


Third Edition

An Introduction to Object-
Oriented Programming



Third Edition

An Introduction to Object-
Oriented Programming

Timothy A. Budd
Oregon State University

Boston San Francisco New York
London Toronto Sydney Tokyo Singapore Madrid

Mexico City Munich Paris Cape Town Hong Kong Montreal



Executive Editor: Susan Hartman Sullivan
Associate Editor: Elinor Actipis
Executive Marketing Manager: Michael Hirsch
Production Supervisor: Diane Freed
Composition: Windfall Software, using ZzTEX
Copyeditor: Debbie Prato
Technical Art: LM Graphics
Proofreader: Brooke Albright
Text Design: Windfall Software
Cover Designer: Gina Hagen Kolenda
Cover Illustration: Susan Cyr
Design Manager: Gina Hagen
Prepress and Manufacturing: Caroline Fell

Access the latest information about Addison-Wesley titles from our World
Wide Web site: www.aw.xcom/cs

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and Addison-Wesley was aware of a trademark claim, the
designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included
for their instructional value. They have been tested with care, but are not
guaranteed for any particular purpose. The publisher does not offer any
warranties or representations, nor does it accept any liabilities with respect
to the programs or applications.

Library of Congress Cataloging-in-Publication Data

Budd, Timothy.
An introduction to object-oriented programming / Timothy A. Budd.—3rd ed.

p. cm.
Includes index.
ISBN 0-201-76031-2(pbk.)

http://www.aw.xcom/cs


Preface

When I began writing my first book on Smalltalk in 1983, I distinctly
remember thinking that I must write quickly so as to not miss the crest of
the object-oriented programming wave. Who would have thought that two
decades later object-oriented programming would still be going strong?
And what a long, strange trip it has been.

In the two decades that object-oriented programming has been studied, it
has become the dominant programming paradigm. In the process, it has
changed almost every facet of computer science. And yet I find that my
goal for the third edition of this book has remained unchanged from the
first. It is still my hope to impart to my students and, by extension, my
readers an understanding of object-oriented programming based on general
principles and not specific to any particular language.

Languages come and go in this field with dizzying rapidity. In the first
edition I discussed Objective-C and Apple’s version of Object Pascal, both
widely used at that time. Although both languages still exist, neither can at
present be considered a dominant language. (However, I talk about
Objective-C in the third edition because from a language point of view it
has many interesting and unique features.) Between the first edition and the
third many languages seem to have disappeared (such as Actor and Turing),
while others have come into existence (such as Java, Eiffel, and Self).
Many existing languages have acquired object extensions (such as
Common Lisp and Object Perl), and many have burst onto the scene for a
short while and then just as suddenly disappeared (for example, Sather and
Dylan). Then there is Beta, a language that hints at wonderful ideas behind
an incomprehensible syntax. Prediction is difficult, particularly about the
future. Will languages that are just now appearing, such as Ruby, have
staying power, or will they go the way of Dylan? What about C#? It is



difficult to imagine that any language with Microsoft behind it will fail to
be successful, but stranger things have happened. (Personally, I think that
C# will last because it presents a route for Visual Basic programmers to
finally progress to a better language, but that few Java or C++ programmers
will migrate to the new language. Time will tell if my powers of foresight
are any better than anybody else’s.)

For the present edition I have expanded the number of languages that I
use for examples, but I have eliminated many long narratives on a single
language. Descriptions of techniques are often given in the form of tables
or shorter explanations. As with the first two editions, I make no pretenses
of being a reference manual for any language, and students producing
anything more than trivial programs in any of the languages I discuss
would do well to avail themselves of a language-specific source.

Nevertheless, in this third edition I have attempted to retain the overall
structure I used in the first two editions. This can be described as a series of
themes.

I. Introduction and Design. Chapter 1 introduces in an informal setting the
basic concepts of object-oriented programming. Chapter 2 continues this by
discussing the tools used by computer scientists to deal with complexity and
how object-oriented techniques fit into this framework. Chapter 3
introduces the principle of designing by responsibility. These three chapters
are fundamental, and their study should not be given short shrift. In
particular, I strongly encourage at least one, if not several, group exercises
in which CRC cards, introduced in Chapter 3, are used in problem solving.
The manipulation of physical index cards in a group setting is one of the
best techniques I have encountered for developing and reinforcing the
notions of behavior, responsibility, and encapsulation.

In the past decade the field of object-oriented design has expanded
considerably. And for many readers Chapter 3 may either be too little or too
much—too much if they already have extensive experience with object-
oriented modeling languages and design, and too little if they have never
heard of these topics. Nevertheless, I have tried to strike a balance. I have
continued to discuss responsibility-driven design, although it is now only
one of many alternative object-oriented design techniques, because I think
it is the simplest approach for beginning students to understand.



II. Classes, Methods, and Messages. Chapters 4 and 5 introduce the basic
syntax used by our example languages (Smalltalk, C++, Java, Objective-C,
Object and Delphi Pascal, and several others) to create classes and methods
and to send messages. Chapter 4 concentrates on the compile-time features
(classes and methods), and Chapter 5 describes the dynamic aspects
(creating objects and sending messages). Chapters 6 and 7 reinforce these
ideas with the first of a series of case studies—example programs
developed in an object-oriented fashion and illustrating various features of
the technique.

III. Inheritance and Software Reuse. Although inheritance is introduced
in Chapter 1, it does not play a prominent role again until Chapter 8.
Inheritance and polymorphic substitution is discussed as a primary
technique for software reuse. The case study in Chapter 9, written in the
newly introduced language C#, both illustrates the application of
inheritance and the use of a standard API (application programming
interface).
IV. Inheritance in More Detail. Chapters 10 through 13 delve into the
concepts of inheritance and substitution in greater detail. The introduction
of inheritance into a programming language has an impact on almost every
other aspect of the language, and this impact is often not initially obvious to
the student (or programmer). Chapter 10 discusses the sometimes subtle
distinction between subclasses and subtypes. Chapter 11 investigates how
different languages approach the use of static and dynamic features.
Chapter 12 examines some of the surprising implications that result from
the introduction of inheritance and polymorphic substitution into a
language. Chapter 13 discusses the often misunderstood topic of multiple
inheritance.

V. Polymorphism. Much of the power of object-oriented programming
comes through the application of various forms of polymorphism. Chapter
14 introduces the basic mechanisms used for attaining polymorphism in
object-oriented languages and is followed by four chapters that explore the
principal forms of polymorphism in great detail.

VI. Applications of Polymorphism. Chapter 19 examines one of the most
common applications of polymorphism, the development of classes for



common data structure abstractions. Chapter 20 is a case study that
examines a recent addition to the language C++, the STL. Chapter 21
presents the idea of frameworks, a popular and very successful approach to
software reuse that builds on the mechanisms provided by polymorphism.
Chapter 22 describes one well-known framework, the Java Abstract
Windowing Toolkit.

VII. Object Interactions. Starting in Chapter 23 we move up a level of
abstraction and consider classes in more general relationships and not just
the parent/child relationship. Chapter 23 discusses the ways two or more
classes (or objects) can interact with each other. Many of these interactions
have been captured and defined in a formalism called a design pattern. The
concept of design patterns and a description of the most common design
patterns are presented in Chapter 24.

VIII. Advanced Topics. The final three chapters discuss topics that can be
considered advanced for an introductory text such as this one. These
include the idea of reflection and introspection (Chapter 25), network
programming (Chapter 26), and the implementation techniques used in the
execution of object-oriented languages (Chapter 27).

In the ten-week course I teach at Oregon State University I devote
approximately one week to each of the major areas just described. Students
in this course are upper-division undergraduate and first-year graduate
students. In conjunction with the lectures, students work on moderate-sized
projects, using an object-oriented language of their choice, and the term
ends with student presentations of project designs and outcomes.

Any attempt to force a complex and multifaceted topic into a linear
narrative will run into issues of ordering, and this book is no exception. In
general my approach has been to introduce an idea as early as possible and
then in later chapters explore the idea in more detail, bringing out aspects or
issues that might not be obvious on first encounter. Despite my opinion that
my ordering makes sense, I am aware that others may find it convenient to
select a different approach. In particular, some instructors find it useful to
bring forward some of the software engineering issues that I postpone until
Chapter 23, thereby bringing them closer to the design chapter (Chapter 3).
Similarly, while multiple inheritance is a form of inheritance and therefore
rightly belongs in Section IV, the features that make multiple inheritance



difficult to work with derive from interactions with polymorphism and
hence might make more sense after students have had time to read Section
V. For these reasons and many more, instructors should feel free to adapt
the material and the order of presentation to their own particular
circumstance.

Assumed Background ⊡
I have presented the material in this book assuming only that the reader is
knowledgeable in some conventional programming language, such as
Pascal or C. In my courses, the material has been used successfully at the
upper-division (junior or senior) undergraduate level and at the first-year
graduate level. In some cases (particularly in the last quarter of the book),
further knowledge may be helpful but is not assumed. For example, a
student who has taken a course in software engineering may find some of
the material in Chapter 23 more relevant, and one who has had a course in
compiler construction will find Chapter 27 more intelligible. Both chapters
can be simplified in presentation if necessary.

Many sections have been marked with an asterisk (*). These represent
optional material. Such sections may be interesting but are not central to the
ideas being presented. Often they cover a topic that is relevant only to a
particular object-oriented language and not to object-oriented programming
in general. This material can be included or omitted at the discretion of the
instructor, depending on the interests and backgrounds of the students and
the instructor or on the dictates of time.

Obtaining the Source ⊡
Source code for the case studies presented in the book can be accessed via
the mechanism of anonymous ftp from the machine ftp.cs.orst.edu in the
directory /pub/budd/oopintro. This directory will also be used to maintain a
number of other items, such as an errata list, study questions for each
chapter, and copies of the overhead slides I use in my course. This
information can also be accessed via the World Wide Web from my
personal home pages at http://www.cs.orst.edu/~budd. Requests for

ftp://ftp.cs.orst.edu/
http://www.cs.orst.edu/~budd


further information can be forwarded to the electronic mail address
budd@cs.orst.edu or to Professor Timothy A. Budd, Department of
Computer Science, Oregon State University, Corvallis, Oregon 97331.

Acknowledgments ⊡
I am certainly grateful to the 65 students in my course, CS589, at Oregon
State University, who in the fall of 1989 suffered through the development
of the first draft of the first edition of this text. They received one chapter at
a time, often only a day or two before I lectured on the material. Their
patience in this regard is appreciated. Their specific comments, corrections,
critiques, and criticisms were most helpful. In particular, I wish to
acknowledge the detailed comments provided by Thomas Amoth, Kim
Drongesen, Frank Griswold, Rajeev Pandey, and Phil Ruder.

The solitaire game developed in Chapter 9 was inspired by the project
completed by Kim Drongesen, and the billiards game in Chapter 7 was
based on the project by Guenter Mamier and Dietrich Wettschereck. In both
cases, however, the code itself has been entirely rewritten and is my own.
In fact, in both cases my code is considerably stripped down for the
purposes of exposition and is in no way comparable to the greatly superior
projects completed by those students.

For an author, it is always useful to have others provide an independent
perspective on one’s work, and I admit to gaining useful insights into the
first edition from a study guide prepared by Arina Brintz, Louise Leenen,
Tommie Meyer, Helene Rosenblatt, and Anel Viljoen of the Department of
Computer Science and Information Systems at the University of South
Africa in Pretoria.

Countless people have provided assistance by pointing out errors or
omissions in the first two editions and by offering improvements. I am
grateful to them all and sorry that I cannot list them by name.

I benefitted greatly from comments provided by several readers of an
early manuscript draft of this third edition. These reviewers included Ali
Behforooz (Towson University), Hang Lau (Concordia University,
Canada), Blayne Mayfield (Oklahoma State University), Robert Morse
(University of Evansville), Roberto Ordóñez (Andrews University), Shon
Vick (University of Maryland, Baltimore County), and Conrad Weisert



(Information Disciplines, Inc.). I have made extensive revisions in response
to their comments, and therefore any remaining errors are mine alone and
no reflection on their efforts.

For the third edition my capable, competent, and patient editor at
Addison-Wesley has been Susan Hartman-Sullivan, assisted by Elinor
Actipis. Final copy was coordinated by Diane Freed. Layout and
production were performed by Paul Anagnostopoulos and Jacqui Scarlott of
Windfall Software. I have worked with Paul and Jacqui on several books
now, and I’m continually amazed by the results they are able to achieve
from my meager words.



Contents

Preface

1 ⊡ Thinking Object-Oriented

1.1 Why Is OOP Popular?
1.2 Language and Thought

1.2.1 Eskimos and snow
1.2.2 An example from computer languages
1.2.3 Church’s conjecture and the Whorf hypothesis

1.3 A New Paradigm
1.4 A Way of Viewing the World

1.4.1 Agents and communities
1.4.2 Messages and methods
1.4.3 Responsibilities
1.4.4 Classes and instances
1.4.5 Class hierarchies—inheritance
1.4.6 Method binding and overriding
1.4.7 Summary of object-oriented concepts

1.5 Computation as Simulation
1.5.1 The power of metaphor



1.5.2 Avoiding infinite regression

1.6 A Brief History
Summary
Further Reading
Self-Study Questions
Exercises

2 ⊡ Abstraction

2.1 Layers of Abstraction
2.2 Other Forms of Abstraction

2.2.1 Division into parts
2.2.2 Encapsulation and interchangeability
2.2.3 Interface and implementation
2.2.4 The service view
2.2.5 Composition
2.2.6 Layers of specialization
2.2.7 Patterns

2.3 A Short History of Abstraction Mechanisms
2.3.1 Assembly language
2.3.2 Procedures
2.3.3 Modules
2.3.4 Abstract data types
2.3.5 A service-centered view
2.3.6 Messages, inheritance, and polymorphism

Summary
Further Information



Self-Study Questions
Exercises

3 ⊡ Object-Oriented Design

3.1 Responsibility Implies Noninterference
3.2 Programming in the Small and in the Large

3.3 Why Begin with Behavior?
3.4 A Case Study in RDD

3.4.1 The Interactive Intelligent Kitchen Helper
3.4.2 Working through scenarios
3.4.3 Identification of components

3.5 CRC Cards—Recording Responsibility
3.5.1 Give components a physical representation
3.5.2 The what/who cycle
3.5.3 Documentation

3.6 Components and Behavior
3.6.1 Postponing decisions
3.6.2 Preparing for change
3.6.3 Continuing the scenario
3.6.4 Interaction diagrams

3.7 Software Components
3.7.1 Behavior and state
3.7.2 Instances and classes
3.7.3 Coupling and cohesion
3.7.4 Interface and implementation—Parnas’s principles

3.8 Formalize the Interface



3.8.1 Coming up with names
3.9 Designing the Representation
3.10 Implementing Components
3.11 Integration of Components
3.12 Maintenance and Evolution

Summary
Further Reading
Self-Study Questions
Exercises

4 ⊡ Classes and Methods

4.1 Encapsulation
4.2 Class Definitions

4.2.1 C++, Java, and C#
4.2.2 Apple Object Pascal and Delphi Pascal
4.2.3 Smalltalk
4.2.4 Other languages

4.3 Methods
4.3.1 Order of methods in a class declaration
4.3.2 Constant or immutable data fields
4.3.3 Separating definition and implementation

4.4 Variations on Class Themes
4.4.1 Methods without classes in Oberon
4.4.2 Interfaces
4.4.3 Properties
4.4.4 Forward definitions



4.4.5 Inner or nested classes
4.4.6 Class data fields
4.4.7 Classes as objects

Summary

Further Reading

Self-Study Questions

Exercises

5 ⊡ Messages, Instances, and Initialization

5.1 Message-Passing Syntax
5.2 Statically and Dynamically Typed Languages
5.3 Accessing the Receiver from within a Method
5.4 Object Creation

5.4.1 Creation of arrays of objects
5.5 Pointers and Memory Allocation

5.5.1 Memory recovery
5.6 Constructors

5.6.1 The orthodox canonical class form
5.6.2 Constant values

5.7 Destructors and Finalizers
5.8 Metaclasses in Smalltalk
Summary
Further Reading
Self-Study Questions
Exercises



6 ⊡ A Case Study: The Eight-Queens Puzzle

6.1 The Eight-Queens Puzzle
6.1.1 Creating objects that find their own solution

6.2 Using Generators
6.2.1 Initialization
6.2.2 Finding a solution
6.2.3 Advancing to the next position

6.3 The Eight-Queens Puzzle in Several Languages
6.3.1 The eight-queens puzzle in Object Pascal
6.3.2 The eight-queens puzzle in C++
6.3.3 The eight-queens puzzle in Java
6.3.4 The eight-queens puzzle in Objective-C
6.3.5 The eight-queens puzzle in Smalltalk
6.3.6 The eight-queens puzzle in Ruby

Summary

Further Reading

Self-Study Questions

Exercises

7 ⊡ A Case Study: A Billiards Game

7.1 The Elements of Billiards
7.2 Graphical Objects

7.2.1 The wall graphical object
7.2.2 The hole graphical object
7.2.3 The ball graphical object

7.3 The Main Program



7.4 Using Inheritance
Summary
Further Information
Self-Study Questions
Exercises

8 ⊡ Inheritance and Substitution

8.1 An Intuitive Description of Inheritance
8.1.1 The is-a test
8.1.2 Reasons to use inheritance

8.2 Inheritance in Various Languages

8.3 Subclass, Subtype, and Substitution
8.3.1 Substitution and strong typing

8.4 Overriding and Virtual Methods

8.5 Interfaces and Abstract Classes
8.6 Forms of Inheritance

8.6.1 Subclassing for specialization (subtyping)
8.6.2 Subclassing for specification
8.6.3 Subclassing for construction
8.6.4 Subclassing for generalization
8.6.5 Subclassing for extension
8.6.6 Subclassing for limitation
8.6.7 Subclassing for variance
8.6.8 Subclassing for combination
8.6.9 Summary of the forms of inheritance

8.7 Variations on Inheritance



8.7.1 Anonymous classes in Java
8.7.2 Inheritance and constructors
8.7.3 Virtual destructors

8.8 The Benefits of Inheritance
8.8.1 Software reusability
8.8.2 Code sharing
8.8.3 Consistency of interface
8.8.4 Software components
8.8.5 Rapid prototyping
8.8.6 Polymorphism and frameworks
8.8.7 Information hiding

8.9 The Costs of Inheritance
8.9.1 Execution speed
8.9.2 Program size
8.9.3 Message-passing overhead
8.9.4 Program complexity

Summary

Further Reading

Self-Study Questions

Exercises

9 ⊡ A Case Study—A Card Game

9.1 The Class PlayingCard
9.2 Data and View Classes
9.3 The Game



9.4 Card Piles—Inheritance in Action
9.4.1 The default card pile
9.4.2 The suit piles
9.4.3 The deck pile
9.4.4 The discard pile
9.4.5 The tableau piles

9.5 Playing the Polymorphic Game

9.6 The Graphical User Interface
Summary
Further Reading
Self-Study Questions
Exercises

10 ⊡ Subclasses and Subtypes

10.1 Substitutability
10.2 Subtypes
10.3 The Substitutability Paradox

10.3.1 Is this a problem?
10.4 Subclassing for Construction

10.4.1 Private inheritance in C++
10.5 Dynamically Typed Languages
10.6 Pre- and Postconditions
10.7 Refinement Semantics

Summary

Further Reading

Self-Study Questions



Exercises

11 ⊡ Static and Dynamic Behavior

11.1 Static versus Dynamic Typing
11.2 Static and Dynamic Classes

11.2.1 Run-time type determination
11.2.2 Down casting (reverse polymorphism)
11.2.3 Run-time testing without language support
11.2.4 Testing message understanding

11.3 Static versus Dynamic Method Binding

Summary

Further Reading

Self-Study Questions

Exercises

12 ⊡ Implications of Substitution

12.1 Memory Layout
12.1.1 Minimum static space allocation
12.1.2 Maximum static space allocation
12.1.3 Dynamic memory allocation

12.2 Assignment
12.2.1 Assignment in C++

12.3 Copies and Clones
12.3.1 Copies in Smalltalk and Objective-C
12.3.2 Copy constructors in C++
12.3.3 Cloning in Java



12.4 Equality
12.4.1 Equality and identity
12.4.2 The paradoxes of equality testing

Summary

Further Reading

Self-Study Questions

Exercises

13 ⊡ Multiple Inheritance

13.1 Inheritance as Categorization
13.1.1 Incomparable complex numbers

13.2 Problems Arising from Multiple Inheritance
13.2.1 Name ambiguity
13.2.2 Impact on substitutability
13.2.3 Redefinition in Eiffel
13.2.4 Resolution by class ordering in CLOS

13.3 Multiple Inheritance of Interfaces
13.3.1 Mixins in CLOS

13.4 Inheritance from Common Ancestors
13.4.1 Constructors and multiple inheritance

13.5 Inner Classes

Summary

Further Reading

Self-Study Questions

Exercises



14 ⊡ Polymorphism and Software Reuse

14.1 Polymorphism in Programming Languages
14.1.1 Many tools, one goal

14.2 Mechanisms for Software Reuse
14.2.1 Using composition
14.2.2 Using inheritance
14.2.3 Composition and inheritance contrasted

14.3 Efficiency and Polymorphism
14.4 Will Widespread Software Reuse Become Reality?

Summary

Further Information

Self-Study Questions

Exercises

15 ⊡ Overloading

15.1 Type Signatures and Scopes
15.2 Overloading Based on Scopes
15.3 Overloading Based on Type Signatures

15.3.1 Coercion and conversion
15.4 Redefinition
15.5 Polyadicity

15.5.1 Optional parameters
15.6 Multi-Methods

15.6.1 Overloading Based on Values

Summary



Further Information

Self-Study Questions

Exercises

16 ⊡ Overriding

16.1 Notating Overriding
16.2 Replacement versus Refinement

16.2.1 Replacement in Smalltalk
16.2.2 Refinement in Beta
16.2.3 Refinement and the subclass/subtype distinction
16.2.4 Wrappers in CLOS

16.3 Deferred Methods
16.4 Overriding versus Shadowing
16.5 Covariance and Contravariance
16.6 Variations on Overriding

16.6.1 Final methods in Java
16.6.2 Versioning in C#

Summary

Further Information

Self-Study Questions

Exercises

17 ⊡ The Polymorphic Variable

17.1 Simple Polymorphic Variables
17.2 The Receiver Variable

17.2.1 The role of the polymorphic variable in frameworks



17.2.2 Endpoint comparisons in Smalltalk
17.2.3 Self and super

17.3 Downcasting
17.4 Pure Polymorphism

Summary

Further Information

Self-Study Questions

Exercises

18 ⊡ Generics

18.1 Template Functions
18.2 Template Classes

18.2.1 Bounded genericity
18.3 Inheritance in Template Arguments

18.3.1 Inheritance and arrays
18.4 Case Study—Combining Separate Classes

Summary

Further Reading

Self-Study Questions

Exercises

19 ⊡ Container Classes

19.1 Containers in Dynamically Typed Languages
19.1.1 Containers in Smalltalk-80

19.2 Containers in Statically Typed Languages
19.2.1 The tension between typing and reuse



19.2.2 Substitution and downcasting
19.2.3 Using substitution and overriding
19.2.4 Parameterized classes

19.3 Restricting Element Types
19.4 Element Traversal

19.4.1 Iterator loops
19.4.2 The visitor approach

Summary

Further Reading

Self-Study Questions

Exercises

20 ⊡ A Case Study: The STL

20.1 Iterators
20.2 Function Objects
20.3 Example Program—An Inventory System
20.4 Example Program—Graphs

20.4.1 Shortest path algorithm
20.4.2 Developing the data structures

20.5 A Concordance
20.6 The Future of OOP

Summary

Further Reading

Self-Study Questions

Exercises



21 ⊡ Frameworks

21.1 Reuse and Specialization
21.1.1 High- and low-level abstractions
21.1.2 An upside-down library

21.2 Example Frameworks
21.2.1 The Java Applet API
21.2.2 A Simulation Framework
21.2.3 An event-driven simulation framework

Summary

Further Reading

Self-Study Questions

Exercises

22 ⊡ An Example Framework: The AWT and Swing

22.1 The AWT Class Hierarchy
22.2 The Layout Manager
22.3 Listeners

22.3.1 Adapter classes
22.4 User Interface Components
22.5 Case Study: A Color Display
22.6 The Swing Component Library

22.6.1 Import libraries
22.6.2 Different components
22.6.3 Different paint protocol
22.6.4 Adding components to a window

Summary



Further Reading

Self-Study Questions

Exercises

23 ⊡ Object Interconnections

23.1 Coupling and Cohesion
23.1.1 Varieties of coupling
23.1.2 Varieties of cohesion
23.1.3 The Law of Demeter
23.1.4 Class-level versus object-level visibility
23.1.5 Active values

23.2 Subclass Clients and User Clients
23.3 Control of Access and Visibility

23.3.1 Visibility in Smalltalk
23.3.2 Visibility in Object Pascal
23.3.3 Visibility in C++
23.3.4 Visibility in Java
23.3.5 Visibility in Objective-C

23.4 Intentional Dependency

Summary

Further Reading

Self-Study Questions

Exercises

24 ⊡ Design Patterns

24.1 Controlling Information Flow



24.2 Describing Patterns
24.3 Iterator
24.4 Software Factory
24.5 Strategy
24.6 Singleton
24.7 Composite
24.8 Decorator
24.9 The Double-Dispatching Pattern
24.10 Flyweight
24.11 Proxy
24.12 Facade
24.13 Observer

Summary

Further Reading

Self-Study Questions

Exercises

25 ⊡ Reflection and Introspection

25.1 Mechanisms for Understanding
25.1.1 Class objects
25.1.2 The class name as string
25.1.3 Testing the class of an object
25.1.4 Creating an instance from a class
25.1.5 Testing if an object understands a message
25.1.6 Class behavior

25.2 Methods as Objects



25.3 Mechanisms for Modification
25.3.1 Method editing in Smalltalk
25.3.2 Dynamic class loading in Java

25.4 Metaclasses

Summary

Further Reading

Self-Study Questions

26 ⊡ Distributed Objects

26.1 Addresses, Ports, and Sockets
26.2 A Simple Client/Server Program
26.3 Multiple Clients
26.4 Transmitting Objects over a Network
26.5 Providing More Complexity

Summary

Further Reading

Self-Study Questions

Exercises

27 ⊡ Implementation

27.1 Compilers and Interpreters
27.2 The Receiver as Argument
27.3 Inherited Methods

27.3.1 The problem of multiple inheritance
27.3.2 The slicing problem

27.4 Overridden Methods



27.4.1 Eliminating virtual calls and in-lining
27.5 Name Encoding
27.6 Dispatch Tables

27.6.1 A method cache
27.7 Bytecode Interpreters
27.8 Just-in-Time Compilation

Summary

Further Reading

Self-Study Questions

Exercises

A ⊡ Source for the Eight-Queens Puzzle

A.1 Eight-Queens in Apple Object Pascal
A.2 Eight-Queens in C++
A.3 Eight-Queens in Java
A.4 Eight-Queens in Objective-C
A.5 Eight-Queens in Ruby
A.6 Eight-Queens in Smalltalk

B ⊡ Source for the Billiards Game

B.1 The Version without Inheritance
B.2 The Version with Inheritance

C ⊡ Source for the Solitaire Game

Glossary

References



Index



Third Edition

An Introduction to Object-
Oriented Programming



Chapter 1

Thinking Object-Oriented

Although the fundamental features of what we now call object-oriented
programming were invented in the 1960s, object-oriented languages really
caught the attention of the computing public-at-large in the 1980s. Two
seminal events were the publication of a widely read issue of Byte (August
1981) that described the programming language Smalltalk, and the first
international conference on object-oriented programming languages and
applications, held in Portland, Oregon in 1986.

Now, almost 20 years later, the situation noted in the first edition of this
book (1991) still exists.

Object-oriented programming (OOP) has become exceedingly
popular in the past few years. Software producers rush to release
object-oriented versions of their products. Countless books and
special issues of academic and trade journals have appeared on the
subject. Students strive to list “experience in object-oriented
programming” on their resumes. To judge from this frantic activity,
object-oriented programming is being greeted with even more
enthusiasm than we saw heralding earlier revolutionary ideas, such
as “structured programming” or “expert systems.”

My intent in these first two chapters is to investigate and explain the
basic principles of object-oriented programming and, in so doing to
illustrate the following two propositions.

OOP is a revolutionary idea, totally unlike anything that has come
before in programming.



OOP is an evolutionary step, following naturally on the heels of
earlier programming abstractions.

1.1 ⊡ Why Is OOP Popular?
There are a number of important reasons why in the past two decades
object-oriented programming has become the dominant programming
paradigm. Object-oriented programming scales very well, from the most
trivial of problems to the most complex tasks. It provides a form of
abstraction that resonates with techniques people use to solve problems in
their everyday lives. And for most of the dominant object-oriented
languages there are an increasingly large number of libraries that assist in
the development of applications for many domains.

Object-oriented programming is just the latest in a long series of
solutions that has been proposed to help solve the “software crisis.” At
heart, the software crisis simply means that our imaginations, and the tasks
we would like to solve with the help of computers, almost always outstrip
our abilities.

But while object-oriented techniques do facilitate the creation of
complex software systems, it is important to remember that OOP is not a
panacea. Programming a computer is still one of the most difficult tasks
people undertake. Becoming proficient in programming requires talent,
creativity, intelligence, logic, the ability to build and use abstractions, and
experience—even when the best of tools are available.

I suspect another reason for the particular popularity of languages such
as C++ and Delphi (as opposed to languages such as Smalltalk and Beta) is
that managers and programmers alike hope that a C or Pascal programmer
can be changed into a C++ or Delphi programmer with no more effort than
the addition of a few characters to their job title. Unfortunately, this hope is
a long way from being realized. Object-oriented programming is a new way
of thinking about what it means to compute, about how we can structure
information and communicate our intentions both to each other and to the
machine. To become proficient in object-oriented techniques requires a
complete reevaluation of traditional software development.



1.2 ⊡ Language and Thought
In his book Language, Thought & Reality, Benjamin Lee Whorf discusses
the ideas of linguist Edward Sapir.

Human beings do not live in the objective world alone, nor alone in
the world of social activity as ordinarily understood, but are very
much at the mercy of the particular language which has become the
medium of expression for their society. It is quite an illusion to
imagine that one adjusts to reality essentially without the use of
language and that language is merely an incidental means of
solving specific problems of communication or reflection. The fact
of the matter is that the “real world” is to a large extent
unconsciously built up on the language habits of the group . . . . We
see and hear and otherwise experience very largely as we do
because the language habits of our community predispose certain
choices of interpretation.

This quote emphasizes the fact that the languages we speak directly
influence the way in which we view the world. This is true not only for
natural languages, such as the kind studied by early-twentieth-century
American linguists Edward Sapir and Benjamin Lee Whorf, but also for
artificial languages, such as those we use in programming computers.

1.2.1 Eskimos and snow
An almost universally cited example of the phenomenon of language
influencing thought, although also perhaps an erroneous one, is that Eskimo
(or Inuit) languages have different words to describe different types of snow
—wet, fluffy, heavy, icy, and so on. This is not surprising. Any community
with common interests will naturally develop a specialized vocabulary for
concepts they wish to discuss. (Meteorologists, despite working in English,
face similar problems of communication and have also developed their own
extensive vocabulary.)

What is important is to not overgeneralize the conclusion we can draw
from this simple observation. It is not that the Eskimo eye is in any



significant respect different from my own or that Eskimos can see things I
cannot perceive. With time and training I could do just as well at
differentiating types of snow. But the language I speak (English) does not
force me into doing so, and so it is not natural to me. Thus, a different
language (such as Inuktitut) can lead one (but does not require one) to view
the world in a different fashion.

Making effective use of object-oriented principles requires one to view
the world in a new way. But simply using an object-oriented language (such
as Java or C++) does not, by itself, force one to become an object-oriented
programmer. While the use of an object-oriented language will simplify the
development of object-oriented solutions, it is true, as it has been quipped,
that “FORTRAN programs can be written in any language.”

1.2.2 An example from computer languages
The relationship we noted between language and thought for natural
languages is even more pronounced in artificial computer languages. That
is, the language in which a programmer thinks a problem will be solved will
fundamentally color and alter the way an algorithm is developed.

Here is an example that illustrates this relationship between computer
language and problem solution. Several years ago a student working in
genetic research was faced with a task in the analysis of DNA sequences.
The problem could be reduced to relatively simple form. The DNA is
represented as a vector of N integer values, where N is very large (on the
order of tens of thousands). The problem was to discover whether any
pattern of length M, where M was a fixed and small constant (say 5 or 10),
is ever repeated in the array of values.

The programmer dutifully sat down and wrote a simple and
straightforward FORTRAN program something like the following.



Click here to view code image
    DO 10 I = 1, N-M 
    DO 10 J = 1, N-M 
    FOUND = .TRUE. 
    DO 20 K = 1, M 
20  IF X[I+K-1] .NE. X[J+K-1] THEN FOUND = .FALSE. 
    IF FOUND THEN ... 
10  CONTINUE

He was somewhat disappointed when trial runs indicated his program
would need many hours to complete. He discussed his problem with a
second student who happened to be proficient in the programming language
APL. She offered to try to write a program for this problem. The first
student was dubious. After all, FORTRAN was known to be one of the
most “efficient” programming languages. It was compiled; APL was only
interpreted. So it was with a certain amount of incredulity that he
discovered that the APL programmer was able to write an algorithm that
worked in a matter of minutes, not hours.

What the APL programmer had done was to rearrange the problem.
Rather than working with a vector of N elements, she reorganized the data
into a matrix with roughly N rows and M columns.

Click here to view code image
    x1       x2  ...       xm 

    x2       x3  ...       xm+1 

    ⋮        ⋮   ...  ⋮     ⋮ 
    xn−m         ...       xn−1 

    xn−(m−1)     ...  xn−1  xn

She then ordered this matrix by rows (that is, treated each row as a unit,
moving entire rows during the process of sorting). If any pattern was
repeated, then two adjacent rows in the ordered matrix would have identical
values.
            .  .  .
T    G    G    A    C    C
T    G    G    A    C    C
            .  .  .

It was a trivial matter to check for this condition. The reason the APL
program was faster had nothing to do with the speed of APL versus

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch01_images.xhtml#pf0004-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch01_images.xhtml#pf0004-02b


FORTRAN; it was simply that the FORTRAN program employed an
algorithm that was O(M × N2), whereas the sorting solution used by the
APL programmer required approximately O(M × N log N) operations.

The point of this story is not that APL is in any way a “better”
programming language than FORTRAN but that the APL programmer was
naturally led to discover an entirely different form of solution. The reason,
in this case, is that loops are very difficult to write in APL, whereas sorting
is trivial—it is a built-in operator defined as part of the language. Thus,
because the sorting operation is so easy to perform, good APL
programmers tend to look for novel applications for it. This is how the
programming language in which the solution is to be written directs the
programmer’s mind to view the problem in a certain way.

*1.2.3 Church’s conjecture and the Whorf
hypothesis

The assertion that the language in which an idea is expressed can
influence or direct a line of thought is relatively easy to believe. However, a
stronger conjecture, known in linguistics as the Sapir-Whorf hypothesis,
goes much further and remains controversial.

The Sapir-Whorf hypothesis asserts that it may be possible for an
individual working in one language to imagine thoughts or to utter ideas
that cannot in any way be translated, or even understood by individuals
operating in a different linguistic framework. According to advocates of the
hypothesis, this can occur when the language of the second individual has
no equivalent words and lacks even concepts or categories for the ideas
involved in the thought. It is interesting to compare this possibility with an
almost directly opposite concept from computer science—namely, Church’s
conjecture.

Starting in the 1930s and continuing through the 1940s and 1950s there
was a great deal of interest within the mathematical and nascent computing
community in a variety of formalisms that could be used for the calculation
of functions. Examples are the notations proposed by Church [Church
1936], Post [Post 1936], Markov [Markov 1951], Turing [Turing 1936],
Kleene [Kleene 1936], and others. Over time a number of arguments were
put forth to demonstrate that many of these systems could be used in the



simulation of other systems. Often, such arguments for a pair of systems
could be made in both directions, effectively showing that the systems were
identical in computation power. The sheer number of such arguments led
the logician Alonzo Church to pronounce a conjecture that is now
associated with his name.

Church’s Conjecture: Any computation for which there is an
effective procedure can be realized by a Turing machine.

By nature this conjecture must remain unproven and unprovable, since
we have no rigorous definition of the term “effective procedure.”
Nevertheless, no counterexample has yet been found, and the weight of
evidence seems to favor affirmation of this claim.

Acceptance of Church’s conjecture has an important and profound
implication for the study of programming languages. Turing machines are
wonderfully simple mechanisms, and it does not require many features in a
language to simulate such a device. In the 1960s, for example, it was
demonstrated that a Turing machine could be emulated in any language that
possessed at least a conditional statement and a looping construct [Bóhm
1966]. (This greatly misunderstood result was the major ammunition used
to “prove” that the infamous goto statement was unnecessary.)

If we accept Church’s conjecture, any language in which it is possible to
simulate a Turing machine is sufficiently powerful to perform any
realizable algorithm. (To solve a problem, find the Turing machine that
produces the desired result, which by Church’s conjecture must exist; then
simulate the execution of the Turing machine in your favorite language.)
Thus, arguments about the relative “power” of programming languages—if
by power we mean “ability to solve problems”—are generally vacuous. The
late Alan Perlis had a term for such an argument. He called it a “Turing
Tarpit” because it is often so difficult to extricate oneself from it and so
fundamentally pointless.

Note that Church’s conjecture is, in a certain sense, almost the exact
opposite of the Sapir-Whorf hypothesis. Church’s conjecture states that in a
fundamental way all programming languages are identical. Any idea that
can be expressed in one language can, in theory, be expressed in any
language. The Sapir-Whorf hypothesis claims that it is possible to have
ideas that can be expressed in one language that cannot be expressed in
another.



Many linguists reject the Sapir-Whorf hypothesis and instead adopt a
sort of “Turing-equivalence” for natural languages. By this we mean that,
with a sufficient amount of work, any idea can be expressed in any
language. For example, while the language spoken by a native of a warm
climate may not make it instinctive to examine a field of snow and
categorize it by type or use, with time and training it certainly can be
learned. Similarly, object-oriented techniques do not provide any new
computational power that permits problems to be solved that cannot, in
theory, be solved by other means. But object-oriented techniques do make it
easier and more natural to address problems in a fashion that tends to favor
the management of large software projects.

Thus, for both computer and natural languages the language will direct
thoughts but cannot proscribe thoughts.

1.3 ⊡ A New Paradigm
Object-oriented programming is frequently referred to as a new
programming paradigm. Other programming paradigms include the
imperative-programming paradigm (languages such as Pascal or C), the
logic programming paradigm (Prolog), and the functional-programming
paradigm (ML or Haskell).

It is interesting to examine the definition of the word “paradigm.” The
following is from the American Heritage Dictionary of the English
Language.

par a digm n. 1. A list of all the inflectional forms of a word taken
as an illustrative example of the conjugation or declension to
which it belongs. 2. Any example or model. [Late Latin
paradīgma, from Greek paradeigma, model, from paradeiknunai,
to compare, exhibit.]

At first blush, the conjugation or declension of Latin words would seem
to have little to do with computer programming languages. To understand
the connection, we must note that the word was brought into the modern
vocabulary through an influential book, The Structure of Scientific
Revolutions, by the historian of science Thomas Kuhn [Kuhn 1970]. Kuhn
used the term in the second form, to describe a set of theories, standards,



and methods that together represent a way of organizing knowledge—that
is, a way of viewing the world. Kuhn’s thesis was that revolutions in
science occur when an older paradigm is reexamined, rejected, and replaced
by another.

It is in this sense, as a model or example and as an organizational
approach, that Robert Floyd used the term in his 1979 ACM Turing Award
lecture [Floyd 1979], “The Paradigms of Programming.” A programming
paradigm is a way of conceptualizing what it means to perform
computation and how tasks to be carried out on a computer should be
structured and organized.

Although new to computation, the organizing technique that lies at the
heart of object-oriented programming can be traced back at least as far as
Carolus Linnaeus (1707–1778) (Figure 1.1). It was Linnaeus, you will
recall, who categorized biological organisms using the idea of phylum,
genus, species, and so on.

⊡ Figure 1.1 — The Linnaen Inheritance Hierarchy



Paradoxically, the style of problem solving embodied in the object-
oriented technique is frequently the method used to address problems in
everyday life. Thus, computer novices are often able to grasp the basic
ideas of object-oriented programming easily, whereas people who are more
computer literate are often blocked by their own preconceptions. Alan Kay,
for example, found that it was often easier to teach Smalltalk to children
than to computer professionals [Kay 1977].

In trying to understand exactly what is meant by the term object-
oriented programming, it is useful to examine the idea from several
perspectives. The next few sections outline two aspects of object-oriented
programming; each illustrates a particular reason that this technique should
be considered an important new tool.

1.4 ⊡ A Way of Viewing the World
To illustrate some of the major ideas in object-oriented programming, let us
consider first how we might go about handling a real-world situation and
then ask how we could make the computer more closely model the
techniques employed.

Suppose an individual named Chris wishes to send flowers to a friend
named Robin, who lives in another city. Because of the distance, Chris
cannot simply pick the flowers and take them to Robin in person.
Nevertheless, it is a task that is easily solved. Chris simply walks to a
nearby flower shop, run by a florist named Fred. Chris will tell Fred the
kinds of flowers to send to Robin and the address to which they should be
delivered. Chris can then be assured that the flowers will be delivered
expediently and automatically.

1.4.1 Agents and communities
At the risk of belaboring a point, let us emphasize that the mechanism that
was used to solve this problem was to find an appropriate agent (namely,
Fred) and to pass to this agent a message containing a request. It is the
responsibility of Fred to satisfy the request. There is some method—some
algorithm or set of operations—used by Fred to do this. Chris does not need



to know the particular method that Fred will use to satisfy the request;
indeed, often the person making a request does not want to know the
details. This information is usually hidden from inspection.

An investigation, however, might uncover the fact that Fred delivers a
slightly different message to another florist in the city where Robin lives.
That florist, in turn, perhaps has a subordinate who makes the flower
arrangement. The florist then passes the flowers, along with yet another
message, to a delivery person, and so on. Earlier, the florist in Robin’s city
had obtained the flowers from a flower wholesaler who, in turn, had
interactions with the flower growers, each of whom had to manage a team
of gardeners.

So, our first observation of object-oriented problem solving is that the
solution to this problem required the help of many other individuals (Figure
1.2). Without their help, the problem could not be easily solved. We phrase
this in a general fashion.

⊡ Figure 1.2 — The community of agents in the flower delivery
process

An object-oriented program is structured as a community of
interacting agents called objects. Each object has a role to play.
Each object provides a service or performs an action that is used by
other members of the community.



1.4.2 Messages and methods
The chain reaction that ultimately resulted in the solution to Chris’s
problem began with a request given to the florist, Fred. This request lead to
other requests, which lead to still more requests, until the flowers ultimately
reached Chris’s friend, Robin. We see, therefore, that members of this
community interact with each other by making requests. So, our next
principle of object-oriented problem solving is the vehicle used to indicate
an action to be performed.

Action is initiated in object-oriented programming by the
transmission of a message to an agent (an object) responsible for
the action. The message encodes the request for an action and is
accompanied by any additional information (arguments) needed to
carry out the request. The receiver is the object to whom the
message is sent. If the receiver accepts the message, it accepts the
responsibility to carry out the indicated action. In response to a
message, the receiver will perform some method to satisfy the
request.

We have noted the important principle of information hiding in regard to
message passing—that is, the client sending the request need not know the
actual means by which the request will be honored. There is another
principle, all too human, that we see is implicit in message passing. If there
is a task to perform, the first thought of the client is to find somebody else
he or she can ask to do the work. This second reaction often becomes
atrophied in many programmers with extensive experience in conventional
techniques. Frequently, a difficult hurdle to overcome is the idea in the
programmer’s mind that he or she must write everything and not use the
services of others. An important part of object-oriented programming is the
development of reusable components, and an important first step in the use
of reusable components is a willingness to trust software written by others.

Messages Versus Procedure Calls
Information hiding is also an important aspect of programming in
conventional languages. In what sense is a message different from, say, a



procedure call? In both cases, there is a set of well-defined steps that will be
initiated following the request. But there are two important distinctions.

The first is that in a message there is a designated receiver for that
message; the receiver is some object to which the message is sent. In a
procedure call, there is no designated receiver.

The second is that the interpretation of the message (that is, the method
used to respond to the message) is determined by the receiver and can vary
with different receivers. Chris could give a message to a friend named
Elizabeth, for example, and she will understand it and a satisfactory
outcome will be produced (that is, flowers will be delivered to their mutual
friend Robin). However, the method Elizabeth uses to satisfy the request (in
all likelihood, simply passing the request on to Fred) will be different from
that used by Fred in response to the same request.

If Chris were to ask Kenneth, a dentist, to send flowers to Robin,
Kenneth may not have a method for solving that problem. If he understands
the request at all, he will probably issue an appropriate error diagnostic.

Let us move our discussion back to the level of computers and
programs. There, the distinction between message passing and procedure
calling is that in message passing there is a designated receiver, and the
interpretation—the selection of a method to execute in response to the
message—may vary with different receivers. Usually, the specific receiver
for any given message will not be known until run time, so the
determination of which method to invoke cannot be made until then. Thus,
we say there is late binding between the message (function or procedure
name) and the code fragment (method) used to respond to the message.
This situation is in contrast to the very early (compile-time or link-time)
binding of name to code fragment in conventional procedure calls.

1.4.3 Responsibilities
A fundamental concept in object-oriented programming is to describe
behavior in terms of responsibilities. Chris’s request for action indicates
only the desired outcome (flowers sent to Robin). Fred is free to pursue any
technique that achieves the desired objective and in doing so will not be
hampered by interference from Chris.



By discussing a problem in terms of responsibilities we increase the
level of abstraction. This permits greater independence between objects, a
critical factor in solving complex problems. The entire collection of
responsibilities associated with an object is often described by the term
protocol.

A traditional program often operates by acting on data structures—for
example, changing fields in an array or record. In contrast, an object-
oriented program requests data structures (that is, objects) to perform a
service. This difference between viewing software in traditional, structured
terms and viewing it from an object-oriented perspective can be
summarized by a twist on a well-known quote.

Ask not what you can do to your data structures.
Ask what your data structures can do for you.

1.4.4 Classes and instances
Although Chris has only dealt with Fred a few times, Chris has a rough idea
of the transaction that will occur inside Fred’s flower shop. Chris is able to
make certain assumptions based on previous experience with other florists,
and hence Chris can expect that Fred, being an instance of this category,
will fit the general pattern. We can use the term Florist to represent the
category (or class) of all florists. Let us incorporate these notions into our
next principle of object-oriented programming.

All objects are instances of a class. The method invoked by an
object in response to a message is determined by the class of the
receiver. All objects of a given class use the same method in
response to similar messages.

1.4.5 Class hierarchies—inheritance
Chris has more information about Fred—not necessarily because Fred is a
florist but because he is a shopkeeper. Chris knows, for example, that a
transfer of money will be part of the transaction and that in return for
payment Fred will offer a receipt. These actions are true of grocers,



stationers, and other shopkeepers. Since the category Florist is a more
specialized form of the category Shopkeeper, any knowledge Chris has of
Shopkeepers is also true of Florists and, hence, of Fred.

One way to think about how Chris has organized knowledge of Fred is
in terms of a hierarchy of categories (see Figure 1.3). Fred is a Florist, but
Florist is a specialized form of Shopkeeper. Furthermore, a Shopkeeper is
also a Human; so Chris knows, for example, that Fred is probably bipedal. A
Human is a Mammal (therefore, they nurse their young and have hair), a Mammal
is an Animal (therefore, it breathes oxygen), and an Animal is a Material
Object (therefore, it has mass and weight). Thus, quite a lot of knowledge
that Chris has that is applicable to Fred is not directly associated with him,
or even with the category Florist.

⊡ Figure 1.3 — The categories surrounding Fred



The principle that knowledge of a more general category is also
applicable to a more specific category is called inheritance. We say that the
class Florist will inherit attributes of the class (or category) Shopkeeper.

There is an alternative graphical technique often used to illustrate this
relationship, particularly when there are many individuals with differing
lineages. This technique shows classes listed in a hierarchical treelike
structure, with more abstract classes (such as Material Object or Animal)
listed near the top of the tree and more specific classes, and finally
individuals, listed near the bottom. Figure 1.4 shows this class hierarchy for
Fred. This same hierarchy also includes Elizabeth; Chris’s dog, Fido; Phyl
the platypus, who lives at the zoo; and the flowers Chris is sending to
Robin. Notice that the structure and interpretation of this type of diagram is
similar to the biological hierarchy presented in Figure 1.1.



⊡ Figure 1.4 — A class hierarchy for various material objects

Any information that Chris has about Fred because Fred is an instance
of class Human is also applicable to Elizabeth. Any information that Chris
has about Fred because Fred is a Mammal is applicable to Fido as well. Any
information about all members of Material Object is equally applicable to
Fred and to his flowers. We capture this in the idea of inheritance.

Classes can be organized into a hierarchical inheritance structure.
A child class (or subclass) will inherit attributes from a parent
class higher in the tree. An abstract parent class is a class (such as
Mammal) for which there are no direct instances; it is used only to
create subclasses.

1.4.6 Method binding and overriding
Phyl the platypus presents a problem for our simple organizing structure.
Chris knows that mammals give birth to live children, and Phyl is certainly
a Mammal, yet Phyl (or rather his mate Phyllis) lays eggs. To accommodate
this, we need to find a technique to encode exceptions to a general rule.

We do this by decreeing that information contained in a subclass can
override information inherited from a parent class. Most often,
implementations of this approach take the form of a method in a subclass
having the same name as a method in the parent class, combined with a rule
for how the search for a method to match a specific message is conducted.

The search for a method to invoke in response to a given message
begins with the class of the receiver. If no appropriate method is
found, the search is conducted in the parent class of this class. The
search continues up the parent class chain until either a method is
found or the parent class chain is exhausted. In the former case the
method is executed; in the latter case, an error message is issued. If
methods with the same name can be found higher in the class
hierarchy, the method executed is said to override the inherited
behavior.



Even if a compiler cannot determine which method will be invoked at
run time, in many object-oriented languages, such as Java, it can determine
whether there will be an appropriate method and issue an error message as
a compile-time error diagnostic rather than as a run-time message.

The fact that both Elizabeth and Fred will react to Chris’s messages but
use different methods to respond is one form of polymorphism. As
explained, that Chris does not, and need not, know exactly what method
Fred will use to honor the request is an example of information hiding.

1.4.7 Summary of object-oriented concepts
Alan Kay, considered by some to be the father of object-oriented
programming, identified the following characteristics as fundamental to
OOP [Kay 1993]:

1. Everything is an object.
2. Computation is performed by objects communicating with each other,

requesting that other objects perform actions. Objects communicate
by sending and receiving messages. A message is a request for action
bundled with whatever arguments may be necessary to complete the
task.

3. Each object has its own memory, which consists of other objects.
4. Every object is an instance of a class. A class simply represents a

grouping of similar objects, such as integers or lists.
5. The class is the repository for behavior associated with an object.

That is, all objects that are instances of the same class can perform the
same actions.

6. Classes are organized into a singly rooted tree structure, called the
inheritance hierarchy. Memory and behavior associated with
instances of a class are automatically available to any class associated
with a descendant in this tree structure.

* 1.5 ⊡ Computation as Simulation



The view of programming represented by the example of sending flowers to
a friend is very different from the conventional conception of a computer.
The traditional model describing the behavior of a computer executing a
program is a process-state or pigeon-hole model. In this view, the computer
is a data manager, following some pattern of instructions, wandering
through memory, pulling values out of various slots (memory addresses),
transforming them in some manner, and pushing the results back into other
slots (see Figure 1.5). By examining the values in the slots, one can
determine the state of the machine or the results produced by a
computation. Although this model may be a more or less accurate picture of
what takes place inside a computer, it does little to help us understand how
to solve problems using the computer, and it is certainly not the way most
people (pigeon handlers and postal workers excepted) go about solving
problems.

⊡ Figure 1.5 — Visualization of imperative programming

In contrast, in the object-oriented framework we never mention memory
addresses, variables, assignments, or any of the conventional programming
terms. Instead, we speak of objects, messages, and responsibility for some
action. I quote Dan Ingalls’s memorable phrase.

Instead of a bit-grinding processor . . . plundering data structures,
we have a universe of well-behaved objects that courteously ask



each other to carry out their various desires [Ingalls 1981].

Another author has described object-oriented programming as
“animistic”: a process of creating a host of helpers that form a community
and assist the programmer in the solution of a problem [Actor 1987].

This view of programming as creating a “universe” is in many ways
similar to a style of computer simulation called “discrete event-driven
simulation.” In brief, in a discrete event-driven simulation the user creates
computer models of the various elements of the simulation, describes how
they will interact with one another, and sets them moving. This is almost
identical to the average object-oriented program, in which the user
describes what the various entities in the universe for the program are and
how they will interact with one another, and then finally sets them in
motion. Thus, in object-oriented programming, we have the view that
computation is simulation [Kay 1977].

1.5.1 The power of metaphor
An easily overlooked benefit to the use of object-oriented techniques is the
power of metaphor. When programmers think about problems in terms of
behaviors and responsibilities of objects, they bring with them a wealth of
intuition, ideas, and understanding from their everyday experiences. When
envisioned as pigeon holes, mailboxes, or slots containing values, there is
little in the programmer’s background to provide insight into how problems
should be structured.

Although anthropomorphic descriptions such as the quote by Ingalls
may strike some people as odd, in fact they are a reflection of the great
expositive power of metaphor. Journalists make use of metaphor every day,
as in this description of object-oriented programming from Newsweek
(Figure 1.6).



⊡ Figure 1.6 — Mr. Potato Head, an object-oriented toy (Hasbro, Inc.)

Unlike the usual programming method—writing software one line
at a time—NeXT’s “object-oriented” system offers larger building
blocks that developers can quickly assemble the way a kid builds
faces on Mr. Potato Head.

Possibly this feature, more than any other, is responsible for the frequent
observation that it is sometimes easier to teach object-oriented
programming concepts to computer novices than to computer professionals.
Novice users quickly adapt the metaphors with which they are already
comfortable from their everyday life, whereas seasoned computer
professionals can be blinded by an adherence to more traditional ways of
viewing computation.



1.5.2 Avoiding infinite regression
Of course, objects cannot always respond to a message by politely asking
another object to perform some action. The result would be an infinite circle
of requests, like two gentlemen politely waiting for the other to go first
before entering a doorway, or like a bureaucracy of paper pushers, each
passing on all papers to some other member of the organization. At some
point, at least a few objects need to perform some work besides passing on
requests to other agents. This work is accomplished differently in various
object-oriented languages.

In blended object-oriented/imperative languages, such as C++, Object
Pascal, and Objective-C, it is accomplished by methods written in the base
(non-object-oriented) language. In more purely object-oriented languages,
such as Smalltalk or Java, it is accomplished by “primitive” or “native”
operations that are provided by the underlying system.

* 1.6 ⊡ A Brief History
It is commonly thought that object-oriented programming is a relatively
recent phenomenon in computer science. To the contrary, in fact, almost all
the major concepts we now associate with object-oriented programs, such
as objects, classes, and inheritance hierarchies, were developed in the 1960s
as part of a language called Simula, designed by researchers at the
Norwegian Computing Center. Simula, as the name suggests, was a
language inspired by problems involving the simulation of real life systems.
However, the importance of these constructs, even to the developers of
Simula, was only slowly recognized [Nygaard 1981].

In the 1970s Alan Kay organized a research group at Xerox PARC (the
Palo Alto Research Center). With great prescience, Kay predicated the
coming revolution in personal computing that was to develop nearly a
decade later (see, for example, his 1977 article in Scientific American [Kay
1977]). Kay was concerned with discovering a programming language that
would be understandable to non-computer professionals, to ordinary people
with no prior training in computer use.1 He found in the notion of classes
and computing as simulation a metaphor that could easily be understood by
novice users, as he then demonstrated by a series of experiments conducted



at PARC using children as programmers. The programming language
developed by his group was named Smalltalk. This language evolved
through several revisions during the decade. A widely read 1981 issue of
Byte magazine did much to popularize the concepts developed by Kay and
his team at Xerox.

1. I have always found it ironic that Kay missed an important point. He thought that to use a
computer one would be required to program a computer. Although he correctly predicted in 1977 the
coming trend in hardware, few could have predicted at that time the rapid development of general
purpose computer applications that was to accompany, perhaps even drive, the introduction of
personal computers. Nowadays the vast majority of people who use personal computers have no idea
how to program.

Roughly contemporaneous with Kay’s work was another project being
conducted on the other side of the country. Bjarne Stroustrup, a researcher
at Bell Laboratories who had learned Simula while completing his
doctorate at Cambridge University in England, was developing an
extension to the C language that would facilitate the creation of objects and
classes [Stroustrup 1982]. This was to eventually evolve into the language
C++ [Stroustrup 1994].

With the dissemination of information on these and other similar
projects, an explosion of research in object-oriented programming
techniques began. By the time of the first major conference on object-
oriented programming in 1986, there were literally dozens of new
programming languages vying for acceptance. These included Eiffel
[Meyer 1988a], Objective-C [Cox 1986], Actor [Actor 1987], Object
Pascal, and various Lisp dialects.

In the two decades since the 1986 OOPSLA conference, object-oriented
programming has moved from being revolutionary to being mainstream and
in the process has transformed a major portion of the field of computer
science as a whole.

Summary ⊡
Object-oriented programming is not simply a few new features added
to programming languages. Rather, it is a new way of thinking about
the process of decomposing problems and developing programming
solutions.



Object-oriented programming views a program as a collection of
loosely connected agents, termed objects. Each object is responsible
for specific tasks. It is by the interaction of objects that computation
proceeds. In a certain sense, therefore, programming is nothing more
or less than the simulation of a model universe.
An object is an encapsulation of state (data values) and behavior
(operations). Thus, an object is in many ways similar to a special
purpose computer.
The behavior of objects is dictated by the object class. Every object is
an instance of some class. All instances of the same class will behave
in a similar fashion (that is, invoke the same method) in response to a
similar request.
An object will exhibit its behavior by invoking a method (similar to
executing a procedure) in response to a message. The interpretation of
the message (that is, the specific method used) is decided by the
object and may differ from one class of objects to another.
Classes can be linked to each other by means of the notion of
inheritance. Using inheritance, classes are organized into a
hierarchical inheritance tree. Data and behavior associated with
classes higher in the tree can also be accessed and used by classes
lower in the tree. Such classes are said to inherit their behavior from
the parent classes.
Designing an object-oriented program is like organizing a community
of individuals. Each member of the community is given certain
responsibilities. The achievement of the goals for the community as a
whole come about through the work of each member, and the
interactions of members with each other.
By reducing the interdependency among software components,
object-oriented programming permits the development of reusable
software systems. Such components can be created and tested as
independent units, in isolation from other portions of a software
application.
Reusable software components permit the programmer to deal with
problems on a higher level of abstraction. We can define and



manipulate objects simply in terms of the messages they understand
and a description of the tasks they perform, ignoring implementation
details.

Further Reading ⊡
I noted earlier that many consider Alan Kay to be the father of object-
oriented programming. Like most simple assertions, this one is only
somewhat supportable. Kay himself [Kay 1993] traces much of the
influence on his development of Smalltalk to the earlier computer
programming language Simula, developed in Scandinavia in the early
1960s [Dahl 1966; Kirkerud 1989]. A more accurate history would be that
most of the principles of object-oriented programming were fully worked
out by the developers of Simula but that these would have been largely
ignored by the profession had they not been rediscovered by Kay in the
creation of the Smalltalk programming language.

The term “software crisis” seems to have been coined by Doug McIlroy
at a 1968 NATO conference on software engineering. It is curious that we
have been in a state of crisis now for more than half the life of computer
science as a discipline. Despite the end of the Cold War, the end of the
software crisis seems to be no closer now than it was in 1968. See, for
example, Gibb’s article “Software’s Chronic Crisis” in the September 1994
issue of Scientific American [Gibbs 1994].

To some extent, the software crisis may be largely illusory. For example,
tasks considered exceedingly difficult five years ago seldom seem so
daunting today. It is only the tasks that we wish to solve today that seem, in
comparison, to be nearly impossible, which seems to indicate that the field
of software development has, indeed, advanced steadily year by year.

The quote from the American linguist Edward Sapir is taken from “The
Relation of Habitual Thought and Behavior to Language,” reprinted in
Benjamin Lee Whorf’s book Language, Thought and Reality [Whorf 1956].
This book contains several interesting papers on the relationships between
language and our habitual thinking processes. I urge any serious student of
computer languages to read these essays; some of them have surprising
relevance to artificial languages. (An undergraduate once exclaimed to me,
“I didn’t know the Klingon was a linguist!”)



Another interesting book along similar lines is The Alphabet Effect by
Robert Logan [Logan 1986], which explains in terms of language why
logic and science developed in the West, while for centuries China had
superior technology. In a more contemporary investigation of the effect of
natural language on computer science, J. Marshall Unger [Unger 1987]
describes the influence of the Japanese language on the much-heralded
Fifth Generation project.

The commonly held observation that Eskimo languages have many
words for snow was debunked by Geoffrey Pullum in his book of essays on
linguistics [Pullum 1991]. In his article “In Praise of Snow” in the January
1995 issue of Atlantic Monthly, Cullen Murphy pointed out that the
vocabulary used to discuss snow among English speakers for whom a
distinction between types of snow is important—namely, those who
perform research on the topic—is every bit as large as, or larger than, that
of the Eskimo.

Those who would argue in favor of the Sapir-Whorf hypothesis have a
difficult problem to overcome—namely, the simple question “Can you give
me an example?” Either they can, which (since it must be presented in the
language of the speaker) serves to undercut their argument, or they cannot,
which also weakens their argument. In any case, the point is irrelevant to
our discussion. It is certainly true that groups of individuals with common
interests tend to develop their own specialized vocabulary, and once
developed, the vocabulary itself tends to direct their thoughts along paths
that may not be natural to those outside the group. Such is the case with
OOP. While object-oriented ideas can, with discipline, be used without an
object-oriented language, the use of object-oriented terms helps direct the
programmer’s thought along lines that may not have been obvious without
the OOP terminology.

My history is slightly imprecise with regard to Church’s conjecture and
Turing machines. Church actually conjectured about partial functions
[Church 1936], which were later shown to be equivalent to computations
performed with Turing machines [Turing 1936]. Kleene described the
conjecture in the form we have here, also giving it the name by which it has
become known. Rogers gives a good summary of the arguments for the
equivalence of various computational models [Rogers 1967].

Information on the history of Smalltalk can be found in Kay’s article
from the History of Programming Languages conference [Kay 1993].



Bjarne Stroustrup has provided a history of C++ [Stroustrup 1994]. A more
general history of OOP is presented in the Handbook of Programming
Languages [Salus 1998].

Like most terms that have found their way into the popular jargon,
object-oriented is used more often than it is defined. Thus, the question
“What is object-oriented programming?” is surprisingly difficult to answer.
Bjarne Stroustrup has quipped that many arguments appear to boil down to
the following syllogism.

X is good.
Object-oriented is good.
Ergo, X is object-oriented.

Roger King [Kim 1989] argued that his cat is object-oriented. After all, a
cat exhibits characteristic behavior, responds to messages, is heir to a long
tradition of inherited responses, and manages its own quite independent
internal state.

Many authors have tried to provide a precise description of the
properties a programming language must possess to be called object-
oriented. See, for example, the analysis by Josephine Micallef [Micallef
1988] or Peter Wegner [Wegner 1986]. Wegner, for example, distinguishes
object-based languages, which support only abstraction (such as Ada), from
object-oriented languages, which must also support inheritance.

Other authors—notably Brad Cox [Cox 1990]—define the term much
more broadly. To Cox, object-oriented programming represents the
objective of programming by assembling solutions from collections of off-
the-shelf subcomponents, rather than any particular technology we may use
to achieve this objective. Rather than drawing lines that are divisive, we
should embrace any and all means that show promise in leading to a new
software Industrial Revolution. Cox’s book on OOP [Cox 1986], although
written early in the development of object-oriented programming and now
somewhat dated, is nevertheless one of the most readable manifestos of the
object-oriented movement.

Self-Study Questions ⊡



1. What is the original meaning of the word paradigm?
2. How do objects interact with each other?
3. How are messages different from procedure calls?
4. What is the name applied to describe an algorithm that an object uses

to respond to a request?
5. Why does the object-oriented approach naturally imply a high degree

of information hiding?
6. What is a class? How are classes linked to behavior?
7. What is a class inheritance hierarchy? How is it linked to classes and

behavior?
8. What does it mean for one method to override another method from a

parent class?
9. What are the basic elements of the process-state model of

computation?
10. How does the object-oriented model of computation differ from the

process-state model?
11. In what way is an object-oriented program like a simulation?

Exercises ⊡
1. In an object-oriented inheritance hierarchy, each level is a more

specialized form of the preceding level. Give an example of a
hierarchy found in everyday life that has this property. Some types of
hierarchy found in everyday life are not inheritance hierarchies. Give
an example of a noninheritance hierarchy.

2. Look up the definition of paradigm in at least three dictionaries.
Relate these definitions to computer programming languages.

3. Take a real world problem, such as the task of sending flowers in our
example, and describe its solution in terms of agents (objects) and
responsibilities.



4. If you are familiar with two or more distinct computer programming
languages, give an example of a problem showing how one language
would direct the programmer to one type of solution and a different
language would encourage an alternative solution.

5. If you are familiar with two or more distinct natural languages,
describe a situation that illustrates how one language directs the
speaker in a certain direction and the other language encourages a
different line of thought.

6. Argue either for or against the position that computing is basically
simulation. (You may want to read Kay’s 1977 Scientific American
article.)



Chapter 2

Abstraction

If you open an atlas you will often first see a map of the world. This map
will show only the most significant features. For example, it may show the
various mountain ranges, the ocean currents, and other extremely large
structures. But small features will almost certainly be omitted.

A subsequent map will cover a smaller geographical region and will
typically possess more detail. For example, a map of a single continent
(such as South America) may now include political boundaries and perhaps
the major cities. A map over an even smaller region, such as a country,
might include towns as well as cities and smaller geographical features,
such as the names of individual mountains. A map of an individual large
city might include the most important roads leading into and out of the city.
Maps of smaller regions might even represent individual buildings.

Notice how, at each level, certain information has been included and
certain information has been purposely omitted. There is simply no way to
represent all the details when an artifact is viewed at a higher level of
abstraction. And even if all the detail could be described (using tiny
writing, for example), there is no way that people could assimilate or
process such a large amount of information. Hence, details are simply left
out.

Fundamentally, people use only a few simple tools to create, understand,
or manage complex systems. One of the most important techniques is
termed abstraction.

Consider the average person’s understanding of an automobile. A
layman’s view of an automobile engine, for example, is a device that takes
fuel as input and produces a rotation of the drive shaft as output. This



rotation is too fast to connect to the wheels of the car directly, so a
transmission is a mechanism used to reduce a rotation of several thousand
revolutions per minute to a rotation of several revolutions per minute. This
slower rotation can then be used to propel the car. This is not exactly
correct, but it is sufficiently close for everyday purposes. We sometimes say
that by means of abstraction we have constructed a model of the actual
system.

Abstraction

Abstraction is the purposeful suppression, or hiding, of some
details of a process or artifact, in order to bring out more clearly other
aspects, details, or structures.

In forming an abstraction, or model, we purposely avoid the need to
understand many details, concentrating instead of a few key features. We
often describe this process with another term: information hiding.

Information Hiding

Information hiding is the purposeful omission of details in the
development of an abstract representation.



2.1 ⊡ Layers of Abstraction
In a typical program written in the object-oriented style there are many
important levels of abstraction. The higher level abstractions are part of
what makes an object-oriented program object-oriented.

At the highest level a program is viewed as a “community” of objects
that must interact with each other in order to achieve their common goal.

This notion of community finds expression in object-oriented
development in two distinct forms. First, there is the community of
programmers, who must interact with each other in the real world in order
to produce their application. Second, there is the community of objects that
they create, which must interact with each other in a virtual universe in
order to further their common goals. Key ideas such as information hiding
and abstraction are applicable to both levels.

Each object in this community provides a service that is used by other
members of the organization. At this highest level of abstraction, the
important features to emphasize are the lines of communication and
cooperation and the way in which the members must interact with each
other.



The next level of abstraction is not found in all object-oriented
programs, nor is it supported in all object-oriented languages. However,
many languages permit a group of objects working together to be combined
into a unit. Examples of this idea include packages in Java, name spaces in
C++, or units in Delphi. The unit allows certain names to be exposed to the
world outside the unit, while other features remain hidden inside the unit.

For readers familiar with concepts found in earlier languages, this notion
of a unit is the heir to the idea of a module in languages such as C or
Modula. Later in this chapter we will present a short history of
programming language abstractions and note the debt that ideas of object-
oriented programming owe to the earlier work on modules.

The next two levels of abstraction deal with the interactions between
two individual objects. Often we speak of objects as proving a service to
other objects. We build on this intuition by describing communication as an
interaction between a client and a server.



We are not using the term server in the technical sense of, say, a Web
server. Rather, here the term server simply means an object that is
providing a service. The two layers of abstraction refer to the two views of
this relationship: the view from the client side and the view from the server
side.

In a good object-oriented design we can describe and discuss the
services that the server provides without reference to any actions that the
client may perform in using those services. One can think of this as being
like a billboard advertisement.



The billboard describes, for example, the services provided by a data
structure, such as a Stack. Often this level of abstraction is represented by
an interface, a classlike mechanism that defines behavior without
describing an implementation.

Click here to view code image
interface Stack { 
  public void push (Object val); 
  public Object top () throws EmptyStackException; 
  public void pop () throws EmptyStackException; 
}

The next level of abstraction looks at the same boundary but from the
server side. This level considers a concrete implementation of the abstract
behavior. For example, there are any number of data structures that can be
used to satisfy the requirements of a Stack. Concerns at this level deal with
the way in which the services are being realized.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch02_images.xhtml#f0029-01a


Click here to view code image
public class LinkedList implements Stack ... { 
  public void pop () throws  EmptyStackException { ... } 
  . 
  . 
  . 
}

Finally, the last level of abstraction considers a single task in isolation—
that is, a single method. Concerns at this level of abstraction deal with the
precise sequence of operations used to perform just this one activity. For
example, we might investigate the technique used to perform the removal
of the most recent element placed into a stack.

Click here to view code image
public class LinkedList implements Stack ... { 
  . 
  . 
  . 
  public void pop () throws EmptyStackException { 
    if (isEmpty()) 
      throw new EmptyStackException(); 
    removeFirst(); // delete first element of list 
  } 
  . 
  . 
  . 
}

Each level of abstraction is important at some point during software
development. In fact, programmers are often called upon to quickly move
back and forth between different levels of abstraction. We will see analysis
of object-oriented programs performed at each of these levels of abstraction
as we proceed through the book.

Finding the Right Level of Abstraction

In early stages of software development a critical problem is
finding the right level of abstraction. A common error is to dwell on
the lowest levels, worrying about the implementation details of

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch02_images.xhtml#f0029-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch02_images.xhtml#f0029-03a


various key components, rather than striving to ensure that the high-
level organizational structure promotes a clean separation of
concerns.

The programmer (or, in larger projects, the design team) must
walk a fine line in trying to identify the right level of abstraction at
any one point of time. One does not want to ignore or throw away too
much detail about a problem, but also one must not keep so much
detail that important issues become obscured.

2.2 ⊡ Other Forms of Abstraction
Abstraction is used to help understand a complex system. In a certain sense,
abstraction is the imposition of structure on a system. The structure we
impose may reflect some real aspects of the system (a car really does have
both an engine and a transmission), or it may simply be a mental abstraction
we employ to aid in our understanding.

This idea of abstraction can be further subdivided into a variety of
different forms (Figure 2.1). A common technique is to divide a layer into
constituent parts. This is the approach we used when we described an
automobile as being composed of the engine, the transmission, the body,
and the wheels. The next level of understanding is then achieved by
examining each of these parts in turn. This is nothing more than the
application of the old maxim divide and conquer.



⊡ Figure 2.1 — Some techniques for handling complexity, with
examples

Other times we use different types of abstraction. Another form is the
idea of layers of specialization (Figure 2.2). An understanding of an
automobile is based, in part, on knowledge that it is a wheeled vehicle,
which is in turn a means of transportation. There is other information we
know about wheeled vehicles, and that knowledge is applicable to both an
automobile and a bicycle. There is other knowledge we have about various
different means of transportation, and that information is also applicable to
packhorses as well as bicycles. Object-oriented languages make extensive
use of this form of abstraction.



⊡ Figure 2.2 — Layers of specialization

Yet another form of abstraction is to provide multiple views of the same
artifact. Each of the views can emphasize certain detail and suppress others
and thus bring out different features of the same object. A layman’s view of
a car, for example, is very different from a mechanic’s.

Is-a and Has-a Abstraction

The idea of division into parts and division into specializations
represents the two most important forms of abstraction used in
object-oriented programming. These are commonly known as is-a
and has-a abstractions.

Division into parts is has-a abstraction. The meaning of this term
is easy to understand: A car “has-a” engine, it “has-a” transmission,

Specialization is is-a abstraction: A bicycle “is-a” wheeled
vehicle, which in turn “is-a” means of transportation.

Both is-a and has-a abstractions will reappear in later chapters
and be tied to specific programming language features.

2.2.1 Division into parts
The most common technique people use to help understand complex
systems is to combine abstraction with a division into component parts. Our
description of an automobile is an example of this. The next level of
understanding is then achieved by taking each of the parts and performing
the same sort of analysis at a finer level of detail. A slightly more precise
description of an engine, for example, views it as a collection of cylinders,
each of which converts an explosion of fuel into a vertical motion, and a
crankshaft, which converts the up and down motion of the cylinder into a
rotation.



Another example might be organizing information about motion in a
human body. At one level we are simply concerned with mechanics, and we
consider the body as composed of bone (for rigidity), muscles (for
movement), eyes and ears (for sensing), the nervous system (for
transferring information), and skin (to bind it all together). At the next level
of detail we might ask how the muscles work and consider issues such as
cell structure and chemical actions. But chemical actions are governed by
their molecular structure, and to understand molecules we break them into
their individual atoms.

Any explanation must be phrased at the right level of abstraction. Trying
to explain how a person can walk by understanding the atomic level details
is almost certainly difficult, if not impossible.

2.2.2 Encapsulation and interchangeability
A key step in the creation of large systems is the division into components.
Suppose instead of writing software we are part of a team working to create
a new automobile. By separating the automobile into the parts engine and
transmission, it is possible to assign people to work on the two aspects
more or less independently of each other. We use the term encapsulation to
mean that there is a strict division between the inner and the outer view.
Those members of the team working on the engine need only an abstract
(outside, as it were) view of the transmission, whereas those actually
working on the transmission need the more detailed inside view.

An important benefit of encapsulation is that it permits us to consider
the possibility of interchangeability. When we divide a system into parts, a



desirable goal is that the interaction between the parts is kept to a
minimum. For example, by encapsulating the behavior of the engine from
that of a transmission we permit the ability to exchange one type of engine
with another without incurring an undue impact on the other portions of the
system.

For these ideas to be applicable to software systems, we need a way to
discuss the task that a software component performs and separate this from
the way the component fulfills this responsibility.

2.2.3 Interface and implementation
In software we use the terms interface and implementation to describe the
distinction between the what aspects of a task and the how features,
between the outside view and the inside view. An interface describes what a
system is designed to do. This is the view that users of the abstraction must
understand. The interface says nothing about how the assigned task is being
performed. So to work, an interface is matched with an implementation that
completes the abstraction. The designers of an engine will deal with the
interface to the transmission, while the designers of the transmission must
complete an implementation of this interface.

Similarly, a key step along the path to developing complex computer
systems will be the division of a task into component parts. These parts can
then be developed by different members of a team. Each component will
have two faces: the interface that it shows to the outside world and an
implementation that it uses to fulfill the requirements of the interface.

The division between interface and implementation not only makes it
easier to understand a design at a high level (since the description of an
interface is much simpler than the description of any specific
implementation) but also makes it possible to interchange the software
components (as I can use any implementation that satisfies the
specifications given by the interface).

Catalogs



When the number of components in a system becomes large, it is
often useful to organize the items by means of a catalog. We use
many different forms of catalog in everyday life. Examples include a
telephone directory, a dictionary, or an Internet search engine.
Similarly, there are a variety of different catalogs used in software.
One example is a simple list of classes. Another catalog might be the
list of methods defined by a class. A reference book that describes
the classes found in the Java standard library is a very useful form of
catalog. In each of these cases the idea is to provide the user a
mechanism to quickly locate a single part (be it class, object, or
method) from a larger collection of items.

2.2.4 The service view
The idea that an interface describes the service provided by a software
component without describing the techniques used to implement the service
is at the heart of a much more general approach to managing the
understanding of complex software systems. It was this sort of abstraction
that we emphasized in our flower sending story in Chapter 1. Ultimately in
that story a whole community of people became involved in the process of
sending flowers.



Each member of the community is providing a service that is used by other
members of the group. No member could solve the problem on their own,
and it is only by working together that the desired outcome is achieved.

2.2.5 Composition
Composition is another powerful technique used to create complex
structures out of simple parts. The idea is to begin with a few primitive
forms and add rules for combining forms to create new forms. The key
insight in composition is to permit the combination mechanism to be used
both on the new forms as well as the original primitive forms.

A good illustration of this technique is the concept of regular
expressions. Regular expressions are a simple technique for describing sets
of values, and they have been extensively studied by theoretical computer
scientists. The description of a regular expression begins by identifying a
basic alphabet—for example, the letters a, b, c, and d. Any single example
of the alphabet is a regular expression. We next add a rule that says the
composition of two regular expressions is a regular expression. By applying
this rule repeatedly we see that any finite string of letters is a regular
expression.

abaccaba

The next combining rule says that the alternation (represented by the
vertical bar |) of two regular expressions is a regular expression. Normally
we give this rule a lower precedence than composition, so the following
pattern represents the set of three letter values that begin with ab and end
with either an a, c, or d.

aba | abc | abd

Parentheses can be used for grouping, so the previous set can also be
described as follows.

ab(a|c|d)



Finally, the * symbol (technically known as the kleene-star) is used to
represent the concept “zero or more repetitions.” By combining these rules
we can describe quite complex sets. For example, the following describes
the set of values that begin with a run of a’s and b’s followed by a single c
or a two-character sequence dd, followed by the letter a.

(((a|b)*c)|dd)a

This idea of composition is also basic to type systems. We begin with
the primitive types, such as int and boolean. The idea of a class then
permits the user to create new types. These new types can include data
fields constructed out of previous types, either primitive or user-defined.
Since classes can build on previously defined classes, very complex
structures can be constructed piece by piece.

Click here to view code image
class Box { // a box is a new data type 
  . 
  . 
  . 
  private int value; // built out of the existing type int 
}

Yet another application of the principle of composition is the way that
many user interface libraries facilitate the layout of windows. A window is
composed from a few simple data types, such as buttons, sliders, and
drawing panels. Various different types of layout managers create simple
structures. For example, a grid layout defines a rectangular grid of equal-
sized components, a border layout manager permits the specification of up
to five components in the north, south, east, west, and center of a screen. As
with regular expressions, the key is that windows can be structured as part
of other windows. Imagine, for example, that we want to define a window
that has three sliders on the left, a drawing panel in the middle, a bank of 16
buttons organized four by four on the right, and a text output box running
along the top. (We will develop just such an application in Chapter 22. A
screen shot is shown in Figure 22.4.) We can do this by laying simple
windows inside of more complex windows (Figure 2.3).

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch02_images.xhtml#f0035-01a


⊡ Figure 2.3 — Composition in the creation of user interfaces

Many computer programs can themselves be considered a product of
composition, where the method or procedure call is the mechanism of
composition. We begin with the primitive statements in the language
(assignments and the like). With these we can develop a library of useful
functions. Using these functions as new primitives, we can then develop
more complex functions. We continue, each layer being built on top of
earlier layers, until eventually we have the desired application.

2.2.6 Layers of specialization



Yet another approach to dealing with complexity is to structure abstraction
using layers of specialization. This is sometimes referred to as a taxonomy.
For example, in biology we divide living things into animals and plants.
Living things are then divided into vertebrates and invertebrates.
Vertebrates eventually includes mammals, which can then be divided into
cats, dogs, whales, and so on.

Nonstandard Behavior

Phyl and his friends remind us that there are almost never
generalizations without their being exceptions. A platypus (such as
phyl) is a mammal that lays eggs. Thus, while we might associate the
tidbit of knowledge “gives birth to live young” with the category
Mammal, we then need to amend this with the caveat “lays eggs” when
we descend to the category Platypus.

Object-oriented languages will also need a mechanism to override
information inherited from a more general category. We will explore
this in more detail once we have developed the idea of class
hierarchies.

The key difference between this and the earlier abstraction is that the
more specialized layer of abstraction (for example, a cat) is indeed
representative of the more general layer of abstraction (for example, an
animal). This was not true when, in an earlier example, we descended from
the characterization of a muscle to the description of different chemical
interactions. These two different types of connections are sometimes
described as is-a and has-a relationships.

However, in practice our reason for using either type of abstraction is
the same. The principle of abstraction permits us to suppress some details
so that we can more easily characterize a fewer number of features. For
example, we can say that mammals are animals that have hair and nurse
their young. By associating this fact at a high level of abstraction, we can
then apply the information to all more specialized categories, such as cats
and dogs.



The same technique is used in object-oriented languages. New interfaces
can be formed from existing interfaces. A class can be formed using
inheritance from an existing class. In doing so, all the properties (data fields
and behavior) we associate with the original class become available to the
new class.

In a case study later in this book we will examine the Java AWT
(Abstract Windowing Toolkit) library. When a programmer creates a new
application using the AWT, the main class is declared as a subclass of
Frame, which in turn is linked to many other classes in the AWT library
(Figure 2.4). A Frame is a special type of application window, but it is also a
more specialized type of the general class Window. A Window can hold other
graphical objects and is thus a type of Container. Each level of the
hierarchy provides methods used by lower levels. Even the simplest
application will likely use the following:

setTitle(Strin

g)
inherited from class Frame

setSize(int, 

int)
inherited from class Component

show() inherited from class Window

repaint() inherited from class Component

paint() inherited from Component, then

 overridden in the programmers new 
application class



⊡ Figure 2.4 — The AWT class hierarchy

2.2.7 Patterns
When faced with a new problem, most people will consider successful
solutions to previous problems with similar characteristics. The previous
problem can be used as a model, and the solution can be tried on the new
problem, with any necessary changes to accommodate the different
circumstances.

This insight lies behind the idea of a software pattern. A pattern is
nothing more than an attempt to document a proven solution to a problem
so that future problems can be more easily handled in a similar fashion. In
the object-oriented world this idea has been used largely to describe
patterns of interaction between the various members of an object
community.

A simple example will illustrate this idea of a pattern. Imagine one is
developing an application that will operate over a network. That means that
part of the application will run on one computer, and part will run on
another computer linked by a network connection. Creating the actual
connection between the two computers and transmitting information along
this connection are details that are perhaps not relevant to large portions of



the application. One way to structure these relationships is to use a type of
pattern termed a proxy. The proxy is an intermediary that hides the network
connection. Objects can interact with the proxy and not be aware that any
type of network connection is involved at all. When the proxy receives a
request for data or action, it bundles the request as a package, transmits the
package over the network, receives the response, unpackages the response,
and hands it back to the client. In this fashion the client is completely
unaware of the details of the network protocol.

Notice how the description of the pattern has captured certain salient
points of the interaction (the need to hide the communication protocol from
the client) while omitting many other aspects of the interaction (for
example, the particular information being communicated between client
and server). We will have more to say about patterns in Chapter 24.

*2.3 ⊡ A Short History of Abstraction
Mechanisms
Each of the abstraction mechanisms in this chapter was the end product of a
long process of searching for ways to deal with complexity. Another way to
appreciate the role of object-oriented programming is to quickly review the
history of mechanisms that computer languages have used to manage
complexity. When seen in this perspective, object-oriented techniques are
not at all revolutionary but are rather a natural outcome of a progression
from procedures, to modules, to abstract data types, and finally to objects.

2.3.1 Assembly language



The techniques used to control the first computers were hardly what we
would today term a language. Memory locations were described by address
(for example, location 372), not by name or purpose. Operations were
similarly described by a numeric operation code. For example, an integer
addition might be written as opcode 33, an integer subtraction as opcode 35.
The following program might add the contents of location 372 to that of
376, then subtract from the result the value stored in location 377.

33     372     376
35     377     376
. . .     . . .      . . .

One of the earliest abstraction mechanisms was the creation of an
assembler—a tool that could take a program written in a more human-
friendly form and translate it into a representation suitable for execution by
the machine. The assembler permitted the use of symbolic names. The
previous instructions might now be written as follows.
ADDI   A,X
SUBI    B,X
 . . .        . . .

This simple process was the first step in the long process of abstraction.
Abstraction allowed the programmer to concentrate more effort on defining
the task to be performed and less on the steps necessary to complete the
task.

2.3.2 Procedures
Procedures and functions represent the next improvement in abstraction in
programming languages. Procedures allowed tasks that were executed
repeatedly, or executed with only slight variations, to be collected in one
place and reused, rather than being duplicated several times. In addition, the
procedure gave the first possibility for information hiding. One programmer
could write a procedure, or a set of procedures, that was used by many
others. Other programmers did not need to know the exact details of the
implementation—they needed only the necessary interface. But procedures



were not an answer to all problems. In particular, they were not an effective
mechanism for information hiding, and they only partially solved the
problem of multiple programmers using the same names.

To illustrate these problems, we can consider a programmer who must
write a set of routines to implement a simple stack. Following good
software engineering principles, our programmer first establishes the
visible interface to her work—say, a set of four routines: init, push, pop,
and top. She then selects some suitable implementation technique. There
are many choices here, such as an array with a top-of-stack pointer, a linked
list, and so on. Our intrepid programmer selects from among these choices,
then proceeds to code the utilities, as shown in Figure 2.5.

Click here to view code image
int datastack[100]; 
int datatop =0; 
 
void init() 
{ 
  datatop = 0; 
} 
 
void push(int val) 
{ 
  if (datatop < 100) 
    datastack [datatop++] = val; 
} 
 
int top() 
{ 
  if (datatop > 0) 
    return datastack [datatop - 1]; 
  return 0; 
} 
 
int pop() 
{ 
  if (datatop > 0) 
    return datastack [--datatop]; 
  return 0; 
}

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch02_images.xhtml#f0041-01a


⊡ Figure 2.5 — Failure of procedures in information hiding

It is easy to see that the data contained in the stack itself cannot be made
local to any of the four routines, since they must be shared by all. But if the
only choices are local variables or global variables (as they are in early
programming languages, such as FORTRAN, or in C prior to the
introduction of the static modifier), then the stack data must be maintained
in global variables. However, if the variables are global, there is no way to
limit the accessibility or visibility of these names. For example, if the stack
is represented in an array named datastack, this fact must be made known
to all the other programmers, since they may want to create variables using
the same name and should be discouraged from doing so. This is true even
though these data values are important only to the stack routines and should
not have any use outside of these four procedures. Similarly, the names
init, push, pop, and top are now reserved and cannot be used in other
portions of the program for other purposes, even if those sections of code
have nothing to do with the stack routines.

2.3.3 Modules
The solution to the problem of global name space congestion was the
introduction of the idea of a module. In one sense, modules can be viewed
simply as an improved technique for creating and managing collections of
names and their associated values. Our stack example is typical in that there
is some information (the interface routines) that we want to be widely and
publicly available, whereas there are other data values (the stack data
themselves) that we want restricted. Stripped to its barest form, a module
provides the ability to divide a name space into two parts. The public part is
accessible outside the module; the private part is accessible only within the
module. Types, data (variables), and procedures can all be defined in either
portion. A module encapsulation of the stack abstraction is shown in Figure
2.6.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch02_images.xhtml#f0042-01a


module StackModule; 
  export push, pop, top; (* the public interface *) 
 
  var 
    (* since data values are not exported, they are hidden *) 
    datastack : array [ 1 .. 100 ] of integer; 
    datatop : integer; 
 
  procedure push(val : integer) ... 
 
  procedure top : integer ... 
 
  procedure pop : integer ... 
 
  begin      (* can perform initialization here *) 
    datatop = 0; 
  end; 
end StackModule.

⊡ Figure 2.6 — A module for the stack abstraction

David Parnas, who popularized the notion of modules, described the
following two principles for their proper use.

1. One must provide the intended user with all the information needed to
use the module correctly and nothing more.

2. One must provide the implementor with all the information needed to
complete the module and nothing more.

The philosophy is much like the military doctrine of “need to know”: If
you do not need to know some information, you should not have access to
it. This explicit and intentional concealment of information is what we have
been calling information hiding.

Modules solve some, but not all, of the problems of software
development. For example, they will permit our programmer to hide the
implementation details of her stack, but what if the other users want to have
two (or more) stacks?

As a more extreme example, suppose a programmer announces that he
has developed a new type of numeric abstraction, called Complex. He has
defined the arithmetic operations for complex numbers—addition,



subtraction, multiplication, and so on—and has defined routines to convert
numbers from conventional to complex. There is just one small problem:
Only one complex number can be manipulated.

The complex number system would not be useful with this restriction,
but this is just the situation in which we find ourselves with simple
modules. Modules by themselves provide an effective method of
information hiding, but they do not allow us to perform instantiation, which
is the ability to make multiple copies of the data areas. To handle the
problem of instantiation, computer scientists needed to develop a new
concept.

2.3.4 Abstract data types
The development of the notion of an abstract data type was driven, in part,
by two important goals. The first we have identified already. Programmers
should be able to define their own new data abstractions that work much
like the primitive system provided data types. This includes giving clients
the ability to create multiple instances of the data type. But equally
important, clients should be able to use these instances knowing only the
operations that have been provided, without concern for how those
operations were supported.

An abstract data type is defined by an abstract specification. The
specification for our stack data type might list, for example, the trio of
operations push, pop, and top. Matched with the ADT will be one or more
different implementations. There might be several different implementation
techniques for our stack—for example, one using an array and another
using a linked list. As long as the programmer restricts himself to only the
abstract specification, any valid implementation should work equally well.

The important advance in the idea of the ADT is to finally separate the
notions of interface and implementation. Modules are frequently used as an
implementation technique for abstract data types, although we emphasize
that modules are an implementation technique and that the abstract data
type is a more theoretical concept. The two are related but are not identical.
To build an abstract data type, we must be able to do the following.

1. Export a type definition.



2. Make available a set of operations that can be used to manipulate
instances of the type.

3. Protect the data associated with the type so that they can be operated
on only by the provided routines.

4. Make multiple instances of the type.
As we have defined them, modules serve only as an information-hiding

mechanism and thus directly address only list items 2 and 3, although the
others can be accommodated via appropriate programming techniques.
Packages, found in languages such as CLU and Ada, are an attempt to
address more directly the issues involved in defining abstract data types.

In a certain sense, an object is simply an abstract data type. People have
said, for example, that Smalltalk programmers write the most “structured”
of all programs because they cannot write anything but definitions of
abstract data types. It is true that an object definition is an abstract data
type, but the notions of object-oriented programming build on the ideas of
abstract data types and add to them important innovations in code sharing
and reusability.

2.3.5 A service-centered view
Assembly language and procedures as abstraction mechanisms concentrated
the programmer’s view at the functional level: how a task should be
accomplished. The movement toward modules and ADT is indicative of a
shift from a function-centered conception of computation to a more data-
centered view. Here it is the data values that are important—their structure,
representation, and manipulation.

Object-oriented programming starts from this data-centered view of the
world and takes it one step further. It is not that data abstractions, per se, are
important to computation. Rather, an ADT is a useful abstraction because it
can be defined in terms of the service it offers to the rest of a program.
Other types of abstractions can be similarly defined, not in terms of their
particular actions or their data values but in terms of the services they
provide.

Assembly Language Function



Functions and Procedures Centered View

Modules
Abstract Data Types

Data
Centered View

Object-Oriented
Programming

Service
Centered View

Thus, object-oriented programming represents a third step in this
sequence: from function-centered, to data-centered, and finally to service-
centered view of how to structure a computer program.

2.3.6 Messages, inheritance, and polymorphism
In addition to this service-centered view of computing, object-oriented
programming adds several important new ideas to the concept of the
abstract data type. Foremost among these is message passing. Activity is
initiated by a request to a specific object, not by the invoking of a function.

Implicit in message passing is the idea that the interpretation of a
message can vary with different objects. That is, the behavior and response
that the message elicits will depend on the object receiving it. Thus, push
can mean one thing to a stack and a very different thing to a mechanical-
arm controller. Since names for operations need not be unique, simple and
direct forms can be used, leading to more readable and understandable
code.

Finally, object-oriented programming adds the mechanisms of
inheritance and polymorphism. Inheritance allows different data types to
share the same code, leading to a reduction in code size and an increase in
functionality. Polymorphism allows this shared code to be tailored to fit the
specific circumstances of individual data types. The emphasis on the
independence of individual components permits an incremental
development process in which individual software units are designed,
programmed, and tested before being combined into a large system. We
will discuss all of these ideas in more detail in subsequent chapters.

Summary ⊡



People deal with complex artifacts and situations every day. Thus, while
many readers may not yet have created complex computer programs, they
nevertheless will have experience in using the tools that computer scientists
employ in managing complexity.

The most basic tool is abstraction, the purposeful suppression of
detail in order to emphasize a few basic features.
Information hiding describes the part of abstraction in which we
intentionally choose to ignore some features so that we can
concentrate on others.
Abstraction is often combined with a division into components. For
example, we divided the automobile into the engine and the
transmission. Components are carefully chosen so that they
encapsulate certain key features and interact with other components
through a simple and fixed interface.
The division into components means we can divide a large task into
smaller problems that can then be worked on more or less
independently of each other. It is the responsibility of a developer of a
component to provide an implementation that satisfies the
requirements of the interface.
A point of view that turns out to be very useful in developing
complex software systems is the concept of a service provider. A
software component is providing a service to other components with
which it interacts. In real life we often characterize members of the
communities in which we operate by the services they provide. (A
delivery person is charged with transporting flowers from a florist to a
recipient.) Thus, this metaphor allows us to think about a large
software system in the same way that we think about situations in our
everyday lives.
Another form of abstraction is a taxonomy—in object-oriented
languages more often termed an inheritance hierarchy. Here the
layers are more detailed representatives of a general category. An
example of this type of system is a biological division into categories
such as Living Thing-Animal-Mammal-Cat. Each level is a more
specialized version of the previous. This division simplifies



understanding, since knowledge of more general levels is applicable
to many more specific categories. When applied to software this
technique also simplifies the creation of new components, since if a
new component can be related to an existing category, all the
functionality of the older category can be used for free. (Thus, for
example, by saying that a new component represents a Frame in the
Java library, we immediately get features such as a menu bar as well
as the ability to move and resize the window.)
Finally, a particular tool that has become popular in recent years is the
pattern. A pattern is simply a generalized description of a solution to
a problem that has been observed to occur in many places and in
many forms. The pattern described how the problem can be addressed
and the reasons both for adopting the solution and for considering
other alternatives. We will see several different types of patterns
throughout this book.

Further Information ⊡
In the sidebar on page 33 we mention software catalogs. For the Java
programmer, a very useful catalog is The Java Developers Almanac, by
Patrick Chan [Chan 2000].

The concept of patterns actually grew out of work in architecture,
specifically the work of Christopher Alexander [Alexander 1977]. The
application of patterns to software is described by Gabriel [Gabriel 1996].
The best-known catalog of software Patterns is by Gamma et al. [Gamma
1995]. A more recent almanac that collects several hundred design patterns
is [Rising 2000].

The criticism of procedures as an abstraction technique, because they
fail to provide an adequate mechanism for information hiding, was first
stated by William Wulf and Mary Shaw [Wulf 1973] in an analysis of many
of the problems surrounding the use of global variables. These arguments
were later expanded upon by David Hanson [Hanson 1981].

David Parnas originally described his principles in [Parnas 1972].
An interesting book that deals with the relationship between how people

think and the way they form abstractions of the real word is Lakoff [Lakoff
1987].



Self-Study Questions ⊡
1. What is abstraction?
2. Give an example of how abstraction is used in real life.
3. What is information hiding?
4. Give an example of how information hiding is used in real life.
5. What are the layers of abstraction found in an object-oriented

program?
6. What do the terms client and server mean when applied to simple

object-oriented programs?
7. What is the distinction between an interface and an implementation?
8. How does an emphasis on encapsulation and the identification of

interfaces facilitate interchangeability?
9. What are the basic features of composition as a technique for creating

complex systems out of simple parts?
10. How does a division based on layers of specialization differ from a

division based on separation into parts?
11. What goal motivates the collection of software patterns?
12. What key idea was first realized by the development of procedures as

a programming abstraction?
13. What are the basic features of a module?
14. How is an abstract data type different from a module?
15. In what ways is an object similar to an abstract data type? In what

ways are they different?

Exercises ⊡
1. Consider a relationship in real life, such as the interaction between a

customer and a waiter in a resturant. Describe the interaction govering



this relationship in terms of an interface for a customer object and a
waiter object.

2. Take a relatively complex structure from real life, such as a building.
Describe features of the building using the technique of division into
parts, followed by a further refinement of each part into a more
detailed description. Extend your description to at least three levels of
detail.

3. Describe a collection of everyday objects using the technique of
layers of specialization.



Chapter 3

Object-Oriented Design

A cursory explanation of object-oriented programming emphasizes the
syntactic features of languages such as C++ or Delphi, as opposed to their
older, non-object-oriented versions, C or Pascal. Thus, an explanation
usually turns quickly to issues such as classes and inheritance, message
passing, and virtual and static methods. But such a description will miss the
most important point of object-oriented programming, which has nothing to
do with syntax.

Working in an object-oriented language (that is, one that supports
inheritance, message passing, and classes) is neither a necessary nor
sufficient condition for doing object-oriented programming. As we
emphasized in Chapters 1 and 2, the most important aspect of OOP is the
creation of a universe of largely autonomous interacting agents. But how
does one come up with such a system? The answer is a design technique
driven by the determination and delegation of responsibilities. The
technique described in this chapter is termed responsibility-driven design.1

1. The past few years have seen a poliferation of object-oriented design techniques. See the section
on further reading at the end of this chapter for pointers to some of the alternatives. I have selected
responsibility-driven design, developed by Rebecca Wirfs-Brock [Wirfs-Brock 1989b, Wirfs-Brock
1990] because it is one of the simplest, and it facilitates the transition from design to programming.
Also in this chapter I introduce some of the notational techniques made popular by the Unified
Modeling Language, or UML. However, space does not permit a complete introduction to UML, nor
is it necessary for an understanding of subsequent material in the book.



3.1 ⊡ Responsibility Implies
Noninterference
As anyone who has raised children, or who can remember their own
childhood, can attest, responsibility is a sword that cuts both ways. When
you make an object (be it a child or a software system) responsible for
specific actions, you expect a certain behavior, at least when the rules are
observed. But just as important, responsibility implies a degree of
independence or noninterference. If you tell a child that she is responsible
for cleaning her room, you do not normally stand over her and watch while
that task is being performed—that is not the nature of responsibility.
Instead, you expect that, having issued a directive in the correct fashion, the
desired outcome will be produced.

Similarly, in our flowers example, when Chris gave the request to the
florist to deliver flowers to Robin, it was not necessary to stop to think
about how the request would be serviced. The florist, having taken on the
responsibility for this service, is free to operate without interference on the
part of the customer, Chris.

The difference between conventional programming and object-oriented
programming is in many ways the difference between actively supervising
a child while she performs a task and delegating to the child responsibility
for that performance. Conventional programming proceeds largely by doing
something to something else—modifying a record or updating an array, for
example. Thus, one portion of code in a software system is often intimately
tied, by control and data connections, to many other sections of the system.
Such dependencies can come about through the use of global variables,
through use of pointer values, or simply through inappropriate use of and
dependence on implementation details of other portions of code. A
responsibility-driven design attempts to cut these links, or at least make
them as unobtrusive as possible.

This notion might at first seem no more subtle than the concepts of
information hiding and modularity, which are important to programming
even in conventional languages. But responsibility-driven design elevates
information hiding from a technique to an art. This principle of information
hiding becomes vitally important when one moves from programming in
the small to programming in the large.



One of the major benefits of object-oriented programming occurs when
software subsystems are reused from one project to the next. For example, a
simulation manager (such as the one we will develop in Chapter 7) might
work for both a simulation of balls on a billiards table and a simulation of
fish in a fish tank. This ability to reuse code implies that the software can
have almost no domain-specific components; it must totally delegate
responsibility for domain-specific behavior to application-specific portions
of the system. The ability to create such reusable code is not one that is
easily learned. It requires experience, careful examination of case studies
(paradigms, in the original sense of the word), and use of a programming
language in which such delegation is natural and easy to express. In
subsequent chapters, we will see several such examples.

3.2 ⊡ Programming in the Small and in
the Large
The difference between the development of individual projects and of more
sizable software systems is often described as programming in the small
versus programming in the large.

Programming in the small characterizes projects with the following
attributes.

Code is developed by a single programmer or by a very small
collection of programmers. A single individual can understand all
aspects of a project from top to bottom, beginning to end.
The major problem in the software development process is the design
and development of algorithms for dealing with the problem at hand.

Programming in the large, on the other hand, characterizes software
projects with features such as the following.

The software system is developed by a large team, often consisting of
people with many different skills. There may be graphic artists,
design experts, as well as programmers. Individuals involved in the
specification or design of the system may differ from those involved
in the coding of individual components, who may differ as well from
those involved in the integration of various components in the final



product. No single individual can be responsible for the entire project
or even understand all aspects of the project.
The major problem in the software development process is the
management of details and the communication of information
between diverse portions of the project.

While the beginning student will usually be acquainted with
programming in the small, aspects of many object-oriented languages are
best understood as responses to the problems encountered while
programming in the large. Thus, some appreciation of the difficulties
involved in developing large systems is a helpful prerequisite to
understanding OOP.

3.3 ⊡ Why Begin with Behavior?
Why begin the design process with an analysis of behavior? The simple
answer is that the behavior of a system is usually understood long before
any other aspect.

Earlier software development methodologies (those popular before the
advent of object-oriented techniques) concentrated on ideas such as
characterizing the basic data structures or the overall structure of function
calls, often within the creation of a formal specification of the desired
application. But structural elements of the application can be identified only
after a considerable amount of problem analysis. Similarly, a formal
specification often ended up as a document understood by neither
programmer nor client. But behavior is something that can be described
almost from the moment an idea is conceived and (often unlike a formal
specification) can be described in terms meaningful to both the
programmers and the client.

Responsibility-Driven Design (RDD), developed by Rebecca Wirfs-
Brock, is an object-oriented design technique that is driven by an emphasis
on behavior at all levels of development. It is but one of many alternative
object-oriented design techniques. We will illustrate the application of
Responsibility-Driven Design with a case study.



3.4 ⊡ A Case Study in RDD
Imagine you are the chief software architect in a major computer firm. One
day your boss walks into your office with an idea that, it is hoped, will be
the next major success in your product line. Your assignment is to develop
the Interactive Intelligent Kitchen Helper (Figure 3.1).

⊡ Figure 3.1 — View of the Interactive Intelligent Kitchen Helper



The task given to your software team is stated in very few words
(written on what appears to be the back of a slightly used dinner napkin, in
handwriting that appears to be your boss’s).

3.4.1 The Interactive Intelligent Kitchen Helper
Briefly, the Interactive Intelligent Kitchen Helper (IIKH) is a PC-based
application that will replace the index-card system of recipes found in the
average kitchen. But more than simply maintaining a database of recipes,
the kitchen helper assists in the planning of meals for an extended period—
say, a week. The user of the IIKH can sit down at a terminal, browse the
database of recipes, and interactively create a series of menus. The IIKH
will automatically scale the recipes to any number of servings and will print
out menus for the entire week, for a particular day, or for a particular meal.
It will also print an integrated grocery list of all the items needed for the
recipes for the entire period.

As is usually true with the initial descriptions of most software systems,
the specification for the IIKH is highly ambiguous on a number of
important points. It is also true that, in all likelihood, the eventual design
and development of the software system to support the IIKH will require
the efforts of several programmers working together. Thus, the initial goal
of the design team must be to clarify the ambiguities in the description and
to outline how the project can be divided into components to be assigned
for development to individual team members.

The fundamental cornerstone of object-oriented programming is to
characterize software in terms of behavior—that is, actions to be
performed. We will see this repeated on many levels in the development of
the IIKH. Initially, the team will try to characterize, at a very high level of
abstraction, the behavior of the entire application. This then leads to a
description of the behavior of various software subsystems. Only when all
behavior has been identified and described will the software design team
proceed to the coding step. In the next several sections we will trace the
tasks the software design team will perform in producing this application.

3.4.2 Working through scenarios



The first task is to refine the specification. As we have already noted, initial
specifications are almost always ambiguous and unclear on anything except
the most general points. There are several goals for this step. One objective
is to get a better handle on the “look and feel” of the eventual product. This
information can then be carried back to the client (in this case, your boss) to
see if it is in agreement with the original conception. It is likely, perhaps
inevitable, that the specifications for the final application will change
during the creation of the software system, and it is important that the
design be developed to easily accommodate change and that potential
changes be noted as early as possible. Equally important, at this point very
high-level decisions can be made concerning the structure of the eventual
software system. In particular, the activities to be performed can be mapped
onto components.

In order to uncover the fundamental behavior of the system, the design
team first creates a number of scenarios. That is, the team acts out the
running of the application just as if it already possessed a working system.
An example scenario is shown in Figure 3.2.

Simple Browsing
Alice Smith sits down at her computer and starts the IIKH. When the
program begins, it displays a graphical image of a recipe box and
identifies itself as the IIKH, product of IIKH incorporated. Alice presses
the return button to begin.

In response to the key press, Alice is given a choice of a number of
options. She elects to browse the recipe index, looking for a recipe for
salmon that she wishes to prepare for dinner the next day. She enters the
keyword “salmon” and is shown in response a list of various recipes.
She remembers seeing an interesting recipe that used dill weed as a
seasoning. She refines the search, entering the words “salmon” and “dill
weed.” This narrows the search to two recipes.

She selects the first. This brings up a new window in which an
attractive picture of the finished dish is displayed, along with the list of
ingredients, preparation steps, and expected preparation time. After
examining the recipe, Alice determines it is not the recipe she wanted.
She returns to the search result page and selects the second alternative.



Examining this dish, Alice decides this is the one she had in mind.
She requests a printout of the recipe, and the output is spooled to her
printer. Alice selects “quit” from a program menu, and the application
quits.

⊡ Figure 3.2 — An example scenario

3.4.3 Identification of components
The engineering of a complex physical system, such as a building or an
automobile engine, is simplified by dividing the design into smaller units.
So, too, the engineering of software is simplified by the identification and
development of software components. A component is simply an abstract
entity that can perform tasks—that is, fulfill some responsibilities. At this
point, it is not necessary to know exactly the eventual representation for a
component or how a component will perform a task. A component may
ultimately be turned into a function, a structure or class, or a collection of
other components. At this level of development there are just two important
characteristics.

A component must have a small, well-defined set of responsibilities.
A component should interact with other components to the minimal
extent possible.

We will shortly discuss the reasoning behind the second characteristic.
For the moment we are simply concerned with the identification of
component responsibilities.

3.5 ⊡ CRC Cards—Recording
Responsibility
As the design team walks through the various scenarios they have created,
they identify the components that will be performing certain tasks. Every
activity that must take place is identified and assigned to some component
as a responsibility.



Component Name Collaborators

Description of the responsibilities 
assigned to this component

List of other 
componets

As part of this process, it is often useful to represent components using
small index cards. Written on the face of the card is the name of the
software component, the responsibilities of the component, and the names
of other components with which the component must interact. Such cards
are sometimes known as CRC (Component, Responsibility, Collaborator)
cards and are associated with each software component. As responsibilities
for the component are discovered, they are recorded on the face of the CRC
card.

3.5.1 Give components a physical representation
While working through scenarios, it is useful to assign CRC cards to
different members of the design team. The member holding the card
representing a component records the responsibilities of the associated
software component and acts as the “surrogate” for the software during the
scenario simulation. He or she describes the activities of the software
system, passing “control” to another member when the software system
requires the services of another component.

An advantage of CRC cards is that they are widely available,
inexpensive, and erasable. This encourages experimentation, since
alternative designs can be tried, explored, or abandoned with little
investment. The physical separation of the cards encourages an intuitive
understanding of the importance of the logical separation of the various
components, helping to emphasize the cohesion and coupling (which we
will describe shortly). The constraints of an index card are also a good
measure of approximate complexity. A component that is expected to
perform more tasks than can fit easily in this space is probably too
complex, and the team should find a simpler solution, perhaps by moving



some responsibilities elsewhere to divide a task between two or more new
components.

3.5.2 The what/who cycle
As we noted at the beginning of this discussion, the identification of
components takes place during the process of imagining the execution of a
working system. Often this proceeds as a cycle of what/who questions.
First, the design team identifies what activity needs to be performed next.
This is immediately followed by answering the question of who performs
the action. In this manner, designing a software system is much like
organizing a collection of people, such as a club. Any activity that is to be
performed must be assigned as a responsibility to some component.

A popular bumper sticker states that phenomena can and will
spontaneously occur. (The bumper sticker uses a slightly shorter phrase.)
We know, however, that in real life this is seldom true. If any action is to
take place, there must be an agent assigned to perform it. Just as in the
running of a club any action to be performed must be assigned to some
individual, in organizing an object-oriented program all actions must be the
responsibility of some component. The secret to good object-oriented
design is to first establish an agent for each action.

3.5.3 Documentation
At this point the development of documentation should begin. Two
documents should be essential parts of any software system: the user
manual and the system design documentation. Work on both of these can
commence even before the first line of code has been written.

The user manual describes the interaction with the system from the
user’s point of view; it is an excellent means of verifying that the
development team’s conception of the application matches the client’s.
Since the decisions made in creating the scenarios will closely match the
decisions the user will be required to make in the eventual application, the
development of the user manual naturally dovetails with the process of
walking through scenarios.



Before any actual code has been written, the mindset of the software
team is most similar to that of the eventual users. Thus, it is at this point
that the developers can most easily anticipate the sort of questions to which
a novice user will need answers. A user manual is also an excellent tool to
verify that the programming team is looking at the problem in the same
way that the client intended. A client seldom presents the programming
team with a complete and formal specification, and thus some reassurance
and two-way communication early in the process, before actual
programming has begun, can prevent major misunderstandings.

The second essential document is the design documentation. The design
documentation records the major decisions made during software design
and should thus be produced when these decisions are fresh in the minds of
the creators and not after the fact when many of the relevant details will
have been forgotten. It is often far easier to write a general global
description of the software system early in the development. Too soon, the
focus will move to the level of individual components or modules. While it
is also important to document the module level, too much concern with the
details of each module will make it difficult for subsequent software
maintainers to form an initial picture of the larger structure.

CRC cards are one aspect of the design documentation, but many other
important decisions are not reflected in them. Arguments for and against
any major design alternatives should be recorded, as well as factors that
influenced the final decisions. A log or diary of the project schedule should
be maintained. Both the user manual and the design documents are refined
and evolve over time in exactly the same way the software is refined and
evolves.

3.6 ⊡ Components and Behavior
To return to the IIKH, the team decides that when the system begins, the
user will be presented with an attractive, informative window (see Figure
3.1). The responsibility for displaying this window is assigned to a
component called the Greeter. In some as yet unspecified manner (perhaps
by pull-down menus, button or key presses, or use of a pressure-sensitive
screen), the user can select one of several actions. Initially, the team
identifies just five actions.



1. Casually browse the database of existing recipes but without
reference to any particular meal plan.

2. Add a new recipe to the database.
3. Edit or annotate an existing recipe.
4. Review an existing plan for several meals.
5. Create a new plan of meals.
These activities seem to divide themselves naturally into two groups.

The first three are associated with the recipe database; the latter two are
associated with menu plans. As a result, the team next decides to create
components corresponding to these two responsibilities. Continuing with
the scenario, the team elects to ignore the meal plan management for the
moment and move on to refine the activities of the Recipe Database
component. Figure 3.3 shows the initial CRC card representation of the
Greeter.

Greeter Collaborators

Display informative initial message

Offer user choice of options

Pass control to either

Recipe Database Manager

Plan Manager for processing

Database Manager

Plan Manager

⊡ Figure 3.3 — CRC card for the Greeter



Broadly speaking, the responsibility of the recipe database component is
simply to maintain a collection of recipes. We have already identified three
elements of this task: The recipe component database must facilitate
browsing the library of existing recipes, editing the recipes, and including
new recipes in the database.

3.6.1 Postponing decisions
There are a number of decisions that must eventually be made concerning
how best to let the user browse the database. For example, should the user
first be presented with a list of categories, such as “soups,” “salads,” “main
meals,” and “desserts”? Alternatively, should the user be able to describe
keywords to narrow a search, perhaps by providing a list of ingredients, and
then see all the recipes that contain those items (“almonds, strawberries,
cheese”) or a list of previously inserted keywords (“Bob’s favorite cake”)?
Should scroll bars be used or simulated thumbholes in a virtual book?
These are fun to think about, but the important point is that such decisions
do not need to be made at this point (see the next section). Since they affect
only a single component and do not affect the functioning of any other
system, all that is necessary to continue the scenario is to assert that by
some means the user can select a specific recipe.

3.6.2 Preparing for change
It has been said that all that is constant in life is the inevitability of
uncertainty and change. The same is true of software. No matter how
carefully one tries to develop the initial specification and design of a
software system, it is almost certain that, sometime during the life of the
system, changes in the user’s needs or requirements will force changes to be
made to the software. Programmers and software designers need to
anticipate this and plan accordingly.

