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Preface

The development of computer and telecommunication technologies led to a
revolution in the way that people work and communicate with each other. One
of the results is that large amount of information will increasingly be held in a
form that is natural for users, as speech in natural language. In the presented
work, we investigate the speech signal capture problem, which includes the
separation of multiple interfering speakers using microphone arrays.

Adaptive beamforming is a classical approach which has been developed
since the seventies. However it requires a double-talk detector (DTD) that
interrupts the adaptation when the target is active, since otherwise target
cancelation occurs. The fact that several speakers may be active simultane-
ously makes this detection difficult, and if additional background noise occurs,
even less reliable. Our proposed approaches address this separation problem
using continuous, uninterrupted adaptive algorithms. The advantage seems
twofold: Firstly, the algorithm development is much simpler since no detection
mechanism needs to be designed and no threshold is to be tuned. Secondly,
the performance may be improved due to the adaptation during periods of
double-talk.

In the first part of the book, we investigate a modification of the widely
used NLMS algorithm, termed Implicit LMS (ILMS), which implicitly includes
an adaptation control and does not require any threshold. Experimental eval-
uations reveal that ILMS mitigates the target signal cancelation substantially
with the distributed microphone array. However, in the more difficult case of
the compact microphone array, this algorithm does not sufficiently reduce the
target signal cancelation. In this case, more sophisticated blind source sepa-
ration techniques (BSS) seem necessary.

The second part is dedicated to blind separation techniques, much more
recent than classical adaptive beamforming (the first results with real acoustic
mixings appearing in the nineties). Our objective was to evaluate the perfor-
mance of blind separation techniques relative to that of more mature beam-
forming approaches. In addition, we wanted to combine the advantages of
beamforming, notably its performance and robustness, with those of blind
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source separation which does not require activity detection. Parra’s frequency-
domain block-diagonalization algorithm served as a benchmark in the field of
blind source separation. However, we realized that this algorithm could not
be flexibly combined with beamformers because it fails to cope with certain
“acausal” type of source mixing. We therefore focused on the time-domain
approach by Buchner. This approach has been extended to be applied in case
there are more microphones than sources. At a moderate computational cost,
the proposed Partial BSS scheme flexibly exploits all microphone signals and
provides multiple interferer references. Moreover, we derive self-closed update
rules that emerge as very robust relative to other algorithms in an experimen-
tal comparison. An emphasis is also placed on the theoretical study of BSS,
evidencing the role of the causality of the mixing system.

In the last part of the book, we combine both, the beamforming and BSS
approaches. While the input of geometrical prior information may increase
the start-up performance, we show that the performance gain after the ini-
tial convergence is limited. The use of an adaptive interference canceler as a
postprocessor leads to a higher interference suppression and also to a higher
cancelation of the desired signal. However, we will see that the cancelation of
the desired signal may be kept moderate by adequately combining BSS with
the ILMS algorithm and geometrical prior information.

The presented book results from a cooperation between DaimlerChrysler
and the University of Ulm. The industrial partner provided the privileged
application field of the car environment and we applied two different, plausible
experimental settings using compact and distributed microphone arrays. How-
ever, the proposed methods are quite general and should be easily portable
to other environments and to different applications.
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1

Introduction

Speech is a natural and therefore a privileged communication modality for
humans. For example in cars, safety and convenience issues require hands-
free (or “seamless”) speech-based human-machine interfaces for the driver to
manipulate complex functionalities and devices while driving. Applications
include hands-free phone calls as well as more advanced functions such as
automatic dialog systems for in-vehicle navigation assistance systems [71].
With a seamless speech input, such interfaces increase comfort but have to
face several issues:

(7) The signal-to-noise ratio (SNR) at a given microphone can be weak relative
to the background noise since the signal energy is inversely proportional
to the square of the distance to the sound source [14]. Moreover, room
acoustics leads to a reverberated speech signal.

(7i)Interferences, such as speech from the codriver, may greatly hamper the
speech recognizer performance, which is crucial for human—machine dialog
applications. Separation of the target speaker during periods of competing
speech from the codriver represent a particular challenge. This is because
the characteristics of the interferer signals cannot be directly estimated
from the microphone signals during these periods [50]. This problem is of
particular importance since spontaneous multiparty speech contains lots
of overlaps between the speech flows of the participants [43].

These issues make the seamless speech input a challenging problem. Before
recognizing speech as a sequence of words, an important preprocessing step is
to denoise the speech signal from its perturbations. In this book, we address
the issue of separating the desired signal from interfering speech, i.e., the point
(i) above.

The car interior, which is weakly reverberant, will be our test environment.
Our experiments have been carried out in a Mercedes S320 vehicle with two
different microphone arrays: a four-element compact array mounted in the
rear-view mirror, and a two-element distributed array mounted on the car
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t C .
compac atray distributed array

Fig. 1.1. Experimental setup layout for the car interior. We want to separate the
driver speech from the codriver interfering speech with a four-element
compact array mounted in the rear-view mirror or a two-element distrib-
uted array mounted on the car ceiling

ceiling. In this test environment, we want to suppress the codriver interfering
speech to recover the clean driver speech, as shown in Fig. 1.1.

1.1 Existing Approaches: A Brief Overview

With a single microphone, noise reduction algorithms rely solely on the
temporal (or spectral) information contained in the input signal. They can
be effective if the noise spectral content varies slowly relative to the sig-
nal but they generally yield a distortion of the target signal. They are not
appropriate to suppress local nonstationary interference, such as the codriver
speech [66]. For this task, microphone array processing techniques are espe-
cially well-suited, since they are able to suppress the local interferer while
keeping the desired signal undistorted [17, 50].

Several microphone array methods have been developed in the two last
decades. This section provides a brief overview of the methods that can be
applied to the separation of the target signal from the interfering speech.

A class of methods, usually referred to as beamforming methods, is based
on the prior knowledge of the position of the target speaker. Many fixed
(data-independent) beamformers as well as statistically optimum or adaptive
beamformers, required for nonstationary noise fields, can be formulated in the
linearly constrained minimum variance (LCMV) framework [36, 42, 47, 88].

Adaptive beamformers need to be carefully used in speech enhancement.
In practice, inaccurate prior knowledge of the target speaker position or room
reverberation can lead to the cancelation of the target speech signal [91]. For
this reason, adaptive beamformers should be supervised (or “controlled”) so
that the adaptation occurs only when the target signal level is weak relative
to that of the interferers [27, 54, 50]. In the context of interfering speech
signals, the control mechanism is called a double-talk detector (DTD). For
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most existing adaptive beamformers, the DTD performs in an all-or-nothing
manner, that is, the adaptation is interrupted during periods of double-talk.

Even though several approaches have been proposed [44, 49, 54], the design
of the DTD appears delicate. It implies tunable parameters, whose value may
influence the performance significantly. Also, background noise and nonsta-
tionary local interferences create alternating noise fields making the design of
a reliable and accurate DTD even more difficult. Therefore, alternative unsu-
pervised techniques that do not require any tunable threshold are of interest,
not, only because they may be easier to design but also because they are able
to adapt during double-talk.

More recently, a class of unsupervised methods has been developed and
applied to audio signal processing. These methods, usually referred to as blind
source separation (BSS), are based on the sole assumption that the sources are
mutually independent. BSS algorithms pursue a similar goal as beamforming:
to reduce interferences. A major difference to beamforming is that BSS does
not require any information about the target position, and BSS is sometimes
termed “blind beamforming” [21]. Another difference is that BSS recovers all
present sources simultaneously, while beamforming extracts only one target
source.

The premises of BSS can be traced back to the work of Jutten et al. [59],
who devised a method to separate instantaneous mixtures. The separation of
multiple speakers, an important application of BSS in audio signal process-
ing, is considerably more challenging because it involves convolutive mixtures.
Applying BSS to realistic scenarios in audio revealed difficulties [86]. On the
one hand, time-domain BSS seems to suffer from very slow convergence [74].
On the other hand, the performance of narrowband frequency-domain BSS
is fundamentally limited [9]. Narrowband frequency-domain BSS suffers from
the so-called permutation and circularity problems, which require extra repair
measures [57, 79, 81, 82, 83]. Even though BSS has been applied successfully
in some realistic scenarios [4, 75], its performance in terms of interference sup-
pression is usually regarded as inferior to that of LCMV beamforming, apart
from the target signal cancelation problem [11].

Taken individually, the beamforming approach and the BSS approach have
revealed their particular drawbacks. In this book, we consider them as com-
plementary and address the question whether they can be combined in an
efficient manner.

1.2 Scope and Objective of the Book

The first objective of the book is to evaluate the performance of time-domain
LCMV beamforming and BSS algorithms. The evaluation is performed in
terms of reduction of the interference signal level first and then in terms of
reduction of the word error rate when used as an acoustical front-end to a
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speech recognizer. The focus is on time-domain signal processing, as opposed
to frequency-domain signal processing, for the following reasons:

e Many frequency-domain algorithms rely on an approximative narrowband
signal model which ignores coupling across different frequency bins [61].
Not relying on the narrowband signal model may improve the performance
and support the understanding of the algorithm.

e Time-domain BSS algorithms seem robust against the permutation
problem.

The car environment is a good example of an application where the po-
sition of the target speaker (the driver) is known in advance. A purely blind
approach, which does not exploit this information, seems suboptimal. On the
other hand, adaptive beamforming algorithms require a DTD detector to be
designed and thresholds to be tuned. Therefore, the second objective of the
book is the development of a microphone array processing algorithm that
combines the benefits of both approaches. In other words, we want to develop
a method that (1) efficiently extracts the speech of one desired speaker from
mixtures of multiple speakers, and (2) removes the need for a DTD and allows
continuous adaptation, also during double-talk.

Moreover, an emphasis is placed on the evaluation of these methods with
real microphone recordings involving simultaneous speech of the driver and the
codriver, as opposed to computer-generated simulations. Experiments with
background noise are carried out to assess the robustness of the considered
methods in noisy conditions.

Let us set the limits of this book: Firstly, the attenuation of the back-
ground noise, which may be tackled with frequency-domain postfiltering tech-
niques [14, 94], does not come into focus. Secondly, the design of a DTD will
not be investigated. An approach that is well adapted for the automotive con-
text can be found in [65]. For the sake of comparison with DTD-controlled
beamformers, we will use an “informed” virtual DTD, based on the knowledge
of the true target signal.

1.3 Outline of the Book

Chapter 2 is an introductory chapter which sets the formal framework on
which the next chapters are based. It defines the notations, illustrates adap-
tive algorithms on simple examples, and defines performance measures. Then,
Chaps. 3-9 can be divided into three parts:

e The first part (Chaps. 3 and 4) deals with LCMV beamforming. Chapter 3
introduces fundamental concepts in LCMV beamforming. Chapter 4
presents an “implicit” control scheme, as opposed to “explicit” double-talk
detection. The proposed threshold-free adaptation control is a modifica-
tion of the standard NLMS algorithm which mitigates the target signal
cancelation problem.
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The second part (Chaps. 5-7) is dedicated to BSS. In Chap. 5, we con-
sider the time-domain BSS method presented by Buchner et al. which
exploits second-order statistics of the source signals [18, 20]. This method
is based on the natural gradient and is limited to “square” systems with
equally many sources and microphones. Introducing the concept of “par-
tial separation,” we propose a new approach to remove this restriction of
the natural gradient. The Sylvester-based representation of the separation
system allows a very concise derivation of Second-Order Statistics BSS
(SOS-BSS) algorithms in the time-domain but cannot be directly imple-
mented. Revisiting the natural gradient in the z-domain, we clarify this
implementation issue in Chap. 6. Chapter 7 discusses the convergence and
stability of SOS-BSS algorithms from the theoretical point of view.

Chapters 8 and 9 constitute the last part of the book. Chapter 8 provides
a detailed comparison of the two approaches. Chapter 9 examines existing
and new combinations of SOS-BSS with beamforming. It also investigates
these combinations as an acoustic front-end for a speech recognizer.
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Source Separation as a Multichannel Linear
Filtering Problem

The physical phenomena implied in multichannel speech processing include
speech production at the vocal strings, sound propagation from the sound
source to the microphone membrane, and analog-to-digital conversion of the
signal. Instead of taking the complexity of these various phenomena into
account, the acoustic signal processing algorithms studied in this book are
based on the simplified model of a linear acoustic mixing.

This chapter explains this simplified model and is organized as follows:
Section 2.1 describes the acoustic environment from the physical point of view
and gives a mathematical formulation of the linear acoustic mixing model. In
Sect. 2.2, the multichannel separation filters are presented for single and mul-
tiple outputs systems. The least-mean square (LMS) algorithm and a simple
blind source separation (BSS) algorithm are briefly introduced to exemplify
multichannel adaptive algorithms. The spatial response is introduced as a tool
to interpret the separation filters spatially. In Sect. 2.3, we examine how the
separation may be achieved and a lower bound on the length of the separation
filters is derived. Finally, Sect. 2.4 defines the performance measures that will
be used throughout the next chapters.

2.1 The Mixing Channels

For normal sound pressure in speech applications, the propagation medium
(the air) and the transducer (the microphone) may be assumed to behave
linearly. Hence, the emitted sound undergoes a linear transformation before
reaching a given microphone. The filter that characterizes this transformation
is completely described by its impulse response, which we denote by hyg.
This response is also called acoustic channel or room impulse response. The
acoustic channel h, g depends on a set of parameters that may be divided into
four groups:
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e The position & € R*® where the source signal sg(t) is emitted may be
estimated from the input data, but it is more difficult to determine the
orientation and radiation diagram of the source.

e The position r € R? where the sound is received, i.e., the position® of the
microphone, is known in most applications.

e The geometry of the room and the acoustic properties of its walls and
objects which reflect the sound may hardly be modeled for real rooms and
are unknown a priori in most applications.

e The propagation of sound in the propagation medium depends on parame-
ters such as the temperature. Assuming a temperature of 20°C, the sound
velocity equals ¢ = 344 mss.

As an example, a room impulse response estimated in the car interior from
the driver mouth to a microphone mounted in the rear-view mirror is shown
in Fig. 2.1.

In general, the sound is produced in a region I" C R3 of the 3D space. In
the noiseless case, the received signal z(r,t) is then obtained by integrating
the convolution of the source signal sg(t) with the response hyg over the
region I

z(r,t) = / he,o * sg dO, (2.1)
r

+oo
= / / heo(T)se(t — 7)dr d6. (2.2)
rJo

08|

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
time [sec]
Fig. 2.1. Estimated impulse response between a close-talk microphone mounted on

the artificial head on the driver seat and a microphone mounted on the
four-element compact array mounted in the rear-view mirror

! The microphone orientation and sensitivity diagram may also be modeled. How-
ever these parameters are generally given from the manufacturer only within a
certain tolerance margin.
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When a human speaker or a loudspeaker is recorded by a distant
microphone, the size of the region I" is small relative to the source-microphone
distance. Thus the source may be modeled as a point source, which is local-
ized at a single spatial point 6. This is formally expressed by an excitation
signal sg, (t) as sg(t) = (0 —09)se, (t). In this case, the space integral in (2.1)
disappears and only the time integral remains:

o:(r,t) = hl‘,eo * S50, , (23)

+o00
= /0 hy,0,(T)s0,(t — ) dr. (2.4)

If N point sources are present, we may write sg(t) = 25:1 0(60 —0,)se, (1),
which yields

N +o0
a(rt) =Y /O hro, (T)se, (t —7)dr. (2.5)

In the remainder of this work we may omit the argument r, the positions
ri,...,ry of the M microphones being the ones we are interested in. In this
case we simply note z,,(t), hy,(7), and s, (t) for z(r,,,t), hr.e, (7), and s, (t),
respectively.

Since real room impulse responses decay at an exponential rate, they may
be modeled by a finite impulse response (FIR) filter of length L,,. Let us
denote the microphone signals sampled at time t = p/ fs by z(p), where p € Z
and where fg denotes the sampling frequency. If we assume that the digitiza-
tion is a linear operation, then the digitized microphone signal may be written
from (2.5) as

N N Ln
x(p) = Z(sn * h,)(p) = Z Z B ieSn(p — k), (2.6)
n=1 n=1 k=0
where hy, 1,k = 0,..., Ly denotes the digitized impulse response from the

source $p(p) to the microphone z(p). Equation (2.6) gives a formulation of
the microphone signal as the linear mixing of the signal of interest and of
the interferences (Fig. 2.2). In the case of several microphone signals @, (p),
m=1,...,M, (2.6) turns into

S1 hi1 ® 1
-/
hi2
ha1 _\
52 haa @® T2

Fig. 2.2. Linear model for the acoustic mixing channels in the case N = M =2
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WE

xm(p) = (hmn * Sn)(p)a (27)
n=1
N Ly,
n=1 k=0

Equation (2.8) models the acoustic mixing as a multiple-input multiple-output
(MIMO) linear system. For later reference, we define the L, x 1 vector hy,,
as follows

hmn £ (hmn,Ov RN hm'rL,Lm—l)T . (29)

It should be mentioned that (2.8) is a linear time-invariant model of the physi-
cal acoustic transmission channel. While this model describes the reality accu-
rately in the case of loudspeaker-to-microphone transmission, it seems to be
less accurate in the case of real mouth-to-microphone systems, even when the
speakers are not moving [84].

In the remainder of this book, zero-mean signals are assumed.

2.2 The Separation Filters

This section introduces the separation filters that are algorithmically adjusted
in order to extract the source of interest out of the acoustic mixing. We will
present two kinds of separation systems: multiple-input single-output (MISO)
and multiple-input multiple-output (MIMO) systems. We present MISO and
MIMO systems separately because they are typically associated to distinct
separation algorithms: While MISO systems are commonly used as inter-
ference cancelers in the context of informed beamforming, MIMO systems
are the natural framework for blind source separation (BSS) techniques. The
LMS algorithm and Van Gerven’s SAD algorithm will be briefly presented
to exemplify MISO and MIMO adaptive systems. Nevertheless, it should be
mentioned that the concepts of MISO and MIMO systems are interchange-
able in practice: The union of several MISO systems forms a MIMO system,
and conversely the selection of a particular output in a MIMO system defines
a MISO system. For simplicity, the separation filters are considered time-
invariant unless stated otherwise.

2.2.1 Single Output Systems

According to the linear model in (2.8), the interferer signals are received
through a linear system (the acoustic channels), and they may thus be can-
celed by linearly filtering the microphone signals. In single output systems,
the output is obtained by filtering the M input signals individually and by
taking the sum of the filtered signals. If we consider M FIR filters w,, of
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length L with coefficients w,,;,m = 1,...,M;l = 0,...,L — 1, this can be
written as follows:

M
y(p) £ Z (@m * wim) (p), (2.10)

m=1
M L-1

=3 > wmazm(p—1). (2.11)
m=1 (=0

The convolution in (2.10) can be reformulated using a vector notation as
follows:

M
y(p) = Y whxm(p (2.12)
m=1

—~

A
with Wy, = (W0, Wi, L—1)s

and X,,(p) 2 (2 (p), .-, xm(p — L+ 1)).
In the context of MISO systems, it is usual to stack the input samples in the

ML x 1 vector x(p) and all filter coefficients into one ML x 1 vector w, which
defines

T T
x(p) 2 [x1 (p),-- o xp ()], w2 [wi . owy] (2.13)

Then we can compactly reformulate (2.12) as follows:
y(p) = w'x(p). (2.14)

The squared Lo-norm of w is called its white-noise gain [88].
If we substitute the input signals x,,(p) in (2.8), we can write y(p) in terms
of the source signals as follows:

M N M
y(0) =Y (Wi * B % 50) () + D D (Wi # s % 530) (p). - (2.15)

m=1 n /=1 m=1
n!#n

For a certain source of interest s,, (2.15) decomposes y(p) into the sum
of the filtered desired source signal s,, and of the filtered interference signals
Snr,n’ # n. Our objective is to find the separation filters w,, so that the second
part of the sum (the filtered interfering source signals) vanishes. Suppose we
define a cost function (or “criterion”) J that is minimum if and only if this
objective is reached. Then we could adjust the filter coefficients automatically
using a minimization method such as e.g., the gradient descent. This concept
is rather general and applies to most adaptive filtering algorithms.

The filter coefficients may be adjusted based on the statistics of the input
or output signals. To describe these statistics, we use the expectation operator
(or “ensemble average”) E {} whose argument is a stochastic process. For the
sake of simplicity, no notational distinction is made between the realization
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Fig. 2.3. Mixing/separation structure for Widrow’s interference canceler for M =2.
In this context, the input x1(p) is referred to as the target reference signal.
The input z2(p), which should not receive any contribution of the desired
source, is referred to as the interference reference signal

z(p) and the underlying stochastic process X (p); we denote the expectation
of the underlying stochastic process by E {z(p)}.

For widely used adaptive filters, such as linearly constrained minimum
variance (LCMV) beamformers or Widrow’s interference canceler, the cost
function is based on the output signal energy [92].

Ezxample: Widrow’s interference canceler and the LMS algorithm

In the following, we briefly sketch Widrow’s interference canceler for two mi-
crophones (M = 2) and two sources (N = 2). The interference canceler is
depicted in Fig. 2.3. We assume stationary input signals and define the cost
function as the energy of the output signal, that is,

Juvs £ E{y°(p)} . (2.16)

To avoid the undesired solution w = 0, the filter w; is set to a unit impulse
and only the filter wo is adapted, as depicted in Fig. 2.3. The optimal solution
which minimizes Jryg may be computed iteratively using a gradient descent,
as follows:

0Jrms
8W2
= wa(n) — 2uE {y(p)x2(p)}, (2.18)

wo(n+1) = wa(n) — u , (2.17)

where p denotes the gradient descent step-size and n denotes the iteration
index. From (2.18), it may be seen that the optimal filter coefficients also
cancel the correlation E {y(p)x2(p)} between the interference input z and the
output y, in addition to minimizing the output energy. This implies certain
restrictive conditions on the mixing channels for the convergence of (2.18) to
the desired solution: The interference input xo should be free of any target
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signal, that is, the acoustic channel hs; should be zero. Otherwise the target
signal will also be canceled at the output y(p).

To obtain the online LMS algorithm, we replace the expectation with its
instantaneous estimate. The cost function (2.16) becomes

Jonline(p) £ ZUQ(P) (219)

If we consider n = 0, ..., Njer — 1 iterations per input sample, the gradient
descent may be written as

aJon ine
" tine (P)

S (2.20)

wo(n+1,p) £ wa(n,p) —

with w2(0,p) = Wa(Niter,p — 1) as initialization for each p. When a single
iteration for each new input sample is sufficient, the iteration index n in (2.20)
may be dropped and one obtains the LMS algorithm

wa(p + 1) = wa(p) — 2uy(p)x2(p). (2.21)

The LMS algorithm and its application to speech separation will be studied
in more detail in Chaps. 3 and 4.

