reed–Solomon (RS) codes

The RS codes are non-binary BCH codes. The encoding is performed on symbols in GF(2m)
instead of bits. There are m bits per symbol. An (n,k) RS code word has k information
symbols in a block of n symbols. Thus a code word has a total of mn coded bits. A t-error-
correcting RS code is characterized in symbols as follows:

Code word length n ¼ 2m � 1

Parity-check block n� k ¼ 2t

Error-correcting capability t

Minimum Hamming distance dmin ¼ 2t þ 1

Since RS codes can correct random symbol errors which are equivalent to random bursts of
m bit errors, RS codes are suitable for wireless applications in fading channels. The IEEE
802.16e employs RS (255,239) code with 8 bits/symbol in GF(28). The bit error probability
of an RS code is given by a modified form of (4.41) as follows:

Pe � 2m 1

2m � 1

Xn

i¼tþ1

iþ t

n
n
i

� �
pisð1� psÞn i (4:93)

where ps is the symbol error probability at the decoder input and 2m 1=ð2m � 1Þ is the
average number of bit errors per symbol error.

Example 4.13 Golay code for BSC
We wish to compare the bit error probabilities of uncoded and coded systems for BSC. For
illustrative purposes we use PSK as the transmitted signal (Chapter 7) and the corresponding
bit error probability for an AWGN channel isQð 2 SNR

p Þ, where SNR is the received signal-
to-noise ratio per bit. Assume that both uncoded and coded systems transmit with the same
power, the signal-to-noise ratio per bit for the coded system is reduced by the code rate r =
k/n relative to that of the uncoded system. This happens because the coded bit rate is 1/r times
the bit rate of the uncoded system. The transition probabilities of the BSC are taken to be
p ¼ pð0j1Þ ¼ pð1j0Þ ¼ Qð 2rSNR

p Þ. For Golay code we have r = 12/23. At SNR = 9.6 dB,
the bit error of the uncoded system is Pb ¼ Qð 18:24

p Þ ¼ 10 5. The transition probabilities
of the BSC are given by p ¼ pð0j1Þ ¼ pð1j0Þ ¼ Qð 2rSNR

p Þ ¼ 10 3. Applying (4.41) we
obtain the bit error probability of the coded system as

Pb;coded �
X23

i¼4

iþ 3

23
23
i

� �
ð10 3Þið1� 10 3Þ23 i ¼ 3� 10 9 (4:94)
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At this bit error probability an uncoded PSK system would require SNR = 12.3 dB. Thus a
coding gain of 12.3 – 9.6 = 2.7 dB is realized. Note that this coding gain is achieved at the
expense of bandwidth, which increases by a factor 1/r = 23/12 = 1.92.
■

Low-density parity-check (LDPC) codes

An LDPC code is a linear block code whose parity-check matrixH is a sparsematrix. LDPC
codes were first proposed by Robert G. Gallager and documented in [7,8]. Long LDPC
codes can approach the Shannon limit within a few tenths of a dB. A regular LDPC code
with block length n is defined by a parity-check matrix that has exactly wr ones in each row
and exactly wc ones in each column, where wc < wr < n. An irregular LDPC code does not
have the constant row and column weights. The rows of H are not necessarily linearly
independent and the code dimension is determined by the rank ofH. A detailed investigation
of LDPC codes will continue in Section 4.6.

Concatenated codes

To achieve the large error-correcting capability of a code with long block length, two shorter
codes connected in concatenation can be employed. The first code is the outer code ðno; koÞ
with code rate ro ¼ ko=no and the second code is the inner code ðni; kiÞ with code rate
ri ¼ ki=ni. For example, the outer code can be an RS code with ki-bit symbols. Each RS code
symbol is then encoded by the inner code to form an inner code word of length ni. The
overall code rate is r ¼ rori. The bit error probability of concatenated codes can be evaluated
by first calculating the bit error probability of the inner code using (4.41), for example, then
finding the bit error probability of the outer code using (4.93).

Example 4.14 Concatenated RS and Hamming codes
Consider the case where the inner code is the (7,4) Hamming code with ti = 1 error-correcting
capability. With ki ¼ 4 we can select the RS code with block length
no ¼ 2m � 1 ¼ 2ki � 1 ¼ 15. The information block for the RS code is ko ¼ no � 2to,
where to is the error-correcting capability. For to = 3, we get the (15,9) RS code. Let us consider
a BSC whose transition probabilities are taken to be p ¼ pð0j1Þ ¼ pð1j0Þ ¼ Qð 2rSNR

p Þ,
where SNR is the received signal-to-noise ratio per bit. Assume that both uncoded and coded
systems transmit with the same power, the signal-to-noise ratio per bit for the coded system is
reduced by the code rate r ¼ rori ¼ koki=noni ¼ 0:34 relative to that of the uncoded system.
At SNR = 9.6 dB, the bit error of the uncoded system is Pb ¼ Qð 18:24

p Þ ¼ 10 5. The
transition probabilities of the BSC are given by p ¼ Qð 2rSNR

p Þ ¼ 6� 10 3. First we
calculate the bit error probability of the inner Hamming code from (4.41). We have

Pb;H �
X7

i¼2

iþ 1

7
7
i

� �
pið1� pÞ7 i ¼ 3:2� 10 4 (4:95)
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The symbol error probability at the input of outer RS decoder is given by
ps ¼ 1� ð1� Pb:H Þki ¼ 1:3� 10 3. Applying (4.93) we obtain the coded bit error proba-
bility as follows:

Pe � 24 1

24 � 1

X15

i¼4

iþ 3

15
15
i

� �
pisð1� psÞ15 i ¼ 9� 10 10 (4:96)

At this bit error probability an uncoded PSK system would require SNR = 12.6 dB. Thus a
coding gain of 12.6 – 9.6 = 3 dB is realized. Note that this coding gain is achieved at the
expense of bandwidth, which increases by a factor 1/r = 2.92. The advantage is the ability of
the RS outer code to correct an error burst of up to 4 consecutive bits.
■

4.6 Low-density parity-check codes (LDPC)

After being dormant for some three decades LDPC codes were revived and found use in
several applications in digital video broadcasting via satellites (DVB-S). To achieve large
coding gains, codes with long block lengths are used. For example, block length of
16,200 bits and 64,800 bits were proposed for the second generation DVB-S2 (European
Telecommunications Standards Institute (ETSI)) with rates varying from 1=4 to 9=10. The
low-density property requires the parity-check matrix H to be sparse. For example, given
even n, the parity-check matrix H of dimension 1=2 n� n may have three 1s per column
(wc ¼ 3) and six 1s per row (wr ¼ 6). The parity-check matrix H can be chosen at random
[18] conditioned on these constraints to ensure, in the probabilistic sense, a good code. Also
the sparseness of H enables efficient decoding.

Example 4.14 Parity-check matrix of regular (10,5) LDPC code
The parity-check matrix of a regular LDPC code of length 10 is given below:

H ¼

1 1 1 1 0 0 0 0 0 0
1 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 1 1
0 1 0 0 0 1 0 1 0 1
0 0 0 1 1 0 0 1 1 0

2

66664

3

77775
(4:97)

■

Example 4.16 Parity-check matrix of regular (12,6) LDPC code
The parity-check matrix of a regular LDPC code of length 12 is given below:
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H ¼

1 1 1 0 0 1 1 0 0 0 1 0
1 1 1 1 1 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 0 1 1 1
1 0 0 1 0 0 0 1 1 1 0 1
0 1 0 1 1 0 1 1 1 0 0 0
0 0 1 0 1 1 0 0 1 1 1 0

2

6666664

3

7777775

(4:98)

■

Tanner graph

The Tanner graph [27] visually describes a block code via its parity-check matrix. Since the
parity-check matrix performs n – k parity checks on n bits of the received word, one can
represent the parity-check operation by two separate sets of nodes. The left set of nodes
consists of n bit nodes (circle), one node for each bit in the code word, with no direct
connection between any two bit nodes. The right set of nodes consists of n – k check nodes
(square), one node for each parity check, with no direct connection between any two check
nodes. The check nodes are connected to the bit nodes they check via branches, that is, the
check node i is connected to the bit node j if and only if hij ¼ 1. Thus, the n – k rows of
H specify the check nodes connections and the n columns of H specify the bit nodes
connections. The Tanner graph is a bipartite graph whose nodes are separated into two
distinct types with connections only between nodes of different types. Figure 4.9 shows the
Tanner graph of the regular LDPC code of (4.98).

Bit nodes Check nodes

Figure 4.9 Tanner graph of (12,6) LDPC Code.
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The cycle in a Tanner graph is a path that closes on itself. The shortest cycle of the
Tanner graph has four branches. Cycles degrade the performance of decoding algorithms
that are based on iterative techniques. The Tanner graph in Figure 4.9 has the shortest
cycle.

Message passing algorithm (MPA)

The decoding of LDPC is carried out by a general class of iterative algorithms commonly
referred to as message passing algorithms (MPA). The belief propagation algorithm (BPA)
proposed by Gallager [7,8] is a subclass of MPA. Another name used for MPA is the sum
product algorithm (SPA). The name MPA will be used in the subsequent discussion. For
each iteration of the algorithm, the messages (probability, likelihood ratio (LR), or ln-
likelihood ratio (LLR); all are also referred to as beliefs, but it is more practical to work
with LLR) are passed along the branches from bit nodes to check nodes and from check
nodes back to bit nodes. The message sent by a bit node i to a check node j is the belief that
i has a certain value given the observed value of i from the channel and all incoming
observables available to i from check nodes other than j. Thus, the message is extrinsic
information and is computed for each bit node/check node connection at each half-iteration.
On the other half-iteration, the message sent from a check node j to a message node i is the
belief that i has a certain value given all messages sent to j in the previous iteration from bit
nodes other than i. If at each iteration the incoming messages are independent (this is true if
the Tanner graph has no cycles) then the update beliefs can be correctly calculated.
Otherwise, the independence assumption is only true for up to the mth iteration, where m
is half the length of the shortest cycle. After that, messages circulate back on themselves in
other cycles. Simulations have shown that MPA is effective for LDPC with no length-4
cycles. In the following discussion we provide the definitions and calculations of messages
for the bit nodes.

Example 4.17 Conditional a-posteriori probability, likelihood ratio, and ln-likelihood ratio of
equiprobable binary random variable
The conditional a posteriori probabilities of an equiprobable binary random variable X
given the observed vector y ¼ ðy1 y2 � � � ynÞ of another random vector Y are denoted as
PrðX ¼ 0jyÞ and PrðX ¼ 1jyÞ. The conditional likelihood ratio (LR)LðX jyÞ of X is defined
via Bayes rule, PrðX ¼ ijyÞ ¼ fY jX ðyjX ¼ iÞPrðX ¼ iÞ=fYðyÞ; i ¼ 0; 1, as

LðX jyÞ ¼ PrðX ¼ 0jyÞ
PrðX ¼ 1jyÞ ¼

fY jX ðyjX ¼ 0Þ
fY jX ðyjX ¼ 1Þ (4:99)

Similarly, the conditional ln likelihood ratio (LLR) lnLðX jyÞ of X is defined as

lnLðX jyÞ ¼ ln
PrðX ¼ 0jyÞ
PrðX ¼ 1jyÞ (4:100)
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For binary communications, the binary random variable X is equiprobable. Furthermore, if
the components of the random vector Y are independent then we also have

lnLðX jyÞ ¼ ln
PrðX ¼ 0jyÞ
PrðX ¼ 1jyÞ

¼ ln

Qn

k¼1
PrðX ¼ 0jykÞ

Qn

k¼1
PrðX ¼ 1jykÞ

¼
Xn

k¼1

lnLðX jykÞ

(4:101)

■

Example 4.18 Binary symmetric channel
Consider a BSC with X 2 f0; 1g and Y 2 f0; 1g. The BSC transition probabilities are p and
1� p. The conditional probabilities are PrðX ¼ 0jY ¼ 0Þ ¼ PrðX ¼ 1jY ¼ 1Þ ¼ 1� p
and PrðX ¼ 0jY ¼ 1Þ ¼ PrðX ¼ 1jY ¼ 0Þ ¼ p. Therefore, the conditional LRs are

Lð0j0Þ ¼ 1� p

p

Lð0j1Þ ¼ p

1� p

(4:102)

Similarly, the conditional LLRs are given by

lnLð0j0Þ ¼ � lnLð0j1Þ ¼ lnð1� pÞ � ln p (4:103)
■

Example 4.19 Binary erasure channel
Consider a BEC with X 2 f0; 1g and Y 2 f0; 1;Eg. The transition probabilities of the BEC
are given by PrðY ¼ 0jX ¼ 0Þ ¼ PrðY ¼ 1jX ¼ 1Þ ¼ 1� p, and PrðY ¼ EjX ¼ 0Þ ¼
PrðY ¼ EjX ¼ 1Þ ¼ p. Therefore, the conditional probabilities are PrðX ¼ 0jY ¼ 0Þ ¼
PrðX ¼ 1jY ¼ 1Þ ¼ 1, PrðX ¼ 0jY ¼ 1Þ ¼ PrðX ¼ 1jY ¼ 0Þ ¼ 0, and PrðX ¼ 0jY ¼
EÞ ¼ PrðX ¼ 1jY ¼ EÞ ¼ 0:5. Therefore, the conditional LRs are

Lð0j0Þ ¼ 1; Lð0j1Þ ¼ 0; Lð0jEÞ ¼ 1 (4:104)

Similarly, the conditional LLRs are given by

lnLð0j0Þ ¼ 1; lnLð0j1Þ ¼ �1; lnLð0jEÞ ¼ 0 (4:105)
■
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Example 4.20 AWGN channel
Consider an AWGN channel with equiprobable input X 2 f�A; Ag, which is obtained from
the binary input [0,1] via the mapping 0 ! A and 1 ! �A, and the Gaussian output
Y ¼ X þ N , where N represents the Gaussian noise variable Nð0; σ2Þ. The conditional
probability of X is given by

PrðX ¼ xjyÞ ¼ fY jX ðyjxÞPrðX ¼ xÞ
fY ðyÞ (4:106)

The conditional Gaussian density function fY jX ðyjxÞ of the received variable Y can be
expressed as follows:

fY jX ðyjxÞ ¼ 1

2π
p

σ
e ðy xÞ2=2σ2 (4:107)

Therefore, the LR is given by

LðX jyÞ ¼ PrðX ¼ AjyÞ
PrðX ¼ �AjyÞ ¼

fY jX ðyjAÞ
fY jX ðyj � AÞ ¼

e ðy AÞ2=2σ2

e ðyþAÞ2=2σ2 ¼ e2Ay=σ
2

(4:108)

and consequently, we obtain the following LLR:

lnLðX jyÞ ¼ 2Ay

σ2
(4:109)

■

The messages for the check nodes are defined and calculated according to the parity-
check equation cHt ¼ 0. Each check node sums (modulo-2 addition) the bits from adjacent
bit nodes via the parity

g ¼ chtj ¼
Xn

i¼1

cihji ¼
Xn

i¼1

xi (4:110)

where xi ¼ cihji for a given column j ofHt. Obviously, the parity g ¼ 0, j = 1,2, . . . , n k if
and only if c is a code word. The message sent by a check node is the conditional LLR of g,
lnLðgjyÞ, given the observed vector y. Let the conditional LR of bit xi be defined as

LðxijyiÞ ¼ Prðxi ¼ 0jyiÞ
Prðxi ¼ 1jyiÞ ¼

Prðxi ¼ 0jyiÞ
1� Prðxi ¼ 0jyiÞ (4:111)

Therefore, the conditional probability Prðxi ¼ 0jyiÞ can be evaluated as follows:

Prðxi ¼ 0jyiÞ ¼ LðxijyiÞ
LðxijyiÞ þ 1

(4:112)
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Consequently we have

2Prðxi ¼ 0jyiÞ � 1 ¼ LðxijyiÞ � 1

LðxijyiÞ þ 1

¼ tanh
1

2
lnLðxijyiÞ

� � (4:113)

Furthermore, from (4.110) it is seen that the parity-check g is 0 when the number of ones in
the set of bits fxig is even and the parity-check g is 1 when the number of ones in fxig is odd.
If all bits xi are independent and occur with conditional probabilities Prðxi ¼ 0jyiÞ and
Prðxi ¼ 1jyiÞ, then the conditional probability Prðg ¼ 0jyÞ that the set of bits fxig contains
an even number of ones is given by [8]

Prðg ¼ 0jyÞ ¼ 1

2
þ 1

2

Yn

i¼1

2Prðxi ¼ 0jyiÞ � 1½ � (4:114)

The right-hand side of (4.114) can be verified via the following proof.

Proof Let 2Prðxi ¼ 0jyiÞ � 1 ¼ pi, i = 1, 2, then Prðxi ¼ 0jyiÞ ¼ ð1þ piÞ=2 and
Prðxi ¼ 1jyiÞ ¼ ð1� piÞ=2. We have

2Prðx1 þ x2 ¼ 0jy1; y2Þ � 1 ¼ 2Pr ðx1 ¼ 0; x2 ¼ 0jy1; y2Þ½
[ðx1 ¼ 1; x2 ¼ 1jy1; y2Þ� � 1

¼ 2 Prðx1 ¼ 0; x2 ¼ 0jy1; y2Þ½
þPrðx1 ¼ 1; x2 ¼ 1jy1; y2Þ� � 1

¼ 2Prðx1 ¼ 0jy1ÞPrðx2 ¼ 0jy2Þ
þ 2Prðx1 ¼ 1jy1ÞPrðx2 ¼ 1jy2Þ � 1

¼ 1

2
ð1þ p1Þð1þ p2Þ þ 1

2
ð1� p1Þð1� p2Þ � 1 ¼ p1p2

¼
Y2

i¼1

½2Prðxi ¼ 0jyiÞ � 1�

(4:115)
Similarly,

2Prðx1 þ x2 þ x3 ¼ 0jy1; y2; y3Þ � 1 ¼ 2Pr½ðx1 þ x2Þ þ x3 ¼ 0jy1; y2; y3� � 1

¼ ½2Prðx1 þ x2 ¼ 0jy1; y2Þ � 1�
� ½2Prðx3 ¼ 0jy3Þ � 1�

¼
Y3

i¼1

½2Prðxi ¼ 0jyiÞ � 1�

(4:116)

Equation (4.114) is proved by the repeated application of this result.
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Substituting (4.113) into (4.114) we obtain

2Prðg ¼ 0jyÞ � 1 ¼
Yn

i¼1

2Prðxi ¼ 0jyiÞ � 1½ �

¼
Yn

i¼1

tanh
1

2
lnLðxijyiÞ

� � (4:117)

The LR and LLR of the parity-check g are given respectively by

LðgjyÞ ¼ Prðg ¼ 0jyÞ
Prðg ¼ 1jyÞ

¼
1þ Q

n

i¼1
tanh 1

2 lnLðxijyiÞ
� 	

1� Q
n

i¼1
tanh 1

2 lnLðxijyiÞ
� 	

(4:118)

and

lnLðgjyÞ ¼ ln
1þ Q

n

i¼1
tanh 1

2 lnLðxijyiÞ
� 	

1� Q
n

i¼1
tanh 1

2 lnLðxijyiÞ
� 	

2

664

3

775 (4:119)

The implementation ofMPA is based on the recursive calculations of (4.101) for the bit node
LLRmessage and (4.119) for the check node LLRmessage. DenotemðlÞ

ij as the message sent
by the bit node i to check node j at the lth iteration, and m̂ðlÞ

ji as the message sent by the check
node j to bit node i at the lth iteration. Note that for iteration l = 0, that is, the initialization, the
message mðlÞ

ij is independent of all the check nodes and is denoted as mð0Þ
i . For example,

mð0Þ
i ¼ 2Ayi=σ2, i = 1,2, . . . , n for an AWGN channel and mð0Þ

i ¼ lnð1� pÞ � ln p, i =
1,2, . . . , n for a BSC. The MPA is summarized as follows:

1. Initialization
* m̂ð0Þ

ji ¼ 0 for all i and j.

* mð0Þ
ij ¼ mð0Þ

i for all i.
2. Iteration (l ¼ 1; 2; :::; lmax)

* Check node update via (4.119)

m̂ðlÞ
ji ¼ ln

1þQk2Bjni tanh mðl 1Þ
kj =2

 �

1�Qk2Bjni tanh mðl 1Þ
kj =2

 �

2

4

3

5 (4:120)

where Bj is the set of bit nodes adjacent to check node j and Bjni is the set of bit nodes
adjacent to check node j excluding bit node i.

* Bit node update via (4.101)

mðlÞ
ij ¼ mð0Þ

i þ
X

k2Cin j m̂
ðlÞ
ki (4:121)
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where Ci is the set of check nodes adjacent to bit node i and Cin j is the set of check
nodes adjacent to bit node i excluding check node j.

* For i = 1,2, . . . , n set ĉi ¼ 0 if mðlÞ
ij � 0

1 if mðlÞ
ij 50

(

* Stop when ĉHt ¼ 0 or l ¼ lmax.

The check node message requires the calculation of a product of tanh-terms. From the
implementation point of view addition is preferable to multiplication. Therefore, it would be
advantageous to simplify the LLR of a check node. Returning to (4.118) and solving for the
product of tanh-terms we get

Yn

i¼1

tanh
1

2
lnLðxijyiÞ

� �
¼ LðgjyÞ � 1

LðgjyÞ þ 1

¼ elnLðgjyÞ � 1

elnLðgjyÞ þ 1

¼ tanh
1

2
lnLðgjyÞ

� �

(4:122)

Consequently we have

lnLðgjyÞ ¼ 2 tanh 1
Yn

i¼1

tanh
1

2
lnLðxijyiÞ

� �
(4:123)

Consider the following identity:

tanh
1

2
lnLðxijyiÞ

� �
¼ sign lnLðxijyiÞ½ �½ � e

lnLðxijyiÞj j � 1

e lnLðxijyiÞj j þ 1

¼ sign lnLðxijyiÞ½ �½ � tanh 1

2
lnLðxijyiÞj j

� � (4:124)

This identity allows (4.123) to be written as follows:

lnLðgjyÞ ¼ 2 tanh 1
Yn

i¼1

sign lnLðxijyiÞ½ �
" #

Yn

i¼1

tanh
1

2
lnLðxijyiÞj j

� �" #( )

¼
Yn

i¼1

sign lnLðxijyiÞ½ �
" #

2 tanh 1 ln 1 ln
Yn

i¼1

tanh
1

2
lnLðxijyiÞj j

� �" #

¼
Yn

i¼1

sign lnLðxijyiÞ½ �
" #

2 tanh 1 ln 1
Xn

i¼1

ln tanh
1

2
lnLðxijyiÞj j

� �� �" #

(4:125)

Example 4.21 A self-inverse function
Consider the function f ðzÞ ¼ � ln½tanhðz=2Þ�. For z > 0, f ðzÞis positive and monotonically
decreasing and f ðzÞ is its own inverse, that is, f ½f ðzÞ� ¼ z. This can be verified as follows:

159 4.6 Low-density parity-check codes



f ðzÞ ¼ � ln½tanhðz=2Þ� ¼ � ln
ez � 1

ez þ 1

� �
¼ ln

ez þ 1

ez � 1

� �
(4:126)

Solving for z in terms of f we get

z ¼ 2 tanh 1 ln 1½�f ðzÞ�� �

¼ ln
e f ðzÞ þ 1

e f ðzÞ � 1

� �

¼ f ½ f ðzÞ�

(4:127)

■

Using the above result in (4.125) we obtain

lnLðgjyÞ ¼
Yn

i¼1

sign lnLðxijyiÞ½ �
" #

f
Xn

i¼1

f lnLðxijyiÞj jð Þ
 !" #

(4:128)

Applying this result to (4.120) gives an alternative method of updating the check node
message, as follows:

m̂ðlÞ
ji ¼

Y
k2Bjni sign mðl 1Þ

kj

h ih i
f
X

k2Bjni f mðl 1Þ
kj

���
���

 � �h i
(4:129)

Syndrome decoding discussed in Section 4.5 is the first iteration of MPA. By recursively
updating the LLRs, the decoder improves the detection probability of a code word. MPA is a
soft decoding technique and achieves a higher coding gain (about 2 dB) at low bit error
probability than predicted by (4.41) for a hard decoder.

4.7 Channel coding with convolutional codes

Convolutional codes are linear trellis codes whose code words can be described by a labeled
trellis and whose encoders are finite-state machines. The encoder of a rate r = k/n convolu-
tional code produces n output coded bits from k input information bits. A state depends only
on a finite number of past information bits. For a code with 2v states the number of past
information bits that determine a present state are between v and kv bits. The parameter K =
v + 1 is called the constraint length of the convolutional code. Typical code rates are between
1/3 and 7/8 and constraint lengths between 2 and 8. The terminology “convolutional” refers to
the fact that the output coded bits are obtained by the convolution of the input information bits
with the encoder generator sequences (impulse responses). For illustration let us consider the
rate 1=2 convolutional encoder in Figure 4.10. Given the input sequence i = (100 . . . ), the output
sequences are the following generator sequences g1 ¼ ð10100:::Þ and g2 ¼ ð11100:::Þ. The
encoding operations are c1 ¼ i 	 g1 and c2 ¼ i 	 g2 to yield the coded bits c1;l ¼ il þ il 2 and
c2;l ¼ il þ il 1 þ il 2. The two output sequences are multiplexed (parallel-to-serial conver-
sion) into a single sequence c ¼ ðc1;0 c2;0 c1;1 c2;1 c1;2 c2;2:::Þ for transmission.
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The convolutional encoder can also be described by its generator polynomials that
represent the connection between the shift registers (SR) and the modulo-2 adders. For
example, the two generator polynomials for the convolutional code in Figure 4.10 are
g1ðxÞ ¼ x2 þ 1 and g2ðxÞ ¼ x2 þ xþ 1. They represent the upper and lower connections,
respectively, where the lowest-order coefficients represent the connection to the leftmost SR
stage, and the highest-order coefficients represent the connection to the rightmost SR stage.
Given an input sequence represented by the polynomial i(x), the two output code sequences
are c1ðxÞ ¼ iðxÞg1ðxÞ and c2ðxÞ ¼ iðxÞg2ðxÞ, where the polynomial multiplication is carried
out in GF(2).

The number of states of the rate k/n convolutional encoder is 2v, where v is given by
v ¼Pk

i¼1 maxj½degree gijðxÞ�, j =1, 2, . . . , n, and gijðxÞ are the generator polynomials. The
constraint length is K = v + 1. The code polynomial vector is cðxÞ ¼ iðxÞGðxÞ, where
cðxÞ ¼ ½c1ðxÞ c2ðxÞ � � � cnðxÞ�, iðxÞ ¼ ½i1ðxÞ i2ðxÞ � � � ikðxÞ�, and GðxÞ ¼ ½gijðxÞ� is the
k � n generator polynomial matrix.

Example 4.22 Rate 1=2 convolutional code with constraint length K = 7
The IEEE 802.11a-g employs a rate 1=2 convolutional code with 2v = 64 states. The constraint
length is K = v + 1 = 7. The generator polynomials are given by g1ðxÞ ¼ x6þ x5 þ x3 þ
x2 þ 1 and g2ðxÞ ¼ x6 þ x3 þ x2 þ xþ 1. Figure 4.11 shows the encoder with six SR stages.

The IEEE 802.11a-g employs three different code rates, namely, rate 1=2, 3=4, and 2=3. To
facilitate decoding at the receiver, rates 3=4, and 2=3 are obtained from rate 1=2 by puncturing.
Puncturing is a procedure for omitting some encoded bits at the encoder output to reduce the
number of transmitted bits and increase the code rate. At the receiver dummy bits are
inserted in place of the omitted bits. To obtain rate 3=4 code from rate 1=2 code, bits 4 and 5 are
omitted for every six encoded bits (bits 1, 2, 3, and 6 are transmitted). Thus, for every three
information bits, there are four transmitted coded bits. To obtain rate 2=3 code from rate 1=2

code, bit 4 is omitted for every four encoded bits (bits 1, 2, and 3 are transmitted). Thus, for
every two information bits, there are three transmitted coded bits.
■

il il−1 il−2

c1,l

c2,l

xi(x)

x2i(x)

c1(x)

c2(x)
i(x)

Figure 4.10 Rate ½ convolutional code with constraint length K = 3.
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Example 4.23 Catastrophic convolutional code
A catastrophic convolutional code produces an infinite number of errors at the decoder
output for a finite-channel error pattern. Consider the convolutional code with generator
polynomials g1ðxÞ ¼ x2 þ 1 and g2ðxÞ ¼ xþ 1. For the all-one input information sequence
i ¼ ð1; 1; 1; :::Þ, the corresponding polynomial is iðxÞ ¼ 1þ xþ x2 þ � � � ¼ 1=ð1þ xÞ.
Thus, the code polynomials are c1ðxÞ ¼ iðxÞg1ðxÞ ¼ ðx2 þ 1Þ=ðxþ 1Þ ¼ ðxþ 1Þ, and
c2ðxÞ ¼ iðxÞg2ðxÞ ¼ 1. The corresponding output sequences before multiplexing are
c1 ¼ ð1; 1; 0; 0; 0; :::Þ and c2 ¼ ð1; 0; 0; 0; 0; :::Þ. The transmitted code sequence after multi-
plexing c1 and c2 is c ¼ ð1; 1; 1; 0; 0; :::Þ. Therefore, if the channel causes three errors in the
first three bits of the transmitted code sequence c, the receiver would receive the all-zero
sequence. Since the information sequence is an all-one sequence, there are infinite errors. In
particular a rate 1/n convolutional code is catastrophic if and only if its generator poly-
nomials have a common polynomial factor. For rate k/n catastrophic convolutional codes,
the determinants of all distinct k � k submatrices of the generator polynomial matrix do not
have a common polynomial factor.
■

The convolutional encoder is a finite-state machine, and therefore can be described by a state
diagram depicting all 2v states and the corresponding transitions between states. Figure 4.12
shows the state diagram for the convolutional encoder in Figure 4.10, where the label yz/x

Figure 4.11 Rate ½ convolutional encoder with constraint length K = 7.

1100 01
11/1

11/0

00/1

01/0

10/1

10/000/0 01/110

Figure 4.12 State diagram of rate ½ convolutional code with K = 3.
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indicates the transition associated with the input information bit x and the output encoded bits
yz. The encoder’s corresponding trellis is shown in Figure 4.13, where the initial state is 00 and
the length of time is five information bits (or ten coded bits); the upper branch corresponds to
input information bit 0 and the lower branch corresponds to input information bit 1. The trellis
is just a concatenation of successive state diagrams in time. Each input sequence and its
corresponding code sequence are associated with a particular path through the trellis.

Hard decoding–BSC

The error-correcting capability of a convolutional code is characterized by its free distance
dfree, which is the smallest Hamming distance between any two distinct code sequences.
Since convolutional codes are linear codes, the all-zero code sequence is a legitimate code
sequence. Thus, dfree is the Hamming weight (the total number of 1s) of the minimum-
weight path through the trellis that originates from the all-zero state and ends in the all-zero
state after a finite time. For the trellis in Figure 4.13, the minimum-weight path includes the
set of states {00, 01, 10, 00} and corresponds to the code sequence (11, 01, 11), which has
the Hamming weight of 5, hence dfree ¼ 5.

The decoding at the receiver can be performed on the trellis via the well-known Viterbi
algorithm, which efficiently implements the maximum likelihood (ML) sequence decoding
scheme. In practice the rate k/n encoder takes a finite-length input sequence of kL bits and
produces a finite-length output code sequence of nL bits. The decoding is carried out on each
received code sequence independently. To implement this scheme, the encoder inserts tail
bits at the end of each input sequence. If the constraint length of the code is K, the number of
tail bits is k(K – 1). The tail bits return the encoder to the initial state, which is normally the
all-zero state. This enables the decoder to reset the Viterbi algorithm to the all-zero state for
the next code sequence decoding. Hence, in practice the input sequence to the encoder can
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Figure 4.13 Trellis of rate ½ convolutional code with K = 3.
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be represented by a k(L + K 1)-vector i and the output code sequence by a n(L + K – 1)-
vector c. Let us consider a discrete memoryless channel (DMC) with binary input and Q-ary
output that presents the decoder a vector r, which is the transmitted code vector c that may
contain errors in its components. Using Bayes theorem we have

PrðcjrÞ ¼ PrðrjcÞPrðcÞ
PrðrÞ (4:130)

Since convolutional codes are linear, all code vectors of the same length are equally likely;
therefore, Pr(c) is identical for all possible values of c. Furthermore, PrðrÞ ¼PPrðrjcÞPrðcÞ
is independent of whichever code vector was transmitted. The decoder that maximizes the
a posteriori probabilityPrðcjrÞ, that is, maximizing the probability of selecting the code vector
correctly given the received vector r, is called an ML decoder. Consequently, the ML
decoder also maximizes the probability PrðrjcÞ, the likelihood of the transmitted code vector
c. Since log x is a monotonically increasing function of x, the maximization of PrðrjcÞ is
equivalent to the maximization of the log likelihood function MðrjcÞ ¼ log PrðrjcÞ, com-
monly referred to as the path metric in the Viterbi algorithm.

Example 4.24 Path metric for BSC
Consider the BSC with transition probability p. The path metric is given by

MðrjcÞ ¼ log PrðrjcÞ ¼ log
Qnc

i¼1
PrðrijciÞ

� �

¼P
nc

i¼1
log PrðrijciÞ ¼

Pnc

i¼1
MðrijciÞ

(4:131)

where nc is the length of the binary vectors r and c, and MðrijciÞ ¼ log PrðrijciÞ represents
the bit metric. For a BSC we have

PrðrijciÞ ¼ p; ri 6¼ ci
1� p; ri ¼ ci

�
(4:132)

Let d ¼ dðr; cÞ be the Hamming distance between the two binary vectors r and c, we obtain
PrðrjcÞ ¼ pdð1� pÞnc d and consequently

MðrjcÞ ¼ d log pþ ðnc � dÞ logð1� pÞ

¼ d log
p

1� p

� �
þ nc logð1� pÞ (4:133)

The term nc logð1� pÞ is common for all code vectors c. Furthermore, we have
log½p=ð1� pÞ�50 for p < 0.5. Therefore, the Viterbi algorithm chooses a path in the trellis
that maximizesMðrjcÞ ¼ log PrðrjcÞ or, equivalently, chooses a code vector that minimizes
the Hamming distance d ¼ dðr; cÞ. This also means choosing a code vector that differs from
the received vector in the fewest places. The decoder that implements the Viterbi algorithm
for a BSC is commonly referred to as a hard decoder.
■
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Example 4.25 Viterbi algorithm for a hard decoder
The Viterbi algorithm for each received vector r starts with an initial state which is
commonly the all-zero state. The encoder always returns to this initial state via the use of
tail bits. At each state in the trellis, the Viterbi algorithm chooses a branch that belongs to a
path with the smallest Hamming distance. This retained path is called the survivor path. All
other paths at each state with higher Hamming distances are not retained. In the case of a tie,
a survivor path might be chosen randomly. At the end of the decoding window, the survivor
path with the smallest Hamming distance is selected and the associated code vector
is chosen as the transmitted code vector. For illustration, the transmitted code vector is
c = (00,00,00,00,00). The channel causes two errors and the received vector is
r = (10,00,10,00,00), as shown in Figure 4.14. The path that associates with the code
sequence 00,00,00,00,00 has the minimum Hamming distance of 2 and hence is selected
as the decoding path. The two errors are corrected.
■

Soft decoding–DMC

When the components of the received vector r are voltages, such as the sample values at the
output of the matched filter in the receiver (Chapter 7), the metric can no longer be expressed
in terms of the Hamming distance. In practice, the received components of r are quantized to
Q-levels (16 to 64 levels are sufficient in practice) to form Q-ary outputs with a set of
transition probabilities Pr½rið jÞjci�. Thus, Pr½rið jÞjci� is the probability that the output
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Figure 4.14 Hard Viterbi algorithm for rate ½ convolutional code with K = 3.
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voltage of the ith bit falls in the jth quantized level given the transmitted coded bit ci. For
example, with Q = 4, we have the following assignments: rið0Þ ¼ 00; rið1Þ ¼ 01;
rið2Þ ¼ 11; rið3Þ ¼ 10. The quantized levels 00; 01; 11; and 10 refer to strong zero, weak
zero, weak one, and strong one, respectively. The transition probabilities depend on the
knowledge of the received signal-to-noise ratio. A common practice is to set the branch or
bit metric in some convenient positive range without affecting the performance of the Viterbi
algorithm by using the following expression:

M ½rið jÞjci� ¼ �A� B log Pr½rið jÞjci� (4:134)

where the constants A and B are chosen accordingly. Table 4.2 shows the branch metrics
M ½rið jÞjciÞ� ¼ log Pr½rið jÞjci� for 4-ary channels and Table 4.3 shows the corresponding
positive branch metrics. The knowledge of the transition probabilities is required for the
computation of the metric. Furthermore, as the signal-to-noise varies in a wireless fading
channel, the metrics must be adjusted accordingly. Therefore, a fixed set of metrics that can
be easily specified and represents a good compromise over a large range of signal-to-noise
ratios is desirable. For Q-level quantization, the branch metrics are M ½rið jÞj1Þ� ¼ j and
M ½rið jÞj0Þ� ¼ Q� 1� j, 0 � j � Q� 1. Table 4.4 shows the uniform branch metric
assignment. Simulation shows a small degradation in performance over a broad range of
signal-to-noise ratios. The decoder that implements the Viterbi algorithm for a DMC is
commonly referred to as soft decoder.

Table 4.2 The bit metric M ½riðjÞjciÞ� ¼ log Pr½riðjÞjci� for a 4-ary channel
ri(0) 00 ri(1) 01 ri(2) 11 ri(3) 10

M ½riðjÞj0Þ� 0.4 0.5 0.7 1
M ½riðjÞj1Þ� 1 0.7 0.5 0.4

Table 4.3 The positive bit metric M ½riðjÞjciÞ� ¼ �17:3� 17:3 log Pr½riðjÞjci� for a 4-ary channel
ri(0) 00 ri(1) 01 ri(2) 11 ri(3) 10

M ½riðjÞj0Þ� 10 8 5 0
M ½riðjÞj1Þ� 0 5 8 10

Table 4.4 The uniform branch metric M ½riðjÞj1Þ� ¼ j and M ½riðjÞj0Þ� ¼ 3� j, 0 � j � 3, for a
4-ary channel

ri(0) 00 ri(1) 01 ri(2) 11 ri(3) 10

M ½riðjÞj0Þ� 3 2 1 0
M ½riðjÞj1Þ� 0 1 2 3
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Example 4.26 Viterbi algorithm for a soft decoder
As in the case of hard decoding, the Viterbi algorithm for each received vector r starts with
an initial state which is commonly the all-zero state. The encoder always returns to this
initial state via the use of tail bits. At each state in the trellis, the Viterbi algorithm chooses a
branch that belongs to a path with the largest path metric. This retained path is called the
survivor path. All other paths at each state with smaller path metrics are not retained. In the
case of a tie, a survivor path might be chosen randomly. At the end of the decoding window,
the survivor path with the largest path metric is selected and the associated code vector is
chosen as the transmitted code vector. For illustration the transmitted code vector is c =
(00,00,00,00,00). The received quantized vector is r ¼ ð1001; 0100; 1100; 0000; 0000Þ with
two errors underlined as shown in Figure 4.15. The path that associates with the code vector
(00,00,00,00,00) has the maximum path metric of 23 and hence is selected as the decoding
path. The two errors are corrected.
■

Soft decoding–Gaussian input vector

When the received vector r is a Gaussian voltage vector, we can express r as r = s + N, where
s is the voltage vector that represents the transmitted code vector c, and N is the Gaussian
noise vector whose components are independent Gaussian random variables with zero mean
and variance σ2. Using Bayes theorem we have

PrðcjrÞ ¼ fRðrjcÞPrðcÞ
fRðrÞ (4:135)

0 11 0

00 

11 11

01

10

00

11

11

01

01

10

10

00

11

11

01

01

10

10

00

00

11

11

01

10

10

01

00 

01 

10 

11 

State
00 00 00 

2

4 

7

3 

6 

8

8, 11 

9,10

4,13 

8, 9 

+

+

+

+

+

+

+

+

+

+

+

+

13, 17 

11, 19 

11, 14 

12, 13 

14, 23 

 17, 20 

16, 22 

16, 22 

1 0
0 0 1 01 0

0 0
0 0

0 0
0 0

9

Figure 4.15 Soft Viterbi algorithm for rate ½ convolutional code with K = 3.

167 4.7 Channel coding with convolutional codes



The conditional Gaussian density function fRðrjcÞ of the received vector r can be expressed
as follows:

fRðrjcÞ ¼
Y

k

1

2π
p

σ
e ðrk skÞ2=2σ2

¼ 1

2π
p

σ
� 	n e kr sk2=2σ2

(4:136)

Since convolutional codes are linear, all code vectors of the same length are equally likely;
therefore, Pr(c) is identical for all possible values of c. Furthermore, fRðrÞ¼

P
fRðrjcÞPrðcÞ

is independent of whichever code vector was transmitted. The decoder that maximizes the
a posteriori probability PrðcjrÞ, that is, maximizes the probability of selecting the transmitted
code vector correctly given the received vector r, is the ML decoder. Consequently, the ML
decoder also maximizes the likelihood fRðrjcÞ of the transmitted code vector c. Since log x is
a monotonically increasing function of x, the maximization of fRðrjcÞ is equivalent to the
maximization of the ln likelihood function MðrjcÞ ¼ ln fRðrjcÞ ¼ �kr� sk2=2σ2�
n lnð 2π

p
σÞ, or the path metric in the Viterbi algorithm. This in turn is equivalent to

minimizing the squared Euclidean distance d2 ¼ kr� sk2 (or simply the Euclidean
distance) between the received vector r and the voltage vector s that represents the trans-
mitted code vector c. Therefore, the Viterbi algorithm chooses a path in the trellis that
maximizesMðrjcÞ ¼ ln fRðrjcÞ, or equivalently, chooses a code vector that has the smallest
squared Euclidean distance to the received vector. The decoder that implements the Viterbi
algorithm for a Gaussian channel is referred to as the unquantized soft decoder. If the
received Gaussian vector r is quantized to Q levels, then the Gaussian channel becomes
a DMC.

Example 4.27 Viterbi algorithm for an unquantized soft decoder
As in the case of hard decoding, the Viterbi algorithm for each received vector r starts with
an initial state which is commonly the all-zero state. The encoder always returns to this
initial state via the use of tail bits. At each node in the trellis, the Viterbi algorithm chooses a
branch that belongs to a path with the smallest path squared Euclidean distance. This
retained path is called the survivor path. All other paths at each node with higher squared
Euclidean distances are not retained. In the case of a tie, a survivor path might be chosen
randomly. At the end of the decoding window, the survivor path with the smallest path
squared Euclidean distance is selected and the associated code vector is chosen as the
transmitted code vector. For illustration, let the transmitted code vector be c =
(00,00,00,00,00). The corresponding transmitted voltage vector s is obtained by the map-
ping 0 ! rEb

p
and 1 ! � rEb

p
, where r is the code rate and Eb is the energy of the

information bit. The product rEb represents the energy of the coded bit. Thus we have
s ¼ rEb

p
; rEb
p

; rEb
p

; rEb
p

; rEb
p

; rEb
p

; rEb
p

; rEb
p

; rEb
p

; rEb
p� 	

. The received
unquantized vector is assumed to be the vector r ¼ � rEb

p
; rEb
p

; 0:5 rEb
p

; rEb
p

;�


0:5 rEb
p

; rEb
p

; rEb
p

; rEb
p

; rEb
p

; rEb
p Þ with two errors underlined. In Figure 4.16

the components of r are normalized to rEb
p

. Each branch on the trellis is represented by
one of the following voltage vectors: 00 ! rEb

p
; rEb
p� 	

; 01 ! rEb
p

;� rEb
p� 	

; 11 !
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� rEb
p

;� rEb
p� 	

; 10 ! � rEb
p

;
�

rEb
p Þ. The path that associates with the code vector

(00,00,00,00,00) has a normalized minimum squared Euclidean distance of 6.5 and hence is
selected as the decoding path. The two errors are corrected.
■

Convolutional codes with large constraint length are very powerful. Furthermore, the
concatenated outer RS code inner convolutional code (adopted by IEEE 802.16e) can
provide a very large coding gain that may come within 2 dB of the Shannon limit. This is
perhaps the reason why LDPC codes were forgotten for three decades.

4.8 Summary

We have provided an introductory study of information theory pioneered by Shannon that centers on source
coding and channel coding. We studied the Shannon noiseless source coding theorem and the famous
Huffman code, which is the optimum prefix code (no other prefix codes have smaller average code word
lengths). We stated without proof the Shannon noisy channel coding theorem and derived the information
capacities of both discrete and Gaussian channels. For Gaussian channels, we considered those with no constraint
on bandwidth and inputs, those with bandwidth constraints, and those with input constraints, especially
equiprobable discrete inputs. The channel coding is carried out by error-correcting codes such as block codes
and convolutional codes. The latter are widely used in IEEE 802.11 and 802.16 standards and in 2G and 3G
cellular communications.

0.5, 1 1, 1 1, 1−1, 1

00 

11 11

01

10

00

11

11

01

01

10

10

00

11

11

01

01

10

10

00

00

11

11

01

10

10

01

00 

01 

10 

11 

State 
00 00 00 

4

4 

43

10.3

8.3 

6.3

6.5 

8.5 

6.5 

10.5 

+

+

+

+

+

+

+

+

+

+

+

+

6.5 

6.5 

12.5 

12.5 

6.5 

 12.5 

10.5 

10.5 

−0.5, 1

Figure 4.16 Unquantized soft Viterbi algorithm for rate ½ convolutional code with K = 3.

169 4.8 Summary



Problems

1. Given a source X ¼ f0; 1; 2; 3Þ with distribution pX ð0Þ ¼ 1=2; pX ð1Þ ¼ 1=4;
pX ð2Þ ¼ 1=8; pX ð3Þ ¼ 1=8, find the source entropy.

2. Consider the binomial random variable X ¼ f0; 1; :::ng with distribution

pX ðxiÞ ¼ n
i

� �
pið1� pÞn i for a given probability p.

(a) Plot H(X) as a function of p with n as a parameter.
(b) Find H(X) for p = 0.5 and n = 5, 10, 16.

3. Consider a Gaussian source Z with zero mean and unit variance. The source is
sampled and quantized to produce the output X, as shown in Figure 4.17. Find
H(X). (Hint: Find the distribution of the random variable X.)

4. Consider a geometric random variable X ¼ f0; 1; 2; :::g with distribution
pX ðiÞ ¼ pð1� pÞi.
(a) Find the source entropy H(X) in term of the entropy of a binary source.
(b) Find H(X) for p = 1/2.

5. Find the entropy of a continuous random variable.
6. Let X be a discrete random variable and g(X) be a function of X.

(a) Given E{g(X)} find the probability distribution function of X that maximizes the
entropy.

(b) Consider the random variable X ¼ f0; 1; 2; :::g. Given EðX Þ ¼ X find the prob-
ability distribution function of X that maximizes the entropy.

7. Consider the code [0, 01, 011]. Is this code uniquely decodable? Decode the bit
sequence 0110010100001101.

8. Consider the code [0, 10, 110, 1110, 11110]. What unique property does this code have
and is the code uniquely decodable? Decode the bit sequence 011001010000110.

9. Consider the code [1, 01, 001, 0001, 0000]. Cite two unique properties and decode the
bit sequence 001011110010111000010100... .

10. Let X and Y be two independent discrete random variables. Calculate the entropy of XY.
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X

Figure 4.17 Quantizer
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11. The code {0, 11, 110, 111} is not a prefix code. Does it satisfy the Kraft inequality?
12. Show that the prefix codes have the binary tree shown in Figure 4.18.

(a) If we let l4max lm, how many nodes exist at level l?
(b) When a code word of length lm is chosen, how many nodes on level l are blocked

off?
(c) Show that a prefix code satisfies the Kraft inequality.

13. The Kraft inequality determines whether there is a corresponding prefix code for a
given set of code word lengths. Find a non-prefix code whose code word lengths [1, 2,
3, 3] satisfy the Kraft inequality.

14. In this problem we wish to show that the Kraft inequality applies not just to prefix
codes but to all uniquely decodable codes. Show the inequality

XM

m¼1

1

2lm

 !n

� nl

where n is an arbitrary positive integer and l is the longest code word length. From this
inequality show that Kraft inequality applies to all uniquely decodable codes.

15. Given a discrete source X with distribution pX ðxiÞ, show that a prefix code for this
source whose average code word length is minimum has the following properties:
(a) If pX ðxiÞ4pX ðxjÞ, then li � lj.
(b) Two symbols with smallest probabilities have code words of equal length.
(c) If there are two or more code words of equal length, then two of these code words

agree in all places except the last place.
16. Construct a Huffman code for the random variable Xwith the distribution {1/16, 3/16,

3/4}. Compare the average code word length to the entropy of X.
17. Construct a Huffman code for the random variable X with the distribution {1/32,

1/32, 1/16, 1/8, 3/16, 3/16, 3/8}. Compare the average code word length to the
entropy of X.
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Figure 4.18 Binary tree for prefix codes.
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18. Consider a discrete source of three symbols fA;B;Cg with the distribution {1/16,
3/16, 3/4}. Construct a Huffman code for the extended source
fAA;AB;AC;BA;BB;BC;CA;CB;CCg. Compare the code rate to the entropy of
the original source. Calculate the variance of the code.

19. Show that the entropy of the extended source is n times the entropy of the original
source as described in (4.21).

20. Consider a binary erasure channel (BEC) with two equiprobable inputs 0 and 1 and
three outputs 0, 1, and E, where a fraction p of the bits is erased rather than corrupted.
The receiver is supposed to know which bits are erased. The BEC is shown in
Figure 4.19. Find the channel capacity.

21. Verify the BSC capacity in (4.36).
22. Find the mutual information I(0,V) and I(1,V) of a BSC. Calculate the channel

capacity using these results.
23. Find the mutual information I(0,V) and I(1,V) of the BEC in Problem 20. Calculate the

channel capacity using these results.
24. Consider a BSC with p ¼ 0:5, that is, C = 0. Show that there are no repetition codes

that can meet a specified bit error rate less than 0.5.
25. Find the channel capacity of a series connection of n identical BSCs.
26. Consider a BSC with error probability p = 0.14.

(a) What is the BSC capacity?
(b) Is there a code that can be used to achieve a specified error rate? What is the code

rate?
(c) Assume that Hamming code is used to achieve a bit error probability equal to 0.1.

Can the goal be achieved? Provide two solutions.
27. Find the differential entropy of the random variable Y = X + c, where X is an arbitrary

continuous random variable and c is a real constant.
28. Find the differential entropy of Y = cX, where X is an arbitrary continuous random

variable and c is a real constant.
29. Consider a random variable X uniformly distributed over (a, b). Find the differential

entropy of X. Can the differential entropy be negative?
30. Derive (4.54) using the inequality ln z � z� 1 instead of the Jansen inequality.
31. Consider the water-filling strategy for a vector Gaussian channel with four subchan-

nels. The noise variances of the subchannels are σ21 ¼ 2; σ22 ¼ 4; σ23 ¼ 1; σ24 ¼ 8.
The total power for allocating to the subchannels is nine power units. Calculate the
power allocated to each subchannel.
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Figure 4.19 Binary erasure channel.

172 Information theory and channel coding



32. Consider the water-filling strategy for a vector Gaussian channel with five subchan-
nels. The noise variances of the subchannels are σ21 ¼ 1; σ22 ¼ 5; σ23 ¼ 3;
σ24 ¼ 9; σ25 ¼ 8. The total power for allocating to the subchannels is 20 power units.
(a) Calculate the power allocated to each subchannel.
(b) Suppose the total power is increased to 30 power units, calculate the power

allocated to each subchannel.
33. Consider the conversion of a Gaussian channel with PSK signaling into a BSC

channel with a crossover probability of p ¼ 10 6.
(a) Calculate the BSC capacity.
(b) Calculate the required SNR for a Gaussian channel with Gaussian inputs to have

the same capacity as the BSC.
(c) Calculate the potential coding gain.

34. Consider a (8,4) block code whose generator matrix is given by

G ¼
1 0 0 0 0 1 1 1
0 1 0 0 1 1 1 0
0 0 1 0 1 1 0 1
0 0 0 1 1 0 1 1

2

664

3

775

(a) Find the code word for the input sequence (1011).
(b) Is the word (10111101) a valid code word?
(c) Use the syndrome decoding to decode the received word (11100101) with one

error in it.
35. Consider a sphere of radius t around a code word c of length n and rate r = k/n. This

sphere contains the set of all code words of Hamming distance less than or equal to t
from the code word c.
(a) Calculate the number of code words in the sphere.
(b) Calculate the number of code words in all legitimate spheres of radius t.
(c) Show the following bound:

1� r � 1

n
log2

Xt

i¼0

n
i

� �" #

36. Verify (4.99).
37. Consider two independent binary random variables x1 and x2 with corresponding

probabilities Prðx1 ¼ 0Þ ¼ p1, Prðx1 ¼ 1Þ ¼ 1� p1, Prðx2 ¼ 0Þ ¼ p2, and
Prðx2 ¼ 1Þ ¼ 1� p2.
(a) Evaluate the probabilities of x1 þ x2.
(b) Evaluate the LLR of x1 þ x2 in terms of the LLRs of x1 and x2.
(c) Generalize the result to n independent binary random variables.

38. Plot the function f ðzÞ ¼ � ln½tanhðz=2Þ� and show that the smallest value of z
dominates. This means that the check node LLR is dominated by a bit that is least
certain, that is, likely to be zero or one. In this case the parity is also likely to be either
zero or one irrespective of other bits. Modify the check node LLR to reflect this
observation for less complex calculation.

173 Problems



39. Implement the MPA for the Hamming code (7,4) and plot the bit error probability
versus Eb=N0 (dB).

40. Consider a rate 2=3 convolutional code with the following generator matrix:

GðxÞ ¼ 1þ x 1þ x 1
0 x 1þ x

� �

(a) Design the encoder.
(b) Calculate the constraint length.

41. Consider the convolutional encoder specified by the generator polynomials
g1ðxÞ ¼ 1þ x3 and g2ðxÞ ¼ xþ x2 þ x3.
(a) Draw the encoder.
(b) For the input sequence (10111), add the smallest number of tail bits and find the

output sequence.
(c) Draw the state diagram.

42. Perform the Viterbi algorithm for the convolutional code with the trellis shown in
Figure 4.20, assuming the received vector r ¼ ð0101011111Þ.

43. Perform the Viterbi algorithm for the convolutional code with the trellis shown in
Figure 4.20, assuming the received vector r ¼ ð1000100001Þ.

44. Perform the Viterbi algorithm for the convolutional code with the trellis shown in
Figure 4.20, assuming the received vector r ¼ ð01011000001100111100Þ.

45. Perform the Viterbi algorithm for the convolutional code with the trellis shown in
Figure 4.20, assuming the received vector r ¼ ð11011000111100101101Þ.

46. Perform the Viterbi algorithm for the convolutional code with the trellis shown in
Figure 4.20, assuming the received vector r ¼ ð�0:8;�0:6;1;�0:7; 0:7; 0:6; 0:5;
�0:9;�0:8;�0:6Þ.
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Figure 4.20 Trellis of rate ½ convolutional code with K = 3.
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47. Perform the Viterbi algorithm for the convolutional code with the trellis shown in
Figure 4.20, assuming the received vector r ¼ ð0:7; 0:9;�1; 0:7; 0:7;�0:6;�0:5;
�0:9; 0:8;�0:6Þ

Further reading

The foundation of information theory was laid out by Shannon in [1,2]. For an introduction
to information theory and coding we recommend Hamming [6,9]. The serious reader can
explore [4,10–16] for advanced materials.
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5 Communication link analysis

Introduction

In this chapter, we provide the foundation for analyzing a wireless communication link. The
purpose is to evaluate the signal to noise ratio at the receiver to assess the link performance.
Evaluation of the signal power and noise power requires the path loss and receiver system
noise temperature, respectively. The receiver consists of an antenna, a low-noise amplifier, a
downconverter, and a demodulator. The concept of the thermal noise source and its noise
temperature, as well as the antenna noise temperature, is discussed. We also introduce the
effective noise temperature and noise figure of a two-port network such as the low-noise
amplifier, downconverter, or demodulator. The effective noise temperature and noise figure
of a cascade or series connection of two-port networks are derived. This leads to the
evaluation of the receiver system noise temperature.

For free space links, such as satellite communications links, we introduce the Friis
equation to calculate the path loss. For cellular communications links, we present the
well-known Hata model. Many important aspects of cellular systems are also discussed,
such as the frequency spectrum, standards, and the co-channel interference.

5.1 Basic wireless communication link

In wireless communications, the point-to-point link is the simplest connection between a
transmitter and a receiver. In this basic link, the transmitted signal travels the line-of-sight
path to the receiver and the channel is the free space. A typical wireless communication
system is shown in Figure 5.1.

The transmitter consists of a modulator, an upconverter, a high-power amplifier, and a
transmitter antenna. The receiver consists of a receiver antenna, a low-noise amplifier, a
downconverter, and a demodulator. The upconverter translates the IF carrier frequency of
the modulated signal to the RF carrier frequency for transmission. The downconverter
translates the RF carrier frequency of the received signal to the IF carrier frequency for
demodulation.

Each subsystem in the transmitter and receiver processes the information signal and adds
thermal noise to it. The thermal noise is generated by the electronic components of the
subsystem. At the transmitter, the signal power is much larger than the composite thermal
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noise power generated by the transmitter’s subsystems; therefore, the effect of the thermal
noise is negligible. The signal is attenuated as it travels through the channel.When the signal
arrives at the receiver, its power can diminish to a level so that the effect of noise becomes
relevant. The receiver antenna receives the signal contaminated by sky noise. At each
subsystem of the receiver, the signal is processed and thermal noise is added to the signal.

The purpose of link analysis is to obtain the signal-to-noise ratio at the receiver that can
provide a qualitative assessment of the performance of the entire communication system.
Two quantities need to be evaluated, namely, the receiver noise power and the received
signal power. We first study the effect of thermal noise in the receiver.

Thermal noise

Thermal noise is generated by randommotion of electrons in a resistor whose temperature is
above absolute zero kelvin. A noise voltage is generated across the terminal of the resistor,
which can be modeled as a noiseless resistor with resistance R ohms in series with a noise
voltage source v(t) as in Figure 5.2.

The power spectral density of the thermal noise source v(t), which is normalized to
R = 1Ω, is given in W/Hz as follows:

Sv fð Þ ¼ 2
h fj j
2

þ h fj j
eh fj j=kTn 1

� �
W=Hz (5:1)

DownconverterDemodulator AntennaLow-noise
amplifier 

Received
information 

Channel

UpconverterModulator AntennaHigh-power
amplifier 

Transmitted
information 

Figure 5.1 Typical wireless communication system.

Noiseless
resistor 

R

v(t)~Noise
source

Noisy
resistor

Figure 5.2 Thermal noise source.
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where h ¼ 6:6� 10 34 Js is the Planck constant, k ¼ 1:38� 10 23 J/K is the Boltzmann
constant, Tn is the physical temperature of the resistor (also referred to as the noise temper-
ature of the source) in kelvin, and f is the frequency in Hz.

For frequency f51000GHz, the power spectral density of a thermal noise source can be
very well approximated by the following constant:

Sv fð Þ ¼ 2kTn (5:2)

Noise with a constant power spectral density is called white noise. In a communication
system, all subsystems are designed to have matched impedances at both input and output.
For example, the output impedance of the antenna is matched with the input impedance of
the low-noise amplifier. In practice, these input and output impedances are 50Ω. In our
discussion, we assume a normalized impedance of R = 1Ω. Matched impedances are
employed to provide the maximum power transfer from one subsystem to the next one.
Unfortunately, this also allows the maximum power transfer of noise.

When amatched load is connected across the thermal noise source as shown in Figure 5.3,
the available power spectral density in W/Hz across the load is

S fð Þ ¼ H fð Þj j2Sv fð Þ (5:3)

where H(f ) is the transfer function of the resistor divider network and is given by

H fð Þ ¼ R

Rþ R
¼ 1

2
(5:4)

Substituting (5.2) and (5.4) into (5.3), we obtain

S fð Þ ¼ kTn
2

(5:5)

Note that the available power spectral density of a thermal noise source is independent of the
value of R.

The available noise power, in watts, delivered by the thermal noise source v(t) to the
matched load in a bandwidth of B Hz is therefore given by

N ¼
ðB

B
S fð Þ df ¼

ðB

B

kTn
2

df ¼ kBTn (5:6)

Figure 5.4 illustrates the evaluation of the available noise power.

R

v(t) ~
R

Figure 5.3 Thermal noise source with a matched load.
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Example 5.1 Available noise power
Consider a thermal noise source with noise temperature Tn = 290K. The available power
spectral density is given as

S fð Þ ¼ kTn
2

¼ 2� 10 21 W=Hz

Assuming that the operating bandwidth is B = 1MHz, the available noise power is

N ¼ kBTn ¼ 4� 10 15 W
■

In summary, a thermal noise source is specified by its noise temperature Tn, which is also
its physical temperature. Returning to Figure 5.1, we observe that the receiver antenna
receives the signal plus sky noise. The term sky noise is used to include noise signals from
emitting–absorbing objects in space. High-temperature-emitting objects such as the stars
and the Sun produce electromagnetic radiation with a white noise power spectral density in
the practical frequency range that wireless communications operate in. The antenna also
receives noise signals from absorbing objects, such as the Earth and the Moon. A blackbody
that absorbs electromagnetic radiation also acts as a resistor above absolute zero kelvin and
hence also radiates noise. The composite noise signal received by the receiver antenna can
be modeled as a white noise source of temperature TA called the antenna noise temperature.
This equivalent noise source delivers an available noise power of kTAB. In other words, the
noise that the antenna receives can be taken into account by assigning a noise temperature
TA to the antenna radiation resistance. The antenna noise temperature is a function of
frequency and antenna beam angle, and includes contributions from sources of radiation
in the main beam as well as sources of radiation in all directions in proportion to the antenna
pattern.

Example 5.2 Antenna noise temperature
An antenna is pointing at the sky with a temperature of 10K. This temperature consists of
the sky background temperature of 3K (the residual temperature of the Big Bang that
created the universe) and 7K due to atmospherical absorption. Assuming the non-ideal case
where 90% of the beam is directed at the sky and 10% at the ground at a temperature of
290K, the antenna noise temperature can be calculated as follows:

kTn/2

S( f )

f

N = kBTn 

–B B

Figure 5.4 Available noise power.
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Sky contribution : 0:9� 10K ¼ 9K

Ground contribution : 0:1� 290K ¼ 29K

Thus,

TA ¼ 9Kþ 29K ¼ 38K

The noise power spectral density available at the antenna output is given by (5.5) as

S fð Þ ¼ kTA
2

¼ 2:6� 10 22 W=Hz

■

In summary, the noise that the antenna receives can be taken into account by assigning a
noise temperature TA to the antenna radiation resistance. Thus, if the antenna is replaced by a
resistor of the same radiation resistance at temperature TA, the noise power spectral density
available at the output terminals is unchanged, and so is the noise power available within a
bandwidth B. Figure 5.5 illustrates the modeling of the noise received by the receiver
antenna.

Returning to Figure 5.1, the signal and sky noise received by the receiver antenna are
delivered to the low-noise amplifier. The low-noise amplifier amplifies both signal and sky
noise and also adds its own thermal noise to the signal. More thermal noise is added as the
signal is downconverted from the carrier frequency to an intermediate frequency by the
downconverter and, finally, the demodulator adds more noise as it detects the information
from the modulated signal.

We assume that the gains of both the low-noise amplifier and downconverter are constant
over the operating frequency range. This is the case in practice to avoid frequency-selective
distortion of the signal spectrum, which in return can cause intersymbol interference and/or
loss of the signal-to-noise ratio.

Effective noise temperature

To account for the effect of the internal thermal noise generated by a two-port network such as
the low-noise amplifier, downconverter, or demodulator, we consider a noisy two-port network

Noiseless
resistor

v(t), Sv( f ) = 2kTA

~Noise
source

Resistor
at TA

≡
Receiver
antenna

Sky temperature
TA

(b)(a)

Figure 5.5 (a) Antenna with entire pattern sees the sky at temperature TA; (b) resistor at temperature TA. The same noise power
spectral density is available at the output terminals in both cases.
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as shown in Figure 5.6(a). The input and output of the network are matched to R ohms. The
network has a constant gain G and is driven by a thermal noise source at temperature Tn.

The noise power available in a bandwidth B at the input of the network is kBTn as indicated
by (5.6). The noise power available in B at the output of the network due to the input noise
source is simply kBGTn. Let NI denote the noise power available in the bandwidth B at the
output port due to the internal noise sources of the network. Then, the total available noise
power at the output port is given by

N ¼ kBGTn þ NI

¼ kBG Tn þ NI

kBG

� �

¼ kBG Tn þ Teð Þ

(5:7)

where

Te ¼ NI

kBG
(5:8)

is defined as the effective noise temperature of the two-port network and is incorporated in
the model shown in Figure 5.6(b). In this model, the noisy two-port network is replaced by a
noiseless two-port network with the same gain G, and the input noise source temperature is
changed from Tn to Tn + Te. Note that the noise power available at the input of the noiseless
two-port network is kB(Tn + Te), as compared to kBTn at the input of the noisy two-port
network. Nevertheless, they both yield the same available output noise power given in (5.7).

In summary, the effective noise temperature of a noisy two-port network is the additional
temperature that a noise source requires to produce the same available noise power at the
output of the equivalent noiseless two-port network (the noisy two-port network with the
internal noise removed).

Definition 5.1 The system noise temperature of a noisy two-port network is defined by

Ts ¼ Tn þ Te (5:9)

Definition 5.2 The system noise power is defined by

Ni ¼ kBTs (5:10)

Noiseless
two-port
gain = G

R(R, Tn + Te)

(b)

Noisy
two-port
gain = G 

R(R, Tn)

(a)

Figure 5.6 (a) Noisy two-port network with input noise source at temperature Tn ; (b) model with the effect of noise temperature
Te added to noise source temperature.
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Definition 5.3 The available output noise power of a two-port network is defined by

N ¼ kBGTs (5:11)

Definition 5.4 The system signal to noise ratio of a noisy two-port network of effective
noise temperature Te, driven by an input noise source of temperature Tn and an input signal
source of power Pi , is defined by

SNR ¼ Pi

Ni
¼ Pi

kBTs
(5:12)

and is illustrated in Figure 5.7.

We remark that the quantity Pi/kBTn is not the system signal to noise ratio, because it
does not account for the internal noise of the two-port network.

Another measure employed to characterize a noisy two-port network driven by an input
noise source of reference temperature T0 is the noise figure, which is defined as the ratio of
the available output noise power to the available output noise power produced by the input
noise source at reference temperature only (that is, without the addition of the internal
noise). Thus, using (5.6) and (5.7), we obtain the noise figure F as follows:

F ¼ kBG T0 þ Teð Þ
kBGT0

¼ 1þ Te
T0

(5:13)

It is seen that the noise figure is defined for a reference noise source temperature T0. The
reference room temperature adopted by the IEEE is T0 = 290K, which yields

F ¼ 1þ Te
290

(5:14)

Therefore, the effective noise temperature in kelvin of the noisy two-port network can be
related to its noise figure as

Te ¼ 290 F � 1ð Þ (5:15)

Noiseless
two-port
network

R
(R, Ts)

~s(t) with

power Pi

SNR =
Pi/kBTs

Figure 5.7 System signal-to-noise ratio where the input signal s(t) has power Pi, and the system noise n(t) has power kBTs.
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Example 5.3 Noisy two-port network
Consider a noisy two-port network with an effective noise temperature Te = 120K, a gain
G = 50 dB, and a bandwidth B = 1MHz. The input noise source is at temperature Tn = 60K
and the input signal source has a power Pi = 10 12W. Calculate the noise figure of the
two-port network, the system noise temperature, the system signal-to-noise ratio, and the
available output noise power.

From (5.14), the noise figure is given by

F ¼ 1þ 120

290
¼ 1:41 ¼ 1:5 dB

The system noise temperature can be calculated from (5.9) as

Ts ¼ 120þ 60 ¼ 180K

From (5.12), we obtain the system signal-to-noise ratio as

SNR ¼ 10 12

1:38� 10 23ð Þ 106ð Þ 180ð Þ ¼ 402:6 ¼ 26 dB

From (5.11), the available output noise power is given by

N ¼ 1:38� 10 23
� �

106
� �

105
� �

180ð Þ
¼ 2:5� 10 10 W

■

Returning to Figure 5.1, we note that the antenna output might be connected to the low-
noise amplifier via a transmission line, such as a waveguide. To account for the loss of the
transmission line, we return to Figure 5.6 and consider the transmission line as a reciprocal
two-port network with loss L, or equivalently with gain

G ¼ 1

L
(5:16)

Let the characteristic impedance of the transmission line be R ohms, so that both input and
output are matched to R ohms. Also, let T0 be the physical temperature of the transmission
line. Thus, looking into the output of the transmission line, the load sees a resistor R at
temperature T0. Therefore, the available output noise power at the load in a bandwidth of B
Hz is kBT0. But this is also equal to the quantity on the right-hand side of (5.7), that is,

kBG T0 þ Teð Þ ¼ kBT0 (5:17)

This yields the effective noise temperature of the transmission line as follows:

Te ¼ T0 L� 1ð Þ (5:18)

If T0 is chosen to be 290K, then

Te ¼ 290 L� 1ð Þ (5:19)
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Comparing (5.15) and (5.19), we obtain the noise figure of the transmission line of loss L as

F ¼ L (5:20)

From the link analysis point of view, the effective noise temperature of the transmission line
can be evaluated by (5.18) knowing its loss L and its physical temperature T0. Note that the
loss L = 1 or gain G =1 corresponds to a lossless transmission line with Te = 0.

Example 5.4 Transmission line
Consider a lossy transmission line with L = 0.1 dB. Calculate the effective noise temper-
atures, assuming the transmission line physical temperatures are 290K and 273K, respec-
tively. First convert dB into a ratio: we get L = 0.1 dB = 1.023. Using (5.18) we obtain, for
T0 = 290K,

Te ¼ 290 1:023� 1ð Þ ¼ 6:755K

and, for T0 = 273K,

Te ¼ 273 1:023� 1ð Þ ¼ 6:359K

We note that a change of 13K in the physical temperature results in only a change of 0.396K
in the effective noise temperature.
■

Returning to Figure 5.1, we also need to account for the internal noise generated by the
downconverter and the demodulator. These two systems are connected in series with the
low-noise amplifier. To account for their noise effects, we consider the model shown in
Figure 5.8, which consists of two noisy two-port networks. Each two-port network has an
effective noise temperature Tek and a gain Gk, k = 1, 2. The input noise source has a
temperature Tn. We assume that the two-port networks are matched to R ohms at their inputs
and outputs. Our purpose is to evaluate the effective noise temperature of the series
connection, which obviously has a gain G1G2.

We note that by using (5.9) and (5.11), we obtain the available noise power at the output of
the first two-port network as

N1 ¼ kBG1 Tn þ Te1ð Þ (5:21)

Te, G

R

Noisy
two-port
network
Te2, G2

(R, Tn)

Noisy
two-port
network
Te1, G1

Figure 5.8 Two networks connected in series.
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The available noise power N at the output of the second two-port network consists of G2N1

and the power delivered by the internal noise sources of the second two-port network. Using
(5.8) we have

N ¼ G2N1 þ kBG2Te2
¼ kBG1G2 Tn þ Te1ð Þ þ kBG2Te2

¼ kBG1G2 Tn þ Te1 þ Te2
G1

� � (5:22)

From (5.9) and (5.11), we conclude that the effective noise temperature Te of the series
connection is Te1 þ Te2=G1. Now, if we connect a third two-port network with effective
noise temperature Te3 and gain G3 in series with the second two-port network, we end
up with a series connection of two networks, one with Te1 þ Te2=G1 and G1G2 and one
with Te3 and G3. Applying (5.22) with Te1 replaced by Te1 þ Te2=G1, where Te2 is
replaced by Te3 and G1 is replaced by G1G2, the effective noise temperature of the
series connection of three two-port networks is Te1 þ Te2=G1 þ Te3=G1G2 and its gain is
G1G2G3. Continuing this way, we can generalize the result to a series connection of
n two-port networks with gain G = G1G2 . . . Gn and effective noise temperature
Te given by

Te ¼ Te1 þ Te2
G1

þ Te3
G1G2

þ � � � þ Ten
G1G2 � � �Gn 1

(5:23)

Applying (5.15) to (5.23) yields the noise figure F of a series connection of n two-port
networks, each with noise figure Fi, i = 1, 2, . . . , n:

F ¼ F1 þ F2 � 1

G1
þ F3 � 1

G1G2
þ � � � þ Fn � 1

G1G2 � � �Gn 1
(5:24)

Observing (5.23), we come to the following conclusion. If the gain G1 of the first two-port
network is large, then the noise contribution of subsequent two-port networks becomes
negligible.

Example 5.5 Series connection
Consider the series connection of a low-noise amplifier with Te1 = 120K, G1 = 50 dB, a
downconverter with Te2 = 2 × 104K, G2 = 20 dB, and a demodulator with Te3 = 105K.
Calculate the effective noise temperature Te of the series connection. IfG1 = 30 dB, evaluate
the impact on Te.

Using (5.23), we obtain

Te ¼ 120þ 2� 104

105
þ 105

105ð Þ 102ð Þ
¼ 120þ 0:2þ 0:01 ¼ 120:21K

Thus, with a large amplifier gain, the effective noise temperature of the low-noise amplifier
solely determines the effective noise temperature of the series system.
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Now, with G1 = 30 dB, we have

Te ¼ 120þ 2� 104

103
þ 105

103ð Þ 102ð Þ
¼ 120þ 20þ 1 ¼ 141K

The impact on Te is significant, as it is increased by 21K. In practice, the larger gain is much
easier and less costly to achieve than the lower noise temperature. Therefore, it is appropriate
to choose Te1 = 120K and G1 = 50 dB than Te1 = 99K and G1 = 30 dB to achieve Te = 120K.
■

Receiver noise model

Returning to Figure 5.1, we can model the receiver noise effect using Figure 5.9. The
antenna is modeled as a noise source of temperature equal to the antenna noise temperature
TA. The transmission line that connects the antenna to the LNA has a loss LTL and a physical
temperature T0. The low-noise amplifier has a gain GLNA and an effective noise temperature
TLNA. The downconverter has a gain GDC and an effective noise temperature TDC. The
effective noise temperature of the demodulator is TDM.

Example 5.6 System noise temperature at the input of the transmission line
To evaluate the system noise temperature at the input of the transmission line, we employ (5.9)
and the model shown in Figure 5.6.We note that Tn = TA. The effective noise temperature Te of
the series connection of the transmission line, the low-noise amplifier, the downconverter, and
the demodulator is calculated via (5.18) and (5.23) and is given as follows:

Te ¼ T0 LTL � 1ð Þ þ LTLTLNA þ LTLTDC
GLNA

þ LTLTDM
GLNAGDC

(5:25)

Using (5.9), the system noise temperature is obtained as

Ts ¼ Tn þ Te (5:26)

Ts ¼ TA þ T0 LTL � 1ð Þ þ LTLTLNA þ LTLTDC
GLNA

þ LTLTDM
GLNAGDC

(5:27)

■

R(R, TA)

Transmission
line

LTL, T0

Low-noise
amplifier

GLNA, TLNA

Down-
converter

GDC , TDC

Demodulator

TDM

Figure 5.9 Receiver noise model.
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Example 5.7 System noise temperature at the input of the low-noise amplifier
We can model the antenna and the transmission line as a combined noise source at temper-
ature T 0

n. First we evaluate the available noise power N
0 at the output of the transmission line

via (5.7) and (5.18):

N 0 ¼ kB

LTL
TA þ T0 LTL � 1ð Þ½ � (5:28)

Since N 0 must also be equal to kBT 0
n, we obtain

T 0
n ¼

1

LTL
TA þ T0 LTL � 1ð Þ½ � (5:29)

The effective noise temperature T 0
e of the series connection of the low-noise amplifier, the

downconverter, and the demodulator is calculated via (5.23) as

T 0
e ¼ TLNA þ TDC

GLNA
þ TDM
GLNAGDC

(5:30)

From (5.9), the system noise temperature is given by

T 0
s ¼ T 0

n þ T 0
e

¼ 1

LTL
TA þ T0 LTL � 1ð Þ½ � þ TLNA þ TDC

GLNA
þ TDM
GLNAGDC

(5:31)

By comparing (5.31) with (5.27), we have

T 0
s ¼

Ts
LTL

(5:32)

■

Example 5.8 System noise temperature at the input of the downconverter
We first model the antenna, the transmission line, and the low-noise amplifier as a combined
noise source at temperature T 00

n . The transmission line and the low-noise amplifier can be
modeled as a two-port network with gain GLNA/LTL and effective noise temperature
T0 LTL � 1ð Þ þ LTLTLNA. The available noise power at the low-noise amplifier output can
be calculated via (5.7) as

N 00 ¼ kBGLNA

LTL
TA þ T0 LTL � 1ð Þ þ LTLTLNA½ � (5:33)

Since N 00 must also be equal to kBT 00
n we get

T 00
n ¼ GLNA

LTL
TA þ T0 LTL � 1ð Þ þ LTLTLNA½ � (5:34)
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The effective noise temperature T00e of the series connection of the downconverter and the
demodulator can be calculated via (5.23) as

T 00
e ¼ TDC þ TDM

GDC
(5:35)

From (5.9), the system noise temperature is given by

T 00
s ¼ T 00

n þ T 00
e

¼ GLNA

LTL
TA þ T0 LTL � 1ð Þ þ LTLTLNA½ � þ TDC þ TDM

GDC

(5:36)

By comparing (5.36) with (5.31) and (5.32), we have

T 00
s ¼ GLNAT

0
s ¼

GLNATs
LTL

(5:37)

■

Example 5.9 System noise temperature at the input of the demodulator
At this reference input, the antenna, the transmission line, the low-noise amplifier, and
the downconverter combine to act as a combined noise source at temperature T 000

n . The
transmission line, the low-noise amplifier, and the downconverter can be modeled
as a two-port network with gain GLNAGDC=LTL and effective noise temperature
T0 LTL � 1ð Þ þ LTLTLNA þ LTLTDC=GLNA. The available noise power at the downconverter
output is given by (5.7) as

N 000 ¼ kBGLNAGDC

LTL
TA þ T0 LTL � 1ð Þ þ LTLTLNA þ LTLTDC

GLNA

� �
(5:38)

Setting N 000 ¼ kBT 000
n to obtain the effective noise temperature of the combined noise source,

we get

T 000
n ¼ GLNAGDC

LTL
TA þ T0 LTL � 1ð Þ þ LTLTLNA þ LTLTDC

GLNA

� �
(5:39)

Using (5.9), we obtain the system noise temperature as follows:

T 000
s ¼ T 000

n þ TDM

¼ GLNAGDC

LTL
TA þ T0 LTL � 1ð Þ þ LTLTLNA þ LTLTDC

GLNA

� �
þ TDM

(5:40)

From (5.40) and (5.36), we conclude that

T 000
s ¼ GDCT

00
s ¼ GLNAGDCT

0
s ¼

GLNAGDCTs
LTL

(5:41)

■
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System signal-to-noise ratio

The purpose of the link analysis is to obtain the system signal-to-noise ratio defined in (5.12)
for performance assessment. It requires the knowledge of the system noise temperature
discussed in the previous section, and the input signal power at the receiver. Returning to
Figure 5.1, let PT, GT, GR, and LC be the power of the high-power amplifier, the transmitter
antenna gain, the receiver antenna gain, and the channel loss, respectively. We can calculate
the input signal power at any reference input of the receiver. Let PR, P0

R , P
00
R , and P000

R be the
received signal powers at the input of the transmission line, the low-noise amplifier, the
downconverter, and the demodulator, respectively. Then

PR ¼ LTLP
0
R ¼ LTLP00

R

GLNA
¼ LTLP000

R

GLNAGDC
¼ PTGTGR

LC
(5:42)

Using (5.42), (5.32), (5.37), and (5.41), we obtain the system signal to noise ratio (SNR) as
follows:

SNR ¼ PR
kBTs

¼ P0
R

kBT 0
s

¼ P00
R

kBT 00
s

¼ P000
R

kBT 000
s

(5:43)

It is seen that the system signal-to-noise ratio is invariantwith respect to any reference input
and is given by

SNR ¼ PTGTGR

LCkBTs
(5:44)

where Ts is given in (5.27). The product PTGT is called the effective isotropic radiated power
(EIRP) of the transmitter, and the ratio GR/Ts is called the receiver figure of merit.

Example 5.10 System signal-to-noise ratio
Consider a line-of-sight communication link with a transmitter EIRP = 30 dBW. The
receiver antenna has a gain GR = 20 dB and a noise temperature TA = 200K. The low-
noise amplifier has a gain GLNA = 40 dB and an effective noise temperature TLNA = 120K.
The rest of the receiver has an effective noise temperature of Te = 104K. Calculate the
distance between the transmitter and receiver to achieve a system signal-to-noise ratio of
20 dB, assuming a receiver noise bandwidth of 10MHz, and a carrier frequency of 4GHz.

The system noise temperature at the low-noise amplifier input is

Ts ¼ TA þ TLNA þ Te
GLNA

¼ 200þ 120þ 104

104
¼ 321K

The gain of the low-noise amplifier is large; therefore, the contribution of noise from the rest
of the receiver is only 1K. From (5.44), we obtain the channel loss LC as
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LC ¼ EIRPð ÞGR

kBTs SNRð Þ
¼ 103 � 102

1:38� 10 23ð Þ107 � 321� 102
¼ 2:26� 1016

The free space loss is given by the Friis equation as

LC ¼ 4πd
l

� �2

(5:45)

where d is the distance between the transmitter and receiver and λ is the signal wavelength
given by

l ¼ c

f
¼ 3� 108 m=s

f
(5:46)

Using f = 4GHz, we get

d ¼ 896:7 km
■

5.2 Cellular communication link

Cellular communication was invented to serve mobile users. It was based on the concept of
frequency reuse, that is, the entire frequency spectrum is reused at many locations separated
by large distances to avoid interference. This is necessary because there are simply not
enough voice channels in the mobile frequency spectrum to serve a large population of
mobile users. In a cellular system, the coverage area is divided intoM clusters. Each cluster
consists of a fixed number of cells N. Each cell uses a separate portion of the frequency
spectrum and, hence, there is no interference between cells in the same cluster. On the other
hand, all clusters reuse the same frequency spectrum and, therefore, the coverage area is
served M times by the same frequency spectrum. Because of frequency reuse, cells in
adjacent clusters that employ the same portion of the frequency spectrum (co channel
cells) produce interference to each other. To keep the interference within a tolerable limit,
co-channel cells must be separated far enough. Figure 5.10 illustrates a cellular system,
which consists of base stations,mobiles, and amobile switching center (MSC). The MSC is
connected to the public switched telephone network (PSTN).

All mobiles in a cell communicate with the cell’s base station. A call is handed off to
another base station as the mobile moves out of its cell. The base stations connect all the
mobiles to the MSC via coaxial cable, fiber optic cable, or microwave links. The MSC is
responsible for connecting all mobiles to the PSTN.
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Frequency spectrum

In the United States, the Federal Communications Commission (FCC) allocated a frequency
spectrum of 50MHz to cellular communication in the 800MHz band as shown in
Figure 5.11. The frequency spectrum consists of two bands. The forward channel band of
25MHz (869–894MHz) is used for base station to mobile communication. The reverse
channel band of 25MHz (824–849MHz) is used for mobile to base station communica-
tion. Each band consists of 832 channels (channel 990 is not used) and each channel has a
bandwidth of 30 kHz. Two channels of the same number, one in each band, form a 60 kHz
full duplex channel, which allows simultaneous two-way communication between the
base station and the mobile. To encourage competition, the Federal Communications
Commission licensed the frequency spectrum to two competing service providers in each
geographical area. Block A channels were licensed to a non-wireline company, which does
not provide a telephone service. Block B channels were licensed to a wireline company that
provides a telephone service. Table 5.1 shows the channel allocation for both providers A
and B, and Table 5.2 shows the center frequency of the channel.

Major cellular standards

The first generation (1G) cellular system employs frequency modulation (FM) and hence
is an analog system. In North America, these use the advanced mobile phone system

PSTNMSC

Figure 5.10 Cellular system with towers representing base stations.

990 1023991 1 2 779…  …  

Reverse channel

824–849 MHz

990 1023991 1 2 779…  …  

Forward channel

869–894 MHz

Figure 5.11 Frequency spectrum for the US cellular band.
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(AMPS), established in 1983, and the narrowband advanced mobile phone system
(NAMPS), established in 1992 [1]. Each AMPS provider has 416 duplex channels (416
reverse channels and 416 forward channels). Each FM channel (reverse or forward) has a
channel bandwidth of 30 kHz and a peak frequency deviation of 12 kHz. Out of 416
channels, there are 395 voice channels and 21 control channels (channels 313 to 333 for
provider A and channels 334 to 354 for provider B).

As the number of mobile users increased, more channels were needed to meet the
demand. NAMPS was designed to provide three times as many channels as AMPS and at
the same time be backward compatible with it. An FM channel of NAMPS (reverse or
forward) has a bandwidth of 10 kHz and a peak frequency deviation of 5 kHz. Thus, a
provider can gradually replace an AMPS channel with three NAMPS channels to phase in a
new system. The frequency spectrum of 50MHz can accommodate 2496 duplex NAMPS
channels. Both AMPS and NAMPS employ frequency division multiple access (FDMA) to
provide duplex channels to mobiles. In FDMA, the frequency spectrum is divided into
channels that occupy distinct frequency bands. Users are assigned separate channels for
access to the frequency spectrum.

The first generation analog cellular system in Europe was deployed in 1985 and was
named the extended total access cellular system (ETACS). ETACS employs a frequency
spectrum of 62MHz (917–933MHz and 935–960MHz for forward channels; 872–
888MHz and 890–915MHz for reverse channels), which can accommodate 1000 full-
duplex FM channels. Each FM channel (reverse or forward) has a bandwidth of 25 kHz and
a peak frequency deviation of 9.5 kHz.

The Japanese total access communication system (JTACS) was deployed in 1988 in the
800MHz band. JTACS provides full-duplex FM channels. Each channel has a 25 kHz

Table 5.1 Channel allocation for providers A and B

Provider Bandwidth (MHz) Number of channels Channel number

Not used 1 990

1 33 991 to 1023
A 10 333 1 to 333

1.5 50 667 to 716

B 10 333 334 to 666
2.5 83 717 to 799

Table 5.2 Channel number and center frequency

Type Channel number Center frequency (MHz)

Forward channel
1 ≤ N ≤ 799
990 ≤ N ≤ 1023

0.03 N + 825
0.03 (N 1023) + 825

Reverse channel
1 ≤ N ≤ 799
990 ≤ N ≤ 1023

0.03 N + 870
0.03 (N 1023) + 870
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bandwidth with a peak frequency deviation of 9.5 kHz. In 1993, Japan introduced narrow
band total access communication systems (NTACS) to double the capacity of JTACS. An
NTACS FM channel has a bandwidth of 12.5 kHz and a peak frequency deviation of 5 kHz.
The total number of duplex channels is 1040. Both JTACS and ETACS employ FDMA to
provide access for mobiles.

The second generation (2G) cellular system was digital and was developed to provide a
larger capacity than the first generation systems. Two major digital standards were deployed
in the United States: the Telecommunication Industry Association/Electronic Industry
Association (TIA/EIA) Interim Standard IS 54 [2], later became IS 136, also known as
US digital cellular (USDC) in 1990, and the TIA/EIA Interim Standard IS 95 in 1993 [3].
IS-136 operates in the same frequency spectrum as AMPS. Also, each IS-136 channel has a
bandwidth of 30 kHz, but can support three mobiles using full rate speech coding of
7.95 kbps or six mobiles using half rate via time division multiple access (TDMA), as
shown in Figure 5.12.

The base station or the mobile transmits a π/4-DQPSK signal, which carries data at a
TDMA burst rate of 48.6 kbps. The π/4-DQPSK signal occupies a bandwidth of 30 kHz (one
AMPS forward or reverse channel). When full-rate speech (high quality voice) is employed,
the channel can accommodate three mobiles simultaneously in each TDMA frame as
follows: time slots 1 and 4 for mobile 1, time slots 2 and 5 for mobile 2, and time slots 3
and 6 for mobile 3. For half-rate speech, the channel can accommodate six mobiles
simultaneously with one time slot for each mobile per TDMA frame. By allowing mobiles
to access the 30 kHz channel sequentially on a time division basis, IS-136 can provide three
times the capacity of AMPSwith full-rate speech or six timeswith half-rate speech. Note that
a 30 kHz AMPS channel allows access to only one user. Since IS-136 employs the same
frequency reuse plan as AMPS, the backward compatibility with AMPS allows providers to
gradually replace one AMPS channel by three or six IS-136 channels to meet the growing
demand for capacity. IS-136 can provide 2496 full duplex TDMA channels with full-rate
speech or 4992 full-duplex TDMA channels with half-rate speech in a bandwidth of
50MHz.

AMPS, NAMPS, and IS-136 employ a frequency reuse plan of seven cells per cluster.
Therefore, each AMPS cell has about 416/7 ≈ 59 full-duplex channels, while an NAMPS
cell can have 178 full-duplex channels and an IS-136 cell can have 178 full-duplex TDMA
channels for full-rate speech or 356 full-duplex TDMA channels for half-rate speech.

In 1993, the IS-95 system was deployed as a competing digital cellular system. IS-95
employs code division multiple access (CDMA) to provide mobile access to a spread
spectrum channel of 1.25MHz. All mobiles in a spread spectrum channel employ distinct
quasi orthogonal pseudo noise (PN) codes to separate themselves from each other and to

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6

40 ms or 1944 bits

Figure 5.12 IS-136 TDMA frame.
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reduce multi user interference. There is no separation in frequency as AMPS or NAMPS
using FDMA or in time as IS-136 using TDMA. IS-95 can operate in the frequency
spectrum of AMPS or in the higher personal communication system (PCS) band (1930–
1990MHz forward channel and 1850–1910MHz reverse channel), which will be used to
deploy the third generation (3G) of cellular systems. An IS-95 spread spectrum channel can
accommodate about 59 half duplex 9.6 kbps channels. In a spectrum of 25MHz allocated to
a service provider, there are 20 IS-95 spread spectrum channels that can accommodate 700
half-duplex 9.6 kbps channels or 350 full-duplex 9.6 kbps channels. Since IS-95 employs
CDMA, it does not rely on a frequency reuse plan of seven cells per cluster as AMPS,
NAMPS, or IS-136. Each cell uses the same frequency spectrum of 25MHz and, therefore,
each service provider can offer 350 full-duplex channels per cell, which is about the same
capacity as IS-136 with half-rate speech.

In 1990, Europe deployed the second generation (2G) cellular system, called global
system for mobile communication (GSM) [1]. GSM is a digital system that employs TDMA
to provide channel access to mobiles. The forward channel occupies the 935–960MHz band
and the reverse channel occupies the 890–915MHz band. A 200 kHz TDMA channel has a
TDMA burst rate of 270.833 kbps and can accommodate eight users employing GMSK as
the modulation technique. Mobile users have full rate speech of 13.4 kbps. The GSM
TDMA frame is shown in Figure 5.13. The total number of traffic channels in a bandwidth
of 25MHz is 1000 (forward channel or reverse channel). Thus, there are 1000 full duplex
channels in a 50MHz spectrum.

The Japanese digital cellular system (JDC), which was later called the Pacific digital
cellular system (PDC), was deployed in 1993. PDC is a TDMA system with the forward
channel occupying the 940–956MHz, 1477–1489MHz, and 1501–1513MHz bands, and the
reverse channel occupying the 810–826MHz, 1429–1441MHz, and 1453–1465MHz bands.
The 20ms TDMA frame accommodates three time slots for three users with a TDMA burst
rate of 43 kbps in a channel bandwidth of 25 kHz. The modulation technique is π/4-DQPSK.

To support demands for true mobile multimedia with applications, such as full Internet
access as well as mobile video teleconferencing, two third generation (3G) cellular systems
are being deployed. The third generation systems are wideband CDMA (WCDMA) and
CDMA 2000 [4]. These two systems provide data rates as high as 2.4Mbps for local-area
coverage and 384 kbps for full-area coverage.

Cell connection

In a cellular system, a number of channels are designated as control channels that are
employed specifically for transmission of information concerning call setup, call request,

Slot 1 Slot 2 Slot 3 Slot 4 Slot 5 Slot 6Slot 0 Slot 7

4.615 ms or 1250 bits

Figure 5.13 GSM TDMA frame.

195 5.2 Cellular communication link



call initiation, and other control purposes. In AMPS, there are 21 forward control channels
out of 416 channels on the forward link, and the same number on the reverse link.

When a mobile initiates a call, it sends a request on the reverse control channel to the cell
base station. Along with the request, the mobile submits its telephone number, calledmobile
identification number (MIN), its electronic serial number (ESN), and the telephone number
of the called party. A station class mark (SCM) indicating the nominal EIRP of the mobile is
also transmitted to the base station. The cell base station receives this information and passes
it to the MSC, which verifies the valid MIN and ESN. The ESN of a stolen phone will be
rejected by the MSC, and the call request is invalidated. The MSC instructs the cell base
station to notify the mobile via the forward control channel to tune to a full-duplex voice
channel. If the called party is also another mobile, the MSC then instructs all base stations to
broadcast a paging message for the called mobile over all forward control channels
throughout the home area. The called mobile receives the paging message from the forward
control channel of the base station that it monitors, and acknowledges over the reverse
control channel with its MIN, ESN, and SCM. The base station passes the data to theMSC to
validate the ESN. Then, theMSC instructs the base station to notify the called mobile via the
forward control channel to tune to a full-duplex channel and to ring the phone. If the called
party is a landline subscriber, the connection is established by the MSC via the PSTN. The
connection is similar when a landline subscriber initiates a call via the PSTN to the MSC.

When a mobile moves to another cell during a call, the MSC performs a handoff to
transfer the call to a new full-duplex channel of the new cell. The handoff is initiated when
the received power at the present base station falls below a prefixed threshold for a pre-
determined dwell time, but still above a minimum usable level. Handoff is made to a new
base station once the dwell time expires and must be done before the received power at the
present base station drops below the minimum usable level.

To provide services to mobiles that travel to a new coverage area, all cellular systems
require roaming registration. The roaming mobile monitors a forward control channel and
reports its MIN and ESN over the reverse control channel upon receiving a command issued
periodically by the MSC. Unregistered mobiles are not allowed to receive or initiate calls
from the new area. Billing for roaming mobiles is forwarded to the home provider.

Path loss: two-ray ground reflection model

In free space communication, where there is a single path between the transmitter and the
receiver, the path loss is given by the Friis equation (5.45). In cellular communication, the
transmitted signal arrives at the receiver via multiple paths due to reflection, diffraction, and
scattering by the terrain. These multipath components are time-delayed (hence, phase-
shifted) and amplitude-attenuated versions of the transmitted signal. They add vectorially
at the receiver to produce a composite signal whose power is attenuated far more than is
predicted by the Friis equation. Consider a simple two-ray model for path loss with ground
reflection as shown in Figure 5.14.

In this simple model, the Earth is assumed to be flat and the transmitter and receiver
antenna heights hT and hR are small compared to their separation distance d. The received
electric-field wave has two components: a direct wave E1 and a ground reflected wave E2.
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Let Γ be the ground reflection coefficient and θ be the relative phase shift between E1 and E2.
Then, with phasor notation we have

E2 ¼ �E1ejθ (5:47)

Thus, the received wave is given by

E ¼ E1 þ E2

¼ 1þ �ejθ
� �

E1

(5:48)

The phase shift θ can be related to the differential distance between the direct wave distance
d1 and the ground reflected wave d2 as

θ ¼ 2π
l

d2 � d1ð Þ (5:49)

where λ is the signal wavelength. For the mobile environment, the phase shift θ is much
smaller than one radian, and assuming perfect ground reflection, that is, Γ = –1, we obtain

E � �jθE1 (5:50)

The total receiver power PR at the antenna output is proportional to the square of the field
strength, that is,

PR ¼ Ae

120π
Ej j2

¼ θj j2 Ae

120π
E1j j2

� � (5:51)

where Ae is the effective aperture area of the receiver antenna, and the intrinsic impedance of
the free space is 120π ohms. But Ae=120πð Þ E1j j2 is simply the received power due to the
direct wave and can be calculated via (5.42) and (5.45) as

Ae

120π
E1j j2¼ PTGTGR

l
4πd1

� �2

(5:52)

hR

hR

hT

d1

d2

Reflected
wave

Direct wave

d

Figure 5.14 Two-ray model with ground reflection.
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where PT is the transmitter power, GT is the transmitter antenna gain, and GR is the receiver
antenna gain. Substituting (5.52) into (5.51) yields the received power as

PR ¼ θj j2PTGTGR
l

4πd1

� �2

(5:53)

To calculate PR in (5.53), we need to evaluate θj j2. We note that

d1 ¼ hT � hRð Þ2þd2
q

¼ d 1þ hT � hRð Þ2
d2

s

(5:54)

and

d2 ¼ hT þ hRð Þ2þd2
q

¼ d 1þ hT þ hRð Þ2
d2

s

(5:55)

Using the fact that in a mobile environment hT þ hR55d, we thus have hT þ hRð Þ2=d2551
and hT � hRð Þ2=d2551. Applying the following series expansion:

1þ x
p ¼ 1þ 1

2
x� 1

2 � 4 x
2 þ 1 � 3

2 � 4 � 6 x
3 � � � � ; �15x � 1 (5:56)

to (5.54) and (5.55) we obtain

d1 ¼ d 1þ 1

2

hT � hRð Þ2
d2

� � � �
" #

� d þ 1

2

hT � hRð Þ2
d

(5:57)

d2 ¼ d 1þ 1

2

hT þ hRð Þ2
d2

� � � �
" #

� d þ 1

2

hT þ hRð Þ2
d

(5:58)

Substituting (5.57) and (5.58) into (5.49) yields

θ � 4πhThR
ld

(5:59)

Combining (5.51), (5.52), and (5.59) we obtain the received power at the receiver antenna
output as follows:

PR � PTGTGRh2Th
2
R

d21d
2

� PTGTGRh2Th
2
R

d4
(5:60)

Thus, the path loss LC of the two-ray model is

LC � d4

h2Th
2
R

(5:61)

Note that the role of hT and hR in (5.61) can be interchanged. Therefore, the path loss
calculation applies to both forward and reverse channels. Equations (5.60) and (5.61) show
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that, at large distance, the received power is inversely proportional to the fourth power of
distance for a two-ray model. The resulting path loss is much larger than the free space loss.
Furthermore, it becomes (nearly) independent of the signal frequency. The two-ray model is
applicable to an open area with flat ground.

Example 5.11 Two-ray model
Consider a cell in an open rural area with flat ground. The base station antenna has a
height of 200m, and the mobile antenna height is 2m. The cell has a radius of 10 km.
Assume that the received signal-to-noise ratio at the mobile station must be 25 dB for
the forward link and that the system noise temperature of the mobile station receiver
is 500K. Calculate the received power at the mobile station and the required transmitted
power per channel for the base station at the cell boundary assuming that the channel
bandwidth is 30 kHz. Both base station and mobile employ omni-directional antennas
with 0 dB gain.

Let PR be the received power at the mobile station, then according to (5.43), we have

PR ¼ kBTs SNRð Þ
¼ 1:38� 10 23 J=K

� �
30� 103 Hz
� �

500Kð Þ 316:23ð Þ
¼ 6:54� 10 14 W

Let GT be the base station transmitter antenna gain and GR be the mobile station receiver
antenna gain. The base station transmitted power PT per channel can be evaluated by (5.43)
and (5.44) as follows:

PT ¼ PRLC
GTGR

(5:62)

where the channel path loss LC is given in (5.61). We have

PT ¼ 6:54� 10 14ð Þ 104ð Þ4=ð22 � 2002Þ
1ð Þ 1ð Þ

¼ 4:1� 10 3 W

■

Hata model

The two-ray ground reflection model is too simple to represent propagation mechanisms in
urban areas, where signals arrive at the receiver via reflection, diffraction, and scattering.
Empirical formulas of the path loss for different environments have been developed. A
popular model is the Hata model, which is valid from 150MHz to 1500MHz [5]. The
median (50 percentile) path loss in urban areas is given in dB by

199 5.2 Cellular communication link



LC urbanð Þ ¼ 69:55þ 26:16 log fc � 13:82 log hT � a hRð Þ
þ 44:9� 6:55 log hTð Þ log d dBð Þ (5:63)

where fc is the carrier frequency in MHz, hT is the effective base station antenna height in
meters 30m � hT � 200mð Þ, hR is the effective mobile antenna height in meters
1m � hR � 10mð Þ, d is the base station–mobile separation distance in km, and a(hR) is
the correction factor for hR and is a function of the coverage area. For a small to medium-
sized city:

a hRð Þ ¼ 1:1 log fc � 0:7ð ÞhR � 1:56 log fc � 0:8ð Þ dB (5:64)

For a large city:

a hRð Þ ¼ 8:29 log 1:54hRð Þ2�1:1 dB; f � 300MHz (5:65)

a hRð Þ ¼ 3:2 log 11:75hRð Þ2�4:97 dB; f � 300MHz (5:66)

The median path loss in suburban areas is given by

LC suburbanð Þ ¼ LC urbanð Þ � 2 log
fc
28

� �� �2
�5:4 dB (5:67)

For open rural areas, the median path loss is

LC open areað Þ ¼ LC urbanð Þ � 4:78 log fcð Þ2þ18:33 log fc � 40:94 dB (5:68)

Example 5.12 Hata model for open rural areas
Consider a cell in an open area with the following parameters:

hT ¼ 200m; hR ¼ 2m; d ¼ 10 km; fc ¼ 894MHz

GT ¼ 0 dB; GR ¼ 0 dB

Mobile station:

SNR ¼ 25 dB; Ts ¼ 500K; B ¼ 30 kHz

Calculate the median path loss using the Hata model and the required transmitted power per
channel for the base station.

From (5.66) and (5.63), we get

a hRð Þ ¼ 3:2 log 11:75� 2ð Þ½ �2� 4:97 ¼ 1:05 dB

LC urbanð Þ ¼ 69:55þ 26:16 log 894ð Þ � 13:82 log 200ð Þ � 1:05

þ 44:9� 6:55 log 200ð Þ log 10ð Þ
¼ 143:74 dB
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Applying (5.68), we obtain the median path loss for the open area as follows:

LC open areað Þ ¼ 143:74� 4:78 log 894ð Þ½ �2
þ 18:33 log 894ð Þ � 40:94

¼ 115:26 dB

If we use (5.64) instead of (5.66), we get

a hRð Þ ¼ 1:1 log 894ð Þ � 0:7½ � 2ð Þ � 1:56 log 894ð Þ � 0:8½ �
¼ 1:29 dB

We will use a(hR) = 1.05 dB for a more conservative estimate of the path loss. Substituting
GT = 1, GR = 1, LC (open area) = 3.36 × 1011, and PR = 6.54 × 10 14 W as calculated in
Example 5.11 into (5.62), we obtain the transmitted power for the base station per channel as

PT ¼ 6:54� 10 14
� �

3:36� 1011
� � ¼ 22� 10 3 W

■

Example 5.13 Hata model for large cities (150–1500MHz)
Consider a cell in a large city with the following parameters:

hT ¼ 200m; hR ¼ 2m; fc ¼ 894MHz; GT ¼ 0 dB; GR ¼ 0 dB

Mobile station:

SNR ¼ 25 dB; Ts ¼ 500K; B ¼ 30 kHz

Base station:

maximum transmitted power per channel PT ¼ 4W

Calculate the base station–mobile separation distance d.
Using PR = 6.54× 10–14 Was calculated in Example 5.11, PT = 4W, and GT = GR = 1 in

(5.62), we obtain the corresponding median path loss as follows:

LC urbanð Þ ¼ PTGTGR

PR
¼ 4

6:54� 10 14
¼ 6:1� 1013

¼ 137:9 dB

The distance d can be evaluated using (5.63) and (5.66). We have

a hRð Þ ¼ 3:2 log 11:75� 2ð Þ½ �2� 4:97 ¼ 1:05 dB

Also,

LC urbanð Þ ¼ 69:55þ 26:16 log 894ð Þ � 13:82 log 200ð Þ � 1:05

þ 44:9� 6:55 log 200ð Þ log d
¼ 137:9 dB
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Solving for d, we get

d ¼ 6:35 km
■

Modified Hata model

The Hata model has been modified for the frequency band 1500MHz to 2000MHz. The
median path loss in dB for urban areas is given by

LC urbanð Þ ¼ 46:3þ 33:9 log fc � 13:82 log hT � a hRð Þ
þ 44:9� 6:55 log hTð Þ log d þ CF dBð Þ (5:69)

where a(hR) is given in (5.64)–(5.66), and the correction factor CF is

CF ¼ 3 dB for metropolitan centers

CF ¼ 0 dB for medium-sized city and suburban areas

Also,

1500MHz � fc � 2000MHz

30m � hT � 200m

1m � hR � 10m

1 km � d � 20 km

Example 5.14 Modified Hata model for large cities (1500–2000MHz)
Consider a cell situated in a large city with the following parameters:

hT ¼ 200m; hR ¼ 2m; fc ¼ 1950MHz; GT ¼ 0 dB; GR ¼ 0 dB

Mobile station:

SNR ¼ 15 dB; Ts ¼ 500K; B ¼ 200 kHz

Base station:

maximum transmit power per 200 kHz channel PT ¼ 4W

Calculate the base station–mobile separation distance d.
The received power PR at the mobile station can be obtained from (5.43) as

PR ¼ kBTs SNRð Þ
¼ 1:38� 10 23 J=K

� �
200� 103 Hz
� �

500Kð Þ 31:62ð Þ
¼ 4:36� 10 14 W
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The corresponding median path loss is given by (5.62) as follows:

LC urbanð Þ ¼ PTGTGR

PR
¼ 4

4:36� 10 14
¼ 0:92� 1014

¼ 139:6 dB

The distance d can be evaluated via (5.69) and (5.66). We have

a hRð Þ ¼ 1:05 dB

LC urbanð Þ ¼ 46:3þ 33:9 log 1950� 13:82 log 200

� 1:05þ 44:9� 6:55 log 200ð Þ log d þ 3

¼ 139:6 dB

Solving for d we get

d ¼ 2:45 km
■

In summary, the cellular link analysis enables us to determine the cell size given a specific
signal-to-noise ratio, receiver system noise temperature, and transmitter power. In the next
section, we will discuss the limitation imposed on a link by the cell architecture.

Reciprocity and the reverse link

The reciprocity principle implies that the paths traveled by a signal in the forward link are
identical to the paths traveled by a signal in the reverse link provided that the antenna
location, frequency, and time are identical. Thus, the path loss method employed above for
the forward link also applies to the reverse link. The path loss of the reverse link is simply the
path loss of the forward link with the frequency of the forward link replaced by the
frequency of the reverse link.

5.3 Co-channel interference in a narrowband
cellular system

A cellular coverage consists of many clusters, and each cluster has a fixed number of cells.
Because of frequency reuse, co-channel cells in adjacent clusters that employ the same
portion of the frequency spectrum cause interference to each other. The co-channel inter-
ference dictates the cell architecture. Let us consider a seven-cell per cluster configuration as
shown in Figure 5.15.

The first-tier co-channel cells are labeled A through F and are shown as the center cells of
their parent clusters. The second-tier co-channel cells are labeled AA through LL and are
also the center cells in their respective clusters. The reference cell is labeled O and the
mobile is shown in the worst-case location. We will analyze the co-channel interference on
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the forward link (base station-to-mobile) since this is the link that dictates the design of
cellular architecture.

Consider the forward link from the base station at the center of the reference cell O to the
mobile located at the corner of the hexagonal cell. The received signal power at the mobile is
given by (5.42) as

PR ¼ PTGTGR

LO
(5:70)

where PT and GT are the transmitter power and the antenna gain of the base station O,
respectively, and GR is the mobile receiver antenna gain. The parameter LO represents the
path loss between the base station O and the mobile. Assume that all base stations have
identical transmitter power and antenna gain, and all mobiles have identical receiver antenna
gain. Then, the total co-channel interference power I, received by the mobile due to the first-
tier base stations A, B, C, D, E, and F is

I ¼ PTGTGR
1
LA

þ 1
LB

þ 1
LC

þ 1
LD

þ 1
LE

þ 1
LF

� �
(5:71)

where Li, i = A, B, C, D, E, F represents the path loss between the base station i and the
mobile. The co-channel interference generated by the second-tier co-channel cells is small
compared to that of the first-tier cells due to much larger path losses and can therefore be
ignored.

The signal-to-interference ratio at the mobile is given by

SIR ¼ PR

I
¼ L 1

O

L 1
A þ L 1

B þ L 1
C þ L 1

D þ L 1
E þ L 1

F

(5:72)
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Figure 5.15 First- and second-tier co-channel cells for a seven-cell per cluster system with omni-directional antennas.
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We know via the Friis equation that the free-space path loss is proportional to the squared
distance. For non-free-space environments, we modify the Friis equation to have a channel
path loss Lc as

Lc ¼ βdn (5:73)

where d is the distance between the transmitter and receiver, n is the path loss exponent, and
β is a proportionality constant that is a function of the antenna heights of both transmitter and
receiver and the carrier frequency. Note that the median path loss, in dB, given by the Hata
model in (5.63), (5.67)–(5.69) can be put in the dimensionless form of (5.73).
Let the cell radius R be the distance from the center of the cell to any of the six vertices of

the cell. Applying (5.73) to (5.72), we obtain

SIR ¼ β 1
0 R no

β 1
A 4Rð Þ nAþβ 1

B 5Rð Þ nBþβ 1
c 31

p
R

� � ncþβ 1
D 28

p
R

� � nD

þ β 1
E 19

p
R

	 
 nEþβ 1
F 13

p
R

	 
 nF
(5:74)

where ni and βi, i = 0, A, B,C,D, E, F, are the path loss exponent and proportionality constant
between the base station i and the mobile, respectively. If all values of ni are identical and all
values of βi are also identical, (5.74) reduces to the following equation:

SIR ¼ 1

4ð Þ nþ 5ð Þ nþ 31
p� � nþ 28

p� � nþ 19
p� � nþ 13

p� � n (5:75)

where n is the common path loss exponent for all seven clusters under consideration.
Table 5.3 shows the signal-to-interference ratio for a seven-cell per cluster cellular system
for various path loss exponents n. The result in Table 5.3 shows that the signal-to-
interference ratio increases as the path loss exponent rises. This happens because the co-
channel interference signals suffer more path loss in an environment with a larger path loss
exponent. This explains why, in the case of free space loss with n = 2, the SIR is very low. In
this situation, there are six direct line-of-sight co-channel signals that add up to a very strong
interference.

From the Hata model, the path loss exponent n can be obtained from (5.63) or (5.69) as
follows:

Table 5.3 Signal-to-interference ratio

Path loss exponent n SIR (dB)

2 5.2
3 11.6
3.5 14.7
4 17.8
4.5 20.9
5 25
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n ¼ 0:1 44:9� 6:55 log hTð Þ
¼ 4:49� 0:655 log hT ; 30m � hT � 200mð Þ (5:76)

Here hT is the effective antenna height of the base station, and ranges from 30m to 200m.
According to the Hata model, the path loss exponent for a cellular environment seems to fall
between 3 and 3.5 depending on the antenna heights. Therefore, according to Table 5.3, the
signal-to-interference ratio ranges from 11.6 dB for hT = 200m to 14.7 dB for hT = 30m.
From the above results, we conclude that a higher base station antenna actually reduces the
signal-to-interference ratio because of stronger co-channel interference. But, also according
to the Hata model, a higher base station antenna reduces the path loss and thus increases the
signal-to-noise ratio. Therefore, a compromise in the base station antenna height to achieve
both the specified signal-to-interference ratio and the signal-to-noise ratio should be carried
out in any design.

For the reverse link, SIR can be calculated in a similar way by considering the worst case
of a mobile station located at the corner of the center cell of a seven-cell cluster. There are six
interfering mobile stations from the corresponding first-tier co-channel cells. We have

SIR � 1

6 4ð Þ n (5:77)

For example, letting n = 4, we obtain SIR = 16.3 dB. This is slightly smaller than SIR
= 17.8 dB of the forward channel.

Combined signal-to-interference and noise ratio

The effect of both co-channel interference and thermal noise must be combined to assess the
performance of a cellular signal. Based upon the above analysis, we can establish the signal
to interference and noise ratio as follows:

SINR ¼ PR

I þ N
(5:78)

where PR is the received signal power, I is the received co-channel power, and N is the
received noise power. Furthermore,

SINR ¼ 1

PR=Ið Þ 1þ PR=Nð Þ 1 (5:79)

or, equivalently,

SINR ¼ 1

SIR
þ 1

SNR

� � 1

(5:80)

where SIR = PR/I is the signal-to-interference ratio and SNR = PR /N is the signal-to-noise
ratio.
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Example 5.15 Signal-to-interference and noise ratio for a seven-cell per cluster system
Consider a system in a large city that employs a frequency reuse plan of seven-cells per
cluster. The system has the following parameters:

hR ¼ 2m; fc ¼ 894MHz; GT ¼ 0 dB; GR ¼ 0 dB; B ¼ 30 kHz;

d ¼ 6:35 km

Base station:

transmitted power per channel ¼ 4W

Mobile:

system noise temperature ¼ 500K

Calculate the signal-to-interference and noise ratio in (5.80) using the Hata model for large
cities for two base station antenna heights hT = 200m and 100m.

(a) hT = 200m
Using (5.63) and (5.66) we have the following path loss:

LC urbanð Þ ¼ 69:55þ 26:16 log 894� 13:82 log 200� 1:05

þ 44:9� 6:55 log 200ð Þ log 6:35 ¼ 137:9 dB

The received power at the mobile is given by

PR ¼ PTGTGR

LC urbanð Þ ¼
4ð Þ 1ð Þ 1ð Þ
1013:79

¼ 6:54� 10 14 W

From (5.43), we obtain the signal-to-noise ratio as

SNR ¼ PR

kTB
¼ 6:54� 10 14 W

1:38� 10 23 J=Kð Þ 500Kð Þ 30� 103 Hzð Þ ¼ 316 ¼ 25 dB

From (5.76), the path loss exponent is n = 3. Using Table 5.3, the signal-to-interference
ratio SIR for hT = 200m is 11.6 dB. Applying (5.80), we obtain the signal to
interference and noise ratio as

SINR ¼ 1

101:16
þ 1

102:5

� � 1

¼ 13:76 ¼ 11:4 dB

The above result shows that SINR � SIR, that is, the link is interference-limited, and
thermal noise has negligible effect.

(b) hT = 100 m
Again, using (5.63) and (5.66), we get the following path loss:

LC urbanð Þ ¼ 69:55þ 26:16 log 894� 13:82 log 100� 1:05

þ 44:9� 6:55 log 100ð Þ log 6:35ð Þ ¼ 143:6 dB
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Thus, the received power at the mobile is given by

PR ¼ PTGTGR

LC urbanð Þ ¼
4ð Þ 1ð Þ 1ð Þ
1014:36

¼ 1:75� 10 14 W

Again, from (5.43), we obtain the signal-to-noise ratio as follows

SNR ¼ PR

kTsB
¼ 1:75� 10 14 W

1:38� 10 23 J=Kð Þ 500Kð Þ 30� 103 Hzð Þ ¼ 84:35

¼ 19:3 dB

From (5.76), the path loss exponent is n = 3.18. Substituting n = 3.18 into (5.75), we
have SIR = 18.65 = 12.7 dB. Using (5.80) we obtain the signal to interference and noise
ratio as follows:

SINR ¼ 1

18:65
þ 1

84:35

� � 1

¼ 15:27 ¼ 11:84 dB

■

The above results show that in a cellular environment, taller base station antennas do not
necessarily provide a better signal-to-interference and noise ratio. For narrowband cellular
systems, fairly good voice quality can be provided with a signal-to-interference and noise
ratio of about 14 dB. This requirement cannot be met with a cell radius R = 6.67 km, at least
from the worst-case point of view. One could use lower base station antenna heights to
reduce the co-channel interference, that is, to increase SIR; for example, hT = 30m would
yield SIR = 14.7 dB. Also, to increase SNR, the radius of the cell should be made smaller.
From Example 5.15, a cell radius R = 3 kmwould yield a worst-case path loss for a mobile at
a distance d = R = 3 km to be LC (urban) = 141.5.1 dB for hT = 30m and a corresponding
SNR = 21.34 dB. This would yield a signal-to-interference and noise ratio SINR = 13.85 dB,
which meets the worst-case performance. This method increases the number of clusters per
coverage area, and hence provides a larger capacity at the expense of more base stations.
Another option is to increase the number of cells per cluster to reduce SIRwhile keeping the
cell radius fixed. This method reduces the number of clusters per coverage area and hence
decreases the system capacity.

Sectoring

Another popular method to reduce co-channel interference is sectoring. Sectoring is the
replacement of the base station omni-directional antenna with several directional antennas,
each transmitting to a certain sector of the cell. Sectoring patterns are normally implemented
with three 120° antennas or six 60° antennas. In sectoring, the total number of channels per
cell is divided equally among sectors. Thus, an idle channel in one sector cannot be assigned
to a mobile in another sector of the same cell, hence sectoring increases the call blocking
probability. Note that, in a conventional system, an idle channel in a cell can be assigned to
any mobile in that cell. Therefore, sectoring reduces the capacity of a cellular system since
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the channels in a cell cannot be pooled together and assigned to mobiles on demand. This
trunking efficiency reduction increases with the number of sectors per cell. Another
disadvantage of sectoring is the frequent handoffs when a mobile moves from one sector
to another sector. Modern base stations are normally equipped to handle sectoring handoffs
without requiring the assistance of the MSC, and therefore this is not a major concern.

Let us consider first the forward link. Figure 5.16 shows a seven-cell per cluster system
with 120°-sectoring. The worst-case mobile location is at the right-hand lower corner of cell
O. The mobile is interfered by the three left-looking sectors of cells B, C, and D. The signal-
to-interference ratio can be calculated as

SIR ¼ 1

5 n þ 31
p� � nþ4 n

(5:81)

Table 5.4 tabulates the signal-to-interference ratio for various path loss exponents. A look at
Table 5.4 reveals that SIRs improve by almost 4 dB for n in the range of 3 to 3.5.
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Figure 5.16 First- and second-tier co-channel cells for a seven-cell per cluster system and 120° sectoring.

Table 5.4 SIR for 120°-sectoring

Path loss exponent n SIR (dB)

2 8.7
3 15.3
3.5 18.6
4 21.8
4.5 25.1
5 28.3
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For 60°-sectoring the signal-to-interference ratio is given by the following expression:

SIR ¼ 1

5 n þ 31
p� � n (5:82)

Example 5.16 Signal-to-interference and noise ratio for a seven-cell per cluster system with
120o-sectoring
Consider the system in Example 5.15 with base station antenna height hT = 100m. The path
loss exponent obtained from the Hata model is n = 3.18, which yields SIR = 16.5 dB. For a
hexagon cell with radius R = 6.67 km, the worst case mobile location d = R = 6.67 km yields
a SNR = 19.2 dB assuming the same antenna gain. The combined signal-to-interference and
noise ratio is SINR = 14.6 dB as compared to 11.82 dB in the no-sectoring case. In practice,
the sectoring antenna gain is larger than the omni-directional antenna gain and SINR could
be better. For example, if GT ¼ 2, then SNR = 22.2 dB and SINR = 15.5 dB.
■

For the reverse link, with the mobile station at the corner of the cell, the signal-to-
interference ratio for the 120o-sectoring is given by

SIR ¼ 1

5 n þ 19
p� � nþ4 n

(5:83)

For 60o-sectoring we have

SIR ¼ 1

5 n þ 19
p� � n (5:84)

Microcell-zoning

Sectoring requires the allocation of a fixed set of channels to each sector. Thus, when the
mobile moves from one sector to another sector in the same cell, handoff must be performed
to a new channel in the new sector. Microcell-zoning, as illustrated in Figure 5.17, can be
used to avoid too many handoffs in the same cell. The cell is divided into three micro-zones

Zone selection

Figure 5.17 Microcell-zoning with three micro-zones.
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with directional antennas aiming toward the center of the cell. The three antennas are
connected via terrestrial lines to a zone-selection switch, which in turn is connected to the
base station of the cell. The mobile station signal is received by all three zone antennas, and
the switch selects the strongest signal. The base station communicates with the mobile via
the corresponding zone antenna that produces the strongest signal. In this manner, the
mobile station can move all over the cell without handoffs. For a seven-cell per cluster
system, the signal-to-interference ratio for the forward link assuming the mobile station is at
the zone center is given by the following expression:

SIR ¼ 1

112
p� � nþ 109

p� � nþ 103
p� � nþ 64

p� � nþ 79
p� � nþ 91

p� � n (5:85)

5.4 CDMA cellular link analysis

CDMA cellular systems such as IS-95, CDMA 2000, and WCDMA are markedly different
from narrowband cellular systems, such as IS-136 and GSM. Therefore, the previous link
analysis does not apply to these wideband systems, especially from the co-channel interfer-
ence point of view on both forward and reverse links, and from the point of view of multi-
user interference (MUI) on the reverse link. In a CDMA cellular system, a cell uses the entire
frequency spectrum. No frequency plan is necessary as in a narrowband system to coor-
dinate the allocation of channels for cells in a cluster (each provider has a frequency
spectrum of 416 30 kHz channels in the US cellular band, 59 channels for each cell in a
seven-cells-per-cluster frequency reuse). The most important part of CDMA link analysis is
the assessment of co-channel interference for both forward and reverse links. As in the
narrowband case, we start first with the forward link.

Forward link

Consider seven hexagonal cells in Figure 5.18 arranged with the interested cell at the center
surrounded by six adjacent co-channel cells. The base stations have omni directional
antennas and are located at cell centers. The worst case signal to interference ratio occurs

Figure 5.18 CDMA cells with base stations at cell centers and omni-directional antennas.
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when the mobile station is located at the corner of the cell boundary. We make use of the
results derived for CDMA in Chapter 8 for the following link analysis. The spread factor of
the orthogonal covering forward channel is denoted as N. To be modulation-independent
and PN sequence-independent, we use a conservative approach by accepting the interfer-
ence power in the despread signal bandwidth as PI=N , where PI is the power of the
interference signal. Assuming each base station transmits the same power and their forward
links contain identical number of user channels, K, where K � N , we obtain the following
worst case despread input signal to interference ratio:

SIR ¼ N=χK

2 7
p� � nþ2 2ð Þ nþ2

(5:86)

where n is the path loss exponent (assuming to be identical for all cells), and χ is the voice
activity factor or data duty cycle. The despread input signal to interference and noise ratio

is SINR ¼ SIRð Þ 1þ SNRð Þ 1
h i 1

.

Example 5.17 Modified Hata model for large cities
Consider a CDMA cell situated in a large city with the following parameters:

hT ¼ 200m; hR ¼ 2m; fc ¼ 1950MHz; GT ¼ 0 dB; GR ¼ 0 dB;

BCDMA ¼ 1250 kHz; N ¼ 64

Mobile station:

SNR ¼ 15 dB; Ts ¼ 500K

Base station:

maximum transmit power per user channel PT ¼ 4W

Calculate the base station to mobile separation distance d.
The despread information signal at the mobile station has a bandwidth equal to

B ¼ BCDMA=N ¼ 1250 kHz=64 ¼ 19:53 kHz. The received power PR at the mobile station
is given by

PR ¼ kBTs SNRð Þ
¼ 1:38� 10 23 J=K

� �
19:53� 103 Hz
� �

500Kð Þ 31:62ð Þ
¼ 4:26� 10 15 W

The corresponding median path loss is given as follows:

LC urbanð Þ ¼ PTGTGR

PR
¼ 4

4:26� 10 15
¼ 9:4� 1014

¼ 149:7 dB

The distance d can be evaluated via the modified Hata model. We have
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a hRð Þ ¼ 1:05 dB

LC urbanð Þ ¼ 46:3þ 33:9 log 1950� 13:82 log 200

� 1:05þ 44:9� 6:55 log 200ð Þ log d þ 3

¼ 149:7 dB

Solving for d we get d = 5.35 km.
Now consider the co-channel interference for this forward link. Let us assume that the

path loss exponent n = 4, the voice activity factor χ ¼ 0:4, and a required despread input
signal-to-interference ratio SIR ¼ 7 dB. Then, the number of transmitted user channels per
base station is K = 15. This is themaximum number of user channels plus overhead channels
(pilot channel for example) that the forward link can carry at any instant of time. It is smaller
than the total number of user channels, which is 64 for IS-95. Using the input signal-to-noise
ratio SNR ¼ 15 dB, we get SINR ¼ 6:4 dB.
■

In narrowband cellular systems, sectoring is employed to reduce the co-channel interfer-
ence in order to improve link reliability. The allocated channels in a sector cannot be used in
other sectors since the frequency plan is fixed. On the other hand, CDMA cellular systems
operate with the entire allocated frequency spectrum for each cell. Therefore, a CDMA
forward link is used for the entire cell irrespective of the sectors. This is called sector
frequency reuse and it increases the cell capacity by the number of sectors. Thus, a mobile
station, at the cell corner as shown in Figure 5.19, experiences all six CCI forward links with
the same frequency. Hence, the SINR of sectoring CDMA remains the same as in the case of
no sectoring, as is the number of user channels per sector. But the number of total user
channels is now 3K for 120	-sectoring and 6K for 60	-sectoring. From Example 5.17, the
maximum number of user channels that can be accommodated by a forward link is 45 with
120	-sectoring, and 64 with 60	-sectoring. For the US cellular band, the allocated frequency
spectrum for the forward channel is 12.5MHz, which accommodates ten 1.25MHz-CDMA
carriers. Thus, a CDMA cell can have 10K user channels for no sectoring, 30K user channels
for 120	-sectoring, and max[60K, 10N] user channels for 60	-sectoring.

Figure 5.19 CDMA cells with base stations at cell centers and 120	-sectoring antennas.
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Reverse link

The reverse link of a CDMA cellular system is a multiple access channel with mobile
stations in the cell asynchronously transmitting to the base station using the same carrier
frequency but with different PN sequences. The user rates may be identical or they may be
different (integer multiple of the basic rate). With power control, all mobile station signals
arrive at the base station with the same power. Both MUI and CCI must be accounted for.
The despread input signal-to-interference-and-noise ratio SINR of the user channel consists
of the despread input signal-to-MUI ratio, the despread input signal-to-CCI ratio, and the
despread input signal-to-noise ratio. Therefore, we have SINR ¼ ðSIRÞ 1

MUIþ
h

ðSIRÞ 1
CCI þ ðSNRÞ 1� 1. With power control we have ðSIRÞMUI ¼ N=χK, where K is the

number of multi-access users and χ is the voice activity factor or data duty cycle. The
CCI depends on the distribution of mobile stations in the adjacent cells. In each adjacent
cell, only a small fraction of interfering mobile stations, which are closer to the base
station in the center cell, contributes to CCI. For example, assuming hexagonal cells
and a path loss exponent n = 4, the interfering mobile station signals at the distance of 1.5
times the cell radius from the receiving base station in the center cell are attenuated by 7 dB.
If the distance is increased to twice the cell radius, the attenuation is 12 dB. Thus, for no
sectoring, it is reasonable to model the CCI of all six adjacent cells by ðSIRÞCCI ¼ ηN=χK,
where η is a factor that reflects the real world situation. For 120	-sectoring, only two
adjacent cells facing the intended sector contribute to CCI, hence, we have
ðSIRÞ120	CCI ¼ 3ηN=χK. The number of simultaneous users per sector is K; the number of
simultaneous users for a 120	-sectoring cell is 3K per CDMA carrier. For 60	-sectoring,
only one adjacent cell facing the intended sector contributes to CCI; hence, we have
ðSIRÞ60	CCI ¼ 6ηN=χK. The number of simultaneous users per sector is K; the number of
simultaneous users for a 60	-sectoring cell is 6K per CDMA carrier. For the US cellular
band, the allocated frequency spectrum for the reverse channel is 12.5MHz, which accom-
modates ten 1.25MHz-CDMA carriers. Thus, a CDMA cell can have 10K user channels for
no sectoring, 30K user channels for 120	-sectoring, and max[60K, 10N] user channels for
60	-sectoring.

