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Preface

The development of computer and telecommunication technologies led to a
revolution in the way that people work and communicate with each other. One
of the results is that large amount of information will increasingly be held in a
form that is natural for users, as speech in natural language. In the presented
work, we investigate the speech signal capture problem, which includes the
separation of multiple interfering speakers using microphone arrays.

Adaptive beamforming is a classical approach which has been developed
since the seventies. However it requires a double-talk detector (DTD) that
interrupts the adaptation when the target is active, since otherwise target
cancelation occurs. The fact that several speakers may be active simultane-
ously makes this detection difficult, and if additional background noise occurs,
even less reliable. Our proposed approaches address this separation problem
using continuous, uninterrupted adaptive algorithms. The advantage seems
twofold: Firstly, the algorithm development is much simpler since no detection
mechanism needs to be designed and no threshold is to be tuned. Secondly,
the performance may be improved due to the adaptation during periods of
double-talk.

In the first part of the book, we investigate a modification of the widely
used NLMS algorithm, termed Implicit LMS (ILMS), which implicitly includes
an adaptation control and does not require any threshold. Experimental eval-
uations reveal that ILMS mitigates the target signal cancelation substantially
with the distributed microphone array. However, in the more difficult case of
the compact microphone array, this algorithm does not sufficiently reduce the
target signal cancelation. In this case, more sophisticated blind source sepa-
ration techniques (BSS) seem necessary.

The second part is dedicated to blind separation techniques, much more
recent than classical adaptive beamforming (the first results with real acoustic
mixings appearing in the nineties). Our objective was to evaluate the perfor-
mance of blind separation techniques relative to that of more mature beam-
forming approaches. In addition, we wanted to combine the advantages of
beamforming, notably its performance and robustness, with those of blind
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source separation which does not require activity detection. Parra’s frequency-
domain block-diagonalization algorithm served as a benchmark in the field of
blind source separation. However, we realized that this algorithm could not
be flexibly combined with beamformers because it fails to cope with certain
“acausal” type of source mixing. We therefore focused on the time-domain
approach by Buchner. This approach has been extended to be applied in case
there are more microphones than sources. At a moderate computational cost,
the proposed Partial BSS scheme flexibly exploits all microphone signals and
provides multiple interferer references. Moreover, we derive self-closed update
rules that emerge as very robust relative to other algorithms in an experimen-
tal comparison. An emphasis is also placed on the theoretical study of BSS,
evidencing the role of the causality of the mixing system.

In the last part of the book, we combine both, the beamforming and BSS
approaches. While the input of geometrical prior information may increase
the start-up performance, we show that the performance gain after the ini-
tial convergence is limited. The use of an adaptive interference canceler as a
postprocessor leads to a higher interference suppression and also to a higher
cancelation of the desired signal. However, we will see that the cancelation of
the desired signal may be kept moderate by adequately combining BSS with
the ILMS algorithm and geometrical prior information.

The presented book results from a cooperation between DaimlerChrysler
and the University of Ulm. The industrial partner provided the privileged
application field of the car environment and we applied two different, plausible
experimental settings using compact and distributed microphone arrays. How-
ever, the proposed methods are quite general and should be easily portable
to other environments and to different applications.
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1

Introduction

Speech is a natural and therefore a privileged communication modality for
humans. For example in cars, safety and convenience issues require hands-
free (or “seamless”) speech-based human–machine interfaces for the driver to
manipulate complex functionalities and devices while driving. Applications
include hands-free phone calls as well as more advanced functions such as
automatic dialog systems for in-vehicle navigation assistance systems [71].
With a seamless speech input, such interfaces increase comfort but have to
face several issues:

(i) The signal-to-noise ratio (SNR) at a given microphone can be weak relative
to the background noise since the signal energy is inversely proportional
to the square of the distance to the sound source [14]. Moreover, room
acoustics leads to a reverberated speech signal.

(ii)Interferences, such as speech from the codriver, may greatly hamper the
speech recognizer performance, which is crucial for human–machine dialog
applications. Separation of the target speaker during periods of competing
speech from the codriver represent a particular challenge. This is because
the characteristics of the interferer signals cannot be directly estimated
from the microphone signals during these periods [50]. This problem is of
particular importance since spontaneous multiparty speech contains lots
of overlaps between the speech flows of the participants [43].

These issues make the seamless speech input a challenging problem. Before
recognizing speech as a sequence of words, an important preprocessing step is
to denoise the speech signal from its perturbations. In this book, we address
the issue of separating the desired signal from interfering speech, i.e., the point
(ii) above.

The car interior, which is weakly reverberant, will be our test environment.
Our experiments have been carried out in a Mercedes S320 vehicle with two
different microphone arrays: a four-element compact array mounted in the
rear-view mirror, and a two-element distributed array mounted on the car
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distributed array
compact array

Fig. 1.1. Experimental setup layout for the car interior. We want to separate the
driver speech from the codriver interfering speech with a four-element
compact array mounted in the rear-view mirror or a two-element distrib-
uted array mounted on the car ceiling

ceiling. In this test environment, we want to suppress the codriver interfering
speech to recover the clean driver speech, as shown in Fig. 1.1.

1.1 Existing Approaches: A Brief Overview

With a single microphone, noise reduction algorithms rely solely on the
temporal (or spectral) information contained in the input signal. They can
be effective if the noise spectral content varies slowly relative to the sig-
nal but they generally yield a distortion of the target signal. They are not
appropriate to suppress local nonstationary interference, such as the codriver
speech [66]. For this task, microphone array processing techniques are espe-
cially well-suited, since they are able to suppress the local interferer while
keeping the desired signal undistorted [17, 50].

Several microphone array methods have been developed in the two last
decades. This section provides a brief overview of the methods that can be
applied to the separation of the target signal from the interfering speech.

A class of methods, usually referred to as beamforming methods, is based
on the prior knowledge of the position of the target speaker. Many fixed
(data-independent) beamformers as well as statistically optimum or adaptive
beamformers, required for nonstationary noise fields, can be formulated in the
linearly constrained minimum variance (LCMV) framework [36, 42, 47, 88].

Adaptive beamformers need to be carefully used in speech enhancement.
In practice, inaccurate prior knowledge of the target speaker position or room
reverberation can lead to the cancelation of the target speech signal [91]. For
this reason, adaptive beamformers should be supervised (or “controlled”) so
that the adaptation occurs only when the target signal level is weak relative
to that of the interferers [27, 54, 50]. In the context of interfering speech
signals, the control mechanism is called a double-talk detector (DTD). For
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most existing adaptive beamformers, the DTD performs in an all-or-nothing
manner, that is, the adaptation is interrupted during periods of double-talk.

Even though several approaches have been proposed [44, 49, 54], the design
of the DTD appears delicate. It implies tunable parameters, whose value may
influence the performance significantly. Also, background noise and nonsta-
tionary local interferences create alternating noise fields making the design of
a reliable and accurate DTD even more difficult. Therefore, alternative unsu-
pervised techniques that do not require any tunable threshold are of interest,
not only because they may be easier to design but also because they are able
to adapt during double-talk.

More recently, a class of unsupervised methods has been developed and
applied to audio signal processing. These methods, usually referred to as blind
source separation (BSS), are based on the sole assumption that the sources are
mutually independent. BSS algorithms pursue a similar goal as beamforming:
to reduce interferences. A major difference to beamforming is that BSS does
not require any information about the target position, and BSS is sometimes
termed “blind beamforming” [21]. Another difference is that BSS recovers all
present sources simultaneously, while beamforming extracts only one target
source.

The premises of BSS can be traced back to the work of Jutten et al. [59],
who devised a method to separate instantaneous mixtures. The separation of
multiple speakers, an important application of BSS in audio signal process-
ing, is considerably more challenging because it involves convolutive mixtures.
Applying BSS to realistic scenarios in audio revealed difficulties [86]. On the
one hand, time-domain BSS seems to suffer from very slow convergence [74].
On the other hand, the performance of narrowband frequency-domain BSS
is fundamentally limited [9]. Narrowband frequency-domain BSS suffers from
the so-called permutation and circularity problems, which require extra repair
measures [57, 79, 81, 82, 83]. Even though BSS has been applied successfully
in some realistic scenarios [4, 75], its performance in terms of interference sup-
pression is usually regarded as inferior to that of LCMV beamforming, apart
from the target signal cancelation problem [11].

Taken individually, the beamforming approach and the BSS approach have
revealed their particular drawbacks. In this book, we consider them as com-
plementary and address the question whether they can be combined in an
efficient manner.

1.2 Scope and Objective of the Book

The first objective of the book is to evaluate the performance of time-domain
LCMV beamforming and BSS algorithms. The evaluation is performed in
terms of reduction of the interference signal level first and then in terms of
reduction of the word error rate when used as an acoustical front-end to a
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speech recognizer. The focus is on time-domain signal processing, as opposed
to frequency-domain signal processing, for the following reasons:

• Many frequency-domain algorithms rely on an approximative narrowband
signal model which ignores coupling across different frequency bins [61].
Not relying on the narrowband signal model may improve the performance
and support the understanding of the algorithm.

• Time-domain BSS algorithms seem robust against the permutation
problem.

The car environment is a good example of an application where the po-
sition of the target speaker (the driver) is known in advance. A purely blind
approach, which does not exploit this information, seems suboptimal. On the
other hand, adaptive beamforming algorithms require a DTD detector to be
designed and thresholds to be tuned. Therefore, the second objective of the
book is the development of a microphone array processing algorithm that
combines the benefits of both approaches. In other words, we want to develop
a method that (1) efficiently extracts the speech of one desired speaker from
mixtures of multiple speakers, and (2) removes the need for a DTD and allows
continuous adaptation, also during double-talk.

Moreover, an emphasis is placed on the evaluation of these methods with
real microphone recordings involving simultaneous speech of the driver and the
codriver, as opposed to computer-generated simulations. Experiments with
background noise are carried out to assess the robustness of the considered
methods in noisy conditions.

Let us set the limits of this book: Firstly, the attenuation of the back-
ground noise, which may be tackled with frequency-domain postfiltering tech-
niques [14, 94], does not come into focus. Secondly, the design of a DTD will
not be investigated. An approach that is well adapted for the automotive con-
text can be found in [65]. For the sake of comparison with DTD-controlled
beamformers, we will use an “informed” virtual DTD, based on the knowledge
of the true target signal.

1.3 Outline of the Book

Chapter 2 is an introductory chapter which sets the formal framework on
which the next chapters are based. It defines the notations, illustrates adap-
tive algorithms on simple examples, and defines performance measures. Then,
Chaps. 3–9 can be divided into three parts:

• The first part (Chaps. 3 and 4) deals with LCMV beamforming. Chapter 3
introduces fundamental concepts in LCMV beamforming. Chapter 4
presents an “implicit” control scheme, as opposed to “explicit” double-talk
detection. The proposed threshold-free adaptation control is a modifica-
tion of the standard NLMS algorithm which mitigates the target signal
cancelation problem.
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• The second part (Chaps. 5–7) is dedicated to BSS. In Chap. 5, we con-
sider the time-domain BSS method presented by Buchner et al. which
exploits second-order statistics of the source signals [18, 20]. This method
is based on the natural gradient and is limited to “square” systems with
equally many sources and microphones. Introducing the concept of “par-
tial separation,” we propose a new approach to remove this restriction of
the natural gradient. The Sylvester-based representation of the separation
system allows a very concise derivation of Second-Order Statistics BSS
(SOS-BSS) algorithms in the time-domain but cannot be directly imple-
mented. Revisiting the natural gradient in the z-domain, we clarify this
implementation issue in Chap. 6. Chapter 7 discusses the convergence and
stability of SOS-BSS algorithms from the theoretical point of view.

• Chapters 8 and 9 constitute the last part of the book. Chapter 8 provides
a detailed comparison of the two approaches. Chapter 9 examines existing
and new combinations of SOS-BSS with beamforming. It also investigates
these combinations as an acoustic front-end for a speech recognizer.



2

Source Separation as a Multichannel Linear
Filtering Problem

The physical phenomena implied in multichannel speech processing include
speech production at the vocal strings, sound propagation from the sound
source to the microphone membrane, and analog-to-digital conversion of the
signal. Instead of taking the complexity of these various phenomena into
account, the acoustic signal processing algorithms studied in this book are
based on the simplified model of a linear acoustic mixing.

This chapter explains this simplified model and is organized as follows:
Section 2.1 describes the acoustic environment from the physical point of view
and gives a mathematical formulation of the linear acoustic mixing model. In
Sect. 2.2, the multichannel separation filters are presented for single and mul-
tiple outputs systems. The least-mean square (LMS) algorithm and a simple
blind source separation (BSS) algorithm are briefly introduced to exemplify
multichannel adaptive algorithms. The spatial response is introduced as a tool
to interpret the separation filters spatially. In Sect. 2.3, we examine how the
separation may be achieved and a lower bound on the length of the separation
filters is derived. Finally, Sect. 2.4 defines the performance measures that will
be used throughout the next chapters.

2.1 The Mixing Channels

For normal sound pressure in speech applications, the propagation medium
(the air) and the transducer (the microphone) may be assumed to behave
linearly. Hence, the emitted sound undergoes a linear transformation before
reaching a given microphone. The filter that characterizes this transformation
is completely described by its impulse response, which we denote by hr,θ.
This response is also called acoustic channel or room impulse response. The
acoustic channel hr,θ depends on a set of parameters that may be divided into
four groups:
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• The position θ ∈ R
3 where the source signal sθ(t) is emitted may be

estimated from the input data, but it is more difficult to determine the
orientation and radiation diagram of the source.

• The position r ∈ R
3 where the sound is received, i.e., the position1 of the

microphone, is known in most applications.
• The geometry of the room and the acoustic properties of its walls and

objects which reflect the sound may hardly be modeled for real rooms and
are unknown a priori in most applications.

• The propagation of sound in the propagation medium depends on parame-
ters such as the temperature. Assuming a temperature of 20◦C, the sound
velocity equals c = 344 m s.

As an example, a room impulse response estimated in the car interior from
the driver mouth to a microphone mounted in the rear-view mirror is shown
in Fig. 2.1.

In general, the sound is produced in a region Γ ⊂ R
3 of the 3D space. In

the noiseless case, the received signal x(r, t) is then obtained by integrating
the convolution of the source signal sθ(t) with the response hr,θ over the
region Γ :

x(r, t) =
∫

Γ

hr,θ ∗ sθ dθ, (2.1)

=
∫

Γ

∫ +∞

0

hr,θ(τ)sθ(t − τ) dτ dθ. (2.2)

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [sec]

Fig. 2.1. Estimated impulse response between a close-talk microphone mounted on
the artificial head on the driver seat and a microphone mounted on the
four-element compact array mounted in the rear-view mirror

1 The microphone orientation and sensitivity diagram may also be modeled. How-
ever these parameters are generally given from the manufacturer only within a
certain tolerance margin.



2.1 The Mixing Channels 9

When a human speaker or a loudspeaker is recorded by a distant
microphone, the size of the region Γ is small relative to the source-microphone
distance. Thus the source may be modeled as a point source, which is local-
ized at a single spatial point θ0. This is formally expressed by an excitation
signal sθ0(t) as sθ(t) = δ(θ−θ0)sθ0(t). In this case, the space integral in (2.1)
disappears and only the time integral remains:

x(r, t) = hr,θ0 ∗ sθ0 , (2.3)

=
∫ +∞

0

hr,θ0(τ)sθ0(t − τ) dτ. (2.4)

If N point sources are present, we may write sθ(t) =
∑N

n=1 δ(θ − θn)sθn
(t),

which yields

x(r, t) =
N∑

n=1

∫ +∞

0

hr,θn
(τ)sθn

(t − τ) dτ. (2.5)

In the remainder of this work we may omit the argument r, the positions
r1, . . . , rM of the M microphones being the ones we are interested in. In this
case we simply note xm(t), hn(τ), and sn(t) for x(rm, t), hr,θn

(τ), and sθn
(t),

respectively.
Since real room impulse responses decay at an exponential rate, they may

be modeled by a finite impulse response (FIR) filter of length Lm. Let us
denote the microphone signals sampled at time t = p/fs by x(p), where p ∈ Z

and where fs denotes the sampling frequency. If we assume that the digitiza-
tion is a linear operation, then the digitized microphone signal may be written
from (2.5) as

x(p) =
N∑

n=1

(sn ∗ hn)(p) =
N∑

n=1

Lm∑
k=0

hn,ksn(p − k), (2.6)

where hn,k, k = 0, . . . , Lm denotes the digitized impulse response from the
source sn(p) to the microphone x(p). Equation (2.6) gives a formulation of
the microphone signal as the linear mixing of the signal of interest and of
the interferences (Fig. 2.2). In the case of several microphone signals xm(p),
m = 1, . . . ,M , (2.6) turns into

x1

x2

s1

s2

h11

h12

h21

h22

Fig. 2.2. Linear model for the acoustic mixing channels in the case N = M = 2
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xm(p) =
N∑

n=1

(hmn ∗ sn)(p), (2.7)

=
N∑

n=1

Lm∑
k=0

hmn,ksn(p − k). (2.8)

Equation (2.8) models the acoustic mixing as a multiple-input multiple-output
(MIMO) linear system. For later reference, we define the Lm × 1 vector hmn

as follows
hmn � (hmn,0, . . . , hmn,Lm−1)

T
. (2.9)

It should be mentioned that (2.8) is a linear time-invariant model of the physi-
cal acoustic transmission channel. While this model describes the reality accu-
rately in the case of loudspeaker-to-microphone transmission, it seems to be
less accurate in the case of real mouth-to-microphone systems, even when the
speakers are not moving [84].

In the remainder of this book, zero-mean signals are assumed.

2.2 The Separation Filters

This section introduces the separation filters that are algorithmically adjusted
in order to extract the source of interest out of the acoustic mixing. We will
present two kinds of separation systems: multiple-input single-output (MISO)
and multiple-input multiple-output (MIMO) systems. We present MISO and
MIMO systems separately because they are typically associated to distinct
separation algorithms: While MISO systems are commonly used as inter-
ference cancelers in the context of informed beamforming, MIMO systems
are the natural framework for blind source separation (BSS) techniques. The
LMS algorithm and Van Gerven’s SAD algorithm will be briefly presented
to exemplify MISO and MIMO adaptive systems. Nevertheless, it should be
mentioned that the concepts of MISO and MIMO systems are interchange-
able in practice: The union of several MISO systems forms a MIMO system,
and conversely the selection of a particular output in a MIMO system defines
a MISO system. For simplicity, the separation filters are considered time-
invariant unless stated otherwise.

2.2.1 Single Output Systems

According to the linear model in (2.8), the interferer signals are received
through a linear system (the acoustic channels), and they may thus be can-
celed by linearly filtering the microphone signals. In single output systems,
the output is obtained by filtering the M input signals individually and by
taking the sum of the filtered signals. If we consider M FIR filters wm of
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length L with coefficients wm,l,m = 1, . . . , M ; l = 0, . . . , L − 1, this can be
written as follows:

y(p) �
M∑

m=1

(xm ∗ wm) (p), (2.10)

=
M∑

m=1

L−1∑
l=0

wm,lxm(p − l). (2.11)

The convolution in (2.10) can be reformulated using a vector notation as
follows:

y(p) =
M∑

m=1

wT
mxm(p), (2.12)

with wm � (wm,0, . . . , wm,L−1),

and xm(p) � (xm(p), . . . , xm(p − L + 1)) .

In the context of MISO systems, it is usual to stack the input samples in the
ML×1 vector x(p) and all filter coefficients into one ML×1 vector w, which
defines

x(p) �
[
xT

1 (p), . . . ,xT
M (p)

]T
, w �

[
wT

1 , . . . ,wT
M

]T
. (2.13)

Then we can compactly reformulate (2.12) as follows:

y(p) = wTx(p). (2.14)

The squared L2-norm of w is called its white-noise gain [88].
If we substitute the input signals xm(p) in (2.8), we can write y(p) in terms

of the source signals as follows:

y(p) =
M∑

m=1

(wm ∗ hmn ∗ sn) (p) +
N∑

n′=1
n′ �=n

M∑
m=1

(wm ∗ hmn′ ∗ sn′) (p). (2.15)

For a certain source of interest sn, (2.15) decomposes y(p) into the sum
of the filtered desired source signal sn and of the filtered interference signals
sn′ , n′ �= n. Our objective is to find the separation filters wm so that the second
part of the sum (the filtered interfering source signals) vanishes. Suppose we
define a cost function (or “criterion”) J that is minimum if and only if this
objective is reached. Then we could adjust the filter coefficients automatically
using a minimization method such as e.g., the gradient descent. This concept
is rather general and applies to most adaptive filtering algorithms.

The filter coefficients may be adjusted based on the statistics of the input
or output signals. To describe these statistics, we use the expectation operator
(or “ensemble average”) E {} whose argument is a stochastic process. For the
sake of simplicity, no notational distinction is made between the realization
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minE
{
y2
}

x1

x2

mixing channels separation filters

h11

h12

h22

y

w2

s1

s2

Fig. 2.3. Mixing/separation structure for Widrow’s interference canceler for M =2.
In this context, the input x1(p) is referred to as the target reference signal.
The input x2(p), which should not receive any contribution of the desired
source, is referred to as the interference reference signal

x(p) and the underlying stochastic process X (p); we denote the expectation
of the underlying stochastic process by E {x(p)}.

For widely used adaptive filters, such as linearly constrained minimum
variance (LCMV) beamformers or Widrow’s interference canceler, the cost
function is based on the output signal energy [92].

Example: Widrow’s interference canceler and the LMS algorithm

In the following, we briefly sketch Widrow’s interference canceler for two mi-
crophones (M = 2) and two sources (N = 2). The interference canceler is
depicted in Fig. 2.3. We assume stationary input signals and define the cost
function as the energy of the output signal, that is,

JLMS � E
{
y2(p)

}
. (2.16)

To avoid the undesired solution w = 0, the filter w1 is set to a unit impulse
and only the filter w2 is adapted, as depicted in Fig. 2.3. The optimal solution
which minimizes JLMS may be computed iteratively using a gradient descent,
as follows:

w2(n + 1) � w2(n) − μ
∂JLMS

∂w2
, (2.17)

= w2(n) − 2μE {y(p)x2(p)} , (2.18)

where μ denotes the gradient descent step-size and n denotes the iteration
index. From (2.18), it may be seen that the optimal filter coefficients also
cancel the correlation E {y(p)x2(p)} between the interference input x2 and the
output y, in addition to minimizing the output energy. This implies certain
restrictive conditions on the mixing channels for the convergence of (2.18) to
the desired solution: The interference input x2 should be free of any target
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signal, that is, the acoustic channel h21 should be zero. Otherwise the target
signal will also be canceled at the output y(p).

To obtain the online LMS algorithm, we replace the expectation with its
instantaneous estimate. The cost function (2.16) becomes

Jonline(p) � y2(p). (2.19)

If we consider n = 0, . . . , Niter − 1 iterations per input sample, the gradient
descent may be written as

w2(n + 1, p) � w2(n, p) − μ
∂Jonline(p)

∂w2
, (2.20)

with w2(0, p) = w2(Niter, p − 1) as initialization for each p. When a single
iteration for each new input sample is sufficient, the iteration index n in (2.20)
may be dropped and one obtains the LMS algorithm

w2(p + 1) = w2(p) − 2μy(p)x2(p). (2.21)

The LMS algorithm and its application to speech separation will be studied
in more detail in Chaps. 3 and 4.

2.2.2 Multiple Output Systems

The MISO separation architecture may be extended to N output signals with
NM FIR filters wnm, n = 1, . . . , N ;m = 1, . . . , M as follows:

yn(p) �
M∑

m=1

(xm ∗ wnm) (p). (2.22)

As in (2.12), we can rewrite (2.22) using a vector notation:

yn(p) =
M∑

m=1

wT
nmxm(p), (2.23)

with wnm � (wnm,0, . . . , wnm,L−1)
T. The overall mixing/separation system is

represented in Fig. 2.4 for N = M = 2. In the context of MIMO systems, the
filters hnn and wnn for n = 1, . . . , N will be referred to as diagonal filters.

MIMO systems are the standard framework for BSS techniques. In BSS,
the sources are assumed to be mutually independent; hence, the separation
may be achieved with a cost function J(y1, . . . , yN ) that measures the depen-
dence of the output signals.
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min J(y1, y2)

x1

x2

mixing channels separation filters

h11

h12

h21

h22

y1

y2

w11

w12

w21

w22

s1

s2

Fig. 2.4. MIMO structure in the case N = M = 2. The filter coefficients are ad-
justed to minimize a cost function J

Example of Van Gerven’s symmetric adaptive decorrelation (SAD) algorithm

In the following, we briefly sketch a simple BSS algorithm which may be
obtained by modifying the LMS algorithm, as proposed by Van Gerven [38].
We recall that the LMS algorithm decorrelates a signal estimate y(p) from
an interference reference x2(p). This leads to an undesired signal cancelation
at the system output if the target signal s1(p) leaks into the interference
reference x2(p), that is, whenever h21 is nonzero. Based on this observation,
Van Gerven proposed replacing the interferer reference signal x2(p) in (2.21)
by the target-free interference estimate y2(p) = x2(p) + wT

21(p)x1(p). He then
obtains two update rules for w12(p) and w21(p):{

w12(p + 1) � w12(p) − μy1(p)y2(p),
w21(p + 1) � w21(p) − μy2(p)y1(p).

(2.24)

Similarly to Widrow’s interference canceler, the two diagonal filters w11 and
w22 are set to unit impulses and their coefficients are fixed, as shown in
Fig. 2.6 for D = 0. Even though (2.24) may overcome the limitations of
the LMS algorithm (2.21) in case of target leakage (i.e., if h21 is nonzero),
this simple algorithm is generally not able to separate speech sources in real
acoustic environments [39]. In Chaps. 5–7, we will develop more robust BSS
algorithms.

2.2.3 The Spatial Response

The spatial response is a tool to interpret the separation filters spatially. To
introduce its formal definition, we consider a single source sθ(p) at position
θ ∈ R

3 which emits a unit impulse at time2 p = 0 and denote the impulse
2 The time at which the source sθ(p) emits a unit impulse is irrelevant, the impulse

responses modeled in (2.26) may be shifted by a common, overall delay D. Hence
we may replace (2.26) with hm,θ = δD+fsτm,θ . This overall delay D may be
necessary to have causal filters if there exists m so that τm,θ < 0.
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response for the acoustic channel from θ to the mth microphone by hm,θ.
Without loss of generality, we consider a MISO system with filters wm for
m = 1, . . . ,M . If only the source sθ(p) is present, its output can be written
as

y(p) =
M∑

m=1

(wm ∗ hm,θ)(p). (2.25)

The actual impulse responses hm,θ are unknown in general. To interpret the
coefficients w spatially, we may assume a simplified case where the acoustic
propagation channels simply delay the source signals by fsτm,θ samples (see
footnote 1), that is

hm,θ = δfsτm,θ
. (2.26)

The delays τm,θ for m = 1, . . . ,M may be computed from the source–
microphone distances ‖θ − rm‖. (Since the delays fsτm,θ do not take inte-
ger values in general, fractional-delay filters are necessary to approximate
δfsτm,θ

[64].) The spatial response for the position θ is denoted by g(θ) and
is defined as the system output when only the source sθ(p) is present:

g(w,θ) �
M∑

m=1

wm ∗ δfsτm,θ
. (2.27)

Case of the far- and free-field propagation model

If the source-microphone distances ‖θ − rm‖ are large compared to the array
aperture, the acoustic channels may be further simplified to the far- and free-
field propagation model (see Appendix B for more details). In this case, the
dependency in the 3D parameter θ reduces to a dependency in the direction-
of-arrival (DOA) θ, and for a uniform linear array (ULA) with interelement
spacing Δ we have

τm,θ = (m − 1)
Δ sin(θ)

c
, (2.28)

for all m. This simplification is widely used for compact microphone arrays.
When the far- and free-field propagation model is assumed, we may denote
the position parameter by θ instead of θ.

Representation in the DTFT domain

To formulate (2.27) using the DTFT,3 we first define
3 For any finite-length time-domain sequence u(p), its DTFT is denoted by U(ω),

where ω is a continuous angular frequency in the range [−π, π], and is defined as
follows:

U(ω) =
∑
p∈Z

u(p) e−iωp. (2.29)

Note that u(p) may be a signal or a filter.
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W(ω) � (W1(ω), . . . , WM (ω))T , (2.30)

D(ω,θ) � (D1(ω,θ), . . . ,DM (ω,θ))T , (2.31)
withDm(ω,θ) � e−iωfsτm,θ for m = 1, . . . , M. (2.32)

D(ω,θ) is called the steering vector for the position θ. The space-frequency
response of the beamformer is given by

Gw(ω,θ) � WT(ω)D(ω,θ). (2.33)

If we assume a far- and free-field propagation, the squared magnitude of
the space-frequency response may be represented in two dimensions (an-
gle/frequency). The resulting figure is called the beampattern and is denoted by

BPw(ω, θ) � |GW(ω, θ)|2 , (2.34)

=

∣∣∣∣∣
M∑

m=1

Wm(ω) e−iωτm,θ

∣∣∣∣∣
2

, (2.35)

where τm,θ is given in (2.28).
To illustrate the beampattern, we consider a beamformer with M = 4

microphones and spacing Δ = 5 cm. For this example, the filter coefficients
are set to

wm =
1
M

δfsτm,−θ0
, (2.36)

with θ0 = 20◦. This beamformer is a delay-and-sum beamformer: The delays
τm,−θ0 synchronize the input signal for a certain DOA θ0. After synchroniza-
tion, the input signals are averaged, which enhance the signals coming from θ0

and attenuates the signals coming from the other directions. The beampattern
of this delay-and-sum beamformer is shown in Fig. 2.5.
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Fig. 2.5. Beampattern for the delay-and-sum beamformer. The steered DOA is
θ1 = 20◦. Other parameters: M = 4, Δ = 5 cm
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(a) mixing channels (b) separation filters

Fig. 2.6. Linear mixing (resp. separation) structure in the case N = M = 2 with
unit diagonal channels (resp. filters)

2.2.4 Particular Cases

Unit diagonal separation filters

A rather common simplification consists in constraining the diagonal filters
to simple delays of D taps:

wnn = δD, (2.37)

for n = 1, . . . , N and where D should be chosen in the range 0 ≤ D < L. The
resulting structure is depicted in Fig. 2.6b. This constraint may be applied to
prevent the filter coefficients from converging to an undesired solution, as in
the case of the interference canceler. It comes with a reduction of the number
of degrees of freedom.

Instantaneous mixing

If we set Lm = L = 1 in (2.8) and (2.10), we obtain a so-called instantaneous
mixing which does not involve any time delay between the source and the
observed signals. In this case, each impulse response hmn,k, k = 0, . . . , Lm − 1
is reduced to the scalar factor hmn,0. With such an excessive simplification,
the mathematical model obviously loses its physical relevance. However, the
mixing equation (2.8) may be rewritten very simply using a matrix notation as

x(p) = Hs(p), (2.38)

with x(p) = (x1(p), . . . , xM (p))T, s(p) = (xn(p), . . . , sN (p))T, and

H �

⎡⎢⎣ h11,0 . . . h1N,0

...
. . .

...
hM1,0 . . . hMN,0

⎤⎥⎦ . (2.39)
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Similarly, with L = 1, the separation filters reduce to separation scalar coef-
ficients wnm,0 that may be stacked into a single N × M matrix:

W �

⎡⎢⎣ w11,0 . . . w1M,0

...
. . .

...
wN1,0 . . . wNM,0

⎤⎥⎦ . (2.40)

The separation equation (2.22) can be then written as

y(p) = Wx(p), (2.41)

with y(p) = (y1(p), . . . , yN (p))T. Instantaneous mixings may not be used di-
rectly to model acoustic mixtures, since time-delayed and multipath prop-
agation always arise in reality. In spite of this, because of their simplicity,
instantaneous mixings have been studied to a great extent in the field of BSS
(see, e.g., [23] and the references therein).

2.3 Spatial Filtering vs. Spectral Filtering

The aim is now to find the filter coefficients wnm,k that cancel the interference
signal. In the following, we examine how this may be done. Without loss of
generality, we examine the case of a MISO system defined by its filters wm

for m = 1, . . . , M as in (2.12). The source of interest is s1(p), the other N − 1
sources being considered as interferences. We consider the source–output MISO
systems, described by the filters4 cn of length L + Lm − 1:

cn �
M∑

m=1

wm ∗ hmn. (2.44)

To convolve the interference signals with the source–output filters, we intro-
duce the L + Lm − 1 × 1 vectors

sn(p) � (sn(p), . . . , sn(p − L − Lm + 2)) . (2.45)

4 In (2.44), we use the vector convolution. The convolution c = a ∗ b of vectors a
and b with respective lengths La and Lb is a vector c of length Lc = La +Lb −1.
This vector c = a ∗ b is given by

c � (c0, . . . , cLa+Lb−2)
T , (2.42)

with ck �
min{k,La−1}∑

p=max{0,k−Lb+1}

apbk−p. (2.43)
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We next stack the interference vector signals and filters into vectors of size
(N − 1)(L + Lm − 1) × 1:

cint �
[
cT
2 , . . . , cT

N

]T
, (2.46)

sint(p) �
[
sT
2 (p), . . . , sT

N (p)
]T

. (2.47)

Now the contribution of the interferences at the output, denoted yint(p), can
be written as follows:

yint(p) = cT
intsint(p). (2.48)

The interferences are canceled by the filters wn if the average power of yint(p)
is zero. According to (2.48) and assuming stationary signals, this is achieved
if and only if

cT
intRintcint = 0, (2.49)

where Rint denotes the correlation matrix of sint and is defined as

Rint � E
{
sint(p)sT

int(p)
}

. (2.50)

Let us assume that Rint �= 0 (the interferer is active). We may distinguish
two particular solutions to (2.49).

Firstly, (2.49) is solved if cint = 0, which defines (N − 1)(L + Lm − 1)
constraints. The solution cint = 0 yields the advantage to be independent
of the interference correlation matrix Rint and depends only on the acoustic
mixing channels. Hence, we say that this solution achieves the separation by
filtering the input signals spatially. This may be attained if the separation
filters are long enough, as discussed in Sect. 2.3.1.

Secondly, (2.49) may be solved if cint belongs to the null space of Rint.
This solution depends on the mixing channels but also on the power spectrum
of the interference signals. Then we may say that the separation is achieved
by filtering the input signals spectrally. In the case of nonstationary signals,
this solution has the drawback to be time-varying, making it more difficult to
be temporally tracked. Moreover, this yields a distortion of the desired signal
if its spectrum overlaps with that of the interference signals.

Neither spatial nor spectral separation may be completely achieved. For
example, the separation filters may be too short for spatial separation and the
spectrum of the interferers may be too wide for spectral separation (e.g., in
the case of white interference signals). Even if the separation filters are long
enough, the adapted filter coefficients may depend on the excitation source
signals, for example, if the spectrum of the excitation signal is not sufficiently
wide. In practice, the suppression of the interferer signals relies on both spatial
filtering (which sets cint to 0) and spectral filtering (which sets cint in the null
space of Rint). As we will see in Sect. 2.3.2, the case of instantaneous mixings
is very special: If L = 1, spectral separation automatically achieves spatial
separation, i.e., the optimal filters are always independent of the source signal.
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2.3.1 Minimum Filter Length for Spatial Separation

We want to find the separating filter coefficients wm,k that achieve

cint = 0, (2.51)

where cint is defined in (2.44) and (2.46). In the following, we derive the
minimum filter length for identifying these interference-independent filter co-
efficients. A related analysis may be found in [51].

Equation (2.51) defines a linear system. First, we represent this linear
system under matrix form. For that, we define the L + Lm − 1 × L matrices
Hmn as

Hmn �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hmn,Lm−1 0 . . . 0
... hmn,Lm−1

...

hmn,0

...
. . . 0

0 hmn,0 hmn,Lm−1

...
. . .

...
0 . . . 0 hmn,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.52)

for m = 1, . . . ,M and n = 1, . . . , N . By stacking matrices Hmn together, we
obtain the (N − 1)(L + Lm − 1) × ML interference mixing matrix:

Hint �

⎡⎢⎣ H12 . . . HM2

...
...

H1N . . . HMN

⎤⎥⎦ . (2.53)

Now we can write (2.51) as follows:

Hintw = 0. (2.54)

Depending on the number of linearly independent rows in Hint, (that is, the
row-rank of Hint), (2.54) may have a solution or not. A plausible and common
assumption is that the acoustic channels hmn do not share common zeros
in the frequency domain, which implies that the matrix Hint has full row-
rank (see [51] and the references therein). Then (2.54) sets (N−1)(L+Lm−1)
linearly independent constraints on the ML separation filter coefficients wm,l.
To avoid the trivial zero solution wm,l = 0 for all m, l, an additional constraint,
e.g., w1,0 = 1 is required, leaving ML − 1 free parameters. The constraint in
(2.51) can be fulfilled only if the number of degrees of freedom is not less than
the number of constraints, i.e., only if ML − 1 ≥ (N − 1)(L + Lm − 1). This
yields the following lower bound on the length L of the separation filters:

L ≥
⌈

(Lm − 1)(N − 1) + 1
M − N + 1

⌉
, (2.55)

where 	x
 is the smallest integer larger than x ∈ R. According to (2.55), in
the case Lm = 1, spatial separation can be achieved with L = 1 provided that
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M ≥ N . For Lm > 1 and M > N , spatial separation may be obtained with
separation filters that are shorter than the mixing channels. In the square case
(M = N), the spatial separation is attainable if L ≥ (Lm − 1)(N − 1) + 1. If
in addition N = 2 then spatial separation is achievable if L = Lm.

2.3.2 Particular Cases

Unit diagonal mixing/separation filters

The constraint in (2.37) comes with a reduction of the number of degrees of
freedom, which needs to be taken into account for deriving the lower bound
on L. Again, we formulate the separation constraints under matrix form for
a MISO separation system with M filters wm, m = 1, . . . , M and w1 = δD.
Using the matrices Hmn introduced in (2.52), we first define

H′
int �

⎡⎢⎣ H22 . . . HM2

...
...

H2N . . . HMN

⎤⎥⎦ , w′ �

⎡⎢⎣ w2

...
wM

⎤⎥⎦ , h′ � −

⎡⎢⎣ H12

...
H1M

⎤⎥⎦ δD. (2.56)

Now the separation constraint may be written as follows:

H′
intw′ = h′. (2.57)

First we consider the case where H′
int has full row-rank. Then (2.57) defines

(N − 1)(L + Lm − 1) linear constraints. Since there are (M − 1)L degrees of
freedom, an interference-independent separation may be achieved only if

(M − N)L ≥ 	(Lm − 1)(N − 1)
 , (2.58)

⇔ L ≥
⌈

(Lm − 1)(N − 1)
M − N

⌉
if M > N. (2.59)

Equation (2.58) shows that the (N − 1)(L + Lm − 1) constraints in (2.51)
cannot be fulfilled if M = N unless Lm = 1. This means that no interference-
independent separating solution can be identified.

Now we give an example where H′
int does not have full row-rank. Consider

M = N = 2 and h22 = w1 = δD, that is, the diagonal channel h22 has a
unit response as depicted in Fig. 2.6a. If the delay D is zero, this may be
considered as a physical model in situations where the room acoustics is not
very reverberant and where the source s2 is placed close to the microphone
x2 for n = 1, 2 [38]. Then a separating solution is given by

w2 = −h12. (2.60)
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Instantaneous mixing

As may be seen from (2.55) and (2.58), instantaneous mixings yield specific
properties: If Lm = 1, an interference-independent separating solution can be
always identified, even with unit diagonal filters as in (2.37).

2.4 Performance Measures

This section introduces the performance measures that are used as comparison
criteria in the remainder of this work, in particular the signal-to-interference
ratio (SIR) improvement. Since the performance measures are defined in terms
of improvement with respect to the signal quality at the microphone input,
it is necessary to chose an input reference. This choice differs depending on
the type of microphone array: In the case of a compact beamformer, no input
signal has a larger SIR than another a priori, hence the reference is obtained
by averaging over the M input microphones. This is formulated in Sect. 2.4.1.
By contrast, in the case of a distributed microphone array, the input signal
x1 is a priori known to have a large SIR, hence the reference is obtained on
this particular input signal as formulated in Sect. 2.4.2.

The observed signals xm(p) may be decomposed as the sum of the contri-
butions of the desired source and of those of the interferers:

xm(p) = xsig,m(p) + xint,m(p). (2.61)

Similarly, the output signal may be decomposed as follows:

y(p) = ysig(p) + yint(p), (2.62)

with ysig(p) =
M∑

m=1

(wm ∗ xsig,m) (p), (2.63)

and yint(p) =
M∑

m=1

(wm ∗ xint,m) (p). (2.64)

Evaluating the performance measures requires signal powers to be esti-
mated. For the definitions below, we use a generic estimate of the statistical
expectation denoted by Ê {}, whose actual implementation depends on the
processing mode: In batch mode, we may use

Ê {f(A(p))} � 1
T

T∑
p=1

f(A(p)), (2.65)

where T denotes the signal length (in samples). (The function f and the matrix
A are placeholders that should be replaced by the variables of interest.) In
online mode, the instantaneous estimate may be used:

Ê {f(A(p))} � f(A(p)). (2.66)



2.4 Performance Measures 23

2.4.1 Compact Microphone Array

For compact microphone arrays, the following power ratios are introduced:

• the reduction of the target signal level, denoted by SR, defined as the ratio
of the desired signal power at the sensors averaged over the M sensors
signals and the desired signal power at the output:

SR(p) �
∑M

m=1 Ê
{
x2

sig,m(p)
}

/M

Ê
{
y2

sig(p)
} , (2.67)

• the reduction of the interference signal level, IR, defined as the ratio of
the interference signal power at the sensors averaged over the M sensors,
and the interference signal power at the output:

IR(p) �
∑M

m=1 Ê
{
x2

int,m(p)
}

/M

Ê {y2
int(p)}

, (2.68)

The signal-to-interference ratio improvement, SIRimp, is defined as

SIRimp(p) � IR(p)
SR(p)

. (2.69)

2.4.2 Distributed Microphone Array

For distributed microphone arrays, the input reference is taken at the sensor
x1(p), which yields:

• the reduction of the target signal level, denoted by SRd, defined as the
ratio of the desired signal power at the sensor x1(p) and the desired signal
power at the output:

SRd(p) �
Ê
{
x2

sig,1(p)
}

Ê
{
y2

sig(p)
} , (2.70)

• the reduction of the interference signal level, IRd,

IRd(p) �
Ê
{
x2

int,1(p)
}

Ê {y2
int(p)}

. (2.71)

The signal-to-interference ratio improvement, SIRd
imp, is defined as

SIRd
imp(p) � IRd(p)

SRd(p)
. (2.72)
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Table 2.1. Definition of the start-up performance and of the performance after
initial convergence for the compact array and the distributed array.
The subscript [t0, t1] indicates an average of the SIR improvement from
time p = t0 to time p = t1 (in seconds)

Compact array Distributed array

Q[0,3], � IR[0,3]

/
SR[0,3], Qd

[0,3] � IRd
[0,3]

/
SRd

[0,3],

Q[3,10] � IR[3,10]

/
SR[3,10] Qd

[3,10] � IRd
[3,10]

/
SRd

[3,10]

IR[t0,t1] �

1

M

M∑
m=1

t1fs∑
p=t0fs

x2
int,m(p)

t1fs∑
p=t0fs

y2
int(p)

IRd
[t0,t1] �

t1fs∑
p=t0fs

x2
int,1(p)

t1fs∑
p=t0fs

y2
int(p)

SR[t0,t1] �

1

M

M∑
m=1

t1fs∑
p=t0fs

x2
sig,m(p)

t1fs∑
p=t0fs

y2
sig(p)

SRd
[t0,t1] �

t1fs∑
p=t0fs

x2
sig,1(p)

t1fs∑
p=t0fs

y2
sig(p)

2.4.3 Start-Up Performance and Performance after Initial
Convergence

It seems difficult to compare different adaptive algorithms fairly: In particu-
lar, the step-size parameters may significantly influence the separation per-
formance. To obtain an objective performance measure, two quantities are
considered. First, we average the SIR improvement over the first three sec-
onds, which gives Q[0,3] as defined in Table 2.1. The value Q[0,3] is used as an
approximate measure of the speed of convergence during the initial conver-
gence phase. Second, the average over the following seven seconds, as defined
by Q[3,10] in Table 2.1, is considered. Q[3,10] gives an approximate measure of
the performance after the initial convergence. It should be noted that the input
signals also contain sensor noise for real recordings. Moreover, the averages
include the silence periods. Therefore, the performance measures presented
here are only approximations of the SIR improvement. That is why we prefer
not denoting them by SIRimp but by Q[t0,t1].

2.5 Summary and Conclusion

This chapter set the formal framework on which the next chapters are based.
It modeled the acoustic environment carrying the source signal to the observed
microphone signals as a MIMO linear system. The separation filters have been
introduced as MISO and MIMO systems, which are algorithmically adapted
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to the input signals by minimizing a mathematically defined cost function.
The LMS and the SAD algorithms, two exemplary algorithms that will be
further developed in the next chapters, illustrated adaptive algorithms.

The spatial response, a tool to interpret the separation filters spatially, has
been defined. We have seen that the cancelation of the interference signal may
be achieved by filtering the input signal spatially or spectrally, depending on
the number of degrees of freedom and on the constraints that are set on the
separation filters. At last, we defined the performance measures that will be
used in the following chapters to evaluate the algorithms under scope.



3

Linearly Constrained Minimum Variance
Beamforming

The concept of “beamforming” refers to multichannel signal processing tech-
niques that enhance the acoustic signals coming from a particular a priori
known position, while reducing the signals coming from other directions. A
number of beamforming techniques exist, a review of which may be found
in [88]. In this chapter, we introduce linearly constrained minimum variance
(LCMV) beamformers, which are widely used in acoustic array processing.
The class of the LCMV beamformers is general enough to form a common
framework to design beamforming algorithms for various physical setups.

Section 3.1 defines the LCMV beamforming principle. Section 3.2 provides
the generalized sidelobe canceler (GSC) as an alternative formulation of the
LCMV beamformer which can be implemented more efficiently. Section 3.3
shows how to apply the GSC to distributed and compact microphone arrays.
Section 3.4 discusses the practical limitations of LCMV beamforming in re-
verberant environments.

3.1 LCMV Beamforming

Formal definition

Let us briefly recall the notations from Chap. 2: We consider a time-varying
MISO system with filter coefficients w(p) and output y(p) = wT(p)x(p) (see
Sect. 2.2.1). In LCMV beamforming, the filter coefficients are adjusted based
on the statistics of the output signals. To describe these statistics, we use
the expectation operator E {} (or “ensemble average”) whose argument is a
stochastic process.1

1 For the sake of simplicity, no notational distinction is made between the real-
ization x(p) and the underlying stochastic process X (p). Hence, we denote the
expectation of the underlying stochastic process by E {x(p)}.



28 3 Linearly Constrained Minimum Variance Beamforming

In LCMV beamforming, the cost function is the output signal variance.
Since zero-mean signals are assumed, the cost function may be defined as the
output signal power at time p, that is,

J(p) � E
{
y2(p)

}
. (3.1)

Using the input correlation matrix

Rxx(p) � E
{
x(p)xT(p)

}
, (3.2)

we can rewrite J(p) in (3.1) as a function of w(p):

J(p) = wT(p)Rxx(p)w(p). (3.3)

Now, minimizing J(p) may lead to w(p) = 0 and y(p) = 0 for all p. In LCMV
beamforming, this is prevented by constraining the filter coefficients linearly.
For example, a simple linear constraint is that of Widrow’s interference can-
celer where the filter w1(p) is constrained to a unit impulse:

w1(p) = δ0. (3.4)

This constraint has dimension L. More generally, a linear constraint of dimen-
sion C may be formulated with a ML × C constraint matrix C and a C × 1
response vector c as

CTw(p) = c. (3.5)

We find the constraint in (3.4) by setting

CT = [IL×L 0L×L] , c = δ0. (3.6)

Note that time-varying constraints may also be considered using a time-
varying constraint matrix C(p) and a time-varying response vector c(p). For
the sake of simplicity, we bound the presentation to time-invariant constraints.
To summarize, LCMV beamforming consists in adjusting the filter coefficients
according to the following constrained criterion:

min
w(p)

E
{
y2(p)

}
s.t. CTw(p) = c. (3.7)

Constraining the spatial response

The motivation behind the linear constraint in (3.5) also comes from the fact
that the spatial response of the beamformer, g(w,θ), is a linear function of
w, as shown in Sect. 2.2.3:

g(w,θ) �
M∑

m=1

wm ∗ δτm,θfs
. (2.27)
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To obtain a given spatial response g0 for a particular position θ0, one may
set the constraint

g(w(p),θ0) = g0 (3.8)

for all p. Since g(w,θ0) in (2.27) depends linearly on the filter coefficients
wm(p), the constraint in (3.8) may be formulated using a certain matrix C
as in (3.5). Typically, LCMV beamformers are designed to maintain a unit
spatial response in the direction of the desired source known a priori. This
should reduce the contribution of the interfering sources while keeping the
desired source.