2.2.2 Multiple Output Systems

The MISO separation architecture may be extended to N output signals with
NM FIR filters wym,n=1,...,N;ym=1,..., M as follows:

M
D)2 Y (o r ) () .22

m=1

As in (2.12), we can rewrite (2.22) using a vector notation:

<
3

S

I
[]=
:sa

3

%

3

S

(2.23)

m=1

with Wy, 2 (Wnm,05 - - - ,wnm’L,l)T. The overall mixing/separation system is
represented in Fig. 2.4 for N = M = 2. In the context of MIMO systems, the
filters h,,, and w,,, for n =1,..., N will be referred to as diagonal filters.

MIMO systems are the standard framework for BSS techniques. In BSS,
the sources are assumed to be mutually independent; hence, the separation
may be achieved with a cost function J(yi,...,yn) that measures the depen-
dence of the output signals.
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Fig. 2.4. MIMO structure in the case N = M = 2. The filter coefficients are ad-
justed to minimize a cost function J

Ezample of Van Gerven’s symmetric adaptive decorrelation (SAD) algorithm

In the following, we briefly sketch a simple BSS algorithm which may be
obtained by modifying the LMS algorithm, as proposed by Van Gerven [38].
We recall that the LMS algorithm decorrelates a signal estimate y(p) from
an interference reference xo(p). This leads to an undesired signal cancelation
at the system output if the target signal s;(p) leaks into the interference
reference x2(p), that is, whenever hoy is nonzero. Based on this observation,
Van Gerven proposed replacing the interferer reference signal x5 (p) in (2.21)
by the target-free interference estimate y2(p) = x2(p) + wa, (p)x1(p). He then
obtains two update rules for wi2(p) and waq(p):

wia(p+1) £ wia(p) — py1(p)y2(p),

Similarly to Widrow’s interference canceler, the two diagonal filters wy; and
Woo are set to unit impulses and their coefficients are fixed, as shown in
Fig. 2.6 for D = 0. Even though (2.24) may overcome the limitations of
the LMS algorithm (2.21) in case of target leakage (i.e., if hoy is nonzero),
this simple algorithm is generally not able to separate speech sources in real
acoustic environments [39]. In Chaps. 5-7, we will develop more robust BSS
algorithms.

2.2.3 The Spatial Response

The spatial response is a tool to interpret the separation filters spatially. To
introduce its formal definition, we consider a single source sg(p) at position
0 c R? which emits a unit impulse at time? p = 0 and denote the impulse

2 The time at which the source sg (p) emits a unit impulse is irrelevant, the impulse
responses modeled in (2.26) may be shifted by a common, overall delay D. Hence
we may replace (2.26) with h,, 9 = dp+y,r,, o This overall delay D may be
necessary to have causal filters if there exists m so that 7,,,9 < 0.
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response for the acoustic channel from € to the mth microphone by hy, 0.
Without loss of generality, we consider a MISO system with filters w,, for
m =1,..., M. If only the source sg(p) is present, its output can be written
as

y(p) = (Wi * hm,ﬂ)(p)' (2.25)

m=

=

The actual impulse responses h,,, g are unknown in general. To interpret the
coefficients w spatially, we may assume a simplified case where the acoustic
propagation channels simply delay the source signals by fs7,,,0 samples (see
footnote 1), that is

hy,6=20fr,,- (2.26)

The delays 7,9 for m = 1,...,M may be computed from the source-
microphone distances [|@ — ry,||. (Since the delays fs7m.0 do not take inte-
ger values in general, fractional-delay filters are necessary to approximate
0.7, [64].) The spatial response for the position @ is denoted by g(6) and
is defined as the system output when only the source sg(p) is present:

M
g(w,0) £ > Wi #85r, (2.27)
m=1

Case of the far- and free-field propagation model

If the source-microphone distances ||@ — r,,|| are large compared to the array
aperture, the acoustic channels may be further simplified to the far- and free-
field propagation model (see Appendix B for more details). In this case, the
dependency in the 3D parameter 0 reduces to a dependency in the direction-
of-arrival (DOA) 0, and for a uniform linear array (ULA) with interelement
spacing A we have

T = (m — 1)%]“(0), (2.28)
for all m. This simplification is widely used for compact microphone arrays.
When the far- and free-field propagation model is assumed, we may denote
the position parameter by 6 instead of 6.

Representation in the DTFT domain

To formulate (2.27) using the DTFT,? we first define

3 For any finite-length time-domain sequence u(p), its DTFT is denoted by U(w),
where w is a continuous angular frequency in the range [—m, 7], and is defined as

follows: '
Uw) =Y u(p) e . (2.29)
pEZL

Note that u(p) may be a signal or a filter.
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W(w) 2 (Wi (w),..., Wa(w)", (2.30)
D(w,0) £ (Dy(w,0),...,Dn(w,0)7", (2.31)
withD,,(w,0) £ e “fs™me for m =1,..., M. (2.32)

D(w, ) is called the steering vector for the position 8. The space-frequency
response of the beamformer is given by

Gw(w,0) 2 WT(w)D(w, 0). (2.33)

If we assume a far- and free-field propagation, the squared magnitude of
the space-frequency response may be represented in two dimensions (an-
gle/frequency). The resulting figure is called the beampattern and is denoted by

BP,, (w,0) £ |Gw(w,0)]?, (2.34)
M 2
= Z Wi (w) e wmme| (2.35)
m=1

where 7, ¢ is given in (2.28).
To illustrate the beampattern, we consider a beamformer with M = 4
microphones and spacing A = 5cm. For this example, the filter coefficients

are set to
1

= M6f57—7n,—907 (2'36)

Wm

with 6y = 20°. This beamformer is a delay-and-sum beamformer: The delays
Tm,—6, Synchronize the input signal for a certain DOA 6. After synchroniza-
tion, the input signals are averaged, which enhance the signals coming from 6,
and attenuates the signals coming from the other directions. The beampattern
of this delay-and-sum beamformer is shown in Fig. 2.5.

[dB]
- -6
[0
o
g
g -10
<
o
a -14
-18

0 1000 2000 3000 4000 5000 6000 7000
frequency [Hz]

Fig. 2.5. Beampattern for the delay-and-sum beamformer. The steered DOA is
01 = 20°. Other parameters: M =4, A = 5cm
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Fig. 2.6. Linear mixing (resp. separation) structure in the case N = M = 2 with
unit diagonal channels (resp. filters)

2.2.4 Particular Cases
Unit diagonal separation filters

A rather common simplification consists in constraining the diagonal filters
to simple delays of D taps:

Wpn = 6[), (237)

forn =1,..., N and where D should be chosen in the range 0 < D < L. The
resulting structure is depicted in Fig. 2.6b. This constraint may be applied to
prevent the filter coefficients from converging to an undesired solution, as in
the case of the interference canceler. It comes with a reduction of the number
of degrees of freedom.

Instantaneous mixing

If we set Ly, = L =1 in (2.8) and (2.10), we obtain a so-called instantaneous
mixing which does not involve any time delay between the source and the
observed signals. In this case, each impulse response hpp i,k =0,..., Ly —1
is reduced to the scalar factor A,y 0. With such an excessive simplification,
the mathematical model obviously loses its physical relevance. However, the
mixing equation (2.8) may be rewritten very simply using a matrix notation as

x(p) = Hs(p), (2.38)
with X(p) = (:El(p)a s ’mM(p))Tv S(p) - (an(p), sy SN(p))Tv and

hit,0 --- hinyo
H2 o . (2.39)

hario - havno
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Similarly, with L = 1, the separation filters reduce to separation scalar coef-
ficients wy,m,,0 that may be stacked into a single NV x M matrix:

w11,0 -+ Wi1M,0
w2 S . (2.40)

WN1,0 --- WNM,0

The separation equation (2.22) can be then written as
y(p) = Wx(p), (2.41)

with y(p) = (y1(p), ..., yn(p))". Instantaneous mixings may not be used di-
rectly to model acoustic mixtures, since time-delayed and multipath prop-
agation always arise in reality. In spite of this, because of their simplicity,
instantaneous mixings have been studied to a great extent in the field of BSS
(see, e.g., [23] and the references therein).

2.3 Spatial Filtering vs. Spectral Filtering

The aim is now to find the filter coefficients w,,y, , that cancel the interference
signal. In the following, we examine how this may be done. Without loss of
generality, we examine the case of a MISO system defined by its filters w,,
form=1,..., M as in (2.12). The source of interest is s1(p), the other N —1
sources being considered as interferences. We consider the source—output MISO
systems, described by the filters* c,, of length L + L,, — 1:

M
c, 2 Z W * (2.44)
m=1

To convolve the interference signals with the source—output filters, we intro-
duce the L + L, — 1 x 1 vectors

4 In (2.44), we use the vector convolution. The convolution ¢ = a * b of vectors a
and b with respective lengths L, and Ly is a vector ¢ of length L. = Lo+ Ly — 1.
This vector ¢ = a * b is given by

(& = (CO,...,CLQ+Lb72)T7 (2.42)
min{k,L,—1}
with ¢y £ Z apbr—p. (2.43)

p=max{0,k—L,+1}
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We next stack the interference vector signals and filters into vectors of size
(N=1)(L+Ly—1)x1:

Cint = [C3, ..., c%]T , (2.46)
sit(p) 2 [s3(p),---,sh(®)] " - (2.47)

Now the contribution of the interferences at the output, denoted yint(p), can
be written as follows:

Yint (p) = C;I;ltsint (p) (2~48)

The interferences are canceled by the filters w,, if the average power of yint (p)
is zero. According to (2.48) and assuming stationary signals, this is achieved
if and only if

CingRintCint = 0, (2.49)
where R, denotes the correlation matrix of s;,; and is defined as

Rint 2 E {sine(p)sine () } - (2.50)

Let us assume that Ry, # 0 (the interferer is active). We may distinguish
two particular solutions to (2.49).

Firstly, (2.49) is solved if ¢ipy = 0, which defines (N — 1)(L + Ly, — 1)
constraints. The solution ciy = 0 yields the advantage to be independent
of the interference correlation matrix Ri,; and depends only on the acoustic
mixing channels. Hence, we say that this solution achieves the separation by
filtering the input signals spatially. This may be attained if the separation
filters are long enough, as discussed in Sect. 2.3.1.

Secondly, (2.49) may be solved if cj,y belongs to the null space of Riju.
This solution depends on the mixing channels but also on the power spectrum
of the interference signals. Then we may say that the separation is achieved
by filtering the input signals spectrally. In the case of nonstationary signals,
this solution has the drawback to be time-varying, making it more difficult to
be temporally tracked. Moreover, this yields a distortion of the desired signal
if its spectrum overlaps with that of the interference signals.

Neither spatial nor spectral separation may be completely achieved. For
example, the separation filters may be too short for spatial separation and the
spectrum of the interferers may be too wide for spectral separation (e.g., in
the case of white interference signals). Even if the separation filters are long
enough, the adapted filter coefficients may depend on the excitation source
signals, for example, if the spectrum of the excitation signal is not sufficiently
wide. In practice, the suppression of the interferer signals relies on both spatial
filtering (which sets ¢yt to 0) and spectral filtering (which sets ¢;,g in the null
space of Rjpt). As we will see in Sect. 2.3.2, the case of instantaneous mixings
is very special: If L = 1, spectral separation automatically achieves spatial
separation, i.e., the optimal filters are always independent of the source signal.
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2.3.1 Minimum Filter Length for Spatial Separation
We want to find the separating filter coefficients w, ; that achieve
Cint = 0, (2.51)

where ciy is defined in (2.44) and (2.46). In the following, we derive the
minimum filter length for identifying these interference-independent filter co-
efficients. A related analysis may be found in [51].

Equation (2.51) defines a linear system. First, we represent this linear
system under matrix form. For that, we define the L + L,;, — 1 x L matrices
H,,., as

hmmLm—l 0 e 0
: hmn,mel
H,, 2| "o L0 , (2.52)
0 h/mn70 hmn,Lm—l
0 . 0 R0

form=1,...,M and n = 1,..., N. By stacking matrices H,,,, together, we
obtain the (N — 1)(L 4 L,, — 1) x ML interference mixing matrix:

H12 . HM2
H, 2 : : ) (2.53)
HlN Ce. HMN

Now we can write (2.51) as follows:
H,w = 0. (2.54)

Depending on the number of linearly independent rows in Hiy, (that is, the
row-rank of Hj,), (2.54) may have a solution or not. A plausible and common
assumption is that the acoustic channels h,,, do not share common zeros
in the frequency domain, which implies that the matrix Hj,; has full row-
rank (see [51] and the references therein). Then (2.54) sets (N —1)(L+ Ly, —1)
linearly independent constraints on the M L separation filter coefficients w,, ;.
To avoid the trivial zero solution w,,,; = 0 for all m, [, an additional constraint,
e.g., wy,o = 1 is required, leaving ML — 1 free parameters. The constraint in
(2.51) can be fulfilled only if the number of degrees of freedom is not less than
the number of constraints, i.e., only if ML —1 > (N — 1)(L + Ly, — 1). This
yields the following lower bound on the length L of the separation filters:

o[ty

where [z] is the smallest integer larger than x € R. According to (2.55), in
the case L, = 1, spatial separation can be achieved with I = 1 provided that
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M > N. For L,, > 1 and M > N, spatial separation may be obtained with
separation filters that are shorter than the mixing channels. In the square case
(M = N), the spatial separation is attainable if L > (L, — 1)(N —1) + 1. If
in addition N = 2 then spatial separation is achievable if L = L,.

2.3.2 Particular Cases
Unit diagonal mizing/separation filters

The constraint in (2.37) comes with a reduction of the number of degrees of
freedom, which needs to be taken into account for deriving the lower bound
on L. Again, we formulate the separation constraints under matrix form for
a MISO separation system with M filters w,,, m = 1,..., M and w; = dp.
Using the matrices H,,, introduced in (2.52), we first define

Hgg HMQ W9 H12
e = | o, wE |, WE—| 1 | bp. (2.56)

Hon ... Hun Wt Hin
Now the separation constraint may be written as follows:
H{ w =h' (2.57)

First we consider the case where Hi,¢ has full row-rank. Then (2.57) defines
(N —1)(L + Ly, — 1) linear constraints. Since there are (M — 1)L degrees of
freedom, an interference-independent separation may be achieved only if

(M =N)L = [(Ln — 1)(N = 1)], (2.58)
o L> {( Ml)(xﬂ if M > N. (2.59)

Equation (2.58) shows that the (N — 1)(L + Ly, — 1) constraints in (2.51)
cannot be fulfilled if M = N unless L, = 1. This means that no interference-
independent separating solution can be identified.

Now we give an example where HY,; does not have full row-rank. Consider
M = N = 2 and hys = wy; = dp, that is, the diagonal channel hos has a
unit response as depicted in Fig. 2.6a. If the delay D is zero, this may be
considered as a physical model in situations where the room acoustics is not
very reverberant and where the source s, is placed close to the microphone
x9 for n = 1,2 [38]. Then a separating solution is given by

Wo = —h12. (260)
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Instantaneous mixing

As may be seen from (2.55) and (2.58), instantaneous mixings yield specific
properties: If L, = 1, an interference-independent separating solution can be
always identified, even with unit diagonal filters as in (2.37).

2.4 Performance Measures

This section introduces the performance measures that are used as comparison
criteria in the remainder of this work, in particular the signal-to-interference
ratio (SIR) improvement. Since the performance measures are defined in terms
of improvement with respect to the signal quality at the microphone input,
it is necessary to chose an input reference. This choice differs depending on
the type of microphone array: In the case of a compact beamformer, no input
signal has a larger SIR than another a priori, hence the reference is obtained
by averaging over the M input microphones. This is formulated in Sect. 2.4.1.
By contrast, in the case of a distributed microphone array, the input signal
x1 is a priori known to have a large SIR, hence the reference is obtained on
this particular input signal as formulated in Sect. 2.4.2.

The observed signals x,,(p) may be decomposed as the sum of the contri-
butions of the desired source and of those of the interferers:

l'm(p) = msig,m(p) + xim,m(p)~ (261)
Similarly, the output signal may be decomposed as follows:
Y(P) = Yuie(P) + Yine (D), (2.62)
M
with ys;g(P) = Z (wm * l'sig,m) (p)a (263)
m=1
M
and Yo (p) = Y (Wi * Ti.m) (P)- (2.64)
m=1

Evaluating the performance measures requires signal powers to be esti-
mated. For the definitions below, we use a generic estimate of the statistical
expectation denoted by E{}, whose actual implementation depends on the
processing mode: In batch mode, we may use

T
B{f(AG)} 2 7 F(AM)), (2.65)

where T denotes the signal length (in samples). (The function f and the matrix
A are placeholders that should be replaced by the variables of interest.) In
online mode, the instantaneous estimate may be used:

E{f(A(D)} 2 f(A(p)). (2.66)
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2.4.1 Compact Microphone Array

For compact microphone arrays, the following power ratios are introduced:

e the reduction of the target signal level, denoted by SR, defined as the ratio
of the desired signal power at the sensors averaged over the M sensors
signals and the desired signal power at the output:

M =

é Zm:l E {‘T?\g,m(p)} /M
E{y2.(n)}

e the reduction of the interference signal level, IR, defined as the ratio of

the interference signal power at the sensors averaged over the M sensors,
and the interference signal power at the output:

SR(p) , (2.67)

o T B{ad )} /M

IR(p) ~ , (2.68)
E{y2.(p)}
The signal-to-interference ratio improvement, SIR,,,,, is defined as
IR(p)
SIR,., (p) = . 2.69
®) 2w (2.69)

2.4.2 Distributed Microphone Array

For distributed microphone arrays, the input reference is taken at the sensor
z1(p), which yields:

e the reduction of the target signal level, denoted by SR, defined as the
ratio of the desired signal power at the sensor x;(p) and the desired signal
power at the output:

SR(p) & 21T (0} (2.70)

E{y2.()}

e the reduction of the interference signal level, IRY,

N E {x?nc,l(p)}

IRY(p) & — : (2.71)
E{y2.(p)}
The signal-to-interference ratio improvement, SIR?mp, is defined as
IR?
SIRY () 2 () (2.72)

=) SRA(p)
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Table 2.1. Definition of the start-up performance and of the performance after
initial convergence for the compact array and the distributed array.
The subscript [to, 1] indicates an average of the SIR improvement from
time p = to to time p = ¢; (in seconds)

Compact array Distributed array
d d d
Qpo.3); éA IRj0,3/SRpo.31, 203 f IRgo,s]/SR[?w
Q3,10 = IR[3,10]/SR[3,101 Qfz,100 = IR[s,lo]/SR[:s,m]
M tifs t1fs
1
M Z Z x?ﬂtﬂn(p) Z x?nt,l(p)
a m=1p=tofs d A pP=tofs
TRy, 401 = 1 fs IRy, = t1 /s
2
Z yint(p) Z y?nt(p)
p=to fs p=tofs
M t1fs t1fs
1 iy Sy
M Z Z xsig,m(p) Z xsig,l(p)
N m=1p=tg fs d A P=tofs
SR[to,tl] = t1fs SR[tO,tl] = t1fs
2 2
DY) > i)
p=to fs p=tofs

2.4.3 Start-Up Performance and Performance after Initial
Convergence

It seems difficult to compare different adaptive algorithms fairly: In particu-
lar, the step-size parameters may significantly influence the separation per-
formance. To obtain an objective performance measure, two quantities are
considered. First, we average the SIR improvement over the first three sec-
onds, which gives Qg 3) as defined in Table 2.1. The value Qo 3] is used as an
approximate measure of the speed of convergence during the initial conver-
gence phase. Second, the average over the following seven seconds, as defined
by Q3,10 in Table 2.1, is considered. @[3 10] gives an approximate measure of
the performance after the initial convergence. It should be noted that the input
signals also contain sensor noise for real recordings. Moreover, the averages
include the silence periods. Therefore, the performance measures presented
here are only approzimations of the SIR improvement. That is why we prefer
not denoting them by SIRiyup but by Q.-

2.5 Summary and Conclusion

This chapter set the formal framework on which the next chapters are based.
It modeled the acoustic environment carrying the source signal to the observed
microphone signals as a MIMO linear system. The separation filters have been
introduced as MISO and MIMO systems, which are algorithmically adapted
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to the input signals by minimizing a mathematically defined cost function.
The LMS and the SAD algorithms, two exemplary algorithms that will be
further developed in the next chapters, illustrated adaptive algorithms.

The spatial response, a tool to interpret the separation filters spatially, has
been defined. We have seen that the cancelation of the interference signal may
be achieved by filtering the input signal spatially or spectrally, depending on
the number of degrees of freedom and on the constraints that are set on the
separation filters. At last, we defined the performance measures that will be
used in the following chapters to evaluate the algorithms under scope.
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Linearly Constrained Minimum Variance
Beamforming

The concept of “beamforming” refers to multichannel signal processing tech-
niques that enhance the acoustic signals coming from a particular a priori
known position, while reducing the signals coming from other directions. A
number of beamforming techniques exist, a review of which may be found
in [88]. In this chapter, we introduce linearly constrained minimum variance
(LCMYV) beamformers, which are widely used in acoustic array processing.
The class of the LCMV beamformers is general enough to form a common
framework to design beamforming algorithms for various physical setups.

Section 3.1 defines the LCMV beamforming principle. Section 3.2 provides
the generalized sidelobe canceler (GSC) as an alternative formulation of the
LCMV beamformer which can be implemented more efficiently. Section 3.3
shows how to apply the GSC to distributed and compact microphone arrays.
Section 3.4 discusses the practical limitations of LCMV beamforming in re-
verberant environments.

3.1 LCMV Beamforming

Formal definition

Let us briefly recall the notations from Chap. 2: We consider a time-varying
MISO system with filter coefficients w(p) and output y(p) = w™ (p)x(p) (see
Sect. 2.2.1). In LCMV beamforming, the filter coefficients are adjusted based
on the statistics of the output signals. To describe these statistics, we use
the expectation operator E{} (or “ensemble average”) whose argument is a
stochastic process.!

! For the sake of simplicity, no notational distinction is made between the real-
1zation x(p) and the underlying stochastic process X (p). Hence, we denote the
expectation of the underlying stochastic process by E{z(p)}.
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In LCMV beamforming, the cost function is the output signal variance.
Since zero-mean signals are assumed, the cost function may be defined as the
output signal power at time p, that is,

J(p) 2 E{y*(p)} . (3.1)
Using the input correlation matrix
R (p) £ E {x(p)x" (p)}, (3:2)
we can rewrite J(p) in (3.1) as a function of w(p):
J(p) = w" (p)Rcx (p) W (p)- (3-3)

Now, minimizing J(p) may lead to w(p) = 0 and y(p) = 0 for all p. In LCMV
beamforming, this is prevented by constraining the filter coefficients linearly.
For example, a simple linear constraint is that of Widrow’s interference can-
celer where the filter w(p) is constrained to a unit impulse:

w1 (p) = do. (3.4)

This constraint has dimension L. More generally, a linear constraint of dimen-
sion C' may be formulated with a ML x C' constraint matriz C and a C' x 1
response vector ¢ as

C'w(p) =c. (3.5)

We find the constraint in (3.4) by setting
CT:[ILXL 0L><L]a C:(S(). (36)

Note that time-varying constraints may also be considered using a time-
varying constraint matrix C(p) and a time-varying response vector c(p). For
the sake of simplicity, we bound the presentation to time-invariant constraints.
To summarize, LCMV beamforming consists in adjusting the filter coefficients
according to the following constrained criterion:

min E {y°(p)} s.t. CTw(p) =c. (3.7)

w(p)

Constraining the spatial response

The motivation behind the linear constraint in (3.5) also comes from the fact
that the spatial response of the beamformer, g(w,8), is a linear function of
w, as shown in Sect. 2.2.3:

M
g(w,0) £ > Wi 8, o1 (2.27)
m=1
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To obtain a given spatial response g for a particular position 8y, one may
set the constraint

g(w(p),00) = go (3.8)

for all p. Since g(w,8) in (2.27) depends linearly on the filter coefficients
W, (p), the constraint in (3.8) may be formulated using a certain matrix C
as in (3.5). Typically, LCMV beamformers are designed to maintain a unit
spatial response in the direction of the desired source known a priori. This
should reduce the contribution of the interfering sources while keeping the
desired source.