The primary objective is that changes should affect as few
components as possible. Even major changes in the appearance or
functioning of an application should be possible with alterations to
only one or two sections of code.



Try to predict the most likely sources of change and isolate the effects
of such changes to as few software components as possible. The most
likely sources of change are interfaces, communication formats, and
output formats.
Try to isolate and reduce the dependency of software on hardware.
For example, the interface for recipe browsing in our application may
depend in part on the hardware on which the system is running.
Future releases may be ported to different platforms. A good design
will anticipate this change.
Reducing coupling between software components will reduce the
dependence of one on another and increase the likelihood that one can
be changed with minimal effect on the other.
In the design documentation, maintain careful records of the design
process and the discussions surrounding all major decisions. It is
almost certain that the individuals responsible for maintaining the
software and designing future releases will have at least some
members different from the team producing the initial release. The
design documentation will allow future teams to know the important
factors behind a decision and help them avoid spending time
discussing issues that have already been resolved.

3.6.3 Continuing the scenario
Each recipe will be identified with a specific recipe component. Once a
recipe is selected, control is passed to the associated recipe object. A recipe
must contain certain information. Basically, it consists of a list of
ingredients and the steps needed to transform the ingredients into the final
product. In our scenario, the recipe component must also perform other
activities. For example, it will display the recipe interactively on the
terminal screen. The user may be given the ability to annotate or change
either the list of ingredients or the instruction portion. Alternatively, the
user may request a printed copy of the recipe. All of these actions are the
responsibility of the Recipe component. (For the moment, we will continue
to describe the Recipe in singular form. During design we can think of this



as a prototypical recipe that stands in place of a multitude of actual recipes.
We will later return to a discussion of singular versus multiple components.)

Having outlined the actions that must take place to permit the user to
browse the database, we return to the recipe database manager and pretend
the user has indicated a desire to add a new recipe. The database manager
somehow decides in which category to place the new recipe (again, the
details of how this is done are unimportant for our development at this
point), requests the name of the new recipe, and then creates a new recipe
component, permitting the user to edit this new blank entry. Thus, the
responsibilities of performing this new task are a subset of those we already
identified in permitting users to edit existing recipes.

Having explored the browsing and creation of new recipes, we return to
the Greeter and investigate the development of daily menu plans, which is
the Plan Manager’s task. In some way (again, the details are unimportant
here) the user can save existing plans. Thus, the Plan Manager can either be
started by retrieving an already developed plan or by creating a new plan.
In the latter case, the user is prompted for a list of dates for the plan. Each
date is associated with a separate Date component. The user can select a
specific date for further investigation, in which case control is passed to the
corresponding Date component. Another activity of the Plan Manager is
printing out the recipes for the planning period. Finally, the user can
instruct the Plan Manager to produce a grocery list for the period.

The Date component maintains a collection of meals as well as any other
annotations provided by the user (birthday celebrations, anniversaries,
reminders, and so on). It prints information on the display concerning the
specified date. By some means (again unspecified), the user can indicate a
desire to print all the information concerning a specific date or choose to
explore in more detail a specific meal. In the latter case, control is passed to
a Meal component.

The Meal component maintains a collection of augmented recipes, where
the augmentation refers to the user’s desire to double, triple, or otherwise
increase a recipe. The Meal component displays information about the meal.
The user can add or remove recipes from the meal or can instruct that
information about the meal be printed. In order to discover new recipes, the
user must be permitted at this point to browse the recipe database. Thus, the
Meal component must interact with the recipe database component. The
design team will continue in this fashion, investigating every possible



scenario. The major category of scenarios we have not developed here is
exceptional cases. For example, what happens if a user selects a number of
keywords for a recipe and no matching recipe is found? How can the user
cancel an activity, such as entering a new recipe, if he or she decides not to
continue? Each possibility must be explored, and the responsibilities for
handling the situation must be assigned to one or more components.

Having walked through the various scenarios, the software design team
eventually decides that all activities can be adequately handled by six
components (Figure 3.4). The Greeter needs to communicate only with the
Plan Manager and the Recipe Database components. The Plan Manager
needs to communicate only with the Date component and the Date agent
only with the Meal component. The Meal component communicates with the
Recipe Manager and, through this agent, with individual recipes.

⊡ Figure 3.4 — Communication between the six components in the
IIKH



3.6.4 Interaction diagrams
While the process in Figure 3.4 may illustrate the static relationships
between components, it is not very good for describing their dynamic
interactions during the execution of a scenario. A better tool for this
purpose is an interaction diagram. Figure 3.5 shows the beginning of an
interaction diagram for the interactive kitchen helper. In the diagram, time
moves forward from the top to the bottom. Each component is represented
by a labeled vertical line. A component sending a message to another
component is represented by a horizontal arrow from one line to another.
Similarly, a component returning control and perhaps a result value back to
the caller is represented by an arrow. (Some authors use two different arrow
forms, such as a solid line to represent message passing and a dashed line to
represent returning control.) The commentary on the right side of the figure
explains more fully the interaction taking place.

⊡ Figure 3.5 — An example interaction diagram

With a time axis, the interaction diagram is able to describe better the
sequencing of events during a scenario. For this reason, interaction
diagrams can be a useful documentation tool for complex software systems.



3.7 ⊡ Software Components
In this section we will explore a software component in more detail. As is
true of all but the most trivial ideas, there are many aspects to this
seemingly simple concept.

3.7.1 Behavior and state
We have already seen how components are characterized by their behavior
—that is, by what they can do. But components may also hold certain
information. Let us take as our prototypical component a Recipe structure
from the IIKH. One way to view such a component is as a pair consisting of
behavior and state.

The behavior of a component is the set of actions it can perform. The
complete description of all the behavior for a component is
sometimes called the protocol. For the Recipe component this
includes activities such as editing the preparation instructions,
displaying the recipe on a terminal screen, or printing a copy of the
recipe.
The state of a component represents all the information held within it
at a given point of time. For our Recipe component the state includes
the ingredients and preparation instructions. Notice that the state is
not static and can change over time. For example, by editing a recipe
(a behavior) the user can make changes to the preparation instructions
(part of the state).

It is not necessary that all components maintain state information. For
example, it is possible that the Greeter component will not have any state
since it does not need to remember any information during the course of
execution. However, most components will consist of a combination of
behavior and state.

3.7.2 Instances and classes



The separation of state and behavior permits us to clarify a point we
avoided in our earlier discussion. Note that in the real application there will
probably be many different recipes. However, all of these recipes will
perform in the same manner. That is, the behavior of each recipe is the
same; it is only the state—the individual lists of ingredients and instructions
for preparation—that differs between individual recipes. In the early stages
of development our interest is in characterizing the behavior common to all
recipes; the details particular to any one recipe are unimportant.

The term class is used to describe a set of objects with similar behavior.
We will see in later chapters that a class is also used as a syntactic
mechanism in almost all object-oriented languages. An individual
representative of a class is known as an instance. Note that behavior is
associated with a class, not with an individual. That is, all instances of a
class will respond to the same instructions and perform in a similar manner.
On the other hand, state is a property of an individual. We see this in the
various instances of the class Recipe. They can all perform the same
actions (editing, displaying, printing) but use different data values.

3.7.3 Coupling and cohesion
Two important concepts in the design of software components are coupling
and cohesion. Cohesion is the degree to which the responsibilities of a
single component form a meaningful unit. High cohesion is achieved by
associating in a single component tasks that are related in some manner.
Probably the most frequent way in which tasks are related is through the
necessity to access a common data value. This is the overriding theme that
joins, for example, the various responsibilities of the Recipe component.

Coupling, on the other hand, describes the relationship between software
components. In general, it is desirable to reduce the amount of coupling as
much as possible, since connections between software components inhibit
ease of development, modification, or reuse.

In particular, coupling is increased when one software component must
access data values—the state—held by another component. Such situations
should almost always be avoided in favor of moving a task into the list of
responsibilities of the component that holds the necessary data. For
example, one might conceivably first assign responsibility for editing a



recipe to the Recipe Database component, since it is while performing tasks
associated with this component that the need to edit a recipe first occurs.
But if we did so, the Recipe Database agent would need the ability to
directly manipulate the state (the internal data values representing the list of
ingredients and the preparation instructions) of an individual recipe. It is
better to avoid this tight connection by moving the responsibility for editing
to the recipe itself.

3.7.4 Interface and implementation—Parnas’s
principles
The emphasis on characterizing a software component by its behavior has
one extremely important consequence. It is possible for one programmer to
know how to use a component developed by another programmer without
needing to know how the component is implemented. For example, suppose
each of the six components in the IIKH is assigned to a different
programmer. The programmer developing the Meal component needs to
allow the IIKH user to browse the database of recipes and select a single
recipe for inclusion in the meal. To do this, the Meal component can simply
invoke the browse behavior associated with the Recipe Database
component, which is defined to return an individual Recipe. This
description is valid regardless of the particular implementation used by the
Recipe Database component to perform the actual browsing action.

The purposeful omission of implementation details behind a simple
interface is known as information hiding. We say the component
encapsulates the behavior, showing only how the component can be used
but not the detailed actions it performs. This naturally leads to two different
views of a software system. The interface view is the face seen by other
programmers. It describes what a software component can perform. The
implementation view is the face seen by the programmer working on a
particular component. It describes how a component goes about completing
a task.

The separation of interface and implementation is perhaps the most
important concept in software engineering. Yet it is difficult for students to
understand or to motivate. Information hiding is largely meaningful only in
the context of multiperson programming projects. In such efforts, the



limiting factor is often not the amount of coding involved but the amount of
communication required between the various programmers and between
their respective software systems. As we will describe shortly, software
components are often developed in parallel by different programmers and
in isolation from each other.

There is also an increasing emphasis on the reuse of general-purpose
software components in multiple projects. For this to be successful, there
must be minimal and well-understood interconnections between the various
portions of the system. As we noted in the previous chapter, these ideas
were captured by computer scientist David Parnas in a pair of rules known
as Parnas’s principles.

The developer of a software component must provide the intended
user with all the information needed to make effective use of the
services provided by the component and should provide no other
information.
The developer of a software component must be provided with all the
information necessary to carry out the given responsibilities assigned
to the component and should be provided with no other information.

A consequence of the separation of interface from implementation is
that a programmer can experiment with several different implementations
of the same structure without affecting other software components.

3.8 ⊡ Formalize the Interface
We continue with the description of the IIKH development. In the next
several steps the descriptions of the components will be refined. The first
step in this process is to formalize the patterns and channels of
communication.

A decision should be made as to the general structure that will be used
to implement each component. A component with only one behavior and
no internal state may be made into a function—for example, a component
that simply takes a string of text and translates all capital letters to
lowercase. Components with many tasks are probably more easily
implemented as classes. Names are given to each of the responsibilities



identified on the CRC card for each component, and these will eventually
be mapped onto method names. Along with the names, the types of any
arguments to be passed to the function are identified. Next, the information
maintained within the component itself should be described. All
information must be accounted for. If a component requires some data to
perform a specific task, the source of the data, either through argument or
global value or maintained internally by the component, must be clearly
identified.

3.8.1 Coming up with names
Careful thought should be given to the names associated with various
activities. Shakespeare said that a name change does not alter the object
being described (“a rose by any other name . . . ”), but certainly not all
names will conjure up the same mental images in the listener. As
government bureaucrats have long known, obscure and idiomatic names
can make even the simplest operation sound intimidating. The selection of
useful names is extremely important, since names create the vocabulary
with which the eventual design will be formulated. Names should be
internally consistent, meaningful, preferably short, and evocative in the
context of the problem. Often a considerable amount of time is spent
finding just the right set of terms to describe the tasks performed and the
objects manipulated. Far from being a barren and useless exercise, proper
naming early in the design process greatly simplifies and facilitates later
steps.

The following general guidelines have been suggested.
Use pronounceable names. As a rule of thumb, if you cannot read a
name out loud, it is not a good one.
Use capitalization (or underscores) to mark the beginning of a new
word within a name, such as “CardReader” or “Card_reader,” rather
than the less readable “cardreader.”
Examine abbreviations carefully. An abbreviation that is clear to one
person may be confusing to the next. Is a “TermProcess” a terminal
process, something that terminates processes, or a process associated
with a terminal?



Avoid names with several interpretations. Does the empty function tell
whether something is empty, or does it empty the values from the
object?
Avoid digits within a name. They are easy to misread as letters (0 as
O, 1 as 1, 2 as Z, 5 as S).
Name functions and variables that yield Boolean values so they
describe clearly the interpretation of a true or false value. For
example, “PrinterIsReady” clearly indicates that a true value means
the printer is working, whereas “PrinterStatus” is much less precise.
Take extra care in the selection of names for operations that are costly
and infrequently used. By doing so, errors caused by using the wrong
function can be avoided.

Once names have been developed for each activity, the CRC cards for
each component are redrawn, with the name and formal arguments of the
function used to elicit each behavior identified. An example of a CRC card
for the Date component is shown in Figure 3.6. What is not yet specified is
how each component will perform the associated tasks.

Date Collabor
ators

Maintain information about specific date

Date (year, month, date)—create new 
date

DisplayAndEdit()—display date 
information in window allowing user to edit 
entries

BuildGroceryl_ist(List &)—add items 
from all meals to grocery list

Plan 
Manager 
Meal



⊡ Figure 3.6 — Revised CRC card for the Date component

Once more, scenarios or role playing should be carried out at a more
detailed level to ensure that all activities are accounted for and that all
necessary information is maintained and made available to the responsible
components.

3.9 ⊡ Designing the Representation
At this point, if not before, the design team can be divided into groups, each
responsible for one or more software components. The task now is to
transform the description of a component into a software system
implementation. The major portion of this process is designing the data
structures that will be used by each subsystem to maintain the state
information required to fulfill the assigned responsibilities.

It is here that the classic data structures of computer science come into
play. The selection of data structures is an important task, central to the
software design process. Once they have been chosen, the code used by a
component in the fulfillment of a responsibility is often almost self-evident.
But data structures must be carefully matched to the task at hand. A wrong
choice can result in complex and inefficient programs, while an intelligent
choice can result in just the opposite.

It is also at this point that descriptions of behavior must be transformed
into algorithms. These descriptions should then be matched against the
expectations of each component listed as a collaborator, to ensure that
expectations are fulfilled and necessary data items are available to carry out
each process.

3.10 ⊡ Implementing Components
Once the design of each software subsystem is laid out, the next step is to
implement each component’s desired behavior. If the previous steps were



correctly addressed, each responsibility or behavior will be characterized by
a short description. The task at this step is to implement the desired
activities in a computer language. In a later section we will describe some
of the more common heuristics used in this process.

If they were not determined earlier (say, as part of the specification of
the system), then decisions can now be made on issues that are entirely self-
contained within a single component. A decision we saw in our example
problem was how best to let the user browse the database of recipes.

As multiperson programming projects become the norm, it becomes
increasingly rare that any one programmer will work on all aspects of a
system. More often, the skills a programmer will need to master are
understanding how one section of code fits into a larger framework and
how to work well with other members of a team.

Often in the implementation of one component it will become clear that
certain information or actions might be assigned to yet another component
that will act “behind the scene,” with little or no visibility to users of the
software abstraction. Such components are sometimes known as
facilitators. We will see examples of facilitators in some of the later case
studies.

An important part of analysis and coding at this point is characterizing
and documenting the necessary preconditions a software component
requires to complete a task, and verifying that the software component will
perform correctly when presented with legal input values.

3.11 ⊡ Integration of Components
Once software subsystems have been individually designed and tested, they
can be integrated into the final product. This is often not a single step but
part of a larger process. Starting from a simple base, elements are slowly
added to the system and tested using stubs—simple dummy routines with
no behavior or with very limited behavior—for the as yet unimplemented
parts.

For example, in the development of the IIKH, it would be reasonable to
start integration with the Greeter component. To test the Greeter in
isolation, stubs are written for the Recipe Database manager and the daily
Meal Plan manager. These stubs need not do any more than print an



informative message and return. With these, the component development
team can test various aspects of the Greeter system (for example, that
button presses elicit the correct response). Testing of an individual
component is often referred to as unit testing.

Next, one or the other of the stubs can be replaced by more complete
code. For example, the team might decide to replace the stub for the Recipe
Database component with the actual system, maintaining the stub for the
other portion. Further testing can be performed until it appears that the
system is working as desired. (This is sometimes referred to as integration
testing.)

The application is finally complete when all stubs have been replaced
with working components. The ability to test components in isolation is
greatly facilitated by the conscious design goal of reducing connections
between components, since this reduces the need for extensive stubbing.

During integration it is not uncommon for an error to be manifested in
one software system and yet to be caused by a coding mistake in another
system. Thus, testing during integration can involve the discovery of errors,
which then results in changes to some of the components. Following these
changes the components should be once again tested in isolation before an
attempt to reintegrate the software, once more, into the larger system.
Reexecuting previously developed test cases following a change to a
software component is sometimes referred to as regression testing.

3.12 ⊡ Maintenance and Evolution
It is tempting to think that once a working version of an application has
been delivered the task of the software development team is finished.
Unfortunately, that is almost never true. The term software maintenance
describes activities subsequent to the delivery of the initial working version
of a software system. A wide variety of activities fall into this category.

Errors, or bugs, can be discovered in the delivered product. These
must be corrected, either in updates or corrections to existing releases
or in subsequent releases.
Requirements may change, perhaps as a result of government
regulations or standardization among similar products.



Hardware may change. For example, the system may be moved to
different platforms, or input devices, such as a pen-based system or a
pressure-sensitive touch screen, may become available. Output
technology may change—for example, from a text-based system to a
graphical window-based arrangement.
User expectations may change. Users may expect greater
functionality, lower cost, and easier use. This can occur as a result of
competition with similar products.
Better documentation may be requested by users.

A good design recognizes the inevitability of changes and plans an
accommodation for them from the very beginning.

Summary ⊡
In this chapter we have presented a very abbreviated introduction to the
basic ideas of object-oriented modeling and design. References in the
following section can be consulted for more detailed discussion of this
topic.

Object-oriented design differs from conventional software design in that
the driving force is the assignment of responsibilities to different software
components. No action will take place without an agent to perform the
action, and hence every action must be assigned to some member of the
object community. Conversely, the behavior of the members of the
community taken together must be sufficient to achieve the desired goal.

The emphasis on behavior is a hallmark of object-oriented
programming. Behavior can be identified in even the most rudimentary
descriptions of a system, long before any other aspect can be clearly
discerned. By constantly being driven by behavior, responsibility-driven
design moves smoothly from problem description to software architecture
to code development to finished application.

Further Reading ⊡



Responsibility-driven design was developed and first described by Rebecca
Wirfs-Brock [Wirfs-Brock 1989b, Wirfs-Brock 1990]. There are many
other object-oriented design techniques, such as that of Jacobson [Jacobson
1994] or Rumbaugh [Rumbaugh 1991], but I like responsibility-driven
design because it is among the simplest to explain and is therefore a good
introduction to object-oriented design and modeling.

Much of the most recent work in the field of object-oriented design has
centered on UML, the Unified Modeling Language. I are not going to
discuss UML in detail in this book, although I do use some of their notation
in describing class diagrams. A good introduction to UML is [Booch 1999].
A slightly simpler explanation is found in [Alhir 1998].

Other good books on object-oriented design include [Rumbaugh 1991]
and [Henderson-Sellers 1992].

CRC cards were developed by Beck [Beck 1989]. A more in-depth
book-length treatment of the idea is [Bellin 1997].

Parnas’s principles were first presented in [Parnas 1972].
The guidelines on names presented in Section 3.8.1 are from [Keller

1990].

Self-Study Questions ⊡
1. What are the key features of responsibility-driven design?
2. What are some key differences between programming in the small

and programming in the large?
3. Why can a design technique based on behavior be applied more easily

to poorly defined problems than can, say, a design approach based on
data structures?

4. What is a scenario?
5. What are the basic elements of a component?
6. What is a CRC card? What do the letters stand for?
7. What is the what/who cycle?
8. Why should a user manual be developed before coding begins?



9. What are the major sources of change that can be expected during the
lifetime of most long-lived software applications?

10. What information is conveyed by an interaction diagram?
11. What are Parnas’s principles?
12. Why is the selection of good names an important aspect of a

successful software design effort? What are some guidelines for
choosing names?

13. What is integration testing?
14. What is software maintenance?

Exercises ⊡
1. Describe the responsibilities of an organization that includes at least

six types of members. Examples of such organizations are a school
(students, teachers, principal, janitor), a business (secretary, president,
worker), and a club (president, vice president, member). For each
member type, describe the responsibilities and the collaborators.

2. Create a scenario for the organization you described in Exercise 1
using an interaction diagram.

3. For a common game such as Solitaire or Twenty-one, describe a
software system that will interact with the user as an opposing player.
Example components include the deck and the discard pile.

4. Describe the software system to control an ATM (automated teller
machine). Give interaction diagrams for various scenarios that
describe the most common uses of the machine.



Chapter 4

Classes and Methods

Although they may use different terms, all object-oriented languages have
the features introduced in Chapter 1 in common: classes, instances,
message passing, methods, and inheritance. As noted already, the use of
different terms for similar concepts is rampant in object-oriented
programming languages. We will use a consistent and, we hope, clear
terminology for all languages, and we will note in language-specific
sections the various synonyms for our terms. Readers can refer to the
glossary at the end of the book for explanations of unfamiliar terms.

This chapter will describe the definition or creation of classes, and
Chapter 5 will outline their dynamic use. Here we will illustrate the
mechanics of declaring a class and defining methods associated with
instances of the class. In Chapter 5 we will examine how instances of
classes are created and how messages are passed to those instances. For the
most part we will defer an explanation of the mechanics of inheritance until
Chapter 8.

4.1 ⊡ Encapsulation
In Chapter 1, we noted that object-oriented programming, and objects in
particular, can be viewed from many perspectives. In Chapter 2 we
described the many levels of abstraction from which one could examine a
program. In this chapter, we wish to view objects as examples of abstract
data types.



Programming that uses data abstractions is a methodological approach
to problem solving where information is consciously hidden in a small part
of a program. In particular, the programmer develops a series of abstract
data types, each of which can be viewed as having two faces. This is similar
to the dichotomy in Parnas’s principles, discussed in Chapter 3. From the
outside, a client (user) of an abstract data type sees only a collection of
operations that defines the behavior of the abstraction. On the other side of
the interface, the programmer defining the abstraction sees the data
variables that are used to maintain the internal state of the object.

For example, in an abstraction of a stack data type, the user would see
only the description of the legal operations—say, push, pop, and top. The
implementor, on the other hand, needs to know the actual concrete data
structures used to implement the abstraction (Figure 4.1). The concrete
details are encapsulated within a more abstract framework.

⊡ Figure 4.1 — The interface and implementation faces of a stack

We have been using the term instance to mean a representative, or
example, of a class. We will accordingly use the term instance variable to
mean an internal variable maintained by an instance. Other terms we will
occasionally use are data field, or data members. Each instance has its own
collection of instance variables. These values should not be changed
directly by clients but only by methods associated with the class.

A simple view of an object is, then, a combination of state and behavior.
The state is described by the instance variables, whereas the behavior is
characterized by the methods. From the outside, clients can see only the
behavior of objects. From the inside, the methods provide the appropriate



behavior through modifications of the state as well as by interacting with
other objects.

4.2 ⊡ Class Definitions
Throughout this chapter and the next we will use as an example the
development of a playing card abstraction like one in a card game
application. We will develop this abstraction through a sequence of
refinements, each refinement incorporating a small number of new features.

We start by imagining that a playing card can be abstracted as a
container for two data values: the card rank and card suit. We can use a
number between 1 and 13 to represent the rank (1 is ace; 11, 12, and 13 are
jack, queen, and king). To represent the suit we can use an enumerated data
type if our language provides such facilities. In languages that do not have
enumerated data types we can use symbolic constants and integer values
from 1 to 4. (The advantage of the enumerated data type is that type errors
are avoided, since we can guarantee the suit is one of the four specified
values. If we use integers for this purpose, then nothing prevents a
programmer from assigning an invalid integer number—for example, 42—
to the suit variable.)

4.2.1 C++, Java, and C#
We begin by looking at class definitions in three very similar languages:
C++, Java, and C#. The syntax used by these three languages in shown in
Figure 4.2. There are some superficial differences: For example a class
definition is terminated by a semicolon in C++ but not in the other two.
Visibility modifiers (that is, public) mark an entire block of declarations in
C++ and are placed on each declaration independently in the other two
languages. In C++ and C# a programmer can define an enumerated data
type for representing the playing card suits. By placing the definition inside
the class, in C++ the programmer makes clear the link between the two data
types. (This is not possible in C#.) Outside of the class definition the
symbolic constants that represent the suits must be prefixed by the class
name, as in C++.



Click here to view code image
if (aCard.suit() == PlayingCard::Diamond) ...

Click here to view code image
C++
class PlayingCard { 
public: 
    enum Suits {Spade, Diamond, Club, Heart}; 
 
    Suits suit () { return suitValue; } 
    int   rank () { return rankValue; } 
 
private: 
    Suits suitValue; 
    int   rankValue; 
};

Java
class PlayingCard { 
    public  int suit () { return suitValue; } 
    public  int rank () { return rankValue; } 
 
    private int suitValue; 
    private int rankValue; 
 
    public static final int Spade = 1; 
    public static final int Diamond = 2; 
    public static final int Club = 3; 
    public static final int Heart = 4; 
}

C#
class PlayingCard { 
enum Suits {Spade, Diamond, Club, Heart}; 
    public Suits suit () { return suitValue; } 
    public int   rank () { return rankValue; } 
 
    private Suits suitValue; 
    private int   rankValue; 
}

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0075-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0076-01a


⊡ Figure 4.2 — A simple class definition in C++, Java, and C#

or by the type name as in C#:
Click here to view code image
if (aCard.suit() == Suits.Diamond) ...

Here aCard is the name of an instance of PlayingCard, and we are
invoking the method named suit in order to test the suit of the card. The
data fields suitValue and rankValue represent the instance data for this
abstraction. Each instance of the class PlayingCard will have its own
separate field, maintaining its own suit and rank value. Notice that the value
of the suit is obtained by invoking a method named suit, which simply
returns the data field named suitValue.

The first letter of the class name has here been capitalized. This is a
convention many languages follow, although not universally (in particular,
many C++ programmers prefer to use names that are in all lowercase
letters). Normally instance variables are given names that are not
capitalized to make it easier to distinguish between the two categories.
Some languages, such as Delphi Pascal, have other conventions.

Enumerated data types are not provided by the language Java, and so the
programmer typically resorts to defining a series of symbolic constants. A
symbolic constant is characterized by the two modifiers final and static.
In Java the modifier final means that the assignment of the name cannot
subsequently be changed. The modifier static means that there exists only
one instance of a variable, regardless of how many instances of the class are
created. Taken together, the two define a unique variable that cannot change
—that is, a constant.

Note the essential difference between the data fields suitValue and
rankValue and the constants Heart, Spade, Diamond, and Club in the Java
definition. Because the latter are declared as static, they exist outside of
any one instance of the class and are shared by all instances. The suit and
rank fields, on the other hand, are not static, and hence each instance of the
class will have its own copy of these values.

Visibility Modifiers

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0075-02a


Note the use of the terms public and private in several places in these
examples. These are visibility modifiers. All three languages, as well as a
number of other object-oriented programming languages, provide a way of
describing features that are known and can be used outside the class
definition and distinguishing those from features that can only be used
within a class definition. The latter are indicated by the keyword private.

4.2.2 Apple Object Pascal and Delphi Pascal
The next two languages we examine are also very similar. Both Apple’s
Object Pascal language and Borland’s Delphi Pascal (called Kylix on Linux
platforms) were based on an earlier language named simply Pascal. Thus,
many features derived from the original language are the same. However,
the two vendors have extended the language in slightly different ways
(Figure 4.3).

Click here to view code image
Object Pascal 
   type 
       Suits = (Heart, Club, Diamond, Spade); 
 
       PlayingCard = object 
           suit : Suits; 
           rand : integer; 
       end; 
 
Delphi Pascal 
 
 
   type 
       Suits = (Heart, Club, Diamond, Spade); 
 
       TPlayingCard = class (TObject) 
           public 
               constructor Create (r : integer; s : Suits); 
 
               function suit : Suits; 
               function rank : int; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0078-01a


 
           private 
               suitValue : Suits; 
               rankValue : integer; 
       end;

⊡ Figure 4.3 — Class definitions in Object Pascal and Delphi Pascal

Both languages permit the creation of enumerated data types, similar to
C++. The Apple version of the language uses the keyword object to declare
a new class (and hence classes are sometimes termed object types in that
language). The Delphi language uses the keyword class and further
requires that every class inherit from some existing class. We have here
used the class TObject for this purpose. It is conventional in Delphi that all
classes must have names that begin with the letter T. Delphi uses visibility
modifiers; the Apple language does not. Finally, the Delphi language
requires the creation of a constructor, a topic we will return to shortly.

4.2.3 Smalltalk
Smalltalk does not actually have a textual representation of a class. Instead,
classes are described using an interactive interface called the browser. A
screen shot of the browser is shown in Figure 4.4. Using the browser, the
programmer can define a new class using a message sent to the parent class
Object. As in Delphi Pascal, all classes in Smalltalk must name a specific
parent class from which they will inherit. Figure 4.4 illustrates the creation
of the class PlayingCard with two instance data fields.



⊡ Figure 4.4 — A view of the Smalltalk browser

4.2.4 Other languages
Throughout the book, we refer to a number of languages, particularly when
they include features that are unique or not widely found in alternative
languages. Some of these include Objective-C, CLOS, Eiffel, Dylan, and
Python. Class definitions for some of these are shown in Figure 4.5. Python
is interesting in that indentation levels, rather than beginning and ending
tokens, are used to indicate class, function, and statement nesting.

Click here to view code image
CLOS 
  (defclass PlayingCard ( ) (rank suit) ) 
 
Eiffel 
  class PlayingCard 
  feature 
      Spade, Diamond, Heart, Club : Integer is Unique; 
 
      suit : integer; 
      rank : integer; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0079-01a


  end 
 
Objective-C 
   enum suits {Heart, Club, Diamond, Spade}; 
 
   @ interface PlayingCard : Object 
   { 
       suits suit; 
       int rank; 
   } 
   @end 
 
Python 
   class PlayingCard: 
       "A playing card class" 
       def __init__ (self, s, r): 
           self.suit = s 
           self.rank = r

⊡ Figure 4.5 — Class definitions in other object-oriented languages

4.3 ⊡ Methods
In the next revision of our playing card abstraction we make the following
changes.

We add a method that will return the face color of the card, either red
or black.
We add a data field to maintain whether the card is faceup or
facedown and methods both to test the state of this value and to flip
the card.

A typical class that illustrates these changes is the C# definition shown
in Figure 4.6. Some features to note are that we have added a second
enumerated data type to represent the colors, and the data fields (including
the third data field representing the faceup state of the card) are declared
private. By declaring the data fields private it means that access outside
the class definition is not permitted. This guarantees that the only way the
data fields will be modified is by methods associated with the class. Most
object-oriented style guidelines will instruct that data fields should never be



declared public and should always be private or protected, the latter a
third level of protection we will discuss after we introduce inheritance in
Chapter 8.

Click here to view code image
class PlayingCard { 
  // constructor, initialize new playing card 
  public PlayingCard (Suits is, int ir) 
    { suit = is; rank = ir; faceUp = true; } 
 
  //  operations on a playing card 
  public boolean isFaceUp  ()            { return faceUp; } 
  public int     rank      ()            { return rankValue; } 
  public Suits   suit      ()            { return suitValue; } 
  public void    setFaceUp (boolean up)  { faceUp = up; } 
  public void    flip      ()            { setFaceUp( 
!faceUp);} 
  public Color   color     ()            { 
    if ((suit() == Suits .Diamond) || (suit() == Suits 
.Heart)) 
      return Color.Red; 
    return Color.Black; 
  } 
  // private data values 
  private Suits suitValue; 
  private int rankValue; 
  private boolean faceUp; 
}

⊡ Figure 4.6 — The revised PlayingCard class in C#

The constructor is a special method that has the same name as the class
and is used to initialize the data fields in an object. As we noted earlier, we
will discuss constructors in more detail in the next chapter.

Where access to data fields must be provided, good object-oriented style
says that access should be mediated by methods defined in the class. A
method that does nothing more than return the value of a data field is
termed an accessor or, sometimes, a getter. An example is the method

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0080-01a


isFaceUp, which returns the value of the data field faceUp. Another example
is the method rank, which return the value of the rankValue data field.

Why is it better to use a method for this simple action rather than
permitting access to the data field directly? One reason is that the method
makes the data field read-only. A function can only be called, whereas a
data field can be both read and written. By the combination of a private
data field and a public accessor we ensure the rank of the playing card
cannot change once it has been created.

The naming conventions for the methods shown here are typical. It is
good practice to name a method that returns a boolean value with a term
that begins with is and indicates the meaning when a true value is returned.
Following this convention makes it easy to understand the use of the
method in a conditional statement, such as the following.
if (aCard.isFaceUp()) ...

Here aCard is once again an instance of class PlayingCard. Many style
guidelines suggest that all other accessor methods should begin with the
word get to most clearly indicate that the most important purpose of the
method is to simply get the value of a data field. Again this convention
makes it easy to understand statements that use this method.

Click here to view code image
int cardRank = aCard.getRank();

However, this convention is not universally advocated. In particular, we
will continue to use the simpler names rank and suit for our methods.

Methods whose major purpose is simply to set a value are termed
mutator methods or setters. As the name suggests, a setter most generally is
named beginning with the word set. An example setter is the method
setFaceUp, which sets the value for the faceUp accessor.

Click here to view code image
class PlayingCard { 
  . 
  . 
  . 
  void setFaceUp (boolean up) { faceUp = up; } 
  . 
  . 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0081-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0082-01a


  . 
}

The method flip is neither a getter nor a setter, since it neither gets nor
sets a data field. It is simply a method. The method color is not technically
a getter, since it is not getting a data field held by the class. Nevertheless,
because it is returning an attribute of the object, some style guidelines
would suggest that a better name would be getColor.

Visibility modifiers are not found in the language Smalltalk. By default
all data fields are private—that is, accessible only within the class
definition itself. To allow access to a data field, an accessor method must be
provided.

Click here to view code image
rank 
  " return the face value of a card " 
   ↑ rank

The convention of using get names is not widely followed in Smalltalk.
Instead, it is conventional for accessor methods to have the same name as
the data field they are returning. No confusion arises in the Smalltalk
system, but we reserve comment on confusion that can arise in the
programmer’s mind.

4.3.1 Order of methods in a class declaration
For the most part, programming languages do not specify the order that
methods are declared within a class definition. However, the order can have
a significant impact on readability, an issue that is often of critical
importance to programmers. Many style guidelines offer conflicting advice
on this issue. The following are some of the most significant considerations:

Important features should be listed earlier in the class definition, less
important features listed later.
Constructors are one of the most important aspects of an object
definition and hence should appear very near the top of a class
definition.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0082-02a


The declaration of methods should be grouped to facilitate finding the
body associated with a given message selector. Ways of doing this
include listing methods in alphabetical order or grouping methods by
their purpose.
Private data fields are important only to the class developer. They
should be listed near the end of a class definition.

4.3.2 Constant or immutable data fields
As an alternative to accessor methods, some programming languages
provide a way to specify that a data field is constant, or immutable. This
means that once set, the value of the data field cannot subsequently be
changed. With this restriction there is less need to hide access to a data
value behind a method.

Two different ways of describing constant data fields are shown in
Figure 4.7. Such a field is declared as final in Java. The modifier const is
used in C++ for much the same purpose.

Click here to view code image
C++ 
 
  class PlayingCard { 
  public: 
      . 
      . 
      . 
      const int rank; // since immutable, can allow 
      const Suits suit; // public access to data field 
  }; 
 
Java 
 
  class PlayingCard { 
      . 
      . 
      . 
      public final int rank; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0083-01a


      public final int suit; 
  }

⊡ Figure 4.7 — Syntax for defining immutable data values

4.3.3 Separating definition and implementation
Some languages, such as Java and C#, place the body of a method directly
in the class definition, as shown in Figure 4.6. Other languages, such as
C++ and Object Pascal, separate these two aspects. In C++ the programmer
has a choice. Small methods can be defined in the class, while larger
methods are defined outside. A C++ class definition for our playing card
abstraction might look something like the following.

Click here to view code image
class PlayingCard { 
public: 
  // enumerated types
 
  enum Suits {Spade, Diamond, Club, Heart}; 
  enum Colors {Red, Black}; 
 
  // constructor, initialize new playing card 
  PlayingCard (Suits is, int ir) 
    { suit = is; rank = ir; faceUp = true; } 
 
  // operations on a playing card 
  boolean isFaceUp  ()        { return faceUp; } 
  void    setFaceUp (bool up) { faceUp = up; } 
  void    flip      ()        { setFaceUp( ! faceUp); } 
  int     rank      ()        { return rankValue; } 
  Suits   suit      ()        { return suitValue; } 
  Colors  color     () ; 
private:    // private data values 
  Suits suitValue; 
  int rankValue; 
  boolean faceUp; 
};

Notice the body of the method color has been omitted, since it is longer
than the other methods defined in this class. A subsequent method

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0083-02a


definition (sometimes termed a function member) provides the body of the
function.

Click here to view code image
PlayingCard::Colors PlayingCard::color ( ) 
{ 
  // return the face color of a playing card 
  if ((suit == Diamond) || (suit == Heart)) 
    return Red; 
  return Black; 
}

The method heading is very similar to a normal C-style function
definition, except the name has been expanded into a fully qualified name.
The qualified name provides both the class name and the method name for
the method being defined. This is analogous to identifying a person by both
their given and family names (for example, “Chris Smith”).

C++ programmers have the choice between defining methods in-line as
part of the class definition or defining them in a separate section of the
program. Typically only methods that are one or two statements long are
placed in-line, and anything more complex than one or two lines is defined
outside the class.

There are two reasons for placing a method body outside the class
definition. Method bodies that are longer than one statement can obscure
other features of the class definition, and thus removing long method
bodies can improve readability. (Readability, however, is in the eye of the
beholder. Not all programmers think that this separation improves
readability, since the programmer must now look in two different places to
find a method body.) A second reason involves semantics. When method
bodies are declared within a class definition, a C++ compiler is permitted
(although not obligated) to expand invocations of the method directly in-
line without creating a function call. An in-line definition can be executed
much faster than the combination of function call and method body.

Often the class definition and the larger method bodies in a C++
program will not even be found in the same file. The class heading will be
given in an interface file (by convention a file with the extension .h on
Unix systems or .hpp on Windows systems), whereas the function bodies
will be found in an implementation file (by convention a file with the
extension .cpp or .C).

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0084-02a


Objective-C also separates a class definition from a class
implementation. The definition includes a description of methods for the
class. These are indicated by a + or — sign, followed by the return type in
parentheses followed by a description of the method.

Click here to view code image
@ interface PlayingCard : Object 
{ 
  int suit; 
  int rank; 
  int faceUp; 
} 
 
+ suit: (int) s rank: (int) i 
- (int) color; 
- (int) rank; 
- (int) suit; 
- (int) isFaceUp; 
- (void) flip; 
@ end

The implementation section then provides the body of the methods.
Click here to view code image
@ implementation PlayingCard 
 
- (int) color 
{ 
  if ((suit == Diamond) || (suit == Heart)) 
    return red; 
  return black; 
} 
 
- (int) rank 
{ 
  return rank; 
} 
... ./* other method bodies */ 
@ end

Object Pascal and Delphi similarly separate the class definition from the
method function bodies, but the two parts remain in the same file. The class
definitions are described in a section labeled with the name interface, and

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0085-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0085-02a


the implementations are found in a section labeled, clearly enough,
implementation. The following is a Delphi example.

Click here to view code image
interface 
 
type 
  Suits = (Heart, Club, Diamond, Spade); 
  Colors = (Red, Black); 
 
  TPlayingCard = class (TObject) 
    public 
      constructor Create (r : integer; s : Suits); 
      function color : Colors; 
      function isFaceUp : boolean; 
      procedure flip; 
      function rank : integer; 
      function suit : Suits; 
    private 
      suit : Suits; 
      rank : integer; 
      faceUp : boolean; 
  end; 
implementation 
  function TPlayingCard.color : Colors; 
  begin 
    case suit of 
      Diamond: color := Red; 
      Heart: color := Red; 
      Spade: color := Black; 
      Club: color := Black; 
  end 
 
...(* other methods similarly defined *) 
end.

Note that fully qualified names in Pascal are formed using a period
between the class name and the method name instead of the double colon
used by C++.

In CLOS, accessor functions can be automatically created when a class
is defined, using the :accessor keyword followed by the name of the
accessor function.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0086-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0087-01a


(defclass PlayingCard () 
  ((rank :accessor getRank) (suit :accessor getSuit) ))

Other methods are defined using the function defmethod. Unlike Java or
C++, the receiver for the method is named as an explicit parameter.

Click here to view code image
(defmethod color ((card PlayingCard)) 
  (cond 
    ((eq (getSuit card) 'Diamond) 'Red) 
    ((eq (getSuit card) 'Heart) 'Red) 
    (t 'Black)))

The receiver must also be named as an explicit parameter in Python.
Click here to view code image
class PlayingCard: 
  "A playing card class" 
  def __init__ (self, s, r): 
    self.suit = s 
    self.rank = r 
  def rank (self) 
    return self.rank 
  def color (self) 
    if self.suit == 1 or self.suit == 2 
      return 1 
    return 0

*4.4 ⊡ Variations on Class Themes
While the concept of a class is fundamental to object-oriented
programming, some languages go further in providing variations on this
basic idea. In the following sections we describe some of the more notable
among these variations.

4.4.1 Methods without classes in Oberon
The language Oberon does not have classes in the sense of other object-
oriented languages but only the more traditional concept of data records.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0087-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0087-03a


Nevertheless, it does support message passing, including many of the
dynamic method-binding features found in object-oriented languages.

A method in Oberon is not defined inside a record but is instead
declared using a special syntax where the receiver is described in an
argument list separately from the other arguments. Often the receiver is
required to be a pointer type rather than the data record type.

Click here to view code image
TYPE 
  PlayingCard = POINTER TO PlayingCardDesc; 
 
  PlayingCardDesc = RECORD 
    suit : INTEGER; 
    rank : INTEGER; 
    faceUp: BOOLEAN; 
  END 
 
PROCEDURE (aCard: PlayingCard) setFaceUp (b : BOOLEAN); 
BEGIN 
  aCard.faceUp = b; 
END

The record PlayingCardDesc contains the data fields, which can be
modified by the procedure setFaceUp, which must take a pointer to a
playing card as a receiver.

4.4.2 Interfaces
Some object-oriented languages, such as Java, support a concept called an
interface. An interface defines the protocol for certain behavior but does not
provide an implementation. The following is an example interface
describing objects that can read from and write to an input/output stream.
public interface Storing { 
  void writeOut (Stream s); 
  void readFrom (Stream s); 
};

Like a class, an interface defines a new type. This means that variables
can be declared simply by the interface name.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0088-01a


Storing storableValue;

A class can indicate that it implements the protocol defined by an
interface. Instances of the class can be assigned to variables declared as the
interface type.

Click here to view code image
public class BitImage implements Storing { 
  void writeOut (Stream s) { 
    // ... 
  } 
  void readFrom (Stream s) { 
    // ... 
  } 
}; 
 
  storableValue = new BitImage();

The use of interfaces is very similar to the concept of inheritance, and
thus we will return to a more detailed consideration of interfaces in Chapter
8.

4.4.3 Properties
Delphi, Visual Basic, C#, and other programming languages (both object-
oriented and not) incorporate an idea called a property. A property is
manipulated syntactically in the fashion of a data field but operates
internally like a method. That is, a property can be read as an expression or
assigned to as a value.

Click here to view code image
writeln ('rank is',  aCard.rank); (* rank is property of card *) 
aCard.rank = 5; (* changing the rank property *)

However, in both cases the value assigned or set will be mediated by a
function rather than a simple data value. In Delphi a property is declared
using the keyword property and the modifiers read and write. The values
following the read and write keyword can be either a data field or a method
name. The read attribute will be invoked when a property is used in the
fashion of an expression, and the write attribute when the property is the

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0088-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0089-02a


target of an assignment. Having a read attribute and no write makes a
property read only. We could recast our rank and suit values as properties as
follows.

Click here to view code image
type 
  TPlayingcard = class (TObject) 
    public 
      . 
      . 
      . 
      property rank : Integer read rankValue; 
      property suit : Suits read suitValue write suitValue; 
    private 
      rankValue : Integer; 
      suitValue : Suits; 
  end;

Here we have made rank read only but allowed suit to be both read and
written. It is also possible to make a property write-only, although this is
not very common.

In C# a property is defined by writing a method without an argument
list, and including either a get or a set section.

Click here to view code image
public class PlayingCard { 
  public int rank { 
    get 
    { 
      return rankValue; 
    } 
    set 
    { 
      rankValue = value; 
    } 
  } 
  . 
  . 
  . 
  private int rankValue; 
}

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0089-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0090-01a


A get section must return a value. A set section can use the pseudo-
variable value to set the property. If no set section is provided, the property
is read-only. If no get section is given, the property is write only. Properties
are commonly used in C# programs for functions that take no arguments
and return a value.

4.4.4 Forward definitions
A program can sometimes require that two or more classes each have
references to the other. This situation is termed mutual recursion. We might
need to represent the horse and buggy trade—for example, where every
horse is associated with their own buggy and every buggy with one horse.
Some languages will have little trouble with this. Java, for example, scans
an entire file before it starts to generate code, and so classes that are
referenced later in a file can be used earlier in a file with no conflict.

Other languages, such as C++, deal with classes and methods one by
one as they are encountered. A name must have at least a partial definition
before it can be used. In C++ this often results in the need for a forward
definition. A definition that serves no other purpose than to place a name in
circulation, leaving the completion of the definition until later. Our horse
and buggy example might require something like the following.

Click here to view code image
class Horse; // forward definition 
 
class Buggy { 
  . 
  . 
  . 
  Horse * myHorse; 
}; 
 
class Horse { 
  . 
  . 
  . 
  Buggy * myBuggy; 
};

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0090-02a


The first line simply indicates that Horse is the name of a class and that
the definition will be forthcoming shortly. Knowing only this little bit of
information, however, is sufficient for the C++ compiler to permit the
creation of a pointer to the unknown class.

Of course, nothing can be done with this object until the class definition
has been read. Solving this problem requires a careful ordering of the class
definitions and the implementations of their associated methods: first one
class definition, then the second class definition, then methods from the
first class, and finally methods from the second.

4.4.5 Inner or nested classes
Both Java and C++ allow the programmer to write one class definition
inside of another. Such a definition is termed an inner class in Java and a
nested class in C++. Despite the similar appearances, there is a major
semantic difference between the two concepts. An inner class in Java is
linked to a specific instance of the surrounding class (the instance in which
it was created) and is permitted access to data fields and methods in this
object. A nested class in C++ is simply a naming device. It restricts the
visibility of features associated with the inner class, but otherwise the two
are not related.

To illustrate the use of nested classes, let us imagine that a programmer
wants to write a doubly linked list abstraction in Java. The programmer
might decide to place the Link class inside the List abstraction.

Click here to view code image
// Java List class 
class List { 
  private Link firstElement = null; 
 public void push_front(Object val) 
  { 
    if (firstElement == null) 
      firstElement = new Link(val, null, null); 
    else 
      firstElement.addBefore (val); 
  } 
 
  ... // other methods omitted 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0091-02a


  private class Link { // inner class definition
    public Object value; 
    public Link forwardLink; 
    public Link backwardLink; 
 
    public Link (Object v, Link f, Link b) 
       { value = v; forwardLink = f; backwardLink = b; } 
    public void addBefore (Object val) 
    { 
      Link newLink = new Link(val, this, backwardLink); 
      if (backwardLink == null) 
        firstElement = newLink; 
      else { 
        backwardLink.forwardLink = newLink; 
        backwardLink = newLink; 
      } 
    } 
    ... // other methods omitted 
  } 
}

Note that the method addBefore references the data field firstElement
in order to handle the special case where an element is being inserted into
the front of a list. A direct translation of this code into C++ will produce the
following.

Click here to view code image
// C++ List class 
class List { 
private: 
  lass Link; // forward definition 
  Link * firstElement; 
 
  class Link { // nested class definition 
  public: 
    int value; 
    Link * forwardLink; 
    Link * backwardLink; 
 
    Link (int v, Link * f, Link * b) 
      { value = v; forwardLink = f; backwardLink = b; } 
 
    void addBefore (int val) 
    { 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0092-02a


      Link * newLink = new Link(val, this, backwardLink); 
      if (backwardLink == 0) 
 
        firstElement = newLink; // ERROR! 
      else { 
        backwardLink->forwardLink = newLink; 
        backwardLink = newLink; 
      } 
    } 
 
    ... // other methods omitted 
    }; 
 
public: 
  void push_front(int val) 
  { 
    if (firstElement == 0) 
      firstElement = new Link(val, 0, 0); 
    else 
      firstElement->addBefore (val); 
  } 
  ... // other methods omitted 
};

It has been necessary to introduce a forward reference for the Link class
so the pointer firstElement could be declared before the class was defined.
Also C++ uses the value zero for a null element rather than the pseudo-
constant null. Finally, links are pointers, rather than values, and so the
pointer access operator is necessary. But the feature to note occurs on the
line marked as an error. The class Link is not permitted to access the
variable firstElement because the scope for the class is not actually nested
in the scope for the surrounding class. In order to access the List object, it
would have to be explicitly available through a variable. In this case, the
most reasonable solution would probably be to have the List method pass
itself as argument, using the pseudo-variable this, to the inner Link method
addBefore. (An alternative solution, having each Link maintain a reference
to its creating List, is probably too memory intensive.)

Click here to view code image
class List { 
  Link * firstElement; 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0093-02a


  class Link { 
    void addBefore (int val, List * theList) 
    { 
      . 
      . 
      . 
      if (backwardLink == 0) 
 
        theList->firstElement = newLink; 
 
      . 
      . 
      . 
    } 
  }; 
public: 
  void push_front(int val) 
  { 
       . 
       . 
       . 
 
         // pass self as argument 
      firstElement->addBefore (val, this); 
  } 
  ... // other methods omitted 
};

When nested class methods are defined outside the class body, the name
may require multiple levels of qualification. The following, for example,
would be how the method add Before would be written in this fashion.

Click here to view code image
void List::Link:raddBefore (int val, List * theList) 
{ 
  Link * newLink = new Link(val, this, backwardLink); 
  if (backwardLink == 0) 
    theList->firstElement = newLink; 
  else { 
    backwardLink->forwardLink = newLink; 
    backwardLink = newLink; 
  } 
}

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0094-02a


The name of the function indicates that this is the method addBefore that
is part of the class Link, which is in turn defined as part of the class List.

4.4.6 Class data fields
In many problems it is useful to have a common data field that is shared by
all instances of a class. However, the manipulation of such an object creates
a curious paradox for the object-oriented language designer. To understand
this problem, consider that the reason for the invention of the concept of a
class was to reduce the amount of work necessary to create similar objects;
every instance of a class has exactly the same behavior as every other
instance. Now imagine that we have somehow defined a common data area
shared by all instances of a class, and think about the task of initializing this
common area. There seem to be two choices, neither satisfactory. Either
everybody performs the initialization task (and the field is initialized and
reinitialized over and over again), or nobody does (leaving the data area
uninitialized).

Resolving this paradox requires moving outside of the simple
class/method/ instance paradigm. Another mechanism, not the objects
themselves, must take responsibility for the initialization of shared data. If
objects are automatically initialized to a special value (such as zero) by the
memory manager, then every instance can test for this special value and
perform initialization if they are the first. However, there are other (and
better) techniques.

In both C++ and Java, shared data fields are created using the static
modifier. We have seen this already in the creation of symbolic constants in
Java. In Java the intialization of a static data field is accomplished by a
static block, which is executed when the class is loaded. For example,
suppose we wanted to keep track of how many instances of a class have
been created.

Click here to view code image
class CountingClass { 
 
  CountingClass () { 
    count = count + 1; // increment count 
    . 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0095-01a


    . 
    . 
  } 
  . 
  . 
  . 
  private static int count; // shared by all 
 
  static {  // static block 
    count = 0; 
  } 
}

In C++ there are two different mechanisms. Data fields that are static
(or const) and represented by primitive data types can be initialized in the
class body, as we have seen already. Alternatively, a global initialization
can be defined that is separate from the class:

Click here to view code image
class CountingClass { 
public: 
  CountingClass () { count++;  ... } 
 
private: 
  static int count; 
}; 

// global initialization is separate from class 
int CountingClass::count = 0;

In C# static data fields can be initialized by a static constructor, a
constructor method that is declared static. This constructor is not
permitted to have any arguments.

In Python class data fields are simply named at the level of methods,
whereas instance variables are named inside of methods (typically inside
the constructor method).
class CountingClass: 
  count = 0 
  def __init__ (self) 
    self.other-Field = 3

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0095-02a


4.4.7 Classes as objects
In a number of languages (Smalltalk, Java, many others) a class is itself an
object. Of course, one must then ask what class represents the category to
which this object belongs—that is, what class is the class? In most cases
there is a special class, typically named Class, that is the class for classes.

Since objects are classes, they have behavior. What can you do with a
class? Frequently, the creation of an instance of the class is simply a
message given to a class object. This occurs in the following example from
Smalltalk.

Click here to view code image
aCard <- PlayingCard new. "message new given to object PlayingCard"

Other common behaviors include returning the name of the class, the
size of instances of the class, or a list of messages that instances of the class
will recognize. The following bit of Java code illustrates one use.1

1. In noninteractive languages it is sometimes difficult to show the relationship between program
statements and their output. Throughout the rest of the book we will use the convention illustrated by
this example, indenting a sequence of statement and then showing the resulting output without
indentation. The reader will hopefully be able to distinguish the executable statements from the
nonexecutable output.

Click here to view code image
  Object obj = new PlayingCard(); 
  Class c = obj.getClass(); 
  System.out.println("class is " + c.getName()); 
PlayingCard

We will return to an exploration of classes as objects when we
investigate the concept of reflection in Chapter 25.

Summary ⊡
In this chapter we have started our exploration of the concept of class in
object-oriented languages. We have described the syntax for class and
method definitions in various languages, including Java, C++, C#, Object

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0096-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0096-04a


Pascal, Objective-C, and Eiffel. Throughout the text we will occasional
refer to other example languages as well.

Some of the features of classes that we have seen in this chapter include
the following.

Visibility modifiers. The keywords public and private that are used
to control the visibility, and hence the manipulation, of class features.
Getter and Setter functions. Sometimes termed accessors and
mutators, these are methods that provide access to data fields. By
using methods rather than providing direct access, programmers have
greater control over the way data is modified and where it can be
used.
Constant, or immutable, data fields. These data fields are guaranteed
to not change during the course of execution.
Interfaces. These classlike entities describe behavior but do not
provide an implementation.
Nested classes. These class definitions appear inside other class
definitions.
Class data fields. The particular paradox arises over the initialization
data fields that are shared in common among all instances of a class.

Further Reading ⊡
The Apple Object Pascal language was originally defined by Larry Tesler of
Apple Computer [Tesler 1985]. The Borland language was originally
known as Turbo Pascal [Turbo 1988]. More recent descriptions of the
Delphi version of this language can be found in [Lischner 2000, Kerman
2002].

The classic definition of the language Smalltalk is [Goldberg 1983].
More recent treatments of the language include [LaLonde 1990b, Smith
1995]. A popular public-domain version of Smalltalk is Squeak [Guzdial
2001].

The Java language is described in [Arnold 2000]. A good tutorial on
Java can be found in [Campione 1998]. In Java and C++ the concept of
interfaces is closely related to the concept of a class. We will discuss



interfaces when we examine inheritance in Chapter 8. A good style
guidebook for Java programmers is [Vermeulen 2000].

Since C# is a relatively recent language there are still only a few
published references. Two recent sources are [Gunnerson 2000, Albahari
2001]. Since C# is a relatively recent language there are still only a few
published references. Two recent sources are [Gunnerson 2000; Albahari
2001].

Objective-C was created as an extension to C at about the same time that
C++ was developed. A good introduction to Objective-C is the book
written by its creator, Brad Cox [Cox 1986]. Python is described in
[Beazley 2000].

An interesting question is whether classes are necessary for object-
oriented programming. It turns out that you can achieve much of the
desirable characteristics of object-oriented languages without using classes
by means of an idea termed delegation [Lieberman 1986]. However, in the
period between when delegation languages were first proposed and the
present there has not been a groundswell of support for this idea, so most
people seem to prefer classes.

Self-Study Questions ⊡
1. What is the difference between a class declaration and an object

declaration (the latter also known as an instantiation)?
2. What is an instance variable?
3. What are the two most basic aspects of a class?
4. What is the meaning of the modifiers final and static in Java? How

do these two features combine to form a symbolic constant?
5. What does the term public mean? What does the term private mean?
6. What is a constructor?
7. What is an accessor method? What is the advantage of using accessor

methods instead of providing direct access to a data field?
8. What is a mutator, or setter, method?



9. What are some guidelines for selecting the order of features in a class
definition?

10. What is an immutable data field?
11. What is a fully qualified name?
12. How is an interface different from a class? How is it similar?
13. What is an inner or nested class?
14. Explain the paradox arising from the initialization of common data

fields or class data fields.

Exercises ⊡
1. Suppose you were required to program in a non-object-oriented

language such as Pascal or C. How would you simulate the notion of
classes and methods?

2. In Smalltalk and Objective-C, methods that take multiple arguments
are described using a keyword to separate each argument; in C++ the
argument list follows a single method name. Describe some of the
advantages and disadvantages of each approach. In particular, explain
the effect on readability and understandability.

3. A digital counter is a bounded counter that turns over when its integer
value reaches a certain maximum. Examples include the numbers in a
digital clock and the odometer in a car. Define a class description for
a bounded counter. Provide the ability to set maximum and minimum
values, to increment the counter, and to return the current counter
value.

4. Write a class description for complex numbers. Write methods for
addition, subtraction, and multiplication of complex numbers.

5. Write a class description for a fraction, a rational number composed
of two integer values. Write methods for addition, subtraction,
multiplication, and division of fractions. How do you handle the
reduction of fractions to lowestcommon-denominator form?



6. Consider the following two combinations of class and function in
C++. Explain the difference in using the function addi as the user
would see it.
Click here to view code image
class examplel { 
public: 
  int i; 
}; 
 
int addi(examplel & x, int j) 
{ 
  x.i = x.i + j; 
  return x.i; 
} 
 
class example2 { 
public: 
  int i; 
  int addi(int j) 
    { i = i + j; return i; } 
};

7. In both the C++ and Objective-C versions of the playing card
abstraction, the modular division instruction is used to determine the
color of a card based on the suit value. Is this a good practice?
Discuss a few of the advantages and disadvantages. Rewrite the
methods to remove the dependency on the particular values associated
with the suits.

8. Do you think it is better to have the access modifiers private and
public associated with every individual object, as in Java, or used to
create separate areas in the declaration, as in C++, Objective-C, and
Delphi Pascal? Give reasons to support your view.

9. Contrast the encapsulation provided by the class mechanism with the
encapsulation provided by the module facility. How are they
different? How are they the same?

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch04_images.xhtml#f0099-01a


Chapter 5

Messages, Instances, and
Initialization

In Chapter 4 we briefly outlined some of the compile-time features of
object-oriented programming languages. That is, we described how to
create new types, new classes, and new methods. In this chapter, we
continue our exploration of the mechanics of object-oriented programming
by examining the dynamic features. These include how values are
instantiated (or created), how they are initialized, and how they
communicate with each other by means of message passing.

In the first section, we explore the mechanics of message passing. Then
we investigate creation and initialization. By creation we mean the
allocation of memory space for a new object and the binding of that space
to a name. By initialization we mean not only the setting of initial values in
the data area for the object, similar to the initialization of fields in a record,
but also the more general process of establishing the initial conditions
necessary for the manipulation of an object. The degree to which this latter
task can be hidden from clients who use an object in most object-oriented
languages is an important aspect of encapsulation, which we identified as
one of the principle advantages of object-oriented techniques over other
programming styles.

5.1 ⊡ Message-Passing Syntax



We are using the term message passing (sometimes also called method
lookup) to mean the dynamic process of asking an object to perform a
specific action. In Chapter 1 we informally described message passing and
noted how a message differs from an ordinary procedure call.

A message is always given to some object, called the receiver.
The action performed in response to the message is not fixed but may
differ, depending on the class of the receiver. That is, different objects
may accept the same message and yet perform different actions.

There are three identifiable parts to any message-passing expression.
These are the receiver (the object to which the message is being sent), the
message selector (the text that indicates the particular message being sent),
and the arguments used in responding to the message.

As Figure 5.1 indicates, the most common syntax for message passing
uses a period to separate the receiver from the message selector. Minor
variations include features such as whether an empty pair of parentheses is
required when a method has no arguments (they can be omitted in Pascal
and some other languages).

Click here to view code image
C++, C#, Java, Python, Ruby 
 
  aCard.flip (); 
  aCard.setFaceUp(true); 
  aGame.displayCard(aCard, 45, 56); 
 
Pascal, Delphi, Eiffel, Oberon 
 
  aCard.flip; 
  aCard.setFaceUp(true); 
  aGame.displayCard(aCard, 45, 56); 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0103-01a


 
Smalltalk 
 
  aCard flip. 
  aCard setFaceUp: true. 
  aGame display: aCard atLocation: 45 and: 56. 
 
Objective-C 
 
  [ aCard flip ]. 
  [ aCard setFaceUp: true ]. 
  [ aGame display: aCard atLocation: 45 and: 56 ] 
 
CLOS 
 
  (flip aCard) 
  (setFaceUp aCard true) 
  (displayCard aGame 45 56)

⊡ Figure 5.1 — Message passing syntax in various languages

Smalltalk and Objective-C use a slightly different syntax. In these
languages a space is used as a separator. Unary messages (messages that
take no argument) are simply written following the receiver. Messages that
take arguments are written using keyword notation. The message selector is
split into parts, one part before each argument. A colon follows each part of
the key.

Click here to view code image
aGame display: aCard atLocation: 45 and: 56.

In Smalltalk even binary operations, such as addition, are interpreted as
a message sent to the left value with the right value as argument.

Click here to view code image
z <- x + y. "message to x to add y to itself and return sum "

It is possible to define binary operators in C++ to have similar
meanings. In Objective-C a Smalltalk-like message is enclosed in a pair of
brackets, termed a message passing expression. The brackets only surround

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0102-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0102-03a


the message itself. They do not, for example, surround an assignment that
places the result of a message into a variable.

Click here to view code image
int cardrank = [ aCard getRank ];

The syntax used in CLOS follows the traditional Lisp syntax. All
expressions in Lisp are written as parentheses-bounded lists. The operation
is the first element of the list, followed by the arguments. The receiver is
simply the first argument.

5.2 ⊡ Statically and Dynamically Typed
Languages
Languages can be divided into two groups, depending on whether they are
statically or dynamically typed. Fundamentally, a statically typed language
associates types with variables (usually the binding is established by means
of declaration statements), whereas a dynamically typed language treats
variables simply as names and associates types with values. Java, C++, C#,
and Pascal are statically typed languages, whereas Smalltalk, CLOS, and
Python are dynamically typed.

Objective-C holds a curious middle ground between the two camps. In
Objective-C a variable can be declared with a fixed type, and if so, the
variable is statically typed. On the other hand, a variable can also be
declared using the object type id. A variable declared in this fashion can
hold any object value and hence is dynamically typed.

Click here to view code image
PlayingCard aCard; /* a statically typed variable */ 
id anotherCard; /* a dynamically typed variable */

The difference between statically typed languages and dynamically
typed languages is important in regard to message passing because a
statically typed language will use the type of the receiver to check, at
compile time, that a receiver will understand the message it is being
presented. A dynamically typed language, on the other hand, has no way to
verify this information at compile time. Thus, in a dynamically typed

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0102-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0104-01a


language a message can generate a run-time error if the receiver does not
understand the message selector. Such a run-time error can never occur in a
statically typed language.

5.3 ⊡ Accessing the Receiver from within
a Method
As we indicated at the beginning of this chapter, a message is always passed
to a receiver. In most object-oriented languages, however, the receiver does
not appear in the argument list for the method. Instead, the receiver is only
implicitly involved in the method definition. In those rare situations when it
is necessary to access the receiver value from within a method body, a
pseudo-variable is used. A pseudo-variable is like an ordinary variable,
only it need not be declared and cannot be modified. (The term pseudo
constant might therefore seem more appropriate, but this term does not
seem to be used in any language definitions.)

The pseudo-variable that designates the receiver is named this in Java
and C++, Current in Eiffel, and self in Smalltalk, Objective-C, Object
Pascal, and many other languages. The pseudo-variable can be used as if it
refers to an instance of the class. For example, the method color could be
written in Pascal as follows.

Click here to view code image
function PlayingCard.color : colors; 
begin 
  if (self.suit = Heart) or (self.suit = Diamond) then 
    color := Red 
  else 
    color := Black; 
end

In most languages the majority of uses of the receiver pseudo-variable
can be omitted. If a data field is accessed or a method is invoked without
reference to a receiver, it is implicitly assumed that the receiver pseudo-
variable is the intended basis for the message. We saw this earlier in the
method flip, which acted by invoking the method setFaceUp.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0104-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0105-01a


class PlayingCard { 
  . 
  . 
  . 
  public void flip () { setFaceUp( ! faceUp ); } 
  . 
  . 
  . 
}

The method could be rewritten to make the receivers explicit, as
follows.

Click here to view code image
class PlayingCard { 
  . 
  . 
  . 
  public void flip () { this.setFaceUp( ! this.faceUp); } 
  . 
  . 
  . 
}

One place where the use of the variable often cannot be avoided is when
a method wishes to pass itself as an argument to another function, as in the
following bit of Java.

Click here to view code image
class QuitButton extends Button implements ActionListener { 
  public QuitButton () { 
    . 
    . 
    . 
      // install ourselves as a listener for button events 
    addActionListener(this); 
  } 
  . 
  . 
  . 
};

Some style guidelines for Java suggest the use of this when arguments
in a constructor are used to initialize a data member. The same name can

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0105-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0105-03a


then be used for the argument and the data member, with the explicit this
being used to distinguish the two names.

Click here to view code image
class PlayingCard { 
  public PlayingCard (int suit, int rank) { 
    this.rank = rank; // this.rank is the data member 
    this.suit = suit;   // rank is the argument value
    this.faceUp = true; 
  } 
  . 
  . 
  . 
  private int suit; 
  private int rank; 
  private boolean faceUp; 
}

A few object-oriented languages, such as Python, CLOS, or Oberon,
buck the trend and require that the receiver be declared explicitly in a
method body. In Python, for example, a message might appear to have two
arguments, as follows,
aCard.moveTo(27, 3)

but the corresponding method would declare three parameter values.
class PlayingCard: 
  def moveTo (self, x, y): 
    . 
    . 
    .

While the first argument could in principle be named anything, it is
common to name it self or this to indicate the association with the
receiver pseudo-variables in other languages. Examples in the previous
chapter illustrated the syntax used by CLOS and Oberon, which also must
name the receiver as an argument.

5.4 ⊡ Object Creation

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0105-04a


In most conventional programming languages, variables are created by
means of a declaration statement, as in the following Pascal example.
var 
  sum : integer; 
begin 
  sum := 0.0; 
  . 
  . 
  . 
end;

Some programming languages allow the user to combine declaration
with initialization, as in the following Java example.

Click here to view code image
int sum = 0.0; // declare and initialize variable with zero 
. 
. 
.

A variable declared within the bounds of a function or procedure
generally exists only as long as the procedure is executing. The same is true
for some object-oriented languages. The following declaration statement,
for example, can be used to create a variable in C++.

Click here to view code image
PlayingCard aCard(Diamond, 4); // create 4 of diamonds

Most object-oriented languages, however, separate the process of
variable naming from the process of object creation. The declaration of a
variable only creates the name by which the variable will be known. To
create an object value the programmer must perform a separate operation.
Often this operation is denoted by the operator new, as in this Smalltalk
example.

Click here to view code image
| aCard |  " name a new variable named aCard " 
 
aCard <- PlayingCard new.  " allocate memory space to variable "

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0106-05a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0107-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0107-02a


The syntax used in object creation for various different languages is
shown in Figure 5.2. Python does not use the new operator explicitly.
Instead, in Python, creation occurs when a class name is used in the fashion
of a function.

Click here to view code image
C++ 
  PlayingCard * aCard = new PlayingCard(Diamond, 3); 
 
Java, C# 
  PlayingCard aCard = new PlayingCard(Diamond, 3); 
 
Object Pascal 
  var 
      aCard : ^ PlayingCard; 
  begin 
      new (aCard); 
      . 
      . 
      . 
  end 
 
Objective-C 
  aCard = [ PlayingCard new ]; 
 
Python 
  aCard = PlayingCard(2, 3) 
 
Ruby 
  aCard = PlayingCard.new 
 
Smalltalk 
  aCard <- PlayingCard new.

⊡ Figure 5.2 — Syntax used for object creation

5.4.1 Creation of arrays of objects

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0108-01a


The creation of an array of objects presents two levels of complication.
There is the allocation and creation of the array itself and then the allocation
and creation of the objects that the array will hold.

In C++ these features are combined, and an array will consist of objects
that are each initialized using the default (that is, no-argument) constructor
(see Section 5.6).

Click here to view code image
 // create an array of 52 cards, all the same 
PlayingCard cardArray [52];

In Java, on the other hand, a superficially similar statement has a very
different effect. The new operator used to create an array creates only the
array. The values held by the array must be created separately, typically in a
loop.

Click here to view code image
PlayingCard cardArray[ ] = new PlayingCard[13]; 
for (int i = 0; i < 13; i++) 
  cardArray[i] = new PlayingCard(Spade, i+1);

A frequent source of error for C or C++ programmers moving to Java is
to forget that in Java the allocation of an array occurs separately from the
allocation of the elements the array will contain.

5.5 ⊡ Pointers and Memory Allocation
All object-oriented languages use pointers in their underlying
representation. Not all languages expose this representation to the
programmer. It is sometimes said that “Java has no pointers” as a point of
contrast to C++. A more accurate statement would be that Java has no
pointers that the programmer can see, since all object references are in fact
pointers in the internal representation.

The issue is important for three reasons. Pointers normally reference
memory that is heap allocated and thus does not obey the normal rules
associated with variables in conventional imperative languages. In an
imperative language, a value created inside a procedure will exist as long as
the procedure is active and will disappear when the procedure returns. A

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0107-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0107-04a


heap allocated value, on the other hand, will continue to exist as long as
there are references to it, which often will be much longer than the lifetime
of the procedure in which it is created.

The second reason is that heap-based memory must be recovered in one
fashion or another—a topic we address in the next section.

A third reason is that some languages, notably C++, distinguish between
conventional values and pointer values. In C++ a variable that is declared in
the normal fashion, a so-called automatic variable, has a lifetime tied to the
function in which it is created. When the procedure exits, the memory for
the variable is recovered.

Click here to view code image
void exampleProcedure 
{ 
  PlayingCard ace(Diamond, 1); 
  . 
  . 
  . 
  // memory is recovered for ace 
  // at end of execution of the procedure 
}

Values that are assigned to pointers (or as references, which are another
form of pointers) are not tied to procedure entry. Such values differ from
automatic variables in a number of important respects. As we will note in
the next section, memory for such values must be explicitly recovered by
the programmer. When we introduce inheritance in Chapter 8, we will see
that such values also differ in the way they use that feature.

5.5.1 Memory recovery
Memory created using the new operator is known as heap-based memory or,
simply, heap memory. Unlike ordinary variables, heap-based memory is not
tied to procedure entry and exit. Nevertheless, memory is always a finite
commodity, and hence some mechanism must be provided to recover
memory values. Memory that has been allocated to object values is then
recycled and used to satisfy subsequent memory requests.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0109-01a


There are two general approaches to the task of memory recovery. Some
languages (such as C++ and Delphi Pascal) insist the programmer indicate
when an object value is no longer being used by a program and hence can
be recovered and recycled. The keywords used for this purpose vary from
one language to another. In Object Pascal the keyword is free, as in the
following example.
free aCard;

Objective-C uses the same keyword but written as a message with the
receiver first.
[ aCard free ];

In C++ the keyword is delete:
delete aCard;

When an array is deleted, a pair of square braces must be placed after
the keyword.
delete [ ] cardArray;

The alternative to having the programmer explicitly manage memory is
an idea termed garbage collection. A language that uses garbage collection
(such as Java, C#, Smalltalk, or CLOS) monitors the manipulation of object
values and will automatically recover memory from objects that are no
longer being used. Generally garbage collection systems wait until memory
is nearly exhausted, then will suspend execution of the running program
while they recover the unused space before finally resuming execution.
Garbage collection uses a certain amount of execution time, which may
make it more costly than the alternative of insisting that programmers free
their own memory. But garbage collection prevents a number of common
programming errors.

It is not possible for a program to run out of memory because the
programmer forgot to free up unused memory. (Programs can still run
out of memory if the total memory required at any one time exceeds
the available memory, of course.)
It is not possible for a programmer to try to use memory after it has
been freed. Freed memory can be reused, and hence the contents of



the memory values may be overwritten. Using a value after it has
been freed can therefore cause unpredictable results.

Click here to view code image
PlayingCard * aCard = new PlayingCard(Spade, 1); 
  . 
  . 
  . 
delete aCard; 
  . 
  . 
  . 
cout << aCard.rank(); // attempt to use after deletion

It is not possible for a programmer to try and free the same memory
value more than once. Doing this can also cause unpredictable results.

Click here to view code image
Playingcard * aCard = new PlayingCard(Space, 1); 
  . 
  . 
  . 
delete aCard; 
  . 
  . 
  . 
delete aCard; // deleting an already deleted value

When a garbage collection system is not available, it is often necessary
to ensure that every dynamically allocated memory object has a designated
owner in order to avoid these problems. The owner of the memory is
responsible for ensuring that the memory location is used properly and is
freed when it is no longer required. In large programs, as in real life,
disputes over the ownership of shared resources can be a source of
difficulty.

When a single object cannot be designated as the owner of a shared
resource, another common technique is to use reference counts. A reference
count is a count of the number of pointers that reference the shared object.
Care is needed to ensure that the count is accurate. Whenever a new pointer
is added the count is incremented, and whenever a pointer is removed the

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0110-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0111-01a


count is decremented. When the count reaches zero, it indicates that no
pointers refer to the object, and its memory can be recovered.

As with the arguments for and against dynamic typing, the arguments
for and against garbage collection tend to pit efficiency against flexibility.
Automatic garbage collection can be expensive, since it necessitates a run-
time system to manage memory. On the other hand, the cost of memory
errors can be equally expensive.

5.6 ⊡ Constructors
As we indicated in Chapter 4, a constructor is a method that is used to
initialize a newly created object. Linking creation and initialization together
has many beneficial consequences. Most importantly, it guarantees that an
object can never be used before it has been properly initialized. When
creation and initialization are separated (as they must be in languages that
do not have constructors), a programmer can easily forget to call an
initialization routine after creating a new value, often with unfortunate
consequences. A less common problem, although often just as unfortunate,
is to invoke an initialization procedure twice on the same value. This
problem, too, is avoided by the use of constructors.

In Java and C++ a constructor can be identified by the fact that it has the
same name as the class in which it appears. Another small difference is that
constructors do not declare a return type.

Click here to view code image
class PlayingCard { // a Java constructor 
  public PlayingCard (int s, int r) { 
    suit = s; 
    rank = r; 
    faceUp = true; 
  } 
  . 
  . 
  . 
}

When memory is allocated using the new operator, any arguments
required by the constructor appear following the class name.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0112-01a


Click here to view code image
aCard = new PlayingCard(PlayingCard.Diamond, 3);

Data fields in Java (as well as in C#) that are initialized with a simple
value, independent of any constructor argument, can be assigned a value at
the point they are declared, even if they are subsequently reassigned.

Click here to view code image
class Complex { // complex numbers 
  public Complex (double rv) { realPart = rv; } 
 
  public double realPart = 0.0;  // initialize data areas 
  public double imagPart = 0.0; // to zero 
}

A similar syntax can be used in C++ if the data members are declared to
be static and/or const.

In C++, C#, and Java there can be more than one function definition that
uses the same name, as long as the number, type, and order of arguments
are sufficient to distinguish which function is intended in any invocation.
This facility is frequently used with constructors, allowing the creation of
one constructor to be used when no arguments are provided and another to
be used with arguments.

Click here to view code image
class PlayingCard { 
public: 
  PlayingCard ( ) // default constructor, 
      // used when no arguments are given 
    { suit = Diamond; rank = 1; faceUp = true; } 
 
  PlayingCard (Suit is) // constructor with one argument 
    { suit = is; rank = 1; faceUp = true; } 
 
  PlayingCard (Suit is, int ir) // constructor with two arguments 
    { suit = is; rank = ir; faceUp = true; } 
};

The combination of number, type, and order of arguments is termed a
function type signature. We say that the meaning of an overloaded

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0112-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0112-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0112-04a


constructor (or any other overloaded function, for that matter) is resolved
by examining the type signature of the invocation.

Click here to view code image
PlayingCard cardOne; // invokes default 
PlayingCard * cardTwo = new PlayingCard; 
PlayingCard cardThree(PlayingCard.Heart); 
PlayingCard * cardFour = new PlayingCard(PlayingCard.Spade, 6);

In C++ one must be careful to omit the parentheses from an invocation
of the default constructor. Using parentheses in this situation is legal, but it
has an entirely different meaning.

Click here to view code image
PlayingCard cardFive; // creates a new card 
PlayingCard cardSix(); // forward definition for function 
                       // named cardSix that returns a PlayingCard

On the other hand, when using the new operator and no arguments,
parentheses are omitted in C++ but not in Java or C#.

Click here to view code image
PlayingCard cardSeven = new PlayingCard(); // Java 
PlayingCard * cardEight = new PlayingCard; // C++

Constructors in C++ can also use a slightly different syntax to specify
the initial value for data members. A colon, followed by a named value in
parentheses, is termed an initializer. Our constructor written using
initializer syntax would look as follows.

Click here to view code image
Class PlayingCard { 
public: 
  PlayingCard (Suits is, int ir) 
    : suit(is), rank(ir), faceUp(true) { } 
  . 
  . 
  . 
};

For simple values such as integers there is no difference between the use
of an initializer and the use of an assignment statement within the body of

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0113-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0113-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0113-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0113-04a


the constructor. We will subsequently encounter different forms of
initialization that can only be performed in C++ by means of an initializer.

Constructors in Objective-C need not have the same name as the class,
and are signified by the use of a plus sign, rather than a minus sign, in the
first column of their definition. Such a function is termed a factory method.
The factory method uses the new operator to perform the actual memory
allocation, then performs whatever actions are necessary to initialize the
object.

Click here to view code image
@ implementation PlayingCard 
 
+  suit: (int) s rank: (int) r { 
  self = [ Card new ]; 
  suit = s; 
  rank = r; 
  return self; 
} 
 
@end

Factory methods are invoked using the class as the receiver, rather than
an instance object.

Click here to view code image
PlayingCard aCard = [ PlayingCard suit: Diamond rank: 3 ];

Constructors in Python all have the unusual name _ _init_ _. When an
object is created, the init function is implicitly invoked, passing as an
argument the newly created object and any other arguments used in the
creation expression.

Click here to view code image
aCard = PlayingCard(2, 3) 
  # invokes PlayingCard.__init__(aCard, 2 3)

In Apple Object Pascal there are no constructors. New objects are
created using the operator new, and often programmers define their own
initialization routines that should be invoked using the newly created object
as receiver. The Delphi version of Object Pascal is much closer to C++. In
Delphi programmers can define a constructor, although unlike C++, this

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0114-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0114-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0114-03a


function need not have the same name as the class. It is typical (although
not required) to use the name Create as a constructor name.

Click here to view code image
interface 
  type 
    TPlayingCard = class (TObject) 
      constructor Create (is : Suits, ir : integer); 
      . 
      . 
      . 
    end; 
implementation 
  constructor TPlayingCard.Create (is : Suits, ir : integer); 
  begin 
    suit = is; 
    rank = ir; 
    faceUp = true; 
end;

New objects are then created using the constructor method with the class
as receiver.

Click here to view code image
aCard := TPlayingCard.Create (Spade, 4);

*5.6.1 The orthodox canonical class form
Several authors of style guides for C++ have suggested that almost all
classes should define four important functions. This has come to be termed
the orthodox canonical class form. The four important functions are:

A default constructor. This is used internally to initialize objects and
data members when no other value is available.
A copy constructor. This is used, among other places, in the
implementation of call-by-value parameters.
An assignment operator. This is used to assign one value to another.
A destructor. This is invoked when an object is deleted. (We will
shortly give an example to illustrate the use of destructors.)

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0114-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0115-01a


We have already seen a default constructor. This is simply a constructor
that takes no arguments. A copy constructor takes a reference to an instance
of the class as an argument and initializes itself as a copy of the argument.

Click here to view code image
class PlayingCard { 
public: 
  . 
  . 
  . 
  PlayingCard (PlayingCard & aCard) 
  { 
       // initialize our self as copy of argument 
     rank = aCard.getRank(); 
     suit = aCard.getSuit(); 
     faceUp = aCard.isFaceUp(); 
  } 
  . 
  . 
  . 
};

The system will implicitly create default versions of each of these if the
user does not provide an alternative. However, in many situations
(particuarly those involving the management of dynamically allocated
memory) the default versions are not what the programmer might wish.
Even if empty bodies are supplied for these functions, writing the class
body will at least suggest that the program designer has thought about the
issues involved in each of these. Furthermore, appropriate use of visibility
modifiers gives the programmer great power in allowing or disallowing
different operations used with the class.

5.6.2 Constant values
In Chapter 4 we pointed out that some languages, such as C++ and Java,
permit the creation of data fields that can be assigned once and thereafter
are not allowed to change. Having introduced constructors, we can now
complete that discussion by showing how such values can be initialized.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0115-02a


In Java an immutable data field is simply declared as final and can be
initialized directly.

Click here to view code image
class ListofImportantPeople { 
public: 
  final int max = 100; // maximum number of people 
  . 
  . 
  . 
}

Alternatively, a final value can be assigned in the constructor. If there is
more than one constructor, each constructor must initialize the data field.

Click here to view code image
class PlayingCard { 
  public PlayingCard ( ) 
    { suit = Diamond; rank = 1; faceUp = true; } 
  public PlayingCard ( int is, int ir) 
    { suit = is; rank = ir; faceUp = true; } 
  . 
  . 
  . 
  public final int suit;  // suit and rank are 
  public final int rank;  // immutable 
  private boolean faceUp; // faceUp is not 
}

Immutable values in C++ are designated using the keyword const. They
can only be given a value using an initializer clause in a constructor.

Click here to view code image
class PlayingCard { 
public: 
  PlayingCard () : suit(Diamond), rank(l) { faceUp = true; } 
  PlayingCard (Suits is, int ir) : suit(is), rank(ir) 
    { faceUp = true; } 
  . 
  . 
  . 
  const Suits suit; 
  const int rank; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0116-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0116-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0116-03a


private: 
  boolean faceUp; 
};

There is one subtle but nevertheless important difference between const
and final values. The const modifier in C++ says that the associated value
is truly constant and is not allowed to change. The final modifier in Java
only asserts that the associated variable will not be assigned a new value.
Nothing prevents the value itself from changing its own internal state—for
example, in response to messages. To illustrate this, consider the following
definition for a data type named Box.

Click here to view code image
class Box { 
  public void setValue (int v); 
  public int getValue () { return v; } 
  private int v = 0; 
}

Declaring a variable using the final modifier simply means it will not
be reassigned; it does not mean it will not change.

Click here to view code image
final aBox = new Box(); // can be assigned only once 
aBox.setValue(8); // but can change 
aBox.setValue(12); // as often as you like

A variable declared using the const modifier in C++, on the other hand,
is not allowed to change in any way, not even in its internal state.
(Individual fields can be named as mutable, in which case they are allowed
to change even within a const object. However, use of this facility is rare.)

5.7 ⊡ Destructors and Finalizers
A constructor allows the programmer to perform certain actions when an
object value is created (when it is being born, so to speak). Occasionally it
is useful to also be able to specify actions that should be performed at the
other end of a values lifetime, when the variable is about to die and have its
memory recovered.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0117-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0117-03a


This can be performed in C++ using a method termed a destructor. The
destructor is invoked automatically whenever memory space for an object
is released. For automatic variables, space is released when the function
containing the declaration for the variable is exited. For dynamically
allocated variables, space is released with the operator delete. The
destructor function is written as the name of the class preceded by a tilde
(~). It does not take any arguments and is never directly invoked by the
user.

A simple but clever function will illustrate the use of constructors and
destructors. The class Trace defines a simple class that can be used to trace
the flow of execution. The constructor class takes as argument a descriptive
string and prints a message when space for the associated variable is
allocated (which is when the procedure containing the declaration is
entered). A second message is printed by the destructor when space for the
variable is released, which occurs when the procedure is exited.

Click here to view code image
class Trace { 
public: 
  // constructor and destructor 
  Trace  (string); 
  ~Trace (); 
private: 
  string text; 
}; 
 
Trace::Trace (string t) : text(t) 
{   cout << "entering " << text << endl; } 
 
Trace::~Trace () 
{   cout << "exiting " << text << endl; }

To trace the flow of execution, the programmer simply creates a
declaration for a dummy variable of type Trace in each procedure to be
traced. Consider the following pair of routines.

Click here to view code image
void procedureA () 
{ 
  Trace dummy ("procedure A"); 
  procedureB (7); 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0118-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0118-02a


} 
 
void procedureB (int x) 
{ 
  Trace dummy ("procedure B"); 
  if (x < 5) { 
    Trace aaa("true case in Procedure B"); 
    . 
    . 
    . 
    } 
  else { 
    Trace bbb("false case in Procedure B"); 
    . 
    . 
    . 
    } 
}

By their output, the values of type Trace will trace out the flow of
execution. A typical output as follows.

Click here to view code image
entering procedure A 
entering procedure B 
entering false case in Procedure B 
  . 
  . 
  . 
exiting false case in Procedure B 
exiting procedure B 
exiting procedure A

Delphi Pascal also supports a form of destructor. A destructor function
(usually called Destroy) is declared by the keyword destructor. When a
dynamically allocated object is freed, the memory management system will
call the destructor function.

Click here to view code image
type 
  TPlayingCard = class (TObject) 
    . 
    . 
    . 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0119-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0119-03a


    destructor Destroy; 
  end; 
 
destructor PlayingCard.Destroy; 
begin 
  (* whatever housekeeping is necessary *) 
  . 
  . 
  . 
end;

Java and Eiffel have similar facilities, although since both languages use
garbage collection, their utilization is different. A method named finalize
in Java will be invoked just before the point where a variable is recovered
by the garbage collection system. Since this can occur at any time, or it may
never occur, the use of this facility is much less common than the use of
destructors in C++.

Click here to view code image
class FinalizeExample { 
  public void finalize () { 
    System.out.println("finally doing finalization"); 
    System.exit(0); 
  } 
} 
  . 
  . 
  . 
    // first create an instance 
  Object x = new FinalizeExample(); 
    // redefining x releases memory 
  x = new Integer(3); 
    // now do lots of memory allocations 
    // at some indeterminent point garbage collection 
    // will occur and final method will be called 
  for (int i = 0; i < 1000; i++) { 
    System.out.println("i is " + i); 
    for (int j = 0; j < 1000; j++) 
      x = new Integer(j); 
  }

In Eiffel the same effect is achieved by inheriting from the class Memory
and overriding the method dispose. (We will discuss inheritance and

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch05_images.xhtml#f0119-04a


overriding later in Chapter 8.)

*5.8 ⊡ Metaclasses in Smalltalk
The discussion of object creation provides an excuse to introduce a

curious concept found in Smalltalk and a few similar languages, termed
metaclasses. To understand metaclasses, note first that methods are
associated not with objects but with classes. That is, if we create a playing
card, the methods associated with the card are found not in the object itself
but in the class PlayingCard.

But in Smalltalk classes are objects. We explored this briefly in the
previous chapter. Thus classes themselves respond to certain messages,
such as the object creation message new.



Given this situation, let us now imagine that we want to create a method
that can be used in the fashion of a constructor. That is, we want a method
—let us call it rank:suit:—that can be given to a specific class object—
say, PlayingCard—and when executed it will both create a new instance
and ensure it is properly initialized. Where in the picture just given can this
method be placed? It cannot be part of the methods held by PlayingCard,
since those are methods that are to be executed by instances of the class,
and at the time of creation we do not yet have an instance. Nor can it be
part of the methods held by Class, since those represent behavior common
to all classes, and our initialization is something we want to do only for this
one class.

The solution is to create a new “hidden” class, termed a metaclass. The
object named PlayingCard is not actually an instance of Class but is in
reality an instance of MetaPlayingCard, which is formed from inheritance
from Class.1 Initialization specific behavior can then be placed in this new
class.

1. We are being slightly premature in presenting the discussion here, since inheritance will not be
discussed in detail until Chapter 8. But the intuitive description of inheritance given in Chapter 1 is
sufficient to understand the concept of metaclasses.



The behavior placed in the class MetaPlayingCard is understood by the
object PlayingCard and by no other object. This object is the only instance
of the class.

Smalltalk browsers generally hide the existence of metaobjects from
programmers, calling such methods by the term class methods and acting as
if they were associated with the same class as other methods. But behind
the browser, class methods are simply ordinary methods associated with
metaclasses.

Summary ⊡
In this chapter we have examined the syntax and techniques used on object
creation and initialization for each of the different languages we are
considering.

We have examined the syntax used for message passing.
We introduced the two major categories of programming languages,
statically and dynamically typed languages. In a statically typed
language, types are associated with variables, whereas in a
dynamically typed language a variable is simply a name, and types
are associated with values.
In many languages the receiver of a message can be accessed from
within the body of the method used to respond to the message. The
receiver is represented by a pseudo-variable. This variable can be
named this, self, or current (depending on the language being
used).
Automatic memory allocates the lifetime of an object with the
procedure in that it is declared. Heap-based memory is explicitly
allocated (in most languages using an operator named new) and is
either explicitly deallocated or recovered by a garbage collection
system.
A constructor ties together the two tasks of memory allocation and
initialization. This ensures that all objects that are allocated are
properly initialized.



A destructor is executed when a value is deleted.
Finally, we have examined how metaclasses in Smalltalk address the
problem of creation and initialization in that language.

Further Reading ⊡
The works cited at the end of the previous chapter should be consulted for
more detailed information on any of the languages we are considering in
this book.

Cohen [Cohen 1981] provides a good overview of garbage collection
techniques. An interesting comparison between garbage collection and
automatic memory allocation is given by Appel [Appel 1987]. Techniques
for Reference counting in C++ are described in [Budd 1999].

Metaclasses in Smalltalk will be examined in detail in Chapter 25.

Self-Study Questions ⊡
1. In what ways is a message passing operation different from a

procedure call?
2. What are the three parts of a message passing expression?
3. How does Smalltalk-style keyword notation differ from Java or C++

style notation?
4. What is the difference between a statically typed language and a

dynamically typed language?
5. Why are run-time errors of the form “receiver does not understand

message” not common in statically typed languages? Why are they
more common in dynamically typed languages?

6. What does the pseudo-variable this (or self in Smalltalk) refer to?
7. What is the difference between stack allocated and heap allocated

memory?
8. What are the two general approaches to recovery of heap allocated

memory?



9. What common programming errors does the use of a garbage
collection system eliminate?

10. What two tasks are brought together by a constructor?
11. When is a destructor method executed?
12. What is a metaclass? What problem is solved through the use of

metaclasses?

Exercises ⊡
1. Write a method copy for the class Card of Chapter 4. This method

should return a new instance of the class Card with the suit and rank
fields initialized to be the same as the receiver.

2. In a language that does not provide direct support for immutable
instance variables, how might you design a software tool that would
help to detect violations of access? (Hint: The programmer can
provide directives in the form of comments that tell the tool which
variables should be considered immutable.)

3. We have seen two styles for invoking methods. The approach used in
C++ is similar to a conventional function call. The Smalltalk and
Objective-C approaches separate arguments with keyword identifiers.
Which do you think is more readable? Which is more descriptive?
Which is more errorprone? Present short arguments to support your
opinions.

4. How might you design a tool to detect the different types of memory
allocation and free problems described in Section 5.5.1?

5. Andrew Appel [Appel 1987] argues that under certain circumstances
heap-based memory allocation can be more efficient than stack-based
memory allocation. Read this article and summarize the points of
Appel’s argument. Are the situations in which this is true likely to be
encountered in practice?

6. Write a short (two- or three-paragraph) essay arguing for or against
automatic memory-management (garbage-collection) systems.



Chapter 6

A Case Study: The Eight-Queens
Puzzle

This chapter presents the first of several case studies (or paradigms, in the
original sense of the word) of programs written in an object-oriented style.
The programs in this chapter will be rather small so we can present versions
in several different languages. Later case studies will be presented in only
one language.

After first describing the problem, we will discuss how an object-
oriented solution would differ from another type of solution. The chapter
then concludes with a solution written in each language.

6.1 ⊡ The Eight-Queens Puzzle
In the game of chess, the queen can attack any piece that lies on the same
row, on the same column, or along a diagonal. The eight-queens is a classic
logic puzzle. The task is to place eight queens on a chessboard in such a
fashion that no queen can attack any other queen. A solution is shown in
Figure 6.1, but this solution is not unique. The eight-queens puzzle is often
used to illustrate problem-solving or backtracking techniques.



⊡ Figure 6.1—One solution to the eight-queens puzzle

How would an object-oriented solution to the eight-queens puzzle differ
from a solution written in a conventional imperative programming
language? In a conventional solution, some sort of data structure would be
used to maintain the positions of the pieces. A program would then solve
the puzzle by systematically manipulating the values in these data
structures, testing each new position to see whether it satisfied the property
that no queen can attack any other.

We can provide an amusing but nevertheless illustrative metaphor for
the difference between a conventional and an object-oriented solution. A
conventional program is like a human being sitting above the board and
moving the chess pieces, which have no animate life of their own. In an
object-oriented solution, on the other hand, we will empower the pieces to
solve the problem themselves. That is, instead of a single monolithic entity
controlling the outcome, we will distribute responsibility for finding the
solution among many interacting agents. It is as if the chess pieces
themselves are animate beings who interact with each other and take charge
of finding their own solution.

Thus, the essence of our object-oriented solution will be to create
objects that represent each of the queens and to provide them with the
abilities to discover the solution. With the computing-as-simulation view of
Chapter 1, we are creating a model universe, defining behavior for the



objects in this universe, and then setting the universe in motion. When the
activity of the universe stabilizes, the solution has been found.

6.1.1 Creating objects that find their own solution
How might we define the behavior of a queen object so that a group of
queens working together can find a solution on their own? The first
observation is that, in any solution, no two queens can occupy the same
column, and consequently no column can be empty. At the start we can
therefore assign a specific column to each queen and reduce the problem to
the simpler task of finding an appropriate row.

To find a solution it is clear that the queens will need to communicate
with each other. Realizing this, we can make a second important
observation that will greatly simplify our programming task—namely, each
queen needs to know only about the queens to her immediate left. Thus, the
data values maintained for each queen will consist of three values: a column
value, which is immutable; a row value, which is altered in pursuit of a
solution; and the neighboring queen to the immediate left.

Let us define an acceptable solution for column n to be a configuration
of columns 1 through n in which no queen can attack any other queen in
those columns. Each queen will be charged with finding acceptable
solutions between herself and her neighbors on her left. We will find a
solution to the entire puzzle by asking the rightmost queen to find an
acceptable solution. A CRC-card description of the class Queen, including
the data managed by each instance (recall that this information is described
on the back side of the card), is shown in Figure 6.2.

Queen
initialize—initialize row, then find first acceptable solution for
self and neighbor
advance—-advance row and find next acceptable solution
canAttack—see whether a position can be attackedby self or
neighbors



Queen—data values
row—current row number (changes)
column—column number (fixed)
neighbor—neighbor to left (fixed)

⊡ Figure 6.2—Front and back sides of the queen CRC card

6.2 ⊡ Using Generators
As with many similar problems, the solution to the eight-queens puzzle
involves two interacting steps: generating possible partial solutions and
filtering out solutions that fail to satisfy some later goal. This style of
problem solving is sometimes known as the generate and test paradigm.

Let us consider the filter step first, since it is easier. For the system to
test a potential solution, it is sufficient for a queen to take a coordinate
(row-column) pair and produce a Boolean value that indicates whether that
queen or any queen to her left can attack the given location. A pseudo-code
algorithm that checks to see whether a queen can attack a specific position
is given here. The procedure canAttack uses the fact that for a diagonal
motion, the differences in rows must be equal to the differences in columns.

Click here to view code image
function queen.canAttack(testRow , testColumn) -> boolean 
  /* test for same row */ 
  if row = testRow then 
    return true 
 
  /* test diagonals */ 
  columnDifference := testColumn - column 
  if (row + columnDifference = testRow) or 
    (row - columnDifference = testRow) 
      then return true 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0128-01a


 
  /* we can't attack, see if neighbor can */ 
  return neighbor.canAttack(testRow, testColumn) 
end

6.2.1 Initialization
We will divide the task of finding a solution into parts. The method
initialize establishes the initial conditions necessary for a queen object,
which in this case simply means setting the data values. This is usually
followed immediately by a call on findSolution to discover a solution for
the given column. Because such a solution will often not be satisfactory to
subsequent queens, the message advance is used to advance to the next
solution.

A queen in column n is initialized by being given a column number and
the neighboring queen (the queen in column n — 1). At this level of
analysis, we will leave unspecified the actions of the leftmost queen, who
has no neighbor. We will explore various alternative actions in the example
problems we subsequently present. We will assume the neighbor queens (if
any) have already been initialized, which includes their having found a
mutually satisfactory solution. The queen in the current column simply
places herself in row 1. A pseudo-code description of the algorithm is as
follows.

Click here to view code image
function queen.initialize(col, neigh) -> boolean 
 
    /* initialize our column and neighbor values */ 
  column := col 
  neighbor := neigh 
 
    /* start in row 1 */ 
  row := 1 
  return findSolution; 
end

6.2.2 Finding a solution

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0129-01a


To find a solution, a queen simply asks its neighbors if they can attack. If
so, then the queen advances herself, if possible (returning failure if she
cannot). When the neighbors indicate they cannot attack, a solution has
been found.

Click here to view code image
function queen.findSolution -> boolean 
 
    /* test positions */ 
  while neighbor.canAttack (row, column) do 
    if not self.advance then 
      return false 
 
    /* found a solution */ 
  return true 
end

As we noted in Chapter 5, the pseudo-variable self denotes the receiver
for the current message. In this case we want the queen who is being asked
to find a solution to pass the message advance to herself.

6.2.3 Advancing to the next position
The procedure advance divides into two cases. If we are not at the end, the
queen simply advances the row value by 1. Otherwise, she has tried all
positions and not found a solution, so nothing remains but to ask her
neighbor for a new solution and start again from row 1.

Click here to view code image
function queen.advance -> boolean 
 
    /* try next row */ 
  if row < 8 then begin 
    row := row + 1 
    return self.findSolution 
  end 
 
    /* cannot go further */ 
    /* move neighbor to next solution */ 
  if not neighbor.advance then 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0129-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0129-03a


    return false 
 
    /* start again in row 1 */ 
  row := 1 
  return self.findSolution 
end

The one remaining task is to print out the solution. This is most easily
accomplished by a simple method, print, that is rippled down the
neighbors.
procedure print 
  neighbor.print 
  write row, column 
end

6.3 ⊡ The Eight-Queens Puzzle in Several
Languages
In this section we present solutions to the eight-queens puzzle in several of
the programming languages we are considering. Examine each variation,
and compare how the basic features provided by the language make subtle
changes to the final solution. In particular, examine the solutions written in
Smalltalk and Objective-C, which use a special class for a sentinel value,
and contrast this with the solutions given in Object Pascal, C++, or Java, all
of which use a null pointer for the leftmost queen and thus must constantly
test the value of pointer variables.

6.3.1 The eight-queens puzzle in Object Pascal
The class definition for the eight-queens puzzle in Apple Object Pascal is
shown below. A subtle but important point is that this definition is
recursive; objects of type Queen maintain a data field that is itself of type
Queen. This is sufficient to indicate that declaration and storage allocation
are not necessarily linked; if they were, an infinite amount of storage would
be required to hold any Queen value. We will contrast this with the situation
in C++ when we discuss that language.



Click here to view code image
type 
  Queen = object 
      (* data fields *) 
    row : integer; 
    column : integer; 
    neighbor : Queen; 
 
      (* initialization*) 
    procedure initialize (col : integer; ngh : Queen); 
 
      (* operations *) 
    function canAttack 
          (testRow, testColumn : integer) : boolean; 
    function   findSolution : boolean; 
    function   advance : boolean; 
    procedure  print; 
  end;

The class definition for the Delphi language differs only slightly, as
shown below. The Borland language allows the class declaration to be
broken into public and private sections, and it includes a constructor
function, which we will use in place of the initialize routine.

Click here to view code image
TQueen = class (TObject) 
public 
  constructor Create (initialColumn : integer; nbr : TQueen); 
  function findSolution : boolean; 
  function advance : boolean; 
  procedure print; 
 
private 
  function canAttack (testRow, testColumn : integer) : boolean; 
  row : integer; 
  column : integer; 
  neighbor : TQueen; 
end;

The pseudo-code presented in the earlier sections is reasonably close to
the Pascal solution, with two major differences. The first is the lack of a
return statement in Pascal, and the second is the necessity to first test
whether a queen has a neighbor before passing a message to that neighbor.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0130-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0131-02a


The functions findSolution and advance, shown following, illustrate these
differences. (Note that Delphi Pascal differs from standard Pascal in
permitting short-circuit interpretation of the and and or directives, in the
fashion of C++. Thus, the code for the Delphi language could, in a single
expression, combine the test for neighbor being non-null and the passing of
a message to the neighbor.)

Click here to view code image
function Queen.findSolution : boolean; 
var 
  done : boolean; 
begin 
  done := false; 
  findsolution := true; 
 
    (* test positions *) 
  if neighbor <> nil then 
    while not done and neighbor.canAttack(row, column) do 
      if not self.advance then begin 
        findSolution := false; 
        done := true; 
      end; 
 
end; 
 
function Queen.advance : boolean; 
begin 
  advance := false; 
    (* try next row *) 
  if row < 8 then begin 
    row := row + 1; 
    advance := self.findSolution; 
  end 
  else begin 
     (* cannot go further *) 
     (* move neighbor to next solution *) 
    if neighbor <> nil then 
      if not neighbor.advance then 
        advance := false 
      else begin 
        row := 1; 
        advance := self.findSolution; 
      end; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0132-01a


  end; 
end;

The main program allocates space for each of the eight queens and
initializes the queens with their column number and neighbor value. Since
during initialization the first solution will be discovered, it is only
necessary for the queens to print their solution. The code to do this in Apple
Object Pascal is shown next. In this case neighbor and i are temporary
variables used during initialization, and lastQueen is the most recently
created queen.

Click here to view code image
begin 
  neighbor := nil; 
  for i := 1 to 8 do begin 
     (* create and initialize new queen *) 
    new (lastQueen); 
    lastQueen.initial (i, neighbor); 
    if not lastQueen.findSolution then 
      writeln('no solution'); 
      (*newest queen is next queen neighbor *) 
    neighbor := lastQueen; 
  end; 
 
    (* print the solution *) 
  lastQueen.print; 
 
  end; 
end.

By providing explicit constructors that combine new object creation and
initialization, the Delphi language allows us to eliminate one of the
temporary variables. The main program for the Delphi language is as
follows.

Click here to view code image
begin 
  lastQueen := nil; 
  for i := 1 to 8 do begin 
      // create and initialize new queen 
    lastQueen := Queen.create(i, lastQueen); 
    lastQueen.findSolution; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0133-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0133-02a


    end; 
 
    // print the solution 
  lastQueen.print; 
end;

6.3.2 The eight-queens puzzle in C++
The most important difference between the pseudo-code description of the
algorithm presented earlier and the eight-queens puzzle as actually coded in
C++ is the explicit use of pointer values. The following is the class
description for the class Queen. Each instance maintains, as part of its data
area, a pointer to another queen value. Note that unlike the Object Pascal
solution, in C++ this value must be declared explicitly as a pointer rather
than an object value.

Click here to view code image
class Queen { 
public: 
    // constructor 
  Queen (int, Queen *); 
 
    // find and print solutions 
  bool findSolution(); 
  bool advance (); 
  void print(); 
 
private: 
    // data fields 
  int row; 
  const int column; 
  const Queen * neighbor; 
 
    // internal method 
  bool canAttack (int, int); 
};

As in the Delphi Pascal solution, we have subsumed the behavior of the
method initialize in the constructor. We will describe this shortly.

There are three data fields. The integer data field column has been
marked as const. This identifies the field as an immutable value, which

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0134-01a


cannot change during execution. The third data field is a pointer value,
which either contains a null value (that is, points at nothing) or points to
another queen.

Since initialization is performed by the constructor, the main program
can simply create the eight queen objects and then print their solution. The
variable lastQueen will point to the most recent queen created. This value is
initially a null pointer—it points to nothing. A loop then creates the eight
values, initializing each with a column value and the previous queen value.
When the loop completes, the leftmost queen holds a null value for its
neighbor field while every other queen points to its neighbor, and the value
lastQueen points to the rightmost queen.

Click here to view code image
void main() { 
  Queen * lastQueen = 0; 
 
  for (int i = 1; i <= 8; i++) { 
    lastQueen = new Queen(i, lastQueen); 
    if (! lastQueen->findSolution()) 
      cout « "no solution\n"; 
    } 
 
  lastQueen->print(); 
}

We will describe only those methods that illustrate important points. The
complete solution can be examined in Appendix A.

The constructor method must use the initialization clauses on the
heading to initialize the constant value column, since it is not permitted to
use an assignment operator to initialize instance fields that have been
declared const. An initialization clause is also used to assign the value
neighbor, although we have not declared this field as constant.

Click here to view code image
Queen::Queen(int col, Queen * ngh) : column(col), neighbor(ngh) 
{ 
  row = 1; 
}

Because the value of the neighbor variable can be either a queen or a
null value, a test must be performed before any messages are sent to the

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0134-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0135-02a


neighbor. This is illustrated in the method findSolution. The use of short-
circuit evaluation in the logical connectives and the ability to return from
within a procedure simplify the code in comparison to the Object Pascal
version, which is otherwise very similar.

Click here to view code image
bool Queen::findSolution() 
{ 
  while (neighbor && neighbor->canAttack(row, column)) 
    if (! advance()) 
      return false; 
  return true; 
}

The advance method must similarly test to make certain there is a
neighbor before trying to advance the neighbor to a new solution. When
passing a message to oneself, as in the recursive message findSolution, it
is not necessary to specify a receiver.

Click here to view code image
bool Queen::advance() 
{ 
  if (row < 8) { 
    row++; 
    return findSolution(); 
    } 
  if (neighbor && ! neighbor->advance()) 
    return false; 
 
  row = 1; 
  return findSolution(); 
}

6.3.3 The eight-queens puzzle in Java
The solution in Java is in many respects similar to the C++ solution.
However, in Java the bodies of the methods are written directly in place,
and public or private designations are placed on the class definitions
themselves. The following is the class description for the class Queen, with
some of the methods omitted.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0135-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0135-04a


Click here to view code image
class Queen { 
    // data fields 
  private int row; 
  private int column; 
  private Queen neighbor; 
 
    // constructor 
  Queen (int c, Queen n) { 
      // initialize data fields 
    row = 1; 
    column = c; 
    neighbor = n; 
    } 
 
  public boolean findSolution() { 
    while (neighbor != null && 
        neighbor.canAttack(row, column)) 
      if (! advance()) 
        return false; 
    return true; 
    } 
 
  public boolean advance() { ... } 
 
  private boolean canAttack(int testRow, int testColumn) { ... } 
 
  public void paint (Graphics g) { ... } 
}

Unlike in C++, in Java the link to the next queen is simply declared as
an object of type Queen and not as a pointer to a queen. Before a message is
sent to the neighbor instance variable, an explicit test is performed to see if
the value is null.

Since Java provides a rich set of graphics primitives, this solution will
differ from the others in actually drawing the final solution as a board. The
method paint will draw an image of the queen, then print the neighbor
images.

Click here to view code image
class Queen { 
  . 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0136-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0137-01a


  . 
  . 
  public void paint (Graphics g) { 
      // x, y is upper left corner 
      // 10 and 40 give slight margins to sides 
    int x = (row - 1) * 50 + 10; 
    int y = (column - 1) * 50 + 40; 
    g.drawLine(x+5, y+45, x+45, y+45); 
    g.drawLine(x+5, y+45, x+5, y+5); 
    g.drawLine(x+45, y+45, x+45, y+5); 
    g.drawLine(x+5, y+35, x+45, y+35); 
    g.drawLine(x+5, y+5, x+15, y+20); 
    g.drawLine(x+15, y+20, x+25, y+5); 
    g.drawLine(x+25, y+5, x+35, y+20); 
    g.drawLine(x+35, y+20, x+45, y+5); 
    g.drawOval(x+20, y+20, 10, 10); 
      // then draw neighbor 
    if (neighbor != null) 
      neighbor.paint(g); 
    } 
}

The graphics routines draw a small crown, which looks like this.

Java does not have global variables or functions that are not member
functions. As we will describe in more detail in Chapter 22, a program is
created by the defining of a subclass of the system class JFrame and then the
overriding of certain methods. Notably, the constructor is used to provide
initialization for the application, and the method paint is used to redraw the



screen. Mouse events and window events are handled by creating listener
objects that will execute when their associated event occurs. We will
describe listeners in much greater detail in later sections. We name the
application class QueenSolver and define it as follows.

Click here to view code image
public class QueenSolver extends JFrame { 
 
  public static void main(String [ ] args) { 
    QueenSolver world = new QueenSolver(); 
    world.show(); 
  } 
 
  private Queen lastQueen = null; 
 
  public QueenSolver() { 
    setTitle("8 queens"); 
    setSize(600, 500); 
    for (int i = 1; i <= 8; i++) { 
      lastQueen = new Queen(i, lastQueen); 
      lastQueen.findSolution(); 
      } 
    addMouseListener(new MouseKeeper()); 
    addWindowListener(new CloseQuit()); 
    } 
 
  public void paint(Graphics g) { 
    super.paint(g); 
      // draw board 
    for (int i = 0; i <= 8; i++) { 
      g.drawLine(50 * i + 10, 40, 50*i + 10, 440); 
      g.drawLine(10, 50 * i + 40, 410, 50*i + 40); 
    } 
    g.drawString("Click Mouse for Next Solution", 20, 470); 
      // draw queen 
    lastQueen.paint(g); 
    } 
 
  private class CloseQuit extends WindowAdapter { 
    public void windowClosing (WindowEvent e) { 
      System.exit(0); 
    } 
  } 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0138-01a


  private class MouseKeeper extends MouseAdapter { 
    public void mousePressed (MouseEvent e) { 
      lastQueen.advance(); 
      repaint(); 
    } 
  } 
}

Note that the application class must be declared as public because it
must be accessible to the main program.

6.3.4 The eight-queens puzzle in Objective-C
The interface description for our class Queen is as follows.

Click here to view code image
@interface Queen : Object 
{  /* data fields */ 
  int row; 
  int column; 
  id neighbor; 
} 
 
  /* methods */ 
- (void) initialize: (int) c neighbor: ngh; 
- (int)  advance; 
- (void) print; 
- (int)  canAttack: (int) testRow column: (int) testColumn; 
- (int)  findSolution; 
 
@end

Each queen will maintain three data fields: a row value, a column, and
the neighbor queen. The last is declared with the data type id. This
declaration indicates that the value being held by the variable is an object
type, although not necessarily a queen.

In fact, we can use this typeless nature of variables in Objective-C to our
advantage. We will employ a technique that is not possible, or at least not
as easy, in a more strongly typed language such as C++ or Object Pascal.
Recall that the leftmost queen does not have any neighbor. In the C++
solution, this was indicated by the null, or empty, value in the neighbor

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0139-02a


pointer variable in the leftmost queen. In the current solution, we will
instead create a new type of class, a sentinel value. The leftmost queen will
point to this sentinel value, thereby ensuring that every queen has a valid
neighbor.

Sentinel values are frequently used as endmarkers and are found in
algorithms that manipulate linked lists, such as our linked list of queen
values. The difference between an object-oriented sentinel and a more
conventional value is that an object-oriented sentinel value can be active—
it can have behavior—which means it can respond to requests.

What behaviors should our sentinel value exhibit? Recall that the
neighbor links in our algorithm were used for two purposes. The first was
to ensure that a given position could not be attacked. Our sentinel value
should always respond negatively to such requests, since it cannot attack
any position. The second use of the neighbor links was in a recursive call to
print the solution. In this case our sentinel value should simply return, since
it does not have any information concerning the solution.

Putting these together yields the following implementation for our
sentinel queen.

Click here to view code image
@implementation SentinelQueen : Object 
- (int) advance 
{ 
  /* do nothing */ 
  return 0; 
} 
 
- (int) findSolution 
{ 
  /* do nothing */ 
  return 1; 
} 
 
- (void) print 
{ 
  /* do nothing */ 
} 
 
- (int) canAttack: (int) testRow column: (int) testColumn; 
{ 
  /* cannot attack */ 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0140-01a


  return 0; 
} 
@end

In the full solution there is an implementation section for SentinelQueen
but no interface section. This omission is legal, although the compiler will
provide a warning, since it is somewhat unusual.

The use of the sentinel allows the methods in class Queen to simply pass
messages to their neighbor without first determining whether she is the
leftmost queen. The method for canAttack, for example, illustrates this use.