General solution to the LCMV optimization problem

In the following, we derive the solution to the LCMV optimization problem
in (3.7) using the Lagrange multiplier method. For the sake of brevity and
readability, we omit the time index p in the notations. The Lagrange cost
function associated to (3.7) is given by

L(w,λ) � 1
2
wTRxxw + λT

(
CTw − c

)
. (3.9)

The Lagrange multiplier λ is a C × 1 vector. Setting the gradient of L(w,λ)
to zero, we obtain

∂L(w,λ)
∂w

= wTRxx + λTC = 0, (3.10)

and assuming that the correlation matrix Rxx is nonsingular, we may write

wT = −λTCR−1
xx . (3.11)

Using the constraint CTw = c, we transpose and multiply (3.11) with CT

from the left to obtain

λ = −
(
CR−T

xx CT
)−1

c. (3.12)

Substituting λ in (3.12) into (3.11), we obtain the time-domain LCMV beam-
former

w = R−T
xx CT

(
CTR−T

xx CT
)−1

c. (3.13)

The computation of (3.13) involves the inversion of Rxx. In practice, esti-
mates for Rxx may be badly conditioned especially for large filter lengths
L and colored input signals (such as speech). In addition, inverting Rxx is
computationally expensive. A wideband solution may be obtained by min-
imizing L(w,λ) with an iterative gradient descent that avoids the matrix
inversion [36]. It is much more efficient, however, to transform the constrained
minimization problem into an unconstrained one. This is the principle of the
generalized sidelobe canceler (GSC) [42].
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3.2 From LCMV to Generalized Sidelobe Canceler
(GSC)

Griffith and Jim introduced the generalized sidelobe canceler (GSC) as an al-
ternative formulation of the LCMV problem which transforms the constrained
minimization problem (3.7) into an unconstrained one [42].

Fixed beamformer and blocking matrix

The GSC is based on a decomposition of vector w(p) into two orthogonal
components w0 and v with w(p) = w0 + v(p). The first component w0 is
fixed. It is chosen so that it satisfies the constraint

CTw0 = c. (3.14)

This component is often (but not necessarily) set to w0 = C
(
CTC

)−1
c.

Such a choice minimizes its L2-norm wT
0 w0, which is also called white-noise

gain [88]. Because this component is not adapted, it is termed fixed beam-
former. We define x0(p) as the output of the fixed beamformer, i.e., x0(p) =
wT

0 x(p).
The second component, v(p), is adapted but must belong to the sub-

space V of the filters that are orthogonal to the constraint, that is, V =
{v ∈ R

ML×1 s.t. CTv = 0C×1}. Let B be an ML × M ′L matrix whose M ′L
columns span the subspace V, i.e., so that

rank(B) = ML − C and CTB = 0C×M ′L. (3.15)

The matrix B is called the blocking matrix. Note that B is not uniquely
determined by the equation CTB = 0C×M ′L, several implementations of the
blocking matrix are possible.

Adaptive interference canceler

For any M ′L × 1 vector a(p), the vector v(p) = Ba(p) belongs to V, hence the
filter coefficients w(p)=w0+Ba(p) always fulfill the constraint CTw(p)=c.
Therefore, the constrained minimization (3.7) may be rewritten without con-
straint as

min
a(p)

(w0 + Ba(p))T Rxx(p) (w0 + Ba(p)) . (3.16)

Minimization affects only a(p), which is called the adaptive interference can-
celer. In GSC beamformers, the computation of the output involves the fol-
lowing variables:

x0(p) � wT
0 x(p), (3.17)

xB(p) � BTx(p), (3.18)
y(p) = x0(p) + aT(p)xB(p). (3.19)
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Fig. 3.1. Generalized Sidelobe Canceler

The Generalized Sidelobe Canceler structure is shown in Fig. 3.1. Since x0(p)
should provide an enhanced target signal, it is referred to as the target signal
reference. By contrast, xB(p) is called the interference reference.

The output signal power is minimized with respect to a(p). The gradient
of the cost function is

∂J(p)
∂a(p)

= 2E {x0(p)xB(p)} + 2E
{
xB(p)xT

B(p)
}
a(p), (3.20)

= 2E {xB(p)y(p)} . (3.21)

Setting RxBxB
(p) = E

{
xB(p)xT

B(p)
}

and the gradient in (3.20) to 0, we
obtain the Wiener solution:

aopt(p) = −R−1
xBxB

(p)E {x0(p)xB(p)} . (3.22)

In addition to minimizing the output signal power, the Wiener solution (3.22)
also decorrelates the input of the interference canceler xB and the beamformer
output y. This can be seen from the gradient expression in (3.21).

3.3 Constraints for Compact and Distributed Setups

3.3.1 Constraint for Compact Microphone Array

Array steering

If the propagation delays from the source of interest to each microphone are
known, we may assume that the desired signal s(p) reaches the microphones
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synchronously, i.e., that the main peaks of the acoustic channels hm in (2.6)
are synchronous. To fulfill this assumption for any source position, the propa-
gation delays from the source to the microphones need to be compensated so
that the desired source signal is time-aligned at all beamformer inputs. This
operation is called array steering.

Let us denote the propagation delay from the source to the microphone xm

as τm. For an implementation with causal filters, one considers the positive
delays τ ′

m = −τm + D′,m = 1, . . . , M , with D′ greater than maxm τm. The
time-aligned input signals are obtained by replacing the microphone signals
xm(p) with xm(p − τ ′

m):

xm(p − τ ′
m) → xm(p). (3.23)

In (3.23), we compensate the individual propagation delays. The delays τm

are set according to the assumed position of the source relative to the mi-
crophones. Since the delays τm are a continuous quantity, the compensation
delays τ ′

m are generally no multiple of the sampling period and fractional-
delay filters are necessary [64]. In the following we assume that the array is
correctly steered to the position of the source of interest, that is, we assume
that the desired source signal is time-aligned at all beamformer inputs.

A spatially constrained LCMV

For compact microphone arrays, we use the following ML × L constraint
matrix and L × 1 response vector c:

C = [IL×L, . . . , IL×L]T , (3.24)
c = δD. (3.25)

The physical meaning of this constraint is based on the assumption of a free-
field acoustic propagation. Under this assumption, the impulse responses from
the source of interest to the steered input signals are synchronous unit impulses
and we may set δτm,θfs

= δ0 in (2.27). Then the spatial response (2.27) in the
steered direction θ0 may be written very simply as

g(w,θ0) =
M∑

m=1

wm(p). (3.26)

Also, observing that the constraint

M∑
m=1

wm(p) = δD (3.27)

can be written as CTw(p) = c for C and c set as in (3.24) and (3.25), we see
that (3.24) and (3.25) define a LCMV beamformer with the spatial constraint
g(w(p),θ0) = δD.
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Fixed beamformer and blocking matrix

The fixed beamformer is set to

w0 � 1
M

[δD, . . . , δD] . (3.28)

δD denotes a D-delayed unit impulse. It may be easily verified that w0

in (3.28) satisfies (3.14) for the constraint in (3.24) and (3.25). As a delay-and-
sum beamformer, the fixed beamformer should produce an enhanced desired
signal from the microphone signals. Using (3.28), the output of the fixed beam-
former in (3.17) becomes x0(p) = 1

M

∑M
m=1 xm(p − D). We note that more

sophisticated fixed beamformers such as filter-and-sum beamformers could be
used [48].

Conversely, the blocking matrix is designed to cancel the signals coming
from the steered direction. The ML × M ′L blocking matrix B may be set to

B � 1
M

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−IL×L . . . −IL×L

(M − 1)IL×L
. . .
. . . . . .

...
...

. . . −IL×L

(M − 1)IL×L . . . (M − 1)IL×L

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.29)

It may be easily verified that B in (3.29) satisfies (3.15) for the constraint
in (3.24) and (3.25). Other implementations with a zero spatial response in the
steered direction are possible (for example by pairwise subtracting the time-
aligned microphone signals as in the original implementation of the GSC [42]).
In terms of spatial response, it is designed to have a zero spatial response in
the steered direction, which is also called “null-steering beamforming.” Ideally,
the blocking matrix should cancel the target signal components from the input
signals. Using (3.29), the blocking matrix output in (3.17) becomes

xB,m′(p) = xB,m′(p) − 1
M

M∑
m=1

xm(p − D), (3.30)

= xB,m′(p) − x0(p) (3.31)

for m′ = 1, . . . ,M ′.

3.3.2 Constraint for Distributed Microphone Array

In the case of the distributed microphone array, we assume that each source
sn is placed closest to its microphone xn for n = 1, . . . , N . Then the target
signal reference and the interference reference signals are directly provided
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x1(t)

x2(t)

y(t)

a

(w2)

α1(θ)

α2(θ)

Fig. 3.2. The beamformer structure for two directional microphones is a simple
adaptive interference canceler (AIC). The interference canceler coefficients
are still denoted by a(p) for consistency with the GSC structure, but we
have a(p) = w2(p). The mth microphone is placed closest to the mth
source (for m = 1, 2) so that the delay D may be set to D = 0

by the microphones and we can define the target signal reference and the
interference reference signals as follows:

x0(p) � x1(p), (3.32)
xB,m′(p) � xm′+1(p), m′ = 1, . . . , M − 1. (3.33)

In terms of fixed beamformer and blocking matrix, (3.32) and (3.33) corre-
spond to:

w0 =
[
δT
0 , 0T

L×1 . . . 0T
L×1

]
,T B =

[
0L×(M−1)L

I(M−1)L×(M−1)L

]
. (3.34)

In terms of constraint matrix and response vector, these settings corre-
spond to:

C =
[
IL×L 0L×L . . . 0L×L

]
,T c = δ0. (3.35)

In contrast to (3.28), no delay is introduced. With the appropriate positioning
of the microphones relative to the acoustic sources, causality constraints may
be set on the separation system. With (3.32) and (3.33), the GSC reduces to
Widrow’s interference canceler, which is shown in Fig. 3.2 (see also Fig. 2.3).
However, we maintain the distinction between the beamformer input signals
xm(p) and the target x0(p) and interference reference signals xB,m′ for distrib-
uted microphone arrays. This allows to keep the same notations for compact
and distributed microphone arrays.

3.4 The Target Signal Cancelation Problem

We have seen in Sect. 3.2 that the LCMV optimization problem may be refor-
mulated into an unconstrained fashion, with the Wiener solution in (3.22) as
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the optimal interference canceler. However, as we have seen from the gradi-
ent expression in (3.21), the Wiener solution also decorrelates the interference
reference xB(p) and the beamformer output y(p), in addition to minimizing
the output signal power. As a consequence, if the target signal is present in
(or correlated with) xB(p), the LCMV adaption criterion will tend to decorre-
late the target signal and the beamformer output. In other words, the LCMV
adaption criterion will tend to remove the target signal from the beamformer
output. Practically, this means that an undesired cancelation of the target
signal occurs if the adaptation of a(p) is carried out during target activity.
This obviously undesired effect is referred to as the target signal cancelation
problem. In the following, we describe the target signal cancelation prob-
lem mathematically and discuss alternative implementations of the GSC that
tackle this problem.

3.4.1 The Energy-Inversion Effect

We illustrate the target signal cancelation problem for the case of two mi-
crophones (M = 2). The analysis is carried out in the discrete-time fourier
transform (DTFT) domain. The target signal is denoted by S1(ω) and the in-
terferer by S2(ω). The output of the fixed beamformer X0(ω) consists of the
filtered target signal H01(ω)S1(ω) and the filtered interferer H02(ω)S2(ω). The
output of the blocking matrix contains the filtered interferer HB2(ω)S2(ω)
and the leakage of the desired signal HB1(ω)S1(ω). The filters H0i,HBi for
i = 1, 2 combine acoustic transfer functions and GSC spatial preprocessing
filters. X0(ω) and XB(ω) are accordingly defined as

X0(ω) � H01(ω)S1(ω) + H02(ω)S2(ω),
XB(ω) � HB1(ω)S1(ω) + HB2(ω)S2(ω).

(3.36)

The DTFT of a(p) is denoted by A(ω) and the beamformer output is given by

Y (ω) = X0(ω) + A(ω)XB(ω). (3.37)

We denote E
{
|Si(ω)|2

}
by σ2

i (ω). Assuming that S1(ω) and S2(ω) are uncor-
related (i.e., that E {S1(ω)S∗

2 (ω)} = 0), the Wiener solution (3.22) may be
written in the DTFT-domain as follows2:

A∗ = −e−iωD H01H
∗
B1σ

2
1 + H02H

∗
B2σ

2
2

|HB1|2σ2
1 + |HB2|2σ2

2

. (3.38)

Substituting A from (3.38) and X0, XB from (3.36) into (3.37), the output
can be written after some manipulations as

Y = e−iωD H01HB2 − H02HB1

|HB1|2σ2
1 + |HB2|2σ2

2

(
S1H

∗
B2σ

2
2 − S2H

∗
B1σ

2
1

)
. (3.39)

2 We omit the argument ω.
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In this context, the signal-to-interference ratio at the blocking matrix output,
denoted by SIRXB

, may be defined as

SIRXB
� σ2

1 |HB1|2
σ2

2 |HB2|2
. (3.40)

The signal-to-interference ratio at the beamformer output, SIRout, can be
derived directly from (3.39) as

SIRout =
σ2

2 |HB2|2
σ2

1 |HB1|2
. (3.41)

Finally, we have

SIRout = (SIRXB
)−1

. (3.42)

Therefore, the signal-to-interference ratio at the output is the interference-to-
signal ratio at the interferer reference, i.e., the output of the blocking matrix.
This phenomenon is called the energy inversion effect [28].

3.4.2 Countermeasures: On the Necessity of a Double-Talk
Detector

The target signal cancelation problem is well-known [91]. In the following we
discuss alternative implementations of the GSC that tackle this problem.

The straightforward and most widely used remedy consists in detecting
periods of target activity, and interrupting the adaptation during these peri-
ods [27]. In the context of multiple speakers, we call the control mechanism3

a double-talk detector (DTD). “Double-Talk” refers to the situation where
the desired source and the interferer are active simultaneously. As in echo
cancelation, the design of a reliable DTD has revealed to be delicate [89].
Van Compernolle proposed a method based on the power of the microphone
signals, assuming that the source of interest is significantly louder than the
other sources [27]. In many implementations, the input SIR estimation is
based on the power ratio of the delay-and-sum fixed beamformer and block-
ing matrix outputs [54, 44]. This SIR estimate may be compared to a fixed
decision threshold [54]. However, it is not clear how to set a universal threshold
to provide an accurate double-talk detection in various nonstationary condi-
tions. (This issue is illustrated on an example in Appendix A.)

These detection strategies lead to an all-or-nothing adaptation control, for
which the value of the decision threshold may influence the performance sig-
nificantly. Moreover, since the DTD should stop the adaptation when both the
target speaker and the interferer are active, it reduces the tracking capabilities
of the adaptive interference canceler.

3 In the context of a single speaker under noisy conditions (e.g., road noise in car
interior), the term voice activity detector (VAD) is also widely used.
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Another complementary approach to reduce the target signal cancelation is
to combat its cause. As shown by Affes et al. [2], this may be done by adapting
the constraint in (3.5) to the actual acoustic channels instead of relying upon
an oversimplified propagation model [2, 37, 53]. The subsequent modifications
affect mainly the blocking matrix, which is responsible for target leakage. For
example, the Robust GSC (RGSC) proposed by Hoshuyama et al. [53] uses an
adaptive blocking matrix which cancels the desired signal components using
a set of filters similar to interference cancelers. The mechanism they proposed
has been analyzed and extended to the frequency domain [47]. It provides
more robustness against target leakage but still requires a DTD [2, 53]. Note
that the approach by Gannot et al. may perform without control mechanism,
but is restricted to stationary interference (or noise) signals [37] and is not
adapted to the case of interfering speech.

As a summary, we observe that the complementary countermeasures may
not dispense from a DTD-based control mechanism. In the next chapters,
for comparison purposes, the RGSC proposed by Hoshuyama et al. is consid-
ered [53].4

3.5 Summary and Conclusion

This chapter introduced fundamental concepts in LCMV beamforming.
LCMV beamforming consists in adjusting the filter coefficients to minimize
the output signal power while maintaining a certain linear constraint. LCMV
beamformers may be formulated as GSCs which include a target signal ref-
erence and one or several interference references, and which allows for use
of unconstrained optimization algorithms. Also, GSC beamformers may be
easily designed for both compact and distributed microphone arrays.

Unfortunately, minimizing the output signal power leads to the target-
cancelation problem, since in real environment the desired signal always leaks
into the interferer references. This is due to several factors, which cannot be
avoided in practice, such as reverberation, array imperfections, or steering
errors. For these reasons, LCMV beamformers may cancel the target signal
if the adaptation is not stopped during the periods of target activity. In the
context of multiple concurrent speakers, the adaptation control involves a
double-talk detector (DTD).

The design of a reliable DTD may be delicate and most control strategies
are all-or-nothing triggers involving decision thresholds, whose value may in-
fluence the performance significantly. Also, the adaptation is stopped when
both the target speaker and the interferer are active (“Double-Talk”). This
reduces the tracking capabilities of the adaptive interference canceler, in par-
ticular for overlapping target and interferer speech. This motivates our inves-
tigations in Chap. 4 to design an adaptive beamforming algorithm without
detection, where the adaption is realized continuously.
4 More details are given in Appendix C.
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To summarize, the important result of this chapter is the following: A
classical approach in multichannel speech enhancement is LCMV beamform-
ing implemented as a GSC. LCMV beamforming is a supervised, informed
approach to the speaker separation. Extraneous information is required at
two levels:

• Firstly, the position of the target source is used at the algorithmic (compact
array) or at the physical (distributed array) level.

• Secondly, the periods of time where the target signal level is high relative
to that of the interferer signal must be detected.



4

Implicit Adaptation Control for Beamforming

In Chap. 3, we have presented the statistically optimum LCMV beamforming
and the Wiener solution (3.22). The latter involves the second-order statistics
of the input signals, which are unknown in general. They might be estimated
from the data under the assumption of stationary ergodic input microphone
signals. However, in our application, the acoustic environment may change
over time, for example when the speakers move. Furthermore, speech signals
are nonstationary, requiring an adaptive approach.

On the one hand, continuous adaptation is desirable to find and to track
the time-variant optimum filter coefficients. On the other hand, the filter esti-
mation needs to be carried out only when the interferer is dominant relative to
the target. This latter requirement may be satisfied with an explicit adaptation
control based on a double-talk detector (DTD): We adapt only when some
estimate of the input SIR is below a certain threshold. However, as we have
seen in Chap. 3, the design of a robust and reliable DTD-based adaptation
control is often difficult.

This motivates the focus on another approach where the adaptation con-
trol is realized implicitly and continuously. The chapter is organized as follows:
Section 4.1 presents the normalized least mean square algorithm (NLMS), a
widely used adaptive algorithm with a normalized step-size. Section 4.2 intro-
duces a time-variant step-size that takes on the adaptation control. This yields
an implicitly controlled LMS algorithm (ILMS). In Sect. 4.3, we examine the
behavior of the ILMS algorithm theoretically. In Sect. 4.4, we set a customary
constraint to further limit the target signal cancelation. In Sect. 4.5, ILMS
and NLMS are compared experimentally.

4.1 Adaptive Interference Canceler

Let us briefly recall the notations. We consider the GSC shown in Fig. 3.1 as
the base architecture. The input signals are:
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1. A target reference signal, which is the output of the delay-and-sum fixed
beamformer and is given by x0(p) � wT

0 x(p)
2. M − 1 interferer references, which are the outputs of the blocking matrix

B and are stacked in the (M − 1)L × 1 vector xB(p) � BTx(p)

The system output y(p) is defined as y(p) � x0(p−D)+aT(p)xB(p), where the
vector a(p) contains the (M − 1)L coefficients of the interference canceler.
The optimal time-variant interference canceler aopt(p) minimizes the interferer
signal power at the output y(p) while letting the target signal pass. Now the
question is how to adapt the interference canceler a(p) to track aopt(p).

We may distinguish two categories of adaptive algorithms: (1) block-wise
algorithms which estimate the filter periodically using a block of K ≥ L input
samples according to a closed-form equation such as (3.22), and (2) sample-
wise algorithms which update iteratively the filter coefficients after each new
input sample such as in (2.21). In this chapter, only the latter category of
sample-wise adaptive algorithms is considered.

The LMS algorithm as a gradient descent

A starting point for the adaptation of a(p) is the least-mean-square (LMS)
algorithm with step-size μLMS. Consider the gradient descent for the cost
function J(p) � y2(p) with Niter iterations for each time p. This gradient
descent may be written as

a(n + 1, p) � a(n, p) − μLMS

2
∂J(p)

∂a
, (4.1)

with a(0, p) � a(Niter, p−1) as initialization. If we set Niter = 1, we may drop
the iteration index n in (4.1):

a(p + 1) = a(p) − μLMS

2
∂J(p)

∂a
, (4.2)

and obtain the LMS algorithm [92] that updates the interference canceler
coefficients for each new sample as follows:

a(p + 1) = a(p) − μLMS y(p)xB(p). (4.3)

The speed of convergence, the steady-state misadjustment, and the
stability are controlled by the step-size μLMS [45, 92]. Assuming wide-sense
stationary signals xB(p), it may be shown1 that the mean sequence E {a(p)}
converges to a finite a(∞) if
1 A usual assumption for the LMS algorithm analysis is the so-called independence

assumption. It is assumed that the elements of the vector xB(p) and those of
xB(p′) are independent if p �= p′. The assumption is obviously wrong for L > 1,
even for independent and identically distributed interference signals. However, it
leads to a realistic description of the LMS behavior, and giving it up would render
the analysis considerably more complex [92].
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0 < μLMS <
2

L
∑M−1

m=1 E
{

x2
B,m(p)

} . (4.4)

The speed of convergence of the LMS algorithm depends not only on the
step-size μLMS but also on the eigenvalue spread of the correlation matrix
RxBxB

(p) = E
{
xB(p)xT

B(p)
}
. Let us denote the largest and smallest eigen-

values of RxBxB
(p) by λmax and λmin, respectively. The smaller the ratio

λmax/λmin is, the faster the convergence. The eigenvalue spread λmax/λmin

is minimal and equals one for white and uncorrelated input signals xB,m(p).
Fast convergence may also be achieved for colored signals with, for example,
the recursive least-square (RLS) algorithm [45].

Since the power of speech signals is highly time-variant, a fixed step-size
μLMS will usually not stay close to the desirable upper bound in (4.4). This
problem is addressed by the normalized LMS (NLMS) using a normalized
step-size.

Normalized step-size

The upper bound on μLMS in (4.4) is inversely proportional to the power
of the interferer reference signals

∑M−1
m=1 E

{
x2

B,m(p)
}
. Let us consider the

normalized step-size μNLMS given by

μNLMS � μLMSL

M−1∑
m=1

E
{
x2

B,m(p)
}

. (4.5)

According to (4.4), convergence of E {a(p)} is guaranteed if the following
condition is satisfied:

0 < μNLMS < 2. (4.6)

Let us estimate the input power L
∑M−1

m=1 E
{
x2

B,m(p)
}

with the instantaneous
estimate ‖xB(p)‖2, where ‖x‖2 = xTx. From (4.3) and (4.5), we obtain the
normalized LMS algorithm (NLMS) [45]:

a(p + 1) = a(p) − μNLMS
y(p)xB(p)
‖xB(p)‖2

. (4.7)

Since some leakage of the target signal in the interferer reference xB always
exists, the interference canceler a(p) converges to the optimal aopt(p) only if
the target signal is zero. Otherwise, the adaptation should be slowed down
with a time-varying, smaller step-size or stopped with μNLMS = 0, depending
on the input SIR. In the next section, we attempt to design such a time-varying
step-size.
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4.2 Implicit Adaptation Control

Heuristic introduction

The normalization term of the NLMS update in (4.7) is given by 1/‖xB(p)‖2.
This normalization assures the stability of the algorithm, but does not lead
to a faster adaptation in favorable conditions, namely, when the input SIR
is low. Another shortcoming of the NLMS algorithm is that the steady-state
misadjustment increases with the target signal power, even if the target signal
does not leak into the interferer reference [41]. Therefore, it makes sense to use
a large step-size when the target signal power is low. To this end, let us define
the output vector y(p) � (y(p), . . . , y(p − L + 1))T and consider ‖y(p)‖2/L as
an estimate of the target signal power. When the target signal power is low,
a large adaptation term is obtained by replacing 1/‖xB(p)‖2 in (4.7) with
1/‖y(p)‖2. This also yields a small adaptation term when the target signal
power is high, which reduces the risk of target signal cancelation. In other
words, an implicitly controlled adaptation is obtained by replacing the NLMS
algorithm with

a(p + 1) = a(p) − μ0
y(p)xB(p)

(M − 1)‖y(p)‖2
. (4.8)

The algorithm (4.8) includes an implicit adaptation control, and in the follow-
ing we refer to it as Implicit LMS (ILMS) with step-size μ0. However, ILMS
as given in (4.8) is not stable, since ‖y(p)‖2 might become very small.

Stability conditions

Unfortunately, the condition 0 < μ0 < 2 does not guarantee the stability
of (4.8) in the mean. A common approach to ensure stability is to increase
the denominator of the update term in (4.8) by a fixed regularization term
δ > 0 [44], as follows:

a(p + 1) = a(p) − μ0
y(p)xB(p)
‖y(p)‖2 + δ

. (4.9)

However, this fixed regularization scheme generally reduces the convergence
speed.

In the following, we propose an alternative approach. The ILMS algorithm
in (4.8) may be seen as a special version of the NLMS algorithm (4.7) with a
time-varying step-size. Replacing the step-size μNLMS by

μ0
‖xB(p)‖2

(M − 1)‖y(p)‖2
(4.10)

in (4.7), we directly obtain the ILMS equation (4.8). Hence we can consider
the domain of stability given in (4.6). Using the variable step-size in (4.10),
the domain of stability (4.6) may be written as
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0 < μ0
‖xB(p)‖2

(M − 1)‖y(p)‖2
< 2. (4.11)

If the condition (4.11) is not satisfied, we may simply perform the adaptation
with the standard NLMS and the step-size μ0. In practice we may consider
a stability condition that is more conservative than (4.11) with a maximal
step-size μmax < 2 and

0 < μ0
‖xB‖2

(M − 1)‖y‖2
< μmax. (4.12)

To summarize, the ILMS algorithm can be written as

a(p + 1) = a(p) −

⎧⎨⎩μ0
y(p)xB(p)

(M−1)‖y(p)‖2 if μ0
‖xB(p)‖2

(M−1)‖y(p)‖2 < μmax,

μ0
y(p)xB(p)
‖xB(p)‖2 otherwise.

(4.13)

Note that the ILMS and NLMS algorithms yield the same computational
complexity.

4.3 Analysis of the ILMS Algorithm

Having introduced the ILMS algorithm heuristically in Sect. 4.2, we attempt
in this section to motivate this algorithm with theoretical arguments. In
Sect. 4.3.1 we will show that the ILMS algorithm is an approximation
of the NLMS algorithm with a time-variant, optimal step-size, under the
assumption that the target signal does not leak into the interference refer-
ence. In Sect. 4.3.2 we relax this assumption and provide an analysis of the
mean trajectory of the ILMS algorithm for a simplified source model.

4.3.1 Linking ILMS to the NLMS with Optimal Step-Size

Interference canceler mismatch

A useful preliminary is to introduce the mismatch between the actual and
the optimal interference canceler, as in system identification. The mismatch
at time p is defined as

m(p) � a(p) − aopt(p). (4.14)

We denote the contribution of the desired signal in x(p) by d(p) and that of
the interference by n(p), that is,

x(p) = d(p) + n(p). (4.15)
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We now present an expression of the output y(p) as a function of the mismatch
m(p):

y(p) = wT
0 x(p − D) +

(
mT(p) + aT

opt(p)
)
BTx(p), (4.16)

= wT
0 (d(p − D) + n(p − D))

+
(
mT(p) + aT

opt(p)
)
BT (d(p) + n(p)) . (4.17)

It is then assumed that aopt(p) perfectly cancels the interferer at the output,
i.e., that

wT
0 n(p − D) + aT

opt(p)BTn(p) = 0.

This assumption is not critical if we are considering the transient behavior
and not the steady state of the adaptation. Combining this assumption with
(4.17) yields

y(p) = wT
0 d(p − D) + aT

opt(p)BTd(p) + mT(p)BT(n(p) + d(p)). (4.18)

Substituting n(p) = x(p) − d(p) in (4.18), we obtain

y(p) = wT
0 d(p − D) + aT

opt(p)BTd(p) + mT(p)BTx(p). (4.19)

We define b(p) as the target signal at the output when a(p) = aopt(p),
i.e., when the interferer is canceled.

b(p) � wT
0 d(p − D) + aT

opt(p)BTd(p). (4.20)

With this definition of b(p), (4.19) can be rewritten as

y(p) = b(p) + mT(p)xB(p). (4.21)

Let us assume that the optimal interference canceler varies slowly, i.e., that
aopt(p+1) = aopt(p). Then, the NLMS adaptation (4.7) can be written using
the mismatch m(p) and the step-size μNLMS as

m(p + 1) = m(p) − μNLMS
y(p)xB(p)
‖xB(p)‖2

, (4.22)

= m(p) − μNLMS
b(p)xB(p) + xB(p)xT

B(p)m(p)
‖xB(p)‖2

. (4.23)

Optimal step-size derivation

We now derive a time-variant optimal step-size μ(p). The optimality criterion
J(μ(p)) that we consider for this derivation is the expected quadratic norm
of the mismatch at time p + 1:

J(μ(p)) � E
{
‖m(p + 1)‖2

}
. (4.24)
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Denoting the time-variant step-size by μ(p) instead of μNLMS in (4.22) and
substituting m(p + 1) from (4.22) into (4.24) yields2

J(μ) = E
{
‖m‖2

}
+ μ2E

{
y2

‖xB‖2

}
− 2μE

{
ymTxB

‖xB‖2

}
. (4.25)

The derivative of J with respect to μ(p) is

∂J(μ)
∂μ

= 2
(

μE
{

y2

‖xB‖2

}
− E

{
ymTxB

‖xB‖2

})
. (4.26)

Since the cost function J(μ) is quadratic in μ, it has only one minimum.
Solving for ∂J(μ(p))

∂μ(p) = 0 yields a closed formula for this minimum. The optimal
step-size μopt(p) is given by

μopt(p) =
E
{

y(p)mT(p)xB(p)
‖xB(p)‖2

}
E
{

y2(p)
‖xB(p)‖2

} . (4.27)

Unfortunately, this optimal step-size cannot be computed in practice, since
the mismatch m(p) and the expectation E {} are unknown. Approximations
are necessary for a practical implementation, leading to a pseudooptimal step-
size.

Approximating the optimal step-size

First, we assume that ‖xB(p)‖2 may be approximated by a deterministic
variable, as in [68]. Then, the term ‖xB(p)‖2 may be factored out of (4.27).
Therefore, a first approximation of the optimal step-size is

μopt(p) ≈
E
{
y(p)mT(p)xB(p)

}
E {y2(p)} . (4.28)

Substituting y(p) from (4.21) into (4.28) yields

μopt(p) ≈
E
{
b(p)mT(p)xB(p)

}
+ E

{
|mT(p)xB(p)|2

}
E {y2(p)} . (4.29)

The signal b(p) depends on the target signal and on the optimal filter coeffi-
cients, which are unknown. The correlation term E

{
b(p)mT(p)xB(p)

}
seems

difficult to estimate as it depends on the quantities b(p) and m(p), which are
unknown. For this reason, we need to assume that the target source is silent
or does not leak into the interference reference, which implies b(p) = 0 and
E
{
b(p)mT(p)xB(p)

}
= 0.

2 The time index p is omitted for the sake of readability.
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Assuming a white signal xB(p), the term E
{
|mT(p)xB(p)|2

}
in (4.29)

may be approximated by

E
{
|mT(p)xB(p)|2

}
≈ E

{
‖m(p)‖2

} ‖xB(p)‖2

(M − 1)L
. (4.30)

Note that the assumption of a white signal xB(p) seems rather unrealistic,
since speech signals and road noise are typically stronger for low frequencies.

In system identification problems like echo cancelation, elaborate tech-
niques may provide an estimation of E

{
‖m(p)‖2

}
[44]. Some may also be

applicable in beamforming, for example if certain elements of aopt(p) are a
priori known to be zero. However, we found it much simpler and very efficient
to approximate E

{
‖m(p)‖2

}
with a constant μ0:

E
{
‖m(p)‖2

}
≈ μ0. (4.31)

Combining (4.30) with (4.31) yields

E
{
|mT(p)xB(p)|2

}
≈ μ0

‖xB(p)‖2

(M − 1)L
. (4.32)

Finally, the output variance σ2
y(p) = E

{
y2(p)

}
is estimated by ‖y(p)‖2/L.

These approximations yield the pseudooptimal step-size

μ(p) = μ0
‖xB(p)‖2

(M − 1)‖y(p)‖2
. (4.33)

Substituting μ(p) from (4.33) into the NLMS equation (4.7), we obtain the
ILMS equation (4.8). Hence, the ILMS algorithm introduced heuristically
in (4.8) has been linked to the NLMS with a pseudooptimal step-size.

4.3.2 ILMS Transient Behavior and Stability

In the previous section we had to assume that the target signal does not
leak into the interference reference. In this section we relax this assumption
and provide an analysis of the mean trajectory of the ILMS algorithm for a
simplified source model which accounts for target leakage into the interference
reference. Additionally, this section provides an interpretation of the ILMS
stability condition (4.11).

Signal model

Let us first introduce a simple signal model and the notations on which the
further derivations are based. The sample index p may be omitted for nota-
tional convenience. The variance of the target at the output is denoted by
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σ2
1 and the variance of the interferer at xB is denoted by σ2

2 . The variance
of xB and y are composed of target and interferer components as shown in
(4.34) and (4.35):

E
{
‖xB‖2

}
= (M − 1)L

(
εleakageσ

2
1 + σ2

2

)
, (4.34)

E
{
‖y‖2

}
= Lσ2

y = L
(
σ2

1 + εmismatchσ2
2

)
. (4.35)

The factor εleakage ≥ 0 represents the amount of target leakage into the
interference reference. The factor εmismatch ≥ 0 controls the interferer signal
power at the beamformer output, and is roughly proportional to the mismatch
‖m(p)‖2, according to (4.21). In (4.34) and (4.35), it is assumed that the
interferer and target signals are uncorrelated. In contrast to εleakage, εmismatch

is actually a time-variant quantity and may be denoted by εmismatch(p). Com-
bining (4.34) and (4.35) with the definition (4.33) yields

E {μ} = μ0
εleakageσ

2
1 + σ2

2

σ2
1 + εmismatchσ2

2

. (4.36)

Transient Convergence and Divergence

The ILMS algorithm is similar to the NLMS algorithm in the sense that
they share the same gradient direction, y(p)xB(p). Both algorithms converge
(resp. diverge) during target silence (resp. activity). However, their speed of
convergence and divergence differ. The goal in this section is to obtain a
quantitative estimation of the transient convergence speed of ILMS relative
to NLMS. To this end, we will study the evolution of expected mismatch
E {m(p)} at time p and derive an upper bound on the convergence speed
for ILMS and NLMS, which is obtained when the target signal is zero. The
divergence speed is obtained in the worst-case scenario when the interference
is silent.

We make the hypothesis that the interferer reference signals are white and
uncorrelated so that RxBxB

(p) ∝ I. This approximation is uncritical for the
following derivations if we consider that the target and the interference have
similar spectra during their respective periods of activity. (It is possible to
remove this hypothesis by diagonalizing RxBxB

(p)). It is also assumed that
the algorithm is stable in the mean, i.e., E {μ(p)} < 2, since otherwise, ILMS is
switched to NLMS and both algorithms behave identically. Substituting y(p)
from (4.21) into (4.13) and taking the expectation of both sides in (4.13), we
obtain

E {m(p + 1)} = E {m(p)} − E {μ(p)} E {b(p)xB(p)} + RxBxB
E {m(p)}

E {‖xB(p)‖2} .

(4.37)
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ILMS convergence

The mismatch m(p) converges to zero when the target signal is zero, i.e., when
σ2

1 = 0 and σ2
2 > 0. In this case, we have b(p) = 0 according to (4.20). Then,

the ILMS equation (4.37) becomes

E {m(p + 1)} = E {m(p)} − E {μ(p)} RxBxB
E {m(p)}

E {‖xB‖2} . (4.38)

The mean of the pseudooptimal step-size (4.36) is E {μ(p)} = μ0/εmismatch

and the correlation matrix is RxBxB
= σ2

2I. Using (4.34), this yields

E {m(p + 1)} =
(

1 − μ0

(M − 1)L εmismatch(p)

)
︸ ︷︷ ︸

contraction factor α(p)

E {m(p)} . (4.39)

Let us denote the step-size normalized to the filter length and the number
of interferer references by μ̃0, that is, μ̃0 � μ0/((M − 1)L). The contraction
factor α(p) � 1 − μ̃0

εmismatch(p) controls the convergence of E {m(p)} to zero.
α(p) should be as close to zero as possible and its absolute value should
always be smaller than one. Observe that if an estimate of εmismatch(p) were
available, setting a time-variant μ̃0(p) = εmismatch(p) would lead to the fastest
convergence, as could be expected from (4.31). (Under these assumptions,
convergence in the mean would be achieved in one step.)

If α(p) were constant, i.e., if α(p) = α, then one could characterize the
transient behavior by an exponential decay with time constant

τ =
−1
ln α

. (4.40)

However, as can be seen in (4.39), α(p) depends on the mismatch. This has the
following effect: As the system adapts, εmismatch(p) decreases, thus decreasing
α(p) and increasing the rate of convergence, until α(p) crosses zero. If α(p)
crossed the value −1, (4.39) would become unstable. This is prevented by
explicitly checking the stability conditions (4.12). For these reasons, the tran-
sient behavior of ILMS is not very well described by a constant contraction
factor, in contrast to the traditional LMS [92]. Nevertheless, it is useful to con-
sider an upper bound of α(p). Assuming that εmismatch(p) < 1, the contraction
factor is upper-bounded by

α(p) < aILMS(μ0), (4.41)

where aILMS(μ0) is defined as a function of μ0 by

aILMS(μ0) � 1 − μ0

/
(M − 1)L. (4.42)

In the following, we refer to aILMS(μ0) as the ILMS convergence contraction
factor. We note that E {m(p)} converges to zero faster than ap

ILMS(μ0) for
p ≥ 0.
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ILMS divergence

In the worst-case situation, the target is active and the interferer is silent,
i.e., σ2

1 > 0 and σ2
2 = 0. The interferer correlation matrix RxBxB

is now
approximated by RxBxB

= εleakageσ
2
1I. In this situation, the mean mismatch

E {m(p)} does not converge to zero but to another point, which we denote
by md(p). The update term in (4.37) vanishes at E {m(p)} = md(p), which
yields

E {b(p)xB(p)} + εleakageσ
2
1md(p) = 0, (4.43)

md(p) = −E {b(p)xB(p)}
εleakageσ2

1

. (4.44)

The mean pseudooptimal step-size (4.36) is E {μ(p)} = μ0εleakage. Let us
define m′(p) � m(p)−md(p). Rearranging (4.37) and assuming md(p + 1) =
md(p), the ILMS adaptation may be written in terms of m′(p) using (4.34)
and (4.43) as

E {m′(p + 1)} = E {m′(p)}
(

1 − μ0
εleakage

(M − 1)L

)
. (4.45)

We define the ILMS divergence contraction factor according to (4.45) as

bILMS(μ0) � 1 −
(
μ0

/
(M − 1)L

)
εleakage. (4.46)

NLMS convergence and divergence

According to (4.37), the convergence of the NLMS with constant step-size
μNLMS is described in the best-case scenario (σ2

1 = 0, σ2
2 > 0) by

E {m(p + 1)} = E {m(p)} (1 − μNLMS/(M − 1)L). (4.47)

We define the NLMS convergence contraction factor accordingly as

aNLMS(μNLMS) � 1 − μNLMS

(M − 1)L
.

In the worst-case scenario (σ2
1 > 0, σ2

2 = 0), the NLMS adaptation diverges
to md(p). Assuming md(p + 1) = md(p) and with m′(p) = m(p)−md(p) the
NLMS adaptation step at time p is:

E {m′(p + 1)} = E {m′(p)} (1 − μNLMS/(M − 1)L). (4.48)

We define the NLMS divergence contraction factor accordingly as

bNLMS(μNLMS) � 1 − μNLMS

(M − 1)L
.
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Fig. 4.1. NLMS and ILMS convergence/divergence patterns for 0 < εleakage < 1

Comparison

To compare the joint convergence and divergence of both NLMS and ILMS
algorithms, we may consider the divergence contraction factor b(μ) as a
function of the convergence contraction factor a(μ), thus obtaining a con-
vergence/divergence pattern. The best performance in terms of convergence
speed would be obtained with b(μ) = 1 for all a(μ): The mismatch would not
be increased, even in the worst-case scenario. Conversely, the worst perfor-
mance would be obtained with a(μ) = 1 for all b(μ): The mismatch would
not be reduced, even in the best-case scenario. The convergence/divergence
patterns for the ILMS and NLMS algorithms are shown in Fig. 4.1. For
the NLMS, the convergence and divergence contraction terms are equal,
bNLMS(μ) = aNLMS(μ), as can be seen from (4.47) and (4.48). In other
words, the NLMS converges and diverges with the same speed. On the other
hand, we have

bILMS(μ) = aILMS(μ)εleakage + (1 − εleakage) (4.49)

according to (4.42) and (4.46). If εleakage < 1, it may be seen in Fig. 4.1 that
the convergence/divergence pattern of the ILMS is “better” than the NLMS
pattern. This analysis is based on a simplistic model, e.g., only the best- and
worst-case situations have been considered. Nonetheless, it suggests the good
behavior of the proposed ILMS algorithm relative to NLMS.

About the Stability

In this section, we examine more closely the circumstances under which
instability may be detected. Let us assume that the stability condition (4.11)
is not satisfied in the mean. Using (4.34) and (4.35), we have
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μ0
εleakageσ

2
1 + σ2

2

σ2
1 + εmismatchσ2

2

> 2. (4.50)

Rearranging (4.50) yields

εmismatch <
μ0

2
− σ2

1

σ2
2

(
1 − εleakage

μ0

2

)
. (4.51)

For sufficiently small μ0, the term 1−εleakageμ0/2 is positive and (4.51) implies⎧⎨⎩ (i) εmismatch < μ0
2

(ii) σ2
1

σ2
2

<
μ0
2 −εmismatch
1−εleakage

μ0
2

<
(

2
μ0

− εleakage

)−1 (4.52)

Equation (4.52) tells us that the ILMS algorithm is switched to the standard
NLMS only
• If the mismatch factor is smaller3 than μ0/2 (condition (i))
• If σ2

1
σ2
2

is close to zero (condition (ii)), that is, if the target signal power σ2
1

at the output is very small

Assuming that the cancelation of the target signal is not too severe (as shown
in the experimental Sect. 4.5), this reveals that the stability condition (4.11)
acts as a target silence detector. Therefore, the ILMS property of implicit
silence detection should not be lost by switching to the standard NLMS when
instability is detected.

4.4 Robustness Improvement

In most applications where prior information about the target position is
available, and even if the steered DOA does not perfectly match the actual
target position, the SIR is positive at the target reference signal x0(p) and
negative at the interferer reference xB(p). Therefore, cancelation of the target
signal at the beamformer output is accompanied by a growth of the interfer-
ence canceler coefficients. Based on this observation, we may replace the LMS
cost function J = E

{
y2(p)

}
by

Jλ = E
{
y2(p)

}
+ λ‖a‖2, (4.53)

for a positive weight parameter λ > 0 [45]. This penalizes large values of
‖a(p)‖2 and partially prevents target signal cancelation. Similar to the Wiener
solution (3.22), the minimum of Jλ can be obtained in closed form by setting
its gradient to zero, which yields

a(p) = − (RxBxB
+ λI)−1 E {x0(p − D)xB(p)} . (4.54)

3 As we will see in the experimental section, typical step-sizes are on the order of
magnitude μ0 = 0.01 or smaller.
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In (4.54), diagonal loading is applied on the correlation matrix RxBxB
[30].

The gradient descent for the cost function Jλ leads to the leaky LMS algo-
rithm [45]:

a(p + 1) = (1 − μλ)a(p) − μy(p)xB(p). (4.55)

At each adaptation step, the filter coefficients are scaled down by a factor
(1 − μλ) that is slightly smaller than 1. The leaky LMS algorithm may also
be implemented by adding random white noise to the input signals of the
interference canceler [45]. Since BTw0 = 0, the white-noise gain of 4 w =
w0 +Ba is given by ‖w‖2 = ‖w0‖2 +aTBTBa. For a blocking matrix B such
that BTB = I, the white-noise gain becomes

‖w‖2 = ‖w0‖2 + ‖a‖2. (4.56)

Thus, if BTB = I then Jλ simultaneously minimizes the output signal power
and the white-noise gain of w.

A drawback of this approach is that Jλ for λ > 0 yields a slower initial
convergence than J0. An alternative consists in restraining ‖a(p)‖2 with the
quadratic inequality constraint

‖a(p)‖2 < a2
QIC, (4.57)

where aQIC is a positive constant [30]. The constraint in (4.57) may be effi-
ciently implemented as a projection on a ball of radius aQIC [55]:

a(p) ← aQIC

‖a(p)‖a(p) if ‖a(p)‖ > aQIC. (4.58)

Assume that the optimal interference canceler satisfies constraint (4.57),
i.e., that ‖aopt(p)‖ < aQIC. Then, (4.57) also limits the mismatch, since
‖m(p)‖ = ‖a(p) − aopt(p)‖ < 2aQIC.

The smaller aQIC is, the lower the target and interference signal suppres-
sions are. Appropriate values of aQIC depend on the position of the sources
and on the microphone arrangement. Thus, one must determine the smallest
aQIC that does not impair the interference signal suppression experimentally.

4.5 Experiments

In this section, we evaluate the performance in terms of SIR improvement
of adaptive beamforming algorithms in the car environment. The following
algorithms are compared:

• NLMS. The adaptation is performed according to (4.7) without double-
talk detector.

4 The argument p is omitted to simplify the notations.
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• ILMS. The adaptation is performed according to (4.13) with step-size μ0

and without double-talk detector. The stability threshold μmax is set to
μmax = 1

2 .
• DTD-NLMS. Adaptation of the interference canceler is performed accord-

ing to (4.7) when the speech activity of the interferer is detected and the
target is silent. The double-talk detection (DTD) is obtained by segment-
ing the recorded target source signal manually. In the case of the RGSC
used with the four-element compact array mounted in the rear-view mir-
ror, the blocking matrix is adapted when speech activity of the target is
detected and the interferer is silent.

For these three algorithms, the adaptation is stopped if the short-term input
signal level is below a fixed threshold. This threshold is determined by mea-
suring the microphone signal energy during the first speech-free 200 ms. This
rudimentary speech activity detection does not allow to distinguish between
speech of the target (the driver) and speech of the interferer (the codriver). It
is just useful to avoid divergence of the filter coefficients when the input sig-
nals consist of background noise only. The three algorithms are implemented
with the quadratic inequality constraint in (4.58).