General solution to the LCMYV optimization problem

In the following, we derive the solution to the LCMV optimization problem
in (3.7) using the Lagrange multiplier method. For the sake of brevity and
readability, we omit the time index p in the notations. The Lagrange cost
function associated to (3.7) is given by

1
L(w,\) = inRxxw + AT (CTw —c¢). (3.9)

The Lagrange multiplier A is a C' x 1 vector. Setting the gradient of L(w,A)
to zero, we obtain

OL(W, )

=wlRy + ATC =0 3.10
S =~ VW Rt : (3.10)

and assuming that the correlation matrix Ryxx is nonsingular, we may write
wl = - ATCR_. (3.11)

Using the constraint CTw = ¢, we transpose and multiply (3.11) with C*
from the left to obtain

A=—(CRICT) e (3.12)

Substituting A in (3.12) into (3.11), we obtain the time-domain LCMV beam-
former

w=RCT (C"RIC") e (3.13)

The computation of (3.13) involves the inversion of Ryx. In practice, esti-
mates for Rxx may be badly conditioned especially for large filter lengths
L and colored input signals (such as speech). In addition, inverting Ry is
computationally expensive. A wideband solution may be obtained by min-
imizing £(w,A) with an iterative gradient descent that avoids the matrix
inversion [36]. It is much more efficient, however, to transform the constrained
minimization problem into an unconstrained one. This is the principle of the
generalized sidelobe canceler (GSC) [42].
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3.2 From LCMYV to Generalized Sidelobe Canceler
(GSC)

Griffith and Jim introduced the generalized sidelobe canceler (GSC) as an al-
ternative formulation of the LCMV problem which transforms the constrained
minimization problem (3.7) into an unconstrained one [42].

Fized beamformer and blocking matrix

The GSC is based on a decomposition of vector w(p) into two orthogonal
components wg and v with w(p) = wg + v(p). The first component wyq is
fixed. It is chosen so that it satisfies the constraint

CTwy =c. (3.14)
This component is often (but not necessarily) set to wg = C (CTC)f1 c.
Such a choice minimizes its Ly-norm WOTWO7 which is also called white-noise
gain [88]. Because this component is not adapted, it is termed fized beam-
former. We define xq(p) as the output of the fixed beamformer, i.e., zo(p) =
wix(p).

The second component, v(p), is adapted but must belong to the sub-
space V of the filters that are orthogonal to the constraint, that is, ¥V =
{ve RMLxl gt CTv =0cy}. Let B be an ML x M'L matrix whose M'L
columns span the subspace V, i.e., so that

rank(B) = ML —C and C'B =0cxuy1. (3.15)

The matrix B is called the blocking matrix. Note that B is not uniquely
determined by the equation CTB = O¢y a1, several implementations of the
blocking matrix are possible.

Adaptive interference canceler

For any M'L x 1 vector a(p), the vector v(p) = Ba(p) belongs to V, hence the
filter coefficients w(p) =wq+Ba(p) always fulfill the constraint CTw(p)=c.
Therefore, the constrained minimization (3.7) may be rewritten without con-
straint as

min (wo 4+ Ba(p))" Ry (p) (wo + Ba(p)). (3.16)

a(p)

Minimization affects only a(p), which is called the adaptive interference can-

celer. In GSC beamformers, the computation of the output involves the fol-

lowing variables:

) £ wox(p), (3.17)
), (3.18)

y(p) = wo(p) +a* (p)x5(p)- (3.19)
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Fig. 3.1. Generalized Sidelobe Canceler

The Generalized Sidelobe Canceler structure is shown in Fig. 3.1. Since xq(p)
should provide an enhanced target signal, it is referred to as the target signal
reference. By contrast, xz(p) is called the interference reference.

The output signal power is minimized with respect to a(p). The gradient
of the cost function is

dJ(p)
da(p)

= 2E {z0(p)x5(p)} + 2E {x5(p)xp(p) } a(p), (3.20)
= 2E{xz(p)y(p)}. (3.21)

Setting Rx,x,(p) = E{xp(p)x5(p)} and the gradient in (3.20) to 0, we
obtain the Wiener solution:

aopt(p) = —Ripr, 0 E{z0(p)x5(p)} . (3.22)

In addition to minimizing the output signal power, the Wiener solution (3.22)
also decorrelates the input of the interference canceler xg and the beamformer
output y. This can be seen from the gradient expression in (3.21).

3.3 Constraints for Compact and Distributed Setups

3.3.1 Constraint for Compact Microphone Array
Array steering

If the propagation delays from the source of interest to each microphone are
known, we may assume that the desired signal s(p) reaches the microphones
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synchronously, i.e., that the main peaks of the acoustic channels h,, in (2.6)
are synchronous. To fulfill this assumption for any source position, the propa-
gation delays from the source to the microphones need to be compensated so
that the desired source signal is time-aligned at all beamformer inputs. This
operation is called array steering.

Let us denote the propagation delay from the source to the microphone z,,
as T,,. For an implementation with causal filters, one considers the positive
delays 7/, = =7y + D',m = 1,..., M, with D’ greater than max,, 7,,. The
time-aligned input signals are obtained by replacing the microphone signals
T (p) with ., (p — 7),):

Tm(p—71) = Tm(p). (3.23)

In (3.23), we compensate the individual propagation delays. The delays 7,
are set according to the assumed position of the source relative to the mi-
crophones. Since the delays 7, are a continuous quantity, the compensation
delays 7/, are generally no multiple of the sampling period and fractional-
delay filters are necessary [64]. In the following we assume that the array is
correctly steered to the position of the source of interest, that is, we assume
that the desired source signal is time-aligned at all beamformer inputs.

A spatially constrained LCMV

For compact microphone arrays, we use the following ML x L constraint
matrix and L x 1 response vector c:

C=rur, - Ipxr]’, (3.24)
c=6dp. (3.25)

The physical meaning of this constraint is based on the assumption of a free-
field acoustic propagation. Under this assumption, the impulse responses from
the source of interest to the steered input signals are synchronous unit impulses
and we may set d.,, 7, = 0o in (2.27). Then the spatial response (2.27) in the
steered direction 8y may be written very simply as

g(w.00) = 3 wu(p). (3.26)

Also, observing that the constraint

M
> wilp) =6p (3.27)

can be written as CTw(p) = ¢ for C and c set as in (3.24) and (3.25), we see
that (3.24) and (3.25) define a LCMV beamformer with the spatial constraint
g(w(p),6) = 6p.
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Fized beamformer and blocking matrix

The fixed beamformer is set to

wo = % 0p,...,0p]. (3.28)
0p denotes a D-delayed unit impulse. It may be easily verified that wyg
in (3.28) satisfies (3.14) for the constraint in (3.24) and (3.25). As a delay-and-
sum beamformer, the fixed beamformer should produce an enhanced desired
signal from the microphone signals. Using (3.28), the output of the fixed beam-
former in (3.17) becomes zo(p) = 7 an\ff:l Zm(p — D). We note that more
sophisticated fixed beamformers such as filter-and-sum beamformers could be
used [48].

Conversely, the blocking matrix is designed to cancel the signals coming
from the steered direction. The ML x M’L blocking matrix B may be set to

_ILXL —ILxL
1 (M —DIgxr -
B4 : .2
Y (3.29)
: e V%
L (M —DIgxr oo (M = 1DIpxr |

It may be easily verified that B in (3.29) satisfies (3.15) for the constraint
in (3.24) and (3.25). Other implementations with a zero spatial response in the
steered direction are possible (for example by pairwise subtracting the time-
aligned microphone signals as in the original implementation of the GSC [42]).
In terms of spatial response, it is designed to have a zero spatial response in
the steered direction, which is also called “null-steering beamforming.” Ideally,
the blocking matrix should cancel the target signal components from the input
signals. Using (3.29), the blocking matrix output in (3.17) becomes

1 M
vgm () = T8 (D) = 37 > am(p— D), (3.30)

= XB,m’ (p) — zo(p) (3.31)

form’ =1,..., M.

3.3.2 Constraint for Distributed Microphone Array

In the case of the distributed microphone array, we assume that each source
Sy is placed closest to its microphone x,, for n = 1,..., N. Then the target
signal reference and the interference reference signals are directly provided
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Fig. 3.2. The beamformer structure for two directional microphones is a simple
adaptive interference canceler (AIC). The interference canceler coefficients
are still denoted by a(p) for consistency with the GSC structure, but we
have a(p) = wa(p). The mth microphone is placed closest to the mth
source (for m = 1,2) so that the delay D may be set to D =0

by the microphones and we can define the target signal reference and the
interference reference signals as follows:

1(p), (3.32)

zo(p) 2z
L rpa(p), m=1,....M—1. (3.33)

TB,m! (p)

In terms of fixed beamformer and blocking matrix, (3.32) and (3.33) corre-
spond to:

wo=[60,07,,...07 ,],7 B= Onxr-vr | (3.34)
x x Lv—nox(v—1r

In terms of constraint matrix and response vector, these settings corre-
spond to:
C= [ILXL 0L><L ...OLxL],T C=50. (335)

In contrast to (3.28), no delay is introduced. With the appropriate positioning
of the microphones relative to the acoustic sources, causality constraints may
be set on the separation system. With (3.32) and (3.33), the GSC reduces to
Widrow’s interference canceler, which is shown in Fig. 3.2 (see also Fig. 2.3).
However, we maintain the distinction between the beamformer input signals
Zm (p) and the target xo(p) and interference reference signals g,/ for distrib-
uted microphone arrays. This allows to keep the same notations for compact
and distributed microphone arrays.

3.4 The Target Signal Cancelation Problem

We have seen in Sect. 3.2 that the LCMV optimization problem may be refor-
mulated into an unconstrained fashion, with the Wiener solution in (3.22) as
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the optimal interference canceler. However, as we have seen from the gradi-
ent expression in (3.21), the Wiener solution also decorrelates the interference
reference xp(p) and the beamformer output y(p), in addition to minimizing
the output signal power. As a consequence, if the target signal is present in
(or correlated with) xp(p), the LCMV adaption criterion will tend to decorre-
late the target signal and the beamformer output. In other words, the LCMV
adaption criterion will tend to remove the target signal from the beamformer
output. Practically, this means that an undesired cancelation of the target
signal occurs if the adaptation of a(p) is carried out during target activity.
This obviously undesired effect is referred to as the target signal cancelation
problem. In the following, we describe the target signal cancelation prob-
lem mathematically and discuss alternative implementations of the GSC that
tackle this problem.

3.4.1 The Energy-Inversion Effect

We illustrate the target signal cancelation problem for the case of two mi-
crophones (M = 2). The analysis is carried out in the discrete-time fourier
transform (DTFT) domain. The target signal is denoted by S;(w) and the in-
terferer by Sz(w). The output of the fixed beamformer X(w) consists of the
filtered target signal Hoy (w)S1(w) and the filtered interferer Hys(w)S2(w). The
output of the blocking matrix contains the filtered interferer Hpo(w)Sa(w)
and the leakage of the desired signal Hpi(w)Si(w). The filters Hy,;, Hp; for
i = 1,2 combine acoustic transfer functions and GSC spatial preprocessing
filters. Xo(w) and Xp(w) are accordingly defined as

X()(w) £ H()l(w)Sl(w) + ng(w)Sg(w)7

Xp(w) 2 Hp(w)S1(w) + Hpa(w)Sa(w). (3.36)

The DTFT of a(p) is denoted by A(w) and the beamformer output is given by
Y(w) = Xo(w) + A(w)Xp(w). (3.37)

We denote E {|S;(w)|*} by 0Z(w). Assuming that S;(w) and Sy (w) are uncor-
related (i.e., that E{S1(w)S5(w)} = 0), the Wiener solution (3.22) may be
written in the DTFT-domain as follows?:

“iwp HorHpy 07 + Hoo H 505

A¥ = —e . 3.38
Hii P07 + [Hpal03 (3.58)

Substituting A from (3.38) and Xy, Xp from (3.36) into (3.37), the output
can be written after some manipulations as

o—iwD Hy Hpy — HyoHp:

Y =
|Hp1|?07 + [Hpa|?03

(S1Hpo03 — SoHp07) . (3.39)

2 We omit the argument w.
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In this context, the signal-to-interference ratio at the blocking matrix output,
denoted by SIRx,, may be defined as

0'2|H31|2
SIRx, £ %15 3.40
The signal-to-interference ratio at the beamformer output, SIR,u, can be
derived directly from (3.39) as

U2|HB2|2
SIRout = ~2r7—15 - 3.41
© odHp (341
Finally, we have
STRout = (SIRx,) " '. (3.42)

Therefore, the signal-to-interference ratio at the output is the interference-to-
signal ratio at the interferer reference, i.e., the output of the blocking matrix.
This phenomenon is called the energy inversion effect [28].

3.4.2 Countermeasures: On the Necessity of a Double-Talk
Detector

The target signal cancelation problem is well-known [91]. In the following we
discuss alternative implementations of the GSC that tackle this problem.

The straightforward and most widely used remedy consists in detecting
periods of target activity, and interrupting the adaptation during these peri-
ods [27]. In the context of multiple speakers, we call the control mechanism?
a double-talk detector (DTD). “Double-Talk” refers to the situation where
the desired source and the interferer are active simultaneously. As in echo
cancelation, the design of a reliable DTD has revealed to be delicate [89].
Van Compernolle proposed a method based on the power of the microphone
signals, assuming that the source of interest is significantly louder than the
other sources [27]. In many implementations, the input SIR estimation is
based on the power ratio of the delay-and-sum fixed beamformer and block-
ing matrix outputs [54, 44]. This SIR estimate may be compared to a fixed
decision threshold [54]. However, it is not clear how to set a universal threshold
to provide an accurate double-talk detection in various nonstationary condi-
tions. (This issue is illustrated on an example in Appendix A.)

These detection strategies lead to an all-or-nothing adaptation control, for
which the value of the decision threshold may influence the performance sig-
nificantly. Moreover, since the DTD should stop the adaptation when both the
target speaker and the interferer are active, it reduces the tracking capabilities
of the adaptive interference canceler.

3 In the context of a single speaker under noisy conditions (e.g., road noise in car
interior), the term voice activity detector (VAD) is also widely used.
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Another complementary approach to reduce the target signal cancelation is
to combat its cause. As shown by Affes et al. [2], this may be done by adapting
the constraint in (3.5) to the actual acoustic channels instead of relying upon
an oversimplified propagation model [2, 37, 53]. The subsequent modifications
affect mainly the blocking matrix, which is responsible for target leakage. For
example, the Robust GSC (RGSC) proposed by Hoshuyama et al. [53] uses an
adaptive blocking matrix which cancels the desired signal components using
a set of filters similar to interference cancelers. The mechanism they proposed
has been analyzed and extended to the frequency domain [47]. Tt provides
more robustness against target leakage but still requires a DTD [2, 53]. Note
that the approach by Gannot et al. may perform without control mechanism,
but is restricted to stationary interference (or noise) signals [37] and is not
adapted to the case of interfering speech.

As a summary, we observe that the complementary countermeasures may
not dispense from a DTD-based control mechanism. In the next chapters,
for comparison purposes, the RGSC proposed by Hoshuyama et al. is consid-
ered [53].4

3.5 Summary and Conclusion

This chapter introduced fundamental concepts in LCMV beamforming.
LCMV beamforming consists in adjusting the filter coefficients to minimize
the output signal power while maintaining a certain linear constraint. LCMV
beamformers may be formulated as GSCs which include a target signal ref-
erence and one or several interference references, and which allows for use
of unconstrained optimization algorithms. Also, GSC beamformers may be
easily designed for both compact and distributed microphone arrays.

Unfortunately, minimizing the output signal power leads to the target-
cancelation problem, since in real environment the desired signal always leaks
into the interferer references. This is due to several factors, which cannot be
avoided in practice, such as reverberation, array imperfections, or steering
errors. For these reasons, LCMV beamformers may cancel the target signal
if the adaptation is not stopped during the periods of target activity. In the
context of multiple concurrent speakers, the adaptation control involves a
double-talk detector (DTD).

The design of a reliable DTD may be delicate and most control strategies
are all-or-nothing triggers involving decision thresholds, whose value may in-
fluence the performance significantly. Also, the adaptation is stopped when
both the target speaker and the interferer are active (“Double-Talk”). This
reduces the tracking capabilities of the adaptive interference canceler, in par-
ticular for overlapping target and interferer speech. This motivates our inves-
tigations in Chap. 4 to design an adaptive beamforming algorithm without
detection, where the adaption is realized continuously.

4 More details are given in Appendix C.
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To summarize, the important result of this chapter is the following: A
classical approach in multichannel speech enhancement is LCMV beamform-
ing implemented as a GSC. LCMV beamforming is a supervised, informed
approach to the speaker separation. Extraneous information is required at
two levels:

e Firstly, the position of the target source is used at the algorithmic (compact
array) or at the physical (distributed array) level.

e Secondly, the periods of time where the target signal level is high relative
to that of the interferer signal must be detected.
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Implicit Adaptation Control for Beamforming

In Chap. 3, we have presented the statistically optimum LCMYV beamforming
and the Wiener solution (3.22). The latter involves the second-order statistics
of the input signals, which are unknown in general. They might be estimated
from the data under the assumption of stationary ergodic input microphone
signals. However, in our application, the acoustic environment may change
over time, for example when the speakers move. Furthermore, speech signals
are nonstationary, requiring an adaptive approach.

On the one hand, continuous adaptation is desirable to find and to track
the time-variant optimum filter coefficients. On the other hand, the filter esti-
mation needs to be carried out only when the interferer is dominant relative to
the target. This latter requirement may be satisfied with an explicit adaptation
control based on a double-talk detector (DTD): We adapt only when some
estimate of the input SIR is below a certain threshold. However, as we have
seen in Chap. 3, the design of a robust and reliable DTD-based adaptation
control is often difficult.

This motivates the focus on another approach where the adaptation con-
trol is realized implicitly and continuously. The chapter is organized as follows:
Section 4.1 presents the normalized least mean square algorithm (NLMS), a
widely used adaptive algorithm with a normalized step-size. Section 4.2 intro-
duces a time-variant step-size that takes on the adaptation control. This yields
an implicitly controlled LMS algorithm (ILMS). In Sect. 4.3, we examine the
behavior of the ILMS algorithm theoretically. In Sect. 4.4, we set a customary
constraint to further limit the target signal cancelation. In Sect. 4.5, ILMS
and NLMS are compared experimentally.

4.1 Adaptive Interference Canceler

Let us briefly recall the notations. We consider the GSC shown in Fig. 3.1 as
the base architecture. The input signals are:
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1. A target reference signal, which is the output of the delay-and-sum fixed
beamformer and is given by xo(p) = w{ x(p)
2. M — 1 interferer references, which are the outputs of the blocking matrix

B and are stacked in the (M — 1)L x 1 vector xz(p) = BTx(p)

The system output y(p) is defined as y(p) = zo(p—D)+a™ (p)xp(p), where the
vector a(p) contains the (M — 1)L coefficients of the interference canceler.
The optimal time-variant interference canceler aqp (p) minimizes the interferer
signal power at the output y(p) while letting the target signal pass. Now the
question is how to adapt the interference canceler a(p) to track a,pi(p).

We may distinguish two categories of adaptive algorithms: (1) block-wise
algorithms which estimate the filter periodically using a block of K > L input
samples according to a closed-form equation such as (3.22), and (2) sample-
wise algorithms which update iteratively the filter coefficients after each new
input sample such as in (2.21). In this chapter, only the latter category of
sample-wise adaptive algorithms is considered.

The LMS algorithm as a gradient descent

A starting point for the adaptation of a(p) is the least-mean-square (LMS)
algorithm with step-size ppms. Consider the gradient descent for the cost
A

function J(p) = y*(p) with Ny, iterations for each time p. This gradient
descent may be written as

~ pus 9J(p)
2 da '’

a(n+1,p) £ a(n,p) (4.1)

with a(0,p) £ a(Nier, p— 1) as initialization. If we set Nier = 1, we may drop
the iteration index n in (4.1):

_ MLMms 9J(p)
2 da’

a(p+1) = a(p) (4.2)
and obtain the LMS algorithm [92] that updates the interference canceler
coefficients for each new sample as follows:

a(p+1) =a(p) — pvs y(p)x5B(p)- (4.3)

The speed of convergence, the steady-state misadjustment, and the
stability are controlled by the step-size urms [45, 92]. Assuming wide-sense
stationary signals xz(p), it may be shown! that the mean sequence E {a(p)}
converges to a finite a(co) if

L A usual assumption for the LMS algorithm analysis is the so-called independence
assumption. It is assumed that the elements of the vector xp(p) and those of
xp(p’) are independent if p # p’. The assumption is obviously wrong for L > 1,
even for independent and identically distributed interference signals. However, it
leads to a realistic description of the LMS behavior, and giving it up would render
the analysis considerably more complex [92].
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2
0 < prms <
L {

(4.4)
mot B

Bm®)}

The speed of convergence of the LMS algorithm depends not only on the
step-size pupms but also on the eigenvalue spread of the correlation matrix
Ryoxs(p) = E{xp(p)x5(p)}. Let us denote the largest and smallest eigen-
values of Rx,xp(P) BY Amax and Apmin, respectively. The smaller the ratio
Amax/Amin 18, the faster the convergence. The eigenvalue spread Amax/Amin
is minimal and equals one for white and uncorrelated input signals zp ., (p).
Fast convergence may also be achieved for colored signals with, for example,
the recursive least-square (RLS) algorithm [45].

Since the power of speech signals is highly time-variant, a fixed step-size
urms will usually not stay close to the desirable upper bound in (4.4). This
problem is addressed by the normalized LMS (NLMS) using a normalized
step-size.