Click here to view code image
- (int) canAttack: (int) testRow column: (int) testColumn 
{  int columnDifference; 
 
  /* can attack same row */ 
  if (row == testRow) 
    return 1; 
 
  columnDifference = testColumn - column; 
  if ((row + columnDifference == testRow) || 
    (row - columnDifference == testRow)) 
      return 1; 
 
  return [ neighbor canAttack:testRow column: testColumn ]; 
}

Within a method, a message sent to the receiver is denoted by a message
sent to the pseudo-variable self.

Click here to view code image
- (void) initialize: (int) c neighbor: ngh 
{ 
  /* set the constant fields */ 
  column = c; 
  neighbor = ngh; 
  row = 1; 
} 
 
-(int) findSolution 
{ 
  /* loop until we find a solution */ 
  while ([neighbor canAttack: row and: column ]) 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0141-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0141-02a


    if (! [self advance]) 
      return 0; /* return false */ 
  return 1; /* return true */ 
}

Other methods are similar and are not described here.

6.3.5 The eight-queens puzzle in Smalltalk
The solution to the eight-queens puzzle in Smalltalk is in most respects very
similar to the solution given in Objective-C. Like Objective-C, Smalltalk
handles the fact that the leftmost queen does not have a neighbor by
defining a special sentinel class. The sole purpose of this class is to provide
a target for the messages sent by the leftmost queen.

The sentinel value is the sole instance of the class SentinelQueen, a
subclass of class Object, which implements the following three methods.

Click here to view code image
{advance} 
 
    " sentinels do not attack " 
    ↑ false 
 
{canAttack:} row {column:} column 
    " sentinels cannot attack " 
    ↑ false 
 
{result} 
    " return empty list as result " 
    ↑ List new

One difference between the Objective-C and Smalltalk versions is that
the Smalltalk code returns the result as a list of values rather than printing it
on the output. The techniques for printing output are rather tricky in
Smalltalk and vary from implementation to implementation. By returning a
list we can isolate these differences in the calling method.

The class Queen is a subclass of class Object. Instances of class Queen
maintain three instance variables: a row value, a column value, and a
neighbor. Initialization is performed by the method setColumn:neighbor.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0142-01a


Click here to view code image
{setColumn:} aNumber {neighbor:} aQueen 
    " initialize the data fields " 
  column := aNumber. 
  neighbor := aQueen. 
  row := 1.

The canAttack method differs from the Objective-C counterpart only in
syntax.

Click here to view code image
{canAttack:} testRow {column:} testColumn | columnDifference | 
  columnDifference := testColumn - column. 
  (((row = testRow) or: 
    [ row + columnDifference = testRow]) or: 
    [ row - columnDifference = testRow]) 
      ifTrue:  [ ↑ true ]. 
↑ neighbor canAttack: testRow column: testColumn

Rather than testing for the negation of a condition, Smalltalk provides
an explicit ifFalse statement, which is used in the method advance.

Click here to view code image
{advance} 
    " first try next row " 
  (row < 8) 
    ifTrue:  [ row := row + 1.  ↑ self findSolution ]. 
    " cannot go further, move neighbor " 
  (neighbor advance) ifFalse:  [ ↑ false ]. 
    " begin again in row 1 " 
  row : = 1. 
↑ self findSolution

The while loop in Smalltalk must use a block as the condition test, as in
the following.

Click here to view code image
{findSolution} 
  [ neighbor canAttack: row column: column ] 
    whileTrue: [ self advance ifFalse: [ ↑ false ] ]. 
 ↑ true

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0142-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0142-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0143-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0143-03a


A recursive method is used to obtain the list of answer positions. Recall
that an empty list is created by the sentinel value in response to the message
result.

Click here to view code image
{result} 
↑ neighbor result; addLast: row

A solution can be found by invocation of the following method, which is
not part of class Queen but is instead attached to some other class, such as
Object.

Click here to view code image
{solvePuzzle} | lastQueen | 
  lastQueen := SentinelQueen new. 
  1 to: 8 do:  [:i | lastQueen := (Queen new) 
    setColumn: i neighbor: lastQueen. 
    lastQueen findSolution ]. 
  ↑ lastQueen result

6.3.6 The eight-queens puzzle in Ruby
Ruby is a recent scripting language, similar in spirit to Python or Perl.
There are only functions in Ruby—every method returns a value, which is
simply the value of the last statement in the body of the method. A feel for
the syntax for Ruby can be found by the definition of the sentinel queen,
which can be written as follows.

Click here to view code image
class NullQueen 
 
  def canAttack(row, column) 
    false 
  end 
 
  def first? 
    true 
  end 
 
  def next? 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0143-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0143-05a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0144-01a


    false 
  end 
 
  def getState 
    Array.new 
  end 
 
end

The class Queen handles all but the last case. In Ruby, instance variables
must begin with an at-sign (@). Thus, the initialization method is written as
follows.

Click here to view code image
class Queen 
 
  def initialColumn(column, neighbor) 
    @column = column 
    @neighbor = neighbor 
    nil 
  end 
  . 
  . 
  . 
end

Conditional statements are written in a curious form where the
expression is given first, followed by the if keyword. This is illustrated by
the method canAttack.

Click here to view code image
def canAttack(row, column) 
  return true if row == @row 
 
  cd = (column - @column).abs 
  rd = (row - @row).abs 
  return true if cd == rd 
 
  @neighbor.canAttack(row, column) 
end

The remainder of the Ruby solution can be found in Appendix A.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0144-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch06_images.xhtml#f0144-03a


Summary ⊡
In this first case study we have examined a classic puzzle, how to place
eight queens on a chessboard in such a way that no queen can attack any of
the others. While the problem is moderately intriguing, our interest is not so
much in the problem itself but in the way the solution to the problem has
been structured. We have addressed the problem by making the queens into
independent agents, who then work among themselves to discover a
solution.

Further Reading ⊡
A solution to the eight-queens puzzle constructed without the use of a
sentinel value was described in my earlier book on Smalltalk [Budd 1987].

The eight-queens puzzle is found in many computing texts. See
[Griswold 1983, Budd 1987, Berztiss 1990] for some representative
examples.

For further information on the general technique termed generate and
test, see [Hanson 1981] or [Berztiss 1990].

The solution in Ruby was written by Mike Stok. Further information on
Ruby can be found in [Thomas 2001].

Self-Study Questions ⊡
1. What is the eight-queens puzzle?
2. In what way is the object-oriented solution presented here different

from a conventional solution?
3. What is the generate and test approach to finding a solution in a space

of various alternative possibilities?
4. What is a sentinel? (The term is introduced in the solution presented

in Objective-C.)



Exercises ⊡
1. Modify any one of the programs to produce all possible solutions

rather than just one. How many possible solutions are there for the
eight-queens puzzle? How many of these are rotations of other
solutions? How might you filter out rotations?

2. Can you explain why the sentinel class in the Objective-C and
Smalltalk versions of the eight-queens puzzle do not need to provide
an implementation for the method findSolution, despite the fact that
this message is passed to the neighbor value in the method advance?

3. Suppose we generalize the eight-queens problem to the N-queens
problem, where the task is to place N queens on an N by N chessboard.
How must the programs be changed?
It is clear that there are values for N for which no solution exists
(consider N = 2 or N = 3, for example). What happens when your
program is executed for these values? How might you produce more
meaningful output?

4. Using whatever graphics facilities your system has, alter one of the
programs to display dynamically the positions of each queen on a
chessboard as the program advances. What portions of the program
need to know about the display?



Chapter 7

A Case Study: A Billiards Game

In our second case study, we will develop a simple simulation of a billiard
table.1 The program is written in Delphi Pascal.2 As with the eight-queens
program, the design of this program will stress the creation of autonomous
interacting agents working together to produce the desired outcome.

1. The game implemented by the program described in this chapter does not correspond to any actual
game. It is not pool or billiards but simply balls moving around a table consisting of walls and holes.

2. Discussion of Delphi Pascal is complicated by the fact that graphical user interface elements of
Delphi programs are constructed visually, using the integrated development environment. This style
of design will be familiar to users of Visual Basic. However, the user interface aspects are not
relevant to our purposes, which is the investigation of Delphi as an object-oriented programming
language. The references at the end of the chapter provide pointers to further information regarding
these other aspects of Delphi.

7.1 ⊡ The Elements of Billiards
The billiard table as the user sees it consists of a window containing a
rectangle with holes (pockets) in the corners, 15 colored balls, and 1 white
cue ball. By clicking the mouse the user simulates striking the cue ball,
imparting a certain amount of energy to it. The direction of motion for the
cue ball will be opposite to that of the mouse position in relation to the cue.
Once a ball has energy it will start to move, reflecting off of walls, falling
into holes, and potentially striking other balls. When a ball strikes another
ball, some of the energy of the first is given to the second, while the
direction of movement of the two balls is changed by the collision.



⊡ Figure 7.1—Billiard table

7.2 ⊡ Graphical Objects
The heart of the simulation are three linked lists of graphical objects, which
comprise the walls, holes, and balls. Each graphical object will include a
link field and a field indicating the region of the screen occupied by the
object.3

3. There are clear conflicts in ordering in the presentation of this case study. On the one hand, it is
important for the reader to see examples of object-oriented principles as soon as possible; thus,
placing this particular case study early in the book is desirable. On the other hand, this program, like
almost all object-oriented programs, would benefit from more advanced techniques, which we will
not discuss until later. In particular, the graphical objects might be better described by an inheritance
hierarchy, such as we will discuss in Chapter 8. Similarly, it is generally considered poor
programming practice for the objects being maintained on a linked list to hold the link fields as part
of their data area; a better design would be to separate the container from the elements in the list.
Solving this problem is nontrivial and introduces complications not particularly relevant to the points
addressed here. We will discuss container classes in Chapter 19.

A simplifying assumption we have made is that all graphical objects
occupy rectangular regions. This is, of course, quite untrue for a round
object such as a ball. A more realistic alternative would have been to write



a procedure that determined whether two balls have intersected based on
the geometry of the ball rather than on the intersection of their regions.
Once again, the complexity of the procedure would only have detracted
from the issues we wish to address in our case study.

The primary objective in this case study is the way in which
responsibility for behavior has been vested in the objects themselves. Every
graphical object knows not only how to draw itself but how to move and
how to interact with the other objects in the simulation.

7.2.1 The wall graphical object
The first of our three graphical objects is a wall. It is defined by the
following class description.

Click here to view code image
TWall = class(TObject) 
public 
  constructor create 
    (ix, iy, iw, in : Integer; cf : Real; ilink : TWall); 
  procedure draw (canvas : TCanvas); 
  function hasIntersected(aBall : Tball)  : Boolean; 
  procedure hitBy (aBall : TBall); 
private 
  x, y : Integer; 
  height, width : Integer; 
  convertFactor : Real; 
  link : TWall; 
end;

The x and y fields represent the upper-left corner of the wall, while the
height and width fields maintain the size. The link field maintains a linked
list of wall objects. The constructor simply defines the region of the wall
and sets the convert factor.

Click here to view code image
constructor TWall.create 
  (ix, iy, iw, ih : Integer; cf : Real; ilink : Twall); 
begin 
  x := ix; 
  y := iy; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0149-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0149-02a


  height := ih; 
  width := iw; 
  convertFactor := cf; 
  link := ilink; 
end;

A wall can be drawn simply by printing a solid rectangle. A graphics
library routine performs this task.

Click here to view code image
procedure TWall.draw(canvas: TCanvas); 
begin 
        with canvas do begin 
                Brush.Style := bsSolid; 
                Brush.Color := clBlack; 
                fillRect(Rect(x, y, x + width, y + height)); 
        end; 
end;

The most interesting behavior of a wall occurs when it has been struck
by a ball. The direction of the ball is modified by use of the convert factor
for the wall. (Convert factors are either zero or pi, depending on whether
the wall is horizontal or vertical.) The ball subsequently moves off in a new
direction.

Click here to view code image
procedure TWall.hitBy (aBall : TBall); 
begin 
    { bounce the ball off the wall } 
  aBall.direction := convertFactor - aBall.direction; 
end;

7.2.2 The hole graphical object
A hole is defined by the following class description.

Click here to view code image
THole = class(TObject) 
public 
  constructor create (ix, iy : Integer; ilink : THole); 
  procedure draw (canvas : TCanvas); 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0150-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0150-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0150-03a


  function hasIntersected(aBall : TBall)  : Boolean; 
  procedure hitBy (aBall : TBall); 
private 
  x, y : Integer; 
  link : THole; 
end;

As with walls, the initialization and drawing of holes is largely a matter
of invoking the correct library routines.

Click here to view code image
constructor THole.create(ix, iy : Integer; ilink : THole); 
begin 
  x := ix; 
  y := iy; 
  link := ilink; 
end; 
procedure THole.draw(canvas : TCanvas); 
begin 
        with canvas do begin 
                Brush.Style := bsSolid; 
                Brush.Color := clBlack; 
                Ellipse(x-5, y-5, x+5, y+5); 
        end; 
end;

Of more interest is what happens when a hole is struck by a ball. There
are two cases. If the ball happens to be the cue ball (which is identified with
a global variable, CueBall), it is placed back into play at a fixed location.
Otherwise, all the energy is drained from the ball, and it is moved off the
table to a special display area.

Click here to view code image
procedure THole.hitBy (aBall : TBall); 
begin 
    { drain enery from ball } 
  aBall.energy := 0.0; 
 
    { move ball } 
  if aBall = CueBall then 
    aBall.setCenter(50, 100) 
else begin 
    saveRack := saveRack + 1; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0150-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0151-02a


    aBall.setCenter (10 + saveRack * 15, 250); 
  end; 
end;

7.2.3 The ball graphical object
Our final graphical object is the ball, defined by the following class
description:

Click here to view code image
TBall = class(TObject) 
public 
  constructor create (ix, iy : Integer; iLink : TBall); 
  procedure draw (canvas : TCanvas); 
  function hasIntersected(aBall : Tball) : Boolean; 
  procedure hitBy (aBall : TBall); 
  procedure update; 
  procedure setCenter (nx, ny : Integer); 
  procedure setDirection (nd : Real); 
private 
        x, y : Integer; 
        direction : Real; 
        energy : Real; 
        link : TBall; 
end;

In addition to the link and rectangle regions common to the other
objects, a ball maintains two new data fields: a direction, measured in
radians, and an energy, which is an arbitrary real value. Like a hole, a ball is
initialized by arguments that specify the center of the ball. Initially a ball
has no energy and a direction of zero.

Click here to view code image
constructor TBall.create(ix, iy : Integer; iLink : TBall); 
begin 
        setCenter(ix, iy); 
        setDirection(0.0); 
        energy := 0.0; 
        link := iLink; 
 
end; 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0151-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0152-02a


procedure TBall.setCenter(nx, ny : Integer); 
begin 
        x := nx; 
        y := ny; 
end; 
 
procedure TBall.setDirection(nd : Real); 
begin 
        direction := nd; 
end;

A ball is drawn either as a frame or as a solid circle, depending on
whether or not it represents the cue ball.

Click here to view code image
procedure TBall.draw(canvas : TCanvas); 
begin 
        with canvas do begin 
                Brush.Style := bsSolid; 
                if (self = cueBall) then 
                        Brush.Color := clWhite 
                else 
                        Brush.Color := clBlack; 
                Ellipse(x-5, y-5, x+5, y+5); 
        end; 
end;

The method update is used to update the position of the ball. If the ball
has a nontrivial amount of energy, it moves slightly and then checks to see
if it has hit another object. A global variable named ballMoved is set to true
if any ball on the table has moved. If the ball has hit another object, it
notifies the second object that it has been struck. This notification process
is divided into three steps, corresponding to hitting holes, walls, and other
balls. Inheritance, which we will study in Chapter 8, will provide a means
by which these three tests can be combined into a single loop.

Click here to view code image
procedure TBall.update; 
var 
  hptr : THole; 
  wptr : TWall; 
  bptr : TBall; 
  dx, dy : integer; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0152-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0153-01a


begin 
  if energy > 0.5 then begin 
    ballMoved := true; 
      { decrease energy } 
    energy := energy - 0.05; 
      { move ball } 
    dx := trunc(5.0 * cos(direction)); 
    dy := trunc(5.0 * sin(direction)); 
                x := x + dx; 
                y := y + dy; 
 
    { see if we hit a hole } 
  hptr := listOfHoles; 
  while (hptr <> nil) do 
    if hptr.hasIntersected(self) then begin 
      hptr.hitBy(self); 
      hptr := nil; 
    end 
    else 
      hptr := hptr.link; 
 
    { see if we hit a wall } 
  wptr := listOfWalls; 
  while (wptr <> nil) do 
    if wptr.hasIntersected(self) then begin 
      wptr.hitBy(self); 
      wptr := nil; 
    end 
    else 
      wptr := wptr.link; 
 
    { see if we hit a ball } 
  bptr := listOfBalls; 
  while (bptr <> nil) do 
    if (bptr <> self) and bptr.hasIntersected(self) then begin 
      bptr.hitBy(self); 
      bptr := nil; 
    end 
    else 
      bptr := bptr.link; 
 
  end; 
end;



When one ball strikes another ball, the energy of the first one is split,
and half is given to the second one. The angles of both are also changed.
(The physics is not exactly correct, but the results look reasonably
realistic.)

Click here to view code image
procedure TBall.hitBy (aBall : TBall); 
var 
  da : real; 
begin 
    { cut the energy of the hitting ball in half } 
  aBall.energy := aBall.energy / 2.0; 
 
    { and add it to our own } 
  energy := energy + aBall.energy; 
 
    { set our new direction } 
  direction := hitAngle(self.x - aBall.x, self.y - aBall.y); 
 
    { and set the hitting balls direction } 
  da := aBall.direction - direction; 
  aBall.direction := aBall.direction + da; 
 
    { continue our update } 
  update; 
end; 
 
function hitAngle (dx, dy : real)  : real; 
  const 
    PI = 3.14159; 
var 
  na : real; 
begin 
  if (abs(dx) < 0.05) then 
    na := PI / 2 
  else 
    na := arctan (abs(dy / dx)); 
  if (dx < 0) then 
    na := PI - na; 
  if (dy < 0) then 
    na := - na; 
  hitAngle := na; 
end; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0154-02a


7.3 ⊡ The Main Program
The previous section described the static characteristics of the program. The
dynamic characteristics are set in motion when a mouse press occurs, at
which time the following function is invoked.

Click here to view code image
procedure TfrmGraphics.DoClick (Sender: TObject; 
  Button: TMouseButton; Shift: TShiftState; X, Y: Integer); 
var 
  bptr : TBall; 
begin 
  cueBall.energy := 20.0; 
  cueBall.setDirection(hitAngle(cueBall.x - x, cueBall.y - y)); 
    { then loop as long as called for } 
  ballMoved := true; 
  while ballMoved do begin 
    ballMoved := false; 
    bptr := listOfBalls; 
    while bptr <> nil do begin 
      bptr.update; 
      bptr := bptr.link; 
    end; 
  end; 
end;

The remainder of the program is relatively straightforward and will not
be presented here. The complete source is given in Appendix B. The
majority of the code is concerned with the initialization of the new objects
and with the event loop that waits for the user to perform an action. The
programmer uses the Delphi development environment to match events,
such as mouse presses, with procedures, such as DoClick.

To stress the point we made at the beginning of this chapter, the most
important feature of this case study is the way control has been
decentralized and the objects themselves have been given the power to
control and direct the flow of execution. When a mouse press occurs, all
that happens is that the cue ball is provided with a certain amount of energy.
Thereafter, the interaction of the balls drives the simulation.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0155-02a


7.4 ⊡ Using Inheritance
In Chapter 1 we informally introduced inheritance, and in Chapter 8 we
discuss how inheritance works in each of the languages we are considering.
In this section we describe how inheritance can be used to simplify the
billiards simulation, foreshadowing the discussion we will present in the
next chapter. The reader may wish to return to this section after reading the
general treatment of inheritance in Chapter 8.

We have, in fact, been using inheritance throughout our development of
the classes for our application. All of our classes inherit from the system
class TObject, but since we did not use any behavior from this class, the
issue was not very important. Now we will create parent classes that do
embody useful behavior.

The first step in using inheritance in our billiards simulation is to define
a general class for “graphical objects.” This class includes all three items:
balls, walls, and holes. The parent class is defined as follows.

Click here to view code image
type 
  TBall = class; (* forward declaration *) 
 
  TGraphicalObject = (TObject) 
  public 
      constructor Create(ix, iy : Integer; il : TGraphicalObject); 
      procedure draw (canvas : TCanvas); virtual; abstract; 
      function hasIntersected (aBall : TBall): Boolean; virtual; 
abstract; 
      procedure hitBy (aBall : TBall); virtual; abstract; 
      procedure update; virtual; 
  private 
      x, y : Integer; 
      link : TGraphicalObject; 
end;

Note the forward declaration for the class TBall. This allows the class
TGraphicalObject to declare arguments of type TBall, even though the
class definition has not yet been seen.

Every graphical object has a location and a link. The constructor sets
these values. The methods draw, hasIntersected, and hitBy are declared
as virtual and abstract. This means they are not defined in the parent class

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0156-01a


but must be redefined in the child classes. The method update is declared as
virtual but not abstract. In the parent class it is defined to do nothing. This
behavior will be overridden by class TBall but not by the other two.

The classes Ball, Wall, and Hole are then declared as subclasses of the
general class GraphicalObject and need not repeat the declarations for data
areas or functions unless they are being overridden.

Click here to view code image
THole = class(TGraphicalObject) 
public 
  constructor create 
    (ix, iy : Integer; ilink : TGraphicalObject); overload; 
  procedure draw (canvas : TCanvas); override; 
  function hasIntersected(aBall : TBall)  : Boolean; override; 
  procedure hitBy (aBall : TBall); override; 
end;

Compare this declaration to the one given earlier and note how we have
now eliminated the declaration for the data fields, since they have been
moved to the parent class.

Constructors for the child classes must explicitly invoke the constructors
for their parent classes, as in the following constructor for class TBall.

Click here to view code image
constructor TBall.Create (ix, iy : Integer; iLink : 
TGraphicalObject); 
begin 
  inherited Create(ix, iy, iLink); 
  setDirection(0.0); 
  energy := 0.0; 
end;

By making CueBall a subclass of Ball, we can eliminate the conditional
statement in the routine that draws the ball’s image.

Click here to view code image
TCueBall = class(TBall) 
public 
        procedure draw (canvas : TCanvas); override; 
end; 
 
procedure TBall.draw(canvas : TCanvas); 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0157-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0157-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0157-03a


begin 
        with canvas do begin 
                Brush.Style := bsSolid; 
                Brush.Color := clBlack; 
                Ellipse(x-5, y-5, x+5, y+5); 
        end; 
end; 
 
procedure TCueBall.draw (canvas : TCanvas); 
begin 
        with canvas do begin 
                Brush.Style := bsSolid; 
                Brush.Color := clWhite; 
                Ellipse(x-5, y-5, x+5, y+5); 
        end; 
end;

The greatest simplification comes from the fact that it is now possible to
keep all graphical objects on a single linked list. Thus, the routine that
draws the entire screen, for example, can be written as follows.

Click here to view code image
procedure TfrmGraphics.DrawExample(Sender: TObject); 
var 
  gptr : TGraphicalObject; 
begin 
  with imgGraph.Canvas do begin 
    Brush.Color := clWhite; 
    Brush.Style := bsSolid; 
    FillRect(Rect(0, 0, 700, 700)); 
  end; 
  gptr := listOfObjects; 
  while (gptr <> nil) do begin 
    gptr.draw(imgGraph.Canvas); 
    gptr := gptr.link; 
  end; 
end;

The most important point in this code concerns the invocation of the
function draw within the loop. Despite the fact that there is only one
function call written here, sometimes the function invoked will be from
class TBall; at other times it will be from class TWall or class THole. The
fact that one function call might result in many different function bodies

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch07_images.xhtml#f0158-02a


being invoked is a form of polymorphism. We will discuss this important
topic in more detail in Chapter 14.

The routine that tests to see if a moving ball has hit anything in the
function Ball.update is similarly simplified. This can be seen in the
complete source listing provided in Appendix B.

Summary ⊡
In our second case study we examined a graphical program that simulates
the behavior of a pool table. Once more our motivation for presenting the
case study was not so much the problem being addressed as it was the
manner in which the problem was being solved. The balls, holes, and walls
in the game are described as independently reacting agents. When the user
interacts with the game by means of a mouse press, the effect is to impart
some energy to the cue ball, thereby forcing it to move. Thereafter the
objects interact among themselves until all the balls run out of energy.

Further Information ⊡
In the first two editions of the book, this case study was presented in Apple
Object Pascal instead of Delphi. Those versions can still be found in the
Web site ftp://ftp.cs.orst.edu/pub/budd/oopintro.

As we noted at the beginning of this chapter, our concern here is with
the programming language aspects of Delphi, which are only a small part of
the entire Delphi system. Further information on Delphi can be found in
[Lischner 2000, Kerman 2002]. Borland also provides a wealth of online
material with the Delphi integrated program development system.

Self-Study Questions ⊡
1. Give some examples of how the design makes holes, walls, and balls

responsible for their own behavior.
2. By making each graphical object into a separate class, and making

each responsible for a different aspect of behavior, the object-oriented



design is able to support a great deal of information hiding. This, in
turn, leads to programs that are considerably easier to modify than
when conventional techniques are used. To illustrate this, explain
what sections of code would need to be modified to produce each of
the following changes.

Colored balls, rather than black and white
Walls that absorb a bit of energy when they reflect a ball
Holes that make a sound when they absorb a ball
Balls that make a sound when they strike

Exercises
1. Suppose you want to perform a certain action every time the billiards

program executes the event loop task. Where is the best place to insert
this code?

2. Suppose you want to make the balls colored. What portions of the
program do you need to change?

3. Suppose you want to add pockets on the side walls, as on a
conventional pool table. What portions of the program do you need to
change?

4. The billiards program uses a “breadth-first” technique, cycling
repeatedly over the list of balls, moving each a little as long as any
ball has energy. An alternative, and in some ways more object-
oriented, approach is to have each ball continue to update itself as
long as it possesses any energy and update any ball that it hits. With
this technique, it is only necessary to start the cue ball moving in
order to put the simulation in motion. Revise the program to use this
approach. Which do you think provides a more realistic simulation?
Why?

5. A hole has the same graphical representation as a ball, namely a
round black spot. Similarly the algorithms used to determine if a ball
has intersected are the same for balls and holes. Given this, would it
make sense to declare TBall as a child class of THole? What would be



the advantages of doing so? What might be some problems
introduced by this modification?



Chapter 8

Inheritance and Substitution

The first step in learning object-oriented programming is understanding the
basic philosophy of organizing the performance of a task as the interaction
of loosely coupled software components. This organizational approach was
the central lesson in the case studies of Chapters 6 and 7.

The next step in learning object-oriented programming is organizing
classes into a hierarchical structure based on the concept of inheritance. By
inheritance, we mean the property that instances of a child class (or
subclass) can access both data and behavior (methods) associated with a
parent class (or superclass).

8.1 ⊡ An Intuitive Description of
Inheritance
Let us return to Chris and Fred, the customer and florist from the first
chapter. There is a certain behavior we expect florists to exhibit, not
because they are florists but simply because they are shopkeepers. For
example, we expect Fred to request money for a transaction and in turn give
back a receipt. These activities are not unique to florists but are common to
bakers, grocers, stationers, car dealers, and other merchants. It is as though
we have associated certain behavior with the general category Shopkeeper,
and because Florists are a specialized form of shopkeepers, the behavior is
automatically identified with the subclass.

In programming languages, inheritance means that the behavior and data
associated with child classes are always an extension (that is, a larger set) of



the properties associated with parent classes. A subclass will have all the
properties of the parent class and other properties as well. On the other
hand, since a child class is a more specialized (or restricted) form of the
parent class, it is also, in a certain sense, a contraction of the parent type.
This tension between inheritance as expansion and inheritance as
contraction is a source for much of the power inherent in the technique, but
at the same time it causes much confusion as to its proper employment. We
will see this when we examine a few of the uses of inheritance in a
subsequent section.

Inheritance is always transitive, so a class can inherit features from
superclasses many levels away. That is, if class Dog is a subclass of class
Mammal, and class Mammal is a subclass of class Animal, then Dog will inherit
attributes both from Mammal and from Animal.

8.1.1 The is-a test
As we noted in Chapter 2, there is a rule-of-thumb that is commonly used to
test whether two concepts should be linked by an inheritance relationship.
This heuristic is termed the is-a test. The is-a test says that to tell if concept
A should be linked by inheritance to concept B, try forming the English
sentence “A(n) A is a(n) B.” If the sentence “sounds right” to your ear, then
inheritance is most likely appropriate in this situation. For example, the
following all seem like reasonable assertions.

A bird is an animal.
A cat is a mammal.
An apple pie is a pie.
A TextWindow is a window.
A ball is a GraphicalObject.
An IntegerArray is an array.

On the other hand, the following assertions seem strange for one reason
or another, and hence inheritance is likely not appropriate.

A bird is a mammal.
An apple pie is an apple.
An engine is a car.



A ball is a wall.
An IntegerArray is an integer.

There are times when inheritance can reasonably be used even when the
is-a test fails. Nevertheless, for the vast majority of situations, it gives a
reliable indicator for the appropriate use of the technique.

8.1.2 Reasons to use inheritance
Although there are many uses for the mechanism of inheritance, two
motivations far outweigh all other concerns.

Inheritance as a means of code reuse. Because a child class can inherit
behavior from a parent class, the code does not need to be rewritten
for the child. This can greatly reduce the amount of code needed to
develop a new idea.

Inheritance as a means of concept reuse. This occurs when a child
class overrides behavior defined in the parent. Although no code is
shared between parent and child, the child and parent share the
definition of the method.

An example of the latter was described in the previous chapter. The
variable that was declared as holding a GraphicalObject could, in fact, be
holding a Ball. When the message draw was given to the object, the code
from class Ball, and not from GraphicalObject, was the method selected.
Both code and concept reuse often appear in the same class hierarchies.

Public, Private, and Protected

In earlier chapters we have seen the use of the terms public and
private. A public feature is accessible to code outside the class
definition, whereas a private feature is accessible only within the
class definition. Inheritance introduces a third alternative. In C++
(also in C#, Delphi, Ruby, and several other languages) a protected



feature is accessible only within a class definition or within the
definition of any child classes. Thus, a protected feature is more
accessible than a private one and less accessible than a public
feature. This is illustrated by the following example:

Click here to view code image
class Parent { 
private: 
  int three; 
protected: 
  int two 
public: 
  int one; 
  Parent () { one = two = three = 42; } 
  void inParent () 
    { cout « one « two « three; /* all legal */ } 
}; 
 
class Child : public Parent { 
pulic: 
  void inChild () { 
    cout « one; // legal 
    cout « two; // legal 
    cout « three; // error - not legal 
  } 
}; 
 
void main () { 
  Child c; 
  cout « c.one; // legal 
  cout « c.two; // error - not legal 
  cout « c.three; // error - not legal 
}

The lines marked as error will generate compiler errors. The private
feature can be used only within the parent class, and the protected
feature only within the parent and child class. Only public features
can be used outside the class definitions.

Java uses the same keyword, but there protected features are
legal within the same package in which they are declared.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0163-01a


8.2 ⊡ Inheritance in Various Languages
Object-oriented languages can be divided into those languages that require
every class to inherit from an existing parent class and those languages that
do not. Java, Smalltalk, Objective-C, and Delphi Pascal are examples of the
former, while C++ and Apple Pascal are examples of the latter. For the
former group we have already seen the syntax used to indicate inheritance
—for example, in Figure 4.3 of Chapter 4. In Figure 8.1 we reiterate some
of these and also show the syntax used for some of the languages in the
second group.

Click here to view code image
C++ 
  class Wall : public GraphicalObject { 
      . 
      . 
      . 
  } 
 
C# 
  class Wall : GraphicalObject { 
      . 
      . 
      . 
  } 
 
CLOS 
  (defclass Wall (GraphicalObject) () ) 
 
Java 
  class Wall extends GraphicalObject { 
      . 
      . 
      . 
} 
 
 
Object Pascal 
  type 
     Wall = object (GraphicalObject) 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0165-01a


        . 
        . 
        . 
    end; 
 
Python 
  class Wall(GraphicalObject): 
      def __init__(self): 
      . 
      . 
      . 
 
Ruby 
   class Wall < GraphicalObject 
      . 
      . 
      . 
   end

⊡ Figure 8.1—Syntax used to indicate inheritance in several languages

One advantage given to those languages that insist that all classes inherit
from an existing class is that there is then a single root that is ancestor to all
objects. This root class is termed Object in Smalltalk and Objective-C, and
it is termed TObject in Delphi Pascal. Any behavior provided by this root
class is inherited by all objects. Thus, every object is guaranteed to possess
a common minimal level of functionality.

The disadvantage of a single large inheritance tree is that it combines all
classes into a tightly coupled unit. By having several independent
inheritance hierarchies, programs in C++ and other languages that do not
make this restriction are not forced to carry a large library of classes, only a
few of which may be used in any one program. Of course, that means there
is no programmer-defined functionality that all objects are guaranteed to
possess.

In part, the differing views of objects are one more distinction between
languages that use dynamic typing and those that use static typing. In
dynamic languages, objects are characterized chiefly by the messages they
understand. If two objects understand the same set of messages and react in
similar ways, they are, for all practical purposes, indistinguishable
regardless of the relationships of their respective classes. Under these



circumstances, it is useful to have all objects inherit a large portion of their
behavior from a common base class.

8.3 ⊡ Subclass, Subtype, and Substitution
Consider the relationship of a data type associated with a parent class to a
data type associated with a derived, or child, class in a statically typed
object-oriented language. The following observations can be made.

Instances of the child class must possess all data members associated
with the parent class.
Instances of the child class must implement, through inheritance at
least (if not explicitly overridden), all functionality defined for the
parent class. (They can also define new functionality, but that is
unimportant for the present argument.)
Thus, an instance of a child class can mimic the behavior of the
parent class and should be indistinguishable from an instance of the
parent class if substituted in a similar situation.

We will see later in this chapter, when we examine the various ways in
which inheritance can be used, that this is not always a valid argument.
Nevertheless, it is a good description of our idealized view of inheritance.
We will therefore formalize this ideal in what is called the principle of
substitution.

The principle of substitution says that if we have two classes, A and B,
such that class B is a subclass of class A (perhaps several times removed), it
should be possible to substitute instances of class B for instances of class A
in any situation with no observable effect.

The term subtype is used to refer to a subclass relationship in which the
principle of substitution is maintained to distinguish such forms from the
general subclass relationship, which may or may not satisfy this principle.
We saw a use of the principle of substitution in Chapter 7. Section 7.4
described the following procedure.

Click here to view code image
procedure drawBoard; 
var 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0166-01a


  gptr : GraphicalObject; 
begin 
    (* draw each graphical object *) 
  gptr := listOfObjects; 
  while gptr <> nil do begin 
    gptr.draw; 
    gptr := gptr.link; 
  end; 
end;

The global variable listOfObjects maintains a list of graphical objects,
which can be any of three types. The variable gptr is declared to be simply
a graphical object, yet during the course of executing the loop it takes on
values that are, in fact, derived from each of the subclasses. Sometimes
gptr holds a ball, sometimes a hole, and sometimes a wall. In each case,
when the draw function is invoked, the correct method for the current value
of gptr will be executed—not the method in the declared class
GraphicalObject. For this code to operate correctly, it is imperative that the
functionality of each of these subclasses match the expected functionality
specified by the parent class; that is, the subclasses must also be subtypes.

All object-oriented languages will support the principle of substitution,
although some will require additional syntax when a method is overridden.
Most support the concept in a very straightforward fashion; the parent class
simply holds a value from the child class. The one major exception to this
is the language C++. In C++ only pointers and references truly support
substitution; variables that are simply declared as value (and not as
pointers) do not support substitution. We will see why this property is
necessary in C++ in a later chapter.

*8.3.1 Substitution and strong typing
Statically typed languages (such as C++ and Object Pascal) place much
more emphasis on the principle of substitution than do dynamically typed
languages (such as Smalltalk and Objective-C). The reason for this is that
statically typed languages tend to characterize objects by their class,
whereas dynamically typed languages tend to characterize objects by their
behavior. For example, a polymorphic function (a function that can take
objects of various classes) in a statically typed language can ensure a



certain level of functionality only by insisting that all arguments be
subclasses of a given class. Since in a dynamically typed language
arguments are not typed at all, the same requirement would be simply that
an argument must be able to respond to a certain set of messages.

An example of this difference would be a function that requires an
argument to be an instance of a subclass of Measureable, as opposed to a
function that requires an argument to understand the messages lessThan
and equal. The former is characterizing an object by its class, and the latter
is characterizing an object by its behavior. Both forms of type checking are
found in object-oriented languages.

8.4 ⊡ Overriding and Virtual Methods
In Chapter 1 we noted that child classes may sometimes find it necessary to
override the behavior they would otherwise inherit from their parent
classes. In syntactic terms, what this means is that a child class will define a
method using the same name and type signature as one found in the parent
class. When overriding is combined with substitution, we have the situation
where a variable is declared as one class but holds a value from a child
class, and a method matching a given message is found in both classes. In
almost all cases when this situation exists, we want to execute the method
found in the child class, ignoring the method from the parent class.

In many object-oriented languages (Smalltalk, Java) this desired
behavior will occur naturally as soon as a child class overrides a method in
the parent class using the same type signature. Some languages, on the
other hand, require the programmer to indicate that such a substitution is
permitted. Many languages use the keyword virtual to indicate this. It may
be necessary, as in C++, to place the keyword in the parent class1

(indicating that overriding may take place; it does not indicate that it
necessarily will take place) or, as in Object Pascal, in the child class
(indicating that overriding has taken place). Or it may be required in both
places, as in C# and Delphi. Figure 8.2 shows the syntax used for
overriding in various languages.

1. Virtual overriding in C++ is actually more complex for reasons we will develop in the next several
chapters.



Click here to view code image
C++ 
  class GraphicalObject { 
  public: 
    virtual void draw(); 
  }; 
 
  class Ball : public Graphicalobject { 
  public: 
      virtual void draw(); // virtual optional here 
  }; 
 
C# 
 
  class GraphicalObject { 
      public viritual void draw () { ... } 
  } 
 
  class Ball : Graphical Object { 
      public override void draw () { ... } 
  } 
 
Delphi 
      type 
          GraphicalObject = class (TObject) 
             . 
             . 
             . 
             procedure draw; virtual; 
          end; 
 
          Ball = class (GraphicalObject) 
             . 
             . 
             . 
             procedure draw; override; 
          end; 
 
Object Pascal 
     type 
          GraphicalObject = object 
             . 
             . 
             . 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0168-01a


             procedure draw; 
          end; 
 
          Ball = object (GraphicalObject) 
             . 
             . 
             . 
             procedure draw; override; 
          end;

⊡ Figure 8.2—Overriding in various languages

8.5 ⊡ Interfaces and Abstract Classes
In Chapter 4 we briefly introduced the concept of an interface in Java and
other languages. As with classes, interfaces are allowed to inherit from
other interfaces and are even permitted to inherit from multiple parent
interfaces. Although the specification that a new class inherits from a parent
class and the specification that it implements an interface are not exactly the
same, they are sufficiently similar that we will henceforth use the term
inheritance to indicate both actions.

Several object-oriented languages support an idea, termed an abstract
method, that is midway between classes and interfaces. In Java and C#, for
example, a class can define one or more methods using the keyword
abstract. No body is then provided for the method. A child class must
implement any abstract methods before an instance of the class can be
created. Thus, abstract methods specify behavior in the parent class, but the
behavior itself must be provided by the child class.

Click here to view code image
abstract class Window { 
  . 
  . 
  . 
  abstract public void paint ();   // draw contents of window 
  . 
  . 
  . 
}

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0170-01a


An entire class can be named as abstract, whether or not it includes any
abstract methods. It is not legal to create an instance of an abstract class; it
is only legal to use it as a parent class for purposes of inheritance.

In C++ the idea of an abstract method is termed a pure virtual method
and is indicated using the assignment operator.

Click here to view code image
class Window { 
public: 
  . 
  . 
  . 
  virtual void paint () = 0; // assignment makes it pure virtual 
};

A class can have both abstract (or pure virtual) methods and nonabstract
methods. A class in which all methods were declared as abstract (or pure
virtual) would correspond to the Java idea of an interface.

Abstract methods can be simulated even when the language does not
provide explicit support for the concept. In Smalltalk, for example,
programmers frequently define a method to generate an error if it is
invoked, with the expectation that it will be overwritten in child classes.

Click here to view code image
writeTo: stream 
↑ self error:  'subclass must override writeTo'

This is not exactly the same as a true abstract method, since it does not
preclude the creation of instances of the class. Nevertheless, if an instance
is created and this method invoked, the program will quickly fail, so such
errors are easily detected.

8.6 ⊡ Forms of Inheritance
Inheritance is used in a surprising variety of ways. In this section we will
describe a few of its more common uses. Note that the following list
represents general abstract categories and is not intended to be exhaustive.
Furthermore, it sometimes happens that two or more descriptions are

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0170-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0171-01a


applicable to a single situation because some methods in a single class use
inheritance in one way, while others use it in another.

8.6.1 Subclassing for specialization (subtyping)
Probably the most common use of inheritance and subclassing is for
specialization. In subclassing for specialization, the new class is a
specialized form of the parent class but satisfies the specifications of the
parent in all relevant respects. Thus, in this form the principle of
substitution is explicitly upheld. Along with the following category
(subclassing for specification) this is the most ideal form of inheritance and
something that a good design should strive for.

Here is an example of subclassing for specialization. A class Window
provides general windowing operations (moving, resizing, iconification,
and so on). A specialized subclass TextEditWindow inherits the window
operations and in addition provides facilities that allow the window to
display textual material and the user to edit the text values. Because the text
edit window satisfies all the properties we expect of a window in general
(thus, a TextEditWindow window is a subtype of Window in addition to being
a subclass), we recognize this situation as an example of subclassing for
specialization.

8.6.2 Subclassing for specification
Another frequent use for inheritance is to guarantee that classes maintain a
certain common interface—that is, they implement the same methods. The
parent class can be a combination of implemented operations and
operations that are deferred to the child classes. Often, there is no interface
change of any sort between the parent class and the child class—the child
merely implements behavior described, but not implemented, in the parent.

This is in essence a special case of subclassing for specialization, except
that the subclasses are not refinements of an existing type but rather
realizations of an incomplete abstract specification. In such cases the parent
class is sometimes known as an abstract specification class.



A class that implements an interface is always fulfilling this form of
inheritance. However, subclassing for specification can also arise in other
ways. In the billiards simulation example presented in Chapter 7, for
example, the class GraphicalObject was an abstract class, since it
described, but did not implement, the methods for drawing the object and
responding to a hit by a ball. The subsequent classes Ball, Wall, and Hole
then used subclassing for specification when they provided meanings for
these methods.

In general, subclassing for specification can be recognized when the
parent class does not implement actual behavior but merely defines the
behavior that will be implemented in child classes.

8.6.3 Subclassing for construction
A class can often inherit almost all of its desired functionality from a parent
class, perhaps changing only the names of the methods used to interface to
the class or modifying the arguments in a certain fashion. This may be true
even if the new class and the parent class fail to share the is-a relationship.

For example, the Smalltalk class hierarchy implements a generalization
of an array called Dictionary. A dictionary is a collection of key-value
pairs, like an array, but the keys can be arbitrary values. A symbol table,
such as might be used in a compiler, can be considered a dictionary indexed
by symbol names in which the values have a fixed format (the symbol-table
entry record). A class SymbolTable can therefore be made a subclass of the
class Dictionary, with new methods defined that are specific to the use as a
symbol table. Another example might be forming a set data abstraction on
top of a base class that provides list methods. In both these cases, the child
class is not a more specialized form of the parent class because we would
never think of substituting an instance of the child class in a situation where
an instance of the parent class is being used.

A common use of subclassing for construction occurs when classes are
created to write values to a binary file—for example, in a persistent storage
system. A parent class may implement only the ability to write raw binary
data. A subclass is constructed for every structure that is saved. The
subclass implements a save procedure for the data type, which uses the
behavior of the parent type to do the actual storage.2



2. This example illustrates the blurred lines between categories. If the child class implements the
storage using a different method name, we say it is subclassing for construction. If, on the other hand,
the child class uses the same name as the parent class, we might say the result is subclassing for
specification.

Click here to view code image
class Storable { 
  void writeByte(unsigned char); 
  }; 
 
class StoreMyStruct : public Storable { 
  void writeStruct (MyStruct & aStruct); 
  };

Subclassing for construction tends to be frowned upon in statically
typed languages, since it often directly breaks the principle of substitution
(forming subclasses that are not subtypes). On the other hand, because it is
often a fast and easy route to developing new data abstractions, it is widely
employed in dynamically typed languages. Many instances of subclassing
for construction can be found in the Smalltalk standard library.

We will investigate an example of subclassing for construction in
Chapter 9. We will also see that C++ provides an interesting mechanism,
private inheritance, which permits subclassing for construction without
breaking the principle of substitution.

8.6.4 Subclassing for generalization
Using inheritance to subclass for generalization is, in a certain sense, the
opposite of subclassing for specialization. Here, a subclass extends the
behavior of the parent class to create a more general kind of object.
Subclassing for generalization is often applicable when we build on a base
of existing classes that we do not wish to, or cannot, modify.

Consider a graphics display system in which a class Window has been
defined for displaying on a simple black-and-white background. You could
create a subtype ColoredWindow that lets the background color be something
other than white by adding an additional field to store the color and
overriding the inherited window display code that specifies the background
be drawn in that color.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0173-01a


Subclassing for generalization frequently occurs when the overall design
is based primarily on data values and only secondarily on behavior. This is
shown in the colored window example, since a colored window contains
data fields that are not necessary in the simple window case.

As a rule, subclassing for generalization should be avoided in favor of
inverting the type hierarchy and using subclassing for specialization.
However, this is not always possible.

8.6.5 Subclassing for extension
While subclassing for generalization modifies or expands on the existing
functionality of an object, subclassing for extension adds totally new
abilities. Subclassing for extension can be distinguished from subclassing
for generalization in that the latter must override at least one method from
the parent and the functionality is tied to that of the parent. Extension
simply adds new methods to those of the parent, and the functionality is less
strongly tied to the existing methods of the parent.

An example of subclassing for extension is a StringSet class that
inherits from a generic Set class but is specialized for holding string values.
Such a class might provide additional methods for string-related operations
—for example, “search by prefix,” which returns a subset of all the
elements of the set that begin with a certain string value. These operations
are meaningful for the subclass but are not particularly relevant to the
parent class.

As the functionality of the parent remains available and untouched,
subclassing for extension does not contravene the principle of substitution,
and so such subclasses are always subtypes.

8.6.6 Subclassing for limitation
Subclassing for limitation occurs when the behavior of the subclass is
smaller or more restrictive than the behavior of the parent class. Like
subclassing for generalization, subclassing for limitation occurs most
frequently when a programmer is building on a base of existing classes that
should not, or cannot, be modified.



For example, an existing class library provides a double-ended queue, or
deque, data structure. Elements can be added or removed from either end of
the deque, but the programmer wishes to write a stack class, enforcing the
property that elements can be added to or removed from only one end of the
stack.

In a manner similar to subclassing for construction, the programmer can
make the Stack class a subclass of the existing Deque class and can modify
or override the undesired methods so that they produce an error message if
used. These methods override existing methods and eliminate their
functionality, which characterizes subclassing for limitation.

Because subclassing for limitation is an explicit contravention of the
principle of substitution, and because it builds subclasses that are not
subtypes, it should be avoided whenever possible.

8.6.7 Subclassing for variance
Subclassing for variance is employed when two or more classes have
similar implementations but do not seem to possess any hierarchical
relationships between the abstract concepts represented by the classes. The
code necessary to control a mouse, for example, may be nearly identical to
the code required to control a graphics tablet. Conceptually, however, there
is no reason why class Mouse should be made a subclass of class Tablet, or
the other way around. One of the two classes is then arbitrarily selected to
be the parent, with the common code being inherited by the other and
device-specific code being overridden.

Usually, however, a better alternative is to factor out the common code
into an abstract class, say PointingDevice, and to have both classes inherit
from this common ancestor. As with subclassing for generalization, this
choice may not be available if you are building on a base of existing
classes.

8.6.8 Subclassing for combination
A common situation is a subclass that represents a combination of features
from two or more parent classes. A teaching assistant, for example, may



have characteristics of both a teacher and a student and can therefore
logically behave as both. The ability of a class to inherit from two or more
parent classes is known as multiple inheritance-, it is sufficiently subtle and
complex that we will devote an entire chapter to the concept.

8.6.9 Summary of the forms of inheritance
We can summarize the various forms of inheritance by the following list.

Specialization. The child class is a special case of the parent class;
in other words, the child class is a subtype of the parent class.
Specification. The parent class defines behavior that is implemented
in the child class but not in the parent class.
Construction. The child class makes use of the behavior provided by
the parent class but is not a subtype of the parent class.
Generalization. The child class modifies or overrides some of the
methods of the parent class.
Extension. The child class adds new functionality to the parent class
but does not change any inherited behavior.
Limitation. The child class restricts the use of some of the behavior
inherited from the parent class.
Variance. The child class and parent class are variants of each other,
and the class-subclass relationship is arbitrary.
Combination. The child class inherits features from more than one
parent class. This is multiple inheritance and will be the subject of a
later chapter.

*8.7 ⊡ Variations on Inheritance
In this section we will examine a number of mostly single-language specific
variations on the themes of inheritance and overriding.



8.7.1 Anonymous classes in Java
Occasionally a situation arises where a programmer needs to create a simple
class and knows there will never be more than one instance of the class.
Such an object is often termed a singleton. The Java programming language
provides a mechanism for creating such an object without even having to
give a name to the class being used to define the object—hence the name
for this technique, anonymous classes.

In order to be able to create an anonymous class, several requirements
must be met.

1. Only one instance of the anonymous class can be created.
2. The class must inherit from a parent class or interface and not require

a constructor for initialization.
These two conditions frequently arise in the context of user interfaces.

For example, in Chapter 22 we will encounter a class named ButtonAdapter
that is used to create graphical buttons. To give behavior to a button, the
programmer must form a new class that inherits from ButtonAdapter and
overrides the method pressed. Since there is only one such object, this can
be done with an anonymous class (also sometimes termed a class definition
expression).

Graphical elements are added to a window using the method add. To
place a new button in a window, all that is necessary is the following.

Click here to view code image
Window p = ... ; 
 
p.add (new ButtonAdapter("Quit"){ 
  public void pressed () { System.exit(0); } 
  } 
);

Study carefully the argument being passed to the add operator. It
includes the creation of a new value, indicated by the new operator. But
rather than ending the expression with the closing parenthesis on the
argument list for new, a curly brace appears as if in a class definition. In
fact, this is a new class definition. A subclass of ButtonAdapter is being
formed, and a single instance of this class will be created. Any methods

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0176-01a


required by this new class are given immediately in-line. In this case, the
new class overrides the method named pressed. The closing curly brace
terminates the anonymous class expression.

8.7.2 Inheritance and constructors
A constructor, you will recall, is a procedure that is invoked implicitly
during the creation of a new object value and that guarantees that the newly
created object is properly initialized. Inheritance complicates this process,
since both the parent and the new child class may have initialization code to
perform. Thus, code from both classes must be executed.

In Java, C++, and other languages the constructor for both parent and
child will automatically be executed as long as the parent constructor does
not require additional parameters. When the parent does require parameters,
the child must explicitly provide them. In Java this is done using the
keyword super.

Click here to view code image
class Child extends Parent { 
  public Child (int x) { 
    super (x + 2); // invoke parent constructor 
  . 
  . 
  . 
  } 
}

In C++ the same task is accomplished by writing the parent class name
in the form of an initializer.

Click here to view code image
class Child : public Parent { 
public: 
  Child (int x)  : Parent(x+2) { ... } 
};

In Delphi a constructor for a child class must always invoke the
constructor for the parent class, even if the parent class constructor takes no

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0177-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0177-02a


arguments. The syntax is the same for executing the parent class behavior
in any overridden method.

Click here to view code image
constructor TChildClass.Create; 
begin 
  inherited Create; // execute constructor in parent 
end

Arguments to the parent constructor are added as part of the call.
Click here to view code image
constructor TChildClass.Create (x : Integer); 
begin 
  inherited Create(x + 2); 
end

Similarly, an initialization method in Python does not automatically
invoke the function in the parent; hence the programmer must not forget to
do this task.

Click here to view code image
class Child(Parent): 
  def __init__ (self) : 
    # first initialize parent 
    Parent.__init__(self) 
    # then do our initialization 
    . 
    . 
    .

8.7.3 Virtual destructors
Recall from Chapter 5 that in C++ a destructor is a function that will be
invoked just before the memory for a variable is recovered. Destructors are
used to perform whatever tasks are necessary to ensure a value is properly
deleted. For example, a destructor will frequently free any dynamically
allocated memory the variable may hold.

If substitution and overriding are anticipated, then it is important that the
destructor be declared as virtual. Failure to do so may result in destructors

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0177-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0177-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0178-01a


for child classes not being invoked. This following example shows this
error.

Click here to view code image
class Parent { 
public: 
    // warning, destructor not declared virtual 
  ∽Parent () { cout « "in parent\n"; } 
}; 
 
class Child : public Parent { 
public: 
  ∽Child () { cout « "in child\n"; 
};

If an instance of the child class is held by a pointer to the parent class
and subsequently released (say, by a delete statement), then only the parent
destructor will be invoked.

Click here to view code image
  Parent * p = new Child(); 
  delete p; 
in parent

If the parent destructor is declared as virtual, then both the parent and
child destructors will be executed. In C++ it is a good idea to include a
virtual destructor, even if it performs no action, if there is any possibility
that a class may later be subclassed.

8.8 ⊡ The Benefits of Inheritance
In this section we describe some of the many important benefits of the
proper use of inheritance.

8.8.1 Software reusability
When behavior is inherited from another class, the code that provides that
behavior does not have to be rewritten. This may seem obvious, but the
implications are important. Many programmers spend much of their time

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0178-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch08_images.xhtml#f0178-03a


rewriting code they have written many times before—for example, to
search for a pattern in a string or to insert a new element into a table. With
object-oriented techniques, these functions can be written once and reused.

Other benefits of reusable code include increased reliability (the more
situations in which code is used, the greater the opportunities for
discovering errors) and the decreased maintenance cost because of sharing
by all users of the code.

8.8.2 Code sharing
Code sharing can occur on several levels with object-oriented techniques.
On one level, many users or projects can use the same classes. (Brad Cox
[Cox 1986] calls these software-ICs, in analogy to the integrated circuits
used in hardware design.) Another form of sharing occurs when two or
more classes developed by a single programmer as part of a project inherit
from a single parent class. For example, a Set and an Array may both be
considered a form of Collection. When this happens, two or more types of
objects will share the code that they inherit. This code needs to be written
only once and will contribute only once to the size of the resulting program.

8.8.3 Consistency of interface
When two or more classes inherit from the same superclass, we are assured
that the behavior they inherit will be the same in all cases. Thus, it is easier
to guarantee that interfaces to similar objects are in fact similar and that the
user is not presented with a confusing collection of objects that are almost
the same but behave, and are interacted with, very differently.

8.8.4 Software components
In Chapter 1, we noted that inheritance provides programmers with the
ability to construct reusable software components. The goal is to permit the
development of new and novel applications that nevertheless require little
or no actual coding. Already, several such libraries are commercially



available, and we can expect many more specialized systems to appear in
time.

8.8.5 Rapid prototyping
When a software system is constructed largely out of reusable components,
development time can be concentrated on understanding the new and
unusual portion of the system. Thus, software systems can be generated
more quickly and easily, leading to a style of programming known as rapid
prototyping or exploratory programming. A prototype system is developed,
users experiment with it, a second system is produced that is based on
experience with the first, further experimentation takes place, and so on for
several iterations. Such programming is particularly useful in situations
where the goals and requirements of the system are only vaguely
understood when the project begins.

8.8.6 Polymorphism and frameworks
Software produced conventionally is generally written from the bottom up,
although it may be designed from the top down. That is, the lower-level
routines are written, and on top of these slightly higher abstractions are
produced, and on top of these even more abstract elements are generated.
This process is like building a wall, where every brick must be laid on top
of an already laid brick.

Normally, code portability decreases as one moves up the levels of
abstraction. That is, the lowest-level routines may be used in several
different projects, and perhaps even the next level of abstraction may be
reused, but the higher-level routines are intimately tied to a particular
application. The lower-level pieces can be carried to a new system and
generally make sense standing on their own; the higher-level components
generally make sense (because of declarations or data dependencies) only
when they are built on top of specific lower-level units.

Polymorphism in programming languages permits the programmer to
generate high-level reusable components that can be tailored to fit different



applications by changes in their low-level parts. We will have much more
to say about this topic in subsequent chapters.

8.8.7 Information hiding
A programmer who reuses a software component needs only to understand
the nature of the component and its interface. It is not necessary for the
programmer to have detailed information concerning matters such as the
techniques used to implement the component. Thus, the interconnectedness
between software systems is reduced. We earlier identified the
interconnected nature of conventional software as being one of the principal
causes of software complexity.

8.9 ⊡ The Costs of Inheritance
Although the benefits of inheritance in object-oriented programming are
great, almost nothing is without cost of one sort or another. For this reason,
we must consider the cost of object-oriented programming techniques and
in particular the cost of inheritance.

8.9.1 Execution speed
It is seldom possible for general-purpose software tools to be as fast as
carefully hand-crafted systems. Thus, inherited methods, which must deal
with arbitrary subclasses, are often slower than specialized code.

Yet, concern about efficiency is often misplaced.3 First, the difference is
often small. Second, the reduction in execution speed may be balanced by
an increase in the speed of software development. Finally, most
programmers actually have little idea of how execution time is being used
in their programs. It is far better to develop a working system, monitor it to
discover where execution time is being used, and improve those sections,
than to spend an inordinate amount of time worrying about efficiency early
in a project.



3. The following quote from an article by Bill Wulf offers some apt remarks on the importance of
efficiency: “More computing sins are committed in the name of efficiency (without necessarily
achieving it) than for any other single reason—including blind stupidity” [Wulf 1972].

8.9.2 Program size
The use of any software library frequently imposes a size penalty not
imposed by systems constructed for a specific project. Although this
expense may be substantial, as memory costs decrease, the size of programs
becomes less important. Containing development costs and producing high-
quality and error-free code rapidly are now more important than limiting the
size of programs.

8.9.3 Message-passing overhead
Much has been made of the fact that message passing is by nature a more
costly operation than simple procedure invocation. As with overall
execution speed, however, overconcern about the cost of message passing is
frequently penny-wise and pound-foolish. For one thing, the increased cost
is often marginal—perhaps two or three additional assembly language
instructions and a total time penalty of 10 percent. (Timing figures vary
from language to language. The overhead of message passing will be much
higher in dynamically bound languages, such as Smalltalk, and much lower
in statically bound languages, such as C++.) This increased cost, like
others, must be weighed against the many benefits of the object-oriented
technique.

A few languages, notably C++, make a number of options available to
the programmer that can reduce the message-passing overhead. These
include eliminating the polymorphism from message passing (qualifying
invocations of member functions by a class name, in C++ terms) and
expanding in-line procedures. Similarly, the Delphi Pascal programmer can
choose dynamic methods, which use a runtime lookup mechanism, or
virtual methods, which use a slightly faster technique. Dynamic methods
are inherently slower but require less space.



8.9.4 Program complexity
Although object-oriented programming is often touted as a solution to
software complexity, in fact, overuse of inheritance can often simply
replace one form of complexity with another. Understanding the control
flow of a program that uses inheritance may require several multiple scans
up and down the inheritance graph. This is what is known as the yo-yo
problem, which we will discuss in more detail in a later chapter.

Summary ⊡
In this chapter we began a detailed examination of inheritance and
substitution, a topic that will be continued through the next several chapters.
When a child class declares that it inherits from a parent class, code in the
parent class does not have to be rewritten. Thus, inheritance is a powerful
mechanism of code reuse. But this is not the only reason to use inheritance.
In the abstract, a child class is a representative of the category formed by
the parent class, and hence it makes sense that an instance of the child class
could be used in those situations where we expect an instance of the parent
class. This is known as the principle of substitution. But this is only an
idealization. Not all types of inheritance support this ideal behavior.

We have described various forms of inheritance, noting when they seem
to support substitution and when they may not.

The chapter concludes with descriptions of both the benefits of
inheritance and the costs incurred through the use of the technique.

Further Reading ⊡
Many of the ideas introduced in this chapter will be developed and explored
in more detail in subsequent chapters. Overriding is discussed in detail in
Chapter 16. We will discuss static and dynamic typing more in Chapter 10
and polymorphism in more detail in Chapter 14.

In Section 8.1.2 we noted that inheritance is used both as a mechanism
of code reuse and concept reuse. The fact that the same feature is serving
two different purposes is a frequent criticism levied against object-oriented



languages. Many writers have advocated separating these two tasks—for
example, using inheritance of classes only for code reuse and using
inheritance of interfaces (as, for example, in Java) for substitution (concept
reuse). While this approach has a theoretical appeal, from a practical
standpoint it complicates the task of programming and has not been widely
adopted. See Exercise 5 for one way this could be accomplished.

The list describing the forms of inheritance is adopted from [Halbert
1987], although I have added some new categories of my own. The
editable-window example is from [Meyer 1988a].

The principle of substitution is sometimes referred to as the Liskov
Substitution Principle, since an early discussion of the idea was presented
by Barbara Liskov and John Guttag [Liskov 1986].

Self-Study Questions ⊡
1. In what ways is a child class an extension of its parent? In what ways

is it a contraction?
2. What is the is-a test for inheritance?
3. What are the two major reasons for the use of inheritance?
4. What is the principle of substitution? What is the argument used to

justify its application?
5. How is a class that contains abstract methods similar to an interface?

If not all methods are abstract, how is it different?
6. What features characterize each of the following forms of

inheritance?
a. Subclassing for Specialization
b. Subclassing for Specification
c. Subclassing for Construction
d. Subclassing for Generalization
e. Subclassing for Extension
f. Subclassing for Limitation



g. Subclassing for Variance
7. Why is subclassing for construction not normally considered to be a

good idea?
8. Why is subclassing for limitation not a good idea?
9. How does inheritance facilitate software reuse?

10. How does it encourage consistency of interface?
11. How does it support the idea of rapid prototyping?
12. How does it encourage the principle of information hiding?
13. An anonymous class combines what two activities?
14. Why is the execution time cost incurred by the use of inheritance not

usually important? What are some situations where it would be
important?

Exercises ⊡
1. Suppose you were required to program a project in a non-object-

oriented language, such as Pascal or C. How would you simulate the
notion of classes and methods? How would you simulate inheritance?
Could you support multiple inheritance? Explain your answer.

2. We noted that the execution overhead associated with message
passing is typically greater than the overhead associated with a
conventional procedure call. How might you measure these
overheads? For a language that supports both classes and procedures
(such as C++ or Object Pascal), devise an experiment to determine
the actual performance penalty of message passing.

3. Consider the three geometric concepts of a line (infinite in both
directions), a ray (fixed at a point, infinite in one direction), and a
segment (a portion of a line with fixed end points). How might you
structure classes representing these three concepts in an inheritance
hierarchy? Would your answer differ if you concentrated more on the
data representation or more on the behavior? Characterize the type of
inheritance you would use. Explain the reasoning behind your design.



4. The following appeared as an illustration of inheritance in a popular
journal.
Perhaps the most powerful concept in object-oriented programming
systems is inheritance. Objects can be created by inheriting the
properties of other objects, thus removing the need to write any
code whatsoever! Suppose, for example, a program is to process
complex numbers consisting of real and imaginary parts. In a
complex number, the real and imaginary parts behave like real
numbers, so all of the operations (+, -, /, *, sqrt, sin, cos, etc.) can
be inherited from the class of objects call REAL, instead of having
to be written in code. This has a major impact on programmer
productivity.
a. The quote seems to indicate that class Complex could be a child

class of Real. Does the assertion that the child class Complex need
not write any code seem plausible?

b. Does this organization make sense in terms of the data members
each class must maintain? Why or why not?

c. Does this organization make sense in terms of the methods each
class must support? Why or why not?

d. Can you describe a better approach for creating a class Complex
using an existing class Real? What benefit does your new class
derive from the existing class?

5. In Section 8.1.2 we noted how inheritance is used for two different
purposes: as a vehicle for code reuse and as a vehicle for substitution.
Among the major object-oriented langauges, Java comes closest to
separating these two purposes, since the language supports both
classes and interfaces. But it confuses the two topics by continuing to
allow substitution for class values. Suppose we took the next step and
changed the Java language to eliminate substitution for class types.
This could be accomplished by making the following two
modifications to the language.

A variable declared as a class could hold values of the class but
not of child classes.



If a parent class indicates that it supports an interface, the child
class would not automatically support the interface but would have
to explicitly indicate this fact in its class heading.

We maintain inheritance and substitution of interfaces; a variable
declared as an interface could hold a value from any class that
implemented the interface.
a. Show that any class hierarchy, and any currently legal

assignment, could be rewritten in this new framework. (You will
need to introduce new interfaces.)

b. Although the resulting system is much cleaner from a theoretical
standpoint, what has been lost? Why did the designers of Java not
follow this approach?



Chapter 9

A Case Study—A Card Game

In this third case study we will examine a simple card game, a version of
solitaire. A slightly different rendition of this program was presented in
C++ in the first edition of this book and rewritten to use the MFC library in
another book [Budd 1999]. The program was translated into Java in the
second edition and revised once again in Java in yet another book [Budd
1998b]. The program presented here is one more revision, this time
translated into C#.

I have used this case study in so many different forms because the
development of this program is a good illustration of the power of
inheritance and overriding. We will get to those aspects after first
considering some of the basic elements of the game. The complete source
for the program can be viewed in Appendix C.

9.1 ⊡ The Class PlayingCard
Wherever possible, software development should strive for the creation of
general purpose reusable classes, classes that make minimal demands on
their environment and hence can be carried from one application to another.
This idea is illustrated by the first class, which represents a playing card.
The class defining the playing card abstraction is shown in Figure 9.1. We
have examined aspects of this class in earlier chapters.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch09_images.xhtml#f0188-01a


public class PlayingCard 
{ 
  public PlayingCard (Suits sv, int rv) 
    { s = sv; r = rv; faceUp = false; } 
 
  public bool isFaceUp 
  { 
    get { return faceUp; } 
  } 
 
  public void flip () 
  { 
    faceUp = ! faceUp; 
  } 
 
  public int rank 
  { 
    get { return r; } 
  } 
 
  public Suits suit 
  { 
    get { return s; } 
  } 
 
  public Color color 
  { 
    get 
    { 
      if ( suit == Suits.Heart || suit == Suits.Diamond ) 
        { return Color.Red; } 
      return Color.Black; 
    } 
  } 
 
  private bool faceUp; 
  private int r; 
  private Suits s; 
}

⊡ Figure 9.1—The definition of the class PlayingCard



The methods isFaceUp, rank, suit, and color have been writen as
properties. Since they include only a get clause and no set feature, they are
properties that can be read and not modified. Two enumerated data types
are used by the playing card class. The enumerated type Color is provided
by the standard run-time system. The class Suits is specific to this project
and is defined as follows.

Click here to view code image
public enum Suits { Spade, Diamond, Club, Heart };

In C#, unlike C++, enumerated constants must be prefixed by their type
name. You can see this in the method color through the use of names such
as Color.Black or Suits.Heart, instead of simply Black or Heart.

The class PlayingCard has no information about the application in which
it is developed and can easily be moved from this program to another
program that uses the playing card abstraction.

9.2 ⊡ Data and View Classes
Techniques used in the creation of visual interfaces have undergone
frequent revisions, and this trend will likely continue for the foreseeable
future. For this reason it is useful to separate classes that contain data
values, such as the PlayingCard abstraction, from classes that are used to
provide a graphical display of those values. By doing so the display classes
can be modified or replaced as necessary, leaving the original data classes
untouched.

The display of the card abstraction will be provided by the class
CardView. To isolate the library-specific aspects of the card view, the actual
display method is declared as abstract (see Section 8.5). This will later be
subclassed and replaced with a function that will use the C# graphics
facilities to generate the graphical interface.

Click here to view code image
public abstract class CardView 
{ 
  public abstract void display (PlayingCard aCard, int x, int y); 
 
  public static int Width = 50; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch09_images.xhtml#f0189-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch09_images.xhtml#f0189-01a


  public static int Height = 70; 
}

By not only separating playing cards from card views but also
separating the concept of a card view from a specific implementation, we
isolate any code that is specific to a single graphics library. The effect is
that the majority of the code in the application has no knowledge of the
graphics library being used. This facilitates any future modifications to the
graphics aspects of the application, which are the features most likely to
change.

The CardView class encapsulates a pair of static constants that represent
the height and width of a card on the display. The PlayingCard class itself
knows nothing about how it is displayed. One abstract method is
prototyped. This method will display the face of a card at a given position
on the display.

It can be argued that even including the height and width as values in
this class is introducing some platform dependencies, but these are less
likely to change than are the libraries used to perform the actual graphical
display.

9.3 ⊡ The Game
The version of solitaire we will describe is known as klondike. The
countless variations on this game make it probably the most common
version of solitaire, so much so that when you say “solitaire,” most people
think of klondike. The version we will use is the one described in
[Morehead 1949]; variations on the basic game are numerous.

The layout of the game is shown in Figure 9.2. A single standard pack
of 52 cards is used. The tableau, or playing table, consists of 28 cards in 7
piles, the first pile has 1 card, the second 2, and so on up to 7. The top card
of each pile is initially faceup; all other cards are facedown.



⊡ Figure 9.2—Layout for the solitaire game

The suit piles (sometimes called foundations) are built up from aces to
kings in suits. They are constructed above the tableau as the cards become
available. The object of the game is to build all 52 cards into the suit piles.

The cards that are not part of the tableau are initially all in the deck.
Cards in the deck are facedown and are drawn one by one from the deck
and placed faceup on the discard pile. From there they can be moved onto
either a tableau pile or a foundation. Cards are drawn from the deck until
the pile is empty; at this point, the game is over if no further moves can be
made.

Cards can be placed on a tableau pile only on a card of next-higher rank
and opposite color. They can be placed on a foundation only if they are the
same suit and the next-higher card or if the foundation is empty and the



card is an ace. Spaces in the tableau that arise during play can be filled only
by kings.

The topmost card of each tableau pile and the topmost card of the
discard pile are always available for play. The only time more than one card
is moved is when an entire collection of faceup cards from a tableau (called
a build) is moved to another tableau pile. This can be done if the
bottommost card of the build can be legally played on the topmost card of
the destination. Our initial game will not support the transfer of a build, but
we will discuss this as a possible extension. The topmost card of a tableau
is always faceup. If a card is moved from a tableau, leaving a facedown
card on the top, the latter card can be turned faceup.

From this short description, it is clear that the game of solitaire mostly
involves manipulating piles of cards. Each type of pile has many features in
common with the others and a few aspects unique to the particular type. In
the next section, we will investigate in detail how inheritance can be used in
such circumstances to simplify the implementation of the various card piles
by providing a common base for the generic actions and permitting this
base to be redefined when necessary.

9.4 ⊡ Card Piles—Inheritance in Action
Much of the behavior we associate with a card pile is common to each
variety of pile in the game. For example, each pile maintains a collection
containing the cards in the pile, and the operations of inserting and deleting
elements from this collection are common. Other operations are given
default behavior in the class CardPile, but they are sometimes overridden in
the various subclasses. The class CardPile is shown in Figure 9.3.

Click here to view code image
public class CardPile { 
  public CardPile (int xl, int yl ) 
    { x = xl; y = yl; pile = new Stack(); } 
 
  public PlayingCard top 
    { get { return (PlayingCard) pile.Peek (); } } 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch09_images.xhtml#f0192-01a


  public bool isEmpty 
     { get { return pile.Count == 0; } } 
 
  public PlayingCard pop 
    { get { return (PlayingCard) pile.Pop (); } } 
 
    // the following are sometimes overridden 
  public virtual bool includes (int tx, int ty ) { 
    return( ( x <= tx ) && ( tx <= x + CardView.Width ) && 
        ( y <= ty ) && ( ty <= y + CardView.Height ) ); 
  } 
 
  public virtual void select (int tx, int ty ) { 
    //donothing-override 
  } 
 
  public virtual void addCard (PlayingCard aCard ) 
    { pile.Push(aCard); } 
 
  public virtual void display (CardView cv) { 
    if ( isEmpty ) { 
      cv.display(null, x, y); 
    } else { 
      cv.display((PlayingCard) pile.Peek(), x, y ); 
    } 
  } 
 
  public virtual bool canTake (PlayingCard aCard) 
    { return false; } 
 
  protected int x, y; // coordinates of the card pile 
  protected Stack pile; // card pile data 
}

⊡ Figure 9.3—Description of the class CardPile

Each card pile maintains the coordinate location for the upper-left corner
of the pile, as well as a collection that contains the card in the pile. The
Stack abstraction from the standard run-time library is used to hold the
cards. All these values are set by the constructor for the class. The data
fields, located near the end of the declaration, are declared as protected and



are thus accessible to member functions associated with this class and to
member functions associated with subclasses.

The three functions top(), pop(), and isEmpty() manipulate the list of
cards using functions provided by the Stack class. The remaining five
operations defined in class CardPile are common to the abstract notion of
our card piles, but they differ in details in each case. For example, the
function canTake(PlayingCard) asks whether it is legal to place a card on
the given pile. A card can be added to a foundation pile, for instance, only
if it is an ace and the foundation is empty or if the card is the same suit as
the current topmost card in the pile and has the next-higher value. A card
can be added to a tableau pile, on the other hand, only if the pile is empty
and the card is a king or if it is of the opposite color as the current topmost
card in the pile and has the next-lower value.

The actions of the five virtual functions defined in CardPile can be
characterized as follows.

includes Determines if the coordinates given as arguments are
contained within the boundaries of the pile. The default action
simply tests the topmost card; this is overridden in the tableau piles
to test all card values.

canTake Tells whether a pile can take a specific card. Only the
tableau and suit piles can take cards, so the default action is simply
to return no; this is overridden in the two classes mentioned.

addCard Adds a card to the card list. It is redefined in the discard
pile class to ensure that the card is faceup.

display Displays the card deck. The default method merely displays
the topmost card of the pile but is overridden in the tableau class to
display a column of cards. The top half of each hidden card is
displayed. So that the playing surface area is conserved, only the
topmost and bottommost faceup cards are displayed (this permits us
to give definite bounds to the playing surface).

select Performs an action in response to a mouse click. It is
invoked when the user selects a pile by clicking the mouse in the
portion of the playing field covered by the pile. The default action



does nothing, but it is overridden by the table, deck, and discard
piles to play the topmost card, if possible.

The following table illustrates the important benefits of inheritance.
Given 5 operations and 5 classes, there are 25 potential methods we might
have had to define. By making use of inheritance we need to implement
only 13. Furthermore, we are guaranteed that each pile will respond in the
same way to similar requests.

 CardPil
e

SuitPil
e

DeckPil
e

DiscardPil
e

TableauPil
e

include

s
x    x

canTake x x   x

addCard x   x  

display x    x

select x  x x x

9.4.1 The default card pile
We will examine each of the subclasses of CardPile in detail, pointing out
various uses of object-oriented features. Each of the five virtual methods is
first defined in the class Card Pile. These implementations will represent
the default behavior should they not be overridden. The implementation of
these methods was shown in Figure 9.3.

9.4.2 The suit piles
The simplest subclass is the class SuitPile, which represents the pile of
cards at the top of the playing surface. This is the pile being built up in suit
from ace to king. The implementation of this class is as follows.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch09_images.xhtml#f0194-01a


public class SuitPile : CardPile { 
  public SuitPile (int x, int y)  : base(x, y) { } 
 
  public override bool canTake (PlayingCard aCard ) { 
    if( isEmpty ) 
      { return( aCard.rank == 0 ); } 
    PlayingCard topCard = top; 
    return( ( aCard.suit == topCard.suit ) && 
       ( aCard.rank == topCard.rank + 1 ) ); 
  } 
}

The class SuitPile defines only two methods. The constructor for the
class takes two integer arguments and does nothing more than invoke the
constructor for the parent class CardPile.

The method canTake overrides the similarly named method in the parent
class. Note the use of the keyword override that indicates this fact. This
method determines whether a card can be placed on the pile. A card is legal
if the pile is empty and the card is an ace (that is, has rank zero) or if the
card is the same suit as the topmost card in the pile and of the next-higher
rank (for example, a three of spades can only be played on a two of spades).
Since the methods rank and suit were declared as properties, they can be
invoked without parentheses.

All other behavior of the suit pile is the same as that of our generic card
pile. When selected, a suit pile does nothing. When a card is added, it is
simply inserted into the stack. To display the pile only the topmost card is
drawn.

9.4.3 The deck pile
The DeckPile maintains the deck from which new cards are drawn. It differs
from the generic card pile in two ways. When constructed, rather than
creating an empty pile of cards, it initializes itself by first creating an array
containing the 52 cards in a conventional deck, then randomly selecting
elements from this collection to generate a sorted deck. The method select
is invoked when the mouse button is used to select the card deck. If the
deck is empty, it does nothing. Otherwise, the topmost card is removed
from the deck and added to the discard pile.



Click here to view code image
public class DeckPile : CardPile { 
  public DeckPile (int x, int y)  : base(x, y) { 
    // create the new deck 
    // first put cards into a local array 
    ArrayList aList = new ArrayList (); 
    for( int i = 0; i <= 12; i++) { 
      aList.Add(new PlayingCard(Suits.Heart, i)); 
      aList.Add(new PlayingCard(Suits.Diamond, i)); 
      aList.Add(new PlayingCard(Suits.Spade, i)); 
      aList.Add(new PlayingCard(Suits.Club, i)); 
    } 
      // then pull them out randomly 
    Random myRandom = new Random( ); 
    for(int count = 0; count < 52; count++) { 
      int index = myRandom.Next(aList.Count); 
      addCard( (PlayingCard) aList [index] ); 
      aList.RemoveAt(index); 
    } 
  } 
 
  public override void select (int tx, int ty) { 
    if ( isEmpty ) { return; } 
    Game.discardPile().addCard( pop ); 
  } 
}

The implementation of the select method presents us with a new
problem. When the mouse is pressed on the deck pile, the desired action is
to move a card from the deck pile on to the discard pile, turning it faceup in
the process. The problem is that we now need to refer to a single unique
card pile—namely, the pile that represents the discard pile.

One approach would be to define the various card piles as global
variables, which then could be universally accessed. In fact, this approach
is used in the program described in my earlier C++ version of the game in
the first edition of this book. But many languages, such as Java and C#, do
not have global variables. There is good reason for this. Global variables
tend to make it difficult to understand the flow of information through a
program, since they can be accessed from any location (that’s what makes
them global).

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch09_images.xhtml#f0195-01a


A better and more object-oriented alternative to the use of global
variables is a series of static values. This reduces the number of global
values to one: the class name. Static methods in the class can then be used
to access further states. In our program we will name this class Game. A
discussion of the details of this class will be postponed until after the
description of the various card piles.

9.4.4 The discard pile
The class DiscardPile redefines the addCard and select methods. The class
is described as follows.

Click here to view code image
public class DiscardPile : CardPile { 
  public DiscardPile (int x, int y )  : base(x, y) { } 
 
  public override void addCard (PlayingCard aCard){ 
    if( ! aCard.isFaceUp ) 
      { aCard.flip(); } 
    base.addCard( aCard ); 
  } 
 
  public override void select (int tx, int ty) { 
    if( isEmpty ) { return; } 
    PlayingCard topCard = pop; 
    for( int i = 0; i < 4; i++ ) { 
      if( Game.suitPile(i).canTake( topCard ) ) { 
        Game.suitPile(i).addCard( topCard ); 
        return; 
      } 
    } 
 
    for( int i = 0; i < 7; i++ ) { 
      if( Game.tableau(i).canTake( topCard ) ) { 
        Game.tableau(i).addCard( topCard ); 
        return; 
      } 
    } 
    // nobody can use it, put it back on our stack 
    addCard(topCard); 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch09_images.xhtml#f0196-01a


  } 
}

The implementation of these methods is interesting in that they exhibit
two very different forms of inheritance. The select method overrides or
replaces the default behavior provided by class CardPile, replacing it with
code that when invoked (when the mouse is pressed over the card pile)
checks to see if the topmost card can be played on any suit pile or,
alternatively, on any tableau pile. If the card cannot be played, it is kept in
the discard pile.

The method addCard is a different sort of overriding. Here the behavior
is a refinement of the default behavior in the parent class. That is, the
behavior of the parent class is completely executed, and in addition, new
behavior is added. In this case, the new behavior ensures that when a card is
placed on the discard pile it is always faceup. After satisfying this
condition, the code in the parent class is invoked to add the card to the pile.
The keyword base is necessary to avoid the confusion with the addCard
method being defined. In Java the same problem would be addressed by
sending a message to super (as in super.addCard(aCard)).

Another form of refinement occurs in the constructors for the various
subclasses. Each must invoke the constructor for the parent class to
guarantee that the parent is properly initialized before the constructor
performs its own actions. The parent constructor is invoked by an initializer
clause inside the constructor for the child class.

9.4.5 The tableau piles
The most complex of the subclasses of CardPile is that used to hold a
tableau, or table pile. The implementation of this class redefines nearly all
of the virtual methods defined in ClassPile. When initialized by the
constructor, the tableau pile removes a certain number of cards from the
deck, placing them in its own pile. The number of cards so removed is
determined by an additional argument to the constructor. The topmost card
of this pile is then displayed faceup.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch09_images.xhtml#f0197-01a


public class TablePile : CardPile { 
  public TablePile (int x, int y, int c)  : base(x, y) { 
    // initialize our pile of cards 
    for(int i = 0; i < c; i++ ) { 
      addCard (Game.deckPile().pop); 
    } 
    top.flip(); 
  } 
 
  public override bool canTake (PlayingCard aCard ) { 
    if( isEmpty ) { return(aCard.rank == 12); } 
    PlayingCard topCard = top; 
    return( ( aCard.color != topCard.color ) && 
      ( aCard.rank    == topCard.rank - 1 ) ); 
  } 
  public override bool includes (int tx, int ty) { 
    return( ( x <= tx ) && ( tx <= x + CardView.Width ) && 
        ( y <= ty ) ); 
  } 
 
  public override void select (int tx, int ty) { 
    if( isEmpty ) { return; } 
    // if face down, then flip 
    PlayingCard topCard = top; 
    if( ! topCard.isFaceUp ) { 
      topCard.flip(); 
      return; 
  } 
  // else see if any suit pile can take card 
  topCard = pop; 
  for(int i = 0; i < 4; i++ ) { 
    if( Game.suitPile(i).canTake( topCard ) ) { 
      Game.suitPile(i).addCard( topCard ); 
      return; 
    } 
  } 
  // else see if any other table pile can take card 
  for(int i = 0; i < 7; i++ ) { 
    if( Game.tableau(i).canTake( topCard ) ) { 
      Game.tableau(i).addCard( topCard ); 
      return; 
    } 
  } 
   addCard( topCard ); 
 } 



 
  public override void display (CardView cv) { 
    Object [ ] cardArray = pile.ToArray(); 
    int size = pile.Count; 
    int hs = CardView.Height / 2; // half size 
    int ty = y; 
    for (int i = pile.Count - 1; i >= 0; i--) { 
      cv.display((PlayingCard) cardArray[i], x, ty); 
      ty += hs; 
    } 
  } 
}

A card can be added to the pile (method canTake) only if the pile is
empty and the card is a king, or if the card is the opposite color from that of
the current topmost card and one smaller in rank. When a mouse press is
tested to determine if it covers the pile (method includes), the bottom
bound is not tested, since the pile may be of variable length. When the pile
is selected, the topmost card is flipped if it is facedown. If it is faceup, an
attempt is made to move the card first to any available suit pile and then to
any available table pile. Only if no pile can take the card is it left in place.
Finally, to display a pile, all the underlying cards are displayed. The stack
must be converted into an array to do this since we must access the cards
top to bottom, which is the opposite of the order that stack elements would
normally be enumerated.

9.5 ⊡ Playing the Polymorphic Game
The need for the class Game was described earlier. This class holds the actual
card piles used by the program, making them available through methods
that are declared as static. Because these methods are static, they can be
accessed using only the class name as a basis.

The definition of this class is shown in Figure 9.4. The game manager
stores the various card piles in an array, one that is declared as CardPile,
although the values are polymorphic and hold a variety of different types of
card piles. These values are initialized in the constructor, which is declared
as static. A static constructor will be executed when the program begins
execution.



Click here to view code image
public class Game { 
  static Game () { 
    allPiles = new CardPile[ 13 ]; 
    allPiles[0] = new DeckPile(335, 5 ); 
    allPiles[1] = new DiscardPile(268, 5 ); 
    for( int i = 0; i < 4; i++ ) { 
      allPiles[2 + i] = new SuitPile(15 + 60 * i, 5); 
    } 
    for( int i = 0; i < 7; i++ ) { 
      allPiles[6+i] = new TablePile(5+55*i, 80, i+1); 
    } 
  } 
 
  public static void paint (CardView cv) { 
    for( int i = 0; i < 13; i++ ) { 
      allPiles[i].display(cv ); 
    } 
  } 
 
  public static void mouseDown (int x, int y) { 
    for( int i = 0; i < 13; i++ ) { 
      if( allPiles[i].includes(x, y) ) { 
        allPiles [i].select(x, y); 
      } 
    } 
  } 
 
  public static CardPile deckPile () 
    { return allPiles[0]; } 
 
  public static CardPile discardPile () 
    { return allPiles[1]; } 
 
  public static CardPile tableau (int index) 
    { return allPiles[6+index]; } 
 
  public static CardPile suitPile (int index) 
    { return allPiles[2+index]; } 
 
  private static CardPile[] allPiles; 
}

⊡ Figure 9.4—The class Game

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch09_images.xhtml#f0200-01a


By storing the card values in a polymorphic array, the game manager
need not distinguish the characteristics of the individual piles. For example,
to repaint the display it is only necessary to tell each pile to repaint itself.
The method display will be different, depending on the actual type of card
pile. Similarly, to respond to a mouse down, the manager simply cycles
through the list of card piles.

9.6 ⊡ The Graphical User Interface
We have taken pains in the development of this program to isolate the
details of both the graphical user interface and of the high-level program
execution. This is because of all the elements of a program, the user
interface is the most likely to require change as new graphical libraries are
introduced or existing libraries are changed. Similarly, the way that
applications are initiated using C# introduces details that would have
obscured the overall design of the application.

The card images are simple line drawings. Diamonds and hearts are
drawn in red, spades and clubs in black. The hash marks on the back are
drawn in yellow.

We deal first with the user interface. Recall that the display of a card
was provided by a method Card View that was described as abstract. To
produce actual output, we must create a subclass that implements the pure
virtual methods. This class we will call WinFormsCardView:

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch09_images.xhtml#f0201-02a


public class WinFormsCardView : CardView { 
  public WinFormsCardView (Graphics aGraphicsObject) { 
    g = aGraphicsObject; 
  } 
 
  public override void display (PlayingCard aCard,int x,int y) { 
    if  (aCard == null) { 
      Pen myPen = new Pen(Color.Black,2); 
      Brush myBrush = new SolidBrush (Color.White); 
      g.FillRectangle(myBrush,x,y,CardView.Width,CardView.Height); 
      g.DrawRectangle(myPen,x,y,CardView.Width,CardView.Height); 
    } else { 
      paintCard (aCard,x,y); 
    } 
  } 
 
  private void paintCard (PlayingCard aCard,int x,int y) { 
    String [] names = { "A","2","3","4","5", 
      "6","7","8","9","10","J","Q","K" }; 
 
    Pen myPen = new Pen (Color.Black,2); 
    Brush myBrush = new SolidBrush (Color.White); 
 
    g.FillRectangle (myBrush,x,y,CardView.Width,CardView.Height); 
    g.DrawRectangle(myPen,x,y,CardView.Width,CardView.Height); 
    myPen.Dispose(); 
    myBrush.Dispose(); 
 
    // draw body of card with a new pen-color 
  if (aCard.isFaceUp) { 
    if (aCard.color == Color.Red) { 
      myPen = new Pen  (Color.Red,1); 
      myBrush = new SolidBrush (Color.Red); 
    } else { 
      myPen = new Pen  (Color.Blue,1); 
      myBrush = new SolidBrush (Color.Blue); 
    } 
    g.DrawString (names[ aCard.rank ], 
      new Font("Times New Roman" , 10) ,myBrush,x+3,y+7) ; 
   if (aCard.suit == Suits.Heart) { 
      g.DrawLine(myPen,x+25,y+30,x+35,y+20); 
      g.DrawLine(myPen,x+35,y+20,x+45,y+30); 
      g.DrawLine(myPen,x+45,y+30,x+25,y+60); 
      g.DrawLine(myPen,x+25,y+60,x+5,y+30); 
      g.DrawLine(myPen,x+5,y+30,x+15,y+20); 



      g.DrawLine(myPen,x+15,y+20,x+25,y+30); 
    } else if (aCard.suit == Suits.Spade) { 
      . 
      . see code in appendix 
      . 
 
    } else if (aCard.suit == Suits.Diamond) { 
      . 
      . 
      . 
 
    } else if (aCard.suit == Suits.Club) { 
      . 
      . 
      . 
    } 
  } else {   // face down 
    myPen = new Pen (Color.Green,1); 
    myBrush = new SolidBrush  (Color.Green); 
    . 
    . 
    . 
  } 
 } 
 private Graphics g; 
}

This is not a text on graphics, so the actual display will be rather simple.
Basically, a card draws itself as a rectangle with a textual description.
Empty piles are drawn in green, the backsides of cards in yellow, the faces
in the appropriate color.

Graphical output in the C# library is based around a type of object from
class Graphics. This object is passed as constructor to the class and stored
in the variable g. Details of the graphical output routines provided by the
Windows library will not be discussed here, although many of the names
are self-explanatory. The display for our game is rather primitive,
consisting simply of line rectangles and the textual display of card
information.

Applications in the C# framework are created by subclassing from a
system-provided class named System.WinForms.Form and overriding certain
key methods. Much of the structure of the class is generated automatically
if one uses a development environment, such as the Studio application. In



the following we have marked the generated code with comments. The
programmer then edits this code to fit the specific application. The final
class is as follows.

Click here to view code image
public class Solitaire : System.WinForms.Form { 
    // start of automatically generated code 
  private System.ComponentModel.Container components; 
 
  public Solitaire() { 
    InitializeComponent(); 
  } 
 
  public override void Dispose() { 
    base.Dispose(); 
    components.Dispose(); 
  } 
 
  private void InitializeComponent() { 
    this.components = new System.ComponentModel.Container (); 
    this.Text = "Solitaire"; 
    this.AutoScaleBaseSize = new System.Drawing.Size (5, 13); 
    this.ClientSize = new System.Drawing.Size (392, 373); 
  } 
    // end of automatically generated code 
 
  protected override void OnMouseDown (MouseEventArgs e ) { 
    Game.mouseDown(e.X, e.Y); 
    this.Invalidate(); // force screen redraw 
  } 
 
  protected override void OnPaint (PaintEventArgs pe ) { 
    Graphics g = pe.Graphics; 
    CardView cv = new WinFormsCardView(g); 
    Game.paint(cv); 
  } 
  public static void Main(string [] args) 
    { Application.Run(new Solitaire()); } 
}

The window class is responsible for trapping the actual mouse presses
and repainting the window. In our application these activities are simply
passed on to the game manager. As with Java, execution begins with the

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch09_images.xhtml#f0203-01a


method named Main. This method invokes a static method from a system
class named Application, passing it an instance of the game controller
class.

Summary ⊡
The solitaire game is a standard exa mple program found in many
textbooks. We have here used the program as a case study to illustrate a
number of important concepts. In the design of the PlayingCard and
CardView classes, we have separated a model from a view. This is important,
since aspects of the view are likely to change more rapidly than aspects of
the model. Extending this further, we have defined the view as an abstract
class and thereby hidden all Windows-specific features in an
implementation of this class. Moving to a different graphical library would
therefore simply involve changing the implementation of this abstract class.

Probably the most notable feature of the game is the use of inheritance
and overriding, exemplified by the classes CardPile and its various
subclasses. Through the use of overriding we avoid having to write a large
amount of code. Furthermore, the use of a polymorphic variable to
reference the various classes simplifies the task of redrawing the screen or
handling mouse operations.

Further Reading ⊡
Source for the various earlier versions of this program can be found on my
Web site, http://www.cs.orst.edu/~budd.

We have in this simple application only scratched the surface of the
functionality provided by the C# system. However, the details of how
Windows programs are created are complicated and beyond the issues
being discussed here. A good introduction to the C# system is provided by
Gunnerson [Gunnerson 2000].

Self-Study Questions ⊡

http://www.cs.orst.edu/~budd


1. Why should the class PlayingCard be written so as to have no
knowledge of the application in which it is being used?

2. Why is it useful to separate the class PlayingCard from the class that
will draw the image of the playing card in the current application?

3. Why is it further useful to define the interface for CardView as an
abstract class and then later supply an implementation of this class
that uses the C# graphics facilities?

4. What are the different types of card piles in this solitare game?
5. What methods in CardPile are potentially overridden? What methods

are not overridden? How can you tell from the class description which
are which?

6. In what way does the variable allPiles exhibit polymorphism?
7. How does the polymorphism in allPiles simplify the design of the

program?

Exercises ⊡
1. The solitaire game has been designed to be as simple as possible. A

few features are somewhat annoying but can be easily remedied with
more coding. These include the following.
a. he topmost card of a tableau pile should not be moved to another

tableau pile if there is another faceup card below it.
b. An entire build should not be moved if the bottommost card is a

king and there are no remaining facedown cards.
For each, describe what procedures need to be changed, and give the
code for the updated routine.

2. The following are common variations of klondike. For each, describe
which portions of the solitaire program need to be altered to
incorporate the change.
a. If the user clicks on an empty deck pile, the discard pile is moved

(perhaps with shuffling) back to the deck pile. Thus, the user can



traverse the deck pile multiple times.
b. Cards can be moved from the suit pile back into the tableau pile.
c. Cards are drawn from the deck three at a time and placed on the

discard pile in reverse order. As before, only the topmost card of
the discard pile is available for playing. If fewer than three cards
remain in the deck pile, all the remaining cards (as many as that
may be) are moved to the discard pile. (In practice, this variation
is often accompanied by variation a, permitting multiple passes
through the deck.)

d. The same as variation c, but any of the three selected cards can be
played. (This requires a slight change to the layout as well as an
extensive change to the discard pile class.)

e. Any royalty card, not simply a king, can be moved onto an empty
tableau pile.

3. The game “thumb and pouch” is similar to klondike except that a card
may be built on any card of next-higher rank, of any suit but its own.
Thus, a nine of spades can be played on a ten of clubs but not on a ten
of spades. This variation greatly improves the chances of winning.
(According to Morehead [Morehead 1949], the chances of winning
Klondike are 1 in 30, whereas the chances of winning thumb and
pouch are 1 in 4.) Describe what portions of the program need to be
changed to accommodate this variation.



Chapter 10

Subclasses and Subtypes

There is a paradox that lies at the heart of the way inheritance and
substitution are used in statically typed object-oriented languages. This
paradox derives from the twin concepts of subclass and subtype. In this
chapter we will explore these concepts and this paradox.

To say that one class is a subclass of another is to simply assert that it
has been built using inheritance. The new class is declared using an existing
class as a basis, as in the following Java class declaration.

Click here to view code image
class Child extends Parent { 
    ... // class definition 
}

The point is that the subclass relationship is asserting a statement about
definition, about how the new class was constructed. It says nothing about
the meaning or purpose of the child class.

10.1 ⊡ Substitutability
One of the more interesting features of statically typed object-oriented
languages is that the type associated with a value held by a variable may not
exactly match the type associated with the declaration for that variable. We
saw this near the end of the billiard simulation program in Chapter 7, where
a variable declared as a GraphicalObject in fact held a value of type Ball,
Wall, or Hole. To appreciate how unusual this is, note that variables in

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch10_images.xhtml#f0207-01a


conventional typed programming languages never have this property. A
variable declared as a Integer, for example, can never hold a value of type
String.

In Chapter 8 we termed this property of object-oriented languages the
principle of substitution (sometimes called sub sumption). A variable
declared as a parent class can hold (that is, be filled with) a value that is an
instance of a child class. The variable declared as pointing to a
GraphicalObject in Chapter 7 could, in fact, be pointing to a Ball. Barbara
Liskov described substitution this way.

What is wanted here is something like the following substitution
property: If for each object o1 of type S there is an object o2 of type
T such that for all programs P defined in terms of T, the behavior
of P is unchanged when o1 is substituted for o2, then S is a subtype
of T. [Liskov 1988]

10.2 ⊡ Subtypes
To understand the concept of a subtype and how it relates to a subclass, we
must first explore how types are used in programming languages. For an
idea that, at least with experience, seems so intuitive, the exact nature of
types may seem surprisingly complicated.

When we say that a value, such as the number 17, has an integer type,
what are we asserting? One answer is that we are asserting that the value is
a member of a set of values. The name int is the handle by which we
describe this set. In Java, for example, the set of integers represents the
whole numbers that range from −2147483648 (which is −231) to
2147483647 (which is 231 − 1). Other primitive types denote similar sets of
values.

But there is more that we know by virtue of the assertion that a value
has type int. We know, for example, that we can perform a variety of
operations on the value, such as addition, subtraction, multiplication, and
division. We are not permitted to perform these operations on a value of
type boolean, as the definition of the Boolean data type does not include
these tasks.



So in one sense, a type is simply a set of values and a set of operations.
But we know yet more about integers. We expect integers to satisfy a set of
properties. If we add the values 3 and 5, we expect to produce the value 8.
This we always expect to be true. On the other hand, if we divide the
integer 8 by the integer 5, we get 1 and not the fractional value 1.6. We are
not surprised at this because a property of division for integers in most
languages is to truncate any fractional remainders. There are further
features of type we could explore, but these three—values, operations, and
properties—are sufficient for our discussion of subtypes.

Now consider how the term type is used when we describe an abstract
data type, or ADT. Let us employ for our example the concept of a stack. In
Java, for example, the starting place for the description of an ADT is the
definition of an interface. This might be described, for example, using the
following declaration.

Click here to view code image
interface Stack { 
  public void push (Object value); 
  public Object top (); 
  public void pop (); 
}

But the interface is just the beginning. Beyond the interface is the
meaning, the properties that we want to associate with this data type. A
Stack, for example, is characterized by the LIFO (Last-In, First-Out)
property. The item retrieved by a top operation must be the most recent
value pushed onto the stack. If that value is removed (by executing pop),
then the next item at the top of the stack should be the item inserted prior to
the removed value, and so on. A mental image, such as a stack of plates,
provides a good intuition regarding the utilization of this data type.

Syntax versus Semantics

Although not an exact correspondence, the issue of subclass versus
subtype is in some ways similar to the more familiar language
distinction between syntax and semantics. Syntax deals with how a
statement can be written, just as subclasses deal with how a class is

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch10_images.xhtml#f0209-01a


declared. Semantics deals with what a statement means, just as
subtypes deal with how a child class preserves the meaning of a
parent class.

The following class definition satisfies the Stack interface but does not
satisfy the properties we expect for a stack, since it violates the LIFO
property for all but the most recent item placed into the stack.

Click here to view code image
class NonStack implements Stack { 
  public void push (Object value) { v = value; } 
  public Object top () { return v; } 
  public void pop () { v = null; } 
 
  private Object v = null; 
}

From this example we see that the properties that are key to the meaning
of the stack are not specified by the interface definition. And it is not that
we were lazy; Java (like most other languages) gives us no way to specify
the properties that an interface should satisfy. And thus most programmers
(and most programming languages) resort to something much less formal,
such as an English language description of the class requirements.

Having worked through this explanation, we are now in a position to
understand how a subtype differs from a subclass. To say that a new class is
a subtype of an existing class is to assert that the new class provides all of
the operations of the existing class and furthermore satisfies the properties
associated with the class. For example, any method in the new class that
matches in type signature a method in the old class also satisfies the
properties associated with that method. (The new class is free to add new
operations, of course.)

Types Are a Poor Man’s Specifications

The most important reason for having types in programming
languages is to eliminate typing errors. Andrew Black calls types “a

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch10_images.xhtml#f0209-02a


poor man’s specification.” By this he means that what we really
would like to ensure, when an argument is passed to a procedure or a
value is assigned to a variable, is that the argument values satisfy the
requirements of the procedure and that those requirements should
really be expressed in terms of specifications. Any value that
satisfies the specifications (that is, any subtype) should be permitted,
even if it is not formed as a subclass.

But formal specifications are both difficult to write and difficult to
check or verify. Types, on the other hand, are by comparison almost
trivial for a compiler to check. Therefore, even though types are not
exactly what a programmer or a language designer might like, they
do have the following advantages.

They are a useful approximation.
They are simple to explain.
They are easy to check.

Thus, computer languages continue to treat types as a shorthand for
specifications, despite their obvious shortcomings.

The subtype relationship is described purely in terms of behavior; it says
nothing about how the new class is defined or constructed. As the class
NonStack demonstrates, it is easy for a child class to be a subclass and not a
subtype. It is also easy to construct examples that represent a subtype that is
not a subclass. For instance, the Smalltalk type Array defines a data type
with roughly the following interface.

Click here to view code image
at: index put: value 
at: index 
size

The properties we associate with this data type include the fact that if a
value is placed into the collection using a given index, then when the array
is subsequently accessed using the same index the value will be returned.
The Dictionary data type supports the same interface but does not limit the

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch10_images.xhtml#f0211-01a


index values to being integer. Even though the class Dictionary has no
inheritance relationship to the class Array because it supports the same
interface, we can say that Dictionary is a subtype of Array.

Another way to look at the subclass/subtype distinction is by extending
the parent/child metaphor. Parent classes provide the genetic makeup for a
class. As any parent knows, genes have an influence on behavior, but they
do not dictate it. The concept of subtype, on the other hand, describes
behavior without reference to pedigree.

10.3 ⊡ The Substitutability Paradox
Recall the argument in Chapter 8 that justified the principle of
substitutability for statically typed object-oriented languages. It went
something like this.

1. A child class inherits all the data fields defined in the parent class.
2. A child class must recognize all the behaviors associated with the

parent class, either inheriting them directly or overriding them but
preserving the type signature.

3. Therefore, an instance of a child class can be used in any situation
where an instance of the parent class is expected, with no observable
difference.

With the benefit of our knowledge of the subclass/subtype distinction,
we see that the weak link in this argument is Step 2. Simply asserting that a
child class satisfies the interface common to the parent does not ensure that
it will satisfy any or all of the properties of the parent. (Remember the class
NonStack.)

So why don’t programming languages use the subtype relation rather
than the subclass relation? Here we run into the fundamental bedrock of
computer science: the baiting problem. The halting problem asserts that
there is no procedure that can, in general, tell if an arbitrary program will
ever terminate. One of the classic corollaries of this principle is that there is
no procedure that can determine, in general, if two programs have
equivalent behavior. From this it is only a small step to showing that it is



impossible to tell (again, in general) if a method in a child class matches in
behavior a method in the parent class.

And so we arrive at the paradox of substitutability. In statically typed
object-oriented programming languages, the veracity of substitutability for
assignment is determined by ensuring that the type of a value is a subclass
of the type of the variable being assigned. And yet such an assignment only
makes logical sense if the type of the value is a subtype to that of the
variable.

This is not to say that languages do not make some attempt to ensure
that subclasses remain subtypes. Programmers are not generally permitted
to delete an inherited method or hide a public data field, for example. Nor is
it permitted to change the type signature of a method inherited from the
parent (although this issue is subtle, as we will see in Chapter 15). But in
the end all of these restrictions, while useful, are insufficient. There is
simply no way that a compiler can ensure that a subclass created by a
programmer is indeed a subtype.

In fact, great havoc can ensue if values are assigned through substitution
that do not satisfy the subtype relationship. Imagine, for example, using an
instance of NonStack in a situation where a Stack data type is expected.

10.3.1 Is this a problem?
Notice what it takes to create a subclass that is not also a subtype. To do so
it is necessary to redefine an operation that is inherited from a parent class
but to do so in a way that compromises some property that the parent class
expects and without violating the type signature of the method. One can
legitimately ask how common this problem can be. The answer is, probably
not very common at all. But nevertheless when it does occur, it is almost
certainly a source of annoyance, if not error. And the fact that such a
fundamental problem would lie at the heart of something so basic as
substitutability is a frustration to those who would aspire to place
programming on a more secure theoretical foundation.

10.4 ⊡ Subclassing for Construction



A common situation where subclasses are created that are not subtypes is
when inheritance is employed purely for the reuse of code. This is termed
subclassing for construction, and we have discussed this idea already in
Chapter 8. For example, suppose a C++ programmer needs to create a
dictionary abstraction that will hold key/value pairs composed of strings
and integers. The programmer decides to use the standard STL class list
for the container (we will discuss the STL library in detail later in Chapter
20).

The first step is to define a small helper class for each element.
Click here to view code image
class association { // a single key/value pair 
public: 
  association (string s, int i) 
    { key = s; value = i; } 
  string key; 
  int value; 
};

The next step is the critical juncture. In defining the dictionary class the
programmer decides to use inheritance and declare the new abstraction as a
subclass of the existing list class.

Click here to view code image
class dictionary : public list<association> { 
public: 
  void add (string key, int value) { 
    association ele(key, value); 
    push_front(ele); // add to list 
  } 
 
  int at (string key) { // find value stored at given key 
    iterator start, stop; 
    stop = end(); 
    for (start = begin(); start != stop; ++start) { 
      association ele = *start; 
      if (ele.key == key) 
      return ele.value; 
    } 
    return -1; 
  } 
}

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch10_images.xhtml#f0213-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch10_images.xhtml#f0213-02a


Because the new class inherits from list, all the behaviors defined for
the existing class become available to users of the new abstraction. For
example, you can determine how many elements are being held by a
dictionary using the list method size.

Click here to view code image
dictionary d; 
cout « "started" « '\n'; 
d.add("abc", 42); 
d.add("pdq", 12); 
cout « "value of abc is " « d.at("abc") « '\n'; 
cout « "number of elements in dictionary is " 
  « d.size() « '\n' ;

But for all the advantages of this arrangement, there are disadvantages
as well. All of the list methods can now be used with this new class, and
some of them may not be appropriate. For example, the method pop_front
removes the first element from the collection. But what exactly is the first
element of a dictionary?

Click here to view code image
d.pop_front(); 
cout « "number of elements in dictionary is " 
  « d.size() « '\n' ;

*10.4.1 Private inheritance in C++
The problem with the dictionary abstraction is that the mechanism of
inheritance is bringing with it too much semantic baggage. In this case, the
programmer wants to make use of inheritance within their own class, but
does not want those operations to pass through the class and be available to
the world at large. In short, the programmer wants the advantages of
subclassing (access to both the data and behavior defined by the parent) but
does not want to assert that their new class is a subtype.

One way to do this in C++ is to use private inheritance. Private
inheritance is indicated by using the keyword private in the class header
instead of the keyword public.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch10_images.xhtml#f0213-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch10_images.xhtml#f0214-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch10_images.xhtml#f0214-02a


class dictionary : private list<association> { 
public: 
  void add (string key, int value) { ... } 
 
  int at (string key) { ... } 
 
  int size () { return list<association>::size(); } 
};

As with normal inheritance, a private inheritance makes the facilities of
the parent class accessible to the new class. But unlike a public inheritance,
the abilities of the parent are not accessible outside the class definition.
Thus, the programmer must explicitly define whatever behavior they want
associated with the new class. For example, the programmer has defined
the method size so that it returns the number of elements in the list, making
use of the similarly named method from the parent class. In this fashion the
programmer has created a subclass of list that is not a subtype of list
inasmuch as it cannot be assigned to a variable declared using the parent
class.

10.5 ⊡ Dynamically Typed Languages
The contrast between subclasses and subtypes takes on a slightly different
form in dynamically typed languages, such as Smalltalk, because types
themselves are used differently in such languages. The distinction between
subclasses and subtypes is perhaps easier to appreciate if we consider
argument values. For example, consider the following Smalltalk method
from class Magnitude.

Click here to view code image
" class Magnitude " 
 
  between: low and: high 
     ↑ (low <= self) and:  [ self <= high ]

Although the formal arguments low and high are not typed, there are
nevertheless implicit restrictions placed on them. In particular, low must
recognize the <= message (operators are simply messages in Smalltalk),
and high must be usable as an argument to such a message. It is assumed,

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch10_images.xhtml#f0215-01a


but not stated, that these messages define an ordering on their values. Thus,
there is an implicit typing for these variables. (The set of operations that a
variable must recognize is sometimes termed its protocol.) Any value
passed as an argument to this method must understand these messages. This
assertion says nothing about the class of the arguments. While class
Magnitude in Smalltalk defines these operations, nothing prevents the
Smalltalk programmer from implementing the appropriate operations in an
unrelated class and thereafter using instances of the class with this method.
Thus, we say that arguments for this method are expected to be of a certain
subtype (the type implicitly defined by the messages it must understand)
but not necessarily a specific subclass.

The disadvantage of dynamic typing is that type errors may not be
caught until run time. Using an incorrect value as an argument may result in
a “receiver does not understand” error, something that cannot occur in
statically typed languages.

Although template or generic arguments in C++ are not dynamically
typed, they have similar properties. The following is a simple but typical
template function in C++.

Click here to view code image
template <class T> 
T max (T left, T right) 
{ 
  if (left < right) 
    return right; 
  return left; 
}

It is only by examining the body of the function that the programmer
can determine that the argument values must understand the < operator.
One advantage of templates over dynamic typing is that errors resulting
from values that do not support the required operations will be caught at
compile time, although frequently the error messages that result from these
situations are difficult to decipher.

* 10.6 ⊡ Pre- and Postconditions

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch10_images.xhtml#f0215-02a


One traditional way to specify the behavior of methods in an abstract data
type is through pre-and postconditions. A precondition describes features of
the state that must be true before a method can be executed, whereas a
postcondition specifies the resulting state produced by executing a method.
While most programmers use pre-and postconditions informally as
comments in their code, some programming languages include formal
notation for specifying these features.

The language Eiffel takes this idea one step further. It is possible to
specify pre-and postconditions for methods, and these are inherited by child
classes. While a child class can override the body of a method, they are not
allowed to override the pre-and postconditions, and furthermore, these
conditions will be tested when the method is executed in order to assure
that proper state is maintained. By ensuring a minimal level of
functionality, preconditions and postconditions make it harder to create a
subclass that is not also a subtype.

Figure 10.1 illustrates these features in an Eiffel class that defines, but
does not implement, the Stack abstraction. Preconditions are indicated by a
require clause. For example, the class requires that a stack is not empty
before a pop operation can be performed. Postconditions are indicated by
ensure clauses. For example, when an item is pushed on the stack, the class
ensures that the stack is not empty. Ensure clauses are also allowed to
access the value of data fields before the method was executed, using the
old notation. Notice, for example, that this class ensures the count is
properly updated by checking that the count is one larger than the previous
count.

Click here to view code image
class Stack [ EleType ] feature 
  count : INTEGER -- number of stack elements 
feature 
  empty : boolean is deferred -- is stack empty 
  full : boolean is deferred -- is stack full? 
 
  push (x : EleType) is 
    require 
      not full 
    do deferred 
    ensure 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch10_images.xhtml#f0217-01a


      not empty 
      count = old count + 1 
    end 
 
  pop () is 
    require 
      not empty 
    do deferred 
    ensure 
      count = old count - 1 
      not full 
  end 
end

⊡ Figure 10.1—An Eiffel program showing the use of preconditions

The problem with formal pre- and postconditions is that they seldom can
capture all the features of interest. Note that these assertions ensure that the
stack does not exhibit underflow or overflow but do not guarantee that an
implementation will satisfy the fundamental LIFO property. Hence, the
NonStack described earlier would satisfy both the preconditions and the
postconditions and yet still not be a true stack. It is for reasons such as this
that formal pre- and postconditions are not widely found in programming
languages.

10.7 ⊡ Refinement Semantics
It has been noted that one cause of the problem of subclasses that are not
subtypes is the fact that a child class can override a method from a parent
class and completely replace it. Thus, whatever the parent method was
doing is lost entirely.

One school of language design, the so-called Scandinavian school,
asserts that this problem can be avoided by always executing the code from
the parent class. The child class can add to this behavior but cannot
completely replace it. Such an overriding is termed a refinement instead of
a replacement. Notable object-oriented languages based on this principle
include Simula (the first object-oriented language) and Beta.



Opponents of this view assert that while it is true that refinement
semantics make it more difficult to create subclasses that are not subtypes,
they still cannot make it impossible, and furthermore, they also make many
other useful tasks more difficult—tasks that are not dangerous and that are
in fact very desirable. So-called American-style replacement semantics,
while in theory more dangerous, are for this reason also more useful.

Summary ⊡
To say that one class is a subclass of another simply asserts that it
was built using inheritance.
By itself, the subclass relationship says nothing about the behavior of
the child in relation to the behavior of the parent.
The term subtype, on the other hand, describes the behavior of one
class in relation to the behavior of another, regardless of how they
were constructed.
Most of the time the two terms intersect, although it is possible to
build subclasses that are not subtypes and conversely to build
subtypes that are not subclasses.

In strongly typed object-oriented languages a paradox arises around the
principle of substitution. Because verifying the subclass relationship is easy
and verifying the subtype relationship is impossible, languages permit
substitution based on subclasses rather than subtypes. If a programmer is
not careful that the subclasses are also subtypes, subtle errors that are
difficult to detect can result.

Other topics we have discussed in this chapter include private
inheritance in C++ (a technique for using inheritance to create child classes
that are explicitly not subtypes), preconditions and postconditions in Eiffel,
and refinement semantics.

Further Reading ⊡



Earlier in this chapter I argued that types are not specifications but are used
as the next best thing because they are sufficiently close to being
specifications and are inexpensive to implement. There is a considerable
body of work that has as its goal coming up with a better typing system,
thereby improving the specification power of types. See, for example,
[Cardelli 1985, Raj 1991, Bruce 1994].