Example 5.18 SINR of 1.25MHz reverse link
Consider the non-sectoring case and let SINR = 6.4 dB, N = 64, K = 15 users, χ ¼ 0:4, and
SNR = 15 dB. We have ðSIRÞMUI ¼ N=χK ¼ 10:67 ð10:3 dBÞ, and consequently, the
required despread input signal-to-CCI ratio is ðSIRÞCCI ¼ ηN=χK ¼ 9:6 ð9:8 dBÞ. This
implies that η ¼ 0:9 and the CCI power is 1=η (111%) of the MUI power. The total number
of simultaneous users for the cell is 150 assuming the allocated frequency spectrum is
12.5MHz.

Now consider the case of 120	-sectoring with the same SNR = 15 dB as in the non-
sectoring case and set ðSIRÞ120	MUI ¼ N=χK for K = 15 simultaneous user per sector, we have
ðSIRÞ120	MUI ¼ 10:67 ð10:3 dBÞ. Furthermore, set ðSIRÞ120	CCI ¼ 3ηN=χK ¼ 28:8 ð14:6 dBÞ
with η ¼ 0:9. Thus, SINR = 7.9 (9 dB) as compared to 6.4 dB for the non-sectoring case.
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This is possible because the CCI power is greatly reduced. The number of users per CDMA
carrier is 45 or 450 for the entire cell. For 60	-sectoring, the number of users per CDMA
carrier is 64 or 640 for the entire cell.
■

5.5 Satellite communication link

One major invention of the twentieth century is the communication satellite, and most of
them are placed in the geostationary orbit (GEO). This is an equatorial orbit with a radius of
42 164 km and an altitude of 35 786 km. The orbital period is the same as the Earth;
therefore, a GEO satellite appears to be stationary to an observer on Earth. Thus, an Earth
station can communicate with a GEO satellite by simply pointing the antenna toward the
satellite location specified by the satellite longitude. Two angles are used to determine the
pointing direction of the antenna: the azimuth angle A and the elevation angle E [5].

The azimuth angle A is given by:

1. Northern hemisphere:
Earth station west of satellite: A ¼ 180	 � A0

Earth station east of satellite: A ¼ 180	 þ A0

2. Southern hemisphere:
Earth station west of satellite: A ¼ A0

Earth station east of satellite: A ¼ 360	 � A0

where A0 is evaluated according to the following expression:

A0 ¼ tan 1 tan θS � θLj j
sin θ‘

� �
(5:87)

Here θS is the GEO satellite longitude, and θL and θ‘ are the Earth station longitude and
latitude, respectively.

The elevation angle E can be calculated as follows:

E ¼ tan 1 r � Re cos θ‘ cos θS � θLj j
Re sin cos 1 cos θ‘ cos θS � θLj jð Þ½ �

� �

� cos 1 cos θ‘ cos θS � θLj jð Þ
(5:88)

where r = 42 164 km and Re = 6378 km is the Earth radius.
The distance between the Earth station and the GEO satellite, called the slant range, is

given by

d ¼ r2 þ R2
e � 2Rer sin E þ sin 1 Re

r
cosE

� �� �s

(5:89)
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The satellite path loss is given by the Friis equation

LC ¼ 4πd
l

� �2

(5:90)

where λ = c/f is the signal wavelength, c ¼ 3� 108 m=s is the speed of light, and f is the
carrier frequency.

Commercial GEO satellites operate mainly in the C-band (uplink: 6GHz, downlink:
4GHz) and the Ku-band (uplink: 14GHz, downlink: 12GHz). In each band, the higher
frequency is used for the uplink (Earth station to satellite) and the lower frequency is used for
the downlink (satellite to Earth station). The available bandwidth for the uplink or downlink
of each band is about 500MHz. A GEO satellite carries many transponders. Each trans-
ponder consists of a transreceiver that receives the uplink signal (6 or 14GHz) in a particular
bandwidth, then downconverts it to the downlink frequency (4 or 12GHz), amplifies the
signal and retransmits it back to Earth. This type of transponder is called a repeater and is
shown schematically in Figure 5.20.

Example 5.19 Azimuth angle, elevation angle, and slant range
Consider an Earth station located at longitude θL ¼ 80	 W and latitude θ‘ ¼ 40	 N, and a
GEO satellite at longitude θS ¼ 120	 W. Evaluate the azimuth and elevation angles, and the
slant range.

Because the Earth station is located in the Northern Hemisphere and east of the satellite,
the azimuth angle is given by

A ¼ 180	 þ A0 ¼ 180	 þ 52:5	 ¼ 232:5	

From (5.88), the elevation angle is

E ¼ 28:3	

The slant range can be evaluated via (5.89) as

d ¼ 38 764:6 km
■

Bandpass
filter

Low-noise
amplifier

Power
amplifier

Down-
converter

Antenna

Figure 5.20 Repeater transponder.
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A satellite link consists of both uplink and downlink, as shown in Figure 5.21. The uplink
signal power at the satellite receiver input is

Pu ¼ PTGTGS

Lu
(5:91)

where:

PT = transmitter power of the uplink Earth station
GT = antenna gain of uplink Earth station
GS = antenna gain of satellite receiver
Lu = uplink path loss

The noise power in the satellite receiver is

Nu ¼ kTsatB (5:92)

where Tsat is the satellite system noise temperature, B is the channel bandwidth, and k is
Boltzmann constant.

The Earth station on the downlink receives the satellite signal and accompanied noise
with respective powers

Pd ¼ PuGGR

Ld
(5:93)

N ¼ NuGGR

Ld
(5:94)

where:

G = total transponder gain, which includes satellite transmit antenna gain
GR = antenna gain of downlink Earth station
Ld = downlink path loss

The noise power in the downlink Earth station receiver is

Nd ¼ kTsB (5:95)

Here Ts is the downlink Earth station’s system noise temperature. The combined signal-to-
noise ratio at the input of the downlink Earth station’s receiver is given by

Uplink Downlink

6 or 14 GHz 4 or 12 GHz

Figure 5.21 Satellite link.
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SNR ¼ Pd

N þ Nd
¼ 1

Pd
N

� � 1þ Pd
Nd

	 
 1 ¼
1

Pu
Nu

	 
 1
þ Pd

Nd

	 
 1 ¼
1

SNR 1
u

� �þ SNR 1
d

� � (5:96)

The ratio SNRu ¼ Pu=Nu is the uplink signal to noise ratio and the ratio SNRd ¼ Pd=Nd is
the downlink signal to noise ratio. They are given by

SNRu ¼ Pu

Nu
¼ PTGTGS

LukTsatB
¼ EIRPð ÞGS

LukTsatB
(5:97)

and

SNRd ¼ Pd

Nd
¼ PuGGR

LdkTsB
¼ EIRPSð ÞGR

LdkTsB
(5:98)

The quantities EIRP ¼ PTGT and EIRPS ¼ PuG are called the effective isotropic radiated
powers of the uplink Earth station and satellite, respectively. The quantities GS=Tsat and
GR=Ts are called the antenna gain to noise temperature ratios of the satellite and downlink
Earth station, respectively.

Example 5.20 Ku-band satellite link

Uplink frequency: 14GHz Downlink frequency: 12GHz
Bandwidth B = 36MHz = 75.6 dB-Hz EIRP ¼ 108 W ¼ 80 dBW
EIRPS ¼ 104:4 W ¼ 44 dBW GS Tsat= ¼ 1:6 dB=K
GR=Ts ¼ 34:3 dB=K k ¼ 1:38� 10 23 J=K ¼ �228:6 dBW K-Hz=

Uplink slant range = 37 506 km Downlink slant range = 37 506 km
Uplink path loss = 206.9 dB Downlink path loss = 205.5 dB

Applying (5.96) and (5.97) in dB forms, we obtain

SNRuðdBÞ ¼ Pu

Nu

� �

dB
¼ 80 dBWþ 1:6 dB=K� 206:9 dB

þ 228:6 dBW K-Hz= � 75:6 dB-Hz

¼ 27:7 dB

SNRdðdBÞ ¼ Pd

Nd

� �

dB
¼ 44 dBWþ 34:3 dB=K� 205:5 dB

þ 228:6 dBW K-Hz= � 75:6 dB-Hz

¼ 25:8 dB

Using (5.95), we obtain the combined signal-to-noise ratio for the satellite link as

SNR ¼ 1

10 2:77 þ 10 2:58
¼ 231

¼ 23:6 dB

■
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5.6 Summary

In this chapter we have provided a detailed study of wireless communication links in free space and in cellular
environments. The purpose of a link analysis is to find the system signal-to-noise ratio at the receiver.
The noise power is determined by the receiver system noise temperature, which is a function of the antenna

noise temperature and the effective noise temperatures of various subsystems in the receiver, such as the low-
noise amplifier, the downconverter, and the demodulator. We have shown that if the gain of the low-noise
amplifier is large, then the noise contribution of the rest of the receiver can be made negligible.
The signal power in free space is a function of the path loss and can be evaluated by the Friis equation. We

have also shown that the system signal-to-noise ratio is invariant with respect to the reference inputs at the
receiver.
We have introduced the concept of frequency reuse in cellular communications. Each coverage area is divided

into clusters; each cluster has a fixed number of cells. Each cell in a cluster employs a separate portion of the
frequency spectrum to avoid inter-cell interference. Each cluster reuses the same frequency spectrum. If the
number of cells per cluster is large, the co-channel interference between co-channel cells in adjacent clusters can
be kept low.
A review of major cellular standards, such as AMPS, NAMPS, IS-136, IS-95, and GSM, was provided together

with a discussion of call connection and handoff.
The study of the two-ray ground reflection path loss model in a cellular environment has shown that the path

loss is proportional to the fourth power of the distance as compared to the square of the distance in free space
loss.
The well-known empirical Hata model was introduced. This model can calculate the median path loss in

small, medium-sized, and large cities as well as suburban and rural areas. The model covers the 150–
2000 MHz frequency band. The Hata model was employed in the cellular link analysis, for example, to
determine the cell size given a specified signal-to-noise ratio, receiver system noise temperature, and transmitter
power.
The co-channel interference imposed on a cellular link was shown to be architecture-specific. Practical

narrowband cellular systems, such as AMPS, GSM, and IS-136, normally employ seven cells per cluster. The
signal-to-interference ratio for the worst-case mobile location was presented. Wideband cellular systems, such as
IS-95, CDMA 2000, and WCDMA, employ one cell per cluster and rely on spread spectrum processing gain to
reduce the interference effect.
The link analysis and co-channel interference analysis were then integrated to calculate the combined signal-

to-interference and noise ratio. In order to reduce the co-channel interference and improve performance, cellular
systems normally use sectoring at the base station. Sectoring patterns are commonly implemented with three
120°-sectoring antennas or six 60	-sectoring antennas.
Finally, the communication link for a geostationary satellite was studied. The azimuth and elevation angles are

needed to point the Earth station antenna toward the satellite for both uplink transmission and downlink
reception. The slant range between an Earth station and a geostationary satellite was shown to be a function of
the elevation angle. The satellite path loss can be calculated via the Friis equation. The uplink and downlink
signal-to-noise ratios were combined to form the total link signal-to-noise ratio.
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Problems

1. Consider an Earth station receiver that can be modeled as a series connection of an
antenna, a waveguide, a low-noise amplifier, a downconverter, and a demodulator.
Find the system noise temperature at the input of the low-noise amplifier using the
following parameters: waveguide loss = 0.1 dB, GLNA ¼ 55 dB, TLNA ¼ 40K. The
combined effective noise temperature of both downconverter and demodulator is
213 600K. The ambient temperature is T0 ¼ 290 K. The antenna noise temperature
contributors are: main beam: 25.6 K; sub-reflector spillover: 3.3K; main-reflector
spillover: 0.7K; blockage: 9.8K; surface tolerance: 1.5K; and feed loss: 13.9 K.

2. Consider a noisy two-port network with gainG = 50 dB and bandwidth B = 500MHz.
The input of the two-port network is a noise signal with power spectral density
3� 10 22 W/Hz and a signal with power Pi. Find the available noise power delivered
to the network. The two-port has an effective noise temperature of 200K. Find the
system noise temperature, and the available output noise power. It is required that the
system signal-to-noise ratio be at least 20 dB. What is the minimum received signal
power Pi?

3. A communication system has the following parameters:

PT ¼ 10W; GT ¼ 2 dB; LC ¼ 150 dB; GR ¼ 1 dB; TA ¼ 250K;

GLNA ¼ 30 dB; TLNA ¼ 200K; GDC ¼ 30 dB; TDC ¼ 104 K;

TDEM ¼ 104 K; B ¼ 40KHz

(a) Calculate the signal power at the demodulator input.
(b) Calculate the system noise temperature at the demodulator input.
(c) Calculate SNR of the receiver.

4. Consider a series connection of a low-noise amplifier, a downconverter, and a
demodulator. Use the following specifications to calculate the effective noise temper-
ature Te of the series connection: G1 ¼ 40 dB, Te1 ¼ 120K, G2 ¼ 30 dB,
Te2 ¼ 7� 104 K, Te3 ¼ 2� 105 K. If G1 ¼ 50 dB, evaluate the impact on Te:

5. Consider a cascade two-port network, which is a series connection of a low-noise
amplifier (LNA), a downconverter (DC), and a demodulator (DM), with the following
specifications:

GLNA; TLNA ¼ 200K; GDC ¼ 20 dB; TDC ¼ 2� 104 K;TDM ¼ 2� 105 K

The input of the cascade two-port network is connected to a noise source with
available power spectral density 10 21 W/Hz. The signal power at the input of the
two-port is 3� 10 11 W. The bandwidth of the two-port is B ¼ 500 MHz.
(a) Calculate the temperature Tn of the noise source.
(b) Calculate the available noise power delivered by the noise source to the two-port.
(c) Calculate the required minimum gain GLNA of the LNA, so that the system signal

to noise ratio at the input of the two-port (which is also the input of the LNA) is at
least 10 dB.
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6. Show that the median path loss, in dB, given by the Hata model in (5.63), (5.67)–
(5.69) can be put into the dimensionless form of (5.73) with the path loss exponent
given by (5.76).

7. Consider a cell in an open rural area. The base station antenna has a height of 200m,
and the mobile antenna height is 2m. The base station antenna gain is 3 dB and the
mobile employs an omni-directional antenna with 0 dB gain. A forward channel has a
bandwidth of 200 kHz. The cell has a radius of 10 km. Assume that the received
signal-to-noise ratio at the mobile station must be at least 15 dB for the forward link
and that the system noise temperature of the mobile station receiver is 700K.
Calculate the received power at the mobile station and the required transmitted
power for 60 channels at the base station assuming all mobiles are located at the
cell boundary. Use the two-ray ground reflection model for open rural areas.

8. Consider a cell in an open rural area. The base station antenna has a height of 200m, and
the mobile antenna height is 2m. The base station antenna gain is 3 dB and the mobile
employs an omni-directional antenna with 0 dB gain. A forward channel has a band-
width of 200 kHz. The cell has a radius of 10 km. Assume that the received signal-to-
noise ratio at the mobile station must be at least 15 dB for the forward link and that the
system noise temperature of the mobile station receiver is 700K. Calculate the received
power at the mobile station and the required transmitted power for 60 channels at the
base station assuming all mobiles are located at the cell boundary. Assume that the
nominal carrier frequency is 894MHz. Use the Hata model for open rural areas.

9. Consider a cell in a large city that is allocated 60 GSM channels. The base station
antenna has a height of 200m, and the mobile antenna height is 2m. The base station
antenna gain is 3 dB and the mobile employs an omni-directional antenna with 0 dB
gain. A forward GSM channel has a bandwidth of 200 kHz. Assume that the received
signal-to-interference and noise ratio at the mobile station must be at least 9 dB for the
forward link and that the system noise temperature of the mobile station receiver is
700K. Themaximum transmitted power for the base station is 240W. Assume that the
nominal carrier frequency is 894MHz. Calculate the maximum radius of the cell with
the Hata model for large cities and include co-channel interference.

10. Repeat Problem 9 for a cell in a large city with nominal carrier frequency of 1950MHz
and receiver noise temperature of 500K.

11. Repeat Problem 9 with 120	-sectoring and 60	-sectoring.
12. Repeat Problem 10 with 120	-sectoring and 60	-sectoring.
13. For a three-cell per cluster system using microcell-zoning, derive the signal-to-

interference ratio for the forward link, assuming that the mobile station is at the zone
center.

14. Consider a forward CDMA link situated in a large city with the following parameters:

hT ¼ 100m; hR ¼ 2m; fc ¼ 1950MHz; GT ¼ 0 dB; GR ¼ 0 dB;

BCDMA ¼ 1250 kHz; N ¼ 64:

Mobile station:

Ts ¼ 500K
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Base station:

maximum transmit power per Walsh channel PT ¼ 4W

Assume that the path loss exponent n = 4, and the voice activity factor χ ¼ 0:4. The
required despread input signal-to-interference-and-noise ratio is 8 dB. Given a cell
radius of 5 km, calculate maximum number of user channels plus overhead channels
(pilot channel for example) that the forward link can carry at any instant of time:
(a) without sectoring;
(b) with 120	-sectoring;
(c) with 60	-sectoring.

15. Ten forward CDMA links carry four types of users with bit rates kRb, k = 1, 2, 3, 4. The
percentage of users with bit rate Rb is 40%, the percentage of users with bit rate 2Rb is
25%, the percentage of users with bit rate 3Rb is 20%, and the percentage of users with
bit rate 4Rb is 15%. A forward link carries a maximum of 60 user channels with basic
bit rate Rb. Calculate the number of users for each type for the following cases:
(a) without sectoring;
(b) with 120	-sectoring;
(c) with 60	-sectoring.

16. Consider a reverse CDMA link situated in a large city with the following parameters:

hT ¼ 100m; hR ¼ 2m; fc ¼ 1850MHz; GT ¼ 0 dB; GR ¼ 0 dB;

BCDMA ¼ 1250 kHz;N ¼ 64

Base station:

Ts ¼ 500K

Mobile station:

maximum transmit power per user channel PT ¼ 4W

Assume that the path loss exponent n = 4, and the voice activity factor χ ¼ 0:4. The
required despread input signal-to-interference-and-noise ratio is 8 dB. Given a cell
radius of 5 km, calculate maximum number of user channels plus overhead channels
(pilot channel for example) that the reverse link can carry at any instant of time:
(a) without sectoring;
(b) with 120	-sectoring;
(c) with 60	-sectoring.

17. Consider a 1.25MHz reverse CDMA link with a required SINR = 8 dB. Given N = 64,
χ ¼ 0:5, and SNR = 20 dB. The maximum despread input signal-to-CCI ratio without
sectoring is SIRCCI ¼ 10 dB. The allocated spectrum is 12.5MHz.
(a) Find the total number of simultaneous users in the cell without sectoring.
(b) Find the total number of simultaneous users in the cell with 120	-sectoring.
(c) Find the total number of simultaneous users in the cell with 60	-sectoring.

18. Consider a forward CDMA link with two types of users of bit rates Rb and 2Rb. The
users with the highest bit rate (30% of all users) have a spread factor ofN and the users
with the lowest bit rate (70% of all users) have a spread factor of 2N. Thus, all
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transmitted user signals have the same bandwidth. The available power for the link is
P. Find the power allocated to a user of each type, so that the SINR is the same.

19. Consider a C-band satellite link (uplink frequency: 6GHz, downlink frequency:
4GHz). The required signal-to-noise ratio for the combined link must be at least
25 dB. The following parameters are given for the satellite system:

Satellite: EIRPS ¼ 40 dBW;GS=Tsat ¼ 5 dB=K; bandwidth

B ¼ 36MHz:

Transmit Earth station: uplink slant range du ¼ 37 300 km:

Receive Earth station: downlink slant range dd ¼ 37 000 km;GR=Ts ¼ 32 dB=K:

(a) Calculate the downlink signal wavelength ld and the uplink signal wavelength lu.
(b) Calculate the downlink path loss Ld(dB) and the uplink path loss Lu(dB).
(c) Calculate the downlink signal-to-noise ratio.
(d) Calculate the required uplink signal-to-noise ratio.
(e) Calculate the minimum EIRP of the transmit Earth station.

20. Consider a Ku-band (14/12GHz) satellite link with the following parameters: band-
width = 36MHz, satellite antenna gain-to-noise temperature ratio = 1.6 dB/K, satellite
EIRP = 44 dBW, transmit Earth station antenna gain = 57.6 dB, signal power from
transmit Earth station = 174W, receive Earth station antenna gain = 56.3 dB, receive
Earth station system noise temperature = 160K, uplink slant range = downlink slant
range = 37 506 km, tracking loss = 1.2 dB (uplink) and 0.9 dB (downlink). Calculate
the combined SNR (dB) of the entire satellite link.

21. The power flux density at the satellite induced by a transmitted signal with a given
EIRP is defined as Ω ¼ EIRP=4πd2u , where du is the uplink slant range. Express the
uplink signal-to-noise ratio as a function of O, satellite antenna gain-to-noise temper-
ature ratio, uplink frequency fu, and other suitable parameters, such as Boltzmann
constant k, signal bandwidth B, and speed of light c.

22. Consider a C-band (6/4GHz) satellite transponder that accommodates 200 distinct
carriers with identical bandwidth. The carrier bandwidth is 40 kHz. The satellite
antenna gain-to-noise temperature ratio is 7 dB/K, and its transponder EIRP is
36 dBW. To operate the transponder in a linear mode, the transponder amplifier output
power is backed off by 6 dB. The power flux density at the satellite induced by
all 200 carriers is 91 dBW/m2. The receive Earth station has an antenna gain-to-
noise temperature ratio of 22 dB/K. The downlink slant range is 37 506 km. Calculate
the combined SNR (dB) of the entire satellite link

23. A point-to-point communication system has the following parameters:

PT ¼ 0:5W; GT ¼ 10 dB; LC ¼ 150 dB; GR ¼ 10 dB; TA ¼ 160K;

GLNA ¼ 40 dB; TLNA ¼ 200K;GDC ¼ 10 dB; TDC ¼ 5000K;

TDEM ¼ 4000K; B ¼ 50KHz

(a) Find the system noise temperature.
(b) Find the system SNR at the LNA input.
(c) Find the noise power at the demodulator input in dBW.
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Further reading

For anyone who wants to study more about cellular systems we recommend the indispen-
sable book by Rappaport [1]. The material on WCDMA and CDMA-2000 is readily
available on the Internet, or the reader could consult the book by Garg [4]. For a detailed
study of satellite communication, we recommend the book by Ha [6].
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6 Modulation

Introduction

The purpose of digital modulation is to transmit information symbols via the amplitude and/
or phase and/or frequency of a sinusoidal carrier. The symbol is transmitted over a symbol
time which is the inverse of the symbol rate. For binary modulation, a bit is the same as the
symbol. For higher order M ary modulation (M ¼ 2k), a symbol consists of k ¼ log2 M
bits. For binary modulation we investigate phase shift keying (PSK), differential phase shift
keying (DPSK), amplitude shift keying (ASK), frequency shift keying (FSK), minimum shift
keying (MSK), and Gaussian minimum shift keying (GMSK). For M ary modulation we
provide a detailed study ofM ary amplitude shift keying (MASK),M ary phase shift keying
(MPSK), offset quadrature phase shift keying (OQPSK), differential M ary phase shift
keying (DMPSK), M ary quadrature amplitude modulation (MQAM), differential M ary
quadrature amplitude modulation (DMQAM), code shift keying (CSK), M ary frequency
shift keying (MFSK), continuous phase modulation (CPM), and orthogonal frequency
division multiplexing (OFDM). For each modulation technique we will provide the signal
space, power spectral density, and modulator.

6.1 Review of double sideband-amplitude
modulation (DSB-AM)

Many digital modulation techniques are DSB-AM with a digital message signal. Therefore,
it is appropriate to review this basic analog modulation. DSB-AM is the simplest form of
amplitude modulation. The message signal m(t) is multiplied with a high frequency carrier
A cos 2πfct, where A is the carrier amplitude and fc is the carrier frequency, to provide a DSB-
AM signal s(t) as follows:

s tð Þ ¼ Am tð Þ cos 2πfct (6:1)

Note that the amplitude of s(t) is Am(t), which varies according to the message signal m(t),
hence, the name amplitude modulation. In other words, the message signal is now being
carried in the amplitude of the DSB-AM signal. The generation of s(t) is achieved by the
modulator shown in Figure 6.1

The voltage multiplier shown in Figure 6.1 is commonly referred to as the mixer.
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Example 6.1 m tð Þ ¼ cos 2πf0t
The message signal is a sinusoid at frequency f0 � fc. Thus, the DSB-AM signal is given by
(6.1) as

s tð Þ ¼ Am tð Þ cos 2πfct
¼ A cos 2πf0t cos 2πfct

¼ A

2
cos 2π fc � f0ð Þt þ A

2
cos 2π fc þ f0ð Þt

(6:2)

A plot of s(t) in (6.2) is shown in Figure 6.2. Note that a phase reversal occurs at the point
where m(t) goes negative.
■

Example 6.2 m tð Þ ¼ p tð Þ þ 3p t � Tð Þ � p t � 2Tð Þ � 3p t � 3Tð Þ
The message signal m(t) is shown in Figure 6.3(a), which consists of four pulses of
different amplitudes but with the same duration T. The DSB-AM signal is shown in
Figure 6.3(b).
■

When the message signal m(t) is deterministic and has the Fourier transform M( f ), then
the Fourier transform S( f ) of the DSB-AM signal s(t) in (6.1) can be evaluated using the
modulation property in Table 2.1:

S fð Þ ¼ A

2
M f � fcð Þ þM f þ fcð Þ½ � (6:3)

m(t) 

A cos 2πfc t 

s(t) = Am(t) cos 2πfc t

Figure 6.1 DSB-AM modulator.

m(t) s(t)

t

Figure 6.2 DSB-AM with a sinusoidal message signal.
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Figure 6.4 illustrates the concept of DSB-AM in the frequency domain, and shows thatM( f )
is shifted to �fc:

Note that S( f ) consists of two sidebands: the upper sideband (USB) and the lower sideband
(LSB). The bandwidth of a DSB-AM signal is 2B, which is twice that of the message
signal.

Example 6.3 Fourier transform of DSB-AM with m tð Þ ¼ cos 2πf0t
Taking the Fourier transform of s(t) in (6.2) using Table 2.2 for cosine waveforms, we have

S fð Þ ¼A

4
δ f � fc � f0ð Þð Þ þ δ f þ fc � f0ð Þð Þ½ �

þ A

4
δ f � fc þ f0ð Þð Þ þ δ f þ fc þ f0ð Þð Þ½ �

(6:4)

which is shown in Figure 6.5. The USB consists of two impulse functions at fc þ f0 and
�fc � f0, and the LSB consists of two impulse function at fc � f0 and �fc þ f0.
■

When m(t) is a random signal (hence, its Fourier transform does not exist) we can look at
the distribution of its power as a function of frequency via the power spectral density Sm( f ).

(b)

(a)

T
t

2T 3T 4T
0

–1

3

2

1

–2

–3

m(t)

• • • t

00 01 10 11

Figure 6.3 (a) Message signal; (b) DSB-AM signal.
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Consequently, the power spectral density Ss( f ) of the DSB-AM signal s(t) in (6.1) can be
evaluated via (3.71) as follows:

Ss fð Þ ¼ A2

4
Sm f � fcð Þ þ Sm f þ fcð Þ½ � (6:5)

Example 6.4 Binary antipodal signaling message
The binary antipodal signaling is a line code that transmits a positive squared pulse to send a
“0” bit and a negative squared pulse to send a “1” bit (or vice versa). If we assume unit
amplitude pulses, then the power spectral density Sm( f ) of a binary antipodal signaling
message m(t) is given by (3.67) as

Sm fð Þ ¼ Tb
sin πfTb
πfTb

� �2

(6:6)

–B 
f

B0

1

(a)

M( f )

S( f )

f

A/2

(b)

LSBUSB USBLSB

–fc – B –fc + B–fc fc – B fc + Bfc

Figure 6.4 (a) Fourier transform of a message signal m(t); (b) Fourier transform of DSB-AM signal s(t).

f
fc – f0

A/4

S(f)

fc + f0fc–fc – f0 –fc –fc + f0

Figure 6.5 Fourier transform of a DSB-AM signal s(t) with a sinusoidal message signal m(t).
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where Tb is the pulse duration (or bit time). Using (6.5), the power spectral density of the
DSB-AM signal s(t) is

Ss fð Þ ¼ A2Tb
4

sin π f � fcð ÞTb
π f � fcð ÞTb

� �2

þ sin π f þ fcð ÞTb
π f þ fcð ÞTb

� �2
" #

(6:7)

Both Sm( f ) and Ss( f ) are shown in Figure 6.6.
■

From Figure 6.4 or Figure 6.5, we observe that the message signal m(t) can be extracted
from the DSB-AM signal by simply retranslating its spectrum to the zero frequency.

6.2 Digital modulation

The need to transmit digital information in bits dictates the use of digital modulation instead
of analog modulation. Generally speaking, a digital modulation technique requires the
analog message signal to be converted first into bits, then bits into a baseband digital signal,
which is used to modulate a carrier to produce a digitally modulated signal. Because the
basic unit of the message is the bit, digital modulation does not distinguish whether the bits
come from an audio signal, a video signal, or computer data. This feature makes digital
modulation universally suited to all types of messages. Furthermore, bits can be represented
by various types of baseband digital signals to shape the spectrum of the modulated signal,
for example, to meet the channel bandwidth requirement. Bits can also be encoded at the
transmitter and decoded at the receiver to correct errors due to channel noise and interference.

f
0

(a)

f

(b)

Ss( f)

Tb

1−fc− Tb

1−fc+ Tb

1fc− Tb

1fc+

4
A2Tb

Sm( f )

2
TbTb

Tb

1− −2
Tb Tb

1

−fc fc

Figure 6.6 (a) PSD of an antipodal signaling message; (b) PSD of a DSB-AM signal.

229 6.2 Digital modulation



Transmission security is also a distinct feature of digital modulation. It is much easier to
protect the integrity of the message signal carried by a digitally modulated signal.

The amount of information in bits per second, or channel capacity that can be achieved over
a noisy channel via digital modulation is governed by the Shannon channel capacity. Given an
ideal bandlimited channel of bandwidth B (Hz), AWGN having a constant power spectral
density N0/2 (W/Hz), and a received power P (W), the channel capacity C (bits/s) is given by

C ¼ B log2 1þ P

BN0

� �
(6:8)

The quantity BN0 is the noise power in the bandwidth B (channel spectrum of 2B), and hence
P/BN0 is the received signal-to-noise ratio. The Shannon channel capacity states that the data
rate R (bits/s) through the channel must be smaller than C to achieve reliable transmission. In
other words, a specified bit error rate can always be obtained via appropriate coding of the data.
If R > C, reliable transmission is unattainable regardless of coding. Thus, it is necessary that

r ¼ R

B
5

C

B
¼ log2 1þ REb

BN0

� �
(6:9)

where Eb ¼ P R= is the bit energy (J). From (6.9), the required bit energy to noise density
ratio Eb N0= , commonly referred to as the signal to noise ratio per bit, for reliable trans-
mission is constrained by

Eb

N0
4

2r � 1

r
; r ¼ R=B (6:10)

An interesting observation on (6.9) reveals that, in the case of infinite bandwidth, the
quantity r ¼ R B= in bits/s/Hz, commonly referred to as the spectral efficiency, approaches
zero. On the other hand, the limit of Eb N0= can be found by L’Hôpital’s rule as

Eb

N0
4 lim

r!0

2r � 1

r
¼ lim

r!0

d dr=ð Þ 2r � 1ð Þ
d dr=ð Þr ¼ lim

r!0
2r ln 2 ¼ ln 2 ¼ 0:693 (6:11)

Or, in dB,

Eb

N0
4� 1:59 dB Shannon limitð Þ (6:12)

It is seen that the ratio Eb N0= cannot be less than –1.59 dB, even with infinite bandwidth,
for reliable transmission. A plot of r versus Eb N0= is shown in Figure 6.7.

The Shannon theorem provides a trade-off between the signal-to-noise ratio per bit
Eb N0= , which dictates the power efficiency of a digital modulation, and the spectral
efficiency r, which dictates the bandwidth efficiency. Note that the Shannon theorem says
nothing about the degree of reliability of the transmission, that is, about the bit error rate of a
digitally modulated signal. Given an Eb N0= that is larger than –1.59 dB, and a spectral
efficiency r such that the data rate is less than the channel capacity, one can always find a
digital modulation and a channel coding scheme to achieve a desired bit error rate. A low
error rate certainly requires a higher system complexity.
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The rest of this chaper will be devoted to the study of various digital modulation
techniques, which can be specifically classified into two broad groups, namely, binary
modulation and M-ary modulation. The former is simple to implement and can achieve
moderate power and spectral efficiencies. On the other hand, M-ary modulation transmits
symbols (groups of k = log2 M bits) instead of bits and can achieve high spectral efficiency
with low power efficiency, or low to moderate spectral efficiency with high power effi-
ciency. This flexibility makes M-ary modulation the choice in many real world applications.

6.3 Phase shift keying (PSK)

Phase shift keying (PSK) is perhaps the most popular binary modulation. It is used in many
practical applications in satellite communications, cellular communications, and wireless
local area networks. Certain aspects of PSK have been discussed in Chapter 2, such as signal
space and bit energy (signal energy). The following discussion will further expand its scope.
Two finite energy signals s1(t) and s2(t) that are π radians (or 180°) out of phase are
employed to represent bit 1 and bit 0, respectively, over an arbitrary bit time Tb:

s tð Þ ¼
s1 tð Þ ¼ Ap tð Þ cos 2πfct : bit 1
s2 tð Þ ¼ Ap tð Þ cos 2πfct þ πð Þ : bit 0

¼ �Ap tð Þ cos 2πfct

8
<

:
(6:13)

where A is the signal amplitude, p(t) is the bit pulse shape, and cos 2πfct is the carrier. As
discussed in Chapter 2, the carrier frequency-bit duration product fcTb is assumed to be a
positive integer. Obviously, fc is therefore an integer multiple of the bit rate 1/Tb. The pulse
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Figure 6.7 The Shannon limit for a Gaussian channel.
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shape p(t) can be a pulse of unit amplitude and duration Tb per (2.26), or a raised cosine
pulse, which is commonly used in practice to shape the PSK spectrum to a required
bandwidth and to eliminate intersymbol interference. Note that s1(t) and s2(t) in (6.13) can
be combined into one for an infinite sequence of bits as follows:

s tð Þ ¼ A
X1

i¼ 1
2di � 1ð Þ p t � iTbð Þ

" #

cos 2πfct (6:14)

where di 2 0; 1f g represents the ith data bit. The complex envelope or equivalent lowpass
signal of s(t) is given by

m tð Þ ¼
X1

i¼ 1
2di � 1ð Þ p t � iTbð Þ (6:15)

Thus, PSK is simply a DSB-AM signal with the message signal m(t). Note that m(t) is the
antipodal signal described in Example 2.3, where p(t) is a unit amplitude squared pulse.
Figures 2.4 and 2.6 show the complex envelope and the PSK signal itself for the sequence of
bits {1 0 1 1} with squared pulse shape.

Example 6.17 PSK with squared pulse shape
The squared pulse shape is employed in practice when the bandwidth constraint is not a require-
ment. Figure 6.8 shows the complex envelope and the PSK signal for a squared pulse shape.
■

Example 6.18 Bit energy
The bit energy is the energy of the signal given in (6.13). Obviously, the energy of bit 1 is the
same as the energy of bit 0 since s1 tð Þ ¼ �s2 tð Þ

Eb ¼
ð1

1
s21 tð Þ dt ¼

ð1

1
s22 tð Þ dt

¼
ð1

1
Ap tð Þ cos 2πfct½ �2 dt

(6:16)

For a squared pulse, we have Eb ¼ A2Tb=2 as given in (2.24). In this example, we wish to
calculate Eb for a raised-cosine pulse shape whose energy spectrum P( f ) is given as follows:

0
t

Tb

2Tb 3Tb 2Tb 3TbTb0

t

Figure 6.8 (a) Complex envelope; (b) PSK signal.
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P fð Þ ¼

Tb;

Tb
2

1þ cos
πTb
β

fj j � 1� β
2Tb

� �� �� �
;

0;

8
>>><

>>>:

0 � fj j5 1� β
2Tb

1� β
2Tb

� fj j � 1þ β
2Tb

fj j4 1þ β
2Tb

(6:17)

where β is the filter roll-off factor. Applying the Parseval formula in Table 2.2 to (6.16), we
have

Eb ¼
ð1

1
S21 fð Þ df ¼

ð1

1
S22 fð Þ df (6:18)

where S1( f ) and S2( f ) are the energy spectra of s1(t) and s2(t) in (6.13), respectively. Using
the frequency shifting property in Table 2.1 on (6.13), we get

S1 fð Þ ¼ S2 fð Þ ¼ A

2
P f � fcð Þ þ P f þ fcð Þ½ � (6:19)

In practice, fc � 1=Tb, thus P f � fcð Þ and P f þ fcð Þ are non-overlapping. The symmetry
property of P( f ) in (6.17) allows Eb to be calculated as follows:

Eb ¼ A2

ð1

0
P2 fð Þ df (6:20)

Hence,

Eb ¼ A2

ð 1�βð Þ= 2Tbð Þ

0
T2
bdf þ A2

ð 1þβð Þ= 2Tbð Þ

ð1�βÞ=2Tb

T2
b

4
1þ cos

πTb
β

f
1 β
2Tb

� �� �� �2

df

¼ A2Tb
2

1 βð Þ þ A2T 2
b

4

ð 1þβð Þ= 2Tbð Þ

1�βð Þ= 2Tbð Þ
1þ2 cos

πTb
β

f
1 β
2Tb

� �� �
þ cos2

πTb
β

f
1 β
2Tb

� �� �� �
df

¼ A2Tb
2

1 βð Þ þ A2T 2
b

4

β
Tb

þ β
2Tb

� �
¼ A2Tb

2
1

β
4

� �

(6:21)
■

Example 6.19 Power spectral density
The power spectral density of a PSK signal s(t) in (6.14) is that of a DSB-AM signal with the
messagem(t) in (6.15). Whenm(t) is an antipodal signal, the power spectral density of s(t) is
given in (6.7) and Figure 6.6. Given a general pulse shape p(t), the power spectral density
Ss( f ) is given by (6.5) where Sm( f ) is the power spectral density of m(t) in (6.15). For the
raised-cosine pulse shape, we have (Chapter 3)

Sm fð Þ ¼ P fð Þj j2
Tb

(6:22)
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Note that the raised-cosine pulse shape limits the bandwidth to 1þ βð Þ=Tb, which is
between 1=Tb and 2=Tb as shown in Figure 6.9. On the other hand, the squared pulse
shape produces a power spectral density with an infinite bandwidth, although most of
the PSK signal power is contained in the null-to-null bandwidth of 2=Tb as shown in
Figure 6.6. The spectral efficiency of PSK is in the range 0.5–1 bits/s/Hz.

The power of the PSK signal in (6.15) with a raised-cosine pulse shape is given by

P ¼
ð1

1
Ss fð Þ df ¼ A2

ð1

0
Sm fð Þ df

¼ A2

ð1

0

P2 fð Þ
Tb

df ¼ A2

Tb

ð1

0
P2 fð Þ df ¼ A2

2
1� β

4

� � (6:23)

Note that the bit energy Eb is equal to PTb as expected.
■

The PSK signal in (6.13) or (6.14) can be generated by the modulator shown in Figure 6.10.
The PSK signal space is the same as that of the antipodal signal and is shown in

Figure 2.13. Note that the basis function for the signal set in (6.13) is
x1 tð Þ ¼ ðA= Eb

p Þp tð Þ cos 2πfct, where Eb is given in (6.16). Thus, the signal vectors are
still given by (2.77) and (2.78) as s1 ¼ Eb

p
x1 and s2 ¼ � Eb

p
x1, where x1 ¼ 1½ �.

6.4 Differential phase shift keying (DPSK)

Differential phase shift keying (DPSK) is a variation of PSK. In this modulation, the encoding
of bits 1 and 0 is done via the phase difference between two successive bits. The DPSK signal
si(t) over an arbitrary bit time Tb, and the recursive phase encoding rule are given by

f

Ss( f )

1+β
2Tb

−fc−
1+β
2Tb

fc−
1+β
2Tb

fc+
1+β
2Tb

−fc+−fc fc

2

4
bA T

Figure 6.9 PSK power spectral density with raised-cosine pulse shape.

di ∈ {0, 1}

A cos 2π fc t

Pulse
shaping PSK

m (t)

Figure 6.10 PSK modulator.
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si tð Þ ¼ Ap tð Þ cos 2πfct þ θið Þ (6:24)

θi ¼ θi 1 þ πdi mod 2πð Þ (6:25)

where p(t) is the pulse shape, di 2 0; 1f g represents the ith data bit, and θi and θi 1 are the
phases of the ith bit and the previous (i – 1)th bit, respectively. The recursive phase encoding
rule can be stated as follows:

(a) di ¼ 0, θi ¼ θi 1: no phase change between two successive waveforms when the
current data bit is 0.

(b) di ¼ 1, θi ¼ θi 1 þ π: a phase change of π radians from the previous waveform to the
current waveform when the current data bit is 1.

Thus, in DPSK the previous data bit serves as a reference for the current data bit. The
recursive phase encoding rule in (6.25) can be implemented via a differential encoder shown
in Figure 6.11 as part of the DPSK modulator.

The data bit di is modulo-2 added to the previously differentially encoded bit ci 1 to
provide the current differentially encoded bit ci, which is then PSK modulated. Hence,

ci ¼ di � ci 1 (6:26)

The operations in (6.25) and (6.26) are equivalent, that is, they produce the same DPSK
signal for a given data bit di, as seen in the following example.

Example 6.20 Generation of DPSK signals

i θi di ci si(t)

0 0 1 1 Ap(t) cos 2πfct
1 0 0 1 Ap(t) cos 2πfct
2 π 1 0 –Ap(t) cos 2πfct
3 2π 1 1 Ap(t) cos 2πfct
4 2π 0 1 Ap(t) cos 2πfct
5 3π 1 0 –Ap(t) cos 2πfct
6 3π 0 0 –Ap(t) cos 2πfct

DPSKdi ∈ {0, 1}

Differential encoder

1-bit
delay

PSK
modulator

ci – 1

ci

Figure 6.11 DPSK modulator.
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Note that bit c0 = d0 at the time index i = 0 is used as the initial reference bit.
■

The DPSK signal for an infinite sequence of bits can be written as

s tð Þ ¼ A
X1

i¼ 1
2ci � 1ð Þp t � iTbð Þ

" #

cos 2πfct

¼ A
X1

i¼ 1
2 di � ci 1ð Þ � 1ð Þp t � iTbð Þ

" #

cos 2πfct

(6:27)

It is seen that DPSK is essentially PSK with the data bits di replaced by the differentially
encoded bits ci. Therefore, the power spectral density of a DPSK signal is the same as that of
the corresponding PSK signal.

A natural question arises concerning the use of differential encoding in PSK. In practice,
coherent detection of PSK requires the demodulator to extract the carrier from the PSK
signal. This process is done via a carrier recovery circuit that inherently introduces a phase
ambiguity of π radians (180°). That is, the recovered carrier is either cos 2πfct or
cos 2πfct þ πð Þ ¼ �cos 2πfct. If data are demodulated with �cos 2πfct, bit 0 becomes 1,
and vice versa. The use of differential encoding can resolve this phase ambiguity. Inverted
data bits can be corrected via a differential decoder at the output of the demodulator. In
addition to phase ambiguity resolution, differential encoding also allows DPSK to be
demodulated noncoherently without a reference carrier, a feature that is attractive in
applications where coherent demodulation is not feasible. Both phase ambiguity resolution
and noncoherent demodulation of DPSK will be examined in the next chapter.

6.5 Amplitude shift keying (ASK)

Amplitude shift keying (ASK), commonly referred to as on–off keying (OOK), found its use
mostly in fiber optic communications because it is more easily implemented than PSK. In
this scheme the light intensity of the light source, either a light-emitting diode (LED) or a
laser diode, is modulated linearly with respect to the input electrical signal [1]. Thus, the
light source is turned on during bit 1 and turned off during bit 0. Figure 6.12 shows the block
diagram of an optical ASK modulator using the intensity modulation technique. For
example, the electrical signal is the pump current that drives the laser diode. The pump

Light
source

Optical ASK

Electrical
signal

0

1

Figure 6.12 Intensity-modulated ASK modulator.
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current is biased to be near the threshold value for bit 0 to nearly turn off the emitted light,
and significantly above the threshold for bit 1. It is customary not to bias the laser diode so
that the light during bit 0 is completely turned off to avoid the effect called transient chirp
that can appear as crosstalk to adjacent channels in a multi-channel system. The ratio of the
light energy for bit 0 to that for bit 1 is called the extinction ratio re. Note that 0 � re51.

The ASK signal that represents bit 1 or bit 0 over an arbitrary bit time Tb is given by

s tð Þ ¼
s1 tð Þ ¼ 1

1þ re
p Ap tð Þ cos 2πfct : bit 1

s2 tð Þ ¼ re
1þ re

r
Ap tð Þ cos 2πfct : bit 0

8
>>><

>>>:

(6:28)

where p(t) is the pulse shape. For an infinite sequence of bits, the ASK signal can be written
as

s tð Þ ¼ A
X1

i¼ 1

di 1� re
p	 
þ re

p
1þ re

p p t � iTbð Þ
" #

cos 2πfct (6:29)

where di 2 0; 1f g represents the ith data bit. The complex envelope or equivalent lowpass
signal for the ASK signal is

m tð Þ ¼
X1

i¼ 1

di 1� re
p	 
þ re

p
1þ re

p p t � iTbð Þ (6:30)

For the case of zero extinction ratio and squared pulse shape, the power spectral density of
m(t) is that of the unipolar signaling given by (3.68) as

Sm fð Þ ¼ Tb
4

sin πfTb
πfTb

� �2

1þ δ fð Þ
Tb

� �
(6:31)

The power spectral density of the ASK signal can be obtained by substituting (6.31) into
(6.5). Again, note that the ASK signal is simply a DSB-AM signal with the message m(t) in
(6.30). The null-to-null bandwidth of the ASK signal with squared pulse is 2=Tb. A spectral
line represented by the δ( f ) function in (6.31) indicated that a dc component exists at the
carrier frequency fc in its power spectral density.

Example 6.21 Average bit energy
Let us first consider a squared pulse shape. The energies of bit 1 and bit 0 are given by
(6.28) as

E1 ¼
ðTb

0
s21dt ¼

A2Tb
2

1

1þ re

� �
(6:32)

E2 ¼
ðTb

0
s22dt ¼

A2Tb
2

re
1þ re

� �
(6:33)
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The average bit energy Eb is given by the following relation, assuming bits 1 and 0 are
equally probable:

Eb ¼ E1 Pr bit 1ð Þ þ E2 Pr bit 0ð Þ

¼ 1

2
E1 þ 1

2
E2 ¼ A2Tb

4

(6:34)

For a raised-cosine pulse shape, using (6.21) we get

Eb ¼ A2Tb
4

1� β
4

� �
(6:35)

Note that re ¼ E2=E1 by definition, as expected.
■

The ASK signal space is shown in Figure 6.13. The basis function for the signal set
in (6.28) is x1 tð Þ ¼ A= 2Eb

p	 

p tð Þ cos 2πfct. Note that E2 ¼ 2Eb= 1þ reð Þ, and

E1 ¼ 2Eb re= 1þ reð Þð Þ.

6.6 Frequency shift keying (FSK)

Frequency shift keying (FSK) is a special form of frequency modulation (FM) [2–6] in
which the message signal is a baseband digital signal. In this modulation, bits 1 and 0 are
represented by a pair of orthogonal signals as follows:

s1 tð Þ ¼ A cos 2πf1t þ θ1ð Þ : bit 1

s2 tð Þ ¼ A cos 2πf2t þ θ2ð Þ : bit 0
(6:36)

where for a positive integer ‘41, and fc ¼ ‘=Tb, we have

f1 ¼ fc � 1

2Tb

f2 ¼ fc þ 1

2Tb

(6:37)

Both frequencies f1 and f2 are selected to be an integer multiple of the bit rate 1=Tb, and the
minimum frequency spacing of 1=Tb is required to preserve orthogonality between s1 tð Þ and
s2 tð Þ. The peak frequency deviation is Δf ¼ 1=2Tb.

Pulse shapes other than the squared pulse can be chosen to shape the power spectral
density but care must be exercised to ensure orthogonality between the two signals s1 tð Þ and

0 E1 E2

x1

Figure 6.13 ASK signal space.
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s2 tð Þ. From (6.36) and (6.37), the FSK signals for bits 1 and 0 can be combined into one
equation for an infinite sequence of bits up to the nth bit as

s tð Þ ¼ A cos 2πfct þ 2π
1

2Tb

� �ðt

1

Xn

i¼ 1
2di � 1ð Þ p τ � iTbð Þdτ

" #

(6:38)

where di 2 0; 1f g represents the ith data bit and p t � iTbð Þ is the squared pulse shape of the
ith bit given in (2.26). The phase at the bit transition is required to be continuous, that is, at
the bit transition the phase of the present bit is required to be the same as that of the previous
bit. FSK is a special form of FM with the message signal m(t) given by

m tð Þ ¼
Xn

i¼ 1
2di � 1ð Þ p t � iTbð Þ (6:39)

The corresponding frequency sensitivity is af ¼ 1 2Tb= [2–6]. Note that max m tð Þj j ¼ 1
since 2di � 1ð Þ 2 �1; 1f g and the amplitude of p(t) is one. Thus, the peak frequency
deviation of s(t) is [2–6]

Δf ¼ af max m tð Þj j ¼ 1

2Tb
(6:40)

Note that the message signal m(t) is an antipodal signal with an infinite bandwidth.
Therefore, it is not appropriate to use Carson’s rule bandwidth or the FM modulation
index [2–6] unless we define a bandwidth B for m(t) that contains, say over 90% of the
power. This yields B ¼ 1=Tb, which is the first null bandwidth.

Carson’s rule bandwidth can then be estimated as follows:

BC 	 2 Δf þ 1

Tb

� �
¼ 2

1

2Tb
þ 1

Tb

� �
¼ 3

Tb
(6:41)

The modulation index of the FSK signal can be evaluated as β ¼ Δf =B ¼Δf 1=Tbð Þ= ¼ 0:5.
A digital modulation index h ¼ 2TbΔf ¼ 1 is commonly used because it is independent of
the bandwidth of m(t).

Figures 6.14 and 6.15 show the FSK modulators for both discontinuous phase and
continuous phase at the bit transitions.

0
FSKdi ∈{0,1}

A cos (2π f1t + θ1)

1

Switch

~ ~

A cos (2π f2t + θ2)

Figure 6.14 Modulator for discontinuous phase FSK.
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Power spectral density

For the antipodal message signal m(t) given in (6.39), the power spectral density of the
continuous phase FSK signal with the frequency spacing of 1=Tb can be evaluated analyti-
cally. Equation (6.38) can be simplified as follows:

s tð Þ ¼ A cos 2πfct þ π
Xn 1

i¼ 1
2di � 1ð Þ þ π

Tb

ðt

nTb

2dn � 1ð Þ p τ � nTbð Þdτ
" #

¼ A cos 2πfct þ 2dn � 1ð Þ πt
Tb

þ θn

� � (6:42)

where θn is the phase of s(t) defined as

θn ¼ π
Xn 1

i¼ 1
2di � 1ð Þ � 2dn � 1ð Þnπ (6:43)

The requirement for continuous phase at the nth bit transition t ¼ nTb dictates that

2πfcnTb þ 2dn � 1ð Þπnþ θn ¼ 2πfcnTb þ 2dn 1 � 1ð Þπnþ θn 1 (6:44)

In other words,

θn ¼ θn 1 þ 2 dn 1 � dnð Þπn
¼ θn 1 mod 2πð Þ (6:45)

The above recursive relation also dictates that θn ¼ θn 1 ¼ 
 
 
 ¼ θ 1 mod 2πð Þ, where
θ 1 is the initial phase at time t ¼ �1. This proves that θn is independent of the data bits,
and hence, without loss of generality, we set θ 1 ¼ 0 to yield θn ¼ 0 mod 2πð Þ. Using this
result in (6.42) we obtain, for nTb � t5 nþ 1ð ÞTb,

s tð Þ ¼ A cos 2πfct þ 2dn � 1ð Þ πt
Tb

� �

¼ A cos 2dn � 1ð Þ πt
Tb

� �
cos 2πfct � A sin 2dn � 1ð Þ πt

Tb

� �
sin 2πfct

(6:46)

Since dn 2 0; 1f g, hence 2dn � 1ð Þ 2 �1; 1f g, and (6.46) reduces to

s tð Þ ¼ A cos
πt
Tb

� �
cos 2πfct � A 2dn � 1ð Þ sin πt

Tb

� �
sin 2πfct

¼ ARe sL tð Þej2πfct� �
(6:47)

FSKdi ∈{0,1}
Antipodal

signal
generator

1
2Tb

Δ f =

FM
modulator

Figure 6.15 Modulator for continuous phase FSK with a frequency spacing equal to the data rate.
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where sL tð Þ is the complex envelope of s(t) and is given by, for nTb � t5 nþ 1ð ÞTb,

sL tð Þ ¼ cos
πt
Tb

� �
þ j 2dn � 1ð Þ sin πt

Tb

� �
(6:48)

The power spectral density S( f ) of s(t) can be evaluated as follows:

S fð Þ ¼ A2

4
SL f � fcð Þ þ SL f þ fcð Þ½ � (6:49)

where SLð f Þ is the power spectral density of sLðtÞ. Note that the in-phase (real) and
quadrature (imaginary) components of s(t) are independent, so SLð f Þ is the sum of the
power spectral densities of cos πt=Tbð Þ and 2dn � 1ð Þ sin πt=Tbð Þ, respectively. Note that
cos πt=Tbð Þ is a periodic signal for �15t5 nþ 1ð ÞTb since it is independent of the data
bit, while 2dn � 1ð Þ sin πt=Tbð Þ is an antipodal signal with a pulse shape sin πt=Tbð Þ of
duration Tb. The power spectrum of a periodic signal expressed in (2.112) is given in
(2.127). Thus, for the periodic in-phase signal cos πt=Tbð Þ with frequency 1=2Tb, the
power spectral density is

SL;I fð Þ ¼ 1

4
δ f � 1

2Tb

� �
þ δ f þ 1

2Tb

� �� �
(6:50)

The power spectral density of the antipodal quadrature signal 2dn � 1ð Þ sin πt=Tbð Þ is
given by

SL;Q fð Þ ¼ 1

Tb
F sin

πt
Tb

� �
p t � nTbð Þ

� �



2

(6:51)

where p t � nTbð Þ is a unit amplitude pulse with duration Tb from nTb to (n + 1)Tb.

Example 6.22 Evaluating F sin πt=Tbð Þp t � nTbð Þf gj j2
Recall from Table 2.1 that multiplication in the time domain becomes convolution in the
frequency domain. Furthermore, the pulse sin πt=Tbð Þp t � nTbð Þ is simply the pulse
cos πt=Tbð Þp t þ Tb=2ð Þ shifted in time by nþ 1=2ð ÞTb seconds, where

p t þ Tb
2

� �
¼ 1; � Tb

2
� t5

Tb
2

0; otherwise

8
<

:
(6:52)

Therefore, from Table 2.2, we get

F cos
πt
Tb

� �
p t þ Tb

2

� �� �



2

¼ 1

2
δ f � 1

2Tb

� �
þ δ f þ 1

2Tb

� �� �
� Tb sin πTbfπTbf





2

¼ Tb
2

sin πTb f � 1 2Tb=ð Þ
πTb f � 1 2Tb=ð Þ þ sin πTb f þ 1 2Tb=ð Þ

πTb f þ 1 2Tb=ð Þ
� �



2

¼ 2Tb
π

cos πTbf

2Tbfð Þ2�1

" #



2

(6:53)
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Using the time-shifting property in Table 2.1, we obtain

F sin
πt
Tb

� �
p t � nTbð Þ

� �



2

¼ 2Tb
π

cos πTbf

2Tbfð Þ2�1

" #

e j2πf nþ1=2ð ÞTb




2

(6:54)

■

By substituting (6.54) into (6.51), the power spectral density SL;Q fð Þ is given by

SL;Q fð Þ ¼ 4Tb
π2

cos πTbf

2Tbfð Þ2�1

" #2
(6:55)

From (6.50) and (6.51), we obtain the power spectral density of the complex envelope sLðtÞ
of the continuous phase FSK signal s(t), as follows:

SL fð Þ ¼ 1

4
δ f � 1

2Tb

� �
þ δ f þ 1

2Tb

� �� �
þ 4Tb

π2
cos πTbf

2Tbfð Þ2�1

" #2
(6:56)

A plot of SL fð Þ is shown in Figure 6.16 where the first null bandwidth is equal to 1:5=Tb.
The null-to-null bandwidth of a FSK signal is therefore equal to 3=Tb. This is the same as
Carson’s rule bandwidth in (6.41). In practice, the bandwidth is normally chosen to be
between 1:25=Tb, which contains about 90% of the total power, and 2:1=Tb, which contains
about 99% of the signal power. The spectral efficiency of FSK is, therefore, about
0.5–0.8 bits/s/Hz.

The FSK signal space is illustrated in Figure 2.14. Note that the Euclidean distance
between the two signals is 2Eb

p
as compared to 2 Eb

p
for PSK. The shorter Euclidean

distance results in an inferior performance in noise than PSK, as will be studied in Chapter 7.

6.7 Minimum shift keying (MSK)

We have seen a preliminary description of minimum shift keying (MSK) in Example 2.15. It
is a continuous phase FSK with a minimum frequency spacing of 1=2Tb and a peak

f
0

SL ( f )

5
2Tb

− 1
2Tb 2Tb 2Tb 2Tb

− 13
2Tb

− 3 5

Figure 6.16 Power spectral density of the complex envelope of FSK.
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frequency deviation of Δf ¼ 1=4Tb. The digital modulation index of MSK is h ¼ 2TbΔf
¼ 0:5. The MSK signal for an infinite sequence of data bits di 2 0; 1f g up to the nth bit can
be modified from (6.38) to account for Δf ¼ 1=2Tb, as follows:

s tð Þ ¼ A cos 2πfct þ 2π
1

4Tb

� �ðt

1

Xn

i¼ 1
2di � 1ð Þ p τ � iTbð Þdτ

" #

¼ A cos 2πfct þ π
2

Xn 1

i¼ 1
2di � 1ð Þ þ π

2Tb

ðt

nTb

2di � 1ð Þp τ � nTbð Þdτ
" #

¼ A cos 2πfct þ 2dn � 1ð Þ πt
2Tb

þ θn

� �

(6:57)

where p(t) is a squared pulse shape of unit amplitude and duration Tb, and θn is given by

θn ¼ π
2

Xn 1

i¼ 1
2di � 1ð Þ

" #

� 2dn � 1ð Þ nπ
2

(6:58)

For the phase to be continuous at the nth bit’s transition t ¼ nTb, we must have

2πfcnTb þ 2dn � 1ð Þ πn
2
þ θn ¼ 2πfcnTb þ 2dn 1 � 1ð Þ πn

2
þ θn 1

or

θn ¼ θn 1 þ dn 1 � dnð Þπn (6:59)

Thus, we get θn ¼ θn 1 mod 2πð Þ for dn ¼ dn 1, and θn ¼ θn 1 � πn mod 2πð Þ for
dn 6¼ dn 1. Without loss of generality, we assume the initial phase at time t ¼ �1 is 0,
that is, θ 1 ¼ 0. Then, θn 2 0; πf g mod 2πð Þ. By observing (6.57), we can represent the
data bit dn 2 0; 1f g as follows:

s1 tð Þ ¼ A cos 2π fc þ 1

4Tb

� �
t þ θn

� �
; dn ¼ 1

s2 tð Þ ¼ A cos 2π fc � 1

4Tb

� �
t þ θn

� �
; dn ¼ 0

(6:60)

It is obvious that the peak frequency deviation is Δf ¼ 1=4Tb, which is half that of FSK.
This explains the name minimum shift keying. The digital modulation index is
k ¼ 2TbΔf ¼ 0:5. Note that s1 tð Þ and s2 tð Þ are orthogonal if fc is an integer multiple of
1=Tb as indicated by (2.49), and they are quasi orthogonal if fc � 1=Tb.

Power spectral density

Expanding s(t) in (6.57) into quadrature form, and using the fact that sin θn ¼ 0, we get, for
nTb � t5 nþ 1ð ÞTb,

s tð Þ ¼ A cos θn cos 2dn � 1ð Þ πt
2Tb

� �
cos 2πfct � A cos θn sin 2dn � 1ð Þ πt

2Tb

� �
sin 2πfct

¼ ARe sLðtÞej2πfct
� �

(6:61)
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where cos θn 2 �1; 1f g, and sL(t) is the complex envelope of s(t) defined for nTb � t
5 nþ 1ð ÞTb as

sL tð Þ ¼ cos θn cos 2dn � 1ð Þ πt

2Tb

� �
þ j cos θn sin 2dn � 1ð Þ πt

2Tb

� �

¼ cos θn cos
πt
2Tb

� �
þ j 2dn � 1ð Þ cos θn sin πt

2Tb

� � (6:62)

It is obvious that cos θn and 2dn � 1ð Þ cos θn represent the data for the in-phase (real) and
quadrature (imaginary) parts of sL(t), respectively. From (6.59), we observe that

cos θn ¼ cos θn 1; dn ¼ dn 1 (6:63)

cos θn ¼ cos θn 1; even n
� cos θn 1; odd n

�
; dn 6¼ dn 1 (6:64)

Thus, cos θn remains constant over a two-bit interval of 2Tb and can only change sign when
n is odd. Also,

2dn � 1ð Þ cos θn ¼ 2dn 1 � 1ð Þ cos θn 1; dn ¼ dn 1

2dn � 1ð Þ cos θn ¼
� 2dn 1 � 1ð Þ cos θn 1 : even n

2dn 1 � 1ð Þ cos θn 1 : odd n

�
; dn 6¼ dn 1

(6:65)

Thus 2dn � 1ð Þ cos θn remains constant over a two-bit interval of 2Tb and can only change
sign when n is even.

The in-phase data cos θn and quadrature data 2dn � 1ð Þ cos θn, for all n, therefore
represent two antipodal data streams of period 2Tb; one is offset from the other by Tb
duration.

Example 6.23 In-phase and quadrature data

n dn θn mod 2πð Þ cos θn 2dn � 1ð Þ cos θn
0 1 0 1 1

1 0 π –1 1

2 0 π –1 1

3 1 0 1 1

4 0 0 1 –1

5 1 π –1 –1

6 0 π –1 1

7 1 0 1 1

8 0 0 1 –1

For convenience, the initial phase θ0 is assumed to be 0. Note that the in-phase data stream
cos θn is always constant during a 2Tb interval starting with odd n = 1, 3, 5, 7. On the
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other hand, the quadrature data stream 2dn � 1ð Þ cos θn is constant over a 2Tb interval
starting with even n = 0, 2, 4, 6, 8. The two data streams are staggered by one bit interval.
Figure 6.17 illustrates the in-phase and quadrature antipodal data streams cos θn and
2dn � 1ð Þ cos θn.
■

t

(a)

Tb

Tb

Tb

Tb

0

2dn−1

t

(b)

Tb0

cosθn

t

(c)

0

(2dn−1)cosθn

t

(d)

cosθn cos
2Tb

πt⎛     ⎞
⎜     ⎟
⎝     ⎠

0

t

(e)

(2dn−1)cosθnsin
2Tb

πt⎛    ⎞
⎜    ⎟
⎝    ⎠

0

Figure 6.17 (a) Input data in antipodal format of period Tb; (b) in-phase antipodal data of period 2Tb; (c) quadrature antipodal
data of period 2Tb; (d) in-phase antipodal signal of pulse shape cos(πt/2Tb); (e) quadrature antipodal signal of pulse
shape sin (πt/2Tb).
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The above discussion also concludes that cos θn cos πt=2Tbð Þ is the in-phase antipodal
signal of pulse shape cos πt=2Tbð Þ of 2Tb seconds. Also, 2dn � 1ð Þ cos θn sin πt=2Tbð Þ is the
quadrature antipodal signal of pulse shape sin πt=2Tbð Þ of 2Tb seconds. These two signals
are staggered by Tb seconds. Note that sinðπt=2TbÞ is simply cosðπt=2TbÞ shifted by Tb
seconds.

The power spectral density SL( f ) of the complex envelope sL(t) in (6.62) is the sum of two
identical power spectral densities SL,I( f ) and SL,Q( f ) of the in-phase and quadrature
components, respectively. Following the analysis in Example 6.22, and noting that both
in-phase and quadrature components have a period of 2Tb seconds, we have

SL;I fð Þ ¼ SL;Q fð Þ ¼ 1

2Tb
F cos

πt
2Tb

� �
p2Tb tð Þ

� �



2

(6:66)

where p2Tb tð Þ is a squared pulse defined as follows:

p2Tb tð Þ ¼ 1; �Tb � t5Tb
0; otherwise

�
(6:67)

From Table 2.2, we obtain

F cos
πt
2Tb

� �
p2Tb tð Þ

� �



2

¼ 1

2
δ f � 1

4Tb

� �
þ δ f þ 1

4Tb

� �� �
� 2Tb sin 2πfTb2πfTb





2

¼ Tb
sin 2πTb f � 1=4Tbð Þ
2πTb f � 1=4Tbð Þ þ sin 2πTb f þ 1=4Tbð Þ

2πTb f þ 1=4Tbð Þ
� �



2

¼ 4Tb
π

cos 2πTbf

4Tbfð Þ2�1

" #



2

(6:68)

Substituting (6.68) into (6.66) and using the fact that SL fð Þ ¼ 2SL;I fð Þ ¼ 2SL;Q fð Þ, we obtain

SL fð Þ ¼ 16Tb
π2

cos 2πTbf

4Tbfð Þ2�1

" #2
(6:69)

Hence, the power spectral density of the MSK signal s(t) in (6.61) can be evaluated as

S fð Þ ¼ A2

4
SL f � fcð Þ þ SL f þ fcð Þ½ � (6:70)

Figure 6.18 shows the power spectral density of the complex envelope of an MSK signal.
The first null bandwidth is 0.75/Tb. The 99% power bandwidth of the complex envelope is
about 1.2/Tb. On the other hand, 90% of the signal power is contained in the bandwidth
approximately equal to 0.78/Tb. Thus, the spectral efficiency of MSK is between 0.8 and
1.3 bits/s/Hz, which is far superior than that of FSK. Also, for FSK, half the power is in the
two harmonics of fc � 1=Tb. This results in a tremendous waste of power since these two
harmonics carry no information.
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Modulator

The MSK signal in (6.57) can be implemented by an FM modulator with a peak frequency
deviation Δf ¼ 1=4Tb, as shown in Figure 6.19. This is referred to as the analog imple-
mentation of MSK.

The digital implementation of MSK can be carried out as follows. First, we observe that
the in-phase data cos θn and the quadrature data 2dn � 1ð Þ cos θn can be written as one data
stream γn as

γn ¼ cos θn; n : odd
2dn � 1ð Þ cos θn; n : even

�
(6:71)

In other word, the in-phase and quadrature data are odd and even splits of the data γnf g.
Example 6.24 illustrates the above observation.

Example 6.24 Combining in-phase and quadrature data
Using the same data in Example 6.23 and denoting cn as the binary version of the antipodal
data γn in (6.71), that is, cn ¼ γn þ 1ð Þ=2, we have:

n dn 2dn–1 cos θn (2dn–1)cos θn γn cn

0 1 1 1 1 1 1
1 0 –1 –1 1 –1 0
2 0 –1 –1 1 1 1
3 1 1 1 1 1 1
4 0 –1 1 –1 –1 0
5 1 1 1 1 –1 0
6 0 1 1 1 1 1
7 1 1 1 1 1 1
8 0 1 1 1 1 0

f
01.25

Tb Tb Tb Tb
− 0.75−

1.250.75

Figure 6.18 Power spectral density of the complex envelope of MSK.

MSKdi ∈{0,1}
Antipodal

signal
generator

1
4Tb

Δ f =

FM
modulator

Figure 6.19 Analog implementation of MSK.
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The antipodal data γnf g, and its even γ2nf g and odd γ2n 1f g splits are shown in Figure 6.20.
Note that γ2nf g is identical to 2dn � 1ð Þ cos θnf g and γ2n 1f g is identical to cos θnf g as seen
in Figure 6.17.
■

We note that (6.71) can be rewritten in a more compact form, that is,

γn ¼ 2dn � 1ð Þγn 1 (6:72)

as evident by Example 6.24. If we express the data in binary form, (6.72) becomes

cn ¼ dn � cn 1 (6:73)

Thus, the data cn can be obtained from the original data dn by differential encoding. A
quadrature implementation of MSK is illustrated in Figure 6.21.

Note that the data dn is clocked in at the bit rate of 1/Tb bits per second. On the other hand,
the data c2n and c2n–1 are clocked at the rate of 1/2Tb bits per second.

A variation of MSK is also employed, namely, precoded MSK, where the differential
encoder from Figure 6.21 is omitted. This no longer guarantees that data bit dn = 1 will
be transmitted at fc þ 1=4Tb and data bit dn = 0 at fc � 1=4Tb, hence noncoherent

t

(b)

0

γ2n−1

t

(c)

Tb

Tb

Tb

0

γ2n

t

(a)

0

γn

Figure 6.20 (a) Data γn; (b) odd split γ2n 1; (c) even split γ2n.
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demodulation cannot be carried out. Figure 6.22 shows the modulator for precodedMSK. It is
obvious that both MSK and precoded MSK should have the same power spectral densities.
Note that MSK is also called fast frequency shift keying (FFSK). Both MSK and precoded
MSK can be demodulated coherently, butMSK can also be demodulated noncoherently, and
this is its advantage in applications where coherent demodulation is not possible.

6.8 Gaussian minimum shift keying (GMSK)

Gaussian minimum shift keying (GMSK) is a variation of MSK, and is employed in the
European GSM cellular system to compact the power spectral density relative to that of

MSK
Σ

1 bit
delay

cos
2Tb

πt⎛ ⎞
⎜ ⎟
⎝ ⎠

cos 2π fct

dn ∈{0,1}

cn−1

Antipodal
signal

generator

Antipodal
signal

generator

1 bit
delay

dn

sin
2Tb

π t⎛ ⎞
⎜ ⎟
⎝ ⎠

cn ∈{0,1}

–sin 2π fct

Figure 6.21 Quadrature implementation of the MSK modulator.
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MSKΣ

dn ∈{0,1}

Antipodal
signal

generator

Antipodal
signal

generator

1 bit
delay

cos
2Tb

πt⎛ ⎞
⎜ ⎟
⎝ ⎠

cos 2π fct

sin
2Tb

π t⎛ ⎞
⎜ ⎟
⎝ ⎠

–sin 2π fct

Figure 6.22 Precoded MSK modulator.
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MSK. This is achieved by employing a Gaussian filter for pulse shaping before modulation,
as shown in Figure 6.23. The Gaussian filter has the following transfer function:

H fð Þ ¼ e a2f 2 (6:74)

where the parameter a is related to the 3 dB bandwidth B of H( f ) as follows:

a ¼ 1

B

ln 2
2

r

¼ 0:59

B
(6:75)

Note that H Bð Þj j2¼ exp �0:592ð Þ 2¼ 0:5, the half-power value, as expected. The impulse
response of the Gaussian filter is

h tð Þ ¼ π
p
a

e π2=a2ð Þt2 (6:76)

The signal g(t) at the output of the Gaussian filter is frequency-modulated to produce the
GMSK signal, which can be expressed as follows:

s tð Þ ¼ A cos 2πfct þ 2πaf

ðt

1

Xn

i¼ 1
2di � 1ð Þ g τ � iTbð Þdτ

" #

(6:77)

where af ¼ Δf =max g tð Þj j with Δf ¼ 1=4Tb and the pulse shape g tð Þ ¼ p tð Þ � h tð Þ. The
squared pulse p(t) with unit amplitude and duration Tb represents the pulse shape of the
antipodal data signal. The Gaussian filter is employed to suppress the side lobe of the power
spectral density function. This filter is commonly specified by the 3 dB bandwidth-bit time
product BTb . The Gaussian filter nonetheless introduces intersymbol interference, which
increases the bit error rate of GMSK relative to MSK. The degradation in signal-to-noise
ratio per bit Eb/N0 is about 1.6 dB for BTb = 0.25 as compared to MSK. Table 6.1 shows the
occupied bandwidth normalized to 1=Tb for GMSK and MSK that contains a given
percentage of power.

Table 6.1 Occupied bandwidth normalized to 1/Tb for a given percentage of power

BTb 90% 99% 99.9%

0.2 0.52 0.79 0.99
GMSK 0.25 0.57 0.86 1.09

0.5 0.69 1.04 1.33
MSK 1 0.78 1.20 2.76

GMSK
Antipodal

signal
generator

FM
modulator

1
4Tb

Δ f =

Gaussian
filter

dn ∈{0,1}

Figure 6.23 Analog implementation of GMSK.
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Example 6.25 GMSK in the GSM cellular standard [28]
This second generation (2G) European digital cellular system is the most widely used. The
modulation is GMSK with BTb = 0.3. The channel data rate is 1/Tb = 270.833 kbps, hence,
the 3 dB bandwidth of the Gaussian filter is B = 81.25 kHz. The data bit ones and zeros are
represented by two frequencies, fc � 1=4Tb ¼ fc � 67:708 kHz. The channel spacing is
200 kHz, which is equal to 0.7385/Tb. The spectral efficiency for GMSK in GSM is about
270.833 kb/s/200 kHz = 1.35 bits/s/Hz. Note that the 90% power bandwidth of MSK is
about 0.78/Tb, which yields a spectral efficiency approximately equal to 1.3 bits/s/Hz. So
GMSK is more spectrally efficient than MSK. A study of Table 6.1 also reveals that GMSK
with BTb < 0.5 produces much lower out-of-band power, and therefore reduces adjacent
channel interference in a cellular environment.
■

6.9 The need for M-ary modulation

The study of binary modulation in the previous sections leads us to the conclusion that these
techniques are not spectrally efficient. The highest spectral efficiency comes from GMSK,
which has 1.35 bits/s/Hz in the GSM cellular standard. The bit energy-to-noise density ratio,
Eb=N0, for a practical operation in an AWGN channel is normally around 8–14 dB for binary
modulation. A look back to the Shannon limit as shown in Figure 6.7 reveals that a much
higher spectral efficiency can be achieved in this range of Eb=N0. For example, from (6.10),
a spectral efficiency of 6 bits/s/Hz can be achieved at Eb=N0 	 10 dB. The premium
bandwidth requirement in many real world applications dictates the necessity of modulation
techniques other than binary modulation. This is where M-ary modulation comes into the
picture. For example, data communication over the public switched telephone network
(PSTN) is carried out at a bit rate of 56 kbps downstream (ISP server to client computer) and
33.6 kbps upstream (client computer to ISP server). The upstream data rate is achieved over
a bandwidth of 4 kHz dictated by the channel filter at the Central Office. This yields a
spectral efficiency of 8.4 bits/s/Hz. This cannot be achieved by any binary modulation
technique. Of course, the required Eb=N0 according to (6.10) could be much higher than
16 dB, as required by the Shannon capacity theorem.

Besides spectral efficiency, the premium power requirement of many real world applica-
tions dictates the use of power efficient M-ary modulation. Although a combination of
error correction coding and binary modulation can, in many cases, achieve the goal of
conserving the power of the transmitted signal, the use of M-ary modulation can further
enhance the power saving, especially in power-saving applications. An example of the
use of power efficient M-ary modulation is the reverse link (mobile to base station) in the
second generation CDMA cellular standard IS-95, which employs 64-ary orthogonal
modulation.
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M-ary modulation employs a set of M distinct finite-energy signals to represent a set of
M ¼ 2k symbols. Each symbol can be viewed as a representation of k bits. The symbol time
is denoted as Ts and the corresponding symbol rate is 1/Ts. Since a symbol has k bits, it is
obvious that Ts ¼ kTb, and 1=Ts ¼ 1=kTb. Thus, the symbol rate is k times slower than the
corresponding bit rate 1/Tb. As in the case of binary modulation, we assume that the carrier
frequency fc is an integer multiple of the symbol rate.

6.10 M-ary amplitude shift keying (MASK)

This modulation is an extension of ASK, which employs a set of M ¼ 2k finite-energy
signals to represent M distinct symbols numbered as n ¼ 1; 2; . . . ; M , with each symbol
having k bits d0 d1 
 
 
 dk 1 as follows:

sn tð Þ ¼ Anp tð Þ cos 2πfct; n ¼ 1; 2; . . . ; M (6:78)

where p(t) is the pulse shape of a symbol and cos 2πfct is the carrier. An is the signal
amplitude given by

An ¼ 2n�M � 1ð ÞA (6:79)

where A is the smallest signal amplitude. It is seen that 2A is the distance between adjacent
signal amplitudes. The symbol rate is taken to be 1/Ts, where Ts is the symbol time.

Signal space

From the analysis of Section 2.4, we observe that the basis function for the signal set sn(t) in
(6.78) is given by

x1 tð Þ ¼ A

E
p p tð Þ cos 2πfct (6:80)

where E is the smallest symbol energy defined as

E ¼
ð1

1
Ap tð Þ cos 2πfct½ �2dt (6:81)

Thus, it is seen that the signal energy En of signal sn tð Þ ¼ 2n�M � 1ð Þ E
p

x1 tð Þ can be
expressed as follows:

En ¼
ð1

1
s2n tð Þ dt ¼ 2n�M � 1ð Þ2E (6:82)

The MASK signal space is shown in Figure 6.24 for the cases M = 4 and M = 8.
Each symbol d0 d1 
 
 
 dk 1 is assigned a signal level via Gray code. Adjacent symbols

differ by only one bit, thus a symbol error only results in one bit error. It is common to
normalize the signal level with E

p
so that the mapping can be represented as in Tables 6.2

and 6.3.
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Power spectral density

TheMASK signal set in (6.78) can be combined into one for an infinite sequence of symbols
as follows:

s tð Þ ¼
X1

i¼ 1
2Di �M � 1ð ÞAp t � iTsð Þ cos 2πfct (6:83)

where Di 2 1; 2; . . . ; Mf g represents the ith symbol in the symbol stream. The complex
envelope or equivalent lowpass signal of s(t) is given by

m tð Þ ¼
X1

i¼ 1
2Di �M � 1ð Þ p t � iTsð Þ (6:84)

Table 6.2 4ASK symbol mapping

Symbol number n Input bits d0 d1 Signal level 2n − M− 1

1 0 0 3
2 0 1 1
3 1 1 +1
4 1 0 +3

Table 6.3 8ASK symbol mapping

Symbol number n Input bits d0 d1 d2 Signal level 2n − M − 1

1 0 0 0 7
2 0 0 1 5
3 0 1 1 3
4 0 1 0 1
5 1 1 0 +1
6 1 1 1 +3
7 1 0 1 +5
8 1 0 0 +7

E−3 E− 3 EE
0

0100 11 10

(a) M = 4

3 E− E− 3 EE
0

x1

x1

0 0 0

(b) M = 8

5 E−7 E− 5 E 7 E

0 0 1 0 1 1 0 1 0 1 1 0 1 1 1 1 0 1 1 0 0

Figure 6.24 (a) 4ASK; (b) 8ASK.
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which is commonly referred to as M ary pulse amplitude modulation (MPAM). Thus,
MASK is simply a DSB-AM signal with the MPAM message signal m(t). The power
spectral density of m(t) is derived in the problem as follows:

Sm fð Þ ¼ σ2

Ts
P fð Þj j2þ μ

Ts

� �2 X1

k¼ 1
P

k

Ts

� �



2

δ f � k

Ts

� �
(6:85)

where P( f ) is the Fourier transform of the pulse shape p(t) and μ and σ2 are the mean value
and variance of the signal levels 2Di �M � 1f g, respectively. Since the symbol levels are
equally spaced and symmetrical around zero, the mean value μ = 0. The variance σ2 can be
calculated as follows:

σ2 ¼ E 2Di � ðM þ 1Þ½ �2
n o

¼ E 4D2
i � 4Di M þ 1ð Þ þ M þ 1ð Þ2

n o

¼ 4E D2
i

� �� � 4 M þ 1ð ÞE Dif g þ M þ 1ð Þ2
o

¼ 4

M

� XM

n¼1

n2 � 4

M
M þ 1ð Þ

XM

n¼1

nþ M þ 1ð Þ2
)

¼ 2

3
M þ 1ð Þ 2M þ 1ð Þ

�
�2 M þ 1ð Þ2þ M þ 1ð Þ2

o

¼ 1

3
M 2 � 1
	 


(6:86)

For example, we have σ2 ¼ 5 for 4ASK and σ2 ¼ 21 for 8ASK. Substituting (6.86) with
μ = 0 into (6.85) yields

Sm fð Þ ¼ M 2 � 1

3Ts
P fð Þj j2 (6:87)

The MASK power spectral density is obtained by substituting (6.87) into (6.5). If a squared
pulse shape p(t) is employed, then theMASK power spectral density would look identical to
that of PSK with an amplitude scaling factor of M 2 � 1, and with Tb replaced by Ts
as illustrated in Figure 6.6 (recall that PSK is simply a DSB-AM signal with an anti-
podal signaling message). For the raised-cosine pulse shape, the bandwidth is
B ¼ 1þ βð Þ=Ts, where β is the raised-cosine roll-off factor. Note that the symbol rate
1=Ts ¼ 1=kTb, where 2k ¼ M . Thus, in terms of the bit rate, 1=Tb, the bandwidth in this
case is B ¼ 1þ βð Þ=kTb. The spectral efficiency, which is the bit rate-to-bandwidth ratio, is
r ¼ 1 BTb ¼ k= 1þ βð Þ= bits/s/Hz, which is between k/2 and k bits/s/Hz. Therefore, the
larger the number of bits per symbol k ¼ log2 M , the smaller the bandwidth required, and
the higher the spectral efficiency that can be achieved. We observe that an increase in power
by a factor of M2 � 1 accompanied a spectral efficiency gain of k ¼ log2 M 5M 2 � 1.
Hence, it is obvious that MASK must use more transmitter power to achieve the same
performance as PSK, given the fact that the minimumEuclidean distance forMASK is 2 E

p
,

which is the same as that of PSK.
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Modulator

The MASK modulator is illustrated in Figure 6.25. The binary data in bits are shifted
with rate 1=Tb into a serial-to-parallel converter (demultiplexer) whose k outputs form a
stream of k-bit symbols with rate 1=Ts ¼ 1=kTb. Each symbol d0 d1 
 
 
 dk 1 is then mapped
into its appropriate signal level. The pulse shape generator provides a pulse p(t) with the
appropriate signal level, which then modulates a carrier cos 2πfct to produce the MASK
signal.

6.11 M-ary phase shift keying (MPSK)

As good as MASK is in providing high spectral efficiency (up to k = log2 M b/s/Hz), its
power efficiency is rather poor. In applications where high spectral efficiency and moderate
to high power efficiency are desired, MPSK is the appropriate choice. In addition MPSK
provides the constant amplitude requirement (similar to MSK) to work with a channel that
has nonlinearity (power amplifier, satellite transponder). The most popular MPSK, namely
4PSK, commonly referred to as quadrature phase shift keying (QPSK), finds widespread use
in practical applications. It can achieve twice the spectral efficiency of PSK and has the same
power efficiency.

MPSK employs a set ofM = 2k constant amplitude and finite energy signals to representM
distinct symbols, which we number as n ¼ 1; 2; . . . ; M , with each symbol represented by
k = log2 M bits labeled as d0d1 . . . dk 1, as follows:

sn tð Þ ¼ Ap tð Þ cos 2πfct þ 2n� 1ð Þ π
M

� �
; n ¼ 1; 2; . . . ; M (6:88)

where p(t) is the pulse shape of a symbol, cos 2πfct is the carrier, and A is the constant
amplitude. The symbol rate is taken to be 1/Ts, where Ts is the symbol time, which is k times
the bit interval Tb. The symbol rate is thus equal to 1/k times the bit rate 1/Tb. The carrier
frequency is assumed to be an integer multiple of the symbol rate.

MASK

dk−1

cos 2π fct

k – 1

0

{0,1}

Symbol
mapping

Pulse
shaping

d0

Figure 6.25 MASK modulator.
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Signal space

The MPSK signals in (6.88) can be expressed in the I-Q representation as

sn tð Þ ¼ cos
2n� 1ð Þπ

M

� �
Ap tð Þ cos 2πfct � sin

2n� 1ð Þπ
M

� �
Ap tð Þ sin 2πfct (6:89)

Simply observing (6.89), we conclude that there are two basis functions for the signal set
sn tð Þ, n ¼ 1; 2; . . . ; M , namely,

x1 tð Þ ¼ A

Es
p p tð Þ cos 2πfct (6:90)

x2 tð Þ ¼ � A

Es
p p tð Þ sin 2πfct (6:91)

where Es is the symbol energy defined as

Es ¼
ð1

1
s2n tð Þdt ¼

ð1

1
Ap tð Þ cos 2πfct þ 2n� 1ð Þ π

M

� �h i2
dt

¼
ð1

1
Ap tð Þ cos 2πfct½ �2dt ¼

ð1

1
�Ap tð Þ sin 2πfct½ �2dt

(6:92)

In the cases where p(t) is a unit amplitude pulse of duration Ts, the basis functions x1 tð Þ and
x2 tð Þ form an orthonormal set per (2.87).

Example 6.26 Orthogonality with arbitrary pulse shape
In this example we examine the requirements for x1 tð Þ and x2 tð Þ to be orthogonal given a real
pulse shape p(t) with a Fourier transform P( f ). We have

ð1

1
x1ðtÞx2ðtÞ dt ¼ � A2

2Es

ð1

1
pðtÞ½pðtÞ sin 4πfct� dt (6:93)

Applying the Parseval formula in Table 2.2 to the right-hand side of (6.93), we get

ð1

1
x1ðtÞx2ðtÞ dt ¼ A2

j4Es

ð1

1
P fð Þ½P� f � 2fcð Þ � P� f þ 2fcð Þ� df

¼ A2

j4Es

ð1

1
P fð Þ½P �f þ 2fcð Þ � P �f � 2fcð Þ� df

(6:94)

If P( f ) is bandlimited to a spectrum W such that W < fc, then P( f ) does not overlap with
P �f þ 2fcð Þ or P �f � 2fcð Þ. Therefore, P fð ÞP �f þ 2fcð Þ ¼ 0 and P fð ÞP �f � 2fcð Þ ¼ 0.
Thus, the right-hand side of (6.94) is zero and x1(t) is orthogonal to x2(t). Note that this
condition is sufficient only.

A stronger condition can be established by letting P fð Þ ¼ P �fð Þ, that is, P( f ) is an even
function, a condition that is normally met by practical pulse shapes. In this case,
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ð1

1
P fð ÞP �f þ 2fcð Þ df ¼

ð1

1
P fð ÞP �f � 2fcð Þ df (6:95)

and x1(t) is orthogonal to x2(t).
■

Using the basis functions x1(t) and x2(t) in (6.90) and (6.91), we can express the MPSK
signal sn(t) in (6.89) as follows:

sn tð Þ ¼ Es

p
cos

2n� 1ð Þπ
M

x1 tð Þ þ Es

p
sin

2n� 1ð Þπ
M

x2 tð Þ (6:96)

Furthermore, in terms of vectors, we have

sn ¼ Es
p

cos 2n 1ð Þπ
M

Es
p

sin 2n 1ð Þπ
M

" #

¼ Es

p
cos

2n� 1ð Þπ
M

x1 þ Es

p
sin

2n� 1ð Þπ
M

x2 (6:97)

where x1 and x2 are two-dimensional basis vectors given in (2.60).
The MPSK signal space is shown in Figure 6.26 for the cases M = 4 and M = 8.

Customarily, the in-phase channel, represented by the basis vector x1, is denoted as the
I-channel, and the quadrature channel, represented by x2, is denoted as the Q-channel.
Symbols d0d1 
 
 
 dk 1 are assigned an I-value and a Q-value via Gray code, that is, adjacent
symbols differ by only one bit. Signal levels are commonly normalized to Es

p
. Tables 6.4

and 6.5 show the symbol mapping for QPSK and 8PSK

0 0

0 1 1 1

1 0

x1

Es

(a)

x2 x2

x1

001

010 110

101
Es

(b)

000 100

111011

Figure 6.26 Signal space: (a) QPSK; (b) 8PSK. The I- and Q-channels are represented by x1 and x2, respectively.

Table 6.4 QPSK symbol mapping

Symbol number n Input bits d0 d1 I Q

1 1 1 þ 2
p

=2 þ 2
p

=2
2 0 1 2

p
=2 þ 2

p
=2

3 0 0 2
p

=2 2
p

=2
4 1 0 þ 2

p
=2 2

p
=2
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Power spectral density

Using the I-Q representation in (6.89), we can write the MPSK signal for an infinite
sequence of symbols as follows:

s tð Þ ¼
X1

i¼ 1
cos

2Di � 1ð Þπ
M

Ap t � iTsð Þ cos 2πfct

�
X1

i¼ 1
sin

2Di � 1ð Þπ
M

Ap t � iTsð Þ sin 2πfct (6:98)

where Di 2 1; 2; . . . ; Mf g represents the ith symbol in the symbol stream. Let sL tð Þ be the
complex envelope of s(t), then

s tð Þ ¼ ARe sL tð Þej2πfct� �
(6:99)

where

sL tð Þ ¼
X1

i¼ 1
cos

2Di � 1ð Þπ
M

p t � iTsð Þ þ j
X1

i¼ 1
sin

2Di � 1ð Þπ
M

p t � iTsð Þ (6:100)

The power spectral density S( f ) of the MPSK signal s(t) can be evaluated as

S fð Þ ¼ A2

4
SL f � fcð Þ þ SL f þ fcð Þ½ � (6:101)

where SLð f Þ is the power spectral density of the complex envelope sL tð Þ, which is the sum of
the power spectral density SL;I fð Þ of the in-phase (real) component and the power spectral
density SL;Q fð Þ of the quadrature (imaginary) component of sL tð Þ. Both SL;I fð Þ and SL;Q fð Þ
can be evaluated according to the expression (6.85), which is displayed here for clarity:

SL;I fð Þ ¼ σ2I
Ts

P fð Þj j2þ μI
Ts

� �2 X1

k¼ 1
P

k

Ts

� �



2

δ f � k

Ts

� �
(6:102)

Table 6.5 8PSK symbol mapping

Symbol number n Input bits d0 d1 d2 I Q

1 1 1 1 þ cos π=8 þ sin π=8
2 1 1 0 þ sin π=8 þ cos π=8
3 0 1 0 sin π=8 þ cos π=8
4 0 1 1 cos π=8 þ sin π=8
5 0 0 1 cos π=8 sin π=8
6 0 0 0 sin π=8 cos π=8
7 1 0 0 þ sin π=8 cos π=8
8 1 0 1 þ cos π=8 sin π=8
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SL;Q fð Þ ¼ σ2Q
Ts

P fð Þj j2þ μQ
Ts

� �2 X1

k¼ 1
P

k

Ts

� �



2

δ f � k

Ts

� �
(6:103)

where P( f ) is the Fourier transform of the pulse shape p(t), μI and μQ are the mean values of
theM/2 signal levels cos 2Di � 1ð Þπ=M and sin 2Di � 1ð Þπ=M , respectively, and σ2I and σ

2
Q are

the corresponding variances. Since the M/2 signal levels are symmetrical around zero,
μI ¼ μQ ¼ 0. With each of the M/2 signal levels assumes a probability of 2/M, the variances
σ2I and σ

2
Q are

σ2I ¼
2

M

XM=2

n¼1

cos2
2n� 1ð Þπ

M
¼ 1

2
(6:104)

σ2Q ¼ 2

M

XM=2

n¼1

sin2
2n� 1ð Þπ

M
¼ 1

2
(6:105)

Substituting μI ¼ μQ ¼ 0 and σ2I ¼ σ2Q ¼ 1=2 into (6.102) and (6.103), we get

SL;I fð Þ ¼ SL;Q fð Þ ¼ P fð Þj j2
2Ts

(6:106)

Therefore, the power spectral density SLð f Þ of the complex envelope is given by

SL fð Þ ¼ SL;I fð Þ þ SL;Q fð Þ ¼ P fð Þj j2
Ts

(6:107)

Consequently, the MPSK power spectral density is obtained by substituting (6.107) into
(6.101). Figure 6.27 shows the power spectral density of an MPSK signal with unit

f

(a)

S( f )

S( f )

–fc fc
Ts

1−fc−
Ts

1
fc−

Ts

1
fc+

Ts

1−fc+

f
1+β
2Ts

−fc−
1+β
2Ts

fc−
fc 1+β

2Ts
fc+

−fc 1+β
2Ts

−fc+

(b)

Figure 6.27 Power spectral density of MPSK: (a) squared pulse shape; (b) raised-cosine pulse shape.
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amplitude squared pulse and with raised-cosine pulse. The latter has P( f ) given in (6.17)
with Ts replacing Tb, and the former has P fð Þj j ¼ Ts sin πfTs=πfTsj j (see Table 2.2). It is
clear from (6.87) and (6.107) that MPSK and MASK have the same spectral efficiency,
namely, r ¼ k= 1þ βð Þ bits/s/Hz for a raised-cosine pulse shape, which is between k/2 and
k bits/s/Hz.

From the power efficiency point of view we observe that the minimum Euclidean distance
(or minimum signal separation) for MPSK is 2 Es

p
sin π=M per (2.91), which gets smaller

with increasing M. This in turn requires more power for a larger M. Obviously, MPSK is a
modulation that trades power efficiency for bandwidth efficiency. Of particular interest is
QPSK, the most widely used digital modulation. The minimum Euclidean distance for
QPSK is 2 Es=2

p ¼ 2 Eb
p

, since Es ¼ 2Eb, where Eb is the bit energy. Thus, QPSK has the
same minimum Euclidean distance as PSK, suggesting that QPSK is as power efficient as
PSK. This is reinforced by the fact that a QPSK signal is a superposition of two orthogonal
PSK signals as viewed by (6.96). Thus, if QPSK can be detected as two orthogonal PSK
signals, the performance would be identical to PSK. On the other hand, the spectral
efficiency of QPSK is twice that of PSK. This is certainly a rare combination.

Modulator

MPSK can be implemented by the I-Qmodulator shown in Figure 6.28. The binary data in bits
are shifted with rate 1/Tb into a serial-to-parallel converter (demultiplexer). The k outputs form
a symbol with the symbol rate 1=Ts ¼ 1=kTb. Each symbol d0d1 
 
 
 dk 1 is mapped into
the I- and Q-levels that determine the amplitudes of the I- and Q-pulse shape p(t). The
I-pulse modulates the in-phase carrier cos 2πfct, while the Q-pulse modulates the quadrature
carrier �sin 2πfct. The two signals are added to form the MPSK signal.

Offset quadrature phase shift keying (OQPSK)

This is a variation of QPSK where the quadrature component of QPSK is delayed by a bit
time Tb with respect to the in-phase component. In QPSK, a phase change at the symbol
transition can be 0°, ±90°, or 180°. For example, from Figure 6.26(a), a phase change of 90°
occurs when symbol 01 succeeds 11, 90° when 10 succeeds 11, 180° when 00 succeeds
11, and 0° when another 11 succeeds 11. In some applications where a highly nonlinear
power amplifier is employed, the large swing of phase (180°) can cause the sidelobes of the

MPSK

Pulse
shaping

Pulse
shaping

Σ

dk−1k – 1

0

{0,1}

Symbol
mapping

d0

cos 2π fct

–sin 2π fct

Figure 6.28 I-Q modulator for MPSK.
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QPSK spectrum to regrow even if the signal is pre-filtered to suppress the sidelobes. This
can cause interference to adjacent channels. Since post-filtering at the output of an RF power
amplifier is not practical due to a high filter insertion loss (the filter bandwidth is normally
very small compared to the carrier frequency), OQPSK might be employed to reduce
sidelobe regrowth. The staggering of I and Q components implies that only one bit in a
symbol can be succeeded by the next bit. If Gray code is used in symbol mapping, the phase
changes can only occur with 0° and ±90°. Thus, the phase change of 180° is eliminated and
the sidelobe regrowth can be reduced. The OQPSKmodulator is shown in Figure 6.29. Note
the similarity between OQPSK modulator and pre-coded MSK modulator in Figure 6.22.
Pre-coded MSK can be viewed as OQPSK with sinusoidal weighted pulse shapes.

Example 6.27 Complex envelope of QPSK and OQPSK
In this example, we examine the real part (I-channel) and imaginary part (Q-channel) of the
complex envelope of both QPSK and OQPSK and how the phase changes at the symbol
transition. For comparison purposes, we index the time in bit interval Tb instead of the symbol
time Ts ¼ 2Tb because the I-channel and the Q-channel of OQPSK are staggered by Tb. We
also assume a unit amplitude squared pulse shape p(t) of duration Ts. For clarity purposes, we
normalize the I and Q outputs to unity. The delayed Q-output is denoted asQOQPSK, The input
data bit at time index i, that is, iTb � t5 iþ 1ð ÞTb, is denoted as di. Figure 6.30 shows the
I- and Q-channel waveforms for both QPSK and OQPSK for the following data bits:

i di I Q QOQPSK QPSK phase OQPSK phase

0 1 +1 1 7π/4

1 0 +1 1 1 7π/4

2 1 +1 +1 1 π/4 7π/4

3 1 +1 +1 +1 π/4

4 0 1 1 +1 5π/4 3π/4

5 0 1 1 1 5π/4

6 0 1 +1 1 3π/4 5π/4

7 1 1 +1 +1 3π/4

8 1 +1 +1 +1 π/4 π/4

9 1 +1 +1 +1 π/4
+1

OQPSK
Symbol
mapping Σ

1 bit
delay

{0,1}

Pulse
shaping

Pulse
shaping

–sin 2π fct

cos 2π fct

Figure 6.29 OQPSK modulator.
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Note that QPSK can change phase every symbol time, while OQPSK can only change phase every bit
time (from the result of a change in either the I or Q bit, but not both). Despite switching phase every bit
interval, OQPSK is still a superposition of two orthogonal PSK signals. Therefore, its power spectral
density is still the same as that of QPSK.

■

6.12 Differential M-ary phase shift keying (DMPSK)

The use of absolute phase encoding in MPSK requires coherent demodulation at the
receiver. The carrier phase must be extracted from the received MPSK signal by a carrier
recovery circuit that inherently introduces M-fold phase ambiguity 2πi=M radians,
i ¼ 1; 2; . . . ; M . This results in a rotation of the signal points in the signal space by
multiples of 2π=M radians and data symbols (hence, bits) will be demodulated
incorrectly. Note that MPSK signal space has an M-fold symmetry, that is, the signal
space remains unchanged with the rotation of 2πi=M radians for i ¼ 1; 2; . . . ; M.
Differential encoding of MPSK can resolve the phase ambiguity. Furthermore, it also allows
noncoherent demodulation to be carried out in applications where coherent demodulation is
not feasible.

The DMPSK signal s(t) over a symbol time Ts ¼ kTb ¼ log2 Mð ÞTb and the recursive
encoding rule are given by

Ts

t

(a)

0 Tb

I  

t

(b)
0

Q  

t

(c)

0

QOQPSK

Figure 6.30 I- and Q-channel waveforms for QPSK and OQPSK.
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s tð Þ ¼ Ap tð Þ cos 2πfct þ θið Þ (6:108)

θi ¼ θi 1 þ Di � 1ð Þ 2π
M

; Di 2 1; 2; . . . ; Mf g (6:109)

where p(t) is the pulse shape, Di represents the ith symbol in the data stream, and θi and θi 1

are the phases of the ith symbol and the previous (i – 1)th symbol, respectively. Note that in
the case of DPSK (M = 2) we have Di 2 1; 2f g, and Di � 1 ¼ di 2 0; 1f g is simply the ith
data bit, per (6.25). Table 6.6 illustrates the differential encoding in (6.109) for DQPSK,
which, in practice, can also be implemented via the following logical expressions:

cI ;i ¼ dI ;i � dQ;i
	 


cI ;i 1 � dQ;i
	 
� dI ;i � dQ;i

	 

dI ;i � cQ;i 1

	 

(6:110)

cQ;i ¼ dI ;i � dQ;i
	 


dI ;i � cQ;i 1

	 
� dI ;i � dQ;i
	 


cI ;i 1 � dQ;i
	 


(6:111)

where the subscripts (I, i) and (Q, i) represent the ith bit in the in-phase and quadrature bit
streams, respectively. Figure 6.31 shows a DQPSK modulator which consists of a differ-
ential encoder and a QPSK modulator.

Example 6.28 Differential encoding for DQPSK
In this example, we illustrate the differential encoding process for DQPSK by considering a
data stream over five symbol times, which are indexed as i = 0, 1, 2, 3, 4. The mapping of cI ;i
and cQ;i into phase θi is carried out via Figure 6.26(a) and Table 6.6. The input symbol Di

with its binary representation dI ;idQ;i produces the same θi � θi 1 mod 2πð Þ via Table 6.6.

Table 6.6 Differential encoding for DQPSK

Symbol Di Binary inputs dI,i dQ,i θi θi–1

1 0 0 0
2 1 0 π/2
3 1 1 π
4 0 1 3π/2

DQPSK

dI,i
Symbol
mapping

Pulse
shaping

Pulse
shaping

Differential
encoder

dQ,i

cI,i

cQ,i

{0,1}

–sin 2π fct

cos 2π fct Σ

Figure 6.31 DQPSK modulator.
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i Di dI,i dQ,i cI,i cQ,i θi θi – θi–1 (mod 2π)

0 1 0 0 0 0 5π/4
1 4 0 1 0 1 3π/4 3π/2
2 2 1 0 0 0 5π/4 π/2
3 1 0 0 0 0 5π/4 0
4 3 1 1 1 1 π/4 π

■

Alternative differential encoding for DQPSK

Differential encoding rules are not unique. There are many ways of assigning binary inputs
dI ;idQ;i to a symbol Di, which can lead to alternative encoding equations to (6.110) and
(6.111). Table 6.7 shows an alternative rule which leads to the following logical
implementation:

cI ;i ¼ dI ;i � dQ;i
	 


dI ;i � cI ;i 1

	 
� dI ;i � dQ;i
	 


dQ;i � cQ;i 1

	 

(6:112)

cQ;i ¼ dI ;i � dQ;i
	 


dI ;i � cQ;i 1

	 
� dI ;i � dQ;i
	 


dI ;i � cI ;i 1

	 

(6:113)

Example 6.29 Alternative differential encoding for DQPSK
Using (6.112) and (6.113), we perform the differential encoding using the mapping in
Figure 6.26(a) and Table 6.7. It can be seen that the encoding rule in Table 6.7 is entirely
equivalent to (6.112) and (6.113).

i Di dI,i dQ,i cI,i cQ,i θi θi – θi–1 (mod 2π)

0 4 1 1 1 1 π/4
1 3 1 0 1 0 7π/4 3π/2
2 2 0 1 1 1 π/4 π/2
3 3 1 0 1 0 7π/4 3π/2
4 2 0 1 1 1 π/4 π/2
5 4 1 1 0 0 5π/4 π
6 3 1 0 0 1 3π/4 3π/2
7 1 0 0 0 1 3π/4 0

■
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Direct symbol mapping

Instead of performing differential encoding and symbol mapping separately, the two
operations can be combined into one, that is, the symbol Di 2 1; 2; . . . ; Mf g can be
mapped directly into the I-level and Q-level. The DMPSK signal in (6.108) can be written
in I-Q form as follows:

s tð Þ ¼ cos θið ÞAp tð Þ cos 2πfct � sin θið ÞAp tð Þ sin 2πfct
¼ Es

p
cos θi

� �
x1 tð Þ þ Es

p
sin θi

� �
x2 tð Þ

¼ Iix1 tð Þ þ Qix2 tð Þ
(6:114)

where Es is the symbol energy, x1 tð Þ and x2 tð Þ are the two basis functions in (6.90) and
(6.91), and Ii andQi are the ith symbol’s I-level and Q-level, respectively, which are given by

Ii ¼ Es

p
cos θi (6:115)

Qi ¼ Es

p
sin θi (6:116)

Substituting (6.109) into (6.115) and (6.116), we obtain the direct symbol mapping rule

Ii ¼ Ii 1 cosΔθi � Qi 1 sinΔθi (6:117)

Qi ¼ Ii 1 sinΔθi þ Qi 1 cosΔθi (6:118)

where Ii 1 ¼ Es
p

cos θi 1 and Qi 1 ¼ Es
p

sin θi 1;Δθi ¼ θi � θi 1 ¼ ðDi � 1Þð2π=MÞ:

Modulator

Figure 6.32 presents two implementations of DMPSK, one via differential encoding then
symbol mapping, and one via direct symbol mapping.

DMPSK belongs to the family of MPSK; therefore, it has the same power spectral density
as MPSK.

Table 6.7 Alternative differential encoding for DQPSK

Symbol Di Binary inputs dI,i dQ,i θi θi–1

1 0 0 0
2 0 1 π/2
3 1 0 3π/2
4 1 1 π
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6.13 π/4-shifted differential quadrature phase shift
keying (π/4-DQPSK)

In applications that require the control of adjacent channel interference, it is imperative to
employ modulation techniques that are immune to the regrowth of the out-of-band (or
sidelobes) portion of the power spectral density as the signal is amplified by a nonlinear
power amplifier. Furthermore, in a fading channel, many applications may require non-
coherent demodulation. DQPSK can be noncoherently demodulated, but cannot meet the
first requirement because the maximum phase change between symbols is 180°. On the
other hand, OQPSK has a maximum phase change of 90° and meets the first requirement but
cannot be noncoherently demodulated. π/4-DQPSK offers a compromise between OQPSK
and DQPSK. It can be noncoherently demodulated and has a maximum phase change of
135° between symbols, hence limiting spectral regrowth in a nonlinear channel.

The π/4-DQPSK signal over an arbitrary symbol time Ts ¼ 2Tb and the recursive encod-
ing rule are given by

s tð Þ ¼ Ap tð Þ cos 2πfct þ θið Þ (6:119)

θi ¼ θi 1 þ 2Di � 1ð Þ π
4
; Di 2 1; 2; 3; 4f g (6:120)

DMPSKΣcos 2π fct

–sin 2π fct

Symbol
mapping

Pulse
shaping

Pulse
shaping

Differential
encoder

Qi

Ii

0

(a)

Ii = Ii−1 cosΔθi  − Qi−1 sin Δθi

0

(b)

{0,1}

k – 1
dk−1, j

d0,i

ck – 1, j

c0,i

DMPSKΣcos 2π fct

–sin 2π fct

dk−1, i

d0,i

k – 1

{0,1}
Ii

Qi

Pulse
shaping

Pulse
shaping

Qi = Ii−1 sinΔθi  + Qi−1 cos Δθi

Figure 6.32 (a) DMPSK modulator via separate differential encoding and symbol mapping for M = 4. (b) DMPSK modulator
via direct symbol mapping with Δθi= (Di 1) 2π/M.
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where pðtÞ is the pulse shape,Di represents the ith symbol in the data stream, and θi and θi 1

are the phases of the ith symbol and the previous (i – 1)th symbol, respectively. The
differential encoding rule for π/4-DQPSK is shown in Table 6.8.

Signal space

The study of DQPSK indicates that a phase change in multiples of π/2 radians or 90° occurs
between two consecutive symbols. Thus, the signal space for DQPSK is the same as that of
QPSK (Figure 6.26(a)). On the other hand, a phase change in odd-multiples of π/4 radians or
45° occurs in consecutive symbols in π/4-DQPSK. This forces consecutive symbols to
alternate between two signal spaces as shown in Figure 6.33(a) for the ith symbol in the

Table 6.8 Differential encoding for π/4-DQPSK

Symbol Di Binary inputs dI,i dQ,i Δθi θi θi–1

1 0 0 π/4
2 0 1 3π/4
3 1 1 5π/4
4 1 0 7π/4

(a) (b)

X1 (I)

X1 (I) X1 (I)

(c)

X2 (Q)

X2 (Q) X2 (Q)

Figure 6.33 (a) Signal space for even symbol; (b) signal space for odd symbol; (c) signal space for two consecutive symbols.
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symbol stream where the time index i is even (even symbols) and Figure 6.33(b) for odd
symbols. The superposition of the even and odd symbol signal spaces in Figure 6.33(c)
provides a single signal space for any two consecutive symbols.

The signal levels for both I- and Q-channels can now take on five values, namely,
0, � 2

p
=2, �1 (for QPSK and DQPSK, there are only two I- and Q-values, namely,

� 2
p

=2).

Direct symbol mapping

In this section we present the mapping of symbols Di 2 1; 2; 3; 4f g (see Table 6.8) into the
I-value and the Q-value. Following the analysis of DMPSK, the direct symbol mapping rule
can be obtained from (6.117) and (6.118), with Δθi ¼ ð2Di � 1Þπ=4 replacing
Δθi ¼ ðDi � 1Þ2π=M :

Ii ¼ Ii 1 cos 2Di � 1ð Þ π
4

h i
� Qi 1 sin 2Di � 1ð Þ π

4

h i
(6:121)

Qi ¼ Ii 1 sin 2Di � 1ð Þ π
4

h i
þ Qi 1 cos 2Di � 1ð Þ π

4

h i
(6:122)

The π/4-DQPSK modulator is shown in Figure 6.34.

Example 6.30 Direct symbol mapping
In this example we illustrate the differential encoding of π/4-DQPSK via Table 6.8 and the
direct symbol mapping via the rule given in (6.121) and (6.122). The results are identical
for both approaches. The sequence of symbols is selected to be Di ¼ 3; 2; 4; 1; 3¼̂11; 01;
10; 00; 11. The I-level and Q-level are both normalized to Es

p
. The initial symbol

D0 ¼ 3 ¼ 11 serves as a reference symbol for the encoding process. We assign an
initial phase θ0 ¼ 5π=4 radians, and I0 ¼ � 2

p
=2 and Q0 ¼ � 2

p
=2. Using

s tð Þ ¼ Ap tð Þ cos 2πfct þ θið Þ ¼ Ap tð Þ cos θi½ � cos 2πfct � Ap tð Þ sin θi½ � sin 2πfct in (6.114)–
(6.116) we get

1. I0 ¼ cos
5π
4

¼ � 2
p

2
; Q0 ¼ sin

5π
4

¼ � 2
p

2

{0,1}
dI, i

dQ, i

Ii = Ii−1 cosΔθi  − Qi−1 sin Δθi

Qi = Ii−1 sinΔθi  + Qi−1 cos Δθi

π/4-DQPSKΣcos 2π fct

–sin 2π fct

Ii

Qi

Pulse
shaping

Pulse
shaping

Figure 6.34 π/4-DQPSK modulator.
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2. I1 ¼ I0 cos
3π
4
� Q0 sin

3π
4

¼ � 2
p

2

� �
� 2
p

2

� �
� � 2

p

2

� �
2

p

2

� �
¼ 1

2
þ 1

2
¼ 1

Q1¼ I0 sin
3π
4
þ Q0 cos

3π
4

¼ � 2
p

2

� �
2

p

2

� �
þ � 2

p

2

� �
� 2
p

2

� �
¼ 1

2
� 1

2
¼ 0

3. I2 ¼ I1 cos
7π
4
� Q1 sin

7π
4

¼ 1ð Þ 2
p

2

� �
� 0ð Þ � 2

p

2

� �
¼ 2

p

2

Q2 ¼ I1 sin
7π
4
þ Q1 cos

7π
4

¼ 1ð Þ � 2
p

2

� �
þ 0ð Þ 2

p

2

� �
¼ � 2

p

2

4. I3 ¼ I2 cos
π
4
� Q2 sin

π
4
¼ 2

p

2

� �
2

p

2

� �
� � 2

p

2

� �
2

p

2

� �
¼ 1

2
þ 1

2
¼ 1

Q3 ¼ I2 sin
π
4
þ Q2 cos

π
4
¼ 2

p

2

� �
2

p

2

� �
þ � 2

p

2

� �
2

p

2

� �
¼ 1

2
� 1

2
¼ 0

5. I4 ¼ I3 cos
5π
4
� Q3 sin

5π
4

¼ 1ð Þ � 2
p

2

� �
� 0ð Þ � 2

p

2

� �
¼ � 2

p

2

Q4 ¼ I3 sin
5π
4
þ Q3 cos

5π
4

¼ 1ð Þ � 2
p

2

� �
þ 0ð Þ � 2

p

2

� �
¼ � 2

p

2

i Di dI,i dQ,i θi

Δθi = θi – θ i–1 =(2Di – 1)
π/4 (mod 2π) Ii Qi

0 3 1 1 5π/4 5π/4 � 2
p

=2 � 2
p

=2
1 2 0 1 0 3π/4 1 0
2 4 1 0 7π/4 7π/4 2

p
=2 � 2

p
=2

3 1 0 0 0 π/4 1 0
4 3 1 1 5π/4 5π/4 � 2

p
=2 � 2

p
=2

■

Example 6.31 IS-136 cellular standard [28]
This North American digital cellular standard employs time division multiple access
(TDMA) for channel allocation and is backward compatible with AMPS in terms of
the carrier bandwidth (30 kHz) and frequency spectra (824–849MHz for reverse
channels and 869–894MHz for forward channels). The modulation is π/4-DQPSK.
The TDMA forward and reverse channel data rate is 48.6 kbps, which yields a
spectral efficiency of 48.6 kbps/30 kHz = 1.62 bps/Hz. Each 30MHz TDMA channel
accommodates three full-rate users (encoded speech of 7.95 kbps) or six half-rate users
(3.975 kbps).
■
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6.14 M-ary quadrature amplitude modulation (MQAM)

Although MPSK can provide high spectral efficiency for many narrowband applications
involving nonlinear power amplifiers that require constant amplitude modulation, MPSK is
not power efficient for largeM. The closely packed signal symbols on a circle of radius Es

p
,

where Es is the symbol energy; lead to a small Euclidean distance between adjacent signal
symbols and make them vulnerable to errors caused by noise. If the signal symbols can be
placed throughout the two-dimensional signal space instead of being on a circle, power
efficiency can be improved. Obviously, signal symbols must have different amplitudes and
different phases. Such modulation techniques are called MQAM and are widely used in
digital terrestrial microwave links, Internet communication via twisted-pair telephone wires,
and in wireless local area networks (WLAN) such as IEEE 802.11a,g [7,8] and IEEE 802.16.

MQAM employs a set of M = 2k non-constant amplitude and finite energy signals to
represent M distinct symbols numbered n ¼ 1; 2; . . . ; M . A symbol is represented by
k ¼ log2 M bits d0d1 . . . dk 1 as follows:

sn tð Þ ¼ Anp tð Þ cos 2πfct þ θnð Þ; n ¼ 1; 2; . . . ; M (6:123)

where p(t) is the pulse shape of a symbol, cos 2πfct is the carrier, and An and θn represent the
amplitude and phase of the nth symbol, respectively. The symbol time is denoted as Ts,
hence the symbol rate is 1/Ts, which is 1/k times the bit rate 1/Tb, where Tb is the bit time
Tb ¼ Ts=kð Þ.

Signal space

The MQAM signal can be expressed in the I-Q representation as

s tð Þ ¼ cos θnð ÞAnp tð Þ cos 2πfct � sin θnð ÞAnp tð Þ sin 2πfct
¼ ðαn cos θnÞApðtÞ cos 2πfct � ðαn sin θnÞApðtÞ sin 2πfct (6:124)

where αn ¼ An=A is the normalized signal amplitude, and A is the smallest signal amplitude.
The two orthonormal basis functions x1ðtÞ and x2ðtÞ are given as

x1 tð Þ ¼ A

E
p p tð Þ cos 2πfct (6:125)

x2 tð Þ ¼ � A

E
p p tð Þ sin 2πfct (6:126)

where E is the smallest symbol energy, defined as

E ¼
ð1

1
ApðtÞ cos 2πfct½ �2dt ¼

ð1

1
ApðtÞ sin 2πfct½ �2dt (6:127)
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The orthogonality of x1ðtÞ and x2ðtÞ was given in (6.93)–(6.95). Thus, it is seen that the
signal energy En of a particular signal sn tð Þ ¼ αnAp tð Þ cos 2πfct þ θnð Þ is

En ¼
ð1

1
s2n tð Þdt ¼ α2nE (6:128)

Using the basis functions x1 tð Þ and x2 tð Þ we can express sn tð Þ as follows:

snðtÞ ¼ E
p

αn cos θnð Þx1 tð Þ þ E
p

αn sin θnð Þx2 tð Þ (6:129)

In terms of vectors, we have

sn ¼ E
p

αn cos θnð Þ
E

p
αn sin θnð Þ

� �
¼ E

p
αn cos θnð Þx1 þ E

p
αn sin θnð Þx2 (6:130)

where x1 and x2 are the two-dimensional basis vectors given in (2.60). Equation (6.130)
completely describes the signal space of MQAM. Figure 6.35 shows some popular signal
spaces for MQAM. Both rectangular 16QAM and 64QAM are specified in theWLAN IEEE
802.11a,g standards [7,8] to be used as subcarrier modulation in orthogonal frequency
division multiplexing (OFDM) (to be studied in Section 6.18).

Each symbol is assigned an I-level and a Q-level via Gray code, that is, adjacent symbols
differ by only one bit. For a rectangular MQAM signal space, the signal levels are
commonly normalized to E

p
= 2
p

so that the I-level is In ¼ 2
p

αn cos θn and the Q-level
is Qn ¼ 2

p
αn sin θn for the symbol represented by signal sn.

Tables 6.9 and 6.10 show the symbol mapping for rectangular 16QAM and 64QAM. For
16QAM, the first two bits d0d1 of the symbol d0d1d2d3 determine the I-value, and the last
two bits d2d3 determine the Q-value. For 64QAM, the first three bits d0d1d2 of the symbol
d0d1d2d3d4d5 determine the I-value and the last three bits d3d4d5 determine the Q-value.

Figure 6.36 illustrates the symbol mapping for 16QAM in Table 6.9. This procedure can
be generalized to any rectangular MQAM with M = 22m.

Power spectral density

Using the I-Q representation, we can write the MQAM signal for an infinite sequence of
symbols as follows:

s tð Þ ¼
X1

i¼ 1
αDi cos θDið ÞAp t � iTsð Þ cos 2πfct �

X1

i¼ 1
αDi sin θDið ÞAp t � iTsð Þ sin 2πfct

(6:131)

where Di 2 1; 2; . . . ; Mf g represents the ith symbol in the symbol stream. The I-Q
representation in (6.131) can be transformed into the complex envelope representation as

s tð Þ ¼ A

2
p Re sL tð Þej2πfct� �

(6:132)

where the complex envelope sL tð Þ is given by
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(a)

M = 8

(b)

M = 16

(c)

M = 16

M = 128

M = 64

M = 32

M = 16

M = 4

M = 256

(d)

Figure 6.35 Various signal spaces for MQAM. The rectangular one is the most popular.

Table 6.9 16QAM symbol mapping

Input bits d0 d1 I Input bits d2 d3 Q

0 0 −3 0 0 −3
0 1 −1 0 1 −1
1 1 +1 1 1 +1
1 0 +3 1 0 +3
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sL tð Þ ¼
X1

i¼ 1
2

p
αDi cos θDi

� �
p t � iTsð Þ þ j

X1

i¼ 1
2

p
αDi sin θDi

� �
p t � iTsð Þ (6:133)

The power spectral density of the MQAM signal s(t) can be evaluated by (6.101). Following
the procedure in Section 6.11, as indicated by (6.102) and (6.103), we need to evaluate
μI , μQ, σ

2
I , and σ2Q. For symmetric signal spaces, we have μI ¼ μQ ¼ 0. The variances σ2I

and σ2Q depend on particular signal spaces. For a rectangular MQAM with M = 22m signal
points, there are M

p
normalized I-levels and M

p
normalized Q-levels. These are

�1; �3; . . . ; � M
p � 1
	 


. Thus,

σ2I ¼ E I2Di

n o
¼ E 2α2Di

cos2 θDi

n o

¼ 2

M
p 12 þ 32 þ 
 
 
 þ M

p
� 1

� �2� �

¼ 1

3
M � 1ð Þ

(6:134)

Similarly,

Table 6.10 64QAM symbol mapping

Input bits d0 d1 d2 I Input bits d3 d4 d5 Q

0 0 0 −7 0 0 0 −7
0 0 1 −5 0 0 1 −5
0 1 1 −3 0 1 1 −3
0 1 0 −1 0 1 0 −1
1 1 0 +1 1 1 0 +1
1 1 1 +3 1 1 1 +3
1 0 1 +5 1 0 1 +5
1 0 0 +7 1 0 0 +7

I

0010 0110 1110 1010

0011 0111 1111 1011

0000 0100 1100 1000

0001 0101 1101 1001

Q

+3

+3

+1−1
+1

−1

−3

−3

Figure 6.36 Gray encoding of 16QAM.
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s2
Q ¼ 1

3
M � 1ð Þ (6:135)

Using (6.134) and (6.135) in (6.102) and (6.103), we obtain

SL;I fð Þ ¼ SL;Q fð Þ ¼ M � 1ð Þ P fð Þj j2
3Ts

(6:136)

Consequently, the power spectral density SL fð Þ of the complex envelope sL tð Þ is given by

SL fð Þ ¼ SL;I fð Þ þ SL;Q fð Þ ¼ 2 M � 1ð Þ P fð Þj j2
3Ts

(6:137)

The MQAM power spectral density can be obtained by substituting SL fð Þ into (6.101) and
by noting that A is the smallest signal amplitude. By comparing (6.137) to (6.107) and
(6.87), we conclude that MQAM, MPSK, and MASK have the same spectral efficiency.
Their power spectral densities have the same shape but with different amplitudes. MQAM
can be generated by the I-Q generator shown in Figure 6.28 for MPSK. The only difference
is that the symbol mapping for MQAM generates non-constant symbol amplitudes.

Differential MQAM (DMQAM)

Recall from Section 6.12 that MPSK suffers an M-fold phase ambiguity. MQAM also has
phase ambiguity, which depends on the shape of the signal space. The signal spaces in
Figure 6.35 have 4-fold symmetry in (a), 4-fold symmetry in (b), 8-fold symmetry in (c), and
4-fold symmetry in (d). Any L-fold symmetrical signal space has L-fold phase ambiguity,
which can be corrected by using differential encoding. The following rules can be employed
for L = 2m [9,10]:

1. Partition the signal space into L symmetrical sectors. The first m bits d0d1 . . . dm 1 of a
k-bit symbol d0d1 . . . dk 1 determine the change in sector.

2. The remaining k m bits dmdmþ1 . . . dk 1 determine the signal point in the sector. Note
that each sector contains 2k – m signal points which can be Gray encoded.

Differential encoding cannot preserve Gray code rule for the entire signal space. Therefore,
it is obvious that DMQAM performance will not be as good as that of MQAM. On the other
hand, data transmitted with MQAM must carry special codewords or pilot symbols to
resolve L-fold ambiguity, hence increasing the overhead and reducing the system
throughout.

Example 6.32 Differential encoding for D16QAM
Consider the 16QAM signal space shown in Figure 6.37. The four sectors are numbered I, II,
III, and IV. The first two bits d0d1 of a current 4-bit message symbol d0d1d2d3 to be encoded
for transmission (given the previous symbol as a reference) determine the sector. The last two
bits d2d3 of this current message symbol are employed to determine which of the four symbols
in that sector the encoded symbol is. When d0d1 is 00, the encoded symbol resides in the same
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sector as the previously encoded symbol. When d0d1 is 10, the encoded symbol advances
counterclockwise one sector. When d0d1 is 11, the encoded symbol advances counterclock-
wise two sectors. When d0d1 is 01, the encoded symbol advances counterclockwise three
sectors. Using these rules, the message symbols 0000, 1101, 1001, 1100, 0011 are encoded as
0000, 1101, 0101, 1000, 1011. Note that 0000 is the reference symbol, and is selected
arbitrarily. Also note that perfect Gray coding is not possible for all 16 signal points.

Time i Message symbol Sector Encoded symbol I Q

0 0 0 0 0 I 0 0 0 0 1 1

1 1 1 0 1 III 1 1 0 1 3 1

2 1 0 0 1 IV 0 1 0 1 1 3

3 1 1 0 0 II 1 0 0 0 1 1

4 0 0 1 1 II 1 0 1 1 3 3

■

6.15 Code shift keying (CSK)

From previous sections we have learned that modulation techniques with two-dimensional
signal space, such as MPSK or MQAM, can boost their spectral efficiency tremendously at
the expense of power efficiency. For applications where power is a premium resource,
modulation techniques with M-dimensional signal space such as M-ary orthogonal modu-
lation can be used. Two important such modulation techniques are code shift keying, which

I

1011 1001 0010 0011

1010 1000 0000 0001

1111 1110 0101 0111

1101 1100 0100 0110

Q

+3

+3

+1–1
+1

–1

–3

−3

III IV

III

Figure 6.37 D16QAM signal space.
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will be presented in this section, andM ary frequency shift keying, which will be addressed
in Section 6.16.

CSK employs a set ofM = 2k orthogonal sinusoidalWalsh functions to represent a set ofM
distinct k-bit symbols

sn tð Þ ¼ Awn tð Þ cos 2πfct; n ¼ 1; 2; . . . ; M (6:138)

where wn tð Þ is the Walsh function in (2.52), A is the amplitude, and cos 2πfct is the carrier.
The Walsh chip rate is 1/Tc, where Tc is the Walsh chip time. Since there areMWalsh chips
per symbol, Tc ¼ Ts=M , where Ts is the symbol time. Furthermore, Ts ¼ kTb, where Tb is
the bit time; therefore, the Walsh chip rate can be related to the bit rate as
1=Tc ¼ 1=Tbð ÞM=k.

Power spectral density

Using (6.138), we can write a CSKwaveform for an infinite sequence of symbols as follows:

s tð Þ ¼
X1

i¼ 1
AwDi tð Þ p t � iTsð Þ cos 2πfct (6:139)

where Di 2 1; 2; . . . ; Mf g represent the ith symbol in the symbol stream and p tð Þ is a
squared pulse of unit amplitude and duration Ts. If we substitute (2.52) into (6.138), we
obtain a stream of PSK waveforms clocking at the chip rate 1=Tc. Therefore, the power
spectral density of CSK is identical to that of PSK or DSB-AM given in (6.7), with Tc
replacing Tb. Note that 1=Tc ¼ 1=Tbð ÞM=k. Thus, CSK bandwidth is M/k times PSK
bandwidth for a given bit rate.

Modulator

Generating CSK signals is quite straightforward from (6.139). The incoming bits are
demultiplexed to form symbols, which are mapped to corresponding Walsh functions.
The Walsh functions bi-phase modulate a carrier to form a CSK signal. The CSK modulator
is shown in Figure 6.38.