Normalized step-size

The upper bound on ppms in (4.4) is inversely proportional to the power
of the interferer reference signals Z%;ll E{:rgB’m(p)}. Let us consider the
normalized step-size unpms given by

M—1
pnivs = pousL Y E{a%,,(p)} (4.5)

m=1

According to (4.4), convergence of E{a(p)} is guaranteed if the following
condition is satisfied:

0< UNLMS < 2. (4'6)

Let us estimate the input power L Z%;ll E {:r?B’m(p)} with the instantaneous

estimate ||xp(p)||?, where ||x||> = xTx. From (4.3) and (4.5), we obtain the
normalized LMS algorithm (NLMS) [45]:

y(p)x5(p)

a@? (4.0

a(p+1)=a(p) — unLms

Since some leakage of the target signal in the interferer reference x g always
exists, the interference canceler a(p) converges to the optimal agp(p) only if
the target signal is zero. Otherwise, the adaptation should be slowed down
with a time-varying, smaller step-size or stopped with uxpms = 0, depending
on the input SIR. In the next section, we attempt to design such a time-varying
step-size.
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4.2 Implicit Adaptation Control

Heuristic introduction

The normalization term of the NLMS update in (4.7) is given by 1/||xz(p)||*.
This normalization assures the stability of the algorithm, but does not lead
to a faster adaptation in favorable conditions, namely, when the input SIR
is low. Another shortcoming of the NLMS algorithm is that the steady-state
misadjustment increases with the target signal power, even if the target signal
does not leak into the interferer reference [41]. Therefore, it makes sense to use
a large step-size when the target signal power is low. To this end, let us define
the output vector y(p) 2 (y(p),....y(p — L +1))" and consider ||ly(p)||2/L as
an estimate of the target signal power. When the target signal power is low,
a large adaptation term is obtained by replacing 1/|xp(p)||? in (4.7) with
1/|ly(p)||>. This also yields a small adaptation term when the target signal
power is high, which reduces the risk of target signal cancelation. In other
words, an implicitly controlled adaptation is obtained by replacing the NLMS
algorithm with

) o VOXBG)
a(p+1) = a(p) MO — Dy @) (4.8)

The algorithm (4.8) includes an implicit adaptation control, and in the follow-
ing we refer to it as Implicit LMS (ILMS) with step-size po. However, ILMS
as given in (4.8) is not stable, since ||y (p)||* might become very small.

Stability conditions

Unfortunately, the condition 0 < pg < 2 does not guarantee the stability
of (4.8) in the mean. A common approach to ensure stability is to increase
the denominator of the update term in (4.8) by a fixed regularization term
d > 0 [44], as follows:

y(p)x5(p)
Y@+ 6 (4.9)

However, this fixed regularization scheme generally reduces the convergence
speed.

In the following, we propose an alternative approach. The ILMS algorithm
in (4.8) may be seen as a special version of the NLMS algorithm (4.7) with a
time-varying step-size. Replacing the step-size unrms by

a(p+1)=alp) —p

x5 (p)II?

M=)y ()2

in (4.7), we directly obtain the ILMS equation (4.8). Hence we can consider
the domain of stability given in (4.6). Using the variable step-size in (4.10),
the domain of stability (4.6) may be written as

(4.10)
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x5 ()|
(M =1Dly(p)?

If the condition (4.11) is not satisfied, we may simply perform the adaptation
with the standard NLMS and the step-size pg. In practice we may consider
a stability condition that is more conservative than (4.11) with a maximal
step-size fimax < 2 and

0 < o (4.11)

0 < po x5 - < limax- (4.12)
(M =1yl
To summarize, the ILMS algorithm can be written as
y(p)xz(p) : [ESOIR
KO T3 =)y (o) 112 if BO TR =D v ioE < Hmax;
a(p+1)=alp) — ?(J(p)x]i!:)(p)l\ ( . My @)l (4.13)
1O s ()12 otherwise.

Note that the ILMS and NLMS algorithms yield the same computational
complexity.

4.3 Analysis of the ILMS Algorithm

Having introduced the ILMS algorithm heuristically in Sect. 4.2, we attempt
in this section to motivate this algorithm with theoretical arguments. In
Sect. 4.3.1 we will show that the ILMS algorithm is an approximation
of the NLMS algorithm with a time-variant, optimal step-size, under the
assumption that the target signal does not leak into the interference refer-
ence. In Sect. 4.3.2 we relax this assumption and provide an analysis of the
mean trajectory of the ILMS algorithm for a simplified source model.

4.3.1 Linking ILMS to the NLMS with Optimal Step-Size
Interference canceler mismatch

A useful preliminary is to introduce the mismatch between the actual and
the optimal interference canceler, as in system identification. The mismatch
at time p is defined as

m(p) £ a(p) — aop:(p)- (4.14)

We denote the contribution of the desired signal in x(p) by d(p) and that of
the interference by n(p), that is,

x(p) = d(p) + n(p). (4.15)
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We now present an expression of the output y(p) as a function of the mismatch
m(p):

y(p) = wix(p— D)+ (mT(p) +al,(p)) BTx(p), (4.16)
=w; (d(p— D) +n(p — D))
+ (m™(p) +al,,(p)) B" (d(p) +n(p)). (4.17)

It is then assumed that a,p;(p) perfectly cancels the interferer at the output,
i.e., that
won(p — D) + ag,(p)B n(p) = 0.

This assumption is not critical if we are considering the transient behavior
and not the steady state of the adaptation. Combining this assumption with
(4.17) yields

y(p) = wo d(p — D) + ag, (p)B d(p) + m" (p)B™ (n(p) + d(p)). (4.18)
Substituting n(p) = x(p) — d(p) in (4.18), we obtain
y(p) = Wi d(p — D) +ag, (p)B d(p) +m™ (p)B x(p). (4.19)

We define b(p) as the target signal at the output when a(p) = agp(p),
i.e., when the interferer is canceled.

b(p) £ wyd(p — D) +al, (p)B"d(p). (4.20)

opt

With this definition of b(p), (4.19) can be rewritten as

y(p) = b(p) +m" (p)x5(p). (4.21)

Let us assume that the optimal interference canceler varies slowly, i.e., that
Aopt(p+1) = agpy(p). Then, the NLMS adaptation (4.7) can be written using
the mismatch m(p) and the step-size unpms as

y(p)x5(p)

IxB(P)|I?’

b(p)x5(p) + x5(p)x% (p)m(p)
x5 (p)? '

m(p + 1) = m(p) — pxLms (4.22)

= m(p) — UNLMS (4.23)

Optimal step-size derivation

We now derive a time-variant optimal step-size u(p). The optimality criterion
J(u(p)) that we consider for this derivation is the expected quadratic norm
of the mismatch at time p 4 1:

J(u(p)) = E{|lm(p +1)[*} . (4.24)



4.3 Analysis of the ILMS Algorithm 45

Denoting the time-variant step-size by p(p) instead of unpms in (4.22) and
substituting m(p + 1) from (4.22) into (4.24) yields?

J) =B {jml} + e { L o { MR ()

The derivative of J with respect to pu(p) is

Since the cost function J(u) is quadratic in g, it has only one minimum.

Solving for %((p’;)) = 0 yields a closed formula for this minimum. The optimal

step-size fopt(p) is given by

y(p)m™ (p)x5(p)
E{ ER0IE }

Hopt (P) = - { yz(p>2} : (4.27)

x5 ()l

Unfortunately, this optimal step-size cannot be computed in practice, since
the mismatch m(p) and the expectation E {} are unknown. Approximations
are necessary for a practical implementation, leading to a pseudooptimal step-
size.

Approzimating the optimal step-size

First, we assume that ||xg(p)||*> may be approximated by a deterministic

variable, as in [68]. Then, the term ||xz(p)||* may be factored out of (4.27).
Therefore, a first approximation of the optimal step-size is

. Efy)m® (0)xp(p)}

pon () ~ E{12(p)} (4.28)
Substituting y(p) from (4.21) into (4.28) yields
m” (p)x mT (p)x 2
o) ~ & {b(p)m™ (p) Bg){}yzﬂ:pﬁ;}{l (P)x5(P)I*} (4.20)

The signal b(p) depends on the target signal and on the optimal filter coeffi-
cients, which are unknown. The correlation term E {b(p)m™ (p)x5(p)} seems
difficult to estimate as it depends on the quantities b(p) and m(p), which are
unknown. For this reason, we need to assume that the target source is silent
or does not leak into the interference reference, which implies b(p) = 0 and

E {b(p)m™ (p)xp(p)} = 0.

2 The time index p is omitted for the sake of readability.
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Assuming a white signal xp(p), the term E {|{m™(p)xp(p)|?} in (4.29)
may be approximated by
2

B {Im™()xe ()} ~ B {Im(p)[} (5200 (4.30)

Note that the assumption of a white signal xg(p) seems rather unrealistic,
since speech signals and road noise are typically stronger for low frequencies.

In system identification problems like echo cancelation, elaborate tech-
niques may provide an estimation of E {|m(p)||*} [44]. Some may also be
applicable in beamforming, for example if certain elements of aqp(p) are a
priori known to be zero. However, we found it much simpler and very efficient
to approximate E {|lm(p)|?} with a constant po:

E {|m(p)[?} ~ po- (4.31)

Combining (4.30) with (4.31) yields

x5 (p) >

E {|m" (p)xp(p)]*} N B0 =L (4.32)

Finally, the output variance o (p) = E {y(p) } is estimated by |y (p)|?/L.
These approximations yield the pseudooptimal step-size
< (p)|1?

HP) = B Dy G (4.33)

Substituting p(p) from (4.33) into the NLMS equation (4.7), we obtain the
ILMS equation (4.8). Hence, the ILMS algorithm introduced heuristically
in (4.8) has been linked to the NLMS with a pseudooptimal step-size.

4.3.2 ILMS Transient Behavior and Stability

In the previous section we had to assume that the target signal does not
leak into the interference reference. In this section we relax this assumption
and provide an analysis of the mean trajectory of the ILMS algorithm for a
simplified source model which accounts for target leakage into the interference
reference. Additionally, this section provides an interpretation of the ILMS
stability condition (4.11).

Signal model

Let us first introduce a simple signal model and the notations on which the
further derivations are based. The sample index p may be omitted for nota-
tional convenience. The variance of the target at the output is denoted by
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0? and the variance of the interferer at xp is denoted by o3. The variance
of xp and y are composed of target and interferer components as shown in
(4.34) and (4.35):

E {|x5]°} = (M — 1)L (ficakage0; + 03) , (4.34)
E{|ly|*} = Loj = L (0 + €mismatch03) - (4.35)

The factor €icakage => 0 represents the amount of target leakage into the
interference reference. The factor emismaten > 0 controls the interferer signal
power at the beamformer output, and is roughly proportional to the mismatch
|lm(p)||?, according to (4.21). In (4.34) and (4.35), it is assumed that the
interferer and target signals are uncorrelated. In contrast to €icakage, Emismatch
is actually a time-variant quantity and may be denoted by €mismaten (p). Com-
bining (4.34) and (4.35) with the definition (4.33) yields

2 2
Eleakageal + g5

CleakageT1 T2 4.36)
3 5 (4.
o7 + Emismatch02

E{u} = no

Transient Convergence and Divergence

The ILMS algorithm is similar to the NLMS algorithm in the sense that
they share the same gradient direction, y(p)xp(p). Both algorithms converge
(resp. diverge) during target silence (resp. activity). However, their speed of
convergence and divergence differ. The goal in this section is to obtain a
quantitative estimation of the transient convergence speed of ILMS relative
to NLMS. To this end, we will study the evolution of expected mismatch
E{m(p)} at time p and derive an upper bound on the convergence speed
for ILMS and NLMS, which is obtained when the target signal is zero. The
divergence speed is obtained in the worst-case scenario when the interference
is silent.

We make the hypothesis that the interferer reference signals are white and
uncorrelated so that Rx,x;(p) o< I. This approximation is uncritical for the
following derivations if we consider that the target and the interference have
similar spectra during their respective periods of activity. (It is possible to
remove this hypothesis by diagonalizing Ry ,xp(p)). It is also assumed that
the algorithm is stable in the mean, i.e., E {u(p)} < 2, since otherwise, ILMS is
switched to NLMS and both algorithms behave identically. Substituting y(p)
from (4.21) into (4.13) and taking the expectation of both sides in (4.13), we
obtain

E {b(p)x5(p)} + Rxpxz E{m(p)}
E{|xz(p)|?}
37)

E{m(p+ 1)} = E{m(p)} - E {n(p)}
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ILMS convergence

The mismatch m(p) converges to zero when the target signal is zero, i.e., when
02 =0 and 02 > 0. In this case, we have b(p) = 0 according to (4.20). Then,
the ILMS equation (4.37) becomes

Ry px; E{m(p)}
E {|xz|?}

The mean of the pseudooptimal step-size (4.36) is E{u(p)} = 10/Emismatch
and the correlation matrix is Rx,x, = 031. Using (4.34), this yields

E{mp+1)}=E{m@p)} - E{up)}

(4.38)

E{m(p+1)} = (1 ey TR — (p)) E{m(p)}. (4.39)

contraction factor a(p)

Let us denote the step-size normalized to the filter length and the number
of interferer references by fig, that is, jig = po/((M — 1)L). The contraction

factor a(p) £ 1 — m controls the convergence of E {m(p)} to zero.

a(p) should be as close to zero as possible and its absolute value should
always be smaller than one. Observe that if an estimate of €pismaten (p) were
available, setting a time-variant fig(p) = Emismatcn(p) would lead to the fastest
convergence, as could be expected from (4.31). (Under these assumptions,
convergence in the mean would be achieved in one step.)

If a(p) were constant, i.e., if a(p) = «, then one could characterize the
transient behavior by an exponential decay with time constant

-1
“ha (4.40)

However, as can be seen in (4.39), «(p) depends on the mismatch. This has the
following effect: As the system adapts, mismatcn(p) decreases, thus decreasing
a(p) and increasing the rate of convergence, until «(p) crosses zero. If a(p)
crossed the value —1, (4.39) would become unstable. This is prevented by
explicitly checking the stability conditions (4.12). For these reasons, the tran-
sient behavior of ILMS is not very well described by a constant contraction
factor, in contrast to the traditional LMS [92]. Nevertheless, it is useful to con-
sider an upper bound of «(p). Assuming that & pismaten (p) < 1, the contraction
factor is upper-bounded by

a(p) < ams(to) (4.41)
where arrms(po) is defined as a function of py by
arms(po) =1 — po /(M —1)L. (4.42)

In the following, we refer to arms(po) as the ILMS convergence contraction
factor. We note that E{m(p)} converges to zero faster than af} \;s(p0) for
p = 0.
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ILMS divergence

In the worst-case situation, the target is active and the interferer is silent,
i.e., 0 > 0 and 03 = 0. The interferer correlation matrix Ry, x, is now
approximated by Ry, x, = Eleakagea%1~ In this situation, the mean mismatch
E {m(p)} does not converge to zero but to another point, which we denote
by mg(p). The update term in (4.37) vanishes at E{m(p)} = mg4(p), which

yields

E {b(p)xB (P)} + Eleakageo—%md(p) - 07 (443)

map) = -2

(4.44)

The mean pseudooptimal step-size (4.36) is E{p(p)} = poCicakage- Let us

A

define m’(p) £ m(p) — my(p). Rearranging (4.37) and assuming mg(p+1) =
my(p), the ILMS adaptation may be written in terms of m’(p) using (4.34)
and (4.43) as

B (p+ 1)) = B () (1- o o2 ). (aas)

We define the ILMS divergence contraction factor according to (4.45) as

bILMS(,U/O) = 1-— (MO/(M - 1)L> gleakage (446)
NLMS' convergence and divergence

According to (4.37), the convergence of the NLMS with constant step-size
pnLMs is described in the best-case scenario (07 = 0, 02 > 0) by

E{m(p+1)} = E{m(p)} (1 — pnrms/(M —1)L). (4.47)
We define the NLMS convergence contraction factor accordingly as

a HUNLMS
GNLMS(MNLMS) =1- m

In the worst-case scenario (0% > 0, 03 = 0), the NLMS adaptation diverges
to mg(p). Assuming my(p+ 1) = my(p) and with m’(p) = m(p) — mg4(p) the
NLMS adaptation step at time p is:

E{m'(p+1)} = E{m’(p)} (1 - pxrms/(M — 1)L). (4.48)

We define the NLMS divergence contraction factor accordingly as

b 59 _ HUNLMS .
NLMS (UNLMS) 7(M YY)
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Fig. 4.1. NLMS and ILMS convergence/divergence patterns for 0 < €jeakage < 1

Comparison

To compare the joint convergence and divergence of both NLMS and ILMS
algorithms, we may consider the divergence contraction factor b(u) as a
function of the convergence contraction factor a(u), thus obtaining a con-
vergence/divergence pattern. The best performance in terms of convergence
speed would be obtained with b(u) = 1 for all a(p): The mismatch would not
be increased, even in the worst-case scenario. Conversely, the worst perfor-
mance would be obtained with a(u) = 1 for all b(u): The mismatch would
not be reduced, even in the best-case scenario. The convergence/divergence
patterns for the ILMS and NLMS algorithms are shown in Fig. 4.1. For
the NLMS, the convergence and divergence contraction terms are equal,
bnems(p) = anpwms(p), as can be seen from (4.47) and (4.48). In other
words, the NLMS converges and diverges with the same speed. On the other
hand, we have

brrms (/.t) = AILMS (M)gleakage + (1 - gleakage) (449)

according to (4.42) and (4.46). If €icakage < 1, it may be seen in Fig. 4.1 that
the convergence/divergence pattern of the ILMS is “better” than the NLMS
pattern. This analysis is based on a simplistic model, e.g., only the best- and
worst-case situations have been considered. Nonetheless, it suggests the good
behavior of the proposed ILMS algorithm relative to NLMS.

About the Stability

In this section, we examine more closely the circumstances under which
instability may be detected. Let us assume that the stability condition (4.11)
is not satisfied in the mean. Using (4.34) and (4.35), we have
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2 2
€leakageT] T 03

2 2
o7 + Emismatch g5

> 2. (4.50)

Rearranging (4.50) yields

2
Mo 07 Ho
Emismatch < 7 - 0_7% (]— - Eleakageg) . (451)

For sufficiently small 19, the term 1 —€jeakagefto/2 is positive and (4.51) implies

(Z) €mismatch < %

2 2o —1
o\ O 2 ~Cmismatch 2
1) 5 < S—HBslaEl | = — ¢ .
( ) o3 1—¢leakage g (“0 leakage)

(4.52)

Equation (4.52) tells us that the ILMS algorithm is switched to the standard
NLMS only

e If the mismatch factor is smaller® than jo/2 (condition (i))
2
o If Zb is close to zero (condition (ii)), that is, if the target signal power o7
2
at the output is very small

Assuming that the cancelation of the target signal is not too severe (as shown
in the experimental Sect. 4.5), this reveals that the stability condition (4.11)
acts as a target silence detector. Therefore, the ILMS property of implicit
silence detection should not be lost by switching to the standard NLMS when
instability is detected.

4.4 Robustness Improvement

In most applications where prior information about the target position is
available, and even if the steered DOA does not perfectly match the actual
target position, the SIR is positive at the target reference signal zo(p) and
negative at the interferer reference xp(p). Therefore, cancelation of the target
signal at the beamformer output is accompanied by a growth of the interfer-
ence canceler coefficients. Based on this observation, we may replace the LMS
cost function J = E {y2(p)} by

Ix=E{y*(n)} + Alal, (4.53)

for a positive weight parameter A > 0 [45]. This penalizes large values of
|la(p)||? and partially prevents target signal cancelation. Similar to the Wiener
solution (3.22), the minimum of Jy can be obtained in closed form by setting
its gradient to zero, which yields

a(p) = — (Rupxp + A E {zo(p — D)xp(p)}- (4.54)

3 As we will see in the experimental section, typical step-sizes are on the order of
magnitude po = 0.01 or smaller.
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In (4.54), diagonal loading is applied on the correlation matrix Ry,x, [30].
The gradient descent for the cost function Jy leads to the leaky LMS algo-
rithm [45]:

a(p+1) = (1-pra(p) — py(p)xs(p) (4.55)

At each adaptation step, the filter coefficients are scaled down by a factor
(1 — pA) that is slightly smaller than 1. The leaky LMS algorithm may also
be implemented by adding random white noise to the input signals of the
interference canceler [45]. Since BTwg = 0, the white-noise gain of* w =
wo + Ba is given by ||w||? = ||[wo||> + al BTBa. For a blocking matrix B such
that BTB = I, the white-noise gain becomes

Iwll* = llwoll* + [|a]*. (4.56)

Thus, if BTB =1 then J, simultaneously minimizes the output signal power
and the white-noise gain of w.

A drawback of this approach is that Jy for A > 0 yields a slower initial
convergence than Jy. An alternative consists in restraining [la(p)||? with the
quadratic inequality constraint

la(p)[I* < agyc. (4.57)

where aqic is a positive constant [30]. The constraint in (4.57) may be effi-
ciently implemented as a projection on a ball of radius aqic [55]:

a(p) — 2 a(p) if a(p)| > aqic. (4.58)

la(p)|l

Assume that the optimal interference canceler satisfies constraint (4.57),
ie., that [|acpt(p)|| < aqic. Then, (4.57) also limits the mismatch, since
lm(p) | = lla(p) — aop: ()| < 2aqic.

The smaller aqic is, the lower the target and interference signal suppres-
sions are. Appropriate values of aqic depend on the position of the sources
and on the microphone arrangement. Thus, one must determine the smallest
aqic that does not impair the interference signal suppression experimentally.

4.5 Experiments

In this section, we evaluate the performance in terms of SIR improvement
of adaptive beamforming algorithms in the car environment. The following
algorithms are compared:

e NLMS. The adaptation is performed according to (4.7) without double-
talk detector.

4 The argument p is omitted to simplify the notations.
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e [LMS. The adaptation is performed according to (4.13) with step-size pg
and without double-talk detector. The stability threshold piax is set to
Mmax = %

e DTD-NLMS. Adaptation of the interference canceler is performed accord-
ing to (4.7) when the speech activity of the interferer is detected and the
target is silent. The double-talk detection (DTD) is obtained by segment-
ing the recorded target source signal manually. In the case of the RGSC
used with the four-element compact array mounted in the rear-view mir-
ror, the blocking matrix is adapted when speech activity of the target is
detected and the interferer is silent.

For these three algorithms, the adaptation is stopped if the short-term input
signal level is below a fixed threshold. This threshold is determined by mea-
suring the microphone signal energy during the first speech-free 200 ms. This
rudimentary speech activity detection does not allow to distinguish between
speech of the target (the driver) and speech of the interferer (the codriver). It
is just useful to avoid divergence of the filter coefficients when the input sig-
nals consist of background noise only. The three algorithms are implemented
with the quadratic inequality constraint in (4.58).

The performance measures

The performance measures have been defined in Sect. 2.4. The signal powers
are estimated with their instantaneous estimates. In Figs. 4.2-4.5, the target
signal level reduction and the interference signal level reduction are shown
after averaging over a sliding window of length 30 ms.