The Liskov quote is from [Liskov 1988]. Another frequently cited paper
on subtypes is Cook [Cook 1990]. The terms “American semantics” and
“Scandinavian semantics” are due to a different Cook [Cook 1988].

A more theoretical analysis of the subclass/subtype distinction is
presented in the previously cited paper by Cardelli and by Castagna
[Castagna 1997].

We will discuss the distinction between replacement and refinement
semantics in more detail in Chapter 16 when we examine overriding.

Self-Study Questions ⊡
1. What does it mean to say that one class is a subclass of another?
2. What is the principle of substitution?
3. What are the three features of a type identified in this chapter?
4. Which properties of a type are not captured in an interface definition?
5. What does it mean to say that one class is a subtype of another?
6. How can a class be a subclass of another and not a subtype?
7. How can a class be a subtype of another and not a subclass?
8. Why don’t compilers use the subtype relationship to verify the

validity of assignments or parameter passing?
9. What is subclassing for construction?

10. What is a private inheritance in C++? How does it differ from a
normal (public) inheritance?

11. How is the association of type and parameter different in a
dynamically typed language than a statically typed language?



12. What are preconditions and postconditions for a method?
13. Why are preconditions and postconditions not found in many

programming languages?
14. What are refinement semantics for method overriding? How do they

differ from replacement semantics?

Exercises ⊡
1. Describe some of the ways that the class NonStack fails to satisfy the

properties expected of the Stack data structure.
2. Try to develop a more complete specification of the Stack data type.

Can you write your specification in a formal language (such as a
computer might understand), or do you need to resort to more
ambiguous natural language expressions?

3. Describe as many properties as you can for the Array data abstraction.
Will a Dictionary satisfy your specifications? Will a SparseArray?

4. The language Java does not support the idea of private inheritance.
What are the alternatives? How can a programmer make use of the
abilities provided by an existing class without creating a class that
could potentially (and wrongly) be assumed to be a subtype of the
class?

5. Exercise 5 in Chapter 8 proposed a change to the Java language that
would separate the use of inheritance for code reuse from the issue of
substitution. Would this change solve the subclass/subtype problem?
Explain why or why not.



Chapter 11

Static and Dynamic Behavior

Much of the power of object-oriented languages derives from the ability of
objects to change their behavior dynamically at run time. Understanding
object-oriented programming mechanisms therefore requires an
appreciation of the differences between static and dynamic behavior and the
implications of this difference.

In programming languages, the term static almost always refers to a
property or feature that is bound at compile time and cannot thereafter be
modified. A statically typed variable, for example, means that the type
associated with the variable is set at compile time and cannot change during
the course of execution. The term dynamic, on the other hand, almost
always refers to a property or feature that cannot be bound until run time.
Thus, a dynamically typed variable will have its type determined by the
value it is currently holding, which may change during the course of
execution.

In this chapter we explore this static versus dynamic distinction in the
context of three related concepts. First, we examine in detail static versus
dynamic typing. Next, we explore the concepts of static and dynamic
classes in statically typed languages. And finally, we investigate static and
dynamic binding of message and methods.

11.1 ⊡ Static versus Dynamic Typing

The most obvious dichotomy in programming languages occurs between
those languages that are statically typed and those that are dynamically



typed. Table 11.1 describes a few of these, both object-oriented and non-
object-oriented languages. All programming languages incorporate the
concept of type. The difference between static and dynamically typed
languages is the question of whether types are a property of variables or of
values.

 Object-Oriented Non-Object-Oriented

Static
ally

C++, Delphi Pascal, Eiffel, 
Java, Objective-C 
(sometimes)

Ada, Algol, C, Fortran, 
Haskell, ML, Modula

Dyna
micall
y

Objective-C, Smalltalk, 
Dylan, Python

APL, Forth, Lisp, 
Prolog, Snobol

⊡ Table 11.1—Statically typed and dynamically typed
languages

In a statically typed language, a type is attached to a variable at compile
time. Most often this happens through the use of declaration statements.

Click here to view code image
int a; // variable a will maintain integer values 
double m; // while variable m holds floating point quantities

Some statically typed programming languages use a more subtle process
of type inference. The (non-object-oriented) language ML is the best
known example of a language that uses this technique. Here the type
associated with variables is inferred from the program, thereby avoiding the
requirement that the programmer provide explicit declaration statements.

Click here to view code image
  // b must be integer, since it is being added 
  // to the integer constant 2. 
  // therefore n must also be integer, 
  // as must be a 
val a = (b + 2) / n;

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0222-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0222-03a


In contrast, there are languages that are dynamically typed. In a
dynamically typed language (sometimes called an untyped language) types
are associated with values but not with variables. A variable is simply a
name. Not only may the value that a variable holds change during the
course of execution, but the type of value the variable is maintaining can
also change, as in the following sequences of assignments in Smalltalk.

Click here to view code image
a <- 2. " value is currently integer " 
a <- true. " now it is boolean " 
a <- 'true'  " now it is string "

The dichotomy between statically typed and dynamically typed
languages has existed since the earliest days of programming languages.
Fortran and Lisp, both created in the 1950s, were two early examples of
each type. Arguments concerning the benefits of the two approaches have
raged almost as long. Generally the arguments pit the competing goals of
efficiency versus flexibility.

It is true that statically binding a language feature means that more can
be done at compile time, and hence less work is generally required at run
time. For instance, the memory layout for statically declared variables can
be determined once at compile time, and this is generally more efficient
than if memory requirements must be reevaluated each time the value of a
variable changes. Similarly static compile time typing does allow many
programming errors to be caught early, before a program begins execution.

The advocates of dynamic languages, on the other hand, assert that
flexibility is more important than efficiency. Consider, for example, a
simple procedure such as the following.

Click here to view code image
function max (left, right) { 
  if  (left < right) 
    then return right; 
  return left; 
}

The only requirements we need to impose on the arguments are that they
understand the comparison operator. The proponents of dynamically typed
languages argue that we should be able to write functions such as max and

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0222-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0223-01a


use them with a wide variety of types: integers, floats, strings, or anything
else.

Both arguments have their valid points, and we are not going to take
sides. Both statically typed and dynamically typed object-oriented
languages exist, and both will probably continue to be used for the
foreseeable future.

11.2 ⊡ Static and Dynamic Classes
The introduction of object-oriented features to a statically typed
programming language requires a relaxation of some of the principles of
static typing. Recall the principle of substitution described in Chapter 8.
This principle asserted that a variable declared as a parent class type could
in fact be maintaining a value from a child class. In order to distinguish
these two types we introduce a pair of terms. The static class of a variable
is the class that was used in the declaration of the variable. The static class
(as the name suggests) is fixed at compile time and does not ever change.
The dynamic class of a variable is the class associated with the value it
currently holds. Again, as the name suggests, the dynamic class can change
during the course of execution as a variable is assigned new values.

Click here to view code image
var 
  obj : GrapicalObject; (* GraphicalObject is the static class *) 
begin 
  obj = new Ball(); (* Ball is the current dynamic class *) 
  . 
  . 
  . 
  obj = new Wall(); (* Wall is now the dynamic class *) 
end

The most important aspect of the distinction between static and dynamic
types is the following.

In a statically typed object-oriented programming language, the
legality of a message-passing expression is determined at compile

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0224-01a


time based on the static class of the receiver and not on its current
dynamic value.

To see what we mean by this, consider a class hierarchy such as the set
of Java classes shown in Figure 11.1. All Animals know how to speak, but
only dogs and seals know how to bark. Imagine that we then have the
following statements.

Click here to view code image
Dog fido; 
fido = new Dog(); 
fido.speak(); // will bark

Click here to view code image
class Animal { 
  public void speak () { System.out.println("Animal Speak !"); 
} 
} 
 
class Dog extends Animal { 
  public void speak () { bark(); } 
  public void bark () { System.out.println("Woof !"); } 
} 
 
class Seal extends Animal { 
  public void bark () { System.out.println("Arf !"); } 
} 
 
class Bird extends Animal { 
  public void speak () { System.out.println("Tweet !"); 
}

⊡ Figure 11.1——A Java animal class hierarchy

Click here to view code image
Woof ! 
  fido.bark(); // will bark 
Woof ! 
 
  Animal pet; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0224-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0224-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0225-01a


  pet = fido; // legal to assign Dog to Animal 
 
  pet.speak(); // will work 
Woof ! 
  pet.bark(); // error, pets do not know how to bark

The variable fido is declared as Dog and thus can both speak and bark.
When assigned to a variable of type Animal, however, the static class
changes to Animal, although the dynamic class remains Dog. Because of the
change in the declared class, the variable pet is not guaranteed to
understand the message bark, and thus a compile time error will be given.
This is true despite the fact that the value currently being held by the
variable certainly is able to understand the message.

11.2.1 Run-time type determination
The principle of substitution can be viewed as moving a value up the
inheritance hierarchy. Assigning a value of type Dog to a variable of type
Animal moves the presumed type from the child class to the parent.

Occasionally it is necessary to do the reverse: to determine if a value
currently being held by a variable declared with one class type is, in fact,
derived from a class that is lower in the class hierarchy—for example, to
determine if a value held by a variable of type Animal is, in fact, a Dog.

Every object-oriented language has the ability to perform such a test, but
the syntax used by the various languages differs greatly. Figure 11.2
illustrates some of these facilities. These types of tests are useful even in
dynamically typed object-oriented languages, and thus we have included
features from those languages as well.



Click here to view code image
C++ 
  Animal * aPet = ...; // a pointer to an animal 
  Dog * d = dynamic_cast<Dog *>(aPet); 
  if (d != 0) { // null if not legal, nonnull if ok 
     . 
     . 
     . 
  } 
 
CLOS 
  (if (typep aPet 'Dog) ... ) 
 
Delphi Pascal 
      if (aPet is Dog) then 
          . 
          . 
          . 
 
Eiffel 
    aPet : Animal 
    aDog : Dog 
 
    aDog ?= aPet -- assignment attempt 
    if (aDog |= Void)  ... -- will succeed if pet was a dog 
 
Java 
    if (aPet instanceof Dog) 
       . 
       . 
       . 
 
Object Pascal 
    if Member (aPet, Dog) then 
       . 
       . 
       . 
 
Python 
  if isinstance(aPet, Dog): 
      . 
      . 
      . 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0226-01a


Ruby 
  if aPet.kind_of? Dog 
 
Smalltalk 
  (aPet isKindOf: Dog) ifTrue:  [ ... ]

⊡ Figure 11.2—Mechanisms for testing class

The functions shown in Figure 11.2 test a value to determine if it is a
descendant of a given class—that is, whether it was created as an instance
of the class or a child class. Some languages also provide a more precise
test to determine if a value was created precisely from a given class and not
from a child class. These facilities are shown in Figure 11.3.

Click here to view code image
Delphi Pascal 
  if aPet.classInfo = Dog then ... 
 
Ruby 
  if aPet.instance_of? Dog 
 
Smalltalk 
  (aPet isMemberOf: Dog) ifTrue:  [ ... ] 
   or 
  (aPet class == Dog) ifTrue:  [ ... ]

⊡ Figure 11.3—Facilities to test for a specific class

11.2.2 Down casting (reverse polymorphism)
Once it has been determined that a value is from a given class, often the
next step is to convert the value from the parent class to the child class. This
process is termed down casting, or reverse polymorphism (since it reverses
the effect of a polymorphic assignment). The syntax used for down casting
operations in various languages is shown in Figure 11.4. Note that several
languages combine down casting with type testing by having a function that

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0227-01a


returns a valid result if the conversion is proper and an empty (or null)
result if the conversion cannot legally be performed.

Click here to view code image
C++ 
  Animal * aPet = ... ; 
  Dog * d = dynamic_cast<Dog *>(aPet); 
  if (d != 0) { // null if not legal, nonnull if ok 
     . 
     . 
     . 
  } 
 
Delphi Pascal 
  var 
    aPet : Animal; 
    aDog : Dog; 
 
  aDog := aPet as Child 
 
Eiffel 
 
    aPet : Animal 
    aDog : Dog 
 
    aDog ?= aPet -- assignment attempt 
    if (aDog |= Void)  ... -- will succeed if pet was a dog 
 
Java 
    Animal aPet; 
    Dog d; 
    d = (Dog) aPet; 
 
Object Pascal 
    aDog = Dog(aPet)

⊡ Figure 11.4—Mechanisms for downcasting

*11.2.3 Run-time testing without language support

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0228-02a


Before the introduction of the RTTI system (the dynamic_cast operator) to
C++ it was common for programmers to simulate run-time typing using
nothing more than method overriding. Although this is no longer required
in C++, similar tricks may still be useful in languages that lack built-in
primitives for testing the dynamic class of variables.

Imagine that we have modified our class hierarchy as follows.1

1. The meaning of the virtual keyword will be explain in the next section.

Click here to view code image
class Animal { 
public: 
  virtual Dog * isDog () { return 0; } 
  virtual Bird * isBird () { return 0; } 
  . 
  . 
  . 
}; 
 
class Dog : public Animal { 
public: 
  virtual Dog * isDog () { return this; } 
  . 
  . 
  . 
};

Click here to view code image
class Bird : public Animal { 
public: 
  virtual Bird * isBird () { return this; } 
  . 
  . 
  . 
};

Imagine now that we have a variable declared as a pointer to type
Animal, and we want to know if it really is maintaining a value of type Dog.
If we pass it the message isDog, we will get back either a null value, if it is
not a dog, or a valid pointer to a Dog. This is because the method isDog in
the root class is returning a null value but has been overridden in the class

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0227-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0229-01a


Dog, to return a pointer to itself (using the pseudo-variable this to reference
itself). If the value is truly a Dog the overridden method will be executed;
otherwise the method in the root class will be. Thus, the message isDog is
simulating the behavior of the dynamic_cast used by the RTTI system,
albeit at the cost of introducing a new method.

Click here to view code image
Animal * aPet = ...; 
Dog * aDog; 
aDog = aPet.isDog(); // try the assignment 
if (aDog)  ... // true if it was a dog, false otherwise

11.2.4 Testing message understanding
In dynamically typed object-oriented languages it is generally true that the
legality of a message-passing expression cannot be known until run-time. If
the receiver does not know how to respond to a message, then a run-time
exception is thrown. Occasionally it is useful for the programmer to be able
to test whether a receiver will understand a particular message before
actually attempting to pass the message to the receiver. Mechanisms to do
this are shown in Figure 11.5.

Click here to view code image
Smalltalk 
    (aPet respondsTo: #bark) ifTrue:  [ ... ] 
 
Ruby 
    if aPet.respond_to?("bark") ... 
 
Objective-C 
    if ( [ aPet respondsTo: @selector(bark) ]) {...}

⊡ Figure 11.5—Mechanism to determine if an object understands a
message

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0229-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0229-03a


11.3 Static versus Dynamic Method
Binding
In almost all object-oriented programming languages, the binding of a
method to execute in response to a message is determined by the dynamic
value currently being held by the receiver. Thus, in the following Java
statements the first invocation of speak will produce “woof” and in the
second “tweet,” as the dynamic type changes from Dog to Bird.

Click here to view code image
  Animal pet; 
  pet = new Dog(); 
  pet.speak(); 
woof ! 
  pet = new Bird(); 
  pet.speak(); 
tweet !

In a few languages the rules for overriding are more difficult. Most
notable among these is C++, although C#, Delphi Pascal, and Oberon-2
also have similar restrictions. The binding of methods to messages in C++
is complex, involving a number of choices of keywords and mechanisms
for declaration. Some of these variations are shown in Figure 11.6.

Click here to view code image
class Animal { 
public: 
  virtual void speak () { cout « "Animal Speak !\n"; } 
  void reply () { cout « "Animal Reply !\n"; } 
}; 
 
class Dog : public Animal { 
public: 
  virtual void speak () { cout « "woof !\n"; } 
  void reply () { cout « "woof again!\n"; } 
}; 
 
class Bird : public Animal { 
public: 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0230-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0230-02a


  virtual void speak () { cout « "tweet !\n"; } 
};

⊡ Figure 11.6—Virtual and nonvirtual overriding in C++

Let us say that a variable is polymorphic if the binding of message to a
method is determined by the type associated with the value most recently
assigned to the variable. (All variables in Smalltalk, Java, and most other
object-oriented languages are, in this sense, polymorphic.) Variables in C++
that are declared with a simple type are not polymorphic, in this sense.
Consider the following declarations of values and their executions in
response to different messages.

Click here to view code image
  Animal a; 
  Dog b; 
  b.speak(); 
woof ! 
  a  = b; 
  a.speak(); 
Animal speak ! 
  Bird c; 
  c.speak(); 
tweet ! 
  a = c; 
  a.speak(); 
Animal speak !

Note that in each instance, the method executed in response to the
message speak when the receiver is type Animal is that found in the static
class Animal. This is true even if the value held by the variable came from
an assignment of a different type.

Now contrast this with what happens when pointers are used instead of
simple values.

Click here to view code image
  Animal * d; 
  d = &b; // point to the dog from earlier example 
  (*d).speak(); 
woof ! 
  d = & c; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0231-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0231-02a


  d->speak(); // arrow is shorthand for (*). 
tweet !

Thus, object values referenced by pointers are polymorphic in the sense
that we defined the term earlier. The language C++ includes the notion of a
reference, which is simply a pointer that is guaranteed to point to a valid
object. References, too, are polymorphic.

Click here to view code image
  Animal & e = b; 
  e.speak(); 
woof !

Click here to view code image
  Animal & f = c; 
  f.speak(); 
tweet !

The careful reader will have noted the presence of the keyword virtual
in the declaration of the methods shown in Figure 11.6. This keyword is
important. If it is left off, then even object references made by means of
pointers are no longer polymorphic. This is shown by the message reply,
which has not been declared as virtual.

Click here to view code image
  Animal * g = &b; 
  g.reply(); 
Animal reply! 
  g = &c; 
  g.reply(); 
Animal reply!

A nonvirtual method that is modified in the child class will be executed
if the static class of the receiver is the child class and not the parent class.
  b.reply() 
woof again !

So polymorphic message sending is found in C++ only when using
pointers or references, and even there only when the associated methods
have been declared as virtual. To understand why the rules for C++ are so
much more complex than the rules used by other programming languages,

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0231-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0232-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0232-02a


we need to explore the link between object-oriented polymorphic variables
and memory management. We will investigate this further in the next
chapter.

C# and Delphi Pascal also require the keyword virtual, although since
they lack references, their rules for determining the meaning of a message
expression are not as complex as those of C++. We will consider message
overriding in these languages later in Chapter 16. In Oberon-2, like in C++,
the meaning of a message given to a pointer variable differs from the
meaning of the same message given to an ordinary variable.

Summary ⊡
Static features are aspects of a program that are fixed at compile time.
Dynamic features can change at run-time. The dichotomy between static
and dynamic is manifested in object-oriented languages in a number of
different ways. In this chapter we have considered static and dynamic
typing, static and dynamic classes, and static and dynamic method binding.

In a statically typed language, types are associated with variables. In a
dynamically typed language, a variable is simply a name, and types
are associated with values.
Static typing is generally more efficient and provides better error
detection. Dynamic typing is generally more flexible.
In a statically typed object-oriented language, the static class is the
class used to declare a variable, and the dynamic class is the class of
the value it currently holds.
The legality of a message expression is determined by a variable’s
static class. The meaning is determined by its dynamic class.
Downcasting, or reverse polymorphism, is a conversion that moves
down the class hierarchy.
A message can be bound to a method using either the static class or
the dynamic class. In some languages the programmer provides a
keyword to indicate which type of binding is desired.



Further Reading ⊡
Brad Cox [Cox 1986] is one author who has explored the importance of
static versus dynamic features in languages.

Self-Study Questions ⊡
1. When used to describe features of programming languages, what does

the term static mean?
2. What does the term dynamic mean?
3. How does a statically typed programming language differ from a

dynamically typed one?
4. What is type inference? What characterizes languages that use type

inference?
5. What arguments are made in support of statically typed programming

languages? What arguments are made in support of dynamically
typed languages?

6. What is a static class? What is a dynamic class? How is a dynamic
class different from a dynamic type?

7. How is the legality of a message-passing expression determined by a
compiler in a statically typed language?

8. What is down casting?
9. What is the difference between a method that is statically bound to a

message expression and one that is dynamically bound?

Exercises ⊡
1. Object Pascal uses static typing, but it also uses dynamic binding.

Explain why the converse is not possible—that is, why it is not
possible for a language to use dynamic typing and static binding of
messages and methods.



2. Give an example that will illustrate why, in a statically typed object-
oriented language (such as C++ or Object Pascal), the compiler is
justified in not permitting a value associated with a variable declared
as a parent class to be assigned to another variable declared as an
instance of a subclass.

3. Discuss whether the error-checking facilities made possible by static
typing are worth the loss in flexibility.

4. Oberon functions can use pass-by-reference. A var parameter
becomes an alias for the corresponding argument, and further
assignments inside the procedure alter the argument value.

Click here to view code image
  PROCEDURE setx (VAR x : INTEGER); 
  BEGIN 
    x := 7; 
  END 
 
  y := 12; 
  setx(y); 
  writeln(y); 
7

When object values are passed as arguments to var parameters in Oberon
they are not permitted to change their type at all. That is, the static and
dynamic classes must match, and this condition is checked by the run-time
system. Explain why this restriction is necessary and what typing errors
could otherwise arise without the limitation.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch11_images.xhtml#f0234-01a


Chapter 12

Implications of Substitution

The introduction of inheritance and, in particular, the principle of
substitution, has a subtle but pervasive impact on almost all aspects of a
programming language. In this chapter, we will examine some of these
effects, considering in detail the type system, the meaning of assignment,
testing for equivalence, the creation of copies, and storage allocation.

We have described the is-a relationship as a fundamental property of
inheritance. One way to view the is-a relationship is as a means of
associating a type, as in a type of a variable, with a set of values—namely,
the values the variable can legally hold. If a variable win is declared as an
instance of a specific class— say, Window—certainly it should be legal for
win to hold values of type Window. If we have a subclass of Window—say,
TextWindow, since a TextWindow is-a Window—it should certainly make sense
that win can hold a value of type TextWindow. This is the principle of
substitution that we encountered in previous chapters.

While this principle makes intuitive sense, from a practical point of
view there are difficulties associated with implementing object-oriented
languages in a way that this intuitive behavior can be realized. These
difficulties are not insurmountable, but the way various language designers
have chosen to address them differs from language to language. An
examination of these problems and of how they affect the language
illuminates the reasons for some of the obscure features of languages over
which the unwary programmer is likely to stumble.

12.1 ⊡ Memory Layout



Let us start by considering a seemingly simple question, the various
answers to which will lead us in different directions: How much storage
should we allocate to an object instantiated from a specific class? To take a
concrete example, how much storage should we allocate to the variable win
that we earlier described as being an instance of class Window?

It is commonly believed that variables allocated on the stack as part of
the procedure-activation process are more efficient than are variables
allocated on the heap.1 Accordingly, language designers and implementors
go to great lengths to make it possible for variables to be stack-allocated.
But there is a major problem with stack allocation: The storage
requirements must be determined statically at compile time or, at the latest,
at procedure entry time. These times are well before the values the variable
will hold are known.

1. But see [Appel 1987] for a dissenting opinion.

The difficulty is that subclasses can introduce data not present in a
superclass. The class TextWindow, for example, probably brings with it data
areas for character buffers, locations of the current edit point, and so on.
The following might be a typical declaration.

Click here to view code image
class Window { 
  public: 
    virtual void oops(); 
    . 
    . 
    . 
  private: 
    int height; 
    int width; 
}; 
 
class TextWindow : public Window { 
  public: 
    virtual void oops(); 
    . 
    . 
    . 
  private: 
    char * contents; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch12_images.xhtml#f0236-01a


    int cursorLocation; 
}; 
 
Window win;   // declare a variable of type window

Should the additional data values (contents and cursorLocation here)
be taken into consideration when space for win is allocated? There are at
least three plausible answers.

1. Allocate the amount of space necessary for the base class only. That
is, allocate to win only those data areas declared as part of the class
Window, ignoring the space requirements of subclasses.

2. Allocate the maximum amount of space necessary for any legal value,
whether from the base class or from any subclass.

3. Allocate only the amount of space necessary to hold a single pointer.
Allocate the space necessary for the value at run time on the heap,
and set the pointer value appropriately.

All three solutions are possible, and two of them are found in the
languages we are considering. In the following sections, we will investigate
some of the implications of this design decision.

12.1.1 Minimum static space allocation
The language C was designed to be run-time efficient. Thus, given the
widespread belief that stack-based allocation of memory locations results in
faster execution times than are possible with dynamic variables, it is not
surprising that its successor, C++, retains the concepts of both nondynamic
and dynamic (run-time-allocated) variables.

In C++, the distinction is made in how a variable is declared and,
accordingly, whether pointers are used to access the values of the variable.
In the following, for example, the variable win is allocated on the stack.
Space for it will be set aside on the stack when the procedure containing the
declaration is entered. The size of this area will be the size of the base class
alone. The variable tWinPtr, on the other hand, contains only a pointer.
Space for the value pointed to by tWinPtr will be allocated dynamically
when a new statement is executed. Since by this time the size of a



TextWindow is known, there are no problems associated with allocating an
amount of storage on the heap sufficient to hold a TextWindow.

Click here to view code image
Window win; 
Window *tWinPtr; 
. 
. 
. 
tWinPtr = new TextWindow;

What happens when the value pointed to by tWinPtr is assigned to win?
In other words, what happens when the user executes this statement?
win = *tWinPtr;

The space allocated to win is only large enough to accommodate a
Window, whereas the value pointed to by tWinPtr is larger (Figure 12.1).
Clearly, not all of the values pointed to by tWinPtr can be copied. The
default behavior is to copy only the corresponding fields. (In C++, the user
can override the meaning of the assignment operator and provide any
semantics desired. Thus, we refer here only to the default behavior
observed in the absence of any alternative provided by the user.) Clearly,
then, some information is lost (the information contained in the extra fields
of tWinPtr). Some authors use the term slicing for this process, since the
fields in the right side that are not found in the left side are sliced off during
assignment.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch12_images.xhtml#f0237-01a


⊡ Figure 12.1—Assigning a larger value to a smaller box

Is it important that this information is lost? A cynic will answer, “Only
if the user can tell the difference.” The question is therefore how the user
might be able to notice.

The semantics of the C++ language ensure that only methods defined in
the class Window can be invoked with win and no methods defined in
TextWindow. Methods defined in Window and implemented in that class
cannot access or modify data defined in subclasses, so no access is possible
there. But what about methods defined in class Window but overridden in the
subclass?

Consider, for example, the two procedures oops() shown here. If the
user executed win.oops() and the method from class TextWindow was
selected, an attempt would be made to display the data value
win.cursorLocation, which does not exist in the storage assigned to win.
This would either cause a memory violation or (more likely) produce
garbage.

Click here to view code image
void Window::oops() 
{ 
  cout « "Window oops" « endl; 
} 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch12_images.xhtml#f0238-02a


 
void TextWindow::oops() 
{ 
cout « "TextWindow oops " « cursorLocation « endl; 
}

The solution to this dilemma selected by the designer of C++ was to
change the rules that are used to bind a procedure to the invocation of a
virtual method. The new rules can be summarized as follows.

For pointers (and references): When a message invokes a member
function that could potentially have been overridden, the member
function selected is determined by the dynamic value of the receiver.
For other variables: The binding on a call of a virtual member
function is determined by the static class (the class of the declaration)
and not by the dynamic class (the class of the actual value).

More accurately, during the process of assignment the value is changed
from the type representing the subclass to a value of the type represented by
the parent class. This is analogous to the way an integer variable might be
changed during assignment to a floating-point variable. With this
interpretation, it is possible to ensure that, for stack-based variables, the
dynamic class is always the same as the static class. Given this rule, it is not
possible for a procedure to access fields that are not physically present in
the object. The method selected in the call win.oops() would be that found
in class Window, and the user would not notice the fact that memory was lost
during the assignment.

Nevertheless, this solution is achieved only at the expense of
introducing a subtle inconsistency. Expressions involving pointers bind
virtual methods in the manner we described in earlier chapters. Thus, these
values will perform differently from expressions using nondynamic values.
Consider the following.

Click here to view code image
Window win; 
TextWindow *tWinPtr, *tWin; 
. 
. 
. 
tWinPtr = new TextWindow; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch12_images.xhtml#f0239-02a


win = * tWinPtr; 
tWin = tWinPtr; 
 
win.oops( ) ; 
tWin->oops( ) ;

Although the user is likely to think that win and the value pointed to by
twin are the same, it is important to remember that the assignment to win
has transformed the type of the value. Because of this change, the first call
on oops() will invoke the method in class Window, whereas the second will
invoke that in class TextWindow.

Oberon-2 is another language that uses slicing on assignment, with a
similar impact on semantics.

12.1.2 Maximum static space allocation
A different solution to the problem of deciding how much space to allocate
to a declaration for an object is to assign the maximum amount of space
used by any value the variable might hold, whether from the class named in
the declaration or from any subclass. This approach is similar to the one
used to lay out overlaid types in conventional languages, such as variant
records in Pascal or union structures in C. On assignment, it is not possible
to assign a value larger than what fits in the target destination, so the picture
shown in Figure 12.1 cannot occur, and the subsequent problems described
in the last section do not arise.

This would seem to be an ideal solution were it not for one small
problem: The size of any object cannot be known until an entire program
has been seen. Not simply a module (unit in Object Pascal, file in C++) but
the entire program must be scanned before the size of any object can be
determined. Because this requirement is so restrictive, no major object-
oriented language uses this approach.

12.1.3 Dynamic memory allocation
The third approach does not store the value of objects on the stack at all.
When space for an identifier is allocated on the stack at the beginning of a



procedure, it is simply large enough for a pointer. The values are maintained
in a separate data area, the heap, that is not subject to the first-in last-out
allocation protocol of the stack. Since all pointers have a constant fixed
size, no problem arises when a value from a subclass is assigned to a
variable declared to be from a superclass.

This is the approach used in Object Pascal, Smalltalk, Java, and
Objective-C. The reader might already have guessed by the close similarity
of objects and pointers in Object Pascal. For both pointers and objects, it is
necessary to invoke the standard procedure new to allocate space before the
object can be manipulated. Similarly, it is necessary for the programmer to
call free explicitly to release space allocated for the object.

Besides the requirement for explicit user memory allocation, another
problem with this technique is that it is often tied to the use of pointer
semantics for assignment. When pointer semantics are used, the value
transferred in an assignment statement is simply the pointer value rather
than the value indicated by the pointer. Consider the following program,
which implements a one-integer buffer that can be set and retrieved by the
user.

Click here to view code image
type 
  intBuffer = object 
    value : integer; 
  end; 
var 
  x, y : intBuffer; 
 
begin 
  new(x);    { create a buffer } 
  x.value := 5; 
  writeln(x.value); 
  y := x;    { y is same buffer as x } 
  y.value := 7; 
  writeln(x.value); 
end;

Notice the two variables x and y declared to be instances of this class. In
executing the program, the user might be surprised when the last statement
prints out the value 7 rather than the value 5. The reason for this surprising
result is that x and y do not just have the same value; they point to the same

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch12_images.xhtml#f0241-01a


object. This situation is shown in Figure 12.2. The use of pointer semantics
for objects in Object Pascal is particularly confusing because the
alternative, copy semantics, is used for all other data types. If x and y were
structures, the assignment of y to x would result in the copying of
information from y to x. Since this would create two separate copies,
changes to y would not be reflected in changes in x.

⊡ Figure 12.2—Two object variables pointing to the same value

Garbage collection
Because dynamically allocated objects are stored on the heap, they will not
be automatically recovered when a procedure exits. As we noted in an
earlier chapter, some languages force the programmer to explicitly indicate
when the memory associated with an object can be recovered. Other
languages use a technique termed garbage collection to automatically
monitor the utilization of object values and reclaim them when they can no
longer have any impact on the execution of a program.

Generally, the use of garbage collection systems results in fewer
programming errors due to the mismanagement of memory, but it imposes a
greater cost in execution time.

12.2 ⊡ Assignment
The memory-allocation strategies used in a programming language have an
effect on the meaning of assignment, so we will summarize the exact
meaning of this operator in the various languages we are considering. As



noted in the last section, there are two interpretations we can give to
assignment.

Copy semantics. Assignment copies the entire value of the right side,
assigning it to the left side. Thereafter, the two values are independent, and
changes in one are not reflected in changes in the other. Copy semantics are
sometimes used in C++ and sometimes not (we will explain shortly).

Pointer semantics. Assignment changes the reference of the left side to
be the right side. (This approach is sometimes referred to as pointer
assignment.) Thus, the two variables not only have the same value but also
refer to the same memory location. Changes in one will alter the value held
in common, which will be reflected in references obtained under either
name. Pointer semantics are used in Java, CLOS, Object Pascal, and many
other object-oriented languages.

(A compromise position between copy semantics and pointer semantics
is found in some programming languages, although not in any of the
languages we are considering in our case studies. The idea is to use pointer
semantics for assignment but to convert a value into a new structure if it is
ever modified. In this manner assignments are very efficient, but a value
cannot be inadvertently modified by a change to an aliasing variable. This
technique is often termed copy on write.)

Generally, if pointer semantics are used, languages provide some means
for producing a true copy. Also, pointer semantics are generally more often
used when all objects are allocated on a heap (dynamically) rather than on
the stack (automatically). When pointer semantics are used, it is common
for a value to outlive the context in which it is created.

Object-oriented languages differ in which of the two semantics they use,
providing one, the other, or combinations of both.

*12.2.1 Assignment in C++
The default algorithm used in C++ to assign a class value to a variable is to
copy corresponding data fields recursively. However, it is possible to
overload the assignment operator to produce any behavior desired. This
technique is so common that some C++ compilers issue a warning if the
default assignment rule is used.



In assignment overloading the interpretation is that assignment is a
message given to the expression to the left of the assignment operator,
passing the expression to the right of the operator as argument. The result
can be void if embedded assignments are not possible, although more
typically the result is a reference to the receiver. The following example
shows assignment of a string data type, which redefines assignment so that
two copies of the same string share characters.

Click here to view code image
String & String::operator = (String& right) 
{ 
  len = right.len;  // copy the length 
  buffer = right.buffer;  // copy the pointer to values 
  return (*this); 
}

A common source of confusion for new C++ programmers is the use of
the same symbol for assignment and for initialization. In conventional C, an
assignment used in a declaration statement is simply a syntactic shorthand.
That is, the effect of
int limit = 300;

is the same as
int limit; 
limit = 300;

In C++ an assignment used in a declaration may select the constructors
invoked and may not use the assignment operator at all. That is, a statement
such as
Complex x = 4;

is interpreted to mean the same as the declaration
Complex x(4);

Reference variables.
Initialization is often used with reference variables and yields a situation
very similar to pointer semantics. If s is a valid String, for example, the
following makes t an alias for the value of s, so any change in one will be

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch12_images.xhtml#f0243-01a


reflected in the other. As we have noted, declarations in C++ can be inserted
into a program at any point.

Click here to view code image
. .. use of variable s 
String & t = s; 
.. . // t and s now refer to the same value

Reference variables are most often used to implement call-by-reference
parameter passing. This use can be considered a form of pointer
assignment, where the parameter is being assigned the argument value. Of
course, pointer semantics in C++ can also be achieved through pointer
variables.

Parameter passing is in part a form of assignment (the assignment of the
parameter values to the arguments), and so it is not surprising that the same
issues occur here as in assignment. For example, consider the definitions
shown here.

Click here to view code image
class Parent { 
public: 
  virtual void see () { cout « "In parent\n" ;} 
}; 
 
class Child : public Parent { 
public: 
  virtual void see () { cout « "In child\n"; } 
}; 
 
void f (Parent x) { x.see(); } 
void g (Parent & x) { x.see(); } 
 
Child aChild; 
f(aChild); 
g(aChild);

Both the functions f and g take as argument a value declared as the
parent type, but g declares the value as a reference type. If f is called with a
value of the child type, the value is converted (sliced) to create a value of
the parent type as part of the assignment of the arguments. Thus, if see is
invoked from within f, the virtual function from the base class will be

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch12_images.xhtml#f0243-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch12_images.xhtml#f0244-01a


used. On the other hand, this conversion, or slicing, does not occur as part
of the parameter passing to g. So if see is invoked from within g, the
procedure from the child class will be used. This difference in
interpretation, which depends only on the one character in the function
header, is sometimes known as the slicing problem.

The overloading of the assignment symbol and the choice of parameter-
passing mechanisms provided by value and reference assignment in C++
are powerful features, but they can also be quite subtle. For example, the
assignment symbol used in initialization, although it is the same as the
assignment symbol used in statements, is not altered by a redefinition of the
assignment operator. A good explanation of the uses and power of
assignment in C++ is given by Koenig [Koenig 1989a, Koenig 1989b].

12.3 ⊡ Copies and Clones
When languages use pointer semantics for assignment, they almost always
provide a means to create a copy, or clone, from a value. But even in this
simple task there are subtle issues that can trap the unwary. In particular,
what actions should be taken when creating a copy of a value that itself
points to other objects? There are two possible interpretations. A shallow
copy shares instance variables with the original. That is, the original and the
copy reference the exact same values.

On the other hand, a deepCopy creates new copies of the instance
variables, yielding a picture like this.



And, of course, the questions can continue recursively by asking what
techniques are used to create the copies of a, b, and c.

In the following sections we will describe the facilities for creating
copies in some of the languages we are considering.

12.3.1 Copies in Smalltalk and Objective-C
In Smalltalk the fundamental root class Object defines three methods: copy,
shallow-Copy, and deepCopy. A deep copy recursively creates a deep copy
of any instance data it may hold. Classes are themselves free to override
any of these methods to exhibit different behavior. Objective-C uses
methods that are analogous to those used in Smalltalk.

12.3.2 Copy constructors in C++
Copies of values are frequently produced by the C++ run-time system as
temporaries or arguments to procedures. The user can control this task by
defining a copy constructor. The argument to a copy constructor is a
reference parameter of the same type as the class itself. It is considered
good practice to always create a copy constructor.

Click here to view code image
class Complex { 
public: 
  . 
  . 
  . 
  Complex (const Complex & source) 
    { 
      // simply duplicate fields from source 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch12_images.xhtml#f0246-01a


      rl = source.rl; 
      im = source.im; 
    } 
  . 
  . 
  . 
private: 
  double rl; 
  double im; 
}

12.3.3 Cloning in Java
The class Object in Java defines a method named clone, but the method is
declared as protected. To make an object that can be copied using this
method the programmer must do two things. First, the programmer must
declare that their class supports the Cloneable interface. Second, the method
clone must be overridden and made public. This method potentially throws
the error CloneNotSupportedException, which must also be part of the
declaration. The method need not actually do anything other than invoke
the method inherited from the parent class.

Click here to view code image
class PlayingCard implements Cloneable { 
  . 
  . 
  . 
  public Object clone ( ) throws CloneNotSupportedException { 
    Object newCard = super.clone(); 
    return newCard; 
  } 
}

The default behavior creates a shallow copy. If a deep copy, or any other
domain-specific behavior, is desired, the programmer can add additional
code subsequent to invoking the parent method.

12.4 ⊡ Equality

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch12_images.xhtml#f0246-02a


Like assignment, deciding whether one object is equivalent to another is
more subtle than it might at first appear. There are two issues to examine in
relation to this problem. The first is the difference between equality and
identity (Figure 12.3). The second is the paradoxes that can arise in the
context of substitution if classes are allowed to redefine the meaning of
equality.

⊡ Figure 12.3—Identity and equality for character strings

12.4.1 Equality and identity
There is an old joke that goes something like this: A man walks into a pizza
parlor and sits down. A waiter comes to the table and asks the man what he
would like to order. The man looks around the room, then points to the
woman sitting at the next table and says, “I’ll have what she is eating.” The
waiter thereupon walks to the woman’s table, picks up the half-eaten pizza
from in front of her, and places it before the startled customer.

The reason this story is funny is because it confuses two related but
distinct concepts: identity and equality. When we ask questions of identity,
we are seeking to determine if two objects are precisely the same entity.
This is what is being asked if somebody inquires, “Is the morning star the
same as the evening star?” (Morning star and evening star are both common
names for the planet Venus.)

On the other hand, when the man said he wanted what the woman was
eating, he did not mean he wanted literally the same object she was eating
but a different object that was in all important respects equivalent to what
she had before her.

The question of identity versus equality did not originate with object-
oriented languages, although they do seem to be more common in such



languages. But strings, for example, have always needed special treatment
for just this reason (Figure 12.3). Many beginning C programmers have had
a program fail because they used the equality operator on two character
pointers instead of the special purpose string comparison function.

Click here to view code image
char * a = "abc"; 
char * b = "abc"; 
 
If (a == b)   // will surprisingly not be true...

This fails because the two pointers reference different memory
locations, even though the values stored at those two different locations are
the same.

The double equal sign used to test identity in C and C++ is also used for
the identity operator in Java, C#, and Objective-C.

12.4.2 The paradoxes of equality testing
While identity is easily defined, the meaning of equality is inherently
domain specific. Should two strings, for example, be considered equal if
they have the same character representation? What about two triangles?
Should they be considered equal if they have the same side lengths even if
they are different objects? There is no single correct answer, and every
problem (and every programmer) must decide as the situation requires.

In order to accommodate this flexibility, many object-oriented languages
permit the programmer to define the meaning of an equality testing
operator. Equality testing is, then, nothing more than a message that is
given to one value, passing the other as argument. Because message
passing is not symmetric, there can be no guarantees that if a is equal to b,
it follows that b will be equal to a.

In languages in which all classes descend from a common root, the
equality testing operator is often defined in the root class and can be
overridden in subclasses. This presents a quandary for strongly typed
languages: What type should be associated with the argument value?
Almost always this problem is solved by declaring the argument as the root
type. Child classes are then obligated to use the same type signature, and

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch12_images.xhtml#f0248-02a


hence the argument must be tested and cast before a meaningful
comparison can be performed. For example, in the following Java class
definition, the argument to equals (a method inherited from class Object)
must be declared as Object. But the programmer is only concerned with
testing playing cards to playing cards. Hence, a conversion is necessary
before the actual test can be performed.

Click here to view code image
class PlayingCard extends Object { 
  . 
  . 
  . 
  public boolean equals (Object right) { 
    if (right instanceof PlayingCard) { 
      PlayingCard rightCard = (PlayingCard) right; 
        // do card-card comparison 
    return (rank = rightCard.rank) && 
      (suit == rightCard.suit); 
    } 
    return false; // false on all other comparisons 
  } 
}

Because overriding of the equality operator can be performed at various
levels of a class hierarchy, a number of curious paradoxes can arise.
Assume, for example, that we have two classes, Parent and Child, that
both provide a meaning for the equality testing message. Because each
class is free to provide whatever meaning it wishes for any method, we can
in general say nothing concerning the relationship between these two
methods. So each of the following situations could easily occur.

Let p be an instance of the Parent class, and c an instance of the Child
class. Since testing whether p equals c is performed by the method in
the parent class, while testing if c equals p is performed by the
method in the child class, it can happen that one is true and the other
is false.
Similarly assume there are two instances of the child class, cl and c2.
It can happen that the method in the parent class determines that p is
equal to both cl and c2, but the comparison of cl to c2, which uses
the method in the child class, could return false.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch12_images.xhtml#f0248-01a


Conversely, assume that there is another instance of the parent class,
named p2. It can happen that p is equal to c, and c is equal to p2, but
p is not equal to p2.

We will return to investigate further some of the issues involved in
equality testing when we take up the topic of overriding in Chapter 16.

The Eiffel Type LIKE current
In Eiffel the problem of equality is solved in part by the ability to anchor a
type to that of another value. Most often the anchor is the receiver pseudo-
variable, which is known as Current in Eiffel. Thus, an equality method
could be written in this language as follows.

Click here to view code image
Class PlayingCard 
feature 
  . 
  . 
  . 
  equal (other : LIKE Current) is 
  do 
    -- compare two playing cards 
    . 
    . 
    . 
  end 
end

The LIKE anchor continues after inheritance. Thus, if we were to form a
new subclass of PlayingCard—say, PokerCard—then when an argument to
PokerCard was used as the receiver, the argument would have to be of type
PokerCard.

This mechanism is not without cost. In general, type correctness can
only be assured by a run-time check for argument compatibility. Thus, in
practice the code is no more efficient than the Java example presented
earlier, where the programmer was forced to write the run-time check.

Summary ⊡

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch12_images.xhtml#f0249-01a


In this chapter we have followed some of the language design implications
that flow from the decision to support the object-oriented concept of
substitution. We have examined the implications for memory management,
assignment, object copies, and equality testing.

Because a child class can introduce fields not found in the parent, the
support of substitution is difficult.
One approach is to essentially disallow substitution. This is the
approach taken by C++. An assignment of a child class to a parent
value slices away any data fields found only in the child.
Most other object-oriented languages avoid the slicing problem by
storing objects as pointers to heap-based memory.
Since objects are most naturally heap based, a heap memory
management system is important in object-oriented languages.
Some languages force the programmer to manage the heap, freeing
memory when it is no longer needed. Other languages include a
garbage collection system that automatically detects and recovers
unused memory.
Because it is natural to implement objects as pointers to heap-based
memory, most object-oriented langauges also use pointer assignment
semantics.
When a true copy of an object is needed, it can be generated either as
a shallow copy (where pointer assignment is used to copy the inner
state) or as a deep copy (where the inner state is copied recursively).
Two objects can be compared either for identity or equality.
Identity asks if two objects represent the same memory location.
Equality asks if two objects represent the same state, even if they are
different memory locations. The meaning of equality is inherently
domain specific.
Because equality can be redefined by programmers, it is difficult to
ensure that basic properties are preserved, such as commutivity.
There can be subtle interactions between equality testing and
inheritance.



Further Reading ⊡
Scott [Scott 2000] presents a good introduction to the issues raised in the
implementation of programming languages. Many of the issues discussed in
this chapter are also explored by Joyner [Joyner 1999].

The C++ object model is explained in detail by Lippman [Lippman
1996]. The slicing of assignment in Oberon-2 is explained by Mossenbock
[Mössenböck 1993].

The concept of Like Current in Eiffel is discussed by Bertrán Meyer
[Meyer 1994].

Self-Study Questions ⊡
1. What are the properties of a variable that is allocated on the activation

record stack?
2. What are the three possible ways that memory in an activation record

could be assigned to object-oriented values?
3. If the semantics of virtual functions in C++ were not changed for

automatic variables, how would it be possible to tell that slicing had
occurred?

4. Why is the maximum static space allocation technique not used by
object-oriented languages?

5. When languages use dynamic memory allocation for objects, what is
stored in the activation record?

6. What is the difference between pointer semantics for assignment and
copy semantics?

7. What is the difference between a deep copy and a shallow copy?
8. What is the difference between object identity and object equality?

Exercises ⊡



1. Explain why, in statically typed object-oriented languages (such as
C++ and Object Pascal), it is illegal to assign a value from a class to a
variable declared as an instance of a subclass. That is, something like
the following will result in a compiler error message.
TextWindow X; 
Window Y: 
. 
. 
. 
X = Y;

2. Assume that the C++ memory-allocation technique operates as
described in Section 12.1. Explain what problems can arise if the user
attempts to circumvent the problem of Exercise 1 using a cast—that
is, writes the assignment as
x = (TextWindow) Y;

3. Give an example, in either Object Pascal or C++, to illustrate why an
entire program, not simply a file, must be parsed before the size of
any object can be determined with the approach of Section 12.1.

4. Argue why, if the principle of substitutability is to be preserved, the
return type associated with an overridden method can be no more
general than that associated with the parent class.

5. Suppose you did not know if your programming language used
pointer semantics or copy semantics for object assignment. What
experiment could you conduct to find out?

6. Suppose your programming language provided a built-in copy
operation, but you did not know if this performed a shallow copy or a
deep copy. What experiment could you conduct to find out?

7. Show that it is possible to define a language similar to Object Pascal
that does not use pointer semantics for assignment. In other words,
give an algorithm for assignment for a language that uses the
approach to memory management described in Section 12.1, but that
does not result in two variables pointing to the same location when
one is assigned to the other. Why do you think the designers of Object
Pascal did not implement assignment using your approach?



Chapter 13

Multiple Inheritance

At the heart of the concept of inheritance is the is-a relationship. Viewed in
one way, the is-a relationship is a form of classification. For example, a
TextWindow can be classified as a type of Window, and therefore it makes
sense that the class TextWindow can be created by inheritance from class
Window. Expressed another way, the category TextWindow is a subset of the
more general category Window.

However, when we look at classifications of objects in the real world,
they seldom fit the simple single parent hierarchies we have been
constructing. This is because real world objects are almost always classified
in multiple, mutually nonoverlapping ways. The author of this book, for
example, can be described as a male, a professor of computer science, a
parent, and a North American. Each of these categories reveals something
about the author, and none is a proper subset of any of the others. If we try
to form these categories into an inheritance hierarchy, we end up with
invalid categorizations, such as asserting that all males are North American



or that all professors are male or some other equally improbable
classifications.

13.1 ⊡ Inheritance as Categorization
The proper way to express these relationships is to assert that the author is a
combination of many nonoverlapping categories. Each category contributes
something to the result. Each relationship can legitimately be described
using the is-a rule (the author is a parent; the author is a North American).

Modeling this behavior in programs seems to call for the concept of
multiple inheritance. An object can have two or more different parent
classes and inherit both data and behavior from each.



It is important to point out that we have not abandoned the is-a rule as
the fundamental test for the inheritance relationship. The derived category
must possess the is-a relationship to each of its parent classes, or it may
have a variation in is-a: the as-a relationship.

Is-a, Has-a, and As-a

A common analogy in describing multiple inheritance is that of an
actor playing many different roles, often at the same time. Likewise,
multiple inheritance is not the has-a relationship, and not quite the is-
a relationship (since the parent class is no longer unique) but a
variation on is-a that could be described as as-a. The rule-of-thumb
test for multiple inheritance is whether the sentence “A(n) A can be
viewed as-a B” sounds right.

13.1.1 Incomparable complex numbers
Another example will illustrate the practical problems that arise from
forcing concepts to fit a single inheritance hierarchy. In Smalltalk, the class
Magnitude defines a protocol for objects that have measure—that is, that can
be compared with one another. For example, individual characters
(instances of class Char) can be compared if we use the underlying ASCII
representation as a basis for measure. A more common class of objects that
can be compared are numbers, which are represented as instances of the



class Number in Smalltalk. In addition to being measurable, instances of
class Number support arithmetic operations—addition, multiplication, and so
forth. These operations do not make sense for objects of class Char. There
are various number types supported by Smalltalk; examples include the
classes Integer, Fraction, and Float. A portion of the class hierarchy is
shown in Figure 13.1.

⊡ Figure 13.1 — A portion of the Smalltalk class hierarchy

Now suppose we add the class Complex, representing the complex
number abstraction. The arithmetic operations are certainly well defined for
complex numbers, and it is preferable to make the class Complex a subclass
of Number so that, for example, mixed-mode arithmetic is provided
automatically. The difficulty is that comparison between two complex
numbers is ambiguous. That is, complex numbers are simply not
measurable.

Thus, we have the following constraints.
The class Char should be a subclass of Magnitude but not of Number.
The class Integer should be a subclass of both Magnitude and Number.
The class Complex should be a subclass of Number but not of
Magnitude.



It is not possible to satisfy all of these requirements in a single
inheritance hierarchy. There are some alternative solutions to this problem.

1. Make Complex a subclass of Number, which is in turn a subclass of
Magnitude, and then redefine the methods relating to measure in class
Complex to produce error messages if they are invoked. This is
subclassing for limitation, as described in Chapter 8. Although not
elegant, this solution is sometimes the most expedient if your
programming language does not support multiple inheritance.

2. Avoid the use of inheritance altogether and redefine every method in
each of the classes Char, Integer, Complex, and so on. This solution
is sometimes called flattening the inheritance tree. Of course, it
eliminates all the benefits of inheritance described in Chapter 8—for
example, code reuse and guaranteed interfaces. Furthermore, in a
statically typed language, such as C++ or Object Pascal, it also
prevents the creation of polymorphic objects. Thus, for example, it is
not possible to create a variable that can hold an arbitrary measurable
object or an arbitrary type of number.

3. Use part of the inheritance hierarchy and simulate the rest. For
example, place all numbers under class Number, but have each
measurable object (whether character or number) implement the
comparison operations. This also eliminates many of the benefits that
can be derived from inheritance.

4. Make the two classes Magnitude and Number independent of each other
and thus require the class Integer to use inheritance to derive
properties from both of the parents (Figure 13.2). The class Float will
similarly inherit from both Number and Magnitude.

⊡ Figure 13.2 — A multiple inheritance hierarchy for complex
numbers



Clearly the most elegant solution to this problem is the last. A class that
inherits from two or more parent classes is said to exhibit multiple
inheritance.

13.2 ⊡ Problems Arising from Multiple
Inheritance
The problems that arise from the inclusion of multiple inheritance in a
language fall into two broad categories. There are problems of meaning and
problems of implementation. In this chapter we will consider problems of
meaning, and in Chapter 27 we will consider the impact of multiple
inheritance on the implementation.

13.2.1 Name ambiguity
The most common difficulty arising from the use of multiple inheritance is
that names can be used to mean more than one operation. To illustrate this,
consider a programmer developing a card game simulation. Suppose there
is already a data abstraction, CardDeck, that provides the functionality
associated with a deck of cards (such as shuffling and being able to draw a
single card from the deck) but has no graphical capabilities. Suppose further
that another set of existing classes implements graphical objects. Graphical
objects maintain a location on a two-dimensional display surface. In
addition, graphical objects must all know how to display themselves by
means of the virtual method called draw.

The programmer decides that to achieve maximum leverage from these
two existing classes, he will have the class for the new abstraction, named
GraphicalCardDeck, inherit from both the classes CardDeck and
GraphicalObject. It is clear that conceptually the class GraphicalCardDeck
is-a CardDeck and is thus logically descendant from that class and also that a
GraphicalCardDeck is-a GraphicalObject. The only trouble is the clash
between the two meanings of the command draw.



As Bertrand Meyer points out [Meyer 1988a] the problem is clearly with
the child and not with the parent classes. The meaning of draw is
unambiguous and meaningful in each of the parent classes when taken in
isolation. The difficulty is with the combination. Since the problem arises
only in the child class, the solution should also be found in that class. In
this case, the child class must decide how to disambiguate the overloaded
term.

One solution is to simply always use fully qualified names. Rather than
asking an instance of GraphicalCardDeck to draw, the programmer
specifically indicates which type of drawing is intended.

Click here to view code image
GraphicalCardDeck gcd; 
Card * aCard = gcd->CardDeck::draw(); 
gcd->GraphicalObject::draw();

However, this solution is less than ideal, since the syntax is different
from other function calls, and the programmer must remember which
method comes from which parent.

The more common solution usually involves a combination of renaming
and redefinition. By redefinition we mean a change in the operation of a
command, such as what happens when a virtual method is overridden in a
subclass. By renaming we simply mean changing the name by which a
method is invoked without altering the command’s functionality.

If the type signatures of the parent methods are distinguishable and our
language allows overloading, then the child class can simply include both

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0258-01a


methods.
Click here to view code image
class GraphicalCardDeck : public CardDeck, public GraphicalObject 
{ 
public: 
  virtual Card * draw () { return CardDeck::draw(); } 
  virtual void draw (Graphics * g) { GraphicalObject::draw(g); } 
}

An instance of the child can then select the appropriate method by using
the correct arguments.

Click here to view code image
GraphicalCardDeck gcd; 
Graphics g; 
gcd->draw(); // selects CardDeck draw 
gcd->draw(g); // selects GraphicalObject draw

If the type signatures are similar, or if overloading is not allowed, then
the programmer is faced with a more difficult decision. The method draw
can mean only one thing to the child, and the programmer must decide
which of the parents interpretations it should be. In our graphical deck of
playing cards, the programmer might have draw mean the process of
removing a card from the deck and rename the process of drawing the
image as paint.

Click here to view code image
class GraphicalCardDeck : public CardDeck, public GraphicalObject 
{ 
public: 
  virtual void draw () { return CardDeck::draw(); } 
  virtual void paint () { GraphicalObject::draw(); } 
} 
 
  GraphicalCardDeck gcd; 
  gcd->draw(); // selects CardDeck draw 
  gcd->paint(); // selects GraphicalObject draw

13.2.2 Impact on substitutability

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0258-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0258-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0259-01a


While the redefinition of the function name draw solves the problem locally
when a GraphicalCardDeck is used in isolation, further problems arise when
we consider the implications of the principle of substitution. Suppose our
GraphicalCardDeck is maintained on a list of graphical objects, say for the
purposes of rendering a window image. When the method draw is invoked
on the graphical object, it will have the effect of executing the CardDeck
method and not the graphical operation.

Click here to view code image
GraphicalObject * g = new GraphicalCardDeck(); 
g->draw(); // oops, wrong method

The typical way this problem is overcome in C++ is through the
introduction of two new helper classes. Each of these classes inherits from
one parent and redefines the draw operation to use a method of a different
name.

Click here to view code image
class CardDeckParent  : public CardDeck { 
public: 
  virtual void draw () { cardDeckDraw(); } 
  virtual void cardDeckDraw() { CardDeck::draw(); } 
}; 
 
class GraphicalObjectParent : public GraphicalObject { 
public: 
  virtual void draw () { goDraw() ; } 
  virtual void goDraw () { GraphicalObject::draw(); } 
};

The child class can now inherit from these new parents and override the
new methods, which no longer have similar names. When used by itself the
new child class has access to both behaviors, and when assigned by
substitution to an instance of either parent class, the expected behavior is
produced.

Click here to view code image
class GraphicalCardDeck : public CardDeckParent, 
GraphicalObjectParent 
{ 
public: 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0259-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0259-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0260-01a


  virtual void cardDeckDraw () { ... } 
  virtual goDraw () { ... } 
};

Note that method named draw is still ambiguous in the child class but
not when the object is referenced as an instance of either parent class. C++
does not care about this ambiguity as long as no attempt is made to use the
name. An error will result if an attempt is made to reference the ambiguous
method.

Click here to view code image
GraphicalCardDeck *gcd = new GraphicalCardDeck(); 
CardDeck *cd = gcd; // all three variables refer 
GraphicalObject *go = gcd; // to same object 
cd->draw() ; // ok, will execute cardDeckDraw 
go->draw();  // ok, will execute goDraw 
gcd->draw(); // compiler error, ambiguous invocation

One might imagine that this ambiguity could be overcome by redefining
draw in the child class GraphicalCardDeck and selecting one or the other
meaning. However, because once a method is declared as virtual it
continues to be virtual in all child classes, this cannot be done without
hiding the other meaning and thus preventing substitution. However, it is
still possible to use fully qualified names for the parent methods, as
described earlier.

*13.2.3 Redefinition in Eiffel
The object-oriented language Eiffel allows multiple inheritance and
overcomes ambiguity through a technique that permits inherited names to
be redefined. The child class can therefore access inherited methods
through the redefined names in an unambiguous fashion.

Click here to view code image
class GraphicalCardDeck 
inherit 
  CardDeck 
    rename 
      draw as cardDeckDraw 
    end 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0260-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0260-03a


  GraphicalObject 
    rename 
      draw as goDraw 
    end 
 
  feature 
    -- can use cardDeckDraw and goDraw without conflict 
    -- can even override the redefined names 
  end

This solution is roughly equivalent to the earlier C++ program but
avoids the need to introduce the two intermediary classes. Like the C++
program it requires that when the child class is used by itself, it must use
the renamed methods. When an instance of the child class is accessed
through a reference to either parent, they can use the method draw, and the
correct method will be executed. However, again like the C++ solution,
when the method draw is used with a child class reference, the meaning is
ambiguous and will produce a compiler error.

*13.2.4 Resolution by class ordering in CLOS
While C++ and Eiffel resolve naming conflicts by insisting that the child
class make the intent clear, the language CLOS takes a different approach.
In CLOS conflicts are resolved by the order that parent classes are declared.
For example, suppose we have two classes animated-character and movie-
star, both possessing a name field and both having a method named name-
of.

Click here to view code image
(defclass animated-character () ((name :initarg :name))) 
 
(defmethod name-of ((self animated-character)) 
  (list "Animated Character" (slot-value self 'name))) 
 
(defclass movie-star () ((name :initarg :name))) 
 
(defmethod name-of ((self movie-star)) 
   (list "Movie Star" (slot-value self 'name)))

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0261-02a


We can create a new class of animated movie stars by inheriting from
both animated characters and movie stars.

Click here to view code image
(defclass animated-star (animated-character movie-star) () )

Note that there are two name slots in such an object, one from each
parent class. If we define an instance of the child class and specify a value,
both will be filled. If we print the value of the object, we can see that the
method from class animated-character is selected.

Click here to view code image
  (defvar micky (make-instance 'animated-star :name "Micky")) 
  (name-of micky) 
("Animated Character" "Micky")

This is because the parent class animated-character is searched before
the class movie-star. If we listed the parent classes in the reverse order, the
method in class movie-star would be used.

Click here to view code image
  (defclass star-animated (movie-star animated-character) () ) 
  (defvar minnie (make-instance 'star-animated :name "Minnie")) 
  (name-of minnie) 
("Movie Star" "Minnie")

Wrappers
Because multiple method bodies match the invocation of the name-of
function, we can use the idea of wrappers to execute each function in turn.
The method call-next-method will execute the next method that matches
the given arguments. However, this can only be executed if there is a next
method, something that can be checked using the predicate next-method-p.
For example, we could rewrite both name-of methods as follows.

Click here to view code image
(defmethod name-of ((self animated-character)) 
  (list "Animated Character" (slot-value self 'name) 
    (if (next-method-p) (call-next-method)))) 
 
(defmethod name-of ((self movie-star)) 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0261-02f
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0261-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0262-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0262-02a


  (list "Movie Star"  (slot-value self 'name) 
    (if (next-method-p)  (call-next-method))))

If we now execute the method, we will see that both functions have been
executed and the results combined. (The if statement in the second function
returns nil, since there is no next method, something we could have fixed
with more programming.)

Click here to view code image
   (name-of minnie) 
("Movie Star" "Minnie" ("Animated Character" "Minnie" NIL))

We will examine a further use of call-next-method in Section 13.3.1.

Multiple inheritance in Python
Python is another language that resolves name conflicts that arise from
multiple inheritance by performing a depth-first search of the ancestor
hierarchy. Consider the following class definitions.

Click here to view code image
class A: 
  def method1(self): 
    print "method1 A" 
 
def method2(self) 
  print "method2 A" 
 
class B(A): 
  def method2(self) 
    print "method2 B" 
 
class C: 
  def method1(self): 
    print "method1 A" 
  def method2(self) 
    print "method2 C" 
 
class D(B,C): 
  def method2(self) 
    C.method2(self)

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0262-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0262-04a


If we create an instance of D and execute methodl, it will select the
method in class A.

Click here to view code image
  d = D()   # create a D 
  d. method1() 
method1 A 
  d.method2() 
method2 C

If inheritance had been specified as D(C, B), then the call on methodl
would have found the function in class C, rather than the function in class A.
Programmers can override and select the desired meaning by using the
class qualified name, as show in the body of the function method2 in class D.
This is similar to the use of fully qualified names in C++, which we
described earlier.

13.3 Multiple Inheritance of Interfaces
Neither Java nor C# allow multiple inheritance of classes, but both
languages permit multiple inheritance of interfaces. While sometimes used
for similar purposes, there are important differences between interfaces and
classes. Both mechanisms can be used for classification (the is-a relation is
a valid test for both), but interfaces do not supply code to the child class.
For this reason the conflict between two inherited code bodies does not
arise. Either methods in the parent interfaces have the same type signature,
in which case they are merged and the child need implement only one.

Click here to view code image
interface CardDeck { 
  public void draw (); 
} 
 
interface GraphicalObject { 
  public void draw (); 
} 
 
class GraphicalCardDeck implements CardDeck, GraphicalObject { 
  public void draw () { ... } // only one method 
}

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0263-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0264-01a


Or the parent classes have different type signatures, in which case the
child class must implement both.

Click here to view code image
interface CardDeck { 
  public Card draw (); 
} 
 
interface GraphicalObject { 
  public void draw (Graphics g); 
} 
 
class GraphicalCardDeck implements CardDeck, GraphicalObject { 
  public Card draw () { ... } // must implement both methods 
  public void draw (Graphics g) { ... } 
}

The only restriction is similar to that encountered in simple overloading.
Namely, two methods cannot differ only in their return type or in the type
of exceptions they throw, since the compiler cannot determine from a
function invocation which method is being called. The compiler will detect
an error and issue a diagnostic message in this situation.

Click here to view code image
interface CardDeck { 
  public void draw () throws EmptyDeckException; 
} 
 
interface GraphicalObject { 
  public void draw (); 
} 
 
class GraphicalCardDeck implements CardDeck, GraphicalObject { 
  public void draw () { ... } // which one is this? 
}

In Java, interfaces are allowed to define constants (using the final
modifier), and so there is the potential for two parent interfaces to define a
constant using the same name and different values. However, the compiler
checks for this condition and will issue an error diagnostic should it arise.

Explicit interface implementation in C#

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0264-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0264-03a


The language C# is much more restrictive than Java with regard to the
combination of methods from different interfaces. The C# compiler will
report this condition as an error, even if the type signatures match.
Presumably this policy is due to the assumption that if the interfaces arise
from different sources they therefore most likely specify different actions.

The programmer can get around this restriction by explicitly naming the
interface associated with the method being defined. If the method is to be
further exposed from the child class, a third method can be defined with the
same name.

Click here to view code image
class GraphicalCardDeck: CardDeck, GraphicalObject { 
  void CardDeck.draw () { // method number 1 
    . 
    . 
    . 
  } 
 
  void GraphicalObject.draw () { // method number 2 
    . 
    . 
    . 
  } 
 
  public void draw () { // method number 3 
    . 
    . 
    . 
  } 
 
}

Each of these three methods can be executed, depending on the static
type of a declaration.

Click here to view code image
GraphicalCardDeck theDeck = new GraphicalCardDeck(); 
theDeck.draw() ;  // executes method number 3 
CardDeck cd = (CardDeck) theDeck; 
cd.draw(); // executes method 1 
GraphicalObject go = (GraphicalObject) theDeck; 
go.draw (); // executed method 2

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0265-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0265-02a


*13.3.1 Mixins in CLOS
CLOS programmers frequently make use of a programming idiom called a
mixin. The concept of a mixin is in some ways almost the exact opposite of
the notion of inheritance of interfaces. While interfaces specify a protocol
but do not provide code, mixins provide code without changing the
interface. Mixins are snippets of code that are combined precisely because
of their behavior and not their type. The child class inherits a bit of code
from one parent, a bit of code from the other, and combines them to form
their own new behavior.

For example, suppose we have a class Person with a slot for a name and
a method named title to return the name.

Click here to view code image
  (defclass Person () ((name :initarg :name))) 
 
  (defmethod title ((self Person)) 
    (list (slot-value self 'name))) 
 
  (defvar tom (make-instance 'Person :name "Tom Smith")) 
 
  (title tom) 
("Tom Smith")

We can create two mixins, one that will add the prefix “Prof.” to a title,
and one that will add the prefix “Dr.” and tack a “PhD” on the end.

Click here to view code image
(defclass Prof ()  () ) 
 
(defmethod title ((self Prof)) 
  (cons "Prof." (call-next-method))) 
 
(defclass PhD () () ) 
 
(defmethod title ((self PhD)) 
  (append (cons "Dr." (call-next-method))  (list "PhD")))

Note that these are declared as classes but do not explicitly reference the
class Parent. The use of call-next-method is what distinguishes these
classes as mixins. To use these, we can create a new class that uses multiple

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0266-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0266-02a


inheritance from one or more mixin before finally associating a base class.
For example, we might make a simple Professor class.

Click here to view code image
(defclass Professor (Prof Person) () )

If we make an instance of this class and execute the inherited method
title, we see that first the method from Prof is executed and then the
method from Person.

Click here to view code image
  (defvar bill (make-instance 'Professor :name "Bill Jones")) 
  (title bill) 
("Prof." "Bill Jones")

A characteristic of mixins is that they can be combined in different
orders. For example, we can make both classes for Professor Doctors and
for Doctor Professors.

Click here to view code image
  (defclass ProfDr (Prof PhD Person) () ) 
  (defclass DrProf (PhD Prof Person) () ) 
 
  (defvar alice (make-instance 'ProfDr :name "Alice Smith")) 
  (title alice) 
("Prof." "Dr." "Alice Smith" "PhD") 
  (defvar nancy (make-instance 'DrProf :name "Nancy Jones")) 
  (title nancy) 
("Dr." "Prof." "Nancy Jones" "PhD")

The programming language Ruby provides similar mixin facilities in the
context of a language that only supports single inheritance.

13.4 Inheritance from Common Ancestors
By far the most subtle problems involving multiple inheritance arise when
two or more classes inherit from a common parent class, such as in Figure
13.3. Scott Meyers calls this, rather melodramatically, the “diamond of
death” [Meyers 1998]. The picture itself explains part of the controversy.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0266-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0267-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0267-02a


Should it be drawn so that the common ancestors are merged or to keep
them distinct?

⊡ Figure 13.3 — An inheritance graph

The difference between these two representations can be appreciated if
we imagine that the common ancestor class defines a data member. Should
the child class have one copy of this data member or two? There is no right
answer to this question, since both arise in practice.

For example, suppose a programmer creates a linked list by making a
parent Link class and declaring objects on the list as children of the Link
class. (This is not a particularly good idea, since using standard container
abstractions makes the code more robust, but nevertheless the technique is,
perhaps unfortunately, common and is easy to understand.)



Click here to view code image
class Link { 
public: 
  Link * nextLink; 
};

Declaring CardDeck to be a child class of Link allows the programmer to
maintain a list of card decks. Similarly, declaring GraphicalObject to be a
child class of Link allows the programmer to keep a list of graphical
objects.

Click here to view code image
class CardDeck : public Link { ... }; 
class GraphicalObject : public Link { ... };

When the child class is created that inherits from both CardDeck and
GraphicalObject, how many nextLink fields should it hold? Presumably the
lists of card decks and graphical objects are distinct, and hence each type
of list should have its own links. Therefore having two separate link fields
seems appropriate.

Now imagine a different type of class hierarchy. A programmer is
developing an input/output library based around the concept of streams. A
stream is a generalization of a file, except that its elements can have more
structure. We can have a stream of integers, for example, or a stream of
reals. The class InStream provides a protocol for input streams. A user can
open an input stream by attaching it to a file, retrieve the next element in
the stream, and so on. The class OutStream provides similar functionality
for output streams. Both classes inherit from a single parent class, Stream.
The information that points to the actual underlying file (for example, a file
pointer) is maintained in the parent class.

Now suppose the user wants to create a combined input-output stream.
It makes sense to claim that an input-output stream is a descendant of both
an input stream and an output stream. But in this case, there is only one
object, and hence we want the two file pointers (and any other common
data) to refer to the same values. That is, we want only one copy of the
common ancestor data.

In C++ this problem is overcome through the use of the virtual
modifier in the parent class list. The virtual keyword indicates that the
superclass may appear more than once in descendant classes of the current

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0268-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0268-03a


class but that only one copy of the superclass should be included. Figure
13.4 shows the declarations for the four classes.

Click here to view code image
class Stream { 
  File *fid; 
  . 
  . 
  . 
  }; 
 
class InStream : public virtual Stream { 
  . 
  . 
  . 
  int open(File *); 
  }; 
 
class OutStream : public virtual Stream { 
  . 
  . 
  . 
  int open(File *); 
  }; 
 
class InOutStream: public InStream, public OutStream { 
  . 
  . 
  . 
  };

⊡ Figure 13.4 — An example of virtual inheritance

An unfortunate consequence of the C++ approach is that, as we noted
earlier, the name confusion is a problem only for the child class, but the
solution (making the common ancestor virtual) involves changes to the
parent classes. It is the intermediate parent classes that give the virtual
designation, not the final combined class.

The fact that visibility keywords can be attached to parent classes
independently means that it is possible for a virtual ancestor class to be

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0269-01a


inherited in different ways—for example, as both public and protected. In
this case, the lesser level of protection (for example, protected) is ignored
and the more general category used.

*13.4.1 Constructors and multiple inheritance
When more than one parent class defines a constructor, the order of
execution of the various constructors, and hence initialization of their data
fields, may be important. The user can control this by invoking the
constructors for the base classes directly in the constructor for the child
class. For example, in Figure 13.5, the user explicitly directs that when an
instance of class C is initialized, the constructor for B is to be invoked first,
before the constructor for A. Reversing the order of invocations of the
constructor in class C has the effect of reversing the order of initialization.

Click here to view code image
class D { 
public: 
  D() { ... } 
  D(int i) { ... } 
  D(double d) { ... } 
}; 
 
class A : public virtual D { 
public: 
 
  A()  : D(7)   { ... } 
}; 
 
class B : public virtual D { 
public: 
  B()  : D(3.14) { ... } 
}; 
 
class C: public A, public B 
{ 
public: 
  C()  : B(), A() { ... } 
};

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0270-01a


⊡ Figure 13.5 — Constructors in multiple inheritance

An exception to this rule occurs with virtual base classes. A virtual base
class is always initialized once, before any other initialization takes place,
by the constructor (provided by the system if not by the user), which takes
no arguments. Thus, in Figure 13.5 the order of initialization when a new
element of type C is constructed is first class D with the no-argument
constructor, then class B, then class A. The two seeming calls on the
constructor for class D that appear in the constructors for classes A and B
actually have no effect, since the parent class is marked as virtual.

If it is imperative that arguments for the virtual base class be provided
with the constructor, class C may legally provide these values, even though
D is not an immediate ancestor for C. This is the only situation in which it is
legal for a class to provide a constructor for another class that is not an
immediate ancestor. That is, the constructor for class C could have been
written as follows.

Click here to view code image
C()  :   D(12), B(),   A() { .  .  . }

Constructors for virtual base classes must be invoked first, before the
constructors for nonvirtual ancestors.

Virtual methods in the common ancestor
Virtual methods defined in virtual superclasses can also cause trouble.
Suppose that each of the four classes shown in Figure 13.4 defines a
method named initialize(). This method is defined as virtual in the class
Stream and redefined in each of the other three classes. The initialize
methods in InStream and OutStream each invoke Stream::initialize and,
in addition, do some subclass-specific initialization.

Now consider the method InOutStream. It cannot call both the inherited
methods InStream::initialize and OutStream::initialize without
invoking the method Stream::initialize twice. The repeated invocation of
Stream::initialize may have unintended effects. The way to avoid this
problem is to rewrite Stream::initialize so it detects whether it has been
initialized or to redefine the methods in the subclasses InStream and

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0271-01a


OutStream so they avoid the invocation of the method from class Stream. In
the latter case, the class InOutStream must then invoke the initialization
procedures explicitly for each of the three other classes.

13.5 ⊡ Inner Classes
The ability to nest classes in Java and C++ provides a mechanism that can
be used in a fashion that is very nearly equivalent to multiple inheritance
but that avoids many of the semantic problems we have been discussing. A
nested class in Java retains access to methods in the surrounding outer class.
(This is not true in C++, but it can be simulated by passing a reference to
the outer class when the inner class is constructed.) To create an object that
inherits from two parents, the outer class inherits from the first parent, and
the inner class inherits from the second.

Click here to view code image
class GraphicalCardDeck extends CardDeck { 
  // outer class has access to all CardDeck behavior 
 
  public void draw () { // can override the CardDeck methods 
    . 
    . 
    . 
  } 
 
  private drawingClass drawer = new drawingClass(); 
 
  public GraphicalObject myDrawingObject () { return drawer; } 
 
  private class drawingClass extends GraphicalObject { 
    // inner class has access to all GraphicalObject behavior 
    public void draw () { 
      // can override the GraphicalObject methods 
      . 
      . 
      . 
    } 
  } 
}

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch13_images.xhtml#f0272-01a


The outer class can override methods from one parent, the inner class
from the second. The inner class has access to methods from both parents.
Seemingly the only difficulty this solution introduces is the problem of
substitution. An instance of GraphicalCardDeck can be assigned to a
variable of type CardDeck but not to one declared as type GraphicalObject.
But even here there is an easy way to overcome this problem. The outer
class can return an instance of the inner class (as is done by the method
myDrawingObject) that can then be assigned to the parent class variable.
There is, indeed, no way that the same variable can be assigned to two
different parent classes, but this situation does not seem to arise in practice.
The case study presented in Chapter 22 makes use of an inner class in just
this fashion.

Summary ⊡
One way to view the mechanism of inheritance is as a process of
categorization. The child class is a more specialized form of the category
defined by the parent class. However, in most real world categorizations
objects fit into several mutually independent categories. This observation
leads to the concept of multiple inheritance, a class that can inherit from
two or more parent classes.

While multiple inheritance on the surface seems desirable, there are
several pitfalls that can trap the unwary. The most important of these is the
ambiguity of names that are inherited from both parents. This ambiguity
can be resolved but frequently only at the cost of the elimination of
polymorphic substitutability.

The problem of ambiguity becomes even more complex when one class
can be reached as an ancestor along two or more paths from a child. In this
situation the quandary is how many times features in the common parent
class should be repeated in the child.

Further Reading ⊡
A critique of multiple inheritance can be found in Sakkinen [Sakkinen
1988a], which is an abridgment and adaptation of a Ph.D. dissertation



[Sakkinen 1992].
An explanation of multiple inheritance in C++ is given in Ellis [Ellis

1990]. The designer of C++ has provided a detailed history of the multiple
inheritance controversy [Stroustrup 1994]. A careful explanation of
implementation techniques for multiple inheritance is provided by Scott
[Scott 2000].

Mixins in CLOS were first described in [Bracha 1990].
Multiple inheritance also has a reputation as being a difficult feature to

implement. We will examine why this is so in Chapter 27.

Self-Study Questions ⊡
1. How does multiple inheritance change the is-a rule?
2. How can name ambiguity arise in multiple inheritance? How is this

ambiguity resolved?
3. How is the resolution of ambiguous names in CLOS different from

the solution to the ambiguity problem in C++?
4. Why does the problem of ambiguous names not arise in the multiple

inheritance of Java interfaces?
5. Explain the concept of a mixin in CLOS.
6. What problem can arise when a single ancestor class is reachable by

two or more paths from a child?
7. How do inner classes in Java and C++ give the programmer some of

the effect of multiple inheritance?
8. What aspect of multiple inheritance cannot be exactly realized by

inner classes?

Exercises ⊡
1. Cite two examples of multiple inheritance in non-computer-associated

situations.



2. In [Wiener 1989], a “practical example of multiple inheritance in
C++” is described that defines a class IntegerArray, which inherits
from the two classes, Array and Integer. Do you think this example is
a good use of multiple inheritance? Explain your answer.

3. In [Shammas 1996] another example of multiple inheritance is
presented. In this example the class Distance represents an x and y
coordinate pair. The class Random provides the ability to return a
random number. Inheriting from both of these, the class Rescue
represents a lost person with unknown coordinates. Critique this use
of multiple inheritance.

4. Discuss virtual inheritance in C++ from the point of view of Parnas’s
principles on information hiding.

5. It is sometimes asserted that Java has multiple inheritance because it
has multiple inheritance of interfaces. Explain why multiple
inheritance of interfaces is not the same thing as multiple inheritance
of classes.



Chapter 14

Polymorphism and Software Reuse

In this chapter and in the four that follow we begin an investigation of the
mechanisms that are in object-oriented programming languages collectively
described using the term polymorphism. We have seen simple examples of
most of these—for example, overriding—in earlier chapters. However, an
in-depth treatment will allow us to explore details that might not be obvious
from a cursory explanation. After examining the various techniques denoted
by this term we then examine, starting in Chapter 19, several applications of
polymorphism to a range of common problems.

The term polymorphic has Greek roots and means, roughly, “many
forms.” (poly = many, morphos = form. Morphos is related to the Greek
god Morphus, who could appear to sleeping individuals in any form he
wished and hence was truly polymorphic.) In biology, a polymorphic
species is one, such as Homo sapiens, that is characterized by the
occurrence of different forms or color types in individual organisms or
among organisms. Sponges are another polymorphic species. In chemistry,
a polymorphic compound is one that can crystallize in at least two distinct
forms, such as carbon, which can crystallize as graphite, diamond, or
fullerenes.

14.1 ⊡ Polymorphism in Programming
Languages
As is perhaps appropriate, the name polymorphism means different things
to different people. In part this confusion is related to language paradigms.



The term originated with work in the functional language world, and only
later was it adopted by designers of object-oriented languages. As a
consequence the term has come to mean one thing in the object-oriented
community and something slightly different when applied to functional
languages.

At heart, the term means there is one name and many different
meanings. But names are used for a variety of purposes (variable names,
function names, class names), and meanings can be defined in a number of
different ways. It is therefore useful to consider at least four different forms
of polymorphism.

The term overloading (also known as ad hoc polymorphism) is used
to describe the situation where a single function name (or method
name) has several alternative implementations. Typically overloaded
function names are distinguished at compile time based on their type
signatures.

Click here to view code image
class OverLoader { 
    // three overloaded meanings for the same name 
  public void example (int x) { ... } 
  public void example (int x, double y) { ... } 
  public void example (string x) { ... } 
}

We will discuss overloading in Chapter 15.
Overriding (or inclusion polymorphism) is in some sense a special
case of overloading but occurs within the context of the parent
class/child class relationship.

Click here to view code image
class Parent { 
  public void example (int x) { ... } 
} 
 
class Child extends Parent { 
    // same name, different method body 
  public void example (int x) { ... } 
}

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch14_images.xhtml#f0276-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch14_images.xhtml#f0276-02a


Like ad-hoc polymorphism there are two definitions that use the same
method name. However, unlike overloading, these two definitions
must have the same type signature, and the two methods must appear
in classes related by inheritance. Overriding will be described in
Chapter 16.
The polymorphic variable (or assignment polymorphism) is a variable
that is declared as one type but in fact holds a value of a different
type.

Click here to view code image
Parent p = new Child(); // declared as parent, holding child value

When a polymorphic variable is used as argument, the resulting
function is said to exhibit pure polymorphism. Both the polymorphic
variable and pure polymorphism are discussed in Chapter 17.
Finally, generics (or templates) provide a way of creating general
purpose tools and specializing them to specific situations.

Click here to view code image
template <class T> T max (T left, T right) 
{ 
     // return largest argument 
   if (left < right) 
      return right; 
   return left; 
}

A generic function or class is parameterized by a type, in much the
same way that a function is parameterized by values. By leaving the
type unspecified, to be filled in later, a generic allows the function or
class to be used in a wider range of situations. Generics will be
examined in Chapter 18.

14.1.1 Many tools, one goal
It is polymorphism more than any other feature that distinguishes object-
oriented languages from other language paradigms. Each of the different
polymorphic techniques permits a different form of software reuse. Each is

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch14_images.xhtml#f0276-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch14_images.xhtml#f0277-01a


powerful in its own way, a fact we will demonstrate in the case study
chapters that will follow our investigation of the basic techniques. By
facilitating the reuse of standard software components, each contributes to
the goals we earlier identified as the driving forces for object-oriented
programming—namely, rapid development, reliability, and ease of use.

14.2 ⊡ Mechanisms for Software Reuse
Object-oriented programming has been billed as the technology that will
finally permit software to be constructed from general-purpose reusable
components. Writers such as Brad Cox have even gone so far as to describe
object orientation as heralding the “industrial revolution” in software
development. While the reality may not quite match the hyperbole of OOP
pioneers, it is true that object-oriented programming makes possible a level
of software reuse that is orders of magnitude more powerful than that
permitted by previous software construction techniques. In this section, we
will investigate and contrast the two most common mechanisms for
software reuse: inheritance and composition.

To illustrate these two techniques, we will use the construction of a set
abstraction by using an existing class, List, which maintains a list of integer
values. Imagine we have already developed a class List with the following
interface.

Click here to view code image
class List { 
public: 
      // constructor 
   List (); 
      // methods 
   void  add     (int); 
   int   firstElement (); 
   int   size       (); 
   int   includes     (int) 
   void  remove       (int); 
   ⋮ 
};

That is, our list abstraction permits us to add a new element to the front of
the list, to return the first element of the list, to compute the number of

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch14_images.xhtml#f0278-01a


elements in the list, to see if a value is contained in the list, and to remove
an element from the list.

We want to develop a set abstraction to perform operations such as
adding a value to the set, determining the number of elements in the set,
and determining whether a specific value occurs in the set.

Is-a and Has-a Revisited

It should be clear that the is-a and has-a relationships that we have
been discussing since Chapter 2 correspond directly to the
programming mechanisms of inheritance and composition. If class A
has-a class B, then naturally a data field of class B should be part of
an instance of class A. On the other hand, if class A is-a class B, then
inheritance is an appropriate coding mechanism.

14.2.1 Using composition
We will first investigate how the set abstraction can be formed with
composition (also sometimes called layering). Recall from our earlier
discussion that an object is simply an encapsulation of data (data values)
and behavior. When composition is employed to reuse an existing data
abstraction in the development of a new data type, a portion of the state of
the new data structure is simply an instance of the existing structure. This is
illustrated here, where the data type Set contains an instance field named
theData, which is declared to be of type List.

Click here to view code image
class Set { 
public: 
   Set (); // constructor 
 
      // operations 
   void add      (int); 
   int  size   (); 
   int  includes (int) 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch14_images.xhtml#f0279-01a


private: // data area for set values 
   List theData; 
};

Because the List abstraction is stored as part of the data area for our set,
it must be initialized in the constructor. As with the initialization of data
fields in classes (Chapter 5), the initializer clause in the constructor
provides the arguments used to initialize the data field. In this case the
constructor we invoke for class List is the constructor with no arguments.

Click here to view code image
   // initialize list 
Set::Set() : theData() 
{ 
   // no further initialization 
}

Operations that manipulate the new structure are implemented by use of
the existing operations provided for the earlier data type. For example, the
implementation of the includes operation for our set data structure simply
invokes the similarly named function already defined for lists.

Click here to view code image
int Set::size () 
{ 
   return theData.size(); 
} 
 
int Set::includes (int newValue) 
{ 
   return theData.includes(newValue); 
}

The only operation that is slightly more complex is addition, which must
first check to ensure that the value is not already contained in the collection
(since values can appear in a set no more than once).

Click here to view code image
void Set::add (int newValue) 
{ 
      // if not already in set 
   if (! includes (newValue)) 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch14_images.xhtml#f0279-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch14_images.xhtml#f0279-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch14_images.xhtml#f0280-01a


         // then add 
      theData.add(newValue); 
 
      // otherwise do nothing 
}

The important point is the fact that composition provides a way to
leverage an existing software component in the creation of a new
application. By using the existing List class, the majority of the difficult
work in managing the data values for our new component have already
been addressed.

On the other hand, composition makes no explicit or implicit claims
about substitutability. When formed in this fashion, the data types Set and
List are entirely distinct, and neither can be substituted in situations where
the other is required.

Composition in other languages
Composition can be applied in any of the object-oriented languages we
consider in this book. Indeed, it can be applied in non-object-oriented
languages as well. The only significant difference in the various languages
is the way in which the encapsulated data abstraction is initialized.

14.2.2 Using inheritance
An entirely different mechanism for software reuse in object-oriented
programming is the concept of inheritance; with inheritance a new class can
be declared a subclass, or child class, of an existing class. In this way, all
data areas and functions associated with the original class are automatically
associated with the new data abstraction. The new class can, in addition,
define new data values or new functions. It can also override functions in
the original class, simply by defining new functions with the same names as
those of functions that appear in the parent class.

These possibilities are illustrated in the class description following,
which implements a different version of the Set abstraction. By naming the
class List in the class heading, we indicate that our Set abstraction is an
extension, or a refinement, of the existing class List. Thus, all operations
associated with lists are immediately applicable to sets as well.



Click here to view code image
class Set : public List { 
public: 
      // constructor 
   Set (); 
 
      // operations 
   void  add (int); 
   int   size (); 
};

Notice that the new class does not define any new data fields. Instead,
the data fields defined in the List class will be used to maintain the set
elements, but they must still be initialized. This is performed by invocation
of the constructor for the parent class as part of the constructor for the new
class.

Click here to view code image
Set::Set() : List() 
{ 
   // no further initialization 
}

Similarly, functions defined in the parent class can be used without any
further effort, so we need not bother to define the includes method because
the inherited method from List uses the same name and shares the same
purpose. The addition of an element to a set, however, requires slightly
more work and is handled as follows.

Click here to view code image
void Set::add (int newValue) 
{ 
      // add only if not already in set 
   if (! includes(newValue)) 
      List::add (newValue); 
}

Compare this function with the earlier version. Both techniques are
powerful mechanisms for code reuse, but unlike composition, inheritance
carries an implicit assumption that subclasses are, in fact, subtypes. This

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch14_images.xhtml#f0281-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch14_images.xhtml#f0281-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch14_images.xhtml#f0281-03a


means that instances of the new abstraction should act in a similar fashion
to instances of the parent class.

14.2.3 Composition and inheritance contrasted
Having illustrated two mechanisms for software reuse, and having seen that
they are both applicable to the implementation of sets, we can comment on
some of the advantages and disadvantages of the two approaches.

Composition is the simpler of the two techniques. Its advantage is that
it more clearly indicates exactly what operations can be performed on
a particular data structure. Looking at the declaration for the Set data
abstraction, it is clear that the only operations provided for the data
type are addition, the inclusion test, and size. This is true regardless of
what operations are defined for lists.
In inheritance the operations of the new data abstraction are a superset
of the operations of the original data structure on which the new
object is built. Thus, to know exactly what operations are legal for the
new structure, the programmer must examine the declaration for the
original. An examination of the Set declaration, for example, does not
immediately indicate that the includes test can be legally applied to
sets. It is only by examination of the declaration for the earlier List
data abstraction that the entire set of legal operations can be
ascertained.

But there is a difficulty that can occur when a programmer must
try to understand a class constructed using inheritance. Often the
programmer must repeatedly flip back and forth between two (or
more) class declarations. This has been labeled the “yo-yo” problem,
due to the image of the programmer’s head bobbing up and down as
he (or she) moves between various class definitions.
The brevity of data abstractions constructed with inheritance is, in
another light, an advantage. Using inheritance it is not necessary to
write any code to access the functionality provided by the class on
which the new structure is built. For this reason, implementations
using inheritance are almost always, as in the present case,
considerably shorter in code than are implementations constructed



with composition, and they often provide greater functionality. For
example, the inheritance implementation makes available not only the
includes test for sets but also the function remove.
Inheritance does not prevent users from manipulating the new
structure using methods from the parent class, even if these are not
appropriate. For example, when we use inheritance to derive the class
Set from the class List, nothing prevents users from retrieving the
first element using the method firstElement.
In composition the fact that the class List is used as the storage
mechanism for our sets is merely an implementation detail. With this
technique it would be easy to reimplement the class to use a different
technique (such as a hash table) with minimal impact on the users of
the Set abstraction. If users counted on the fact that a Set is merely a
specialized form of List, such changes would be more difficult to
implement.
Inheritance may allow us to use the new abstraction as an argument in
an existing polymorphic function. We will investigate this possibility
in more detail in Chapter 17. Because composition does not imply
substitutability, it usually precludes polymorphism.
Understandability and maintainability are difficult to judge.
Inheritance has the advantage of brevity of code but not of protocol.
Composition code, although longer, is the only code that another
programmer must understand to use the abstraction. A programmer
faced with understanding the inheritance version needs to ask whether
any behavior inherited from the parent class was necessary for proper
utilization of the new class and would thus have to understand both
classes.
Data structures implemented through inheritance tend to have a very
small advantage in execution time over those constructed with
composition, since one additional function call is avoided (although
techniques such as in-line functions in C++ can be used to eliminate
much of this overhead).

Of the two possible implementation techniques, can we say which is
better in this case? One answer involves the substitution principle. Ask



yourself whether in an application that expected to use a List data
abstraction it is correct to substitute instead an instance of class Set. While
the technical answer might be yes (the Set abstraction does implement all
the List operations), the more commonsense answer is no. While the type
signature has been preserved, the meaning of the add operation has
changed. For this reason it appears that, in this case, composition is the
better approach.

The bottom line is that the two techniques are very useful, and an
object-oriented programmer should be familiar with both of them.

14.3 ⊡ Efficiency and Polymorphism
Almost all the programming techniques we will discuss in the next four
chapters extract some cost in run-time efficiency. That being the case, a few
words on the relative importance of efficiency in relation to other concerns
is in order.

The fundamental truth is that programming always involves
compromises. In particular, programming with polymorphism involves
compromises between ease of development and use, readability, and
efficiency. In large part, efficiency has been already considered and
dismissed; however, it would be remiss not to admit that it is an issue,
however slight.

A polymorphic function that does not know the type of its arguments
can seldom be as efficient as a function that has more complete
information. A relational test may correspond to only a few assembly
language instructions if the arguments are integer, whereas much more
extensive operations are necessary if the arguments are strings or dates and
considerably more work if the determination of types is postponed until run
time. Nevertheless, the advantages of rapid development and consistent
application behavior and the possibilities of code reuse usually (but not
always!) more than make up for any small losses in efficiency.

14.4 ⊡ Will Widespread Software Reuse
Become Reality?



In the early days of object-oriented programming, it was said that computer
science had finally found a way to create software from general-purpose
interchangeable parts and that programming would henceforth be more like
electrical or civil engineering, where new ideas were created using a
collection of standard components. Polymorphism in its various guises was
the tool that would make this transformation possible.

However, while certain progress has been made (there are now a large
number of commercial vendors who market general-purpose object-
oriented software libraries for various applications, such as user interfaces
and container classes), the overall process has not yet lived up to the early
expectations. There are a variety of reasons for this.

Inheritance and composition provide the means for producing
reusable components, but they do not by themselves provide
guidelines for how such a task should be performed. It turns out that
producing good and useful software components is, if anything,
almost always more difficult than developing special-purpose
software to solve the task at hand.
Because producing reusable components is difficult, the benefits
cannot usually be realized within a single project. Indeed, they may
slow down project development. Rather than creating immediate
benefits, the cost of such development must be amortized over many
programming projects. But as each project usually has its own budget
and schedule, there is often no management mechanism to support
such amortization.
Because the benefits of developing reusable components do not
immediately improve a project, there is usually little incentive for
programmers to strive toward reusability.
Because each new problem typically requires a slightly different set
of behaviors, it is often difficult to design a truly useful and general-
purpose software component the first time. Rather, useful reusable
software components evolve slowly over many projects until they
finally reach a stable state.
Many programmers and managers are leery of software that has not
been developed “in-house.” This wariness is called the “not-invented-
here” syndrome. Because managers pride themselves on the quality of



their programmer teams, they naturally believe they can do better than
whatever team developed the reusable software.
Because many programmers have little formal training or have not
kept pace with recent programming innovations (such as object-
oriented techniques), they may not be aware of the mechanisms
available for the development of reusable software components.

In short, development of software mechanisms for reuse does not by
itself guarantee the development of a technological and management
culture that will support and encourage reuse. Human organizations tend to
move much more slowly than does technological change, so it may be
many years before we see the true benefits promised by the object-oriented
approach. Nevertheless, even though object reuse is probably not anywhere
as frequent as claimed, it does occur and has been proven many times to be
useful and cost-saving when applied correctly. For this reason it is
inevitable that reuse will eventually become the norm for software
development.

Summary ⊡
In this chapter we have begun our in-depth investigation of polymorphism.
As is perhaps appropriate (since polymorphism means roughly “many
forms”) there are a variety of mechanisms that are known by this term.

Overloading
Overriding
The polymorphic variable
Generics

All the various mechanisms are united by the goal of easing software
reuse and thereby promoting reliability, rapid development, and ease of use.

Further Information ⊡



Brad Cox’s very readable manifesto on the software industrial revolution is
[Cox 1986].

The yo-yo problem was first described in [Taenzer 1989].
Several recent books provide guidelines for developing reusable

components include [Carroll 1995, McGregor 1992, Meyer 1994, Goldberg
1995].

Self-Study Questions ⊡

1. What do the Greek roots of the term polymorphic mean?

2. What is ad hoc polymorphism?

3. In what ways is overriding similar to overloading? In what ways are
they different?

4. What distinguishes a polymorphic variable from an ordinary variable?

5. How is a generic function in C++ different from an ordinary function?

6. How does composition simplify the creation of new data abstractions
from existing abstractions?

7. How does inheritance simplify the creation of new data abstractions
from existing abstractions?

8. In what ways does composition produce classes that are easier to
understand? In what ways does inheritance achieve the same goal?

9. Why, in most cases, is efficiency not the primary concern for a
programmer?

10. What are some factors that have slowed the development of large
libraries of general-purpose reusable software components?

Exercises ⊡



1. Do you think that the value nil in Pascal or the value NULL in C should
be considered a polymorphic object? Explain your answer.

2. Other than the arithmetic operations, what operations are typically
overloaded in conventional languages such as Pascal and C?

3. Chapter 10 presents another example of inheritance, the creation of a
dictionary data structure using a list. Rewrite that example using
composition rather than inheritance.

4. Exercise 4 in Chapter 8 criticized the suggestion that a class Complex
representing complex numbers could be constructed using inheritance
from a class Real. Show how Complex could be constructed using
composition rather than inheritance. You can assume whatever
interface you wish for the class Real.



Chapter 15

Overloading

We say a term is overloaded if it has many different meanings.1 A glance in
any dictionary will show that many words in the English language are
overloaded, and the meaning of a word in a particular situation is
determined by context. In programming languages it is usually function or
method names that are overloaded. As with words in English, a compiler
will use contextual information to determine the exact meaning.

1. The term polymorphism is, for example, overloaded.

Overloading and overriding are both techniques that take a function or
method named in a specific invocation and select for execution one out of
potentially many different function bodies. But the two mechanisms differ
in several regards. Most importantly, overloading is performed at compile
time (early binding), whereas overriding uses a run-time selection (late
binding). The compiler examines the context in which an overloaded name
is being used and determines the most appropriate function body. Normally
the most critical feature is the type signature of the arguments being used
by the call. Because the function selection is being made at compile time, it
is the static (or declared) types of the arguments that are used and not their
dynamic (or run-time) values.

In one sense, overloading (also called ad hoc polymorphism) may seem
to have little to do with object-orientation, since the ability to overload
function names can be found in a number of non-object-oriented languages
—for example, C and Ada. But overloading is a powerful form of
polymorphism, and furthermore, the interaction between overloading and



other more object-oriented forms of polymorphism, such as overriding, can
be both powerful and unintuitive. In this chapter we explore some of the
aspects of this idea.

15.1 ⊡ Type Signatures and Scopes
A key idea necessary to understand overloading is the concept of a function
(or method) type signature. A function type signature, you will recall, is a
description of the argument types associated with a function, the order of
arguments, and the return type. For methods defined within a class, it is
normal to omit the type of the receiver from the type signature. This permits
us to say that the type signature of a method in the parent class can be the
same as the signature of a method in a child class. The following function,
for example, has type signature double × int → double.

Click here to view code image
double power (double base, int exponent) { 
   // raise base to exponent power 
   double result = 1.0; 
   for (int i = 0; i < exponent; i++) 
      result = result * base; 
   return result; 
}

The second key idea needed in order to understand function overloading
is the notion of a name scope. A scope defines the portion of a program in
which a name can be used or the way in which the name can be used. Local
variables, such as the identifiers result and i in the previous procedure,
can only be used inside the function in which they are declared. After the
final closing brace for the function, the name no longer has any meaning.
Outside of a class definition, a data member name only has meaning if the
name was declared as public inside the class and it is qualified by an
instance of a class (or, for static features, qualified by the class name). For
example, if a class defines a public data field named buffer, then outside
the class definition an expression such as
anInstance.buffer

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0288-01a


would be acceptable, but the simple name buffer would not. A class that is
formed using inheritance creates a new name scope that extends the name
scope of the parent. Thus, name scopes are formed in a variety of different
ways in different programming languages.

At any point in the textual representation of a program there can be
multiple active scopes. A method declared inside a class will have both the
class scope (all the class data fields) and a local scope (local variables
declared inside the method). Inheritance, nested functions, and/or nested
classes introduce further layers of scope.

We can use these two concepts—type signatures and scope—to
characterize two broad categories of overloading. Overloading can be based
on methods having different scopes, regardless of their type signatures. For
example, the same name might be used in two or more unrelated classes.
Alternatively, overloading can be based on methods having different
signatures, regardless of their scopes. For example, two or more functions
defined in one class might have the same name but different arguments.
The first form is examined in Section 15.2, and the second is described in
Section 15.3.

Associated with the latter are a number of different mechanisms, each of
which will be explored in a separate section. The process of coercion or
conversion (Section 15.3.1) is used when the actual arguments of a method
do not exactly match the formal parameter specifications, but can be
converted into a form that will match. Redefinition (Section 15.4) occurs
when a child class defines a method with the same name as a method in the
parent class but with a different type signature. Polyadic functions (Section
15.5) are functions that can be invoked with varying number of parameters.
Finally, in Section 15.6 we examine multimethods, which combine features
of both overloading and overriding.

15.2 ⊡ Overloading Based on Scopes
A useful consequence of the division of a program into independent name
scopes is that the same name can appear in different scopes with no
ambiguity or loss of precision. Two different functions can have local
variables of the same name, and no confusion will arise because their
scopes cannot overlap. Methods can also have the same name, without



introducing confusion or ambiguity. We encountered an example of this in
the flower story in Chapter 1. There were two possible ways for Chris to
send flowers to Robin. One solution was for Chris to give the message
sendFlowersTo to the local florist; another was for Chris to give the same
message to his friend Elizabeth. Both Chris’s florist and his friend (an
instance of class Friend) would have understood the message, and both
would have acted on it to produce a similar result.

Note carefully that there is no inheritance involved in this example. The
first common ancestor superclass for Friend and Florist is the category
Human. But certainly the behavior sendFlowersTo is not something that is
associated with all humans.

There is nothing intrinsic to overloading that requires the functions
associated with an overloaded name to have any semantic similarity.
Consider a program that plays a card game, such as the solitaire game we
examined in Chapter 9. The method draw was used to draw the image of a
card on the screen. In another application we might also have included a
draw method for the pack of cards— that is, to draw a single card from the
top of the deck. This draw method is not even remotely similar in semantics
to the draw method for the single card, and yet they share the same name.
Nor is it required that they have the same type signature. In fact, the only
similarity between the two methods is their name.



Overloading of a single name with independent and unrelated meanings
should not necessarily be considered bad style, and generally it will not
contribute to confusion. In fact, the selection of short, clear, and meaningful
names such as add, draw, and so on, contributes to ease of understanding
and correct use of object-oriented components. It is far simpler to
remember that you can add an element to a set than to recall that to do so
requires invoking the addNewElement method or, worse, that it requires
calling the routine Set_Module_Addition_Method.

All the object-oriented languages we are considering permit the
occurrence of methods with similar names in unrelated classes. In this case
the resolution of overloaded names is determined by the class of the
receiver for the message. Nevertheless, this does not mean that functions or
methods can be written that take arbitrary arguments. The statically typed
nature of C++ and Object Pascal still requires specific declarations of all
variables.

15.3 ⊡ Overloading Based on Type
Signatures
Another style of overloading occurs when procedures (or functions or
methods) are allowed to share a name and are disambiguated by the
number, order, and, in statically typed languages, the type of arguments they
require. This is allowed even if the functions share the same context. This
style of overloading occurs in C++, C#, Java, Delphi Pascal, and CLOS, as
well as in some imperative languages (such as Ada) and many functional
languages. We have already seen examples of this style in the overloading
of the constructor function. C++ permits any method, function, procedure,
or operator to be overloaded parametrically. The only requirement is that
every implementation must have a distinctive signature. This means that the
arguments must be such that the selection of the routine intended by the
user can be unambiguously determined at compile time.

Click here to view code image
class Example { 
      // same name, three different methods 
   int sum (int a) { return a; } 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0291-01a


   int sum (int a, int b) { return a + b; } 
   int sum (int a, int b, int c) { return a + b + c; } 
}

Because a single method body must be selected based only on a specific
function invocation, methods are not permitted to differ only in their return
types nor in other features that are not observable by examining the
invocation. (An example of a feature that cannot be determined from the
invocation is the type of exceptions that might be thrown.)

In Delphi Pascal two methods in the same scope can overload a
common name, but the programmer must explicitly declare the fact using
the overload directive.

Click here to view code image
type 
   Example = class 
   public 
      function sum (a : Integer) : Integer; overload; 
      function sum (a, b : Integer) : Integer; overload; 
   end;

It is important to note that the resolution of overloading—that is, the
selection of a method body to match to a particular invocation—is
performed at compile time, based on the static types of the argument
values. Unlike overriding, no run-time mechanism is involved. Imagine, for
example, there are two methods named Test, each taking a single argument.
The first requires an instance of a parent class, and the second an instance
of a child class that inherits from the parent.

Click here to view code image
class Parent {...}; 
 
class Child : public Parent { ... }; 
 
void Test(Parent * p) { cout « "in parent" « endl; } 
void Test(Child * c) { cout « "in child" « endl }

The following would, perhaps surprisingly, execute the first method and
not the second.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0291-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0291-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0291-04a


Parent * value = new Child(); 
   // resolution based on static type, 
   // not dynamic value in parent 
Test(value);

Stream output in C++. The stream output facility in C++ is an excellent
case study that illustrates how overloading can be used to solve the problem
of extending a library to new user-defined data types. A problem with
traditional output libraries is that they are designed to work only with the
built-in types. Consider the printf facility in C. A printf statement is easy
to write if the output consists of the basic data types provided as part of the
language.

Click here to view code image
printf ("average of %d and %d is %g", 3, 5, (3+5)/2.0);

But what happens when a programmer creates a new data type?
Imagine, for example, that a programmer has defined a Fraction data
abstraction, where fractions are represented by two integer data fields.

Click here to view code image
class Fraction { 
public: 
   Fraction (int top, int bottom) { t = top; b = bottom; } 
 
   int numerator () { return t; } 
   int denominator() { return b; } 
 
private: 
   int t, b; 
};

The only way to print a fractional value is to break it into the two parts
and print them each independently.

Click here to view code image
Fraction f(3,4); 
printf ("The value of f is %d/%d", f.numerator (), f.denominator 
()) ;

The designers of C++ realized that an alternative could be found by
using the ability to overload operators with several different meanings.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0292-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0292-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0292-03a


They selected the left shift operator, «, as the output operator. An
abstraction termed an output stream (or ostream) represents an entity that
will accept a sequence of characters. Writing to a stream thus generalizes
such activities as writing to a file, a window, or a network. The stream
output library provides a collection of overloaded definitions for the left
shift operator.

Click here to view code image
ostream & operator « (ostream & destination, int source); 
ostream & operator « (ostream & destination, short source); 
ostream & operator « (ostream & destination, long source); 
ostream & operator « (ostream & destination, char source); 
ostream & operator « (ostream & destination, char * source); 
// ⋮ and so on

Each operator takes a stream as the left argument and another value as
the right argument. When executed, each operator will, as a side effect,
write the right argument to the stream, then return the stream value as the
result. The latter action allows a complex stream expression to be built out
of parts. For example, consider the evaluation of the statement.

Click here to view code image
double d = 3.14; 
cout « "The answer is " « d « '\n';

The output statement would be evaluated in stages, as follows.

First, the operator overloaded to work with a stream and a character array
would be executed. After printing the string, this operator returns the
stream. Next, the operator overloaded to work with a stream and a double
precision value would be executed. Once more, after printing the number,
the stream is returned. Finally, the operator overloaded to work with a
stream and a single character would be executed. The character would be

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0292-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0293-01a


printed, and the stream value returned. The final value is then discarded,
since the purpose of printing has been achieved as a side effect.

Using overloaded operators makes it simple to extend the output library
to new user-defined data types. All that is needed to add the ability to
output fractional values, for example, is to define yet another overloaded
meaning for the output stream operator.

Click here to view code image
ostream & operator « (ostream & destination, Fraction & source) 
{ 
   destination « source.numerator() « "/" « source.denominator (); 
   return destination; 
}

With this new ability the output of fractions can be intermixed with the
output of other data types.

Click here to view code image
Fraction f(3, 4); 
cout « "The value of f is " « f « '\n';

15.3.1 Coercion and conversion
Overloading based on type signatures occurs frequently in all programming
languages, not simply object-oriented languages. Perhaps the most common
example is the overloading of the addition operator, +. The code generated
by a compiler for an integer addition is often radically different from the
code generated for a floating-point addition; yet programmers tend to think
of the operations as a single entity, the “addition” function.

Coercion, conversion, and casts

The meanings of the terms coercion and conversion are easily confused,
since both represent a change in type. A coercion is an implicit change
in type, one that occurs without overt reference in the program. The
canonical example of this is the addition of two variables, one declared

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0293-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0293-04a


as real and one declared as integer. The value of the integer variable
will be converted to real before the addition.

Click here to view code image
double x = 2.8; 
int i = 3; 
x = i + x; // integer i will be converted to real

In contrast, the term conversion usually represents a change in type
that is explicitly requested by the programmer. In many languages the
operator used to perform this change is termed a cast. A cast in C++ or
Java would be written as follows.
x = ( (double) i ) + x;

Parentheses surround the expected type following the conversion, in
this case double.

Casts, and conversions in general, can either change the underlying
representation (such as when an integer is converted into a real) or
simply change the type without changing the representation (such as
when a pointer to a child class is changed into a pointer to the parent
class).

In this example it is important to point out that overloading may not be
the only activity taking place. A semantically separate operation, coercion,
is also usually associated with arithmetic operations. It occurs when a value
of one type is converted into one of a different type. If mixed-type
arithmetic is permitted, the addition of two values may be interpreted in at
least three different ways.

There may be four different functions, corresponding to integer +
integer, integer + real, real + integer, and real + real. In this case, there
is overloading but no coercion.
There may be two different functions for integer + integer and real +
real. In integer + real and real + integer, the integer value is coerced
by being changed into a real value. In this situation there is a
combination of overloading and coercion.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0294-01a


There may be only one function for real + real addition. All
arguments are coerced into being real. In this case there is coercion
only, with no overloading.

Substitution as conversion. If we interpret the word coercion broadly as “a
change in type,” then the principle of substitution introduces a form of
coercion not found in conventional languages. This occurs when a value
from a child class is used as an actual parameter in a method that is defining
the corresponding formal parameter with the parent class type. A similar
change in type can occur with an interface and an instance of a class that
implements the interface.

The following example from Java illustrates some of the subtle
interactions between overloading and inheritance. In Java, if two or more
methods have the same name and the same number of parameters, the
compiler uses the following algorithm to determine the match.

1. Find all the methods that could possibly apply to the invocation—that
is, all methods for which the arguments could legally be assigned to
the parameter types. If one method exactly matches the argument
types used in the invocation, then execute that method.

2. If any method in the set identified in Step 1 has parameter types that
are all assignments to any other method in the set, then remove the
second method from the set. Repeat until no further eliminations can
be performed.

3. If exactly one method remains, that method is the most specific and
will be invoked. If more than one method remains, the invocation is
ambiguous, and a compiler error will be reported.

To illustrate this process, imagine we have five classes structured in the
following inheritance hierarchy.



Now suppose some scope includes the following three overloaded
methods, each taking a pair of Dessert parameters.

Click here to view code image
void order (Dessert d, Cake c); 
void order (Pie p, Dessert d); 
void order (ApplePie a, Cake c);

Imagine that we have a set of variables, each representative of a
different class. Variable aCake holds a value of type Cake, anApplePie a
value of type ApplePie, and so on. Finally, consider a series of invocations,
both legal and illegal.

Click here to view code image
order (aDessert, aCake); // example 1, legal 
order (anApplePie, aDessert); // example 2, legal 
order (aDessert, aDessert); // example 3, illegal 
order (anApplePie, aChocolateCake); // example 4, legal 
order (aPie, aCake); // example 5, illegal

The first invocation is legal because Dessert and Cake match the type
signature of the first method directly. The second invocation similarly
matches the second overloaded method, since it is the only method for
which the arguments could legally be assigned to the parameters.
(Assigning the Dessert argument to the Cake parameter is illegal in both the
first and third methods.)

The third example is illegal. After Step 1 the set of possible candidate
methods is empty, since a Dessert value cannot be arbitrarily downcast to a
more specific type. Therefore, a compiler error will be reported.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0295-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0296-01a


The forth invocation is more subtle. Initially all three methods are
candidates for execution. So the method selection algorithm moves to Step
2. In this step the first overloaded method would be eliminated, since
ApplePie is a more specific class than Dessert (an ApplePie can be assigned
to a Dessert, but not vice-versa), and the second argument is the same. The
second method would be removed for the same reason (both arguments are
less specific; Pie is less specific than ApplePie and Dessert less specific
than Cake). This leaves one candidate, and the fourth example will execute
the third method.

Like the third example, the final invocation is also invalid. After Step 1
only the last method has been eliminated, leaving two elements in the set of
possible candidates. But the first method cannot be subsumed by the
second, since a Dessert cannot be assigned to a Pie. But neither can the
second method be subsumed by the first, since a Dessert cannot be
converted into a Cake. Thus, two methods remain after Step 2, and with the
compiler unable to decide between them, an error will be reported.

Conversion operators in C++. The language C++ gives the programmer a
great deal of control over how an instance of a class can be implicitly
converted from or to another type. We consider first the conversion to an
object type. A constructor that takes a single argument will be interpreted
by the compiler as a rule for converting from the argument type to the class
type. We could incoporate this into the Fraction data type discussed earlier
by, for example, defining a constructor that takes a single integer argument.

Click here to view code image
class Fraction { 
public: 
   Fraction (int top, int bottom) { t = top; b = bottom; } 
   Fraction (int top) { t = top; b = 1; } 
 
   int numerator() { return t; } 
   int denominator() { return b; } 
 
   Fraction operator * (Fraction & right) 
   { 
      Fraction result (numerator() * right.numerator(), 
         denominator() * right .denominator()); 
      return result; 
   } 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0296-02a


 
private: 
   int t, b; 
};

We have also given the implementation of the operator that will handle
the multiplication of two fractional values. In an expression that involves
the multiplication of a fraction and an integer, a temporary value will be
formed that represents the conversion of the integer into a fraction. The
constructor will be used to initialize this temporary object.