CSK

k – 1

0

Walsh
mapping

{0,1}

cos 2π fct

Figure 6.38 CSK modulator.
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Example 6.33 IS-95 reverse channel [28]
The IS-95 reverse channel carries traffic from the mobile station to the base station in the
2G-CDMA cellular system. To provide noncoherent demodulation, CSK with 64 Walsh
functions is employed. Data bits transmitted at rate 9.6 kbps (14.4 kbps) are encoded with a
1/3-rate (1/2-rate) convolutional code to provide a coded bit stream at 28.8 kbps for the CSK
modulator, which forms a symbol with six bits. The CSK symbol rate is 28.8/6 = 4.8 ksps.
The corresponding Walsh chip rate is 4:8� 64 ¼ 307:2 kcps. The chip stream is spread by
multiplying it with a pseudo-noise (PN) sequence of chip rate 1.2288Mcps. Thus, there are
four PN chips per Walsh chip, or 64� 4 ¼ 256 PN chips per CSK symbol. The CSK signal
occupies a bandwidth of 1.25MHz. Since the symbol rate is only 4.8 ksps, while the CSK
rate is 1.2288Mcps, the spread factor is 1228:8=4:8 ¼ 256. This spread factor is responsible
for the large processing gain of the CDMA cellular system. It enables the simultaneous
transmission of many mobile stations over a 1.25MHz channel.
■

6.16 M-ary frequency shift keying (MFSK)

MFSK belongs to the family of orthogonal modulation techniques. It employs a set ofM = 2k

orthogonal sinusoids to represent a set of M distinct k-bit symbols, n ¼ 1; 2; . . . ; M , as
follows:

sn tð Þ ¼ A cos 2πfnt þ θnð Þ; n ¼ 1; 2; . . . ; M (6:140)

where for a given positive integer ‘ � 1, symbol rate 1=Ts, and fc ¼ ‘=Ts,

fn ¼ fc þ 2n�M � 1ð Þ 1

2Ts
(6:141)

The minimum frequency spacing is 1=Ts to preserve the orthogonality for the entire n
sinusoids, as proved in (2.45). Note that the phase does not need to be continuous at the
symbol transitions. For this case, the bandwidth of MFSK is approximately ðM þ 1Þ=Ts.
The bandwidth can be made narrower if the phase is forced to be continuous at the symbol
transitions. This implies that a continuous phase MFSK (CP-MFSK) signal must look like
an FM signal with digital modulated data, and can take the following form for an Nth data
symbol:

s tð Þ ¼ A cos
�
2πfct þ 2π

1

4Ts

� �ðt

1

XN

i¼ 1
2Di �M � 1ð Þp τ � iTsð Þdτ

�
(6:142)

where Di 2 1; 2; . . . ; Mf g is the ith symbol in the symbol stream, and p(t) is the squared
pulse of unit amplitude and duration Ts. Following the derivation in (6.57), we can write s(t)
from (6.142) in a more compact form for the Nth data symbol:
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s tð Þ ¼ A cos 2πfct þ π
2Ts

2DN �M � 1ð Þ t � NTsð Þ þ fN

� �
(6:143)

where fN is defined as

fN ¼ π
2

XN 1

i¼ 1
2Di �M � 1ð Þ (6:144)

Let h ¼ 2TsΔf be defined as the digital modulation index, where Δf is the peak frequency
deviation of s(t). Since Δf ¼ 1=4Ts per (6.142), it is seen that h = 0.5. Using h we can write
s(t) in the form

s tð Þ ¼ A cos 2πfct þ f t; DNð Þ½ � (6:145)

where DN is a semi-infinite sequence from �1 to the Nth data symbol DN:

f t; DNð Þ ¼ 2πh 2DN �M � 1ð Þq t � NTsð Þ þ fN (6:146)

with the function q(t) defined as

q tð Þ ¼ 1

2Ts

ðt

0
p τð Þ dτ

¼ t

2Ts

(6:147)

CP-MFSK is a special case of continuous phase modulation (CPM), which will be studied in
Section 6.17.

By observing (6.142), we see that the message signal m(t) for the CP-MFSK signal s(t) is
simply an MPAMwith amplitudes in the set �1; �3; . . . ; � M � 1ð Þf g as seen from (6.84):

m tð Þ ¼
XN

i¼ 1
2Di �M � 1ð Þp t � iTsð Þ (6:148)

Power spectral density

The derivation of the power spectral density of CP-MFSK is quite complicated as compared
to the case of binary CP-FSK (M = 2). This happens because the message signal is anMPAM
signal instead of a simple antipodal signal. An analytical expression has been derived in [11]
for CPM with rectangular pulse p(t) as

S fð Þ ¼ A2T

2

1

M

XM

i¼1

A2
i fð Þ þ 2

M2

XM

i¼1

XM

j¼1

Bij fð ÞAi fð ÞAj fð Þ
" #

(6:149)

where

Ai fð Þ ¼ sin π fTs � 1
2 2i�M � 1ð Þh� �

π fTs � 1
2 2i�M � 1ð Þh� � (6:150)
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Bij fð Þ ¼ cos 2πfTs � vij
	 
� u cos vij
1þ u2 � 2u cos 2πfTs

(6:151)

vij ¼ πh 1þ j�M � 1ð Þ (6:152)

u ¼ sinMπh
M sin πh

(6:153)

By using h = 0.5, we can obtain the power spectral density for CP-MFSK. For h = 1, there
are impulses occurring atM frequencies. Figure 6.39 shows the power spectral densities for
M = 4 for the cases h = 0.5 and h = 1 as a function of the normalized frequency fTs and
normalized amplitude for fTs40 only. The origin corresponds to the carrier frequency fc. For
h = 0.5, the bandwidth is approximately M=2Ts ¼ 2=Ts, while for h = 1, it is about
M=Ts ¼ 4=Ts.

Modulator

The MFSK signal can be implemented with independent carriers as in Figure 6.40, or using
an FM modulator to generate a continuous phase signal as in Figure 6.41.
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fTs
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2 2

h = 1

Figure 6.39 (a) CP-4FSK with h = 0.5; (b) CP-4FSK with h = 1.
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Figure 6.40 Modulator for discontinuous phase MFSK.
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6.17 Continuous phase modulation (CPM)

CPM is a generalization of CP-MFSK in which the digital modulation index h can assume
any value. For ease of decoding with finite phase states, h is chosen to be a rational number.
If h varies in a cyclic manner from one symbol to another through a set of indices, the
modulation is called multi h CPM. The CPM waveform s(t) is given by (6.145), where

f t; DNð Þ ¼ 2πh
PN

i¼ 1
2Di �M � 1ð Þ q t � iTsð Þ, and the pulse q(t) is defined as

q tð Þ ¼ 1

2Ts

ðt

0
p τð Þ dτ (6:154)

The symbol pulse shape p(t) can take on various shapes, such as a rectangular pulse of
duration L symbols, which is called L-REC, a raised cosine pulse shape of duration L
symbols, which is called L-RC, and a Gaussian minimum shift keying pulse, which is called
GMSK. Table 6.11 shows the equations that represent these common pulse shapes, which
are also plotted in Figure 6.42. The CPM signal is commonly referred to as full response
CPM when p tð Þ ¼ 0 for t4Ts and partial response CPM when p tð Þ 6¼ 0 for t4Ts. For
GMSK pulse shapes, the parameter B in its equation represents the 3 dB bandwidth of the
Gaussian pulse defined in (6.75).

MPAM
generator

FM
modulator

1

4Ts

Δf =

{0,1}

CP-MFSK

Figure 6.41 Modulator for CP-MFSK with a minimum frequency spacing equal to half the symbol rate or twice the peak frequency
deviation Δf.

Table 6.11 CPM pulse shapes [11]

Type Waveform

L REC p tð Þ ¼
1
L ; 0 � t � LTs
0; otherwise

�

L RC p tð Þ ¼
1
L 1 cos 2πt

LTs

� �
; 0 � t � LTs

0; otherwise

(

GMSK p tð Þ ¼ Q 2πB
ln 2

p t Ts
2

	 
h i
Q 2πB

ln 2
p t þ Ts

2

	 
h i
; 0 � BTs � 1

Q xð Þ ¼ Ð1x 1
2π

p e�x2=2dx
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Power spectral density

The power spectral density of CPMwith rectangular pulse shape is given in (6.149)–(6.153)
and those of other pulse shapes can be found in [11] with 1-REC-4CPM and a set of M = 4
symbols. For h < 0.3, the occupied bandwidth approaches 2=Ts ¼ 1=Tb, which is less than
that of MSK. With 3-RC-4CPM, again withM = 4 symbols, the bandwidth is almost halved
with 3RC as compared to 1REC when using –40 dB as a measure of the bandwidth. Thus,
the longer pulse shape p(t) yields the smaller bandwidth. Also, L-RC results in better
bandwidth efficiency than L-REC.

(a)

t
Ts0

1

p(t)

(b)

t
0

0.5

p(t)

(c)

t
Ts

0

2

p(t)

(d)

t
2Ts

2Ts

0

1

p(t)

Ts

(e)

t
Ts0

1

p(t)

3Ts

0.55

–Ts–3Ts

BTs = 1

BTs = 0.2

Figure 6.42 (a) 1-REC; (b) 2-REC; (c) 1-RC; (d) 2-RC; (e) GMSK with BTs = 0.2 and BTs = 1.
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Modulator

The CPM signal can be implemented with an FMmodulator and a pulse shaping network as
illustrated in Figure 6.43. Note that the smaller the digital modulation index h, the smaller
the peak frequency deviation Δf, which results in a decrease in bandwidth.

6.18 Orthogonal frequency division multiplexing (OFDM)

A frequency division multiplexing (FDM) signal is the sum of N non-overlapping distinct
carriers from N separate sources [2–6]. We now extend this concept to the sum of N
overlapping but orthogonal subcarriers from a single source. This technique is referred to
as orthogonal frequency division multiplexing, or OFDM, and is now widely used in many
wireless systems including the popular IEEE 802.11a,gWLAN [7, 8]. Figure 6.44 shows the
conceptual block diagram of an OFDM transmitter. The incoming data stream of rate 1/T
bits/s is demultiplexed (serial-to-parallel conversion) into N parallel streams. Each parallel
stream has a rate equal to 1/NT bits/s and independently modulates one of N orthogonal
subcarriers. The modulation technique for each subcarrier can be different from each other
theoretically, but is commonly chosen to be the same in practice. A portion of the data in a
packet can be transmitted using a more power efficient modulation technique than other
portions for reasons of reliability. For example, highly reliable data can be transmitted by
PSK or QPSK, while others can be transmitted by 16QAM or 64QAM, which for the same
SNR per bit yields a higher bit error rate. The OFDM subcarriers are chosen to be mutually

CPM
MPAM

generator

{0,1}

FM
modulator

Symbol
pulse

shaping
p(t)

h
2Ts

Δf =

Figure 6.43 CPM modulator.

OFDM

{0,1}
Modulator 1

f1

Modulator N
fN

Σ

Figure 6.44 OFDM with N overlapping orthogonal subcarriers at frequencies f1; f2; . . . ; fN .
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orthogonal with the minimum frequency spacing of 1/Ts, which is the subcarrier symbol
rate. For example, if PSK is the modulation technique for the subcarriers, then,
1=Ts ¼ 1=NT . On the other hand, if QPSK is used, then 1=Ts ¼ 1=2NT . For MQAM, we
would have 1=Ts ¼ 1=NT log2 M . The OFDM signal in Figure 6.44 is simply the sum of N
modulated subcarriers. When the number of subcarriers is large, the implementation in
Figure 6.44 is not practical because of a large number of modulators. In the following
discussion we investigate the implementation of OFDM at baseband, which is used in
practical applications.

Practical baseband implementation

Consider the OFDM signal s(t), which is the sum of N modulated subcarriers sk tð Þ,
k ¼ 0; 1; . . . ; N � 1. Using complex envelope notation for the subcarriers, we define

sk tð Þ ¼ Re zk tð Þej 2π fcþkΔfð Þt½ �
n o

; 0 � t5Ts (6:155)

where fc is the nominal carrier frequency, Δf ¼ 1=Ts is the minimum frequency spacing,
which is equal to the subcarrier symbol rate to provide orthogonality, and zk tð Þ is the
complex envelope of the kth subcarrier or its equivalent lowpass signal, which is constant
during a symbol interval and can be represented by

zk tð Þ ¼ Z kð Þ ¼ Ik þ jQk ; 0 � t5Ts (6:156)

where Ik andQk, the in-phase and quadrature components of zk tð Þ, respectively, are the I and
Q values of the kth subcarrier symbol.

For scaling purposes, we normalize the OFDM signal to N, the number of subcarriers, so
that

s tð Þ ¼ 1

N

XN 1

k¼0

sk tð Þ; 0 � t5Ts (6:157)

Substituting (6.155) into (6.157), we obtain

s tð Þ ¼ 1

N

XN 1

k¼0

Re Z kð Þej 2π fcþkΔfð Þt½ �
n o

¼ 1

N

XN 1

k¼0

Re Z kð Þej2πkΔftej2πfct� �

¼ Re
1

N

XN 1

k¼0

Z kð Þej2πkΔft
 !

ej2πfct
( )

; 0 � t5Ts

(6:158)

The complex envelope of the OFDM signal is therefore given by

sL tð Þ ¼ 1

N

XN 1

k¼0

Z kð Þej2πkΔft; 0 � t5Ts (6:159)
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Consider a sampling rate equal to N times the subcarrier symbol rate, that is, the sampling
time is simply Ts=N. Applying the sampling process to (6.159), we obtain the nth sample at
time t ¼ nTs=N as follows:

sL
nTs
N

� �
¼ 1

N

XN 1

k¼0

ZðkÞ ej2πkΔfnTs=N ; n ¼ 0; 1; . . . ;N � 1 (6:160)

To preserve subcarrier orthogonality, we require that ΔfTs ¼ 1. Furthermore, for ease of
notation, we let sL nð Þ ¼ sL nTs=Nð Þ, therefore

sL nð Þ ¼ 1

N

XN 1

k¼0

ZðkÞ ej2πkn=N ; n ¼ 0; 1; . . . ;N � 1

¼ IDFTfZðkÞg
(6:161)

Equation (6.161) allows us to generate the sequence sLðnÞ from the frequency samples
Z kð Þ ¼ Ik þ jQk ; k ¼ 0; 1; . . . ; N � 1, which consists of the I and Q values of N sub-
carrier symbols. This relation is referred to as the N-point inverse discrete Fourier transform
(IDFT) of Z kð Þ [12]. In turn, the inverse operation that allows the frequency samples fZðkÞg
to be obtained from the sequence sL nð Þ is called the N-point discrete Fourier transform
(DFT) and is given by

Z kð Þ ¼
XN 1

n¼0

sLðnÞ e j2πkn=N ; k ¼ 0; 1; . . . ;N � 1

¼ DFTfsLðnÞg
(6:162)

Example 6.34 DFT of an OFDM signal
We wish to verify the DFT expression of (6.162) by using (6.161). We have

Z kð Þ ¼
XN 1

n¼0

sLðnÞ e j2πkn=N

¼ 1

N

XN 1

n¼0

XN 1

m¼0

ZðmÞ ej2πnðm kÞ=N

¼ 1

N

XN 1

m¼0

ZðmÞ
XN 1

n¼0

ej2πnðm kÞ=N
" #

¼ ZðkÞ

(6:163)

The right-hand side of the above equation reduces to Z(k) by virtue of the following identity:

XN 1

n¼0

ej2πnðm kÞ=N ¼ N ; m ¼ k þ rN ; r is an integer
0; otherwise

�
(6:164)

■
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The frequency samples Z kð Þf g in (6.161) uniquely represent the sequence sL nð Þ. The N
samples sL nð Þf g are sufficient for digital-to-analog conversion to sL tð Þ. Both DFTand IDFT
can be computed via computational algorithms called fast Fourier transform (FFT) and
inverse fast Fourier transform (IFFT) [12]. The IDFT of the frequency samples fZðkÞg in
(6.161), which represent the I andQ values of the subcarrier symbols in (6.156) for a given
symbol interval, allows us to implement an OFDM transmitter at baseband using the
efficient IFFT algorithm. In practice, the number of subcarriers N is commonly chosen to
be even. This allows the OFDM nominal carrier frequency fc to be the average of the N
subcarrier frequencies, and the IDFT in (6.161) and DFT in (6.162) can be carried out with
the indices k and n running from�N=2 toN=2. The “0” subcarrier associated with the center
frequency is omitted and filled with zero values. To implement IFFT/FFT, the size of N is
chosen to be a power of 2.

Figure 6.45 illustrates the implementation of an OFDM modulator via the baseband
approach. The incoming bit stream of 1s and 0s is demultiplexed into N parallel bit streams.
For the kth bit stream, a group of log2 M bits is mapped into a subcarrier symbol
Z kð Þ ¼ Ik þ jQk ; 0 � t5Ts. The sequence of N symbols Z kð Þf gN 1

k¼0 is fed into the IFFT
to obtain the sequence sL nð Þf gN 1

n¼0 , which represents the samples of the OFDM complex
envelope. The output of the D/A converter is a complex I-Q waveform

ŝL tð Þ ¼
XN 1

n¼0

sLðnÞpðt � nTs=NÞ (6:165)

where p(t) is the interpolation pulse shape. The pulse shape p(t) can have the form sin x=x,
which is used for reconstruction of a sampled signal (see Section 2.10). Note the similarity
of (6.165) and the Nyquist–Shannon interpolation formula (2.247).

Example 6.35 A different view of OFDM
Let us again consider the interpolated I-Q complex signal generated by the D/A converter in
(6.165). Using (6.161) we obtain

OFDM

N – 1

0

Subcarrier
symbol
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{Z(k)}

Σ
+

−

Z(0)

Z(N−1)

IFFT

sL(N−1)

Guard
interval
addition

Symbol
pulse

shaping
(D/A

converter)

{0, 1}

sL(0) Q

I

cos 2π fct

–sin 2π fct

Figure 6.45 Block diagram of an OFDM modulator.
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ŝL tð Þ ¼
XN 1

n¼0

sLðnÞpðt � nTs=NÞ

¼ 1

N

XN 1

n¼0

XN 1

k¼0

ZðkÞ ej2πkn=Npðt � nTs=NÞ

¼ 1

N

XN 1

k¼0

ZðkÞ
XN 1

n¼0

ej2πkn=Npðt � nTs=NÞ

¼ 1

N
p

XN 1

k¼0

ZðkÞgkðtÞ

(6:166a)

We can choose p(t) so that the N pulses fgkðtÞg form a set of orthonormal pulses and they
also satisfy the Nyquist criterion for zero ISI (Chapter 9). We have

gkðtÞ ¼ 1

N
p

XN 1

n¼0

ej2πkn=Npðt � nTs=NÞ; k ¼ 0; 1; . . . ;N � 1 (6:166b)

pðtÞ ¼ N

Ts

r
sinðπNt=TsÞ
πNt=Ts

(6:166c)

The above result shows that an OFDM symbol is indeed a normalized sum of N subcarrier
symbols defined by the set of orthonormal pulse shapes fgkðtÞg.
■

In applications where intersymbol interference (ISI) is present (see Chapter 9), a guard time
TGI is added to the start of a symbol. The guard time will be deleted at the receiver before the
FFT is performed to recover Zkf g. This method can eliminate ISI if themaximum delay spread
of the ISI can be reasonably predicted. The drawback is the loss in throughput because the
symbol time is now Ts þ TGI. The guard time is created by prepending the IFFT sequence a
circular extension or cyclic prefix of itself. For example, the cyclic prefix for
sL nð Þf g; n ¼ 0; 1; . . . ; N � 1 is the last m samples sL N � mð Þ, sL N � mþ 1ð Þ; . . . ;
sL N � 1ð Þ. These are added to the beginning of the sequence sL 0ð Þ, sL 1ð Þ; . . . ; sL N � 1ð Þ.
The new sequence now consists of N + m samples. Naturally, the first m samples of the
received version of sL nð Þf g are discarded at the receiver before the FFT process. Due to the
periodic nature of IFFT, the junction at the start of the original symbol will always be
continuous. Note that discontinuities can exist at the junctions between adjacent symbols.
Figure 6.46 shows how a guard time is created using cyclic prefix.

In wireless applications, the transmitted signal can arrive at the receiver via many
propagation paths due to reflection from large objects (such as the ground, hills, or build-
ings), and diffraction which allows the signal to slide via rooftops or bend around objects,

Cyclic
prefix

OFDM symbol
Cyclic
Prefix

OFDM symbol

Figure 6.46 Copy and append cyclic prefix to create a guard interval.
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and scattering from smaller objects (such as trees or lamp posts). Thus, the receiver can
receive multiple attenuated and delayed copies of the transmitted signal. Often, a few
dominant copies are present and the others are too weak to be significant. These dominant
copies not only interfere with themselves, but the delayed ones also interfere with the next
symbol. The former effect is called multipath fading resulting in a scaling and rotation of the
symbol, which leads to performance degradation (higher symbol error rate). The latter effect
is called ISI and can be eliminated by the guard time as discussed above.

Cyclic prefix

In this section we present a mathematical description of cyclic prefix and its role in removing
ISI resulting from transmitting the OFDM signal through a multipath fading channel (see
Chapter 10).

Example 6.36 Linear convolution and circular convolution
The linear convolution for two sequences hðnÞ and xðnÞ is given by

yðnÞ ¼ hðnÞ � xðnÞ ¼
X

k

hðkÞxðn� kÞ (6:167)

The discrete time Fourier transform (DTFT) of y(n) is the product of DTFT {h(n)} and
DTFT {x(n)}

Y ðej2πf Þ ¼ Hðej2πf ÞX ðej2πf Þ (6:168)

where

Hðej2πf Þ ¼ DTFTfhðnÞg ¼
X

n

hðnÞ e j2πfn

X ðej2πf Þ ¼ DTFTfxðnÞg ¼
X

n

xðnÞ e j2πfn
(6:169)

In OFDM the sequences x(n) and h(n) are of finite length N. Therefore, taking Fourier
transform of y(n) does not give the multiplication in the frequency domain unless we use
cyclic prefix to convert linear convolution to circular convolution. Assume that the length of
the sequences x(n) and h(n) is N (if their lengths are not the same, zeros can be used to pad
the sequences to the same length). The length Nc needed so that linear convolution and
circular convolution are the same from 0 to Nc � 1 is 2N � 1. The circular convolution of
two sequences h(n) and x(n) is given by

yðnÞ ¼ hðnÞ  xðnÞ ¼
XN 1

k¼0

hðkÞxðn� kÞN (6:170)

where xðn� kÞN ¼ x½ðn� kÞ mod N � is the circular shift of the sequence x(n), defined on
0 to N � 1, to the right by k values. The circular shift can be viewed as wrapping the part of
the sequence that falls outside the region of interest to the front of the sequence.
Equivalently, this is the same as arranging the N point sequence on the circumference of a
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circle with a fixed reference. A counterclockwise rotation gives a new reference and a
circularly shifted sequence. This is also equivalent to a linear shift of the periodic extension
of x(n). Consider the case of k = 2, we have the following circularly shifted sequence:
xðn� kÞN � fxðN � 2Þ; xðN � 1Þ; xð0Þ; xð1Þ; . . . ; xðN � 3Þg.

The N-point DFT of y(n) is given by

Y ðkÞ ¼ HðkÞX ðkÞ; k ¼ 0; 1; . . . ;N � 1 (6:171a)

where H(k) is the N-point DFT of h(n) and X(k) is the N-point DFT of x(n).

HðkÞ ¼ DFTfhðnÞg ¼
XN 1

n¼0

hðnÞ e j2πkn=N ; k ¼ 0; 1; . . . ;N � 1

X ðkÞ ¼ DFTfxðnÞg ¼
XN 1

n¼0

xðnÞ e j2πkn=N ; k ¼ 0; 1; . . . ;N � 1

(6:171b)

Note that the DFT corresponds to samples of the DTFT taken every 1/N. Thus, we have

HðkÞ ¼ Hðej2πf Þf¼k=N ¼ Hðej2πk=N Þ
X ðkÞ ¼ X ðej2πf Þf¼k=N ¼ X ðej2πk=N Þ

(6:172)

■

Example 6.37 DFT and circular convolution
We want to verify that the multiplication of the DFTs of two sequences results in a DFTof the
circular convolution of the two sequences. Let us take the IFFT of Y(k) in (6.171a). We have

y nð Þ ¼ 1

N

XN 1

k¼0

Y ðkÞ ej2πkn=N

¼ 1

N

XN 1

k¼0

HðkÞX ðkÞ ej2πkn=N
(6:173)

Substituting (6.171b) into (6.173) we obtain the following expression:

y nð Þ ¼ 1

N

XN 1

k¼0

XN 1

l¼0

hðlÞ e j2πkl=N

" #
XN 1

m¼0

xðmÞ e j2πkm=N

" #

ej2πkn=N

¼ 1

N

XN 1

l¼0

hðlÞ
XN 1

m¼0

xðmÞ
XN 1

k¼0

ej2πkðn l mÞ=N
" #

¼
XN 1

l¼0

hðlÞxðn� lÞN

¼ hðnÞ  xðnÞ; n ¼ 0; 1; . . . ;N � 1

(6:174)

■
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Now consider a transmitted OFDM symbol that is the sequence sLðnÞ of length N. This
sequence serves as the input to a channel characterized by a finite impulse response (FIR)
h(n) of length 1 < L < N. Let us form an expanded input sequence ~sLðnÞ of length N + L 1
by copying the last L 1 samples of sLðnÞ,�Lþ 1 � n � N � 1, that is, the cyclic prefix of
sLðnÞ, and append them to the front of the sequence sLðnÞ. Thus, the expanded sequence is
~sLðnÞ ¼ sLðnÞN ; �Lþ 1 � n � N � 1. Consequently, we have ~sLðn� kÞ ¼ sLðn� kÞN ,
�Lþ 1 � n� k � N � 1. Also, we expand the sequence h(n) to length N + L 1 with
zero padding. The output of the FIR channel is the linear convolution of h(n) and ~sLðnÞ as
given by

yðnÞ ¼ hðnÞ � ~sLðnÞ ¼
XNþL 1

k¼0

hðkÞ~sLðn� kÞ

¼
XNþL 1

k¼0

hðkÞsLðn� kÞN ¼
XL 1

k¼0

hðkÞsLðn� kÞN

¼ hðnÞ  sLðnÞ; n ¼ �Lþ 1;�Lþ 2; . . . ;�1; 0; 1; . . . ;N � 1

(6:175)

The first L 1 samples of y(n), n ¼ �Lþ 1;�Lþ 2; . . . ;�1, are redundant because they are
associated with the cyclic prefix of sLðnÞ. Furthermore, these samples also contain the ISI that
results from passing the last L 1 samples of the previous OFDM symbol through the channel.
These samples are discarded by the receiver prior to the DFToperation. If we take DFTof both
sides of the above expression we obtain the frequency-domain samples as follows:

Y ðkÞ ¼ HðkÞZðkÞ; k ¼ 0; 1; . . . ;N � 1 (6:176)

Conversely, the time-domain sample y(n) can be expressed in terms of Y(k) via IDFT as

y nð Þ ¼ 1

N

XN 1

k¼0

HðkÞZðkÞ ej2πkn=N ; n ¼ 0; 1; . . . ;N � 1 (6:177)

The channel frequency responseH(k) can be measured by sending a known symbol Z(k) and
calculating the ratio of the received symbol Y(k) to Z(k), that is,H(k) = Y(k)/ Z(k). The length
of cyclic prefix is a compromise between how much ISI one wishes to eliminate and how
much reduction in system throughput one can accept.

The envelope of an OFDM signal is not constant. Occasionally, a large signal peak can
occur when many subcarrier symbols are added in phase. This problem can result in the
clipping of the signal amplitude in the D/A converter, causing errors in the transmitting of
the symbols. Furthermore, it can saturate the transmitter power amplifier, causing inter-
modulation distortion. The latter problem can be solved by operating the amplifier in the
linear region with enough power back-off. The former problem can be remedied by using
error correction codes and interleaving as shown in Figure 6.47. Often a single metric called

OFDMEncoder{0,1} Interleaver OFDM
modulator

Figure 6.47 A practical OFDM modulator with error correction and interleaving.
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peak-to-average power ratio (PAR) is used to describe the amount of back-off required for
the power amplifier. Since the peak occurs infrequently, PAR does not seem to be very
useful. For example, let the PAR of an OFDM signal be 8 dB. If a peak power exceeds a level
of 4 dB above the average power level for only 1% of the time (that is, the probability of the
signal being clipped is 0.01 if the amplifier is backed-off by 4 dB), then we might as well
operate the amplifier with 4 dB back-off instead of 8 dB and design a code that can correct
the error resulting from clipping.

The problem of signal clipping does not exist if OFDM is implemented at RF, as in
Figure 6.44. The random phase shifts between subcarriers prevent the coherent addition of
subcarriers. This suggests that pseudo-random phase shifts can be purposely introduced to
the N subcarriers for baseband implementation. The information on the set of pseudo-
random phase shifts for particular symbols can be transmitted on one of the N subcarriers
for the receiver to remove during demodulation.

OFDM signal is the sum of N orthogonal subcarriers; therefore, its power spectral density
is the sum of the power spectral densities of N subcarriers. If the subcarrier modulation is
MPSK or MQAM, the spectral density of a subcarrier simply has a sin x=xð Þ2 shape, and
hence, the OFDM signal has a spectrum that is fairly flat across the top. The bandwidth of an
OFDM signal is approximately equal to ðN þ 1Þ=Ts, that is, aboutN + 1 times the subcarrier
symbol rate 1=Ts.

6.19 Trellis coded modulation (TCM)

M-ary modulation such as MPSK or MQAM is employed in applications that require high
spectral efficiency. The IEEE 802.11a,g and 802.16 adopt PSK, QPSK, 16QAM, 64QAM,
and 256QAM for wireless LAN and MAN. The spectral efficiency for these I-Q modulation
techniques with M ¼ 2k is k bits/s/Hz. Doubling the number of symbols in the symbol
alphabet (doubling the signal vectors in the signal space) increases the spectral efficiency by
a factor ðk þ 1Þ=k. On the other hand, the power efficiency goes down by a factor
2k=ðk þ 1Þ, as presented in Chapter 7. Suppose an error-correction code of rate
r ¼ k=ðk þ 1Þ is used with M ¼ 2kþ1 signal space, called the expanded signal space,
then the spectral efficiency would be identical with that of the uncoded signal space with
M ¼ 2k . Furthermore, the code is only useful if the coding gain is larger than the power loss.
Binary convolutional codes are optimized for binary modulation. They can be used for
M-ary modulation without loss of effectiveness if hard decoding is implemented. This
happens because the demodulator supplies the hard decoder with bits. On the other hand,
soft decoding requires the demodulator to supply either a quantized voltage or an analog
voltage that represents the transmitted symbol. This may render the binary convolutional
code less effective for soft decoding. M-ary convolutional codes optimized for MASK,
MPSK, and MQAM have been found for some rates and constraints lengths, but users have
very few options.
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Ungerboeck TCM

In 1982 Ungerboeck [33] introduced trellis coded modulation (TCM), which is flexible and
effective for expanded MPSK and MQAM with convolutional codes of arbitrary rate
r ¼ k=ðk þ 1Þ. Conventional MPSK and MQAM employ Gray symbol mapping. With
soft decision decoding, the Euclidean free distance of the code, which is the minimum
Euclidean distance between any two code vectors, should be as large as possible for a given
code rate and constraint length (the Euclidean free distance is not the free distance dfree,
which is the smallest Hamming distance between any two distinct code sequences). Note
that the Euclidean free distance has to be larger than the minimum Euclidean distance of the
uncoded signal space ofM ¼ 2k to have any coding gain. Gray symbol mapping may fail to
accomplish this goal with some codes and usually leads to low coding gain. To overcome
this problem Ungerboeck proposed symbol mapping by set partitioning to obtain good
coding gain for expanded MPSK and MQAM using simple convolutional codes. The
essence of mapping by set portioning is to partition the expanded signal space into subsets
whose minimum Euclidean distances increase as the subsets become smaller.

The next question is how to map code symbols (a code symbol has k + 1 bits) to signal
vectors in the expanded signal space. The symbol mapping depends on the code structure.
For example, one mother code of rate ½ is used to generate two output coded bits from one
input information bit while the remaining input information bit serves as the third output
coded bit. This results in a rate 2=3 code. This code has a parallel transition between states
because of the uncoded bit. Similarly, one can generate a higher rate code using more
uncoded bits. For example, rate 3=4 code is generated by using remaining input information
bits as the third and fourth output coded bits. This code has two parallel transitions between
states. Another example to obtain rate 3=4 code is to use a rate 2=3 mother code to generate
three output coded bits from two input information bits while the remaining input informa-
tion bit serves as the fourth output coded bit. This code has a parallel transition between
states. The following rules are used for symbol mapping:

1. The output coded bits are used to select the subsets. This maximizes the Euclidean
distance between transitions leaving or entering the same state.

2. The uncoded bits are used to select the signal points in the subsets. This maximizes the
Euclidean distance between parallel transitions.

These rules are ad hoc methods for symbol mapping but they are effective in generating
good coding gain for simple convolutional codes. The following examples illustrate the
concept of symbol mapping by set partitioning.

Example 6.38 TCM-QPSK
The symbol mapping by set partitioning is illustrated in Figure 6.48 for QPSK using two
output coded bits of a rate ½ convolutional code. The first partition has two subsets, each
with two signal vectors and the minimum Euclidean distance is 2 Es

p
as compared to 2Es

p
of QPSK. The subset on the left is selected by the first coded bit (bold face) when it is 0 and
the subset on the right when it is 1. The second coded bit selects the signal vector in the first
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quadrant (second quadrant) when it is 0 and the signal vector in the third quadrant (fourth
quadrant) when it is 1. Note that the symbol mapping is clearly not Gray symbol mapping.
We observe that two coded bits are transmitted in one QPSK symbol interval Ts ¼ 2Tb,
which is equivalent to transmitting one uncoded bit in one PSK bit interval Tb . This explains
why TCM-QPSK has the same spectral efficiency as uncoded PSK. Figure 6.49 shows the
implementation of TCM-QPSK.
■

0 1

00

10

01

11

Figure 6.48 Symbol mapping by set partitioning for QPSK with rate ½ convolutional code. The bold face bit is the second coded bit
and the other bit is the first coded bit.
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Figure 6.49 Implementation of TCM-QPSK.
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Example 6.39 TCM-8PSK
The symbol mapping by set partitioning is illustrated in Figure 6.50 for 8PSK using two
output coded bits of a rate ½ convolutional code and an uncoded bit to form a rate ⅔ code.
The first partition has two subsets, each with four signal vectors and the minimum Euclidean

distance is 2Es
p

as compared to ð2� 2
p ÞEs

q
of 8PSK. The subset on the left is selected

by the first coded bit (bold face) when it is 0 and the subset on the right is selected when it is
1. The second partition has four subsets, each with two signal vectors and the minimum

Euclidean distance is 2 Es
p

as compared to 2Es
p

of the previous partition. The second
coded bit selects the subset on the left when it is 0 and the subset on the right when it is 1. The
uncoded bit selects the signal vector in each quadrant. Note that the symbol mapping is
clearly not Gray symbol mapping. We observe that three coded bits are transmitted in one
8PSK symbol interval Ts ¼ 3Tb, which is equivalent to transmitting two uncoded bits in one
QPSK symbol interval Ts ¼ 2Tb. This explains why TCM-8PSK has the same spectral
efficiency as uncoded QPSK. Figure 6.51 shows the implementation of TCM-8PSK.
■

Example 6.40 TCM-16QAM
The symbol mapping by set partitioning is illustrated in Figure 6.52 for 16QAM using three
output coded bits of a rate 2=3 convolutional code and an uncoded bit to form a rate 3=4 code.
The first partition has two subsets, each with eight signal vectors and the minimum
Euclidean distance is 2 2Es

p
as compared to 2 Es

p
of 16QAM. The subset on the left is

selected by the first coded bit (bold face) when it is 0 and the subset on the right is selected

000

0 1

0 1 10

100

010

110

001

101
111

011

Figure 6.50 Symbol mapping by set partitioning for 8PSK with rate 2=3 convolutional code. The first bit is the uncoded bit, the bold
face and underlined bit is the second coded bit and the bold face bit is the first coded bit.
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when it is 1. The second partition has four subsets, each with four signal vectors and the
minimum Euclidean distance is 4 Es

p
as compared to 2 2Es

p
of the first partition. The

second coded bit selects the subset on the left when it is 0 and the subset on the right when it
is 1. The third partition has eight subsets, each with two signal vectors and the minimum
Euclidean distance is 4 2Es

p
as compared to 4 Es

p
of the first partition. The third coded bit

selects the subset on the left when it is 0 and the subset on the right when it is 1. The uncoded
bit selects the signal vector in each quadrant. Note that the symbol mapping is clearly not
Gray symbol mapping. We observe that four coded bits are transmitted in one 16QAM
symbol interval Ts ¼ 4Tb, which is equivalent to transmitting three uncoded bits in one

100

Rate ½
convolutional

code

000

111

010

110

001

101

011 I

Q

Figure 6.51 Implementation of TCM-8PSK
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0 0 0 01 1 1 1

0000 1000 1100 0100 0010 1010 1110 0110 1001 0001 0101 1101 1011 0011 0111 1111

Figure 6.52 Symbol mapping by set partitioning for 16QAM with rate 3=4 convolutional code. The first bit is the uncoded bit, the
underlined bit is the third coded bit, the bold face and underlined bit is the second coded bit, and the bold face bit is
the first coded bit.
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8QAM symbol interval Ts ¼ 3Tb. This explains why TCM-16QAM has the same spectral
efficiency as uncoded 8QAM. Figure 6.53 shows the implementation of TCM-16QAM.
■

Pragmatic TCM

Ungerboeck TCM requires the use of a convolutional code with precise code rate k/(k+1) for
the expanded signal space. For example, rate 2=3 must be used for 16QAM. Pragmatic TCM
(adopted by the IEEE 802.16) employs various code rates such as½ and 2=3 for 16QAM, 2=3 and
3=4 for 64QAM, and 3=4, 5=6, and 7=8 for 256QAM. Furthermore, one mother code of rate ½ is
used for all modulation techniques with rates 2=3 and 3=4 codes derived from rate ½ code via
puncturing. Rates 5=6 and 7=8 are derived from rate 3=4 punctured code via the use of uncoded bits
(two uncoded bits for rate 5=6 and four uncoded bits for rate 7=8). The use of amother code of rate
½ for all required modulation techniques simplifies the encoder and the decoder. Figure 6.54
shows the industry standard rate ½ convolutional encoder with constraint length K = 7.

Example 6.41 Punctured codes in IEEE 802.16
A rate ½ convolutional code has two outputs X and Y. Rate 2=3 code is obtained by
puncturing the second bit of every pair of X-bits, namely X1X2. Thus, the sequence of
transmitted coded bits is X1Y1Y2; X3Y3Y4; . . .. Since it takes two information bits to generate
three transmitted coded bits, the rate is 2=3. Rate 3=4 code is obtained by puncturing the second

Rate 2/3
convolutional

code

I

Q

Figure 6.53 Implementation of TCM-16QAM.

X

Y

Figure 6.54 Industry standard rate ½ convolutional code.
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bit of every three X-bits, namelyX1X2X3, and by puncturing the third bit of every three Y-bits,
namely Y1Y2Y3. Thus, the sequence of transmitted coded bits is X1Y1Y2X3; X4Y4Y5X6; . . ..
Since it takes three information bits to generate four transmitted coded bits, the rate is 3=4.
■

Example 6.42 Pragmatic TCM-16QAM with rate 3=4 convolutional code
The industry standard rate ½ convolutional code in Figure 6.54 is used to generate various
TCM configurations adopted by IEEE 802.16. Figure 6.55 shows the pragmatic TCM-
16QAM with rate 3=4 code derived from rate ½ code. Two coded bits in addition to two
uncoded bits are used for symbol mapping. Since the four I-values and four Q-values of
16QAM represent two orthogonal 4ASK, the symbol mapping is carried out via set partition
ing independently for I-values and Q-values. This is not Ungerboeck symbol mapping by set
partitioning as shown in Figure 6.52. The bits c3c2 generate the I-value of the signal vector and
the bits c1c0 generate its Q-value. By convention the input bit u2 arrives first, u1 second, u0
last. The spectral efficiency of this TCM is the same as that of uncoded 8QAM.
■

Example 6.43 Pragmatic TCM-16QAM with rate ½ convolutional code
As above, the industry standard rate ½ convolutional code in Figure 6.54 is used to generate
the TCM configuration adopted by IEEE 802.16. Figure 6.56 shows the pragmatic TCM-
16QAMwith the rate ½ basic code. Four coded bits are used for symbol mapping. There are
no parallel transitions in the trellis. Gray mapping is carried out independently for I-values
and Q-values. This is not Ungerboeck symbol mapping by set partitioning as shown in
Figure 6.52. Thus, given an input bit, a pair of coded bits c3c2 generates the I-value of the
signal vector. The next input bit yields a pair of coded bits c1c0, which generates the Q-value
of the signal vector. Note that two pairs of coded bits are generated for every pair of input
bits; hence this is actually rate 2=4 TCM. The selection of Gray mapping is somewhat
surprising but apparently it does well with this particular code. The spectral efficiency of
this TCM is the same as that of uncoded QPSK.
■

11 10 01 00 c3c2

11
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01

c1c0
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Rate 1/2
convolutional

code
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Q
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u1

u2

c0

c1

c2

c3

16QAM

Figure 6.55 Pragmatic rate 3=4 TCM-16QAM. The I-value of a signal vector is generated by c3c2 and its Q-value is generated by c1c0
via set partitioning for 4ASK.
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Example 6.44 Pragmatic TCM-64QAM with rate 5=6 convolutional code
The TCM-64QAM shown in Figure 6.57 as adopted by IEEE 802.16 uses a rate 3=4
convolutional code derived from the punctured rate ½ code in Figure 6.54 as described in
Example 6.41. Two uncoded bits with four coded bits are used for symbol mapping. There
are two parallel transitions in the trellis. By convention the input bit u4 arrives first, u3
second, u2 third, u1 fourth, and u0 last. The output coded bits are taken c4 first, c3 second, c1
third, and c0 last. The bits c5c4c3 map the I-value of the signal vector. Bit c5 selects the left-
half plane with 1 and the right-half plane with 0, bits c4c3 select the four I-values according
to Gray mapping. The bits c2c1c0 map the Q-value of the signal vector. Bit c3 selects the
upper-half plane with 0 and the lower-half plane with 1, bits c1c0 select the four Q-values
according to Gray mapping. Figure 6.58 shows the symbol mapping. The spectral efficiency
of this TCM is the same as that of uncoded 32QAM.
■

Example 6.45 Pragmatic TCM-64QAM with rate 2=3 convolutional code
The industry standard rate ½ convolutional code in Figure 6.54 is used to generate this TCM
configuration adopted by IEEE 802.16. Figure 6.59 shows the pragmatic TCM-64QAM.
One uncoded bit and two coded bits are used for symbol mapping. There is a parallel
transition in the trellis. Thus, given the first pair of input bits u1u0 with u1 arriving first and u0

Rate 1/2
convolutional

code

I

Q

u0 or
c1c3

c0c2

⎡  ⎤⎡  ⎤
⎢  ⎥⎢  ⎥

⎣  ⎦ ⎣  ⎦

16QAM

c3c2

c1c0

11 10 00 01

11
10

00
01

Figure 6.56 Pragmatic rate ½ TCM-16QAM. The I-value of a signal vector is generated by c3c2 and its Q-value is generated by c1c0
via Gray mapping.
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Figure 6.57 Pragmatic rate 5=6 TCM-64QAM.
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last, three coded bits c5c4c3 are generated that map the I-value of the signal vector as in
Figure 6.58. The next input bit pair generates three coded bits c2c1c0 that map the Q-value of
the signal vector as in Figure 6.58. Note that two three-bit code words are generated from
two pairs of input bits; hence this is actually rate 4=6 TCM. The spectral efficiency of this
TCM is the same as that of uncoded 16QAM.
■

6.20 Summary

In this chapter we have provided a detailed study of major digital modulation techniques. We divided them into
binary modulation and M-ary modulation. The binary modulation includes PSK, DPSK, ASK, FSK, MSK, and GMSK.
PSK is a popular modulation that is employed widely in practice including signal in the wireless 802.11a and
802.11g standards. DPSK is employed to resolve the phase ambiguity and in applications that require
noncoherent demodulation because phase tracking is not possible. DPSK is used in the wireless IEEE 802.11
standard. ASK is employed explicitly in fiber optic communication systems. GMSK is employed in the most
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Figure 6.58 Symbol mapping for 64QAM.
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Figure 6.59 Pragmatic rate 4=6 TCM-64QAM.
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popular cellular standard, namely, GSM. The M-ary modulation techniques covered MASK, MPSK including
OQPSK, DMPSK including π=4-DQPSK, MQAM, DMQAM, CSK, MFSK, CPM, and OFDM. We noted that 8ASK is
employed in the HDTV standard in the United States. QPSK is perhaps the most popular modulation for satellite
communication. QPSK and 16QAM, 64QAM, and 256QAM are used in the wireless 802.11a,g and 802.16
standards. π=4-DQPSK is used in the cellular IS-136 standard. CSK is employed in the reverse channel of the
IS-95 cellular standard, and OFDM is the orthogonal multiplexing scheme for all the current wireless LAN and
MAN standards cited above. The encoding of an I-Q signal with a convolutional code results in trellis coded
modulation. Both Ungerboeck TCM and the pragmatic TCM used in 802.16 family are studied.

Problems

1. The ideal bandwidth of a PSK signal is 1=Tb if a sin x=x pulse shape is employed.
What is the noiseless spectral efficiency of PSK? What is the noiseless spectral
efficiency of PSK if a squared pulse shape is employed, assuming a null-to-null
bandwidth? At Eb=N0 ¼ 8 dB compare the result of sin x=x pulse shape to the
Shannon channel capacity using Figure 4.8 and Figure 6.7.

2. Consider a PSK signal with raised-cosine pulse shape with a roll-off factor β ¼ 0:5.
What is the noiseless spectral efficiency of PSK? For the same spectral efficiency what
is the bit energy-to-noise density ratio Eb=N0 to achieve a reliable transmission
dictated by the Shannon channel capacity?

3. Generate the DPSK signal for the following data bit sequence 0100110.
4. Consider the use of two Walsh functions derived from the two rows of the Hadamard

matrix

H2 ¼ 1 1
1 �1

� �

We have w1ðtÞ ¼ pðtÞ þ pðt � TbÞ and w2ðtÞ ¼ pðtÞ � pðt � TbÞ where p(t) is a
squared pulse of unit amplitude and duration Tb. These two Walsh functions are
orthogonal by inspection over (0, 2Tb). Let us use these two functions for binary
communication. Show that this modulation technique is actually DPSK.

5. What is the noiseless spectral efficiency of FSK if a squared pulse shape is employed,
assuming a null-to-null bandwidth? At Eb=N0 ¼ 8 dB compare the above result to the
Shannon channel capacity. For the same spectral efficiency as FSK, what is the
required Eb=N0 dictated by the Shannon channel capacity for reliable transmission?

6. What is the spectral efficiency of MSK, assuming a null-to-null bandwidth? At
Eb=N0 ¼ 8 dB compare the above result to the Shannon channel capacity. For the
same spectral efficiency as MSK, what is the required Eb=N0 dictated by the Shannon
channel capacity for reliable transmission?

7. What is the spectral efficiency of GMSK with BTb ¼ 0:25, assuming a 90%-power
bandwidth? At Eb=N0 ¼ 8 dB compare the above results to the Shannon channel
capacity. For the same spectral efficiency as GMSK, what is the required Eb=N0

dictated by the Shannon channel capacity for reliable transmission?
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8. Generate the in-phase and quadrature bit sequences for MSK given the input bit
sequence 110011001.

9. What are the noiseless spectral efficiencies of 8PSK and 16QAM, assuming raised-
cosine pulse shapes with roll-off factors β ¼ 0? At Eb=N0 ¼ 8 dB compare the above
results to the Shannon channel capacity using Figure 4.8 and Figure 6.7. For the same
spectral efficiency, what is the required Eb=N0 dictated by the Shannon channel
capacity for reliable transmission?

10. Derive the power spectral density expression (6.85), assuming uncorrelated data symbols.
11. Find the corresponding I-Q-values and phases of OQPSK for the data sequence

0010110110.
12. Use Table 6.6 to provide the differential encoding for DQPSK for the following data

sequences:
(a) {3, 4, 2, 1, 3}, assuming the initial phase is π/4 radians.
(b) {2, 3, 4, 1, 2}, assuming the initial phase is 7π/4 radians.

13. Use direct symbol mapping to verify the result in Example 6.28.
14. Provide the direct symbol mapping for DQPSK for the data sequence {1, 2, 4, 1, 3},

assuming the initial phase is 5π/4 radians.
15. Provide the direct symbol mapping for π=4-DQPSK for the data sequence {3, 2, 4, 1,

3}, assuming the initial phase is π/2 radians.
16. Provide the direct symbol mapping for π=4-DQPSK for the following data sequences:

(a) {3, 2, 4, 1, 3}, assuming the initial phase is π/4 radians.
(b) {4, 2, 4, 1, 3}, assuming the initial phase is 7π/4 radians.

17. Design three signal spaces for 16QAM with Gray encoding.
18. Perform differential encoding for D16QAM using Figure 6.37 and the message

symbols {0 1 1 1, 1 0 0 0, 0 0 0 1, 1 1 0 0, 0 0 10}.
19. Perform the differential encoding for D16QAM using Figure 6.37 and the message

symbols {0 1 1 0, 1 0 0 1, 1 0 0 0, 1 1 0 0, 0 1 0 1}.
20. Find the minimum Euclidean distances and average symbol energies of the signal

spaces in Figure 6.35(a)–(c). ForM = 16, compare the results with rectangular 16QAM.
(a) The radii of the inner and outer circles are E

p
and 2 E

p
, respectively, for

Figure 6.35(a).
(b) The radii of the circles are E

p
, 3 E
p

=2, 2 E
p

, and 5 E
p

=2 for Figure 6.35(b).
(c) The radii of the inner and outer circles are E

p
and 2 E

p
, respectively, for

Figure 6.35(c).
21. The Walsh functions satisfy the closure property, that is, they form a group under

multiplication. This means for any wiðtÞ, wjðtÞ 2 WN , wiðtÞwjðtÞ ¼ wkðtÞ 2 WN ,
where WN is the set of N Walsh functions.
(a) Demonstrate this property using W4 as an example.
(b) Convert the Walsh indices i, j, k to their corresponding Walsh binary indices Qi,

Qj, Qk . Construct a set W4 such that wiðtÞwjðtÞ ¼ wkðtÞ 2 W4 implies
Qk ¼ Qi �Qj and vice versa.

22. Show that the Walsh sequences obtained from the rows of the Hadamard matrix via
the mapping 1 ! 0;�1 ! 1 satisfy the closure property, that is, they form a group
under modulo-2 addition.
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(a) Demonstrate this property using H4 as an example.
(b) Convert the Walsh indices i, j, k to their corresponding Walsh binary indices Qi,

Qj, Qk . Does wi � wj ¼ wk 2 W4 imply Qk ¼ Qi �Qj and vice versa?
23. The Walsh functions of order N can be indexed according to the number of zero

crossings or sign changes which are in the range of 0 to N 1. The ith index can be
represented by a log2 N -binary index vector Qi.
(a) Find the set of index vectors for Walsh sequences of order 8.
(b) Show that the index vectors satisfy the closure property, that is, they form a group

under modulo-2 addition.
24. The Walsh functions generated by the Hadamard matrix are not indexed according to

the number of zero crossings or sign changes as denoted by log2 N -binary index Qi.
Find log2 N -binary index U i that can accomplish this task. What is the relationship
between Qi and U i? Find both binary indices for Walsh functions and Hadamard
matrix of order 16.

25. Walsh sequences can be generated according to the equation wi ¼ QiG, where G is the
generator matrix and addition and multiplication are for the Galois field GF(2). The
sequenceQi is the log2 N -binary index vector. FindG for Walsh sequences (functions) of
order 16.Note thatG is not unique and the set ofNWalsh sequences canbe spannedby a set
of log2 N linearly independent basis sequences. ThusG is a log2 N � N generator matrix.

26. Design a linear feedback shift register circuit to generate Walsh sequences.
27. CSKwith 128Walsh functions is employed for a wireless link. Data bits transmitted at

rate 64 kbps are encoded with a rate ½ convolutional code to provide a coded bit
stream for the CSK modulator. What is the symbol rate? What is the Walsh chip rate?
The chip stream is spread by multiplying with a pseudo-noise (PN) sequence of chip
rate equal to twice the Walsh rate. Assuming a null-to-null bandwidth, what is the
CSK signal bandwidth? What is the spread factor?

28. Consider M orthogonal signals fsiðtÞgMi¼1 from which we construct a set of 2M
biorthogonal signals fsiðtÞ;�siðtÞgMi¼1.
(a) What are the normalized correlations between any two signals in the set?
(b) What are the Euclidean distances of the signal set?
(c) If the two orthogonal signals are sin 2πfct and cos 2πfct what is the resultant set of

biorthogonal signals?
29. Consider a set ofM orthogonal signals fsiðtÞgMi¼1 with signal energy E. This set can be

fully represented by a corresponding set of orthogonal vectors fsigMi¼1. Let the mean of
these vectors be s ¼ ð1=MÞPM

i¼1 si. Define a new set of signals vi ¼ si � s, i = 1, 2, . . . ,
M. Calculate the signal energy of the new set. Find the crosscorrelation of any pair of
signals in the new set. When M = 2 show that this simplex signaling reduces to PSK.

30. Consider four-dimensional signals which can be represented by a set of vectors. From
one vector s1 ¼ ð1; 1; 1; 1Þ the other vectors can be formed by replacing the compo-
nents of s1 by their negatives.
(a) How many bits does a symbol vector carry?
(b) What are the symbol and bit energies?
(c) What is the minimum Euclidean distance?
(d) What is the minimum correlation between signal pairs?
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31. Consider four-dimensional signals which can be represented by a set of vectors. From
one vector s1 ¼ ð3; 1; 1; 1Þ the other vectors can be formed by replacing the compo-
nents of s1 by their negatives and by permutation of the components.
(a) How many bits does a symbol vector carry?
(b) What are the symbol and bit energies?
(c) What is the minimum Euclidean distance?
(d) What is the minimum correlation between signal pairs?

32. Consider a CP-4FSK and assume that the symbol rate is 64 ksps. What are the
modulated signal bandwidths for h = 0.5 and h = 1?

33. Consider 3-RC-4CPM with h = 0.25 and h = 0.5, and 40 dB bandwidth. What would
be the bit rate for each case so that it has the same bandwidth asMSK?Use null-to-null
bandwidth for MSK.

34. What is the noiseless spectral efficiency of OFDMwith 48 16QAM subcarriers?What
is the achievable spectral efficiency of OFDM at Eb=N0 ¼ 10 dB for reliable trans-
mission? Use Figure 4.8 for 16QAM.

35. Show that the first L – 1 samples of y(n) in (6.170) can be discarded because they
contain samples from the cyclic prefix of the current sequence and the ISI samples
from the preceding sequence.

36. The use of cyclic prefix increases the bandwidth and power.
(a) Examine IEEE 802.11a,g and determine the increase in bandwidth.
(b) Examine IEEE 802.11a,g and determine the loss in performance of various

subcarrier modulation techniques given a fixed transmit power.
37. Provide a symbol mapping via set partitioning for a TCM-8PAM.
38. Design a pragmatic rate 3=4 TCM-256QAMwith the industry standard rate ½ convolu-

tional code in Figure 6.56.
39. Design a pragmatic rate 7=8 TCM-256QAMwith the industry standard rate ½ convolu-

tional code in Figure 6.56.

Further reading

For a thorough review of amplitude modulation and frequency modulation we refer the
reader to the books by Couch [2], Haykin [3], Ziemer and Tranter [4], Proakis and Salehi [5],
and Carlson et al. [6]. For further exploration of digital modulation the reader should consult
[13–23]. For CPM in particular, the following books go into greater detail than our
coverage: [10,11,13,15,21].
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7 Demodulation

Introduction

The purpose of digital demodulation is to recover the information (bits, symbols) carried
by the digitally modulated signals. This process can be achieved via coherent or
noncoherent demodulation. The former requires a local reference carrier to be
matched exactly in frequency and phase to the received signal. The latter requires only a
match in frequency. Both types of demodulation involve two steps. In the first step, a
signal processor is employed to convert the received signal that represents a bit
(binary modulation) or a symbol (M-ary modulation) into a decision sample at maximum
signal-to-noise ratio for the case of coherent demodulation. For noncoherent demodu-
lation, the signal processor converts the received signal into a nonnegative decision
sample independent of its unknown initial phase, which is cleverly discarded. Since the
phase information is not employed, a loss in the signal-to-noise ratio for the decision
sample results. The coherent signal processors are the matched filter and the correlator,
both are equivalent at the time the decision sample is taken. The noncoherent signal
processors are the matched filter envelope detector (also known as noncoherent
matched filter) and the quadrature correlator square law detector (also known as non
coherent correlator), both are also equivalent at the time the decision sample is obtained.
Binary demodulation employs one or two signal processors depending on the type of
modulation. On the other hand, M-ary modulation requires a bank of L signal processors,
1 � L � M .

In the second step, an optimum detector (maximum likelihood detector) is employed to
determine the bit or the symbol represented by the decision sample. The optimum detector
recovers the information with a minimum bit error probability for a given received signal-to-
noise ratio. Figure 7.1 illustrates the digital demodulation concept. For binary demodulation,
the optimum detector is the threshold detector or the maximum detector depending on the
type of modulation. For M-ary demodulation, the optimum detector is the minimum
Euclidean distance detector or the M-ary maximum detector, again, depending on the type
of modulation.

Demodulation will be studied for the digital modulation techniques discussed in
Chapter 6, which includes the family of I-Q modulation such as MASK, MPSK,
and MQAM, the family of orthogonal signals such as CSK and MFSK, and the
family of continuous phase modulation (CPM). We also provide a study of OFDM
demodulation.
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7.1 The matched filter

Thematched filter is the most important signal processor in signal detection. It is designed to
maximize the output signal to noise ratio at the detection time. The requirement is that the
received signal waveform must be known at the receiver. In communications, the waveform
of a bit or symbol is known a priori. If the channel does not distort the signal, then the
matched filter can be designed accordingly. Let us assume an AWGN channel with input
noise n(t) with power spectral density N0=2 (W/Hz). The received input signal is denoted as
s tð Þ and is assumed to be real and time limited to T seconds. The impulse response of the
matched filter is denoted as h tð Þ. Furthermore, let s0 tð Þ denote the output signal and n0 tð Þ
denote the output noise. We wish to design h tð Þ in such a way to maximize the output signal-
to-noise ratio at the detection time t ¼ T , which is defined as

SNR0 ¼ s20 Tð Þ
n20ðTÞ

(7:1)

The matched filter concept is illustrated in Figure 7.2. Note that SNR0 is simply the ratio of
the square of the mean to the variance of the decision variable X ¼ s0 Tð Þ þ n0 Tð Þ.

Time domain interpretation

First let us examine the output signal s0 tð Þ. Using convolution, we obtain

s0 tð Þ ¼
ð1

1
s τð Þ h t � τð Þdτ (7:2)

Similarly, the output noise n0 tð Þ is given by

n0 tð Þ ¼
ð1

1
n τð Þ h t � τð Þdτ (7:3)

s(t) + n(t) s0(t) + n0(t)

t = T

X = s0(T) + n0(T) 
Matched

filter
h(t)

Figure 7.2 The matched filter.

Bit or symbolDecision
vector

Signal
processor

Optimum
detector

Signal + noise

Figure 7.1 Generic digital demodulator. The decision vector may contain up to M decision samples.
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Using (7.3), we can evaluate the mean square value of the noise sample n0 Tð Þ:

n20 Tð Þ ¼ E
ð1

1

ð1

1
n tð Þ n τð Þh T � tð Þh T � τð Þdt dτ

� �

¼
ð1

1

ð1

1
E n tð Þn τð Þf g h T � tð Þh T � τð Þdt dτ

¼ N0

2

ð1

1

ð1

1
δ t � τð Þ h T � tð Þh T � τð Þdt dτ

¼ N0

2

ð1

1
h2 T � tð Þdt

(7:4)

We have used the fact that noise is wide sense stationary so that
E n tð Þn τð Þf g ¼ N0=2ð Þδ t � τð Þ. Substituting (7.2) and (7.4) into (7.1), we have

SNR0 ¼ 2

N0

� �
ð1

1
s τð Þh T � τð Þdτ

� �2

ð1

1
h2 T � tð Þdt

¼ 2

N0

� �
ð1

1
s tð Þh T � tð Þdt

� �2

ð1

1
h2 T � tð Þdt

(7:5)

The right-hand side of (7.5) can be maximized with the help of the Cauchy–Schwarz
inequality, which states that

ð1

1
a� tð Þ b tð Þdt

����

����

2

�
ð1

1
aðtÞj j2dt

ð1

1
bðtÞj j2dt (7:6)

where a tð Þ and b tð Þ are complex and finite energy functions. The equality holds if and only if
within a scaling constant α

b tð Þ ¼ α a� tð Þ (7:7)

Without loss of generality, we assume s tð Þ is real. Therefore, if we set a tð Þ ¼ s tð Þ and
b tð Þ ¼ h T � tð Þ, and apply (7.6) to (7.5), we get

SNR0 � 2

N0

� �
ð1

1
s2 tð Þ dt

ð1

1
h2 T � tð Þ dt

ð1

1
h2 T � tð Þdt

� 2

N0

� �ð1

1
s2 tð Þdt � 2E

N0

(7:8)

where E is the energy of sðtÞ, defined as

E ¼
ð1

1
s2 tð Þ dt (7:9)
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The maximum of SNR0 is 2E=N0, which is achieved if and only if

h T � tð Þ ¼ α s� tð Þ (7:10)

or, equivalently,

h tð Þ ¼ α s� T � tð Þ ¼ αsðT � tÞ (7:11)

when sðtÞ is real. This shows that hðtÞ is simply a time reversed and T translated version of
s tð Þ, hence the name matched filter. For simplicity we set α ¼ 1 in (7.11) and observe that at
the detection time t ¼ T , the matched filter collects the signal energy E, that is, the signal
must have passed completely through the filter. It is then sufficient to assume that s tð Þ is time
limited to T seconds to ensure that SNR0 ¼ 2E=N0 at t ¼ T , which is the maximum signal-
to-noise ratio.

Example 7.1 Time-limited baseband pulse
Consider the signal s tð Þ ¼ Ap tð Þ, where pðtÞ is a unit amplitude pulse of duration T seconds
as shown in Figure 7.3. The matched filter impulse response is simply a scaled version of the
input signal, and the output signal s0 tð Þ peaks at the detection time t ¼ T with amplitude
s0ðTÞ ¼ αA2T ¼ αE. The output noise power, which can be evaluated from (7.4) and (7.10),

is n20ðTÞ ¼ α2A2TN0=2 ¼ α2EN0=2. The output signal-to-noise ratio at t ¼ T is SNR0 ¼
s20 Tð Þ=n20 Tð Þ ¼ 2E=N0.

It is often convenient to analyze a bandpass signal via its complex envelope or equivalent
lowpass signal. In this case, the equivalent lowpass noise of the original bandpass noise that
accompanies the bandpass signal must be used. If the power spectral density of the bandpass
noise is N0=2, then, the power spectral density of the equivalent lowpass noise is N0.
Consider the bandpass signal sðtÞ ¼ ApðtÞ cos 2πfct with energy E ¼ A2T=2. The complex
envelope or equivalent lowpass signal is sLðtÞ ¼ ApðtÞ with energy EL ¼ A2T ¼ 2E. The
output of the matched filter that matches sLðtÞ is sL;0ðTÞ ¼ αA2T ¼ αEL. The output noise
power can be evaluated from (7.4) and (7.10) with N0 replacing N0=2 and sLðtÞ replacing

h(t) = αs(T – t) = αAp(T – t)

A

s(t) 

t
0 T

A

s( – t)

t
0–T

αA

t
0 T

αA2T = αE

s0(t) 

t
0 T 2T

Figure 7.3 Matched filter impulse response and output.
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sðtÞ and is given by n2L;0ðTÞ ¼ α2A2TN0 ¼ α2ELN0. Thus, the output signal-to-noise ratio is
given as SNRL;0 ¼ s2L;0 Tð Þ n2L;0 Tð Þ

.
¼ EL=N0 ¼ 2E=N0 ¼ SNR0.

■

Example 7.2 Time-limited modulated pulse
Consider the signal s tð Þ ¼ Ap tð Þ cos 2πfct, where pðtÞ is again a unit amplitude pulse of
duration T seconds and fc is the carrier frequency. The matched filter can be implemented
after the voltage multiplier as shown in Figure 7.4.

The output v tð Þ of the voltage multiplier is

v tð Þ ¼ s tð Þ cos 2πfct ¼ Ap tð Þ cos2 2πfct

¼ A

2
p tð Þ þ A

2
p tð Þ cos 4πfct

(7:12)

The high-frequency term 1
2Ap tð Þ cos 4πfct is filtered out by the matched filter that matches

the component Ap tð Þ. Alternatively, one can implement the matched filter that matches
the signal s(t) directly, as shown in Figure 7.5. Note that the output signal s0 tð Þ is a
modulated triangular pulse with a peak at the time t ¼ T , where the maximum SNR0

is achieved. The drawback of the implementation in Figure 7.5 is the requirement for
more accurate sampling timing because of the sharp roll-off of the signal around the time
t ¼ T .
■

αA2T/2 = αE

s0(t)

t
0 T 2T

s(t) v(t)

cos2 πfct

h(t) = αAp(T – t)
s0(t)

Figure 7.4 Matched filter for a modulated pulse.

s0(t) 

t
0 

T

s(t) 
h(t) = αs(T–t)

Envelope of s0(t) 

Figure 7.5 Alternative matched filter for a modulated pulse.
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Frequency domain interpretation

The matched filter design can also be carried out in the frequency domain via the Fourier
transform. Let H fð Þ be the transfer function of the matched filter and S fð Þ be the Fourier
transform of the input signal s tð Þ. The Fourier transform of the output signal s0 tð Þ is simply
H fð ÞS fð Þ, and hence, s0 tð Þ is given by the inverse Fourier transform

s0 tð Þ ¼
ð1

1
H fð ÞS fð Þ ej2πftdf (7:13)

Applying the Parseval formula to (7.4) we obtain the output noise power at t ¼ T as
follows:

n20 Tð Þ ¼ N0

2

ð1

1
H fð Þj j2df (7:14)

Substituting (7.13) and (7.14) into (7.1), we obtain

SNR0 ¼ 2

N0

� �
ð1

1
H fð ÞS fð Þej2πfTdf

� �2

ð1

1
H fð Þj j2df

(7:15)

� 2

N0

� �
ð1

1
H fð Þj j2df

ð1

1
S fð Þj j2df

ð1

1
H fð Þj j2df

� 2

N0

ð1

1
S fð Þj j2df ¼ 2

N0

ð1

1
s2 tð Þdt

� 2E

N0

(7:16)

via the use of the Cauchy–Schwarz inequality and the Parseval formula, and the fact that
S fð Þej2πfT�� �� ¼ S fð Þj j. The maximum SNR0 is obtained when

H fð Þ ¼ α S� fð Þe j2πfT (7:17)

which yields (7.11) via the inverse Fourier transform

h tð Þ ¼ α s� T � tð Þ ¼ αsðT � tÞ (7:18)

when s(t) is real.

Output signal and noise waveforms

Let us examine the waveform of the output signal s0 tð Þ. Directly substituting (7.11) or (7.18)
into (7.2), and assuming a real signal s(t), we have
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s0 tð Þ ¼ α
ð1

1
s τð Þs T � t � τð Þð Þdτ ¼ α

ð1

1
s τð Þs T � t þ τð Þdτ

¼ αRs T � tð Þ ¼ αRs t � Tð Þ
(7:19)

where Rs τð Þ, by definition (2.191), is the autocorrelation of the input signal s tð Þ with a time
lag τ. Note that the autocorrelation is an even function by (2.194). At time t ¼ T , we get

s0 Tð Þ ¼ αRs 0ð Þ ¼ α
ð1

1
s2 tð Þdt

¼ αE
(7:20)

Furthermore, the output noise in (7.3) is given by

n0 tð Þ ¼ α
ð1

1
n τð Þs T � t þ τð Þdτ (7:21)

and hence, at t ¼ T ,

n0 Tð Þ ¼ α
ð1

1
n tð Þs tð Þdt (7:22)

Note that n20 Tð Þ ¼ α2EN0=2 via (7.4) and (7.10).

Decision variable

In order to evaluate the matched filter performance in signal detection, we need to know that
statistics of the decision variable X ¼ s0 Tð Þ þ n0 Tð Þ at the output of the matched filter in
Figure 7.2. First, we note that the matched filter is a linear filter; therefore, the output noise
n0 tð Þ is also Gaussian. Thus, X is a Gaussian random variable with the following statistics:

X ¼ s0 Tð Þ ¼ αE (7:23)

σ2 ¼ n20 Tð Þ ¼ α2EN0=2 (7:24)

fX xð Þ ¼ 1

2π
p

σ
e x Xð Þ2=2σ2 (7:25)

where X , σ2, and fX xð Þ are the mean, variance, and probability density function of X,
respectively. Again α is a scaling factor which can always be set to unity if so desired.

The probability distribution function FX xð Þ ¼ Pr X � xð Þ is given by

FX xð Þ ¼ Pr X � xð Þ ¼
ðx

1
fX yð Þdy

¼ 1

2π
p

σ

ðx

1
e y Xð Þ2=2σ2dy ¼ 1

2π
p

ð1

X xð Þ=σ
e y2=2dy

¼ Q
X � x

σ

� �

(7:26)
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where Q að Þ is the Gaussian integral with argument “a” defined as follows:

Q að Þ ¼ 1

2π
p

ð1

a
e y2=2dy (7:27)

and

Q �að Þ ¼ 1� Q að Þ (7:28)

Note that

Pr X4xð Þ ¼ 1� Pr X � xð Þ

¼ Q
x� X

σ

� � (7:29)

Summary

The matched filter is a coherent signal processor because the signal waveform must be
known exactly. Its impulse response is the time reversed and T translated waveform of the
signal. It achieves the maximum output signal-to-noise ratio of 2E=N0 at the sampling time
t ¼ T . The output of the matched filter, expressed by X ¼ s0 Tð Þ þ n0 Tð Þ, completely
represents the received signal r tð Þ ¼ s tð Þ þ n tð Þ. In other words, X represents sufficient
statistics that summarize r tð Þ for the purpose of detecting the input signal s tð Þ. Sufficient
statistics allow viewing an infinite dimensional signal x tð Þ as a scalar X well enough for the
detection of s tð Þ. It can be shown via (7.20) that e tð Þ ¼ r tð Þ � Xx1 tð Þ ¼ s tð Þ þ n tð Þ�
s0 Tð Þx1 tð Þ � n0 Tð Þx1 tð Þ ¼ n tð Þ � n0 Tð Þx1 tð Þ; where x1 tð Þ is a unit energy function defined
as x1 tð Þ ¼ s tð Þ= E

p
and α is selected to be α ¼ 1= E

p
, and is uncorrelated to X, that is,

E e tð ÞXf g ¼ 0. Thus, e tð Þ contains no information relevant to the detection of s tð Þ. Note that
s tð Þ ¼ s0 Tð Þx1 tð Þ, thus s0ðTÞ is the projection of s tð Þ into the basis function x1 tð Þ. Similarly,
n0 Tð Þ is the projection of input noise n tð Þ onto x1 tð Þ. Also note that the noise
eðtÞ ¼ nðtÞ � n0ðTÞx1ðtÞ is Gaussian, therefore, E e tð ÞXf g ¼ 0 also implies that e tð Þ and
X are independent. Therefore, e tð Þ is irrelevant in the detection of s tð Þ. From the statistical
point of view, the Gaussian random variable X ¼ s0 Tð Þ þ n0 Tð Þ requires only two para-
meters to fully characterize it, namely, its mean and variance. Since the mean is s0ðTÞ and
the variance is the variance of n0 Tð Þ, sufficient statistics are contained in X.

7.2 The correlator

When the input signal s tð Þ to a matched filter is time-limited to T seconds, the matched filter
output signal and noise at the sampling time t ¼ T in (7.20) and (7.22) can be written as

s0 Tð Þ ¼ α
ðT

0
s2 tð Þ dt (7:30)
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n0 Tð Þ ¼ α
ðT

0
n tð Þs tð Þ dt (7:31)

The above two equations allow us to alternatively implement the matched filter by using a
voltage multiplier and an integrator as illustrated in Figure 7.6. This equivalent version of
the matched filter is called the correlator. Note that the equivalence is valid only at the
sampling time t ¼ T . This also implies that the output of the correlator represents sufficient
statistics for the detection of r tð Þ ¼ s tð Þ þ n tð Þ.

Example 7.3 Time-limited modulated pulse
As in Example 7.2, we consider a modulated pulse s tð Þ ¼ Ap tð Þ cos 2πfct. The correlator for
this signal is shown in Figure 7.7. The output v tð Þ of the voltage multiplier is given by

v tð Þ ¼ αs2 tð Þ
¼ αA2p2 tð Þ cos2 2πfct
¼ 1

2
αA2p tð Þ þ 1

2
αA2p tð Þ cos 4πfct

(7:32)

Note that p2 tð Þ ¼ p tð Þ and the high-frequency term 1
2αA

2p tð Þ cos 4πfct is filtered out by the
integrator, which acts as a lowpass filter. The output signal is s0 tð Þ ¼ 1

2αA
2t p tð Þ, which

yields at t ¼ T the sample s0 Tð Þ ¼ αA2T=2 ¼ αE. Thus, we obtain the same result as that of
the matched filter approach in Example 7.2.
■

7.3 The matched filter–envelope detector (noncoherent
matched filter)

Both the matched filter and correlator are coherent signal processors. They require the
complete knowledge of the signal, that is, amplitude, frequency, and phase. In many

s(t) + n(t)

t = T

X = s0(T ) + n0(T )  

αs(t)

0

T

∫

Figure 7.6 The correlator.

αA2T/2=αΕ

s0(t)

t
0 T

s(t)

t = T

αs(t)

0

T

∫
v(t) s0(t)

Figure 7.7 Correlator for a modulated pulse.
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applications, the phase of a modulated carrier cannot be tracked accurately. Therefore, the
matched filter or the correlator will fail to work in these cases. Let us examine the case in
Example 7.3. Suppose the signal s tð Þ arrives at the receiver with an unknown phase θ, that is,
s tð Þ ¼ Ap tð Þ cos 2πfct þ θð Þ. In this case, the output signal v tð Þ is v tð Þ ¼ 1=2αA2p tð Þ cos θþ
1=2αA2p tð Þ cos 4πfct þ θð Þ. Thus, the output of the integrator is s0 tð Þ ¼ 1=2αA2t p tð Þ cos θ,
which yields s0 Tð Þ ¼ 1=2αA2T cos θ. It is obvious that s0 Tð Þ ¼ 0 when θ ¼ 90�, which
implies a zero output signal! To avoid the situation where coherent demodulation cannot be
achieved with a matched filter or a correlator, we can employ a combination of matched
filter–envelope detector (also referred to as noncoherent matched filter) or quadrature
correlator–square-law detector (or noncoherent correlator). In this section we study the
former while the latter will be examined in Section 7.4.

For a digital signal whose information is contained in its complex envelope (lowpass
equivalent signal), an envelope detector can be employed at the output of the matched filter
to extract the information bit. Obviously, we can just employ the envelope detector to extract
the information bit without the use of a matched filter in some modulation techniques, such
as standard AM (OOK or ASK, for example). On the other hand, the matched filter–
envelope detector will give us better performance, as we will prove later. Figure 7.8
illustrates the matched filter–envelope detector.

We assume that the matched filter is matched to the transmitted signal s tð Þ, but when s tð Þ
arrives at the receiver, the channel introduces an unknown phase θ. Let us describe s tð Þ by its
envelope-phase representation as follows:

s tð Þ ¼ R tð Þ cos 2πfct (7:33)

where R tð Þ is the envelope of s tð Þ. The received signal s t; θð Þ is therefore given by

s t; θð Þ ¼ R tð Þ cos 2πfct þ θð Þ (7:34)

where θ is the unknown phase. The matched filter impulse response h tð Þ is simply a time-
reversed and T-translated version of s tð Þ as given by (7.11) as follows:

h tð Þ ¼ αs T � tð Þ
¼ αR T � tð Þ cos 2πfc T � tð Þ½ �

(7:35)

The channel attenuation can be included in the parameter α in (7.35) if desired. The output
signal s0ðtÞ at the matched filter output is

s(t,θ) + n(t) s0(t) + n0(t)

t = T

X = x (T)
Matched

filter
h(t) = αs(T – t)

Envelope
detector

x(t)

Figure 7.8 Matched filter–envelope detector for a signal s(t) with an unknown phase θ.
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s0 tð Þ ¼ α
ð1

1
s τ; θð Þh t � τð Þ dτ ¼ α

ð1

1
s τ; θð Þs T � tþ τð Þ dτ

¼ α
ð1

1
R τð Þ cos 2πfcτ þ θð ÞR T � t þ τð Þ cos 2πfc T � t þ τð Þ½ �dτ

¼ α
ð1

1
R τð ÞR T � t þ τð Þ cos 2πfcτ þ θð Þ cos 2πfcτ dτ

� �
cos 2πfc T � tð Þ½ �

� α
ð1

1
R τð ÞR T � t þ τð Þ cos 2πfcτ þ θð Þ sin 2πfcτ dτ

� �
sin 2πfc T � tð Þ½ �

(7:36)
Further simplification yields

s0 tð Þ ¼ s0;I ðtÞ cos 2πfc T � tð Þ½ � � s0;Q tð Þ sin 2πfc T � tð Þ½ � (7:37)
where

s0;I tð Þ ¼ α
2

ð1

1
R τð ÞR T � t þ τð Þ cos θ dτ

þ α
2

ð1

1
R τð ÞR T � t þ τð Þ cos 4πfcτ þ θð Þ dτ

(7:38)

s0;Q tð Þ ¼ � α
2

ð1

1
R τð ÞR T � t þ τð Þ sin θ dτ

þ α

2

ð1

1
R τð ÞR T � t þ τð Þ sin 4πfcτ þ θð Þ dτ

(7:39)

are the in phase and quadrature components of s0ðtÞ, respectively. Now consider the output
noise n0 tð Þ. From (7.21), we get

n0 tð Þ ¼ α
ð1

1
n τð Þh t � τð Þ dτ ¼ α

ð1

1
n τð Þs T � t þ τð Þ dτ

¼ α
ð1

1
n τð ÞR T � t þ τð Þ cos 2πfc T � t þ τð Þ½ �dτ

¼ α
ð1

1
n τð ÞR T � t þ τð Þ cos 2πfcτ dτ

� �
cos 2πfc T � tð Þ½ �

� α
ð1

1
n τð ÞR T � t þ τð Þ sin 2πfcτ dτ

� �
sin 2πfc T � tð Þ½ �

¼ n0;I tð Þ cos 2πfc T � tð Þ½ � � n0;Q tð Þ sin 2πfc T � tð Þ½ �

(7:40)

where

n0;I tð Þ ¼ α
ð1

1
n τð ÞR T � t þ τð Þ cos 2πfcτ dτ (7:41)

n0;Q tð Þ ¼ α
ð1

1
n τð ÞR T � t þ τð Þ sin 2πfcτ dτ (7:42)

are the in-phase and quadrature components of n0 tð Þ, respectively.
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Combining (7.37) and (7.40), we obtain the output s0 tð Þ þ n0 tð Þ of the matched filter as
follows:

s0 tð Þ þ n0 tð Þ ¼ s0;I tð Þ þ n0;I tð Þ
 �
cos 2πfc T � tð Þ½ �

� s0;Q tð Þ þ n0;Q tð Þ
 �
sin 2πfc T � tð Þ½ �

(7:43)

Consequently, the output of the envelope detector is simply

x tð Þ ¼ s0;I tð Þ þ n0;I tð Þ
 �2þ s0;Q tð Þ þ n0;Q tð Þ
 �2
q

(7:44)

The decision variable X at the sampling time t = T is given by X ¼ x Tð Þ as

X ¼ s0;I Tð Þ þ n0;I Tð Þ
 �2þ s0;Q Tð Þ þ n0;Q Tð Þ
 �2
q

(7:45)
where

s0;I Tð Þ ¼ α
2
cos θ

ð1

1
R2 tð Þ dt þ α

2

ð1

1
R2 tð Þ cos 4πfct þ θð Þ dt (7:46)

s0;Q Tð Þ ¼ � α
2
sin θ

ð1

1
R2 tð Þ dt þ α

2

ð1

1
R2 tð Þ sin 4πfct þ θð Þ dt (7:47)

n0;I Tð Þ ¼ α
ð1

1
n tð ÞR tð Þ cos 2πfct dt (7:48)

n0;Q Tð Þ ¼ α
ð1

1
n tð ÞR tð Þ sin 2πfct dt (7:49)

Example 7.4 The evaluation of s0;I Tð Þ and s0;Q Tð Þ
Let us examine (7.46) and (7.47). First let E be the energy of s tð Þ as usual, that is

E ¼
ð1

1
s2 tð Þ dt ¼

ð1

1
R2 tð Þ cos2 2πfct dt

¼ 1

2

ð1

1
R2 tð Þ dt þ 1

2

ð1

1
R2 tð Þ cos 4πfct dt

(7:50)

The second integral on the right is very small compared with the first integral on the right
because of the oscillation due to the carrier at 2fc. For example, let R tð Þ ¼ Ap tð Þ, where p tð Þ is
the unit amplitude pulse of T seconds duration. Then, the first integral on the right is A2T=2,
and the second integral is A2T=2ð Þ sin 4πfcT 4πfcT �=½ , which is much smaller than A2T=2 for
fcT � 1, a case we always encounter in practice. Thus, for all practical purposes s0;I Tð Þ and
s0;Q Tð Þ in (7.46) and (7.47) can be reasonably approximated by

s0;I Tð Þ � αE cos θ (7:51)

s0;Q Tð Þ � �αE sin θ (7:52)

■
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Example 7.5 Statistics of output noise components n0;I Tð Þ and n0;Q Tð Þ
Using the fact that the input AWGN n tð Þ has zero mean, we conclude that
n0;I Tð Þ ¼ n0;Q Tð Þ ¼ 0. Thus, the variance of n0;I Tð Þ or n0;Q Tð Þ is the same as their mean-
squared value. Using (7.48), we get

n20;I Tð Þ ¼ α2
ð1

1

ð1

1
E n tð Þn τð Þf gR tð ÞR τð Þ cos 2πfct cos 2πfcτ dt dτ (7:53)

The autocorrelation of noise n tð Þ isE n tð Þn τð Þf g ¼ N0=2ð Þδ t � τð Þ, and, therefore, using the
same approximation that applies to (7.50), we have

n20;I Tð Þ ¼ α2N0

2

ð1

1
R2 tð Þ cos2 2πfct dt

¼ α2N0

4

ð1

1
R2 tð Þ dt þ α2N0

4

ð1

1
R2 tð Þ cos 4πfct dt

� α2EN0

2

(7:54)

Similarly,

n20;Q Tð Þ � α2EN0

2
(7:55)

We remark that the matched filter is a linear time-invariant systems; therefore, its output
noise components are both Gaussian random variables with zero mean and variance
α2EN0=2.
■

Output signal-to-noise ratio

We are now in a position to further explore the output signal-to-noise ratio SNR0 at the
matched filter–envelope detector output. Specifically, we first evaluate the total output
power via (7.45), that is, the mean-square value of the decision variable X. Using (7.51)–
(7.55), we obtain

X 2 ¼ s20;I Tð Þ þ n20;I Tð Þ þ s20;Q Tð Þ þ n20;Q Tð Þ
� α2E2 þ α2EN0

(7:56)

The power of the signal component is α2E2 while that of noise is α2EN0. Thus, SNR0 is
given by

SNR0 � α2E2

α2EN0
¼ E

N0
(7:57)

Comparing (7.57) to (7.8), we conclude that the matched filter–envelope detector produces
half the output signal-to-noise ratio of the coherent matched filter, or 3 dB less.
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Decision variable

In order to predict the performance of a digital communication receiver employing the
matched filter–envelope detector, we need the statistics of the decision variable X in (7.45).
First we observe that s0;I Tð Þ þ n0;I Tð Þ and s0;Q Tð Þ þ n0;Q Tð Þ are both Gaussian random
variables with means s0;I Tð Þ � αE cos θ and s0;Q Tð Þ � �αE sin θ, and common variance
σ2 � α2EN0=2. The decision variable X, being the square root of the sum of two squared
Gaussian random variables, with non-zero mean, is therefore a Rice random variable. Its
probability density function is given by

fX xð Þ ¼ x

σ2
e x2þa2ð Þ=2σ2 I0 ax

σ2

� 
; x 	 0

a2 ¼ s20;I Tð Þ þ s20;Q Tð Þ � α2E2

σ2 ¼ α2EN0

2

(7:58)

Note that a2=2σ2 ¼ SNR0 � E=N0. For the special case when the signal sðtÞ is not present,
then X is simply the square root of the sum of two squared zero mean Gaussian random
variables with a common variance σ2 � α2EN0=2. Thus, X is a Rayleigh random variable
with a probability density function

fX xð Þ ¼ x

σ2
e x2=2σ2 ; x 	 0 (7:59)

Summary

The matched filter–envelope detector is a noncoherent signal processor that can be
employed to detect the presence of a signal with an unknown phase. It achieves a maximum
output signal-to-noise ratio of E=N0 at the sampling time t ¼ T . This is 3 dB less than that
produced by a coherent matched filter. The decision variable X at the output of the matched
filter–envelope detector completely represents the envelope of r tð Þ¼ s t; θð Þþ n tð Þ. In other
words, X represents sufficient statistics that summarize r tð Þj j for the purpose of detecting sðtÞ
with an unknown phase θ. From the statistics point of view, the Rice random variable X
requires only two parameters a and σ2 to characterize it. Both parameters are contained in the
in-phase and quadrature components of the matched filter output.

7.4 The quadrature correlator–square law detector
(noncoherent correlator)

For the case where the received signal sðtÞ is time limited to T seconds, the matched filter–
envelope detector output signal and noise at the sampling time t ¼ T in (7.46)–(7.49) can be
written as
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s0;I Tð Þ ¼ α

2
cos θ

ðT

0
R2 tð Þ dt þ α

2

ðT

0
R2 tð Þ cos 4πfct þ θð Þ dt (7:60)

s0;Q Tð Þ ¼ � α
2
sin θ

ðT

0
R2 tð Þ dt þ α

2

ðT

0
R2 tð Þ sin 4πfct þ θð Þ dt (7:61)

n0;I Tð Þ ¼ α
ðT

0
n tð ÞR tð Þ cos 2πfct dt (7:62)

n0;Q Tð Þ ¼ α
ðT

0
n tð ÞR tð Þ sin 2πfct dt (7:63)

Equations (7.60)–(7.63) can be implemented by the quadrature correlator–square law
detector shown in Figure 7.9. It is completely equivalent to the matched filter–envelope
detector at the sampling time t ¼ T . The decision variable X is given in (7.45) together with
its statistics in (7.58). In practice, the square root operation in Figure 7.9 is often omitted
because the decision variable Y ¼ X 2 is capable of producing the same decision as X. The
decision variable Y, being the sum of two squared Gaussian random variables with non-zero
means, is a non-central chi-squared random variable with two degrees of freedom, with the
following probability density function:

fY yð Þ ¼ 1

2σ2
e yþa2ð Þ=2σ2 I0

y
p

a

σ2

� �
; y 	 0 (7:64)

where a2 and σ2 are given in (7.58). Again, when the signal s tð Þ is not present, then Y is
simply the sum of two squared zero-mean Gaussian random variables with a common
variance σ2. Thus, Y is a central chi-squared random variable with two degrees of freedom,
with a probability density function

fY yð Þ ¼ 1

2σ2
e y=2σ2 ; y 	 0 (7:65)

The output of the quadrature correlator–square law detector represents sufficient statistics that
summarize r tð Þj j ¼ s t; θð Þ þ n tð Þj j for the purpose of detecting s tð Þwith an unknown phase θ.

s(t, θ) + n(t) Y

t = T

α R(t) cos 2πfct

0

T

∫ (   )2

t = T
α R(t) sin 2πfct

0

T

∫ (   )2

Σ
X

+

+

Figure 7.9 The quadrature correlator–square law detector for an input signal s(t) with unknown phase θ.
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7.5 The threshold detector

The threshold detector is a single input–single output bit detector. It accepts the decision
variable X at the output of a signal processor such as the coherent matched filter or correlator
and determines the presence of a binary signal based on whether X is above or below a preset
threshold VT . The threshold VT is set in such a way to minimize the error probability or
maximize the correct detection probability. The decision variable X takes on two possible
values that represent two hypotheses H1 andH2. We could assignH1 to the event when bit 1
was transmitted andH2 to the event when bit 0 was transmitted. Associated withH1 we have
a Gaussian variable X with variance σ2 and the probability density function

fX xjH1ð Þ ¼ 1

2π
p

σ
e x m1ð Þ2=2σ2 (7:66)

wherem1 ¼ E X jH1ð Þ is the mean value of X given hypothesisH1. Similarly, the probability
density function of X given hypothesis H2 is

fX xjH2ð Þ ¼ 1

2π
p

σ
e x m2ð Þ2=2σ2 (7:67)

where m2 ¼ E X jH2ð Þ is the mean value of X given by hypothesis H2.

Optimum threshold

Without loss of generality, let m14VT and m2 � VT . Therefore, given a value x of the
decision variable X, hypothesisH1 is chosen when x4VT and hypothesisH2 is chosen when
x5VT . Obviously, an error occurs when x5VT given H1. Similarly, an error occurs when
x4VT given H2. Thus, by using (7.26), we have

Pr X � VT jH1ð Þ ¼ Q
m1 � VT

σ

� �
(7:68)

Also, by using (7.29), we get

Pr X4VT jH2ð Þ ¼ Q
VT � m2

σ

� �
(7:69)

Applying the total probability theorem and using the fact thatH1 andH2 are equally likely, that
is, Pr H1ð Þ ¼ Pr H2ð Þ ¼ 0:5, we obtain the error probability for threshold detection as follows:

Pe ¼ Pr H1ð ÞPr X � VT jH1ð Þ þ Pr H2ð ÞPr X4VT jH2ð Þ

¼ 1

2
Q

m1 � VT

σ

� �
þ 1

2
Q

VT � m2

σ

� � (7:70)

We remark that Pe is a function of the threshold VT ; therefore, we can find the optimum
threshold to minimize Pe by setting dPe=dVT ¼ 0. Using the Leibniz differentiation rule on
the right-hand side of (7.70), we obtain
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dPe

dVT
¼ 1

2 2π
p

σ
e VT m1ð Þ2=2σ2 � 1

2 2π
p

σ
e VT m2ð Þ2=2σ2 ¼ 0 (7:71)

Solving the above equation, we get

VT � m1ð Þ2¼ VT � m2ð Þ2 (7:72)

This yields the optimum threshold VT :

VT ¼ m1 þ m2

2
(7:73)

Substituting (7.73) into (7.70), we obtain the minimum error probability

Pe ¼ Q
m1 � m2

2σ

� 
(7:74)

Figure 7.10 illustrates the concept of threshold detection.

Maximum likelihood criterion

The above analysis shows that the optimum threshold yields the minimum error probability.
Thus, by intuition, this criterion should be equivalent to the criterion in which the correct
detection probability is maximized. In other words, we wish to design a detector that
maximizes the a posteriori probability Pr Hijxð Þ, i = 1, 2, given the decision value x of X.
The decision that maximizes the a-posteriori probability Pr Hijxð Þ is referred to as the
maximum a posteriori (MAP) criterion. When H1 and H2 are equally likely hypotheses,
then the decision is called the maximum likelihood (ML) criterion. The strategy is to choose
the hypothesis that has the higher probability given the particular value x of the decision
variable X. Thus, we can state that

Pr H1jxð Þ9
H2

H1

Pr H2jxð Þ (7:75)

Using the Bayes theorem, we can express Pr Hijxð Þ as follows:

Pr Hijxð Þ ¼ fX xjHið ÞPr Hið Þ
fX xð Þ ; i ¼ 1; 2 (7:76)

where, by the total probability theorem, we have

fX xð Þ ¼
X2

i¼1

fX xjHið ÞPr Hið Þ (7:77)

X VT

Threshold
detector

2
m1 + m2VT  =

H2

H1

<>

Figure 7.10 Threshold detection with optimum setting.
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We note that fX xð Þ is completely independent of Hi; therefore, after substituting (7.76) into
(7.75), we obtain the likelihood ratio

ΛðxÞ ¼ fX xjH1ð Þ
fX xjH2ð Þ9

H2

H1

Pr H2ð Þ
Pr H1ð Þ (7:78)

Substituting (7.66) and (7.67) into (7.78) yields the following expression:

e½ðx m2Þ2 ðx m1Þ2�=2σ29
H2

H1

PrðH2Þ
PrðH1Þ (7:79)

The left-hand side is a monotonically increasing (or decreasing) function; therefore, the
inequality is preserved if we take the natural logarithm of both sides of (7.79).

Also, since Pr H1ð Þ ¼ Pr H2ð Þ ¼ 0:5, ln Pr H2ð Þ=Pr H1ð Þ½ � ¼ 0 and hence

ðx� m2Þ2 � ðx� m1Þ29
H2

H1

0 (7:80)

which leads to the value x as

x9
H2

H1

m1 þ m2

2
¼ VT (7:81)

Therefore, the maximum likelihood criterion establishes the same optimum threshold
VT ¼ m1 þ m2ð Þ=2 that is required by the minimum error probability criterion. The thresh-
old detector is thus a maximum likelihood detector.

7.6 The maximum detector

The maximum detector (also called a comparator) is a double input–single output bit
detector. It accepts two decision variables X1 and X2 from the signal processors and chooses
the one with the largest value. Let x1 and x2 be the values assumed by the decision variables
X1 and X2, respectively. As usual, we assign hypothesis H1 to the event that bit 1 was
transmitted and hypothesis H2 to bit 0. Then the decision is made as follows:

x19
H2

H1

x2 (7:82)

Figure 7.11 illustrates the maximum detector. We can rewrite the decision rule in (7.82)
using x ¼ x1 � x2 as

X1
Maximum
detector

H2

H1

<>
X2

x2x1

Figure 7.11 The maximum detector.
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x ¼ x1 � x29
H2

H1

0 (7:83)

The decision rule in (7.83) allows an equivalent implementation using a threshold detector
as shown in Figure 7.12. This implies that the maximum likelihood detector can be used.

Gaussian decision variables

Let us consider two independent Gaussian decision variables X1 and X2 with a common
variance σ2. This is the case of binary communications with orthogonal signals. Define

μ1 ¼ E X1jH1f g (7:84)

μ2 ¼ E X2jH2f g (7:85)

In addition, we also assume that the following conditional means hold:

E X1jH2f g ¼ 0 (7:86)

E X2jH1f g ¼ 0 (7:87)

Then X ¼ X1 � X2 is obviously a Gaussian random variable with variance 2σ2 and condi-
tional means

m1 ¼ E X jH1f g ¼ E X1jH1f g � E X2jH1f g ¼ μ1 (7:88)

m2 ¼ E X jH2f g ¼ E X1jH2f g � E X2jH2f g ¼ �μ2 (7:89)

Therefore, applying the error probability expression for threshold detection of X in (7.74),
we obtain the error probability for the maximum detector or its equivalent implementation
using the threshold detector with Gaussian input decision variables as follows:

Pe ¼ Q
μ1 þ μ2
2 2
p

σ

� �
(7:90)

Rice and Rayleigh decision variables

This case applies to noncoherent binary demodulation using a matched filter–envelope
detector or quadrature correlator–square law detector. The maximum detector accepts two
independent Rice and Rayleigh decision variables X1 and X2 with probability density func-
tions given by (7.58) and (7.59), respectively. The error probability is given by symmetry as

X1

0

Threshold
detector

VT  = 0

H2

H1

<>

X2

+

−
x

X
Σ

Figure 7.12 The equivalent realization of the maximum detector.
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Pe ¼ Pr H1ð ÞPr X24x1jH1ð Þ þ Pr H2ð ÞPr X14x2jH2ð Þ

¼ 1

2
Pr X24x1jH1ð Þ þ 1

2
Pr X14x2jH2ð Þ

¼ Pr X24x1jH1ð Þ

(7:91)

Using the probability density function of X1 and X2 in (7.58) and (7.59), we obtain

Pe ¼
ð1

0
fX1 x1jH1ð Þ

ð1

x1

fX2 x2jH1ð Þ dx2 dx1

¼
ð1

0

x1
σ2

e x21þa2ð Þ=2σ2 I0 ax1
σ2

�  ð1

x1

x2
σ2

e x22=2σ
2
dx2 dx1

(7:92)

The inner integral with respect to x2 is equal to e x21=2σ
2
. Rearranging the terms on the right-

hand side of (7.92), we have

Pe ¼ e a2=4σ2
ð1

0

x1
σ2

e 4x21þa2ð Þ=4σ2 I0 ax1
σ2

� 
dx1 (7:93)

Let x ¼ 2x1 be a new integral variable, and then Pe in (7.93) can be written as

Pe ¼ e a2=4σ2
ð1

0

x

4σ2
e x2þa2ð Þ=4σ2 I0 ax

2σ2

� 
dx

¼ 1

2
e a2=4σ2

ð1

0

x

β2
e x2þa2ð Þ=2β2 I0 ax

β2

� �
dx

(7:94)

Where β2 ¼ 2σ2. The integral on the right-hand side of (7.94) is the integral of the Rice
probability density function with parameter a2 and β2 over its entire range; hence, it is equal
to 1. Thus,

Pe ¼ 1

2
e a2=4σ2 (7:95)

Substituting a2 and σ2 from (7.58) into (7.95) yields the error probability for the maximum
detector with input Rice and Rayleigh decision variables as follows:

Pe ¼ 1

2
e E=2N0 (7:96)

Example 7.6 Maximum likelihood criterion revisited
We have shown that a maximum detector can be implemented by an algebraic summer
followed by a threshold detector. Thus, the maximum detector must be a maximum like-
lihood detector. In this example, we seek to verify this statement directly from the likeli-
hood ratio. The maximum detector observes two decision variables X1 and X2, and bases
its decision on the a-posteriori probabilities PrðHijx1; x2Þ ¼ fX1X2 x1; x2jHið ÞPrðHiÞ=
fX1X2 x1; x2ð Þ, i = 1, 2. Hence, the optimum decision is expressed similarly to (7.75) to yield

324 Demodulation



fX1X2 x1; x2jH1ð Þ
fX1X2 x1; x2jH2ð Þ9

H2

H1

Pr H2ð Þ
Pr H1ð Þ ¼ 1 (7:97)

Since X1 and X2 are independent, we get

fX1X2 x1; x2jH1ð Þ ¼ fX1 x1jH1ð ÞfX2 x2jH1ð Þ (7:98)

fX1X2 x1; x2jH2ð Þ ¼ fX1 x1jH2ð ÞfX2 x2jH2ð Þ (7:99)

Substituting (7.98) and (7.99) into (7.97), and making use of (7.58) and (7.59) for Rice and
Rayleigh random variables, we arrive at the following result:

I0
ax1
σ2
� �

I0
ax2
σ2
� �9

H2

H1

1 (7:100)

which implies

I0
ax1
σ2

� 
9
H2

H1

I0
ax2
σ2

� 
(7:101)

Since I0 is a monotomically increasing function of its argument, (7.101) is equivalent to the
following criterion:

x19
H2

H1

x2 (7:102)

Thus, H1 is chosen if x14x2, and H2 is chosen if x1 � x2.
■

The above results should hold for the case when X1 and X2 are chi-squared random
variables with probability density function given in (7.64) and (7.65). This is expected because
squaring the two positive decision variables for comparison should not alter the outcome of the
maximum detector. Thus, for non-central chi-squared and central chi-squared decision vari-
ables, the bit error probability of the maximum detector is also given by (7.96), that is,

Pe ¼ 1

2
e E=2N0 (7:103)

7.7 Binary demodulation

Binary modulation employs two distinct signal waveforms to represent bits 1 and 0.
Therefore, binary demodulation requires either the one-path demodulator shown in
Figure 7.13 or the two-path demodulator shown in Figure 7.14.

The one-path demodulator handles binary signals that are linearly dependent, such as
PSK and OOK, and performs coherent demodulation only. On the other hand, the two-path
demodulator is applicable to orthogonal binary signals such as FSK, MSK, and DPSK. Both
coherent and noncoherent demodulations can be performed by this demodulator using
appropriate signal processors. Thus, for the one-path demodulator, the signal processor is
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the matched filter or correlator. On the other hand, the signal processors for the two-path
demodulator are either matched filters or correlators (coherent demodulation), or matched
filter–envelope detectors or quadrature correlator–square law detectors (noncoherent
demodulation). In the subsequent discussion we assume that hypothesis H1 represents bit
1 and hypothesis H2 represents bit 0 as usual.

Coherent PSK

As indicated by (6.13), PSK employs two signals s1 tð Þ ¼ s tð Þ : H1 and s2 tð Þ ¼ �s tð Þ : H2,
where sðtÞ ¼ ApðtÞ cos 2πfct. Therefore, the one-path coherent demodulator shown in
Figure 7.15 can be used to recover the information bits. As usual, we denote Tb as the bit
time. Also, without loss of generality we assume that the pulse shape p tð Þ that represents a
bit is a squared pulse of unit amplitude and duration Tb. The coherent carrier obtained from
the carrier recovery circuit is denoted as 2 cos 2πfct if the matched filter is employed to
be consistent with Figure 7.4. On the other hand, the recovered carrier is denoted as
2αp tð Þ cos 2πfct when the integrator is used. Obviously, the integration time is Tb. The bit
timing recovery circuit provides the clock signal with frequency 1=Tb to sample the output
voltage of the matched filter or the integrator. The detection threshold is set to zero volts.
Table 7.1 presents all the parameters related to Figure 7.15, where Eb is the bit energy.

Using these parameters in (7.74), we obtain the bit error probability Pb as follows:

Pb ¼ Q
m1 � m2

2σ

� 

¼ Q
2Eb

N0

r� � (7:104)

where Eb=N0 is the bit energy-to-noise density ratio, commonly referred to as the signal-to-
noise ratio per bit (SNR per bit). Figure 7.16 plots the bit error probability Pb versus Eb=N0

(dB) for coherent PSK.

s(t) + n(t) X Threshold
detector VT

VT

Signal
processor

H2

H1

<>

Figure 7.13 One-path binary demodulator.

s(t) + n(t)
X1

Maximum
detector

H2

H1

<>

Signal
processor

1

Signal
processor

2

X2

x1 x2

Figure 7.14 Two-path binary demodulator.

326 Demodulation



Table 7.1 Parameters for coherent PSK using (7.23) and (7.24)

Hypothesis Signal m1 E(X|H1) m2 E(X|H2) Noise variance, σ2

H1 s1(t) s(t) αEb α2EbN0/2
H2 s2(t) s(t) αEb α2EbN0/2

s(t) + n(t) X

t = Tb

0

Matched
filter

h(t) = αAp(T – t)
or

integrator 

Threshold
detector
VT = 0

H2

H1

<>

Bit timing
recovery

2cos 2πfct (MF)
or

2αAp(t) cos 2πfc t
(integrator)

Figure 7.15 Coherent PSK demodulator. The scaling constant α is arbitrary.

0
10–9

10–8

10–7

10–6

10–5

10–4

10–3

10–2

10–1

2 4 6

Eb/N0(dB)

8 10 12

Pb = Q(√2Eb/N0)

P
b

Figure 7.16 Bit error probability of coherent PSK. (Courtesy of Peter Harley.)
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Coherent DPSK

DPSK can be coherently demodulated and differentially decoded as shown in Figure 7.17.
The demodulated bit ci is modulo-2 added to the previously demodulated bit ci 1 to provide
the data bit di, that is,

di ¼ ci 
 ci 1 (7:105)

Since ci 
 ci 1 ¼ ci 
 ci 1, inverted data caused by phase ambiguity in the recovered
carrier (i.e., the output of the carrier recovery circuit is � cos 2πfct instead of cos 2πfct) is
re-inverted and the phase ambiguity is resolved. Note that by substituting ci ¼ di 
 ci 1 of
(6.26) into (7.105) one gets back that data bit di, since di ¼ di 
 ci 1 
 ci 1.

Example 7.7 Phase ambiguity resolution
Let us consider again the differential encoding table from Example 6.20. We introduce a
phase error of π radians in θi, the phase of the ith bit. Table 7.2 shows that differential
decoding recovers the data bits di correctly except for the reference bit d0, which is
irrelevant.

Differential encoding tends to propagate errors, that is, bit errors tend to occur in pairs.
Table 7.3 illustrates this phenomenon.
■

Table 7.2 Demodulation of DPSK signals

i θi + π ci di

0 π 0 0
1 π 0 0
2 2π 1 1
3 3π 0 1
4 3π 0 0
5 4π 1 1
6 4π 1 0

DPSK

1 bit delay

ci−1

PSK
demodulator +

ci
di ∈{0, 1}

Figure 7.17 DPSK demodulator.
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The bit error probability of coherent DPSK [1] is given by

Pb ¼ 2Q
2Eb

N0

r� �
1� Q

2Eb

N0

r� �� �
(7:106)

Apparently, at high bit energy-to-noise density ratio Eb=N0, the bit error probability of
coherent DPSK is approximately twice that of coherent PSK, as illustrated by Table 7.3.

Direct detection ASK

Lightwave ASK (or OOK) is directly detected via a photodiode such as pin photodiode (PD)
or avalanche photodiode (APD) [2]. The performance of a photodiode is characterized by its
responsitivity R. The responsitivity specifies the photocurrent generated per unit optical
power. Typical responsitivity is 0.7A/W for wavelength of 1.3 μm and 1.5 μm. The photo
current generated by a photodetector is I ¼ RP. Figure 7.18 shows the block diagram of an
optical direct detection ASK receiver.

The lightwave ASK signal of (6.28) at the input of the pin or ADP photodetector produces
a photocurrent i tð Þ as follows:

i tð Þ ¼
i1 tð Þ ¼ RA2

2 1þ reð Þ p tð Þ þ is tð Þ : H1

i2 tð Þ ¼ RA2

2

re
1þ re

� �
p tð Þ þ is tð Þ : H2

8
>>><

>>>:

(7:107)

where hypotheses H1 and H2 represent bits 1 and 0, respectively, and is tð Þ is the shot noise
current. The transimpedance amplifier converts the photocurrent into a voltage signal x tð Þ at

Table 7.3 Differential decoding errors

i θi ci di

0 0 1 1

gerrors1 π 0 1
2 π 0 0
3 2π 1 1
4 2π 1 0
5 4π 1 0 gerrors
6 3π 0 1

t = Tb

0

Tb∫ {0, 1}
Threshold
detector

Transimpedance
amplifier

PD or
APD

Figure 7.18 Direct detection of optical ASK.
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its output. The amplifier transimpedance is Z0 and its internal noise current is ia tð Þ. We can
write the output voltage signal x tð Þ as

x tð Þ ¼ Z0 i tð Þ þ ia tð Þ½ � (7:108)

Substituting (7.107) into (7.108) yields

x tð Þ ¼
x1 tð Þ ¼ Z0RA2

2 1þ reð Þ p tð Þ þ Z0in tð Þ : H1

x2 tð Þ ¼ Z0RA2

2

re
1þ re

� �
p tð Þ þ Z0in tð Þ : H2

8
>>><

>>>:

(7:109)

where

in tð Þ ¼ is tð Þ þ ia tð Þ (7:110)

is the total shot noise plus amplifier noise current and in tð Þ has a spectral density designated
as N0 A2=Hz

� �
. Note that the unit is ampere2/hertz and not watt/hertz. The integrator

integrates x tð Þ for one bit time Tb and the sampler produces a decision variable X at the
input of the threshold detector

X ¼
Z0RA2Tb
2 1þ reð Þ þ N : H1

Z0RA2Tb
2

re
1þ re

� �
þ N : H2

8
>><

>>:
(7:111)

The conditional mean value of X and the noise sample N are given as

m1 ¼ E X jH1f g ¼ Z0RA2Tb
2 1þ reð Þ (7:112)

m2 ¼ E X jH2f g ¼ Z0RA2Tb
2

re
1þ re

� �
(7:113)

N ¼
ðTb

0
Z0in tð Þ dt (7:114)

The noise voltage Z0in tð Þ can be modeled as AWGN with zero mean and power spectral
density Z2

0N0 (W/Hz). Thus, the variance σ2 of the noise sample N in (7.114) is

σ2 ¼ Z2
0N0Tb (7:115)

Substituting (7.112) and (7.113) into (7.73), we obtain the optimum threshold for the
threshold detector as follows:

VT ¼ m1 þ m2

2
¼ Z0RA2Tb

4
(7:116)

Note that the average received power P of the lightwave ASK signal is given by (6.28) as

P ¼ 1

2

A2

2 1þ reð Þ
� �

þ 1

2

A2re
2 1þ reð Þ
� �

¼ A2

4

(7:117)
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Combining (7.116) and (7.117), we get the optimum threshold in terms of average power as

VT ¼ Z0RPTb (7:118)

The minimum bit error probability is given by (7.74) with the help of (7.112), (7.113),
(7.115), and (7.117) as follows:

Pb ¼ Q
1� re
1þ re

Tb
N0

r
RP

� �
(7:119)

Example 7.8 Bit error probability of lightwave ASK
Consider a direct detection lightwave ASK receiver with total shot noise plus amplifier noise
spectrum N0 ¼ 10 22A2=Hz. The photodiode detector has a responsitivity R ¼ 0:7A/W
and the received optical power isP = 10μW. The extinction ratio of the ASK signal is re = 0.1.
It is desirable to have a bit error probability Pb = 10–9. What is the bit rate?

We note that Q xð Þ ¼ 10 9 requires that x ¼ 6. Thus, using (7.119) we obtain

1� 0:1

1þ 0:1

Tb
10 22

r

0:7ð Þ 10 5
� � ¼ 6

The bit rate Rb ¼ 1=Tb can be calculated as

Rb ¼ 1

Tb
¼ 9:11Gb=s

■

Coherent FSK

Coherent FSK can be conceptually demodulated by a two-path demodulator shown in
Figure 7.19.
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2παA cos
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Figure 7.19 Coherent FSK demodulator.
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Without loss of generality we assume that the carrier phase θn in (6.42) is zero radian, or
equivalently, θ1 ¼ θ2 ¼ 0 radian for (6.36). Using the result for the maximum detector with
Gaussian decision variables in Section 7.6, we obtain via (7.84) and (7.85)

μ1 ¼ E X1jH1f g ¼ αEb (7:120)

μ2 ¼ E X2jH2f g ¼ αEb (7:121)

where α is an arbitrary positive constant. Furthermore, the orthogonality of FSK also
implies, via simple verification, that the following relations hold:

E X1jH2f g ¼ E X2jH1f g ¼ 0 (7:122)

The conditional variance σ2 of X1 given H1 or X2 given H2 is simply

σ2 ¼ 1

2
α2EbN0 (7:123)

The minimum bit error probability of coherent FSK can be obtained via (7.90) as follows:

Pb ¼ Q
Eb

N0

r� �
(7:124)

By comparing (7.124) with (7.104), we observe that coherent FSK requires 3 dB more in
Eb=N0 (a factor of 2) to achieve the same bit error probability as coherent PSK. This is the
reason why coherent FSK is not employed in practice.

Coherent MSK and precoded MSK and GMSK

From Figures 6.21 and 6.22, we observe that MSK is precoded MSK preceded by a differ-
ential encoder. Note that differential encoding increases the bit error probability by a factor of
two, approximately, as seen in the case of coherent DPSK versus coherent PSK. Thus, the bit
error probability of coherent MSK has also a penalty of approximately a factor of two relative
to that of coherent precoded MSK. Therefore, we only analyze the performance of coherent
precoded MSK. Figure 7.20 shows the coherent demodulator for precoded MSK. Figure 7.21
shows the coherent demodulator for MSK, which is the precoded demodulator followed by a
differential decoder to recover the data dn according to the relation

dn ¼ cn 
 cn 1 (7:125)

Example 7.9 I-Q orthogonality
In this example we demonstrate the fundamental feature of an I-Q demodulator, namely,
the orthogonality between the I-channel and the Q-channel. This can be established by
proving the correlation between the local I-carrier cos πt=2Tbð Þ cos 2πfct and Q-carrier
sin πt=2Tbð Þ sin 2πfct to be zero over the duration of 2Tb, as dictated by Figures 6.17 and
6.20. Consider the correlation C, given by
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C ¼
ð2Tb

0
cos

πt
2Tb

� �
cos 2πfct

� �
sin

πt
2Tb

� �
sin 2πfct

� �
dt

¼ 1

4

ð2Tb

0
sin

πt
Tb

� �
sin 4πfct dt

¼ 1

8

ð2Tb

0
cos 2π 2fc � 1

2Tb

� �
t � cos 2π 2fc þ 1

2Tb

� �
t

� �
dt

¼ 0

(7:126)

where fc is assumed to be an integer multiple of 1=Tb. If fc is not an integer multiple of 1=Tb
but fc � 1=Tb, then the I-channel and Q-channel are quasi orthogonal, which is approx-
imately orthogonal for all practical purposes. Due to orthogonality, the I-noise and Q-noise
are both uncorrelated, and since they are Gaussian, they are also statistically independent.
■

1 bit delay

{0, 1}

cn– 1  

Coherent
precoded

MSK
demodulator
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Figure 7.21 Coherent MSK demodulator.
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Figure 7.20 Coherent precoded MSK demodulator. The integration time is 2Tb reflecting the fact that an I-bit or a Q-bit spans an
interval of 2Tb seconds, as seen in Figures 6.17 and 6.20.
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Example 7.10 I-noise and Q-noise
In this example, we verify the fact that the I-noise and Q-noise are statistically independent.
Let n tð Þ be the AWGN at the input of the demodulator in Figure 7.20. We assume that the
power spectral density of n tð Þ is N0=2 W=Hzð Þ and therefore, its autocorrelation function is
E n tð Þn τð Þf g ¼ N0=2ð Þδ t � τð Þ. Also, let N1 be the noise sample at the input of the I
threshold detector and N2 be the noise sample at the input of the Q threshold detector. We
have, by setting the sampling index n ¼ 0 in Figure 7.20,

N1 ¼
ðTb

Tb

αA cos 2πfct cos
πt
2Tb

� �
n tð Þ dt (7:127)

N2 ¼ �
ð2Tb

0
αA sin 2πfct sin

πt
2Tb

� �
n tð Þ dt (7:128)

Establish the correlation E N1N2f g as follows:

E N1N2f g ¼ �α2A2

ðTb

Tb

ð2Tb

0
E n tð Þn τð Þf g cos

πt
2Tb

� �
cos 2πfct

� �
sin

πτ
2Tb

� �
sin 2πfcτ

� �
dt dτ

¼ �α2A2

ðTb

Tb

ð2Tb

0

N0

2
δ t � τð Þ cos

πt
2Tb

� �
cos 2πfct

� �
sin

πτ
2Tb

� �
sin 2πfcτ

� �
dt dτ

¼ � 1

2
α2A2N0

ð2Tb

0
cos

πt
2Tb

� �
cos 2πfct

� �
sin

πt
2Tb

� �
sin 2πfct

� �
dt

¼ � 1

2
α2A2N0C ¼ 0 (7:129)

by virtue of (7.126). Thus, N1 and N2 are uncorrelated and, since they are Gaussian random
variables, they are independent. It is obvious from (7.127) and (7.128) that both N1 and N2

have zero mean since n tð Þ has zero mean. Let us calculate the variances of N1 and N2. From
(7.127), we get

σ2 ¼ E N2
1

� � ¼ α2A2
ðTb

Tb

ðTb

Tb

E n tð Þn τð Þf g cos πt
2Tb

� �
cos

πτ
2Tb

� �
cos 2πfct cos 2πfcτ dt dτ

¼ α2A2
ðTb

Tb

ðTb

Tb

N0

2
δ t � τð Þ cos πt

2Tb

� �
cos

πτ
2Tb

� �
cos 2πfct cos 2πfcτ dt dτ

¼ 1

2
α2A2N0

ðTb

Tb

cos2
πt
2Tb

� �
cos2 2πfct dt

¼ 1

4
α2A2N0Tb (7:130)

Similarly, it can be shown that the variance of N2 is the same as that of N1, that is,

σ2 ¼ E N2
2

� � ¼ 1

4
α2A2N0Tb (7:131)

■
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To evaluate the bit error probability of either coherent MSK or coherent pre-coded MSK, we
need to know the statistic of the decision variables X1 and X2 at the input of the threshold
detectors in Figure 7.20. Obviously, the variance of X1 or X2 is just the variance σ2 of noise
sampleN1 orN2 as indicated in (7.130) or (7.131). It remains tofind themean value ofX1 and the
mean value of X2. The waveform of I-bits can be written with the help of Figure 6.20 as follows:

sI tð Þ ¼ Aγ2n 1 cos
πt
2Tb

� �
cos 2πfct; 2n� 1ð ÞTb � t5 2nþ 1ð ÞTb (7:132)

sQ tð Þ ¼ Aγ2n sin
πt
2Tb

� �
sin 2πfct; 2nTb � t5 2nþ 2ð ÞTb (7:133)

where γ2n 1 and γ2n take on values of 1 given hypothesisH1, or –1 given hypothesisH2. The
mean value of X1 given H1 is

m1 ¼ E X1jH1f g ¼
ð 2nþ1ð ÞTb

2n 1ð ÞTb
sI tð Þ αA cos 2πfct cos

πt
2Tb

� �� �
dt

¼
ð 2nþ1ð ÞTb

2n 1ð ÞTb
αA2 cos2

πt
2Tb

� �
cos2 2πfct dt

¼ 1

2
αA2Tb

(7:134)

The mean value of X1 given H2 is simply

m2 ¼ E X1jH2f g ¼ � 1

2
αA2Tb (7:135)

Similarly,

m1 ¼ E X2jH1f g ¼ 1

2
αA2Tb (7:136)

m2 ¼ E X2jH2f g ¼ � 1

2
αA2Tb (7:137)

Substituting (7.130), (7.134), and (7.135) into (7.74) yields the I-bit error probability

Pb Ið Þ ¼ Q
m1 � m2

2σ

� 

¼ Q
A2Tb
N0

s !

¼ Q
2Eb

N0

r� �

(7:138)

where Eb ¼ A2Tb=2 is the energy of the MSK bit. Note that both the I-bit and Q-bit have 2Tb
duration, hence both have twice the energy of the MSK bit. Similarly, the Q-bit error
probability can be obtained by substituting (7.131), (7.136), and (7.137) into (7.74)

Pb Qð Þ ¼ Q
2Eb

N0

r� �
(7:139)
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Because the I-noise and Q-noise are statistically independent, and if we assume the I-bits
and Q-bits are equally likely, then the bit error probability of coherent precoded MSK is

Pb ¼ 1

2
Pb Ið Þ þ 1

2
Pb Qð Þ

¼ Q
2Eb

N0

r� �
: coherent precoded MSK

(7:140)

Due to differential decoding, the bit error probability of coherent MSK suffers a penalty of
approximately a factor of two and is given by

Pb � 2Q
2Eb

N0

r� �
: coherent MSK (7:141)

Note that by observing Figures 6.21 and 7.20, we can remove the inverter dn preceding
the differential encoder in the MSK modulator, and the one that follows the differential
decoder in the coherent MSK demodulator. Thus, the removal of dn does not change the
operation since inverting the data at the modulator and re-inverting it at the demodulator
amounts to no change. If we map the binary data 0 into 1 and 1 into –1 via dn ! 1� 2dnð Þ
instead of dn ! 2dn � 1ð Þ, as in (6.57), we would not indeed have to add the inverter dn to
both modulator and demodulator for coherent MSK.

Coherent GMSKdiscussed in Section 6.8 employs Gaussian pulse shape g tð Þ¼ p tð Þ � h tð Þ,
where p tð Þ is the pulse of unit amplitude and duration Tb, and h tð Þ is the impulse response of
the Gaussian filter given in (6.76). Thus, GMSK can be coherently demodulated as suggested
in [3,4] by the demodulator in Figure 7.22 employing a Costas loop.

The bit error probability for coherent GMSK [3,4] is given by

Pb ¼ Q
2αEb

N0

r� �
(7:142)
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Figure 7.22 Costas loop demodulator for GMSK.
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where α ¼ 0:68 for BTb ¼ 0:25 as described in Section 6.8. This yields a degradation of
1.6 dB relative to coherent precoded MSK due to intersymbol interference.

Noncoherent FSK and MSK

Noncoherent FSK can be demodulated using either the matched filter–envelope detector in
Figure 7.8 for each frequency f1 ¼ fc � 1=2Tb (hypothesis H1) or f2 ¼ fc þ 1=2Tb (hypoth-
esis H2); or the quadrature correlator–square law detector in Figure 7.9 for each f1 and f2.
Figures 7.23 and 7.24 illustrate the noncoherent demodulation of FSK. The matched filters
have the impulse responses that match the FSK signals s1ðtÞ ¼ A cos 2πf1t and
s2ðtÞ ¼ A cos 2πf2t, respectively. Since envelope detectors are employed, it is irrelevant
whether FSK has a continuous phase or not.

The bit error probability of noncoherent FSK is given in (7.96) as follows:

Pb ¼ 1

2
e Eb=2N0 (7:143)

where Eb is the bit energy and N0=2 is the power spectral density of the input noise.
Since MSK is a special type of FSK, both demodulators in Figures 7.23 and 7.24 can be

employed to noncoherently demodulate MSK. For MSK, the frequencies f1 and f2 are given
by f1 ¼ fc þ 1=4Tb and f2 ¼ fc � 1=4Tb per (6.60). The bit error probability in (7.143) also
applies to noncoherent MSK.

Both FSK and MSK are digital FM signals, meaning that the modulating information
signal is digital. Therefore, both FSK andMSK can be demodulated by a slope detector used
in FM demodulation [5,6]. Figure 7.25 shows a generic demodulator using slope detector.

The IF filter bandwidth is chosen to avoid the distortion of the modulated signal. The bit
error probability is given in [7] as follows:

Pb ¼ e Eb=N0 (7:144)

Comparing (7.144) with (7.143), we observe that the demodulation with a slope detector
is superior to noncoherent demodulation with a matched filter–envelope detector or a
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Figure 7.23 Noncoherent FSK demodulator employing the matched filter–envelope detector.
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quadrature correlation–square law detector by 3 dB in bit energy-to-noise density ratio
(signal-to-noise ratio per bit). This improvement results from the fact that a slope detector
is affected by quadrature noise only. Thus, the in-phase noise is not a factor, and the noise as
seen by the threshold detector is 3 dB less in power.

For the case of continuous-phase FSK, coherent demodulation yields a bit error proba-
bility of Pb ¼ Q Eb=N0

p� �
, which is larger than the bit error probability of a demodulator

with slope detector, Pb ¼ exp �Eb=N0ð Þ. For example, at Pb ¼ 10 4 the required Eb=N0 for
coherent demodulation is 11.4 dB. On the other hand, the required Eb=N0 for demodulation
with slope detector is 9.2 dB. This happens because the slope detector extracts the baseband
signal m tð Þ, as seen in Figure 7.25, which is an antipodal signal. Then, m tð Þ is optimally
detected via a threshold detector. Note that an antipodal signal is the complex envelope of a
PSK signal; therefore, threshold detection of an antipodal signal yields the same bit error
probability as that of PSK. Since the slope detector output noise is no longer Gaussian, this
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Figure 7.24 Noncoherent FSK demodulator employing the quadrature correlator–square law detector.
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Figure 7.25 Continuous-phase FSK or MSK demodulator with slope detector. The signal m(t) is the antipodal information signal.
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leads to a degradation in the bit error probability and compared to that of PSK, which is
Q 2Eb=N0

p� �
. Thus, the bit error probability of the demodulator with slope detector falls

between Q Eb=N0

p� �
and Q 2Eb=N0

p� �
.

Noncoherent DPSK

Recall from Section 6.4 that when the ith data bit di ¼ 0 is transmitted, its differentially
encoded bit ci remains the same as the previously encoded bit ci 1. In other words, the
waveform for two consecutive encoded bits ci 1ci can be written as

s1 tð Þ ¼ si 1 tð Þ þ si tð Þ; i� 1ð ÞTb � t5 iþ 1ð ÞTb (7:145)

where si 1 tð Þ and si tð Þ are the transmitted PSK waveforms for the encoded bits ci 1 and ci,
respectively. Assume that the carrier phase θ varies slowly over any two consecutive bits,
then we can express si 1 tð Þ and si tð Þ as follows:

si 1 tð Þ ¼ �Ap t � i� 1ð ÞTbð Þ cos 2πfct þ θð Þ (7:146)

si tð Þ ¼ �Ap t � iTbð Þ cos 2πfct þ θð Þ (7:147)

as seen in Example 6.20. On the other hand, when the ith data bit di ¼ 1 is transmitted, its
differentially encoded bit ci is the complement of the previously encoded bit ci 1, that is,
ci ¼ ci 1. Thus, the waveform for two consecutive encoded bits ci 1ci can be written as

s2 tð Þ ¼ si 1 tð Þ � si tð Þ; i� 1ð ÞTb � t5 iþ 1ð ÞTb (7:148)

Clearly, s1 tð Þ and s2 tð Þ are orthogonal over the two-bit interval 2Tb, that is
ð iþ1ð ÞTb

i 1ð ÞTb
s1 tð Þs2 tð Þ dt ¼

ð iþ1ð ÞTb

i 1ð ÞTb
s2i 1 tð Þ dt �

ð iþ1ð ÞTb

i 1ð ÞTb
s2i tð Þ dt ¼ 0 (7:149)

since both si 1 tð Þ and si tð Þ have the same bit energy Eb ¼ A2Tb=2.
The above observations lead us to the following conclusion. The data bit di ¼ 0 is

represented by the waveform s1 tð Þ, and di ¼ 1 is represented by s2 tð Þ. Thus, DPSK is
truly an orthogonal modulation over any interval of 2Tb. This enables DPSK to be demodu-
lated noncoherently as shown in Figure 7.26. Note that the energy of s1 tð Þ or s2 tð Þ is 2Eb

since they span an interval of 2Tb. Thus, according to (7.56) and (7.57), the signal-to-noise
ratio at the output of the matched filter is

SNR0 ¼ α2 2Ebð Þ2
α2 2Ebð ÞN0

¼ 2Eb

N0
(7:150)

which is 3 dB higher than an FSK signal. Consequently, the bit error probability of non-
coherent DPSK is given by

Pb ¼ 1

2
e Eb=N0 (7:151)

as compared to (7.143) for FSK.
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Figure 7.27 shows a more practical implementation using a quadrature correlator–square
law detector with appropriate delays to account for the two-bit interval orthogonal signals in
(7.145) and (7.148).