Source signals

The online beamformer performance is obtained on real recordings performed
with two male speakers. The driver utters a sequence of digits in German:
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_ N A : : R ©|© = SR(NLMS)
Y “‘ """ v. ¥ D P 7| ™ ILMS switched to NLMS [{* ©* * 1
0710 ....... j. : A it T ' P
0 c e . e VT T Ly T eSOV .o . b Daflie
0 1 2 3 4 5 6 7 8 9 10
= IR (ILMS)
oF - - T . L [ T T .. . |—IR(DTD-NLMS)[ . .. . ]

- — IR (NLMS)

time [sec]

Fig. 4.2. Online performances with the microphone array mounted in the mirror
(no background noise). The NLMS step-size is set to unpms = 0.4
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— SR (ILMS)
30 . . . . : . - {—— SR (DTD-NLMS)
@ ook : : : : : : - | — sR(NLVS)
= nl fe : : : : © | ™ ILMS switched to NLMS
Brop oM T e 7
o i . R " i it il ] 1 i
0 1 2 3 4 5 6 7 8 9 10
— IR (ILMS)
30 ! ! ! T T T |— IR (DTD-NLMS) T ]
& 2 : : : : : o[- — IR(NLMS) :
2 :
)
0 i it i i i i i i i
0 1 2 3 4 5 6 7 8 9 10
time [sec]

Fig. 4.3. Online performances with the four-element compact array mounted in the
rear-view mirror, with road noise. The NLMS step-size is set to unr,Ms =
0.3
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Fig. 4.4. Online performances with the two-element distributed array mounted on
the car ceiling (no background noise)
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Fig. 4.5. Online performances with the two-element distributed array mounted on

the car ceiling, with road noise. The step-size un,ms is set to unpMs =
0.05

“eins, zwei, ..., zehn” (“one, two, ... ten”), the codriver the digits from “elf”
(“eleven”) to “neunzehn” (“nineteen”). For the first half of the input signals,
the recordings are interleaved so that the digit of one speaker falls mainly in
the pause of the other one. By contrast, for the second part, the two speakers
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driver

codriver

time [sec]

Fig. 4.6. Source signals

speak more or less simultaneously, as may be seen in Fig. 4.6. The signals
are sampled at f; = 16kHz. First, we consider the four-element compact
array mounted in the rear-view mirror. Then, experiments are conducted with
the two-element distributed array mounted on the car ceiling. (We refer to
Appendix A for more details on the experimental setups.)

4.5.1 Experiments with the Four-Element Compact Array
Mounted in the Rear-View Mirror

In our experiments, the four-element compact array mounted in the rear-view
mirror is correctly steered to the target direction § = 20°. The uncontrolled
NLMS and ILMS algorithms are used to adapt the interference canceler em-
bedded in the GSC structure with the blocking matrix (3.29). The delay in
the fixed beamformer path is D = L/2 = 128.

The controlled DTD-NLMS is used with the RGSC beamformer proposed
by Hoshuyama et al. [53] (see also Sect. C.1 in Appendix C for more details).
The RGSC has an adaptive blocking matrix (C.3) with M outputs and filters
b,, of length L. The blocking matrix is adapted when the target is active
and the interferer is silent with the NLMS algorithm (C.5) as described in
Appendix C.

Determining the constants unrus, o, and agrc

To determine the adaptation constants, a two-second recording carried out
with an artificial head positioned on the codriver seat is used. The training
signal is a female voice saying “Ich bin Rudolf Ranick hier vom FTZ” (“I am
Rudolf Ranick here from FTZ”). The constants are tuned without double-
talk, i.e., the artificial head of the codriver is the only active source and the
microphone signals are those of the interferer, i.e., x(p) = n(p). Optionally,
road noise recorded at 100kmh~! is added to the microphone signals, which
may be written as x(p) = n(p) +n°*d (p) in this case. This background noise
exhibits a signal-to-noise ratio (SNR) of about 10 dB with respect to codriver
speech.
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To determine the appropriate values for unrwms, po and aqic, we define
the quality measure (Q as the interference signal level reduction estimated over
the whole two-second recording, i.e.,

A MZm 12?1"2 (p )
S v2(p)

Thus, the initial convergence phase of a(p) is included in Q. Note that we are
interested in the reduction of the passenger speech level, which is measured
by @ (as opposed to the reduction of the road noise level). The target signal
cancelation problem is not considered for now. As we will see, Q decreases
in the presence of background noise since some degrees of freedom of the
interference canceler are allocated to the attenuation of the background noise
signal rather than to the suppression of the interferer signal.

First, the step-size is examined. The quadratic constraint (4.57) is left
out, i.e., agic = +oo in (4.58). @ is depicted in Fig. 4.7a as a function of
o and punpms. Note that Q(po) exhibits two local maxima. This may be
explained as follows: For a large step-size g, the stability condition (4.11)
is not fulfilled and the algorithm switches to the NLMS adaptation. Thus,
Q(uo) ~ Q(unrms) for po, pnrms > 0.1. Since most of the adaptation should
occur with the pseudooptimal step-size, we retain the first maximum of Q(uo)
at p19 = 0.008. Let us also give an interpretation of the curve Q(uo) in terms of
the contraction factor a(p) introduced in (4.39) in Sect. 4.3.2. Q(uo) reaches
its first maximum when the contraction factor a(p) is minimum. For 1072 <
1o < 107! corresponds to an overshoot phase: the contraction factor becomes
negative and larger in magnitude, which decreases the speed of convergence.

Q (4.59)
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Fig. 4.7. (a) Q as a function of ug and puNr,Ms, for agic = +oo. (b) @Q as a function
of aqic, obtained with NLMS and the step-size punrms = 0.2 and noisy
input signals. These results are obtained with the four-element compact
array mounted in the rear-view mirror
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The algorithm switches to the NLMS adaptation when the contraction factor
becomes too large (which would cause instability).

The noisy case deserves an additional observation. The maximum value of
Q(pnLms) indicates that the NLMS algorithm is able to attain a higher in-
terference signal suppression than ILMS on noise-free input signals. However,
both algorithms exhibit similar performance with background noise. Inter-
estingly, the background noise does not seem to influence the optimum g,
which indicates the robustness of the ILMS algorithm against varying noise
conditions.

Second, we use the noisy input signals to determine the smallest aqic that
does not impair the interference signal level reduction. The value of @ as a
function of aqic is depicted in Fig. 4.7b. Note that the norm of the optimal
interference canceler coefficients ||aops|| depends on the proper array steering:
Steering errors may cause (1) larger interference signal levels in the target
reference xo(p) and (2) weaker interference signal levels in the interference
references g (p). Then the optimal agic may depend on steering errors.
That is why the results in Fig. 4.7b are shown for the correct steering direction
(20°) and for an erroneous steering direction (0°). It shows that for aqic > 0.8,
the interference signal level reduction is barely impaired for both steering
directions. The parameter values o = 0.008 and aqic = 0.8 are used in
the following. The algorithm equation and parameters for the four-element
compact array mounted in the rear-view mirror are summarized in Table 4.1.

Online performance

Figure 4.2 presents the online performance with noise-free signals and Fig. 4.3
those with road background noise.

Except for the fact that the presence of background noise decreases the
target signal level reduction SR(p) and the interference signal level reduction®
IR(p), both figures have similar characteristics:

Table 4.1. DTD-NLMS and ILMS algorithm short reference table with the para-
meter settings for the compact four-element compact array mounted
in the rear-view mirror shown in Fig. A.2. The filter length is set to
L =256 at fs = 16kHz

DTD-NLMS ILMS
structure RGSC (Fig.C.1) GSC (Fig.3.1)
section 4.1 4.2
equation (4.7) (4.13)
step-size puncms = 0.4 (no noise) no = 0.008

puxLms = 0.3 (noisy) fmax = 3
QIC aqic = 0.8

5 Note that the interference signal level reduction does not measure the attenuation
of the background noise signal but only that of the codriver speech.
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All three algorithms provide similar reductions of the interference signal
level IR(p).

The uncontrolled NLMS reduces the target and interferer signal levels sim-
ilarly and therefore does not provide any SIR improvement. This confirms
the result of Sect. 4.3.2, namely that NLMS converges and diverges with
the same speed.

The target signal level reduction SR(p) produced by ILMS increases slowly.
SR(p) remains smaller than for the uncontrolled NLMS. This reflects the
result of Sect. 4.3.2, namely that ILMS converges faster than it diverges.
Nevertheless, SR(p) may attain 10 dB when the driver speaks alone and is
similar to that of NLMS at the end of the recording. The periods of time
where ILMS is switched to NLMS, i.e., when the stability condition (4.11)
is not fulfilled, are indicated below the SR(p) curves. As shown in Figs. 4.2
and 4.6, instability is detected only when the target is weak relative to the
interferer, as predicted in Sect. 4.3.2. This occurs less frequently with back-
ground noise: The diffuse road noise cannot be completely canceled and
lly(p)||? does not become very small, preventing large values of 1/|y(p)]?
in (4.11).

The controlled DTD-NLMS method is the only one that guarantees a
low target signal cancelation during the whole recording and offers the
best SIR improvement. This shows that it is necessary to interrupt the
adaptation during target activity to prevent target signal cancelation with
the four-element compact array mounted in the rear-view mirror.

To examine the distortion of the desired signal for each algorithm, we con-

sider the signal level reduction as a function of the frequency.® The distortion
curves are plotted in Fig. 4.8. The figure is in accordance with the observation
above: the ILMS algorithm causes a significantly higher distortion than the

DTD-NLMS.
40 : : : : : : :
H H H H H delay-and-sum
L A (S ILMS 1
20 -- -- DTD-NLMS

SR(f) [dB]

10 |
NE
-10

0 1000 2000 3000 4000 5000 6000 7000 8000
frequency [Hz]

Fig. 4.8. Signal level reduction as a function of the frequency for the four-element

6

compact array mounted in the rear-view mirror (no background noise)

The power spectral density (PSD) was estimated using Welch’s periodogram

method with Hanning-weighted time frames of length 512. The PSD was then
averaged over the whole signal length.
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4.5.2 Experiment with the Two-Element Distributed Array
Mounted on the Car Ceiling

The two-element distributed array mounted on the car ceiling is associated
with the causal AIC structure described in Sect. 3.3.2. The experimental setup
is depicted in Fig. A.3.

Determining the constants jinrus, Ho, and agQrc

The same procedure as in Sect. 4.5.1 is applied. The quality measure @ is the
reduction of the interference signal energy evaluated with respect to the first
microphone z1(p):

2129);51 ni(p)
ol v (p)

Q is shown as a function of up and pxpms in Fig. 4.9a. Q(up) exhibit two
local maxima for the same reasons as given in Sect. 4.5.1. The relevant one is
the first, at up = 0.005. The second maximum of Q(uo) for po > 0.1 appears
because of switching to NLMS. Note that the step-size p¢ which maximizes @
is almost independent of the background noise. In this respect, the robustness
of the ILMS adaptation is remarkable. By contrast, the NLMS step-size unims
needs to be adjusted to the noise level: the step-size is set to unpms = 0.2
in noise-free conditions, and to puxrms = 0.05 in noisy conditions. Regarding
the upper bound aqic for the quadratic inequality constraint [lal| < aqic,
it appears in Fig. 4.9b that the conservative aqic = 0.5 does not impair the
reduction of the interference signal level. We retain pp = 0.005 and agic = 0.5

Q= (4.60)
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Fig. 4.9. (a) Q as a function of ug and puNr,Ms, for agic = +oo. (b) Q as a function
of aqic, obtained on noisy input signals with NLMS and the step-size
punLMs = 0.05. Results obtained with the two-element distributed array
mounted on the car ceiling
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Table 4.2. DTD-NLMS and ILMS algorithm short reference table with the para-
meter settings for the two-element distributed array mounted on the
car ceiling shown in Fig. A.3. The filter length is set to L = 256 at

fo = 16 kHz
DTD-NLMS ILMS

structure interference canceler (Fig. 3.2)
section 4.1 4.2
equation (4.7) (4.13)
step-size pntwvs = 0.1 (no noise) 1o = 0.005

untams = 0.05 (noisy) Hmax = %
QIC aqic = 0.5

for further experiments. The algorithm equation and parameter settings are
summarized in Table 4.2.

Online performance

The online performance with noise-free signals is shown in Fig. 4.4, and with
road background noise in Fig. 4.5.

It can be observed that the uncontrolled NLMS leads to a significant tar-
get signal level reduction, even though this reduction is not as large as with
the four-element compact array mounted in the rear-view mirror. Although
the prior information about the source position is used at the physical level
with directive microphones and with a conservative constraint ||a(p)|| < 0.5,
target signal cancelation nevertheless occurs. This influences the interference
signal suppression negatively, since the degrees of freedom that are allocated
to the target signal cancelation are not available for the suppression of the
interference signal.

By contrast, the ILMS method does not lead to a noticeable target signal
level reduction. This result differs from the one obtained with the four-element
compact array mounted in the rear-view mirror and may be explained as
follows:

e The long-term average interferer-to-signal ratio at the microphone that
is oriented to the codriver is about 6 dB. This helps to limit the energy
inversion effect described in Sect. 3.4.1.

e The number of spatial degrees of freedom allows only a single spatial zero
to be adaptively placed. This prevents the driver and codriver speech to
be simultaneously canceled.

e A causality constraint is set on the interference canceler, which also helps
to decrease target signal level reduction.

The reduction of the desired signal level as a function of the frequency is shown
in Fig. 4.10 to illustrate the distortion caused by the ILMS and DTD-NLMS
algorithms.
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Fig. 4.10. Reduction of the desired signal level as a function of the frequency for
the ILMS and DTD-NLMS algorithms with the two-element distributed
array mounted on the car ceiling (no background noise). The PSD is
averaged over the whole signal length

As predicted in Sect. 4.3.2, ILMS switches in noise-free conditions to NLMS
only if the input SIR is low. With background noise, the output signal power
is such that instability is never detected.

The fastest convergence is attained with the controlled DTD-NLMS
algorithm. The interference signal level reduction is somewhat limited dur-
ing double-talk since no adaptation occurs when the target is active, but it is
still comparable to that of the ILMS.

4.6 Summary and Conclusion

In this chapter, we have introduced adaptive LCMV beamforming algorithms
and built upon the widely used NLMS algorithm. An important parameter
of the NLMS algorithm is the step-size. A large step-size is desirable since
it allows a rapid tracking of the spectral changes. However, a large step-size
also leads to a significant target signal suppression if the input SIR is large
or during double-talk. We addressed this problem by using a pseudooptimal
step-size. This leads to the ILMS algorithm with implicit adaptation con-
trol. On the theoretical side, ILMS has been shown to converge faster and
diverge slower than the NLMS algorithm without adaptation control. It was
also shown how the associated stability condition acts as a target silence
detector.

To further increase the robustness against target signal cancelation, we
integrated a quadratic inequality constraint. The performance in terms of
SIR improvement of the developed ILMS algorithm was then experimentally
studied and compared to that of the traditional NLMS algorithm. The theo-
retical results on the transient behavior and the stability could be confirmed.
Moreover, it appears that the ILMS parameter py does not require to be
adjusted to the background noise level. This feature makes the ILMS very
attractive for automotive applications. The SIR improvement provided by
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ILMS outperforms that of the uncontrolled NLMS algorithm. With the two-
element distributed array mounted on the car ceiling, the performance of the
ILMS algorithm is comparable to that of the DTD-controlled NLMS, while
not requiring any external adaptation control. With this setup, the ILMS
algorithm is very robust against target leakage and has a high practical rel-
evance. On the other hand, for the four-element compact array mounted in
the rear-view mirror, the adaptation control provided by the ILMS algorithm
is not sufficient to prevent the target signal.
To summarize, the most important results of this chapter are:

e In contrast to the NLMS algorithm, the step-size in the ILMS algorithm is
automatically adjusted to the input SIR. Moreover, it also adjusts to the
background noise level, an important feature in automotive applications.

e Used in conjunction with the distributed microphone arrangement and an
AIC, this implicit adaptation control seems to be sufficient. However, in
the general case of GSC beamformers, the ILMS algorithm alone does not
prevent target leakage and an external adaptation control is still necessary.
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Second-Order Statistics Blind Source
Separation

The adaptive LCMV beamforming methods discussed in Chap. 4 are based on
the constrained minimization of the output power as an optimization criterion.
In practice, their performance is subjected to two contradictory constraints.
On the one hand, the microphones should be placed as close as possible to
the desired source for a good acoustic capture. On the other hand, any leakage
of the desired signal in the interferer reference results in a cancelation of the
desired signal at the beamformer output and in a poor SIR improvement.

This fundamental limitation may be overcome with source separation
methods. In contrast to power-based adaptive beamforming where only the
target signal estimate

M
y(p) = > W (p)xm(p) (5.1)

m=1

is considered as system output, source separation methods include N source
signal estimates y,(p) given by (2.23):

M
Un(p) = > Wik (p)Xm (p) (2.23)
m=1
for n = 1,...,N. No formal distinction is made between the desired signal

and the interference signals since both are recovered as algorithm output.
These separation methods do not require any adaptation control, they are
thus referred to as unsupervised, or blind' source separation methods (BSS).

A simple but illustrative derivation of these BSS principles was proposed
by Van Gerven et al. with the SAD algorithm [38]. Their starting point is

! The term “blind” indicates that no a priori known training sequence is necessary
to adapt the separation filters [46]. By contrast, the power-based LMS in Chap. 4
is supervised (nonblind) and necessitates an a priori known training sequence.
This sequence consists of the desired signal during its silences and is zero.
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Fig. 5.1. (a) Widrow’s interference canceler [92]. (b) Source separation structure
proposed by Van Gerven [38]. (¢) Complete separation structure

the LMS algorithm (4.3) with the two-source two-sensor scenario shown in
Fig. 5.1a. The adaptive interference canceler is denoted by wis(p) and the
output signal is given by y1(p) = x1(p) + Wis(p)x2(p). The LMS algorithm
for wia(p) can be written using (4.3) as

wia(p+1) = wia(p) — py1(p)x2(p). (5.2)

Van Gerven takes into account the fact that the interferer reference signal
x5(p) is contaminated by target signal components (the target leakage). He
proposes replacing xa(p) in (5.2) by a target-free signal given by ya(p) =
x2(p) + Wi (p)x1(p) and obtains two update rules for wiz(p) and waq (p):

=B

{le(p +1) = wia(p) — py1 (p)y2(p), (5.3)
wai(p + 1) = wai(p) — py2(p)y1(p)- '
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The corresponding feedforward filter structure proposed by Van Gerven is
shown in Fig. 5.1b. This adaptive MIMO provides an estimate for the tar-
get signal y1(p) but also an estimate y2(p) for the interferer signal as a by-
product. When (5.3) has converged in the mean, y;(p) and y2(p) should be
uncorrelated. Hence, Van Gerven termed the algorithm in (5.3) the symmetric
adaptive decorrelation (SAD) algorithm [38].

Unfortunately, (5.3) yields severe limitations. Like the LMS algorithm,
(5.3) is not normalized and is predisposed to instability if the input sig-
nals have fluctuating powers, as it is the case for speech signals. Moreover,
with (5.3), the zero-tap filter coefficients w12,0(p) and waq o(p) are such that
wi2,0(p) = wa1,0(p) for all p. Therefore, the practical use of the SAD algo-
rithm (5.3) is limited.

BSS algorithms are based on the assumption that the source signals are
mutually independent and adjust the filters w,,,,, to minimize a certain depen-
dence measure. In this book, the emphasis is placed on second-order statistics
BSS (SOS-BSS). That is, the dependence measure is based on the second-
order statistics of the source signals. Other dependence measures based on
higher-order statistics exist and yield different BSS algorithms [56].

This chapter focuses on offline separation methods in the time domain,
for which the entire observed signal x(p),p = 1,...,T is available at the time
of processing. The presentation makes use of Sylvester matrices and is derived
from Buchner et al. [18].

This chapter is organized as follows: Section 5.1 states the problem of blind
source separation and defines the notations used. In Sect. 5.2, the role of the
nonstationarity is explained and a separation cost function is derived using
the mutual information of nonstationary Gaussian signals. In Sects. 5.3 and
5.4, the gradient of this cost function is given and we introduce the natural
gradient that is more efficient. Unfortunately, the natural gradient applies only
to “square” systems that have as many sources as microphones. In Sect. 5.4,
we propose a general approach to extend the natural gradient to nonsquare
systems.

5.1 Problem and Notations

5.1.1 From a Scalar to a Convolutive Mixture Model
The scalar model

Originally the problem of blind source separation was placed in the framework
of instantaneous (or scalar) linear mixtures [59]. In this framework, it is often
termed independent component analysis (ICA). In the instantaneous model,
N source signals s1(p),...,sn(p) propagate instantaneously to M sensors
21(p),...,xa(p). That is, the source-sensor relationship can be described
using an M x N matrix H as follows:
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x(p) £ Hs(p),
with s(p) £ (s1(p), .-, sn(p)"
and x(p) 2 (21(p), .-, 2ar(p))" (5.6)

The matrix H is called the mizing matrix. Roughly speaking, the objective
of BSS is to isolate the image of one source in each component of the output

vector y(p) = (y1(p), ..., yn(p))" defined as
y(p) = Wx(p). (5.7)

The N x M matrix W is called a separation matrix. Note that it is not
necessary to identify H~! (if it is a square matrix) since recovering the sources
up to permutations and scaling is sufficient. In BSS, the goal is to blindly
identify a separation matrix W such that the matrix WH has only one non-
zero entry in each column and each row. Such a separation matrix is called a
separating matrix.? Although the instantaneous model is of limited practical
relevance for acoustic applications, its role is fundamental in the development
and understanding of BSS algorithms. In the following, this model is extended
to the convolutive case by introducing specific notations [20].

The convolutive model

First, we generalize the scalar output components y,(p) in (5.7) to vectors
vn(p) of length L, as follows:

V(D) 2 Wn(0), yn (@ — 1), ynlp — L+ 1)) (5.8)

The (n, m)-element of the separation matrix, wy,,, becomes a Sylvester matrix

W, of size L x 2L — 1 which is defined as

wl 0 0
T . .
W, 2|0 W C (5.9)
. .. .. 0
0 0 WTTLm
WEm £ (wnm,O; cee awnm,L—l) . (510)

The entire MIMO separation system is given by the block Sylvester matrix W:
Wll .« e Wl]\/[
w £ S : (5.11)

Wni ... Wyup

2 Note that it is a priori assumed that there exists a separating matrix that does
not depend on a particular source realization [23].
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The input data z,,(p) are stacked in a vector x(p) that is now redefined® as

x(p) 2 (xT (), x5 )", (5.12)
with X (p) 2 (2m(P), ..., &m(p — 2L+ 2)"  form=1,...,M. (5.13)

Then the MIMO input—output relationship in (2.22) can be compactly written
as

y(p) = Wx(p). (5.14)

Up to the fact that the input vector x(p) now has size M (2L —1) x 1 and that
the output signal y(p) becomes a vector y(p), (5.14) is simply a compact ver-
sion of (2.23) and thus the Sylvester notation is consistent with the notations
of the previous chapters. In the case M = N = 2, the input—output structure
is shown in Fig. 5.1c.