The performance measures

The performance measures have been defined in Sect. 2.4. The signal powers
are estimated with their instantaneous estimates. In Figs. 4.2–4.5, the target
signal level reduction and the interference signal level reduction are shown
after averaging over a sliding window of length 30 ms.

Source signals

The online beamformer performance is obtained on real recordings performed
with two male speakers. The driver utters a sequence of digits in German:
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Fig. 4.2. Online performances with the microphone array mounted in the mirror
(no background noise). The NLMS step-size is set to μNLMS = 0.4
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Fig. 4.3. Online performances with the four-element compact array mounted in the
rear-view mirror, with road noise. The NLMS step-size is set to μNLMS =
0.3
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Fig. 4.4. Online performances with the two-element distributed array mounted on
the car ceiling (no background noise)
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Fig. 4.5. Online performances with the two-element distributed array mounted on
the car ceiling, with road noise. The step-size μNLMS is set to μNLMS =
0.05

“eins, zwei, . . ., zehn” (“one, two, . . .,ten”), the codriver the digits from “elf ”
(“eleven”) to “neunzehn” (“nineteen”). For the first half of the input signals,
the recordings are interleaved so that the digit of one speaker falls mainly in
the pause of the other one. By contrast, for the second part, the two speakers
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Fig. 4.6. Source signals

speak more or less simultaneously, as may be seen in Fig. 4.6. The signals
are sampled at fs = 16 kHz. First, we consider the four-element compact
array mounted in the rear-view mirror. Then, experiments are conducted with
the two-element distributed array mounted on the car ceiling. (We refer to
Appendix A for more details on the experimental setups.)

4.5.1 Experiments with the Four-Element Compact Array
Mounted in the Rear-View Mirror

In our experiments, the four-element compact array mounted in the rear-view
mirror is correctly steered to the target direction θ = 20◦. The uncontrolled
NLMS and ILMS algorithms are used to adapt the interference canceler em-
bedded in the GSC structure with the blocking matrix (3.29). The delay in
the fixed beamformer path is D = L/2 = 128.

The controlled DTD-NLMS is used with the RGSC beamformer proposed
by Hoshuyama et al. [53] (see also Sect. C.1 in Appendix C for more details).
The RGSC has an adaptive blocking matrix (C.3) with M outputs and filters
bm of length L. The blocking matrix is adapted when the target is active
and the interferer is silent with the NLMS algorithm (C.5) as described in
Appendix C.

Determining the constants μNLMS, μ0, and aQIC

To determine the adaptation constants, a two-second recording carried out
with an artificial head positioned on the codriver seat is used. The training
signal is a female voice saying “Ich bin Rudolf Ranick hier vom FTZ ” (“I am
Rudolf Ranick here from FTZ”). The constants are tuned without double-
talk, i.e., the artificial head of the codriver is the only active source and the
microphone signals are those of the interferer, i.e., x(p) = n(p). Optionally,
road noise recorded at 100 km h−1 is added to the microphone signals, which
may be written as x(p) = n(p)+n(road)(p) in this case. This background noise
exhibits a signal-to-noise ratio (SNR) of about 10 dB with respect to codriver
speech.
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To determine the appropriate values for μNLMS, μ0 and aQIC, we define
the quality measure Q as the interference signal level reduction estimated over
the whole two-second recording, i.e.,

Q �
1
M

∑M
m=1

∑2fs
p=1 n2

m(p)∑2fs
p=1 y2(p)

. (4.59)

Thus, the initial convergence phase of a(p) is included in Q. Note that we are
interested in the reduction of the passenger speech level, which is measured
by Q (as opposed to the reduction of the road noise level). The target signal
cancelation problem is not considered for now. As we will see, Q decreases
in the presence of background noise since some degrees of freedom of the
interference canceler are allocated to the attenuation of the background noise
signal rather than to the suppression of the interferer signal.

First, the step-size is examined. The quadratic constraint (4.57) is left
out, i.e., aQIC = +∞ in (4.58). Q is depicted in Fig. 4.7a as a function of
μ0 and μNLMS. Note that Q(μ0) exhibits two local maxima. This may be
explained as follows: For a large step-size μ0, the stability condition (4.11)
is not fulfilled and the algorithm switches to the NLMS adaptation. Thus,
Q(μ0) ≈ Q(μNLMS) for μ0, μNLMS > 0.1. Since most of the adaptation should
occur with the pseudooptimal step-size, we retain the first maximum of Q(μ0)
at μ0 = 0.008. Let us also give an interpretation of the curve Q(μ0) in terms of
the contraction factor α(p) introduced in (4.39) in Sect. 4.3.2. Q(μ0) reaches
its first maximum when the contraction factor α(p) is minimum. For 10−2 <
μ0 < 10−1 corresponds to an overshoot phase: the contraction factor becomes
negative and larger in magnitude, which decreases the speed of convergence.
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Fig. 4.7. (a) Q as a function of μ0 and μNLMS, for aQIC = +∞. (b) Q as a function
of aQIC, obtained with NLMS and the step-size μNLMS = 0.2 and noisy
input signals. These results are obtained with the four-element compact
array mounted in the rear-view mirror
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The algorithm switches to the NLMS adaptation when the contraction factor
becomes too large (which would cause instability).

The noisy case deserves an additional observation. The maximum value of
Q(μNLMS) indicates that the NLMS algorithm is able to attain a higher in-
terference signal suppression than ILMS on noise-free input signals. However,
both algorithms exhibit similar performance with background noise. Inter-
estingly, the background noise does not seem to influence the optimum μ0,
which indicates the robustness of the ILMS algorithm against varying noise
conditions.

Second, we use the noisy input signals to determine the smallest aQIC that
does not impair the interference signal level reduction. The value of Q as a
function of aQIC is depicted in Fig. 4.7b. Note that the norm of the optimal
interference canceler coefficients ‖aopt‖ depends on the proper array steering:
Steering errors may cause (1) larger interference signal levels in the target
reference x0(p) and (2) weaker interference signal levels in the interference
references xB,m(p). Then the optimal aQIC may depend on steering errors.
That is why the results in Fig. 4.7b are shown for the correct steering direction
(20◦) and for an erroneous steering direction (0◦). It shows that for aQIC > 0.8,
the interference signal level reduction is barely impaired for both steering
directions. The parameter values μ0 = 0.008 and aQIC = 0.8 are used in
the following. The algorithm equation and parameters for the four-element
compact array mounted in the rear-view mirror are summarized in Table 4.1.

Online performance

Figure 4.2 presents the online performance with noise-free signals and Fig. 4.3
those with road background noise.

Except for the fact that the presence of background noise decreases the
target signal level reduction SR(p) and the interference signal level reduction5

IR(p), both figures have similar characteristics:

Table 4.1. DTD-NLMS and ILMS algorithm short reference table with the para-
meter settings for the compact four-element compact array mounted
in the rear-view mirror shown in Fig. A.2. The filter length is set to
L = 256 at fs = 16 kHz

DTD-NLMS ILMS

structure RGSC (Fig. C.1) GSC (Fig. 3.1)
section 4.1 4.2
equation (4.7) (4.13)
step-size μNLMS = 0.4 (no noise) μ0 = 0.008

μNLMS = 0.3 (noisy) μmax = 1
2

QIC aQIC = 0.8

5 Note that the interference signal level reduction does not measure the attenuation
of the background noise signal but only that of the codriver speech.
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• All three algorithms provide similar reductions of the interference signal
level IR(p).

• The uncontrolled NLMS reduces the target and interferer signal levels sim-
ilarly and therefore does not provide any SIR improvement. This confirms
the result of Sect. 4.3.2, namely that NLMS converges and diverges with
the same speed.

• The target signal level reduction SR(p) produced by ILMS increases slowly.
SR(p) remains smaller than for the uncontrolled NLMS. This reflects the
result of Sect. 4.3.2, namely that ILMS converges faster than it diverges.
Nevertheless, SR(p) may attain 10 dB when the driver speaks alone and is
similar to that of NLMS at the end of the recording. The periods of time
where ILMS is switched to NLMS, i.e., when the stability condition (4.11)
is not fulfilled, are indicated below the SR(p) curves. As shown in Figs. 4.2
and 4.6, instability is detected only when the target is weak relative to the
interferer, as predicted in Sect. 4.3.2. This occurs less frequently with back-
ground noise: The diffuse road noise cannot be completely canceled and
‖y(p)‖2 does not become very small, preventing large values of 1/‖y(p)‖2

in (4.11).
• The controlled DTD-NLMS method is the only one that guarantees a

low target signal cancelation during the whole recording and offers the
best SIR improvement. This shows that it is necessary to interrupt the
adaptation during target activity to prevent target signal cancelation with
the four-element compact array mounted in the rear-view mirror.

To examine the distortion of the desired signal for each algorithm, we con-
sider the signal level reduction as a function of the frequency.6 The distortion
curves are plotted in Fig. 4.8. The figure is in accordance with the observation
above: the ILMS algorithm causes a significantly higher distortion than the
DTD-NLMS.
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Fig. 4.8. Signal level reduction as a function of the frequency for the four-element
compact array mounted in the rear-view mirror (no background noise)

6 The power spectral density (PSD) was estimated using Welch’s periodogram
method with Hanning-weighted time frames of length 512. The PSD was then
averaged over the whole signal length.
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4.5.2 Experiment with the Two-Element Distributed Array
Mounted on the Car Ceiling

The two-element distributed array mounted on the car ceiling is associated
with the causal AIC structure described in Sect. 3.3.2. The experimental setup
is depicted in Fig. A.3.

Determining the constants μNLMS, μ0, and aQIC

The same procedure as in Sect. 4.5.1 is applied. The quality measure Q is the
reduction of the interference signal energy evaluated with respect to the first
microphone x1(p):

Q �
∑2fs

p=1 n2
1(p)∑2fs

p=1 y2(p)
(4.60)

Q is shown as a function of μ0 and μNLMS in Fig. 4.9a. Q(μ0) exhibit two
local maxima for the same reasons as given in Sect. 4.5.1. The relevant one is
the first, at μ0 = 0.005. The second maximum of Q(μ0) for μ0 > 0.1 appears
because of switching to NLMS. Note that the step-size μ0 which maximizes Q
is almost independent of the background noise. In this respect, the robustness
of the ILMS adaptation is remarkable. By contrast, the NLMS step-size μNLMS

needs to be adjusted to the noise level: the step-size is set to μNLMS = 0.2
in noise-free conditions, and to μNLMS = 0.05 in noisy conditions. Regarding
the upper bound aQIC for the quadratic inequality constraint ‖a‖ < aQIC,
it appears in Fig. 4.9b that the conservative aQIC = 0.5 does not impair the
reduction of the interference signal level. We retain μ0 = 0.005 and aQIC = 0.5
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Fig. 4.9. (a) Q as a function of μ0 and μNLMS, for aQIC = +∞. (b) Q as a function
of aQIC, obtained on noisy input signals with NLMS and the step-size
μNLMS = 0.05. Results obtained with the two-element distributed array
mounted on the car ceiling
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Table 4.2. DTD-NLMS and ILMS algorithm short reference table with the para-
meter settings for the two-element distributed array mounted on the
car ceiling shown in Fig. A.3. The filter length is set to L = 256 at
fs = 16 kHz

DTD-NLMS ILMS

structure interference canceler (Fig. 3.2)
section 4.1 4.2
equation (4.7) (4.13)
step-size μNLMS = 0.1 (no noise) μ0 = 0.005

μNLMS = 0.05 (noisy) μmax = 1
2

QIC aQIC = 0.5

for further experiments. The algorithm equation and parameter settings are
summarized in Table 4.2.

Online performance

The online performance with noise-free signals is shown in Fig. 4.4, and with
road background noise in Fig. 4.5.

It can be observed that the uncontrolled NLMS leads to a significant tar-
get signal level reduction, even though this reduction is not as large as with
the four-element compact array mounted in the rear-view mirror. Although
the prior information about the source position is used at the physical level
with directive microphones and with a conservative constraint ‖a(p)‖ < 0.5,
target signal cancelation nevertheless occurs. This influences the interference
signal suppression negatively, since the degrees of freedom that are allocated
to the target signal cancelation are not available for the suppression of the
interference signal.

By contrast, the ILMS method does not lead to a noticeable target signal
level reduction. This result differs from the one obtained with the four-element
compact array mounted in the rear-view mirror and may be explained as
follows:

• The long-term average interferer-to-signal ratio at the microphone that
is oriented to the codriver is about 6 dB. This helps to limit the energy
inversion effect described in Sect. 3.4.1.

• The number of spatial degrees of freedom allows only a single spatial zero
to be adaptively placed. This prevents the driver and codriver speech to
be simultaneously canceled.

• A causality constraint is set on the interference canceler, which also helps
to decrease target signal level reduction.

The reduction of the desired signal level as a function of the frequency is shown
in Fig. 4.10 to illustrate the distortion caused by the ILMS and DTD-NLMS
algorithms.
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Fig. 4.10. Reduction of the desired signal level as a function of the frequency for
the ILMS and DTD-NLMS algorithms with the two-element distributed
array mounted on the car ceiling (no background noise). The PSD is
averaged over the whole signal length

As predicted in Sect. 4.3.2, ILMS switches in noise-free conditions to NLMS
only if the input SIR is low. With background noise, the output signal power
is such that instability is never detected.

The fastest convergence is attained with the controlled DTD-NLMS
algorithm. The interference signal level reduction is somewhat limited dur-
ing double-talk since no adaptation occurs when the target is active, but it is
still comparable to that of the ILMS.

4.6 Summary and Conclusion

In this chapter, we have introduced adaptive LCMV beamforming algorithms
and built upon the widely used NLMS algorithm. An important parameter
of the NLMS algorithm is the step-size. A large step-size is desirable since
it allows a rapid tracking of the spectral changes. However, a large step-size
also leads to a significant target signal suppression if the input SIR is large
or during double-talk. We addressed this problem by using a pseudooptimal
step-size. This leads to the ILMS algorithm with implicit adaptation con-
trol. On the theoretical side, ILMS has been shown to converge faster and
diverge slower than the NLMS algorithm without adaptation control. It was
also shown how the associated stability condition acts as a target silence
detector.

To further increase the robustness against target signal cancelation, we
integrated a quadratic inequality constraint. The performance in terms of
SIR improvement of the developed ILMS algorithm was then experimentally
studied and compared to that of the traditional NLMS algorithm. The theo-
retical results on the transient behavior and the stability could be confirmed.
Moreover, it appears that the ILMS parameter μ0 does not require to be
adjusted to the background noise level. This feature makes the ILMS very
attractive for automotive applications. The SIR improvement provided by
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ILMS outperforms that of the uncontrolled NLMS algorithm. With the two-
element distributed array mounted on the car ceiling, the performance of the
ILMS algorithm is comparable to that of the DTD-controlled NLMS, while
not requiring any external adaptation control. With this setup, the ILMS
algorithm is very robust against target leakage and has a high practical rel-
evance. On the other hand, for the four-element compact array mounted in
the rear-view mirror, the adaptation control provided by the ILMS algorithm
is not sufficient to prevent the target signal.

To summarize, the most important results of this chapter are:

• In contrast to the NLMS algorithm, the step-size in the ILMS algorithm is
automatically adjusted to the input SIR. Moreover, it also adjusts to the
background noise level, an important feature in automotive applications.

• Used in conjunction with the distributed microphone arrangement and an
AIC, this implicit adaptation control seems to be sufficient. However, in
the general case of GSC beamformers, the ILMS algorithm alone does not
prevent target leakage and an external adaptation control is still necessary.



5

Second-Order Statistics Blind Source
Separation

The adaptive LCMV beamforming methods discussed in Chap. 4 are based on
the constrained minimization of the output power as an optimization criterion.
In practice, their performance is subjected to two contradictory constraints.
On the one hand, the microphones should be placed as close as possible to
the desired source for a good acoustic capture. On the other hand, any leakage
of the desired signal in the interferer reference results in a cancelation of the
desired signal at the beamformer output and in a poor SIR improvement.

This fundamental limitation may be overcome with source separation
methods. In contrast to power-based adaptive beamforming where only the
target signal estimate

y(p) =
M∑

m=1

wT
m(p)xm(p) (5.1)

is considered as system output, source separation methods include N source
signal estimates yn(p) given by (2.23):

yn(p) =
M∑

m=1

wT
nm(p)xm(p) (2.23)

for n = 1, . . . , N . No formal distinction is made between the desired signal
and the interference signals since both are recovered as algorithm output.
These separation methods do not require any adaptation control, they are
thus referred to as unsupervised, or blind1 source separation methods (BSS).

A simple but illustrative derivation of these BSS principles was proposed
by Van Gerven et al. with the SAD algorithm [38]. Their starting point is

1 The term “blind” indicates that no a priori known training sequence is necessary
to adapt the separation filters [46]. By contrast, the power-based LMS in Chap. 4
is supervised (nonblind) and necessitates an a priori known training sequence.
This sequence consists of the desired signal during its silences and is zero.
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Fig. 5.1. (a) Widrow’s interference canceler [92]. (b) Source separation structure
proposed by Van Gerven [38]. (c) Complete separation structure

the LMS algorithm (4.3) with the two-source two-sensor scenario shown in
Fig. 5.1a. The adaptive interference canceler is denoted by w12(p) and the
output signal is given by y1(p) = x1(p) + wT

12(p)x2(p). The LMS algorithm
for w12(p) can be written using (4.3) as

w12(p + 1) = w12(p) − μy1(p)x2(p). (5.2)

Van Gerven takes into account the fact that the interferer reference signal
x2(p) is contaminated by target signal components (the target leakage). He
proposes replacing x2(p) in (5.2) by a target-free signal given by y2(p) =
x2(p) + wT

21(p)x1(p) and obtains two update rules for w12(p) and w21(p):{
w12(p + 1) = w12(p) − μy1(p)y2(p),
w21(p + 1) = w21(p) − μy2(p)y1(p). (5.3)



5.1 Problem and Notations 65

The corresponding feedforward filter structure proposed by Van Gerven is
shown in Fig. 5.1b. This adaptive MIMO provides an estimate for the tar-
get signal y1(p) but also an estimate y2(p) for the interferer signal as a by-
product. When (5.3) has converged in the mean, y1(p) and y2(p) should be
uncorrelated. Hence, Van Gerven termed the algorithm in (5.3) the symmetric
adaptive decorrelation (SAD) algorithm [38].

Unfortunately, (5.3) yields severe limitations. Like the LMS algorithm,
(5.3) is not normalized and is predisposed to instability if the input sig-
nals have fluctuating powers, as it is the case for speech signals. Moreover,
with (5.3), the zero-tap filter coefficients w12,0(p) and w21,0(p) are such that
w12,0(p) = w21,0(p) for all p. Therefore, the practical use of the SAD algo-
rithm (5.3) is limited.

BSS algorithms are based on the assumption that the source signals are
mutually independent and adjust the filters wnm to minimize a certain depen-
dence measure. In this book, the emphasis is placed on second-order statistics
BSS (SOS-BSS). That is, the dependence measure is based on the second-
order statistics of the source signals. Other dependence measures based on
higher-order statistics exist and yield different BSS algorithms [56].

This chapter focuses on off line separation methods in the time domain,
for which the entire observed signal x(p), p = 1, . . . , T is available at the time
of processing. The presentation makes use of Sylvester matrices and is derived
from Buchner et al. [18].

This chapter is organized as follows: Section 5.1 states the problem of blind
source separation and defines the notations used. In Sect. 5.2, the role of the
nonstationarity is explained and a separation cost function is derived using
the mutual information of nonstationary Gaussian signals. In Sects. 5.3 and
5.4, the gradient of this cost function is given and we introduce the natural
gradient that is more efficient. Unfortunately, the natural gradient applies only
to “square” systems that have as many sources as microphones. In Sect. 5.4,
we propose a general approach to extend the natural gradient to nonsquare
systems.

5.1 Problem and Notations

5.1.1 From a Scalar to a Convolutive Mixture Model

The scalar model

Originally the problem of blind source separation was placed in the framework
of instantaneous (or scalar) linear mixtures [59]. In this framework, it is often
termed independent component analysis (ICA). In the instantaneous model,
N source signals s1(p), . . . , sN (p) propagate instantaneously to M sensors
x1(p), . . . , xM (p). That is, the source–sensor relationship can be described
using an M × N matrix H as follows:
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x(p) � Hs(p), (5.4)

with s(p) � (s1(p), . . . , sN (p))T (5.5)

and x(p) � (x1(p), . . . , xM (p))T . (5.6)

The matrix H is called the mixing matrix. Roughly speaking, the objective
of BSS is to isolate the image of one source in each component of the output
vector y(p) = (y1(p), . . . , yN (p))T defined as

y(p) � Wx(p). (5.7)

The N × M matrix W is called a separation matrix. Note that it is not
necessary to identify H−1 (if it is a square matrix) since recovering the sources
up to permutations and scaling is sufficient. In BSS, the goal is to blindly
identify a separation matrix W such that the matrix WH has only one non-
zero entry in each column and each row. Such a separation matrix is called a
separating matrix.2 Although the instantaneous model is of limited practical
relevance for acoustic applications, its role is fundamental in the development
and understanding of BSS algorithms. In the following, this model is extended
to the convolutive case by introducing specific notations [20].

The convolutive model

First, we generalize the scalar output components yn(p) in (5.7) to vectors
yn(p) of length L, as follows:

yn(p) � (yn(p), yn(p − 1), . . . , yn(p − L + 1))T . (5.8)

The (n,m)-element of the separation matrix, wnm, becomes a Sylvester matrix
Wnm of size L × 2L − 1 which is defined as

Wnm �

⎛⎜⎜⎜⎜⎝
wT

nm 0 . . . 0

0 wT
nm

. . .
...

...
. . . . . . 0

0 . . . 0 wT
nm

⎞⎟⎟⎟⎟⎠ , (5.9)

wT
nm � (wnm,0, . . . , wnm,L−1) . (5.10)

The entire MIMO separation system is given by the block Sylvester matrix W:

W �

⎡⎢⎣ W11 . . . W1M

...
. . .

...
WN1 . . . WNM

⎤⎥⎦ . (5.11)

2 Note that it is a priori assumed that there exists a separating matrix that does
not depend on a particular source realization [23].
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The input data xm(p) are stacked in a vector x(p) that is now redefined3 as

x(p) �
(
xT

1 (p), . . . ,xT
M (p)

)T
, (5.12)

with xm(p) � (xm(p), . . . , xm(p − 2L + 2))T form = 1, . . . ,M. (5.13)

Then the MIMO input–output relationship in (2.22) can be compactly written
as

y(p) = Wx(p). (5.14)

Up to the fact that the input vector x(p) now has size M(2L−1)×1 and that
the output signal y(p) becomes a vector y(p), (5.14) is simply a compact ver-
sion of (2.23) and thus the Sylvester notation is consistent with the notations
of the previous chapters. In the case M = N = 2, the input–output structure
is shown in Fig. 5.1c.

Similarly, the mixing equation can be written as

x(p) � Hs(p). (5.15)

Each scalar mixing coefficient hij of the matrix H in (5.4) is generalized to a
mixing filter, which is represented by the (2L − 1) × (Lm + 2L − 2) Sylvester
matrix Hij as follows:

Hij �

⎛⎜⎜⎜⎜⎝
hT

ij 0 . . . 0

0 hT
ij

. . .
...

...
. . . . . . 0

0 . . . 0 hT
ij

⎞⎟⎟⎟⎟⎠ , (5.16)

hT
ij � (hij,0, . . . , hij,Lm−1) . (5.17)

Lm denotes the length of the mixing channels. The whole MIMO mixing
system is given by the block Sylvester matrix H of size M(2L − 1) ×
N(Lm + 2L − 2):

H �

⎡⎢⎣ H11 . . . H1N

...
. . .

...
HM1 . . . HMN

⎤⎥⎦ . (5.18)

The source vector s(p) in (5.15) is defined as

s(p) �
(
sT
1 (p), . . . , sT

N (p)
)T

, (5.19)

with sn(p) � (sn(p), . . . , sn(p − 2L − Lm + 3))T for n = 1, . . . , N. (5.20)

3 In Chaps. 2–4, the vector x(p) was defined with length ML. In source separation,
this vector has length M(2L − 1).
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This notation with Sylvester matrices is appealing because convolutive
mixtures appear formally as instantaneous mixtures, which can be seen by
comparing (5.4) with (5.15) or (5.7) with (5.14). Using this type of notation,
instantaneous separation methods have been proposed for separating convo-
lutive mixtures [70]. However, for acoustic signal processing, several tens or
hundreds of filter taps are necessary. This makes the dimension of the mixing
prohibitively high. Nevertheless, such a notation allows to apply some results
which have been derived for instantaneous BSS.

Finally, let us define the global convolutive system C � WH. The NL ×
N(Lm + 2L − 2) matrix C contains N2 submatrices Cnn′ , n, n′ = 1, . . . , N of
size L × Lm + 2L − 2:

C =

⎡⎢⎣ C11 . . . C1N

...
. . .

...
CN1 . . . CNN

⎤⎥⎦ . (5.21)

Each submatrix Cnn′ represents the channel that relates the source sn′(p) to
the output yn(p).

5.1.2 Separation Ambiguities

Generally, blind separation criteria are based on the mutual independence
of the sources. Minimizing an independence criterion does not allow the
separating matrix W to be uniquely determined. In the following, we de-
scribe the permutation and scaling ambiguities in the convolutive case. Let us
assume that the output signals are mutually independent. Since permutations
of the outputs leave their mutual independence unchanged, ym(p) is not nec-
essarily an estimate of the source signal sm(p). In fact, the ordering of the
source signals is solely a matter of notation and has no physical relevance.
Therefore, the output vector y(p) should provide an estimate of the source
vector s(p) up to arbitrary permutations. In terms of the global system C,
this means that we do not want to find W such that C is block-diagonal.
Rather we want to find W such that each row and each column of C has only
one nonzero submatrix.

Likewise, individual filtering of each source signal leaves the mutual inde-
pendence of the sources unchanged. Therefore, the nonzero submatrices in C
may contain arbitrary filter coefficients. This filtering indeterminacy may be
more or less severe depending on the filter length L: If L is greater than the
lower bound in (2.55), i.e., if L >

⌈
(Lm−1)(N−1)+1

M−N+1

⌉
, the unconstrained de-

grees of freedom result in a true arbitrary filtering of the source signals. If L
equals the lower bound, this arbitrary filtering reduces to an arbitrary scal-
ing [19]. To neutralize this ambiguity, various normalizations may be adopted.
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For example, it may be useful to constrain the diagonal filters wnn to unit
responses. However, depending on the length Lm of the mixing channels, such
a constraint generally reduces the achievable separation performance, as we
have shown in Sect. 2.3.2.

5.2 Nonstationarity and Source Separation

5.2.1 The Insufficiency of Decorrelation

In most instantaneous BSS approaches, the source signals sn(p), n = 1, . . . , N
are modeled as realizations of stationary stochastic processes [23]. With this
model, the blind separation of Gaussian sources is not possible: As the mutual
independence and the decorrelation of Gaussian sources are equivalent, the
independence constraints become the following decorrelation constraints:

Rynyn′ � E
{
yn(p)yT

n′(p)
}

= 0 ∀n �= n′. (5.22)

Suppose wnn = δ0 for n = 1, . . . , N , which neutralizes the filtering ambiguity.
On the one hand, the independence criterion (5.22) provides (2L − 1)(N2 −
N)/2 constraints. On the other hand, we have (N2 − N)L unknown filter
coefficients wnm,k. Therefore, a continuum of solutions with dimension (N2 −
N)/2 arises, which is “larger” than the discrete set of permutation ambiguities.
This shows that Gaussian sources cannot be separated if we use the stationary
signal model. This also reveals that the decorrelation constraints (5.22) are not
sufficient to separate stationary source signals, whether Gaussian or not. This
is the motivation for an alternative signal model. Instead of stationary source
realizations, it is proposed to examine nonstationary source signals. Although
the nonstationarity is often an obstacle in adaptive signal processing, it may be
advantageously exploited in BSS. If we assume nonstationary source signals,
we may produce K(2L − 1)(N2 − N)/2 equations from (5.22) by setting p =
t1, . . . , tK , that is,

E
{
yn(tk)yT

n′(tk)
}

= 0, k = 1, . . . ,K, ∀n �= n′. (5.23)

For K ≥ 2, the collection of constraints is sufficient to identify appropriate
separating filters. These constraints correspond to the joint block diagonaliza-
tion of the output correlation matrices Ryy(tk), k = 1, . . . ,K, where Ryy(p)
is defined as

Ryy(p) � E
{
y(p)yT(p)

}
. (5.24)

Let us introduce the matrix operator boff(R) that sets the diagonal L × L
submatrices of R to zero. For a K1L×K2L matrix R consisting of submatrices
Rij , i = 1, . . . ,K1; j = 1, . . . ,K2 of size L × L, boff(R) is defined as
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boff

⎡⎢⎢⎢⎣
R11 . . . R1K2

...
. . .

...

RK11 . . . RK1K2

⎤⎥⎥⎥⎦ �

⎡⎢⎢⎢⎢⎣
0 R12 . . . R1K2

R21
. . . . . .

...
...

. . . R(K1−1)K2

RK11 . . . RK1(K2−1) 0

⎤⎥⎥⎥⎥⎦ . (5.25)

Reformulating (5.23), we may resolve the separation problem by finding
W such that

boff(Ryy(tk)) = 0 k = 1, . . . , K, (5.26)

since boff(Ryy(tk)) contains all cross-correlation terms.

5.2.2 Nonstationarity-Based Cost Function

Gaussian mutual information

Various cost functions based on the joint block diagonalization of the corre-
lation matrices Ryy(tk) have been introduced heuristically (see e.g.,[75]).

By contrast, the mutual information,4 a natural measure of independence
in information theory, gives us a rigorous foundation for deriving a separation

4 Some definitions and properties from the information theory are essential [29]:

• The Kullback-Leibler divergence between two distributions

D(pX , pY ) �
∫

u

pX(u) log
pX(u)

pY (u)
du

is not really a distance in topological terms. For example, it is not symmetrical,
i.e., D(p, q) �= D(q, p) in general. However, it may be seen as a distance between
two random variables. It is clear that D(p, p) = 0 for all probability density
function (PDF) p. Moreover, D(p, q) is always positive.

• D(p(X,Y ), pX ·pY ) is called the mutual information of X and Y , and is denoted by

I(X, Y ) � D(p(X,Y ), pX · pY ) (5.27)

=

∫
x,y

p(X,Y )(x, y) log
p(X,Y )(x, y)

pX(x) · pY (y)
dxdy. (5.28)

The mutual information is nonnegative, and a very natural measure of indepen-
dence. The equivalence

X and Y are independent ⇔ I(X, Y ) = 0

is fundamental. The entropy of X, defined as H(X) � I(X, X), is related to the
mutual information by

I(X, Y ) = H(X) + H(Y ) − H(X, Y ). (5.29)
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cost function. To obtain a cost function from the mutual information, we must
assume that if W is a separating matrix then the output signals have a par-
ticular PDF. Note that even if the output does not match the assumed p.d.f.
when W is a separating matrix, the sources may be separated by minimizing
the mutual information. In fact, the assumed p.d.f. should be simple enough to
produce simple algorithms, while capturing the nonstationarity of the sources.
Such a model may be obtained by considering that if W is a separating ma-
trix then the outputs are realizations of mutually independent nonstationary
Gaussian processes. In addition, it is assumed that the output signals have
no time structure over blocks of length L, i.e., yn(t1) is assumed to be inde-
pendent of yn(t2) for all n and all t1 �= t2 such that |t1 − t2| > L. Again, we
emphasize that this is a working assumption. The derived algorithms may be
able to separate a larger class of source signals. Then, the mutual information
of the entire output sequence5 y(p), p = 1, . . . , T is given by the sum of the
mutual information in each block, that is,

I(y) =
K∑

k=1

I (y(kL)) , (5.30)

where K = �T/L�. To compute the output mutual information I(y(p)) at
time p, we use the Shannon entropy H [85] and the relation

I(y(p)) =
N∑

n=1

H(yn(p)) − H(y(p)). (5.31)

Assuming that the output samples may be described as the realization of
a stochastic process with a NL-variate normal distribution with correlation
matrix Ryy(p), their entropy is given by [85]

H(y(p)) =
1
2

log
(
(2πe)NL detRyy(p)

)
. (5.32)

Similarly, the entropy ofyn is given by H(yn(p))= 1
2 log

(
(2πe)L detRynyn

(p)
)
,

where Rynyn
(p) = E

{
yn(p)yT

n (p)
}
. Then the mutual information I(y(p)) in

(5.31) is given by

I(y(p)) =
1
2

(∑
n

log detRynyn
(p) − log detRyy(p)

)
. (5.33)

As may be seen from (5.33), the mutual information I(y(p)) vanishes if Ryy(p)
is block-diagonal, that is, if the output signals are spatially uncorrelated at

5 For simplicity, the mutual information and the entropy are respectively denoted
by I(y) and H(y), although they are defined for stochastic processes and not for
their sample realizations.
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time p. Thus, we achieve the joint block diagonalization of the output corre-
lation matrices by minimizing I(y) in (5.30). Using the fact that the determi-
nant of the block-diagonal matrix is the product of the determinant of each
diagonal block [25] and after replacing the true correlation matrix Ryy(p) by
its estimate,6 R̂yy(p) yields the following cost function:

J(W) =
K∑

k=1

log det bdiag(R̂yy(kL)) − log det R̂yy(kL), (5.34)

where bdiag(A) = A − boff(A).

Graphical representation

Let us examine the cost function in (5.34) in a simple graphical way. Figure 5.2
depicts the negated cost function, −J(W), whose representation is more read-
able than that of J(W). The following setting is considered: The dimension
of the instantaneous mixing (L = Lm = 1) is set to M = N = 2. To fix the
scaling ambiguity, the diagonal terms are set to wnn,0 = 1 for n = 1, 2. The
varying parameters are the off-diagonal terms w12,0 and w21,0. T = 100 inde-
pendent realizations of s are drawn from a Gaussian distribution with random
variance. Correlation matrices Rxx(p) = E

{
x(p)xT(p)

}
are estimated by the

moving-average R̂xx(p) = 1
3

∑1
τ=−1 x(p − τ)xT(p − τ). The mixing matrix is

set to

H =
(

1 −0.8
−0.8 1

)
.

It may be seen that J has only two local minima. They correspond to the two
separating solutions, the “direct” one and the “permuted” one. These minima

0
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1.5

2 0
0.5

1
1.5

2

−1,5

−1

−0.5

0

w21,0w12,0

−J

Fig. 5.2. Cost function J for an instantaneous mixing. For better readability, the
negative J is shown. Two arrows indicate the minima of J (maxima of −J)
corresponding to the separating solutions

6 The implementation of R̂yy(p) is not specified for now. We refer to Sect. 6.1.5
for an implementation of second-order statistics BSS algorithms.
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of J are separated by singularities of J (we have J(W) = +∞ for singular
separation matrices W).

5.3 Gradient-Based Minimization

5.3.1 Standard Gradient

A simple approach to find the separation matrix W that minimizes a cost
function J is the iterative gradient descent, which may be written using a
variable step-size μ(n) as follows:

W(n + 1) = W(n) − μ(n)
∂J

∂W

∣∣∣∣
W=W(n)

. (5.35)

A remark is in order regarding (5.35) in the case of Sylvester matrices.
Sylvester matrices allow to formulate the block convolution very concisely,
but face two related issues: Firstly, implementing (5.35) directly would involve
updating MNL(2L−1) terms instead of MNL free filter coefficients. Secondly,
the gradient term ∂J

∂W should have a Sylvester structure, which is not the case
for the cost function in (5.34). These technical issues are ignored for now,
because this chapter aims at introducing the main principles of BSS. They
will be treated and discussed specifically in Chap. 6.

Since we have7 Ryy(p) = WRxx(p)WT, the two formulas needed to ob-
tain the gradient of (5.34) are

∂ log det bdiagWRxxWT

∂W
= bdiag−1

(
WRxxWT

)
WRxx, (5.36)

∂ log detWRxxWT

∂W
=
(
WRxxWT

)−1
WRxx, (5.37)

where bdiag−1A = (bdiagA)−1 [20, 25].8 Using (5.36) and (5.37), the gradient
of the cost function (5.34) can be written as

∂J

∂W
=

K∑
k=1

(
bdiag−1

(
R̂yy(kL)

)
− R̂−1

yy (kL)
)
WR̂xx(kL). (5.38)

The inversion of the NL×NL matrices R̂−1
yy (kL) in (5.38) makes the standard

gradient descent particularly unattractive.

7 The arguments n and p may be omitted for notational convenience.
8 The Sylvester structure of W is not explicitly taken into account in (5.36)

and (5.37) (see [20, 25]). The resulting gradient has no Sylvester structure and
maintaining the Sylvester structure requires a special treatment. This issue is
treated in Chap. 6.
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5.3.2 Natural Gradient

The natural gradient is an alternative to the standard gradient that applies
especially well to the SOS-BSS cost function in (5.34). However, it is restricted
to square scenarios where the number of sources equals the number of sensors
(N = M). Derived by Amari from differential geometry considerations [7], it
was independently introduced by Cardoso, who called it the “relative” gra-
dient [23]. The natural gradient update may be obtained by modifying the
standard gradient ∂J

∂W as follows:

ΔW � ∂J

∂W
WTW. (5.39)

This formula was also derived for instantaneous mixtures. We will see in
Chap. 6 how it may be extended to convolutive mixtures. Combining (5.38)
and (5.39) yields

ΔW =
K∑

k=1

bdiag−1R̂yy(kL)boff
(
R̂yy(kL)

)
W. (5.40)

The computation of the natural gradient learning terms in (5.40) is much less
demanding than the computation of (5.38). Instead of inverting the NL×NL

correlation matrix R̂yy(p), only the submatrices R̂ynyn
(p) of size L×L need

to be inverted in (5.40). This is performed by inverting each diagonal block
of size L × L.

The algorithmic complexity of (5.40) may be further reduced by replacing
bdiag−1R̂yy(p) with diag−1R̂yy(p), yielding

ΔW =
K∑

k=1

diag−1R̂yy(kL)boff
(
R̂yy(kL)

)
W. (5.41)

Only scalar numbers need to be inverted in (5.41), as opposed to block-
diagonal matrices as in (5.40). This simplification is obtained by approxi-
mating the correlation R̂ynyn

of yn(p) by its power: Rynyn
≈ Ê

{
y2

n(p)
}
I.

There is an analogy between algorithm (5.41) and the NLMS algorithm (4.7):
In (5.41) and in (4.7), the normalization is performed by scalar power
terms [20]. In the remainder of this work, the generic algorithm (5.41) is
referred to as the natural gradient second-order statistics BSS algorithm (NG-
SOS-BSS).

Nonholonomicity

If the output cross correlations vanish for all blocks, i.e., if bdiag (Ryy(kL)) =
Ryy(kL) for k = 1, . . . ,K, then the update terms in (5.40) and in (5.41)
vanish. This equilibrium condition sets no constraint on the power or on the
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self-correlation of the output signals. For this reason, these learning rules are
referred to as nonholonomic.

Let us give a formal definition for the nonholonomicity in the context of
BSS. Without loss of generality, any iterative algorithm for optimizing W
may be written as

W(n + 1) = f (W(n)) . (5.42)

The matrix function f depends not only on the input data but also on other
parameters like the step-size. Let us consider a linear transform on the output
signals y, which is represented by the NL×NL block-diagonal matrix D, and
examine Dy. This linear transform is equivalently expressed on the separation
filters, since Dy = (DW)x. Hence, to simply transform the output data
linearly, we define the function g as

g (W,D) � f (DW) (5.43)

for any NL × NL block-diagonal matrix D. We can now rewrite (5.42) with
the identity matrix I:

W(n + 1) = g (W(n), I) . (5.44)

The equilibria of the algorithm in (5.42) are fixed points W∗ of g (·, I), that
is, they are the points W∗ so that

W∗ = g (W∗, I) . (5.45)

Now, the algorithm represented by (5.42) is said to be nonholonomic if and
only if for all block-diagonal matrix D, any fixed point W∗ of g (·, I) is also a
fixed point of g (·,D):

W∗ = g (W∗, I) ⇒ W∗ = g (W∗,D) ∀ diagonal matrix D. (5.46)

The nonholonomicity is important if the source signals are speech signals
because for holonomic learning rules, the equilibrium condition depends on
the power or on the self-correlation of the output signals. Typically, holonomic
learning rules tend to make the output signals temporally white and seem
unsuitable in online processing of speech signals [8].

5.4 Natural Gradient Algorithm for NonSquare Systems

In the derivation of the natural gradient (5.39), it is assumed that there are
as many sensors as sources [7, 23, 56]. Therefore, the learning rules (5.40)
and (5.41) apply only if M = N . However, we may have more sensors than
sources and exploiting the information provided by these additional sensors
should improve the separation performance.
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preprocessing
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Fig. 5.3. Three approaches for extending the natural gradient to nonsquare systems

Full separation

A straightforward approach would be to overestimate the number of sources
[93]. Setting N = M , the natural gradient may be applied for any number of
sensors, as depicted in Fig. 5.3a. However, this is computationally demanding.
Moreover, the information on the actual number of sources is not taken into
account.

Separation after preprocessing

Another approach is to apply a fixed preprocessing to the microphone signals
to reduce the dimension of the observed signals to N , as depicted in Fig. 5.3b.
Using the principal component analysis (PCA) for example, one may select
the components of the microphone signals that have the most energy [12, 56].
This approach yields the advantage of a lower complexity, since BSS is applied
on N < M input signals. However, it is not clear whether this preprocessing
may discard information that is useful for separation or not.

Partial separation

The technique that we propose is a trade-off between the full separation and the
separation after preprocessing and is referred to as partialBSS (PBSS).The idea
is very simple: Since it is not necessary to extract M independent components,
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we may assign several outputs to one source, as depicted in Fig. 5.3c. In the
case N = 2, M = 4, we may assign y1 to the source s1 and y2, y3, y4 to
the source s2. We note that other assignments may also be possible. This
particular assignment is well suited if the source s1 is placed closest to the
microphone x1, since at the initialization we have y1 = x1. This particular
assignment is also structurally similar to the spatial preprocessing performed
in the GSC, which will reveal useful in Chap. 9.

Let us define the vector y[2,3,4](p) as

y[2,3,4](p) �
(
yT

2 (p),yT
3 (p),yT

4 (p)
)T

. (5.47)

The partial separation of the sources may be achieved by minimizing a cost
function JPBSS which is obtained by modifying the cost function (5.34). In Par-
tial BSS, we do not want to minimize the mutual information I(y1, . . . ,y4).
Here, the mutual information I

(
y1,y[2,3,4]

)
is relevant. In case of nonstation-

ary Gaussian signals, this mutual information is given by

I
(
y1(p),y[2,3,4](p)

)
= log detRy1y1(p)

+ log detE
{
y[2,3,4](p)yT

[2,3,4](p)
}

− log detRyy(p). (5.48)

This yields the cost function

JPBSS =
K∑

k=1

log det bdiag1,[2,3,4](R̂yy(kL)) − log det(R̂yy(kL)). (5.49)

The matrix operator bdiag1,[2,3,4] is defined as follows: Let (K1,K2) be a
partition of {1, . . . , M}, the operator bdiagK1,K2

(A) sets the (n,m)th blocks
of the matrix A to zero for all (n,m) ∈ (K1,K2) such that n �= m. This simple
operation may be made explicit in the case of bdiag1,[2,3,4] as follows:

bdiag1,[2,3,4]

⎡⎢⎣A11 . . . A14

...
. . .

...
A41 . . . A44

⎤⎥⎦ �

⎡⎢⎢⎢⎣
A11 0 . . . 0
0 A22 . . . A24

...
...

. . .
...

0 A42 . . . A44

⎤⎥⎥⎥⎦ . (5.50)

An existing approach that may be related to PBSS is the deflation ap-
proach [25]. It consists of two steps: (1) a single source is extracted and
(2) removed from the mixture signals using a least-square power criterion.
Both steps are repeated iteratively until a single source remains. PBSS is
similar to the first step of the deflation approach. However, at the extraction
of each source yn(p), deflation algorithms typically exploit an optimization
criterion of the form J (yn) that depends on a single output; on the contrary,
PBSS optimizes W for different outputs jointly with a criterion of the form
J
(
y1,y[2,...,M ]

)
.
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PBSS in the case N = 2

In the case of two sources N = 2, this approach may be generalized to M
sensors replacing bdiag1,[2,3,4] by bdiag1,[2,...,M ]. In our context, we consider
that only one source signal is actually desired. (For example in our car appli-
cation, only the driver speech is actually desired.) The other outputs of the
system are considered as by-product of the PBSS algorithm. In other words,
the two sources actually consist in (1) the desired source and (2) the set of all
other present sources. Hence, only the case of two sources N = 2 is further
considered for PBSS implementations. However, we note that PBSS may also
be generalized to N > 2 sources and we notice that PBSS coincides with BSS
if N = M .

Similarly to the BSS cost function in (5.34), JPBSS may be minimized with
a natural gradient approach, which yields

ΔW =
K∑

k=1

bdiag−1
1,[2,...,M ]R̂yy(kL)

(
R̂yy(kL) − bdiag1,[2,...,M ]R̂yy(kL)

)
W.

(5.51)

The matrix inversion may be avoided using an NLMS-like algorithm as in
(5.41). We then obtain the following NG-SOS-BSS learning rule:

ΔW =
K∑

k=1

diag−1R̂yy(kL)
(
R̂yy(kL) − bdiag1,[2,...,M ]R̂yy(kL)

)
W. (5.52)

The computational demand in PBSS may be further reduced if we do not
adapt the cross filters wnm, n �= m relating outputs that are assigned to the
same source sn(p). This should not impair the separation performance, since
it is not necessary to reduce the cross correlation between these outputs. In
the case N = 2, the filters wnm for n,m > 1 and n �= m remain zero. This
results in the separation matrix

W =

⎡⎢⎢⎢⎢⎢⎢⎣

W11 W12 . . . . . . W1M

W21 W22 0 . . . 0
... 0

. . . . . .
...

...
...

. . . . . . 0
WM1 0 . . . 0 WMM

⎤⎥⎥⎥⎥⎥⎥⎦ . (5.53)

The PBSS approach realizes a trade-off between the full separation and
the preprocessing approach depicted in Fig. 5.3a and b, respectively:

• It is computationally less demanding than full separation. The matrix

R̂yy(kL) − bdiag1,[2,...,M ](R̂yy(kL) (5.54)

yields 2(M − 1) nonzero blocks while
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R̂yy(kL) − bdiag(R̂yy(kL)) (5.55)

yields M(M − 1) nonzero blocks. Moreover, if we do not adapt certain
cross filters as in (5.53), the number of adaptive filters is reduced from M2

to 3M − 2.
• It offers more flexibility than the preprocessing approach. M − 1 interfer-

ence signals are obtained as output instead of N − 1 for the preprocessing
approach, which may be advantageous for postprocessing of the output
signals. This feature will be exploited in Chap. 9. Also, since the M micro-
phone signals are passed as inputs, PBSS may exploit the entire observed
information.

5.5 Summary and Conclusion

This chapter introduced the main principles of Second-Order Statistics Blind
Source Separation (SOS-BSS). BSS aims at identifying acoustic mixings by
exploiting solely the mutual independence of the source signals. This can be
achieved by exploiting the second-order statistics of nonstationary signals.

The formal framework for convolutive BSS has been introduced by rep-
resenting filters with Sylvester matrices, as in [18]. Within this framework, a
cost function that exploits the second-order statistics and nonstationarity of
the source signals has been derived. The minimization of this cost function
may be performed with the natural gradient. The computational demand of
the resulting Natural Gradient SOS-BSSalgorithm (NG-SOS-BSS) is much
lower than with the standard gradient descent. However, the natural gradient
can be used with square systems only. Extensions of the natural gradient to
nonsquare systems have been discussed.