Example 7.11 Operation of noncoherent DPSK in Figure 7.27
Consider again the sequence of received signals si tð Þ in Example 6.20 of Section 6.4. We
wish to demonstrate the process of noncoherent demodulation of this sequence of signals
and to recover data, as shown in Table 7.4.
■
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Figure 7.26 Noncoherent DPSK demodulator employing the matched filter–envelope detector.
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Figure 7.27 Noncoherent DPSK demodulator employing the quadrature correlator–square law detector.
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In the following discussion we will analyze the performance of the noncoherent demod-
ulator in Figure 7.27 by considering the AWGN that accompanies the received signal. Let us
assume that hypothesis H1 represents the data bit 0, that is, we receive the signal
s1 tð Þ ¼ si 1 tð Þ þ si tð Þ, i� 1ð ÞTb � t5 iþ 1ð ÞTb in (7.145). Then, given the bit energy
Eb ¼ A2Tb=2, we have

X1c ¼ � α
2
A2Tb cos θ þ N 0

1c

� 
þ � α

2
A2Tb cos θ þ N 00

1c

� 

¼ �αA2Tb cos θ þ N1c ¼ �2αEb cos θ þ N1c

(7:152)

X1s ¼ � α
2
A2Tb sin θ þ N 0

1s

� 
þ � α

2
A2Tb sin θ þ N 00

1s

� 

¼ � α
2
A2Tb sin θ þ N1s ¼ �2αEb sin θ þ N1s

(7:153)

where

N 0
1c ¼

ðiTb

i 1ð ÞTb
n tð Þ αA cos 2πfct½ � dt; N 00

1c ¼
ð iþ1ð ÞTb

iTb

n tð Þ αA cos 2πfct½ � dt (7:154)

N 0
1s ¼

ðiTb

i 1ð ÞTb
n tð Þ αA sin 2πfct½ � dt; N 00

1s ¼
ð iþ1ð ÞTb

iTb

n tð Þ αA sin 2πfct½ � dt (7:155)

and

N1c ¼ N 0
1c þ N 00

1c; N1s ¼ N 0
1s þ N 00

1s (7:156)

Given the input noise n tð Þ with power spectral density N0=2 W=Hzð Þ and, hence, autocor-
relation E n tð Þn τð Þf g ¼ N0=2ð Þδ t � τð Þ, we can calculate the variance of N 0

1c, N
00
1c, N

0
1s, and

N 00
1s to be α2A2TbN0=4. This, in turn, yields the variance of N1c and N1s in (7.156) to be

α2A2TbN0=2 ¼ α2EbN0. Note that N 0
1c, N

00
1c, N

0
1s, and N 00

1s are statistically independent
because they are uncorrelated zero mean Gaussian random variables. Similarly, we have

X2c ¼ N 0
1c � N 00

1c (7:157)

X2s ¼ N 0
1s � N 00

1s (7:158)

Table 7.4 Demodulation process

i si(t) X1c X1s X2c X2s X1 X2 di

0 Ap(t)cos(2πfct + θ) α/2 A2Tbcosθ α/2 A2Tbsinθ α/2 A2Tbcosθ α/2 A2Tbsinθ α2/4 A4T2 α2=4A4T2
b

1 Ap(t Tb)cos(2πfct + θ) α A2Tcosθ αA2Tbsinθ 0 0 α2A4T2
b 0 0

2 Ap(t 2Tb)cos(2πfct + θ) 0 0 αA2Tbcosθ αA2Tbsinθ 0 α2A4T2
b 1

3 Ap(t 3Tb)cos(2πfct + θ) 0 0 αA2Tbcosθ αA2Tbsinθ 0 α2A4T2
b 1

4 Ap(t 4Tb)cos(2πfct + θ) αA2Tbcosθ αA2Tbsinθ 0 0 α2A4T2
b 0 0

5 Ap(t 5Tb)cos(2πfct + θ) 0 0 αA2Tbcosθ αA2Tbsinθ 0 α2A4T2
b 1

6 Ap(t 6Tb)cos(2πfct + θ) αA2Tbcosθ αA2Tbsinθ 0 0 α2A4T2
b 0 0
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Thus, both X2c and X2s are independent Gaussian random variables with zero mean and
variance α2A2TbN0=2 ¼ α2EbN0.

The decision variables X1 and X2 are therefore given by

X1 ¼ X 2
1c þ X 2

1s (7:159)

X2 ¼ X 2
2c þ X 2

2s (7:160)

We observe that X1 is the sum of two squared Gaussian random variables with means
�2αEb cos θ and �2αEb sin θ, and variance α2EbN0. Thus, X1 is a non-central chi-squared
random variable with two degrees of freedom whose probability density function is given
in (7.64) with X1 replacing Y, and a2 ¼ 4α2E2

b and σ2 ¼ α2EbN0. On the other hand, the
decision variable X2 is the sum of two squared Gaussian random variables with zero mean
and variance α2EbN0. Thus, X2 is a central chi-squared random variable whose probability
density function is given in (7.65) with X2 replacing Y, and σ2 ¼ α2EbN0. The conditional bit
error probability given H1 can be derived in a similar fashion to (7.91)–(7.96). It is the same
as the conditional bit error probability given hypothesis H2 that corresponds to data bit 1 as
dictated by symmetry. The bit error probability of noncoherent DPSK using the demodulator
in Figure 7.27 is given by (7.103), which is the same as (7.96) with E ¼ 2Eb using the fact
that a2=4σ2 in (7.95) is equal to Eb=N0. Thus

Pb ¼ 1

2
e Eb=N0 (7:161)

In addition to the noncoherent demodulator in Figure 7.27, DPSK can also be noncoherently
demodulated by another demodulator, such as the one shown in Figure 7.28, called a delay-
and-multiply demodulator.
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Figure 7.28 Alternative noncoherent DPSK demodulator employing the delay-and-multiply detector.
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Example 7.12 Operation of noncoherent DPSK in Figure 7.28
Again we consider the sequence of received signals si tð Þ in Example 7.11 and wish to
recover the data, as shown in Table 7.5.
■

The performance of the delay-and-multiply demodulator can be analyzed by assuming
hypothesis H1 that represents di ¼ 0:

Xi ¼ � α
2
A2Tb cos θ þ Nc;i (7:162)

Xi 1 ¼ � α
2
A2Tb cos θ þ Nc;i 1 (7:163)

Yi ¼ � α
2
A2Tb sin θ þ Ns;i (7:164)

Yi 1 ¼ � α
2
A2Tb sin θ þ Ns;i 1 (7:165)

where

Nc;i ¼
ð iþ1ð ÞTb

iTb

n tð Þ αA cos 2πfct½ � dt; Nc;i 1 ¼
ðiTb

i 1ð ÞTb
n tð Þ αA cos 2πfct½ � dt (7:166)

Ns;i ¼
ð iþ1ð ÞTb

iTb

n tð Þ αA sin 2πfct½ � dt; Ns;i 1 ¼
ðiTb

i 1ð ÞTb
n tð Þ αA sin 2πfct½ � dt (7:167)

Note that Nc;i, Nc;i 1, Ns;i, Ns;i 1 are independent Gaussian random variables with
zero mean and variance α2A2TbN0=4 ¼ α2EbN0=2, where Eb ¼ A2Tb=2 is the bit energy.
The decision variable X at the input of the threshold detector in Figure 7.28 is

X ¼ Xi 1Xi þ Yi 1Yi (7:168)

Table 7.5 Demodulation process

i s(t) Xi Xi 1 Yi Y i 1 X di

0 Ap(t)cos(2πfct+θ) α/2 A2Tbcosθ 0 α/2 A2Tbsinθ 0 0

1 Ap(t Tb)cos(2πfct + θ) α/2 A2Tbcosθ α/2 A2Tbcosθ α/2 A2Tbsinθ α/2 A2Tbsinθ α2=4A4T2
b 0

2 Ap(t 2Tb)cos(2πfct + θ) α/2 A2Tbcosθ α/2 A2Tbcosθ α/2 A2Tbsinθ α/2 A2Tbsinθ α2=4 A4T2
b 1

3 Ap(t 3Tb)cos(2πfct + θ) α/2 A2Tbcosθ α/2 A2Tbcosθ α/2 A2Tbsinθ α/2 A2Tbsinθ α2=4 A4T2
b 1

4 Ap(t 4Tb)cos(2πfct + θ) α/2 A2Tbcosθ α/2 A2Tbcosθ α/2 A2Tbsinθ α/2 A2Tbsinθ α2=4 A4T2
b 0

5 Ap(t 5Tb)cos(2πfct + θ) α/2 A2Tbcosθ α/2 A2Tbcosθ α/2 A2Tbsinθ α/2 A2Tbsinθ α2=4 A4T2
b 1

6 Ap(t 6Tb)cos(2πfct + θ) α/2 A2Tbcosθ α/2 A2Tbcosθ α/2 A2Tbsinθ α/2 A2Tbsinθ α2=4 A4T2
b 0
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Substituting (7.162)–(7.165) into (7.168), we get

X ¼ � α
2
A2Tb cos θ þ Nc;i 1

� 
� α
2
A2Tb cos θ þ Nc;i

� 

þ � α
2
A2Tb sin θ þ Ns;i 1

� 
� α
2
A2Tb sin θ þ Ns;i

� 

¼ � α
2
A2Tb cos θ þ Nc;i 1

2
þ Nc;i

2

� �2

� Nc;i 1

2
� Nc;i

2

� �2

þ � α
2
A2Tb sin θ þ Ns;i 1

2
þ Ns;i

2

� �2

� Ns;i 1

2
� Ns;i

2

� �2

(7:169)

Define the new Gaussian random variables as follows:

N1 ¼ Nc;i 1

2
þ Nc;i

2
(7:170)

N2 ¼ Ns;i 1

2
þ Ns;i

2
(7:171)

N3 ¼ Nc;i 1

2
� Nc;i

2
(7:172)

N4 ¼ Ns;i 1

2
� Ns;i

2
(7:173)

Thus, we can express the decision variable X in terms of the new noise variables N1, N2, N3,
and N4 as follows:

X ¼ � α
2
A2Tb cos θ þ N1

� 2
þ � α

2
A2Tb sin θ þ N2

� 2
�N 2

3 � N2
4 (7:174)

Furthermore, let us define the non-central chi-squared and central chi-squared random
variables X1 and X2 as follows:

X1 ¼ � α
2
A2Tb cos θ þ N1

� 2
þ � α

2
A2Tb sin θ þ N2

� 2
(7:175)

X2 ¼ N 2
3 þ N2

4 (7:176)

Therefore, we can express X in terms of X1 and X2 as

X ¼ X1 � X2 (7:177)

The conditional bit error probability given H1 is given by

Pr X50jH1ð Þ ¼ Pr X24x1jH1ð Þ (7:178)

The probability density function of the non-central chi-squared random variable X1

in (7.175) is given by (7.64) with a2 ¼ α2A4T2
b =4 ¼ α2E2

b and σ2 ¼ α2EbN0=4. Note that
the variance ofN1 orN2 is equal to one-half the variance ofNc;i (orNc;i 1 orNs;i orNs;i 1) per
(7.170) and (7.171). Thus, a2=4σ2 ¼Eb=N0. Similarly, the probability density function of
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the central chi-squared random variable X2 in (7.176) is given by (7.59) with
σ2 ¼ α2EbN0=4 as dictated by (7.172) and (7.173). Therefore, the bit error probability in
(7.178) can be evaluated in a similar fashion to (7.92)–(7.96) to yield

Pb ¼ 1

2
e Eb=N0 (7:179)

Performance summary of binary modulation techniques

Our study of binary demodulation reveals its simplicity and robustness in an AWGN
channel. Coherent binary demodulation outperforms its noncoherent counterpart but
requires a local carrier that matches the received signal in both phase and frequency. This
requires a carrier recovery circuit that can extract the carrier from the received modulated
signal. On the other hand, noncoherent binary demodulation only requires a local carrier that
matches in frequency to the received signal. This requirement can be met easily with a local
oscillator. Table 7.6 summarizes the bit error probability and bandwidth of each binary
demodulation technique that corresponds to the binary modulation in Chapter 6. Since
bandwidth is defined by the signal pulse shape, for the purpose of comparison between
different demodulation techniques, we use the squared pulse shape and, consequently, null-
to-null bandwidth. The bit error probability of each binary demodulation technique can be
read directly from the two curves in Figure 7.29 with appropriate scaling.

7.8 Minimum Euclidean distance detector

The minimum Euclidean distance detector is a multiple input–single output detector
employed specially for M-ary demodulation. In principle, it accepts an L-dimensional

Table 7.6 Performance of binary modulation techniques

Demodulation Bit error probability Bandwidth

Coherent PSK Q 2Eb=N0

p� �
2=Tb

Coherent DPSK � 2Q 2Eb=N0

p� �
2=Tb

Direct detection ASK Q 1�re
1þre

Tb=N0

p RP
� 

2=Tb

Coherent FSK Q Eb=N0

p� �
3=Tb

Coherent MSK � 2Q 2Eb=N0

p� �
3=2Tb

Coherent precoded MSK Q 2Eb=N0

p� �
3=2Tb

Coherent GMSK Q 2αEb=N0

p� � � 3=2Tb
Noncoherent FSK 1

2e
�Eb=2N0 3=Tb

Noncoherent MSK 1
2e

�Eb=2N0 3=2Tb
Noncoherent MSK with slope detection e�Eb=N0 3=2Tb
Noncoherent DPSK 1

2e
�Eb=N0 2=Tb
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decision column vector X ¼ Xk½ � at its input. This vector represents one of M possible
hypotheses H1; H2; . . . ; HM . Each hypothesis represents a symbol in the set of M-ary
symbols. The decision vector X is a Gaussian vector with conditional mean
si ¼ sik½ � ¼ E X jHið Þ; i ¼ 1; 2; . . . ; M , given hypothesis Hi. We have

X ¼ si þN (7:180)

where N is the zero mean Gaussian noise vector with independent components whose
variance is σ2. Thus, the probability density function of X given Hi is

fX xjHið Þ ¼
YL

k¼1

fXk xk jHið Þ ¼
YL

k¼1

1

2π
p

σ
e xk sikð Þ2=2σ2

¼ 1

2π
p

σ
� �L e

1
2σ2

PL

k 1
xk sikð Þ2

(7:181)

We wish to design a detector that selects a hypothesis Hi based on the minimum error
probability criterion. This is equivalent to selectingHi corresponding to the maximum of the
set of a-posteriori probabilities Pr Hijxð Þ; i ¼ 1; 2; . . . ; M . This is called the maximum
a posteriori probability criterion (MAP), as first discussed in Section 7.5.When all symbols
are equally likely, then the a-priori probabilities Pr Hið Þ, i = 1, 2, . . . ,M, are equal to 1/M and
the MAP criterion becomes the maximum likelihood (ML) criterion. Using the Bayes rule,
we can express the a-posteriori probabilities Pr Hijxð Þ as follows:

Pr Hijxð Þ ¼ fX xjHið ÞPr Hið Þ
fX xð Þ ; i ¼ 1; 2; . . . ; M (7:182)

We note that Pr Hið Þ ¼ 1=M , and fX xð Þ ¼PM
i¼1 fX xjHið Þ Pr Hið Þ is completely independent

of Hi, that is, fX xð Þ is independent of which symbol is transmitted. Therefore, finding the

 Q(√2Eb/N0)

100

10–2

10–4

10–6

P
b

10–8

10–10

0 2

2
1 e–Eb /N0

4 6
Eb /N0(dB)

8 10 12

Pb comparison

Figure 7.29 Bit error probability curves. (Courtesy of Peter Harley.)
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maximum of the set of Pr Hijxð Þ; i ¼ 1; 2; . . . ; M , is equivalent to finding the maximum of
the set of fX xjHið Þ; i ¼ 1; 2; . . . ; M . From (7.181) we note that fX xjHið Þ is a monotoni-
cally increasing function, thus, the maximum of the set of fX xjHið Þ corresponds to the
maximum of the set of ln fX xjHið Þ, which is commonly referred to as the ln likelihood
function. The ln-likelihood function can be expressed as

ln fX xjHið Þ ¼ �L ln 2π
p

σ
� 

� 1

2σ2
XL

k¼1

xk � sikð Þ2

¼ �L ln 2π
p

σ
� 

� 1

2σ2
x� sik k2

(7:183)

where the term �L ln 2π
p

σ
� �

is common to all ln fX xjHið Þ. Hence, the maximum of the set
ln fX xjHið Þ corresponds to the minimum of the set of Euclidean distances

d x; sið Þ ¼ x� sik k ¼
XL

k¼1

xk � sikð Þ2
vuut ; i ¼ 1; 2; . . . ; M (7:184)

The above analysis concludes that an optimum detector based on themaximum likelihood
criterion selects the signal vector si that is closest in Euclidean distance to the sampled value
x of the decision vector X. Hence, the term minimum Euclidean distance detector is used.

Example 7.13 Threshold detector revisited
For the case of binary detection, the set of squared Euclidean distances in (7.184) consists of
d2 x; s1ð Þ ¼ x� s1k k2¼ x� s1ð Þ2 and d x; s2ð Þ ¼ x� s2k k2¼ x� s2ð Þ2. Thus, the selection
of either s1 or s2 based on the minimum Euclidean distance is equivalent to

ðx� s1Þ2 9
H1

H2

ðx� s2Þ2 (7:185)

which is identical to (7.80). Hence, the threshold detector is equivalent to the minimum
Euclidean distance detector for M = 2.
■

Figure 7.30 illustrates the minimum Euclidean distance detector. This type of detector is
employed for coherent M ary demodulation of signals, such as PSK, QPSK, MPSK, and
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si

Figure 7.30 Minimum Euclidean distance detector.
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MQAM. For these signals, L = 2, and this corresponds to a two-dimensional vector
x ¼ x1 x2½ �t, where x1 and x2 represent I and Q sampled values, respectively.

Symbol error probability

Recall that the decision vector X represents one of M possible hypotheses Hi;

i ¼ 1; 2; . . . ; M , with one hypothesis for each symbol of the set ofM transmitted symbols.
Thus, there areM detection regions in L-dimensional space, one for each symbol. Let Ri be
the detection region for hypothesisHi corresponding to the transmitted signal si. The correct
detection of si occurs when X falls inside Ri. Thus, the conditional correct detection
probability given si was transmitted is

Pr X 2 RijHið Þ ¼
ð

Ri

fX xjHið Þ dx (7:186)

The symbol detection probability can be obtained via the total probability theorem as
follows:

Pd ¼
XM

i¼1

Pr X 2 RijHið ÞPr Hið Þ

¼ 1

M

XM

i¼1

ð

Ri

fX xjHið Þ dx
(7:187)

Hence, the symbol error probability is 1� Pd , or

Pe ¼ 1� 1

M

XM

i¼1

ð

Ri

fX xjHið Þ dx (7:188)

It is not feasible to evaluate (7.188) for a large signal set such as MQAM. Fortunately,
we can provide a tight upper bound for the symbol error probability by using the famous
union bound. Let Ai; i ¼ 1; 2; . . . ; M , be a set ofM events, then the union bound states that

Pr
[M

i¼1

Ai

 !

�
XM

i¼1

Pr Aið Þ (7:189)

Returning to the minimum Euclidean distance detector and assume that we have hypothesis
H1, that is, s1 is transmitted. An error occurs if one of si; i ¼ 2; 3; . . . ; M , is closer to the
sampled vector X than s1. Define the event Ai as the event that si is closer to X than s1 given
that s1 was transmitted. The symbol error probability given H1 is

PejH1
¼ Pr

[M

i¼2

Ai

 !

�
XM

i¼2

Pr Aið Þ (7:190)

Hence, we only need to evaluate Pr Aið Þ, which is the pairwise error probability in selecting
between two signals si and s1, that is,
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Pr Aið Þ ¼ Prðs1 ! siÞ ¼ Pr X � sik k25 X � s1k k2
���H1

� 
(7:191)

Example 7.14 Pairwise error probability for a Gaussian channel
Let s1 ¼ E X jH1f g and si ¼ E X jHif g be two sampled L-dimensional vectors. LetN ¼ Nj


 �

be the L-dimensional noise vector whose components are independent Gaussian random
variables with zero mean and variance σ2. Assume hypothesis H1, that is, s1 was the
transmitted vector, then X ¼ s1 þN . We are interested in evaluating (7.191). Substituting
X into (7.191), we get

Pr Aið Þ ¼ Prðs1 ! siÞ ¼ Prð s1 � si þNk k25 s1 � s1 þ Nk k2��H1Þ
¼ Prð s1 � si þNk k25 Nk k2��H1Þ

(7:192)

Since

s1 � si þNk k2 ¼ s1 � sik k2 þ 2 s1 � si½ �tN þ Nk k2 (7:193)

Then

PrðAiÞ ¼ Prðs1 ! siÞ ¼ Prð s1 � sik k2þ2 s1 � si½ �tN þ Nk k25 Nk k2jH1Þ (7:194)

Define

Z ¼ si � s1½ �tN
si � s1k k (7:195)

Note that si � s1½ �t= si � s1k k is a unit length vector, therefore, the random variable Z in
(7.195) is a Gaussian random variable with zero mean and variance σ2. Substituting (7.195)
into (7.194) we get

Pr Aið Þ ¼ Prðs1 ! siÞ ¼ Pr Z4
1

2
si � s1k k

����H1

� �

¼ Q
si � s1k k
2σ

� � (7:196)

via (7.29). Define di;1 as the Euclidean distance between two vectors si and s1, that is,

di;1 ¼ si � s1k k (7:197)

Then

Pr Aið Þ ¼ Prðs1 ! siÞ ¼ Q
di;1
2σ

� �
(7:198)

Hence, the pairwise error probability involving two vectors s1 and si in a Gaussian channel
depends solely on their Euclidean distance and the variance of noise.
■

If we substitute Pr Aið Þ in (7.198) into the union bound (7.190), we obtain the upper bound
on the symbol error probability given H1 as
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PejH1
�
XM

i¼2

Q
di;1
2σ

� �
(7:199)

The Q ð Þ function decreases rapidly as its argument increases, thus, the left-hand side of
(7.199) is dominated by the terms on the right-hand side with the smallest argument. Let us
define dmin;1 as the smallest Euclidean distance of the set di;1; i ¼ 2; 3; . . . ; M ,

dmin;1 ¼ min
i

di;1 (7:200)

and N1 as the number of signals that are dmin;1 distance from s1. Then, we can approximate
(7.199) as follows:

PejH1
� N1Q

dmin;1

2σ

� �
(7:201)

Assuming all hypotheses are equally likely, then the average symbol error probability is

Pe �
XM

k¼1

PejHk
PrðHkÞ

� 1

M

XM

k¼1

NkQ
dmin; k

2σ

� � (7:202)

Using the same argument as above, we define dmin as the minimum Euclidean distance
between any signal pair andNn as the average number of symbols at the minimumEuclidean
distance dmin, that is, the average number of nearest neighbors

dmin ¼ min
k

dmin; k (7:203)

Nn ¼ 1

M

XM

k¼1

Nk (7:204)

Then, the final approximation for the symbol error probability is given by

Pe � NnQ
dmin

2σ

� �
(7:205)

7.9 M-ary maximum detector

This is a generalized version of the maximum detector discussed in Section 7.6 for binary
demodulation. The M ary maximum detector accepts M decision variables X1;X2; . . . ;XM

and chooses one with the largest value. These M decision variables are elements of a
decision M-dimensional column vector X ¼ Xj


 �
that represents one of M possible hypo-

theses H1; H2; . . . ; HM . The M-ary maximum detector is employed explicitly for M-ary
orthogonal signals such as MFSK or CSK.
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Gaussian decision variables

Let us consider a decision M-dimensional column vector X ¼ Xj


 � ¼ si þN assuming
hypothesis Hi, that is, signal si was transmitted. Here, N ¼ Nj


 �
is an M-dimensional

Gaussian vector whose elements are independent zero mean Gaussian random variables
with a common variance σ2. The signal vector si belongs to the set ofM orthogonal vectors
where each vector sj has M � 1 zero elements except for the jth element, whose value is
sj
�� ��. It is quite obvious that a minimum Euclidean distance detector can detect vector si
given X. Such a detector would have L ¼ M inputs. We are interested in showing that, in the
case of an orthogonal signal set, the minimum Euclidean distance detector reduces to a
maximum detector. Indeed, from (7.184), given the sample value x of the decision vector X,
the minimum of the set of Euclidean distances dðx; siÞ ¼ kx� sik; i ¼ 1; 2; . . . ; M , corre-
sponds to selecting the signal vector si that is closest in Euclidean distance to x. But this
happens if and only if the ith element of si, which is sik k, matches the mean value of the ith
element of x. In the case of no noise, it amounts to d x; sið Þ ¼ si � sik k ¼ 0 and

d x; sj
� � ¼ si � sj

�� �� ¼ sik k2þ sj
�� ��2

q
4d x; sið Þ; j 6¼ i. Hence, a maximum detector that

selects the ith element of x to identify the transmitted vector si achieves the same goal.
Figure 7.31 illustrates the above concept.

In practice, the orthogonal signal vectors si; i ¼ 1; 2; . . . ; M , commonly have the same
length, that is, s1k k ¼ s2k k ¼    ¼ sMk k ¼ Es

p
, where Es is the common signal (symbol)

energy. Furthermore, they have equal distance between them, hence

dmin ¼ 2
p

sik k ¼ 2Es

p
(7:206)

Using the union bound in (7.190) and note Pr Aið Þ ¼ Q dmin=2σð Þ for all events Ai due to
(7.206), we arrive at the following upper bound for symbol error probability:

Pe � M � 1ð ÞQ dmin

2σ

� �
(7:207)

Example 7.15 Exact symbol error probability
We are interested in evaluating symbol error probability of the M-ary maximum detector.
Assuming hypothesis H1, that is, signal vector s1 was transmitted, then X ¼ s1 þN . In
other words, the elements of X ¼ Xj


 �
are given by

X1 ¼ s1k k þ N1 (7:208)

Select the
largest
input

XM

X2

X1

si.
.
.

Figure 7.31 M-ary maximum detector.
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Xj ¼ Nj; j ¼ 2; 3; . . . ; M (7:209)

Note that Xj are independent Gaussian random variables with the following probability
density functions:

fX1 x1ð Þ ¼ 1

2π
p

σ
e x1 jjs1jjð Þ2=2σ2 (7:210)

fXj xj
� � ¼ 1

2π
p

σ
e x2j =2σ

2

; j ¼ 2; 3; . . . ; M (7:211)

It is seen that a correct detection occurs when every xj is smaller than x1, where x1 is a
sampled value of X1. Such an event occurs with a conditional correct detection probability

Pcjx1 ¼ Pr X25x1ð Þ \ X35x1ð Þ \    \ XM5x1ð ÞjH1f g
¼ Pr X25x1jH1ð Þ½ �M 1 (7:212)

We have used the fact that Xj; j ¼ 2; 3; . . . ; M , are independent and identically distributed
random variables. Via (7.26) we get

Pr X25x1jH1ð Þ ¼ 1

2π
p

σ

ðx1

1
e y2=2σ2dy ¼ 1� Q

x1
σ

� 
(7:213)

Substituting (7.213) into (7.212) yields

Pcjx1 ¼ 1� Q
x1
σ

� h iM 1
(7:214)

By taking the expected value of Pcjx1 with respect to x1, using the probability density
function in (7.210), we obtain the correct detection probability given hypothesis H1:

Pc ¼
ð1

1

1

2π
p

σ
e x1 jjs1jjð Þ2=2σ2 1� Q

x1
σ

� h iM 1
dx1

¼ 1

2π
p

ð1

1
e y2=2 1� Q yþ s1k k

σ

� �� �M 1

dy

(7:215)

Since all hypotheses are equiprobable, this is also the correct detection probability. The
symbol error probability Pe is simply 1� Pc, and by using (7.206), we get

Pe ¼ 1� 1

2π
p

ð1

1
e y2=2 1� Q yþ dmin

2
p

σ

� �� �M 1

dy (7:216)

■

Example 7.16 Minimum Euclidean distance detector revisited
We are interested in the implementation of a minimum Euclidean distance detector using an
M-ary maximum detector. Going back to (7.183) we note that given the sample value x of
the decision vector X, we have
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x� sik k2¼ xk k2þ sik k2�2xtsi (7:217)

Since xk k2 is common to all ln fX xjHið Þ, the maximum of the set ln fX xjHið Þ corresponds to
the maximum of the set

c x; sið Þ ¼ 2xtsi � sik k2; i ¼ 1; 2; . . . ; M (7:218)

The parameter c x; sið Þ is often called the correlation metric. Thus, a minimum Euclidean
distance detector actually computes the set of M metrics and selects the signal that corres-
ponds to the largest metric. Figure 7.32 illustrates the alternative implementation of a
minimum Euclidean distance detector.
■

Rice and Rayleigh decision variables

We are interested in generalizing the result in Section 7.6 for the binary maximum detector to
the M-ary maximum detector. We now assume that the M-ary detector acceptsM independ-
ent decision variables X1; X2; . . . ; XM , with one being a Rice variable and the remaining
M – 1 variables being Rayleigh variables. The M-dimensional vector X ¼ Xj


 �
represents

one of M possible hypotheses H1; H2; . . . ; HM . We assume hypothesis Hi corresponds to
the transmitted signal si. Without loss of generality, we assume hypothesisH1, that is, signal
vector s1 was transmitted. The decision variable X1 is then a Rice variable with the
probability density function given by (7.58):

fX1 x1ð Þ ¼ x1
σ2

e x21þa2ð Þ=2σ2 I0 ax1
σ2

� 
; x1 	 0 (7:219)

All other M – 1 decision variables Xk, k ¼ 2; 3; . . . ; M , are Rayleigh variables with the
probability density function given by (7.59):

fXk xkð Þ ¼ xk
σ2

e x2k=2σ
2
; xk 	 0 (7:220)

A correct detection occurs when every Xk is smaller than x1, where x1 is a sample value of
X1. Such event occurs with a conditional correct detection probability

Pcjx1 ¼ Pr X25x1ð Þ \ X35x1ð Þ \    \ XM5x1ð ÞjH1; x1f g
¼ Pr X25x1jH1; x1ð Þ½ �M 1 (7:221)

Calculate
M metrics

c (x, si)
i = 1, 2, …, M 

XL

X2

X1

.

.

.

Select the
largest
input

si.
.
.

c (x, s1)

c (x, s2)

c (x, sM)

Figure 7.32 Alternative implementation of the minimum Euclidean distance detector.
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by virtue of independence between all Xk and the fact that they are identically distributed. By
using (7.220) in (7.221) we obtain

Pcjx1 ¼
ðx1

0
fX2 x2ð Þ dx2

� �M 1

¼
ðx1

0

x2
σ2

e x22=2σ
2
dx2

� �M 1

¼ 1� e x21=2σ
2

h iM 1

(7:222)

The condition on x1 can be removed by averaging, with the help of (7.219),

Pc ¼
ð1

0
Pcjx1 fX1 x1ð Þ dx1

¼
ð1

0
1� e x21=2σ

2
h iM 1 x1

σ2
e x21þa2ð Þ=2σ2 I0 ax1

σ2

� 
dx1

¼
ð1

0

XM 1

k¼0

�1ð Þk M � 1

k

� �
e kx21=2σ

2 x1
σ2

e x21þa2ð Þ=2σ2 I0 ax1
σ2

� 
dx1

(7:223)

Using the identity
ð1

0
ye c2y2 I0 yð Þ dy ¼ 1

2c2
e1=4c

2
(7:224)

in (7.223) we can obtain a closed-form expression for Pc:

Pc ¼
XM 1

k¼0

�1ð Þk M � 1
k

� �
1

k þ 1
e

k
kþ1

a2

2σ2

� �
(7:225)

Therefore, the probability of error is simply Pe ¼ 1� Pc , that is,

Pe ¼
XM 1

k¼1

�1ð Þkþ1 M � 1
k

� �
1

k þ 1
e

k
kþ1

a2

2σ2

� �
(7:226)

We would also like to find a union bound for Pe. Suppose s1 was transmitted, an error
occurs when X1 is smaller than all Xk, k ¼ 2; 3; . . . ; M . Thus

Pejx1 ¼ Pr X24x1ð Þ [ X34x1ð Þ [    [ XM4x1ð ÞjH1; x1f g

�
XM

j¼2

Pr Xj4x1
��H1; x1

� � (7:227)

The conditional probability Pr Xj4x1
��H1; x1

� �
has been evaluated in (7.95). Furthermore,

since all signals are equiprobable, the symbol error probability is simply the same for all
signals si(t). Thus, via (7.95) we get the union bound
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Pe � 1

2
M � 1ð Þe a2=4σ2 (7:228)

which is the first term of the summation on the right-hand side of (7.226).

7.10 M-ary demodulation

M-ary modulation employs M distinct signal waveforms to represent M symbols. I-Q
modulation such as MPSK or MQAM employs an L-path demodulator (L = 2) shown in
Figure 7.33. On the other hand, orthogonal modulation such as MFSK or M-ary Walsh
employs an M-path demodulator shown in Figure 7.34.

Both coherent and noncoherent demodulation can be performed by the M-path demod-
ulator using the appropriate signal processors. The L-path demodulator is for coherent
demodulation only. In the following discussion we provide the framework for the L-path
demodulator followed by that of the M-path demodulator.

Coherent L-path demodulator: a signal space approach

I-Qmodulated signals such asMPSK andMQAM are examples of linear modulation. In this
case, a signal can be expressed as a linear combination of L orthonormal basis functions
xk tð Þ, k ¼ 1; 2; . . . ; L, where L � M . For I-Q signals, L = 2, that is, only two orthonormal
basis functions are necessary and sufficient. From (2.55), a signal si tð Þ, i ¼ 1; 2; . . . ;M , that
represents a symbol can be expressed as

Symbol-
to-bit

converter

.

.

. {0, 1}

Signal
processor 1

Minimum
Euclidean
distance
detector

s(t) + n(t)

Signal
processor L

Figure 7.33 L-path demodulator. L = 2 for I-Q signals.
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Figure 7.34 M-path demodulator.
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si tð Þ ¼
XL

k¼1

sikxk tð Þ; i ¼ 1; 2; . . . ;M (7:229)

where the coefficients of the series expansion sik are defined by

sik ¼
ð1

1
si tð Þxk tð Þ dt; i ¼ 1; 2; . . . ; M ; k ¼ 1; 2; . . . ; L (7:230)

The orthonormal basis functions xk tð Þ, k ¼ 1; 2; . . . ; L, can be obtained via the Gram–
Schmidt procedure (the reader should not confuse xk tð Þ with x ¼ ½x1 x2    xL�t used in
(7.181)). The coefficients sik, k ¼ 1; 2; . . . ; L, are the signal space coordinates of the
symbol represented by siðtÞ. These L coordinates contain all the information about the
symbol and can be used to recover the symbol in noise. Thus, (7.230) suggests the signal
processor shown in Figure 7.35 for extracting sik from siðtÞ. We assume the signals si are
time-limited to Ts seconds, where Ts is the symbol duration. The output decision variable of
the sampler of the kth path is Xk , which is the sum of sik and the noise sample Nk .

The L-path signal processor thus consists of a bank of L correlators that digitize the
transmitted signal si tð Þ into an L-dimensional vector si ¼ si1 si2    siL½ �t. The input noise
signal n tð Þ is also digitized by the correlators into an L-dimensional vector
N ¼ N1 N2    NL½ �t. The decision vector X ¼ X1 X2    XL½ �t is therefore the sum of si
and N, that is,

X ¼ si þN (7:231)

We are interested in the statistics of N, and hence, the statistics of X given si. As always,
we assume that n tð Þ is wide sense stationary AWGN with zero mean and power spectral
density N0=2 W=Hzð Þ. The noise autocorrelation function is E n tð Þn τð Þf g ¼
N0=2ð Þδ t � τð Þ. The noise random variables Nk are given by

Nk ¼
ðTs

0
n tð Þxk tð Þ dt; k ¼ 1; 2; . . . ; L (7:232)

X(t) = s(t) + n(t)

X1

t = Ts

0

Ts∫
x1(t)

XL

xL(t)

0

Ts∫
t = Ts

Figure 7.35 Signal processor for L-path demodulator. The received signal sðtÞ represents one of the M signals siðtÞ,
i ¼ 1; 2; . . . ;M, and n tð Þ is noise.
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It is evident that Nk is a zero mean Gaussian variable. The covariance of Nk is given by

E Nk N‘f g ¼ E
ðTs

0

ðTs

0
n tð Þn τð Þxk tð Þx‘ τð Þ dt dτ

� �

¼
ðTs

0

ðTs

0
E n tð Þn τð Þf gxk tð Þx‘ τð Þ dt dτ

¼ N0

2

ðTs

0
xk tð Þx‘ tð Þ dt

¼ N0

2
δk‘

(7:233)

where δk‘ ¼ 0, k 6¼ ‘, and δk‘ ¼ 1, k ¼ ‘. It is quite obvious that the noise variables Nk are
mutually uncorrelated. Since they are Gaussian, they are also statistically independent. Their
variance is given by (7.233) by setting k ¼ ‘, that is,

σ2 ¼ E N2
k

� � ¼ N0

2
(7:234)

Thus, the decision variables Xk ¼ sik þ Nk , k ¼ 1; 2; . . . ; L, are also statistically independ-
ent Gaussian random variables with conditional mean sik and variance σ2 ¼ N0=2.
Figure 7.36 shows the complete block diagram of an L-path demodulator employing the
minimum Euclidean distance detector. Figure 7.37 shows an alternative L-path demodulator
employing the metric computer and maximum detector in Figure 7.32. Note that the
received signal X tð Þ ¼ si tð Þ þ n tð Þ is completely represented by the vector X ¼ si þN.
In other words, the L components Xk ¼ sik þ Nk , k ¼ 1; 2; . . . ; L, of the vector X are the
only data based on X tð Þ useful for detecting the symbol represented by the signal si tð Þ. They
represent sufficient statistics that summarize X tð Þ for the purposes of detection of si tð Þ. It can
be shown that e tð Þ ¼ X tð Þ �P

k
Xkxk tð Þ ¼ si tð Þ þ n tð Þ �P

k
sikxk tð Þ �P

k
Nkxk tð Þ ¼ n tð Þ �

P

k
Nkxk tð Þ is uncorrelated to Xj, that is, E e tð ÞXj

� � ¼ 0, j ¼ 1; 2; . . . ; N . Furthermore, e tð Þ
and Xj are independent. Hence, e tð Þ contains no relevant information concerning the
detection of si tð Þ. This is expected since e tð Þ depends only on the noise but not on the
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0

Ts∫
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XL

s(t) + n(t)

t = Ts

Figure 7.36 L-path demodulator employing the minimum Euclidean distance detector.
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signal. Sufficient statistics are important in digital communications because they allow
the receiver to be practically built. They render a continuous-time signal X tð Þ into a finite-
dimensional vector X that is good enough for the detection of the transmitted signal.

The correlators in Figures 7.36 and 7.37 can also be replaced by the matched filters as
indicated by Figures 7.38 and 7.39. The symbol error probability of the L-path demodulator
is given by (7.205). Note that a symbol has log2 M bits. Therefore, when M symbols are
encoded with a Gray code, adjacent symbols differ by only one bit. Since adjacent symbols
are closest in Euclidean distance, a symbol error due to noise results in the selection of one of
the adjacent symbols for the true symbol. Thus a symbol error contains only one bit error.
Gray code mapping thus results in the following approximate bit error probability:

Pb � Pe

log2 M
¼ Nn

log2 M
Q

dmin

2σ

� �
(7:235)

Coherent M-path demodulator

The coherentM-path demodulator is employed explicitly for orthogonal signals. A signal in
an orthogonal signal set can be written in the form of (2.55) with L ¼ M , that is,

s(t) + n(t)
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0∫

XL
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0∫
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c(x. s1)

c(x. sM)

six1(t)
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c(x. s2)
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Figure 7.37 L-path demodulator employing the metric computer and maximum detector.
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Figure 7.38 Matched filter implementation of the L-path demodulator with a minimum Euclidean distance detector.
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si tð Þ ¼
XM

k¼1

sikxk tð Þ ¼ siixi tð Þ

¼ Es

p
xi tð Þ; i ¼ 1; 2; . . . ; M

(7:236)

where Es is the signal (symbol) energy. Since all si(t) are mutually orthogonal, it is obvious
that all xi(t) are mutually orthonormal. Equation (7.236) implies the following coherent
demodulators shown in Figures 7.40 and 7.41.

Note that in the absence of noise, the output of the ith path sampler is Es
p

and the
remaining outputs are all zero. Thus, the maximum detector just selects the signal vector si.
The symbol error probability of theM-path demodulator is given by the union bound (7.207)
or by the exact expression in (7.216). To calculate the bit error probability, we note that when
there is a symbol error, all M � 1 wrong symbols are equiprobable with probability
Pe M � 1ð Þ= . Since each symbol has k ¼ log2 M bits, the probability distribution for i bit

errors in a wrong symbol is
k
i

� �
Pe= M � 1ð Þ. Thus, the average number of bit errors per

wrong symbol is
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Figure 7.39 Matched filter implementation of the L-path demodulator with the metric computer and maximum detector.
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Figure 7.40 Coherent M-path demodulator.
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Xk

i¼1

k
i

� �
Pe

M � 1
¼ k

2k 1

M � 1
Pe (7:237)

There are k bits in a wrong symbol, thus the average bit error probability is simply the right-
hand side of (7.237) divided by k:

Pb ¼ M=2

M � 1
Pe (7:238)

Substituting the union bound in (7.207) into (7.238) yields the union bound for Pb of the
coherent M-path demodulator:

Pb � M

2
Q

dmin

2σ

� �
(7:239)

The exact bit error probability is obtained via (7.216) and (7.238) as follows:

Pb ¼ M=2

M � 1
1� 1

2π
p

ð1

1
e y2=2 1� Q yþ dmin

2
p

σ

� �� �M 1

dy

" #

(7:240)

Noncoherent M-path demodulator

For noncoherent demodulation, the bank ofM correlators in Figure 7.40 can be replaced by a
bank of M quadrature correlators–square law detectors discussed in Section 7.4. Also, the
bank of M matched filters in Figure 7.41 can be replaced by a bank of M matched filter–
envelope detectors discussed in Section 7.3. Figures 7.42 and 7.43 show the two versions of
the noncoherentM-path demodulator. We designate xi t; π=2ð Þ as the unit energy quadrature
version of xi tð Þ, such that

ðTs

0
xi tð Þxi t; π=2ð Þ dt ¼ 0; i ¼ 1; 2; . . . ; M (7:241)
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Figure 7.41 Matched filter implementation of the M-path demodulator.
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For example, if x1ðtÞ ¼ 2=Ts
p

cos 2πf1t, then we have x1 t; π=2ð Þ ¼ 2=Ts
p

sin 2πf1t.
We also note that

ðTs

0
xi t; θð Þxi tð Þ dt ¼ cos θ (7:242)

and

ðTs

0
xi t; θð Þxi t; π=2ð Þ dt ¼ sin θ (7:243)
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Ts
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t = Ts

(   )2

0∫
Ts

x1(t, π/2)

t = Ts

(   )2

0∫
Ts

xM(t)

t = Ts

(   )2

0∫
Ts

xM(t, π/2)

X2
M

Figure 7.42 Noncoherent M-path demodulator employing the quadrature correlator–square law detector. The phase θ is the
unknown carrier phase.
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Figure 7.43 Noncoherent M-path demodulator employing the matched filter–envelope detector. The phase θ is the unknown
carrier phase.
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where xi t; θð Þ is xi tð Þ with a phase shift of θ radians. From (7.236), it is seen that the output
of the quadrature correlator–square law detector given that si tð Þwas the transmitted signal is
X 2
i ¼ Es

p
cos θ þ NI ;i

� �2þ Es
p

sin θ þ NQ;i

� �2
. The outputs of the remaining M � 1

quadrature correlator–square law detectors are X 2
j ¼ N2

I ;j þ N2
Q;j. The noise random vari-

ables NI ;i and NQ;i are all independent Gaussian random variables with zero mean and
variance σ2 ¼ N0=2. From Section 7.4, we conclude that X 2

i is a non-central chi-squared
random variable and that X 2

j is a central chi-squared random variable. On the other hand, the
output of the ith matched filter–envelope detector Xi is a Rice random variable and Xj is a
Rayleigh random variable as in Section 7.3. Both demodulators in Figures 7.42 and 7.43
yield identical symbol error probability as described in (7.226), where the parameters a2 and
σ2 are given by a2 ¼ Es and σ2 ¼ N0=2, that is,

Pe ¼
XM 1

k¼1

�1ð Þkþ1 M � 1
k

� �
1

k þ 1
e

k
kþ1ð Þ Es

N0

� 

(7:244)

The bit error probability is obtained via (7.238) as follows:

Pb ¼ M=2

M � 1

XM 1

k¼1

�1ð Þkþ1 M � 1
k

� �
1

k þ 1
e

k
kþ1ð Þ Eb

N0

� 
log2 M

(7:245)

As a comparison, the union bound for bit error probability can be evaluated via (7.228) and
(7.238):

Pb � M

4
e

Eb
2N0

� 
log2 M

(7:246)

7.11 Coherent MASK

MASK is anM-ary modulation technique that requires only one orthonormal basis function.
Therefore, a coherent one-path demodulator can be employed, that is, L ¼ 1 in
Figures 7.36–7.39. For simplicity purposes, we assume that the unit amplitude squared
pulse shape is employed, hence, the orthonormal basis function x1 tð Þ given in (6.80)
becomes

x1 tð Þ ¼ 2

Ts

r

cos 2πfct (7:247)

with the aid of E ¼ A2Ts=2, where E is the smallest signal (symbol) energy and Ts is the
signal interval. Figure 7.44 shows the coherent demodulator for MASK.

The minimum Euclidean distance for MASK is dmin ¼ 2 E
p

; hence, according to (7.235),
the approximate bit error probability is
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Pb � Nn

log2 M
Q

2E

N0

r� �
(7:248)

To calculate the average number of nearest neighbors Nn, we observe from Figure 6.24 that
the two outer symbols have one nearest neighbor. On the other hand, the inner symbols have
two nearest neighbors. Thus,

Nn ¼ 1

M
1þ 1þ 2 M � 2ð Þ½ �

¼ 2 M � 1ð Þ
M

(7:249)

It is more relevant to express the bit error probability in terms of the average bit energy Eb

than the smallest symbol energy E. Since Eb ¼ Es=log2 M , where Es is the average symbol
energy, we are interested in calculating Es. From (6.82), we have

Es ¼ 1

M

XM

n¼1

En ¼ 1

M

XM

n¼1

2n� M þ 1ð Þ½ �2E

¼ E

M
4
XM

n¼1

n2 � 4 M þ 1ð Þ
XM

n¼1

nþM M þ 1ð Þ2
" #

¼ E

M

2

3
M M þ 1ð Þ 2M þ 1ð Þ � 2M M þ 1ð Þ2þM M þ 1ð Þ2

� �

¼ 1

3
M 2 � 1
� �

E

(7:250)

and hence

Eb ¼ M 2 � 1

3 log2 M
E (7:251)

Substituting (7.249) and (7.251) into (7.248), we obtain the approximate bit error
probability

Pb � 2 M � 1ð Þ
M log2 M

Q
6 log2 M
M 2 � 1

Eb

N0

� �s !

(7:252)
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2
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Ts

0

Ts∫
t = Ts

Figure 7.44 A coherent MASK demodulator.
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Example 7.17 Exact bit error probability of 4ASK
Consider the signal space of 4ASK shown in Figure 6.24(a) and repeated here for
convenience.

Let H1 be the hypothesis that signal s1 was transmitted. By symmetry, the conditional
symbol error probabilities obey the relationships PejH1

¼ PejH4
and PejH2

¼ PejH3
. Therefore,

only PejH1
and PejH2

need to be evaluated. Let X be the received sample, which can be
expressed as

X ¼ s1 þN (7:253)

where N is the AWGN sample with zero mean and variance σ2 ¼ N0=2. We then have

PejH1
¼ Pr X 2 R2jH1ð Þ [ X 2 R3jH1ð Þ [ X 2 R4jH1ð Þf g
¼ Pr X 2 R2jH1ð Þ þ Pr X 2 R3jH1ð Þ þ Pr X 2 R4jH1ð Þ (7:254)

using the fact that all regions Ri, i ¼ 1; 2; 3; 4, do not overlap as indicated in Figure 7.45.
We can establish the conditional bit error probability PbjH1

from PejH1
by noting the

following facts: when X 2 R2, one bit error occurs since symbols 00 and 01 differ by
only one bit; when X 2 R3, two bit errors occur since symbols 00 and 11 differ by two bits;
whenX 2 R4, only one bit error occurs since symbols 00 and 10 differ by one bit. Therefore,
we obtain PbjH1

as follows:

PbjH1
¼ 1

2
Pr X 2 R2jH1ð Þ þ Pr X 2 R3jH1ð Þ þ 1

2
Pr X 2 R4jH1ð Þ (7:255)

Now let us evaluate the three terms on the right-hand side of (7.255):

Pr X 2 R2jH1ð Þ ¼ Pr �dmin5s1 þN � 0ð Þ ¼ Pr �dmin5� 3

2
dmin þN � 0

� �

¼ Pr
1

2
dmin5N � 3

2
dmin

� �
¼ Q

dmin

2σ

� �
� Q

3dmin

2σ

� �

(7:256)

Similarly,

Pr X 2 R3jH1ð Þ ¼ Pr 05s1 þN � dminð Þ ¼ Pr 05� 3

2
dmin þN � dmin

� �

¼ Pr
3

2
dmin5N � 5

2
dmin

� �
¼ Q

3dmin

2σ

� �
� Q

5dmin

2σ

� � (7:257)

Finally,

Pr X 2 R4jH1ð Þ ¼ Pr s1 þN4dminð Þ ¼ Pr � 3

2
dmin þN4dmin

� �

¼ Pr N4
5

2
dmin

� �
¼ Q

5dmin

2σ

� � (7:258)
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Substituting (7.256)–(7.258) into (7.255) yields the conditional bit error probability assum-
ing hypothesis H1:

PbjH1
¼ 1

2
Q

dmin

2σ

� �
þ 1

2
Q

3dmin

2σ

� �
� 1

2
Q

5dmin

2σ

� �
(7:259)

Next we evaluate the conditional symbol error probability PejH2
:

PejH2
¼ Pr X 2 R1jH2ð Þ [ X 2 R3jH2ð Þ [ X 2 R4jH2ð Þf g
¼ Pr X 2 R1jH2ð Þ þ Pr X 2 R3jH2ð Þ þ Pr X 2 R4jH2ð Þ (7:260)

Following the argument that was used to evaluate PbjH1
, we obtain the conditional bit error

probability PbjH2
as follows:

PbjH2
¼ 1

2
Pr X 2 R1jH2ð Þ þ 1

2
Pr X 2 R3jH2ð Þ þ Pr X 2 R4jH2ð Þ (7:261)

The three terms on the right-hand side of (7.261) can be evaluated in the same fashion:

Pr X 2 R1jH2ð Þ ¼ Pr s2 þN � �dminð Þ ¼ Pr � 1

2
dmin þN � �dmin

� �

¼ Pr N5� 1

2
dmin

� �
¼ Q

dmin

2σ

� � (7:262)

Similarly,

Pr X 2 R3jH2ð Þ ¼ Pr 05s2 þN � dminð Þ ¼ Pr 05� 1

2
dmin þN � dmin

� �

¼ Pr
1

2
dmin5N � 3

2
dmin

� �
¼ Q

dmin

2σ

� �
� Q

3dmin

2σ

� � (7:263)

Also,

Pr X 2 R4jH2ð Þ ¼ Pr s2 þN4dminð Þ ¼ Pr � 1

2
dmin þN4dmin

� �

¼ Pr N4
3

2
dmin

� �
¼ Q

3dmin

2σ

� � (7:264)

By substituting (7.262)–(7.264) into (7.261), we obtain the conditional bit error probability
given hypothesis H2:

PbjH2
¼ Q

dmin

2σ

� �
þ 1

2
Q

3dmin

2σ

� �
(7:265)

The average bit error probability Pb can be obtained via the total probability theorem, and
the fact that PejH1

¼ PejH4
and PejH2

¼ PejH3
:
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Pb ¼
X4

i¼1

PbjHi
Pr Hið Þ

¼ 3

4
Q

dmin

2σ

� �
þ 1

2
Q

3dmin

2σ

� �
� 1

4
Q

5dmin

2σ

� � (7:266)

Using the fact that dmin ¼ 2 E
p ¼ 2 Eb 3 log2 Mð Þ= M2 � 1ð Þp

via (7.251) and σ2 ¼ N0=2,
we get the exact bit error probability of 4ASK as

Pb ¼ 3

4
Q

4

5

Eb

N0

� �s !

þ 1

2
Q 3

4

5

Eb

N0

� �s !

� 1

4
Q 5

4

5

Eb

N0

� �s !

(7:267)

For a large bit energy-to-noise density ratio, that is, Eb=N0 � 1, the second and third terms
on the right-hand side of (7.267) are negligible compared to the first term, and Pb can be
approximated by

Pb � 3

4
Q

4

5

Eb

N0

� �s !

(7:268)

which is the same expression as (7.252) for M ¼ 4.
■

7.12 Coherent MPSK

MPSK belongs to the class of I-Q modulation. As described in Sections 2.4 and 6.11, MPSK
requires only two orthonormal basis functions. Thus, a coherent two-path demodulator can
be employed for MPSK demodulation, that is, L = 2 in Figures 7.36–7.39. For simplicity, let
us assume that a unit amplitude squared pulse shape is used, then, the two orthonormal basis
functions x1 tð Þ and x2 tð Þ are given by (2.87) as

x1 tð Þ ¼ 2

Ts

r

cos 2πfct (7:269)

00

3
2

dmin− −dmin
1
2

dmin− 1
2

dmin dmin

3
2

dmin

101101

0

s1 s2 s3 s4

Figure 7.45 4ASK signal space with dmin ¼ 2 E
p

. There are four detection regions: �15R1 � �dmin; �dmin5R2 � 0;
05R3 � dmin; and dmin5R4 � 1.
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x2 tð Þ ¼ � 2

Ts

r

sin 2πfct (7:270)

Figure 7.46 shows a coherent I-Q (two-path) demodulator for MPSK.
The minimum Euclidean distance for MPSK has been derived in (2.91) as

dmin ¼ 2 Es
p

sin π=Mð Þ. Substituting dmin into (7.235), we obtain the bit error probability
of coherent MPSK with M > 2. Note that the average number of nearest neighbors for each
signal point is Nn ¼ 2 and the noise variance is σ2 ¼ N0=2.

Pb � 2

log2 M
Q

2Eb

N0
log2 M

r

sin
π
M

� �
; M42 (7:271)

Note that for PSK, that is,M = 2, we have Nn ¼ 1, hence Pb ¼ Qð 2Eb=N0

p Þ as derived in
(7.104).

Example 7.18 QPSK demodulator
QPSK is perhaps the most popular modulation of modern communications. It offers both
power efficiency and bandwidth efficiency. For M = 4, the bit error probability of QPSK is
given by (7.271) as

Pb � Q
2Eb

N0

r� �
(7:272)

In (7.233), we showed that the I-noise and Q-noise are statistically independent. Therefore,
in practice the I-bit X1 and Q-bit X2 at the sampler’s output can be detected independently. In
Example 7.13, we proved that the minimum Euclidean distance detector is equivalent to a
threshold detector for a binary case such as PSK. Since QPSK is in effect the sum of two
orthogonal PSK signals, we conclude that the I-bit X1 can be detected by an I-threshold
detector, and the Q-bit X2 can be detected independently by a Q-threshold detector. The I-bit
and Q-bit can then be multiplexed (parallel-to-serial conversion) into one output bit stream,
as shown in Figure 7.47.
■

t = Ts

I-channel
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distance
detector
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{0, 1}

Q-channel

−

2
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2
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Ts∫

0

Ts∫
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Figure 7.46 A coherent I-Q demodulator for MPSK.
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Example 7.19 Exact bit error probability of QPSK
We wish to show that the right-hand side of (7.272) is also the exact bit error probability of
QPSK, not just an approximation. Let us consider the QPSK signal space in Figure 7.48. The
symbols 11, 01, 00, and 10 are located in regions (quadrants) R1, R2, R3, and R4, respec-
tively, and are represented by vectors s1, s2, s3, and s4, respectively. The conditional symbol
error probability given hypothesis H1 in which s1 was the transmitted vector is

PejH1
¼ Pr X 2 R2jH1ð Þ [ X 2 R3jH1ð Þ [ X 2 R4jH1ð Þf g (7:273)

Here, X is the received vector, that is, X ¼ s1 þN , where N is the AWGN vector with
statistically independent elements N1 and N2 and common variance σ2 ¼ N0=2 via (7.233).
The explanation for (7.273) is as follows: if X 2 Ri; i ¼ 2; 3; 4, then X is closer to
si; i ¼ 2; 3; 4, than s1, and hence an error would occur. Since R2, R3, R4 do not overlap,
we can express PejH1

as

PejH1
¼ Pr X 2 R2jH1ð Þ þ Pr X 2 R3jH1ð Þ þ Pr X 2 R4jH1ð Þ (7:274)
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Figure 7.47 Coherent QPSK demodulator employing threshold detectors.
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Figure 7.48 QPSK signal space with Gray encoding.
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The conditional bit error probability can be established from the conditional symbol error
probability PejH1

by the following reasoning: as X 2 R2, one bit error occurs since symbols
11 and 01 differ by only one bit; as X 2 R3, two bit errors occur since the symbol 11 and 00
differ by two bits; as X 2 R4, one bit error occurs since the symbol 11 and 10 differ by only
one bit. Thus, with X 2 R2 and X 2 R4, a symbol of two bits was transmitted, but only one
bit error occurs. On the other hand, if X 2 R3, a symbol of two bits was transmitted, and
both bits are in error. Therefore, the conditional bit error probability PbjH1

can be related to
PejH1

as

PbjH1
¼ 1

2
Pr X 2 R2jH1ð Þ þ Pr X 2 R3jH1ð Þ þ 1

2
Pr X 2 R4jH1ð Þ (7:275)

Let us express X in terms of its elements as follows:

X ¼ s1 þN

¼ s11 þ N1

s12 þ N2

� �
¼

dmin

2
þ N1

dmin

2
þ N2

2

64

3

75
(7:276)

where s11 ¼ s12 ¼ dmin=2 ¼ Es=2
p

and Es ¼ sik k2¼ s2i1 þ s2i2; i ¼ 1; 2; 3; 4, is the signal
(symbol) energy. Using (7.276), we can calculate the three terms on the right-hand side of
(7.275). Specifically, from Figure 7.47 we have

Pr X 2 R2jH1ð Þ ¼ Pr s11 þ N1 � 0ð Þ \ s12 þ N240ð Þf g
¼ Pr s11 þ N1 � 0ð ÞPr s12 þ N240ð Þ
¼ Pr N1 � �dmin=2ð ÞPr N24� dmin=2ð Þ

¼ Q
dmin

2σ

� �
1� Q

dmin

2σ

� �� �
(7:277)

By symmetry, we also have

Pr X 2 R4jH1ð Þ ¼ Q
dmin

2σ

� �
1� Q

dmin

2σ

� �� �
(7:278)

It remains to evaluate Pr X 2 R3jH1ð Þ. Again, using (7.276), we obtain

Pr X 2 R3jH1ð Þ ¼ Pr s11 þ N1 � 0ð Þ \ s12 þ N2 � 0ð Þf g
¼ Pr s11 þ N1 � 0ð ÞPr s12 þ N2 � 0ð Þ
¼ Pr N1 � �dmin=2ð ÞPr N2 � �dmin=2ð Þ

¼ Q 2 dmin

2σ

� �
(7:279)

Substituting (7.277)–(7.279) into (7.275), we obtain the conditional bit error probability
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PbjH1
¼ Q

dmin

2σ

� �
1� Q

dmin

2σ

� �� �
þ Q2 dmin

2σ

� �

¼ Q
dmin

2σ

� �

¼ Q
Es

N0

r� �
¼ Q

2Eb

N0

r� �
(7:280)

where Eb ¼ Es=2 is the bit energy and σ2 ¼ N0=2. By symmetry and the fact that all
symbols are equiprobable, we conclude that the bit error probability of QPSK is indeed
the right-hand side of (7.272):

Pb ¼
X4

i¼1

PbjH1
Pr Hið Þ ¼

X4

i¼1

1

4
Q

2Eb

N0

r� �

¼ Q
2Eb

N0

r� � (7:281)

■

Example 7.20 Alternative coherent MPSK demodulator employing a phase detector
Since MPSK encodes the symbol in its phase, it is conceivable that a phase detector may be
employed to detect the transmitted signal. From (6.97), we observe that the signal vector
si; i ¼ 1; 2; . . . ; M, can be written as

si ¼ si1
si2

� �
¼ Es

p
cos θi

Es
p

sin θi

� �
(7:282)

where θi ¼ 2i� 1ð Þπ=M is the encoding phase of a symbol. Note that θi ¼ tan 1 si2=si1ð Þ, and
sik k2¼ Es for i ¼ 1; 2; . . . ; M. From (7.218), the detection of a symbol is to select the largest

correlation metric c x; sið Þ ¼ 2xtsi where sik k2 is ignored because it is the same for all signals si,
and x is the sampled value of X ¼ si þN . We have

c x; sið Þ ¼ 2 x1 x2½ � Es
p

cos θi
Es

p
sin θi

� �
¼ 2 Es

p
x1 cos θi þ x2 sin θið Þ

¼ 2 Es

p
R cos θi � θð Þ

(7:283)

where

R ¼ x21 þ x22

q
(7:284)

θ ¼ tan 1 x2
x1

� �
(7:285)

Note that in the absence of noise, we have θ ¼ tan 1 si2=si1ð Þ ¼ θi. Furthermore, R is
independent of any transmitted signal si. Therefore, in the alternative implementation of
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the minimum Euclidean distance detector (Figure 7.32), selecting the largest metric of M
calculated metrics is equivalent to maximizing cos θi � θð Þ in (7.283). For θ in the sector
θi � π=M5θ � θi þ π=M we always have θi � θj j5 θj � θ

�� �� for all j 6¼ i, and hence
cos θi � θð Þ4 cos θj � θ

� �
, and consequently, c x; siÞ4c x; sjÞ

��
for all j 6¼ i. Thus, for

coherent MPSK, the two-path demodulator in Figure 7.46 can be alternatively implemented
in Figure 7.49, which yields the same approximate bit error probability in (7.271).
■

Example 7.21 OQPSK demodulator
OQPSK is a variation of QPSK and has been described in Section 6.11. The configuration
of the OQPSK modulator in Figure 6.29 suggests the coherent demodulator shown in
Figure 7.50(a), which is basically the coherent two-path demodulator with a one-bit delay
in the I-channel to compensate for the one-bit delay in the Q-channel of the modulator.
Obviously, one could implement a coherent demodulator for OQPSK using the minimum
Euclidean distance detector as shown in Figure 7.50(b). Both demodulators should give
OQPSK an identical bit error probability to that of QPSK:

Pb ¼ Q
2Eb

N0

r� �
(7:286)

■

7.13 Coherent DMPSK

As mentioned in Section 6.12, differential encoding is used for two distinct purposes. First,
differential encoding can resolve phase ambiguity in MPSK associated with the carrier

t = Ts

0

Ts∫
θ {0, 1}

X1

si2
cos 2π fctTs

2
sin 2π fctTs

−
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i = 1,2, …, M

s(t) +n(t)
tan−1

x2

x1

Symbol-
to-bit

converter

t = Ts

0

Ts∫ X2

…

Figure 7.49 Coherent MPSK demodulator with a phase detector.
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recovery process. Second, differential encoding allows DMPSK to be demodulated non-
coherently in applications where coherent demodulation is not feasible. In this section, we
concentrate on the coherent demodulation of DMPSK with a differential decoding process
to resolve phase ambiguity. The most important member of the DMPSK family is DQPSK,
which we study first.

Example 7.22 Differential decoding for DQPSK
A coherent demodulator for DQPSK is illustrated in Figure 7.51. The differential decoder
performs the inverse operation of the differential encoder, which is based on the following
relations:

dI ;i ¼ cI ;i 
 cQ;i
� �

cQ;i 
 cQ;i 1

� �
 cI ;i 
 cQ;i
� �

cI ;i 
 cI ;i 1

� �
(7:287)
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Figure 7.50 (a) Coherent OQPSK demodulator employing threshold detectors; (b) coherent OQPSK demodulator employing the
minimum Euclidean distance detector.
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dQ;i ¼ cI ;i 
 cQ;i
� �

cI ;i 
 cI ;i 1

� �
 cI ;i 
 cQ;i
� �

cQ;i 
 cQ;i 1

� �
(7:288)

To illustrate the phase ambiguity resolution, we use the data in Example 6.28 and rotate the
signal space by π=2 radians, that is, the phase θi of the received DQPSK signal is advanced
by π=2 radians, to become θi þ π=2. Table 7.7 illustrates the differential decoding process to
recover the correct transmitted data despite a phase error of π=2. The same result holds for a
phase rotation of π, 3π=2 or 2π radians.
■

Example 7.23 DQPSK with independent I–Q differential encoding/decoding
The I-channel and Q-channel of QPSK are independent PSK signals. Therefore, the I-bits
and Q-bits can both be differentially encoded and decoded separately. This approach
simplifies the differential encoder/decoder implementation. Figures 7.52 and 7.53 illustrate
this concept.
■

Table 7.7 Differential decoding for data in Example 6.28

i θi + π/2 cI ;i cQ;i dI ;i dQ;i

0 7π/4 1 0 1 0
1 5π/4 0 0 0 1
2 7π/4 1 0 1 0
3 7π/4 1 0 0 0
4 3π/4 0 1 1 1
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Figure 7.51 Coherent DQPSK demodulator.
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The above two examples demonstrate the simplicity in implementing a coherent DQPSK
demodulator. For higher-order DMPSK, differential decoding must be done via (6.109),
which provides a recursive relation between the phases θi 1 and θi of consecutive DMPSK
symbols Di 1 and Di, that is,

θi ¼ θi 1 þ Δθi (7:289)

where

Δθi ¼ Di � 1ð Þ 2π
M

; Di 2 1; 2; . . . ; Mf g (7:290)

If Δθi can be recovered properly, then Di would be detected, and hence the k-bit symbol
represented by Di, where k ¼ log2 M . Figures 7.54 and 7.55 show two equivalent coherent
DMPSK demodulators.

These coherent demodulators are simply coherent MPSK demodulators followed by
differential decoders.
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Figure 7.52 DQPSK modulator with separate I and Q differential encoders.
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With the use of differential encoder/decoder, symbol errors tend to occur in pairs, as in the
case of binary DPSK (see Table 7.3 in Example 7.7). Therefore, the bit error probability of
coherent DMPSK is approximately twice that of coherent MPSK in (7.271):

Pb � 4

log2 M
Q

2Eb

N0
log2 M

r

sin
π
M

� �
(7:291)

7.14 Noncoherent DMPSK

DMPSK can be demodulated noncoherently based on the unique feature of differential
encoding. As long as the carrier phase varies slowly and remains essentially invariant over
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Figure 7.54 Coherent DMPSK demodulator. The phases of si 1 and si are θi 1 and θi , respectively, as indicated by the signal
space (see (7.282)), and Δθi ¼ θi � θi 1.
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two consecutive symbol intervals, noncoherent demodulation is feasible and sometimes
preferable in wireless communications over a fading channel. If this assumption holds, then
any carrier phase θ unknown to the demodulator can be eliminated simply by establishing
the phase difference between consecutive intervals. Let us add θ to the modulation phases
θi 1 and θi in (7.289):

θi þ θ ¼ θi 1 þ θ þ Δθi (7:292)

Then the phase difference Δθi remains the same as in (7.290), that is,

Δθi ¼ θi þ θð Þ � θi 1 þ θð Þ ¼ θi � θi 1

¼ Di � 1ð Þ 2π
M

; Di 2 1; 2; . . . ; Mf g
(7:293)

Thus, the unknown carrier phase θ is eliminated and the data symbol can be recovered by
deciding which one of the M equiangular decision regions Δθi belongs. This suggests the
noncoherent demodulator illustrated in Figure 7.56. The detection regions are chosen in
Figure 7.57 for the case of M = 4. These equiangular detection regions are defined by
M phase angles fj ¼ j� 1ð Þ2π=M ; j ¼ 1; 2; . . . ; M . For example, if for a given
k 2 1; 2; . . . ; Mf g, we have Δθi � fkj j ¼ min

j
jΔθi � fjj; j ¼ 1; 2; . . . ;M ; then we

choose Di ¼ k as the output symbol. In general, we have M detection regions
Rj; j ¼ 1; 2; . . . ; M , where fj � π=M � Rj5fj þ π=M .

To evaluate the symbol error probability of the noncoherent DMPSK in Figure 7.56, let us
assume that an unknown carrier phase θ is present as in (7.292). The received DMPSK
signal for the ith symbol is

s tð Þ ¼ Ap tð Þ cos 2πfct þ θi þ θð Þ þ n tð Þ (7:294)
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Figure 7.56 Noncoherent DMPSK demodulator, ϕj = ( j−1) 2π/M, j = 1, 2, . . . , M.
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where p tð Þ is assumed to be a unit-amplitude squared pulse of duration Ts, the symbol
interval, and n tð Þ is AWGNwith power spectral density N0=2 W=Hzð Þ. The decision vector
X i is given by

X i ¼ X1;i

X2;i

� �
¼ Es

p
cos θi þ θð Þ

Es
p

sin θi þ θð Þ
� �

þ N1;i

N2;i

� �
(7:295)

The noise samples N1;i and N2;i are independent Gaussian random variables with zero mean
and variance σ2 ¼ N0=2. The vector X i can be written in phase notation as

X i ¼ X1;i þ jX2;i ¼ X ik kejρi (7:296)

Note that, without noise, the phase ρi of X i is simply θi þ θ. Similarly, the decision vector
X i 1 for the previous i� 1ð Þth symbol is

X i 1 ¼ X1;i 1

X2;i 1

� �
¼ Es

p
cos θi 1 þ θð Þ

Es
p

sin θi 1 þ θð Þ
� �

þ N1;i

N2;i

� �
(7:297)

or, in phasor notation,

X i 1 ¼ X1;i 1 þ jX2;i 1 ¼ X i 1k ke jρi 1 (7:298)

In the absence of noise, ρi 1 ¼ θi 1 þ θ. Define the phase difference β ¼ ρi � ρi 1, which is
equal to Δθi without noise. Since β is our decision variable, we are interested in its
probability distribution function Fβ βð Þ, which has been derived in [1]:

Fβ βð Þ ¼ � sin β
4π

ðπ=2

π=2

e 1 cos β cos xð ÞEs=N0

1� cos β cos x
dx (7:299)

From Figure 7.56, it is seen that a symbol is correctly detected if and only if β � fj falls into
the angular detection region Rj given the differential phase Δθi ¼ fj. Since the probability
distribution function Fβ βð Þ is independent of fj, we can arbitrarily set fj ¼ 0 (which
corresponds to j ¼ 1 in fj ¼ j� 1ð Þ2π=M ; j ¼ 1; 2; . . . ; M ) and hence the correct symbol
detection probability is

R3

I

R2

R1

R4

+

+ +

+

Figure 7.57 Four equiangular detection regions Ri, i = 1, 2, 3, 4, for M = 4; −π/4 ≤ R1 < π/4, π/4 < R2 ≤ 3π/4, 3π/4 < R3
< 5π/4, 5π/4 ≤ R4 < 7π/4; ϕj = ( j−1) 2π/M, j = 1, 2, . . . , M.
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Pc ¼ Pr � π
M

� β5
π
M

n o
¼
ðπ=M

π=M
fβ βð Þdβ ¼ Fβ

π
M

� 
� Fβ � π

M

� 
(7:300)

where fβ βð Þ is the probability density of β. Therefore, the symbol error probability Ps is
simply 1� Pc and can be expressed as

Ps ¼ 1�
ðπ=M

π=M
fβ βð Þdβ ¼

ðπ

π
fβ βð Þdβ �

ðπ=M

π=M
fβ βð Þdβ

¼ 2 Fβ πð Þ � Fβ
π
M

� h i (7:301)

Substituting (7.299) into (7.301), we obtain

Ps ¼ 1

2π
sin

π
M

�  ðπ=2

π=2

e 1 cos π=Mð Þ cos xð ÞEs=N0

1� cos π=Mð Þ cos x dx (7:302)

For the case of M = 2, the above expression gives the bit error probability of noncoherent
DPSK in (7.179). A simple approximation can be found in [1] for Ps in (7.302), as
follows:

Ps � 2Q
2Es

N0

r

sin
π

2
p

M

� �
(7:303)

For Gray code bit-to-symbol mapping, the bit error probability for noncoherent DMPSK is
given by

Pb � 2

log2 M
Q

2Eb

N0
log2 M

r

sin
π

2
p

M

� �
(7:304)

Compared with coherent MPSK in (7.271), noncoherent DMPSK requires approximately
sin2 π=Mð Þ sin2 π= 2

p
M

� ��
more in Eb=N0 to achieve the same error rate. For largeM, this is

approximately sin2 π=Mð Þ sin2 π= 2
p

M
� �� � π=Mð Þ2= π= 2

p
M

� �2 ¼ 2 or 3 dB.

Example 7.24 Noncoherent DPSK revisited
In this example, we wish to show that the noncoherent DPSK demodulator in Figure 7.28
and the one in Figure 7.56 for M = 2 are equivalent in performance. Let us start with the
demodulator in Figure 7.56 that has two equiangular detection regions R1 and R2 as shown
in Figure 7.58. The optimum detection selects the smallest of the two quantities β � f1j j and
β � f2j j, where β ¼ ρi � ρi 1 with ρi and ρi 1 defined in (7.296) and (7.298), respectively.
This means that, given hypothesis H1, that is, bit D1 was transmitted with Δθi ¼ f1 ¼ 0, a
correct detection implies β 2 R1 since β � 0j j5 β � πj j. This is equivalent to cos β40. On
the other hand, given hypothesis H2, that is, bit D2 was transmitted with Δθi ¼ f2 ¼ π, a
correct detection implies β 2 R2 since β � πj j5 β � 0j j. This is equivalent to cos β50. In
summary,

cos β40 ) H1 and cos β � 0 ) H2 (7:305)
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Let us expand cos β ¼ cos ρi � ρi 1ð Þ into the following expression:

cos β ¼ cos ρi � ρi 1ð Þ ¼ cos ρi cos ρi 1 þ sin ρi sin ρi 1 (7:306)

Using (7.296) and (7.298), we can scale cos β by a positive constant X ik k X i 1k k without
altering the decision rule in (7.306):

X ik k X i 1k k cos β ¼ X i 1k k cos ρi 1ð Þ X ik k cos ρið Þ þ X i 1k k sin ρi 1ð Þ X ik k sin ρið Þ
¼ X1;i 1X1;i þ X2;i 1X2;i

(7:307)

where X1;i; X2;i are given in (7.296) and X1;i 1; X2;i 1 are given in (7.298). Equation (7.307)
is identical to (7.168); therefore, we conclude that the two demodulators in Figure 7.28 and
7.56 are equivalent.
■

7.15 Noncoherent π/4-DQPSK

There is virtually no difference in the demodulation of noncoherent π/4-DQPSK and
DQPSK. Although π/4-DQPSK rotates its signal space by π/4 radians in successive sym-
bols, it is the phase difference between the successive symbols that encodes the current
symbol and not the absolute phase. Therefore, the noncoherent demodulator for DMPSK
with M = 4 in Figure 7.56 applies for π/4-DQPSK with the four equiangular detection
regions Ri; i ¼ 1; 2; 3; 4, shown in Figure 7.59. The differential angle fj in Figure 7.56 is
replaced by fj ¼ 2j� 1ð Þπ=4; j ¼ 1; 2; 3; 4.

The bit error probability of noncoherent π/4-DQPSK is identical to that of noncoherent
DQPSK and is given by (7.304):

Pb � Q 1:11
Eb

N0

r� �
(7:308)

R2

I

R1

Q

Figure 7.58 Two equiangular detection regions R1 (right-half plane) and R2 (left-half plane), with ϕ1 = 0 and ϕ2 = π for M = 2.
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In the following discussion, we present an alternative noncoherent demodulator that is
equivalent to the one in Figure 7.56. Let hypothesis Hj represent symbol Dj, hence
corresponding differential phase fj. The corresponding angular detection region for Hj is
Rj. A correct detection given Hj occurs when the differential angle β ¼ ρi � ρi 1 falls inside
Rj. The detection rule can be expressed as follows:

cos β40 and sin β40 ) H1

cos β50 and sin β40 ) H2

cos β50 and sin β50 ) H3

cos β40 and sin β50 ) H4

(7:309)

We note that cos β leads to the expression X1 ¼ X1;i 1X1;i þ X2;i 1X2;i as in (7.307).
Similarly, sin β ¼ sin ρi � ρi 1ð Þ ¼ sin ρi cos ρi 1 � cos ρi sin ρi 1 leads to the expression
X2 ¼ X1;i 1X2;i � X2;i 1X1;i. The detection rule in (7.309) can be expressed in terms of the
decision variables X1 and X2 as

X140 and X240 ) H1

X150 and X240 ) H2

X150 and X250 ) H3

X140 and X250 ) H4

(7:310)

The noncoherent demodulator that implements (7.310) is shown in Figure 7.60.

7.16 Coherent MQAM and DMQAM

MQAM belongs the class of I-Q modulation as MPSK, and hence it requires only two
orthonormal basis functions to represent its signal as shown in (7.269) and (7.270). A
coherent two-path demodulator for MQAM is illustrated in Figure 7.61.
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R3 R4

Q

×

×

××

Figure 7.59 Detection regions for π/4-DQPSK: 0≤ R1≤ π/2, π/2≤ R2 < π, π≤ R3≤ 3π/2, 3π/2≤ R4 < 2π; ϕj = (2j – 1) π/4,
j = 1, 2, 3, 4.
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RectangularMQAMare commonlyused in practice as in theWLANStandards IEEE802.11a,
g with M=16 and M=64, and 802.16–16e with M=16, M=64, and M=256. In general,
rectangular MQAM has M ¼ 2k , where k is an even positive integer. When k is odd, such as
M = 32 orM = 128, the rectangular signal spaces can be modified to exclude the corner points as
shown in Figure 6.35. The coordinates of signal vectors in rectangular MQAM are given by

sij

 �

M�M
¼

E

2

r
� M
p þ 1; M

p � 1
� �

� M
p þ 1; M

p � 3
� �

..

.

� M
p þ 1; � M

p þ 1
� �

� M
p þ 3; M

p � 1
� �    M

p � 1; M
p � 1

� �

� M
p þ 3; M

p � 3
� �    M

p � 1; M
p � 3

� �

..

.

� M
p þ 3; � M

p þ 1
� �

. . . M
p � 1; � M

p þ 1
� �

2

666664

3

777775

(7:311)
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where E is the smallest symbol energy.
The average symbol energy for a rectangular MQAM can be shown to be

Es ¼ 1

M

XM

n¼1

En ¼ 1

3
M � 1ð ÞE (7:312)

The average number of nearest neighbors can be calculated based upon the fact that there are
four corner points, 4 M

p � 2
� �

edge points, andM � 4 M
p � 2
� �� 4 ¼ M � 4 M

p þ 4¼
M

p � 2
� �2

inner points. The corner point has two nearest neighbors, the edge point has three
nearest neighbors, and the inner points have four nearest neighbors. Therefore, the average
number of nearest neighbors is

Nn ¼ 1

M
4� 2þ 4 M

p
� 2

� 
� 3þ M

p
� 2

� 2
�4

� �

¼ 4� 4

M
p

(7:313)

For example, M = 16 yields Nn = 3 and M = 64 yields Nn = 3.5. For very large M, Nn

approaches 4.
The minimum Euclidean distance for rectangular MQAM is

dmin ¼ 2E
p

(7:314)

Substituting Es in (7.312) for E into (7.314), we get

dmin ¼ 6Es

M � 1

r

¼ 6Eb log2 M
M � 1

r

(7:315)

Assuming that Gray code is employed for symbol-bit mapping, we can obtain the bit error
probability for coherent MQAM using (7.235) and (7.313):

Pb �
4 1� 1= M

p� �

log2 M
Q

3 log2 M
M � 1

Eb

N0

� �s !

(7:316)

A glance at (7.271) and (7.316) shows that the two expressions are identical for M = 4. For
M > 4, MQAM has a signal-to-noise ratio advantage equal to

g ¼ 3= M � 1ð Þ
2 sin2 π=Mð Þ (7:317)

This expression is shown numerically in Table 7.8.
To avoid phase ambiguity, DMQAM can be employed. With differential encoding, error

propagation typically occurs and increases the bit error probability. The bit error probability
of coherent DMQAM is given approximately as
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Pb �
8 1� 1= M

p� �

log2 M
Q

3 log2 M
M � 1

Eb

N0

� �s !

(7:318)

This is twice the bit error probability of coherent MQAM, with a factor of 2 accounting for
the error propagation of the differential encoding.

7.17 Coherent CSK and MFSK

CSK belongs to the family of orthogonal signaling, as does MFSK. The coherent M-path
demodulator shown in Figure 7.40 therefore can be employed for coherent demodulation.
The basis functions for CSK are

xi tð Þ ¼ 2

Ts

r

wi tð Þ cos 2πfct; i ¼ 1; 2; . . . ; M (7:319)

where wi tð Þ; i ¼ 1; 2; . . . ; M , are the Walsh functions in (2.52). On the other hand, the
basis functions for MFSK are

xi tð Þ ¼ 2

Ts

r

cos 2πfit; i ¼ 1; 2; . . . ; M (7:320)

fi ¼ fc þ 2i�M � 1ð Þ 1

2Ts
(7:321)

Figures 7.62 and 7.63 show the coherent demodulators for CSK and MFSK, respectively.
As usual, the basis functions must be obtained via carrier recovery.

The bit error probability of coherent CSK or MFSK can be evaluated via the exact
expression in (7.240) or the union bound in (7.239). Specifically, the minimum Euclidean
distance is given in (7.206) as dmin ¼ 2Es

p
. Therefore, by substituting dmin into (7.239) and

(7.240), and noting that σ2 ¼ N0=2, we obtain the union bound

Table 7.8 Signal-to-noise ratio advantage of MQAM over MPSK

M g (dB)

8 1.65
16 4.20
32 7.02
64 9.95
128 12.92
256 15.92
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Pb � M

2
Q

Es

N0

r� �
¼ M

2
Q

Eb

N0
log2 M

r� �
(7:322)

and the exact expression

Pb ¼ M=2

M � 1
1� 1

2π
p

ð1

1
e y2=2 1� Q yþ 2Eb

N0
log2 M

r� �� �M 1

dy

" #

(7:323)

For Pb510 2, the union bound is very close to the exact expression.

7.18 Noncoherent CSK and MFSK

For noncoherent demodulation of CSK or MFSK, the noncoherent M-path demodulator in
Figure 7.42 can be employed. As in the case of coherent demodulation, the basis functions
and their corresponding quadrature counterparts for CSK are
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Figure 7.62 Coherent CSK demodulator.
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Figure 7.63 Coherent MFSK demodulator.
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xi tð Þ ¼ 2

Ts

r

wi tð Þ cos 2πfct; i ¼ 1; 2; . . . ; M (7:324)

xi t;
π
2

� 
¼ 2

Ts

r

wi tð Þ sin 2πfct; i ¼ 1; 2; . . . ; M (7:325)

For MFSK the basis functions and the corresponding quadrature functions are given by

xi tð Þ ¼ 2

Ts

r

cos 2πfit; i ¼ 1; 2; . . . ; M (7:326)

xi t;
π
2

� 
¼ 2

Ts

r

sin 2πfit; i ¼ 1; 2; . . . ; M (7:327)

fi ¼ fc þ 2i�M � 1ð Þ 1

2Ts
(7:328)

Figures 7.64 and 7.65 show the noncoherent CSK and MFSK demodulators, respectively.
The exact bit error probability and its union bound are given in (7.245) and (7.246),
respectively, and are cited here again for convenience:
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Figure 7.64 Noncoherent CSK demodulator.
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Pb � M

4
e

Eb
2N0

� 
log2 M

(7:330)

For all practical purposes, the union bound approximates the exact expression well. For
Pb510 2 coherent demodulation enjoys an advantage of less than 1 dB in signal-to-noise
ratio over noncoherent demodulation.

7.19 Coherent CPM with sequence detection

Coherent CPM includes both coherent MSK and precoded MSK, and CP-MFSK. The
general waveform for CPM is given in (6.145) for the Nth data symbol DN of the semi-
infinite sequence DN:

s tð Þ ¼ A cos 2πfct þ f t;DNð Þ½ � (7:331)

Symbol-
to-bit

converter

siMaximum
detector

t = Ts

t = Ts

t = Ts

t = Ts

(   )2

Σ

Σ

{0, 1}
s(t,θ) + n(t)

(   )2

(   )2

(   )2

0

Ts∫

0

Ts∫

0

Ts∫

0

Ts∫

cos2π f1t
2
Ts

cos2π fMt
2
Ts

sin2π fMt
2
Ts

sin2π f1t
2
Ts

X1
2

XM
2

Figure 7.65 Noncoherent MFSK demodulator.

386 Demodulation



where f t;DNð Þ represents the phase of the carrier up to the end of the Nth symbol, that is,
NTs � t5 N þ 1ð ÞTs:

f t;DNð Þ ¼ 2πh
XN

i¼ 1
2Di �M � 1ð Þ q t � iTsð Þ; NTs � t5 N þ 1ð ÞTs (7:332)

The digital modulation index h is assumed to be fixed for all symbols in our analysis and
Di 2 1; 2; . . . ; Mf g is the ith symbol in the symbol stream. The pulse q tð Þ is defined in
(6.147) as the integral of the symbol pulse shape pðtÞ, which we assume to have duration L
symbols. Thus, symbols with the indexes i ¼ N � Lþ 1, N � Lþ 2; . . . ; N influence the
phase fðt;DN Þ via its pulse shape, while symbols with indexes i ¼ �1; . . . ; N � L
produce the phase accumulation in the past. Thus, we can represent f t;DNð Þ as follows:

f t;DNð Þ ¼ πh
XN L

i¼ 1
2Di �M � 1ð Þ þ 2πh

XN

i¼N Lþ1

2Di �M � 1ð Þ q t � iTsð Þ

¼ ’N þ ’ t;DNð Þ; NTs � t � N þ 1ð ÞTs
(7:333)

where ’N represents the phase accumulation up to time N � Lþ 1ð ÞTs and ’ t;DNð Þ
represents the phase contribution between the time N � Lþ 1ð ÞTs and N þ 1ð ÞTs. To arrive
at (7.333), we also assume that q tð Þ ¼ 0 for t < 0 (causality) and q tð Þ ¼ 1=2 for t 	 LTs. This
holds true for the symbol pulse shapes p tð Þ in Table 6.11.When the digital modulation index
h is rational, that is, h ¼ a=b, where a and b are relative prime positive integers, then at
t ¼ NTs there are b terminal phase states when L = 1 for even a, and 2b terminal phase states
for odd a. These terminal phase states are f0; πa=b; 2πa=b; :::; ðb� 1Þπa=bg and
f0; πa=b; :::; ð2b� 1Þπa=bg, respectively. For L > 1, the number of terminal states is
bML 1 for even a and 2bML 1 for odd a.

Example 7.25 Phase states
Consider MSK, which is CP-FSK with h = 1/2 and rectangular symbol pulse shape with
L = 1 (full response). The terminal phase states at t ¼ NTs are f0; π=2; π; 3π=2g.
■

The above observations allow us to conclude that the phase function of CPM is a finite-
state machine and can be represented by a state diagram or a state trellis. The state trellis is
preferable because it allows us to view the state transitions in time. From (7.333) we can
represent a state at time t ¼ NTs as

SN ¼ ’N ; L ¼ 1
’N ; DN 1; DN 2; . . . ; DN Lþ1f g; L41

�
(7:334)

and a state at time t ¼ N þ 1ð ÞTs can be updated from SN as follows:

SNþ1 ¼ ’Nþ1; L ¼ 1
’Nþ1; DN ; DN 1; . . . ; DN Lþ2f g; L41

�
(7:335)

where
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’Nþ1 ¼ ’N þ πh 2DN Lþ1 �M � 1ð Þ (7:336)

Example 7.26 Trellis for CP-FSK with h = 2/3 and L = 2
We consider the case of the rectangular symbol pulse shape only and note that the total
number of states is 3ð Þ 2ð Þ2 1¼ 6. Note that the three terminal phase states are
0; 2π=3; 4π=3f g, and with L = 2 these three terminal phase states combine with two
symbols in the set Di 2 1; 2f g to form a total of six states f’N ;DN 1g, which are (0,1),
(0,2), (2π/3, 1), (2π/3, 2), (4π/3, 1), and (4π/3, 2). Now, if the system is in terminal phase
state ’N ¼ 2π=3 mod 2πð Þ and DN 1 ¼ 2, then the next terminal phase state (mod 2π) for
the next input symbol 2 is

’Nþ1 ¼ ’N þ πh 2DN 1 � 2� 1ð Þ
¼ 2π

3
þ 2π

3
4� 3ð Þ ¼ 4π

3

(7:337)

andDN ¼ 2. The state diagram in Figure 7.66 shows the transition from state ’N ;DN 1ð Þ to
state ’Nþ1;DNð Þ. The trellis in Figure 7.67 shows the transition of state ’N ;DN 1ð Þ to state
’Nþ6;DNþ5ð Þ over six symbol periods. For example, the path (0,1), (4π/3,1), (2π/3,2), (4π/3,
2) through the trellis represents the detected symbol stream 1,1,2,2. On the other hand, the
path (2π/3,1), (0,2), (2π/3,1), (0,1) represents the detected symbol stream 1,2,1,1.
■

The above example shows that the trellis can be used to detect a sequence of CPM
symbols. The algorithm that performs sequence detection via a trellis is known as the Viterbi
algorithm. To implement the Viterbi algorithm, one needs to evaluate the path metric at each
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Figure 7.66 State diagram for CP-FSK with h = 2/3 and L = 2.
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node. For coherent demodulation, the most logical choice of metric is the correlation metric
similar to (7.218) for symbol-by-symbol detection. Let us define the correlation metric for a
received CPM signal plus noise x tð Þ given the semi-infinite symbol sequence DN :

CN ¼
ð Nþ1ð ÞTs

1
x tð Þ cos 2πfct þ f t;DNð Þ½ �dt

¼
ð Nþ1ð ÞTs

1
x tð Þ cos 2πfct cos f t;DNð Þ dt �

ð Nþ1ð ÞTs

1
x tð Þ sin 2πfct sin f t;DNð Þ dt

(7:338)

Note that there areML distinct sequences of symbols DN ; DN 1; . . . ; DN Lþ1ð Þ and b or 2b
possible terminal phase states ’N . Therefore, there are bML or 2bML metrics in any symbol
interval. The metric CN can be expressed recursively as

CN ¼ CN 1 þ
ð Nþ1ð ÞTs

NTs

x tð Þ cos 2πfct þ f t;DNð Þ½ �dt

¼ CN 1 þ
ð Nþ1ð ÞTs

NTs

x tð Þ cos 2πfct cos f t;DNð Þdt �
ð Nþ1ð ÞTs

NTs

x tð Þ sin 2πfct sin f t;DNð Þdt

¼ CN 1 þ ΔN

(7:339)

We termCN the path metric and ΔN the branch metric. At each node in the trellis, a surviving
path with the largest metric is retained. There are bML 1 or 2bML 1 surviving paths, one for
each node. The path metrics are then updated by bML or 2bML branch metrics and new
surviving paths are again retained for the next node. Thus, each surviving path has its metric
updated by M new branch metrics. The coherent CPM demodulator is illustrated in
Figure 7.68 based on (7.333) and (7.339).
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Figure 7.67 Trellis for CP-FSK with h = 2/3 and L = 2 for six symbol intervals. The starting state can be any one of the six states.
The bold lines are the trellis for starting state (0,1), which reaches steady-state after three symbol periods.
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Obviously, the initial signal phase must be known for coherent demodulation. In the
following discussion we study the performance of the Viterbi algorithm which implements
sequence detection. Therefore, we first establish the sequence error probability. If the
observed sequence has a length of N symbols assuming the initial time is t = 0, then there
are MN different sequences. The Viterbi algorithm chooses the path of N symbols that is
closest in Euclidean distance to the received sequence. Hence, the sequence error probability
is upper bounded by the union bound

Pse �
X

i6¼j

Q
dij
2σ

� �
(7:340)

where σ2 ¼ N0=2 is the noise variance, and dij is the Euclidean distance between two signals
si tð Þ and sj tð Þ that are unmerged from nTs to nþ Nð ÞTs, whose phase functions f t;DN ;i

� �

and f t;DN ;j

� �
contain two N-symbol sequences that must be different in their first symbol.

Setting the index n to zero, we have

d2ij ¼
ðNTs

0
si tð Þ � sj tð Þ

 �2

dt

¼
ðNTs

0
s2i tð Þ dt þ

ðNTs

0
s2j tð Þ dt � 2

ðNTs

0
si tð Þsj tð Þ dt

(7:341)

The first two terms on the right-hand side of (7.341) are the energy of the sequence of N
symbols. Therefore, each term is equal to NEs, where Es is the symbol energy. Thus,

d2ij ¼ 2NEs � 2

ðNTs

0
A2 cos 2πfct þ f t;DN ;i

� �
 �
cos 2πfct þ f t;DN ;j

� �
 �
dt

¼ 2NEs � 2Es

Ts

ðNTs

0
cos f t;DN ;i

� �� f t;DN ;j

� �
 �
dt

(7:342)

We have assumed that fc is an integer multiple of 1=Ts so that the term containing the second
harmonic is zero. Let us denote

Δf t;DN ;i;DN ;j

� � ¼ f t;DN ;iÞ � f t;DN ;j

� ��
(7:343)

x(t) DiMetric
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Symbol-
to-bit
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cos 2πfct

–sin 2πfct

Figure 7.68 Coherent CPM demodulator.
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Substituting (7.332) into (7.343) yields the following expression

Δf t;DN ;i;DN ;j

� � ¼ 4πh
XN

k¼ 1
Dk;i � Dk;j

� �
q t � kTsð Þ (7:344)

By using (7.343) and (7.344) in (7.342), we obtain the squared Euclidean distance as
follows:

d2ij ¼
2Es

Ts

ðNTs

0
1� cosΔf t;DN ;i;DN ;j

� �
 �
dt

¼ 2Es

Ts

ðNTs

0
1� cos 4πh

XN

k¼ 1
Dk;i � Dk;j

� �
q t � kTsð Þ

" #( )

dt
(7:345)

The sequence error probability in (7.340) is dominated by the term corresponding to dmin, the
minimum of all possible dij’s. LetAd be the average number of paths of distance d from a given
path (this concept is similar to the average number of nearest neighbors of a signal point), we
can approximate the sequence error probability with the first few terms as follows:

Pse �
Xdminþm

d¼dmin

Ad Q
d

2σ

� �
(7:346)

where 3 � m � 5 would suffice and

dmin ¼ lim
N!1

min
i;j
i 6¼j

dij (7:347)

The value of d2min of CP-MFSK of any digital modulation index h ¼ a=b, where a and b are
relative prime positive integers, is given for 1REC pulse shape (full response L = 1) as
follows [7]:

d2min ¼
2Es; integer h
min
γ

4Es 1� sinc γhð Þ½ �f ; b 	 M ; γ ¼ 2; 4; 6; . . . ; 2 M � 1ð Þ
4Es 1� sinc γhð Þ½ �; h50:3017; b5M
2Es; h40:3017; b5M

8
>><

>>:
(7:348)

where sinc γhð Þ ¼ sin πγh=πγh.

Example 7.27 Minimum Euclidean distance for coherent precoded MSK
MSK is CPM with h ¼ 1=2; therefore, by using the second expression in (7.348), we obtain

d2min ¼ 4Eb 1� sinc 1ð Þ½ � ¼ 4Eb 1� sin π
π

� �
¼ 4Eb (7:349)

This implies that dmin ¼ 2 Eb
p

, which is the same minimum Euclidean distance as PSK. This
explains why coherent precoded MSK has the same bit error probability as coherent PSK.
■
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When h is not rational, the minimumEuclidean distance varies with both h andN. For CP-
FSK with 1REC pulse shape, it was shown that when N = 3, h reaches its maximum at 0.715
and d2min ¼ 4:87Eb [8]. Compared with coherent precodedMSK, a gain of 0.85 dB in signal-
to-noise ratio per bit is achieved. The value of h can be approximated by h = 5/7 and the
Viterbi algorithm can be implemented using the phase trellis. Another observation from
(7.348) shows that dmin increases with increasing M, since a larger M results in a larger
symbol energy Es. This also holds true for h that is not rational.

Example 7.28 CP-4FSK with h = 5/7 and 17/19
Let us examine the case ofM = 4 to see howmuch improvement we can extract from a higher
modulation order and higher modulation index. From the second expression in (7.348) for
h = a/b = 5/7, we get

d2min ¼ min
γ

4Es 1� sinc
5γ
7

� �� ��
; γ ¼ 2; 4; 6

¼ min
γ

4Es 1� sin 5πγ=7
5πγ=7

� �� �

¼ min 4:87Es; 3:81Es; 3:77Esf g
¼ 3:77Es ¼ 7:54Eb

(7:350)

Comparing (7.350) with (7.349) shows that CP-4FSK with h = 5/7 achieves a 2.75 dB gain
over precoded MSK.

For h = 17/19, we obtain

d2min ¼ min
γ

4Es 1� sinc
17γ
19

� �� ��
; γ ¼ 2; 4; 6

¼ min
γ

4Es 1� sin 17πγ=19
17πγ=19

� �� �

¼ min 4:44Es; 4:35Es; 4:22Esf g
¼ 4:22Es ¼ 8:44Eb

(7:351)

Thus, CP-4FSK with h = 17/19 achieves a 3.24 dB gain over precoded MSK.
■

This example shows that by increasing M one can achieve a better power efficiency,
but only at the expense of bandwidth, since a higher digital modulation index is
required.

Example 7.29 Viterbi algorithm
In this example, we illustrate the Viterbi algorithm for precoded MSK, which is CPM
with h = 1/2 and 1-REC pulse shape. Since h ¼ a=b ¼ 1=2 and L = 1, there are four terminal
phase states, namely, 0; π=2; π; 3π=2f g, which are also the states for the trellis. The state
diagram is shown in Figure 7.69 and the state trellis is shown in Figure 7.70.
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Note that it takes a minimum of two bit intervals for a path to leave a state and re-enter the
same state. Therefore, in the calculation of d2min for precoded MSK, the observed sequence
has length N = 2 symbols. Let us assume that the algorithm starts at state 0 at time t = 0 and
that the initial phase is zero. Consider the received bit sequence {1, 1}, which corresponds to
the sequence of symbols D0 ¼ 2; D1 ¼ 2f g. We wish to use the Viterbi algorithm to recover
this sequence of symbols. Assuming no noise, the received signal for each symbol interval is
given in (7.331). The state SN 2 0; π=2; π; 3π=2f g at each time index N will be denoted as
0N ; π=2N ; πN ; 3π=2N .

1. There are two paths leaving the initial sate 00 to enter state π 21= (when D0 = 2) and
state 3π=21 (when D0 = 1). The phases f t; D0ð Þ ¼ ’0 þ ’ t; D0ð Þ are
f t; 1ð Þ ¼ 0þ π 2� 2� 1ð Þq tð Þ ¼ �πq tð Þ and f t; 2ð Þ ¼ 0þ π 4� 2� 1ð Þq tð Þ ¼
πq tð Þ. The metrics C0 at each state π=21 and 3π=21 are given by

3π
2

0 2
π

π

2 21

1

1

1

2

2

Figure 7.69 State diagram of precoded MSK.
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Figure 7.70 Trellis for precoded MSK over six bit intervals. The starting state is state 0.
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C0ðπ=21Þ ¼
ðTs

0
A cos 2πfct þ f t; 2ð Þ½ � cos 2πfct þ f t; 2ð Þ½ �dt

¼ ATs
2

(7:352)

and

C0ð3π=21Þ ¼
ðTs

0
A cos 2πfct þ f t; 2ð Þ½ � cos 2πfct þ f t; 1ð Þ½ �dt

¼ A

2

ðTs

0
cos f t; 2ð Þ � f t; 1ð Þ½ � dt ¼ A

2

ðTs

0
cos 2πq tð Þ½ � dt

¼ A

2

ðTs

0
cos

2πt
2Ts

dt ¼ 0

(7:353)

2. There are twopaths leavingπ=21 to enter state 02 (whenD1 ¼ 1) and stateπ2 (whenD1 ¼ 2).
There are also two paths leaving 3π=21 to enter state 02 (when D1 ¼ 2) and state π2 (when
D1 ¼ 1).We calculate the twometrics for each state and retain only the survivor pathwith the
largest metric. The phase f t; D0;D1ð Þ ¼ ’1 þ ’ t; D0;D1ð Þ ¼ ’0 þ π

2 2D0 � 2� 1ð Þþ
π 2D1 � 2� 1ð Þq t � Tsð Þ is given by

f t; 2; 1ð Þ ¼ π

2
4� 2� 1ð Þ þ π 2� 2� 1ð Þ t � Ts

2Ts
¼ � πt

2Ts
þ π (7:354)

f t; 2; 2ð Þ ¼ π
2

4� 2� 1ð Þ þ π 4� 2� 1ð Þ t � Ts
2Ts

¼ πt
2Ts

(7:355)

f t; 1; 2ð Þ ¼ π
2

2� 2� 1ð Þ þ π 4� 2� 1ð Þ t � Ts
2Ts

¼ πt
2Ts

� π (7:356)

f t; 1; 1ð Þ ¼ π
2

2� 2� 1ð Þ þ π 2� 2� 1ð Þ t � Ts
2Ts

¼ � πt
2Ts

(7:357)

There are four new metrics to be computed and they are listed below with the first two for
state 02 and the last two for state π2:

C1 02ð Þ ¼ C0ðπ=21Þ þ
ð2Ts

Ts

A cos 2πfct þ f t; 2; 1ð Þ½ � cos 2πfct þ f t; 2; 2ð Þ½ �dt

¼ ATs
2

� A

2

ð2Ts

Ts

cos
πt
Ts

dt ¼ ATs
2

: survivor

(7:358)

Ĉ1 02ð Þ ¼ C0ð3π=21Þ þ
ð2Ts

Ts

A cos 2πfct þ f t; 1; 2ð Þ½ � cos 2πfct þ f t; 2; 2ð Þ½ �dt

¼ �A

2

ð2Ts

Ts

dt ¼ �ATs
2

5C1 02ð Þ : eliminated

(7:359)

394 Demodulation



C1 π2ð Þ ¼ C0ðπ=21Þ þ
ð2Ts

Ts

A cos 2πfct þ f t; 2; 2ð Þ½ � cos 2πfct þ f t; 2; 2ð Þ½ �dt

¼ ATs
2

þ A

2

ð2Ts

Ts

dt ¼ ATs : survivor

(7:360)

Ĉ1 π2ð Þ ¼ C0ð3π=21Þ þ
ð2Ts

Ts

A cos 2πfct þ f t; 1; 1ð Þ½ � cos 2πfct þ f t; 2; 2ð Þ½ �dt

¼ A

2

ð2Ts

Ts

cos
πt
Ts

dt ¼ 05C1 π2ð Þ : eliminated

(7:361)

We now have two surviving paths: 00; π=21; π2f g with metric C1 π2ð Þ ¼ ATs and
00; π=21; 02
� �

with metric C1 02ð Þ ¼ ATs=2. Since C1 π2ð Þ4C1 02ð Þ, we choose path
00; π=21; π2f g as the detected path. The data symbols associated with this path is
D0 ¼ 2; D1 ¼ 2f g and the data bits can be calculated via 2Di �M � 1 with M = 2 as

{1, 1}, which is the correct data sequence.
■

The above example shows that the Viterbi algorithm can be used for sequence detection.
Of course, in the case of precoded MSK, the demodulator in Figure 7.20 works well and is
optimum for symbol-to-symbol detection. For partial response CPM (L > 1) withM > 2, the
Viterbi algorithm is advantageous because the algorithm can be implemented easily as part
of the digital baseband processor of the receiver. Furthermore, when the channel has
memory, as in the case of intersymbol interference, symbol-by-symbol detection is no
longer optimal and the Viterbi algorithm offers the best detection. In (7.346), we give the
expression for sequence error probability. As an end user, we are more interested in the
symbol error probability, which is given by

Ps �
Xdminþm

d¼dmin

Bd Q
d

2σ

� �
(7:362)

where 3 � m � 5 would suffice and Bd is the total number of symbol errors on all paths of
distance d from a given path. The value of Bd can be obtained for each CPM with rational h
by searching the trellis.

In summary, the Viterbi algorithm is a viable trellis detection scheme for coherent CP-
MFSK with rational h. The Viterbi algorithm is indeed a maximum likelihood sequence
detection scheme N ! 1ð Þ that offers the best detection (as opposed to a symbol-by-
symbol detection that has been the theme of the previous sections).

7.20 Coherent CPM with symbol-by-symbol detection

Using the memory embedded in CPM, we could design a coherent demodulator that can
leverage the information contained in the phase to enhance the detection. The Viterbi
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algorithm is one scheme that applies well to CP-MFSK with rational h. In this section, we
study a method that does not rely on the trellis; therefore, it applies to any CPM in general.
The method calculates the metrics of an observable sequence of N symbols, and then uses
these metrics to make a decision on the first symbol only. Thus, the detection made on the kth
symbol is based on the metrics of the observable sequence starting with the kth symbol and
ending with the (k + N 1)th symbol. Since the decision is made on one symbol at a time,
we could use the probability density function of the received signal xðtÞ ¼ s t Hi;Dn;N 1

��� �
+

noise, given hypothesis Hi ofM possible hypotheses (forM symbols) and N – 1 observable
symbols Dn;N 1 that follow the kth symbol. There are n ¼ MN 1 equally likely combina-
tions of observable sequences Dn;N 1 of N – 1 symbols. Noise is Gaussian with variance
σ2 ¼ N0=2. Using signals instead of vectors in (7.181), we get

fX xjHi; Dn;N 1

� � ¼ 1

2π
p

σ
e 1=2σ2ð Þ Ð NTs

0
x tð Þ s tjHi;Dn;N 1ð Þ½ �2dt (7:363)

Using (7.217) and noting that
Ð
x2 tð Þ dt is common to all Dn;N 1 and all signals

s t Hi;Dn;N 1

��� �
have the same energy NEs, which is N times the symbol energy Es, we

can write the right-hand side of (7.363) as follows:

fX xjHi; Dn;N 1

� � ¼ α

2π
p

σ
e 1=σ2ð Þ Ð NTs

0
x tð Þs tjHi;Dn;N 1ð Þdt (7:364)

where the constant α is independent of Dn;N 1 and is given by

α ¼ e
1=2σ2ð Þ Ð NTs

0
x2 tð ÞdtþNTsEs

h i

(7:365)

To remove the condition onDn;N 1, we need to average (7.364) over the probability density
function ofDn;N 1, which is discrete with a value of 1=MN 1 for each possible symbolDi in
the set 1; 2; . . . ; Mf g:

fD Dn;N 1

� � ¼
YN 1

i¼1

fDi Dið Þ

¼ 1

MN 1

YN 1

i¼1

δ Di � 1ð Þ þ δ Di � 2ð Þ þ    þ δ Di �Mð Þ½ �
(7:366)

Thus the probability density function fX xjHið Þ is given by

fX xjHið Þ ¼ 1

MN 1

XMN 1

n¼1

α

2π
p

σ
e 1=σ2ð Þ Ð NTs

0
x tð Þs tjHi;Dn;N 1ð Þdt (7:367)

Using (7.367), we construct the following M metrics:

c xjHið Þ ¼
XMN 1

n¼1

e 1=σ2ð Þ Ð NTs
0

x tð Þs tjHi;Dn;N 1ð Þdt ; i ¼ 1; 2; . . . ; M (7:368)

The detector chooses a hypothesis that corresponds to the largest metric and outputs the first
symbol of N observable symbols (first symbol plus Dn;N 1 following symbols) that is

396 Demodulation



represented by the hypothesis. The detector that follows the above rule is obviously a
maximum likelihood detector N ! 1ð Þ. The symbol-by-symbol coherent CPM demodu-
lator with N observable symbols is illustrated in Figure 7.71. Note that the signal
s tjHi; Dn;N 1

� �
is actually a sequence of N symbols with each symbol waveform given in

(7.331). The performance of the symbol-by-symbol detection demodulator should be the
same as the Viterbi demodulator in Figure 7.68 for N ! 1. In practice, N is finite and
limited to a few symbols, but at high signal-to-noise ratios the performance of both
demodulators should be comparable.

7.21 Noncoherent CPM

When the initial phase of the received CPM signal is not known, coherent demodulation is
not possible and noncoherent demodulation based on envelope detection must be employed.
For symbol-by-symbol detection, we can modify the metric c x Hijð Þ in (7.368) to account for
the unknown phase. Let us assume that the initial phase θ is uniformly distributed between 0
and 2π radians. The metric in (7.368) becomes

c xjHi; θð Þ ¼
XMN 1

n¼1

e 1=σ2ð Þ Ð NTs

0
x tð Þs tjHi;Dn;N 1;θð Þdt ; i ¼ 1; 2; . . . ; M (7:369)
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Figure 7.71 Coherent CPM with symbol-by-symbol detection using a sequence of N observable symbols.
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where x tð Þ is again the received CPM signal s tð Þ plus noise over 0 � t � NTs and

s tjHi; Dn;N 1; θ
� � ¼ A cos 2πfct þ f t; Dn;N 1

��Hi

� �þ θ

 �

0 � t � NTs (7:370)

We can express the right-hand side of (7.370) as follows:

s tjHi; Dn;N 1; θ
� � ¼ s tjHi; Dn;N 1

� �
cos θ � s t;

π
2

���Hi; Dn;N 1

� 
sin θ (7:371)

where s t; π=2jHi; Dn;N 1

� �
is the quadrature version of s tjHi; Dn;N 1

� �
and both are given

by

s tjHi; Dn;N 1

� � ¼ A cos 2πfct þ f t; Dn;N 1

��Hi

� �
 �
(7:372)

s t;
π
2

���Hi; Dn;N 1

� 
¼ A sin 2πfct þ f t; Dn;N 1

��Hi

� �
 �
(7:373)

Using the above result, we obtain the correlation between x tð Þ and s tjHi; Dn;N 1; θ
� �

as
follows:

ðNTs

0
x tð Þ s tjHi; Dn;N 1; θ

� �
dt ¼ cos θ

ðNTs

0
x tð Þ s tjHi; Dn;N 1

� �
dt

� sin θ
ðNTs

0
x tð Þ s t;

π
2

���Hi; Dn;N 1

� 
dt

¼ In;i cos θ � Qn;i sin θ ¼ Zn;i cos θ þ ρn;i
� �

(7:374)

where

In;i ¼
ðNTs

0
x tð Þ s tjHi; Dn;N 1

� �
dt (7:375)

Qn;i ¼
ðNTs

0
x tð Þ s t;

π
2

���Hi; Dn;N 1

� 
dt (7:376)

Zn;i ¼ I2n;i þ Q2
n;i

q
; ρn;i ¼ tan 1 Qn;i

In;i

� �
(7:377)

Substituting (7.374) into (7.369), we obtain the set of M conditional metrics

c xjHi; θð Þ ¼
XMN 1

n¼1

e 1=σ2ð ÞZn;i cos θþρn;ið Þ ; i ¼ 1; 2; . . . ; M (7:378)

The unconditional metrics can be obtained by averaging c xjHi; θð Þ using the probability
density function fθ θð Þ ¼ 1=2π; 0 � θ � 2π:
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c xjHið Þ ¼
ð2π

0
c xjHi; θð Þ fθ θð Þdθ

¼
XMN 1

n¼1

ð2π

0

1

2π
e 1=σ2ð ÞZn;i cos θþρn;ið Þdθ

¼
XMN 1

n¼1

I0
Zn;i
σ2

� �
; i ¼ 1; 2; . . . ; M

(7:379)

where I0 ð Þ is the modified Bessel function of zeroth order.
Obviously, the demodulator that employs this set of metrics should choose the symbol that

corresponds to the largest metric. Figure 7.72 shows the noncoherent CPMdemodulator. Simon
et al. [1] suggested that an odd number of observable symbols may be used N ¼ 3; 5; . . .ð Þ.
Noncoherent demodulation requires approximately 1 dB more in Eb=N0 as compared to
coherent demodulation [8]. A similar observation holds for noncoherent MFSK.

In the following discussion we focus on the use of the Viterbi algorithm for sequence
detection of noncoherent CPM. Themetric employed by the Viterbi algorithmmust take into
account the unknown initial phase θ of the received signal. Let us consider the correlation
function of the Nth symbol interval between the received signal x tð Þ and the local reference:
ð Nþ1ð ÞTs

NTs

x tð Þ cos 2πfct þ f t; DNð Þ þ θ½ �dt ¼ cos θ
ð Nþ1ð ÞTs

NTs

x tð Þ cos 2πfct þ f t; DNð Þ½ �dt

� sin θ
ð Nþ1ð ÞTs

NTs

x tð Þ sin 2πfct þ f t; DNð Þ½ �dt

¼ IN cos θ � QN sin θ ¼ ZN cos θ þ ρNð Þ
(7:380)

where we define IN, QN, ZN, and ρN as follows:

IN ¼
ð Nþ1ð ÞTs

NTs

x tð Þ cos 2πfct þ f t; DNð Þ½ �dt (7:381)

QN ¼
ð Nþ1ð ÞTs

NTs

x tð Þ sin 2πfct þ f t; DNð Þ½ �dt (7:382)

ZN ¼ I2N þ Q2
N

q
; ρN ¼ tan 1 QN

IN

� �
(7:383)

It is obvious that the information about the Nth symbols is contained in the envelope ZN of
the correlation function. Therefore, the generic demodulator in Figure 7.68 also applies in
this case but with a noncoherent path metric cN defined for a path of N symbol as follows:

cN ¼
XN

i¼0

Zi (7:384)

where Zi is the noncoherent branch metric for the ith symbol defined in (7.383). The Viterbi
algorithm can be carried out as described in Example 7.29.
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Figure 7.72 Noncoherent CPM with symbol-by-symbol detection using a sequence of N observable symbols.
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7.22 Performance summary of M-ary modulation
techniques

Our study shows the M-ary demodulation can be achieved coherently or noncoherently. As
in the case of binary signals, coherent demodulation outperforms noncoherent demodula-
tion. We consider three groups of M-ary signals, namely, the I-Q signals such as MASK,
MPSK, andMQAM, and the orthogonal signals such as CSK andMFSK, and, finally, CPM.
Coherent demodulation of the M-ary signals in these groups reveals that the I-Q signals are
much less power-efficient than orthogonal signals, but much more bandwidth-efficient. On
the other hand, CPM is a good compromise between power-efficiency and bandwidth-
efficiency. Within the I-Q group, MQAM is more power-efficient than MPSK, which is, in
turn, more power-efficient thanMASK. One interesting fact emerges from this study, that is,
noncoherent CSK andMFSK perform almost as well as their coherent counterparts for large
M. Table 7.9 summarizes the performance of all M-ary modulation techniques.

Table 7.9 Performance of M-ary modulation techniques (the symbol duration is Ts ¼ Tb log2 M)

Modulation Bit error probability Bandwidth

Coherent MASK 2 M�1ð Þ
M log2 M

Q 6 log2 M
M 2�1

Eb
N0

� r� �
2

Ts

Coherent MPSK, M > 2 2
log2 M

Q 2Eb
N0

log2 M
q

sin π
M

�  2

Ts

Coherent OQPSK Q 2Eb
N0

q�  2

Ts

Coherent DMPSK, M > 2 4
log2 M

Q 2Eb
N0

log2 M
q

sin π
M

�  2

Ts

Noncoherent DMPSK, M > 2 2
log2 M

Q 2Eb
N0

log2 M
q

sin π
2

p
M

�  2

Ts

Noncoherent π/4 DQPSK Q 1:11 Eb
N0

q�  2

Ts

Coherent MQAM
4 1�1= M

pð Þ
log2 M

Q 3 log2 M
M�1

Eb
N0

� r� �
2

Ts

Coherent DMQAM
8 1�1= M

pð Þ
log2 M

Q 3 log2 M
M�1

Eb
N0

� r� �
2

Ts

Coherent CSK, MFSK 5M
2 Q

Eb
N0
log2 M

q� 
2M
Ts
forCSK; M

Ts
for MFSK

Noncoherent CSK, MFSK 5M
4 e

� Eb=2N0ð Þ log2 M 2M
Ts
forCSK; M

Ts
for MFSK

Coherent CPM Ps �
Pdminþ5

d dmin

BdQ d
2σ

� �
: Viterbi [8]

Noncoherent CPM About 1 dB less [8]
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7.23 OFDM demodulation

In Section 6.18, we provided a description of OFDM and its implementation. In this section,
the demodulation process is discussed. The functional block diagram of the demodulation is
depicted in Figure 7.73. The received OFDM signal is first demodulated into the I-Q
baseband waveform, which contains the subcarrier symbols. The baseband waveform is
passed through a filter p(t) that represents the interpolation pulse employed by the D/A
converter in the transmitter and then converted into time-domain samples sL nð Þf gN 1

n¼0 by the
A/D converter at the sampling rate N/Ts. The guard interval created by the cyclic prefix is
removed and the FFT processes the time-domain OFDM samples into the frequency-domain
samples Z kð Þf gN 1

k¼0 , which represent the I-Q values of the subcarrier symbols. The sub-
carrier symbols are de-mapped into parallel bit streams. The parallel-to-serial converter
(multiplexer) combines these parallel bit streams into one single serial bit stream at the
output.

In practice, the demodulation of OFDM signals is not as straightforward as it was
demonstrated in Figure 7.73, especially in a multipath fading channel. In the following
discussion we use the WLAN standard IEEE 802.11a [9] which operates in the 5 GHz band
for our study, although the discussion applies as well to the WLAN standard IEEE 802.11g
[10], which operates in the 2.4 GHz band. OFDM is employed explicitly in IEEE 802.11a,
while IEEE 802.11g employs both OFDM and direct sequence spread spectrum (DS-SS) to
be backward compatible with WLAN standard IEEE 802.11b. In these standards, data
symbols are transmitted in a packet, which is embedded in a frame whose format is given
in Figure 7.74.

Table 7.10 shows the subcarrier modulation with associated data rate and the rate of
convolutional codes employed for error correction. The timing-related parameters for IEEE

cos 2π fct

I

{0, 1}

Filter p(t)
and
A/D

converter

sin 2π fct

Q

Remove
guard

interval
FFT

Subcarrier
symbol

detection

…

Figure 7.73 Block diagram of an OFDM demodulator.

Preamble:
12 symbols

Signal:
One symbol

Data:
Variable number of symbols

Figure 7.74 Frame format for IEEE 802.11a [9].
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802.11a are shown in Table 7.11. The IEEE 802.11a standard specifies a 64-point IFFT (and
hence 64-point FFT) as illustrated in Figure 7.75. The coefficients 1 to 26 are mapped into
the same numbered IFFT inputs, while the coefficients 26 to 1 are copied into IFFT
inputs 38 to 63. The rest of the inputs, 27 to 37, and the 0 (dc) input, are set to zero. After
performing an IFFT, the output is cyclically extended to the desired length. The reverse
process is carried out for an FFT.

Timing synchronization

In a packet-switched WLAN, timing synchronization must be acquired during the preamble
in order to retrieve the data packet. The length and the content of the IEEE 802.11a preamble
have been carefully designed to facilitate timing synchronization while keeping the frame
overhead to a minimum. The preamble in Figure 7.76 consists of ten short OFDM symbols

Table 7.10 Data rate and subcarrier modulation of IEEE 802.11a [9]

Data rate
(Mbits/s) Modulation

Coding
rate (R)

Coded bits per
subcarrier (NBPSC)

Coded bits per
OFDM symbol

(NCBPS)

Data bits per
OFDM symbol

(NDBPS)

6 BPSK 1/2 1 48 24
9 BPSK 3/4 1 48 36
12 QPSK 1/2 2 96 48
18 QPSK 3/4 2 96 72
24 16 QAM 1/2 4 192 96
36 16 QAM 3/4 4 192 144
48 64 QAM 2/3 6 288 192
54 64 QAM 3/4 6 288 216

Table 7.11 Timing-related parameters of IEEE 802.11a [9]

Parameter Value

NSD: number of data subcarriers 48
NSP: number of pilot subcarriers 4
NST: number of subcarriers, total 52 (NSD + NSP)
ΔF : subcarrier frequency spacing 0.3125MHz ( 20MHz/64)
TFFT: IFFT/FFT period 3.2 μs (1/ΔF)
TPREAMBLE: PLCP preamble duration 16 μs (TSHORT + TLONG)
TSIGNAL: duration of the SIGNAL BPSK OFDM symbol 4.0 μs (TGI + TFFT)
TGI: GI duration 0.8 μs (TFFT/4)
TGI2: training symbol GI duration 1.6 μs (TFFT/2)
TSYM: symbol interval 4 μs (TGI + TFFT)
TSHORT: short training sequence duration 8 μs (10 × TFFT/4)
TLONG: long training sequence duration 8 μs (TGI2 + 2 × TFFT)
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and two long OFDM symbols. The parameters t1 to t10 denote short training OFDM
symbols, and T1 and T2 denote long training OFDM symbols. The total training length is
16 μs including two guard intervals (GI2) between the short symbol t10 and the long symbol
T1. The dashed boundaries in Figure 7.76 denote repetitions due to the periodicity of the
IFFT. A short OFDM symbol consists of 12 subcarriers, which are modulated by the
elements of the sequence S, given by

S 26;26 ¼ 13

6

r

0; 0; 1þ j; 0; 0; 0; �1� j; 0; 0; 0; 1þ j; 0; 0; 0;f
� 1� j; 0; 0; 0; �1� j; 0; 0; 0; 1þ j; 0; 0; 0; 0; 0; 0; 0; �1� j; 0; 0; 0;

�1� j; 0; 0; 0; 1þ j; 0; 0; 0; 1þ j; 0; 0; 0; 1þ j; 0; 0; 0; 1þ j; 0; 0g
(7:385)
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Figure 7.75 Inputs and outputs of IFFT [9].
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Figure 7.76 OFDM training structure [9].
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The subscript 26, 26 of S represents 53 subcarriers (including a zero value at dc)
numbering from 26 to 26. The multiplication factor 13=6

p
is employed to normalize

the average power of the short training OFDM symbols, which employs only 12 subcarriers
whose indexes are a multiple of 4. This results in a periodicity of TFFT=4 ¼ 0:8 μs, which is
the length of a short training OFDM symbol.

A long training OFDM symbol consists of 53 subcarriers, which are modulated by the
elements of the sequence L, given by

L 26;26 ¼f1; 1; �1; �1; 1; 1;�1; 1; �1; 1; 1; 1; 1; 1; 1; �1; �1; 1; 1; �1; 1; �1; 1; 1;

1; 1; 0; 1; �1; �1; 1; 1; �1; 1; �1; 1; �1; �1; �1; �1; �1; 1; 1; �1; �1;

1; �1; 1; �1; 1; 1; 1; 1g
(7:386)

Thus, the length of a long training OFDM symbol is 3.2 μs, which is the same as the IFFT/
FFT period. Timing synchronization requires at least two consecutive repeated OFDM
symbols. The IEEE 802.11a preamble satisfies this requirement for both the short and
long training sequences.

Symbol timing defines the FFT window, that is, the set of samples used to calculate the
FFTwindow of each received OFDM symbol. In an ideal situation, symbol timing is fixed to
the first sample of the FFT window. However, this is impossible since jitters in the symbol
timing estimate around the mean value always exist. Each OFDM symbol has a guard
interval, which is a cyclic prefix (CP) of its symbol. If the FFTwindow is set early, but within
the guard interval, it contains samples from the cyclic prefix and the last samples of the
symbol are not used at all. When the FFTwindow is late, then its start is after the first sample
of the OFDM symbol, and the last samples are taken from the cyclic prefix of the next
symbol. Therefore, intersymbol interference (ISI) can be introduced by the samples of the
next symbol. Furthermore, the circular convolutional property required for subcarrier
orthogonality is no longer satisfied. This results in intercarrier interference (ICI).
Therefore, a late symbol timing estimate means a significant loss in performance.
Figure 7.77 illustrates the FFT window timing.

In the following discussion, we present a timing synchronization method that employs a
training sequence of two identical OFDM symbols. This method computes the metric mn

from the received complex baseband signal rn as follows:

Symbol 1 CP2

Late FFT 
window timing

ISI

Symbol 2 Symbol 3CP3

Early FFT 
window timing

Figure 7.77 FFT window timing.
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mn ¼ cnj j2
P2
n

(7:387)

where the function cn is the correlation and Pn is the received power of the second symbol
and both are given by

cn ¼
XD 1

k¼0

rnþkr
�
nþkþD (7:388)

Pn ¼
XD 1

k¼0

rnþkþDj j2 (7:389)

The symbol timing estimate in an AWGN channel can be achieved using only the short
training sequence that consists of a few identical OFDM symbols, with 16 samples in each
symbol. Here, the delay D takes the values

D ¼ 16‘; ‘ ¼ 1; 2; . . . ; 5 (7:390)

In Figure 7.78 an 80-sample delay D was used. The simulation was run by setting the
frequency offset ΔF between the transmitted and received signals to 100 kHz. The correct
symbol timing occurs at the peak with n = 401 and the frequency offset is estimated to be
ΔF

^ ¼ 99:88 kHz at n = 401.
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Figure 7.78 Symbol timing estimate in an AWGN channel with SNR = 10 dB [11].
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Example 7.30 Frequency offset estimation
OFDM signals are more sensitive to carrier frequency offset than single carrier modulation
signals. The performance degradation is caused by two main factors, namely, amplitude
reduction of the desired subcarrier and intercarrier interference. The amplitude reduction
occurs because the desired subcarrier is no longer sampled at the peak of the sinc-function of
the FFT. Furthermore, orthogonality is no longer preserved between subcarriers resulting in
ICI. The frequency offset can be estimated using the maximum likelihood principle (ML),
which forms the correlation

c ¼
XD 1

k¼0

rkr
�
kþD (7:391)

between two consecutive symbols, where rk is the received complex baseband signal. If
there is a carrier frequency offset ΔF between the transmitted and received signals, we can
write the correlation c as follows:

c ¼
XD 1

k¼0

sk ej2π ΔF k τs skþDej2π ΔF kþDð Þτs
� �

(7:392)

where rk ¼ skej2π ΔF kτs , and 1=τs denotes the sampling rate, that is, 1=τs ¼ N=Ts, where
1=Ts is the subcarrier symbol rate, which is also the subcarrier separation, and N is the
number of subcarriers. Simplifying c we obtain

c ¼
XD 1

k¼0

sks
�
kþD ej2π ΔF k τse j2π ΔF kþDð Þτs

¼ e j2π ΔF D τs
XD 1

k¼0

skj j2
(7:393)

Thus the estimated carrier frequency offset is given by

ΔF
^ ¼ θc

2πDτs
(7:394)

where θc is the angle of c, that is, θc ¼ tan 1 ImðcÞ=ReðcÞ½ �. Note that θc is defined
unambiguously only in �π; π½ �, hence the absolute value of ΔF must obey

ΔFj j5 π
2πDτs

¼ 1

2Dτs
(7:395)

Using IEEE 802.11a as an example for the short training OFDM symbol, the delay isD = 16,
and for the long training OFDM symbol, the delay is D = 64. Furthermore, we use
1=τs ¼ N=Ts ¼ 20MHz as seen in Table 7.10. Thus,

ΔFshortj j5 20� 106

2� 16
¼ 625 kHz (7:396)
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and

ΔFlong

�� ��5
20� 106

2� 64
¼ 156:25 kHz (7:397)

Thus the carrier frequency offset estimate would be more reliable with the short training
sequence. For the IEEE 802.11a, the carrier frequency is about 5.3GHz. The maximum
clock error is 20� 10 6. Therefore, the maximum error between the transmitter and receiver
clocks is 40� 10 6, and this results in a maximum frequency offset
ΔFmax ¼ 5:3� 109 � 40� 10 6 ¼ 212 kHz. This frequency offset can only be estimated
accurately with the short training sequence. If (7.388) is employed instead of (7.391) for
frequency offset estimation, then (7.394) becomes

ΔF
^ ¼ θc n

2πDτs
(7:398)

where θcn is the angle of c^n, the correlation value corresponding to the symbol timing
estimate n̂.
■

The carrier frequency offset can be estimated quite accurately. Figure 7.79 displays the
probability distribution function (PDF) of the frequency offset estimate in an AWGN
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Figure 7.79 PDF of frequency-offset estimate in AWGN, SNR = 10 dB [11].
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channel. The simulation was run with ΔF = 100 kHz, SNR = 10 dB, and D = 80. The PDF is
bell-shaped and centered at 100 kHz. The maximum frequency offset error can be taken to
be 4 kHz.