Similarly, the mixing equation can be written as

x(p) £ Hs(p). (5.15)

Each scalar mixing coefficient h;; of the matrix H in (5.4) is generalized to a
mixing filter, which is represented by the (2L — 1) x (L., + 2L — 2) Sylvester
matrix H;; as follows:

T
h}, 0 ...0
T Lo
O T (5.16)
S 0
0...0 h},
hii £ (hijo,- - hij,—1) (5.17)

Ly, denotes the length of the mixing channels. The whole MIMO mixing
system is given by the block Sylvester matrix H of size M(2L — 1) x
N(Ly, + 2L — 2):

H;; ... Hin
H2| @ . (5.18)
Hy ... Hyn
The source vector s(p) in (5.15) is defined as
T
s(p) £ (51 (0),---,sn(0) (5.19)

with s, (p) 2 ($p(p)s- .., 8n(p—2L — Ly +3))" forn=1,...,N. (5.20)

3 In Chaps. 2-4, the vector x(p) was defined with length M L. In source separation,
this vector has length M (2L — 1).
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This notation with Sylvester matrices is appealing because convolutive
mixtures appear formally as instantaneous mixtures, which can be seen by
comparing (5.4) with (5.15) or (5.7) with (5.14). Using this type of notation,
instantaneous separation methods have been proposed for separating convo-
lutive mixtures [70]. However, for acoustic signal processing, several tens or
hundreds of filter taps are necessary. This makes the dimension of the mixing
prohibitively high. Nevertheless, such a notation allows to apply some results
which have been derived for instantaneous BSS.

Finally, let us define the global convolutive system C £ WH. The NL x
N(Ly + 2L — 2) matrix C contains N2 submatrices C,,,,n,n =1,..., N of
size L X Ly, + 2L — 2:

Cll...ClN
c=1| : .. : |. (5.21)

Cn1...CyN

Each submatrix C,,,/ represents the channel that relates the source s, (p) to
the output y,(p).

5.1.2 Separation Ambiguities

Generally, blind separation criteria are based on the mutual independence
of the sources. Minimizing an independence criterion does not allow the
separating matrix W to be uniquely determined. In the following, we de-
scribe the permutation and scaling ambiguities in the convolutive case. Let us
assume that the output signals are mutually independent. Since permutations
of the outputs leave their mutual independence unchanged, y,,(p) is not nec-
essarily an estimate of the source signal s,,(p). In fact, the ordering of the
source signals is solely a matter of notation and has no physical relevance.
Therefore, the output vector y(p) should provide an estimate of the source
vector s(p) up to arbitrary permutations. In terms of the global system C,
this means that we do not want to find W such that C is block-diagonal.
Rather we want to find W such that each row and each column of C has only
one nonzero submatrix.

Likewise, individual filtering of each source signal leaves the mutual inde-
pendence of the sources unchanged. Therefore, the nonzero submatrices in C
may contain arbitrary filter coefficients. This filtering indeterminacy may be
more or less severe depending on the filter length L: If L is greater than the

lower bound in (2.55), i.e., if L > [%—‘, the unconstrained de-

grees of freedom result in a true arbitrary filtering of the source signals. If L
equals the lower bound, this arbitrary filtering reduces to an arbitrary scal-
ing [19]. To neutralize this ambiguity, various normalizations may be adopted.



5.2 Nonstationarity and Source Separation 69

For example, it may be useful to constrain the diagonal filters w,, to unit
responses. However, depending on the length L,, of the mixing channels, such
a constraint generally reduces the achievable separation performance, as we
have shown in Sect. 2.3.2.

5.2 Nonstationarity and Source Separation

5.2.1 The Insufficiency of Decorrelation

In most instantaneous BSS approaches, the source signals s, (p),n =1,..., N
are modeled as realizations of stationary stochastic processes [23]. With this
model, the blind separation of Gaussian sources is not possible: As the mutual
independence and the decorrelation of Gaussian sources are equivalent, the
independence constraints become the following decorrelation constraints:

Ry.y, £E{ya(@)y,(p)} =0 Vn#n'. (5.22)

Suppose w,,,, = g for n = 1,..., N, which neutralizes the filtering ambiguity.
On the one hand, the independence criterion (5.22) provides (2L — 1)(N? —
N)/2 constraints. On the other hand, we have (N? — N)L unknown filter
coefficients wy,, . Therefore, a continuum of solutions with dimension (N 2
N)/2 arises, which is “larger” than the discrete set of permutation ambiguities.
This shows that Gaussian sources cannot be separated if we use the stationary
signal model. This also reveals that the decorrelation constraints (5.22) are not
sufficient to separate stationary source signals, whether Gaussian or not. This
is the motivation for an alternative signal model. Instead of stationary source
realizations, it is proposed to examine nonstationary source signals. Although
the nonstationarity is often an obstacle in adaptive signal processing, it may be
advantageously exploited in BSS. If we assume nonstationary source signals,
we may produce K(2L — 1)(N? — N)/2 equations from (5.22) by setting p =
t1,...,tKk, that is,

E{y.(tr)ys (te)} =0, k=1,...,K, Vn#n' (5.23)

For K > 2, the collection of constraints is sufficient to identify appropriate
separating filters. These constraints correspond to the joint block diagonaliza-
tion of the output correlation matrices Ryy (tx),k = 1,..., K, where Ryy(p)
is defined as

Ryy(p) £E{y(p)y" (n)}. (5.24)

Let us introduce the matrix operator boff(R) that sets the diagonal L x L
submatrices of R to zero. For a K7L x K5 L matrix R consisting of submatrices
R;,i=1,...,Ki;j=1,...,Ky of size L x L, boff(R) is defined as
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R11 R1K2 0 R12 R1K2
boff b |2 | R (5.25)
: : Rk, 1)k
Ricn - Ricires Rik1 - Ry (ko1) 0

Reformulating (5.23), we may resolve the separation problem by finding
W such that

boff(Ryy (1)) =0 k=1,....K, (5.26)

since boff(Ryy (tx)) contains all cross-correlation terms.

5.2.2 Nonstationarity-Based Cost Function
Gaussian mutual information

Various cost functions based on the joint block diagonalization of the corre-
lation matrices Ryy (t;) have been introduced heuristically (see e.g.,[75]).

By contrast, the mutual information,* a natural measure of independence
in information theory, gives us a rigorous foundation for deriving a separation

* Some definitions and properties from the information theory are essential [29]:

e The KULLBACK-LEIBLER divergence between two distributions

py (u)

is not really a distance in topological terms. For example, it is not symmetrical,
i.e., D(p,q) # D(q,p) in general. However, it may be seen as a distance between
two random variables. It is clear that D(p,p) = 0 for all probability density
function (PDF) p. Moreover, D(p, q) is always positive.

o  D(p(x,v),px-py) is called the mutual information of X and Y, and is denoted by

D(px,pv) é/px(u) log Mdu

I(X,Y) = D(p(x,v),px - pv) (5.27)

P(x,y (z,y)
:/ p(X,Y)(‘T:y) log ( )
z,y

, px(z) - py(y) Aoy (5:28)

The mutual information is nonnegative, and a very natural measure of indepen-
dence. The equivalence
X and Y are independent < I(X,Y) =0

is fundamental. The entropy of X, defined as H(X) £ I(X, X), is related to the

mutual information by

I(X,Y) = H(X)+ H(Y) - HX,Y). (5.29)
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cost function. To obtain a cost function from the mutual information, we must
assume that if W is a separating matrix then the output signals have a par-
ticular PDF. Note that even if the output does not match the assumed p.d.f.
when W is a separating matrix, the sources may be separated by minimizing
the mutual information. In fact, the assumed p.d.f. should be simple enough to
produce simple algorithms, while capturing the nonstationarity of the sources.
Such a model may be obtained by considering that if W is a separating ma-
trix then the outputs are realizations of mutually independent nonstationary
Gaussian processes. In addition, it is assumed that the output signals have
no time structure over blocks of length L, i.e., y,(¢1) is assumed to be inde-
pendent of y,,(t2) for all n and all ¢; # t5 such that |t; — t2| > L. Again, we
emphasize that this is a working assumption. The derived algorithms may be
able to separate a larger class of source signals. Then, the mutual information
of the entire output sequence® y(p),p = 1,...,T is given by the sum of the
mutual information in each block, that is,

K
I(y) =Y I(y(kL)), (5.30)
k

=1

where K = |T/L]. To compute the output mutual information I(y(p)) at
time p, we use the Shannon entropy H [85] and the relation

I(y(p)) =Y _ H(yn(p) — H(y(p)). (5.31)

Assuming that the output samples may be described as the realization of
a stochastic process with a N L-variate normal distribution with correlation
matrix Ryy (p), their entropy is given by [85]

1
H(y(p) = 3 log ((2me)™" det Ryy (p)) - (5.32)
Similarly, the entropy of y,, is given by H (y, (p)) =4 log ((2me)” det Ry, v, (p)),

where Ry, y. (p) = E{y.(p)y: (p)}. Then the mutual information I(y(p)) in
(5.31) is given by

I(y(p) = % (Z logdet Ry, y, (p) —logdet Ryy (p)> : (5.33)

As may be seen from (5.33), the mutual information I (y(p)) vanishes if Ry, (p)
is block-diagonal, that is, if the output signals are spatially uncorrelated at

5 For simplicity, the mutual information and the entropy are respectively denoted
by I(y) and H(y), although they are defined for stochastic processes and not for
their sample realizations.
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time p. Thus, we achieve the joint block diagonalization of the output corre-
lation matrices by minimizing I(y) in (5.30). Using the fact that the determi-
nant of the block-diagonal matrix is the product of the determinant of each
diagonal block [25] and after replacing the true correlation matrix Ryy (p) by
its estimate,® ﬁyy (p) yields the following cost function:

K
J(W) = logdet bdiag(Ryy (kL)) — logdet Ryy (kL),  (5.34)
k=1

where bdiag(A) = A — boff(A).
Graphical representation

Let us examine the cost function in (5.34) in a simple graphical way. Figure 5.2
depicts the negated cost function, —J(W), whose representation is more read-
able than that of J(W). The following setting is considered: The dimension
of the instantaneous mixing (L = L,, = 1) is set to M = N = 2. To fix the
scaling ambiguity, the diagonal terms are set to wyy,,0 = 1 for n = 1,2. The
varying parameters are the off-diagonal terms w129 and wa; 0. T = 100 inde-
pendent realizations of s are drawn from a Gaussian distribution with random
variance. Correlation matrices Rxx(p) = E {x(p)xT(p)} are estimated by the

moving-average Ryx (p)=1% 271-:—1 x(p — 7)xT(

set to
1 -0.8
H= <—0.8 1 ) ’

It may be seen that J has only two local minima. They correspond to the two
separating solutions, the “direct” one and the “permuted” one. These minima

p — 7). The mixing matrix is

-
Wiz0 " >0 ’ Wa1,0
Fig. 5.2. Cost function J for an instantaneous mixing. For better readability, the

negative J is shown. Two arrows indicate the minima of J (maxima of —.J)
corresponding to the separating solutions

6 The implementation of Ryy(p) is not specified for now. We refer to Sect. 6.1.5
for an implementation of second-order statistics BSS algorithms.
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of J are separated by singularities of J (we have J(W) = 400 for singular
separation matrices W).

5.3 Gradient-Based Minimization

5.3.1 Standard Gradient

A simple approach to find the separation matrix W that minimizes a cost
function J is the iterative gradient descent, which may be written using a
variable step-size u(n) as follows:

oJ

W(n+1)=W(n) - un) 5o —

(5.35)

A remark is in order regarding (5.35) in the case of Sylvester matrices.
Sylvester matrices allow to formulate the block convolution very concisely,
but face two related issues: Firstly, implementing (5.35) directly would involve
updating M N L(2L—1) terms instead of M N L free filter coefficients. Secondly,
the gradient term ;—v‘(, should have a Sylvester structure, which is not the case
for the cost function in (5.34). These technical issues are ignored for now,
because this chapter aims at introducing the main principles of BSS. They
will be treated and discussed specifically in Chap. 6.

Since we have” Ryy(p) = WRxx(p)WT, the two formulas needed to ob-

tain the gradient of (5.34) are

1 diagW I{‘xx W - W W T WR 5.36

0 0g det bdi g = bdlag ! ( Rxx ) XX ( : )
log det W It'xx“ VVI W .37

0 g — (WRxx ) ' Rxx7 ( : )

where bdiag ' A = (bdiagA)~' [20, 25].% Using (5.36) and (5.37), the gradient
of the cost function (5.34) can be written as

oJ u 1 (5 51 R
 — (bdiag™ (Ryy (kL)) — Ryy (kL)) WRk(KL).  (5.38)

k=1

The inversion of the N L x N L matrices ﬁ;; (kL) in (5.38) makes the standard
gradient descent particularly unattractive.

" The arguments n and p may be omitted for notational convenience.

8 The Sylvester structure of W is not explicitly taken into account in (5.36)
and (5.37) (see [20, 25]). The resulting gradient has no Sylvester structure and
maintaining the Sylvester structure requires a special treatment. This issue is
treated in Chap. 6.
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5.3.2 Natural Gradient

The natural gradient is an alternative to the standard gradient that applies
especially well to the SOS-BSS cost function in (5.34). However, it is restricted
to square scenarios where the number of sources equals the number of sensors
(N = M). Derived by Amari from differential geometry considerations (7], it
was independently introduced by Cardoso, who called it the “relative” gra-

dient [23]. The natural gradient update may be obtained by modifying the
standard gradlent as follows:
oJ
AW £ _—W'W. 5.39
oW (5.39)

This formula was also derived for instantaneous mixtures. We will see in
Chap. 6 how it may be extended to convolutive mixtures. Combining (5.38)
and (5.39) yields

K
AW = 3" bdiag 'Ry, (kL)boft (f{yy(kL)) w. (5.40)
k=1

The computation of the natural gradient learning terms in (5.40) is much less
demanding than the computation of (5.38). Instead of inverting the NL x NL
correlation matrix Ryy( ), only the submatrices Rynyn (p) of size L x L need
to be inverted in (5.40). This is performed by inverting each diagonal block
of size L x L.

The algorithmic complexity of (5.40) may be further reduced by replacing
bdiag_lﬁyy (p) with diag_lﬁyy(p), yielding

K
AW =3 diag™ Ryy (kL)boff (Ryy (kL)) W. (5.41)
k=1

Only scalar numbers need to be inverted in (5.41), as opposed to block-
diagonal matrices as in (5.40). This simplification is obtained by approxi-
mating the correlation Ry, y, of y.(p) by its power: Ry, . ~ E{y2(p)} L.
There is an analogy between algorithm (5.41) and the NLMS algorithm (4.7):
In (5.41) and in (4.7), the normalization is performed by scalar power
terms [20]. In the remainder of this work, the generic algorithm (5.41) is

referred to as the natural gradient second-order statistics BSS algorithm (NG-
SOS-BSS).

Nonholonomicity

If the output cross correlations vanish for all blocks, i.e., if bdiag (Ryy (kL)) =
Ryy (kL) for k = 1,..., K, then the update terms in (5.40) and in (5.41)
vanish. This equilibrium condition sets no constraint on the power or on the



5.4 Natural Gradient Algorithm for NonSquare Systems 75

self-correlation of the output signals. For this reason, these learning rules are
referred to as nonholonomic.

Let us give a formal definition for the nonholonomicity in the context of
BSS. Without loss of generality, any iterative algorithm for optimizing W
may be written as

W(n+1)=f(W(n)). (5.42)

The matrix function f depends not only on the input data but also on other
parameters like the step-size. Let us consider a linear transform on the output
signals y, which is represented by the VL x N L block-diagonal matrix D, and
examine Dy. This linear transform is equivalently expressed on the separation
filters, since Dy = (DW)x. Hence, to simply transform the output data
linearly, we define the function g as

g(W,D) £ f(DW) (5.43)

for any NL x NL block-diagonal matrix D. We can now rewrite (5.42) with
the identity matrix I:

Wn+1)=9g(W(n),I). (5.44)

The equilibria of the algorithm in (5.42) are fixed points W* of g (-, I), that
is, they are the points W* so that

W* = g (W*,1). (5.45)

Now, the algorithm represented by (5.42) is said to be nonholonomic if and
only if for all block-diagonal matrix D, any fixed point W* of ¢ (-,I) is also a
fixed point of g (-, D):

W* =g (W"I) = W"=¢g(W*" D) V diagonal matrix D. (5.46)

The nonholonomicity is important if the source signals are speech signals
because for holonomic learning rules, the equilibrium condition depends on
the power or on the self-correlation of the output signals. Typically, holonomic
learning rules tend to make the output signals temporally white and seem
unsuitable in online processing of speech signals [8].

5.4 Natural Gradient Algorithm for NonSquare Systems

In the derivation of the natural gradient (5.39), it is assumed that there are
as many sensors as sources [7, 23, 56]. Therefore, the learning rules (5.40)
and (5.41) apply only if M = N. However, we may have more sensors than
sources and exploiting the information provided by these additional sensors
should improve the separation performance.
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T1 —pf — Y1 ~ s1

12 BSS v2 e a) Full separation

T3 — —y3 =~ 0
T4 —» —ya =~ 0
51 b) Separation after
® >> preprocessing
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- — — Y1 = S1
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T3 —s{processing BSS
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Fig. 5.3. Three approaches for extending the natural gradient to nonsquare systems

Full separation

A straightforward approach would be to overestimate the number of sources
[93]. Setting N = M, the natural gradient may be applied for any number of
sensors, as depicted in Fig. 5.3a. However, this is computationally demanding.
Moreover, the information on the actual number of sources is not taken into
account.

Separation after preprocessing

Another approach is to apply a fixed preprocessing to the microphone signals
to reduce the dimension of the observed signals to IV, as depicted in Fig. 5.3b.
Using the principal component analysis (PCA) for example, one may select
the components of the microphone signals that have the most energy [12, 56].
This approach yields the advantage of a lower complexity, since BSS is applied
on N < M input signals. However, it is not clear whether this preprocessing
may discard information that is useful for separation or not.

Partial separation

The technique that we propose is a trade-off between the full separation and the
separation after preprocessing and is referred to as partial BSS (PBSS). The idea
is very simple: Since it is not necessary to extract M independent components,
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we may assign several outputs to one source, as depicted in Fig. 5.3c. In the
case N = 2, M = 4, we may assign y; to the source sy and ¥s,ys3,ys to
the source so. We note that other assignments may also be possible. This
particular assignment is well suited if the source s; is placed closest to the
microphone z1, since at the initialization we have y; = ;. This particular
assignment is also structurally similar to the spatial preprocessing performed
in the GSC, which will reveal useful in Chap. 9.
Let us define the vector yps 3.4)(p) as

Yesa®) 2 (yFm),yr ), yr ) - (5.47)

The partial separation of the sources may be achieved by minimizing a cost
function Jppsg which is obtained by modifying the cost function (5.34). In Par-
tial BSS, we do not want to minimize the mutual information I(y1,...,y4).
Here, the mutual information I (y17 y[2’374]) is relevant. In case of nonstation-
ary Gaussian signals, this mutual information is given by

I (Y1(p)7 Y[2,3,4] (p)) = logdet Ry, y, (p)
+ log det E {Y[2,3,4] (P)Y[T2,3,4] (p)}
—logdet Ry (p). (5.48)

This yields the cost function

K
Jpess = »_logdet bdiag, 5 5 4 (Ryy (kL)) — log det(Ryy (kL)). (5.49)
k=1

The matrix operator bdiag; [, 3 4 is defined as follows: Let (Kq,Kz2) be a
partition of {1,..., M}, the operator bdiagy, x,(A) sets the (n,m)th blocks
of the matrix A to zero for all (n,m) € (K1, K2) such that n # m. This simple
operation may be made explicit in the case of bdiag; [, 3 4 as follows:

A, 0 ... 0
. An o A 0 As...As

bdiag; [5 3 41 .o = S (5.50)
Ag e A 0 Aup...Au

An existing approach that may be related to PBSS is the deflation ap-
proach [25]. It consists of two steps: (1) a single source is extracted and
(2) removed from the mixture signals using a least-square power criterion.
Both steps are repeated iteratively until a single source remains. PBSS is
similar to the first step of the deflation approach. However, at the extraction
of each source y,(p), deflation algorithms typically exploit an optimization
criterion of the form J (y,) that depends on a single output; on the contrary,
PBSS optimizes W for different outputs jointly with a criterion of the form

J (Y1, ¥72,....0))-
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PBSS in the case N =2

In the case of two sources N = 2, this approach may be generalized to M
sensors replacing bdiag, [ 3 4) by bdiagy 5 . - In our context, we consider
that only one source signal is actually desired. (For example in our car appli-
cation, only the driver speech is actually desired.) The other outputs of the
system are considered as by-product of the PBSS algorithm. In other words,
the two sources actually consist in (1) the desired source and (2) the set of all
other present sources. Hence, only the case of two sources N = 2 is further
considered for PBSS implementations. However, we note that PBSS may also
be generalized to N > 2 sources and we notice that PBSS coincides with BSS
if N =M.

Similarly to the BSS cost function in (5.34), Jppss may be minimized with
a natural gradient approach, which yields

.....

(5.51)

The matrix inversion may be avoided using an NLMS-like algorithm as in
(5.41). We then obtain the following NG-SOS-BSS learning rule:

K
AW =3 diag 'Ry (kL) (Ryy(kL) - bdiagl’[Q’.“’M]Ryy(kL)) W. (5.52)
k=1

The computational demand in PBSS may be further reduced if we do not
adapt the cross filters w,,,,,,n # m relating outputs that are assigned to the
same source S, (p). This should not impair the separation performance, since
it is not necessary to reduce the cross correlation between these outputs. In
the case N = 2, the filters w,,,,, for n,m > 1 and n # m remain zero. This
results in the separation matrix

W11 W12 ...... WlM
Wy Wy 0 0
W = o0 T . (5.53)
: S0
Wy 0 ... 0 Wy

The PBSS approach realizes a trade-off between the full separation and
the preprocessing approach depicted in Fig. 5.3a and b, respectively:

e It is computationally less demanding than full separation. The matrix

~ ~

Ryy(k’L) - bdiagL[z,.‘.,M] (Ryy(kL) (5.54)

yields 2(M — 1) nonzero blocks while



5.5 Summary and Conclusion 79

~ ~

Ryy (kL) — bdiag(Ryy (kL)) (5.55)

yields M (M — 1) nonzero blocks. Moreover, if we do not adapt certain
cross filters as in (5.53), the number of adaptive filters is reduced from M?
to 3M — 2.

e It offers more flexibility than the preprocessing approach. M — 1 interfer-
ence signals are obtained as output instead of N — 1 for the preprocessing
approach, which may be advantageous for postprocessing of the output
signals. This feature will be exploited in Chap. 9. Also, since the M micro-
phone signals are passed as inputs, PBSS may exploit the entire observed
information.

5.5 Summary and Conclusion

This chapter introduced the main principles of Second-Order Statistics Blind
Source Separation (SOS-BSS). BSS aims at identifying acoustic mixings by
exploiting solely the mutual independence of the source signals. This can be
achieved by exploiting the second-order statistics of nonstationary signals.