Unfortunately, the gradient update (5.38) and the natural gradient (5.39)
are valid only in the instantaneous case and the Sylvester structure of W
in the convolutive case has been ignored. For this reason, the derived rules
(5.38), (5.40), and (5.41) cannot be used directly. In Chap. 6, we will explain
how the convolutive nature of the mixing may be taken into account.



6

Implementation Issues in Blind Source
Separation

In Chap. 5, we have derived BSS algorithms using Sylvester matrices. The
Sylvester-based notation allows the separation process to be written very con-
cisely as in (5.14):

y(p) = Wx(p). (5.14)

Paradoxically, the price for the conciseness of the Sylvester-based notation is
its high redundancy. And unfortunately, consistency of this redundant rep-
resentation of the separation system W is not guaranteed by the algorithms
that are given in Chap. 5. For this reason, these algorithms cannot be directly
implemented. In the first part of this chapter, our contribution is to propose a
systematic and rigorous treatment of this redundancy issue, which eventually
provides implementable update rules.

The second part of this chapter (Sects. 6.2 and 6.3) addresses other practi-
cal aspects of signal separation algorithms. Section 6.2 gives a general scheme
for online implementations of BSS algorithms. Experimental results are pre-
sented in Sect. 6.3.

6.1 Natural Gradient in the Convolutive Case

Considering N sources, M microphones, and separation filters of length L,
we need to adjust NML filter coefficients. However, the Sylvester matrix W
in (5.11) has NML(2L − 1) entries. Ignoring the Sylvester structure leads to
the gradient descent (5.38), where the gradient is calculated with respect to
each entry of W independently. Therefore, the adaptation term ΔW = ∂J

∂W
has no Sylvester structure. The Sylvester structure of ΔW may be restored
by selecting NML nonredundant elements in ΔW. Then, one may build
the matrix ΔW in the Sylvester form (5.9) with these reference elements.
For example, choosing the L first elements of the first row of ΔWnm (for
each n,m) fulfills this nonredundancy requirement [18]. Alternatively, one
may force the Sylvester structure by using the Lth column of ΔWnm, as
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Two typical
choices

2L − 1

LΔWnm =

Fig. 6.1. BSS update and redundancy of Sylvester matrices, in which each filter
coefficient is represented L times. To solve the redundancy, it has been
proposed choosing a particular set of reference elements, such as the first
row or the Lth column [20]

shown in Fig. 6.1 [20]. These two choices are related to certain convolution
formulas, as observed by Aichner et al. [5]. At first glance, any other a priori
arbitrary choice of nonredundant subsets of elements (or any combination of
them) seem possible.

In this section, we tackle this problem and derive rigorously convolutive
formulations of the natural gradient for a general cost function J . As a prelimi-
nary, the gradient ∂J

∂W is derived for Sylvester matrices (Sect. 6.1.1). Secondly,
we develop convolutive formulations of the natural gradient; for convenience,
the derivation is carried out using z-transforms, but the resulting formulas
are also expressed in the time domain (Sects. 6.1.2 to 6.1.4). Then, we apply
these results to the BSS cost function in (5.34), and propose an approxima-
tion to obtain efficient update rules (Sect. 6.1.5). At last, their properties are
discussed in Sect. 6.1.6.

6.1.1 Gradient in the Sylvester Subspace

If we consider the set of all NL × M(2L − 1) matrices as an NML(2L − 1)-
dimensional vector space, the subset of the Sylvester matrices may be seen
as an NML-dimensional subspace in this vector space. In the following, this
subspace is called the Sylvester subspace1 and is denoted by S. This subsection
explains how the gradient of a real function

f : S → R (6.1)

is computed in the Sylvester subspace.
Let us denote the (i, j)-entry of the matrix Wnm by wnm

ij for i = 1, . . . , L
and j = 1, . . . , 2L− 1. Expanding the argument W, f(W) may be written as
1 By definition of the Sylvester matrices in (5.9), there is a one-to-one correspon-

dence between the Sylvester subspace and the set of all FIR filters of length L,
which is sometimes called “FIR manifold” [95].
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f(W) = f(w11
11, . . . , w

nm
ij , . . . , wNM

L,2L−1). (6.2)

The function f is defined on the set of all NL × M(2L − 1) matrices and its
gradient is computed in all directions ∂/∂wnm

ij independently. Let us consider a
given filter coefficient wnm,l. This coefficient appears L times in the matrix W.
We denote the indexes of the elements of W that are equal to wnm,l by
{i1j1, . . . , iljl, . . . , iLjL} and the restriction of f to the parameter wnm,l by
f |nm,l. To obtain the gradient with respect to wnm,l, we consider a small
deviation ε around wnm,l, i.e., around wnm

iljl
for all l = 1, . . . , L and write the

first-order development of the function f |nm,l:

f |nm,l(wnm,l + ε) � f(. . . , wnm,l + ε, . . . , wnm,l + ε, . . .), (6.3)

= f(. . . , wnm,l, . . .) +
L∑

k=1

ε
∂f

∂wnm
ikjk

(wnm,l) + o(ε2), (6.4)

= f |nm,l(wnm,l) + ε

L∑
k=1

∂f

∂wnm
ikjk

(wnm,l) + o(ε2). (6.5)

By definition, the derivative ∂f |nm,l/∂wnm,l is so that

f |nm,l(wnm,l + ε) = f |nm,l(wnm,l) + ε
∂f |nm,l

∂wnm,l
(wnm,l) + o(ε2). (6.6)

Combining the definition (6.6) and (6.5) directly yields

∂f |nm,l

∂wnm,l
(wnm,l) =

L∑
k=1

∂f

∂wnm
ikjk

(wnm,l). (6.7)

The restriction of J to the Sylvester subspace S is denoted by J |S . Equation
(6.7) tells us that the gradient ∂J|S

∂W of the cost function J |S is simply generated
in the form of (5.9) from the sums of all redundant terms of ∂J

∂W .

Approximations of ∂J|S
∂W

The computation of ∂J|S
∂W is expensive: At each step, the whole matrix ∂J

∂W
needs to be computed and made Sylvester by summing. For later refer-
ence, we denote by S the operator that transforms a general matrix into
a block Sylvester matrix, i.e., ∂J|S

∂W = S( ∂J
∂W ). This operator is formally de-

fined in (6.9). The choice of a particular subset as reference to impose the
Sylvester constraint may be seen as an approximation of S. If this reference is
taken at the dth row, the approximation of S is denoted by Sd and is defined
in (6.8) for a one-block matrix A = [a]ij . If the reference is taken at the Lth
column, the approximation of S is denoted by SL and is defined in (6.10)
for a one-block matrix A = [a]ij . The matrix operators Sd, S, and SL are
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defined in (6.8), (6.9), and (6.10) for a one-block L × 2L − 1 matrix A with
coefficients aij :

Sd (A) �

⎛⎜⎜⎜⎜⎝
add ad(d+1) . . . ad(d+L−1) 0 . . . 0

0
. . .

...
. . . . . .

...
...

. . .
...

. . . 0
0 . . . 0 add . . . ad(d+L−1)

⎞⎟⎟⎟⎟⎠ , (6.8)

S (A) �
L∑

d=1

Sd (A) , (6.9)

SL (A) �

⎛⎜⎜⎜⎜⎝
aLL a(L−1)L . . . a1L 0 . . . 0

0
. . .

...
. . . . . .

...
...

. . .
...

. . . 0
0 . . . 0 aLL . . . a1L

⎞⎟⎟⎟⎟⎠ . (6.10)

Proportionality principle

Without loss of generality, we can write the nth iteration of the minimiza-
tion as

W(n + 1) = W(n) + ΔW(n), (6.11)

where W(n),ΔW(n) ∈ S. The natural gradient requires that the learning
term ΔW(n) is “proportional” to the current separation matrix W(n) in the
sense that ΔW(n) can be written as

ΔW(n) = D(n) S W(n) (6.12)

for a certain matrix D(n) and for a product S to be defined (see for exam-
ple [22, 56]). To guarantee the consistency of the redundant Sylvester matrices,
this product must maintain ΔW(n) inside of the set S. Unfortunately, this
requirement is too restrictive if we work with the standard matrix product
A S B = AB: For W(n) ∈ S, ΔW(n) = D(n)W(n) belongs to S if and
only if each submatrix Dij(n) of D(n) is of the form Dij(n) = dijI for a
scalar dij ∈ R. (This statement may be easily verified.) Therefore, we leave
the Sylvester matrices for a moment and work with the z-transform represen-
tation of the separation system.

6.1.2 From Matrices to z-Transforms

In this subsection, we introduce the notations and operators that are used to
manipulate z-transforms. We assume that the number of source signals equals
the number of microphones (N = M).
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z-transform spaces

In the following, single matrix subscripts denote a time index (for example
k in Ak), while two subscripts denote a channel index (for example n,m in
Anm). An element A ∈ S is a collection of N × N filters of length L, with
filter weights anm,k, k = 0 . . . , L−1. Therefore, this element A is conveniently
represented with its multichannel z-transform, which is denoted by A and is
defined as

A(z) �
L−1∑
k=0

Akz−k, (6.13)

with Ak �

⎛⎜⎝ a11,k . . . a1M,k

...
. . .

...
aN1,k . . . aNN,k

⎞⎟⎠ ∈ R
N×N (6.14)

for k = 0, . . . , L − 1. We denote the space of the multichannel single-sided
z-transforms by S. In addition, we introduce the space T of the multichannel
two-sided z-transforms, which can be written as2 A(z) =

∑∞
k=−∞ Akz−k. If

the support3 of A is included in [−L + 1, L − 1], then A may be represented
as a matrix A whose submatrices Anm have the Toeplitz structure:

A =

⎡⎢⎣ A11 . . . A1N

...
. . .

...
AN1 . . . ANN

⎤⎥⎦ (6.15)

with Anm =

⎛⎜⎜⎜⎝
anm,0 anm,1 . . . anm,L−1

anm,−1 anm,0 . . . anm,L−2

...
. . . . . .

...
anm,−L+1 anm,−L+2 . . . anm,0

⎞⎟⎟⎟⎠ (6.16)

for n,m = 1, . . . , N . The set of the block Toeplitz matrices of size NL × NL
is denoted by T .

Linear operators

It is useful to introduce the operator [·]S that truncates a z-transform to a
support S ⊂ [−L + 1, L − 1]:[

B
]
S (z) �

∑
k∈S

Bkz−k ∀z ∈ C
∗. (6.17)

2 Two-sided doubly infinite z-transforms are introduced for convenience but in
fact, only finite sums are involved in the following. Therefore, A(z) exists for any
nonzero complex z.

3 The support of A is the set of integers k for which Ak �= 0. Again, note that Ak

(with a single subscript k) is different from Anm (with two subscripts n, m). The
former represents the time index while the latter represents the channel index.
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C
∗ denotes the set of the nonzero complex numbers, i.e., C

∗ = C\{0}.
[
B
]
S (z)

is incorrectly4 but commonly denoted by
[
B(z)

]
S . Any linear matrix operator

f , for example f(·) = tr(·), may be defined on T using the following definition:

f(A)(z) �
∑

k

f
(
Akz−k

)
∀A ∈ T . (6.18)

According to (6.18), the Hermitian conjugate of A ∈ T , which is denoted by
A

H
, is defined as

A
H

(z) �
∑

k

AT
k zk. (6.19)

The binary operator d

We define the binary operator d as(
A d B

)
(z) �

[
zdA(z)B(z)

]
[0,L−1]

(6.20)

for an integer d ∈ [0, L − 1]. This definition is not arbitrary. Consider for
example the case d = 0:(

A 0 B
)
(z) =

[
A(z)B(z)

]
[0,L−1]

. (6.21)

The operation A0 B truncates the convolution AB, which has length 2L−1
in the time domain, such that any terms of order higher than L−1 are omitted.
The truncation assures that d is an internal operation in S. The integer d
allows for manipulation of acausal filters by varying the acausal length in the
convolution. This becomes more obvious when we reformulate d as5(

A d B
)
(z) = z−d

[
zdA(z)zdB(z)

]
[−d,L−1−d]

. (6.22)

Let us describe the operations that are realized in (6.22): zdA(z) shifts A(z)
so that the first d terms are acausal. The product zdA(z)zdB(z) realizes the
convolution where the d first coefficients of A(z) and B(z) are treated as
acausal. The result is truncated on L coefficients and the term z−d shifts the
results back so that d is an internal operation in S.

Scalar product for S and T

Finally, we provide S with the scalar product 〈·, ·〉 associated to the Euclidean
metric:

〈A,B〉 � tr
(
ATB

)
∀A,B ∈ S. (6.23)

4 Strictly speaking, for a given z, B(z) is a complex matrix, not a polynomial.
5 (6.22) is derived from the formula z−d[A(z)][p,q] = [z−dA(z)][p+d,q+d].
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Examination of 〈·, ·〉 with Sylvester matrices reveals that

∀A,B ∈ S 〈A,B〉 = Ltr

(
L−1∑
k=0

A
T

k Bk

)
= Ltr

([
A

H
B
]
0

)
= L

[
tr
(
A

H
B
)]

0
,

(6.24)
where the operator [A]0 returns the constant coefficient of A(z). We define
the scalar product on T as

〈A,B〉 � L
[
tr
(
A

H
B
)]

0
(6.25)

with the immediate property that

∀A,B ∈ S 〈A,B〉 = 〈A,B〉. (6.26)

We now have the necessary tools to derive the natural gradient rigorously.

6.1.3 Self-Closed and Non-Self-Closed Natural Gradients

This subsection derives expressions of the natural gradient in terms of
z-transforms.

Self-closed natural gradient

Let us denote the z-transform of the adaptation term ΔW(n) in (6.11) by6

ΔW. We require that ΔW is “proportional” to W, in the sense that

∃D ∈ S ΔW = D d W. (6.27)

Note that the proportionality term D is taken from the set S, not from T .
Let us consider the derivations in (6.5) again: The first-order development of
J(W(n + 1)) around W(n) with a small deviation ΔW(n) ∈ S is given by

J(W(n + 1)) = J(W(n)) +
〈

∂J

∂W
,ΔW(n)

〉
+ o(‖ΔW(n)‖2). (6.28)

According to the property in (6.26), we can reformulate (6.28) using ΔW as
follows:

J(W(n + 1)) = J(W(n)) +

〈(
∂J

∂W

)
,ΔW

〉
+ o(‖ΔW‖2), (6.29)

where
(

∂J
∂W

)
∈ S is the z-transform of the gradient ∂J|S

∂W . According to (6.29),
the decrement J(W(n + 1)) − J(W(n)) may be written in the first order as〈(

∂J
∂W

)
,ΔW

〉
. Now,

〈(
∂J
∂W

)
,ΔW

〉
can be rewritten using (6.24) as follows:

6 The iteration index n is dropped for the sake of brevity.
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∂J

∂W

)
,ΔW

〉
= Ltr

([(
∂J

∂W

)H

D d W

]
0

)
, (6.30)

= Ltr

([(
∂J

∂W

)H [
zdDW

]
[0,L−1]

]
0

)
, (6.31)

= Ltr

([(
∂J

∂W

)H

zdDW

]
0

)
. (6.32)

From (6.31) and (6.32), we have used the fact that the support of
(

∂J
∂W

)
is [0, L − 1]. Therefore, we have

〈(
∂J
∂W

)
, [A][0,L−1]

〉
=
〈(

∂J
∂W

)
,A
〉

for all

A ∈ T . Next, we recall that tr
(
AB

)
= tr

(
BA

)
for all A,B ∈ T . Applying

this property to (6.32) yields〈(
∂J

∂W

)
,ΔW

〉
= Ltr

⎛⎝⎡⎣(z−d

(
∂J

∂W

)
W

H

)H

D

⎤⎦
0

⎞⎠ , (6.33)

=

〈
z−d

(
∂J

∂W

)
W

H
,D

〉
. (6.34)

Now we use the fact that D has support [0, L−1], and thus we can reformulate
(6.34) as 〈(

∂J

∂W

)
,ΔW

〉
=

〈[
z−d

(
∂J

∂W

)
W

H

]
[0,L−1]

,D

〉
. (6.35)

Let us choose D such that the decrement J(W(n)) − J(W(n + 1)) is maxi-
mized.According to (6.35),Dmust be proportional to−

[
z−d

(
∂J
∂W

)
W

H
]
[0,L−1]

,

that is,

D = −μ

[
z−d

(
∂J

∂W

)
W

H

]
[0,L−1]

(6.36)

for some μ > 0. Substituting D from (6.36) into (6.27) yields

ΔW = −μ

⎡⎣[( ∂J

∂W

)
W

H

]
[−d,L−1−d]

W

⎤⎦
[0,L−1]

. (6.37)

Since D is chosen in the same set S as the separation matrix W, the update
rule in (6.37) is said to be self-closed [95]. The self-closed update (6.37) de-
pends on the delay parameter d. The choice of this parameter will be discussed
in Sect. 6.1.6.
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Non-self-closed natural gradient

Let us weaken the requirement on D in (6.27): We now choose D from the
set T . In this case, we can see from (6.34) that D must be proportional to
z−d

(
∂J
∂W

)
W

H
. Substituting this optimal D into (6.27) yields

ΔW = −μ

[(
∂J

∂W

)
W

H
W

]
[0,L−1]

. (6.38)

We note that
(

∂J
∂W

)
W

H
has support [−L + 1, L− 1] and may be represented

as a Toeplitz matrix. Moreover, the dependence on d vanishes in (6.38). Since
D is chosen from the set T , which is a superset of S, the update rule in (6.38)
is not self-closed.

6.1.4 From z-Transforms Back to the Time Domain

Now, the z-transform representation of the learning rules in (6.37) and (6.38)
raises the question of how these learning rules can be formulated in the time
domain in terms of Sylvester matrices. This section answers that question.

First, we consider the product
(

∂J
∂W

)
W

H
whose computation appears in

both (6.37) and (6.38). The expression of this product in the time domain is
explained in the following remark:

(i) For any (G,W) ∈ S × S, the coefficients of A = GW
H ∈ T are in the

first row and first column of all submatrices of A = GWT, as illustrated
in (6.39) in the case L = 3 and M = N = 1. These submatrices have a
Toeplitz structure as in (6.16) and we have GWT ∈ T .

A = G W
H

⎛⎝ a0 a1 a2

a−1 a0 a1

a−2 a−1 a0

⎞⎠ =

⎛⎝ g0 g1 g2 0 0
0 g0 g1 g2 0
0 0 g0 g1 g2

⎞⎠
⎛⎜⎜⎜⎜⎝

w0 0 0
w1 w0 0
w2 w1 w0

0 w2 w1

0 0 w2

⎞⎟⎟⎟⎟⎠ (6.39)

The matrix G represents the gradient ∂J
∂W and the matrix A represents the

product ∂J
∂WWT.

Second, the computation of (6.37) and (6.38) involves postmultiplying by
W and truncating the result. Postmultiplication and truncation are explained
in remark (ii) for (6.38) and in remark (iii) for (6.37).

(ii) For any (A,W) ∈ T × S such that the support of A is included in
[−L + 1, L − 1], the coefficients of

B = [AW][0,L−1]
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are in the Lth column of all submatrices of B = AW. This is illustrated
in (6.40), where the symbol � represents a nonrelevant matrix entry:

B = [A W ][0,L−1]⎛⎝ � � b2 � �
� � b1 � �
� � b0 � �

⎞⎠ =

⎛⎝ a0 a1 a2

a−1 a0 a1

a−2 a−1 a0

⎞⎠ ⎛⎝w0 w1 w2 0 0
0 w0 w1 w2 0
0 0 w0 w1 w2

⎞⎠ .
(6.40)

Note that B has no Sylvester structure.
(iii) For any (A,W) ∈ T × S and for d ∈ {0, . . . , L}, the coefficients of

D = [[A][−d,L−1−d]W][0,L−1]

are in the (d + 1)th row of all submatrix of D = AW, starting at the
(d + 1)th column. This is illustrated in (6.41) in the case d = 1:

D = [ [A][−d,L−1−d] W ][0,L−1]⎛⎝ � � � � �
� d0 d1 d2 �
� � � � �

⎞⎠ =

⎛⎝a0 a1 a2

0 a0 a1

0 0 a0

⎞⎠ ⎛⎝w0 w1 w2 0 0
0 w0 w1 w2 0
0 0 w0 w1 w2

⎞⎠ .
(6.41)

The matrix B (resp. D) represents the natural gradient ∂J
∂WWTW in the

non-self-closed case (resp. self-closed). The natural gradient is defined relative
to the set S or T where D is chosen. Combining remarks (i), (ii) and (iii)
from above, we can find the natural gradient adaptation weights in the matrix
S( ∂J

∂W )WTW.

• First, consider the self-closed case D ∈ S. There, the natural gradient in
(6.37) additionally depends on 0 ≤ d < L. The natural gradient weights
are obtained in the (d + 1)th row of S( ∂J

∂W )WTW as shown in (6.41) for
d = 1. This is expressed using S and Sd (defined in (6.8)) as follows:

ΔW = −μSd+1

(
S

(
∂J

∂W

)
WTW

)
. (6.42)

• Second, consider the case of the non-self-closed natural gradient, that is
D ∈ T . The filter coefficients in (6.38) are obtained in the Lth column of
S( ∂J

∂W )WTW as shown in (6.40). Therefore, consistency of the update may
be maintained using the operators S and SL defined in (6.9) and (6.10) as
follows:

ΔW = −μSL

(
S

(
∂J

∂W

)
WTW

)
. (6.43)

Now, we can use the results of Sect. 5.3.2, where an expression of ∂J
∂W ×

WT(n)W(n) has been derived.
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6.1.5 Application to NG-SOS-BSS

Approximating the updates in (6.42) and (6.43)

The detour around the z-transform shows how the Sylvester constraint should
be implemented. Unfortunately, the updates we have obtained in (6.42)
and (6.43) involve the computation of the Sylvester-space gradient S( ∂J

∂W ),
which is very demanding since the entire NL × M(2L − 1) matrix ∂J

∂W needs
to be computed and made Sylvester by summing, as mentioned in Sect. 6.1.1.
Moreover, in the case of the Gaussian mutual-information cost function (5.34),
the gradient matrix ∂J

∂W involves the inversion of output correlation matrices
Ryy(kL) which may be badly conditioned especially for large filter length
L and colored input signals (such as speech). To remove this matrix inver-
sion and to benefit from the advantages of the natural gradient explained in
Sect. 5.3.2, we need to alter the updates in (6.42) and (6.43).

For the self-closed update, if we remove S(), then (6.42) becomes

ΔW = −μSd+1

(
∂J

∂W
WTW

)
. (6.44)

In the case of the non-self-closed natural gradient, if we remove S(), then
(6.43) becomes

ΔW = −μSL

(
∂J

∂W
WTW

)
. (6.45)

In both cases, the natural gradient updates (6.44) and (6.45) may be summa-
rized using an approximation Sapprox of S as

ΔW(n) = −μ(n)Sapprox

(
∂J

∂W
WT(n)W(n)

)
, (6.46)

keeping in mind that only the dth row (Sapprox = Sd) or Lth column (Sapprox =
SL) of ΔW(n) has to be computed. It may be difficult to interpret the mean-
ing of these approximations. What we can say is that certain gradient terms
∂J/∂wnm

ij which do not belong to the Sylvester subspace are involved in the
computation of the natural gradient. We note that the two typical choices S1

and SL shown in Fig. 6.1 are obtained as special cases. They were discussed
by Aichner et al. with regard to the self-closedness and to the causality of the
separation system [5].

Implementation of the NG-SOS-BSS updates

In the following we provide a precise implementation of the NG-SOS-BSS
algorithm (5.41). We first need estimates for the output cross correlations
E {yn(p)ym(p − τ)} for n,m = 1, . . . , N and τ = −L + 1, . . . , L − 1. A usual
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(biased) estimation rynym,τ (p) of E {yn(p)ym(p − τ)} is obtained by averaging
over blocks of length L and can be written as

rynym,τ (p) =
L−1−τ∑

κ=0

yn(p − κ)ym(p − κ − τ). (6.47)

The estimator in (6.47) sums up L sample products yn(p−κ)ym(p−κ−τ) for
the delay τ = 0 whereas the estimate consists in one sample product for τ =
L−1, which results in a larger estimation variance. Since the estimates rynym,τ

are all normalized by the same power term ‖yn‖2, the estimates rynym,τ for
a larger delay (τ close to L) are eventually weighted down with respect to
rynym,τ for τ close to 0. We note that other (unbiased) correlation estimators
may be considered, for example, by summing on the same number of sample
products yn(p − κ)ym(p − κ − τ) for each delay τ . The estimator (6.47) has
the advantage to require the current output blocks on L points only.

The output signal power is regularized using a parameter α ∈ [0, 1] as
shown in (7.26) (more details in Sect. 7.1.2). We set

r̃ynyn,0(p) =
{

rynyn,0(p) if rynyn,0(p) > 2α,
1
2 (α + rynyn,0(p)) otherwise. (6.48)

We also need the L×Q projection matrix PL×Q
[l0,l0+L−1] which is defined as

follows:[
PL×Q

[l0,l0+L−1]

]
ij

=
{

1 if j ∈ [l0, l0 + L − 1] and i = j + l0,
0 otherwise. (6.49)

Self-closed update

Let us introduce the L×1 output cross-correlation vectors r(d)
ynyp(p) for n, p =

1, . . . , N :
r(d)
ynyp

(p) =
(
rynyp,−d(p), . . . , rynyp,L−1−d(p)

)T
. (6.50)

Substituting Sd+1 for Sapprox in (6.46) and reworking the NG-SOS-BSS equa-
tion (5.41), we can derive

Δwnm = −μ

K∑
k=1

N∑
p=1
p�=n

PL×2L−1
[d,L+d−1]

(
wpm ∗ r(d)

ynyp
(kL)

)
/r̃ynyn,0(kL). (6.51)

Different values of d yield different update rules.

Non-self-closed update

Let us introduce the 2L − 1 × 1 output cross-correlation vectors rynyp
(p) for

n, p = 1, . . . , N :
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rynyp
(p) =

(
rynyp,−L+1(p), . . . , rynyp,L−1(p)

)T
. (6.52)

Substituting SL for Sapprox in (6.46) and reworking the NG-SOS-BSS equa-
tion (5.41), we can derive

Δwnm = −μ

K∑
k=1

N∑
p=1
p�=n

PL×3L−2
[L−1,2L−2]

(
wpm ∗ rynyp

(kL)
)
/r̃ynyn,0(kL). (6.53)

Partial BSS

The PBSS update (5.52) can be implemented similarly. In the case of M = 4,
N = 2 for the self-closed update, this yields:

Δwnm = −μ
∑K

k=1

∑
p∈Kn

PL×2L−1
[d,L+d−1]

(
wpm ∗ r(d)

ynyp(kL)
)

/r̃ynyn,0(kL)

with K1 = {2, 3, 4} and Kn = {1} for n = 2, 3, 4.

(6.54)
The non-self-closed updates are given by:

Δwnm = −μ
K∑

k=1

∑
p∈Kn

PL×3L−2
[L−1,2L−2]

(
wpm ∗ rynyp

(kL)
)
/r̃ynyn,0(kL). (6.55)

As mentioned in Sect. 5.4, we consider not adapting the filters wnm for
n,m > 1 and n �= m. We could experimentally observe that this does not
impair the separation performance, while reducing the amount of computa-
tion significantly.

The pseudocode for the self-closed BSS and PBSS algorithms is summa-
rized in Table 6.1. The non-self-closed algorithms are implemented similarly,
replacing r(d)

ynyp(p) with rynyp
(p) in (6.52) at line 5 and using (6.53) and (6.55)

at lines 9 and 10, respectively.

6.1.6 Discussion: Which Natural Gradient is Best?

We have shown in Sect. 6.1.5 how the natural gradient can be implemented
in the time domain with filters of finite length L. Now, we are faced with the
choice of a particular type of natural gradient (self-closed or non-self-closed)
and of the parameter d ∈ {0, . . . , L−1}. In this section, we attempt to discuss
the implications of this choice.

Self-closedness

Constraining the term D in (6.27) seems more restrictive in the set S than in
the larger set T . Consequently, one could expect better performance with the
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Table 6.1. Pseudocode for the self-closed batch algorithms BSS and PBSS in (6.51)
and in (6.54). The non-self-closed algorithms are implemented similarly,

replacing r
(d)
ynyp(p) with rynyp(p) in (6.52) at line 5 and using (6.53)

and (6.55) at lines 9 and 10, respectively

Input

x(kL) for k = 1, . . . , K
Note: a higher frame rate can be used with x(kβL) for k = 1, . . . , K,
choosing β so that βL ∈ {1, . . . , L}.
Parameters

d ∈ {0, . . . , L − 1} acausal filter length (delay)
μ step-size
α regularization parameter
Niter number of iterations
wnm(0) for n, m = 1, . . . , M initial separation filters

define I = {(m, m)|m = 1, . . . , M}

define J =

{
{(1, 2), (2, 1)} for BSS and M = 2
{(1, 2), (1, 3), (1, 4), (2, 1), (3, 1), (4, 1)} for PBSS and M = 4

Computations

1. for niter = 1, . . . , Niter

2. for k = 1, . . . , K
3. compute the output vector (using convolutions):

y(kL) = W(niter − 1)x(kL)
4. for (n, m) ∈ J :

5. compute the vector r
(d)
ynym(kL) according to (6.47) and (6.50)

6. compute the power rynyn,0(kL) according to (6.47)
7. compute the regularized power r̃ynyn,0(p) according to (6.48)
8. for (n, m) ∈ J ∪ I :
9. in the case of BSS, compute Δwnm according to (6.51):

Δwnm = −μ

K∑
k=1

N∑
p=1
p�=n

PL×2L−1
[d,L+d−1]

(
wpm(niter − 1) ∗ r(d)

ynyp
(kL)

)
/r̃ynyn,0(kL)

10. in the case of PBSS, compute Δwnm according to (6.54):

Δwnm = −μ

K∑
k=1

∑
p∈Kn

PL×2L−1
[d,L+d−1]

(
wpm(niter − 1) ∗ r(d)

ynyp
(kL)

)
/r̃ynyn,0(kL)

11. wmn(niter) = wmn(niter − 1) + Δwnm

Output

W(Niter) separation system
y(kL) for k = 1, . . . , K output signals

non-self-closed update in (6.38) than with the self-closed update in (6.37). In
the literature on second-order statistics BSS algorithms for acoustic mixtures,
it is rarely clear whether the proposed updates are self-closed or not, hence the
difficulty of concluding anything from published works. Furthermore, because
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of the lack of knowledge on the convergence behavior of BSS algorithms, it is
not possible to make a theoretical statement about whether or not the self-
closedness improves performance. For this reason, we will compare self-closed
and non-self-closed updates experimentally in Sect. 6.3.

Special case d = 0

Since d represents the number of coefficients which are treated as acausal in
the convolution d, we call d the acausal length of the separation system. For
d = 0, the separation system adapted by (6.56) is called a “causal” system
while it is called “acausal” for d > 0. (Of course, the individual filters wnm

are still causal, that is, wnm,l = 0 for all l < 0.)
Let us denote the separation system W(z) at iteration step n by W(z, n).

If we set d = 0 in (6.27), the adaptation can be written in the z-domain as

W(z, n + 1) = W(z, n) + D(z, n) 0 W(z, n), (6.56)

where D(z, n) ∈ S. The set S defines a group with the operation 0 [95].
This implies several properties for the self-closed adaptation rule. (It should
be noted that the mixing/separation systems also have a group structure in
the two limit cases L = 1 and L = +∞ [6, 25].)

The equivariance property guarantees a uniform convergence behavior for
any mixing matrix. Just as we considered the z-transform of the separa-
tion matrix W(z, n), we can consider the z-transform of the mixing ma-
trix H(z). The global system, truncated to its first L taps, is given by
C(z, n) = W(z, n) 0 H(z). Since 0 is associative, we have

ΔW(z, n) 0 H(z), =
(
D(z, n) 0 W(z, n)

)
0 H(z), (6.57)

= D(z, n) 0

(
W(z, n) 0 H(z)

)
, (6.58)

= D(z, n) 0 C(z, n). (6.59)

Therefore, postmultiplying (6.56) by H yields

C(z, n + 1) = C(z, n) + D(z, n) 0 C(z, n). (6.60)

Note that D(z, n) depends only on the output signals. Therefore, the trajec-
tory of the global system C(z, n) in (6.60) depends only on the initial point
C(z, 0) and on the realization of the source signals. This indicates that the
convergence of the algorithm depends on a particular mixing matrix H(z)
only through the initial C(z, 0). Note that for d > 0, the operation d is not
associative: The equivariance property holds only for the self-closed update
and d = 0.

Another property of 0 is that the adaptation of any given separation filter
does not interfere with the other filters.7 To illustrate this property, let us con-
sider the two-source two-sensor case (M = N = 2). As can be seen from (6.50)
7 It may be noticed that the SAD algorithm relies on this property.
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and (6.51) for d = 0, the computation of Δw1m for m = 1, 2 involves the out-
put cross correlations E {y1(p)y2(p − τ)} only for positive delays τ ≥ 0. Simi-
larly, the computation of Δw2m includes only E {y1(p)y2(p − τ)} for negative
delays τ ≤ 0. Therefore, w1m and w2m for m = 1, 2 are driven by different
cross-correlation terms, except the zero-lag correlation E {y1(p)y2(p)} that is
involved in both Δw1m and Δw2m, for m = 1, 2. By contrast, if d = L/2 or
with the non-self-closed update (6.53), Δw1m and Δw2m,m = 1, 2 have L
output cross-correlation terms in common.

Unfortunately, the utilization of self-closed update 0 also has some re-
strictions. It can be shown that if D(z, n) ∈ S, then according to [95] we
have [

W(z, n)
]
0

= 0 ⇔
[
D(z, n) 0 W(z, n)

]
0

= 0. (6.61)

Therefore, it is necessary to initialize the separation system W(z, n) with[
W(z, 0)

]
0
�= 0 in (6.56), since otherwise the first tap of the separation filters

would remain zero.8 In practice, we initialize with unit responses, W(z, 0) = I.
The update (6.56) is inappropriate if we want to initialize the separation
system with a delay, for example with W(z, 0) = Iz−L/2. Such an initialization
may be useful for example in the scenario depicted in Fig. 6.2b, where the
sources are placed on the same side of the microphone median plane. By
contrast, update (6.56) is appropriate when the sources are placed on both
sides of the median plane (Fig. 6.2a) [5]. In this scenario, the input signals
do not need to be delayed. In other words, a causal separation system can
perform the separation.

Note that in the two-source two-sensor scenario depicted in Fig. 6.2a, the
source signals s1(p) and s2(p) cannot be canceled at the outputs y1(p) and
y2(p), respectively, if the filters w11 and w22 do not delay the input signals
x1(p) and x2(p). Therefore, the update (6.56) neutralizes the permutation
ambiguity. Conversely for d = L−1, the source signals s1(p) and s2(p) cannot
be canceled at the outputs y2(p) and y1(p), respectively. In this case, the
updates (6.53) and (6.51) should converge to a permuted separating system.

How does the causality of the separation system affect the convergence of
the separation algorithm? A theoretical answer to this question does not yet
exist. Nevertheless, the influence of causality in source separation has been
reported in various contexts [34, 79]. For example, Douglas et al. showed in a
simplified analysis that separation algorithms exhibit worse performance for
acausal separation systems (i.e., for d > 0) [34].

8 According to (6.61), if the first tap of the initial separation system is nonzero,
then we have

[
W(z, n)

]
0
�= 0 for all n > 0. In a number of simulations, we could

observe that the initialization W(z, 0) = I yields diagonal filters that are not
only nonzero but also minimum phased. Unfortunately, we have no explanation
to offer for this observation, that may be limited to the simulation setup and may
have no generality.
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Fig. 6.2. (a) The sources are apart from the microphones median plan and a causal
separation system is sufficient. (b) The sources are in the same half-plane
and an acausal separation system is necessary

6.2 Online Adaptation

The framework presented so far provides offline NG-SOS-BSS algorithms: It
is assumed that the observed input x(p) is available as a batch of T samples
p = 1, . . . , T . In reality, we have to cope with a continuously growing number
of samples x(1),x(2), . . ., since new observations keep on coming during the
course of the iterations. Moreover, the source signals spectra are continuously
changing. The separation algorithm should be able to track these changes
online.

6.2.1 Block-Wise Batch Adaptation

It is not difficult to transform offline algorithms into online algorithms with
block-wise batch processing. After a block of βL new samples have been re-
ceived, we store them in a batch buffer B that contains a certain number of last
input samples. This batch is processed offline for, say, Niter iterations, until
new samples are processed. This general approach is summarized in Table 6.2.
Several variations on this scheme exist, see, e.g., [4, 73].

Different parameters need to be defined by the user for the implementation
of a block-wise batch algorithm:
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Table 6.2. Block-wise batch processing scheme with parameters K, Niter ≥ 1 and
β so that 1 ≤ βL ≤ (K + 1)L − 1. In W(n, p), the first argument n
denotes the iteration index and the second argument p denotes the time
index

0. Initialize W(0, 0), set the frame counter to l = 1.

1. Acquire βL new samples xm(p), m = 1, . . . , M .
Store them in the batch buffer B and discard the oldest βL in-
put samples from B so that B = {xm(τ), τ = p − (K − 1)L +
2, . . . , p, for m = 1, . . . , M}.

2. Set the last computed W(Niter, (l− 1)βL) as initial separation sys-
tem: W(0, lβL) = W(Niter, (l − 1)βL).
Run a batch BSS algorithm on B as described in Table 6.1 with
Niter iterations. This provides W(Niter, lβL).

3. The output samples might have been delivered at step 2.
(optional) Otherwise, compute the output samples that correspond to the

last βL input samples. If β = 1, this is simply y(lL) =
W(Niter, lL)x(lL).

4. Increment the frame counter, l ← l + 1. Repeat from step 1.

• The number of blocks K in the batch B is required. K is the number of
output correlation matrices Ryy(kL), k = 1, . . . ,K that should be jointly
diagonalized by the batch algorithm. K should increase the speed of con-
vergence. It also increases the computational cost and the memory require-
ment.

• The maximal number of iterations Niter needs to be set. Niter influences
the speed of convergence and the computational cost.

• The parameter β is set so that βL is an integer value. βL controls the
number of new input samples that are acquired before running the batch
algorithm on B. Since the number of new input samples must not be larger
than the buffer size, β is chosen so that 1 ≤ βL ≤ (K + 1)L − 1. A small
value of β entails better tracking capability, higher computational cost
and lower memory requirement. The number of batch runs per second is
fs/βL.

The influence that these parameters may have on the performance is examined
experimentally in Sect. 8.4.

6.2.2 Sample-Wise Adaptation

By setting βL = 1, the block-wise batch approach in Sect. 6.2.1 may be
performed for each new arriving input sample. This increases the amount of
computation9 significantly. Fortunately for N = 2 and if we do not adapt the

9 Using the results of Sect. 8.2.2, one can estimate that the number of real opera-
tions (multiplications and additions) for a sample-by-sample-updated four-input
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diagonal filters, the block-wise approach may be approximated so that sample-
by-sample updating and rapid tracking become feasible. The following derives
this sample-by-sample version.

Let us start with the block-wise batch approach applied to the NG-SOS-
BSS generic formula (5.41) with the parameters βL = K = Niter = 1:

W(p) = W(p − 1) − μdiag−1 (Ryy(p)) boff (Ryy(p)) W(p). (6.62)

To estimate the output correlation matrix Ryy(p), the output vector y(p) =
W(p)x(p) is evaluated, i.e., the outputs on the past L samples yn(p − L +
1), . . . , yn(p) for n = 1, . . . , N are evaluated. Note that among these L output
samples, L− 1 have already been evaluated from the previous iteration using
W(p− 1), namely yn(p−L + 1), . . . , yn(p− 1). Assuming that the separation
system W(p) changes slowly, we only need to compute the last sample yn(p),
for n = 1, . . . , N . Since y(p) contains L − 1 past samples, the underlying
approximation is in fact

W(p) ≈ W(p − 1) ≈ W(p − 2) ≈ . . . ≈ W(p − L + 1). (6.63)

This reduces the computational complexity to O(L), whereas the computa-
tion of y(p) with implementation of the convolution in the DFT-domain has
complexity O(L log2 L) (see Sect. 8.2).

Next, we consider the estimation of Ryy(p) itself. The simplest estimation
of boff (Ryy(p)) is obtained with the instantaneous estimate

boff
(
R̂yy(p)

)
= boff

(
y(p)yT(p)

)
. (6.64)

The straightforward implementation of the product boff
(
y(p)yT(p)

)
has a

complexity of O(L2). Fortunately, since only the last sample yn(p) is new in
the output vector yn(p), we can exploit the fact that

R̂yiyj
(p) =

⎡⎢⎣ yi(p)yj(p) . . . yi(p)yj(p − L + 1)
... R̂[L−1×L−1]

yiyj (p − 1)
yi(p − L + 1)yj(p)

⎤⎥⎦ .

(6.65)
R̂[L−1×L−1]

yiyj (p − 1) is constructed from R̂yiyj
(p − 1) as follows: For an L × L

matrix A, B = A[L1×L2] is the L1×L2 matrix that contains the same elements
as A in its first L1 rows and first L2 columns, i.e.,

[B]ij = [A]ij ∀i = 1, . . . , L1, j = 1, . . . , L2. (6.66)

two-output separation system with fs = 16 kHz sampling frequency, L = 256 and
K = Niter = 1 is about 15,000 MFLOPS (million of floating point operation per
second). This amount of computation may be realized by high-end digital signal
processors (DSP), however, for current consumer-device DSPs, the performance
typically ranges from 100 to 1,000 MFLOPS (see for example the specifications
of the TMS320C54x DSP family, available on www.ti.com).
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Consequently, the instantaneous estimation of boff (Ryy(p)) can be performed
with complexity O(L).

Finally, we have to implement the convolutions represented by the ma-
trix product boff (Ryy(p))W(p). A straightforward realization using the
fast-Fourier transform (FFT) has a complexity of O(L log2 L). Fortunately,
there is a way to avoid this operation in the case of two sources (N = 2).
Let us additionally constrain the diagonal filters to unit responses, that is,
wnn = δd, n = 1, 2. Only the filters w12 and w21 are adapted. We can easily
verify that the product boff (Ryy(p)) W(p) involves convolutions of the out-
put cross correlations with unit filters only. These convolutions do not need
to be carried out. Estimating the output power by rnn,0(p) = ‖yn(p)‖2 and
using the regularization with parameter α ∈ [0, 1] yields

wnm(p + 1) = wnm(p) − μ
yn(p − d)ym(p)

r̃ynyn,0(p)
, (6.67)

for (n,m) ∈ {(2, 1), (2, 1)} and with

r̃ynyn,0(p) =

{
‖yn(p)‖2 if ‖yn(p)‖2 > 2α,
1
2

(
‖yn(p)‖2 + α

)
otherwise.

Interestingly, the constraint wnn = δd, n = 1, 2 not only decreases the number
of filters wnn′ to be adapted from 4 to 2 but also reduces the complexity from
O(L log2 L) to O(L). That is, the complexity of the sample-wise adapted NG-
SOS-BSS algorithm in (6.67) is the same as that of the NLMS algorithm (4.7).
Note that this does not hold for N > 2. However, the sample-wise adapted
NG-SOS-BSS algorithm in (6.67) may be extended to partial BSS (PBSS). In
the case N = 2, the sample-wise online algorithm is

wnm(p + 1) = wnm(p) − μ
yn(p − d)ym(p)

r̃ynyn,0(p)
, (6.68)

for (n,m) ∈ {(2, 1), . . . , (M, 1), (1, 2), . . . , (1,M)}

with r̃ynyn,0(p) =
{
‖yn(p)‖2 if ‖yn(p)‖2 > 2α,
1
2

(
‖yn(p)‖2 + α

)
otherwise.

6.3 Experimental Results

This section investigates the performance of NG-SOS-BSS algorithms experi-
mentally. It was not possible to determine theoretically whether or not the self-
closed updates perform better than their non-self-closed counterparts. Based
on experimental results, this section decides which updates will be used in the
following of this book.
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Experimental conditions

The experiments are conducted with real recordings performed in a car cabin.
The experimental setup is described in Appendix A. The speech source signals
are emitted from the driver and codriver positions. For results in batch mode,
the recordings are carried out using artificial heads. Hence, the mixing sys-
tem may be reasonably assumed time-invariant. The 10-s driver and codriver
signals consist of male and female voices, respectively.

Parameter settings

The adaptation parameters α and μ were optimized for maximum conver-
gence speed and stability. The artificial head recordings have been used to
tune the parameters μ and α for the online algorithms, which we finally set to
μ = α = 0.002 for all online NG-SOS-BSS algorithms. It should be mentioned
that setting μ larger than 0.002 may lead to larger SIR improvement. However,
we observed that this leads to stability problems for certain source signals. We
have noticed that the choice of the parameters μ and α may be sensitive. When
one or several sources are silent, the output power may become very small.
In this case, in spite of the regularization scheme (7.26), the adaptation may
become unstable. (Recollect that (7.26) was derived from an analysis of a sim-
pler instantaneous decorrelation algorithm.) More robustness may be obtained
by choosing a larger α, at the price of a lower performance. Consequently, we
selected μ = α = 0.002 as a trade-off between SIR improvement and stabil-
ity. The online algorithms have been tested on the same speech signals as in
Sect. 4.5, which are recordings of real speakers. Optionally, background noise
has been added to these recordings, as in Sect. 4.5. In all experiments, the
filter length is set to L = 256 and the sampling frequency is fs = 16 kHz. The
filters were initialized with W(z, 0) = Iz−d, that is,

wnm = δd. (6.69)

The parameter settings are summarized in Table 6.4 for the four-element
compact array mounted in the rear-view mirror and in Table 6.3 for the two-
element distributed array mounted on the car ceiling.

Performance measure

The separation performance is quantified by the SIR improvement as defined
in Sects. 2.4.1 and 2.4.2.

6.3.1 Experiments with the Four-Element Compact Array
Mounted in the Rear-View Mirror

The four-element compact array mounted in the rear-view mirror is depicted
in Fig. A.2.
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Table 6.3. Online NG-SOS-BSS algorithm short reference table with the parameter
settings for the two-element distributed array mounted on the car ceiling
shown in Fig. A.3. The filter length is set to L = 256 at fs = 16 kHz

block-wise sample-wise

structure MIMO (see Fig. 5.1b) MIMO (see Fig. 5.1c)
unit diagonal filters

section 6.2.1 6.2.2
equation (6.51) and (6.53) (6.67)
step-size μ = 0.002

α = 0.002
other parameters K = β = Niter = 1

Table 6.4. Online NG-SOS-BSS algorithm short reference table with the parameter
settings for the four-element compact array mounted in the rear-view
mirror shown in Fig. A.2. The filter length is set to L = 256 at fs =
16 kHz

block-wise sample-wise

structure MIMO as in (5.53) (see Fig. 5.3c)
unit diagonal filters

section 6.2.1 6.2.2
equation (6.54) and (6.55) (6.68)
step-size μ = 0.002

α = 0.002
other parameters K = β = Niter = 1

Batch Algorithms

The question of the self-closedness could not be answered theoretically. For
this reason, we will experimentally compare the self-closed with the non-self-
closed updates using batch algorithms.

Choice of d

A first parameter of interest is the acausal length d of the separation filters,
on which the self-closed update depends. To evaluate how the performance
depends on d, we evaluate the SIR improvement after 100 iterations of the
update in (6.51). Figure 6.3 shows the results. In the case of the four-element
compact array mounted in the rear-view mirror, it can be seen that the per-
formance slowly increases until it attains its maximum around d = 50. This
indicates that, even though the source microphone does not require an acausal
separation system, the best separation performance is obtained if we allow the
separation system to have an acausal part. This may be explained by the fact
that, as in the case of LCMV beamformers, the separation system identifies
ratios of acoustic transfer functions, which have a significant acausal part [50].