Click here to view code image
Fraction a(2, 3); 
 
a = a * 3; // right argument will become 3/1

In the other direction is the conversion of an object value into a different
type. Here C++ has an interesting feature that gives the programmer the
ability to explicitly state how the conversion should be performed. A type
name can be used as an operator. As with all operators in C++, the
programmer can provide a new meaning by defining the operator as a
method. For instance, suppose the programmer is continuing to develop the
Fraction data type. The following class definition shows a new operator
being defined. The “operator” double is invoked when a Fraction must be
converted into a double precision value.

Click here to view code image
class Fraction { 
public: 
   Fraction (int top, int bottom) { t = top; b = bottom; } 
 
   Fraction (int top) { t = top; b = 1; } 
 
   int numerator() { return t; } 
   int denominator() { return b; } 
 
   Fraction operator * (Fraction & right) 
   { 
      Fraction result (numerator() * right.numerator(), 
         denominator() * right.denominator()); 
      return result; 
   } 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0297-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0297-03a


 
   operator double () 
   { 
      //cast is necessary to make double precision division 
      return numerator () / (double) denominator() ; 
   } 
 
private: 
   int t, b; 
};

The following example illustrates the use of the conversion operator.
Two declaration statements are used to construct two fractional values. In
the third statement a fraction is formed using the multiplication operator
defined in the class. In the fourth and final statement a multiplication is
performed using a fraction and a double precision number. Since the
fraction does not define a method for this situation, the fraction is converted
into a double, using the conversion method supplied by the class, and the
normal double precision multiplication is performed.

Click here to view code image
Fraction one(2,3); 
Fraction two(3,4); 
Fraction three = one * two; // multiply two fractions 
double four = one * 3.14159; // multiply fraction and double

Needless to say, when implicit conversion, explicit conversion, and the
substitution of object-oriented values are all combined in one statement, the
algorithm used to resolve an overloaded function name can become quite
complex. Typically it must include at least the following steps.

1. If there is a method with an exact match for the actual arguments, then
call that version.

2. Otherwise, see if there is a match that uses standard type promotions
(such as converting a short integer to a standard integer).

3. Otherwise, see if there is a match that uses standard conversions (such
as interpreting a child type as an instance of the parent type).

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0298-02a


4. Otherwise, see if a match can be found using user-supplied
conversions.

5. Otherwise, if no match can be found or if more than one method
seems to match, then issue a compile time error.

15.4 ⊡ Redefinition
A redefinition occurs when a child class defines a method using the same
name as a method in the parent class but with a different type signature. The
change in type signature is what differentiates redefinition from simple
overriding. Redefinition would not be notable, except that languages use
two different techniques to resolve a redefined name, and thus the unwary
programmer can easily be surprised if they are not cognizant of the
differences. These two models might be termed the merge model of
redefinition and the hierarchical model.

The programming language Java uses the merge model. Here the
various different meanings found in all currently active scopes are merged
together to form a single collection. To match an invocation that uses an
overloaded method name to a specific method body, all the possible
alternatives are examined, and the closest match is the one selected.

The programming language C++ uses a different approach. In this
language each surrounding scope is maintained on its own separate list. To
match a name to a method, each scope will be examined in turn—hence the
designation hierarchical. However, when a scope is found in which the
name is defined, the closest match in that scope will be the one selected.

An example will help illustrate this distinction. Suppose a parent class
defines a method with one integer argument, and the child class redefines
the method using the same name but this time with two integer arguments.

Click here to view code image
class Parent { 
   public void example (int a) 
      { System.out.println("in parent method"); } 
} 
 
class Child extends Parent { 
   public void example (int a, int b) 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0299-01a


      { System.out.println("in child method"); } 
}

Now imagine we create an instance of the child and try to execute the
method using only one argument.

Click here to view code image
Child aChild = new Child(); 
aChild.example(3);

In the programming language Java, the method from the parent class
will be selected as the best fit. The same is true in C#. The equivalent
program in C++, on the other hand, will produce a compilation error. This
is because the scope corresponding to the child class is examined first,
before the scope for the parent class. A method with the given name is
found in the child scope, but upon examination the arguments for this
method do not match those of the invocation. The C++ programmer can
achieve the same effect as the Java model but only by redefining both
methods in the child class.

Click here to view code image
class Child : public Parent { 
   public void example (int a) { Parent::example(a); } 
   public void example (int a, int b) 
      { cout « "in child method"; } 
};

The Delphi Pascal language offers the programmer control over which
model to use. If a child class declares a method and uses the overload
modifier, then the definitions in the child class will be merged with those
inherited from the parent class. If the modifier is omitted, then the child
class definition replaces that of the parent class. The following example
illustrates this behavior. One child class redefines the method as an
overloading, and the second does not. When an attempt is made to invoke
the method from the parent, one class will produce a compile time error, but
the second will not.

Click here to view code image
type 
   Parent = class 
   public 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0299-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0300-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0300-02a


         procedure Example(A: Integer); 
   end; 
 
   ChildWithOneMethod = class (Parent) 
   public 
      procedure Example(A, B: Integer); 
   end; 
 
   ChildWithTwoMethods = class (Parent) 
   public 
      procedure Example(A, B: Integer); overload; 
   end; 
 
var 
   C1: ChildWithOneMethod; 
   C2: ChildWithTwoMethods; 
begin 
   C1:= ChildWithOneMethod.Create; 
   C2 := ChildWithTwoMethods.Create; 
   C1. Example (42); // error: not enough parameters 
   C2. Example (42); // okay 
end

* 15.5 ⊡ Polyadicity
A polyadic function is one that can take a variable number of arguments. In
CLOS, for example, the addition operator is polyadic, so each of the
following will evaluate to an integer value.
(+ 2 3) 
(+ 2 3 4 5 6 7) 
(+ 2)

Polyadic functions are found in a large number of different languages.
The built-in function writeln in Pascal or the library function printf in C
and C++ are examples.

Click here to view code image
printf("2 + 5 is %d", (2+5)); 
printf ("the average of %d and %d is %g", 3, 7, (3+7)/2.0);

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0301-02a


While it is easy to write an invocation of a polyadic function, it is much
more difficult to write the body of the function itself. For example, how do
you name an indefinite number of arguments? The language C++ uses a
somewhat ad hoc device consisting of an ellipsis, a data type named
va_list (for variable argument list), and a trio of methods va_start,
va_arg, and va_end. The following example illustrates their use, defining a
function that will return the sum of a list of integer values, where the first
argument must represent the number of integers in the list.

Click here to view code image
# include <stdarg.h> 
int sum (int argcnt, ...) 
{ 
   va_list ap; 
   int answer =0; 
   va_start(ap, argcnt); 
   while (argcnt > 0) { 
      answer += va_arg(ap, int); 
      argcnt--; 
} 
   va_end(ap); 
   return answer; 
}

The language C# provides a more elegant solution to this problem. The
keyword params can be used in conjunction with an array argument. If no
other matching method can be found, as a final alternative the compiler will
check to see if all remaining values can be assigned as array elements. If so,
then a temporary internal array is created and passed as parameter to the
method.

Click here to view code image
class ParamsExample { 
   public void Write (int x) { 
      // use this with one argument 
      WriteString("Example one "); 
      WriteString(x.ToString()); 
   } 
 
   public void Write (double x, int y) { 
      // use this with two arguments 
      WriteString("Example two "); 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0301-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0302-01a


      WriteString(x.ToString()) ; 
      WriteString(y.ToString()) ; 
   } 
 
   public void Write (params object [ ] args) { 
      // use this with any other combination of arguments * 
      WriteString("Example three "); 
      for (int i = 0; i < args.GetLength(0); i++) 
         WriteString(args[i] .ToString()) ; 
   } 
}

Here are some example invocations and their associated results:
Click here to view code image
   ParamsExample p; 
   p.Write(42); 
Example one 42 
   p.Write(3.14,159); 
Example two 3.14159 
   p.Write(1,2,3,4); 
Example three 1234 
   p.Write(3.14); 
Example three 3.14 
   p.Write(3,"abc"); 
Example three 3abc

15.5.1 Optional parameters
A slightly easier to understand technique for writing polyadic functions is
found in C++ and also in Delphi Pascal. This is the concept of an optional
or default parameter. The basic idea is to provide an implicit value for one
or more parameters. If the invoking expression explicitly provides a value
for these parameters, then the default values are ignored; otherwise, if the
invoking expression omits them, the default values will be used. Optional
parameters must appear at the end of the argument list.

The following simple program illustrates this technique being used in a
Delphi Pascal procedure.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0302-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0303-01a


function Count (A, B : Integer; C : Integer = 0; D : Integer = 0); 
begin 
      (* Result is a pseudo-variable used *) 
      (*to represent result of  any function *) 
   Result := A + B + C + D; 
end 
 
begin 
   Writeln (Count(2, 3, 4, 5)); // can use four arguments 
   Writeln (Count(2, 3, 4)); // or three 
   Writeln (Count(2, 3)); // or two 
end

C++ and Ada have similar facilities. Judicious use of optional
parameters can often eliminate the need to write multiple overloaded
methods. This is particularly useful with constructors. When optional
parameters are used with a function that is itself overloaded, the type
signatures of all functions must be such that a unique function body can be
determined once the argument values used by a call are known. (Note that a
function that uses optional parameters will have several different type
signatures.)

* 15.6 ⊡ Multi-Methods
Both overloading and overriding match an invocation by selecting one

method out of many. But as we noted at the beginning of the chapter,
overloading is performed at compile time, whereas overriding is performed
at run time. Overriding, you will recall, uses the dynamic (or run-time) type
of the receiver to determine which method should be executed. The types of
any other arguments passed along with a message generally play no part in
the overriding selection mechanism.

Many people have wondered whether it would be possible to combine
these two techniques, allowing an overloaded function to be selected based
on the types of all arguments and not just the receiver. The situations where
this would be useful are common. Unfortunately, the problems that such a
mechanism would introduce, particularly for statically typed languages, are
difficult to solve. In this section we will illustrate these problems by means
of a simple example.



Imagine that we have a statically typed object-oriented language in
which Integers and Real numbers are both child classes of a more general
class Number.

To implement addition as a function it is necessary to overload the add
function with four different definitions.

Click here to view code image
function add (Integer a, Integer b) : Integer { ... } 
function add (Integer a, Real b) : Real { ...   } 
function add (Real a, Integer b) : Real {...} 
function add (Real a, Real b) : Real { ... }

Notice that the return type for the first definition is different from the return
type for the remaining three.

The basic idea of a multi-method is that any argument, and not just the
receiver, should be allowed to be polymorphic. Furthermore, it should be
the run-time value and not the static compile-time value of this variable that
determines which function to execute. For example, consider the following
execution sequence.

Click here to view code image
Number x = ...; // variable x and y are given 
Number y = ...; // some unknown values 
Real r = 2.134; 
 
Real r2 = add(r, x); // which method to execute? 
Real r3 = add(x, y); // is the assignment type-safe?

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0304-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0304-03a


Variables x and y are numbers. By the principle of substitution, they
could be assigned values that are either Integer or Real. Variable r, on the
other hand, is known to be an instance of class Real. Now consider the first
execution of the method add. We know the type of the first argument, but
that still leaves two potential candidates for execution, depending on
whether the variable x is integer or real. Which one should be selected? A
run-time test must be performed to determine the most appropriate
function.

Now consider the second invocation. This one is much more difficult to
handle. Here, any of the four candidate function bodies can be selected,
based on the run-time types of the variables x and y. But only three of these
return a value that can be assigned to a variable of type Real. If x and y are
both integer, then the assignment is not type-correct, and an error should be
reported. So it is necessary to perform a run-time test on both the arguments
(in order to select the correct function to execute) and the result (in order to
ensure type safety in the assignment).

So arguments against multi-methods are based on two complaints. The
first is that the execution time cost of the function selection algorithm is too
high, and second, in a statically typed language the typing issues introduce
too many complications. It should be noted that the only widely used
language to incorporate multi-methods is CLOS, a dynamically typed
language in which the second issue is not important.

Double dispatch. One common solution to the problem just described is a
technique termed double-dispatch. The key insight behind the double-
dispatch approach is that a message can be used to determine the type of the
receiver, since each object knows its own type. Determining the type of two
independent values can therefore be accomplished by using each value as
receiver in turn.

Imagine, for example, that the classes Integer and Real are written in
Smalltalk, and each implements three methods. In Integer we have the
following:

Click here to view code image
" class Integer " 
{add:} arg 
      ↑ arg addToInteger: self 
{addToInteger:} anInteger 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0305-01a


   ... " whatever is necessary to add two integers " 
 
{addToReal:} aReal 
   ..." whatever is necessary to add an integer and a real "

In class Real the methods are similar, except that the add: method turns
around and passes the message addToReal: to its argument. Now imagine
we are adding two variables, anInteger and aReal, with the types indicated
by their name. The message add: given to anInteger will take its argument
(which at this point is of indeterminent type) and pass it the message
addToInteger. The class Real, receiving this message, knows that it is
holding a real value and that the argument is integer, and it can act
accordingly.

15.6.1 Overloading Based on Values
There is another curious language feature that, like multi-methods, appears
to be found only in Lisp-based languages (such as CLOS or Dylan). This is
the ability to overload a function based on argument values and not just
types. A parameter specifies that its argument must be exactly the value
specified in the function definition. For example, we could see the
following two function definitions.

Click here to view code image
function sum (a : integer, b : integer) { return a + b; } 
 
function sum (a : integer = 0, b : integer) { return a; }

The second function will only be invoked if the first argument is the
constant value zero; otherwise, the more general function will be executed.
Value constraints on parameters can be a very useful programming
language feature. However, like multi-methods, they increase significantly
the run-time execution overhead involved in method selection.

Summary ⊡

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0306-01a


Overloading is the compile time matching of a function invocation to one of
many similarly named methods. There are two major categories of
overloading. Overloading can be based on different scopes, where the class
of the receiver determines the function to execute. Alternatively,
overloading can be based on type signatures, where the type associated with
the parameters that accompany the invocation is used to determine the
correct method. Overloading should not be confused with the similar
concepts of conversion or redefinition. An alternative to overloading is the
creation of polyadic functions, functions that can take a variable number of
arguments.

Further Information ⊡
More detailed information regarding the conversion rules used by C++ can
be found in [Ellis 1990] and [Stroustrup 1986].

Craig [Craig 2000] provides an analysis of polyadicity in various
languages.

The designer of C++ has discussed his reasons for rejecting multi-
methods in [Stroustrup 1994]. Castagna [Castagna 1997] describes an
algorithm that could be used in the implementation of multi-methods for a
dynamically typed language.

Double dispatching was first described in Ingalls [Ingalls 1986], who
called the technique multiple polymorphism. Later authors have preferred
the term double dispatching, both because it is more accurate and because it
avoids confusion with multiple inheritance.

Self-Study Questions ⊡

1. What does it mean to say that a word is overloaded?

2. What is a type signature?

3. What is a scope?

4. What are the two major types of overloading?



5. Why is overloading of simple names not necessarily a bad idea?

6. When overloading is based on type signatures, how is the meaning of
a function invocation resolved?

7. When a C++ programmer creates a new data type, what do they need
to do in order to allow instances of the data type to be printed on
streams?

8. What is the difference between overloading and coercion?

9. What is a method redefinition? How is it different from an overriding?

10. What is a polyadic function?

11. How do optional parameters reduce the need for overloading?

12. What do multi-methods differ from overloaded functions?

Exercises ⊡

1. Suppose a programmer wanted to take a data type such as the Set
abstraction defined in the previous chapter and allow the stream
output operator to be used with this data type. Explain the steps
required to accomplish this.

2. Some languages, such as Java, allow the + operator to be used with
strings. Two strings combined using this operator are catenated to
form a new string. Is this an example of overloading or coercion?

3. Which of the following are legal invocations of the Java functions
described in Section 15.3.1?

Click here to view code image
order (aChocolateCake, anApplePie); 
order (aChocolateCake, aChocolateCake); 
order (aPie, aChocolateCake);

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch15_images.xhtml#f0307-01a


4. Suppose a strongly typed language has two classes: the class
Rectangle that represents rectangular objects with horizontal and
vertical sides, and triangle that represents a three-sided figure.
Imagine that a programmer wished to create overloaded copies of a
procedure named intersection, which determines the intersection of
two such objects. For which combinations can the resulting type be
determined?

5. Show that double dispatching described in Section 15.6 correctly
handles the four possible types of addition (that is, integer + integer,
integer + real, real + integer, and real + real).

6. Explain why the double dispatching technique described in Section
15.6 would not solve the problem of addition in a strongly typed
language. Where does the approach break down?

7. Imagine that you have two independent class hierarchies. A class of
Shapes, consisting of Triangle and Square, and a class of
OutputDevice, consisting of Printer and Terminal. Each of the four
possible combinations of shape and output device requires a different
algorithm for display. You have two variables, a Shape and an
OutputDevice. Show how double dispatching can be used to correctly
match a specific shape to a specific output device.



Chapter 16

Overriding

We say that a method in a child class overrides a method in the parent class
if the two methods have the same name and type signature.1

1. As we will note in a moment, some languages require an additional keyword before overriding
will take place. The feature common to all languages, however, is the parent/child relationship and
the matching type signatures.

Overriding (also called inclusion polymorphism) is important when it is
combined with substitution. Recall that a polymorphic variable can, using
the principle of substitution, be declared as one type (for example, the
parent type) but in reality hold a value of another type (typically a child
type). When a message that corresponds to an overridden method is passed
to such a value, the procedure that will be executed is that given by the
child class and not by the parent.



In a certain sense, method overriding might be considered to be a special
case of overloading, since as with overloading we again have one method
name and two or more method bodies. But having made that observation
we reach the end of the similarities. On the other hand, the differences
between overloading and overriding include the following.

In method overriding the classes in which the methods appear must
stand in a parent/child inheritance relationship to each other,
something that was not a requirement for simple overloading.
For overriding to occur, the method type signatures must match.
Overloaded methods are always separate, but when overriding, two
methods are sometimes combined to perform the actions of both
together.
And finally, and most importantly, while overloading is typically
resolved at compile time, overriding is a run-time mechanism. This
means it may not be possible to predict what actions it will perform in
response to any specific message until a program is actually
executing.

Overriding in Smalltalk class Magnitude. An interesting example of
overriding occurs in the class Magnitude in the Little Smalltalk system.
Magnitude is an abstract superclass dealing with quantities that possess at
least a partial, if not a total, ordering. Numbers are perhaps the most
common example of objects that have magnitude, although time and date
can also be ordered, as can characters, points in a two-dimensional
coordinate plane, and words in a dictionary.

The six relational operators are defined in the class Magnitude as
follows.

Click here to view code image
<= arg 
   ↑ self < arg or: [ self = arg ] 
 
>= arg 
   ↑ arg <= self 
 
< arg 
   ↑ self <= arg and: [ self ~= arg ] 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0310-01a


 
> arg 
   ↑ arg < self 
 
= arg 
   ↑ self == arg 
 
~= arg 
   ↑ (self = arg) not

Note that the definitions appear to be circular, each one depending on
some number of the others. How, then, is an infinite loop to be avoided if
any of them are invoked? The answer is that subclasses of class Magnitude
must override and redefine at least one of the six relational messages. We
leave it as an exercise for the reader to show that if the message = and
either < or <= are redefined, all the remaining operators can be executed
without falling into an infinite loop.

Overriding of a method contributes to code sharing, insofar as instances
of the classes that do not override the method can all share one copy of the
original. It is only in situations where this method is not appropriate that an
alternative code fragment is provided. Without overriding, it would be
necessary for all subclasses to provide their own method to respond to the
message, even though many of these methods are identical.

16.1 ⊡ Notating Overriding
Languages differ in how they require the possibility of overriding to be
documented in the code itself. Some languages, such as Smalltalk, Java, or
Objective-C, say nothing at all. In these languages it is only the similarity of
type signatures between the parent and child classes that indicates
overriding. In other languages, such as C++, a notation must be placed in
the parent class to indicate that overriding can potentially take place
(although the mark does not guarantee that overriding must take place). In
other languages, such as Object Pascal, the documentation is placed in the
child class. In Delphi Pascal and in C# a keyword is required in both parent
and child. These differences are described in more detail in Figure 16.1.



C++ Keyword required in parent class.
Click here to view code image
class Parent { 
public: 
   virtual int example(int a) { ... } 
}; 
 
class Child : public Parent { 
public: 
   int example(int a) { ... } 
};

C# Keyword required in both parent and child classes.
Click here to view code image
class Parent { 
   public virtual int example (int a) { ... } 
} 
class Child : Parent { 
   public override int example (int a) { ... } 
}

Delphi Pascal
Click here to view code image
type 
   Parent = class (TObject) 
      function example (int) : integer; virtual; 
   end; 
 
   Child = class (Parent) 
      function example (int) : integer; override; 
   end;

Java No keyword in either parent or child. Smalltalk, Objective-C are
similar.

Click here to view code image
class Parent { 
   public void example(int a) { ... } 
} 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0311-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0312-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0312-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0312-03a


class Child extends Parent { 
   public void example(int a) { ... } 
}

Object Pascal Keyword in child class, not in parent class.
Click here to view code image
type 
   Parent = object 
      function example (int) : integer; 
   end; 
 
   Child = object (Parent) 
      function example (int) : integer; override; 
   end;

⊡ Figure 16.1—Different ways to describe overriding

Overriding cannot change the accessibility of a method. If the method is
public in the parent, it cannot be made private in the child or vice-versa.
(An exception to this rule is the use of private inheritance in C++, where
public features in a parent become private in the child.)

16.2 ⊡ Replacement versus Refinement
While we have talked about a child class overriding the method in a parent
class, in actual fact there are two different ways to interpret the process of
overriding:

Re
pla
ce
me
nt

A method replacement totally overwrites the method in 
the parent class during execution. That is, the code in 
the parent class is never executed when instances of the 
child class are manipulated.

Ref
ine
me
nt

A method refinement includes, as part of its behavior, 
the execution of the method inherited from the parent 
class. Thus, the behavior of the parent is preserved and 
augmented.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0312-04a


The first interpretation of the meaning of overriding is often called
American semantics because it is usually associated with languages of
American origin (such as Smalltalk and C++). The second is known as
Scandinavian semantics because it is most frequently associated with
Simula, the original object-oriented language, and with the later language
Beta, both of Scandinavian origin.

In reality, both forms of overriding are useful, and often both can be
found in the same programming language. For example, almost all
languages (even those solidly in the American school) use refinement
semantics for constructors. That is, a constructor for a child class will
always invoke the constructor for the parent class, thereby insuring that the
data fields for both the parent and child will be properly set.

We will give two examples to illustrate the concepts of replacement and
refinement. The replacement example uses Smalltalk, whereas the
refinement example will be based on Beta.

16.2.1 Replacement in Smalltalk
Replacement is used in many different places in the standard Smalltalk
class library. The two major reasons for using replacement are in support of
code reuse and as a technique for optimization. We will illustrate both.

First consider code reuse. In Smalltalk, integers and floating-point
numbers are objects; they are instances of class Integer and class Float,
respectively. In turn, both of these classes are subclasses of a more general
class, Number. There are several other types of objects that are also numbers,
such as class Fraction.



Now suppose we have a variable, aNumber, that currently contains a
Smalltalk integer, and we send to aNumber the square-root-generating
message sqrt. There is no method corresponding to this name in class
Integer, so class Number is searched, and the following method is
discovered.

Click here to view code image
"class Number" 
   {sqrt} 
      " convert to float then compute square root" 
      ↑ self asFloat sqrt

This method passes the message asFloat to self, which, as you will
recall from Chapter 5, represents the receiver for the sqrt message. The
asFloat message results in a floating-point value with the same magnitude
as that of the integer number. The message sqrt is then passed to this value.

This time, the search for a method begins with class Float. It so happens
that class Float contains a different method named sqrt, which for floating-
point values overrides the method in class Number. That method (which is
not shown here) computes and returns the expected floating-point value.

The ability to override and totally replace the method sqrt means that
many kinds of numbers can share the single default routine found in class
Number. This sharing avoids the need to repeat this code for each of the
different subclasses of Number (which includes not only integers and floats
but infinite-precision integers and fractions). Classes, such as Float, that

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0314-02a


require a behavior different from the default can simply override the
method and substitute the alternative code.

Another Smalltalk example illustrates using overriding as a means of
optimization. The Boolean constants true and false are instances of the
classes True and False, respectively. These, in turn, are both subclasses of
Boolean.

The methods & (logical and) and | (logical or) are implemented in the
parent class with a general mechanism that defines the Booleans using
conditional statements. This technique is correct for any combination of
values.

Click here to view code image
"class Boolean" 
   {&}  right 
      self if True: [ right if True: [↑ true ] ]. 
      ↑ false 
 
   {|} right 
      self if True: [↑ true]. 
      right if True: [↑ true ]. 
   ↑ false

Of course, in the child classes the implementation can take advantage of
additional information. That is, we know the truth or falsity of the left
argument; we can therefore use this information to define much more

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0315-02a


efficient implementations of these operations. For example, here is the code
for the logical operators in class True.

Click here to view code image
"class True" 
   {&} right 
      ↑ right 
 
   {|} right 
      ↑ true

In the case of the logical and operator, the entire condition depends only
on the right argument. In the case of the logical or operator, there is no need
to even consider the right argument, since a true value or anything else is
also true. Here are the definitions of the same operations in class False.

Click here to view code image
"class False" 
   {&} right 
      ↑ false 
 
   {|} right 
      ↑ right

In both the classes True and False, the child classes have an
implementation that is much more efficient than is possible in the parent
class.

16.2.2 Refinement in Beta
A refinement occurs when the code in the child class is combined with the
code in the parent class, and both are ultimately executed. As we have
previously noted, in almost all object-oriented languages that support the
mechanism, constructors perform a refinement even if other methods use
replacement semantics. This is because it is important that any initialization
required by the parent class be included as part of the process of initializing
an instance of the child class.

Refinement can be simulated in those languages that use replacement
semantics by having the child class explicitly invoke the method in the

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0315-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0316-01a


parent. Various different notations are used for this purpose, as illustrated in
Figure 16.2.

C++ Qualified name formed using class name, two colons, then method
name.

Click here to view code image
void Parent::example (int a) { 
   cout « "in parent code\n"; 
} 
 
void Child::example (int a) { 
   Parent:: example (12); // do parent action 
   cout « "in child code\n"; // then child action 
}

Java Pseudo-variable super refers to parent class. Smalltalk and
Objective-C use a similar idea. C# uses keyword base.

Click here to view code image
class Parent { 
   void example (int a) { 
      System.out.println("in parent"); 
   } 
} 
 
class Child { 
   void example (int a) { 
      super.example(12); 
      System.out.printIn("in child"); 
   } 
}

Object Pascal and Delphi Pascal Keyword inherited invokes method
in parent class.

Click here to view code image
procedure Parent.example (int a); 
begin 
   writeln("in parent code"); 
end; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0317-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0317-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0317-03a


 
procedure Child.example (int a); 
begin 
   inherited example(12); (* do parent action *) 
   writeln("in child code"); (* then child action *) 
end;

⊡ Figure 16.2—Simulation of refinement using replacement

Refinement semantics occur in the earliest object-oriented language,
Simula, which was developed in the early 1960s. This idea was carried
forward into the later language Beta, also of Scandinavian origin. In both
these languages, code from the parent class is always executed first, before
any code from the child class. If the code in the parent class includes the
special statement
inner;

then at that point in execution the code from the child class will be
executed.

We will illustrate how this mechanism works with an example modeled
on Beta. The syntax we will use is different from Beta in order to more
clearly point out the role of refinement. However the basic underlying
principles are the same. Imagine a class includes a method designed to print
out a World Wide Web anchor.

Click here to view code image
class Anchor { 
   public void printAnchor () { 
      print (' <A href="http:'); 
      inner; 
      print('">'); 
   } 
}

The inner keyword does not indicate that a subclass must be formed. If
no subclass is present, the inner statement performs no operation.

Click here to view code image
   Anchor anAnchor = new Anchor(); 
   anAnchor.printAnchor(); 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0316-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0318-01a


<A href=http:"">

Note carefully that some operations have occurred before the call on inner,
and some have occurred after the call.

Now imagine that we create a subclass—say, a class that will print an
anchor for Web pages on a specific machine.

Click here to view code image
class OSUAnchor extends Anchor { 
   public void printAnchor () { 
      print('//www.cs.orst.edu/'); 
      inner; 
   } 
}

If we now create an instance of the child class and execute the method,
the code for the parent class will be executed first, and only when the inner
statement is encountered will the code from the child class be executed.

Click here to view code image
   Anchor anAnchor = new OSUAnchor(); 
   anAchor.printAnchor(); 
<A href =http:"//www. cs. orst. edu/ ">

We can continue this process indefinitely. Imagine we create a third
class that will print pages in an individual’s personal Web directory.

Click here to view code image
class BuddAnchor extends OSUAnchor { 
   public void printAnchor () { 
      print('-budd/'); 
      inner; 
   } 
}

Creating an instance of this class and executing the method will then
have the effect of first invoking the code from the “grandparent” class
Anchor, then from the parent class OSUAnchor, and only last from the class
BuddAnchor.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0318-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0318-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0318-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0318-05a


   Anchor anAnchor = new BuddAnchor(); 
   anAnchor.printAnchor(); 
<A href=http:"//www.cs.orst.edu/~budd/">

Note that in Beta it is the parent that is first given control, and behavior
in the parent can wrap around the code provided by the child. When
simulating refinement in American languages (as shown in Figure 16.2), it
is the child’s code that is executed first, and this can wrap around the code
in the parent. It is surprisingly difficult to simulate the Beta-style behavior
using the mechanism of replacement. (We explore this in an exercise at the
end of the chapter.)

16.2.3 Refinement and the subclass/subtype
distinction
Advocates for those languages that use refinement argue that the
mechanism is conceptually elegant in that it makes it almost impossible to
write a subclass that is not also a subtype. This is because refinement
guarantees that the behavior of the parent will be preserved, and thus
whatever actions the parent performs must also be part of the child. In a
language that uses replacement there is no such guarantee. An extreme
illustration, but one that is not prohibited by the language definitions, would
be for a parent class to use the message sqrt to compute a square root of a
number and the child class overriding the message to compute a logarithm.

Advocates for replacement semantics argue that such errors are not
common and are easily detected. Adopting replacement semantics as the
default means you cannot use the mechanism to support code reuse or
optimization of the form described by the earlier examples in Smalltalk.
Furthermore, it is easy to simulate at least the most important parts of
refinement using replacement (as shown in Figure 16.2), but the reverse is
not true.

16.2.4 Wrappers in CLOS
Another interesting variation on refinement semantics occurs in the Lisp
dialect, CLOS. In CLOS a subclass may override a method in a parent class



and specify a wrapping method. A wrapping method can be a before
method, an after method, or an around method. According to the type, the
method is executed before, after, or surrounding the method in the parent
class.

For example, suppose we define the following parent and child classes
with three methods named atest, btest, and rtest. In the parent class these
simply print out a message.

Click here to view code image
(defclass parent () () ) 
 
(defclass child (parent) () ) 
 
(defmethod atest ((x parent)) (print "atest parent")) 
(defmethod btest ((x parent)) (print "btest parent")) 
(defmethod rtest ((x parent)) (print "rtest parent"))

In the child class, we redefine the methods, one as a before method, one
as an after method, and one as an around method. In the last case, a special
statement, call-next-method, invokes the method in the parent class. This
is similar to the way in which refinement is simulated in languages such as
C++ and Object Pascal.

Click here to view code image
(defmethod atest :after ((x child)) (print "atest child")) 
(defmethod btest :before ((x child)) (print "btest child")) 
(defmethod rtest :around ((x child)) 
   (list "rtest child before" (call-next-method) "rtest child 
after"))

If we make an instance of the child class and execute the three methods,
we see the before methods execute the child class before the parent, the
after methods execute the child class after the parent, and the around
methods do both.

Click here to view code image
   (defvar aChild (make-instance 'child)) 
   (atest aChild) 
"atest child" 
"atest parent" 
   (btest aChild) 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0319-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0320-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0320-02a


"btest parent" 
"btest child" 
   (rtest aChild) 
("rtest child before" "rtest parent" "rtest child after")

16.3 ⊡ Deferred Methods
We say a method is deferred if in the parent class the method is defined but
not implemented. Deferred methods are also sometimes called abstract
methods, and in C++ they are usually called a pure virtual method.

One advantage of deferred methods is conceptual in that their use allows
the programmer to think of an activity as associated with an abstraction at a
higher level than may actually be the case. For example, in a collection of
classes representing geometric shapes, we can define a method to draw the
shape in each of the subclasses Circle, Square, and Triangle. We could
have defined a similar method in the parent class Shape, but such a method
cannot, in actuality, produce any useful behavior, since the class Shape does
not have sufficient information to draw the shape in question. Nevertheless,
the mere presence of this method permits the user to associate the concept
draw with the single class Shape and not with the three separate concepts
Square, Triangle, and Circle.

There is a second, more practical reason for using deferred methods. In
statically typed object-oriented languages, such as C++ and Object Pascal,
a programmer is permitted to send a message to an object only if the
compiler can determine that there is in fact a corresponding method that
matches the message selector. Suppose the programmer wishes to define a
polymorphic variable of class Shape that will, at various times, contain
instances of each of the different shapes. Such an assignment is possible,
according to our rule of substitutability. Nevertheless, the compiler will
permit the message draw to be used with this variable only if it can ensure
that the message will be understood by any value that may be associated
with the variable. Assigning a method to the class Shape effectively
provides this assurance, even when the method in class Shape is never
actually executed.

Figure 16.3 illustrates some of the ways that deferred methods are
documented in various languages. In both Java and C# a deferred method is
declared as abstract. In C++ the notation looks like one is assigning the



method the value zero. In Smalltalk and Objective-C the parent class
implements the deferred method but invokes an error message generating
routine (subclassResponsibility). The child class overrides the method,
thereby avoiding calling the error message.

Click here to view code image
C++ 
   class Shape { 
   public: 
      virtual void draw () =0; 
   }; 
 
Java (C# and Delphi are similar.) 
   abstract class Shape { 
       abstract public void draw (); 
   } 
 
Smalltalk (Objective-C is similar.) 
   draw 
      " child class should override this " 
      ^ self subclassResponsibility

⊡ Figure 16.3—Syntax for deferred classes

Deferred methods are almost always found in conjunction with other
methods that are not intended to be overridden. The idea is to balance code
reuse (the non-overridden methods) with specialization (the overridden
methods). The non-overridden methods (sometimes called foundational
methods) provide functionality that is modified for different situations by
means of the deferred methods. We will see several examples of this when
we explore the idea of software Frameworks in Chapter 21.

16.4 ⊡ Overriding versus Shadowing
Because they have superficial syntactic similarities, it is easy to confuse the
mechanism of overriding and the related programming language concept of

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0321-01a


shadowing. To explain this, let us first examine a slightly simpler form of
shadowing. Consider the following class and method.

Click here to view code image
class Silly { 
   private int x; // an instance variable named x 
 
   public void example (int x) { // x shadows instance variable 
      int a = x+1; 
      while (a > 3) { 
         int x = 1; // local variable shadows parameter 
         a = a - x; 
      } 
   } 
}

In this example class definition there are three different variables named
x. The first is an instance variable. This variable is normally accessible
from within any method defined as part of the class. However, in the
method example there is a parameter defined using the same name. The
parameter name hides, or shadows, access to the instance variable. This
means that within the method, the name x is matched to the parameter and
not to the instance variable. (In this case the instance variable can still be
accessed using the construct this .x.)

Within the while loop another variable named x is declared. This is a
local variable, and it again shadows access to the parameter x. Declaring
variables in this fashion is not something to be encouraged, but nothing in
the language definition prohibits it. (Some compilers will issue warning
messages.)

Keep this simple example in mind when we next consider how
shadowing can occur in conjunction with inheritance. A good example is
with instance variables. The following is legal in Java, although it is
probably not something to be encouraged.

Click here to view code image
class Parent { 
   public int x = 12; 
} 
 
class Child extend Parent { 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0322-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0322-02a


   public int x = 42; // shadows variable from parent class 
}

The declaration of x in the child class will shadow that of the parent.
The most important feature that distinguishes shadowing from overriding is
that, like overloading, shadowing is resolved at compile time based on
static types and does not require any run-time mechanism.

Click here to view code image
   Parent p = new Parent(); 
   System.out.printIn(p.x); 
12 
   Child c = new Child(); 
   System.out.printIn(c.x); 
42 
   p = c; // be careful here! 
   System.out.println(p.x); 
12

Many of those languages in Figure 16.1 that require an explicit
indication of overriding will perform a shadowing if no keyword is
provided. This can be illustrated by the following classes in C++.

Click here to view code image
class Parent { 
public: 
      // note, no virtual keyword here 
   void example () { cout « "Parent" « endl; } 
}; 
 
class Child : public Parent { 
public: 
   void example () { cout « "Child" « endl; } 
};

As was true with the Java example of instance variables, a match of
message to method is determined by the static declaration and not by a
dynamic value.

Click here to view code image
   Parent * p = new Parent (); 
   p->example() 
parent 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0323-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0323-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0323-03a


   Child * c = new Child(); 
   c->example() 
Child 
   p = c; // be careful here! 
   p->example() 
Parent

Like C++, Delphi will shadow a method if the override directive is
omitted, but the compiler will issue a warning. This warning can be
eliminated by using the reintroduce directive, which explicitly indicates
that the programmer intended the new method to shadow the earlier one.

Click here to view code image
type 
   TParent = class 
      public 
         procedure example (); virtual; 
      end; 
 
   TChild = class (TParent) 
      public 
         procedure example (); reintroduce; 
   end;

The ideas of overriding, shadowing, and redefinition (discussed in the
previous chapter) should not be confused. The following table summarizes
the differences.

over
ridin
g

The type signatures are the same in both parent and 
child classes, and the method is declared as virtual in 
the parent class.

shad
owi
ng

The type signatures are the same in both parent and 
child classes, but the method was not declared as 
virtual in the parent class.

rede
finiti
on

The type signature in the child class differs from that 
given in the parent class.

16.5 ⊡ Covariance and Contravariance

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0324-01a


Frequently it seems as if it would be useful if overriding could be used but
the type signature of a method in a child class could be different from that
found in the parent class. A common example (one we will explore in
another section) is a method equals used to compare two objects. Since
normally one is only interested in comparing objects of the same type, it
would seem to make sense that the argument in the child class should be the
child class type. Unfortunately, the whole concept of changing type
signatures is fraught with subtle difficulties, as we will explore in this
section.

One seldom wants to change the type signatures arbitrarily but typically
move either up or down the type hierarchy. The term covariant change is
used when a type moves down the type hierarchy in the same direction as
the child class. The term contravariant is used for the opposite—when a
type moves up the class hierarchy in the opposite direction from
subclassing. These two are shown in the following class hierarchy, where in
the child class the first argument (named covar) oves from Mammal to the
more specific type Cat, while the second argument is changed in a
contravariant fashion to the more general type Animal.

The impact of covariant or contravariant change is complicated by the
fact that types can be used in a variety of different ways. The effect of
changing a pass-by-value parameter is different from the effect of changing
a pass-by-reference parameter, which is in turn different from the effect of
changing the return type for a procedure. For this reason it is slightly easier
to think about the problem using sets and consider the relationships



between the set of values that are acceptable (for example, as an argument)
to the parent in relationship to the set of values that are acceptable to the
child.

We first consider what can happen if the set of values acceptable to the
child is smaller than the set of values acceptable to the parent. This can
happen, for example, in a covariant change to a pass-by-value parameter.
(The parent class has a parameter of type Mammal, and the child class
restricts the same parameter to the type Cat.)

A problem occurs when this covariant change runs into the principle of
substitution. According to the principle of substitution, we should be able to
declare a variable using the parent type but assign it a value from the child
class.

Click here to view code image
Parent aValue = new Child(); 
aValue .test (new Dog() , new Mammal ()); // note type of first argument

As far as the compiler is concerned, the first argument is perfectly
acceptable, since the declaration insists only that the value be type Mammal.
But the invocation will bind the message to the method in the child class,
which is prepared only to accept values of type Cat. The consequence will
almost certainly be a completely erroneous and catastrophic outcome.

It is occasionally proposed that run-time checks could be used to detect
this condition, allowing at least a graceful error reporting, albeit at run time
rather than at compile time. However, note that such checks are never

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0325-03a


necessary when the child is being used as an instance of the child class, but
only when the child is being used as an instance of the parent class. Thus,
in a large percentage, perhaps the majority, of cases such run-time checks
would be superfluous.

An error will not occur in the opposite case, where a contravariant
change to a by-value parameter increases the range of values the child class
is willing to handle. In this case neither the parent class nor the child class
can pass an unacceptable value to the method.

However, that is only true for pass-by-value parameters. When we
consider a change to the result type of a method, the situation is exactly the
reverse. Suppose a method in the parent class returns a value of type
Mammal, and the child class includes a contravariant change that extends this
to Animal, thereby making the set of values acceptable to the child larger
than the set of values acceptable to the parent. Once again we run into
problems with the principle of substitution. It would be perfectly legal for
the child class to return a value of type Bird, since locally a bird satisfies
the typing restrictions.

Click here to view code image
class Parent { 
   Mammal test ( ) { 
      return new Cat(); 
   } 
} 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0326-02a


class Child extends Parent { 
   Animal test () { 
      return new Bird(); 
   } 
}

But it is also legal for a variable of the parent class to hold an instance
of the child class and for the result of executing the method in question to
be assigned to a variable of type Mammal, since as far as the compiler is
concerned, the result of the method fits that class designation.

Click here to view code image
Parent aValue = new Child(); 
Mammal result = aValue. test () ; // error—a bird is not a mammal

The consequence will be the variable of type Mammal holding a non-
mammal value, with no typing error having been reported.

A pass-by-reference parameter can be used to pass information both into
and out of a procedure. Therefore, both of these errors could arise if any
change whatsoever is permitted in such a value.

It is possible to specify a language so that both covariant and
contravariant overriding is permitted in certain situations. Examples of
languages that permit this include Eiffel and Sather. (See Section 12.4.2 for
a discussion of LIKE CURRENT, which is one approach to covariant
overriding.) C++ allows a covariant change in signature on the return types.
This is typically used in a method such as the following.

Click here to view code image
class Parent { 
public: 
   Parent * clone () { return new Parent(); } 
}; 
 
 
class Child : public Parent { 
public: 
   Child * clone O { return new ChildO; } 
};

As we noted earlier, the restriction of the set of types the child can
return cannot result in a type error, since any value the child can yield will

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0327-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0327-02a


still match the specifications of the parent.
However, most language designers have opted to avoid this problem

altogether by using a rule that might be termed novariance—namely, that a
child class is not allowed to change the type signature of an overridden
method in any fashion.

Equality testing. The example where covariant modification of type
signatures often seems most compelling is in the implementation of equality
and comparison tests. Examining this situation will provide a concrete
illustration of the problems that can arise.

Imagine we have the following class hierarchy where the equals method
in the parent class always returns false, whereas the overridden method in
the child classes correctly handles the comparison of triangles to triangles
and of squares to squares.

In the imaginary language we envision here, consider what meaning
might be assigned to an attempt to compare a triangle to a square.

Click here to view code image
Triangle aTriangle; 
Square aSquare; 
 
if aTriangle.equals(aSquare) ...

There are two possibilities.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0328-02a


The search for a method is based solely on the receiver, a triangle,
and yields the triangle method, which requires a triangle as argument.
Thus, the use of a square as argument results in a compiler error.
The search for a method is based both on the receiver and on the
argument type signatures. Since the argument does not match the
method in class Triangle, the method in the parent class Shape is then
invoked.

Selecting either interpretation leads to trouble as soon as we consider the
principle of substitution. Suppose we create a shape variable and assign it
the triangle value. Comparing the triangle and the shape is then effectively
comparing a value to itself. But the first interpretation results in an error,
and the second interpretation results in the nonsensical result that the value
is not equal to itself.

Click here to view code image
Shape aShape = aTriangle; 
if aTriangle.equals(aShape) ...

A similar incongruity occurs if the parent variable is used as the
receiver. Since the only reasonable method to use is the one defined in the
parent class, the test yields an unexpected false value.

Click here to view code image
if aShape.equals(aShape) ...

Both because the implementation of either covariant or contravariant
overriding is complex and because the semantics are cloudy, almost all
object-oriented languages prohibit any modification of argument types in
overridden methods. To get around this restriction, programmers most often
resort to explicit tests and casts, as in the following C++ example.

Click here to view code image
bool Triangle.equals (Shape * aShape) 
{ 
   Triangle * right = dynamic_cast<Triangle *>(aShape); 
   if (right) { // it was a triangle 
      // ⋮ do triangle comparison 
   } else // it was not a triangle 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0328-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0328-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0329-01a


      return false; 
}

Again it is important to note that we here are discussing only
overloading. Equality can be implemented using a redefinition (as
described in the previous chapter), but redefinition is resolved at compile
time based on static types and not at run time using dynamic values.

* 16.6 ⊡ Variations on Overriding
In this section we will explore a few of the language-specific variations on
the theme of overriding.

16.6.1 Final methods in Java
While the virtual keyword permits overriding, and the abstract keyword
requires it, it is sometimes desirable to prohibit overriding. That is, the
programmer might like to insist that the method defined in a parent class is
the final and definitive version and no further changes can be made by a
child class. In Java this can be accomplished through the use of the final
modifier.

Click here to view code image
class Parent { 
   public final void aMethod (int) { ... } 
} 
 
class Child extends Parent { 
   // compiler error, not allowed to override final method 
public void aMethod (int) { ... } 
}

Java also permits the keyword to be applied to an entire class, in which
case the class cannot be subclassed.

The language C# has a similar keyword, sealed, that can be applied to
classes but not to individual methods.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0329-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0330-01a


sealed class Parent { 
   ⋮ 
} 
 
class Child : Parent { // generates a compiler error 
   ⋮ 
}

Final methods and sealed classes can be exploited by an optimizing
compiler, since the use of such features will often eliminate the need for a
run-time message resolution.

16.6.2 Versioning in C#
As software changes over time, it is not uncommon for new methods to be
introduced into class hierarchies. Sometimes this can have unfortunate
consequences. For example, suppose that a child class implements a virtual
method on its own— that is, one that is not inherited from its parent.

Click here to view code image
class Parent { 
   ⋮ 
} 
 
class Child : Parent { 
   public virtual void aMethod(int) { ... } 
}

Later a new revision of the parent class is released, and this new
revision (which may have been created in an entirely different organization
from that developing the child class) includes a method using the same
name.

Click here to view code image
class Parent { 
   public virtual void aMethod(int) { ... } 
} 
 
class Child : Parent { 
   public virtual void aMethod(int) { ... } 
}

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0330-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0330-03a


Almost all object-oriented languages will consider these to be the same
method. However, the original intent was for them to be different. In C# the
programmer can add the new keyword in the child class. The presence of
this keyword changes an overloading into a redefinition. (That is, the
method in the child class is considered to be independent of the method in
the parent class.)

Click here to view code image
class Parent { 
   public virtual void aMethod(int) { ... } 
} 
 
class Child : Parent { 
   public new virtual void aMethod(int) { ... } 
}

A difficulty in using this feature is that the programmer cannot predict
ahead of time which methods should be declared as new, since it is only
necessary after a change has been introduced in the parent.

Summary ⊡
An override occurs when a method in a child class uses the same
name and type signature as a method in the parent class.
While technically an override is an overloading (there are two method
bodies with the same name), overriding is resolved at run time,
whereas overloading is resolved at compile time.
The effect of an override can be handled in two possible ways. A
replacement completely replaces the code in the parent class; a
refinement combines the code in the child with that of the parent.
A deferred method is a form of overriding where the parent provides
no implementation and the child is solely responsible for
implementing the specified behavior.
A name can shadow another use of the same name if it temporarily
hides access to the previous meaning. Some languages permit both
shadowing and overriding.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch16_images.xhtml#f0331-01a


A covariant change in parameter or return type is a change the moves
down the class hierarchy in the same direction as the child class. A
contra variant change moves a parameter or return type up the class
hierarchy in the opposite direction from the child class. The semantics
of both types of changes can be subtle.

Further Information ⊡
Introductions to the first object-oriented language, Simula, can be found in
[Dahl 1966, Birtwistle 1979, Kirkerud 1989]. Beta is described in [Madsen
1993]. I have always thought that Beta is an extremely interesting language
that has been overlooked because it has such an obscure syntax. The terms
“American Semantics” and “Scandinavian Semantics” are due to Cook
[Cook 1988].

Wrappers in CLOS are discussed in [Keene 1989].
Contravariance in Eiffel is discussed in [Rist 1995]. The rationale for

not allowing any covariant or contravariant change in C++ except in return
types is discussed by the designer of the language in [Stroustrup 1994].

Versioning in C# is discussed in [Gunnerson 2000].

Self-Study Questions ⊡

1. What are the key features necessary to say that one method overrides
another?

2. In what ways is overriding similar to overloading? In what ways are
they different?

3. What is the difference between an overriding that uses replacement
and one that uses refinement?

4. Why do constructors in most languages use refinement even if other
method overriding uses replacement?



5. Why are refinement semantics for overriding sometimes called
Scandinavian semantics?

6. What is the effect of the inner statement in Beta or Simula?

7. Is a wrapper in CLOS an example of a replacement or a refinement?

8. What is a deferred method?

9. What does it mean to say that a declaration of a name shadows a
previous declaration?

10. What is a covariant change in a parameter type? What is a
contravariant change?

11. In Java what is the effect of declaring a method as final?

Exercises ⊡

1. By following the execution of each of the other five, show that if
either < or <= is redefined by a subclass of Magnitude in Little
Smalltalk that all relational operators will produce the correct result.

2. Suppose we want to add a third subclass of Boolean to the two classes
described in Section 16.2.1. The class Unknown represents values with
an unknown truth value. Without redefining any methods in class
Unknown, what is the meaning of any operation that uses these
quantities? (Assume that an if statement will only execute the true
block if a conditional is true.) For both the and and or operators, draw
a three by three truth table that describes the result of each possible
combination of values.

3. Show how to simulate the refinement example described in Section
16.2.2, using an American semantics language such as C++ or Java.
Make sure you support the principle of substitution so an instance of a
child class can be assigned to a variable declared using the parent
class, and executing the printAnchor method will have the desired



effect. You will probably need to introduce additional methods. Does
your scheme allow the class hierarchy to be extended arbitrarily?

4. Show that even if an instance of a child class is substituted where a
parent class value is expected, no error can result from the covariant
change in result type that is allowed by C++.



Chapter 17

The Polymorphic Variable

A polymorphic variable is a variable that can reference more than one type
of object. As a consequence, such a variable can maintain values of
different types during the course of execution. In a dynamically typed
language all variables are potentially polymorphic. In a statically typed
language the polymorphic variable is the embodiment of the principle of
substitution, a topic we examined in Chapter 8. Many of the examples
we’ve seen that discussed the principle of substitution have used a simple
assignment.

Click here to view code image
   // assign a child value to a parent variable 
Parent variable = new Child() ;

However, such examples are, in fact, relatively rare in practice. Most
commonly, substitution comes about through the binding of values to
arguments during the process of function or method invocation.

In this chapter we examine the various different forms that the
polymorphic variable can take. In Section 17.1 we examine simple
variables. In Section 17.2 we consider the polymorphic variable that
represents the receiver during the course of method execution. In Section
17.3 we will investigate downcasting, which is sometimes called reverse
polymorphism. Finally, in Section 17.4 we consider pure polymorphism,
which is the term used to describe a polymorphic variable being used as an
argument.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0335-01a


17.1 ⊡ Simple Polymorphic Variables
A good example of a polymorphic variable is the array allPiles in the
Solitaire game presented in Chapter 9. The array was declared as
maintaining a value of type CardPile, but in fact it maintains values from
each of the different subclasses of the parent class. A message presented to
a value from this array, such as display in the example code shown here,
executes the method associated with the dynamic type of the variable and
not that of the static class.

Click here to view code image
public class Solitaire { 
      ⋮ 
    static CardPile allPiles [ ] ; 
   ⋮ 
 
    public void paint(Graphics g) { 
        for (int i = 0; i < 13; i++) 
            allPiles[i].display(g); 
        } 
        ⋮ 
}

Another example of a simple polymorphic variable occurs in the Java
abstract windowing toolkit, or AWT. (We will examine many different
features of the AWT in Chapter 22.) In the AWT the placement of graphical
elements such as buttons, scroll bars, labels, and the like is determined by
an object called the Layout Manager.

In fact LayoutManager is not a class but an interface. There are several
different implementations of this interface provided in the standard library,
but the user is free to implement his or her own.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0336-01a


To select the layout manager, the programmer simply invokes the
method setLayoutManager inherited from class Component (a parent class to
all windows). This method in turn simply assigns the argument to a
polymorphic local variable.

Click here to view code image
class Component { 
   ⋮ 
   void setLayoutManager (layoutManager mgr) 
      { layoutMgr = mgr; } 
 
   LayoutManager layoutMgr; 
}

Later, when it is necessary to determine the location of each graphical
element, the class Component uses the services of whatever layout manager
the user has provided.

Now one can argue that it is not the ability to assign the variable
layoutMgr a variety of different values that is important here, but the fact
that subsequently each of those different values can tailor its effect by the
way it implements methods to match the LayoutManager interface.
Therefore (it might be argued), it is overriding that is important and not the

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0337-01a


polymorphic variable. However, we see throughout the discussion of
polymorphic techniques that it is the combination oí tools in a variety of
ways that produces the greatest effect.

17.2 ⊡ The Receiver Variable
It is perhaps ironic that the most common place that a polymorphic variable
is used is the one place where it is not normally visible at all. This form is
as the value that represents the receiver inside an executing method.

The variable that maintains the receiver is not normally declared, and
for this reason it is often termed a pseudo-variable. It goes by a number of
different names in different languages. It is termed self in Smalltalk and
Object Pascal; this in C++, C#, and Java; and current in Eiffel.

The major role for this variable is to act as the basis for access to data
fields and to serve as the receiver when methods are passed to “oneself.” In
both of these roles the variable is normally implicit and does not appear in
the code, although nothing prevents the explicit naming. Consider, for
example, the following simple class in Java.

Click here to view code image
class ThisExample { 
  public void one (int x) { 
    value = x*4; 
    two (x + 3); 
  } 
 
  private int value; 
 
  private void two (int y) { 
    System.out.printIn("value is " + (value + y)); 
  } 
}

The access to the data member named “value” inside method one could
be considered ambiguous, since there are many different data fields with
this name, one in each instance of the class. Similarly, the invocation of the
method two appears to occur without a receiver having been named. But in
both of these cases the disambiguation comes from the implicit use of the

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0337-02a


receiver value. In fact, this program could have been written in an entirely
unambiguous fashion as follows.

Click here to view code image
class ThisExample { 
   public void one (int x) { 
      this.value = x*4; // explicitly name which value 
      this.two (x + 3); // give explicit receiver 
   } 
 
   private int value; 
 
   private void two (int y) { 
      System.out.println("value is " + (this.value + y)); 
   } 
}

There are some coding conventions that encourage the use of the
explicit qualifier on data access, particularly in constructors. One advantage
is that this eliminates the need to think of two different variable names in
those situations where an argument is being used simply to initialize a local
data field.

Click here to view code image
class ThisExample { 
   public ThisExample (int value) { 
      // the use of "this" here is needed in order to 
      // disambiguate the two uses of the same name 
    this.value = value; 
   } 
 
   private int value; 
   ⋮ 
}

17.2.1 The role of the polymorphic variable in
frameworks
The true power of the polymorphic receiver comes when message passing is
combined with overriding. As we will see in Chapter 21, this combination

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0338-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0338-03a


is the key to the development of software frameworks. Consider, for
example, a typical windowing system. An example might be the Java AWT,
although the same principle is found in almost all frameworks. Methods in
such a system can be divided into two major categories. There are the
foundational methods defined in the parent class. These are inherited by
child classes and are not overridden. Then there are activity methods that
are defined in the parent class but deferred to child classes. In the following
hierarchy, repaint is a foundational method, while paint is deferred.

Because the foundational methods are inherited, they can be used by
instances of subclasses. It is here that the receiver variable shows its
polymorphic colors. When the foundation method is executed, the receiver
is actually maintaining a value that is an instance of the child class. Thus,
when an overridden method is executed, it is the method in the child class
that is executed, not the method in the parent class.1

1. This simple example should not be taken to be accurate with regards to the AWT. In fact, a
repaint in the AWT schedules a painting event for a later execution. But the relationship between
foundation methods and deferred methods remains the same.

Click here to view code image
class Window { 
   public void repaint () { 
      // invoke the deferred method paint. 
      // Because the implicit receiver, this, 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0339-02a


      // is polymorphic, the method from the 
      // child class will be executed 
    paint (graphicsContext); 
} 
 
    abstract public void paint (Graphics g); // deferred 
 
    private Graphics graphicsContext; 
} 
 
class GraphicsWindow extends Window { 
   public void paint (Graphics g) { 
      //do the appropriate painting job 
   } 
}

This pattern of a foundation method executing a deferred method is
repeated countless times in all types of software frameworks. As we noted
in Chapter 15, this combination of foundation and deferred methods is the
key to unlocking the power of software reuse, since it permits the
foundation methods to be tailored to new situations without the need to
modify the original code. Such specialization-without-modification is
extremely difficult without object-oriented techniques.

17.2.2 Endpoint comparisons in Smalltalk
Another example will illustrate how the polymorphic receiver is used in an
untyped programming language. As we noted in Chapter 16 on overriding,
the class Magnitude in Smalltalk is an abstract superclass that deals with
quantities that possess at least a partial, if not a total, ordering. Consider the
method called between:and: shown here.

Click here to view code image
{between:} low {and:} high 
   " test to see if  the receiver is between two endpoints " 
   ↑ (low <= self) and: [ self <= high ]

This method occurs in the class Magnitude and presumably (according to
the comment) tests whether the receiver is between two endpoints. It
performs this test by sending the message <= to the lower bound with the

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0340-02a


receiver as argument and to the receiver with the upper bound as argument.
(Remember, in Smalltalk all operators are treated as messages.) Only if
both of these expressions yield true does the method determine that the
receiver is between the two endpoints.

Once again, we see the conjunction of a foundation method
(between:and:) working in combination with a deferred method (<=). After
the message (between:and:) has been sent to an object with a pair of
arguments, what happens next depends on the particular meaning given to
the message <=. This message is overridden in many of the subclasses. For
integer values, the meaning is that of integer comparison; thus,
between:and: can be used to test whether an integer value is between two
other integer values. Floating-point values define < similarly, with similar
results.

Click here to view code image
anInteger between: 7 and: 11 
 
aFloat between: 2.7 and: 3.5

For characters, the relation <= is defined in terms of the underlying
ASCII collating sequence; thus, between:and: tests whether a character is
between two other characters. To see whether a variable aChar contains a
lowercase letter, for example, we can use the following expression (a is the
token denoting the literal character a in Smalltalk).

Click here to view code image
aChar between: $a and: $z

For Points, the relation <= is defined as being true if the receiver is
above and to the left of the argument (that is, both the first and second
components of the point are less than or equal to their corresponding part in
the other point). Point objects are a basic data type in Smalltalk; numbers
respond to the @ operator by constructing a point with their own value as
the first coordinate and the argument as the second coordinate. Note that
the definition of < for points provides only a partial order, since not all
points are thereby commensurate. Nevertheless, the expression

Click here to view code image
aPoint between: 2@4 and: 12@14

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0341-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0341-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0341-03a


is true if a Point is in the box defined by the coordinates (2,4) in the upper
left and (12,14) in the lower right corner.

The important feature to note is that in all of these cases there is only
one method being used for between:and:. This method is polymorphic; it
works with a number of argument types. In each case, the redefinition of
the messages involved in the polymorphic routine (in this case, the message
<=) tailors the code to specific circumstances.

17.2.3 Self and super
In the languages Smalltalk and Java there is another pseudo-variable named
super. Like self (in Smalltalk and Objective-C) or this (in C++, C#, and
Java), the name super refers to the receiver for the method currently being
executed. But a message passed to super is interpreted differently from a
message passed to self.

A message passed to self will begin the search for a corresponding
method with the class of the receiver. A message passed to super, on the
other hand, looks for a method to match the message starting from the
parent class for the class in which the currently executing method resides.
This is illustrated by the following example. The code is shown in Java, but
the concept would be the same in Smalltalk, although the syntax would be
different.

Click here to view code image
class Parent { 
   void exampleOne () { 
      System.out.println("In parent method"); 
   } 
 
   void exampleTwo () { 
      System.out.println("In parent method"); 
   } 
} 
 
class Child extends Parent { 
   void exampleOne () { 
      System.out.println("In child method"); 
      super.exampleOne(); 
   } 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0342-01a


 
   void exampleTwo () { 
      System.out.println("In child method"); 
      this. exampleTwo (); // infinite loop 
   } 
}

The child class overrides both methods inherited from the parent. In the
method named exampleOne the child class explicitly invokes the method
defined in the parent. As we noted in Chapter 16, this is the way that
methods in Java can achieve a refinement of the parent, as opposed to a
replacement. The method named exampleTwo is similar, only it uses the
pseudo-variable this instead of super. The result is an infinite loop, since
the method invoked will be the same method in class Child.

Note that method binding for a message passed to super can be
performed at compile time, since both the class and the parent must be
known. Thus no run-time message resolution mechanism is necessary. A
good optimizing compiler can exploit this fact and produce more efficient
code for messages passed to super than for messages in general.

In C# the pseudo-variable base is used for this purpose, but otherwise it
is the same as the use of super in Java. The previous example would be
written in C# as follows.

Click here to view code image
public class Parent { 
   public void exampleOne () { 
      Console.WriteLineCIn parent method"); 
   } 
} 
 
public class Child : Parent { 
   public void exampleOne () { 
      Console.WriteLineC"In child method"); 
      base.exampleOne(); 
   } 
}

17.3 ⊡ Downcasting

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0343-01a


Downcasting is the process of taking a polymorphic variable and, in a
sense, undoing the process of substitution. That is, the polymorphic
variable, while declared as the parent class, is actually holding a value
derived from a child class. Can we therefore assign it to a variable that is
declared as the child class? Since it is undoing the polymorphic assignment,
this process is also sometimes described as reverse polymorphism.

There are actually two related problems involved in this operation. To
illustrate, suppose we define a class, Ball, and two subclasses, BlackBall
and WhiteBall. Next, we construct the software equivalent of a box into
which we can drop two instances of class Ball, and one of those instances
(selected randomly) will fall out and be returned (Figure 17.1). We drop a
BlackBall and a WhiteBall into the box and recover the result.

⊡ Figure 17.1—A ball losing its identity

Now, the resulting object can certainly be considered a Ball and can
thus be assigned to a variable declared as that type. But is it a BlackBall?
We can ask these two questions.

Can I tell whether or not it is a BlackBall?



What mechanisms are necessary to assign the value to an instance of
the child class?

Although the BlackBall/WhiteBall example may seem contrived, the
underlying problem is quite common. Consider the development of classes
for frequently used data structures, such as sets, stacks, queues, lists, and
the like. Containers of this nature are used to maintain collections of
objects. A touted benefit of object-oriented programming is the production
of reusable software components, and collection containers are candidates
for such components. However, a collection container is in some
circumstances exactly like the ball machine. If a programmer places two
different objects in a set and later takes one out, how does he or she know
which type of object will result?

In practice, the problem of identification and the problem of assignment
are almost always solved in combination. This is because the assignment
mechanism will almost always fail if a proper identification has not been
made. For this reason some languages combine these two features, while
others keep them separate. The various different techniques are illustrated
in Figure 17.2.

Click here to view code image
C++ 
     Child * c = dynamic_cast<Child *>(aParentPtr); 
     if (c != 0) { // null if not legal, nonnull if ok 
       ⋮ 
     } 
 
Delphi Pascal 
  if (aVariable is Child) then 
     childVar := aVariable as Child 
 
Java 
  Child aChild; 
  if (aVariable instanceof Child) 
     aChild = (Child) aVariable; 
 
Oberon-2 
  IF aVariable IS Child THEN 
      aChild := aVariable(Child) 
  END 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0345-01a


 
Object Pascal 
  if Member (aVariable, Child) then 
     aChild = Child(aVariable) 
 
Python 
  if isinstance(aVariable, Child): 
     ⋮ 
 
Smalltalk 
  (aVariable class == Child) ifTrue: [ ... ] 
  or 
  (aVariable isKindOf: Child) ifTrue: [ ... ]

⊡ Figure 17.2—Mechanisms for downcasting

17.4 ⊡ Pure Polymorphism
Many authors reserve the term polymorphic method (or pure

polymorphism) for situations where one function can be used with a variety
of arguments, and the term overloading for situations where there are
multiple functions all defined with a single name.2 Such facilities are not
restricted to object-oriented languages. In Lisp or ML, for example, it is
easy to write functions that manipulate lists of arbitrary elements. Such
functions are polymorphic because the type of the argument is not known at
the time the function is defined. The ability to form polymorphic functions
is one of the most powerful techniques in object-oriented programming. It
permits code to be written once, at a high level of abstraction, and to be
tailored as necessary to fit a variety of situations. Usually, the programmer
accomplishes this tailoring by sending deferred messages to the receiver for
the method.

2. The extreme cases may be easy to recognize, but discovering the line that separates over-loading
from polymorphism can be difficult. In both C++ and ML a programmer can define a number of
functions, each having the same name but different arguments. Is it overloading in C++ because the
various functions sharing the same name are not defined in one location, whereas in ML-style
polymorphism they must all be bundled together under a single heading?

A simple example of pure polymorphism is the method append in the
Java class StringBuffer. The argument to this method is declared as Object



and thus can be any object type. The method has roughly the following
definition.

Click here to view code image
class StringBuffer { 
   String append (Object value) 
      { return append (value .toStringO ) ; } 
   ⋮ 
}

The method toString is deferred. It is defined in class Object and
redefined in a large number of different subclasses. Each of these
definitions of toString will have a slightly different effect: A Double will
produce a textual representation of its numeric value; a Color will generate
a string that describes the red, green, and blue values in the color; a Button
will create a string representing the class name followed by a hexadecimal
number that represents the location of the object in memory; and so on.

Because these various versions of toString produce a variety of
different effects, the method append will similarly produce a number of
different results. This variety of effects is achieved despite the fact that
there is only one definition of method append.

In a certain sense the polymorphic receiver discussed in Section 17.2 is
simply a special case of pure polymorphism. As we will see in Chapter 27
when we discuss the implementation of object-oriented languages, when a
method is invoked, the receiver is actually passed as a “hidden parameter.”
For example, consider the method named one in the following class
definition.

Click here to view code image
class Test { 
  void one (int x) { ... } 
};

When it comes time to generate code for the method, it is internally
translated into the following.

Click here to view code image
void Test_one (Test this, int x) { ... }

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0346-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0346-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch17_images.xhtml#f0346-03a


Note that two changes have been made. The name of the method has
been altered to make it unique (by prepending the class name), and an
additional first argument has been inserted. This additional argument is the
polymorphic receiver we discussed in Section 17.2.

Similarly, the Smalltalk example in Section 17.2.2 also illustrates
features of pure polymorphism. Differences in execution depend both on
the arguments low and high, as well as on the receiver.

Summary ⊡
A polymorphic variable is a variable that can reference more than one
type of object.
Polymorphic variables derive their power from an interaction with
inheritance and overriding. When a method is overridden, the code
executed will be determined by the current value of a polymorphic
variable, not its declared type.
The most common polymorphic variable is the one that represents the
receiver within the body of a method. This value is named this in
Java and C++, and self in many other languages.
The polymorphic variable that represents the receiver has an
important part to play in the development of software frameworks. In
a framework, methods are divided into foundation methods, which are
implemented in the framework itself, and deferred methods, which
are defined in the framework but implemented by the programmer
using the framework.
Downcasting is the process of undoing a polymorphic assignment—
that is, assigning a value being held by a variable to a more
specialized type than that used in creating the variable.
Pure polymorphism occurs when a polymorphic variable is used as
argument in a method.

Further Information ⊡



Palsberg and Schwartzbach [Palsberg 1994] present an algorithm for
performing type inference on polymorphic methods.

For years people have argued whether the latest version of the
programming language Ada (Ada 95) is an object-oriented language.
Although it does not have classes, it does have packages that can be used in
much the same way. It does support inheritance, and polymorphism of a
sort. But what makes Ada 95 most difficult to use in the object-oriented
way is the near complete absence of anything similar to a polymorphic
variable. Further information on Ada 95 can be found in [Feldman 1997].

Self-Study Questions ⊡

1. What is a polymorphic variable?

2. Explain why the receiver variable (this, self, or current) can be
considered polymorphic.

3. Under what circumstances will the receiver variable hold a value that
is not an instance of the class in which the method appears?

4. In Smalltalk, how is the meaning of super different from self?

5. What is reverse polymorphism?

6. What is pure polymorphism?

Exercises ⊡

1. In many object-oriented languages, all classes descend from a
common parent class. In Java, for example, all classes descend from
Object, whereas in Delphi they all descend from TObject. In such
languages it is common for data structure classes to maintain their
values by holding them in variables declared as the root class (e.g., in
a variable declared as Object). Explain how such a strategy naturally
leads to the downcasting problem described in Section 17.3.



Chapter 18

Generics

Yet another form of polymorphism is provided by the facility known as a
generic (in C++, a template). Generics provide a way of parameterizing a
class or a function by use of a type, just as normal parameters to a function
provide a way to define an algorithm without identifying specific values.

With generics, a name is defined as a type parameter. This parameter
can then be used within the class definition just as if it were a type,
although no properties of the type are known when the class description is
being read by the compiler. At some later point the type parameter is
matched with a specific type and a complete declaration can be formed.

Among object-oriented languages generics are best known in C++, Beta,
and Eiffel. There are proposals to add generic facilities to Java and C#, but
these features are not at present found in those languages. Generics are also
found in functional languages, such as ML or Haskell, and in other non-
object-oriented languages, such as Ada.

18.1 ⊡ Template Functions
To illustrate the idea of a generic, let us first consider how they can be used
with stand-alone functions and then move on to consider generic classes.
Consider the following definition of a C++ function.

Click here to view code image
template <class T> 
T max(T left, T right) { 
      // return largest argument 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0349-01a


   if (left < right) 
     return right; 
   return left; 
}

The name T is a parameter, but it is different from the two value
parameters in the function. Most importantly, T must be a type. (The
keyword class is actually, for this reason, a misnomer, since T can also be
replaced with primitive, nonclass types such as int. For this reason a recent
change to C++ allows the keyword typename to be used in place of class in
this situation.) Within the body of the function, T can be used wherever a
type would be appropriate.

There are limits that constrain what types can be used in place of T, but
these limits are not imposed by the function header but instead by the
function body. In particular, note that whatever type T might be, it must be
possible to compare two instances of the type using the less-than operator.
But any types that satisfy this property can be used. In particular, the
primitive types recognize the relational operators.

To invoke a templated function, the programmer simply writes an
ordinary function call. The template argument is inferred from the argument
types.

Click here to view code image
int a = max(3, 27); // inferred type for T is integer 
double d = max (3.14159q1, 2.753); // inferred type for T is double

Since the same type is used for both arguments, a compiler error is
reported if the arguments do not have the same type or if the type does not
support the less-than operator.

Click here to view code image
double d = max(3, 4.8); // error, types don't match 
string x = "abc"; 
string y = "def"; 
string z = max (x, y); // error, string doesn't support less than

Template functions can be applied to programmer-defined types as long
as the argument types support the operations required by the body of the
method. For example, suppose the programmer has created the following
Fraction abstraction.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0350-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0350-03a


Click here to view code image
class Fraction { 
public: 
   Fraction (int top, int bottom) { t = top; b = bottom; } 
 
   int numerator() { return t; } 
   int denominator() { return b; } 
 
   bool operator < (Fraction & right) 
     { return t * right.b < right.t * b; } 
private: 
   int t, b; 
};

It would then be perfectly acceptable to use the max function with two
fraction values.

Click here to view code image
Fraction x(3, 4); 
Fraction y(7, 8); 
Fraction z = max(x, y);

18.2 ⊡ Template Classes
While template functions are useful, it is more common to see template
arguments applied to entire classes. Here is a template class that defines a
generic box, suitable for holding almost any type of value.

Click here to view code image
template <class T> class Box { 
public: 
   Box (T initial) : value(initial) { } 
   T getValueO { return value; } 
   setValue (T newValue) { value = newValue; } 
private: 
   T value; 
};

Notice how the identifier T can be used anywhere a type name can
appear. For example, one can declare data fields of type T, arguments of

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0350-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0351-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0351-03a


type T, and so on. To create an instance the template argument must be
associated with a type.

Click here to view code image
   Box<int> iBox(7); 
   cout << iBox.getValue(); 
7 
   iBox.setValue(12); 
   cout « iBox.getValue(); 
12

Arguments must match the appropriate type for the receiver.
Click here to view code image
iBox. set Value (3.1415); // ERROR - invalid type

Using a different type with a template class creates a different new class.
Click here to view code image
   Box<double> dBox(2.7); 
   cout « dBox.getValue(); 
2.7 
   dBox.setValue(3.1415); 
   cout « dBox.getValue(); 
3.1415 
   iBox = dBox; // ERROR - mismatched types

Template classes are commonly used to develop container classes, a
problem we will consider in more detail later in the next chapter. For
example, a linked list in C++ could be declared in the following fashion.

Click here to view code image
template <class T> class List { 
public: 
   void add(T); 
   T firstElement(); 
      // data fields 
   T value; 
private: 
   List<T> * nextElement; 
};

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0351-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0351-05a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0351-06a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0352-02a


Just as in the function example, here T is being used as a type parameter.
Each instance of class List holds a value of type T and a pointer to the next
link. The add member function adds a new element to the list, and the value
of the front of the list is returned by the function firstElement.

To create an instance of the class, the user must provide a type value for
the parameter T. The following declares both a list of integer values and a
list of floating-point values.

Click here to view code image
List<int> aList; 
List<double> bList;

Functions, including member functions, can also have template
definitions. Here is the definition of a function for determining the number
of elements in a list regardless of the list type.

Click here to view code image
template <class T> int length(List<T> & aList) 
{ 
   if (aList == 0) 
      return 0; 
   return 
      1 + length(aList.nextElement); 
}

* 18.2.1 Bounded genericity
Templates, as they are implemented in C++, do not place any explicit
restriction on the template argument values; instead, type restrictions are
defined implicitly by the method body. This is illustrated by the following
example.

Click here to view code image
template <class A, class B> 
int countAll (A value, B collection) 
{ 
   int count = 0; 
   A element = B.firstValue(); 
   while (element != null) { 
      if (value.equals(element)) 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0352-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0352-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0353-01a


         count++; 
      element = B.nextValue(); 
   } 
}

A careful examination of the body of the function will reveal that
instances of the class A need to understand the method equals, while
instances of the class B need to implement the methods firstValue and
nextValue. However, it is only the statements in the code and nothing in the
function header that indicates this fact.

Other programming languages that support genericity, such as the
programming language Eiffel, allow the programmer to place restrictions
on the type parameters in much the same way that value parameters can be
typed. For example, in Eiffel a hash table might be described as follows.

Click here to view code image
class 
   HASH.TABLE [ H -> HASHABLE ] 
⋮

The arrow indicates that the argument can only be filled with a subtype
of HASHABLE (that is, a class that inherits from HASHABLE if it is a class or
implements the HASHABLE interface if it is an interface). Bounding the type
arguments allows for slightly better type checking, since the legality of
argument values can be determined at compile time.

* 18.3 ⊡ Inheritance in Template
Arguments
If Box is the templated class shown earlier, and we create a new class
Box[Integer] by filling in the template value, is the new class a child class
of the parent? Some languages, such as Beta, say yes to this question. In
Beta this is termed a virtual binding. But Palsberg and Schwartzbach show
that this can lead to type inconsistencies.

To see why, consider the following definitions. These have been
rewritten from Beta to a more general pseudo-code so as to bring out the
relevant features.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0353-02a


Click here to view code image
class Box [ T : Object ] { 
   public T value; 
   public void set (T arg) { value = arg; } 
} 
 
class IntBox extends Box[Integer] { }

Class IntBox does nothing but fill in the generic argument. It does not
define any new behavior.

Now consider a class DoubleBox that wants to take a generic argument of
type Box.

Click here to view code image
class DoubleBox [ R : Box ] { 
   public R dboxValue; 
   public void set (Object arg) { dboxValue.set(arg); } 
}

The instance value dboxValue must represent something of type Box.
And a Box requires the argument to set to be an Object. Since the template
parameter to Box was also required to be a subtype of Object, there seem to
be no obvious type errors.

But what happens now if we try to create a DoubleBox by filling in the
generic parameter with a value of type IntBox?

Click here to view code image
class TroubleBox extends DoubleBox[IntBox] { }

On the face of it, there should be no problem. But if we now create an
instance of TroubleBox, the only requirement on the method set is that the
argument is an Object. A String, for example, should certainly suffice. But
if you trace the execution, you will find that this ultimately ends by
assigning the string to an instance variable we have assumed to hold only
integers.

Click here to view code image
TroubleBox bigTrouble; 
bigTrouble.set("Hi there"); // oops!

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0354-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0354-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0354-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0354-04a


The only weak link in this argument seems to be the assertion that
Box[Integer] was a subclass of Box, and hence an instance of the former
could be substituted for the latter. Therefore, we are led to the conclusion
that the question of whether Box[Integer] is a subclass of Box is either
meaningless or false but certainly not true.

But what about when the generic parameter has been filled with two
actual class values? If Box is the templated class shown earlier, and class
Child is a subclass of Person, then is there any inheritance relationship
between Box[Person] and Box[Child]? Unless one is willing to perform
run-time checks, the answer, in general, is that there is no relationship at all.
(That is, there can be no relationship without the possibility of type errors
that cannot be detected at compile time.)

To see why, imagine that instead of one, there are two child classes—
say, BoyChild and GirlChild. If we imagine that Box[BoyChild] is a
subclass of Box[Person], then an instance of the latter should be permitted
to be substituted for the former. But then look what problems can arise.

Click here to view code image
Box [Person] aBox = new Box[BoyChild]; // permitted by our assumption 
Person aGirl = new GirlChild; // permitted by substitution 
aBox. set (aGirl); // boychild box now holds a girl

A similar argument can be used to show that the inverted inheritance
cannot be permitted either. This problem is a notable error in the Eiffel type
system, which is otherwise quite secure.

18.3.1 Inheritance and arrays
Although Java does not support generics, it comes close to it with the class
Array. An array can be created using any type as a base.

Click here to view code image
int [ ] intArray = new int[10]; 
BoyChild [ ] boys = new BoyChild[10];

There are a number of situations where it could be argued that the Java
semantics are an improvement over the C++ semantics, most often because
the C++ semantics are incomplete or undefined. However, there is one

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0355-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0355-02a


curious situation where the Java semantics seem more confused than their
C++ counterpart. This concerns an interaction between inheritance and
arrays. Assume we have declared an array of BoyChild values. Java permits
this array to be assigned to a variable that is declared as an array of the
parent class.

Click here to view code image
Person [ ] people = boys; // legal

In effect, Java is asserting that the type BoyChild[ ] (that is, array of boy
children) is a subtype of the type Person[ ]. To see what confusion can
then arise, imagine the following assignment.

Click here to view code image
GirlChild sally = new GirlChild; 
people [2] = sally; // is this legal*

On the face of it, it would seem to certainly be legal to reassign an
element in the array to now hold a GirlChild value. After all, the array is
declared as an array of people, and a GirlChild is a subclass of Person. But
remember that the array in question shares a reference with an array of boy
child values, and by performing this assignment we actually convert one
element in the boy array into a girl.

To prevent this, Java actually performs a run-time check on assignments
to arrays of objects. C++, on the other hand, takes a simpler approach and
simply asserts that even though a BoyChild or a GirlChild may both be a
Person, there is no inheritance or subtype relationship between an array of
BoyChild and an array of Person.

18.4 ⊡ Case Study—Combining Separate
Classes
In Chapter 19 we will consider the use of generics in the development of
container classes, which is probably the most common use for the feature.
In Chapter 20 we will examine the STL, the standard library in C++ that
makes extensive use of templates. In this section we examine a slightly

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0355-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0355-04a


different problem, but one that illustrates the combination of many different
forms of polymorphism.

A common problem encountered in practice is how to combine elements
from two or more different classes when you are not permitted to make
changes to the original classes. For example, the original classes may be
distributed in binary form by two separate vendors. Nevertheless, you
would like to maintain these values in a common representation and
perform common tasks on them. Solving this problem is an excellent
illustration of the different uses for inheritance, templates, overloaded
functions, and the interactions between these mechanisms.

Suppose, for example, that you have Apples and Oranges, both products
of different companies. Apples (Figure 18.1) can print themselves on an
output stream using the method printOn(ostream &), whereas Oranges
(Figure 18.2) perform a similar operation but using a method named
writeTo(ostream &). You want to keep both Apples and Oranges on the
same list and write them out to an output stream using a single polymorphic
function.

Click here to view code image
   // class Apple 
   // created 1987 by Standard Apple of  Ohio 
class Apple { 
public: 
      // constructors 
   Apple () : variety("generic") { } 
   Apple (string & v) : variety (v) { } 
   Apple (const Apple & r) : variety (r.variety) { } 
 
      // apple operations 
   ostream  & printOn (ostream  & out) 
      { return out « "Apple:" « variety; } 
private: 
   string variety; 
};

⊡ Figure 18.1—Class description for Apple

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0357-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0357-02a


   // Orange code 
   // written by Chris (Granny) Smith, 1992 
   // House of  Orange 
class Orange : public Produce { 
public: 
      // constructor 
   Orange () ; 
   void writeTo (ostream & aStream) 
      { aStream « "Orange"; } 
};

⊡ Figure 18.2—Class description for Orange

We can address this problem in a sequence of small steps. Since the
class descriptions for Apples and Oranges are distributed only in binary
form, we cannot add a new member function to these classes. However,
nothing prevents us from writing new ordinary functions that take their
respective types as arguments. By doing so, we can use a single name,
print, for the operation of printing to a stream.

Click here to view code image
void print (const Apple & a, ostream & out) 
{ 
   a.printOn(out); 
} 
 
void print (const Orange & a, ostream &  out) 
{ 
   a.writeTo(out); 
}

This is a small step toward combining Apples and Oranges. We now
have a single common function name, print, that can be used for both data
types.

Click here to view code image
Apple anApple("Rome"); 
Orange anOrange; 
 
   // can print both Apples and Oranges 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0357-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0358-01a


print (anApple, cout); 
print (anOrange, cout);

Unlike Java containers, containers in C++ are homogeneous—they can
only hold values of one type. Thus, to combine Apples and Oranges in the
same container, we need an adapter that will convert the type into a more
suitable data value. We do this first by defining a common parent class that
will describe the behavior we wish all fruit to possess.

Click here to view code image
class Fruit { 
public: 
   virtual void print (ostream &) = 0; 
};

Because the specific implementation of the behavior will be different for
each fruit, we make the description of this function into a pure virtual
method.

Using a template method, we can create a fruit adapter that will take
either an Apple or an Orange and satisfy the fruit interface.

Click here to view code image
template <class T> 
class FruitAdapter : public Fruit { 
public: 
   FruitAdapter (T & f) : theFruit(f) { } 
 
   T & value () { return theFruit; } 
 
   virtual void print (ostream & out) { print(theFruit, out); } 
 
public: 
   T & theFruit; 
};

The template argument allows us to use the adapter with both Apples
and Oranges but always yields a new value that is a subclass of Fruit.

Click here to view code image
Fruit * fruitOne = new FruitAdapter<Apple> (anApple); 
Fruit * fruitTwo = new FruitAdapter<Orange> (anOrange);

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0358-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0358-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0358-04a


Since we now have a common representation for Apples and Oranges, it
is easy to create containers that will hold fruit values.

Click here to view code image
list<Fruit *> fruitList; // make a list of  fruits 
fruitList. insert (f ruitOne); // add an Apple 
fruitList .insert (fruitTwo); // add an Orange

A template function can simplify the creation of the adapter, since the
template argument types are inferred from the parameter values and need
not be specified when a template function is invoked.

Click here to view code image
template <class T> 
Fruit * newFruit (T & f) 
{ 
   return new FruitAdapter<T>(f); 
}

Using the newFruit function, the fruit types will be inferred from the
function arguments and need not be specified explicitly by the programmer.

Click here to view code image
Fruit * fruitThree = newFruit (anApple); 
Fruit * fruitFour = newFruit (anOrange)

Now we have all the elements necessary to maintain both Apples and
Oranges in the same collection—for example, in a list, and to perform
polymorphic operations on these values.

Click here to view code image
Apple anApple("Rome"); 
Orange anOrange; 
 
list<Fruit *> fruitList; // declare list of  pointers to fruits 
 
fruitList.insert(newFruit(anApple)); 
fruitList.insert(newFruit(anOrange)); 
 
list<Fruit *>::iterator start = fruitList.begin(); 
list<Fruit *>::iterator stop = fruitList.end(); 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0359-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0359-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0359-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0359-04a


   // loop over and print out all fruits in container 
for ( ; start != stop; ++start) { 
   Fruit & aFruit = *start; // get current fruit 
   aFruit.print(cout); 
}

Notice how this solution uses all the polymorphic mechanisms we have
discussed: overloaded functions, template classes, template functions,
inheritance, and overriding.

Summary ⊡
A generic is a class or function that is parameterized by a type. In C++
generics are termed templates. Generics provide a powerful alternative to
object-oriented style polymorphism in the development of reusable
abstractions. We will see examples of such abstractions in later chapters.

Further Reading ⊡
The history of the introduction of templates into the programming language
C++ is recounted in [Stroustrup 1994]. The use of generics in Eiffel is
described in [Meyer 1994] or [Joyner 1999]. Generics in Ada 95 are
described in [Feldman 1997]. Another non-object-oriented language that
includes generics is CLU [Liskov 1977]. A good discussion of the
theoretical underpinnings of generics is [Palsberg 1994].

Virtual binding in Beta is explained in [Madsen 1993]. The type conflict
in Beta virtual binding is adapted from [Palsberg 1994].

The major application of templates is in the development of reusable
container classes. We will examine this topic in Chapters 19 and 20.

There are proposals to add generics to Java, but as of this writing (July
2001) none have been formally approved by Sun.

Self-Study Questions ⊡



1. How is the parameterization used by a generic in C++ different from a
parameter to a function?

2. In C++, how are the requirements for a template parameter
determined?

3. How does the bounded genericity in Eiffel differ from template
mechanism in C++?

Exercises ⊡

1. Give an argument similar to that presented in Section 18.3 to show
that if BoyChild and GirlChild are subclasses of Person, Box<Person>
cannot be considered to be a subclass of either Box<BoyChild> or
Box<GirlChild>.

2. Suppose a data structure library contains a linked list abstraction
consisting of a series of links, such as the following.

Click here to view code image
template <class T> class Link { 
public: 
   Link (T v, Link<T> * n) : value(v), next(n) { } 
 
   T value; 
   Link<T> * next; 
};

A lazy student thinks that they might save typing by creating a
subclass that does nothing more than fill in this template argument.

Click here to view code image
class StringLink : public Link<string> { };

Explain what will happen the first time the student tries to iterate
down the list of elements in a collection.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0361-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0361-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch18_images.xhtml#f0361-03a


StringLink * s; 
StringLink * p; 
for (p = s; p != null; p = p->next) ...



Chapter 19

Container Classes

Simple data structures are found at the heart of almost all nontrivial
computer programs. Example data structures include vectors, linked lists,
stacks, queues, binary trees, sets, and dictionaries. Because data structures
are so common, one would expect them to be ideal for development as
reusable components. Indeed, it is possible to create such components, but
there are subtle issues involved that can trap the unwary programmer.

An exploration of the problems in developing reusable container classes
is, for this reason, a good illustration of how the features of a programming
language influence the style of development, as well as a demonstration of
some of the powers and some of the limitations of object-oriented
techniques.

19.1 ⊡ Containers in Dynamically Typed
Languages
Producing reusable container abstractions is considerably easier in a
dynamically typed language, such as Smalltalk, CLOS, or Objective-C, than
it is in a statically typed language. Indeed, dynamically typed languages
usually come with a large collection of data abstractions already developed
—thus freeing the programmer from having to address the container
problem.

As we saw in our earlier discussion on binding times, in a dynamically
typed language it is a value itself that retains knowledge of its type, not the
variable by which it is accessed. Thus, any object can be placed into a



container, and when it is removed, it can be assigned to any variable. The
following, for example, shows an integer and a string being placed into a
Smalltalk array and later removed.

Click here to view code image
anArray <- Array new: 2. 
anArray at: 1 put: 'abc'. 
anArray at: 2 put: 12.3. 
theString <- anArray at: 1. 
theNumber <- anArray at: 2. 
theString <- theString characterAt: 2. 
theNumber <- theNumber * 7.

Notice how a dynamic language permits values of different classes to be
held in the same container. Such a collection is sometimes termed a
heterogeneous collection, as opposed to a homogeneous collection where
values are all of the same type. Statically typed languages have difficulty
forming truly heterogeneous collections, although they can approximate
them through the use of the principle of substitution.

19.1.1 Containers in Smalltalk-80
The software reuse techniques of inheritance and composition can be used
to advantage in the creation of collection classes. To illustrate, consider the
Smalltalk-80 classes Collection, Set, Bag, and Dictionary. These four
classes are linked in the inheritance hierarchy shown in Figure 19.1.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0364-01a


 

⊡ Figure 19.1—A portion of the collection inheritance hierarchy in
Smalltalk-80



The parent class Collection is shown as abstract, since some of the
methods (those shown in italics) must be redefined in child classes. The
subclass Set represents an unordered collection of unique elements. It
redefines the abstract methods for addition and removal that were inherited
from Collection, as well as adding new functionality (not shown).

The class Dictionary represents a collection of key/value pairs.
Elements can be inserted into the dictionary using a specific key, and the
user can search for the element associated with a key. The dictionary is
implemented as a Set where each element of the set is an Association
representing a single key/value pair. By defining Dictionary as a subclass
of Set, the methods that do not deal with the keys directly can be inherited
without change from the parent. (Using the categories from Chapter 8, this
is subclassing for construction.)

A third type of collection is a Bag. Conceptually, a Bag is similar to a
Set, only values are allowed to be entered into the collection more than
once. To implement this behavior, the class Bag uses composition,
maintaining an internal value of type Dictionary. The keys in the
dictionary represent the elements inserted into the Bag, whereas the value
associated with the key is the number of times the item appears in the Bag.
In this fashion only one instance of each element is actually stored in the
container, but as items are inserted and removed, the counts are updated
appropriately.

Note the variety of techniques that are being used in just these four
classes. We have inheritance as a mechanism of specialization (Set from
Collection and Bag from Collection), the use of deferred methods (such as
add:), inheritance as a mechanism of construction (Dictionary from Set),
and composition (Bag and Dictionary).

19.2 ⊡ Containers in Statically Typed
Languages
It is clear from the countless data structure textbooks that have appeared
over the years that container abstractions can be written in almost any
language, including statically typed languages. The problem with statically
typed languages is not that they preclude the development of container



classes but that static typing interferes with software reuse. That is, it is
difficult to write a container class in such a way that it can be easily carried
from one project to the next and still retain the benefits of static typing.

In the following section we first describe in detail the origin of this
tension between static typing and software reuse. After considering the
problem, we then explore how object-oriented software techniques have
been used to overcome this difficulty. In particular, we will consider three
different solutions.

Using the principle of substitution to store values in a container and
combine with downcasting (reverse polymorphism) when values are
removed
Again using the principle of substitution but avoiding downcasting
through the use of overriding
Using generics or templates

19.2.1 The tension between typing and reuse
To place the problem in perspective, we must first consider how data
structures are typically implemented in a conventional language, such as C
or Pascal. We will use a linked list of integers as our example abstraction. In
Pascal a linked list might be formed out of two types of records. The first is
the list header itself, which maintains a pointer to the first link.

Click here to view code image
type 
   List = Record 
      firstLink : t Link; 
      end;

A list header can be statically allocated, since the amount of storage it
maintains (namely, one pointer) remains fixed throughout execution. The
second record is used to maintain the actual values themselves. Each Link
node maintains one integer value and a pointer to the next link.

Click here to view code image
type 
   Link = Record 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0366-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0366-02a


      value : integer; 
      nextElement : ↑ Link; 
    end;

Link nodes must be dynamically allocated and released, although such
details can be largely hidden from the user of the list abstraction through the
development of functions, such as a function to add a new value to the front
of the list, return and remove the first element in a list, and so on.

Click here to view code image
procedure addToList (var aList : List; newVal : integer); 
var (* add a new value to a list *) 
   newLink : ↑ Link; 
begin 
     (* create and initialize a new link *) 
   new (newLink); 
   newLink  ↑. value : = newVal; 
     (* place it at the front of the list *) 
   newLink  ↑ .nextElement := aList .firstLink; 
   aList.firstLink = newLink; 
end; 
 
function firstElement (var aList : List) : integer; 
var (* remove and return first element from a list *) 
   firstNode : ↑ Link; 
begin 
   firstNode := aList.firstLink; 
   firstElement := firstNode ↑.value; 
   aList.firstLink := firstNode ↑.nextElement; 
   dispose (firstNode); 
end;

Our concern here is not with the details of how a linked list might be
implemented (such details can be found in any data structure textbook) but
with the question of reusability. Suppose our programmer has implemented
the preceding linked-list abstraction and now wishes to maintain, in
addition to a linked list of integers, a linked list of real numbers.

The problem is that the programming language is too strongly typed.
The data type integer used for the value being held by the link is an
intrinsic part of the definition. The only way it can be replaced by a
different type is through the creation of a totally new data type—for
example, RealLink—as well as a totally new list header, RealList, and

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0367-01a


totally new routines for accessing and manipulating the data structures
(addToRealList and firstElementlnRealList, for example).

Now, it is true that something like a variant record (called a union in C)
could be used to permit a single list abstraction to hold both integers and
real numbers. Indeed, a variant record would permit one to define a
heterogeneous list that contains both integers and real numbers. But variant
records solve only part of the problem. It is not possible to define a function
that returns a variant record, for example, so one still needs to write
separate functions for returning the first element in a list. Furthermore, a
variant record can have only a finite number of possible alternatives. What
happens when the next project requires a totally new type of list, such as a
list of characters?

In short, a language that is too strongly typed does not provide the
facilities necessary to create and manipulate truly reusable container
abstractions.1 The question, then, is do the additional facilities provided by
object-oriented languages yield any new way to overcome this problem?
The principal new tool found in an object-oriented language that is not
found in a conventional language is the principle of substitution. And
indeed, the principle of substitution can be used in at least two different
ways to overcome the problem of overly strong typing.

1. There are those who argue that it is not strong typing that is at fault here but the outmoded type
systems found in languages such as Pascal and C. More recent languages such as ML have found a
way to preserve strong typing and still allow the creation of container classes.

19.2.2 Substitution and downcasting
It is tempting to think that substitutability by itself can solve the container
class problem for statically typed languages. Recall from Chapter 6 that the
principle of substitution claims that a variable declared as maintaining some
object type can, in fact, be assigned a value derived from a subclass of the
variable’s declared class.

The principle of substitution is most valuable in languages that have a
single class at the root of the inheritance hierarchy. Recall that this was true
for both Java (the root class is Object) and Delphi (the root class is
TObject). So we see that in both of these languages containers are provided



that store elements in variables declared as the root class. A Java Vector,
for example, stores its elements in an array of Object values.

While this purposeful suppression of typing information solves one
problem, it comes only at the cost of introducing another. As we have
noted, any value can be assigned to a variable of type Object (in Java) or
TObject (in Delphi). But when values are removed from the container, the
programmer typically wants them restored to their original type. Since the
removal method can only declare its result as an Object, a casting
expression must be used to restore the original data type, as in the
following code fragment in Java.

Click here to view code image
Vector aVector = new Vector(); 
Cat Felice = new Cat(); 
aVector.addElement(Felice); 
   ⋮ 
   // cast used to convert Object value to Cat 
Cat animal = (Cat) aVector.elementAt(0);

A problem with this approach is the detection of typing errors. Suppose
a programmer creates a container that he or she thinks will maintain values
of a certain type—for example, class Cat. By accident a value of the wrong
type—for example, a Dog—is placed into the container. The error cannot be
discovered by any static compile time analysis of the program. Worse, the
resulting run-time error will not be discovered at the point of insertion
(which is where the logic error is being committed) but at the point of
removal, when the attempt to perform the downcast will result in an casting
exception being thrown.

Click here to view code image
   // make a collection of  Cat values 
Vector catCollection = new Vector(); 
Cat aCat = new Cat(); 
Dog aDog = new Dog(); 
catCollection.addElement(aCat); // no problem 
   // although the following incorrectly inserts 
   a value of  type Dog into the collection, 
   //compiler error will ensue 
catCollection.addElement(aDog); 
   ⋮ 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0368-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0369-01a


   // it is only here, when the element is removed and an 
   // attempt is made to convert to type Cat, that 
   // a run-time error is detected. 
Cat newCat = (Cat) catCollection.elementAt(1);

Heterogeneous collections
Because Java collections store their values in variables declared as type
Object, in principle it is easy to create heterogeneous collections. But in
practice the problem is not placing the values into the collections but taking
them back out again. As we have noted, normally a value must be downcast
to a more specific type after it is removed from the container. In a
heterogeneous collection this type must first be tested before it can be cast,
as shown in the following example.

Click here to view code image
   // make a stack that contains both cats and dogs 
Stack stk = new Stack(); 
stk.addElement(new Cat()); 
stk.addElement(new Dog()); 
   //⋮ adding more values 
   // now do something with Cat values 
if (stk.peekO instanceof Cat) { 
      // do  conversion to Cat 
   Cat aCat = (Cat) stk.popO; 
   // ⋮ also do something with cat values 
   // now do something with Dog values 
} else if (stk.peek() instanceof Dog) { 
      // do conversion to Dog 
   Dog aDog = (Dog) stk.pop(); 
   // ⋮do something with Dog value 
}

While the use of instanceof is legal, it is often considered bad form or
an indication of design flaws, since most uses can be better served by
overridden methods.

In certain situations, an alternative is to try the conversion and use the
fact that Java will throw an exception if the cast is illegal.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0369-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0370-02a


try { 
   Cat aCat = (Cat) stk.pop(); 
   //⋮ handle case where it is a cat 
} catch (ClassCastException e) { 
   //⋮ handle non-cat case 
}

Container classes in Delphi
A popular container collection in Delphi, the Spider classes marketed by
Interval Software, has an interesting solution to the error detection problem.
Although values are still stored internally in variables of type TObject, a
class value can be given as argument to the constructor when the collection
is created. As each element is inserted, the class value is used to ensure the
element matches the desired type. If it is not, an error exception is raised.
Since this error occurs at the point of insertion, not at the point of removal,
it makes the discovery of logic errors much easier.

Click here to view code image
var 
   stack : TStack; 
   aCat : TCat; 
   aDog : TDog; 
 
begin 
      // create a stack that can hold only TCat values 
   stack := TStack.Create (TCat); 
   stack.push (aCat); // ok 
   stack, push (aDog); // will raise exception 
   ⋮ 
end

Heterogeneous collections can be accommodated by using a more
general class value. For example, if both cats and dogs must be held in the
same list, the collection can be created using the class value TMammal (or
TAnimal).

Although a check was performed as the value was inserted into the
container, it is still necessary to cast the value back to the correct type when
it is accessed or removed, since the declared results of these operations is
only TObject. As we saw in Chapter 17, Delphi provides two different ways

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0370-03a


to perform this operation. The as operator performs a check to ensure that
the conversion is valid.

Click here to view code image
aCat := stack.Pop as TCat;

The alternative syntax uses the name of the child class as if it were a
function call. This form, however, does not check the veracity of the cast
and so should only be used when you are absolutely certain no errors can
occur.

Click here to view code image
aCat := TCat(stack.Pop);

Storing non-object data in containers
Java containers can store any value that is ultimately derived from class
Object. The Spider container classes in Delphi can store any value that is
ultimately derived from TObject. Unfortunately, in both of these languages
the primitive values, such as integers and floating point numbers, are not
objects in the technical sense. Thus, primitive values cannot be stored
directly in a container in these languages.

In both cases the solution is to provide a series of auxiliary classes that
do little more than act as a box that can hold a single primitive value. In
Java these are called wrapper classes, and in the Spider Delphi containers
they are called bucket classes. The following illustrates how a double
precision number can be stored and later removed from a Java Vector.

Click here to view code image
Vector aVector = new Vector(); 
   // create a wrapper to hold a real number 
aVector add: (new Double(12.34)); 
   // ⋮ 
   // later we first find the Double object 
Double dwrap = (Double) aVector.elementAt(0); 
   // then unwrap to get original value 
double dval = dwrap.doubleValue();

Table 19.1 gives the wrapper classes for Java and for the Spider data
structure classes in Delphi associated with the more common primitive

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0371-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0371-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0371-03a


types. (The use of the term wrapper in this context should not be confused
with wrappers in CLOS, which we discussed in Chapter 16, or with the
wrapper design pattern, which we will discuss in Chapter 24.)

Java Delphi

boolean Boolean TBooleanBucket

byte Byte TByteBucket

char Character TCharBucket

double Double TRealBucket

int Integer TIntegerBucket

long integer Long TLonglntBucket

short integer Short TShortlntBucket

⊡ Table 19.1—Auxiliary classes used to store primitive
types

The C# language uses wrappers but hides them from the programmer.
When a primitive type is assigned to an object value, an implicit internal
wrapper is created through a process known as boxing. When the resulting
object value is once more used as a primitive type, it is automatically
unboxed. The result is that as far as the programmer is concerned, it appears
that primitive values are simply objects.

19.2.3 Using substitution and overriding
A cast expression is often considered to be not truly object-oriented, since it
requires the programmer to name an explicit type in the code. In many
situations explicit casts can be avoided through the use of substitution
combined with method overriding. However, in the case of container
classes this is possible only when the original developer knows how an
object will be used, even if they do not know what type of value will be



stored in the container. Thus, this technique is applicable only in a few
restricted situations.

One example is found in the code in Java used to respond to user
initiated events, such as mouse presses. In Java, events are handled by
creating a listener object and attaching it to a window. When an event
occurs in the given window, all the registered listeners are notified of the
event. A listener must match a fixed specification. There are a number of
different types of specifications corresponding to the variety of events that
can occur.

Action Listener Change in graphical component state

ItemListener Changes to selected item component

KeyListener Key press events

MouseListener Mouse presses and releases

MouseMotionListener Mouse motions

TextListener Text component changes

WindowListener Window actions

Because many listeners are used for a large number of different actions,
the Java library also provides a collection of adapters that implements the
interface and defines an empty action for each possibility. To create a
listener the Java programmer defines a class that implements this interface
and overrides key methods. An example is the following, which subclasses
from the WindowAdapter class (which in turn implements the
WindowListener interface) and overrides the method windowClosing.

Click here to view code image
public class CloseQuit extends WindowAdapter { 
      // execute when the user clicks in the close box 
   public void windowClosing (WindowEvent e) { 
      System. exit (0); // halt the program 
   } 
}

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0373-01a


All the listeners attached to a window are stored in a linked list. The
Window class maintains the view that these values are all instances of
WindowListener (or one of the other listener hierarchies). In reality, they are
instances of user-defined classes that implement the WindowListener
interface and are only stored on the list through the principle of
substitution. When an event occurs, the Window passes a message to each
listener, “thinking” that it is an instance of WindowListener. But the method
is overridden, and the message is actually handled by the user defined class.

Notice how this achieves the desired effect without the need to explicitly
cast the listener value to a new type. On the negative side, this technique is
only applicable when the programmer has precise information concerning
how a value stored in the container will be used, even if the programmer
does not know the type for the value.

Common link classes
A technique that has features in common with both of the two previous
approaches involves the creation of a linked list data abstraction in which
elements must subclass themselves from a fixed Link class.

Click here to view code image
class Link { // all elements must subclass link 
public: 
   Link * next; 
   Link () : next(O) { } 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0374-01a


   Link (Link * n) : next(n) { } 
} 
 
class RealLink : public Link { // link containing a number 
public: 
   RealLink (double r) : Link(), value(r) { } 
   double value; 
}

We examined some of the implications of this design in Chapter 13. The
Link class does not include the data values, and hence we avoid the
problem of the Pascal abstraction described at the beginning of this chapter.
Nevertheless, to do almost anything with a container developed using this
technique requires downcasting a link to find the actual child class. Since
so many standard data abstraction classes are available, nowadays it seems
better to avoid this approach to implementing lists.

19.2.4 Parameterized classes
The previous two solutions to the container abstraction problem both
employed the principle of substitution. However, this technique is only
suitable if there is a parent class that can be used as the basis for the
substitution. If a language has a single root as the ultimate ancestor of all
classes, as does Java, then that is the logical candidate for the parent type.
But what about a language such as C++, where there is no single root class?

The language C++ gets around this difficulty by introducing a new
language feature, which in turn permits an entirely different solution to the
container class problem. This new feature is the ability to define classes
that are parameterized by type arguments. As we saw in Chapter 17, such
classes are called templates in C++.

A class template gives the programmer the ability to define a data type
in which some type information is purposely left unspecified, to be filled in
at a later time. One way to think of this is that the class definition has been
parameterized in a manner similar to a procedure or function. Just as
several different calls on the same function can all pass different argument
values through the parameter list, different instantiations of a parameterized
class can fill in the type information in different ways.



A parameterized class definition for a linked list abstraction might be
written in C++ in the following way.

Click here to view code image
template<class T> class List { 
public: 
   void addElement (T newValue); 
   T firstElement (); 
 
private: 
   Link<T> * firstLink; 
 
   private class Link { // nested class 
   public: 
      T value; 
      Link * nextLink; 
 
   Link (T v, Link * n) : value(v), nextLink(n) { } 
   }; 
};

Within the class template, the template argument (T, in this case) can be
used as a type name. Thus, one can declare variables of type T, have
functions return values of type T, and so on.

Member functions that define template operations must also be declared
as template.

Click here to view code image
template<class T> 
void List<T>::addElement (T newValue) 
{ 
   firstLink = new Link<T> (newValue, firstLink); 
} 
 
template<class T> 
T List<T>::firstElement () 
{ 
   Link * first = firstLink; 
   T result = first->value; 
   firstLink = first->nextLink; 
   delete first; 
   return result; 
}

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0375-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0375-02a


The user creates different types of lists by filling in the parameterized
type values with specific types. For example, the following creates a list of
integer values as well as a list of real numbers.

Click here to view code image
List<int>    integer/List; 
List<double>  doubleList;

In this fashion, homogeneous lists of any type can be created.
A template is an efficient solution to the container class problem. It

allows truly reusable, general-purpose components to be created and
manipulated and yet still retain the type safety, which is the goal of
statically typed languages. On the other hand, there are drawbacks to the
use of templates. They do not permit the definition of heterogeneous lists,
since all elements must match the declared type. More importantly,
implementations of the template mechanism vary greatly in their ease of
use and the quality of code they generate. Most implementations act as little
more than sophisticated macros, generating for each new type of element an
entirely new class definition as well as entirely new method bodies.
Needless to say, if several different element types are used in the same
program, this can result in a considerable growth in code size.

Nevertheless, because templates free the programmer from so much
conceptual drudgery (namely, rewriting data structure classes in every new
program), their appeal is widespread. In the next chapter we will examine
one such library.

* 19.3 ⊡ Restricting Element Types
Container classes can be divided into three major groups that are
differentiated by the requirements they place on their element types. The
simplest are containers such as linked lists or vectors. These require only
that elements have the ability to be compared against other elements for
equality. Slightly more complicated are the ordered containers, such as
binary search trees or sorted lists. These require that elements have the
ability to be compared against other elements for ordering. A third category
of container are hash tables. These require that every element have the
ability to determine an integer value, called the hash of the element.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0376-01a


Once again we have the situation where there is a simple interface (the
relational test or the hash function) and a wide range of implementations
(the technique used to determine a hash value for a character, for example,
will be very different from that used to compute the hash value for a
complex number). Languages and libraries exhibit a wide range of
solutions to this problem.

In languages that have a single root class at the top of the inheritance
hierarchy, such as Smalltalk or Java, it is common for operations to have a
default implementation in the root class and allow for this default
implementation to be overridden in child classes. Thus, in Smalltalk, for
example, the class Object contains the methods == and hash. In Java the
corresponding methods are equals and hashValue. Since these methods are
defined in Object, they can be applied to every object value. Since they can
be overridden, classes can supply their own specialized meaning.

Nevertheless, it is useful to allow the programmer to supply their own
comparison algorithm for sorting elements in an ordered container. In
Smalltalk this is accomplished by passing a block to the instance creation
method.

Click here to view code image
aCollection <- SortedCollection sortBlock: [ :a :b I a <= b ]

In Java, the programmer can specify ordering by defining a class that
implements the Comparator interface.

Click here to view code image
public interface Comparator { 
   public int compare (Object left, Object right); 
}

The method compare returns the integer —1 if the left argument is
smaller than the right, 0 if they are equal, and 1 if the left is larger than the
right. The user must create a class that implements this interface. The
following, for example, is a comparator that will test two instances of the
wrapper class Double. Note how the arguments are declared as Object and
must be downcast to the appropriate type before the actual comparison can
be performed.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0377-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0377-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0377-03a


public class DoubleCompare implements Comparator { 
  public int compare (Object left, Object right) { 
      // first downcast the arguments 
    Double dleft = (Double) left; 
    Double dright = (Double) right; 
      // then do the comparison 
    if (dleft.doubleValue() == dright.doubleValue()) 
      return 0; 
    if (dleft.doubleValue() < dright.doubleValue()) 
      return -1; 
    return 1; 
  } 
}

A comparator object is then passed to the constructor when an ordered
collection is created.

Click here to view code image
  // create a new ordered collection 
SortedSet aCollection = new TreeSet(new DoubleCompare());

The Delphi Spider classes use a similar technique.
In the previous section we saw how template container classes also

restrict the type of values they can handle. Unbounded template classes,
such as those found in C++, define implicitly the requirements for element
types. This implicit requirement derives from the functions used in the
body of the methods for the container. Bounded generics, such as are found
in Eiffel, explicitly place restrictions on the types of elements that
containers can hold.

Some developers of data structure classes prefer to place responsibility
for comparisons and hash values in the objects themselves rather than in the
container. This is made more difficult if there is no single root class or if, as
in Delphi, the root class does not provide all the necessary functionality. A
developer of data structure classes in Delphi, for example, might insist that
to be held, elements must implement an interface such as the following.

Click here to view code image
type 
  TContainable = interface 
    public 
      function compareTo (const right : TContainable) : integer; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0377-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0378-01a


      function hashValue : integer; 
  end;

This is in some respects a combination of the techniques described in
Sections 19.2.2 and 19.2.3. The container itself can invoke the methods
compareTo and hashValue without needing to execute a cast. However, the
user must still cast values to their correct type when they are accessed or
removed from the container.

19.4 ⊡ Element Traversal
Regardless of whether a language is statically typed or dynamically typed,
another difficult problem that must be handled in order to create truly useful
container abstractions is the task of element traversal. The problem of
element traversal is best understood in the context of a multiperson
development project. Suppose there are two programmers named Alice and
Bob. Alice must create a data abstraction—for example, a set implemented
using a red-black tree—and Bob is going to use the abstraction. Bob need
only know the interface in order to add elements to the container and
remove elements from the container. But now imagine that Bob wants to
write a loop that will iterate over the elements of the container. How can
Bob perform this task without any explicit knowledge of the internal
structure of the container class?

We can see the problem in concrete terms by again considering the
Pascal linked list data type we introduced in Section 19.2.1. A typical loop
that prints the values in a list might be written as follows.

Click here to view code image
var 
   aList : List; (* the list being manipulated *) 
   p : Link; (* a pointer for the loop *) 
 
begin 
   ⋮ 
   p := aList.firstLink; 
   while (p <> nil) do begin 
      writeln (p.value); 
      p : = p ↑.nextElement; 
   end;

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0379-01a


Note that to create a loop it was necessary to introduce an extraneous
variable, here named p. Furthermore, this variable had to be of type Link, a
data type we were taking pains to hide, and the loop itself required access to
the link fields in the list, which we were also attempting to hide.

Once again we can ask whether the new mechanisms provided by
object-oriented languages permit a solution to this problem that was not
available in more conventional languages. And once again, the answer is
yes. There are two solutions we will examine.

An iterator uses the property that in an object-oriented language it is
possible to have many different implementations for the same
interface. An iterator is an object that implements an interface
designed specifically for forming a loop.
A visitor is an alternative approach that is possible when the
programming language provides an easy way to encapsulate a series
of actions and hand them to the container.

19.4.1 Iterator loops
The concept of an iterator relies on the ability to have many different
implementations match the same interface. The iterator interface is
designed to be easy to remember and flexible enough to work with a wide
variety of containers. In Java, for example, the iterator interface (called an
Enumeration) consists of just two methods.2 The method hasMoreElements
returns true if the loop should continue, and the method nextElement yields
the next element in the sequence. A typical loop looks like the following.

2. Java version 1.2 introduced a new class Iterator. This class adds a third method that removes
the current element from the container.

Click here to view code image
   // create the iterator object 
Enumeration e = aList.elements (); 
   // then do the loop 
while (e.hasMoreElements()) { 
   Object obj = e.nextElement(); 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0380-01a


   // ⋮ do something with obj 
}

Every container class in the Java library implements a method named
elements, which returns a value that matches the specification defined by
the class Enumeration. In fact, however, the actual value returned will differ
from one collection to another, since each different type of collection
requires its own set of actions to perform an enumeration. Thus, a
LinkedList, for example, will return a ListIterator, which is a data type
that is derived from Enumeration. Because many different implementations
can match the same specification, the loop used to access the elements in a
container will look exactly the same, regardless of the type of container
being examined.