The formal framework for convolutive BSS has been introduced by rep-
resenting filters with Sylvester matrices, as in [18]. Within this framework, a
cost function that exploits the second-order statistics and nonstationarity of
the source signals has been derived. The minimization of this cost function
may be performed with the natural gradient. The computational demand of
the resulting Natural Gradient SOS-BSSalgorithm (NG-SOS-BSS) is much
lower than with the standard gradient descent. However, the natural gradient
can be used with square systems only. Extensions of the natural gradient to
nonsquare systems have been discussed.

Unfortunately, the gradient update (5.38) and the natural gradient (5.39)
are valid only in the instantaneous case and the Sylvester structure of W
in the convolutive case has been ignored. For this reason, the derived rules
(5.38), (5.40), and (5.41) cannot be used directly. In Chap. 6, we will explain
how the convolutive nature of the mixing may be taken into account.
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Implementation Issues in Blind Source
Separation

In Chap. 5, we have derived BSS algorithms using Sylvester matrices. The
Sylvester-based notation allows the separation process to be written very con-
cisely as in (5.14):

y(p) = Wx(p). (5.14)

Paradoxically, the price for the conciseness of the Sylvester-based notation is
its high redundancy. And unfortunately, consistency of this redundant rep-
resentation of the separation system W is not guaranteed by the algorithms
that are given in Chap. 5. For this reason, these algorithms cannot be directly
implemented. In the first part of this chapter, our contribution is to propose a
systematic and rigorous treatment of this redundancy issue, which eventually
provides implementable update rules.

The second part of this chapter (Sects. 6.2 and 6.3) addresses other practi-
cal aspects of signal separation algorithms. Section 6.2 gives a general scheme
for online implementations of BSS algorithms. Experimental results are pre-
sented in Sect. 6.3.

6.1 Natural Gradient in the Convolutive Case

Considering N sources, M microphones, and separation filters of length L,
we need to adjust NM L filter coefficients. However, the Sylvester matrix W
in (5.11) has NML(2L — 1) entries. Ignoring the Sylvester structure leads to
the gradient descent (5.38), where the gradient is calculated with respect to
each entry of W independently. Therefore, the adaptation term AW = (,)B—VJV
has no Sylvester structure. The Sylvester structure of AW may be restored
by selecting NM L nonredundant elements in AW. Then, one may build
the matrix AW in the Sylvester form (5.9) with these reference elements.
For example, choosing the L first elements of the first row of AW,,,, (for
each n,m) fulfills this nonredundancy requirement [18]. Alternatively, one
may force the Sylvester structure by using the Lth column of AW,,,, as
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2L —1

A
\

Aan =

y

Fig. 6.1. BSS update and redundancy of Sylvester matrices, in which each filter
coefficient is represented L times. To solve the redundancy, it has been
proposed choosing a particular set of reference elements, such as the first
row or the Lth column [20]

shown in Fig. 6.1 [20]. These two choices are related to certain convolution
formulas, as observed by Aichner et al. [5]. At first glance, any other a priori
arbitrary choice of nonredundant subsets of elements (or any combination of
them) seem possible.

In this section, we tackle this problem and derive rigorously convolutive
formulations of the natural gradient for a general cost function J. As a prelimi-
nary, the gradient 8‘9—‘;{, is derived for Sylvester matrices (Sect. 6.1.1). Secondly,
we develop convolutive formulations of the natural gradient; for convenience,
the derivation is carried out using z-transforms, but the resulting formulas
are also expressed in the time domain (Sects. 6.1.2 to 6.1.4). Then, we apply
these results to the BSS cost function in (5.34), and propose an approxima-
tion to obtain efficient update rules (Sect. 6.1.5). At last, their properties are
discussed in Sect. 6.1.6.

6.1.1 Gradient in the Sylvester Subspace

If we consider the set of all NL x M (2L — 1) matrices as an NML(2L — 1)-
dimensional vector space, the subset of the Sylvester matrices may be seen
as an N M L-dimensional subspace in this vector space. In the following, this
subspace is called the Sylvester subspace! and is denoted by S. This subsection
explains how the gradient of a real function

f:8—=R (6.1)

is computed in the Sylvester subspace.
Let us denote the (i, j)-entry of the matrix W, by wi" fori =1,..., L
and j =1,...,2L — 1. Expanding the argument W, f(W) may be written as

! By definition of the Sylvester matrices in (5.9), there is a one-to-one correspon-
dence between the Sylvester subspace and the set of all FIR filters of length L,
which is sometimes called “FIR manifold” [95].



6.1 Natural Gradient in the Convolutive Case 83

FOW) = fwit,. . wl™, . wi 5 y)- (6.2)
The function f is defined on the set of all NL x M (2L — 1) matrices and its
gradient is computed in all directions 9/ Ow;™ independently. Let us consider a
given filter coefficient w,,, ;. This coeﬂi(:lent appears L times in the matrix W.
We denote the indexes of the elements of W that are equal to wp,,; by

{i171, - @i, ---,irjr} and the restriction of f to the parameter wy,,; by
flnm,i- To obtain the gradient with respect to wym,, we consider a small
deviation e around w1, i.e., around wph forall [ =1,...,L and write the

first-order development of the function f |nm7l
f|nm,l(wnm,l + E) é f( . awnm,l + g, wnm 1 + g, ), (63)

:f('“awnm,la . +Z€887{m (wnml)+0( 2)7 (64)

= Ik

= flam,i(Wnm,1) +€Z 367{m (Wnm1) +o(e?).  (6.5)

1kJk

By definition, the derivative O f|nm,i/OWnm i is so that

a nm,
f|nm,l(wnm,l + 5) = f|nm,l(wnm,l) +¢ 8{U| ll( nm, l) + 0( ) (66)

Combining the definition (6.6) and (6.5) directly yields

af|nm l - 6f
: (wnm,l) = . (wnm,l)~ (67)
awnm,l kZ:l 8wikjk

The restriction of J to the Sylvester subspace S is denoted by J|s. Equation

(6.7)
in the form of (5.9) from the sums of all redundant terms of aavJv

8]\5

Approximations of 7

The computation of aJvlvs is expensive: At each step, the whole matrix 59—‘\,{,
needs to be computed and made Sylvester by summing. For later refer-
ence, we denote by S the operator that transforms a general matrix into
a block Sylvester matrix, i.e., %Q‘f = S(&Hw 97 w)- This operator is formally de-
fined in (6.9). The choice of a partlcular Subset as reference to impose the
Sylvester constraint may be seen as an approximation of S. If this reference is
taken at the dth row, the approximation of S is denoted by S; and is defined
n (6.8) for a one-block matrix A = [al;;. If the reference is taken at the Lth
column, the approximation of S is denoted by S¥ and is defined in (6.10)

for a one-block matrix A = [a];;. The matrix operators Sy, S, and S are
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defined in (6.8), (6.9), and (6.10) for a one-block L x 2L — 1 matrix A with
coefficients a;:

QAdd ad(d+1) SR ad(d+L—1) 0 ... 0
0 .
Sa(A) £ | ; (6.8)
0
0 ce 0 Qdd Ce ad(d-{—L—l)

d=1
arg, a(L_l)L...alL 0... 0
staye |’ (6.10)
: 0
0 0 arr, ...a1rp

Proportionality principle

Without loss of generality, we can write the nth iteration of the minimiza-
tion as

W(n+1) = W(n) + AW(n), (6.11)

where W(n), AW (n) € S. The natural gradient requires that the learning
term AW (n) is “proportional” to the current separation matrix W(n) in the
sense that AW (n) can be written as

AW (n) = D(n) xs W(n) (6.12)

for a certain matrix D(n) and for a product xg to be defined (see for exam-
ple [22, 56]). To guarantee the consistency of the redundant Sylvester matrices,
this product must maintain AW (n) inside of the set S. Unfortunately, this
requirement is too restrictive if we work with the standard matrix product
A xsB = AB: For W(n) € S, AW(n) = D(n)W(n) belongs to S if and
only if each submatrix D;;(n) of D(n) is of the form D;;(n) = d;;I for a
scalar d;; € R. (This statement may be easily verified.) Therefore, we leave
the Sylvester matrices for a moment and work with the z-transform represen-
tation of the separation system.

6.1.2 From Matrices to z-Transforms

In this subsection, we introduce the notations and operators that are used to
manipulate z-transforms. We assume that the number of source signals equals
the number of microphones (N = M).
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z-transform spaces

In the following, single matrix subscripts denote a time index (for example
k in Ay), while two subscripts denote a channel index (for example n,m in
A,n). An element A € S is a collection of N x N filters of length L, with
filter weights aym i,k = 0..., L—1. Therefore, this element A is conveniently
represented with its multichannel z-transform, which is denoted by A and is
defined as

[I>

L—-1
INOED PP Ve (6.13)
k=0
ailk --- Q1M k
with Ay £ oo e RNV (6.14)
N1k --- ANN,k

for k = 0,...,L — 1. We denote the space of the multichannel single-sided
z-transforms by S. In addition, we introduce the space T of the multichannel
two-sided z-transforms, which can be written as? A(z) = Y ;2 Apz~F If
the support? of A is included in [~L + 1, L — 1], then A may be represented
as a matrix A whose submatrices A,,,, have the Toeplitz structure:

A11 - AlN
A= Do (6.15)
_ANl .. ANy
Anm,0 Anm,1 - Qpm,L—1
. Apm,—1 Anm,0 coe Onm L—2
with A, = . ) ) . (6.16)
Gnm,—L+1 Onm,—L+2 -+ OGnm,0

for n,m =1,...,N. The set of the block Toeplitz matrices of size NL x NL
is denoted by T'.

Linear operators

Tt is useful to introduce the operator [-]s that truncates a z-transform to a
support S C [-L+1,L —1]:

Blg(2) £ ) Brz " vzecC (6.17)
keS

2 Two-sided doubly infinite z-transforms are introduced for convenience but in
fact, only finite sums are involved in the following. Therefore, A(z) exists for any
nonzero complex z.

3 The support of A is the set of integers k for which Ay # 0. Again, note that A
(with a single subscript k) is different from A,,,, (with two subscripts n,m). The
former represents the time index while the latter represents the channel index.
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C* denotes the set of the nonzero complex numbers, i.e., C* = C\{0}. B]s (%)
is incorrectly? but commonly denoted by [E(z)] s- Any linear matrix operator
f, for example f(-) = tr(-), may be defined on T using the following definition:

A ) 2N f(Awz") VAET. (6.18)
k

According to (6.18), the Hermitian conjugate of A € T, which is denoted by
7H .
A | is defined as
Az 23 Al (6.19)
k

The binary operator *q
We define the binary operator x4 as

(A %4 B) (z) 2 [7A(2)B(z)] (6.20)

[07[’_1]
for an integer d € [0,L — 1]. This definition is not arbitrary. Consider for
example the case d = 0:

(A+B) (2) = [A(=)B(2)] - (6.21)

The operation A %o B truncates the convolution AB, which has length 2L — 1
in the time domain, such that any terms of order higher than L—1 are omitted.
The truncation assures that %4 is an internal operation in S. The integer d
allows for manipulation of acausal filters by varying the acausal length in the
convolution. This becomes more obvious when we reformulate %4 as®

(A *q B) (2) = P [sz(z)de(z)} L 1-d- (6.22)
Let us describe the operations that are realized in (6.22): zA(2) shifts A(z)
so that the first d terms are acausal. The product z?A(2)z?B(z) realizes the
convolution where the d first coefficients of A(z) and B(z) are treated as
acausal. The result is truncated on L coefficients and the term z~¢ shifts the
results back so that %4 is an internal operation in S.

Scalar product for 8 and T

Finally, we provide S with the scalar product (-, -) associated to the Euclidean
metric:

(A,B)£tr(ATB) VA,Be€S. (6.23)

4 Strictly speaking, for a given z, B(z) is a complex matrix, not a polynomial.
5 (6.22) is derived from the formula 2~ %[A(2)]p.q = [~ "A(2)] p+d,qtd-
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Examination of (-,-) with Sylvester matrices reveals that

0

B - (6.24)
where the operator [A]y returns the constant coefficient of A(z). We define

the scalar product on T as

L-1
mes (B - s LAB) - on([7'8] ) - L[o(2"B)]

AB) 2L [tr (KHE)] ) (6.25)
with the immediate property that
YA,.Be S (A,B) = (A,B). (6.26)

We now have the necessary tools to derive the natural gradient rigorously.

6.1.3 Self-Closed and Non-Self-Closed Natural Gradients

This subsection derives expressions of the natural gradient in terms of
z-transforms.

Self-closed natural gradient

Let us denote the z-transform of the adaptation term AW (n) in (6.11) by®
AW. We require that AW is “proportional” to W, in the sense that

dJDeS AW=Dx;W. (6.27)

Note that the proportionality term D is taken from the set S, not from T.
Let us consider the derivations in (6.5) again: The first-order development of
J(W(n + 1)) around W(n) with a small deviation AW (n) € S is given by

0J

J(W(n+1))=J(W(n))+ <8VV’ AW(n)> +o(JAW(n)|I?).  (6.28)

According to the property in (6.26), we can reformulate (6.28) using AW as
follows:

0J \ = S——
JW(n+1))=J(W(n))+ <(8VV) , AW> + o(||[AW]?), (6.29)
where (;—V‘(,) € S is the z-transform of the gradient %‘Q\f . According to (6.29),

the decrement J(W(n + 1)) — J(W(n)) may be written in the first order as

<((§9—V‘{,), AW>. Now, <(§—V‘{,),AW> can be rewritten using (6.24) as follows:

5 The iteration index n is dropped for the sake of brevity.
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(o)) =ee([G) 9] ). o
- 0
o ( (;«;)H [-DW ULLUL) . (6.31)

= Ltr< (;’v‘{])szDW] ) (6.32)
L 0

From (6.31) and (6.32), we have used the fact that the support of (g—v‘(,)
s [0,L — 1]. Therefore, we have <(%)7[X][(),L—1]> = <(66—) A> for all

W
A € T. Next, we recall that tr (ﬁ) = tr (ﬁ) for all A,B €
this property to (6.32) yields

<<08V{7> Aw> Ltr <zd<a‘3v'{f>wH>HD . (6.33)
- <z_d<aa{£]>WH7D>. (6.34)

Now we use the fact that D has support [0, L— 1], and thus we can reformulate

(6.34) as
(@) -{[ @], o) e

Let us choose D such that the decrement J(W(n)) — J(W(n + 1)) is maxi-
mized. According to (6.35), D must be proportional to — [z*d (;—J)W ,

T. Applying

(0,L—1]
that is,
— 0J \wH
D=- 4 == .
,ulz <8W>W ] (6.36)
[0,L—1]
for some p > 0. Substituting D from (6.36) into (6.27) yields
[ O0J \w=H —
AW = — — : .
i [(8W>W 1 W (6.37)
[dL—1-d |11

Since D is chosen in the same set S as the separation matrix W, the update
rule in (6.37) is said to be self-closed [95]. The self-closed update (6.37) de-
pends on the delay parameter d. The choice of this parameter will be discussed
in Sect. 6.1.6.
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Non-self-closed natural gradient

Let us weaken the requirement on D in (6.27): We now choose D from the
set T. In this case, we can see from (6.34) that D must be proportional to

z_d(é‘?—‘])WH. Substituting this optimal D into (6.27) yields

AW - — [(aav‘(f)w w] . (6.38)
[0,L-1]

We note that ( )W has support [-L + 1, L — 1] and may be represented
as a Toeplitz matrlx Moreover, the dependence on d vanishes in (6.38). Since
D is chosen from the set T, which is a superset of S, the update rule in (6.38)
is not self-closed.

6.1.4 From z-Transforms Back to the Time Domain

Now, the z-transform representation of the learning rules in (6.37) and (6.38)
raises the question of how these learning rules can be formulated in the time
domain in terms of Sylvester matrices. This section answers that question.

First, we consider the product ( 8W)WH whose computation appears in
both (6.37) and (6.38). The expression of this product in the time domain is
explained in the following remark:

(i) For any (G, W) € S x S, the coefficients of A = GW" €T are in the
first row and first column of all submatrices of A = GWT, as illustrated
n (6.39) in the case L = 3 and M = N = 1. These submatrices have a
Toeplitz structure as in (6.16) and we have GWT € T.

A = G w
wWo 0 0
apg ar az gog1 92 00 wy wo 0 (6.39)
a1 ag a1 | = 0gogr1g2 0 wa W1 Wo
a_z a_y ag 0 0 9091 92 0 wo wy
0 0 wao

The matrix G represents the gradient -2 dw and the matrix A represents the
product 7 9J WT

Second the computation of (6.37) and (6.38) involves postmultiplying by
W and truncating the result. Postmultiplication and truncation are explained
in remark (¢) for (6.38) and in remark (7ii) for (6.37).

(ii) For any (A,W) € T x S such that the support of A is included in
[-L + 1, L — 1], the coefficients of

B=[AW] [0,L—1]
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are in the Lth column of all submatrices of B = AW. This is illustrated
in (6.40), where the symbol ¢ represents a nonrelevant matrix entry:

B = [A W][O,Lq]
<><>b2<><> ap ai as wp W1 Wa 0 0 (640)
& O b1 & O = a_1 ap ai 0 wWo W1 Wa 0 '
<><>b0<><> a_2 -1 Ao 0 0 Wo W1 Wa

Note that B has no Sylvester structure.
(73i) For any (A, W) €T x S and for d € {0,..., L}, the coefficients of

D= [[K][fd,Lflfd]W] [0,L—1]

are in the (d 4+ 1)th row of all submatrix of D = AW, starting at the
(d + 1)th column. This is illustrated in (6.41) in the case d = 1:

D = [[A}[fdlzflfd] W][O,Lq]
SO O OO ag a1 ao wg wip wy 0 0 (6.41)
<>d0d1d2<> = Oa0a1 0w0w1w20 '
LR IR 0 0 ag 0 0 wywi we

The matrix B (resp. D) represents the natural gradient g—v‘{,WTW in the
non-self-closed case (resp. self-closed). The natural gradient is defined relative
to the set S or T where D is chosen. Combining remarks (i), (i7) and (iii)
from above, we can find the natural gradient adaptation weights in the matrix
S(ZLYWTW.

e First, consider the self-closed case D € S. There, the natural gradient in
(6.37) additionally depends on 0 < d < L. The natural gradient weights
are obtained in the (d + 1)th row of S({f—VJV)WTW as shown in (6.41) for
d = 1. This is expressed using S and S; (defined in (6.8)) as follows:

— 9J T

e Second, consider the case of the non-self-closed natural gradient, that is
D € T. The filter coefficients in (6.38) are obtained in the Lth column of
S(ZL)WTW as shown in (6.40). Therefore, consistency of the update may
be maintained using the operators S and S* defined in (6.9) and (6.10) as
follows:

AW = —puSt <S (;V‘{,) WTW> . (6.43)

Now, we can use the results of Sect. 5.3.2, where an expression of g—v‘{, X

WT(n)W (n) has been derived.
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6.1.5 Application to NG-SOS-BSS
Approzimating the updates in (6.42) and (6.43)

The detour around the z-transform shows how the Sylvester constraint should
be implemented. Unfortunately, the updates we have obtained in (6.42)
and (6.43) involve the computation of the Sylvester-space gradient S(;—V‘(,),
which is very demanding since the entire NL x M (2L — 1) matrix g—v{, needs
to be computed and made Sylvester by summing, as mentioned in Sect. 6.1.1.
Moreover, in the case of the Gaussian mutual-information cost function (5.34),
the gradient matrix é?—v‘{, involves the inversion of output correlation matrices
Ry, (kL) which may be badly conditioned especially for large filter length
L and colored input signals (such as speech). To remove this matrix inver-
sion and to benefit from the advantages of the natural gradient explained in
Sect. 5.3.2, we need to alter the updates in (6.42) and (6.43).

For the self-closed update, if we remove S(), then (6.42) becomes

aJ
AW = —pSg41 <8VVWTW> . (6.44)

In the case of the non-self-closed natural gradient, if we remove S(), then
(6.43) becomes

AW = — St (%‘CWTW) . (6.45)

In both cases, the natural gradient updates (6.44) and (6.45) may be summa-
rized using an approximation Sypprox Of S as

AW (1) = ~0) S 1 WH W), (6.46)

keeping in mind that only the dth row (Sapprox = Sq) or Lth column (Sapprox =
SL) of AW (n) has to be computed. It may be difficult to interpret the mean-
ing of these approximations. What we can say is that certain gradient terms
0.J /Ow™ which do not belong to the Sylvester subspace are involved in the
computation of the natural gradient. We note that the two typical choices S;
and S” shown in Fig. 6.1 are obtained as special cases. They were discussed
by Aichner et al. with regard to the self-closedness and to the causality of the

separation system [5].
Implementation of the NG-SOS-BSS updates

In the following we provide a precise implementation of the NG-SOS-BSS
algorithm (5.41). We first need estimates for the output cross correlations
E{yn(p)ym(p—7)} forn,m=1,...,Nand 7= —-L+1,...,L — 1. A usual
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(biased) estimation ry, .. - (p) of E{yn(p)ym(p — 7)} is obtained by averaging
over blocks of length L and can be written as

L—-1—7

Tyuimr(®) =Y Yn(p = K)ym(p — £ — 7). (6.47)
k=0

The estimator in (6.47) sums up L sample products y,, (p — £)ym (p —k —7) for
the delay 7 = 0 whereas the estimate consists in one sample product for 7 =
L—1, which results in a larger estimation variance. Since the estimates ry, 4, . -
are all normalized by the same power term ||y, |?, the estimates r,, ,, , for
a larger delay (7 close to L) are eventually weighted down with respect to
Ty ym,r 10r T close to 0. We note that other (unbiased) correlation estimators
may be considered, for example, by summing on the same number of sample
products Y, (p — K)ym(p — & — 7) for each delay 7. The estimator (6.47) has
the advantage to require the current output blocks on L points only.

The output signal power is regularized using a parameter a € [0,1] as
shown in (7.26) (more details in Sect. 7.1.2). We set

= _ Jryaya0(p) if 7y,y,.,0(p) > 20,
P 0(P) = { 1(a+ry,y.0p)  otherwise. (6.48)
We also need the L x @ projection matrix P[Lloxl? L] which is defined as
follows:

LxQ 1l itjelflo,lo+L—1 and i=j+Io,
[ UOJO‘“‘”LJ‘ B {0 otherwise. (6.49)

Self-closed update

Let us introduce the L x 1 output cross-correlation vectors r§,‘i)yp (p) for n,p =
1,...,N:

T
vl () = (ryuyp—d(P) - Tyyy L-1-a(D)) - (6.50)

Substituting Sgt+1 for Sapprox in (6.46) and reworking the NG-SOS-BSS equa-
tion (5.41), we can derive

K N
Aw,p = > Y P (me el (kL)) S o(BLD).| (6.51)

k=1 r=1
pFn

Different values of d yield different update rules.
Non-self-closed update

Let us introduce the 2L — 1 x 1 output cross-correlation vectors ry, y (p) for
np=1,...,N:
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T
r)’n)’p (p) = (Tynyw—L-i-l(p)v e ’Tynyva_l(p)) . (652)

Substituting ST for Supprox in (6.46) and reworking the NG-SOS-BSS equa-
tion (5.41), we can derive

AWy, = MZ Z P[LLX31L2L2 2 me *Ty,yp kL)) /Tvnyn, (kL).| (6.53)

=1 p=1
p#N

Partial BSS

The PBSS update (5.52) can be implemented similarly. In the case of M = 4,
N =2 for the self-closed update, this yields:

K d ~
AW = —p 1 e, PLEE (Wom <140y, (1)) /7y, ,,0(kL)
with Ky = {2,3,4} and K, = {1} for n=2,3,4.