Carrier phase synchronization

The error in the frequency offset estimate is small; therefore, the resulting loss in SNR due to
ICI is negligible. The significant problem is the signal space rotation, which is the same for
all subcarriers. Figure 7.80 shows the rotation of the QPSK signal points in the IEEE
802.11a during 11 OFDM symbols with a 3 kHz frequency error in an AWGN channel
with SNR = 20 dB. For example, with the subcarrier spacing of 312.5 kHz as shown in
Table 7.11, this frequency error amounts to only 1% of the subcarrier spacing. This results in
negligible SNR loss. The significant problem is that after only 11 OFDM symbols, the signal
points have crossed the decision boundaries. Therefore, correct demodulation is no longer
possible even with very high SNR. Hence, carrier phase tracking must be implemented for
demodulation of OFDM symbols. The IEEE 802.11a creates four pilot subcarriers to be
transmitted along 48 data subcarriers. The pilot subcarriers enable the receiver to synchron-
ize the carrier phase. Let the index k represent one of the four pilot subcarriers and the index
‘ represents the ‘thOFDM symbol after FFT. Thus, the received pilot symbol R‘;k is equal to
the known pilot symbol P‘;k rotated by the relative frequency error fΔ (the frequency error
normalized to the subcarrier spacing) multiplied by the channel transfer function Hk, that is,
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Figure 7.80 Rotation of IEEE 802.11a QPSK signal points due to 3 kHz frequency error [11].
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R‘;k ¼ HkP‘;kej2π‘fΔ (7:399)

The phase estimate can be achieved based on the following correlation:

cp ¼
XNp

k¼1

R‘;k ĤkP‘;k

� ��

¼ ej2π‘fΔ
XNp

k¼1

HkĤ
�
k P‘;k

�� ��2
(7:400)

where Ĥk is the estimate of the channel transfer function Hk and is assumed to be available,
andNp denotes the number of pilot subcarriers and is equal to 4 for IEEE 802.11a. The phase
estimate θp is simply the angle of cp, and is defined as

θp ¼ tan 1 Im cp
� �

Re cp
� � (7:401)

Since the pilot data are known, there is no ambiguity and the phase can be resolved correctly
if the channel transfer function estimate Ĥk ¼ Hk . Hence, the channel estimation error
results in phase estimation error.

The performance of the OFDM signal in an AWGN channel under ideal conditions is
identical to the performance of its subcarrier modulation. If the subcarrier modulation
is PSK or QPSK, the bit error probability is given by (7.104). If rectangular MQAM is
employed, the bit error probability is given by (7.316). These are the modulation techniques
employed by IEEE 802.11a as displayed in Table 7.9. For mobile WLAN systems, the
performance of OFDM signals depends on many factors such as channel estimation, timing
synchronization, carrier phase tracking, equalization, error correction coding, and the
channel multipath fading effects.

7.24 Binary demodulation with convolutional codes

In this section we study the performance of coded binary modulation techniques when the
channel coding is carried out with linear binary convolutional codes. Our investigation
covers both hard decoding and unquantized soft decoding. Quantized soft decoding loses
about 0.1–0.5 dB in signal-to-noise ratio relative to unquantized soft decoding. We assume
the all-zero code vector c is the transmitted code vector, and if the code vector is decoded
correctly, the Viterbi algorithm would choose the all-zero path of the decoding trellis. Any
other path would correspond to a wrong code vector. The all-zero path of the decoding trellis
has zero Hamming weight. An arbitrary path of the decoding trellis has a Hamming weight d
that ranges from the minimum dfree to the maximum value dM dictated by the length of the
code vector (note that all paths merge with the all-zero path at the end because of the use of
tail bits). When the Viterbi decoder selects a path of weight d there is an event error. The
conditional event error probability is the pair wise error probability of selecting the vector c0

corresponding to the path of Hamming weight d over the all-zero code vector c. We denote
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this pair-wise error probability as PðdÞ ¼ Prðc ! c0Þ. The event error probability PE is
therefore the union bound of all P(d). Letting Ad denote the number of paths of Hamming
weight d that merge with the all-zero paths, we have

PE5
XdM

d¼dfree

AdPðdÞ (7:402)

From the event error probability we can obtain the union bound on the coded bit error
probability by weighting the pair-wise error probability P(d) with the information weight Bd

(number of information bit errors) of all paths of Hamming weight d. Since there are k
information bits per branch for a rate k/n code, the union bound is given by

Pb5
1

k

XdM

d¼dfree

BdPðdÞ (7:403)

Tables 7.12–7.14 display the weight structures of the best codes for rates 1/3, 1/2, and 2/3,
respectively. The larger the constraint length the more powerful the code is.

Hard decoding

To evaluate the union bound for the bit error probability we need to calculate the pair-wise
error probability P(d). If the channel is a BSC then hard decoding is implemented. The
output of the detector is the channel output 1s or 0s. These demodulated coded bits serve as

Table 7.12 Generator (octal) and information weights of the best rate 1/3 codes [12]

K Generators dfree Bdfree Bdfreeþ1 Bdfreeþ2 Bdfreeþ3 Bdfreeþ4

3 7,7,5 8 3 0 15 0 58
4 17,15,13 10 6 0 6 0 58
5 37,33,25 12 12 0 12 0 56
6 75,53,47 13 1 8 26 20 19
7 171,165,133 15 7 8 22 44 22
8 367,331,225 16 1 0 24 0 113

Table 7.13 Generator (octal) and information weights of the best rate 1/2 codes [12]

K Generators dfree Bdfree Bdfreeþ1 Bdfreeþ2 Bdfreeþ3 Bdfreeþ4

3 7,5 5 1 4 12 32 80
4 17,15 6 2 7 18 49 130
5 35,23 7 4 12 20 72 225
6 75,53 8 2 36 32 62 332
7 171,133 10 36 0 211 0 1404
8 371,247 10 2 22 60 148 340
9 753,561 12 33 0 281 0 2179
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the decoder input bits. Let p be the channel transition probability; the probability that the
path of Hamming weight d is chosen over the all-zero path is given by

PðdÞ ¼

Pd

i¼ðdþ1Þ=2

d
i

� �
pið1� pÞd i; d odd

1

2
d

d=2

� �
pd=2ð1� pÞd=2 þ Pd

i¼d=2þ1

d
i

� �
pið1� pÞd i; d even

8
>>><

>>>:

(7:404)

Example 7.31 PSK with hard decoding
The transition probability of a BSC that accommodates a PSK signal is
p ¼ Q 2rEb=N0

p� 
, where r is the code rate (the coded bit energy is Ec ¼ rEb). For

numerical illustration consider the case Eb=N0 ¼ 4 dB and the convolutional code of rate
½, K = 9. The channel transition probability is p = 0.057. The union bound yields the bit
error probability Pb ¼ 2:2� 10 3. The uncoded bit error probability given the same trans-
mitted power is Pb;uncoded ¼ 1:25� 10 2. To achieve the same bit error probability as the
coded system, the uncoded system would need Eb=N0 ¼ 6 dB. Thus, coding provides 2 dB
of coding gain.
■

Soft decoding–Gaussian input vector

When coherent demodulation is employed, the received vector r ¼ sþN at the output of
the signal processor (matched filter) serves as the input vector to the unquantized soft
decoder (threshold detector is not needed). If a quantized soft decoder is employed, a
quantizer is added between the signal processor and the decoder. The received vector r is
a Gaussian vector, where s is the voltage vector that represents the transmitted code vector c.
The pair-wise error probability PðdÞ ¼ Prðc ! c0Þ is given by (7.196):

PðdÞ ¼ Q
s0 � sk k
2σ

� �
(7:405)

Table 7.14 Generator (octal) and information weights of the best rate 2/3 codes [12]

K Generators dfree Bdfree Bdfreeþ1 Bdfreeþ2 Bdfreeþ3 Bdfreeþ4

3 7,5,7 3 1 10 54 226 853
4 15,13,15 4 8 34 180 738 2 989
5 31,33,31 5 25 112 357 1858 8 406
6 73,41,73 6 75 0 1571 0 31 474
7 163,135,163 6 1 81 402 1487 6 793
8 337,251,337 8 395 0 6695 0 235 288
9 661,473,661 8 97 0 2863 0 56 633
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where s0 represents the code vector c0 with Hamming weight d, and σ2 ¼ N0=2 is the noise
variance. The quantity s0 � sk k is simply the Euclidean distance between s and s0.

Example 7.32 PSK with soft decoding
Consider the case of PSK and the convolutional code of rate 1/2, K = 9. The transmitted
vector s that represents the all-zero code vector c is given by
s ¼ rEb

p
; rEb
p

; rEb
p

; rEb
p

; :::; rEb
p

; rEb
p� �

. The code vector c0 has d bit ones, and
hence its corresponding vector s0 has d components with value � rEb

p
and the remaining

components have value rEb
p

. Hence, the Euclidean distance between s and s0 is
s0 � sk k ¼ 2 drEb

p
. Thus we obtain the following expression for PðdÞ ¼ Prðc ! c0Þ:

PðdÞ ¼ Q
2drEb

N0

s !

(7:406)

For numerical illustration consider the case Eb=N0 ¼ 4 dB. The union bound yields the bit
error probability Pb ¼ 1:4� 10 6. The uncoded bit error probability given the same trans-
mitted power is Pb;uncoded ¼ 1:25� 10 2. To achieve the same bit error probability as the
coded system, the uncoded system would need Eb=N0 ¼ 10:4 dB. Thus, coding provides a
6.4 dB coding gain. Figure 7.81 shows the bit error probability of PSK with convolutional
codes of rate ½ and constraint lengths K = 7, 8, 9.
■

10−2 PSK, Rate=1/2, K=7,8,9
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Figure 7.81 Bit error probability of PSK with convolutional codes of rate ½, K = 7, 8, 9. (Courtesy of Peter Harley.)
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Example 7.33 QPSK and soft decoding
Although QPSK is an I-Q modulation, we can use binary convolutional codes as in the case
of PSK. This is possible because the I-channel and the Q-channel are independent. For
example, we can employ two identical encoders, one for the I-channel and one for the
Q-channel. Two identical Viterbi soft decoders are needed for decoding. The performance of
coded QPSK is identical to that of coded PSK but the required bandwidth is reduced by a
factor of two. QPSKwith rate ½, K = 9 convolutional codes achieves the same bandwidth as
uncoded PSK.
■

Soft decoding–χ2 input vector

When noncoherent demodulation is employed the 1� 2m received vector
r ¼ ðr1;1 r2;1; r1;2 r2;2; :::; r1;m r2;mÞ at the output of the signal processor (noncoherent cor-
relator) serves as the input vector to the unquantized soft decoder (maximum detector is not
needed). If a quantized soft decoder is employed, a quantizer is added between the signal
processor and the decoder. The received vector r is a χ2-vector that represents the transmitted
code vector c, where m = n(L + K – 1) is the code vector length representing L information
bits. For each transmitted coded bit ci, the decoder receives two observables r1;i and r2;i
corresponding with two branches of the noncoherent correlator. Using the Bayes theorem
we have

PrðcjrÞ ¼ fRðrjcÞPrðcÞ
fRðrÞ (7:407)

Since convolutional codes are linear, all code vectors of the same length are equally likely;
therefore, Pr(c) is identical for all possible values of c. Furthermore, fRðrÞ¼

P
fRðrjcÞPrðcÞ

is independent of whichever code vector was transmitted. The decoder that maximizes the
a-posteriori probability PrðcjrÞ, that is, maximizes the probability of selecting the trans-
mitted code vector correctly given the received vector r, is the ML decoder. Consequently,
the ML decoder also maximizes the likelihood fRðrjcÞ of the transmitted code vector c. Let
us establish the likelihood ratio

ΛðrÞ ¼ fRðrjcÞ
fRðrjc0Þ ¼

Q2m

i¼1
fR1;iR2;iðr1;i; r2;ijciÞ

Q2m

i¼1
fR1;iR2;iðr1;i; r2;ijc0iÞ

(7:408)

As usual we assume that the all-zero-code vector c was transmitted. The code vector c0 is
represented by the path through the trellis that differs with the all-zero path in d bits. Thus,
fRðrjcÞ and fRðrjc0Þ differ in only d products and therefore by rearranging these different
products to be the first d products we have
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LðrÞ ¼
Qd

i¼1
fR1;iR2;iðr1;i; r2;ijciÞ

Qd

i¼1
fR1;iR2;iðr1;i; r2;ijc0iÞ

¼
Qd

i¼1
fR1;iðr1;ijciÞfR2;iðr2;ijciÞ

Qd

i¼1
fR1;iðr1;ijc0iÞfR2;iðr2;ijc0iÞ

(7:409)

By using (7.64) and (7.65) we have

LðrÞ ¼
Qd

i¼1
I0

a r1;i
p
σ2

� 

Qd

i¼1
I0

a r2;i
p
σ2

�  (7:410)

The ln likelihood ratio can be established as follows:

lnLðrÞ ¼
Xd

i¼1

ln I0
a r1;i
p
σ2

� �
�
Xd

i¼1

ln I0
a r2;i
p
σ2

� �
(7:411)

An error event occurs, that is, c0 is decoded instead of c, when LðrÞ5 1 or lnLðrÞ50.
Since I0ð�Þ is a monotonically increasing function of its argument or squared argument, this
is equivalent to

Y1 ¼
Xd

i¼1

r1;i5Y2 ¼
Xd

i¼1

r2;i (7:412)

The two random variables Y1 and Y2 are χ2-distributed. The pair-wise error probability
PðdÞ ¼ PrðY15Y2Þ is given by the following expression [8,12]:

PðdÞ ¼ 1

2
e γ=2

Xd 1

i¼0

2 iγi

i!ðd þ i� 1Þ!
Xd 1

k¼i

ðk þ d � 1Þ!
ðk � iÞ!2kþd 1

(7:413)

where

γ ¼ drEb

N0
(7:414)

Example 7.34 Noncoherent FSK with soft decoding
Consider the case of noncoherent FSK and the convolutional code of rate ½, K = 9. For
numerical illustration consider the case Eb=N0 ¼ 4 dB. The union bound yields the bit error
probability Pb ¼ 0:5 (maximum error probability). The uncoded bit error probability given
the same transmitted power is Pb;uncoded ¼ 0:14. Thus, at low Eb=N0, noncoherent FSK with
soft decoding actually performs worse than uncoded noncoherent FSK or with hard decod-
ing. This arises from the combing loss incurred by soft decoding. At low signal-to-noise
ratios it is better to remove the noise prior to decoding to improve the performance, as is the
case with hard decoding. Figure 7.82 shows the bit error probability of noncoherent FSK
with convolutional codes of rate ½ and constraint lengths K = 7, 8, 9.
■
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7.25 TCM demodulation and decoding

A received TCM signal with the expanded signal space is first demodulated by an I-Q
demodulator. The demodulated code word r ¼ sþN at the output of the I Q signal
processors (matched filters) serves as the input code vector to the unquantized soft decoder
(the minimum Euclidean distance detector is not needed). If a quantized soft decoder is
employed, two quantizers are added between the signal processors and the decoder.
Figure 7.83 shows the conceptual TCM demodulator and decoder.

The demodulated code word r is a Gaussian vector, where s ¼ s1 s2    sk½ � is the voltage
vector of k modulation symbols. Each symbol is represented by the I-Q vector sl ¼ Il Ql½ �
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Figure 7.82 Bit error probability of noncoherent FSK with convolutional codes of rate ½, K = 7, 8, 9. (Courtesy of Peter Harley.)
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Figure 7.83 TCM demodulator and decoder.
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for the I-Q coordinates. The pair-wise error probability between two vector s and s0 is
Prðs ! s0Þ and is given by

Prðs ! s0Þ ¼ Q
s0 � sk k
2σ

� �
(7:415)

where σ2 ¼ N0=2 is the noise variance. The quantity s0 � sk k is simply the Euclidean
distance between s and s0. Let the Euclidean free distance of the code be the minimum
Euclidean distance between different code words, that is,

d free ¼ min
all i 6¼j

dðsðiÞ; sðjÞÞ (7:416)

Then we have

Prðs ! s0Þ � Q
d free

2σ

� �
(7:417)

On the other hand, the pair-wise error probability Prðsi ! sjÞ between two symbols of the
uncoded signal space is given by

Prðsi ! sjÞ � Q
dmin
2σ

� �
(7:418)

where dmin is the minimum Euclidean distance of the uncoded signal space.
The TCM asymptotic coding gain relative to the uncoded signal space with the same

spectral efficiency and average power is conventionally defined as follows:

G ¼ d2
free

d2min
(7:419)

The goal in selecting codes for TCM is tomaximize the asymptotic coding gain. Note that the bit
error probability of TCM is given byPb � k 1BdfreeQ d free=2σ

� �
for code rate k/n, whereBdfree is

the information weight (number of information bit errors) of all paths of Euclidean distance d free.
On the other hand the bit error probability of the uncoded signal space is Pb �
NnQ dmin=2σð Þ= log2 M . Therefore, the definition of asymptotic coding gain is indeed appro-
priate since it is based on the comparison of bit error probabilities while ignoring the constants.
The asymptotic coding gain is somewhat larger than the true coding gain. The latter approaches
the former at high signal-to-noise ratios per bit. It is not practical to evaluate the bit error
probability by searching the code trellis to compute Bdfree , especially when the code constraint
length is large. It is much simpler to evaluate the bit error probability via simulation of theViterbi
algorithm. Tables 7.15–7.18 show the asymptotic coding gain for Ungerboeck TCMs.

Figure 7.84 shows the bit error probabilities versus Eb=N0 for Ungerboeck TCM-16QAM
and pragmatic TCM-16QAM. The coding gain at 10 6 bit error probability relative to
uncoded 8QAM (Figure 6.35(a) is about 4.2–5 dB as compared to the optimistic asymptotic
coding gain of 6 dB).

TCM decoding can be carried out via the Viterbi algorithm similar to the soft decoding of
binary convolutional code in Example 4.27. The code symbol on each branch of the trellis is
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Table 7.15 Asymptotic coding gain of TCM-8PSK

Constraint length K G (dB) 8PSK

2 3
3 3.6
4 4.1
5 4.6
6 5
7 5.2
8 5.7

Table 7.16 Asymptotic coding gain of TCM-16PSK

Constraint length, K G (dB) 16PSK

2 3.54
3 4
4 4.4
5 5.1
6 5.3
7 5.3
8 5.5

Table 7.17 Asymptotic coding gain of TCM-16QAM

Constraint length, K G (dB) 16QAM

2 3
3 4
4 4.8
5 4.8
6 5.4
7 6
8 6

Table 7.18 Asymptotic coding gain of TCM-64QAM

Constraint length, K G (dB) 64QAM

2 2.8
3 3.8
4 4.6
5 4.6
6 5.2
7 5.8
8 5.8
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Figure 7.84 Bit error probability: (a) rate 3=4 Ungerboeck TCM-16QAM, (b) rate 3=4 pragmatic TCM-16QAM. (Courtesy of Lin
Kiat Peh.)
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mapped into an I-Q vector via symbol mapping by set partitioning for Ungerboeck TCM or
via pragmatic symbol mapping for pragmatic TCM. The squared Euclidean distance
between the code symbol of a branch and the corresponding received I-Q vector (at the
outputs of the samplers) is calculated and added to the previous path squared Euclidean
distance for each node. At each node in the trellis, the Viterbi algorithm chooses a branch
that belongs to a path with the smallest path squared Euclidean distance. This retained
path is called the survivor path. All other paths at each node with higher squared Euclidean
distances are not retained. In the case of a tie, a survivor path might be chosen randomly.
At the end of the decoding window, the survivor path with the smallest path squared
Euclidean distance is selected and the associated code vector is chosen as the transmitted
code vector.

Example 7.35 Viterbi algorithm for Ungerboeck TCM-QPSK
For illustration we use the same convolutional code as used in Example 4.27. The received
vector r ¼ ð�1; 1; 0:5; 1;�0:5; 1; 1; 1; 1; 1Þ is normalized to rEs=2

p
, where r is the code

rate and Es is the symbol energy. Each branch on the trellis is represented by one of the
following voltage vectors: 00 ! 1; 1ð Þ; 01 ! �1; 1ð Þ; 10 ! �1;�1ð Þ; 11 ! 1;�1ð Þ nor-
malized to rEs=2

p
according to Figure 6.49. The path that associates with the code vector

(00,00,00,00,00) has a normalized minimum squared Euclidean distance of 6.5 and hence is
selected as the decoding path as shown in Figure 7.85. The two symbol errors that are caused
by two underlined voltage errors are corrected.
■
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Figure 7.85 Unquantized soft Viterbi algorithm for Ungerboeck TCM-QPSK with rate ½, K = 3 convolutional code.
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Example 7.36 Viterbi algorithm for Ungerboeck TCM-8PSK
The trellis of five time units in Figure 7.87 for the convolutional encoder in Figure 7.86 has
parallel transitions that are encoded by the uncoded information bit with the upper branch (solid
line) corresponding to 1 and the lower branch (dashed line) corresponding to 0. The upper
(lower) code symbol is for the upper (lower) branch. The Viterbi algorithm for Ungerboeck
TCM-8PSK is shown in Figure 7.87 for the received vector r ¼ ð0:2; 0:7;�0:3; 0:5; 0:3;
0:5; 0:1; 0:8; 0:6; 0:3Þ normalized to rEs=2

p
. The code symbols labeled on the branches are

mapped to I-Q vectors according to Figure 6.55 as follows: 011 ! ð0:92; 0:38Þ,
000 ! ð0:38; 0:92Þ, 001 ! ð�0:38; 0:92Þ, 010 ! ð�0:92; 0:38Þ, 111 ! ð�0:92; �0:38Þ,
100 ! ð�0:38;�0:92Þ, 101 ! ð0:38:� 0:92Þ, 110 ! ð0:92;�0:38Þ. The decoded code
symbol sequence is (000,010,011,001,011) as indicated by the heavy dashed line.
■

Figure 7.86 Rate 2=3 convolutional code with K = 3.
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Figure 7.87 Unquantized soft Viterbi algorithm for Ungerboeck TCM-8PSK with rate 2=3, K = 3 convolutional code.
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7.26 Summary

In this chapter we presented the principles of coherent demodulation and noncoherent demodulation. A digital
demodulator basically consists of a signal processor and an optimum detector. The signal processor processes the
received signal plus noise into a decision vector. The optimum detector uses the decision vector to recover the
transmitted information with a minimum bit error probability. Four fundamental signal processors were studied.
They are the coherent matched filter and correlator, which are equivalent at the sampling time, and the matched
filter–envelope detector (noncoherent matched filter) and the quadrature correlator–square law detector
(noncoherent correlator), which are also equivalent at the sampling time. Two optimum binary detectors were
studied, namely, the threshold detector and the maximum detector (comparator). These optimum detectors are
governed by the maximum likelihood criterion. The threshold detector is used with coherent binary demodu-
lation, and the maximum detector can be employed for both coherent and noncoherent binary demodulations.
We then proceeded to analyze the performance of binary demodulation such as coherent PSK, coherent DPSK,
direct detection ASK for lightwave signals, coherent MSK and precoded MSK and GMSK, noncoherent FSK and
MSK, and noncoherent DPSK.
Next, we studied the detector for M-ary signals, namely, the minimum Euclidean distance detector for coherent

demodulation and the M-ary maximum detector for both coherent and noncoherent demodulation. Both
detectors are governed by the maximum likelihood criterion. Afterward, we provided a detailed design of the
coherent L-path demodulator based on the signal space approach. This optimum demodulator employs either L
matched filters or L correlators for signal processing and either the minimum Euclidean distance detector or the
metric computer and maximum detector for detection. The design of a coherent M-path demodulator was
presented next. This type of demodulator employs either M matched filters or M correlators for signal processing
and a maximum detector for detection. We then provided the design of a noncoherent M-path demodulator,
which employs either M matched filter–envelope detectors or M quadrature correlator–square law detectors for
signal processing, and a maximum detector for detection. Using the above designs we analyzed the performance
of coherent MASK, coherent MPSK, coherent DMPSK, noncoherent DMPSK, noncoherent π=4-DQPSK, coherent
MQAM and DMQAM, coherent CSK and MFSK, and noncoherent CSK and MFSK. We also considered two methods
of detection for coherent CPM, namely, sequence detection via the Viterbi algorithm and symbol-by-symbol
detection. Noncoherent CPM with symbol-by-symbol detection was also discussed. We concluded our study of
M-ary demodulation techniques with a summary of their performance in an AWGN channel.
The study of OFDM demodulation was conducted in fair detail. We used the IEEE 802.11a standard as an

example for our discussion, which included symbol timing estimation; frequency offset estimation; and carrier
phase synchronization. The chapter ends with the performance analysis of TCM based on the asymptotic coding
gain and simulation results.

Appendix 7A: The Q-function

The Q-function for 0 < x < 5 is plotted in Figure 7.88.
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Problems

1. Determine the output of the matched filter of the pulse p(t) when the input waveform is
sðtÞ ¼ A½pðtÞ � pðt � TbÞ� where p(t) is the squared pulse of unit amplitude and
duration Tb.

2. Given two complex vectors u and v, show that u�vj j � uk k vk kwith equality if and only
if u and v are dependent, that is, u ¼ αv for some arbitrary constant α (the Cauchy–
Schwarz inequality). The notation u� stands for the conjugate transpose of the vector u.

3. Determine the output of the matched filter of the waveform sðtÞ ¼ 2B sin 2πBt
2πBt .

4. Consider the complex voltage signal sðtÞ ¼ A½pðtÞ þ jpðtÞ�, where p(t) is the squared
pulse of unit amplitude and duration Tb. Find the output voltage of the complex-
valued matched filter at the sampling time t ¼ Tb.

5. In Figure 7.3 assume that the sampling time has an error ", that is, T + ". Find the
output signal-to-noise ratio of the matched filter.

6. Determine the output signal-to-noise ratio of the matched filter of the pulse p(t) at the
sampling time T þ " (0 � " � T ), where p(t) is the squared pulse of unit amplitude
and duration T , given the input signal sðtÞ ¼ A½pðtÞ � pðt � TÞ�.

7. Find a pulse shape pðtÞ with Fourier transform Pð f Þ whose matched filter works for
both itself and its counterpart qðtÞ with Fourier transform Qð f Þ ¼ Pð f Þp

.
8. Using the time-domain approach design a matched filter for signal s(t) plus additive

non-white noise n(t) with real autocorrelation RnðτÞwhose Fourier transform Snð f Þ is
a rational function. This can be achieved by first designing a noise whitening filter
then the matched filter.

9. Using the frequency-domain approach, design a matched filter for the signal s(t) with
additive non-white noise n(t) with rational power spectral density function Snðf Þ.
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Figure 7.88 The Q-function. (Courtesy of Peter Harley.)
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10. Consider a bank of Lmatched filters that receive the same signal s(t) but with different
attenuation ai, i = 1, 2, . . . , L; that is, the ithmatched filter input is aisðtÞ. The matched
filter outputs are summed and sampled at time t = T where T is the duration of the
signal s(t). The noise signals n1ðtÞ; n2ðtÞ; :::; nLðtÞ are independent and have identical
power spectral density N0=2. Find the output signal-to-noise ratio of the sum signal
assuming the signal energy is E.

11. Consider a bank of Lmatched filters that receive the same signal s(t) but with different
attenuation ai, i = 1, 2, . . . , L; that is, the ithmatched filter input is aisðtÞ. The matched
filter outputs are summed and sampled at time t = T where T is the duration of the
signal s(t). The noise signals n1ðtÞ; n2ðtÞ; :::; nLðtÞ are independent and have identical
power spectral density N0=2. Assume that the knowledge of the attenuation ai is
available, the sample of the ith matched filter is then weighted by ai. Find the output
signal-to-noise ratio of the sum signal assuming the signal energy is E.

12. Consider a PSK demodulator using a local reference carrier that is offset in phase with
respect to the received signal by θ. Determine the bit error probability.

13. Consider a PSK demodulator with a sample timing error ", that is, the sampling time
for the ith bit is t = iTb + ". Determine the bit error probability.

14. Consider a PSK demodulator using a local reference carrier that is offset in phase with
respect to the received signal by θ, and with a sample timing error ", that is, the
sampling time for the ith bit is t = iTb + ". Determine the bit error probability.

15. Consider the carrier recovery circuit in Figure 7.89. Show that the carrier of a PSK
signal s(t) can be reproduced at the output but it has a phase ambiguity of π radians.
This means that the recovered carrier has a phase θ (modulo π). This might result in
inverted data at the detector output. Suggest a method to correct this problem without
using differential encoding.

16. A PSK signal with bit rate 1/Tb = 19.6 kbps is demodulated to the baseband signal,
which is a random sequence of antipodal signals. Use the circuit in Figure 7.90 to

Squarer
BPF
@2fc

PSK cos 2πfct
Frequency
divider by

2

Figure 7.89 PSK carrier recovery circuit.

1, 0
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Tb/2

BPF Sgn

Figure 7.90 Half-bit delay timing recovery circuit for PSK signal.

424 Demodulation



recover the data clock signal from the antipodal signal sequence via simulation. It
should be a periodic waveform with period Tb. The bandpass filter (BPF) should have
a center frequency equal to 1/Tb and a bandwidth B ≪ 1/Tb.

17. Consider a squaring timing recovery circuit for PSK signal shown in Figure 7.91. The
PSK signal is first demodulated to baseband to produce an antipodal signal sequence.
The data clock is recovered by using a squarer. Let the antipodal pulse shape be
denoted as p(t) and its Fourier transform be P( f ). Using the Poisson sum formula
given by

P
k pðt � kTbÞ ¼ T 1

b

P
l Pðl=TbÞ expð j2πlt=TbÞ, show that a period signal

with period Tb can be produced at the output. The sgn-function is given in Problem 16.
18. Consider the suboptimum demodulator of a DPSK signal shown in Figure 7.92.

(a) Find the signal r1ðtÞ and r2ðtÞ when noise is absent.
(b) Determine the detection threshold and decode the data bits for the following

received differentially encoded bit sequence 0110001.
(c) Assume the case of small noise, derive the approximate bit error probability.

19. A direct detection optical receiver operates at an input power level of 30 dBm. The
noise spectral density is 10 16 mA2/Hz. The photo detector’s responsitivity is 0.5 and
re ¼ ⅓. It is desired to achieve a bit error probability of at least 10 8, determine the
maximum bit rate.

20. Prove that if s1ðtÞ and s2ðtÞ are orthogonal baseband signals with identical absolute
bandwidth B, then s1ðtÞ cos 2πfct and s2ðtÞ cos 2πfct are orthogonal signals as well,
provided that fc4B. Give an example for which the statement fails when fc5B.

21. Consider an FSK signal employing a raised-cosine pulse shape with a roll-off factor β.
The bit rate is Rb ¼ 1=Tb. Determine the minimum frequency spacing for strict
orthogonality.

22. Consider a noncoherent orthogonal FSK demodulator employing noncoherent corre-
lators. The received signal is sðtÞ ¼ 2=Tb

p
cos½2πðf1 þ Δf Þt þ θ�. The frequency

error isΔf ¼ 1=8Tb and the phase is θ ¼ π=4. Ignoring the high-frequency terms, find
the output sample of the noncoherent correlator of the signal branch. Find the power
loss relative to the case of no frequency error. Assume that fi, i = 1, 2 are integer
multiples of the bit rate and noise is negligible.

Squarer BPF SgnAntipodal
sequence

Figure 7.91 Squaring timing recovery circuit for PSK signal.
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Figure 7.92 DPSK suboptimum demodulator.
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23. Consider the set of biorthogonal signals fsiðtÞgM=2
i¼1 ; f�siðtÞgM=2

i¼1

n o
, where fsiðtÞgM=2

i¼1

is the set of M/2 orthogonal signals.
(a) Design the demodulator using M/2 correlators, M/2 sign functions, and a max-

imum detector.
(b) Derive the union bound for the symbol error probability.

24. The null-to-null bandwidth of PSK is 2=Tb;PSK and that of FSK is 3=Tb;FSK when the
squared pulse shape is used. Consider two communication systems employing PSK
and FSK with coherent detection. Both systems have identical bandwidth which is
taken to be the null-to-null bandwidth of their signals. This implies that FSK would
have to transmit at a lower rate than PSK.
(a) If the bit rate of PSK is Rb;PSK what would be the bit rate of FSK.
(b) Assume that both systems receive signals with the same power P. What would be

the bit error probability of each system in terms of P and Tb;PSK?
(c) Both systems are required to have identical bit error probability, how much more

(or less) power does FSK need?
25. The null-to-null bandwidth of PSK is 2=Tb;PSK and that of MSK is 1:5=Tb;MSK when

the squared pulse shape is used. Consider two communication systems employing
PSK and precoded MSK with coherent detection. Both systems have identical
bandwidth which is taken to be the null-to-null bandwidth of their signals.
(a) If the bit rate of PSK is Rb;PSK what would be the bit rate of MSK.
(b) Assume that both systems receive signals with the same power P. What would be

the bit error probability of each system in terms of P and Tb;PSK?
(c) Both systems are now required to have identical bit error probability, how much

more (or less) power does MSK need?
26. Find the I-data and Q-data of MSK for the input bit sequence 110011001.
27. Consider a PSK receiver with the following parameters: system signal-to-noise ratio

SNR = 7 dB, bit rate = 400 kbps, noise bandwidth = 500 kHz, system noise temper-
ature = 500K. What is the received power? Calculate the bit error probability.

28. Consider a PSK system where the a-priori probabilities of the transmitted bits are
Pr(1) = q and Pr(0) = 1 q. Derive the bit error probability.

29. Perform the demodulation of DPSK given the phase sequence ð2π; 2π; π; 2π; 2π;
3π; 3πÞ.

30. Consider a PSK signal with the squared pulse shape of unit amplitude and duration Tb,
and carrier frequency fc � 1=4Tb. This PSK signal is passed through a bandpass filter
transfer function

Hð f Þ ¼ sin½πð f � fcÞTb � π=4�=½πð f � fcÞTb � π=4�
þ sin½πð f þ fcÞTb þ π=4�=½πð f þ fcÞTb þ π=4�

Show that the output of the filter is indeed an MSK signal (serial MSK).
31. The two-path or IQ demodulator makes a decision on the two-dimensional vector

X ¼ si þN . The symbol vector si ¼ ½ si1 si1�t can be mapped to the complex
symbol si ¼ si1 þ jsi2. The norm sik k is identical to the magnitude sij j. Design an
equivalent complex demodulator using the complex reference carrier e j2πfct.
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32. Consider an I-Q demodulator with the received signal given by

sðtÞ ¼ si1
2

Ts

r

cos 2πfct � si2
2

Ts

r

sin 2πfct; 0 � 0 � Ts

x1ðtÞ ¼ 2

Ts

r

cosð2πfct þ θÞ; x2ðtÞ ¼ � 2

Ts

r

sinð2πfct þ θÞ
The carrier frequency fc is an integer multiple of the symbol rate 1=Ts. The symbol
vector is si ¼ ½si1 si2�t. The angle θ is the phase error between the local carrier and the
received signal. Write the expression for decision variable vector X ¼ Tsi þN by
identifying the 2� 2 matrix T and the noise vector N assuming the input noise is n(t).

33. Derive the bit error probability of QPSK signal when the reference carrier has a phase
error θ with respect to the received signal.

34. Perform the differential encoding and decoding for OQPSK.
35. To resolve the four-fold phase ambiguity in QPSK without resorting to differential

encoding, a known unique word can be transmitted in the packet header and used to
rotate the signal space. Design a logic circuit to accomplish this task based upon the
detection of the unique word.

36. Consider the carrier recovery circuit for MPSK shown in Figure 7.93. Show that the
recovered carrier has an M-fold phase ambiguity, that is, it cannot distinguish a
rotation of the signal space by π=M radians.

37. Consider the noncoherent demodulation of a π=4-DQPSK signal. The received signal-
to-noise ratio is S=N ¼ ðEb=N0ÞðRb=BÞ, where B is the noise bandwidth and Rb is the
bit rate. Given S/N (dB) = 13 dB and B = 30 kHz, what is the maximum bit rate that
can be supported so that Pb510 4?

38. Given the rectangular 16QAM find the error probability that signal vector represent-
ing symbol 1000 moves into regions occupied by symbols 1100 and 1101 in terms of
the minimum Euclidean distance and noise variance σ2. The I- and Q-values are
normalized to E=2

p
, in Figure 7.94, where E is the smallest symbol energy. For

example, we have si ¼ ½3 E
p

= 2
p � 3 E

p
= 2
p � t for symbol 1000. The minimum

Euclidean distance of this signal space is dmin ¼ 2E
p

.
39. Consider two communication systems employing 16PSK and 16QAM with coherent

detection. Assume that both systems have the same received power P. Both systems
are required to have approximately the same bit error probability of 10 5, what would
be the bit rate of 16PSK relative to that of 16QAM?

40. Consider a 16QAM receiver with the following parameters: system signal-to-noise
ratio SNR = 17 dB, bit rate = 24Mbps, noise bandwidth = 30MHz, system noise
temperature = 500K. What is the received power? Calculate the bit error probability.

41. Does the carrier recovery circuit in Figure 7.93 for MPSK with M = 4 apply to any
rectangular QAM?

( )M
BPF

@ Mfc
cos 2π fctMPSK

Frequency
divider by 

M

Figure 7.93 MPSK carrier recovery circuit.
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42. Using (7.322) shows that lim
M!1

Pb ¼ 0 if Eb=N042 ln 2 for orthogonal signals.

43. Consider coherent 64CSK and 64QAM. If the bit rate of 64CSK is Rb, what would be
the bit rate of 64QAM, assuming that both systems receive the same power and are
required to have identical bit error probability of 10 6?

44. A channel produces a random received signal-to-noise ratio γ. It is desired to keep the
received signal-to-noise ratio constant at the value SNR. Let the transmit power PðγÞ
vary with γ subject to the average power constraint P, that is,

Ð1
0 PðγÞfΓðγÞ dγ � P,

where fΓðγÞ is the density of γ. The power adaptation strategy is given as
PðγÞ=P ¼ SNR=γ. Find a closed-form expression for SNR. If γ is uniformly distributed
between 5 and 50, find the value of SNR. Based solely on the minimum Euclidean
distances, if 64FSK is used at minimum γ, what modulation technique should be used
for maximum γ with the least modification to the transmitter and receiver?

45. What are the noiseless spectral efficiencies of CSK assuming raised-cosine pulse
shapes with roll-off factors β ¼ 0 and 0:5? At these spectral efficiencies, what are the
required Eb=N0 dictated by the Shannon channel capacity for reliable transmission?
Compare the result with DPSK and draw the conclusions.

46. Consider OFDM with 16 QPSK-subcarriers and a single carrier 256QAM.
(a) For the same bit rate and assuming squared pulse shape, compare their

bandwidths.
(b) For the same received power, and assuming that the bit error probability of OFDM

is twice that of 256QAM, compare the bit rates.
47. Consider OFDM-1 with 64 QPSK-subcarriers and OFDM-2 with 16 64QAM-

subcarriers. Both have the same received power
(a) Determine the subcarrier bit rate of OFDM-1 in terms of the subcarrier bit rate of

OFDM-2 for the same subcarrier bit error probability of 10 4.

I

0010 0110 1110 1010

0011 0111 1111 1011

0000 0100 1100 1000

0001 0101 1101 1001

Q

+3

+3

+1−1
+1

−1

−3

−3

Figure 7.94 16QAM signal space.
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(b) Determine the bit rate of OFDM-1in term of the bit rate of OFDM-2.
(c) Determine the bandwidth of OFDM-1in term of the bandwidth of OFDM-2.

48. Consider a CROSS-8QAM, which can be obtained from the rectangular 16QAM by
retaining four inner signal points and four corner signal points and deleting eight edge
signal points.
(a) Find the number of nearest neighbors for the inner signal point and the corner signal

point and then the average number of nearest neighbors for the signal space.
(b) Derive the bit error probability using the union bound.
(c) For the same bit error probability of 10 5 find the required received power of

CROSS-8QAM relative to that of 8PSK.
49. Derive the coding gains for convolutional encoded PSK with hard decoding and soft

decoding at low bit error probability. Compare the coding gains. (Hint: use the first
term of the union bound and the following Chernoff bound QðxÞ � e x2=2. These
coding gains are referred to as asymptotic coding gains.)

50. Derive the bit error probability for a block code with hard decoding and soft decoding,
assuming the block code minimum Hamming distance is dmin and the number of code
words of weight d is Ad . Derive the coding gains for hard decoding and soft decoding
at low bit error probability; assume that the modulation is PSK. Compare the coding
gains. (Hint: use the first term of the union bound of the bit error probability and the
following Chernoff bound QðxÞ � e x2=2. These coding gains are referred to as
asymptotic coding gains.)

51. Consider a PSK signal encoded by a rate ⅓ convolutional code with constraint length
K = 4. Assuming that soft decision decoding is employed, what is the required signal-
to-noise ratio per bit at Pb ¼ 10 6? What is the coding gain at this bit error
probability?

52. Consider a TCM-8PAM obtained via set partitioning. Assume that the asymptotic
coding gain for this TCM is 4.6 dB; calculate the Euclidean free distance of the
encoder.

53. Consider the TCM-8PSK shown in Figure 6.53. Assume that a convolutional code
with rate⅔ is employed and that the Euclidean free distance is d2

free
¼ d20 þ 2d21 , where

d0 ¼ ð2� 2
p ÞEs

q
and d1 ¼ 2Es

p
. Calculate the asymptotic coding gain for TCM-

8PSK relative to uncoded QPSK.
54. Consider the TCM-16QAM shown in Figure 6.55. Assume that the asymptotic coding

gain for the TCM-16QAM is 6 dB relative to uncoded 8PSK. Calculate the Euclidean
free distance of the TCM.

55. Design a TCM-64QAM with separate I and Q encoding and decoding.
56. Perform the Viterbi algorithm for Ungerboeck TCM-QPSK using the trellis in

Figure 4.13 for the received vector r ¼ ð0:7;�0:5; 0:8;�0:7;�0:8; 1;�0:9;
0:6; 1;�0:5Þ normalized to rEs=2

p
, where r is the code rate.

57. Perform the Viterbi algorithm for Ungerboeck TCM-8PSK using the trellis in
Figure 7.87 for the received vector r ¼ ð�0:6; 0:2;�0:3;�0:7; 0:9; 0:5; 0:3; 0:8;
0:4; 1Þ normalized to rEs

p
, where r is the code rate.

429 Problems



Further reading

Simon et al. [1] is recommended for further study of additional modulation and demodu-
lation techniques. For readers who are interested in optical communications we recommend
[2]. References [9–11, 13–17] provide a detailed description of OFDM.
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8 Spread spectrum

Introduction

A spread spectrummodulated signal has a bandwidthmuch larger than the bandwidth of its
narrowband counterpart for transmitting the message signal. For example, a spread spec-
trum PSK signal employed in the forward link of the 2G cellular standard IS-95 carrying a
coded message signal of symbol rate 19.2 ksps has a bandwidth of 1.25MHz. The narrow-
band PSK signal would only require a bandwidth of 19.53 kHz. This is an increase of
bandwidth by a factor of 64. What is the reason behind the use of spread spectrum
modulation? Historically, spread spectrum modulation originated from military applica-
tions. The purpose is to protect the received signal’s integrity by reducing the effectiveness
of a jamming signal. In order to jam a spread spectrum signal, the jamming signal must
distribute its fixed transmitted power over a larger spread bandwidth. This would lower the
magnitude of its power spectral density and correspondingly its jamming power in the
smaller message bandwidth. There are basically two types of spread spectrum modulated
signals: direct sequence (DS) and frequency hop (FH).

8.1 Direct sequence modulation

In direct sequence modulation the data 0s and 1s of bit rate Rb = 1/Tb are used to modulate a
periodic pseudo noise (PN) sequence of N chip 0s and 1s. The chip rate is Rc = 1/Tc = NRb,
and the sequence period is the same as the bit time. Thus, when the data bit is 0 the PN
sequence is transmitted, and when the data bit is 1 the complement PN sequence is trans-
mitted. This operation can be implemented by repeating a data bit N times, then modulo-2
adding them to the N chips of the PN sequence. The output of the modulo-2 adder is fed to a
PSK modulator to produce a direct sequence–phase shift keying (DS-PSK) spread spectrum
signal. Since the chip rate is N times the bit rate, the DS-PSK bandwidth is N times the
bandwidth of the corresponding narrowband PSK signal. The spread factor N is often called
the processing gain of the spread spectrum signal. Since the processing gain is modulation
and demodulation dependent and is also dependent on the type of jamming signal, it is
usually a function of N. We will distinguish the two terminologies as we proceed. With
respect to jamming, a direct sequence spread spectrum signal with a spread factor N can
reduce the jamming variance (power) in its decision sample at the receiver by its processing
gain. Figure 8.1 shows the block diagram of a DS-PSK modulator. In practice the PN
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sequence period can be selected to be an integer multiple of the bit duration with the chip rate
remaining as Rc = 1/Tc = NRb. Thus, there are still N chips per bit and the spread factor
remains N.

Example 8.1 Generating a DS-PSK signal
Consider the PN sequence c ¼ ð1001Þ and the data bit 1, which is repeated four times to
provide the data sequence d ¼ ð1111Þ. We write a sequence as a vector to facilitate the
notation. The modulo-2 addition of these two sequences is cþ d ¼ c ¼ ð0110Þ. Applying
the mapping of 0 ! 1 and 1 ! �1 to c we obtain the sequence c ¼ ð1� 1� 11Þ. The
baseband waveform of this sequence using the squared pulse shape is shown in Figure 8.2.

Equivalently, one can generate the sequence c via multiplication instead of modulo-2
addition. Using the above mapping on the two sequences c and d we get the corresponding
two sequences c ¼ ð�1 1 1�1Þ and d ¼ ð�1�1�1�1Þ. Multiplying the corresponding
elements of the two sequences we get c. Figure 8.3 shows the alternative DS-PSK
modulator.
■

The main feature of direct sequence spread spectrum is the PN sequence. There are many
types of PN sequences that can be used in practice, but the most important one is the
maximal sequences (also calledmaximal length sequences) or for short,m sequences. They
can be generated by linear feedback shift registers (LFSR). When the shift register has n
stages the m-sequence has a period of N ¼ 2n � 1 chips. In practice a zero can be appended
at the end of the m-sequence to produce an augmented PN sequence of period 2n chips. An
m-sequence can be generated by a monic binary irreducible primitive polynomial h(x):

h xð Þ ¼ 1þ h1xþ h2x
2 þ � � � þ hn 1x

n 1 þ xn; hi 2 0; 1f g (8:1)

Repeat
N times

PN sequence
generator

cos 2πfct

Mapping
0 → 1
1 → −1

Pulse
shaping DS-PSK

{0,1},Tb

{0,1},Tc

{0,1},Tc

Figure 8.1 Direct sequence–phase shift keying.

3Tc

2Tc

4TcTc0
t

Figure 8.2 The complement PN sequence of four bits.
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The polynomial coefficients, hi, are the feedback tap coefficients of the LFSR shown in
Figure 8.4. The m-sequence {ci} generated by this LFSR is given by the following equation
via modulo 2 addition:

ci ¼ h1ci 1 þ h2ci 2 þ � � � þ hn 1ci nþ1 þ ci n (8:2)

An m-sequence has 2n 1 ones and 2n 1 � 1 zeros. The discrete periodic autocorrelation of
an m-sequence is a two valued function and is given by the number of agreements minus
disagreements for the overall length of the sequence and a shifted replica of itself. These two
values are RmðiÞ ¼ 2n � 1 for i ¼ 0 and RmðiÞ ¼ �1 for i 6¼ 0. The m-sequence has the
smallest side lobe magnitude of any binary sequence with the same period. Applying the
mapping of 0 ! 1 and 1 ! �1 to an m-sequence we obtain the same discrete periodic
autocorrelation, that is,

RmðiÞ ¼
X2n 1

k¼0

ckckþi ¼ 2n � 1; i ¼ 0
�1; i 6¼ 0

�
(8:3)

Figure 8.5 shows the autocorrelation function of a periodic m-sequence when a unit
amplitude squared pulse of duration Tc is employed as the pulse shape of a chip.

Example 8.2 An m-sequence of period 7
Consider the m-sequence generated by the monic binary irreducible primitive polynomial
hðxÞ ¼ 1þ xþ x3 using a three-stage LFSR as shown in Figure 8.6. The period is 7. The
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h1 h3h2
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Figure 8.4 Linear feedback shift-register.
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Figure 8.3 Alternative direct sequence–phase shift keying.
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m-sequence is 1 1 1 0 1 0 0. It has been established that the number of agreements minus the
number of disagreements for this m-sequence and any of the circular shifted replica of itself
is �1.
■

Phase shift keying is not the only carrier modulation for direct sequence spread
spectrum. The reverse link of IS-95 employs code shift keying (CSK) as a carrier modulation
for direct sequence spread spectrum. In direct sequence–code shift keying (DS-CSK),
k ¼ log2 M bits form a symbol. Each of the M symbols is assigned a distinct
Walsh sequence from the set of M Walsh sequences that can be obtained from the rows of
the Hadamard matrix in (2.50). The elements of theWalsh sequences are 1 or�1. To employ
modulo-2 addition instead of multiplication, the mapping of 1 ! 0 and �1 ! 1 can be
applied to the M Walsh sequences to obtain the equivalent M Walsh sequences
whose elements are in {0,1}. Let Rb be the bit rate, then the symbol rate Rs is Rb/k.
Consequently, the Walsh chip rate Rw is MRs. The PN sequence chip rate Rc is selected to
be an integer multiple of the Walsh chip rate Rw, that is, Rc = NRw , where N is an integer
greater than or equal to 1. Thus, expressing the symbol rate in terms of the PN chip rate we
have Rc = NMRs. Hence, the spreading factor of DS-CSK is NM. The number of PN chips
per Walsh chip is N. The PN sequence period can be an integer multiple of the Walsh period
(the symbol period). To generate the DS-CSK signal, the Walsh chips of 0s or 1s are first
repeatedN times. Then, they are modulo-2 added to the PN chips of 0s or 1s. Themapping of
0 ! 1 and 1 ! �1 is then applied to the resulting spread Walsh symbol. A pulse shape
assigned to the chip then modulates a carrier. Figure 8.7 illustrates the generation of a DS-
CSK signal.

x3x2x

Figure 8.6 Generator of an m-sequence of period 7.

Tc0

NTc

Rm(τ)

–Tc

NTc

τ

Figure 8.5 Autocorrelation function of an m-sequence, N ¼ 2n � 1.
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Orthogonal covering

Orthogonal covering or code division multiplexing (CDM) is a technique that employs
orthogonal functions to multiplex different user bit streams onto one carrier without incur-
ring interference between user data. Orthogonal Walsh functions are used in practice for this
technique, such as in the forward link of IS-95. The concept is similar to the use of two
orthogonal carriers cos 2πfct and sin 2πfct in I-Q modulation techniques. These two
orthogonal carriers coexist in the same channel without mutual interference. Orthogonal
covering is also employed by DS systems such as the 3G cellular systems, namely,
WCDMA or CDMA 2000. Each user bit modulates an assigned Walsh sequence (symbol)
of 0s and 1s and of chip rate Rw ¼ MRb, where Rb is the bit rate. This is done by repeating the
data bit M times and then modulo-2 adding the repeated bits to the Walsh chips. A PN
sequence of 0s and 1s of chip rate Rc = N Rw, where N is an integer greater than or equal to 1,
is added (modulo-2 ) to the modulated Walsh chips, where each Walsh chip is repeated N
times. The PN sequence is common to all users. The mapping of 0 ! 1 and 1 ! �1 is
then applied to the resulting spread Walsh symbol. The multiplexing is then performed by
algebraically adding the symbols of all users together. The set of M Walsh functions can
accommodate up toM users. The sum ofM user symbols serves as the baseband signal of a
transmitted PSK signal with carrier cos 2πfct. Figure 8.8 illustrates the basic concept of
Walsh orthogonal covering.

To provide an effective method for carrier phase synchronization at the receiver, two
different PN sequences can be employed for spreading in conjunction with I-Q or quad
rature modulation. The I-channel employs a common spread PNI sequence for all users and
the Q-channel employs a common spread PNQ sequence for all users as indicated in
Figure 8.9. Note that the same sum of M user symbols is used in both I- and Q-channels.
This technique is referred to as quadrature spreading.

Example 8.3 Orthogonal covering with 4-ary Walsh functions
Consider the 4-ary Walsh sequences which are rows of the Hadamard matrix obtained from
the Hadamard matrix in (2.51) using the mapping 1 ! 0 and �1 ! 1:
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Figure 8.7 Direct sequence–code shift keying.
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H4 ¼
0 0 0 0
0 1 0 1
0 0 1 1
0 1 1 0

2

664

3

775 (8:4)

They are given by

w1 ¼ ð0000Þ;w2 ¼ ð0101Þ;w3 ¼ ð0011Þ;w4 ¼ ð0110Þ (8:5)

These four Walsh sequences represent four orthogonal channels. Let the data sequences of
these four channels be given by (each data bit is repeated four times)

d1 ¼ ð0000Þ; d2 ¼ ð1111Þ; d3 ¼ ð0000Þ; d4 ¼ ð1111Þ (8:6)
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Figure 8.8 Walsh orthogonal covering.
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The resulting symbols in each channel are represented by the following sequences via
modulo 2 addition:

s1 ¼ d1 þ w1 ¼ ð0000Þ; s2 ¼ d2 þ w2 ¼ ð1010Þ;
s3 ¼ d3 þ w3 ¼ ð0011Þ; s4 ¼ d4 þ w4 ¼ ð1001Þ (8:7)

Orthogonal covering is achieved by applying the mapping 0 ! 1 and 1 ! �1 to the above
symbols and then linearly combining them. We have, after the mapping,

s1 ¼ ð1 1 1 1Þ; s2 ¼ ð�1 1� 1 1Þ; s3 ¼ ð1 1� 1� 1Þ; s4 ¼ ð�1 1 1� 1Þ (8:8)

Note that scaling does not alter the orthogonality of the Walsh sequences (sequence and
function are used interchangeably since a sequence becomes a function when a positive
squared pulse shape of duration Tc is assigned to a +1 chip or binary 0 and a negative squared
pulse shape of duration Tc is assigned to a�1 chip or binary 1), therefore, let us assume that
we scale the symbol s1 by a factor of two, then, the orthogonal covering symbol is given by

s ¼ 2s1 þ s2 þ s3 þ s4 ¼ ð1 5 1 1Þ (8:9)

Figure 8.10 shows the waveform s(t) of the orthogonal covering symbol s using the squared
pulse shape.

Now let us consider a simple process to recover the data bit in each of the four channels.
Let w1ðtÞ; w2ðtÞ; w3ðtÞ; and w4ðtÞ represent the Walsh functions whose corresponding
sequences are w1; w2; w3; and w4, respectively. Define the normalized inner product of
the two sequences s and wi with elements in f1;�1g as follows (the mapping
0 ! 1 and 1 ! �1 must be applied to the binary Walsh sequences before calculating
the inner products):

s;wih i=4 ¼ swt
i =4 ¼ 1

4Tc

ð4Tc

0
sðtÞwiðtÞdt; i ¼ 1; 2; 3; 4 (8:10)

We now have the following results:

s;w1h i =4 ¼ 2; s;w2h i =4 ¼ �1; s;w3h i =4 ¼ 1; s;w4h i =4 ¼ �1 (8:11)

Suppose we employ a threshold detector with the threshold set to zero, and for any inner
product with a positive value we detect bit 0, and negative value bit 1. Then, for channel 1
we detect bit 0, for channel 2 bit 1, for channel 3 bit 0, and for channel 4 bit 1.
■

3Tc2Tc 4TTc0
t

s(t)

Figure 8.10 4-ary Walsh orthogonal covering waveform for four symbols in (8.6).
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The above orthogonal covering technique applies to user channels with the same common
rate, that is, a multiple of any user channel rate. Repetition of data bits must be used to bring
the user channel rates to a common rate before orthogonal covering. Since the spread
bandwidth is the same for all users as in WCDMA or CDMA 2000, multi rate transmission
from the base station requires different spread factors for different user channels. This
necessitates the use of variable length orthogonal sequences that can be constructed via a
tree with Walsh sequences as its branches (rows of Hadamard matrix with binary elements):

1. Start at the root of the tree with binary 0.
2. Move to the next branch to create sequences with twice the length. The upper branch

contains the cascade of two parent node sequences. The lower branch contains the
cascade of the parent node sequence and its complement.

3. Variable-length orthogonal sequences cannot come from the same branch of the tree.

Figure 8.11 shows the tree for variable-length orthogonal sequences. All sequences that
have the same length are in fact Walsh sequences but they do not appear in the order of the
rows of the Hadamard matrix. For example, if we assignWalsh sequence (0101) for channel
1 (spread factor of 4), then Walsh sequences (01010101) and (01011010) cannot be used for
any channel that requires a spread factor of 8. The remaining sixWalsh sequences of length 8
are legitimate candidates for orthogonal covering.

Example 8.4 Orthogonal covering with 4-ary and 8-ary Walsh functions
Consider two user channels, one with bit rate Rb ¼ 1=Tb, where Tb is the bit time (denoted as
channel 1) and the other with bit rate 2Rb (denoted as channel 2). Note, one bit of channel 1
covers the same duration as two bits of channel 2. Channel 1 employs a Walsh sequence
w1 for spreading. This Walsh sequence has eight chips per bit; therefore, the chip rate is
8Rb. Channel 2 employs a Walsh sequence w2 for spreading. This Walsh sequence has four
chips per bit; therefore, the chip rate is also 8Rb. Hence, the two channels meet the require-
ment of common chip rate and spread bandwidth. Let the data sequences of these two
channels be given by (each data bit is repeated eight times for Channel 1 and four times
for Channel 2)

0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1
  0 0 0 0

0 0 1 1 0 0 1 1

0 0 1 1 1 1 0 0
0 0 1 1

0 0

0 1 0 1 0 1 0 1

0 1 0 1 1 0 1 0
0 1 0 1

0 1 1 0 0 1 1 0
0 1 1 0

0 1

0

0 1 1 0 1 0 0 1

Figure 8.11 Variable length orthogonal sequences.
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d1 ¼ ð11111111Þ; d2:0 ¼ ð0000Þ and d2;1 ¼ ð1111Þ (8:12)

Furthermore, let the Walsh sequences be selected from Figure 8.11 as follows:

w1 ¼ ð00001111Þ;w2 ¼ ð0101Þ (8:13)

The resulting symbols in each channel are represented by the following sequences via
modulo 2 addition:

s1 ¼ d1 þ w1 ¼ ð11110000Þ; s2;0 ¼ d2;0 þ w2 ¼ ð0101Þ
and s2;1 ¼ d2;1 þ w2 ¼ ð1010Þ (8:14)

Orthogonal covering is achieved by applying the mapping 0 ! 1 and 1 ! �1 to the above
symbols and then linearly combining them. We have, after the mapping,

s1 ¼ ð�1� 1� 1� 11111Þ; s2;0 ¼ ð1� 1 1� 1Þ and s2;1 ¼ ð�1 1� 1 1Þ (8:15)

Let us assume that we scale the symbol s1 by a factor of two, then, the orthogonal covering
symbol is given by

s ¼ 2s1 þ ðs2;0; s2;1Þ ¼ ðs11; s12Þ ¼ ð�1 � 3� 1� 3; 1 3 1 3Þ (8:16)

We now calculate the following normalized inner products using the Walsh sequences
w1 ¼ ð1 1 1 1� 1� 1� 1� 1Þ and w2 ¼ ð1� 11� 1Þ:

s;w1h i=8 ¼ �2; s11;w2h i=4 ¼ 1 and s12;w2h i=4 ¼ �1 (8:17)

Suppose we again employ a threshold detector with the threshold set to zero, and for any
inner product with a positive value we detect bit 0, and negative value bit 1. Then, for
channel 1 we detect bit 1, and for channel 2 bits 0 and 1.
■

IS-95 forward link

The IS-95 forward link transmits user data and voice to the mobile station. The forward link
has three types of channels: one pilot channel, one sync channel, seven paging channels, and
55 traffic channels. The transmitted symbol rate is held constant at 19.2 ksps, where symbol
here refers to a coded bit. The raw bit rate before the application of overhead and error
correction coding is no more than 14.4 kbps. The orthogonal covering is carried out by
64 Walsh sequences at a chip rate of 1.2288Mcps. TheWalsh sequence period is 64 chips.
The all zeros Walsh sequence is reserved explicitly for the pilot channel. The carrier
modulation is the I-Q modulation, hence the spreading is carried out by two PN sequences.
The I-channel and Q-channel PN sequences are twom sequences specified by the following
polynomials:

hI ðxÞ ¼ 1þ x5 þ x7 þ x8 þ x9 þ x13 þ x15 (8:18)

hQðxÞ ¼ 1þ x3 þ x4 þ x5 þ x6 þ x10 þ x11 þ x12 þ x15 (8:19)
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These m-sequences can be generated by 15-stage LFSRs. Each sequence is lengthened by
one chip added to a specific location in the sequence. Their period is 215 = 32 768 chips.
They are clocked at the same chip rate of 1.2288Mcps as the Walsh sequence. The PN
sequence period is 512 times theWalsh sequence period. Each base station is assigned a pair
of PN sequences that is phase-offset from another base station’s pair of PN sequences by
exactly 64 chips. This yields a total 512 offsets of 64 chips, with one offset for each base
station. The PN sequence spreading provides a processing gain against the co-channel
forward links in adjacent cells.

The pilot channel is employed for coherent demodulation of all other channels at the
mobile station. Since the all zeros Walsh sequence (referred to as sequence 0; this is the first
row of the 64� 64 Hadamard matrix) does not alter the pilot bits (all zeros), the pilot bits can
be recovered at the mobile station by despreading the PN sequences. Since no data
modulation is present in the pilot channel, the acquisition of the quadrature PN sequences
is fast. The pilot channel is shown in Figure 8.12.

The sync channel is employed by the mobile station in the cell of the base station to
acquire initial time synchronization. The sync channel is spread by the Walsh sequence 32
(this refers to the 33rd row of the 64 � 64 Hadamard matrix), which consists of 32 zeros
followed by 32 ones. The acquisition of the pilot channel provides the PN despreading for
the sync channel and hence all other channels. After that, this particularWalsh sequence then
helps facilitate the sync channel acquisition. The information bit rate of the sync channel is
1.2 kbps. The information bits are encoded by a convolutional code of rate ½ and constraint
length K = 9. The symbol coded rate is 2.4 ksps. Each coded symbol is then repeated twice
before block interleaving to protect the symbols from possible burst errors occurring from
deep fades in the mobile channel. Since the convolutional code can correct random errors
but not burst errors, de-interleaving at the mobile station can break burst errors into random
errors suitable for correction by the convolutional decoder. Each interleaved symbol is
added (modulo-2 ) to the Walsh sequence 32 before being I-Q spread by the common
I-channel and Q-channel PN sequences. The repetition of a symbol at a rate of 4.8 ksps for
the modulo-2 addition to the Walsh sequence at a rate of 1.2288Mcps is implicitly under-
stood for paging and traffic channels as well. Figure 8.12 shows the generation of the sync
channel without combining with other channels.

The paging channels carry all call set up information to the mobile station. The informa-
tion bit rate is either 4.8 kbps or 9.6 kbps. The information bits are convolutional encoded as
in the sync channel. The coded symbols are repeated to achieve a common coded symbol
rate of 19.2 ksps. Block interleaving is employed to protect the data from channel burst
errors. Data scrambling is applied to the output of the block interleaver for security. This is
accomplished by adding (modulo-2) the interleaver output symbol with the binary value of
the long code PN chip. This long code PN sequence is obtained from a long code operating
at 1.2288Mcps, where only the first chip of every 64 chips is used for data scrambling. In
other words, the long code is decimated to 19.2 kcps by sampling every 64 chips. The long
code is generated by the following polynomial:

hðxÞ ¼ 1þ xþ x2 þ x3 þ x5 þ x6 þ x7 þ x10 þ x16 þ x17

þ x18 þ x19 þ x21 þ x22 þ x25 þ x26 þ x27 þ x31 þ x33 þ x35 þ x42
(8:20)
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Figure 8.12 IS-95 forward link.
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The long code is generated with a 42-stage LFSR. It has a period of 242 � 1 chips. The
scrambled symbols are then spread by a designatedWalsh sequence (the second to eighth rows
of the 64 � 64 Hadamard matrix). Figure 8.12 shows the generation of the paging channel.

The traffic channel carries voice or data to the mobile user. Up to 55 traffic channels are
available in each forward link. Some of the paging channels can be used for traffic channels.
Figure 8.12 shows the generation of the traffic channel. Voice data are selected on a frame-
by-frame (20ms) basis. At 9.6 kbps (4.8 kbps) the frame contains 172 (80) information bits
followed by 12 (8) frame quality indicator bits (cyclic redundancy check (CRC) error
detection bits) and 8 encoder tailing bits used to reset the state of the convolutional encoder
after each frame. At 2.4 kbps (1.2 kbps) the frame contains 40 (16) information bits followed
by 8 encoder tailing bits. The information bits are convolutionally encoded and repeated to
produce a common symbol rate at 19.2 kbps. Block interleaving is implemented for pro-
tection against burst errors. The interleaved code symbols are then scrambled by a long code
PN sequence clocked at 19.2 kcps as in the paging channel to provide data privacy. The
decimated long code PN sequence is further decimated to yield a clock signal at 800Hz by
sampling once every 24 chips. This clock is used by the power control bits at a rate of
800 bps to puncture the scrambled symbols. The power control bits are sent to the mobile
station to control the mobile transmit power. This control process equalizes the near far
effect. The resulting symbol stream is spread by a designated Walsh sequence (the ninth to
32nd rows, and the 34th to 64th rows of the 64� 64 Hadamard matrix). The above forward
traffic channel is for Rate Set 1 (RS1), which is specified in the 2G standard IS-95A. A later
version IS-95A specifies a Rate Set 2 (RS2) of 14.4, 7.2, 3.6, and 1.8 kbps. At 14.4 kbps
(7.2 kbps) the frame contains 267 (125) information bits followed by 12 (10) frame quality
indicator bits and 8 encoder tailing bits. At 3.6 kbps (1.8 kbps) the frame contains 55 (21)
information bits followed by 8 (6) frame quality indicator bits and 8 encoder tailing bits.
The convolutional code for RS2 is of rate ¾. It is obtained from the convolutional code of
rate ½ in RS1 by puncturing (deleting) two output code symbols for every six output code
symbols (which correspond to every three input code symbols). The 2.5G standard IS-95B
can assign up to eight Walsh functions to a dedicated user for a maximum rate of 115.2 kbps
(8� 14.4 kbps), although in practice the rate is about half the maximum rate for constraints
imposed on the air interface.

Code division multiple access (CDMA)

Code division multiple access (CDMA) is a spread spectrum multiple access technique
commonly used in both commercial and military communication systems. For example,
CDMA is employed on the reverse links of cellular systems such as IS-95, WCDMA, and
CDMA 2000 to connect geographically dispersed mobile stations to their base station. Each
mobile station has its own spread PN sequence and transmits its direct sequence spread
spectrum signal on the same carrier frequency to the base station without any coordination.
CDMA commonly employs a set of PN sequences that have low crosscorrelation, such as
Gold sequences, Kasami sequences, and phase offset maximal sequences (from the same
mother maximal sequence). These PN sequences reduce the effect ofmulti user interference
of mobile signals in the same cell and on the same link as well as those in adjacent cells.
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To avoid the near far effect, mobile signals on the same reverse link must arrive at the base
station with approximately the same signal power. Thus, CDMA requires near real-time
closed loop power control for all mobile stations in the same cell. The base station measures
the mobile signal strength and sends an instruction on the forward link for the mobile station
to adjust its transmitted power up or down by an incremental unit amount. Assume perfect
power control, that is, all mobile signals in the same cell and on the same link arrive at their
base station with exactly the same power P. Furthermore, assume that the reverse link has
K mobile signals and each mobile signal has an identical spread factor equal to N. This
means that the decision sample for each mobile signal at the base station has an interference
variance (power) equal to P(K 1)/N. Also, the output signal to interference ratio is equal to
N/(K 1) (this is a conservative estimate since it does not take into account the modulation
type and whether the demodulation is coherent or noncoherent. A more precise analysis can
be found in a later section of this chapter). The output signal to interference ratio is the
factor that limits the number of voice channels in a CDMA cellular system like IS-95. Note
that the forward link of IS-95 has no multi-user interference because of the use of orthogonal
covering. Thus, the IS-95 forward link can carry up to 62 voice channels if no paging
channel is used. On the other hand, the IS-95 reverse link is constrained by multi-user
interference and carries a smaller number of voice channels unless other efficient techniques
are incorporated, such as voice activation, diversity at the base station, and sectoring. In
fact, the capacity of IS-95 is forward link limited rather than reverse link-limited once these
efficient techniques are incorporated.

IS-95 reverse link

The IS-95 reverse link is composed of access channels and traffic channels from mobile
stations in the same cell. These channels employ the same carrier frequency. Each access
channel is spread by a distinct long code PN sequence; each traffic channel is also spread by
a distinct long code PN sequence. These long code PN sequences allow the users on a
reverse link to operate in a CDMA mode. Each user’s long PN sequence is a phase-offset of
the same 42-stage long code PN sequence of the forward link.

The access channel has 88 bits per 20ms frame and is clocked at 4.4 kbps. Eight encoder
tail bits are added to reset the encoder state to the all-zero state at the end of each frame.
Therefore, the input bit rate of the convolutional encoder (rate ⅓ and constraint length 9) is
4.8 kbps. The encoder output coded symbol rate is three times the input bit rate which is
equal to 14.4 ksps. Since the common bit rate for all channels is 9.6 kbps and the common
coded symbol rate for all channels is 28.8 ksps, the access channel coded symbols are
repeated to achieve 28.8 ksps before interleaving. This protects the data from channel burst
errors. The coded symbols at the interleaver output are passed to a CSK modulator that
employs 64 orthogonal Walsh functions, each with 64 chips, to represent a set of 64 distinct
CSK symbols. A CSK symbol consists of six coded symbols. The CSK symbol rate is 28.8/6
= 4.8 ksps and the Walsh chip rate is 4.8� 64 = 307.2 kcps. TheWalsh chips are spread by a
42-stage long code PN sequence clocked at the rate of 1.2288Mcps. Thus, a Walsh chip is
spread by a factor of four and a CSK symbol is spread by a factor of 256. The spread factor is
therefore equal to 256. Following the direct sequence spreading by the long code PN
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sequence, the access channel is further scrambled in offset-quadrature by the I-channel PN
sequence and the Q-channel PN sequence. The data in the Q-channel are delayed by half a PN
chip time with respect to the data in the I-channel. The use of offset quadrature modulation
helps reduce the sidelobe regrowth in the signal spectrum when the signal is amplified by a
nonlinear amplifier of the mobile transmitter. Hence, offset quadrature modulation reduces
adjacent channel interference (this is the same advantage obtained with OQPSK). Both
I- and Q-channel PN sequences are clocked at the same rate of 1.2288Mcps. Thus, the signal
is not spread further by these two sequences. Nevertheless, the offset-quadrature spreading
protects the reverse link against co-channel interference in adjacent cells. The access
channel is used by the mobile station to initiate communication with the base station via a
random access protocol. The protocol arranges a number of 20ms slots into access slots.
Each transmission in an access slot begins with a random delay to randomize the trans-
mission times of mobile stations that may be transmitting in the same access slot. The
purpose is to reduce packet collisions and improve the channel throughput. Figure 8.13
illustrates the generation of the access channel.

The reverse traffic channel carries data in 20ms frames. The raw data rates are 0.8 kbps,
2 kbps, 4 kbps, and 8.6 kbps and are converted to data rates of 0.8 kbps, 2 kbps, 4.4 kbps, and
9.2 kbps when frame quality indicators are added to the frames for the two higher data rates
(that is, the frame is encoded by cyclic redundancy check (CRC) code for error detection at
the base station). Furthermore, an 8-bit encoder tail is added to the frame to reset the
convolutional encoder to the all-zero state. The input rates to the encoder (rate ⅓, constraint
length 9) vary from 1.2 kbps (12.5% duty cycle) to 9.6 kbps (100% duty cycle). Thus, the
output rates of the encoder vary from 3.6 ksps to 28.8 ksps. To achieve a common trans-
mission rate of 28.8 kbps the encoder symbols are repeated accordingly before interleaving
to protect the data from channel burst errors. The coded symbols at the interleaver output are
passed to a CSKmodulator that employs 64 orthogonalWalsh functions, each with 64 chips,
to represent a set of 64 distinct CSK symbols. A CSK symbol consists of six coded symbols.
The CSK symbol rate is 28.8/6 = 4.8 ksps and the Walsh chip rate is 4.8 � 64 = 307.2 kcps.
A frame of 20ms contains 96 CSK symbols, which are divided into 16 slots of six CSK
symbols. A data burst randomizer is employed to gate off the repeated symbols, which
reduces the multi-user interference when the data rate is less than 9.6 ksps (that is, 4.8 kbps,
2.4 kbps, and 1.2 kbps). All slots are filled for a rate of 9.6 kbps, half-filled for 4.8 kbps, one
quarter-filled for 2.4 kbps, and one eighth-filled for 1.2 kbps. Thus, all but one of the code
symbol repetitions is deleted prior to transmission to achieve a variable transmission duty
cycle. A user-distinct 42-stage long code PN sequence clocked at 1.2288Mcps is used to
spread the signal, achieving a spreading factor of 256. Finally, offset-quadrature spreading is
employed (as in the access channel). Figure 8.13 shows the generation of the reverse traffic
channel of the IS-95 reverse link.

The reverse traffic channel supports both RS1 and RS2. The convolutional code for RS2
is of rate ½. It is obtained from the convolutional code of rate ⅓ in RS1 by puncturing
(deleting) two output code symbols for every six output code symbols (which correspond to
every two input code symbols). The reverse traffic channel operates as a fundamental code
channel shown in Figure 8.13 or as a supplementary code channel at the highest data rate
without the data burst randomizer.
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8.2 Direct sequence demodulation

In the previous section we provided a detailed discussion of direct sequence spread spectrum
modulation techniques. In the following discussion we will examine the demodulation
process, and study the performance of direct sequence spread spectrum signals in the
presence of a jamming signal. We also analyze the performance of CDMA signals.
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Figure 8.13 IS-95 reverse link.
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The demodulation process of a direct sequence spread spectrum signal can be illustrated
by the general block diagram shown in Figure 8.14. The received DS signal is first despread
by multiplying it by a synchronized replica of the PN sequence. This operation simultan-
eously spreads the jamming signal power over a bandwidth much larger than the data
bandwidth. The despread signal is now a narrowband signal and can be demodulated by a
conventional demodulator, depending on the modulation format. Note that the despreading
process provides no advantage with respect to white noise due to the fact that the spectrum
of white noise is theoretically infinite and can no longer be spread. Thus the performance of
a DS signal in a white Gaussian noise channel is identical to the performance of its
narrowband counterpart. Only when a jamming signal is present the benefit of spreading
obtained.

Example 8.5 DS-PSK and tone jamming
Let us consider a DS-PSK signal s(t) in an AWGN channel with the presence of a tone
jamming signal j(t) that has exactly the same carrier frequency.We assume that noise n(t) has
the power spectral density N0/2 (W/Hz). Let s(t) and j(t) be represented as follows:

sðtÞ ¼ AdicðtÞ cos 2πfct ; iTb 5t � ðiþ 1ÞTb; and jðtÞ ¼ Aj cosð2πfct þ θÞ (8:21)

where di 2 fþ1;�1g is the ith data bit of duration Tb and c(t) is the PN function of N chips.
The period of c(t) is Tb, and each chip is represented by a unit amplitude squared pulse shape
of duration Tc. The spreading factor is N = Tb/Tc. The demodulator is shown in Figure 8.15.
The decision sample at the detector input is given by

X ¼ ATbdi
2

þ J þ N (8:22)

where the random variables J andN represent the jamming and noise samples, respectively,
and are expressed as follows:

J ¼ 1

2
Aj cos θ

ðTb

0
cðtÞ dt and N ¼

ðTb

0
nðtÞcðtÞ cos 2πfctdt (8:23)

Let L be the number of 1s minus the number of 0s in the PN sequence c(t), and hence L can
be positive or negative. Using the fact that the chips in the PN sequence have�1 amplitude,
we have

J ¼ 1

2
AjTcL cos θ (8:24)

Narrowband
demodulator 

PN sequence

DS signal

Figure 8.14 A direct sequence demodulator.
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Assuming that the random phase θ is uniformly distributed, we calculate the jamming
variance as

σ2j ¼ 1

8
A2
j T

2
c L

2 (8:25)

Using the fact that c2ðtÞ ¼ 1, the noise variance can be calculated as follows:

σ2 ¼ N0Tb
4

(8:26)

Consequently, the output signal to noise ratio SNR0 and the output signal to jamming ratio
SJR0 are given by

SNR0 ¼ ðATbdi=2Þ2
σ2

¼ A2Tb
N0

¼ 2Eb

N0
(8:27a)

SJR0 ¼ ðATbdi=2Þ2
σ2j

¼ 2
N

L

� �2 A2

A2
j

 !

¼ 2
N

L

� �2

SJRi (8:27b)

where SJRi ¼ A2=A2
j is the input signal to jamming ratio. Note that the output signal-to-

noise ratio is identical to that of the narrowband PSK as expected since spreading the signal
has no effect on noise. On the other hand the output signal-to-jamming ratio is enhanced by a
processing gain equal to 2(N/L)2 relative to the input signal-to-jamming ratio. For example,
if c(t) represents a maximal sequence, then L = 1, and the processing gain is 2N2. Thus, tone
jamming is not effective against a DS signal with a large spread factor N. Note the difference
between spread factor and processing gain. The latter is modulation, demodulation, and
jamming dependent while the former is not.
■

Example 8.6 DS-PSK and broadband jamming
Let us again consider the DS-PSK signal s(t) in the above example. The channel is an
AWGN channel with the presence of a broadband jamming signal j(t) whose power spectral
density is flat and is denoted as J0=2 (W/Hz). We also assume that noise n(t) has the power
spectral density N0=2 (W/Hz). Using the same approach as above we calculate the jamming
variance and the output signal to jamming ratio SJR0 as

σ2j ¼ J0Tb
4

(8:28)

Threshold
detector

s(t) + j(t) + n(t)
t = Tb

c(t)cos 2πfct

0

Tb∫

Figure 8.15 DS-PSK demodulator.
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SJR0 ¼ ðATbdi=2Þ2
σ2j

¼ A2Tb
J0

¼ 2Eb

J0
(8:29)

Let us now calculate the input signal to jamming ratio SJRi. We have

SJRi ¼ A2=2

Pj
(8:30)

where Pj is defined as the power of the jamming signal in the equivalent noise bandwidth of
the DS-PSK signal, which is equal to the chip rate 1/Tc:

Pj ¼ J0
Tc

(8:31)

Thus we have

SJRi ¼ A2=2

Pj
¼ A2Tc

2J0
¼ Eb

NJ0
(8:32)

Combining (8.29) and (8.32) we obtain

SJR0 ¼ 2NðSJRiÞ (8:33)

The above result shows that a processing gain equal to 2N is achieved against broadband
jamming. The output signal to jamming and noise ratio is given by SJNR0 ¼
ðSJR 1

0 þ SNR 1
0 Þ 1, where SNR0 ¼ 2Eb=N0. The jamming sample at the integrator output

is not Gaussian, but if N is large, the sample can be approximated as a Gaussian sample
(based on the central limit theorem, any broadband signal that is passed through a narrow-
band filter whose bandwidth is much smaller than that of the broadband signal produces an
output signal that is approximately Gaussian). Thus, the bit error probability of a DS-PSK
signal in the presence of a broadband jamming signal can be approximated as
Pb � Qð SJNR0

p Þ
■

Example 8.7 DS-PSK and pulsed jamming
An effective jamming strategy that is commonly employed against a direct sequence spread
spectrum signal is pulse jamming. In this strategy the jammer power is concentrated into
pulses of duty cycle δ with peak power Pp. The jammer is on δ percent of the time and off
(1 � δ) percent of the time. Thus, only δ percent of the transmitted symbols are jammed.
We assume that the transmitter has no knowledge of the jammer’s timing. Otherwise, the
transmitter just ceases transmission when the jammer is on and resumes transmission when
the jammer is off, thereby avoiding being jammed altogether. Again, assume that the
jamming signal is broadband. The output signal to pulse jamming ratio is then given by
SJR0;p ¼ 2NðSJRi;pÞ ¼ 2δEb=J0, where SJRi;p is the input signal to pulse jamming ratio
SJRi;p ¼ δ ðSJRiÞ ¼ δEb=NJ0, where SJRi is the average input signal to jamming ratio
defined in the previous example for continuous broadband jamming. Thus, with pulse
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jamming the output signal to pulse jamming ratio is decreased by a factor equal to δ. Using
the Gaussian approximation and based on the total probability theorem, the bit error
probability for the DS-PSK signal in pulse jamming is given by

Pb � δQ ðSJR 1
0;p þ SNR 1

0 Þ 1
q� �

þ ð1� δÞQ SNR0

p� �
(8:34)

If we consider the case when SNR0 � SJR0;p, then the bit error probability can be approxi-
mated as follows:

Pb � δQ SJR0;p

p� 	 ¼ δQ 2NδðSJRiÞ
p� �

¼ δQ 2δEb=J0
p� �

(8:35)

For a fixed average jamming power, the jammer can select δ to maximize the bit error
probability. The worst-case bit error probability and the optimum δ can be found numer-
ically as

Pb;max � 0:083

NðSJRiÞ ¼
0:083

Eb=J0
; δ ¼ 0:71

NðSJRiÞ ¼
0:71

Eb=J0
(8:36)

For illustration purpose, consider the case of SJRi = 1/20 and N = 128, then Pb,max � 0.013
and δ ¼ 0:11. For comparison purposes consider the case of broadband jamming in the
previous example. Assume that the effect of noise is negligible compared to that of
the jamming signal. Then, the bit error probability for broadband jamming is given by
Pb � Qð SJNR0

p Þ ¼ Qð 2NðSJRiÞ
p Þ ¼ Qð 2Eb=J0

p Þ ¼ Qð 12:8
p Þ ¼ 1:7� 10 4. This

shows that pulsed jamming is more effective than broadband jamming in general. The
disadvantage is the requirement of a high peak power jammer. To combat pulsed jamming,
error-correction coding may be employed.
■

Quadrature orthogonal covering demodulation

In this section we provide the demodulation of the quadrature orthogonal covering signal in
Figure 8.9. The quadrature orthogonal covering signal can be represented in an arbitrary bit
interval as follows:

sðtÞ ¼ A

2
p
XM

k¼1

di;kcI ðtÞwkðtÞ cosð2πfct þ θÞ

� A

2
p
XM

k¼1

di;kcQðtÞwkðtÞ sinð2πfct þ θÞ ; iTb 5t � ðiþ 1ÞTb
(8:37)

where di,k 2 fþ1;�1g is the ith bit in the kth channel. The I- and Q-channel PN functions
are cI(t) and cQ(t), respectively. The arbitrary phase θ represents the phase difference
between the received signal and the local carrier. The 2

p
factor means that half the power

goes into the I-channel and the other half goes into the Q-channel. We assume that noise n(t)
has the power spectral density N0/2 (W/Hz). The following operations are performed by the
demodulator to extract the I-decision variable:
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sðtÞ½cI ðtÞwlðtÞ cos 2πfct	

¼ A

2
p
XM

k¼1

di;kc
2
I ðtÞwkðtÞwlðtÞ cosð2πfct þ θÞ cos 2πfct

� A

2
p
XM

k¼1

di;kcI ðtÞcQðtÞwkðtÞwlðtÞ sinð2πfct þ θÞ cos 2πfct

¼ A

2 2
p
XM

k¼1

di;kwkðtÞwlðtÞ cos θ � A

2 2
p
XM

k¼1

di;kcI ðtÞcQðtÞwkðtÞwlðtÞ sin θ

(8:38)

sðtÞ½�cQðtÞwlðtÞ sin 2πfct	

¼ � A

2
p
XM

k¼1

di;kcI ðtÞcQðtÞwkðtÞwlðtÞ cosð2πfct þ θÞ sin 2πfct

þ A

2
p
XM

k¼1

di;kc
2
QðtÞwkðtÞwlðtÞ sinð2πfct þ θÞ sin 2πfct

¼ A

2 2
p
XM

k¼1

di;kcI ðtÞcQðtÞwkðtÞwlðtÞ sin θ þ A

2 2
p
XM

k¼1

di;kwkðtÞwlðtÞ cos θ

(8:39)

The high-frequency terms are ignored because they will be integrated to zero, since as usual
we assume that the carrier frequency is an integer multiple of the symbol rate. Add (8.38)
and (8.39) and include noise. We get the signal and noise of the I-channel:

sI ðtÞ ¼ sðtÞ½cI ðtÞwlðtÞ cos 2πfct	 þ sðtÞ½�cQðtÞwlðtÞ sin 2πfct	

¼ A

2
p
XM

k¼1

di;kwkðtÞwlðtÞ cos θ
(8:40)

where the noise part is given by the following expression:

nI ðtÞ ¼ nðtÞ½cI ðtÞwlðtÞ cos 2πfct	 þ nðtÞ½�cQðtÞwlðtÞ sin 2πfct	 (8:41)

Similarly, the following operations are performed by the demodulator to extract the Q-
decision variable:

sðtÞ½�cI ðtÞwlðtÞ sin 2πfct	

¼ � A

2
p
XM

k¼1

di;kc
2
I ðtÞwkðtÞwlðtÞ cosð2πfct þ θÞ sin 2πfct

þ A

2
p
XM

k¼1

di;kcI ðtÞcQðtÞwkðtÞwlðtÞ sinð2πfct þ θÞ sin 2πfct

¼ A

2 2
p
XM

k¼1

di;kwkðtÞwlðtÞ sin θ þ A

2 2
p
XM

k¼1

di;kcI ðtÞcQðtÞwkðtÞwlðtÞ cos θ

(8:42)
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sðtÞ½�cQðtÞwlðtÞ cos 2πfct	

¼ � A

2
p
XM

k¼1

di;kcI ðtÞcQðtÞwkðtÞwlðtÞ cosð2πfct þ θÞ cos 2πfct

þ A

2
p
XM

k¼1

di;kc
2
QðtÞwkðtÞwlðtÞ sinð2πfct þ θÞ cos 2πfct

¼ � A

2 2
p
XM

k¼1

di;kcI ðtÞcQðtÞwkðtÞwlðtÞ cos θ þ A

2 2
p
XM

k¼1

di;kwkðtÞwlðtÞ sin θ

(8:43)

Add (8.42) and (8.43) and include noise. We get the signal and noise of the Q-channel:

sQðtÞ ¼ sðtÞ½�cI ðtÞwlðtÞ sin 2πfct	 þ sðtÞ½�cQðtÞwlðtÞ cos 2πfct	
¼ A

2
p
XM

k¼1

di;kwkðtÞwlðtÞ sin θ (8:44)

where the noise part is given by the following expression:

nQðtÞ ¼ nðtÞ½�cI ðtÞwlðtÞ sin 2πfct	 þ nðtÞ½�cQðtÞwlðtÞ cos 2πfct	 (8:45)

To obtain the I- and Q-decision variables XI ;l and XQ;l of the lth channel we integrate
sI ðtÞ þ nI ðtÞ and sQðtÞ þ nQðtÞ with respect to t, where iTb 5t � ðiþ 1ÞTb. We have

XI ;l ¼ ATb
2

p di;l cos θ þ NI ;l (8:46)

XQ;l ¼ ATb
2

p di;l sin θ þ NQ;l (8:47)

Both decision variables are Gaussian variables with variance σ2 given by

σ2 ¼ N0Tb
2

(8:48)

A sinusoidal phase detector can be employed on a designated lth channel to provide a
correction voltage e tð Þ ¼ XI ;lXQ;l � 1=4A2T 2

b sin 2θ̂ to drive a voltage controlled oscillator
(VCO) so that the noisy phase error θ̂ can be driven to zero in the case of small noise.
A phase locked loop (PLL) can accomplish this task. In the fading channel (see Chapter 10)
of a cellular system the amplitude A is not constant. Therefore, it is not possible to use a PLL
to track the phase. In practice, a pilot tone is transmitted using the first Walsh function
(corresponding to the first row of the Hadamard matrix) with all pilot bits di;1set to 1s, as in
IS-95. The pilot channel 1 provides the noisy phase error θ̂ via the following operation:

θ̂ ¼ tan 1 XQ;1

XI ;1

� �
(8:49)

This phase error can be converted to a dc voltage which can be used by a VCO to correct the
phase error between the received signal and the local carrier. In both scenarios, the I-decision
variable of the lth channel, namely XI ;l, is fed to a threshold detector to make a decision on
which bit had been transmitted. Figure 8.16 illustrates the coherent demodulation of the I-Q
orthogonal covering signal.
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The bit error probability of a Walsh channel is determined by the Gaussian decision
variable XI ;l ¼ ð1= 2

p ÞATbdi;l þ NI ;l when synchronization is reached for which θ ¼ 00. The
bit error probability for an AWGN channel is identical to PSK or QPSK and is given by

Pb ¼ Q
A2Tb
N0

s !

¼ Q
2Eb

N0

r� �
(8:50)

For a fading channel the bit error probability is presented in Chapter 10.
Alternatively, the detection can be carried out by the following operation:

Yl ¼ XI ;lXI ;1 þ XQ;lXQ;1 ¼ ATb
2

p di;l cos θ þ NI ;l

� �
ATb
2

p di;1 cos θ þ NI ;1

� �

þ ATb
2

p di;l sin θ þ NQ;l

� �
ATb
2

p di;1 sin θ þ NQ;1

� �

¼ A2T 2
b

2
di;ldi;1 þ N

(8:51)
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Figure 8.16 Coherent demodulator of the quadrature orthogonal covering signal.
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where N is the noise variable defined as follows:

N ¼ ATb
2

p cos θ
� �

di;lNI ;1 þ di;1NI ;l

� 	þ ATb
2

p sin θ
� �

di;lNQ;1 þ di;1NQ;l

� 	

þ NI ;1NI ;l þ NQ;1NQ;l

(8:52)

where the pilot bits di;1 are all 1. In the case of small noise we note that Yl � 1=2A2T2
b di;l, for

which the transmitted bit di;l can be detected by a threshold detector. Figure 8.17 illustrates
the pilot symbol aided demodulation of the quadrature orthogonal covering signal. Note that
the noise variable N is not a Gaussian variable. In practice the pilot tone is sent with a much
higher power than those of the Walsh data signals (IS-95 and CDMA 2000), that is,
di;1 � di;l. In this case N is approximately Gaussian with variance 1=2A2T2

b d
2
i;1σ

2, where σ2

is given in (8.48). Thus, (8.50) can be used to approximate the bit error probability for an
AWGN channel or a fading channel (see Chapter 10).

Noncoherent demodulation of DS-CSK

Direct sequence–code shift keying is a power-efficient spread spectrum modulation. In
practice it is implemented with quadrature spreading as in quadrature orthogonal covering
technique. IS-95 employs DS-CSK with offset quadrature spreading in which the
Q-channel is delayed by half a chip. The pilot tone is not transmitted along with the data
signal. This happens because the pilot tone cannot be power-shared with other mobile
signals as in the case of quadrature orthogonal covering signals at the base station. Since
the cellular channel is a fading channel (Chapter 10), it is not possible to perform coherent
demodulation of the quadrature DS-CSK signal without a pilot tone. Therefore noncoherent
demodulation must be carried out. Let us consider a quadrature DS-CSK signal with Walsh
function wkðtÞ that represents a transmitted kth symbol in the set of M symbols. The PN
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XI, l XI,1 + XQ,l XQ,1
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Threshold detectors

–sin 2πfct
cQ(t) w1(t)

cI(t) w1(t) 0

Ts∫

–cos 2πfct
cQ(t) w1(t)

cI(t) w1(t) 0

Ts∫
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Figure 8.17 Pilot symbol-aided demodulator of the quadrature orthogonal covering signal.
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spreading codes are cI ðtÞ and cQðtÞ, and the carrier frequency is fc, which is assumed to be an
integer multiple of the symbol rate 1=Ts.

sðtÞ ¼ A

2
p cI ðtÞwkðtÞ cosð2πfct þ θÞ � A

2
p cQðtÞwkðtÞ sinð2πfct þ θÞ; 0 � t � Ts (8:53)

The noncoherent demodulator has M branches corresponding to M distinct transmitted
symbols. Each branch has two quadrature correlators that perform the following operations:

sðtÞ½cI ðtÞwlðtÞ cos 2πfct	 ¼ A

2
p c2I ðtÞwkðtÞwlðtÞ cosð2πfct þ θÞ cos 2πfct

� A

2
p cI ðtÞcQðtÞwkðtÞwlðtÞ sinð2πfct þ θÞ cos 2πfct

¼ A

2 2
p wkðtÞwlðtÞ cos θ � A

2 2
p cI ðtÞcQðtÞwkðtÞwlðtÞ sin θ

(8:54)

sðtÞ½�cQðtÞwlðtÞ sin 2πfct	 ¼ � A

2
p cI ðtÞcQðtÞwkðtÞwlðtÞ cosð2πfct þ θÞ sin 2πfct

þ A

2
p c2QðtÞwkðtÞwlðtÞ sinð2πfct þ θÞ sin 2πfct

¼ A

2 2
p cI ðtÞcQðtÞwkðtÞwlðtÞ sin θ þ A

2 2
p wkðtÞwlðtÞ cos θ

(8:55)

The high-frequency terms are ignored because they will be integrated to zero. Add
(8.54) and (8.55) and include noise. We get the signal and noise of the I-correlator of the
lth branch:

sI ðtÞ ¼ sðtÞ½cI ðtÞwlðtÞ cos 2πfct	 þ sðtÞ½�cQðtÞwlðtÞ sin 2πfct	 ¼ A

2
p wkðtÞwlðtÞ cos θ

(8:56)

where the noise part is given by the following expression:

nI ðtÞ ¼ nðtÞ½cI ðtÞwlðtÞ cos 2πfct	 þ nðtÞ½�cQðtÞwlðtÞ sin 2πfct	 (8:57)

Similarly, the following operations are performed by the demodulator to extract the signal
of the Q-correlator of the lth branch:

sðtÞ½�cI ðtÞwlðtÞ sin 2πfct	 ¼ � A

2
p c2I ðtÞwkðtÞwlðtÞ cosð2πfct þ θÞ sin 2πfct

þ A

2
p cI ðtÞcQðtÞwkðtÞwlðtÞ sinð2πfct þ θÞ sin 2πfct

¼ A

2 2
p wkðtÞwlðtÞ sin θ þ A

2 2
p cI ðtÞcQðtÞwkðtÞwlðtÞ cos θ

(8:58)
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sðtÞ½�cQðtÞwlðtÞ cos 2πfct	 ¼ � A

2
p cI ðtÞcQðtÞwkðtÞwlðtÞ cosð2πfct þ θÞ cos 2πfct

þ A

2
p c2QðtÞwkðtÞwlðtÞ sinð2πfct þ θÞ cos 2πfct

¼ � A

2 2
p cI ðtÞcQðtÞwkðtÞwlðtÞ cos θ þ A

2 2
p wkðtÞwlðtÞ sin θ

(8:59)

Add (8.58) and (8.59) and include noise. We get the signal and noise of the Q-correlator of
the lth branch:

sQðtÞ ¼ sðtÞ½�cI ðtÞwlðtÞ sin 2πfct	 þ sðtÞ½�cQðtÞwlðtÞ cos 2πfct	 ¼ A

2
p wkðtÞwlðtÞ sin θ

(8:60)

where the noise part is given by the following expression:

nQðtÞ ¼ nðtÞ½�cI ðtÞwlðtÞ sin 2πfct	 þ nðtÞ½�cQðtÞwlðtÞ cos 2πfct	 (8:61)

To obtain the I- and Q-decision variables XI ;k and XQ;k of the kth branch (signal
branch) we integrate sI ðtÞ þ nI ðtÞ and sQðtÞ þ nQðtÞ with respect to t, where 0 � t � Ts.
We have

XI ;k ¼ ATs
2

p cos θ þ NI ;k (8:62)

XQ;k ¼ ATs
2

p sin θ þ NQ;k (8:63)

Both decision variables are Gaussian variables with variance σ2 given by

σ2 ¼ N0Ts
2

(8:64)

The M � 1 noise branches provide the following noise variables for l 6¼ k:

XI ;l ¼ NI ;l (8:65)

XQ;l ¼ NQ;l (8:66)

The I- and Q-outputs of each branch are squared and added to provideM decision variables
for the maximum detector:

X 2 ¼ X 2
I ;l þ X 2

Q;l; l ¼ 1; 2; . . . ;M (8:67)

The bit error probability for an AWGN channel is given in Chapter 7 and for a fading
channel in Chapter 10. Figure 8.18 shows the noncoherent demodulator for a quadrature
DS-CSK signal.
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CDMA: performance evaluation

In this section we present the analysis of typical CDMA systems employed in practice. The
three most well-known systems are the 3G cellular standards WCDMA and CDMA 2000,
and the 2G cellular standard IS-95. The first two systems employ CDMA on the reverse link
with coherent DS-QPSK and DS-IQ, including orthogonal covering. The third employs
noncoherent DS-CSK. The analysis of DS-QPSK or DS-IQ is similar to DS-PSK, which we
present in Chapter 10. We assume that the reverse link has K users, and with power control
all user signals arrive at the base station with the same power. We designate user signal 1 as
the signal of interest and user signals 2 to K are multi user interference (MUI). We assume
that noise n(t) has the power spectral density N0=2 (W/Hz). The composite signal received
by the base station in an arbitrary bit interval is given by

sðtÞ ¼ Adi;1 c1ðtÞ cos 2πfct þ A
XK

k¼2

di;kckðt � τkÞ cos ½2πfcðt � τkÞ þ ’kg þ nðtÞ

¼ Adi;1 c1ðtÞ cos 2πfct þ A
XK

k¼2

di;kckðt � τkÞ cosð2πfct þ θkg þ nðtÞ;

iTb 5t � ðiþ 1ÞTb (8:68)

where τk is the kth path delay and θk is uniformly distributed in (0, 2π) radians. The N-chip
PN function ck(t) has period NTc = Tb. The demodulator is the familiar one shown in
Figure 8.14. The decision variable at the threshold detector input can be calculated as

X ¼ ATbdi;1
2

þ I þ N (8:69)
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. .
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Figure 8.18 Noncoherent demodulator of the quadrature DS-CSK signal.
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where the noise variable N is a zero mean Gaussian random variable with the following
variance:

σ2 ¼ N0Tb
4

(8:70)

The MUI variable I can be expressed as follows:

I ¼ A

2

ðTb

0

XK

k¼2

di;k cos θk c1ðtÞ ckðt � τkÞdt

¼ A

2

XK

k¼2

di;k cos θk

ðTb

0
c1ðtÞ ckðt � τkÞ dt

¼ A

2

XK

k¼2

di;kIk cos θk

(8:71)

where

Ik ¼
ðTb

0
c1ðtÞ ckðt � τkÞ dt (8:72)

If the number of chips per period N of the PN sequences is large, the PN sequences can be
approximated as independent zero mean random binary sequences. The autocorrelation of
the random fþ1;�1g-sequence is given by

RðτÞ ¼ 1� τj j
Tc

; τj j � Tc and zero elsewhere (8:73)

We note that binary data has zero mean and unit variance, and that the variable
cos θk has zero mean and variance ½. Therefore, the variance of the MUI variable I is
given by

VarðIÞ ¼ A2

4

XK

k¼2

½Varðdi;kÞVarðcos θkÞVarðIkÞ	 ¼ A2

8

XK

k¼2

VarðIkÞ (8:74)

We now proceed to evaluate the variance of the variable Ik in (8.72). Using the fact that all
user PN sequences are independent we obtain

VarðIkÞ ¼
ðTb

0

ðTb

0
R2ðt � τÞ dt dτ (8:75)

Applying the following transformation u ¼ t � τ; v ¼ t þ τ we get the following result:

VarðIkÞ ¼ 1

2

ðTb

Tb

R2ðuÞ du
ð2Tb u

u
dv ¼ 2

ðTb

0
R2ðuÞðTb � uÞ du (8:76)

Substituting (8.73) into (8.76) we have the variance given by

VarðIkÞ ¼ 2

ðTb=N

0
1� Nu

Tb

� �2

ðTb � uÞ du ¼ 2
T2
b

3N
� T 2

b

12N 2

� �
(8:77)
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For large N, which is the case in practice, the variance can be approximated as

VarðIkÞ � 2T 2
b

3N
(8:78)

Substituting (8.78) into (8.74) we obtain the MUI variance necessary for further analysis:

VarðIÞ � ðK � 1ÞA2T 2
b

12N
(8:79)

Returning to (8.69) we evaluate the output signal to interference ratio SIR0 and the output
signal to noise ratio SNR0, as follows:

SNR0 ¼ ðATbdi;1=2Þ2
σ2

¼ A2Tb
N0

¼ 2Eb

N0
and SIR0 � ðATbdi;1=2Þ2

VarðIÞ ¼ 3N

K � 1
(8:80)

Combining SIR0 and SNR0 we obtain the output signal to interference and noise ratio
SINR0:

SINR0 ¼ ðSIR 1
0 þ SNR 1

0 Þ 1 � K � 1

3N
þ N0

2Eb

� � 1

(8:81a)

Analysis that does not assume a random spreading sequence can be found in [1]. It is
common in practice to approximate the despread input signal-to-interference ratio SIRi and
output SIR0 by assuming the MUI power is distributed uniformly over the spread band-
width. Thus, the MUI power spectral density is J0 ¼ ðK � 1ÞEb=N and we have

SIRi ¼ N=ðK � 1Þ (8:81b)

SIR0 ¼ 2N=ðK � 1Þ (8:81c)

This conservative approach compensates for the non-randomness of the PN sequence and it
is up to the engineer to select which SIR0 to use. We thus have an inequality for SINR0, as
follows:

K � 1

2N
þ N0

2Eb

� � 1

� SINR0 � K � 1

3N
þ N0

2Eb

� � 1

(8:81d)

If N is large, the sample X in (8.69) can be approximated as a Gaussian sample (based on
the central limit theorem, any broadband signal that is passed through a narrowband filter
whose bandwidth is much smaller than that of the broadband signal produces an output
signal that is approximately Gaussian). Thus, the bit error probability of a CDMA-PSK
signal can be approximated as Pb � Qð SINR0

p Þ. For the ideal case of random spread
sequences we have

Pb � Q
K � 1

3N
þ N0

2Eb

� � 1
s0

@

1

A5Q
K � 1

2N
þ N0

2Eb

� � 1
s0

@

1

A (8:82)
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8.3 Frequency hop spread spectrum

A second type of spread spectrummodulation is the frequency hop (FH) spread spectrum. In
this modulation technique, the narrowband modulated signal at the output of a modulator is
sequentially hopped in a pseudorandom manner into the frequency slots or bins that form
the entire spread bandwidth. The hopping pattern can be controlled by a PN sequence
and the hopping rate can be performed several times per symbol (fast hop) or once per
several symbols (slow hop). Figure 8.19 shows the block diagram of an FH modulator. The
frequency synthesizer can generate a set ofQ local carriers at frequencies fL;1; fL;2; . . . ; fL;Q.
For each hop, a local carrier with instantaneous frequency fL;i selected from the set by the
PN sequence is multiplied by the narrowband modulated signal at instantaneous carrier
frequency fj to produce a double-sideband signal at frequencies fL;i þ fj and fL;i � fj, assum-
ing that fL;i � fj . A wideband bandpass filter can be used to reject the lower sideband and
transmit only the upper sideband at the instantaneous hopping frequency fL;i þ fj . The
spread bandwidthW is defined by the set ofQ local frequencies. For example, if the hop time
is Th and it is necessary to select the hopping frequencies to be orthogonal, then the
separation between adjacent frequency slots or bins should be an integer multiple of 1/Th .
Consequently, the spread bandwidth W is an integer multiple of ðQþ 1Þ=Th. Both fast hop
and slow hop spread spectrum techniques have found use in military and commercial
systems but fast hop techniques are better than slow hop techniques in dealing with certain
jamming signals.

A frequency hop (FH) signal can be demodulated with the aid of a synchronized local
frequency synthesizer as shown in Figure 8.20. The FH signal is first de-hopped to a fixed
intermediate frequency. The IF signal can then be demodulated with a conventional narrow-
band demodulator. In the following example we consider a jamming strategy that can be
effective against a FH signal, namely partial band jamming. We assume that the jammer
moves the jamming signal frequency randomly to cover the fraction of the signal spectrum
that it intends to jam. Otherwise, the transmitter merely hops its signal out of the fixed
jammed spectrum and avoids being jammed altogether.

Modulator

Frequency
synthesizer
controlled

by PN sequence

Bandpass
filter

Hopping
local

carrier

Frequency
hop signal

Figure 8.19 Frequency hop modulator.
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Partial-band jamming

Partial-band jamming of a FH signal is the counterpart of pulsed jamming of a DS signal. It
allows the jammer to concentrate all power into a smaller bandwidth than the spread
bandwidth in order to inflict greater damage.

Example 8.8 Noncoherent FH-FSK and partial-band jamming
Consider a slow frequency hop (SFH) noncoherent FSK signal with a spread bandwidth W
and a partial-band Gaussian jamming signal that put all its power Pj in a band δW , where
δ � 1, to generate a partial band jamming power spectral density J0=δ ¼ Pj=δW, where
J0 ¼ Pj=W is the average jamming power spectral density. Let the FSK signal power be P
and the bit rate be Rb, then the bit energy to partial band jamming density ratio is
δEb=J0 ¼ δWP=PjRb, where Eb=J0 ¼ WP=PjRb is the bit energy to average jamming
density ratio. If we assume that the effect of noise is negligible compared to that of the
jamming signal, then the bit error probability is given by

Pb � δ
2
e δEb=2J0 ¼ δ

2
e δWP=2PjRb ¼ δ

2
e δNðSJRiÞ=2 (8:83)

where N ¼ W=Rb is the spread factor, SJRi ¼ P=Pj is the input signal to jamming ratio,
and NðSJRiÞ ¼ Eb=J0. The maximum bit error probability can be calculated as follows:

Pb;max ¼ e 1

NðSJRiÞ ¼
0:368

NðSJRiÞ ¼
0:368

Eb=J0
; δ ¼ 2

NðSJRiÞ ¼
2

Eb=J0
(8:84)

Note the similarity between pulse jamming of DS-PSK signal in (8.36) and partial-band
jamming of FH-FSK in (8.84). Both jamming strategies convert the bit error probability as
an exponentially decayed function of NðSJRiÞ ¼ Eb=J0 into an inversely proportional
function of NðSNRiÞ. To illustrate this, consider the case of SJRi = 1/20 and N = 128, then
δ ¼ 0:3 and Pb;max ¼ 0:058. On the other hand, for a broadband jamming strategy the bit
error probability is Pb � 0:5e NðSJRiÞ=2 ¼ 0:02. This shows that partial-band jamming is in
general more effective than broadband jamming. Also a partial-band jammer does not need
the high peak power transmitter required by a pulsed jammer.
■

{0, 1}Demodulator
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by PN sequence
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filter
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Figure 8.20 Frequency hop demodulator.
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Example 8.9 Noncoherent FH-MFSK and partial-band jamming
Consider a slow frequency hop noncoherent MFSK signal with a spread bandwidthW and a
partial-band Gaussian jamming signal that has all its power Pj in a band δW , where δ � 1, to
generate a partial band jamming power spectral density J0=δ ¼ Pj=δW, where J0 ¼ Pj=W
is the average jamming power spectral density. TheMFSK signal power is P and the bit rate
is Rb, then the bit energy to partial band jamming density ratio is δEb=J0 ¼ δWP=PjRb,
where Eb=J0 ¼ WP=PjRb is the bit energy to average jamming density ratio. If we assume
that the effect of noise is negligible compared to that of the jamming signal, then the bit error
probability is given by the union bound

Pb � δM
4

e δEb=2J0ð Þ log2 M (8:85)

Pb � δM
4

e ðδWP=2PjRbÞ log2 M ¼ δM
4

e δN log2 MðSJRiÞ=2 (8:86)

whereN ¼ W=Rb is the spread factor, SJRi ¼ P=Pj is the input signal to jamming ratio and
NðSJRiÞ ¼ Eb=J0. The maximum bit error probability can be calculated as follows:

Pb;max � Me 1=2

NðSJRiÞ log2 M
¼ 0:184M

NðSJRiÞ log2 M
¼ 0:184M= log2 M

Eb=J0

δ ¼ 2

NðSJRiÞ log2 M
¼ 2= log2 M

Eb=J0

(8:87)

Consider the case of M = 16, SJRi = 1/20, and N = 128, then δ ¼ 0:08 and we have
Pb;max ¼ 0:115. On the other hand, for broadband jamming strategy the bit error probability
is Pb � 4e 4NðSJRiÞ=2 ¼ 10 5.

Let us consider the use of adaptive MFSK to improve the anti-jamming capability by
starting with M = 2 and increasing M when partial-jamming is present. Assume that
the jammer achieves optimum jamming for M = 2 with δ ¼ 2=NðSJRiÞ. Substituting
δ into (8.86) for M > 2 we have Pb � Me log2 M=2NðSJRiÞ ¼ Me log2 M=2ðEb=J0Þ. For
SJRi = 1/20, and N = 128, then we have Pb ¼ 0:023 (M = 16) and Pb ¼ 0:012 (M = 64), as
compared to Pb;max ¼ 0:058 for M = 2.
■

Multi-tone jamming

With some knowledge of the FH signal structure, the jammer may further increase its
effectiveness by randomly placing tones in the bandwidth of a MFSK signal.

Example 8.10 Noncoherent FH-MFSK and multi-tone jamming
Another jamming strategy is to randomly transmit q tones over the spread bandwidth, each
with power Pj=q. When Pj=q5P, the MFSK demodulator still can detect the correct signal
tone and the probability of error is determined by AWGN only. When Pj=q4P, a symbol
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error is made if the jamming tone is within the FH bandwidth but not in the same non-
coherent matched filter’s bandwidth of the signal tone (because it enhances the detection of
the signal by adding to the signal’s energy). When Pj=q ¼ P, a symbol error occurs with a
probability 0:5 under the conditions described for Pj=q4P. The optimum number of
jamming tones is approximately given by

q ¼ Pj

P


 �
(8:88)

where 
b c denotes the largest integer less than or equal toPj=P. Note that 1 � q � NH , where
the number of hop bins is NH . This value of q is optimum since a larger q results in Pj=q5P
and no error results; a smaller q results in fewer hop bins being jammed but no larger error
probability for any one bin. The probability that any hop bin is jammed is given by

Prðhop bin jammedÞ ¼ q

NH
(8:89)

The probability that the hop is not jammed is

Prðhop bin not jammedÞ ¼ 1� q

NH
(8:90)

Let us assume that when a hop bin is jammed only one jamming tone is present in the
bandwidth of the MFSK signal. The symbol error probability is one minus the probability
that the jamming tone and the signal are in the same noncoherent matched filter’s bandwidth.
This probability is 1� ð1=MÞ and the symbol error probability Pe is

PeðqÞ ¼

M � 1

M
;

M � 1

M

q

NH
þ 1� q

NH

� �
Pe 0ð Þ � M � 1

M

q

NH
;

Peð0Þ;

q4NH

1 � q � NH

q51

8
>>>>><

>>>>>:

(8:91)

where Peð0Þ represents the probability of symbol error when jamming is not present. The
approximation in the second equation of (8.91) is valid when the effect of noise is negligible
compared to that of the jamming signal. The bit error probability is given by

Pb ¼ M=2

M � 1
PeðqÞ (8:92)

For numerical illustration consider the case of SJRi ¼ P=Pj ¼ 1=20 and N ¼ W=Rb = 129.
Consider the case when the hop bins are contiguous and the hop bin bandwidth is equal to
the MFSK bandwidth, which is ðM þ 1ÞRs. Hence, the number of hop bins is given as
NH ¼ W=½ðM þ 1ÞRb= log2 M 	 ¼ N log2 M=ðM þ 1Þ. First consider M = 2; this yields
NH ¼ 43. The number of jamming tones is q ¼ Pj=P

�  ¼ 1=SJRib c ¼ 20. The resulting
bit error probability is Pb ¼ q=2NH ¼ 0:23. There is no advantage for M > 2 in multi-tone
jamming. It is not necessary to jam a hop bin with more than one jamming tone since one
jamming tone can do as much damage as many.
■
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Follower jamming

Another jamming strategy that can potentially nullify the effectiveness of frequency hop-
ping is follower jamming or repeater jamming. This jamming strategy requires the jammer
to be able to receive the hopped signal destined to the receiver either via the antenna main
beam or via its side lobe. The jammer also needs a broadband receiver that can intercept the
hopped signal. If the hop energy exceeds a preset threshold, then the jammer transmits a
jamming signal at the same frequency as the hopped signal. In order to jam a hop, the
jamming signal has to arrive at the receiver within a fraction of the dwell time of the hop
(the duration of the hopped signal). The dwell time is smaller than or equal to the hop time.
If the jamming energy in the fraction of the dwell time exceeds the hop energy, an error could
occur. This procedure requires the sum of the jammer’s processing time, the propagation
delay between the transmitter and the jammer (intercept link), and the propagation delay
between the jammer and the receiver (jamming link) to be smaller or equal to the fraction of
the hop dwell time plus the propagation delay between the transmitter and the receiver. Thus
the smaller the hop time and hence the dwell time, the closer to the receiver the jammer has
to be in order to be effective. This increases the vulnerability of the jammer. In order to
neutralize the effect of follower jamming, fast frequency hopping (FFH) is necessary. A FFH
system employsmultiple hops per bit to reduce the hop time. The demodulation can be done
via hard decision or soft decision demodulation. A hard-decision demodulator detects L
hops and outputs a sequence of L bits which is fed to a majority voter. If the number of 1s
exceeds the number of 0s, the detected bit is bit 1; otherwise it is bit 0. If L is even, and there
are the same number of 1s and 0s, choose either bit 1 or bit 0 with probability 0.5. A soft-
decision binary noncoherent demodulator combines (sums) L hopped decision samples at
the outputs of the I- and Q-channel noncoherent signal processors. The combined I-channel
and the combined Q-channel decision variables are compared by a maximum detector to
determine bit 1 or bit 0. Soft-decision demodulation may perform better than hard-decision
demodulation. Both types of demodulation suffer performance loss for L > 1 compared to
the case of L = 1 in an AWGN channel without any jamming. The combining loss [2–4] is a
penalty to pay in exchange for an additional ability to neutralize a potent jammer.

Example 8.11 Noncoherent slow FH-MFSK and follower noise jamming
Consider a slow hop noncoherent MFSK signal with a hopping bandwidthW. The follower
jammer must determine the frequency bin that contains the hop. Figure 8.21 shows a typical
frequency bin determinator which consists of ND branches. The nominal bandwidth of the
bandpass filters is W=ND. The center frequencies of the bandpass filters cover the entire
spread bandwidth. The samples are taken at T ¼ ND=W after the hop starts. The probability
of correctly identifying the branch that contains a hop increases as ND gets larger.
Alternatively, the branch in Figure 8.21 can be replaced by an energy detector commonly
referred to as radiometer. Each radiometer consists of a bandpass filter, a square-law
detector, and an integrator followed by a sampler.

Let us denote dT J ; dJ R; and dT R as the transmitter–jammer, jammer–receiver, and
transmitter–receiver distances, respectively. The jammer signal arrives at the receiver with
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a time delay Td þ T relative to the start of a hop, where Td ¼ ðdT J þ dJ R � dT RÞ=c.
Given the hop time Th4Td þ T , the jammer can only jam a hop for duration Th � Td � T .
Assume that the jamming signal is noise-like. The effective jamming power spectral density
seen by the receiver during a hop is J0 ¼ δPj=ðW=NDÞ, where the fraction of a hop
being jammed is δ ¼ ½Th � Td � T 	=Th. For numerical illustration, consider the case
of one hop per symbol (slow hop) and let Pc;h denote the probability of correctly identifying
the frequency bin by the jammer. The probability of symbol error at the receiver is given by

Pe ¼ Pc;hPeðjammedÞ þ ð1� Pc;hÞPeðnot jammedÞ (8:93)

Note that Pe (not jammed) is the symbol error probability of MFSK with noise spectral
density N0=2, and PeðjammedÞ is the symbol error probability of MFSK with noise spectral
density N0=2 replaced by the jamming and noise power spectral density ðJ0 þ N0Þ=2. The
bit error probability is Pb ¼ ðM=2ÞPe=ðM � 1Þ. Let us assume that the jamming signal is
strong enough to cause the maximum symbol error probability equal to 1� 1=M for a
jammed hop. Furthermore, assume that the probability of correctly identifying the frequency
bin is 0.5. Then, the worst-case symbol error probability is ðM � 1Þ=2M , assuming the
effect of noise is negligible compared to jamming. The corresponding worst-case bit error
probability is Pb ¼ 1=4:

Let us consider the case of M = 2, and again assume that the effect of noise is negligible
compared to jamming. Using the ratio Eb=J0 ¼ ðW=δNDRbÞSJRi, the bit error probability of
slow FH-FSK is Pb ¼ Pc;hPbðjammedÞ ¼ 0:5Pc;h exp½�ðW=2δNDRbÞSJRi	. For the case
W=δNDRb ¼ 2, Pc;h ¼ 0:5, and Pb ¼ 0:058, the required input signal-to-jamming ratio is
given by SJRi ¼ P=Pj ¼ 1:47. For the same bit error probability, the partial-band jamming
strategy in Example 8.8 requires SJRi ¼ 1=20. Thus the follower noise jamming strategy
may save the jammer 14.7 dB in power.
■

Example 8.12 Noncoherent fast FH-FSK and follower noise jamming
Let us consider the case where the FSK signal performs L = 3 hops per bit and again
assume that the effect of noise is negligible compared to jamming. Using the ratio
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Figure 8.21 Frequency bin determinator.
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Eh=J0 ¼ ðW=δNDLRbÞSJRi, where Eh ¼ Eb=L, the hop error probability of fast FH-FSK is
Ph ¼ Pc;hPhðjammedÞ ¼ 0:5Pc;h exp½�ðW=2δNDLRbÞSJRi	. The fraction of a hop being
jammed δ is now smaller than that of the case considered in Example 8.11. For numerical
illustration, let W=δNDRb ¼ 6, Pc;h ¼ 0:5, and SJRi ¼ P=Pj ¼ 1:47, then we have
Ph ¼ 0:058. By using (4.37) with L replacing n, Ph replacing p, and t = 1, we obtain the
bit error probability Pb ¼ 0:01 for hard decoding.

Now let us consider the case of soft decoding where L hops are combined for a decision.
Using (7.413) with L replacing d, r = 1/L we obtain the bit error probability Pb ¼ 0:004, a
slightly better performance than hard decoding.
■

8.4 Summary

The main theme of this chapter is the discussion of direct sequence spread spectrum, which is the cornerstone of
commercial and military systems. We explored important techniques for direct sequence CDMA, such as fixed
length and variable length orthogonal coverings. We also used IS-95 as an example to show the implementation
of direct sequence spread spectrum in a major commercial system. We also presented various jamming scenarios
applicable to both direct sequence and frequency hop spread spectrum systems. Pulsed (partial time) jamming is
an effective jamming strategy against direct sequence spread spectrum systems, but this strategy also requires a
high peak power transmitter. Partial band jamming is an effective jamming strategy against frequency hop
spread spectrum systems and does not require a high peak power transmitter. Fast frequency hop systems can be
deployed to combat the potent follower (repeater) jammers.

Problems

1. Consider a DS-PSK signal using the chip pulse shape pðtÞ. Express the waveform siðtÞ
for a data bit di 2 f0; 1g or di 2 f�1; 1g. Express the waveform for an infinite number
of bits.

2. Write the mathematical expression for the autocorrelation of a periodic m-
sequence with squared chip pulse shape. Derive the corresponding power spectral
density.

3. List the seven states and the outputs of the m-sequence generator hðxÞ ¼
1þ xþ x3.

4. Draw the generators for the polynomials hðxÞ ¼ 1þ x2 þ x5 and hðxÞ ¼ 1þ x3 þ x5.
5. The Gold sequences are generated by modulo-2 adding a pair of preferred

m sequences from two distinct generators of degree n. This results in 2n þ 1 Gold
sequences (which include the pair of preferred m-sequences) whose crosscorrelation
has three values given by
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Rl;n ¼
�tðnÞ
�1

tðnÞ � 2

8
<

:
tðnÞ ¼ 2ðnþ1Þ=2 þ 1; odd n

2ðnþ2Þ=2 þ 1; even n; n 6¼ 0 ðmod 4Þ
�

Generate the set of Gold sequences from the following preferred pair of m-sequence
generators, hðxÞ ¼ x3 þ xþ 1 and hðxÞ ¼ x3 þ x2 þ 1.

6. Consider three variable orthogonal covering channels 1, 2, and 3 that employ
the Walsh sequences w1 ¼ ð0110; 0110; 0110; 0110Þ, w2 ¼ ð0011; 1100Þ, and
w3 ¼ ð0000Þ. The data bits for the three channels are d1 ¼ 1; d2;0 ¼ 1; d2;1 ¼ 1;
d3;0 ¼ 0; d3;1 ¼ 0; d3;2 ¼ 1; d3;3 ¼ 1.
(a) Find the transmitted sequences s1; s2;0; s2;1; s3;0; s3;1; s3;2; s3;3 using the mapping

0 ! 1 and 1 ! �1.
(b) Scale the sequence s1 by a factor of two. Find the orthogonal covering sequence s.
(c) Recover the data bits via inner products and threshold detection.

7. Consider three variable orthogonal covering channels 1, 2, and 3 that employ the
Walsh sequencesw1 ¼ ð0000; 1111Þ,w2 ¼ ð0110; 1001Þ, andw3 ¼ ð0101Þ. The data
bits for the three channels are d1 ¼ 0; d2 ¼ 1; d3;0 ¼ 1; d3;1 ¼ 1.
(a) Find the transmitted sequences s1; s2; ðs3;0; s3;1Þ using the mapping

0 ! 1 and 1 ! �1.
(b) Scale the sequence s1 by a factor of two. Find the orthogonal covering sequence s.
(c) Recover the data bits via inner products and threshold detection.

8. Consider a DS-PSK signal with a received signal power of 1mW. The tone jamming
signal has 500mWof power. Assuming the PN spread sequence is an m-sequence and
the output signal-to-jamming ratio is required to be at least 10 dB, find the necessary
spread factor.

9. Design a DS-QPSKmodulator and demodulator. Carry out the demodulation analysis
to recover the I- and Q-channel bits.

10. Consider a DS-PSK signal with tone jamming.
(a) The PN sequence employed by the DS-PSK signal is an m-sequence. Find the

output signal-to-jamming ratio given the input signal-to-jamming ratio of 20 dB.
(b) Given the output signal-to-noise ratio of 20 dB, find the output signal-to-noise and

interference ratio.
11. Consider a DS-PSK signal with tone jamming:

sðtÞ ¼ AdicðtÞ cos 2πfct ; iTb 5t � ðiþ 1ÞTb; and

jðtÞ ¼ Aj cos½2πðfc þ f Þt þ θ	
where f is the offset frequency from the carrier frequency fc. The spread factor is
N ¼ Tb=Tc. Assume coherent demodulation.
(a) Write the decision variable X ¼ S þ J þN by identifying the signal component

S, the jamming component J, and the noise componentN. Do not try to solve the
integrals.

(b) Consider a situation where the single-tone jamming signal is replaced by a multi-

tone jamming signal jðtÞ ¼ PM

k¼1
Aj;k cosð2πfct þ θkÞ. Calculate the jamming

component and its variance assuming all M jamming tones have independent θk .
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12. Consider a DS-PSK signal with a spread factor of 128 under pulsed jamming. The
input signal-to-jamming ratio is 14 dB.
(a) What is the worst-case output signal-to-pulse jamming ratio and the correspond-

ing bit error probability?
(b) What would be the power of a broadband jamming signal relative to the peak

power of a pulsed jamming signal to achieve the same bit error probability at the
jammed receiver?

13. Consider a DS-PSK signal that encounters a pulsed jamming signal with duty cycle
δ ¼ 0:1. The average input signal power is 1mW and the average jamming power is
10mW. The received bit energy-to-noise density ratio is Eb=N0 ¼ 7 dB, and the
spread factor is N = 128. Calculate the bit error probability. What is the bit error
probability if the jammer optimizes δ? What is the corresponding pulse duty cycle?

14. Using the tight upper bound QðxÞ5e x2=2= 2π
p

x, find the optimum pulse duty cycle
and the worst-case bit error probability for pulsed jamming of a DS-PSK signal,
assuming noise is negligible compared to the jamming signal.

15. The DS-PSK signal in Example 8.7 is encoded with a convolutional code of rate ½
and constraint length K. The Viterbi algorithm is carried out for each data frame as in
IS-95, and the signal is jammed by a pulsed jammer. Jamming occurs for a complete
data frame, that is, when a data frame is jammed, all bits in that frame are jammed and
when the data frame is not jammed no bits are jammed.
(a) Consider the case K = 5 (Table 7.13). Evaluate the bit error probability of the

coded signal with soft decoding.
(b) Consider the case K = 9 (Table 7.13). Evaluate the bit error probability of the

coded signal with soft decoding. Compare the result with that of (a).
(c) Repeat (a) for hard decoding. Compare the result with that of (a).
(d) Evaluate the bit error probability with Golay code. Compare the result with that

of (a).
16. Consider a DS-PSK-CDMA system that allows a total of K multiple access users.

(a) The receiver of a user encounters a broadband Gaussian jamming signal with a
power spectral density function J0=2. The bit energy-to-jamming density ratio is
Eb=J0 ¼ 12 dB. The bit energy-to-noise density ratio is Eb=N0 ¼ 14 dB. Find the
minimum spread factor N that can accommodate at least K = 25 users at a bit error
probability of 10 3.

(b) Now assume pulsed jamming with duty cycle δ ¼ 0:1, and evaluate the bit error
probability.

17. Generalize (8.82) for K users with different powers Pi.
18. Consider a DS-PSK-CDMA system that allows a total of K multiple access users.

(a) The bit energy-to-noise density ratio is Eb=N0 ¼ 14 dB. Find the minimum
spread factor N that can accommodate at least K = 25 users at a bit error
probability of 10 3.

(b) Now consider a convolutional code of rate ½, constraint length K = 9 (Table 7.13)
and soft decoding. Using the parameters in (a) to determine the coded bit
error probability. Compare the result to that of the uncoded signal with spread
factor 2N.
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19. Provide the pulse shape that can uniformly distribute the MUI power over the spread
bandwidth.

20. Consider a DS-QPSK signal under Gaussian broadband jamming with the I-channel
jamming variance many times as large as the Q-channel jamming variance.

Assume that the transmitter has the channel side information and is aware of the
jamming strategy. What should the transmitter do to maximize the receiver
performance?

21. Consider a coherent DS-CSK signal under pulsed jamming with duty cycle δ. Derive
the bit error probability under the worse-case situation, assuming that the channel
noise is negligible compared to the jamming signal.

22. Consider a noncoherent DS-CSK signal under pulsed jamming with duty cycle δ.
Derive the bit error probability under the worse-case situation, assuming that the
channel noise is negligible compared to the jamming signal.

23. Consider a coherent DS-CSK signal with M = 16 and a symbol rate spread factor
N = 128 under pulsed jamming given the input signal-to-jamming ratio of 8 dB.
Assuming that the channel noise is negligible compared to the jamming signal, what is
the bit error probability? What would be the power of a broadband jamming signal
relative to the peak power of a pulsed jamming signal in order to achieve the same bit
error probability at the jammed receiver?

24. Consider a noncoherent DS-CSK signal with M = 16 and a symbol rate spread factor
N = 128 under pulsed jamming given the input signal-to-jamming ratio of 8 dB.
Assuming that the channel noise is negligible compared to the jamming signal, what is
the bit error probability? What would be the power of a broadband jamming signal
relative to the peak power of a pulsed jamming signal to achieve the same bit error
probability at the jammed receiver?