The language C++ also uses the concept of an iterator. However,
iterators in C++ are manipulated in pairs, in much the same fashion as
pointers. (This is perhaps to be expected, since pointers are such an
important part of the language.) The first iterator value specifies the current
element, while the second iterator specifies the end of the loop. The
interface for iterators includes the following three operators.

Operation Purpose Example

== Compare two iterators for equality start == stop

++ Advance iterator to next element start++

* Return value referenced by iterator * start

A typical iterator loop looks something like the following.
Click here to view code image
   // create starting and stopping iterators 
list<string>: : iterator start = aList .begin() ; 
list<string>::iterator stop = aList.end(); 
   // then do the loop 
for ( ; start != stop; start++ ) { 
   string value = *start; // get the value 
   //⋮ do something with the value 
}

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0380-02a


Although the interfaces are different, in both languages the key idea is
that each container can provide an implementation of the iterator interface
that is specific to the container. A method in the container class returns a
value that is more specialized than its type signature might indicate. The
methods begin and end in each of the C++ STL containers return an iterator
appropriate to the container.

The language C# adds a further layer of syntax on top of the
enumeration. A foreach statement that will cycle through the elements of a
container can be written as follows.

Click here to view code image
foreach (value in container) 
{ 
   ⋮// do something with value 
}

Internally the compiler converts the statement into the following:
Click here to view code image
IEnumerator enumerator = container.GetEnumerator(); 
while (enumerator .GetNext()) 
{ 
   value = (ElementType) enumerator.Current; 
   ⋮  // do something with value 
}

The statement will work with programmer-defined container classes as
well as those in the system library. The programmer must define the
method GetEnumerator that will return a value that satisfies the IEnumerator
interface. The methods GetNext and Current in this interface are similar to
the methods hasMoreElements and nextElement in the Java class
Enumeration.

It is indeed true that in all of these examples the enumerator classes
must have intimate knowledge of the container over which they are
looping. An iterator for a linked list, for example, must know about the link
classes that are used in the implementation. But since the iterator classes
are written by the same programmer who developed the abstraction, and
these internal details are not exposed by the interface, the key principle of
information hiding is not being violated. (Frequently techniques such as

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0381-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0381-02a


friends or inner classes, both of which are discussed in Chapter 23, are
necessary in order to link a container and its iterator.)

19.4.2 The visitor approach
An alternative solution to the problem of iteration is possible if the
programming language provides a way to bundle a sequence of actions and
hand them to the container—for example, in the form of a function. The
container can then take the bundle and execute the actions on each element
of the collection in turn.

This technique is used in the language Smalltalk. A Block in Smalltalk is
a series of statements enclosed in square brackets, which can optionally
begin with a sequence of argument values. In essence, a block is a simple
way to create an unnamed function. To iterate over a collection, the
programmer uses the method do:, passing as argument a one-argument
block containing the action to be performed.

Click here to view code image
aList do: [ :x I ('element is' + x) print ]

The container executes the block repeatedly, passing each element in the
collection as argument in turn.

The same idea is also possible in C++ as an alternative to the use of
iterators in that language. A function object is an object that implements the
parentheses operator and hence can be used both as an object (for example,
it can be stored in a variable) and as a function. For example, a simple
function object might just print its argument.

Click here to view code image
class printingObject { 
public: 
   void operator () (int x) 
   { 
      cout « "value is " « x « endl; 
   } 
};

The generic function for_each takes a pair of iterators and a function
object. It executes the function object on each element specified by the

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0382-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0382-02a


iterator.
Click here to view code image
printingObject printer; // create an instance of  the function object 
for_each (aList.begin(), aList. end() , printer);

Often the argument will be specified by a nameless temporary, using the
ability in C++ to create a new value by simply naming the class.

Click here to view code image
for.each (aList.begin(), aList.end(), printingObject());

In the Spider classes in Delphi, looping is performed in a similar fashion
using the method ForEachCallMethod. The following is an example.

Click here to view code image
var aList : LinkedList; 
 
procedure PrintingObject 
   (const Obj : TObject, const additionalData : Longlnt); 
begin 
   writeln("Value is", Obj); 
end 
 
begin 
   ⋮ 
   ⋮aList.ForEachCallMethod (PrintingObject, 0); 
end;

The second argument can be used to pass additional data from one
invocation to the next. Use of this argument frequently eliminates the
necessity of introducing global variables.

Premature termination and parallel looping
It is natural to compare the two different approaches to looping (iterators
and visitors) and to ask if there are problems that are more easily addressed
using one form instead of the other. And indeed, two common problems can
be identified that are both more easily addressed using the iterator approach
than using the visitor technique.

The first situation arises when it is desirable to halt a loop before it has
enumerated the entire range of values. This might occur, for example, if one

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0382-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0382-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0382-05a


wanted to find the first element in a collection that satisfied a given
condition. Such a loop is easy to write using an enumerator and the ability
to break a loop before it has completed.

Click here to view code image
Enumeration e = aList.elements(); 
while (e.hasMoreElements()) { 
   Object obj = e.nextElement(); 
   if (... obj satisfies condition ...) 
      break; // break out of  loop 
}

None of the visitor mechanisms allow the user to halt an iteration
prematurely, although the C++ STL library does provide a specialized form
of visitor designed for just this type of search (see the next section).

The second common situation in which iterators seem to have an edge
over visitors occurs when it is necessary to iterate over two collections in
parallel, operating on them element by element. This is easily accomplished
by simply combining the ending conditions for two iterators.

Click here to view code image
Enumeration e = listOne.elements(); 
Enumeration f = listTwo.elements(); 
while (e.hasMoreElements() && f.hasMoreElements()) { 
   Object objOne = e.nextElement(); 
   Object objTwo = f.nextElement(); 
   //⋮ operate on objOne and objTwo 
}

The equivalent action cannot be achieved using visitors without writing
a special-purpose parallel visitor routine.

Other loop-like activities
Languages that use the visitor mechanism, such as Smalltalk and C++,
frequently extend the model to provide other functionality that is based on
looping. For example, in Smalltalk it is simple to create a computation in
which every element is operated on in turn to produce a single final result.
An example of such a computation might be a summation of the elements
of the collection. To form this expression, the base element (the identity,

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0383-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0383-03a


such as zero for a summation) is combined with a two-argument block that
defines the computation used to generate the intermediate values.

Click here to view code image
sum <- aList inject: 0 into: [:x :y I x + y ].

Each element if the collection (here, a list) is considered in turn. The block
is evaluated using the current result (initially, the identity argument) and the
collection element. The final result will be the value yielded by the block
after the last element is considered.

Another example, this time from C++, is the generic function find_if.
Just as with for_each, this function takes as argument a pair of iterators and
a function object. With this function, however, the function object must
return a Boolean (true/false) value. Each element of the collection is tested
in turn. When the first element for which the function object returns true is
encountered, the function will halt, and the corresponding iterator will be
returned. In this way the first element that satisfies a property can be found.
If no element satisfying the property is found, the ending iterator is
returned.

Click here to view code image
class BiggerThanl2 { 
// function object that finds a value larger than 12 
public: 
   bool operator () (int x) 
   { 
      return x > 12; 
   } 
} 
list<int>:: iterator start = aList.begin(); 
list<int>::iterator stop = aList.end(); 
start = find_if (start, stop, BiggerThanl2()); 
if (start != stop) // found it 
   ⋮

Summary ⊡
The development of reusable container abstractions illustrates both the
power and the limitation of object-oriented techniques. Container classes

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0384-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0384-03a


are relatively easy to define in dynamically typed languages, but as is true
of many other features of such languages, the dynamic typing hinders the
detection of typing errors at compile time. Statically typed languages have
better static error detection abilities, but the static typing interferes with the
development of reusable abstractions.

 Advantages Disadvantages

Dynamically Easy to define Poor static

Typed 
Language

reusable 
classes error detection

Statically Good static Strong typing complicates

Typed 
Language

error 
detection

developing reusable 
abstractions

One way to resolve the conflict between static typing and reusability is
to use the principle of substitution. In this chapter we examined two
different approaches that both use this mechanism. The first stores values in
variables of type Object (or TObject in Delphi), which is the root of the
inheritance hierarchy. By the principle of substitution any object value can
be stored in such a variable but must be downcast to the correct type when
it is accessed or removed from the container. The second approach stores
elements in a specific class type and uses substitution combined with
method overriding to specialize the behavior.

 Advantages Disadvantages

Substitution and 
Downcasting

Works for 
most objects

Specific types required 
in cast expressions

Substitution and 
Method Overriding

No cast 
expressions

Only works with 
methods known in 
advance

There are negatives to both approaches. Cast expressions, required for
down-casting, require putting explicit types into code. Having to name
explicit types is often considered to violate the spirit of the object-oriented



philosophy. On the other hand, using method overriding is only possible if
the developer of the container abstraction can predict ahead of time how the
objects stored in the container will be used.

An alternative approach that does not use the principle of substitution is
the mechanism of template, or generic, classes. A template can be thought
of as a type parameter. When using templates, the developer of a container
abstraction need not know the type of elements that will be stored in the
container. The final element types must then be specified by the user of the
containers. Conceptually templates provide an elegant solution to the
container class problem, but in practice the implementation of the template
mechanism tends to be exceedingly complex, and the error messages that
result from incorrect usage are often cryptic and misleading.

 Advantages Disadvantages

Template Works with all Implementation is complex

(or Generic) data types Error messages often cryptic

An entirely different problem that must be addressed in the creation of
reusable container abstractions is the issue of iteration. How can the
developer of a container class allow users to form a loop that will iterate
over the elements in the container without exposing the inner
implementation details for the container?

In the object-oriented languages we are considering, there are two broad
categories of solution to this problem. The first is to form iterators. An
iterator is a specialized object whose sole purpose is to provide a means of
forming a loop. Using the fact that many different implementations can be
provided for the same interface, containers can each define a specialized
iterator that implements a common interface in a unique way. The same
type of loop can then be written for any container.

An alternative to an iterator is a visitor. The visitor mechanism bundles
the actions to be performed and passes them to the container, which in turn
executes the actions using each element as argument in turn. The visitor is
not as general as an iterator and requires the ability to encapsulate a
sequence of statements into a bundle.



Further Reading ⊡
The data structure textbooks in C++ and Java with which I am most

familiar are [Budd 1998] and [Budd 2000], respectively. Collection classes
in Smalltalk80 are described in [Goldberg 1983]. A discussion of how
bounded generics are used in Eiffel data structures is presented in [Meyer
1994]. Kerman [Kerman 2002] is one of the few data structures textbooks
to use Delphi.

The term visitor is from the design pattern of the same name. We will
examine design patterns in Chapter 24.

As I noted in the Chapter 10 Further Reading section, many see the
container problem not as a failure of strong typing, but as a weakness in the
typing systems for conventional languages. More modern languages, such
as Haskell [Thompson 1996] or ML, permit types such as “list of a,” where
a is left unspecified. This solves the container problem while preserving
strong typing.

Self-Study Questions ⊡

1. What is the difference between a homogeneous collection and a
heterogeneous collection?

2. Explain the conflict that arises between static typing and the creation
of reusable container abstractions.

3. One solution to the container class problem is to store values using
variables declared with a common ancestor type, such as Object. What
problems can arise from this approach?

4. Another approach is to use the principle of substitution, passing
messages to a parent class that are then overridden in child classes.
Why does this approach have only limited utility?

5. What is a parameterized class?



6. What is the problem presented by the creation of loops for containers?
How is this problem addressed using an iterator?

7. What is a visitor? How does the visitor approach address the problem
of looping?

Exercises ⊡

1. Argue whether container classes represent a success or a failure of
object-oriented programming techniques.

2. Data structures can be divided into those that are characterized by
their implementation (linked lists, trees) and those that are
characterized by their purpose (stacks, sets). Describe how object-
oriented programming techniques can be used to simplify the latter,
hiding the implementation details. Give an illustration of a data
structure with one interface and two very different implementations.

3. Suppose a programmer creates a linked list abstraction using the
technique described in the section “Common Link Classes” on page
373. The programmer successfully creates a linked list of real
numbers by forming a link of RealLink values. What surprise are they
going to find when they try to execute the following loop?

Click here to view code image
for (RealLink * p = theList; p != null; p = p->next) 
   ...

4. Java has classes as a data type (an instance of class Class) and the
ability to test an object to see if it is an instance of a class. Show how
these can be combined to create containers that can trap the insertion
of an illegal value in the same manner as the Spider collections
described in this chapter.

5. Give an example application of a heterogeneous container—that is,
one with many different types of values.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch19_images.xhtml#f0388-01a


6. The Smalltalk approach to iteration is to bundle the action to be
performed and hand it to the data structure. In contrast, an iterator is a
data structure that hands values one by one back to a statement
performing a certain action. Would it be possible to implement the
Smalltalk approach in a different programming language such as
Object Pascal or C++? Does static typing get in the way?

7. Give an example application for templates that is not associated with
container classes.



Chapter 20

A Case Study: The STL

A rich collection of template data structures was recently added to the
definition of the C++ standard library. These data structures include classes
for vectors, lists, sets, maps (dictionaries), stacks, queues, and priority
queues. As implementations of this standard become more widespread, the
C++ programmer will become increasingly free from the need to constantly
redefine and reimplement the standard set of data structure classes.

The design of the Standard Template Library (STL) is the result of many
years of research conducted by Alexander Stepanov and Meng Lee of
Hewlett-Packard and David Musser of Rensselaer Polytechnic Institute.
STL development drew inspiration not only from previous object-oriented
libraries but from the creators’ many years of experience in functional and
imperative programming languages such as Scheme and Ada.

One of the more unusual design ideas in STL, generic algorithms,
deserves discussion because it seems to fly in the face of the object-oriented
principles we have been describing, and yet it is the source of a great deal
of STL’s power. The implementation of generic algorithms in STL uses the
ability not only to create a template container class but also to make
template definitions of individual functions. To understand the concept of
generic algorithms, we must first describe how encapsulation is used in
most object libraries.

Object-oriented programming holds encapsulation and data hiding as a
primary ideal. A well-designed object will try to encapsulate all the state
and behavior necessary to perform whatever task it is designed for and at
the same time hide as many of the internal implementation details as
possible. In many previous object-oriented data structure libraries this



philosophical approach was manifested by container classes with
exceedingly rich functionality and, consequently, with large interfaces.

The designers of STL moved in an entirely different direction. The
behaviors provided in their standard components are minimal, almost
spartan. Instead, each component is designed to operate in conjunction with
a rich collection of generic algorithms, also provided. These generic
algorithms are independent of the containers and can therefore operate with
many different container types.

By separating the functionality of the generic algorithms from the
container classes themselves, the STL realizes a great savings in size in
both the library and the generated code. Instead of duplication of algorithms
in each of the dozen or so different container classes, a single definition of
a library function can be used with any container. Furthermore, the
definition of these functions is so general that they can be used with
ordinary C-style arrays and pointers as well as with other data types.

An example will illustrate some of the basic features of the standard
template library. A generic algorithm, find, locates the first occurrence of a
given value in a collection. Iterators in the standard library consist of pairs
of values, marking the beginning and end of a structure. The find algorithm
takes an iterator pair and searches for the first occurrence. It is defined as
follows.

Click here to view code image
template<class InputIterator, class T > 
InputIterator 
   find (InputIterator first, InputIterator last, const T& value) 
{ 
      while (first != last && *first != value) 
         ++first; 
      return first; 
}

The algorithm will work with any type of structure, even regular C-style
arrays. To find the location of the first occurrence of the value 7 in a vector
of integers, for example, the user executes the following.

Click here to view code image
int data[100]; 
   ⋮ 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0390-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0390-02a


int * where; 
where = find(data, data+100, 7);

Finding the location of the first occurrence of the value 7 in a list of
integers is hardly more difficult.

Click here to view code image
 
list<int> aList; 
   ⋮ 
list<int>::iterator where; 
where = find(aList.begin(), aList.end(), 7);

In a single chapter we can only describe the most basic features of the
STL. The following sections present two basic concepts used by the library,
namely iterators and function objects. Then three case studies will illustrate
the STL’s use of containers and generic algorithms.

20.1 ⊡ Iterators
Iterators are fundamental to the use of the container classes and the
associated algorithms provided by the standard library. Abstractly, an
iterator is simply a pointer-like object used to cycle through all the elements
stored in a container.

Just as pointers can be used in a variety of ways in traditional
programming, iterators are also used for a number of purposes. An iterator
can denote a specific value, just as a pointer can reference a specific
memory location. On the other hand, a pair of iterators can describe a
range of values analogously to two pointers describing a contiguous region
of memory.

Imagine, for example, an array that is being used to represent a deck of
playing cards. Two pointer values can be used to denote the beginning and
end of the deck.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0391-01a


If we need to represent the beginning and end of the memory space, we
can use the values cards and cards + 52. Note that the latter value is not
actually describing an element in the array, but it is one past the final
element in the collection.

In the case of iterators the values being described are not necessarily
physically in sequence but rather are logically in sequence because they are
derived from the same container, and the second follows the first in the
order elements are maintained by the collection, regardless of their physical
locations in memory.



Conventional pointers can sometimes be null—that is, they point at
nothing. Iterators, as well, can fail to denote any specific value. Just as it is
a logical error to dereference and use a null pointer, it is an error to
dereference and use an iterator that is not denoting a value. When two
pointers that describe a region in memory are used in a C++ program, it is
conventional that the ending pointer is not considered to be part of the
region. We see this in the picture of the cards array, where the array is
described as extending from cards to cards+52, even though the element at
cards+52 is not part of the array. Instead, the pointer value cards+52 is the
past-the-end value—the element that is the next value after the end of the
range being described.

Iterators are used to describe a range in the same manner. The second
value is not considered to be part of the range being denoted. Instead, the
second value is a past-the-end element, describing the next value in
sequence after the final value of the range. Sometimes, as with pointers to
memory, this will be an actual value in the container. Other times it may be
a special value specifically constructed for the purpose. The value returned
by the member function end() is usually of the latter type, being a special
value that does not refer to any element in the collection. In either case, it is
never legal to try to dereference an iterator that is being used to specify the
end of a range. (An iterator that does not denote a location, such as an end-
of-range iterator, is often called an invalid iterator.) In the standard
containers, the beginning iterator is returned by the function begin(), and
the ending iterator is returned by the function end().

Just as with conventional pointers, the fundamental operation that
modifies an iterator is the increment operator (operator ++). When the
increment operator is applied to an iterator that denotes the final value in a
sequence, it is changed to the past-the-end value. The dereference operator
(operator *) accesses the value being denoted by an iterator.

20.2 ⊡ Function Objects
A number of the generic algorithms provided in the STL require functions
as arguments. A simple example is the generic algorithm for_each(), which
invokes a function, passed as argument, on each value held in a container.



The following, for example, might be used to produce output describing
each element in a list of integer values.

Click here to view code image
void printElement (int value) 
{ 
   cout « "The list contains " « value « endl; 
} 
 
main () { 
   list<int> aList; 
      ⋮ 
   for_each (aList.begin(), aList.end(), printElement); 
}

Functions have been generalized to include function objects. A function
object is an instance of a class that defines the parentheses operator as a
member function. There are a number of situations where it is convenient to
substitute function objects for functions. When a function object is used as
a function, the parentheses operator is invoked whenever the function is
called.

To illustrate, we will consider the following class definition.
Click here to view code image
class biggerThanThree { 
   public: 
      bool operator () (int v ) 
         { return v > 3; } 
};

If we create an instance of the class biggerThanThree, every time we
reference this object using the function call syntax, the parentheses operator
member function will be invoked. The next step is to generalize this class
by adding a constructor and a constant data field, which is set by the
constructor.

Click here to view code image
class biggerThan { 
   public: 
      biggerThan (int x) : testValue(x) { } 
   const int testValue; 
   bool operator () (int val) 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0393-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0393-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0393-03a


      { return val > testValue; } 
};

The result is a general “bigger than X” function, where the value of X is
determined when we create an instance of the class. If we wanted to find
the first occurrence of a value larger than 12 in a list of numbers, we could
write this as follows.

Click here to view code image
biggerThan tester (12); // create our function object 
list<int>::iterator firstBig = find_if (aList.begin(), 
   aList.end(), tester);

Often we have no further use for the function object once the value is
returned. For this reason C++ allows the creation operation to be used as an
expression. A temporary expression will be formed and passed as argument
to the function, then deleted once the function returns. Using this
mechanism the statement could be more concisely written as follows.

Click here to view code image
list<int>::iterator firstBig = 
   find_if (aList.begin(), aList.end(), biggerThan(12));

20.3 ⊡ Example Program—An Inventory
System
Our first example uses a simple inventory management system to illustrate
the creation and manipulation of containers in the STL. We will assume that
a business named WorldWideWidgetWorks requires a software system to
manage its widget supply. Widgets are simple devices distinguished by
different identification numbers.

Click here to view code image
class Widget { 
public: 
   Widget(int a) : id(a) { } 
   Widget() : id(0) { } 
   int id; 
}; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0394-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0394-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0394-04a


 
ostream & operator « (ostream & out, Widget & w) 
   { return out « "Widget " « w.id; } 
bool operator == (const Widget & Ins, const Widget & rhs) 
   { return Ins.id == rhs.id; } 
 
bool operator < (const Widget & lhs, const Widget & rhs) 
   { return lhs.id < rhs.id; }

The state of the inventory is represented by two lists. One represents the
stock of widgets on hand; the other represents the type of widgets that
customers have back-ordered. The first is a list of widgets, and the second
is a list of widget identification types. To handle our inventory we have two
commands: The first, order(), processes orders, and the second, receive(),
processes the incoming shipment of a new widget.

Click here to view code image
class inventory { 
public: 
   void order (int wid); // process order for widget type wid 
   void receive (int wid); // receive widget of  type wid 
private: 
   list<Widget> on_hand; 
   list<int> on_order; 
};

When a new widget arrives in a shipment, we compare its identification
number with the list of widget types on back order. We use find() to search
the back-order list, immediately shipping the widget if necessary.
Otherwise, it is added to the stock on hand.

Click here to view code image
void inventory::receive (int wid) 
{ 
   cout « "Received shipment of widget type " « wid « endl; 
   list<int> ::iterator weNeed = 
      find (on_order.begin(), on_order.end(), wid); 
   if (weNeed != on_order.end()) { 
      cout « "Ship " « Widget(wid) 
        « "to fill back order" « endl; 
      on_order.erase(weNeed); 
      } 
   else 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0395-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0395-03a


      on_hand.push_front(Widget(wid)); 
}

When a customer orders a new widget, we scan the list of widgets in
stock, using the function find_if() to determine if the order can be
processed immediately. To do so we need a unary function that takes as its
argument a widget and determines whether the widget matches the type
requested. We write this as a function object as follows.

Click here to view code image
class WidgetTester { 
public: 
   WidgetTester (int t) : testid(t) { } 
   const int testid; 
   bool operator () (const Widget & wid) 
      { return wid.id == testid; } 
};

The widget order function is then as follows.
Click here to view code image
void inventory::order (int wid) 
{ 
   cout « "Received order for widget type " « wid « endl; 
   list<Widget>::iterator weHave = 
      find_if(on_hand.begin(), on_hand.end(), WidgetTester(wid)); 
   if (weHave != on_hand.end()) { 
      cout « "Ship " « *weHave « endl; 
      on_hand.erase(weHave); 
      } 
   else { 
      cout « "Back order widget of type " « wid « endl; 
      on_order.push_front(wid); 
      } 
}

20.4 ⊡ Example Program—Graphs
The second and third example programs both use the map data type. A map
is an indexed dictionary, a collection of key and value pairs.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0396-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0396-02a


Imagine that we have a weighted graph that represents, for example, the
cost to travel between pairs of cities. The graph is directed, meaning that
travel can be made in one direction but not the other. An example graph is
shown in Figure 20.1. The task is to determine not only the minimum cost
to travel from one city to each of the others but also the path to follow in
making the journey.

⊡ Figure 20.1—A Weighted Graph

To see how we could represent a graph internally, consider first the
information we need to maintain for a single city in isolation. If we
consider just one city—Phoenix, for example—we need to know the names
of the cities that can be reached starting from Phoenix, and the cost of each
journey. This information could be maintained by a map, which is an
indexed dictionary structure. The keys in the map will be the destination
cities, and the value fields will be the cost.

Phoenix: [ Peoria, 4 ]

[ Pittsburgh, 10 ]



[ Pueblo, 3 ]

Let us call this information a cityInfo. In terms of the STL data
structures, this could be represented by a map in which the keys are
represented by constant character pointers (the common representation for
strings in C++) and the value fields by integers. To use the map data type,
we need a function object that defines the ordering on keys. Since the
default ordering on pointer values (ordering by location in memory) is not
appropriate, we must create a new data type. We do this as follows.

Click here to view code image
class charCompare { 
public: 
   bool operator () (const char * left, const char * right) const 
   { 
      return strcmp(left, right) < 0; 
   } 
};

An instance of charCompare is a function object, an object that can be
used like a function. The behavior we desire is a simulation of the less-than
operator applied to our key values. When invoked as a function it takes two
arguments, which are pointers to character arrays. Using the standard
library routine strcmp, it compares the two string texts. A negative value
indicates that the first is lexicographically smaller than the second and
hence that the less-than operator should return a true value.

Using charCompare, the cityInfo data type could be defined as follows.
Click here to view code image
typedef map <const char *, unsigned int, charCompare> cityInfo;

That is, we declare the name cityInfo to be a synonym for a type of map
in which the key field is a character pointer and the value field is an
unsigned integer. The third argument represents the comparison algorithm
that will be used to determine the ordering of the keys. We have chosen to
use a typedef to declare the new name, rather than defining a new class.
This is because all the behavior we need is provided already by the map data
type when properly parameterized. The typedef creates a synonym name
for the new structure but does not create any new class structure. We can

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0397-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0398-01a


use this synonym name in our later programs to help simplify the code and
make it more readable.

To represent the entire graph, we need only maintain the city
information for each city. We can again use a map for this purpose. The key
field in the map will once again be a city, and the value field will be a
cityInfo that encodes the information associated with the city. Let us use
the name graph to represent the entire data structure.

Click here to view code image
typedef map <const char *, cityInfo, charCompare> graph;

Once more we have used a typedef, since all the functionality we desire
is provided already by the map data abstraction. We can, as follows, create
an instance of graph and initialize it with the information described in the
graph in Figure 20.1.

Click here to view code image
graph cityMap; 
 
 
cityMap["Pendleton"]["Phoenix"] = 4; 
cityMap["Pendleton"]["Pueblo"] = 8; 
cityMap["Pensacola"]["Phoenix"] = 5; 
cityMap["Peoria"]["Pittsburgh"] =5; 
cityMap["Peoria"]["Pueblo"] = 3; 
cityMap["Phoenix"]["Peoria"] = 4; 
cityMap["Phoenix"]["Pittsburgh"] = 10; 
cityMap["Phoenix"]["Pueblo"] = 3; 
cityMap["Pierre"]["Pendleton"] = 2; 
cityMap["Pittsburgh"]["Pensacola"] = 4; 
cityMap["Princeton"]["Pittsburgh"] = 2; 
cityMap["Pueblo"]["Pierre"] = 3;

The first subscript indexes the graph and returns a cityInfo, creating a
new cityInfo if no such value exists already. The second subscript is then
applied to the cityInfo, creating a new position for an unsigned integer
value. The assignment then changes the association in the cityInfo map.
The type graph is, in effect, a two-dimensional sparse array, indexed by
strings and holding integer values.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0398-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0398-03a


20.4.1 Shortest path algorithm
We now turn our attention to the problem of finding the shortest path to
each reachable city, starting from a given initial location. The algorithm we
use is a wellknown technique named Dijkstra’s Algorithm in honor of the
computer scientist credited with its discovery.

The idea of Dijkstra’s algorithm is to start with a city of origin and make
a list of the cities that can be reached in one step. Order this list by cost,
with the least costly city listed first.

Remove the first element from this list. This cannot help but be the least
costly way to reach this first city, since any other path to the city would
have to be along a path that begins in another reachable city, and we know
that all other reachable cities are more costly.

Now comes the key insight. Determine the cities that are reachable from
this first destination, and add the costs of travel for each to the cost of
making the first leg. Using these combined cost figures, add these new
destinations to our list of reachable locations, once more keeping the list
ordered by the total cost.

To complete the algorithm (Figure 20.2), we need only put a loop
around this operation and note that we need not consider a city when it
reaches the top of the list if we have already discovered a less costly way to
reach the city.

20.4.2 Developing the data structures
The final result we desire is the cost to travel to each city on our list. We
can use the cityInfo data type defined earlier to hold this information. Let
us use the name travelCosts for this data structure.

The list discussed in the informal description consists of entries that
hold two values: a name and a cost. There is no ready-made data type for
this structure, so we are forced to define a new class. The constructor for
the class will take a city name and a cost. Because some of the data
structures in the STL require elements to have a default constructor, we
provide one, although it will never be used in our algorithm. Because we
want to be able to compare two such values, we override the comparison
operator.



Click here to view code image
class Destination { 
public: 
   Destination () : distance(0) { } 
   Destination (const char * dt, unsigned int ds) 
      : distance(ds), destination(dt) { } 
 
   bool operator < (const Destination & right) const 
      { return distance < right.distance; } 
   unsigned int distance; 
   const char * destination; 
};

We have here overloaded the comparison operator as a member
function. Note that when a binary operator is implemented in this fashion,
only the right argument is specified as an argument. Binary operators can
also be overloaded as ordinary functions, in which case both the right and
left values are treated as arguments.

Remember that we wanted to keep the list ordered by cost, least to first.
This action will be performed for us automatically if we use a priority
queue. The priority_queue data type in the STL requires two template
arguments, the first indicating an underlying container to use for holding
the actual values and the second indicating the operation used in comparing
values. We can use a vector for the first and a library provided function
object named lesser for the second. (lesser is a function object that
invokes the comparison operator for our data type and eliminates the need
to define a special function object.) The queue is initialized with a single
entry, corresponding to a “trip” with no cost to the initial city.

Click here to view code image
priority_queue< vector<Destination>, lesser<Destination> > que; 
  // put starting city in queue 
que.push (Destination(startingCity, 0));

At each step of the algorithm we pull an entry from the priority queue
and ask whether or not we have yet visited this city. There is no direct way
to determine if a map has an entry under a given key, but the information
can be indirectly inferred. We do this by counting the number of entries in
the cost map that have the new city as a key. If this count is zero, then we
have not yet visited the city.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0399-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0400-02a


Click here to view code image
   // remove top entry from queue 
char * newCity = que.top().destination; 
int cost = que.top().distance; 
que.pop(); 
if (travelCosts.count(newCity) == 0) { 
      //  ⋮ have not seen it yet 
}

If we have not been to the city, an entry is made in the travelCosts map.
Click here to view code image
travelCosts[newCity] = cost;

Next we want to add to the priority queue the cities that are reachable
from the new city. To do that, we create iterators that cycle over the city
information map associated with the new city. Recall that iterators for a map
data type yield values of type Pair. The key field in such a value is
obtained as the field named first, while the value portion is found in a
field named second. At each step of the iteration we add the cost to date to
the new cost and create a new destination entry:

Click here to view code image
cityInfo::iterator start = cityMap[newCity].begin(); 
cityInfo::iterator stop = cityMap[newCity].end(); 
for (; start != stop; ++start) { 
   const char * destCity = (*start).first; 
      //  make the new routine 
   unsigned int destDistance = (*start).second; 
   que.push(Destination(destCity, cost + destDistance)); 
}

We can put everything together in the algorithm shown in Figure 20.2.
Note how, in this one algorithm, we have made use of the following STL
collections: map, vector, priority_queue, as well as the function object
lesser.

Click here to view code image
int main() 
{ 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0400-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0400-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0401-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0401-02a


 
 
   graph cityMap; 
   // ⋮ initialization of  the map 
 
   graph::iterator start = cityMap.begin(); 
   graph::iterator stop = cityMap.end(); 
   for ( ; start != stop; ++start) { 
      const char * city = (*start).first; 
      cout « "\nStarting from " « city « "\n"; 
      cityInfo costs; 
      dijkstra(cityMap, city, costs); 
      cityInfo::iterator cstart = costs.begin(); 
      cityInfo::iterator cstop = costs.end(); 
      for ( ; cstart != cstop; ++cstart) 
         { cout « "to " « (*cstart).first « 
            "costs " « (*cstart) .second « '\n'; 
      } 
   } 
   return 0; 
} 
void dijkstra 
   (graph cityMap, const char * start, cityInfo & travelCosts) 
   // dijkstra's single source shortest path algorithm 
{ 
       keep a priority queue of  distances to cities 
   priority_queue < vector<Destination>, lesser<Destination> > 
que; 
   que.push (Destination(start, 0)); 
 
      // while queue not empty 
   while (! que.empty() ) { 
         // remove top entry from queue 
       const char * newCity = que.top().destination; 
      int cost = que.top().distance; 
      que.pop(); 
         // if  so far unvisited, 
      if (travelCosts.count(newCity) == 0) { 
            // visit it now 
         travelCosts[newCity] = cost; 
            // add reachable cities to list 
         cityInfo::iterator start = cityMap[newCity].begin(); 
         cityInfo::iterator stop = cityMap[newCity].end(); 
         for (; start != stop; ++start) { 
            const char * destCity = (*start).first; 



            unsigned int destDistance = (*start).second; 
            que.push(Destination(destCity, cost + 
destDistance)); 
         } 
      } 
   } 
}

⊡ Figure 20.2—Dijkstras shortest path algorithm

To complete the program we need a main procedure. The following
doublenested loop will print the cost of travel from each city to every other
reachable city.

20.5 ⊡ A Concordance
Our final example program to illustrate the use of the STL collection data
abstractions will be a concordance. A concordance is an alphabetical listing
of words in a text that indicates the line numbers on which each word
occurs. The data values will be maintained in the concordance by a map,
indexed by strings (the words), and holding sets of integers (the line
numbers). A set is employed for the value stored under each key because
the same word will often appear on multiple different lines. Indeed,
discovering such connections is one of the primary purposes of a
concordance.

Click here to view code image
class concordance { 
   typedef set<int, less<int> > lineList; 
   typedef map<string, lineList, less<string> > wordDictType; 
public: 
   void readText (istream &); 
   void printConcordance (ostream &); 
 
protected: 
   wordDictType wordMap; 
};

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0403-01a


Note that the class definition does not include a constructor function. In
such situations a default constructor will be automatically created, and this
will in turn invoke the default constructor for the wordMap data field. The
default constructor for a map creates a collection with no entries.

The creation of the concordance is divided into two steps: First, the
program generates the concordance (by reading lines from an input stream),
and then the program prints the result on the output stream. This is reflected
in the two member functions readText() and printConcordance(). The first
of these, readText(), is written as follows.

Click here to view code image
void concordance::readText (istream & in) 
   // read all words from input stream, entering into concordance 
{ 
   string line; 
   for (int i = 1; getline(in, line); i++) { 
         // translate into lowercase, split into words 
     allLower(line); 
     list<string> words; 
     split(line, " ,.;:", words); 
        // enter each word on line into concordance 
     list<string>::iterator wptr; 
     for (wptr = words.begin(); wptr != words.end(); ++wptr) 
         wordMap[*wptr].insert(i); 
   } 
}

Lines are read from the input stream one by one. The text of the line is
first converted into lowercase, and then the line is split into words, using
the function split().

Click here to view code image
void split (const string & text, const string & separators, 
         list<string> & words) 
   // split a string into a list of  words 
   // text and separators are input, 
   // list of  words is output 
{ 
   int textLen = text.length(); 
 
      // find first non-separator character 
   int start = text.find_first_not_of(separators, 0); 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0403-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0403-03a


      // loop as long as we have a non-separator character 
   while ((start >= 0) && (start < textLen)) { 
         // find end of  current word 
      int stop = text.find_first_of(separators, start); 
         // check if  no ending character 
      if ((stop < 0) || (stop > textLen)) stop = textLen; 
         // add word to list of  words 
      words.push_back (text.substr(start, stop - start)); 
         // find start of  next word 
      start = text.find_first_not_of (separators, stop+1); 
      } 
}

Each word is then entered into the concordance. Subscripting the map
creates an entry for the line list if one does not already exist. Using the
insert method for sets, the word is then entered into the container.

The final step is to print the concordance. This is performed in the
following fashion.

Click here to view code image
void concordance::printConcordance (ostream & out) 
   //  print concordance on the given output stream 
{ 
   string lastword = ""; 
   wordDictType::iterator pairPtr; 
   wordDictType::iterator stop = wordMap.end(); 
   for (pairPtr = wordMap.begin(); pairPtr != stop; ++pairPtr) { 
      out « (*pairPtr).first « " "; 
      lineList & lines = (*pairPtr).second; 
      lineList::iterator wstart = lines.begin(); 
      lineList::iterator wstop = lines.end(); 
      for ( ; wstart != wstop; ++wstart) 
         out « *wstart « " "; 
      cout « endl; 
   } 
}

An iterator loop is used to cycle over the elements being maintained by
the word list. Each new word generates a new line of output; thereafter, line
numbers appear separated by spaces. For each word, a nested iterator loop
cycles over the line numbers.

If, for example, the input was the text
It was the best of times,

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch20_images.xhtml#f0404-02a


it was the worst of times.
the output, from best to worst, would be

best: 1
it: 1 2
of: 1 2
the: 1 2
times: 1 2
was: 1 2
worst: 2

20.6 ⊡ The Future of OOP
We have noted that in many ways the design of the STL is not object-
oriented at all, drawing inspiration instead from techniques used in
functional programming languages. Does the introduction of the STL into
the standard C++ library imply that OOP is now outmoded and obsolete?

Absolutely not. Object-oriented design and programming techniques are
almost without peer as guideposts in the development of large complex
software. For the majority of programming tasks, OOP techniques will
remain the preferred approach, but the development of software such as the
STL indicates a welcome realization within the object-oriented community
that not all ideas should be expressed in object-oriented fashion nor all
problems solved with purely object-oriented techniques.

Speaking about another language and a different application,
Mössenböck makes the following observation [Mössenböck 1993].

Object-oriented programming has given rise to a certain euphoria.
Advertisements promise incredible things, and even some researchers
seem to consider object-oriented programming to be the panacea that
will solve all the problems of software development. This euphoria will
subside. After a period of disillusionment, people will perhaps cease to
speak about object-oriented programming, just as hardly anybody
speaks about structured programming anymore. But classes will be used
quite naturally then and will be seen as what they are: components that
help to build modular and extensible software.



Summary ⊡
The standard template library is an extensive collection of data structures
that has in recent years been incorporated into the C++ standard library. The
standard template library is interesting because by eschewing encapsulation,
the algorithms in the library integrate both with object-oriented data types
and with traditional C-style data values.

Further Reading ⊡
Further information on the standard template library can be found in
[Musser 1996, Glass 1996]. The author has also written an introductory data
structures textbook that uses the STL [Budd 1998].

Self-Study Questions ⊡

1. What do the letters STL stand for?

2. What is a generic algorithm?

3. Why do some people consider the philosophy of generic algorithms to
be counter to that of object-oriented programming?

4. What is an iterator? What problem is it solving?

5. What is a function object?

Exercises ⊡

1. Assume a straightforward implementation of a linear data structure
class, such as the linked-list class we described in Chapter 19. Outline
the major features of an iterator class for this structure. What
information does your iterator need to maintain?



2. Consider next a nonlinear data structure—for example, a binary tree.
What information does an iterator need to maintain to traverse the
elements being held in the container?



Chapter 21

Frameworks

The concept of an object-oriented software framework illustrates the powers
that derive from the application of the ideas of inheritance and overriding
and the difference between software reuse in the object-oriented world and
the more limited form of software reuse that is possible with conventional
languages. Expressed in the most basic terms, a software framework is
nothing more than a skeleton solution to a class of similar problems. The
structure for the framework is formed by a set of classes that cooperate
closely with each other and together embody a reusable solution to a
problem.

The most widely used application frameworks are employed in the
creation of graphical user interfaces, or GUIs. We will examine one such
framework in detail in Chapter 22. However, the concept has applicability
beyond the development of user interfaces. For example, frameworks exist
that are geared to building editors for various domains, for compiler
construction, and for financial modeling applications.

21.1 ⊡ Reuse and Specialization
The key insight behind the development of a framework is that inheritance
can be used in two very different ways. First, it can be employed as a
vehicle for software reuse, carrying code abstractions from one project to
another. Second, at the same time that inheritance is providing the ability to
share code between parent and child, overriding can be used as a vehicle for
specialization—that is, fitting a general purpose tool to a specific task.



To fit these pieces together to form a framework, we can divide the
methods in a class into two broad categories.

Reuse of code, reuse of concept

The distinction between foundation methods and specialization
methods is just another aspect of the various uses for inheritance.
Recall that in Chapter 8 we noted the two major motivations for the
technique of inheritance were the reuse of code and the reuse of
concept. Foundation methods are those that get inherited from the
parent and thus reflect the reuse of code supplied by the parent.
Specialization methods are those defined in the parent but
implemented in the child. These are thus an example of reuse of
concept.

The foundation methods embody the solution to the problem at hand.
They are defined in a parent class and become part of a child class
through inheritance but are not overridden.
The specialization methods are those that change the behavior of the
parent class to fit the particular circumstances of the child. These
methods are generally deferred, in the sense we discussed in Chapter
16. It is these methods that change a general purpose solution into a
solution to a specific application.

For example, a GUI framework might be structured as shown in Figure
21.1. (The specific methods in this framework are not taken from any
particular GUI but are common to similar systems.) A general parent class
Window has methods for setting a title, setting a size, moving around on the
display surface, setting menu categories and menu items, and so on. These
foundational methods are inherited untouched by child classes.



⊡ Figure 21.1—A GUI class from a typical framework

On the other hand, there is some information that the parent class cannot
know. What should be displayed in the content portion of a window? What
does a mouse click within the bounds of a window mean? How should a
keypress be interpreted? To answer these specific types of question, a child
class must override key methods from the parent. In Figure 21.1 the child
class overrides the methods paint, mouseDown, and keyPress.

These deferred methods must be part of the parent class definition, since
the framework must be assured that all instances of the class will respond to
the appropriate messages. As we have seen earlier, in statically typed
languages the legality of a message is determined by a static declaration.
Therefore, if the framework is going to pass the message mouseDown to a
window, the message must be defined in the parent class. But because the
class Window does not know how to handle the message, it must be
overridden in the child class. Thus, the parent class in the framework is
viewing the class in one way and the child class in another (Figure 21.2).



⊡ Figure 21.2—Two views of the same class.

Frameworks need not be just a single class. Generally a framework will
consist of a number of classes designed to work together. Some classes may
be intended to be subclassed in the fashion we are describing, and some
may be intended to be used directly. For example in a GUI framework there
may be classes that correspond to graphical items such as buttons, where
the user provides specialized behavior by overriding key methods. The
combination of defined behavior versus specialized behavior in the
relationship between parent and child in the button is exactly the same as
that of the window, only operating on a smaller scale.

21.1.1 High- and low-level abstractions
One way to contrast the style of code reuse found in frameworks with that
found in conventionally designed software is to examine the differences in
how they are applied to a simple problem. Let us take the problem of
sorting a set of records. Suppose for some application we have defined an
employee record consisting of a name, a department, and the year the
employee joined the company.



Click here to view code image
class Employee { 
public: 
   string name; 
   int salary; 
   int startingYear; 
}

If we have an array of such records, we can sort them—for example,
using an insertion sort.

Click here to view code image
void sort (Employee * data[ ], int n) { 
   for (int i = 1; i < n; i++) { 
      int j = i-1; 
      while (j >= 0 && 
         v[j+l]->startingYear < v[j]->startingYear) { 
         // swap elements 
         Employee * temp = v[j]; 
         v[j] = v[j+1]; 
         v[j+1] = temp; 
         j = j - 1; 
      } 
   } 
}

Now suppose we want to use this same function for a slightly different
purpose. Imagine first that we want to sort not by starting year but by
salary. It is simple enough to do: We simply edit the method and change
startingYear to salary—but make sure you get both occurrences of the
field. If you change one and not the other, there will be no compiler error,
just the wrong answer. Now imagine that in the next project you aren’t
sorting employee records but an array of floating point numbers. To provide
this functionality you need to change the function heading, the internal data
value named element, and the access used in the comparison.

The key feature to note is that both of these changes required source
code level modifications to the original program. In reality, all that we were
able to reuse was the idea of insertion sort and not the actual
implementation.1

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0410-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0410-02a


1. C programmers will at this juncture point to the method qsort in the standard C library. But to
anybody who has used it, the difficulty in fitting qsort to any particular situation is itself a
testimony to the limitations of software reuse in the conventional setting.

Now let us imagine an object-oriented solution to the same problem.
The features that are likely sources of change include the element types, the
number of elements, the comparison between two element values, and the
process of swapping two elements. Since we want these features to change,
we encapsulate them in methods.

Click here to view code image
   class InsertionSorter { 
   public: 
      void sort () { 
         int n = size(); 
         for (int i = 1; i < n; i++) { 
            int j = i - 1; 
            while (j >= 0 && lessThan(j+1, j)) { 
               swap(j, j+1); 
               j = j - i; 
            } 
         } 
   } 
private: 
   virtual int size() = 0; // abstract methods 
   virtual boolean lessThan(int i, int j) = 0; 
   virtual void swap(int i, int j) = 0; 
}

To adapt the code to a specific problem requires building a subclass and
implementing the deferred methods. We could solve our employee seniority
sorting problem as follows.

Click here to view code image
class EmployeeSorter : public InsertionSorter { 
public: 
   EmployeeSorter (Employee * d[], int n) 
      { data = d; sze = n; } 
private: 
   Employee * data[]; 
   int sze = n; 
   virtual int size () { return sze; } 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0411-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0411-02a


   virtual bool lessThan (int i, int j) 
      { return data[i]->startingYear < data[j]->startingYear; } 
 
   virtual void swap (int i, int j) { 
      Employee * temp = v[i]; 
      v[i] = v[j]; 
      v[j] = temp; 
   } 
}

Changing the problem to sorting on salary would involve changing the
child but not the parent. Similarly, an entirely different problem, such as
sorting floating point numbers, would involve creating a new child but no
change to the parent. So the key difference is that inheritance allows us not
only to encapsulate high-level algorithmic details but to modify or
specialize those details without modification to the original code. This is
almost never possible using conventional techniques.

21.1.2 An upside-down library
The use of an application framework usually leads to an inversion of
control between the new application-specific code and the library-supplied
code. In a traditional application, application-specific code defines the
overall flow of execution through the program, occasionally invoking
library routines in order to execute some specific function (such as a
mathematical routine or an input/output operation).



In an application framework, on the other hand, the flow of control is
dictated by the framework and is the same from application to application.
The creator of a new application merely changes the routines invoked by
the framework but does not change the overall structure. Thus, the
framework has the dominant position, and the application-specific code is
reduced to a secondary position.

Anticipating changes

As the example problem shows, part of the art of object-oriented
design is to anticipate the set of changes that will at some future time
be needed to customize an application. This is not always an easy
task. Frequently it is only after the fact that a programmer realizes
that a new problem can be viewed in a fashion that makes it similar
to a previously solved problem or that an existing software system
can be generalized to permit it to cover a wider range of
applications.

In languages such as C++ that require the programmer to
distinguish which methods can be overridden (by means of the
virtual keyword) and which methods cannot, it can happen that a
framework, even if well structured, is too rigid because the original
programmer did not anticipate the need to override a key method.



Because a framework inverts this relationship between application-
developer-defined code and library code, it is sometimes described as an
upside-down library.

21.2 ⊡ Example Frameworks
Let us look at several examples that illustrate the concept of a software
framework.

21.2.1 The Java Applet API
The first is the framework used for the control of applets in the language
Java. Applets in Java are intended to be run inside a Web browser. They are
one of two different forms of Java program, the other form being an
application.

The fundamental class for every Java applet is the class Applet. This
class defines the overall structure of the application through a method,
main, that is normally not overridden by programmers. This method
invokes a number of other methods, which are overridden to provide
application-specific behavior. A few of these methods are summarized here.

init() Invoked when the applet is initialized

start() Invoked when the application is started

paint(Graphic

s)
Invoked when the window is to be redrawn

stop() Invoked when the window is removed

destroy()
Invoked when the applet is about to be 
terminated

In addition, the framework provides a rich collection of classes for
constructing items such as buttons and menus, displaying text in a variety
of fonts, dealing with colors, using mathematical operations, and much
more. This framework, the AWT, will be the topic of Chapter 22.



21.2.2 A Simulation Framework
To illustrate that not all frameworks need be associated with user interfaces,
we will sketch the design of a framework that can be used to drive
simulations, such as the billiard ball illustration presented in Chapter 7. As
described in the latter part of that chapter, we might start by defining all
objects in the simulation as subclasses of a general class for graphical
objects, such as the following.

Click here to view code image
GraphicalObject = object 
      (* data fields *) 
   link : GraphicalObject; 
   region : Rect; 
 
      (* initialization function *) 
   procedure setRegion (left, top, right, bottom : integer); 
 
      (* operations that graphical objects perform *) 
   procedure draw; 
   procedure erase; 
   procedure update; 
   function intersect (anObj : GraphicalObject) : boolean; 
   procedure hitBy (anObj : GraphicalObject); 
end;

Graphical objects have a region, they know how to draw themselves,
and they can tell when they intersect. Thus, the framework for the
simulation can be provided by a general purpose class for managing
graphical objects, such as the following.

Click here to view code image
GraphicalUniverse = object 
      (* data fields *) 
   moveableObjects : GraphicalObject; 
   fixedObjects : GraphicalObject; 
   continueUpdate : boolean; 
      (* methods *) 
   procedure initialize; 
   procedure installFixedObject (newObj : GraphicalObject); 
   procedure installMovableObject (newObj : GraphicalObject); 
   procedure drawObjects; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0414-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0414-03a


   procedure updateMoveableObjects; 
   procedure continueSimulation; 
end;

The heart of the framework is the routine to update all movable objects.
This procedure simply cycles through the list of movable objects, asking
each to update itself. If any object requests the update cycle to continue (by
invoking the routine continueSimulation, which in turn sets the data field
continueUpdate), the update cycle continues; otherwise, the simulation
halts.

Click here to view code image
procedure GraphicalUniverse.updateMoveableObjects; 
var 
   currentObject : GraphicalObject; 
begin 
   repeat 
      continueUpdate := false; 
      currentObject := moveableObjects; 
      while currentObject <> nil do begin 
         currentObject.update; 
         currentObject := currentObject.link; 
      end 
   until not continueUpdate 
end;

The resulting framework knows nothing of the particular application in
which it will be used and therefore can be applied to the simulation of
billiard balls, the simulation of fish in a fish tank, an ecological simulation
of rabbits and wolves, and many other applications.

21.2.3 An event-driven simulation framework
The billiards game can be considered to be a special case of a more general
class of simulations, called event-driven simulations. In this style of
programming the computation proceeds as a series of events. These events
are stored in a priority queue ordered by their time of execution. Values are
removed from the queue and executed one by one. Each event may spawn
new events, which are then added to the queue.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0415-02a


User-defined events are subclassed from the framework class Event,
which has the following definition.

Click here to view code image
class Event { 
public: 
   Event (unsigned int t) : time(t) { } 
 
   const unsigned int time; 
   virtual void processEvent () = 0; 
};

The abstract method processEvent must be overridden in each defining
subclass. This method provides the behavior that the simulation should
exhibit when the event occurs.

Events are stored in a standard STL container, a priority queue. Because
the container must hold a variety of different types of events, it will actually
maintain pointers to events, rather than events themselves. (See the
comments on heterogeneous collections in Chapter 19.) Events are ordered
by their time. When using the standard library, this is accomplished by
defining a new structure, the sole purpose of which is to define the function
invocation operator (the () operator) in the appropriate fashion.

Click here to view code image
class eventComparison { 
public: 
   bool operator () (event * left, event * right) 
      { return left->time > right->time; } 
};

The basic functions of the simulation framework are found in the class
Simulation. There are two functions. The first is used to insert a new event
into the queue, and the second runs the simulation. A data field is also
provided to hold the current simulation “time.”

Click here to view code image
class Simulation { 
public: 
   Simulation () : eventQueue(), currentTime(0) { } 
 
   void scheduleEvent (event * newEvent) 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0416-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0416-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0416-03a


      { eventQueue.push (newEvent); } 
 
   void run(); 
 
   unsigned int currentTime; 
 
protected: 
 
   priority_queue<vector<event *>, eventComparison> eventQueue; 
};

The heart of the simulation is the member function run(), which defines
the event loop. This method is implemented as follows.

Click here to view code image
void Simulation::run() 
   // execute events until event queue becomes empty 
{ 
   while (! eventQueue.empty()) { 
      event * nextEvent = eventQueue.top(); 
      eventQueue.pop(); 
      time = nextEvent->time; 
      nextEvent->processEvent(); 
      delete nextEvent; 
   } 
}

Ice cream store simulation
Imagine you are thinking about opening an ice cream store on a popular
beach location. You need to decide how large the store should be and how
many tables there should be. If you plan too small, customers will be turned
away when there is insufficient space, and you will lose profits. On the
other hand, if you plan too large, most of the seats will be unused, and you
will be paying useless rent on the space and still lose profits. So you need to
choose approximately the right number—but how do you decide?

You decide to do a simulation. You first examine similar operations in
comparable locations and form a model that includes, among other factors,
an estimation of the number of customers you can expect to arrive in any
period of time, the length of time it will take a customer to choose a flavor
and the length of time the customer will then sit at a table and eat the ice
cream. Based on this, you can design a simulation.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0417-02a


Objects in the simulation represent objects in the real world, and are
programmed to react as much as possible as the real objects would react. A
priority queue is used to store a representation of “events” that are waiting
to happen. This queue is stored in order, based on the time the event should
occur, so the smallest element will always be the next event to be modeled.
As an event occurs, it can spawn other events. These subsequent events are
placed into the queue as well. Execution continues until all events have
occurred or until a preset time for the simulation is exceeded.

To see how we might design a simulation of the ice cream store,
consider a typical scenario. A group of customers arrive at the ice cream
store. From the measurements of similar stores we derive a probability that
indicates how frequently this occurs. For example, suppose we assume that
groups will consist of from one to five people, selected uniformly over that
range. (In actual simulations the distribution would seldom be uniform. For
example, groups of size two and three might predominate, with groups of
size one and groups larger than three being relatively less frequent. The
mathematics involved in forming nonuniform distributions is subtle and not
particularly relevant to our discussion. We will therefore use uniform
distributions throughout.) These groups will arrive at times spaced from
one to ten minutes apart, again selected uniformly. Once they arrive, a
group will either be seated or see that there are no seats and leave. If seated,
they will take from 2 to 10 minutes to order, and once they order, they will
remain from 15 to 35 minutes in the store. We know that every customer
will order from one to three scoops of ice cream and that the store makes a
profit of 35 cents on each scoop.

The primary object in the simulation is the store itself. It might seem
odd to provide “behavior” for an inanimate object such as a store, but we
can think of the store as a useful abstraction for the servers and managers
who work in the store. The store manages two data items: the number of
available seats and the amount of profit generated. The behavior of the
store can be described by the following list.

When a customer group arrives, the size of the group is compared to
the number of seats. If insufficient seats are available, the group
leaves. Otherwise, the group is seated and the number of seats
decreased.



When a customer orders and is served, the amount of profit is
computed.
When a customer group leaves, the seats are released for another
customer group.

A class description for IceCreamStore is shown in Figure 21.3. The
implementation of the methods is shown in Figure 21.4.

Click here to view code image
class arriveEvent : public event { 
public: 
   arriveEvent (unsigned int time, unsigned int gs) 
      : event(time), groupSize(gs) { } 
   virtual void processEvent (); 
protected: 
   unsigned int groupSize; 
}; 
class IceCreamStore { 
public: 
   IceCreamStore() 
      : freeChairs(35), profit(0.0) { } 
 
 
   bool canSeat (unsigned int numberOfPeople); 
   void order(unsigned int numberOfScoops); 
   void leave(unsigned int numberOfPeople); 
 
 
   unsigned int freeChairs; 
   double profit; 
};

⊡ Figure 21.3—The class IceCreamStore

Click here to view code image
bool IceCreamStore::canSeat (unsigned int numberOfPeople) 
   // if sufficient room, then seat customers 
{ 
   cout « "Time: " « time; 
   cout « " group of " « numberOfPeople « " customers 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0418-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0420-01a


arrives"; 
   if (numberOfPeople < freeChairs) { 
      cout « " is seated" « endl; 
      freeChairs -= numberOfPeople; 
      return true; 
      } 
   else { 
      cout « " no room, they leave" « endl; 
      return false; 
      } 
} 
 
void IceCreamStore::order (unsigned int numberOfScoops) 
   // serve ice cream, compute profits 
{ 
   cout « "Time: " « time; 
   cout « " serviced order for " « numberOfScoops « endl; 
   profit += 0.35 * numberOfScoops; 
} 
 
void IceCreamStore::leave (unsigned int numberOfPeople) 
   // people leave, free up chairs 
{ 
   cout « "Time: " « time; 
   cout « " group of size " « numberOfPeople « " leaves" « 
endl; 
   freeChairs += numberOfPeople; 
}

⊡ Figure 21.4—The methods implementing the class IceCreamStore

An instance of class simulation is defined as a global variable, called
the-Simulation. An instance of iceCreamStore is accessible via the name
theStore.

As we noted already, each activity is matched by a derived class of
event. Each derived class of event includes an integer data field, which
represents the size of a group of customers. The arrival event occurs when a
group enters. When executed, the arrival event creates and installs a new
order event.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0419-02a


void arriveEvent::processEvent() 
{ 
   if (theStore.canSeat(groupSize)) 
      theSimulation.scheduleEvent 
         (new orderEvent(time + randBetween(2,10), groupSize)); 
}

An order event similarly spawns a leave event.
Click here to view code image
class orderEvent : public event { 
public: 
   orderEvent (unsigned int time, unsigned int gs) 
      : event(time), size(gs) { } 
   virtual void processEvent (); 
protected: 
   unsigned int groupSize; 
}; 
 
void orderEvent::processEvent() 
{ 
      // each person orders some number of  scoops 
   for (int i = 0; i < groupSize; i++) 
      theStore.order(1 + rand(3)); 
   theSimulation.scheduleEvent 
      (new leaveEvent(time + randBetween(15,35), groupSize)); 
};

Finally, leave events free up chairs but do not spawn any new events.
Click here to view code image
class leaveEvent : public event { 
public: 
   leaveEvent (unsigned int time, unsigned int gs) 
      : event(time), groupSize(gs) { } 
   virtual void processEvent (); 
protected: 
   unsigned int groupSize; 
}; 
void leaveEvent::processEvent () 
{ 
   theStore.leave(groupSize); 
}

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0419-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0420-02a


The main program simply creates a certain number of initial events, then
sets the simulation in motion. In our case we will simulate two hours (120
minutes) of operation, with groups arriving with random distribution
between two and five minutes apart.

Click here to view code image
void main() { 
   // load queue with some number of  initial events 
   unsigned int t = 0; 
   while (t < 120) { 
      t += randBetween(2,5); 
      theSimulation.scheduleEvent 
         (new arriveEvent(t, randBetween(1,5))); 
      } 
 
   // then run simulation and print profits 
   theSimulation.run(); 
   cout « "Total profits " « theStore.profit « endl; 
}

An example execution might produce a log such as the following:
Click here to view code image
customer group of size 4 arrives at time 11 
customer group of size 4 orders 5 scoops of ice cream at time 13 
customer group size 4 leaves at time 15 
customer group of size 2 arrives at time 16 
customer group of size 1 arrives at time 17 
customer group of size 2 orders 2 scoops of ice cream at time 19 
customer group of size 1 orders 1 scoops of ice cream at time 19 
customer group size 1 leaves at time 22 
  ⋮ 
customer group of size 2 orders 3 scoops of ice cream at time 136 
customer group size 2 leaves at time 143 
total profits are 26.95

Summary ⊡
A framework is a set of classes that creates a skeleton application without
providing any of the application-specific details needed to realize a working
program. Classes in the framework are then modified through subclassing

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0421-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch21_images.xhtml#f0421-03a


in order to fill in the details. The most common frameworks are involved in
graphical user interfaces, but frameworks can be created for almost any
type of problem.

A characteristic of frameworks is the interaction of two types of
methods. Foundation methods are defined in parent classes and not
generally overridden. Deferred methods are specified in parent classes but
must be overridden in application-specific child classes.

The use of a well-designed framework can significantly reduce the
development time for an application, while providing more robust and
reliable performance.

Further Reading ⊡
Examples of frameworks that have been described in the literature include
[Gamma 1995, Deutsch 1989, Weinand 1988]. The description of a
framework as an upside-down library is due to Wilson [Wilson 1990].

I have used the ice cream store framework in several previous books in
several languages [Budd 1987, Budd 1994, Budd 2000].

Self-Study Questions ⊡

1. What is a software framework?

2. What are the two different ways that inheritance is used in a software
framework?

3. Why in a statically typed language are methods that must be
overridden even defined in a parent class?

4. Explain the idea of high-level versus low-level abstractions? How do
frameworks permit the reuse of higher-level abstractions that is
possible in non-object-oriented languages?

5. Explain the reasoning behind the description of a framework as an
upside-down library.



Exercises ⊡

1. Extract a graphical simulation framework from the billiard game in
Chapter 7, and rewrite the program to use your simulation.



Chapter 22

An Example Framework: The
AWT and Swing

The AWT (the Abstract Windowing Toolkit) and the newer Swing library
extensions are the portions of the Java run-time library that are involved
with creating, displaying, and facilitating user interaction with window
objects. The AWT is an example of a software framework. As we noted in
Chapter 21, a framework is a way of structuring generic solutions to a
common problem, using polymorphism as a means of creating specialized
solutions for each new application. Examining the AWT will illustrate how
polymorphism is used in a powerful and dynamic fashion in this library.

22.1 ⊡ The AWT Class Hierarchy
In Java, the class Frame represents the Java notion of an application window,
a two-dimensional graphical surface that is shown on the display device,
and through which the user interacts with a computer program.1
Applications are formed by subclassing from Frame, overriding various
methods, such as the paint method for repainting the window. In actuality,
much of the behavior provided by class Frame is inherited from parent
classes (see Figure 22.1). Examining each of these abstractions in turn helps
to illustrate the functioning of the Java windowing system, as well as
illustrating the power of inheritance as a mechanism for code reuse and
sharing.



1. The Swing library, which was added to Java in version 1.2 of the language, uses JFrame.
Applets, which we discussed briefly in Chapter 21, subclass from Applet. However, both JFrame
and Applet are subclasses of Frame. We will discuss the Swing library in Section 22.6.

⊡ Figure 22.1—The AWT class hierarchy

The class Object is the parent class of all classes in Java. It provides the
ability to compare two objects for equality, compute a hash value for an
object, and determine the class of an object. Methods defined in class
Object include the following.

equals 

(anObject)

Returns true if object is equal to 
argument

getClass () Returns the class of an object

hashCode () Returns a hash value for an object

toString ()
Returns a string representation of an 
object

A Component is something that can be displayed on a two-dimensional
screen and with which the user can interact. Attributes of a component



include a size, a location, foreground and background colors, whether or
not it is visible, and a set of listeners for events. Methods defined in class
Component include the following.

enable(), disable() Enable/disable a component

setLocation(int,int), 

getLocation()

Set and get component 
location

setSize(int,int), getSize()
Set and get size of 
component

setVisible(boolean) Show or hide the component

setForeground(Color), 

getForegound()

Set and get foreground 
colors

setBackground(Color), 

getBackground()

Set and get background 
colors

setFont(Font), getFont() Set and get font

repaint(Graphics)
Schedule component for 
repainting

paint(Graphics)
Repaint component 
appearance

addMouseListener(MouseListe

ner)

Add a mouse listener for 
component

addKeyListener(KeyListener)
Add a keypress listener for 
component

Besides frames, other types of components include buttons, checkboxes,
scroll bars, and text areas.

A Container is a type of component that can nest other components
within it. A container is the way that complex graphical interfaces are
constructed. A Frame is a type of Container, so it can hold objects such as
buttons and scroll bars. When more complicated interfaces are necessary, a
Panel (another type of container) can be constructed, which might hold, for
example, a collection of buttons. Since this Panel is both a Container and a



Component, it can be inserted into the Frame. A container maintains a list of
the components it manipulates, as well as a layout manager to determine
how the components should be displayed. Methods defined in class
Container include the following.

setLayout (LayoutManager)
Set layout manager for 
display

add (Component), remove 

(Component)

Add or remove component 
from display

A Window is a type of Container. A window is a two-dimensional
drawing surface that can be displayed on an output device. A window can
be stacked on top of other windows and moved either to the front or back of
the visible windows. Methods defined in class Window include the
following.

show() Make the window visible

toFront() Move window to front

toBack() Move window to back

Finally, a Frame is a type of window with a title bar, a menu bar, a
border, a cursor, and other properties. Methods defined in class Frame
include the following.

setTitle(String), getTitle() Set or get title

setCursor(int) Set cursor

setResizable() Make the window resizable

setMenuBar(MenuBar) Set menu bar for window

If we consider a typical application, we see that it uses methods from a
number of different levels of the class hierarchy.

setTitle(Stri

ng)
Inherited from class Frame

setSize(int, Inherited from class Component



int)

show() Inherited from class Window

repaint() Inherited from class Component

paint()
Inherited from Component, overridden in 
application class

The code in the parent classes (Component, Container, Window, and
Frame) has all been written without reference to any particular application.
Thus, this code can be easily carried from one application to the next. To
specialize the design framework to a new application it is only necessary to
override the appropriate methods (such as paint or event listeners) to
define application-specific behavior. Thus, the combination of inheritance,
overriding, and polymorphism permits design and software reuse on a
grand scale.

In the remainder of this chapter we will examine various aspects of the
AWT framework and illustrate how the basic concepts of inheritance and
overriding are used to solve various problems.

22.2 ⊡ The Layout Manager
A typical user interface may hold a variety of buttons, slide bars, text
windows, and selection boxes, in addition to application-specific graphical
elements. The layout manager is the portion of the AWT charged with
determining where each graphical element should be placed. This task is
complicated by the ability of end-users to alter and resize windows, and
therefore the layout manager cannot simply place elements at fixed
locations specified by the programmer, since these locations would change
as the window sizes changes.

There are a variety of standard layout managers, each of which will
place components in a slightly different way. For example, the
BorderLayout places up to five elements around the edges of the display
(Figure 22.2). A GridLayout places components in a rectangular grid. Other
layout managers allow components to be placed one on top of another (with
only the topmost element showing) and in a variety of other ways.



⊡ Figure 22.2—Locations recognized by border layout manager

The programmer developing a graphical user interface creates an
instance of a layout manager and hands it to a container. Generally, the task
of creation is the only direct interaction the programmer will have with the
layout manager, since thereafter all commands will be handled by the
container itself.

The connections between the application class, the container, and the
layout manager illustrate the ways that inheritance, composition, and
interfaces can be combined in order to achive an extremely loose coupling
and a high degree of flexibility in design. The heart of the problem is that
the framework code, the AWT, does not know how the layout should be
structured; only the programmer creating the application has that
information. Therefore, the AWT cannot itself specify the layout strategy.
However, the algorithms and techniques required to program a layout
manager are complex, and the developers of the framework cannot
realistically expect that the application programmers will have the ability to
write a new manager for each class. To circumvent this quandary, the class
LayoutManager is defined as an interface, and the framework library
provides several alternative implementations.



The selection of the layout manager is placed in the hands of the
application programmer and not the framework developer. (The application
programmer is even free to develop his or her own layout manager if
desired, although few will be this ambitious.) As noted in Chapter 17, the
application programmer simply creates an instance of layout manager and
hands it to the framework by means of the inherited method
setLayoutManager. Later, when the framework finds it necessary to
determine the location of each graphical element, the framework simply
invokes methods in the layout manager.

The relationship between the application class, the framework class, the
layout manager interface, and the actual layout manager is shown in Figure
22.3. Note how flexible the connections are between these elements. There
are three different mechanisms at work here: inheritance, composition, and
implementation of an interface. Each is serving a slightly different purpose.
Inheritance is the is-a relation and links the application class to the parent
window class. This allows the code written in the AWT class Window to
perform application-specific actions by invoking methods in the application
class that override methods in the parent class (paint(), for example). The
fact that composition is used to link the container with the layout manager
makes the link between these two items very flexible and dynamic—the



programmer can easily change the type of layout manager being used by a
container. This dynamic behavior is very difficult to achieve using
inheritance alone, since the inheritance relationship between a parent and
child is established at compile time. Finally, the fact that LayoutManager is
simply an interface, and that various different classes of objects implement
this interface means that the programmer is free to develop alternative
layout managers using a wide variety of techniques. This freedom would be
much more constrained if, for example, LayoutManager was a class that
alternative layout managers needed to extend.

⊡ Figure 22.3—Relationships between layout manager components

22.3 ⊡ Listeners
As we have noted several times, a fundamental feature of software
frameworks is a tension between software reuse and specialization, and that
in a framework this tension is resolved by the twin mechanisms of
inheritance (for providing reusable algorithms) and overriding (for
specializing the algorithms to new situations).

To handle features such as repainting, setting the title, setting menu
categories, and other similar operations, the window class uses simple
inheritance; the application class simply inherits from Frame and invokes
the right methods. To handle end-user-generated events, such as mouse



motions and key presses, the AWT uses a slightly more complex
arrangement.

A listener is an object whose sole purpose is to sit and wait (to listen)
for an event to occur. Each of the graphical elements that can generate an
event, such as a window, a button, or a slide bar, will maintain its own
collection of listeners. When an event occurs, the listeners are notified, and
they take the appropriate action.

Once again we have the fundamental problem that the framework is
defining the structure in which the events are to be handled, but the
framework does not know the specific details concerning how these events
should be handled. Only the application programmer knows what a mouse
press or a key press should mean. And once again the solution is to use a
combination of inheritance and overriding.

The AWT framework defines a series of interfaces, one for each
category of event. For example, the interface actionListener is associated
with items such as buttons. It is defined as follows.

Click here to view code image
public interface ActionListener extends EventListener { 
  public void actionPerformed (ActionEvent e); 
}

The application programmer, who knows what a button press should
mean, must create a class that implements this interface. An object that
performs this implementation is then handed to the slider object by means
of the method setActionListener. So we have the following structure.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch22_images.xhtml#f0429-01a


Note carefully the source of and role played by each of the three
elements. The button class and the interface are part of the AWT framework
and must be very general and know nothing of the specific application. The
implementation of the interface is provided by the application programmer,
who is the only one who knows what the action should mean in the context
of the final application. By separating the listener from the button, this
structure allows several components to be handled by a single listener
object. By combining the listener and its interface through inheritance, the
framework provides a way to handle events that is very flexible and easy to
modify.

22.3.1 Adapter classes
Many events have several different but related manifestations. A mouse, for
example, can be moved, can enter the portion of a window covered by a
component, can exit this space, or can be pressed. Thus, the framework
class to handle mouse activities has several different parts.

Click here to view code image
public interface MouseListener extends EventListener { 
  public void mouseClicked (MouseEvent e); 
  public void mouseEntered (MouseEvent e); 
  public void mouseExited (MouseEvent e); 
  public void mousePressed (MouseEvent e); 
  public void mouseReleased (MouseEvent e); 
}

More often than not the application programmer is interested in only one
or two of these events and not the entire suite of methods. To accommodate
this, the AWT framework provides a number of adapter classes. These
implement the interface but do nothing in response to each of the methods.

Click here to view code image
public class MouseAdapter implements MouseListener { 
  public void mouseClicked (MouseEvent e) { } 
  public void mouseEntered (MouseEvent e) { } 
  public void mouseExited (MouseEvent e) { } 
  public void mousePressed (MouseEvent e) { } 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch22_images.xhtml#pf0429-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch22_images.xhtml#pf0430-02a


  public void mouseReleased (MouseEvent e) { } 
}

If the application programmer is interested only in mouse presses, it is
easier to subclass from MouseAdapter and override only one method than it
is to implement MouseListener and give an implementation to all five
methods. The application class listener is then handed to a window (for
example), which maintains a list of all the listeners waiting on mouse
events. So we have the following picture.

The window "thinks" that it is maintaining a list of MouseListener
objects. In fact, the listener is a child class created by subclassing from
MouseAdapter.

22.4 ⊡ User Interface Components
The variety of user interface components in the Java AWT library provides,
once again, a good illustration of the power of polymorphism. With the
exception of menu bars, all the user interface components are subclassed
from the parent class Component (Figure 22.1). Containers assume only that
the elements they will hold are instances of class Component. In fact, the



values they maintain are polymorphic and represent more specialized
values, such as buttons or scroll bars. Thus, the design of the user interface
construction system depends on the mechanisms of inheritance,
polymorphism, and substitutability. We will consider only a few examples
that illustrate the general character of the AWT components.

A Button (or JButton in the Swing library) is a labeled component
represented by a rounded box that can respond to user interaction. The
application programmer places a button in a specific location. In the
following example we will place the button at the top (or north) part of the
screen. Interaction with a button is achieved by attaching an
ActionListener object to the button. The ActionListener object is then
notified when the button is pressed.

Click here to view code image
 Button butn = new Button ("do it!"); 
 add ("North", butn); // place at top of screen 
 butn.addActionListener (new doIt()); // add listener 
 .. 
 private class dolt implements ActionListener { 
   public void actionPerformed (ActionEvent e) { 
     // whatever do it does 
     . 
     . 
     . 
   } 
}

In this example an inner class defines whatever actions should be taken
when the button is pressed. A useful technique is to combine the button
object and the button listener in one new class. This new class both
subclasses from the original Button class and implements the
ActionListener interface. For example, in the case study that is presented
in Section 22.5, we create a set of buttons for different colors. Each button
holds a color value and when pressed, invokes a method using the color as
argument. This class is written as follows.

Click here to view code image
 class ColorButton extends Button implements ActionListener { 
   private Color ourColor; 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch22_images.xhtml#pf0431-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch22_images.xhtml#pf0431-02a


   public ColorButton (Color c, String name) { 
     super (name); // create the button 
     ourColor = c; // save the color value 
     addActionListener (this); // add ourselves as listener 
   } 
 
   public void actionPerformed (ActionEvent e) { 
    // set color for middle panel 
  setFromColor (ourColor); 
 } 
}

Notice how the object registers itself as a listener for button actions.
When pressed, the button will invoke the method actionPerformed, which
will then invoke the procedure setFromColor that is found in the
surrounding class.

We can take this technique one step further and define a generic
ButtonAdapter class that is both a button and a listener. The actions of the
listener will be encapsulated by an abstract method, which must be
implemented by a subclass.

Click here to view code image
abstract class ButtonAdapter extends Button implements 
ActionListener 
{ 
  public ButtonAdapter (String name) { 
    super (name); 
    addActionListener (this); 
  } 
 
  public void actionPerformed (ActionEvent e) { pressed(); } 
 
  public abstract void pressed (); 
}

To create a button using this abstraction, the programmer must subclass
and override the method pressed. This, however, can be done easily using a
class definition expression. The following, for example, creates a button
that when pressed will halt the application.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch22_images.xhtml#pf0432-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch22_images.xhtml#pf0432-03a


p.add (new ButtonAdapter("Quit"){ 
  public void pressed () { System.exit(0); }});

A ScrollBar is a slider used to specify integer values over a wide range.
Scroll bars can be displayed in either a horizontal or a vertical direction.
The maximum and minimum values can be specified, as well as the line
increment (the amount the scroll bar will move when it is touched in the
ends) and the page increment (the amount it will move when it is touched
in the background area between the slider and the end). Like a button,
interaction is provided for a scroll bar by defining a listener that will be
notified when the scroll bar is modified.

The case study at the end of this chapter uses a technique similar to the
one described earlier in the discussion of buttons. Figure 22.4 shows a
snapshot of this application, which includes three vertical scroll bars. The
class ColorBar represents a scroll bar for maintaining colors. The
constructor for the class creates a vertical scroll bar with an initial value of
40 and a range between 0 and 255.

⊡ Figure 22.4—Snapshot of ColorTest application



The background color for the scroll bar is set using a given argument.
Finally, the object itself is made a listener for scroll bar events. When the
scroll bar is changed, the method adjustmentValueChanged will be executed.
Typically, within this method the current value of the scroll bar would be
accessed using getValue(). In this particular application, a bank of three
scroll bars will be created, and the value of all three will be recovered in a
shared procedure named setFromBar.

Click here to view code image
private class ColorBar extends Scrollbar implements 
AdjustmentListener 
{ 
  public ColorBar (Color c) { 
    super (Scrollbar.VERTICAL, 40, 0, 0, 255); 
    setBackground (c); 
    addAdjustmentListener (this); 
  } 
 
  public void adjustmentValueChanged (AdjustmentEvent e) { 
    // method setFromBar will get scroll bar 
    // value using getValue (); 
    setFromBar (); 
  } 
}

22.5 ⊡ Case Study: A Color Display
A simple test program will illustrate how panels and layout managers are
used in developing user interfaces. The application will also illustrate the
use of scroll bars and the use of methods provided by the class Color.
Finally, we can also use this program to illustrate how nested classes can be
employed to combine the actions of creating a new graphical component
(such as a button or a slider) and listening for actions relating to the
component.

The class ColorTest (Figure 22.5) creates a window for displaying color
values. The window, shown in Figure 22.4, is divided into four separate
regions. These four regions are managed by the default layout manager for
class Frame. This layout manager is a value of type BorderLayout.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch22_images.xhtml#pf0433-02a


Click here to view code image
class ColorTest extends Frame { 
  static public void main (String [ ] args) 
    { Frame window = new ColorTest(); window.show(); } 
 
  private TextField colorDescription = new TextField(); 
  private Panel colorField = new Panel(); 
  private Color current = Color.black; 
  private Scrollbar redBar = new ColorBar(Color.red); 
  private Scrollbar greenBar = new ColorBar(Color.green); 
  private Scrollbar blueBar = new ColorBar(Color.blue); 
 
  public ColorTest () { 
    setTitle ("color test"); setSize (400, 600); 
    add("North", colorDescription); 
    add("East", makeColorButtons()) ; 
    add("Center", colorField); 
    add('West", makeScrollBars()); 
    setFromColor (current); 
  } 
 
  private void setFromColor (Color c) { 
    current = c; colorField.setBackground (current); 
    redBar. set Value (c .getRed()); 
    greenBar. set Value (c. getGreen()) ; 
    blueBar. setValue(c.getBlue() ) ; 
    colorDescription. setText (c.toString()) ; 
  } 
 
  private void setFromBar () { 
    int r = redBar.getValue(); 
    int g = greenBar.getValue(); 
    int b = blueBar.getValue(); 
    setFromColor (new Color(r, g, b)); 
  } 
 
  private Panel makeColorButtons () { ... } 
  private Panel makeScrollBars () { ... } 
private class BrightenButton extends Button implements 
    ActionListener ... 
private class ColorButton extends Button implements 
ActionListener 
private class ColorBar extends Scrollbar implements 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch22_images.xhtml#pf0435-01a


    AdjustmentListener ... 
}

⊡ Figure 22.5—The class ColorTest

At the top (the “north” side) is a text region, a component of type
TextField, that describes the current color. To the left (the “west” region) is
a trio of sliders that can be used to set the red, green, and blue values. To
the right (the “east” region) is a 4 × 4 bank of 16 buttons. These are
constructed on a Panel that is organized by a GridLayout manager. Thirteen
of the buttons represent the predefined color values. Two more represent
the actions of making a color brighter and darker. The final button will halt
the application. Finally, in the middle will be a square panel that represents
the specified color.

The class ColorTest holds six data fields. The first represents the current
color in the middle panel, and the remaining five represent different
graphical objects. Three represent the slider, one represents the text field at
the top of the page, and one represents the color panel in the middle.

The three sliders use the class ColorBar described in Section 22.4. The
argument used with the constructor for each class is the color to be used in
painting the buttons and background for the scroll bar. You will recall that
when adjusted, the scroll bar will invoke its listener, which will execute the
method adjustmentValueChanged. This method will then execute the
procedure setFromBar.

Complex graphical layouts can be created by composing one type of
layout on top of another. For example, the three scroll bars are themselves
stored in a Panel (another type of component) that is organized using a
BorderLayout. This is performed in the following method.

Click here to view code image
private Panel makeScrollBars () { 
  Panel p - new Panel (); 
  p.setLayout (new BorderLayout()); 
  p.add("West", redBar); 
  p.add("Center", greenBar); 
  p.add("East", blueBar); 
  return p; 
}

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch22_images.xhtml#pf0434-01a


The idea of combining inheritance and implementation of an interface is
used in creating the buttons that represent the 13 predefined colors. Each
instance of ColorButton, shown in Section 22.4, both extends the class
Button and implements the ActionListener interface. When the button is
pressed, the method setFromColor will be used to set the color of the
middle panel, using the color stored in the button.

The class BrightenButton is slightly more complex. An index value is
stored with the button. This value indicates whether the button represents
the “brighten” button or the “darken” button. When pressed, the current
color is modified by the appropriate method, and the new value is used to
set the current color.

Click here to view code image
private class BrightenButton extends Button implements 
ActionListener 
{ 
  private int index; 
  public BrightenButton (int i) { 
    super ( i == 0 ? "brighter" : "darker"); 
    index = i; 
    addActionListener(this); 
    } 
 
  public void actionPerformed (ActionEvent e) { 
    if (index == 0) 
      setFromColor (current.brighter()); 
    else 
      setFromColor (current.darker()); 
    } 
}

A panel is used to hold the 16 button values. In this case the layout is
described by a 4 × 4 grid pattern. Thirteen represent the predefined buttons,
2 represent the brighter and darker buttons, and the last creates a button that
when pressed exits the application.

Click here to view code image
private Panel makeColorButtons () { 
  Panel p = new Panel(); 
  p.setLayout (new GridLayout(4,4,3,3)); 
  p.add (new ColorButton(Color.black, "black")); 
  p.add (new ColorButton(Color.blue, "blue")); 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch22_images.xhtml#pf0436-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch22_images.xhtml#pf0436-02a


  p.add (new ColorButton(Color.cyan, "cyan")); 
  p.add (new ColorButton(Color.darkGray, "darkGray")); 
  p.add (new ColorButton(Color.gray, "gray")); 
  p.add (new ColorButton(Color.green, "green")); 
  p.add (new ColorButton(Color.lightGray, "lightGray")); 
  p.add (new ColorButton(Color.magenta, "magenta")); 
  p.add (new ColorButton(Color.orange, "orange")); 
  p.add (new ColorButton(Color.pink, "pink")); 
  p.add (new ColorButton(Color.red, "red")); 
  p.add (new ColorButton(Color.white, "white")); 
  p.add (new ColorButton(Color.yellow, "yellow")); 
  p.add (new BrightenButton(0)); 
  p.add (new BrightenButton(1)); 
  p.add (new ButtonAdapter("Quit"){ 
    public void pressed() { System.exit (0); }}); 
  return p; 
}

22.6 ⊡ The Swing Component Library
As we noted earlier, the Java user interface library underwent a major
revision between Java version 1.1 and version 1.2. The newer Swing library
promised greater platform independence and a consistency of appearance
between components. On the negative side, the newer library tends to run
more slowly than the older AWT library.

Depending on what platform is being used, readers may encounter either
the earlier or the later libraries. If applets are being developed, then the
programmer should be aware that many Web browsers do not yet support
the Java 1.2 libraries. In the next section we describe the most important
differences between the two systems.

22.6.1 Import libraries
To use the older AWT library it was only necessary to import java.awt.* and
java.awt.event.* To include the newer Swing libraries it is necessary to
import javax.swing.* and javax.swing.event.* Since Swing is built on top of
AWT, it is usually necessary to import both sets of libraries.



22.6.2 Different components
The AWT components had names like Button and Scrollbar. The Swing
components have for the most part simply prepended the letter J to the
name, as in JButton. (Although there are exceptions to this rule—for
example, Scrollbar became JScrollBar, with a capital B.)

There are minor differences in the methods supported by the two sets of
components, and the Swing library has introduced many new components
not found in AWT. But generally backwards compatibility has been
preserved, so methods that formerly worked with the AWT should still
work with the Swing library.

22.6.3 Different paint protocol
In the Swing library it is almost always necessary to invoke the parent class
paint method from inside an overridden paint method. This is
accomplished by calling super.paint.

Click here to view code image
public class BallWorld extends JFrame { 
   . 
   . 
   . 
   public void paint (Graphics g) { 
      super.paint(g); // first call parent, then do 
      aBall.paint(g); // class-specific painting 
   } 
   . 
   . 
   . 
}

22.6.4 Adding components to a window
In the AWT library the user generally attached a component to a window by
issuing an add method in the constructor for an application class. In the

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch22_images.xhtml#pf0438-01a


Swing library it is necessary to first invoke the method getContentPane,
then add the component to the value returned by this method.

Click here to view code image
public class CannonWorld extends JFrame { 
 
   public CannonWorld () { 
      . 
      . 
      . 
      getContentPane().add("East", scrollbar); 
   } 
}

Summary ⊡
The Abstract Windowing Toolkit, or AWT, is the portion of the Java library
used for the creation of graphical user interfaces. The design of the AWT is
an excellent illustration of the power of object-oriented techniques in the
creation of an application framework. In this chapter we described the
varous AWT components and the way they are used to created user
interfaces.

Further Reading ⊡
A good introduction to the AWT under Swing is [Walrath 1999].

Self-Study Questions ⊡
1. What do the letters AWT stand for?
2. Explain the relationships between the various parts in the

manipulation of a layout manager.
3. What is a listener? When does a listener get invoked?
4. What purpose is being addressed by the mouse adapter?

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch22_images.xhtml#pf0438-02a


Exercises ⊡
1. Explain why MouseListener can be represented as an interface, but

MouseAdapter must be a class.



Chapter 23

Object Interconnections

Starting with this chapter we step back and move up a level of abstraction.
In Chapter 1 we presented the idea that an object-oriented program should
be viewed as a community of agents working together to address a common
purpose. Rather than considering the structure of individual classes in
isolation (as we have done in previous chapters) or the parent class/child
class relationship, starting with this chapter we will examine the
relationships between groups of classes or objects working together. In
particular, in this chapter we will consider the nature of the connections that
can bind one object to another.

One way to look at interconnections between objects is to examine the
concepts of visibility and dependency. The software engineering term
visibility describes a characterization of names—the handles by which
objects are accessed. An object is visible in a certain context if its name is
legal and denotes the object. A related term frequently used to describe
visibility is the scope of an identifier.

Visibility is related to connectedness in the sense that, if it is possible to
control and reduce the visibility of names for an identifier, we can more
easily characterize how the identifier is being used. In Smalltalk, for
example, instance variables have their visibility restricted to methods; they
cannot be accessed directly except within a method. This does not mean
that such values cannot be accessed or modified outside of the class; all
such uses, however, must be mediated by at least one method. In Apple
Object Pascal, on the other hand, instance variables are visible wherever a
class name is known. Thus, the language provides no mechanisms to ensure



that instance variables are modified only by methods; instead, we must rely
on the appropriate conduct of users.

The concept of dependency relates one object or class to another. If an
object cannot meaningfully exist without another object, it is said to be
dependent on the second. A child class is almost always dependent on its
parent, for example. Dependencies can also be much more subtle, as we
will discover in the next section.

23.1 ⊡ Coupling and Cohesion
The idea of coupling and cohesion provides a framework for evaluating
effective use of objects and classes. As we noted in Chapter 3, coupling
describes the relationships between classes, and cohesion describes the
relationships within them. A reduction in interconnectedness between
classes is therefore achieved via a reduction in coupling. On the other hand,
well-designed classes should have some purpose; all the elements should be
associated with a single task. This means that in a good design the elements
within a class should have internal cohesion.

23.1.1 Varieties of coupling
Coupling between classes can arise for different reasons, some of which are
more acceptable, or desirable, than others. A list ranked from worst to better
might look something like the following.

Internal data coupling
Global data coupling
Control (or sequence) coupling
Component coupling
Parameter coupling
Subclass coupling

Internal data coupling occurs when instances of one class can directly
modify the local data values (instance variables) in another class.



Click here to view code image
class   SneakyModifier {         class Person { 
public:                           public: 
  void sneaky () {               Person () { 
    // change my friends name     name = "Larry"; 
    myFriend->name = "Lucy";      } 
  }                                string name; 
  Person * myFriend;              }; 
};

The reason why internal data coupling is so insidiously bad is that it
complicates the ability to understand classes in isolation. If one examines
only the class on the right-hand side, how is one to know that an internal
data field can magically be modified by a force working external to the
class? This activity makes understanding and reasoning about programs
difficult and should be avoided whenever possible. In a later section, we
will explore one heuristic used to reduce internal data coupling in object-
oriented systems.

Global data coupling occurs when two or more classes are bound
together by their reliance on common global data structures.

Click here to view code image
              double todaysDow; 
 
class One {              class Two { 
public:                  public: 
  void setDow () {        void printDow () { 
    todaysDow = 9473;        cout ≪ "Today the Dow hit " 
  }                          ≪ todaysDow; 
};                        } 
                         };

Once more, the reason why this form of coupling is bad is that it
complicates the understanding of classes taken in isolation. Each class by
itself is incomplete, and understanding the interaction between them is
possible only when one examines both class definitions at once.
Nevertheless, sometimes global data coupling is unavoidable.

In practice, it is important to distinguish between two varieties of global
variables. In multifile programs some global variables have file scope,
which means they are used only within one file. Other global variables have
program scope, which means they can potentially be modified anywhere in

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0442-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0443-01a


a program. Understanding the use of global variables that possess program
scope can be much more difficult than understanding the manipulation of
variables that have only file scope.

Many languages provide techniques to control the visibility of names
that are between individual classes and complete programs. Examples are
name spaces in C++, packages in Java, or units in Object Pascal. These
features allow some names to have a scope that is larger than an individual
class and yet smaller than the entire program. Objects that interact with
each other by means of such values are slightly better than objects that
interact through true global variables, since the portion of the program
where interactions can occur is reduced. However, such coupling can still
be difficult to understand, and it should be avoided wherever possible.

In an object-oriented framework, a possible alternative to global data
coupling is to make a new class that is charged with “managing” the data
values and to route all access to the global values through it. (This approach
is similar to our use of access functions to shield direct access to local data
within an object.) This technique reduces global data coupling to parameter
coupling, which is easier to understand and control. In Java there are no
global variables, and all values must be managed by some class.

Click here to view code image
class MyClass { 
public: 
  void mustDoFirst() { .. . } 
 
  void doSecond () { ... } 
 
  void doThird (){...} 
};

Control or sequence coupling occurs when one class must perform
operations in a certain fixed order but the order is controlled elsewhere. A
database system might go through, in order, the stages of performing
initialization, reading current records, updating records, deleting records,
and generating reports. However, each stage is invoked by a different
routine and the sequencing of the calls can be dependent on code in a
different location. The presence of control coupling indicates that the
designer of a class was following a lower level of abstraction than was
necessary (each of the various steps versus a single directive, “process a

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0444-01a


database”). Even when control coupling is unavoidable, prudence usually
dictates that the class being sequenced assures itself that it is being
processed in the correct order, rather than rely on the proper handling of the
callers.
class Set { 
  . 
  . 
  . 
private: 
  List data; 
};

Component coupling occurs when one class maintains a data field or
value that is an instance of another class. Ideally the relationship in a
component coupling is one way. The container clearly has knowledge of the
class of value it maintains, but the element being held should have no
knowledge of the container in which it is being used. The Set abstraction
that used a List to maintain elements described in Chapter 14 was an
example of component coupling.

Click here to view code image
class MyClass { 
public: 
  void doSomething (Set aSet) { 
    // do something using the argument value 
    . 
    . 
    . 
  } 
}

Parameter coupling occurs when one class must invoke services and
routines from another and the only relationships are the number and type of
parameters supplied and the type of value returned. This form of coupling
is common, easy to see, and easy to verify statically (with tools that check
parameter calls against definition, for example); therefore, it is the most
benign option.

Click here to view code image
class Parent { 
  . 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0444-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0445-01a


  . 
  . 
} 
 
class Child extends Parent { 
  . 
  . 
  . 
}

Subclass coupling is particular to object-oriented programming. It
describes the relationship a class has with its parent class (or classes in the
case of multiple inheritance). Through inheritance, an instance of a child
class can be treated as though it were an instance of the parent class. As we
have seen in several case studies in this book, this feature permits the
development of significant software components (such as windowing
systems) that are only loosely related, via subclass coupling, to other
portions of an application.

23.1.2 Varieties of cohesion
The internal cohesion of a class is a measure of the degree of binding of the
various elements within the structure. As with coupling, cohesion can be
ranked on a scale of the weakest (least desirable) to the strongest (most
desirable) as follows.

Coincidental cohesion
Logical cohesion
Temporal cohesion
Communication cohesion
Sequential cohesion
Functional cohesion
Data cohesion

Coincidental cohesion occurs when elements of a class are grouped for
no apparent reason—often the result of someone “modularizing” a large
program by arbitrarily segmenting it into several small units. It is usually a



sign of poor design. In an object-oriented framework, we say that
coincidental cohesion occurs when a class consists of methods that are not
related.

Logical cohesion occurs when there is a logical connection among the
elements of the class but no actual connection in either data or control. A
library of mathematical functions (sine, cosine, and so on) might exhibit
logical cohesion if each of the functions is implemented separately without
reference to any of the others.

Temporal cohesion occurs when elements are bound together because
they all must be used at approximately the same time. A class that performs
program initialization is a typical example. Here, a better design would
distribute the various initialization activities over the classes more closely
charged with subsequent behavior.

Communication cohesion occurs when methods in a class are grouped
because they all access the same input/output data or devices. The class acts
as a “manager” for the data or the device.

Sequential cohesion occurs when elements in a class are linked by the
necessity to be activated in a particular order. It often results from an
attempt to avoid sequential coupling. Again, a better design can usually be
found if the level of abstraction is raised. (Of course, if it is necessary for
actions to be performed in a certain order, this sequentiality must be
expressed at some level of abstraction. The important principle is to hide
this necessity as much as possible from all other levels of abstraction.)

Function cohesion is a desirable type of binding in which the elements
of a class all relate to the performance of a single function.

Finally, data cohesion is when a class defines a set of data values and
exports routines that manipulate the data structure. Data cohesion occurs
when a class is used to implement a data abstraction.

One can often estimate the degree of cohesion within a class by writing
a brief statement of the classe’s purpose and examining the statement
(similar to the CRC card description we used in Chapter 3). The following
tests are suggested by Constantine.

1. If the sentence that describes the purpose of a class is a compound
sentence containing a comma or more than one verb, the class is
probably performing more than one function; therefore, it probably
has sequential or communicational binding.



2. If the sentence contains words relating to time, such as “first,” “next,”
“then,” “after,” “when,” or “start,” the class probably has sequential
or temporal binding. An example is “Wait for the instant teller
customer to insert a card, then prompt for the personal identification
number.”

3. If the predicate of the sentence does not contain a single, specific
object following the verb, the class is probably logically bound. For
example, “Edit all data” has logical binding; “Edit source data” may
have functional binding.

4. If the sentence contains words such as “Initialize” or “Clean up,” the
class probably has temporal binding.

23.1.3 The Law of Demeter
Style guidelines for program coding range from the abstract, such as the
directive “Modules should exhibit internal cohesion and minimize external
coupling,” to the concrete, such as “No procedure should contain more than
60 lines of code.” Concrete guidelines are easy to understand and apply, but
often they lull programmers (and managers) into a false sense of security
and may direct attention away from the real problem. As an aid in reducing
complexity, the rule banning all procedures of more than 60 lines is an
approximation at best. A short procedure with complicated control flow
may be much more difficult to understand and code correctly than a far
longer sequence of straight-line assignment statements.

Similarly, the fanatical attempt some people made a few years back to
ban goto statements was often misguided. The goto itself was merely a
symptom of a disease, not the disease itself. The assertion was not that goto
statements are intrinsically bad and programs that avoid them are uniformly
improved but rather that it is more difficult to produce an easily understood
program using goto statements. It is the understandability of programs that
is important, not the use or nonuse of goto statements. Nevertheless, we
cannot overlook the utility of a simple rule that is easy to apply and that is
effective most of the time in achieving some desirable end, and we may ask
whether any such guidelines might be developed specifically for object-
oriented programs.



One such guideline has been proposed by Karl Lieberherr as part of his
work on an object-oriented programming tool called Demeter: the Law of
Demeter. There are two forms of the law, strong and weak. Both strive to
reduce the degree of coupling between objects by limiting their
interconnections.

The Law of Demeter
In any method, M, attached to a class, C, only methods defined by the
following classes may be used.

The instance-variable classes of C
The argument classes of method M (including C); note that global
objects or objects created inside the method M are considered
arguments to M.

If we rephrase the law in terms of instances (or objects) instead of
methods, we arrive at the following.

The Law of Demeter—weak form
Inside a method, data can be accessed in and messages can be sent to only
the following objects.

1. The arguments associated with the method being executed (including
the self object)

2. Instance variables for the receiver of the method
3. Global variables, both with file scope and with program scope
4. Temporary variables created inside the method

The strong form of the law restricts access to instance variables only to
those variables defined in the class in which the method appears. Access to
instance variables from superclasses must be mediated through accessor
functions.

The Law of Demeter—strong form
Inside a method it is permitted to access or send messages only to the
following objects.



1. The arguments associated with the method being executed (including
the self object)

2. Instance variables defined in the class containing the method being
executed

3. Global variables
4. Temporary variables created inside the method
It is instructive to consider what forms of access are ruled out by the law

of Demeter and to relate the law to the concepts of coupling and cohesion
described earlier. The major style of access eliminated by programs that
satisfy the rule is the direct manipulation of instance variables in another
class. Permitting access in this form creates a situation where one object is
dependent on the internal representation of another—a form of internal data
coupling. On the other hand, satisfaction of this rule means that classes
generally can be studied and understood in isolation from one another,
since they interact only in simple, well-defined ways. Some have even gone
further than the Law of Demeter and suggested that references to instance
variables from within a method should always be mediated by accessor
functions. Their argument is that direct references to variables severely
limit the ability of programmers to refine existing classes.

23.1.4 Class-level versus object-level visibility
The idea that a class can have multiple instances introduces a new
dimension in the control of coupling. Two general models are used in
object-oriented languages to describe the visibility of names. These can be
described as class-level visibility and object-level visibility. The distinction
can be summarized as the answer to a simple question: Is an object allowed
to examine the inner state of a sibling object?

Languages that control visibility on the class level, such as C++, treat all
instances of a class in the same manner. As we will see shortly, C++
permits a wide range of possibilities in controlling the visibility of
identifiers. Yet even in the most restrictive case—so-called “private” data
fields—an instance of a class is always permitted access to the data fields



of other instances of the same class. In short, objects are permitted
complete access to their sibling objects’ internal state.

Object-level control of visibility, on the other hand, treats the individual
object as the basic unit of control. Languages that exhibit object-level
control include Smalltalk, in which no object is permitted access to the
inner state of another object, even if both are instances of the same class.

23.1.5 Active values
An active value is a variable for which we want to perform some action
each time its value changes. An active-value system illustrates why
parameter coupling is preferable to other forms of coupling, particularly in
object-oriented languages. Suppose a simulation of a nuclear power plant
includes a class Reactor that maintains various pieces of information about
the reactor state. Among these values is the temperature of the coolant (the
water that surrounds the fuel rods). Further suppose that this value is
modified, in good object-oriented fashion, via a method, setHeat, and
access is achieved through the function getHeat. This class is pictured
below.

Click here to view code image
@interface Reactor : Object 
{ ... 
  double heat; ... 
} 
- (void)  setHeat: (double) newValue; 
- (double) getHeat; 
@end

Imagine the program has been developed and is working when the
programmer decides it would be nice to have a visual display that
continuously shows the current temperature of the moderator as the
simulation progresses. It is desirable to do this as noninvasively as possible.
In particular, the programmer does not want to change the Reactor class.
(This class may have been written by another programmer, for example, or
it may be used in other applications where this new behavior is not
desired.)

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0449-01a


A simple solution is to make a new subclass of Reactor—say,
GraphicalReactor— that does nothing more than override the setHeat
method, updating the graphical output before invoking the superclass
methods (see following). The programmer thus needs only to replace the
creation of new Reactor objects with the creation of GraphicalReactor
objects. This creation probably takes place once during initialization. As
long as all changes to the Reactor value are mediated through the method
setHeat, the gauge will reflect the value accurately.

Click here to view code image
@implementation GraphicalReactor : Reactor 
- (void) setHeat: (double) newValue 
  { 
    /* code necessary to */ 
    /* update gauge */ 
    [ super setHeat: newValue ]; 
  } 
@end

Smalltalk and Objective-C both support a more generalized concept
called dependency. We will discuss this in Section 23.4.

23.2 ⊡ Subclass Clients and User Clients
We have noted several times that an object, like a module, has both a public
and a private face. The public side encompasses all features, such as
methods and instance variables, that can be accessed or manipulated by
code outside the module. The private face includes the public face, as well
as methods and instance variables accessible only within the object. The
user of a service provided by a module (the client) needs to know the details
only of the public side of a module. Details of implementation, and other
internal features not important for module utilization, can be hidden from
view.

Inheritance in an object-oriented language means that classes have yet a
third face—namely, those features accessible to subclasses but not
necessarily to other users. The designer of a subclass for a given class will
probably need to know more internal implementation details of the original

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0450-01a


class than will an instance-level user but may not need as much information
as the designer of the original class.

We can think of both the designer of a subclass and a user of a class as
“clients” of the original class, since they use the facilities it provides.
Because these two groups have different requirements, however, it is useful
to distinguish them as subclass clients and user clients. User clients create
instances of the class and pass messages to these objects. Subclass clients
create new classes based on the class.

In the classes we developed as part of our solitaire game in Chapter 9,
the class PlayingCard declares the variables r and s to be private. The
variables maintain the rank and suit of the card. Only methods associated
with class PlayingCard can access or modify these values. The data
associated with class CardPile, on the other hand, are divided into three
categories: private, protected, and public. The private variable firstCard
can be accessed only within the class CardPile, while the protected fields x
and y can be accessed either in this class or by subclasses. The only public
interface is through methods; there are no publicly accessible instance
variables. By eliminating publicly accessible instance variables, the
language ensures that no data coupling is permitted between this class and
other software components. (However, the language only provides the
mechanism. It is still the responsibility of the programmer to use the
features properly—for example, by declaring all data members as private
or protected.)

We can think of software evolution and modification in terms of user
and subclass clients. When a class designer announces the public features
of a class, he is making a contract to provide the services described. He can
consider and implement changes in the internal design freely as long as the
public interface remains unchanged (or perhaps only grows). Similarly,
although perhaps less common and less obvious, the designer of a class is
specifying an interface to subclasses. A common and subtle source of
software errors is created when the internal details of a class are changed
and subclasses cease to operate. By dividing the private internal details of a
class from the various levels of public interface, if only by convention, the
programmer sets the boundaries for acceptable change and modification.
The ability to make changes to existing code safely is critical in the
maintenance of large and long-lived software systems.



The notion of a subclass client may strike some readers as odd, since
when an instance of the subclass is created, the class and the subclass are
melded into one object. Nevertheless, the notion makes good sense when
we consider the creators or designers of the class. Often, the designer of a
subclass and the designer of the original class are not the same. It is thus
good OOP practice for the designer of any class to consider the possibility
that at some future point, the class may be subclassed, and to provide
adequate documentation and software connections to facilitate this process.

23.3 ⊡ Control of Access and Visibility
In this section, we briefly outline some of the various information-hiding
features found in a few of the object-oriented languages we are considering,
and we note how each language supports the concepts discussed in earlier
sections of this chapter.

23.3.1 Visibility in Smalltalk
The Smalltalk system provides few facilities for the protection and hiding
of either data or methods. Instance variables are always considered private
and are accessible only within the methods associated with the class in
which the variables are defined or in subclasses. Access to them from
outside the object must be accomplished indirectly through access
functions.

Methods, on the other hand, are always considered public and can be
accessed by anybody. Just as there are no facilities for making instance
variables public, there are no facilities for enforcing the hiding of methods.
It is common, however, for certain methods to be labeled “private,”
meaning that they should be used only by the class itself and should not be
invoked by user clients. It is good practice to respect these suggestions and
to avoid using private methods.

23.3.2 Visibility in Object Pascal



Apple Object Pascal provides weak facilities for managing the visibility of
object fields. All fields—data and methods—are public and are accessible
to both user and subclass clients. It is only by convention or agreement that
data fields are restricted to subclass clients and that methods are open to
user clients. Even though style guidelines such as the Law of Demeter
cannot be strictly enforced by the system, they are still valuable and should
be respected by programmers. It is helpful, too, if programmers use
comments to indicate those methods in a class that they expect to be
overridden in subclasses.

The Borland version of the language is slightly more powerful. Delphi
supports the keywords public, protected, and private in a fashion very
similar to that in C++. However, within the implementation section of a
unit, all fields are treated as public. This allows sibling instances to access
the private data fields of sister objects.

23.3.3 Visibility in C++
Of the languages we are considering, C++ provides by far the most
complete range of facilities for controlling access to information. As we
noted in earlier chapters, these facilities are provided through three new
keywords: public, protected, and private.

When these keywords are used in the field-definition part of class
descriptions, their effect can be described almost directly in terms of the
concepts from Section 23.2. The data that follow the public: access
specifier are available to subclass and user clients alike. The data that
follow the protected: access specifier are accessible only within the class
and subclasses and so are intended for subclass clients, not for user clients.
Finally, the private: designator precedes fields that are accessible only to
instances of the class itself and not to subclass or user clients. In the
absence of any initial designation, fields are considered private.

Philosophically, the C++ access-control mechanisms are intended to
protect against accident, not to guarantee security from malicious users.
There are several ways to defeat the protection system. Probably the most
direct involves the use of functions that return pointer or reference values.
Consider the class shown following.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0453-01a


class Sneaky 
{ 
  private: 
    int safe; 
  public: 
      // initialize safe to 10 
    Sneaky() { safe = 10; } 
    int &sorry() { return safe; } 
}

Although the field safe is declared private, a reference to the value is
returned by the method sorry. Thus, in an expression such as
Sneaky x; 
x.sorry() = 17;

the value of the data member safe will be changed from 10 to 17, even if
the call to sorry takes place in user (client) code.

A more subtle point is that access specifiers in C++ control not visibility
but the access of members. The classes shown below illustrate this.

Click here to view code image
int i;   // global variable 
 
class A { 
private: 
  int i; 
}; 
 
class B : public A { 
  void f(); 
}; 
 
B::f() 
{ i++;}     // error - A::i is private

An error occurs because the function f attempts to modify the variable
i, which is inherited from class A, although it is inaccessible (because it is
declared private:). If the access modifiers controlled visibility rather than
accessibility, the variable i would be invisible, and the global variable i
would have been updated.

Sibling instances

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0453-02a


Access modifiers define properties of a class, not of instances. Thus,
private fields in C++ do not correspond exactly to the concept developed
in our earlier general discussion of visibility. In that discussion, private data
were accessible only to an object itself, whereas in C++ the private fields
are accessible to any object of the same class. That is, in C++, an object is
permitted to manipulate the private members of another instance of the
same class.

As an example, consider the class declaration shown here. Here the rp
and ip fields, representing the real and imaginary parts of a complex
number, are marked as private.

Click here to view code image
class Complex { 
public: 
  Complex (double a, double b) { rp = a; ip = b; } 
  Complex operator + ( Complex & x) 
    { return Complex(rp + x.rp, ip + x.ip); } 
private: 
  double rp; 
  double ip; 
};

The binary operation + is overridden to provide a new meaning for the
addition of two complex numbers. Despite the private nature of the rp and
ip fields, the operator function is permitted to access these fields in the
argument x because the argument and the receiver are of the same class.

Constructor and destructor functions, such as the constructor function
Complex (just shown) are usually declared public. Declaring a constructor
as protected implies that only subclasses or friends (see the subsequent
discussion) can create instances of the class, while declaring it as private
restricts creation only to friends or other instances of the class.

The weak form of the Law of Demeter can be enforced in part by
declaration of all data fields as protected. The strong form is enforced by
declaration of such fields as private.

While the access modifiers in C++ provide power and flexibility far in
excess of the other languages we are considering, making effective use of
these features requires foresight and experience. As with the question of
whether to make a method virtual, one serious problem with the degree of
control provided by C++ or Delphi Pascal is that the ease with which a

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0454-01a


subclass can be formed is often dependent on how much thought the
designer of the original class gave to the possibility of subclassing. Being
overly protective (declaring information private that should be protected)
can make subclassing difficult. Problems arise if the subclass designer
cannot modify the source form of the original class—for example, if the
original is distributed as part of a library.

Private inheritance
The keywords public and private also preface the name of a superclass in
a class definition. When they are used in this fashion, the visibility of
information from the superclass is altered by the modifier. A subclass that
inherits publicly from another class corresponds to the notion of inheritance
we have used up to this point—namely, that a subclass is also a subtype. If a
subclass inherits privately, the public features of the superclass are reduced
to the level of the modifier. In effect, this indicates that inheritance is being
used only for construction and that the resulting class should not and cannot
be considered a subtype of the original class.

When a class inherits privately from another class, instances of the
subclass cannot be assigned to identifiers of the superclass type, as is
possible with public inheritance. An easy way to remember this limitation
is in terms of the is-a relationship. Public inheritance is an overt assertion
that the is-a relationship holds, and thus an instance of the subclass can be
used when the superclass is called for. A Dog is-a Mammal, for example, and
so a Dog can be used in any situation in which a Mammal is called for. Private
inheritance does not maintain the is-a relationship, since instances of a class
that inherits in such a manner from a parent class cannot always be used in
place of the parent class. Thus, it would not make sense to use a
SymbolTable where an arbitrary type of Dictionary was required. If a
variable is declared to be a type of Dictionary, we cannot assign a value of
type SymbolTable to it (whereas we could if the inheritance were public).

Friend functions
Another aspect of visibility in C++ is a friend function. This is simply a
function (not a method) that is declared by the friend modifier in the
declaration of a class. Friend functions are permitted to read and write the
private and protected fields within an object.



Consider the class declaration that follows, which extends the earlier
complex-number class description.

Click here to view code image
class Complex { 
public: 
  Complex(double, double); 
  friend double abs(Complex&); 
private: 
  double rp; 
  double ip; 
 
}; 
 
Complex::Complex(double a, double b) 
{ 
  rp = a; ip = b; 
} 
 
double abs(Complex& x) 
{    return sqrt(x.rp * x.rp + x.ip * x.ip); }

The fields rp and ip of the data structure representing complex numbers
are declared to be private and thus are generally not accessible outside of
methods associated with the class. The function abs—which, incidentally,
overloads a function of the same name defined for double precision values
—is not a method but simply a function. However, since the function has
been declared a friend of the complex class, it is permitted to access all
fields of the class, even private fields.

It is also possible to declare classes, and even individual methods in
other classes, as friends. The most common reasons for using friend
functions are that they require access to the internal structure of two or
more classes or that it is necessary for the friend function to be invoked in a
functional, rather than a message-passing, style (that is, as abs(x) instead of
as x.abs()).

Friend functions are a powerful tool, but they are easy to abuse. In
particular, they introduce exactly the sort of data couplings that we
identified in the beginning of this chapter as detrimental to the development
of reusable software. Whenever possible, more object-oriented
encapsulation techniques (such as methods) should be preferred over friend
functions. Nevertheless, there are times when no other tool can be used,

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0455-01a


such as when a function needs access to the internal structure of two or
more class definitions. In these cases, friend functions are a useful
abstraction.

Name spaces
Yet another recent change in C++ is the introduction of name spaces. The
namespace facility helps reduce the proliferation of global names. While the
static keyword can limit the scope of a name to a single file, previously if
a name needed to be shared between two or more files the only choice was
to make the name global. Such values can now be enclosed within a name-
space definition.

Click here to view code image
namespace myLibrary { 
  int x; 
  class A { 
    . 
    . 
    . 
    }; 
  class B : public A { 
    . 
    . 
    . 
    }; 
}

The variables defined within the name space are not global. If a
programmer wishes to include the name space, he or she issues an explicit
directive, which then places all top-level names defined in the name space
in the current scope.

Click here to view code image
using namespace myLibrary;

Individual items can also be imported from a specific name space, either
by explicitly naming the space or by importing just the single item.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0456-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0456-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0457-01a


myLibrary::A anA; // explicitly name the name space 
 
using myLibrary::B;  // import only the class B 
B aNewB;    // B is now a type name

23.3.4 Visibility in Java
As we have seen in the examples of Java code in this book, in Java the
modifiers public and private are placed individually on each data field and
member function.

Java introduces an interesting new modifier named final. A final class
cannot be subclassed, a final method cannot be overridden, and a final
instance variable cannot be assigned to. Use of the final keyword permits
the compiler to perform a number of optimizations.

As in C++, the private modifier in Java refers to classes, not instances.
Sibling members of the same class are permitted access to each other’s
private data fields.

Another name-scoping facility provided by Java is the package—a
group of classes and interfaces that serve as a tool for managing large name
spaces and avoiding conflicts. A package is specified by the package
statement, which must be the first statement in a file.
package packageName;

Code in one package can specify classes or interfaces from another
package either by explicitly naming the package in which the object is
found or by importing one package into another. The following illustrates
the first mechanism.

Click here to view code image
// get type foo from package bar 
bar.foo newObj = new bar.foo();

The importing of a package makes the names of all its public classes and
interfaces available, just as if they were defined in the present file.

Click here to view code image
  // import all objects and interfaces 
  // from package named bar 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0457-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0457-03a


import bar.*; 
foo newObj   = new foo();

If desired, individual objects or interfaces can be specified by use of a
name in place of the wild-card character.

Click here to view code image
  // import the name foo 
  // from the package bar 
import bar.foo;

In Java the protected keyword refers not to parent and child classes, as
it does in C++, C#, Ruby and many other languages, but to packages. A
protected feature is accessible anywhere within the package in which it is
declared.