(6.54)
The non-self-closed updates are given by:

AN HZ Z ]-:)IL><31L2L2 2] (me *Ty,yp (kL)) /Tynyn0(kL). | (6.55)
k=1peK,

As mentioned in Sect. 5.4, we consider not adapting the filters w,,,, for
n,m > 1 and n # m. We could experimentally observe that this does not
impair the separation performance, while reducing the amount of computa-
tion significantly.

The pseudocode for the self-closed BSS and PBSS algorithms is summa-
rized in Table 6.1. The non-self-closed algorithms are implemented similarly,
replacing rg,dﬂ?yp (p) withry y (p) in (6.52) at line 5 and using (6.53) and (6.55)
at lines 9 and 10, respectively.

6.1.6 Discussion: Which Natural Gradient is Best?

We have shown in Sect. 6.1.5 how the natural gradient can be implemented
in the time domain with filters of finite length L. Now, we are faced with the
choice of a particular type of natural gradient (self-closed or non-self-closed)
and of the parameter d € {0,..., L—1}. In this section, we attempt to discuss
the implications of this choice.

Self-closedness

Constraining the term D in (6.27) seems more restrictive in the set S than in
the larger set T'. Consequently, one could expect better performance with the
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Table 6.1. Pseudocode for the self-closed batch algorithms BSS and PBSS in (6.51)
and in (6.54). The non-self-closed algorithms are implemented similarly,
replacing rg,dn?yp (p) with ry,y,(p) in (6.52) at line 5 and using (6.53)
and (6.55) at lines 9 and 10, respectively

Input

x(kL) for k=1,..., K

Note: a higher frame rate can be used with x(kGL) for k =1,..., K,
choosing 3 so that L € {1,...,L}.

Parameters
de{0,...,L -1} acausal filter length (delay)
w step-size
«@ regularization parameter
Niter number of iterations
Wim (0) for n,m = 1,..., M initial separation filters
define Z = {(m, m)|m = LM}
1 {(@,2), (2, )} for BSS and M = 2
define J = { {(1,2),(1,3), (1,4), (2,1), (3, 1), (4,1)}  for PBSS and M — 4
Computations

1.|| for niter = 1,. .., Niter
ol for k=1,.... K
3.|| compute the output vector (using convolutions):
(kL) = W (niter — 1)x(kL)
for (n,m) € J:
compute the vector r“(fgym(/ﬂL) according to (6.47) and (6.50)
compute the power ry, 4, 0(kL) according to (6.47)
compute the regularized power 7y, .. 0(p) according to (6.48)
for (n,m) e JUT :
in the case of BSS compute Aw,,, according to (6.51):

AW, = f,iz Z PLEE (Wom(niver — 1) %10y (KL)) /7y,y,,0(KL)

k=1 p=1
pF#n

10. in the case of PBSS, compute Aw,,, according to (6.54):

AWnpy = —uz Z PLdXLQ_fd 11 wpm(niter —1) = rg,i)yp (kL)) /Tynyn,0(kL)

© 0N o

k=1 peK,
11. Wmn (niter) - Wmn(niter - 1) + Awrmn
Output
‘W (Niter) separation system

y(kL) for k =1,..., K output signals

non-self-closed update in (6.38) than with the self-closed update in (6.37). In
the literature on second-order statistics BSS algorithms for acoustic mixtures,
it is rarely clear whether the proposed updates are self-closed or not, hence the
difficulty of concluding anything from published works. Furthermore, because
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of the lack of knowledge on the convergence behavior of BSS algorithms, it is
not possible to make a theoretical statement about whether or not the self-
closedness improves performance. For this reason, we will compare self-closed
and non-self-closed updates experimentally in Sect. 6.3.

Special case d =0

Since d represents the number of coefficients which are treated as acausal in
the convolution 4, we call d the acausal length of the separation system. For
d = 0, the separation system adapted by (6.56) is called a “causal” system
while it is called “acausal” for d > 0. (Of course, the individual filters wi,,,
are still causal, that is, Wy, = 0 for all 1 < 0.)

Let us denote the separation system W (z) at iteration step n by W (z,n).
If we set d = 0 in (6.27), the adaptation can be written in the z-domain as

W(z,n+ 1) = W(z,n) + D(2,n) o W(z,n), (6.56)

where D(z,n) € S. The set S defines a group with the operation xo [95].
This implies several properties for the self-closed adaptation rule. (It should
be noted that the mixing/separation systems also have a group structure in
the two limit cases L =1 and L = +o0 [6, 25].)

The equivariance property guarantees a uniform convergence behavior for
any mixing matrix. Just as we considered the z-transform of the separa-
tion matrix W(z,n), we can consider the z-transform of the mixing ma-
trix H(z). The global system, truncated to its first L taps, is given by

C(z,n) = W(z,n) xg H(z). Since *q is associative, we have

AW (z,n) x H(2), = (D(z,n) x0 W(z,n)) x H(z), (6.57)
=D(z,n) x (W(z,n) o H(z)) , (6.58)
= D(z,n) x0 C(z,n). (6.59)
Therefore, postmultiplying (6.56) by H yields
C(z,n+1) = C(2,n) + D(2,n) % C(2,n). (6.60)

Note that D(z,n) depends only on the output signals. Therefore, the trajec-
tory of the global system C(z,n) in (6.60) depends only on the initial point
C(z,0) and on the realization of the source signals. This indicates that the
convergence of the algorithm depends on a particular mixing matrix H(z)
only through the initial C(z,0). Note that for d > 0, the operation x4 is not
associative: The equivariance property holds only for the self-closed update
and d = 0.

Another property of xq is that the adaptation of any given separation filter
does not interfere with the other filters.” To illustrate this property, let us con-
sider the two-source two-sensor case (M = N = 2). As can be seen from (6.50)

" It may be noticed that the SAD algorithm relies on this property.
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and (6.51) for d = 0, the computation of Awy,, for m = 1,2 involves the out-
put cross correlations E {y; (p)y2(p — 7)} only for positive delays 7 > 0. Simi-
larly, the computation of Aws,, includes only E {y;(p)y2(p — 7)} for negative
delays 7 < 0. Therefore, wy,, and wao,, for m = 1,2 are driven by different
cross-correlation terms, except the zero-lag correlation E {y1 (p)y=2(p)} that is
involved in both Awy,, and Away,,, for m = 1,2. By contrast, if d = L/2 or
with the non-self-closed update (6.53), Awy,, and Awsy,,,m = 1,2 have L
output cross-correlation terms in common.

Unfortunately, the utilization of self-closed update %o also has some re-
strictions. It can be shown that if D(z,n) € S, then according to [95] we
have

[W(z, n)]o =04 [D(z,n) x W(z, n)]o =0. (6.61)
Therefore, it is necessary to initialize the separation system W(z,n) with
[W(z,0)] o, 7 0in (6.56), since otherwise the first tap of the separation filters

would remain zero.® In practice, we initialize with unit responses, W(z, 0) = I.
The update (6.56) is inappropriate if we want to initialize the separation
system with a delay, for example with W (z,0) = Iz=%/2. Such an initialization
may be useful for example in the scenario depicted in Fig. 6.2b, where the
sources are placed on the same side of the microphone median plane. By
contrast, update (6.56) is appropriate when the sources are placed on both
sides of the median plane (Fig. 6.2a) [5]. In this scenario, the input signals
do not need to be delayed. In other words, a causal separation system can
perform the separation.

Note that in the two-source two-sensor scenario depicted in Fig. 6.2a, the
source signals s1(p) and s2(p) cannot be canceled at the outputs y;(p) and
ya(p), respectively, if the filters wq; and was do not delay the input signals
21(p) and z3(p). Therefore, the update (6.56) neutralizes the permutation
ambiguity. Conversely for d = L —1, the source signals s (p) and sa(p) cannot
be canceled at the outputs ys(p) and y;(p), respectively. In this case, the
updates (6.53) and (6.51) should converge to a permuted separating system.

How does the causality of the separation system affect the convergence of
the separation algorithm? A theoretical answer to this question does not yet
exist. Nevertheless, the influence of causality in source separation has been
reported in various contexts [34, 79]. For example, Douglas et al. showed in a
simplified analysis that separation algorithms exhibit worse performance for
acausal separation systems (i.e., for d > 0) [34].

8 According to (6.61), if the first tap of the initial separation system is nonzero,

then we have [W(z7 n)] , 7 0 for all n > 0. In a number of simulations, we could

observe that the initialization W(z,0) = I yields diagonal filters that are not
only nonzero but also minimum phased. Unfortunately, we have no explanation
to offer for this observation, that may be limited to the simulation setup and may
have no generality.
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(a)

Fig. 6.2. (a) The sources are apart from the microphones median plan and a causal
separation system is sufficient. (b) The sources are in the same half-plane
and an acausal separation system is necessary

6.2 Online Adaptation

The framework presented so far provides offline NG-SOS-BSS algorithms: It
is assumed that the observed input x(p) is available as a batch of T' samples
p=1,...,T. In reality, we have to cope with a continuously growing number
of samples x(1),x(2), ..., since new observations keep on coming during the
course of the iterations. Moreover, the source signals spectra are continuously
changing. The separation algorithm should be able to track these changes
online.

6.2.1 Block-Wise Batch Adaptation

It is not difficult to transform offline algorithms into online algorithms with
block-wise batch processing. After a block of L new samples have been re-
ceived, we store them in a batch buffer B that contains a certain number of last
input samples. This batch is processed offline for, say, Nije, iterations, until
new samples are processed. This general approach is summarized in Table 6.2.
Several variations on this scheme exist, see, e.g., [4, 73].

Different parameters need to be defined by the user for the implementation
of a block-wise batch algorithm:
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Table 6.2. Block-wise batch processing scheme with parameters K, Njte, > 1 and

B sothat 1 < 8L < (K + 1)L — 1. In W(n,p), the first argument n
denotes the iteration index and the second argument p denotes the time
index

Initialize W(0,0), set the frame counter to [ = 1.

Acquire SL new samples xm(p),m =1,..., M.

Store them in the batch buffer B and discard the oldest SL in-
put samples from B so that B = {zm(7),7 = p — (K — 1)L +
2,...,p, form=1,...,M}.

Set the last computed W (Niter, ([ — 1)5L) as initial separation sys-
tem: W(0,18L) = W (Niter, (I — 1)3L).

Run a batch BSS algorithm on B as described in Table 6.1 with
Niter iterations. This provides W (Niger, {BL).

The output samples might have been delivered at step 2.

(optional) Otherwise, compute the output samples that correspond to the

last GL input samples. If § = 1, this is simply y(IL) =
W (Nier, IL)x(IL).

4. Increment the frame counter, [ < [ + 1. Repeat from step 1.

The number of blocks K in the batch B is required. K is the number of
output correlation matrices Ryy (kL),k =1,..., K that should be jointly
diagonalized by the batch algorithm. K should increase the speed of con-
vergence. [t also increases the computational cost and the memory require-
ment.

The maximal number of iterations Njie, needs to be set. Nier influences
the speed of convergence and the computational cost.

The parameter (§ is set so that SL is an integer value. SL controls the
number of new input samples that are acquired before running the batch
algorithm on B. Since the number of new input samples must not be larger
than the buffer size, § is chosen so that 1 < SL < (K + 1)L — 1. A small
value of 3 entails better tracking capability, higher computational cost
and lower memory requirement. The number of batch runs per second is

fs/BL.

The influence that these parameters may have on the performance is examined
experimentally in Sect. 8.4.

6.2.2 Sample-Wise Adaptation

By setting GL = 1, the block-wise batch approach in Sect. 6.2.1 may be
performed for each new arriving input sample. This increases the amount of
computation? significantly. Fortunately for N = 2 and if we do not adapt the

9

Using the results of Sect. 8.2.2, one can estimate that the number of real opera-

tions (multiplications and additions) for a sample-by-sample-updated four-input
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diagonal filters, the block-wise approach may be approximated so that sample-
by-sample updating and rapid tracking become feasible. The following derives
this sample-by-sample version.

Let us start with the block-wise batch approach applied to the NG-SOS-
BSS generic formula (5.41) with the parameters L = K = Njger = 1:

W(p) =W(p—1) - pdiag™" (Ryy(p)) boff (Ryy(p)) W(p). (6.62)

To estimate the output correlation matrix Ry (p), the output vector y(p) =
W (p)x(p) is evaluated, i.e., the outputs on the past L samples y,(p — L +
1), .. yn(p) forn=1,..., N are evaluated. Note that among these L output
samples, L — 1 have already been evaluated from the previous iteration using
W(p—1), namely y,(p— L+1),...,y,(p—1). Assuming that the separation
system W (p) changes slowly, we only need to compute the last sample y,,(p),
for n = 1,...,N. Since y(p) contains L — 1 past samples, the underlying
approximation is in fact

W)~ Wp-1)=Wp-2)=...~W(({p—-L+1). (6.63)

This reduces the computational complexity to O(L), whereas the computa-
tion of y(p) with implementation of the convolution in the DFT-domain has
complexity O(Llog, L) (see Sect. 8.2).

Next, we consider the estimation of Ryy (p) itself. The simplest estimation
of boff (Ryy (p)) is obtained with the instantaneous estimate

boff (ﬁyy (p)) = boff (y(p)y " (p)) - (6.64)

The straightforward implementation of the product boff (y(p)y™(p)) has a
complexity of O(L?). Fortunately, since only the last sample y,(p) is new in
the output vector y, (p), we can exploit the fact that

yi(p)y;(p) e vi(p)y;(p — L +1)
Ry.y,(p) = ﬁgfLi;jMLil} (p—1)
yi(p — L+ 1)y; (p)
(6.65)
Rg,Li;jIXLfl] (p — 1) is constructed from Ry, y (p — 1) as follows: For an L x L

matrix A, B = AlL1xLe] is the Iy x Ly matrix that contains the same elements
as A in its first L1 rows and first Ly columns, i.e.,

B, =[Al; Yi=1,...,L1,j=1,...,Lo. (6.66)

two-output separation system with fs = 16 kHz sampling frequency, L = 256 and
K = Niger = 1 is about 15,000 MFLOPS (million of floating point operation per
second). This amount of computation may be realized by high-end digital signal
processors (DSP), however, for current consumer-device DSPs, the performance
typically ranges from 100 to 1,000 MFLOPS (see for example the specifications
of the TMS320C54x DSP family, available on www.ti.com).
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Consequently, the instantaneous estimation of boff (Ry. (p)) can be performed
with complexity O(L).

Finally, we have to implement the convolutions represented by the ma-
trix product boff (Ryy(p)) W(p). A straightforward realization using the
fast-Fourier transform (FFT) has a complexity of O(Llog, L). Fortunately,
there is a way to avoid this operation in the case of two sources (N =2).
Let us additionally constrain the diagonal filters to unit responses, that is,
Wy = 04,n = 1,2. Only the filters wio and wy; are adapted. We can easily
verify that the product boff (Ryy (p)) W(p) involves convolutions of the out-
put cross correlations with unit filters only. These convolutions do not need

to be carried out. Estimating the output power by 7,,.0(p) = ||y (p)||* and
using the regularization with parameter a € [0, 1] yields
Yn(p — d)ym(p

fyn Yn,0 (p)

for (n,m) € {(2,1),(2,1)} and with

i Syl if [lyn(p)[* > 2,
Pyyn,0(P) = 5 (lyn(@))? +@)  otherwise.

Interestingly, the constraint w,,,, = d4,n = 1,2 not only decreases the number
of filters w,,,,» to be adapted from 4 to 2 but also reduces the complexity from
O(Llog, L) to O(L). That is, the complexity of the sample-wise adapted NG-
SOS-BSS algorithm in (6.67) is the same as that of the NLMS algorithm (4.7).
Note that this does not hold for N > 2. However, the sample-wise adapted
NG-SOS-BSS algorithm in (6.67) may be extended to partial BSS (PBSS). In
the case N = 2, the sample-wise online algorithm is

yn(p — d)ym(p)

an(p + 1) = an(p) ¥ ) (668)

Pyyn,0(P)
for (n,m) € {(2,1),..., (M, 1),(1,2),..., (1, M)}
R [yn ()2 if [y (p)|I* > 2a,
th = .
With 7y, 0(p) { U(lya()|2 +a)  otherwise.

6.3 Experimental Results

This section investigates the performance of NG-SOS-BSS algorithms experi-
mentally. It was not possible to determine theoretically whether or not the self-
closed updates perform better than their non-self-closed counterparts. Based
on experimental results, this section decides which updates will be used in the
following of this book.
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Experimental conditions

The experiments are conducted with real recordings performed in a car cabin.
The experimental setup is described in Appendix A. The speech source signals
are emitted from the driver and codriver positions. For results in batch mode,
the recordings are carried out using artificial heads. Hence, the mixing sys-
tem may be reasonably assumed time-invariant. The 10-s driver and codriver
signals consist of male and female voices, respectively.

Parameter settings

The adaptation parameters o and p were optimized for maximum conver-
gence speed and stability. The artificial head recordings have been used to
tune the parameters p and « for the online algorithms, which we finally set to
1= a = 0.002 for all online NG-SOS-BSS algorithms. It should be mentioned
that setting p larger than 0.002 may lead to larger SIR improvement. However,
we observed that this leads to stability problems for certain source signals. We
have noticed that the choice of the parameters ;1 and o may be sensitive. When
one or several sources are silent, the output power may become very small.
In this case, in spite of the regularization scheme (7.26), the adaptation may
become unstable. (Recollect that (7.26) was derived from an analysis of a sim-
pler instantaneous decorrelation algorithm.) More robustness may be obtained
by choosing a larger «, at the price of a lower performance. Consequently, we
selected p1 = o = 0.002 as a trade-off between SIR improvement and stabil-
ity. The online algorithms have been tested on the same speech signals as in
Sect. 4.5, which are recordings of real speakers. Optionally, background noise
has been added to these recordings, as in Sect. 4.5. In all experiments, the
filter length is set to L = 256 and the sampling frequency is f; = 16 kHz. The
filters were initialized with W (z,0) = Iz=%, that is,

Wi = 4. (6.69)

The parameter settings are summarized in Table 6.4 for the four-element
compact array mounted in the rear-view mirror and in Table 6.3 for the two-
element distributed array mounted on the car ceiling.

Performance measure

The separation performance is quantified by the SIR improvement as defined
in Sects. 2.4.1 and 2.4.2.

6.3.1 Experiments with the Four-Element Compact Array
Mounted in the Rear-View Mirror

The four-element compact array mounted in the rear-view mirror is depicted

in Fig. A.2.
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Table 6.3. Online NG-SOS-BSS algorithm short reference table with the parameter
settings for the two-element distributed array mounted on the car ceiling
shown in Fig. A.3. The filter length is set to L = 256 at fs = 16 kHz

block-wise sample-wise
structure MIMO (see Fig. 5.1b) MIMO (see Fig. 5.1c)
unit diagonal filters
section 6.2.1 6.2.2
equation (6.51) and (6.53) (6.67)
step-size © = 0.002
a = 0.002

other parameters K == Niter =1

Table 6.4. Online NG-SOS-BSS algorithm short reference table with the parameter
settings for the four-element compact array mounted in the rear-view
mirror shown in Fig. A.2. The filter length is set to L = 256 at fs =

16 kHz
block-wise sample-wise
structure MIMO as in (5.53) (see Fig. 5.3c)
unit diagonal filters

section 6.2.1 6.2.2
equation (6.54) and (6.55) (6.68)
step-size ©=0.002

o = 0.002

other parameters K = 3 = Niter = 1

Batch Algorithms

The question of the self-closedness could not be answered theoretically. For
this reason, we will experimentally compare the self-closed with the non-self-
closed updates using batch algorithms.

Choice of d

A first parameter of interest is the acausal length d of the separation filters,
on which the self-closed update depends. To evaluate how the performance
depends on d, we evaluate the SIR improvement after 100 iterations of the
update in (6.51). Figure 6.3 shows the results. In the case of the four-element
compact array mounted in the rear-view mirror, it can be seen that the per-
formance slowly increases until it attains its maximum around d = 50. This
indicates that, even though the source microphone does not require an acausal
separation system, the best separation performance is obtained if we allow the
separation system to have an acausal part. This may be explained by the fact
that, as in the case of LCMV beamformers, the separation system identifies
ratios of acoustic transfer functions, which have a significant acausal part [50].



6.3 Experimental Results 103

20 T T T T T T L T I I
: 3 ' | | | compact array
15 ber70 Mo ,,,,,,, Pt pra— ,,,,,,,, ,,,,, - - - distributed array ||

0 25 50 75 100 125 150 175 200 225 250
d

Fig. 6.3. Performance of the self-closed block-wise update as a function of d. For
each value of d =0,..., L — 1, the SIR improvement after n = 100 itera-
tions is shown

For d > L/2, that is when the acausal part is longer than the causal part of
the separation system, the performance significantly decreases. As indicated
in Sect. 6.1.6, updates (6.51) and (6.53) should converge to a permuted sepa-
rating system for a separation system with a long acausal part. This is rather
ineffective with the initial separation system (6.69), since the input SIRs are
greater than zero (about 2dB). For our next experiments, we retain d = 0
and d = 50.

Comparison of self-closed and non-self-closed updates

We now apply PBSS algorithms (6.54) and (6.55) as described in Table 6.1.
For the sake of comparison, the results obtained using the two outermost mi-
crophones are also given. With speech signals, the wavelength of interest is
large relative to the aperture of the four-element compact array mounted in
the rear-view mirror. Hence, selecting the two outermost microphones may be
considered as a rough preprocessing to reduce the dimension of the observed
signals from M =4 to M =2 while preserving the aperture of the microphone
array. In this case, the adaptation is performed using the NG-SOS-BSS al-
gorithms (6.51) and (6.53). The results are shown in Fig. 6.4. The following
comments can be made.

e The self-closed update leads to the best results. The non-self-closed update
rule may lead to an early saturation and seems less stable. As observed
in [5], we find that the self-closed update rules are more robust. This might
be expected from the “good” properties of the self-closed update in the
case d = 0 given in Sect. 6.1.6.

e The performance near convergence is slightly better with an acausal length
of d = 50 taps, even if the source-microphone arrangement does not require
an acausal length, as depicted in Fig. 6.2a. This coincides with the results
shown in Fig. 6.3.

e We obtain the best performance using M = 4 microphones. In terms of
performance near convergence, the additional microphones bring about
4dB improvement relative to the performance for the two ou