25. Consider a coherent DS-CSK signal with M = 16 that encounters a pulsed jamming
signal with duty cycle δ ¼ 0:1. The average input signal power is 4mW and the
average jamming power is 10mW. The received bit energy-to-noise density ratio is
Eb=N0 ¼ 7 dB, and the symbol rate spread factor is N = 128.
(a) Calculate the bit error probability.
(b) To achieve the same bit error probability as in (a) what would be the required

symbol rate spread factor if the jammer optimizes δ?
26. The coherent DS-CSK signal is used with a convolutional code of rate ½ and

constraint length K = 5 (Table 7.13). The Viterbi algorithm is carried out for each
data frame as in IS-95. Jamming occurs for a complete data frame, that is, when a data
frame is jammed, all bits in that frame are jammed and when the data frame is not
jammed no bits are jammed. Assuming a symbol rate spread factor of 128 and the
average input signal-to-jamming ratio of 8 dB, what is the coded bit error probability
with hard decoding when the jamming duty cycle is 0.1? Assume that the channel
noise is negligible compared to the jamming signal.

27. Consider a noncoherent DS-CSK-CDMA system that allows a total of K multiple
access users.
(a) The receiver of a user encounters a broadband Gaussian jamming signal with a

power spectral density function J0=2 uniform over the spread bandwidth. The bit
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energy-to-jamming density ratio is Eb=J0 ¼ 12 dB. The bit energy-to-noise den-
sity ratio is Eb=N0 ¼ 14 dB. Find the minimum symbol rate spread factor N that
can accommodate at least K = 25 users at a bit error probability of 10 3, given
M = 64.

(b) Now assume pulsed jamming with duty cycle δ = 0.1, using the parameters in
(a) to determine bit error probability.

28. Consider a noncoherent DS-CSK-CDMA system withM = 64 that allows a total of K
multiple access users.
(a) The bit energy-to-noise density ratio is Eb=N0 ¼ 14 dB. Find the minimum

symbol rate spread factor N that can accommodate at least K = 25 users at a bit
error probability of 10 3.

(b) If the symbol rate spread factor is doubled, how many multiple access users can
the system accommodate for the same bit error probability?

29. What would be the power of a broadband jamming signal relative to the power of a
partial-band jamming signal to achieve the same bit error probability at a slow
noncoherent FH-FSK receiver? Give the numerical answer for a bit error probability
of 10 2.

30. Consider a slow noncoherent FH-DPSK signal with a spread factor of 128 under
partial-band jamming given the input signal-to-jamming ratio of 14 dB. What are
the optimum δ and the corresponding bit error probability? What would be the power
of a broadband jamming signal relative to the power of a pulsed jamming signal to
achieve the same bit error probability at the jammed receiver? Assume that channel
the noise is negligible compared to the jamming signal.

31. Consider a slow noncoherent FH-FSK signal that encounters a partial-band jamming
signal with δ ¼ 0:1. The average input signal power is 1mWand the average jamming
power is 10mW. The received bit energy-to-noise density ratio is Eb=N0 ¼ 10 dB,
and the spread factor is N = 128.
(a) Calculate the bit error probability.
(b) To achieve the same bit error probability what would be the required spread factor

if the jammer optimizes δ?
32. Consider a slow noncoherent FH-MFSK signal that encounters a partial-band jam-

ming signal with δ ¼ 0:1. The average input signal power is 1mW and the average
jamming power is 10mW. The received bit energy-to-noise density ratio is
Eb=N0 ¼ 10 dB, and the spread factor is N = 128.
(a) Calculate the bit error probabilities for M = 16, 64.
(b) To achieve the same bit error probabilities what would be the required spread

factor if the jammer optimizes δ?
33. Compare the two cases of slow noncoherent FH-FSK in Examples 8.8 and 8.10 from

the point of view of jamming power to achieve the same bit error probability at the
jammed receiver.

34. Derive the bit error probability for slow noncoherent FH-DPSK under multi-tone
jamming. Use the numerical values in Example 8.10 to evaluate the bit error probability.

35. Derive the bit error probability for slow noncoherent FH-MSK under multi-tone
jamming.
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36. Apply coding with a convolutional code of rate ½, constraint length K = 5 (see
Table 7.13), and hard decoding to the slow noncoherent FH-FSK in Example 8.8 to
see whether the performance can be improved. The spread bandwidth is the same as in
the uncoded case.

37. Derive the bit error probability for a fast noncoherent FH-DPSK under follower
jamming.

38. Consider a follower jamming strategy with Th ¼ 1:5ðTd þ TÞ, W=NDRb ¼ 1,
Pc;h ¼ 0:3, and SJRi ¼ P=Pj ¼ 2. Calculate the bit error probability for a slow non-
coherent FH-FSK signal.

39. What would be the power of a partial-band jamming signal relative to the power of a
follower jamming signal to achieve the same bit error probability at a slow non-
coherent FH-FSK receiver? Give the numerical answer for a bit error probability of
10 2 with the following known parameters: N ¼ W=Rb ¼ ND ¼ 128, δ ¼ 0:5,
Pc;h ¼ 0:5.

40. Consider a slow frequency hop multiple access system employing noncoherent
MFSK (FHMA-MFSK). There are K active users in the system and the spread
bandwidth is W.
(a) Find the probability of a hit when two or more user signals collide in a hop bin.
(b) Assuming random hopping, evaluate the bit error probability for a user.

Further reading

For advanced study on direct sequence spread spectrum we recommend Lee and Miller
[5] and Viterbi [6]. For an introduction to CDMA 2000 and WCDMA references [7,8] may
be consulted. Detailed discussion of frequency hop spread spectrum systems can be found in
[9–12]. Sarwate and Pursley [13] provides a comprehensive discussion of PN sequences for
CDMA applications.
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9 Intersymbol interference and equalization

Introduction

Intersymbol interference (ISI) is a phenomenon in which the energy of a symbol spills over
into succeeding symbols causing interference. Tight filtering at the transmitter and receiver
and/or channel distortion can cause the waveform that represents a symbol to spread out into
succeeding symbol periods. In a terrestrial wireless channel, a signal can travel from the
transmitter to the receiver via multiple delayed paths (echoes). If the delays between paths
are large compared to a symbol period, the energy carried by these echoes can cause
significant ISI to the succeeding symbols. In this chapter, we study the Nyquist criterion
for zero ISI and provide the design of an optimum demodulator that can achieve both
maximum output signal to noise ratio and zero ISI. We then study linear equalizers, such as
the zero-forcing linear equalizer (ZF-LE), and the mean-square error linear equalizer (MSE-
LE), and nonlinear equalizers, such as the zero-forcing decision-feedback equalizer (ZF-
DFE) and the mean-square error decision-feedback equalizer (MSE-DFE). Both nonlinear
equalizers perform better than their linear counterparts. We then study the maximum like
lihood sequence detection (MLSD), which is the optimum nonlinear equalization technique.
Finally, the fractionally spaced equalizer is introduced to solve the timing error problem in
the previous equalizers.

9.1 Intersymbol interference

The use of a squared pulse shape to represent a bit or a symbol applies only to an AWGN
channel whose bandwidth is theoretically infinite. In practice, if the channel bandwidth is
much larger than the modulation bandwidth, the squared pulse shape can, for all practical
purposes, be preserved at the input of the matched filter in the demodulator. Unfortunately,
bandwidth is a precious resource, so for bandwidth conservation many practical communi-
cation systems are bandlimited. This is done via filtering at both transmitter and receiver. If
the channel bandwidth is smaller than the signal bandwidth, pulse distortion occurs. The
pulse distortion can be illustrated by the classic example of a squared pulse going through an
RC-filter whose time constant RC is much less than the pulse width T. Figure 9.1 illustrates
the pulse distortion. The decaying tail of the output pulse certainly interferes with the next
pulse causing pre filtering intersymbol interference (ISI) at the input of the matched filter
designed for p tð Þ. For example, if PSK is the modulated signal and its equivalent lowpass
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channel can be modeled as an RC-filter, then p0 tð Þ would appear at the input of the matched
filter in Figure 7.15. Obviously, the pulse p tð Þ is the complex envelope of a PSK bit and the
pulse p0 tð Þ is the distorted complex envelope of a PSK bit after going through an RC-
filtering channel.

Let us now consider the output of a matched filter designed for the squared pulse and p tð Þ
and p0 tð Þ at its input, respectively, as illustrated in Figures 9.2 and 9.3 for three consecutive
bits 1, 0, 1.

We observe that the squared pulse shape presents no post filtering ISI at the sampling time
t = T, 2T, 3T. This happens because the output of the matched filter is a series of three
triangular pulses whose positive or negative peak occurs right at the zero amplitude of other
pulses. On the other hand, post-filtering ISI is clearly present for the series of RC-filtering
pulses at the sampling time t = T, 2T, 3T. At the sampling time t = 3T, ISI due to p0 tð Þ is
constructive but ISI due to p0 t � Tð Þ is more destructive, so the net ISI effect is destructive.
The same ISI effect occurs at t = 2T. The ISI effect on a particular bit can be either
constructive or destructive, but the net effect is always destructive for a long series of bits
or symbols as far as the bit or symbol error probability is concerned.

We note that the pre-filtering ISI is determined by the channel filtering. On the other hand,
the post-filtering ISI is determined by both channel filtering and matched filtering. It is the
latter that determines the performance degradation of a digitally modulated signal. Without
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Figure 9.1 RC-filtering of a squared pulse. The output pulse is p0 tð Þ ¼ 1� e t=RC
� �

for 05t5T and
p0 tð Þ ¼ 1� e T=RC

� �
e t TÞ=RCð for t4T .
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Figure 9.2 Zero ISI at sampling time T, 2T, and 3T for squared pulses
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Figure 9.3 ISI at sampling time T, 2T, and 3T for RC-filtered pulses
P2

i¼0 p0 t � iTð Þ.
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confusion, we simply use the word ISI to describe both pre-filtering ISI and post-filtering ISI
unless otherwise stated. Note that pre-filtering ISI is irreversible since a matched filter
designed for the RC-filtering pulse would not eliminate post-filtering ISI. In the following
discussion, we seek to remedy ISI that arises from channel filtering by presenting the
Nyquist criterion for zero ISI. The criterion provides the necessary and sufficient condition
for a pulse shape to have zero ISI at the time a decision sample is taken. It makes no mention
whether the sample is taken at maximum signal-to-noise ratio (SNR) or not. It is clear that a
decision sample from an optimum demodulator designed for a bandlimited channel should
meet both requirements, namely, zero ISI and maximum SNR. This is a subject that will be
studied later in this section.

Nyquist criterion for zero ISI

The pulse p tð Þ satisfies the zero ISI condition at the sampling time t ¼ kT , that is,

p kTð Þ ¼ 1; k ¼ 0
0; k 6¼ 0

�
(9:1)

where k is an integer, if and only if the Fourier transform P fð Þ of p tð Þ satisfies the following
condition:

1

T

X1

m¼ 1
P f þ m

T

� �
¼ 1 (9:2)

Let us express the pulse p tð Þ as the inverse Fourier transform of P fð Þ:

p tð Þ ¼ Ð11 P fð Þ e j2πftdf (9:3)

Therefore, at the sampling time t ¼ kT , we have

p kTð Þ ¼
ð1

1
P fð Þ e j2πfkTdf ¼

X1

m¼ 1

ð 2mþ1ð Þ=2T

2m 1ð Þ=2T
Pðf Þe j2πfkTdf

¼
X1

m¼ 1

ð1=2T

1=2T
P f þ m

T

� �
e j2πfkTdf

¼
ð1=2T

1=2T

X1

m¼ 1
P f þ m

T

� �
e j2πfkTdf

(9:4)

If (9.2) holds true, then we have

p kTð Þ ¼ T

ð1=2T

1=2T
e j2πfkTdf

¼ sin kπ
kπ

¼ 1; k ¼ 0

0; k 6¼ 0

� (9:5)
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To prove that (9.1) implies (9.2), let us express the periodic function in (9.2), whose period is
1/T, as a Fourier series:

X1

m¼ 1
P f þ m

T

� �
¼
X1

k¼ 1
cke j2πkfT (9:6)

where the coefficient ck is given by

ck ¼ T

ð1=2T

1=2T

X1

m¼ 1
P f þ m

T

� �
e j2πfkTdf (9:7)

Comparing (9.7) to (9.4), we obtain by virtue of (9.1)

ck ¼ Tp �kTð Þ ¼ T ; k ¼ 0
0; k 6¼ 0

�
(9:8)

Substituting (9.8) into (9.6) yields (9.2) and thus concludes the proof.
Note that when P fð Þ is bandlimited to B, then the sampling rate 1/T must be less than or

equal to 2B. When 1=T42B, there is no pulse shape that can produce zero ISI. Also note
that the left-hand side of (9.2) is simply the Fourier transform of the sampled signal
p tð ÞP

m
δ t þ mTð Þ ¼ p tð ÞP

m
δ t � mTð Þ (by virtue of symmetry).

Example 9.1 The sin x/x pulse
Given the sampling interval T, there is only one pulse that satisfies the Nyquist criterion for
zero ISI with minimum bandwidth. This pulse is the familiar type of sin x/x and is given by

p tð Þ ¼ sin πt=Tð Þ
πt=T

(9:9)

The Fourier transform P fð Þ of p tð Þ is simply a constant T for fj j � 1=2T and zero
elsewhere, that is,

P fð Þ ¼
T ; fj j � 1

2T

0; fj j4 1

2T

8
>><

>>:
(9:10)

Both p tð Þ and P fð Þ are shown in Figure 9.4. Note that the Nyquist sampling rate is twice the
pulse bandwidth, which is 1/T and the Nyquist sampling time is T. Although the pulse is ideal,
its energy spectrum poses difficulty for its generation. This is the same difficulty encountered
in the realization of an ideal lowpass filter with an ideal brickwall transfer function. Therefore,
the sin x/x pulse is more valuable for mathematical theory than practical applications.
■

Example 9.2 The raised-cosine pulse
The most popular zero-ISI pulse shape in practice is implemented via the raised-cosine pulse
p tð Þ given by
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p tð Þ ¼ sin πt=Tð Þ
πt=T

cos πβt=Tð Þ
1� 4β2t2=T 2

(9:11)

The parameter β is commonly referred to as the roll off factor and takes a value in the range
05β � 1. Note that when β = 0, the raised-cosine pulse becomes the sin x/x pulse. The
Fourier transform of the raised-cosine pulse is given as

P fð Þ ¼

T ;

T

2
1þ cos

πT
β

fj j � 1� β
2T

� �	 
� �
;

0;

0 � fj j � 1 β
2T

1 β
2T � fj j � 1þβ

2T

fj j4 1þβ
2T

8
>>>>>><

>>>>>>:

(9:12)

Figure 9.5 shows both p tð Þ and P fð Þ for various values of β. The energy spectrum of p tð Þ
looks like the frequency response of a lowpass Butterworth filter with roll-off dictated by β.
Therefore, it is easy to generate p tð Þ in practice.

When the raised-cosine pulse shape is employed for data bits or symbols with rate 1/T, the
positive or negative peak of each bit or symbol coincides with the zero amplitude of other
bits or symbols. Thus, there is no intersymbol interference.
■

9.2 Optimum demodulator for bandlimited channel

When the channel is bandlimited, a Nyquist pulse shapemust be employed so that the decision
sample contains zero ISI. Also, the decision sample must be obtained at maximum SNR. In
this section, we study a demodulator that can accomplish the above tasks. We will use PSK as
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Figure 9.4 The ideal pulse for zero ISI and minimum bandwidth spectrum.
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a case study but our analysis also applies to other modulation techniques. Figure 9.6 shows a
generic PSK modulator and demodulator for a linear bandlimited bandpass channel.

It is more convenient to analyze the model in Figure 9.6 using its equivalent lowpass
model. This model deals only with the complex envelope of the PSK signal and the
corresponding equivalent lowpass channel of the bandlimited bandpass channel.
Figure 9.7 illustrates the equivalent lowpass model. Let HT fð Þ, HR fð Þ, and H fð Þ denote
the transfer functions of the transmitter filter, receiver filter, and linear equivalent lowpass
channel, respectively. Furthermore, let s tð Þ and n tð Þ denote the complex envelope of the
received PSK signal and noise, respectively. For PSK, s tð Þ is just an antipodal baseband
signal. Furthermore, let N fð Þ be the power spectral density of the equivalent lowpass noise
n tð Þ, and for AWGN we take N fð Þ ¼ N0 W=Hzð Þ by convention.
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Figure 9.5 Raised-cosine pulse and its Fourier transform.
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Obviously, the bandpass noise that accompanies the PSK signal at the input of the
receiver in Figure 9.6 has a power spectral density N f � fcð Þ=2þ N f þ fcð Þ=2, which is
N0=2 for AWGN. The output of the receiver filter is s0 tð Þ þ n0 tð Þ, where s0 tð Þ is the output
signal and n0 tð Þ is the output noise. At the sampling time t = T, we obtain the decision sample
s0 Tð Þ þ n0 Tð Þ. We want to design HT fð Þ and HR fð Þ to achieve maximum SNR0 at the
sampling time and also have zero ISI. We begin by noting that the Fourier transform S0 fð Þ
of s0 tð Þ that represents a bit is

S0 fð Þ ¼ S fð ÞHR fð Þ ¼ HT fð ÞH fð ÞHR fð Þ (9:13)

where S fð Þ is the Fourier transform of s tð Þ. Therefore, the output signal s0 tð Þ can be
expressed in terms of the inverse Fourier transform of S0 fð Þ as

s0 tð Þ ¼
ð1

1
S0 fð Þ e j2πftdf ¼

ð1

1
HT fð ÞH fð ÞHR fð Þ e j2πftdf (9:14)

At the sampling time t = T, we get

s0 Tð Þ ¼
ð1

1
HT fð ÞH fð ÞHR fð Þ e j2πfTdf (9:15)

It is obvious that the output signal power is s20 Tð Þ, and the output noise power is given by

n20 Tð Þ ¼
ð1

1
N fð Þ HR fð Þj j2df (9:16)

The output signal to noise ratio at the output of the receiver filter at the sampling time
t = T is

SNR0 ¼ s0 Tð Þj j2
n20 Tð Þ

¼
Ð1

1 HT fð ÞH fð ÞHR fð Þ e j2πfTdf
�� ��2

Ð1
1 N fð Þ HR fð Þj j2df

¼
Ð1

1
HT fð ÞH fð Þe j2πfT

N fð Þ
p

	 

N fð Þp

HR fð Þ� �
df

����

����

2

Ð1
1 N fð Þ HR fð Þj j2df

(9:17)

Applying the Cauchy–Schwarz inequality to the right-hand side of (9.17), we obtain the
upper bound for SNR0 as follows:

SNR0 �
Ð1

1
HT fð Þj j2 H fð Þj j2

N fð Þ df
Ð1

1 N fð Þ HR fð Þj j2df
Ð1

1 N fð Þ HR fð Þj j2df

�
ð1

1

HT fð Þj j2 H fð Þj j2
N fð Þ df

(9:18)
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Condition for maximum SNR0

The maximum output SNR0, which is the right-hand side of (9.18), is attained if the
following condition is satisfied:

N fð Þ
p

HR fð Þ ¼ α
H�

T fð ÞH� fð Þe j2πfT

N fð Þp (9:19)

where α is an arbitrary constant. Therefore, we have

HR fð Þ ¼ α
H�

T fð ÞH� fð Þe j2πfT

N fð Þ (9:20)

In practice, filters are designed to have linear phase and, furthermore, we assume that the
channel is linear; therefore, we can express HT fð Þ, HR fð Þ, and H fð Þ as follows:

HT fð Þ ¼ HT fð Þj je j2πftT (9:21)

HR fð Þ ¼ HR fð Þj je j2πftR (9:22)

H fð Þ ¼ H fð Þj je j2πft0 ;

0;

fj j � B

fj j4B

(

(9:23)

where tT, tR, and t0 are the time delays of the physically realizable transmitter and receiver
filters and channel delay, respectively.

Substituting (9.21)–(9.23) into (9.20) yields, with α ¼ αj j exp �j2πf tT þ tR þ t0 � Tð Þf g,

HR fð Þ ¼ αj j HT fð Þj j H fð Þj j
N fð Þ (9:24)

Condition for zero ISI

If we denote P fð Þ as the energy spectrum of a Nyquist pulse, then the following condition
must be met by S0 fð Þ in (9.13):

HT fð ÞH fð ÞHR fð Þ ¼ P fð Þe j2πf tTþtRþt0ð Þ; fj j � B (9:25)

or, equivalently,

HT fð Þj j HR fð Þj j H fð Þj j ¼ P fð Þ; fj j � B (9:26)

Solution for |HT(f )| and |HR(f )|

Given N fð Þ and H fð Þj j, we can find a solution for HT fð Þj j and HR fð Þj j via (9.24) and
(9.26). We have
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HT fð Þj j2¼ 1

αj j
N fð ÞP fð Þ
H fð Þj j2 ; fj j � B (9:27)

HR fð Þj j2¼ αj j P fð Þ
N fð Þ ; fj j � B (9:28)

Example 9.3 Optimum filters for AWGN channel
Let us consider the case of an AWGN channel withN fð Þ ¼ N0 W=Hzð Þ. Selecting αj j ¼ N0

in (9.27) and (9.28), we have

HT fð Þj j ¼ P fð Þ
p

H fð Þj j ; fj j � B (9:29)

HR fð Þj j ¼ P fð Þp
; fj j � B (9:30)

For an ideal channel where H fð Þj j ¼ 1; fj j � B, and H fð Þj j ¼ 0; fj j4B, we can design
the transmit and receive filters as follows:

HT fð Þj j ¼ HR fð Þj j ¼ P fð Þ
p

; fj j � B (9:31)

As an illustration, if P fð Þ is chosen to be the energy spectrum of a raised-cosine pulse in
(9.12), then HT fð Þj j ¼ HR fð Þj j ¼ P fð Þp

; fj j � B, implies that the transfer functions of
both transmitter and receiver filters are square root raised-cosine. Note that in this case the
bandwidth B of the equivalent lowpass channel is equal to 1þ βð Þ=2T , where 1/T is the bit
rate and β is the roll-off factor of the raised-cosine pulse shape.

The transmitter filter can be considered as a cascade of two filters with transfer functions
P fð Þp

and 1=H fð Þ, respectively. The combination of the filter 1=H fð Þ and the channel
H fð Þ creates a desired ideal channel with transfer functions Hd fð Þ ¼ 1, fj j � B and
Hd fð Þ ¼ 0; fj j4B. The filter 1=H fð Þ is called the equalizer, and for the optimum
demodulator it is located in the transmitter. In the next section, we will focus on the equalizer
that is placed in the receiver, which is the case in practice. Figure 9.8 illustrates the channel
model for an optimum demodulator.
■
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Figure 9.8 An ideal channel with zero ISI is created by equalization in the transmitter, which results in an optimum demodulator
that achieves maximum output SNR0 at the sampling time.
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Example 9.4 Bit error probability of PSK in a bandlimited AWGN channel
The maximum output SNR0 at the sampling time t = T is given by the right-hand side of
(9.18) as follows:

SNR0;max ¼
ð1

1

HT fð Þj j2 H fð Þj j2
N0

df (9:32)

Note that S fð Þ ¼ HT fð ÞH fð Þ, therefore, using the Parseval relation, we get

SNR0;max ¼ 1

N0

ð1

1
S fð Þj j2 df ¼ 1

N0

ð1

1
s2 tð Þ dt

¼ 2Eb

N0

(9:33)

where Eb is the bit energy. Note that s tð Þ is the complex envelope of the PSK signal,
therefore the energy of s tð Þ is 2Eb. The bit error probability is simply

Pb ¼ Q SNR0;max

p� � ¼ Q
2Eb

N0

r� �
(9:34)

which is the same as the bit error probability for PSK with squared pulse shape. This
result comes as no surprise, since the equalizer 1= H fð Þj j in the transmitter totally compen-
sates for the channel distortion and eliminates pre-filtering ISI before the noise enters the
receiver.
■

9.3 Zero-forcing linear equalizer (ZF-LE)

The study of the optimum demodulator reveals that a decision sample can be obtained at
maximum signal to noise ratio and with zero ISI. This can only happen if and only if
equalization is implemented at the transmitter. The reason is simple: eliminate the pre-
filtering ISI from the signal before it is received with noise, then design a filter matched to
the signal to achieve the maximum output signal-to-noise ratio at the sampling time. In most
real-world applications, this type of equalization is not practical simply because the channel
frequency response is not known with sufficient precision by the transmitter. In addition,
there is no way to vary the transmitter equalizer to respond to any changes in the channel. On
the other hand, the channel estimation can easily be done at the receiver via a training
sequence from the transmitter. Thus, the receiver equalizer can be made to vary in order to
compensate for any changes in the channel. This situation arises in an application where the
signal can travel an arbitrary path whenever a connection is established. The telephone
network is a classic example where a new channel is encountered every time a call is made.
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In a noisy bandlimited linear channel, the locations of the channel equalizer are not
equivalent. When an equalizer is placed in the receiver, it can remove post-filtering ISI,
but only at the expense of the output signal-to-noise ratio. This happens because the
equalizer destroys the optimality of the matched filter, since the cascade of the matched
filter and equalizer, whatever the order, is no longer a matched filter. Therefore, the receiver
equalization cannot achieve optimum demodulation because it is an ad hoc method which
tries to achieve a performance as close to that of an optimum demodulator as it can.
Nevertheless, this type of equalization is more than adequate and widely used in practical
applications.

Receiver equalization of the channel distortion is based on the knowledge of the channel
contained in the received signal – a training sequence, for example. Any signal processor
must process the received signal without loss of information and no signal processor can do
it better than a matched filter matched to the received signal pulse. The decision sample at
the matched filter output has the maximum signal-to-noise ratio, but it contains post-filtering
ISI. Also, the noise samples are dependent since the noise power spectral density at the
output of the matched filter is no longer white. To eliminate ISI, a linear equalizer is
employed to force the post-filtering ISI to zero at the sampling time. Unfortunately, the
equalizer also enhances noise and, therefore, destroys the optimality of the matched filter.
Figure 9.9 illustrates the concept of linear equalization at the receiver using a lowpass
equivalent model. It is obvious that the output of the equalizer must meet the Nyquist
criterion in (9.1) or equivalently (9.2) to have zero ISI. This requirement implies that the
frequency response of the equalizer must be the inverse of its input signal spectrum.

Let us consider a transmitted pulse g tð Þ with Fourier transform G fð Þ passing through a
channel with impulse response h tð Þ and corresponding transfer functionH fð Þ. The received
signal is s tð Þ ¼ g tð Þ � h tð Þ with the Fourier transform S fð Þ ¼ G fð ÞH fð Þ. A matched filter
with impulse response s� �tð Þ and corresponding frequency response S� fð Þ is employed.
Note that the matched filter is non-causal for simplicity. A delay can always be introduced to
make the matched filter causal without altering the result. The signal s0 tð Þ at the matched
filter output is sampled with rate 1=T � 2B, where B is the bandwidth of the bandlimited
channel. The sampled signal x tð Þ ¼ s0 tð ÞPk δ t � kTð Þ ¼ s0 tð ÞPk δ t þ kTð Þ is passed

k
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Figure 9.9 Continuous-time lowpass equivalent channel model with linear equalizer at the receiver.
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through an equalizer to eliminate ISI. Let S0 fð Þ be the Fourier transform of the matched
filter output signal s0 tð Þ, then

S0 fð Þ ¼ S fð ÞS� fð Þ ¼ S fð Þj j2 (9:35)

Therefore, the Fourier transform X fð Þ of the sampled signal x tð Þ is given by (2.235) as

X fð Þ ¼ 1

T

X1

k¼ 1
S0 f � k

T

� �
¼ 1

T

X1

k¼ 1
S0 f þ k

T

� �

¼ 1

T

X1

k¼ 1
S f � k

T

� �����

����

2

¼ 1

T

X1

k¼ 1
S f þ k

T

� �����

����

2
(9:36)

Note that X fð Þ is periodic with frequency 1=T. Furthermore, the sampling rate must be in
the range B � 1=T � 2B for Nyquist criterion of zero ISI to hold. X fð Þ is called the folded
spectrum of the received signal s tð Þ.

In order for the sampled signal x tð Þ to have zero ISI at the sampling time t = 0, its spectrum
X fð Þmust be equal to unity as dictated by the Nyquist criterion (9.2). This can only happen
if and only if s0 tð Þ is a Nyquist pulse. Since this is not possible, the only way to satisfy (9.2) is
to force the sampled signal x tð Þ through an equalizer whose transfer function L fð Þ is equal to
the inverse of X fð Þ, that is,

L fð Þ ¼ 1

X fð Þ (9:37)

Now let us assume that the power spectral density of the equivalent lowpass AWGN n tð Þ at
the matched filter input is N0. The matched filter output noise n0ðtÞ has the power spectral
density N0 S� fð Þj j2¼ N0 S fð Þj j2. Let nsðtÞ ¼ n0ðtÞ

P
k δðt � kTÞ be the sampled noise with

the following autocorrelation:

Rnsðτ; n� kÞ ¼ E½n0ðτÞn0ðt þ τÞ�
ðX

k

X

n

δðt � kTÞδðt þ τ � nTÞ dt

¼ Rn0ðτÞ
X

k

X

n

ð
δðt � kTÞδðt þ τ � nTÞ dt

¼ Rn0ðτÞ
X

k

X

n

δ½τ � ðn� kÞT �

(9:38)

We are interested in the autocorrelation at the sampling time index k = 0, that is,
RnsðτÞ ¼ Rn0ðτÞ

P

n
δðτ � nTÞ, whose Fourier transform is the power spectral density of

the sampled noise

F fð Þ ¼ N0

T

X1

k¼ 1
S f � k

T

� �����

����

2

¼ N0

T

X1

k¼ 1
S f þ k

T

� ������

�����

2

¼ N0X fð Þ
(9:39)

Let F0 fð Þ be the power spectral density of the equalizer output noise, then we have
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F0 fð Þ ¼ F fð Þ L fð Þj j2¼ N0

X fð Þ ¼
N0

1
T

P1

k¼ 1
S f þ k

T

� ��� ��2
(9:40)

It is apparent that if the spectrum X fð Þ of the sampled signal x tð Þ in (9.36) contains nulls
or small values, then the output noise spectrum could become infinite or very large.
Consequently, the variance of output noise tends to infinity or very large. Thus, the zero-
forcing linear equalizer tries to obtain zero ISI at the expense of the output signal-to-noise
ratio. Let us evaluate the noise power at the sampling time index k = 0. Denote R0ðτÞ the
autocorrelation of the equalizer output noise, which is the inverse Fourier transform of
F0 fð Þ. Note that the frequency response L fð Þ ¼ 1=X fð Þ of the equalizer is periodic with
period 1=T , therefore it can be expressed as a Fourier series. We have the following
relationship:

F0 fð Þ ¼ N0L fð Þ ¼ N0

X1

k¼ 1
‘k e j2πkfT ;

‘k ¼ T

ð1=2T

1=2T
L fð Þ e j2πkfTdf ¼ T

ð1=2T

1=2T

1

X fð Þ e
j2πkfTdf

R0ðτÞ ¼ N0

X1

k¼ 1
‘k δðτ þ kTÞ

(9:41)

Using (9.40), we obtain the noise power at the sampling time index k = 0 as follows:

σ2 ¼ R0ð0Þ ¼ N0‘0 ¼ N0T

ð1=2T

1=2T
L fð Þ df ¼ N0T

ð1=2T

1=2T

1

X fð Þ df (9:42)

Let y tð Þ ¼ p tð ÞPk δ t � kTð Þ be the sampled signal at the equalizer output and Y fð Þ its
Fourier transform. Since Y fð Þ ¼ L fð ÞX fð Þ ¼ 1, the pulse p tð Þ obviously satisfies the
Nyquist criterion (9.2), and hence at the sampling time index k = 0 we have p 0ð Þ ¼ 1 per
(9.1). Thus, the output signal power is p2 0ð Þ ¼ 1. Alternatively, we can view y tð Þ as the
inverse Fourier transform of Y fð Þ, and since Y fð Þ ¼ 1 we have y tð Þ ¼ δ tð Þ. Hence, at the
sampling index k = 0, y 0ð Þ is simply the weight of δ tð Þ, which is unity, and consequently
the output signal power is y2 0ð Þ ¼ p2 0ð Þ ¼ 1. Therefore, the output signal-to-noise ratio is
given by

SNR0; ZF-LE ¼ 1

σ2
¼ 1

N0‘0
¼ 1

N0mA X 1ð Þ (9:43)

where mA X 1ð Þ ¼ ‘0 denotes the arithmetic mean of 1=X fð Þ per (9.41). Note that SNR0

cannot exceed the maximum output signal-to-noise ratio SNR0;max of the optimum filters
given in (9.33), which is 2Eb=N0, that is, 1=N0mA X 1ð Þ � 2Eb=N0.

Example 9.5 Ideal channel with Nyquist pulse shape
Consider the case of an ideal channel with H fð Þ ¼ 1, and a square root Nyquist transmitted
pulse g tð Þ. In this case, the matched filter output signal s0 tð Þ is a Nyquist pulse and its
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sampled version x tð Þ satisfies (9.1). The Fourier transform X fð Þ of x tð Þ also satisfies (9.2),
that is, X fð Þ ¼ 1. Therefore, no equalizer is needed in this case. Furthermore, x 0ð Þ ¼ 1
via (9.1) and the noise power is simply σ2 ¼ N0

Ð1
1 s2 tð Þdt ¼N0

Ð1
1 S fð Þj j2df ¼ N0

since the energy 2Eb of the Nyquist pulse is unity. Hence, SNR0 ¼ x2 0ð Þ=N0 ¼ 1=N0.
■

Example 9.6 Whitened matched filter
Let us return to the Fourier transform X fð Þ of the sampled signal x tð Þ in Figure 9.9. From
(9.36), we observe that X fð Þ is a nonnegative real function; therefore, it can be factored into
the following product:

X fð Þ ¼ F fð ÞF� fð Þ (9:44)

which also implies X fð Þ ¼ F fð Þj j2¼ F� fð Þj j2. This suggests that the zero-forcing equal-
izer whose frequency response L fð Þ ¼ 1=X fð Þ can be decomposed into a cascade of two
filters, one with response 1=F� fð Þ, and the other response 1=F fð Þ. This concept is shown in
Figure 9.10. Let us evaluate the noise spectrum at the output of the filter 1=F� fð Þ. The
power spectral density of noise at the input of this filter is given in (9.39). Therefore, the
output noise power spectral density is F fð Þ= F� fð Þj j2 ¼ N0X fð Þ=X fð Þ ¼ N0, and this
implies that the output noise is white.
■

The error probability for ZF-LE can be evaluated via the Q-function. For example, for
PSK modulation or QPSK modulation, the bit error probability is simply
Pb ¼ Q SNR0; ZF-LE

p� �
, where SNR0; ZF-LE is given in (9.43).

Up to this point, we have studied the concept of zero-forcing linear equalization (ZF-LE)
at the receiver with the criterion of minimizing the effect of noise at the ZF-LE output
subject to the constraint of zero ISI at the sampling time. As far as linear equalization is
concerned, a demodulator that consists of a matched filter followed by a symbol-rate
sampler and a ZF-LE provides the optimum performance in terms of minimizing the error
probability. In practice, the use of a continuous-time matched filter, which is not easily
adapted, poses some implementation problems if the channel response is not known with
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Figure 9.10 The whitened matched filter, which consists of a matched filter, a symbol-rate sampler, and a noise-whitening filter.
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enough precision. In the following example, we present a suboptimum ZF-LE structure at
the receiver that sacrifices some performance for practical consideration. The purpose is to
eliminate ISI without the constraint of minimizing the effect of noise.

Example 9.7 Suboptimum ZF-LE
Instead of using the front-end matched filter, a wideband linear filter is employed in its place.
This filter has a bandwidth larger than that of the received signal which passes through it
undistorted. We can assume the transfer function of this front-end filter to be HFE fð Þ ¼ 1,
fj j � BFE, where BFE � 2B. A symbol-rate sampler follows this front-end wideband filter.
A ZF-LE with transfer function equal to the inverse of the sampled signal spectrum is
employed to eliminate ISI. This concept is illustrated in Figure 9.11. Let v0 tð Þ be the output
of the front-end filter, and V0 fð Þ its Fourier transform. We have

V0 fð Þ ¼ S fð ÞHFE fð Þ (9:45)

Therefore, the Fourier transform Q fð Þ of the sampled signal q tð Þ is

Q fð Þ ¼ 1

T

X1

k¼ 1
V0 f � k

T

� �
¼ 1

T

X1

k¼ 1
V0 f þ k

T

� �

¼ 1

T

X1

k¼ 1
S f � k

T

� �
HFE f � k

T

� �
¼ 1

T

X1

k¼ 1
S f þ k

T

� �
HFE f þ k

T

� � (9:46)

To satisfy the Nyquist criterion (9.2) for zero ISI, the ZF-LEmust have a frequency response
equal to 1=Q fð Þ. This yields an output signal q0 tð Þ with a corresponding Fourier transform
Q0 fð Þ ¼ Q fð Þ=Q fð Þ ¼ 1. Thus, at the sampling time t = 0, the output sample is unity via
(9.1) and the sample power is also unity.

To evaluate the effect of noise, we again assume white noise n tð Þ with power spectral
density N0. The front-end filter output noise has a power spectral density equal to
N0 HFE fð Þj j2. Therefore, the power spectral density of the sampled noise is given by
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Figure 9.11 Channel model with suboptimum ZF-LE.
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C fð Þ ¼ N0

T

X1

k¼ 1
HFE f � k

T

� �����

����

2

¼ N0

T

X1

k¼ 1
HFE f þ k

T

� ������

�����

2

(9:47)

Consequently, the ZF-LE output noise possesses the following power spectral density:

C0 fð Þ ¼ C fð Þ 1

Q fð Þj j2 ¼
N0

P1

k¼ 1
HFE f þ k

T

� ��� ��2

1
T

P1

k¼ 1
S f þ k

T

� �
HFE f þ k

T

� �
����

����

2 (9:48)

Let us consider Cauchy–Schwarz inequality for sums of the form

X1

k¼ 1
akbk

�����

�����

2

�
X1

k¼ 1
akj j2

X1

k¼ 1
bkj j2 (9:49)

By applying (9.49) to the denominator of (9.48), we have

C0 fð Þ �
N0

P1

k¼ 1
HFE f þ k

T

� ��� ��2

1
T

P1

k¼ 1
S f þ k

T

� ��� ��2 P
1

k¼ 1
HFE f þ k

T

� ��� ��2

� N0

1
T

P1

k¼ 1
S f þ k

T

� ��� ��2

(9:50)

Note that equality in (9.49) occurs if and only if bk ¼ αa�k where α is an arbitrary constant.
By comparing C0 fð Þ to the output noise power spectral density F0 fð Þ of the ZF-LE in

(9.40), we conclude thatC0 fð Þ � F0 fð Þ. Consequently, the output SNR0 for the suboptimum
ZF-LE is less than or equal to that of the ZF-LE given in (9.43). Note thatC0 fð Þ ¼ F0 fð Þ if
and only if HFE fð Þ ¼ S� fð Þ, that is, the front-end filter is a matched filter!
■

So far, we have studied ZF-LE design via the analysis of the continuous-time sampled
signal and its Fourier transform. Alternatively, we can also achieve the same goal by
considering the discrete-time sequence of samples and its corresponding discrete time
Fourier transform. Let us consider the sampled signal x tð Þ at the input of the equalizer in
Figure 9.10. We note that x tð Þ ¼Pk s0 kTð Þ δ t � kTð Þ, therefore the samples are
xðkÞ ¼ s0 kTð Þ. The sequence xðkÞ and its discrete-time Fourier transform X e j2πf 0

� �
are

related by the following pair of equations:

xðkÞ ¼
ð1=2

1=2
X e j2πf 0
� �

e j2πkf 0df 0

X e j2πf 0
� �

¼
X1

k¼ 1
xðkÞe j2πkf 0

(9:51)
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The relationship between X e j2πkf 0
� �

and X fð Þ, the continuous-time Fourier transform of the
sampled signal x tð Þ, can be established. First, x tð Þ ¼Pk s0ðkTÞδ t � kTð Þ ¼P

k xðkÞδ t � kTð Þ and, since the Fourier transform of δ t � kTð Þ is e j2πkfT , it follows that

X fð Þ ¼
X1

k¼ 1
xðkÞe j2πkfT (9:52)

Comparing (9.51) and (9.52), we see that X e j2πf 0
� �

and X fð Þ are related by

X e j2πf 0
� �

¼ X
f 0

T

� �
; j f 0j � 1=2 (9:53)

Consequently, we obtain X e j2πf 0
� �

in terms of S fð Þ in (9.36) as follows:

X e j2πf 0
� �

¼ 1

T

X1

k¼ 1
S

f 0 � k

T

� �����

����

2

¼¼ 1

T

X1

k¼ 1
S

f 0 þ k

T

� �����

����

2

(9:54)

To deal with filter transfer functions, we employ the z-transform of the sequence xðkÞ, which
is defined as

X zð Þ ¼
X1

k¼ 1
xðkÞz k (9:55)

The z-transform reduces to the discrete-time Fourier transform when z ¼ e j2πf 0 , that is, on
the unit circle in the complex z-plane. The sequence xðkÞ can also be determined from X zð Þ
via the inverse z-transform using contour integration as follows:

xðkÞ ¼ 1

2πj

ð

C
X zð Þzk 1dz (9:56)

Since the discrete-time Fourier transform X e j2πf 0
� �

is nonnegative real, its corresponding
z-transform X zð Þ has a spectral factorization as follows:

X zð Þ ¼ F zð ÞF� 1

z�

� �
(9:57)

where F zð Þ is a minimum-phase transfer function, and F� 1=z�ð Þ is a maximum-phase
function. The function F zð Þ accumulates all poles and zeroes of X zð Þ within the unit circle,
and one of each double-zero pair of X zð Þ on the unit circle. Any zero αk of F zð Þ becomes
zero at 1=α�k of F� 1=z�ð Þ, and any pole βk of F zð Þ becomes a pole at 1=β�k of F� 1=z�ð Þ.
If all the poles of F zð Þ are inside the unit circle, then F zð Þ is stable and causal. Since
this implies that all poles of F� 1=z�ð Þ are outside the unit circle, hence, F� 1=z�ð Þ is stable
and anti-causal. Figure 9.12 shows the optimum ZF-LE with discrete-time noise-whitening
filter 1=F� 1=z�ð Þ and causal equalizer 1=F zð Þ instead of the sampled-data filters as in
Figure 9.10.

It is quite obvious that the whitened matched filter can be described as a discrete-time
minimum-phase filter with transfer function F zð Þ when its input is the sequence of data
symbols dk transmitted by the modulator as indicated on Figure 9.12. The discrete-time
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channel model is illustrated by Figure 9.13. The sequence xðkÞ is the sampled data at the
output of the matched filter in Figure 9.12, and the noise sequence n0ðkÞ is the non-white
noise sample of the matched filter output noise n0 tð Þ. The output of the noise-whitening filter
1=F� 1=z�ð Þ is the signal sequence rðkÞ plus the white noise sequence wðkÞ whose spectrum
is N0. The simplified discrete-time channel model for the optimum ZF-LE is shown in
Figure 9.14.

Let us denote the transfer function 1/F(z) of the equalizer in Figures 9.13 and 9.14 as

C zð Þ ¼ 1

F zð Þ ¼
X1

k¼0

cðkÞz k (9:58)
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Figure 9.12 ZF-LE employing discrete-time filters.
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Figure 9.13 Discrete-time channel model for the ZF-LE sampled at the symbol rate. The equalizer input noise wðkÞ has the
spectrum Φ e j2πf

0� �
= F� e j2πf

0� ��� ��2, where Φ fð Þ is given in (9.39).
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Figure 9.14 Simplified discrete-time channel model for the ZF-LE sampled at symbol rate.
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where c(k) represents the filter coefficients (often called tap weights). Given the input signal
sequence rðkÞ, the output signal sequence y(k) is given by

yðkÞ ¼ rðkÞ � cðkÞ ¼
X1

i¼0

rðiÞcðk � iÞ ¼
X1

i¼0

cðiÞrðk � iÞ (9:59)

The output noise sequence ηðkÞ at the equalization output has the following power spectral
density and variance:

F0 e j2πf 0
� �

¼ N0

F e j2πf 0ð Þj j2
¼ N0

X e j2πf 0ð Þ (9:60)

σ2 ¼
ð1=2

1=2
F0 e j2πf 0
� �

df 0 ¼ N0

ð1=2

1=2

df 0

X e j2πf 0ð Þ ¼ N0mA X 1
� �

mA X 1
� � ¼

ð1=2

1=2

df 0

X e j2πf 0ð Þ

(9:61)

where mA X 1ð Þ is the arithmetic mean of X 1 e j2πf 0
� �

.

Example 9.8 Output signal-to-noise ratio of ZF-LE
Consider the equivalent lowpass pulse s tð Þ ¼ 4Ea

p
e atu tð Þ of the modulated pulse

s tð Þ cos 2πfct, where u tð Þ is the unit step function and a > 0. Let E be the energy of the
modulated pulse, then 2E is the energy of the pulse s tð Þ, that is,

2E ¼
ð1

1
s2 tð Þ dt (9:62)

The output s0 tð Þ of the matched filter in Figure 9.12 is simply the autocorrelation of the pulse

s0 tð Þ ¼ s0 �tð Þ ¼
ð1

1
s τð Þs τ � tð Þ dτ

¼ 2Ee ajtj
(9:63)

Thus, the sequence xðkÞ ¼ s0 kTð Þ is simply given by

xðkÞ ¼ 2Ee aT kj j ¼ 2Eb kj j (9:64)

where b ¼ e aT . Using (9.55) the z-transform of the sequence xðkÞ can be evaluated as
follows:

X zð Þ ¼ 2E
b2 � 1

b
� z

z� bð Þ z� b 1ð Þ (9:65)

Let us express 1=X zð Þ as a polynomial in z. We have

1

X zð Þ ¼
1

2E
� b

b2 � 1
� z

2 � bþ b 1ð Þzþ 1

z
¼ 1

2E
� b

b2 � 1
z� b� b 1 þ z 1
� �

(9:66)
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Consequently,

1

X e j2πf 0ð Þ ¼
1

2E
� b

b2 � 1
e j2πf 0 � b� b 1 þ e j2πf 0
� �

(9:67)

Integrating F0 f 0ð Þ in (9.61) using (9.67) for f 0j j � 1=2 yields the output noise variance

σ2 ¼
ð1=2

1=2

N0

X e j2πf 0ð Þ df
0 ¼ N0

2E
� 1þ b2

1� b2
(9:68)

Note that σ2 ¼ N0mA X 1ð Þ, where mA X 1ð Þ is the coefficient of the z0-term in the
series expansion of the ZF-LE transfer function 1=X zð Þ, we have ‘0 ¼ 1þ b2ð Þ=
2E 1� b2ð Þ½ �. Consequently, the equalizer output SNR0 is given by (9.43) as

SNR0; ZF-LE ¼ 1

σ2
¼ 2E

N0
� 1� b2

1þ b2
(9:69)

Note that X zð Þ possesses poles at z ¼ b and z ¼ 1=b. Therefore, as b ¼ e aT ! 1, that is,
poles on the unit circle, SNR0 ! 0, and the equalizer fails. Compared to the matched filter,
the ZF-LE suffers a reduction in SNR0 by a factor 1� b2ð Þ= 1þ b2ð Þ.
■

Example 9.9 Transversal filter
In general, the linear equalizer is an infinite impulse response (IIR) filter. It can be
approximated by a transversal filter, which is a classic name for a finite impulse response
(FIR) filter with 2N + 1 coefficients or tap weights c(i). Specifically, we approximate the
output of y(k) of a linear equalizer with input r(k) via (9.59) as follows:

yðkÞ ¼
XN

i¼ N

cðiÞrðk � iÞ (9:70)

The following constraints apply:

yðkÞ ¼ 1; k ¼ 0

0; k ¼ �1; �2; . . . ; �N

(

(9:71)

We can write (9.70) and (9.71) in matrix form as follows:

rð0Þ rð�1Þ � � � rð�2NÞ
rð�1Þ rð0Þ � � � rð�2N þ 1Þ
..
. ..

. ..
.

rðNÞ rðN � 1Þ � � � rð�NÞ
..
. ..

. ..
.

rð2NÞ rð2N � 1Þ � � � rð0Þ

2

666666664

3

777777775

cðNÞ
cð�N þ 1Þ
..
.

cð0Þ
..
.

cðNÞ

2

666666664

3

777777775

¼

0
0
..
.

1
..
.

0

2

66666664

3

77777775

(9:72)
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or in compact form as

Rc ¼ y (9:73)

which yields the solution for c when R–1 exists as

c ¼ R 1y (9:74)

Figure 9.15 illustrates the transversal filter with 2N + 1 coefficients. If the input is causal, the
number of coefficients reduces to N + 1.
■

Summary

The ZF-LE equalizes the folded spectrum of the received signal via a filter with an inverse
frequency response. It forces the ISI to be zero at the sampling time at the expense of the
output signal-to-noise ratio. When the folded spectrum has nulls, the equalizer cannot
equalize it since the output signal-to-noise ratio can go to zero. The output of the matched
filter contains both anti-causal ISI (which affects preceding pulses) and causal ISI (which
affects succeeding pulses) since it is symmetric at the sampling time. Nevertheless, the
output of the whitened matched filter is causal because the whitened matched filter transfer
function is F zð Þ, a minimum-phase function. In other words, the noise-whitening filter
1=F� 1=z�ð Þ totally eliminates anti-causal ISI (Figure 9.16). For the suboptimum ZF-LE,
there is no spectral factorization for Q fð Þ in (9.46) since it is not positive-real. The
discrete-time channel model in Figure 9.14 still holds with F zð Þ replaced by Q zð Þ. In this
case, Q zð Þ is not minimum-phase and the input to the ZF-LE 1=Q zð Þ is not guaranteed to be
causal.

z–1

c(−N + 1)

z–1

c(N)c(−N)

+

Adjustment of coefficients

rk

y(k)

z–1

c(N − 1)

+ +

Figure 9.15 Transversal filter with 2N + 1 coefficients.
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9.4 Mean-square error linear equalizer (MSE-LE)

Unlike the ZF-LE, which forces ISI at the sampling time to zero, the MSE-LE allows some
residual ISI at the equalizer output to improve the output SNR0. By doing so, the MSE-LE
can avoid infinite noise enhancement when the channel has nulls in its folded spectrum
(poles on the unit circle). For continuity, we employ the discrete-time model counterpart of
the continuous-time model as shown in Figure 9.17.

The input to the composite channel with transfer function X(z) is the data process
dðkÞ 2 �1;1f g. We assume the data symbols dðkÞ are uncorrelated and form a white
wide-sense stationary process with constant power spectral density Sd f 0ð Þ. The signal
component yðkÞ at the equalizer output is given by

yðkÞ ¼ dðkÞ � xðkÞ � cðkÞ (9:75)

Denote ηðkÞ the equalizer output noise. We wish to minimize the mean square error (MSE)
between yðkÞ þ ηðkÞ and the transmitted data dðkÞ. Let the error eðkÞ be defined as

–3 –2 –1 0 1 2 3 

k 

Anti-causal ISI
(k < 0)

Causal ISI
(k > 0)

0 1 2 3 

k 

x(k)
r(k)

Figure 9.16 The output xk of the sampled matched filter contains both anti-causal ISI and causal ISI. The output rk of the whitened
matched filter contains only causal ISI, which is eliminated by the equalizer 1/F(z).
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Figure 9.17 Discrete-time channel model for the MSE-LE sampled at the symbol rate.
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eðkÞ ¼ yðkÞ � dðkÞ þ ηðkÞ (9:76)

Then the MSE is given by

σ2e ¼ E eðkÞj j2
n o

¼ E yðkÞ � dðkÞ þ ηðkÞj j2
n o

(9:77)

The error eðkÞ can be expressed as

eðkÞ ¼ dðkÞ � xðkÞ � cðkÞ � δðkÞ½ � þ ηðkÞ (9:78)

Since MSE is simply the variance of eðkÞ, we can evaluate the power spectral density Se f 0ð Þ
of eðkÞ and integrate it to get MSE. Assume that data and AWGN are uncorrelated, we can
evaluate Se f 0ð Þ directly from (9.78) as follows (for the sake of simplicity, we drop the
argument f 0 in the filter response and power spectral densities):

Se ¼ Sd XC � 1j j2þSη (9:79)

where Sη is the power spectral density of the equalizer output noise. Note that the power
spectral density of the equalizer input noise is given in (9.39) as N0X , where N0 is the power
spectral density of the input AWGN. Thus,

Sη ¼ N0X Cj j2 (9:80)

Substituting (9.80) into (9.79) yields the power spectral density of the equalizer output
error as

Se ¼ Sd XC � 1j j2þN0X Cj j2 (9:81)

Note that Se is positive-real, therefore to minimize the MSE, which is the integral of Se, we
only need to minimize Se. We observe that when C ¼ 1=X , Se reduces toF0 in (9.40) and σ2e
in (9.77) reduces to σ2 in (9.42), which is the case of the ZF-LE for which yðkÞ ¼ dðkÞ. Now,
we wish to have some residual ISI at the equalizer output but minimize it together with noise
and use the fact that the positive-real folded spectrum X can be factored into the following
product:

X ¼ FF� ¼ Fj j2 (9:82)

Returning to (9.81) and completing the square term on the right-hand side, we obtain by
using (9.82)

Se ¼ Sd X 2 Cj j2þ1� XC � X �C�
� �

þ N0X Cj j2

¼ SdX þ N0ð ÞX Cj j2�Sd XC þ X �C� � 1ð Þ
¼ Si Fj j2 Cj j2�Sd Fj j2C � Sd Fj j2C� þ Sd

(9:83)

where

Si ¼ SdX þ N0 ¼ Sd Fj j2þN0 (9:84)

Continuing, we get
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Se ¼ Si Fj j2 Cj j2�Sd Fj j2C � Sd Fj j2C� þ S 2
d S

1
i Fj j2

� �
þ Sd � S 2

d S
1

i Fj j2
� �

¼ Si FC � SdS
1

i F
�� ��2þSd 1� SdS

1
i Fj j2

� � (9:85)

Note that 1� SdS 1
i Fj j2¼ N0S 1

i via (9.84), therefore

Se ¼ Si FC � SdS
1

i F
�� ��2þSdN0S

1
i (9:86)

We wish to minimize the first term on the right-hand side of (9.86) that contains the spectra
of both ISI and noise at the equalizer input. This yields FC � SdS 1

i F ¼ 0, and hence the
following frequency response for the equalizer is obtained:

C ¼ SdS
1

i

¼ Sd

Sd Fj j2þN0

¼ Sd
SdX þ N0

(9:87)

The power spectral density of the MSE is given by

Se ¼ N0Sd

Sd Fj j2þN0

¼ N0Sd
SdX þ N0

(9:88)

For white data we can set Sd fð Þ ¼ 1 to obtain the following discrete time transfer function
for the equalizer:

C zð Þ ¼ 1

F zð ÞF� 1=z�ð Þ þ N0
(9:89)

For white data the minimumMSE σ2e in (9.88) is simply the integral of Se e j2πf 0
� �

from –1/2
to 1/2:

σ2e ¼ mA Seð Þ ¼
ð1=2

1=2
Se e j2πf 0
� �

df 0 (9:90)

Again, we use the notation mA Seð Þ to denote the arithmetic mean of Se. Comparing σ2e with
σ2 of the ZF-LE in (9.61), we observe that Se ¼ N0= X þ N0½ �5F0 ¼ N0=X due to the extra
term N0 in the denominator of Se. Therefore, we always have σ2e � σ2. Furthermore, σ2e does
not approach infinity when X has spectral nulls. Thus, the MSE-LE avoids the infinite noise
enlargement.

Figure 9.18 shows the discrete-time channel model for theMSE-LE, which incorporates a
noise-whitening filter. Figure 9.19 shows an equivalent but simplified discrete-time channel
model with a discrete-time pre-equalizing filter F� 1=z�ð Þ. This matched filter does not exist
for the ZF-LE in Figure 9.14 since the ZF-LE already inverts the channel.

Example 9.10 Mean-square estimation approach to MSE-LE
We have derived the MSE-LE structure based upon an ad hoc approach. In this example,
we use a more rigorous approach based on the orthogonality principle of mean-
square estimation. From Figure 9.19, the error eðkÞ at the equalizer output is
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eðkÞ ¼ yðkÞ þ ηðkÞ � dðkÞ ¼ vðkÞ � dðkÞ, and we wish to minimize the mean-square error
σ2e ¼ E eðkÞj j2

n o
. Let F zð Þ be expressed as

F zð Þ ¼
X1

k¼ 1
f ðkÞz k (9:91)

Then the output u(k) of the synthetic channel F zð Þ is given by

uðkÞ ¼ rðkÞ þ wðkÞ ¼
X1

m¼ 1
f ðmÞdðk � mÞ þ wðkÞ (9:92)

Let the transfer function of the equalizer be given by

L zð Þ ¼
X1

k¼ 1
‘ðkÞz k (9:93)

The orthogonality principle of mean-square estimation states that σ2e ¼ E eðkÞj j2
n o

is minimum when the error e(k) is orthogonal to the input u�ðk � jÞ; �15j51. That is,

E eðkÞu�ðk � jÞf g ¼ 0 (9:94)

Note that the equalizer output v(k) is equal to uðkÞ � ‘ðkÞ, thus

x(k) d̂(k)Threshold
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Non-white
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MSE-LE

d(k) ∈{−1, 1}
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channel
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Σ

Noise-
whitening

filter
1

F*(1/z*)

Equalizer

F(z)F*(1/z*) + N0

F*(1/z*)

Figure 9.18 Discrete-time channel model for MSE-LE with a noise-whitening filter sampled at the symbol rate.
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Figure 9.19 Simplified discrete-time channel model showing a pre-equalizing discrete-time matched filter sampled at the
symbol rate.
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vðkÞ ¼
X1

i¼ 1
‘ðiÞuðk � iÞ (9:95)

Therefore, given eðkÞ ¼ vðkÞ � dðkÞ, we obtain from (9.94) and (9.95)

E
X1

i¼ 1
‘ðiÞuðk � iÞ � dðkÞ

 !

u�ðk � jÞ
( )

¼ 0 (9:96)

or, equivalently,

X1

i¼ 1
‘ðiÞE uðk � iÞu�ðk � jÞf g ¼ E dðkÞu�ðk � jÞf g (9:97)

Assuming that E dðiÞd�ð jÞf g ¼ 1 for i ¼ j and E dðiÞd�ð jÞf g ¼ 0 for i 6¼ j, we have,
via (9.92),

E uðk � iÞu�ðk � jÞf g ¼
X1

m¼ 1

X1

‘¼ 1
f ðmÞf �ðlÞE dðk � m� iÞd�ðk � l � jÞf g

þ E wðk � iÞw�ðk � jÞf g

¼
X1

m¼ 1
f ðmÞf �ðmþ i� jÞ þ N0δij

(9:98)

Also, since white noise w(k) and data d(k) are uncorrelated, we have

E dðkÞu�ðk � jÞf g ¼
X1

m¼ 1
f �ðmÞE dðkÞd�ðk � m� jÞf g

¼ f �ð�jÞ
(9:99)

Substituting (9.98) and (9.99) into (9.97), we get

X1

i¼ 1
‘ðiÞ

X1

m¼ 1
f ðmÞf �ðmþ i� jÞ þ N0δij

" #

¼ f �ð�jÞ (9:100)

Taking the z-transform on both sides of (9.100) yields the following equation:

L zð Þ F zð ÞF� 1

z�

� �
þ N0

	 

¼ F� 1

z�

� �
(9:101)

Thus,

L zð Þ ¼ F� 1=z�ð Þ
F zð ÞF� 1=z�ð Þ þ N0

(9:102)

Therefore, L(z) consists of a discrete-time matched filter F� 1=z�ð Þ, and theMSE-LE is given
by

C zð Þ ¼ 1

F zð ÞF� 1=z�ð Þ þ N0
(9:103)

■
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Example 9.11 Suboptimum MSE-LE
If the matched filter S� fð Þ in Figure 9.17 is difficult to realize, one can replace it with a front-
end filter as in the case of the suboptimum ZF-LE shown in Figure 9.11. Figure 9.20
illustrates the concept of a suboptimum MSE-LE.

Following the previous analysis, we can evaluate the power spectral density Sê of the error
êk at the equalizer output as follows:

Sê ¼ Sd QĈ � 1
�� ��2þSη̂ (9:104)

where Sη̂ is the power spectral density of the equalizer output noise η̂k and is given in terms
of the input noise power spectral density C as

Sη̂ ¼ C Ĉ
�� ��2 (9:105)

where the general expression of C is given in (9.47). Combining (9.104) and (9.105), we
obtain

Sê ¼ Sd QĈ � 1
�� ��2þC Ĉ

�� ��2 (9:106)

Let Sq denote the power spectral density of signal plus noise at the equalizer input, then

Sq ¼ Sd Qj j2þC (9:107)

By using (9.107) in (9.106), we can write Sê as follows:

Sê ¼ Sq Ĉ � SdS
1

q Q�
���

���
2
þSdCS 1

q (9:108)

Obviously, Sê is minimized by choosing Ĉ to make the first term on the right-hand side of
(9.108) equal to zero, which yields

g(t), G( f )
Channel

h(t), H( f )

t = kT

Front-end
filter

HFE( f )
Σ

AWGN
n(t)

Threshold
device

{0, 1}

Composite channel Q(z)

d(k)

Sub-optimum
MSE-LE

C(z)ˆ

Figure 9.20 Discrete-time channel model for a suboptimum MSE-LE sampled at the symbol rate.
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Ĉ ¼ SdQ�

Sd Qj j2þC
(9:109)

Consequently, the corresponding transfer function of the equalizer is

Ĉ zð Þ ¼ Sd zð ÞQ� 1=z�ð Þ
Sd zð ÞQ zð ÞQ� 1=z�ð Þ þC zð Þ (9:110)

Note that the role of the discrete-time matched filter reoccurs in the numerator of Ĉ zð Þ via its
transfer function Q� 1=z�ð Þ, which we did not want in the first place! Figure 9.21 shows the
discrete-time channel model for the suboptimum MSE-LE with white data input.
■

Let us attempt to compare the performance of the suboptimum MSE-LE to that of the
minimum MSE-LE. For simplicity, we assume white data Sd e j2πf 0

� � ¼ 1 and from (9.108)
we have, via the Cauchy–Schwarz inequality (9.49),

Sê e j2πf 0
� �

¼ C e j2πf 0
� �

Q e j2πf 0ð Þj j2þC e j2πf 0ð Þ

¼
N0

P1

k¼ 1
HFE

f 0
T þ k

T

� ����
���
2

1
T

P1

k¼ 1
S f 0

T þ k
T

� �
HFE

f 0
T þ k

T

� �
����

����

2

þN0
P1

k¼ 1
HFE

f 0
T þ k

T

� ��� ��2

� N0

1
T

P1

k¼ 1
S f 0

T þ k
T

� ��� ��2þN0

¼ N0

X e j2πf 0ð Þ þ N0
¼ Se e j2πf 0

� �

(9:111)

Consequently, theMSE σ2ê of the suboptimumMSE-LE is always greater than or equal to the
MSE σ2e of the minimumMSE-LE. Obviously, σ2ê ¼ σ2e whenHFE f 0ð Þ ¼ S� f 0ð Þ, that is, the
front-end filter is a matched filter.

To complete the comparison, we only need to examine the equalizer output ŷðkÞ for a
symbol d(k). We wish to show that ŷðkÞj j2 � yðkÞj j2, that is, the suboptimum equalizer
produces an output signal power that is less than or equal to that of the optimum equalizer.
Without loss of generality, we can assume that data is white, that is, Sd e j2πf 0

� � ¼ 1. We only

Threshold
device

Noise
Ψ(z)

Discrete-
time

matched
filter

Q∗(1/z∗)

Channel
Q(z) Σ

Equalizer
1

Q(z)Q∗(1/z∗) + Ψ(z)

ˆŷ(k) + η(k)

ˆ
Sub-optimum MSE-LE

C(z)

d(k) d̂(k)

Figure 9.21 Discrete-time channel model for the suboptimum MSE-LE sampled at the symbol rate and white data with Sd(z) = 1.
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need to compare the end-to-end transfer functions Ŷ and Y of the two equalizers. This is
possible since ŷðkÞj j2 and yðkÞj j2 are just the arithmetic means of the frequency responses
jŶ j2 and jY j2, respectively, and both Ŷ and Y are nonnegative-real. We have

Ŷ ¼ Qj j2
Qj j2þC

¼ 1

1þ C= Qj j2
� �

¼ 1

1þ N0
P

k HFEj j2
� ��

1
T

P
k SHFE

�� ��2
� �

� 1

1þ N0=
1
T

P
k Sj j2

� � ¼ X

X þ N0
¼ Y

(9:112)

Integrating both sides of (9.112) over a full Nyquist period of unity yields ŷðkÞj j2 � yðkÞj j2;
the equality holds if and only ifHFE ¼ S�. In conclusion, anyMSE-LE that does not employ
a front-end matched filter has a smaller output signal-to-noise-and-ISI ratio than that of the
minimum MSE-LE.

To assess the performance of the MSE-LE, we wish to find the equalizer output signal
power so that we can establish a figure of merit such as the signal-to-MSE ratio. The
output signal power yðkÞj j2 of a symbol d(k) is the arithmetic mean of the end-to-end
frequency response jY j2, where Y ¼ X= X þ N0ð Þ as seen in Figures 9.18 and 9.19. We
can express Y in terms of Se ¼ N0= X þ N0ð Þ as Y ¼ 1� Se. Therefore, integrating over a

full Nyquist period of unity we have yðkÞj j2 ¼ mA ð1� SeÞ2
h i

. The output signal-to-MSE

ratio SNR0;MSE-LE ¼ yðkÞj j2�σ2e ¼ mA ð1� SeÞ2
h i�

mA Seð Þ establishes a figure-of-merit for

assessing the performance of the MSE-LE. Note that ð1� SeÞ2 � 1� Se, therefore we get
SNR0;MSE-LE � mAð1� SeÞ=mA Seð Þ ¼ ½1� mAðSeÞ�=mA Seð Þ. Since ISI is not Gaussian, the
Q-function cannot be employed to evaluate the error probability. Nevertheless, SNR0;MSE-LE
is a useful quantity for comparing the performance ofMSE-LE to that ofMSE-DFE.We also
note that it is not straightforward to compare the performances of MSE-LE and ZF-LE via

SNR0;MSE-LE versus SNR0;ZF-LE in (9.43) unless we evaluate both mA Seð Þ and mA X 1ð Þ.
Although we have σ2e ¼ mA Seð Þ � σ2 ¼ N0mA X 1ð Þ, we cannot deduce from this fact alone
that the MSE-LE performs better than the ZF-LE.

9.5 Zero-forcing decision-feedback equalizer (ZF-DFE)

The study of linear equalizers reveals a weakness in the case of channels with spectral nulls
or deep attenuation in the passband. The ZF-LE fails to equalize because of infinite or very
large noise enhancement. TheMSE-LE does not have the infinite noise enhancement but can
have large noise enhancement. Nonlinear equalizers can overcome this weakness and
improve the performance. We devote our effort to study two nonlinear equalizers, namely,
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zero-forcing decision-feedback equalizer (ZF-DFE) in this section and mean-square error
decision-feedback equalizer (MSE-DFE) in the next section.

The purpose of the ZF-DFE is to cancel out the causal ISI and completely avoid the
infinite noise enhancement. With the use of the whitened matched-filter, only causal ISI
appears at its output, as illustrated in Figure 9.14. Note that the synthetic channel transfer
function F(z) is a minimum phase function; hence, its output sequence rðkÞ is always causal.
On the other hand, the sequence xðkÞ at the output of the composite channel X zð Þ in
Figure 9.13 is symmetric around zero, and therefore, contains both anti-causal ISI and
causal ISI. The noise-whitening filter in Figure 9.13 in effect, removes the anti-causal ISI.
Thus, we only need to design a filter that can remove the causal ISI. Assume that a symbol is
detected correctly. Since we know the channel tap weighs f ðkÞ of F(z), we can calculate the
causal ISI produced by this symbol and subtract it from the next received symbol. In other
words, the causal ISI effect from earlier symbols can be completely removed from any
received symbol provided that all these earlier symbols were detected correctly. This process
of removing ISI is known as zero-forcing decision-feedback equalization. Obviously, when
the threshold detector makes an error, the ZF-DFE will calculate the wrong feedback and
this could result in a long run of errors, termed error propagation.

Let us express the transfer function F(z) in Figure 9.14 as follows:

F zð Þ ¼
X1

k¼0

f ðkÞz k (9:113)

where f ðkÞ denotes the channel coefficients (tap weights). We can express the output
sequence rðkÞ of the synthetic channel as

rðkÞ ¼ dðkÞ � f ðkÞ ¼
X1

i¼0

f ðiÞdðk � iÞ

¼ f ð0ÞdðkÞ þ
X1

i¼1

f ðiÞdðk � iÞ
(9:114)

where the first term is the desired symbol and the second term contains causal ISI produced
by earlier (preceding) symbols dðk � iÞ. The ZF-DFE computes the second term based upon
the estimated d̂ðk � iÞ of dðk � iÞ, which is assumed to be correct. The estimated causal ISI
is then subtracted from the received symbol rðkÞ to yield

yðkÞ ¼ rðkÞ �
X1

i¼0

f ðiÞd̂ðk � iÞ

¼ f ð0ÞdðkÞ þ
X1

i¼1

f ðiÞ dðk � iÞ � d̂ðk � iÞ
h i

¼ f ð0ÞdðkÞ

(9:115)

assuming d̂ðk � iÞ ¼ dðk � iÞ, that is, assuming the previous symbols were detected correct
at the threshold detector output. The equalization is illustrated in Figure 9.22. Note that the
output decision d̂ðkÞ of the threshold detector contains no noise; therefore, noise does not
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circulate back to the threshold detector input. The AWGN wðkÞ whose power spectral
density is N0 (see Figure 9.14) is thus the threshold detector input noise.

Example 9.12 Minimum-phase transfer function revisited
Recall that the synthetic channel transfer function F(z) is a spectral factor of X zð Þ where
X e j2πf 0
� �

is the discrete-time Fourier transform of the output sequence xðkÞ of the sampled
matched filter in Figure 9.12. From (9.57) we obtain

X zð Þ ¼ F zð ÞF� 1=z�ð Þ

¼ f 2ð0Þ f 1ð0ÞF zð Þ� �
f 1ð0ÞF� 1=z�ð Þ� � ¼ f 2ð0ÞF̂ zð ÞF̂� 1=z�ð Þ

(9:116)

Note that f ð0Þ ¼ Fð1Þ, hence f 1ð0ÞF 1ð Þ ¼ 1. The coefficient f ð0Þ is the constant term
in the series expansion of F zð Þ in (9.113). The transfer function F̂ zð Þ ¼ f 1ð0ÞF zð Þ is the
canonical factor of X zð Þ, and it is a minimum-phase function as is F zð Þ. Since F̂ 1ð Þ ¼ 1,
F̂ zð Þ can be expressed as follows:

F̂ zð Þ ¼ f 1ð0ÞF zð Þ ¼
QL

k¼1
1� αkz 1ð Þ

QM

k¼1
1� βkz 1ð Þ

; αkj j � 1; βj j51 (9:117)

where αk and βk are zeros and poles of F̂ zð Þ, respectively. The zeros αk can be inside or on
the unit circle, and the poles βk must be inside the unit circle for stability. Substituting
(9.117) into (9.116) and setting z ¼ e j2πf 0 , we obtain the discrete-time Fourier transform
X e j2πf 0
� �

:

X e j2πf 0
� �

¼ f 2ð0Þ
QL

k¼1
1� αke j2πf 0
�� ��2

QM

k¼1
1� βke j2πf 0j j2

(9:118)

Taking the logarithm of X and integrating from –1/2 to 1/2, we get
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∞
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Figure 9.22 Simplified discrete-time channel model for ZF-DFE sampled at the symbol rate.
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ð 1=2

1=2
lnX ðe j2πf 0 Þ df 0 ¼ ln f 2ð0Þ þ

XL

k¼1

ð1=2

1=2
ln 1� αke j2πf 0
�� ��2 df 0

�
XM

k¼1

ð1=2

1=2
ln 1� βke

j2πf 0
�� ��2 df 0

(9:119)

Note that for a given complex number γk ¼ γkj je jθ, we have the following relationship,
namely, ln 1� γke

j2πf 0
�� ��2¼ ln 1þ γkj j2�2 γkj j cos 2πf 0 � θð Þ�� ��. The integral of this function

over one period is zero for γkj j � 1. Therefore, we conclude that the two sum terms on the
right-hand side of (9.119) are zero and we have

f 2ð0Þ ¼ e
Ð 1=2

1=2
lnX e j2πf 0ð Þd f 0 ¼ mG Xð Þ (9:120)

The term on the right-hand side of (9.120) is the geometric mean mG Xð Þ of X e j2πf 0
� �

. In
conclusion, given a nonnegative real function X, we can evaluate its geometric mean via
(9.120) or via its spectral factorization (9.116).
■

Example 9.13 Geometric mean and arithmetic mean of nonnegative real functions X e j2πf 0
� �

and X 1 e j2πf 0
� �

From (9.120) we can express the geometric mean mG Xð Þ of the nonnegative real function
X e j2πf 0
� �

via the Jensen inequality, as follows:

lnmG Xð Þ ¼
ð1=2

1=2
lnX e j2πf 0

� �
df 0 � ln

ð1=2

1=2
X e j2πf 0
� �

df 0 ¼ lnmA Xð Þ (9:121)

This implies

mG Xð Þ � mA Xð Þ (9:122)

where mA Xð Þ, the average value of X e j2πf 0
� �

, is also the dc component in the Fourier series
expansion of X fð Þ. If we replace X by X 1 in (9.122), we get

mG X 1
� � �

ð1=2

1=2

1

X e j2πf 0ð Þ df
0 ¼ mA X 1

� �
(9:123)

where mA X 1ð Þ, the average value of 1=X e j2πf 0
� �

, is also the dc component in the Fourier
series expansion of 1=X fð Þ as seen in (9.41). But we also have, via (9.118)–(9.120),

mG X 1
� � ¼ f 2ð0Þ ¼ m 1

G Xð Þ (9:124)

Therefore, substituting (9.124) into (9.123), we obtain

f 2ð0Þ � mA X 1
� �

(9:125)

■
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In order to compare the ZF-DFE to its closest cousin, the ZF-LE, we only need to evaluate
the output signal-to-noise ratio for the received symbol yðkÞ þ wðkÞ at the input of the
threshold detector. We already know that the noise sample wðkÞ has the power spectral
density N0. Thus, its variance σ2 is simply the integral of N0 over the full Nyquist period of
unity with respect to the discrete-time Fourier transform frequency f 0,

σ2 ¼ N0 (9:126)

The signal yðkÞ given in (9.115) has a power given by

y2ðkÞ ¼ f 2ð0Þ (9:127)

since d 2ðkÞ ¼ 1. Therefore, the output signal-to-noise ratio SNR0 of the ZF-DFE is

SNR0;ZF-DFE ¼ y2ðkÞ
σ2

¼ f 2ð0Þ
N0

(9:128)

Comparing the SNR0 of the ZF-DFE to that of the ZF-LE in (9.43), with the help of (9.125),
we get

SNR0; ZF-DFE � SNR0; ZF-LE (9:129)

Hence, in the absence of error propagation, the ZF-DFE always performs better than or equal
to the ZF-LE. For a channel with substantial ISI and a low signal-to-noise ratio, the
performance of ZF-DFE could be worse than that of ZF-LE. The error probability of the
ZF-DFE can be evaluated via the Q-function. For PSK or QPSK modulation, it is given by
Pb 	 Q SNR0; ZF-DFE

p� �
at high signal-to-noise ratios.

Example 9.14 Output signal-to-noise ratio of ZF-DFE
Using the pulse s tð Þ ¼ 4aE

p
e atu tð Þ in Example 9.8, we obtain X zð Þ via (9.65) as

X zð Þ ¼ 2E 1� b2
� � 1

1� bz 1

1

1� bz
¼ f 2ð0ÞF̂ zð ÞF̂� 1=z�ð Þ

(9:130)

where the geometric mean of X zð Þ is mG Xð Þ ¼ f 2ð0Þ ¼ 2E 1� b2ð Þ. Thus the output
signal-to-noise ratio is given by (9.128) as

SNR0; ZF-DFE ¼ f 2ð0Þ
N0

¼ 2E

N0
1� b2
� �

(9:131)

Note that SNR0 ! 0 as b ! 1, that is, the channel pole approaches the unit circle.
Comparing (9.131) to (9.69) it can be seen that the ZF-DFE has an advantage of 1þ b2 in
SNR0 over the ZF-LE. Also note that the matched filter output signal-to-noise ratio is 2E=N0

in the case of zero ISI.
■
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We have shown that in the absence of error propagation, which normally happens at high
signal-to-noise ratios, the ZF-DFE is clearly superior to that of the ZF-LE. We explain this
improvement by looking at Figures 9.14 and 9.22. The noise at the output of the ZF-LE is no
longer white, therefore, they are correlated and depend on the channel transfer function. The
ZF-DFE in effect adds a filter F zð Þ at the output of the ZF-LE to whiten the output noise, that
is, to make the noise sample uncorrelated and hence independent since it is Gaussian. The
added filter reproduces the data sample rðkÞ, which contains causal ISI and hence can be
removed by the feedback filter F zð Þ � f ð0Þ without enhancing noise. This added filter is
called a linear predictor. Figure 9.23 shows the ZF-DFE obtained from the ZF-LE by adding
a linear predictor. Note that the synthetic channel F zð Þ is the discrete-time representation of
the whitened matched filter and no filter can minimize noise better than it. This explains why
SNR0;ZF-DFE � SNR0;ZF-LE.

In summary, in the absence of error propagation, the performance of the ZF-DFE is
superior to that of the ZF-LE. There is no noise enhancement due to spectral nulls. At high
output signal-to-noise ratios (more than 10 dB), the effect of error propagation is small,
especially if the data is interleaved to make it look random. Error propagation tends to end
after a few correct detections as the ZF-DFE clears itself of errors. The error probability for
PSK, including error propagation, can be expressed as Pb ¼ NpQ SNR0;ZF-DFE

p� �
, where

Np is a positive constant that accounts for the increase in the error rate due to error
propagation.

9.6 Mean-square error decision-feedback
equalizer (MSE-DFE)

The comparison of ZF-DFE with ZF-LE produces an insight into designing the MSE-DFE.
From the point of view of ZF-DFE, it is necessary to whiten the noise at the output of the ZF-
LE to improve performance. We can make the same conclusion regarding the MSE-DFE,
that is, to improve its performance over the MSE-LE, we need to whiten the noise plus ISI at
the output of the MSE-LE. This can be achieved by using a linear predictor P zð Þ and a
feedback filter P zð Þ � 1, where P 1ð Þ ¼ 1 as shown in Figure 9.24, which is based on the
concept depicted in Figure 9.23.
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Σ

AWGN
w(k)

Threshold
detector

Synthetic
channel

F(z)

r(k)
Σ

Feedback
filter

F(z) – f(0)
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1
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+

−

ˆ( )d k
r(k) + w(k)

Figure 9.23 The ZF-DFE as the ZF-LE with a linear predictor and a feedback filter.
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The error spectrum of the MSE-DFE can be derived by assuming that the previous
symbols were correctly detected at the threshold detector output. We have

eðkÞ ¼ ŷðkÞ � dðkÞ þ η̂ðkÞ
¼ ½dðkÞ � f ðkÞ � lðkÞ � pðkÞ � dðkÞ � pðkÞ þ dðkÞ� � dðkÞ þ η̂ðkÞ
¼ dðkÞ � pðkÞ � f ðkÞ � lðkÞ � δðkÞ½ � þ η̂ðkÞ

(9:132a)

Ŝe ¼ Sd XC � 1j j2 Pj j2þN0X Cj j2 Pj j2

¼ Sd XC � 1j j2þN0X Cj j2
� �

Pj j2

¼ Se Pj j2
(9:132b)

where X ¼ FF�, C ¼ 1= X þ N0ð Þ, and Se ¼ Sd XC � 1j j2þN0X Cj j2¼ SdN0= SdX þ N0½ �
is the error spectrum of the MSE-LE given in (9.81) and (9.86). To whiten Se, we only need
to choose P zð Þ to be the inverse of the canonical minimum-phase spectral factor of Se zð Þ,
that is,

Se zð Þ ¼ mG Seð Þ 1

P zð Þ � 1

P� 1=z�ð Þ (9:133)

where mG Seð Þ is the geometric mean of Se e j2πf 0
� �

and P 1ð Þ ¼ 1 as in (9.116) and (9.120).
By using (9.132b) and (9.133), we get

Ŝe zð Þ ¼ Se zð ÞP zð ÞP� 1=z�ð Þ
¼ mG Seð Þ (9:134)

Thus, by using a linear predictor and a feedback filter, we can whiten the noise plus ISI error.
Since Ŝe e j2πf 0

� �
is a constant, the MSE of the MSE-DFE is simply

σ̂2e ¼
ð1=2

1=2
Ŝe e j2πf 0
� �

df 0 ¼ mG Seð Þ (9:135)

It is seen that σ̂2e � σ2e , where σ
2
e is the MSE of the MSE-LE given in (9.90). This occurs

because the geometric meanmG Seð Þ is less than or equal to the arithmetic meanmA Seð Þ. The
combined equalizer–predictor transfer function is given by
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Figure 9.24 Simplified discrete-time channel model for the MSE-DFE sampled at the symbol rate.
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L zð ÞP zð Þ ¼ F� 1=z�ð ÞP zð Þ
F zð ÞF� 1=z�ð Þ þ N0

¼ 1

N0
F� 1=z�ð ÞP zð ÞSe zð Þ

¼ mG Seð Þ
N0

� F
� 1=z�ð Þ

P� 1=z�ð Þ

(9:136)

Incorporating the above result into Figure 9.24 yields the discrete-time channel model for
the MSE-DFE in Figure 9.25. The filter 1=P� 1=z�ð Þ is similar to the noise-whitening filter
1=F� 1=z�ð Þ in Figure 9.18. We can call it the noise ISI whitening filter. This filter also
attempts to eliminate the anti-causal ISI in the sequence xðkÞ, which arises via filtering by
F� 1=z�ð Þ in (9.136). The feedback filter P zð Þ � 1 attempts to cancel out the remaining
causal ISI. Since we are dealing with MSE, some residual ISI remains at the threshold
detector input. This is a compromise to reduce the effect of noise.

To assess the performance of theMSE-DFE, we wish to establish a figure of merit such as
the output signal to MSE ratio. This implies that we need to evaluate the output signal

power ŷðkÞj j2 for a symbol dðkÞ at the threshold detector input. Note that ŷðkÞj j2 is just

the arithmetic mean of the end-to-end frequency response jŶ j2. Also we have

Ŷ ¼ XP= X þ N0ð Þ � P þ 1 ¼ 1� N0P= X þ N0ð Þ ¼ 1� SeP, where Se ¼ N0= X þ N0ð Þ
is the error spectrum of the MSE-LE, assuming no error at the threshold detector output.

Using (9.133), we get Ŷ ¼ 1� mG Seð Þ=P�. Integrating jŶ j2 over a full Nyquist period of

unity yields the power of the signal component ŷðkÞj j2 ¼ 1� mG Seð Þ½ �2. We have used the
fact that 1=P� is a maximum-phase function with 1=P� 0ð Þ ¼ 1; therefore, its average value
is unity. Thus, the output signal-to-MSE ratio is

SNR0;MSE-DFE ¼ ŷðkÞj j2�σ̂2e ¼ 1� mG Seð Þ½ �2�mG Seð Þ ¼ 1� σ̂2e
� �2�

σ̂2e (9:137)

For comparison with MSE-LE, where SNR0;MSE-LE ¼ mA ð1� SeÞ2
h i�

mA Seð Þ, we have

SNR0;MSE-DFE � SNR0;MSE-LE when mA ð1� SeÞ2
h i

� 1� mGðSeÞ½ �2. For a channel with

substantial ISI and a low signal-to-noise ratio, the performance ofMSE-DFE could be worse
than that of MSE-LE.

dk
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noise  n0, k
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filter
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X(z) = F(z)F∗(1/z∗)
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N0P∗(1/z∗) –

+
ΣΣ

Figure 9.25 Discrete-time channel model for the MSE-DFE sampled at the symbol rate.
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Example 9.15 SNR0, MSE-DFE

We use the same pulse s tð Þ ¼ 4Ea
p

e atu tð Þ as used in Example 9.8, where
X zð Þ ¼ 2E b2 � 1ð Þ b 1z z� bð Þ 1 z� b 1ð Þ 1

. For simplicity, we assume an input signal-
to-noise ratio E=N0 ¼ 7 dB and b = 0.5. Thus,

Se zð Þ ¼ N0

X zð Þ þ N0
¼ z� 0:5ð Þ z� 2ð Þ

z2 � 17:5zþ 1

¼ z� 0:5ð Þ z� 2ð Þ
z� 0:057ð Þ z� 17:44ð Þ ¼ 0:115

1� 0:5z 1ð Þ 1� 0:5zð Þ
1� 0:057z 1ð Þ 1� 0:057zð Þ

(9:138)

where mG Seð Þ ¼ 0:115 and 1=P zð Þ ¼ 1� 0:5z 1ð Þ= 1� 0:057z 1ð Þ. Therefore, we obtain
SNR0;MSE-DFE ¼ 1� mG Seð Þ½ �2=mG Seð Þ ¼ 6:8 or 8.33 dB.

Note that, for the same specification, the ZF-DFE has an output signal-to-noise ratio of
SNR0,ZF-DFE = 7.5 or 8.75 dB. One should resist the temptation to draw the conclusion here
that the ZF-DFE performs better than the MSE-DFE. Since ISI is not Gaussian, the
Q-function cannot be employed to obtain the error probability for the MSE-DFE, therefore
any comparison based solely on SNR0,MSE-DFE is not valid.
■

9.7 Maximum likelihood sequence detection

Equalizers that remove ISI completely (ZF) or reduce them to a large extent (MSE) are
simple to implement with transversal filters. From the efficiency point of view, throwing
away the symbol energy that resides in the ISI is not the best way to achieve a performance
approaching that of the optimum demodulator in Section 9.2. But with symbol-by-symbol
detection, this is the best method that one could use. In an AWGN channel with ISI, the
energy of a symbol spans many symbol periods, so why not use the energy that resides in the
ISI portion of the symbol to aid the detection? In other words, the entire symbol energy can
be used and this can only be done via sequence detection. The best sequence detection is the
maximum likelihood sequence detection (MLSD). In an AWGN channel with no ISI, the
MLSD reduces to the maximum likelihood (symbol-by-symbol) detection studied in
Chapter 8 because a sequence of symbols just contains isolated symbols. For a Nyquist
channel, again there is no ISI, thus MLSD also reduces to the optimum demodulator in
Section 9.2, where the detection is performed over a sequence of one symbol.

Let us consider a received sequence of K symbols at the output of the physical channel
h tð Þ in Figure 9.9. The corresponding received signal r tð Þ is

r tð Þ ¼
XK 1

k¼0

dðkÞs t � kTð Þ þ n tð Þ (9:139)

where dðkÞ is the kth symbol, s tð Þ is the received symbol waveform, and n tð Þ is the AWGN.
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For M-ary modulation, there areMK possible transmitted sequences of length K symbols.
Thus, we can readily apply the maximum likelihood principle for sequence detection
developed in Chapter 4. Recall that maximum likelihood sequence detection states that
minimizing the error probability is equivalent to selecting a sequence siðtÞ in the sequence
set that is closest in Euclidean distance to the received sequence r(t). We can write the
squared Euclidean distance d 2 r; sið Þ as follows:

d 2 r; sið Þ ¼
ð1

1
r tð Þ � si tð Þj j2dt; i ¼ 1; 2; . . . ;MK (9:140)

If we apply this maximum likelihood criterion to r tð Þ in (9.139), we can derive a likelihood
function for the MLSD. Thus, for si tð Þ ¼

PK 1
k¼0 dðkÞs t � kTð Þ,

d 2 r; sið Þ ¼
ð1

1
r tð Þj j2dt � 2Re

ð1

1
r tð Þs�i tð Þ dt þ

ð1

1
si tð Þj j2dt

¼
ð1

1
r tð Þj j2dt � 2Re

XK 1

k¼0

d�ðkÞ
ð1

1
r tð Þs� t � kTð Þ dt

" #

þ
XK 1

k¼0

XK 1

m¼0

dðkÞd�ðmÞ
ð1

1
s t � kTð Þs� t � mTð Þ dt

(9:141)

Since the first term involving the integral of r tð Þj j2 is common to all d 2 r; sið Þ, the minimum
Euclidean distance corresponds to the maximum of the following correlation metric:

c DKð Þ ¼ 2Re
XK 1

k¼0

d�ðkÞvðkÞ �
XK 1

k¼0

XK 1

m¼0

dðkÞd�ðmÞxðm� kÞ (9:142)

where DK ¼ dð0Þ; dð1Þ; . . . ; dðK � 1Þð Þ is the data sequence and

vðkÞ ¼
ð1

1
r tð Þ s� t � kTð Þdt (9:143)

xðm� kÞ ¼
ð1

1
s t � kTð Þ s� t � mTð Þdt ¼ x�ðk � mÞ (9:144)

In summary, the MLSD chooses a symbol that corresponds to the smallest Euclidean
distance d r; sið Þ; i ¼ 1; 2; . . . ; MK , or one that has the largest correlation metric c DKð Þ.
Such MLSD employs a front-end matched filter that matches the symbol waveform s tð Þ.
The output of the matched filter is sampled at the symbol rate to produce a sequence of
output samples vk . These are decision variables that are used by the sequence detector
to detect the sequence DK . The sequence vðkÞ provides sufficient statistics for demodula-
tion of DK . The sequence xðkÞ is the discrete-time autocorrelation of the known symbol
waveform s tð Þ.

Obviously one does not want to build a sequence detector that follows the sampled
matched filter to evaluate MK correlation metrics when K is large. Fortunately, one can use
the Viterbi detector, which implements an efficient dynamic programming algorithm to
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estimate the sequence of transmitted symbols. We have used the Viterbi algorithm in the
decoding of convolutional codes in Chapter 4, and the detection of CPM signals in Chapter 7
based upon the minimum squared Euclidean distance. For MLSD, the correlation metric in
(9.142) is used instead. This correlation metric can be computed recursively if we assume
ISI affects only L past symbols and L future symbols, that is, xðkÞ ¼ 0 for kj j4L. The
recursive formula is given by [1,2]:

c Dkð Þ ¼ c Dk 1ð Þ þ 2Re d�ðkÞvðkÞð Þ

� 2Re d�ðkÞ
Xk 1

m¼k L

dðmÞxðk � mÞ
 !

� dðkÞj j2xð0Þ (9:145)

The Viterbi algorithm employs c Dkð Þ to compute paths through a trellis with M states.
At each state only the path that has the largest correlation metric is retained, called
the survivor path. All paths that enter this same state (commonly referred to as the
node) with smaller correlation metrics are rejected. Thus, the complexity grows linearly
with the sequence length K and not exponentially with MK . Figure 9.26 shows the
MLSD with the Viterbi sequence detector. For M-ary modulation, such as MPSK or
MQAM, the data dðkÞ is complex with Re dðkÞð Þ representing the I-channel data and
Im(d(k)) representing the Q-data channel. Figure 9.27 shows the equivalent discrete-time
model for the MLSD.

Example 9.16 MLSD with whitened matched filter
The whitened matched filter consists of a sampled matched filter followed by a noise-
whitening filter. Its importance cannot be understated. As we know, the sampled matched

Impulse
generator

Channel
h(t)

Matched
filter
s*(–t)

Composite channel  xk, X(z)

+

Viterbi sequence
detector with

correlation metric 
c(DK) 

DK
g(t)

t = kT

n(t)

d(t) si(t)

K−1

k=0

d(t) = d(k)δ(t − kT)∑
K−1

k=0

si(t) = d(k)s(t − kT)∑

D̂K

v(k) = x(k) + n0(k)

Figure 9.26 The MLSD with a front-end matched filter and a Viterbi sequence detector.
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filter output is symmetric about the sampling time. Hence, it contains both anti-causal ISI
and causal ISI. Furthermore, the output noise samples are non-white and hence correlated
but still Gaussian. On the other hand, the whitenedmatched filter output contains only causal
ISI and the noise samples are white, hence, uncorrelated. Since they are Gaussian, they are
also independent. We want to show that replacing the sampled matched filter in Figure 9.26
with a whitened matched filter does not change the optimality of the MLSD. Therefore, the
demodulator shown in Figure 9.28 is entirely equivalent to that in Figure 9.26.

Let X zð Þ denote the z-transform of the sequence xðkÞ defined in (9.144), that is, the
sequence of signal components at the sampled matched filter output. Performing a spectral
factorization of X zð Þ yields

X zð Þ ¼ F zð ÞF� 1

z�

� �
(9:146)

where F zð Þ is a minimum-phase function and F� 1=z�ð Þ is a maximum-phase function as
previously shown in (9.57). The noise-whitening filter in Figure 9.28 has the transfer
function 1=F� 1=z�ð Þ. The MLSD in Figure 9.28 can be represented by the simplified
discrete-time model in Figure 9.29.

DK

Non-white
noise  n0(k)

Composite
channel

X(z)

x(k) v(k)
Viterbi sequence

detector with
correlation metric

c(DK) 

D̂K
Σ

Figure 9.27 Discrete-time model for MLSD.
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Figure 9.28 MLSD with a whitened matched filter.
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The sequence uðkÞ ¼ rðkÞ þ wðkÞ provides sufficient statistics for the detection of
the data sequence dðkÞ since the noise samples wðkÞ are independent. Indeed, we can
write the probability density of the sequence uK ¼ uð0Þ; uð1Þ; . . . ; uðK � 1Þð Þ given
DK ¼ dð0Þ; dð1Þ; . . . ; dðK � 1Þð Þ as follows:

fUK uK jDKð Þ ¼
YK 1

k¼0

fUK uðkÞjDKð Þ ¼
YK 1

k¼0

1

2π
p

σ
e uðkÞ rðkÞj j2=2σ2

¼ 1

2π
p

σ
� �K e 1=2σ2ð ÞPK 1

k 0
uðkÞ rðkÞj j2=2σ2

(9:147)

where σ2 ¼ N0 is the variance of the AWGN wðkÞ. Minimizing the ln-likelihood function
ln fUK uK jDKð Þ results in minimizing the Euclidean distance

d uK ; DKð Þ ¼
XK 1

k¼0

uðkÞ � rðkÞj j2
vuut (9:148)

over the set of MK data sequences. The Euclidean distance metric is entirely equivalent to
the correlation metric in (9.142) since both detectors apply the same maximum likelihood
principle to the sequence of data DK .
■

Example 9.17 Equivalence of d uK ; DKð Þ and c DKð Þ
Wewish to show that the Euclidean distance metric d uK ; DKð Þ in (9.148) and the correlation
metric c DKð Þ are equivalent. Let us expand d 2 uK ; DKð Þ as follows:

d 2 uK ; DKð Þ ¼
XK 1

k¼0

uðkÞ � rðkÞj j2

¼
XK 1

k¼0

uðkÞj j2 � 2Re
XK 1

k¼0

uðkÞr�ðkÞ þ
XK 1

k¼0

rðkÞj j2
(9:149)

DK

AWGN
w(k)

F(z)
r(k) u(k)

Viterbi sequence
detector with

Euclidean
distance metric

d(uK, rK)

D̂KΣ

Figure 9.29 Simplified discrete-time model for MLSD with a whitened matched filter. The sequence rK represents the filtered data
sequence and uK = rK + wK, where wK is the AWGN sequence.
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The first term on the right-hand side of (9.149) is common to all d 2 uK ; DKð Þ; therefore,
minimizing d 2 uK ; DKð Þ corresponds to maximizing the following correlation metric:

ĉ DKð Þ ¼ 2Re
XK 1

k¼0

uðkÞr�ðkÞ �
XK 1

k¼0

rðkÞj j2 (9:150)

We can express the filtered data rðkÞ from Figure 9.29 as

rðkÞ ¼ dðkÞ � f ðkÞ ¼
XK 1

m¼0

dðmÞf ðk � mÞ (9:151)

where f ðkÞ denotes the coefficients of the transfer function F zð Þ given by

F zð Þ ¼
XL

k¼0

f ðkÞz k (9:152)

Substituting (9.151) into (9.150), we have

ĉ DKð Þ ¼ 2Re
XK 1

m¼0

XK 1

k¼0

d�ðmÞuðkÞf �ðk � mÞ �
XK 1

m¼0

XK 1

n¼0

XK 1

k¼0

dðmÞd�ðnÞf ðk � mÞf �ðk � nÞ

¼ 2Re
XK 1

m¼0

d�ðmÞ
XK 1

k¼0

uðkÞf �ðk � mÞ �
XK 1

m¼0

XK 1

n¼0

dðmÞd�ðnÞ
XK 1

k¼0

f ðk � mÞf �ðk � nÞ

¼ 2Re
XK 1

m¼0

d�ðmÞvðmÞ �
XK 1

m¼0

XK 1

n¼0

dðmÞd�ðnÞxðn� mÞ

¼ c DKð Þ
(9:153)

The right-hand side of (9.153) is precisely (9.142) as expected. Note that the transfer
function of the noise-whitening filter is 1=F� 1=z�ð Þ. Therefore, uðkÞ, the output of this filter
with input vðkÞ, is given in terms of the z-transform by UðzÞ ¼ V ðzÞ=F� 1=z�ð Þ, where U(z)
and V(z) are the z-transforms of the sequences uðkÞ and vðkÞ, respectively. Hence,
V ðzÞ ¼ F� 1=z�ð ÞUðzÞ is equivalent to vðkÞ, the output of F� 1=z�ð Þ with input uðkÞ, that
is, vðkÞ ¼ uðkÞ � f �ð�kÞ where F� 1=z�ð Þ is the z-transform of the time-reversal sequence
f �ð�kÞ.
■

Example 9.18 Viterbi algorithm
In this example we implement the Viterbi algorithm for searching a trellis that represents an
AWGN channel with ISI. We consider binary modulation (M = 2) and use the simplified
discrete-time model for MLSD in Figure 9.29 with F zð Þ ¼ f ð0Þ þ f ð1Þz 1, where f ð0Þ
and f ð1Þ are normalized so that f ð0Þ ¼ 1 and f ð1Þ ¼ 0:2. Thus, there is only one memory
L ¼ 1 associated with f ð1Þ. The trellis is shown in Figure 9.30 over four symbol times.
The trellis in one symbol time is the state diagram of the ISI channel.WithM = 2, the channel
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can be one of ML ¼ 2 states. The states at time k are labeled with dðkÞ ¼ �1 and the
corresponding channel outputs are rðkÞ ¼ f ð0ÞdðkÞ þ f ð1Þdðk � 1Þ ¼ dðkÞþ 0:2dðk � 1Þ.
The channel outputs are labeled on the branches of the trellis. We assume the following
received samples (channel outputs plus noise): uð1Þ; uð2Þ; uð3Þ; uð4Þ; . . .ð Þ ¼ 0:8; �0:2;ð
0:4; 1; . . .Þ.

Since the channel is a finite-state machine, we have a starting state and an ending state.We
can achieve this condition by arbitrarily starting the sequence DK ¼ dð0Þ; dð1Þ; . . . ;ð
dðKÞÞ with dð0Þ ¼ 1 or dð0Þ ¼ �1ð Þ and end the sequence with dðKÞ ¼ 1 orð
dðKÞ ¼ �1Þ. We then calculate the branch metric between time k � 1 and k as given by
d 2 uðkÞ; rðkÞð Þ ¼ uðkÞ � rðkÞj j2. This branch metric is added to the path metrics at time
k � 1, that is,

PK 1
m¼0 uðmÞ � rðmÞj j2. Afterwards, the path at time k that has the smallest path

metric, called the survivor path, is retained and all other paths are discarded. Thus, at each
node, only one path survives and its metric is stored for the next computation. For our
example, we assume the starting state is dð0Þ ¼ 1. In Figure 9.31 we show the metric of the
survivor path at each node. At time k ¼ 4, there are two survivor paths with metric 0.72 and
3.92. As these two paths merge at time k ¼ 3, we can readily detect the information
sequence up to this time, which is 1; 1; �1; 1. If there is no merger, then the process
must continue until the end of the sequence. If the sequence is too long, it may be truncated
at the predetermined length K. If K is much larger than the channel memory L, there is little
loss in performance.
■
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Figure 9.30 Trellis for MLSD with a whitened matched filter.
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Figure 9.31 Metric of the survivor path.
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9.8 Fractionally spaced equalizer (FSE)

All the previous equalizers were designed to operate at the symbol rate. They can modify the
folded (aliased) spectrum X fð Þ in (9.36) or equivalently X e j2πf 0

� �
in (9.53), which is the

sum of aliased components S f þ k=Tð Þj j2 or S f 0=T þ k=Tð Þj j2. This requires a precise
sampling timing, which might not be possible under some circumstance. For example, if
the received pulse has a timing error t0, that is, s t � kT � t0ð Þ is processed as s t � kTð Þ, then
a phase error e j2πft0 occurs in S f þ k=Tð Þj j2 in the form of modified aliased component
S f þ k=Tð Þj j2e j2π fþk=Tð Þt0 . The sampling timing error can cause the modified aliased
components to have spectral nulls in the passband even though they are not present in
S f þ k=Tð Þj j2. To solve the timing problem, we should design an equalizer that can modify
the aliased sum of equalized component instead. That is, the equalization should be done on
the modified aliased component S f þ k=Tð Þj j2e j2π fþk=Tð Þt0 before aliasing. This can only
be done if the matched filter output is sampled faster than the Nyquist rate, that is, at least
twice the channel bandwidth. A Nyquist channel with bandwidth B ¼ 1þ βð Þ=2T requires
a sampling rate 1=T 042B ¼ 1þ βð Þ=T . Without loss of generality, we set the roll-off factor
β ¼ 1 to yield a sampling rate larger than twice the symbol rate. With the sampling rate 1=T 0,
there is no aliasing in the spectrum X 0 fð Þ at the output of the matched filter, where X 0 fð Þ is
given by

X 0 fð Þ ¼ 1

T 0
X1

k¼ 1
S f þ k

T 0

� �����

����

2

e j2π fþk=T 0ð Þt0 (9:154)

Now consider a fractionally spaced equalizer (FSE) that immediately follows the Nyquist
sampler as depicted in Figure 9.32.

The FSE has a periodic frequency response CT 0 fð Þ. The output Y 0 fð Þ of the FSE is
periodic with period 1=T 0 and is given as

Y 0 fð Þ ¼ CT 0 fð ÞX 0 fð Þ

¼ CT 0 fð Þ 1

T 0 S fð Þj j2e j2πft0

	 

; fj j � 1

2T 0
(9:155)

where only the k = 0 term is counted since S fð Þ 6¼ 0 only in fj j � 1=2T 0. Thus, CT 0 fð Þ can
equalize any phase error e jθ fð Þ that is experienced by S fð Þ. The output of the FSE is then
sampled again at the symbol rate 1=T to yield a spectrum Y fð Þ of period T as follows:

Matched
filter

s*(–t), S*( f )

FSE
CT '( f )

t = kT

X '( f )

s(t) + n(t)

S0( f ) Y '( f )

t = kT '

Y( f )

Figure 9.32 FSE with the sampling rate 1/T′.
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Y fð Þ ¼ 1

T

X1

k¼ 1
Y 0 f þ k

T

� �

¼ 1

TT 0
X1

k¼ 1
CT 0 f þ k

T

� �
S f þ k

T

� �����

����

2

e j2π fþk=Tð Þt0
(9:156)

Note that Y fð Þ is the aliased sum of equalized Y 0 f þ k=Tð Þ, while X 0 fð Þ is the sum of
aliased component S f þ k=T 0ð Þj j2. The FSE, therefore, can be designed to assume the role
of ZF-LE, MSE-LE, and the linear predictor of the DFE.

9.9 Summary

In this chapter we have provided a detailed study of intersymbol interference and fundamental equalization
techniques. We introduced the concept of zero ISI via the Nyquist criterion. The raised-cosine pulse is the Nyquist
pulse that is widely used in practice. The optimum demodulator was designed based on the criteria of zero ISI and
maximum output signal-to-noise ratio. In other words, the pulse shape at the threshold detector input is a
Nyquist pulse that achieves zero ISI at the sampling time. Furthermore, the sample presented to the threshold
detector has a maximum signal-to-noise ratio. The optimum demodulator employs two filters in the transmitter.
One filter has a frequency response equal to the inverse of the channel frequency response. In effect, the
combination of this filter and the channel yield an ideal channel with no distortion. This process is called
pre-equalization, where the channel distortion effect is pre-corrected at the transmitter. The receiver filter is
designed to match the second filter in the transmitter to provide an output Nyquist pulse and to emulate the
matched filter.
Pre-equalization in the transmitter is not practical because the transmitter often does not have the means

to estimate the channel. Therefore, equalization is commonly carried out in the receiver where the channel
response can be estimated. We presented two types of linear equalizers, namely, the zero-forcing linear equalizer
(ZF-LE) and the mean-square error linear equalizer (MSE-LE). The ZF-LE forces the sample at the threshold
detector input to have zero ISI. It does so at the expense of the output signal-to-noise ratio, which can go to
zero if the channel response has spectral nulls. The MSE-LE compromises between ISI and the output signal-to-
noise ratio.
The performance of linear equalizers can be improved by using feedback decision. We presented two

nonlinear equalizers, namely, the zero-forcing decision-feedback equalizer (ZF-DFE) and the mean-square error
decision-feedback equalizer (MSE-DFE). These nonlinear equalizers suffer error propagation but nevertheless may
perform better than their linear counterparts. The best nonlinear equalizer is the maximum likelihood sequence
detector (MLSD), which can be implemented by the Viterbi algorithm. Finally, we studied the fractionally spaced
equalizer (FSE), which can correct the timing error problem in previously studied equalizers. The FSE works on
the aliased sum of equalized components instead of the sum of aliased components, thereby solving the timing
problem before it can be rendered uncorrectable by aliasing.
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Problems

1. Show that the raised-cosine pulse shape and its Fourier transform satisfy the Nyquist
criterion of zero ISI.

2. Show that ð1=TÞPm P f þ m=Tð Þ is the Fourier transform of p tð ÞP
m
δ t þ mTð Þ ¼

p tð ÞP
m
δ t � mTð Þ.

3. Show that when the sampling rate 1/T is greater than twice the absolute bandwidth B
of the Fourier transform P( f ) of the pulse shape p(t), then the Nyquist criterion of
zero ISI cannot be satisfied.

4. Consider an antipodal signal with squared pulse shape p(t) of unit amplitude and
duration T. Sketch the waveform at the output of the matched filter when the input bit
sequence is 10011. Specify the amplitudes at the sampling times. Is there any
intersymbol interference?

5. Find the impulse response of the filter having the frequency response equal to the
square root of Pð f Þ ¼ T ; �1=2T � f � 1=2T and zero otherwise.

6. Consider an antipodal signal with squared pulse shape p(t) of unit amplitude and
duration T. Derive the output waveform for one bit, say 1, at the output of an RC-filter
(series resistance R and shunt capacitor C).
(a) Sketch the output waveform when the input bit sequence is 10011and specify the

amplitudes at the sampling times for the case RC = T. Is there any intersymbol
interference?

(b) Derive the output SNR for the RC-filter for a single bit at the sampling time T,
assuming the noise spectrum is N0=2. The antipodal signal amplitudes are �A.

(c) Derive the one-shot output SNR for each bit in the sequence 10011 for the case
above that includes intersymbol interference.

(d) Derive the one-shot bit error probability for each bit in the sequence 10011 for the
case (c) that includes intersymbol interference, assuming that noise is Gaussian.

7. Find the impulse response of the square root raised-cosine filter.
8. Verify (9.63).
9. Verify (9.65).

10. Consider a bandlimited QPSK signal whose bandwidth is B.
(a) Draw the equivalent lowpass model for the transmitter, channel, and receiver.
(b) Draw the block diagram of an optimum system that can achieve the maximum

output SNR0 at the sampling time.
11. Consider the following samples of the output pulse of a matched filter:

. . . ; 0; xð�1Þ ¼ a; xð0Þ ¼ 1þ a2; xð1Þ ¼ a; 0; . . .. Evaluate the composite channel
transfer function, the synthetic channel transfer function, and the ZF-LE transfer function.

12. Consider a channel with impulse response hðtÞ ¼ aδðtÞ þ bδðt � t0Þ. The input to this
channel is the pulse pðtÞ.
(a) Evaluate the channel output sðtÞ.
(b) Consider a filter that is matched to sðtÞ with a designated impulse response

αsðT 0 � tÞ, where α is a scaling constant and T 0 is a time delay. Evaluate the
output s0ðtÞ of the matched filter at the time t ¼ kT 0 when T 0 ¼ t0.

518 Intersymbol interference and equalization



(c) Assuming that pðtÞ is orthogonal to its t0-translates, evaluate the output sequence
xðkÞ ¼ s0ðkt0Þ. Evaluate the z-transform of xðkÞ.

(d) Find the synthetic channel transfer function of the sequence xðk þ 1Þ.
13. Consider the following sequence of pulses at the input of the matched filter:

vðtÞ ¼Pn dnsðt � nTÞ, where dn 2 f�1; 1g represents the data bit at the time
index n. Furthermore, let the equivalent lowpass pulse of the modulated pulse
s tð Þ cos 2πfct be s tð Þ ¼ 4Ea

p
e atuðtÞ, a > 0 (see Example 9.8).

(a) Calculate the signal-to-noise ratio at the output of the sampler at the time index
k = 1, assuming d0 ¼ 1; d1 ¼ �1.

(b) Calculate the signal-to-noise ratio at the output of the sampler at the time index
k = 2, assuming d0 ¼ 1; d1 ¼ 1; d2 ¼ �1.

(c) Calculate the signal-to-noise ratio at the output of the sampler at the time index
k = 3, assuming d0 ¼ 1; d1 ¼ 1; d2 ¼ 1; d3 ¼ �1.

(d) Compare the results in (a)–(c) to that of the ZF-LE.
14. Consider the following sequence of pulses at the input of the matched filter:

vðtÞ ¼Pn dnsðt � nTÞ, where dn 2 f�1; 1g represents the data bit at the time
index n. Furthermore, let the equivalent lowpass pulse of the modulated pulse
s tð Þ cos 2πfct be s tð Þ ¼ 2Ea

p
e ajtj, a > 0 (see Example 9.8).

(a) Calculate the signal-to-noise ratio at the output of the sampler at the time index
k = 1, assuming d0 ¼ 1; d1 ¼ �1.

(b) Calculate the signal-to-noise ratio at the output of the sampler at the time index
k = 2, assuming d0 ¼ 1; d1 ¼ 1; d2 ¼ �1.

(c) Calculate the signal-to-noise ratio at the output of the sampler at the time index
k = 3, assuming d0 ¼ 1; d1 ¼ 1; d2 ¼ 1; d3 ¼ �1.

15. Using Example 9.8, determine the sampling rate so that SNR0;ZF-LE ¼ 1:5E=N0

16. Consider the composite channel X ðzÞ ¼ 1þ 0:5z 1 þ 0:5z. Calculate the mean-
square error of MSE-DFE via a spectral factorization.

17. Consider the channel specified by the FIR filter FðzÞ ¼ f ð0Þ þ f ð1Þz 1, where the
channel tap weights are f ð0Þ ¼ 2E

p
; f ð1Þ ¼ 0:4 2E

p
. The input to this channel is a

sequence of two bits fdðkÞ; dðk � 1Þg, where dðiÞ 2 f�1; 1g. Calculate the power
jrðkÞj2 of the output bit rðkÞ for all four bit patterns. Find the one-shot bit error
probability for each of the four bit patterns, assuming the modulation is PSK.

18. Consider the composite channel X ðzÞ ¼ a2 þ bzþ bz 1.
(a) Derive the condition on a and b so that X ðe j2πf 0 Þ is a positive-real function, that is,

X ðzÞ can be expressed as X ðzÞ ¼ FðzÞF�ð1=z�Þ. Find FðzÞ and X ðe j2πf 0 Þ. Does
X ðe j2πf 0 Þ have spectral nulls?

(b) Calculate SNR0;ZF-LE.
19. Consider the synthetic channel FðzÞ ¼ f ð0Þ þ f ð1Þz 1.

(a) Calculate the mean-square errors of the MSE-LE and MSE-DFE.
(b) Calculate SNR0;MSE-LE and SNR0;MSE-DFE.

20. Verify (9.121).
21. Consider a synthetic channel with transfer function FðzÞ ¼ f ð0Þ þ f ð1Þz 1.

(a) Derive the bit error probability for the received PSK signal.
(b) Derive the bit error probability for the received PSK signal with ZF-DFE.
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22. Carry out the Viterbi algorithm using Figure 9.30 with the following data:
ðuð1Þ; uð2Þ; uð3Þ; uð4Þ; . . .Þ ¼ ð1; 0; 0:2;�1:1; . . .Þ, FðzÞ ¼ 1þ 0:1z 1.

Further reading

For further studies on ISI the reader is referred to the excellent text by Proakis [2], which also
discusses controlled ISI. The effect of ISI can be found in the excellent book by Pursley [3].
More information on equalization techniques can be found in [2] or in the excellent books by
Barry et al. [4] and Gitlin et al. [5]. The above books also cover adaptive equalization, in
which the equalizer taps can be adjusted to accommodate a time-varying channel. More
advanced topics on adaptive filters can also be found in Haykin [6]. A good discussion of
sequence demodulation can be found in Blahut [1].
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10 Fading channels

Introduction

Besides the intersymbol interference (ISI) that occurs via channel filtering, a digitally
modulated signal can also have ISI when it is transmitted over a multipath fading channel.
This type of channel is encountered in all forms of mobile wireless communication. In a
multipath fading channel, the transmitted signal arrives at the receiver via multiple paths.
These paths generally arise via signal reflection from the ground, hills, buildings, and any
other large structures. They also arise from signal diffraction via bending around the
corners of buildings or sliding across rooftops. They also can arise via signal scattering
from small objects such as vehicles, lamp posts, trees, etc. Each signal path results in a
randomly delayed, attenuated, and phase-shifted copy of the transmitted signal. These
multipath copies combine at the receiver to give rise to a received signal whose envelope
may be described by a Rayleigh fading process (no line-of-sight path), or a Rice fading
process (one line-of-sight path), or a Nakagami fading process. Also, because the arrival
times of the multipath copies are random, especially in a mobile environment, the multi-
path copies might overlap the next bit or symbol and hence cause intersymbol interfer-
ence. This type of ISI cannot be eliminated by pulse shaping dictated by the Nyquist
criterion for zero ISI, but can be alleviated by equalization (as discussed in Chapter 9). The
above effects are collectively called fading. A fading channel that exhibits ISI is called a
frequency selective fading channel. A channel that exhibits negligible ISI is called a flat
fading channel.

Figure 10.1 illustrates a frequency-selective fading channel in which a signal travels
several propagation paths creating multiple received copies of it at the receiver.

Figures 10.2 and 10.3 illustrate the ISI process due to multipath fading effects for three
bits 1, 0, 1 with a squared pulse shape at the input and output of the matched filter,
respectively, in the case of two propagation paths. ISI occurs at the sampling time t= 2T,
3T. Note that the amplitudes of these bits are not the same to reflect the channel fading
effect. In this case, the complex envelope fading varies from bit to bit but remains
essentially the same during a bit time. This phenomenon is commonly called slow fading
to reflect the fact that the channel varies slowly within one or several bit times. When the
channel varies substantially during a bit time, the channel is said to be a fast fading
channel. Both slow and fast fading phenomena result from the movement of the trans-
mitter and/or receiver, the so-called Doppler effect. In a bandlimited multipath fading
channel, both filtering-induced ISI and multipath-induced ISI occur simultaneously and
can cause serious performance degradation. Also, the time variation can induce carrier
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phase error, which results in a loss of the signal-to-noise ratio at the coherent receiver. The
combined time variation and multipath effect give rise to a time varying and space varying
channel. This channel can be represented by an impulse response hðτ; tÞ, where the time t
represents the variations of the channel and the time τ represents the time arrivals of the
multipath copies. When the channel is time invariant, we have hðτ; tÞ ¼ hðτÞ. Wireless
channels such as cellular channels, WLAN, WMAN, and underwater channels are com-
mon examples of Rayleigh fading channels, which have two non-conflicting attributes of
the four attributes described above (slow fading, fast fading, flat fading, and frequency-
selective fading).

Figure 10.1 Multipath fading channel with multiple copies of the signal arriving at the receiver.

T
τ

0 3T

Figure 10.2 Pre-filtering ISI for a squared pulse shape. The solid line is for the first arrival and the dashed line is for the delayed
second arrival.

T
τ

0

2T

3T 4T

Figure 10.3 Post-filtering ISI at the output of the matched filter for two propagation paths.
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10.1 Physical characterization of fading channels

The time variation and multipath effect of a channel must be quantitatively described to
facilitate the design of the waveform and consequently its demodulation. In fact, these
adverse conditions (relative to the AWGN channel) can be neutralized to a large extent or
even taken advantage of if the designer is aware of their cause and effect.

Time-varying effect

We examine first the cause of time variation of the channel. It arises mainly from the
Doppler effect due to the motion of the transmitter and/or receiver and the time variation
of the structures of the medium. Let us consider a received free space E field (V/m) at
distance d greater than a reference distance d0 from the transmitter. We have

Eðd; tÞ ¼ E0d0
d

cos 2πfc t � d

c

� �� �
(10:1)

where E0 is the free space E-field at d0. If we now assume that the receiver moves away from
the transmitter with radial velocity v, the distance d increases in time by vt. The received
E-field is given by

Eðd; tÞ ¼ E0d0
d þ vt

cos 2πfc t � d

c
� vt

c

� �� �

¼ E0d0
d þ vt

cos 2πfc 1� v

c

� �
t � d

c

� �� � (10:2)

Thus the carrier frequency fc becomes fcð1� v=cÞ. The received E-field encounters a
Doppler shift of f ¼ �fcv=c. If the receiver moves toward the transmitter, the Doppler
shift is f ¼ fcv=c. The Doppler shift induces two effects: the time-varying phase shift
θðtÞ ¼ 2πft and the time-varying amplitude E0d0=ðd þ vtÞ. Let us consider the first example
where the carrier frequency is fc ¼ 1GHz and the receiver radial velocity is v = 100 km/hour
(moving away). Then, the Doppler shift is �92:6Hz. Consider a channel bit rate of
14.4 kbps, then the bit interval is 69.4 μs. Let us consider a bit which starts at time t = 0
and ends at time t = 69.4 μs. The phase shift at the end of the bit is�0:04 radians or�2:3�. If
the criterion for channel estimation is no more than 45� (π=4 radians) phase error then the
delay requirement for channel estimation cannot exceed 1=8f seconds or 20 bit times. Also,
during 20 bit times the receiver moves a distance 0.039m. This induces a small variation in
the received E-field amplitude.

Now let us consider the second example of a transmitter and a receiver separated by a
distance d. If we assume that the receiver moves straight toward the transmitter with radial
velocity v, the distance d1 decreases in time by vt. The Doppler shift of the LOS E-field is
f ¼ fcv=c. In addition, suppose the receiver also receives a reflected E-field from a perfect
reflector directly behind it. The distance traveled by this reflected E-field is d2. Since
the receiver is moving straight away from the reflector, the distance increases in time by vt.
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The Doppler shift of the reflected E-field is �fcv=c. The reflected signal is π radians out-
of-phase with its incident E-field. Therefore, the total received E-field at the receiver is
given as

Eðd; tÞ ¼ E0d0
d1 � vt

cos 2πfc t � d1
c
þ vt

c

� �� �
� E0d0
d2 þ vt

cos 2πfc t � d2
c
� vt

c

� �� �

¼ E0d0
d1 � vt

cos 2πfc 1þ v

c

� �
t � d1

c

� �� �
� E0d0
d2 þ vt

cos 2πfc 1� v

c

� �
t � d2

c

� �� �

(10:3)

For simplicity let us consider the case where the receiver is close to the reflector so that the
amplitudes of both LOS and reflected E-fields are approximately the same. Then the sum of
the two E-fields can be approximated by the following expression:

Eðd; tÞ � 2E0d0
d2 þ vt

sin 2πfcðvt=cþ ðd2 � d1Þ=2cÞ½ � sin 2πfcðt � ðd2 þ d1Þ=2cÞ½ � (10:4)

The received E-field now has a time-varying amplitude which varies according to the
Doppler shift. The larger the Doppler shift, the faster the amplitude varies. This results in
deep fades at intervals of 1/4f (or a quarter-wavelength) from the peak amplitudes. For the
numerical values used in the first example, a deep fade occurs every 39 bits from the peak
amplitudes. The difference between the Doppler shifts of the LOS and reflected E-fields is
referred to as the Doppler spread, which we define below.

Definition 10.1 The Doppler spread of a fading channel is defined as follows:

fD ¼ max
i;j

fi � fj
�� �� (10:5)

where the maximum is taken over all positive Doppler shifts fi and negative Doppler shifts fj
of the propagation paths.

For the above example the Doppler spread is 2fcv=c. In general, Doppler shift induces
both time variation in signal amplitude and carrier phase error. These two phenomena cause
a loss in the signal-to-noise ratio and degrade performance.

Definition 10.2 The coherence time of a fading channel is related to the Doppler spread as
follows:

Tc ¼ 1

4fD
(10:6)

According to this definition, the coherence time is an empirical relation that can be
adjusted to fit the requirement. Obviously, the coherence time is infinite when there is no
Doppler shift. This implies that the channel is time-invariant and no phase error occurs.
There is still loss in signal amplitude due to the sum of the various signal rays at the receiver,
but this loss can be compensated for with power control.
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Space-varying effect

The fading wireless channel is also space varying, that is, the multipath effect varies
according to different locations of transmitter and receiver even when the transmitter and
receiver are stationary and the structures of the medium do not change. Thus, a multipath
intensity profile (MIP) which shows power versus delay or magnitude versus delay of each
multipath copy is space-dependent, that is, it is a function of the transmitter and receiver
coordinates. An example of a realization of MIP is shown in Figure 10.4. As previously
discussed, the multipath effect might cause ISI in the received symbol stream. To character-
ize this effect we introduce two parameters called multipath delay spread and coherence
bandwidth.

Definition 10.3 The multipath delay spread Td of a fading channel is empirically defined
as the maximum of the difference in propagation times between the first path with power
P1 and the last significant path of power Pl, such that P1=Pl is greater than but closest to a
given threshold γ. For example, the threshold can be taken to be SNR ¼ P1=N , the signal-
to-noise ratio of the first path. The maximum is carried out over all multipath intensity
profiles:

Td ¼ max
MIP

τlðtÞ � τ1ðtÞjmin
l

P1=Pl4γf g
� �

(10:7)

This definition implies that the ISI effect of multipath copies should be kept small when
one estimates the multipath delay spread for waveform design purposes. If the receiver locks
onto the first path, then the spill-over symbol energy from delayed paths might cause ISI in
the next symbol. Thus, one should include as many significant paths as possible so that the
ISI effect is not underestimated. Equation (10.7) also implies that the transmission time of a
symbol should far exceed the multipath delay spread to have a small ISI effect. Instead of
designing for the worst case, real-time MIP can also be obtained from channel estimation to

Time

Magnitude

Figure 10.4 A multipath intensity profile.
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vary the transmission rate to take advantage of the channel condition. This implies a higher
symbol rate for small Td and a lower symbol rate for a large Td . For the MIP realization in
Figure 10.4, the multipath delay spread can be taken to be the time spead between the first
path and the fifth path, assuming P1=Pl � γ; l ¼ 2; 3; 4, and P1=P54γ.

Definition 10.4 The coherence bandwidth Bc of a fading channel is defined as the inverse
of the multipath delay spread

Bc ¼ 1

Td
(10:8)

This is the bandwidth necessary to accommodate the symbol time no smaller than the
multipath delay spread and with sin x=x pulse shape.

Summary of fading characteristics

Slow fading: a channel experiences slow fading if the following condition is met:

coherence time4channel estimation time

Fast fading: a channel experiences fast fading if the following condition is met:

coherence time5channel estimation time

Flat fading: a channel experiences flat fading if the following condition is met:

signal bandwidth5coherence bandwidth

or

multipath delay spread5symbol time

Frequency-selective fading: a channel experiences frequency selective fading if the
following condition is met:

signal bandwidth4coherence bandwidth

or

multipath delay spread4symbol time

Table 10.1 presents the range of multipath delay spreads for typical outdoor and indoor
environments.

Table 10.1 Multipath delay spread

Environment Frequency (MHz) Multipath delay spread

City 900 2 15 μs
Suburban 900 0.3 2 μs
Indoor 2400 20 300 ns
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Example 10.1 OFDM for a fading channel
The multipath delay spread of a fading channel imposes the ISI limit on the symbol rate of
a single-carrier system. For example, the at-home channel at 2400MHz with a multipath
delay spread of 25 ns limits the symbol rate to 40Msps. If 64QAM is employed, the bit rate
is limited to 240Mbps. For the outdoor environment, the typical multipath delay spread is
1 μs. The limiting symbol rate is 1Msps for 64QAM or 6Mbps. To transmit at a rate of
hundreds of Mbps, OFDM must be employed to combat the multipath effect. Let us
examine the OFDM-based IEEE 802.11g with 48 data subcarriers. At the highest OFDM
bit rate of 54Mbps, the bit rate per 64QAM-subcarrier is 1.125Mbps or 187.5 ksps. The
tolerable multipath delay spread for 54Mbps must be much smaller than the subcarrier
symbol time, which is 5.3 μs. At the lowest OFDM bit rate of 6Mbps, the bit rate per PSK-
subcarrier is 125 kbps. The tolerable multipath delay spread must be much smaller than
8 μs. In practice, the tolerable multipath delay spread of 1 μs is much less than these
symbol times, so the signal-to-noise-and-ISI ratio is high enough to accommodate a good
bit error probability. Equalization and cyclic prefixes eliminate most ISI effect in the
subcarriers.
■

10.2 Mathematical representation of fading channels

The mathematical representation of a time varying and space varying channel is beyond the
scope of this book. For simplicity, we only discuss a time-varying channel for a given set of
coordinates of both transmitter and receiver.