6.3 Experimental Results 103

0

5

 10

 15

 20

0  25  50  75  100  125  150  175  200  225  250

S
IR

im
p(

d)
 [d

B
]

d

compact array
distributed array

Fig. 6.3. Performance of the self-closed block-wise update as a function of d. For
each value of d = 0, . . . , L − 1, the SIR improvement after n = 100 itera-
tions is shown

For d ≥ L/2, that is when the acausal part is longer than the causal part of
the separation system, the performance significantly decreases. As indicated
in Sect. 6.1.6, updates (6.51) and (6.53) should converge to a permuted sepa-
rating system for a separation system with a long acausal part. This is rather
ineffective with the initial separation system (6.69), since the input SIRs are
greater than zero (about 2 dB). For our next experiments, we retain d = 0
and d = 50.

Comparison of self-closed and non-self-closed updates

We now apply PBSS algorithms (6.54) and (6.55) as described in Table 6.1.
For the sake of comparison, the results obtained using the two outermost mi-
crophones are also given. With speech signals, the wavelength of interest is
large relative to the aperture of the four-element compact array mounted in
the rear-view mirror. Hence, selecting the two outermost microphones may be
considered as a rough preprocessing to reduce the dimension of the observed
signals from M = 4 to M = 2 while preserving the aperture of the microphone
array. In this case, the adaptation is performed using the NG-SOS-BSS al-
gorithms (6.51) and (6.53). The results are shown in Fig. 6.4. The following
comments can be made.

• The self-closed update leads to the best results. The non-self-closed update
rule may lead to an early saturation and seems less stable. As observed
in [5], we find that the self-closed update rules are more robust. This might
be expected from the “good” properties of the self-closed update in the
case d = 0 given in Sect. 6.1.6.

• The performance near convergence is slightly better with an acausal length
of d = 50 taps, even if the source-microphone arrangement does not require
an acausal length, as depicted in Fig. 6.2a. This coincides with the results
shown in Fig. 6.3.

• We obtain the best performance using M = 4 microphones. In terms of
performance near convergence, the additional microphones bring about
4 dB improvement relative to the performance for the two outermost mi-
crophones.
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Fig. 6.4. Comparison of batch NG-SOS-BSS algorithms. Upper plot : SIR improve-
ment for M = 4 microphones using PBSS algorithms (6.54) and (6.55).
Lower plot : SIR improvement for the M = 2 outermost microphones and
BSS algorithms (6.51) and (6.53)

Online algorithms

This section examines the performance of online NG-SOS-BSS algorithms.
Only the self-closed update algorithm (6.54) with M = 4 microphones is
considered, because it leads to the best results in batch mode. The adaptation
is performed block-wise as described in Table 6.2 with nonoverlapping blocks
(K = β = Niter = 1). The sample-wise algorithm (6.68) is also considered.

The results are given in terms of interference and target signal level
reductions in Fig. 6.5. The following comments may be made:
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mounted in the rear-view mirror. Block-wise algorithms are based on the
self-closed updates (6.54) with K = β = Niter = 1. The sample-wise
update is given by (6.68)
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Fig. 6.6. Reduction of the desired signal level as a function of the frequency with
the four-element compact array mounted in the rear-view mirror (no back-
ground noise)

• The performance of the two block-wise batch NG-SOS-BSS algorithms
considered here are very similar. They provide a peak reduction of the
codriver signal level of about 15 dB.

• The best peak performance is attained by the sample-wise algorithm (6.68)
because of its tracking capability. However, it seems to reduce the target
signal level more than its block-wise counterpart.

The reduction of the desired signal level as a function of the frequency
is illustrated in Fig. 6.6. The sample-wise adapted algorithm seems to
cause a slightly higher distortion of the desired signal at low frequencies
(<2, 000 Hz). Compared to the distortion caused by the DTD-NLMS al-
gorithm (see Fig. 4.8), the distortion caused by NG-SOS-BSS algorithms
seems slightly higher. However, the distortion caused by NG-SOS-BSS algo-
rithms is significantly smaller than the distortion caused by ILMS algorithms,
in particular at frequencies f < 1, 000 Hz where speech signals have most



106 6 Implementation Issues in Blind Source Separation

0 1 2 3 4 5 6 7 8 9 10
0

10

20

time [sec]

S
R

, I
R

 [d
B

] SR
IR

Fig. 6.7. Online PBSS with road noise recorded at 100 km/h−1, the signal-to-
noise ratio at the microphones amounts to 10–15 dB. The adaptation is
performed using the self-closed block-wise algorithm (6.54) and d = 0,
K = β = Niter = 1

energy. These results have also been confirmed through subjective listening
tests.

It can be seen in Fig. 6.7 that the self-closed NG-SOS-BSS algorithm
also works in noisy conditions. However, the presence of background noise
expectedly degrades the interferer signal suppression.

6.3.2 Experiments with the Two-Element Distributed Array
Mounted on the Car Ceiling

This section presents the separation results that are obtained with the two-
element distributed array mounted on the car ceiling, which is depicted in
Fig. A.3. We used the same source signals as for the four-element compact
array mounted in the rear-view mirror.

Batch Algorithms

As in Sect. 6.3.1, we apply batch algorithms to compare the self-closed algo-
rithm (6.51) with the non-self-closed algorithm (6.53). Figure 6.8 shows the
results. They may be compared to those obtained in Sect. 6.3.1 with the two
outermost microphones (Fig. 6.4, lower plot). As can be seen in Fig. 6.8, the
initial convergence is slightly faster with the two-element distributed array
mounted on the car ceiling. However, after n = 100 iterations, the SIR im-
provement attains 12 dB for both setups. Again, the self-closed update leads
to the best results.

Online Algorithms

The performance of block-wise and sample-wise online NG-SOS-BSS algo-
rithms is examined. For the block-wise online algorithms, the same settings
as in Sect. 6.3.1 are used (K = β = Niter = 1). The results are shown in
Fig. 6.9. The following comments can be made.

• In terms of SIR improvement, the online separation performance attains
20 dB. This is comparable to the results obtained with the four micro-
phones of the four-element compact array mounted in the rear-view mirror.
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Niter = 1. The sample-wise algorithm is given by (6.67). In both cases,
the delay d is set to d = 0

• The sample-by-sample algorithm (6.67) convergences significantly faster
than the block-online algorithm. Its peak performance is also superior.
Both algorithms do not cause any noticeable reduction of the target signal
level.
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Fig. 6.11. Reduction of the desired signal level as a function of frequency for NG-
SOS-BSS algorithms with the distributed array (no background noise)

We applied the sample-wise algorithm to noisy microphone recordings. The
result, given in Fig. 6.10, shows that the NG-SOS-BSS algorithm (6.67) also
works in noisy conditions with this microphone setup.

The reduction of the desired signal level as a function of the frequency is
illustrated in Fig. 6.11. The block-wise and sample-wise algorithms seem to
cause little distortion of the desired signal. The distortion caused by NG-SOS-
BSS algorithms seems similar to that of the DTD-NLMS algorithm, as may
be seen by comparing Fig. 6.11 with Fig. 4.10.

6.3.3 Comparison with Other BSS Algorithms in the Frequency
Domain

This section compares the time-domain online NG-SOS-BSS block-wise batch
algorithm with other widely used online frequency-domain BSS algorithms.
First, we present briefly how BSS can be applied in the frequency domain. (For
more details on the frequency-domain BSS algorithms, we refer to [73, 76].)
Starting with (5.14) on page 67,

y(p) = Wx(p), (5.14)

we derive the corresponding relationship in the frequency domain by applying
the short-time discrete Fourier transform (STFT):

Y(f)(k) = W(f)X(f)(k). (6.70)
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Table 6.5. Parameters for the transformation to frequency domain

parameter value

window Hanning
frame length 512
frame shift 256
FFT length 1024

Here, the complex vectors Y(f)(k) and X(f)(k) contain the fth frequency
bin of the signals y(p) and x(p) in the kth time frame. The vectors Y(f)(k)
and X(f)(k), and the matrix W(f) have sizes N × 1, M × 1, and N × M ,
respectively. The analysis parameters are summarized in Table 6.5.

Let us point out that (5.14) and (6.70) are not equivalent, since the latter
implies circular convolution. In (6.70), W(f) separates the sources for each
frequency bin f in an instantaneous manner. This implies a narrowband signal
model where the mixing process can be written in the frequency domain as

X(f)(k) = H(f)S(f)(k), (6.71)

by applying the short-time discrete Fourier transform to (5.15). In (6.71),
it is assumed that the mixing process is performed in each frequency bin
independently.

We compare the time-domain BSS algorithm in (6.51) with two widely used
frequency-domain algorithms, the first by Parra et al. [76] and the second by
Mukai et al. [73]. The first algorithm, similar to the time-domain algorithm,
is based on second-order statistics. The separation matrix W(f) is adjusted
to minimize the least-square cost function

JBSS,LS �
∑

k

‖R(f)
yy (k) − diag

(
R(f)

yy (k)
)
‖2. (6.72)

The N ×N matrix R(f)
yy denotes the output cross correlation at the frequency

f and the norm is defined as ‖R‖2 = tr
(
RHR

)
. The cost function JBSS,LS

is a diagonalization criterion on the output correlation matrix and is in this
respect similar to the cost function in (5.34). This block-wise batch algorithm
is performed on the current data block (K = 1) with one iteration (Niter = 1).

The second frequency-domain algorithm exploits the higher-order statistics
(HOS). Higher-order statistics are more difficult to estimate than the second-
order statistics. Hence, a large batch size is used (K = 20). The separation
matrix W(f) is adjusted iteratively using the Infomax algorithm [13] and the
natural gradient, as in [9]. The update may be written as10

ΔW = −μ
(
Ê
{
Φ(Y)YH

}
− diag Ê

{
Φ(Y)YH

})
W, (6.73)

10 For brevity, we omit the frequency argument f and the time frame argument k.
The operator Ê {} denotes the averaging over K time frames.
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where Φ is a nonlinear function defined as Φ(Y) = tan h(g|Y|) exp (−iϕ(Y))
and ϕ(Y) is the phase of Y. After a batch of βL = 20L new samples has been
received, the algorithm (6.73) runs with Niter = 4 iterations. The parameters β
and Niter are set so that the algorithms in question require similar amounts of
computation. For experiments with the four-element compact array mounted
in the rear-view mirror, this natural gradient algorithm was applied with
PBSS. To this end, we simply replace the operation diag(·) by diag1,[2,3,4](·)
in (6.73), as described in Sect. 5.4.

Frequency-domain BSS has the drawback that different permutations may
occur in different frequency bands in an inconsistent manner. This problem
is solved by initializing the separation system with (6.69) for d = 0 so that
the input signals are not delayed. This removes the permutation ambiguity
at the beginning of the adaptation, as described in Sect. 6.1.6. Moreover, we
constrain the separation filters to length L = 256 in the time domain, i.e., a
fourth of the transformation length [20]. This constraint has a smoothing
effect on the separation filters, which helps to prevent the permutation [75]. It
also avoids circularity effects of the convolution in the frequency domain. In
our experiments, these countermeasures were sufficient to avoid permutation
inconsistencies.

It is not always easy to compare different adaptive algorithms fairly. In par-
ticular, the step-size parameter may significantly influence the separation per-
formance. To obtain an objective performance measure, the quantities Q[0,3]

and Q[3,10] defined in Table 2.1 are considered. The value Q[0,3] is used as an
approximate measure of the speed of convergence during the initial conver-
gence phase. Q[3,10] gives an approximate measure of the performance after
the initial convergence.

By adjusting the step-size parameter for each algorithm in question, their
speed of convergence may be made approximately equal. In other words,
we use Q[0,3] as a reference to calibrate the step-sizes. Then, the perfor-
mance indexes Q[3,10] may be comparable to each other. (This approach is
not the only possible one. For completeness, it would be fair for example to
also tune the step-size parameter for each algorithm to a certain final Q[3,10]

and then measure the initial convergence Q[0,3].)
The results of the three algorithms are compared in Table 6.6. In the case of

the time-domain NG-SOS-BSS algorithm, the self-closed update is employed

Table 6.6. Comparison of the presented time-domain NG-SOS-BSS algorithm with
frequency-domain BSS algorithms (FD frequency domain, HOS high-
order-statistics, SOS second-order-statistics)

algorithm compact array distributed array

Q[0,3] (dB) Q[3,10] (dB) Qd
[0,3] (dB) Qd

[3,10] (dB)

NG-SOS-BSS (6.54),(6.51) 4.0 10.2 6.7 11.4
FD-SOS [76] 4.1 6.9 6.7 8.6
FD-HOS [73] 4.1 7.8 6.8 10.0
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with d = 0 and the block-wise adaptation parameters K = β = Niter = 1. We
can see that the performance Q[3,10] is limited for the frequency-domain algo-
rithms. This may be explained by the narrowband assumption in the mixing
model (6.71). The model (6.71) is valid for narrowband source signals, which
is unrealistic for speech sources and reduces the performance. The FD-SOS
algorithm has the worst performance due to the inferior statistical efficiency
of the cost function JBSS,LS (see Sect. 8.1.2).

6.4 Summary and Conclusion

The first part of this chapter proposed a rigorous treatment of the redundancy
issue that is related to the Sylvester matrices. The problem was tackled by
deriving general convolutive formulations of the natural gradient for an ar-
bitrary cost function J . Two types of updates arise from this analysis: the
self-closed updates, which depend on a parameter d controlling the acausal
length (or delay) in the separation system, and the non-self-closed updates.
It emerged that any row or the Lth column may be chosen as reference to
maintain the Sylvester structure, in addition to the two choices given in [5].
Our derivation provided self-closed and non-self-closed update rules for both
causal and acausal separation systems. In particular, self-closed update rules
for acausal separation systems have been obtained.

It appeared that causal mixing/separation systems have a special status:
In these systems a group structure can be defined using the self-closed opera-
tion 0. Moreover, using causal separation systems removes the permutation
ambiguity. These results are valid not only for NG-SOS-BSS algorithms but
also for other BSS algorithms that are based on the natural gradient.

In the case of the NG-SOS-BSS algorithms, it was shown that these nat-
ural gradient algorithms involve the inversion of output correlation matrices
Ryy(kL). To remove this matrix inversion, the updates were approximated
in (6.44) and (6.45). The price for the approximation is that certain gradi-
ent terms which do not belong to the Sylvester subspace are involved in the
computation of the updates.

The second part of this chapter described online implementations of NG-
SOS-BSS algorithms for both block-wise and sample-wise updates. In partic-
ular, it was shown that constraining the diagonal filters to simple delays of
d taps yields a new sample-wise NG-SOS-BSS algorithm (6.68) with rapid
tracking capabilities and O(L) complexity.

Finally, the applicability of the NG-SOS-BSS algorithms was experimen-
tally assessed using both causal and acausal separation systems in noisy con-
ditions. Self-closed NG-SOS-BSS updates seem to be more robust than their
non-self-closed counterparts. For this reason, they will be used for further
experiments in this book and the non-self-closed updates will no longer be
considered. In particular, the proposed self-closed update for acausal separa-
tion systems will be necessary in Chap. 9 when combining NG-SOS-BSS with
geometric prior information.
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At last, the causal self-closed time-domain NG-SOS-BSS algorithms showed
the best performance in a comparison with other widely used frequency-domain
BSS algorithms.

To summarize, the most important results of this chapter are:

• Self-closed and non-self-closed implementations of NG-SOS-BSS algo-
rithms have been derived for both causal and acausal separation systems.
The mapping from their Sylvester matrices formulation to their actual
implementation involves certain approximations, which we have made ex-
plicit.

• Setting a causality constraint on the separation system removes the permu-
tation ambiguity. Moreover, not setting this constraint prevents equivari-
ant separation performances. However, the causality constraint limits the
set of allowed scenarios, as depicted in Fig. 6.2.

• Constraining the diagonal filters to simple delays of d taps yields the new
sample-wise NG-SOS-BSS algorithm (6.68) with rapid tracking capabili-
ties and O(L) complexity.

• We experimentally found out that the self-closed NG-SOS-BSS algo-
rithms (6.51) and (6.54) are more robust and lead to better performance
than their non-self-closed counterparts. They also showed a better perfor-
mance than other widely used frequency-domain algorithms.



7

On the Convergence and Stability
in Second-Order Statistics BSS

In Chap. 6, we have derived natural gradient SOS-BSS algorithms (NG-SOS-
BSS) to adapt the separation matrix W. This chapter addresses the question
of the convergence of these algorithms, that is, the convergence of W to a
separating matrix. An examination of the global convergence is of practical
interest because it may indicate the range of admissible step-sizes μ for which
these NG-SOS-BSS algorithms globally converge. This issue is discussed in
Sect. 7.1, which explains why the analysis of the global convergence is hardly
tractable for NG-SOS-BSS algorithms, even in the case of instantaneous mix-
ing. However, in the instantaneous case, an analysis is possible for a simpli-
fied decorrelation algorithm that is closely related to NG-SOS-BSS. Then,
we propose an interpretation of the results of this analysis for convolutive
NG-SOS-BSS. In contrast to the global behavior, the local behavior of con-
volutive NG-SOS-BSS may be analyzed. This is discussed in Sect. 7.2 where
sufficient local stability conditions are given.

7.1 Global Convergence

A necessary condition for the global convergence of an iterative minimization
algorithm to a desired solution is that this desired solution is a global min-
imum of the cost function. This condition is satisfied for the SOS-BSS cost
function in (5.34): Its minima correspond to separating matrices W (i.e., so
that boff (WH) = 0 up to source permutations) [20]. However, this neces-
sary convergence condition is not sufficient. Under certain restrictions, the
convergence of the gradient descent toward the global minimum of J may be
guaranteed. These restrictions are typically placed on the initial point W(0),
on the shape of J (ellipticity, convexity), and on the step-size μ(n). Unfor-
tunately, the separation cost function J in (5.34) exhibits a rather complex
shape, as may be seen in Fig. 5.2. This makes it difficult to guarantee the
global convergence of NG-SOS-BSS algorithms.
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A result about the global convergence has been already presented in
Sect. 6.1.6 with the equivariance property. In the causal case (that is, for
d = 0 in Chap. 6), the path of the global system

{C(z, n) for n = 0, 1, . . .}

depends on the mixing matrix H(z) only through the initial point C(z, 0).
Even though the equivariance property is an indication on the shape of the
convergence path, it does not provide any guarantee that a perfect separating
solution will be attained for n → +∞: In other words the off-diagonal elements
of the global system, boffC(z, n), may not tend to zeros and we may have1

lim
n→+∞

‖boffC(z, n)‖ > 0. (7.1)

As explained in [56], global convergence may be obtained with a decreasing
step-size μ(n), so that∑

n

μ(n) = +∞ and
∑

n

μ2(n) < +∞. (7.2)

Choosing μ(n) with the property of (7.2) ensures convergence toward a locally
stable equilibrium2 point. Unfortunately, this solution is limited to stationary
acoustic environments, since the conditions (7.2) imply that μ(n) must tend
toward zero. This is not applicable to time-varying acoustic environments. In
practice, most gradient descent algorithms must be performed with a constant
step-size μ(n) = μ. In this case, the global convergence of the NG-SOS-BSS
algorithms is an unsolved problem, even in the “simple” situation of instanta-
neous mixtures [23]. In particular, we have no upper bound on μ to guarantee
the global stability.

7.1.1 Difficulty of a Global Convergence Analysis

To understand the difficulty of a global convergence analysis, it is useful to
consider the case of instantaneous mixtures. Let us set L = Lm = 1. In
this case, the NG-SOS-BSS algorithm (5.41) may directly be applied.3 If we
1 In (7.1), we consider the convergence to nonpermuted separating solutions. More

generally, to take the permuted separating solutions also into account, we should
consider the convergence of all elements of C(z, n) except one element per row
and column toward zero.

2 The concept of equilibrium point is defined in Sect. 7.2.
3 For L = 1, the Sylvester constraint “falls”: The operator S in (6.9) and its

approximations Sd and SL reduce to the identity,

S (A) = Sd (A) = SL (A) = A (7.3)

for all separation N × M matrix A. As a consequence, the self-closed and non-
self-closed updates (6.51) and (6.53) become identical to (5.40).



7.1 Global Convergence 115

consider the evolution of W(n) as a function of the iteration index n in the
gradient descent on a batch of K data blocks, we can write

W(n + 1) = W(n) − μ

K∑
k=1

diag−1R̂yy(k)boff
(
R̂yy(k)

)
W(n), (7.4)

where R̂yy(k) denotes the estimated output correlation matrix for the kth
data block. Without loss of generality, (7.4) can be rewritten as

W(n + 1) = f(W(n)), (7.5)

where f is a matrix function which represents the right side of (7.4), and
which depends on the input data and on the step-size μ. Two features of f
may hamper the global convergence analysis, namely, the nonlinearity and the
nonreducibility to dimension one:

(i) Convergence of (7.5) is clearly achieved at a fixed point4 of f . However,
(7.5) may also reach a fixed point of the Cth composition f (C) defined
recursively by

f (C)(W) � f
(
f (C−1)(W)

)
(7.6)

and f (0)(W) = W (7.7)

for any integer C > 0. In this case, W(n) moves cyclically along the
path {W, f(W), . . . , f (C−1)(W)}. To determine such cyclic paths, an
equation of the kind f (C)(W) = W must be solved. If f is linear, solving
this equation is particularly simple, since any composition f (C), C > 0
is also linear. Otherwise, solving f (C)(W) = W is not always possible
(algebraically), for example, if f (C) is a polynomial of degree larger than
four.5 In this case, the global convergence behavior cannot be predicted
by a theoretical analysis.

(ii) In certain cases, f may be “factorable” in the form

f (W) =

⎛⎜⎝ f11(w11) . . . f1M (w1M )
...

. . .
...

fN1(wN1) . . . fNM (wNM )

⎞⎟⎠ , (7.8)

where each entry fij depends only on wij . In such cases one may study
each sequence wij(n + 1) = fij(wij(n)) independently. Even if f is not
directly factorable as in (7.8), the matrix sequence (7.5) may be refor-
mulated as a collection of scalar sequences. Then, the analysis of the

4 For the stability of the fixed pointW, a sufficient condition is that
∥∥ ∂

∂W
f(W)

∥∥ < 1.
In this case the fixed point is said to be “attracting” (see [62] for example).

5 According to the Abel–Ruffini theorem, there is no general solution in radicals to
polynomial equations of degree larger than four.
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sequence of matrices W(n) reduces to the analysis of a sequence of scalar
numbers. The study of the global convergence is made significantly easier
if such a decomposition into subproblems of dimension one can be found.

According to remarks (i) and (ii), the difficulty in the convergence analysis of
(7.4) is twofold. Firstly, the update is nonlinear. Secondly, there is no direct de-
composition into subproblems of dimension one and hence the lack of available
global convergence results in BSS. By contrast, the convergence of certain in-
stantaneous blind decorrelation algorithms has been analyzed [31, 32]. There,
the convergence analysis may be carried out in dimension one.

7.1.2 Convergence Analysis for a Simplified Algorithm

In this section, we continue with the batch algorithm (7.4) in the instanta-
neous case (L = 1). First, we alter the natural gradient algorithm (5.40) to
a simpler decorrelation algorithm so that global convergence results may be
obtained. Next, we revisit the convergence analysis of a blind decorrelation
algorithm given in [32]. In particular, we obtain an upper bound on the step-
size that ensures global stability (for the instantaneous, altered algorithm).
Then, we attempt to translate these results for the original algorithm (5.41)
in the general convolutive case.

Let us consider (7.4) for K = 1. Since only one time segment is considered,
the nonstationarity of the source signals is not exploited anymore. We omit
the block argument k and denote the output correlation matrix at the nth
iteration by R̂(n)

yy . Then, (7.4) can be written as

W(n + 1) = W(n) − μ(n)diag−1
(
R̂(n)

yy

)(
R̂(n)

yy − diag
(
R̂(n)

yy

))
W(n). (7.9)

In [32], the matrix diag
(
R̂(n)

yy

)
in (7.9) is replaced by the identity matrix I,

which yields

W(n + 1) =
(
I − μ(n)

(
R̂(n)

yy − I
))

W(n). (7.10)

We obtain an algorithm that merely decorrelates the input signals spatially
since the sequence R̂(n)

yy in (7.10) should converge to I. As we have seen
in Sect. 5.2.1, this generally does not achieve the separation of the source
signals. Also, by transforming (7.9) into (7.10), we have lost the desired
nonholonomicity property expressed in (5.46). Thus, the range of admissible
step-sizes μ(n) depends on the scale of R̂(n)

yy .
In the following, we determine the range of admissible step-sizes μ(n)

(for each n) so that the sequence R̂(n)
yy in (7.10) converges to I. Substituting

W(n + 1) in (7.10) into R̂(n+1)
yy = W(n + 1)R̂xxWT(n + 1), we may write

R̂(n+1)
yy in terms of R̂(n)

yy as
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R̂(n+1)
yy =

(
I − μ(n)

(
R̂(n)

yy − I
))

R̂(n)
yy

(
I − μ(n)

(
R̂(n)

yy − I
))T

. (7.11)

Let us denote by fR the function defined by R̂(n+1)
yy = fR

(
R̂(n)

yy

)
in (7.11).

Since fR is a matrix polynomial,6 R̂(n+1)
yy has the same eigenvectors as R̂(n)

yy .
Therefore, the sequence of the output correlations R̂(n)

yy , for n = 1, 2, . . . may
be described by each of its eigenvalues λ

(n)
i , i = 1, . . . , N . According to (7.11),

we have

λ
(n+1)
i = fλ

(
λ

(n)
i

)
, (7.12)

where the function fλ is defined as fλ(x) � (1 − μ(x − 1))2x. To analyze
the convergence of the sequence λ

(n)
i , n = 0, 1, . . ., we need to determine the

fixed points of fλ. The equation fλ(x) = x has two solutions: x1 = 1 and
x2 = (2 + μ)/μ. Only x1 corresponds to a stable equilibrium, since f ′

λ(x2) > 1.
The fixed points of the composition f

(2)
λ (·) = fλ(fλ(·)) are difficult to extract

because f
(2)
λ is a polynomial of degree six. In the following, only the con-

vergence of the eigenvalues λ
(n)
i toward one is considered, and we define the

errors λ̃
(n)
i � λ

(n)
i −1. The convergence of the errors λ̃

(n)
i to zero is equivalent

to the convergence of R̂(n)
yy to I. Equation (7.11) can be rewritten in terms of

eigenvalues λ
(n)
i as

λ̃
(n+1)
i =

((
1 − μ(n)λ(n)

i

)2

− μ2(n)λ(n)
i

)
λ̃

(n)
i . (7.13)

Let us define the second-order polynomial Pλ(x) � (1 − xλ)2 − x2λ. As may
be seen from (7.13), the error λ̃

(n+1)
i decreases at iteration step n if and only

if |P
λ

(n)
i

(μ(n))| < 1. This condition determines the range of admissible step-
sizes. For any λ, μ > 0, we have the following necessary condition:

μ < μmax (λ) ⇒ |Pλ (μ)| < 1, (7.14)

where μmax (λ) is defined by

μmax (λ) �
{(

−λ +
√

2λ − λ2
) / (

λ − λ2
)

for λ ∈]0, 1],
2
/

(λ − 1) for λ > 1.
(7.15)

Unfortunately, the presence of a square root and quadratic terms in (7.15)
makes it inconvenient to develop a practical normalized step-size. We may
6 The fact that fR is a polynomial is an essential difference to (7.9). One could

similarly try to argue that (7.9) has converged when the eigenvalues of Q(n) =

diag−1
(
R̂

(n)
yy

)
R̂

(n)
yy are all equal to one. Unfortunately, Q(n+1) is not a polyno-

mial function of Q(n), which prevents diagonalization.
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Fig. 7.1. μmax in (7.15) as a function of an eigenvalue λ of R̂yy and the practical
lower bounds μα of μmax, for α = 0.9 and α = 0.1 in (7.17)

formulate an assertion that is more conservative than (7.14) if we use a lower
bound μlb of μmax:

μ < μlb (λ) ⇒ |Pλ (μ)| < 1. (7.16)

In the following we consider a lower bound μα (λ) that depends on a free
parameter α ∈ [0, 1] and that is defined as

μα (λ) �
{

2α/(α + λ) for 0 < λ < 2α,
α/λ for λ > 2α.

(7.17)

μmax (λ) and μα (λ) are plotted for α = 0.1 and α = 0.9 in Fig. 7.1. It illus-
trates that the condition in (7.16) is more conservative than (7.14). It should
be mentioned that alternative, less conservative simplifications on μmax (λ)
may be developed.

The condition |P
λ

(n)
i

(μ(n))| < 1 for all i = 1, . . . , N is satisfied when

0 < μ(n) < μα

(
λ(n)

max

)
, (7.18)

where λ
(n)
max is the largest eigenvalue of R̂(n)

yy . The parameter α ∈]0, 1] is set
by the user. Its value influences which line of (7.17) should be used to ensure
the stability of (7.10).

Hereafter we turn (7.10) into a stable normalized algorithm (that is, an
algorithm with a normalized step-size that does not depend on the power
of the input signals, just like the NLMS algorithm). Consider first the case
λ

(n)
max > 2α, which is likely to occur if α is set close to zero. Then a normalized

step-size μ̃(n) is given by μ̃(n) = μ(n)λ(n)
max. In practice, it is desirable to

avoid the computation of the eigenvalues. Instead, one could employ the upper
bound λ

(n)
max < tr(R̂(n)

yy ) as an overestimation and set μ̃(n) = μ(n)tr(R̂(n)
yy ).

This is a reasonable estimate for μ̃(n) = μ(n)λ(n)
max only if R̂(n)

yy has a single
dominant eigenvalue. Likewise, the situation λ

(n)
max > 2α may be detected in

practice with tr(R̂(n)
yy ) > 2α. This yields:
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W(n + 1) = W(n) − μ̃(n)tr−1
(
R̂(n)

yy

)(
R̂(n)

yy − I
)
W(n), (7.19)

where tr−1(A) = 1/trA. The stability conditions are given by (7.18) and the
first line of (7.17) and may be written independently of the input data as
0 < μ̃(n) < α.

Now, consider the case λ
(n)
max ≤ 2α, which is likely to occur if α is set close

to one. According to (7.18), the algorithm (7.10) may be made stable using α
as a regularization parameter:

W(n + 1) = W(n) − 2μ̃(n)
(
α + tr

(
R̂(n)

yy

))−1 (
R̂(n)

yy − I
)
W(n). (7.20)

Then the stability conditions are given by (7.18) and the second line of (7.17),
and may be written as 0 < μ̃(n) < α as in the first case.

Let us summarize (7.19) and (7.20) as

W(n + 1) = W(n) − μ̃(n)tr−1
(
Ŝ(n)

yy

)(
R̂(n)

yy − I
)
W(n), (7.21)

where Ŝ(n)
yy =

{
R̂(n)

yy for tr(R̂(n)
yy ) > 2α

1
2

(
α + R̂(n)

yy

)
for tr(R̂(n)

yy ) ≤ 2α,
(7.22)

where μ̃(n) should be chosen in the range 0 < μ̃(n) < α.

Interpretation for NG-SOS-BSS

The above analysis has been carried out in the case L = 1 for the decor-
relation algorithm in (7.10). It has led to the globally stable decorrelation
algorithm (7.21) with a normalized step-size. In this paragraph, we infer by
similarity a regularization scheme for the instantaneous algorithm (7.9) and
for the general convolutive case (5.41) for L,K > 1.

Firstly, we observe that (7.21) may be seen as an altered version of (7.9)
with the following replacements:

(i) The normalization term tr−1
(
R̂(n)

yy

)
I in (7.19) is replaced by

diag−1
(
R̂(n)

yy

)
in (7.9). In contrast to (7.9), the update in (7.19) is not

normalized by an estimate of the power σ2
yp

of the output signal yp but
by an estimate of the sum

∑
n σ2

yn
.

(ii) The gradient direction R̂(n)
yy −I in (7.19) is replaced by R̂(n)

yy −diag
(
R̂(n)

yy

)
in (7.9).

Using these two correspondences, the results on the global convergence
of (7.21) may be applied to (7.9) as follows:

W(n+1) = W(n)− μ̃(n)diag−1
(
Ŝ(n)

yy

)(
R̂(n)

yy − diag
(
R̂(n)

yy

))
W(n), (7.23)
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where

Ŝ(n)
yiyj

�
{

R̂(n)
yiyj for tr(R̂(n)

yiyj ) > 2α
1
2

(
α + R̂(n)

yy

)
for tr(R̂(n)

yiyj ) ≤ 2α
for i, j = 1, . . . , N. (7.24)

Note that tr(R̂(n)
yiyj ) = R̂(n)

yiyj , since the matrix R̂(n)
yiyj reduces to a scalar

factor in the considered case (L = 1). The operator tr(·) is kept to emphasize
the similarity between (7.22) and (7.24). Again, it may be noticed that the
filter updates are all normalized by the sum of the output energies in (7.21),
whereas they are normalized by their individual output energy in (7.23). It
should be mentioned that the correspondences (i) and (ii) are simply inferred
by similarity. They do not derive from a rigorous analysis of (7.9). Hence, at
this point we have no theoretical guarantee that (7.23) is globally stable.

Now we propose a generalization to the convolutive NG-SOS-BSS algo-
rithm in (5.41) for L,K > 1. Let us recall the algorithm (5.41):

W(n + 1) = W(n)−μ(n)
K∑

k=1

diag−1R̂(n)
yy (kL)boff

(
R̂(n)

yy (kL)
)
W(n). (5.41)

Since the factor α is homogeneous to a signal power, it should not be compared
to tr(R̂(n)

yiyj ) but to tr(R̂(n)
yiyj )/L. Then, (7.23) could be generalized to L,K > 1

as follows:

W(n + 1) = W(n) − μ(n)
K∑

k=1

diag−1Ŝ(n)
yy (kL)boff

(
R̂(n)

yy (kL)
)
W(n), (7.25)

where

Ŝ(n)
yiyj

(kL) =

{
R̂(n)

yiyj for tr(R̂(n)
yiyj (kL))/L > 2α

1
2

(
α + R̂(n)

yy

)
for tr(R̂(n)

yiyj (kL))/L ≤ 2α
(7.26)

for i, j = 1, . . . , N . Let us explain why this regularization scheme might be able
to prevent instability: In the NG-SOS-BSS algorithm (5.41), the normalization
terms are estimates of the output powers σ2

yn
(kL). This power may become

very small, for example near convergence if the source signal sn is zero, which
may yield very large updates and instability. A dynamic regularization scheme
is provided with (7.26). This scheme is integrated in the convolutive NG-SOS-
BSS updates (6.51) and (6.53), and in the Partial BSS (PBSS) updates (6.54)
and (6.55).

Again let us mention that there is no guarantee of the stability in the
convolutive case (even if μ < α). The condition μ ∈ [0, α] is sufficient only
for the batch instantaneous decorrelation algorithm (7.21). It may not be
sufficient anymore for its altered version (7.23), which is close to the NG-SOS-
BSS algorithm (5.41) in the instantaneous case. The condition may become
even more severely insufficient with the generalization to the convolutive case
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where it is not clear how the parameter α depends on the filter length L. In
practice, we noticed that instability may be prevented if the step-size is small
enough (for example, μ = 0.002). The parameter α should be chosen as small
as possible (but larger than μ). Then, the regularization is applied near the
convergence and not in the transient phase, which allows for fast convergence
in the transient phase.

7.2 Local Stability

The concept of stability has several aspects in adaptive signal processing. Since
we use a feedforward (as opposed to feedback) filter architecture, the struc-
tural BIBO (bounded input bounded output) stability is guaranteed [60]. An
iterative algorithm is globally stable if it converges to some equilibrium point
for any initial condition. The global stability is necessary but not sufficient
for the convergence to a desired solution (spurious solutions may exist, such
as local minima of the cost function), which has been discussed in Sect. 7.1.

The local stability describes the behavior of the algorithm in the vicinity
of a particular equilibrium point. Local stability results are easier to obtain
than global stability results since the algorithm under consideration may be
linearized in the vicinity of a separating matrix. This may provide necessary
(yet insufficient) conditions for the convergence to a desired solution. Let us
now describe this concept in more detail.

Without loss of generality, the expectation of any BSS update may be
written as

W(n + 1) = W(n) − μg(W(n)), (7.27)

where g is a matrix function that depends on the mixing H and on the source
signal statistics. The separation matrix Wopt is a equilibrium point (that is,
a separating matrix) if and only if g(Wopt) = 0. Let us consider a small
deviation ε(n) around the equilibrium point Wopt:

W(n) = Wopt + ε(n). (7.28)

The adaptation in (7.27) can be written in terms of ε(n) as

ε(n + 1) = ε(n) − μg (Wopt + ε(n)) . (7.29)

The first-order approximation of (7.29) is given by

ε(n + 1) = ε(n) − μD(Wopt)
g (ε(n)) , (7.30)

where D
(Wopt)
g (ε(n)) denotes the derivative of g at point Wopt and is a lin-

ear function of ε(n). If the sequence ε(n) in (7.30) converges to zero for
some μ > 0, then Wopt is said to be locally stable. This may be interpreted
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geometrically as follows: The point Wopt is locally stable if the adaptation
term g(Wopt + ε(n)) points to Wopt, i.e., if a small deviation from Wopt is
pulled back to the equilibrium. Therefore, the local stability is concerned with
the direction of the adaptation term but not with its norm (as opposed to the
global stability). A necessary and sufficient condition for local stability is that
all eigenvalues of the linear mapping D

(Wopt)
g have positive real parts.

As opposed to the lack of knowledge about global convergence, several
local stability results are available in BSS, for example in [8, 39, 52]. However,
these results are derived in the vicinity of the inverse of the mixing system,
assuming not only separation but also deconvolution of the source signals. In
this section, we examine the stability around the vicinity of an equilibrium
point Wopt that merely separates the sources, as encountered in practice.

The stability analysis is derived in the following framework: We consider
the two-source two-sensor scenario (M = N = 2) as depicted in Fig. 2.6. Here,
we assume that the diagonal mixing channels Hnn, n = 1, 2 and separation
filters Wnn, n = 1, 2 are unit responses:

wnn = wnn = δd (7.31)

for a certain d. As mentioned in Sect. 2.3, this special scenario may be consid-
ered as a physical model in the situation where the room acoustics is not very
reverberant and where each source sn is placed close to the microphone xn for
n = 1, 2. The constraint on the separation filters limits the number of degrees
of freedom and assures the uniqueness of the equilibrium point Wopt. For
W = Wopt, the source signals are separated but not deconvolved. Besides,
the local stability of BSS algorithms generally depends on the statistics of the
source signals, which makes it difficult to interpret them physically. An inter-
esting case occurs when the source signals exhibit periods of silences, as is the
case for speech signals. Under these conditions, the local stability conditions
may be formulated quite simply. For the sake of readability, the computation
of D

(Wopt)
g and the subsequent derivations are postponed to Appendix D.

Let us define Hmn(k) for k = 0, . . . , 2L − 2 as

Hmn(k) �
2L−2∑
p=0

hmn,p e2iπpk/(2L−1) for n,m = 1, 2 and n �= m. (7.32)

Hmn(k) is similar to the kth frequency bin of the DFT of hmn padded with
L− 1 zeros (except for a missing minus sign in the exponent of the transform
kernel). Under certain conditions (more details can be found in Appendix D),
one may derive a sufficient local stability condition:

|H12(k)H21(k)| < 1 ∀k = 0, . . . , 2L − 2. (7.33)

Condition (7.33) sets an upper bound on the amount of cross-talk. Inter-
estingly, a closely related stability condition was found experimentally by
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Van Gerven [39]. Let us define H(k) � H12(k)H21(k), which is the DFT of
h = h12 ∗ h21. Van Gerven has found the following stability condition:

2L−2∑
p=0

|hp| < 1. (7.34)

Condition (7.34) is more conservative than condition (7.33), since

2L−2∑
p=0

|hp| < 1 ⇒ |H(k)| < 1 ⇔ |H12(k)H21(k)| < 1. (7.35)

Special case d = 0

In the special case of causal mixings of white source signals, i.e., for d = 0
in (7.31) and Rsnsn

∝ I, a finer analysis may be carried out. (See Appendix D
for more details.) Here, we can provide the following necessary and sufficient
stability condition:

h12,0h21,0 < 1. (7.36)

Condition (7.36) is satisfied if h12,0h21,0 = 0, i.e., if one of the cross channels
is strictly causal. Remarkably, the same local stability condition has been
derived by Charkani and Deville for causal mixings of white source signals [26].
Note that they considered an equilibrium point where the source signals are
not only separated but also deconvolved. By contrast, (7.36) is a stability
condition in the vicinity of an equilibrium point where the source signals
are only separated. While it is not clear how the condition (7.36) relates to
than (7.33), it appears that the condition (7.36) is much weaker than (7.34).
Hence, causal mixings seem to be favorable for the local stability.

7.3 Summary and Conclusion

The global convergence of NG-SOS-BSS algorithms still remains an open prob-
lem, as for many other SOS-BSS algorithms [23]. There exists no description
of the transient behavior of NG-SOS-BSS algorithms, even for instantaneous
mixtures. We have explained the reasons for this lack of knowledge. Neverthe-
less, we could analyze a similar blind decorrelation algorithm. Motivated by
this analysis, we proposed a dynamic regularization scheme for BSS. In prac-
tice, however, the adaptation parameters should be carefully chosen based on
simulated or on real recordings. Note that the choice of these parameters may
also depend on the filter length L.

Nevertheless, local stability conditions have been derived in a two-source
two-sensor scenario. It appears that the local stability of NG-SOS-BSS
depends on the amount of cross-talk. Strict causality of one of the cross
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channels is a sufficient local stability condition. Hence causal systems seem
to be a favorable case, like in Sect. 6.1.6.

The most important results of this chapter are the following:

• The global convergence and stability of NG-SOS-BSS algorithms are not
guaranteed. The convergence analysis for an instantaneous decorrelation
algorithm has been carried out. This analysis motivated a dynamic regular-
ization scheme for second-order convolutive BSS. Still, appropriate adap-
tation parameters should be chosen from experiments.

• Necessary local stability conditions set an upper bound on the amount of
cross-talk.



8

Comparison of LCMV Beamforming
and Second-Order Statistics BSS

Adaptive LCMV beamforming algorithms have been presented in Chap. 4.
In Chaps. 5–7, we have examined NG-SOS-BSS algorithms. Both approaches
pursue the same objective, namely to reduce interference signals. This chapter
gives a side-by-side comparison of these two approaches.

Originally, convolutive blind signal separation (BSS) techniques have been
developed within Widrow’s adaptive identification framework [38, 90]. This
forms a basis for a natural connection between blind source separation and
beamforming. Moreover, as pointed out by Cardoso and Souloumiac in the
context of narrowband array processing, BSS techniques achieve the sepa-
ration by filtering the microphone signals spatially, hence the term “blind
beamforming” [21]. This similarity is important to understand the theory. By
extracting independent signals out of a mixture, BSS actually forms multiple
null beams in the direction of interfering sources [10]. This “equivalence”
clearly indicates that sources which are spatially close to each other (or
aligned) are not any better separated by BSS-based array processing than
by adaptive LCMV beamforming.

On the other hand, there are obvious differences between adaptive LCMV
beamforming and BSS. For example, time-domain BSS algorithms gener-
ally do not require prior information on the sensor arrangement.1 BSS algo-
rithms do not necessitate a target-free interference reference, since the mixing
model in (5.15) takes the target leakage into account. By contrast, LCMV
beamformers require a double-talk detector to overcome the target leakage
problem.

This chapter is organized as follows: In the first part we will compare
theoretical properties of the two approaches. Section 8.1 focuses on the prop-
erties of their respective cost functions. The second part is a comparison from
the practical standpoint. Section 8.2 compares NG-SOS-BSS algorithms and

1 This is not entirely true in the case of frequency-domain BSS algorithms that
overcome the permutation problem by exploiting the source directions of arrival,
as in [82, 83].
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LMS-adapted LCMV beamforming in terms of complexity. Section 8.4 provides
an experimental comparison of their performance-to-complexity ratio.

8.1 Properties of the Cost Functions

The cost functions in LCMV beamforming and SOS-BSS exhibit different
shapes, which implies different properties for the convergence of a gradient
descent. These differences are stressed in Sect. 8.1.1. Section 8.1.2 examines
the accuracy of the optimization with a finite number of samples.

8.1.1 Shape of the Cost Function

For simplicity, we examine the gradient descent of the different cost functions
for a given batch of T input data samples. Let us recall the two cost functions
in this context:

JBSS(W) �
K∑

k=1

log det bdiag(R̂yy(kL)) − log det R̂yy(kL), (8.1)

JLS(w) � 1
T

T∑
p=1

y2(p), w s.t. CTw = c. (8.2)

In (8.1), R̂yy(kL) represents a generic estimate of the output correlation ma-
trix around time p = kL.

Shape and gradient descent for JBSS

In contrast to JLS in (8.2), JBSS(W) has a continuum of minima, since
JBSS(αW) = JBSS(W) for any nonzero scalar α. In fact, the set of the separat-
ing matrices W that minimize JBSS is even larger and coincides with the out-
put permutation and filtering ambiguities. As described in Sect. 6.1.6, setting
a causality constraint on the separation matrix (which should be done only
for certain source-microphone arrangements) limits the search space a priori
and removes the minima that corresponds to permuted solutions. Hence, the
performance of SOS-BSS algorithms may depend on this causality constraint.
Other properties of the gradient descent for the cost function JBSS have been
discussed in Chap. 7. They are summarized in Table 8.1, which compares them
to the properties of JLS.

Shape and gradient descent for JLS

The constraint CTw = c may be implemented using the GSC structure and
the decomposition w = w0+Ba described in Sect. 3.2. Since only a is adapted,
we may consider JLS as a function of a, JLS(a). Define the correlation matrix
R̂xBxB

and the cross-correlation vector r̂x0xB
as
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Table 8.1. Comparison of the SOS-BSS cost function (8.1) and LS cost func-
tion (8.2) used in LCMV beamformers: shape of the cost functions and
of the gradient descents on a batch of input sample. In the case of BSS,
the natural gradient descent is considered. We refer to Chap. 7 for more
details on the convergence and stability of BSS

JLS in (8.2) JBSS in (8.1)

Cost function convex nonconvex (see Fig. 5.2)
shape
number of optima

1, given by (3.22) multiple optima (via filter-
ing and permutation)

Gradient descent (natural gradient)
update linear nonlinear
convergence to cyclic paths no possible
convergence analysis exists unknown
global stability conditions given in (4.4) unknown
local stability yes under certain conditions

(see Sect. 7.2)

R̂xBxB
� 1

T

T∑
p=1

xB(p)xT
B(p), r̂x0xB

� 1
T

T∑
p=1

x0(p)xT
B(p), (8.3)

and assume that R̂xx is invertible. As we have shown in (3.22), the minimum
JLS is then unique and is given by a closed formula, the Wiener solution:

aopt = −R̂−1
xBxB

r̂x0xB
. (8.4)

To examine how a(n) converges to aopt in the gradient descent, we define
the mismatch between the interference canceler and the Wiener solution aopt

at iteration n as m(n) � a(n) − aopt. The gradient descent for JLS may now
be formulated as m(n + 1) = fLS(m(n)), where

fLS (m(n)) �
(
I − μR̂xBxB

)
m(n) (8.5)

(see, e.g., [92]). Let us contrast the properties of the function fLS with the
properties of the matrix function f for NG-SOS-BSS algorithms mentioned in
Sect. 7.1:

• First, the function fLS is linear and its only2 fixed point is m = 0.
2 The uniqueness of the fixed point may be easily shown. Since R̂xBxB is positive

definite, its unique fixed point is m = 0. The question arises whether paths of
the kind {m, fLS(m), . . . , f

(C−1)
LS (m)} with fC

LS(m) = m exist. For any C > 1,
the fixed points of the composition f (C) are the solutions of

f
(C)
LS (m) = (I − μR̂xBxB )Cm = m. (8.6)

Since (I − μR̂xBxB )C is also positive definite, the only fixed point of f
(C)
LS is

m = 0. Consequently, the algorithm can converge only to m = 0. Therefore, no
orbit exists.
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• Second, fLS may be diagonalized using the eigenvalue decomposition of
R̂xBxB

, the vector equation m(n + 1) = R̂xBxB
m(n) is then decomposed

into a collection of scalar equations by diagonalizing R̂xBxB
(see, for exam-

ple, [92] for more details). Thus, the convergence analysis of the gradient
descent reduces to the convergence of a sequence of scalar numbers, i.e., it
may be carried out in one dimension.