Inner classes
Inner classes in Java are normally allowed to access all aspects of the class
in which they are declared, including private data fields. Thus, declaring an
inner class is one possible way to creating a new abstraction that has access
to internal details, without exposing those details to the world at large.

This technique is often used in the creation of enumeration classes (see
Chapter 19 for an explanation of enumeration classes).

Click here to view code image
class AcontainerClass { 
  . 
  . 
  . 
    // return an enumerator 
  public Enumeration elements() 
    { return new MyEnumeration() ; } 
  . 
  . 
  . 
    // inner class is allowed to see 
    // all aspects of surrounding class 
  private class MyEnumeration implements Enumeration { 
    . 
    . 
    . 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0457-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0457-01a


    public boolean hasMoreElements () { ... } 
    public Object nextElement() {...} 
  } 
}

An alternative is to declare the inner class as static. A static inner class
is allowed access to its surrounding scope but does not automatically
reference an instance of the surrounding class. In this sense it is very
similar to a nested class in C++. Static inner classes are more efficient than
nonstatic ones, since they do not need to maintain a pointer to their
surrounding context.

23.3.5 Visibility in Objective-C
In Objective-C, instance-variable declarations must appear in the interface
description of a class. It is not possible to define new fields in the
implementation section, even though such values are not part of the
interface, since they are accessible only within methods (they are protected
—to use the C++ terminology). The visibility of instance-variable fields can
be modified through the @public keyword, which makes all fields following
the keyword publicly accessible to users. For example, the following shows
an interface definition for a class, Ball, representing a graphical ball object.
The location of the ball, represented by the coordinates in the x and y fields,
are publicly accessible, whereas the direction and energy of the ball are
protected.

Click here to view code image
@interface Ball : Object 
{ 
  double direction; 
  double energy; 
@public 
  double x; 
  double y; 
} 
@end

Unlike in instance-variable fields, it is possible to define methods in the
implementation section of a class that are not declared in the interface

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch23_images.xhtml#pf0459-01a


section. Such methods are visible and can be invoked only within that
portion of the program that follows the definition of the new method.

There is no way to create a method that can be invoked by subclass
clients but not by user clients, and there is no way to create truly private
instance-variable values.

23.4 ⊡ Intentional Dependency
Although most often programmers attempt to avoid dependency in their
code, there are situations where it is an essential component. A simulation,
for example, might include a model that changes over time as the
simulation progresses. Features of the model might be displayed graphically
in one or more windows, and as the model changes, the windows should be
continuously updated.

Yet a concern for reducing the coupling within the program should lead
the programmer to avoid making too tight a connection between the model
and the windows. In particular, there is no reason for the model to know the
type or even the number of views in which it might be displayed. (There
may be more than one view—for example, both a numeric or a graphical
representation of a variable numeric quantity.) How can the model alert the
views to update their displays without an explicit connection between the
two?

One way to avoid a tight interconnection between dependent
components is to use a dependency manager. Such a feature is a standard
part of the Smalltalk and Objective-C run-time library but can be easily
constructed in other languages, such as C++. The basic idea is for the
dependency manager to act as the intermediary, maintaining a list of objects
and the other components that depend on them. The model need know only
about the dependency manager. The view objects “register” themselves
with the dependency manager by indicating that they depend on the model
object. Subsequently, when the model object changes, it sends a single
message to the dependency manager, saying that it has changed and that all
of its dependents should be notified. The dependents will then receive a
message, sent by the dependency manager, indicating that the model has
been modified and they should take appropriate action.



The dependency system works well at isolating components from each
other, reducing the number of explicit links within a program. However,
unlike the scheme described in Section 23.1.5, it works only when
dependents know that someone may be waiting on their change. This
scheme will not work when, as in the Reactor example, it is necessary to be
as noninvasive of the original code as possible.

Summary ⊡
Starting with this chapter we begin the investigation of the relationships
between general objects—and not just those in a parent class/child class
relationship. These connections can be described by the software
engineering terms coupling and cohesion. We have examined a variety of
different forms of coupling and how they affect the ability to form
abstractions that are reusable and understandable.

The parent class/child class relationship means that there are two
categories of clients that a class designer needs to consider. These two
categories are clients formed by child classes and clients formed by more
general users.

The chapter concluded by examining the features used to control
visibility and coupling in the various languages.

Further Reading ⊡
The issues of coupling and dependency have been investigated for many
years by researchers in the software engineering community. See, for
example [Gillett 1982, Fairley 1985].

The concepts of coupling and cohesion were introduced by Stevens,
Constantine, and Myers [Stevens 1981].

The Law of Demeter was originally described in [Lieberherr 1989a,
Lieberherr 1989b]. A detailed analysis of the Law of Demeter for C++ can
be found in [Sakkinen 1988b].

The assertion that references to instance variable from within a method
should always be mediated by accessor functions was presented by Wirfs-
Brock and Wilkerson [Wirfs-Brock 1989a].



The categories of coupling presented in Section 23.1.1 are adapted from
Fairley [Fairley 1985], although he does not discuss subclass coupling, and
other terms have been changed slightly to make them more language
independent.

The active value discussion is adapted from [Stefik 1986].
The observation that the mechanisms of inheritance and overriding

mean that objects really have three faces was first made by Alan Snyder
[Snyder 1986].

A good description of the importance of friend functions in C++ has
been given by Andrew Koenig [Koenig 1989c].

The concept of intentional dependency is generalized to the observer
design pattern, which we will discuss in Chapter 24.

Self-Study Questions ⊡
1. How are object connections related to name visibility?
2. What does the term coupling mean?
3. Why is internal data coupling a bad idea?
4. What is the difference between file scope (package scope in some

languages) and program scope?
5. What is sequence coupling?
6. What is component coupling? Why do we say that this coupling is

only one way?
7. What is parameter coupling?
8. What is the term used for the relationship between a parent class and

a child class?
9. What is cohesion?

10. What are the varieties of cohesion?
11. What type of data access is ruled out by the Law of Demeter?
12. What is the difference between class level and object level visibility?
13. What is the distinction between a subclass client and a user client?



14. What capabilities is a friend permitted in C++ that other objects are
not?

Exercises ⊡
1. Design a tool that can examine programs written in your favorite

object-oriented language and report violations of the Law of Demeter.
2. The strong form of the Law of Demeter prevents access to inherited

instance variables. Describe the advantages and disadvantages of this
restriction. Consider issues such as the coupling between classes and
the effect on the understandability of code.

3. Do you think the strong form of the Law of Demeter also should have
restricted access to global variables? Support your opinion by well-
reasoned arguments. You might want to look at the article by Wulf
and Shaw [Wulf 1973] in preparing your answer.

4. What other concrete rules, similar to the Law of Demeter, can you
think of in which (1) the satisfaction of the law usually leads to
systems with fewer interconnections and more cohesion and (2)
exceptions in which the rule must be violated are rare. In particular,
the Law of Demeter addresses coupling between different objects.
Can you think of a guideline that encourages greater cohesion within
an object?

5. There is an alternative level of visibility that, like protected (subclass
client) data, is also more restrictive than public information and less
restrictive than information to which access is permitted only inside
an object. Under this alternative, instances of the same class have
access to the internal state of an object even when such access is
denied to all others. In C++, for example, an object can access any
field in another instance of the class, even if those fields are private
or protected. In other languages, such as Smalltalk, this style of
access is not permitted. Discuss the advantages and disadvantages of
each approach.

6. Another possible variation on visibility rules for subclass clients is to
permit access to an immediate ancestor class but not to more distant



ancestors. Discuss the advantages and disadvantages of this rule.
(This issue is presented in [Snyder 1986].)

7. Of the languages we are considering, only C++ and Delphi Pascal
have explicit facilities for distinguishing features accessible to
subclass clients from those accessible to user clients. Nevertheless, all
languages have some mechanism for describing the programmer’s
intent through the use of comments. Often, structured comments, such
as compiler directives, are used to provide optional information to a
language system. Describe a commenting convention that could
denote levels of visibility. Then outline an algorithm that could be
used by a software tool to enforce the visibility rules.



Chapter 24

Design Patterns

When faced with the task of solving a new problem, most people will
consider first previous problems they have encountered that seem to have
characteristics in common with the new assignment. These previous
problems can be used as a model, and the new problem can be attacked in a
similar fashion, making changes as necessary to fit the different
circumstances.

This insight lies behind the idea of a software design pattern. A pattern
is really nothing more than an attempt to document a proven solution to a
problem so that future problems can be more easily handled in a similar
fashion.

Patterns have become important in the development of object-oriented
programming because they aid in discussing structures and relationships at
a different and higher level of abstraction than do classes, instances, or
components. Recall the presentation of levels of abstraction from Chapter
2. At the highest level of abstraction an object-oriented program is viewed
as a community of interacting agents.



Certain types of relationships appear over and over in many different
object-oriented applications. A pattern attempts to distill the essential
features of these associations. The practice of collecting and recording
patterns serves two important purposes:

It speeds the process of finding a solution when the next problem
comes along with similar characteristics (eliminating the need to
“reinvent the wheel”).
Almost as important, the naming of patterns gives programmers a
common vocabulary with which to discuss design alternatives. This
vocabulary is often termed a pattern language.

Since patterns deal with connections and relationships among parts, it is
perhaps not surprising that the idea was first adapted from techniques
developed by architects. In fact, many people continue this analogy,
declaring that design patterns are used to document software architecture.

24.1 ⊡ Controlling Information Flow
Many design patterns deal with managing the information that must flow
across a client/server boundary.1 Normally one wants to reduce as far as



possible the information that must pass over this boundary and to make the
process of connecting as simple as possible.

1. Again, we are using the term server in the sense of an object that provides a service and not
necessarily in the sense of a file or Web server. We will briefly look at network servers in Chapter 26.

This idea of a pattern is perhaps best illustrated by an example. One of
the easiest patterns to describe is the adapter. Suppose you have one object
in your community (a client) that needs a service and requires a specific
interface. Imagine you have another object that provides the functionality
you need but does not happen to support the desired interface. Rather than
rewriting either the client or the service provider, you can get the two to
communicate with each other by creating an adapter. The adapter simply
speaks the language of the requester, but rather than doing the work itself, it
translates into the interface used by the service provider.

The following is an example of an adapter. The client has an interface
named Collection that is described by the methods isEmpty, size,



addElement, containsElement, and findElement. The server has a data
structure that will hold the values but uses the interface count, add, and
find. The adapter connects the two, translating requests from one language
into the other.

Click here to view code image
class MyCollection implements Collection { 
 
  public boolean isEmpty () 
    { return data.count() == 0; } 
  public int size () 
    { return data.count(); } 
  public void addElement (Object newElement) 
    {data.add(newElement); } 
  public boolean containsElement (Object test) 
    { return data.find(test) != null; } 
  public Object findElement (Object test) 
    { return data.find(test); } 
 
  private DataBox data = new DataBox(); 
}

The characteristic of the adapter is the change in the interface and the
fact that the adapter itself does little work, but for the most part passes
requests along to the service provider.

24.2 ⊡ Describing Patterns
In their application to computer science, design patterns have evolved their
own special format. A pattern will typically be described by a narrative that
includes some or all of the following parts.

name The term that will be used to describe the pattern. By means of these
names a collection of patterns creates a vocabulary with which various
different design alternatives can be discussed.

synopsis A short description of the problem the pattern is designed to solve.

forces A description of the requirements for a pattern or the considerations
that must be taken into account in the use of the pattern.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch24_images.xhtml#pf0465-02a


solution The essence of the solution.

counterforces A description of reasons that might need to be considered in
deciding to not use a pattern.

related patterns This section describes related patterns the user might want
to consider in the solution to their problem.

Not all sections need be found in all pattern descriptions. The following
describes an adapter in pattern format.

name The adapter pattern. (The term is derived from a comparison to
electrical outlet adapters, such the type one might use when traveling
abroad.)

synopsis Used to connect a client who needs a service described using one
interface with a provider who implements the desired functionality but
uses a different interface.

solution The adapter implements the interface as specified by the client, but
rather than performing the given operations, passes the work on to the
service provider.

counterforces Adds one layer of indirection between the client and
provider and also introduces another class of object.

In the sections that follow we will describe some of the more common
patterns and how they relate to object-oriented systems. Many of these
patterns have already been encountered elsewhere in this book.

24.3 ⊡ Iterator
The idea of an iterator was introduced in Chapter 19. The iterator is
sometimes also termed an enumerator or an enumeration (although
technically the enumeration is the sequence that is produced using an
enumerator). An iterator is used when a server is maintaining a collection of
values for a client. The iterator is used to reduce the amount of information
that a client must know in order to have access to the elements in the
collection.



Imagine an object that is maintaining a simple data structure, such as a
sorted list. There are various different ways to maintain such a collection—
for example, a linked list, a vector, or a binary tree. In general, the client
need not have any information regarding the implementation technique
being used by the service provider.

Now imagine that the client desires to create a loop that will iterate over
the elements in the collection. The exact sequence of operations needed to
do this is very different for a vector than for a binary tree. But the server
seeks to keep this information hidden from the client.

The solution to this problem involves the server first publishing the
interface it will use. For example, iterators in Java use the following
interface.

Click here to view code image
interface Enumerator { 
  public boolean hasMoreElements() ; 
  public Object nextElement(); 
}

The server then provides the client with an implementation that matches
the interface. The details of how the iterator operates need not concern the
client, who can simply use the published interface to access the elements.

Click here to view code image
Enumerator e = ...; 
while (e.hasMoreElements) { 
  Object val = e.nextElement(); 
  . 
  . 
  . 
}

Note that the iterator and the data structure from which it obtains values
will almost always have to share detailed information with each other, but
this is acceptable because both live on the same side of the client/server
division.

24.4 ⊡ Software Factory

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch24_images.xhtml#pf0467-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch24_images.xhtml#pf0467-02a


The technique described in the previous section that allowed the data
structure to interact with a client can be generalized and is found in a
number of other situations. It is applicable whenever there are a variety of
alternative implementations for a particular task and the client need not
have precise knowledge of the implementation being used.

Let us describe the features that are characteristic of the factory method
as it is embodied in the iterator problem. First, there was a simple interface
that was shared between the client and server.

Click here to view code image
interface Enumerator { 
  public boolean hasMoreElements(); 
  public Object nextElement(); 
}

Next, the server included as part of its interface a method that would
yield an instance of this class. This method is the “factory” in the name of
the pattern.

Click here to view code image
class SortedList { 
  . 
  . 
  . 
  public Enumerator elements(); 
  . 
  . 
  . 
}

But while the factory method claims to be returning an instance of the
interface, in reality it returns a subclass that implements the interface. It is
returning a more specialized form—for example, a BinaryTreeEnumerator.
Different objects might return instances of other child classes while
preserving the same interface. In fact, in some cases the same factory might
return different child values in response to different circumstances. It is the
fact that the server returns a more specialized class than the method
signature would indicate that is indicative of the factory method.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch24_images.xhtml#pf0467-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch24_images.xhtml#pf0468-01a


24.5 ⊡ Strategy
Closely related to the factory method is the structure described as the
strategy design pattern. An example of this pattern is found in the AWT
user interface system. In that example the server (the AWT system) is
assisting in the presentation of graphical information. The server, however,
does not know exactly how the client wishes to display the various
graphical elements. There are a number of alternatives. Components can be
laid out in the four edges of a window, laid out in a grid, or in a variety of
other possibilities. But the knowledge of exactly how to create a layout is
complex, certainly not something we can expect the client to do.

The solution is that the server prepares a number of alternative
implementations of a common interface. In the AWT the interface is termed
a LayoutManager, and the various alternatives go by names such as
GridLayout, BorderLayout, and so on. The client then selects from among
the choices and hands it back to the server. In this fashion the client has
control over the appearance without needing to know exactly how the
display is being implemented.

The characteristic feature of the strategy pattern is that the server
presents the client with a number of choices, typically expressed as
different implementations of a common interface. The client selects one of
the alternatives and gives it back to the server.

24.6 ⊡ Singleton
Not all design patterns deal with client/server interactions. Another
common pattern is the singleton. In this pattern the developer of a class
wants to ensure that there will never be more than one instance of the class
created. This objective can be realized in various different ways in different
languages.

In C++ (or Java or C#) a singleton can be created by declaring a
constructor as private. Because the constructor is private, no object outside
the class definition is permitted to access it, and hence no instances can be
formed. But a static data field that is created within the class can be
initialized using the constructor. By making the field public, the
programmer permits access to the one and only instance of the class.



Click here to view code image
class SingletonClass { 
public: 
  static SingletonClass * oneAndOnly () { return theOne; } 
private: 
  static SingletonClass * theOne; 
  SingletonClass () { ... } 
}; 
 
  // static initialization 
SingletonClass * SingletonClass::theOne = new SingletonClass();

In Smalltalk and Objective-C a singleton can be created by redefining
the operator new as a class method. An example is the boolean value true,
which is an instance of the class True. The class method new in class True is
defined as follows.
"class method True" 
 {new} 
   ↑ true

Any attempt to create another instance of the class will simply yield the
existing value.

Another way to create singleton objects in Java is through the use of
anonymous classes (Section 8.7.1).

24.7 ⊡ Composite
The problem addressed by the composite design pattern is how to permit
the creation of complex objects using only simple parts. The solution is to
provide a small collection of simple components but also allow these
components to be nested arbitrarily. The resulting composite objects allow
individual objects and compositions of objects to be treated uniformly.
Frequently, an interesting feature of the composition pattern is the merging
of the is-a relation with the has-a relation.

A good example of composition in the Java library is the creation of
design layouts through the interaction of Components and Containers. There
are only five simple types of layouts provided by the standard library, and
of these five only two, border layouts and grid layouts, are commonly used.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch24_images.xhtml#pf0469-01a


Each item in a layout is a Component. Composition occurs because
Containers are also Components. A container holds its own layout, which is
again one of only a few simple varieties. Yet the container is treated as a
unit in the original layout.

The structure of a composite object is often described in a tree-like
format. Consider, for example, the layout of the window shown at the top
of Figure 24.1. (A screen shot of this application was given in Chapter 22,
Figure 22.4.) At the application level there are four elements to the layout.
These are a text area, a simple blank panel, and two panels that hold
composite objects. One of these composite panels holds three scroll bars,
and the second is holding a grid of 16 buttons. By nesting panels one within
another, arbitrarily complex layouts can be created.



⊡ Figure 24.1—An example of a Composite

Another example of composition is the class SequencelnputStream,
which is used to catenate two or more input streams so that they appear to
be a single input source. A SequencelnputStream is-an InputStream
(meaning it extends the class InputStream). But a SequencelnputStream
also has-an InputStream as part of its internal state. By combining
inheritance and composition, the class permits multiple sequences of input
sources to be treated as a single unit.

This pattern is useful whenever it is necessary to build complex
structures out of a few simple elements. Note that the merging of the is-a



and has-a relations is also characteristic of the Decorator pattern (see next
section), although decorators can be constructed that are not composites.

24.8 ⊡ Decorator
A decorator (also sometimes termed a filter or a wrapper2) is one of a
number of patterns that deal with how new functionality can be attached to
existing objects. The inheritance relationship is one way to do this, since
child classes can add new behavior to that provided by their parent classes.
But inheritance is a very static and heavyweight technique and does not
permit values to change their behavior dynamically during execution. A
decorator wraps around an existing object and satisfies the same
requirements (for example, is subclassed from the same parent class or
implements the same interface). The wrapper delegates much of the
responsibility to the original but occasionally adds new functionality.

2. The wrapper design pattern should not be confused with the use of the term wrapper in CLOS,
which we described in Chapter 16, or the wrapper classes for primitive data types, which we
discussed in Chapter 19.

An example of the decorator is found in the Java I/O library. The class
InputStream provides a way to read bytes from an input device, such as a



file. The class BufferedlnputStream is a subclass of InputStream, adding
the ability to buffer the input so that it can be reset to an earlier point and
values can be reread two or more times. Furthermore, a
BufferedlnputStream can take an InputStream as argument in its
constructor.

Click here to view code image
  // a buffered input stream is-an input stream 
class BufferedInputStream extends InputStream { 
 
  public BufferedInputStream (InputStream s) { data = s; } 
  . 
  . 
  . 
 
 
    // and a buffered input stream has-an input stream 
  private InputStream data; 
}

Because a BufferedlnputStream both is an InputStream and has an input
stream as part of its data, it can be easily wrapped around an existing input
stream. Due to inheritance and substitutability, the BufferedlnputStream
can be used where the original InputStream was expected. Because it holds
the original input stream, any actions unrelated to the buffering activities
are simply passed on to the original stream.

A decorator, or wrapper class, is often a flexible alternative to the use of
subclassing. Functionality can be added or removed simply by adding or
deleting wrappers around an object.

24.9 ⊡ The Double-Dispatching Pattern
The double-dispatching pattern occurs when there are two or more sources
of variation in an exchange. Suppose, for example, that we have a variety of
polygon shapes represented by a general class Shape and various subclasses
(Triangle, Square, and the like). We also have two types of output devices
—say, a printer and a terminal—represented by subclasses of Device. The
graphics commands necessary to perform printing operations for these
devices are sufficiently different that no general interface is possible.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch24_images.xhtml#pf0472-01a


Instead, each shape itself encapsulates information concerning how to
display on a printer and how to display on a terminal.

Click here to view code image
class Triangle : public Shape { 
public: 
  Triangle (Point, Point, Point); 
       . 
    // . 
       . 
  virtual void displayOnPrinter (Printer); 
  virtual void displayOnTerminal (Terminal); 
       . 
    // . 
       . 
private: 
  Point p1, p2, p3; 
};

The question is how to handle two polymorphic variables: one a Shape
(which could be any subclass of class Shape) and the other a Device. The
clue to this pattern is that message passing can be used to “tie down” one of
the two values. To determine both, we simply make each value a receiver
for a message in turn. (The extension of the idea to three or more variables
is then obvious—simply make each unknown a receiver in turn.)

For example, we first pass the device a command and then pass the
shape as argument. This command is deferred and redefined in each of the
subclasses of Device. Message passing therefore selects the right function
to be executed. An example might be the following.

Click here to view code image
function Printer.display (Shape aShape) 
begin 
  aShape.displayOnPrinter (self); 
end; 
 
function Terminal.display (Shape aShape) 
begin 
  aShape.displayOnTerminal (self); 
end;

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch24_images.xhtml#pf0472-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch24_images.xhtml#pf0473-02a


Note that the display method has no idea what type of form is being
generated. But each of the methods—displayOnPrinter and
displayOnTerminal—is itself deferred, defined in class Shape and redefined
in every subclass. Suppose that the shape is indeed a triangle. By the time
the method in class Triangle is executed, both sources of variation—the
shape and the printing device—have been bound to specific quantities.

Click here to view code image
void Triangle.displayOnPrinter (Printer p) 
{ 
     . 
  // . printer-specific code to display triangle 
     . 
} 
 
void Triangle.displayOnTerminal (Terminal t) 
{ 
     . 
  // . terminal-specific code to display triangle 
     . 
}

The major difficulty with this technique is the large number of methods
it requires. Notice, for example, that every shape must have a different
method for every printing device. Nevertheless, it is very efficient for
handling variability in two or more quantities.

24.10 ⊡ Flyweight
How can one reduce the storage costs associated with a large number of
objects that have similar state? A solution is to share state in common with
similar objects, thereby reducing the storage required by any single object.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch24_images.xhtml#pf0473-03a


For example, in many languages all instances of a class point to a
common data value. This data value maintains information concerning the
class, such as the class name and the description of the methods to which
instances of the class will respond. If this information were to be duplicated
in each object, the memory costs would be prohibitive. Instead, this
information is defined once by an object of type Class, and each instance of
the class points to this object.

The objects that share common information are known as flyweights,
since their memory requirements are reduced (often dramatically) by
moving part of their state to the shared value. The flyweight pattern can be
used whenever there are a large number of objects that share a significant
common internal state.

24.11 ⊡ Proxy
A proxy is very similar to the adapter pattern we discussed at the beginning
of the chapter. An example problem that might be addressed using the
proxy design pattern is how to hide details such as transmission protocols
when communicating over a network to remote objects. Like the adapter the
proxy is not actually doing the major part of the work. However, rather than
simply changing the interface, the proxy is maintaining the interface but
hiding some of the work. It does this by acting as a surrogate or placeholder
for another object—the object that is really doing the work.

The idea of a proxy is that one object is standing in place of another.
The first object receives requests for the second and generally forwards the



requests to the second, after processing them in some fashion.
An example proxy in the Java Library is the RMI, or Remote Method

Invocation system. The RMI is a mechanism that can be used to coordinate
Java programs running on two or more machines. Using the RMI, a proxy
object is created that runs on the same machine as the client. When the
client invokes a method on the proxy, the proxy transmits the method
across the network to the server on another machine. The server handles the
request, then transmits the result back to the proxy. The proxy hands the
result back to the client. In this fashion, the details of transmission over the
network are handled by the proxy and the server and are hidden from the
client.

24.12 ⊡ Facade
A facade is similar to a proxy, but the actual work involved in servicing
requests from the client is not done by a single object, but rather by a
collection of interacting objects. The intermediary acts as a focal point,
handing off requests to the appropriate handler. It hides the need to
remember all the objects performing the actual service by providing a single
simple interface.



24.13 ⊡ Observer
The last pattern we will describe is the observer. The problem addressed by
the observer pattern is how two objects can stay synchronized with each
other without having direct knowledge of each other. This may be desirable
if, for example, one or both parties to this transaction are dynamically
created and destroyed during the course of execution.

For example, a simulation might have a model, a part that is doing the
actual work of the simulation, and a view, the portion of the program
charged with displaying the results of the simulation. There might even be
more than one view, and the user might be allowed to select views
dynamically. Therefore, the designer of the system does not want to have
the model cluttered with details such as all the current views. On the other
hand, when the model changes, we certainly want the view or views to be
updated as well.

This loose coupling between the two parties is achieved by creating an
intermediary, the ObserverManager. The ObserverManager communicates
with both the model (the object being observed) and the observers. The
model and the observers need not, then, have any direct interaction with
each other.

The ObserverManager maintains a list of objects being observed and their
observers. Observers register themselves with the manager and can remove
themselves if they no longer wish to be notified (for example, if they
represent a window that is being deleted). When the model changes, it tells



the ObserverManager that all its observers should be notified. The
ObserverManager then cycles through the list of observers and passes to
each of them a message that the model has changed. The result is a very
loose and flexible connection between the model and the elements watching
the model.

Summary ⊡
A design pattern captures the salient characteristics of a solution to a
commonly observed problem, hiding details that are particular to any one
situation. By examining design patterns, programmers learn about
techniques that have proven to be useful in previous problems and are
therefore likely to be useful in new situations.

As illustrated by these examples, an important aspect of design patterns
is that they provide a vocabulary for discussing solutions to problems. This
common vocabulary allows groups of programmers to share ideas in an
application-independent fashion, and it provides a means by which to
codify and pass on knowledge and tradition from one project to the next.

In this chapter we examined the following design patterns.

iterator Used when a server wants to provide a client with access to
elements in a collection without exposing the internal organization of the
container.

software factory Used when a client needs only a very general description
of a task and the server must provide a more specialized implementation
of the task.

strategy Used when a server seeks to provide a client with a choice of
alternative techniques but the details of how each choice is implemented
need not be a concern to the client.

singleton Used when for one reason or another a class should have at most
one instance.

composite Permits the creation of complex objects by allowing simple parts
to be combined in a variety of different ways.



decorator An alternative to inheritance, allows new functionality to be
dynamically added to an existing object.

double-dispatch Uses inheritance as a means to classify along two or more
sources of variation.

flyweight Allows the burden of sharing common information to be
amortized over a number of objects.

proxy Allows certain information, such as a network protocol, to be hidden
from the end client.

facade Combines the effort of a number of workers behind a single
interface.

observer Provides a framework that permits two objects to observe each
other without having direct connections.

Finally, it should be emphasized that though patterns may be useful in
exposing the developer of an application to many alternative design
possibilities, selecting a pattern is not a substitute for developing a solution.
That is, the pattern simply lays out the broad outlines of a solution; filling
in the details may still require considerable effort.

Further Reading ⊡
The origin of the idea of patterns in architecture is the book by Christopher
Alexander [Alexander 1977].

The most important reference for design patterns is [Gamma 1995], by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(commonly known as the Gang of Four, or GOF). Another recent book on
patterns is by Richard Gabriel [Gabriel 1996]. Design patterns in Java are
discussed in the two-volume collection by Mark Grand [Grand 1998, Grand
1999]. An entertaining introduction to patterns in Java is the book by
Felleisen and Friedman [Felleisen 1998].

Double dispatching was first described by Dan Ingalls [Ingalls 1986],
who called the technique multiple polymorphism. The alternative term
double dispatching has come to be more widely used to avoid confusion



with multiple inheritance. Double dispatching is also discussed in [Ingalls
1986, Budd 1991, LaLonde 1990a, Hebel 1990].

While individual patterns may be relatively easy to describe, a more
complicated problem is developing a categorization technique that can be
used to record and recall patterns in later projects. Much of the current
work in this area involves creating such knowledge bases [Gamma 1995,
Coplien 1995, Pree 1995, Rising 2000].

The idea of a design pattern has been applied to many other areas. A
recent catalog by Linda Rising [Rising 2000] presents literally hundreds of
patterns from all different problem domains.

Self-Study Questions ⊡
1. What is the most important purpose of a design pattern?
2. What is a pattern language?
3. What are the characteristic features of the adapter design pattern?
4. In a pattern description, what are forces and counterforces?
5. What problem is addressed using an iterator?
6. What is the characteristic feature of the software factory design

pattern?
7. In the strategy design pattern, why does the server provide a number

of alternative objects that each implement the same interface?
8. What is a singleton object?
9. Explain why both the is-a and has-a relationships are intrinsic features

in forming a composite.
10. In what ways does the decorator design pattern have features in

common with a composite? In what ways are they different?
11. What does the word “double” refer to in the title of the double

dispatching pattern?
12. What are the characteristics of a flyweight object?
13. How is a proxy similar to an adapter? How is it different?



14. How is a facade similar to a proxy? How is it different?
15. What problem is being addressed by the observer design pattern?

Exercises ⊡
1. Some implementations of Smalltalk use double dispatching to resolve

the conflict between integer and floating point arithmetic in
expressions such as x + y. Sketch the methods needed in order to do
this.

2. In Chapter 19 we described two approaches to looping: the use of
iterators and the idea of visitors. Extract the key ideas, and rewrite the
concept of a visitor as a design pattern.

3. In what ways is a design pattern similar to a software framework? In
what ways are they different?



Chapter 25

Reflection and Introspection

The terms reflection and introspection refer to the ability of a program
during execution to “learn” something about itself. The first term suggests
the mental image of a program examining itself in a mirror, which is a
useful metaphor. The mechanisms for reflection allow the program to
examine its own internal state in more detail than is possible in languages
that do not have reflection facilities. In some languages, the program can
even add new behavior to itself as it is executing.

We can divide the mechanisms used in reflection and introspection into
two broad categories. The first group are features designed to gain
understanding concerning the current state of computation. These
mechanisms yield information but do not add any new behavior to the
program. The second group consists of features intended for modification.
These add new behavior to the program as it is executing. We will examine
the tools provided for understanding in Section 25.1 and the tools for
modification in Section 25.3.

25.1 ⊡ Mechanisms for Understanding

25.1.1 Class objects
Almost all reflection facilities begin with an object that is the dynamic (run-
time) embodiment of a class. We have examined class objects several times



since we first encountered them in Chapter 4. Such a class object is not an
instance of the class it is defining, although instances are often linked to
their associated class objects. The class object is instead an instance of a
more general class, often called class. The information held by and the
behavior exhibited by class objects differ from language to language but
typically include the name of the class, the amount of memory occupied by
instances of the class, and the ability to create new instances.

Table 25.1 illustrates how class objects can be obtained starting from a
generic object named aVariable and yielding a value named aClass. The
table also provides the class (or type) that aClass represents. (The idea that
a class object must itself be an instance of a class is something we will take
up further in Section 25.4.)

Language Example Type

C++ typeinfo aClass = 

typeid(aVariable);
typeinto

CLOS (class-of aVariable)
standard-

class

Delphi 
Pascal aClass := aVariable.ClassType; TClass

Java Class aClass = 

aVariable.getClass();
Class

Smalltalk aClass <- aVariable class Class

⊡ Table 25.1—Accessing class objects in various languages

Generally the variable used in expressions such as those shown in Table
25.1 is a polymorphic variable, in the sense of Chapter 17. It would make
little sense for the programmer to ask for the class of a nonpolymorphic
variable, since he or she would already know all there is to know about the
value. In Java the class value for a known class, such as String, can be
accessed using the following notation.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0480-01a


Class aClass = String.class;

One common operation that can be performed with a class object is to
retrieve its parent class.
CLOS

Click here to view code image
(class-precedence-list aClass)

Java
Click here to view code image
Class parentClass = aClass.getSuperclass();

Smalltalk
Click here to view code image
parentClass <- aClass superclass

In some languages the objects that represent subclasses are also
maintained by their parent class. These can be returned in the form of a
collection.
CLOS
(subclasses aClass)

Smalltalk
Click here to view code image
aSet <- aClass subclasses

In some languages it is possible to obtain a class object from the textual
string name for the class.
Java

Click here to view code image
Class aClass = Class.forName("ClassName");

In the following sections we will describe some of the information that
can be obtained using a class value.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0480-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0480-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0480-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0480-06a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0481-01a


25.1.2 The class name as string
A fundamental bit of information that is often useful in debugging is the
class name represented as a string. This is easily obtained from the class
object. In some languages this information can also be obtained from the
original variable itself. In Delphi it can only be obtained from the original
variable. Example statements that illustrate these facilities are shown
following.
C++

Click here to view code image
char * name = typeinfo(aVariable).name();

CLOS
(class-name aClass)

Delphi Pascal
Click here to view code image
   (* result is a ShortString *) 
aString := aVariable.ClassName;

Java
Click here to view code image
String internalName = aClass.getName(); 
String descriptiveName = aClass.toString();

Smalltalk
name <- aClass asString

25.1.3 Testing the class of an object
In the discussion of reverse polymorphism in Chapter 17, we mentioned
how it is possible to determine if a polymorphic variable is actually holding
an instance of a specific child class. The details of this test are shown
following.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0481-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0481-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0481-05a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0481-06a


C++ 
   Child * c = dynamic_cast<Child *>(aParentPtr); 
   if (c != 0) { // null if not legal, nonnull if ok 
     . 
     . 
     . 
   } 
 
Delphi Pascal 
   if (aVariable is Child) then 
     childVar := aVariable as Child 
 
Java 
   if (aVariable instanceof Child) ... 
       or 
   if (aClass.isInstance(aVariable)) ... 
 
Oberon-2 
   IF aVariable IS Child THEN 
       aChild := aVariable(Child) 
   END 
 
Object Pascal 
   if Member (aVariable, Child) then 
      aChild = Child(aVariable) 
 
Python 
   if isinstance(aVariable, Child): 
       . 
       . 
       . 
 
Smalltalk 
   (aVariable isMemberOf: aClass) ifTrue: [ ... ]

However, it should be noted that the inappropriate use of this type of test
is often a sign of a poorly designed class structure. More often than not an
explicit test can be replaced by an invocation of an overridden method. To
illustrate, assume we have a class hierarchy with an ancestor class and two
child classes.



Suppose next that it is necessary to perform different actions, depending
on the specific type being held by a polymorphic variable. Testing the class
directly, this could be performed as follows.

Click here to view code image
Pet p = ...; 
if (p instanceof Cat) { 
  // do Cat specific actions 
  . 
  . 
  . 
} else if (p instanceof Dog) { 
  // do Dog specific actions 
  . 
  . 
  . 
} else { 
  System.err.println("value is unknown class"); 
}

A better solution would be to create a new method and move the child-
specific actions to the child classes. The default action can be moved to the
parent class. The same effect as the switch can then be achieved with a
single statement.

Click here to view code image
Pet p = ... 
p.newMethod(); // do the appropriate action

Not only is this code shorter, it is also less error prone. Suppose a new
child class is added. It is only necessary to ensure the class implements the
correct interface. In the code written using conditional statements, it would
be necessary to track down every occurrence of the conditional switch and
add a new if statement.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0482-09a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0483-02a


Testing the ancestry of an object
Although less common than testing if an object is an instance of a specific
class, it is occasionally necessary to determine if an object is an instance of
a class that descends from a given parent class. Techniques for doing this
are shown following.
C++

Click here to view code image
if (typeid(aVariable).before(typeid(anotherVariable)))

Delphi Pascal
Click here to view code image
if (aVariable.InheritsFrom(AncestorClass)) ...

Python
Click here to view code image
if issubclass(Child, Parent): 
    . 
    . 
    .

Smalltalk
Click here to view code image
(aVariable isKindOf: AncestorClass) ifTrue: [ ... ]

25.1.4 Creating an instance from a class
In many languages it is possible to pass a message to a class object that will
have the effect of creating a new instance of the class.
CLOS
(make-instance aClass)

Java
Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0483-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0483-04a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0483-05a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0483-06a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0484-01a


Object newValue = aClass.newInstance();

Smalltalk
newValue <- aClass new

In Java the method will only work if the given object can be initialized
by a constructor with no arguments. However, it is possible to retrieve a list
of all constructors for a given class, and with this, one can execute a
constructor method, passing it a list of arguments.

25.1.5 Testing if an object understands a message
In some languages you can determine whether an object understands a
message, independently of the class of the object. Techniques for doing this
are shown following.
Delphi Pascal

Click here to view code image
if (aVariable.MethodAddress("message") <> null) ...

Smalltalk
Click here to view code image
(aVariable respondsTo: #message) ifTrue: [ ... ]

25.1.6 Class behavior

Class methods in Java
Here are a few of the methods defined for class Class in Java.

Class   forName (String)

Class   getSuperclass ()

Constructor [ ]   getConstructors ()

Field   getField (String)

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0484-05a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0484-06a


Field [ ]   getFields ()

Method [ ]   getDeclaredMethods ()

boolean   isArray()

boolean   isAssignableFrom (Class cls)

boolean   isInstance (Object obj)

boolean   islnterface ()

Object   newlnstance ()

Methods such as isArray or islnterface can be used to determine
properties of a class. The method newlnstance can be used to create an
instance of the class. The constructor with no arguments is used to initialize
the object, throwing an exception if an object cannot be constructed in this
fashion. Methods exist to return an array of methods for a class, or an array
of data fields, or an individual field given its name.

Class behavior in Smalltalk
In a very early chapter we described how classes were defined by passing a
message to the class object that would ultimately be the parent class.

Click here to view code image
Object subclass: #PlayingCard 
  instanceVariableNames: 'rank suit' 
  classVariableNames: ' ' 
  category: 'Playing Card Application'

A table describing the behavior of Class in Smalltalk would include the
following.

subclasses   immediate subclasses

superclass   parent class

inheritsFrom:   test ancestry

instSize   number of instance variables

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0485-01a


instVarNames   variables defined in class

allInstVarNames   includes those inherited

selectors   methods defined in class

allSelectors   includes inherited methods

respondsTo:   test for message selector

Using these methods the user can discover all the methods a class
defines (stored as a Dictionary), all the instance variables, and various
other facts about a class.

25.2 ⊡ Methods as Objects
Both Smalltalk and Java, and a few other object-oriented languages, treat
methods as objects that can be accessed and manipulated. For example, a
method in Java is an instance of class Method, a class that defines the
following operations.

String   getName ()

Class   getDeclaringClass ()

int   getModifiers ()

Class   getReturnType

Class [ ]   getParameterTypes ()

Object   invoke (Object receiver, Object [ ] args)

The latter definition can be used to execute a method, passing it as
argument to the receiver and any arguments. The following illustrates this
use. First, the class in which the method is declared is captured as a variable
of type Class. Next, an array of parameter types for the method must be
constructed. The method we seek, concat, requires a single value of type
String. Using the method getMethod we find the code we want. We then



construct an array of arguments and pass the argument array along with a
receiver to the method, using the message selector invoke.

Click here to view code image
Class sc = String.class; 
Class [ ] paramTypes = new Class[1]; 
paramTypes[0] = sc; 
try { 
  Method mt = sc.getMethod("concat", paramTypes); 
  Object mtArgs [ ] = { "xyz" }; 
  Object result = mt.invoke("abc", mtArgs); 
  System.out.println("result is " + result); 
} catch (Exception e) { 
  System.out.println("Exception " + e); 
}

The result is the catenation of the two strings.
result is abcxyz

25.3 ⊡ Mechanisms for Modification
Mechanisms that allow a running program to modify itself are much less
common in object-oriented languages, and so we will describe such
facilities in longer, language-specific sections.

25.3.1 Method editing in Smalltalk
The user edits the string representation of a method. When the user is
finished with edits, the following message is given to a class.
aClass compile: methodString

If compilation is successful, the method is entered into the class method
dictionary and becomes part of the class behavior.

New classes are similarly formed by means of a message. The message
is given to the parent class, instructing it to create a new child class. The
child class object is returned as the result.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0486-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0487-01a


ParentClass subclass: 'ClassName' 
  instanceVariableNames: #(a b c) 
  classVariableNames: #(x y z)

Facilities also exit to read from a file (to file in) a textual description of
classes and methods and to create and compile the appropriate objects.

25.3.2 Dynamic class loading in Java
The Java standard library defines a class named ClassLoader that can be
used to load a class from a description stored in a file. The class is declared
as abstract, so to use this facility the programmer must first define a new
loader that subclasses from ClassLoader. The following is a simple
example.

Click here to view code image
import java.io.*; 
 
class SimpleClassLoader extends ClassLoader { 
  public Class getClass (String name) { 
    Class theClass = null; 
    try { 
      File f = new File(name); 
      InputStream is = new FileInputStream(f); 
      int bufsize = (int) f.length(); 
      byte buf [] = new byte [bufsize]; 
      is.read(buf, 0, bufsize); 
      is.close() ; 
      theClass = defineClass (null, buf, 0, buf.length); 
    } catch (Exception e) { 
      System.err.println("Error during load " + e); 
      System.exit(1); 
    } 
    return theClass; 
  } 
}

The class opens a file from the argument string, reads the contents, then
uses the inherited method defineClass to construct a class object.

Using some of the reflection features described in Section 25.1.6, we
could create the following simple program.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0487-02a


Click here to view code image
import java.io.*; 
import java.lang.reflect.*; 
 
class Main { 
  public static void main (String [ ] args) { 
    SimpleClassLoader simpload = new SimpleClassLoader(); 
    Class newClass = simpload.getClass(args[0]); 
      // first print class name 
    System.out.println("class name " + newClass.getName()); 
      // now print some of the features of the class 
    Field [ ] fields = newClass.getFields(); 
    for (int i = 0; i < fields.length; i++) { 
      System.out.println("field " + fields[i] .getName() + 
       " " + fields [i] .getType() ) ; 
    } 
      // now print out the methods 
    Method [ ] methods = newClass.getMethods() ; 
    for (int i = 0; i < methods.length; i++) { 
      Method aMethod = methods [i]; 
      System.out.println("method " + aMethod.getName() + 
        ":" + aMethod.getReturnType()); 
      Class [ ] ptypes = aMethod.getParameterTypes() ; 
      for (int j = 0; j < ptypes.length; j++) { 
        System.out.println("parameter " + j + 
          " type " + ptypes [j] .getName()) ; 
      } 
    } 
  } 
}

Assume, for example, that the programmer has created the following
class definition.

Click here to view code image
class Sample { 
  public int a; 
  public int b; 
  private Double c; 
 
  public Sample () { a = 3; } 
 
  public void setA (int ia) { ia = a; } 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0488-01a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0488-02a


  public void setBC (int ib, Double ic) 
    { b = ib; c = ic; } 
}

Executing the main program with the file name Sample.class yields the
following output.

Click here to view code image
class name Sample 
field a int 
field b int 
method equals:boolean 
parameter 0 type java.lang.Object 
method getClass:class java.lang.Class 
method hashCode:int 
method notify:void 
method notifyAll:void 
method toString:class java.lang.String 
method wait:void 
method wait:void 
parameter 0 type long 
method wait:void 
parameter 0 type long 
parameter 1 type int 
method setA:void 
parameter 0 type int 
method setBC:void 
parameter 0 type int 
parameter 1 type java.lang.Double

Notice that the list of methods includes those inherited from the parent
class Object.

25.4 ⊡ Metaclasses
If an object-oriented language upholds the following two principles

All objects are instances of some class
A class is an object

then it is reasonable to ask what is the class of a class object. In some
languages the answer is relatively simple. In Java, for example, a class is an

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0489-01a


instance of Class—that is, an instance of itself. This can be easily verified
by a simple program, such as the following.

Click here to view code image
class Test { 
  static public void main (String [ ] args) { 
    Test a = new Test(); 
    Class b = a.getClass(); 
    System.out.println("a class is " + b); 
    Class c = b.getClass(); 
    System.out.println("b class is " + c); 
    Class d = c.getClass(); 
    System.out.println("c class is " + d); 
    if (c == d) System.out.println("They are the same"); 
  } 
}

The output will show that variable a is of type (that is, class) Test, whereas
variable b is of type Class. Variable c is also type Class. In fact, b is the
same object as c, indicating that Class is an instance of itself.

The situation in Smalltalk is similar but more subtle. In Section 5.8 we
introduced the concept of metaclasses. Recall that metaclasses gave the
language a way to solve the problem of how to incorporate class specific
behavior without moving outside the object-oriented model. Rather than
being an instance of Class, a class was first an instance of its metaclass,
which ultimately descended from Class. By inheritance the metaclass
derives all the behavior of Class. But it also provides a place where class-
specific behavior can be defined.

The metaclass hierarchy mirrors the class hierarchy. For example, if we
have three levels of classes, there will also be three levels of metaclasses.
The topmost metaclass will inherit from Class. But, of course, Class is an
object, so it inherits from Object as well.1

1. Even this diagram simplifies the class hierarchy somewhat, leaving out an additional level
between Class and Object.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch25_images.xhtml#pf0489-02a


The object named MetaMammal in this diagram is also an object. What is
its type? The answer is Meta. There are many strange loops at this level of
the class hierarchy. The following illustrates not the subclass relationships
but the instance of relationship.

The class Meta is, oddly enough, an instance of itself. After looking at
diagrams such as this, most Smalltalk programmers are glad that the class
browser hides the existence of metaclasses from the programmer.



Summary ⊡
The term reflection refers to the ability of a running program to learn
something about itself. Typically reflection facilities include the ability to
take a run-time value and from the value determine its class, the ancestors
of the class, the methods the class inherits, and so on. More advanced
features include the ability to manipulate a method as an object—for
example, invoking it with a given set of arguments. Other reflection
facilities include the ability to dynamically load a class during execution or
create a new class from a text description.

Reflection facilities form the basis for many component-based
programming tools, since they allow a component to be dynamically loaded
and queried regarding its abilities.

Further Reading ⊡
Reflection and introspection have long been part of dynamic languages
such as Lisp. The standard reference for techniques in this language is
[Kiczales 1991]. A more theoretical analysis of metaclasses in a language-
independent framework is [Klas 1995].

Although reflection and metaclasses are not part of the basic C++
language, such facilities can be added by means of user-defined libraries.
One such library is described in [Forman 1999].

A straightforward explanation of the reflection facilities in Java is given
by [Flanagan 1997].

Self-Study Questions ⊡
1. What does the ability of a program to reflect upon itself mean?
2. What is a class object?
3. What are some actions one can typically perform using a class object?
4. What are some actions one can typically perform using an object that

represents a method?



5. What command is used to translate a string into a method in
Smalltalk?

6. What action does a class loader perform in Java?
7. What is the type of the class Class in Smalltalk?



Chapter 26

Distributed Objects

We began this book by asserting that an object-oriented program should
properly be envisioned as a community of agents, interacting with each
other in order to achieve a shared objective.

Nothing in this picture suggests that all these agents must exist in the
same program, or even on the same computer. Much of what we have
discussed in earlier chapters was concerned with limiting the connections
between components. Thus, the object-oriented model lends itself quite
naturally to the idea of distributed computing, where portions of a



computing task are executed on one machine and other portions on a
different machine.

Much of the excitement being generated around Java is due to the
potential use of the language in just such applications. The language and
the libraries it provides are particularly well suited to developing network
applications—a process that deals with the task of connecting two or more
computers so that they, and the users working on them, can communicate
and share resources.

A simple form of network programming is often described using the
concepts of client and server (see Figure 26.1). A server is an application
that runs on one computer, called the host computer, and provides both a
means of connection and useful information once a connection is
established. Often we blur the lines between the computer and the
application, and we use the term server to mean both the application and
the host computer on which it runs. A client is an application that runs on a
different computer and seeks to establish a connection to the server.
Oftentimes there will be many clients for a single server.

⊡ Figure 26.1—Client and server side computing

Applets, such as those we examined in Chapter 21, are one form of
client/server network computing. An applet, you will recall, is a program
that is stored on a server computer but when requested is transmitted across
the network and executes on the client computer. However, applets are only



a very simple example of a much more powerful concept. In general, we
would like to perform computation on both the client and server sides of the
network. In this chapter we explore how this idea is realized in Java.

26.1 ⊡ Addresses, Ports, and Sockets
In order to communicate with each other, computers must first be
connected. This connection can take various forms. Computers in a small
area, such as a single office, might be connected over a local area network,
or LAN. Computers connected over much longer distances, such as across a
city or around the world, are typically connected by a wide area network, or
WAN. The best-known WAN is the Internet, which is simply a loose
connection of computers (really, a network of networks) that have agreed to
communicate with each other following certain rules, or protocols.

For a computer to be able to select one application running on one
computer out of the multitude of computers (tens of millions, in the case of
the Internet) connected to a network, there must be an addressing scheme.
On the Internet this address is known as an IP address and is usually written
in the form of four numbers, each between 0 and 255, separated by dots. An
example might be 100.12.11.13. Humans are not very good at remembering
or dealing with numbers of this form. Thus, computer names can also be
written in an alternative, and more human-friendly, representation.

A domain name address is another way to designate a specific computer.
Like IP addresses, domain names are also written as a series of items
separated by periods, although the connection between the two forms is not
as direct as one might expect. Domain names denote a specific machine by
means of a number of levels, the levels reading from more general on the
right to more specific on the left. The computer on which this book is being
written, for example, is addressed as oops.cs.orst.edu. This address can be
read as follows: oops (the name of my machine) on the network for cs (the
computer science department at my university) at the institution orst
(Oregon State University), which is in the highest-level group edu
(educational institutions in the United States).

The series of names can be imagined as being analogous to the way that
a physical address is often described as a building address, street address,
city name, and country name.



In order to exchange data, clients and servers need more than just an
address. Many servers, for example, can be running simultaneously on the
same computer and hence have the same IP address. Within a computer, the
mechanism used to establish a rendezvous is termed a port. A port is a
location where information can be exchanged between a client and a server.

One can think of the term as analogous to a shipping port, where goods
come in from abroad and are picked up for delivery to the interior, and vice
versa. Ports are designated by integer numbers. Typically, the values
smaller than 1024 are reserved for predefined services (e-mail, file transfer,
Web access), and user-defined ports have larger numbers.

The combination of IP address and port number is used to create an
abstraction termed a socket. Again, one can think of this as an analogy to a
connection, such as an electrical socket. A client can “plug into” the server,
creating a connection along which information can flow, and can
subsequently “disconnect,” leaving the socket free for another use. As we
will see in the programming examples, a socket provides the facilities for
creating input and output streams, which allow data to be exchanged
between the client and server.

Finally, files that reside on a specific computer are described using the
now ubiquitous URL, or universal resource locator. A URL consists of a
number of parts. Three of these are the protocol that indicates the
communication method used to obtain the item (for example, ftp for file
transfer, or http for Web pages), a domain name address, and a file name
within the computer. A fourth part is an optional port number. The port
number is necessary only when the default port for the particular protocol
is, for some reason, not being used.

26.2 ⊡ A Simple Client/Server Program
We will illustrate the basic ideas of client/server programming using a pair
of simple programs. The server is shown in Figure 26.2. In addition to the
classes found in java.io and java.net, we use the class Date found in
java.util. The application is named DateServer.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch26_images.xhtml#pf0497-01a


import java.util.Date; 
import java.net.*; 
import java.io.*; 
 
public class DateServer { 
   static public void main (String [ ] args) { 
      try { 
         DateServer world = new DateServer(); 
      } catch (IOException e) { 
         System.out.println("10 exception " + e); 
      } 
   } 
 
   static final public int portMumber = 4291; 
 
   public DateServer () throws IOException { 
      ServerSocket server = new ServerSocket(portNumber); 
      while (true) { 
         System.out.println("Waiting for a client"); 
              // wait for a client 
         Socket sock = server.accept(); 
         System.out.printIn("Got a client, send a message"); 
             // create an output stream 
         OutputStreamWriter out = 
             new OutputStreamWriter(sock.getOutputStrearn()); 
         String message = 
             "Current date and time is " + new Date O + "\n"; 
 
             // write the message, then close the stream 
         out.write(message); 
         out.close(); 
      } 
 
   } 
}

⊡ Figure 26.2—A simple server program

The port number is arbitrarily chosen as 4291. In fact, any integer value
larger than 1024 and not already in use on the server computer could have
been selected.

The class ServerSocket is used to register the server with the port
number on the underlying computer. Having registered itself, the server



then sits and waits for a client.1 The method accept will return when a
client requests a connection. (An alternative form of accept allows the
programmer to specify a time period for the wait so the program can time
out if no client ever comes by.)

1. Here the server is waiting in an infinite loop. On platforms where it is difficult to terminate
programs running in the background, the reader may wish to replace the while loop with a finite
loop, such as a for loop that will make three connections and then halt.

The constructor for the ServerSocket, the accept method, and the write
method for the output writer can all generate an IOException. We can
simplify the program by declaring this exception as part of the constructor
interface and catching any such errors in the main method. By naming the
exception in the method header for the constructor, any exceptions thrown
by the library routines will pass through the constructor up to the calling
procedure, where we catch them (in a try block) and simply print a
message and halt.

The result returned by the accept message is a Socket, the connector
that will allow a communication path to be established to the client. In
particular, we can use the socket to create an OutputStream, which we here
convert into an OutputStreamWriter. Having made a connection, the server
then sends whatever information has been requested back to the client. In
this case, we simply write the current date and time as yielded by the Date
class.

We explicitly close the output stream, since the program will thereafter
go back to waiting for another client. Closing the stream will flush any
pending output and will free up certain system resources that are then
available for use by this program or others. Oftentimes an explicit close
will be omitted, since all such bookkeeping tasks will be performed
automatically when a program terminates. However, if a program is
finished with a resource and not yet ready to exit, as in this case, then it is
considered good practice to explicitly release the resource.

On the other side, we need a client. The DateClient code is shown in
Figure 26.3. The client requests a socket to be created to the given port on a
specific computer. In this simple example, we are assuming the client and
server run on the same computer. The IP address of the computer on which
an application is run can be accessed using the method
InetAddress.getLocalHost(). A more general facility is provided by



InetAddress.getByName(domainName), which takes a string representation of
a domain name and converts the name into an IP address.

Click here to view code image
import java.io.*; 
import java.net.*; 
 
public class DateClient { 
   public static void main (String [ ] args) { 
      try { 
         DateClient world = new DateClient(); 
      } catch (IOException e) { 
         System.out.println("Received an 10 exception " + e); 
      } 
  } 
 
  static final public int portNumber = 4291; 
 
  public DateClient () throws IOException { 
        // open socket as a reader 
     Socket sock = 
        new Socket(InetAddress.getLocalHost(), portNumber); 
     Reader isread = 
        new InputStreamReader(sock.getInputStrearn()); 
     BufferedReader input = new BufferedReader(isread); 
        // now read one line 
     System, out .println("message is " + input .readLine()) ; 
  } 
}

⊡ Figure 26.3—The DateClient application

Having created a socket, the socket can then be used to create an input
stream, which we first convert to a Reader and then to a BufferedReader.
The buffered reader provides a method to read an entire line of input, which
we simply print out.

If we run both programs on the same computer, we will observe the
expected outcome—namely, that the client will print the date and time
given by the server.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch26_images.xhtml#pf0498-01a


26.3 ⊡ Multiple Clients
There were many limitations to our first simple client/server system, but the
two most important were that (1) it only provided communication one way,
from the server to the client, and (2) it only permitted one client for one
server. In our second example program, we will address both of these
points.

The Therapist program, Figure 26.4, is a rewriting of a classic and well-
known computer game, originally called Eliza [Weizenbaum 1976]. The
application simulates a Gestalt psychotherapist and conducts a sort of
question-and-answer session with the user. An example session might be
the following.

Click here to view code image
import java.net.*; 
import java.io.*; 
 
public class Therapist { 
   static public void main (String [ ] args) { 
      try { 
         Therapist world = new Therapist(); 
      } catch (IOException e) { 
         System.out.println("Received an IO Exception" + e); 
      } 
   } 
 
   static final public int portNumber = 5321; 
 
   public Therapist () throws IOException { 
      ServerSocket server = new ServerSocket(portNumber); 
      while (true) { 
         Socket sock = server.accept(); 
            // start new thread to handle session 
         Thread session = new TherapySession 
            (sock, get Input Stream(), 
sock.getOutputStream()); 
         session.start(); 
      } 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch26_images.xhtml#pf0499-01a


   } 
}

⊡ Figure 26.4—The Therapist application

Click here to view code image
Hello. Welcome to therapy. What is your name? 
Tim. 
Well, Tim what can we do for you today? 
I am writing a book on Java. 
Tell me more. 
Do you know Java? 
Why do you want to know? 
Even my mother is learning how to program in Java. 
Tell me more about your mother. 
. 
. 
.

The therapist application is very similar to the date server described
earlier. One important difference is that when a socket is requested by a
client, a new thread is created to service this request. This new thread then
begins execution in parallel with the original task, which meanwhile
completes the while loop and goes back to waiting for another client. In this
fashion, many clients can be serviced simultaneously because each will be
given his or her own thread of execution.

The servicing of the client is handled by an instance of TherapySession,
shown in Figure 26.5. Note that the therapist passes both an input and
output stream to the constructor for this class, permitting two-way
communication between the client and the server. The class TherapySession
is declared to be a subclass of Thread, which means that most of its
processing will be performed by the run method invoked when the therapist
starts the thread.

Click here to view code image
import java.io.*; 
import java.util.Vector; 
import java.util.StringTokenizer; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch26_images.xhtml#pf0499-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch26_images.xhtml#pf0501-01a


 
public class TherapySession extends Thread { 
  public TherapySession (InputStream ins, OutputStream outs) { 
     Reader isread = new InputStreamReader(ins); 
     in = new BufferedReader(isread); 
     out = new OutputStreamWriter(outs); 
   } 
 
  private String name = ""; 
  private BufferedReader in; 
  private Writer out; 
 
  private String response (String text) { 
      . 
      . 
      . 
  } 
 
  public void run () { 
     try { 
           // get name 
 
        out.write("Hello.  Welcome to therapy. What is your 
name?\n"); 
        out.flush(); 
        name = in.readLine(); 
        out.write("Well " + name + " what can we do for you 
today?\n"); 
        out.flush(); 
 
           // now read and respond 
        while (true) { 
           String text = in.readLine(); 
           out.write(response(text) + "\n"); 
           out.flush(); 
        } 
     } catch (IOException e) { stop(); } 
  } 
}

⊡ Figure 26.5—The TherapySession class



For the moment, we have omitted some of the code used in the
execution of this thread so the overall structure can be seen more easily. In
order to simplify input and output processing, the constructor for the class
converts the input and output streams into buffered readers and writers.

The run method begins by writing a generic greeting. The flush method
is needed to transfer the output across the network, since otherwise the
buffering of the writer will wait until more output has been generated. The
next line is assumed to be a one-word name. Another generic response is
then given, and the program moves into the loop that is the heart of the
application.

The infinite while loop simply reads a line of text from the user, then
determines and writes a response. We will return to the issue of how the
response is generated after discussing the client side code.

The client program is named TherapyClient (Figure 26.6), and again, it
is very similar to the Date client. The program creates readers and writers to
handle the socket input and output, and it then simply reads lines of text
from the standard input and passes them across the network to the server,
printing the response on the standard output.

Click here to view code image
import java.io.*; 
import java.net.*; 
 
public class TherapyClient { 
   public static void main (String [ ] args) { 
      try { 
         TherapyClient world = new TherapyClient(); 
      } catch (IOException e) { 
         System.out.printIn("Received an IO exception " + e); 
      } 
   } 
 
   static final public int portNumber = 5321; 
   private BufferedReader input, term; 
   private Writer output; 
 
   public TherapyClient () throws IOException { 
        // open standard input as buffered reader 
      term = new BufferedReader(new 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch26_images.xhtml#pf0502-01a


InputStreamReader(System.in)); 
 
          // open socket as a reader and a writer 
      Socket sock = 
          new Socket(InetAddress.getLocalHost(), portNumber); 
      Reader isread = 
          new InputStreamReader(sock.getInputStream()); 
      input = new BufferedReader(isread); 
      output = new 
OutputStreamWriter(sock.getOutputStrearn()); 
 
         // now read and print 
      while (true) { 
            // read and print something from therapist 
         String line = input.readLine(); 
         System.out.println(line); 
           // get our response 
         line = term.readLine(); 
         if (line.equals("Quit")) 
            break; 
         output.write(line + "\n"); 
         output.flush(); 
      } 
   } 
}

⊡ Figure 26.6—The TherapyClient class

Although the therapy session application clearly has no innate
intelligence, people are frequently fooled into thinking otherwise. This
effect is achieved by a clever selection of simple rules for responding to
what the user writes. Figure 26.7 shows the code that embodies these rules.
If the user asks a question (a condition discovered by checking the final
character), then the program will answer with a question. Otherwise the line
of text is converted into lowercase and broken into individual words.

Click here to view code image
private String response (String text) { 
      // answer a question with a question 
   if (text.endsWith("?")) 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch26_images.xhtml#pf0503-01a


      return "Why do you want to know?"; 
      // break up line 
   Vector words = new Vector(); 
   StringTokenizer breaker = 
      new StringTokenizer (text.toLowerCase(), " .,?!"); 
   while (breaker.hasMoreElements()) 
      words.addElement(breaker.nextElement()); 
      // look for "I feel" 
   if ((words.size() > 1) && 
       words.elementAt(0).equals("i") && 
       words.elementAt(1).equals("feel")) 
      return "Why do you feel that way?"; 
 
      // look for relatives 
   for (int i = 0; i < words.size(); i++) { 
      String relative = (String) words.elementAt(i); 
      if (isRelative(relative)) 
         return "Tell me more about your " + relative; 
      } 
      // nothing else, generic response 
   return "Tell me more"; 
} 
 
private boolean isRelative (String name) { 
   return name.equals("mother") || name.equals("father") 
      || name.equals("brother") || name.equals("sister") 
      || name.equals("uncle"); 
}

⊡ Figure 26.7—The response generator

Once the line is broken into words, there are several simple rules that
can be applied. If the user started a sentence with “I feel,” then we can ask
why they feel that way. Otherwise, we check every word to see if they
mentioned a family member. If so, then we ask for more information on
that relative. Finally, if nothing else has been applicable, we ask a general
open-ended question. These are only a small sample of the rules that can be
written—all to simulate intelligence when there is none.



26.4 ⊡ Transmitting Objects over a
Network
Objects can be transmitted over a network using the technique of object
serialization. We illustrate this mechanism by presenting a portion of
another client/server application. This application is an online pocket-
change exchange calculator. The application will take a description of a
collection of coins, either in British or American coinage, and calculate the
equivalent in the other system.

To start, we need a class hierarchy to describe a collection of coins. This
is provided by the three classes shown in Figure 26.8. The class
PocketChange is an abstract class, parent to the two classes BritishCoins
and AmericanCoins. Since both currencies share the concept of a penny, that
is the only data field found in the parent class. Each subclass gives names
for the various different coins used in that country. (Fifty-cent pieces and
dollar coins have actually been minted in the United States, but they have
never been popular.) This class description must be available on both the
client and server sides of the network connection.

Click here to view code image
import java.io.Serializable; 
 
abstract public class PocketChange implements Serializable { 
   public int penny = 0; 
   abstract PocketChange exchange(); 
} 
 
class BritishCoins extends PocketChange { 
   public int twoPence = 0; // worth 2 pennies 
   public int fivePence = 0; // worth 5 pennies 
   public int tenPence = 0; // worth 10 pennies 
   public int twentyPence = 0; // worth 20 pennies 
   public int fiftyPence = 0; // worth 50 pennies 
   public int pound = 0; // worth 100 pennies 
   public int twoPound = 0; // worth 200 pennies 
 
   public BritishCoins (int pence) { ... } 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch26_images.xhtml#pf0505-01a


 
   public PocketChange exchange () { // convert to American 
     int bPennies = bc.penny + 2 * bc.twoPence + 
          5 * bc.fivePence + 10 * bc.tenPence + 
          20 * bc.twentyPence + 50 * bc.fiftyPence + 
          100 * bc.pound + 200 * bc.twoPound; 
     int amPennies = (int) (bPennies 
           * exchangeBPenniestoAPennies); 
     return new AmericanCoins(amPennies); 
   } 
} 
 
class AmericanCoins extends PocketChange { 
   public int nickel = 0; // worth 5 pennies 
   public int dime = 0; // worth 10 pennies 
   public int quarter = 0; // worth 25 pennies 
 
   public AmericanCoins (int cents) { 
     quarter = cents / 25; cents %= 25; 
     dime = cents / 10; cents %= 10; 
     nickel = cents / 5; cents %= 5; 
     penny = cents; 
   } 
 
   public PocketChange exchange () { ... } // convert to British 
}

⊡ Figure 26.8—The Coin class hierarchy

The class PocketChange has been declared as implementing the
Serializable interface. This is all that is necessary to permit instances of
the class to be written to and read from an object stream. It is not necessary
to repeat the implements clause in the child classes BritishCoins and
AmericanCoins, since they will inherit the serializable characteristic from
their parent class PocketChange.

We give only a portion of the server program (Figure 26.9), leaving the
completion of the server program and the development of a client
application as an exercise for the reader. The ChangeMaker application waits
for a client to request a connection. When a connection is made, the
program reads a value from the input stream. Notice that the actual value
read will be either an instance of AmericanCoins or an instance of



BritishCoins, but the server has no idea which one. Instead, the server
reads the value as an instance of the parent class PocketChange.
Nevertheless, the actual value transferred will be an instance of one of the
child classes.

Click here to view code image
public class ChangeMaker { 
   static final public int portNumber = 3347; 
   static final public double exchangeBPenniestoAPennies = 
1.615; 
 
   public ChangeMaker () throws IOException { 
      ServerSocket server = new ServerSocket(portNumber); 
      while (true) { 
         Socket sock = server.accept(); 
            // got a client, make the connections 
         ObjectlnputStrearn in = 
            new ObjectlnputStrearn(sock.getInputStream()); 
         ObjectOutputStream out = 
            new ObjectOutputStream (sock.getOutputStream()); 
 
            // read the value 
         PocketChange coins; 
         try { coins = (PocketChange) in.readObject(); 
         } catch (ClassNotFoundException e) { continue; } 
            // now convert the value 
         coins = coins.exchange(); 
            // write out the result 
         out.writeObject(coins); 
         sock.close(); 
      } 
   } 
}

⊡ Figure 26.9—The ChangeMaker server application

Without knowing the exact class of the object that has been received, the
server executes the message exchange, which is declared as abstract in the
class PocketChange and is reimplemented in each child class. The method

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch26_images.xhtml#pf0506-01a


executed will depend on the dynamic type of the object received over the
socket.

To calculate the correct amount, the value of the coins is first reduced to
penny units and then multiplied by the current exchange rate. (A more
sophisticated program could, at this point, make another network
connection to a server that would yield the current exchange rate.) Having
determined the American penny equivalent to the British coins, a series of
assignments are then used to convert this quantity into quarters, dimes,
nickels, and pennies.

Once the equivalent number of coins has been determined, the object
representing the collection of coins is written to the output stream using the
method writeObject. On the client side this quantity will be read using a
corresponding readObject method. The server then closes the socket and
goes back to waiting for the next connection.

26.5 ⊡ Providing More Complexity
We have only scratched the surface of the techniques that can be used in
network programming. We describe here some of the ways that further
functionality can be added to our examples:

The Remote Method Invocation package (java.rmi) provides a
framework for creating distributed applications (applications that run on
two or more computers) in which the actual physical location of an object is
transparent to the user. An object will support the same interface whether it
is local to the machine or on a remote machine connected by a socket.

A common type of network application involves a server providing
access to a database. The Java Database Connectivity (JDBC) library
provides a simple and uniform interface that can be used to access a wide
variety of different commercial database systems.

Servlets are an alternative to applets. While applets originate on the
server computer but run on the client computer, servlets both originate and
run on the server computer, and they only transmit their results to the client.
This technique is useful, since programs running on the server are often
permitted to perform tasks that are not allowed to be performed by applets.
Just as the class Applet provides much of the mechanism for creating



applets in a systematic and relatively easy fashion, the servlet library
provides facilities for creating server software.

Summary ⊡
Network programming involves applications running on two or more
computers working in a cooperative fashion to solve a particular problem.

To work in tandem, applications must communicate. Computers
establish connections by means of a series of different mechanisms. An
address is used to designate a specific computer out of the many computers
that may be connected to a network. A port is used to identify an individual
application on a computer that is waiting to make a connection. Once the
application is found, a socket is used to create the actual communication
medium that links the two communicating applications.

The streams created by a socket can be used to transmit 8-bit byte
values between the two communicating parties. By using the stream and
reader/writer abstractions provided by the Java library, higher-level objects
can also be transmitted easily across the network connection.

By processing requests in a separate thread of execution, a single server
can be made to service many different clients simultaneously.

Further Reading ⊡
Flanagan [Flanagan 1997] provides a series of detailed examples to
illustrate how network programming can be performed in Java. Simple
examples illustrating RMI and servlets are also provided by [Campione
1999]. The techniques used to program servlets in Java are explained by
Callaway [Callaway 1999].

Self-Study Questions ⊡
1. What is distributed computing?
2. Why does the object-oriented view of a program lend itself naturally

to distributed computing?



3. Explain what is meant by the terms client and server.
4. Explain how applets represent one form of client/server computing.
5. How are different machines in a network addressed?
6. What is a port? What is the difference between a port and a socket?
7. In what way is a URL object similar to a Socket object?
8. What is the difference between a Socket object and an object of type

Server-Socket?
9. What information is needed to form a socket?

10. How does a client create a connection with a server? How does a
server create a connection with a client?

11. Having established a socket connection, how is communication
between client and server effected?

12. What is the benefit of having the Therapist server create separate
threads to handle communication with the client?

13. In the communication between the Therapist server and the client,
why is it important for the writers to be flushed after a line of text has
been output?

14. What Java facilities are required for transmitting objects over a
network?

Exercises ⊡
1. Create an array of “fortune cookies,” one-line comments offering

advice or information. Then write a server program that will, when
requested, return a randomly selected value from this list.

2. Many more rules can be added to the response generator for the
therapist program. Examples include responding to “I want” or “I
think” with a question that asks why the client wants or thinks that
way (perhaps even including the text of the material that follows the
first two words), a randomly generated generic response if nothing
else is appropriate, searching for keywords such as “computer,” and



making a response, such as “Computers can be so annoying, can’t
they?” Think of some more question-and-answer patterns, and
implement them in your own version of the therapist.

3. Complete the ChangeMaker server, and write a client program that will
interface with this server. Allow the user the ability to specify input as
either American or British currency, using forms for the various
numeric fields.

4. Unlike the Therapist program, the ChangeMaker does not service each
client in a separate thread. Thus, each client must be completely
serviced before the next client can be handled. Modify the
ChangeMaker program to correct this so that servicing a client is
performed in a separate thread and can be performed in parallel with
the main program waiting for a new connection to be established.



Chapter 27

Implementation

It is not the intent of this book to provide a detailed introduction to
programming language implementation. Nevertheless, a general
understanding of the problems encountered in implementing object-oriented
languages and the various ways to overcome them can, in many cases, help
the reader better understand object-oriented techniques. In particular, this
will help clarify the way in which object-oriented systems differ from more
conventional systems. In this chapter, we provide an overview of some of
the more important implementation techniques, as well as pointers to the
relevant literature for the reader who desires further information.

27.1 ⊡ Compilers and Interpreters
Broadly speaking, there are two major approaches to programming
language implementation: compilers and interpreters. A compiler translates
the user’s program into native machine code for the target machine and is
invoked as a separate process independent of execution. An interpreter, on
the other hand, is present during execution, and it is the system that runs the
user program.

As is true of most distinctions, while the endpoints are clear, there are
large gray areas in the middle. There are compilers that compile
interactively even during executing (at least during the debugging stages).
These compilers gain some of the advantages of the interpreter while giving
the execution-time advantage of the compiler technique. Similarly, some



interpreters can translate into either an intermediate representation or native
code.

Generally, a program that is translated by a compiler will execute faster
than a program that is run under an interpreter. But the time between
conception, entering text, and execution in a compiled system may be
longer than the corresponding time in an interpreter. Furthermore, when
errors occur at run time, the compiler often has little more than the
generated assembly language to offer as a marker to the probable error
location. An interpreter will usually relate the error to the original text the
user entered. Thus, there are advantages and disadvantages to both
approaches.

Although some languages are usually compiled and others are usually
interpreted, there is nothing intrinsic in a language that forces the
implementor to always select one over the other. C++ is usually compiled,
but there are C++ interpreters. On the other hand, Smalltalk is almost
always interpreted, but experimental Smalltalk compilers have been
produced.

27.2 ⊡ The Receiver as Argument
In a compiled language, ultimately all methods are translated into functions
that are, in many respects, just like any other function. The instructions for
the function are rendered as a sequence of assembly language instructions
that reside in a fixed location in memory, and when the function is
executed, control is transferred to this location. As part of this transfer of
control, an activation record1 is created to hold the parameters and the local
variables. So how does this code gain access to the instance data associated
with the receiver?

1. The activation record is a portion of the run-time stack set aside at procedure entry to hold
parameters, local variables, and other information. Further details on the run-time environment of
programs can be found in any compiler-construction textbook. See the section on further reading at
the end of the chapter.

To put the question in concrete terms, recall the class description of
CardPile from the solitaire program.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch27_images.xhtml#pf0512-01a


class CardPile { 
public: 
  . 
  . 
  . 
    bool addCard (Card * aCard); 
  . 
  . 
  . 
private: 
  list<Card *> cards; 
  const int x; 
  const int y; 
}; 
void CardPile::addCard (Card * aCard) 
{ 
  card.push_front(aCard); 
}

The compiler creates assembly language code for the method addCard.
Seemingly, the only parameter is the playing card named aCard. How does
this code gain access to the data field card?

The answer is that the receiver is in reality passed as a hidden first
parameter. An invocation, like this

Click here to view code image
CardPile * aCardPile = ...; 
Card * currentCard = ...; 
 
aCardPile->addCard (currentCard);

is in reality translated as if it had been written like this.
Click here to view code image
addCard(aCardPile, currentCard);

At the other end, the code for the method is compiled as if it had been
written as follows.

Click here to view code image
void addCard (CardPile * this, Card * aCard) 
{ 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch27_images.xhtml#pf0512-02a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch27_images.xhtml#pf0512-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch27_images.xhtml#pf0512-04a


  this->card.push_front(aCard); 
}

Notice how the pseudo-variable this has become a real first parameter.
References to data fields or to methods within the class can be handled
using this value.

27.3 ⊡ Inherited Methods
The next problem we will consider is how it is possible for a method
defined in a parent class to continue to function even when it is executed
using an instance of a child class as receiver. This question arises both for
differences in the receiver and differences in argument caused by the use of
polymorphic variables as parameters. Indeed, as was noted in the previous
section, the receiver for a message-passing expression is just a polymorphic
argument.

To understand how unusual this is, note that in most other ways
argument values can never be changed. It would not be possible for a
procedure that is expecting an integer as an argument to work correctly
when it is given a string.

The key insight that allows inherited methods to continue to operate is
the way that child classes are represented in memory. In a compiled version
of a program, data fields are not accessed by name but by a fixed offset
relative to the beginning of an object. A child class will store the same
fields at the same offsets. They may add new data fields, but these will be
as extensions of the parent data fields.



Since the code generated when the parent class is processed only
requires that data fields be found at a known offset, the code will work
regardless of whether it is dealing with an instance of the parent or an
instance of the child.

27.3.1 The problem of multiple inheritance
One of the reasons why multiple inheritance is difficult to implement is
precisely because a child class cannot store inherited data fields in exactly
the same location as they are found in both parents. The child can mirror
one parent or the other but not both at the same time.

There are various solutions to this problem, but none results in a system
that is as simple as that provided by single inheritance. The most common
technique is that an object pointer is represented as a pair containing both
the pointer to the base and an offset. However, the details concerning how
this can be done are beyond the scope of this book.

27.3.2 The slicing problem
That a child class can only extend the data fields defined by a parent class
nicely solves the problem of inherited methods. That is, it gives the



compiler a way to generate code for procedure defined in a parent class so
that it will nevertheless work on objects of a child class. But this same
property introduces another problem.

As we discussed in earlier chapters, a polymorphic variable is one that is
declared as representing one type but that in fact holds values from another
type. In object-oriented languages the values usually must come from a
subclass of the parent class.

When a compiler sets aside space in an activation record, it generally
knows only the declared type for a variable, not the run-time type. The
question is therefore how much memory should be allocated in the
activation record. As we discussed in Chapter 12, most programming
languages elect one of two solutions to this problem.

The activation record holds only pointers, not values themselves.
The activation record holds only the data fields declared in the parent,
slicing off any data fields from the child class that will not fit.

There are merits to both alternatives, so we will not comment on which
technique seems “better.” However, as a programmer it is important that
you understand the technique used by the system on which you work. C++
uses the slicing approach; Java and most other object-oriented languages
use the pointer approach.

27.4 ⊡ Overridden Methods
We have explained how inherited methods can execute even when
presented with an instance of a child class, but what about the inverse? How
is it possible that when an overridden method is invoked, the code that is
executed will be that associated with the current value of the receiver,
regardless of its declared type?

To put the question in concrete terms, recall that in our solitaire game
the method addCard is redefined in the child class DiscardPile. A variable
that is declared as maintaining a CardPile will, if it actually references a
DiscardPile, execute the correct method.

Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch27_images.xhtml#pf0515-01a


CardPile * aCardPile = new DiscardPile(); 
Card * aCard = ...; 
 
aCardPile->addCard (aCard); // will execute DiscardPile::addCard

Since the dynamic class can change during execution, there must be
something stored in the variable that indicates the type of value it is
currently maintaining. This value is termed a virtual method table pointer.
It is simply an additional data field, a hidden pointer that references an
object called the virtual method table.

The virtual method table is a static data area constructed for each class.
All instances of the same class will point to the same virtual method table.
In some implementations the virtual method table may include a small
amount of useful information, such as the class name or the size of
instances of the class in bytes, but the most important part of the virtual
method table is an array of pointers to functions.



The offset to any particular method can be determined at compile time.
Thus, an invocation of a virtual method is translated into an indirect access
mediated through the virtual method table. The call

Click here to view code image
aCardPile->addCard (aCard);

becomes
Click here to view code image
aCardPile->VMTptr[3](aCardPile, aCard);

where VMTptr is the name of the hidden data field that references the virtual
method table, and the offset of the addCard method is assumed here to be 3.
(Note we have also passed the receiver as argument, as we described in
Section 27.2.)

The next part of the solution to the problem of overridden functions
deals with the layout of the virtual method table for a child class in relation
to the table for the parent class. In short, overridden methods are placed at
the same offsets in both but point to different functions.

If a method is not overridden, the pointer in the virtual method table will
be the same in the child as in the parent. If it is overridden, the location in
the child will point to the child code, while the location in the parent will
point to the parent code. New methods defined in the child but not found in

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch27_images.xhtml#pf0516-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch27_images.xhtml#pf0516-04a


the parent are tacked on to the end of the child’s virtual method table. Thus,
the table for the child is an extension of the parent, in much the same way
that the data layout for the child is an extension of the data layout for the
parent.

In this way the invocation of an overridden method can quickly and
easily be resolved to the correct function. Notice that the overhead for a
virtual method call is one level of indirection (the reference to the virtual
method table) and one array index (the index into the table). On most
machines this can be accomplished in one or two assembly language
instructions.

27.4.1 Eliminating virtual calls and in-lining
Although the overhead of a virtual method invocation in comparison to a
normal function call is small, in some instances (for example, inside of
loops) even a small difference can be critical. If a compiler can determine at
compile time the dynamic class of a receiver, then an invocation of a virtual
method can be transformed into a normal procedure call, avoiding the
overhead of the virtual method table lookup.

Most often this is accomplished through a technique termed data flow
analysis. A careful trace is performed of all execution paths between the
point a variable is given a value and the point it is used as a receiver. In
many cases this analysis will reveal the exact type for the variable.

The elimination of virtual method calls is often combined with method
inlining. Object-oriented programming tends to encourage the development
of many small methods, often much smaller than the average function in an
imperative language. If data flow analysis can link a message invocation to
a specific method, and if the method is very small (for example, it may
simply return a data field), then the body of the method can be expanded in-
line at the point of call, thereby avoiding the overhead of the procedure call.

27.5 ⊡ Name Encoding
Since methods are all known at compile time and cannot change at run
time, the virtual tables are simply static data areas established by the



compiler. These data areas consist of pointers to the appropriate methods.
Because linkers and loaders resolve references on the basis of symbols,
some mechanism must be provided to avoid name collisions when two or
more methods have the same name. The typical scheme combines the
names of the class and the method. Thus, the addCard method in class
DiscardPile might internally become DicardPile::addCard. Usually, the
user need never see this name unless forced to examine the assembly-
language output of the compiler.

In languages such as C++ that allow methods to be further overloaded
with disambiguation based on parameter type, even more complicated
Gödel-like2 encodings of the class name, method name, and argument types
are required. For example, the three constructors of class Complex described
in an earlier chapter might be known internally as Complex::Complex,
Complex::Complex_float, and Complex::Complex_float_float, respectively.
Such internal names, sometimes referred to as mangled names, can become
very long. As we have seen, this internal name is not used during message
passing but merely in the construction of the virtual tables and to make
unique procedure names for the linker.

2. The term “Gödel-like” refers to the technique of encoding a large amount of information (such as
an entire computer program) as a single quantity. The technique was first described by the German
computer scientist Kurt Gödel in a paper in 1931 [Gödel 1931]. Its use in a linker was, to my
knowledge, first described by Richard Hamlet [Hamlet 1976].

27.6 ⊡ Dispatch Tables
Because languages such as C++ and Object Pascal are statically typed, they
can determine at compile time the parent class type of any object-oriented
expression. Thus, a virtual method table needs to be only large enough to
accommodate those methods actually implemented by a class. In a
dynamically typed language, such as Smalltalk or Objective-C, a virtual
method table has to include all messages understood by any class, and this
table needs to be repeated for every class. If an application has 20 classes,
for example, and they each implement 10 methods on average, we need 20
tables, each consisting of 200 entries. The size requirements quickly
become exorbitant, and a better technique is called for.



An alternative technique is to associate with every class a table that,
unlike the virtual method table, consists of selector-method pairs. This is
called a dispatch table. The selectors correspond only to those methods
actually implemented in a class. Inherited methods are accessed through a
pointer in this table, which points to the dispatch table associated with a
superclass (see Figure 27.1).

⊡ Figure 27.1—An object and its dispatch table

As in a system using virtual method tables, when dispatch tables are
used, every object carries with it an implicit (that is, not declared) pointer to
the dispatch table associated with the class of the value it represents. This
implicit pointer is known as the isa link (not to be confused with the is-a
relation between classes). A message expression in Objective-C, such as the
following expression from the eight-queens problem.

Click here to view code image
[neighbor checkrow: row column: column]

is translated by the Objective-C compiler3 into

3. The Objective-C system is a translator that produces conventional C code. In addition, the string
form of the selector is not actually used; instead, selectors are hashed into a numeric value.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch27_images.xhtml#pf0519-02a


Click here to view code image
objc_msgSend(neighbor,"checkrow:column:", row, column)

The function objc_msgSend, called the messaging function, follows the
isa link of the first argument to find the appropriate dispatch table. The
messaging function then searches the dispatch table for an entry that
matches the selector. If such an entry is found, the associated method is
invoked. If no such method is found, the dispatch table of the superclass is
searched. If the root class (class Object) is finally searched and no method
is found, a run-time error is reported.

27.6.1 A method cache
Although for dynamically typed languages, the dispatch table is more
economical in space than the virtual method table, the time overhead is
considerably greater. Furthermore, this overhead is proportional to the depth
of inheritance. Unless this penalty can be overcome, the latter point might
lead developers to abandon inheritance, trading the loss in power for the
gain in efficiency.

Fortunately, we can largely circumvent this execution time loss by
means of a simple technique. We maintain a single systemwide cache of
methods that have been recently accessed. This cache is indexed by a hash
value defined on the method selectors. Each entry in the cache is a triple,
consisting of a pointer to a class (the dispatch table itself can serve this
purpose), a selector value, and a pointer to a method.

When the messaging function is asked to find a method to match to a
selector class pair, it first searches the cache (see Figure 27.2). If the entry
in the cache at the hash table location corresponds to the requested selector
and class, the associated method can be executed directly. If not, the search
process described earlier is performed. Following this search, immediately
before executing the method the cache is updated, overwriting whatever
entry it contained previously at the hash location given by the message
selector. Note that the value stored for the class entry in the cache is the
class where the search began, not the class in which the method was
eventually discovered.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch27_images.xhtml#pf0519-03a


⊡ Figure 27.2—The messaging function checking the method cache

By appropriate selection of hash functions and cache sizes, one can
achieve cache hit ratios in the range of 90 to 95 percent, which reduces the
overhead involved in a messaging expression to slightly over twice that of a
conventional procedure call. This figure compares favorably with the
overhead incurred with the virtual method table technique.

27.7 ⊡ Bytecode Interpreters
Interpreters are usually preferred over compilers if the amount of variation
in a program is larger than can be accommodated easily in fixed code
sequences. This variation can come from a number of sources. In a
dynamically typed language, for example, we cannot predict at compile
time the type of values that a variable can possess (although Objective-C is
an example of a dynamically typed language that is nevertheless compiled).
Another source of variation can occur if the user can redefine methods at
run time.



A commonly used approach in interpreters is to translate the source
program into a high-level “assembly language,” often called a bytecode
language (because typically each instruction can be encoded in a single
byte). Figure 27.3 shows, for example, the bytecode instructions used in the
Little Smalltalk system. The high-order four bits of the instruction are used
to encode the opcode, and the low-order four bits are used to encode the
operand number. If operand numbers larger than 16 are needed, the
extended instruction is used, and the entire following byte contains the
operand value. A few instructions, such as “send message” and some of the
special instructions, require additional bytes.

⊡ Figure 27.3—Bytecode values in the Little Smalltalk system

The heart of the interpreter is a loop that surrounds a large switch
statement. The loop reads each successive bytecode, and the switch



statement jumps to a code sequence that performs the appropriate action.
We will avoid a discussion of the internal representation of a program
(interested readers are referred to [Budd 1987]) and will concentrate solely
on the processing of message passing.

Click here to view code image
while (timeslice-- > 0) { 
  high = nextByte();  // get next bytecode 
  low = high & 0x0F;  // strip off low nybble 
  high >>= 4;    // shift left high nybble 
  if (high == 0) { // cbeck extended form 
    high = low;  // if so use low for opcode 
    low = nextByte(); // get real operand 
    } 
 
  switch(high) { 
    case Pushlnstance: ... 
    . 
    . 
    . 
    case PushArgument: .. 
    . 
    . 
    . 
    } 
  }

Just as objects in the compiled system presented earlier all contain a
pointer to a virtual table, objects in the Smalltalk system all contain a
pointer to their class. The difference is that, as we saw in Chapter 4, the
class is itself an object. Among the fields maintained in the class object is a
collection containing all the methods corresponding to messages that
instances of the class will understand (Figure 27.4). Another field points to
the superclass for the class.

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/ch27_images.xhtml#pf0522-01a


⊡ Figure 27.4—The internal structure of a class

When a message is to be sent, the interpreter must first locate the
receiver for the message. By examining the class pointer for the receiver, it
can find the object corresponding to the class of the receiver. It then
searches the methods collection for a method that matches the name of the
message being sent. If no such method is found, it follows the superclass
chain, searching the classes in the superclass until either an appropriate
method is found or the chain is exhausted. In the latter case, the interpreter
reports an error. This is exactly the same sequence of steps as performed by
the messaging function used in the dispatch table technique. As with that
technique, a cache can be used to speed up the process of method search.

Bytecode interpreters have recently been popularized through their use
by Java systems. While the range of bytecodes used by Java is much more
extensive than what has been described here, the key ideas remain the
same.

27.8 ⊡ Just-in-Time Compilation



The key criticism usually leveled against interpretive systems is that there
execution time is typically much slower than that obtained from compilers.
On the other hand, interpreters can be much more portable. Java is the
language that has most recently trumpeted this advantage, claiming that
Java bytecodes created on any machine can be executed on any other
machine.

A scheme that tries to balance the benefits of both techniques is just-in-
time compilation, or JIT. In a JIT system a program is first translated into a
portable, high-level form—for example, Java bytecodes. When these
bytecodes get loaded onto a specific machine, then at that instance, just
before execution (the “just in time” of the name), the bytecodes are
translated once again into machine code for the hardware on which
execution is taking place.

The JIT technique gives the advantage of portability (the original
bytecode form of the program can be moved to any machine) with the
execution time performance of compiled code. There is a small time
penalty that must be paid for translating the bytecodes into machine code,
but normally the resulting machine code is saved so that if the same method
is executed repeatedly, this translation cost is incurred only once and can be
amortized over all the successive calls.

The major difficulty with JIT systems is that they are complicated
systems to develop, particularly if they are combined with optimization
techniques. But as the dramatic improvements in execution speeds of Java
systems in the past few years has indicated, the benefits can be impressive.

Summary ⊡
Regardless of whether an implementation is provided by a compiler or an
interpreter, there are several fundamental problems that must be addressed.
In this chapter we examined the following.

Providing access to the receiver from within a method
How an inherited method can continue to operate using an instance of
a child class in place of an instance of the parent class
How methods can be overridden and how a dynamic dispatch
technique for a statically typed languages can select at run time the



method that will match a polymorphic variable’s dynamic class
How unique names can be created for system software, such as
linkers, that require this property
How dynamic method lookup is performed in dynamically typed
languages
How bytecodes can be used as a flexible and portable internal
representation of an object-oriented program
How just-in-time compilation can provide the benefits of both
portability and execution efficiency

Further Reading ⊡
A good introduction to the problems of language implementation can be
found in compiler construction textbooks, such as [Aho 1985, Fischer
1988].

For the reader interested in learning more about the implementation of
object-oriented languages, Cox [Cox 1986] contains a detailed analysis of
the time-space tradeoffs involved in various schemes. The implementation
of multiple inheritance in C++ is sketched in [Ellis 1990], which is based
on an earlier algorithm for Simula [Krogdahl 1985]. A detailed description
of C++ implementation techniques is provided by Lippman [Lippman
1996].

The Smalltalk-80 interpreter is described in [Goldberg 1983]. [Krasner
1983] contains several papers that describe techniques for improving the
efficiency of the Smalltalk-80 system. A simplified Smalltalk interpreter is
detailed in [Budd 1987]. Kamin [Kamin 1990] presents a good general
overview of the issues involved in the implementation of nontraditional
languages.

Self-Study Questions ⊡
1. In broad terms, what are the differences between compilers and

interpreters? What are some advantages of each technique?



2. When a method is translated into an ordinary function, what changes
are necessary in order to provide access to the receiver?

3. What key feature of the memory layout of objects permits methods
defined in a parent class to be used with instances of a child class?

4. Why is the simple approach to the inherited methods that is used by
single inheritance languages not applicable when multiple inheritance
is allowed?

5. Describe the run-time technique used to match the invocation of an
overridden method to the correct method implementation.

6. What is a mangled name? Why is it necessary to create mangled
names?

7. In what ways is a dispatch table different from a virtual method table?
In what ways are they similar?

8. Explain how a message selector is matched to a method when the
dispatch table technique is used.

9. What is a method cache? How does it speed up the task of message
passing?

10. What is a bytecode?
11. Why are JIT systems described as “just-in-time”?

Exercises ⊡
1. Extend the dispatch table technique to permit multiple inheritance.
2. The Objective-C compiler permits optional declarations for object

variables. Explain how a compiler might use such declarations to
speed processing of messages involving such values. Consider what
needs to occur on assignment and how messaging can be made more
efficient.

3. Explain why methods that are not declared virtual in C++ can be
invoked more efficiently than can virtual methods. How do you make
measurements to determine whether the difference is significant?



4. Review the cache technique described in Section 27.6.1. Explain why
the class stored in the cache is the one where the search for a method
begins and not the one where the method is eventually found. Explain
how the cache lookup algorithm would need to be changed if the
latter value were used. Do you think the new algorithm would be
faster or slower? Explain your answer.

5. Sketch the outline of a Smalltalk interpreter based on the bytecodes
given in the text.



Appendix A

Source for the Eight-Queens Puzzle

This appendix gives the full programs for the eight-queens puzzle discussed
in Chapter 6.

A.1 ⊡ Eight-Queens in Apple Object
Pascal

Click here to view code image
(* 
  Eight-Queens Puzzle in Object Pascal 
  Written by Tim Budd, Oregon State University, 1996 
*) 
Program EightQueen; 
 
type 
  Queen = object 
    (* data fields *) 
    row : integer; 
    column : integer; 
    neighbor : Queen; 
 
      (* initiaiization *) 
    procedure initialize (col : integer; ngh : Queen); 
      (* operations *) 
    function canAttack 
      (testRow, testColumn : integer) : boolean; 
    function findSolution : boolean; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/appa_images.xhtml#pf0527-01a


    function advance : boolean; 
    procedure print; 
  end; 
var 
  neighbor, lastQueen : Queen; 
  i : integer; 
 
procedure Queen.initialize (col : integer; ngh : Queen); 
begin 
    (* initialize our column and neighbor values *) 
  column := col; 
  neighbor := ngh; 
 
    (* start in row 1 *) 
  row := 1; 
end; 
 
function Queen.canAttack 
  (testRow, testColumn : integer) : boolean; 
var 
  can : boolean; 
  columnDifference : integer; 
begin 
    (* first see if rows are equal *) 
  can := (row = testRow); 
 
    (* then test diagonals *) 
  if not can then begin 
    columnDifference := testColumn - column; 
    if (row + columnDifference = testRow) or 
      (row - columnDifference = testRow) then 
        can := true; 
    end; 
 
    (* finally, test neighbors *) 
  if (not can) and (neighbor <> nil) then 
    can := neighbor.canAttack(testRow, testColumn); 
  canAttack := can; 
end; 
 
function queen.findSolution : boolean; 
var 
  done : boolean; 
begin 
  done := false; 



  findSolution := true; 
 
 
    (* seek a valid position *) 
  if neighbor <> nil then 
    while not done and neighbor.canAttack(row, column) do 
      if not self.advance then begin 
        findSolution := false; 
        done := true; 
        end; 
end; 
 
function queen.advance : boolean; 
begin 
  advance := false; 
 
    (* try next row *) 
  if row < 8 then begin 
    row := row + 1; 
    advance := self.findSolution; 
  end 
else begin 
 
    (* cannot go further *) 
    (* move neighbor to next solution *) 
  if neighbor <> nil then 
    if not neighbor.advance then 
      advance := false 
    else begin 
      (* start again in row 1 *) 
      row := 1; 
      advance := self.findSolution; 
    end; 
 end; 
end; 
 
procedure queen.print; 
begin 
  if neighbor <> nil then 
    neighbor.print; 
  writeln('row ', row , ' column ' , column); 
end; 
 
begin 
  neighbor := nil; 



  for i := 1 to 8 do begin 
     (* create and initialize new queen *) 
   new (lastqueen); 
   lastQueen.initialize (i, neighbor); 
   if not lastQueen.findSolution then 
     writeln('no solution'); 
     (*newest queen is next queen neighbor *) 
   neighbor := lastQueen; 
  end; 
 
  lastQueen.print; 
 
  for i := 1 to 8 do begin 
    neighbor := lastQueen.neighbor; 
    dispose (lastQueen); 
    lastQueen := neighbor; 
   end; 
 end.

A.2 ⊡ Eight-Queens in C++
Click here to view code image
// Eight-Queens Puzzle in C++ 
// Written by Tim Budd, Oregon State University, 1996 
// 
 
# include <iostream> 
 
class queen { 
public: 
    // constructor 
  queen (int, queen *); 
 
    // find and print solutions 
  bool findSolution(); 
  bool advance(); 
  void print(); 
private: 
    // data fields 
  int row; 
  const int column; 
  queen * neighbor; 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/appa_images.xhtml#pf0530-02a


 
    // internal method 
  bool canAttack (int, int); 
}; 
 
queen::queen(int col, queen * ngh) 
  : column(col), neighbor(ngh) 
{ 
  row = 1; 
} 
 
bool queen::canAttack (int testRow, int testColumn) 
{ 
    // test rows 
  if (row == testRow) 
  return true; 
 
    // test diagonals 
  int columnDifference = testColumn - column; 
  if ((row + columnDifference == testRow) || 
    (row - columnDifference == testRow)) 
      return true; 
 
    // try neighbor 
  return neighbor && neighbor->canAttack(testRow, testColumn); 
} 
 
bool queen::findSolution() 
{ 
    // test position against neighbors 
  while (neighbor && neighbor->canAttack (row, column)) 
    if (! advance()) 
    return false; 
 
    // found a solution 
  return true; 
} 
bool queen: :advance() 
{ 
  if (row < 8) { 
    row++; 
    return findSolution(); 
    } 
 
  if (neighbor && ! neighbor->advance()) 



    return false; 
  row = 1; 
  return findSolution(); 
} 
void queen::print () 
{ 
  if (neighbor) 
    neighbor->print(); 
  cout << "column " << column << " row " << row << '\n'; 
} 
 
void main() { 
  queen * lastQueen = 0; 
 
  for (int i = 1; i <= 8; i++) { 
    lastQueen = new queen(i, lastQueen); 
    if (! lastQueen->findSolution()) 
      cout << "no solution\n"; 
    } 
 
  lastQueen->print(); 
}

A.3 ⊡ Eight-Queens in Java
Click here to view code image
// 
// Eight-Queens Puzzle Written in Java 
// Written by Tim Budd, January 1996 
// revised for 1.3 event model July 2001 
// 
 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
class Queen { 
    // data fields 
  private int row; 
  private int column; 
  private Queen neighbor; 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/appa_images.xhtml#pf0532-02a


    // constructor 
  Queen (int c, Queen n) { 
      // initialize data fields 
    row = 1; 
    column = c; 
    neighbor = n; 
    } 
 
  public boolean findSolution() { 
    while (neighbor != null && neighbor.canAttach(row, column)) 
      if (! advance()) 
        return false; 
    return true; 
    } 
 
  public boolean advance() { 
    if (row < 8) { 
      row++; 
      return findSolution(); 
      } 
    if (neighbor != null) { 
      if (! neighbor.advance()) 
        return false; 
      if (! neighbor.findSolution()) 
        return false; 
      } 
    else 
      return false; 
    row = 1; 
    return findSolution(); 
 
    } 
 
  private boolean canAttach(int testRow, int testColumn) { 
  int columnDifference = testColumn - column; 
  if ((row == testRow) || 
    (row + columnDifference == testRow) || 
    (row - columnDifference == testRow)) 
      return true; 
  if (neighbor != null) 
    return neighbor.canAttach(testRow, testColumn); 
  return false; 
  } 
 
public void paint (Graphics g) { 



    // first draw neighbor 
  if (neighbor != null) 
    neighbor.paint(g); 
    // then draw ourself 
    // x, y is upper left corner 
  int x = (row - 1) * 50 + 10; 
  int y = (column - 1) * 50 + 40; 
  g.drawLine(x+5, y+45, x+45, y+45); 
  g.drawLine(x+5, y+45, x+5, y+5); 
  g.drawLine(x+45, y+45, x+45, y+5); 
  g.drawLine(x+5, y+35, x+45, y+35); 
  g.drawLine(x+5, y+5, x+15, y+20); 
  g.drawLine(x+15, y+20, x+25, y+5); 
  g.drawLine(x+25, y+5, x+35, y+20); 
  g.drawLine(x+35, y+20, x+45, y+5); 
  g.drawOval(x+20, y+20, 10, 10); 
  } 
 
public void foo(Queen arg, Graphics g) { 
  if (arg.row == 3) 
    g.setColor(Color.red); 
  } 
} 
 
public class QueenSolver extends JFrame { 
 
  public static void main(String [ ] args) { 
    QueenSolver world = new QueenSolver(); 
    world.show() ; 
  } 
  private Queen lastQueen = null; 
 
  public QueenSolver() { 
    set'Title("8 queens"); 
    setSize(600, 500); 
    for (int i=l; i ≤ 8; i++) { 
      lastQueen = new Queen(i, lastQueen); 
      lastQueen.findSolution(); 
      } 
    addMouseListener(new MouseKeeper()); 
    addWindowListener(new CloseQuit()); 
    } 
 
  public void paint(Graphics g) { 
    super.paint(g); 



      // draw board 
    for (int i=0; i ≤ 8; i++) { 
      g.drawLine(50 * i + 10, 40, 50*i + 10, 440); 
      g.drawLine(10, 50 * i + 40, 410, 50*i + 40); 
    } 
    g.drawString("Click Mouse for Next Solution", 20, 470); 
      // draw queens 
    lastQueen.paint(g); 
    } 
 
  private class CloseQuit extends WindowAdapter { 
    public void windowClosing (WindowEvent e) { 
      System.exit(0); 
    } 
  } 
 
  private class MouseKeeper extends MouseAdapter { 
    public void mousePressed (MouseEvent e) { 
      lastQueen.advance(); 
      repaint(); 
    } 
  } 
}

A.4 ⊡ Eight-Queens in Objective-C
Note that both the classes Queen and SentinelQueen define implementation
sections without prior interface definitions. This will produce a warning
from the compiler but no error.

Click here to view code image
/* 
  Eight-Queens Puzzle in Objective-C 
  Written by Tim Budd, Oregon State University, 1996 
*/ 
 
# include <stdio.h> 
# include <objc/Object.h> 
 
/* 
  A sentinel queen sits 
  to the left of the leftmost queen 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/appa_images.xhtml#pf0536-01a


*/ 
 
@implementation SentinelQueen : Object 
- (int) advance 
{ 
  /* do nothing */ 
  return 0; 
} 
- (int) findSolution 
{ 
  /* do nothing */ 
  return 1; 
} 
 
- (void) print 
{ 
  /* do nothing */ 
} 
 
- (int) canAttack: (int) testRow column: (int) testColumn; 
{ 
  /* cannot attack */ 
  return 0; 
} 
@end 
@interface Queen : Object 
{  /* data fields */ 
  int row; 
  int column; 
  id neighbor; 
} 
 
 
  /* methods */ 
- (void) initialize: (int) c neighbor: ngh; 
- (int) advance; 
- (void) print; 
- (int) canAttack: (int) testRow column: (int) testColumn; 
- (int) findSolution; 
@end 
 
@implementation Queen : Object 
 
- (void) initialize: (int) c neighbor: ngh 
{ 



  /* set the constant fields */ 
  column = c; 
  neighbor = ngh; 
  row = 1; 
} 
 
 
- (int) advance 
{ 
  /* first try next row */ 
  if (row < 8) { 
  row = row + 1; 
  return [ self findSolution ]; 
} 
 
  /* cannot go further, move neighbors */ 
  if ( ! [ neighbor advance ] ) 
    return 0; 
 
  /* begin again in row 1 */ 
  row = 1; 
  return [ self findSolution ]; 
} 
 
- (void) print 
{ 
  if (neighbor) 
    [ neighbor print ]; 
  printf ("column %d row %d\n" , column, row) ; 
} 
 
- (int) canAttack: (int) testRow column: (int) testColumn 
{  int columnDifference; 
 
  /* can attack same row */ 
  if (row == testRow) 
    return 1; 
 
  columnDifference = testColumn - column; 
  if ((row + columnDifference == testRow) || 
    (row - columnDifference == testRow)) 
      return 1; 
 
  return [ neighbor canAttack:testRow column: testColumn ]; 
} 



 
- (int) findSolution 
{ 
  /* if neighbor can attack, then move on */ 
  while ( [ neighbor canAttack:row column: column ] ) 
    if ( ! [ self advance ] ) 
      return 0; 
  /* otherwise we're safe for now */ 
  return 1; 
} 
@end 
 
main(){ 
  id lastQueen, neighbor; 
  int i; 
 
  // create and initialize queens 
  neighbor = [ SentinelQueen new ]; 
  for (i = 1; i ≤ 8; i++) { 
  lastQueen = [ Queen new ]; 
  [ lastQueen initialize: i neighbor: neighbor ]; 
  [ lastQueen findSolution ]; 
  neighbor = lastQueen; 
  } 
 
 // then print out solution 
 [ lastQueen print ]; 
}

A.5 ⊡ Eight-Queens in Ruby
The version of eight-queens in Ruby was written by Mike Stok.

Click here to view code image
class Queen 
 
  def initialColumn(column, neighbor) 
    @column = column 
    @neighbor = neighbor 
    nil 
  end 
 
  def canAttack?(row, column) 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/appa_images.xhtml#pf0539-02a


    return true if row == @row 
 
    cd = (column - @column).abs 
    rd = (row - @row).abs 
    return true if cd == rd 
    @neighbor.canAttack?(row, column) 
    end 
 
  def testOrAdvcince? 
    if @neighbor.canAttack?(@row, @column) 
      return next? 
    end 
    return true 
  end 
 
  def first? 
    @row = 1 
    return testOrAdvance? if @neighbor.first? 
    return false 
  end 
 
  def next? 
    if @row == 8 
      return false unless @neighbor.next? 
      @row = 0 
    end 
    @row += 1 
    testOrAdvance? 
    end 
 
  def getState 
    stateArray = @neighbor .getState 
    stateArray << [@row, @column] 
  end 
 
end 
 
class NullQueen 
 
  def canAttack?(row, column) 
    false 
  end 
 
  def first? 
    true 



  end 
 
  def next? 
    false 
  end 
 
  def getState 
    Array.new 
  end 
 
end 
 
# the program 
 
neighbor = NullQueen.new 
lastQueen = nil 
1.upto(8) { |column| 
  lastQueen = Queen.new 
  lastQueen. initialColumn(column, neighbor) 
  neighbor = lastQueen 
} 
 
if lastQueen.first? 
  lastQueen.getState.each { |state| 
    puts "row: #{state[0]} column: #{state[1]}" 
  } 
end

A.6 ⊡ Eight-Queens in Smalltalk
The class SentinelQueen in the Smalltalk solution has no instance variables.
It uses the following methods.

Click here to view code image
{advance} 
   ↑ false 
 
 
{canAttack:} row {column:} column 
   ↑ false 
 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/appa_images.xhtml#pf0541-02a


{result} 
   ↑ List new

The class Queen has three instance variables corresponding to the values
of the row, column, and neighbor. It defines the following methods.

Click here to view code image
{setColumn:} aNumber {neighbor:} aQueen 
    " initialize the data fields " 
  column <- aNumber. 
  neighbor <- aQueen. 
    " find first solution " 
  row <- 1. 
 
{canAttack:} testRow {column:} testColumn | columnDifference | 
  columnDifference <- testColumn - column. 
  (((row = testRow) or: 
    [ row + columnDifference = testRow]) or: 
    [ row - columnDifference = testRow]) 
      if True: [ ↑ true ]. 
  ↑ neighbor canAttack: testRow column: testColumn 
 
{advance} 
    " first try next row " 
  (row < 8) 
    ifTrue: [ row <- row +1. ↑ self findSolution ]. 
    " cannot go further, move neighbor " 
  (neighbor advance) 
    ifFalse: [ ↑ false ]. 
  row <- 1. 
  ↑ self findSolution 
 
{findSolution} 
  [ neighbor canAttack: row column: column ] 
    whileTrue: [ self advance 
      ifFalse: [ ↑ false ] ]. 
  ↑ true 
 
{result} 
  ↑ neighbor result; addLast: row

To find a solution, the following method is executed.
Click here to view code image

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/appa_images.xhtml#pf0541-03a
file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/appa_images.xhtml#pf0542-02a


{run} | lastQueen | 
  lastQueen <- SentinelQueen new. 
  1 to: 8 do: [:i | lastQueen <- (Queen new) 
    setColumn: i neighbor: lastQueen. 
    lastQueen findSolution ]. 
  ' got a result' print. 
  lastQueen result do: [:x | x print. ' ' print ]. 
  Char newline print.



Appendix B

Source for the Billiards Game

This appendix lists the complete source for the billiards simulation
described in Chapter 7.