Channel impulse response

We use the complex envelope representation for a transmitted signal sðtÞ with complex
envelope (equivalent lowpass signal, baseband signal) sLðtÞ and carrier frequency fc. The
signal can be the E-field of a plane wave. We have

sðtÞ ¼ Re sLðtÞe j2πfct
	 


(10:9)

The received signal is the sum of uncorrelated multipath copies that pass through the fading
channel with arbitrary path attenuations, phase-shifts, and delays (commonly referred to as
uncorrelated scattering in the literature. Since fading involves reflection, diffraction, and
scattering we prefer the term uncorrelated fading instead). These are called resolvable paths.
Each multipath copy is itself the sum of many uncorrelated signals of similar (or approx
imately the same) path delay τiðtÞ but different path attenuations aikðtÞ and phase shifts
fikðtÞ, which include the path Doppler effects. These are called non resolvable paths. We
express the received signal as
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xðtÞ ¼ Re
X

i

X

k

aikðtÞsLðt � τiðtÞÞ e j½2πfcðt τiðtÞÞþfik ðtÞ�
( )

¼ Re
X

i

X

k

aikðtÞe j½2πfcτiðtÞ fik ðtÞ�sLðt � τiðtÞÞ
 !

e j2πfct

( ) (10:10)

The complex envelope xLðtÞ of the received signal x(t) is given by the following expression:

xLðtÞ ¼
X

i

X

k

aikðtÞe j½2πfcτiðtÞ fik ðtÞ�sLðt � τiðtÞ Þ

¼
X

i

hiðtÞsLðt � τiðtÞ Þ
(10:11)

where the term hiðtÞ is the ith complex path attenuation, and is often referred to as the ith
channel tap

hiðtÞ ¼
X

k

aikðtÞe j½2πfcτiðtÞ fikðtÞ� (10:12)

By the central limit theorem the channel tap hiðtÞ can be modeled as a complex Gaussian
random variable whose in-phase and quadrature components have the same variance. Thus
the magnitude jhiðtÞj of the ith channel tap is a Rayleigh or Rice process (when a line-of-
sight component is present). Alternatively, one can model the channel tap by a Nakagami
process (see Chapter 3). From (10.11) we obtain the complex envelope of the impulse
response (equivalent lowpass impulse response, baseband impulse response) of an uncorre-
lated fading channel as follows:

hðτ; tÞ ¼
X

i

hiðtÞδðτ � τiðtÞÞ (10:13)

The corresponding frequency response of the fading channel at time t is given as

Hðf ; tÞ ¼
X

i

hiðtÞe j2πf τiðtÞ (10:14)

For the special case of the time invariant channel the complex envelope and the frequency
response are obtained from (10.13) and (10.14) as

hðτÞ ¼
X

i

hiδðτ � τiÞ; Hðf Þ ¼
X

i

hie j2πf τi (10:15)

Example 10.2 Flat fading and frequency-selective fading channels
Let us consider the following two time-invariant channels with four channel taps and delays
given in Table 10.2. The impulse and frequency responses are given as

hðτÞ ¼
X4

i¼1

hiδðτ � liTÞ (10:16)
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Hðf Þ ¼
X4

i¼1

hie j2πli f T (10:17)

The magnitude and phase versus the frequency time product fT of the frequency responses
are shown in Figure 10.5. The first channel is a flat fading channel when the signal
bandwidth multipath delay spread product is smaller than fT = BcTs = 0.5, where Bc is the
channel coherence bandwidth and Ts is the symbol time. In this range, the magnitude
spectrum is fairly flat and the phase is linear. For the same range of fT, the second channel
has frequency-selective fading, since the magnitude spectrum shows considerable variation
and the phase is not linear.
■

Multipath autocorrelation and Doppler profiles

With the channel impulse response available we can establish the channel autocorrelation:

Rhðτ; τ0 ; t1; t2Þ ¼ E½hðτ; t1Þh�ðτ0; t2Þ� (10:18)

Substituting hðτ; tÞ ¼P
i
hiðtÞδðτ � τiðtÞÞ into (10.18) we obtain

Rhðτ; τ0 ; t1; t2Þ ¼ E
X

i

hiðt1Þδðτ � τiðt1ÞÞ
X

k

h�kðt2Þδðτ0 � τkðt2ÞÞ
" #

¼
X

i

X

k

E½hiðt1Þh�kðt2Þ� δðτ � τiðt1ÞÞ δðτ0 � τkðt2ÞÞ
(10:19)

This means that the channel autocorrelation is non-zero only when all the delays are the
same. Thus, the channel autocorrelation reduces to the following expression:

Rhðτ ; t1; t2Þ ¼
X

i

E½hiðt1Þh�i ðt2Þ� δðτ � τiðt1ÞÞ
" #

(10:20)

Table 10.2 Channel taps and delays

Delay li

i Tap hi Channel 1 Channel 2

1 0.8 0 0
2 0.4 0.2 0.5
3 0.33 0.3 1.2
4 0.3 0.5 2
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If we assume that the fading process fhiðtÞg is a WSS random process and also ergodic we
can take the ensemble average of Rhðτ ; t1; t2Þ to be its time average, which depends only on
t0 ¼ t2 � t1, and hence eliminate the time origin t1. From now on we assume that the channel
is WSS and ergodic and undergoes uncorrelated fading. Thus we have the multipath
autocorrelation profile

Rhðτ; t0Þ ¼
X

i

Rhiðt0 Þ δðτ � τiÞ (10:21)

where the ith path autocorrelation is given by ( t0 ¼ t2 � t1 )

Rhiðt0Þ ¼ E½hiðt1Þh�i ðt2Þ� (10:22)

Taking the Fourier transform of the multipath autocorrelation profile Rhðτ; t0Þ in the t 0

variable we obtain the multipath Doppler profile Shðτ; f 0Þ of the fading channel

2

Magnitude spectrum of the first
multipath channel, ⏐H( f )⏐

Magnitude spectrum of the second
multipath channel, ⏐H( f )⏐

Phase spectrum of the first
multipath channel, ⏐φ( f )⏐

Phase spectrum of the second
multipath channel, ⏐φ( f )⏐

φ(
f)

⏐ i
n 

ra
di

an
s

φ(
f)

⏐ i
n 

ra
di

an
s

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

2

1.8

1.6

1.4

1

1.2

0.8

0.6

0.4

0.2

0

2

1.5

1

0.5

0

–0.5

–1

–1.5

–2

–2.5

0
(a) (b)

(c) (d)

0.5 1 1.5 2 2.5
f T

3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5

f T

3 3.5 4 4.5 5 0 0.5 1 1.5 2 2.5

f T

3 3.5 4 4.5 5

0 0.5 1 1.5 2 2.5
f T

3 3.5 4 4.5 5

⏐H
(f

) ⏐
⏐H

(f
) ⏐

Figure 10.5 Frequency responses of (a),(b) the flat fading channel 1 and (c),(d) the frequency-selective fading channel 2.
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Shðτ; f 0Þ ¼
X

i

Shiðf 0Þδðτ � τiÞ (10:23)

where the ith path Doppler power spectrum Shiðf 0Þ is the Fourier transform of the path
autocorrelation Rhiðt0Þ. This means that all multipath copies of the transmitted signal are
affected by the Doppler shift. TheDoppler spread of the fading channel is approximately the
maximum of the path Doppler spreads of significant paths (the path Doppler spread is twice
the absolute bandwidth of the path Doppler spectrum.). The coherence time of the fading
channel is defined as in (10.6).

Clarke–Doppler power spectrum

Let us consider a fading channel with L uncorrelated non resolvable paths only, thus the
channel is a flat fading channel. These paths arrive at the mobile receiver (moving with
speed v) via scatterers around it with approximately the same delay but with different
attenuations and phase shifts, and Doppler shifts fk ¼ ðfcv=cÞ cos θk ¼ fm cos θk , depending
on the horizontal arrival angles θk . The maximum Doppler shift is fm ¼ fcv=c. The impulse
response of the channel is

hðτ; tÞ ¼
X

k

hi e j½2πðfm cos θkÞt�
" #

δðτÞ (10:24)

Furthermore, we assume that the total received power is P ¼ LE½jhk j2�.

Discrete sum approach

The multipath autocorrelation profile for fixed horizontal arrival angles is given as follows:

Rhðτ; t0Þ ¼
X

k

E½jhk j2� e j½2πðfm cos θk Þt0�
" #

δðτÞ (10:25)

Assuming that the scatterers are evenly spaced around the mobile, we can express the arrival
angle as θk ¼ kðΔθÞ and Δθ ¼ 2π=L.

Rhðτ; t0Þ ¼ P

L

X

k

e j½2πðfm cos kΔθÞt0 �
" #

δðτÞ

¼ P

2π

X

k

e j½2πðfm cos kΔθÞt0 �Δθ

" #

δðτÞ
(10:26)

As the number of scatterers around the mobile approaches infinity, the summation becomes
an integral and we have

Rhðτ; t0Þ ¼ P

2π

ðπ

π
e j½2πðfm cos θÞt0 � dθ

� �
δðτÞ

¼ PJ0ð2πfmt0Þ½ �δðτÞ
(10:27)
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Integral approach

The multipath autocorrelation profile for random horizontal arrival angles is given as
follows:

Rhðτ; t0Þ ¼
X

k

E½jhk j2�E e j½2πðfm cos θk Þt0 �
n o

" #

δðτÞ

¼ P

L

X

k

E e j½2πðfm cos θk Þt0 �
n o

" #

δðτÞ

¼ PE e j½2πðfm cos θkÞt0 �
n oh i

δðτÞ

(10:28)

The horizontal arrival angle θk is assumed to be uniformly distributed in ð�π; πÞ. Hence,
we obtain

Rhðτ; t0Þ ¼ P

2π

ðπ

π
e j½2πðfm cos θÞt0 � dθ

� �
δðτÞ

¼ PJ0ð2πfmt0Þ½ �δðτÞ
(10:29)

The multipath Doppler profile is the Fourier transform of Rhðτ; t0Þ in the t 0 variable, and is
given by

Shðτ; f 0Þ ¼
P

π f 2m � f 02
q δðτÞ; jf 0j � fm

0; otherwise

8
>><

>>:
(10:30)

The Clarke–Doppler power spectrum is the value of Shðτ; f 0Þ at τ ¼ 0, and is given by the
following expression:

Shðf 0Þ ¼
P

π f 2m � f 02
q ; jf 0j � fm

0; otherwise

8
>><

>>:
(10:31)

This power spectrum has singularities at jf j ¼ fm, which make it spike to infinity. This
happens because the scattered waves are assumed to be on the horizontal plane only and
uniformly distributed around the receiver. In practice, Doppler power spectra do resemble
this theoretical one but do not have singularities at�fm. TheDoppler spread fD of the Clarke
fading channel is twice the maximum Doppler shift, that is,

fD ¼ fm � ð�fmÞ ¼ 2fm (10:32)

The coherence time is empirically given by (10.6) as

Tc ¼ 1

4fD
¼ 1

8fm
(10:33)
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Let us examine the autocorrelation Rhðt0Þ ¼ PJ0ð2πfmt0Þ, which is the value of Rhðτ; t0Þ at
τ ¼ 0, of the Clarke–Doppler power spectrum Shðf 0Þ. At the time difference
t0 ¼ Tc ¼ 1=8fm, the normalized autocorrelation value is RhðTcÞ=P ¼ J0ð0:79Þ ¼ 0:85.
This shows that the correlation is still strong even after a time delay equal to the coherence
time. Thus, the empirical relation between Doppler spread and coherence time is validated.
The Clarke channel is a slow fading channel so long as the channel estimation time is smaller
than the coherence time, which is one-eighth of the maximum Doppler shift.

Generalized Doppler power spectrum

The Clarke–Doppler power spectrum restricts all scattered waves to the horizontal plane. In
practice the uncorrelated and non resolvablewaves arrive at the mobile with polar angle ’k

and azimuth angle θk , as depicted in the xyz-coordinates system shown in Figure 10.6. The
mobile is on the horizontal xy-plane and moves with speed v in the direction established by
the angle ψ with respect to the x-axis. Since we assume that the mobile receives L
uncorrelated non-resolvable waves, the channel is a flat fading channel.

The complex envelope of the kth incident E-field is given by

Ekðdk ; tÞ ¼ E0;kðdkÞ e j½k0ðx sin ’k cos θkþy sin ’k sin θkþz cos ’kÞþfk � (10:34)

where dk is the distance traveled by the kth wave, k0 ¼ 2πfc=c is the free space wave
number, and fk is the wave phase. The random variables E0;kðdkÞ, ’k ; θk ; fk are assumed
to be independent. The total received E-field at the mobile is the sum of L incident
waves:

Eðd; tÞ ¼
X

k

Ekðdk ; tÞ ¼
X

k

E0;kðdkÞ e j½k0ðx sin’k cos θkþy sin ’k sin θkþz cos ’k Þþfk � (10:35)

where d ¼ ðd1; d2; . . . ; dLÞ and the coordinates ðx; y; zÞ are given in terms of the speed v and
the initial mobile position ðx0; y0; z0Þ as

ϕk

kth wave

x

y

z

ψ
θk

Mobile direction

Figure 10.6 Wave angles and mobile direction.

534 Fading channels



x ¼ x0 þ ðv cosψÞt
y ¼ y0 þ ðv sinψÞt
z ¼ z0

(10:36)

We consider the case of small-scale variations in E-field amplitudes and approximate the
mean-square value of the E-fields as constant and independent of distance, that is,
E½jE0;kðdkÞj2� ¼ P=L, where P is the total received power. The maximum Doppler shift is
fm ¼ fcv=c. The total received E-field is

Eðd; tÞ ¼
X

k

Ekðdk ; tÞ

¼
X

k

E0;kðdkÞ e j½�þ2πfmðsin ’k cosψ cos θkþ sin ’k sinψ sin θkÞt�

¼
X

k

E0;kðdkÞ e j½�þ2πfmðsin ’k cosð θk ψÞÞt�

(10:37)

where � ¼ k0ðx0 sin ’k cos θk þ y0 sin ’k sin θk þ z0 cos ’kÞ þ fk . Define hk ¼
E0;kðdkÞ e j�, then E½jhk j2� ¼ E½jE0;kðdkÞj2� ¼ P=L. The corresponding impulse response
of the channel is

hðτ; tÞ ¼
X

k

hk e j2πfmðsin ’k cosð θk ψÞÞt
" #

δðτÞ (10:38)

and the multipath autocorrelation profile can be expressed as

Rhðτ; t0Þ ¼
X

k

E½jhk j2�E e j2πfmðsin ’k cosð θk ψÞÞt0
h i

" #

δðτÞ

¼ P

L

X

k

E½ e j2πfmðsin ’k cosð θk ψÞÞt0 � δðτÞ

¼ PE½ e j2πfmðsin ’ cosð θ ψÞÞt0 � δðτÞ

(10:39)

The autocorrelation is the value of Rhðτ; t0Þ at τ ¼ 0 and is given by

Rhðt0Þ ¼ PE½ e j2πfmðsin ’ cosð θ ψÞÞt0 �

¼ P

ðπ

’¼0

ð2π

θ¼0
e j2πfmðsin ’ cosð θ ψÞÞt0 f’ð’Þ fθðθÞ d’ dθ

(10:40)

The functions f’ð’Þ and fθðθÞ are the probability density functions of the polar angle ’ and
azimuth angle θ, respectively. Since the mobile position is arbitrary on the horizontal plane,
we can assume a uniformly distributed azimuth angle and hence we have fθðθÞ ¼ 1=2π.
Therefore, the autocorrelation can be written as

Rhðt0Þ ¼ P

ðπ

’¼0
J0ð2πfmt0 sin’Þ f’ð’Þ d’ (10:41)

Taking the Fourier transform of the autocorrelation Rhðt0Þ in the variable t0 we obtain the
generalized Doppler power spectrum
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Shðf 0Þ ¼
Ð π β
θ¼β

P

πfm sin2 ’ sin2 β
p f’ð’Þ d’ ; jf 0j � fm

0; otherwise

(

; sin β ¼ f 0

fm
(10:42)

For the special case of incident waves restricted to the horizontal plane, we have
f’ð’Þ ¼ sin’ δð’� π=2Þ and the generalized Doppler power spectrum reduces to the
Clarke–Doppler power spectrum. The generalized flat fading channel is also a slow fading
channel so long as the channel estimation time is smaller than the coherence time, which is
one-eighth of the maximum Doppler shift.

Example 10.3 Aulin–Doppler power spectrum
In this model the density function of the polar angle ’ has the following expression:

f’ð’Þ ¼ sin’
2 sinΔ’

; π=2� Δ’ � ’ � π=2þ Δ’ (10:43)

Thus, the arrival angle of the incident waves is restricted to the angular region
π=2� Δ’ � ’ � π=2þ Δ’. Substituting f’ð’Þ into (10.42) we obtain the Aulin–
Doppler power spectrum, which does not have singularities at f 0 ¼ �fm:

Shðf 0Þ ¼
P

πfm sinΔ’ sin 1 sinΔ’

1 ðf 0=f mÞ2
p
� �

; 0 � jf 0j � fm cosΔ’

P
2fm sinΔ’ ; fm cosΔ’ � jf 0j � fm

0; otherwise

8
>>><

>>>:

(10:44)

■

10.3 Coherent demodulation

Coherent demodulation requires the knowledge of the channel taps hiðtÞ. This can be
achieved by transmitting a pilot tone with the signal, as in IS-95; by using pilot subcarriers,
as in OFDM-based signals (IEEE 802.11a,g and 802.16,e); or by transmitting equally
spaced pilot symbols, with the data symbols as in CDMA 2000 or WCDMA. The time
between the pilot symbols is much smaller than the channel coherence time Tc to reduce
channel estimation error (slow fading). In this case the channel taps can be considered
constant during a symbol, that is, hiðtÞ � hi; t � Ts. Since the channel taps are complex it is
more convenient to work with an equivalent complex-valued demodulator than those
discussed in Chapter 7. We will concentrate on I-Q (two-path) coherent demodulators.

Equivalent complex-valued demodulator

Let us consider the I-Q signal sðtÞ ¼P2
k¼1 sikxkðtÞ ¼ Re sLðtÞ e j2πfct

� 
, where xkðtÞ is the

basis function (see Appendix 10A). For illustrative purposes let the pulse shape pðtÞ be a

536 Fading channels



squared pulse of unit amplitude and duration Ts. The complex envelope sLðtÞ is
sLðtÞ ¼ sL;I ðtÞ þ jsL;QðtÞ ¼ ðsi1 þ jsi2Þð 2=Ts

p Þ pðtÞ. The parameters si1 and si2 are the
I- and Q-values, respectively, of an arbitrary symbol si ¼ si1 þ jsi2 (in the set ofM symbols
represented in complex form). For an arbitrary pulse shape the matched filter impulse
response is αpðt � TsÞ, where α is a normalization constant. The I-Q coherent demodulator
for this signal is shown conceptually in Figure 10.7. The matched filters MF1 and MF2 are
identical and matched to the signal pulse shape pðtÞ. Their impulse responses are pðTs � tÞ.
The decision vector X is the sum of the signal vector si ¼ ½si1 si2�t and the Gaussian noise
vectorN ¼ ½N1 N2�t. The I-noise N1 and the Q-noise N2 are independent and have the same
variance σ2. We have

X ¼ si þN (10:45)

In Figure 10.8 the equivalent complex-valued coherent demodulator is shown (see
Appendix 10A). The complex decision sample at the output of the complex-valued matched
filter or complex-valued integrator is

X ¼ X1 þ jX2 ¼ ðsi1 þ N1Þ þ jðsi2 þ N2Þ
¼ ðsi1 þ jsi2Þ þ ðN1 þ jN2Þ ¼ si þ N

(10:46)

where N ¼ N1 þ jN2 is the complex noise. As the signal passes through the channel, it is
multiplied by the channel taps. Let us consider the case where the channel is a flat fading

s(t) + n(t)

X1

t = Ts

2 cos 2π fctTs

X2

t = Ts

Minimum
Euclidean
distance
detector

Symbol-
to-bit

converter

si
{0, 1}

MF1

MF2

2 sin 2π fct–
sT

Figure 10.7 The I-Q demodulator.

s(t) + n(t)

t = Ts

Complex-
valued

MF

Minimum
Euclidean
distance
detector

Symbol-to-
bit

converter
{0, 1}

2/Tse
−j2π fct

X = X1 + jX2

sL(t) Mapper
si → si

Figure 10.8 The equivalent complex-valued demodulator.
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channel. The received signal now has a complex envelope given by hsLðtÞ, where the
complex channel tap h ¼ hj je jθ is assumed to be available via perfect channel estimation.
To achieve the maximum signal-to-noise ratio (SNR) we require the use of the local complex
carrier 2=Ts

p
h�= hj jð Þe j2πfct, which is equal to 2=Ts

p
e jθe j2πfct, such as the pilot tone in

IS-95 or the pilot subcarriers in OFDM-based signals (IEEE 802.11a,g and 802.16,e).
Consequently, the output of the complex-valued matched filter is the complex variable

X ¼ h�

hj j ðhsi þ NÞ

¼ hj jsi þ h�

hj jN

¼ hj jðsi1 þ jsi2Þ þ h�

hj j ðN1 þ jN2Þ

(10:47)

Both I-noise N1 ¼ h�= hj jð ÞN1 and Q-noise N2 ¼ h�= hj jð ÞN2 have the same variance σ2.
The above complex decision variable can be written in vector form as follows:

X ¼ hj jsi þN (10:48)

whereN¼ ½N1 N2�t. Conditional on hj j, the decision variable vector for a slow-flat fading
channel is identical to that of an AWGN channel, since the zero mean I-noise and Q-noise
samples are statistically independent and have the same variance σ2. For a slow-flat fading
channel, the signal vector si is weighted by the channel tap magnitude hj j. The complex
decision variable or its equivalent decision variable vector is a sufficient statistic. Given a
realization x of X we wish to develop a metric for the maximum likelihood detection. The
conditional probability density function of X given hj j;Hi is

fX xj hj j;Hið Þ ¼
Y2

k¼1

fXk xk j hj j;Hið Þ ¼
Y2

k¼1

1

2π
p

σ
e xk hj jsikð Þ2=2σ2

¼ 1

2π
p

σ
� �2 e

1
2σ2

P2

k 1
xk hj jsikð Þ2

¼ 1

2π
p

σ
� �2 e

1
2σ2

x hj jsik k2

(10:49)

The ln likelihood function can be expressed as

ln fX xj hj j;Hið Þ ¼ �2 ln 2π
p

σ
� �

� 1

2σ2
x� hj jsik k2 (10:50)

where the term �2 ln 2π
p

σ
� �

is common to all ln fX xj hj j;Hið Þ. Hence, the maximum of
the set ln fX xj hj j;Hið Þ corresponds to the minimum of the set of Euclidean distances

d x; hj jsið Þ ¼ x� hj jsik k ; i ¼ 1; 2; . . . ; M (10:51)

This is the metric that the minimum Euclidean distance detector, with the available channel
tap h from the pilot tone or pilot symbol, makes the decision on the transmitted signal. That
is, it selects the signal vector hj jsi that is closest in Euclidean distance to the sampled value
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x of the decision vector X. The conditional pair-wise error probability for a flat fading
channel between two vectors hj jsi and hj jsj is

Pr hj jsi ! hj jsj
� � ¼ Q

hj j si � sj
�� ��

2σ

� �
(10:52)

The conditional bit error probability for the Gray-coded signal set fsigMi¼1 is given by the
following approximation:

Pb hj jð Þ � Nn

log2 M
Q

hj jdmin
2σ

� �
(10:53)

where dmin ¼ min
i;j

jjsi � sjjj is theminimum Euclidean distance of the signal set, σ2 ¼ N0=2,
and Nn is the average number of symbols at the minimum Euclidean distance dmin or the
average number of nearest neighbors. Here N0=2 is the power spectral density of noise. In
(10.53) the equality holds for both PSK and QPSK. Knowing the statistics of the fading
channel (Rayleigh, Rice, Nakagami) we can evaluate the bit error probability as follows:

Pb ¼ E Pb hj jð Þ½ � � E
Nn

log2 M
Q

hj jdmin
2σ

� �� �

� E
Nn

log2 M
Q 2 hj j2α SNR
q� �� � (10:54)

where the symbol signal to noise ratio SNR and the positive constant α which depends on
the modulation are given by

SNR ¼ Es

N0
; αSNR ¼ 1

2

dmin
2σ

� �2

(10:55)

The quantity hj j2SNR is referred to as the instantaneous SNR, and does not exist in an
AWGN channel.

Rayleigh

For convenience we normalize the channel tap such that E hj j2
� �

¼ 1. The channel tap hj j is
Rayleigh-distributed and hj j2 is exponentially distributed with density functions

f hj j xð Þ ¼ 2xe x2 ; f hj j2 yð Þ ¼ e y (10:56)

The corresponding bit error probability is given by the following closed-form expression
(see Appendix 10B):

Pb ¼ Nn

2 log2 M
1� α SNR

1þ α SNR

r !

(10:57)

PSK: the minimum Euclidean distance is dmin ¼ 2 Eb
p

. With σ2 ¼ N0=2, we obtain
αSNR ¼ Eb=N0. Furthermore, Nn ¼ 1, M = 2, therefore the bit error probability for
PSK is
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Pb ¼ 1

2
1� Eb=N0

1þ Eb=N0

s !

ðPSKÞ (10:58)

QPSK: the minimum Euclidean distance is dmin ¼ 2Es
p

. With σ2 ¼ N0=2, we obtain
α SNR ¼ Es=2N0 ¼ Eb=N0. Furthermore, Nn ¼ 2, M = 4, therefore the bit error prob-
ability for QPSK is identical to that of PSK as expected

Pb ¼ 1

2
1� Eb=N0

1þ Eb=N0

s !

ðQPSKÞ (10:59)

MPSK: the minimum Euclidean distance is dmin ¼ 2 Es
p

sinðπ=MÞ. Using σ2 ¼ N0=2,
we obtain α SNR ¼ ðEs=N0Þ sin2ðπ=MÞ ¼ ðlog2 MÞðEb=N0Þ sin2ðπ=MÞ. Furthermore,
Nn ¼ 2, therefore the bit error probability for MPSK is given by

Pb � 1

log2 M
1� ðlog2 MÞðEb=N0Þ sin2ðπ=MÞ

1þ ðlog2 MÞðEb=N0Þ sin2ðπ=MÞ

s !

ðMPSKÞ (10:60)

MQAM: the minimum Euclidean distance is dmin ¼ 6Ebðlog2 MÞ=ðM � 1Þp
. Using

σ2 ¼ N0=2, we obtain αSNR ¼ ð3=2Þ½ðlog2 MÞ=ðM � 1Þ�ðEb=N0Þ. Furthermore,
Nn ¼ 4� 4= M

p
, therefore the bit error probability for MQAM is given by

Pb � 2� 2= M
p

log2 M
1� ð3=2Þ½ðlog2 MÞ=ðM � 1Þ�ðEb=N0Þ

1þ ð3=2Þ½ðlog2 MÞ=ðM � 1Þ�ðEb=N0Þ

s !

ðMQAMÞ (10:61)

Rice

When there is a line-of-sight component among the non-direct (diffuse) components the
channel tap hj j is Rice-distributed:

f hj j xð Þ ¼ x

σ2s
e ðx2þA2Þ=2σ2s I0

Ax

σ2s

� �
(10:62)

The function I0ðxÞ is a modified Bessel function of the first kind of zero order. When there is
no signal, that is, A = 0 and I0ð0Þ ¼ 1, the Rice density function reduces to the Rayleigh
density function. We normalize the channel tap hj j such that its mean-square value is
E hj j2
� �

¼ A2 þ 2σ2s ¼ 1. The ratio � ¼ A2=2σ2s is called the direct signal to diffuse signal
ratio. We have A2 ¼ �=ð�þ 1Þ and 2σ2s ¼ 1=ð�þ 1Þ. Therefore, the Rice density function
of hj j and the non central χ2-density function of hj j2 can be rewritten in term of the
parameter � as follows:

f hj j xð Þ ¼ 2ð�þ 1Þxe ½ð�þ1Þx2þ��I0 2x �ð�þ 1Þ
p� �

f hj j2 yð Þ ¼ ð�þ 1Þe ½ð�þ1Þyþ��I0 2 �ð�þ 1Þy
p� � (10:63)
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There is no closed-form expression for Pb with a Rice-distributed channel tap, and numer-
ical integration has to be carried out to evaluate (10.54).

Nakagami-m

The Nakagami-m density function represents the most general fading statistics. The channel
tap is Nakagami-distributed with the following density functions for E hj j2

� �
¼ 1:

f hj j xð Þ ¼ 2mm

�ðmÞ x
2m 1e mx2 ; f hj j2 yð Þ ¼ mm

�ðmÞ y
m 1e my (10:64)

where �ðmÞ is the Gamma function. For m = 1, the Nakagami-m density function f hj j xð Þ
reduces to the Rayleigh density function. The Rice density function can be approximated by
the Nakagami-m density function by selecting m ¼ ð�þ 1Þ2=ð2�þ 1Þ. The bit error
probability has the following closed-form expression (Appendix 10B):

Pb � Nn

2 log2 M
1� α SNR=m

1þ α SNR=m

s
Xm 1

k¼0

2k

k

� �
1

4ð1þ α SNR=mÞ
� �k

" #

; m : integer

Pb � Nn

log2 M
1

2 π
p α SNR=m

p

1þ α SNR=mð Þmþ1=2

�ðmþ 1
2Þ

�ðmþ 1Þ

" #

2F1 1;mþ 1
2;mþ 1;

1

1þ α SNR=m

� �
;

m : noninteger (10:65a)

where 2F1 is the Gauss hypergeometric function given by the following infinite series:

2F1ða; b; c; zÞ ¼ �ðcÞ
�ðaÞ�ðbÞ

X1

n¼0

�ðaþ nÞ�ðbþ nÞ
�ðcþ nÞ

zn

n!
(10:65b)

The equals sign holds for both PSK and QPSK. The bit error probabilities of PSK, QPSK,
MPSK, and MQAM can be found by substituting the appropriate expressions for SNR into
the above equation.

Example 10.4 Dismal performance of fading channels
The bit error probability of an AWGN channel decreases exponentially with the symbol
signal-to-noise ratio SNR. This is the characteristic of the Q-function since it can be
approximated asQð 2SNR

p Þ � e SNR= 4πSNR
p

. On the other hand, the bit error probability
of a slow-flat fading channel decreases inversely with SNR. This results in very poor
performance, particularly for Rayleigh fading. If we consider the case of PSK at SNR =
10.5 dB, the bit error probability in an AWGN channel is about 10 6. The same SNR yields a
bit error probability of 0.02 in a slow-flat Rayleigh fading channel. What is the reason for
such a poor performance? Let us look at the instantaneous SNR of a fading channel, that is,
hj j2SNR. Since the channel tap hj j is Rayleigh-distributed, it can take on any value from zero
to infinity. Thus the probability that the instantaneous SNR can fall below a given value, no
matter how small, is finite. Hence a deep fade can always occur with finite probability and
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the result is a very high bit error probability on average. On the other hand, the AWGN
channel has no instantaneous SNR, that is, no fades occur.
■

Example 10.5 SNR-outage probability
When deep fades occur in a fading channel the instantaneous SNR can be very low for the
entire fade duration. Therefore, it makes sense to define a SNR-outage probability pout, that
is, the probability that the instantaneous SNR falls below a threshold value γ called the
outage signal to noise ratio. We have

pout ¼ Pr hj j2SNR5γ
� �

¼ Pr hj j25 γ
SNR

� �
(10:66)

For a slow-flat Rayleigh fading channel, y ¼ hj j2 is exponentially distributed with density
function e y. Thus, the SNR-outage probability is given by

pout ¼
ðγ=SNR

0
e ydy ¼ 1� e γ=SNR (10:67)

For numerical illustration, let the threshold be γ ¼ 1 and SNR = 10. This yields a SNR-outage
probability pout � 0:1 and a bit error probability Pb � 0:08 for both PSK and QPSK. Either
measure shows a very poor performance even for large SNR. There is almost a 10% chance
that the instantaneous SNR is less than 1 (0 dB), and even the average SNR is 10 (10 dB)!
Many communication devices cannot operate with a SNR below 0 dB, therefore it is possible
that the link is cut off entirely during the outage. Hence, if one takes into account the
dynamic range of the receiver, the bit error probability may be much larger than that
predicted by the above analysis.
■

Example 10.6 MMSE channel tap estimation
Coherent demodulation requires the complex channel tap h ¼ hj je jθ to be available via
perfect channel estimation. In practice, h is made available from pilot symbols extracted
from the pilot tone transmitting simultaneously with the signal (IS-95). Alternatively, the pilot
symbols can bemade available from pilot subcarriers in OFDM-based signals (IEEE 802.11a,
g and 802.16,e). The pilot symbol is known but noisy and hence one wishes to have the best
estimate. Let us consider the received pilot symbol in complex Gaussian noise N with zero
mean and variance 2σ2 (both I- and Q-noise components of N have identical variance σ2 ):

X ¼ hsp þ N (10:68)

Normalizing X to s�p=jspj2 we obtain the equivalent sufficient statistic

Y ¼ hþN (10:69)

where the complex noise N¼ ðs�p=jspj2ÞN has variance 2σ2=jspj2.
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We are interested in a linear estimate ĥ ¼ a�X of h for some complex constant a given the
known pilot symbol sp. The criterion is to minimize Eðjh� ĥj2Þ, the mean square error. The
orthogonality principle states thatE½ðĥ� hÞY �Þ� ¼ 0, and this yields the constant a as follows:

a ¼
E hj j2
� �

sp

E hj j2
� �

sp
�� ��2þ2σ2

¼ SNRp

SNRp þ 1

sp

sp
�� ��2

 !

(10:70)

where SNRp ¼ sp
�� ��2=2σ2 is the signal-to-noise ratio of the pilot symbol. Thus we have

ĥ ¼ a�X ¼
E hj j2
� �

s�p

E hj j2
� �

sp
�� ��2 þ 2σ2

X ¼ SNRp

SNRp þ 1

s�p
sp
�� ��2

 !

X (10:71)

The corresponding minimum mean-square error (MMSE) is given by

MMSE ¼
2σ2E hj j2

� �

E hj j2
� �

sp
�� ��2þ2σ2

¼
E hj j2
� �

E hj j2
� �

SNRp þ 1
(10:72)

and therefore we have MMSE ¼ 1=ðSNRp þ 1Þ for E hj j2
� �

¼ 1. The estimate gets more
accurate as the signal-to-noise ratio SNRp of the pilot symbol increases.
■

Example 10.7 Direct channel tap estimation
TheMMSE estimation requires knowledge of the pilot signal-to-noise ratio SNRp, which may
not be available. In this case a direct estimation of the channel tap can be performed as follows:

ĥ ¼ s�p
sp
�� ��2

X (10:73)

At high SNRp both estimations give nearly identical results.
■

Effect of channel tap error

The noisy channel tap ĥ leads to higher bit error probability. We wish to incorporate this
effect in the above bit error probability analysis. To demodulate the signal we use the
complex carrier 2=Ts

p ðĥ�= ĥ
�� ��Þe j2πfct and obtain the decision variable

X ¼ ĥ�

ĥ
�� �� ðhsi þ NÞ

¼ hj je j"si þ ĥ�

ĥ
�� ��N

(10:74)
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where h ¼ hj je jθ, ĥ ¼ ĥ
�� ��e jθ̂, and " ¼ θ � θ̂. Both I-noise N1 ¼ ðĥ�= ĥ

�� ��ÞN1 and Q-noise
N2 ¼ ðĥ�= ĥ

�� ��ÞN2 have the same variance σ2. The above complex decision variable can be
written in vector form as follows:

X ¼ hj jTsi þN (10:75)

where N¼ ½N1 N2�t, and the transformation matrix T is the phase error rotation matrix

T ¼ cos " � sin "
sin " cos "

� �
(10:76)

The minimum Euclidean distance detector has the channel tap ĥ available to it, but not h
or the phase error ". Therefore, the detector uses the faulty set of metrics
d x; ĥ

�� ��si
� �

¼ x� ĥ
�� ��si

�� �� ; i ¼ 1; 2; . . . ; M , for the detection of vector si instead of the
correct set of metrics d x; hj jTsið Þ ¼ x� hj jTsi

�� �� ; i ¼ 1; 2; . . . ; M , for maximum like-
lihood detection. This results in a higher bit error probability.

Example 10.8 Threshold detection for PSK
The threshold detector has been shown to be equivalent to the minimum Euclidean distance
detector for an AWGN binary channel. In a fading channel, the Euclidean distance detector
requires knowledge of the channel tap magnitude for maximum likelihood detection in the
case of perfect channel estimation or the estimated channel tap magnitude otherwise. Let us
consider the case of PSK where the threshold detector is used. Since the threshold is set at
0 volts irrespective of the channel tap magnitude, its knowledge is not required for threshold
detection. Let us first consider the case of PSK; the Euclidean distance detector performs the
following comparison:

x� ĥ
�� ��s2

� �2
� x� ĥ

�� ��s1
� �2 5

H2

4
H1

0 (10:77)

which leads to the decision of x for s1 ¼ �s2 ¼ Eb
p

as

ĥ
�� ��x 5

H2

4
H1

0 (10:78)

This is threshold detection with the threshold set at 0 volts independently of ĥ
�� ��. The

conditional bit error probability of PSK with threshold detection is

Pb hj j; "ð Þ ¼ Q 2 hj j2SNR
q

cos "
� �

(10:79)

where SNR ¼ Eb=N0. The bit error probability of PSK is the expected value of Pb hj j; "ð Þ
with respect to both hj j and ". In practice, the phase of the estimated channel tap is used to
drive a voltage controlled oscillator (VCO) to correct the phase of the local carrier. The
phase error " between the received signal and the local carrier has the following Tikhonov
density function:
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f"ð"Þ ¼
exp½ð1=σ2"Þ cos "�

2πI0ð1=σ2"Þ ; "j j � π

0; otherwise

(

(10:80)

where σ2" is the variance of the phase error ". The bit error probability of PSK in a Rayleigh
fading channel is

Pb ¼ 1

2

ðπ

π
1� SNR cos2 "

1þ SNR cos2 "

r !

f"ð"Þ d" (10:81)

■

Example 10.9 Threshold detection for QPSK
From Figure 7.46, threshold detection can be performed independently on both I- and
Q-channels. Since a QPSK signal is simply the sum of two independent and orthogonal
PSK signals, the conditional bit error probability for the decision vector X is given from
(10.75) and (10.76) as follows:

Pb hj j; "ð Þ ¼ 1

2
Q 2 hj j2α SNR
q

ðcos "� sin "Þ
� �

þ 1

2
Q 2 hj j2α SNR
q

ðcos "þ sin "Þ
� �

(10:82)

where α SNR ¼ Es=2N0 ¼ Eb=N0

The bit error probability of QPSK in a Rayleigh fading channel is given by

Pb ¼ 1

4

ðπ

π
1� α SNRðcos "� sin "Þ2

1þ α SNRðcos "� sin "Þ2

s !

f"ð"Þ d"

þ 1

4

ðπ

π
1� α SNRðcos "þ sin "Þ2

1þ α SNRðcos "þ sin "Þ2

s !

f"ð"Þ d"
(10:83)

■

Example 10.10 Special case of I-Q signals with phase error in an AWGN channel
Let us consider the special case of an I-Q signal in a non-fading AWGN channel. The
coherent demodulation is carried out by a local reference carrier that is phase-synchronized
to the received signal via a carrier recovery circuit. Let " be the phase error between the
transmitted symbols and the local carrier symbol. The decision variable vector is obtained as
follows:

X ¼ Tsi þN (10:84)
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where T is the phase error rotation unitary matrix given by (10.76). The bit error probability
is a special case of that of a fading channel and is given by

Pbð"Þ ¼ Nn

log2 M
Q

dminð"Þ
2σ

� �
(10:85)

where the erroneousminimumEuclidean distance dminð"Þ (the detector has no knowledge of
the phase error) is given by

dminð"Þ ¼ min
i;j

di;jð"Þ ¼ min
i;j

Tsi � sj
�� ��2� Tsi � sik k2

si � sj
�� �� (10:86)

For PSK, we get dminð"Þ ¼ 2 Eb
p

cos " and σ2 ¼ N0 2= ; therefore, the bit error probability of
PSK is given by

Pbð"Þ ¼ Q
dminð"Þ
2σ

� �

¼ Q 2 SNR
p

cos "
� � (10:87)

where

SNR ¼ Eb

N0
(10:88)

For " ¼ 22:5� the loss of SNR is 0.7 dB, which shows that PSK is rather resistant to phase
error.
■

Example 10.11 QPSK in a AWGN channel
Let us consider the Euclidean distance detector, which makes the decision based on the
erroneous minimum Euclidean distance

dmin "ð Þ ¼ min
i;j

di;j "ð Þ ¼ min
i;j

Tsi � sj
�� ��2� Tsi � sik k2
h i

si � sj
�� �� (10:89)

Now assume that vector s1 ¼ 1 1½ �t Es=2
p

was transmitted. The phase error is assumed to
be " ¼ 22:5�. Let us calculate the distance d1;j= Es

p
, j = 1, 2, 3, 4, with respect to the

following signal vectors:

s2 ¼ �1 1½ �t Es=2
p

; s3 ¼ �1 �1½ �t Es=2
p

; s4 ¼ 1 �1½ �t Es=2
p

(10:90)

The phase error rotation matrix T is given by

T ¼ 0:924 �0:383
0:383 0:924

� �
(10:91)
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Furthermore,

Ts1 � s1k k2¼ 0:305ðEs=2Þ; Ts1 � s2k k2¼ 2:47ðEs=2Þ;
Ts1 � s3k k2¼ 7:7ðEs=2Þ; Ts1 � s4k k2¼ 5:53ðEs=2Þ
s1 � s2k k ¼ 2 Es=2

p
; s1 � s3k k ¼ 2 2

p
Es=2

p
; s1 � s4k k ¼ 2 Es=2;

p
(10:92)

Therefore,

d1;2 ¼ 1:08 Es=2
p

; d1;3 ¼ d1;4 ¼ 2:6 Es=2
p

(10:93)

By symmetry we conclude that the minimum of di;j for all i, j is

dmin ¼ 1:08 Es=2
p

(10:94)

When there is no phase error, that is, " ¼ 0� we have dminð0�Þ ¼ 2 Es=2
p

, which is the
minimum Euclidean distance of QPSK. Thus the phase error " ¼ 22:5� reduces the
minimum Euclidean distance by a factor of 1.85 relative to the case where there is no
phase error. This results in a loss of SNR by a factor of 1:852 or 5.4 dB. This large loss of
SNR is mostly due to the crosstalk between the I- and Q-channels. Thus, it is necessary to
keep the phase error as small as feasible, particularly in MQAM, which is very sensitive to
the phase error.
■

10.4 Pilot symbol-aided decision-feedback demodulation

To perform coherent demodulation the channel tap hmust be made available at the receiver.
In narrowband (non-spread spectrum) single-carrier systems, pilot symbols may be multi-
plexed (MUX, parallel-to-serial conversion) into the data symbol stream and sent with the
same modulation or with different modulation. The demodulator demultiplexes (DEMUX,
serial-to-parallel conversion) the data stream into the pilot stream and the data symbol
stream. The pilot symbol rate is much smaller than the data symbol rate to keep the
throughput high and much larger than the inverse of the channel coherence time (coherence
rate) to keep the phase error small between updates. In OFDM systems, such as the IEEE
802.11a,g and 802.16e, the pilot symbols are transmitted continuously over the pilot
subcarriers. In WCDMA they are transmitted periodically.

When dealing with a slow fading channel one should remember that slow fading does not
mean zero Doppler shifts and hence zero Doppler phase errors. That just means the Doppler
effect is small. But keeping the Doppler phase errors small can reduce throughput substan-
tially. During fades, a wireless communication link may occasionally operate just above its
outage threshold. A drop of 3 dB in SNR of the last symbol before update (one out of every
few data symbols) may cause a substantial increase in the link error rate. The conclusion is
that the Doppler effect should not be underestimated. In the following discussion we
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incorporate Doppler phase errors into an analysis of the pilot symbol-aided method.
Figure 10.9 illustrates the implementation of pilot symbol-aided coherent demodulation.

Let us incorporate the Doppler phase errors. The received signal is first downconverted to
baseband by a local carrier symbol. The matched filter impulse response is pðTs � tÞ. To
illustrate this, let the pulse shape pðtÞ be a squared pulse of unit amplitude and duration Ts.
Thus, the complex-valued matched filter can be replaced by a complex-valued integrator.
The Doppler frequency is denoted by f. The received pilot symbol is hpsp ¼ hpαpsp, sp is the
pilot symbol, the complex Doppler factor αp ¼ αp

�� ��e jψp is αp ¼ 1
Ts

Ð Ts
0 e j2πftdt, and the

channel tap is hp ¼ hp
�� ��e jθp . The Doppler channel tap of the pilot symbol is

hp ¼ hpαp ¼ hp
�� ��e jJp ; where hp

�� �� ¼ hp
�� �� αp
�� �� and Jp ¼ θp þ ψp. The received lth data

symbol si;l after the pilot symbol (which corresponds to hypothesis Hi) is hlsi;l ¼ hlαlsi;l.

The complex Doppler factor of the lth data symbol si;l is αl ¼ αlj jejψl ¼ 1
Ts

Ð ðlþ1ÞTs
lTs

e j2πftdt,

and the corresponding channel tap is hl ¼ hlj je jθl . The Doppler channel tap of the lth data

symbol si;l is hl ¼ hlαl ¼ hlj je jJl ; where hlj j ¼ hlj j αlj j and Jl ¼ θl þ ψl. The pilot symbol
plus noise Yp and the lth data symbol plus noise Yl are respectively given as

Yp ¼ hpsp þ N

Yl ¼ hlsi;l þ Nl
(10:95)

An estimation of the Doppler channel tap of the known pilot symbol from Yp ¼ hpsp þ N
yields the estimate ĥp. Both magnitude ĥp

�� �� and phase ĥ�p= ĥp
�� �� ¼ e jĴp of ĥp are available for

detection of any data symbol until the next update. The detection is carried out by multi-
plying ĥ�p= ĥp

�� �� ¼ e jĴp by Yl to obtain the following decision variable:

Xl ¼ ĥ�p= ĥp
�� ��

� �
Yl ¼ e jĴpðhlsi;l þ NlÞ

¼ hlj je j"l si;l þ N l

(10:96)

where the phase "l ¼ Jl � #̂p is the Doppler phase error between the received data symbol
and the received pilot symbol. The complex noise N l ¼ N l;1 þ jN l;2 is given as
N l ¼ e jĴpNl and its variance is the same as the variance 2σ2 of the complex noise Nl.

Example 10.12 Complex Doppler factor
Let us consider the complex Doppler factor αl ¼ αlj je jψl of the lth data symbol, given as
follows:

αl ¼ 1

Ts

ððlþ1ÞTs

lTs

e j2πftdt ¼ sin πfTs
πfTs

� �
e j2πfTs lþ1=2ð Þ (10:97)

s(t) + noise

t = Ts

⊗
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valued
MF

Mapper
si → si

and
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Symbol-
to-bit

converter

2/Tse
−j(2πfct+θ)

Demux
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{0, 1}

hej2πftsL(t)

+n(t)

Figure 10.9 Demodulation with pilot symbols.
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The Doppler loss αlj j and the Doppler phase error ψl are respectively given as

αlj j ¼ sin πfTs
πfTs

����

����;ψl ¼ 2πfTs l þ 1=2ð Þ (10:98)

Using (10.98) with l = 0, the corresponding Doppler loss αp
�� �� and Doppler phase error ψp for

the pilot symbol are

αp
�� �� ¼ sin πfTs

πfTs

����

����;ψp ¼ πfTs (10:99)

The differential Doppler phase error between the lth data symbol and the pilot symbol is
ψl � ψp ¼ 2πfTsl, and increases with time. Thus the Doppler phase error is compounded
and needs to be corrected.

To illustrate this, consider a symbol rate of 14.4 ksps, and a Doppler shift of 180Hz. The
Doppler loss is 0.999, which amounts to virtually no loss for the amplitude of the signal. The
differential Doppler phase errors for the fifth and tenth symbols after the most recent channel
update are 0.39 and 0.78 radians or 22:5�and 45�, respectively.
■

Differential and double-differential decision-feedback algorithms

To approach the performance of maximum likelihood detection the demodulator must have
the most up-to-date Doppler channel tap instead of the Doppler channel tap of the pilot
symbol, which is several symbols old. Depending on the severity of the Doppler shift, the
most up-to-date Doppler channel tap can be as recent as the previously detected symbol.
Therefore, this scenario requires the knowledge of the (l 2)th and (l 1)th Doppler
channel taps to detect the lth data symbol (the pilot symbol is designated as the zeroth
symbol). Note that the detection of the first symbol of the first update needs only the pilot
channel tap. Assume that the (l 1)th symbol is detected correctly from the sample
Xl 1 ¼ ĥ�p= ĥp

�� ��
� �

Yl 1 ¼ e jĴpðhl 1si;l 1 þ Nl 1Þ ¼ hl 1j je j"l 1si;l 1 þ N l 1, then symbol
si;l 1 is known. The (l 1)th Doppler channel tap magnitude hl 1j j and error e j"l 1 can
now be post estimated from the sample Xl 1 to yield ĥl 1

�� �� and e j"̂l 1 via
ĥ�p= ĥp
�� ��

� �
Xl 1 ¼ Xl 1e jĴp , for l ¼ �1; 1; 2; . . . ; L, where L is the number of symbols in

an update (ĥ 1 is needed for the detection of the first symbol following the pilot symbol,
except for the first update). This differential decision feedback algorithm (D-DF) continues
with the next sample in following equation:

X̂l ¼ Xle j"̂l 1 ¼ ĥ�p= ĥp
�� ��

� �
Yle j"̂l 1

¼ hlj je j"l si;l þ N l

� �
e j"̂l 1 ¼ hlj je jð"l "̂l 1Þsi;l þ N̂ l

¼ hlj je jΔ"l si;l þ N̂ l; l ¼ �1; 1; 2; . . . ; L

(10:100)

where the complex noise sample N̂ l ¼ N le j"̂l 1 has variance 2σ2 and the parameter
Δ"l ¼ "l � "̂l 1 is the differential Doppler phase error between the lth symbol’s Doppler
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phase error and the ðl � 1Þth symbol’s estimatedDoppler phase error. The bit error probability
of decision feedback demodulation is now dependent onΔ"l instead of "l. The former is much
smaller than the latter hence yielding a smaller error probability. The phase jitters of
"̂l 1 and "l determine the accuracy of the tracking algorithm. The differential Doppler
phase error should remain fairly constant over a few symbols. If the previous symbol si;l 1

was detected incorrectly there may be a spike in the post-estimatedΔ"̂l relative to the previous
Δ"̂l 1. If this happens "̂l 2 should be used in recalculating X̂l in (10.100) instead of "̂l 1. Also
in the first equation of (10.100) one could use ĥ�l 1= ĥl 1

�� �� instead of ĥ�p= ĥp
�� ��, but the pilot

symbol is commonly transmitted with higher energy, hence its estimated phase is more
accurate. Note that once si;l is detected, the post-estimated Δ"̂l can be calculated and used to
evaluate the "̂l ¼ "̂l 1 þ Δ"̂l needed for the next sample, X̂lþ1 ¼ Xlþ1e j"̂l .

If the differential Doppler phase error per symbol is greater than the tolerable limit, further
correction may be implemented by using the following sample:

X̂l ¼ Xle jð2"̂l 1 "̂l 2Þ ¼ ĥ�p= ĥp
�� ��

� �
Yle jð2"̂l 1 "̂l 2Þ

¼ hlj je j"l si;l þ N l

� �
e jð2"̂l 1 "̂lÞ ¼ hlj je jð"l "̂l 1 ½"̂l 1 "̂l �Þsi;l þ N̂ l

¼ hlj je jðΔ"l Δ"̂l 1Þsi;l þ N̂ l

(10:101)

where Δ"̂l 1 ¼ "̂l 1 � "̂l 2 is the post estimated differential Doppler phase error of the
ðl � 1Þth symbol. This is the double differential decision feedback algorithm (DD-DF).
The decision-feedback algorithm can be carried out in practice using a voltage proportional
to the phase θ ¼ Ĵp þ "̂l 1 ðD-DFÞ or θ ¼ Ĵp þ 2"̂l 1 � "̂l 2 ðDD-DFÞ as input to a
voltage controlled oscillator (VCO) to correct the phase error between the received signal
and the local carrier at the VCO output.

The complex decision variables in (10.96), (10.100), and (10.101) can be written in two-
dimentional vector form as follows:

X l ¼ hlj jTlsi;l þNl (10:102)

The transformation matrix Tl is the phase error rotation matrix given by

Tl ¼ cos el � sin el
sin el cos el

� �
(10:103)

where el ¼ "l for (10.96), el ¼ Δ"l for (10.100), and el ¼ Δ"l � Δ"̂l 1 for (10.101). The
zero mean I noise and Q noise variablesNl;1 andNl;2 of the noise vectorNl are statistically
independent and have the same variance σ2.

For a flat fading channel, the signal vector si;l is weighted by the unknownDoppler channel
tap magnitude hlj j, and the unknown phase error rotation matrix Tl. Note that the minimum
Euclidean distance detector has no knowledge of the phase error el, and the Doppler channel
tap magnitude hlj j. Therefore, given a realization xl of X l, the minimum Euclidean distance
detector makes the decision based solely on the knowledge of the Doppler channel tap
magnitude ĥl 1

�� ��, which it estimates from Yl 1 using the following erroneous metrics:

d xl; ĥl 1

�� ��si;l
� � ¼ xl � ĥl 1

�� ��si;l
�� ��; i ¼ 1; 2; . . . ; M (10:104)
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That is, it selects the signal vector ĥl 1

�� ��si;l that is closest in Euclidean distance to the
sampled value xl of the decision variable vector X l. Since the signal component of X l is
Tlsi;l instead of si;l, the probability of error is going to be higher than in the case of no phase
error because the detector is now using erroneous metrics that assume no phase error in the
first place. The bit error probabilities of PSK and QPSK with threshold detection were given
in (10.81) and (10.83) respectively. For MQAM the bit error probability can be evaluated
with the help of the union bound using the pair-wise probability

The pair wise error probability between two vectors si;l and sj;l can be calculated based on
the following expression:

Pr si;l ! sj;ljHi

� � ¼ Pr xl � ĥl 1

�� ��sj;l
�� ��25 xl � ĥl 1

�� ��si;l
�� ��2 Hij

� �
(10:105)

Substituting (10.102) into the above expression we obtain

Pr si;l ! sj;ljHi; ĥl 1

�� ��; hlj j; el
� � ¼ Pr

hlj jTlsi;l � ĥl 1

�� ��sj;l þNl

�� ��2

5 hlj jTlsi;l � ĥl 1

�� ��si;l þNl

�� ��2 Hij

0

@

1

A

¼ Pr Z4
1

2
d i;j ĥl 1

�� ��; hlj j; elÞ Hij� �� (10:106)

where Z ¼ jjsj � sijj 1½sj � si�t;Nl is a zero mean Gaussian random variable with variance
σ2, and d i;j ĥl 1

�� ��; hlj j; el
� �

is given by

d i;j ĥl 1

�� ��; hlj j; el
� � ¼ hlj jTlsi;l � ĥl 1

�� ��sj;l
�� ��2� hlj jTlsi;l � ĥl

�� ��si;l
�� ��2

ĥl 1

�� �� si � sj
�� �� (10:107)

Therefore, we get

Pr si;l ! sj;ljHi; ĥl 1

�� ��; hlj j; el
� � ¼ Q

d i;j ĥl 1

�� ��; hlj j; el
� �

2σ

 !

(10:108)

The bit error probability of MQAM can be evaluated as follows:

Pb ĥl 1

�� ��; hlj j; el
� � ¼ 1

log2 M

XM

i¼1

XM

j¼2

PrðHiÞPr si;l ! sj;ljHi; ĥl 1

�� ��; hlj j; el
� �

¼ 1

log2 M

XM

i¼1

XM

j¼2

PrðHiÞQ
d i;j ĥl 1

�� ��; hlj j; el
� �

2σ

 ! (10:109)

Knowing the statistics of the fading channel (Rayleigh, Ricean, Nakagami) and the Doppler
error we can evaluate the bit error probability as follows:

Pb ¼ E Pb ĥl 1

�� ��; hlj j; el
� �� 

(10:110)

For a slow fading channel where the channel taps remain constant over several symbol
times, and in addition where the signal-to-noise ratio is high, we can set ĥl 1

�� �� ¼ hlj j in the
bit error probability expression above and obtain a simpler expression.
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Example 10.13 Throughput limit
The above study raises the following question: how often should channel estimation be
carried out? Let us consider the scenario where a mobile traveling toward a base station at
a speed of 100 km/hour receives a 1950MHz signal from a base station. The Doppler
spread is fD ¼ 2fcv=c ¼ 361Hz. Consequently, the channel coherence time is estimated to
be equal to Tc ¼ 1=4fD ¼ 6:9	 10 4 seconds. Therefore, the channel estimation rate
must be much larger than the channel coherence rate 1=Tc ¼ 1449 bits/second. If the
data rate is 14.4 kbps, which is about ten times the channel coherence rate, there is not
much room for both frequent updates and high throughput. For example, if the channel
estimation rate is five times the coherence rate to keep the Doppler phase error smaller
than 22.5° at the end of the update, then the throughput is 50%. If the channel estimation
rate is 2.5 times the coherence rate, then the throughput is 75%, but the Doppler phase
error at the end of the update is 45°. If the Doppler spread is expected to remain fairly
constant during the length of a transmitted packet, then frequent updates may not be
required. In this case a differential Doppler phase error of ψl � ψp ¼ 2πfTsl in (10.98) and
(10.99) would be sufficient to correct the phase error for each symbol provided that the
Doppler shift f can be accurately determined via frequency offset estimation using a
training symbol sequence.
■

10.5 OFDM

In OFDM systems such as the IEEE 802.11a,g, 802.16, and 802.16e the pilot symbols are
transmitted simultaneously with data symbols in the pilot subcarriers. For high mobility
applications such as 802.16e the channel update is instantaneous and no Doppler com
pounded effect occurs. The Doppler effect of a data symbol in pilot-aided demodulation
nevertheless does exist because the pilot subcarriers are at different frequencies to the data
subcarriers. In addition, the Doppler shift may destroy the subcarrier orthogonality and
hence creates intercarrier interference (ICI). Furthermore, although the subcarriers may be
designed to experience slow fading, the entire OFDM channel is a frequency-selective
fading channel. Thus, the phase shifts of subcarriers can be different and pilot symbol-aided
demodulation still results in phase errors in the decision sample because of the phase rotation
of the signal space of each subcarrier.

Example 10.14 Doppler shift in OFDM
In this example we illustrate the effect of Doppler shift on an OFDM signal that is used by
high-mobility platforms. Consider the OFDM signal whose complex envelope is generated
by the D/A converter as given in (6.166). We have
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sðtÞ ¼ Re ŝLðtÞe j2πfct
� �

¼ Re
XN 1

l¼0

sLðlÞpðt � lTs=NÞ
" #

e j2πfct

( )
(10:111)

Now assume that the signal encounters a Doppler effect with Doppler frequency f . The
carrier frequency is now fc þ f and therefore the Doppler shifted OFDM signal is given by

sðtÞ ¼ Re ŝLðtÞe j2πfte j2πfct
� �

¼ Re
XN 1

l¼0

sLðlÞe j2πftpðt � lTs=NÞ
" #

e j2πfct

( )
(10:112)

The resulting complex envelope is

ŝLðtÞ ¼
XN 1

l¼0

sLðlÞe j2πftpðt � lTs=NÞ (10:113)

The A/D converter at the receiver samples this complex envelope with sample time nTs=N to
produce the set of N samples for the DFT. We have

ŝLðnÞ ¼
XN 1

l¼0

sLðlÞe j2πnfTs=Npððn� lÞTs=NÞ

¼
XN 1

l¼0

sLðlÞe j2πnfTs=Nδ½n� l�

¼ sLðnÞe j2πnfTs=N ; n ¼ 0; 1; . . . ;N � 1

(10:114)

If the Doppler shift f is known via frequency offset estimation, the phase rotation due to the
Doppler effect can be corrected via the multiplication of ŝLðnÞ with e j2πnfTs=N to yield the
distortionless sample sLðnÞ. Substituting the original time-domain samples sLðnÞ generated
by the transmitter as given in (6.161) we get

ŝLðnÞ ¼ 1

N

XN 1

k¼0

ZðkÞ e j2πnðkþfTsÞ=N ; n ¼ 0; 1; . . . ;N � 1 (10:115)

Taking the DFT of ŝLðnÞ we obtain

ẐðkÞ ¼
XN 1

n¼0

ŝLðnÞe j2πkn=N ; k ¼ 0; 1; . . . ;N � 1 (10:116)

We can substitute ŝLðnÞ into (10.116) to see the Doppler effect on a subcarrier symbol. We
have

ẐðkÞ ¼
XN 1

n¼0

1

N

XN 1

m¼0

ZðmÞe j2πnfTs=N
h i

e j2πmn=N

 !

e j2πkn=N ; k ¼ 0; 1; . . . ;N � 1 (10:117)

Exchanging the order of summation in (10.117) we get

553 10.5 OFDM



ẐðkÞ ¼ 1

N

XN 1

m¼0

XN 1

n¼0

ZðmÞe j2πnðm kþfTsÞ=N

¼ 1

N

XN 1

m¼0

ZðmÞ
XN 1

n¼0

e j2πnðm kþfTsÞ=N

¼ 1

N

XN 1

n¼0

e j2πnfTs=N

 !

ZðkÞ þ 1

N

XN 1

m¼0
m 6¼k

ZðmÞ
XN 1

n¼0

e j2πnðm kþfTsÞ=N

¼ 1

N

e j2πfTs � 1

e j2πfTs=N � 1
ZðkÞ þ 1

N

XN 1

m¼0
m6¼k

e j2πðm kþfTsÞ � 1

e j2πðm kþfTsÞ=N � 1
ZðmÞ

¼ 1

N

sinðπfTsÞ
sinðπfTs=NÞ e

jπfTsðN 1Þ=NZðkÞ

þ 1

N

XN 1

m¼0
m6¼k

sin½πðm� k þ fTsÞ�
sin½πðm� k þ fTsÞ=N � e

jπ½m kþfTs�ðN 1Þ=NZðmÞ; k ¼ 0; 1; . . . ;N � 1

(10:118)

The right-hand side of the above equation is obtained via the following identity:

XN 1

n¼0

e jnf ¼ e jNf � 1

e jf � 1
¼ sinðNf=2Þ

sinðf=2Þ e jðN 1Þ=2 (10:119)

The first term on the right-hand side of the above equation is the distorted subcarrier symbol
and the second term is the intercarrier interference (ICI).
■

Now let us include the channel distortion effect. Denote the complex envelope of the
channel impulse response as

hðtÞ ¼
XL 1

i¼0
hðiÞδðt � τiÞ (10:120)

where τ0 ¼ 0. To be consistent with the notation in Section 6.18 we use the notation h(i) to
represent a channel tap for OFDM. The complex envelope of the received OFDM signal is
given by

yðtÞ ¼ hðtÞ � ŝLðtÞ ¼
ð1

1
hðτÞ̂sLðt � τÞdτ

¼
ð1

1

XL 1

i¼0

hðiÞδðτ � τiÞŝLðt � τÞdτ

¼
XL 1

i¼0

hðiÞ
ð1

1
δðτ � τiÞ̂sLðt � τÞdτ

¼
XL 1

i¼0

hðiÞŝLðt � τiÞ

(10:121)
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where ŝLðtÞ is given in (10.113). We assume the A/D converter contains the matched filter
p(t), which is a sin x=x pulse shape, therefore the output of the matched filter is just p(t). The
A/D converter samples the OFDM signal every Ts=N seconds to produce the set of N
samples after discarding the cyclic prefix

yðnÞ ¼
XL 1

i¼0

hðiÞŝL nTs
N

� τi

� �

¼
XL 1

i¼0

hðiÞ
XN 1

l¼0

sLðlÞe j2πf ðnTs=N τiÞp½ðn� lÞTs=N � τi�

¼ e j2πnfTs=N
XL 1

i¼0

hðiÞe j2πf τi
XN 1

l¼0

sLðlÞp½ðn� lÞTs=N � τi�

¼ e j2πnfTs=N
XL 1

i¼0

~hðiÞ~sLðn; iÞ; n ¼ 0; 1; . . . ;N � 1

(10:122)

where

~hðiÞ ¼ hðiÞe j2πf τi (10:123)

~sLðn; iÞ ¼
XN 1

l¼0

sLðlÞp½ðn� lÞTs=N � τi� (10:124)

Note that (10.121) reduces to (10.114) when there is no channel distortion, that is, when
hðtÞ ¼ δðtÞ. If we take the DFT of y(n) we obtain the frequency domain samples which are
distorted and contain ICI. We can eliminate ICI with Doppler correction before the DFT, that
is, multiply y(n) with e j2πnfTs=N to yield ~yðnÞ ¼PL 1

i¼0
~hðiÞ~sLðn; iÞ and then take the DFT.

The resulting frequency-domain samples still contain distortion because of the phase
rotation of the channel taps h(i) and the ISI in the time-domain samples sLðlÞ via the sum
factors in (10.124). This type of distortion cannot be corrected and results in degradation.

Let us consider the case when the channel can be modeled as a FIR filter as discussed in
Section 6.18. In this case we have L channel taps with delay τi ¼ iTs=N. Again assuming
that the Doppler shift has been corrected as described above, we obtain the following time-
domain samples:

~yðnÞ ¼ yðnÞe j2πnfTs=N ¼
XL 1

i¼0

~hðiÞ
XN 1

l¼0

sLðlÞp½ðn� lÞTs=N � τi�

¼
XL 1

i¼0

~hðiÞ
XN 1

l¼0

sLðlÞp½ðn� l � iÞTs=N � ¼
XL 1

i¼0

~hðiÞ
XN 1

l¼0

sLðlÞδ½n� l � i�

¼
XL 1

i¼0

~hðiÞsLðn� iÞN

¼ ~hðnÞ 
 sLðnÞ; n ¼ 0; 1; . . . ;N � 1

(10:125)

Taking the DFT of ~yðnÞ we obtain the distorted frequency-domain samples given as
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~ZðkÞ ¼ ~HðkÞZðkÞ; k ¼ 0; 1; . . . N � 1 (10:126)

where ~HðkÞ is the DFT of ~hðnÞ, that is,

~HðkÞ ¼
XL 1

n¼0

~hðnÞe j2πkn=N ¼
XL 1

n¼0

hðnÞe j2πnðkþfTsÞ=N (10:127)

In the case of no Doppler shift, that is, f ¼ 0 we have ~HðkÞ ¼ HðkÞ, where
HðkÞ ¼PL 1

n¼0 hðnÞe j2πkn=N is the DFT of h(n), and we obtain the frequency-domain
samples ~ZðkÞ ¼ HðkÞZðkÞ; k ¼ 0; 1; . . . N � 1, which is the result derived in
Section 6.18.

Returning to the general case in (10.122) and assuming that the Doppler shift has been
corrected as described above we obtain the following time-domain samples:

~yðnÞ ¼ yðnÞe j2πnfTs=N ¼
XL 1

i¼0

~hðiÞ
XN 1

l¼0

sLðlÞp½ðn� lÞTs=N � τi�

¼ ~hð0ÞsLðnÞ þ
XL 1

i¼1

~hðiÞ
XN 1

l¼0

sLðlÞp½ðn� lÞTs=N � τi�; n ¼ 0; 1; . . . ;N � 1

(10:128)

Taking the DFT of ~yðnÞ we obtain the distorted frequency-domain samples as follows:

~ZðkÞ ¼ ~hð0ÞZðkÞ þ DFT
XL 1

i¼1

~hðiÞ
XN 1

l¼0

sLðlÞp½ðn� lÞTs=N � τi�
( )

; k

¼ 0; 1; . . . ;N � 1

(10:129)

Even in the case of no Doppler shift we note that the second term on the right-hand side of
(10.129) still exists (with ~hðiÞ replaced by h(i)). This means that the cyclic prefix, which
removes the ISI between consecutive OFDM symbols, cannot remove the intersample
interference (ISI) within an OFDM symbol as in the case of L channel taps with delay
τi ¼ iTs=N . To remove the intersample interference when the channel tap delay τi is not an
integer multiple of the sampling interval Ts=N , equalization must be employed after the
removal of the cyclic prefix.

Low mobility

Wireless IEEE Standards such as 802.11a,g and 802.16 were designed for low mobility and
hence their applications experience virtually no Doppler effects. In this scenario we add
noise and have ~ZðkÞ ¼ HðkÞZðkÞ þ Nk ; k ¼ 0; 1; . . . ;N � 1 for the case of L channel taps
with delay τi ¼ iTs=N. Note that this expression is identical to its counterpart (10.95) in
single channel demodulation. Therefore, the bit error probability of the mth subcarrier is
given by (10.110) with appropriate replacement of variables:

Pb;m ¼ E Pb;m Ĥl 1ðmÞ
�� ��; ĤlðmÞ

�� ��; elðmÞ
� �� 

(10:130)

where Ĥl 1ðmÞ, ĤlðmÞ, and elðmÞ are the estimated DFTs of the subchannel taps of the
ðl � 1Þth symbol of the mth subcarrier, the subchannel taps of the lth symbol of the mth
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subcarrier, and the differential phase error (10.100) or double-differential phase error
(10.101) between these two DFTs, respectively. The bit error probability can be averaged
over N subcarriers to yield

Pb ¼ 1

N

XN 1

m¼1

Pb;m (10:131)

In evaluating the bit error probability we need to know, for example, the distribution of
the differential phase errors elðmÞ of the subcarriers. One possibility is to assume the
differential phase error to be uniformly distributed in a given range ð�Δe; ΔeÞ. At a
high signal-to-noise ratio the estimation of subchannel taps can be quite accurate.
Hence, the differential phase error can be insignificant, elðmÞ � 00, and the estimated
subchannel taps Ĥl 1ðmÞ

�� �� can be closely approximated as Ĥl 1ðmÞ
�� �� � ĤlðmÞ

�� ���� �� by
virtue of no Doppler shift. In this case, the bit error probability of low-mobility OFDM
approaches (10.54).

High mobility

Incorporating noise and we have ~ZðkÞ ¼ ~HðkÞZðkÞ þ Nk ; k ¼ 0; 1; . . . ;N � 1 for the case
of L channel taps with delay τi ¼ iTs=N. As seen in the above discussion, Doppler-induced
ICI and Doppler loss can have a pronounced effect on OFDM. Once the DFT is carried out to
generate the subcarrier I-Q samples for detection, ICI is added directly to them like AWGN
and cannot be undone. This phenomenon is similar to aliasing in undersampling. Therefore,
ICI can only be cancelled out prior to DFT, namely, in the time domain samples ~sLðnÞ. This
requires knowledge of the Doppler shift. The remaining question is how to estimate the
Doppler error. A training sequence can be transmitted in the packet header of each trans-
mitted packet to allow for the estimation of the Doppler shift. Only one chosen subcarrier is
used during this estimation time, that is, the OFDM signal is actually a single-carrier signal.
Data symbols in all other subcarriers are set to zero to avoid ICI. The training sequence
enhances the estimation of the subcarrier Doppler phase error via the decision feedback
algorithm since all training symbols are known a priori. If a training symbol is detected
incorrectly, it can be corrected via the knowledge of its position in the sequence relative to
the previously correctly detected symbol. Since only a single subcarrier is used, the channel
phase shift is eliminated by the detection process in the previous section, assuming that it is
constant for each symbol time. In practice, the training sequence is fairly short and it is likely
that the channel phase shift remains constant during the entire sequence. The estimated
differential Doppler phase error "̂ for each training symbol can be averaged out for the
entire training sequence. Alternatively, the average differential Doppler phase error "̂ can be
used to adjust the phase of the local in-phase and quadrature carriers to correct the Doppler
effect before the DFT operation is carried out.

In the general case where the channel tap delay τi is not an integer multiple of the
sampling interval Ts=N , equalization must be employed to remove the intra-subcarrier
interference from the sequence ~yðnÞ immediately after Doppler correction and cyclic prefix
removal.
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10.6 Noncoherent demodulation

For applications in which coherent demodulation is not possible (IS-95 reverse link,
FH-MFSK), the demodulation of the received signal is performed noncoherently. The signal
candidates for noncoherent demodulation include DMPSK, MFSK, and CSK. The condi-
tional bit error probabilities are given as follows:

* Noncoherent DMPSK, p=4-DQPSK:

Pb hj j2
� �

� 2

log2 M
Q 2 hj j2αSNR
q� �

αSNR ¼ Eb log2 M
N0

sin2
π

2
p

M
ðDMPSKÞ

αSNR ¼ 0:555
Eb

N0
ðπ=4-DQPSKÞ

(10:132)

* Noncoherent CSK and MFSK:

Pb hj j2
� �

¼ M=2

M � 1

XM 1

k¼1

�1ð Þkþ1 M � 1
k

� �
1

k þ 1
e k=ðkþ1Þð Þ hj j2SNR (10:133)

where SNR ¼ Es=N0.

Rayleigh

For convenience we normalize the channel tap such that E hj j2
� �

¼ 1. The channel tap hj j is
Rayleigh-distributed with density function given in (10.56). The corresponding bit error
probabilities are given by the following closed-form expressions:

* DMPSK, p=4-DQPSK:

Pb � 1

log2 M
1� αSNR

1þ αSNR

r !

(10:134)

* CSK, MFSK:

Pb ¼ M=2

M � 1

XM 1

k¼1

ð�1Þkþ1 M � 1
k

� �
1

1þ k 1þ SNRð Þ (10:135)

Rice

There is no closed-form expression for Pb of DMPSK and π=4-DQPSK with a Rice-
distributed channel tap and numerical integration has to be carried out to evaluate
(10.132) and (10.133). The closed-form expression for Pb of CSK and MFSK is given as
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Pb ¼ M=2

M � 1

XM�1

n 1

ð�1Þnþ1 M � 1
n

� �
�þ 1

�þ 1þ nð�þ 1þ SNRÞ exp � n�ðSNRÞ
�þ 1þ nð�þ 1þ SNRÞ

� �

(10:136)

Nakagami-m

Whenm is an integer, the bit error probabilities have the following closed-form expressions:

* DMPSK, p=4-DQPSK:

Pb � 2

log2 M
1� αSNR=m

1þ αSNR=m

s
Xm 1

k¼0

2k
k

� �
1

4ð1þ αSNR=mÞ
� �k

" #

;m : integer (10:137)

* CSK, MFSK:

Pb ¼ M=2

M � 1

XM 1

k¼1

�1ð Þkþ1 M � 1
k

� � ðk þ 1Þm 1

1þ k 1þ SNR
m

� �� m (10:138)

Doppler tracking of MFSK

Doppler shift affects noncoherent demodulation in a different fashion to coherent demodu-
lation. Doppler shift causes the loss of orthogonality in orthogonal signals such as MFSK and
CSK. For example, consider a received MFSK signal at a particular tone fk ¼ k=Ts as
sðtÞ ¼ hkj jA cos½2πð fk þ f Þt þ θk � þ nðtÞ, iTs � t5ðiþ 1ÞTs, which experiences a
Doppler shift f and fade hk . Since adjacent tones are separated in frequency by 1=Ts, there
is a difference in Doppler shift for each tone, but the difference is negligible and is ignored for
simplicity. The channel is assumed to experience slow fading in a symbol time so that the
channel phase shift θk can be considered constantwithin a symbol time Ts. Let us demodulate
this signal by first multiplying it by 2=Ts

p
cos 2πflt, fl ¼ l=Ts and integrating the resulting

signal from t ¼ iTs to t ¼ ðiþ 1ÞTs, in order to obtain the lth tone’s I decision sample:

Xl;I ¼
ððiþ1ÞTs

iTs

hkj jA cos½2πðfk þ f Þt þ θk �ð Þ 2=Ts
p

cos 2πflt dt þ Nl;I

� hkj jA
2Ts

p
ððiþ1ÞTs

iTs

cos 2π½ðk � lÞ=Ts þ f �t þ θkð Þ dt þ Nl;I

� hkj j A2Ts
2

r
sin 2π½ðk � lÞ þ fTs�ðiþ 1Þ þ θkð Þ � sin 2π½ðk � lÞ þ fTs�iþ θkð Þ

2π½ðk � lÞ þ fTs�
� �

þ Nl;I

(10:139)

Similarly, we demodulate this signal by multiplying it by 2=Ts
p

sin 2πflt and integrating
the resulting signal from t ¼ iTs to t ¼ ðiþ 1ÞTs in order to obtain the lth tone’s Q decision
sample:
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Xl;Q ¼
ððiþ1ÞTs

iTs

hkj jA cos½2πð fk þ f Þt þ θk �ð Þ 2=Ts
p

sin 2πflt dt þ Nl;Q

�� hkj jA
2Ts

p
ððiþ1ÞTs

iTs

sin 2π½ðk � lÞ=Ts þ f �t þ θkð Þ dt þ Nl;Q

� hkj j A2Ts
2

r
cos 2π½ðk � lÞ þ f Ts�ðiþ 1Þ þ θkð Þ � cos 2π½ðk � lÞ þ f Ts�iþ θkð Þ

2π½ðk � lÞ þ f Ts�
� �

þ Nl;Q

(10:140)

Both Nl;I and Nl;Q are independent Gaussian random variables with zero mean and variance
σ2 ¼ N0=2. The high-frequency term is insignificant compared to the first term and is
dropped from the above expression. The decision variable of the lth tone is given by

Xl ¼ X 2
l;I þ X 2

l;Q

q
(10:141)

Thus, given hkj j, Xl is Rice distributed and its density function is given as

fXl ðxlÞ ¼
xl
σ2

e ðx2l þm2
l Þ=2σ2 I0

mlxl
σ2

� �
(10:142)

where the parameter m2
l is the sum of the squares of the means of Xl;I and Xl;Q and is

expressed as
m2

l ¼ X l;I

� �2þ X l;Q

� �2

¼ hkj j2Es
sin2 πf Ts

π½ðk � lÞ þ f Ts�ð Þ2
(10:143)

where Es ¼ A2Ts=2 is the symbol energy. Note that m2
k ¼ hkj j2Es sin πf Ts=πf Tsð Þ2. By

using the results in Section 7.9 we can calculate the conditional symbol error probability
of MFSK. We get

Pe hkj j; fð Þ ¼ 1�
ð1

0

YM

l¼1
l 6¼k

ðxk

0
fXlðxlÞ dxl

2

64

3

75fXk ðxkÞ dxk

¼ 1�
ð1

0

YM

l¼1
l 6¼k

1�
ð1

xk

fXlðxlÞ dxl
� �

2

64

3

75fXk ðxkÞ dxk

(10:144)

The above integration can be expressed in term of theMarcum Q-function, which is defined
as follows:

Qða; bÞ ¼
ð1

b
xe ðx2þa2Þ=2I0ðaxÞ dx ¼ 1�

ðb

0
xe ðx2þa2Þ=2I0ðaxÞ dx

¼ e ða2þb2Þ=2X
1

n¼0

a

b

� �n
InðabÞ

¼ 1� e ða2þb2Þ=2X
1

n¼1

b

a

� �n

InðabÞ; b4a40:

(10:145)

where In is the modified Bessel function of the first kind of order n.
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Therefore, we have

Pe hkj j; fð Þ ¼ 1�
ð1

0

YM

l¼1
l 6¼k

1�Q
ml

σ
;
xk
σ

� �h i
fXk ðxkÞ dx (10:146)

The inequality in the above expression results from considering the worst-case scenario that
is encountered by the middle tone at k ¼ M=2. The bit error probability for MFSK is
obtained via the following expression:

Pbð f Þ ¼ M=2

M � 1

1

M

XM

k¼1

E Pe hkj j; fð Þ½ �
 !

(10:147)

Since the difference in Doppler shifts for adjacent tones is negligible, the Doppler shift f can
be calculated from (10.143) in the case of small noise by establishing the ratio r2 ¼ m2

k=m
2
l ,

called the signal to intertone interference ratio. For the worse-case scenario we consider
two adjacent tones and let l ¼ k � 1. For a given value of r2 we obtain two Doppler shift
values, one negative and one positive, as follows:

f ¼ � 1

ðr þ 1ÞTs ; fþ ¼ 1

ðr � 1ÞTs ; r2 ¼ m2
k

m2
k 1

(10:148)

The sign ambiguity of the Doppler shifts can be resolved if the movement of both transmitter
and receiver is known (moving toward or moving away from each other). The global
positioning system (GPS) can supplement the receiver with the sign information. The
Doppler shift can be employed by a tracking phase-locked loop (PLL) to demodulate the
signal and cancel out the Doppler effect. In practice, the noisy ratio r2 is obtained as
r2 ¼ X 2

k =X
2
k 1. The frequency jitter due to noise determines the accuracy of the estimate

of the Doppler shift.
The sign ambiguity of the Doppler shifts can also be resolved via the use of

dual demodulators with a PLL tracking Doppler shift f and another PLL tracking
fþ using the following decision feedback selection algorithm (DFS). Suppose the ith
symbol in the symbol stream represented by tone fk was correctly detected. The Doppler
shifts f and fþ are then estimated as described in (10.148). The dual demodulators
demodulate the next ðiþ 1Þth symbols (two of them) represented by tone fn. The values
of X 2

n ðf Þ and X 2
n ðfþÞ are compared and the ðiþ 1Þth symbol corresponding to the larger

value is selected. Suppose the correct Doppler shift is f � f and assume that the signal-to-
noise ratio is high, then the decision variables for the dual demodulators are

X 2
n ðf Þ � m2

nðf Þ ¼ hnj j2Es sin2½πð f � f ÞTs�=½πð f � f ÞTs�2
� �

� hnj j2Es

and

X 2
n ðfþÞ � m2

nðfþÞ ¼ hnj j2Es sin2½πð f � fþÞTs�= πð f � fþÞTsð Þ2
� �

5 hnj j2Es:

The decision is to select the symbol corresponding to X 2
n ðf Þ:

The above analysis for MFSK applies equally well to all orthogonal signals, such as CSK
employed in the reverse link of IS-95, MSK, and DPSK, although (10.148) differs for
different modulation techniques.
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Example 10.15 Doppler tracking in 64FSK at 14.4 kbps (Table 10.3)
Consider a 64FSK link with a bit rate of 14.4 kbps and signal-to-noise ratio Es=N0 ¼ 30dB.
The symbol rate is 1=Ts ¼ 2400 sps. The signal-to-noise ratio is high enough to make
the measurement of m2

k 1 reliable. From (10.143) calculate m2
k= hkj j2Es and m2

k 1= hkj j2Es.
The signal-to-noise ratio in the ðk � 1Þth tone for 1GHz is Eðm2

k 1Þ=N0 ¼
ðEs=N0Þ½ðsin2 πfTsÞ= π½1þ fTs�ð Þ2� = 1000 (0.023) = 23 or about 14 dB. The signal-to-noise
ratio in the ðk � 1Þth tone for 2GHz is Eðm2

k 1Þ=N0 ¼ ðEs=N0Þ½ðsin2 πfTsÞ= π½1þ fTs�ð Þ2� =
1000 (0.046) = 46 or about 17 dB. The signal-to-intertone interference ratio for 1GHz is
m2

k=m
2
k 1 ¼ 0:883=0:023 ¼ 38:4 or 16dB and that for 2GHz ism2

k=m
2
k 1 ¼ 0:597=0:046 ¼

13 or 11 dB as compared to infinity for zero Doppler shift. For 2GHz, the Doppler effect
dominates the effect of the channel noise.
■

Doppler tracking of CSK

CSK is a modulation technique employed on the reverse link of IS-95. The set of M
orthogonal Walsh functions represents M distinct symbols. Let us consider a CSK signal
for the ith symbol at carrier frequency fc with Walsh function wkðtÞ as
sðtÞ ¼ hkj jAwkðtÞ cos½2πðfc þ f Þt þ θk � þ nðtÞ, iTs � t5ðiþ 1ÞTs. The signal is assumed
to experience a Doppler shift f and fade hk . Slow fading in a symbol time is also assumed so
that the channel phase shift θk can be considered constant within a symbol time Ts. The
Walsh chip time is Tc ¼ Ts=M . Let us demodulate this signal by first multiplying it with

2=Ts
p

wkðtÞ cos 2πfct and integrating the resulting signal from t ¼ iTs to t ¼ ðiþ 1ÞTs in
order to obtain the kth Walsh’s I decision sample:

Xk;I ¼
Z ðiþ1ÞTs

iTs

hkj jAwkðtÞ cos½2πð fc þ f Þt þ θk �ð Þ 2=Ts
p

wkðtÞ cos 2πfct dt þNk;I

� hkj jA
2Ts

p
Z ðiþ1ÞTs

iTs

cos 2πft þ θkð Þ dt þ Nk;I

� hkj j A2Ts
2

r
sin 2πfTsðiþ 1Þ þ θkð Þ � sin 2πfTsiþ θkð Þ

2πfTs

� �
þ Nk;I

(10:149)

Table 10.3 Decision-feedback selection for 64FSK

Carrier
frequency (GHz)

Speed
(km/h)

Doppler
shift f (Hz)

m2
k�1

hkj j2Es

m2
k

hkj j2Es r f� (Hz) fþ (Hz)

m2
nðf�Þ
hnj j2Es

m2
nðfþÞ
hnj j2Es

1 500 463 0.023 0.883 6.18 334 463 0.69 1
2 500 926 0.046 0.597 3.59 523 926 0.25 1
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Similarly we demodulate this signal by multiplying it with 2=Ts
p

wkðtÞ sin 2πfct and inte-
grating the resulting signal from t ¼ iTs to t ¼ ðiþ 1ÞTs in order to obtain the kth Walsh’s
I decision sample:

Xk;Q ¼
ððiþ1ÞTs

iTs

hkj jAwkðtÞ cos½2πð fc þ f Þt þ θk �ð Þ 2=Ts
p

wkðtÞ sin 2πfct dt þ Nl;Q

� � hkj jA
2Ts

p
ððiþ1ÞTs

iTs

sin 2πft þ θkð Þ dt þ Nl;Q

� hkj j A2Ts
2

r
cos 2πfTsðiþ 1Þ þ θkð Þ � cos 2πfTsiþ θkð Þ

2πfTs

� �
þ Nl;Q

(10:150)
Both Nl;I and Nl;Q are independent Gaussian random variables with zero mean and variance
σ2 ¼ N0=2. The high-frequency term is insignificant compared to the first term and is dropped
from the above expression. The decision variable of the kth Walsh function is given by

Xk ¼ X 2
k;I þ X 2

k;Q

q
(10:151)

Thus, Xk is Rice distributed and its density function is given as

fXk ðxkÞ ¼
xk
σ2

e ðx2kþm2
k Þ=2σ2 I0

mkxk
σ2

� �
(10:152)

where the parameter m2
k is the sum of the squares of the means of Xk;I and Xk;Q and is

expressed as
m2

k ¼ X k;I

� �2þ X k;Q

� �2

¼ hkj j2Es
sin2 πfTs
πfTsð Þ2

(10:153)

where A2Ts=2
p

is the symbol energy.
Let us now establish the decision variable of the lth Walsh function wlðtÞ. In the case of

zero Doppler shift, this decision variable represents the envelope of Gaussian noise and is
Rayleigh distributed. We have

Xl;I ¼
ððiþ1ÞTs

iTs

hkj jAwkðtÞ cos½2πðfc þ f Þt þ θk �ð Þ 2=Ts
p

wlðtÞ cos 2πfct dt þ Nl;I

� hkj jA
2Ts

p
ððiþ1ÞTs

iTs

wkðtÞwlðtÞ cos 2πft þ θkð Þ dt þ Nl;I

� hkj jA
2Ts

p
ððiþ1ÞTs

iTs

wjðtÞ cos 2πft þ θkð Þ dt þ Nl;I

(10:154)

Note that the product of two Walsh functions in the same set is another Walsh function in the
same set (closure property). Without loss of generality we choose the Walsh function that
represents the sequence ofM/2 zeros followed byM/2 one or, in term of�1 amplitudes, the
sequence of M/2 plus one amplitudes followed by M/2 minus one amplitudes, namely,
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wl ¼ ð11; . . . 1|fflfflfflffl{zfflfflfflffl}
M=2

;�1� 1; . . .� 1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
M=2

Þ

This is the (M/2 + 1)th row of the Hadamard matrix. Thus we get

Xl;I � hkj jA
2Ts

p
ððiþ1ÞTs

iTs

wjðtÞ cos 2πft þ θkð Þ dt þ Nl;I

� hkj jA
2Ts

p
ððiþ1=2ÞTs

iTs

cos 2πft þ θkð Þ dt �
ððiþ1ÞTs

ðiþ1=2ÞTs
cos 2πft þ θkð Þ dt

" #

þ Nl;I

� hkj j A2Ts
2

r sin 2πfTsðiþ1=2Þþθkð Þ sin 2πfTsiþθkð Þ
2πfTs

� sin 2πfTsðiþ1Þþθkð Þ sin 2πfTsðiþ1=2Þþθkð Þ
2πfTs

2

4

3

5þ Nl;I

� hkj j A2Ts
2

r
2 sin 2πfTsðiþ 1=2Þ þ θkð Þ � sin 2πfTsiþ θkð Þ � sin 2πfTsðiþ 1Þ þ θkð Þ

2πfTs

� �

þ Nl;I

(10:155)

Similarly we demodulate this signal by multiplying it with 2=Ts
p

wlðtÞ sin 2πfct and
integrating the resulting signal from t ¼ iTs to t ¼ ðiþ 1ÞTs in order to obtain the lth
Walsh’s Q decision sample:

Xl;Q ¼
ððiþ1ÞTs

iTs

hkj jAwkðtÞ cos½2πð fc þ f Þt þ θk �ð Þ 2=Ts
p

wlðtÞ sin 2πfct dt þ Nl;Q

�� hkj jA
2Ts

p
ððiþ1ÞTs

iTs

wjðtÞ sin 2πft þ θkð Þ dt þ Nl;I

� hkj j A2Ts
2

r
2 cos 2πfTsðiþ 1=2Þ þ θkð Þ � cos 2πfTsiþ θkð Þ � cos 2πfTsðiþ 1Þ þ θkð Þ

2πfTs

� �

þ Nl;Q

(10:156)

Consequently, we obtain

m2
l ¼ X l;I

� �2þ X l;Q

� �2

¼ hkj j2Es
16 sin2ðπfTs=2Þ � 4 sin2 πfTs

2πfTsð Þ2
(10:157)

The bit error probability of CSK is identical to that of MFSKdiscussed in the previous section.
The Doppler shift f can be calculated in the case of small noise by establishing the ratio

r2 ¼ m2
k=m

2
l , which is called the signal to interchannel interference ratio. For a given value

of r we obtain two Doppler shift values, one negative and one positive, as follows:

f ¼ � 2

πTs
cos 1 1

1þ 1=r2
p

 !

; fþ ¼ 2

πTs
cos 1 1

1þ 1=r2
p

 !

;

r2 ¼ m2
k

m2
l

; wl ¼ ð11; . . . 1|fflfflfflffl{zfflfflfflffl}
M=2

;�1� 1; . . .� 1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
M=2

Þ
(10:158)
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The sign ambiguity of the Doppler shifts can be resolved if the movement of both transmitter
and receiver is known (moving toward or moving away from each other). The global position-
ing system (GPS) can supplement the receiver with the sign information. The Doppler
shift can be employed by a tracking phase-locked loop (PLL) to demodulate the signal and
cancel out the Doppler effect. In practice, the noisy ratio r2 is obtained as r2 ¼ X 2

k =X
2
l . The

frequency jitter due to noise determines the accuracy of the estimate of the Doppler shift.
The sign ambiguity of the Doppler shifts can also be resolved via the use of dual

demodulators with a PLL tracking Doppler shift f and another PLL tracking fþ using the
following decision feedback selection algorithm. Suppose the ith symbol in the symbol
stream represented by Walsh function wkðtÞ was correctly detected. The Doppler shifts f
and fþ are then estimated as described in (10.158). The dual demodulators demodulate the
next (i + 1)th symbols (two of them) represented by Walsh function wnðtÞ. The values of
X 2
n ðf Þ and X 2

n ðfþÞ are compared and the (i + 1)th symbol corresponding to the larger value
is selected. Suppose the correct Doppler shift is f � f and assume that the signal-to-noise
ratio is high, then the decision variables for the dual demodulators are

X 2
n ð f Þ � m2

nð f Þ ¼ hnj j2Es sin2½πð f � f ÞTs�= πð f � f ÞTsð Þ2
� �

� hnj j2Es

and
X 2
n ð fþÞ � m2

nð fþÞ ¼ hnj j2Es sin2½πð f � fþÞTs�= πð f � fþÞTsð Þ2
� �

5 hnj j2Es:

The decision is to select the symbol corresponding to X 2
n ðf Þ:

Example 10.16 Doppler tracking in 64CSK at 14.4 kbps (Table 10.4)
Consider a 64CSK link with a bit rate of 14.4 kbps and signal-to-noise ratio Es=N0 ¼ 30 dB.
The symbol rate is 1=Ts ¼ 2400 sps. The signal-to-noise ratio is high enough to make
the measurement of m2

l reliable. From (10.153) and from (10.157) calculate m2
k= hkj j2Es

and m2
l = hkj j2Es. The signal-to-noise ratio in the lth channel for 1GHz is

Eðm2
l Þ=N0 ¼ ðEs=N0Þ½ð16 sin2 πfTs=2� 4 sin2 πfTsÞ= 2πfTsð Þ2� ¼ 1000ð0:086Þ = 86 or

about 19 dB. The signal-to-noise ratio in the lth channel for 2GHz is
Eðm2

l Þ=N0 ¼ ðEs=N0Þ½ð16 sin2 πfTs=2� 4 sin2 πfTsÞ= 2πfTsð Þ2� ¼ 1000ð0:287Þ = 287 or
about 25 dB. The signal-to-intertone interference ratio for 1GHz is m2

k=m
2
l ¼ 0:883=0:086 ¼

10:3 or 10 dB and that for 2GHz is m2
k=m

2
l ¼ 0:597=0:287 ¼ 2:1 or 3 dB as compared to

infinity for zero Doppler shift. For both cases, the Doppler effects dominate the effect of the
channel noise. Comparing the results in Tables 10.3 and 10.4 we observe that Doppler effect is
more pronounced in CSK than in MFSK given the same Doppler shift. With CSK, the
orthogonality is achieved via orthogonal time functions. On the other hand, MFSK achieves
orthogonality via orthogonal sinusoidal tones. The sinusoidal tones do not change phases during

Table 10.4 Decision-feedback selection for 64CSK

Carrier
frequency (GHz)

Speed
(km/h)

Doppler
shift f (Hz)

m2
l

hkj j2Es

m2
k

hkj j2Es r f� (Hz) fþ (Hz)

m2
nðf�Þ
hnj j2Es

m2
nðfþÞ
hnj j2Es

1 500 463 0.086 0.883 3.2 463 463 0.596 1
2 500 926 0.287 0.597 1.44 926 926 0.073 1
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a symbol time while Walsh functions may change phases every chip time. This effect causes a
larger leakage of signal energy onto other Walsh channels when Doppler shift is present and
leads to larger signal-to-interchannel interferences.
■

10.7 Pilot tone-aided demodulation of orthogonal
covering signal

In this section we provide the modulation and demodulation of generalized quadrature
orthogonal covering signals where IS-95, CDMA 2000, and WCDMA forward links are a
special case.We introduce the concept of complex spreading and despreading to eliminate the
I Q crosstalk interference in real spreading and despreading first introduced in Chapter 8.

Complex spreading and despreading

In complex spreading an arbitrary input I-bit dk and an input Q-bit d̂k normalized to the
smallest symbol energy E ¼ A2Ts=2, such as those in MPSK or MQAM, are first modulo-2
added to a Walsh sequence unique for a user k. The spread I-bit is then modulo-2 added to
the I-PN sequence cI , and the spread Q-bit is added to the Q-PN sequence cQ. These I- and
Q-bits of 0s and 1s are mapped into 1s and 1s. Their difference is the transmitted I bit.
Similarly, the same spread Q-bit is modulo-2 added to the I-PN sequence and the same spread
I-bit is modulo-2 added to the Q-PN sequence. These I- and Q-bits of 0s and 1s are mapped
into 1s and 1s and their sum is the resulting transmitted Q bit. The transmitted I-bits of all
M users are added together and the transmitted Q-bits of all M users are also added together.
The sum I and sum Q bits are pulse-shaped and then used to modulate the I-Q carriers. The
complex spreading is summarized in the following I and Q baseband signals:

sL;I ðtÞ ¼
XM

k¼1

dkcI ðtÞ � d̂kcQðtÞ
h i

wkðtÞ (10:159)

sL;QðtÞ ¼
XM

k¼1

d̂kcI ðtÞ þ dkcQðtÞ
h i

wkðtÞ (10:160)

The complex baseband signal sLðtÞ ¼ sL;I ðtÞ þ jsL;QðtÞ is the envelope of the orthogonal
covering signal sðtÞ ¼ Re sLðtÞe j2πfct

� 
, and is given by

sLðtÞ ¼ sL;I ðtÞ þ jsL;QðtÞ ¼
XM

k¼1

dkcðtÞwkðtÞ (10:161)

where dk ¼ dk þ jd̂k is the complex symbol and cðtÞ ¼ cI ðtÞ þ jcQðtÞ is the complex PN
function, hence the name complex spreading.
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Complex despreading is achieved by the following operation:

2sðtÞ c�ðtÞe j2πfct
�  ¼ 2Re sLðtÞe j2πfct

� 
c�ðtÞe j2πfct

¼ sLðtÞe j2πfct þ s�LðtÞe j2πfct
� 

c�ðtÞe j2πfct

¼ sLðtÞc�ðtÞ þ s�LðtÞc�ðtÞe j4πfct

(10:162a)

The high-frequency term is filtered out, and the following operation results:

sLðtÞc�ðtÞ ¼ sLðtÞ½cI ðtÞ � jcQðtÞ� ¼ ½sL;I ðtÞ þ jsL;QðtÞ�½cI ðtÞ � jcQðtÞ�
¼ ½sL;I ðtÞcI ðtÞ þ sL;QðtÞcQðtÞ� þ j½sL;QðtÞcI ðtÞ � sL;I ðtÞcQðtÞ�

(10:162b)

The I-value is given by

sL;I ðtÞcI ðtÞ þ sL;QðtÞcQðtÞ ¼
XM

k¼1

dkc
2
I ðtÞ � d̂kcI ðtÞcQðtÞ

h i
wkðtÞ

þ
XM

k¼1

d̂kcI ðtÞcQðtÞ þ dkc
2
QðtÞ

h i
wkðtÞ

¼
XM

k¼1

dkwkðtÞ þ
XM

k¼1

dkwkðtÞ

¼2
XM

k¼1

dkwkðtÞ

(10:163)

and the Q-value is

sL;QðtÞcI ðtÞ � sL;I ðtÞcQðtÞ ¼
XM

k¼1

d̂kc
2
I ðtÞ þ dkcI ðtÞcQðtÞ

h i
wkðtÞ

�
XM

k¼1

dkcI ðtÞcQðtÞ � d̂kc
2
QðtÞ

h i
wkðtÞ

¼
XM

k¼1

d̂kwkðtÞ þ
XM

k¼1

d̂kwkðtÞ

¼2
XM

k¼1

d̂kwkðtÞ

(10:164)

The I- and Q-bits contain no I-Q crosstalk interference with complex spreading and
despreading. Figure 10.10 shows the modulator for the complex spreading orthogonal
covering signal. Figure 10.11 shows the mathematically equivalent complex modulator
where the lines are used for complex operations.

Doppler analysis

The received quadrature orthogonal covering signal can be represented in an arbitrary
symbol interval lTs 5t � ðl þ 1ÞTs as follows:
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rðtÞ ¼ hj jA
XM

k¼1

dkcI ðtÞ � d̂kcQðtÞ
h i

wkðtÞ cos ½2πð fc þ f Þt þ θ�

� hj jA
XM

k¼1

d̂kcI ðtÞ þ dkcQðtÞ
h i

wkðtÞ sin ½2πð fc þ f Þt þ θ� þ nðtÞ ;

lTs 5t � ðl þ 1ÞTs

(10:165)

where dk and d̂k are the lth in-phase and quadrature bits in the kth channel normalized to the
smallest symbol energy E ¼ A2Ts=2, respectively. The I- and Q-channel PN functions are
cI(t) and cQ(t), respectively. The phase θ represents the channel phase shift (the phase of the
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Figure 10.10 Complex spreading orthogonal covering modulator.
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Figure 10.11 Equivalent complex-valued modulator.
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channel tap h ¼ hj je jθ ) and the arbitrary phase of the carrier. We assume the channel tap is
time-invariant in a symbol time, that is, the channel fading rate is much smaller than the
symbol rate. The phase θ represents the phase error between sðtÞ and the local carrier
that translates it to baseband. We assume that noise n(t) has the power spectral density
N0=2 (W/Hz). In terms of the complex envelope representation we have

rðtÞ ¼ Re rLðtÞ e j2πfct
� þ nðtÞ (10:166)

where the complex envelope rLðtÞ is given by the following expression:

rLðtÞ ¼ Ahe j2πft
XM

k¼1

dkcðtÞwkðtÞ (10:167)

The complex PN sequence cðtÞ and the complex symbol dk are given by

cðtÞ ¼ cI ðtÞ þ jcQðtÞ; dk ¼ dk þ jd̂k (10:168)

With the aid of thepilot symbol, the channel taph is available and is used to demodulate the signal
rðtÞ to complex baseband via a complex local carrier 2=Ts

p
h�= hj jð Þe j2πfct. Next, the complex

despreading process is carried out by multiplying the complex baseband signal by c�ðtÞ=2,
where cðtÞj j2¼ 2. Then, the dechannelization process is carried out to separate individual
channels via the multiplication of the despreading baseband signal with wmðtÞ, where
w2
mðtÞ ¼ 1. The signal processing part is completed via the integration of the complex dechan-

nelized signal over a symbol time to obtain the predetection complex sample Xm. We have

Xm ¼
ððlþ1ÞTs

lTs

A
1

2Ts

r

jhje j2πft
XM

k¼1

dkwkðtÞwmðtÞ dt þ Nm

¼ jhj
XM

k¼1

A
1

2Ts

r

dk

� � ððlþ1ÞTs

lTs

wkðtÞwmðtÞe j2πft dt þ Nm

¼ jhj
XM

k¼1

γk;msi;k þ Nm

(10:169)

where si;k (hypothesis Hi ) with energy Ei;k ¼ si;k
�� ��2 and complex Doppler factor γk;m are

given by

si;k ¼ A2Ts
2

r

dk ¼ E
p

dk ; Ei;k ¼ si;k
�� ��2¼ E dkj j2; E ¼ smallest symbol energy

γk;m ¼ 1

Ts

ððlþ1ÞTs

lTs

wkðtÞwmðtÞe j2πft dt
(10:170)

Note that, with zero Doppler shift, the term γk;m is 1 for k ¼ m and 0 for k 6¼ m, since the
product of two different complex Walsh functions is another complex Walsh function in
the same set (closure property) and the integration over its period is always zero except
for the first Walsh function (Walsh sequences have the same number of zeros and ones
except for the first Walsh sequence). The Gaussian noise variable Nm has zero mean and
variance N0=2.
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The lth symbol sample in Walsh channel m can alternatively be expressed as

Xm ¼ jhjγm;msi;m þ Im þ Nm ¼ hm;msi;m þ Nm

Im ¼
XM

k¼1
k 6¼m

hk;msi;k ;Nm ¼ Im þ Nm
(10:171)

where hk;m ¼ jhjγk;m, and the term Im is the interchannel interference (ICI) caused by
the Doppler shift that destroys the orthogonality of the orthogonal covering signal.
Note that γm;m

�� �� � 1 and, therefore, both pilot and data symbols experience losses in
their magnitudes which translate into losses in the signal power. We have seen this
phenomenon before in OFDM and CSK with noncoherent demodulation. The inter
channel interference in an orthogonal covering signal is an analogy of the intercarrier
interference (ICI) in OFDM. Since the pilot tone is transmitted on the same carrier as
the data signals, there is no differential Doppler phase error between the received
pilot and data symbols. The bit error probability of a Walsh channel is evaluated in a
similar manner to OFDM, with appropriate replacement of variables. Figures 10.12
and 10.13 show the demodulators for the complex spreading orthogonal covering
signal with Doppler tracking.
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Figure 10.12 Pilot-aided demodulation of complex spreading orthogonal covering signal with Doppler tracking of local in-phase
and quadrature carriers.
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Example 10.17 Variance of interchannel interference
The variance of interchannel interference (ICI) in eachWalsh channel indicates the degree of
non-orthogonality experienced by a quadrature orthogonal covering signal due to Doppler
shift. For I-Q signals such as MPSK and rectangular MQAM, the symbols are independent
and have zero mean. Furthermore, we have E hij j2

� �
¼ 1 by convention. Thus, from

(10.171) the ICI variance can be simplified as follows:

σ2Im ¼ E Imj j2
� �

¼
XM

k¼1
k 6¼m

XM

l¼1
l 6¼m

E hj j2
� �

E si;ks
�
i;l

� �
γk;mγ

�
l;m

¼
XM

k¼1
k 6¼m

E si;k
�� ��2
� �

γk;m
�� ��2

(10:172)

The parameter γk;m
�� ��2 has been calculated in (10.157) using the Walsh function that

represents the ðM=2þ 1Þth row of the Hadamard matrix as follows:

γk;m
�� ��2¼ 16 sin2ðπfTs=2Þ � 4 sin2 πfTs

2πfTsð Þ2 (10:173)

■

The remaining question is how to estimate the Doppler frequency. A training pilot sequence
can be transmitted in the packet header of each transmitted packet to allow for the estimation
of the Doppler shift. Only the pilot Walsh channel is used during this estimation time, that is,
the orthogonal covering signal is actually a single-carrier signal. Data symbols in all other
Walsh channels are set to zero to avoid ICI. The training sequence enhances the estimation
of the Doppler shift via the decision feedback algorithm since all training pilot symbols are
known a priori. If a training pilot symbol is detected incorrectly, it can be corrected via the
knowledge of its position in the sequence relative to the previously correctly detected pilot
symbol. Since only a single Walsh channel is used the channel phase shift is eliminated by

c∗(t) w1(t)

Channel m

∫
Minimum
Euclidean
distance
detector

Doppler
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Pilot-aided
phase
recovery

e−j 2π fct

Figure 10.13 Equivalent complex-valued demodulator.
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the detection process in (10.100), assuming that it is constant for each symbol time. In
practice the training pilot sequence is short and the channel phase shift remains constant with
high probability during the entire sequence. The differential Doppler phase error for each
training symbol can be estimated and averaged out for the entire training sequence. The
Doppler shift f can be corrected by using the average differential Doppler phase error "̂ of the
training sequence to drive a VCO to correct the phase of the local in-phase and quadrature
carriers. This is equivalent to multiplying the right-hand side of (10.167) by e j2πft to obtain
the Doppler-corrected received envelope:

rLðtÞ ¼ Ah
XM

k¼1

dkcðtÞwkðtÞ (10:174)

This is also the complex baseband signal for the low-mobility case without interchannel
interference. Thus, the complex spreading orthogonal covering signal has the same per-
formance as the single channel discussed previously. Mathematically, the decision variable
Xp in (10.169) for a training pilot sequence with the all-zero Walsh function is given as
follows:

Xp ¼
ððlþ1ÞTs

lTs

A
1

2Ts

r

jhje j2πftdpdt þ Np

¼ jhj αj je j2πf ðlþ1=2ÞTs A2Ts
2

r

dp

" #

þ Np

¼ hsp þ Np

(10:175)

where αj j is given in (10.98). The Doppler phase error h= hj jð Þ can be estimated from the
knowledge of the pilot symbol sp and used to correct the Doppler effect.

10.8 Noncoherent demodulation of offset
quadrature DS-CSK

IS-95 employs noncoherent offset quadrature DS-CSK. Let us consider such a received DS-
CSK signal rðtÞ at carrier frequency fc withWalsh function wkðtÞ and PN functions cI ðtÞ and
cQðtÞ during the ith symbol interval as

rðtÞ ¼ hkj jA
2

p cI ðtÞwkðtÞ cos ½2πðfc þ f Þt þ θk �

� hkj jA
2

p cQðt � Tc=2Þwkðt � Tc=2Þ sin ½2πðfc þ f Þt þ θk � þ nðtÞ;

iTs 5t � ðiþ 1ÞTs

(10:176)

The I- and Q-channel PN functions are cI(t) and cQ(t), respectively. The phase θk represents
the phase of the channel tap hk . We assume that the channel tap is time-invariant in a symbol
time, that is, the channel fading rate is much smaller than the symbol rate. We assume that
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noise n(t) has the power spectral density N0/2 (W/Hz). In terms of complex envelope
representation we have

rðtÞ ¼ Re rLðtÞ e j2πfct
� þ nðtÞ (10:177)

where the complex envelope rLðtÞ is given by the following expression:

rLðtÞ ¼ A hkj j
2

p e jθk e j2πftcðtÞ (10:178)

The complex function cðtÞ is given by

cðtÞ ¼ cI ðtÞwkðtÞ þ jcQðt � Tc=2Þwkðt � Tc=2Þ (10:179)

The signal rðtÞ is first translated to complex baseband by a complex local carrier
2=Ts

p
e j2πfct, which is offset by the unknown phase θk with respect to rðtÞ. Next, the

complex despreading process is carried out by multiplying the complex baseband signal
with c�ðtÞ, where cðtÞj j2¼ 2. The signal processing part is completed via the integration of
the complex despreading signal over a symbol time to obtain the M predetection complex
samples Xm. We have

Xm ¼
ððiþ1ÞTs

iTs

A
1

2Ts

r

hkj je jθke j2πftckðtÞc�mðtÞ dt þ Nm

¼ hkj je jθk A
1

2Ts

r ððiþ1ÞTs

iTs

ckðtÞc�mðtÞe j2πft dt þ Nm

¼ Es

p
hkj je jθk

XM

k¼1

γk;m þ Nm

(10:180)

where the symbol energy Es and complex Doppler factor γk;m are given by

Es ¼ A2Ts
2

γk;m ¼ 1

Ts

ððiþ1ÞTs

iTs

ckðtÞc�mðtÞðtÞe j2πft dt
(10:181)

Let us consider the case of zero Doppler shift, where the term γk;m is 2 for k ¼ m. For k 6¼ m,
γk;m is not zero as expected because the I Q crosstalk is present due to a half-chip delay in the
Q-channel. This I Q crosstalk is much smaller than 2 and can be ignored. Without the half-
chip delay there would be no I-Q crosstalk and γk;m would be zero for k 6¼ m. The complex
Gaussian noise variable Nm has independent I-noise and Q-noise, each with zero mean and
variance N0. The M decision variables at the input of the maximum detector are
Xmj j2;m ¼ 1; 2; . . . ;M . The bit error probability of noncoherent offset quadrature
DS-CSK is identical to that of noncoherent MFSK and CSK, which were presented in
Section 10.7. The Doppler tracking method is also identical to that of noncoherent CSK.
Figure 10.14 shows the block diagram of the noncoherent demodulator for offset quadrature
DS-CSK.
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10.9 Time diversity

In a fading channel a deep fade can force the signal to noise ratio to fall below an opera-
tional threshold. Consequently, an outage of the communication link occurs with the loss of
many symbols. There are two techniques to counter the effect of deep fades, namely, error
correction coding (Chapter 4) and diversity. In fact, diversity is a modified form of the
repetition codewith rate 1=n. In practice, diversity is physically implemented in a variety of
ways such as time diversity, frequency diversity, and antenna diversity. The purpose of
diversity is to provide the receiver copies of the same symbol transmitted via L subchannels
that experience independent fades (L-fold diversity). The plan is to rely on the low
probability of simultaneous outages on all L subchannels to increase the survivability of
symbols transmitted in deep fades occurring on a subset of L subchannels. We first discuss
time diversity and move on to frequency diversity and antenna diversity in later sections.

Time diversity is a controlled diversity method implemented by repeating a transmitted
symbol L times. The repeated symbols are then interleaved over a time frame that is much
longer than an average fade duration (fade duration is defined as the time the signal
envelope or signal power stays below a detection threshold). Thus, copies of the same
symbol are placed in various symbol slots in the frame. The separation of consecutive
symbol slots is longer than an average deep fade. This procedure in effect creates
L independent subchannels to counter deep fades on a subset of subchannels. The inter-
leaved symbols will be deinterleaved at the receiver into L consecutive copies for detection.
The interleaving operation can be carried out by block interleaving, which is popular in
wireless communication systems such as cellular and wireless LANs. A block interleaver is
an array with n rows and m columns (n	 m cells). The number of rows n is chosen to be an
integer multiple of L. Repeated symbols are written into the interleaver by columns filling all
cells. The time frame therefore consists of n	 m symbol slots. The symbols are read out
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Figure 10.14 Noncoherent demodulator for offset quadrature DS-CSK.
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from the interleaver row by row. Consecutive copies of a symbol are separated by copies of
m� 1 other symbols. Thus, for the interleaving to be effective the average deep fade
should be shorter than m symbol times. Figure 10.15 shows a time diversity (L = 2)
modulator with a 4	 5 interleaver. Figure 10.16 shows a time diversity demodulator
with a deinterleaver and a diversity combiner to combine the L deinterleaved decision
vectors for detection. The decision vectors are sample voltage vectors at the output of
the signal processor. Therefore, the deinterleaver works either with analog components
or with digitally encoded quantized components of the vectors. To preserve the same
throughput, time diversity increases the symbol rate L times (the transmission band-
width therefore also increases L times). For a fixed transmitted power, this effectively
reduces the symbol energy by a factor of L, which means a higher channel transition
probability. To be useful, a diversity combiner must overcome this problem with a gain
in the average signal-to-noise ratio at its output so that the detected symbols can have
an overall lower error probability.

Level crossing rate

The average fade duration given a threshold voltage level V determines the separation in
time of consecutive copies of a transmitted symbol after interleaving. This quantity, denoted
as τ, is defined as the ratio of the sum of fade durations to their number, in a sufficiently large
time interval T. We have

τ ¼ 1

RVT

XRV T

i¼1

τi (10:182)

whereRV is the level crossing rate, which is defined as the average rate at which the signal
envelope crosses the threshold V in the positive direction, as indicated in Figure 10.17.
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Figure 10.16 Deinterleaving and diversity combining for time diversity.
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ThusNV ¼ RVT is the average number of level crossings the signal envelope experiences
in the time interval T. We wish to evaluate RV in order to calculate τ. Let us denote r as the
signal envelope and _r is its derivative, that is, the slope of the signal envelope. Let us
consider the differential quantities dt, dr, and d_r. We observe that dr=_r is the time it takes the
signal envelope to go from V to V þ dr once in the positive direction. The average time the
signal envelope spends in the range ðV ;V þ drÞ with its slope in the range ð_r; _r þ d_rÞ
given the time duration dt is f ðV ; _rÞdr d_r dt, where f ðr; _rÞ is the joint density function
of r and _r. The corresponding number of level crossings in dt is given by
f ðV ; _rÞdr d_r dt=ðdr=_rÞ ¼ _r f ðV ; _rÞ d_r dt. Hence, the average number of level crossings in
the time interval T is

NV ¼
ðT

0

ð1

0
_r f ðV ; _rÞ d_r dt ¼ T

ð1

0
_r f ðV ; _rÞ d_r (10:183)

Consequently, the level crossing rate is obtained as follows:

RV ¼ NV

T
¼
ð1

0
_r f ðV ; _rÞ d_r (10:184)

Rice has shown that the random variables r and _r are independent and their joint density
function for Rayleigh fading is given by

f ðr; _rÞ ¼ r

σ2s
e r2=2σ2s

� �
1

4π3σ2s f
2
m

e _r2=4π2σ2s f
2
m

� �
(10:185)

The first term on the right-hand side of (10.185) is the familiar Rayleigh density function of
the signal envelope, where Eðr2Þ ¼ 2σ2s . The second term contains the parameter fm, which
denotes the maximum Doppler shift experienced by the signal. Therefore, the level crossing
rate is obtained via direct integration as

RV ¼ 2π
p

fmρe ρ2 (10:186)
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Figure 10.17 Level crossings and fade durations given the signal threshold V.

576 Fading channels



where

ρ2 ¼ V 2

2σ2s
¼ V

Vrms

� �2

(10:187)

The parameter ρ2 is given in term of the rms signal voltage level Vrms ¼ Eðr2Þp
.

Average fade duration

The average fade duration in (10.182) can be alternatively expressed in terms of the
probability Prðr � V Þ that the signal envelope r falls below the threshold level V. Given a
sufficiently long interval Twe have

Prðr � V Þ ¼ 1

T

XRV T

i¼1

τi (10:188)

Thus, for RV 6¼ 0, the average fade duration is given by

τ ¼ 1

RV
Prðr � V Þ ¼ 1

RV

ðV

0

r

σ2s
e r2=2σ2sdr

¼ eρ
2 � 1

2π
p

fmρ

(10:189)

We note that when there is no Doppler shift, that is, fm ¼ 0, then the level crossing rate is
zero (no level crossings). Consequently, the average fade duration is also zero (not infinite as
in (10.189), which is valid only forRV 6¼ 0 ). This implies that the channel is time-invariant
(the coherence time is infinite) and interleaving would not be effective. Thus, time diversity
may not be effective in time intervals where the channel experiences no fading.

Example 10.18 Average fade duration
Let us consider the scenario where a mobile traveling toward a base station at a speed
of 100 km/hour receives a 1950MHz signal from a base station. The maximum Doppler
shift is fm ¼ fcv=c ¼ 180Hz. Let us assume that the threshold signal to noise ratio is
V 2=2σ2 ¼ 3 dB, where the noise variance is σ2, and the signal-to-noise ratio is
V 2
rms=σ

2 ¼ 10 dB. The parameter ρ2 is calculated to be 0.4. This yields the average fade
duration τ ¼ 1:7 ms. If the symbol time is much smaller than 1.7ms (the symbol rate is
much larger than 580 symbols/s) many symbols could be affected by a deep fade and a burst
of errors may result. Interleaving can randomize bursts of errors and enables time diversity
to work effectively. It also enables random error-correction codes to correct bursts of errors.
The channel coherence time, which is one-eighth of the inverse of the maximum Doppler
shift, is 0.7ms. Thus, at a symbol rate of 14.4 ksps the symbol time is 0.07ms, which is ten
times smaller than the channel coherence time. Therefore, the channel can be said to be slow
fading if the channel estimation time is less than the channel coherence time. The average
fade duration is 2.4 times the channel coherence time, hence the interleaving time must be
larger than 2.4 times the channel coherence time or, equivalently, about 24 symbols.
■
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10.10 Maximal ratio combining (MRC)

In an L-fold diversity system with fixed throughput and fixed transmitted power, the energy
of a transmitted copy is only 1/L the symbol energy. Thus, an optimum coherent combiner in
the receiver must obtain a combining decision samplewhose signal-to-noise ratio is the sum
of signal-to-noise ratios of L received copies. Functionally, this means that the combiner
must rotate the phases of the decision sample of L copies to align their phases (co phasing)
and weight each copy with their respective subchannel tap before summing (weighting).
Thus, strong subchannels are given more weight than weak subchannels; this is similar to
the water filling strategy in an AWGN channel. This optimum coherent combining tech-
nique is referred to as maximal ratio combining (MRC). Let us consider the pre-combining
samples of L copies of an arbitrary transmitted symbol si at the output of the matched filter.
Each copy has a corresponding complex subchannel tap hl. We have

Yl ¼ hlsi þ Nl; l ¼ 1; 2; . . . ; L (10:190)

The complex Gaussian random variable Nl has a variance 2σ2. We can express L in vector
form as follows:

Y ¼ hsi þN (10:191)

where Y ¼ ½Y1 Y2 . . . YL�t; h ¼ ½h1 h2 . . . hL�t; and N ¼ ½N1 N2 . . . NL�t.
Now assume perfect channel estimation, then the sufficient statistic for coherent demod-

ulation is h�= hk kð ÞY . We use the notation h� for the conjugate and transpose of vector h. We
have the following MRC decision variable:

X ¼ h�

hk k ðhsi þNÞ

¼ hk ksi þ h�

hk kN
(10:192)

The complex Gaussian noise h�= hk kÞNð has variance 2σ2. Note that the above operation is

equivalent to hk kX ¼P
L

l¼1
h�l Yl ¼

PL

l¼1
hlj j2si þ

PL

l¼1
h�l Nl as mentioned above (co-phasing and

weighting). The normalization with hk k ¼ PL

l¼1
hlj j2

s

still preserves the sufficient statistic.

The instantaneous MRC output signal to noise ratio SNR0;i, given the symbol si, is

SNR0;i ¼ hk k2 sij j2=2σ2 ¼Pl hlj j2 sij j2=2σ2 ¼Pl SNRl;i, where SNRl;i ¼ hlj j2 sij j2=2σ2
is the instantaneous signal to noise ratio of the pre-combining lth copy of symbol si. Thus,
MRC achieves the maximum output signal to noise ratio, which is the sum of L input signal-
to-noise ratios (a fact that can also be verified by Cauchy–Schwarz inequality). The name
maximal ratio combining is the truncated version ofmaximal signal to noise ratio combining.

Assume perfect channel estimation, and use the mapping si ! si for a complex variable
to a two-dimensional vector, then the conditional pair-wise error probability between two
vectors hk ksi and hk ksj is
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Pr hk ksi ! hk ksj
� � ¼ Q

hk k si � sj
�� ��

2σ

� �
(10:193)

The conditional bit error probability for the Gray-coded signal set fsigMi¼1 is given by the
following approximation:

Pb hk kð Þ � Nn

log2 M
Q

hk kdmin
2σ

� �
(10:194)

where dmin ¼ min
i;j

jjsi � sjjj is theminimum Euclidean distance of the signal set, σ2 ¼ N0=2,

andNn is average number of symbols at the minimum Euclidean distance dmin or the average
number of nearest neighbors. Here N0=2 is the power spectral density of noise. Knowing the
statistics of the fading channel (Rayleigh, Rice, Nakagami) we can evaluate the bit error
probability as follows:

Pb ¼ E Pb hk kð Þ½ � � E
Nn

log2 M
Q

hk kdmin
2σ

� �� �

¼ E
Nn

log2 M
Q 2 hk k2αSNR
q� �� � (10:195)

where the diversity symbol signal to noise ratio SNR and the positive constant α, which
depends on the modulation, are given by

SNR ¼ Es
N0

¼ Es

LN0
; αSNR ¼ 1

2

dmin
2σ

� �2

(10:196)

The diversity symbol energy Es is given by Es ¼ Es=L.

Rayleigh

When the iid subchannel tap magnitudes hij j are Rayleigh distributed with normalized

mean-square value E hij j2
� �

¼ 1, the combining channel tap magnitude hk k2¼P
L

l¼1
hlj j2

has a χ2-density function with 2L degrees of freedom. We have

fjjhjj2 yð Þ ¼ yL 1e y

ðL� 1Þ! (10:197)

The corresponding bit error probability is given by the following two equivalent closed-
form expressions from Appendix 10B:

Pb � Nn

2 log2 M
1� μ

XL 1

k¼0

2k
k

� �
1� μ2

4

� �k
" #

(10:198a)

Pb � Nn

log2 M
1� μ
2

� �LXL 1

l¼0

L� 1þ l
l

� �
1þ μ
2

� �l

(10:198b)
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where

μ ¼ αSNR
1þ αSNR

r

(10:199)

* PSK: the minimum Euclidean distance is dmin ¼ 2 Eb
p

, where the diversity bit energy is
Eb. With the noise variance σ2 ¼ N0=2, we obtain αSNR ¼ Eb=N0 ¼ Eb=LN0.
Furthermore, Nn ¼ 1, M = 2, therefore the bit error probability for PSK is

Pb � 1

2
1� μ

XL 1

k¼0

2k
k

� �
1� μ2

4

� �k
" #

ðPSKÞ (10:200a)

Pb ¼ 1� μ
2

� �LXL 1

l¼0

L� 1þ l
l

� �
1þ μ
2

� �l

ðPSKÞ (10:200b)

* QPSK: the minimum Euclidean distance is dmin ¼ 2Es
p

, where the diversity symbol energy
is Es. With σ2 ¼ N0=2, we obtain αSNR ¼ Es=2N0 ¼ Es=2LN0. Furthermore, Nn ¼ 2,
M = 4, therefore the bit error probability for QPSK is identical to that of PSK as expected

Pb � 1

2
1� μ

XL 1

k¼0

2k
k

� �
1� μ2

4
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" #

ðQPSKÞ (10:201a)

Pb ¼ 1� μ
2

� �LXL 1

l¼0

L� 1þ l
l

� �
1þ μ
2

� �l

ðQPSKÞ (10:201b)

* MPSK: the minimum Euclidean distance is dmin ¼ 2 Es
p

sinðπ=MÞ, where the
diversity symbol energy is Es. Using the noise variance σ2 ¼ N0=2, we obtain
αSNR ¼ αðEs=N0Þ sin2ðπ=MÞ ¼ αðEs=LN0Þ sin2ðπ=MÞ. Furthermore, Nn ¼ 2,
therefore the bit error probability for MPSK is given by

Pb � 1

log2 M
1� μ

XL 1

k¼0

2k
k

� �
1� μ2

4

� �k
" #

ðMPSK; M42Þ (10:202a)

Pb � 2

log2 M
1� μ
2

� �LXL 1

l¼0

L� 1þ l
l

� �
1þ μ
2

� �l

ðMPSK; M42Þ (10:202b)

* MQAM: the minimum Euclidean distance is dmin ¼ 6Es=ðM � 1Þp
. Using σ2 ¼ N0=2,

we obtain αSNR ¼ 3ðEs=N0Þ=2ðM � 1Þ ¼ 3ðEs=LN0Þ=2ðM � 1Þ. Furthermore,
Nn ¼ 4� 4= M

p
, therefore the bit error probability for MQAM is given by

Pb � 2� 2= M
p

log2 M
1� μ

XL 1

k¼0

2k
k

� �
1� μ2

4

� �k
" #

ðMQAMÞ (10:203a)

Pb � 4� 4= M
p

log2 M
1� μ

2

� �LXL 1

l¼0

L�1þ l
l

� �
1þ μ

2

� �l

ðMQAMÞ (10:203b)
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Rice

When the independent subchannel tap magnitudes hij j are Rice distributed with normalized

mean-square value E hij j2
� �

¼ 1, the combining channel tap magnitude hk k2¼P
L

l¼1
hlj j2 has

a non central χ2–density function with 2L degrees of freedom given by

fjjhjj2 yð Þ ¼ ð�þ 1ÞyðL 1Þ=2e ½ð�þ1Þyþ��I0 2 �ð�þ 1Þy
p� �

(10:204)

where � was first identified in (10.63). The bit error probability can be evaluated via direct
integration.

Nakagami-m

When the independent subchannel tap magnitudes hij j are Nakagami-m distributed with

normalized mean-square valueE hij j2
� �

¼ 1, the combining channel tap squaredmagnitude

hk k2¼P
L

l¼1
hlj j2 has a density function given by

fjjhjj2 yð Þ ¼ mmL

�ðmLÞ y
mL 1e my (10:205)

The bit error probability is given in Appendix 10B as

Pb � Nn

2 log2 M
1� αSNR=m

1þ αSNR=m

s
XmL 1

k 0

2k

k

� �
1

4ð1þ αSNR=mÞ
� �k

" #

; m : integer

Pb � Nn

log2 M
1

2 π
p αSNR=m

p

1þ αSNR=mð ÞmLþ1=2

�ðmLþ 1
2Þ

�ðmLþ 1Þ

" #

2F1 1;mLþ 1
2;mLþ 1;

1

1þ αSNR=m

� �
;

m : noninteger (10:206)

Example 10.19 Diversity gain
Let us consider a Rayleigh fading channel and compare the performance of an L-fold time
diversity I-Q signal to the performance of its counterpart without diversity, assuming that
both signals have the same transmitted power and input bit rate. Using (10.57) and assuming
high SNR (SNR ≫ 1) we have for the non-diversity signal

Pb ¼ Nn

2 log2 M
1� α SNR

1þ αSNR

r !

� Nn

2 log2 M
1� 1� 1

2α SNR

� �� �

� Nn

log2 M
1

4α SNR

� � (10:207)

For the diversity signal we make the following approximations for the parameters involving
μ in (10.198):
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1þ μ
2

� 1; and
1� μ
2

� 1

4αSNR
(10:208)

Furthermore,

XL 1

l¼0

L� 1þ l
l

� �
¼ 2L� 1

L

� �
(10:209)

Note that the time diversity signal has the transmission symbol rate equal to L times that of
the signal without diversity. Thus the diversity symbol energy is only 1/L times the non-
diversity symbol energy or equivalently, SNR ¼ SNR=L. Thus, the bit error probability of
an I-Q signal with diversity at high SNR is given by

Pb � Nn

log2 M

2L� 1

L

� �
1

4αSNR

� �L

� Nn

log2 M
LL

2L� 1

L

� �
1

4α SNR

� �L
(10:210)

Thus, with diversity, the bit error probability decreases inversely with the Lth power of the
input signal-to-noise ratio. On the other hand, without diversity, the bit error probability
decreases inversely with the input signal-to-noise ratio.