The convergence properties of the gradient descent are well known [45, 91].
Global convergence in the mean to the Wiener solution is guaranteed if the
step-size μ satisfies

0 < μ <
1

λmax
, (8.7)

where λmax denotes the largest eigenvalue of R̂xBxB
. The Wiener solution is

also locally stable.

Minima of the cost functions

The question arises as to how the minima of the cost function JBSS(W) in (8.1)
are related to the minimum of JLS(w) in (8.2). This question may hardly
be answered in the general case since no closed formula for the minimum
of JBSS(W) is known yet. Nevertheless, one might ask whether separating
solutions (discussed in Sect. 2.3) are minima of the cost functions in JBSS(W)
and JLS(w). Some results may be stated under restricting conditions. Let us
assume that interference-independent separating solutions exist (which may
be the case if the conditions for spatial separation given in Sect. 2.3.1 are
fulfilled). Then these separating solutions are minima of JBSS(W) since the
output signals are independent.3 For these separating solutions to be minima
of JLS(w), it is additionally required

• that the desired source is silent (as assumed in [10, 11]),
• or that the desired source does not leak into the interference reference.

If none of these conditions is fulfilled, then (3.38) shows that the minimum of
JLS(w) may not be a separating solution and depends on the adequation of
the linear constraint CTw = c with the acoustic channels and of the power
of the desired source signals relative to the power of the interferences.

8.1.2 On the Estimation Variance

The SOS-BSS and LCMV cost functions, JBSS in (8.1), and JLS in (8.2),
have been defined with a batch of T samples. They may be seen as estimates
of underlying, statistically defined cost functions ξBSS and ξLMS defined as
follows

3 This assumes the empirical correlation of the source signals is zero. This aspect
is discussed in Sect. 8.1.2.
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ξBSS(W) �
K∑

k=1

log det bdiag(Ryy(kL)) − log detRyy(kL), (8.8)

ξLMS(w) � E
{
y2(p)

}
w s.t. CTw = c. (8.9)

Similarly, in (8.8), the matrix Ryy(kL) represents the true output correlation
matrix at time p = kL. Let us denote the optimal filters for (8.8) and (8.9) by
Wopt and wopt, respectively. In this section, the optimal filters for the batch
cost functions in (8.1) and (8.2) are seen as batch estimates for Wopt and wopt,
respectively. These estimates are denoted by Ŵopt and ŵopt, respectively.

Definition of the estimation variance

In general, the accuracy of a certain estimator with a finite sample size T is
characterized by its variance. In the following we briefly explain the concepts
of estimator and estimator variance (see, e.g., [69] for more details). The input
samples in the vector x(p) are modeled as realizations of a (multidimensional)
stochastic process X(p). Let θ be a parameter of X(p), which we want to
estimate. In our context, θ would represent optimal separation filters. Note
that θ is not a random variable. An estimator for θ is a random variable θ̂.
The estimator is said to be unbiased if and only if E

{
θ̂
}

= θ. The covariance

matrix for the estimator θ̂ is defined as

C
(
θ̂
)

� E
{(

θ̂ − θ
)(

θ̂ − θ
)T
}

. (8.10)

Its variance V (θ̂) is the norm of the covariance matrix, V (θ̂) � ‖C(θ̂)‖. In
the scalar case, V (θ̂) = E

{
(θ̂ − θ)2

}
. The variance of the estimator provides

a measure of the quality of the estimation. In our context, the quantity to
estimate is the minimum of a certain cost function. Since we are not inter-
ested in the minimization procedure (such as the gradient descent), only the
performance after convergence is relevant here.

Illustration in the case of LCMV beamforming

Let us illustrate this concept in the case of LCMV beamforming. It is difficult
to obtain meaningful and tractable results on the estimator variance in the
general case since the estimator variance depends on the source processes (the
source signals). Nevertheless, there is a very special case where the estimator
variance may be derived easily and that is worth mentioning. Let us examine
the case of instantaneous mixtures and assume that the target source s1(p) is
not active. Now, it is not difficult to show that wopt = ŵopt for any sample size
T : Using the source correlation matrix Rss = E

{
s(p)sT(p)

}
and the estimated

correlation matrix R̂ss = 1
T

∑T
p=1 s(p)sT(p), we may write the power of the

output signal as follows
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E
{
y2(p)

}
= wTHRssHw, (8.11)

1
T

T∑
p=1

y2(p) = wTHR̂ssHw. (8.12)

Since the source s1 is not active, a necessary and sufficient condition to
solve (8.2) and (8.9) is

CTw = c, wTHint = 0. (8.13)

The matrix Hint is the mixing matrix for the interferers sn(p), n = 2, . . . , N :

Hint =

⎛⎜⎝ h12,0 · · · h1N,0

...
...

hM2,0 · · · hMN,0

⎞⎟⎠ . (8.14)

If M = N , (8.13) determines a unique w which is the solution of both (8.2)
and (8.9). This shows that the solutions of (8.2) and (8.9) coincide. In other
words, wopt may be perfectly estimated with a finite sample size. This phe-
nomenon is sometimes called statistical superefficiency and occurs only for
noiseless input signals [24].

Illustration in the case of SOS-BSS

As indicated by Cardoso and Pham, BSS also have a potential for super-
efficiency [24]. For SOS-BSS cost functions J that are joint diagonalization
criteria for the output cross-correlation matrices, this potential becomes con-
crete when, at any time p, only one source is active:

∀p ∃sn(p) �= 0 ⇒ sn′(p) = 0 ∀n′ �= n. (8.15)

Consider the case of instantaneous mixtures for two sources and the separating
matrix given by (

w11,0 w12,0

w21,0 w22,0

)
=
(

h22,0 −h12,0

−h21,0 h11,0

)
. (8.16)

At this point, the output yn(p) is proportional to the source sn(p), and ac-
cording to (8.15) we have

∀p ∃yn(p) �= 0 ⇒ yn′(p) = 0 ∀n′ �= n. (8.17)

Hence, for any time p, the estimated output cross-correlation matrix R̂yy(p)
is diagonal. Then, any cost function J that is a joint diagonalization criterion
for the output cross-correlation matrices is minimum in (8.16).

The case of the cost function JBSS in (8.1) is somewhat particular. If W
is set as in (8.16) and if (8.17) holds, the output correlation matrix R̂yy(p) is



8.1 Properties of the Cost Functions 131

singular and the “true” cost function (8.8) as well as its estimate (8.1) are not
defined. However we may, say these two cost functions (the estimated one (8.1)
and the “true” one (8.8)) are both minimal in (8.16) in the sense that their
regularized natural gradients vanish. If (8.15) does not hold, then the separa-
tion accuracy may be limited by the empirical cross correlation of the source
signals and SOS-BSS methods which exploit the nonstationarity of the source
signals are, in general, not superefficient [9].

Comparison of (8.1) with another SOS-BSS cost function based
on the nonstationarity

Not all BSS cost functions are equivalent with respect to estimation variance.
For example, let us consider the following least-square criterion

JBSS,LS(W) =
K∑

k=1

∥∥∥R̂yy(kL) − bdiag
(
R̂yy(kL)

)∥∥∥2

. (8.18)

Similarly to the mutual-information-based cost function (8.1), the cost func-
tion in (8.18), which was introduced in Sect. 6.3.3, is a joint diagonalization
criterion for the output cross-correlation matrices R̂yy(kL), k = 1, . . . ,K.
This criterion was introduced heuristically by Parra and Spence for frequency-
domain BSS [75]. In the following, we numerically examine the estimation
error for two cost functions (8.1) and (8.18).

To this end, we consider the two-source two-sensor scenario and set the
sample size T = 100. The source signal samples are independently drawn
from a normal distribution (white Gaussian noise). The source signal s2(p)
for p = 1, . . . , T has unit energy. We vary the power of the source signal
s1(p) on its first 25 samples, thus varying the input SIR. A randomly selected
instantaneous mixing system is applied to these source signals. The instan-
taneous mixing model is chosen not just for its simplicity. As explained in
Sect. 2.3.1, it also ensures that the separation coefficients are independent of
the source signals. Only the source signals and the sample size T influence the
separation accuracy. The BSS cost functions (8.1) and (8.18) are minimized
numerically, which yield the minimum Ŵopt. Since the mixing matrix H is
known in our simulation, the estimation accuracy may be quantified using the
global system C = ŴoptH. We define the estimation error eestim = c2

12/c2
11

to measure the quality of the separation at the output y1(p). The error eestim

is averaged over 20 trials. The results are shown in Fig. 8.1.
The superefficiency of the mutual-information-based cost function (8.1)

manifests itself by the continuously decreasing estimation error for decreasing
SIRin. By contrast, for the cost function (8.18), the estimation error eestim

has a lower bound (which depends on the sample size). In this respect, the
mutual information criterion (8.1) outperforms the heuristic criterion (8.18).
This may be explained as follows: Not all output cross-correlation matrices
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for the mutual-information-based cost func-

tion (8.1) and the heuristic cost function (8.18). The sample size is
T = 100

R̂yy(kL), k = 1, . . . , K are equally important in the joint diagonalization cri-
terion (8.1). As may be seen from the natural gradient in (5.41), the mu-
tual information criterion yields a normalization through the output power
Ê
{
y2
1(kL)

}
. This normalization assigns a larger weight to the cross-correlation

matrices R̂yy(kL) for which y1(p) has low power (that is, for p = 1, . . . , 25
in our simulation). Hence, if s1 is silent in a given interval, an infinite weight
is assigned to the cross-correlation matrices R̂yy(kL) in this interval. These
matrices are precisely those that allow superefficiency. Therefore, if the target
source is silent then the estimation error vanishes. On the other hand, such
a weight distribution does not exist with the cost function (8.18). In fact, its
gradient

∂JBSS,LS

∂W
=

K∑
k=1

(
R̂yy(kL) − bdiag R̂yy(kL)

)
R̂yx(kL) (8.19)

does not include any normalization. To improve the stability during adap-

tation, Parra [75] suggests normalizing the learning rule by
∥∥∥R̂yx(kL)

∥∥∥2

as
follows:

ΔW = −μ

K∑
k=1

∂
∥∥∥R̂yy(kL) − bdiag

(
R̂yy(kL)

)∥∥∥2

∂W
/
∥∥∥R̂yx(kL)

∥∥∥2

. (8.20)

Unfortunately, this normalization does not seem to allow any useful weight
distribution over the matrices R̂yy(kL), k = 1, . . . ,K.
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8.2 Complexity

This section compares the amount of computation required by LMS-adapted
LCMV beamforming and NG-SOS-BSS adaptive algorithms. The complexity
of a real multiplication is denoted by CM and that of a real addition by CA

(divisions are treated as multiplications).
In the following, we calculate the complexity for elementary adaptive

“blocks.” In the case of the interference canceler, the elementary block is
shown in Fig. 8.2a. It includes M ′ interferer reference signals. By setting
M ′ = M − 1, one obtains the complexity for the interference canceler in the
GSC. The computational demand for the RGSC may also be evaluated using
the complexity of this elementary adaptive block. Setting M ′ = 1 yields the
complexity for one filter of the adaptive blocking matrix of the RGSC. We
note that the steering delays may require fractional delay filters in the case of
the GSC with a compact microphone array [64]. This results in an additional
computational cost which depends on the length of the interpolation filters
and is not taken into account here. Also, additional computational cost for a
control mechanism is not taken into account.

x1

xN

x2

y1

y2

yN

z−D y

xB

xB,1

xB,2

xB,M ′

(a)

(b)

x0

W

a

Fig. 8.2. Adaptive elements of the evaluation of the computational complexity:
(a) adaptive interference canceler, (b) adaptive SOS-BSS separation block
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We distinguish two types of implementation:

• For the block-wise batch implementation, the filters are estimated period-
ically using a batch algorithm after a block of βL new input samples has
arrived. The batch algorithm may be iterated Niter times. If we denote the
number of operations for one batch iteration by Cbatch, the corresponding
block-wise batch algorithm then has complexity

Cblock-wise =
Niter

βL
Cbatch. (8.21)

The block convolution may be realized efficiently in the DFT domain.
• For sample-wise algorithms, the filters are updated after each new input

sample as in (4.7) or (6.68).

In the case of SOS-BSS (Fig. 8.2b), the block-wise implementation addition-
ally depends on the number of blocks K as defined in Table 6.2.

Convolution in the DFT domain

As a preliminary, we derive the number of operations for the convolution of
two vectors using the fast Fourier transform (FFT). We assume that the calcu-
lation of one DFT or inverse DFT of length LFFT involves LFFT log2 LFFT real
additions and real multiplications, which is valid with the radix-2 FFT algo-
rithm if LFFT is a power of two (otherwise, mixed radix FFT algorithms, whose
complexity is also in O(LFFT log LFFT), may be employed [69]). First, the in-
put vectors are transformed to the DFT domain, 2LFFT log2 LFFT(CA +CM )
operations are involved. Then, the convolution is computed in the DFT
domain with LFFT

2 + 1 complex multiplications, exploiting the Hermitian
symmetry of the DFT for real-valued time-domain signals. Each complex
multiplication requires four real multiplications and two real additions.
Eventually, an IFFT is performed to obtain the result in the time domain. In
total, the number of operations for the convolution is given by

CLFFT
conv = 3LFFT log2 LFFT(CA + CM ) + (LFFT + 2) (2CM + CA) . (8.22)

8.2.1 NLMS Complexity

Block-wise batch implementation

The NLMS algorithm in (4.7) may be implemented in a batch fashion with

a(n+1) = a(n) − μ
r̂(n)

yxB

‖xB‖2
, (8.23)

where n represents the iterations index. The M ′L×1 vector r̂(n)
yxB is an estima-

tor for the correlation E
{
y(n)xB(p)

}
. The computation of y(n)(p) on L points
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requires M ′ convolutions and M ′L additions. For simplicity and fairness, we
may consider the same biased estimator as for our NG-SOS-BSS algorithms
which was given in (6.47). Then the estimate r̂(n)

yxB may be implemented with
M ′ block convolutions. Taking the normalization by ‖xB‖2 into account, the
number of operations in (8.23) is given by

Cbatch
NLMS(M ′, L) = 2M ′C2L

conv + (2M ′L + 1)CM + M ′(2L − 1)CA (8.24)
= O(L log2 L). (8.25)

The complexity for a block-wise batch NLMS algorithm depends on the pa-
rameters Niter and β. It is directly obtained by substituting Cbatch in (8.21)
with its value in (8.24). Thus, the complexity per sample is in O(log2 L).

Sample-wise implementation

The sample-wise implementation of the NLMS algorithm in (4.7) firstly re-
quires the output sample y(p) to be computed as y(p) = x0(p − D) +
aT(p)xB(p), which necessitates M ′L multiplications and M ′L additions. Once
the output y(p) is available, computing y(p)xB(p) requires M ′L multiplica-
tions. We also need to take into account the normalization term, which may
be computed efficiently as

‖xB(p)‖2 = ‖xB(p − 1)‖2 −
M ′∑

m=1

|xB,m(p − L)|2 +
M ′∑

m=1

|xB,m(p)|2. (8.26)

This requires 2M ′ multiplications and 2M ′ additions. Denote the complexity
of a multiplication by CM and that of an addition by CA (divisions are treated
as multiplications). Given the division by ‖xB(p)‖2 the subtraction in (4.7),
the NLMS complexity becomes

CNLMS(M ′, L) = 2(M ′(L + 1) + 1)CA + 2M ′(L + 1)CA (8.27)
= O(L). (8.28)

8.2.2 Complexity of NG-SOS-BSS Algorithms

This section derives the complexity of NG-SOS-BSS algorithms and dis-
tinguishes three cases: block-wise batch BSS, block-wise batch PBSS, and
sample-wise PBSS in the case N = 2.

Block-wise batch implementation for a square system

Let us start with the derivation of the complexity for a square system with
M = N . We rewrite the NG-SOS-BSS algorithm in its generic form:

W(n + 1) = W(n) − μ

K∑
k=1

diag−1 (Ryy(kL)) boff (Ryy(kL))W(n). (8.29)
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Due to the Sylvester structure of W, the computation of y(kL) in

y(kL) = Wx(kL), k = 1, . . . , K, (8.30)

actually consists of block convolutions. We may exploit the efficiency of the
convolution in the DFT domain in particular if we transform the K input
data blocks in one pass. The number of operations involved in (8.30), which
is denoted by C1, is then given by

C1(N,L,K) = N2Cmax{2L,KL}
conv + KN(N − 1)LCA. (8.31)

Once the output signals are available, the following operations are carried out:

(i) The cross-correlation matrices boff (Ryy(kL)) for k = 1, . . . ,K are esti-
mated. We consider the biased estimation given by rij,τ (kL) in (6.47).
We note that an unbiased estimation may also be considered and may
have a larger complexity. Using blocks of output signal yn(p) with length
L, the cross-correlation estimator rij,τ (kL) for τ = −L+1, . . . , L−1 may
be computed efficiently with convolutions in the DFT domain. In total,
the estimation of boff (Ryy(kL)) has complexity

C2(N,L,K) =
1
2
KN(N − 1)C2L

conv. (8.32)

(ii) The product boff (Ryy(kL))W may also be implemented with block
convolutions in the DFT domain. Strictly speaking, one should distin-
guish between (1) the self-closed rule, which may be computed with an
FFT length of 2L and (2) the non-self-closed rule, which can be com-
puted with an FFT length of 3L. For the sake of simplicity, we consider
only the self-closed rule. One finds that KN2(N − 1) convolutions are
required, with the complexity

C3(N,L,K) = N2(N − 1)Cmax{2L,KL}
conv + KN2(N − 2)LCA. (8.33)

(iii) By averaging over L samples, the estimates ‖yn(kL)‖2 of the out-
put signal powers for k = 1, . . . , K involve KNL multiplications and
KN(L−1) additions. Multiplying wnm by μ

/
‖yn(kL)‖2, n,m = 1, ..., N

has complexity KN(1 + NL)CM . Thus, normalizing by ‖yn(kL)‖2 for
n = 1, . . . , N and for k = 1, . . . ,K has complexity

C4(N,L,K) = KN(L + NL + 1)CM + KN(L − 1)CA. (8.34)

Adding in the subtraction in (8.29) (C5(N,L,K) = KN2LCA), the total
number of operations for one NG-SOS-BSS batch iteration is given by

Cbatch
BSS (N,L,K) =

5∑
i=1

Ci(N,L,K). (8.35)
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Then the complexity in block-wise batch online implementation can be written
using (8.21) as

Cblock-wise
BSS (N,L,K) =

Niter

βL
Cbatch

BSS (N,L,K) (8.36)

= O(log2 L). (8.37)

Block-wise batch implementation for a nonsquare system and N = 2

Consider the PBSS update given in (5.52) and assume that the cross filters
wnm, n �= m,n,m > 1 are not adapted as in (5.53). In this case the number
of operations is given by

CPBSS,batch
1 (M,L,K) = 3(M − 2)KCmax{2L,KL}

conv + 2(M − 1)KLCA, (8.38)

CPBSS,batch
2 (M,L,K) = K(M − 1)C2L

conv, (8.39)

CPBSS,batch
3 (M,L,K) = 4(M − 1)Cmax{2L,KL}

conv + (M − 2)KLCA, (8.40)

CPBSS,batch
4 (M,L,K) = KM(L + ML + 1)CM + KM(L − 1)CA, (8.41)

CPBSS,batch
5 (M,L,K) = K(3M − 2)LCA, (8.42)

Cbatch
PBSS(M,L,K) =

5∑
i=1

CPBSS,batch
i (M,L,K). (8.43)

(For each index i = 1, . . . , 5, the variable CPBSS,batch
i (M,L,K) gives the com-

plexity of the same algorithm part as the variable Ci(N,L,K) above.) Then
the number of operations per sample in block-wise batch online implementa-
tion can be written using (8.21) as

Cblock-wise
PBSS (M,L,K) =

Niter

βL
Cbatch

PBSS(M,L,K), (8.44)

= O(log2 L). (8.45)

It may be easily verified that Cbatch
BSS in (8.35) and Cbatch

PBSS in (8.43) are equal
if M = N = 2:

Cbatch
BSS (2, L,K) = Cbatch

PBSS(2, L,K). (8.46)

Sample-wise implementation for N = 2

In the case N = 2, sample-wise PBSS updates have been derived in (6.68).
The computational cost results from

(i) the computation of M outputs ym(p) for m = 1, . . . ,M ,

C1(M,L) = M(M − 1)LCM + M((M − 1)(L − 1) + 1)CA, (8.47)

(ii) the computation of 2(M −1) cross correlations ym(p)ym′(p) for m �= m′,

C2(M,L) = 2(M − 1)LCM , (8.48)



138 8 Comparison of LCMV Beamforming and Second-Order Statistics BSS

(iii) the M normalization terms ‖ym(p)‖2 for m = 1, . . . ,M as ‖ym(p)‖2 =
‖ym(p − 1)‖2 − y2

m(p − L) + y2
m(p),

C3(M,L) = 2M(CA + CM ), (8.49)

(iv) 2(M − 1) divisions by ‖ym(p)‖2, multiplication by μ, and eventual sub-
traction

C4(M,L) = 2(M − 1)LCA + 2MCM . (8.50)

The total number of operations per sample is given by

CPBSS(M,L) =
4∑

i=1

Ci(M,L) (8.51)

= O(L). (8.52)

8.2.3 Comparison of NLMS and NG-SOS-BSS Complexities

Figure 8.3 compares the complexities for the NLMS and the NG-SOS-BSS
in their sample-wise and block-wise implementations for the setup of N = 2
sources and M = 4 sensors. Note that this represents only the computational
demands. (The performance of the algorithms will be measured from exper-
iments and is taken into consideration in Sect. 8.4.) To obtain the minimum
complexity for NG-SOS-BSS, the number of blocks is set to K = 1 and the
number of iterations per batch run is set to Niter = 1. The number of inter-
ference references for the NLMS is set to M ′ = M −1 = 3, which corresponds
to the number of adaptive filters in a standard GSC4. It may be observed
that NG-SOS-BSS requires more operations per input sample than NLMS for
both sample-wise and block-wise implementations. As expected, the use of the
FFT for the block-wise implementation significantly reduces the complexity,
in particular for long separation filters. For L = 256, the block-wise batch
PBSS algorithm would require about 3,500 operations per sample, which is
comparable to the complexity for a sample-wise NLMS-driven GSC (about
3,000 operations per sample). The price for this low complexity is the reduced
tracking capability.

In the square case (N = M = 2), the number of operations for the
sample-wise NG-SOS-BSS update in (6.67) can be obtained by setting M = 2
in (8.51), which results in

CBSS(2, L) = 4(L + 2)CM + 4(L + 1)CA. (8.53)

4 The case of the RGSC would be obtained by setting M ′ = M = 4, which also
accounts for the filters in the adaptive blocking matrix since adaptation of the
blocking matrix and of the interference canceler never occur simultaneously (see
Appendix C for more details). This would result in approximately M

M′ = 4
3

more
operations than for the GSC.
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Fig. 8.3. Number of operations (sum of the number of real additions and of the
number of real multiplications) for M = 4, M ′ = M − 1, N = 2, K =
Niter = 1 for (Upper plot): sample-wise implementation and (lower
plot): block-wise implementation

This is exactly twice as many operations per sample compared to the NLMS
algorithm in (4.7) for M ′ = 1, which is given by

CNLMS(1, L) = 2(L + 2)CM + 2(L + 1)CA. (8.54)

In other words, the sample-wise NG-SOS-BSS update in (6.67) and the sample-
wise NLMS algorithm in (4.7) require the same number of operations per output
sample (which account for the fact that the sample-wise NG-SOS-BSSupdate
in (6.67) achieves “more than” the NLMS algorithm since it provides estimates
not only for the target signal but also for the interference signal).
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8.3 Links with the ILMS Algorithm

As we have seen above, the sample-wise NG-SOS-BSS update in (6.68) and
the sample-wise NLMS algorithm in (4.7) are very similar in terms of com-
putational load for M = 2. In fact, tight connections between (6.68) and the
ILMS algorithm exist.

Let us rewrite the ILMS algorithm in (4.8) in terms of w12 for the AIC
architecture in Fig. 5.1:

w12(p + 1) = w12(p) − μ
y1(p)x2(p)
‖y1(p)‖2

. (8.55)

Following the suggestion of Van Gerven [38], we replace the interferer reference
signal x2(p) by its best estimation y2(p) available in BSS. Then (8.55) becomes

w12(p + 1) = w12(p) − μ
y1(p)y2(p)
‖y1(p)‖2

, (8.56)

which is just the NG-SOS-BSS algorithm in (6.67) for (n,m) = (1, 2) in the
case ‖y1(p)‖2 > 2α. This link between NG-SOS-BSS and ILMS suggests that
NG-SOS-BSS exploits the source signal nonstationarity in a particular way
by taking special advantage of the source silences (as ILMS does). For both
algorithms, the parameter updates have the largest norm during silences of the
target source. Note, however, that the directions of their updates are different.

Another line of comment about the ILMS algorithm is in order. We observe
that replacing the normalization term r̃ynyn,0(p) with 1, (6.67) reduces to

w12(p + 1) = w12(p) − μy1(p)y2(p), (8.57)
w21(p + 1) = w21(p) − μy2(p)y1(p), (8.58)

which is simply the algorithm (5.3) proposed by Van Gerven et al. that we
mentioned in the introduction of Chap. 5. Van Gerven’s algorithm appears
as an approximation of the sample-wise NG-SOS-BSS algorithm in the case
N = 2. From the analogy between ILMS and NG-SOS-BSS, we can see that
Van Gerven was not far away from an efficient BSS algorithm. He only missed
an adequate normalization. In fact, he also derived a normalized update in [39].
Starting from the normalization by ‖x2(p)‖2 that is applied in the NLMS
algorithm, Van Gerven proposed to normalize (8.57) by the update ‖y2(p)‖2,
as follows

w12(p + 1) = w12(p) − μ
y1(p)y2(p)
‖y2(p)‖2

. (8.59)

Unfortunately, this normalization is counterproductive. In (8.59), the adapta-
tion becomes slow when the interferer is dominant.
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8.4 Experimental Comparison

In this section, we want to compare NG-SOS-BSS and LMS-adapted LCMV
beamforming in terms of performance-to-complexity ratio. From a practical
standpoint, online algorithms will be analyzed, as opposed to offline algo-
rithms.

Experimental conditions

Recordings of real speakers in a car cabin are used, as in Sect. 6.3. We refer
to Appendix A for more details on the experimental setups.

Algorithms and parameter settings

The following algorithms are considered:

• LMS-adapted LCMV beamforming algorithms. We use the implicitly
controlled ILMS and the DTD-NLMS implemented as described in
Sect. 4.5. For the DTD-NLMS, adaptation is carried out during
periods of interference activity and target silences, which requires a
double-talk detector (DTD). The adaptation control stops the adapta-
tion when the power of the true target signal exceeds a fixed threshold.
(In practice, the true target signal in unknown. Hence, this adaptation
control may be regarded as a best-case double-talk detection.) Tables 4.1
and 4.2 may be referred for more details on the implementation.

• NG-SOS-BSS algorithms. We consider the sample-wise adaptive
algorithm (6.67). Block-wise adaptation is performed with the self-closed
update (6.51) if M = 2 and with PBSS algorithm (6.54) if M = 4.
In all cases, a causal separation system is used (d = 0). As described
in Sect. 6.2.1, the computation load of block-wise online NG-SOS-BSS
algorithm depends on the number of blocks K, the number of iterations
Niter, and the frame rate β. To limit the number of necessary experi-
ments, we assume that these parameters influence the performance inde-
pendently of each other and we let them vary separately from the point
(K,Niter, β) = (1, 1, 1) and consider the following parameter settings

K = 1, . . . , 5 1 1
Niter = 1 1, . . . , 5 1

β = 1 1 1
5 , 1

4 . . . , 1
1

(8.60)

The filter length is also set to L = 256. Tables 6.3 and 6.4 may be referred
for more details on the implementation.

It may be difficult to compare different algorithms fairly. In particular, the
step-size parameter influences the performance significantly. We arbitrarily
decided not to change the step-size parameters and set them as in Sect. 4.5
for LCMV beamforming and as in Sect. 6.3 for NG-SOS-BSS algorithms. In
practice, the performance of adaptive LCMV beamforming is also particularly
dependent on the implementation of the control mechanism.
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Performance and complexity measures

To compare SOS-BSS and LMS-adapted LCMV beamforming in terms of
performance and complexity, we consider the following objective measures:

• The performance measures are the start-up SIR improvement Q[0,3] and
the SIR improvement after initial convergence Q[3,10], as defined in
Table 2.1.

• The complexity measure is the number of FLoating point OPerations (real
additions and multiplications) per Second in Millions (MFLOPS) evalu-
ated using the results from Sect. 8.2. We did not account for the fact that
the adaptation of the DTD-NLMS algorithm is carried out only during pe-
riods of time with interference activity and target silence, which reduces
the number of necessary operations compared to unsupervised methods
(but the difference might be counterbalanced by the computational load
for the DTD).

The results are shown in Figs. 8.4 and 8.5.
First, let us compare NG-SOS-BSS algorithms to the supervised beam-

forming algorithm DTD-NLMS. As may be seen in Fig. 8.4a and Fig. 8.5a,
the superior start-up performance of DTD-NLMS clearly appears for both
microphone setups. This may be explained by the conjunction of two factors.
First, the source signals have little overlap in the first half of the recordings.
Second, NLMS may converge very fast if the step-size is large. By contrast, a
large step-size makes NG-SOS-BSS algorithms unstable.

Then, in the second part of the recordings, the performance of DTD-NLMS
depends on the microphone setup. With the four-element compact array
mounted in the rear-view mirror, the intermittent adaptation is sufficient to
reduce the interferer also during double-talk (Fig. 8.4b). In this case, the
performance of DTD-NLMS is similar to that of PBSS. On the other hand,
with the two-element distributed array mounted on the car ceiling, the per-
formance is rather limited during double-talk (Fig. 8.5b). Here, continuous
adaptation seems necessary and the performance of NG-SOS-BSS is superior,
even with a similar computational load as may be seen from Fig. 8.5b for
K = Niter = β = 1. This discrepancy may be due to the fact that the inter-
ference signal suppression relies more on spatial than on spectral filtering in
the case of the four-element compact array mounted in the rear-view mirror.
By contrast, for the two-element distributed array mounted on the car ceiling,
the interference signal suppression may rely more on spectral than on spatial
filtering.

Now, we compare NG-SOS-BSS to the implicitly controlled beamform-
ing algorithm ILMS. Here again, the superior start-up performance of ILMS
appears for both microphone setups. As we may see in Fig. 8.5a,b, the sample-
wise NG-SOS-BSS algorithm and ILMS yield similar performances with the
two-element distributed array mounted on the car ceiling. This may be ex-
pected from their relationship described in Sect. 8.3. However, for the four-
element compact array mounted in the rear-view mirror, the score Q[3,10] of
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Fig. 8.4. Performance as a function of the computational load for LMS-adapted
LCMV beamforming and NG-SOS-BSS algorithms for the four-element
compact array mounted in the rear-view mirror

ILMS is poor (Fig. 8.4b). This reflects the target signal cancelation that we
reported in Sect. 4.5.1. By contrast, PBSS does not reduce the target signal.

The following observations on NG-SOS-BSS may be done:

• In all cases, increasing the number of blocks K improves the performance
at best marginally.

• With the two-element distributed array mounted on the car ceiling,
sample-wise NG-SOS-BSS outperforms the block-wise adapted algorithms,
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Fig. 8.5. Performance as a function of the computational load for LMS-adapted
LCMV beamforming and NG-SOS-BSS algorithms for the two-element
distributed array mounted on the car ceiling

in terms of performance-to-complexity ratio. This is because the opti-
mum separation filters depend on the signals’ spectral content. Hence,
the performance depends on the tracking capabilities of the adaptation.
By contrast, with the four-element compact array mounted in the rear-
view mirror, the performances of sample-wise and block-wise algorithms
are similar.

Table 8.2 summarizes these experimental results.
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Table 8.2. Results of the experimental comparison of SOS-BSS and adaptive beam-
forming

LMS-adapted LCMV beam-
forming

NG-SOS-BSS

adaptation controlled by a DTD (except
for ILMS)

unsupervised

start-up perfor-
mance

depends on the DTD, on the
amount of double-talk and
on the step-size. Fast conver-
gence capability

slow because the global
stability is not guaranteed,
which requires a small
step-size

performance af-
ter initial con-
vergence

depends on the DTD, on the
amount of double-talk

depends on the validity of the
LTI mixing model

8.5 Summary and Conclusion

In the first part of this chapter, we discussed theoretical properties of SOS-BSS
and LCMV beamforming. First, the global shapes of the cost functions have
been examined. For LCMV beamforming, the cost function JLS has a unique
minimum, and the convergence of the gradient descent to this minimum can
be guaranteed if the step-size is within a range known a priori. The situation
is much more complex in the case of SOS-BSS. The cost function JBSS has
multiple minima. Setting the causality constraint on the separation matrix
limits the search space a priori and removes the minima that correspond to
permuted solutions. The convergence of the natural gradient for JBSS cannot
be guaranteed yet, even in the case of instantaneous mixtures. The conditions
for interference-independent separating solutions to be minimum of JBSS are
less restrictive than for JLS.

The cost functions have then been discussed from an estimation point of
view. In a simple case with instantaneous mixtures, we could show that both
techniques are superefficient if the source of interest has periods of silence. By
contrasting with another widely used BSS technique based on the second-order
statistics, we could explain why the mutual-information-based cost function
may be superefficient.

The second part of this chapter compared the two approaches from a
practical standpoint. First we derived the computational complexities for
LMS-adapted LCMV beamforming and NG-SOS-BSS for block-wise and
sample-wise updates. We have shown that the sample-by-sample update pro-
posed in Sect. 6.2.2 is similar to the NLMS algorithm in terms of complexity.
We also showed that this sample-by-sample update is very closely linked to
the ILMS algorithm given in Chap. 4.

Finally, NG-SOS-BSS algorithms and LMS-adapted LCMV beamforming
have been compared in terms of performance-to-complexity ratio. On the one
hand, it appears that the NG-SOS-BSS algorithms have a slower initial con-
vergence than LCMV beamforming. On the other hand, they may outperform
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LMS-adapted LCMV beamforming during double-talk periods. This is true
even in the particular case of the two-element distributed array mounted on
the car ceiling, where LCMV beamforming adaptation may be performed
continuously with the ILMS algorithm. The experiments have confirmed the
good performance of the NG-SOS-BSS sample-by-sample update when rapid
tracking of the signal spectrum is required. This shows that NG-SOS-BSS
algorithms are a true alternative to LMS-adapted LCMV beamforming.

To summarize, the most important results of this chapter are:

• The convergence of the gradient descent for the LCMV cost function can
be guaranteed, while the convergence of the SOS-BSS natural gradient
cannot be guaranteed yet.

• Source silences appear to play an important role in adaptive LCMV beam-
forming and in SOS-BSS, as shown by the link between the ILMS algo-
rithm and the sample-wise NG-SOS-BSS algorithm. In both cases, source
silences enable statistical superefficiency.

• NG-SOS-BSS algorithms converge slower but may outperform LMS-
adapted LCMV beamforming because the former are able to adapt during
double-talk.



9

Combining Second-Order Statistics BSS
and LCMV Beamforming

Adaptive LCMV beamforming and convolutive blind source separation (BSS)
have a common goal, namely to reduce interferences. On the one hand, BSS
algorithms are able to adapt continuously, while LCMV beamforming algo-
rithms adapt only when the interferer signal is dominant. On the other hand,
adaptive LCMV beamforming algorithms may converge faster than NG-SOS-
BSS algorithms if there is no double-talk, as we have observed in Chap. 8.
Moreover, beamformers may exploit geometric prior information about the
position of the target source. In this chapter our objective is to combine the
advantages of both approaches.

A combination of a BSS algorithm and a beamforming algorithm depends
on several design options. At first glance, the beamformer could be either
data-independent or adaptive, or it could be placed either in front of or after
the BSS block, leading to four possible combinations. However, two combina-
tions may be removed a priori. Firstly, placing a data-independent beamformer
after the BSS block is not appropriate. This is because the BSS separation sys-
tem distorts the spatial properties of the signals on which data-independent
beamformers are based. Secondly, the combination of an adaptive beamformer
in front of the BSS block can also be removed a priori. The adaptive LCMV
beamformer is generally highly time varying. The BSS separation system could
bring an improvement if it was able to track the time variance of the beam-
former, that is, if it converged faster than the beamformer. This is generally
not the case, as shown in Chap. 8.

As a result, two combinations deserve further investigation: (1) the data-
independent beamformer in front of a BSS adaptive block, and (2) the adap-
tive beamformer as a postprocessing of the BSS output signals. Essentially,
combination (1) is a particular way of integrating geometric prior information
in BSS and will be examined in Sect. 9.2. Combination (2) will be studied in
Sects. 9.3 and 9.4. Finally, Sect. 9.5 will compare the obtained algorithms as
a front-end in automatic speech recognition.
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9.1 Existing Combinations

Considering the two aspects of beamforming (geometric prior information
about the position of the target source, and the LMS power criterion for
the adaptation of the interference canceler), we may classify the existing
approaches into two classes:

• Different approaches have been proposed to improve BSS with geomet-
ric information on the source directions of arrival (DOA). Based on the
interpretation of BSS as a set of null beamformers, a one-to-one corre-
spondence between the output signals and the DOA of the sources can be
determined [10]. This allows to resolve the permutation ambiguities. In the
case of frequency-domain BSS algorithms, where the permutation problem
is critical, this may significantly improve the performance [58, 63, 82]. The
influence of DOA information may be made stronger than for solving the
permutations only. Saruwatari et al. have proposed to replace the BSS
separation system with null beamformers if their outputs are less cor-
related [80]. This approach is well-suited if the information on the source
position is reliable and if the far- and free-field propagation model matches
with the actual acoustic environment. By contrast, in reverberant environ-
ments, BSS may outperform a data-independent null beamformer, even if
the position of the sources is precisely known [58]. Initialization of the
separation system to null beamformers was also proposed for time-domain
algorithms [3]. A general approach for merging frequency-domain BSS and
geometric prior information was presented by Parra et al. [77]. They pro-
posed to use the geometric information at the initialization of the separa-
tion system or as a soft constraint. Their experimental evaluation showed
that the simple initialization may lead to the best performance. Another
use of prior geometric information in the field of BSS appears with sparsity-
based techniques: One may assume that, even though the sources overlap
in the time domain, they do not overlap in an auxiliary transform domain.
In practice, the STFT is chosen as an auxiliary transform, and the sparsity
assumption says that the sources are not active at the same points in the
time-frequency plane so that they may be separated spectrally. Geometric
information may be used to determine which points in the time-frequency
plane belong to which source. This approach may lead to very efficient
algorithms [1, 15, 78]. However, the sparsity assumption will usually not
be entirely satisfied and sparsity-based techniques may distort the source
signals.

• The second class of combinations of source separation and beamforming
consist of using the LMS power criterion for adapting the filters of the
separation system. For example, the use of the LMS power criterion was
proposed as a postprocessing to cancel the residual crosstalk components
in the BSS-separated signals [67, 72, 87].
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In this chapter, we build upon the time-domain self-closed NG-SOS-BSS
algorithms (6.51) and (6.54) and investigate how geometric prior information
or the LMS power criterion may be efficiently combined with BSS. The dif-
ferent options are discussed and lead to both known and novel broadband
algorithms.

9.2 BSS and Geometric Prior Information

This section discusses how geometric prior information may be used in BSS.
First, Sect. 9.2.1 investigates the impact of causality constraints. These may
be set if the sources are on different sides of the microphone median plane (see
Fig. 6.2) but they do not require a precise information on the source DOA.
Second, in Sects. 9.2.2–9.2.5, we present and discuss techniques that allow to
apply geometric constraints on the separation system. The performance im-
provement that is due to the input of geometric prior information depends on
the accuracy of this prior information in the current experimental conditions.
In this section, the geometric prior information consists of the source DOA
and the geometric constraints are based on the far- and free-field acoustic
propagation model, which is only an approximation of the physical reality. It
may not be desirable to apply these constraints strictly, since the loss of the
number of degrees of freedom might not be compensated by the contribution
of the geometric information [58]. This section presents techniques to enforce
a given geometric constraint with various degrees of strictness:

• The constraint may be set only at the initialization. This is discussed in
Sect. 9.2.3.

• Intermediately, the geometric prior information may be included as a soft
constraint, which is maintained with a parameterizable degree of strictness
(Sect. 9.2.4).

• The constraint may be strictly maintained during the entire adaptation
(Sect. 9.2.5).

More realistic models may be considered, possibly requiring more prior infor-
mation than the source DOA. Conversely, simulations could be carried out
in a controlled acoustical environment with varying reverberation. Here the
experiments are conducted in the car interior which is our privileged applica-
tion environment. Also, the geometric prior information may be included at
the physical level, for example by directing the microphone toward the sources
as it is done with the distributed microphone array.

Experimental evaluation

In this section we are interested in merging NG-SOS-BSS algorithms with
prior information at the algorithmic level in the car environment. The experi-
mental setup is described in Appendix A with the four-element compact array
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mounted in the rear-view mirror. The geometric prior information is set to
(θ1, θ2) = (20◦,−40◦), which may be regarded as a fairly accurate estimation
of the true DOA.1

The performance is measured with Q[0,3] and Q[3,10] as defined2 in
Table 2.1. All experimental results in this chapter are obtained for L = 256. As
a baseline, the NG-SOS-BSS algorithm (6.54) is used with a causal separation
system (d = 0). The parameters settings are summarized in Table 6.4.

9.2.1 Causality Information

There is a rather weak geometric prior information that nevertheless plays a
significant role in BSS. It is the information whether or not a causal separation
system may be used, as depicted in Fig. 6.2. For the separation of the driver
and the codriver in the car cabin, the microphone arrangement mounted in
the rear-view mirror is so that the source signals may be separated by a
causal separation system. That is, the sources are on different sides of the
microphone median plane. For this reason, we initialize the separation system
with W(z, 0) = I as in (6.69) and use the self-closed update (6.54) with d = 0.

In the following, we investigate the performance of BSS algorithms when
this information is not available by setting the initial separation system to
W(z, 0) = Iz−L/2. We then adapt W with the self-closed update in (6.54)
and d = L/2 (the other parameters are given in Table 6.4). The perfor-
mance is reported in Table 9.1. For the sake of comparison, the performance
of the frequency-domain BSS algorithms from Sect. 6.3.3 is also given. For
these algorithms, the learning rules remain unchanged, the distinction be-
tween causal and acausal separation system is made only at the initialization
in (6.69) for d = 0 and d = L/2, respectively.

As we can see in Table 9.1, the performance of all algorithms decreases
when the causality information is not used. However, the time-domain base-
line algorithm (6.54) exhibits a relatively robust behavior: Its performance

Table 9.1. Comparison of the NG-SOS-BSS baseline and frequency-domain BSS
algorithms with the four-element compact array mounted in the rear-
view mirror (see Table 6.4 and Sect. 6.3.3 for more details on the
algorithm implementation)

NG-SOS-BSS FD-SOS FD-HOS

performance Q[0,3] Q[3,10] Q[0,3] Q[3,10] Q[0,3] Q[3,10]

(dB) (dB) (dB) (dB) (dB) (dB)

causal (baseline) 4.0 10.2 4.1 6.9 4.1 7.8
acausal 2.5 9.1 1.5 4.4 0.8 2.1

1 There is also an influence from array imperfections. Since these are not controlled
in practice, we regard their influence as a part of the influence of the reverberation.

2 Q[t1,t2] measures the SIR improvement averaged over the time interval [t1, t2], t1
and t2 in seconds.
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after initial convergence, Q[3,10], decreases by only 1.1 dB when an acausal
separation system is used, representing a 10% relative performance loss. The
performance of the frequency-domain BSS algorithms decreases more severely,
for example, Q[3,10] decreases by more than 2 dB, representing at least 30%
relative performance loss.

The breakdown of the frequency-domain BSS algorithms may be explained
by the permutation problem: In case of successful but permuted separation,
a full, broadband permutation of the output channels would yield in large SR
and small IR values, i.e., negative values for Q[0,3] and Q[3,10]. If permutations
occur inconsistently across the frequency range, the SIR improvement may be
large at frequencies where no permutation occurred and small elsewhere. In
average, this results in smaller values for Q[0,3] and Q[3,10], depending on the
number of inconsistent permutations.

By contrast, the permutations are inherently prevented in the causal
scenario. More recently, the role of causality in frequency-domain BSS was
observed in other experiments by Robledo-Arnuncio et al. [79] (see also [5]).

Again, it should be mentioned that the causality of the separation sys-
tem is a matter of initialization. Setting the initial separation system to
W(z, 0) = I allows a causal mixing system to be separated, as depicted in
Fig. 6.2a, but fails to separate an acausal mixing as in Fig. 6.2b. The proposal
has been made to constrain the diagonal separation filters to unit responses,
i.e. diagW(z, n) = I for all n, as in the approach proposed by Parra et al. [75].
Parra introduces this constraint to neutralize the scaling ambiguity. However,
this constraint not only neutralizes the scaling ambiguity, but also maintains
the causality of the separation system. Parra reported good separation per-
formance with an experimental setup as depicted in Fig. 6.2a, that is, the
sources are on different sides of the microphone median plane. His approach
has been applied later in different acoustic conditions by Ikram et al. [57].
Ikram found that Parra’s algorithm did not perform satisfactorily, and ex-
plained this observation by the length of the room impulse response for his
experimental conditions. In fact the experimental setup used by Ikram was on
the borderline of requiring acausal separation filters, since one of the sources
was placed on the microphone median plane. Therefore, the degree of difficulty
for his experimental setup was higher than in [75]. Considering the causality
of the mixing/separation system as in Fig. 6.2 gives further insights into the
behavior and the performance of BSS algorithms.

9.2.2 Prior Information on the Source Direction of Arrival

This section formulates the geometric prior information in such a way that it
may be included into time-domain BSS algorithms. We will reuse the space
response, which has been introduced in Sect. 2.2.3. In the remainder of this
chapter, the time index p in W(p) may be omitted for the sake of readability.
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Spatial response

First, it is important to identify the separation matrix

W =

⎡⎢⎣ W11 . . . W1M

...
. . .

...
WN1 . . . WNM

⎤⎥⎦ (9.1)

as a set of N MISO systems. We denote each MISO system by Wn, for
n = 1, . . . , N . That is, Wn is the nth row of W:

Wn � [Wn1, . . . ,WnM ] . (9.2)

Then the output yn(p) may be written as yn(p) = Wnx(p). The wideband
spatial response for Wn is denoted by g(Wn, θ) and is defined3 as:

g(Wn, θ) � Wnd(θ). (9.3)

The M(2L − 1) × 1 vector d(θ) is given for an equispaced array by

d(θ) �
[
dT

1 (θ), . . . ,dT
M (θ)

]T
(9.4)

with
dm(θ) � (dm,L−1(θ), . . . , dm,0(θ), . . . , dm,−L+1(θ))

T

dm,l(θ) �
{

1 if l = (m − 1)τθ, for m = 1, . . . ,M.
0 otherwise,

(9.5)

The delay τθ is the time needed by an acoustic wave with DOA θ to travel from
one sensor to the next one. It is given by τθ = fsΔ sin(θ)/c, where Δ denotes
the interelement spacing. In the definition (9.5), it is assumed that the delay
τθ is an integer. If this is not the case, d(θ) may be computed using fractional
delay filters [64]. The vector dm(θ) should be seen as the microphone snapshot
at time p = L−1, xm(L−1), when a source in DOA θ emits a unit impulse at
time p = 0. Then the L×1 vector g(θ) is simply the output at time p = L−1,
y(L − 1).