B.1 ⊡ The Version without Inheritance
Click here to view code image
unit GraphicsEx; 
 
(* 
       Billiards Simulation Program 
       Written by Tim Budd, July 2001 
*) 
 
interface 
 
uses 
  Windows, Messages, SysUtils, Classes, Graphics, 
    Controls, Forms, Dialogs, ExtCtrls, StdCtrls; 
 
type 
  TBall = class(TObject) 
  public 
     constructor create (ix, iy : Integer; iLink : TBall); 
     procedure draw (canvas : TCanvas); 
     function hasIntersected(aBall : Tball) : Boolean; 
     procedure hitBy (aBall : TBall); 
     procedure update; 
     procedure setCenter (nx, ny : Integer); 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/appb_images.xhtml#pf0543-01a


     procedure setDirection (nd : Real); 
  private 
     x, y : Integer; 
     direction : Real; 
     energy : Real; 
     link : TBall; 
  end; 
 
  TWall = class(TObject) 
  public 
     constructor create (ix, iy, iw, ih : Integer; cf : Real; 
ilink : 
     TWall); 
     procedure draw (canvas : TCanvas); 
     function hasIntersected(aBall : Tball) : Boolean; 
     procedure hitBy (aBall : TBall); 
  private 
     x, y : Integer; 
     height, width : Integer; 
     convertFactor : Real; 
     link : TWall; 
  end; 
 
  THole = class(TObject) 
  public 
     constructor create (ix, iy : Integer; ilink : THole); 
     procedure draw (canvas : TCanvas); 
     function hasIntersected(aBall : TBall) : Boolean; 
     procedure hitBy (aBall : TBall); 
  private 
     x, y : Integer; 
     link : THole; 
  end; 
 
       (* following class description generated by Delphi IDE *) 
  TfrmGraphics = class(TForm) 
     btnDrawExample: TButton; 
     imgGraph: Tlmage; 
     procedure DrawExample(Sender: TObject); 
     procedure Initialize(Sender: TObject); 
     procedure DoClick(Sender: TObject; Button: TMouseButton; 
            Shift: TShiftState; X, Y: Integer); 
    end; 
 
  var 



     frmGraphics: TfrmGraphics; 
     cueBall : TBall; 
     listOfBalls : TBall; 
     listOfWalls : TWall; 
     listOfHoles : THole; 
     saveRack : Integer; 
     ballMoved : Boolean; 
 
  implementation 
 
  constructor TWall.create(ix, iy, iw, ih : Integer; cf : Real; 
ilink : 
  Twall); 
  begin 
     x := ix; 
     y := iy; 
     height := ih; 
     width := iw; 
     convertFactor := cf; 
     link := ilink; 
  end; 
 
  procedure TWall.draw(canvas: TCanvas); 
  begin 
     with canvas do begin 
        Brush.Style := bsSolid; 
        Brush.Color := clBlack; 
        fillRect(Rect(x, y, x + width, y + height)); 
     end; 
  end; 
 
  function TWall.hasIntersected(aBall : TBall) : Boolean; 
  begin 
     if (aBall.x > x) and (aBall.x < x + width) and 
        (aBall.y > y) and (aBall.y < y + height) then 
        hasIntersected := true 
     else 
        hasIntersected := false; 
  end; 
  procedure TWall.hitBy (aBall : TBall); 
  begin 
       { bounce the ball off the wall } 
     aBall.direction := convertFactor - aBall.direction; 
  end; 
 



  constructor TBall.create(ix, iy : Integer; iLink : TBall); 
  begin 
     setCenter(ix, iy); 
     setDirection(0.0); 
     energy := 0.0; 
     link := iLink; 
  end; 
 
  procedure TBall.setCenter(nx, ny : Integer); 
  begin 
     x := nx; 
     y := ny; 
  end; 
 
  procedure TBall.setDirection(nd : Real); 
  begin 
     direction := nd; 
  end; 
 
  function TBall.hasIntersected(aBall : TBall) : Boolean; 
  var 
     dx, dy : integer; 
  begin 
     dx := aBall.x - x; 
     if (dx < 0) then dx := - dx; 
     dy := aBall.y - y; 
     if (dy < 0) then dy := - dy; 
     hasIntersected := (dx < 5) and (dy < 5); 
  end; 
 
  function hitAngle (dx, dy : real) : real; 
  const 
     PI = 3.14159; 
  var 
     na : real; 
  begin 
     if (abs(dx) < 0.05) then 
        na := PI / 2 
     else 
        na := arctan (abs(dy / dx)); 
     if (dx < 0) then 
        na := PI - na; 
     if (dy < 0) then 
        na := - na; 
     hitAngle := na; 



  end; 
 
  procedure TBall.update; 
  var 
     hptr : THole; 
     wptr : TWall; 
     bptr : TBall; 
     dx, dy : integer; 
  begin 
     if energy > 0.5 then begin 
        ballMoved := true; 
           { decrease energy } 
        energy := energy - 0.05; 
           { move ball } 
        dx := trunc(5.0 * cos(direction)); 
        dy := trunc(5.0 * sin(direction)); 
        x := x + dx; 
        y := y + dy; 
 
           { see if we hit a hole } 
        hptr := listOfHoles; 
        while (hptr <> nil) do 
           if hptr.hasIntersected(self) then begin 
              hptr.hitBy(self); 
              hptr := nil; 
           end 
           else 
              hptr := hptr.link; 
 
           { see if we hit a wall } 
        wptr := listOfWalls; 
        while (wptr <> nil) do 
           if wptr.hasIntersected(self) then begin 
              wptr.hitBy(self); 
              wptr := nil; 
           end 
           else 
              wptr := wptr.link; 
 
           { see if we hit a ball } 
        bptr := listOfBalls; 
        while (bptr <> nil) do 
           if (bptr <> self) and bptr.hasIntersected(self) then 
begin 
              bptr.hitBy(self); 



              bptr := nil; 
           end 
           else 
              bptr := bptr.link; 
   end; 
end; 
 
procedure TBall.hitBy (aBall : TBall); 
var 
   da : real; 
begin 
      { cut the energy of the hitting ball in half } 
   aBall.energy := aBall.energy / 2.0; 
 
      { and add it to our own } 
   energy := energy + aBall.energy; 
 
      { set our new direction } 
   direction := hitAngle(self.x - aBall.x, self.y - aBall.y); 
 
      { and set the hitting balls direction } 
   da := aBall.direction - direction; 
   aBall.direction := aBall.direction + da; 
 
      { continue our update } 
   update; 
end; 
 
procedure TBall.draw(canvas : TCanvas); 
begin 
   with canvas do begin 
      Brush.Style := bsSolid; 
      if (self = cueBall) then 
         Brush.Color := clWhite 
      else 
         Brush.Color := clBlack; 
      Ellipse(x-5, y-5, x+5, y+5); 
   end; 
end; 
 
constructor THole.create(ix, iy : Integer; ilink : 
THole); 
begin 
   x := ix; 
   y := iy; 



   link := ilink; 
end; 
 
procedure THole.draw(canvas : TCanvas); 
begin 
   with canvas do begin 
      Brush.Style := bsSolid; 
      Brush.Color := clBlack; 
      Ellipse(x-5, y-5, x+5, y+5); 
   end; 
end; 
 
function THole.hasIntersected(aBall : TBall) : Boolean; 
var 
   dx, dy : integer; 
begin 
   dx := aBall.x - x; 
   if (dx < 0) then dx := - dx; 
   dy := aBall.y - y; 
   if (dy < 0) then dy := - dy; 
   hasIntersected := (dx < 5) and (dy < 5); 
end; 
 
procedure THole.hitBy (aBall : TBall); 
begin 
      { drain enery from ball } 
   aBall.energy := 0.0; 
      { move ball } 
   if aBall = CueBall then 
      aBall.setCenter(50, 100) 
   else begin 
      saveRack := saveRack + 1; 
      aBall.setCenter (10 + saveRack * 15, 250); 
   end; 
end; 
 
procedure TfrmGraphics.DrawExample(Sender: TObject); 
var 
   wptr : TWall; 
   hptr : THole; 
   bptr : TBall; 
begin 
   with imgGraph.Canvas do begin 
   Brush.Color := clWhite; 
   Brush.Style := bsSolid; 



   FillRect(Rect(0, 0, 700, 700)); 
   end; 
   wptr := listOfWalls; 
   while (wptr <> nil) do begin 
       wptr.draw(imgGraph.Canvas); 
       wptr := wptr.link; 
   end; 
   hptr := listOfHoles; 
   while (hptr <> nil) do begin 
   hptr.draw (imgGraph..Canvas); 
   hptr := hptr.link; 
   end; 
 
   bptr := listOfBalls; 
   while (bptr <> nil) do begin 
   bptr.draw(imgGraph.Canvas); 
   bptr := bptr.link; 
   end; 
end; 
 
procedure TfrmGraphics.Initialize(Sender: TObject); 
var 
   i, j : Integer; 
begin 
      (* first create all the walls *) 
      listOfWalls := TWall.Create(10, 10, 290, 5, 0.0, nil); 
      listOfWalls := TWall.Create(10, 200, 290, 5, 0.0, 
listOfWalls); 
      listOfWalls := TWall.Create(10, 10, 5, 190, 3.14159, 
listOfWalls); 
      listOfWalls := TWall.Create(300, 10, 5, 195, 3.14159, 
listOfWalls); 
          (* now make the holes *) 
      listOfHoles := THole.Create(15, 15, nil); 
      listOfHoles := THole.Create(15, 200, listOfHoles); 
      listOfHoles := THole.Create(300, 15, listOfHoles); 
      listOfHoles := THole.Create(300, 200, listOfHoles); 
          (* now make the balls *) 
      cueBall := TBall.Create(50, 96, nil); 
      listOfBalls := cueBall; 
      for i := 1 to 5 do 
      for j := 1 to i do 
         listOfBalls := TBall.Create(190 + i * 8, 
            100 +16*j -8*i, listOfBalls); 
      saveRack := 0; 



end; 
 
procedure TfrmGraphics.DoClick(Sender: TObject; Button: 
TMouseButton; 
  Shift: TShiftState; X, Y: Integer); 
var 
  bptr : TBall; 
begin 
   cueBall.energy := 20.0; 
   cueBall.setDirection(hitAngle(cueBall.x - x, cueBall.y - y)); 
      { then loop as long as called for } 
   ballMoved := true; 
   while ballMoved do begin 
      ballMoved := false; 
      bptr := listOfBalls; 
      while bptr <> nil do begin 
         bptr.update; 
         bptr := bptr.link; 
      end; 
   end; 
end; 
 
end.

B.2 ⊡ The Version with Inheritance
Only those sections of the program that differ from the original are
presented.

Click here to view code image
type 
  TBall = class; 
 
  TGraphicalObject = class(TObject) 
  public 
        constructor Create(ix, iy : Integer; il : 
TGraphicalObject); 
        procedure draw (canvas : TCanvas); virtual; abstract; 
        function hasIntersected (aBall : TBall): Boolean; virtual; 
             abstract; 
        procedure hitBy (aBall : TBall); virtual; abstract; 
        procedure update; virtual; 
  private 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/appb_images.xhtml#pf0552-01a


        x, y : Integer; 
        link : TGraphicalObject; 
  end; 
 
  TBall = class(TGraphicalObject) 
  public 
     constructor create (ix, iy : Integer; iLink : 
TGraphicalObject); 
overload; 
     procedure draw (canvas : TCanvas); override; 
     function hasIntersected(aBall : TBall) : Boolean; override; 
     procedure hitBy (aBall : TBall); override; 
     procedure update; override; 
     procedure setCenter (nx, ny : Integer); 
     procedure setDirection (nd : Real); 
  private 
        direction : Real; 
        energy : Real; 
  end; 
 
  TCueBall = class(TBall) 
  public 
        procedure draw (canvas : TCanvas); override; 
  end; 
 
  TWall = class(TGraphicalObject) 
  public 
        constructor create (ix, iy, iw, ih : Integer; 
           cf : Real; ilink : TGraphicalObject); overload; 
        procedure draw (canvas : TCanvas); override; 
        function hasIntersected(aBall : TBall) : Boolean; 
override; 
        procedure hitBy (aBall : TBall); override; 
  private 
        height, width : Integer; 
        convertFactor : Real; 
  end; 
 
  THole = class(TGraphicalObject) 
  public 
        constructor create 
             (ix, iy : Integer; ilink : TGraphicalObject); 
overload; 
        procedure draw (canvas : TCanvas); override; 
        function hasIntersected(aBall : TBall) : Boolean; 



override; 
        procedure hitBy (aBall : TBall); override; 
  end; 
 
constructor TGraphicalObject.Create 
        (ix, iy : Integer; il : TGraphicalObject); 
begin 
        x := ix; 
        y := iy; 
        link := il; 
end; 
 
procedure TGraphicalObject.update (); 
begin 
        (* do nothing *) 
end; 
 
constructor TWall.Create(ix, iy, iw, ih : Integer; cf : 
Real; ilink : TGraphicalObject); 
begin 
        inherited Create(ix, iy, ilink); 
        height := ih; 
        width := iw; 
        convertFactor := cf; 
end; 
 
constructor TBall.Create(ix, iy : Integer; iLink : 
TGraphicalObject); 
begin 
        inherited Create(ix, iy, iLink); 
        setDirection(0.0); 
        energy := 0.0; 
end; 
 
procedure TBall.update; 
var 
   hptr : TGraphicalObject; 
   dx, dy : integer; 
begin 
   if energy > 0.5 then begin 
      ballMoved := true; 
         { decrease energy } 
      energy := energy - 0.05; 
         { move ball } 
      dx := trunc(5.0 * cos(direction)); 



      dy := trunc(5.0 * sin(direction)); 
                x := x + dx; 
                y := y + dy; 
 
         { see if we hit an object } 
      hptr := listOfObjects; 
      while (hptr <> nil) do 
        if (hptr <> self) and hptr.hasIntersected(self) then begin 
           hptr.hitBy(self); 
           hptr := nil; 
        end 
        else 
           hptr := hptr.link; 
   end; 
end; 
 
procedure TBall.hitBy (aBall : TBall); 
var 
procedure TBall.draw(canvas : TCanvas); 
begin 
        with canvas do begin 
                Brush.Style := bsSolid; 
                Brush.Color := clBlack; 
                Ellipse(x-5, y-5, x+5, y+5); 
        end; 
end; 
 
procedure TCueBall.draw (canvas : TCanvas); 
begin 
        with canvas do begin 
                Brush.Style := bsSolid; 
                Brush.Color := clWhite; 
                Ellipse(x-5, y-5, x+5, y+5); 
        end; 
end; 
 
constructor THole.create(ix, iy : Integer; ilink : 
TGraphicalObject); 
begin 
        inherited Create(ix, iy, ilink); 
end; 
 
procedure TfrmGraphics.DrawExample(Sender: TObject); 
var 
        gptr : TGraphicalObject; 



begin 
   with imgGraph.Canvas do begin 
        Brush.Color := clWhite; 
        Brush.Style := bsSolid; 
        FillRect(Rect(0, 0, 700, 700)); 
   end; 
   gptr := IistOfObjects; 
   while (gptr <> nil) do begin 
       gptr. draw (imgGraph.. Canvas ) ; 
       gptr := gptr.link; 
   end; 
end; 
 
end.



Appendix C

Source for the Solitaire Game

This appendix contains the complete source for the solitaire game described
in Chapter 9. This program is written in C# and uses the standard Windows
run-time library.

Click here to view code image
namespace csSolitaire 
{ 
    using System; 
    using System.Drawing; 
    using System.Collections; 
    using System.ComponentModel; 
    using System.WinForms; 
    using System.Data; 
 
public enum Suits { Spade, Diamond, Club, Heart }; 
 
// 
// PlayingCard 
// 
 
public class PlayingCard 
{ 
  public PlayingCard (Suits sv, int rv) 
    { s = sv; r = rv; faceUp = false; } 
 
  public bool isFaceUp 
  { 
    get { return faceUp; } 
  } 
 

file:///C:/Users/Administrator/AppData/Local/Temp/2/calibre_xdztmk2k/rig95079_pdf_out/OEBPS/Images/appc_images.xhtml#f0557-01a


  public void flip () 
  } 
    faceUp = ! faceUp; 
  } 
 
  public int rank 
  { 
    get { return r; } 
  } 
 
  public Suits suit 
  { 
    get { return s; } 
  } 
 
  public Color color 
  { 
    get 
    { 
      if ( suit == Suits.Heart || suit == Suits.Diamond ) 
         { return Color.Red; } 
      return Color.Black; 
    } 
  } 
 
  private bool faceUp; 
  private int r; 
  private Suits s; 
} 
 
// 
// CardView 
// 
 
public abstract class CardView 
{ 
  public abstract void display (PlayingCard aCard, int x, int y); 
  public static int Width = 50; 
  public static int Height = 70; 
} 
 
// 
// CardPile 
// 
 



public class CardPile { 
  public CardPile (int xl, int yl ) 
    { x = xl; y = yl; pile = new Stack(); } 
 
  public PlayingCard top 
    { get { return (PlayingCard) pile.Peek (); } } 
 
  public bool isEmpty 
    { get { return pile.Count == (); } } 
 
  public PlayingCard pop 
    { get { return (PlayingCard) pile.Pop (); } } 
 
    // the following are sometimes overridden 
  public virtual bool includes (int tx, int ty ) 
  { 
    return( ( x <= tx ) && ( tx <= x + CardView.Width ) && 
        ( y <= ty ) && ( ty <= y + CardView.Height ) ); 
  } 
 
  public virtual void select (int tx, int ty ) 
  { 
     // do nothing—override 
  } 
 
  public virtual void addCard (PlayingCard aCard ) 
    { pile.Push(aCard); } 
 
  public virtual void display (CardView cv) 
  { 
    if ( isEmpty ) { 
      cv.display(null, x, y); 
    } else { 
      cv. display ((PlayingCard) pile.Peek(), x, y ); 
      } 
  } 
  public virtual bool canTake (PlayingCard aCard) 
    { return false; } 
 
  protected int x, y; // coordinates of the card pile 
  protected Stack pile; // card pile data 
} 
 
// 
// SuitPile 



// 
 
public class SuitPile : CardPile 
{ 
  public SuitPile (int x, int y)  : base(x, y) { } 
 
  public override bool canTake (PlayingCard aCard ) { 
    if( isEmpty ) 
      { return( aCard.rank == () ); } 
    PlayingCard topCard = top; 
    return( ( aCard.suit == topCard.suit ) && 
       ( aCard.rank == topCard.rank + 1 ) ); 
  } 
} 
 
// 
// DeckPile 
// 
 
public class DeckPile : CardPile 
{ 
   public DeckPile (int x, int y) : base(x, y) { 
     // create the new deck 
     // first put cards into a local array 
     ArrayList aList = new ArrayList (); 
     for( int i = 0; i <= 12; i++) { 
       aList.Add(new PlayingCard(Suits.Heart, i)); 
       aList.Add(new PlayingCard(Suits.Diamond, i)); 
       aList.Add(new PlayingCard(Suits.Spade, i)); 
       aList.Add(new PlayingCard(Suits.Club, i)); 
    } 
       // then pull them out randomly 
    Random myRandom = new Random( ); 
    for(int count = 0; count < 52; count++) { 
      int index = myRandom.Next(aList.Count); 
      addCard( (PlayingCard) aList [index] ); 
      aList.RemoveAt(index); 
    } 
  } 
 
  public override void select (int tx, int ty) 
  { 
    if ( isEmpty ) { return; } 
    Game .discardPile() . addCard( pop ); 
  } 



} 
 
// 
// DiscardPile 
// 
 
public class DiscardPile : CardPile { 
  public DiscardPile (int x, int y )  : base(x, y) { } 
 
  public override void addCard (PlayingCard aCard) { 
    if( ! aCard.isFaceUp ) 
      { aCard.flip(); } 
    base.addCard( aCard ); 
  } 
 
  public override void select (int tx, int ty) { 
    if( isEmpty ) { return; } 
    PlayingCard topCard = pop; 
    for( int i = 0; i < 4; i++ ) { 
      if( Game.suitPile(i).canTake( topCard ) ) { 
        Game.suitPile(i).addCard( topCard ); 
        return; 
      } 
   } 
 
   for( int i = 0; i < 7; i++ ) { 
     if( Game.tableau(i).canTake( topCard ) ) { 
        Game.tableau(i).addCard( topCard ); 
        return; 
      } 
    } 
    // nobody can use it, put it back on our stack 
    addCard(topCard); 
  } 
} 
 
// 
// TablePile 
// 
 
public class TablePile : CardPile { 
  public TablePile (int x, int y, int c)  : base(x, y) { 
    // initialize our pile of cards 
    for(int i = 0; i < c; i++ ) { 
      addCard (Game .deckPile() .pop); 



    } 
    top.flip() ; 
  } 
 
  public override bool canTake (PlayingCard aCard ) { 
    if( isEmpty ) { return(aCard.rank == 12); } 
    PlayingCard topCard = top; 
    return( ( aCard.color != topCard.color ) && 
      ( aCard.rank    == topCard.rank - 1 ) ); 
  } 
 
  public override bool includes (int tx, int ty) { 
    return( ( x <= tx ) && ( tx <= x + CardView.Width ) && 
        ( y <= ty ) ); 
  } 
 
  public override void select (int tx, int ty) { 
    if( isEmpty ) { return; } 
    // if face down, then flip 
    PlayingCard topCard = top; 
    if( ! topCard.isFaceUp ) { 
      topCard.flip(); 
      return; 
    } 
     // else see if any suit pile can take card 
     topCard = pop; 
     for(int i = 0; i < 4; i++ ) { 
       if( Game.suitPile(i).canTake( topCard ) ) { 
         Game.suitPile(i).addCard( topCard ); 
         return; 
       } 
    } 
    // else see if any other table pile can take card 
    for(int i = 0; i < 7; i++ ) { 
      if( Game.tableau(i).canTake( topCard ) ) { 
        Game.tableau(i).addCard( topCard ); 
        return; 
      } 
    } 
    addCard( topCard ); 
  } 
 
  public override void display (CardView cv) { 
    Object [ ] cardArray = pile.ToArray(); 
    int size = pile.Count; 



    int hs = CardView. Height / 2; // half size 
    int ty = y; 
    for (int i = pile.Count - 1; i >= 0; i--) { 
      cv.display((PlayingCard) cardArray[i], x, ty); 
      ty += hs; 
    } 
  } 
} 
 
// 
// Game 
// 
 
public class Game { 
  static Game () { 
    allPiles = new CardPile[ 13 ] ; 
    allPiles[0] = new DeckPile(335, 5 ); 
    allPiles [1] = new DiscardPile(268, 5 ); 
    for( int i = 0; i < 4; i++ ) { 
      allPiles [2 + i] = new SuitPile(15 + 60 * i, 5 ); 
    } 
      for( int i = 0; i < 7; i++ ) { 
         allPiles [6 + i] = new TablePile(5 + 55 * i, 80, i + 1); 
    } 
  } 
 
  public static void paint (CardView cv) { 
     for( int i = 0; i < 13; i++ ) { 
       allPiles[i].display(cv ); 
     } 
  } 
 
  public static void mouseDown (int x, int y) { 
    for( int i = 0; i < 13; i++ ) { 
      if( allPiles[i].includes( x, y ) ) { 
        allPiles [i].select( x, y ); 
      } 
    } 
  } 
 
  public static CardPile deckPile () 
    { return allPiles [0]; } 
 
  public static CardPile discardPile () 
    { return allPiles [1]; } 



 
  public static CardPile tableau (int index) 
    { return allPiles[6+index]; } 
 
  public static CardPile suitPile (int index) 
    { return allPiles[2+index]; } 
 
  private static CardPile [] allPiles; 
} 
 
// 
// WinFormsCardView 
// 
 
public class WinFormsCardView : CardView { 
  public WinFormsCardView (Graphics aGraphicsObject) { 
    g = aGraphicsObject; 
  } 
   public override void display (PlayingCard aCard,int x,int y) { 
     if  (aCard == null) { 
       Pen myPen = new Pen(Color.Black,2); 
       Brush myBrush = new SolidBrush (Color.White); 
       
g.FillRectangle(myBrush,x,y,CardView.Width,CardView.Height); 
       g.DrawRectangle(myPen,x,y,CardView.Width,CardView.Height); 
     } else { 
       paintCard (aCard,x,y); 
     } 
   } 
 
   private void paintCard (PlayingCard aCard,int x,int y) { 
     String [] names = { "A","2","3","4","5", 
       "6","7","8","9","10","J","Q","K" }; 
 
     Pen myPen = new Pen (Color.Black,2); 
     Brush myBrush = new SolidBrush (Color.White); 
 
     g.FillRectangle (myBrush,x,y,CardView.Width,CardView.Height); 
     g.DrawRectangle(myPen,x,y,CardView.Width,CardView.Height); 
     myPen.Dispose(); 
     myBrush.Dispose(); 
 
     // draw body of card with a new pen-color 
     if (aCard.isFaceUp) { 
       if (aCard.color == Color.Red) { 



         myPen = new Pen   (Color.Red,1); 
         myBrush = new SolidBrush (Color.Red); 
       } else { 
         myPen = new Pen   (Color.Blue,1); 
         myBrush = new SolidBrush (Color.Blue); 
       } 
       g.DrawString (names[ aCard.rank ], 
         new Font("Times New Roman",10),myBrush,x+3,y+7); 
       if (aCard.suit == Suits.Heart) { 
         g.DrawLine(myPen,x+25,y+30,x+35,y+20); 
         g.DrawLine(myPen,x+35,y+20,x+45,y+30); 
         g.DrawLine(myPen,x+45,y+30,x+25,y+60); 
         g.DrawLine(myPen,x+25,y+60,x+5,y+30); 
         g.DrawLine(myPen,x+5,y+30,x+15,y+20); 
         g.DrawLine(myPen,x+15,y+20,x+25,y+30); 
       } else if (aCard.suit == Suits.Spade){ 
 
        g.DrawLine(myPen,x+25,y+20,x+40,y+50);        
g.DrawLine(myPen,x+40,y+50,x+10,y+50); 
        g.DrawLine(myPen,x+10,y+50,x+25,y+20); 
        g.DrawLine(myPen,x+23,y+45,x+20,y+60); 
        g.DrawLine(myPen,x+20,y+60,x+30,y+60); 
        g.DrawLine(myPen,x+30,y+60,x+27,y+45); 
      } else if (aCard.suit == Suits.Diamond) { 
        g.DrawLine(myPen,x+25,y+20,x+40,y+40); 
        g.DrawLine(myPen,x+40,y+40,x+25,y+60); 
        g.DrawLine(myPen,x+25,y+60,x+10,y+40); 
        g.DrawLine(myPen,x+10,y+40,x+25,y+20); 
      } else if (aCard.suit == Suits.Club) { 
        g.DrawEllipse(myPen,x+20,y+25,10,10); 
        g.DrawEllipse(myPen,x+25,y+35,10,10); 
        g.DrawEllipse(myPen,x+15,y+35,10,10); 
        g.DrawLine(myPen,x+23,y+45,x+20,y+55); 
        g.DrawLine(myPen,x+20,y+55,x+30,y+55); 
        g.DrawLine(myPen,x+30,y+55,x+27,y+45); 
      } 
    } else {    // face down 
      myPen = new Pen (Color.Green,1); 
      myBrush = new SolidBrush (Color.Green); 
      g.DrawLine(myPen,x+15,y+5,x+15,y+65); 
      g.DrawLine(myPen,x+35,y+5,x+35,y+65); 
      g.DrawLine(myPen,x+5,y+20,x+45,y+20); 
      g.DrawLine(myPen,x+5,y+35,x+45,y+35); 
      g.DrawLine(myPen,x+5,y+50,x+45,y+50); 
    } 



  } 
  private Graphics g; 
} 
 
// 
// Solitaire 
// 
 
public class Solitaire : System.WinForms.Form { 
    // start  of automatically generated code 
        private System.ComponentModel.Container components; 
 
        public Solitaire() { 
            InitializeComponent(); 
        } 
 
        public override void Dispose() { 
            base.Dispose() ; 
            components.Dispose(); 
        } 
 
        private void InitializeComponent() { 
        this.components = new System.ComponentModel.Container (); 
        this.Text = "Solitaire"; 
        this.AutoScaleBaseSize = new System.Drawing.Size (5, 13); 
        this.ClientSize = new System.Drawing.Size (392, 373); 
  } 
    // end of automatically generated code 
 
  protected override void OnMouseDown( MouseEventArgs e ) { 
    Game.mouseDown(e.X, e.Y); 
    this.Invalidat e(); 
    } 
 
  protected override void OnPaint( PaintEventArgs pe ) { 
    Graphics g = pe.Graphics; 
    CardView cv = new WinFormsCardView( g ); 
    Game.paint(cv); 
  } 
 
  public static void Main(string[] args) 
    { Application. Run (new Solitaire()); } 
} 
 
}



Glossary

Object-oriented programming techniques introduce many new ideas and
terms that may not be familiar to the novice, even if he or she has had
extensive experience with other programming languages. More problematic
is that among the various object-oriented languages, several terms are often
used for the same idea. Such terms are listed as synonyms in the following
glossary. Also indicated are situations where a term is given a particular
meaning in one language that is not the same for other languages.

abstract class Syn. deferred class, abstract superclass. A class that is
not used to make direct instances but rather is used only as a base
from which other classes inherit. In C++, the term is often reserved
for classes that contain at least one pure virtual method, whereas in
Java the term refers to a class that is explicitly declared as abstract.

abstraction A technique in problem solving in which details are
grouped into a single common concept. This concept can then be
viewed as a single entity and nonessential information ignored.

abstract method (Java) A method that is explicitly declared as
abstract. Such methods must be overridden by subclasses before an
instance can be created.

accessor method A method that is used to access the values of an
instance variable. By restricting access through a function, the
programmer can ensure that instance variables will be read but not
modified (see mutator)

access specifier (C++, Delphi Pascal) A keyword (private,
protected, or public) that controls access to data members and



methods within user-defined classes.

ad hoc polymorphism Syn. overloading. A procedure or method
identifier that denotes more than one procedure.

agent Syn. object, instance. A nontechnical term sometimes used to
describe an object in order to emphasize its independence from other
objects and the fact that it is providing a service to other objects.

allocated class Syn. dynamic class. See static class.

ancestor class Syn. base class, superclass. (Object Pascal) A type
from which an object type inherits. The type named in an object type
definition statement is called the immediate ancestor.

ancestor type See ancestor class.

argument signature (C++) An internal encoding of a list of
argument types; the argument signature is used to disambiguate
overloaded function invocations, with that function body being
selected that matches most closely the signature of the function call.
See parametric overloading.

automatic storage management A policy in which the underlying
run-time system is responsible for the detection and reclamation of
memory values no longer accessible and hence of no further use to
the computation. Among the object-oriented languages discussed in
this book, only Smalltalk and Java provide automatic storage
management. See garbage collection.

automatic variable A variable that is allocated space automatically
when a procedure is entered. Contrast to a dynamic variable, which
must have space allocated by the user.

base class Syn. ancestor class, superclass, parent class. (C++) A
class from which another class is derived.

binding The process by which a name or an expression is associated
with an attribute, such as a variable and the type of value the variable
can hold.



binding time The time at which a binding takes place. Early or static
binding generally refers to binding performed at compile time,
whereas late or dynamic binding refers to binding performed at run
time. Dynamically bound languages, such as Smalltalk and
Objective-C, do not bind a variable and the type of value the variable
can hold at compile time. Message passing is a form of procedure
calling with late binding.

block (Smalltalk) An object that represents a sequence of statements
to be executed at a later time. In this sense a block is similar to a
nameless function. Blocks are values and can be passed as arguments
or (less frequently) assigned to variables. A block executes its
associated statements in response to the message value.

browser A software tool used to examine the class hierarchy and
methods associated with different classes. Originally developed as
part of the Smalltalk programming environment, class browsers are
now found in many programming environments. A different sort of
browser is used to access information on the World Wide Web. More
recent WWW browsers have included interpreters for the Java
programming language, allowing Java programs to be very efficiently
executed in during the reading of WWW pages.

cascaded message (Smalltalk) A shorthand way of sending multiple
messages to a single receiver.

cast A unary expression that converts a value from one type to
another.

child class Syn. subclass, derived class. (C++) A class defined as an
extension of another class, which is called the parent class.

class Syn. object type. An abstract description of the data and
behavior of a collection of similar objects. The representatives of the
collection are called instances of the class.

Class (Smalltalk, Java) The class that maintains behavior related to
class instance and subclass creation. See metaclass.



class description protocol The complete definition of all properties,
features, and methods that are descriptive of any object that is an
instance of a class.

class hierarchy A hierarchy formed by listing classes according to
their class-subclass relationship. See hierarchy.

class method (C++) A method declared with the keyword static.
Class methods are not permitted to access instance variables but can
access only class variables. They can be invoked independently of
receivers using explicit name qualification.

class object Syn. factory object. (Smalltalk) The single special object
and instance of class Class that is associated with each class. New
instances of the class are created by the message new being sent to
this object.

class variable A variable shared by all instances of a class. (C++) A
data member declared as static. (Smalltalk) A variable declared as a
class variable in the class-construction message.

client-side computing In a network environment, a program that is
executed on the client side rather than on the server side of the
network. The Java programming language is intended to perform
client-side computing and so is more efficient than programs that
must wait for execution on the (generally more overloaded) server
machine.

cohesion The degree to which components of a single software
system (such as members of a single class) are tied together. Contrast
with coupling.

collaborator Two classes that depend on each other for the execution
of their behaviors are said to be collaborators.

collection classes See container classes.

composition The technique of including user-defined object types as
part of a newly defined object, as opposed to using inheritance.



constructor A method used to create a new object. The constructor
handles the dual tasks of allocating memory for the new object and
ensuring that this memory is properly initialized. The programmer
defines how this initialization is performed. In C++ and Java, a
constructor is simply a method with the same name as the class in
which it appears, while in Delphi Pascal a constructor is declared
with a special keyword.

container classes Classes used as data structures that can contain a
number of elements. Examples include lists, sets, and tables. The
STL provides a number of standard container classes for C++.

contravariance A form of overriding in which an argument
associated with a method in the child class is restricted to a less
general category than the corresponding argument in the parent class.
Contrast with covariance. Neither covariant nor contravariant
overriding is common in object-oriented languages.

copy constructor (C++) A constructor that takes as argument an
instance of the class in which the constructor is being declared. The
copy constructor is used to produce a copy, or clone, of the argument.

coupling The degree to which separate software components are tied
together. Contrast with cohesion.

covariance A form of overriding in which an argument associated
with a method in the child class is enlarged to a more general
category than the corresponding argument in the parent class.
Contrast with contravariance. Neither covariant nor contravariant
overriding is common in object-oriented languages.

CRC card An index card that documents the name, responsibilities,
and collaborators for a class used during the process of system
analysis and design.

data hiding An encapsulation technique that seeks to abstract away
the implementation details concerning what data values are
maintained for an object to provide a particular service.

data member (C++) See instance variable.



default constructor (C++) A constructor with no arguments. Such a
constructor is often used to initialize temporary variables.

deferred class See abstract class.

deferred method A method that defines an interface (that is,
argument and result types) but not implementation. Implementation is
provided by subclasses that override the deferred method, preserving
the interface. See pure virtual method.

delegation An alternative to class-based organization. Using
delegation, objects can defer the implementation of behavior to other
objects, called delegates. This technique permits sharing of behavior
without the necessity to introduce classes or inheritance.

derived class Syn. descendant type, subclass, child class. (C++) A
class that is defined as an extension or a subclass of another class,
which is called the base class.

descendant type Syn. subclass, child class. See derived class.

destructor (C++) A method that is invoked immediately before
memory is released for an object. The destructor can perform any
actions required for the management of the object. The name of the
destructor is formed by a tilde (~) being prepended to the name of the
class.

dispatch table (Objective-C) A table of method selectors and
associated methods. Created when a class is compiled, the dispatch
table is searched as part of the message-passing operation.

domain (Object Pascal) When used to refer to variables of object
types, the set of object types that represent legal values for the
variable. The domain consists of the declared type and all of the
descendant types.

dynamic binding The binding of a name to an attribute that occurs at
run time rather than compile time. See binding time.

dynamic class See static class.



dynamic type The type associated with the value currently being
held by a variable, which need not be the same as the static type
given by the declaration for the variable. In object-oriented languages
the dynamic type is frequently restricted to being a subclass of the
static type.

dynamically typed language A programming language in which
types are associated with values, not variables, and variables can hold
any type of value. Smalltalk is one example of a dynamically typed
language.

dynamic variable A variable for which space must be allocated
explicitly by the user. Contrast to an automatic variable, which has
space allocated for it automatically when a procedure is entered.

early binding See binding time.

ECOOP The European Conference on Object-Oriented
Programming, the major conference in Europe in which object-
oriented techniques and tools are discussed.

encapsulation The technique of hiding information within a
structure, such as the hiding of instance data within a class.

exported name An identifier (variable, type name, function, or
method) available for use outside of the context in which it is defined.
(Objective-C) A variable, type, function, or method that is global or
is defined in an interface (* .h) file. (Object Pascal) A variable, type,
function, or method defined within the interface section of a unit.
(Java) A class that is declared as public within the package in which
it is defined.

extends (Java) A keyword used in forming a new class as a subclass
of an existing class, or a new interface as an extension of an existing
interface.

factory method (Objective-C) A method recognized only by the
class object for a class. Contrast to an instance method, which is
recognized by instances of the class.



factory object Syn. class object. (Objective-C) The unique object,
associated with each class, used to create new instances of the class.
Each factory object is an instance of class Class. New instances of
the class are created by the message new being sent to this object.

final class (Java) A class declared using the keyword final. This
keyword indicates that the class cannot be used as a base class for
inheritance.

finalizer (Java) A method with the name finalize, no arguments,
and no return type. This method will be invoked automatically by the
run-time system prior to the object in which it is declared being
recycled by garbage collection.

final method (Java) A method declared using the keyword final.
This keyword indicates that the method cannot be overridden in
subclasses.

friend function (C++) A function that is permitted access to the
otherwise private or protected features of a class. Friend functions
must be explicitly declared as such by the class that is protecting the
features to which the friend is being given access. Friend classes and
friend methods also can be defined.

function member (C++) See method.

garbage collection A memory management technique whereby the
run-time system determines which memory values are no longer
necessary to the running program and automatically recovers and
recycles the memory for different use. Garbage collection is found in
Smalltalk and Java.

generic method Syn. virtual method.

global variable A variable that potentially can be accessed in any
portion of a program.

has-a relation The relation that asserts that instances of a class
possess fields of a given type. See is-a relation.



heap-based memory allocation Memory allocation performed at
run-time and not tied to procedure entry and exit. Contrast with stack-
based memory allocation.

hierarchy An organizational structure with components ranked into
levels of subordination according to some set of rules. In object-
oriented programming the most common hierarchy is that formed by
the class-subclass relationship.

hybrid language A language that incorporates features of more than
one programming style. C++ and Object Pascal are hybrid languages,
since they support both imperative and object-oriented programming.
Smalltalk is a pure object-oriented language, since it supports only
object-oriented programming.

immediate superclass The closest parent class from which a class
inherits. The superclass relationship is a transitive closure of the
immediate superclass relationship.

immutable value A value that is not permitted to change once it has
been set. Variables that hold such values are sometimes called
“single-assignment” variables. In C++ immutable values can be
identified via the const keyword.

information hiding The principle that users of a software component
(such as a class) need to know only the essential details of how to
initialize and access the component and do not need to know the
details of the implementation. By reducing the degree of
interconnectedness between separate elements of a software system,
the principle of information hiding helps in the development of
reliable software.

inheritance The property of objects by which instances of a class can
have access to data and method definitions contained in a previously
defined class, without those definitions being restated. See ancestor
class.

inheritance graph An abstract structure that illustrates the
inheritance relationships with a collection of classes.



inherited (Object Pascal) A keyword used to activate the execution
of an overridden procedure.

initialize (Objective-C, Smalltalk) A special message sent to the class
object before the class receives instances of any other message. Can
be redefined as a factory method to set up the appropriate run-time
environment before instances of a class are used.

in-line function A function that can be expanded directly in-line at
the location it is called, thereby avoiding the overhead associated
with a function call. In-line functions can be defined by the directive
in-line in C++ or the directive final in Java.

inner class A class that is defined inside another class. An inner class
is distinguished from a nested class in that an inner class maintains an
implicit pointer to a specific surrounding object, whereas a nested
class does not.

instance Syn. object. (C++) A variable of a class type. (Object
Pascal) A variable of an object type. (Smalltalk) A specific example
of the general structure defined by a class.

instance method Syn. method. (Objective-C) A method recognized
by instances of a class. See factory method.

instance variable An internal variable maintained by an instance.
Instance variables represent the state of an object.

interaction diagram A diagram that documents the sequence of
messages that flow between objects participating in a scenario.

Internet A worldwide collection of machines that have agreed to
communicate with each other using a common protocol.

is-a relation The relation that asserts that instances of a subclass
must be more specialized forms of the superclass. Thus, instances of
a subclass can be used where quantities of the superclass type are
required. See has-a relation.

isa link (Objective-C) An implicit pointer, contained in every object,
that references to the dispatch table for the object. Since objects are



characterized only by their behavior, this pointer in effect encodes the
class of the object.

iterator A class that is used mainly to provide access to the values
being held in another class, usually a container class. The iterator
provides a uniform framework for accessing values without
compromising the encapsulation of the container.

late binding See binding time.

Member (Object Pascal) A system-provided Boolean function that can
be used to determine whether the value (dynamic type) of a variable
is a member of the specific object type.

member (C++) A general term for the attributes associated with
instances of a class. Instance variables are called data members in
C++; methods are called procedure or function members.

message Syn. message selector, method designator, method selector,
selector. The textual string that identifies a requested action in a
message-passing expression. During message passing, this string is
used to find a matching method as part of the method-lookup process.

message expression (Objective-C) A Smalltalk-like expression
enclosed in a pair of square brackets, [...]. The brackets are used to
differentiate message-passing code from normal C code.

message passing The process of locating and executing a method in
response to a message. See method lookup.

message selector Syn. method designator, method selector, selector.
The textual string that identifies a message in a message-passing
expression. During message passing, this string is used to find a
matching method as part of the method-lookup process.

metaclass (Smalltalk) The class of a class object. For each class,
there is an associated metaclass. The class object is typically the only
instance of this metaclass. Metaclasses permit the specialization of
class behavior. Without them, all classes would need to behave in the
same way.



metaprogramming A style of programming that makes extensive
use of meta-classes and in which the programming language itself
can be used to control the semantics and meaning of different
constructs. Smalltalk is one language that uses metaprogramming.

method A procedure or function associated with a class (or object
type) and invoked in a message-passing style.

method declaration The part of a class declaration specific to an
individual method.

method designator Syn. message selector. A method name identifier
used as a procedure or function name in a message-passing
expression. The method designator is used to search for the
appropriate method during message sending. In general, you cannot
determine from the program text which method a method designator
will activate during execution.

method lookup The process of locating a method matching a
particular message, generally performed as part of the message-
passing operation. Usually, the run-time system finds the method by
examining the class hierarchy for the receiver of the message,
searching from bottom to top until a method is found with the same
name as the message.

method selector See message selector.

multiple inheritance The feature that allows a subclass to inherit
from more than one immediate superclass. Multiple inheritance is not
supported by all object-oriented languages.

mutator method A method that is used to modify the value of an
instance variable. By requiring such modifications to be mediated
through a function, a class can have greater control over how its
internal state is being modified.

name mangling The process of combining a method name with a
textual description of its type signature and class name in order to
create a unique internal name.



name space (C++) A mechanism for restricting the accessibility of
global names. Globals can be declared as being part of a specific
name space and are only accessible to portions of a program that
explicitly include that name space. See scope.

native method (Java) A method that is implemented in another
language, such as C or assembly language. See primitive.

nested class A class definition that is given inside another class.
(Allowed in Java, C++ and C#.) Unlike an inner class, a nested class
does not automatically maintain a reference to a surrounding object.

object See instance. (Object Pascal) A keyword used to indicate the
definition of an object type.

object field designator (Object Pascal) A (perhaps qualified)
identifier that denotes the field within an object.

object hierarchy Syn. class hierarchy. (Object Pascal) A group of
object types all related through inheritance.

object-oriented programming A style of design that is centered
around the delegation of responsibilities to independent interacting
agents and a style of programming characterized by the use of
message passing and classes organized into one or more inheritance
hierarchies.

object type Syn. class. (Object Pascal) A data structure, similar to a
Pascal record type definition, that can contain fields (methods) of
procedures and functions as well as data fields.

OOPSLA The annual conference on Object-Oriented Programming
Systems, Languages and Applications, sponsored by the Association
for Computing Machinery.

overload Used to describe an identifier that denotes more than one
object. Procedures, functions, methods, and operators can all be
overloaded. A virtual method, or a method that is overridden, can
also be said to be overloaded. See parametric overloading.



override The action that occurs when a method in a subclass with the
same name as a method in a superclass takes precedence over the
method in the superclass. Normally, during the process of binding a
method to a message (see message passing), the overriding method
will be the method selected. (Object Pascal) A keyword used to
indicate that a method is to override the similarly named method in
an ancestor type.

paradigm An illustrative model or example, which by extension
provides a way of organizing information. The object-oriented
paradigm emphasizes organization based on behaviors and
responsibilities.

parametric overloading Overloading of function names in which
two or more procedure bodies are known by the same name in a
given context and are disambiguated by the type and number of
parameters supplied with the procedure call. (Overloading of
functions, methods, and operators can also occur.)

parameterized classes Classes in which some types are left unbound
at the time of class definition. These bindings are filled in, resulting
in qualified classes, before instances of the class are created.

parent class Syn. superclass, ancestor class. An immediate
superclass of a class.

Parnas’s principles Principles that describe the proper use of
modules, originally developed by the computer scientist David
Parnas.

persistent object An object that continues to exist outside of the
execution time of programs that manipulate the object.

polymorphic Literally “many shapes.” A feature of a variable that
can take on values of several different types when used with
functions that describe a function that has at least one polymorphic
argument. The term is also used for a function name that denotes
several different functions. See pure polymorphism, ad hoc
polymorphism.



polymorphic variable A variable that can hold many different types
of values. Object-oriented languages often restrict the types of values
to being subclasses of the declared type of the variable.

primitive (Smalltalk) An operation that cannot be performed in the
programming language and must be accomplished with the aid of the
underlying run-time system.

private inheritance (C++) Inheritance used for the purpose of
implementation, which does not preserve the is-a relation and thus
creates subclasses that are not subtypes. The inheriting class is
permitted access to the features of the parent class, but instances of
the child class cannot be assigned to variables declared as the parent
class.

private method A method that is not intended to be invoked from
outside an object. More specifically, the receiver for the message that
invokes a private method should always be the receiver for the
method in which the invocation is taking place (see self). Contrast
with public method. In Smalltalk private methods are established
only by convention, whereas C++, Java, and Delphi Pascal can
guarantee the behavior of private methods.

procedure call The transfer of control from the current point in
execution to the code associated with a procedure. Procedure calling
differs from message passing in that the selection of code to be
transferred to is decided at compile time (or link time) rather than run
time.

protocol See class description protocol.

prototype (C++) A declaration for a function that lists the function
name, return type, and argument types but does not provide the
function definition (or body).

pseudo-variable A variable that is never declared but can
nevertheless be used within a method, although it cannot be directly
modified (a pseudo-variable is therefore by definition read-only). The
most common pseudo-variable is used to represent the receiver of a
method. See self, this, and super.



public class (Java) A class that is global and can be accessed from
other packages. One public class may be declared in each compilation
unit.

public method A method that can be invoked at any time from
outside an object.

pure polymorphism A feature of a single function that can be
executed by arguments of a variety of types. See ad hoc
polymorphism.

pure virtual method (C++) A virtual method without a body, created
by the value 0 being assigned to the function in the class definition.
Pure virtual methods provide specification for subclasses. See
deferred method.

qualified name (C++) A name of a method or instance variable that
indicates explicitly the class in which the method is located. In C++,
the class name and method name are separated by two colons
(class::method); in Java and Object Pascal, a period is used. Since the
class of the method is named explicitly, a call on a qualified name can
be performed by procedure calling in place of message passing.

rapid prototyping A style of software development in which less
emphasis is placed on creation of a complete formal specification
than on rapid construction of a prototype pilot system with the
understanding that users will experiment with the initial system and
suggest modifications or changes, probably leading to a complete
redevelopment of a subsequent system. See exploratory
programming.

receiver The object to which a message is sent. In Smalltalk and
Objective-C, the receiver is indicated as the object to the left of the
message selector. In C++ and Object Pascal, the receiver is the object
to the left of the field qualifier (period). Within a method, the current
receiver is indicated in various ways: In C++, the variable this is a
pointer to the current receiver; in Objective-C, Object Pascal, and
Smalltalk, the pseudo-variable self contains the current receiver.



redefinition The process of changing an inherited operation to
provide different or extended behavior.

reference variable (C++) A variable declared by the address-of (&)
modifier. The variable points to another value and is an alias for this
value. Changes to the reference variable will be reflected in changes
in the object to which the reference has been assigned.

refinement A style of overriding in which the inherited code is
merged with the code defined in the child class.

renaming The process of changing the name for an inherited
operation without changing its behavior. Contrast with redefinition.

replacement A style of overriding in which the inherited code is
completely replaced by the code defined in the child class.

responsibility-driven design A design technique that emphasizes the
identification and division of responsibilities within a collection of
independent agents.

reverse polymorphism An attempt to undo an assignment to a
polymorphic variable—that is, to take a value being held by a
polymorphic variable and assign it to another variable that matches
the dynamic type of the value, not the static type.

RTTI (C++) The Run-Time Type Identification system. A set of
values and functions that permits the identification of the dynamic
type of a variable, as well as other associated information.

scope When applied to a variable identifier, the (textual) portion of a
program in which references to the identifier denote the particular
variable.

selector See message selector.

self (Objective-C, Object Pascal, Smalltalk) When used inside a
method, refers to the receiver for the message that caused the method
to be invoked. See this.



shadowed name A name that matches another name in a surrounding
scope; the new name effectively makes the surrounding name
inaccessible. An example is a local variable with the same name as
that of a global or instance variable. Within the procedure, the local
variable will be attached to all references of the name, making
references to the surrounding name difficult. In C++ and Java, access
to such values can be provided by a fully qualified name.

single-assignment variable A variable the value of which is assigned
once and cannot be redefined. (C++) Single-assignment variables can
occur by use of either the const modifier or the definition of a
reference variable (in the latter case, the reference is single
assignment; the variable to which the reference points, on the other
hand, can be modified repeatedly). A single-assignment variable can
also be created by assigning a data member in a constructor and then
not permitting any other method to modify the value.

slicing (C++) The process by which an argument of a derived type is
passed to a parameter declared as a base type. In effect, the fields and
methods of the derived type are sliced off from the base fields.

specification class An abstract superclass used only to define an
interface. The actual implementation of the interface is left to
subclasses.

stack-based memory allocation An implementation technique
where memory is allocated for variables when the procedure in which
the variables are declared is entered and freed when the procedure is
exited. Stack-based allocation is very efficient, but it does not work if
either the lifetime of values is not tied to procedure entry/exit or the
size of values is not determined at compile time. Contrast with heap-
based memory allocation.

static (C++ and Java) A declaration modifier that, when applied to
global variables and functions, means that the variables are not
accessible outside of the file in which they are declared. When
applied to local variables, it means that they continue to exist even
after the procedure in which they are declared has exited. When
applied to class declaration fields, it indicates that the fields are



shared by all instances of the class. (Object Pascal) A variable that is
allocated space automatically when a procedure is entered. Contrast
to dynamic variables, which must have space allocated by the user.

static method A method that can be called by early binding. The
method body can be determined uniquely at compile time, and thus
no message passing is required to process a message to a static
method.

static class In statically typed object-oriented languages, such as C++
and Object Pascal, the declared class of a variable. It is legal,
however, for the value of the variable to be an instance of either the
static class or any class derived from the static class. The class of the
value for the variable is known as the dynamic class.

static type See static class.

statically typed language A language in which every variable must
have a declared type. Such languages are often, although not
necessarily, strongly typed. Object-oriented languages may bend
static type rules by permitting variables to hold any value that is a
subtype (or subclass) of the declared type.

statically typed object (Objective-C) A variable that is declared by
class name, as opposed to simply being declared by the type id.
Statically typing an object permits certain errors to be detected at
compile time rather than at run time and permits certain
optimizations.

strongly typed language A language in which the type of any
expression can be determined at compile time.

subclass Syn. descendant type, derived class, child class. (Smalltalk)
A class that inherits from another class.

subclass client A class that uses the facilities of a superclass to
implement its own functionality.

subclass coupling The connection formed between a parent and child
class. Subclass coupling is a very weak form of coupling, since



instances of the subclass can be treated as though they were simply
instances of the parent class. See coupling and cohesion.

substitutability, principle of The principle that asserts one should be
able to substitute an instance of a child class in a situation where an
instance of the parent class is expected. The principle is valid if the
two classes are subtypes of each other but not necessarily in general.

subtype A type A is said to be a subtype of a type B if an instance of
type A can be substituted for an instance of type B with no observable
effect. For example, a sparse array class might be defined as a
subtype of an array type. Subclasses need not be subtypes, nor must
subtypes be subclasses.

super (Objective-C, Smalltalk, Java) When used inside a method, a
synonym for self. However, when used as the receiver for a message,
the search for an appropriate method will begin with the parent class
of the class in which the current method is defined.

superclass Syn. ancestor class, base class. (Smalltalk) A class from
which another class inherits attributes.

symbol (Smalltalk) A value that is characterized only by its unique
value. Similar to an enumerated value in C or Pascal, with the
exception that symbols can print themselves textually at run time.

this (C++) When used inside a method, a pointer to the receiver for
the message that caused the method to be invoked. Note that the
pointer must be dereferenced to obtain the value of the receiver—for
example, to send further messages to the receiver. See self.

type signature See argument signature.

user client A class that uses the facilities provided by another
distance object. See subclass client.

virtual method (C++) A method that can be called with late binding.
The method body to be invoked cannot be determined at compile
time, and thus a run-time search must be performed to determine
which of several methods should be invoked in response to a
message. See pure virtual method.



virtual method pointer (C++) A pointer, maintained by every object
that uses virtual methods, that points to the virtual method table
associated with the type of the value currently contained in the
variable.

virtual method table (C++) A table of pointers to methods
constructed for each class. All instances of the class point to this
table.

void (C++, Java) A type name used to indicate a function returning
no value—that is, a procedure.

World Wide Web A collection of machines on the Internet that have
agreed to distribute information according to a common protocol.
This information is usually accessed with a browser.

yo-yo problem Repeated movements up and down the class
hierarchy may be required when the execution of a particular method
invocation is traced.



References

Abelson 1981] Harold Abelson and Andrea diSessa, Turtle Geometry: The
Computer as a Medium for Exploring Mathematics, MIT Press, Cambridge,
MA, 1981.

Actor 1987] Actor Language Manual, The Whitewater Group, Inc.,
Evanston, IL, 1987.

Aho 1985] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers:
Principles, Techniques, and Tools, Addison-Wesley, Reading, MA, 1985.

Albahari 2001] Ben Albahari, Peter Drayton, and Brad Merrill, C#
Essentials, O’Reilly, Cambridge, MA, 2001.

Alexander 1977] Christopher Alexander, Sara Ishikawa, and Murray
Silverstein, A Pattern Language, Oxford University Press, New York,
1977.

Appel 1987] Andrew W. Appel, “Garbage Collection Can Be Faster Than
Stack Allocation,” Information Processing Letters, 25(4): 275–279, 1987.

Alhir 1998] Sinan Si Alhir, UML in a Nutshell, O’Reilly, Cambridge, MA,
1998.

Arnold 2000] Ken Arnold, James Gosling, and David Holmes, The Java
Programming Language, 3rd Ed., Addison-Wesley, Reading, MA, 2000.

Atkinson 1988] Malcolm P. Atkinson, Peter Buneman, and Ronald Morrison
(Eds.), Data Types and Persistence, Springer-Verlag, New York, 1988.



Beazley 2000] David M. Beazley, Python Essential Reference, New Riders
Publishing, Indianapolis, IN, 2000.

Beck 1989] Kent Beck and Ward Cunningham, “A Laboratory for Teaching
Object-Oriented Thinking,” Proceedings of the 1989 OOPSLA—
Conference on Object-Oriented Programming Systems, Languages and
Applications; Reprinted in Sigplan Notices, 24(10): 1–6, 1989.

Bellin 1997] David Bellin and Susan Suchman Simone, The CRC Card Book,
Addison-Wesley, Reading, MA, 1997.

Berztiss 1990] Alfs Berztiss, Programming with Generators, Ellis Horwood,
New York, 1990.

Birtwistle 1979] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug,
and Kristen Nygaard, Simula Begin, Studentlitteratur, Lund, Sweden, 1979.

Bóhm 1966] Corrado Bóhm and Giuseppe Jacopini, “Flow Diagrams, Turing
Machines and Languages with Only Two Formation Rules,”
Communications of the ACM, 9(5):366–371, May 1966.

Booch 1999] Grady Booch, James Rumbaugh, and Ivar Jacobson, The
Unified Modeling Language User Guide, Addison-Wesley, Reading, MA,
1999.

Bracha 1990] Gilad Bracha and William Cook, “Mixin-Based Inheritance,”
Proceedings of the 1990 OOPSLA—Conference on Object-Oriented
Programming Systems, Languages and Applications; Reprinted in Sigplan
Notices, 25(10): 347–349, 1990.

Brooks 1975] Frederick P. Brooks, Jr., The Mythical Man-Month: Essays on
Software Engineering, Addison-Wesley, Reading, MA, 1975.

Brooks 1987] Frederick P. Brooks, Jr., “No Silver Bullet: Essence and
Accidents of Software Engineering,” IEEE Computer, April 1987, pp. 10–
19.



Bruce 1994] Kim B. Bruce, “A Paradigmatic Object-Oriented Programming
Language: Design, Static Typing and Semantics,” Journal of Functional
Programming, 4(1994), pp. 127–206.

Budd 1987] Timothy A. Budd, A Little Smalltalk, Addison-Wesley, Reading,
MA, 1987.

Budd 1991] Timothy A. Budd, “Generalized Arithmetic in C++,” Journal of
Object-Oriented Programming, 3(6): 11–23, February 1991.

Budd 1994] Timothy A. Budd, Classic Data Structures in C++, Addison-
Wesley, Reading, MA, 1994.

Budd 1998] Timothy A. Budd, Data Structures in C++ Using the Standard
Template Library, Addison-Wesley, Reading, MA, 1994.

Budd 1998b] Timothy A. Budd, Understanding Object-Oriented
Programming with Java, Addison-Wesley, Reading, MA, 1998.

Budd 1999] Timothy A. Budd, C++ for Java Programmers, Addison-Wesley,
Reading, MA, 1999.

Budd 2000] Timothy A. Budd, Classic Data Structures in Java, Addison-
Wesley, Reading, MA, 2000.

Callaway 1999] Dustin R. Callaway, Inside Servlets, Addison-Wesley,
Reading, MA, 1999.

Campione 1998] Mary Campione and Kathy Walrath, The Java Tutorial,
Addison-Wesley, Reading, MA, 1998.

Campione 1999] Mary Campione, Kathy Walrath, and Alison Huml, The
Java Tutorial Continued, Addison-Wesley, Reading, MA, 1999.

Cardelli 1985] Luca Cardelli and Peter Wegner, “On Understanding Types,
Data Abstraction, and Polymorphism,” Computing Surveys, 17(4): 471–
523, 1985.



Carroll 1995] Martin D. Carroll and Margaret A. Ellis, Designing and
Coding Reusable C++, Addison-Wesley, Reading, MA, 1987.

Castagna 1997] Giuseppe Castagna, Object-Oriented Programming: A
Unified Foundation, Birkháuser, Boston, 1997.

Chan 2000] Patric Chan, The Java Developers Almanac 2000, Addison-
Wesley, Reading, MA, 2000.

Chirlian 1990] Paul M. Chirlian, Programming in C++, Merrill, Columbus,
OH, 1990.

Church 1936] Alonzo Church, “An Unsolvable Problem of Elementary
Number Theory,” American Journal of Mathematics, 58: 345–363, 1936.

Cohen 1981] Jacques Cohen, “Garbage Collection of Linked Data
Structures,” ACM Computing Surveys, 13(3): 341–367, 1981.

Cook 1988] Steven Cook, “Impressions of ECOOP’88,” Journal of Object-
Oriented Programming, 1(4), 1988.

Cook 1990] William Cook, Walter Hill, and Peter Canning, “Inheritance Is
Not Subtyping,” Conference Record of the Seventeenth ACM Symposium
on Principles of Programming Languages, pp. 125–135, ACM Press,
January 1990.

Coplien 1995] Pattern Languages of Program Design, edited by James A.
Coplien and Douglas C. Schmidt, Addison-Wesley, Reading, MA, 1995.

Cox 1986] Brad J. Cox, Object-Oriented Programming: An Evolutionary
Approach, Addison-Wesley, Reading, MA, 1986.

Cox 1990] Brad J. Cox, “Planning the Software Industrial Revolution,” IEEE
Software, 7(6): 25–35, November 1990.

Craig 2000] Iain Craig, The Interpretation of Object-Oriented Languages,
Springer-Verlag, London, 2000.



Dahl 1966] Ole-Johan Dahl and Kristen Nygaard, “Simula, An Algol-Based
Simulation Language,” Communications of the ACM, 9(9): 671–678,
September 1966.

Danforth 1988] Scott Danforth and Chris Tomlinson, “Type Theories and
Object-Oriented Programming,” ACM Computing Surveys, 20(1): 29–72,
1988.

Deutsch 1989] L. Peter Deutsch, “Design Reuse and Frameworks in the
Smalltalk-80 System.” In Ted J. Biggerstaff and Alan J. Perlis (Eds.),
Software Reusability, Volume II: Applications and Experience, pp. 57–71,
Addison-Wesley, Reading, MA, 1989.

Dijkstra 1976] Edsger W. Dijkstra, A Discipline of Programming, Prentice-
Hall, Englewood Cliffs, NJ, 1976.

Eckel 1989] Bruce Eckel, Using C++, McGraw-Hill, New York, 1989.

Ellis 1990] Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++
Reference Manual, Addison-Wesley, Reading, MA, 1990.

Fairley 1985] Richard Fairley, Software Engineering Concepts, McGraw-
Hill, New York, 1985.

Feldman 1997] Michael B. Feldman, Software Construction and Data
Structures with Ada 95, Addison-Wesley, Reading, MA, 1997.

Felleisen 1998] Matthias Felleisen and Daniel P. Friedman, A Little Java, A
Few Patterns, MIT Press, Cambridge, MA, 1998.

Fischer 1988] Charles N. Fischer and Richard J. LeBlanc, Jr., Crafting A
Compiler, Benjamin Cummings, Menlo Park, CA, 1988.

Flanagan 1997] David Flanagan, Java Examples in a Nutshell, O’Reilly,
Cambridge, MA, 1997.

Floyd 1979] Robert W. Floyd, “The Paradigms of Programming,”
Communications of the ACM, 22(8): 455–460, August 1979.



Forman 1999] Ira R. Forman and Scott H. Danforth, Putting Metaclasses to
Work, Addison-Wesley, Reading, MA, 1999.

Gabriel 1996] Richard P. Gabriel, Patterns of Software, Oxford University
Press, New York, 1996.

Gamma 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, Reading, MA, 1995.

Gibbs 1994] Wayt Gibbs, “Software’s Chronic Crisis,” Scientific American,
271 (3): 86–95, September 1994.

Gillett 1982] Will D. Gillett and Seymour V. Pollack, An Introduction to
Engineered Software, Holt, Rinehart & Winston, New York, 1982.

Glass 1996] Graham Glass and Brett Schuchert, The STL Primer, Prentice-
Hall, Englewood Cliffs, NJ, 1996.

Gödel 1931] Kurt Gödel, “Über formal unentscheidbare Sätze der Principia
Mathematica und verwandter Systeme,” Monatshefte für Mathematik und
Physik, 38: 173–198, 1931.

Goldberg 1983] Adele Goldberg and David Robson, Smalltalk-80: The
Language and Its Implementation, Addison-Wesley, Reading, MA, 1983.

Goldberg 1984] Adele Goldberg, Smalltalk-80: The Interactive Programming
Environment, Addison-Wesley, Reading, MA, 1983.

Goldberg 1989] Adele Goldberg and David Robson, Smalltalk-80: The
Language, Addison-Wesley, Reading, MA, 1989.

Goldberg 1995] Adele Goldberg and Kenneth Rubin, Succeeding with
Objects, Addison-Wesley, Reading, MA, 1995.

Grand 1998] Mark Grand, Patterns in Java, Volume 1: A Catalog of
Reusable Design Patterns Illustrated with UML, Wiley, New York, 1998.



Grand 1999] Mark Grand, Patterns in Java, Volume 2, Wiley, New York,
1999.

Gries 1981] David Gries, The Science of Programming, Springer-Verlag,
New York, 1981.

Griswold 1983] Ralph E. Griswold and Madge T. Griswold, The Icon
Programming Language, Prentice-Hall, Englewood Cliffs, NJ, 1983.

Gunnerson 2000] Eric Gunnerson, A Programmer’s Introduction to C#,
APress, Berkeley, CA, 2000.

Guzdial 2001] Mark Guzdial, Squeak: Object-Oriented Design with
Multimedia Applications, Prentice-Hall, Englewood Cliffs, NJ, 2001.

Halbert 1987] Daniel C. Halbert and Patrick D. O’Brien, “Using Types and
Inheritance in Object-Oriented Programming,” IEEE Software, 4(5): 71–79,
1987.

Hamlet 1976] Richard G. Hamlet, “High-level Binding with Low-Level
Linkers,” Communications of the ACM, 19: 642–644, November 1976.

Hanson 1981] David R. Hanson, “Is Block Structure Necessary?” Software
Practice & Experience, 1(8): 853–866, 1981.

Hebel 1990] Kurt J. Hebel and Ralph E. Johnson, “Arithmetic and Double
Dispatching in Smalltalk-80,” Journal of Object-Oriented Programming,
2(6): 40–44, 1990.

Henderson-Sellers 1992] Brian Henderson-Sellers, A Book of Object-
Oriented Knowledge, Prentice-Hall, Englewood Cliffs, NJ, 1992.

Horowitz 1984] Ellis Horowitz, Fundamentals of Programming Languages,
Computer Science Press, Rockville, MD, 1984.

Ingalls 1981] Daniel H. H. Ingalls, “Design Principles Behind Smalltalk,”
Byte, 6(8): 286–298, 1981.



Ingalls 1986] Daniel H. H. Ingalls, “A Simple Technique for Handling
Multiple Polymorphism,” Proceedings of the 1986 OOPSLA—Conference
on Object-Oriented Programming Systems, Languages and Applications;
Reprinted in Sigplan Notices, 21(11): 347–349, 1986.

Jacobson 1994] Ivar Jacobson, Object-Oriented Software Engineering: A Use
Case Driven Approach, Addison-Wesley, Reading, MA, 1994.

Joyner 1999] Ian Joyner, Objects Unencapsulated, Prentice-Hall, Englewood
Cliffs, NJ, 1999.

Kaehler 1986] Ted Kaehler and Dave Patterson, A Taste of Smalltalk, W.W.
Norton & Company, New York, 1986.

Kamin 1990] Samuel N. Kamin, Programming Languages: An Interpreter-
Based Approach, Addison-Wesley, Reading, MA, 1990.

Kay 1977] Alan Kay, “Microelectronics and the Personal Computer,”
Scientific American, 237(3): 230–244, 1977.

Kay 1993] Alan C. Kay, “The Early History of Smalltalk,” The Second ACM
SIGPLAN History of Programming Languages Conference (HOPL-II),
ACM SIGPLAN Notices 28(3): 69–75, March 1993.

Keene 1989] Sony a E. Keene, Object-Oriented Programming in Common
Lisp, Addison-Wesley, Reading, MA, 1989.

Keller 1990] Daniel Keller, “A Guide to Natural Naming,” Sigplan Notices,
25(5): 95–102, May 1990.

Kerman 2002] Mitchell C. Kerman, Programming & Problem Solving with
Delphi, Addison-Wesley, Reading, MA, 2002.

Kiczales 1991] Gregor Kiczales, Jim des Rivieres, and Daniel G. Bobrow,
The Art of the Metaobject Protocol, MIT Press, Cambridge, MA, 1991.

Kim 1989] Won Kim and Frederick H. Lochovsky (Eds.), Object-Oriented
Concepts, Databases, and Applications, Addison-Wesley, Reading, MA,
1989.



Kirkerud 1989] Bjorn Kirkerud, Object-Oriented Programming with Simula,
Addison-Wesley, Reading, MA, 1989.

Klas 1995] Wolfgang Klas and Michael Schrefl, Metaclasses and their
Application, Springer-Verlag, New York, 1995.

Kleene 1936] Stephen C. Kleene, “λ-Definability and Recursiveness,” Duke
Mathematical Journal, 2: 340–353, 1936.

Knolle 1989] Nancy T. Knolle, “Why Object-Oriented User Interface
Toolkits Are Better,” Journal of Object-Oriented Programming, 2(4): 63–
67, 1989.

Koenig 1989a] Andrew Koenig, “References in C++,” Journal of Object-
Oriented Programming, 1(6), 1989.

Koenig 1989b] Andrew Koenig, “Objects, Values, and Assignment,” Journal
of Object-Oriented Programming, 2(2): 37–38, 1989.

Koenig 1989c] Andrew Koenig, “What Are Friends For?,” Journal of
Object-Oriented Programming, 2(4): 53–54, 1989.

Korienek 1993] Gene Korienek and Tom Wrensch, A Quick Trip to
ObjectLand, Prentice-Hall, Englewood Cliffs, NJ, 1993.

Krasner 1983] Glenn Krasner, Smalltalk-80: Bits of History, Words of Advice,
Addison-Wesley, Reading, MA, 1983.

Krogdahl 1985] Stein Krogdahl, “Multiple Inheritance in Simula-Like
Languages,” BIT, 25: 318–326, 1985.

Kuhn 1970] Thomas S. Kuhn, The Structure of Scientific Revolutions, 2nd
ed., University of Chicago Press, Chicago, 1970.

Lakoff 1987] George Lakoff, Women, Fire, and Dangerous Things,
University of Chicago Press, Chicago, 1987.

LaLonde 1990a] Wilf LaLonde and John Pugh, “Integrating New Varieties of
Numbers into the Class Library: Quaternions and Complex Numbers,”



Journal of Object-Oriented Programming, 2(5): 64–68, 1990.

LaLonde 1990b] Wilf LaLonde and John Pugh, Inside Smalltalk, Prentice-
Hall, Englewood Cliffs, NJ, 1990.

Lieberherr 1989a] Karl J. Lieberherr and Ian M. Holland, “Assuring Good
Style for Object-Oriented Programs,” IEEE Software, 6(5): 38–48, 1989.

Lieberherr 1989b] Karl J. Lieberherr and Arthur J. Riel, “Contributions to
Teaching Object-Oriented Design and Programming,” Proceedings of the
1989 OOPSLA—Conference on Object-Oriented Programming Systems,
Languages and Applications; Reprinted in Sigplan Notices, 24(10): 11–22,
October 1989.

Lieberman 1986] Henry Lieberman, “Using Prototypical Objects to
Implement Shared Behavior in Object-Oriented Systems,” Proceedings of
the 1986 OOPSLA—Conference on Object-Oriented Programming
Systems, Languages and Applications; Reprinted in Sigplan Notices,
21(11): 214–223, 1986.

Lippman 1996] Stanley B. Lippman, Inside the C++ Object Model, Addison-
Wesley, Reading, MA, 1996.

Lischner 2000] Ray Lischner, Delphi in a Nutshell. O’Reilly, Cambridge,
MA, 2000.

Liskov 1977] Barbara Liskov, Alan Snyder, Russell Atkinson, and Craig
Scaffert, “Abstraction Mechanisms in CLU,” Communications of the ACM,
20(8): 564–567, August 1977.

Liskov 1988] Barbara Liskov, “Data Abstraction and Hierarchy,” Sigplan
Notices, 23(5), 1988.

Liskov 1986] Barbara Liskov and John Guttag, Abstraction and Specification
in Program Development, McGraw-Hill, New York, 1986.

Logan 1986] Robert K. Logan, The Alphabet Effect, St. Martin’s Press, New
York, 1986.



MacLennan 1987] Bruce J. MacLennan, Principles of Programming
Languages, Holt, Rinehart & Winston, New York, 1987.

Madsen 1993] Ole Lehrmann Madsen, Birger Moller-Pedersen, and Kristen
Nygaard, Object-Oriented Programming in the BETA Programming
Language, Addison-Wesley, Reading, MA, 1993.

Marcotty 1987] Michael Marcotty and Henry Ledgard, The World of
Programming Languages, Springer-Verlag, New York, 1987.

Markov 1951] Andrei Andreevich Markov, “The Theory of Algorithms” (in
Russian), Trudy Mathematicheskogo Instituta immeni V. A. Steklova, 38:
176–189, 1951.

McGregor 1992] John D. McGregor and David A. Sykes, Object-Oriented
Software Development: Engineering Software For Reuse, International
Thomson Computer Press, Albany, NY, 1992.

Meyer 1988a] Bertrand Meyer, Object-Oriented Software Construction,
Prentice-Hall International, London, 1988a.

Meyer 1988b] Bertrand Meyer, “Harnessing Multiple Inheritance,” Journal
of Object-Oriented Programming Languages, 1(4): 48–51, 1988b.

Meyer 1994] Bertrand Meyer, Reusable Software, Prentice-Hall, Englewood
Cliffs, NJ, 1994.

Meyers 1998] Scott Meyers, Effective C++, 2nd Edition, Addison-Wesley,
Reading, MA, 1992.

Micallef 1988] Josephine Micallef, “Encapsulation, Resuability and
Extensibility in Object-Oriented Programming Languages,” Journal of
Object-Oriented Programming Languages, 1(1): 12–35, 1988.

Milner 1990] Robin Milner, Mads Tofte, and Robert Harper, The Definition
of Standard ML, MIT Press, Cambridge, MA, 1990.

Morehead 1949] Albert H. Morehead and Geoffrey Mott-Smith, The
Complete Book of Solitaire and Patience Games, Grosset & Dunlap, New



York, 1949.

Mössenböck 1993] Hanspeter Mössenböck, Object-Oriented Programming
in Oberon-2, Springer-Verlag, New York, 1993.

Musser 1996] David R. Musser and Atul Saini, STL Tutorial and Reference
Guide, Addison-Wesley, Reading, MA, 1996.

Nygaard 1981] Kristen Nygaard and Ole-Johan Dahl, “The Development of
the Simula Languages,” in History of Programming Languages, Richard L.
Wexelblat, Ed., Academic Press, New York, 1981.

O’Brian 1989] Stephen K. O’Brian, Turbo Pascal 5.5: The Complete
Reference, McGraw-Hill, New York, 1989.

Palsberg 1994] Jens Palsberg and Michael I. Schwartzbach, Object-Oriented
Type Systems. John Wiley & Sons, New York, 1994.

Parnas 1972] David L. Parnas, “On the Criteria to Be Used in Decomposing
Systems into Modules,” Communications of the ACM, 15(12): 1059–1062,
1972.

Perry 1990] Dewayne E. Perry and Gail E. Kaiser, “Adequate Testing and
Object-Oriented Programming,” Journal of Object-Oriented Programming,
2(5): 13–19, 1990.

Pinson 1988] Lewis J. Pinson and Richard S. Wiener, An Introduction to
Object-Oriented Programming and Smalltalk, Addison-Wesley, Reading,
MA, 1988.

Pohl 1989] Ira Pohl, C++ for C Programmers, Addison-Wesley, Reading,
MA, 1989.

Post 1936] Emil L. Post, “Finite Combinatory Processes Formulation, I,” The
Journal of Symbolic Logic, 1: 103–105, 1936.

Pree 1995] Wolfgang Pree, Design Patterns for Object-Oriented Software
Development, Addison-Wesley, Reading, MA, 1995.



Pullum 1991] Geoffrey K. Pullum, The Great Eskimo Vocabulary Hoax, The
University of Chicago Press, Chicago, 1991.

Raj 1991] Rajendra K. Raj, Ewan D. Tempero, Henry M. Levy, Andrew P.
Black, Norman C. Hutchinson, and Eric Jul, “Emerald: A General Purpose
Programming Language,” Software-Practice & Experience 21(1): 91–118,
1991.

Rising 2000] Linda Rising, The Pattern Almanac 2000, Addison-Wesley,
Reading, MA, 2000.

Rist 1995] Robert Rist and Robert Terwilliger, Object-Oriented
Programming in Eiffel, Prentice-Hall, Englewood Cliffs, NJ, 1995.

Rogers 1967] Hartley Rogers, Jr., Theory of Recursive Functions and
Effective Computability, McGraw-Hill, New York, 1967.

Rosenberg 1971] Jay F. Rosenberg and Charles Travis (Eds.), Readings in the
Philosophy of Language, Prentice-Hall, Englewood Cliffs, NJ, 1971.

Rumbaugh 1991] James Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, and William Lorensen, Object-Oriented Modeling and
Design, Prentice-Hall, Englewood Cliffs, NJ, 1991.

Sakkinen 1988a] Markku Sakkinen, “On the Darker Side of C++,” ECOOP
’88 Proceedings: European Conference on Object-Oriented Programming,
S. Gjessing and K. Nygaard, Eds., Springer-Verlag, New York, 1988.

Sakkinen 1988b] Markku Sakkinen, “Comments on ‘the Law of Demeter’
and C++,” Sigplan Notices, 23(12): 38–44, 1988.

Sakkinen 1992] Markku Sakkinen, Inheritance and Other Main Principles of
C++ and Other Object-Oriented Languages, Ph.D. thesis, University of
Jyväskylä, Jyväskylä, Finland, 1992.

Salus 1998] Peter H. Salus, Ed., Handbook of Programming Languages, Vol.
1: Object-Oriented Programming Languages, Macmillian Technical
Publishing, 1998.



Scott 2000] Michael L. Scott, Programming Language Pragmatics, Morgan
Kaufmann Publishers, San Francisco, 2000.

Sethi 1989] Ravi Sethi, Programming Languages: Concepts and Constructs,
Addison-Wesley, Reading, MA, 1989.

Schildt 1996] Herbert Schildt, MFC Programming from the Ground Up,
McGraw-Hill, New York, 1996.

Shammas 1996] Namir C. Shammas, Object-Oriented Programming for
Dummies, IDG Books, Foster City, CA, 1996.

Smith 1995] David N. Smith, IBM Smalltalk: The Language, Addison-
Wesley, Reading, MA, 1995.

Snyder 1986] Alan Snyder, “Encapsulation and Inheritance in Object-
Oriented Programming Languages,” Proceedings of the 1986 OOPSLA—
Conference on Object-Oriented Programming Systems, Languages and
Applications; Reprinted in Sigplan Notices, 21(11): 38–45, 1986.

Stefik 1986] Mark Stefik and Daniel G. Bobrow, “Object-Oriented
Programming: Themes and Variations,” AI Magazine, 6(4): 40–62, 1986.

Stein 1987] Lynn Andrea Stein, “Delegation Is Inheritance,” Proceedings of
the 1987 OOPSLA—Conference on Object-Oriented Programming
Systems, Languages and Applications; Reprinted in Sigplan Notices,
22(12): 138–146, 1987.

Stevens 1981] W. Stevens, G. Myers, and L. Constantine, “Structured
Design,” IBM Systems Journal, 13(2), 1974. Reprinted in Edward Yourdon
(Ed.), Classics in Software Engineering, Prentice-Hall, Englewood Cliffs,
NJ, 1979.

Stroustrup 1982] Bjarne Stroustrup, “Classes: An Abstract Data Type Facility
for the C Language,” ACM Sigplan Notices, 17(1): 42–51, January 1982.

Stroustrup 1986] Bjarne Stroustrup, The C++ Programming Language,
Addison-Wesley, Reading, MA, 1986.



Stroustrup 1988] Bjarne Stroustrup, “What Is ‘Object-Oriented
Programming’?,” IEEE Software, 5(3): 10–20, May 1988.

Stroustrup 1994] Bjarne Stroustrup, The Design and Evolution of C++,
Addison-Wesley, Reading, MA, 1994.

Taenzer 1989] David Taenzer, Murthy Ganti, and Sunil Podar, “Object-
Oriented Software Reuse: The Yoyo Problem,” Journal of Object-Oriented
Programming, 2(3): 30–35, 1989.

Tesler 1985] Larry Tesler, “Object Pascal Report,” Apple Computer, Santa
Clara, CA, 1985.

Thomas 2001] David Thomas, Andrew Hunt, Programming Ruby, Addison-
Wesley, Reading, MA, 2001.

Thompson 1996] Simon Thompson, Haskell: The Craft of Functional
Programming, Addison-Wesley, Reading, MA, 1996.

Tomlinson 1990] Chris Tomlinson, Mark Scheevel, and Won Kim, “Sharing
and Organization Protocols in Object-Oriented Systems,” Journal of
Object-Oriented Programming, 2(4): 25–36, 1989.

Turbo 1988] Turbo Pascal 5.5 Object-Oriented Programming Guide,
Borland International, Scotts Valley, CA, 1988.

Turing 1936] Alan Turing, “On Computable Numbers, with an Application to
the Entscheidungsproblem,” Proceeds of the London Mathematical Society,
Series 2, 42: 230–265; and 43: 544–546, 1936.

Ungar 1987] David Ungar and Randall B. Smith, “Self: The Power of
Simplicity,” Proceedings of the 1987 OOPSLA—Conference on Object-
Oriented Programming Systems, Languages and Applications; Reprinted in
Sigplan Notices, 22(12): 227–242, 1987.

Unger 1987] J. Marshall Unger, The Fifth Generation Fallacy, Oxford
University Press, New York, 1987.



Usenix 1987] Proceedings of the C++ Workshop, USENIX Association,
Berkeley, CA, 1987.

Vermeulen 2000] Allan Vermeulen, Scott W. Wambler, Greg Bumgardner,
Eldon Metz, Trevor Misfeldt, Jim Shur, and Patrick Thompson, The
Elements of Java Style, Cambridge University Press, New York, 2000.

Walrath 1999] Kath Walrath and Mary Campione, The JFC Swing Tutorial,
Addison-Wesley, Reading, MA, 1999.

Webster 1989] Bruce F. Webster, The NeXT Book, Addison-Wesley, Reading,
MA, 1989.

Wegner 1986] Peter Wegner, “Classification in Object-Oriented Systems,”
Sigplan Notices, 21(10): 173–182, October 1986.

Weinand 1988] Andre Weinand, Erich Gamma, and Rudolf Marty, “ET++—
An Object-Oriented Application Framework in C++,” in Proceedings of the
1988 OOPSLA—Conference on Object-Oriented Programming Systems,
Languages and Applications; Reprinted in Sigplan Notices, 23(10): 46–57,
October 1988.

Weiskamp 1990] Keith Weiskamp and Bryan Flamig, The Complete C++
Primer, Academic Press, New York, 1990.

Weizenbaum 1976] Joseph Weizenbaum, Computer Power and Human
Reason, W. H. Freeman and Company, San Francisco, 1976.

Whorf 1956] Benjamin Lee Whorf, Language Thought & Reality, MIT Press,
Cambridge, MA, 1956.

Wiener 1988] Richard S. Wiener and Lewis J. Pinson, An Introduction to
Object-Oriented Programming and C++, Addison-Wesley, Reading, MA,
1988.

Wiener 1989] Richard S. Wiener and Lewis J. Pinson, “A Practical Example
of Multiple Inheritance in C++,” Sigplan Notices, 24(9): 112–115, 1989.



Wiener 1990] Richard S. Wiener and Lewis J. Pinson, The C++ Workbook,
Addison-Wesley, Reading, MA, 1990.

Wikström 1987] Åke Wikström, Functional Programming Using Standard
ML, Prentice-Hall International, London, 1987.

Wilson 1990] David A. Wilson, Larry S. Rosenstein, and Dan Shafer,
Programming With MacApp, Addison-Wesley, Reading, MA, 1990.

Wirfs-Brock 1989a] Allen Wirfs-Brock and Brian Wilkerson, “Variables
Limit Reusability,” Journal of Object-Oriented Programming, 2(1): 34–40,
May 1990.

Wirfs-Brock 1989b] Rebecca Wirfs-Brock and Brian Wilkerson, “Object-
Oriented Design: A Responsibility-Driven Approach,” Proceedings of the
1989 OOPSLA—Conference on Object-Oriented Programming Systems,
Languages and Applications; Reprinted in Sigplan Notices, 24(10): 71–76,
October 1989.

Wirfs-Brock 1990] Rebecca Wirfs-Brock, Brian Wilkerson, and Lauren
Wiener, Designing Object-Oriented Software, Prentice-Hall, Englewood
Cliffs, NJ, 1990.

Wulf 1972] William A. Wulf, “A Case Against the GOTO,” Proceedings of
the Twenty-Fifth National ACM Conference, 1972; Reprinted in Edward
Yourdon (Ed.), Classics in Software Engineering, Prentice-Hall,
Englewood Cliffs, NJ, 1979.

Wulf 1973] William A. Wulf and Mary Shaw, “Global Variable Considered
Harmful,” Sigplan Notices, 8(2): 28–43, 1973.



Index

abstract
class, 14, 170, 172, 569
data type, 43, 73, 208
method, 170, 189, 320, 569

abstraction, 11, 25, 569
catalog, 33
composition, 34
encapsulation, 32
finding, 30
high level, 410
history, 39
is-a, 31
specialization, 36

Abstract Windowing Toolkit, 336, 414, 423, 468
access specifier, 77, 569
accessor method, 81, 569
ActionEvent, 436
activation record, 236, 512
active value, 449, 461
Actor, 19



Ada, 287, 303, 347, 349, 389
adapter, 358, 429, 464
ad hoc polymorphism, 276, 287, 569
AdjustmentListener, 433
ADT. See abstract data type.
after method, 319
agent, 9, 570
Aho, Alfred, 524
Alexander, Christopher, 46, 477
allocated class. See static class.
ambiguity, name, 257
American semantics, 218, 313
amortization, 284
ancestor class. See parent class.
ancestor type. See parent class.
ancestry, 483
animate objects, 126
anonymous class, 176, 469
anthropomorphic descriptions, 16
APL, 4
Appel, Andrew, 236
applet, 494
argument

keyword, 102
list, 87
message, 102
receiver, 512
signature, 570



around method, 319
array

declaration, 107
and inheritance, 355

as-a test, 255
assembly language, 39
assignment

and inheritance, 242
operator, 115, 135, 238, 243
polymorphism, 276

automatic storage management, 570
automatic variable, 570
autonomous agents, 147
AWT. See Abstract Windowing Toolkit.

base, 197, 342
base class. See parent class.
before method, 319
behavior, 15

as a basis for design, 51
object, 74
vs. state, 62

benefits of inheritance, 179
Berztiss, Alfs, 145
Beta, 217, 313, 360

generics, 349
refinement in, 316

billiards game, 147



binary operators, 102
binding, 570

early, 11
late, 11
and overloading, 287
super, 342
time, 570

class, 223
overriding, 310
type, 221

type, 103
Birtwistle, Graham M., 313
Black, Andrew, 210
blended languages, 18
block, Smalltalk, 570
Bobrow, Daniel, 491
Böhm, Corrado, 6
bounded genericity, 353
Bracha, Gilad, 273
browser, 570
Bruce, Kim, 218
bucket classes, 371
Budd, Timothy, 145
ButtonAdapter, 176, 432
Byte magazine, 1, 18
bytecode interpreter, 521

C#



class definition, 75
iterator, 381
message syntax, 102
method definition, 80
multiple inheritance, 265
polyadic functions, 302
property, 89
versioning, 330

C++, 18
array inheritance, 355
assignment, 242
class definition, 75
enuemerated data type, 74
initialization, 243
iterator, 380
keyword

protected, 163, 450
public, 75
virtual, 239

method binding, 231
method definition, 83
multiple inheritance, 259
name space, 27, 456
optional parameters, 303
order of initialization, 270
polyadic functions, 301
pure virtual method, 170
qualified name, 84



reference, 231
slicing problem, 238
stream output, 292
template, 349

cache, method, 520
Cardelli, Luca, 219
Carroll, Martin D., 286
cascaded message, 571
cast, 293, 294, 571
downcast, 343, 368
Castagna, Giuseppe, 219, 306
categories, as classes, 12
categorization, 254
Chan, Patrick, 46
change, preparing for, 59
child class, 14, 161, 571
children, 7
China, 21
Church, Alonzo, 5
Church’s conjecture, 5
class, 73, 474, 479, 571

adapter, 358, 429
anonymous, 176
behavior, 484
bucket, 371
as category, 12
container, 352
data field, 94



vs data record, 87
definition, 74
definition expression, 176
description protocol, 571
dynamic, 223
final, 329
hierarchy, 12, 571
inner, 576
loading, 487
metaclass, 120, 489
method, 122, 571
name, 481
naming convention, 75
nested, 91, 578
as object, 96, 479, 571
parameterized, 374
sealed, 330
single root, 164
static, 223
template, 351
variables, 571
visibility, 448

class definition
C++, 75
C#, 75
CLOS, 79
Delphi, 77
Eiffel, 79



Java, 75
Objective-C, 79
Pascal, 77
Python, 79
Smalltalk, 77

call-next-method, 262
client/server computing, 494
client side computing, 571
clients, subclass and user, 450
CLOS, 79, 102, 319

accessor functions, 87
class definition, 79
container classes, 363
method definition, 87
mixins, 266
multiple inheritance, 261
wrapper, 262

CLU, 360
coercion, 294
cohesion, 63, 442, 460, 571
coincidental cohesion, 445
collaborator, 67
collection class. See container class.
combination, subclassing for, 175
common ancestors, 267
communication cohesion, 445
community, 9, 26, 493
comparator, 377



compiler, 14, 342, 511
just in time, 523

complex numbers, 255
Component, 424, 470
component coupling, 442
components, software, 179
composite pattern, 469
composition, 34, 277, 572
concordance, 402
const, 83, 116
constant value, 116
Constantine, L., 446, 460
construction, subclassing for, 172
constructor, 111, 572

C++, 111
const, 116

copy, 115
default, 107
Delphi, 114
inheritance, 177
initializer, 113
Java, 112

final, 116
multiple inheritance, 270
Objective-C, 113
overloaded, 112
Python, 114
semantics, 313



Container, 425, 470
class, 284, 352, 363, 389, 572
heterogeneous, 369

contract, software, 451
contraction, inheritance as, 161
contravariance, 572
contravariant change, 324
control coupling, 442
conversion, 294

operator, 296
substitution as, 295

Cook, Steven, 218
Cook, William, 218, 273
Coplien, James A., 478
copy constructor, 115, 245, 572
copy on write, 242
copy semantics, 241
coupling, 63, 442, 460, 572

component, 444
control, 444
global data, 443
internal data, 442
parameter, 445
sequence, 444
subclass, 445

covariance, 572
covariant change, 324
Cox, Brad, 22, 179, 277, 285, 524



Craig, Iain, 306
CRC card, 55, 572
creation

array, 107
object, 106

current, 104, 337

Danforth, Scott H., 491
data cohesion, 445
data field, 74

class, 94
data flow analysis, 517
data hiding, 572
data member, 74, 572, 577
data type

primitive, 35
declaration statement, 106
decorator pattern, 471
default constructor, 107, 403, 572
deferred class. See abstract class.
deferred method, 320, 573
delegation, 98, 573
delete, 110, 117
Delphi, 2

class definition, 77
constructor, 114
constructor inheritance, 177
container class, 370



memory allocation, 109
method definition, 86
optional parameters, 303
overload, 291, 300
Pascal, 77
property, 89
unit, 27

Demeter, Law of, 447
dependency, 441

intentional, 459
manager, 459

derived class. See child class.
descendant type. See child class.
design pattern

adapter, 464
composite, 469
decorator, 471
facade, 475
flyweight, 474
iterator, 466
observer, 475
proxy, 474
singleton, 469
software, 463
software factory, 467
strategy, 468

design, responsibility-driven, 49
des Rivières, Jim, 491



destructor, 115, 117, 573
virtual, 178

Deutsch, L. Peter, 422
diamond of death, 267
Dijkstra’s algorithm, 399
dispatch table, 518, 573
distributed computing, 493
divide and conquer, 30
documentation, 56
does not understand, 215
domain, 573
domain name, 495
double-dispatching, 305, 472
downcast, 227, 343, 368
Dylan, 79
dynamic

binding, 573
class, 223, 573
method binding, 230
type, 166, 573
typing, 221
variable, 167, 573

dynamic_cast, 227
dynamically typed language, 103, 573

early binding, 287, 574
ECOOP, 574
efficiency, 111, 223



inner class, 458
and polymorphism, 283

Eiffel, 19, 79, 378
class definition, 79
covariance, 327
current, 104, 337
dispose, 120
generics, 349
multiple inheritance, 260
precondition, 216

eight-queens puzzle, 125
element traversal, 378
Eliza, 499
Ellis, Margaret A., 273, 286, 306
encapsulation, 32, 73, 101, 389, 574
encoding, name, 518
enumerated data type, 74, 187
equality

testing, 327
versus identity, 247

error
memory management, 110
message passing, 104

Eskimo language, 3
event-driven simulation, 415
event listener, 428
event loop, 156
execution speed, 181



expert systems, 1
exploratory programming, 180
exported name, 574
expression

creation, 114
message passing, 102

extension
inheritance as, 161
subclassing for, 174

facade pattern, 475
factory method, 113, 574
factory object, 574
Feldman, Michael B., 347
Felleisen, Matthias, 477
fifth-generation project, 21
filter pattern, 471
final, 83, 116, 329
final class, 574
final method, 574
finalize, 119
finalizer, 574
Fischer, Charles N., 524
Flanagan, David, 492
flattening inheritance, 256
flexibility, 111, 223
flower story, 8, 289
Floyd, Robert, 7



flyweight pattern, 474
foreach, 381
Forman, Ira R., 491
FORTRAN, 3, 222
forward definition, 90
Frame, 423
framework, 339, 407, 423
free, 109
Friedman, Daniel P., 477
friend function, 455, 574
fullerenes, 275
fully qualified name, 84
function

constructor, 111
member. See method.
object, 382, 391, 393, 397, 416
polyadic, 301
prototype, 113
template, 349

functional cohesion, 445
functional programming, 276
future of OOP, 405

Gabriel, Richard, 46, 477
Gamma, Erich, 46, 422, 477, 478
gang of four, 477
garbage collection, 110, 574
generalization, subclassing for, 173



generate and test, 145
generic, 277
generic algorithms, 389
generic classes, 349
generic function, 215
generic method. See virtual method.
genericity, 353
Gestalt therapist, 499
getter method, 81
Gibbs, Wayt, 20
Glass, Graham, 406
global data coupling, 442
global variables, 575

file scope vs. program scope, 443
Gödel encoding, 518
Gödel, Kurt, 518
GOF, 477
Goldberg, Adele, 286, 525
goto statement, 6, 447
Grand, Mark, 477
graph data type, 396
graphical user interface, 199
Griswold, Ralph, 145
GUI (Graphical User Interface), 407
Guttag, John, 183

Halbert, Daniel C., 183
halting problem, 211



Hamlet, Richard, 518
Hanson, David, 46, 145
has-a test, 31, 37, 470, 471, 575

versus as-a, 255
versus is-a, 278

Haskell, 7, 349, 387
heap memory, 108, 236, 575
Helm, Richard, 422, 477
heterogeneous collection, 369
hidden, information, 9
hierarchical redefinition, 299
hierarchy, 575
high level abstraction, 410
history

of abstraction, 39
of OOP, 18

Holland, Ian M., 460
host computer, 494
hybrid language, 575

immediate superclass, 575
immutable data, 83
immutable variables, 575
implementation, 33
implementation, language, 511
inclusion polymorphism, 276, 309
independence, of objects, 11
industrial revolution, 277



inference, type, 222, 350
influence of language on thought, 3
information hiding, 10, 26, 73, 180, 575
Ingalls, Daniel H. H., 15, 306, 477
inheritance, 12, 73, 161, 277, 575

array and, 355
benefits, 179
as categorization, 254
combination, 175
construction, 172, 364
constructor, 177
costs, 181
extension, 174
flattening, 256
forms, 171
generalization, 173
graph, 575
hierarchy, 46, 253
implications of, 235
inner class, 271
limitation, 174
private, 214, 454
specialization, 171
specification, 171
templates and, 353
tree, 164
variance, 174
virtual, 269



initialization
class data, 95
final, 75

initialize, 576
initializer, 113
inline function, 576
in-line methods, 85
inlining, 517
inner, 316
inner class, 91, 271, 576

static, 458
instance, 12, 73, 576

creation, 106
method, 576
variable, 74, 576

instantiation, 43
intentional dependency, 459
interaction diagram, 61, 576
interchangeability, 32
interface, 33, 88, 170

file, 85
multiple inheritance, 263

internal data coupling, 442
Internet, 494, 576
interpretation, of message, 10
interpreters, 511
Interval Software, 370
introspection, 479



Inuit languages, 3
IP address, 495
isa link, 519, 576
is-a test, 37, 162, 235, 253, 427, 470, 576

versus as-a, 255
versus has-a, 278

iteration, 378
iterator, 379, 390, 466, 576

invalid, 392

Jacopini, Giuseppe, 6
Java

array inheritance, 355
class definition, 75
final (keyword), 457
final class, 574
finalizer, 574
iterator, 379
method determination, 14
package, 27, 457
symbolic constant, 75
visibility, 457
wrapper class, 371

JFrame, 138
Johnson, Ralph, 422, 477
Joyner, Ian, 360
just-in-time compiler, 523



Kamin, Samuel N., 525
Kay, Alan, 7, 14, 18
Keene, Sonya E., 319
keyword notation, 102
Kiczales, Gregor, 491
King, Roger, 22
Kirkerud, Bjørn, 313
Klas, Wolfgang, 491
Kleene, Stephen, 5, 35
kleene-star, 35
Koenig, Andrew, 244, 461
Krasner, Glenn, 525
Krogdahl, Stein, 524
Kuhn, Thomas, 7
Kylix, 77

Lakoff, George, 46
LAN, 494
language

dynamically typed, 103
natural, 3
static, 221
untyped, 222

late binding, 287, 576
Law of Demeter, 447
layering

division into parts, 30
multiple views, 31



specialization, 31
layers of abstraction, 32
layout manager, 336, 426
Lee, Meng, 389
left shift operator, 292
lexicographic comparison, 397
library, upside down, 412
Lieberherr, Karl, 447
LIFO, 209
like current, 327
limitation, subclassing for, 174
Linnaeus, Carolus, 7
Liskov, Barbara, 183, 208, 218, 360
Liskov substitution principle, 183
Lisp, 19, 222, 344
listener, 105, 138, 428
Little Smalltalk, 145, 521
Logan, Robert, 21
logical cohesion, 445
look and feel, 53

machine language, 39
Madsen, Ole Lehrmann, 313
mangled names, 518
map, 398
Markov, Andrei Andreevich, 5
McGregor, John D., 286
Mcllroy, Doug, 20



Member, 576
data, 74
function, 84, 577

memory allocation, 108
memory layout, 235
message, 9, 10, 577

expression, 577
passing, 73
selector, 102, 577

message passing, 101, 577
legality, 224, 408
overhead, 181
vs procedure call, 10

messaging function, 519
metaclass, 120, 489, 577
metaphor, power of, 16
metaprogramming, 577
method, 9, 73, 84, 577

abstract, 189, 320
after, 319
around, 319
before, 319
C++, 83
C#, 80
cache, 520
constructor, 111
declaration, 577
deferred, 320, 339



designator, 577
editing, 486
final, 329
forward definition, 90
foundation, 339
inherited, 513
lookup, 101, 577
multimethod, 303
Objective-C, 85
order, 82
overridden, 515
polymorphic, 344
pure virtual, 170, 320
replacement, 197
selector. See message selector.
shadow, 322
virtual, 168, 517

method binding
static vs dynamic, 230
virtual, 232

Meyer, Bertrand, 183, 257, 286
Meyers, Scott, 267
MFC, 187
Micallef, Josephine, 22
mixins, 266
ML, 7, 344, 349, 387
modeling, 26
modification, 411



modules, 41
Møller-Pedersen, Birger, 313
Morehead, Albert H., 190
Morphus, 275
Mössenböck, Hanspeter, 405
Mott-Smith, Geoffrey, 190
multimethods, 303
multiple inheritance, 175, 445, 477, 578

implementation, 514
multiple polymorphism. See double-dispatching.
multiple views, 31
Murphy, Cullen, 21
Musser, David R., 406
mutable, 117
mutator method, 81, 578
Myers, G., 460

name ambiguity, 257
name encoding, 518
name mangling, 578
name scope, 288
name space, 27, 456, 578
native method, 18, 578
nested class, 91, 578
Newsweek, 16
NeXT, 16
Norwegian Computer Center, 18
not-invented-here syndrome, 285



novice users, 18
null pointer, 392
Nygaard, Kristen, 313

O’Brien, Patrick D., 183
Oberon, 87, 232
object, 10, 578

class, 96
creation, 106
field designator, 578
function, 397
hierarchy. See class hierarchy.
serialization, 504
type, 77, 578
visibility, 448

object-based languages, 22
Objective-C, 19

class definition, 79
constructor, 113
containers, 363
language type, 103
method, 85
visibility, 458

object-level visibility, 448
object-oriented

style, 26
Object Pascal, 19

visibility, 452



observer pattern, 475
OOPSLA, 1, 19, 579
operator

assignment, 115
binary, 102
function invocation, 416
overloading, 113

optional parameters, 303
order of methods, 82
orthodox canonical form, 115
overhead, message passing, 181
overload, 291, 300

value based, 306
overloaded function, 113
overloading, 276, 287, 579

and coercion, 294
override, 37, 168, 276, 309, 579

method, 14, 196
vs redefinition, 299

packages, 44
Palsberg, Jens, 347, 354
Panel, 425
paradigm, 125

dominant, 2
functional, 7, 275
generate and test, 127
imperative, 7



language, 277
logic programming, 7
programming, 7, 579

paradox
class data initialization, 94
equality, 247, 249
substitution, 207

parameter
coupling, 442
keyword, 102
optional, 303

parametric overloading, 579
parametrized classes, 579
params, 302
PARC, Xerox, 18
parent class, 14, 161, 579
Parnas, David, 42, 64
Parnas’s principles, 64, 73, 274, 579
Pascal

class definition, 77
Delphi, 75

past-the-end value, 392
pattern

adapter, 429
software, 38
strategy, 426

penny-wise, 181
Perlis, Alan, 6



persistent object, 172, 579
personal computing, 18
Phyl the platypus, 13
pigeon hole computation, 15
platypus, 13, 37
pointer semantics, 240
pointers, 108
polyadicity, 301
polymorphic

function, 356
variable, 199, 231, 335, 580

polymorphism, 275, 579
ad hoc, 276, 287
assignment, 276
efficiency, 283
inclusion, 276, 309
pure, 277, 335, 344
reverse, 227, 335
variable, 276

popularity of OOP, 1
port, 495
Post, Emil L., 5
postcondition, 216
postponing decisions, 58
precondition, 216
Pree, Wolfgang, 478
preparing for change, 59
primitive operation, 18, 580



printf, 292
priority queue, 400
private inheritance, 173, 214, 454, 580
private method, 580
procedure call, 10, 580
procedures, 40
program complexity, 182
program size, 181
programming in the large, 51
Prolog, 7
properties, 208
property, 89, 187
protected, 81, 163
protocol, 11, 62, 215, 580
prototype, 113, 580
proxy pattern, 474
pseudo-variable, 104, 580

base, 342
super, 341
value, 90

public class, 580
public method, 580
Pullum, Geoffrey K., 3
pure object-oriented languages, 18
pure polymorphism, 277, 335, 344, 580
pure virtual method, 170, 320, 580
Python, 79, 87

class definition, 79



constructor, 114
inheritance, 177
multiple inheritance, 262

qsort, 411
qualified name, 84, 258, 581

rapid prototyping, 180, 581
readability, 85
read only data value, 81
receiver, 10, 87, 102, 581

implementation, 512
variable, 337

recursive definition, 130
redefinition, 258, 299, 581
reference, 109
reference count, 111
reference variable, 581
refinement, 581
refinement, method, 313
refinement semantics, 217
reflection, 96, 479
regular expression, 34
reintroduce, 324
reliability, software, 179
remote method invocation, 475, 507
renaming, 258, 581
replacement, 581



replacement, method, 313
replacement semantics, 218
responsibility, 9
responsibility, distributed, 126
responsibility-driven design, 70, 581
reuse, software, 179, 277
reverse polymorphism, 581
Rising, Linda, 478
Robson, David, 525
Rogers, Hartley, 21
root class, 164
RTTI, 227, 582
Rubin, Kenneth, 286
Ruby, 143, 267
run time

errors, 215, 512
memory allocation, 237
type determination, 225, 329

Saini, Atul, 406
Sakkinen, Markku, 273, 460
Sapir, Edward, 20
Sapir-Whorf hypothesis, 5
Sather, 327
Scandinavian semantics, 217, 313
Scheme, 389
Schmidt, Douglas C., 478
Schrefl, Michael, 491



Schwartzbach, Michael I., 347
scope, 288, 441, 582
Scott, Michael L., 273
sealed class, 330
selector. See message selector.
self, 104, 129, 337, 582
sentinel value, 130, 140
sequence coupling, 442
sequential cohesion, 445
serversocket, 496
service-centered view, 44
servlet, 507
setter method, 81
shadow, 322
shadowed name, 582
Shakespeare, William, 65
Shaw, Mary, 46, 462
shit happens, 56
Simula, 18, 217, 313, 524
simulation, 415
simulation, computation as, 16
single-assignment variable, 582
singleton, 176, 469
slicing problem, 238, 515, 582
Smalltalk, 18

abstract method, 170
block, 382
class definition, 77



container classes, 363
overriding, 310
receiver variable, 340
replacement, 313
visibility, 451

Snyder, Alan, 462
socket, 495, 496
software

components, 179
crisis, 20
factory, 467
framework, 407
pattern, 38, 463
reuse, 277

software-IC, 179
source code, 411
specialization, 31, 36, 171
specification, 171
specification class, 582
Spider, 370
stack allocation, 236
stack memory allocation, 582
Standard Template Library (STL), 406
state

vs. behavior, 62
object, 74

static, 221, 582
block, 95



class, 223, 583
data field, 75
inner class, 458
method, 583
method binding, 230
type, 583
typing, 221

statically typed language, 103, 583
statically typed object, 583
Stefik, Mark, 461
Stepanov, Alexander, 389
Stevens, W., 460
STL, 212, 389
Stok, Mike, 145
strategy pattern, 468
stream, 268, 292
strong typing, 367
strongly typed language, 583
Stroustrup, Bjarne, 18, 21, 273, 306, 360
structured programming, 1
style guideline

boolean methods, 81
class names, 75
law of demeter, 447
names, 65
order of methods, 82
reuse, 284
this, 105, 338



subclass, 14, 207, 583
client, 450, 583
combination, 175
construction, 172
coupling, 442, 583
extension, 174
generalization, 173
limitation, 174, 256
specialization, 171
specification, 171
as subtype, 166
variance, 174

subclassing
construction, 212

substitution, 208
Liskov, 183
and multiple inheritance, 259
principle of, 166, 235, 252, 283, 321, 335, 368

subsumption, 208
subtype, 166, 173, 174, 175, 207, 281, 455, 583
super, 177, 197, 341, 584
superclass, 14, 161, 584
swing, 423
Sykes, David A., 286
symbol, 584
symbolic constant, 75
syntax, vs semantics, 209
system design document, 56



Taenzer, David, 282
taxonomy, 36
template

adapter, 358
class, 351
function, 349

template function, 215
temporal cohesion, 445
this, 93, 104, 337, 584
thought, and language, 3
Turing

Alan, 5
award, 7
machines, 6
tarpit, 6

type
conversion, 296
inference, 222, 350
signature, 113, 212, 258, 287, 584
static vs dynamic, 103
strong, 367

typedef, 398
typing

static vs dynamic, 221

undecidability, 211
Unger, J. Marshall, 21
union structures, 240



unit, 27
universe, object, 16
untyped language, 222
upside down library, 412
URL, 495
user client, 450, 584
user interface components, 430
user manual, 56

variance, subclassing for, 174
variant record, 240, 367
versioning, 330
view class, 189
virtual, 232

destructor, 178
inheritance, 269
method, 168, 170, 239, 584
method pointer, 584
method table, 584

visibility, 441, 448
visibility modifier, 77

protected, 81
visitor, 379
Visual Basic, 89
Vlissides, John, 477
void, 584

WAN, 494



Wegner, Peter, 22, 219
Weinand, Andre, 422
Whorf, Benjamin Lee, 20
Wiener, Lauren, 70
Wilkerson, Brian, 70, 461
Wilson, David A., 413
Window, 425
Wirfs-Brock, Allen, 461
Wirfs-Brock, Rebecca, 70
World Wide Web, 584
wrapper, 262, 319, 371
wrapper pattern, 471
Wulf, William, 46, 181, 462

Xerox PARC, 18

yo-yo problem, 182, 282, 584

zero
as null value, 93



Code Snippets

Many titles include programming code or configuration examples. To
optimize the presentation of these elements, view the eBook in single-
column, landscape mode and adjust the font size to the smallest setting. In
addition to presenting code and configurations in the reflowable text format,
we have included images of the code that mimic the presentation found in
the print book; therefore, where the reflowable format may compromise the
presentation of the code listing, you will see a “Click here to view code
image” link. Click the link to view the print-fidelity code image. To return
to the previous page viewed, click the Back button on your device or app.




































































































































































































































































































































































































































































































































































































































































	About This eBook
	Halftitle Page
	Title Page
	Copyright Page
	Preface
	Assumed Background ⊡
	Obtaining the Source ⊡
	Acknowledgments ⊡

	Contents
	Chapter 1. Thinking Object-Oriented
	1.1 ⊡ Why Is OOP Popular?
	1.2 ⊡ Language and Thought
	1.3 ⊡ A New Paradigm
	1.4 ⊡ A Way of Viewing the World
	* 1.5 ⊡ Computation as Simulation
	* 1.6 ⊡ A Brief History
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 2. Abstraction
	2.1 ⊡ Layers of Abstraction
	2.2 ⊡ Other Forms of Abstraction
	*2.3 ⊡ A Short History of Abstraction Mechanisms
	Summary ⊡
	Further Information ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 3. Object-Oriented Design
	3.1 ⊡ Responsibility Implies Noninterference
	3.2 ⊡ Programming in the Small and in the Large
	3.3 ⊡ Why Begin with Behavior?
	3.4 ⊡ A Case Study in RDD
	3.5 ⊡ CRC Cards—Recording Responsibility
	3.6 ⊡ Components and Behavior
	3.7 ⊡ Software Components
	3.8 ⊡ Formalize the Interface
	3.9 ⊡ Designing the Representation
	3.10 ⊡ Implementing Components
	3.11 ⊡ Integration of Components
	3.12 ⊡ Maintenance and Evolution
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 4. Classes and Methods
	4.1 ⊡ Encapsulation
	4.2 ⊡ Class Definitions
	4.3 ⊡ Methods
	*4.4 ⊡ Variations on Class Themes
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 5. Messages, Instances, and Initialization
	5.1 ⊡ Message-Passing Syntax
	5.2 ⊡ Statically and Dynamically Typed Languages
	5.3 ⊡ Accessing the Receiver from within a Method
	5.4 ⊡ Object Creation
	5.5 ⊡ Pointers and Memory Allocation
	5.6 ⊡ Constructors
	5.7 ⊡ Destructors and Finalizers
	*5.8 ⊡ Metaclasses in Smalltalk
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 6. A Case Study: The Eight-Queens Puzzle
	6.1 ⊡ The Eight-Queens Puzzle
	6.2 ⊡ Using Generators
	6.3 ⊡ The Eight-Queens Puzzle in Several Languages
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 7. A Case Study: A Billiards Game
	7.1 ⊡ The Elements of Billiards
	7.2 ⊡ Graphical Objects
	7.3 ⊡ The Main Program
	7.4 ⊡ Using Inheritance
	Summary ⊡
	Further Information ⊡
	Self-Study Questions ⊡
	Exercises

	Chapter 8. Inheritance and Substitution
	8.1 ⊡ An Intuitive Description of Inheritance
	8.2 ⊡ Inheritance in Various Languages
	8.3 ⊡ Subclass, Subtype, and Substitution
	8.4 ⊡ Overriding and Virtual Methods
	8.5 ⊡ Interfaces and Abstract Classes
	8.6 ⊡ Forms of Inheritance
	*8.7 ⊡ Variations on Inheritance
	8.8 ⊡ The Benefits of Inheritance
	8.9 ⊡ The Costs of Inheritance
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 9. A Case Study—A Card Game
	9.1 ⊡ The Class PlayingCard
	9.2 ⊡ Data and View Classes
	9.3 ⊡ The Game
	9.4 ⊡ Card Piles—Inheritance in Action
	9.5 ⊡ Playing the Polymorphic Game
	9.6 ⊡ The Graphical User Interface
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 10. Subclasses and Subtypes
	10.1 ⊡ Substitutability
	10.2 ⊡ Subtypes
	10.3 ⊡ The Substitutability Paradox
	10.4 ⊡ Subclassing for Construction
	10.5 ⊡ Dynamically Typed Languages
	* 10.6 ⊡ Pre- and Postconditions
	10.7 ⊡ Refinement Semantics
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 11. Static and Dynamic Behavior
	11.1 ⊡ Static versus Dynamic Typing
	11.2 ⊡ Static and Dynamic Classes
	11.3 Static versus Dynamic Method Binding
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 12. Implications of Substitution
	12.1 ⊡ Memory Layout
	12.2 ⊡ Assignment
	12.3 ⊡ Copies and Clones
	12.4 ⊡ Equality
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 13. Multiple Inheritance
	13.1 ⊡ Inheritance as Categorization
	13.2 ⊡ Problems Arising from Multiple Inheritance
	13.3 Multiple Inheritance of Interfaces
	13.4 Inheritance from Common Ancestors
	13.5 ⊡ Inner Classes
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 14. Polymorphism and Software Reuse
	14.1 ⊡ Polymorphism in Programming Languages
	14.2 ⊡ Mechanisms for Software Reuse
	14.3 ⊡ Efficiency and Polymorphism
	14.4 ⊡ Will Widespread Software Reuse Become Reality?
	Summary ⊡
	Further Information ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 15. Overloading
	15.1 ⊡ Type Signatures and Scopes
	15.2 ⊡ Overloading Based on Scopes
	15.3 ⊡ Overloading Based on Type Signatures
	15.4 ⊡ Redefinition
	* 15.5 ⊡ Polyadicity
	* 15.6 ⊡ Multi-Methods
	Summary ⊡
	Further Information ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 16. Overriding
	16.1 ⊡ Notating Overriding
	16.2 ⊡ Replacement versus Refinement
	16.3 ⊡ Deferred Methods
	16.4 ⊡ Overriding versus Shadowing
	16.5 ⊡ Covariance and Contravariance
	* 16.6 ⊡ Variations on Overriding
	Summary ⊡
	Further Information ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 17. The Polymorphic Variable
	17.1 ⊡ Simple Polymorphic Variables
	17.2 ⊡ The Receiver Variable
	17.3 ⊡ Downcasting
	17.4 ⊡ Pure Polymorphism
	Summary ⊡
	Further Information ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 18. Generics
	18.1 ⊡ Template Functions
	18.2 ⊡ Template Classes
	* 18.3 ⊡ Inheritance in Template Arguments
	18.4 ⊡ Case Study—Combining Separate Classes
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 19. Container Classes
	19.1 ⊡ Containers in Dynamically Typed Languages
	19.2 ⊡ Containers in Statically Typed Languages
	* 19.3 ⊡ Restricting Element Types
	19.4 ⊡ Element Traversal
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 20. A Case Study: The STL
	20.1 ⊡ Iterators
	20.2 ⊡ Function Objects
	20.3 ⊡ Example Program—An Inventory System
	20.4 ⊡ Example Program—Graphs
	20.5 ⊡ A Concordance
	20.6 ⊡ The Future of OOP
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 21. Frameworks
	21.1 ⊡ Reuse and Specialization
	21.2 ⊡ Example Frameworks
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 22. An Example Framework: The AWT and Swing
	22.1 ⊡ The AWT Class Hierarchy
	22.2 ⊡ The Layout Manager
	22.3 ⊡ Listeners
	22.4 ⊡ User Interface Components
	22.5 ⊡ Case Study: A Color Display
	22.6 ⊡ The Swing Component Library
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 23. Object Interconnections
	23.1 ⊡ Coupling and Cohesion
	23.2 ⊡ Subclass Clients and User Clients
	23.3 ⊡ Control of Access and Visibility
	23.4 ⊡ Intentional Dependency
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 24. Design Patterns
	24.1 ⊡ Controlling Information Flow
	24.2 ⊡ Describing Patterns
	24.3 ⊡ Iterator
	24.4 ⊡ Software Factory
	24.5 ⊡ Strategy
	24.6 ⊡ Singleton
	24.7 ⊡ Composite
	24.8 ⊡ Decorator
	24.9 ⊡ The Double-Dispatching Pattern
	24.10 ⊡ Flyweight
	24.11 ⊡ Proxy
	24.12 ⊡ Facade
	24.13 ⊡ Observer
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 25. Reflection and Introspection
	25.1 ⊡ Mechanisms for Understanding
	25.2 ⊡ Methods as Objects
	25.3 ⊡ Mechanisms for Modification
	25.4 ⊡ Metaclasses
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡

	Chapter 26. Distributed Objects
	26.1 ⊡ Addresses, Ports, and Sockets
	26.2 ⊡ A Simple Client/Server Program
	26.3 ⊡ Multiple Clients
	26.4 ⊡ Transmitting Objects over a Network
	26.5 ⊡ Providing More Complexity
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Chapter 27. Implementation
	27.1 ⊡ Compilers and Interpreters
	27.2 ⊡ The Receiver as Argument
	27.3 ⊡ Inherited Methods
	27.4 ⊡ Overridden Methods
	27.5 ⊡ Name Encoding
	27.6 ⊡ Dispatch Tables
	27.7 ⊡ Bytecode Interpreters
	27.8 ⊡ Just-in-Time Compilation
	Summary ⊡
	Further Reading ⊡
	Self-Study Questions ⊡
	Exercises ⊡

	Appendix A. Source for the Eight-Queens Puzzle
	A.1 ⊡ Eight-Queens in Apple Object Pascal
	A.2 ⊡ Eight-Queens in C++
	A.3 ⊡ Eight-Queens in Java
	A.4 ⊡ Eight-Queens in Objective-C
	A.5 ⊡ Eight-Queens in Ruby
	A.6 ⊡ Eight-Queens in Smalltalk

	Appendix B. Source for the Billiards Game
	B.1 ⊡ The Version without Inheritance
	B.2 ⊡ The Version with Inheritance

	Appendix C. Source for the Solitaire Game
	Glossary
	References
	Index
	Code Snippets