For illustration consider the case when αSNR = 100 (20 dB), L = 3, Nn ¼ 2; M ¼ 4
(QPSK). We have Pb � 2:5	 10 3 for no diversity as compared to Pb � 3:9	 10 6 for a
three-fold diversity with MRC. In other words, to achieve the same bit error probability the
signal without diversity must have an SNR of about 48 dB instead of 20 dB. The diversity
gain is approximately 28 dB.
■

Example 10.20 Outage probability of a diversity link with MRC
We define the outage probability pout of a diversity link, that is, the probability that the
instantaneous SNR falls bellow a threshold value γ as follows:

pout ¼ Pr hk k2SNR5γ
� �

¼ Pr hk k25 γ
SNR

� �
(10:211)

For a slow-flat Rayleigh fading channel we can use the χ2-density function with 2L degrees
of freedom. Thus, the outage probability is given by

pout ¼
ðγ=SNR

0

yL 1e y

ðL� 1Þ! dy

¼ 1� e γ=SNR
XL 1

k¼0

1

k!

γ
SNR

� �k
(10:212)
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For numerical illustration, we compare the performance of an L-fold time diversity I-Q
signal with SNR to the performance of its non-diversity counterpart with SNR, assuming that
both signals have the same transmitted power and input bit rate. Thus, we have
SNR ¼ SNR=L. Let the threshold be γ ¼ 1 and SNR = 11.2 (10.5 dB), and L = 3. This
yields an outage probability pout � 2:5	 10 3 as compared to 0.09 for the case where there
is no diversity (see Example 10.5).
■

10.11 Selection combining (SC)

Selection combining (SC) is a suboptimum combining technique that is commonly
employed in receive antenna diversity. To provide diversity the subchannel with the largest
tap squared magnitude is selected for each transmitted symbol. Let us consider the pre-
combining samples of L copies of an arbitrary transmitted symbol si at the output of the
matched filter. Each copy has a corresponding iid complex subchannel tap hl. We have

Yl ¼ hlsi þ Nl; l ¼ 1; 2; . . . ; L (10:213)

Now assume perfect channel estimation, then the sufficient statistic for coherent demodu-
lation is h�l = hlj j� �

Yl. We have the following pre-combining decision variables:

Xl ¼ h�l
hlj j ðhlsi þ NlÞ

¼ hlj jsi þ h�l
hlj jNl ; l ¼ 1; 2; . . . ; L

(10:214)

Both the I- and Q-noise components of h�l = hlj j� �
Nl have the same variance σ2. The

selection combiner chooses the decision variable with the largest subchannel tap squared
magnitude:

hj j2¼ max
l

h1j j2; h2j j2; . . . ; hLj j2
� �

(10:215)

The probability density function of hj j2 is given by the following expression:

f hj j2 hj j2
� �

¼ Lf hlj j2 hj j2
� �

F hlj j2 hj j2
� �h iL 1

(10:216)

where F hlj j2 hlj j2
� �

is the probability distribution function of hlj j2. The probability of bit
error for an I-Q signal is given by

Pb ¼ E Pb hj jð Þ½ � � E
Nn

log2 M
Q

hj jdmin
2σ

� �� �

� E
Nn

log2 M
Q 2 hj j2αSNR
q� �� � (10:217)
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where the diversity symbol signal to noise ratio SNR is given by

αSNR ¼ 1

2

dmin
2σ

� �2

(10:218)

Example 10.21 Coherent selection combining in a Rayleigh fading channel
For iid Rayleigh-distributed subchannel tap magnitudes, the density and distribution func-
tions of hlj j2 are respectively given as

f hlj j2ðyÞ ¼ e y; F hlj j2ðyÞ ¼ 1� e y (10:219)

Therefore, the density function of hj j2 can be calculated as follows:

f hj j2 zð Þ ¼ Le z 1� e zð ÞL 1

¼
XL

l¼1

ð�1Þl 1 L

l

� �
L e lz

(10:220)

Finally, the bit error probability in a Rayleigh fading channel can be evaluated using the
above density function. We get

Pb � Nn

2 log2 M

XL

l¼1

ð�1Þl 1 L
l

� �
1� αSNR

l þ αSNR

r !

(10:221)

For illustration we compare the performance of an L-fold time diversity I-Q signal with SNR to
the performance of its non-diversity counterpart with SNR, assuming that both signals have the
same transmitted power and input bit rate. Thus, we have SNR ¼ SNR=L. Consider the case
when SNR = 100 (20dB), L = 3, Nn ¼ 2; M ¼ 4 (QPSK), hence SNR ¼ SNR=L ¼ 100=3.
We have Pb � 2:5	 10 3 for no diversity as compared to Pb � 2:2	 10 5 for a three-fold
diversity with SC. In other words, to achieve the same bit error probability the signal without
diversity must have an SNR of about 41dB instead of 20dB. The diversity gain is approx-
imately 21dB as compared to 28 dB for MRC in Example 10.19.
■

Example 10.22 Noncoherent selection combining in a Rayleigh fading channel
Selection combining can be applied to signals that require noncoherent demodulation, such
as DPSK, MFSK, and CSK. Let us consider noncoherent FSK in a Rayleigh fading channel.
The conditional bit error probability, given the largest subchannel tap magnitude hj j, is given
by

Pb hj jð Þ ¼ 1

2
e hj j2SNR=2 (10:222)

Taking the expectation of Pb hj jð Þ with respect to hj j2 by using the density function of hj j2 in
the above example we obtain the bit error probability as follows:
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Pb ¼
XL

l¼1

ð�1Þl 1 L
l

� �
l

2l þ SNR
¼ L

XL 1

l¼0

L� 1
l

� �
ð�1Þl 1

2ðl þ 1Þ þ SNR
(10:223)

For illustration consider the case of FSK with time diversity L = 3. The nondiversity signal-
to-noise ratio is SNR = 100 (20 dB). Thus, the diversity signal-to-noise ratio is
SNR ¼ SNR=L ¼ 100=3. We have Pb ¼ 1=ð2þ SNRÞ � 10 2 for no diversity as com-
pared to Pb � 4:6	 10 4 for a three-fold diversity with SC. In other words, to achieve the
same bit error probability the signal without diversity must have an SNR of about 33 dB
instead of 20 dB. The diversity gain is approximately 13 dB.
■

10.12 Equal gain combining (EGC)

Equal gain combining (EGC) is another suboptimum combining technique that works with
both coherent and noncoherent signals. In coherent demodulation only the co phasing
process is carried out without the weighting process. Functionally, this means that the
combiner only needs to rotate the phases of the decision sample of L copies to align their
phases and then add them to form the combining decision sample.

Coherent EGC

Let us consider the pre-combining samples of L copies of an arbitrary transmitted symbol si
of a coherent I Q signal at the output of the matched filter. Each copy has a corresponding iid
complex subchannel tap hl. We have

Yl ¼ hlsi þ Nl; l ¼ 1; 2; . . . ; L (10:224)

Now assume perfect channel estimation, then the sufficient statistic for coherent demodu-
lation is h�l = hlj j� �

Yl. We have the following pre-combining decision variables:

Xl ¼ h�l
hlj j ðhlsi þ NlÞ

¼ hlj jsi þ h�l
hlj jNl ; l ¼ 1; 2; . . . ; L

(10:225)

Both the I- and Q-noise components of h�l = hlj j� �
Nl have the same variance σ2. The EGC

decision variable is given by

X ¼
XL

l¼1

Xl ¼ hj jsi þ N (10:226)

where hj j ¼ h1j j þ . . .þ hLj j andN is a complex Gaussian variable with variance 2Lσ2. The
bit error probability is given in (10.194) if the density function of hj j is known. Since hj j is
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the sum of L iid random variables, its density function is the L-fold convolution of L
identical density functions. There is no closed-form expression for Rayleigh, Rice, or
Nakagami-m cases. We note that coherent EGC does not equal the performance of MRC
because it weights all subchannels equally. Furthermore, there is no reduction in complexity
with respect to MRC because the channel estimation is carried out in the same manner as
MRC. In fact, the sufficient statistic for MRC is Xl ¼ h�l Yl, as compared to Xl ¼ h�l = hlj j� �

Yl
for coherent EGC.

Noncoherent EGC

In this section we consider the application of noncoherent EGC to orthogonal signals such as
MFSK and CSK in a Rayleigh fading channel. From (7.236), the output of the first
quadrature correlator–square law detector given s1;l tð Þ was the lth copy of the transmitted
signal is X 2

1;l ¼ hlj j Es
p

cos θl þ NI ;1;l

� �2þ hlj j Es
p

sin θl þ NQ;1;l

� �2
. The diversity symbol

energy Es is 1/L times the symbol energy Es, that is, Es ¼ Es=L. The outputs of the remaining
M � 1 quadrature correlator–square law detectors are X 2

j;l ¼ N2
I ;j;lþ N 2

Q;j;l; j ¼ 2; 3; . . . ;M .
The noise random variables NI ;i;l and NQ;i;l are all independent Gaussian random variables
with zero mean and variance σ2 ¼ N0 2= . Note that both hlj j cos θl and hlj j sin θl are zero-
mean Gaussian random variables, therefore we conclude that X 2

1;l and X 2
j;l are central chi-

squared random variables given the subchannel tap magnitudes hlj j; l ¼ 1; 2; . . . ; L. The
independent outputs of all L noncoherent EGC combiners are

U1 ¼
XL

l¼1

X 2
1;l; Uj ¼

XL

l¼1

X 2
j;l (10:227)

The density functions of Uj; j ¼ 1; 2; . . . ;M , are the central χ2–density function with 2L
degrees of freedom given by

fUjðujÞ ¼
1

ð2σ2j ÞLðL� 1Þ! u
L 1
j e uj=2σ2j ; uj � 0 (10:228)

where the parameter σ2j is the mean-square value of each component of X 2
j;l and is given as

σ21 ¼ Es=2þ σ2 ¼ Es=2þ N0=2; σ2j ¼ σ2 ¼ N0=2; j ¼ 2; 3; . . . ;M (10:229)

For convenience we normalize the mean-square value of the subchannel tap magnitude to
unity: E hlj j2

� �
¼ 1. The conditional symbol error probability given u1 is one minus the

probability that all M 1 variables Uj are less than u1. Furthermore, the probability that a
variable Uj is less than u1 is

PrðUj5u1Þ ¼
ðu1

0
fUjðujÞ duj

¼ 1� e u1=2σ2j
XL 1

l¼0

1

l!

u1
2σ2j

 !l (10:230)
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Therefore, we get the bit error probability as follows:

Pb ¼ M=2

M � 1
1�
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0
PrðUj5u1Þ
� M 1

fU1ðu1Þ du1
� �
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M � 1
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0
1� e u1=2σ2j
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l¼0
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 !l
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1
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¼ M=2

M � 1
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ð1

0
1� e u1
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" #M 1
1

ð1þ SNRÞLðL� 1Þ! u
L 1
1 e u1=ð1þSNRÞ du1

0

@

1

A

(10:231)

where SNR ¼ Es=N0 ¼ Es=LN0.

Example 10.23 Noncoherent EGC in a Rayleigh fading channel
Let us consider noncoherent FSK (M = 2) in a Rayleigh fading channel. The bit error
probability has a closed-form expression given as

Pb ¼
XL 1

l¼0

L� 1þ l
l

� �
1þ SNR½ �l
2þ SNR½ �Lþl (10:232)

For illustration consider the case of FSK and time diversity L = 3. The nondiversity signal-
to-noise ratio is SNR = 100 (20 dB). Thus, the diversity signal-to-noise ratio is
SNR ¼ SNR=L ¼ 100=3. We have Pb ¼ 1=ð2þ SNRÞ � 10 2 for no diversity as com-
pared to Pb � 2:2	 10 4 for a three-fold diversity with EGC. In other words, to achieve the
same bit error probability the signal without diversity must have an SNR of about 36.6 dB
instead of 20 dB. The diversity gain is approximately 16.6 dB as compared to 13 dB for
noncoherent SC.
■

10.13 Frequency diversity

Frequency diversity can be implemented either as controlled diversity methods in fast
frequency hop systems (FFH) and OFDM, or as a frequency selective diversity method for
a multipath fading channel. The latter method is also referred to asmultipath delay diversity.
No control is exercised in frequency-selective diversity and the receiver is designed to
combine copies of the transmitted symbol arriving via delayed paths. For frequency
diversity to be effective, copies of the transmitted symbol must experience independent
fades. This happens naturally in a multipath fading channel. The drawback is the presence of
ISI in amulti-tap channel whichmust be equalized for frequency-selective diversity to work.
Equalization does not provide diversity gain and at best it approaches the performance of a
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single-tap channel. Direct sequence spread spectrum signals provide both multipath-delay
diversity and ISI equalization at the expense of lower throughput unless CDMA is used.

Fast frequency hop (FFH)

Fast frequency hop (FFH) is employed primarily in military communication systems to
combat partial-band jamming. A symbol is pseudo-randomly hopped many times during its
transmission to ensure some copies survive the jamming. In a jamming and fading channel
the copies, after dehopping, can be noncoherently combined via EGC or SC to achieve
diversity. As far as fading is concerned, the smallest frequency separation between hopping
bins must be larger than the channel coherence bandwidth to ensure uncorrelated fading for
the copies of the transmitted symbol. To avoid ISI each copy must experience flat fading,
that is, the hop bandwidth must be smaller than the channel coherence bandwidth. In
addition, for the channel to be slow fading the hop time must be smaller than the channel
coherence time. Figure 10.18 shows the block diagram of a FFH system.

To alleviate the effects of partial-band jamming that weight more on jammed hops, some
sort of automatic gain control (AGC) is necessary. In one type of AGC, called noise
normalization, the noise power in a given hop of a transmitted symbol is measured and its
reciprocal is used to normalize (multiply) the outputs of the matched filter–envelope
detectors of a noncoherent demodulator. This is similar to weighting the subchannel tap
magnitudes in MRC, and the purpose is to deemphasize the effect of jammed hops in the
combining process. Another type of AGC is the self normalization process, where the
reciprocal of the sum of the outputs of the matched filter–envelope detectors is used to
normalize (multiply) the output of each detector before combining. As a result, the output of
each detector when a hop contains a large amount of interference will be smaller than the
output when interference is not present. Thus, the hops without interference will have a
greater weight on the decision statistics than hops containing interference.

OFDM subcarrier combining

Controlled diversity for a frequency selective channel can be implemented via OFDM. Let
us consider the decision variables of N subcarrier symbols for the case of low-mobility
OFDM:

ẐðkÞ ¼ HkZðkÞ þ Nk ; k ¼ 0; 1; . . . ;N � 1 (10:233)

For diversity to work the subchannel taps Hk must be uncorrelated. This puts constraints on
the number of subcarriers, the separation between diversity groups, and the length of the
cyclic prefix that is employed to remove subcarrier ISI. Consider a frequency selective

FFH
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Jamming
& fading
channel
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& demod

Diversity
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Symbols
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Figure 10.18 Diversity combining for FFH.
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channel with L channel taps representing L uncorrelated paths. Let Td be the multipath delay
spread, then the channel bandwidth is approximately B ¼ L=Td. The coherence bandwidth
is Bc ¼ 1=Td , therefore the channel bandwidth consists of L uncorrelated diversity-
subchannels with each diversity-subchannel bandwidth the same as the coherence band-
width, that is, B ¼ LBc. Each of these L diversity-subchannels can house N=L contiguous
correlated subcarriers with subcarrier bandwidth equal to B=N . The OFDM signal with
bandwidth B can therefore achieve L-fold diversity since OFDM in effect subdivides the
channel bandwidth B into L uncorrelated diversity-subchannels. To remove ISI between
adjacent OFDM symbols a cyclic prefix of L IFFT samples is added to an OFDM symbol of
N IFFT samples. To ensure that the channel is also a slow fading channel, the subcarrier
bandwidth B=N must greatly exceed the Doppler spread fD, that is, B=N � fD. Since the
channel coherence time Tc is Tc ¼ 1=4fD, this also implies that N  4BTc. For good
efficiency, the cyclic prefix must be much smaller than the OFDM block length, that is,
L  N . Hence, a good OFDM diversity system must satisfy the design contraint
BTd  N  4BTc. Figures 10.19 and 10.20 show the implementation of an OFDM diver-
sity system. For illustration purposes consider a frequency-selective fading channel of L taps.
We assume that the channel is underspread ( Td  Tc ) and select the number of subcarriers
N as a power of two that satisfies the above design constraint. Each diversity subchannel
consists of N=Lb c correlated subcarriers ( xb c = integer part of x). The Lth diversity
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Figure 10.19 OFDM diversity modulator.
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Figure 10.20 OFDM diversity demodulator.
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subchannel can be filled with N � L N=Lb c unused subcarriers, which can be discarded
before combining takes place at the demodulator. After diversity deinterleaving the pre-
combining variables of L diversity subcarriers for the case of low-mobility OFDM are

ẐðkÞ ¼ Hl;kZðkÞ þ Nl;k ; l ¼ 1; 2; . . . ; L; k ¼ 0; 1; . . . ; N=Lb c (10:234)

Applying MRC to the above L pre-combining variables for each diversity subcarrier
symbol, the bit error probability of the L-fold diversity system is given by (10.194). The
performance of an L-fold diversity OFDM signal with diversity SNR as compared to the
performance of its non-diversity counterpart with non-diversity SNR is the same as that for
time diversity discussed previously, assuming that both signals have the same transmitted
power and input bit rate.

Rake receiver

Multipath-delay diversity that occurs naturally in a frequency selective fading channel can
be implemented via a special receiver called a Rake receiver. This type of receiver is
particularly suited to a direct sequence spread spectrum signal with a wide bandwidth
covering many coherence bandwidths. Such a wideband channel is modeled as an L-tap
channel with the following impulse response:

hðτ; tÞ ¼
XL 1

l¼0

hiðtÞδðτ � τiðtÞÞ (10:235)

where τ0ðtÞ5τ1ðtÞ5. . .5τL 1ðtÞ. We assume that the channel varies slowly so that the
channel taps remain constant over many symbols (the channel coherence time is several
symbols long). Furthermore, the multipath delay spread is assumed to be less than a symbol
time (the channel is underspread) so that ISI affects only the next symbol. These assump-
tions are valid for most practical wireless systems. Thus, the L-tap channel model is time-
invariant and can be expressed as follows:

hðτÞ ¼
XL 1

l¼0

hlδðτ � τlÞ (10:236)

With the time-varying component t eliminated we can replace the delay-time τ with t to work
with the received signal conventionally expressed in time t. Hence, we have

hðtÞ ¼
XL 1

l¼0

hlδðt � τlÞ (10:237)

Let us consider the transmitted symbol dk ¼ dk þ jd̂k ; kTs � t5ðk þ 1ÞTs of a complex
speading I-Q signal, where dk and d̂k are the kth in-phase and quadrature bits normalized to
the smallest symbol energy E ¼ A2Ts=2, respectively. The transmitted signal is given by

sðtÞ ¼ Re sLðtÞ e j2πfct
� 

(10:238)

where the carrier frequency fc is assumed to be an integer multiple of 1=Ts and the complex
envelope sLðtÞ is given by the following expression:
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sLðtÞ ¼ dkcðt � kTsÞ (10:239)

The complex spreading PN sequence cðtÞ with unit amplitude squared pulse shape and chip
time Tc and periodNTc (selected to be an integer multiple of Ts) is expressed in terms of both
in-phase and quadrature PN sequences cI ðtÞ and cQðtÞ as

cðtÞ ¼ cI ðtÞ þ jcQðtÞ; 05t � NTc (10:240)

For the paths to be resolvable it is necessary for the chip time to be smaller than the smallest
delay between paths. The convolution of sLðtÞ and hðtÞ results in the received complex
envelope rLðtÞ, which contains L copies of each transmitted symbol and its associated ISI
from the preceding and succeeding symbols. We have

rLðtÞ ¼ A
XL 1

l¼0

hldk e j2πfcτlcðt � kTs � τlÞ þ Ik 1ðtÞ þ Ikþ1ðtÞ þ nðtÞ (10:241)

where noise n(t) has the power spectral density N0=2 (W/Hz). The term Ik 1ðtÞ represents
L� 1 ISI signals from the preceding ðk � 1Þth symbol and the term Ikþ1ðtÞ represents L� 1
ISI signals from the succeeding symbol ðk þ 1Þth, respectively. We have

Ik 1ðtÞ ¼ A
XL 1

l¼1

hldk 1 e j2πfcτl cðt � ðk � 1ÞTs � τlÞ (10:242)

Ikþ1ðtÞ ¼ A
XL 1

l¼1

hldkþ1 e j2πfcτl cðt � ðk þ 1ÞTs � τlÞ (10:243)

Any arbitrary mth path of the kth symbol experiences L� m ISI signals from the preceding
ðk � 1Þth symbol and m� 1 ISI signals from the ðk þ 1Þth symbol. Assume that the
channel taps hl and path delays τl are available via perfect channel estimation. They
are then used to demodulate the received signal rðtÞ ¼ Re rLðtÞ e j2πfct

� 
to L complex

baseband signals (corresponding to L paths) via L complex local carriers
2=Ts

p
e j2πfcðt τlÞ; l ¼ 1; 2; . . . ; L. Next, the complex despreading process is carried out

for the interested symbol by multiplying the complex baseband signals with
c�ðt � kTs � τlÞ=2; l ¼ 1; 2; . . . ; L, where cðtÞj j2¼ 2. This is followed by integrating the
demodulated baseband signals for one symbol time to obtain L pre-combining decision
variables. This demodulation process creates L Rake fingers. The output of the lth Rake
finger for the kth symbol is given as

Yl ¼
ððkþ1ÞTs τl

kTs τl

A
1

2Ts

r

hldk dt þ Il þ Il þ Iþl þ Nl

¼ hlsk þ Il þ Il þ Iþl þ Nl

(10:244)

where sk is the unnormalized kth symbol with energy Ek ¼ skj j2 given by

sk ¼ A2Ts
2

r

dk ¼ E
p

dk ; Ek ¼ skj j2¼ E dkj j2;
E ¼ A2Ts=2 ¼ smallest symbol energy

(10:245)
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The complex Gaussian noise variable Nl has zero mean and variance 2σ2 ¼ N0, where
σ2 ¼ N0=2 is the variance of the in-phase noise or quadrature noise. The self interference
Il is referred to as intrapath interference (IPI), and Il and Iþl are ISI. Given the unnormal-
ized ðk � 1Þth and ðk þ 1Þth symbols, the expressions for these three parameters are

Il ¼ 1

2

ððkþ1ÞTs τl

kTs τl

XL 1

m¼0
m 6¼l

A
1

2Ts

r

hmdke j2πfcðτm τlÞcðt � kTs � τmÞc�ðt � kTs � τlÞ dt

¼ 1

2Ts

XL 1

m¼0
m6¼l

hmske j2πfcðτm τlÞ
ððkþ1ÞTs τl

kTs τl

cðt � kTs � τmÞc�ðt � kTs � τlÞ dt

(10:246)

Il ¼ 1

2

ðkTs τlþτm

kTs τl

XL l

m¼2
m4l

A
1

2Ts

r

hmdk 1e j2πfcðτm τlÞcðt � ðk � 1ÞTs � τmÞ

	 c�ðt � kTs � τlÞ dt

¼ 1

2Ts

XL l 1

m¼1
m4l

hmsk 1e j2πfcðτm τlÞ
ðkTs τlþτm

kTs τl

cðt � ðk � 1ÞTs � τmÞc�ðt � kTs � τlÞ dt

(10:247)

Iþl ¼ 1

2

ððkþ1ÞTs τlþτm

ðkþ1ÞTs τl

Xl 2

m¼0
m5l

A
1

2Ts

r

hmdkþ1e j2πfcðτm τlÞcðt � ðk þ 1ÞTs � τmÞc�ðt � kTs � τlÞ dt

¼ 1

2Ts

Xl 2

m¼0
m5l

hmskþ1e j2πfcðτm τlÞ
ððkþ1ÞTs τlþτm

ðkþ1ÞTs τl

cðt � ðk þ 1ÞTs � τmÞc�ðt � kTs � τlÞ dt

(10:248)

In the above integrals the product of two complex PN sequences is defined over their
overlapping interval only. The independent IPI and ISI variables can be approximated as
zero mean complex Gaussian variables with variances 2σ2I , 2σ

2
I , and 2σ2Iþ , respectively,

where σ2I , σ
2
I , and σ2Iþ are the variances of the corresponding in-phase interference or

quadrature interference. Combining the three interferences with Gaussian noise and denot-
ing it as Nl ¼ Il þ Il þ Iþl þ Nl, with the total variance as the sum of variances
2σ2 ¼ 2σ2I þ 2σ2I þ 2σ2Iþ þ 2σ2, we obtain L Rake finger outputs for the kth symbol as
follows:

Yl ¼ hlsk þNl; l ¼ 1; 2; . . . ; L (10:249)

Defining the vector h as h ¼ ½h1 h2 . . . hL�t and applying maximal ratio combining to the
above L Rake finger outputs we obtain the bit error probability for the Rake receiver of an
I-Q signal as

Pb ¼ E
Nn

log2 M
Q 2 hk k2αSINR
q� �� �

(10:250)
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where the path signal to interference and noise ratio SINR and the positive constant α,
are given by

αSINR ¼ 1

2

dmin
2σ

� �2

(10:251)

where dmin ¼ min
i;j

jjsi � sjjj is the minimum Euclidean distance of the I-Q signal set (as
usual we use the mapping si ! si to convert complex-valued symbols to two-
dimentional vector symbols). Note that the path SINR of the Rake receiver is similar
to the diversity SNR discussed previously for controlled time diversity and frequency
diversity such as OFDM. In a controlled diversity method with L copies of a trans-
mitted symbol, the energy going into each diversity symbol is 1/L times the non-
diversity symbol energy. On the other hand, the DS-SS transmitter transmits only one
copy of the transmitted symbol (no diversity), and the channel provides diversity for
the receiver in the form of L resolvable paths. Given a transmitted power P, the lth
path has an average power Pl5P and, hence, the symbol in a path has only a fraction
of the energy of the transmitted symbol. If we assume that all paths have a normalized
unit mean square value, that is, Eð hlj j2Þ ¼ 1; l ¼ 1; 2; . . . ; L, then each path symbol
has 1/L times the energy of the transmitted symbol. Thus, without the Rake receiver,
one would have a power loss of 10 logL (dB). The bit error probability of the Rake
receiver is the same as that of MRC, with SINR replacing SNR in the appropriate bit
error probability expressions. To evaluate the bit error probability of the Rake receiver
it is necessary to find the variances of IPI and ISI variables. These variances can be
found using the results developed for CDMA in Chapter 8, assuming that the PN
sequence can be modeled as a random binary sequence (when the period of the PN
sequence, in chips, is much larger than the number of chips per symbol). In practice,
the multipath delay spread is much smaller than the symbol time of a direct sequence
spread spectrum signal in the cellular and PCS bands. Hence, IPI is much larger than
ISI and consequently we have σ2I � σ2I þ σ2Iþ . For this case, we can approximate the
total variance of interference and noise as σ2 � σ2I þ σ2 ¼ ðL� 1ÞEs=N þ N0=2, where
Es ¼ Eð skj j2Þ is the average symbol energy and N is the spread factor. Note that in
time and OFDM diversities with diversity SNR, the performance comparision with a
non-diversity receiver with SNR is carried out with SNR ¼ SNR=L. In the case of the
Rake receiver, the performance comparision with a non Rake receiver is carried out
with both receivers having the same SINR, since the non-Rake receiver just locks
onto only one path. Thus, when channel noise dominates IPI, the performance of the
Rake receiver with SINR approaches the performance of the maximal ratio combiner
as compared to a non-Rake receiver with the same SINR. The bit error probability of
a non-Rake receiver is given by (10.195) with the magnitude of the path channel tap
hj j replacing hk k, and this is identical to (10.54) with SINR replacing SNR. Thus, an
additional power gain of 10 log L (dB) besides diversity gain is achieved for a Rake
receiver when compared to a non-Rake receiver. This is not the case for controlled
diversity. Figure 10.21 shows the conceptual complex-valued Rake receiver.
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Example 10.24 Channel estimation for a Rake receiver
The channel estimation consists of estimating the channel taps hl and the tap delays τl. This
could be done by using the pilot tone or pilot symbols that are known a priori by the receiver.
Once PN sequence synchronization is accomplished, the Rake fingers are synchronized and
the tap delays are immediately known. The outputs of the Rake fingers for a given known
symbol sk are of the form

Yl ¼ hlsk þ Nl; l ¼ 1; 2; . . . ; L (10:252)

The channel taps can be estimated via MMSE estimation (Example 10.6) or direct estima-
tion (Example 10.7).
■

Example 10.25 Performance of a Rake receiver
Let us consider a three-tap channel with L = 3, SINR = 100 (20 dB), Nn ¼ 1; M ¼ 2
(PSK). Using (10.57) or (10.207) with αSINR replacing αSNR we have Pb � 2:5	 10 3

for a non Rake receiver that locks onto one path. For a Rake receiver, the bit error
probability is calculated from (10.210) with αSINR replacing αSNR to yield
Pb � 1:6	 10 7. In other words, to achieve this bit error probability the non-Rake receiver
must have a αSINR about 62 dB instead of 20 dB. The diversity gain is approximately
42 dB.

Now let us consider the case where the spread factor of the PN sequence is N = 256. The
minimum Euclidean distance for PSK is dmin ¼ 2Eb

p
. The path signal-to-interference-and-

noise ratio is given by the expression (8.81) αSINR ¼ 1=2 dmin=2σð Þ2¼ ðL� 1Þ=½
N þ N0=Eb� 1 ¼ 100 if Eb=N0 ¼ 457. Note that αSNR ¼ Eb=N0 is the channel signal-to-
noise ratio. In this case the interference dominates the channel noise.
■
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Figure 10.21 The complex-valued Rake receiver.
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10.14 Receive antenna diversity (SIMO)

Antenna diversity is most popular with cellular systems and wireless LANs. It can be
implemented as receive antenna diversity with one transmit antenna and multiple receive
antennas (Figure 10.22). This is also referred to as the single input multiple output (SIMO)
system. On the other hand, receive antenna diversity puts some constraints on the receiver,
such as antenna separation, in order to be effective.

For receive antenna diversity to work the channel taps of the received paths must be
uncorrelated. This would provide spatial diversity in the case of deep fading at one or more
receive antennas. The hope is that the received signal at other antennas might still be strong
enough for reliable detection. Consider the case of base station-to-mobile transmission
(forward channel) in a cellular system. The mobile station is commonly close to the ground
surrounded by numerous local scatterers. Therefore, the waves arrive equally likely from all
azimuth angles and the paths decorrelate over small spatial distance. This requires a small
separation between receive antennas, commonly less than one signal wavelength. On the
other hand, in the mobile-to-base station transmission (reverse channel), the base station
antennas are normally located high above the ground and local scatterers participate weakly
in the received signals. Most waves arriving at the base station come from a limited angular
region surrounding the mobile station. This implies that the paths decorrelate over a larger
spatial distance as compared to the forward channel. The antenna separation at the base
station is normally more than ten signal wavelengths.

Consider an antenna array of two isotropic elements in the x–z plane with element 1 at the
origin of the coordinate system. Let d be the element separation and ψ be the angle between
the array and the x-axis. The plane wave arrives with elevation angle ’ and azimuth angle θ,
as shown in Figure 10.23.

The E-field phasors for the waves incident on elements 1 and 2 are given by

V1ð’; θÞ ¼ V0ð’; θÞ
V2ð’; θÞ ¼ V0ð’; θÞ e jk0dðcos ψ cos θ sin ’þsin ψ cos ’Þ (10:253)

where V0ð’; θÞ is unity for isotropic antenna elements and k0 ¼ 2πfc=c ¼ 2π=λ is the free
space wave number. To determine the degree of correlatedness between the two waves we
examine the spatial correlation coefficient ρ, which is defined as the cosine of the angle
between the two phasors. We have

Transmitter Receiver

Figure 10.22 The conceptual receive antenna diversity.
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ρ ¼ E V1V�
2

� �

E V1j j2
� �

E V2j j2
� �r (10:254)

Substituting the phasor expressions into the above equation we obtain

ρ ¼
Ð π
’¼0

Ð 2π
θ¼0 V1ð’; θÞV�

2ð’; θÞf’ θð’; θÞ d’dθ
Ð π
’¼0

Ð 2π
θ¼0 V1ð’; θÞj j2f’ θð’; θÞ d’dθ

Ð π
’¼0

Ð 2π
θ¼0 V2ð’; θÞj j2f’ θð’; θÞ d’dθ

q

¼
ðπ

’¼0

ð2π

θ¼0
e jk0dðcos ψ cos θ sin ’þsin ψ cos ’Þf’ θð’; θÞ d’dθ

(10:255)

The function f’ θð’; θÞ is the joint probability density function of the polar angle ’ and
azimuth angle θ, respectively. In our analysis we assume that ’ and θ are independent and
hence f’ θð’; θÞ ¼ f’ð’ÞfθðθÞ. Note that 0 � ρj j2� 1. A larger value of ρj j2 indicates a
stronger correlation between the two incident plane waves. On the other hand, when ρj j2¼ 0
the two incident plane waves are uncorrelated.

Mobile station antennas

The mobile station is close to the ground with rich scatterers around it. Therefore, it is
reasonable to assume that the waves arrive at the mobile station with equal probability from
all angles in the azimuth plane (the Clarke model). Hence, the azimuth angle θ is uniformly
distributed in (0, 2π ) and fθðθÞ ¼ 1=2π. We have

ρ ¼
ðπ

’¼0

1

2π

ð2π

θ¼0
e jk0d cos ψ cos θ sin ’dθ

� �
e jk0d sin ψ cos ’f’ð’Þ d’

¼
ðπ

’¼0
J0ðk0d cosψ sin’Þ e jk0d sin ψ cos ’f’ð’Þ d’

(10:256)
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Figure 10.23 Two-antenna array with incident plane waves.
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For the horizontal array (ψ ¼ 0) we get

ρ ¼
ðπ

’¼0
J0ðk0d sin’Þ f’ð’Þd’ (10:257)

For a vertical array ( ψ ¼ π=2 radians) we get

ρ ¼
ðπ

’¼0
e jk0d cos ’f’ð’Þ d’ (10:258)

Furthermore, f’ð’Þ ¼ sin’ δð’� π=2Þ is the density function for the elevation angle.
Therefore, for a horizontal array the spatial correlation coefficient is

ρ ¼ J0ðk0dÞ ðClarke model � horizontal arrayÞ (10:259)

On the other hand, ρ ¼ 1 for a vertical array since the waves traveling in the horizontal
plane to arrive at the two vertically separated antennas are identical.

We can also use the Aulin model to assume that the arrival angle of the incident waves is
restricted to the angular region π=2� Δ’ � ’ � π=2þ Δ’. In this model the density
function of the polar angle ’ is given in (10.43) and the spatial correlation coefficient for a
vertical array is

ρ ¼ sinðk0d sinΔ’Þ
k0d sinΔ’

ðAulin model � vertical arrayÞ (10:260)

Example 10.26 Separation of antenna elements
Consider the application of receive antenna diversity to cellular communication at 1.9GHz.
The corresponding wavelength is λ ¼ 15:8 cm and the wave number is k0 ¼ 39:8. For a
horizontal array Clarke model, the degree of correlatedness can be assessed via
ρj j2¼ J0ðk0dÞj j2. For numerical illustration let k0d ¼ 2:2, which requires the inter-element
spacing to be d = 5.5 cm (about 0.35λ ). This inter-element spacing corresponds to
ρj j2¼ 0:012 or �19 dB. Hence, the received paths from the transmitter to the receive
antenna elements are virtually uncorrelated.

For a vertical array Aulin model and the same requirement ρj j2¼ 0:012 or�19 dB, we get
k0d sinΔ’ ¼ 5:6 radians. This implies that d ¼ 5:6=k0 sinΔ’. For numerical illustration let
Δ’ ¼ π=4 radians, then d = 20 cm (about 1.27λ).
■

Base station antennas

The base station antenna array is commonly located high above the ground and has only a
few local scatterers around it. Most of the waves arriving at the array come from scatterers
surrounding the mobile station instead. For cellular communications, the mobile station can
be a few kilometers from the base station. Even with a high antenna tower, the elevation
angles of the arriving waves from scatterers around the mobile station are very small – a few
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degrees at most. To ensure that all mobile stations at the edge of the cell (with the weakest
signals) can benefit from diversity, the inter-element spacing must be large enough for
diversity paths to be uncorrelated. Let us consider a vertical array Aulin model with the
requirement ρj j2¼ 0:012 or �19 dB. We get k0d sinΔ’ ¼ 5:6 radians. This implies that
d ¼ 5:6=k0 sinΔ’. For numerical illustration let Δ’ ¼ 50, then d = 2m (about 12.8 λ ).
Thus, the inter-element spacing at the base station antenna array is much larger than inter-
element spacing at the mobile station antenna array.

Performance

The following examples illustrate the performance of communication systems employing
receive antenna diversity alone or with other controlled diversity techniques.

Example 10.27 Receive antenna diversity gain
We wish to evaluate the diversity gain over a single-antenna receiver. We assume that all paths
are uncorrelated and non-resolvable and the channel is a slow fading Rayleigh channel. The
modulation is QPSK. The multiple-antenna receiver achieves a power gain of 10 logL (dB)
over a single antenna receiver, where L is the number of the antenna elements in the array. We
note that there are practical constraints on the number of antenna elements an array can have,
such as size and cost. Each antenna element output must be separately processed by a
dedicated receiver before the combining process. For a large L, this would lead to a huge
and exorbitantly expensive antenna receiver. To compare the performance between the
diversity receiver and the single-antenna receiver we observe that the diversity αSNR is
identical to the αSNR of the single-antenna receiver. Consider the case of MRC with L = 3
antenna elements and αSNR = 100 (20 dB). Using (10.210) we get Pb � 1:6	 10 9 for a
diversity receiver. Using (10.57) or (10.219) with αSNR = αSNR we have Pb � 2:5	 10 3

for a single-antenna receiver. In other words, to achieve the bit error probability of the diversity
receiver, the single-antenna receiver must have an αSNR of about 62 dB instead of 20dB. The
diversity gain is approximately 42 dB. Note that with receive antenna diversity there is no self-
interference caused by multipaths (IPI) as experienced by the Rake receiver. Therefore, the
required input signal-to-noise ratio αSNR for a Rake receiver must be well above 20dB to
assure a total input signal-to-interference-and-noise ratio of 20 dB.
■

Example 10.28 Receive antenna diversity/controlled diversity
In power-limited applications the combining of a controlled diversity technique such as time
diversity or OFDM diversity with receive antenna diversity can significantly lower the bit
error probability. Given a controlled L1-fold diversity and an L2-fold receive antenna
diversity (that is, L2 distinct L1-fold diversity receivers) we have a total of L ¼ L1L2 pre-
combining variables that form the input to the combiner.

For numerical illustration, let us consider a Rayleigh fading channel and compare the
performance of a three-fold receive antenna diversity/three-fold controlled diversity QPSK
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signal with MRC to the performance of its counterpart without diversity assuming both
signals have the same transmitted power and input bit rate. We have L1 ¼ L2 ¼ 3 and L = 9.
Assume that the required bit error probability for the diversity system is Pb � 4:2	 10 6.
Using (10.210) with Nn ¼ 2; M ¼ 4 for QPSK and L = 9, the L1-fold diversity signal-to-
noise ratio is αSNR ¼ 3 or 4.8 dB. A non-diversity system with αSNR ¼ L1αSNR ¼ 9 or
9.5 dB would have a bit error probability of 2:6	 10 2. A three-fold controlled diversity
would require αSNR ¼ 33:4 or 15.2 dB, and a non-diversity system must have
αSNR ¼ 48 dB to have Pb � 4:2	 10 6. The L-fold diversity gain is approximately
48� 9:5 ¼ 38:5 dB as compared to 28 dB for the L1-fold diversity system (Example 10.19).
■

Example 10.29 Receive antenna diversity/Rake diversity
The difference between Rake diversity and controlled diversity is the fact that a Rake
receiver enjoys a power gain advantage of 10 log L (dB) over a controlled diversity receiver.
Ideally, each finger of the Rake receiver receives the full energy of the symbol. On the other
hand, the controlled diversity receiver receives 1/L times the energy of a symbol, assuming
the same bit rate and equal transmitted power for each system. Given L1-fold Rake and L2-
fold receive antenna diversity (that is, L2 distinct L1-fold Rake receivers) we have a total of
L ¼ L1L2 pre-combining variables from L Rake fingers that form the input to the combiner.

For numerical illustration, let us consider a Rayleigh fading channel and compare the
performance of a three-fold receive antenna diversity/three-fold Rake diversity DS-PSK
signal with MRC to the performance of its counterpart without diversity assuming both
signals have the same transmitted power and input bit rate. We have L1 ¼ L2 ¼ 3 and L = 9.
Assume that the required bit error probability for the diversity system is Pb � 4:2	 10 6.
Using (10.210) with αSINR replacing αSNR, and Nn ¼ 1; M ¼ 2 for PSK, and L = 9, the
path signal to interference and noise ratio is αSINR � 3 or 4.8 dB. A non-receive antenna
diversity/non-Rake receiver with α SINR = 3 or 4.8 dB would have a bit error probability of
2:6	 10 2. A three-fold Rake receiver would require αSINR = 15.2 dB and a non-receive
antenna diversity/non-Rake receiver must have αSINR of 48 dB to have Pb � 4:2	 10 6,
which is not possible because IPI limits α SINR to no more than 20 dB (Example 10.25).

Now let us consider the case where the spread factor of the PN sequence is N = 256. The
minimum Euclidean distance for PSK is dmin ¼ 2Eb

p
. The path signal-to-interference-and-

noise ratio is αSINR ¼ 1=2 dmin=2σð Þ2¼ ðL1 � 1Þ=N þ N0=Eb½ � 1¼ 3 from above. This
requires a channel signal-to-noise ratio equal to αSNR ¼ Eb=N0 � 3 or 4.8 dB. In this case
the channel noise dominates interference. On the other hand, for a non-receive antenna
diversity/non-Rake DS-PSK receiver to have Pb � 2:5	 10 3 at αSINR = 20dB (as men-
tioned above, this receiver cannot do better than this) we must have αSNR ¼ Eb=N0 ¼ 457 or
26.6 dB. Then, the diversity gain defined as the difference between αSNR required for the
diversity receiver to achieve Pb � 4:2	 10 6 and αSNR required for the non-diversity DS-
PSK receiver to achieve Pb � 2:5	 10 3 is 26.6 dB minus 4.8 dB, which is 21.8 dB.
■
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10.15 Transmit antenna diversity (MISO)

Antenna diversity can also be implemented as transmit antenna diversity with multiple
transmit antennas and one receive antenna (Figure 10.24). This is also referred to as a
multiple input single output (MISO) system. The general case of multiple transmit and
receive antennas is treated in the next section. Transmit antenna diversity is a controlled
diversity technique that provides spatial repetition of a transmitted symbol via different
antennas. The concept is similar to time diversity, which provides time repetition of a
transmitted symbol via different symbol times. Time diversity is a repetition code where
the code word consists of L copies of the transmitted symbol. These channel tap weighted
copies are made available at the input of the combiner after deinterleaving. Spatial repetition
via different transmit antennas alone cannot provide separate copies of the symbol at the
receiver because the single-antenna receiver receives the sum of these channel tap weighted
copies without the ability to separate them for combining. A combination of these two
diversity techniques should provide the receiver with sufficient statistics to separate copies
of a transmitted symbol for combining. This is dictated by (10.190) for maximal ratio
combining. Therefore, transmit antenna diversity is also referred to as orthogonal space
time coding. As in the case of receive antenna diversity we assume that the transmit antennas
have sufficient inter-element spacing to ensure all paths from the transmitter to the receiver
are uncorrelated.

Space-time coding

For Ls symbol times and Lt-fold transmit antenna diversity we obtain a space-time block
code represented by a complex Ls 	 Lt matrix G, which consists of Lt parallel code words
(the columns of the matrix) whose elements are the transmitted symbols. The repetition code
is a special case of the space-time block code with Lt ¼ 1, and the code word contains Ls
copies of one transmitted symbol, thus providing a diversity order of Ls. This indicates that
the rate of the repetition code is 1=Ls, which is quite inefficient. A space-time block code
allows the transmission of m symbol copies in each code word of Ls symbols, thereby
increasing the code rate tom/Ls. The diversity order of the space-time code is Lt, the number

Transmitter Receiver

Figure 10.24 The conceptual transmit antenna diversity.
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of transmit antennas. To separate the symbol copies for combining it is necessary that
the columns of the code matrix G be (complex) orthogonal since the transmitter sends
all Lt code words concurrently over Ls symbol times. Also, the channel is assumed to
remain constant for m symbol times. If we assume perfect channel estimation, then, for
a given transmitted space-time block code matrix G, the sufficient statistics for maximal
ratio combining is dictated by the ability to obtain a matrix H from the vector Gh as
follows:

Gh ! Hs

H�H ¼ hk k2Im
(10:261)

where h ¼ ½h1 h2 � � � hLt �t is the channel tap vector representing Lt paths; s is the symbol
vector whose m components are the transmitted symbols on their complex conjugates; H is
referred to as the channel tap matrix, an Ls 	 mmatrix whose elements are the channel taps
and its complex conjugates and whose structure depends onG; and Im is the m	 m identity
matrix. The columns of H are orthogonal, a necessary condition for the detection of s to be
decomposed into m separate complex variables. This implies that the columns of G must
also be orthogonal such that G�G ¼ sk k2ILt . The matrix H is known by the receiver via
channel estimation and the known structure of G. We use the notation A� for the conjugate
and transpose of a matrix A. Note that the vector Gh is the sum of Lt channel tap weighted
code words. Let N ¼ ½N 1N 2 � � � N Ls �t be the Gaussian noise vector whose elements are
independent zero mean complex Gaussian variables with identical variance 2σ2. The pre
mapped vector at the input of the combiner is

Z ¼ GhþN (10:262)

The vector Z is mapped into vector Y by changing some of its elements into their complex
conjugates as dictated by the structure of G such that

Y ¼ HsþN (10:263)

The noise vector N ¼ ½N1 N2 NLs �t has independent zero mean complex Gaussian compo-
nents with identical variance 2σ2. The maximum ratio combiner performs the operation
H�Y= hk k to obtain the decision vector X:

X ¼ 1

hk kH
�Hsþ 1

hk kH
�N

¼ hk ksþ 1

hk kH
�N

(10:264)

The complex jointly Gaussian noise vector H�= hk kð ÞN has a diagonal covariance matrix
E H�NN�H= hk k2
� �

¼ H�E NN�ð ÞH= hk k2¼ 2σ2H�H= hk k2¼ 2σ2Im. This implies that
the components of this noise vector are white and have identical variance 2σ2, and hence
are independent. Thus, the decision vector X consists of m independent complex decision
variables Xk , k = 1, 2, . . . ,m, that can be detected bym parallel minimumEuclidean distance
detectors.
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Example 10.30 Diversity gain with space-time coding
We wish to evaluate the diversity gain over a single-antenna receiver. We assume that all
paths are uncorrelated and non-resolvable and the channel is a slow fading Rayleigh channel
such that it can be viewed as constant over m symbol times. The Lt-antenna transmitter
divides a fixed transmitted power over Lt antennas. Therefore, the transmitted symbol
energy has only 1/ Lt times the energy of a symbol transmitted by a single-antenna trans-
mitter. To compare the performance between the transmit diversity receiver and the
non-transmit diversity receiver we observe that the diversity SNR is equal to SNR/Lt,
where SNR is the signal-to-noise ratio of the non-transmit diversity receiver. The transmit
diversity gain with space-time coding is identical to that of a Lt-fold time diversity system
with single-antenna transmitter and single-antenna receiver. Compared to a single-antenna
transmitter and Lt-antenna receiver system, the space-time coding system suffers a 10 log Lt
(dB) power penalty.
■

Alamouti code

The Alamouti space-time block code is recommended in the IEEE 802.16 standard for
WMAN. The code is specified by the matrix G whose code words ½s1 � s�2�t and ½s2 s�1�t
are the columns of G:

Antenna 1 Antenna 2

" "

G ¼ s1 s2

�s�2 s�1

� � !
!

Symbol time 1

Symbol time 2

(10:265)

Note that the columns of G are orthogonal and so are the rows, that is,
G�G ¼ GG� ¼ sk k2I2, where s ¼ ½s1 s2�t. The Alamouti code allows the transmission of
two symbols over two antennas in two consecutive symbol times. Thus, the code rate is
unity since m=Ls ¼ 2=2 ¼ 1. Hence, the Alamouti code requires no bandwidth expansion
and is the perfect space-time block code. The sum of the channel-tap weighted code words
plus noise is

Z ¼ h1
s1
�s�2

� �
þ h2

s2
s�1

� �
þ N 1

N 2

� �

¼ h1s1 þ h2s2
h2s�1 � h1s�2

� �
þ N 1

N 2

� �
¼ GhþN

(10:266)

The vectorZ ¼ GhþN can bemapped intoY ¼ HsþN by changing the second element
of Z ¼ ½Z1 Z2�t, which is Z2 ¼ h2s�1 � h1s�2 þ N 2, into its complex conjugate
Z�
2 ¼ h�2s1 � h�1s2 þ N �

2. Thus we have
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Y ¼ HsþN ¼ Z1
Z�
2

� �
¼ h1s1 þ h2s2

h�2s1 � h�1s2

� �
þ N1

N2

� �

¼ h1 h2
h�2 �h�1

� �
s1
s2

� �
þ N1

N2

� � (10:267)

where N ¼ ½N1 N2�t ¼ ½N 1 N �
2�t, and the corresponding channel tap matrix H of the code

matrix G is given by

H ¼ h1 h2
h�2 �h�1

� �
(10:268)

Assume that the channel taps h1 and h2 are obtained from perfect channel estimation. The
receiver uses the matrix H to perform maximal ratio combining via the operation
H�Y= hk k ¼ H�ðHsþNÞ= hk k ¼ hk ksþH�N= hk k, where h ¼ ½h1 h2�t. Let us examine
the noise vector H�N= hk k, we have

1

hk kH
�N ¼ 1

hk k
h�1N1 þ h2N2

h�2N1 � h1N2

� �
(10:269)

The jointly Gaussian components have zero mean and identical variance 2σ2. Furthermore,
they are uncorrelated since E h�1N1 þ h2N2

� �
h�2N1 � h1N2

� ���  ¼ 0. Thus, the noise com-
ponents are independent.

Rate ½ space-time code

Alamouti code is a perfect space-time block code of unity rate for complex symbols. It
provides two-fold diversity. There are no perfect space-time block codes with complex
symbols for diversity order greater than two. To achieve sufficient statistics as described in
(10.261) for such cases, the code rate has to be smaller than unity. In this section we discuss
rate ½ space-time code with four-fold diversity whose code matrix G is given below:

Antenna 1 Antenna 4

" . . . . . . . . . "

G ¼

s1 s2 s3 s4
�s2 s1 �s4 s3
�s3 s4 s1 �s2
�s4 �s3 s2 s1
s�1 s�2 s�3 s�4
�s�2 s�1 �s�4 s�3
�s�3 s�4 s�1 �s�2
�s�4 �s�3 s�2 s�1

2

66666666666664

3

77777777777775

! Symbol time 1

! Symbol time 2

! Symbol time 3

! Symbol time 4

! Symbol time 5

! Symbol time 6

! Symbol time 7

! Symbol time 8

(10:270)

There are four symbols transmitting over eight symbol times (rate ½) via four antennas
(four-fold diversity). The mapping of vector Z ¼ GhþN into Y ¼ HsþN is accom-
plished via the matrix H given by
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H ¼ 1

2
p

h1 h2 h3 h4
h2 �h1 h4 �h3
h3 �h4 �h1 h2
h4 h3 �h2 �h1
h�1 h�2 h�3 h�4
h�2 �h�1 h�4 �h�3
h�3 �h�4 �h�1 h�2
h�4 h�3 �h�2 �h�1

2

66666666664

3

77777777775

(10:271)

Note thatH�H ¼ hk k2I4, where h ¼ h1 h2 h3 h4½ �t. Therefore, the sufficient statistics
(10.261) are satisfied and maximal ratio combining can be performed via the operation
X ¼ H�ðHsþNÞ= hk k ¼ hk ksþH�N= hk k, where s ¼ s1 s2 s3 s4½ �t can be
detected separately by four parallel minimum Euclidean distance detectors.

Sufficient statistics

The sufficient statistics in (10.261) do not apply to some space-time block codes. In this
section we present other sufficient statistics, and that they apply to space-time block codes
of smaller rate, such as rate ¾. If we assume perfect channel estimation then, for a
given orthogonal space-time block code matrix G, where G�G ¼ sk k2ILt , maximal ratio
combining is achieved for any received vector Z ¼ GhþN, if there exist m vectors h�i ,
i = 1,2, . . . , m, with identical norm h�i

�� ��2¼ hk k2 such that

1

hk k h
�
iY i ¼ hk ksi þ Ni; i ¼ 1; 2; . . . ;m

h�i hi ¼ hk k2
(10:272)

where m is the number of transmitted symbols in the code vector; N ¼ ½N 1 N 2 . . . N Ls �t is
the Gaussian noise vector whose elements are independent zero mean complex Gaussian
variables with identical variance 2σ2; h ¼ ½h1 h2 � � � hLt �t is the channel tap vector represent-
ing Lt paths; Y i ¼ Yi;1 Yi;2 � � � Yi;Ls

� t
is the allowable received vector, where

Yi;k 2 fZk ;�Zk ; Z�
k ;�Z�

k g; and hi is referred to as the ith channel tap vector. The jointly
complex Gaussian noise vector N ¼ N1 N2 � � �Nm½ � ¼ h�1N̂1= hk k h�2N̂2= hk k . . . ; h�m

�

N̂m= hk k� contains independent components where N̂i ¼ N̂ i;1 N̂ i;2 � � � N̂ i;Ls

h i
; N̂ i;k 2

fN k ;�N k ; N
�
k ;�N �

kg.

Rate ¾ space-time code

In this section we discuss rate ¾ space-time code whose code matrix G is given below:

G ¼
s1 s2 s3 0
�s�2 s�1 0 �s3
�s�3 0 s�1 s2
0 s�3 �s�2 s1

2

664

3

775 (10:273)
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Note that the columns of G are orthogonal, that is, G�G ¼ sk k2I4, where s ¼ ½s1 s2 s3�t.
Four code words (four columns of G) contain three symbols each, and are transmitted over
four symbol times (rate ¾) and via four antennas (four-fold diversity). The statistics in
(10.261) are not sufficient for this code. Instead we use the sufficient statistics (10.272). We
have

h�1 ¼ h�1 h2 h3 h�4
� 

; h�2 ¼ h�2 � h1 h�4 � h3
� 

; h�3 ¼ h�3 � h�4 � h1 h2
� 

(10:274)

Z ¼ GhþN; Z ¼
Z1
Z2
Z3
Z4

2

664

3

775 ¼
h1s1 þ h2s2 þ h3s3
h2s�1 � h1s�2 � h4s3
h3s�1 þ h4s2 � h1s�3
h4s1 � h3s�2 þ h2s�3

2

664

3

775þ
N 1

N 2

N 3

N 4

2

664

3

775 (10:275)

Y1 ¼ Z1 Z�
2 Z�

3 Z4
� t

; Y2 ¼ Z1 Z�
2 Z3 Z�

4

� t
; Y3 ¼ Z1 Z2 Z�

3 Z�
4

� t

N̂ 1 ¼ N 1 N �
2 N �

3 N 4

� t
; N̂ 2 ¼ N 1 N �

2 N 3 N �
4

� t
; N̂ 3 ¼ N 1 N 2 N �

3 N �
4

� t (10:276)

Example 10.31 Channel estimation
To estimate the channel tap vector h of a transmit diversity channel let us consider the
received vector Z ¼ GhþN. Since G�G ¼ sk k2ILt , the channel estimation can be carried
out with known pilot symbol vector s, that is, G is known to the receiver. The following
sufficient statistics provide the MMSE of the vector h:

ĥ ¼ 1

sk k2 G
�Ghþ 1

sk k2 G
�N

¼ hþ N̂

(10:277)

The jointly complex Gaussian noise vector G�= sk k2
� �

N has the diagonal covariance
matrix E G�NN�G= sk k4

� �
¼ G�E NN�ð ÞG= sk k4¼ 2σ2G�G= sk k4¼ ð2σ2= sk k2ÞIm.

This implies that the components of this noise vector are white and have identical variance
2σ2= sk k2. The components of h can be estimated in the mean-square error sense as
described in Example 10.6. In fact, at high signal-to-noise ratio ĥ can serve as the
estimate of h.
■

10.16 Transmit–receive antenna diversity (MIMO)

In the above two sections we show how powerful diversity can be whether it is imple-
mented as receive antenna diversity or transmit antenna diversity. If we combine both
implementations to form a multiple input multiple output (MIMO) system we obtain the
full diversity benefit. Let us assume that we implement transmit diversity via space-time
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coding with a complex Ls 	 Lt code matrix G, which provides Lt-fold diversity via Lt
transmit antennas for m complex symbols transmitting over Ls symbol times (code rate is
m/Ls). On the receive side we implement diversity via Lr receive antennas. We wish to
show that with proper maximal ratio combining we can achieve the full diversity of order
L ¼ LtLr.

Let us consider space time codes that possess the sufficient statistics (10.261). For each
lth receive antenna, there corresponds an orthogonal channel tap matrix Hl obtained from
the mapping Ghl ! Hls, where hl ¼ ½hl;1 hl;2 � � � hl;Lt �t is the lth channel tap vector
representing Lt paths from Lt transmit antennas to the lth receive antenna. The receivers
compute the following pre-combining vectors:

X l ¼ H�
l ðHlsþN lÞ ¼ hlk k2sþH�

l N l; l ¼ 1; 2; . . . ; Lr (10:278)

Define the channel tap vector h as follows:

h ¼ ½h1 h2 � � � hLr �t (10:279)

The normalized sum of the pre-combining vectors, X, exhibits the maximal ratio combining
for all L ¼ LtLr paths and is given by

X ¼ 1

hk k
XLr

l¼1

X l ¼ 1

hk k
XLr

l¼1

hlk k2sþ 1

hk k
XLr

l¼1

H�
l N l

¼ hk ksþ 1

hk k
XLr

l¼1

H�
lN l

(10:280)

The decision vector X can be detected by m parallel minimum Euclidean distance detectors.
The noise vector has the covariance 2σ2Im.

Let us now consider space time codes that possess the sufficient statistics (10.272). For
each lth receive antenna, there correspond m channel tap vectors h�i;l, i = 1, 2, . . . , m. The
receiver computes Xi;l ¼ h�i;lY i;l ¼ hlk k2si þ hlk kNi;l; i ¼ 1; 2; . . . ;m; l ¼ 1; 2; . . . ; Lr,
where hl ¼ ½hl;1 hl;2 � � � hl;Lt �t is the lth channel tap vector representing Lt paths from Lt
transmit antennas to the lth receive antenna. The receivers compute the following combin-
ing variables based on the channel tap vector h ¼ ½h1 h2 � � � hLr �t:

Xi ¼ 1

hk k
XLr

l¼1

Xi;l ¼ 1

hk k
XLr

l¼1

hlk k2siþ 1

hk k
XLr

l¼1

hlk kNi;l

¼ hk ksi þ 1

hk k
XLr

l¼1

hlk kNi;l; i ¼ 1; 2; . . . ;m

(10:281)

The m decision variables Xi can be detected by m parallel minimum Euclidean distance
detectors. The noise variable has the variance 2σ2.

To conclude the study of diversity we make the following observations. With regard to
transmit antenna diversity via space-time coding, the transmit diversity gain is identical to
that of a Lt-fold time diversity system with single-antenna transmitter and single-antenna
receiver (note that space-time coding utilizes bandwidth more efficiently than time diver-
sity). Compared to a single-antenna transmitter and Lt-antenna receiver system, a space-time
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coding system suffers 10 log Lt (dB) power penalty. On the other hand, there is no power
penalty for receive antenna diversity; however, physical constraints often prevent the
implementation of many antennas on a receiver such as a cell phone, personal digital
assistant, or notebook computer, for example. Thus, transmit–receive antenna diversity
offers a compromise solution by reducing the number of both transmit and receive antennas
to satisfy both physical contraints and power requirements.

Example 10.32 2 	 2 MIMO system
Consider a MIMO system with two transmit antennas utilizing the Alamouti code and two
receive antennas. Let hlj be the channel tap between the jth (j = 1, 2) transmit antenna and the
lth (l = 1, 2) receive antenna. The sum of the channel tap weighted code word at the first
receive antenna (l = 1) is

Z1 ¼ h11
s1

�s�2

� �
þ h12

s2

s�1

� �
þ N 11

N 12

� �

¼ h11s1 þ h12s2
h12s�1 � h11s�2

� �
þ N 11

N 12

� �
¼ Gh1 þN1

(10:282)

where h1 ¼ ½h11 h12�t. Similarly, for the second receive antenna (l = 2) we have

Z2 ¼ h21
s1

�s�2

� �
þ h22

s2

s�1

� �
þ N 21

N 22

� �

¼ h21s1 þ h22s2
h22s�1 � h21s�2

� �
þ N 21

N 22

� �
¼ Gh2 þN2

(10:283)

where h2 ¼ ½h21 h22�t. The vector Z l can be mapped into the vector Y l ¼ HlsþN l by
changing the second element Zl2 of Z l ¼ ½Zl1 Zl2�t into its complex conjugate. Thus, for
s ¼ ½s1 s2�t we have

Y l ¼ HlsþN l ¼ Zl1
Z�
l2

� �
; l ¼ 1; 2 (10:284)

Specifically, we obtain

Y1 ¼ h11s1 þ h12s2
h�12s1 � h�11s2

� �
þ N 11

N 12

� �

¼ h11 h12
h�12 �h�11

� �
s1
s2

� �
þ N 11

N �
12

� �

¼ H1sþN1

(10:285)

where

H1 ¼ h11 h12
h�12 �h�11

� �
; H�

1H1 ¼ h1k k2I2 (10:286)
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Also,

Y2 ¼ h21s1 þ h22s2
h�22s1 � h�21s2

� �
þ N 21

N �
22

� �

¼ h21 h22
h�22 �h�21

� �
s1
s2

� �
þ N 21

N �
22

� �

¼ H2sþN2

(10:287)

where

H2 ¼ h21 h22
h�22 �h�21

� �
; H�

2H2 ¼ h2k k2I2 (10:288)

Therefore, the decision variable X l at the lth antenna is X l ¼ H�
l ðHlsþN lÞ ¼

hlk k2sþH�
lN l; l ¼ 1; 2. Specifically, we have

X1 ¼ h1k k2sþH�
1N1

X2 ¼ h2k k2sþH�
2N2

(10:289)

The MRC decision variable is the normalized sum of X1 and X2. For the channel tap vector
h ¼ ½h11 h12 h21 h22�t we have

X ¼ 1

hk k ðX1 þ X2Þ ¼ h1k k2þ h2k k2
hk k sþ 1

hk k ðH
�
1N1 þH�

2N2Þ (10:290)

Since h1k k2þ h2k k2¼ h11j j2þ h12j j2þ h21j j2þ h22j j2¼ hk k2, we obtain the following MRC
decision vector:

X ¼ hk ksþN (10:291)

where the noise vector is N ¼ ðH�
1N1 þH�

2N2Þ= hk k. The covariance of noise N is given
by EðNN�Þ ¼ H�

1EðN1N�
1ÞH1 þH�

2EðN2N�
2ÞH2. Since EðN lN�

l Þ ¼ 2σ2I2, l = 1, 2, we
obtain EðNN�Þ ¼ 2σ2 h1k k2þ h2k k2

� �
I2= hk k2¼ 2σ2I2.

■

10.17 Channel capacity

The capacity of a complex AWGN channel was established by Shannon as
C ¼ log2ð1þ SNRÞ bits/ symbol (bits/transmission) where SNR ¼ Es=N0. For a rate less
than C, there exists a coding system such that the code words can be transmitted over the
channel with an arbitrarily small frequency of errors. For a fading channel such capacity
cannot be established because of outages which do not exist in an AWGN channel. The
instantaneous signal-to-noise ratio at the receiver is a random variable which is a function
of the squared magnitude of the channel tap. Since the instantaneous SNR can be zero, the
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instantaneous channel capacity can also be theoretically zero during a deep fade. Hence, a
positive transmission rate is always greater than C during a deep fade, and no coding
systems exist that allow the code words to be transmitted during an outage with an
arbitrarily small frequency of errors. Thus, the average channel capacity does not exist
in most practical fading channels. However, we can still define channel capacity in the
outage sense, which we will explore for the various channels studied in the previous
sections.

Slow fading

In a slow fading single-tap (flat fading) channel, the channel estimation time is smaller than
the channel coherence time. With perfect channel estimation where the Doppler effect is
nullified completely, the instantaneous signal-to-noise ratio is simply hj j2SNR, where h is the
channel tap. Thus, the instantaneous channel capacity can be defined as

C ¼ log2 1þ hj j2SNR
� �

bits=symbol (10:292)

When the instantaneous channel capacity falls below the transmission rate R due to fading
the error probability cannot be made arbitrarily small and an outage occurs. We define the
capacity outage probability as follows:

PrðC5RÞ ¼ Pr log2 1þ hj j2SNR
� �

5R
h i

(10:293)

For a specified po, there exists an outage capacity Co which is the maximum transmission
rate for which the capacity-outage probability is less than po. Setting PrðC5RÞ ¼ po and
solving for R ¼ Co we have

po ¼ Pr log2 1þ hj j2SNR
� �

5Co

h i

¼ Pr hj j25 2Co � 1

SNR

� �

¼ F hj j2
2Co � 1

SNR

� �
(10:294)

where F hj j2 yð Þ is the distribution function of hj j2. Let Fð 1Þ
hj j2 yð Þ be the inverse function of

F hj j2 yð Þ, that is, F hj j2 Fð 1Þ
hj j2 poð Þ

h i
¼ po, we can evaluate Co as follows:

Co ¼ log2 1þ Fð 1Þ
hj j2 poð ÞSNR

h i
bits=symbol (10:295)

The quantity Fð 1Þ
hj j2 poð ÞSNR is referred to as the outage signal to noise ratio.

Example 10.33 Outage capacity of a slow fading Rayleigh channel
The distribution function of the squared magnitude of the channel tap hj j2 of a Rayleigh
channel is

F hj j2 yð Þ ¼ 1� e y (10:296)

609 10.17 Channel capacity



The corresponding inverse function Fð 1Þ
hj j2 poð Þ is therefore given by

Fð 1Þ
hj j2 poð Þ ¼ ln

1

1� po
(10:297)

Hence, we obtain the outage capacity of a slow fading Rayleigh channel as

Co ¼ log2 1� flnð1� poÞgSNR½ � bits=symbol (10:298)

For an outage probability po ¼ 0:01, the outage signal-to-noise ratio is 0:01 SNR. This is
almost 100 times smaller than that of an AWGN channel. Using the identity
log2 x ¼ ln x= ln 2 and SNR = 10, the outage capacity is approximately 4% of the AWGN
channel capacity, which is C ¼ log2 1þ SNRð Þ.
■

Slow fading–receive antenna diversity

The instantaneous channel capacity for a slow fading single-tap channel with L-fold receive
antenna diversity and maximal ratio combining is given by

C ¼ log2 1þ hk k2SNR
� �

bits=symbol (10:299)

where h ¼ ½h1 h2 � � � hL�t is the channel tap vector whose components are the
channel taps of the receive paths. The outage capacity for a specified outage probability
po is

Co ¼ log2 1þ Fð 1Þ
jjhjj2 poð ÞSNR

h i
bits=symbol (10:300)

where

po ¼ Pr log2 1þ hk k2SNR
� �

5Co

h i

¼ Pr hk k25 2Co � 1

SNR

� �

¼ F hk k2
2Co � 1

SNR

� �
(10:301)

For a slow-flat Rayleigh fading channel we can use the χ2-density function with 2L degrees
of freedom. Thus, the distribution function for L-fold diversity is given by

Fjjhjj2 yð Þ ¼ 1� e y
XL 1

k¼0

yk

k!
(10:302)

There is no closed-form solution for Fð 1Þ
jjhjj2 poð Þ, and henceCo, so the result has to be obtained

numerically.
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Example 10.34 Outage capacity of a slow fading–receive antenna diversity Rayleigh
channel
Consider an outage probability po ¼ 0:01 and L = 2. For SNR = 10, the outage capacity is
approximately 38% of the AWGN channel capacity, which is C ¼ log2 1þ SNRð Þ.
■

Slow fading–transmit antenna diversity

Let us now consider the case of transmit antenna diversity using space-time coding with a
Ls 	 Lt code matrix G that provides Lt-fold transmit antenna diversity at a code rate
r ¼ m=Ls, where m symbols are transmitted in Ls symbol times. For a fixed transmitted
power P, each antenna radiates a signal with power P=Lt. This implies that the instantaneous
signal-to-noise ratio at the receiver is hk k2SNR=Lt. The instantaneous capacity of a transmit
diversity channel employing space-time coding is given by

C ¼ log2 1þ hk k2SNR
Lt

� �
bits=symbol (10:303)

An outage occurs if the instantaneous capacity falls below the target rate R. Thus

Pr C5Rð Þ ¼ Pr log2 1þ hk k2SNR
Lt

� �
5R

� �
(10:304)

Given an outage probability po, the outage capacity is given as

Co ¼ log2 1þ Fð 1Þ
jjhjj2 poð Þ SNR

Lt

� �
bits=symbol (10:305)

where po ¼ Fjjhjj2 Lt½2Co � 1�=SNR� �
and Fð 1Þ

jjhjj2 poð Þ can be calculated from (10.302).

Example 10.35 Outage capacity of a slow fading–transmit antenna diversity Rayleigh
channel
Consider an outage probability po ¼ 0:01 and Alamouti code (m = 2, Ls =2, Lt ¼ 2). For
SNR = 10, the outage capacity is approximately 24% of the AWGN channel capacity, which
is C ¼ log2 1þ SNRð Þ. As a comparison, the outage capacity of a non-diversity channel is
4% of the AWGN channel capacity, and the outage capacity of a two-fold receive antenna
diversity channel is 38% of the AWGN channel capacity. The outage capacity for a space-
time code with rate r51 is multiplied by the code rate r when compared to the capacity of
the non-diversity system or the receive antenna diversity system.
■
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Slow fading–transmit and receive antenna diversity

When transmit antenna diversity is combined with receive antenna diversity then full
diversity is achieved. Consider transmit antenna diversity using space-time coding with
a Ls 	 Lt code matrix G that provides Lt-fold transmit antenna diversity at a code rate
r ¼ m=Ls, where m symbols are transmitted in Ls symbol times. Furthermore, consider
receive antenna diversity with Lr antennas. For a fixed transmitted power P, each
transmit antenna radiates a signal with power P=Lt. This implies that the instantaneous
signal-to-noise ratio at the receiver is hk k2SNR=Lt, where h ¼ ½h1 h2 � � � hLr �t is the
channel tap vector and hl ¼ ½hl;1 hl;2 � � � hl;Lt �t, l ¼ 1; 2; . . . ; Lr, is the lth channel tap
vector representing Lt paths from the transmit antennas to the lth receive antenna.
Given an outage probability po, the outage capacity for L-fold diversity ( L ¼ LtLr ) is
given as

Co ¼ log2 1þ Fð 1Þ
jjhjj2 poð Þ SNR

Lt

� �
bits=symbol (10:306)

where po ¼ Fjjhjj2 Lt½2Co � 1�=SNR� �
and Fð 1Þ

jjhjj2 poð Þ can be calculated from (10.302) for
L ¼ LtLr.

Example 10.36 Outage capacity of a slow fading–transmit and receive antenna diversity
Rayleigh channel
Consider an outage probability po ¼ 0:01 and Alamouti code (m = 2, Ls = 2, Lt ¼ 2 )
working with two-fold receive diversity for a total of four-fold diversity, for SNR = 10, the
outage capacity is approximately 68% of the AWGN channel capacity, which is
C ¼ log2 1þ SNRð Þ. As a comparison, the outage capacity of a non-diversity channel is
4% of the AWGN channel capacity, the outage capacity of a two-fold transmit antenna
diversity channel is 24% of the AWGN channel capacity, and the outage capacity of a two-
fold receive antenna diversity channel is 38% of the AWGN channel capacity.
■

Slow fading–OFDM

OFDM is designed to work in an underspread frequency selective channel. With N sub-
carriers, OFDM provides N parallel slow fading subchannels with no ISI (flat fading) in the
ideal case. The use of a cyclic prefix to reduce ISI could only lower the channel capacity but
is necessary in practice. For a fixed transmitted power P, each subchannel power is P=N .
This implies that the instantaneous signal-to-noise ratio of the lth subchannel at the receiver
is Hlk k2SNR=N . The instantaneous channel capacity is

C ¼
XN

l¼1

log2 1þ Hlj j2SNR
N

� �
bits=symbol (10:307)
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If the OFDM target rate is R ¼ NRs, where Rs is the subcarrier symbol rate, then an outage
occurs if C < R, and the outage probability is

PrðC5RÞ ¼ Pr
XN

l¼1

log2 1þ Hlj j2SNR
N

� �
5R

" #

(10:308)

The above expression shows that as long as the OFDM capacity is above R, there exists a
coding system such that the code words can be transmitted over the channel with an
arbitrarily small frequency of errors. This happens irrespective of the fades experienced
by the subchannels, which could make some subchannel rates drop below R/N. This implies
that coding should be carried out across all subcarriers (this also means across many
coherence bandwidths) instead of over individual subcarriers. This ensures that if errors
occur in some subcarriers during a deep fade, they could still be corrected if the remaining
subcarriers have high signal-to-noise ratios. On the other hand, if coding is carried out for
each individual subcarrier, then a deep fade may wipe out a subcarrier entirely with no
chance of correcting the errors even if the remaining subcarriers have no error. Therefore,
coding for each individual subcarrier provides poor diversity, and coding across all sub-
carriers provides full diversity. The advantage of coding for each individual subcarrier is that
the decoding can be carried out at a lower subcarrier rate and parallel processing of all
subcarriers shortens the code latency. Furthermore, there are codes such as trellis coded
modulation that can provide excellent performance when implemented with MQAM sub-
carriers. On the other hand, codes such as low-density parity-check codes are excellent for
coding across all subcarriers.

Example 10.37 Time-invariant and frequency-selective channel
Let us consider a frequency-selective channel that experiences very slow fading and can be
modeled as a time-invariant channel. By using OFDM one can effectively convert this
channel into N parallel subchannels that experience small ISI via the use of cyclic prefixes.
The maximum rate of reliable communication for N parallel subchannels with noise
variance σ2 ¼ N0 is given by

CðNÞ ¼ max
P1...PN

XN

k¼1

log2 1þ Hkj j2SNRk

� �
bits=OFDM symbol (10:309)

where SNRk ¼ Pk=σ2 ¼ Pk=N0,
PN

k¼1 Pk ¼P, and Hk is the DFT of the L-tap channel
h ¼ h0 h1 � � � hL 1 0 � � � 0½ �t multiplied by N

p
, that is, Hk ¼

PL 1
l¼0 hle j2πkl=N . Hence,

the power constraint optimization problem is the water filling strategy, which yields the
following power allocation:

Pk ¼ max 0;
1

λ
� N0

Hkj j2
 !

(10:310)

where the Lagrange multiplier λ is selected such that
Pn

k¼1 Pk ¼P. Let us specify the L-tap
channel model as follows:
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hðtÞ ¼
XL 1

l¼0

hlδðt � τlÞ (10:311)

The corresponding frequency response is the Fourier transform of the channel impulse
response hðtÞ. We have

Hð f Þ ¼
XL 1

l¼0

hle j2πf τl (10:312)

For simplicity let the path delay be τl ¼ lT , where T is the delay between two adjacent paths.
We have

Hð f Þ ¼
XL¼1

l¼0

hle j2πflT (10:313)

Thus, the subchannel tap Hk ¼
PL 1

l¼0 hle j2πkl=N is the value of Hðf Þ sampled at
frequency f ¼ k=NT, k ¼ 0; 1; . . . ;N � 1, namely, Hk ¼ Hðk=NTÞ. Note that Hk is
also the discrete time Fourier transform of the finite sequence ½hl�, sampled at
f ¼ k=N , namely, Hk ¼ H ej2πkl=N

� �
. Let us consider the case when the number of

subcarriers N is large as it tends to infinity. This implies that the optimal power
allocation converges to the water filling power allocation over the channel frequency
response as follows:

Pð f Þ ¼ max 0;
1

λ
� N0

Hð f Þj j2
 !

(10:314)

where the Lagrange multiplier λ is selected such that

ð1=T

0
Pð f Þ df ¼ P (10:315)

The water filling channel capacity converges to the following expression:

C ¼
ð1=T

0
log2 1þ Hðf Þj j2Pðf Þ

N0

 !

df bits=s (10:316)

The water filling power allocation achieves the maximum reliable rate of communi-
cation over independent subchannels. This is simpler and more effective than coding
across all subcarriers. It can be carried out by independent subcarrier coding with
adaptive rate and by using adaptive modulation to meet the power requirement. The
water filling power allocation requires the transmitter to know the state of the channel,
namely, the transmitter has the channel side information (CSI). If the channel state is
known only at the receiver, that is, only the channel side information at the receiver
(CSIR) is available, than coding across all subcarriers is the appropriate strategy.
■
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Fast fading

Fast fading occurs when the channel estimation time is larger than the channel coherence
time. In previous material we have shown that Doppler tracking and correction can be done
down to the symbol time. This means that the Doppler phase error can be effective reduced
to no more than the phase error that accumulates over one symbol time. If the Doppler shift
is too large, as is the case with high-speed platforms such as high-speed trains, aircraft, and
low-Earth-orbit satellites, the Doppler phase error over a symbol time may incur a large loss
in the symbol signal-to-noise ratio of MQAM. This results in fast fading where the channel
coherence time is less than a symbol time. In such a fast fading channel, the average fade
duration is short and the symbols fade independently. For a quadrature (complex) channel
this means that symbol errors can occur randomly and there exists a coding system that
ensures the maximum reliable rate, which is the ensemble average rate given by

C ¼ E log2 1þ hj j2SNR
� �h i

bits=symbol (10:317)

If we assume Rayleigh fading, at low SNR the capacity can be approximated as

C ¼ E log2 1þ hj j2SNR
� �h i

�
E hj j2SNR
� �h i

ln 2

� SNR

ln 2

(10:318)

where E hj j2
� �

¼ 1. The right-hand side of the above equation is also the capacity of an
AWGN channel at low SNR. At high SNR we have

C ¼ E log2 hj j2SNR
� �h i

� log2 SNRþ E log2 hj j2
� �h i

(10:319)

At high SNR the capacity of an AWGN channel is log2 SNR. For a fast Rayleigh fading
channel E log2 hj j2

� �h i
¼ �0:83 and C � log2 SNR� 0:83 ¼ log2ð0:56 SNRÞ. Thus, a

fast Rayleigh fading channel needs an additional 2.5 dB in SNR to achieve the same
capacity as that of an AWGN channel. For SNR = 10, the capacity of a fast Rayleigh
fading channel is 72% of the capacity of an AWGN channel. This is much better than a
slow Rayleigh fading channel where the outage capacity is about 30% the capacity of an
AWGN channel for an outage probability of 0.1. From the capacity point of view, slow
fading is more detrimental than fast fading. From the bit error probability point of view, a
more complex coding system is needed for a fast fading channel to achieve the same bit
error probability as compared with an AWGN channel. This is necessary because in a fast
fading channel one must deal with both envelope fading (such as Rayleigh fading) and
Doppler phase error. On the other hand, a slow fading channel only requires the coding
system to deal with envelope fading since the effect of Doppler shift is virtually nullified
by Doppler tracking and correction. Furthermore, since fast fading commonly occurs at
low bit rates and with high-speed platforms, most wireless applications for high data rates
and low mobility are not affected.
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10.18 Summary

A fading channel is characterized by a time-varying effect and a space-varying effect. The former results from the
Doppler effect due to the movement of the transmitter and receiver. The latter results from the signal envelope
variation due to multipath echoes; these multipath components also vary according to the location of the
transmitter and receiver. The time-varying effect can be empirically described by the channel coherence time or
its counterpart the Doppler spread. If the channel coherence time is greater than the channel estimation time we
have a slow fading channel. If the channel coherence time is smaller than the channel estimation time we have a
fast fading channel. The space-varying effect can be empirically described by the multipath delay spread or its
counterpart the channel coherence bandwidth. If the multipath delay spread is smaller than the symbol time we
have a flat fading channel. If the multipath delay spread is greater than the symbol time we have a frequency-
selective fading channel. The Doppler spectrum (Clarke or Aulin) allows one to calculate the Doppler spread or
channel coherence time.
The performance of ideal coherent demodulation in a Rayleigh or Nakagami-m fading channel was evaluated

using known closed-form expressions. Bit error probability for IQ signals with known phase errors were also
derived. To correct the phase error due to Doppler shift we proposed the pilot symbol-aided decision-feedback
demodulation. This demodulation method employs differential decision-feedback (D-DF) and double-differential
decision-feedback (DD-DF) algorithms. The latter can correct the Doppler phase error down to the symbol time.
The performance of OFDM in the presence of Doppler shift was analyzed to show the effect of intercarrier

interference, which can be removed prior to DFT. The cyclic prefix can remove ISI between OFDM symbols but the
intrasubcarrier interference can only be alleviated via equalization.
The performance of ideal noncoherent demodulation in a Rayleigh or Nakagami-m fading channel was

evaluated using known closed-form expressions. Doppler tracking of both MFSK and CSK were studied. Pilot-tone
aided demodulation of complex spreading orthogonal covering signals used in IS-95, CDMA 2000, and WCDMA
was investigated as well as noncoherent demodulation of offset quadrature DS-CSK signals.
Diversity is employed in practice to combat fading based on the fact that multiple receptions of the same

symbol are affected differently in a fading channel. Some receptions might survive and others might be wiped
out. The survivors may be of help in detecting the symbol. There are primarily four types of diversity, namely,
time diversity, frequency diversity, path diversity, and antenna diversity. Time diversity effectiveness requires
symbols to be interleaved over a time frame larger than the average fade duration. Frequency diversity is
commonly employed in fast frequency hopping and possibly in OFDM. Path diversity is exploited by the Rake
receiver operating in a resolvable multipath fading environment. Antenna diversity is the most powerful diversity
technique that can be implemented either at the receiver, at the transmitter, or at both transmitter and receiver.
Antenna diversity is also referred to as MIMO. Diversity signal is detected via maximal ratio combining, selection
combining, and equal gain combining. Transmit diversity in many practical systems is implemented via an
orthogonal space-time code such as the well-known Alamouti block code. The maximum rate is unity.
The capacity of a slow fading channel is best defined as the outage capacity since the ensemble average

capacity does not exist. On the other hand, the ensemble average capacity of a fast fading channel does exist.
Slow fading is more detrimental to the channel capacity than fast fading. However, fast fading requires a more
complex coding scheme to compensate for both envelope fading and Doppler error.
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Appendix 10A: Complex-valued demodulators

The IQ-demodulator can be equivalently represented by the complex-valued demodulator
shown in Figure 10.8. Let siðtÞ be the waveform of an arbitrary IQ symbol as follows:

siðtÞ ¼
X2

k¼1

sikxkðtÞ ¼ si1x1ðtÞ þ si2x2ðtÞ (10A:1)

where the basis functions x1ðtÞ and x2ðtÞ are given by

x1ðtÞ ¼ 1

Ex
p pðtÞ cos 2πfct; x2ðtÞ ¼ � 1

Ex
p pðtÞ sin 2πfct (10A:2)

The function p(t) is the pulse shape, and Ex is defined as

Ex ¼
ð1

1
½pðtÞ cos 2πfct�2dt ¼

ð1

1
½�pðtÞ sin 2πfct�2dt (10A:3)

The suffi cient condition for orthogonali ty of the basis funct ions is demonstra ted in (6.94) of
Exa mple 6.26 . Using c omplex enve lope representat ion we can expres s the wave form siðtÞ as
follows:

siðtÞ ¼ Re sLðtÞe j2πfct
�  ¼ 1

2
sLðtÞej2πfct þ s�LðtÞe j2πfct
� 

(10A:4)

where the complex envelope sLðtÞ is

sLðtÞ ¼ 1

Ex
p pðtÞsi1 þ j

1

Ex
p pðtÞsi2 (10A:5)

To demodulate the IQ symbol si ¼ si1 þ jsi2 we multiply the received signal siðtÞ by a local
complex carrier 2=Ts

p
e j2πfct to obtain

2

Ts

r

e j2πfctsiðtÞ ¼ 1

2Ts
p sLðtÞ þ 1

2Ts
p s�LðtÞe j4πfct (10A:6)

The high-frequency term is rejected by the complex-valued matched filter
hðtÞ ¼ αpðt � TsÞ, where α is a normalization constant. The output of the complex-valued
matched filter is si ¼ si1 þ jsi2. The mapper maps si ¼ si1 þ jsi2 to the symbol vector
si ¼ ½si1 si2�t by taking the real part and imaginary part of si.

Appendix 10B: Bit error probabilities

The bit error probability of an IQ signal in a Rayleigh or Nakagami-m fading channel can
be derived using available closed-form expressions. The general bit error probability is
given by
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Pb ¼ E Pb hj jð Þ½ � � E
Nn

log2 M
Q 2 hj j2α SNR
q� �� �

(10B:1)

Rayleigh

The density function of hj j is f hj j xð Þ ¼ 2xe x2 and the following expression can be employed
to evaluate Pb [7]:

ð1

0
QðaxÞeb2x2xdx ¼ 1

4b2
a

a2 � 2b2
p � 1

� �
; Reða2Þ42Reðb2Þ (10B:2)

Setting b2 ¼ �1, a ¼ 2αSNR
p

, we obtain the bit error probability

Pb ¼ Nn

2 log2 M
1� α SNR

1þ α SNR

r !

(10B:3)

Nakagami-m

The density function of hj j2 is f hj j2 yð Þ ¼ mm

�ðmÞ y
m 1e my and the following expression can be

employed to evaluate Pb [8]:

ð1

0
Qð cy

p Þyb 1e aydy ¼ 1

2 π
p c=2a

p

1þ c=2að Þbþ1=2

�ðbÞ
ab

�ðbþ 1
2Þ

�ðbþ 1Þ

	 2F1 1; bþ 1

2
; bþ 1; ð1þ c=2aÞ 1

� � (10B:4)

Setting a ¼ m, b ¼ m, c ¼ 2αSNR, and c=2a ¼ αSNR=m, we obtain the bit error
probability:

Pb � Nn

log2 M
1

2 π
p α SNR=m

p

1þ α SNR=mð Þmþ1=2

�ðmþ 1
2Þ

�ðmþ 1Þ

" #

2F1 1;mþ 1
2;mþ 1;

1

1þ α SNR=m

� �

(10B:5)

When b is an integer the following expression can be used to obtain a simpler closed-form
bit error probability

ð1

0
Qð cy

p Þyb 1e aydy ¼ �ðbÞ
2ab

1� c=2a

1þ c=2a

s
Xb 1

k¼0

2k

k

� �
1

4ð1þ c=2aÞ
� �k

" #

; b : integer

(10B:6)

where �ðbÞ ¼ ðb� 1Þ! Setting a ¼ m, b = m, and c=2a ¼ αSNR=m, we obtain
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Pb � Nn

2 log2 M
1� αSNR=m

1þ αSNR=m

s
Xm 1

k¼0

2k
k

� �
1

4ð1þ αSNR=mÞ
� �k

" #

; m : integer

(10B:7)

Alternatively we can use the following closed-form expression to evaluate the bit error
probability [9]:

ð1

0
Qð cy

p Þyb 1e aydy

¼ �ðbÞ
ab

1þ 2a=c
p � 1

2 1þ 2a=c
p

 !b Xb 1

k¼0

b� 1þ k

k

� �
1þ 2a=c

p þ 1

2 1þ 2a=c
p

 !k
2

4

3

5;

b : integer

(10B:8)

Setting a ¼ m, b = m, and c=2a ¼ αSNR=m, we obtain

Pb � Nn

log2 M
1þ m=αSNR

p � 1

2 1þ m=αSNR
p

 !m Xm 1

k¼0

m� 1þ k

k

� �
1þ m=αSNR

p þ 1

2 1þ m=αSNR
p

 !k
2

4

3

5;

m : integer

(10B:9)

Rayleigh–diversity: χ2-density function with 2L degrees of freedom

The density function of hk k2 is fjjhjj2 yð Þ ¼ yL 1e y=ðL� 1Þ! and the expression in
(10B.6) can be employed to obtain the general bit error probability of a diversity system
given by

Pb ¼ E
Nn

log2 M
Q 2 hk k2αSNR
q� �� �

(10B:10)

Setting a = 1, b = L, and c=2a ¼ α SNR, and noting that �ðLÞ ¼ ðL� 1Þ!, we obtain

Pb � Nn

2 log2 M
1� αSNR

1þ αSNR

r
XL 1

k¼0

2k
k

� �
1

4ð1þ αSNRÞ
� �k

" #

(10B:11)

Alternatively, using (10B.8) we have

Pb � Nn

log2 M
1þ 1=αSNR

p � 1

2 1þ 1=αSNR
p

 !L XL 1

k¼0

L� 1þ k

k

� �
1þ 1=αSNR

p þ 1

2 1þ 1=αSNR
p

 !k
2

4

3

5;

L : integer

(10B:12)
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or, equivalently,

Pb � Nn

log2 M
1� μ
2

� �L XL 1

k¼0

L� 1þ k
k

� �
1þ μ
2

� �k
" #

; L : integer (10B:13)

where the parameter μ is given by

μ ¼ αSNR
1þ αSNR

r

(10B:14)

Problems

1. A mobile approaches a base station at 100 km/hour. The mobile transmits a packet of
200 bits at a rate of 100 kbps. The carrier frequency is 1.9GHz. The multipath delay
spread is Td ¼ 0:25 μs. The signal-to-ISI ratio is approximated by SIR ¼ 0:9Tb=Td.
The signal-to-noise ratio is SNR ¼ 100 cos2 θ, where the carrier phase error due to
Doppler shift is θ. Calculate the signal-to-noise-and-ISI of the last bit of the packet.

2. Let us consider the scenario when a mobile traveling at speed of 100 km/hour receives
a 1950MHz signal from a base station. The data rate is 14.4 kbps.
(a) Find the Doppler spread.
(b) Find the channel coherence time.
(c) If the channel estimation time is ¼ of the channel coherence time, what is the

channel throughput, assuming each channel estimation update is achieved via a
transmitted pilot symbol that replaces a data symbol?

3. Using (10.17) plot the magnitude and phase spectra for the following channel:

Channel taps and delays

i Tap, hi Delay, li

1 0.75 0
2 0.35 0.9
3 0.2 1.7
4 0.01 3

4. Using (10.17) plot the magnitude and phase spectra for the following channel:

Channel taps and delays

i Tap, hi Delay, li

1 0.75 0.8
2 0.55 0.85
3 0.40 0.9

5. Plot the Clarke–Doppler power spectrum in (10.31) and the Aulin–Doppler power
spectrum in (10.44).
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6. Using polar coordinate transformation, evaluate the bit error probability of a coherent
I-Q signal in a Rayleigh fading channel.

7. Determine the SNR-outage probability of a slow-flat Nakagami-m fading channel. Let
m = 3, the threshold is γ ¼ 1, and SNR = 10.

8. Determine the SNR-outage probability of a slow-flat Ricean fading channel. Let
� ¼ 4:5, the threshold is γ ¼ 1, and SNR = 10.

9. Plot the bit error probability of PSK in an AWGN channel with phase error
" ¼ 0�; 10�; 22:5�; 30�; 45�; 60�.

10. Plot the bit error probability of QPSK in an AWGN channel with phase error
" ¼ 0�; 10�; 22:5�; 30�; 45�.

11. Plot the bit error probability of 16QAM in an AWGN channel with phase error
" ¼ 0�; 10�; 22:5�; 30�; 45�.

12. Plot the bit error probability of 64QAM in an AWGN channel with phase error
" ¼ 0�; 10�; 22:5�; 30�; 45�.

13. Verify (10.82).
14. Plot the bit error probability of 16QAM in a Rayleigh fading channel with phase error

" ¼ 5�; 10�; 22:5�.
15. Plot the bit error probability of 64QAM in a Rayleigh fading channel with phase error

" ¼ 5�; 10�; 22:5�.
16. Show that the bit error probabilities of MPSK and MQAM in a Rayleigh fading

channel are inversely proportional to the signal-to-noise ratio.
17. Evaluate the bit error probability of PSK with convolutional code K = 7, rate ½,

and soft decision in a Rayleigh fading channel at 10 dB signal-to-noise ratio
per bit.

18. Consider the reception of a DS-PSK signal in a Rayleigh fading channel with pulsed
jamming.
(a) Derive the bit error probability in term Eb=N0, assuming AWGN is neglible

compared to the jamming signal.
(b) Assume a pulse duty cycle equal to δ ¼ 0:1 and Eb=N0 ¼ 20 dB. Calculate the bit

error probability.
19. A packet of length L is sent over a Rayleigh fading channel via PSK. Assuming that bit

errors occur randomly and that the required packet error probability is 10 2, calculate
the corresponding signal-to-noise ratio per bit for L = 200 bits.

20. Consider a mobile traveling toward a base station at a speed of 100 km/hour that
receives a 5400MHz PSK signal from a base station. It is required that the throughput
be at least 80% and that the loss in SNR relative to the ideal case is no more than 2 dB.
Calculate the minimum bit rate assuming Rayleigh fading.

21. Consider a fading channel with Doppler spread fD ¼ 200Hz. A PSK signal operating
with a bit rate of 128 kbps employs pilot bits for channel estimation.
(a) Specify the condition for slow fading. Estimate the maximum channel estimation

time in bits.
(b) Calculate the phase error for the above maximum estimation time.
(c) Revise the estimation time to get a reasonable phase error of no more than π=8

radians.
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22. Consider a mobile moving toward a base station at radial velocity v = 110 km/hour.
The mobile transmits a PSK signal at 28.8 kbps to the base station. The data frame is
300 bits including 20 overhead bits. The channel estimation is achieved by inserting
pilot bits periodically. The carrier frequency is 1.9GHz.
(a) Calculate the channel estimation time in bits so that the Doppler phase error

cannot exceed 30�.
(b) Calculate the number of pilot bits per frame.
(c) Calculate the frame efficiency.

23. Consider a perfect reflector model in Equation (10.4). Assume that the receiver
radial velocity is 80 km/hour, and the received signal has a carrier frequency of
1.9 GHz.
(a) Calculate the deep fade frequency.
(b) Calculate the deep fade period.
(c) Suggest a method to eliminate the deep fades.
(d) Suggest a method to improve the reception via signal combining.

24. Consider a QPSK signal with phase error " ¼ 22:5� in a Rayleigh fading channel. The
bit error probability is given by

Pb ¼ 1

4
1� α SNRðcos "� sin "Þ2

1þ α SNRðcos "� sin "Þ2

s !

þ 1

4
1� α SNRðcos "þ sin "Þ2

1þ α SNRðcos "þ sin "Þ2

s !

For αSNR ¼ Eb=N0 ¼ 30 dB evaluate the loss of signal-to-noise ratio.
25. Consider two independent Rayleigh random variables X and Y.

(a) Find the probability density function of Z ¼ X=Y
(b) Find the probability distribution function of Z.
(c) Find the probability density function of V ¼ Z2.

26. Consider two independent Rice random variables X and Y. Find the probability density
function of Z ¼ X=Y .

27. Derive the bit error probability of DS-PSK under broadband jamming, assuming that
both signal and jammer undergo independent Rayleigh fading and the AWGN effect is
negligible relative to the jamming effect.

28. Derive the bit error probability of DS-PSK under pulsed jamming, assuming that both
signal and jammer undergo independent Rayleigh fading and the AWGN effect is
negligible relative to the jamming effect.

29. Consider a Rayleigh channel and a DS-CDMA/PSK signal with power control so that
all user signals arriving at the base station have the same mean power P.
(a) Derive the probability density function of the user output signal power.
(b) Derive the probability density function of the MUI, assuming the MUI power is

distributed uniformly over the spread bandwidth.
(b) Derive the probability density function of the output signal-to-interference ratio

when AWGN is negligible compared to MUI.
30. Consider a DS-PSK signal under broadband jamming, assuming that both signal and

jammer undergo independent Rayleigh fading and the AWGN effect is negligible
relative to the jamming effect. Derive the NðSJRiÞ-outage probability, that is, the
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probability that the instantaneous despread input signal-to-jamming ratio falls below a
threshold value γ. N is the spread factor.

31. Consider a DS-PSK signal under pulse jamming, assuming that both signal and
jammer undergo independent Rayleigh fading and the AWGN effect is negligible
relative to the jamming effect. Derive the NδðSJRiÞ-outage probability, that is, the
probability that the instantaneous despread input signal-to-pulsed jamming ratio falls
below a threshold value γ. N is the spread factor and δ is the pulsed jamming duty
cycle.

32. For a Rayleigh fading channel derive the bit error probability of noncoherent FH-
MFSK under partial-band jamming, assuming that the AWGN effect is negligible
relative to the jamming effect.

33. Derive the bit error probability of noncoherent FH-MFSK under partial-band jam-
ming, assuming that both signal and jammer undergo independent Rayleigh fading
and the AWGN effect is negligible relative to the jamming effect.

34. For a Rayleigh fading channel derive the bit error probability of noncoherent slow FH-
FSK under follower jamming, assuming that the AWGN effect is negligible relative to
the jamming effect.

35. It is required that the first symbol after the most recent channel update suffers no more
than 10� of differential Doppler phase error when the Doppler shift is 180Hz.
Estimate the maximum bit rate for 64QAM. Calculate the Doppler loss at this bit
rate for a Rayleigh channel.

36. Consider a mobile traveling toward a base station at a speed of 100 km/hour that
receives a 5400MHz QPSK signal from a base station. It is required that the
throughput be at least 80% and that the loss in SNR relative to the ideal case is no
more than 3 dB at a bit error probability of 5	 10 3. Calculate the minimum bit rate
assuming Rayleigh fading.

37. Consider a mobile traveling toward a base station at a speed of 100 km/hour that
receives a 5400MHz 16QAM signal from a base station. It is required that the
throughput be at least 50% and that the loss in SNR relative to the ideal case is no
more than 6 dB.
(a) Calculate the pilot symbol rate.
(b) Calculate the minimum bit rate assuming Rayleigh fading.

38. Derive (10.136).
39. Derive (10.138).
40. Rework Table 10.3 for 128FSK.
41. Rework Table 10.4 for 128CSK.
42. Establish the signal-to-interchannel interference ratio for pilot tone-aided demodula-

tion of an orthogonal covering signal in the presence of Doppler shift f =180Hz for the
following cases:
(a) QPSK with bit rate of 28.8 kbps.
(b) 64QAM with bit rate of 86.4 kbps.

43. Approximate interchannel interference as AWGN and assume a bit error probability
of 10 3 for orthogonal covering QPSK with normalized Doppler shift fTs ¼ 0:01.
Calculate the required Eb=N0.
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44. Approximate interchannel interference as AWGN and assume a bit error probability
of 10 3 for orthogonal covering 64QAM with normalized Doppler shift fTs ¼ 0:01.
Calculate the required average Eb=N0.

45. Show that Figure 10.12 implements the despreading operation (10.162).
46. Consider a mobile traveling toward a base station at a speed of 100 km/hour that

receives a 5400MHz signal from a base station. Assume that the threshold signal-to-
noise ratio is V 2=2σ2 ¼ 6 dB, where the noise variance is σ2. Also assume that the
signal-to-noise ratio is V 2

rms=σ
2 ¼ 15 dB. The symbol rate is 9.6 ksps.

(a) Calculate the average fade duration.
(b) Find the interleaving interval in symbols.

47. Use the Cauchy–Schwarz inequality to show that MRC achieves a maximum output
signal-to-noise ratio which is the sum of L input signal-to-noise ratios.

48. Verify (10.221).
49. Verify (10.223).
50. Verify (10.232)
51. Using the Chernoff bound QðxÞ � e x2=2 show that the bit error probability of an I-Q

signal in a Rayleigh fading channel is upper bounded by

Pb ¼ E
Nn

log2 M
Q 2 hk k2αSNR
q� �� �

� Nn

log2 M
1

ð1þ αSNRÞL

52. Repeat Problem 51 for both Nakagami-m and Ricean fading channels.
(a) Derive the result via direct integration.
(b) Derive the result using the Laplace transform (or moment generating function).

53. The function QðxÞ can also be expressed by the following integral [10]:

QðxÞ ¼ 1

π

ðπ=2

0
e x2=2 sin2 θdθ; x40

Use the above integral to express the bit error probability of the I-Q signal as follows:

Pb ¼ E
Nn

log2 M
Q 2 hk k2αSNR
q� �� �

¼ Nn

log2 M
1

π

ðπ=2

0
F

αSNR

sin2 θ

� �
dθ

where FðsÞ is the Laplace transform of the density function of hk k2.
(a) Find FðsÞ for the Rayleigh density function.
(b) Find FðsÞ for the Nakagami-m density function.

54. Find the outage probability of coherent selection combining for a given signal-to-
noise ratio threshold.

55. Find the bit error probability of noncoherent DPSK with selection combining.
56. For a Rayleigh fading channel, compare the performance of a three-fold receive

antenna diversity 64QAM signal with MRC and αSNR = 1000 (30 dB) to the perform-
ance of its counterpart without diversity, assuming that both signals have the same
transmitted power and input bit rate. Calculate the diversity gain.

57. Compare the performance of an I-Q signal with three-fold receive antenna diversity to
the performance of its non-diversity counterpart, assuming that both signals have the
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same transmitted power and input bit rate. Consider the case of 64QAM with
αSNR ¼ 1000 (30 dB) and Rayleigh fading. Calculate the diversity gain with selec-
tion combining.

58. Derive the bit error probability of an L-fold diversity noncoherent DPSK signal
with EGC in a Nakagami-m fading channel. (Hint: Use (11.1-13)–(11.1-14)
from [11].)

59. Consider a Rayleigh channel and an L-fold diversity combining technique where the
two largest of L decision samples of a coherent I-Q signal are combined (second-order
SC). The density function of the largest random variable of L random variables is
derived in (10.216).
(a) Derive the density function of the kth largest random variable of L random

variables.
(b) Derive the joint density funtion of the two largest random variables of L random

variables.
(c) Derive the density function of the sum of the two largest random variables of L

random variables and the bit error probability for receive antenna diversity.
60. Derive the bit error probability for an L-fold diversity convolutionally coded PSK

signal with MRC in a slow Rayleigh fading channel.
61. Derive the bit error probability for an L-fold diversity TCM-MQAM signal withMRC

in a slow Rayleigh fading channel.
62. Consider a three-tap channel with L = 3, SINR = 200, and 16QAM.

(a) Calculate the bit error probability for a non-Rake receiver.
(b) Calculate the bit error probability for a Rake receiver.
(c) For a spread factor of 256, calculate αSINR ¼ 1=2 dmin=2sð Þ2 and specify the

signal-to-noise ratio per bit Eb=N0 to achieve αSINR ¼ 200.
63. Verify that Z ¼ GhþN maps to Y ¼ HsþN via (10.270) and (10.271).
64. Show that (10.272) is satisfied using (10.274)–(10.276) as an example.
65. For a real signal space, the space-time block code of unity rate does not have the limit

of two transmit antennas as in the Alamouti code. In fact, a space-time block code with
unity rate for any real signal space can have any number of transmit antennas.
Consider the following real code matrix:

G ¼ G1 �Gt
2

G2 Gt
1

� �

(a) Find the necessary and sufficient condition for G to be orthogonal.
(b) Use the following two matrices to construct G and perform the MRC operation

for a four-fold transmit diversity, assuming that the signal is PSK:

G1 ¼ s1 s2
�s2 s1

� �
; G2 ¼ s3 �s4

s4 s3

� �

66. Investigate the possibility of using the following matrix as orthogonal space-time
block code. If not, can it be used as nonorthogonal space-time block code? What will
be the consequence(s) of doing so?
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G ¼
s1 0 �s�2
0 s1 �s3
s2 s�3 s�1
�s3 s�2 0

2

664

3

775

67. Investigate the possibility of using the following matrix as orthogonal space-time
block code:

G ¼
s1 s2 s3
�s�2 s�1 0
�s�3 0 s�1
0 �s�3 s�2

2

664

3

775

68. Investigate the possibility of using the following matrix as orthogonal space-time
block code:

G ¼
s1 0 s2 �s3
0 s1 s�3 s�2

�s�2 �s3 s�1 0
s�3 �s2 0 s�1

2

664

3

775

69. Investigate the possibility of using the following real matrix as orthogonal space-time
block code for a real signal space:

G ¼
s1 s2 s3 s4
�s2 s1 �s4 s3
�s3 s4 s1 �s2
�s4 �s3 s2 s1

2

664

3

775

70. Find the outage capacity of a slow fading Rayleigh channel for po ¼ 0:01 for the
following cases:
(a) no diversity;
(b) receive antenna diversity with L = 2;
(c) transmit antenna diversity with Alamouti code;
(d) transmit antenna diversity with a rate ¾ space-time code and four antennas;
(e) transmit and receive antenna diversity with Alamouti code and two receive antennas.

71. Find the outage capacity of a fading channel characterized by the channel tap with the
following density function: fjhjðxÞ ¼ 2x=ðx2 þ 1Þ2; x40.

72. Consider a MIMO system characterized by the Lr 	 Lt channel tap matrix H ¼ ½hij�,
where hij represents the channel tap from the jth transmit antenna ( j = 1, 2, . . . , Lt) to
the ith receive antenna (i = 1, 2, . . . , Lr). Given the transmit signal vector s, the
received signal vector y is given by

y ¼ HsþN

where N is the zero mean complex Gaussian noise vector whose iid components have
identical variance (circular symmetric). Assuming that ðH�HÞ 1 exists, that is,H is of
full column rank, design a zero-forcing (ZF) detector to recover the transmit vector s.
Is the output noise white? Find its covariance matrix.
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73. Consider a MIMO system characterized by the Lr 	 Lt channel tap matrix H ¼ ½hij�,
where hij represents the channel tap from the jth transmit antenna ( j = 1, 2, . . . , Lt ) to
the ith receive antenna (i = 1, 2, . . . , Lr ). Given the transmit signal vector s, the
received signal vector y is given by

y ¼ HsþN

where N is the zero mean complex Gaussian noise vector whose iid components have
identical variance (circular symmetric). Consider a minimum mean-square error
(MMSE) detector that minimizes the MSE given by E Cy� sk k2

h i
. Find C.

74. Consider a MIMO system characterized by the Lr 	 Lt channel tap matrix H ¼ ½hij�,
where hij represents the channel tap from the jth transmit antenna ( j = 1, 2, . . . , Lt ) to
the ith receive antenna (i = 1, 2, . . . , Lr ). Given the transmit code matrix G, the
received signal vector Y is given by

Y ¼ HGþN

where N is the complex Gaussian noise matrix whose iid components have zero mean
and identical variance (circular symmetric). Consider a maximum likelihood (ML)
detector that minimizes the squared Frobenius norm Y�HGk k2. The squared
Frobenius norm of a matrix A is defined as jjAjj2 ¼ TrðAA�Þ ¼Pi

P
j aij
�� ��2¼P

k λk , where λk are the eigenvalues of AA�. Derive the pairwise error probability
PrðHGi ! HGjÞ. (Hint: use the Chernoff bound for the Q-function and find the density
function of HGi �HGj

�� ��2.)

Further reading

For a comprehensive study of propagation models we recommend [1,2]. Excellent treatment
of capacity of a fading channel for various wireless systems such as CDMA, OFDM, and
MIMO can be found in [3]. For the readers who wish to explore MIMO in depth, references
[4–6] should be consulted.
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Index

A/D conversion, 2, 3, 402
aliasing, 68, 516
AMI, 120
antenna, 595, 597

farfield, Fraunhofer region, 116
noise temperature, 180

antipodal signaling, 13, 29, 83, 94, 228, 239
arithmetic mean, 485, 491, 496, 507
ASK, 5, 236, 329
Aulin Doppler spectrum, 7, 536
Aulin model, 597
autocorrelation, 3, 58, 60, 82, 85, 88, 89, 95, 311, 317,

434, 491, 530
autocovariance, 82
avalanche photodiode, 329
AWGN, 135, 608
azimuth angle, 215, 534, 535, 595

bandwidth, 3, 41, 192, 227, 290, 432
Carson’s rule, 239
coherence, 97
first-null, 41, 52, 239
noise, 449
null-to-null, 45

base station, 191
basis functions, 27, 37
Bayes theorem, 79, 81, 154, 164, 167, 321, 346, 414
belief propagation algorithm, 154
Bessel function, 110
binary symmetric channel (BSC), 132, 155
bipartite graph, 153
bit energy, 232, 238
bit energy-to-noise density ratio, 230
Boltzmann constant, 179, 217

C-band, 216
carrier phase synchronization, 409, 436
Carson’s rule, 239
Cauchy Schwarz inequality, 307, 310, 479, 488,

500, 578
CDMA, 211, 457
CDMA 2000, 3, 5, 7, 194, 211, 436, 439, 443, 457, 536
cell, 191

co-channel, 191, 203
connection, 195
interference, 203

cellular standards, 192
1G, 192
2G, 194
3G, 195

central limit theorem, 108, 449, 459, 529
channel, 128
bandlimited, 477
binary symmetric, 132, 150, 155
binary erasure, 155
capacity, 131, 139, 142, 144, 230, 608
discrete, 128
estimation, 524, 536, 538, 542, 594, 603, 605, 609
frequency response, 529
frequency selective, 613
Gaussian, 134, 143, 144, 156
impulse response, 529, 554
loss, 190
memoryless, 164
tap, 529, 536, 537, 538, 542, 543, 555, 590
time-invariant, 529

channel tap matrix, 601
characteristic function, 118
Chernoff bound, 118
chi-squared density and distribution functions, see

random variables
chip rate, 432, 435
circular symmetry, 119
Clark Doppler spectrum, 7, 533
Clark model, 596
clipping, 289
codes, 124
BCH, 149
block, 147
catastrophic convolutional, 162
concatenated, 151, 169
convolutional, 160, 410
cyclic, 149
Golay, 149
Hamming, 133, 149
hard decoding, 410
Huffman, 126
instantaneous, 124
LDPC, 4, 151, 152, 613
Morse, 124
prefix, 124
punctured, 161, 295
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codes (cont.)
rate, 132
repetition, 132
Redd Solomon, 150
self-punctuating, 124
Shannon Fano, 125
soft decoding, 291, 410
uniquely decodable, 124
variable-length, 124

code division multiplexing, 436
coding gain, 146, 152, 160
asymptotic, 417

coherence bandwidth, 527
coherence time, 525, 532, 533, 536, 547
combining loss, 415, 464
comparator, 322
complex envelope, 4, 69, 70, 90, 232, 237, 241, 253,

258, 274, 283, 478, 528, 534, 537, 554, 569
complex spreading, 7, 566, 591
complex despreading, 7, 567, 573, 591
complex exponential, 37
constraint length, 160
convolution, 35, 61, 287, 306
circular, 287

co-phasing, 578, 578, 585
correlation metric, 353, 389, 510, 513, 596
correlator, 5, 356
noncoherent, 5, 318, 360

Costas loop, 336
coverage area, 115
CPM, 5, 280, 386, 397,
trellis, 388

CP-MFSK, 277
CSK, 5, 275, 383, 385, 435, 444, 558, 562, 572
cyclic prefix, 286, 287, 402, 445
cyclic redundant check, 443
cyclostationary process, 4, 85, also see random process
D/A conversion, 2, 285, 289, 402
DC value, 38
decision-feedback selection algorithm, 561, 565
decoding, 163
hard, 163, 410, 411
soft, 165, 167, 410, 413

decorrelation, 92
delay spread, 92, 97
demodulator, 355, 358, 481
complex-valued, 536, 617

detector, 5
M-ary maximum, 5, 350
maximum, 5, 322, 456
maximum likelihood, 305, 397
minimum Euclidean distance, 5, 345
optimum, 305
phase, 370
slope, 337
threshold, 5, 320, 322, 347, 452, 457

differential encoding, 263, 274

differential decoding, 328, 333, 372
differential decision-feedback algorithm, 549

double, 550
diffraction, 110
direct sequence spread spectrum, 432, 491

DS-CSK, 454, 572
direct signal-to-diffuse-signal ratio, 540
direct symbol mapping, 265, 268
Dirichlet, 52
discrete Fourier transform (DFT), 284, 287
discrete frequency, 39
distortionless transmission, 55
diversity, 8

combiner, 575, 601
frequency, 8, 112, 587
gain, 581, 585, 587, 594, 598, 599, 602
receive antenna, 8, 595, 610
transmit and receive antenna, 8, 607, 612
time, 8, 574
transmit antenna, 8, 600, 611

DMPSK, 5, 262, 372, 375, 558
DMQAM, 274
Doppler, 7, 524, 547, 552

Aulin Doppler power spectrum, 536
Clark Doppler power spectrum, 533
factor (complex), 548, 573
frequency, 571
generalized Doppler power spectrum, 535
loss, 549
phase error, 548, 557, 615
differential phase error, 549
power spectrum, 532
spread, 525, 532, 533
tracking, 7, 559, 562

double-sideband amplitude modulation, 225
downconverter, 76, 177
DPSK, 5, 234, 328, 339, 378

e-field, 524, 528, 534
Einstein, 4, 92
EIRP, 190, 218
elevation angle, 215
energy, 3, 17, 21
energy spectral density (energy spectrum), 52, 57, 477
entropy, 122, 131

conditional differential, 139
differential, 136

envelope-phase representation, 68, 314
equal gain combining, 8, 585,
equalizer, 6, 481

fractionally spaced, 6, 516
mean-square error, 6, 494
mean-square error decision-feedback, 6, 506
zero-forcing, 6, 485, 486
zero-forcing decision-feedback, 6, 501

ergodicity, 91, 531
error propagation, 502, 506
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Euclidean distance, 29, 168, 291, 347, 367, 391, 417,
510, 513, 538, 544, 546, 579, 601, 604, 606

event, 78, 81
independent, 79

extinction ratio, 237

fade, 525
duration, 574, 575, 577

fading channel, 7, 528
fast fading, 7, 527, 615
flat fading, 7, 527, 528, 530, 532, 534, 537
frequency-selective fading, 7, 527, 528, 530,
590, 613

slow fading, 7, 527, 534, 536, 609, 610,
611, 612

uncorrelated, 528, 531
fast Fourier transform (FFT), 285, 405
Federal Communications Commission (FCC), 192
fiber optic communication, 236
figure-of-merit, 190
filter, 46, 54, 56, 63, 65, 95, 102, 107

Gaussian, 250
minimum phase, 107
noise whitening, 489
transversal, 492

finite impulse response filter (FIR), 289, 492
finite state machine, 387
folded spectrum, 484, 516
forward link (channel), 192, 204, 209, 444, 596
Fourier, 37, 48, 97, 284, 285, 475, 479, 488, 614
free distance, 291
frequency hop spread spectrum, 432, 460

fast, 464, 465, 587
FH-FSK, 461, 465
FH-MFSK, 462, 464

frequency offset estimation, 407, 552, 553
frequency response, 289
frequency reuse, 191, 203
frequency samples, 284
frequency sensitivity, 239
frequency spectrum, 192
frequency synthesizer, 460
Friis, 5, 116, 191, 196, 216
FSK, 5, 23, 31, 238, 249, 331, 337

Gallager, 151, 154
gamma function, 541
Gauss Markov, 120
Gaussian integral function, 312, 422
Gaussian process, see random process
generator matrix, 147
generator polynomial, 149, 161
generator sequence, 160
geometric mean, 504, 507
GMSK, 5, 250, 336
Gram Schmidt, 27, 103, 356
Gray code, 252, 257, 291, 296, 358, 539, 579

GSM, 5, 195, 251
guard time, 286

Hadamard matrix, 25, 436, 563
Hamming, 2, 133, 410
distance, 133, 149, 164, 291

Harley, 122
harmonics, 37, 46
Hata, 5, 115, 116, 199, 202
Hilbert, 75, 98
Huffman, 4, 126
hypergeometric function, 541

IEEE 802.11 a,g, 6, 7, 161, 270, 282, 290, 402, 407,
527, 528, 536, 542, 547, 556

IEEE 802.16, 7, 8, 270, 290, 295, 536, 542, 547,
556, 602

inner product, 21, 438
integrator, 101
interference, 203, 211
intercarrier, 405, 407, 552, 554, 570
interchannel, 570
intersample, 556
intrapath, 591, 598
multi-user, 443, 457

interleaving, 574
interpolation pulse, 285
intersymbol interference (ISI), 6, 286, 475, 482, 591
intersection, 78
inverse discrete Fourier transform (IDFT), 284
inverse fast Fourier transform (IFFT), 285, 403
I-Q representation, 68, 69, 315
IS-95, 3, 5, 6, 7, 26, 194, 211, 251, 277, 432, 435, 440,

444, 452, 454, 457, 536, 538, 572
IS-136, 5, 194, 269
inverse function, 609

jamming, 432
broadband, 6, 448
follower, 6, 464
multi-tone, 6, 462
partial-band, 6, 460, 462
pulse, 6, 449, 461
repeater, 464
tone, 6, 492

Jensen’s inequality, 138, 504

Karhunen Loeve, 4, 105
Khinchine, 4, 92
Kraft inequality, 124
Ku-band, 216
Kuhn Tucker condition, 140

Lagrange multipliers, 140
LDPC, see codes
level crossing rate, 575
L’Hôpital’s rule, 230
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light emitting diode, 236
likelihood, 164, 168, 414, 510
likelihood ratio, 154, 322, 414
linear feedback shift register, 433, 441
linear predictor, 506, 507
linear time-invariant, 34
log-likelihood, 164, 347, 513, 538
ln-likelihood ratio, 154, 168, 415
log-normal process, 4, 114

m-sequence, see maximal sequence
Manchester, 120
Marcum Q-function, 560
MASK, 5, 15, 252, 362
matched filter, 5, 306, 492, 505, 537
impulse response, 306, 314
noncoherent, 5, 314
whitened, 486, 489, 511

maximal ratio combining, 8, 578, 592, 598, 600, 601,
603, 604, 605, 608

maximal sequence (m-sequence), 433, 440,
443, 448

maximum a-posteriori criterion, 321, 346
maximum likelihood criterion, 321, 324, 346, 407, 510,

513, 538
maximum likelihood sequence detection, 6, 395, 509
maximum power transfer, 179
mean-square error, 494
mean-square estimation, 496
memoryless channel, 105, 128, 164
message passing algorithm, 154
MFSK, 5, 23, 25, 277, 383, 385, 558, 561
microcell-zoning, 210
MIMO, 8, 605
minimum frequency spacing, 23, 25, 31, 238, 283,
minimum mean-square error, 543
minimum phase, see transfer function
MISO, 8, 600
mixer (voltage multiplier), 225
mobile, 191
modulation index, 239, 243, 278
moment generating function, 118
MPAM, 254
MPSK, 5, 14, 32, 255, 366, 540, 580
MQAM, 5, 270, 380, 540, 580
MSC, 191
MSK, 5, 23, 25, 242, 332, 337
Gaussian, 250
precoded, 248, 261, 332

multipath autocorrelation profile, 531
multipath delay spread, 526
multipath Doppler profile, 531
multipath fading, 287
non-resolvable paths, 528, 532

multipath intensity profile, 526
multi-rate transmission with orthogonal covering, 439
mutual information, 129, 138

Nakagami-m, 4, 113, 529, 541, 559, 581, 618
near-far effect, 443, 444
noise, 98, 99, 103, 178, 179, 180, 306

figure, 183, 185
power, 179, 183
temperature, 177, 179, 180, 182, 186, 217,
whitening filter, see whitening filter

Nyquist, 3, 6, 62, 67, 102, 144, 285, 286, 475, 483, 516

OFDM, 5, 271, 282, 402, 527, 528, 552, 588, 612
offset quadrature modulation, 445
OOK, 5, 84, 94, 236
optimum threshold, 321, 330
OQPSK, 5, 261, 371, 445
orthogonal covering, 6, 436, 450, 566
orthogonality, 21, 67, 282

principle, 496
quasi, 21, 344

orthogonalization, 27
orthonormality, 21, 27, 29, 286, 359, 362, 366

quasi, 21, 22

pairwise error probability, see probability
parity-check, 147, 152, 153, 156
Parseval relation, 39, 52, 67, 256, 310
path loss, 196, 205

exponent, 116, 205,
Hata model, 199
modified Hata model, 202
two-ray model, 198

path metric, 164
peak frequency deviation, 238, 239, 242, 278
peak-to-average-power ratio (PAR), 289
periodogram, 60, 94
π/4-DQPSK, 5, 194, 266, 379, 558
phase ambiguity, 328, 373, 382, 410
phase detector, 452
phase error, 545, 546, 548,
phase error rotation matrix, 544, 546, 550
phase-locked loop, 452
photocurrent, 329
Planck constant, 179
pilot bits or symbols, 452, 536, 547
pilot symbol-aided demodulation, 7, 454, 569
pilot tone, 538, 542
pin photodiode, 329
PN sequence, 6, 277, 432, 443, 458

complex, 566, 569
Gold, 443
Kasami, 443

polynomial, 433, 440, 441
power, 16
power allocation, 140
power control, 443, 444
power spectral density (power spectrum), 3, 41, 46, 59, 92,

94, 95, 99, 178, 229, 236, 237, 242, 246, 254, 259,
274, 276, 279, 281, 306, 432, 484, 491, 495, 496
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PSTN, 191
probability, 78, 133, 134, 150, 151

a posteriori, 79, 129, 154, 164, 168, 321, 414
a priori, 79, 129
capacity-outage, 609
density function, 80, 109, 110, 111, 112, 113, 135,
311, 319, 538

distribution function, 80, 311
minimum error, 321
outage, 114, 115, 117, 542, 582, 613
pair-wise error, 348, 410, 412, 415, 417, 539, 551,
578

sequence error, 391
symbol or bit error, 348, 395, 539, 557, 561, 579,
587, 592, 617

total, 79, 81
transition, 128, 131

processing gain, 432, 448, 449
PSK, 5, 14, 30, 88, 94, 135, 150, 231, 326, 432, 482,

486, 539, 544, 580
puncturing, 161

Q-function, see Gaussian integral function
quadrature spreading, 436
quantization, 165
QPSK, 15, 33, 89, 92, 94, 367, 486, 540, 545, 580, 598

radiometer, 464
raised cosine pulse shape, 232, 238, 254, 260, 476
Rake receiver, 590, 599
random process, 82

baseband, 88
cyclostationary, 85
Gaussian, 4, 100
independent, 83
lowpass, 88
stationary, 85
uncorrelated, 83
wise-sense cyclostationary, 85
wise-sense stationary, 85, 90, 307, 356, 531

random variable, 80
central chi-squared, 112, 113, 319, 325, 342, 344,
579, 586, 610, 619

continuous, 80
discrete, 80
equally likely, 84, 86
expected value (mean value), 81, 85
exponential, 542
Gaussian, 6, 100, 137, 311, 320
independent, 100, 103, 104
mean-square value, 81
moment, 81
non-central chi-squared, 319, 325, 342, 344, 540, 581
standard deviation, 81
uncorrelated, 100, 103
uniformly distributed, 83
variance, 81

Rayleigh, 4, 108, 109, 318, 323, 325, 353, 362, 529,
539, 558, 579, 610, 615, 618

reflection, 110
responsitivity, 329
reverse link (reverse channel), 192, 203, 206, 210, 214,

251, 277, 443, 595
Rice, 4, 108, 110, 113, 318, 323, 325, 353, 362, 529,

540, 558, 560, 563, 581
root mean-square value (rms), 16

sampling theorem, 62, 102, 144
satellite, 215
scattering, 110, 528
Schwarz inequality, see Cauchy Schwarz
sectoring, 208
selection combining, 8, 583
self-information, 122
self-inverse function, 159
service providers, 192
Shannon, 2, 3, 67, 285
first theorem (noiseless source coding), 127
limit, 230
main theorem (noisy channel coding), 131
converse of noisy channel coding, 132

sidelobe regrowth, 445
signal, 10
analog, 13
antipodal, 13
aperiodic, 12, 47
bandpass, 45, 68
baseband, 45, 52, 283
continuous-time, 11
digital, 13
discrete-time, 11, 34
energy, 17
equivalent lowpass, 69, 478, 483, 491
lowpass, 45
orthogonal, 21
periodic, 12, 37, 53
power, 16
processor, 5, 305, 312, 416
time-invariant, 35
time-varying, 35

signal space, 3, 27, 252, 257, 267, 271, 290
Euclidean, 28
one-dimensional, 30,
two-dimensional, 31, 32

signal-to-interference-and-noise ratio, 206, 212,
459, 594

signal-to-interference ratio, 204, 209, 211, 212, 214,
444, 459, 561, 564

signal-to-jamming ratio, 448, 449, 461, 462
signal-to-jamming-and-noise ratio, 449
signal-to-noise ratio, 139, 141, 177, 217, 306, 308, 317,

448, 459, 479, 482, 491, 505, 508, 538, 539, 574,
578, 578, 579, 584, 608, 609

SIMO, 8, 595
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slant range, 215
slope detector, 337
Slutsky theorem, 91
soft decoding, 291, 464, 466
space-time coding, 600
Alamouti, 602
code rate, 602
rate ½ , 603
rate ¾ , 604
sufficient statistics, 604, 605

spectral efficiency, 230, 296
spectral factorization, 107, 489, 493, 504, 512
sphere packing bound, 142
spread factor, 212, 277, 432, 444, 447, 448
spread spectrum, 432
DS, 6
FH, 6

square root raised-cosine, 481, 485
state diagram, 162
stationary random process, see random process
subcarrier, 282
sufficient statistics, 105, 312, 510, 513, 538, 578, 583,

585, 600, 604, 605
sum product algorithm, 154
survivor path, 168
symbol, 2, 252
diversity, 579
mapping by set partitioning, 291, 296
rate, 2, 252, 283
time, 2, 252

synchronization, 436
syndrome decoding, 148
system, 34
bandpass, 70
equivalent lowpass, 71
linear, 35
LTI, 34, 46, 53

system noise temperature, 4, 182, 217,
system signal-to-noise ratio, 5, 190

Tanner graph, 152, 153
tap weight, 491, 529, 536, 537, 555
TCM, 5, 291, 416, 613
pragmatic, 5, 295
Ungerboeck, 5, 291, 417

TDMA, 194, 195
Tikhonov, 544

time-average, 88
timing synchronization, 403
total probability theorem, 79, 320, 321, 365, 450
transfer function, 46, 54, 58, 63, 106, 310, 502

canonical factor, 503
discrete-time, 496
lowpass, 46, 478
minimum phase, 489, 503, 507, 512

transformation, 100
transimpedance amplifier, 329
transmission line, 185
transversal filter, 492
triangle inequality, 134
trunking efficiency, 209

Ungerboeck, 291
union, 78

bound, 348, 351, 354, 360, 362, 383, 385,
390, 411

unit impulse function, 39
unit step function, 39
upconverter, 76, 177

vector, 27
Euclidean distance, 29
orthonormal basis, 28
squared norm, 28

Viterbi algorithm, 4, 6, 163, 165, 166, 168, 390, 392,
399, 410, 417, 510, 514

voice activation, 444

Walsh functions, 3, 6, 25, 276, 435, 436, 440, 445,
452, 563

variable length, 439
water-filling strategy, 141, 614
WCDMA, 3, 5, 7, 211, 436, 439, 457, 536, 547
weighting, 578, 585
white data, 97, 496
white noise, 179, 601
whitening filter, 107, 508, 514
wise-sense cyclostationary random process, see random

process
wise-sense stationary random process, see random

process
Wiener, 4, 92

Z-transform, 489
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