Constraining the spatial response

We may control the spatial response of Wn at a particular DOA θ by con-
straining g(Wn, θ). For example, we may consider a constraint of unit re-
sponse on Wn at a given DOA θ0 with

g(Wn, θ0) = δd. (9.6)

The integer d should be selected in the range d = 1, . . . , L and it controls the
acausal length of the separation filters. Note that setting d = L leads to causal
3 This is simply a reformulation of the spatial response g(w, θ) given in (2.27)

where the convolution is rewritten using a matrix product.
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separation filters (no acausal coefficients). This is because the signal vectors
x(p) and y(p) are time-reversed. The value L−d represents the input–output
delay. Setting d = L/2 leads to separation filters that have causal and acausal
parts of equal lengths. The constraint in (9.6) is fulfilled in particular for
delay-and-sum beamformers oriented at θ0. In the following, delay-and-sum
beamformers are used to implement constraints of unit spatial response.

If the DOA θ1, . . . , θN of the sources s1, . . . , sN are known, we can express
multiple geometric constraints

g(Wn, θn′) = gnn′ , (9.7)

for n, n′ = 1, . . . , N . The L × 1 vectors gnn′ determines how the spatial
response of Wn is constrained at the DOA θn′ ; they might be set arbitrarily.
We may typically set gnn′ = 0 for n �= n′ and gnn = δd. Several geometric
constraints can be stacked together for the whole separation system as follows:

WD = G (9.8)
with D �

[
d(θ1) . . . d(θN )

]
, (9.9)

and G �

⎡⎢⎣ g11 . . . g1N

...
. . .

...
gN1 . . . gNN

⎤⎥⎦ . (9.10)

The NL × N matrix G determines the geometric constraints. Note that the
number of constraints is not necessarily equal to the number of sources. The
response g(Wn, θ) of Wn for a particular DOA θ may be left unconstrained.
In this case, we use the following notational device:

g(Wn, θ) = �. (9.11)

This may be applied to the case of two sources and four microphones with
partial blind source separation (PBSS). Since the outputs y2,y3 and y4 are
assigned to the same source s2, we can write (9.8) as:

WD =

⎡⎢⎢⎣
g11 g12

g21 g22

g21 g22

g21 g22

⎤⎥⎥⎦ with D =
[
d(θ1) d(θ2)

]
, (9.12)

where gnn ∈ {δd,�} for n = 1, 2 and gnm ∈ {0,�} for m �= n. By varying
gnm for n,m = 1, 2 in (9.12), 16 different constraints are generated. For later
reference, we define two particular constraints G0 and G1 as:

G0 �

⎡⎢⎢⎣
� 0
0 �
0 �
0 �

⎤⎥⎥⎦ , G1 �

⎡⎢⎢⎣
δL/2 �

� �
� �
� �

⎤⎥⎥⎦ . (9.13)
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The constraint G0 restricts Wn, n = 1, . . . , 4 to have a zero response in di-
rections θn′ for n′ �= n. On the other hand, G1 constrains W1 to have a unit
response in the direction of the target source θ1. We associate G1 with the
delay-and-sum beamformer and the acausal length of the separation filters is
set to d = L/2.

In the following, we present techniques to enforce a given geometric con-
straint with various degrees of strictness:

• In Sect. 9.2.3, the constraint is set only at the initialization, that is, on
W(0).

• In Sect. 9.2.4, the geometric prior information is included as a soft con-
straint maintained with a parameterizable degree of strictness.

• In Sect. 9.2.5 the constraint is maintained strictly during the entire adap-
tation.

9.2.3 Geometric Information at the Initialization

Constraint G0

As shown by Araki et al., BSS-adapted separation systems converge to a set
of null beamformers [10]. Thus, a straightforward way to use geometric prior
information is to initialize the separation system with null beamformers [3].
In terms of geometric constraint in (9.8), this corresponds to setting W(p) at
p = 0 so that

W(0)D = G0. (9.14)

In the case M = 4, the constraint (9.14) is satisfied if the components of W(0)
are set to⎡⎢⎢⎣

w11(0) w12(0) w13(0) w14(0)
w21(0) w22(0) w23(0) w24(0)
w31(0) w32(0) w33(0) w34(0)
w41(0) w42(0) w43(0) w44(0)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
δ0 − 1

3δ−τθ2
− 1

3δ−2τθ2
− 1

3δ−3τθ2

−δτθ1
δ0 0 0

−δ2τθ1
0 δ0 0

−δ3τθ1
0 0 δ0

⎤⎥⎥⎦ .

(9.15)

This initialization preserves the causality of the separation system, which is
possible for our experimental setup because τθ1 > 0 and τθ2 < 0. As may be
seen from the results in Table 9.2, the initialization in (9.15) improves the
performances Q[0,3] and Q[3,10].

Constraint G1

We may hope to improve the performance if, in addition to canceling the
interfering signals, we also enhance the target signal. To this end, let us first
initialize W1 as a delay-and-sum beamformer directed toward the target.
This initialization requires an acausal separation system and may be realized
as follows:



9.2 BSS and Geometric Prior Information 155

w1m(0) =
1
M

δL/2−(m−1)τθ1
for m = 1, . . . , M. (9.16)

The other elements of the separation system are initialized to wnn = δL/2 for
n = 2, . . . , M and wnm = 0 for n = 2, . . . , M ;m = 1, . . . ,M ;n �= m. In terms
of the geometric constraint in (9.8), this corresponds to

W(0)D = G1. (9.17)

A comment about the update in (6.54) for the initialization above is in
order. We set M = 4 in the following. Let us define the subscript sets

I1 � {(1, 2), (1, 3), (1, 4)} and I2 � {(2, 1), (3, 1), (4, 1)}. (9.18)

An examination of the update (6.54) shows that the updates Δwnm for
(n,m) ∈ I2 are proportional (for the convolution product) to w11. Simi-
larly, Δwnm for (n,m) ∈ I1 is proportional to wnn for n = 2, . . . , M . Since
w11(0) = wnn(0)/4 for n = 2, . . . , M , the initialization in (9.16) leads to
smaller updates Δwnm for (n,m) ∈ I2 than for (n,m) ∈ I1. To compen-
sate for this effect, we pre-multiply wnm by 4 for (n,m) ∈ I2, that is, we
replace (6.54) with

Δwnm = − 4μ
K∑

k=1

∑
p∈Kn

PL×2L−1
[d,L+d−1]

(
wpm ∗ r(d)

yny1
(kL)

)
/r̃ynyn,0(kL) (9.19)

for all (n,m) ∈ I2.
The result for the initialization in (9.16) is shown in Table 9.2. We can

see that the start-up performance Q[0,3] = 3.5 dB is worse than the base-
line. Moreover, the separation system completely breaks down in the course
of the adaptation (Q[3,10] = 0.4 dB). We observed that the signals coming
from both interferer and target directions are reduced at the output y1. This
may be explained by the conjunction of two factors. Firstly, we have more
microphones than sources. This results in additional degrees of freedom that
are not controlled by the separation criterion. By contrast, if we had only two
microphones (M = N = 2), no more than M − 1 = 1 spatial zero could be
set and both source signals could not be canceled simultaneously. Secondly,

Table 9.2. Separation performance for geometric initializations. The results are
obtained with the four-element compact array mounted in the rear-view
mirror and partial BSS (PBSS)

Initial causal constraint constraint constraint G′
1

(baseline) G0 (9.15) G1 (9.16) and (9.21) and
(dB) (dB) (9.19) (dB) (9.19) (dB)

Q[0,3] 4.0 7.2 3.5 4.3
Q[3,10] 10.2 11.2 0.4 6.3
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initializing to delay-and-sum beamformers requires an acausal separation sys-
tem, and thus both source signals may be canceled at the output y1. Therefore,
the additional degrees of freedom may lead to a spurious minimum of the cost
function where the two speech source signals are canceled at the output y1.

Constraint G′
1

This target cancelation problem may be somewhat mitigated if, in addi-
tion to setting W1(0) with a unit response in the direction θ1, Wn(0) for
n = 2, . . . ,M have a zero response in θ1. This corresponds to the geometric
constraint W(0)D = G′

1 with:

G′
1 �

⎡⎢⎢⎣
δL/2 �
0 �
0 �
0 �

⎤⎥⎥⎦ . (9.20)

The constraint W(0)D = G′
1 is satisfied if the components of W(0) are set to⎡⎢⎣w11(0) w12(0) w13(0) w14(0)

w21(0) w22(0) w23(0) w24(0)
w31(0) w32(0) w33(0) w34(0)
w41(0) w42(0) w43(0) w44(0)

⎤⎥⎦ =

⎡⎢⎢⎢⎣
1
4
δ L

2

1
4
δ L

2 −τθ1

1
4
δ L

2 −2τθ1

1
4
δ L

2 −3τθ1

−δ L
2 +τθ1

δ L
2

0 0

−δ L
2 +2τθ1

0 δ L
2

0

−δ L
2 +3τθ1

0 0 δ L
2

⎤⎥⎥⎥⎦ .

(9.21)

However, as can be seen in the last column of Table 9.2, the performance is
still inferior to that of the baseline. This is also due to a target cancelation
problem at the output y1 (the target signal level is reduced by about 2.8 dB in
average over the time interval [3, 10] seconds.) Maintaining the constraint of
unit response in the direction θ1 during the whole adaptation process may pre-
vent convergence to a spurious minimum and may be realized by regularizing
the separation update with a soft geometric constraint.

9.2.4 Geometric Information as a Soft Constraint

The deviation of the separation system from the geometric constraint WD =
G may be measured by the following least-square criterion:

Jgeo(W) � ‖WD − G‖2. (9.22)

The norm is given by ‖G‖2 = tr
(
GTG

)
. The total cost function is then

defined as

Jtotal(W) � JBSS(W) + λJgeo(W). (9.23)

The parameter λ > 0 is called “geometric weight” because it controls the
weight of the geometric criterion Jgeo relative to the separation criterion JBSS.
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If we set λ = 0, the geometric prior information is only used at the initializa-
tion.4 By varying the parameter λ, we may easily control the strictness of the
geometric constraint. Roughly speaking, this strictness should be high if the
geometric prior information matches well with the current environment and
should be smaller if the geometric prior information is less reliable, for exam-
ple, in a reverberant environment. Hence, an appropriate value of λ should be
determined experimentally.

The parameter update ΔW for minimizing Jtotal in (9.23) can be writ-
ten as:

ΔW = ΔW(BSS) + ΔW(geo), (9.24)

where ΔW(BSS) is given by (6.54). The term ΔW(geo) is defined using the
gradient of Jgeo(W) as follows:

ΔW(geo) � −λ

2
∂Jgeo(W)

∂W
. (9.25)

Note that λ also acts as a step-size for the gradient descent of the cost function
Jgeo. The update ΔW(geo) can be compactly written as

ΔW(geo) = S
(
(WD − G)DT

)
. (9.26)

The function S transforms a general matrix into a block Sylvester matrix
by summing the redundant terms of Sylvester matrices (see Sect. 6.1.1). The
geometric update (9.25) can be written for each Wm as

ΔW(geo)
m = −λ

2

N∑
n=1

gmn �=�

S
(
(Wmd(θn) − gmn)dT(θn)

)
. (9.27)

In (9.27), the elements gmn of G that are equal to � are not included in
the sum simply because they correspond to an unconstrained response. For
instance, the constraint G1 leads to an update ΔW(geo) that contains only
zeros except the first block-row ΔW(geo)

1 , which is given by

ΔW(geo)
1 = −λ

∂‖W1d(θ1) − δL/2‖2

∂W1
= S

((
W1d(θ1) − δL/2

)
δT

L/2

)
. (9.28)

Calibrating the geometric weight λ for the car interior

First, we examine “how much” geometric prior information is useful for the
car acoustical environment with the constraints G0 and G1. Artificial heads
are used as speech sources. To this end, we vary the geometric weight λ in
(9.25). The results for the geometric constraints G0 and G1 in (9.13) are
shown in Fig. 9.1. In the case of the constraint G0, the performance Q is a
4 W is initialized so that Jgeo(W(0)) = 0, as in Sect. 9.2.3.
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Fig. 9.1. Average SIR improvement as a function of the geometric weight λ. The
performance measure Q is defined as the SIR improvement averaged over
the whole signal: Q � IR[0,10]

/
SR[0,10]. (IR[0,10] and SR[0,10] are defined in

Table 2.1.) The source signals are emitted by artificial heads on the driver
and codriver seats and last 10 s. The baseline performance obtained with
the causal separation system is Q = 8.7 dB

decreasing function of λ. This shows that maintaining the constraint G0 does
not improve the performance. This may be explained by the poor performance
of data-independent beamforming, even in the weakly reverberant car cabin.
It seems better to let BSS fully control the separation system during the
adaptation. Here, the simple initialization of the separation system in (9.15)
leads to the best performance.

On the other hand, the constraint G1 yields a poor performance for λ <
10−3. This reflects the result obtained by initializing the separation system
with (9.16) in Sect. 9.2.3, that is, the convergence to a spurious minimum. As
can be seen in Fig. 9.1, Q attains its maximum performance around λ ≈ 0.1.
There, the performance approximately equals the baseline. This shows that
maintaining the constraint G1 during the whole adaptation process prevents
convergence to a spurious minimum. For λ > 10(−0.5), the update ΔW(geo)

1

in (9.28) is too large, which leads to instability.

Results on real speakers and improvements

Let us now focus on the constraint G1 and set λ = 0.1. Applying this con-
straint to the separation of real speakers, we obtain the performance reported
in the third column of Table 9.3. The spurious minimum problem is solved
but the performance Q[3,10] = 9.0 dB is not better than the baseline. There is
still room for improvement.

A useful observation is that the coefficients w1m,k in W1 shape the spatial
response differently depending on their position with respect to the delay
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causal coefficients
control the lower half plane

acausal coefficients
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w11
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Fig. 9.2. Depending on their position relative to L/2, the filter coefficients influence
different parts of the spatial response

Table 9.3. Performance of NG-SOS-BSS algorithms with geometric constraint
applied as soft constraint. The results are obtained with the four-element
compact array mounted in the rear-view mirror and PBSS

Soft constraint causal constraint G1 constraint G1 (9.28),
(baseline) (9.28) with λ = 0.1 (9.29) with λ = 0.1

(dB) (dB) (dB)

Q[0,3] 4.0 5.2 10.0
Q[3,10] 10.2 9.0 11.3

(or acausal length) d. Let us set d = L/2 and assume a far- and free-field
acoustic propagation. As shown in Fig. 9.2, the coefficients w1m,k for k < L/2
may enhance or reduce the sources in the upper half plane. In other words,
these coefficients are responsible for enhancing or canceling the target source
signal. On the other hand, the coefficients w1m,k for k > L/2 shape the spatial
response in the lower half plane, where the interferer is located. Now, we
want to control the spatial response to prevent the convergence toward a
target-canceling spurious minimum. According to Fig. 9.2, this may be done
by constraining the coefficients w1m,k for k ≤ L/2 only. Hence, we set the
geometric update to zero for the other coefficients:

Δw
(geo)
1m,k = 0 for k = L/2 + 1, . . . , L. (9.29)

Then the coefficients w1m,k for k > L/2 are not influenced by the geometric
prior information. They are entirely controlled by the BSS criterion.

The result, which is given in Table 9.3, shows a significant increase in
the separation performance against the baseline. In particular, in terms of
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Fig. 9.3. Beampattern of W1 after one pass in the 10-s signals. The NG-SOS-BSS
update was regularized with the geometric constraint G1. Left : The soft
constraint is applied to all coefficients w1m,k, k = 0, . . . , L. Right : The soft
constraint is applied to the acausal coefficients w1m,k, k ≤ L/2, according
to (9.29)

start-up performance Q[0,3], the algorithm clearly outperforms the baseline
and shows that a careful use of geometric prior information may lead to a
substantial improvement of the performance. Note that the constraint G1 is
not maintained during the adaptation and the question arises of how zeroing
the updates in (9.29) affects the geometric constraint. To answer this question,
the beampatterns of W1 with and without zeroing are shown in Fig. 9.3. It
may be seen that the constraint of unit response in the target direction, though
not strictly, is nevertheless sufficiently maintained. Therefore, the problem of
target-canceling spurious minimum is efficiently prevented.

9.2.5 Geometric Information as a Preprocessing

If we maintain the geometric constraint strictly, the minimization of JBSS (W)
becomes a constrained problem:

min
W

JBSS (W) s.t. WD = G. (9.30)

An analogous situation appears in the design of LCMV beamformers.
In (9.30) and in the LCMV problem (3.7), the filter coefficients are adjusted
to minimize a cost function and to fulfill a linear constraint. As shown in
Chap. 3, the generalized sidelobe canceler (GSC) transforms the LCMV con-
strained minimization problem into an unconstrained problem using a spatial
preprocessor. Likewise, this section presents examples of spatial preprocessors
to solve the problem (9.30) for some particular constraints G. Since W de-
notes the entire separation system, we denote the filters in the BSS adaptive
part by W′, as depicted in Fig. 9.4.



9.2 BSS and Geometric Prior Information 161

independent

spatial

data−

preprocessor

or

PBSS

BSS
M M ′ N

x1

xM

global separation system W

W′

Fig. 9.4. Two-stage separation system consisting of a data-independent spatial pre-
processor and an adaptive source separation block
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Fig. 9.5. The spatial preprocessor for the constraint G1 leads to the “generalized
sidelobe decorrelator” (GSD)

The generalized sidelobe decorrelator

First, we examine the case of the constraint G1, which restricts W1 to have a
unit response in the direction θ1. We directly deduce from the analogy with the
LCMV beamformer that the spatial preprocessor from the GSC may be used
to transform the constrained problem (9.30) for G = G1 in an unconstrained
one. The resulting structure is depicted in Fig. 9.5. We just need to replace
the adaptive interference canceler of a GSC with the PBSS algorithm. This
structure has been called “generalized sidelobe decorrelator” (GSD) because
of the similarity with the GSC, and was proposed by Fancourt et al. [35]. It
should be mentioned that we use M − 1 interferer output signals in the struc-
ture shown in Fig. 9.5. By contrast, the original GSD proposed by Fancourt
et al. includes only one output signal for the interferer [35].
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Note that the constraint WD = G1 is satisfied strictly only if the com-
ponent w′

11 of W′ is fixed to w′
11 = δL/2. The mixing that is to be separated

by the adaptive PBSS block results from the combination of acoustic impulse
responses and the spatial preprocessing. This mixing is not necessarily causal.
Hence, similarly to the GSC, the filters w′

mm in the adaptive block are ini-
tialized with w′

mm = δL/2 for m = 1, . . . , M .

The constraint G0

The simple combination of GSC and blind source separation in the GSD is
possible because the spatial preprocessor provides signals for all sources: the
spatial preprocessor provides a target reference signal and interference refer-
ence signals. Let us consider, by contrast, a constraint of zero response such as
W1d(θ2) = 0. This constraint defines a linear subspace {W1 s.t. W1d(θ2) =
0}. As in the case of the GSC, we may derive a spatial preprocessor with the
basis vectors of this subspace. All these vectors have a zero response in the
direction θ2. This implies that the source signal s2(p) is canceled by the pre-
processor. Consequently, s2(p) cannot be recovered by the separation system.
Therefore, G0 may not be implemented as a hard constraint.

Multiple constraints

The spatial preprocessor of the GSD relies on the prior knowledge of θ1 only.
However, the prior information on θ1 and θ2 may be exploited if we use the
null beamformer as derived in Sect. B.2. This data-independent LCMV null
beamformer, which has a unit response in the direction θ1 and a zero response
in the direction θ2, is denoted by w[θ1,θ2]. Using its counterpart w[θ2,θ1], which
has a unit response in the direction θ2 and a zero response in the direction
θ1, we may implement the spatial preprocessor as depicted in Fig. 9.6. Let us
define the constraint G2 as follows:

G2 �
[

δL/2 �
� δL/2

]
. (9.31)

If we hold the diagonal filters of the BSS block in Fig. 9.6 to w′
nn = δL/2

for n = 1, 2, this preprocessing transforms the constrained problem (9.30) for
G = G2 into an unconstrained one.

The results for hard geometric constraints G1 and G2 are reported in
Table 9.4. For the GSD (i.e., the constraint G1), there is no noticeable im-
provement over the baseline. This may be explained by the fact that an
acausal separation system W′ must be used, which is unfavorable as shown
in Sect. 9.2.1. On the other hand, there is an improvement for the constraint
G2, in particular for the start-up performance Q[0,3]. This may be explained
by the reduction of the crosstalk that is performed by the spatial preproces-
sor. As shown in Sect. 7.2, a lower crosstalk level at the input is beneficial
(although the separation system W′ is acausal).
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Fig. 9.6. Spatial preprocessor for the constraint G2. w[θ1,θ2] denotes the data-
independent null beamformer which has a unit response in the direction
θ1 and a zero response in the direction θ2

Table 9.4. Performance with geometric prior information applied as hard con-
straints. These results are obtained with the four-element compact ar-
ray mounted in the rear-view mirror and the self-closed NG-SOS-BSS
updates. For the constraints G1 and G2, the separation system was
initialized as in (6.69) for d = L/2

Hard constraint causal constraint G1 constraint G2

(baseline) (dB) (GSD, Fig. 9.5) (dB) (Fig. 9.6) (dB)

Q[0,3] 4.0 5.8 9.6
Q[3,10] 10.2 9.4 11.4

9.3 Combining SOS-BSS and the Power Criterion

In the previous section, we have derived techniques to integrate geometric
prior information into time-domain BSS. In this section, we propose to adapt
the separation system with the SOS-BSS criterion and the LMS power crite-
rion in adaptive LCMV beamforming.

Let us assume that no permutation occurs and consider that the signal
y1(p) is an estimate of the desired signal while the other outputs may be
considered as interferer references. This assumption holds if the separation
system is causal, for example. We may consider BSS as a method that provides
interferer references in the output y2(p), . . . , yM (p), and place an adaptive
interference canceler after the BSS block as shown in Fig. 9.7. Positive effects
may result from this combination of SOS-BSS and the LMS power criterion.

• A first effect is the improved interference cancelation during target silences.
The NG-SOS-BSS step-size being relatively small to prevent instability,
the convergence of the BSS block is slower than the convergence of the
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Fig. 9.7. Combination of BSS and LMS power criterion. For the BSS/PBSS stage,
we may use a causal separation system

interference canceler. This slow convergence may be compensated by the
interference canceler, which has fast tracking capabilities.

• Regarding the target signal cancelation problem, a second positive effect
may result from the combination of SOS-BSS with an interference canceler.
Including a BSS block as in Fig. 9.7 may provide interferer references that
may be sufficiently free of leakage to prevent the cancelation of the target
signal at the output of the interference canceler.
It should be noted that the relatively slow convergence of NG-SOS-BSS
algorithms does not allow for a rapid suppression of the desired signal
leakage in the interferer reference. This negative effect may be balanced if
the interference canceler is adapted by the ILMS algorithm (4.13).
As shown in Chap. 4, ILMS adapts slower when the target signal is active.
This property alone is generally not sufficient to prevent the target signal
cancelation after convergence (as in the case of the four-element compact
array mounted in the rear-view mirror, see Fig. 4.2). However, this prop-
erty may make the slow convergence of the BSS block still sufficient to
prevent desired signal cancelation.

In analogy with the generalized sidelobe canceler (GSC), the interference
canceler is implemented with filters that have causal and acausal parts of
equal length, hence the L/2-taps delay. Note that the interferer references
may be correlated to each other. Thus, PBSS may be used instead of BSS
if M > N . The structure shown in Fig. 9.7 is denoted PBSS-ILMS (or BSS-
ILMS if M = N). A similar structure was proposed in the subband domain
by Low et al. [67].

The results for both microphone setups are reported in Table 9.5. In the
case of the four-element compact array mounted in the rear-view mirror, the
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Table 9.5. Performance of NG-SOS-BSS with the LMS power criterion for the four-
element compact array mounted in the rear-view mirror and the two-
element distributed array mounted on the car ceiling

compact array

BSS causal PBSS-ILMS
and LMS (baseline) Fig. 9.7

(dB) (dB)

Q[0,3] 4.0 6.2
Q[3,10] 10.2 8.0

distributed array

causal ILMS alone BSS-ILMS
(baseline) (Sect. 4.5.2) Fig. 9.7

(dB) (dB) (dB)

6.8 13.0 12.9
11.4 9.8 11.3

start-up performance Q[0,3] is slightly improved relative to the PBSS base-
line. This result reflects the fast convergence of the ILMS-adapted interference
canceler, which provides a rather high interference signal suppression (about
11.3 dB). However, the interference canceler also reduces the target signal,
which leaks into the interferer references. The target signal suppression av-
eraged on the first three seconds (SR[0,3]) is about 5.0 dB. The suppression
of the target signal is mitigated in the course of the adaptation because the
PBSS block eventually converges and reduces the target leakage. In spite of
this, the long-term performance Q[3,10] is inferior to the baseline.

In the case of the two-element distributed array mounted on the car ceil-
ing, no significant target signal cancelation occurs. This may be explained
from the results in Chap. 4: The ILMS-adapted interference canceler does
not lead to severe target signal cancelation. However, it increases the start-up
performance Qd

[0,3]. The long-term performance Qd
[3,10] remains approximately

unchanged. As shown in Table 9.5, BSS-ILMS combines the best scores Qd
[0,3]

and Qd
[3,10] of ILMS and BSS, respectively.

9.4 Combining SOS-BSS with Geometric
Prior Information and the Power Criterion

In this section we propose a GSC-based structure that combines SOS-BSS
with an adaptive interference canceler. That is, this structure combines SOS-
BSS with the LMS power criterion as in Sect. 9.3, and exploits geometric prior
information as in Sect. 9.2.

Similarly to the RGSC5 (robust GSC) proposed by Hoshuyama et al.,
we consider an adaptive blocking matrix [53]. In the RGSC proposed by
Hoshuyama et al., the adaptation of the blocking matrix and of the inter-
ference canceler should only occur for a dominant target signal and dominant
interferer signal, respectively. Using the partial BSS approach (PBSS), we may
design a structure where both the blocking matrix and the interference can-
celer are continuously adapted. The proposed structure is depicted in Fig. 9.8.
5 See Sect. C.1 for more details.
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Fig. 9.8. The blind GSC (BGSC) is a combination of SOS-BSS with geometric
prior information and the LMS power criterion. The delay-and-sum fixed
beamformer is denoted by w0

• Considering the high level of cross-talk at the system input, PBSS is suit-
able for the adaptation of the blocking matrix. Since the outputs of the
blocking matrix are allowed to be correlated to each other, a partial sep-
aration is sufficient.

• The adaptation of the blocking matrix limits the leakage of the target
signal, but the interferer references may not be perfectly free of target
signal. Hence, as in Sect. 9.3, the adaptation of the interference canceler
may be carried out with the ILMS algorithm (4.13) rather than with the
standard NLMS (4.7).

In analogy with the RGSC, the blocking-matrix filters wnm are initialized as6⎡⎢⎢⎣
w11(0) w12(0) w13(0) w14(0)
w21(0) w22(0) w23(0) w24(0)
w31(0) w32(0) w33(0) w34(0)
w41(0) w42(0) w43(0) w44(0)

⎤⎥⎥⎦ =

⎡⎢⎢⎣
δL/2 0 0 0
−δL/2 δL/2 0 0
−δL/2 0 δL/2 0
−δL/2 0 0 δL/2

⎤⎥⎥⎦ . (9.32)

This initialization sets the spatial response of the blocking matrix to zero
in the direction of the target signal. The PBSS-adapted blocking matrix in
Fig. 9.8 is similar to the adaptive blocking matrix of the RGSC. However,
they have different dimensions. Whereas the RGSC structure according to

6 It is assumed that the array is steered to θ1 so that the target signal reaches the
microphones synchronously.
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Table 9.6. Performance of SOS-BSS combined with geometric prior information
and the power criterion

BSS, geometric info. causal PBSS blind GSC (BGSC)
and power criterion (baseline) (dB) Fig. 9.8 (dB)

Q[0,3] 4.0 15.2
Q[3,10] 10.2 11.9

Hoshuyama et al. has M outputs, the PBSS-adapted blocking matrix has
M − 1 outputs, like the original GSC [42].

As opposed to other GSCs, the structure that we propose does not require
an external adaptation control mechanism. Hence, we refer to it as the blind
GSC (BGSC). Let us mention that the target reference signal y1(p) does not
only result from the delay-and-sum fixed beamformer w0 but also from an
adaptive part W1. Since the filter coefficients in W1 are not subject to any
spatial constraint, the structure in Fig. 9.8 does not belong to the class of the
linearly constrained beamformers (in contrast to the GSC).

The experimental result is reported in Table 9.6. It shows a significant
improvement of the start-up performance, which is due to the high inter-
ference cancelation provided by the ILMS-adapted interference canceler. A
closer examination of the output signals reveals that the target signal level
is also reduced, because the PBSS-adapted blocking matrix converge slower
than the interference canceler. Nevertheless, this reduction is much smaller
than in the case of PBSS-ILMS of Fig. 9.7. We have SR[0,3] = 1.7 dB for the
BGSC, which may be compared to SR[0,3] = 5.0 dB in the case of PBSS-ILMS.
Even though the target signal level reduction remains higher than for PBSS,
it diminishes steadily due to the adaptation of the blocking matrix (we have
SR[3,10] = 0.6 dB). It appears that the output signals of the PBSS-adapted
blocking matrix is sufficiently free of target components to allow a continuous
adaptation of the interference canceler, also during target source activity. The
cancelation of the interference signal is also higher than that of PBSS baseline.

9.5 Experimental Results on Automatic Speech
Recognition

This section evaluates the proposed algorithms as an acoustic front-end for a
speech recognizer. The goal is to provide a robust speech recognition for the
driver when the codriver speaks simultaneously.

Testing conditions

We used the speaker-independent DaimlerChrysler recognizer7 for semi-
continuous speech. The test data consist of speech from 28 speakers (14 males,
7 Let us briefly describe the DaimlerChrysler recognizer. Using a linear discrimi-

nant analysis (LDA), this HMM recognizer extracts cepstral features from nine
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14 females), which was played back by an artificial head. This artificial head
was placed first on the driver seat, and then on the codriver seat in a car.
For each speaker, 40 occurrences were played back. The microphone signals
were recorded with sampling rate fs = 16 kHz. These test speech signals were
taken from the TIDigits corpus and each occurrence consists of up to 7 digits.
Accordingly, the recognizer lexicon consists of digits only (“1”–“10”, “oh” and
“zero”). The input signals are generated as the sum of the separately recorded
driver and codriver signals. This simulates the situation which is depicted in
Fig. 9.9a. These input signals exhibit a rather high degree of overlap between
the target and the interferer (double-talk situation). Additionally, test data
were recorded for the back seat passenger, as depicted in Fig. 9.9b. Further-
more, road noise was recorded and added to the speech signals. Depending on
the speaker loudness, the SNR varies between 10 and 20 dB.

Performance measures

We denote the number of words uttered by the target speaker (reference
words) by Ntarget. The number of deletions, i.e., missed reference words, is
denoted by Ndeletions. The number of substitutions, i.e., reference words sub-
stituted by others, is denoted by Nsubstitutions. The number of insertions,
i.e., wrong words inserted between correctly recognized reference words, is
denoted by Ninsertions. We consider two performance measures: the word ac-
curacy and the word error rate (WER). The word accuracy is the percentage
of recognized reference words, that is,

word accuracy = 100
(

1 − Ndeletions + Nsubstitutions

Ntarget

)
. (9.33)

The word accuracy depends on the number of deletions and substitutions but
does not include the insertions. The WER may be defined as follows:

WER � 100
Ndeletions + Nsubstitutions + Ninsertions

Ntarget
. (9.34)

In contrast to the word accuracy, the WER takes the insertions into account.
In the context of competing speakers, many insertions may lead to both high
word accuracy and high WER.

successive frames of the acoustic input signals. A cepstral mean normalization is
applied to the feature vectors to remove influences of speaker, microphone, and
room acoustics. Training data were recorded in the car in various noisy conditions
(engine, wind noise) and consist of 300,000 utterances from about 1,000 speakers.
These data were used to estimate the HMM transition and emission parameters
with the Baum-Welch algorithm. The recognizer also includes a one-channel noise
reduction algorithm (spectral subtraction), which we disabled for noise-free input
signals.
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(a)

distributed microphones

(b)

distributed
microphones

mirror microphones

compact array

Fig. 9.9. Experimental layouts for the speech recognition tests. (a) Separation of
driver and codriver; (b) separation of driver and back-seat passenger

Results

The word accuracy and the relative improvement of the WER are reported for
the four-element compact array mounted in the rear-view mirror and the two-
element distributed array mounted on the car ceiling in Tables 9.7 and 9.8. The
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Table 9.7. Word accuracy and word error rates (WER) for the four-element com-
pact array mounted in the rear-view mirror. The interferer is the
codriver speech. (a) All algorithms are compared without road noise.
(b) The best algorithms were also tested in noisy conditions

word
accuracy

WER

microphone x1 72.6 80.0

delay-and-sum 75.1 75.1

PBSS-ILMS 78.9 22.8

preprocessing G2 85.1 32.9

soft constraint G1 85.6 41.2

BSS (baseline) 85.9 41.9

DTD-NLMS (RGSC) 86.8 19.9

initialization G0 88.7 33.4

GSD G1 89.4 29.5

BGSC 90.0 12.0

word
accuracy

WER

microphone x1 69.8 80.7

delay-and-sum 72.3 76.9

BSS (baseline) 83.7 39.3

initialization G0 85.0 37.2

DTD-NLMS (RGSC) 85.3 20.2

GSD G1 86.7 25.7

BGSC 87.6 14.7

(a) noise-free conditions (b) with road noise

Table 9.8. Word accuracy and word error rates (WER) for the two-element dis-
tributed array mounted on the car ceiling. The interferer is the codriver
speech. (a) All algorithms are compared without road noise and (b) in
noisy conditions

word
accuracy

WER

microphone x1 76.7 75.5

ILMS 84.2 22.1

DTD-NLMS 87.2 16.0

BSS-ILMS 87.7 15.6

BSS (baseline) 89.2 20.9

word
accuracy

WER

microphone x1 76.1 74.2

ILMS 85.7 18.0

DTD-NLMS 86.4 19.3

BSS (baseline) 88.2 16.1

BSS-ILMS 88.4 13.8

(a) noise-free conditions (b) with road noise

performance of the DTD-NLMS algorithms is also given. For this algorithm,
the target activity detection was done by comparing the short-term energy of
the driver signal alone with a fixed threshold.

We observe that the word accuracy is not always in agreement with the SIR
performances given in Tables 9.2–9.6. In the case of the four-element compact
array mounted in the rear-view mirror, all algorithms lead to an improvement
of WER, especially those with an interference canceler (BSS-ILMS, DTD-
NLMS, and BGSC). However, not all are able to improve the word accuracy.
As may be expected from the result in Table 9.5, the BSS-ILMS algorithm
reduces the target signal, which decreases the word accuracy. On the other
hand, algorithms that do not include an interference canceler may increase
the word accuracy but lead to an inferior improvement of the WER. That is,
these algorithms are less efficient against insertions. By contrast, BGSC leads
to the best increase in the word accuracy and to the best improvement of the
WER.
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Table 9.9. Comparison of the four-element compact array mounted in the rear-view
mirror (a,b) and the two-element distributed array mounted on the car
ceiling (c,d) with speech from the backseat passenger as interferer

word
accuracy

WER

microphone x1 82.6 61.5

delay-and-sum 82.8 62.0

BGSC 88.1 28.3

word
accuracy

WER

microphone x1 79.2 56.1

delay-and-sum 81.3 58.4

BGSC 83.5 27.7

(a) noise-free conditions (b) with road noise

word
accuracy

WER

microphone x1 79.7 69.8

BSS-ILMS 90.4 10.8

word
accuracy

WER

microphone x1 77.9 68.0

BSS-ILMS 89.9 11.4

(c) noise-free conditions (d) with road noise

In the case of the two-element distributed array mounted on the car ceiling,
it is remarkable that the BSS baseline algorithm outperforms the DTD-NLMS
algorithm without using any double-talk detector. This may be explained
by the fact that the interference signal level reduction of the DTD-NLMS
algorithm relies importantly on the spectral content of the interferer, which
may not be tracked in the case of frequent double-talk situation. The BSS-
ILMS algorithm brings a small improvement over the BSS baseline in noisy
conditions.

Additional tests

In an additional test, the interferer was placed on the back seat. The situation,
which is depicted in Fig. 9.9b, is particularly challenging for the four-element
compact array mounted in the rear-view mirror because the target speaker,
the interferer, and the array are nearly aligned. The results are reported in
Table 9.9. In spite of the difficulty, the proposed BGSC algorithm leads to an
improvement of the word accuracy which is significant in noise-free conditions.
As expected, the distributed microphone arrangement is more adequate and
performs better in terms of WER.

9.6 Summary and Conclusion

In this chapter, we have developed techniques (1) to include geometric prior
information into BSS algorithms, and (2) to combine a BSS separation system
with an interference canceler.

We found that certain geometric initialization of the separation system
may yield a convergence to a spurious minimum. Careful design of the geomet-
ric constraint, in particular regarding the causality of the separation system,
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(1) initialization G0

(2) soft constraint G1
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(4) Blind GSC
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Fig. 9.10. Improvement of the SIR performance relative to the BSS baseline for
combinations of NG-SOS-BSS and beamforming. (1) Geometric initial-
ization (9.15); (2) soft constraint G1 with (9.28), (9.29), and λ = 0.1;
(3) hard constraint G2 (Fig. 9.6); (4) BGSC described in Sect. 9.4

may be required. Then, as shown in Fig. 9.10, the input of geometric prior in-
formation may lead to a significant improvement of the start-up performance.
However, the improvement of the performance after the initial convergence
phase is limited.

The use of the ILMS interference canceler as a postprocessing deserves
a special comment. This postprocessing leads to higher cancelation of both
interference and desired signal. Fortunately, the desired signal cancelation
may be kept moderate if geometrical prior information is adequately used,
either at the physical level (BSS-ILMS with the two-element distributed array
mounted on the car ceiling) or at the algorithmic level (BGSC with the four-
element compact array mounted in the rear-view mirror). Then the desired
signal cancelation is uncritical and the algorithm may be used as an efficient
front-end in automatic speech recognition.

Using the results from Sect. 8.2 for L = 256, one can show that the com-
plexity of BGSC is larger but comparable to that of the DTD-NLMS algorithm
in the RGSC structure, due to the efficient implementation of the convolution
in the DFT domain for the BSS part. In contrast to the RGSC, the BGSC
does not require an adaptation control. Therefore, no “universal” threshold
needs to be set, which makes BGSC an attractive algorithm when operating
under various a priori unknown conditions.
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Summary and Conclusions

Safety and convenience issues require hands-free speech-based human–
machine interfaces to manipulate complex functionalities and devices, for
example, in cars. Such interfaces severely suffer from local interferences, such
as the codriver voice, which have to be suppressed. As the desired signal and
the local interference have the same nature (speech), it is difficult to sepa-
rate them from their temporal (or spectral) properties. However, since they
are emitted from different locations, separation of the desired signal may be
resolved by exploiting the spatial properties of the source signals using micro-
phone arrays.

A particularity of the car environment is that the position of the speakers
relative to the array is known a priori. This prior information may be used
directly using a linearly constrained minimum variance (LCMV) beamformer.
Adaptive LCMV beamformers are able to attain a high suppression of the
interference signal. Unfortunately they may also cancel the desired signal if the
adaptation occurs during target signal activity. This target signal cancelation
problem is a central motivation for the further investigations developed in this
book.

Most existing approaches to this problem are based on an all-or-nothing
adaptation control that interrupts the adaptation when an estimate of the
signal-to-interference ratio is below a given decision threshold. In the case
of simultaneous concurrent speakers, this strategy generally yields limited
interference cancelation since the adaptation is interrupted during double-
talk. Moreover, the tuning of an appropriate decision threshold may be dif-
ficult. In this book, we addressed the separation problem using continuous,
uninterrupted adaptive algorithms, which may be able to adapt continuously
without requiring any decision threshold.

In the first part of this book (Chaps. 3 and 4), the focus was on LCMV
beamforming. Building upon the widely used normalized least-mean-square
(NLMS) algorithm, we devised the implicit LMS (ILMS) algorithm which
implicitly includes an adaptation control and does not require any threshold.
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Also, we experimentally found out that the ILMS step-size parameter
automatically adjusts to the background noise level, as opposed to NLMS.
This is a highly desirable feature for automotive applications. We have ex-
perimentally observed that ILMS mitigates the target signal cancelation sub-
stantially in the case of the two-element distributed array mounted on the
car ceiling. However, in the case of the four-element compact array mounted
in the rear-view mirror, it does not sufficiently reduce the target signal can-
celation. In this case, more sophisticated blind source separation techniques
(BSS) are necessary.

The second part of this book (Chaps. 5–7) was devoted to BSS techniques.
While beamforming techniques are based on spatial prior information, BSS
techniques exploit the statistical independence of the source signals. Based
on the time-domain approach by Buchner et al. [18, 20], natural gradient
second-order statistics BSS algorithms (NG-SOS-BSS) were introduced using
the Sylvester representation of FIR filters. Then, these algorithms were ex-
tended along two axis:

• The natural gradient applies to square systems, where the number of
microphones equals the number of sources. Comparing possible extensions
of the natural gradient algorithms to nonsquare systems, we introduced
the concept of “partial blind source separation” (PBSS). At a moderate
computational cost, PBSS flexibly exploits all microphone signals. In ad-
dition to extracting the desired signal, PBSS provides multiple interferer
references.

• The derivation of NG-SOS-BSS algorithms in Chap. 5 did not directly
yield implementable coefficient updates, since the Sylvester matrix form
was ignored. This problem was tackled by deriving a general convolu-
tive formulation of the natural gradient for an arbitrary cost function J .
Two types of updates arise from this analysis: the self-closed updates,
which depend on a parameter d controlling the acausal length (or delay)
in the separation system, and the non-self-closed updates. It appeared that
any row or the Lth column may be chosen as reference to maintain the
Sylvester structure, in addition to the two choices given in [5]. Our deriva-
tion provided self-closed and non-self-closed update rules for both causal
and acausal separation systems. In particular, new self-closed update rules
for acausal separation systems have been proposed.

In the case of NG-SOS-BSS, strict use of the derived natural gradient up-
dates require matrix inversions. To avoid them, the NG-SOS-BSS updates
are approximated and efficient learning rules have been obtained. An ex-
perimental comparison was carried out with real signals, and the self-closed
updates emerged as the most robust ones for causal and acausal separation
systems. The comparison with other widely used frequency-domain BSS
algorithms demonstrated the good performance of the self-closed time-
domain algorithm.



10 Summary and Conclusions 175

These extensions resulted in implementable, flexible, and efficient BSS up-
dates. Also, an emphasis was placed on the theoretical study of the properties
of BSS. Thereby, the role of the causality was evidenced at two levels:

• As illustrated in Fig. 6.2, using a causal separation system determines the
ordering of the estimated source signals. That is, the so-called “permuta-
tion ambiguity” is removed. There is a price for this desirable property:
A causal separation system cannot be used (1) if the sources are placed
in the same half-plane, or (2) if the microphone signals are passed in a
certain preprocessing such as the delay-and-sum fixed beamforming.

• Using the self-closed update for d = 0, the global convergence of the sepa-
ration system depends on the mixing system only through the initial point
(“equivariant” learning rules).

A more precise analysis of the convergence was possible only to a limited
extent. The global convergence of a decorrelation algorithm was analyzed
in the case of instantaneous mixtures, and this analysis served as a basis to
develop a dynamic regularization scheme for SOS-BSS in the convolutive case.
By contrast, the local stability could be analyzed in the convolutive case

rigorously: We have shown that the local stability conditions set an upper
bound on the amount of cross-talk.

Many existing algorithms for convolutive audio BSS are derived in the
frequency domain. They are based on the narrowband signal model which
allows to transform a convolutive mixture in a collection of instantaneous
mixtures in each frequency bin. The insights gained from the time-domain
discussion could not be found out using the narrowband frequency-domain
model. The narrowband frequency-domain mixture model hides the temporal
aspects of the acoustic propagation. These temporal aspects, in particular the
causality, shed an instructive light on the permutation problem.

The purpose of the last part of the book (Chaps. 8 and 9) was twofold:
First, we wanted to give a detailed comparison of SOS-BSS and LCMV beam-
forming. Our second objective was to combine these two approaches efficiently.
The car interior served as a privileged test environment.

It is clear that both approaches tackle the same signal separation problem
using different a priori information. Technically, they are based on different
cost functions and minimization algorithms with specific convergence prop-
erties. We have shown that in fact both approaches take advantage of the
source silences. But in contrast to LMS-adapted LCMV beamforming, the
NG-SOS-BSS step-size needs to be relatively small to prevent instability. For
this reason, depending on the degree of overlap between the desired signal
and the interferer, the initial convergence speed of NG-SOS-BSS may be low
compared to LMS-adapted LCMV beamforming.

In Chap. 9, we presented several methods to include geometrical prior
information in NG-SOS-BSS and measured the performance improvement
in the car acoustic environment. The acausal self-closed update derived in
Chap. 6 was used extensively since the geometrical constraint may require an
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acausal separation system. While the input of geometrical prior information
may increase the start-up performance, we found that the performance gain
after the initial convergence is limited. The use of an adaptive interference
canceler as a postprocessing leads to a higher interference suppression, and
also to a higher cancelation of the desired signal. Fortunately, the cancelation
of the desired signal may be kept moderate by using the ILMS algorithm and
geometrical prior information adequately, either at the physical level (BSS-
ILMS with the two-element distributed array mounted on the car ceiling) or at
the algorithmic level (BGSC with the four-element compact array mounted in
the rear-view mirror). Then the cancelation of the desired signal is uncritical
and the proposed algorithm may be used as an efficient front-end in automatic
speech recognition.

Self-criticism, open issues, and future research

The present work demonstrated the feasibility of separating speech sources
using continuous, uninterrupted adaptive algorithms and the benefit of com-
bining BSS and beamforming techniques, but a number of issues remain open.
Let us discuss a few of them.

• The two typical choices S1 and SL shown in Fig. 6.1 (the first row and the
Lth column) emerged from our derivation of the natural gradient for con-
volutive mixtures. However, the efficient learning rules could be obtained
only at the price of approximations. The meaning of these approximations
was not really understood, and their impact in terms of performance was
not investigated.

• The convergence properties of NG-SOS-BSS algorithm remain largely un-
known. Even though the analysis of the global convergence may not be
directly tackled, one may still improve on the results proposed in this
book. For instance, the ILMS algorithm might be easier to analyze than
the NG-SOS-BSS, since it is closely related to the well-known NLMS, and
its study might improve our understanding of the NG-SOS-BSS due to
the tight connections between ILMS and the sample-wise NG-SOS-BSS
algorithm.
The regularization proposed in (7.26) was motivated by the convergence
analysis in Sect. 7.1.2 but it was not satisfactory in the sense that the
choice of the step-size is still relatively sensitive. More robust techniques
might be developed. The convergence analysis in Sect. 7.1.2 may still serve
as a basis, but the ILMS algorithm, which has known stability conditions,
may also provide a support.

Also, on the technical side, other options may have been followed.

• The robustness of the separation methods to background noise was as-
sessed experimentally, but it might be worth developing specific counter-
measures.
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• We limited the geometric prior information to direction of arrivals (DOA)
using the simple far- and free-field acoustic propagation model. A finer
model of the acoustic environment might improve the performance, for
example, using the norm of the acoustic channels measured a priori as
proposed in [2].
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Experimental Setups

There is still no universal agreement on the optimum placement of the micro-
phones for the speech input in cars. Our experiments have been carried out in
a Mercedes S320 vehicle with two different microphone arrays. An overview
is shown in Fig. A.1.

A.1 The Four-Element Compact Array Mounted in the
Rear-View Mirror

This four-element mirror array is mounted in the rear-view mirror. AKG di-
rectional microphones of type cardioid are used. This arrangement is known
to be compatible with product design constraints, since it belongs to the stan-
dard speech input equipment in the Mercedes E class. The distance from the
driver mouth to the mirror depends on the position of the driver seat. This
distance can amount between 50 and 80 cm, a typical mouth–microphone dis-
tance being about 60 cm. The experimental setup with the driver and the
codriver is depicted in Fig. A.2.

A.2 The Two-Element Distributed Array Mounted
on the Car Ceiling

The two-element distributed array consists of directional microphones oriented
to the driver and the codriver, respectively. The two microphones are placed on
roof control panel with 17-cm spacing. In contrast to the four-element compact
array mounted in the rear-view mirror, this microphone arrangement provides
the interferer reference signal directly. The experimental setup is depicted in
Fig. A.3. For this setup, we use PEIKER directional microphones of type
cardioid.
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Fig. A.1. Experimental layouts for the car
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Fig. A.2. Experimental setup for the rear-view mirror

Note that it is straightforward to extend this two-element array to a four-
element array by placing directional microphone on the roof, close to each of
the two back-seat passengers. This is of particular interest when separating
the driver speech from the interfering back-seat left passenger, since the four-
element compact array mounted in the rear-view mirror may fail in this case.
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Fig. A.3. Experimental setup for the two-element distributed array mounted on
the car ceiling. The microphones are mounted on the roof control pad

A.3 Acoustic Characteristics of the Car Cabin

Room impulse response

The car cabin is usually regarded as weakly reverberant. The reverberation
time, which is denoted by T60 and is defined as the time which is necessary
for the sound energy to decrease by 60 dB [40], is about T60 = 50 ms.

Estimating the impulse response between the driver mouth and a given
microphone can be done using an artificial head. To avoid the influence of the
loudspeaker, we use a close-talk microphone mounted on the artificial head.
Figure A.4 shows the impulse response between this close-talk microphone
and the microphone x1 of the four-element compact array mounted in the
rear-view mirror.

Background noise

Car noise consists of motor noise and also results from the wind and from the
contact between the tires and the road. It can be regarded as diffuse and has
its main energy in low frequency bands [14]. The PSD of road noise that was
recorded at 100 km h−1 is shown in Fig. A.5.

A.4 Illustration of the Difficulty in the Design
of a Reliable DTD

An experiment is conducted in the car interior with two male speakers
recorded with a four-element microphone array mounted in the rear-view
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Fig. A.4. Impulse response estimated between a close-talk microphone mounted
on the artificial head on the driver seat and the microphone x1 of the
four-element compact array mounted in the rear-view mirror
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Fig. A.5. PSD of a typical road noise recorded at 100 km h−1. The PSD is estimated
using the Welch periodogram averaged over 160, 000 samples (FFT length
NFFT = 1024, sample frequency fs = 16, 000 Hz)

mirror.1 The speakers are positioned on the driver and codriver seats, re-
spectively. We observe the power of the source signals, which indicates at
what time each speaker is active. On the other hand, we examine the input
SIR estimation

SIRest(p) =
(M − 1)x2

0(p)∑M−1
m′=0 x2

B,m′(p)
(A.1)

1 We refer to Appendix A for a detailed description of the experimental setup,
which is depicted in Figs. A.1 and A.2.
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Fig. A.6. Difficulty of the DTD design. Two sources were recorded separately. The
upper plot shows the individual signal powers. The lower plot shows the
estimated input SIR, SIRest,in(p). The represented quantities are aver-
aged over a sliding window of length 30 ms

We are interested in finding a threshold SIRth such that (1) SIRth <
SIRest,in(p) during target silences and interferer activity and (2) SIRth >
SIRest,in(p) during target activity. As can be see from Fig. A.6, such a thresh-
old does not exist in general: The estimate SIRest,in(p) can reach similar levels
during target and interferer activity. Hence, a trade-off must be found between

• robustness: choosing a low, conservative threshold that prevents target
cancelation and

• accuracy in the detection of interferer activity: choosing a higher threshold
that allows adaptation more often.

Obviously, this issue worsens with increasing overlap of the target and in-
terferer speech. This simple example has illustrated the difficulties that arise
with the design of a reliable DTD.



B

Far- and Free-Field Acoustic Propagation
Model and Null Beamforming

B.1 Far- and Free-Field Model

We consider a source at position (r, φ, θ) in spherical coordinates. Without
loss of generality, the reference is taken at the position of the microphone x1.
Next, we assume a uniform linear array (ULA) with intermicrophone spacing
Δ arranged along the z-axis as shown in Fig. B.1. Then the position of the
source relative to the array is invariant by rotational symmetry of angle θ.
Let us denote the distance from the source s to the second microphone x2 by
r2. We have

r2
2 = r2 + Δ2 + 2Δr sin θ. (B.1)

We next compute the length r2 − r of the path traveled by the sound wave
when propagating from the reference microphone to the next one. Using (B.1),
we find that this additional path is given by

r2 − r = r

⎛⎝√1 +
(

Δ

r

)2

+ 2
Δ

r
sin θ − 1

⎞⎠ . (B.2)

The far-field model corresponds to the situation r � Δ. Using the first-order
development

√
1 + x ≈ 1 + x

2 + o(x2), we can compute the limit of (B.2) for
r → +∞:

lim
r→+∞

(r2 − r) = Δ sin θ. (B.3)

Therefore the time τθ needed by the sound wave to travel from one sensor to
the next one if given for the far- and free-field model by

τθ =
Δ sin θ

c
, (B.4)

where c denotes the speed of sound.
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Fig. B.1. Cartesian and spherical coordinate systems

B.2 Null Beamforming

In the following we explain how to compute filter coefficients w with a unit
response in the direction θ1 and a zero response in the direction θ2. Without
loss of generality, we assume that θ1 = 0, which is equivalent to steering the
array toward θ1.

We want to find the MISO separation system w that fulfills{
g(w, 0) = δD,

g(w, θ2) = 0,
(B.5)

where g(w, θ) denotes the spatial response of w in the direction θ, as
defined in (2.27). To simplify the presentation, we assume that the delay
τθ2 = fs

Δ
c sin θ2 is an integer. Then the pair of equations in (B.5) may be

reformulated as follows:{ ∑M
m=1 wm,k = δD,k for k = 1, . . . , L,∑M

m=1 wm,k+(m−1)τθ2
= 0 for k = 1, . . . , L,

(B.6)

where δD,k = 1 for k = D and δD,k = 0 otherwise. The lower equation
in (B.6),

∑
m wm,k+(m−1)τθ2

= 0, characterizes null beamformers which have
a zero spatial response at θ2. The spatial response of our null beamformer is
also specified in the target direction θ1 = 0. To obtain a matrix form of (B.6),
we introduce the matrix Rnn as
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Rnn �

⎡⎢⎢⎢⎣
IL×L Dτθ2

. . . D(M−1)τθ2

D−τθ2
IL×L . . . D(M−2)τθ2

...
. . .

...
D−(M−1)τθ2

. . . . . . IL×L

⎤⎥⎥⎥⎦ . (B.7)

Dτ is a square matrix containing zeros, except for the τth upper diagonal
that contains ones. In fact Rnn corresponds to the microphone correlation
matrix E

{
x(p)xT(p)

}
when the source at θ2 emits a stationary white noise.

Equation (B.6) may now be written as

wT [C Rnn] =
[
δT
0 01×ML

]
(B.8)

in matrix form. (The matrix C was given in (3.24).) If there are more than
two microphones, the 2L equations (B.6) form an under determined set of
constraints for the ML filter coefficients. If we simultaneously constrain w to
minimize the white-noise gain, the filters w are given by the pseudoinverse

wT =
[
δT
0 01×ML

]
[C Rnn]+ . (B.9)

In general, [C Rnn] has neither full column rank nor full row rank. The com-
putation of the pseudoinverse involves its singular value decomposition and it
is difficult to find a general closed formula for w. For this reason, the solution
of (B.9) may rather be found numerically.
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The RGSC According to Hoshuyama et al.

This appendix describes the robust GSC (RGSC) proposed by Hoshuyama
et al. [53]. Using an adaptation control mechanism, the RGSC can be an
efficient LCMV beamformer because it adapts the constraint of distortionless
transmission of the desired source to the current acoustic environment [47].
The RGSC includes an adaptive blocking matrix to minimize the leakage of the
target signal. The adaptive blocking matrix consists of a set of “interference
cancelers” implemented as adaptive filters. As shown by Herbort et al. [47],
the RGSC is an LCMV beamformer with a relaxed constraint and may yield
an improved suppression of the interference signal relative to the original GSC
with a fixed blocking matrix [42]. Section C.1 describes the RGSC which can
be used in conjunction with the four-element compact array mounted in the
rear-view mirror. In Sect. C.2, we modify this RGSC for use with the two-
element distributed array mounted on the car ceiling.

C.1 RGSC for the Four-Element Compact Array
Mounted in the Rear-View Mirror

The blocking matrix is square with M outputs instead of M−1 in the original
GSC, and has a particular form. To obtain an expression of its outputs, we
need to define the filters bm,m = 1, . . . ,M of length1 L. The coefficients of
the filter bm are stacked in the L × 1 vector:

bm � (bm,0, . . . , bm,L−1)
T

. (C.1)

1 The filter length of bm is not necessarily equal to the filter length of the inter-
ference canceler. Let us temporarily denote the length of bm by LB . Maximum
robustness against leakage is obtained for LB ≥ L, since if LB ≥ L then the inter-
ference canceler is not long enough to access any target component. To minimize
the complexity, we set LB = L.
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Fig. C.1. Robust generalized sidelobe canceler (RGSC) according to Hoshuyama
et al.

We also need to define the vector x0(p) for the target reference signal:

x0(p) � (x0(p), . . . , x0(p − L + 1))T . (C.2)

The outputs of the blocking matrix are then given by

xB,m(p) = xm(p − DB) + bT
mx0(p), (C.3)

as depicted in Fig. C.1. As shown in (C.8), the optimum filters bm have
to model the inverse of a sum of room impulse responses. Since the room
impulse responses may be nonminimum-phased, modeling it inverse requires
an acausal delay [50]. Therefore, the delay DB is typically set to DB = L/2.
It must also be included in the interference canceler, which yields D = L/2 +
DB = L.

The filters bm are adapted so that the target leakage at the output of the
blocking matrix is minimum. In practice, the adaptation is carried out when
the desired source is dominant in such a way that the variance E

{
x2

B,m(p)
}

is minimized. This is achieved with the Wiener solution:

bm = −
(
E
{
x0(p)xT

0 (p)
})−1

E {xm(p − DB)x0(p)} . (C.4)

In an adaptive context, the filters bm can be adapted with the NLMS algo-
rithm as follows:

bm(p + 1) = bm(p) − μB,NLMS
xB,m(p)x0(p)

‖x0(p)‖2
. (C.5)

For our experiments with speech signals, the step-size has been set to
μB,NLMS = 0.1. The delay in the blocking matrix path is DB = L/2. The
delay in the fixed beamformer path is D = DB + L/2 = L.
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Representation in the DTFT domain

Let us denote by Hm(ω) the transfer function from the desired source S(ω)
to the mth microphone Xm(ω) and set H(ω) = (H1(ω), . . . , HM (ω))T. In the
noiseless case, the source–microphone relationship is written in the DTFT
domain as:

X(ω) = H(ω)S(ω). (C.6)

We denote the DTFT of the filter bm by Bm(ω) and we define the vector
B(ω) � (B1(ω), . . . , BM (ω))T . The filters Bm(ω) are adapted so that the
target leakage at the blocking matrix output XB,m(ω) = e−iωDBXm(ω) +
Bm(ω)X0(ω) is minimum. It can be shown that this leads to a signal-dependent
spatial constraint WH(ω)H(ω)S(ω) = S(ω) [47]. If the desired signal has no
energy in a given frequency band, the constraint vanishes, yielding B(ω) = I.
This allows the filters W(ω) = 0 in that band. This would not be possible if
the spatial constraint was maintained across the entire spectrum. The filters
Bm(ω) that minimize E

{
|XB,m(ω)|2

}
are obtained by the Wiener solution:

Bm(ω) = −e−iωDBΦXmX0(ω)/ΦX0(ω). (C.7)

ΦXmX0 denotes the CPSD of the signals xm and x0. Likewise, ΦX0 denotes
the PSD of the signal x0. Combining (C.7) and (C.6) for Sm(ω) �= 0 yields
the optimal solution in the minimum mean square error (MMSE) sense

Bm(ω) = −e−iωDBHm(ω)/W0(ω)H(ω). (C.8)

Equation (C.8) shows that the optimal blocking matrix filters Bm(ω)
involve the inverse of the sum of delayed acoustic transfer functions, since
WH

0 (ω)H(ω) =
∑M

m=1 eiω(m−1)τθHm(ω).

C.2 RGSC for the Two-Element Distributed Array
Mounted on the Car Ceiling

A data-dependent “blocking matrix” can be considered for the two-element
distributed array mounted on the car ceiling, too. Using a set of interfer-
ence cancelers for the blocking matrix as in Sect. C.1, we can incorporate
an additional adaptive filter in the GSC structure. This transforms the AIC
shown in Fig. C.2 a into the RGSC shown in Fig. C.2 b. The outputs xB,m(p)
of the blocking matrix are defined as

xB,m(p) � xm+1(p) − bT
mx1(p) for m = 1, . . . , M − 1. (C.9)

The filters bm should be adapted using interference-free input signal. They can
be computed with (C.4) or (C.5) using x0(p) = x1(p) and xB,m(p) = xm+1(p).
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Fig. C.2. Beamformer architecture for two directional microphones. (a) Adaptive
interference canceler (AIC). (b) RGSC according to [53] modified for use
with the two-element distributed array mounted on the car ceiling

C.3 Experimental Comparison: GSC vs. RGSC

Offline experiments in stationary conditions

This section examines how the RGSC mitigates the target-cancelation prob-
lem. In the following, the performance of the RGSC is compared with that
of the GSC in stationary conditions with nonadaptive, off-line beamformers.
That way, the comparison should remain independent of the implementation.
By contrast, the beamformer performance in adaptive mode depends highly
on implementation parameters like the step-size and the DTD thresholds.

The source signals are white-noise signals emitted by artificial heads to
ensure stationary conditions. The microphone signals are sampled at fs =
16 kHz. The filter length is set to L = 256 in the case of the four-element
compact array mounted in the rear-view mirror and to L = 512 in the case of
the distributed array. The experimental setups are described in Appendix A
in greater detail.

Varying parameters

To evidence how the adaptive blocking matrix mitigates the power-inversion
effect, we let vary the SIR of the input signals that are used to adapt the
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interference canceler, which is denoted by SIRin. To define SIRin, we decom-
pose the input signals as the sum of the contribution of the desired source
and of that of the interferers, as given in Sect. 2.4:

xm(p) = xsig,m(p) + xint,m(p). (2.61)

In offline mode with stationary signals, we use a batch estimate of the expec-
tation operator:

Ê {f(A(p))} � 1
T

T∑
p=1

f(A(p)). (2.65)

Using (2.61), we may define SIRin and SIRd
in for compact and distributed

arrays respectively, as follows:

SIRin �
∑M

m=1 Ê
{
x2

sig,m(p)
}∑M

m=1 Ê
{
x2

int,m(p)
} , SIRd

in �
Ê
{
x2

sig,1(p)
}

Ê
{
x2

sig,1(p)
} . (C.10)

For a given blocking matrix B, we also decompose the interference reference
signals as the sum of the contribution of the desired source and of that of the
interferers:

xB,sig,m(p) � BTxsig,m(p), xB,int,m(p) � BTxint,m(p). (C.11)

Using (C.11), the SIR at the input of the interference canceler, SIRAIC,in,
(that is, the SIR at the output of the blocking matrix) may defined as

SIRAIC,in �
∑M

m=1 Ê
{
x2

B,sig,m(p)
}

∑M
m=1 Ê

{
x2

B,int,m(p)
} , SIRAIC,in �

Ê
{
x2

B,sig,1(p)
}

Ê
{

x2
B,int,1(p)

} .

(C.12)

SIRAIC,in may be obtained by subtracting a fixed offset a from SIRin in the
dB scale:

SIRAIC,in = SIRin − a. (C.13)

The offset a depends on the blocking matrix B. According to the power-
inversion effect described in Sect. 3.4, the SIR at the output of the beamformer
should be zero for SIRin = a.

Filter adaptation

The filter adaptation and the performance evaluation are carried out in three
steps:

(i) First the RGSC filters bm for m = 1, . . . , M of the data-dependent
blocking matrix are computed according to (C.4). These filters bm are
trained using the desired source input signals d(p), which corresponds
to a best-case scenario. For the GSC, the blocking matrix is fixed.
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(ii) Then the interference canceler a is adapted on the input signals having a
prescribed SIRin (SIR at the input of the beamformer). The adaptation
of the interference canceler a is based on the Wiener solution (3.22).
However, the inversion of RxBxB

in (3.22) for L = 256 is numerically
badly conditioned. Therefore, we regularize the inversion with a regular-
ization factor ε > 0, as follows:

a(0) = (RxBxB
+ εI)−1 E {x0(p − D)xB(p)} . (C.14)

This yields a biased first estimate a(0) of the optimal a. For our experi-
ments, we set ε = 0.01 which led to the best results. Then, we improve
a(0) using the gradient descent for the cost function in (3.1). The gradi-
ent descent does not necessitate matrix inversion. Using the gradient in
(3.21) yields

a(n+1) = a(n) − μ
∂J

∂a
(C.15)

= a(n) − 2μ

T∑
p=1

y(p)xB(p). (C.16)

The step-size μ is set to μ = 0.05 and the iterations are carried out until
J does not decrease by more than 0.1 dB per iteration.

(iii) After (i) and (ii), the filters are fixed and the performances of the full
GSC and RGSC structures are evaluated using unit power input signals
from the target and from the interferer.

C.3.1 Experiments with the Four-Element Compact Array
Mounted in the Rear-View Mirror

We consider first the four-element directional microphone array mounted in
the rear-view mirror (see Sect. A.1) for more details). The delay D is set to
D = L/2. The RGSC filters bm for m = 1, . . . ,M of the data-dependent
blocking matrix are trained using the desired source input signals d(p). It
could be measured that this data-dependent blocking matrix brings a 11.5 dB
reduction of the SIR, that is, a = 11.5 dB in (C.13).

For our implementation of the GSC, the output signals of the fixed blocking
matrix xB,m(p) are given by

xB,m(p) = xm+1(p) − x0(p) for m = 1, . . . ,M − 1, (C.17)

= xm+1(p) − 1
M

M−1∑
m=1

xM−1(p). (C.18)

We could measure that the signal xB,m(p) exhibits a SIR which is about 3 dB
lower that the input SIR, that is, a = 3 dB in (C.13). The results are shown
in Fig. C.3.
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Fig. C.3. Performances of the GSC (a) and the RGSC (b) as a function of SIRin

(SIR at the beamformer input), for the four-element compact array
mounted in the rear-view mirror. The RGSC beamformer structure is
shown in Fig. C.1. For the RGSC, the blocking matrix is trained with
interferer-free input signals, which is the best-case scenario. The experi-
mental setup is depicted in Fig. A.2. The steered DOA is θ = 20◦. The
filter length is set to L = 256

It can be observed that the GSC does not bring any SIR improvement
for SIRin around 3 dB. This observation fits well with the power-inversion
effect. Moreover we can see that the level of the desired signal is significantly
reduced for large SIRin. On the other hand, the data-dependent blocking-
matrix attenuates the desired source components at the outputs xB,m of the
blocking matrix. This protects efficiently against cancelation of the target
signal: We can see that the reduction of the desired signal level is much smaller
than that of the GSC. However, in accordance with the power-inversion effect,
the SIR improvement vanishes for SIRin = 11.5 dB: The signals xB,m still
contain reflected paths of the desired source and are correlated to the output
of the fixed beamformer x0. Since the optimal interference canceler minimizes
this correlation, an important degradation of the interference reduction results
for SIRin > −5 dB.

C.3.2 Experiments with the Two-Element Distributed Array
Mounted on the Car Ceiling

We compare the AIC structure and the RGSC structure with a data-
dependent blocking matrix. Both structures are depicted in Fig. 3.2. We could
measure that the SIR at microphone x2 is about 5 dB below the SIR at micro-
phone x1, that is, a = 5 dB in (C.13). The blocking matrix filter b1 is adapted
with the desired source signals d(p), which represents a best-case scenario.
This data-dependent blocking matrix brings an additional 7 dB reduction of
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Fig. C.4. Performances of the AIC (a) and of the RGSC (b) as a function of SIRc
in

(SIR at the beamformer input), for the two-element distributed array
mounted on the car ceiling. The two beamformer structures are shown
in Fig. C.2. In the case of the RGSC, the blocking matrix filter b1 is
trained using interferer-free input signals, which is the best-case scenario.
The experimental setup is depicted in Fig. A.3. The filter length is set to
L = 512

the SIR with respect to the SIR at microphone x2, that is, a = 12 dB in (C.13).
Figure C.4 shows the SIR improvement for various input SIR. The RGSC is
slightly more robust against signal cancelation, but both structures exhibit
similar SRc curves. Although these results do not account for the distortion
of the target signal, they indicate that the target signal cancelation problem
is not significantly better relieved by the RGSC than by the AIC.

This may be explained by the causality constraints than can be set on the
AIC (that is, the AIC structure with D = 0). For the free-field propagation
model, the target signal with positive DOA reaches the microphone x2(p) after
x1(p), i.e., after a positive delay. Then, causal filtering aTx2(p) cannot com-
pensate this delay to suppress the target at the output y(p) = x1(p)+aTx2(p).
This may prevent the desired source to be canceled. As a consequence, the AIC
is chosen for the two-element distributed array mounted on the car ceiling.

C.4 Conclusion

The RGSC proposed by Hoshuyama et al. [53] has been described. A modifi-
cation of this RGSC for use in conjunction with the two-element distributed
array mounted on the car ceiling has been proposed.

In comparison to the original GSC [42] for the four-element compact
array mounted in the rear-view mirror, the M outputs of the adaptive block-
ing matrix may provide more degrees of freedom to the interference can-
celer, depending on the target signal spectrum. This may yield an improved
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suppression of the interferer signal at the beamformer output. Moreover, the
RGSC provides a significant improvement over the GSC in terms of robustness
against target signal cancelation. Therefore, in our experiments, the RGSC is
chosen to determine the performance of controlled beamforming.

For the two-element distributed array mounted on the car ceiling, the
advantage of the RGSC over the AIC is less significant than for the four-
element compact array mounted in the rear-view mirror. The increased com-
putational demand of the RGSC over the AIC may not be justified. For this
reason, we prefer to use the AIC to determine the performance of controlled
beamforming in our experiments.
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Stability Analysis

As explained in Sect. 7.1.1, the analysis of the global stability for convolu-
tive BSS is hardly tractable. This chapter examines the local stability in
the vicinity of a particular equilibrium point. The local stability of BSS
algorithms has been investigated in the vicinity of the inverse of the mix-
ing system [8, 26, 39, 52]. There, the sources are not only separated but also
deconvolved, possibly using a feedback filter architecture, as in [26]. How-
ever, in many practical cases, only the separation of the sources is desired
(or achievable). Therefore, we will study the stability around an equilibrium
point that separates but does not deconvolve the sources.

This chapter constitutes a generalization of the analysis for white source
signals presented in [16]. It is organized as follows: Section D.1 defines the
mixing and separation models and the notations. Section D.2 derives the lin-
earization of the learning rules in the vicinity of the equilibrium. The condi-
tions for the local stability are derived in Sect. D.3.

D.1 Mixing and Separation Models

We consider a 2×2 mixing and separation scenario with mixing and separation
filters of the same lengths (Lm = L). We assume that the diagonal channels
of the mixing and separation systems are delayed unit responses, that is,

h11 = h22 = δd, (D.1)

for some delay 0 ≤ d ≤ L/2. Note that this assumption is only a normalization
of the mixing process. The off-diagonal channels are denoted by h12 and h21.
We constrain accordingly the diagonal filters of the separation system

w11 = w22 = δd. (D.2)

This model is depicted in Fig. 2.6. It approximates a scenario where each
source sn(p) is positioned close to microphone xn(p). It is also motivated by
the following remarks:
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(i) Let us consider a small deviation ε around the equilibrium point Wopt,
that is, W = Wopt + ε. We parametrize the deviation as εC(n) =
ε(n)H. εC(n) corresponds to an additive deviation for the global system
C(n) = W(n)H, since C(n) = WoptH + εC(n). It can be shown that
the diagonal components εC

ii (n) of εC(n) are constant at first order [33].
Therefore, the diagonal elements of the global system Cii(n) are not
going to change significantly and W(n) will not reach the vicinity of
Wopt. The constraint wii = δd for i = 1, . . . , N provides additional
information that enable convergence toward the vicinity of Wopt.

(ii) The constraints wii = δd for i = 1, 2 ensure the uniqueness of the equi-
librium point, which is wij = −hij for i, j = 1, 2 and i �= j.

(iii) Under the constraint wii = δd for i = 1, 2, the self-closed learning rules
(6.51) are equal to their self-closed counterparts (6.53).

This mixing system is separated with the following separation system:

w11 = δd, w12 = −h12,
w21 = −h21, w22 = δd.

(D.3)

For later reference, we define the vector weq of length 2L − 1 as

weq = δ2d − h12 ∗ h21. (D.4)

In fact, weq = (weq,0, . . . , weq,2L−2)
T is the source–output response at the

solution (D.3). The sources s1 and s2 are assumed stationary within time
blocks of length L and their self-correlation function is denoted by

rn,τ (p) = E {sn(p)sn(p − τ)} . (D.5)

D.2 Linearization of the NG-SOS-BSS Updates

We examine the local stability of the separation algorithm around the sepa-
rating solution (D.3). To this end, we set

w12(n) = −h12 + ε12(n), (D.6)
w21(n) = −h21 + ε21(n), (D.7)

with the deviations

ε12 = (ε12,0, . . . , ε12,L−1)
T

, (D.8)

ε21 = (ε21,0, . . . , ε21,L−1)
T

. (D.9)

The expectation of algorithm (6.51) can be written as:

w12(n + 1) = w12(n) − μ
K∑

k=1

ry1y2(kL)/σ2
1(kL), (D.10)

w21(n + 1) = w21(n) − μ

K∑
k=1

ry2y1(kL)/σ2
2(kL), (D.11)
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where

ryiyj
(p) =

(
ryiyj ,−d(p), . . . , ryiyj ,L−1−d(p)

)
(D.12)

ryiyj ,τ (p) = E {yi(p)yj(p − τ)} (D.13)

σ2
i (p) = E

{
y2

i (p)
}

(D.14)

for i, j = 1, 2. The BSS algorithm is driven by the output cross correlation
ryiyj

(p). Neglecting the quadratic terms in εij,k(n), this cross correlation is
first-order approximated by

ry1y2,τ (p) =
2L−2∑
u=0

L−1∑
v=0

weq,uε21,v(n)r1,v+d+τ−u(p)

+
L−1∑
u=0

2L−2∑
v=0

weq,vε12,u(n)r2,v+τ−u−d(p). (D.15)

The first-order approximation for ry2y1,τ (p) is simply given by

ry2y1,τ (p) = ry1y2,−τ (p). (D.16)

Substituting wij(n) in (D.6) and (D.7) into (D.10) and (D.11), and replacing
ryiyj ,τ (p) by its value in (D.15), the deviations ε12(n + 1) and ε21(n + 1) are
given as a linear function of ε12(n) and ε21(n). Thus, the first-order approxi-
mation of (D.10) and (D.11) can be written in terms of ε12(n) and ε21(n) in
matrix form:

ε12(n+1) = ε12(n)−μ
∑

k

(
1

σ2
1(kL)

A11(kL)ε12(n) +
1

σ2
1(kL)

A12(kL)ε21(n)
)

,

(D.17)

ε21(n+1) = ε21(n)−μ
∑

k

(
1

σ2
2(kL)

A21(kL)ε12(n) +
1

σ2
2(kL)

A22(kL)ε21(n)
)

(D.18)

with

A11(p) =

⎛⎜⎜⎜⎜⎝
w̃

(2)
eq,0(p) w̃

(2)
eq,1(p) . . . w̃

(2)
eq,L−1(p)

w̃
(2)
eq,−1(p) w̃

(2)
eq,0(p) . . . w̃

(2)
eq,L−2(p)

...
. . . . . .

...
w̃

(2)
eq,−L+1(p) . . . . . . w̃

(2)
eq,0(p)

⎞⎟⎟⎟⎟⎠ , (D.19)
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A12(p) =

⎛⎜⎜⎜⎜⎝
w

(1)
eq,0(p) w

(1)
eq,1(p) . . . w

(1)
eq,L−1(p)

w
(1)
eq,1(p) w

(1)
eq,2(p) . . . w

(1)
eq,L(p)

...
...

w
(1)
eq,L−1(p) . . . . . . w

(1)
eq,2L−2(p)

⎞⎟⎟⎟⎟⎠ , (D.20)

A21(p) =

⎛⎜⎜⎜⎜⎝
w

(2)
eq,0(p) w

(2)
eq,1(p) . . . w

(2)
eq,L−1(p)

w
(2)
eq,1(p) w

(2)
eq,2(p) . . . w

(2)
eq,L(p)

...
...

w
(2)
eq,L−1(p) . . . . . . w

(2)
eq,2L−2(p)

⎞⎟⎟⎟⎟⎠ , (D.21)

A22(p) =

⎛⎜⎜⎜⎜⎝
w̃

(1)
eq,0(p) w̃

(1)
eq,1(p) . . . w̃

(1)
eq,L−1(p)

w̃
(1)
eq,−1(p) w̃

(1)
eq,0(p) . . . w̃

(1)
eq,L−2(p)

...
. . . . . .

...
w̃

(1)
eq,−L+1(p) . . . . . . w̃

(1)
eq,0(p)

⎞⎟⎟⎟⎟⎠ . (D.22)

The coefficients w
(n)
eq,k(p) come from the convolution of rn(p) and weq and are

given by

w
(n)
eq,k(p) =

2L−2∑
u=0

weq,urn,k−u(p). (D.23)

The coefficients w̃
(n)
eq,k(p) are similarly defined, as follows: Let us introduce the

response w̃eq, which is a shifted version of weq,

w̃eq,k = weq,k+2d. (D.24)

Then, according to (D.4), we have

w̃eq,k = δk −
L−1∑
u=0

h12,u+dh21,k+d−u, (D.25)

and we define w̃
(n)
eq,k(p) as the convolution of w̃eq,k and rn,k(p):

w̃
(n)
eq,k(p) =

2L−2∑
u=0

w̃eq,urn,k−u(p). (D.26)

Now, we consider the situation where each source is silent over a certain
time block T , say, Tk = [kL − 3L + 3, kL], while the other sources are not
silent over this interval:

∀n = 1, . . . , N ∃k such that sn(kL) = 0 and ∀m �= n, sm(kL) �= 0. (D.27)
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Without loss of generality, suppose s1 is silent on the first time block T1. Let
σ2

1(L) tend to zero in (D.17). One finds that the second term on the right-hand
side of (D.17), namely

1
σ2

1(kL)
A11(kL)ε12(n), (D.28)

tends to +∞. By contrast, the last term of (D.17), namely

1
σ2

1(kL)
A12(kL)ε21(n), (D.29)

remains bounded. Since we are interested in the direction of the update and
not in its norm, we can consider a small step-size μ proportional to σ2

1(L) so
that the limit of the second term on the right-hand side (D.17) exists. Then
(D.29) vanishes at this limit, as well as the contributions of the arguments
of the sum in (D.17) for k = 2, . . . ,K. One obtains the following relation on
ε12(n):

ε12(n + 1) = (I − μ̃A11(L)) ε12(n), (D.30)

where μ̃σ2
1(L) = μ. The same reasoning for source s2 silent at the second time

block T2 leads to a similar equation for ε21(n):

ε21(n + 1) = (I − μ̃A22(2L)) ε12(n). (D.31)

Therefore, the local stability depends on the positiveness of the eigenvalues
of A11(L) and A22(2L).

D.3 Local Stability Conditions

Causal mixing, white sources

Suppose that the source s2 is white in T1, then its correlation function r2,τ is
a Dirac impulse, r2,τ = δ(τ). If additionally d = 0, then the definitions (D.23)
and (D.24) yield

w̃(n)
eq (p) = w(n)

eq (p) = weq. (D.32)

If d = 0, i.e., if the mixing is causal, then weq,k = 0 for k < 0. Consequently,
according to (D.19), the matrices A11(L) and A22(2L) in (D.30) and (D.31)
become upper triangular. The eigenvalues are the diagonal elements, weq,0 =
1 − h12,0h21,0. Therefore, a necessary and sufficient condition for the local
stability is

1 − h12,0h21,0 > 0. (D.33)
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General case

The matrix A11(L) in (D.30) is a Toeplitz matrix and can be made circulant
using the elements of its first row and of its first column. Let us define

c1 =
(
w̃

(2)
eq,0(L), . . . , w̃(2)

eq,−L+1(L), w̃(2)
eq,L−1(L), . . . , w̃(2)

eq,1(L)
)T

. (D.34)

The time argument L appears because the local behavior is dominated by the
source statistics at time block T1, as in (D.30). We denote the 2L−1×2L−1
circulant matrix with first column c1 by C. Similarly, we double the size
of ε12:

ε̃12 =
[

ε12

0L−1×1

]
(D.35)

and we define the projection

Ω =
[

IL×L 0L×L−1

0L−1×L 0L−1×L−1

]
. (D.36)

Then (D.30) becomes

ε̃12(n + 1) = Ω (I − μ̃C) ε̃12(n). (D.37)

Since C is circulant, it is diagonalized by the discrete Fourier transform (DFT)
matrix F, that is, C = FΛFH . Let us define F0 = ΩF. We have F0FH

0 = Ω
and we can transform (D.37) into

ε̃12(n + 1) = Ω
(
Ω − μ̃F0ΛFH

0

)
ε̃12(n), (D.38)

= ΩF0 (I − μ̃Λ)FH
0 ε̃12(n). (D.39)

This yields

FH
0 ε̃12(n + 1) = Ω (I − μ̃Λ)FH

0 ε̃12(n). (D.40)

Equation (D.40) shows that a sufficient condition for the local stability is
that the diagonal elements of Λ, i.e., the DFT values of w̃

(2)
eq , have positive

realparts. Let us denote by W̃
(2)
eq (k) the kth frequency bin of the DFT of w̃

(2)
eq ,

for k = 0, . . . , 2L − 2:

W̃ (2)
eq (k) =

L−1∑
τ=−L+1

w̃(2)
eq,τ (L) e2iπτk/(2L−1). (D.41)

We similarly define W̃eq(k) and R2(k), the kth frequency bin of w̃eq and
r2(L) (the correlation function of the source s2 at time block T1), respectively.
According to (D.26), W̃

(2)
eq (k) can be factorized as
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W̃ (2)
eq (k) = W̃eq(k)R2(k), (D.42)

provided the response w̃eq of length Lw and the correlation function r2 of
length Lr fulfill Lw + Lr − 1 ≤ 2L− 1 (which is true if the filters h12 and h21

are short enough). Since r2 is symmetric, its DFT R2(k) is real-valued. It is
further assumed that R2(k) is positive. According to (D.25), we have

W̃eq(k) = 1 − e−4iπdk/(2L−1)H12(k)H21(k). (D.43)

The positiveness of W̃
(2)
eq (k) is obtained if

∣∣e−4iπdk/(2L−1)H12(k)H21(k)
∣∣ < 1,

that is, if
|H12(k)H21(k)| < 1 (D.44)

which is the result used in Chap. 7. Note that the same reasoning applied to
ε21(n) leads to the same sufficient local stability conditions.
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Notations

Conventions
x real scalar
x vector
X matrix or vector for a frequency-domain variable
XH matrix Hermitian (complex conjugate) transpose
XT matrix transpose
X−T inverse of XT

� definition (as opposed to assignment or assertion)

Abbreviations and acronyms
s.t. subject to
AIC Adaptive Interference Canceler
BGSC Blind Generalized Sidelobe Canceler
BM Blocking Matrix
BSS Blind Source Separation
DOA Direction of Arrival
DTD Double-Talk Detector
DFT Discrete Fourier Transform
DTFT Discrete-Time Fourier Transform
FD-SOS Frequency-Domain Second-Order Statistics BSS algorithm
FD-HOS Frequency-Domain Higher-Order Statistics BSS algorithm
FFT Fast Fourier Transform
FIR Finite Impulse Response
GSC Generalized Sidelobe Canceler
GSD Generalized Sidelobe Decorrelator
IFFT Inverse Fast Fourier Transform
ILMS Implicit LMS
LCMV Linearly Constrained Minimum Variance
LMS Least-Mean Square
LS Least Square
LTI Linear Time Invariant
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MIMO Multiple-Input Multiple-Output
MISO Multiple-Input Single-Output
NG-SOS-BSS Natural Gradient Second-Order Statistics Blind Source

Separation algorithm
PSD Power Spectral Density
QIC Quadratic Inequality Constraint
RGSC Robust Generalized Sidelobe Canceler
STFT Short-Time Discrete Fourier Transform
SOS-BSS Second-Order Statistics Blind Source Separation
ULA Uniform Linear Array
WER Word Error Rate

Scalar variables
aILMS ILMS convergence contraction factor
aNLMS NLMS convergence contraction factor
aQIC constant upper limit in the quadratic inequality constraint
b(p) target signal at the output when a(p) = aopt(p)
bILMS ILMS divergence contraction factor
bNLMS NLMS divergence contraction factor
d number of acausal coefficients which are treated as acausal

in the convolution operator d

fs sampling frequency
hmn,k kth tap of the discrete-time acoustic channels from the nth

source to the mth receiver
hr,θ continuous time acoustic channel from the source position

θ to the receiver position r
p discrete time
sn(p) nth source signal (speech source)
sθ(t) continuous time signal emitted at position θ
t continuous time
x(r, t) continuous time signal received at position r
xn(p) nth observed signal (microphone signal)
wm,k kth tap of the separation filter for the mth input of a

MISO separation system
wnm,k kth tap of the separation filter for the mth input and nth

output of a MIMO separation system
x0(p) target reference signal (fixed beamformer output signal)
xB,m′(p) blocking matrix m′th output signal
xm(p) mth received signal (microphone signal)
xint,m(p) contribution of the interference signal in the input signal

xm(p)
xsig,m(p) contribution of the desired signal in the input signal xm(p)
y(p) output signal for MISO separation system
yn(p) nth output signal for MIMO separation system
yint(p) contribution of the interferences at the output
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C dimension of the constraint for LCMV beamformer
CA complexity of an addition or subtraction
Cbatch complexity of a batch algorithm
Cblock-wise complexity of a block-wise batch algorithm
CLFFT

conv complexity for convolution in the DFT domain with FFT
of length LFFT

CM complexity of a multiplication or division
D delay in the fixed beamformer path
Gw(ω,θ) space–frequency response
H(y) entropy of y
Hmn(k) in the local stability analysis Hmn(k) is the DFT of hmn

padded with L − 1 zeros at frequency bin (−k)
I(y) mutual information of y
IR(p) reduction of the interference signal level for compact

arrays
IR[t0,t1] reduction of the interference signal level, averaged between

times t0 and t1, for compact arrays
IRd(p) reduction of the interference signal level for distributed ar-

rays
IRd

[t0,t1] reduction of the interference signal level, averaged between
times t0 and t1, for distributed arrays

J cost function (or “criterion”)
J |S restriction of J to the Sylvester subspace S
JLS(w) least-square cost function
JLMS least-mean-square criterion
JBSS(W) BSS cost function
JBSS,LS(W) least-square BSS cost function
Jgeo(W) geometric cost function
K number of jointly diagonalized output correlation matrices

in SOS-BSS
L length of the separation filters
Lm length of the mixing channels
M number of microphones
M ′ number of interference reference signals
N number of sources
Niter number of iterations in the gradient descent
Q quality measure to determine the constants μNLMS, μ0, and

aQIC

Q[t0,t1] signal-to-interference ratio improvement, averaged between
times t0 and t1, for compact arrays

Qd
[t0,t1]

signal-to-interference ratio improvement, averaged between
times t0 and t1, for distributed arrays

SIRd
imp(p) signal-to-interference ratio improvement for distributed ar-

rays
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SIRimp(p) signal-to-interference ratio improvement for compact arrays
SR(p) reduction of the target signal level for compact arrays
SR[t0,t1] reduction of the target signal level, averaged between times t0

and t1, for compact arrays
SRd(p) reduction of the target signal level for distributed arrays
SRd

[t0,t1] reduction of the target signal level, averaged between times t0
and t1, for distributed arrays

T number of samples

Vectors and matrices
a(p) adaptive interference canceler
aopt(p) optimal adaptive interference canceler (Wiener solution)
c C × 1 response vector
cint global interference–output response for MISO separation sys-

tems
cn global nth source–output response for MISO separation sys-

tems
d(p) contribution of the desired signal in x(p)
d(θ) M(2L − 1) × 1 vector used to define the spatial response

g(Wn, θ)
g(Wn, θ) spatial response defined with the Sylvester matrix Wn

g(w, θ) spatial response of the MISO separation system w for the DOA
θ

g(w,θ) spatial response of the MISO separation system w for the 3D
position θ

hmn Lm × 1 mixing channel vector for the nth source and mth re-
ceiver

m(p) mismatch between the actual adaptive interference canceler
and the Wiener solution

n(p) contribution of the local interference signal in x(p)
n(road)(p) contribution of the road noise signal x(p)
sint(p) (N − 1)(L + Lm − 1) × 1 interference source signal vector
sn(p) L + Lm − 1 × 1 nth source vector
w ML× 1 multichannel filter vector for MISO separation system
w0 fixed beamformer in a GSC beamformer
wm L× 1 separation filter for the mth input of a MISO separation

system
wnm L × 1 separation filter vector for MIMO separation system
x(p) ML × 1 multichannel input signal vector for MISO separation

system
x(p) M(2L − 1) × 1 input vector for a MIMO separation system
xB(p) interferer reference signal (blocking matrix output signal)
xm(p) L × 1 time-reversed mth input signal vector
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y(p) NL × 1 vector representing the outputs of a MIMO separation
system

y[i,...,j](p) (j − i + 1)L × 1 vector representing the output signals
yi(p), . . . ,yj(p)

yn(p) L× 1 vector representing the nth output signal of a MIMO sep-
aration system

B blocking matrix in a GSC beamformer
C ML × C constraint matrix, or block Sylvester mixing matrix of

size NL×N(Lm +2L−2) representing the global source–output
MIMO system

Cnn′ Sylvester mixing matrix of size L × (Lm + 2L − 2) representing
a source–output channel

D matrix used to define a geometric constraint
D(ω,θ) steering vector for the source position θ
G matrix defining a general geometric constraint
G0 constraint of zero spatial response at the interference DOAs
G1 constraint of unit spatial response at the target position
G2 constraint of unit spatial response at the target position and of

zero spatial response at the interference DOA
H block Sylvester mixing matrix of size M(2L−1)×N(Lm+2L−2)
Hint (N − 1)(L + Lm − 1) × ML interference mixing matrix
Hmn L+Lm−1×L matrix representing the mixing channel hmn used

in Hint

Hmn (2L−1)×(Lm+2L−2) Sylvester matrix representing the mixing
channel hnm

I identity matrix
Rint(p) sint(p) correlation matrix
Rxx(p) ML × ML correlation matrix for the input signal vector x(p)
RxBxB

(p) correlation matrix for xB(p)
R̂xBxB

(p) estimation of RxBxB
(p)

Ryy(p) correlation matrix for the output vector y(p)
R̂yy(p) estimated correlation matrix for the output vector y(p)
Rynyn

(p) correlation matrix for the output vector yn(p) in the nth channel
Ŝ(n)

yiyj regularized output correlation matrix
W block Sylvester matrix representing the entire MIMO separation

system
W(ω) DTFT of the separation system w
W(p) in sample-wise adaptive mode, the separation matrix W at time

p
W(n) in batch mode, the separation matrix W at the nth iteration
Wn nth row of W
W(n, p) in block-wise batch adaptive mode, the separation matrix W at

the nth iteration in the block at time p
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ΔW(n) update for the matrix W(n), that is, W(n+1) = W(n)−
μ(n)ΔW(n)

ΔW(BSS) BSS update
ΔW(geo) geometric update
Wnm L×(2L−1) Sylvester matrix representing the separation

filter wnm

Wopt optimum separation matrix (equilibrium point)
Wopt optimum separation matrix (defined as the minimum of

ξBSS(W)
Ŵopt estimate of Wopt

W multichannel z-transform of the Sylvester matrix W

Functions and operators
bdiagA for a block matrix A, operator that sets the off-diagonal

submatrices to 0
bdiag1,[2,...,M ]A operator setting the off-diagonal submatrices A1m and

Am1 for m = 2, . . . ,M to 0
boffA for a block matrix A, operator that sets the diagonal

submatrices to 0
det(A) determinant of the matrix A
D

(Wopt)
g (ε(n)) derivative of g at point Wopt, as a linear function of a

small deviation
E {} expectation operator (ensemble average)
Ê {} estimation of E {}
f (C)(·) Cth composition of a function f
S(A) operator which transforms a general matrix A into a

Sylvester matrix by summing the redundant terms
Sd(A) operator which transforms a general matrix A into a

Sylvester matrix using the dth row as reference
SL(A) operator which transforms a general matrix A into a

Sylvester matrix using the Lth column as reference
Sapprox(A) generic approximation of S(A) representing either Sd(A)

or SL(A)
tr(A) trace of the matrix A
‖x‖

√
xHx (vector norm)

‖X‖
√

tr (XHX) (matrix norm)
∗ convolution operator
d convolution where d coefficients are treated as acausal

and where the result is truncated on L coefficients[
B
]
S (z) operator that truncates a z-transform B to a support

S ⊂ [−L + 1, L − 1]
〈·, ·〉 scalar product associated to the Euclidean metric
	x
 smallest integer larger than x
�x� largest integer smaller than x
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Sets
N natural numbers
Z integers
R real numbers
C complex numbers
S space of the block Sylvester matrices of size NL × M(2L − 1)
S set of the single-sided z-transforms of length L
T space of the block Toeplitz matrices of size NL × NL
T set of the multichannel two-sided z-transforms

Greek letters
α regularization parameter
α(p) general contraction factor
β βL is the number of samples in the most recent input block for

block-wise batch algorithms
δ fixed regularization term
δd vector representing a delay of d taps
Δ interelement spacing for a uniform linear array
εmismatch factor representing the interferer signal power at the beam-

former output
εleakage factor representing the amount of target leakage into the inter-

ference reference
ε(n) small deviation around the equilibrium point Wopt

λ geometric weight
λi eigenvalue of Ryy

λ̃i error on the eigenvalue λi

λ
(n)
i eigenvalue of R(n)

yy , the output correlation matrix at iteration
n

λmax largest eigenvalue of R̂xBxB
or RxBxB

μ step-size
μ̃ normalized step-size
μ0 step-size for the ILMS algorithm
μLMS step-size for the LMS algorithm
μmax maximal step-size for the stability of ILMS
μNLMS step-size for the NLMS algorithm
θ direction of arrival
θ 3D source position
θ1 direction of arrival for the source of interest
σ2

1 variance of the target signal at the beamformer output
σ2

2 variance of the interference signal at the interference reference
τm,θ delay needed for a sound wave emitted at θ to travel from the

mth sensor to the next
ω angular frequency
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ξBSS(W) BSS cost function involving the expectation operator
ξLMS(w) least-mean-square cost function involving the expectation

operator

Special symbols
� symbol denoting an unconstrained spatial response
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convergence, 48
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application to BSS, 91

approximation, 174, 176

for convolutive mixtures, 174

non-self-closed, 89, 103, 114, 174

proportionality, 84

self-closed, 87, 93, 103, 114, 174

simplification, 91



Index 225

NLMS
parameter settings, 57

normalization, 42, 119, 131, 140
null-steering beamformer, 33, 125

initialization with, 154

open issue, 96, 123, 176

partial separation, 76, 164, 174
performance

for a speech recognizer, 168
IR, 22
measures, 22
SIR, 22
SR, 22

permutation ambiguity, 68, 96, 126,
148, 151, 163, 175

prior information, 149, 175, 177
acoustic mixing model, 149
at the initialization, 150
multiple constraints, 162
preprocessing, 30, 160, 165
soft constraint, 157
strictness, 149, 154

quadratic inequality constraint, 52
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